hash
stringlengths
64
64
content
stringlengths
0
1.51M
6790d63968b464fad71236882045fdc6e4d001e6e6004a7c098bfe7302c8364e
from sympy import I, sqrt, log, exp, sin, asin, factorial, Mod, pi, oo from sympy.core import Symbol, S, Rational, Integer, Dummy, Wild, Pow from sympy.core.assumptions import (assumptions, check_assumptions, failing_assumptions, common_assumptions) from sympy.core.facts import InconsistentAssumptions from sympy import simplify from sympy.testing.pytest import raises, XFAIL def test_symbol_unset(): x = Symbol('x', real=True, integer=True) assert x.is_real is True assert x.is_integer is True assert x.is_imaginary is False assert x.is_noninteger is False assert x.is_number is False def test_zero(): z = Integer(0) assert z.is_commutative is True assert z.is_integer is True assert z.is_rational is True assert z.is_algebraic is True assert z.is_transcendental is False assert z.is_real is True assert z.is_complex is True assert z.is_noninteger is False assert z.is_irrational is False assert z.is_imaginary is False assert z.is_positive is False assert z.is_negative is False assert z.is_nonpositive is True assert z.is_nonnegative is True assert z.is_even is True assert z.is_odd is False assert z.is_finite is True assert z.is_infinite is False assert z.is_comparable is True assert z.is_prime is False assert z.is_composite is False assert z.is_number is True def test_one(): z = Integer(1) assert z.is_commutative is True assert z.is_integer is True assert z.is_rational is True assert z.is_algebraic is True assert z.is_transcendental is False assert z.is_real is True assert z.is_complex is True assert z.is_noninteger is False assert z.is_irrational is False assert z.is_imaginary is False assert z.is_positive is True assert z.is_negative is False assert z.is_nonpositive is False assert z.is_nonnegative is True assert z.is_even is False assert z.is_odd is True assert z.is_finite is True assert z.is_infinite is False assert z.is_comparable is True assert z.is_prime is False assert z.is_number is True assert z.is_composite is False # issue 8807 def test_negativeone(): z = Integer(-1) assert z.is_commutative is True assert z.is_integer is True assert z.is_rational is True assert z.is_algebraic is True assert z.is_transcendental is False assert z.is_real is True assert z.is_complex is True assert z.is_noninteger is False assert z.is_irrational is False assert z.is_imaginary is False assert z.is_positive is False assert z.is_negative is True assert z.is_nonpositive is True assert z.is_nonnegative is False assert z.is_even is False assert z.is_odd is True assert z.is_finite is True assert z.is_infinite is False assert z.is_comparable is True assert z.is_prime is False assert z.is_composite is False assert z.is_number is True def test_infinity(): oo = S.Infinity assert oo.is_commutative is True assert oo.is_integer is False assert oo.is_rational is False assert oo.is_algebraic is False assert oo.is_transcendental is False assert oo.is_extended_real is True assert oo.is_real is False assert oo.is_complex is False assert oo.is_noninteger is True assert oo.is_irrational is False assert oo.is_imaginary is False assert oo.is_nonzero is False assert oo.is_positive is False assert oo.is_negative is False assert oo.is_nonpositive is False assert oo.is_nonnegative is False assert oo.is_extended_nonzero is True assert oo.is_extended_positive is True assert oo.is_extended_negative is False assert oo.is_extended_nonpositive is False assert oo.is_extended_nonnegative is True assert oo.is_even is False assert oo.is_odd is False assert oo.is_finite is False assert oo.is_infinite is True assert oo.is_comparable is True assert oo.is_prime is False assert oo.is_composite is False assert oo.is_number is True def test_neg_infinity(): mm = S.NegativeInfinity assert mm.is_commutative is True assert mm.is_integer is False assert mm.is_rational is False assert mm.is_algebraic is False assert mm.is_transcendental is False assert mm.is_extended_real is True assert mm.is_real is False assert mm.is_complex is False assert mm.is_noninteger is True assert mm.is_irrational is False assert mm.is_imaginary is False assert mm.is_nonzero is False assert mm.is_positive is False assert mm.is_negative is False assert mm.is_nonpositive is False assert mm.is_nonnegative is False assert mm.is_extended_nonzero is True assert mm.is_extended_positive is False assert mm.is_extended_negative is True assert mm.is_extended_nonpositive is True assert mm.is_extended_nonnegative is False assert mm.is_even is False assert mm.is_odd is False assert mm.is_finite is False assert mm.is_infinite is True assert mm.is_comparable is True assert mm.is_prime is False assert mm.is_composite is False assert mm.is_number is True def test_zoo(): zoo = S.ComplexInfinity assert zoo.is_complex is False assert zoo.is_real is False assert zoo.is_prime is False def test_nan(): nan = S.NaN assert nan.is_commutative is True assert nan.is_integer is None assert nan.is_rational is None assert nan.is_algebraic is None assert nan.is_transcendental is None assert nan.is_real is None assert nan.is_complex is None assert nan.is_noninteger is None assert nan.is_irrational is None assert nan.is_imaginary is None assert nan.is_positive is None assert nan.is_negative is None assert nan.is_nonpositive is None assert nan.is_nonnegative is None assert nan.is_even is None assert nan.is_odd is None assert nan.is_finite is None assert nan.is_infinite is None assert nan.is_comparable is False assert nan.is_prime is None assert nan.is_composite is None assert nan.is_number is True def test_pos_rational(): r = Rational(3, 4) assert r.is_commutative is True assert r.is_integer is False assert r.is_rational is True assert r.is_algebraic is True assert r.is_transcendental is False assert r.is_real is True assert r.is_complex is True assert r.is_noninteger is True assert r.is_irrational is False assert r.is_imaginary is False assert r.is_positive is True assert r.is_negative is False assert r.is_nonpositive is False assert r.is_nonnegative is True assert r.is_even is False assert r.is_odd is False assert r.is_finite is True assert r.is_infinite is False assert r.is_comparable is True assert r.is_prime is False assert r.is_composite is False r = Rational(1, 4) assert r.is_nonpositive is False assert r.is_positive is True assert r.is_negative is False assert r.is_nonnegative is True r = Rational(5, 4) assert r.is_negative is False assert r.is_positive is True assert r.is_nonpositive is False assert r.is_nonnegative is True r = Rational(5, 3) assert r.is_nonnegative is True assert r.is_positive is True assert r.is_negative is False assert r.is_nonpositive is False def test_neg_rational(): r = Rational(-3, 4) assert r.is_positive is False assert r.is_nonpositive is True assert r.is_negative is True assert r.is_nonnegative is False r = Rational(-1, 4) assert r.is_nonpositive is True assert r.is_positive is False assert r.is_negative is True assert r.is_nonnegative is False r = Rational(-5, 4) assert r.is_negative is True assert r.is_positive is False assert r.is_nonpositive is True assert r.is_nonnegative is False r = Rational(-5, 3) assert r.is_nonnegative is False assert r.is_positive is False assert r.is_negative is True assert r.is_nonpositive is True def test_pi(): z = S.Pi assert z.is_commutative is True assert z.is_integer is False assert z.is_rational is False assert z.is_algebraic is False assert z.is_transcendental is True assert z.is_real is True assert z.is_complex is True assert z.is_noninteger is True assert z.is_irrational is True assert z.is_imaginary is False assert z.is_positive is True assert z.is_negative is False assert z.is_nonpositive is False assert z.is_nonnegative is True assert z.is_even is False assert z.is_odd is False assert z.is_finite is True assert z.is_infinite is False assert z.is_comparable is True assert z.is_prime is False assert z.is_composite is False def test_E(): z = S.Exp1 assert z.is_commutative is True assert z.is_integer is False assert z.is_rational is False assert z.is_algebraic is False assert z.is_transcendental is True assert z.is_real is True assert z.is_complex is True assert z.is_noninteger is True assert z.is_irrational is True assert z.is_imaginary is False assert z.is_positive is True assert z.is_negative is False assert z.is_nonpositive is False assert z.is_nonnegative is True assert z.is_even is False assert z.is_odd is False assert z.is_finite is True assert z.is_infinite is False assert z.is_comparable is True assert z.is_prime is False assert z.is_composite is False def test_I(): z = S.ImaginaryUnit assert z.is_commutative is True assert z.is_integer is False assert z.is_rational is False assert z.is_algebraic is True assert z.is_transcendental is False assert z.is_real is False assert z.is_complex is True assert z.is_noninteger is False assert z.is_irrational is False assert z.is_imaginary is True assert z.is_positive is False assert z.is_negative is False assert z.is_nonpositive is False assert z.is_nonnegative is False assert z.is_even is False assert z.is_odd is False assert z.is_finite is True assert z.is_infinite is False assert z.is_comparable is False assert z.is_prime is False assert z.is_composite is False def test_symbol_real_false(): # issue 3848 a = Symbol('a', real=False) assert a.is_real is False assert a.is_integer is False assert a.is_zero is False assert a.is_negative is False assert a.is_positive is False assert a.is_nonnegative is False assert a.is_nonpositive is False assert a.is_nonzero is False assert a.is_extended_negative is None assert a.is_extended_positive is None assert a.is_extended_nonnegative is None assert a.is_extended_nonpositive is None assert a.is_extended_nonzero is None def test_symbol_extended_real_false(): # issue 3848 a = Symbol('a', extended_real=False) assert a.is_real is False assert a.is_integer is False assert a.is_zero is False assert a.is_negative is False assert a.is_positive is False assert a.is_nonnegative is False assert a.is_nonpositive is False assert a.is_nonzero is False assert a.is_extended_negative is False assert a.is_extended_positive is False assert a.is_extended_nonnegative is False assert a.is_extended_nonpositive is False assert a.is_extended_nonzero is False def test_symbol_imaginary(): a = Symbol('a', imaginary=True) assert a.is_real is False assert a.is_integer is False assert a.is_negative is False assert a.is_positive is False assert a.is_nonnegative is False assert a.is_nonpositive is False assert a.is_zero is False assert a.is_nonzero is False # since nonzero -> real def test_symbol_zero(): x = Symbol('x', zero=True) assert x.is_positive is False assert x.is_nonpositive assert x.is_negative is False assert x.is_nonnegative assert x.is_zero is True # TODO Change to x.is_nonzero is None # See https://github.com/sympy/sympy/pull/9583 assert x.is_nonzero is False assert x.is_finite is True def test_symbol_positive(): x = Symbol('x', positive=True) assert x.is_positive is True assert x.is_nonpositive is False assert x.is_negative is False assert x.is_nonnegative is True assert x.is_zero is False assert x.is_nonzero is True def test_neg_symbol_positive(): x = -Symbol('x', positive=True) assert x.is_positive is False assert x.is_nonpositive is True assert x.is_negative is True assert x.is_nonnegative is False assert x.is_zero is False assert x.is_nonzero is True def test_symbol_nonpositive(): x = Symbol('x', nonpositive=True) assert x.is_positive is False assert x.is_nonpositive is True assert x.is_negative is None assert x.is_nonnegative is None assert x.is_zero is None assert x.is_nonzero is None def test_neg_symbol_nonpositive(): x = -Symbol('x', nonpositive=True) assert x.is_positive is None assert x.is_nonpositive is None assert x.is_negative is False assert x.is_nonnegative is True assert x.is_zero is None assert x.is_nonzero is None def test_symbol_falsepositive(): x = Symbol('x', positive=False) assert x.is_positive is False assert x.is_nonpositive is None assert x.is_negative is None assert x.is_nonnegative is None assert x.is_zero is None assert x.is_nonzero is None def test_symbol_falsepositive_mul(): # To test pull request 9379 # Explicit handling of arg.is_positive=False was added to Mul._eval_is_positive x = 2*Symbol('x', positive=False) assert x.is_positive is False # This was None before assert x.is_nonpositive is None assert x.is_negative is None assert x.is_nonnegative is None assert x.is_zero is None assert x.is_nonzero is None @XFAIL def test_symbol_infinitereal_mul(): ix = Symbol('ix', infinite=True, extended_real=True) assert (-ix).is_extended_positive is None def test_neg_symbol_falsepositive(): x = -Symbol('x', positive=False) assert x.is_positive is None assert x.is_nonpositive is None assert x.is_negative is False assert x.is_nonnegative is None assert x.is_zero is None assert x.is_nonzero is None def test_neg_symbol_falsenegative(): # To test pull request 9379 # Explicit handling of arg.is_negative=False was added to Mul._eval_is_positive x = -Symbol('x', negative=False) assert x.is_positive is False # This was None before assert x.is_nonpositive is None assert x.is_negative is None assert x.is_nonnegative is None assert x.is_zero is None assert x.is_nonzero is None def test_symbol_falsepositive_real(): x = Symbol('x', positive=False, real=True) assert x.is_positive is False assert x.is_nonpositive is True assert x.is_negative is None assert x.is_nonnegative is None assert x.is_zero is None assert x.is_nonzero is None def test_neg_symbol_falsepositive_real(): x = -Symbol('x', positive=False, real=True) assert x.is_positive is None assert x.is_nonpositive is None assert x.is_negative is False assert x.is_nonnegative is True assert x.is_zero is None assert x.is_nonzero is None def test_symbol_falsenonnegative(): x = Symbol('x', nonnegative=False) assert x.is_positive is False assert x.is_nonpositive is None assert x.is_negative is None assert x.is_nonnegative is False assert x.is_zero is False assert x.is_nonzero is None @XFAIL def test_neg_symbol_falsenonnegative(): x = -Symbol('x', nonnegative=False) assert x.is_positive is None assert x.is_nonpositive is False # this currently returns None assert x.is_negative is False # this currently returns None assert x.is_nonnegative is None assert x.is_zero is False # this currently returns None assert x.is_nonzero is True # this currently returns None def test_symbol_falsenonnegative_real(): x = Symbol('x', nonnegative=False, real=True) assert x.is_positive is False assert x.is_nonpositive is True assert x.is_negative is True assert x.is_nonnegative is False assert x.is_zero is False assert x.is_nonzero is True def test_neg_symbol_falsenonnegative_real(): x = -Symbol('x', nonnegative=False, real=True) assert x.is_positive is True assert x.is_nonpositive is False assert x.is_negative is False assert x.is_nonnegative is True assert x.is_zero is False assert x.is_nonzero is True def test_prime(): assert S.NegativeOne.is_prime is False assert S(-2).is_prime is False assert S(-4).is_prime is False assert S.Zero.is_prime is False assert S.One.is_prime is False assert S(2).is_prime is True assert S(17).is_prime is True assert S(4).is_prime is False def test_composite(): assert S.NegativeOne.is_composite is False assert S(-2).is_composite is False assert S(-4).is_composite is False assert S.Zero.is_composite is False assert S(2).is_composite is False assert S(17).is_composite is False assert S(4).is_composite is True x = Dummy(integer=True, positive=True, prime=False) assert x.is_composite is None # x could be 1 assert (x + 1).is_composite is None x = Dummy(positive=True, even=True, prime=False) assert x.is_integer is True assert x.is_composite is True def test_prime_symbol(): x = Symbol('x', prime=True) assert x.is_prime is True assert x.is_integer is True assert x.is_positive is True assert x.is_negative is False assert x.is_nonpositive is False assert x.is_nonnegative is True x = Symbol('x', prime=False) assert x.is_prime is False assert x.is_integer is None assert x.is_positive is None assert x.is_negative is None assert x.is_nonpositive is None assert x.is_nonnegative is None def test_symbol_noncommutative(): x = Symbol('x', commutative=True) assert x.is_complex is None x = Symbol('x', commutative=False) assert x.is_integer is False assert x.is_rational is False assert x.is_algebraic is False assert x.is_irrational is False assert x.is_real is False assert x.is_complex is False def test_other_symbol(): x = Symbol('x', integer=True) assert x.is_integer is True assert x.is_real is True assert x.is_finite is True x = Symbol('x', integer=True, nonnegative=True) assert x.is_integer is True assert x.is_nonnegative is True assert x.is_negative is False assert x.is_positive is None assert x.is_finite is True x = Symbol('x', integer=True, nonpositive=True) assert x.is_integer is True assert x.is_nonpositive is True assert x.is_positive is False assert x.is_negative is None assert x.is_finite is True x = Symbol('x', odd=True) assert x.is_odd is True assert x.is_even is False assert x.is_integer is True assert x.is_finite is True x = Symbol('x', odd=False) assert x.is_odd is False assert x.is_even is None assert x.is_integer is None assert x.is_finite is None x = Symbol('x', even=True) assert x.is_even is True assert x.is_odd is False assert x.is_integer is True assert x.is_finite is True x = Symbol('x', even=False) assert x.is_even is False assert x.is_odd is None assert x.is_integer is None assert x.is_finite is None x = Symbol('x', integer=True, nonnegative=True) assert x.is_integer is True assert x.is_nonnegative is True assert x.is_finite is True x = Symbol('x', integer=True, nonpositive=True) assert x.is_integer is True assert x.is_nonpositive is True assert x.is_finite is True x = Symbol('x', rational=True) assert x.is_real is True assert x.is_finite is True x = Symbol('x', rational=False) assert x.is_real is None assert x.is_finite is None x = Symbol('x', irrational=True) assert x.is_real is True assert x.is_finite is True x = Symbol('x', irrational=False) assert x.is_real is None assert x.is_finite is None with raises(AttributeError): x.is_real = False x = Symbol('x', algebraic=True) assert x.is_transcendental is False x = Symbol('x', transcendental=True) assert x.is_algebraic is False assert x.is_rational is False assert x.is_integer is False def test_issue_3825(): """catch: hash instability""" x = Symbol("x") y = Symbol("y") a1 = x + y a2 = y + x a2.is_comparable h1 = hash(a1) h2 = hash(a2) assert h1 == h2 def test_issue_4822(): z = (-1)**Rational(1, 3)*(1 - I*sqrt(3)) assert z.is_real in [True, None] def test_hash_vs_typeinfo(): """seemingly different typeinfo, but in fact equal""" # the following two are semantically equal x1 = Symbol('x', even=True) x2 = Symbol('x', integer=True, odd=False) assert hash(x1) == hash(x2) assert x1 == x2 def test_hash_vs_typeinfo_2(): """different typeinfo should mean !eq""" # the following two are semantically different x = Symbol('x') x1 = Symbol('x', even=True) assert x != x1 assert hash(x) != hash(x1) # This might fail with very low probability def test_hash_vs_eq(): """catch: different hash for equal objects""" a = 1 + S.Pi # important: do not fold it into a Number instance ha = hash(a) # it should be Add/Mul/... to trigger the bug a.is_positive # this uses .evalf() and deduces it is positive assert a.is_positive is True # be sure that hash stayed the same assert ha == hash(a) # now b should be the same expression b = a.expand(trig=True) hb = hash(b) assert a == b assert ha == hb def test_Add_is_pos_neg(): # these cover lines not covered by the rest of tests in core n = Symbol('n', extended_negative=True, infinite=True) nn = Symbol('n', extended_nonnegative=True, infinite=True) np = Symbol('n', extended_nonpositive=True, infinite=True) p = Symbol('p', extended_positive=True, infinite=True) r = Dummy(extended_real=True, finite=False) x = Symbol('x') xf = Symbol('xf', finite=True) assert (n + p).is_extended_positive is None assert (n + x).is_extended_positive is None assert (p + x).is_extended_positive is None assert (n + p).is_extended_negative is None assert (n + x).is_extended_negative is None assert (p + x).is_extended_negative is None assert (n + xf).is_extended_positive is False assert (p + xf).is_extended_positive is True assert (n + xf).is_extended_negative is True assert (p + xf).is_extended_negative is False assert (x - S.Infinity).is_extended_negative is None # issue 7798 # issue 8046, 16.2 assert (p + nn).is_extended_positive assert (n + np).is_extended_negative assert (p + r).is_extended_positive is None def test_Add_is_imaginary(): nn = Dummy(nonnegative=True) assert (I*nn + I).is_imaginary # issue 8046, 17 def test_Add_is_algebraic(): a = Symbol('a', algebraic=True) b = Symbol('a', algebraic=True) na = Symbol('na', algebraic=False) nb = Symbol('nb', algebraic=False) x = Symbol('x') assert (a + b).is_algebraic assert (na + nb).is_algebraic is None assert (a + na).is_algebraic is False assert (a + x).is_algebraic is None assert (na + x).is_algebraic is None def test_Mul_is_algebraic(): a = Symbol('a', algebraic=True) b = Symbol('b', algebraic=True) na = Symbol('na', algebraic=False) an = Symbol('an', algebraic=True, nonzero=True) nb = Symbol('nb', algebraic=False) x = Symbol('x') assert (a*b).is_algebraic is True assert (na*nb).is_algebraic is None assert (a*na).is_algebraic is None assert (an*na).is_algebraic is False assert (a*x).is_algebraic is None assert (na*x).is_algebraic is None def test_Pow_is_algebraic(): e = Symbol('e', algebraic=True) assert Pow(1, e, evaluate=False).is_algebraic assert Pow(0, e, evaluate=False).is_algebraic a = Symbol('a', algebraic=True) azf = Symbol('azf', algebraic=True, zero=False) na = Symbol('na', algebraic=False) ia = Symbol('ia', algebraic=True, irrational=True) ib = Symbol('ib', algebraic=True, irrational=True) r = Symbol('r', rational=True) x = Symbol('x') assert (a**2).is_algebraic is True assert (a**r).is_algebraic is None assert (azf**r).is_algebraic is True assert (a**x).is_algebraic is None assert (na**r).is_algebraic is None assert (ia**r).is_algebraic is True assert (ia**ib).is_algebraic is False assert (a**e).is_algebraic is None # Gelfond-Schneider constant: assert Pow(2, sqrt(2), evaluate=False).is_algebraic is False assert Pow(S.GoldenRatio, sqrt(3), evaluate=False).is_algebraic is False # issue 8649 t = Symbol('t', real=True, transcendental=True) n = Symbol('n', integer=True) assert (t**n).is_algebraic is None assert (t**n).is_integer is None assert (pi**3).is_algebraic is False r = Symbol('r', zero=True) assert (pi**r).is_algebraic is True def test_Mul_is_prime_composite(): x = Symbol('x', positive=True, integer=True) y = Symbol('y', positive=True, integer=True) assert (x*y).is_prime is None assert ( (x+1)*(y+1) ).is_prime is False assert ( (x+1)*(y+1) ).is_composite is True x = Symbol('x', positive=True) assert ( (x+1)*(y+1) ).is_prime is None assert ( (x+1)*(y+1) ).is_composite is None def test_Pow_is_pos_neg(): z = Symbol('z', real=True) w = Symbol('w', nonpositive=True) assert (S.NegativeOne**S(2)).is_positive is True assert (S.One**z).is_positive is True assert (S.NegativeOne**S(3)).is_positive is False assert (S.Zero**S.Zero).is_positive is True # 0**0 is 1 assert (w**S(3)).is_positive is False assert (w**S(2)).is_positive is None assert (I**2).is_positive is False assert (I**4).is_positive is True # tests emerging from #16332 issue p = Symbol('p', zero=True) q = Symbol('q', zero=False, real=True) j = Symbol('j', zero=False, even=True) x = Symbol('x', zero=True) y = Symbol('y', zero=True) assert (p**q).is_positive is False assert (p**q).is_negative is False assert (p**j).is_positive is False assert (x**y).is_positive is True # 0**0 assert (x**y).is_negative is False def test_Pow_is_prime_composite(): x = Symbol('x', positive=True, integer=True) y = Symbol('y', positive=True, integer=True) assert (x**y).is_prime is None assert ( x**(y+1) ).is_prime is False assert ( x**(y+1) ).is_composite is None assert ( (x+1)**(y+1) ).is_composite is True assert ( (-x-1)**(2*y) ).is_composite is True x = Symbol('x', positive=True) assert (x**y).is_prime is None def test_Mul_is_infinite(): x = Symbol('x') f = Symbol('f', finite=True) i = Symbol('i', infinite=True) z = Dummy(zero=True) nzf = Dummy(finite=True, zero=False) from sympy import Mul assert (x*f).is_finite is None assert (x*i).is_finite is None assert (f*i).is_finite is None assert (x*f*i).is_finite is None assert (z*i).is_finite is None assert (nzf*i).is_finite is False assert (z*f).is_finite is True assert Mul(0, f, evaluate=False).is_finite is True assert Mul(0, i, evaluate=False).is_finite is None assert (x*f).is_infinite is None assert (x*i).is_infinite is None assert (f*i).is_infinite is None assert (x*f*i).is_infinite is None assert (z*i).is_infinite is S.NaN.is_infinite assert (nzf*i).is_infinite is True assert (z*f).is_infinite is False assert Mul(0, f, evaluate=False).is_infinite is False assert Mul(0, i, evaluate=False).is_infinite is S.NaN.is_infinite def test_Add_is_infinite(): x = Symbol('x') f = Symbol('f', finite=True) i = Symbol('i', infinite=True) i2 = Symbol('i2', infinite=True) z = Dummy(zero=True) nzf = Dummy(finite=True, zero=False) from sympy import Add assert (x+f).is_finite is None assert (x+i).is_finite is None assert (f+i).is_finite is False assert (x+f+i).is_finite is None assert (z+i).is_finite is False assert (nzf+i).is_finite is False assert (z+f).is_finite is True assert (i+i2).is_finite is None assert Add(0, f, evaluate=False).is_finite is True assert Add(0, i, evaluate=False).is_finite is False assert (x+f).is_infinite is None assert (x+i).is_infinite is None assert (f+i).is_infinite is True assert (x+f+i).is_infinite is None assert (z+i).is_infinite is True assert (nzf+i).is_infinite is True assert (z+f).is_infinite is False assert (i+i2).is_infinite is None assert Add(0, f, evaluate=False).is_infinite is False assert Add(0, i, evaluate=False).is_infinite is True def test_special_is_rational(): i = Symbol('i', integer=True) i2 = Symbol('i2', integer=True) ni = Symbol('ni', integer=True, nonzero=True) r = Symbol('r', rational=True) rn = Symbol('r', rational=True, nonzero=True) nr = Symbol('nr', irrational=True) x = Symbol('x') assert sqrt(3).is_rational is False assert (3 + sqrt(3)).is_rational is False assert (3*sqrt(3)).is_rational is False assert exp(3).is_rational is False assert exp(ni).is_rational is False assert exp(rn).is_rational is False assert exp(x).is_rational is None assert exp(log(3), evaluate=False).is_rational is True assert log(exp(3), evaluate=False).is_rational is True assert log(3).is_rational is False assert log(ni + 1).is_rational is False assert log(rn + 1).is_rational is False assert log(x).is_rational is None assert (sqrt(3) + sqrt(5)).is_rational is None assert (sqrt(3) + S.Pi).is_rational is False assert (x**i).is_rational is None assert (i**i).is_rational is True assert (i**i2).is_rational is None assert (r**i).is_rational is None assert (r**r).is_rational is None assert (r**x).is_rational is None assert (nr**i).is_rational is None # issue 8598 assert (nr**Symbol('z', zero=True)).is_rational assert sin(1).is_rational is False assert sin(ni).is_rational is False assert sin(rn).is_rational is False assert sin(x).is_rational is None assert asin(r).is_rational is False assert sin(asin(3), evaluate=False).is_rational is True @XFAIL def test_issue_6275(): x = Symbol('x') # both zero or both Muls...but neither "change would be very appreciated. # This is similar to x/x => 1 even though if x = 0, it is really nan. assert isinstance(x*0, type(0*S.Infinity)) if 0*S.Infinity is S.NaN: b = Symbol('b', finite=None) assert (b*0).is_zero is None def test_sanitize_assumptions(): # issue 6666 for cls in (Symbol, Dummy, Wild): x = cls('x', real=1, positive=0) assert x.is_real is True assert x.is_positive is False assert cls('', real=True, positive=None).is_positive is None raises(ValueError, lambda: cls('', commutative=None)) raises(ValueError, lambda: Symbol._sanitize(dict(commutative=None))) def test_special_assumptions(): e = -3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2 assert simplify(e < 0) is S.false assert simplify(e > 0) is S.false assert (e == 0) is False # it's not a literal 0 assert e.equals(0) is True def test_inconsistent(): # cf. issues 5795 and 5545 raises(InconsistentAssumptions, lambda: Symbol('x', real=True, commutative=False)) def test_issue_6631(): assert ((-1)**(I)).is_real is True assert ((-1)**(I*2)).is_real is True assert ((-1)**(I/2)).is_real is True assert ((-1)**(I*S.Pi)).is_real is True assert (I**(I + 2)).is_real is True def test_issue_2730(): assert (1/(1 + I)).is_real is False def test_issue_4149(): assert (3 + I).is_complex assert (3 + I).is_imaginary is False assert (3*I + S.Pi*I).is_imaginary # as Zero.is_imaginary is False, see issue 7649 y = Symbol('y', real=True) assert (3*I + S.Pi*I + y*I).is_imaginary is None p = Symbol('p', positive=True) assert (3*I + S.Pi*I + p*I).is_imaginary n = Symbol('n', negative=True) assert (-3*I - S.Pi*I + n*I).is_imaginary i = Symbol('i', imaginary=True) assert ([(i**a).is_imaginary for a in range(4)] == [False, True, False, True]) # tests from the PR #7887: e = S("-sqrt(3)*I/2 + 0.866025403784439*I") assert e.is_real is False assert e.is_imaginary def test_issue_2920(): n = Symbol('n', negative=True) assert sqrt(n).is_imaginary def test_issue_7899(): x = Symbol('x', real=True) assert (I*x).is_real is None assert ((x - I)*(x - 1)).is_zero is None assert ((x - I)*(x - 1)).is_real is None @XFAIL def test_issue_7993(): x = Dummy(integer=True) y = Dummy(noninteger=True) assert (x - y).is_zero is False def test_issue_8075(): raises(InconsistentAssumptions, lambda: Dummy(zero=True, finite=False)) raises(InconsistentAssumptions, lambda: Dummy(zero=True, infinite=True)) def test_issue_8642(): x = Symbol('x', real=True, integer=False) assert (x*2).is_integer is None, (x*2).is_integer def test_issues_8632_8633_8638_8675_8992(): p = Dummy(integer=True, positive=True) nn = Dummy(integer=True, nonnegative=True) assert (p - S.Half).is_positive assert (p - 1).is_nonnegative assert (nn + 1).is_positive assert (-p + 1).is_nonpositive assert (-nn - 1).is_negative prime = Dummy(prime=True) assert (prime - 2).is_nonnegative assert (prime - 3).is_nonnegative is None even = Dummy(positive=True, even=True) assert (even - 2).is_nonnegative p = Dummy(positive=True) assert (p/(p + 1) - 1).is_negative assert ((p + 2)**3 - S.Half).is_positive n = Dummy(negative=True) assert (n - 3).is_nonpositive def test_issue_9115_9150(): n = Dummy('n', integer=True, nonnegative=True) assert (factorial(n) >= 1) == True assert (factorial(n) < 1) == False assert factorial(n + 1).is_even is None assert factorial(n + 2).is_even is True assert factorial(n + 2) >= 2 def test_issue_9165(): z = Symbol('z', zero=True) f = Symbol('f', finite=False) assert 0/z is S.NaN assert 0*(1/z) is S.NaN assert 0*f is S.NaN def test_issue_10024(): x = Dummy('x') assert Mod(x, 2*pi).is_zero is None def test_issue_10302(): x = Symbol('x') r = Symbol('r', real=True) u = -(3*2**pi)**(1/pi) + 2*3**(1/pi) i = u + u*I assert i.is_real is None # w/o simplification this should fail assert (u + i).is_zero is None assert (1 + i).is_zero is False a = Dummy('a', zero=True) assert (a + I).is_zero is False assert (a + r*I).is_zero is None assert (a + I).is_imaginary assert (a + x + I).is_imaginary is None assert (a + r*I + I).is_imaginary is None def test_complex_reciprocal_imaginary(): assert (1 / (4 + 3*I)).is_imaginary is False def test_issue_16313(): x = Symbol('x', extended_real=False) k = Symbol('k', real=True) l = Symbol('l', real=True, zero=False) assert (-x).is_real is False assert (k*x).is_real is None # k can be zero also assert (l*x).is_real is False assert (l*x*x).is_real is None # since x*x can be a real number assert (-x).is_positive is False def test_issue_16579(): # extended_real -> finite | infinite x = Symbol('x', extended_real=True, infinite=False) y = Symbol('y', extended_real=True, finite=False) assert x.is_finite is True assert y.is_infinite is True # With PR 16978, complex now implies finite c = Symbol('c', complex=True) assert c.is_finite is True raises(InconsistentAssumptions, lambda: Dummy(complex=True, finite=False)) # Now infinite == !finite nf = Symbol('nf', finite=False) assert nf.is_infinite is True def test_issue_17556(): z = I*oo assert z.is_imaginary is False assert z.is_finite is False def test_issue_21651(): k = Symbol('k', positive=True, integer=True) exp = 2*2**(-k) assert exp.is_integer is None def test_assumptions_copy(): assert assumptions(Symbol('x'), dict(commutative=True) ) == {'commutative': True} assert assumptions(Symbol('x'), ['integer']) == {} assert assumptions(Symbol('x'), ['commutative'] ) == {'commutative': True} assert assumptions(Symbol('x')) == {'commutative': True} assert assumptions(1)['positive'] assert assumptions(3 + I) == { 'algebraic': True, 'commutative': True, 'complex': True, 'composite': False, 'even': False, 'extended_negative': False, 'extended_nonnegative': False, 'extended_nonpositive': False, 'extended_nonzero': False, 'extended_positive': False, 'extended_real': False, 'finite': True, 'imaginary': False, 'infinite': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False} def test_check_assumptions(): assert check_assumptions(1, 0) is False x = Symbol('x', positive=True) assert check_assumptions(1, x) is True assert check_assumptions(1, 1) is True assert check_assumptions(-1, 1) is False i = Symbol('i', integer=True) # don't know if i is positive (or prime, etc...) assert check_assumptions(i, 1) is None assert check_assumptions(Dummy(integer=None), integer=True) is None assert check_assumptions(Dummy(integer=None), integer=False) is None assert check_assumptions(Dummy(integer=False), integer=True) is False assert check_assumptions(Dummy(integer=True), integer=False) is False # no T/F assumptions to check assert check_assumptions(Dummy(integer=False), integer=None) is True raises(ValueError, lambda: check_assumptions(2*x, x, positive=True)) def test_failing_assumptions(): x = Symbol('x', real=True, positive=True) y = Symbol('y') assert failing_assumptions(6*x + y, **x.assumptions0) == \ {'real': None, 'imaginary': None, 'complex': None, 'hermitian': None, 'positive': None, 'nonpositive': None, 'nonnegative': None, 'nonzero': None, 'negative': None, 'zero': None, 'extended_real': None, 'finite': None, 'infinite': None, 'extended_negative': None, 'extended_nonnegative': None, 'extended_nonpositive': None, 'extended_nonzero': None, 'extended_positive': None } def test_common_assumptions(): assert common_assumptions([0, 1, 2] ) == {'algebraic': True, 'irrational': False, 'hermitian': True, 'extended_real': True, 'real': True, 'extended_negative': False, 'extended_nonnegative': True, 'integer': True, 'rational': True, 'imaginary': False, 'complex': True, 'commutative': True,'noninteger': False, 'composite': False, 'infinite': False, 'nonnegative': True, 'finite': True, 'transcendental': False,'negative': False} assert common_assumptions([0, 1, 2], 'positive integer'.split() ) == {'integer': True} assert common_assumptions([0, 1, 2], []) == {} assert common_assumptions([], ['integer']) == {} assert common_assumptions([0], ['integer']) == {'integer': True}
081663f7a69384b24b21a53ab04ebbd6a8257c3afb5c17334ef81808e838919a
from sympy import (Symbol, exp, Integer, Float, sin, cos, Poly, Lambda, Function, I, S, sqrt, srepr, Rational, Tuple, Matrix, Interval, Add, Mul, Pow, Or, true, false, Abs, pi, Range, Xor) from sympy.abc import x, y from sympy.core.sympify import (sympify, _sympify, SympifyError, kernS, CantSympify) from sympy.core.decorators import _sympifyit from sympy.external import import_module from sympy.testing.pytest import raises, XFAIL, skip, warns_deprecated_sympy from sympy.utilities.decorator import conserve_mpmath_dps from sympy.geometry import Point, Line from sympy.functions.combinatorial.factorials import factorial, factorial2 from sympy.abc import _clash, _clash1, _clash2 from sympy.core.compatibility import HAS_GMPY from sympy.sets import FiniteSet, EmptySet from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray import mpmath from collections import defaultdict, OrderedDict from mpmath.rational import mpq numpy = import_module('numpy') def test_issue_3538(): v = sympify("exp(x)") assert v == exp(x) assert type(v) == type(exp(x)) assert str(type(v)) == str(type(exp(x))) def test_sympify1(): assert sympify("x") == Symbol("x") assert sympify(" x") == Symbol("x") assert sympify(" x ") == Symbol("x") # issue 4877 n1 = S.Half assert sympify('--.5') == n1 assert sympify('-1/2') == -n1 assert sympify('-+--.5') == -n1 assert sympify('-.[3]') == Rational(-1, 3) assert sympify('.[3]') == Rational(1, 3) assert sympify('+.[3]') == Rational(1, 3) assert sympify('+0.[3]*10**-2') == Rational(1, 300) assert sympify('.[052631578947368421]') == Rational(1, 19) assert sympify('.0[526315789473684210]') == Rational(1, 19) assert sympify('.034[56]') == Rational(1711, 49500) # options to make reals into rationals assert sympify('1.22[345]', rational=True) == \ 1 + Rational(22, 100) + Rational(345, 99900) assert sympify('2/2.6', rational=True) == Rational(10, 13) assert sympify('2.6/2', rational=True) == Rational(13, 10) assert sympify('2.6e2/17', rational=True) == Rational(260, 17) assert sympify('2.6e+2/17', rational=True) == Rational(260, 17) assert sympify('2.6e-2/17', rational=True) == Rational(26, 17000) assert sympify('2.1+3/4', rational=True) == \ Rational(21, 10) + Rational(3, 4) assert sympify('2.234456', rational=True) == Rational(279307, 125000) assert sympify('2.234456e23', rational=True) == 223445600000000000000000 assert sympify('2.234456e-23', rational=True) == \ Rational(279307, 12500000000000000000000000000) assert sympify('-2.234456e-23', rational=True) == \ Rational(-279307, 12500000000000000000000000000) assert sympify('12345678901/17', rational=True) == \ Rational(12345678901, 17) assert sympify('1/.3 + x', rational=True) == Rational(10, 3) + x # make sure longs in fractions work assert sympify('222222222222/11111111111') == \ Rational(222222222222, 11111111111) # ... even if they come from repetend notation assert sympify('1/.2[123456789012]') == Rational(333333333333, 70781892967) # ... or from high precision reals assert sympify('.1234567890123456', rational=True) == \ Rational(19290123283179, 156250000000000) def test_sympify_Fraction(): try: import fractions except ImportError: pass else: value = sympify(fractions.Fraction(101, 127)) assert value == Rational(101, 127) and type(value) is Rational def test_sympify_gmpy(): if HAS_GMPY: if HAS_GMPY == 2: import gmpy2 as gmpy elif HAS_GMPY == 1: import gmpy value = sympify(gmpy.mpz(1000001)) assert value == Integer(1000001) and type(value) is Integer value = sympify(gmpy.mpq(101, 127)) assert value == Rational(101, 127) and type(value) is Rational @conserve_mpmath_dps def test_sympify_mpmath(): value = sympify(mpmath.mpf(1.0)) assert value == Float(1.0) and type(value) is Float mpmath.mp.dps = 12 assert sympify( mpmath.pi).epsilon_eq(Float("3.14159265359"), Float("1e-12")) == True assert sympify( mpmath.pi).epsilon_eq(Float("3.14159265359"), Float("1e-13")) == False mpmath.mp.dps = 6 assert sympify( mpmath.pi).epsilon_eq(Float("3.14159"), Float("1e-5")) == True assert sympify( mpmath.pi).epsilon_eq(Float("3.14159"), Float("1e-6")) == False assert sympify(mpmath.mpc(1.0 + 2.0j)) == Float(1.0) + Float(2.0)*I assert sympify(mpq(1, 2)) == S.Half def test_sympify2(): class A: def _sympy_(self): return Symbol("x")**3 a = A() assert _sympify(a) == x**3 assert sympify(a) == x**3 assert a == x**3 def test_sympify3(): assert sympify("x**3") == x**3 assert sympify("x^3") == x**3 assert sympify("1/2") == Integer(1)/2 raises(SympifyError, lambda: _sympify('x**3')) raises(SympifyError, lambda: _sympify('1/2')) def test_sympify_keywords(): raises(SympifyError, lambda: sympify('if')) raises(SympifyError, lambda: sympify('for')) raises(SympifyError, lambda: sympify('while')) raises(SympifyError, lambda: sympify('lambda')) def test_sympify_float(): assert sympify("1e-64") != 0 assert sympify("1e-20000") != 0 def test_sympify_bool(): assert sympify(True) is true assert sympify(False) is false def test_sympyify_iterables(): ans = [Rational(3, 10), Rational(1, 5)] assert sympify(['.3', '.2'], rational=True) == ans assert sympify(dict(x=0, y=1)) == {x: 0, y: 1} assert sympify(['1', '2', ['3', '4']]) == [S(1), S(2), [S(3), S(4)]] @XFAIL def test_issue_16772(): # because there is a converter for tuple, the # args are only sympified without the flags being passed # along; list, on the other hand, is not converted # with a converter so its args are traversed later ans = [Rational(3, 10), Rational(1, 5)] assert sympify(tuple(['.3', '.2']), rational=True) == Tuple(*ans) def test_issue_16859(): class no(float, CantSympify): pass raises(SympifyError, lambda: sympify(no(1.2))) def test_sympify4(): class A: def _sympy_(self): return Symbol("x") a = A() assert _sympify(a)**3 == x**3 assert sympify(a)**3 == x**3 assert a == x def test_sympify_text(): assert sympify('some') == Symbol('some') assert sympify('core') == Symbol('core') assert sympify('True') is True assert sympify('False') is False assert sympify('Poly') == Poly assert sympify('sin') == sin def test_sympify_function(): assert sympify('factor(x**2-1, x)') == -(1 - x)*(x + 1) assert sympify('sin(pi/2)*cos(pi)') == -Integer(1) def test_sympify_poly(): p = Poly(x**2 + x + 1, x) assert _sympify(p) is p assert sympify(p) is p def test_sympify_factorial(): assert sympify('x!') == factorial(x) assert sympify('(x+1)!') == factorial(x + 1) assert sympify('(1 + y*(x + 1))!') == factorial(1 + y*(x + 1)) assert sympify('(1 + y*(x + 1)!)^2') == (1 + y*factorial(x + 1))**2 assert sympify('y*x!') == y*factorial(x) assert sympify('x!!') == factorial2(x) assert sympify('(x+1)!!') == factorial2(x + 1) assert sympify('(1 + y*(x + 1))!!') == factorial2(1 + y*(x + 1)) assert sympify('(1 + y*(x + 1)!!)^2') == (1 + y*factorial2(x + 1))**2 assert sympify('y*x!!') == y*factorial2(x) assert sympify('factorial2(x)!') == factorial(factorial2(x)) raises(SympifyError, lambda: sympify("+!!")) raises(SympifyError, lambda: sympify(")!!")) raises(SympifyError, lambda: sympify("!")) raises(SympifyError, lambda: sympify("(!)")) raises(SympifyError, lambda: sympify("x!!!")) def test_issue_3595(): assert sympify("a_") == Symbol("a_") assert sympify("_a") == Symbol("_a") def test_lambda(): x = Symbol('x') assert sympify('lambda: 1') == Lambda((), 1) assert sympify('lambda x: x') == Lambda(x, x) assert sympify('lambda x: 2*x') == Lambda(x, 2*x) assert sympify('lambda x, y: 2*x+y') == Lambda((x, y), 2*x + y) def test_lambda_raises(): raises(SympifyError, lambda: sympify("lambda *args: args")) # args argument error raises(SympifyError, lambda: sympify("lambda **kwargs: kwargs[0]")) # kwargs argument error raises(SympifyError, lambda: sympify("lambda x = 1: x")) # Keyword argument error with raises(SympifyError): _sympify('lambda: 1') def test_sympify_raises(): raises(SympifyError, lambda: sympify("fx)")) class A: def __str__(self): return 'x' with warns_deprecated_sympy(): assert sympify(A()) == Symbol('x') def test__sympify(): x = Symbol('x') f = Function('f') # positive _sympify assert _sympify(x) is x assert _sympify(1) == Integer(1) assert _sympify(0.5) == Float("0.5") assert _sympify(1 + 1j) == 1.0 + I*1.0 # Function f is not Basic and can't sympify to Basic. We allow it to pass # with sympify but not with _sympify. # https://github.com/sympy/sympy/issues/20124 assert sympify(f) is f raises(SympifyError, lambda: _sympify(f)) class A: def _sympy_(self): return Integer(5) a = A() assert _sympify(a) == Integer(5) # negative _sympify raises(SympifyError, lambda: _sympify('1')) raises(SympifyError, lambda: _sympify([1, 2, 3])) def test_sympifyit(): x = Symbol('x') y = Symbol('y') @_sympifyit('b', NotImplemented) def add(a, b): return a + b assert add(x, 1) == x + 1 assert add(x, 0.5) == x + Float('0.5') assert add(x, y) == x + y assert add(x, '1') == NotImplemented @_sympifyit('b') def add_raises(a, b): return a + b assert add_raises(x, 1) == x + 1 assert add_raises(x, 0.5) == x + Float('0.5') assert add_raises(x, y) == x + y raises(SympifyError, lambda: add_raises(x, '1')) def test_int_float(): class F1_1: def __float__(self): return 1.1 class F1_1b: """ This class is still a float, even though it also implements __int__(). """ def __float__(self): return 1.1 def __int__(self): return 1 class F1_1c: """ This class is still a float, because it implements _sympy_() """ def __float__(self): return 1.1 def __int__(self): return 1 def _sympy_(self): return Float(1.1) class I5: def __int__(self): return 5 class I5b: """ This class implements both __int__() and __float__(), so it will be treated as Float in SymPy. One could change this behavior, by using float(a) == int(a), but deciding that integer-valued floats represent exact numbers is arbitrary and often not correct, so we do not do it. If, in the future, we decide to do it anyway, the tests for I5b need to be changed. """ def __float__(self): return 5.0 def __int__(self): return 5 class I5c: """ This class implements both __int__() and __float__(), but also a _sympy_() method, so it will be Integer. """ def __float__(self): return 5.0 def __int__(self): return 5 def _sympy_(self): return Integer(5) i5 = I5() i5b = I5b() i5c = I5c() f1_1 = F1_1() f1_1b = F1_1b() f1_1c = F1_1c() assert sympify(i5) == 5 assert isinstance(sympify(i5), Integer) assert sympify(i5b) == 5 assert isinstance(sympify(i5b), Float) assert sympify(i5c) == 5 assert isinstance(sympify(i5c), Integer) assert abs(sympify(f1_1) - 1.1) < 1e-5 assert abs(sympify(f1_1b) - 1.1) < 1e-5 assert abs(sympify(f1_1c) - 1.1) < 1e-5 assert _sympify(i5) == 5 assert isinstance(_sympify(i5), Integer) assert _sympify(i5b) == 5 assert isinstance(_sympify(i5b), Float) assert _sympify(i5c) == 5 assert isinstance(_sympify(i5c), Integer) assert abs(_sympify(f1_1) - 1.1) < 1e-5 assert abs(_sympify(f1_1b) - 1.1) < 1e-5 assert abs(_sympify(f1_1c) - 1.1) < 1e-5 def test_evaluate_false(): cases = { '2 + 3': Add(2, 3, evaluate=False), '2**2 / 3': Mul(Pow(2, 2, evaluate=False), Pow(3, -1, evaluate=False), evaluate=False), '2 + 3 * 5': Add(2, Mul(3, 5, evaluate=False), evaluate=False), '2 - 3 * 5': Add(2, Mul(-1, Mul(3, 5,evaluate=False), evaluate=False), evaluate=False), '1 / 3': Mul(1, Pow(3, -1, evaluate=False), evaluate=False), 'True | False': Or(True, False, evaluate=False), '1 + 2 + 3 + 5*3 + integrate(x)': Add(1, 2, 3, Mul(5, 3, evaluate=False), x**2/2, evaluate=False), '2 * 4 * 6 + 8': Add(Mul(2, 4, 6, evaluate=False), 8, evaluate=False), '2 - 8 / 4': Add(2, Mul(-1, Mul(8, Pow(4, -1, evaluate=False), evaluate=False), evaluate=False), evaluate=False), '2 - 2**2': Add(2, Mul(-1, Pow(2, 2, evaluate=False), evaluate=False), evaluate=False), } for case, result in cases.items(): assert sympify(case, evaluate=False) == result def test_issue_4133(): a = sympify('Integer(4)') assert a == Integer(4) assert a.is_Integer def test_issue_3982(): a = [3, 2.0] assert sympify(a) == [Integer(3), Float(2.0)] assert sympify(tuple(a)) == Tuple(Integer(3), Float(2.0)) assert sympify(set(a)) == FiniteSet(Integer(3), Float(2.0)) def test_S_sympify(): assert S(1)/2 == sympify(1)/2 assert (-2)**(S(1)/2) == sqrt(2)*I def test_issue_4788(): assert srepr(S(1.0 + 0J)) == srepr(S(1.0)) == srepr(Float(1.0)) def test_issue_4798_None(): assert S(None) is None def test_issue_3218(): assert sympify("x+\ny") == x + y def test_issue_4988_builtins(): C = Symbol('C') vars = {'C': C} exp1 = sympify('C') assert exp1 == C # Make sure it did not get mixed up with sympy.C exp2 = sympify('C', vars) assert exp2 == C # Make sure it did not get mixed up with sympy.C def test_geometry(): p = sympify(Point(0, 1)) assert p == Point(0, 1) and isinstance(p, Point) L = sympify(Line(p, (1, 0))) assert L == Line((0, 1), (1, 0)) and isinstance(L, Line) def test_kernS(): s = '-1 - 2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x)))' # when 1497 is fixed, this no longer should pass: the expression # should be unchanged assert -1 - 2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) == -1 # sympification should not allow the constant to enter a Mul # or else the structure can change dramatically ss = kernS(s) assert ss != -1 and ss.simplify() == -1 s = '-1 - 2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x)))'.replace( 'x', '_kern') ss = kernS(s) assert ss != -1 and ss.simplify() == -1 # issue 6687 assert (kernS('Interval(-1,-2 - 4*(-3))') == Interval(-1, Add(-2, Mul(12, 1, evaluate=False), evaluate=False))) assert kernS('_kern') == Symbol('_kern') assert kernS('E**-(x)') == exp(-x) e = 2*(x + y)*y assert kernS(['2*(x + y)*y', ('2*(x + y)*y',)]) == [e, (e,)] assert kernS('-(2*sin(x)**2 + 2*sin(x)*cos(x))*y/2') == \ -y*(2*sin(x)**2 + 2*sin(x)*cos(x))/2 # issue 15132 assert kernS('(1 - x)/(1 - x*(1-y))') == kernS('(1-x)/(1-(1-y)*x)') assert kernS('(1-2**-(4+1)*(1-y)*x)') == (1 - x*(1 - y)/32) assert kernS('(1-2**(4+1)*(1-y)*x)') == (1 - 32*x*(1 - y)) assert kernS('(1-2.*(1-y)*x)') == 1 - 2.*x*(1 - y) one = kernS('x - (x - 1)') assert one != 1 and one.expand() == 1 assert kernS("(2*x)/(x-1)") == 2*x/(x-1) def test_issue_6540_6552(): assert S('[[1/3,2], (2/5,)]') == [[Rational(1, 3), 2], (Rational(2, 5),)] assert S('[[2/6,2], (2/4,)]') == [[Rational(1, 3), 2], (S.Half,)] assert S('[[[2*(1)]]]') == [[[2]]] assert S('Matrix([2*(1)])') == Matrix([2]) def test_issue_6046(): assert str(S("Q & C", locals=_clash1)) == 'C & Q' assert str(S('pi(x)', locals=_clash2)) == 'pi(x)' locals = {} exec("from sympy.abc import Q, C", locals) assert str(S('C&Q', locals)) == 'C & Q' # clash can act as Symbol or Function assert str(S('pi(C, Q)', locals=_clash)) == 'pi(C, Q)' assert len(S('pi + x', locals=_clash2).free_symbols) == 2 # but not both raises(TypeError, lambda: S('pi + pi(x)', locals=_clash2)) assert all(set(i.values()) == {None} for i in ( _clash, _clash1, _clash2)) def test_issue_8821_highprec_from_str(): s = str(pi.evalf(128)) p = sympify(s) assert Abs(sin(p)) < 1e-127 def test_issue_10295(): if not numpy: skip("numpy not installed.") A = numpy.array([[1, 3, -1], [0, 1, 7]]) sA = S(A) assert sA.shape == (2, 3) for (ri, ci), val in numpy.ndenumerate(A): assert sA[ri, ci] == val B = numpy.array([-7, x, 3*y**2]) sB = S(B) assert sB.shape == (3,) assert B[0] == sB[0] == -7 assert B[1] == sB[1] == x assert B[2] == sB[2] == 3*y**2 C = numpy.arange(0, 24) C.resize(2,3,4) sC = S(C) assert sC[0, 0, 0].is_integer assert sC[0, 0, 0] == 0 a1 = numpy.array([1, 2, 3]) a2 = numpy.array([i for i in range(24)]) a2.resize(2, 4, 3) assert sympify(a1) == ImmutableDenseNDimArray([1, 2, 3]) assert sympify(a2) == ImmutableDenseNDimArray([i for i in range(24)], (2, 4, 3)) def test_Range(): # Only works in Python 3 where range returns a range type assert sympify(range(10)) == Range(10) assert _sympify(range(10)) == Range(10) def test_sympify_set(): n = Symbol('n') assert sympify({n}) == FiniteSet(n) assert sympify(set()) == EmptySet def test_sympify_numpy(): if not numpy: skip('numpy not installed. Abort numpy tests.') np = numpy def equal(x, y): return x == y and type(x) == type(y) assert sympify(np.bool_(1)) is S(True) try: assert equal( sympify(np.int_(1234567891234567891)), S(1234567891234567891)) assert equal( sympify(np.intp(1234567891234567891)), S(1234567891234567891)) except OverflowError: # May fail on 32-bit systems: Python int too large to convert to C long pass assert equal(sympify(np.intc(1234567891)), S(1234567891)) assert equal(sympify(np.int8(-123)), S(-123)) assert equal(sympify(np.int16(-12345)), S(-12345)) assert equal(sympify(np.int32(-1234567891)), S(-1234567891)) assert equal( sympify(np.int64(-1234567891234567891)), S(-1234567891234567891)) assert equal(sympify(np.uint8(123)), S(123)) assert equal(sympify(np.uint16(12345)), S(12345)) assert equal(sympify(np.uint32(1234567891)), S(1234567891)) assert equal( sympify(np.uint64(1234567891234567891)), S(1234567891234567891)) assert equal(sympify(np.float32(1.123456)), Float(1.123456, precision=24)) assert equal(sympify(np.float64(1.1234567891234)), Float(1.1234567891234, precision=53)) assert equal(sympify(np.longdouble(1.123456789)), Float(1.123456789, precision=80)) assert equal(sympify(np.complex64(1 + 2j)), S(1.0 + 2.0*I)) assert equal(sympify(np.complex128(1 + 2j)), S(1.0 + 2.0*I)) assert equal(sympify(np.longcomplex(1 + 2j)), S(1.0 + 2.0*I)) #float96 does not exist on all platforms if hasattr(np, 'float96'): assert equal(sympify(np.float96(1.123456789)), Float(1.123456789, precision=80)) #float128 does not exist on all platforms if hasattr(np, 'float128'): assert equal(sympify(np.float128(1.123456789123)), Float(1.123456789123, precision=80)) @XFAIL def test_sympify_rational_numbers_set(): ans = [Rational(3, 10), Rational(1, 5)] assert sympify({'.3', '.2'}, rational=True) == FiniteSet(*ans) def test_issue_13924(): if not numpy: skip("numpy not installed.") a = sympify(numpy.array([1])) assert isinstance(a, ImmutableDenseNDimArray) assert a[0] == 1 def test_numpy_sympify_args(): # Issue 15098. Make sure sympify args work with numpy types (like numpy.str_) if not numpy: skip("numpy not installed.") a = sympify(numpy.str_('a')) assert type(a) is Symbol assert a == Symbol('a') class CustomSymbol(Symbol): pass a = sympify(numpy.str_('a'), {"Symbol": CustomSymbol}) assert isinstance(a, CustomSymbol) a = sympify(numpy.str_('x^y')) assert a == x**y a = sympify(numpy.str_('x^y'), convert_xor=False) assert a == Xor(x, y) raises(SympifyError, lambda: sympify(numpy.str_('x'), strict=True)) a = sympify(numpy.str_('1.1')) assert isinstance(a, Float) assert a == 1.1 a = sympify(numpy.str_('1.1'), rational=True) assert isinstance(a, Rational) assert a == Rational(11, 10) a = sympify(numpy.str_('x + x')) assert isinstance(a, Mul) assert a == 2*x a = sympify(numpy.str_('x + x'), evaluate=False) assert isinstance(a, Add) assert a == Add(x, x, evaluate=False) def test_issue_5939(): a = Symbol('a') b = Symbol('b') assert sympify('''a+\nb''') == a + b def test_issue_16759(): d = sympify({.5: 1}) assert S.Half not in d assert Float(.5) in d assert d[.5] is S.One d = sympify(OrderedDict({.5: 1})) assert S.Half not in d assert Float(.5) in d assert d[.5] is S.One d = sympify(defaultdict(int, {.5: 1})) assert S.Half not in d assert Float(.5) in d assert d[.5] is S.One def test_issue_17811(): a = Function('a') assert sympify('a(x)*5', evaluate=False) == Mul(a(x), 5, evaluate=False) def test_issue_14706(): if not numpy: skip("numpy not installed.") z1 = numpy.zeros((1, 1), dtype=numpy.float64) z2 = numpy.zeros((2, 2), dtype=numpy.float64) z3 = numpy.zeros((), dtype=numpy.float64) y1 = numpy.ones((1, 1), dtype=numpy.float64) y2 = numpy.ones((2, 2), dtype=numpy.float64) y3 = numpy.ones((), dtype=numpy.float64) assert numpy.all(x + z1 == numpy.full((1, 1), x)) assert numpy.all(x + z2 == numpy.full((2, 2), x)) assert numpy.all(z1 + x == numpy.full((1, 1), x)) assert numpy.all(z2 + x == numpy.full((2, 2), x)) for z in [z3, numpy.int64(0), numpy.float64(0), numpy.complex64(0)]: assert x + z == x assert z + x == x assert isinstance(x + z, Symbol) assert isinstance(z + x, Symbol) # If these tests fail, then it means that numpy has finally # fixed the issue of scalar conversion for rank>0 arrays # which is mentioned in numpy/numpy#10404. In that case, # some changes have to be made in sympify.py. # Note: For future reference, for anyone who takes up this # issue when numpy has finally fixed their side of the problem, # the changes for this temporary fix were introduced in PR 18651 assert numpy.all(x + y1 == numpy.full((1, 1), x + 1.0)) assert numpy.all(x + y2 == numpy.full((2, 2), x + 1.0)) assert numpy.all(y1 + x == numpy.full((1, 1), x + 1.0)) assert numpy.all(y2 + x == numpy.full((2, 2), x + 1.0)) for y_ in [y3, numpy.int64(1), numpy.float64(1), numpy.complex64(1)]: assert x + y_ == y_ + x assert isinstance(x + y_, Add) assert isinstance(y_ + x, Add) assert x + numpy.array(x) == 2 * x assert x + numpy.array([x]) == numpy.array([2*x], dtype=object) assert sympify(numpy.array([1])) == ImmutableDenseNDimArray([1], 1) assert sympify(numpy.array([[[1]]])) == ImmutableDenseNDimArray([1], (1, 1, 1)) assert sympify(z1) == ImmutableDenseNDimArray([0], (1, 1)) assert sympify(z2) == ImmutableDenseNDimArray([0, 0, 0, 0], (2, 2)) assert sympify(z3) == ImmutableDenseNDimArray([0], ()) assert sympify(z3, strict=True) == 0.0 raises(SympifyError, lambda: sympify(numpy.array([1]), strict=True)) raises(SympifyError, lambda: sympify(z1, strict=True)) raises(SympifyError, lambda: sympify(z2, strict=True)) def test_issue_21536(): #test to check evaluate=False in case of iterable input u = sympify("x+3*x+2", evaluate=False) v = sympify("2*x+4*x+2+4", evaluate=False) assert u.is_Add and set(u.args) == {x, 3*x, 2} assert v.is_Add and set(v.args) == {2*x, 4*x, 2, 4} assert sympify(["x+3*x+2", "2*x+4*x+2+4"], evaluate=False) == [u, v] #test to check evaluate=True in case of iterable input u = sympify("x+3*x+2", evaluate=True) v = sympify("2*x+4*x+2+4", evaluate=True) assert u.is_Add and set(u.args) == {4*x, 2} assert v.is_Add and set(v.args) == {6*x, 6} assert sympify(["x+3*x+2", "2*x+4*x+2+4"], evaluate=True) == [u, v] #test to check evaluate with no input in case of iterable input u = sympify("x+3*x+2") v = sympify("2*x+4*x+2+4") assert u.is_Add and set(u.args) == {4*x, 2} assert v.is_Add and set(v.args) == {6*x, 6} assert sympify(["x+3*x+2", "2*x+4*x+2+4"]) == [u, v]
014ceea8580bac5da598a94753dc1df8718d760b28e72c6807f62977c7e67fd5
from sympy import (abc, Add, cos, collect, Derivative, diff, exp, Float, Function, I, Integer, log, Mul, oo, Poly, Rational, S, sin, sqrt, Symbol, symbols, Wild, pi, meijerg, Sum ) from sympy.testing.pytest import XFAIL def test_symbol(): x = Symbol('x') a, b, c, p, q = map(Wild, 'abcpq') e = x assert e.match(x) == {} assert e.matches(x) == {} assert e.match(a) == {a: x} e = Rational(5) assert e.match(c) == {c: 5} assert e.match(e) == {} assert e.match(e + 1) is None def test_add(): x, y, a, b, c = map(Symbol, 'xyabc') p, q, r = map(Wild, 'pqr') e = a + b assert e.match(p + b) == {p: a} assert e.match(p + a) == {p: b} e = 1 + b assert e.match(p + b) == {p: 1} e = a + b + c assert e.match(a + p + c) == {p: b} assert e.match(b + p + c) == {p: a} e = a + b + c + x assert e.match(a + p + x + c) == {p: b} assert e.match(b + p + c + x) == {p: a} assert e.match(b) is None assert e.match(b + p) == {p: a + c + x} assert e.match(a + p + c) == {p: b + x} assert e.match(b + p + c) == {p: a + x} e = 4*x + 5 assert e.match(4*x + p) == {p: 5} assert e.match(3*x + p) == {p: x + 5} assert e.match(p*x + 5) == {p: 4} def test_power(): x, y, a, b, c = map(Symbol, 'xyabc') p, q, r = map(Wild, 'pqr') e = (x + y)**a assert e.match(p**q) == {p: x + y, q: a} assert e.match(p**p) is None e = (x + y)**(x + y) assert e.match(p**p) == {p: x + y} assert e.match(p**q) == {p: x + y, q: x + y} e = (2*x)**2 assert e.match(p*q**r) == {p: 4, q: x, r: 2} e = Integer(1) assert e.match(x**p) == {p: 0} def test_match_exclude(): x = Symbol('x') y = Symbol('y') p = Wild("p") q = Wild("q") r = Wild("r") e = Rational(6) assert e.match(2*p) == {p: 3} e = 3/(4*x + 5) assert e.match(3/(p*x + q)) == {p: 4, q: 5} e = 3/(4*x + 5) assert e.match(p/(q*x + r)) == {p: 3, q: 4, r: 5} e = 2/(x + 1) assert e.match(p/(q*x + r)) == {p: 2, q: 1, r: 1} e = 1/(x + 1) assert e.match(p/(q*x + r)) == {p: 1, q: 1, r: 1} e = 4*x + 5 assert e.match(p*x + q) == {p: 4, q: 5} e = 4*x + 5*y + 6 assert e.match(p*x + q*y + r) == {p: 4, q: 5, r: 6} a = Wild('a', exclude=[x]) e = 3*x assert e.match(p*x) == {p: 3} assert e.match(a*x) == {a: 3} e = 3*x**2 assert e.match(p*x) == {p: 3*x} assert e.match(a*x) is None e = 3*x + 3 + 6/x assert e.match(p*x**2 + p*x + 2*p) == {p: 3/x} assert e.match(a*x**2 + a*x + 2*a) is None def test_mul(): x, y, a, b, c = map(Symbol, 'xyabc') p, q = map(Wild, 'pq') e = 4*x assert e.match(p*x) == {p: 4} assert e.match(p*y) is None assert e.match(e + p*y) == {p: 0} e = a*x*b*c assert e.match(p*x) == {p: a*b*c} assert e.match(c*p*x) == {p: a*b} e = (a + b)*(a + c) assert e.match((p + b)*(p + c)) == {p: a} e = x assert e.match(p*x) == {p: 1} e = exp(x) assert e.match(x**p*exp(x*q)) == {p: 0, q: 1} e = I*Poly(x, x) assert e.match(I*p) == {p: x} def test_mul_noncommutative(): x, y = symbols('x y') A, B, C = symbols('A B C', commutative=False) u, v = symbols('u v', cls=Wild) w, z = symbols('w z', cls=Wild, commutative=False) assert (u*v).matches(x) in ({v: x, u: 1}, {u: x, v: 1}) assert (u*v).matches(x*y) in ({v: y, u: x}, {u: y, v: x}) assert (u*v).matches(A) is None assert (u*v).matches(A*B) is None assert (u*v).matches(x*A) is None assert (u*v).matches(x*y*A) is None assert (u*v).matches(x*A*B) is None assert (u*v).matches(x*y*A*B) is None assert (v*w).matches(x) is None assert (v*w).matches(x*y) is None assert (v*w).matches(A) == {w: A, v: 1} assert (v*w).matches(A*B) == {w: A*B, v: 1} assert (v*w).matches(x*A) == {w: A, v: x} assert (v*w).matches(x*y*A) == {w: A, v: x*y} assert (v*w).matches(x*A*B) == {w: A*B, v: x} assert (v*w).matches(x*y*A*B) == {w: A*B, v: x*y} assert (v*w).matches(-x) is None assert (v*w).matches(-x*y) is None assert (v*w).matches(-A) == {w: A, v: -1} assert (v*w).matches(-A*B) == {w: A*B, v: -1} assert (v*w).matches(-x*A) == {w: A, v: -x} assert (v*w).matches(-x*y*A) == {w: A, v: -x*y} assert (v*w).matches(-x*A*B) == {w: A*B, v: -x} assert (v*w).matches(-x*y*A*B) == {w: A*B, v: -x*y} assert (w*z).matches(x) is None assert (w*z).matches(x*y) is None assert (w*z).matches(A) is None assert (w*z).matches(A*B) == {w: A, z: B} assert (w*z).matches(B*A) == {w: B, z: A} assert (w*z).matches(A*B*C) in [{w: A, z: B*C}, {w: A*B, z: C}] assert (w*z).matches(x*A) is None assert (w*z).matches(x*y*A) is None assert (w*z).matches(x*A*B) is None assert (w*z).matches(x*y*A*B) is None assert (w*A).matches(A) is None assert (A*w*B).matches(A*B) is None assert (u*w*z).matches(x) is None assert (u*w*z).matches(x*y) is None assert (u*w*z).matches(A) is None assert (u*w*z).matches(A*B) == {u: 1, w: A, z: B} assert (u*w*z).matches(B*A) == {u: 1, w: B, z: A} assert (u*w*z).matches(x*A) is None assert (u*w*z).matches(x*y*A) is None assert (u*w*z).matches(x*A*B) == {u: x, w: A, z: B} assert (u*w*z).matches(x*B*A) == {u: x, w: B, z: A} assert (u*w*z).matches(x*y*A*B) == {u: x*y, w: A, z: B} assert (u*w*z).matches(x*y*B*A) == {u: x*y, w: B, z: A} assert (u*A).matches(x*A) == {u: x} assert (u*A).matches(x*A*B) is None assert (u*B).matches(x*A) is None assert (u*A*B).matches(x*A*B) == {u: x} assert (u*A*B).matches(x*B*A) is None assert (u*A*B).matches(x*A) is None assert (u*w*A).matches(x*A*B) is None assert (u*w*B).matches(x*A*B) == {u: x, w: A} assert (u*v*A*B).matches(x*A*B) in [{u: x, v: 1}, {v: x, u: 1}] assert (u*v*A*B).matches(x*B*A) is None assert (u*v*A*B).matches(u*v*A*C) is None def test_mul_noncommutative_mismatch(): A, B, C = symbols('A B C', commutative=False) w = symbols('w', cls=Wild, commutative=False) assert (w*B*w).matches(A*B*A) == {w: A} assert (w*B*w).matches(A*C*B*A*C) == {w: A*C} assert (w*B*w).matches(A*C*B*A*B) is None assert (w*B*w).matches(A*B*C) is None assert (w*w*C).matches(A*B*C) is None def test_mul_noncommutative_pow(): A, B, C = symbols('A B C', commutative=False) w = symbols('w', cls=Wild, commutative=False) assert (A*B*w).matches(A*B**2) == {w: B} assert (A*(B**2)*w*(B**3)).matches(A*B**8) == {w: B**3} assert (A*B*w*C).matches(A*(B**4)*C) == {w: B**3} assert (A*B*(w**(-1))).matches(A*B*(C**(-1))) == {w: C} assert (A*(B*w)**(-1)*C).matches(A*(B*C)**(-1)*C) == {w: C} assert ((w**2)*B*C).matches((A**2)*B*C) == {w: A} assert ((w**2)*B*(w**3)).matches((A**2)*B*(A**3)) == {w: A} assert ((w**2)*B*(w**4)).matches((A**2)*B*(A**2)) is None def test_complex(): a, b, c = map(Symbol, 'abc') x, y = map(Wild, 'xy') assert (1 + I).match(x + I) == {x: 1} assert (a + I).match(x + I) == {x: a} assert (2*I).match(x*I) == {x: 2} assert (a*I).match(x*I) == {x: a} assert (a*I).match(x*y) == {x: I, y: a} assert (2*I).match(x*y) == {x: 2, y: I} assert (a + b*I).match(x + y*I) == {x: a, y: b} def test_functions(): from sympy.core.function import WildFunction x = Symbol('x') g = WildFunction('g') p = Wild('p') q = Wild('q') f = cos(5*x) notf = x assert f.match(p*cos(q*x)) == {p: 1, q: 5} assert f.match(p*g) == {p: 1, g: cos(5*x)} assert notf.match(g) is None @XFAIL def test_functions_X1(): from sympy.core.function import WildFunction x = Symbol('x') g = WildFunction('g') p = Wild('p') q = Wild('q') f = cos(5*x) assert f.match(p*g(q*x)) == {p: 1, g: cos, q: 5} def test_interface(): x, y = map(Symbol, 'xy') p, q = map(Wild, 'pq') assert (x + 1).match(p + 1) == {p: x} assert (x*3).match(p*3) == {p: x} assert (x**3).match(p**3) == {p: x} assert (x*cos(y)).match(p*cos(q)) == {p: x, q: y} assert (x*y).match(p*q) in [{p:x, q:y}, {p:y, q:x}] assert (x + y).match(p + q) in [{p:x, q:y}, {p:y, q:x}] assert (x*y + 1).match(p*q) in [{p:1, q:1 + x*y}, {p:1 + x*y, q:1}] def test_derivative1(): x, y = map(Symbol, 'xy') p, q = map(Wild, 'pq') f = Function('f', nargs=1) fd = Derivative(f(x), x) assert fd.match(p) == {p: fd} assert (fd + 1).match(p + 1) == {p: fd} assert (fd).match(fd) == {} assert (3*fd).match(p*fd) is not None assert (3*fd - 1).match(p*fd + q) == {p: 3, q: -1} def test_derivative_bug1(): f = Function("f") x = Symbol("x") a = Wild("a", exclude=[f, x]) b = Wild("b", exclude=[f]) pattern = a * Derivative(f(x), x, x) + b expr = Derivative(f(x), x) + x**2 d1 = {b: x**2} d2 = pattern.xreplace(d1).matches(expr, d1) assert d2 is None def test_derivative2(): f = Function("f") x = Symbol("x") a = Wild("a", exclude=[f, x]) b = Wild("b", exclude=[f]) e = Derivative(f(x), x) assert e.match(Derivative(f(x), x)) == {} assert e.match(Derivative(f(x), x, x)) is None e = Derivative(f(x), x, x) assert e.match(Derivative(f(x), x)) is None assert e.match(Derivative(f(x), x, x)) == {} e = Derivative(f(x), x) + x**2 assert e.match(a*Derivative(f(x), x) + b) == {a: 1, b: x**2} assert e.match(a*Derivative(f(x), x, x) + b) is None e = Derivative(f(x), x, x) + x**2 assert e.match(a*Derivative(f(x), x) + b) is None assert e.match(a*Derivative(f(x), x, x) + b) == {a: 1, b: x**2} def test_match_deriv_bug1(): n = Function('n') l = Function('l') x = Symbol('x') p = Wild('p') e = diff(l(x), x)/x - diff(diff(n(x), x), x)/2 - \ diff(n(x), x)**2/4 + diff(n(x), x)*diff(l(x), x)/4 e = e.subs(n(x), -l(x)).doit() t = x*exp(-l(x)) t2 = t.diff(x, x)/t assert e.match( (p*t2).expand() ) == {p: Rational(-1, 2)} def test_match_bug2(): x, y = map(Symbol, 'xy') p, q, r = map(Wild, 'pqr') res = (x + y).match(p + q + r) assert (p + q + r).subs(res) == x + y def test_match_bug3(): x, a, b = map(Symbol, 'xab') p = Wild('p') assert (b*x*exp(a*x)).match(x*exp(p*x)) is None def test_match_bug4(): x = Symbol('x') p = Wild('p') e = x assert e.match(-p*x) == {p: -1} def test_match_bug5(): x = Symbol('x') p = Wild('p') e = -x assert e.match(-p*x) == {p: 1} def test_match_bug6(): x = Symbol('x') p = Wild('p') e = x assert e.match(3*p*x) == {p: Rational(1)/3} def test_match_polynomial(): x = Symbol('x') a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) c = Wild('c', exclude=[x]) d = Wild('d', exclude=[x]) eq = 4*x**3 + 3*x**2 + 2*x + 1 pattern = a*x**3 + b*x**2 + c*x + d assert eq.match(pattern) == {a: 4, b: 3, c: 2, d: 1} assert (eq - 3*x**2).match(pattern) == {a: 4, b: 0, c: 2, d: 1} assert (x + sqrt(2) + 3).match(a + b*x + c*x**2) == \ {b: 1, a: sqrt(2) + 3, c: 0} def test_exclude(): x, y, a = map(Symbol, 'xya') p = Wild('p', exclude=[1, x]) q = Wild('q') r = Wild('r', exclude=[sin, y]) assert sin(x).match(r) is None assert cos(y).match(r) is None e = 3*x**2 + y*x + a assert e.match(p*x**2 + q*x + r) == {p: 3, q: y, r: a} e = x + 1 assert e.match(x + p) is None assert e.match(p + 1) is None assert e.match(x + 1 + p) == {p: 0} e = cos(x) + 5*sin(y) assert e.match(r) is None assert e.match(cos(y) + r) is None assert e.match(r + p*sin(q)) == {r: cos(x), p: 5, q: y} def test_floats(): a, b = map(Wild, 'ab') e = cos(0.12345, evaluate=False)**2 r = e.match(a*cos(b)**2) assert r == {a: 1, b: Float(0.12345)} def test_Derivative_bug1(): f = Function("f") x = abc.x a = Wild("a", exclude=[f(x)]) b = Wild("b", exclude=[f(x)]) eq = f(x).diff(x) assert eq.match(a*Derivative(f(x), x) + b) == {a: 1, b: 0} def test_match_wild_wild(): p = Wild('p') q = Wild('q') r = Wild('r') assert p.match(q + r) in [ {q: p, r: 0}, {q: 0, r: p} ] assert p.match(q*r) in [ {q: p, r: 1}, {q: 1, r: p} ] p = Wild('p') q = Wild('q', exclude=[p]) r = Wild('r') assert p.match(q + r) == {q: 0, r: p} assert p.match(q*r) == {q: 1, r: p} p = Wild('p') q = Wild('q', exclude=[p]) r = Wild('r', exclude=[p]) assert p.match(q + r) is None assert p.match(q*r) is None def test__combine_inverse(): x, y = symbols("x y") assert Mul._combine_inverse(x*I*y, x*I) == y assert Mul._combine_inverse(x*x**(1 + y), x**(1 + y)) == x assert Mul._combine_inverse(x*I*y, y*I) == x assert Mul._combine_inverse(oo*I*y, y*I) is oo assert Mul._combine_inverse(oo*I*y, oo*I) == y assert Mul._combine_inverse(oo*I*y, oo*I) == y assert Mul._combine_inverse(oo*y, -oo) == -y assert Mul._combine_inverse(-oo*y, oo) == -y assert Mul._combine_inverse((1-exp(x/y)),(exp(x/y)-1)) == -1 assert Add._combine_inverse(oo, oo) is S.Zero assert Add._combine_inverse(oo*I, oo*I) is S.Zero assert Add._combine_inverse(x*oo, x*oo) is S.Zero assert Add._combine_inverse(-x*oo, -x*oo) is S.Zero assert Add._combine_inverse((x - oo)*(x + oo), -oo) def test_issue_3773(): x = symbols('x') z, phi, r = symbols('z phi r') c, A, B, N = symbols('c A B N', cls=Wild) l = Wild('l', exclude=(0,)) eq = z * sin(2*phi) * r**7 matcher = c * sin(phi*N)**l * r**A * log(r)**B assert eq.match(matcher) == {c: z, l: 1, N: 2, A: 7, B: 0} assert (-eq).match(matcher) == {c: -z, l: 1, N: 2, A: 7, B: 0} assert (x*eq).match(matcher) == {c: x*z, l: 1, N: 2, A: 7, B: 0} assert (-7*x*eq).match(matcher) == {c: -7*x*z, l: 1, N: 2, A: 7, B: 0} matcher = c*sin(phi*N)**l * r**A assert eq.match(matcher) == {c: z, l: 1, N: 2, A: 7} assert (-eq).match(matcher) == {c: -z, l: 1, N: 2, A: 7} assert (x*eq).match(matcher) == {c: x*z, l: 1, N: 2, A: 7} assert (-7*x*eq).match(matcher) == {c: -7*x*z, l: 1, N: 2, A: 7} def test_issue_3883(): from sympy.abc import gamma, mu, x f = (-gamma * (x - mu)**2 - log(gamma) + log(2*pi))/2 a, b, c = symbols('a b c', cls=Wild, exclude=(gamma,)) assert f.match(a * log(gamma) + b * gamma + c) == \ {a: Rational(-1, 2), b: -(mu - x)**2/2, c: log(2*pi)/2} assert f.expand().collect(gamma).match(a * log(gamma) + b * gamma + c) == \ {a: Rational(-1, 2), b: (-(x - mu)**2/2).expand(), c: (log(2*pi)/2).expand()} g1 = Wild('g1', exclude=[gamma]) g2 = Wild('g2', exclude=[gamma]) g3 = Wild('g3', exclude=[gamma]) assert f.expand().match(g1 * log(gamma) + g2 * gamma + g3) == \ {g3: log(2)/2 + log(pi)/2, g1: Rational(-1, 2), g2: -mu**2/2 + mu*x - x**2/2} def test_issue_4418(): x = Symbol('x') a, b, c = symbols('a b c', cls=Wild, exclude=(x,)) f, g = symbols('f g', cls=Function) eq = diff(g(x)*f(x).diff(x), x) assert eq.match( g(x).diff(x)*f(x).diff(x) + g(x)*f(x).diff(x, x) + c) == {c: 0} assert eq.match(a*g(x).diff( x)*f(x).diff(x) + b*g(x)*f(x).diff(x, x) + c) == {a: 1, b: 1, c: 0} def test_issue_4700(): f = Function('f') x = Symbol('x') a, b = symbols('a b', cls=Wild, exclude=(f(x),)) p = a*f(x) + b eq1 = sin(x) eq2 = f(x) + sin(x) eq3 = f(x) + x + sin(x) eq4 = x + sin(x) assert eq1.match(p) == {a: 0, b: sin(x)} assert eq2.match(p) == {a: 1, b: sin(x)} assert eq3.match(p) == {a: 1, b: x + sin(x)} assert eq4.match(p) == {a: 0, b: x + sin(x)} def test_issue_5168(): a, b, c = symbols('a b c', cls=Wild) x = Symbol('x') f = Function('f') assert x.match(a) == {a: x} assert x.match(a*f(x)**c) == {a: x, c: 0} assert x.match(a*b) == {a: 1, b: x} assert x.match(a*b*f(x)**c) == {a: 1, b: x, c: 0} assert (-x).match(a) == {a: -x} assert (-x).match(a*f(x)**c) == {a: -x, c: 0} assert (-x).match(a*b) == {a: -1, b: x} assert (-x).match(a*b*f(x)**c) == {a: -1, b: x, c: 0} assert (2*x).match(a) == {a: 2*x} assert (2*x).match(a*f(x)**c) == {a: 2*x, c: 0} assert (2*x).match(a*b) == {a: 2, b: x} assert (2*x).match(a*b*f(x)**c) == {a: 2, b: x, c: 0} assert (-2*x).match(a) == {a: -2*x} assert (-2*x).match(a*f(x)**c) == {a: -2*x, c: 0} assert (-2*x).match(a*b) == {a: -2, b: x} assert (-2*x).match(a*b*f(x)**c) == {a: -2, b: x, c: 0} def test_issue_4559(): x = Symbol('x') e = Symbol('e') w = Wild('w', exclude=[x]) y = Wild('y') # this is as it should be assert (3/x).match(w/y) == {w: 3, y: x} assert (3*x).match(w*y) == {w: 3, y: x} assert (x/3).match(y/w) == {w: 3, y: x} assert (3*x).match(y/w) == {w: S.One/3, y: x} assert (3*x).match(y/w) == {w: Rational(1, 3), y: x} # these could be allowed to fail assert (x/3).match(w/y) == {w: S.One/3, y: 1/x} assert (3*x).match(w/y) == {w: 3, y: 1/x} assert (3/x).match(w*y) == {w: 3, y: 1/x} # Note that solve will give # multiple roots but match only gives one: # # >>> solve(x**r-y**2,y) # [-x**(r/2), x**(r/2)] r = Symbol('r', rational=True) assert (x**r).match(y**2) == {y: x**(r/2)} assert (x**e).match(y**2) == {y: sqrt(x**e)} # since (x**i = y) -> x = y**(1/i) where i is an integer # the following should also be valid as long as y is not # zero when i is negative. a = Wild('a') e = S.Zero assert e.match(a) == {a: e} assert e.match(1/a) is None assert e.match(a**.3) is None e = S(3) assert e.match(1/a) == {a: 1/e} assert e.match(1/a**2) == {a: 1/sqrt(e)} e = pi assert e.match(1/a) == {a: 1/e} assert e.match(1/a**2) == {a: 1/sqrt(e)} assert (-e).match(sqrt(a)) is None assert (-e).match(a**2) == {a: I*sqrt(pi)} # The pattern matcher doesn't know how to handle (x - a)**2 == (a - x)**2. To # avoid ambiguity in actual applications, don't put a coefficient (including a # minus sign) in front of a wild. @XFAIL def test_issue_4883(): a = Wild('a') x = Symbol('x') e = [i**2 for i in (x - 2, 2 - x)] p = [i**2 for i in (x - a, a- x)] for eq in e: for pat in p: assert eq.match(pat) == {a: 2} def test_issue_4319(): x, y = symbols('x y') p = -x*(S.One/8 - y) ans = {S.Zero, y - S.One/8} def ok(pat): assert set(p.match(pat).values()) == ans ok(Wild("coeff", exclude=[x])*x + Wild("rest")) ok(Wild("w", exclude=[x])*x + Wild("rest")) ok(Wild("coeff", exclude=[x])*x + Wild("rest")) ok(Wild("w", exclude=[x])*x + Wild("rest")) ok(Wild("e", exclude=[x])*x + Wild("rest")) ok(Wild("ress", exclude=[x])*x + Wild("rest")) ok(Wild("resu", exclude=[x])*x + Wild("rest")) def test_issue_3778(): p, c, q = symbols('p c q', cls=Wild) x = Symbol('x') assert (sin(x)**2).match(sin(p)*sin(q)*c) == {q: x, c: 1, p: x} assert (2*sin(x)).match(sin(p) + sin(q) + c) == {q: x, c: 0, p: x} def test_issue_6103(): x = Symbol('x') a = Wild('a') assert (-I*x*oo).match(I*a*oo) == {a: -x} def test_issue_3539(): a = Wild('a') x = Symbol('x') assert (x - 2).match(a - x) is None assert (6/x).match(a*x) is None assert (6/x**2).match(a/x) == {a: 6/x} def test_gh_issue_2711(): x = Symbol('x') f = meijerg(((), ()), ((0,), ()), x) a = Wild('a') b = Wild('b') assert f.find(a) == {(S.Zero,), ((), ()), ((S.Zero,), ()), x, S.Zero, (), meijerg(((), ()), ((S.Zero,), ()), x)} assert f.find(a + b) == \ {meijerg(((), ()), ((S.Zero,), ()), x), x, S.Zero} assert f.find(a**2) == {meijerg(((), ()), ((S.Zero,), ()), x), x} def test_issue_17354(): from sympy import symbols, Wild x, y = symbols("x y", real=True) a, b = symbols("a b", cls=Wild) assert ((0 <= x).reversed | (y <= x)).match((1/a <= b) | (a <= b)) is None def test_match_issue_17397(): f = Function("f") x = Symbol("x") a3 = Wild('a3', exclude=[f(x), f(x).diff(x), f(x).diff(x, 2)]) b3 = Wild('b3', exclude=[f(x), f(x).diff(x), f(x).diff(x, 2)]) c3 = Wild('c3', exclude=[f(x), f(x).diff(x), f(x).diff(x, 2)]) deq = a3*(f(x).diff(x, 2)) + b3*f(x).diff(x) + c3*f(x) eq = (x-2)**2*(f(x).diff(x, 2)) + (x-2)*(f(x).diff(x)) + ((x-2)**2 - 4)*f(x) r = collect(eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq) assert r == {a3: (x - 2)**2, c3: (x - 2)**2 - 4, b3: x - 2} eq =x*f(x) + x*Derivative(f(x), (x, 2)) - 4*f(x) + Derivative(f(x), x) \ - 4*Derivative(f(x), (x, 2)) - 2*Derivative(f(x), x)/x + 4*Derivative(f(x), (x, 2))/x r = collect(eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq) assert r == {a3: x - 4 + 4/x, b3: 1 - 2/x, c3: x - 4} def test_match_terms(): X, Y = map(Wild, "XY") x, y, z = symbols('x y z') assert (5*y - x).match(5*X - Y) == {X: y, Y: x} # 15907 assert (x + (y - 1)*z).match(x + X*z) == {X: y - 1} # 20747 assert (x - log(x/y)*(1-exp(x/y))).match(x - log(X/y)*(1-exp(x/y))) == {X: x} def test_match_bound(): V, W = map(Wild, "VW") x, y = symbols('x y') assert Sum(x, (x, 1, 2)).match(Sum(y, (y, 1, W))) == {W: 2} assert Sum(x, (x, 1, 2)).match(Sum(V, (V, 1, W))) == {W: 2, V:x} assert Sum(x, (x, 1, 2)).match(Sum(V, (V, 1, 2))) == {V:x}
c0f3bc981a4c3ca574b2f955d99a22f776c6f860bc64777f374361845d31daa7
from sympy import (Basic, Symbol, sin, cos, atan, exp, sqrt, Rational, Float, re, pi, sympify, Add, Mul, Pow, Mod, I, log, S, Max, symbols, oo, zoo, Integer, sign, im, nan, Dummy, factorial, comp, floor, Poly, FiniteSet ) from sympy.core.parameters import distribute from sympy.core.expr import unchanged from sympy.utilities.iterables import cartes from sympy.testing.pytest import XFAIL, raises, warns_deprecated_sympy from sympy.testing.randtest import verify_numerically from sympy.functions.elementary.trigonometric import asin a, c, x, y, z = symbols('a,c,x,y,z') b = Symbol("b", positive=True) def same_and_same_prec(a, b): # stricter matching for Floats return a == b and a._prec == b._prec def test_bug1(): assert re(x) != x x.series(x, 0, 1) assert re(x) != x def test_Symbol(): e = a*b assert e == a*b assert a*b*b == a*b**2 assert a*b*b + c == c + a*b**2 assert a*b*b - c == -c + a*b**2 x = Symbol('x', complex=True, real=False) assert x.is_imaginary is None # could be I or 1 + I x = Symbol('x', complex=True, imaginary=False) assert x.is_real is None # could be 1 or 1 + I x = Symbol('x', real=True) assert x.is_complex x = Symbol('x', imaginary=True) assert x.is_complex x = Symbol('x', real=False, imaginary=False) assert x.is_complex is None # might be a non-number def test_arit0(): p = Rational(5) e = a*b assert e == a*b e = a*b + b*a assert e == 2*a*b e = a*b + b*a + a*b + p*b*a assert e == 8*a*b e = a*b + b*a + a*b + p*b*a + a assert e == a + 8*a*b e = a + a assert e == 2*a e = a + b + a assert e == b + 2*a e = a + b*b + a + b*b assert e == 2*a + 2*b**2 e = a + Rational(2) + b*b + a + b*b + p assert e == 7 + 2*a + 2*b**2 e = (a + b*b + a + b*b)*p assert e == 5*(2*a + 2*b**2) e = (a*b*c + c*b*a + b*a*c)*p assert e == 15*a*b*c e = (a*b*c + c*b*a + b*a*c)*p - Rational(15)*a*b*c assert e == Rational(0) e = Rational(50)*(a - a) assert e == Rational(0) e = b*a - b - a*b + b assert e == Rational(0) e = a*b + c**p assert e == a*b + c**5 e = a/b assert e == a*b**(-1) e = a*2*2 assert e == 4*a e = 2 + a*2/2 assert e == 2 + a e = 2 - a - 2 assert e == -a e = 2*a*2 assert e == 4*a e = 2/a/2 assert e == a**(-1) e = 2**a**2 assert e == 2**(a**2) e = -(1 + a) assert e == -1 - a e = S.Half*(1 + a) assert e == S.Half + a/2 def test_div(): e = a/b assert e == a*b**(-1) e = a/b + c/2 assert e == a*b**(-1) + Rational(1)/2*c e = (1 - b)/(b - 1) assert e == (1 + -b)*((-1) + b)**(-1) def test_pow(): n1 = Rational(1) n2 = Rational(2) n5 = Rational(5) e = a*a assert e == a**2 e = a*a*a assert e == a**3 e = a*a*a*a**Rational(6) assert e == a**9 e = a*a*a*a**Rational(6) - a**Rational(9) assert e == Rational(0) e = a**(b - b) assert e == Rational(1) e = (a + Rational(1) - a)**b assert e == Rational(1) e = (a + b + c)**n2 assert e == (a + b + c)**2 assert e.expand() == 2*b*c + 2*a*c + 2*a*b + a**2 + c**2 + b**2 e = (a + b)**n2 assert e == (a + b)**2 assert e.expand() == 2*a*b + a**2 + b**2 e = (a + b)**(n1/n2) assert e == sqrt(a + b) assert e.expand() == sqrt(a + b) n = n5**(n1/n2) assert n == sqrt(5) e = n*a*b - n*b*a assert e == Rational(0) e = n*a*b + n*b*a assert e == 2*a*b*sqrt(5) assert e.diff(a) == 2*b*sqrt(5) assert e.diff(a) == 2*b*sqrt(5) e = a/b**2 assert e == a*b**(-2) assert sqrt(2*(1 + sqrt(2))) == (2*(1 + 2**S.Half))**S.Half x = Symbol('x') y = Symbol('y') assert ((x*y)**3).expand() == y**3 * x**3 assert ((x*y)**-3).expand() == y**-3 * x**-3 assert (x**5*(3*x)**(3)).expand() == 27 * x**8 assert (x**5*(-3*x)**(3)).expand() == -27 * x**8 assert (x**5*(3*x)**(-3)).expand() == x**2 * Rational(1, 27) assert (x**5*(-3*x)**(-3)).expand() == x**2 * Rational(-1, 27) # expand_power_exp assert (x**(y**(x + exp(x + y)) + z)).expand(deep=False) == \ x**z*x**(y**(x + exp(x + y))) assert (x**(y**(x + exp(x + y)) + z)).expand() == \ x**z*x**(y**x*y**(exp(x)*exp(y))) n = Symbol('n', even=False) k = Symbol('k', even=True) o = Symbol('o', odd=True) assert unchanged(Pow, -1, x) assert unchanged(Pow, -1, n) assert (-2)**k == 2**k assert (-1)**k == 1 assert (-1)**o == -1 def test_pow2(): # x**(2*y) is always (x**y)**2 but is only (x**2)**y if # x.is_positive or y.is_integer # let x = 1 to see why the following are not true. assert (-x)**Rational(2, 3) != x**Rational(2, 3) assert (-x)**Rational(5, 7) != -x**Rational(5, 7) assert ((-x)**2)**Rational(1, 3) != ((-x)**Rational(1, 3))**2 assert sqrt(x**2) != x def test_pow3(): assert sqrt(2)**3 == 2 * sqrt(2) assert sqrt(2)**3 == sqrt(8) def test_mod_pow(): for s, t, u, v in [(4, 13, 497, 445), (4, -3, 497, 365), (3.2, 2.1, 1.9, 0.1031015682350942), (S(3)/2, 5, S(5)/6, S(3)/32)]: assert pow(S(s), t, u) == v assert pow(S(s), S(t), u) == v assert pow(S(s), t, S(u)) == v assert pow(S(s), S(t), S(u)) == v assert pow(S(2), S(10000000000), S(3)) == 1 assert pow(x, y, z) == x**y%z raises(TypeError, lambda: pow(S(4), "13", 497)) raises(TypeError, lambda: pow(S(4), 13, "497")) def test_pow_E(): assert 2**(y/log(2)) == S.Exp1**y assert 2**(y/log(2)/3) == S.Exp1**(y/3) assert 3**(1/log(-3)) != S.Exp1 assert (3 + 2*I)**(1/(log(-3 - 2*I) + I*pi)) == S.Exp1 assert (4 + 2*I)**(1/(log(-4 - 2*I) + I*pi)) == S.Exp1 assert (3 + 2*I)**(1/(log(-3 - 2*I, 3)/2 + I*pi/log(3)/2)) == 9 assert (3 + 2*I)**(1/(log(3 + 2*I, 3)/2)) == 9 # every time tests are run they will affirm with a different random # value that this identity holds while 1: b = x._random() r, i = b.as_real_imag() if i: break assert verify_numerically(b**(1/(log(-b) + sign(i)*I*pi).n()), S.Exp1) def test_pow_issue_3516(): assert 4**Rational(1, 4) == sqrt(2) def test_pow_im(): for m in (-2, -1, 2): for d in (3, 4, 5): b = m*I for i in range(1, 4*d + 1): e = Rational(i, d) assert (b**e - b.n()**e.n()).n(2, chop=1e-10) == 0 e = Rational(7, 3) assert (2*x*I)**e == 4*2**Rational(1, 3)*(I*x)**e # same as Wolfram Alpha im = symbols('im', imaginary=True) assert (2*im*I)**e == 4*2**Rational(1, 3)*(I*im)**e args = [I, I, I, I, 2] e = Rational(1, 3) ans = 2**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args = [I, I, I, 2] e = Rational(1, 3) ans = 2**e*(-I)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args.append(-3) ans = (6*I)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args.append(-1) ans = (-6*I)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args = [I, I, 2] e = Rational(1, 3) ans = (-2)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args.append(-3) ans = (6)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args.append(-1) ans = (-6)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans assert Mul(Pow(-1, Rational(3, 2), evaluate=False), I, I) == I assert Mul(I*Pow(I, S.Half, evaluate=False)) == sqrt(I)*I def test_real_mul(): assert Float(0) * pi * x == 0 assert set((Float(1) * pi * x).args) == {Float(1), pi, x} def test_ncmul(): A = Symbol("A", commutative=False) B = Symbol("B", commutative=False) C = Symbol("C", commutative=False) assert A*B != B*A assert A*B*C != C*B*A assert A*b*B*3*C == 3*b*A*B*C assert A*b*B*3*C != 3*b*B*A*C assert A*b*B*3*C == 3*A*B*C*b assert A + B == B + A assert (A + B)*C != C*(A + B) assert C*(A + B)*C != C*C*(A + B) assert A*A == A**2 assert (A + B)*(A + B) == (A + B)**2 assert A**-1 * A == 1 assert A/A == 1 assert A/(A**2) == 1/A assert A/(1 + A) == A/(1 + A) assert set((A + B + 2*(A + B)).args) == \ {A, B, 2*(A + B)} def test_mul_add_identity(): m = Mul(1, 2) assert isinstance(m, Rational) and m.p == 2 and m.q == 1 m = Mul(1, 2, evaluate=False) assert isinstance(m, Mul) and m.args == (1, 2) m = Mul(0, 1) assert m is S.Zero m = Mul(0, 1, evaluate=False) assert isinstance(m, Mul) and m.args == (0, 1) m = Add(0, 1) assert m is S.One m = Add(0, 1, evaluate=False) assert isinstance(m, Add) and m.args == (0, 1) def test_ncpow(): x = Symbol('x', commutative=False) y = Symbol('y', commutative=False) z = Symbol('z', commutative=False) a = Symbol('a') b = Symbol('b') c = Symbol('c') assert (x**2)*(y**2) != (y**2)*(x**2) assert (x**-2)*y != y*(x**2) assert 2**x*2**y != 2**(x + y) assert 2**x*2**y*2**z != 2**(x + y + z) assert 2**x*2**(2*x) == 2**(3*x) assert 2**x*2**(2*x)*2**x == 2**(4*x) assert exp(x)*exp(y) != exp(y)*exp(x) assert exp(x)*exp(y)*exp(z) != exp(y)*exp(x)*exp(z) assert exp(x)*exp(y)*exp(z) != exp(x + y + z) assert x**a*x**b != x**(a + b) assert x**a*x**b*x**c != x**(a + b + c) assert x**3*x**4 == x**7 assert x**3*x**4*x**2 == x**9 assert x**a*x**(4*a) == x**(5*a) assert x**a*x**(4*a)*x**a == x**(6*a) def test_powerbug(): x = Symbol("x") assert x**1 != (-x)**1 assert x**2 == (-x)**2 assert x**3 != (-x)**3 assert x**4 == (-x)**4 assert x**5 != (-x)**5 assert x**6 == (-x)**6 assert x**128 == (-x)**128 assert x**129 != (-x)**129 assert (2*x)**2 == (-2*x)**2 def test_Mul_doesnt_expand_exp(): x = Symbol('x') y = Symbol('y') assert unchanged(Mul, exp(x), exp(y)) assert unchanged(Mul, 2**x, 2**y) assert x**2*x**3 == x**5 assert 2**x*3**x == 6**x assert x**(y)*x**(2*y) == x**(3*y) assert sqrt(2)*sqrt(2) == 2 assert 2**x*2**(2*x) == 2**(3*x) assert sqrt(2)*2**Rational(1, 4)*5**Rational(3, 4) == 10**Rational(3, 4) assert (x**(-log(5)/log(3))*x)/(x*x**( - log(5)/log(3))) == sympify(1) def test_Mul_is_integer(): k = Symbol('k', integer=True) n = Symbol('n', integer=True) nr = Symbol('nr', rational=False) nz = Symbol('nz', integer=True, zero=False) e = Symbol('e', even=True) o = Symbol('o', odd=True) i2 = Symbol('2', prime=True, even=True) assert (k/3).is_integer is None assert (nz/3).is_integer is None assert (nr/3).is_integer is False assert (x*k*n).is_integer is None assert (e/2).is_integer is True assert (e**2/2).is_integer is True assert (2/k).is_integer is None assert (2/k**2).is_integer is None assert ((-1)**k*n).is_integer is True assert (3*k*e/2).is_integer is True assert (2*k*e/3).is_integer is None assert (e/o).is_integer is None assert (o/e).is_integer is False assert (o/i2).is_integer is False assert Mul(k, 1/k, evaluate=False).is_integer is None assert Mul(2., S.Half, evaluate=False).is_integer is None assert (2*sqrt(k)).is_integer is None assert (2*k**n).is_integer is None s = 2**2**2**Pow(2, 1000, evaluate=False) m = Mul(s, s, evaluate=False) assert m.is_integer # broken in 1.6 and before, see #20161 xq = Symbol('xq', rational=True) yq = Symbol('yq', rational=True) assert (xq*yq).is_integer is None e_20161 = Mul(-1,Mul(1,Pow(2,-1,evaluate=False),evaluate=False),evaluate=False) assert e_20161.is_integer is not True # expand(e_20161) -> -1/2, but no need to see that in the assumption without evaluation def test_Add_Mul_is_integer(): x = Symbol('x') k = Symbol('k', integer=True) n = Symbol('n', integer=True) nk = Symbol('nk', integer=False) nr = Symbol('nr', rational=False) nz = Symbol('nz', integer=True, zero=False) assert (-nk).is_integer is None assert (-nr).is_integer is False assert (2*k).is_integer is True assert (-k).is_integer is True assert (k + nk).is_integer is False assert (k + n).is_integer is True assert (k + x).is_integer is None assert (k + n*x).is_integer is None assert (k + n/3).is_integer is None assert (k + nz/3).is_integer is None assert (k + nr/3).is_integer is False assert ((1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False assert (1 + (1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False def test_Add_Mul_is_finite(): x = Symbol('x', extended_real=True, finite=False) assert sin(x).is_finite is True assert (x*sin(x)).is_finite is None assert (x*atan(x)).is_finite is False assert (1024*sin(x)).is_finite is True assert (sin(x)*exp(x)).is_finite is None assert (sin(x)*cos(x)).is_finite is True assert (x*sin(x)*exp(x)).is_finite is None assert (sin(x) - 67).is_finite is True assert (sin(x) + exp(x)).is_finite is not True assert (1 + x).is_finite is False assert (1 + x**2 + (1 + x)*(1 - x)).is_finite is None assert (sqrt(2)*(1 + x)).is_finite is False assert (sqrt(2)*(1 + x)*(1 - x)).is_finite is False def test_Mul_is_even_odd(): x = Symbol('x', integer=True) y = Symbol('y', integer=True) k = Symbol('k', odd=True) n = Symbol('n', odd=True) m = Symbol('m', even=True) assert (2*x).is_even is True assert (2*x).is_odd is False assert (3*x).is_even is None assert (3*x).is_odd is None assert (k/3).is_integer is None assert (k/3).is_even is None assert (k/3).is_odd is None assert (2*n).is_even is True assert (2*n).is_odd is False assert (2*m).is_even is True assert (2*m).is_odd is False assert (-n).is_even is False assert (-n).is_odd is True assert (k*n).is_even is False assert (k*n).is_odd is True assert (k*m).is_even is True assert (k*m).is_odd is False assert (k*n*m).is_even is True assert (k*n*m).is_odd is False assert (k*m*x).is_even is True assert (k*m*x).is_odd is False # issue 6791: assert (x/2).is_integer is None assert (k/2).is_integer is False assert (m/2).is_integer is True assert (x*y).is_even is None assert (x*x).is_even is None assert (x*(x + k)).is_even is True assert (x*(x + m)).is_even is None assert (x*y).is_odd is None assert (x*x).is_odd is None assert (x*(x + k)).is_odd is False assert (x*(x + m)).is_odd is None # issue 8648 assert (m**2/2).is_even assert (m**2/3).is_even is False assert (2/m**2).is_odd is False assert (2/m).is_odd is None @XFAIL def test_evenness_in_ternary_integer_product_with_odd(): # Tests that oddness inference is independent of term ordering. # Term ordering at the point of testing depends on SymPy's symbol order, so # we try to force a different order by modifying symbol names. x = Symbol('x', integer=True) y = Symbol('y', integer=True) k = Symbol('k', odd=True) assert (x*y*(y + k)).is_even is True assert (y*x*(x + k)).is_even is True def test_evenness_in_ternary_integer_product_with_even(): x = Symbol('x', integer=True) y = Symbol('y', integer=True) m = Symbol('m', even=True) assert (x*y*(y + m)).is_even is None @XFAIL def test_oddness_in_ternary_integer_product_with_odd(): # Tests that oddness inference is independent of term ordering. # Term ordering at the point of testing depends on SymPy's symbol order, so # we try to force a different order by modifying symbol names. x = Symbol('x', integer=True) y = Symbol('y', integer=True) k = Symbol('k', odd=True) assert (x*y*(y + k)).is_odd is False assert (y*x*(x + k)).is_odd is False def test_oddness_in_ternary_integer_product_with_even(): x = Symbol('x', integer=True) y = Symbol('y', integer=True) m = Symbol('m', even=True) assert (x*y*(y + m)).is_odd is None def test_Mul_is_rational(): x = Symbol('x') n = Symbol('n', integer=True) m = Symbol('m', integer=True, nonzero=True) assert (n/m).is_rational is True assert (x/pi).is_rational is None assert (x/n).is_rational is None assert (m/pi).is_rational is False r = Symbol('r', rational=True) assert (pi*r).is_rational is None # issue 8008 z = Symbol('z', zero=True) i = Symbol('i', imaginary=True) assert (z*i).is_rational is True bi = Symbol('i', imaginary=True, finite=True) assert (z*bi).is_zero is True def test_Add_is_rational(): x = Symbol('x') n = Symbol('n', rational=True) m = Symbol('m', rational=True) assert (n + m).is_rational is True assert (x + pi).is_rational is None assert (x + n).is_rational is None assert (n + pi).is_rational is False def test_Add_is_even_odd(): x = Symbol('x', integer=True) k = Symbol('k', odd=True) n = Symbol('n', odd=True) m = Symbol('m', even=True) assert (k + 7).is_even is True assert (k + 7).is_odd is False assert (-k + 7).is_even is True assert (-k + 7).is_odd is False assert (k - 12).is_even is False assert (k - 12).is_odd is True assert (-k - 12).is_even is False assert (-k - 12).is_odd is True assert (k + n).is_even is True assert (k + n).is_odd is False assert (k + m).is_even is False assert (k + m).is_odd is True assert (k + n + m).is_even is True assert (k + n + m).is_odd is False assert (k + n + x + m).is_even is None assert (k + n + x + m).is_odd is None def test_Mul_is_negative_positive(): x = Symbol('x', real=True) y = Symbol('y', extended_real=False, complex=True) z = Symbol('z', zero=True) e = 2*z assert e.is_Mul and e.is_positive is False and e.is_negative is False neg = Symbol('neg', negative=True) pos = Symbol('pos', positive=True) nneg = Symbol('nneg', nonnegative=True) npos = Symbol('npos', nonpositive=True) assert neg.is_negative is True assert (-neg).is_negative is False assert (2*neg).is_negative is True assert (2*pos)._eval_is_extended_negative() is False assert (2*pos).is_negative is False assert pos.is_negative is False assert (-pos).is_negative is True assert (2*pos).is_negative is False assert (pos*neg).is_negative is True assert (2*pos*neg).is_negative is True assert (-pos*neg).is_negative is False assert (pos*neg*y).is_negative is False # y.is_real=F; !real -> !neg assert nneg.is_negative is False assert (-nneg).is_negative is None assert (2*nneg).is_negative is False assert npos.is_negative is None assert (-npos).is_negative is False assert (2*npos).is_negative is None assert (nneg*npos).is_negative is None assert (neg*nneg).is_negative is None assert (neg*npos).is_negative is False assert (pos*nneg).is_negative is False assert (pos*npos).is_negative is None assert (npos*neg*nneg).is_negative is False assert (npos*pos*nneg).is_negative is None assert (-npos*neg*nneg).is_negative is None assert (-npos*pos*nneg).is_negative is False assert (17*npos*neg*nneg).is_negative is False assert (17*npos*pos*nneg).is_negative is None assert (neg*npos*pos*nneg).is_negative is False assert (x*neg).is_negative is None assert (nneg*npos*pos*x*neg).is_negative is None assert neg.is_positive is False assert (-neg).is_positive is True assert (2*neg).is_positive is False assert pos.is_positive is True assert (-pos).is_positive is False assert (2*pos).is_positive is True assert (pos*neg).is_positive is False assert (2*pos*neg).is_positive is False assert (-pos*neg).is_positive is True assert (-pos*neg*y).is_positive is False # y.is_real=F; !real -> !neg assert nneg.is_positive is None assert (-nneg).is_positive is False assert (2*nneg).is_positive is None assert npos.is_positive is False assert (-npos).is_positive is None assert (2*npos).is_positive is False assert (nneg*npos).is_positive is False assert (neg*nneg).is_positive is False assert (neg*npos).is_positive is None assert (pos*nneg).is_positive is None assert (pos*npos).is_positive is False assert (npos*neg*nneg).is_positive is None assert (npos*pos*nneg).is_positive is False assert (-npos*neg*nneg).is_positive is False assert (-npos*pos*nneg).is_positive is None assert (17*npos*neg*nneg).is_positive is None assert (17*npos*pos*nneg).is_positive is False assert (neg*npos*pos*nneg).is_positive is None assert (x*neg).is_positive is None assert (nneg*npos*pos*x*neg).is_positive is None def test_Mul_is_negative_positive_2(): a = Symbol('a', nonnegative=True) b = Symbol('b', nonnegative=True) c = Symbol('c', nonpositive=True) d = Symbol('d', nonpositive=True) assert (a*b).is_nonnegative is True assert (a*b).is_negative is False assert (a*b).is_zero is None assert (a*b).is_positive is None assert (c*d).is_nonnegative is True assert (c*d).is_negative is False assert (c*d).is_zero is None assert (c*d).is_positive is None assert (a*c).is_nonpositive is True assert (a*c).is_positive is False assert (a*c).is_zero is None assert (a*c).is_negative is None def test_Mul_is_nonpositive_nonnegative(): x = Symbol('x', real=True) k = Symbol('k', negative=True) n = Symbol('n', positive=True) u = Symbol('u', nonnegative=True) v = Symbol('v', nonpositive=True) assert k.is_nonpositive is True assert (-k).is_nonpositive is False assert (2*k).is_nonpositive is True assert n.is_nonpositive is False assert (-n).is_nonpositive is True assert (2*n).is_nonpositive is False assert (n*k).is_nonpositive is True assert (2*n*k).is_nonpositive is True assert (-n*k).is_nonpositive is False assert u.is_nonpositive is None assert (-u).is_nonpositive is True assert (2*u).is_nonpositive is None assert v.is_nonpositive is True assert (-v).is_nonpositive is None assert (2*v).is_nonpositive is True assert (u*v).is_nonpositive is True assert (k*u).is_nonpositive is True assert (k*v).is_nonpositive is None assert (n*u).is_nonpositive is None assert (n*v).is_nonpositive is True assert (v*k*u).is_nonpositive is None assert (v*n*u).is_nonpositive is True assert (-v*k*u).is_nonpositive is True assert (-v*n*u).is_nonpositive is None assert (17*v*k*u).is_nonpositive is None assert (17*v*n*u).is_nonpositive is True assert (k*v*n*u).is_nonpositive is None assert (x*k).is_nonpositive is None assert (u*v*n*x*k).is_nonpositive is None assert k.is_nonnegative is False assert (-k).is_nonnegative is True assert (2*k).is_nonnegative is False assert n.is_nonnegative is True assert (-n).is_nonnegative is False assert (2*n).is_nonnegative is True assert (n*k).is_nonnegative is False assert (2*n*k).is_nonnegative is False assert (-n*k).is_nonnegative is True assert u.is_nonnegative is True assert (-u).is_nonnegative is None assert (2*u).is_nonnegative is True assert v.is_nonnegative is None assert (-v).is_nonnegative is True assert (2*v).is_nonnegative is None assert (u*v).is_nonnegative is None assert (k*u).is_nonnegative is None assert (k*v).is_nonnegative is True assert (n*u).is_nonnegative is True assert (n*v).is_nonnegative is None assert (v*k*u).is_nonnegative is True assert (v*n*u).is_nonnegative is None assert (-v*k*u).is_nonnegative is None assert (-v*n*u).is_nonnegative is True assert (17*v*k*u).is_nonnegative is True assert (17*v*n*u).is_nonnegative is None assert (k*v*n*u).is_nonnegative is True assert (x*k).is_nonnegative is None assert (u*v*n*x*k).is_nonnegative is None def test_Add_is_negative_positive(): x = Symbol('x', real=True) k = Symbol('k', negative=True) n = Symbol('n', positive=True) u = Symbol('u', nonnegative=True) v = Symbol('v', nonpositive=True) assert (k - 2).is_negative is True assert (k + 17).is_negative is None assert (-k - 5).is_negative is None assert (-k + 123).is_negative is False assert (k - n).is_negative is True assert (k + n).is_negative is None assert (-k - n).is_negative is None assert (-k + n).is_negative is False assert (k - n - 2).is_negative is True assert (k + n + 17).is_negative is None assert (-k - n - 5).is_negative is None assert (-k + n + 123).is_negative is False assert (-2*k + 123*n + 17).is_negative is False assert (k + u).is_negative is None assert (k + v).is_negative is True assert (n + u).is_negative is False assert (n + v).is_negative is None assert (u - v).is_negative is False assert (u + v).is_negative is None assert (-u - v).is_negative is None assert (-u + v).is_negative is None assert (u - v + n + 2).is_negative is False assert (u + v + n + 2).is_negative is None assert (-u - v + n + 2).is_negative is None assert (-u + v + n + 2).is_negative is None assert (k + x).is_negative is None assert (k + x - n).is_negative is None assert (k - 2).is_positive is False assert (k + 17).is_positive is None assert (-k - 5).is_positive is None assert (-k + 123).is_positive is True assert (k - n).is_positive is False assert (k + n).is_positive is None assert (-k - n).is_positive is None assert (-k + n).is_positive is True assert (k - n - 2).is_positive is False assert (k + n + 17).is_positive is None assert (-k - n - 5).is_positive is None assert (-k + n + 123).is_positive is True assert (-2*k + 123*n + 17).is_positive is True assert (k + u).is_positive is None assert (k + v).is_positive is False assert (n + u).is_positive is True assert (n + v).is_positive is None assert (u - v).is_positive is None assert (u + v).is_positive is None assert (-u - v).is_positive is None assert (-u + v).is_positive is False assert (u - v - n - 2).is_positive is None assert (u + v - n - 2).is_positive is None assert (-u - v - n - 2).is_positive is None assert (-u + v - n - 2).is_positive is False assert (n + x).is_positive is None assert (n + x - k).is_positive is None z = (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2) assert z.is_zero z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3)) assert z.is_zero def test_Add_is_nonpositive_nonnegative(): x = Symbol('x', real=True) k = Symbol('k', negative=True) n = Symbol('n', positive=True) u = Symbol('u', nonnegative=True) v = Symbol('v', nonpositive=True) assert (u - 2).is_nonpositive is None assert (u + 17).is_nonpositive is False assert (-u - 5).is_nonpositive is True assert (-u + 123).is_nonpositive is None assert (u - v).is_nonpositive is None assert (u + v).is_nonpositive is None assert (-u - v).is_nonpositive is None assert (-u + v).is_nonpositive is True assert (u - v - 2).is_nonpositive is None assert (u + v + 17).is_nonpositive is None assert (-u - v - 5).is_nonpositive is None assert (-u + v - 123).is_nonpositive is True assert (-2*u + 123*v - 17).is_nonpositive is True assert (k + u).is_nonpositive is None assert (k + v).is_nonpositive is True assert (n + u).is_nonpositive is False assert (n + v).is_nonpositive is None assert (k - n).is_nonpositive is True assert (k + n).is_nonpositive is None assert (-k - n).is_nonpositive is None assert (-k + n).is_nonpositive is False assert (k - n + u + 2).is_nonpositive is None assert (k + n + u + 2).is_nonpositive is None assert (-k - n + u + 2).is_nonpositive is None assert (-k + n + u + 2).is_nonpositive is False assert (u + x).is_nonpositive is None assert (v - x - n).is_nonpositive is None assert (u - 2).is_nonnegative is None assert (u + 17).is_nonnegative is True assert (-u - 5).is_nonnegative is False assert (-u + 123).is_nonnegative is None assert (u - v).is_nonnegative is True assert (u + v).is_nonnegative is None assert (-u - v).is_nonnegative is None assert (-u + v).is_nonnegative is None assert (u - v + 2).is_nonnegative is True assert (u + v + 17).is_nonnegative is None assert (-u - v - 5).is_nonnegative is None assert (-u + v - 123).is_nonnegative is False assert (2*u - 123*v + 17).is_nonnegative is True assert (k + u).is_nonnegative is None assert (k + v).is_nonnegative is False assert (n + u).is_nonnegative is True assert (n + v).is_nonnegative is None assert (k - n).is_nonnegative is False assert (k + n).is_nonnegative is None assert (-k - n).is_nonnegative is None assert (-k + n).is_nonnegative is True assert (k - n - u - 2).is_nonnegative is False assert (k + n - u - 2).is_nonnegative is None assert (-k - n - u - 2).is_nonnegative is None assert (-k + n - u - 2).is_nonnegative is None assert (u - x).is_nonnegative is None assert (v + x + n).is_nonnegative is None def test_Pow_is_integer(): x = Symbol('x') k = Symbol('k', integer=True) n = Symbol('n', integer=True, nonnegative=True) m = Symbol('m', integer=True, positive=True) assert (k**2).is_integer is True assert (k**(-2)).is_integer is None assert ((m + 1)**(-2)).is_integer is False assert (m**(-1)).is_integer is None # issue 8580 assert (2**k).is_integer is None assert (2**(-k)).is_integer is None assert (2**n).is_integer is True assert (2**(-n)).is_integer is None assert (2**m).is_integer is True assert (2**(-m)).is_integer is False assert (x**2).is_integer is None assert (2**x).is_integer is None assert (k**n).is_integer is True assert (k**(-n)).is_integer is None assert (k**x).is_integer is None assert (x**k).is_integer is None assert (k**(n*m)).is_integer is True assert (k**(-n*m)).is_integer is None assert sqrt(3).is_integer is False assert sqrt(.3).is_integer is False assert Pow(3, 2, evaluate=False).is_integer is True assert Pow(3, 0, evaluate=False).is_integer is True assert Pow(3, -2, evaluate=False).is_integer is False assert Pow(S.Half, 3, evaluate=False).is_integer is False # decided by re-evaluating assert Pow(3, S.Half, evaluate=False).is_integer is False assert Pow(3, S.Half, evaluate=False).is_integer is False assert Pow(4, S.Half, evaluate=False).is_integer is True assert Pow(S.Half, -2, evaluate=False).is_integer is True assert ((-1)**k).is_integer # issue 8641 x = Symbol('x', real=True, integer=False) assert (x**2).is_integer is None # issue 10458 x = Symbol('x', positive=True) assert (1/(x + 1)).is_integer is False assert (1/(-x - 1)).is_integer is False # issue 8648-like k = Symbol('k', even=True) assert (k**3/2).is_integer assert (k**3/8).is_integer assert (k**3/16).is_integer is None assert (2/k).is_integer is None assert (2/k**2).is_integer is False o = Symbol('o', odd=True) assert (k/o).is_integer is None o = Symbol('o', odd=True, prime=True) assert (k/o).is_integer is False def test_Pow_is_real(): x = Symbol('x', real=True) y = Symbol('y', real=True, positive=True) assert (x**2).is_real is True assert (x**3).is_real is True assert (x**x).is_real is None assert (y**x).is_real is True assert (x**Rational(1, 3)).is_real is None assert (y**Rational(1, 3)).is_real is True assert sqrt(-1 - sqrt(2)).is_real is False i = Symbol('i', imaginary=True) assert (i**i).is_real is None assert (I**i).is_extended_real is True assert ((-I)**i).is_extended_real is True assert (2**i).is_real is None # (2**(pi/log(2) * I)) is real, 2**I is not assert (2**I).is_real is False assert (2**-I).is_real is False assert (i**2).is_extended_real is True assert (i**3).is_extended_real is False assert (i**x).is_real is None # could be (-I)**(2/3) e = Symbol('e', even=True) o = Symbol('o', odd=True) k = Symbol('k', integer=True) assert (i**e).is_extended_real is True assert (i**o).is_extended_real is False assert (i**k).is_real is None assert (i**(4*k)).is_extended_real is True x = Symbol("x", nonnegative=True) y = Symbol("y", nonnegative=True) assert im(x**y).expand(complex=True) is S.Zero assert (x**y).is_real is True i = Symbol('i', imaginary=True) assert (exp(i)**I).is_extended_real is True assert log(exp(i)).is_imaginary is None # i could be 2*pi*I c = Symbol('c', complex=True) assert log(c).is_real is None # c could be 0 or 2, too assert log(exp(c)).is_real is None # log(0), log(E), ... n = Symbol('n', negative=False) assert log(n).is_real is None n = Symbol('n', nonnegative=True) assert log(n).is_real is None assert sqrt(-I).is_real is False # issue 7843 i = Symbol('i', integer=True) assert (1/(i-1)).is_real is None assert (1/(i-1)).is_extended_real is None # test issue 20715 from sympy.core.parameters import evaluate x = S(-1) with evaluate(False): assert x.is_negative is True f = Pow(x, -1) with evaluate(False): assert f.is_imaginary is False def test_real_Pow(): k = Symbol('k', integer=True, nonzero=True) assert (k**(I*pi/log(k))).is_real def test_Pow_is_finite(): xe = Symbol('xe', extended_real=True) xr = Symbol('xr', real=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) i = Symbol('i', integer=True) assert (xe**2).is_finite is None # xe could be oo assert (xr**2).is_finite is True assert (xe**xe).is_finite is None assert (xr**xe).is_finite is None assert (xe**xr).is_finite is None # FIXME: The line below should be True rather than None # assert (xr**xr).is_finite is True assert (xr**xr).is_finite is None assert (p**xe).is_finite is None assert (p**xr).is_finite is True assert (n**xe).is_finite is None assert (n**xr).is_finite is True assert (sin(xe)**2).is_finite is True assert (sin(xr)**2).is_finite is True assert (sin(xe)**xe).is_finite is None # xe, xr could be -pi assert (sin(xr)**xr).is_finite is None # FIXME: Should the line below be True rather than None? assert (sin(xe)**exp(xe)).is_finite is None assert (sin(xr)**exp(xr)).is_finite is True assert (1/sin(xe)).is_finite is None # if zero, no, otherwise yes assert (1/sin(xr)).is_finite is None assert (1/exp(xe)).is_finite is None # xe could be -oo assert (1/exp(xr)).is_finite is True assert (1/S.Pi).is_finite is True assert (1/(i-1)).is_finite is None def test_Pow_is_even_odd(): x = Symbol('x') k = Symbol('k', even=True) n = Symbol('n', odd=True) m = Symbol('m', integer=True, nonnegative=True) p = Symbol('p', integer=True, positive=True) assert ((-1)**n).is_odd assert ((-1)**k).is_odd assert ((-1)**(m - p)).is_odd assert (k**2).is_even is True assert (n**2).is_even is False assert (2**k).is_even is None assert (x**2).is_even is None assert (k**m).is_even is None assert (n**m).is_even is False assert (k**p).is_even is True assert (n**p).is_even is False assert (m**k).is_even is None assert (p**k).is_even is None assert (m**n).is_even is None assert (p**n).is_even is None assert (k**x).is_even is None assert (n**x).is_even is None assert (k**2).is_odd is False assert (n**2).is_odd is True assert (3**k).is_odd is None assert (k**m).is_odd is None assert (n**m).is_odd is True assert (k**p).is_odd is False assert (n**p).is_odd is True assert (m**k).is_odd is None assert (p**k).is_odd is None assert (m**n).is_odd is None assert (p**n).is_odd is None assert (k**x).is_odd is None assert (n**x).is_odd is None def test_Pow_is_negative_positive(): r = Symbol('r', real=True) k = Symbol('k', integer=True, positive=True) n = Symbol('n', even=True) m = Symbol('m', odd=True) x = Symbol('x') assert (2**r).is_positive is True assert ((-2)**r).is_positive is None assert ((-2)**n).is_positive is True assert ((-2)**m).is_positive is False assert (k**2).is_positive is True assert (k**(-2)).is_positive is True assert (k**r).is_positive is True assert ((-k)**r).is_positive is None assert ((-k)**n).is_positive is True assert ((-k)**m).is_positive is False assert (2**r).is_negative is False assert ((-2)**r).is_negative is None assert ((-2)**n).is_negative is False assert ((-2)**m).is_negative is True assert (k**2).is_negative is False assert (k**(-2)).is_negative is False assert (k**r).is_negative is False assert ((-k)**r).is_negative is None assert ((-k)**n).is_negative is False assert ((-k)**m).is_negative is True assert (2**x).is_positive is None assert (2**x).is_negative is None def test_Pow_is_zero(): z = Symbol('z', zero=True) e = z**2 assert e.is_zero assert e.is_positive is False assert e.is_negative is False assert Pow(0, 0, evaluate=False).is_zero is False assert Pow(0, 3, evaluate=False).is_zero assert Pow(0, oo, evaluate=False).is_zero assert Pow(0, -3, evaluate=False).is_zero is False assert Pow(0, -oo, evaluate=False).is_zero is False assert Pow(2, 2, evaluate=False).is_zero is False a = Symbol('a', zero=False) assert Pow(a, 3).is_zero is False # issue 7965 assert Pow(2, oo, evaluate=False).is_zero is False assert Pow(2, -oo, evaluate=False).is_zero assert Pow(S.Half, oo, evaluate=False).is_zero assert Pow(S.Half, -oo, evaluate=False).is_zero is False # All combinations of real/complex base/exponent h = S.Half T = True F = False N = None pow_iszero = [ ['**', 0, h, 1, 2, -h, -1,-2,-2*I,-I/2,I/2,1+I,oo,-oo,zoo], [ 0, F, T, T, T, F, F, F, F, F, F, N, T, F, N], [ h, F, F, F, F, F, F, F, F, F, F, F, T, F, N], [ 1, F, F, F, F, F, F, F, F, F, F, F, F, F, N], [ 2, F, F, F, F, F, F, F, F, F, F, F, F, T, N], [ -h, F, F, F, F, F, F, F, F, F, F, F, T, F, N], [ -1, F, F, F, F, F, F, F, F, F, F, F, F, F, N], [ -2, F, F, F, F, F, F, F, F, F, F, F, F, T, N], [-2*I, F, F, F, F, F, F, F, F, F, F, F, F, T, N], [-I/2, F, F, F, F, F, F, F, F, F, F, F, T, F, N], [ I/2, F, F, F, F, F, F, F, F, F, F, F, T, F, N], [ 1+I, F, F, F, F, F, F, F, F, F, F, F, F, T, N], [ oo, F, F, F, F, T, T, T, F, F, F, F, F, T, N], [ -oo, F, F, F, F, T, T, T, F, F, F, F, F, T, N], [ zoo, F, F, F, F, T, T, T, N, N, N, N, F, T, N] ] def test_table(table): n = len(table[0]) for row in range(1, n): base = table[row][0] for col in range(1, n): exp = table[0][col] is_zero = table[row][col] # The actual test here: assert Pow(base, exp, evaluate=False).is_zero is is_zero test_table(pow_iszero) # A zero symbol... zo, zo2 = symbols('zo, zo2', zero=True) # All combinations of finite symbols zf, zf2 = symbols('zf, zf2', finite=True) wf, wf2 = symbols('wf, wf2', nonzero=True) xf, xf2 = symbols('xf, xf2', real=True) yf, yf2 = symbols('yf, yf2', nonzero=True) af, af2 = symbols('af, af2', positive=True) bf, bf2 = symbols('bf, bf2', nonnegative=True) cf, cf2 = symbols('cf, cf2', negative=True) df, df2 = symbols('df, df2', nonpositive=True) # Without finiteness: zi, zi2 = symbols('zi, zi2') wi, wi2 = symbols('wi, wi2', zero=False) xi, xi2 = symbols('xi, xi2', extended_real=True) yi, yi2 = symbols('yi, yi2', zero=False, extended_real=True) ai, ai2 = symbols('ai, ai2', extended_positive=True) bi, bi2 = symbols('bi, bi2', extended_nonnegative=True) ci, ci2 = symbols('ci, ci2', extended_negative=True) di, di2 = symbols('di, di2', extended_nonpositive=True) pow_iszero_sym = [ ['**',zo,wf,yf,af,cf,zf,xf,bf,df,zi,wi,xi,yi,ai,bi,ci,di], [ zo2, F, N, N, T, F, N, N, N, F, N, N, N, N, T, N, F, F], [ wf2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N], [ yf2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N], [ af2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N], [ cf2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N], [ zf2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N], [ xf2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N], [ bf2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N], [ df2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N], [ zi2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N], [ wi2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N], [ xi2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N], [ yi2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N], [ ai2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N], [ bi2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N], [ ci2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N], [ di2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N] ] test_table(pow_iszero_sym) # In some cases (x**x).is_zero is different from (x**y).is_zero even if y # has the same assumptions as x. assert (zo ** zo).is_zero is False assert (wf ** wf).is_zero is False assert (yf ** yf).is_zero is False assert (af ** af).is_zero is False assert (cf ** cf).is_zero is False assert (zf ** zf).is_zero is None assert (xf ** xf).is_zero is None assert (bf ** bf).is_zero is False # None in table assert (df ** df).is_zero is None assert (zi ** zi).is_zero is None assert (wi ** wi).is_zero is None assert (xi ** xi).is_zero is None assert (yi ** yi).is_zero is None assert (ai ** ai).is_zero is False # None in table assert (bi ** bi).is_zero is False # None in table assert (ci ** ci).is_zero is None assert (di ** di).is_zero is None def test_Pow_is_nonpositive_nonnegative(): x = Symbol('x', real=True) k = Symbol('k', integer=True, nonnegative=True) l = Symbol('l', integer=True, positive=True) n = Symbol('n', even=True) m = Symbol('m', odd=True) assert (x**(4*k)).is_nonnegative is True assert (2**x).is_nonnegative is True assert ((-2)**x).is_nonnegative is None assert ((-2)**n).is_nonnegative is True assert ((-2)**m).is_nonnegative is False assert (k**2).is_nonnegative is True assert (k**(-2)).is_nonnegative is None assert (k**k).is_nonnegative is True assert (k**x).is_nonnegative is None # NOTE (0**x).is_real = U assert (l**x).is_nonnegative is True assert (l**x).is_positive is True assert ((-k)**x).is_nonnegative is None assert ((-k)**m).is_nonnegative is None assert (2**x).is_nonpositive is False assert ((-2)**x).is_nonpositive is None assert ((-2)**n).is_nonpositive is False assert ((-2)**m).is_nonpositive is True assert (k**2).is_nonpositive is None assert (k**(-2)).is_nonpositive is None assert (k**x).is_nonpositive is None assert ((-k)**x).is_nonpositive is None assert ((-k)**n).is_nonpositive is None assert (x**2).is_nonnegative is True i = symbols('i', imaginary=True) assert (i**2).is_nonpositive is True assert (i**4).is_nonpositive is False assert (i**3).is_nonpositive is False assert (I**i).is_nonnegative is True assert (exp(I)**i).is_nonnegative is True assert ((-l)**n).is_nonnegative is True assert ((-l)**m).is_nonpositive is True assert ((-k)**n).is_nonnegative is None assert ((-k)**m).is_nonpositive is None def test_Mul_is_imaginary_real(): r = Symbol('r', real=True) p = Symbol('p', positive=True) i1 = Symbol('i1', imaginary=True) i2 = Symbol('i2', imaginary=True) x = Symbol('x') assert I.is_imaginary is True assert I.is_real is False assert (-I).is_imaginary is True assert (-I).is_real is False assert (3*I).is_imaginary is True assert (3*I).is_real is False assert (I*I).is_imaginary is False assert (I*I).is_real is True e = (p + p*I) j = Symbol('j', integer=True, zero=False) assert (e**j).is_real is None assert (e**(2*j)).is_real is None assert (e**j).is_imaginary is None assert (e**(2*j)).is_imaginary is None assert (e**-1).is_imaginary is False assert (e**2).is_imaginary assert (e**3).is_imaginary is False assert (e**4).is_imaginary is False assert (e**5).is_imaginary is False assert (e**-1).is_real is False assert (e**2).is_real is False assert (e**3).is_real is False assert (e**4).is_real is True assert (e**5).is_real is False assert (e**3).is_complex assert (r*i1).is_imaginary is None assert (r*i1).is_real is None assert (x*i1).is_imaginary is None assert (x*i1).is_real is None assert (i1*i2).is_imaginary is False assert (i1*i2).is_real is True assert (r*i1*i2).is_imaginary is False assert (r*i1*i2).is_real is True # Github's issue 5874: nr = Symbol('nr', real=False, complex=True) # e.g. I or 1 + I a = Symbol('a', real=True, nonzero=True) b = Symbol('b', real=True) assert (i1*nr).is_real is None assert (a*nr).is_real is False assert (b*nr).is_real is None ni = Symbol('ni', imaginary=False, complex=True) # e.g. 2 or 1 + I a = Symbol('a', real=True, nonzero=True) b = Symbol('b', real=True) assert (i1*ni).is_real is False assert (a*ni).is_real is None assert (b*ni).is_real is None def test_Mul_hermitian_antihermitian(): a = Symbol('a', hermitian=True, zero=False) b = Symbol('b', hermitian=True) c = Symbol('c', hermitian=False) d = Symbol('d', antihermitian=True) e1 = Mul(a, b, c, evaluate=False) e2 = Mul(b, a, c, evaluate=False) e3 = Mul(a, b, c, d, evaluate=False) e4 = Mul(b, a, c, d, evaluate=False) e5 = Mul(a, c, evaluate=False) e6 = Mul(a, c, d, evaluate=False) assert e1.is_hermitian is None assert e2.is_hermitian is None assert e1.is_antihermitian is None assert e2.is_antihermitian is None assert e3.is_antihermitian is None assert e4.is_antihermitian is None assert e5.is_antihermitian is None assert e6.is_antihermitian is None def test_Add_is_comparable(): assert (x + y).is_comparable is False assert (x + 1).is_comparable is False assert (Rational(1, 3) - sqrt(8)).is_comparable is True def test_Mul_is_comparable(): assert (x*y).is_comparable is False assert (x*2).is_comparable is False assert (sqrt(2)*Rational(1, 3)).is_comparable is True def test_Pow_is_comparable(): assert (x**y).is_comparable is False assert (x**2).is_comparable is False assert (sqrt(Rational(1, 3))).is_comparable is True def test_Add_is_positive_2(): e = Rational(1, 3) - sqrt(8) assert e.is_positive is False assert e.is_negative is True e = pi - 1 assert e.is_positive is True assert e.is_negative is False def test_Add_is_irrational(): i = Symbol('i', irrational=True) assert i.is_irrational is True assert i.is_rational is False assert (i + 1).is_irrational is True assert (i + 1).is_rational is False def test_Mul_is_irrational(): expr = Mul(1, 2, 3, evaluate=False) assert expr.is_irrational is False expr = Mul(1, I, I, evaluate=False) assert expr.is_rational is None # I * I = -1 but *no evaluation allowed* # sqrt(2) * I * I = -sqrt(2) is irrational but # this can't be determined without evaluating the # expression and the eval_is routines shouldn't do that expr = Mul(sqrt(2), I, I, evaluate=False) assert expr.is_irrational is None def test_issue_3531(): # https://github.com/sympy/sympy/issues/3531 # https://github.com/sympy/sympy/pull/18116 class MightyNumeric(tuple): def __rtruediv__(self, other): return "something" assert sympify(1)/MightyNumeric((1, 2)) == "something" def test_issue_3531b(): class Foo: def __init__(self): self.field = 1.0 def __mul__(self, other): self.field = self.field * other def __rmul__(self, other): self.field = other * self.field f = Foo() x = Symbol("x") assert f*x == x*f def test_bug3(): a = Symbol("a") b = Symbol("b", positive=True) e = 2*a + b f = b + 2*a assert e == f def test_suppressed_evaluation(): a = Add(0, 3, 2, evaluate=False) b = Mul(1, 3, 2, evaluate=False) c = Pow(3, 2, evaluate=False) assert a != 6 assert a.func is Add assert a.args == (0, 3, 2) assert b != 6 assert b.func is Mul assert b.args == (1, 3, 2) assert c != 9 assert c.func is Pow assert c.args == (3, 2) def test_AssocOp_doit(): a = Add(x,x, evaluate=False) b = Mul(y,y, evaluate=False) c = Add(b,b, evaluate=False) d = Mul(a,a, evaluate=False) assert c.doit(deep=False).func == Mul assert c.doit(deep=False).args == (2,y,y) assert c.doit().func == Mul assert c.doit().args == (2, Pow(y,2)) assert d.doit(deep=False).func == Pow assert d.doit(deep=False).args == (a, 2*S.One) assert d.doit().func == Mul assert d.doit().args == (4*S.One, Pow(x,2)) def test_Add_Mul_Expr_args(): nonexpr = [Basic(), Poly(x, x), FiniteSet(x)] for typ in [Add, Mul]: for obj in nonexpr: with warns_deprecated_sympy(): typ(obj, 1) def test_Add_as_coeff_mul(): # issue 5524. These should all be (1, self) assert (x + 1).as_coeff_mul() == (1, (x + 1,)) assert (x + 2).as_coeff_mul() == (1, (x + 2,)) assert (x + 3).as_coeff_mul() == (1, (x + 3,)) assert (x - 1).as_coeff_mul() == (1, (x - 1,)) assert (x - 2).as_coeff_mul() == (1, (x - 2,)) assert (x - 3).as_coeff_mul() == (1, (x - 3,)) n = Symbol('n', integer=True) assert (n + 1).as_coeff_mul() == (1, (n + 1,)) assert (n + 2).as_coeff_mul() == (1, (n + 2,)) assert (n + 3).as_coeff_mul() == (1, (n + 3,)) assert (n - 1).as_coeff_mul() == (1, (n - 1,)) assert (n - 2).as_coeff_mul() == (1, (n - 2,)) assert (n - 3).as_coeff_mul() == (1, (n - 3,)) def test_Pow_as_coeff_mul_doesnt_expand(): assert exp(x + y).as_coeff_mul() == (1, (exp(x + y),)) assert exp(x + exp(x + y)) != exp(x + exp(x)*exp(y)) def test_issue_3514_18626(): assert sqrt(S.Half) * sqrt(6) == 2 * sqrt(3)/2 assert S.Half*sqrt(6)*sqrt(2) == sqrt(3) assert sqrt(6)/2*sqrt(2) == sqrt(3) assert sqrt(6)*sqrt(2)/2 == sqrt(3) assert sqrt(8)**Rational(2, 3) == 2 def test_make_args(): assert Add.make_args(x) == (x,) assert Mul.make_args(x) == (x,) assert Add.make_args(x*y*z) == (x*y*z,) assert Mul.make_args(x*y*z) == (x*y*z).args assert Add.make_args(x + y + z) == (x + y + z).args assert Mul.make_args(x + y + z) == (x + y + z,) assert Add.make_args((x + y)**z) == ((x + y)**z,) assert Mul.make_args((x + y)**z) == ((x + y)**z,) def test_issue_5126(): assert (-2)**x*(-3)**x != 6**x i = Symbol('i', integer=1) assert (-2)**i*(-3)**i == 6**i def test_Rational_as_content_primitive(): c, p = S.One, S.Zero assert (c*p).as_content_primitive() == (c, p) c, p = S.Half, S.One assert (c*p).as_content_primitive() == (c, p) def test_Add_as_content_primitive(): assert (x + 2).as_content_primitive() == (1, x + 2) assert (3*x + 2).as_content_primitive() == (1, 3*x + 2) assert (3*x + 3).as_content_primitive() == (3, x + 1) assert (3*x + 6).as_content_primitive() == (3, x + 2) assert (3*x + 2*y).as_content_primitive() == (1, 3*x + 2*y) assert (3*x + 3*y).as_content_primitive() == (3, x + y) assert (3*x + 6*y).as_content_primitive() == (3, x + 2*y) assert (3/x + 2*x*y*z**2).as_content_primitive() == (1, 3/x + 2*x*y*z**2) assert (3/x + 3*x*y*z**2).as_content_primitive() == (3, 1/x + x*y*z**2) assert (3/x + 6*x*y*z**2).as_content_primitive() == (3, 1/x + 2*x*y*z**2) assert (2*x/3 + 4*y/9).as_content_primitive() == \ (Rational(2, 9), 3*x + 2*y) assert (2*x/3 + 2.5*y).as_content_primitive() == \ (Rational(1, 3), 2*x + 7.5*y) # the coefficient may sort to a position other than 0 p = 3 + x + y assert (2*p).expand().as_content_primitive() == (2, p) assert (2.0*p).expand().as_content_primitive() == (1, 2.*p) p *= -1 assert (2*p).expand().as_content_primitive() == (2, p) def test_Mul_as_content_primitive(): assert (2*x).as_content_primitive() == (2, x) assert (x*(2 + 2*x)).as_content_primitive() == (2, x*(1 + x)) assert (x*(2 + 2*y)*(3*x + 3)**2).as_content_primitive() == \ (18, x*(1 + y)*(x + 1)**2) assert ((2 + 2*x)**2*(3 + 6*x) + S.Half).as_content_primitive() == \ (S.Half, 24*(x + 1)**2*(2*x + 1) + 1) def test_Pow_as_content_primitive(): assert (x**y).as_content_primitive() == (1, x**y) assert ((2*x + 2)**y).as_content_primitive() == \ (1, (Mul(2, (x + 1), evaluate=False))**y) assert ((2*x + 2)**3).as_content_primitive() == (8, (x + 1)**3) def test_issue_5460(): u = Mul(2, (1 + x), evaluate=False) assert (2 + u).args == (2, u) def test_product_irrational(): assert (I*pi).is_irrational is False # The following used to be deduced from the above bug: assert (I*pi).is_positive is False def test_issue_5919(): assert (x/(y*(1 + y))).expand() == x/(y**2 + y) def test_Mod(): assert Mod(x, 1).func is Mod assert pi % pi is S.Zero assert Mod(5, 3) == 2 assert Mod(-5, 3) == 1 assert Mod(5, -3) == -1 assert Mod(-5, -3) == -2 assert type(Mod(3.2, 2, evaluate=False)) == Mod assert 5 % x == Mod(5, x) assert x % 5 == Mod(x, 5) assert x % y == Mod(x, y) assert (x % y).subs({x: 5, y: 3}) == 2 assert Mod(nan, 1) is nan assert Mod(1, nan) is nan assert Mod(nan, nan) is nan Mod(0, x) == 0 with raises(ZeroDivisionError): Mod(x, 0) k = Symbol('k', integer=True) m = Symbol('m', integer=True, positive=True) assert (x**m % x).func is Mod assert (k**(-m) % k).func is Mod assert k**m % k == 0 assert (-2*k)**m % k == 0 # Float handling point3 = Float(3.3) % 1 assert (x - 3.3) % 1 == Mod(1.*x + 1 - point3, 1) assert Mod(-3.3, 1) == 1 - point3 assert Mod(0.7, 1) == Float(0.7) e = Mod(1.3, 1) assert comp(e, .3) and e.is_Float e = Mod(1.3, .7) assert comp(e, .6) and e.is_Float e = Mod(1.3, Rational(7, 10)) assert comp(e, .6) and e.is_Float e = Mod(Rational(13, 10), 0.7) assert comp(e, .6) and e.is_Float e = Mod(Rational(13, 10), Rational(7, 10)) assert comp(e, .6) and e.is_Rational # check that sign is right r2 = sqrt(2) r3 = sqrt(3) for i in [-r3, -r2, r2, r3]: for j in [-r3, -r2, r2, r3]: assert verify_numerically(i % j, i.n() % j.n()) for _x in range(4): for _y in range(9): reps = [(x, _x), (y, _y)] assert Mod(3*x + y, 9).subs(reps) == (3*_x + _y) % 9 # denesting t = Symbol('t', real=True) assert Mod(Mod(x, t), t) == Mod(x, t) assert Mod(-Mod(x, t), t) == Mod(-x, t) assert Mod(Mod(x, 2*t), t) == Mod(x, t) assert Mod(-Mod(x, 2*t), t) == Mod(-x, t) assert Mod(Mod(x, t), 2*t) == Mod(x, t) assert Mod(-Mod(x, t), -2*t) == -Mod(x, t) for i in [-4, -2, 2, 4]: for j in [-4, -2, 2, 4]: for k in range(4): assert Mod(Mod(x, i), j).subs({x: k}) == (k % i) % j assert Mod(-Mod(x, i), j).subs({x: k}) == -(k % i) % j # known difference assert Mod(5*sqrt(2), sqrt(5)) == 5*sqrt(2) - 3*sqrt(5) p = symbols('p', positive=True) assert Mod(2, p + 3) == 2 assert Mod(-2, p + 3) == p + 1 assert Mod(2, -p - 3) == -p - 1 assert Mod(-2, -p - 3) == -2 assert Mod(p + 5, p + 3) == 2 assert Mod(-p - 5, p + 3) == p + 1 assert Mod(p + 5, -p - 3) == -p - 1 assert Mod(-p - 5, -p - 3) == -2 assert Mod(p + 1, p - 1).func is Mod # handling sums assert (x + 3) % 1 == Mod(x, 1) assert (x + 3.0) % 1 == Mod(1.*x, 1) assert (x - S(33)/10) % 1 == Mod(x + S(7)/10, 1) a = Mod(.6*x + y, .3*y) b = Mod(0.1*y + 0.6*x, 0.3*y) # Test that a, b are equal, with 1e-14 accuracy in coefficients eps = 1e-14 assert abs((a.args[0] - b.args[0]).subs({x: 1, y: 1})) < eps assert abs((a.args[1] - b.args[1]).subs({x: 1, y: 1})) < eps assert (x + 1) % x == 1 % x assert (x + y) % x == y % x assert (x + y + 2) % x == (y + 2) % x assert (a + 3*x + 1) % (2*x) == Mod(a + x + 1, 2*x) assert (12*x + 18*y) % (3*x) == 3*Mod(6*y, x) # gcd extraction assert (-3*x) % (-2*y) == -Mod(3*x, 2*y) assert (.6*pi) % (.3*x*pi) == 0.3*pi*Mod(2, x) assert (.6*pi) % (.31*x*pi) == pi*Mod(0.6, 0.31*x) assert (6*pi) % (.3*x*pi) == 0.3*pi*Mod(20, x) assert (6*pi) % (.31*x*pi) == pi*Mod(6, 0.31*x) assert (6*pi) % (.42*x*pi) == pi*Mod(6, 0.42*x) assert (12*x) % (2*y) == 2*Mod(6*x, y) assert (12*x) % (3*5*y) == 3*Mod(4*x, 5*y) assert (12*x) % (15*x*y) == 3*x*Mod(4, 5*y) assert (-2*pi) % (3*pi) == pi assert (2*x + 2) % (x + 1) == 0 assert (x*(x + 1)) % (x + 1) == (x + 1)*Mod(x, 1) assert Mod(5.0*x, 0.1*y) == 0.1*Mod(50*x, y) i = Symbol('i', integer=True) assert (3*i*x) % (2*i*y) == i*Mod(3*x, 2*y) assert Mod(4*i, 4) == 0 # issue 8677 n = Symbol('n', integer=True, positive=True) assert factorial(n) % n == 0 assert factorial(n + 2) % n == 0 assert (factorial(n + 4) % (n + 5)).func is Mod # Wilson's theorem factorial(18042, evaluate=False) % 18043 == 18042 p = Symbol('n', prime=True) factorial(p - 1) % p == p - 1 factorial(p - 1) % -p == -1 (factorial(3, evaluate=False) % 4).doit() == 2 n = Symbol('n', composite=True, odd=True) factorial(n - 1) % n == 0 # symbolic with known parity n = Symbol('n', even=True) assert Mod(n, 2) == 0 n = Symbol('n', odd=True) assert Mod(n, 2) == 1 # issue 10963 assert (x**6000%400).args[1] == 400 #issue 13543 assert Mod(Mod(x + 1, 2) + 1 , 2) == Mod(x,2) assert Mod(Mod(x + 2, 4)*(x + 4), 4) == Mod(x*(x + 2), 4) assert Mod(Mod(x + 2, 4)*4, 4) == 0 # issue 15493 i, j = symbols('i j', integer=True, positive=True) assert Mod(3*i, 2) == Mod(i, 2) assert Mod(8*i/j, 4) == 4*Mod(2*i/j, 1) assert Mod(8*i, 4) == 0 # rewrite assert Mod(x, y).rewrite(floor) == x - y*floor(x/y) assert ((x - Mod(x, y))/y).rewrite(floor) == floor(x/y) # issue 21373 from sympy.functions.elementary.trigonometric import sinh from sympy.functions.elementary.piecewise import Piecewise x_r, y_r = symbols('x_r y_r', real=True) (Piecewise((x_r, y_r > x_r), (y_r, True)) / z) % 1 expr = exp(sinh(Piecewise((x_r, y_r > x_r), (y_r, True)) / z)) expr.subs({1: 1.0}) sinh(Piecewise((x_r, y_r > x_r), (y_r, True)) * z ** -1.0).is_zero def test_Mod_Pow(): # modular exponentiation assert isinstance(Mod(Pow(2, 2, evaluate=False), 3), Integer) assert Mod(Pow(4, 13, evaluate=False), 497) == Mod(Pow(4, 13), 497) assert Mod(Pow(2, 10000000000, evaluate=False), 3) == 1 assert Mod(Pow(32131231232, 9**10**6, evaluate=False),10**12) == \ pow(32131231232,9**10**6,10**12) assert Mod(Pow(33284959323, 123**999, evaluate=False),11**13) == \ pow(33284959323,123**999,11**13) assert Mod(Pow(78789849597, 333**555, evaluate=False),12**9) == \ pow(78789849597,333**555,12**9) # modular nested exponentiation expr = Pow(2, 2, evaluate=False) expr = Pow(2, expr, evaluate=False) assert Mod(expr, 3**10) == 16 expr = Pow(2, expr, evaluate=False) assert Mod(expr, 3**10) == 6487 expr = Pow(2, expr, evaluate=False) assert Mod(expr, 3**10) == 32191 expr = Pow(2, expr, evaluate=False) assert Mod(expr, 3**10) == 18016 expr = Pow(2, expr, evaluate=False) assert Mod(expr, 3**10) == 5137 expr = Pow(2, 2, evaluate=False) expr = Pow(expr, 2, evaluate=False) assert Mod(expr, 3**10) == 16 expr = Pow(expr, 2, evaluate=False) assert Mod(expr, 3**10) == 256 expr = Pow(expr, 2, evaluate=False) assert Mod(expr, 3**10) == 6487 expr = Pow(expr, 2, evaluate=False) assert Mod(expr, 3**10) == 38281 expr = Pow(expr, 2, evaluate=False) assert Mod(expr, 3**10) == 15928 expr = Pow(2, 2, evaluate=False) expr = Pow(expr, expr, evaluate=False) assert Mod(expr, 3**10) == 256 expr = Pow(expr, expr, evaluate=False) assert Mod(expr, 3**10) == 9229 expr = Pow(expr, expr, evaluate=False) assert Mod(expr, 3**10) == 25708 expr = Pow(expr, expr, evaluate=False) assert Mod(expr, 3**10) == 26608 expr = Pow(expr, expr, evaluate=False) # XXX This used to fail in a nondeterministic way because of overflow # error. assert Mod(expr, 3**10) == 1966 def test_Mod_is_integer(): p = Symbol('p', integer=True) q1 = Symbol('q1', integer=True) q2 = Symbol('q2', integer=True, nonzero=True) assert Mod(x, y).is_integer is None assert Mod(p, q1).is_integer is None assert Mod(x, q2).is_integer is None assert Mod(p, q2).is_integer def test_Mod_is_nonposneg(): n = Symbol('n', integer=True) k = Symbol('k', integer=True, positive=True) assert (n%3).is_nonnegative assert Mod(n, -3).is_nonpositive assert Mod(n, k).is_nonnegative assert Mod(n, -k).is_nonpositive assert Mod(k, n).is_nonnegative is None def test_issue_6001(): A = Symbol("A", commutative=False) eq = A + A**2 # it doesn't matter whether it's True or False; they should # just all be the same assert ( eq.is_commutative == (eq + 1).is_commutative == (A + 1).is_commutative) B = Symbol("B", commutative=False) # Although commutative terms could cancel we return True # meaning "there are non-commutative symbols; aftersubstitution # that definition can change, e.g. (A*B).subs(B,A**-1) -> 1 assert (sqrt(2)*A).is_commutative is False assert (sqrt(2)*A*B).is_commutative is False def test_polar(): from sympy import polar_lift p = Symbol('p', polar=True) x = Symbol('x') assert p.is_polar assert x.is_polar is None assert S.One.is_polar is None assert (p**x).is_polar is True assert (x**p).is_polar is None assert ((2*p)**x).is_polar is True assert (2*p).is_polar is True assert (-2*p).is_polar is not True assert (polar_lift(-2)*p).is_polar is True q = Symbol('q', polar=True) assert (p*q)**2 == p**2 * q**2 assert (2*q)**2 == 4 * q**2 assert ((p*q)**x).expand() == p**x * q**x def test_issue_6040(): a, b = Pow(1, 2, evaluate=False), S.One assert a != b assert b != a assert not (a == b) assert not (b == a) def test_issue_6082(): # Comparison is symmetric assert Basic.compare(Max(x, 1), Max(x, 2)) == \ - Basic.compare(Max(x, 2), Max(x, 1)) # Equal expressions compare equal assert Basic.compare(Max(x, 1), Max(x, 1)) == 0 # Basic subtypes (such as Max) compare different than standard types assert Basic.compare(Max(1, x), frozenset((1, x))) != 0 def test_issue_6077(): assert x**2.0/x == x**1.0 assert x/x**2.0 == x**-1.0 assert x*x**2.0 == x**3.0 assert x**1.5*x**2.5 == x**4.0 assert 2**(2.0*x)/2**x == 2**(1.0*x) assert 2**x/2**(2.0*x) == 2**(-1.0*x) assert 2**x*2**(2.0*x) == 2**(3.0*x) assert 2**(1.5*x)*2**(2.5*x) == 2**(4.0*x) def test_mul_flatten_oo(): p = symbols('p', positive=True) n, m = symbols('n,m', negative=True) x_im = symbols('x_im', imaginary=True) assert n*oo is -oo assert n*m*oo is oo assert p*oo is oo assert x_im*oo != I*oo # i could be +/- 3*I -> +/-oo def test_add_flatten(): # see https://github.com/sympy/sympy/issues/2633#issuecomment-29545524 a = oo + I*oo b = oo - I*oo assert a + b is nan assert a - b is nan # FIXME: This evaluates as: # >>> 1/a # 0*(oo + oo*I) # which should not simplify to 0. Should be fixed in Pow.eval #assert (1/a).simplify() == (1/b).simplify() == 0 a = Pow(2, 3, evaluate=False) assert a + a == 16 def test_issue_5160_6087_6089_6090(): # issue 6087 assert ((-2*x*y**y)**3.2).n(2) == (2**3.2*(-x*y**y)**3.2).n(2) # issue 6089 A, B, C = symbols('A,B,C', commutative=False) assert (2.*B*C)**3 == 8.0*(B*C)**3 assert (-2.*B*C)**3 == -8.0*(B*C)**3 assert (-2*B*C)**2 == 4*(B*C)**2 # issue 5160 assert sqrt(-1.0*x) == 1.0*sqrt(-x) assert sqrt(1.0*x) == 1.0*sqrt(x) # issue 6090 assert (-2*x*y*A*B)**2 == 4*x**2*y**2*(A*B)**2 def test_float_int_round(): assert int(float(sqrt(10))) == int(sqrt(10)) assert int(pi**1000) % 10 == 2 assert int(Float('1.123456789012345678901234567890e20', '')) == \ int(112345678901234567890) assert int(Float('1.123456789012345678901234567890e25', '')) == \ int(11234567890123456789012345) # decimal forces float so it's not an exact integer ending in 000000 assert int(Float('1.123456789012345678901234567890e35', '')) == \ 112345678901234567890123456789000192 assert int(Float('123456789012345678901234567890e5', '')) == \ 12345678901234567890123456789000000 assert Integer(Float('1.123456789012345678901234567890e20', '')) == \ 112345678901234567890 assert Integer(Float('1.123456789012345678901234567890e25', '')) == \ 11234567890123456789012345 # decimal forces float so it's not an exact integer ending in 000000 assert Integer(Float('1.123456789012345678901234567890e35', '')) == \ 112345678901234567890123456789000192 assert Integer(Float('123456789012345678901234567890e5', '')) == \ 12345678901234567890123456789000000 assert same_and_same_prec(Float('123000e-2',''), Float('1230.00', '')) assert same_and_same_prec(Float('123000e2',''), Float('12300000', '')) assert int(1 + Rational('.9999999999999999999999999')) == 1 assert int(pi/1e20) == 0 assert int(1 + pi/1e20) == 1 assert int(Add(1.2, -2, evaluate=False)) == int(1.2 - 2) assert int(Add(1.2, +2, evaluate=False)) == int(1.2 + 2) assert int(Add(1 + Float('.99999999999999999', ''), evaluate=False)) == 1 raises(TypeError, lambda: float(x)) raises(TypeError, lambda: float(sqrt(-1))) assert int(12345678901234567890 + cos(1)**2 + sin(1)**2) == \ 12345678901234567891 def test_issue_6611a(): assert Mul.flatten([3**Rational(1, 3), Pow(-Rational(1, 9), Rational(2, 3), evaluate=False)]) == \ ([Rational(1, 3), (-1)**Rational(2, 3)], [], None) def test_denest_add_mul(): # when working with evaluated expressions make sure they denest eq = x + 1 eq = Add(eq, 2, evaluate=False) eq = Add(eq, 2, evaluate=False) assert Add(*eq.args) == x + 5 eq = x*2 eq = Mul(eq, 2, evaluate=False) eq = Mul(eq, 2, evaluate=False) assert Mul(*eq.args) == 8*x # but don't let them denest unecessarily eq = Mul(-2, x - 2, evaluate=False) assert 2*eq == Mul(-4, x - 2, evaluate=False) assert -eq == Mul(2, x - 2, evaluate=False) def test_mul_coeff(): # It is important that all Numbers be removed from the seq; # This can be tricky when powers combine to produce those numbers p = exp(I*pi/3) assert p**2*x*p*y*p*x*p**2 == x**2*y def test_mul_zero_detection(): nz = Dummy(real=True, zero=False) r = Dummy(extended_real=True) c = Dummy(real=False, complex=True) c2 = Dummy(real=False, complex=True) i = Dummy(imaginary=True) e = nz*r*c assert e.is_imaginary is None assert e.is_extended_real is None e = nz*c assert e.is_imaginary is None assert e.is_extended_real is False e = nz*i*c assert e.is_imaginary is False assert e.is_extended_real is None # check for more than one complex; it is important to use # uniquely named Symbols to ensure that two factors appear # e.g. if the symbols have the same name they just become # a single factor, a power. e = nz*i*c*c2 assert e.is_imaginary is None assert e.is_extended_real is None # _eval_is_extended_real and _eval_is_zero both employ trapping of the # zero value so args should be tested in both directions and # TO AVOID GETTING THE CACHED RESULT, Dummy MUST BE USED # real is unknown def test(z, b, e): if z.is_zero and b.is_finite: assert e.is_extended_real and e.is_zero else: assert e.is_extended_real is None if b.is_finite: if z.is_zero: assert e.is_zero else: assert e.is_zero is None elif b.is_finite is False: if z.is_zero is None: assert e.is_zero is None else: assert e.is_zero is False for iz, ib in cartes(*[[True, False, None]]*2): z = Dummy('z', nonzero=iz) b = Dummy('f', finite=ib) e = Mul(z, b, evaluate=False) test(z, b, e) z = Dummy('nz', nonzero=iz) b = Dummy('f', finite=ib) e = Mul(b, z, evaluate=False) test(z, b, e) # real is True def test(z, b, e): if z.is_zero and not b.is_finite: assert e.is_extended_real is None else: assert e.is_extended_real is True for iz, ib in cartes(*[[True, False, None]]*2): z = Dummy('z', nonzero=iz, extended_real=True) b = Dummy('b', finite=ib, extended_real=True) e = Mul(z, b, evaluate=False) test(z, b, e) z = Dummy('z', nonzero=iz, extended_real=True) b = Dummy('b', finite=ib, extended_real=True) e = Mul(b, z, evaluate=False) test(z, b, e) def test_Mul_with_zero_infinite(): zer = Dummy(zero=True) inf = Dummy(finite=False) e = Mul(zer, inf, evaluate=False) assert e.is_extended_positive is None assert e.is_hermitian is None e = Mul(inf, zer, evaluate=False) assert e.is_extended_positive is None assert e.is_hermitian is None def test_Mul_does_not_cancel_infinities(): a, b = symbols('a b') assert ((zoo + 3*a)/(3*a + zoo)) is nan assert ((b - oo)/(b - oo)) is nan # issue 13904 expr = (1/(a+b) + 1/(a-b))/(1/(a+b) - 1/(a-b)) assert expr.subs(b, a) is nan def test_Mul_does_not_distribute_infinity(): a, b = symbols('a b') assert ((1 + I)*oo).is_Mul assert ((a + b)*(-oo)).is_Mul assert ((a + 1)*zoo).is_Mul assert ((1 + I)*oo).is_finite is False z = (1 + I)*oo assert ((1 - I)*z).expand() is oo def test_issue_8247_8354(): from sympy import tan z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3)) assert z.is_positive is False # it's 0 z = S('''-2**(1/3)*(3*sqrt(93) + 29)**2 - 4*(3*sqrt(93) + 29)**(4/3) + 12*sqrt(93)*(3*sqrt(93) + 29)**(1/3) + 116*(3*sqrt(93) + 29)**(1/3) + 174*2**(1/3)*sqrt(93) + 1678*2**(1/3)''') assert z.is_positive is False # it's 0 z = 2*(-3*tan(19*pi/90) + sqrt(3))*cos(11*pi/90)*cos(19*pi/90) - \ sqrt(3)*(-3 + 4*cos(19*pi/90)**2) assert z.is_positive is not True # it's zero and it shouldn't hang z = S('''9*(3*sqrt(93) + 29)**(2/3)*((3*sqrt(93) + 29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) - 2) - 2*2**(1/3))**3 + 72*(3*sqrt(93) + 29)**(2/3)*(81*sqrt(93) + 783) + (162*sqrt(93) + 1566)*((3*sqrt(93) + 29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) - 2) - 2*2**(1/3))**2''') assert z.is_positive is False # it's 0 (and a single _mexpand isn't enough) def test_Add_is_zero(): x, y = symbols('x y', zero=True) assert (x + y).is_zero # Issue 15873 e = -2*I + (1 + I)**2 assert e.is_zero is None def test_issue_14392(): assert (sin(zoo)**2).as_real_imag() == (nan, nan) def test_divmod(): assert divmod(x, y) == (x//y, x % y) assert divmod(x, 3) == (x//3, x % 3) assert divmod(3, x) == (3//x, 3 % x) def test__neg__(): assert -(x*y) == -x*y assert -(-x*y) == x*y assert -(1.*x) == -1.*x assert -(-1.*x) == 1.*x assert -(2.*x) == -2.*x assert -(-2.*x) == 2.*x with distribute(False): eq = -(x + y) assert eq.is_Mul and eq.args == (-1, x + y) def test_issue_18507(): assert Mul(zoo, zoo, 0) is nan def test_issue_17130(): e = Add(b, -b, I, -I, evaluate=False) assert e.is_zero is None # ideally this would be True def test_issue_21034(): e = -I*log((re(asin(5)) + I*im(asin(5)))/sqrt(re(asin(5))**2 + im(asin(5))**2))/pi assert e.round(2) def test_issue_22021(): from sympy.calculus.util import AccumBounds from sympy.utilities.iterables import permutations # these objects are special cases in Mul from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads L = TensorIndexType("L") i = tensor_indices("i", L) A, B = tensor_heads("A B", [L]) e = A(i) + B(i) assert -e == -1*e e = zoo + x assert -e == -1*e a = AccumBounds(1, 2) e = a + x assert -e == -1*e for args in permutations((zoo, a, x)): e = Add(*args, evaluate=False) assert -e == -1*e assert 2*Add(1, x, x, evaluate=False) == 4*x + 2
80bad982e87aa44d04e3fbccd8678e4b96c79eb7125105ea0f4433f6d22d7e6a
from sympy.polys.rings import ring from sympy.polys.fields import field from sympy.polys.domains import ZZ, QQ from sympy.polys.solvers import solve_lin_sys # Expected times on 3.4 GHz i7: # In [1]: %timeit time_solve_lin_sys_189x49() # 1 loops, best of 3: 864 ms per loop # In [2]: %timeit time_solve_lin_sys_165x165() # 1 loops, best of 3: 1.83 s per loop # In [3]: %timeit time_solve_lin_sys_10x8() # 1 loops, best of 3: 2.31 s per loop # Benchmark R_165: shows how fast are arithmetics in QQ. R_165, uk_0, uk_1, uk_2, uk_3, uk_4, uk_5, uk_6, uk_7, uk_8, uk_9, uk_10, uk_11, uk_12, uk_13, uk_14, uk_15, uk_16, uk_17, uk_18, uk_19, uk_20, uk_21, uk_22, uk_23, uk_24, uk_25, uk_26, uk_27, uk_28, uk_29, uk_30, uk_31, uk_32, uk_33, uk_34, uk_35, uk_36, uk_37, uk_38, uk_39, uk_40, uk_41, uk_42, uk_43, uk_44, uk_45, uk_46, uk_47, uk_48, uk_49, uk_50, uk_51, uk_52, uk_53, uk_54, uk_55, uk_56, uk_57, uk_58, uk_59, uk_60, uk_61, uk_62, uk_63, uk_64, uk_65, uk_66, uk_67, uk_68, uk_69, uk_70, uk_71, uk_72, uk_73, uk_74, uk_75, uk_76, uk_77, uk_78, uk_79, uk_80, uk_81, uk_82, uk_83, uk_84, uk_85, uk_86, uk_87, uk_88, uk_89, uk_90, uk_91, uk_92, uk_93, uk_94, uk_95, uk_96, uk_97, uk_98, uk_99, uk_100, uk_101, uk_102, uk_103, uk_104, uk_105, uk_106, uk_107, uk_108, uk_109, uk_110, uk_111, uk_112, uk_113, uk_114, uk_115, uk_116, uk_117, uk_118, uk_119, uk_120, uk_121, uk_122, uk_123, uk_124, uk_125, uk_126, uk_127, uk_128, uk_129, uk_130, uk_131, uk_132, uk_133, uk_134, uk_135, uk_136, uk_137, uk_138, uk_139, uk_140, uk_141, uk_142, uk_143, uk_144, uk_145, uk_146, uk_147, uk_148, uk_149, uk_150, uk_151, uk_152, uk_153, uk_154, uk_155, uk_156, uk_157, uk_158, uk_159, uk_160, uk_161, uk_162, uk_163, uk_164 = ring("uk_:165", QQ) def eqs_165x165(): return [ uk_0 + 50719*uk_1 + 2789545*uk_10 + 411400*uk_100 + 1683000*uk_101 + 166375*uk_103 + 680625*uk_104 + 2784375*uk_106 + 729*uk_109 + 456471*uk_11 + 4131*uk_110 + 11016*uk_111 + 4455*uk_112 + 18225*uk_113 + 23409*uk_115 + 62424*uk_116 + 25245*uk_117 + 103275*uk_118 + 2586669*uk_12 + 166464*uk_120 + 67320*uk_121 + 275400*uk_122 + 27225*uk_124 + 111375*uk_125 + 455625*uk_127 + 6897784*uk_13 + 132651*uk_130 + 353736*uk_131 + 143055*uk_132 + 585225*uk_133 + 943296*uk_135 + 381480*uk_136 + 1560600*uk_137 + 154275*uk_139 + 2789545*uk_14 + 631125*uk_140 + 2581875*uk_142 + 2515456*uk_145 + 1017280*uk_146 + 4161600*uk_147 + 411400*uk_149 + 11411775*uk_15 + 1683000*uk_150 + 6885000*uk_152 + 166375*uk_155 + 680625*uk_156 + 2784375*uk_158 + 11390625*uk_161 + 3025*uk_17 + 495*uk_18 + 2805*uk_19 + 55*uk_2 + 7480*uk_20 + 3025*uk_21 + 12375*uk_22 + 81*uk_24 + 459*uk_25 + 1224*uk_26 + 495*uk_27 + 2025*uk_28 + 9*uk_3 + 2601*uk_30 + 6936*uk_31 + 2805*uk_32 + 11475*uk_33 + 18496*uk_35 + 7480*uk_36 + 30600*uk_37 + 3025*uk_39 + 51*uk_4 + 12375*uk_40 + 50625*uk_42 + 130470415844959*uk_45 + 141482932855*uk_46 + 23151752649*uk_47 + 131193265011*uk_48 + 349848706696*uk_49 + 136*uk_5 + 141482932855*uk_50 + 578793816225*uk_51 + 153424975*uk_53 + 25105905*uk_54 + 142266795*uk_55 + 379378120*uk_56 + 153424975*uk_57 + 627647625*uk_58 + 55*uk_6 + 4108239*uk_60 + 23280021*uk_61 + 62080056*uk_62 + 25105905*uk_63 + 102705975*uk_64 + 131920119*uk_66 + 351786984*uk_67 + 142266795*uk_68 + 582000525*uk_69 + 225*uk_7 + 938098624*uk_71 + 379378120*uk_72 + 1552001400*uk_73 + 153424975*uk_75 + 627647625*uk_76 + 2567649375*uk_78 + 166375*uk_81 + 27225*uk_82 + 154275*uk_83 + 411400*uk_84 + 166375*uk_85 + 680625*uk_86 + 4455*uk_88 + 25245*uk_89 + 2572416961*uk_9 + 67320*uk_90 + 27225*uk_91 + 111375*uk_92 + 143055*uk_94 + 381480*uk_95 + 154275*uk_96 + 631125*uk_97 + 1017280*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 413820*uk_100 + 1633500*uk_101 + 65340*uk_102 + 178695*uk_103 + 705375*uk_104 + 28215*uk_105 + 2784375*uk_106 + 111375*uk_107 + 4455*uk_108 + 97336*uk_109 + 2333074*uk_11 + 19044*uk_110 + 279312*uk_111 + 120612*uk_112 + 476100*uk_113 + 19044*uk_114 + 3726*uk_115 + 54648*uk_116 + 23598*uk_117 + 93150*uk_118 + 3726*uk_119 + 456471*uk_12 + 801504*uk_120 + 346104*uk_121 + 1366200*uk_122 + 54648*uk_123 + 149454*uk_124 + 589950*uk_125 + 23598*uk_126 + 2328750*uk_127 + 93150*uk_128 + 3726*uk_129 + 6694908*uk_13 + 729*uk_130 + 10692*uk_131 + 4617*uk_132 + 18225*uk_133 + 729*uk_134 + 156816*uk_135 + 67716*uk_136 + 267300*uk_137 + 10692*uk_138 + 29241*uk_139 + 2890983*uk_14 + 115425*uk_140 + 4617*uk_141 + 455625*uk_142 + 18225*uk_143 + 729*uk_144 + 2299968*uk_145 + 993168*uk_146 + 3920400*uk_147 + 156816*uk_148 + 428868*uk_149 + 11411775*uk_15 + 1692900*uk_150 + 67716*uk_151 + 6682500*uk_152 + 267300*uk_153 + 10692*uk_154 + 185193*uk_155 + 731025*uk_156 + 29241*uk_157 + 2885625*uk_158 + 115425*uk_159 + 456471*uk_16 + 4617*uk_160 + 11390625*uk_161 + 455625*uk_162 + 18225*uk_163 + 729*uk_164 + 3025*uk_17 + 2530*uk_18 + 495*uk_19 + 55*uk_2 + 7260*uk_20 + 3135*uk_21 + 12375*uk_22 + 495*uk_23 + 2116*uk_24 + 414*uk_25 + 6072*uk_26 + 2622*uk_27 + 10350*uk_28 + 414*uk_29 + 46*uk_3 + 81*uk_30 + 1188*uk_31 + 513*uk_32 + 2025*uk_33 + 81*uk_34 + 17424*uk_35 + 7524*uk_36 + 29700*uk_37 + 1188*uk_38 + 3249*uk_39 + 9*uk_4 + 12825*uk_40 + 513*uk_41 + 50625*uk_42 + 2025*uk_43 + 81*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 118331180206*uk_47 + 23151752649*uk_48 + 339559038852*uk_49 + 132*uk_5 + 146627766777*uk_50 + 578793816225*uk_51 + 23151752649*uk_52 + 153424975*uk_53 + 128319070*uk_54 + 25105905*uk_55 + 368219940*uk_56 + 159004065*uk_57 + 627647625*uk_58 + 25105905*uk_59 + 57*uk_6 + 107321404*uk_60 + 20997666*uk_61 + 307965768*uk_62 + 132985218*uk_63 + 524941650*uk_64 + 20997666*uk_65 + 4108239*uk_66 + 60254172*uk_67 + 26018847*uk_68 + 102705975*uk_69 + 225*uk_7 + 4108239*uk_70 + 883727856*uk_71 + 381609756*uk_72 + 1506354300*uk_73 + 60254172*uk_74 + 164786031*uk_75 + 650471175*uk_76 + 26018847*uk_77 + 2567649375*uk_78 + 102705975*uk_79 + 9*uk_8 + 4108239*uk_80 + 166375*uk_81 + 139150*uk_82 + 27225*uk_83 + 399300*uk_84 + 172425*uk_85 + 680625*uk_86 + 27225*uk_87 + 116380*uk_88 + 22770*uk_89 + 2572416961*uk_9 + 333960*uk_90 + 144210*uk_91 + 569250*uk_92 + 22770*uk_93 + 4455*uk_94 + 65340*uk_95 + 28215*uk_96 + 111375*uk_97 + 4455*uk_98 + 958320*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 402380*uk_100 + 1534500*uk_101 + 313720*uk_102 + 191455*uk_103 + 730125*uk_104 + 149270*uk_105 + 2784375*uk_106 + 569250*uk_107 + 116380*uk_108 + 912673*uk_109 + 4919743*uk_11 + 432814*uk_110 + 1166716*uk_111 + 555131*uk_112 + 2117025*uk_113 + 432814*uk_114 + 205252*uk_115 + 553288*uk_116 + 263258*uk_117 + 1003950*uk_118 + 205252*uk_119 + 2333074*uk_12 + 1491472*uk_120 + 709652*uk_121 + 2706300*uk_122 + 553288*uk_123 + 337657*uk_124 + 1287675*uk_125 + 263258*uk_126 + 4910625*uk_127 + 1003950*uk_128 + 205252*uk_129 + 6289156*uk_13 + 97336*uk_130 + 262384*uk_131 + 124844*uk_132 + 476100*uk_133 + 97336*uk_134 + 707296*uk_135 + 336536*uk_136 + 1283400*uk_137 + 262384*uk_138 + 160126*uk_139 + 2992421*uk_14 + 610650*uk_140 + 124844*uk_141 + 2328750*uk_142 + 476100*uk_143 + 97336*uk_144 + 1906624*uk_145 + 907184*uk_146 + 3459600*uk_147 + 707296*uk_148 + 431644*uk_149 + 11411775*uk_15 + 1646100*uk_150 + 336536*uk_151 + 6277500*uk_152 + 1283400*uk_153 + 262384*uk_154 + 205379*uk_155 + 783225*uk_156 + 160126*uk_157 + 2986875*uk_158 + 610650*uk_159 + 2333074*uk_16 + 124844*uk_160 + 11390625*uk_161 + 2328750*uk_162 + 476100*uk_163 + 97336*uk_164 + 3025*uk_17 + 5335*uk_18 + 2530*uk_19 + 55*uk_2 + 6820*uk_20 + 3245*uk_21 + 12375*uk_22 + 2530*uk_23 + 9409*uk_24 + 4462*uk_25 + 12028*uk_26 + 5723*uk_27 + 21825*uk_28 + 4462*uk_29 + 97*uk_3 + 2116*uk_30 + 5704*uk_31 + 2714*uk_32 + 10350*uk_33 + 2116*uk_34 + 15376*uk_35 + 7316*uk_36 + 27900*uk_37 + 5704*uk_38 + 3481*uk_39 + 46*uk_4 + 13275*uk_40 + 2714*uk_41 + 50625*uk_42 + 10350*uk_43 + 2116*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 249524445217*uk_47 + 118331180206*uk_48 + 318979703164*uk_49 + 124*uk_5 + 151772600699*uk_50 + 578793816225*uk_51 + 118331180206*uk_52 + 153424975*uk_53 + 270585865*uk_54 + 128319070*uk_55 + 345903580*uk_56 + 164583155*uk_57 + 627647625*uk_58 + 128319070*uk_59 + 59*uk_6 + 477215071*uk_60 + 226308178*uk_61 + 610048132*uk_62 + 290264837*uk_63 + 1106942175*uk_64 + 226308178*uk_65 + 107321404*uk_66 + 289301176*uk_67 + 137651366*uk_68 + 524941650*uk_69 + 225*uk_7 + 107321404*uk_70 + 779855344*uk_71 + 371060204*uk_72 + 1415060100*uk_73 + 289301176*uk_74 + 176552839*uk_75 + 673294725*uk_76 + 137651366*uk_77 + 2567649375*uk_78 + 524941650*uk_79 + 46*uk_8 + 107321404*uk_80 + 166375*uk_81 + 293425*uk_82 + 139150*uk_83 + 375100*uk_84 + 178475*uk_85 + 680625*uk_86 + 139150*uk_87 + 517495*uk_88 + 245410*uk_89 + 2572416961*uk_9 + 661540*uk_90 + 314765*uk_91 + 1200375*uk_92 + 245410*uk_93 + 116380*uk_94 + 313720*uk_95 + 149270*uk_96 + 569250*uk_97 + 116380*uk_98 + 845680*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 389180*uk_100 + 1435500*uk_101 + 618860*uk_102 + 204655*uk_103 + 754875*uk_104 + 325435*uk_105 + 2784375*uk_106 + 1200375*uk_107 + 517495*uk_108 + 3375000*uk_109 + 7607850*uk_11 + 2182500*uk_110 + 2610000*uk_111 + 1372500*uk_112 + 5062500*uk_113 + 2182500*uk_114 + 1411350*uk_115 + 1687800*uk_116 + 887550*uk_117 + 3273750*uk_118 + 1411350*uk_119 + 4919743*uk_12 + 2018400*uk_120 + 1061400*uk_121 + 3915000*uk_122 + 1687800*uk_123 + 558150*uk_124 + 2058750*uk_125 + 887550*uk_126 + 7593750*uk_127 + 3273750*uk_128 + 1411350*uk_129 + 5883404*uk_13 + 912673*uk_130 + 1091444*uk_131 + 573949*uk_132 + 2117025*uk_133 + 912673*uk_134 + 1305232*uk_135 + 686372*uk_136 + 2531700*uk_137 + 1091444*uk_138 + 360937*uk_139 + 3093859*uk_14 + 1331325*uk_140 + 573949*uk_141 + 4910625*uk_142 + 2117025*uk_143 + 912673*uk_144 + 1560896*uk_145 + 820816*uk_146 + 3027600*uk_147 + 1305232*uk_148 + 431636*uk_149 + 11411775*uk_15 + 1592100*uk_150 + 686372*uk_151 + 5872500*uk_152 + 2531700*uk_153 + 1091444*uk_154 + 226981*uk_155 + 837225*uk_156 + 360937*uk_157 + 3088125*uk_158 + 1331325*uk_159 + 4919743*uk_16 + 573949*uk_160 + 11390625*uk_161 + 4910625*uk_162 + 2117025*uk_163 + 912673*uk_164 + 3025*uk_17 + 8250*uk_18 + 5335*uk_19 + 55*uk_2 + 6380*uk_20 + 3355*uk_21 + 12375*uk_22 + 5335*uk_23 + 22500*uk_24 + 14550*uk_25 + 17400*uk_26 + 9150*uk_27 + 33750*uk_28 + 14550*uk_29 + 150*uk_3 + 9409*uk_30 + 11252*uk_31 + 5917*uk_32 + 21825*uk_33 + 9409*uk_34 + 13456*uk_35 + 7076*uk_36 + 26100*uk_37 + 11252*uk_38 + 3721*uk_39 + 97*uk_4 + 13725*uk_40 + 5917*uk_41 + 50625*uk_42 + 21825*uk_43 + 9409*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 385862544150*uk_47 + 249524445217*uk_48 + 298400367476*uk_49 + 116*uk_5 + 156917434621*uk_50 + 578793816225*uk_51 + 249524445217*uk_52 + 153424975*uk_53 + 418431750*uk_54 + 270585865*uk_55 + 323587220*uk_56 + 170162245*uk_57 + 627647625*uk_58 + 270585865*uk_59 + 61*uk_6 + 1141177500*uk_60 + 737961450*uk_61 + 882510600*uk_62 + 464078850*uk_63 + 1711766250*uk_64 + 737961450*uk_65 + 477215071*uk_66 + 570690188*uk_67 + 300104323*uk_68 + 1106942175*uk_69 + 225*uk_7 + 477215071*uk_70 + 682474864*uk_71 + 358887644*uk_72 + 1323765900*uk_73 + 570690188*uk_74 + 188725399*uk_75 + 696118275*uk_76 + 300104323*uk_77 + 2567649375*uk_78 + 1106942175*uk_79 + 97*uk_8 + 477215071*uk_80 + 166375*uk_81 + 453750*uk_82 + 293425*uk_83 + 350900*uk_84 + 184525*uk_85 + 680625*uk_86 + 293425*uk_87 + 1237500*uk_88 + 800250*uk_89 + 2572416961*uk_9 + 957000*uk_90 + 503250*uk_91 + 1856250*uk_92 + 800250*uk_93 + 517495*uk_94 + 618860*uk_95 + 325435*uk_96 + 1200375*uk_97 + 517495*uk_98 + 740080*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 374220*uk_100 + 1336500*uk_101 + 891000*uk_102 + 218295*uk_103 + 779625*uk_104 + 519750*uk_105 + 2784375*uk_106 + 1856250*uk_107 + 1237500*uk_108 + 7189057*uk_109 + 9788767*uk_11 + 5587350*uk_110 + 4022892*uk_111 + 2346687*uk_112 + 8381025*uk_113 + 5587350*uk_114 + 4342500*uk_115 + 3126600*uk_116 + 1823850*uk_117 + 6513750*uk_118 + 4342500*uk_119 + 7607850*uk_12 + 2251152*uk_120 + 1313172*uk_121 + 4689900*uk_122 + 3126600*uk_123 + 766017*uk_124 + 2735775*uk_125 + 1823850*uk_126 + 9770625*uk_127 + 6513750*uk_128 + 4342500*uk_129 + 5477652*uk_13 + 3375000*uk_130 + 2430000*uk_131 + 1417500*uk_132 + 5062500*uk_133 + 3375000*uk_134 + 1749600*uk_135 + 1020600*uk_136 + 3645000*uk_137 + 2430000*uk_138 + 595350*uk_139 + 3195297*uk_14 + 2126250*uk_140 + 1417500*uk_141 + 7593750*uk_142 + 5062500*uk_143 + 3375000*uk_144 + 1259712*uk_145 + 734832*uk_146 + 2624400*uk_147 + 1749600*uk_148 + 428652*uk_149 + 11411775*uk_15 + 1530900*uk_150 + 1020600*uk_151 + 5467500*uk_152 + 3645000*uk_153 + 2430000*uk_154 + 250047*uk_155 + 893025*uk_156 + 595350*uk_157 + 3189375*uk_158 + 2126250*uk_159 + 7607850*uk_16 + 1417500*uk_160 + 11390625*uk_161 + 7593750*uk_162 + 5062500*uk_163 + 3375000*uk_164 + 3025*uk_17 + 10615*uk_18 + 8250*uk_19 + 55*uk_2 + 5940*uk_20 + 3465*uk_21 + 12375*uk_22 + 8250*uk_23 + 37249*uk_24 + 28950*uk_25 + 20844*uk_26 + 12159*uk_27 + 43425*uk_28 + 28950*uk_29 + 193*uk_3 + 22500*uk_30 + 16200*uk_31 + 9450*uk_32 + 33750*uk_33 + 22500*uk_34 + 11664*uk_35 + 6804*uk_36 + 24300*uk_37 + 16200*uk_38 + 3969*uk_39 + 150*uk_4 + 14175*uk_40 + 9450*uk_41 + 50625*uk_42 + 33750*uk_43 + 22500*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 496476473473*uk_47 + 385862544150*uk_48 + 277821031788*uk_49 + 108*uk_5 + 162062268543*uk_50 + 578793816225*uk_51 + 385862544150*uk_52 + 153424975*uk_53 + 538382185*uk_54 + 418431750*uk_55 + 301270860*uk_56 + 175741335*uk_57 + 627647625*uk_58 + 418431750*uk_59 + 63*uk_6 + 1889232031*uk_60 + 1468315050*uk_61 + 1057186836*uk_62 + 616692321*uk_63 + 2202472575*uk_64 + 1468315050*uk_65 + 1141177500*uk_66 + 821647800*uk_67 + 479294550*uk_68 + 1711766250*uk_69 + 225*uk_7 + 1141177500*uk_70 + 591586416*uk_71 + 345092076*uk_72 + 1232471700*uk_73 + 821647800*uk_74 + 201303711*uk_75 + 718941825*uk_76 + 479294550*uk_77 + 2567649375*uk_78 + 1711766250*uk_79 + 150*uk_8 + 1141177500*uk_80 + 166375*uk_81 + 583825*uk_82 + 453750*uk_83 + 326700*uk_84 + 190575*uk_85 + 680625*uk_86 + 453750*uk_87 + 2048695*uk_88 + 1592250*uk_89 + 2572416961*uk_9 + 1146420*uk_90 + 668745*uk_91 + 2388375*uk_92 + 1592250*uk_93 + 1237500*uk_94 + 891000*uk_95 + 519750*uk_96 + 1856250*uk_97 + 1237500*uk_98 + 641520*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 357500*uk_100 + 1237500*uk_101 + 1061500*uk_102 + 232375*uk_103 + 804375*uk_104 + 689975*uk_105 + 2784375*uk_106 + 2388375*uk_107 + 2048695*uk_108 + 9800344*uk_109 + 10853866*uk_11 + 8838628*uk_110 + 4579600*uk_111 + 2976740*uk_112 + 10304100*uk_113 + 8838628*uk_114 + 7971286*uk_115 + 4130200*uk_116 + 2684630*uk_117 + 9292950*uk_118 + 7971286*uk_119 + 9788767*uk_12 + 2140000*uk_120 + 1391000*uk_121 + 4815000*uk_122 + 4130200*uk_123 + 904150*uk_124 + 3129750*uk_125 + 2684630*uk_126 + 10833750*uk_127 + 9292950*uk_128 + 7971286*uk_129 + 5071900*uk_13 + 7189057*uk_130 + 3724900*uk_131 + 2421185*uk_132 + 8381025*uk_133 + 7189057*uk_134 + 1930000*uk_135 + 1254500*uk_136 + 4342500*uk_137 + 3724900*uk_138 + 815425*uk_139 + 3296735*uk_14 + 2822625*uk_140 + 2421185*uk_141 + 9770625*uk_142 + 8381025*uk_143 + 7189057*uk_144 + 1000000*uk_145 + 650000*uk_146 + 2250000*uk_147 + 1930000*uk_148 + 422500*uk_149 + 11411775*uk_15 + 1462500*uk_150 + 1254500*uk_151 + 5062500*uk_152 + 4342500*uk_153 + 3724900*uk_154 + 274625*uk_155 + 950625*uk_156 + 815425*uk_157 + 3290625*uk_158 + 2822625*uk_159 + 9788767*uk_16 + 2421185*uk_160 + 11390625*uk_161 + 9770625*uk_162 + 8381025*uk_163 + 7189057*uk_164 + 3025*uk_17 + 11770*uk_18 + 10615*uk_19 + 55*uk_2 + 5500*uk_20 + 3575*uk_21 + 12375*uk_22 + 10615*uk_23 + 45796*uk_24 + 41302*uk_25 + 21400*uk_26 + 13910*uk_27 + 48150*uk_28 + 41302*uk_29 + 214*uk_3 + 37249*uk_30 + 19300*uk_31 + 12545*uk_32 + 43425*uk_33 + 37249*uk_34 + 10000*uk_35 + 6500*uk_36 + 22500*uk_37 + 19300*uk_38 + 4225*uk_39 + 193*uk_4 + 14625*uk_40 + 12545*uk_41 + 50625*uk_42 + 43425*uk_43 + 37249*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 550497229654*uk_47 + 496476473473*uk_48 + 257241696100*uk_49 + 100*uk_5 + 167207102465*uk_50 + 578793816225*uk_51 + 496476473473*uk_52 + 153424975*uk_53 + 596962630*uk_54 + 538382185*uk_55 + 278954500*uk_56 + 181320425*uk_57 + 627647625*uk_58 + 538382185*uk_59 + 65*uk_6 + 2322727324*uk_60 + 2094796138*uk_61 + 1085386600*uk_62 + 705501290*uk_63 + 2442119850*uk_64 + 2094796138*uk_65 + 1889232031*uk_66 + 978876700*uk_67 + 636269855*uk_68 + 2202472575*uk_69 + 225*uk_7 + 1889232031*uk_70 + 507190000*uk_71 + 329673500*uk_72 + 1141177500*uk_73 + 978876700*uk_74 + 214287775*uk_75 + 741765375*uk_76 + 636269855*uk_77 + 2567649375*uk_78 + 2202472575*uk_79 + 193*uk_8 + 1889232031*uk_80 + 166375*uk_81 + 647350*uk_82 + 583825*uk_83 + 302500*uk_84 + 196625*uk_85 + 680625*uk_86 + 583825*uk_87 + 2518780*uk_88 + 2271610*uk_89 + 2572416961*uk_9 + 1177000*uk_90 + 765050*uk_91 + 2648250*uk_92 + 2271610*uk_93 + 2048695*uk_94 + 1061500*uk_95 + 689975*uk_96 + 2388375*uk_97 + 2048695*uk_98 + 550000*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 339020*uk_100 + 1138500*uk_101 + 1082840*uk_102 + 246895*uk_103 + 829125*uk_104 + 788590*uk_105 + 2784375*uk_106 + 2648250*uk_107 + 2518780*uk_108 + 8120601*uk_109 + 10194519*uk_11 + 8645814*uk_110 + 3716892*uk_111 + 2706867*uk_112 + 9090225*uk_113 + 8645814*uk_114 + 9204996*uk_115 + 3957288*uk_116 + 2881938*uk_117 + 9678150*uk_118 + 9204996*uk_119 + 10853866*uk_12 + 1701264*uk_120 + 1238964*uk_121 + 4160700*uk_122 + 3957288*uk_123 + 902289*uk_124 + 3030075*uk_125 + 2881938*uk_126 + 10175625*uk_127 + 9678150*uk_128 + 9204996*uk_129 + 4666148*uk_13 + 9800344*uk_130 + 4213232*uk_131 + 3068332*uk_132 + 10304100*uk_133 + 9800344*uk_134 + 1811296*uk_135 + 1319096*uk_136 + 4429800*uk_137 + 4213232*uk_138 + 960646*uk_139 + 3398173*uk_14 + 3226050*uk_140 + 3068332*uk_141 + 10833750*uk_142 + 10304100*uk_143 + 9800344*uk_144 + 778688*uk_145 + 567088*uk_146 + 1904400*uk_147 + 1811296*uk_148 + 412988*uk_149 + 11411775*uk_15 + 1386900*uk_150 + 1319096*uk_151 + 4657500*uk_152 + 4429800*uk_153 + 4213232*uk_154 + 300763*uk_155 + 1010025*uk_156 + 960646*uk_157 + 3391875*uk_158 + 3226050*uk_159 + 10853866*uk_16 + 3068332*uk_160 + 11390625*uk_161 + 10833750*uk_162 + 10304100*uk_163 + 9800344*uk_164 + 3025*uk_17 + 11055*uk_18 + 11770*uk_19 + 55*uk_2 + 5060*uk_20 + 3685*uk_21 + 12375*uk_22 + 11770*uk_23 + 40401*uk_24 + 43014*uk_25 + 18492*uk_26 + 13467*uk_27 + 45225*uk_28 + 43014*uk_29 + 201*uk_3 + 45796*uk_30 + 19688*uk_31 + 14338*uk_32 + 48150*uk_33 + 45796*uk_34 + 8464*uk_35 + 6164*uk_36 + 20700*uk_37 + 19688*uk_38 + 4489*uk_39 + 214*uk_4 + 15075*uk_40 + 14338*uk_41 + 50625*uk_42 + 48150*uk_43 + 45796*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 517055809161*uk_47 + 550497229654*uk_48 + 236662360412*uk_49 + 92*uk_5 + 172351936387*uk_50 + 578793816225*uk_51 + 550497229654*uk_52 + 153424975*uk_53 + 560698545*uk_54 + 596962630*uk_55 + 256638140*uk_56 + 186899515*uk_57 + 627647625*uk_58 + 596962630*uk_59 + 67*uk_6 + 2049098319*uk_60 + 2181627066*uk_61 + 937895748*uk_62 + 683032773*uk_63 + 2293766775*uk_64 + 2181627066*uk_65 + 2322727324*uk_66 + 998555672*uk_67 + 727209022*uk_68 + 2442119850*uk_69 + 225*uk_7 + 2322727324*uk_70 + 429285616*uk_71 + 312631916*uk_72 + 1049883300*uk_73 + 998555672*uk_74 + 227677591*uk_75 + 764588925*uk_76 + 727209022*uk_77 + 2567649375*uk_78 + 2442119850*uk_79 + 214*uk_8 + 2322727324*uk_80 + 166375*uk_81 + 608025*uk_82 + 647350*uk_83 + 278300*uk_84 + 202675*uk_85 + 680625*uk_86 + 647350*uk_87 + 2222055*uk_88 + 2365770*uk_89 + 2572416961*uk_9 + 1017060*uk_90 + 740685*uk_91 + 2487375*uk_92 + 2365770*uk_93 + 2518780*uk_94 + 1082840*uk_95 + 788590*uk_96 + 2648250*uk_97 + 2518780*uk_98 + 465520*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 318780*uk_100 + 1039500*uk_101 + 928620*uk_102 + 261855*uk_103 + 853875*uk_104 + 762795*uk_105 + 2784375*uk_106 + 2487375*uk_107 + 2222055*uk_108 + 2863288*uk_109 + 7202098*uk_11 + 4052964*uk_110 + 1693776*uk_111 + 1391316*uk_112 + 4536900*uk_113 + 4052964*uk_114 + 5736942*uk_115 + 2397528*uk_116 + 1969398*uk_117 + 6421950*uk_118 + 5736942*uk_119 + 10194519*uk_12 + 1001952*uk_120 + 823032*uk_121 + 2683800*uk_122 + 2397528*uk_123 + 676062*uk_124 + 2204550*uk_125 + 1969398*uk_126 + 7188750*uk_127 + 6421950*uk_128 + 5736942*uk_129 + 4260396*uk_13 + 8120601*uk_130 + 3393684*uk_131 + 2787669*uk_132 + 9090225*uk_133 + 8120601*uk_134 + 1418256*uk_135 + 1164996*uk_136 + 3798900*uk_137 + 3393684*uk_138 + 956961*uk_139 + 3499611*uk_14 + 3120525*uk_140 + 2787669*uk_141 + 10175625*uk_142 + 9090225*uk_143 + 8120601*uk_144 + 592704*uk_145 + 486864*uk_146 + 1587600*uk_147 + 1418256*uk_148 + 399924*uk_149 + 11411775*uk_15 + 1304100*uk_150 + 1164996*uk_151 + 4252500*uk_152 + 3798900*uk_153 + 3393684*uk_154 + 328509*uk_155 + 1071225*uk_156 + 956961*uk_157 + 3493125*uk_158 + 3120525*uk_159 + 10194519*uk_16 + 2787669*uk_160 + 11390625*uk_161 + 10175625*uk_162 + 9090225*uk_163 + 8120601*uk_164 + 3025*uk_17 + 7810*uk_18 + 11055*uk_19 + 55*uk_2 + 4620*uk_20 + 3795*uk_21 + 12375*uk_22 + 11055*uk_23 + 20164*uk_24 + 28542*uk_25 + 11928*uk_26 + 9798*uk_27 + 31950*uk_28 + 28542*uk_29 + 142*uk_3 + 40401*uk_30 + 16884*uk_31 + 13869*uk_32 + 45225*uk_33 + 40401*uk_34 + 7056*uk_35 + 5796*uk_36 + 18900*uk_37 + 16884*uk_38 + 4761*uk_39 + 201*uk_4 + 15525*uk_40 + 13869*uk_41 + 50625*uk_42 + 45225*uk_43 + 40401*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 365283208462*uk_47 + 517055809161*uk_48 + 216083024724*uk_49 + 84*uk_5 + 177496770309*uk_50 + 578793816225*uk_51 + 517055809161*uk_52 + 153424975*uk_53 + 396115390*uk_54 + 560698545*uk_55 + 234321780*uk_56 + 192478605*uk_57 + 627647625*uk_58 + 560698545*uk_59 + 69*uk_6 + 1022697916*uk_60 + 1447621698*uk_61 + 604976232*uk_62 + 496944762*uk_63 + 1620472050*uk_64 + 1447621698*uk_65 + 2049098319*uk_66 + 856339596*uk_67 + 703421811*uk_68 + 2293766775*uk_69 + 225*uk_7 + 2049098319*uk_70 + 357873264*uk_71 + 293967324*uk_72 + 958589100*uk_73 + 856339596*uk_74 + 241473159*uk_75 + 787412475*uk_76 + 703421811*uk_77 + 2567649375*uk_78 + 2293766775*uk_79 + 201*uk_8 + 2049098319*uk_80 + 166375*uk_81 + 429550*uk_82 + 608025*uk_83 + 254100*uk_84 + 208725*uk_85 + 680625*uk_86 + 608025*uk_87 + 1109020*uk_88 + 1569810*uk_89 + 2572416961*uk_9 + 656040*uk_90 + 538890*uk_91 + 1757250*uk_92 + 1569810*uk_93 + 2222055*uk_94 + 928620*uk_95 + 762795*uk_96 + 2487375*uk_97 + 2222055*uk_98 + 388080*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 296780*uk_100 + 940500*uk_101 + 593560*uk_102 + 277255*uk_103 + 878625*uk_104 + 554510*uk_105 + 2784375*uk_106 + 1757250*uk_107 + 1109020*uk_108 + 15625*uk_109 + 1267975*uk_11 + 88750*uk_110 + 47500*uk_111 + 44375*uk_112 + 140625*uk_113 + 88750*uk_114 + 504100*uk_115 + 269800*uk_116 + 252050*uk_117 + 798750*uk_118 + 504100*uk_119 + 7202098*uk_12 + 144400*uk_120 + 134900*uk_121 + 427500*uk_122 + 269800*uk_123 + 126025*uk_124 + 399375*uk_125 + 252050*uk_126 + 1265625*uk_127 + 798750*uk_128 + 504100*uk_129 + 3854644*uk_13 + 2863288*uk_130 + 1532464*uk_131 + 1431644*uk_132 + 4536900*uk_133 + 2863288*uk_134 + 820192*uk_135 + 766232*uk_136 + 2428200*uk_137 + 1532464*uk_138 + 715822*uk_139 + 3601049*uk_14 + 2268450*uk_140 + 1431644*uk_141 + 7188750*uk_142 + 4536900*uk_143 + 2863288*uk_144 + 438976*uk_145 + 410096*uk_146 + 1299600*uk_147 + 820192*uk_148 + 383116*uk_149 + 11411775*uk_15 + 1214100*uk_150 + 766232*uk_151 + 3847500*uk_152 + 2428200*uk_153 + 1532464*uk_154 + 357911*uk_155 + 1134225*uk_156 + 715822*uk_157 + 3594375*uk_158 + 2268450*uk_159 + 7202098*uk_16 + 1431644*uk_160 + 11390625*uk_161 + 7188750*uk_162 + 4536900*uk_163 + 2863288*uk_164 + 3025*uk_17 + 1375*uk_18 + 7810*uk_19 + 55*uk_2 + 4180*uk_20 + 3905*uk_21 + 12375*uk_22 + 7810*uk_23 + 625*uk_24 + 3550*uk_25 + 1900*uk_26 + 1775*uk_27 + 5625*uk_28 + 3550*uk_29 + 25*uk_3 + 20164*uk_30 + 10792*uk_31 + 10082*uk_32 + 31950*uk_33 + 20164*uk_34 + 5776*uk_35 + 5396*uk_36 + 17100*uk_37 + 10792*uk_38 + 5041*uk_39 + 142*uk_4 + 15975*uk_40 + 10082*uk_41 + 50625*uk_42 + 31950*uk_43 + 20164*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 64310424025*uk_47 + 365283208462*uk_48 + 195503689036*uk_49 + 76*uk_5 + 182641604231*uk_50 + 578793816225*uk_51 + 365283208462*uk_52 + 153424975*uk_53 + 69738625*uk_54 + 396115390*uk_55 + 212005420*uk_56 + 198057695*uk_57 + 627647625*uk_58 + 396115390*uk_59 + 71*uk_6 + 31699375*uk_60 + 180052450*uk_61 + 96366100*uk_62 + 90026225*uk_63 + 285294375*uk_64 + 180052450*uk_65 + 1022697916*uk_66 + 547359448*uk_67 + 511348958*uk_68 + 1620472050*uk_69 + 225*uk_7 + 1022697916*uk_70 + 292952944*uk_71 + 273679724*uk_72 + 867294900*uk_73 + 547359448*uk_74 + 255674479*uk_75 + 810236025*uk_76 + 511348958*uk_77 + 2567649375*uk_78 + 1620472050*uk_79 + 142*uk_8 + 1022697916*uk_80 + 166375*uk_81 + 75625*uk_82 + 429550*uk_83 + 229900*uk_84 + 214775*uk_85 + 680625*uk_86 + 429550*uk_87 + 34375*uk_88 + 195250*uk_89 + 2572416961*uk_9 + 104500*uk_90 + 97625*uk_91 + 309375*uk_92 + 195250*uk_93 + 1109020*uk_94 + 593560*uk_95 + 554510*uk_96 + 1757250*uk_97 + 1109020*uk_98 + 317680*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 321200*uk_100 + 990000*uk_101 + 110000*uk_102 + 293095*uk_103 + 903375*uk_104 + 100375*uk_105 + 2784375*uk_106 + 309375*uk_107 + 34375*uk_108 + 185193*uk_109 + 2890983*uk_11 + 81225*uk_110 + 259920*uk_111 + 237177*uk_112 + 731025*uk_113 + 81225*uk_114 + 35625*uk_115 + 114000*uk_116 + 104025*uk_117 + 320625*uk_118 + 35625*uk_119 + 1267975*uk_12 + 364800*uk_120 + 332880*uk_121 + 1026000*uk_122 + 114000*uk_123 + 303753*uk_124 + 936225*uk_125 + 104025*uk_126 + 2885625*uk_127 + 320625*uk_128 + 35625*uk_129 + 4057520*uk_13 + 15625*uk_130 + 50000*uk_131 + 45625*uk_132 + 140625*uk_133 + 15625*uk_134 + 160000*uk_135 + 146000*uk_136 + 450000*uk_137 + 50000*uk_138 + 133225*uk_139 + 3702487*uk_14 + 410625*uk_140 + 45625*uk_141 + 1265625*uk_142 + 140625*uk_143 + 15625*uk_144 + 512000*uk_145 + 467200*uk_146 + 1440000*uk_147 + 160000*uk_148 + 426320*uk_149 + 11411775*uk_15 + 1314000*uk_150 + 146000*uk_151 + 4050000*uk_152 + 450000*uk_153 + 50000*uk_154 + 389017*uk_155 + 1199025*uk_156 + 133225*uk_157 + 3695625*uk_158 + 410625*uk_159 + 1267975*uk_16 + 45625*uk_160 + 11390625*uk_161 + 1265625*uk_162 + 140625*uk_163 + 15625*uk_164 + 3025*uk_17 + 3135*uk_18 + 1375*uk_19 + 55*uk_2 + 4400*uk_20 + 4015*uk_21 + 12375*uk_22 + 1375*uk_23 + 3249*uk_24 + 1425*uk_25 + 4560*uk_26 + 4161*uk_27 + 12825*uk_28 + 1425*uk_29 + 57*uk_3 + 625*uk_30 + 2000*uk_31 + 1825*uk_32 + 5625*uk_33 + 625*uk_34 + 6400*uk_35 + 5840*uk_36 + 18000*uk_37 + 2000*uk_38 + 5329*uk_39 + 25*uk_4 + 16425*uk_40 + 1825*uk_41 + 50625*uk_42 + 5625*uk_43 + 625*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 146627766777*uk_47 + 64310424025*uk_48 + 205793356880*uk_49 + 80*uk_5 + 187786438153*uk_50 + 578793816225*uk_51 + 64310424025*uk_52 + 153424975*uk_53 + 159004065*uk_54 + 69738625*uk_55 + 223163600*uk_56 + 203636785*uk_57 + 627647625*uk_58 + 69738625*uk_59 + 73*uk_6 + 164786031*uk_60 + 72274575*uk_61 + 231278640*uk_62 + 211041759*uk_63 + 650471175*uk_64 + 72274575*uk_65 + 31699375*uk_66 + 101438000*uk_67 + 92562175*uk_68 + 285294375*uk_69 + 225*uk_7 + 31699375*uk_70 + 324601600*uk_71 + 296198960*uk_72 + 912942000*uk_73 + 101438000*uk_74 + 270281551*uk_75 + 833059575*uk_76 + 92562175*uk_77 + 2567649375*uk_78 + 285294375*uk_79 + 25*uk_8 + 31699375*uk_80 + 166375*uk_81 + 172425*uk_82 + 75625*uk_83 + 242000*uk_84 + 220825*uk_85 + 680625*uk_86 + 75625*uk_87 + 178695*uk_88 + 78375*uk_89 + 2572416961*uk_9 + 250800*uk_90 + 228855*uk_91 + 705375*uk_92 + 78375*uk_93 + 34375*uk_94 + 110000*uk_95 + 100375*uk_96 + 309375*uk_97 + 34375*uk_98 + 352000*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 297000*uk_100 + 891000*uk_101 + 225720*uk_102 + 309375*uk_103 + 928125*uk_104 + 235125*uk_105 + 2784375*uk_106 + 705375*uk_107 + 178695*uk_108 + 6859*uk_109 + 963661*uk_11 + 20577*uk_110 + 25992*uk_111 + 27075*uk_112 + 81225*uk_113 + 20577*uk_114 + 61731*uk_115 + 77976*uk_116 + 81225*uk_117 + 243675*uk_118 + 61731*uk_119 + 2890983*uk_12 + 98496*uk_120 + 102600*uk_121 + 307800*uk_122 + 77976*uk_123 + 106875*uk_124 + 320625*uk_125 + 81225*uk_126 + 961875*uk_127 + 243675*uk_128 + 61731*uk_129 + 3651768*uk_13 + 185193*uk_130 + 233928*uk_131 + 243675*uk_132 + 731025*uk_133 + 185193*uk_134 + 295488*uk_135 + 307800*uk_136 + 923400*uk_137 + 233928*uk_138 + 320625*uk_139 + 3803925*uk_14 + 961875*uk_140 + 243675*uk_141 + 2885625*uk_142 + 731025*uk_143 + 185193*uk_144 + 373248*uk_145 + 388800*uk_146 + 1166400*uk_147 + 295488*uk_148 + 405000*uk_149 + 11411775*uk_15 + 1215000*uk_150 + 307800*uk_151 + 3645000*uk_152 + 923400*uk_153 + 233928*uk_154 + 421875*uk_155 + 1265625*uk_156 + 320625*uk_157 + 3796875*uk_158 + 961875*uk_159 + 2890983*uk_16 + 243675*uk_160 + 11390625*uk_161 + 2885625*uk_162 + 731025*uk_163 + 185193*uk_164 + 3025*uk_17 + 1045*uk_18 + 3135*uk_19 + 55*uk_2 + 3960*uk_20 + 4125*uk_21 + 12375*uk_22 + 3135*uk_23 + 361*uk_24 + 1083*uk_25 + 1368*uk_26 + 1425*uk_27 + 4275*uk_28 + 1083*uk_29 + 19*uk_3 + 3249*uk_30 + 4104*uk_31 + 4275*uk_32 + 12825*uk_33 + 3249*uk_34 + 5184*uk_35 + 5400*uk_36 + 16200*uk_37 + 4104*uk_38 + 5625*uk_39 + 57*uk_4 + 16875*uk_40 + 4275*uk_41 + 50625*uk_42 + 12825*uk_43 + 3249*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 48875922259*uk_47 + 146627766777*uk_48 + 185214021192*uk_49 + 72*uk_5 + 192931272075*uk_50 + 578793816225*uk_51 + 146627766777*uk_52 + 153424975*uk_53 + 53001355*uk_54 + 159004065*uk_55 + 200847240*uk_56 + 209215875*uk_57 + 627647625*uk_58 + 159004065*uk_59 + 75*uk_6 + 18309559*uk_60 + 54928677*uk_61 + 69383592*uk_62 + 72274575*uk_63 + 216823725*uk_64 + 54928677*uk_65 + 164786031*uk_66 + 208150776*uk_67 + 216823725*uk_68 + 650471175*uk_69 + 225*uk_7 + 164786031*uk_70 + 262927296*uk_71 + 273882600*uk_72 + 821647800*uk_73 + 208150776*uk_74 + 285294375*uk_75 + 855883125*uk_76 + 216823725*uk_77 + 2567649375*uk_78 + 650471175*uk_79 + 57*uk_8 + 164786031*uk_80 + 166375*uk_81 + 57475*uk_82 + 172425*uk_83 + 217800*uk_84 + 226875*uk_85 + 680625*uk_86 + 172425*uk_87 + 19855*uk_88 + 59565*uk_89 + 2572416961*uk_9 + 75240*uk_90 + 78375*uk_91 + 235125*uk_92 + 59565*uk_93 + 178695*uk_94 + 225720*uk_95 + 235125*uk_96 + 705375*uk_97 + 178695*uk_98 + 285120*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 304920*uk_100 + 891000*uk_101 + 75240*uk_102 + 326095*uk_103 + 952875*uk_104 + 80465*uk_105 + 2784375*uk_106 + 235125*uk_107 + 19855*uk_108 + 148877*uk_109 + 2688107*uk_11 + 53371*uk_110 + 202248*uk_111 + 216293*uk_112 + 632025*uk_113 + 53371*uk_114 + 19133*uk_115 + 72504*uk_116 + 77539*uk_117 + 226575*uk_118 + 19133*uk_119 + 963661*uk_12 + 274752*uk_120 + 293832*uk_121 + 858600*uk_122 + 72504*uk_123 + 314237*uk_124 + 918225*uk_125 + 77539*uk_126 + 2683125*uk_127 + 226575*uk_128 + 19133*uk_129 + 3651768*uk_13 + 6859*uk_130 + 25992*uk_131 + 27797*uk_132 + 81225*uk_133 + 6859*uk_134 + 98496*uk_135 + 105336*uk_136 + 307800*uk_137 + 25992*uk_138 + 112651*uk_139 + 3905363*uk_14 + 329175*uk_140 + 27797*uk_141 + 961875*uk_142 + 81225*uk_143 + 6859*uk_144 + 373248*uk_145 + 399168*uk_146 + 1166400*uk_147 + 98496*uk_148 + 426888*uk_149 + 11411775*uk_15 + 1247400*uk_150 + 105336*uk_151 + 3645000*uk_152 + 307800*uk_153 + 25992*uk_154 + 456533*uk_155 + 1334025*uk_156 + 112651*uk_157 + 3898125*uk_158 + 329175*uk_159 + 963661*uk_16 + 27797*uk_160 + 11390625*uk_161 + 961875*uk_162 + 81225*uk_163 + 6859*uk_164 + 3025*uk_17 + 2915*uk_18 + 1045*uk_19 + 55*uk_2 + 3960*uk_20 + 4235*uk_21 + 12375*uk_22 + 1045*uk_23 + 2809*uk_24 + 1007*uk_25 + 3816*uk_26 + 4081*uk_27 + 11925*uk_28 + 1007*uk_29 + 53*uk_3 + 361*uk_30 + 1368*uk_31 + 1463*uk_32 + 4275*uk_33 + 361*uk_34 + 5184*uk_35 + 5544*uk_36 + 16200*uk_37 + 1368*uk_38 + 5929*uk_39 + 19*uk_4 + 17325*uk_40 + 1463*uk_41 + 50625*uk_42 + 4275*uk_43 + 361*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 136338098933*uk_47 + 48875922259*uk_48 + 185214021192*uk_49 + 72*uk_5 + 198076105997*uk_50 + 578793816225*uk_51 + 48875922259*uk_52 + 153424975*uk_53 + 147845885*uk_54 + 53001355*uk_55 + 200847240*uk_56 + 214794965*uk_57 + 627647625*uk_58 + 53001355*uk_59 + 77*uk_6 + 142469671*uk_60 + 51074033*uk_61 + 193543704*uk_62 + 206984239*uk_63 + 604824075*uk_64 + 51074033*uk_65 + 18309559*uk_66 + 69383592*uk_67 + 74201897*uk_68 + 216823725*uk_69 + 225*uk_7 + 18309559*uk_70 + 262927296*uk_71 + 281186136*uk_72 + 821647800*uk_73 + 69383592*uk_74 + 300712951*uk_75 + 878706675*uk_76 + 74201897*uk_77 + 2567649375*uk_78 + 216823725*uk_79 + 19*uk_8 + 18309559*uk_80 + 166375*uk_81 + 160325*uk_82 + 57475*uk_83 + 217800*uk_84 + 232925*uk_85 + 680625*uk_86 + 57475*uk_87 + 154495*uk_88 + 55385*uk_89 + 2572416961*uk_9 + 209880*uk_90 + 224455*uk_91 + 655875*uk_92 + 55385*uk_93 + 19855*uk_94 + 75240*uk_95 + 80465*uk_96 + 235125*uk_97 + 19855*uk_98 + 285120*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 278080*uk_100 + 792000*uk_101 + 186560*uk_102 + 343255*uk_103 + 977625*uk_104 + 230285*uk_105 + 2784375*uk_106 + 655875*uk_107 + 154495*uk_108 + uk_109 + 50719*uk_11 + 53*uk_110 + 64*uk_111 + 79*uk_112 + 225*uk_113 + 53*uk_114 + 2809*uk_115 + 3392*uk_116 + 4187*uk_117 + 11925*uk_118 + 2809*uk_119 + 2688107*uk_12 + 4096*uk_120 + 5056*uk_121 + 14400*uk_122 + 3392*uk_123 + 6241*uk_124 + 17775*uk_125 + 4187*uk_126 + 50625*uk_127 + 11925*uk_128 + 2809*uk_129 + 3246016*uk_13 + 148877*uk_130 + 179776*uk_131 + 221911*uk_132 + 632025*uk_133 + 148877*uk_134 + 217088*uk_135 + 267968*uk_136 + 763200*uk_137 + 179776*uk_138 + 330773*uk_139 + 4006801*uk_14 + 942075*uk_140 + 221911*uk_141 + 2683125*uk_142 + 632025*uk_143 + 148877*uk_144 + 262144*uk_145 + 323584*uk_146 + 921600*uk_147 + 217088*uk_148 + 399424*uk_149 + 11411775*uk_15 + 1137600*uk_150 + 267968*uk_151 + 3240000*uk_152 + 763200*uk_153 + 179776*uk_154 + 493039*uk_155 + 1404225*uk_156 + 330773*uk_157 + 3999375*uk_158 + 942075*uk_159 + 2688107*uk_16 + 221911*uk_160 + 11390625*uk_161 + 2683125*uk_162 + 632025*uk_163 + 148877*uk_164 + 3025*uk_17 + 55*uk_18 + 2915*uk_19 + 55*uk_2 + 3520*uk_20 + 4345*uk_21 + 12375*uk_22 + 2915*uk_23 + uk_24 + 53*uk_25 + 64*uk_26 + 79*uk_27 + 225*uk_28 + 53*uk_29 + uk_3 + 2809*uk_30 + 3392*uk_31 + 4187*uk_32 + 11925*uk_33 + 2809*uk_34 + 4096*uk_35 + 5056*uk_36 + 14400*uk_37 + 3392*uk_38 + 6241*uk_39 + 53*uk_4 + 17775*uk_40 + 4187*uk_41 + 50625*uk_42 + 11925*uk_43 + 2809*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 2572416961*uk_47 + 136338098933*uk_48 + 164634685504*uk_49 + 64*uk_5 + 203220939919*uk_50 + 578793816225*uk_51 + 136338098933*uk_52 + 153424975*uk_53 + 2789545*uk_54 + 147845885*uk_55 + 178530880*uk_56 + 220374055*uk_57 + 627647625*uk_58 + 147845885*uk_59 + 79*uk_6 + 50719*uk_60 + 2688107*uk_61 + 3246016*uk_62 + 4006801*uk_63 + 11411775*uk_64 + 2688107*uk_65 + 142469671*uk_66 + 172038848*uk_67 + 212360453*uk_68 + 604824075*uk_69 + 225*uk_7 + 142469671*uk_70 + 207745024*uk_71 + 256435264*uk_72 + 730353600*uk_73 + 172038848*uk_74 + 316537279*uk_75 + 901530225*uk_76 + 212360453*uk_77 + 2567649375*uk_78 + 604824075*uk_79 + 53*uk_8 + 142469671*uk_80 + 166375*uk_81 + 3025*uk_82 + 160325*uk_83 + 193600*uk_84 + 238975*uk_85 + 680625*uk_86 + 160325*uk_87 + 55*uk_88 + 2915*uk_89 + 2572416961*uk_9 + 3520*uk_90 + 4345*uk_91 + 12375*uk_92 + 2915*uk_93 + 154495*uk_94 + 186560*uk_95 + 230285*uk_96 + 655875*uk_97 + 154495*uk_98 + 225280*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 285120*uk_100 + 792000*uk_101 + 3520*uk_102 + 360855*uk_103 + 1002375*uk_104 + 4455*uk_105 + 2784375*uk_106 + 12375*uk_107 + 55*uk_108 + 2197*uk_109 + 659347*uk_11 + 169*uk_110 + 10816*uk_111 + 13689*uk_112 + 38025*uk_113 + 169*uk_114 + 13*uk_115 + 832*uk_116 + 1053*uk_117 + 2925*uk_118 + 13*uk_119 + 50719*uk_12 + 53248*uk_120 + 67392*uk_121 + 187200*uk_122 + 832*uk_123 + 85293*uk_124 + 236925*uk_125 + 1053*uk_126 + 658125*uk_127 + 2925*uk_128 + 13*uk_129 + 3246016*uk_13 + uk_130 + 64*uk_131 + 81*uk_132 + 225*uk_133 + uk_134 + 4096*uk_135 + 5184*uk_136 + 14400*uk_137 + 64*uk_138 + 6561*uk_139 + 4108239*uk_14 + 18225*uk_140 + 81*uk_141 + 50625*uk_142 + 225*uk_143 + uk_144 + 262144*uk_145 + 331776*uk_146 + 921600*uk_147 + 4096*uk_148 + 419904*uk_149 + 11411775*uk_15 + 1166400*uk_150 + 5184*uk_151 + 3240000*uk_152 + 14400*uk_153 + 64*uk_154 + 531441*uk_155 + 1476225*uk_156 + 6561*uk_157 + 4100625*uk_158 + 18225*uk_159 + 50719*uk_16 + 81*uk_160 + 11390625*uk_161 + 50625*uk_162 + 225*uk_163 + uk_164 + 3025*uk_17 + 715*uk_18 + 55*uk_19 + 55*uk_2 + 3520*uk_20 + 4455*uk_21 + 12375*uk_22 + 55*uk_23 + 169*uk_24 + 13*uk_25 + 832*uk_26 + 1053*uk_27 + 2925*uk_28 + 13*uk_29 + 13*uk_3 + uk_30 + 64*uk_31 + 81*uk_32 + 225*uk_33 + uk_34 + 4096*uk_35 + 5184*uk_36 + 14400*uk_37 + 64*uk_38 + 6561*uk_39 + uk_4 + 18225*uk_40 + 81*uk_41 + 50625*uk_42 + 225*uk_43 + uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 33441420493*uk_47 + 2572416961*uk_48 + 164634685504*uk_49 + 64*uk_5 + 208365773841*uk_50 + 578793816225*uk_51 + 2572416961*uk_52 + 153424975*uk_53 + 36264085*uk_54 + 2789545*uk_55 + 178530880*uk_56 + 225953145*uk_57 + 627647625*uk_58 + 2789545*uk_59 + 81*uk_6 + 8571511*uk_60 + 659347*uk_61 + 42198208*uk_62 + 53407107*uk_63 + 148353075*uk_64 + 659347*uk_65 + 50719*uk_66 + 3246016*uk_67 + 4108239*uk_68 + 11411775*uk_69 + 225*uk_7 + 50719*uk_70 + 207745024*uk_71 + 262927296*uk_72 + 730353600*uk_73 + 3246016*uk_74 + 332767359*uk_75 + 924353775*uk_76 + 4108239*uk_77 + 2567649375*uk_78 + 11411775*uk_79 + uk_8 + 50719*uk_80 + 166375*uk_81 + 39325*uk_82 + 3025*uk_83 + 193600*uk_84 + 245025*uk_85 + 680625*uk_86 + 3025*uk_87 + 9295*uk_88 + 715*uk_89 + 2572416961*uk_9 + 45760*uk_90 + 57915*uk_91 + 160875*uk_92 + 715*uk_93 + 55*uk_94 + 3520*uk_95 + 4455*uk_96 + 12375*uk_97 + 55*uk_98 + 225280*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 273900*uk_100 + 742500*uk_101 + 42900*uk_102 + 378895*uk_103 + 1027125*uk_104 + 59345*uk_105 + 2784375*uk_106 + 160875*uk_107 + 9295*uk_108 + 216*uk_109 + 304314*uk_11 + 468*uk_110 + 2160*uk_111 + 2988*uk_112 + 8100*uk_113 + 468*uk_114 + 1014*uk_115 + 4680*uk_116 + 6474*uk_117 + 17550*uk_118 + 1014*uk_119 + 659347*uk_12 + 21600*uk_120 + 29880*uk_121 + 81000*uk_122 + 4680*uk_123 + 41334*uk_124 + 112050*uk_125 + 6474*uk_126 + 303750*uk_127 + 17550*uk_128 + 1014*uk_129 + 3043140*uk_13 + 2197*uk_130 + 10140*uk_131 + 14027*uk_132 + 38025*uk_133 + 2197*uk_134 + 46800*uk_135 + 64740*uk_136 + 175500*uk_137 + 10140*uk_138 + 89557*uk_139 + 4209677*uk_14 + 242775*uk_140 + 14027*uk_141 + 658125*uk_142 + 38025*uk_143 + 2197*uk_144 + 216000*uk_145 + 298800*uk_146 + 810000*uk_147 + 46800*uk_148 + 413340*uk_149 + 11411775*uk_15 + 1120500*uk_150 + 64740*uk_151 + 3037500*uk_152 + 175500*uk_153 + 10140*uk_154 + 571787*uk_155 + 1550025*uk_156 + 89557*uk_157 + 4201875*uk_158 + 242775*uk_159 + 659347*uk_16 + 14027*uk_160 + 11390625*uk_161 + 658125*uk_162 + 38025*uk_163 + 2197*uk_164 + 3025*uk_17 + 330*uk_18 + 715*uk_19 + 55*uk_2 + 3300*uk_20 + 4565*uk_21 + 12375*uk_22 + 715*uk_23 + 36*uk_24 + 78*uk_25 + 360*uk_26 + 498*uk_27 + 1350*uk_28 + 78*uk_29 + 6*uk_3 + 169*uk_30 + 780*uk_31 + 1079*uk_32 + 2925*uk_33 + 169*uk_34 + 3600*uk_35 + 4980*uk_36 + 13500*uk_37 + 780*uk_38 + 6889*uk_39 + 13*uk_4 + 18675*uk_40 + 1079*uk_41 + 50625*uk_42 + 2925*uk_43 + 169*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 15434501766*uk_47 + 33441420493*uk_48 + 154345017660*uk_49 + 60*uk_5 + 213510607763*uk_50 + 578793816225*uk_51 + 33441420493*uk_52 + 153424975*uk_53 + 16737270*uk_54 + 36264085*uk_55 + 167372700*uk_56 + 231532235*uk_57 + 627647625*uk_58 + 36264085*uk_59 + 83*uk_6 + 1825884*uk_60 + 3956082*uk_61 + 18258840*uk_62 + 25258062*uk_63 + 68470650*uk_64 + 3956082*uk_65 + 8571511*uk_66 + 39560820*uk_67 + 54725801*uk_68 + 148353075*uk_69 + 225*uk_7 + 8571511*uk_70 + 182588400*uk_71 + 252580620*uk_72 + 684706500*uk_73 + 39560820*uk_74 + 349403191*uk_75 + 947177325*uk_76 + 54725801*uk_77 + 2567649375*uk_78 + 148353075*uk_79 + 13*uk_8 + 8571511*uk_80 + 166375*uk_81 + 18150*uk_82 + 39325*uk_83 + 181500*uk_84 + 251075*uk_85 + 680625*uk_86 + 39325*uk_87 + 1980*uk_88 + 4290*uk_89 + 2572416961*uk_9 + 19800*uk_90 + 27390*uk_91 + 74250*uk_92 + 4290*uk_93 + 9295*uk_94 + 42900*uk_95 + 59345*uk_96 + 160875*uk_97 + 9295*uk_98 + 198000*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 280500*uk_100 + 742500*uk_101 + 19800*uk_102 + 397375*uk_103 + 1051875*uk_104 + 28050*uk_105 + 2784375*uk_106 + 74250*uk_107 + 1980*uk_108 + 205379*uk_109 + 2992421*uk_11 + 20886*uk_110 + 208860*uk_111 + 295885*uk_112 + 783225*uk_113 + 20886*uk_114 + 2124*uk_115 + 21240*uk_116 + 30090*uk_117 + 79650*uk_118 + 2124*uk_119 + 304314*uk_12 + 212400*uk_120 + 300900*uk_121 + 796500*uk_122 + 21240*uk_123 + 426275*uk_124 + 1128375*uk_125 + 30090*uk_126 + 2986875*uk_127 + 79650*uk_128 + 2124*uk_129 + 3043140*uk_13 + 216*uk_130 + 2160*uk_131 + 3060*uk_132 + 8100*uk_133 + 216*uk_134 + 21600*uk_135 + 30600*uk_136 + 81000*uk_137 + 2160*uk_138 + 43350*uk_139 + 4311115*uk_14 + 114750*uk_140 + 3060*uk_141 + 303750*uk_142 + 8100*uk_143 + 216*uk_144 + 216000*uk_145 + 306000*uk_146 + 810000*uk_147 + 21600*uk_148 + 433500*uk_149 + 11411775*uk_15 + 1147500*uk_150 + 30600*uk_151 + 3037500*uk_152 + 81000*uk_153 + 2160*uk_154 + 614125*uk_155 + 1625625*uk_156 + 43350*uk_157 + 4303125*uk_158 + 114750*uk_159 + 304314*uk_16 + 3060*uk_160 + 11390625*uk_161 + 303750*uk_162 + 8100*uk_163 + 216*uk_164 + 3025*uk_17 + 3245*uk_18 + 330*uk_19 + 55*uk_2 + 3300*uk_20 + 4675*uk_21 + 12375*uk_22 + 330*uk_23 + 3481*uk_24 + 354*uk_25 + 3540*uk_26 + 5015*uk_27 + 13275*uk_28 + 354*uk_29 + 59*uk_3 + 36*uk_30 + 360*uk_31 + 510*uk_32 + 1350*uk_33 + 36*uk_34 + 3600*uk_35 + 5100*uk_36 + 13500*uk_37 + 360*uk_38 + 7225*uk_39 + 6*uk_4 + 19125*uk_40 + 510*uk_41 + 50625*uk_42 + 1350*uk_43 + 36*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 151772600699*uk_47 + 15434501766*uk_48 + 154345017660*uk_49 + 60*uk_5 + 218655441685*uk_50 + 578793816225*uk_51 + 15434501766*uk_52 + 153424975*uk_53 + 164583155*uk_54 + 16737270*uk_55 + 167372700*uk_56 + 237111325*uk_57 + 627647625*uk_58 + 16737270*uk_59 + 85*uk_6 + 176552839*uk_60 + 17954526*uk_61 + 179545260*uk_62 + 254355785*uk_63 + 673294725*uk_64 + 17954526*uk_65 + 1825884*uk_66 + 18258840*uk_67 + 25866690*uk_68 + 68470650*uk_69 + 225*uk_7 + 1825884*uk_70 + 182588400*uk_71 + 258666900*uk_72 + 684706500*uk_73 + 18258840*uk_74 + 366444775*uk_75 + 970000875*uk_76 + 25866690*uk_77 + 2567649375*uk_78 + 68470650*uk_79 + 6*uk_8 + 1825884*uk_80 + 166375*uk_81 + 178475*uk_82 + 18150*uk_83 + 181500*uk_84 + 257125*uk_85 + 680625*uk_86 + 18150*uk_87 + 191455*uk_88 + 19470*uk_89 + 2572416961*uk_9 + 194700*uk_90 + 275825*uk_91 + 730125*uk_92 + 19470*uk_93 + 1980*uk_94 + 19800*uk_95 + 28050*uk_96 + 74250*uk_97 + 1980*uk_98 + 198000*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 267960*uk_100 + 693000*uk_101 + 181720*uk_102 + 416295*uk_103 + 1076625*uk_104 + 282315*uk_105 + 2784375*uk_106 + 730125*uk_107 + 191455*uk_108 + 614125*uk_109 + 4311115*uk_11 + 426275*uk_110 + 404600*uk_111 + 628575*uk_112 + 1625625*uk_113 + 426275*uk_114 + 295885*uk_115 + 280840*uk_116 + 436305*uk_117 + 1128375*uk_118 + 295885*uk_119 + 2992421*uk_12 + 266560*uk_120 + 414120*uk_121 + 1071000*uk_122 + 280840*uk_123 + 643365*uk_124 + 1663875*uk_125 + 436305*uk_126 + 4303125*uk_127 + 1128375*uk_128 + 295885*uk_129 + 2840264*uk_13 + 205379*uk_130 + 194936*uk_131 + 302847*uk_132 + 783225*uk_133 + 205379*uk_134 + 185024*uk_135 + 287448*uk_136 + 743400*uk_137 + 194936*uk_138 + 446571*uk_139 + 4412553*uk_14 + 1154925*uk_140 + 302847*uk_141 + 2986875*uk_142 + 783225*uk_143 + 205379*uk_144 + 175616*uk_145 + 272832*uk_146 + 705600*uk_147 + 185024*uk_148 + 423864*uk_149 + 11411775*uk_15 + 1096200*uk_150 + 287448*uk_151 + 2835000*uk_152 + 743400*uk_153 + 194936*uk_154 + 658503*uk_155 + 1703025*uk_156 + 446571*uk_157 + 4404375*uk_158 + 1154925*uk_159 + 2992421*uk_16 + 302847*uk_160 + 11390625*uk_161 + 2986875*uk_162 + 783225*uk_163 + 205379*uk_164 + 3025*uk_17 + 4675*uk_18 + 3245*uk_19 + 55*uk_2 + 3080*uk_20 + 4785*uk_21 + 12375*uk_22 + 3245*uk_23 + 7225*uk_24 + 5015*uk_25 + 4760*uk_26 + 7395*uk_27 + 19125*uk_28 + 5015*uk_29 + 85*uk_3 + 3481*uk_30 + 3304*uk_31 + 5133*uk_32 + 13275*uk_33 + 3481*uk_34 + 3136*uk_35 + 4872*uk_36 + 12600*uk_37 + 3304*uk_38 + 7569*uk_39 + 59*uk_4 + 19575*uk_40 + 5133*uk_41 + 50625*uk_42 + 13275*uk_43 + 3481*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 218655441685*uk_47 + 151772600699*uk_48 + 144055349816*uk_49 + 56*uk_5 + 223800275607*uk_50 + 578793816225*uk_51 + 151772600699*uk_52 + 153424975*uk_53 + 237111325*uk_54 + 164583155*uk_55 + 156214520*uk_56 + 242690415*uk_57 + 627647625*uk_58 + 164583155*uk_59 + 87*uk_6 + 366444775*uk_60 + 254355785*uk_61 + 241422440*uk_62 + 375067005*uk_63 + 970000875*uk_64 + 254355785*uk_65 + 176552839*uk_66 + 167575576*uk_67 + 260340627*uk_68 + 673294725*uk_69 + 225*uk_7 + 176552839*uk_70 + 159054784*uk_71 + 247102968*uk_72 + 639059400*uk_73 + 167575576*uk_74 + 383892111*uk_75 + 992824425*uk_76 + 260340627*uk_77 + 2567649375*uk_78 + 673294725*uk_79 + 59*uk_8 + 176552839*uk_80 + 166375*uk_81 + 257125*uk_82 + 178475*uk_83 + 169400*uk_84 + 263175*uk_85 + 680625*uk_86 + 178475*uk_87 + 397375*uk_88 + 275825*uk_89 + 2572416961*uk_9 + 261800*uk_90 + 406725*uk_91 + 1051875*uk_92 + 275825*uk_93 + 191455*uk_94 + 181720*uk_95 + 282315*uk_96 + 730125*uk_97 + 191455*uk_98 + 172480*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 254540*uk_100 + 643500*uk_101 + 243100*uk_102 + 435655*uk_103 + 1101375*uk_104 + 416075*uk_105 + 2784375*uk_106 + 1051875*uk_107 + 397375*uk_108 + 474552*uk_109 + 3956082*uk_11 + 517140*uk_110 + 316368*uk_111 + 541476*uk_112 + 1368900*uk_113 + 517140*uk_114 + 563550*uk_115 + 344760*uk_116 + 590070*uk_117 + 1491750*uk_118 + 563550*uk_119 + 4311115*uk_12 + 210912*uk_120 + 360984*uk_121 + 912600*uk_122 + 344760*uk_123 + 617838*uk_124 + 1561950*uk_125 + 590070*uk_126 + 3948750*uk_127 + 1491750*uk_128 + 563550*uk_129 + 2637388*uk_13 + 614125*uk_130 + 375700*uk_131 + 643025*uk_132 + 1625625*uk_133 + 614125*uk_134 + 229840*uk_135 + 393380*uk_136 + 994500*uk_137 + 375700*uk_138 + 673285*uk_139 + 4513991*uk_14 + 1702125*uk_140 + 643025*uk_141 + 4303125*uk_142 + 1625625*uk_143 + 614125*uk_144 + 140608*uk_145 + 240656*uk_146 + 608400*uk_147 + 229840*uk_148 + 411892*uk_149 + 11411775*uk_15 + 1041300*uk_150 + 393380*uk_151 + 2632500*uk_152 + 994500*uk_153 + 375700*uk_154 + 704969*uk_155 + 1782225*uk_156 + 673285*uk_157 + 4505625*uk_158 + 1702125*uk_159 + 4311115*uk_16 + 643025*uk_160 + 11390625*uk_161 + 4303125*uk_162 + 1625625*uk_163 + 614125*uk_164 + 3025*uk_17 + 4290*uk_18 + 4675*uk_19 + 55*uk_2 + 2860*uk_20 + 4895*uk_21 + 12375*uk_22 + 4675*uk_23 + 6084*uk_24 + 6630*uk_25 + 4056*uk_26 + 6942*uk_27 + 17550*uk_28 + 6630*uk_29 + 78*uk_3 + 7225*uk_30 + 4420*uk_31 + 7565*uk_32 + 19125*uk_33 + 7225*uk_34 + 2704*uk_35 + 4628*uk_36 + 11700*uk_37 + 4420*uk_38 + 7921*uk_39 + 85*uk_4 + 20025*uk_40 + 7565*uk_41 + 50625*uk_42 + 19125*uk_43 + 7225*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 200648522958*uk_47 + 218655441685*uk_48 + 133765681972*uk_49 + 52*uk_5 + 228945109529*uk_50 + 578793816225*uk_51 + 218655441685*uk_52 + 153424975*uk_53 + 217584510*uk_54 + 237111325*uk_55 + 145056340*uk_56 + 248269505*uk_57 + 627647625*uk_58 + 237111325*uk_59 + 89*uk_6 + 308574396*uk_60 + 336266970*uk_61 + 205716264*uk_62 + 352091298*uk_63 + 890118450*uk_64 + 336266970*uk_65 + 366444775*uk_66 + 224177980*uk_67 + 383689235*uk_68 + 970000875*uk_69 + 225*uk_7 + 366444775*uk_70 + 137144176*uk_71 + 234727532*uk_72 + 593412300*uk_73 + 224177980*uk_74 + 401745199*uk_75 + 1015647975*uk_76 + 383689235*uk_77 + 2567649375*uk_78 + 970000875*uk_79 + 85*uk_8 + 366444775*uk_80 + 166375*uk_81 + 235950*uk_82 + 257125*uk_83 + 157300*uk_84 + 269225*uk_85 + 680625*uk_86 + 257125*uk_87 + 334620*uk_88 + 364650*uk_89 + 2572416961*uk_9 + 223080*uk_90 + 381810*uk_91 + 965250*uk_92 + 364650*uk_93 + 397375*uk_94 + 243100*uk_95 + 416075*uk_96 + 1051875*uk_97 + 397375*uk_98 + 148720*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 240240*uk_100 + 594000*uk_101 + 205920*uk_102 + 455455*uk_103 + 1126125*uk_104 + 390390*uk_105 + 2784375*uk_106 + 965250*uk_107 + 334620*uk_108 + 32768*uk_109 + 1623008*uk_11 + 79872*uk_110 + 49152*uk_111 + 93184*uk_112 + 230400*uk_113 + 79872*uk_114 + 194688*uk_115 + 119808*uk_116 + 227136*uk_117 + 561600*uk_118 + 194688*uk_119 + 3956082*uk_12 + 73728*uk_120 + 139776*uk_121 + 345600*uk_122 + 119808*uk_123 + 264992*uk_124 + 655200*uk_125 + 227136*uk_126 + 1620000*uk_127 + 561600*uk_128 + 194688*uk_129 + 2434512*uk_13 + 474552*uk_130 + 292032*uk_131 + 553644*uk_132 + 1368900*uk_133 + 474552*uk_134 + 179712*uk_135 + 340704*uk_136 + 842400*uk_137 + 292032*uk_138 + 645918*uk_139 + 4615429*uk_14 + 1597050*uk_140 + 553644*uk_141 + 3948750*uk_142 + 1368900*uk_143 + 474552*uk_144 + 110592*uk_145 + 209664*uk_146 + 518400*uk_147 + 179712*uk_148 + 397488*uk_149 + 11411775*uk_15 + 982800*uk_150 + 340704*uk_151 + 2430000*uk_152 + 842400*uk_153 + 292032*uk_154 + 753571*uk_155 + 1863225*uk_156 + 645918*uk_157 + 4606875*uk_158 + 1597050*uk_159 + 3956082*uk_16 + 553644*uk_160 + 11390625*uk_161 + 3948750*uk_162 + 1368900*uk_163 + 474552*uk_164 + 3025*uk_17 + 1760*uk_18 + 4290*uk_19 + 55*uk_2 + 2640*uk_20 + 5005*uk_21 + 12375*uk_22 + 4290*uk_23 + 1024*uk_24 + 2496*uk_25 + 1536*uk_26 + 2912*uk_27 + 7200*uk_28 + 2496*uk_29 + 32*uk_3 + 6084*uk_30 + 3744*uk_31 + 7098*uk_32 + 17550*uk_33 + 6084*uk_34 + 2304*uk_35 + 4368*uk_36 + 10800*uk_37 + 3744*uk_38 + 8281*uk_39 + 78*uk_4 + 20475*uk_40 + 7098*uk_41 + 50625*uk_42 + 17550*uk_43 + 6084*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 82317342752*uk_47 + 200648522958*uk_48 + 123476014128*uk_49 + 48*uk_5 + 234089943451*uk_50 + 578793816225*uk_51 + 200648522958*uk_52 + 153424975*uk_53 + 89265440*uk_54 + 217584510*uk_55 + 133898160*uk_56 + 253848595*uk_57 + 627647625*uk_58 + 217584510*uk_59 + 91*uk_6 + 51936256*uk_60 + 126594624*uk_61 + 77904384*uk_62 + 147693728*uk_63 + 365176800*uk_64 + 126594624*uk_65 + 308574396*uk_66 + 189891936*uk_67 + 360003462*uk_68 + 890118450*uk_69 + 225*uk_7 + 308574396*uk_70 + 116856576*uk_71 + 221540592*uk_72 + 547765200*uk_73 + 189891936*uk_74 + 420004039*uk_75 + 1038471525*uk_76 + 360003462*uk_77 + 2567649375*uk_78 + 890118450*uk_79 + 78*uk_8 + 308574396*uk_80 + 166375*uk_81 + 96800*uk_82 + 235950*uk_83 + 145200*uk_84 + 275275*uk_85 + 680625*uk_86 + 235950*uk_87 + 56320*uk_88 + 137280*uk_89 + 2572416961*uk_9 + 84480*uk_90 + 160160*uk_91 + 396000*uk_92 + 137280*uk_93 + 334620*uk_94 + 205920*uk_95 + 390390*uk_96 + 965250*uk_97 + 334620*uk_98 + 126720*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 245520*uk_100 + 594000*uk_101 + 84480*uk_102 + 475695*uk_103 + 1150875*uk_104 + 163680*uk_105 + 2784375*uk_106 + 396000*uk_107 + 56320*uk_108 + 39304*uk_109 + 1724446*uk_11 + 36992*uk_110 + 55488*uk_111 + 107508*uk_112 + 260100*uk_113 + 36992*uk_114 + 34816*uk_115 + 52224*uk_116 + 101184*uk_117 + 244800*uk_118 + 34816*uk_119 + 1623008*uk_12 + 78336*uk_120 + 151776*uk_121 + 367200*uk_122 + 52224*uk_123 + 294066*uk_124 + 711450*uk_125 + 101184*uk_126 + 1721250*uk_127 + 244800*uk_128 + 34816*uk_129 + 2434512*uk_13 + 32768*uk_130 + 49152*uk_131 + 95232*uk_132 + 230400*uk_133 + 32768*uk_134 + 73728*uk_135 + 142848*uk_136 + 345600*uk_137 + 49152*uk_138 + 276768*uk_139 + 4716867*uk_14 + 669600*uk_140 + 95232*uk_141 + 1620000*uk_142 + 230400*uk_143 + 32768*uk_144 + 110592*uk_145 + 214272*uk_146 + 518400*uk_147 + 73728*uk_148 + 415152*uk_149 + 11411775*uk_15 + 1004400*uk_150 + 142848*uk_151 + 2430000*uk_152 + 345600*uk_153 + 49152*uk_154 + 804357*uk_155 + 1946025*uk_156 + 276768*uk_157 + 4708125*uk_158 + 669600*uk_159 + 1623008*uk_16 + 95232*uk_160 + 11390625*uk_161 + 1620000*uk_162 + 230400*uk_163 + 32768*uk_164 + 3025*uk_17 + 1870*uk_18 + 1760*uk_19 + 55*uk_2 + 2640*uk_20 + 5115*uk_21 + 12375*uk_22 + 1760*uk_23 + 1156*uk_24 + 1088*uk_25 + 1632*uk_26 + 3162*uk_27 + 7650*uk_28 + 1088*uk_29 + 34*uk_3 + 1024*uk_30 + 1536*uk_31 + 2976*uk_32 + 7200*uk_33 + 1024*uk_34 + 2304*uk_35 + 4464*uk_36 + 10800*uk_37 + 1536*uk_38 + 8649*uk_39 + 32*uk_4 + 20925*uk_40 + 2976*uk_41 + 50625*uk_42 + 7200*uk_43 + 1024*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 87462176674*uk_47 + 82317342752*uk_48 + 123476014128*uk_49 + 48*uk_5 + 239234777373*uk_50 + 578793816225*uk_51 + 82317342752*uk_52 + 153424975*uk_53 + 94844530*uk_54 + 89265440*uk_55 + 133898160*uk_56 + 259427685*uk_57 + 627647625*uk_58 + 89265440*uk_59 + 93*uk_6 + 58631164*uk_60 + 55182272*uk_61 + 82773408*uk_62 + 160373478*uk_63 + 388000350*uk_64 + 55182272*uk_65 + 51936256*uk_66 + 77904384*uk_67 + 150939744*uk_68 + 365176800*uk_69 + 225*uk_7 + 51936256*uk_70 + 116856576*uk_71 + 226409616*uk_72 + 547765200*uk_73 + 77904384*uk_74 + 438668631*uk_75 + 1061295075*uk_76 + 150939744*uk_77 + 2567649375*uk_78 + 365176800*uk_79 + 32*uk_8 + 51936256*uk_80 + 166375*uk_81 + 102850*uk_82 + 96800*uk_83 + 145200*uk_84 + 281325*uk_85 + 680625*uk_86 + 96800*uk_87 + 63580*uk_88 + 59840*uk_89 + 2572416961*uk_9 + 89760*uk_90 + 173910*uk_91 + 420750*uk_92 + 59840*uk_93 + 56320*uk_94 + 84480*uk_95 + 163680*uk_96 + 396000*uk_97 + 56320*uk_98 + 126720*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 250800*uk_100 + 594000*uk_101 + 89760*uk_102 + 496375*uk_103 + 1175625*uk_104 + 177650*uk_105 + 2784375*uk_106 + 420750*uk_107 + 63580*uk_108 + 592704*uk_109 + 4260396*uk_11 + 239904*uk_110 + 338688*uk_111 + 670320*uk_112 + 1587600*uk_113 + 239904*uk_114 + 97104*uk_115 + 137088*uk_116 + 271320*uk_117 + 642600*uk_118 + 97104*uk_119 + 1724446*uk_12 + 193536*uk_120 + 383040*uk_121 + 907200*uk_122 + 137088*uk_123 + 758100*uk_124 + 1795500*uk_125 + 271320*uk_126 + 4252500*uk_127 + 642600*uk_128 + 97104*uk_129 + 2434512*uk_13 + 39304*uk_130 + 55488*uk_131 + 109820*uk_132 + 260100*uk_133 + 39304*uk_134 + 78336*uk_135 + 155040*uk_136 + 367200*uk_137 + 55488*uk_138 + 306850*uk_139 + 4818305*uk_14 + 726750*uk_140 + 109820*uk_141 + 1721250*uk_142 + 260100*uk_143 + 39304*uk_144 + 110592*uk_145 + 218880*uk_146 + 518400*uk_147 + 78336*uk_148 + 433200*uk_149 + 11411775*uk_15 + 1026000*uk_150 + 155040*uk_151 + 2430000*uk_152 + 367200*uk_153 + 55488*uk_154 + 857375*uk_155 + 2030625*uk_156 + 306850*uk_157 + 4809375*uk_158 + 726750*uk_159 + 1724446*uk_16 + 109820*uk_160 + 11390625*uk_161 + 1721250*uk_162 + 260100*uk_163 + 39304*uk_164 + 3025*uk_17 + 4620*uk_18 + 1870*uk_19 + 55*uk_2 + 2640*uk_20 + 5225*uk_21 + 12375*uk_22 + 1870*uk_23 + 7056*uk_24 + 2856*uk_25 + 4032*uk_26 + 7980*uk_27 + 18900*uk_28 + 2856*uk_29 + 84*uk_3 + 1156*uk_30 + 1632*uk_31 + 3230*uk_32 + 7650*uk_33 + 1156*uk_34 + 2304*uk_35 + 4560*uk_36 + 10800*uk_37 + 1632*uk_38 + 9025*uk_39 + 34*uk_4 + 21375*uk_40 + 3230*uk_41 + 50625*uk_42 + 7650*uk_43 + 1156*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 216083024724*uk_47 + 87462176674*uk_48 + 123476014128*uk_49 + 48*uk_5 + 244379611295*uk_50 + 578793816225*uk_51 + 87462176674*uk_52 + 153424975*uk_53 + 234321780*uk_54 + 94844530*uk_55 + 133898160*uk_56 + 265006775*uk_57 + 627647625*uk_58 + 94844530*uk_59 + 95*uk_6 + 357873264*uk_60 + 144853464*uk_61 + 204499008*uk_62 + 404737620*uk_63 + 958589100*uk_64 + 144853464*uk_65 + 58631164*uk_66 + 82773408*uk_67 + 163822370*uk_68 + 388000350*uk_69 + 225*uk_7 + 58631164*uk_70 + 116856576*uk_71 + 231278640*uk_72 + 547765200*uk_73 + 82773408*uk_74 + 457738975*uk_75 + 1084118625*uk_76 + 163822370*uk_77 + 2567649375*uk_78 + 388000350*uk_79 + 34*uk_8 + 58631164*uk_80 + 166375*uk_81 + 254100*uk_82 + 102850*uk_83 + 145200*uk_84 + 287375*uk_85 + 680625*uk_86 + 102850*uk_87 + 388080*uk_88 + 157080*uk_89 + 2572416961*uk_9 + 221760*uk_90 + 438900*uk_91 + 1039500*uk_92 + 157080*uk_93 + 63580*uk_94 + 89760*uk_95 + 177650*uk_96 + 420750*uk_97 + 63580*uk_98 + 126720*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 234740*uk_100 + 544500*uk_101 + 203280*uk_102 + 517495*uk_103 + 1200375*uk_104 + 448140*uk_105 + 2784375*uk_106 + 1039500*uk_107 + 388080*uk_108 + 614125*uk_109 + 4311115*uk_11 + 606900*uk_110 + 317900*uk_111 + 700825*uk_112 + 1625625*uk_113 + 606900*uk_114 + 599760*uk_115 + 314160*uk_116 + 692580*uk_117 + 1606500*uk_118 + 599760*uk_119 + 4260396*uk_12 + 164560*uk_120 + 362780*uk_121 + 841500*uk_122 + 314160*uk_123 + 799765*uk_124 + 1855125*uk_125 + 692580*uk_126 + 4303125*uk_127 + 1606500*uk_128 + 599760*uk_129 + 2231636*uk_13 + 592704*uk_130 + 310464*uk_131 + 684432*uk_132 + 1587600*uk_133 + 592704*uk_134 + 162624*uk_135 + 358512*uk_136 + 831600*uk_137 + 310464*uk_138 + 790356*uk_139 + 4919743*uk_14 + 1833300*uk_140 + 684432*uk_141 + 4252500*uk_142 + 1587600*uk_143 + 592704*uk_144 + 85184*uk_145 + 187792*uk_146 + 435600*uk_147 + 162624*uk_148 + 413996*uk_149 + 11411775*uk_15 + 960300*uk_150 + 358512*uk_151 + 2227500*uk_152 + 831600*uk_153 + 310464*uk_154 + 912673*uk_155 + 2117025*uk_156 + 790356*uk_157 + 4910625*uk_158 + 1833300*uk_159 + 4260396*uk_16 + 684432*uk_160 + 11390625*uk_161 + 4252500*uk_162 + 1587600*uk_163 + 592704*uk_164 + 3025*uk_17 + 4675*uk_18 + 4620*uk_19 + 55*uk_2 + 2420*uk_20 + 5335*uk_21 + 12375*uk_22 + 4620*uk_23 + 7225*uk_24 + 7140*uk_25 + 3740*uk_26 + 8245*uk_27 + 19125*uk_28 + 7140*uk_29 + 85*uk_3 + 7056*uk_30 + 3696*uk_31 + 8148*uk_32 + 18900*uk_33 + 7056*uk_34 + 1936*uk_35 + 4268*uk_36 + 9900*uk_37 + 3696*uk_38 + 9409*uk_39 + 84*uk_4 + 21825*uk_40 + 8148*uk_41 + 50625*uk_42 + 18900*uk_43 + 7056*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 218655441685*uk_47 + 216083024724*uk_48 + 113186346284*uk_49 + 44*uk_5 + 249524445217*uk_50 + 578793816225*uk_51 + 216083024724*uk_52 + 153424975*uk_53 + 237111325*uk_54 + 234321780*uk_55 + 122739980*uk_56 + 270585865*uk_57 + 627647625*uk_58 + 234321780*uk_59 + 97*uk_6 + 366444775*uk_60 + 362133660*uk_61 + 189689060*uk_62 + 418178155*uk_63 + 970000875*uk_64 + 362133660*uk_65 + 357873264*uk_66 + 187457424*uk_67 + 413258412*uk_68 + 958589100*uk_69 + 225*uk_7 + 357873264*uk_70 + 98191984*uk_71 + 216468692*uk_72 + 502118100*uk_73 + 187457424*uk_74 + 477215071*uk_75 + 1106942175*uk_76 + 413258412*uk_77 + 2567649375*uk_78 + 958589100*uk_79 + 84*uk_8 + 357873264*uk_80 + 166375*uk_81 + 257125*uk_82 + 254100*uk_83 + 133100*uk_84 + 293425*uk_85 + 680625*uk_86 + 254100*uk_87 + 397375*uk_88 + 392700*uk_89 + 2572416961*uk_9 + 205700*uk_90 + 453475*uk_91 + 1051875*uk_92 + 392700*uk_93 + 388080*uk_94 + 203280*uk_95 + 448140*uk_96 + 1039500*uk_97 + 388080*uk_98 + 106480*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 217800*uk_100 + 495000*uk_101 + 187000*uk_102 + 539055*uk_103 + 1225125*uk_104 + 462825*uk_105 + 2784375*uk_106 + 1051875*uk_107 + 397375*uk_108 + 29791*uk_109 + 1572289*uk_11 + 81685*uk_110 + 38440*uk_111 + 95139*uk_112 + 216225*uk_113 + 81685*uk_114 + 223975*uk_115 + 105400*uk_116 + 260865*uk_117 + 592875*uk_118 + 223975*uk_119 + 4311115*uk_12 + 49600*uk_120 + 122760*uk_121 + 279000*uk_122 + 105400*uk_123 + 303831*uk_124 + 690525*uk_125 + 260865*uk_126 + 1569375*uk_127 + 592875*uk_128 + 223975*uk_129 + 2028760*uk_13 + 614125*uk_130 + 289000*uk_131 + 715275*uk_132 + 1625625*uk_133 + 614125*uk_134 + 136000*uk_135 + 336600*uk_136 + 765000*uk_137 + 289000*uk_138 + 833085*uk_139 + 5021181*uk_14 + 1893375*uk_140 + 715275*uk_141 + 4303125*uk_142 + 1625625*uk_143 + 614125*uk_144 + 64000*uk_145 + 158400*uk_146 + 360000*uk_147 + 136000*uk_148 + 392040*uk_149 + 11411775*uk_15 + 891000*uk_150 + 336600*uk_151 + 2025000*uk_152 + 765000*uk_153 + 289000*uk_154 + 970299*uk_155 + 2205225*uk_156 + 833085*uk_157 + 5011875*uk_158 + 1893375*uk_159 + 4311115*uk_16 + 715275*uk_160 + 11390625*uk_161 + 4303125*uk_162 + 1625625*uk_163 + 614125*uk_164 + 3025*uk_17 + 1705*uk_18 + 4675*uk_19 + 55*uk_2 + 2200*uk_20 + 5445*uk_21 + 12375*uk_22 + 4675*uk_23 + 961*uk_24 + 2635*uk_25 + 1240*uk_26 + 3069*uk_27 + 6975*uk_28 + 2635*uk_29 + 31*uk_3 + 7225*uk_30 + 3400*uk_31 + 8415*uk_32 + 19125*uk_33 + 7225*uk_34 + 1600*uk_35 + 3960*uk_36 + 9000*uk_37 + 3400*uk_38 + 9801*uk_39 + 85*uk_4 + 22275*uk_40 + 8415*uk_41 + 50625*uk_42 + 19125*uk_43 + 7225*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 79744925791*uk_47 + 218655441685*uk_48 + 102896678440*uk_49 + 40*uk_5 + 254669279139*uk_50 + 578793816225*uk_51 + 218655441685*uk_52 + 153424975*uk_53 + 86475895*uk_54 + 237111325*uk_55 + 111581800*uk_56 + 276164955*uk_57 + 627647625*uk_58 + 237111325*uk_59 + 99*uk_6 + 48740959*uk_60 + 133644565*uk_61 + 62891560*uk_62 + 155656611*uk_63 + 353765025*uk_64 + 133644565*uk_65 + 366444775*uk_66 + 172444600*uk_67 + 426800385*uk_68 + 970000875*uk_69 + 225*uk_7 + 366444775*uk_70 + 81150400*uk_71 + 200847240*uk_72 + 456471000*uk_73 + 172444600*uk_74 + 497096919*uk_75 + 1129765725*uk_76 + 426800385*uk_77 + 2567649375*uk_78 + 970000875*uk_79 + 85*uk_8 + 366444775*uk_80 + 166375*uk_81 + 93775*uk_82 + 257125*uk_83 + 121000*uk_84 + 299475*uk_85 + 680625*uk_86 + 257125*uk_87 + 52855*uk_88 + 144925*uk_89 + 2572416961*uk_9 + 68200*uk_90 + 168795*uk_91 + 383625*uk_92 + 144925*uk_93 + 397375*uk_94 + 187000*uk_95 + 462825*uk_96 + 1051875*uk_97 + 397375*uk_98 + 88000*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 222200*uk_100 + 495000*uk_101 + 68200*uk_102 + 561055*uk_103 + 1249875*uk_104 + 172205*uk_105 + 2784375*uk_106 + 383625*uk_107 + 52855*uk_108 + 4913*uk_109 + 862223*uk_11 + 8959*uk_110 + 11560*uk_111 + 29189*uk_112 + 65025*uk_113 + 8959*uk_114 + 16337*uk_115 + 21080*uk_116 + 53227*uk_117 + 118575*uk_118 + 16337*uk_119 + 1572289*uk_12 + 27200*uk_120 + 68680*uk_121 + 153000*uk_122 + 21080*uk_123 + 173417*uk_124 + 386325*uk_125 + 53227*uk_126 + 860625*uk_127 + 118575*uk_128 + 16337*uk_129 + 2028760*uk_13 + 29791*uk_130 + 38440*uk_131 + 97061*uk_132 + 216225*uk_133 + 29791*uk_134 + 49600*uk_135 + 125240*uk_136 + 279000*uk_137 + 38440*uk_138 + 316231*uk_139 + 5122619*uk_14 + 704475*uk_140 + 97061*uk_141 + 1569375*uk_142 + 216225*uk_143 + 29791*uk_144 + 64000*uk_145 + 161600*uk_146 + 360000*uk_147 + 49600*uk_148 + 408040*uk_149 + 11411775*uk_15 + 909000*uk_150 + 125240*uk_151 + 2025000*uk_152 + 279000*uk_153 + 38440*uk_154 + 1030301*uk_155 + 2295225*uk_156 + 316231*uk_157 + 5113125*uk_158 + 704475*uk_159 + 1572289*uk_16 + 97061*uk_160 + 11390625*uk_161 + 1569375*uk_162 + 216225*uk_163 + 29791*uk_164 + 3025*uk_17 + 935*uk_18 + 1705*uk_19 + 55*uk_2 + 2200*uk_20 + 5555*uk_21 + 12375*uk_22 + 1705*uk_23 + 289*uk_24 + 527*uk_25 + 680*uk_26 + 1717*uk_27 + 3825*uk_28 + 527*uk_29 + 17*uk_3 + 961*uk_30 + 1240*uk_31 + 3131*uk_32 + 6975*uk_33 + 961*uk_34 + 1600*uk_35 + 4040*uk_36 + 9000*uk_37 + 1240*uk_38 + 10201*uk_39 + 31*uk_4 + 22725*uk_40 + 3131*uk_41 + 50625*uk_42 + 6975*uk_43 + 961*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 43731088337*uk_47 + 79744925791*uk_48 + 102896678440*uk_49 + 40*uk_5 + 259814113061*uk_50 + 578793816225*uk_51 + 79744925791*uk_52 + 153424975*uk_53 + 47422265*uk_54 + 86475895*uk_55 + 111581800*uk_56 + 281744045*uk_57 + 627647625*uk_58 + 86475895*uk_59 + 101*uk_6 + 14657791*uk_60 + 26728913*uk_61 + 34488920*uk_62 + 87084523*uk_63 + 194000175*uk_64 + 26728913*uk_65 + 48740959*uk_66 + 62891560*uk_67 + 158801189*uk_68 + 353765025*uk_69 + 225*uk_7 + 48740959*uk_70 + 81150400*uk_71 + 204904760*uk_72 + 456471000*uk_73 + 62891560*uk_74 + 517384519*uk_75 + 1152589275*uk_76 + 158801189*uk_77 + 2567649375*uk_78 + 353765025*uk_79 + 31*uk_8 + 48740959*uk_80 + 166375*uk_81 + 51425*uk_82 + 93775*uk_83 + 121000*uk_84 + 305525*uk_85 + 680625*uk_86 + 93775*uk_87 + 15895*uk_88 + 28985*uk_89 + 2572416961*uk_9 + 37400*uk_90 + 94435*uk_91 + 210375*uk_92 + 28985*uk_93 + 52855*uk_94 + 68200*uk_95 + 172205*uk_96 + 383625*uk_97 + 52855*uk_98 + 88000*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 226600*uk_100 + 495000*uk_101 + 37400*uk_102 + 583495*uk_103 + 1274625*uk_104 + 96305*uk_105 + 2784375*uk_106 + 210375*uk_107 + 15895*uk_108 + 79507*uk_109 + 2180917*uk_11 + 31433*uk_110 + 73960*uk_111 + 190447*uk_112 + 416025*uk_113 + 31433*uk_114 + 12427*uk_115 + 29240*uk_116 + 75293*uk_117 + 164475*uk_118 + 12427*uk_119 + 862223*uk_12 + 68800*uk_120 + 177160*uk_121 + 387000*uk_122 + 29240*uk_123 + 456187*uk_124 + 996525*uk_125 + 75293*uk_126 + 2176875*uk_127 + 164475*uk_128 + 12427*uk_129 + 2028760*uk_13 + 4913*uk_130 + 11560*uk_131 + 29767*uk_132 + 65025*uk_133 + 4913*uk_134 + 27200*uk_135 + 70040*uk_136 + 153000*uk_137 + 11560*uk_138 + 180353*uk_139 + 5224057*uk_14 + 393975*uk_140 + 29767*uk_141 + 860625*uk_142 + 65025*uk_143 + 4913*uk_144 + 64000*uk_145 + 164800*uk_146 + 360000*uk_147 + 27200*uk_148 + 424360*uk_149 + 11411775*uk_15 + 927000*uk_150 + 70040*uk_151 + 2025000*uk_152 + 153000*uk_153 + 11560*uk_154 + 1092727*uk_155 + 2387025*uk_156 + 180353*uk_157 + 5214375*uk_158 + 393975*uk_159 + 862223*uk_16 + 29767*uk_160 + 11390625*uk_161 + 860625*uk_162 + 65025*uk_163 + 4913*uk_164 + 3025*uk_17 + 2365*uk_18 + 935*uk_19 + 55*uk_2 + 2200*uk_20 + 5665*uk_21 + 12375*uk_22 + 935*uk_23 + 1849*uk_24 + 731*uk_25 + 1720*uk_26 + 4429*uk_27 + 9675*uk_28 + 731*uk_29 + 43*uk_3 + 289*uk_30 + 680*uk_31 + 1751*uk_32 + 3825*uk_33 + 289*uk_34 + 1600*uk_35 + 4120*uk_36 + 9000*uk_37 + 680*uk_38 + 10609*uk_39 + 17*uk_4 + 23175*uk_40 + 1751*uk_41 + 50625*uk_42 + 3825*uk_43 + 289*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 110613929323*uk_47 + 43731088337*uk_48 + 102896678440*uk_49 + 40*uk_5 + 264958946983*uk_50 + 578793816225*uk_51 + 43731088337*uk_52 + 153424975*uk_53 + 119950435*uk_54 + 47422265*uk_55 + 111581800*uk_56 + 287323135*uk_57 + 627647625*uk_58 + 47422265*uk_59 + 103*uk_6 + 93779431*uk_60 + 37075589*uk_61 + 87236680*uk_62 + 224634451*uk_63 + 490706325*uk_64 + 37075589*uk_65 + 14657791*uk_66 + 34488920*uk_67 + 88808969*uk_68 + 194000175*uk_69 + 225*uk_7 + 14657791*uk_70 + 81150400*uk_71 + 208962280*uk_72 + 456471000*uk_73 + 34488920*uk_74 + 538077871*uk_75 + 1175412825*uk_76 + 88808969*uk_77 + 2567649375*uk_78 + 194000175*uk_79 + 17*uk_8 + 14657791*uk_80 + 166375*uk_81 + 130075*uk_82 + 51425*uk_83 + 121000*uk_84 + 311575*uk_85 + 680625*uk_86 + 51425*uk_87 + 101695*uk_88 + 40205*uk_89 + 2572416961*uk_9 + 94600*uk_90 + 243595*uk_91 + 532125*uk_92 + 40205*uk_93 + 15895*uk_94 + 37400*uk_95 + 96305*uk_96 + 210375*uk_97 + 15895*uk_98 + 88000*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 207900*uk_100 + 445500*uk_101 + 85140*uk_102 + 606375*uk_103 + 1299375*uk_104 + 248325*uk_105 + 2784375*uk_106 + 532125*uk_107 + 101695*uk_108 + 64*uk_109 + 202876*uk_11 + 688*uk_110 + 576*uk_111 + 1680*uk_112 + 3600*uk_113 + 688*uk_114 + 7396*uk_115 + 6192*uk_116 + 18060*uk_117 + 38700*uk_118 + 7396*uk_119 + 2180917*uk_12 + 5184*uk_120 + 15120*uk_121 + 32400*uk_122 + 6192*uk_123 + 44100*uk_124 + 94500*uk_125 + 18060*uk_126 + 202500*uk_127 + 38700*uk_128 + 7396*uk_129 + 1825884*uk_13 + 79507*uk_130 + 66564*uk_131 + 194145*uk_132 + 416025*uk_133 + 79507*uk_134 + 55728*uk_135 + 162540*uk_136 + 348300*uk_137 + 66564*uk_138 + 474075*uk_139 + 5325495*uk_14 + 1015875*uk_140 + 194145*uk_141 + 2176875*uk_142 + 416025*uk_143 + 79507*uk_144 + 46656*uk_145 + 136080*uk_146 + 291600*uk_147 + 55728*uk_148 + 396900*uk_149 + 11411775*uk_15 + 850500*uk_150 + 162540*uk_151 + 1822500*uk_152 + 348300*uk_153 + 66564*uk_154 + 1157625*uk_155 + 2480625*uk_156 + 474075*uk_157 + 5315625*uk_158 + 1015875*uk_159 + 2180917*uk_16 + 194145*uk_160 + 11390625*uk_161 + 2176875*uk_162 + 416025*uk_163 + 79507*uk_164 + 3025*uk_17 + 220*uk_18 + 2365*uk_19 + 55*uk_2 + 1980*uk_20 + 5775*uk_21 + 12375*uk_22 + 2365*uk_23 + 16*uk_24 + 172*uk_25 + 144*uk_26 + 420*uk_27 + 900*uk_28 + 172*uk_29 + 4*uk_3 + 1849*uk_30 + 1548*uk_31 + 4515*uk_32 + 9675*uk_33 + 1849*uk_34 + 1296*uk_35 + 3780*uk_36 + 8100*uk_37 + 1548*uk_38 + 11025*uk_39 + 43*uk_4 + 23625*uk_40 + 4515*uk_41 + 50625*uk_42 + 9675*uk_43 + 1849*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 10289667844*uk_47 + 110613929323*uk_48 + 92607010596*uk_49 + 36*uk_5 + 270103780905*uk_50 + 578793816225*uk_51 + 110613929323*uk_52 + 153424975*uk_53 + 11158180*uk_54 + 119950435*uk_55 + 100423620*uk_56 + 292902225*uk_57 + 627647625*uk_58 + 119950435*uk_59 + 105*uk_6 + 811504*uk_60 + 8723668*uk_61 + 7303536*uk_62 + 21301980*uk_63 + 45647100*uk_64 + 8723668*uk_65 + 93779431*uk_66 + 78513012*uk_67 + 228996285*uk_68 + 490706325*uk_69 + 225*uk_7 + 93779431*uk_70 + 65731824*uk_71 + 191717820*uk_72 + 410823900*uk_73 + 78513012*uk_74 + 559176975*uk_75 + 1198236375*uk_76 + 228996285*uk_77 + 2567649375*uk_78 + 490706325*uk_79 + 43*uk_8 + 93779431*uk_80 + 166375*uk_81 + 12100*uk_82 + 130075*uk_83 + 108900*uk_84 + 317625*uk_85 + 680625*uk_86 + 130075*uk_87 + 880*uk_88 + 9460*uk_89 + 2572416961*uk_9 + 7920*uk_90 + 23100*uk_91 + 49500*uk_92 + 9460*uk_93 + 101695*uk_94 + 85140*uk_95 + 248325*uk_96 + 532125*uk_97 + 101695*uk_98 + 71280*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 211860*uk_100 + 445500*uk_101 + 7920*uk_102 + 629695*uk_103 + 1324125*uk_104 + 23540*uk_105 + 2784375*uk_106 + 49500*uk_107 + 880*uk_108 + uk_109 + 50719*uk_11 + 4*uk_110 + 36*uk_111 + 107*uk_112 + 225*uk_113 + 4*uk_114 + 16*uk_115 + 144*uk_116 + 428*uk_117 + 900*uk_118 + 16*uk_119 + 202876*uk_12 + 1296*uk_120 + 3852*uk_121 + 8100*uk_122 + 144*uk_123 + 11449*uk_124 + 24075*uk_125 + 428*uk_126 + 50625*uk_127 + 900*uk_128 + 16*uk_129 + 1825884*uk_13 + 64*uk_130 + 576*uk_131 + 1712*uk_132 + 3600*uk_133 + 64*uk_134 + 5184*uk_135 + 15408*uk_136 + 32400*uk_137 + 576*uk_138 + 45796*uk_139 + 5426933*uk_14 + 96300*uk_140 + 1712*uk_141 + 202500*uk_142 + 3600*uk_143 + 64*uk_144 + 46656*uk_145 + 138672*uk_146 + 291600*uk_147 + 5184*uk_148 + 412164*uk_149 + 11411775*uk_15 + 866700*uk_150 + 15408*uk_151 + 1822500*uk_152 + 32400*uk_153 + 576*uk_154 + 1225043*uk_155 + 2576025*uk_156 + 45796*uk_157 + 5416875*uk_158 + 96300*uk_159 + 202876*uk_16 + 1712*uk_160 + 11390625*uk_161 + 202500*uk_162 + 3600*uk_163 + 64*uk_164 + 3025*uk_17 + 55*uk_18 + 220*uk_19 + 55*uk_2 + 1980*uk_20 + 5885*uk_21 + 12375*uk_22 + 220*uk_23 + uk_24 + 4*uk_25 + 36*uk_26 + 107*uk_27 + 225*uk_28 + 4*uk_29 + uk_3 + 16*uk_30 + 144*uk_31 + 428*uk_32 + 900*uk_33 + 16*uk_34 + 1296*uk_35 + 3852*uk_36 + 8100*uk_37 + 144*uk_38 + 11449*uk_39 + 4*uk_4 + 24075*uk_40 + 428*uk_41 + 50625*uk_42 + 900*uk_43 + 16*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 2572416961*uk_47 + 10289667844*uk_48 + 92607010596*uk_49 + 36*uk_5 + 275248614827*uk_50 + 578793816225*uk_51 + 10289667844*uk_52 + 153424975*uk_53 + 2789545*uk_54 + 11158180*uk_55 + 100423620*uk_56 + 298481315*uk_57 + 627647625*uk_58 + 11158180*uk_59 + 107*uk_6 + 50719*uk_60 + 202876*uk_61 + 1825884*uk_62 + 5426933*uk_63 + 11411775*uk_64 + 202876*uk_65 + 811504*uk_66 + 7303536*uk_67 + 21707732*uk_68 + 45647100*uk_69 + 225*uk_7 + 811504*uk_70 + 65731824*uk_71 + 195369588*uk_72 + 410823900*uk_73 + 7303536*uk_74 + 580681831*uk_75 + 1221059925*uk_76 + 21707732*uk_77 + 2567649375*uk_78 + 45647100*uk_79 + 4*uk_8 + 811504*uk_80 + 166375*uk_81 + 3025*uk_82 + 12100*uk_83 + 108900*uk_84 + 323675*uk_85 + 680625*uk_86 + 12100*uk_87 + 55*uk_88 + 220*uk_89 + 2572416961*uk_9 + 1980*uk_90 + 5885*uk_91 + 12375*uk_92 + 220*uk_93 + 880*uk_94 + 7920*uk_95 + 23540*uk_96 + 49500*uk_97 + 880*uk_98 + 71280*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 215820*uk_100 + 445500*uk_101 + 1980*uk_102 + 653455*uk_103 + 1348875*uk_104 + 5995*uk_105 + 2784375*uk_106 + 12375*uk_107 + 55*uk_108 + 39304*uk_109 + 1724446*uk_11 + 1156*uk_110 + 41616*uk_111 + 126004*uk_112 + 260100*uk_113 + 1156*uk_114 + 34*uk_115 + 1224*uk_116 + 3706*uk_117 + 7650*uk_118 + 34*uk_119 + 50719*uk_12 + 44064*uk_120 + 133416*uk_121 + 275400*uk_122 + 1224*uk_123 + 403954*uk_124 + 833850*uk_125 + 3706*uk_126 + 1721250*uk_127 + 7650*uk_128 + 34*uk_129 + 1825884*uk_13 + uk_130 + 36*uk_131 + 109*uk_132 + 225*uk_133 + uk_134 + 1296*uk_135 + 3924*uk_136 + 8100*uk_137 + 36*uk_138 + 11881*uk_139 + 5528371*uk_14 + 24525*uk_140 + 109*uk_141 + 50625*uk_142 + 225*uk_143 + uk_144 + 46656*uk_145 + 141264*uk_146 + 291600*uk_147 + 1296*uk_148 + 427716*uk_149 + 11411775*uk_15 + 882900*uk_150 + 3924*uk_151 + 1822500*uk_152 + 8100*uk_153 + 36*uk_154 + 1295029*uk_155 + 2673225*uk_156 + 11881*uk_157 + 5518125*uk_158 + 24525*uk_159 + 50719*uk_16 + 109*uk_160 + 11390625*uk_161 + 50625*uk_162 + 225*uk_163 + uk_164 + 3025*uk_17 + 1870*uk_18 + 55*uk_19 + 55*uk_2 + 1980*uk_20 + 5995*uk_21 + 12375*uk_22 + 55*uk_23 + 1156*uk_24 + 34*uk_25 + 1224*uk_26 + 3706*uk_27 + 7650*uk_28 + 34*uk_29 + 34*uk_3 + uk_30 + 36*uk_31 + 109*uk_32 + 225*uk_33 + uk_34 + 1296*uk_35 + 3924*uk_36 + 8100*uk_37 + 36*uk_38 + 11881*uk_39 + uk_4 + 24525*uk_40 + 109*uk_41 + 50625*uk_42 + 225*uk_43 + uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 87462176674*uk_47 + 2572416961*uk_48 + 92607010596*uk_49 + 36*uk_5 + 280393448749*uk_50 + 578793816225*uk_51 + 2572416961*uk_52 + 153424975*uk_53 + 94844530*uk_54 + 2789545*uk_55 + 100423620*uk_56 + 304060405*uk_57 + 627647625*uk_58 + 2789545*uk_59 + 109*uk_6 + 58631164*uk_60 + 1724446*uk_61 + 62080056*uk_62 + 187964614*uk_63 + 388000350*uk_64 + 1724446*uk_65 + 50719*uk_66 + 1825884*uk_67 + 5528371*uk_68 + 11411775*uk_69 + 225*uk_7 + 50719*uk_70 + 65731824*uk_71 + 199021356*uk_72 + 410823900*uk_73 + 1825884*uk_74 + 602592439*uk_75 + 1243883475*uk_76 + 5528371*uk_77 + 2567649375*uk_78 + 11411775*uk_79 + uk_8 + 50719*uk_80 + 166375*uk_81 + 102850*uk_82 + 3025*uk_83 + 108900*uk_84 + 329725*uk_85 + 680625*uk_86 + 3025*uk_87 + 63580*uk_88 + 1870*uk_89 + 2572416961*uk_9 + 67320*uk_90 + 203830*uk_91 + 420750*uk_92 + 1870*uk_93 + 55*uk_94 + 1980*uk_95 + 5995*uk_96 + 12375*uk_97 + 55*uk_98 + 71280*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 219780*uk_100 + 445500*uk_101 + 67320*uk_102 + 677655*uk_103 + 1373625*uk_104 + 207570*uk_105 + 2784375*uk_106 + 420750*uk_107 + 63580*uk_108 + 1092727*uk_109 + 5224057*uk_11 + 360706*uk_110 + 381924*uk_111 + 1177599*uk_112 + 2387025*uk_113 + 360706*uk_114 + 119068*uk_115 + 126072*uk_116 + 388722*uk_117 + 787950*uk_118 + 119068*uk_119 + 1724446*uk_12 + 133488*uk_120 + 411588*uk_121 + 834300*uk_122 + 126072*uk_123 + 1269063*uk_124 + 2572425*uk_125 + 388722*uk_126 + 5214375*uk_127 + 787950*uk_128 + 119068*uk_129 + 1825884*uk_13 + 39304*uk_130 + 41616*uk_131 + 128316*uk_132 + 260100*uk_133 + 39304*uk_134 + 44064*uk_135 + 135864*uk_136 + 275400*uk_137 + 41616*uk_138 + 418914*uk_139 + 5629809*uk_14 + 849150*uk_140 + 128316*uk_141 + 1721250*uk_142 + 260100*uk_143 + 39304*uk_144 + 46656*uk_145 + 143856*uk_146 + 291600*uk_147 + 44064*uk_148 + 443556*uk_149 + 11411775*uk_15 + 899100*uk_150 + 135864*uk_151 + 1822500*uk_152 + 275400*uk_153 + 41616*uk_154 + 1367631*uk_155 + 2772225*uk_156 + 418914*uk_157 + 5619375*uk_158 + 849150*uk_159 + 1724446*uk_16 + 128316*uk_160 + 11390625*uk_161 + 1721250*uk_162 + 260100*uk_163 + 39304*uk_164 + 3025*uk_17 + 5665*uk_18 + 1870*uk_19 + 55*uk_2 + 1980*uk_20 + 6105*uk_21 + 12375*uk_22 + 1870*uk_23 + 10609*uk_24 + 3502*uk_25 + 3708*uk_26 + 11433*uk_27 + 23175*uk_28 + 3502*uk_29 + 103*uk_3 + 1156*uk_30 + 1224*uk_31 + 3774*uk_32 + 7650*uk_33 + 1156*uk_34 + 1296*uk_35 + 3996*uk_36 + 8100*uk_37 + 1224*uk_38 + 12321*uk_39 + 34*uk_4 + 24975*uk_40 + 3774*uk_41 + 50625*uk_42 + 7650*uk_43 + 1156*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 264958946983*uk_47 + 87462176674*uk_48 + 92607010596*uk_49 + 36*uk_5 + 285538282671*uk_50 + 578793816225*uk_51 + 87462176674*uk_52 + 153424975*uk_53 + 287323135*uk_54 + 94844530*uk_55 + 100423620*uk_56 + 309639495*uk_57 + 627647625*uk_58 + 94844530*uk_59 + 111*uk_6 + 538077871*uk_60 + 177617938*uk_61 + 188066052*uk_62 + 579870327*uk_63 + 1175412825*uk_64 + 177617938*uk_65 + 58631164*uk_66 + 62080056*uk_67 + 191413506*uk_68 + 388000350*uk_69 + 225*uk_7 + 58631164*uk_70 + 65731824*uk_71 + 202673124*uk_72 + 410823900*uk_73 + 62080056*uk_74 + 624908799*uk_75 + 1266707025*uk_76 + 191413506*uk_77 + 2567649375*uk_78 + 388000350*uk_79 + 34*uk_8 + 58631164*uk_80 + 166375*uk_81 + 311575*uk_82 + 102850*uk_83 + 108900*uk_84 + 335775*uk_85 + 680625*uk_86 + 102850*uk_87 + 583495*uk_88 + 192610*uk_89 + 2572416961*uk_9 + 203940*uk_90 + 628815*uk_91 + 1274625*uk_92 + 192610*uk_93 + 63580*uk_94 + 67320*uk_95 + 207570*uk_96 + 420750*uk_97 + 63580*uk_98 + 71280*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 198880*uk_100 + 396000*uk_101 + 181280*uk_102 + 702295*uk_103 + 1398375*uk_104 + 640145*uk_105 + 2784375*uk_106 + 1274625*uk_107 + 583495*uk_108 + 857375*uk_109 + 4818305*uk_11 + 929575*uk_110 + 288800*uk_111 + 1019825*uk_112 + 2030625*uk_113 + 929575*uk_114 + 1007855*uk_115 + 313120*uk_116 + 1105705*uk_117 + 2201625*uk_118 + 1007855*uk_119 + 5224057*uk_12 + 97280*uk_120 + 343520*uk_121 + 684000*uk_122 + 313120*uk_123 + 1213055*uk_124 + 2415375*uk_125 + 1105705*uk_126 + 4809375*uk_127 + 2201625*uk_128 + 1007855*uk_129 + 1623008*uk_13 + 1092727*uk_130 + 339488*uk_131 + 1198817*uk_132 + 2387025*uk_133 + 1092727*uk_134 + 105472*uk_135 + 372448*uk_136 + 741600*uk_137 + 339488*uk_138 + 1315207*uk_139 + 5731247*uk_14 + 2618775*uk_140 + 1198817*uk_141 + 5214375*uk_142 + 2387025*uk_143 + 1092727*uk_144 + 32768*uk_145 + 115712*uk_146 + 230400*uk_147 + 105472*uk_148 + 408608*uk_149 + 11411775*uk_15 + 813600*uk_150 + 372448*uk_151 + 1620000*uk_152 + 741600*uk_153 + 339488*uk_154 + 1442897*uk_155 + 2873025*uk_156 + 1315207*uk_157 + 5720625*uk_158 + 2618775*uk_159 + 5224057*uk_16 + 1198817*uk_160 + 11390625*uk_161 + 5214375*uk_162 + 2387025*uk_163 + 1092727*uk_164 + 3025*uk_17 + 5225*uk_18 + 5665*uk_19 + 55*uk_2 + 1760*uk_20 + 6215*uk_21 + 12375*uk_22 + 5665*uk_23 + 9025*uk_24 + 9785*uk_25 + 3040*uk_26 + 10735*uk_27 + 21375*uk_28 + 9785*uk_29 + 95*uk_3 + 10609*uk_30 + 3296*uk_31 + 11639*uk_32 + 23175*uk_33 + 10609*uk_34 + 1024*uk_35 + 3616*uk_36 + 7200*uk_37 + 3296*uk_38 + 12769*uk_39 + 103*uk_4 + 25425*uk_40 + 11639*uk_41 + 50625*uk_42 + 23175*uk_43 + 10609*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 244379611295*uk_47 + 264958946983*uk_48 + 82317342752*uk_49 + 32*uk_5 + 290683116593*uk_50 + 578793816225*uk_51 + 264958946983*uk_52 + 153424975*uk_53 + 265006775*uk_54 + 287323135*uk_55 + 89265440*uk_56 + 315218585*uk_57 + 627647625*uk_58 + 287323135*uk_59 + 113*uk_6 + 457738975*uk_60 + 496285415*uk_61 + 154185760*uk_62 + 544468465*uk_63 + 1084118625*uk_64 + 496285415*uk_65 + 538077871*uk_66 + 167169824*uk_67 + 590318441*uk_68 + 1175412825*uk_69 + 225*uk_7 + 538077871*uk_70 + 51936256*uk_71 + 183399904*uk_72 + 365176800*uk_73 + 167169824*uk_74 + 647630911*uk_75 + 1289530575*uk_76 + 590318441*uk_77 + 2567649375*uk_78 + 1175412825*uk_79 + 103*uk_8 + 538077871*uk_80 + 166375*uk_81 + 287375*uk_82 + 311575*uk_83 + 96800*uk_84 + 341825*uk_85 + 680625*uk_86 + 311575*uk_87 + 496375*uk_88 + 538175*uk_89 + 2572416961*uk_9 + 167200*uk_90 + 590425*uk_91 + 1175625*uk_92 + 538175*uk_93 + 583495*uk_94 + 181280*uk_95 + 640145*uk_96 + 1274625*uk_97 + 583495*uk_98 + 56320*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 177100*uk_100 + 346500*uk_101 + 146300*uk_102 + 727375*uk_103 + 1423125*uk_104 + 600875*uk_105 + 2784375*uk_106 + 1175625*uk_107 + 496375*uk_108 + 64*uk_109 + 202876*uk_11 + 1520*uk_110 + 448*uk_111 + 1840*uk_112 + 3600*uk_113 + 1520*uk_114 + 36100*uk_115 + 10640*uk_116 + 43700*uk_117 + 85500*uk_118 + 36100*uk_119 + 4818305*uk_12 + 3136*uk_120 + 12880*uk_121 + 25200*uk_122 + 10640*uk_123 + 52900*uk_124 + 103500*uk_125 + 43700*uk_126 + 202500*uk_127 + 85500*uk_128 + 36100*uk_129 + 1420132*uk_13 + 857375*uk_130 + 252700*uk_131 + 1037875*uk_132 + 2030625*uk_133 + 857375*uk_134 + 74480*uk_135 + 305900*uk_136 + 598500*uk_137 + 252700*uk_138 + 1256375*uk_139 + 5832685*uk_14 + 2458125*uk_140 + 1037875*uk_141 + 4809375*uk_142 + 2030625*uk_143 + 857375*uk_144 + 21952*uk_145 + 90160*uk_146 + 176400*uk_147 + 74480*uk_148 + 370300*uk_149 + 11411775*uk_15 + 724500*uk_150 + 305900*uk_151 + 1417500*uk_152 + 598500*uk_153 + 252700*uk_154 + 1520875*uk_155 + 2975625*uk_156 + 1256375*uk_157 + 5821875*uk_158 + 2458125*uk_159 + 4818305*uk_16 + 1037875*uk_160 + 11390625*uk_161 + 4809375*uk_162 + 2030625*uk_163 + 857375*uk_164 + 3025*uk_17 + 220*uk_18 + 5225*uk_19 + 55*uk_2 + 1540*uk_20 + 6325*uk_21 + 12375*uk_22 + 5225*uk_23 + 16*uk_24 + 380*uk_25 + 112*uk_26 + 460*uk_27 + 900*uk_28 + 380*uk_29 + 4*uk_3 + 9025*uk_30 + 2660*uk_31 + 10925*uk_32 + 21375*uk_33 + 9025*uk_34 + 784*uk_35 + 3220*uk_36 + 6300*uk_37 + 2660*uk_38 + 13225*uk_39 + 95*uk_4 + 25875*uk_40 + 10925*uk_41 + 50625*uk_42 + 21375*uk_43 + 9025*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 10289667844*uk_47 + 244379611295*uk_48 + 72027674908*uk_49 + 28*uk_5 + 295827950515*uk_50 + 578793816225*uk_51 + 244379611295*uk_52 + 153424975*uk_53 + 11158180*uk_54 + 265006775*uk_55 + 78107260*uk_56 + 320797675*uk_57 + 627647625*uk_58 + 265006775*uk_59 + 115*uk_6 + 811504*uk_60 + 19273220*uk_61 + 5680528*uk_62 + 23330740*uk_63 + 45647100*uk_64 + 19273220*uk_65 + 457738975*uk_66 + 134912540*uk_67 + 554105075*uk_68 + 1084118625*uk_69 + 225*uk_7 + 457738975*uk_70 + 39763696*uk_71 + 163315180*uk_72 + 319529700*uk_73 + 134912540*uk_74 + 670758775*uk_75 + 1312354125*uk_76 + 554105075*uk_77 + 2567649375*uk_78 + 1084118625*uk_79 + 95*uk_8 + 457738975*uk_80 + 166375*uk_81 + 12100*uk_82 + 287375*uk_83 + 84700*uk_84 + 347875*uk_85 + 680625*uk_86 + 287375*uk_87 + 880*uk_88 + 20900*uk_89 + 2572416961*uk_9 + 6160*uk_90 + 25300*uk_91 + 49500*uk_92 + 20900*uk_93 + 496375*uk_94 + 146300*uk_95 + 600875*uk_96 + 1175625*uk_97 + 496375*uk_98 + 43120*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 205920*uk_100 + 396000*uk_101 + 7040*uk_102 + 752895*uk_103 + 1447875*uk_104 + 25740*uk_105 + 2784375*uk_106 + 49500*uk_107 + 880*uk_108 + 195112*uk_109 + 2941702*uk_11 + 13456*uk_110 + 107648*uk_111 + 393588*uk_112 + 756900*uk_113 + 13456*uk_114 + 928*uk_115 + 7424*uk_116 + 27144*uk_117 + 52200*uk_118 + 928*uk_119 + 202876*uk_12 + 59392*uk_120 + 217152*uk_121 + 417600*uk_122 + 7424*uk_123 + 793962*uk_124 + 1526850*uk_125 + 27144*uk_126 + 2936250*uk_127 + 52200*uk_128 + 928*uk_129 + 1623008*uk_13 + 64*uk_130 + 512*uk_131 + 1872*uk_132 + 3600*uk_133 + 64*uk_134 + 4096*uk_135 + 14976*uk_136 + 28800*uk_137 + 512*uk_138 + 54756*uk_139 + 5934123*uk_14 + 105300*uk_140 + 1872*uk_141 + 202500*uk_142 + 3600*uk_143 + 64*uk_144 + 32768*uk_145 + 119808*uk_146 + 230400*uk_147 + 4096*uk_148 + 438048*uk_149 + 11411775*uk_15 + 842400*uk_150 + 14976*uk_151 + 1620000*uk_152 + 28800*uk_153 + 512*uk_154 + 1601613*uk_155 + 3080025*uk_156 + 54756*uk_157 + 5923125*uk_158 + 105300*uk_159 + 202876*uk_16 + 1872*uk_160 + 11390625*uk_161 + 202500*uk_162 + 3600*uk_163 + 64*uk_164 + 3025*uk_17 + 3190*uk_18 + 220*uk_19 + 55*uk_2 + 1760*uk_20 + 6435*uk_21 + 12375*uk_22 + 220*uk_23 + 3364*uk_24 + 232*uk_25 + 1856*uk_26 + 6786*uk_27 + 13050*uk_28 + 232*uk_29 + 58*uk_3 + 16*uk_30 + 128*uk_31 + 468*uk_32 + 900*uk_33 + 16*uk_34 + 1024*uk_35 + 3744*uk_36 + 7200*uk_37 + 128*uk_38 + 13689*uk_39 + 4*uk_4 + 26325*uk_40 + 468*uk_41 + 50625*uk_42 + 900*uk_43 + 16*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 149200183738*uk_47 + 10289667844*uk_48 + 82317342752*uk_49 + 32*uk_5 + 300972784437*uk_50 + 578793816225*uk_51 + 10289667844*uk_52 + 153424975*uk_53 + 161793610*uk_54 + 11158180*uk_55 + 89265440*uk_56 + 326376765*uk_57 + 627647625*uk_58 + 11158180*uk_59 + 117*uk_6 + 170618716*uk_60 + 11766808*uk_61 + 94134464*uk_62 + 344179134*uk_63 + 661882950*uk_64 + 11766808*uk_65 + 811504*uk_66 + 6492032*uk_67 + 23736492*uk_68 + 45647100*uk_69 + 225*uk_7 + 811504*uk_70 + 51936256*uk_71 + 189891936*uk_72 + 365176800*uk_73 + 6492032*uk_74 + 694292391*uk_75 + 1335177675*uk_76 + 23736492*uk_77 + 2567649375*uk_78 + 45647100*uk_79 + 4*uk_8 + 811504*uk_80 + 166375*uk_81 + 175450*uk_82 + 12100*uk_83 + 96800*uk_84 + 353925*uk_85 + 680625*uk_86 + 12100*uk_87 + 185020*uk_88 + 12760*uk_89 + 2572416961*uk_9 + 102080*uk_90 + 373230*uk_91 + 717750*uk_92 + 12760*uk_93 + 880*uk_94 + 7040*uk_95 + 25740*uk_96 + 49500*uk_97 + 880*uk_98 + 56320*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 183260*uk_100 + 346500*uk_101 + 89320*uk_102 + 778855*uk_103 + 1472625*uk_104 + 379610*uk_105 + 2784375*uk_106 + 717750*uk_107 + 185020*uk_108 + 15625*uk_109 + 1267975*uk_11 + 36250*uk_110 + 17500*uk_111 + 74375*uk_112 + 140625*uk_113 + 36250*uk_114 + 84100*uk_115 + 40600*uk_116 + 172550*uk_117 + 326250*uk_118 + 84100*uk_119 + 2941702*uk_12 + 19600*uk_120 + 83300*uk_121 + 157500*uk_122 + 40600*uk_123 + 354025*uk_124 + 669375*uk_125 + 172550*uk_126 + 1265625*uk_127 + 326250*uk_128 + 84100*uk_129 + 1420132*uk_13 + 195112*uk_130 + 94192*uk_131 + 400316*uk_132 + 756900*uk_133 + 195112*uk_134 + 45472*uk_135 + 193256*uk_136 + 365400*uk_137 + 94192*uk_138 + 821338*uk_139 + 6035561*uk_14 + 1552950*uk_140 + 400316*uk_141 + 2936250*uk_142 + 756900*uk_143 + 195112*uk_144 + 21952*uk_145 + 93296*uk_146 + 176400*uk_147 + 45472*uk_148 + 396508*uk_149 + 11411775*uk_15 + 749700*uk_150 + 193256*uk_151 + 1417500*uk_152 + 365400*uk_153 + 94192*uk_154 + 1685159*uk_155 + 3186225*uk_156 + 821338*uk_157 + 6024375*uk_158 + 1552950*uk_159 + 2941702*uk_16 + 400316*uk_160 + 11390625*uk_161 + 2936250*uk_162 + 756900*uk_163 + 195112*uk_164 + 3025*uk_17 + 1375*uk_18 + 3190*uk_19 + 55*uk_2 + 1540*uk_20 + 6545*uk_21 + 12375*uk_22 + 3190*uk_23 + 625*uk_24 + 1450*uk_25 + 700*uk_26 + 2975*uk_27 + 5625*uk_28 + 1450*uk_29 + 25*uk_3 + 3364*uk_30 + 1624*uk_31 + 6902*uk_32 + 13050*uk_33 + 3364*uk_34 + 784*uk_35 + 3332*uk_36 + 6300*uk_37 + 1624*uk_38 + 14161*uk_39 + 58*uk_4 + 26775*uk_40 + 6902*uk_41 + 50625*uk_42 + 13050*uk_43 + 3364*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 64310424025*uk_47 + 149200183738*uk_48 + 72027674908*uk_49 + 28*uk_5 + 306117618359*uk_50 + 578793816225*uk_51 + 149200183738*uk_52 + 153424975*uk_53 + 69738625*uk_54 + 161793610*uk_55 + 78107260*uk_56 + 331955855*uk_57 + 627647625*uk_58 + 161793610*uk_59 + 119*uk_6 + 31699375*uk_60 + 73542550*uk_61 + 35503300*uk_62 + 150889025*uk_63 + 285294375*uk_64 + 73542550*uk_65 + 170618716*uk_66 + 82367656*uk_67 + 350062538*uk_68 + 661882950*uk_69 + 225*uk_7 + 170618716*uk_70 + 39763696*uk_71 + 168995708*uk_72 + 319529700*uk_73 + 82367656*uk_74 + 718231759*uk_75 + 1358001225*uk_76 + 350062538*uk_77 + 2567649375*uk_78 + 661882950*uk_79 + 58*uk_8 + 170618716*uk_80 + 166375*uk_81 + 75625*uk_82 + 175450*uk_83 + 84700*uk_84 + 359975*uk_85 + 680625*uk_86 + 175450*uk_87 + 34375*uk_88 + 79750*uk_89 + 2572416961*uk_9 + 38500*uk_90 + 163625*uk_91 + 309375*uk_92 + 79750*uk_93 + 185020*uk_94 + 89320*uk_95 + 379610*uk_96 + 717750*uk_97 + 185020*uk_98 + 43120*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 186340*uk_100 + 346500*uk_101 + 38500*uk_102 + 805255*uk_103 + 1497375*uk_104 + 166375*uk_105 + 2784375*uk_106 + 309375*uk_107 + 34375*uk_108 + 8000*uk_109 + 1014380*uk_11 + 10000*uk_110 + 11200*uk_111 + 48400*uk_112 + 90000*uk_113 + 10000*uk_114 + 12500*uk_115 + 14000*uk_116 + 60500*uk_117 + 112500*uk_118 + 12500*uk_119 + 1267975*uk_12 + 15680*uk_120 + 67760*uk_121 + 126000*uk_122 + 14000*uk_123 + 292820*uk_124 + 544500*uk_125 + 60500*uk_126 + 1012500*uk_127 + 112500*uk_128 + 12500*uk_129 + 1420132*uk_13 + 15625*uk_130 + 17500*uk_131 + 75625*uk_132 + 140625*uk_133 + 15625*uk_134 + 19600*uk_135 + 84700*uk_136 + 157500*uk_137 + 17500*uk_138 + 366025*uk_139 + 6136999*uk_14 + 680625*uk_140 + 75625*uk_141 + 1265625*uk_142 + 140625*uk_143 + 15625*uk_144 + 21952*uk_145 + 94864*uk_146 + 176400*uk_147 + 19600*uk_148 + 409948*uk_149 + 11411775*uk_15 + 762300*uk_150 + 84700*uk_151 + 1417500*uk_152 + 157500*uk_153 + 17500*uk_154 + 1771561*uk_155 + 3294225*uk_156 + 366025*uk_157 + 6125625*uk_158 + 680625*uk_159 + 1267975*uk_16 + 75625*uk_160 + 11390625*uk_161 + 1265625*uk_162 + 140625*uk_163 + 15625*uk_164 + 3025*uk_17 + 1100*uk_18 + 1375*uk_19 + 55*uk_2 + 1540*uk_20 + 6655*uk_21 + 12375*uk_22 + 1375*uk_23 + 400*uk_24 + 500*uk_25 + 560*uk_26 + 2420*uk_27 + 4500*uk_28 + 500*uk_29 + 20*uk_3 + 625*uk_30 + 700*uk_31 + 3025*uk_32 + 5625*uk_33 + 625*uk_34 + 784*uk_35 + 3388*uk_36 + 6300*uk_37 + 700*uk_38 + 14641*uk_39 + 25*uk_4 + 27225*uk_40 + 3025*uk_41 + 50625*uk_42 + 5625*uk_43 + 625*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 51448339220*uk_47 + 64310424025*uk_48 + 72027674908*uk_49 + 28*uk_5 + 311262452281*uk_50 + 578793816225*uk_51 + 64310424025*uk_52 + 153424975*uk_53 + 55790900*uk_54 + 69738625*uk_55 + 78107260*uk_56 + 337534945*uk_57 + 627647625*uk_58 + 69738625*uk_59 + 121*uk_6 + 20287600*uk_60 + 25359500*uk_61 + 28402640*uk_62 + 122739980*uk_63 + 228235500*uk_64 + 25359500*uk_65 + 31699375*uk_66 + 35503300*uk_67 + 153424975*uk_68 + 285294375*uk_69 + 225*uk_7 + 31699375*uk_70 + 39763696*uk_71 + 171835972*uk_72 + 319529700*uk_73 + 35503300*uk_74 + 742576879*uk_75 + 1380824775*uk_76 + 153424975*uk_77 + 2567649375*uk_78 + 285294375*uk_79 + 25*uk_8 + 31699375*uk_80 + 166375*uk_81 + 60500*uk_82 + 75625*uk_83 + 84700*uk_84 + 366025*uk_85 + 680625*uk_86 + 75625*uk_87 + 22000*uk_88 + 27500*uk_89 + 2572416961*uk_9 + 30800*uk_90 + 133100*uk_91 + 247500*uk_92 + 27500*uk_93 + 34375*uk_94 + 38500*uk_95 + 166375*uk_96 + 309375*uk_97 + 34375*uk_98 + 43120*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 189420*uk_100 + 346500*uk_101 + 30800*uk_102 + 832095*uk_103 + 1522125*uk_104 + 135300*uk_105 + 2784375*uk_106 + 247500*uk_107 + 22000*uk_108 + 79507*uk_109 + 2180917*uk_11 + 36980*uk_110 + 51772*uk_111 + 227427*uk_112 + 416025*uk_113 + 36980*uk_114 + 17200*uk_115 + 24080*uk_116 + 105780*uk_117 + 193500*uk_118 + 17200*uk_119 + 1014380*uk_12 + 33712*uk_120 + 148092*uk_121 + 270900*uk_122 + 24080*uk_123 + 650547*uk_124 + 1190025*uk_125 + 105780*uk_126 + 2176875*uk_127 + 193500*uk_128 + 17200*uk_129 + 1420132*uk_13 + 8000*uk_130 + 11200*uk_131 + 49200*uk_132 + 90000*uk_133 + 8000*uk_134 + 15680*uk_135 + 68880*uk_136 + 126000*uk_137 + 11200*uk_138 + 302580*uk_139 + 6238437*uk_14 + 553500*uk_140 + 49200*uk_141 + 1012500*uk_142 + 90000*uk_143 + 8000*uk_144 + 21952*uk_145 + 96432*uk_146 + 176400*uk_147 + 15680*uk_148 + 423612*uk_149 + 11411775*uk_15 + 774900*uk_150 + 68880*uk_151 + 1417500*uk_152 + 126000*uk_153 + 11200*uk_154 + 1860867*uk_155 + 3404025*uk_156 + 302580*uk_157 + 6226875*uk_158 + 553500*uk_159 + 1014380*uk_16 + 49200*uk_160 + 11390625*uk_161 + 1012500*uk_162 + 90000*uk_163 + 8000*uk_164 + 3025*uk_17 + 2365*uk_18 + 1100*uk_19 + 55*uk_2 + 1540*uk_20 + 6765*uk_21 + 12375*uk_22 + 1100*uk_23 + 1849*uk_24 + 860*uk_25 + 1204*uk_26 + 5289*uk_27 + 9675*uk_28 + 860*uk_29 + 43*uk_3 + 400*uk_30 + 560*uk_31 + 2460*uk_32 + 4500*uk_33 + 400*uk_34 + 784*uk_35 + 3444*uk_36 + 6300*uk_37 + 560*uk_38 + 15129*uk_39 + 20*uk_4 + 27675*uk_40 + 2460*uk_41 + 50625*uk_42 + 4500*uk_43 + 400*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 110613929323*uk_47 + 51448339220*uk_48 + 72027674908*uk_49 + 28*uk_5 + 316407286203*uk_50 + 578793816225*uk_51 + 51448339220*uk_52 + 153424975*uk_53 + 119950435*uk_54 + 55790900*uk_55 + 78107260*uk_56 + 343114035*uk_57 + 627647625*uk_58 + 55790900*uk_59 + 123*uk_6 + 93779431*uk_60 + 43618340*uk_61 + 61065676*uk_62 + 268252791*uk_63 + 490706325*uk_64 + 43618340*uk_65 + 20287600*uk_66 + 28402640*uk_67 + 124768740*uk_68 + 228235500*uk_69 + 225*uk_7 + 20287600*uk_70 + 39763696*uk_71 + 174676236*uk_72 + 319529700*uk_73 + 28402640*uk_74 + 767327751*uk_75 + 1403648325*uk_76 + 124768740*uk_77 + 2567649375*uk_78 + 228235500*uk_79 + 20*uk_8 + 20287600*uk_80 + 166375*uk_81 + 130075*uk_82 + 60500*uk_83 + 84700*uk_84 + 372075*uk_85 + 680625*uk_86 + 60500*uk_87 + 101695*uk_88 + 47300*uk_89 + 2572416961*uk_9 + 66220*uk_90 + 290895*uk_91 + 532125*uk_92 + 47300*uk_93 + 22000*uk_94 + 30800*uk_95 + 135300*uk_96 + 247500*uk_97 + 22000*uk_98 + 43120*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 192500*uk_100 + 346500*uk_101 + 66220*uk_102 + 859375*uk_103 + 1546875*uk_104 + 295625*uk_105 + 2784375*uk_106 + 532125*uk_107 + 101695*uk_108 + 830584*uk_109 + 4767586*uk_11 + 379948*uk_110 + 247408*uk_111 + 1104500*uk_112 + 1988100*uk_113 + 379948*uk_114 + 173806*uk_115 + 113176*uk_116 + 505250*uk_117 + 909450*uk_118 + 173806*uk_119 + 2180917*uk_12 + 73696*uk_120 + 329000*uk_121 + 592200*uk_122 + 113176*uk_123 + 1468750*uk_124 + 2643750*uk_125 + 505250*uk_126 + 4758750*uk_127 + 909450*uk_128 + 173806*uk_129 + 1420132*uk_13 + 79507*uk_130 + 51772*uk_131 + 231125*uk_132 + 416025*uk_133 + 79507*uk_134 + 33712*uk_135 + 150500*uk_136 + 270900*uk_137 + 51772*uk_138 + 671875*uk_139 + 6339875*uk_14 + 1209375*uk_140 + 231125*uk_141 + 2176875*uk_142 + 416025*uk_143 + 79507*uk_144 + 21952*uk_145 + 98000*uk_146 + 176400*uk_147 + 33712*uk_148 + 437500*uk_149 + 11411775*uk_15 + 787500*uk_150 + 150500*uk_151 + 1417500*uk_152 + 270900*uk_153 + 51772*uk_154 + 1953125*uk_155 + 3515625*uk_156 + 671875*uk_157 + 6328125*uk_158 + 1209375*uk_159 + 2180917*uk_16 + 231125*uk_160 + 11390625*uk_161 + 2176875*uk_162 + 416025*uk_163 + 79507*uk_164 + 3025*uk_17 + 5170*uk_18 + 2365*uk_19 + 55*uk_2 + 1540*uk_20 + 6875*uk_21 + 12375*uk_22 + 2365*uk_23 + 8836*uk_24 + 4042*uk_25 + 2632*uk_26 + 11750*uk_27 + 21150*uk_28 + 4042*uk_29 + 94*uk_3 + 1849*uk_30 + 1204*uk_31 + 5375*uk_32 + 9675*uk_33 + 1849*uk_34 + 784*uk_35 + 3500*uk_36 + 6300*uk_37 + 1204*uk_38 + 15625*uk_39 + 43*uk_4 + 28125*uk_40 + 5375*uk_41 + 50625*uk_42 + 9675*uk_43 + 1849*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 241807194334*uk_47 + 110613929323*uk_48 + 72027674908*uk_49 + 28*uk_5 + 321552120125*uk_50 + 578793816225*uk_51 + 110613929323*uk_52 + 153424975*uk_53 + 262217230*uk_54 + 119950435*uk_55 + 78107260*uk_56 + 348693125*uk_57 + 627647625*uk_58 + 119950435*uk_59 + 125*uk_6 + 448153084*uk_60 + 205006198*uk_61 + 133492408*uk_62 + 595948250*uk_63 + 1072706850*uk_64 + 205006198*uk_65 + 93779431*uk_66 + 61065676*uk_67 + 272614625*uk_68 + 490706325*uk_69 + 225*uk_7 + 93779431*uk_70 + 39763696*uk_71 + 177516500*uk_72 + 319529700*uk_73 + 61065676*uk_74 + 792484375*uk_75 + 1426471875*uk_76 + 272614625*uk_77 + 2567649375*uk_78 + 490706325*uk_79 + 43*uk_8 + 93779431*uk_80 + 166375*uk_81 + 284350*uk_82 + 130075*uk_83 + 84700*uk_84 + 378125*uk_85 + 680625*uk_86 + 130075*uk_87 + 485980*uk_88 + 222310*uk_89 + 2572416961*uk_9 + 144760*uk_90 + 646250*uk_91 + 1163250*uk_92 + 222310*uk_93 + 101695*uk_94 + 66220*uk_95 + 295625*uk_96 + 532125*uk_97 + 101695*uk_98 + 43120*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 167640*uk_100 + 297000*uk_101 + 124080*uk_102 + 887095*uk_103 + 1571625*uk_104 + 656590*uk_105 + 2784375*uk_106 + 1163250*uk_107 + 485980*uk_108 + 97336*uk_109 + 2333074*uk_11 + 198904*uk_110 + 50784*uk_111 + 268732*uk_112 + 476100*uk_113 + 198904*uk_114 + 406456*uk_115 + 103776*uk_116 + 549148*uk_117 + 972900*uk_118 + 406456*uk_119 + 4767586*uk_12 + 26496*uk_120 + 140208*uk_121 + 248400*uk_122 + 103776*uk_123 + 741934*uk_124 + 1314450*uk_125 + 549148*uk_126 + 2328750*uk_127 + 972900*uk_128 + 406456*uk_129 + 1217256*uk_13 + 830584*uk_130 + 212064*uk_131 + 1122172*uk_132 + 1988100*uk_133 + 830584*uk_134 + 54144*uk_135 + 286512*uk_136 + 507600*uk_137 + 212064*uk_138 + 1516126*uk_139 + 6441313*uk_14 + 2686050*uk_140 + 1122172*uk_141 + 4758750*uk_142 + 1988100*uk_143 + 830584*uk_144 + 13824*uk_145 + 73152*uk_146 + 129600*uk_147 + 54144*uk_148 + 387096*uk_149 + 11411775*uk_15 + 685800*uk_150 + 286512*uk_151 + 1215000*uk_152 + 507600*uk_153 + 212064*uk_154 + 2048383*uk_155 + 3629025*uk_156 + 1516126*uk_157 + 6429375*uk_158 + 2686050*uk_159 + 4767586*uk_16 + 1122172*uk_160 + 11390625*uk_161 + 4758750*uk_162 + 1988100*uk_163 + 830584*uk_164 + 3025*uk_17 + 2530*uk_18 + 5170*uk_19 + 55*uk_2 + 1320*uk_20 + 6985*uk_21 + 12375*uk_22 + 5170*uk_23 + 2116*uk_24 + 4324*uk_25 + 1104*uk_26 + 5842*uk_27 + 10350*uk_28 + 4324*uk_29 + 46*uk_3 + 8836*uk_30 + 2256*uk_31 + 11938*uk_32 + 21150*uk_33 + 8836*uk_34 + 576*uk_35 + 3048*uk_36 + 5400*uk_37 + 2256*uk_38 + 16129*uk_39 + 94*uk_4 + 28575*uk_40 + 11938*uk_41 + 50625*uk_42 + 21150*uk_43 + 8836*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 118331180206*uk_47 + 241807194334*uk_48 + 61738007064*uk_49 + 24*uk_5 + 326696954047*uk_50 + 578793816225*uk_51 + 241807194334*uk_52 + 153424975*uk_53 + 128319070*uk_54 + 262217230*uk_55 + 66949080*uk_56 + 354272215*uk_57 + 627647625*uk_58 + 262217230*uk_59 + 127*uk_6 + 107321404*uk_60 + 219308956*uk_61 + 55993776*uk_62 + 296300398*uk_63 + 524941650*uk_64 + 219308956*uk_65 + 448153084*uk_66 + 114422064*uk_67 + 605483422*uk_68 + 1072706850*uk_69 + 225*uk_7 + 448153084*uk_70 + 29214144*uk_71 + 154591512*uk_72 + 273882600*uk_73 + 114422064*uk_74 + 818046751*uk_75 + 1449295425*uk_76 + 605483422*uk_77 + 2567649375*uk_78 + 1072706850*uk_79 + 94*uk_8 + 448153084*uk_80 + 166375*uk_81 + 139150*uk_82 + 284350*uk_83 + 72600*uk_84 + 384175*uk_85 + 680625*uk_86 + 284350*uk_87 + 116380*uk_88 + 237820*uk_89 + 2572416961*uk_9 + 60720*uk_90 + 321310*uk_91 + 569250*uk_92 + 237820*uk_93 + 485980*uk_94 + 124080*uk_95 + 656590*uk_96 + 1163250*uk_97 + 485980*uk_98 + 31680*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 170280*uk_100 + 297000*uk_101 + 60720*uk_102 + 915255*uk_103 + 1596375*uk_104 + 326370*uk_105 + 2784375*uk_106 + 569250*uk_107 + 116380*uk_108 + 10648*uk_109 + 1115818*uk_11 + 22264*uk_110 + 11616*uk_111 + 62436*uk_112 + 108900*uk_113 + 22264*uk_114 + 46552*uk_115 + 24288*uk_116 + 130548*uk_117 + 227700*uk_118 + 46552*uk_119 + 2333074*uk_12 + 12672*uk_120 + 68112*uk_121 + 118800*uk_122 + 24288*uk_123 + 366102*uk_124 + 638550*uk_125 + 130548*uk_126 + 1113750*uk_127 + 227700*uk_128 + 46552*uk_129 + 1217256*uk_13 + 97336*uk_130 + 50784*uk_131 + 272964*uk_132 + 476100*uk_133 + 97336*uk_134 + 26496*uk_135 + 142416*uk_136 + 248400*uk_137 + 50784*uk_138 + 765486*uk_139 + 6542751*uk_14 + 1335150*uk_140 + 272964*uk_141 + 2328750*uk_142 + 476100*uk_143 + 97336*uk_144 + 13824*uk_145 + 74304*uk_146 + 129600*uk_147 + 26496*uk_148 + 399384*uk_149 + 11411775*uk_15 + 696600*uk_150 + 142416*uk_151 + 1215000*uk_152 + 248400*uk_153 + 50784*uk_154 + 2146689*uk_155 + 3744225*uk_156 + 765486*uk_157 + 6530625*uk_158 + 1335150*uk_159 + 2333074*uk_16 + 272964*uk_160 + 11390625*uk_161 + 2328750*uk_162 + 476100*uk_163 + 97336*uk_164 + 3025*uk_17 + 1210*uk_18 + 2530*uk_19 + 55*uk_2 + 1320*uk_20 + 7095*uk_21 + 12375*uk_22 + 2530*uk_23 + 484*uk_24 + 1012*uk_25 + 528*uk_26 + 2838*uk_27 + 4950*uk_28 + 1012*uk_29 + 22*uk_3 + 2116*uk_30 + 1104*uk_31 + 5934*uk_32 + 10350*uk_33 + 2116*uk_34 + 576*uk_35 + 3096*uk_36 + 5400*uk_37 + 1104*uk_38 + 16641*uk_39 + 46*uk_4 + 29025*uk_40 + 5934*uk_41 + 50625*uk_42 + 10350*uk_43 + 2116*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 56593173142*uk_47 + 118331180206*uk_48 + 61738007064*uk_49 + 24*uk_5 + 331841787969*uk_50 + 578793816225*uk_51 + 118331180206*uk_52 + 153424975*uk_53 + 61369990*uk_54 + 128319070*uk_55 + 66949080*uk_56 + 359851305*uk_57 + 627647625*uk_58 + 128319070*uk_59 + 129*uk_6 + 24547996*uk_60 + 51327628*uk_61 + 26779632*uk_62 + 143940522*uk_63 + 251059050*uk_64 + 51327628*uk_65 + 107321404*uk_66 + 55993776*uk_67 + 300966546*uk_68 + 524941650*uk_69 + 225*uk_7 + 107321404*uk_70 + 29214144*uk_71 + 157026024*uk_72 + 273882600*uk_73 + 55993776*uk_74 + 844014879*uk_75 + 1472118975*uk_76 + 300966546*uk_77 + 2567649375*uk_78 + 524941650*uk_79 + 46*uk_8 + 107321404*uk_80 + 166375*uk_81 + 66550*uk_82 + 139150*uk_83 + 72600*uk_84 + 390225*uk_85 + 680625*uk_86 + 139150*uk_87 + 26620*uk_88 + 55660*uk_89 + 2572416961*uk_9 + 29040*uk_90 + 156090*uk_91 + 272250*uk_92 + 55660*uk_93 + 116380*uk_94 + 60720*uk_95 + 326370*uk_96 + 569250*uk_97 + 116380*uk_98 + 31680*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 172920*uk_100 + 297000*uk_101 + 29040*uk_102 + 943855*uk_103 + 1621125*uk_104 + 158510*uk_105 + 2784375*uk_106 + 272250*uk_107 + 26620*uk_108 + 10648*uk_109 + 1115818*uk_11 + 10648*uk_110 + 11616*uk_111 + 63404*uk_112 + 108900*uk_113 + 10648*uk_114 + 10648*uk_115 + 11616*uk_116 + 63404*uk_117 + 108900*uk_118 + 10648*uk_119 + 1115818*uk_12 + 12672*uk_120 + 69168*uk_121 + 118800*uk_122 + 11616*uk_123 + 377542*uk_124 + 648450*uk_125 + 63404*uk_126 + 1113750*uk_127 + 108900*uk_128 + 10648*uk_129 + 1217256*uk_13 + 10648*uk_130 + 11616*uk_131 + 63404*uk_132 + 108900*uk_133 + 10648*uk_134 + 12672*uk_135 + 69168*uk_136 + 118800*uk_137 + 11616*uk_138 + 377542*uk_139 + 6644189*uk_14 + 648450*uk_140 + 63404*uk_141 + 1113750*uk_142 + 108900*uk_143 + 10648*uk_144 + 13824*uk_145 + 75456*uk_146 + 129600*uk_147 + 12672*uk_148 + 411864*uk_149 + 11411775*uk_15 + 707400*uk_150 + 69168*uk_151 + 1215000*uk_152 + 118800*uk_153 + 11616*uk_154 + 2248091*uk_155 + 3861225*uk_156 + 377542*uk_157 + 6631875*uk_158 + 648450*uk_159 + 1115818*uk_16 + 63404*uk_160 + 11390625*uk_161 + 1113750*uk_162 + 108900*uk_163 + 10648*uk_164 + 3025*uk_17 + 1210*uk_18 + 1210*uk_19 + 55*uk_2 + 1320*uk_20 + 7205*uk_21 + 12375*uk_22 + 1210*uk_23 + 484*uk_24 + 484*uk_25 + 528*uk_26 + 2882*uk_27 + 4950*uk_28 + 484*uk_29 + 22*uk_3 + 484*uk_30 + 528*uk_31 + 2882*uk_32 + 4950*uk_33 + 484*uk_34 + 576*uk_35 + 3144*uk_36 + 5400*uk_37 + 528*uk_38 + 17161*uk_39 + 22*uk_4 + 29475*uk_40 + 2882*uk_41 + 50625*uk_42 + 4950*uk_43 + 484*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 56593173142*uk_47 + 56593173142*uk_48 + 61738007064*uk_49 + 24*uk_5 + 336986621891*uk_50 + 578793816225*uk_51 + 56593173142*uk_52 + 153424975*uk_53 + 61369990*uk_54 + 61369990*uk_55 + 66949080*uk_56 + 365430395*uk_57 + 627647625*uk_58 + 61369990*uk_59 + 131*uk_6 + 24547996*uk_60 + 24547996*uk_61 + 26779632*uk_62 + 146172158*uk_63 + 251059050*uk_64 + 24547996*uk_65 + 24547996*uk_66 + 26779632*uk_67 + 146172158*uk_68 + 251059050*uk_69 + 225*uk_7 + 24547996*uk_70 + 29214144*uk_71 + 159460536*uk_72 + 273882600*uk_73 + 26779632*uk_74 + 870388759*uk_75 + 1494942525*uk_76 + 146172158*uk_77 + 2567649375*uk_78 + 251059050*uk_79 + 22*uk_8 + 24547996*uk_80 + 166375*uk_81 + 66550*uk_82 + 66550*uk_83 + 72600*uk_84 + 396275*uk_85 + 680625*uk_86 + 66550*uk_87 + 26620*uk_88 + 26620*uk_89 + 2572416961*uk_9 + 29040*uk_90 + 158510*uk_91 + 272250*uk_92 + 26620*uk_93 + 26620*uk_94 + 29040*uk_95 + 158510*uk_96 + 272250*uk_97 + 26620*uk_98 + 31680*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 175560*uk_100 + 297000*uk_101 + 29040*uk_102 + 972895*uk_103 + 1645875*uk_104 + 160930*uk_105 + 2784375*uk_106 + 272250*uk_107 + 26620*uk_108 + 97336*uk_109 + 2333074*uk_11 + 46552*uk_110 + 50784*uk_111 + 281428*uk_112 + 476100*uk_113 + 46552*uk_114 + 22264*uk_115 + 24288*uk_116 + 134596*uk_117 + 227700*uk_118 + 22264*uk_119 + 1115818*uk_12 + 26496*uk_120 + 146832*uk_121 + 248400*uk_122 + 24288*uk_123 + 813694*uk_124 + 1376550*uk_125 + 134596*uk_126 + 2328750*uk_127 + 227700*uk_128 + 22264*uk_129 + 1217256*uk_13 + 10648*uk_130 + 11616*uk_131 + 64372*uk_132 + 108900*uk_133 + 10648*uk_134 + 12672*uk_135 + 70224*uk_136 + 118800*uk_137 + 11616*uk_138 + 389158*uk_139 + 6745627*uk_14 + 658350*uk_140 + 64372*uk_141 + 1113750*uk_142 + 108900*uk_143 + 10648*uk_144 + 13824*uk_145 + 76608*uk_146 + 129600*uk_147 + 12672*uk_148 + 424536*uk_149 + 11411775*uk_15 + 718200*uk_150 + 70224*uk_151 + 1215000*uk_152 + 118800*uk_153 + 11616*uk_154 + 2352637*uk_155 + 3980025*uk_156 + 389158*uk_157 + 6733125*uk_158 + 658350*uk_159 + 1115818*uk_16 + 64372*uk_160 + 11390625*uk_161 + 1113750*uk_162 + 108900*uk_163 + 10648*uk_164 + 3025*uk_17 + 2530*uk_18 + 1210*uk_19 + 55*uk_2 + 1320*uk_20 + 7315*uk_21 + 12375*uk_22 + 1210*uk_23 + 2116*uk_24 + 1012*uk_25 + 1104*uk_26 + 6118*uk_27 + 10350*uk_28 + 1012*uk_29 + 46*uk_3 + 484*uk_30 + 528*uk_31 + 2926*uk_32 + 4950*uk_33 + 484*uk_34 + 576*uk_35 + 3192*uk_36 + 5400*uk_37 + 528*uk_38 + 17689*uk_39 + 22*uk_4 + 29925*uk_40 + 2926*uk_41 + 50625*uk_42 + 4950*uk_43 + 484*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 118331180206*uk_47 + 56593173142*uk_48 + 61738007064*uk_49 + 24*uk_5 + 342131455813*uk_50 + 578793816225*uk_51 + 56593173142*uk_52 + 153424975*uk_53 + 128319070*uk_54 + 61369990*uk_55 + 66949080*uk_56 + 371009485*uk_57 + 627647625*uk_58 + 61369990*uk_59 + 133*uk_6 + 107321404*uk_60 + 51327628*uk_61 + 55993776*uk_62 + 310298842*uk_63 + 524941650*uk_64 + 51327628*uk_65 + 24547996*uk_66 + 26779632*uk_67 + 148403794*uk_68 + 251059050*uk_69 + 225*uk_7 + 24547996*uk_70 + 29214144*uk_71 + 161895048*uk_72 + 273882600*uk_73 + 26779632*uk_74 + 897168391*uk_75 + 1517766075*uk_76 + 148403794*uk_77 + 2567649375*uk_78 + 251059050*uk_79 + 22*uk_8 + 24547996*uk_80 + 166375*uk_81 + 139150*uk_82 + 66550*uk_83 + 72600*uk_84 + 402325*uk_85 + 680625*uk_86 + 66550*uk_87 + 116380*uk_88 + 55660*uk_89 + 2572416961*uk_9 + 60720*uk_90 + 336490*uk_91 + 569250*uk_92 + 55660*uk_93 + 26620*uk_94 + 29040*uk_95 + 160930*uk_96 + 272250*uk_97 + 26620*uk_98 + 31680*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 178200*uk_100 + 297000*uk_101 + 60720*uk_102 + 1002375*uk_103 + 1670625*uk_104 + 341550*uk_105 + 2784375*uk_106 + 569250*uk_107 + 116380*uk_108 + 830584*uk_109 + 4767586*uk_11 + 406456*uk_110 + 212064*uk_111 + 1192860*uk_112 + 1988100*uk_113 + 406456*uk_114 + 198904*uk_115 + 103776*uk_116 + 583740*uk_117 + 972900*uk_118 + 198904*uk_119 + 2333074*uk_12 + 54144*uk_120 + 304560*uk_121 + 507600*uk_122 + 103776*uk_123 + 1713150*uk_124 + 2855250*uk_125 + 583740*uk_126 + 4758750*uk_127 + 972900*uk_128 + 198904*uk_129 + 1217256*uk_13 + 97336*uk_130 + 50784*uk_131 + 285660*uk_132 + 476100*uk_133 + 97336*uk_134 + 26496*uk_135 + 149040*uk_136 + 248400*uk_137 + 50784*uk_138 + 838350*uk_139 + 6847065*uk_14 + 1397250*uk_140 + 285660*uk_141 + 2328750*uk_142 + 476100*uk_143 + 97336*uk_144 + 13824*uk_145 + 77760*uk_146 + 129600*uk_147 + 26496*uk_148 + 437400*uk_149 + 11411775*uk_15 + 729000*uk_150 + 149040*uk_151 + 1215000*uk_152 + 248400*uk_153 + 50784*uk_154 + 2460375*uk_155 + 4100625*uk_156 + 838350*uk_157 + 6834375*uk_158 + 1397250*uk_159 + 2333074*uk_16 + 285660*uk_160 + 11390625*uk_161 + 2328750*uk_162 + 476100*uk_163 + 97336*uk_164 + 3025*uk_17 + 5170*uk_18 + 2530*uk_19 + 55*uk_2 + 1320*uk_20 + 7425*uk_21 + 12375*uk_22 + 2530*uk_23 + 8836*uk_24 + 4324*uk_25 + 2256*uk_26 + 12690*uk_27 + 21150*uk_28 + 4324*uk_29 + 94*uk_3 + 2116*uk_30 + 1104*uk_31 + 6210*uk_32 + 10350*uk_33 + 2116*uk_34 + 576*uk_35 + 3240*uk_36 + 5400*uk_37 + 1104*uk_38 + 18225*uk_39 + 46*uk_4 + 30375*uk_40 + 6210*uk_41 + 50625*uk_42 + 10350*uk_43 + 2116*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 241807194334*uk_47 + 118331180206*uk_48 + 61738007064*uk_49 + 24*uk_5 + 347276289735*uk_50 + 578793816225*uk_51 + 118331180206*uk_52 + 153424975*uk_53 + 262217230*uk_54 + 128319070*uk_55 + 66949080*uk_56 + 376588575*uk_57 + 627647625*uk_58 + 128319070*uk_59 + 135*uk_6 + 448153084*uk_60 + 219308956*uk_61 + 114422064*uk_62 + 643624110*uk_63 + 1072706850*uk_64 + 219308956*uk_65 + 107321404*uk_66 + 55993776*uk_67 + 314964990*uk_68 + 524941650*uk_69 + 225*uk_7 + 107321404*uk_70 + 29214144*uk_71 + 164329560*uk_72 + 273882600*uk_73 + 55993776*uk_74 + 924353775*uk_75 + 1540589625*uk_76 + 314964990*uk_77 + 2567649375*uk_78 + 524941650*uk_79 + 46*uk_8 + 107321404*uk_80 + 166375*uk_81 + 284350*uk_82 + 139150*uk_83 + 72600*uk_84 + 408375*uk_85 + 680625*uk_86 + 139150*uk_87 + 485980*uk_88 + 237820*uk_89 + 2572416961*uk_9 + 124080*uk_90 + 697950*uk_91 + 1163250*uk_92 + 237820*uk_93 + 116380*uk_94 + 60720*uk_95 + 341550*uk_96 + 569250*uk_97 + 116380*uk_98 + 31680*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 150700*uk_100 + 247500*uk_101 + 103400*uk_102 + 1032295*uk_103 + 1695375*uk_104 + 708290*uk_105 + 2784375*uk_106 + 1163250*uk_107 + 485980*uk_108 + 24389*uk_109 + 1470851*uk_11 + 79054*uk_110 + 16820*uk_111 + 115217*uk_112 + 189225*uk_113 + 79054*uk_114 + 256244*uk_115 + 54520*uk_116 + 373462*uk_117 + 613350*uk_118 + 256244*uk_119 + 4767586*uk_12 + 11600*uk_120 + 79460*uk_121 + 130500*uk_122 + 54520*uk_123 + 544301*uk_124 + 893925*uk_125 + 373462*uk_126 + 1468125*uk_127 + 613350*uk_128 + 256244*uk_129 + 1014380*uk_13 + 830584*uk_130 + 176720*uk_131 + 1210532*uk_132 + 1988100*uk_133 + 830584*uk_134 + 37600*uk_135 + 257560*uk_136 + 423000*uk_137 + 176720*uk_138 + 1764286*uk_139 + 6948503*uk_14 + 2897550*uk_140 + 1210532*uk_141 + 4758750*uk_142 + 1988100*uk_143 + 830584*uk_144 + 8000*uk_145 + 54800*uk_146 + 90000*uk_147 + 37600*uk_148 + 375380*uk_149 + 11411775*uk_15 + 616500*uk_150 + 257560*uk_151 + 1012500*uk_152 + 423000*uk_153 + 176720*uk_154 + 2571353*uk_155 + 4223025*uk_156 + 1764286*uk_157 + 6935625*uk_158 + 2897550*uk_159 + 4767586*uk_16 + 1210532*uk_160 + 11390625*uk_161 + 4758750*uk_162 + 1988100*uk_163 + 830584*uk_164 + 3025*uk_17 + 1595*uk_18 + 5170*uk_19 + 55*uk_2 + 1100*uk_20 + 7535*uk_21 + 12375*uk_22 + 5170*uk_23 + 841*uk_24 + 2726*uk_25 + 580*uk_26 + 3973*uk_27 + 6525*uk_28 + 2726*uk_29 + 29*uk_3 + 8836*uk_30 + 1880*uk_31 + 12878*uk_32 + 21150*uk_33 + 8836*uk_34 + 400*uk_35 + 2740*uk_36 + 4500*uk_37 + 1880*uk_38 + 18769*uk_39 + 94*uk_4 + 30825*uk_40 + 12878*uk_41 + 50625*uk_42 + 21150*uk_43 + 8836*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 74600091869*uk_47 + 241807194334*uk_48 + 51448339220*uk_49 + 20*uk_5 + 352421123657*uk_50 + 578793816225*uk_51 + 241807194334*uk_52 + 153424975*uk_53 + 80896805*uk_54 + 262217230*uk_55 + 55790900*uk_56 + 382167665*uk_57 + 627647625*uk_58 + 262217230*uk_59 + 137*uk_6 + 42654679*uk_60 + 138259994*uk_61 + 29417020*uk_62 + 201506587*uk_63 + 330941475*uk_64 + 138259994*uk_65 + 448153084*uk_66 + 95351720*uk_67 + 653159282*uk_68 + 1072706850*uk_69 + 225*uk_7 + 448153084*uk_70 + 20287600*uk_71 + 138970060*uk_72 + 228235500*uk_73 + 95351720*uk_74 + 951944911*uk_75 + 1563413175*uk_76 + 653159282*uk_77 + 2567649375*uk_78 + 1072706850*uk_79 + 94*uk_8 + 448153084*uk_80 + 166375*uk_81 + 87725*uk_82 + 284350*uk_83 + 60500*uk_84 + 414425*uk_85 + 680625*uk_86 + 284350*uk_87 + 46255*uk_88 + 149930*uk_89 + 2572416961*uk_9 + 31900*uk_90 + 218515*uk_91 + 358875*uk_92 + 149930*uk_93 + 485980*uk_94 + 103400*uk_95 + 708290*uk_96 + 1163250*uk_97 + 485980*uk_98 + 22000*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 183480*uk_100 + 297000*uk_101 + 38280*uk_102 + 1062655*uk_103 + 1720125*uk_104 + 221705*uk_105 + 2784375*uk_106 + 358875*uk_107 + 46255*uk_108 + 1860867*uk_109 + 6238437*uk_11 + 438741*uk_110 + 363096*uk_111 + 2102931*uk_112 + 3404025*uk_113 + 438741*uk_114 + 103443*uk_115 + 85608*uk_116 + 495813*uk_117 + 802575*uk_118 + 103443*uk_119 + 1470851*uk_12 + 70848*uk_120 + 410328*uk_121 + 664200*uk_122 + 85608*uk_123 + 2376483*uk_124 + 3846825*uk_125 + 495813*uk_126 + 6226875*uk_127 + 802575*uk_128 + 103443*uk_129 + 1217256*uk_13 + 24389*uk_130 + 20184*uk_131 + 116899*uk_132 + 189225*uk_133 + 24389*uk_134 + 16704*uk_135 + 96744*uk_136 + 156600*uk_137 + 20184*uk_138 + 560309*uk_139 + 7049941*uk_14 + 906975*uk_140 + 116899*uk_141 + 1468125*uk_142 + 189225*uk_143 + 24389*uk_144 + 13824*uk_145 + 80064*uk_146 + 129600*uk_147 + 16704*uk_148 + 463704*uk_149 + 11411775*uk_15 + 750600*uk_150 + 96744*uk_151 + 1215000*uk_152 + 156600*uk_153 + 20184*uk_154 + 2685619*uk_155 + 4347225*uk_156 + 560309*uk_157 + 7036875*uk_158 + 906975*uk_159 + 1470851*uk_16 + 116899*uk_160 + 11390625*uk_161 + 1468125*uk_162 + 189225*uk_163 + 24389*uk_164 + 3025*uk_17 + 6765*uk_18 + 1595*uk_19 + 55*uk_2 + 1320*uk_20 + 7645*uk_21 + 12375*uk_22 + 1595*uk_23 + 15129*uk_24 + 3567*uk_25 + 2952*uk_26 + 17097*uk_27 + 27675*uk_28 + 3567*uk_29 + 123*uk_3 + 841*uk_30 + 696*uk_31 + 4031*uk_32 + 6525*uk_33 + 841*uk_34 + 576*uk_35 + 3336*uk_36 + 5400*uk_37 + 696*uk_38 + 19321*uk_39 + 29*uk_4 + 31275*uk_40 + 4031*uk_41 + 50625*uk_42 + 6525*uk_43 + 841*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 316407286203*uk_47 + 74600091869*uk_48 + 61738007064*uk_49 + 24*uk_5 + 357565957579*uk_50 + 578793816225*uk_51 + 74600091869*uk_52 + 153424975*uk_53 + 343114035*uk_54 + 80896805*uk_55 + 66949080*uk_56 + 387746755*uk_57 + 627647625*uk_58 + 80896805*uk_59 + 139*uk_6 + 767327751*uk_60 + 180914673*uk_61 + 149722488*uk_62 + 867142743*uk_63 + 1403648325*uk_64 + 180914673*uk_65 + 42654679*uk_66 + 35300424*uk_67 + 204448289*uk_68 + 330941475*uk_69 + 225*uk_7 + 42654679*uk_70 + 29214144*uk_71 + 169198584*uk_72 + 273882600*uk_73 + 35300424*uk_74 + 979941799*uk_75 + 1586236725*uk_76 + 204448289*uk_77 + 2567649375*uk_78 + 330941475*uk_79 + 29*uk_8 + 42654679*uk_80 + 166375*uk_81 + 372075*uk_82 + 87725*uk_83 + 72600*uk_84 + 420475*uk_85 + 680625*uk_86 + 87725*uk_87 + 832095*uk_88 + 196185*uk_89 + 2572416961*uk_9 + 162360*uk_90 + 940335*uk_91 + 1522125*uk_92 + 196185*uk_93 + 46255*uk_94 + 38280*uk_95 + 221705*uk_96 + 358875*uk_97 + 46255*uk_98 + 31680*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 155100*uk_100 + 247500*uk_101 + 135300*uk_102 + 1093455*uk_103 + 1744875*uk_104 + 953865*uk_105 + 2784375*uk_106 + 1522125*uk_107 + 832095*uk_108 + 1000000*uk_109 + 5071900*uk_11 + 1230000*uk_110 + 200000*uk_111 + 1410000*uk_112 + 2250000*uk_113 + 1230000*uk_114 + 1512900*uk_115 + 246000*uk_116 + 1734300*uk_117 + 2767500*uk_118 + 1512900*uk_119 + 6238437*uk_12 + 40000*uk_120 + 282000*uk_121 + 450000*uk_122 + 246000*uk_123 + 1988100*uk_124 + 3172500*uk_125 + 1734300*uk_126 + 5062500*uk_127 + 2767500*uk_128 + 1512900*uk_129 + 1014380*uk_13 + 1860867*uk_130 + 302580*uk_131 + 2133189*uk_132 + 3404025*uk_133 + 1860867*uk_134 + 49200*uk_135 + 346860*uk_136 + 553500*uk_137 + 302580*uk_138 + 2445363*uk_139 + 7151379*uk_14 + 3902175*uk_140 + 2133189*uk_141 + 6226875*uk_142 + 3404025*uk_143 + 1860867*uk_144 + 8000*uk_145 + 56400*uk_146 + 90000*uk_147 + 49200*uk_148 + 397620*uk_149 + 11411775*uk_15 + 634500*uk_150 + 346860*uk_151 + 1012500*uk_152 + 553500*uk_153 + 302580*uk_154 + 2803221*uk_155 + 4473225*uk_156 + 2445363*uk_157 + 7138125*uk_158 + 3902175*uk_159 + 6238437*uk_16 + 2133189*uk_160 + 11390625*uk_161 + 6226875*uk_162 + 3404025*uk_163 + 1860867*uk_164 + 3025*uk_17 + 5500*uk_18 + 6765*uk_19 + 55*uk_2 + 1100*uk_20 + 7755*uk_21 + 12375*uk_22 + 6765*uk_23 + 10000*uk_24 + 12300*uk_25 + 2000*uk_26 + 14100*uk_27 + 22500*uk_28 + 12300*uk_29 + 100*uk_3 + 15129*uk_30 + 2460*uk_31 + 17343*uk_32 + 27675*uk_33 + 15129*uk_34 + 400*uk_35 + 2820*uk_36 + 4500*uk_37 + 2460*uk_38 + 19881*uk_39 + 123*uk_4 + 31725*uk_40 + 17343*uk_41 + 50625*uk_42 + 27675*uk_43 + 15129*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 257241696100*uk_47 + 316407286203*uk_48 + 51448339220*uk_49 + 20*uk_5 + 362710791501*uk_50 + 578793816225*uk_51 + 316407286203*uk_52 + 153424975*uk_53 + 278954500*uk_54 + 343114035*uk_55 + 55790900*uk_56 + 393325845*uk_57 + 627647625*uk_58 + 343114035*uk_59 + 141*uk_6 + 507190000*uk_60 + 623843700*uk_61 + 101438000*uk_62 + 715137900*uk_63 + 1141177500*uk_64 + 623843700*uk_65 + 767327751*uk_66 + 124768740*uk_67 + 879619617*uk_68 + 1403648325*uk_69 + 225*uk_7 + 767327751*uk_70 + 20287600*uk_71 + 143027580*uk_72 + 228235500*uk_73 + 124768740*uk_74 + 1008344439*uk_75 + 1609060275*uk_76 + 879619617*uk_77 + 2567649375*uk_78 + 1403648325*uk_79 + 123*uk_8 + 767327751*uk_80 + 166375*uk_81 + 302500*uk_82 + 372075*uk_83 + 60500*uk_84 + 426525*uk_85 + 680625*uk_86 + 372075*uk_87 + 550000*uk_88 + 676500*uk_89 + 2572416961*uk_9 + 110000*uk_90 + 775500*uk_91 + 1237500*uk_92 + 676500*uk_93 + 832095*uk_94 + 135300*uk_95 + 953865*uk_96 + 1522125*uk_97 + 832095*uk_98 + 22000*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 157300*uk_100 + 247500*uk_101 + 110000*uk_102 + 1124695*uk_103 + 1769625*uk_104 + 786500*uk_105 + 2784375*uk_106 + 1237500*uk_107 + 550000*uk_108 + 912673*uk_109 + 4919743*uk_11 + 940900*uk_110 + 188180*uk_111 + 1345487*uk_112 + 2117025*uk_113 + 940900*uk_114 + 970000*uk_115 + 194000*uk_116 + 1387100*uk_117 + 2182500*uk_118 + 970000*uk_119 + 5071900*uk_12 + 38800*uk_120 + 277420*uk_121 + 436500*uk_122 + 194000*uk_123 + 1983553*uk_124 + 3120975*uk_125 + 1387100*uk_126 + 4910625*uk_127 + 2182500*uk_128 + 970000*uk_129 + 1014380*uk_13 + 1000000*uk_130 + 200000*uk_131 + 1430000*uk_132 + 2250000*uk_133 + 1000000*uk_134 + 40000*uk_135 + 286000*uk_136 + 450000*uk_137 + 200000*uk_138 + 2044900*uk_139 + 7252817*uk_14 + 3217500*uk_140 + 1430000*uk_141 + 5062500*uk_142 + 2250000*uk_143 + 1000000*uk_144 + 8000*uk_145 + 57200*uk_146 + 90000*uk_147 + 40000*uk_148 + 408980*uk_149 + 11411775*uk_15 + 643500*uk_150 + 286000*uk_151 + 1012500*uk_152 + 450000*uk_153 + 200000*uk_154 + 2924207*uk_155 + 4601025*uk_156 + 2044900*uk_157 + 7239375*uk_158 + 3217500*uk_159 + 5071900*uk_16 + 1430000*uk_160 + 11390625*uk_161 + 5062500*uk_162 + 2250000*uk_163 + 1000000*uk_164 + 3025*uk_17 + 5335*uk_18 + 5500*uk_19 + 55*uk_2 + 1100*uk_20 + 7865*uk_21 + 12375*uk_22 + 5500*uk_23 + 9409*uk_24 + 9700*uk_25 + 1940*uk_26 + 13871*uk_27 + 21825*uk_28 + 9700*uk_29 + 97*uk_3 + 10000*uk_30 + 2000*uk_31 + 14300*uk_32 + 22500*uk_33 + 10000*uk_34 + 400*uk_35 + 2860*uk_36 + 4500*uk_37 + 2000*uk_38 + 20449*uk_39 + 100*uk_4 + 32175*uk_40 + 14300*uk_41 + 50625*uk_42 + 22500*uk_43 + 10000*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 249524445217*uk_47 + 257241696100*uk_48 + 51448339220*uk_49 + 20*uk_5 + 367855625423*uk_50 + 578793816225*uk_51 + 257241696100*uk_52 + 153424975*uk_53 + 270585865*uk_54 + 278954500*uk_55 + 55790900*uk_56 + 398904935*uk_57 + 627647625*uk_58 + 278954500*uk_59 + 143*uk_6 + 477215071*uk_60 + 491974300*uk_61 + 98394860*uk_62 + 703523249*uk_63 + 1106942175*uk_64 + 491974300*uk_65 + 507190000*uk_66 + 101438000*uk_67 + 725281700*uk_68 + 1141177500*uk_69 + 225*uk_7 + 507190000*uk_70 + 20287600*uk_71 + 145056340*uk_72 + 228235500*uk_73 + 101438000*uk_74 + 1037152831*uk_75 + 1631883825*uk_76 + 725281700*uk_77 + 2567649375*uk_78 + 1141177500*uk_79 + 100*uk_8 + 507190000*uk_80 + 166375*uk_81 + 293425*uk_82 + 302500*uk_83 + 60500*uk_84 + 432575*uk_85 + 680625*uk_86 + 302500*uk_87 + 517495*uk_88 + 533500*uk_89 + 2572416961*uk_9 + 106700*uk_90 + 762905*uk_91 + 1200375*uk_92 + 533500*uk_93 + 550000*uk_94 + 110000*uk_95 + 786500*uk_96 + 1237500*uk_97 + 550000*uk_98 + 22000*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 159500*uk_100 + 247500*uk_101 + 106700*uk_102 + 1156375*uk_103 + 1794375*uk_104 + 773575*uk_105 + 2784375*uk_106 + 1200375*uk_107 + 517495*uk_108 + 1481544*uk_109 + 5781966*uk_11 + 1260612*uk_110 + 259920*uk_111 + 1884420*uk_112 + 2924100*uk_113 + 1260612*uk_114 + 1072626*uk_115 + 221160*uk_116 + 1603410*uk_117 + 2488050*uk_118 + 1072626*uk_119 + 4919743*uk_12 + 45600*uk_120 + 330600*uk_121 + 513000*uk_122 + 221160*uk_123 + 2396850*uk_124 + 3719250*uk_125 + 1603410*uk_126 + 5771250*uk_127 + 2488050*uk_128 + 1072626*uk_129 + 1014380*uk_13 + 912673*uk_130 + 188180*uk_131 + 1364305*uk_132 + 2117025*uk_133 + 912673*uk_134 + 38800*uk_135 + 281300*uk_136 + 436500*uk_137 + 188180*uk_138 + 2039425*uk_139 + 7354255*uk_14 + 3164625*uk_140 + 1364305*uk_141 + 4910625*uk_142 + 2117025*uk_143 + 912673*uk_144 + 8000*uk_145 + 58000*uk_146 + 90000*uk_147 + 38800*uk_148 + 420500*uk_149 + 11411775*uk_15 + 652500*uk_150 + 281300*uk_151 + 1012500*uk_152 + 436500*uk_153 + 188180*uk_154 + 3048625*uk_155 + 4730625*uk_156 + 2039425*uk_157 + 7340625*uk_158 + 3164625*uk_159 + 4919743*uk_16 + 1364305*uk_160 + 11390625*uk_161 + 4910625*uk_162 + 2117025*uk_163 + 912673*uk_164 + 3025*uk_17 + 6270*uk_18 + 5335*uk_19 + 55*uk_2 + 1100*uk_20 + 7975*uk_21 + 12375*uk_22 + 5335*uk_23 + 12996*uk_24 + 11058*uk_25 + 2280*uk_26 + 16530*uk_27 + 25650*uk_28 + 11058*uk_29 + 114*uk_3 + 9409*uk_30 + 1940*uk_31 + 14065*uk_32 + 21825*uk_33 + 9409*uk_34 + 400*uk_35 + 2900*uk_36 + 4500*uk_37 + 1940*uk_38 + 21025*uk_39 + 97*uk_4 + 32625*uk_40 + 14065*uk_41 + 50625*uk_42 + 21825*uk_43 + 9409*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 293255533554*uk_47 + 249524445217*uk_48 + 51448339220*uk_49 + 20*uk_5 + 373000459345*uk_50 + 578793816225*uk_51 + 249524445217*uk_52 + 153424975*uk_53 + 318008130*uk_54 + 270585865*uk_55 + 55790900*uk_56 + 404484025*uk_57 + 627647625*uk_58 + 270585865*uk_59 + 145*uk_6 + 659144124*uk_60 + 560850702*uk_61 + 115639320*uk_62 + 838385070*uk_63 + 1300942350*uk_64 + 560850702*uk_65 + 477215071*uk_66 + 98394860*uk_67 + 713362735*uk_68 + 1106942175*uk_69 + 225*uk_7 + 477215071*uk_70 + 20287600*uk_71 + 147085100*uk_72 + 228235500*uk_73 + 98394860*uk_74 + 1066366975*uk_75 + 1654707375*uk_76 + 713362735*uk_77 + 2567649375*uk_78 + 1106942175*uk_79 + 97*uk_8 + 477215071*uk_80 + 166375*uk_81 + 344850*uk_82 + 293425*uk_83 + 60500*uk_84 + 438625*uk_85 + 680625*uk_86 + 293425*uk_87 + 714780*uk_88 + 608190*uk_89 + 2572416961*uk_9 + 125400*uk_90 + 909150*uk_91 + 1410750*uk_92 + 608190*uk_93 + 517495*uk_94 + 106700*uk_95 + 773575*uk_96 + 1200375*uk_97 + 517495*uk_98 + 22000*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 129360*uk_100 + 198000*uk_101 + 100320*uk_102 + 1188495*uk_103 + 1819125*uk_104 + 921690*uk_105 + 2784375*uk_106 + 1410750*uk_107 + 714780*uk_108 + 64*uk_109 + 202876*uk_11 + 1824*uk_110 + 256*uk_111 + 2352*uk_112 + 3600*uk_113 + 1824*uk_114 + 51984*uk_115 + 7296*uk_116 + 67032*uk_117 + 102600*uk_118 + 51984*uk_119 + 5781966*uk_12 + 1024*uk_120 + 9408*uk_121 + 14400*uk_122 + 7296*uk_123 + 86436*uk_124 + 132300*uk_125 + 67032*uk_126 + 202500*uk_127 + 102600*uk_128 + 51984*uk_129 + 811504*uk_13 + 1481544*uk_130 + 207936*uk_131 + 1910412*uk_132 + 2924100*uk_133 + 1481544*uk_134 + 29184*uk_135 + 268128*uk_136 + 410400*uk_137 + 207936*uk_138 + 2463426*uk_139 + 7455693*uk_14 + 3770550*uk_140 + 1910412*uk_141 + 5771250*uk_142 + 2924100*uk_143 + 1481544*uk_144 + 4096*uk_145 + 37632*uk_146 + 57600*uk_147 + 29184*uk_148 + 345744*uk_149 + 11411775*uk_15 + 529200*uk_150 + 268128*uk_151 + 810000*uk_152 + 410400*uk_153 + 207936*uk_154 + 3176523*uk_155 + 4862025*uk_156 + 2463426*uk_157 + 7441875*uk_158 + 3770550*uk_159 + 5781966*uk_16 + 1910412*uk_160 + 11390625*uk_161 + 5771250*uk_162 + 2924100*uk_163 + 1481544*uk_164 + 3025*uk_17 + 220*uk_18 + 6270*uk_19 + 55*uk_2 + 880*uk_20 + 8085*uk_21 + 12375*uk_22 + 6270*uk_23 + 16*uk_24 + 456*uk_25 + 64*uk_26 + 588*uk_27 + 900*uk_28 + 456*uk_29 + 4*uk_3 + 12996*uk_30 + 1824*uk_31 + 16758*uk_32 + 25650*uk_33 + 12996*uk_34 + 256*uk_35 + 2352*uk_36 + 3600*uk_37 + 1824*uk_38 + 21609*uk_39 + 114*uk_4 + 33075*uk_40 + 16758*uk_41 + 50625*uk_42 + 25650*uk_43 + 12996*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 10289667844*uk_47 + 293255533554*uk_48 + 41158671376*uk_49 + 16*uk_5 + 378145293267*uk_50 + 578793816225*uk_51 + 293255533554*uk_52 + 153424975*uk_53 + 11158180*uk_54 + 318008130*uk_55 + 44632720*uk_56 + 410063115*uk_57 + 627647625*uk_58 + 318008130*uk_59 + 147*uk_6 + 811504*uk_60 + 23127864*uk_61 + 3246016*uk_62 + 29822772*uk_63 + 45647100*uk_64 + 23127864*uk_65 + 659144124*uk_66 + 92511456*uk_67 + 849949002*uk_68 + 1300942350*uk_69 + 225*uk_7 + 659144124*uk_70 + 12984064*uk_71 + 119291088*uk_72 + 182588400*uk_73 + 92511456*uk_74 + 1095986871*uk_75 + 1677530925*uk_76 + 849949002*uk_77 + 2567649375*uk_78 + 1300942350*uk_79 + 114*uk_8 + 659144124*uk_80 + 166375*uk_81 + 12100*uk_82 + 344850*uk_83 + 48400*uk_84 + 444675*uk_85 + 680625*uk_86 + 344850*uk_87 + 880*uk_88 + 25080*uk_89 + 2572416961*uk_9 + 3520*uk_90 + 32340*uk_91 + 49500*uk_92 + 25080*uk_93 + 714780*uk_94 + 100320*uk_95 + 921690*uk_96 + 1410750*uk_97 + 714780*uk_98 + 14080*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 163900*uk_100 + 247500*uk_101 + 4400*uk_102 + 1221055*uk_103 + 1843875*uk_104 + 32780*uk_105 + 2784375*uk_106 + 49500*uk_107 + 880*uk_108 + 205379*uk_109 + 2992421*uk_11 + 13924*uk_110 + 69620*uk_111 + 518669*uk_112 + 783225*uk_113 + 13924*uk_114 + 944*uk_115 + 4720*uk_116 + 35164*uk_117 + 53100*uk_118 + 944*uk_119 + 202876*uk_12 + 23600*uk_120 + 175820*uk_121 + 265500*uk_122 + 4720*uk_123 + 1309859*uk_124 + 1977975*uk_125 + 35164*uk_126 + 2986875*uk_127 + 53100*uk_128 + 944*uk_129 + 1014380*uk_13 + 64*uk_130 + 320*uk_131 + 2384*uk_132 + 3600*uk_133 + 64*uk_134 + 1600*uk_135 + 11920*uk_136 + 18000*uk_137 + 320*uk_138 + 88804*uk_139 + 7557131*uk_14 + 134100*uk_140 + 2384*uk_141 + 202500*uk_142 + 3600*uk_143 + 64*uk_144 + 8000*uk_145 + 59600*uk_146 + 90000*uk_147 + 1600*uk_148 + 444020*uk_149 + 11411775*uk_15 + 670500*uk_150 + 11920*uk_151 + 1012500*uk_152 + 18000*uk_153 + 320*uk_154 + 3307949*uk_155 + 4995225*uk_156 + 88804*uk_157 + 7543125*uk_158 + 134100*uk_159 + 202876*uk_16 + 2384*uk_160 + 11390625*uk_161 + 202500*uk_162 + 3600*uk_163 + 64*uk_164 + 3025*uk_17 + 3245*uk_18 + 220*uk_19 + 55*uk_2 + 1100*uk_20 + 8195*uk_21 + 12375*uk_22 + 220*uk_23 + 3481*uk_24 + 236*uk_25 + 1180*uk_26 + 8791*uk_27 + 13275*uk_28 + 236*uk_29 + 59*uk_3 + 16*uk_30 + 80*uk_31 + 596*uk_32 + 900*uk_33 + 16*uk_34 + 400*uk_35 + 2980*uk_36 + 4500*uk_37 + 80*uk_38 + 22201*uk_39 + 4*uk_4 + 33525*uk_40 + 596*uk_41 + 50625*uk_42 + 900*uk_43 + 16*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 151772600699*uk_47 + 10289667844*uk_48 + 51448339220*uk_49 + 20*uk_5 + 383290127189*uk_50 + 578793816225*uk_51 + 10289667844*uk_52 + 153424975*uk_53 + 164583155*uk_54 + 11158180*uk_55 + 55790900*uk_56 + 415642205*uk_57 + 627647625*uk_58 + 11158180*uk_59 + 149*uk_6 + 176552839*uk_60 + 11969684*uk_61 + 59848420*uk_62 + 445870729*uk_63 + 673294725*uk_64 + 11969684*uk_65 + 811504*uk_66 + 4057520*uk_67 + 30228524*uk_68 + 45647100*uk_69 + 225*uk_7 + 811504*uk_70 + 20287600*uk_71 + 151142620*uk_72 + 228235500*uk_73 + 4057520*uk_74 + 1126012519*uk_75 + 1700354475*uk_76 + 30228524*uk_77 + 2567649375*uk_78 + 45647100*uk_79 + 4*uk_8 + 811504*uk_80 + 166375*uk_81 + 178475*uk_82 + 12100*uk_83 + 60500*uk_84 + 450725*uk_85 + 680625*uk_86 + 12100*uk_87 + 191455*uk_88 + 12980*uk_89 + 2572416961*uk_9 + 64900*uk_90 + 483505*uk_91 + 730125*uk_92 + 12980*uk_93 + 880*uk_94 + 4400*uk_95 + 32780*uk_96 + 49500*uk_97 + 880*uk_98 + 22000*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 166100*uk_100 + 247500*uk_101 + 64900*uk_102 + 1254055*uk_103 + 1868625*uk_104 + 489995*uk_105 + 2784375*uk_106 + 730125*uk_107 + 191455*uk_108 + 2406104*uk_109 + 6796346*uk_11 + 1059404*uk_110 + 359120*uk_111 + 2711356*uk_112 + 4040100*uk_113 + 1059404*uk_114 + 466454*uk_115 + 158120*uk_116 + 1193806*uk_117 + 1778850*uk_118 + 466454*uk_119 + 2992421*uk_12 + 53600*uk_120 + 404680*uk_121 + 603000*uk_122 + 158120*uk_123 + 3055334*uk_124 + 4552650*uk_125 + 1193806*uk_126 + 6783750*uk_127 + 1778850*uk_128 + 466454*uk_129 + 1014380*uk_13 + 205379*uk_130 + 69620*uk_131 + 525631*uk_132 + 783225*uk_133 + 205379*uk_134 + 23600*uk_135 + 178180*uk_136 + 265500*uk_137 + 69620*uk_138 + 1345259*uk_139 + 7658569*uk_14 + 2004525*uk_140 + 525631*uk_141 + 2986875*uk_142 + 783225*uk_143 + 205379*uk_144 + 8000*uk_145 + 60400*uk_146 + 90000*uk_147 + 23600*uk_148 + 456020*uk_149 + 11411775*uk_15 + 679500*uk_150 + 178180*uk_151 + 1012500*uk_152 + 265500*uk_153 + 69620*uk_154 + 3442951*uk_155 + 5130225*uk_156 + 1345259*uk_157 + 7644375*uk_158 + 2004525*uk_159 + 2992421*uk_16 + 525631*uk_160 + 11390625*uk_161 + 2986875*uk_162 + 783225*uk_163 + 205379*uk_164 + 3025*uk_17 + 7370*uk_18 + 3245*uk_19 + 55*uk_2 + 1100*uk_20 + 8305*uk_21 + 12375*uk_22 + 3245*uk_23 + 17956*uk_24 + 7906*uk_25 + 2680*uk_26 + 20234*uk_27 + 30150*uk_28 + 7906*uk_29 + 134*uk_3 + 3481*uk_30 + 1180*uk_31 + 8909*uk_32 + 13275*uk_33 + 3481*uk_34 + 400*uk_35 + 3020*uk_36 + 4500*uk_37 + 1180*uk_38 + 22801*uk_39 + 59*uk_4 + 33975*uk_40 + 8909*uk_41 + 50625*uk_42 + 13275*uk_43 + 3481*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 344703872774*uk_47 + 151772600699*uk_48 + 51448339220*uk_49 + 20*uk_5 + 388434961111*uk_50 + 578793816225*uk_51 + 151772600699*uk_52 + 153424975*uk_53 + 373799030*uk_54 + 164583155*uk_55 + 55790900*uk_56 + 421221295*uk_57 + 627647625*uk_58 + 164583155*uk_59 + 151*uk_6 + 910710364*uk_60 + 400984414*uk_61 + 135926920*uk_62 + 1026248246*uk_63 + 1529177850*uk_64 + 400984414*uk_65 + 176552839*uk_66 + 59848420*uk_67 + 451855571*uk_68 + 673294725*uk_69 + 225*uk_7 + 176552839*uk_70 + 20287600*uk_71 + 153171380*uk_72 + 228235500*uk_73 + 59848420*uk_74 + 1156443919*uk_75 + 1723178025*uk_76 + 451855571*uk_77 + 2567649375*uk_78 + 673294725*uk_79 + 59*uk_8 + 176552839*uk_80 + 166375*uk_81 + 405350*uk_82 + 178475*uk_83 + 60500*uk_84 + 456775*uk_85 + 680625*uk_86 + 178475*uk_87 + 987580*uk_88 + 434830*uk_89 + 2572416961*uk_9 + 147400*uk_90 + 1112870*uk_91 + 1658250*uk_92 + 434830*uk_93 + 191455*uk_94 + 64900*uk_95 + 489995*uk_96 + 730125*uk_97 + 191455*uk_98 + 22000*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 134640*uk_100 + 198000*uk_101 + 117920*uk_102 + 1287495*uk_103 + 1893375*uk_104 + 1127610*uk_105 + 2784375*uk_106 + 1658250*uk_107 + 987580*uk_108 + 438976*uk_109 + 3854644*uk_11 + 773984*uk_110 + 92416*uk_111 + 883728*uk_112 + 1299600*uk_113 + 773984*uk_114 + 1364656*uk_115 + 162944*uk_116 + 1558152*uk_117 + 2291400*uk_118 + 1364656*uk_119 + 6796346*uk_12 + 19456*uk_120 + 186048*uk_121 + 273600*uk_122 + 162944*uk_123 + 1779084*uk_124 + 2616300*uk_125 + 1558152*uk_126 + 3847500*uk_127 + 2291400*uk_128 + 1364656*uk_129 + 811504*uk_13 + 2406104*uk_130 + 287296*uk_131 + 2747268*uk_132 + 4040100*uk_133 + 2406104*uk_134 + 34304*uk_135 + 328032*uk_136 + 482400*uk_137 + 287296*uk_138 + 3136806*uk_139 + 7760007*uk_14 + 4612950*uk_140 + 2747268*uk_141 + 6783750*uk_142 + 4040100*uk_143 + 2406104*uk_144 + 4096*uk_145 + 39168*uk_146 + 57600*uk_147 + 34304*uk_148 + 374544*uk_149 + 11411775*uk_15 + 550800*uk_150 + 328032*uk_151 + 810000*uk_152 + 482400*uk_153 + 287296*uk_154 + 3581577*uk_155 + 5267025*uk_156 + 3136806*uk_157 + 7745625*uk_158 + 4612950*uk_159 + 6796346*uk_16 + 2747268*uk_160 + 11390625*uk_161 + 6783750*uk_162 + 4040100*uk_163 + 2406104*uk_164 + 3025*uk_17 + 4180*uk_18 + 7370*uk_19 + 55*uk_2 + 880*uk_20 + 8415*uk_21 + 12375*uk_22 + 7370*uk_23 + 5776*uk_24 + 10184*uk_25 + 1216*uk_26 + 11628*uk_27 + 17100*uk_28 + 10184*uk_29 + 76*uk_3 + 17956*uk_30 + 2144*uk_31 + 20502*uk_32 + 30150*uk_33 + 17956*uk_34 + 256*uk_35 + 2448*uk_36 + 3600*uk_37 + 2144*uk_38 + 23409*uk_39 + 134*uk_4 + 34425*uk_40 + 20502*uk_41 + 50625*uk_42 + 30150*uk_43 + 17956*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 195503689036*uk_47 + 344703872774*uk_48 + 41158671376*uk_49 + 16*uk_5 + 393579795033*uk_50 + 578793816225*uk_51 + 344703872774*uk_52 + 153424975*uk_53 + 212005420*uk_54 + 373799030*uk_55 + 44632720*uk_56 + 426800385*uk_57 + 627647625*uk_58 + 373799030*uk_59 + 153*uk_6 + 292952944*uk_60 + 516522296*uk_61 + 61674304*uk_62 + 589760532*uk_63 + 867294900*uk_64 + 516522296*uk_65 + 910710364*uk_66 + 108741536*uk_67 + 1039840938*uk_68 + 1529177850*uk_69 + 225*uk_7 + 910710364*uk_70 + 12984064*uk_71 + 124160112*uk_72 + 182588400*uk_73 + 108741536*uk_74 + 1187281071*uk_75 + 1746001575*uk_76 + 1039840938*uk_77 + 2567649375*uk_78 + 1529177850*uk_79 + 134*uk_8 + 910710364*uk_80 + 166375*uk_81 + 229900*uk_82 + 405350*uk_83 + 48400*uk_84 + 462825*uk_85 + 680625*uk_86 + 405350*uk_87 + 317680*uk_88 + 560120*uk_89 + 2572416961*uk_9 + 66880*uk_90 + 639540*uk_91 + 940500*uk_92 + 560120*uk_93 + 987580*uk_94 + 117920*uk_95 + 1127610*uk_96 + 1658250*uk_97 + 987580*uk_98 + 14080*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 136400*uk_100 + 198000*uk_101 + 66880*uk_102 + 1321375*uk_103 + 1918125*uk_104 + 647900*uk_105 + 2784375*uk_106 + 940500*uk_107 + 317680*uk_108 + 39304*uk_109 + 1724446*uk_11 + 87856*uk_110 + 18496*uk_111 + 179180*uk_112 + 260100*uk_113 + 87856*uk_114 + 196384*uk_115 + 41344*uk_116 + 400520*uk_117 + 581400*uk_118 + 196384*uk_119 + 3854644*uk_12 + 8704*uk_120 + 84320*uk_121 + 122400*uk_122 + 41344*uk_123 + 816850*uk_124 + 1185750*uk_125 + 400520*uk_126 + 1721250*uk_127 + 581400*uk_128 + 196384*uk_129 + 811504*uk_13 + 438976*uk_130 + 92416*uk_131 + 895280*uk_132 + 1299600*uk_133 + 438976*uk_134 + 19456*uk_135 + 188480*uk_136 + 273600*uk_137 + 92416*uk_138 + 1825900*uk_139 + 7861445*uk_14 + 2650500*uk_140 + 895280*uk_141 + 3847500*uk_142 + 1299600*uk_143 + 438976*uk_144 + 4096*uk_145 + 39680*uk_146 + 57600*uk_147 + 19456*uk_148 + 384400*uk_149 + 11411775*uk_15 + 558000*uk_150 + 188480*uk_151 + 810000*uk_152 + 273600*uk_153 + 92416*uk_154 + 3723875*uk_155 + 5405625*uk_156 + 1825900*uk_157 + 7846875*uk_158 + 2650500*uk_159 + 3854644*uk_16 + 895280*uk_160 + 11390625*uk_161 + 3847500*uk_162 + 1299600*uk_163 + 438976*uk_164 + 3025*uk_17 + 1870*uk_18 + 4180*uk_19 + 55*uk_2 + 880*uk_20 + 8525*uk_21 + 12375*uk_22 + 4180*uk_23 + 1156*uk_24 + 2584*uk_25 + 544*uk_26 + 5270*uk_27 + 7650*uk_28 + 2584*uk_29 + 34*uk_3 + 5776*uk_30 + 1216*uk_31 + 11780*uk_32 + 17100*uk_33 + 5776*uk_34 + 256*uk_35 + 2480*uk_36 + 3600*uk_37 + 1216*uk_38 + 24025*uk_39 + 76*uk_4 + 34875*uk_40 + 11780*uk_41 + 50625*uk_42 + 17100*uk_43 + 5776*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 87462176674*uk_47 + 195503689036*uk_48 + 41158671376*uk_49 + 16*uk_5 + 398724628955*uk_50 + 578793816225*uk_51 + 195503689036*uk_52 + 153424975*uk_53 + 94844530*uk_54 + 212005420*uk_55 + 44632720*uk_56 + 432379475*uk_57 + 627647625*uk_58 + 212005420*uk_59 + 155*uk_6 + 58631164*uk_60 + 131057896*uk_61 + 27591136*uk_62 + 267289130*uk_63 + 388000350*uk_64 + 131057896*uk_65 + 292952944*uk_66 + 61674304*uk_67 + 597469820*uk_68 + 867294900*uk_69 + 225*uk_7 + 292952944*uk_70 + 12984064*uk_71 + 125783120*uk_72 + 182588400*uk_73 + 61674304*uk_74 + 1218523975*uk_75 + 1768825125*uk_76 + 597469820*uk_77 + 2567649375*uk_78 + 867294900*uk_79 + 76*uk_8 + 292952944*uk_80 + 166375*uk_81 + 102850*uk_82 + 229900*uk_83 + 48400*uk_84 + 468875*uk_85 + 680625*uk_86 + 229900*uk_87 + 63580*uk_88 + 142120*uk_89 + 2572416961*uk_9 + 29920*uk_90 + 289850*uk_91 + 420750*uk_92 + 142120*uk_93 + 317680*uk_94 + 66880*uk_95 + 647900*uk_96 + 940500*uk_97 + 317680*uk_98 + 14080*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 138160*uk_100 + 198000*uk_101 + 29920*uk_102 + 1355695*uk_103 + 1942875*uk_104 + 293590*uk_105 + 2784375*uk_106 + 420750*uk_107 + 63580*uk_108 + 512*uk_109 + 405752*uk_11 + 2176*uk_110 + 1024*uk_111 + 10048*uk_112 + 14400*uk_113 + 2176*uk_114 + 9248*uk_115 + 4352*uk_116 + 42704*uk_117 + 61200*uk_118 + 9248*uk_119 + 1724446*uk_12 + 2048*uk_120 + 20096*uk_121 + 28800*uk_122 + 4352*uk_123 + 197192*uk_124 + 282600*uk_125 + 42704*uk_126 + 405000*uk_127 + 61200*uk_128 + 9248*uk_129 + 811504*uk_13 + 39304*uk_130 + 18496*uk_131 + 181492*uk_132 + 260100*uk_133 + 39304*uk_134 + 8704*uk_135 + 85408*uk_136 + 122400*uk_137 + 18496*uk_138 + 838066*uk_139 + 7962883*uk_14 + 1201050*uk_140 + 181492*uk_141 + 1721250*uk_142 + 260100*uk_143 + 39304*uk_144 + 4096*uk_145 + 40192*uk_146 + 57600*uk_147 + 8704*uk_148 + 394384*uk_149 + 11411775*uk_15 + 565200*uk_150 + 85408*uk_151 + 810000*uk_152 + 122400*uk_153 + 18496*uk_154 + 3869893*uk_155 + 5546025*uk_156 + 838066*uk_157 + 7948125*uk_158 + 1201050*uk_159 + 1724446*uk_16 + 181492*uk_160 + 11390625*uk_161 + 1721250*uk_162 + 260100*uk_163 + 39304*uk_164 + 3025*uk_17 + 440*uk_18 + 1870*uk_19 + 55*uk_2 + 880*uk_20 + 8635*uk_21 + 12375*uk_22 + 1870*uk_23 + 64*uk_24 + 272*uk_25 + 128*uk_26 + 1256*uk_27 + 1800*uk_28 + 272*uk_29 + 8*uk_3 + 1156*uk_30 + 544*uk_31 + 5338*uk_32 + 7650*uk_33 + 1156*uk_34 + 256*uk_35 + 2512*uk_36 + 3600*uk_37 + 544*uk_38 + 24649*uk_39 + 34*uk_4 + 35325*uk_40 + 5338*uk_41 + 50625*uk_42 + 7650*uk_43 + 1156*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 20579335688*uk_47 + 87462176674*uk_48 + 41158671376*uk_49 + 16*uk_5 + 403869462877*uk_50 + 578793816225*uk_51 + 87462176674*uk_52 + 153424975*uk_53 + 22316360*uk_54 + 94844530*uk_55 + 44632720*uk_56 + 437958565*uk_57 + 627647625*uk_58 + 94844530*uk_59 + 157*uk_6 + 3246016*uk_60 + 13795568*uk_61 + 6492032*uk_62 + 63703064*uk_63 + 91294200*uk_64 + 13795568*uk_65 + 58631164*uk_66 + 27591136*uk_67 + 270738022*uk_68 + 388000350*uk_69 + 225*uk_7 + 58631164*uk_70 + 12984064*uk_71 + 127406128*uk_72 + 182588400*uk_73 + 27591136*uk_74 + 1250172631*uk_75 + 1791648675*uk_76 + 270738022*uk_77 + 2567649375*uk_78 + 388000350*uk_79 + 34*uk_8 + 58631164*uk_80 + 166375*uk_81 + 24200*uk_82 + 102850*uk_83 + 48400*uk_84 + 474925*uk_85 + 680625*uk_86 + 102850*uk_87 + 3520*uk_88 + 14960*uk_89 + 2572416961*uk_9 + 7040*uk_90 + 69080*uk_91 + 99000*uk_92 + 14960*uk_93 + 63580*uk_94 + 29920*uk_95 + 293590*uk_96 + 420750*uk_97 + 63580*uk_98 + 14080*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 174900*uk_100 + 247500*uk_101 + 8800*uk_102 + 1390455*uk_103 + 1967625*uk_104 + 69960*uk_105 + 2784375*uk_106 + 99000*uk_107 + 3520*uk_108 + 3869893*uk_109 + 7962883*uk_11 + 197192*uk_110 + 492980*uk_111 + 3919191*uk_112 + 5546025*uk_113 + 197192*uk_114 + 10048*uk_115 + 25120*uk_116 + 199704*uk_117 + 282600*uk_118 + 10048*uk_119 + 405752*uk_12 + 62800*uk_120 + 499260*uk_121 + 706500*uk_122 + 25120*uk_123 + 3969117*uk_124 + 5616675*uk_125 + 199704*uk_126 + 7948125*uk_127 + 282600*uk_128 + 10048*uk_129 + 1014380*uk_13 + 512*uk_130 + 1280*uk_131 + 10176*uk_132 + 14400*uk_133 + 512*uk_134 + 3200*uk_135 + 25440*uk_136 + 36000*uk_137 + 1280*uk_138 + 202248*uk_139 + 8064321*uk_14 + 286200*uk_140 + 10176*uk_141 + 405000*uk_142 + 14400*uk_143 + 512*uk_144 + 8000*uk_145 + 63600*uk_146 + 90000*uk_147 + 3200*uk_148 + 505620*uk_149 + 11411775*uk_15 + 715500*uk_150 + 25440*uk_151 + 1012500*uk_152 + 36000*uk_153 + 1280*uk_154 + 4019679*uk_155 + 5688225*uk_156 + 202248*uk_157 + 8049375*uk_158 + 286200*uk_159 + 405752*uk_16 + 10176*uk_160 + 11390625*uk_161 + 405000*uk_162 + 14400*uk_163 + 512*uk_164 + 3025*uk_17 + 8635*uk_18 + 440*uk_19 + 55*uk_2 + 1100*uk_20 + 8745*uk_21 + 12375*uk_22 + 440*uk_23 + 24649*uk_24 + 1256*uk_25 + 3140*uk_26 + 24963*uk_27 + 35325*uk_28 + 1256*uk_29 + 157*uk_3 + 64*uk_30 + 160*uk_31 + 1272*uk_32 + 1800*uk_33 + 64*uk_34 + 400*uk_35 + 3180*uk_36 + 4500*uk_37 + 160*uk_38 + 25281*uk_39 + 8*uk_4 + 35775*uk_40 + 1272*uk_41 + 50625*uk_42 + 1800*uk_43 + 64*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 403869462877*uk_47 + 20579335688*uk_48 + 51448339220*uk_49 + 20*uk_5 + 409014296799*uk_50 + 578793816225*uk_51 + 20579335688*uk_52 + 153424975*uk_53 + 437958565*uk_54 + 22316360*uk_55 + 55790900*uk_56 + 443537655*uk_57 + 627647625*uk_58 + 22316360*uk_59 + 159*uk_6 + 1250172631*uk_60 + 63703064*uk_61 + 159257660*uk_62 + 1266098397*uk_63 + 1791648675*uk_64 + 63703064*uk_65 + 3246016*uk_66 + 8115040*uk_67 + 64514568*uk_68 + 91294200*uk_69 + 225*uk_7 + 3246016*uk_70 + 20287600*uk_71 + 161286420*uk_72 + 228235500*uk_73 + 8115040*uk_74 + 1282227039*uk_75 + 1814472225*uk_76 + 64514568*uk_77 + 2567649375*uk_78 + 91294200*uk_79 + 8*uk_8 + 3246016*uk_80 + 166375*uk_81 + 474925*uk_82 + 24200*uk_83 + 60500*uk_84 + 480975*uk_85 + 680625*uk_86 + 24200*uk_87 + 1355695*uk_88 + 69080*uk_89 + 2572416961*uk_9 + 172700*uk_90 + 1372965*uk_91 + 1942875*uk_92 + 69080*uk_93 + 3520*uk_94 + 8800*uk_95 + 69960*uk_96 + 99000*uk_97 + 3520*uk_98 + 22000*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 106260*uk_100 + 148500*uk_101 + 103620*uk_102 + 1425655*uk_103 + 1992375*uk_104 + 1390235*uk_105 + 2784375*uk_106 + 1942875*uk_107 + 1355695*uk_108 + 64*uk_109 + 202876*uk_11 + 2512*uk_110 + 192*uk_111 + 2576*uk_112 + 3600*uk_113 + 2512*uk_114 + 98596*uk_115 + 7536*uk_116 + 101108*uk_117 + 141300*uk_118 + 98596*uk_119 + 7962883*uk_12 + 576*uk_120 + 7728*uk_121 + 10800*uk_122 + 7536*uk_123 + 103684*uk_124 + 144900*uk_125 + 101108*uk_126 + 202500*uk_127 + 141300*uk_128 + 98596*uk_129 + 608628*uk_13 + 3869893*uk_130 + 295788*uk_131 + 3968489*uk_132 + 5546025*uk_133 + 3869893*uk_134 + 22608*uk_135 + 303324*uk_136 + 423900*uk_137 + 295788*uk_138 + 4069597*uk_139 + 8165759*uk_14 + 5687325*uk_140 + 3968489*uk_141 + 7948125*uk_142 + 5546025*uk_143 + 3869893*uk_144 + 1728*uk_145 + 23184*uk_146 + 32400*uk_147 + 22608*uk_148 + 311052*uk_149 + 11411775*uk_15 + 434700*uk_150 + 303324*uk_151 + 607500*uk_152 + 423900*uk_153 + 295788*uk_154 + 4173281*uk_155 + 5832225*uk_156 + 4069597*uk_157 + 8150625*uk_158 + 5687325*uk_159 + 7962883*uk_16 + 3968489*uk_160 + 11390625*uk_161 + 7948125*uk_162 + 5546025*uk_163 + 3869893*uk_164 + 3025*uk_17 + 220*uk_18 + 8635*uk_19 + 55*uk_2 + 660*uk_20 + 8855*uk_21 + 12375*uk_22 + 8635*uk_23 + 16*uk_24 + 628*uk_25 + 48*uk_26 + 644*uk_27 + 900*uk_28 + 628*uk_29 + 4*uk_3 + 24649*uk_30 + 1884*uk_31 + 25277*uk_32 + 35325*uk_33 + 24649*uk_34 + 144*uk_35 + 1932*uk_36 + 2700*uk_37 + 1884*uk_38 + 25921*uk_39 + 157*uk_4 + 36225*uk_40 + 25277*uk_41 + 50625*uk_42 + 35325*uk_43 + 24649*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 10289667844*uk_47 + 403869462877*uk_48 + 30869003532*uk_49 + 12*uk_5 + 414159130721*uk_50 + 578793816225*uk_51 + 403869462877*uk_52 + 153424975*uk_53 + 11158180*uk_54 + 437958565*uk_55 + 33474540*uk_56 + 449116745*uk_57 + 627647625*uk_58 + 437958565*uk_59 + 161*uk_6 + 811504*uk_60 + 31851532*uk_61 + 2434512*uk_62 + 32663036*uk_63 + 45647100*uk_64 + 31851532*uk_65 + 1250172631*uk_66 + 95554596*uk_67 + 1282024163*uk_68 + 1791648675*uk_69 + 225*uk_7 + 1250172631*uk_70 + 7303536*uk_71 + 97989108*uk_72 + 136941300*uk_73 + 95554596*uk_74 + 1314687199*uk_75 + 1837295775*uk_76 + 1282024163*uk_77 + 2567649375*uk_78 + 1791648675*uk_79 + 157*uk_8 + 1250172631*uk_80 + 166375*uk_81 + 12100*uk_82 + 474925*uk_83 + 36300*uk_84 + 487025*uk_85 + 680625*uk_86 + 474925*uk_87 + 880*uk_88 + 34540*uk_89 + 2572416961*uk_9 + 2640*uk_90 + 35420*uk_91 + 49500*uk_92 + 34540*uk_93 + 1355695*uk_94 + 103620*uk_95 + 1390235*uk_96 + 1942875*uk_97 + 1355695*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 143440*uk_100 + 198000*uk_101 + 3520*uk_102 + 1461295*uk_103 + 2017125*uk_104 + 35860*uk_105 + 2784375*uk_106 + 49500*uk_107 + 880*uk_108 + 17576*uk_109 + 1318694*uk_11 + 2704*uk_110 + 10816*uk_111 + 110188*uk_112 + 152100*uk_113 + 2704*uk_114 + 416*uk_115 + 1664*uk_116 + 16952*uk_117 + 23400*uk_118 + 416*uk_119 + 202876*uk_12 + 6656*uk_120 + 67808*uk_121 + 93600*uk_122 + 1664*uk_123 + 690794*uk_124 + 953550*uk_125 + 16952*uk_126 + 1316250*uk_127 + 23400*uk_128 + 416*uk_129 + 811504*uk_13 + 64*uk_130 + 256*uk_131 + 2608*uk_132 + 3600*uk_133 + 64*uk_134 + 1024*uk_135 + 10432*uk_136 + 14400*uk_137 + 256*uk_138 + 106276*uk_139 + 8267197*uk_14 + 146700*uk_140 + 2608*uk_141 + 202500*uk_142 + 3600*uk_143 + 64*uk_144 + 4096*uk_145 + 41728*uk_146 + 57600*uk_147 + 1024*uk_148 + 425104*uk_149 + 11411775*uk_15 + 586800*uk_150 + 10432*uk_151 + 810000*uk_152 + 14400*uk_153 + 256*uk_154 + 4330747*uk_155 + 5978025*uk_156 + 106276*uk_157 + 8251875*uk_158 + 146700*uk_159 + 202876*uk_16 + 2608*uk_160 + 11390625*uk_161 + 202500*uk_162 + 3600*uk_163 + 64*uk_164 + 3025*uk_17 + 1430*uk_18 + 220*uk_19 + 55*uk_2 + 880*uk_20 + 8965*uk_21 + 12375*uk_22 + 220*uk_23 + 676*uk_24 + 104*uk_25 + 416*uk_26 + 4238*uk_27 + 5850*uk_28 + 104*uk_29 + 26*uk_3 + 16*uk_30 + 64*uk_31 + 652*uk_32 + 900*uk_33 + 16*uk_34 + 256*uk_35 + 2608*uk_36 + 3600*uk_37 + 64*uk_38 + 26569*uk_39 + 4*uk_4 + 36675*uk_40 + 652*uk_41 + 50625*uk_42 + 900*uk_43 + 16*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 66882840986*uk_47 + 10289667844*uk_48 + 41158671376*uk_49 + 16*uk_5 + 419303964643*uk_50 + 578793816225*uk_51 + 10289667844*uk_52 + 153424975*uk_53 + 72528170*uk_54 + 11158180*uk_55 + 44632720*uk_56 + 454695835*uk_57 + 627647625*uk_58 + 11158180*uk_59 + 163*uk_6 + 34286044*uk_60 + 5274776*uk_61 + 21099104*uk_62 + 214947122*uk_63 + 296706150*uk_64 + 5274776*uk_65 + 811504*uk_66 + 3246016*uk_67 + 33068788*uk_68 + 45647100*uk_69 + 225*uk_7 + 811504*uk_70 + 12984064*uk_71 + 132275152*uk_72 + 182588400*uk_73 + 3246016*uk_74 + 1347553111*uk_75 + 1860119325*uk_76 + 33068788*uk_77 + 2567649375*uk_78 + 45647100*uk_79 + 4*uk_8 + 811504*uk_80 + 166375*uk_81 + 78650*uk_82 + 12100*uk_83 + 48400*uk_84 + 493075*uk_85 + 680625*uk_86 + 12100*uk_87 + 37180*uk_88 + 5720*uk_89 + 2572416961*uk_9 + 22880*uk_90 + 233090*uk_91 + 321750*uk_92 + 5720*uk_93 + 880*uk_94 + 3520*uk_95 + 35860*uk_96 + 49500*uk_97 + 880*uk_98 + 14080*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 145200*uk_100 + 198000*uk_101 + 22880*uk_102 + 1497375*uk_103 + 2041875*uk_104 + 235950*uk_105 + 2784375*uk_106 + 321750*uk_107 + 37180*uk_108 + 262144*uk_109 + 3246016*uk_11 + 106496*uk_110 + 65536*uk_111 + 675840*uk_112 + 921600*uk_113 + 106496*uk_114 + 43264*uk_115 + 26624*uk_116 + 274560*uk_117 + 374400*uk_118 + 43264*uk_119 + 1318694*uk_12 + 16384*uk_120 + 168960*uk_121 + 230400*uk_122 + 26624*uk_123 + 1742400*uk_124 + 2376000*uk_125 + 274560*uk_126 + 3240000*uk_127 + 374400*uk_128 + 43264*uk_129 + 811504*uk_13 + 17576*uk_130 + 10816*uk_131 + 111540*uk_132 + 152100*uk_133 + 17576*uk_134 + 6656*uk_135 + 68640*uk_136 + 93600*uk_137 + 10816*uk_138 + 707850*uk_139 + 8368635*uk_14 + 965250*uk_140 + 111540*uk_141 + 1316250*uk_142 + 152100*uk_143 + 17576*uk_144 + 4096*uk_145 + 42240*uk_146 + 57600*uk_147 + 6656*uk_148 + 435600*uk_149 + 11411775*uk_15 + 594000*uk_150 + 68640*uk_151 + 810000*uk_152 + 93600*uk_153 + 10816*uk_154 + 4492125*uk_155 + 6125625*uk_156 + 707850*uk_157 + 8353125*uk_158 + 965250*uk_159 + 1318694*uk_16 + 111540*uk_160 + 11390625*uk_161 + 1316250*uk_162 + 152100*uk_163 + 17576*uk_164 + 3025*uk_17 + 3520*uk_18 + 1430*uk_19 + 55*uk_2 + 880*uk_20 + 9075*uk_21 + 12375*uk_22 + 1430*uk_23 + 4096*uk_24 + 1664*uk_25 + 1024*uk_26 + 10560*uk_27 + 14400*uk_28 + 1664*uk_29 + 64*uk_3 + 676*uk_30 + 416*uk_31 + 4290*uk_32 + 5850*uk_33 + 676*uk_34 + 256*uk_35 + 2640*uk_36 + 3600*uk_37 + 416*uk_38 + 27225*uk_39 + 26*uk_4 + 37125*uk_40 + 4290*uk_41 + 50625*uk_42 + 5850*uk_43 + 676*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 164634685504*uk_47 + 66882840986*uk_48 + 41158671376*uk_49 + 16*uk_5 + 424448798565*uk_50 + 578793816225*uk_51 + 66882840986*uk_52 + 153424975*uk_53 + 178530880*uk_54 + 72528170*uk_55 + 44632720*uk_56 + 460274925*uk_57 + 627647625*uk_58 + 72528170*uk_59 + 165*uk_6 + 207745024*uk_60 + 84396416*uk_61 + 51936256*uk_62 + 535592640*uk_63 + 730353600*uk_64 + 84396416*uk_65 + 34286044*uk_66 + 21099104*uk_67 + 217584510*uk_68 + 296706150*uk_69 + 225*uk_7 + 34286044*uk_70 + 12984064*uk_71 + 133898160*uk_72 + 182588400*uk_73 + 21099104*uk_74 + 1380824775*uk_75 + 1882942875*uk_76 + 217584510*uk_77 + 2567649375*uk_78 + 296706150*uk_79 + 26*uk_8 + 34286044*uk_80 + 166375*uk_81 + 193600*uk_82 + 78650*uk_83 + 48400*uk_84 + 499125*uk_85 + 680625*uk_86 + 78650*uk_87 + 225280*uk_88 + 91520*uk_89 + 2572416961*uk_9 + 56320*uk_90 + 580800*uk_91 + 792000*uk_92 + 91520*uk_93 + 37180*uk_94 + 22880*uk_95 + 235950*uk_96 + 321750*uk_97 + 37180*uk_98 + 14080*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 146960*uk_100 + 198000*uk_101 + 56320*uk_102 + 1533895*uk_103 + 2066625*uk_104 + 587840*uk_105 + 2784375*uk_106 + 792000*uk_107 + 225280*uk_108 + 1643032*uk_109 + 5984842*uk_11 + 891136*uk_110 + 222784*uk_111 + 2325308*uk_112 + 3132900*uk_113 + 891136*uk_114 + 483328*uk_115 + 120832*uk_116 + 1261184*uk_117 + 1699200*uk_118 + 483328*uk_119 + 3246016*uk_12 + 30208*uk_120 + 315296*uk_121 + 424800*uk_122 + 120832*uk_123 + 3290902*uk_124 + 4433850*uk_125 + 1261184*uk_126 + 5973750*uk_127 + 1699200*uk_128 + 483328*uk_129 + 811504*uk_13 + 262144*uk_130 + 65536*uk_131 + 684032*uk_132 + 921600*uk_133 + 262144*uk_134 + 16384*uk_135 + 171008*uk_136 + 230400*uk_137 + 65536*uk_138 + 1784896*uk_139 + 8470073*uk_14 + 2404800*uk_140 + 684032*uk_141 + 3240000*uk_142 + 921600*uk_143 + 262144*uk_144 + 4096*uk_145 + 42752*uk_146 + 57600*uk_147 + 16384*uk_148 + 446224*uk_149 + 11411775*uk_15 + 601200*uk_150 + 171008*uk_151 + 810000*uk_152 + 230400*uk_153 + 65536*uk_154 + 4657463*uk_155 + 6275025*uk_156 + 1784896*uk_157 + 8454375*uk_158 + 2404800*uk_159 + 3246016*uk_16 + 684032*uk_160 + 11390625*uk_161 + 3240000*uk_162 + 921600*uk_163 + 262144*uk_164 + 3025*uk_17 + 6490*uk_18 + 3520*uk_19 + 55*uk_2 + 880*uk_20 + 9185*uk_21 + 12375*uk_22 + 3520*uk_23 + 13924*uk_24 + 7552*uk_25 + 1888*uk_26 + 19706*uk_27 + 26550*uk_28 + 7552*uk_29 + 118*uk_3 + 4096*uk_30 + 1024*uk_31 + 10688*uk_32 + 14400*uk_33 + 4096*uk_34 + 256*uk_35 + 2672*uk_36 + 3600*uk_37 + 1024*uk_38 + 27889*uk_39 + 64*uk_4 + 37575*uk_40 + 10688*uk_41 + 50625*uk_42 + 14400*uk_43 + 4096*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 303545201398*uk_47 + 164634685504*uk_48 + 41158671376*uk_49 + 16*uk_5 + 429593632487*uk_50 + 578793816225*uk_51 + 164634685504*uk_52 + 153424975*uk_53 + 329166310*uk_54 + 178530880*uk_55 + 44632720*uk_56 + 465854015*uk_57 + 627647625*uk_58 + 178530880*uk_59 + 167*uk_6 + 706211356*uk_60 + 383029888*uk_61 + 95757472*uk_62 + 999468614*uk_63 + 1346589450*uk_64 + 383029888*uk_65 + 207745024*uk_66 + 51936256*uk_67 + 542084672*uk_68 + 730353600*uk_69 + 225*uk_7 + 207745024*uk_70 + 12984064*uk_71 + 135521168*uk_72 + 182588400*uk_73 + 51936256*uk_74 + 1414502191*uk_75 + 1905766425*uk_76 + 542084672*uk_77 + 2567649375*uk_78 + 730353600*uk_79 + 64*uk_8 + 207745024*uk_80 + 166375*uk_81 + 356950*uk_82 + 193600*uk_83 + 48400*uk_84 + 505175*uk_85 + 680625*uk_86 + 193600*uk_87 + 765820*uk_88 + 415360*uk_89 + 2572416961*uk_9 + 103840*uk_90 + 1083830*uk_91 + 1460250*uk_92 + 415360*uk_93 + 225280*uk_94 + 56320*uk_95 + 587840*uk_96 + 792000*uk_97 + 225280*uk_98 + 14080*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 111540*uk_100 + 148500*uk_101 + 77880*uk_102 + 1570855*uk_103 + 2091375*uk_104 + 1096810*uk_105 + 2784375*uk_106 + 1460250*uk_107 + 765820*uk_108 + 6859*uk_109 + 963661*uk_11 + 42598*uk_110 + 4332*uk_111 + 61009*uk_112 + 81225*uk_113 + 42598*uk_114 + 264556*uk_115 + 26904*uk_116 + 378898*uk_117 + 504450*uk_118 + 264556*uk_119 + 5984842*uk_12 + 2736*uk_120 + 38532*uk_121 + 51300*uk_122 + 26904*uk_123 + 542659*uk_124 + 722475*uk_125 + 378898*uk_126 + 961875*uk_127 + 504450*uk_128 + 264556*uk_129 + 608628*uk_13 + 1643032*uk_130 + 167088*uk_131 + 2353156*uk_132 + 3132900*uk_133 + 1643032*uk_134 + 16992*uk_135 + 239304*uk_136 + 318600*uk_137 + 167088*uk_138 + 3370198*uk_139 + 8571511*uk_14 + 4486950*uk_140 + 2353156*uk_141 + 5973750*uk_142 + 3132900*uk_143 + 1643032*uk_144 + 1728*uk_145 + 24336*uk_146 + 32400*uk_147 + 16992*uk_148 + 342732*uk_149 + 11411775*uk_15 + 456300*uk_150 + 239304*uk_151 + 607500*uk_152 + 318600*uk_153 + 167088*uk_154 + 4826809*uk_155 + 6426225*uk_156 + 3370198*uk_157 + 8555625*uk_158 + 4486950*uk_159 + 5984842*uk_16 + 2353156*uk_160 + 11390625*uk_161 + 5973750*uk_162 + 3132900*uk_163 + 1643032*uk_164 + 3025*uk_17 + 1045*uk_18 + 6490*uk_19 + 55*uk_2 + 660*uk_20 + 9295*uk_21 + 12375*uk_22 + 6490*uk_23 + 361*uk_24 + 2242*uk_25 + 228*uk_26 + 3211*uk_27 + 4275*uk_28 + 2242*uk_29 + 19*uk_3 + 13924*uk_30 + 1416*uk_31 + 19942*uk_32 + 26550*uk_33 + 13924*uk_34 + 144*uk_35 + 2028*uk_36 + 2700*uk_37 + 1416*uk_38 + 28561*uk_39 + 118*uk_4 + 38025*uk_40 + 19942*uk_41 + 50625*uk_42 + 26550*uk_43 + 13924*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 48875922259*uk_47 + 303545201398*uk_48 + 30869003532*uk_49 + 12*uk_5 + 434738466409*uk_50 + 578793816225*uk_51 + 303545201398*uk_52 + 153424975*uk_53 + 53001355*uk_54 + 329166310*uk_55 + 33474540*uk_56 + 471433105*uk_57 + 627647625*uk_58 + 329166310*uk_59 + 169*uk_6 + 18309559*uk_60 + 113711998*uk_61 + 11563932*uk_62 + 162858709*uk_63 + 216823725*uk_64 + 113711998*uk_65 + 706211356*uk_66 + 71818104*uk_67 + 1011438298*uk_68 + 1346589450*uk_69 + 225*uk_7 + 706211356*uk_70 + 7303536*uk_71 + 102858132*uk_72 + 136941300*uk_73 + 71818104*uk_74 + 1448585359*uk_75 + 1928589975*uk_76 + 1011438298*uk_77 + 2567649375*uk_78 + 1346589450*uk_79 + 118*uk_8 + 706211356*uk_80 + 166375*uk_81 + 57475*uk_82 + 356950*uk_83 + 36300*uk_84 + 511225*uk_85 + 680625*uk_86 + 356950*uk_87 + 19855*uk_88 + 123310*uk_89 + 2572416961*uk_9 + 12540*uk_90 + 176605*uk_91 + 235125*uk_92 + 123310*uk_93 + 765820*uk_94 + 77880*uk_95 + 1096810*uk_96 + 1460250*uk_97 + 765820*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 150480*uk_100 + 198000*uk_101 + 16720*uk_102 + 1608255*uk_103 + 2116125*uk_104 + 178695*uk_105 + 2784375*uk_106 + 235125*uk_107 + 19855*uk_108 + 1092727*uk_109 + 5224057*uk_11 + 201571*uk_110 + 169744*uk_111 + 1814139*uk_112 + 2387025*uk_113 + 201571*uk_114 + 37183*uk_115 + 31312*uk_116 + 334647*uk_117 + 440325*uk_118 + 37183*uk_119 + 963661*uk_12 + 26368*uk_120 + 281808*uk_121 + 370800*uk_122 + 31312*uk_123 + 3011823*uk_124 + 3962925*uk_125 + 334647*uk_126 + 5214375*uk_127 + 440325*uk_128 + 37183*uk_129 + 811504*uk_13 + 6859*uk_130 + 5776*uk_131 + 61731*uk_132 + 81225*uk_133 + 6859*uk_134 + 4864*uk_135 + 51984*uk_136 + 68400*uk_137 + 5776*uk_138 + 555579*uk_139 + 8672949*uk_14 + 731025*uk_140 + 61731*uk_141 + 961875*uk_142 + 81225*uk_143 + 6859*uk_144 + 4096*uk_145 + 43776*uk_146 + 57600*uk_147 + 4864*uk_148 + 467856*uk_149 + 11411775*uk_15 + 615600*uk_150 + 51984*uk_151 + 810000*uk_152 + 68400*uk_153 + 5776*uk_154 + 5000211*uk_155 + 6579225*uk_156 + 555579*uk_157 + 8656875*uk_158 + 731025*uk_159 + 963661*uk_16 + 61731*uk_160 + 11390625*uk_161 + 961875*uk_162 + 81225*uk_163 + 6859*uk_164 + 3025*uk_17 + 5665*uk_18 + 1045*uk_19 + 55*uk_2 + 880*uk_20 + 9405*uk_21 + 12375*uk_22 + 1045*uk_23 + 10609*uk_24 + 1957*uk_25 + 1648*uk_26 + 17613*uk_27 + 23175*uk_28 + 1957*uk_29 + 103*uk_3 + 361*uk_30 + 304*uk_31 + 3249*uk_32 + 4275*uk_33 + 361*uk_34 + 256*uk_35 + 2736*uk_36 + 3600*uk_37 + 304*uk_38 + 29241*uk_39 + 19*uk_4 + 38475*uk_40 + 3249*uk_41 + 50625*uk_42 + 4275*uk_43 + 361*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 264958946983*uk_47 + 48875922259*uk_48 + 41158671376*uk_49 + 16*uk_5 + 439883300331*uk_50 + 578793816225*uk_51 + 48875922259*uk_52 + 153424975*uk_53 + 287323135*uk_54 + 53001355*uk_55 + 44632720*uk_56 + 477012195*uk_57 + 627647625*uk_58 + 53001355*uk_59 + 171*uk_6 + 538077871*uk_60 + 99257083*uk_61 + 83584912*uk_62 + 893313747*uk_63 + 1175412825*uk_64 + 99257083*uk_65 + 18309559*uk_66 + 15418576*uk_67 + 164786031*uk_68 + 216823725*uk_69 + 225*uk_7 + 18309559*uk_70 + 12984064*uk_71 + 138767184*uk_72 + 182588400*uk_73 + 15418576*uk_74 + 1483074279*uk_75 + 1951413525*uk_76 + 164786031*uk_77 + 2567649375*uk_78 + 216823725*uk_79 + 19*uk_8 + 18309559*uk_80 + 166375*uk_81 + 311575*uk_82 + 57475*uk_83 + 48400*uk_84 + 517275*uk_85 + 680625*uk_86 + 57475*uk_87 + 583495*uk_88 + 107635*uk_89 + 2572416961*uk_9 + 90640*uk_90 + 968715*uk_91 + 1274625*uk_92 + 107635*uk_93 + 19855*uk_94 + 16720*uk_95 + 178695*uk_96 + 235125*uk_97 + 19855*uk_98 + 14080*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 114180*uk_100 + 148500*uk_101 + 67980*uk_102 + 1646095*uk_103 + 2140875*uk_104 + 980045*uk_105 + 2784375*uk_106 + 1274625*uk_107 + 583495*uk_108 + 27000*uk_109 + 1521570*uk_11 + 92700*uk_110 + 10800*uk_111 + 155700*uk_112 + 202500*uk_113 + 92700*uk_114 + 318270*uk_115 + 37080*uk_116 + 534570*uk_117 + 695250*uk_118 + 318270*uk_119 + 5224057*uk_12 + 4320*uk_120 + 62280*uk_121 + 81000*uk_122 + 37080*uk_123 + 897870*uk_124 + 1167750*uk_125 + 534570*uk_126 + 1518750*uk_127 + 695250*uk_128 + 318270*uk_129 + 608628*uk_13 + 1092727*uk_130 + 127308*uk_131 + 1835357*uk_132 + 2387025*uk_133 + 1092727*uk_134 + 14832*uk_135 + 213828*uk_136 + 278100*uk_137 + 127308*uk_138 + 3082687*uk_139 + 8774387*uk_14 + 4009275*uk_140 + 1835357*uk_141 + 5214375*uk_142 + 2387025*uk_143 + 1092727*uk_144 + 1728*uk_145 + 24912*uk_146 + 32400*uk_147 + 14832*uk_148 + 359148*uk_149 + 11411775*uk_15 + 467100*uk_150 + 213828*uk_151 + 607500*uk_152 + 278100*uk_153 + 127308*uk_154 + 5177717*uk_155 + 6734025*uk_156 + 3082687*uk_157 + 8758125*uk_158 + 4009275*uk_159 + 5224057*uk_16 + 1835357*uk_160 + 11390625*uk_161 + 5214375*uk_162 + 2387025*uk_163 + 1092727*uk_164 + 3025*uk_17 + 1650*uk_18 + 5665*uk_19 + 55*uk_2 + 660*uk_20 + 9515*uk_21 + 12375*uk_22 + 5665*uk_23 + 900*uk_24 + 3090*uk_25 + 360*uk_26 + 5190*uk_27 + 6750*uk_28 + 3090*uk_29 + 30*uk_3 + 10609*uk_30 + 1236*uk_31 + 17819*uk_32 + 23175*uk_33 + 10609*uk_34 + 144*uk_35 + 2076*uk_36 + 2700*uk_37 + 1236*uk_38 + 29929*uk_39 + 103*uk_4 + 38925*uk_40 + 17819*uk_41 + 50625*uk_42 + 23175*uk_43 + 10609*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 77172508830*uk_47 + 264958946983*uk_48 + 30869003532*uk_49 + 12*uk_5 + 445028134253*uk_50 + 578793816225*uk_51 + 264958946983*uk_52 + 153424975*uk_53 + 83686350*uk_54 + 287323135*uk_55 + 33474540*uk_56 + 482591285*uk_57 + 627647625*uk_58 + 287323135*uk_59 + 173*uk_6 + 45647100*uk_60 + 156721710*uk_61 + 18258840*uk_62 + 263231610*uk_63 + 342353250*uk_64 + 156721710*uk_65 + 538077871*uk_66 + 62688684*uk_67 + 903761861*uk_68 + 1175412825*uk_69 + 225*uk_7 + 538077871*uk_70 + 7303536*uk_71 + 105292644*uk_72 + 136941300*uk_73 + 62688684*uk_74 + 1517968951*uk_75 + 1974237075*uk_76 + 903761861*uk_77 + 2567649375*uk_78 + 1175412825*uk_79 + 103*uk_8 + 538077871*uk_80 + 166375*uk_81 + 90750*uk_82 + 311575*uk_83 + 36300*uk_84 + 523325*uk_85 + 680625*uk_86 + 311575*uk_87 + 49500*uk_88 + 169950*uk_89 + 2572416961*uk_9 + 19800*uk_90 + 285450*uk_91 + 371250*uk_92 + 169950*uk_93 + 583495*uk_94 + 67980*uk_95 + 980045*uk_96 + 1274625*uk_97 + 583495*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 154000*uk_100 + 198000*uk_101 + 26400*uk_102 + 1684375*uk_103 + 2165625*uk_104 + 288750*uk_105 + 2784375*uk_106 + 371250*uk_107 + 49500*uk_108 + 2985984*uk_109 + 7303536*uk_11 + 622080*uk_110 + 331776*uk_111 + 3628800*uk_112 + 4665600*uk_113 + 622080*uk_114 + 129600*uk_115 + 69120*uk_116 + 756000*uk_117 + 972000*uk_118 + 129600*uk_119 + 1521570*uk_12 + 36864*uk_120 + 403200*uk_121 + 518400*uk_122 + 69120*uk_123 + 4410000*uk_124 + 5670000*uk_125 + 756000*uk_126 + 7290000*uk_127 + 972000*uk_128 + 129600*uk_129 + 811504*uk_13 + 27000*uk_130 + 14400*uk_131 + 157500*uk_132 + 202500*uk_133 + 27000*uk_134 + 7680*uk_135 + 84000*uk_136 + 108000*uk_137 + 14400*uk_138 + 918750*uk_139 + 8875825*uk_14 + 1181250*uk_140 + 157500*uk_141 + 1518750*uk_142 + 202500*uk_143 + 27000*uk_144 + 4096*uk_145 + 44800*uk_146 + 57600*uk_147 + 7680*uk_148 + 490000*uk_149 + 11411775*uk_15 + 630000*uk_150 + 84000*uk_151 + 810000*uk_152 + 108000*uk_153 + 14400*uk_154 + 5359375*uk_155 + 6890625*uk_156 + 918750*uk_157 + 8859375*uk_158 + 1181250*uk_159 + 1521570*uk_16 + 157500*uk_160 + 11390625*uk_161 + 1518750*uk_162 + 202500*uk_163 + 27000*uk_164 + 3025*uk_17 + 7920*uk_18 + 1650*uk_19 + 55*uk_2 + 880*uk_20 + 9625*uk_21 + 12375*uk_22 + 1650*uk_23 + 20736*uk_24 + 4320*uk_25 + 2304*uk_26 + 25200*uk_27 + 32400*uk_28 + 4320*uk_29 + 144*uk_3 + 900*uk_30 + 480*uk_31 + 5250*uk_32 + 6750*uk_33 + 900*uk_34 + 256*uk_35 + 2800*uk_36 + 3600*uk_37 + 480*uk_38 + 30625*uk_39 + 30*uk_4 + 39375*uk_40 + 5250*uk_41 + 50625*uk_42 + 6750*uk_43 + 900*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 370428042384*uk_47 + 77172508830*uk_48 + 41158671376*uk_49 + 16*uk_5 + 450172968175*uk_50 + 578793816225*uk_51 + 77172508830*uk_52 + 153424975*uk_53 + 401694480*uk_54 + 83686350*uk_55 + 44632720*uk_56 + 488170375*uk_57 + 627647625*uk_58 + 83686350*uk_59 + 175*uk_6 + 1051709184*uk_60 + 219106080*uk_61 + 116856576*uk_62 + 1278118800*uk_63 + 1643295600*uk_64 + 219106080*uk_65 + 45647100*uk_66 + 24345120*uk_67 + 266274750*uk_68 + 342353250*uk_69 + 225*uk_7 + 45647100*uk_70 + 12984064*uk_71 + 142013200*uk_72 + 182588400*uk_73 + 24345120*uk_74 + 1553269375*uk_75 + 1997060625*uk_76 + 266274750*uk_77 + 2567649375*uk_78 + 342353250*uk_79 + 30*uk_8 + 45647100*uk_80 + 166375*uk_81 + 435600*uk_82 + 90750*uk_83 + 48400*uk_84 + 529375*uk_85 + 680625*uk_86 + 90750*uk_87 + 1140480*uk_88 + 237600*uk_89 + 2572416961*uk_9 + 126720*uk_90 + 1386000*uk_91 + 1782000*uk_92 + 237600*uk_93 + 49500*uk_94 + 26400*uk_95 + 288750*uk_96 + 371250*uk_97 + 49500*uk_98 + 14080*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 116820*uk_100 + 148500*uk_101 + 95040*uk_102 + 1723095*uk_103 + 2190375*uk_104 + 1401840*uk_105 + 2784375*uk_106 + 1782000*uk_107 + 1140480*uk_108 + 912673*uk_109 + 4919743*uk_11 + 1354896*uk_110 + 112908*uk_111 + 1665393*uk_112 + 2117025*uk_113 + 1354896*uk_114 + 2011392*uk_115 + 167616*uk_116 + 2472336*uk_117 + 3142800*uk_118 + 2011392*uk_119 + 7303536*uk_12 + 13968*uk_120 + 206028*uk_121 + 261900*uk_122 + 167616*uk_123 + 3038913*uk_124 + 3863025*uk_125 + 2472336*uk_126 + 4910625*uk_127 + 3142800*uk_128 + 2011392*uk_129 + 608628*uk_13 + 2985984*uk_130 + 248832*uk_131 + 3670272*uk_132 + 4665600*uk_133 + 2985984*uk_134 + 20736*uk_135 + 305856*uk_136 + 388800*uk_137 + 248832*uk_138 + 4511376*uk_139 + 8977263*uk_14 + 5734800*uk_140 + 3670272*uk_141 + 7290000*uk_142 + 4665600*uk_143 + 2985984*uk_144 + 1728*uk_145 + 25488*uk_146 + 32400*uk_147 + 20736*uk_148 + 375948*uk_149 + 11411775*uk_15 + 477900*uk_150 + 305856*uk_151 + 607500*uk_152 + 388800*uk_153 + 248832*uk_154 + 5545233*uk_155 + 7049025*uk_156 + 4511376*uk_157 + 8960625*uk_158 + 5734800*uk_159 + 7303536*uk_16 + 3670272*uk_160 + 11390625*uk_161 + 7290000*uk_162 + 4665600*uk_163 + 2985984*uk_164 + 3025*uk_17 + 5335*uk_18 + 7920*uk_19 + 55*uk_2 + 660*uk_20 + 9735*uk_21 + 12375*uk_22 + 7920*uk_23 + 9409*uk_24 + 13968*uk_25 + 1164*uk_26 + 17169*uk_27 + 21825*uk_28 + 13968*uk_29 + 97*uk_3 + 20736*uk_30 + 1728*uk_31 + 25488*uk_32 + 32400*uk_33 + 20736*uk_34 + 144*uk_35 + 2124*uk_36 + 2700*uk_37 + 1728*uk_38 + 31329*uk_39 + 144*uk_4 + 39825*uk_40 + 25488*uk_41 + 50625*uk_42 + 32400*uk_43 + 20736*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 249524445217*uk_47 + 370428042384*uk_48 + 30869003532*uk_49 + 12*uk_5 + 455317802097*uk_50 + 578793816225*uk_51 + 370428042384*uk_52 + 153424975*uk_53 + 270585865*uk_54 + 401694480*uk_55 + 33474540*uk_56 + 493749465*uk_57 + 627647625*uk_58 + 401694480*uk_59 + 177*uk_6 + 477215071*uk_60 + 708442992*uk_61 + 59036916*uk_62 + 870794511*uk_63 + 1106942175*uk_64 + 708442992*uk_65 + 1051709184*uk_66 + 87642432*uk_67 + 1292725872*uk_68 + 1643295600*uk_69 + 225*uk_7 + 1051709184*uk_70 + 7303536*uk_71 + 107727156*uk_72 + 136941300*uk_73 + 87642432*uk_74 + 1588975551*uk_75 + 2019884175*uk_76 + 1292725872*uk_77 + 2567649375*uk_78 + 1643295600*uk_79 + 144*uk_8 + 1051709184*uk_80 + 166375*uk_81 + 293425*uk_82 + 435600*uk_83 + 36300*uk_84 + 535425*uk_85 + 680625*uk_86 + 435600*uk_87 + 517495*uk_88 + 768240*uk_89 + 2572416961*uk_9 + 64020*uk_90 + 944295*uk_91 + 1200375*uk_92 + 768240*uk_93 + 1140480*uk_94 + 95040*uk_95 + 1401840*uk_96 + 1782000*uk_97 + 1140480*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 118140*uk_100 + 148500*uk_101 + 64020*uk_102 + 1762255*uk_103 + 2215125*uk_104 + 954965*uk_105 + 2784375*uk_106 + 1200375*uk_107 + 517495*uk_108 + 238328*uk_109 + 3144578*uk_11 + 372868*uk_110 + 46128*uk_111 + 688076*uk_112 + 864900*uk_113 + 372868*uk_114 + 583358*uk_115 + 72168*uk_116 + 1076506*uk_117 + 1353150*uk_118 + 583358*uk_119 + 4919743*uk_12 + 8928*uk_120 + 133176*uk_121 + 167400*uk_122 + 72168*uk_123 + 1986542*uk_124 + 2497050*uk_125 + 1076506*uk_126 + 3138750*uk_127 + 1353150*uk_128 + 583358*uk_129 + 608628*uk_13 + 912673*uk_130 + 112908*uk_131 + 1684211*uk_132 + 2117025*uk_133 + 912673*uk_134 + 13968*uk_135 + 208356*uk_136 + 261900*uk_137 + 112908*uk_138 + 3107977*uk_139 + 9078701*uk_14 + 3906675*uk_140 + 1684211*uk_141 + 4910625*uk_142 + 2117025*uk_143 + 912673*uk_144 + 1728*uk_145 + 25776*uk_146 + 32400*uk_147 + 13968*uk_148 + 384492*uk_149 + 11411775*uk_15 + 483300*uk_150 + 208356*uk_151 + 607500*uk_152 + 261900*uk_153 + 112908*uk_154 + 5735339*uk_155 + 7209225*uk_156 + 3107977*uk_157 + 9061875*uk_158 + 3906675*uk_159 + 4919743*uk_16 + 1684211*uk_160 + 11390625*uk_161 + 4910625*uk_162 + 2117025*uk_163 + 912673*uk_164 + 3025*uk_17 + 3410*uk_18 + 5335*uk_19 + 55*uk_2 + 660*uk_20 + 9845*uk_21 + 12375*uk_22 + 5335*uk_23 + 3844*uk_24 + 6014*uk_25 + 744*uk_26 + 11098*uk_27 + 13950*uk_28 + 6014*uk_29 + 62*uk_3 + 9409*uk_30 + 1164*uk_31 + 17363*uk_32 + 21825*uk_33 + 9409*uk_34 + 144*uk_35 + 2148*uk_36 + 2700*uk_37 + 1164*uk_38 + 32041*uk_39 + 97*uk_4 + 40275*uk_40 + 17363*uk_41 + 50625*uk_42 + 21825*uk_43 + 9409*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 159489851582*uk_47 + 249524445217*uk_48 + 30869003532*uk_49 + 12*uk_5 + 460462636019*uk_50 + 578793816225*uk_51 + 249524445217*uk_52 + 153424975*uk_53 + 172951790*uk_54 + 270585865*uk_55 + 33474540*uk_56 + 499328555*uk_57 + 627647625*uk_58 + 270585865*uk_59 + 179*uk_6 + 194963836*uk_60 + 305024066*uk_61 + 37734936*uk_62 + 562879462*uk_63 + 707530050*uk_64 + 305024066*uk_65 + 477215071*uk_66 + 59036916*uk_67 + 880633997*uk_68 + 1106942175*uk_69 + 225*uk_7 + 477215071*uk_70 + 7303536*uk_71 + 108944412*uk_72 + 136941300*uk_73 + 59036916*uk_74 + 1625087479*uk_75 + 2042707725*uk_76 + 880633997*uk_77 + 2567649375*uk_78 + 1106942175*uk_79 + 97*uk_8 + 477215071*uk_80 + 166375*uk_81 + 187550*uk_82 + 293425*uk_83 + 36300*uk_84 + 541475*uk_85 + 680625*uk_86 + 293425*uk_87 + 211420*uk_88 + 330770*uk_89 + 2572416961*uk_9 + 40920*uk_90 + 610390*uk_91 + 767250*uk_92 + 330770*uk_93 + 517495*uk_94 + 64020*uk_95 + 954965*uk_96 + 1200375*uk_97 + 517495*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 119460*uk_100 + 148500*uk_101 + 40920*uk_102 + 1801855*uk_103 + 2239875*uk_104 + 617210*uk_105 + 2784375*uk_106 + 767250*uk_107 + 211420*uk_108 + 59319*uk_109 + 1978041*uk_11 + 94302*uk_110 + 18252*uk_111 + 275301*uk_112 + 342225*uk_113 + 94302*uk_114 + 149916*uk_115 + 29016*uk_116 + 437658*uk_117 + 544050*uk_118 + 149916*uk_119 + 3144578*uk_12 + 5616*uk_120 + 84708*uk_121 + 105300*uk_122 + 29016*uk_123 + 1277679*uk_124 + 1588275*uk_125 + 437658*uk_126 + 1974375*uk_127 + 544050*uk_128 + 149916*uk_129 + 608628*uk_13 + 238328*uk_130 + 46128*uk_131 + 695764*uk_132 + 864900*uk_133 + 238328*uk_134 + 8928*uk_135 + 134664*uk_136 + 167400*uk_137 + 46128*uk_138 + 2031182*uk_139 + 9180139*uk_14 + 2524950*uk_140 + 695764*uk_141 + 3138750*uk_142 + 864900*uk_143 + 238328*uk_144 + 1728*uk_145 + 26064*uk_146 + 32400*uk_147 + 8928*uk_148 + 393132*uk_149 + 11411775*uk_15 + 488700*uk_150 + 134664*uk_151 + 607500*uk_152 + 167400*uk_153 + 46128*uk_154 + 5929741*uk_155 + 7371225*uk_156 + 2031182*uk_157 + 9163125*uk_158 + 2524950*uk_159 + 3144578*uk_16 + 695764*uk_160 + 11390625*uk_161 + 3138750*uk_162 + 864900*uk_163 + 238328*uk_164 + 3025*uk_17 + 2145*uk_18 + 3410*uk_19 + 55*uk_2 + 660*uk_20 + 9955*uk_21 + 12375*uk_22 + 3410*uk_23 + 1521*uk_24 + 2418*uk_25 + 468*uk_26 + 7059*uk_27 + 8775*uk_28 + 2418*uk_29 + 39*uk_3 + 3844*uk_30 + 744*uk_31 + 11222*uk_32 + 13950*uk_33 + 3844*uk_34 + 144*uk_35 + 2172*uk_36 + 2700*uk_37 + 744*uk_38 + 32761*uk_39 + 62*uk_4 + 40725*uk_40 + 11222*uk_41 + 50625*uk_42 + 13950*uk_43 + 3844*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 100324261479*uk_47 + 159489851582*uk_48 + 30869003532*uk_49 + 12*uk_5 + 465607469941*uk_50 + 578793816225*uk_51 + 159489851582*uk_52 + 153424975*uk_53 + 108792255*uk_54 + 172951790*uk_55 + 33474540*uk_56 + 504907645*uk_57 + 627647625*uk_58 + 172951790*uk_59 + 181*uk_6 + 77143599*uk_60 + 122638542*uk_61 + 23736492*uk_62 + 358025421*uk_63 + 445059225*uk_64 + 122638542*uk_65 + 194963836*uk_66 + 37734936*uk_67 + 569168618*uk_68 + 707530050*uk_69 + 225*uk_7 + 194963836*uk_70 + 7303536*uk_71 + 110161668*uk_72 + 136941300*uk_73 + 37734936*uk_74 + 1661605159*uk_75 + 2065531275*uk_76 + 569168618*uk_77 + 2567649375*uk_78 + 707530050*uk_79 + 62*uk_8 + 194963836*uk_80 + 166375*uk_81 + 117975*uk_82 + 187550*uk_83 + 36300*uk_84 + 547525*uk_85 + 680625*uk_86 + 187550*uk_87 + 83655*uk_88 + 132990*uk_89 + 2572416961*uk_9 + 25740*uk_90 + 388245*uk_91 + 482625*uk_92 + 132990*uk_93 + 211420*uk_94 + 40920*uk_95 + 617210*uk_96 + 767250*uk_97 + 211420*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 120780*uk_100 + 148500*uk_101 + 25740*uk_102 + 1841895*uk_103 + 2264625*uk_104 + 392535*uk_105 + 2784375*uk_106 + 482625*uk_107 + 83655*uk_108 + 21952*uk_109 + 1420132*uk_11 + 30576*uk_110 + 9408*uk_111 + 143472*uk_112 + 176400*uk_113 + 30576*uk_114 + 42588*uk_115 + 13104*uk_116 + 199836*uk_117 + 245700*uk_118 + 42588*uk_119 + 1978041*uk_12 + 4032*uk_120 + 61488*uk_121 + 75600*uk_122 + 13104*uk_123 + 937692*uk_124 + 1152900*uk_125 + 199836*uk_126 + 1417500*uk_127 + 245700*uk_128 + 42588*uk_129 + 608628*uk_13 + 59319*uk_130 + 18252*uk_131 + 278343*uk_132 + 342225*uk_133 + 59319*uk_134 + 5616*uk_135 + 85644*uk_136 + 105300*uk_137 + 18252*uk_138 + 1306071*uk_139 + 9281577*uk_14 + 1605825*uk_140 + 278343*uk_141 + 1974375*uk_142 + 342225*uk_143 + 59319*uk_144 + 1728*uk_145 + 26352*uk_146 + 32400*uk_147 + 5616*uk_148 + 401868*uk_149 + 11411775*uk_15 + 494100*uk_150 + 85644*uk_151 + 607500*uk_152 + 105300*uk_153 + 18252*uk_154 + 6128487*uk_155 + 7535025*uk_156 + 1306071*uk_157 + 9264375*uk_158 + 1605825*uk_159 + 1978041*uk_16 + 278343*uk_160 + 11390625*uk_161 + 1974375*uk_162 + 342225*uk_163 + 59319*uk_164 + 3025*uk_17 + 1540*uk_18 + 2145*uk_19 + 55*uk_2 + 660*uk_20 + 10065*uk_21 + 12375*uk_22 + 2145*uk_23 + 784*uk_24 + 1092*uk_25 + 336*uk_26 + 5124*uk_27 + 6300*uk_28 + 1092*uk_29 + 28*uk_3 + 1521*uk_30 + 468*uk_31 + 7137*uk_32 + 8775*uk_33 + 1521*uk_34 + 144*uk_35 + 2196*uk_36 + 2700*uk_37 + 468*uk_38 + 33489*uk_39 + 39*uk_4 + 41175*uk_40 + 7137*uk_41 + 50625*uk_42 + 8775*uk_43 + 1521*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 72027674908*uk_47 + 100324261479*uk_48 + 30869003532*uk_49 + 12*uk_5 + 470752303863*uk_50 + 578793816225*uk_51 + 100324261479*uk_52 + 153424975*uk_53 + 78107260*uk_54 + 108792255*uk_55 + 33474540*uk_56 + 510486735*uk_57 + 627647625*uk_58 + 108792255*uk_59 + 183*uk_6 + 39763696*uk_60 + 55385148*uk_61 + 17041584*uk_62 + 259884156*uk_63 + 319529700*uk_64 + 55385148*uk_65 + 77143599*uk_66 + 23736492*uk_67 + 361981503*uk_68 + 445059225*uk_69 + 225*uk_7 + 77143599*uk_70 + 7303536*uk_71 + 111378924*uk_72 + 136941300*uk_73 + 23736492*uk_74 + 1698528591*uk_75 + 2088354825*uk_76 + 361981503*uk_77 + 2567649375*uk_78 + 445059225*uk_79 + 39*uk_8 + 77143599*uk_80 + 166375*uk_81 + 84700*uk_82 + 117975*uk_83 + 36300*uk_84 + 553575*uk_85 + 680625*uk_86 + 117975*uk_87 + 43120*uk_88 + 60060*uk_89 + 2572416961*uk_9 + 18480*uk_90 + 281820*uk_91 + 346500*uk_92 + 60060*uk_93 + 83655*uk_94 + 25740*uk_95 + 392535*uk_96 + 482625*uk_97 + 83655*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 122100*uk_100 + 148500*uk_101 + 18480*uk_102 + 1882375*uk_103 + 2289375*uk_104 + 284900*uk_105 + 2784375*uk_106 + 346500*uk_107 + 43120*uk_108 + 24389*uk_109 + 1470851*uk_11 + 23548*uk_110 + 10092*uk_111 + 155585*uk_112 + 189225*uk_113 + 23548*uk_114 + 22736*uk_115 + 9744*uk_116 + 150220*uk_117 + 182700*uk_118 + 22736*uk_119 + 1420132*uk_12 + 4176*uk_120 + 64380*uk_121 + 78300*uk_122 + 9744*uk_123 + 992525*uk_124 + 1207125*uk_125 + 150220*uk_126 + 1468125*uk_127 + 182700*uk_128 + 22736*uk_129 + 608628*uk_13 + 21952*uk_130 + 9408*uk_131 + 145040*uk_132 + 176400*uk_133 + 21952*uk_134 + 4032*uk_135 + 62160*uk_136 + 75600*uk_137 + 9408*uk_138 + 958300*uk_139 + 9383015*uk_14 + 1165500*uk_140 + 145040*uk_141 + 1417500*uk_142 + 176400*uk_143 + 21952*uk_144 + 1728*uk_145 + 26640*uk_146 + 32400*uk_147 + 4032*uk_148 + 410700*uk_149 + 11411775*uk_15 + 499500*uk_150 + 62160*uk_151 + 607500*uk_152 + 75600*uk_153 + 9408*uk_154 + 6331625*uk_155 + 7700625*uk_156 + 958300*uk_157 + 9365625*uk_158 + 1165500*uk_159 + 1420132*uk_16 + 145040*uk_160 + 11390625*uk_161 + 1417500*uk_162 + 176400*uk_163 + 21952*uk_164 + 3025*uk_17 + 1595*uk_18 + 1540*uk_19 + 55*uk_2 + 660*uk_20 + 10175*uk_21 + 12375*uk_22 + 1540*uk_23 + 841*uk_24 + 812*uk_25 + 348*uk_26 + 5365*uk_27 + 6525*uk_28 + 812*uk_29 + 29*uk_3 + 784*uk_30 + 336*uk_31 + 5180*uk_32 + 6300*uk_33 + 784*uk_34 + 144*uk_35 + 2220*uk_36 + 2700*uk_37 + 336*uk_38 + 34225*uk_39 + 28*uk_4 + 41625*uk_40 + 5180*uk_41 + 50625*uk_42 + 6300*uk_43 + 784*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 74600091869*uk_47 + 72027674908*uk_48 + 30869003532*uk_49 + 12*uk_5 + 475897137785*uk_50 + 578793816225*uk_51 + 72027674908*uk_52 + 153424975*uk_53 + 80896805*uk_54 + 78107260*uk_55 + 33474540*uk_56 + 516065825*uk_57 + 627647625*uk_58 + 78107260*uk_59 + 185*uk_6 + 42654679*uk_60 + 41183828*uk_61 + 17650212*uk_62 + 272107435*uk_63 + 330941475*uk_64 + 41183828*uk_65 + 39763696*uk_66 + 17041584*uk_67 + 262724420*uk_68 + 319529700*uk_69 + 225*uk_7 + 39763696*uk_70 + 7303536*uk_71 + 112596180*uk_72 + 136941300*uk_73 + 17041584*uk_74 + 1735857775*uk_75 + 2111178375*uk_76 + 262724420*uk_77 + 2567649375*uk_78 + 319529700*uk_79 + 28*uk_8 + 39763696*uk_80 + 166375*uk_81 + 87725*uk_82 + 84700*uk_83 + 36300*uk_84 + 559625*uk_85 + 680625*uk_86 + 84700*uk_87 + 46255*uk_88 + 44660*uk_89 + 2572416961*uk_9 + 19140*uk_90 + 295075*uk_91 + 358875*uk_92 + 44660*uk_93 + 43120*uk_94 + 18480*uk_95 + 284900*uk_96 + 346500*uk_97 + 43120*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 123420*uk_100 + 148500*uk_101 + 19140*uk_102 + 1923295*uk_103 + 2314125*uk_104 + 298265*uk_105 + 2784375*uk_106 + 358875*uk_107 + 46255*uk_108 + 74088*uk_109 + 2130198*uk_11 + 51156*uk_110 + 21168*uk_111 + 329868*uk_112 + 396900*uk_113 + 51156*uk_114 + 35322*uk_115 + 14616*uk_116 + 227766*uk_117 + 274050*uk_118 + 35322*uk_119 + 1470851*uk_12 + 6048*uk_120 + 94248*uk_121 + 113400*uk_122 + 14616*uk_123 + 1468698*uk_124 + 1767150*uk_125 + 227766*uk_126 + 2126250*uk_127 + 274050*uk_128 + 35322*uk_129 + 608628*uk_13 + 24389*uk_130 + 10092*uk_131 + 157267*uk_132 + 189225*uk_133 + 24389*uk_134 + 4176*uk_135 + 65076*uk_136 + 78300*uk_137 + 10092*uk_138 + 1014101*uk_139 + 9484453*uk_14 + 1220175*uk_140 + 157267*uk_141 + 1468125*uk_142 + 189225*uk_143 + 24389*uk_144 + 1728*uk_145 + 26928*uk_146 + 32400*uk_147 + 4176*uk_148 + 419628*uk_149 + 11411775*uk_15 + 504900*uk_150 + 65076*uk_151 + 607500*uk_152 + 78300*uk_153 + 10092*uk_154 + 6539203*uk_155 + 7868025*uk_156 + 1014101*uk_157 + 9466875*uk_158 + 1220175*uk_159 + 1470851*uk_16 + 157267*uk_160 + 11390625*uk_161 + 1468125*uk_162 + 189225*uk_163 + 24389*uk_164 + 3025*uk_17 + 2310*uk_18 + 1595*uk_19 + 55*uk_2 + 660*uk_20 + 10285*uk_21 + 12375*uk_22 + 1595*uk_23 + 1764*uk_24 + 1218*uk_25 + 504*uk_26 + 7854*uk_27 + 9450*uk_28 + 1218*uk_29 + 42*uk_3 + 841*uk_30 + 348*uk_31 + 5423*uk_32 + 6525*uk_33 + 841*uk_34 + 144*uk_35 + 2244*uk_36 + 2700*uk_37 + 348*uk_38 + 34969*uk_39 + 29*uk_4 + 42075*uk_40 + 5423*uk_41 + 50625*uk_42 + 6525*uk_43 + 841*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 108041512362*uk_47 + 74600091869*uk_48 + 30869003532*uk_49 + 12*uk_5 + 481041971707*uk_50 + 578793816225*uk_51 + 74600091869*uk_52 + 153424975*uk_53 + 117160890*uk_54 + 80896805*uk_55 + 33474540*uk_56 + 521644915*uk_57 + 627647625*uk_58 + 80896805*uk_59 + 187*uk_6 + 89468316*uk_60 + 61775742*uk_61 + 25562376*uk_62 + 398347026*uk_63 + 479294550*uk_64 + 61775742*uk_65 + 42654679*uk_66 + 17650212*uk_67 + 275049137*uk_68 + 330941475*uk_69 + 225*uk_7 + 42654679*uk_70 + 7303536*uk_71 + 113813436*uk_72 + 136941300*uk_73 + 17650212*uk_74 + 1773592711*uk_75 + 2134001925*uk_76 + 275049137*uk_77 + 2567649375*uk_78 + 330941475*uk_79 + 29*uk_8 + 42654679*uk_80 + 166375*uk_81 + 127050*uk_82 + 87725*uk_83 + 36300*uk_84 + 565675*uk_85 + 680625*uk_86 + 87725*uk_87 + 97020*uk_88 + 66990*uk_89 + 2572416961*uk_9 + 27720*uk_90 + 431970*uk_91 + 519750*uk_92 + 66990*uk_93 + 46255*uk_94 + 19140*uk_95 + 298265*uk_96 + 358875*uk_97 + 46255*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 124740*uk_100 + 148500*uk_101 + 27720*uk_102 + 1964655*uk_103 + 2338875*uk_104 + 436590*uk_105 + 2784375*uk_106 + 519750*uk_107 + 97020*uk_108 + 300763*uk_109 + 3398173*uk_11 + 188538*uk_110 + 53868*uk_111 + 848421*uk_112 + 1010025*uk_113 + 188538*uk_114 + 118188*uk_115 + 33768*uk_116 + 531846*uk_117 + 633150*uk_118 + 118188*uk_119 + 2130198*uk_12 + 9648*uk_120 + 151956*uk_121 + 180900*uk_122 + 33768*uk_123 + 2393307*uk_124 + 2849175*uk_125 + 531846*uk_126 + 3391875*uk_127 + 633150*uk_128 + 118188*uk_129 + 608628*uk_13 + 74088*uk_130 + 21168*uk_131 + 333396*uk_132 + 396900*uk_133 + 74088*uk_134 + 6048*uk_135 + 95256*uk_136 + 113400*uk_137 + 21168*uk_138 + 1500282*uk_139 + 9585891*uk_14 + 1786050*uk_140 + 333396*uk_141 + 2126250*uk_142 + 396900*uk_143 + 74088*uk_144 + 1728*uk_145 + 27216*uk_146 + 32400*uk_147 + 6048*uk_148 + 428652*uk_149 + 11411775*uk_15 + 510300*uk_150 + 95256*uk_151 + 607500*uk_152 + 113400*uk_153 + 21168*uk_154 + 6751269*uk_155 + 8037225*uk_156 + 1500282*uk_157 + 9568125*uk_158 + 1786050*uk_159 + 2130198*uk_16 + 333396*uk_160 + 11390625*uk_161 + 2126250*uk_162 + 396900*uk_163 + 74088*uk_164 + 3025*uk_17 + 3685*uk_18 + 2310*uk_19 + 55*uk_2 + 660*uk_20 + 10395*uk_21 + 12375*uk_22 + 2310*uk_23 + 4489*uk_24 + 2814*uk_25 + 804*uk_26 + 12663*uk_27 + 15075*uk_28 + 2814*uk_29 + 67*uk_3 + 1764*uk_30 + 504*uk_31 + 7938*uk_32 + 9450*uk_33 + 1764*uk_34 + 144*uk_35 + 2268*uk_36 + 2700*uk_37 + 504*uk_38 + 35721*uk_39 + 42*uk_4 + 42525*uk_40 + 7938*uk_41 + 50625*uk_42 + 9450*uk_43 + 1764*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 172351936387*uk_47 + 108041512362*uk_48 + 30869003532*uk_49 + 12*uk_5 + 486186805629*uk_50 + 578793816225*uk_51 + 108041512362*uk_52 + 153424975*uk_53 + 186899515*uk_54 + 117160890*uk_55 + 33474540*uk_56 + 527224005*uk_57 + 627647625*uk_58 + 117160890*uk_59 + 189*uk_6 + 227677591*uk_60 + 142723266*uk_61 + 40778076*uk_62 + 642254697*uk_63 + 764588925*uk_64 + 142723266*uk_65 + 89468316*uk_66 + 25562376*uk_67 + 402607422*uk_68 + 479294550*uk_69 + 225*uk_7 + 89468316*uk_70 + 7303536*uk_71 + 115030692*uk_72 + 136941300*uk_73 + 25562376*uk_74 + 1811733399*uk_75 + 2156825475*uk_76 + 402607422*uk_77 + 2567649375*uk_78 + 479294550*uk_79 + 42*uk_8 + 89468316*uk_80 + 166375*uk_81 + 202675*uk_82 + 127050*uk_83 + 36300*uk_84 + 571725*uk_85 + 680625*uk_86 + 127050*uk_87 + 246895*uk_88 + 154770*uk_89 + 2572416961*uk_9 + 44220*uk_90 + 696465*uk_91 + 829125*uk_92 + 154770*uk_93 + 97020*uk_94 + 27720*uk_95 + 436590*uk_96 + 519750*uk_97 + 97020*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 126060*uk_100 + 148500*uk_101 + 44220*uk_102 + 2006455*uk_103 + 2363625*uk_104 + 703835*uk_105 + 2784375*uk_106 + 829125*uk_107 + 246895*uk_108 + 1124864*uk_109 + 5274776*uk_11 + 724672*uk_110 + 129792*uk_111 + 2065856*uk_112 + 2433600*uk_113 + 724672*uk_114 + 466856*uk_115 + 83616*uk_116 + 1330888*uk_117 + 1567800*uk_118 + 466856*uk_119 + 3398173*uk_12 + 14976*uk_120 + 238368*uk_121 + 280800*uk_122 + 83616*uk_123 + 3794024*uk_124 + 4469400*uk_125 + 1330888*uk_126 + 5265000*uk_127 + 1567800*uk_128 + 466856*uk_129 + 608628*uk_13 + 300763*uk_130 + 53868*uk_131 + 857399*uk_132 + 1010025*uk_133 + 300763*uk_134 + 9648*uk_135 + 153564*uk_136 + 180900*uk_137 + 53868*uk_138 + 2444227*uk_139 + 9687329*uk_14 + 2879325*uk_140 + 857399*uk_141 + 3391875*uk_142 + 1010025*uk_143 + 300763*uk_144 + 1728*uk_145 + 27504*uk_146 + 32400*uk_147 + 9648*uk_148 + 437772*uk_149 + 11411775*uk_15 + 515700*uk_150 + 153564*uk_151 + 607500*uk_152 + 180900*uk_153 + 53868*uk_154 + 6967871*uk_155 + 8208225*uk_156 + 2444227*uk_157 + 9669375*uk_158 + 2879325*uk_159 + 3398173*uk_16 + 857399*uk_160 + 11390625*uk_161 + 3391875*uk_162 + 1010025*uk_163 + 300763*uk_164 + 3025*uk_17 + 5720*uk_18 + 3685*uk_19 + 55*uk_2 + 660*uk_20 + 10505*uk_21 + 12375*uk_22 + 3685*uk_23 + 10816*uk_24 + 6968*uk_25 + 1248*uk_26 + 19864*uk_27 + 23400*uk_28 + 6968*uk_29 + 104*uk_3 + 4489*uk_30 + 804*uk_31 + 12797*uk_32 + 15075*uk_33 + 4489*uk_34 + 144*uk_35 + 2292*uk_36 + 2700*uk_37 + 804*uk_38 + 36481*uk_39 + 67*uk_4 + 42975*uk_40 + 12797*uk_41 + 50625*uk_42 + 15075*uk_43 + 4489*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 267531363944*uk_47 + 172351936387*uk_48 + 30869003532*uk_49 + 12*uk_5 + 491331639551*uk_50 + 578793816225*uk_51 + 172351936387*uk_52 + 153424975*uk_53 + 290112680*uk_54 + 186899515*uk_55 + 33474540*uk_56 + 532803095*uk_57 + 627647625*uk_58 + 186899515*uk_59 + 191*uk_6 + 548576704*uk_60 + 353409992*uk_61 + 63297312*uk_62 + 1007482216*uk_63 + 1186824600*uk_64 + 353409992*uk_65 + 227677591*uk_66 + 40778076*uk_67 + 649051043*uk_68 + 764588925*uk_69 + 225*uk_7 + 227677591*uk_70 + 7303536*uk_71 + 116247948*uk_72 + 136941300*uk_73 + 40778076*uk_74 + 1850279839*uk_75 + 2179649025*uk_76 + 649051043*uk_77 + 2567649375*uk_78 + 764588925*uk_79 + 67*uk_8 + 227677591*uk_80 + 166375*uk_81 + 314600*uk_82 + 202675*uk_83 + 36300*uk_84 + 577775*uk_85 + 680625*uk_86 + 202675*uk_87 + 594880*uk_88 + 383240*uk_89 + 2572416961*uk_9 + 68640*uk_90 + 1092520*uk_91 + 1287000*uk_92 + 383240*uk_93 + 246895*uk_94 + 44220*uk_95 + 703835*uk_96 + 829125*uk_97 + 246895*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 127380*uk_100 + 148500*uk_101 + 68640*uk_102 + 2048695*uk_103 + 2388375*uk_104 + 1103960*uk_105 + 2784375*uk_106 + 1287000*uk_107 + 594880*uk_108 + 3581577*uk_109 + 7760007*uk_11 + 2434536*uk_110 + 280908*uk_111 + 4517937*uk_112 + 5267025*uk_113 + 2434536*uk_114 + 1654848*uk_115 + 190944*uk_116 + 3071016*uk_117 + 3580200*uk_118 + 1654848*uk_119 + 5274776*uk_12 + 22032*uk_120 + 354348*uk_121 + 413100*uk_122 + 190944*uk_123 + 5699097*uk_124 + 6644025*uk_125 + 3071016*uk_126 + 7745625*uk_127 + 3580200*uk_128 + 1654848*uk_129 + 608628*uk_13 + 1124864*uk_130 + 129792*uk_131 + 2087488*uk_132 + 2433600*uk_133 + 1124864*uk_134 + 14976*uk_135 + 240864*uk_136 + 280800*uk_137 + 129792*uk_138 + 3873896*uk_139 + 9788767*uk_14 + 4516200*uk_140 + 2087488*uk_141 + 5265000*uk_142 + 2433600*uk_143 + 1124864*uk_144 + 1728*uk_145 + 27792*uk_146 + 32400*uk_147 + 14976*uk_148 + 446988*uk_149 + 11411775*uk_15 + 521100*uk_150 + 240864*uk_151 + 607500*uk_152 + 280800*uk_153 + 129792*uk_154 + 7189057*uk_155 + 8381025*uk_156 + 3873896*uk_157 + 9770625*uk_158 + 4516200*uk_159 + 5274776*uk_16 + 2087488*uk_160 + 11390625*uk_161 + 5265000*uk_162 + 2433600*uk_163 + 1124864*uk_164 + 3025*uk_17 + 8415*uk_18 + 5720*uk_19 + 55*uk_2 + 660*uk_20 + 10615*uk_21 + 12375*uk_22 + 5720*uk_23 + 23409*uk_24 + 15912*uk_25 + 1836*uk_26 + 29529*uk_27 + 34425*uk_28 + 15912*uk_29 + 153*uk_3 + 10816*uk_30 + 1248*uk_31 + 20072*uk_32 + 23400*uk_33 + 10816*uk_34 + 144*uk_35 + 2316*uk_36 + 2700*uk_37 + 1248*uk_38 + 37249*uk_39 + 104*uk_4 + 43425*uk_40 + 20072*uk_41 + 50625*uk_42 + 23400*uk_43 + 10816*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 393579795033*uk_47 + 267531363944*uk_48 + 30869003532*uk_49 + 12*uk_5 + 496476473473*uk_50 + 578793816225*uk_51 + 267531363944*uk_52 + 153424975*uk_53 + 426800385*uk_54 + 290112680*uk_55 + 33474540*uk_56 + 538382185*uk_57 + 627647625*uk_58 + 290112680*uk_59 + 193*uk_6 + 1187281071*uk_60 + 807040728*uk_61 + 93120084*uk_62 + 1497681351*uk_63 + 1746001575*uk_64 + 807040728*uk_65 + 548576704*uk_66 + 63297312*uk_67 + 1018031768*uk_68 + 1186824600*uk_69 + 225*uk_7 + 548576704*uk_70 + 7303536*uk_71 + 117465204*uk_72 + 136941300*uk_73 + 63297312*uk_74 + 1889232031*uk_75 + 2202472575*uk_76 + 1018031768*uk_77 + 2567649375*uk_78 + 1186824600*uk_79 + 104*uk_8 + 548576704*uk_80 + 166375*uk_81 + 462825*uk_82 + 314600*uk_83 + 36300*uk_84 + 583825*uk_85 + 680625*uk_86 + 314600*uk_87 + 1287495*uk_88 + 875160*uk_89 + 2572416961*uk_9 + 100980*uk_90 + 1624095*uk_91 + 1893375*uk_92 + 875160*uk_93 + 594880*uk_94 + 68640*uk_95 + 1103960*uk_96 + 1287000*uk_97 + 594880*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 85800*uk_100 + 99000*uk_101 + 67320*uk_102 + 2091375*uk_103 + 2413125*uk_104 + 1640925*uk_105 + 2784375*uk_106 + 1893375*uk_107 + 1287495*uk_108 + 6859*uk_109 + 963661*uk_11 + 55233*uk_110 + 2888*uk_111 + 70395*uk_112 + 81225*uk_113 + 55233*uk_114 + 444771*uk_115 + 23256*uk_116 + 566865*uk_117 + 654075*uk_118 + 444771*uk_119 + 7760007*uk_12 + 1216*uk_120 + 29640*uk_121 + 34200*uk_122 + 23256*uk_123 + 722475*uk_124 + 833625*uk_125 + 566865*uk_126 + 961875*uk_127 + 654075*uk_128 + 444771*uk_129 + 405752*uk_13 + 3581577*uk_130 + 187272*uk_131 + 4564755*uk_132 + 5267025*uk_133 + 3581577*uk_134 + 9792*uk_135 + 238680*uk_136 + 275400*uk_137 + 187272*uk_138 + 5817825*uk_139 + 9890205*uk_14 + 6712875*uk_140 + 4564755*uk_141 + 7745625*uk_142 + 5267025*uk_143 + 3581577*uk_144 + 512*uk_145 + 12480*uk_146 + 14400*uk_147 + 9792*uk_148 + 304200*uk_149 + 11411775*uk_15 + 351000*uk_150 + 238680*uk_151 + 405000*uk_152 + 275400*uk_153 + 187272*uk_154 + 7414875*uk_155 + 8555625*uk_156 + 5817825*uk_157 + 9871875*uk_158 + 6712875*uk_159 + 7760007*uk_16 + 4564755*uk_160 + 11390625*uk_161 + 7745625*uk_162 + 5267025*uk_163 + 3581577*uk_164 + 3025*uk_17 + 1045*uk_18 + 8415*uk_19 + 55*uk_2 + 440*uk_20 + 10725*uk_21 + 12375*uk_22 + 8415*uk_23 + 361*uk_24 + 2907*uk_25 + 152*uk_26 + 3705*uk_27 + 4275*uk_28 + 2907*uk_29 + 19*uk_3 + 23409*uk_30 + 1224*uk_31 + 29835*uk_32 + 34425*uk_33 + 23409*uk_34 + 64*uk_35 + 1560*uk_36 + 1800*uk_37 + 1224*uk_38 + 38025*uk_39 + 153*uk_4 + 43875*uk_40 + 29835*uk_41 + 50625*uk_42 + 34425*uk_43 + 23409*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 48875922259*uk_47 + 393579795033*uk_48 + 20579335688*uk_49 + 8*uk_5 + 501621307395*uk_50 + 578793816225*uk_51 + 393579795033*uk_52 + 153424975*uk_53 + 53001355*uk_54 + 426800385*uk_55 + 22316360*uk_56 + 543961275*uk_57 + 627647625*uk_58 + 426800385*uk_59 + 195*uk_6 + 18309559*uk_60 + 147440133*uk_61 + 7709288*uk_62 + 187913895*uk_63 + 216823725*uk_64 + 147440133*uk_65 + 1187281071*uk_66 + 62080056*uk_67 + 1513201365*uk_68 + 1746001575*uk_69 + 225*uk_7 + 1187281071*uk_70 + 3246016*uk_71 + 79121640*uk_72 + 91294200*uk_73 + 62080056*uk_74 + 1928589975*uk_75 + 2225296125*uk_76 + 1513201365*uk_77 + 2567649375*uk_78 + 1746001575*uk_79 + 153*uk_8 + 1187281071*uk_80 + 166375*uk_81 + 57475*uk_82 + 462825*uk_83 + 24200*uk_84 + 589875*uk_85 + 680625*uk_86 + 462825*uk_87 + 19855*uk_88 + 159885*uk_89 + 2572416961*uk_9 + 8360*uk_90 + 203775*uk_91 + 235125*uk_92 + 159885*uk_93 + 1287495*uk_94 + 67320*uk_95 + 1640925*uk_96 + 1893375*uk_97 + 1287495*uk_98 + 3520*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 130020*uk_100 + 148500*uk_101 + 12540*uk_102 + 2134495*uk_103 + 2437875*uk_104 + 205865*uk_105 + 2784375*uk_106 + 235125*uk_107 + 19855*uk_108 + 729000*uk_109 + 4564710*uk_11 + 153900*uk_110 + 97200*uk_111 + 1595700*uk_112 + 1822500*uk_113 + 153900*uk_114 + 32490*uk_115 + 20520*uk_116 + 336870*uk_117 + 384750*uk_118 + 32490*uk_119 + 963661*uk_12 + 12960*uk_120 + 212760*uk_121 + 243000*uk_122 + 20520*uk_123 + 3492810*uk_124 + 3989250*uk_125 + 336870*uk_126 + 4556250*uk_127 + 384750*uk_128 + 32490*uk_129 + 608628*uk_13 + 6859*uk_130 + 4332*uk_131 + 71117*uk_132 + 81225*uk_133 + 6859*uk_134 + 2736*uk_135 + 44916*uk_136 + 51300*uk_137 + 4332*uk_138 + 737371*uk_139 + 9991643*uk_14 + 842175*uk_140 + 71117*uk_141 + 961875*uk_142 + 81225*uk_143 + 6859*uk_144 + 1728*uk_145 + 28368*uk_146 + 32400*uk_147 + 2736*uk_148 + 465708*uk_149 + 11411775*uk_15 + 531900*uk_150 + 44916*uk_151 + 607500*uk_152 + 51300*uk_153 + 4332*uk_154 + 7645373*uk_155 + 8732025*uk_156 + 737371*uk_157 + 9973125*uk_158 + 842175*uk_159 + 963661*uk_16 + 71117*uk_160 + 11390625*uk_161 + 961875*uk_162 + 81225*uk_163 + 6859*uk_164 + 3025*uk_17 + 4950*uk_18 + 1045*uk_19 + 55*uk_2 + 660*uk_20 + 10835*uk_21 + 12375*uk_22 + 1045*uk_23 + 8100*uk_24 + 1710*uk_25 + 1080*uk_26 + 17730*uk_27 + 20250*uk_28 + 1710*uk_29 + 90*uk_3 + 361*uk_30 + 228*uk_31 + 3743*uk_32 + 4275*uk_33 + 361*uk_34 + 144*uk_35 + 2364*uk_36 + 2700*uk_37 + 228*uk_38 + 38809*uk_39 + 19*uk_4 + 44325*uk_40 + 3743*uk_41 + 50625*uk_42 + 4275*uk_43 + 361*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 231517526490*uk_47 + 48875922259*uk_48 + 30869003532*uk_49 + 12*uk_5 + 506766141317*uk_50 + 578793816225*uk_51 + 48875922259*uk_52 + 153424975*uk_53 + 251059050*uk_54 + 53001355*uk_55 + 33474540*uk_56 + 549540365*uk_57 + 627647625*uk_58 + 53001355*uk_59 + 197*uk_6 + 410823900*uk_60 + 86729490*uk_61 + 54776520*uk_62 + 899247870*uk_63 + 1027059750*uk_64 + 86729490*uk_65 + 18309559*uk_66 + 11563932*uk_67 + 189841217*uk_68 + 216823725*uk_69 + 225*uk_7 + 18309559*uk_70 + 7303536*uk_71 + 119899716*uk_72 + 136941300*uk_73 + 11563932*uk_74 + 1968353671*uk_75 + 2248119675*uk_76 + 189841217*uk_77 + 2567649375*uk_78 + 216823725*uk_79 + 19*uk_8 + 18309559*uk_80 + 166375*uk_81 + 272250*uk_82 + 57475*uk_83 + 36300*uk_84 + 595925*uk_85 + 680625*uk_86 + 57475*uk_87 + 445500*uk_88 + 94050*uk_89 + 2572416961*uk_9 + 59400*uk_90 + 975150*uk_91 + 1113750*uk_92 + 94050*uk_93 + 19855*uk_94 + 12540*uk_95 + 205865*uk_96 + 235125*uk_97 + 19855*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 131340*uk_100 + 148500*uk_101 + 59400*uk_102 + 2178055*uk_103 + 2462625*uk_104 + 985050*uk_105 + 2784375*uk_106 + 1113750*uk_107 + 445500*uk_108 + 5177717*uk_109 + 8774387*uk_11 + 2693610*uk_110 + 359148*uk_111 + 5955871*uk_112 + 6734025*uk_113 + 2693610*uk_114 + 1401300*uk_115 + 186840*uk_116 + 3098430*uk_117 + 3503250*uk_118 + 1401300*uk_119 + 4564710*uk_12 + 24912*uk_120 + 413124*uk_121 + 467100*uk_122 + 186840*uk_123 + 6850973*uk_124 + 7746075*uk_125 + 3098430*uk_126 + 8758125*uk_127 + 3503250*uk_128 + 1401300*uk_129 + 608628*uk_13 + 729000*uk_130 + 97200*uk_131 + 1611900*uk_132 + 1822500*uk_133 + 729000*uk_134 + 12960*uk_135 + 214920*uk_136 + 243000*uk_137 + 97200*uk_138 + 3564090*uk_139 + 10093081*uk_14 + 4029750*uk_140 + 1611900*uk_141 + 4556250*uk_142 + 1822500*uk_143 + 729000*uk_144 + 1728*uk_145 + 28656*uk_146 + 32400*uk_147 + 12960*uk_148 + 475212*uk_149 + 11411775*uk_15 + 537300*uk_150 + 214920*uk_151 + 607500*uk_152 + 243000*uk_153 + 97200*uk_154 + 7880599*uk_155 + 8910225*uk_156 + 3564090*uk_157 + 10074375*uk_158 + 4029750*uk_159 + 4564710*uk_16 + 1611900*uk_160 + 11390625*uk_161 + 4556250*uk_162 + 1822500*uk_163 + 729000*uk_164 + 3025*uk_17 + 9515*uk_18 + 4950*uk_19 + 55*uk_2 + 660*uk_20 + 10945*uk_21 + 12375*uk_22 + 4950*uk_23 + 29929*uk_24 + 15570*uk_25 + 2076*uk_26 + 34427*uk_27 + 38925*uk_28 + 15570*uk_29 + 173*uk_3 + 8100*uk_30 + 1080*uk_31 + 17910*uk_32 + 20250*uk_33 + 8100*uk_34 + 144*uk_35 + 2388*uk_36 + 2700*uk_37 + 1080*uk_38 + 39601*uk_39 + 90*uk_4 + 44775*uk_40 + 17910*uk_41 + 50625*uk_42 + 20250*uk_43 + 8100*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 445028134253*uk_47 + 231517526490*uk_48 + 30869003532*uk_49 + 12*uk_5 + 511910975239*uk_50 + 578793816225*uk_51 + 231517526490*uk_52 + 153424975*uk_53 + 482591285*uk_54 + 251059050*uk_55 + 33474540*uk_56 + 555119455*uk_57 + 627647625*uk_58 + 251059050*uk_59 + 199*uk_6 + 1517968951*uk_60 + 789694830*uk_61 + 105292644*uk_62 + 1746103013*uk_63 + 1974237075*uk_64 + 789694830*uk_65 + 410823900*uk_66 + 54776520*uk_67 + 908377290*uk_68 + 1027059750*uk_69 + 225*uk_7 + 410823900*uk_70 + 7303536*uk_71 + 121116972*uk_72 + 136941300*uk_73 + 54776520*uk_74 + 2008523119*uk_75 + 2270943225*uk_76 + 908377290*uk_77 + 2567649375*uk_78 + 1027059750*uk_79 + 90*uk_8 + 410823900*uk_80 + 166375*uk_81 + 523325*uk_82 + 272250*uk_83 + 36300*uk_84 + 601975*uk_85 + 680625*uk_86 + 272250*uk_87 + 1646095*uk_88 + 856350*uk_89 + 2572416961*uk_9 + 114180*uk_90 + 1893485*uk_91 + 2140875*uk_92 + 856350*uk_93 + 445500*uk_94 + 59400*uk_95 + 985050*uk_96 + 1113750*uk_97 + 445500*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 88440*uk_100 + 99000*uk_101 + 76120*uk_102 + 2222055*uk_103 + 2487375*uk_104 + 1912515*uk_105 + 2784375*uk_106 + 2140875*uk_107 + 1646095*uk_108 + 300763*uk_109 + 3398173*uk_11 + 776597*uk_110 + 35912*uk_111 + 902289*uk_112 + 1010025*uk_113 + 776597*uk_114 + 2005243*uk_115 + 92728*uk_116 + 2329791*uk_117 + 2607975*uk_118 + 2005243*uk_119 + 8774387*uk_12 + 4288*uk_120 + 107736*uk_121 + 120600*uk_122 + 92728*uk_123 + 2706867*uk_124 + 3030075*uk_125 + 2329791*uk_126 + 3391875*uk_127 + 2607975*uk_128 + 2005243*uk_129 + 405752*uk_13 + 5177717*uk_130 + 239432*uk_131 + 6015729*uk_132 + 6734025*uk_133 + 5177717*uk_134 + 11072*uk_135 + 278184*uk_136 + 311400*uk_137 + 239432*uk_138 + 6989373*uk_139 + 10194519*uk_14 + 7823925*uk_140 + 6015729*uk_141 + 8758125*uk_142 + 6734025*uk_143 + 5177717*uk_144 + 512*uk_145 + 12864*uk_146 + 14400*uk_147 + 11072*uk_148 + 323208*uk_149 + 11411775*uk_15 + 361800*uk_150 + 278184*uk_151 + 405000*uk_152 + 311400*uk_153 + 239432*uk_154 + 8120601*uk_155 + 9090225*uk_156 + 6989373*uk_157 + 10175625*uk_158 + 7823925*uk_159 + 8774387*uk_16 + 6015729*uk_160 + 11390625*uk_161 + 8758125*uk_162 + 6734025*uk_163 + 5177717*uk_164 + 3025*uk_17 + 3685*uk_18 + 9515*uk_19 + 55*uk_2 + 440*uk_20 + 11055*uk_21 + 12375*uk_22 + 9515*uk_23 + 4489*uk_24 + 11591*uk_25 + 536*uk_26 + 13467*uk_27 + 15075*uk_28 + 11591*uk_29 + 67*uk_3 + 29929*uk_30 + 1384*uk_31 + 34773*uk_32 + 38925*uk_33 + 29929*uk_34 + 64*uk_35 + 1608*uk_36 + 1800*uk_37 + 1384*uk_38 + 40401*uk_39 + 173*uk_4 + 45225*uk_40 + 34773*uk_41 + 50625*uk_42 + 38925*uk_43 + 29929*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 172351936387*uk_47 + 445028134253*uk_48 + 20579335688*uk_49 + 8*uk_5 + 517055809161*uk_50 + 578793816225*uk_51 + 445028134253*uk_52 + 153424975*uk_53 + 186899515*uk_54 + 482591285*uk_55 + 22316360*uk_56 + 560698545*uk_57 + 627647625*uk_58 + 482591285*uk_59 + 201*uk_6 + 227677591*uk_60 + 587883929*uk_61 + 27185384*uk_62 + 683032773*uk_63 + 764588925*uk_64 + 587883929*uk_65 + 1517968951*uk_66 + 70195096*uk_67 + 1763651787*uk_68 + 1974237075*uk_69 + 225*uk_7 + 1517968951*uk_70 + 3246016*uk_71 + 81556152*uk_72 + 91294200*uk_73 + 70195096*uk_74 + 2049098319*uk_75 + 2293766775*uk_76 + 1763651787*uk_77 + 2567649375*uk_78 + 1974237075*uk_79 + 173*uk_8 + 1517968951*uk_80 + 166375*uk_81 + 202675*uk_82 + 523325*uk_83 + 24200*uk_84 + 608025*uk_85 + 680625*uk_86 + 523325*uk_87 + 246895*uk_88 + 637505*uk_89 + 2572416961*uk_9 + 29480*uk_90 + 740685*uk_91 + 829125*uk_92 + 637505*uk_93 + 1646095*uk_94 + 76120*uk_95 + 1912515*uk_96 + 2140875*uk_97 + 1646095*uk_98 + 3520*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 133980*uk_100 + 148500*uk_101 + 44220*uk_102 + 2266495*uk_103 + 2512125*uk_104 + 748055*uk_105 + 2784375*uk_106 + 829125*uk_107 + 246895*uk_108 + 5088448*uk_109 + 8723668*uk_11 + 1982128*uk_110 + 355008*uk_111 + 6005552*uk_112 + 6656400*uk_113 + 1982128*uk_114 + 772108*uk_115 + 138288*uk_116 + 2339372*uk_117 + 2592900*uk_118 + 772108*uk_119 + 3398173*uk_12 + 24768*uk_120 + 418992*uk_121 + 464400*uk_122 + 138288*uk_123 + 7087948*uk_124 + 7856100*uk_125 + 2339372*uk_126 + 8707500*uk_127 + 2592900*uk_128 + 772108*uk_129 + 608628*uk_13 + 300763*uk_130 + 53868*uk_131 + 911267*uk_132 + 1010025*uk_133 + 300763*uk_134 + 9648*uk_135 + 163212*uk_136 + 180900*uk_137 + 53868*uk_138 + 2761003*uk_139 + 10295957*uk_14 + 3060225*uk_140 + 911267*uk_141 + 3391875*uk_142 + 1010025*uk_143 + 300763*uk_144 + 1728*uk_145 + 29232*uk_146 + 32400*uk_147 + 9648*uk_148 + 494508*uk_149 + 11411775*uk_15 + 548100*uk_150 + 163212*uk_151 + 607500*uk_152 + 180900*uk_153 + 53868*uk_154 + 8365427*uk_155 + 9272025*uk_156 + 2761003*uk_157 + 10276875*uk_158 + 3060225*uk_159 + 3398173*uk_16 + 911267*uk_160 + 11390625*uk_161 + 3391875*uk_162 + 1010025*uk_163 + 300763*uk_164 + 3025*uk_17 + 9460*uk_18 + 3685*uk_19 + 55*uk_2 + 660*uk_20 + 11165*uk_21 + 12375*uk_22 + 3685*uk_23 + 29584*uk_24 + 11524*uk_25 + 2064*uk_26 + 34916*uk_27 + 38700*uk_28 + 11524*uk_29 + 172*uk_3 + 4489*uk_30 + 804*uk_31 + 13601*uk_32 + 15075*uk_33 + 4489*uk_34 + 144*uk_35 + 2436*uk_36 + 2700*uk_37 + 804*uk_38 + 41209*uk_39 + 67*uk_4 + 45675*uk_40 + 13601*uk_41 + 50625*uk_42 + 15075*uk_43 + 4489*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 442455717292*uk_47 + 172351936387*uk_48 + 30869003532*uk_49 + 12*uk_5 + 522200643083*uk_50 + 578793816225*uk_51 + 172351936387*uk_52 + 153424975*uk_53 + 479801740*uk_54 + 186899515*uk_55 + 33474540*uk_56 + 566277635*uk_57 + 627647625*uk_58 + 186899515*uk_59 + 203*uk_6 + 1500470896*uk_60 + 584485756*uk_61 + 104684016*uk_62 + 1770904604*uk_63 + 1962825300*uk_64 + 584485756*uk_65 + 227677591*uk_66 + 40778076*uk_67 + 689829119*uk_68 + 764588925*uk_69 + 225*uk_7 + 227677591*uk_70 + 7303536*uk_71 + 123551484*uk_72 + 136941300*uk_73 + 40778076*uk_74 + 2090079271*uk_75 + 2316590325*uk_76 + 689829119*uk_77 + 2567649375*uk_78 + 764588925*uk_79 + 67*uk_8 + 227677591*uk_80 + 166375*uk_81 + 520300*uk_82 + 202675*uk_83 + 36300*uk_84 + 614075*uk_85 + 680625*uk_86 + 202675*uk_87 + 1627120*uk_88 + 633820*uk_89 + 2572416961*uk_9 + 113520*uk_90 + 1920380*uk_91 + 2128500*uk_92 + 633820*uk_93 + 246895*uk_94 + 44220*uk_95 + 748055*uk_96 + 829125*uk_97 + 246895*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 90200*uk_100 + 99000*uk_101 + 75680*uk_102 + 2311375*uk_103 + 2536875*uk_104 + 1939300*uk_105 + 2784375*uk_106 + 2128500*uk_107 + 1627120*uk_108 + 592704*uk_109 + 4260396*uk_11 + 1213632*uk_110 + 56448*uk_111 + 1446480*uk_112 + 1587600*uk_113 + 1213632*uk_114 + 2485056*uk_115 + 115584*uk_116 + 2961840*uk_117 + 3250800*uk_118 + 2485056*uk_119 + 8723668*uk_12 + 5376*uk_120 + 137760*uk_121 + 151200*uk_122 + 115584*uk_123 + 3530100*uk_124 + 3874500*uk_125 + 2961840*uk_126 + 4252500*uk_127 + 3250800*uk_128 + 2485056*uk_129 + 405752*uk_13 + 5088448*uk_130 + 236672*uk_131 + 6064720*uk_132 + 6656400*uk_133 + 5088448*uk_134 + 11008*uk_135 + 282080*uk_136 + 309600*uk_137 + 236672*uk_138 + 7228300*uk_139 + 10397395*uk_14 + 7933500*uk_140 + 6064720*uk_141 + 8707500*uk_142 + 6656400*uk_143 + 5088448*uk_144 + 512*uk_145 + 13120*uk_146 + 14400*uk_147 + 11008*uk_148 + 336200*uk_149 + 11411775*uk_15 + 369000*uk_150 + 282080*uk_151 + 405000*uk_152 + 309600*uk_153 + 236672*uk_154 + 8615125*uk_155 + 9455625*uk_156 + 7228300*uk_157 + 10378125*uk_158 + 7933500*uk_159 + 8723668*uk_16 + 6064720*uk_160 + 11390625*uk_161 + 8707500*uk_162 + 6656400*uk_163 + 5088448*uk_164 + 3025*uk_17 + 4620*uk_18 + 9460*uk_19 + 55*uk_2 + 440*uk_20 + 11275*uk_21 + 12375*uk_22 + 9460*uk_23 + 7056*uk_24 + 14448*uk_25 + 672*uk_26 + 17220*uk_27 + 18900*uk_28 + 14448*uk_29 + 84*uk_3 + 29584*uk_30 + 1376*uk_31 + 35260*uk_32 + 38700*uk_33 + 29584*uk_34 + 64*uk_35 + 1640*uk_36 + 1800*uk_37 + 1376*uk_38 + 42025*uk_39 + 172*uk_4 + 46125*uk_40 + 35260*uk_41 + 50625*uk_42 + 38700*uk_43 + 29584*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 216083024724*uk_47 + 442455717292*uk_48 + 20579335688*uk_49 + 8*uk_5 + 527345477005*uk_50 + 578793816225*uk_51 + 442455717292*uk_52 + 153424975*uk_53 + 234321780*uk_54 + 479801740*uk_55 + 22316360*uk_56 + 571856725*uk_57 + 627647625*uk_58 + 479801740*uk_59 + 205*uk_6 + 357873264*uk_60 + 732788112*uk_61 + 34083168*uk_62 + 873381180*uk_63 + 958589100*uk_64 + 732788112*uk_65 + 1500470896*uk_66 + 69789344*uk_67 + 1788351940*uk_68 + 1962825300*uk_69 + 225*uk_7 + 1500470896*uk_70 + 3246016*uk_71 + 83179160*uk_72 + 91294200*uk_73 + 69789344*uk_74 + 2131465975*uk_75 + 2339413875*uk_76 + 1788351940*uk_77 + 2567649375*uk_78 + 1962825300*uk_79 + 172*uk_8 + 1500470896*uk_80 + 166375*uk_81 + 254100*uk_82 + 520300*uk_83 + 24200*uk_84 + 620125*uk_85 + 680625*uk_86 + 520300*uk_87 + 388080*uk_88 + 794640*uk_89 + 2572416961*uk_9 + 36960*uk_90 + 947100*uk_91 + 1039500*uk_92 + 794640*uk_93 + 1627120*uk_94 + 75680*uk_95 + 1939300*uk_96 + 2128500*uk_97 + 1627120*uk_98 + 3520*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 91080*uk_100 + 99000*uk_101 + 36960*uk_102 + 2356695*uk_103 + 2561625*uk_104 + 956340*uk_105 + 2784375*uk_106 + 1039500*uk_107 + 388080*uk_108 + 64*uk_109 + 202876*uk_11 + 1344*uk_110 + 128*uk_111 + 3312*uk_112 + 3600*uk_113 + 1344*uk_114 + 28224*uk_115 + 2688*uk_116 + 69552*uk_117 + 75600*uk_118 + 28224*uk_119 + 4260396*uk_12 + 256*uk_120 + 6624*uk_121 + 7200*uk_122 + 2688*uk_123 + 171396*uk_124 + 186300*uk_125 + 69552*uk_126 + 202500*uk_127 + 75600*uk_128 + 28224*uk_129 + 405752*uk_13 + 592704*uk_130 + 56448*uk_131 + 1460592*uk_132 + 1587600*uk_133 + 592704*uk_134 + 5376*uk_135 + 139104*uk_136 + 151200*uk_137 + 56448*uk_138 + 3599316*uk_139 + 10498833*uk_14 + 3912300*uk_140 + 1460592*uk_141 + 4252500*uk_142 + 1587600*uk_143 + 592704*uk_144 + 512*uk_145 + 13248*uk_146 + 14400*uk_147 + 5376*uk_148 + 342792*uk_149 + 11411775*uk_15 + 372600*uk_150 + 139104*uk_151 + 405000*uk_152 + 151200*uk_153 + 56448*uk_154 + 8869743*uk_155 + 9641025*uk_156 + 3599316*uk_157 + 10479375*uk_158 + 3912300*uk_159 + 4260396*uk_16 + 1460592*uk_160 + 11390625*uk_161 + 4252500*uk_162 + 1587600*uk_163 + 592704*uk_164 + 3025*uk_17 + 220*uk_18 + 4620*uk_19 + 55*uk_2 + 440*uk_20 + 11385*uk_21 + 12375*uk_22 + 4620*uk_23 + 16*uk_24 + 336*uk_25 + 32*uk_26 + 828*uk_27 + 900*uk_28 + 336*uk_29 + 4*uk_3 + 7056*uk_30 + 672*uk_31 + 17388*uk_32 + 18900*uk_33 + 7056*uk_34 + 64*uk_35 + 1656*uk_36 + 1800*uk_37 + 672*uk_38 + 42849*uk_39 + 84*uk_4 + 46575*uk_40 + 17388*uk_41 + 50625*uk_42 + 18900*uk_43 + 7056*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 10289667844*uk_47 + 216083024724*uk_48 + 20579335688*uk_49 + 8*uk_5 + 532490310927*uk_50 + 578793816225*uk_51 + 216083024724*uk_52 + 153424975*uk_53 + 11158180*uk_54 + 234321780*uk_55 + 22316360*uk_56 + 577435815*uk_57 + 627647625*uk_58 + 234321780*uk_59 + 207*uk_6 + 811504*uk_60 + 17041584*uk_61 + 1623008*uk_62 + 41995332*uk_63 + 45647100*uk_64 + 17041584*uk_65 + 357873264*uk_66 + 34083168*uk_67 + 881901972*uk_68 + 958589100*uk_69 + 225*uk_7 + 357873264*uk_70 + 3246016*uk_71 + 83990664*uk_72 + 91294200*uk_73 + 34083168*uk_74 + 2173258431*uk_75 + 2362237425*uk_76 + 881901972*uk_77 + 2567649375*uk_78 + 958589100*uk_79 + 84*uk_8 + 357873264*uk_80 + 166375*uk_81 + 12100*uk_82 + 254100*uk_83 + 24200*uk_84 + 626175*uk_85 + 680625*uk_86 + 254100*uk_87 + 880*uk_88 + 18480*uk_89 + 2572416961*uk_9 + 1760*uk_90 + 45540*uk_91 + 49500*uk_92 + 18480*uk_93 + 388080*uk_94 + 36960*uk_95 + 956340*uk_96 + 1039500*uk_97 + 388080*uk_98 + 3520*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 137940*uk_100 + 148500*uk_101 + 2640*uk_102 + 2402455*uk_103 + 2586375*uk_104 + 45980*uk_105 + 2784375*uk_106 + 49500*uk_107 + 880*uk_108 + 2803221*uk_109 + 7151379*uk_11 + 79524*uk_110 + 238572*uk_111 + 4155129*uk_112 + 4473225*uk_113 + 79524*uk_114 + 2256*uk_115 + 6768*uk_116 + 117876*uk_117 + 126900*uk_118 + 2256*uk_119 + 202876*uk_12 + 20304*uk_120 + 353628*uk_121 + 380700*uk_122 + 6768*uk_123 + 6159021*uk_124 + 6630525*uk_125 + 117876*uk_126 + 7138125*uk_127 + 126900*uk_128 + 2256*uk_129 + 608628*uk_13 + 64*uk_130 + 192*uk_131 + 3344*uk_132 + 3600*uk_133 + 64*uk_134 + 576*uk_135 + 10032*uk_136 + 10800*uk_137 + 192*uk_138 + 174724*uk_139 + 10600271*uk_14 + 188100*uk_140 + 3344*uk_141 + 202500*uk_142 + 3600*uk_143 + 64*uk_144 + 1728*uk_145 + 30096*uk_146 + 32400*uk_147 + 576*uk_148 + 524172*uk_149 + 11411775*uk_15 + 564300*uk_150 + 10032*uk_151 + 607500*uk_152 + 10800*uk_153 + 192*uk_154 + 9129329*uk_155 + 9828225*uk_156 + 174724*uk_157 + 10580625*uk_158 + 188100*uk_159 + 202876*uk_16 + 3344*uk_160 + 11390625*uk_161 + 202500*uk_162 + 3600*uk_163 + 64*uk_164 + 3025*uk_17 + 7755*uk_18 + 220*uk_19 + 55*uk_2 + 660*uk_20 + 11495*uk_21 + 12375*uk_22 + 220*uk_23 + 19881*uk_24 + 564*uk_25 + 1692*uk_26 + 29469*uk_27 + 31725*uk_28 + 564*uk_29 + 141*uk_3 + 16*uk_30 + 48*uk_31 + 836*uk_32 + 900*uk_33 + 16*uk_34 + 144*uk_35 + 2508*uk_36 + 2700*uk_37 + 48*uk_38 + 43681*uk_39 + 4*uk_4 + 47025*uk_40 + 836*uk_41 + 50625*uk_42 + 900*uk_43 + 16*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 362710791501*uk_47 + 10289667844*uk_48 + 30869003532*uk_49 + 12*uk_5 + 537635144849*uk_50 + 578793816225*uk_51 + 10289667844*uk_52 + 153424975*uk_53 + 393325845*uk_54 + 11158180*uk_55 + 33474540*uk_56 + 583014905*uk_57 + 627647625*uk_58 + 11158180*uk_59 + 209*uk_6 + 1008344439*uk_60 + 28605516*uk_61 + 85816548*uk_62 + 1494638211*uk_63 + 1609060275*uk_64 + 28605516*uk_65 + 811504*uk_66 + 2434512*uk_67 + 42401084*uk_68 + 45647100*uk_69 + 225*uk_7 + 811504*uk_70 + 7303536*uk_71 + 127203252*uk_72 + 136941300*uk_73 + 2434512*uk_74 + 2215456639*uk_75 + 2385060975*uk_76 + 42401084*uk_77 + 2567649375*uk_78 + 45647100*uk_79 + 4*uk_8 + 811504*uk_80 + 166375*uk_81 + 426525*uk_82 + 12100*uk_83 + 36300*uk_84 + 632225*uk_85 + 680625*uk_86 + 12100*uk_87 + 1093455*uk_88 + 31020*uk_89 + 2572416961*uk_9 + 93060*uk_90 + 1620795*uk_91 + 1744875*uk_92 + 31020*uk_93 + 880*uk_94 + 2640*uk_95 + 45980*uk_96 + 49500*uk_97 + 880*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 92840*uk_100 + 99000*uk_101 + 62040*uk_102 + 2448655*uk_103 + 2611125*uk_104 + 1636305*uk_105 + 2784375*uk_106 + 1744875*uk_107 + 1093455*uk_108 + 493039*uk_109 + 4006801*uk_11 + 879981*uk_110 + 49928*uk_111 + 1316851*uk_112 + 1404225*uk_113 + 879981*uk_114 + 1570599*uk_115 + 89112*uk_116 + 2350329*uk_117 + 2506275*uk_118 + 1570599*uk_119 + 7151379*uk_12 + 5056*uk_120 + 133352*uk_121 + 142200*uk_122 + 89112*uk_123 + 3517159*uk_124 + 3750525*uk_125 + 2350329*uk_126 + 3999375*uk_127 + 2506275*uk_128 + 1570599*uk_129 + 405752*uk_13 + 2803221*uk_130 + 159048*uk_131 + 4194891*uk_132 + 4473225*uk_133 + 2803221*uk_134 + 9024*uk_135 + 238008*uk_136 + 253800*uk_137 + 159048*uk_138 + 6277461*uk_139 + 10701709*uk_14 + 6693975*uk_140 + 4194891*uk_141 + 7138125*uk_142 + 4473225*uk_143 + 2803221*uk_144 + 512*uk_145 + 13504*uk_146 + 14400*uk_147 + 9024*uk_148 + 356168*uk_149 + 11411775*uk_15 + 379800*uk_150 + 238008*uk_151 + 405000*uk_152 + 253800*uk_153 + 159048*uk_154 + 9393931*uk_155 + 10017225*uk_156 + 6277461*uk_157 + 10681875*uk_158 + 6693975*uk_159 + 7151379*uk_16 + 4194891*uk_160 + 11390625*uk_161 + 7138125*uk_162 + 4473225*uk_163 + 2803221*uk_164 + 3025*uk_17 + 4345*uk_18 + 7755*uk_19 + 55*uk_2 + 440*uk_20 + 11605*uk_21 + 12375*uk_22 + 7755*uk_23 + 6241*uk_24 + 11139*uk_25 + 632*uk_26 + 16669*uk_27 + 17775*uk_28 + 11139*uk_29 + 79*uk_3 + 19881*uk_30 + 1128*uk_31 + 29751*uk_32 + 31725*uk_33 + 19881*uk_34 + 64*uk_35 + 1688*uk_36 + 1800*uk_37 + 1128*uk_38 + 44521*uk_39 + 141*uk_4 + 47475*uk_40 + 29751*uk_41 + 50625*uk_42 + 31725*uk_43 + 19881*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 203220939919*uk_47 + 362710791501*uk_48 + 20579335688*uk_49 + 8*uk_5 + 542779978771*uk_50 + 578793816225*uk_51 + 362710791501*uk_52 + 153424975*uk_53 + 220374055*uk_54 + 393325845*uk_55 + 22316360*uk_56 + 588593995*uk_57 + 627647625*uk_58 + 393325845*uk_59 + 211*uk_6 + 316537279*uk_60 + 564958941*uk_61 + 32054408*uk_62 + 845435011*uk_63 + 901530225*uk_64 + 564958941*uk_65 + 1008344439*uk_66 + 57211032*uk_67 + 1508940969*uk_68 + 1609060275*uk_69 + 225*uk_7 + 1008344439*uk_70 + 3246016*uk_71 + 85613672*uk_72 + 91294200*uk_73 + 57211032*uk_74 + 2258060599*uk_75 + 2407884525*uk_76 + 1508940969*uk_77 + 2567649375*uk_78 + 1609060275*uk_79 + 141*uk_8 + 1008344439*uk_80 + 166375*uk_81 + 238975*uk_82 + 426525*uk_83 + 24200*uk_84 + 638275*uk_85 + 680625*uk_86 + 426525*uk_87 + 343255*uk_88 + 612645*uk_89 + 2572416961*uk_9 + 34760*uk_90 + 916795*uk_91 + 977625*uk_92 + 612645*uk_93 + 1093455*uk_94 + 62040*uk_95 + 1636305*uk_96 + 1744875*uk_97 + 1093455*uk_98 + 3520*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 93720*uk_100 + 99000*uk_101 + 34760*uk_102 + 2495295*uk_103 + 2635875*uk_104 + 925485*uk_105 + 2784375*uk_106 + 977625*uk_107 + 343255*uk_108 + 15625*uk_109 + 1267975*uk_11 + 49375*uk_110 + 5000*uk_111 + 133125*uk_112 + 140625*uk_113 + 49375*uk_114 + 156025*uk_115 + 15800*uk_116 + 420675*uk_117 + 444375*uk_118 + 156025*uk_119 + 4006801*uk_12 + 1600*uk_120 + 42600*uk_121 + 45000*uk_122 + 15800*uk_123 + 1134225*uk_124 + 1198125*uk_125 + 420675*uk_126 + 1265625*uk_127 + 444375*uk_128 + 156025*uk_129 + 405752*uk_13 + 493039*uk_130 + 49928*uk_131 + 1329333*uk_132 + 1404225*uk_133 + 493039*uk_134 + 5056*uk_135 + 134616*uk_136 + 142200*uk_137 + 49928*uk_138 + 3584151*uk_139 + 10803147*uk_14 + 3786075*uk_140 + 1329333*uk_141 + 3999375*uk_142 + 1404225*uk_143 + 493039*uk_144 + 512*uk_145 + 13632*uk_146 + 14400*uk_147 + 5056*uk_148 + 362952*uk_149 + 11411775*uk_15 + 383400*uk_150 + 134616*uk_151 + 405000*uk_152 + 142200*uk_153 + 49928*uk_154 + 9663597*uk_155 + 10208025*uk_156 + 3584151*uk_157 + 10783125*uk_158 + 3786075*uk_159 + 4006801*uk_16 + 1329333*uk_160 + 11390625*uk_161 + 3999375*uk_162 + 1404225*uk_163 + 493039*uk_164 + 3025*uk_17 + 1375*uk_18 + 4345*uk_19 + 55*uk_2 + 440*uk_20 + 11715*uk_21 + 12375*uk_22 + 4345*uk_23 + 625*uk_24 + 1975*uk_25 + 200*uk_26 + 5325*uk_27 + 5625*uk_28 + 1975*uk_29 + 25*uk_3 + 6241*uk_30 + 632*uk_31 + 16827*uk_32 + 17775*uk_33 + 6241*uk_34 + 64*uk_35 + 1704*uk_36 + 1800*uk_37 + 632*uk_38 + 45369*uk_39 + 79*uk_4 + 47925*uk_40 + 16827*uk_41 + 50625*uk_42 + 17775*uk_43 + 6241*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 64310424025*uk_47 + 203220939919*uk_48 + 20579335688*uk_49 + 8*uk_5 + 547924812693*uk_50 + 578793816225*uk_51 + 203220939919*uk_52 + 153424975*uk_53 + 69738625*uk_54 + 220374055*uk_55 + 22316360*uk_56 + 594173085*uk_57 + 627647625*uk_58 + 220374055*uk_59 + 213*uk_6 + 31699375*uk_60 + 100170025*uk_61 + 10143800*uk_62 + 270078675*uk_63 + 285294375*uk_64 + 100170025*uk_65 + 316537279*uk_66 + 32054408*uk_67 + 853448613*uk_68 + 901530225*uk_69 + 225*uk_7 + 316537279*uk_70 + 3246016*uk_71 + 86425176*uk_72 + 91294200*uk_73 + 32054408*uk_74 + 2301070311*uk_75 + 2430708075*uk_76 + 853448613*uk_77 + 2567649375*uk_78 + 901530225*uk_79 + 79*uk_8 + 316537279*uk_80 + 166375*uk_81 + 75625*uk_82 + 238975*uk_83 + 24200*uk_84 + 644325*uk_85 + 680625*uk_86 + 238975*uk_87 + 34375*uk_88 + 108625*uk_89 + 2572416961*uk_9 + 11000*uk_90 + 292875*uk_91 + 309375*uk_92 + 108625*uk_93 + 343255*uk_94 + 34760*uk_95 + 925485*uk_96 + 977625*uk_97 + 343255*uk_98 + 3520*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 141900*uk_100 + 148500*uk_101 + 16500*uk_102 + 2542375*uk_103 + 2660625*uk_104 + 295625*uk_105 + 2784375*uk_106 + 309375*uk_107 + 34375*uk_108 + 7301384*uk_109 + 9839486*uk_11 + 940900*uk_110 + 451632*uk_111 + 8091740*uk_112 + 8468100*uk_113 + 940900*uk_114 + 121250*uk_115 + 58200*uk_116 + 1042750*uk_117 + 1091250*uk_118 + 121250*uk_119 + 1267975*uk_12 + 27936*uk_120 + 500520*uk_121 + 523800*uk_122 + 58200*uk_123 + 8967650*uk_124 + 9384750*uk_125 + 1042750*uk_126 + 9821250*uk_127 + 1091250*uk_128 + 121250*uk_129 + 608628*uk_13 + 15625*uk_130 + 7500*uk_131 + 134375*uk_132 + 140625*uk_133 + 15625*uk_134 + 3600*uk_135 + 64500*uk_136 + 67500*uk_137 + 7500*uk_138 + 1155625*uk_139 + 10904585*uk_14 + 1209375*uk_140 + 134375*uk_141 + 1265625*uk_142 + 140625*uk_143 + 15625*uk_144 + 1728*uk_145 + 30960*uk_146 + 32400*uk_147 + 3600*uk_148 + 554700*uk_149 + 11411775*uk_15 + 580500*uk_150 + 64500*uk_151 + 607500*uk_152 + 67500*uk_153 + 7500*uk_154 + 9938375*uk_155 + 10400625*uk_156 + 1155625*uk_157 + 10884375*uk_158 + 1209375*uk_159 + 1267975*uk_16 + 134375*uk_160 + 11390625*uk_161 + 1265625*uk_162 + 140625*uk_163 + 15625*uk_164 + 3025*uk_17 + 10670*uk_18 + 1375*uk_19 + 55*uk_2 + 660*uk_20 + 11825*uk_21 + 12375*uk_22 + 1375*uk_23 + 37636*uk_24 + 4850*uk_25 + 2328*uk_26 + 41710*uk_27 + 43650*uk_28 + 4850*uk_29 + 194*uk_3 + 625*uk_30 + 300*uk_31 + 5375*uk_32 + 5625*uk_33 + 625*uk_34 + 144*uk_35 + 2580*uk_36 + 2700*uk_37 + 300*uk_38 + 46225*uk_39 + 25*uk_4 + 48375*uk_40 + 5375*uk_41 + 50625*uk_42 + 5625*uk_43 + 625*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 499048890434*uk_47 + 64310424025*uk_48 + 30869003532*uk_49 + 12*uk_5 + 553069646615*uk_50 + 578793816225*uk_51 + 64310424025*uk_52 + 153424975*uk_53 + 541171730*uk_54 + 69738625*uk_55 + 33474540*uk_56 + 599752175*uk_57 + 627647625*uk_58 + 69738625*uk_59 + 215*uk_6 + 1908860284*uk_60 + 245987150*uk_61 + 118073832*uk_62 + 2115489490*uk_63 + 2213884350*uk_64 + 245987150*uk_65 + 31699375*uk_66 + 15215700*uk_67 + 272614625*uk_68 + 285294375*uk_69 + 225*uk_7 + 31699375*uk_70 + 7303536*uk_71 + 130855020*uk_72 + 136941300*uk_73 + 15215700*uk_74 + 2344485775*uk_75 + 2453531625*uk_76 + 272614625*uk_77 + 2567649375*uk_78 + 285294375*uk_79 + 25*uk_8 + 31699375*uk_80 + 166375*uk_81 + 586850*uk_82 + 75625*uk_83 + 36300*uk_84 + 650375*uk_85 + 680625*uk_86 + 75625*uk_87 + 2069980*uk_88 + 266750*uk_89 + 2572416961*uk_9 + 128040*uk_90 + 2294050*uk_91 + 2400750*uk_92 + 266750*uk_93 + 34375*uk_94 + 16500*uk_95 + 295625*uk_96 + 309375*uk_97 + 34375*uk_98 + 7920*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 95480*uk_100 + 99000*uk_101 + 85360*uk_102 + 2589895*uk_103 + 2685375*uk_104 + 2315390*uk_105 + 2784375*uk_106 + 2400750*uk_107 + 2069980*uk_108 + 3944312*uk_109 + 8013602*uk_11 + 4843016*uk_110 + 199712*uk_111 + 5417188*uk_112 + 5616900*uk_113 + 4843016*uk_114 + 5946488*uk_115 + 245216*uk_116 + 6651484*uk_117 + 6896700*uk_118 + 5946488*uk_119 + 9839486*uk_12 + 10112*uk_120 + 274288*uk_121 + 284400*uk_122 + 245216*uk_123 + 7440062*uk_124 + 7714350*uk_125 + 6651484*uk_126 + 7998750*uk_127 + 6896700*uk_128 + 5946488*uk_129 + 405752*uk_13 + 7301384*uk_130 + 301088*uk_131 + 8167012*uk_132 + 8468100*uk_133 + 7301384*uk_134 + 12416*uk_135 + 336784*uk_136 + 349200*uk_137 + 301088*uk_138 + 9135266*uk_139 + 11006023*uk_14 + 9472050*uk_140 + 8167012*uk_141 + 9821250*uk_142 + 8468100*uk_143 + 7301384*uk_144 + 512*uk_145 + 13888*uk_146 + 14400*uk_147 + 12416*uk_148 + 376712*uk_149 + 11411775*uk_15 + 390600*uk_150 + 336784*uk_151 + 405000*uk_152 + 349200*uk_153 + 301088*uk_154 + 10218313*uk_155 + 10595025*uk_156 + 9135266*uk_157 + 10985625*uk_158 + 9472050*uk_159 + 9839486*uk_16 + 8167012*uk_160 + 11390625*uk_161 + 9821250*uk_162 + 8468100*uk_163 + 7301384*uk_164 + 3025*uk_17 + 8690*uk_18 + 10670*uk_19 + 55*uk_2 + 440*uk_20 + 11935*uk_21 + 12375*uk_22 + 10670*uk_23 + 24964*uk_24 + 30652*uk_25 + 1264*uk_26 + 34286*uk_27 + 35550*uk_28 + 30652*uk_29 + 158*uk_3 + 37636*uk_30 + 1552*uk_31 + 42098*uk_32 + 43650*uk_33 + 37636*uk_34 + 64*uk_35 + 1736*uk_36 + 1800*uk_37 + 1552*uk_38 + 47089*uk_39 + 194*uk_4 + 48825*uk_40 + 42098*uk_41 + 50625*uk_42 + 43650*uk_43 + 37636*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 406441879838*uk_47 + 499048890434*uk_48 + 20579335688*uk_49 + 8*uk_5 + 558214480537*uk_50 + 578793816225*uk_51 + 499048890434*uk_52 + 153424975*uk_53 + 440748110*uk_54 + 541171730*uk_55 + 22316360*uk_56 + 605331265*uk_57 + 627647625*uk_58 + 541171730*uk_59 + 217*uk_6 + 1266149116*uk_60 + 1554638788*uk_61 + 64108816*uk_62 + 1738951634*uk_63 + 1803060450*uk_64 + 1554638788*uk_65 + 1908860284*uk_66 + 78715888*uk_67 + 2135168462*uk_68 + 2213884350*uk_69 + 225*uk_7 + 1908860284*uk_70 + 3246016*uk_71 + 88048184*uk_72 + 91294200*uk_73 + 78715888*uk_74 + 2388306991*uk_75 + 2476355175*uk_76 + 2135168462*uk_77 + 2567649375*uk_78 + 2213884350*uk_79 + 194*uk_8 + 1908860284*uk_80 + 166375*uk_81 + 477950*uk_82 + 586850*uk_83 + 24200*uk_84 + 656425*uk_85 + 680625*uk_86 + 586850*uk_87 + 1373020*uk_88 + 1685860*uk_89 + 2572416961*uk_9 + 69520*uk_90 + 1885730*uk_91 + 1955250*uk_92 + 1685860*uk_93 + 2069980*uk_94 + 85360*uk_95 + 2315390*uk_96 + 2400750*uk_97 + 2069980*uk_98 + 3520*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 96360*uk_100 + 99000*uk_101 + 69520*uk_102 + 2637855*uk_103 + 2710125*uk_104 + 1903110*uk_105 + 2784375*uk_106 + 1955250*uk_107 + 1373020*uk_108 + 2197000*uk_109 + 6593470*uk_11 + 2670200*uk_110 + 135200*uk_111 + 3701100*uk_112 + 3802500*uk_113 + 2670200*uk_114 + 3245320*uk_115 + 164320*uk_116 + 4498260*uk_117 + 4621500*uk_118 + 3245320*uk_119 + 8013602*uk_12 + 8320*uk_120 + 227760*uk_121 + 234000*uk_122 + 164320*uk_123 + 6234930*uk_124 + 6405750*uk_125 + 4498260*uk_126 + 6581250*uk_127 + 4621500*uk_128 + 3245320*uk_129 + 405752*uk_13 + 3944312*uk_130 + 199712*uk_131 + 5467116*uk_132 + 5616900*uk_133 + 3944312*uk_134 + 10112*uk_135 + 276816*uk_136 + 284400*uk_137 + 199712*uk_138 + 7577838*uk_139 + 11107461*uk_14 + 7785450*uk_140 + 5467116*uk_141 + 7998750*uk_142 + 5616900*uk_143 + 3944312*uk_144 + 512*uk_145 + 14016*uk_146 + 14400*uk_147 + 10112*uk_148 + 383688*uk_149 + 11411775*uk_15 + 394200*uk_150 + 276816*uk_151 + 405000*uk_152 + 284400*uk_153 + 199712*uk_154 + 10503459*uk_155 + 10791225*uk_156 + 7577838*uk_157 + 11086875*uk_158 + 7785450*uk_159 + 8013602*uk_16 + 5467116*uk_160 + 11390625*uk_161 + 7998750*uk_162 + 5616900*uk_163 + 3944312*uk_164 + 3025*uk_17 + 7150*uk_18 + 8690*uk_19 + 55*uk_2 + 440*uk_20 + 12045*uk_21 + 12375*uk_22 + 8690*uk_23 + 16900*uk_24 + 20540*uk_25 + 1040*uk_26 + 28470*uk_27 + 29250*uk_28 + 20540*uk_29 + 130*uk_3 + 24964*uk_30 + 1264*uk_31 + 34602*uk_32 + 35550*uk_33 + 24964*uk_34 + 64*uk_35 + 1752*uk_36 + 1800*uk_37 + 1264*uk_38 + 47961*uk_39 + 158*uk_4 + 49275*uk_40 + 34602*uk_41 + 50625*uk_42 + 35550*uk_43 + 24964*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 334414204930*uk_47 + 406441879838*uk_48 + 20579335688*uk_49 + 8*uk_5 + 563359314459*uk_50 + 578793816225*uk_51 + 406441879838*uk_52 + 153424975*uk_53 + 362640850*uk_54 + 440748110*uk_55 + 22316360*uk_56 + 610910355*uk_57 + 627647625*uk_58 + 440748110*uk_59 + 219*uk_6 + 857151100*uk_60 + 1041768260*uk_61 + 52747760*uk_62 + 1443969930*uk_63 + 1483530750*uk_64 + 1041768260*uk_65 + 1266149116*uk_66 + 64108816*uk_67 + 1754978838*uk_68 + 1803060450*uk_69 + 225*uk_7 + 1266149116*uk_70 + 3246016*uk_71 + 88859688*uk_72 + 91294200*uk_73 + 64108816*uk_74 + 2432533959*uk_75 + 2499178725*uk_76 + 1754978838*uk_77 + 2567649375*uk_78 + 1803060450*uk_79 + 158*uk_8 + 1266149116*uk_80 + 166375*uk_81 + 393250*uk_82 + 477950*uk_83 + 24200*uk_84 + 662475*uk_85 + 680625*uk_86 + 477950*uk_87 + 929500*uk_88 + 1129700*uk_89 + 2572416961*uk_9 + 57200*uk_90 + 1565850*uk_91 + 1608750*uk_92 + 1129700*uk_93 + 1373020*uk_94 + 69520*uk_95 + 1903110*uk_96 + 1955250*uk_97 + 1373020*uk_98 + 3520*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 97240*uk_100 + 99000*uk_101 + 57200*uk_102 + 2686255*uk_103 + 2734875*uk_104 + 1580150*uk_105 + 2784375*uk_106 + 1608750*uk_107 + 929500*uk_108 + 1331000*uk_109 + 5579090*uk_11 + 1573000*uk_110 + 96800*uk_111 + 2674100*uk_112 + 2722500*uk_113 + 1573000*uk_114 + 1859000*uk_115 + 114400*uk_116 + 3160300*uk_117 + 3217500*uk_118 + 1859000*uk_119 + 6593470*uk_12 + 7040*uk_120 + 194480*uk_121 + 198000*uk_122 + 114400*uk_123 + 5372510*uk_124 + 5469750*uk_125 + 3160300*uk_126 + 5568750*uk_127 + 3217500*uk_128 + 1859000*uk_129 + 405752*uk_13 + 2197000*uk_130 + 135200*uk_131 + 3734900*uk_132 + 3802500*uk_133 + 2197000*uk_134 + 8320*uk_135 + 229840*uk_136 + 234000*uk_137 + 135200*uk_138 + 6349330*uk_139 + 11208899*uk_14 + 6464250*uk_140 + 3734900*uk_141 + 6581250*uk_142 + 3802500*uk_143 + 2197000*uk_144 + 512*uk_145 + 14144*uk_146 + 14400*uk_147 + 8320*uk_148 + 390728*uk_149 + 11411775*uk_15 + 397800*uk_150 + 229840*uk_151 + 405000*uk_152 + 234000*uk_153 + 135200*uk_154 + 10793861*uk_155 + 10989225*uk_156 + 6349330*uk_157 + 11188125*uk_158 + 6464250*uk_159 + 6593470*uk_16 + 3734900*uk_160 + 11390625*uk_161 + 6581250*uk_162 + 3802500*uk_163 + 2197000*uk_164 + 3025*uk_17 + 6050*uk_18 + 7150*uk_19 + 55*uk_2 + 440*uk_20 + 12155*uk_21 + 12375*uk_22 + 7150*uk_23 + 12100*uk_24 + 14300*uk_25 + 880*uk_26 + 24310*uk_27 + 24750*uk_28 + 14300*uk_29 + 110*uk_3 + 16900*uk_30 + 1040*uk_31 + 28730*uk_32 + 29250*uk_33 + 16900*uk_34 + 64*uk_35 + 1768*uk_36 + 1800*uk_37 + 1040*uk_38 + 48841*uk_39 + 130*uk_4 + 49725*uk_40 + 28730*uk_41 + 50625*uk_42 + 29250*uk_43 + 16900*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 282965865710*uk_47 + 334414204930*uk_48 + 20579335688*uk_49 + 8*uk_5 + 568504148381*uk_50 + 578793816225*uk_51 + 334414204930*uk_52 + 153424975*uk_53 + 306849950*uk_54 + 362640850*uk_55 + 22316360*uk_56 + 616489445*uk_57 + 627647625*uk_58 + 362640850*uk_59 + 221*uk_6 + 613699900*uk_60 + 725281700*uk_61 + 44632720*uk_62 + 1232978890*uk_63 + 1255295250*uk_64 + 725281700*uk_65 + 857151100*uk_66 + 52747760*uk_67 + 1457156870*uk_68 + 1483530750*uk_69 + 225*uk_7 + 857151100*uk_70 + 3246016*uk_71 + 89671192*uk_72 + 91294200*uk_73 + 52747760*uk_74 + 2477166679*uk_75 + 2522002275*uk_76 + 1457156870*uk_77 + 2567649375*uk_78 + 1483530750*uk_79 + 130*uk_8 + 857151100*uk_80 + 166375*uk_81 + 332750*uk_82 + 393250*uk_83 + 24200*uk_84 + 668525*uk_85 + 680625*uk_86 + 393250*uk_87 + 665500*uk_88 + 786500*uk_89 + 2572416961*uk_9 + 48400*uk_90 + 1337050*uk_91 + 1361250*uk_92 + 786500*uk_93 + 929500*uk_94 + 57200*uk_95 + 1580150*uk_96 + 1608750*uk_97 + 929500*uk_98 + 3520*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 98120*uk_100 + 99000*uk_101 + 48400*uk_102 + 2735095*uk_103 + 2759625*uk_104 + 1349150*uk_105 + 2784375*uk_106 + 1361250*uk_107 + 665500*uk_108 + 941192*uk_109 + 4970462*uk_11 + 1056440*uk_110 + 76832*uk_111 + 2141692*uk_112 + 2160900*uk_113 + 1056440*uk_114 + 1185800*uk_115 + 86240*uk_116 + 2403940*uk_117 + 2425500*uk_118 + 1185800*uk_119 + 5579090*uk_12 + 6272*uk_120 + 174832*uk_121 + 176400*uk_122 + 86240*uk_123 + 4873442*uk_124 + 4917150*uk_125 + 2403940*uk_126 + 4961250*uk_127 + 2425500*uk_128 + 1185800*uk_129 + 405752*uk_13 + 1331000*uk_130 + 96800*uk_131 + 2698300*uk_132 + 2722500*uk_133 + 1331000*uk_134 + 7040*uk_135 + 196240*uk_136 + 198000*uk_137 + 96800*uk_138 + 5470190*uk_139 + 11310337*uk_14 + 5519250*uk_140 + 2698300*uk_141 + 5568750*uk_142 + 2722500*uk_143 + 1331000*uk_144 + 512*uk_145 + 14272*uk_146 + 14400*uk_147 + 7040*uk_148 + 397832*uk_149 + 11411775*uk_15 + 401400*uk_150 + 196240*uk_151 + 405000*uk_152 + 198000*uk_153 + 96800*uk_154 + 11089567*uk_155 + 11189025*uk_156 + 5470190*uk_157 + 11289375*uk_158 + 5519250*uk_159 + 5579090*uk_16 + 2698300*uk_160 + 11390625*uk_161 + 5568750*uk_162 + 2722500*uk_163 + 1331000*uk_164 + 3025*uk_17 + 5390*uk_18 + 6050*uk_19 + 55*uk_2 + 440*uk_20 + 12265*uk_21 + 12375*uk_22 + 6050*uk_23 + 9604*uk_24 + 10780*uk_25 + 784*uk_26 + 21854*uk_27 + 22050*uk_28 + 10780*uk_29 + 98*uk_3 + 12100*uk_30 + 880*uk_31 + 24530*uk_32 + 24750*uk_33 + 12100*uk_34 + 64*uk_35 + 1784*uk_36 + 1800*uk_37 + 880*uk_38 + 49729*uk_39 + 110*uk_4 + 50175*uk_40 + 24530*uk_41 + 50625*uk_42 + 24750*uk_43 + 12100*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 252096862178*uk_47 + 282965865710*uk_48 + 20579335688*uk_49 + 8*uk_5 + 573648982303*uk_50 + 578793816225*uk_51 + 282965865710*uk_52 + 153424975*uk_53 + 273375410*uk_54 + 306849950*uk_55 + 22316360*uk_56 + 622068535*uk_57 + 627647625*uk_58 + 306849950*uk_59 + 223*uk_6 + 487105276*uk_60 + 546750820*uk_61 + 39763696*uk_62 + 1108413026*uk_63 + 1118353950*uk_64 + 546750820*uk_65 + 613699900*uk_66 + 44632720*uk_67 + 1244137070*uk_68 + 1255295250*uk_69 + 225*uk_7 + 613699900*uk_70 + 3246016*uk_71 + 90482696*uk_72 + 91294200*uk_73 + 44632720*uk_74 + 2522205151*uk_75 + 2544825825*uk_76 + 1244137070*uk_77 + 2567649375*uk_78 + 1255295250*uk_79 + 110*uk_8 + 613699900*uk_80 + 166375*uk_81 + 296450*uk_82 + 332750*uk_83 + 24200*uk_84 + 674575*uk_85 + 680625*uk_86 + 332750*uk_87 + 528220*uk_88 + 592900*uk_89 + 2572416961*uk_9 + 43120*uk_90 + 1201970*uk_91 + 1212750*uk_92 + 592900*uk_93 + 665500*uk_94 + 48400*uk_95 + 1349150*uk_96 + 1361250*uk_97 + 665500*uk_98 + 3520*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 99000*uk_100 + 99000*uk_101 + 43120*uk_102 + 2784375*uk_103 + 2784375*uk_104 + 1212750*uk_105 + 2784375*uk_106 + 1212750*uk_107 + 528220*uk_108 + 830584*uk_109 + 4767586*uk_11 + 865928*uk_110 + 70688*uk_111 + 1988100*uk_112 + 1988100*uk_113 + 865928*uk_114 + 902776*uk_115 + 73696*uk_116 + 2072700*uk_117 + 2072700*uk_118 + 902776*uk_119 + 4970462*uk_12 + 6016*uk_120 + 169200*uk_121 + 169200*uk_122 + 73696*uk_123 + 4758750*uk_124 + 4758750*uk_125 + 2072700*uk_126 + 4758750*uk_127 + 2072700*uk_128 + 902776*uk_129 + 405752*uk_13 + 941192*uk_130 + 76832*uk_131 + 2160900*uk_132 + 2160900*uk_133 + 941192*uk_134 + 6272*uk_135 + 176400*uk_136 + 176400*uk_137 + 76832*uk_138 + 4961250*uk_139 + 11411775*uk_14 + 4961250*uk_140 + 2160900*uk_141 + 4961250*uk_142 + 2160900*uk_143 + 941192*uk_144 + 512*uk_145 + 14400*uk_146 + 14400*uk_147 + 6272*uk_148 + 405000*uk_149 + 11411775*uk_15 + 405000*uk_150 + 176400*uk_151 + 405000*uk_152 + 176400*uk_153 + 76832*uk_154 + 11390625*uk_155 + 11390625*uk_156 + 4961250*uk_157 + 11390625*uk_158 + 4961250*uk_159 + 4970462*uk_16 + 2160900*uk_160 + 11390625*uk_161 + 4961250*uk_162 + 2160900*uk_163 + 941192*uk_164 + 3025*uk_17 + 5170*uk_18 + 5390*uk_19 + 55*uk_2 + 440*uk_20 + 12375*uk_21 + 12375*uk_22 + 5390*uk_23 + 8836*uk_24 + 9212*uk_25 + 752*uk_26 + 21150*uk_27 + 21150*uk_28 + 9212*uk_29 + 94*uk_3 + 9604*uk_30 + 784*uk_31 + 22050*uk_32 + 22050*uk_33 + 9604*uk_34 + 64*uk_35 + 1800*uk_36 + 1800*uk_37 + 784*uk_38 + 50625*uk_39 + 98*uk_4 + 50625*uk_40 + 22050*uk_41 + 50625*uk_42 + 22050*uk_43 + 9604*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 241807194334*uk_47 + 252096862178*uk_48 + 20579335688*uk_49 + 8*uk_5 + 578793816225*uk_50 + 578793816225*uk_51 + 252096862178*uk_52 + 153424975*uk_53 + 262217230*uk_54 + 273375410*uk_55 + 22316360*uk_56 + 627647625*uk_57 + 627647625*uk_58 + 273375410*uk_59 + 225*uk_6 + 448153084*uk_60 + 467223428*uk_61 + 38140688*uk_62 + 1072706850*uk_63 + 1072706850*uk_64 + 467223428*uk_65 + 487105276*uk_66 + 39763696*uk_67 + 1118353950*uk_68 + 1118353950*uk_69 + 225*uk_7 + 487105276*uk_70 + 3246016*uk_71 + 91294200*uk_72 + 91294200*uk_73 + 39763696*uk_74 + 2567649375*uk_75 + 2567649375*uk_76 + 1118353950*uk_77 + 2567649375*uk_78 + 1118353950*uk_79 + 98*uk_8 + 487105276*uk_80 + 166375*uk_81 + 284350*uk_82 + 296450*uk_83 + 24200*uk_84 + 680625*uk_85 + 680625*uk_86 + 296450*uk_87 + 485980*uk_88 + 506660*uk_89 + 2572416961*uk_9 + 41360*uk_90 + 1163250*uk_91 + 1163250*uk_92 + 506660*uk_93 + 528220*uk_94 + 43120*uk_95 + 1212750*uk_96 + 1212750*uk_97 + 528220*uk_98 + 3520*uk_99, uk_0 + 50719*uk_1 + 2789545*uk_10 + 99880*uk_100 + 99000*uk_101 + 41360*uk_102 + 2834095*uk_103 + 2809125*uk_104 + 1173590*uk_105 + 2784375*uk_106 + 1163250*uk_107 + 485980*uk_108 + 941192*uk_109 + 4970462*uk_11 + 902776*uk_110 + 76832*uk_111 + 2180108*uk_112 + 2160900*uk_113 + 902776*uk_114 + 865928*uk_115 + 73696*uk_116 + 2091124*uk_117 + 2072700*uk_118 + 865928*uk_119 + 4767586*uk_12 + 6272*uk_120 + 177968*uk_121 + 176400*uk_122 + 73696*uk_123 + 5049842*uk_124 + 5005350*uk_125 + 2091124*uk_126 + 4961250*uk_127 + 2072700*uk_128 + 865928*uk_129 + 405752*uk_13 + 830584*uk_130 + 70688*uk_131 + 2005772*uk_132 + 1988100*uk_133 + 830584*uk_134 + 6016*uk_135 + 170704*uk_136 + 169200*uk_137 + 70688*uk_138 + 4843726*uk_139 + 11513213*uk_14 + 4801050*uk_140 + 2005772*uk_141 + 4758750*uk_142 + 1988100*uk_143 + 830584*uk_144 + 512*uk_145 + 14528*uk_146 + 14400*uk_147 + 6016*uk_148 + 412232*uk_149 + 11411775*uk_15 + 408600*uk_150 + 170704*uk_151 + 405000*uk_152 + 169200*uk_153 + 70688*uk_154 + 11697083*uk_155 + 11594025*uk_156 + 4843726*uk_157 + 11491875*uk_158 + 4801050*uk_159 + 4767586*uk_16 + 2005772*uk_160 + 11390625*uk_161 + 4758750*uk_162 + 1988100*uk_163 + 830584*uk_164 + 3025*uk_17 + 5390*uk_18 + 5170*uk_19 + 55*uk_2 + 440*uk_20 + 12485*uk_21 + 12375*uk_22 + 5170*uk_23 + 9604*uk_24 + 9212*uk_25 + 784*uk_26 + 22246*uk_27 + 22050*uk_28 + 9212*uk_29 + 98*uk_3 + 8836*uk_30 + 752*uk_31 + 21338*uk_32 + 21150*uk_33 + 8836*uk_34 + 64*uk_35 + 1816*uk_36 + 1800*uk_37 + 752*uk_38 + 51529*uk_39 + 94*uk_4 + 51075*uk_40 + 21338*uk_41 + 50625*uk_42 + 21150*uk_43 + 8836*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 252096862178*uk_47 + 241807194334*uk_48 + 20579335688*uk_49 + 8*uk_5 + 583938650147*uk_50 + 578793816225*uk_51 + 241807194334*uk_52 + 153424975*uk_53 + 273375410*uk_54 + 262217230*uk_55 + 22316360*uk_56 + 633226715*uk_57 + 627647625*uk_58 + 262217230*uk_59 + 227*uk_6 + 487105276*uk_60 + 467223428*uk_61 + 39763696*uk_62 + 1128294874*uk_63 + 1118353950*uk_64 + 467223428*uk_65 + 448153084*uk_66 + 38140688*uk_67 + 1082242022*uk_68 + 1072706850*uk_69 + 225*uk_7 + 448153084*uk_70 + 3246016*uk_71 + 92105704*uk_72 + 91294200*uk_73 + 38140688*uk_74 + 2613499351*uk_75 + 2590472925*uk_76 + 1082242022*uk_77 + 2567649375*uk_78 + 1072706850*uk_79 + 94*uk_8 + 448153084*uk_80 + 166375*uk_81 + 296450*uk_82 + 284350*uk_83 + 24200*uk_84 + 686675*uk_85 + 680625*uk_86 + 284350*uk_87 + 528220*uk_88 + 506660*uk_89 + 2572416961*uk_9 + 43120*uk_90 + 1223530*uk_91 + 1212750*uk_92 + 506660*uk_93 + 485980*uk_94 + 41360*uk_95 + 1173590*uk_96 + 1163250*uk_97 + 485980*uk_98 + 3520*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 396900*uk_100 + 1367100*uk_101 + 250047*uk_103 + 861273*uk_104 + 2966607*uk_106 + 64000*uk_109 + 1894120*uk_11 + 27200*uk_110 + 160000*uk_111 + 100800*uk_112 + 347200*uk_113 + 11560*uk_115 + 68000*uk_116 + 42840*uk_117 + 147560*uk_118 + 805001*uk_12 + 400000*uk_120 + 252000*uk_121 + 868000*uk_122 + 158760*uk_124 + 546840*uk_125 + 1883560*uk_127 + 4735300*uk_13 + 4913*uk_130 + 28900*uk_131 + 18207*uk_132 + 62713*uk_133 + 170000*uk_135 + 107100*uk_136 + 368900*uk_137 + 67473*uk_139 + 2983239*uk_14 + 232407*uk_140 + 800513*uk_142 + 1000000*uk_145 + 630000*uk_146 + 2170000*uk_147 + 396900*uk_149 + 10275601*uk_15 + 1367100*uk_150 + 4708900*uk_152 + 250047*uk_155 + 861273*uk_156 + 2966607*uk_158 + 10218313*uk_161 + 3969*uk_17 + 2520*uk_18 + 1071*uk_19 + 63*uk_2 + 6300*uk_20 + 3969*uk_21 + 13671*uk_22 + 1600*uk_24 + 680*uk_25 + 4000*uk_26 + 2520*uk_27 + 8680*uk_28 + 40*uk_3 + 289*uk_30 + 1700*uk_31 + 1071*uk_32 + 3689*uk_33 + 10000*uk_35 + 6300*uk_36 + 21700*uk_37 + 3969*uk_39 + 17*uk_4 + 13671*uk_40 + 47089*uk_42 + 106179944855977*uk_45 + 141265316367*uk_46 + 89692264360*uk_47 + 38119212353*uk_48 + 224230660900*uk_49 + 100*uk_5 + 141265316367*uk_50 + 486580534153*uk_51 + 187944057*uk_53 + 119329560*uk_54 + 50715063*uk_55 + 298323900*uk_56 + 187944057*uk_57 + 647362863*uk_58 + 63*uk_6 + 75764800*uk_60 + 32200040*uk_61 + 189412000*uk_62 + 119329560*uk_63 + 411024040*uk_64 + 13685017*uk_66 + 80500100*uk_67 + 50715063*uk_68 + 174685217*uk_69 + 217*uk_7 + 473530000*uk_71 + 298323900*uk_72 + 1027560100*uk_73 + 187944057*uk_75 + 647362863*uk_76 + 2229805417*uk_78 + 250047*uk_81 + 158760*uk_82 + 67473*uk_83 + 396900*uk_84 + 250047*uk_85 + 861273*uk_86 + 100800*uk_88 + 42840*uk_89 + 2242306609*uk_9 + 252000*uk_90 + 158760*uk_91 + 546840*uk_92 + 18207*uk_94 + 107100*uk_95 + 67473*uk_96 + 232407*uk_97 + 630000*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 376740*uk_100 + 1257732*uk_101 + 231840*uk_102 + 266175*uk_103 + 888615*uk_104 + 163800*uk_105 + 2966607*uk_106 + 546840*uk_107 + 100800*uk_108 + 35937*uk_109 + 1562649*uk_11 + 43560*uk_110 + 100188*uk_111 + 70785*uk_112 + 236313*uk_113 + 43560*uk_114 + 52800*uk_115 + 121440*uk_116 + 85800*uk_117 + 286440*uk_118 + 52800*uk_119 + 1894120*uk_12 + 279312*uk_120 + 197340*uk_121 + 658812*uk_122 + 121440*uk_123 + 139425*uk_124 + 465465*uk_125 + 85800*uk_126 + 1553937*uk_127 + 286440*uk_128 + 52800*uk_129 + 4356476*uk_13 + 64000*uk_130 + 147200*uk_131 + 104000*uk_132 + 347200*uk_133 + 64000*uk_134 + 338560*uk_135 + 239200*uk_136 + 798560*uk_137 + 147200*uk_138 + 169000*uk_139 + 3077945*uk_14 + 564200*uk_140 + 104000*uk_141 + 1883560*uk_142 + 347200*uk_143 + 64000*uk_144 + 778688*uk_145 + 550160*uk_146 + 1836688*uk_147 + 338560*uk_148 + 388700*uk_149 + 10275601*uk_15 + 1297660*uk_150 + 239200*uk_151 + 4332188*uk_152 + 798560*uk_153 + 147200*uk_154 + 274625*uk_155 + 916825*uk_156 + 169000*uk_157 + 3060785*uk_158 + 564200*uk_159 + 1894120*uk_16 + 104000*uk_160 + 10218313*uk_161 + 1883560*uk_162 + 347200*uk_163 + 64000*uk_164 + 3969*uk_17 + 2079*uk_18 + 2520*uk_19 + 63*uk_2 + 5796*uk_20 + 4095*uk_21 + 13671*uk_22 + 2520*uk_23 + 1089*uk_24 + 1320*uk_25 + 3036*uk_26 + 2145*uk_27 + 7161*uk_28 + 1320*uk_29 + 33*uk_3 + 1600*uk_30 + 3680*uk_31 + 2600*uk_32 + 8680*uk_33 + 1600*uk_34 + 8464*uk_35 + 5980*uk_36 + 19964*uk_37 + 3680*uk_38 + 4225*uk_39 + 40*uk_4 + 14105*uk_40 + 2600*uk_41 + 47089*uk_42 + 8680*uk_43 + 1600*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 73996118097*uk_47 + 89692264360*uk_48 + 206292208028*uk_49 + 92*uk_5 + 145749929585*uk_50 + 486580534153*uk_51 + 89692264360*uk_52 + 187944057*uk_53 + 98446887*uk_54 + 119329560*uk_55 + 274457988*uk_56 + 193910535*uk_57 + 647362863*uk_58 + 119329560*uk_59 + 65*uk_6 + 51567417*uk_60 + 62505960*uk_61 + 143763708*uk_62 + 101572185*uk_63 + 339094833*uk_64 + 62505960*uk_65 + 75764800*uk_66 + 174259040*uk_67 + 123117800*uk_68 + 411024040*uk_69 + 217*uk_7 + 75764800*uk_70 + 400795792*uk_71 + 283170940*uk_72 + 945355292*uk_73 + 174259040*uk_74 + 200066425*uk_75 + 667914065*uk_76 + 123117800*uk_77 + 2229805417*uk_78 + 411024040*uk_79 + 40*uk_8 + 75764800*uk_80 + 250047*uk_81 + 130977*uk_82 + 158760*uk_83 + 365148*uk_84 + 257985*uk_85 + 861273*uk_86 + 158760*uk_87 + 68607*uk_88 + 83160*uk_89 + 2242306609*uk_9 + 191268*uk_90 + 135135*uk_91 + 451143*uk_92 + 83160*uk_93 + 100800*uk_94 + 231840*uk_95 + 163800*uk_96 + 546840*uk_97 + 100800*uk_98 + 533232*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 371448*uk_100 + 1203048*uk_101 + 182952*uk_102 + 282807*uk_103 + 915957*uk_104 + 139293*uk_105 + 2966607*uk_106 + 451143*uk_107 + 68607*uk_108 + 132651*uk_109 + 2415003*uk_11 + 85833*uk_110 + 228888*uk_111 + 174267*uk_112 + 564417*uk_113 + 85833*uk_114 + 55539*uk_115 + 148104*uk_116 + 112761*uk_117 + 365211*uk_118 + 55539*uk_119 + 1562649*uk_12 + 394944*uk_120 + 300696*uk_121 + 973896*uk_122 + 148104*uk_123 + 228939*uk_124 + 741489*uk_125 + 112761*uk_126 + 2401539*uk_127 + 365211*uk_128 + 55539*uk_129 + 4167064*uk_13 + 35937*uk_130 + 95832*uk_131 + 72963*uk_132 + 236313*uk_133 + 35937*uk_134 + 255552*uk_135 + 194568*uk_136 + 630168*uk_137 + 95832*uk_138 + 148137*uk_139 + 3172651*uk_14 + 479787*uk_140 + 72963*uk_141 + 1553937*uk_142 + 236313*uk_143 + 35937*uk_144 + 681472*uk_145 + 518848*uk_146 + 1680448*uk_147 + 255552*uk_148 + 395032*uk_149 + 10275601*uk_15 + 1279432*uk_150 + 194568*uk_151 + 4143832*uk_152 + 630168*uk_153 + 95832*uk_154 + 300763*uk_155 + 974113*uk_156 + 148137*uk_157 + 3154963*uk_158 + 479787*uk_159 + 1562649*uk_16 + 72963*uk_160 + 10218313*uk_161 + 1553937*uk_162 + 236313*uk_163 + 35937*uk_164 + 3969*uk_17 + 3213*uk_18 + 2079*uk_19 + 63*uk_2 + 5544*uk_20 + 4221*uk_21 + 13671*uk_22 + 2079*uk_23 + 2601*uk_24 + 1683*uk_25 + 4488*uk_26 + 3417*uk_27 + 11067*uk_28 + 1683*uk_29 + 51*uk_3 + 1089*uk_30 + 2904*uk_31 + 2211*uk_32 + 7161*uk_33 + 1089*uk_34 + 7744*uk_35 + 5896*uk_36 + 19096*uk_37 + 2904*uk_38 + 4489*uk_39 + 33*uk_4 + 14539*uk_40 + 2211*uk_41 + 47089*uk_42 + 7161*uk_43 + 1089*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 114357637059*uk_47 + 73996118097*uk_48 + 197322981592*uk_49 + 88*uk_5 + 150234542803*uk_50 + 486580534153*uk_51 + 73996118097*uk_52 + 187944057*uk_53 + 152145189*uk_54 + 98446887*uk_55 + 262525032*uk_56 + 199877013*uk_57 + 647362863*uk_58 + 98446887*uk_59 + 67*uk_6 + 123165153*uk_60 + 79695099*uk_61 + 212520264*uk_62 + 161805201*uk_63 + 524055651*uk_64 + 79695099*uk_65 + 51567417*uk_66 + 137513112*uk_67 + 104697483*uk_68 + 339094833*uk_69 + 217*uk_7 + 51567417*uk_70 + 366701632*uk_71 + 279193288*uk_72 + 904252888*uk_73 + 137513112*uk_74 + 212567617*uk_75 + 688465267*uk_76 + 104697483*uk_77 + 2229805417*uk_78 + 339094833*uk_79 + 33*uk_8 + 51567417*uk_80 + 250047*uk_81 + 202419*uk_82 + 130977*uk_83 + 349272*uk_84 + 265923*uk_85 + 861273*uk_86 + 130977*uk_87 + 163863*uk_88 + 106029*uk_89 + 2242306609*uk_9 + 282744*uk_90 + 215271*uk_91 + 697221*uk_92 + 106029*uk_93 + 68607*uk_94 + 182952*uk_95 + 139293*uk_96 + 451143*uk_97 + 68607*uk_98 + 487872*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 347760*uk_100 + 1093680*uk_101 + 257040*uk_102 + 299943*uk_103 + 943299*uk_104 + 221697*uk_105 + 2966607*uk_106 + 697221*uk_107 + 163863*uk_108 + 6859*uk_109 + 899707*uk_11 + 18411*uk_110 + 28880*uk_111 + 24909*uk_112 + 78337*uk_113 + 18411*uk_114 + 49419*uk_115 + 77520*uk_116 + 66861*uk_117 + 210273*uk_118 + 49419*uk_119 + 2415003*uk_12 + 121600*uk_120 + 104880*uk_121 + 329840*uk_122 + 77520*uk_123 + 90459*uk_124 + 284487*uk_125 + 66861*uk_126 + 894691*uk_127 + 210273*uk_128 + 49419*uk_129 + 3788240*uk_13 + 132651*uk_130 + 208080*uk_131 + 179469*uk_132 + 564417*uk_133 + 132651*uk_134 + 326400*uk_135 + 281520*uk_136 + 885360*uk_137 + 208080*uk_138 + 242811*uk_139 + 3267357*uk_14 + 763623*uk_140 + 179469*uk_141 + 2401539*uk_142 + 564417*uk_143 + 132651*uk_144 + 512000*uk_145 + 441600*uk_146 + 1388800*uk_147 + 326400*uk_148 + 380880*uk_149 + 10275601*uk_15 + 1197840*uk_150 + 281520*uk_151 + 3767120*uk_152 + 885360*uk_153 + 208080*uk_154 + 328509*uk_155 + 1033137*uk_156 + 242811*uk_157 + 3249141*uk_158 + 763623*uk_159 + 2415003*uk_16 + 179469*uk_160 + 10218313*uk_161 + 2401539*uk_162 + 564417*uk_163 + 132651*uk_164 + 3969*uk_17 + 1197*uk_18 + 3213*uk_19 + 63*uk_2 + 5040*uk_20 + 4347*uk_21 + 13671*uk_22 + 3213*uk_23 + 361*uk_24 + 969*uk_25 + 1520*uk_26 + 1311*uk_27 + 4123*uk_28 + 969*uk_29 + 19*uk_3 + 2601*uk_30 + 4080*uk_31 + 3519*uk_32 + 11067*uk_33 + 2601*uk_34 + 6400*uk_35 + 5520*uk_36 + 17360*uk_37 + 4080*uk_38 + 4761*uk_39 + 51*uk_4 + 14973*uk_40 + 3519*uk_41 + 47089*uk_42 + 11067*uk_43 + 2601*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 42603825571*uk_47 + 114357637059*uk_48 + 179384528720*uk_49 + 80*uk_5 + 154719156021*uk_50 + 486580534153*uk_51 + 114357637059*uk_52 + 187944057*uk_53 + 56681541*uk_54 + 152145189*uk_55 + 238659120*uk_56 + 205843491*uk_57 + 647362863*uk_58 + 152145189*uk_59 + 69*uk_6 + 17094433*uk_60 + 45885057*uk_61 + 71976560*uk_62 + 62079783*uk_63 + 195236419*uk_64 + 45885057*uk_65 + 123165153*uk_66 + 193200240*uk_67 + 166635207*uk_68 + 524055651*uk_69 + 217*uk_7 + 123165153*uk_70 + 303059200*uk_71 + 261388560*uk_72 + 822048080*uk_73 + 193200240*uk_74 + 225447633*uk_75 + 709016469*uk_76 + 166635207*uk_77 + 2229805417*uk_78 + 524055651*uk_79 + 51*uk_8 + 123165153*uk_80 + 250047*uk_81 + 75411*uk_82 + 202419*uk_83 + 317520*uk_84 + 273861*uk_85 + 861273*uk_86 + 202419*uk_87 + 22743*uk_88 + 61047*uk_89 + 2242306609*uk_9 + 95760*uk_90 + 82593*uk_91 + 259749*uk_92 + 61047*uk_93 + 163863*uk_94 + 257040*uk_95 + 221697*uk_96 + 697221*uk_97 + 163863*uk_98 + 403200*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 357840*uk_100 + 1093680*uk_101 + 95760*uk_102 + 317583*uk_103 + 970641*uk_104 + 84987*uk_105 + 2966607*uk_106 + 259749*uk_107 + 22743*uk_108 + 300763*uk_109 + 3172651*uk_11 + 85291*uk_110 + 359120*uk_111 + 318719*uk_112 + 974113*uk_113 + 85291*uk_114 + 24187*uk_115 + 101840*uk_116 + 90383*uk_117 + 276241*uk_118 + 24187*uk_119 + 899707*uk_12 + 428800*uk_120 + 380560*uk_121 + 1163120*uk_122 + 101840*uk_123 + 337747*uk_124 + 1032269*uk_125 + 90383*uk_126 + 3154963*uk_127 + 276241*uk_128 + 24187*uk_129 + 3788240*uk_13 + 6859*uk_130 + 28880*uk_131 + 25631*uk_132 + 78337*uk_133 + 6859*uk_134 + 121600*uk_135 + 107920*uk_136 + 329840*uk_137 + 28880*uk_138 + 95779*uk_139 + 3362063*uk_14 + 292733*uk_140 + 25631*uk_141 + 894691*uk_142 + 78337*uk_143 + 6859*uk_144 + 512000*uk_145 + 454400*uk_146 + 1388800*uk_147 + 121600*uk_148 + 403280*uk_149 + 10275601*uk_15 + 1232560*uk_150 + 107920*uk_151 + 3767120*uk_152 + 329840*uk_153 + 28880*uk_154 + 357911*uk_155 + 1093897*uk_156 + 95779*uk_157 + 3343319*uk_158 + 292733*uk_159 + 899707*uk_16 + 25631*uk_160 + 10218313*uk_161 + 894691*uk_162 + 78337*uk_163 + 6859*uk_164 + 3969*uk_17 + 4221*uk_18 + 1197*uk_19 + 63*uk_2 + 5040*uk_20 + 4473*uk_21 + 13671*uk_22 + 1197*uk_23 + 4489*uk_24 + 1273*uk_25 + 5360*uk_26 + 4757*uk_27 + 14539*uk_28 + 1273*uk_29 + 67*uk_3 + 361*uk_30 + 1520*uk_31 + 1349*uk_32 + 4123*uk_33 + 361*uk_34 + 6400*uk_35 + 5680*uk_36 + 17360*uk_37 + 1520*uk_38 + 5041*uk_39 + 19*uk_4 + 15407*uk_40 + 1349*uk_41 + 47089*uk_42 + 4123*uk_43 + 361*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 150234542803*uk_47 + 42603825571*uk_48 + 179384528720*uk_49 + 80*uk_5 + 159203769239*uk_50 + 486580534153*uk_51 + 42603825571*uk_52 + 187944057*uk_53 + 199877013*uk_54 + 56681541*uk_55 + 238659120*uk_56 + 211809969*uk_57 + 647362863*uk_58 + 56681541*uk_59 + 71*uk_6 + 212567617*uk_60 + 60280369*uk_61 + 253812080*uk_62 + 225258221*uk_63 + 688465267*uk_64 + 60280369*uk_65 + 17094433*uk_66 + 71976560*uk_67 + 63879197*uk_68 + 195236419*uk_69 + 217*uk_7 + 17094433*uk_70 + 303059200*uk_71 + 268965040*uk_72 + 822048080*uk_73 + 71976560*uk_74 + 238706473*uk_75 + 729567671*uk_76 + 63879197*uk_77 + 2229805417*uk_78 + 195236419*uk_79 + 19*uk_8 + 17094433*uk_80 + 250047*uk_81 + 265923*uk_82 + 75411*uk_83 + 317520*uk_84 + 281799*uk_85 + 861273*uk_86 + 75411*uk_87 + 282807*uk_88 + 80199*uk_89 + 2242306609*uk_9 + 337680*uk_90 + 299691*uk_91 + 915957*uk_92 + 80199*uk_93 + 22743*uk_94 + 95760*uk_95 + 84987*uk_96 + 259749*uk_97 + 22743*uk_98 + 403200*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 331128*uk_100 + 984312*uk_101 + 303912*uk_102 + 335727*uk_103 + 997983*uk_104 + 308133*uk_105 + 2966607*uk_106 + 915957*uk_107 + 282807*uk_108 + 117649*uk_109 + 2320297*uk_11 + 160867*uk_110 + 172872*uk_111 + 175273*uk_112 + 521017*uk_113 + 160867*uk_114 + 219961*uk_115 + 236376*uk_116 + 239659*uk_117 + 712411*uk_118 + 219961*uk_119 + 3172651*uk_12 + 254016*uk_120 + 257544*uk_121 + 765576*uk_122 + 236376*uk_123 + 261121*uk_124 + 776209*uk_125 + 239659*uk_126 + 2307361*uk_127 + 712411*uk_128 + 219961*uk_129 + 3409416*uk_13 + 300763*uk_130 + 323208*uk_131 + 327697*uk_132 + 974113*uk_133 + 300763*uk_134 + 347328*uk_135 + 352152*uk_136 + 1046808*uk_137 + 323208*uk_138 + 357043*uk_139 + 3456769*uk_14 + 1061347*uk_140 + 327697*uk_141 + 3154963*uk_142 + 974113*uk_143 + 300763*uk_144 + 373248*uk_145 + 378432*uk_146 + 1124928*uk_147 + 347328*uk_148 + 383688*uk_149 + 10275601*uk_15 + 1140552*uk_150 + 352152*uk_151 + 3390408*uk_152 + 1046808*uk_153 + 323208*uk_154 + 389017*uk_155 + 1156393*uk_156 + 357043*uk_157 + 3437497*uk_158 + 1061347*uk_159 + 3172651*uk_16 + 327697*uk_160 + 10218313*uk_161 + 3154963*uk_162 + 974113*uk_163 + 300763*uk_164 + 3969*uk_17 + 3087*uk_18 + 4221*uk_19 + 63*uk_2 + 4536*uk_20 + 4599*uk_21 + 13671*uk_22 + 4221*uk_23 + 2401*uk_24 + 3283*uk_25 + 3528*uk_26 + 3577*uk_27 + 10633*uk_28 + 3283*uk_29 + 49*uk_3 + 4489*uk_30 + 4824*uk_31 + 4891*uk_32 + 14539*uk_33 + 4489*uk_34 + 5184*uk_35 + 5256*uk_36 + 15624*uk_37 + 4824*uk_38 + 5329*uk_39 + 67*uk_4 + 15841*uk_40 + 4891*uk_41 + 47089*uk_42 + 14539*uk_43 + 4489*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 109873023841*uk_47 + 150234542803*uk_48 + 161446075848*uk_49 + 72*uk_5 + 163688382457*uk_50 + 486580534153*uk_51 + 150234542803*uk_52 + 187944057*uk_53 + 146178711*uk_54 + 199877013*uk_55 + 214793208*uk_56 + 217776447*uk_57 + 647362863*uk_58 + 199877013*uk_59 + 73*uk_6 + 113694553*uk_60 + 155459899*uk_61 + 167061384*uk_62 + 169381681*uk_63 + 503504449*uk_64 + 155459899*uk_65 + 212567617*uk_66 + 228430872*uk_67 + 231603523*uk_68 + 688465267*uk_69 + 217*uk_7 + 212567617*uk_70 + 245477952*uk_71 + 248887368*uk_72 + 739843272*uk_73 + 228430872*uk_74 + 252344137*uk_75 + 750118873*uk_76 + 231603523*uk_77 + 2229805417*uk_78 + 688465267*uk_79 + 67*uk_8 + 212567617*uk_80 + 250047*uk_81 + 194481*uk_82 + 265923*uk_83 + 285768*uk_84 + 289737*uk_85 + 861273*uk_86 + 265923*uk_87 + 151263*uk_88 + 206829*uk_89 + 2242306609*uk_9 + 222264*uk_90 + 225351*uk_91 + 669879*uk_92 + 206829*uk_93 + 282807*uk_94 + 303912*uk_95 + 308133*uk_96 + 915957*uk_97 + 282807*uk_98 + 326592*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 321300*uk_100 + 929628*uk_101 + 209916*uk_102 + 354375*uk_103 + 1025325*uk_104 + 231525*uk_105 + 2966607*uk_106 + 669879*uk_107 + 151263*uk_108 + 21952*uk_109 + 1325884*uk_11 + 38416*uk_110 + 53312*uk_111 + 58800*uk_112 + 170128*uk_113 + 38416*uk_114 + 67228*uk_115 + 93296*uk_116 + 102900*uk_117 + 297724*uk_118 + 67228*uk_119 + 2320297*uk_12 + 129472*uk_120 + 142800*uk_121 + 413168*uk_122 + 93296*uk_123 + 157500*uk_124 + 455700*uk_125 + 102900*uk_126 + 1318492*uk_127 + 297724*uk_128 + 67228*uk_129 + 3220004*uk_13 + 117649*uk_130 + 163268*uk_131 + 180075*uk_132 + 521017*uk_133 + 117649*uk_134 + 226576*uk_135 + 249900*uk_136 + 723044*uk_137 + 163268*uk_138 + 275625*uk_139 + 3551475*uk_14 + 797475*uk_140 + 180075*uk_141 + 2307361*uk_142 + 521017*uk_143 + 117649*uk_144 + 314432*uk_145 + 346800*uk_146 + 1003408*uk_147 + 226576*uk_148 + 382500*uk_149 + 10275601*uk_15 + 1106700*uk_150 + 249900*uk_151 + 3202052*uk_152 + 723044*uk_153 + 163268*uk_154 + 421875*uk_155 + 1220625*uk_156 + 275625*uk_157 + 3531675*uk_158 + 797475*uk_159 + 2320297*uk_16 + 180075*uk_160 + 10218313*uk_161 + 2307361*uk_162 + 521017*uk_163 + 117649*uk_164 + 3969*uk_17 + 1764*uk_18 + 3087*uk_19 + 63*uk_2 + 4284*uk_20 + 4725*uk_21 + 13671*uk_22 + 3087*uk_23 + 784*uk_24 + 1372*uk_25 + 1904*uk_26 + 2100*uk_27 + 6076*uk_28 + 1372*uk_29 + 28*uk_3 + 2401*uk_30 + 3332*uk_31 + 3675*uk_32 + 10633*uk_33 + 2401*uk_34 + 4624*uk_35 + 5100*uk_36 + 14756*uk_37 + 3332*uk_38 + 5625*uk_39 + 49*uk_4 + 16275*uk_40 + 3675*uk_41 + 47089*uk_42 + 10633*uk_43 + 2401*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 62784585052*uk_47 + 109873023841*uk_48 + 152476849412*uk_49 + 68*uk_5 + 168172995675*uk_50 + 486580534153*uk_51 + 109873023841*uk_52 + 187944057*uk_53 + 83530692*uk_54 + 146178711*uk_55 + 202860252*uk_56 + 223742925*uk_57 + 647362863*uk_58 + 146178711*uk_59 + 75*uk_6 + 37124752*uk_60 + 64968316*uk_61 + 90160112*uk_62 + 99441300*uk_63 + 287716828*uk_64 + 64968316*uk_65 + 113694553*uk_66 + 157780196*uk_67 + 174022275*uk_68 + 503504449*uk_69 + 217*uk_7 + 113694553*uk_70 + 218960272*uk_71 + 241500300*uk_72 + 698740868*uk_73 + 157780196*uk_74 + 266360625*uk_75 + 770670075*uk_76 + 174022275*uk_77 + 2229805417*uk_78 + 503504449*uk_79 + 49*uk_8 + 113694553*uk_80 + 250047*uk_81 + 111132*uk_82 + 194481*uk_83 + 269892*uk_84 + 297675*uk_85 + 861273*uk_86 + 194481*uk_87 + 49392*uk_88 + 86436*uk_89 + 2242306609*uk_9 + 119952*uk_90 + 132300*uk_91 + 382788*uk_92 + 86436*uk_93 + 151263*uk_94 + 209916*uk_95 + 231525*uk_96 + 669879*uk_97 + 151263*uk_98 + 291312*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 329868*uk_100 + 929628*uk_101 + 119952*uk_102 + 373527*uk_103 + 1052667*uk_104 + 135828*uk_105 + 2966607*uk_106 + 382788*uk_107 + 49392*uk_108 + 421875*uk_109 + 3551475*uk_11 + 157500*uk_110 + 382500*uk_111 + 433125*uk_112 + 1220625*uk_113 + 157500*uk_114 + 58800*uk_115 + 142800*uk_116 + 161700*uk_117 + 455700*uk_118 + 58800*uk_119 + 1325884*uk_12 + 346800*uk_120 + 392700*uk_121 + 1106700*uk_122 + 142800*uk_123 + 444675*uk_124 + 1253175*uk_125 + 161700*uk_126 + 3531675*uk_127 + 455700*uk_128 + 58800*uk_129 + 3220004*uk_13 + 21952*uk_130 + 53312*uk_131 + 60368*uk_132 + 170128*uk_133 + 21952*uk_134 + 129472*uk_135 + 146608*uk_136 + 413168*uk_137 + 53312*uk_138 + 166012*uk_139 + 3646181*uk_14 + 467852*uk_140 + 60368*uk_141 + 1318492*uk_142 + 170128*uk_143 + 21952*uk_144 + 314432*uk_145 + 356048*uk_146 + 1003408*uk_147 + 129472*uk_148 + 403172*uk_149 + 10275601*uk_15 + 1136212*uk_150 + 146608*uk_151 + 3202052*uk_152 + 413168*uk_153 + 53312*uk_154 + 456533*uk_155 + 1286593*uk_156 + 166012*uk_157 + 3625853*uk_158 + 467852*uk_159 + 1325884*uk_16 + 60368*uk_160 + 10218313*uk_161 + 1318492*uk_162 + 170128*uk_163 + 21952*uk_164 + 3969*uk_17 + 4725*uk_18 + 1764*uk_19 + 63*uk_2 + 4284*uk_20 + 4851*uk_21 + 13671*uk_22 + 1764*uk_23 + 5625*uk_24 + 2100*uk_25 + 5100*uk_26 + 5775*uk_27 + 16275*uk_28 + 2100*uk_29 + 75*uk_3 + 784*uk_30 + 1904*uk_31 + 2156*uk_32 + 6076*uk_33 + 784*uk_34 + 4624*uk_35 + 5236*uk_36 + 14756*uk_37 + 1904*uk_38 + 5929*uk_39 + 28*uk_4 + 16709*uk_40 + 2156*uk_41 + 47089*uk_42 + 6076*uk_43 + 784*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 168172995675*uk_47 + 62784585052*uk_48 + 152476849412*uk_49 + 68*uk_5 + 172657608893*uk_50 + 486580534153*uk_51 + 62784585052*uk_52 + 187944057*uk_53 + 223742925*uk_54 + 83530692*uk_55 + 202860252*uk_56 + 229709403*uk_57 + 647362863*uk_58 + 83530692*uk_59 + 77*uk_6 + 266360625*uk_60 + 99441300*uk_61 + 241500300*uk_62 + 273463575*uk_63 + 770670075*uk_64 + 99441300*uk_65 + 37124752*uk_66 + 90160112*uk_67 + 102093068*uk_68 + 287716828*uk_69 + 217*uk_7 + 37124752*uk_70 + 218960272*uk_71 + 247940308*uk_72 + 698740868*uk_73 + 90160112*uk_74 + 280755937*uk_75 + 791221277*uk_76 + 102093068*uk_77 + 2229805417*uk_78 + 287716828*uk_79 + 28*uk_8 + 37124752*uk_80 + 250047*uk_81 + 297675*uk_82 + 111132*uk_83 + 269892*uk_84 + 305613*uk_85 + 861273*uk_86 + 111132*uk_87 + 354375*uk_88 + 132300*uk_89 + 2242306609*uk_9 + 321300*uk_90 + 363825*uk_91 + 1025325*uk_92 + 132300*uk_93 + 49392*uk_94 + 119952*uk_95 + 135828*uk_96 + 382788*uk_97 + 49392*uk_98 + 291312*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 298620*uk_100 + 820260*uk_101 + 283500*uk_102 + 393183*uk_103 + 1080009*uk_104 + 373275*uk_105 + 2966607*uk_106 + 1025325*uk_107 + 354375*uk_108 + 32768*uk_109 + 1515296*uk_11 + 76800*uk_110 + 61440*uk_111 + 80896*uk_112 + 222208*uk_113 + 76800*uk_114 + 180000*uk_115 + 144000*uk_116 + 189600*uk_117 + 520800*uk_118 + 180000*uk_119 + 3551475*uk_12 + 115200*uk_120 + 151680*uk_121 + 416640*uk_122 + 144000*uk_123 + 199712*uk_124 + 548576*uk_125 + 189600*uk_126 + 1506848*uk_127 + 520800*uk_128 + 180000*uk_129 + 2841180*uk_13 + 421875*uk_130 + 337500*uk_131 + 444375*uk_132 + 1220625*uk_133 + 421875*uk_134 + 270000*uk_135 + 355500*uk_136 + 976500*uk_137 + 337500*uk_138 + 468075*uk_139 + 3740887*uk_14 + 1285725*uk_140 + 444375*uk_141 + 3531675*uk_142 + 1220625*uk_143 + 421875*uk_144 + 216000*uk_145 + 284400*uk_146 + 781200*uk_147 + 270000*uk_148 + 374460*uk_149 + 10275601*uk_15 + 1028580*uk_150 + 355500*uk_151 + 2825340*uk_152 + 976500*uk_153 + 337500*uk_154 + 493039*uk_155 + 1354297*uk_156 + 468075*uk_157 + 3720031*uk_158 + 1285725*uk_159 + 3551475*uk_16 + 444375*uk_160 + 10218313*uk_161 + 3531675*uk_162 + 1220625*uk_163 + 421875*uk_164 + 3969*uk_17 + 2016*uk_18 + 4725*uk_19 + 63*uk_2 + 3780*uk_20 + 4977*uk_21 + 13671*uk_22 + 4725*uk_23 + 1024*uk_24 + 2400*uk_25 + 1920*uk_26 + 2528*uk_27 + 6944*uk_28 + 2400*uk_29 + 32*uk_3 + 5625*uk_30 + 4500*uk_31 + 5925*uk_32 + 16275*uk_33 + 5625*uk_34 + 3600*uk_35 + 4740*uk_36 + 13020*uk_37 + 4500*uk_38 + 6241*uk_39 + 75*uk_4 + 17143*uk_40 + 5925*uk_41 + 47089*uk_42 + 16275*uk_43 + 5625*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 71753811488*uk_47 + 168172995675*uk_48 + 134538396540*uk_49 + 60*uk_5 + 177142222111*uk_50 + 486580534153*uk_51 + 168172995675*uk_52 + 187944057*uk_53 + 95463648*uk_54 + 223742925*uk_55 + 178994340*uk_56 + 235675881*uk_57 + 647362863*uk_58 + 223742925*uk_59 + 79*uk_6 + 48489472*uk_60 + 113647200*uk_61 + 90917760*uk_62 + 119708384*uk_63 + 328819232*uk_64 + 113647200*uk_65 + 266360625*uk_66 + 213088500*uk_67 + 280566525*uk_68 + 770670075*uk_69 + 217*uk_7 + 266360625*uk_70 + 170470800*uk_71 + 224453220*uk_72 + 616536060*uk_73 + 213088500*uk_74 + 295530073*uk_75 + 811772479*uk_76 + 280566525*uk_77 + 2229805417*uk_78 + 770670075*uk_79 + 75*uk_8 + 266360625*uk_80 + 250047*uk_81 + 127008*uk_82 + 297675*uk_83 + 238140*uk_84 + 313551*uk_85 + 861273*uk_86 + 297675*uk_87 + 64512*uk_88 + 151200*uk_89 + 2242306609*uk_9 + 120960*uk_90 + 159264*uk_91 + 437472*uk_92 + 151200*uk_93 + 354375*uk_94 + 283500*uk_95 + 373275*uk_96 + 1025325*uk_97 + 354375*uk_98 + 226800*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 306180*uk_100 + 820260*uk_101 + 120960*uk_102 + 413343*uk_103 + 1107351*uk_104 + 163296*uk_105 + 2966607*uk_106 + 437472*uk_107 + 64512*uk_108 + 117649*uk_109 + 2320297*uk_11 + 76832*uk_110 + 144060*uk_111 + 194481*uk_112 + 521017*uk_113 + 76832*uk_114 + 50176*uk_115 + 94080*uk_116 + 127008*uk_117 + 340256*uk_118 + 50176*uk_119 + 1515296*uk_12 + 176400*uk_120 + 238140*uk_121 + 637980*uk_122 + 94080*uk_123 + 321489*uk_124 + 861273*uk_125 + 127008*uk_126 + 2307361*uk_127 + 340256*uk_128 + 50176*uk_129 + 2841180*uk_13 + 32768*uk_130 + 61440*uk_131 + 82944*uk_132 + 222208*uk_133 + 32768*uk_134 + 115200*uk_135 + 155520*uk_136 + 416640*uk_137 + 61440*uk_138 + 209952*uk_139 + 3835593*uk_14 + 562464*uk_140 + 82944*uk_141 + 1506848*uk_142 + 222208*uk_143 + 32768*uk_144 + 216000*uk_145 + 291600*uk_146 + 781200*uk_147 + 115200*uk_148 + 393660*uk_149 + 10275601*uk_15 + 1054620*uk_150 + 155520*uk_151 + 2825340*uk_152 + 416640*uk_153 + 61440*uk_154 + 531441*uk_155 + 1423737*uk_156 + 209952*uk_157 + 3814209*uk_158 + 562464*uk_159 + 1515296*uk_16 + 82944*uk_160 + 10218313*uk_161 + 1506848*uk_162 + 222208*uk_163 + 32768*uk_164 + 3969*uk_17 + 3087*uk_18 + 2016*uk_19 + 63*uk_2 + 3780*uk_20 + 5103*uk_21 + 13671*uk_22 + 2016*uk_23 + 2401*uk_24 + 1568*uk_25 + 2940*uk_26 + 3969*uk_27 + 10633*uk_28 + 1568*uk_29 + 49*uk_3 + 1024*uk_30 + 1920*uk_31 + 2592*uk_32 + 6944*uk_33 + 1024*uk_34 + 3600*uk_35 + 4860*uk_36 + 13020*uk_37 + 1920*uk_38 + 6561*uk_39 + 32*uk_4 + 17577*uk_40 + 2592*uk_41 + 47089*uk_42 + 6944*uk_43 + 1024*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 109873023841*uk_47 + 71753811488*uk_48 + 134538396540*uk_49 + 60*uk_5 + 181626835329*uk_50 + 486580534153*uk_51 + 71753811488*uk_52 + 187944057*uk_53 + 146178711*uk_54 + 95463648*uk_55 + 178994340*uk_56 + 241642359*uk_57 + 647362863*uk_58 + 95463648*uk_59 + 81*uk_6 + 113694553*uk_60 + 74249504*uk_61 + 139217820*uk_62 + 187944057*uk_63 + 503504449*uk_64 + 74249504*uk_65 + 48489472*uk_66 + 90917760*uk_67 + 122738976*uk_68 + 328819232*uk_69 + 217*uk_7 + 48489472*uk_70 + 170470800*uk_71 + 230135580*uk_72 + 616536060*uk_73 + 90917760*uk_74 + 310683033*uk_75 + 832323681*uk_76 + 122738976*uk_77 + 2229805417*uk_78 + 328819232*uk_79 + 32*uk_8 + 48489472*uk_80 + 250047*uk_81 + 194481*uk_82 + 127008*uk_83 + 238140*uk_84 + 321489*uk_85 + 861273*uk_86 + 127008*uk_87 + 151263*uk_88 + 98784*uk_89 + 2242306609*uk_9 + 185220*uk_90 + 250047*uk_91 + 669879*uk_92 + 98784*uk_93 + 64512*uk_94 + 120960*uk_95 + 163296*uk_96 + 437472*uk_97 + 64512*uk_98 + 226800*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 292824*uk_100 + 765576*uk_101 + 172872*uk_102 + 434007*uk_103 + 1134693*uk_104 + 256221*uk_105 + 2966607*uk_106 + 669879*uk_107 + 151263*uk_108 + 79507*uk_109 + 2036179*uk_11 + 90601*uk_110 + 103544*uk_111 + 153467*uk_112 + 401233*uk_113 + 90601*uk_114 + 103243*uk_115 + 117992*uk_116 + 174881*uk_117 + 457219*uk_118 + 103243*uk_119 + 2320297*uk_12 + 134848*uk_120 + 199864*uk_121 + 522536*uk_122 + 117992*uk_123 + 296227*uk_124 + 774473*uk_125 + 174881*uk_126 + 2024827*uk_127 + 457219*uk_128 + 103243*uk_129 + 2651768*uk_13 + 117649*uk_130 + 134456*uk_131 + 199283*uk_132 + 521017*uk_133 + 117649*uk_134 + 153664*uk_135 + 227752*uk_136 + 595448*uk_137 + 134456*uk_138 + 337561*uk_139 + 3930299*uk_14 + 882539*uk_140 + 199283*uk_141 + 2307361*uk_142 + 521017*uk_143 + 117649*uk_144 + 175616*uk_145 + 260288*uk_146 + 680512*uk_147 + 153664*uk_148 + 385784*uk_149 + 10275601*uk_15 + 1008616*uk_150 + 227752*uk_151 + 2636984*uk_152 + 595448*uk_153 + 134456*uk_154 + 571787*uk_155 + 1494913*uk_156 + 337561*uk_157 + 3908387*uk_158 + 882539*uk_159 + 2320297*uk_16 + 199283*uk_160 + 10218313*uk_161 + 2307361*uk_162 + 521017*uk_163 + 117649*uk_164 + 3969*uk_17 + 2709*uk_18 + 3087*uk_19 + 63*uk_2 + 3528*uk_20 + 5229*uk_21 + 13671*uk_22 + 3087*uk_23 + 1849*uk_24 + 2107*uk_25 + 2408*uk_26 + 3569*uk_27 + 9331*uk_28 + 2107*uk_29 + 43*uk_3 + 2401*uk_30 + 2744*uk_31 + 4067*uk_32 + 10633*uk_33 + 2401*uk_34 + 3136*uk_35 + 4648*uk_36 + 12152*uk_37 + 2744*uk_38 + 6889*uk_39 + 49*uk_4 + 18011*uk_40 + 4067*uk_41 + 47089*uk_42 + 10633*uk_43 + 2401*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 96419184187*uk_47 + 109873023841*uk_48 + 125569170104*uk_49 + 56*uk_5 + 186111448547*uk_50 + 486580534153*uk_51 + 109873023841*uk_52 + 187944057*uk_53 + 128279277*uk_54 + 146178711*uk_55 + 167061384*uk_56 + 247608837*uk_57 + 647362863*uk_58 + 146178711*uk_59 + 83*uk_6 + 87555697*uk_60 + 99772771*uk_61 + 114026024*uk_62 + 169002857*uk_63 + 441850843*uk_64 + 99772771*uk_65 + 113694553*uk_66 + 129936632*uk_67 + 192584651*uk_68 + 503504449*uk_69 + 217*uk_7 + 113694553*uk_70 + 148499008*uk_71 + 220096744*uk_72 + 575433656*uk_73 + 129936632*uk_74 + 326214817*uk_75 + 852874883*uk_76 + 192584651*uk_77 + 2229805417*uk_78 + 503504449*uk_79 + 49*uk_8 + 113694553*uk_80 + 250047*uk_81 + 170667*uk_82 + 194481*uk_83 + 222264*uk_84 + 329427*uk_85 + 861273*uk_86 + 194481*uk_87 + 116487*uk_88 + 132741*uk_89 + 2242306609*uk_9 + 151704*uk_90 + 224847*uk_91 + 587853*uk_92 + 132741*uk_93 + 151263*uk_94 + 172872*uk_95 + 256221*uk_96 + 669879*uk_97 + 151263*uk_98 + 197568*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 278460*uk_100 + 710892*uk_101 + 140868*uk_102 + 455175*uk_103 + 1162035*uk_104 + 230265*uk_105 + 2966607*uk_106 + 587853*uk_107 + 116487*uk_108 + 512*uk_109 + 378824*uk_11 + 2752*uk_110 + 3328*uk_111 + 5440*uk_112 + 13888*uk_113 + 2752*uk_114 + 14792*uk_115 + 17888*uk_116 + 29240*uk_117 + 74648*uk_118 + 14792*uk_119 + 2036179*uk_12 + 21632*uk_120 + 35360*uk_121 + 90272*uk_122 + 17888*uk_123 + 57800*uk_124 + 147560*uk_125 + 29240*uk_126 + 376712*uk_127 + 74648*uk_128 + 14792*uk_129 + 2462356*uk_13 + 79507*uk_130 + 96148*uk_131 + 157165*uk_132 + 401233*uk_133 + 79507*uk_134 + 116272*uk_135 + 190060*uk_136 + 485212*uk_137 + 96148*uk_138 + 310675*uk_139 + 4025005*uk_14 + 793135*uk_140 + 157165*uk_141 + 2024827*uk_142 + 401233*uk_143 + 79507*uk_144 + 140608*uk_145 + 229840*uk_146 + 586768*uk_147 + 116272*uk_148 + 375700*uk_149 + 10275601*uk_15 + 959140*uk_150 + 190060*uk_151 + 2448628*uk_152 + 485212*uk_153 + 96148*uk_154 + 614125*uk_155 + 1567825*uk_156 + 310675*uk_157 + 4002565*uk_158 + 793135*uk_159 + 2036179*uk_16 + 157165*uk_160 + 10218313*uk_161 + 2024827*uk_162 + 401233*uk_163 + 79507*uk_164 + 3969*uk_17 + 504*uk_18 + 2709*uk_19 + 63*uk_2 + 3276*uk_20 + 5355*uk_21 + 13671*uk_22 + 2709*uk_23 + 64*uk_24 + 344*uk_25 + 416*uk_26 + 680*uk_27 + 1736*uk_28 + 344*uk_29 + 8*uk_3 + 1849*uk_30 + 2236*uk_31 + 3655*uk_32 + 9331*uk_33 + 1849*uk_34 + 2704*uk_35 + 4420*uk_36 + 11284*uk_37 + 2236*uk_38 + 7225*uk_39 + 43*uk_4 + 18445*uk_40 + 3655*uk_41 + 47089*uk_42 + 9331*uk_43 + 1849*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 17938452872*uk_47 + 96419184187*uk_48 + 116599943668*uk_49 + 52*uk_5 + 190596061765*uk_50 + 486580534153*uk_51 + 96419184187*uk_52 + 187944057*uk_53 + 23865912*uk_54 + 128279277*uk_55 + 155128428*uk_56 + 253575315*uk_57 + 647362863*uk_58 + 128279277*uk_59 + 85*uk_6 + 3030592*uk_60 + 16289432*uk_61 + 19698848*uk_62 + 32200040*uk_63 + 82204808*uk_64 + 16289432*uk_65 + 87555697*uk_66 + 105881308*uk_67 + 173075215*uk_68 + 441850843*uk_69 + 217*uk_7 + 87555697*uk_70 + 128042512*uk_71 + 209300260*uk_72 + 534331252*uk_73 + 105881308*uk_74 + 342125425*uk_75 + 873426085*uk_76 + 173075215*uk_77 + 2229805417*uk_78 + 441850843*uk_79 + 43*uk_8 + 87555697*uk_80 + 250047*uk_81 + 31752*uk_82 + 170667*uk_83 + 206388*uk_84 + 337365*uk_85 + 861273*uk_86 + 170667*uk_87 + 4032*uk_88 + 21672*uk_89 + 2242306609*uk_9 + 26208*uk_90 + 42840*uk_91 + 109368*uk_92 + 21672*uk_93 + 116487*uk_94 + 140868*uk_95 + 230265*uk_96 + 587853*uk_97 + 116487*uk_98 + 170352*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 285012*uk_100 + 710892*uk_101 + 26208*uk_102 + 476847*uk_103 + 1189377*uk_104 + 43848*uk_105 + 2966607*uk_106 + 109368*uk_107 + 4032*uk_108 + 15625*uk_109 + 1183825*uk_11 + 5000*uk_110 + 32500*uk_111 + 54375*uk_112 + 135625*uk_113 + 5000*uk_114 + 1600*uk_115 + 10400*uk_116 + 17400*uk_117 + 43400*uk_118 + 1600*uk_119 + 378824*uk_12 + 67600*uk_120 + 113100*uk_121 + 282100*uk_122 + 10400*uk_123 + 189225*uk_124 + 471975*uk_125 + 17400*uk_126 + 1177225*uk_127 + 43400*uk_128 + 1600*uk_129 + 2462356*uk_13 + 512*uk_130 + 3328*uk_131 + 5568*uk_132 + 13888*uk_133 + 512*uk_134 + 21632*uk_135 + 36192*uk_136 + 90272*uk_137 + 3328*uk_138 + 60552*uk_139 + 4119711*uk_14 + 151032*uk_140 + 5568*uk_141 + 376712*uk_142 + 13888*uk_143 + 512*uk_144 + 140608*uk_145 + 235248*uk_146 + 586768*uk_147 + 21632*uk_148 + 393588*uk_149 + 10275601*uk_15 + 981708*uk_150 + 36192*uk_151 + 2448628*uk_152 + 90272*uk_153 + 3328*uk_154 + 658503*uk_155 + 1642473*uk_156 + 60552*uk_157 + 4096743*uk_158 + 151032*uk_159 + 378824*uk_16 + 5568*uk_160 + 10218313*uk_161 + 376712*uk_162 + 13888*uk_163 + 512*uk_164 + 3969*uk_17 + 1575*uk_18 + 504*uk_19 + 63*uk_2 + 3276*uk_20 + 5481*uk_21 + 13671*uk_22 + 504*uk_23 + 625*uk_24 + 200*uk_25 + 1300*uk_26 + 2175*uk_27 + 5425*uk_28 + 200*uk_29 + 25*uk_3 + 64*uk_30 + 416*uk_31 + 696*uk_32 + 1736*uk_33 + 64*uk_34 + 2704*uk_35 + 4524*uk_36 + 11284*uk_37 + 416*uk_38 + 7569*uk_39 + 8*uk_4 + 18879*uk_40 + 696*uk_41 + 47089*uk_42 + 1736*uk_43 + 64*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 56057665225*uk_47 + 17938452872*uk_48 + 116599943668*uk_49 + 52*uk_5 + 195080674983*uk_50 + 486580534153*uk_51 + 17938452872*uk_52 + 187944057*uk_53 + 74580975*uk_54 + 23865912*uk_55 + 155128428*uk_56 + 259541793*uk_57 + 647362863*uk_58 + 23865912*uk_59 + 87*uk_6 + 29595625*uk_60 + 9470600*uk_61 + 61558900*uk_62 + 102992775*uk_63 + 256890025*uk_64 + 9470600*uk_65 + 3030592*uk_66 + 19698848*uk_67 + 32957688*uk_68 + 82204808*uk_69 + 217*uk_7 + 3030592*uk_70 + 128042512*uk_71 + 214224972*uk_72 + 534331252*uk_73 + 19698848*uk_74 + 358414857*uk_75 + 893977287*uk_76 + 32957688*uk_77 + 2229805417*uk_78 + 82204808*uk_79 + 8*uk_8 + 3030592*uk_80 + 250047*uk_81 + 99225*uk_82 + 31752*uk_83 + 206388*uk_84 + 345303*uk_85 + 861273*uk_86 + 31752*uk_87 + 39375*uk_88 + 12600*uk_89 + 2242306609*uk_9 + 81900*uk_90 + 137025*uk_91 + 341775*uk_92 + 12600*uk_93 + 4032*uk_94 + 26208*uk_95 + 43848*uk_96 + 109368*uk_97 + 4032*uk_98 + 170352*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 269136*uk_100 + 656208*uk_101 + 75600*uk_102 + 499023*uk_103 + 1216719*uk_104 + 140175*uk_105 + 2966607*uk_106 + 341775*uk_107 + 39375*uk_108 + 125*uk_109 + 236765*uk_11 + 625*uk_110 + 1200*uk_111 + 2225*uk_112 + 5425*uk_113 + 625*uk_114 + 3125*uk_115 + 6000*uk_116 + 11125*uk_117 + 27125*uk_118 + 3125*uk_119 + 1183825*uk_12 + 11520*uk_120 + 21360*uk_121 + 52080*uk_122 + 6000*uk_123 + 39605*uk_124 + 96565*uk_125 + 11125*uk_126 + 235445*uk_127 + 27125*uk_128 + 3125*uk_129 + 2272944*uk_13 + 15625*uk_130 + 30000*uk_131 + 55625*uk_132 + 135625*uk_133 + 15625*uk_134 + 57600*uk_135 + 106800*uk_136 + 260400*uk_137 + 30000*uk_138 + 198025*uk_139 + 4214417*uk_14 + 482825*uk_140 + 55625*uk_141 + 1177225*uk_142 + 135625*uk_143 + 15625*uk_144 + 110592*uk_145 + 205056*uk_146 + 499968*uk_147 + 57600*uk_148 + 380208*uk_149 + 10275601*uk_15 + 927024*uk_150 + 106800*uk_151 + 2260272*uk_152 + 260400*uk_153 + 30000*uk_154 + 704969*uk_155 + 1718857*uk_156 + 198025*uk_157 + 4190921*uk_158 + 482825*uk_159 + 1183825*uk_16 + 55625*uk_160 + 10218313*uk_161 + 1177225*uk_162 + 135625*uk_163 + 15625*uk_164 + 3969*uk_17 + 315*uk_18 + 1575*uk_19 + 63*uk_2 + 3024*uk_20 + 5607*uk_21 + 13671*uk_22 + 1575*uk_23 + 25*uk_24 + 125*uk_25 + 240*uk_26 + 445*uk_27 + 1085*uk_28 + 125*uk_29 + 5*uk_3 + 625*uk_30 + 1200*uk_31 + 2225*uk_32 + 5425*uk_33 + 625*uk_34 + 2304*uk_35 + 4272*uk_36 + 10416*uk_37 + 1200*uk_38 + 7921*uk_39 + 25*uk_4 + 19313*uk_40 + 2225*uk_41 + 47089*uk_42 + 5425*uk_43 + 625*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 11211533045*uk_47 + 56057665225*uk_48 + 107630717232*uk_49 + 48*uk_5 + 199565288201*uk_50 + 486580534153*uk_51 + 56057665225*uk_52 + 187944057*uk_53 + 14916195*uk_54 + 74580975*uk_55 + 143195472*uk_56 + 265508271*uk_57 + 647362863*uk_58 + 74580975*uk_59 + 89*uk_6 + 1183825*uk_60 + 5919125*uk_61 + 11364720*uk_62 + 21072085*uk_63 + 51378005*uk_64 + 5919125*uk_65 + 29595625*uk_66 + 56823600*uk_67 + 105360425*uk_68 + 256890025*uk_69 + 217*uk_7 + 29595625*uk_70 + 109101312*uk_71 + 202292016*uk_72 + 493228848*uk_73 + 56823600*uk_74 + 375083113*uk_75 + 914528489*uk_76 + 105360425*uk_77 + 2229805417*uk_78 + 256890025*uk_79 + 25*uk_8 + 29595625*uk_80 + 250047*uk_81 + 19845*uk_82 + 99225*uk_83 + 190512*uk_84 + 353241*uk_85 + 861273*uk_86 + 99225*uk_87 + 1575*uk_88 + 7875*uk_89 + 2242306609*uk_9 + 15120*uk_90 + 28035*uk_91 + 68355*uk_92 + 7875*uk_93 + 39375*uk_94 + 75600*uk_95 + 140175*uk_96 + 341775*uk_97 + 39375*uk_98 + 145152*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 275184*uk_100 + 656208*uk_101 + 15120*uk_102 + 521703*uk_103 + 1244061*uk_104 + 28665*uk_105 + 2966607*uk_106 + 68355*uk_107 + 1575*uk_108 + 35937*uk_109 + 1562649*uk_11 + 5445*uk_110 + 52272*uk_111 + 99099*uk_112 + 236313*uk_113 + 5445*uk_114 + 825*uk_115 + 7920*uk_116 + 15015*uk_117 + 35805*uk_118 + 825*uk_119 + 236765*uk_12 + 76032*uk_120 + 144144*uk_121 + 343728*uk_122 + 7920*uk_123 + 273273*uk_124 + 651651*uk_125 + 15015*uk_126 + 1553937*uk_127 + 35805*uk_128 + 825*uk_129 + 2272944*uk_13 + 125*uk_130 + 1200*uk_131 + 2275*uk_132 + 5425*uk_133 + 125*uk_134 + 11520*uk_135 + 21840*uk_136 + 52080*uk_137 + 1200*uk_138 + 41405*uk_139 + 4309123*uk_14 + 98735*uk_140 + 2275*uk_141 + 235445*uk_142 + 5425*uk_143 + 125*uk_144 + 110592*uk_145 + 209664*uk_146 + 499968*uk_147 + 11520*uk_148 + 397488*uk_149 + 10275601*uk_15 + 947856*uk_150 + 21840*uk_151 + 2260272*uk_152 + 52080*uk_153 + 1200*uk_154 + 753571*uk_155 + 1796977*uk_156 + 41405*uk_157 + 4285099*uk_158 + 98735*uk_159 + 236765*uk_16 + 2275*uk_160 + 10218313*uk_161 + 235445*uk_162 + 5425*uk_163 + 125*uk_164 + 3969*uk_17 + 2079*uk_18 + 315*uk_19 + 63*uk_2 + 3024*uk_20 + 5733*uk_21 + 13671*uk_22 + 315*uk_23 + 1089*uk_24 + 165*uk_25 + 1584*uk_26 + 3003*uk_27 + 7161*uk_28 + 165*uk_29 + 33*uk_3 + 25*uk_30 + 240*uk_31 + 455*uk_32 + 1085*uk_33 + 25*uk_34 + 2304*uk_35 + 4368*uk_36 + 10416*uk_37 + 240*uk_38 + 8281*uk_39 + 5*uk_4 + 19747*uk_40 + 455*uk_41 + 47089*uk_42 + 1085*uk_43 + 25*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 73996118097*uk_47 + 11211533045*uk_48 + 107630717232*uk_49 + 48*uk_5 + 204049901419*uk_50 + 486580534153*uk_51 + 11211533045*uk_52 + 187944057*uk_53 + 98446887*uk_54 + 14916195*uk_55 + 143195472*uk_56 + 271474749*uk_57 + 647362863*uk_58 + 14916195*uk_59 + 91*uk_6 + 51567417*uk_60 + 7813245*uk_61 + 75007152*uk_62 + 142201059*uk_63 + 339094833*uk_64 + 7813245*uk_65 + 1183825*uk_66 + 11364720*uk_67 + 21545615*uk_68 + 51378005*uk_69 + 217*uk_7 + 1183825*uk_70 + 109101312*uk_71 + 206837904*uk_72 + 493228848*uk_73 + 11364720*uk_74 + 392130193*uk_75 + 935079691*uk_76 + 21545615*uk_77 + 2229805417*uk_78 + 51378005*uk_79 + 5*uk_8 + 1183825*uk_80 + 250047*uk_81 + 130977*uk_82 + 19845*uk_83 + 190512*uk_84 + 361179*uk_85 + 861273*uk_86 + 19845*uk_87 + 68607*uk_88 + 10395*uk_89 + 2242306609*uk_9 + 99792*uk_90 + 189189*uk_91 + 451143*uk_92 + 10395*uk_93 + 1575*uk_94 + 15120*uk_95 + 28665*uk_96 + 68355*uk_97 + 1575*uk_98 + 145152*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 257796*uk_100 + 601524*uk_101 + 91476*uk_102 + 544887*uk_103 + 1271403*uk_104 + 193347*uk_105 + 2966607*uk_106 + 451143*uk_107 + 68607*uk_108 + 4096*uk_109 + 757648*uk_11 + 8448*uk_110 + 11264*uk_111 + 23808*uk_112 + 55552*uk_113 + 8448*uk_114 + 17424*uk_115 + 23232*uk_116 + 49104*uk_117 + 114576*uk_118 + 17424*uk_119 + 1562649*uk_12 + 30976*uk_120 + 65472*uk_121 + 152768*uk_122 + 23232*uk_123 + 138384*uk_124 + 322896*uk_125 + 49104*uk_126 + 753424*uk_127 + 114576*uk_128 + 17424*uk_129 + 2083532*uk_13 + 35937*uk_130 + 47916*uk_131 + 101277*uk_132 + 236313*uk_133 + 35937*uk_134 + 63888*uk_135 + 135036*uk_136 + 315084*uk_137 + 47916*uk_138 + 285417*uk_139 + 4403829*uk_14 + 665973*uk_140 + 101277*uk_141 + 1553937*uk_142 + 236313*uk_143 + 35937*uk_144 + 85184*uk_145 + 180048*uk_146 + 420112*uk_147 + 63888*uk_148 + 380556*uk_149 + 10275601*uk_15 + 887964*uk_150 + 135036*uk_151 + 2071916*uk_152 + 315084*uk_153 + 47916*uk_154 + 804357*uk_155 + 1876833*uk_156 + 285417*uk_157 + 4379277*uk_158 + 665973*uk_159 + 1562649*uk_16 + 101277*uk_160 + 10218313*uk_161 + 1553937*uk_162 + 236313*uk_163 + 35937*uk_164 + 3969*uk_17 + 1008*uk_18 + 2079*uk_19 + 63*uk_2 + 2772*uk_20 + 5859*uk_21 + 13671*uk_22 + 2079*uk_23 + 256*uk_24 + 528*uk_25 + 704*uk_26 + 1488*uk_27 + 3472*uk_28 + 528*uk_29 + 16*uk_3 + 1089*uk_30 + 1452*uk_31 + 3069*uk_32 + 7161*uk_33 + 1089*uk_34 + 1936*uk_35 + 4092*uk_36 + 9548*uk_37 + 1452*uk_38 + 8649*uk_39 + 33*uk_4 + 20181*uk_40 + 3069*uk_41 + 47089*uk_42 + 7161*uk_43 + 1089*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 35876905744*uk_47 + 73996118097*uk_48 + 98661490796*uk_49 + 44*uk_5 + 208534514637*uk_50 + 486580534153*uk_51 + 73996118097*uk_52 + 187944057*uk_53 + 47731824*uk_54 + 98446887*uk_55 + 131262516*uk_56 + 277441227*uk_57 + 647362863*uk_58 + 98446887*uk_59 + 93*uk_6 + 12122368*uk_60 + 25002384*uk_61 + 33336512*uk_62 + 70461264*uk_63 + 164409616*uk_64 + 25002384*uk_65 + 51567417*uk_66 + 68756556*uk_67 + 145326357*uk_68 + 339094833*uk_69 + 217*uk_7 + 51567417*uk_70 + 91675408*uk_71 + 193768476*uk_72 + 452126444*uk_73 + 68756556*uk_74 + 409556097*uk_75 + 955630893*uk_76 + 145326357*uk_77 + 2229805417*uk_78 + 339094833*uk_79 + 33*uk_8 + 51567417*uk_80 + 250047*uk_81 + 63504*uk_82 + 130977*uk_83 + 174636*uk_84 + 369117*uk_85 + 861273*uk_86 + 130977*uk_87 + 16128*uk_88 + 33264*uk_89 + 2242306609*uk_9 + 44352*uk_90 + 93744*uk_91 + 218736*uk_92 + 33264*uk_93 + 68607*uk_94 + 91476*uk_95 + 193347*uk_96 + 451143*uk_97 + 68607*uk_98 + 121968*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 263340*uk_100 + 601524*uk_101 + 44352*uk_102 + 568575*uk_103 + 1298745*uk_104 + 95760*uk_105 + 2966607*uk_106 + 218736*uk_107 + 16128*uk_108 + 79507*uk_109 + 2036179*uk_11 + 29584*uk_110 + 81356*uk_111 + 175655*uk_112 + 401233*uk_113 + 29584*uk_114 + 11008*uk_115 + 30272*uk_116 + 65360*uk_117 + 149296*uk_118 + 11008*uk_119 + 757648*uk_12 + 83248*uk_120 + 179740*uk_121 + 410564*uk_122 + 30272*uk_123 + 388075*uk_124 + 886445*uk_125 + 65360*uk_126 + 2024827*uk_127 + 149296*uk_128 + 11008*uk_129 + 2083532*uk_13 + 4096*uk_130 + 11264*uk_131 + 24320*uk_132 + 55552*uk_133 + 4096*uk_134 + 30976*uk_135 + 66880*uk_136 + 152768*uk_137 + 11264*uk_138 + 144400*uk_139 + 4498535*uk_14 + 329840*uk_140 + 24320*uk_141 + 753424*uk_142 + 55552*uk_143 + 4096*uk_144 + 85184*uk_145 + 183920*uk_146 + 420112*uk_147 + 30976*uk_148 + 397100*uk_149 + 10275601*uk_15 + 907060*uk_150 + 66880*uk_151 + 2071916*uk_152 + 152768*uk_153 + 11264*uk_154 + 857375*uk_155 + 1958425*uk_156 + 144400*uk_157 + 4473455*uk_158 + 329840*uk_159 + 757648*uk_16 + 24320*uk_160 + 10218313*uk_161 + 753424*uk_162 + 55552*uk_163 + 4096*uk_164 + 3969*uk_17 + 2709*uk_18 + 1008*uk_19 + 63*uk_2 + 2772*uk_20 + 5985*uk_21 + 13671*uk_22 + 1008*uk_23 + 1849*uk_24 + 688*uk_25 + 1892*uk_26 + 4085*uk_27 + 9331*uk_28 + 688*uk_29 + 43*uk_3 + 256*uk_30 + 704*uk_31 + 1520*uk_32 + 3472*uk_33 + 256*uk_34 + 1936*uk_35 + 4180*uk_36 + 9548*uk_37 + 704*uk_38 + 9025*uk_39 + 16*uk_4 + 20615*uk_40 + 1520*uk_41 + 47089*uk_42 + 3472*uk_43 + 256*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 96419184187*uk_47 + 35876905744*uk_48 + 98661490796*uk_49 + 44*uk_5 + 213019127855*uk_50 + 486580534153*uk_51 + 35876905744*uk_52 + 187944057*uk_53 + 128279277*uk_54 + 47731824*uk_55 + 131262516*uk_56 + 283407705*uk_57 + 647362863*uk_58 + 47731824*uk_59 + 95*uk_6 + 87555697*uk_60 + 32578864*uk_61 + 89591876*uk_62 + 193437005*uk_63 + 441850843*uk_64 + 32578864*uk_65 + 12122368*uk_66 + 33336512*uk_67 + 71976560*uk_68 + 164409616*uk_69 + 217*uk_7 + 12122368*uk_70 + 91675408*uk_71 + 197935540*uk_72 + 452126444*uk_73 + 33336512*uk_74 + 427360825*uk_75 + 976182095*uk_76 + 71976560*uk_77 + 2229805417*uk_78 + 164409616*uk_79 + 16*uk_8 + 12122368*uk_80 + 250047*uk_81 + 170667*uk_82 + 63504*uk_83 + 174636*uk_84 + 377055*uk_85 + 861273*uk_86 + 63504*uk_87 + 116487*uk_88 + 43344*uk_89 + 2242306609*uk_9 + 119196*uk_90 + 257355*uk_91 + 587853*uk_92 + 43344*uk_93 + 16128*uk_94 + 44352*uk_95 + 95760*uk_96 + 218736*uk_97 + 16128*uk_98 + 121968*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 244440*uk_100 + 546840*uk_101 + 108360*uk_102 + 592767*uk_103 + 1326087*uk_104 + 262773*uk_105 + 2966607*uk_106 + 587853*uk_107 + 116487*uk_108 + 4913*uk_109 + 805001*uk_11 + 12427*uk_110 + 11560*uk_111 + 28033*uk_112 + 62713*uk_113 + 12427*uk_114 + 31433*uk_115 + 29240*uk_116 + 70907*uk_117 + 158627*uk_118 + 31433*uk_119 + 2036179*uk_12 + 27200*uk_120 + 65960*uk_121 + 147560*uk_122 + 29240*uk_123 + 159953*uk_124 + 357833*uk_125 + 70907*uk_126 + 800513*uk_127 + 158627*uk_128 + 31433*uk_129 + 1894120*uk_13 + 79507*uk_130 + 73960*uk_131 + 179353*uk_132 + 401233*uk_133 + 79507*uk_134 + 68800*uk_135 + 166840*uk_136 + 373240*uk_137 + 73960*uk_138 + 404587*uk_139 + 4593241*uk_14 + 905107*uk_140 + 179353*uk_141 + 2024827*uk_142 + 401233*uk_143 + 79507*uk_144 + 64000*uk_145 + 155200*uk_146 + 347200*uk_147 + 68800*uk_148 + 376360*uk_149 + 10275601*uk_15 + 841960*uk_150 + 166840*uk_151 + 1883560*uk_152 + 373240*uk_153 + 73960*uk_154 + 912673*uk_155 + 2041753*uk_156 + 404587*uk_157 + 4567633*uk_158 + 905107*uk_159 + 2036179*uk_16 + 179353*uk_160 + 10218313*uk_161 + 2024827*uk_162 + 401233*uk_163 + 79507*uk_164 + 3969*uk_17 + 1071*uk_18 + 2709*uk_19 + 63*uk_2 + 2520*uk_20 + 6111*uk_21 + 13671*uk_22 + 2709*uk_23 + 289*uk_24 + 731*uk_25 + 680*uk_26 + 1649*uk_27 + 3689*uk_28 + 731*uk_29 + 17*uk_3 + 1849*uk_30 + 1720*uk_31 + 4171*uk_32 + 9331*uk_33 + 1849*uk_34 + 1600*uk_35 + 3880*uk_36 + 8680*uk_37 + 1720*uk_38 + 9409*uk_39 + 43*uk_4 + 21049*uk_40 + 4171*uk_41 + 47089*uk_42 + 9331*uk_43 + 1849*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 38119212353*uk_47 + 96419184187*uk_48 + 89692264360*uk_49 + 40*uk_5 + 217503741073*uk_50 + 486580534153*uk_51 + 96419184187*uk_52 + 187944057*uk_53 + 50715063*uk_54 + 128279277*uk_55 + 119329560*uk_56 + 289374183*uk_57 + 647362863*uk_58 + 128279277*uk_59 + 97*uk_6 + 13685017*uk_60 + 34615043*uk_61 + 32200040*uk_62 + 78085097*uk_63 + 174685217*uk_64 + 34615043*uk_65 + 87555697*uk_66 + 81447160*uk_67 + 197509363*uk_68 + 441850843*uk_69 + 217*uk_7 + 87555697*uk_70 + 75764800*uk_71 + 183729640*uk_72 + 411024040*uk_73 + 81447160*uk_74 + 445544377*uk_75 + 996733297*uk_76 + 197509363*uk_77 + 2229805417*uk_78 + 441850843*uk_79 + 43*uk_8 + 87555697*uk_80 + 250047*uk_81 + 67473*uk_82 + 170667*uk_83 + 158760*uk_84 + 384993*uk_85 + 861273*uk_86 + 170667*uk_87 + 18207*uk_88 + 46053*uk_89 + 2242306609*uk_9 + 42840*uk_90 + 103887*uk_91 + 232407*uk_92 + 46053*uk_93 + 116487*uk_94 + 108360*uk_95 + 262773*uk_96 + 587853*uk_97 + 116487*uk_98 + 100800*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 249480*uk_100 + 546840*uk_101 + 42840*uk_102 + 617463*uk_103 + 1353429*uk_104 + 106029*uk_105 + 2966607*uk_106 + 232407*uk_107 + 18207*uk_108 + 29791*uk_109 + 1467943*uk_11 + 16337*uk_110 + 38440*uk_111 + 95139*uk_112 + 208537*uk_113 + 16337*uk_114 + 8959*uk_115 + 21080*uk_116 + 52173*uk_117 + 114359*uk_118 + 8959*uk_119 + 805001*uk_12 + 49600*uk_120 + 122760*uk_121 + 269080*uk_122 + 21080*uk_123 + 303831*uk_124 + 665973*uk_125 + 52173*uk_126 + 1459759*uk_127 + 114359*uk_128 + 8959*uk_129 + 1894120*uk_13 + 4913*uk_130 + 11560*uk_131 + 28611*uk_132 + 62713*uk_133 + 4913*uk_134 + 27200*uk_135 + 67320*uk_136 + 147560*uk_137 + 11560*uk_138 + 166617*uk_139 + 4687947*uk_14 + 365211*uk_140 + 28611*uk_141 + 800513*uk_142 + 62713*uk_143 + 4913*uk_144 + 64000*uk_145 + 158400*uk_146 + 347200*uk_147 + 27200*uk_148 + 392040*uk_149 + 10275601*uk_15 + 859320*uk_150 + 67320*uk_151 + 1883560*uk_152 + 147560*uk_153 + 11560*uk_154 + 970299*uk_155 + 2126817*uk_156 + 166617*uk_157 + 4661811*uk_158 + 365211*uk_159 + 805001*uk_16 + 28611*uk_160 + 10218313*uk_161 + 800513*uk_162 + 62713*uk_163 + 4913*uk_164 + 3969*uk_17 + 1953*uk_18 + 1071*uk_19 + 63*uk_2 + 2520*uk_20 + 6237*uk_21 + 13671*uk_22 + 1071*uk_23 + 961*uk_24 + 527*uk_25 + 1240*uk_26 + 3069*uk_27 + 6727*uk_28 + 527*uk_29 + 31*uk_3 + 289*uk_30 + 680*uk_31 + 1683*uk_32 + 3689*uk_33 + 289*uk_34 + 1600*uk_35 + 3960*uk_36 + 8680*uk_37 + 680*uk_38 + 9801*uk_39 + 17*uk_4 + 21483*uk_40 + 1683*uk_41 + 47089*uk_42 + 3689*uk_43 + 289*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 69511504879*uk_47 + 38119212353*uk_48 + 89692264360*uk_49 + 40*uk_5 + 221988354291*uk_50 + 486580534153*uk_51 + 38119212353*uk_52 + 187944057*uk_53 + 92480409*uk_54 + 50715063*uk_55 + 119329560*uk_56 + 295340661*uk_57 + 647362863*uk_58 + 50715063*uk_59 + 99*uk_6 + 45506233*uk_60 + 24955031*uk_61 + 58717720*uk_62 + 145326357*uk_63 + 318543631*uk_64 + 24955031*uk_65 + 13685017*uk_66 + 32200040*uk_67 + 79695099*uk_68 + 174685217*uk_69 + 217*uk_7 + 13685017*uk_70 + 75764800*uk_71 + 187517880*uk_72 + 411024040*uk_73 + 32200040*uk_74 + 464106753*uk_75 + 1017284499*uk_76 + 79695099*uk_77 + 2229805417*uk_78 + 174685217*uk_79 + 17*uk_8 + 13685017*uk_80 + 250047*uk_81 + 123039*uk_82 + 67473*uk_83 + 158760*uk_84 + 392931*uk_85 + 861273*uk_86 + 67473*uk_87 + 60543*uk_88 + 33201*uk_89 + 2242306609*uk_9 + 78120*uk_90 + 193347*uk_91 + 423801*uk_92 + 33201*uk_93 + 18207*uk_94 + 42840*uk_95 + 106029*uk_96 + 232407*uk_97 + 18207*uk_98 + 100800*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 254520*uk_100 + 546840*uk_101 + 78120*uk_102 + 642663*uk_103 + 1380771*uk_104 + 197253*uk_105 + 2966607*uk_106 + 423801*uk_107 + 60543*uk_108 + 614125*uk_109 + 4025005*uk_11 + 223975*uk_110 + 289000*uk_111 + 729725*uk_112 + 1567825*uk_113 + 223975*uk_114 + 81685*uk_115 + 105400*uk_116 + 266135*uk_117 + 571795*uk_118 + 81685*uk_119 + 1467943*uk_12 + 136000*uk_120 + 343400*uk_121 + 737800*uk_122 + 105400*uk_123 + 867085*uk_124 + 1862945*uk_125 + 266135*uk_126 + 4002565*uk_127 + 571795*uk_128 + 81685*uk_129 + 1894120*uk_13 + 29791*uk_130 + 38440*uk_131 + 97061*uk_132 + 208537*uk_133 + 29791*uk_134 + 49600*uk_135 + 125240*uk_136 + 269080*uk_137 + 38440*uk_138 + 316231*uk_139 + 4782653*uk_14 + 679427*uk_140 + 97061*uk_141 + 1459759*uk_142 + 208537*uk_143 + 29791*uk_144 + 64000*uk_145 + 161600*uk_146 + 347200*uk_147 + 49600*uk_148 + 408040*uk_149 + 10275601*uk_15 + 876680*uk_150 + 125240*uk_151 + 1883560*uk_152 + 269080*uk_153 + 38440*uk_154 + 1030301*uk_155 + 2213617*uk_156 + 316231*uk_157 + 4755989*uk_158 + 679427*uk_159 + 1467943*uk_16 + 97061*uk_160 + 10218313*uk_161 + 1459759*uk_162 + 208537*uk_163 + 29791*uk_164 + 3969*uk_17 + 5355*uk_18 + 1953*uk_19 + 63*uk_2 + 2520*uk_20 + 6363*uk_21 + 13671*uk_22 + 1953*uk_23 + 7225*uk_24 + 2635*uk_25 + 3400*uk_26 + 8585*uk_27 + 18445*uk_28 + 2635*uk_29 + 85*uk_3 + 961*uk_30 + 1240*uk_31 + 3131*uk_32 + 6727*uk_33 + 961*uk_34 + 1600*uk_35 + 4040*uk_36 + 8680*uk_37 + 1240*uk_38 + 10201*uk_39 + 31*uk_4 + 21917*uk_40 + 3131*uk_41 + 47089*uk_42 + 6727*uk_43 + 961*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 190596061765*uk_47 + 69511504879*uk_48 + 89692264360*uk_49 + 40*uk_5 + 226472967509*uk_50 + 486580534153*uk_51 + 69511504879*uk_52 + 187944057*uk_53 + 253575315*uk_54 + 92480409*uk_55 + 119329560*uk_56 + 301307139*uk_57 + 647362863*uk_58 + 92480409*uk_59 + 101*uk_6 + 342125425*uk_60 + 124775155*uk_61 + 161000200*uk_62 + 406525505*uk_63 + 873426085*uk_64 + 124775155*uk_65 + 45506233*uk_66 + 58717720*uk_67 + 148262243*uk_68 + 318543631*uk_69 + 217*uk_7 + 45506233*uk_70 + 75764800*uk_71 + 191306120*uk_72 + 411024040*uk_73 + 58717720*uk_74 + 483047953*uk_75 + 1037835701*uk_76 + 148262243*uk_77 + 2229805417*uk_78 + 318543631*uk_79 + 31*uk_8 + 45506233*uk_80 + 250047*uk_81 + 337365*uk_82 + 123039*uk_83 + 158760*uk_84 + 400869*uk_85 + 861273*uk_86 + 123039*uk_87 + 455175*uk_88 + 166005*uk_89 + 2242306609*uk_9 + 214200*uk_90 + 540855*uk_91 + 1162035*uk_92 + 166005*uk_93 + 60543*uk_94 + 78120*uk_95 + 197253*uk_96 + 423801*uk_97 + 60543*uk_98 + 100800*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 233604*uk_100 + 492156*uk_101 + 192780*uk_102 + 668367*uk_103 + 1408113*uk_104 + 551565*uk_105 + 2966607*uk_106 + 1162035*uk_107 + 455175*uk_108 + 438976*uk_109 + 3598828*uk_11 + 490960*uk_110 + 207936*uk_111 + 594928*uk_112 + 1253392*uk_113 + 490960*uk_114 + 549100*uk_115 + 232560*uk_116 + 665380*uk_117 + 1401820*uk_118 + 549100*uk_119 + 4025005*uk_12 + 98496*uk_120 + 281808*uk_121 + 593712*uk_122 + 232560*uk_123 + 806284*uk_124 + 1698676*uk_125 + 665380*uk_126 + 3578764*uk_127 + 1401820*uk_128 + 549100*uk_129 + 1704708*uk_13 + 614125*uk_130 + 260100*uk_131 + 744175*uk_132 + 1567825*uk_133 + 614125*uk_134 + 110160*uk_135 + 315180*uk_136 + 664020*uk_137 + 260100*uk_138 + 901765*uk_139 + 4877359*uk_14 + 1899835*uk_140 + 744175*uk_141 + 4002565*uk_142 + 1567825*uk_143 + 614125*uk_144 + 46656*uk_145 + 133488*uk_146 + 281232*uk_147 + 110160*uk_148 + 381924*uk_149 + 10275601*uk_15 + 804636*uk_150 + 315180*uk_151 + 1695204*uk_152 + 664020*uk_153 + 260100*uk_154 + 1092727*uk_155 + 2302153*uk_156 + 901765*uk_157 + 4850167*uk_158 + 1899835*uk_159 + 4025005*uk_16 + 744175*uk_160 + 10218313*uk_161 + 4002565*uk_162 + 1567825*uk_163 + 614125*uk_164 + 3969*uk_17 + 4788*uk_18 + 5355*uk_19 + 63*uk_2 + 2268*uk_20 + 6489*uk_21 + 13671*uk_22 + 5355*uk_23 + 5776*uk_24 + 6460*uk_25 + 2736*uk_26 + 7828*uk_27 + 16492*uk_28 + 6460*uk_29 + 76*uk_3 + 7225*uk_30 + 3060*uk_31 + 8755*uk_32 + 18445*uk_33 + 7225*uk_34 + 1296*uk_35 + 3708*uk_36 + 7812*uk_37 + 3060*uk_38 + 10609*uk_39 + 85*uk_4 + 22351*uk_40 + 8755*uk_41 + 47089*uk_42 + 18445*uk_43 + 7225*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 170415302284*uk_47 + 190596061765*uk_48 + 80723037924*uk_49 + 36*uk_5 + 230957580727*uk_50 + 486580534153*uk_51 + 190596061765*uk_52 + 187944057*uk_53 + 226726164*uk_54 + 253575315*uk_55 + 107396604*uk_56 + 307273617*uk_57 + 647362863*uk_58 + 253575315*uk_59 + 103*uk_6 + 273510928*uk_60 + 305900380*uk_61 + 129557808*uk_62 + 370679284*uk_63 + 780945676*uk_64 + 305900380*uk_65 + 342125425*uk_66 + 144900180*uk_67 + 414575515*uk_68 + 873426085*uk_69 + 217*uk_7 + 342125425*uk_70 + 61369488*uk_71 + 175584924*uk_72 + 369921636*uk_73 + 144900180*uk_74 + 502367977*uk_75 + 1058386903*uk_76 + 414575515*uk_77 + 2229805417*uk_78 + 873426085*uk_79 + 85*uk_8 + 342125425*uk_80 + 250047*uk_81 + 301644*uk_82 + 337365*uk_83 + 142884*uk_84 + 408807*uk_85 + 861273*uk_86 + 337365*uk_87 + 363888*uk_88 + 406980*uk_89 + 2242306609*uk_9 + 172368*uk_90 + 493164*uk_91 + 1038996*uk_92 + 406980*uk_93 + 455175*uk_94 + 192780*uk_95 + 551565*uk_96 + 1162035*uk_97 + 455175*uk_98 + 81648*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 238140*uk_100 + 492156*uk_101 + 172368*uk_102 + 694575*uk_103 + 1435455*uk_104 + 502740*uk_105 + 2966607*uk_106 + 1038996*uk_107 + 363888*uk_108 + 1092727*uk_109 + 4877359*uk_11 + 806284*uk_110 + 381924*uk_111 + 1113945*uk_112 + 2302153*uk_113 + 806284*uk_114 + 594928*uk_115 + 281808*uk_116 + 821940*uk_117 + 1698676*uk_118 + 594928*uk_119 + 3598828*uk_12 + 133488*uk_120 + 389340*uk_121 + 804636*uk_122 + 281808*uk_123 + 1135575*uk_124 + 2346855*uk_125 + 821940*uk_126 + 4850167*uk_127 + 1698676*uk_128 + 594928*uk_129 + 1704708*uk_13 + 438976*uk_130 + 207936*uk_131 + 606480*uk_132 + 1253392*uk_133 + 438976*uk_134 + 98496*uk_135 + 287280*uk_136 + 593712*uk_137 + 207936*uk_138 + 837900*uk_139 + 4972065*uk_14 + 1731660*uk_140 + 606480*uk_141 + 3578764*uk_142 + 1253392*uk_143 + 438976*uk_144 + 46656*uk_145 + 136080*uk_146 + 281232*uk_147 + 98496*uk_148 + 396900*uk_149 + 10275601*uk_15 + 820260*uk_150 + 287280*uk_151 + 1695204*uk_152 + 593712*uk_153 + 207936*uk_154 + 1157625*uk_155 + 2392425*uk_156 + 837900*uk_157 + 4944345*uk_158 + 1731660*uk_159 + 3598828*uk_16 + 606480*uk_160 + 10218313*uk_161 + 3578764*uk_162 + 1253392*uk_163 + 438976*uk_164 + 3969*uk_17 + 6489*uk_18 + 4788*uk_19 + 63*uk_2 + 2268*uk_20 + 6615*uk_21 + 13671*uk_22 + 4788*uk_23 + 10609*uk_24 + 7828*uk_25 + 3708*uk_26 + 10815*uk_27 + 22351*uk_28 + 7828*uk_29 + 103*uk_3 + 5776*uk_30 + 2736*uk_31 + 7980*uk_32 + 16492*uk_33 + 5776*uk_34 + 1296*uk_35 + 3780*uk_36 + 7812*uk_37 + 2736*uk_38 + 11025*uk_39 + 76*uk_4 + 22785*uk_40 + 7980*uk_41 + 47089*uk_42 + 16492*uk_43 + 5776*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 230957580727*uk_47 + 170415302284*uk_48 + 80723037924*uk_49 + 36*uk_5 + 235442193945*uk_50 + 486580534153*uk_51 + 170415302284*uk_52 + 187944057*uk_53 + 307273617*uk_54 + 226726164*uk_55 + 107396604*uk_56 + 313240095*uk_57 + 647362863*uk_58 + 226726164*uk_59 + 105*uk_6 + 502367977*uk_60 + 370679284*uk_61 + 175584924*uk_62 + 512122695*uk_63 + 1058386903*uk_64 + 370679284*uk_65 + 273510928*uk_66 + 129557808*uk_67 + 377876940*uk_68 + 780945676*uk_69 + 217*uk_7 + 273510928*uk_70 + 61369488*uk_71 + 178994340*uk_72 + 369921636*uk_73 + 129557808*uk_74 + 522066825*uk_75 + 1078938105*uk_76 + 377876940*uk_77 + 2229805417*uk_78 + 780945676*uk_79 + 76*uk_8 + 273510928*uk_80 + 250047*uk_81 + 408807*uk_82 + 301644*uk_83 + 142884*uk_84 + 416745*uk_85 + 861273*uk_86 + 301644*uk_87 + 668367*uk_88 + 493164*uk_89 + 2242306609*uk_9 + 233604*uk_90 + 681345*uk_91 + 1408113*uk_92 + 493164*uk_93 + 363888*uk_94 + 172368*uk_95 + 502740*uk_96 + 1038996*uk_97 + 363888*uk_98 + 81648*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 215712*uk_100 + 437472*uk_101 + 207648*uk_102 + 721287*uk_103 + 1462797*uk_104 + 694323*uk_105 + 2966607*uk_106 + 1408113*uk_107 + 668367*uk_108 + 205379*uk_109 + 2793827*uk_11 + 358543*uk_110 + 111392*uk_111 + 372467*uk_112 + 755377*uk_113 + 358543*uk_114 + 625931*uk_115 + 194464*uk_116 + 650239*uk_117 + 1318709*uk_118 + 625931*uk_119 + 4877359*uk_12 + 60416*uk_120 + 202016*uk_121 + 409696*uk_122 + 194464*uk_123 + 675491*uk_124 + 1369921*uk_125 + 650239*uk_126 + 2778251*uk_127 + 1318709*uk_128 + 625931*uk_129 + 1515296*uk_13 + 1092727*uk_130 + 339488*uk_131 + 1135163*uk_132 + 2302153*uk_133 + 1092727*uk_134 + 105472*uk_135 + 352672*uk_136 + 715232*uk_137 + 339488*uk_138 + 1179247*uk_139 + 5066771*uk_14 + 2391557*uk_140 + 1135163*uk_141 + 4850167*uk_142 + 2302153*uk_143 + 1092727*uk_144 + 32768*uk_145 + 109568*uk_146 + 222208*uk_147 + 105472*uk_148 + 366368*uk_149 + 10275601*uk_15 + 743008*uk_150 + 352672*uk_151 + 1506848*uk_152 + 715232*uk_153 + 339488*uk_154 + 1225043*uk_155 + 2484433*uk_156 + 1179247*uk_157 + 5038523*uk_158 + 2391557*uk_159 + 4877359*uk_16 + 1135163*uk_160 + 10218313*uk_161 + 4850167*uk_162 + 2302153*uk_163 + 1092727*uk_164 + 3969*uk_17 + 3717*uk_18 + 6489*uk_19 + 63*uk_2 + 2016*uk_20 + 6741*uk_21 + 13671*uk_22 + 6489*uk_23 + 3481*uk_24 + 6077*uk_25 + 1888*uk_26 + 6313*uk_27 + 12803*uk_28 + 6077*uk_29 + 59*uk_3 + 10609*uk_30 + 3296*uk_31 + 11021*uk_32 + 22351*uk_33 + 10609*uk_34 + 1024*uk_35 + 3424*uk_36 + 6944*uk_37 + 3296*uk_38 + 11449*uk_39 + 103*uk_4 + 23219*uk_40 + 11021*uk_41 + 47089*uk_42 + 22351*uk_43 + 10609*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 132296089931*uk_47 + 230957580727*uk_48 + 71753811488*uk_49 + 32*uk_5 + 239926807163*uk_50 + 486580534153*uk_51 + 230957580727*uk_52 + 187944057*uk_53 + 176011101*uk_54 + 307273617*uk_55 + 95463648*uk_56 + 319206573*uk_57 + 647362863*uk_58 + 307273617*uk_59 + 107*uk_6 + 164835793*uk_60 + 287764181*uk_61 + 89402464*uk_62 + 298939489*uk_63 + 606260459*uk_64 + 287764181*uk_65 + 502367977*uk_66 + 156075488*uk_67 + 521877413*uk_68 + 1058386903*uk_69 + 217*uk_7 + 502367977*uk_70 + 48489472*uk_71 + 162136672*uk_72 + 328819232*uk_73 + 156075488*uk_74 + 542144497*uk_75 + 1099489307*uk_76 + 521877413*uk_77 + 2229805417*uk_78 + 1058386903*uk_79 + 103*uk_8 + 502367977*uk_80 + 250047*uk_81 + 234171*uk_82 + 408807*uk_83 + 127008*uk_84 + 424683*uk_85 + 861273*uk_86 + 408807*uk_87 + 219303*uk_88 + 382851*uk_89 + 2242306609*uk_9 + 118944*uk_90 + 397719*uk_91 + 806589*uk_92 + 382851*uk_93 + 668367*uk_94 + 207648*uk_95 + 694323*uk_96 + 1408113*uk_97 + 668367*uk_98 + 64512*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 219744*uk_100 + 437472*uk_101 + 118944*uk_102 + 748503*uk_103 + 1490139*uk_104 + 405153*uk_105 + 2966607*uk_106 + 806589*uk_107 + 219303*uk_108 + 103823*uk_109 + 2225591*uk_11 + 130331*uk_110 + 70688*uk_111 + 240781*uk_112 + 479353*uk_113 + 130331*uk_114 + 163607*uk_115 + 88736*uk_116 + 302257*uk_117 + 601741*uk_118 + 163607*uk_119 + 2793827*uk_12 + 48128*uk_120 + 163936*uk_121 + 326368*uk_122 + 88736*uk_123 + 558407*uk_124 + 1111691*uk_125 + 302257*uk_126 + 2213183*uk_127 + 601741*uk_128 + 163607*uk_129 + 1515296*uk_13 + 205379*uk_130 + 111392*uk_131 + 379429*uk_132 + 755377*uk_133 + 205379*uk_134 + 60416*uk_135 + 205792*uk_136 + 409696*uk_137 + 111392*uk_138 + 700979*uk_139 + 5161477*uk_14 + 1395527*uk_140 + 379429*uk_141 + 2778251*uk_142 + 755377*uk_143 + 205379*uk_144 + 32768*uk_145 + 111616*uk_146 + 222208*uk_147 + 60416*uk_148 + 380192*uk_149 + 10275601*uk_15 + 756896*uk_150 + 205792*uk_151 + 1506848*uk_152 + 409696*uk_153 + 111392*uk_154 + 1295029*uk_155 + 2578177*uk_156 + 700979*uk_157 + 5132701*uk_158 + 1395527*uk_159 + 2793827*uk_16 + 379429*uk_160 + 10218313*uk_161 + 2778251*uk_162 + 755377*uk_163 + 205379*uk_164 + 3969*uk_17 + 2961*uk_18 + 3717*uk_19 + 63*uk_2 + 2016*uk_20 + 6867*uk_21 + 13671*uk_22 + 3717*uk_23 + 2209*uk_24 + 2773*uk_25 + 1504*uk_26 + 5123*uk_27 + 10199*uk_28 + 2773*uk_29 + 47*uk_3 + 3481*uk_30 + 1888*uk_31 + 6431*uk_32 + 12803*uk_33 + 3481*uk_34 + 1024*uk_35 + 3488*uk_36 + 6944*uk_37 + 1888*uk_38 + 11881*uk_39 + 59*uk_4 + 23653*uk_40 + 6431*uk_41 + 47089*uk_42 + 12803*uk_43 + 3481*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 105388410623*uk_47 + 132296089931*uk_48 + 71753811488*uk_49 + 32*uk_5 + 244411420381*uk_50 + 486580534153*uk_51 + 132296089931*uk_52 + 187944057*uk_53 + 140212233*uk_54 + 176011101*uk_55 + 95463648*uk_56 + 325173051*uk_57 + 647362863*uk_58 + 176011101*uk_59 + 109*uk_6 + 104602777*uk_60 + 131309869*uk_61 + 71218912*uk_62 + 242589419*uk_63 + 482953247*uk_64 + 131309869*uk_65 + 164835793*uk_66 + 89402464*uk_67 + 304527143*uk_68 + 606260459*uk_69 + 217*uk_7 + 164835793*uk_70 + 48489472*uk_71 + 165167264*uk_72 + 328819232*uk_73 + 89402464*uk_74 + 562600993*uk_75 + 1120040509*uk_76 + 304527143*uk_77 + 2229805417*uk_78 + 606260459*uk_79 + 59*uk_8 + 164835793*uk_80 + 250047*uk_81 + 186543*uk_82 + 234171*uk_83 + 127008*uk_84 + 432621*uk_85 + 861273*uk_86 + 234171*uk_87 + 139167*uk_88 + 174699*uk_89 + 2242306609*uk_9 + 94752*uk_90 + 322749*uk_91 + 642537*uk_92 + 174699*uk_93 + 219303*uk_94 + 118944*uk_95 + 405153*uk_96 + 806589*uk_97 + 219303*uk_98 + 64512*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 223776*uk_100 + 437472*uk_101 + 94752*uk_102 + 776223*uk_103 + 1517481*uk_104 + 328671*uk_105 + 2966607*uk_106 + 642537*uk_107 + 139167*uk_108 + 300763*uk_109 + 3172651*uk_11 + 210983*uk_110 + 143648*uk_111 + 498279*uk_112 + 974113*uk_113 + 210983*uk_114 + 148003*uk_115 + 100768*uk_116 + 349539*uk_117 + 683333*uk_118 + 148003*uk_119 + 2225591*uk_12 + 68608*uk_120 + 237984*uk_121 + 465248*uk_122 + 100768*uk_123 + 825507*uk_124 + 1613829*uk_125 + 349539*uk_126 + 3154963*uk_127 + 683333*uk_128 + 148003*uk_129 + 1515296*uk_13 + 103823*uk_130 + 70688*uk_131 + 245199*uk_132 + 479353*uk_133 + 103823*uk_134 + 48128*uk_135 + 166944*uk_136 + 326368*uk_137 + 70688*uk_138 + 579087*uk_139 + 5256183*uk_14 + 1132089*uk_140 + 245199*uk_141 + 2213183*uk_142 + 479353*uk_143 + 103823*uk_144 + 32768*uk_145 + 113664*uk_146 + 222208*uk_147 + 48128*uk_148 + 394272*uk_149 + 10275601*uk_15 + 770784*uk_150 + 166944*uk_151 + 1506848*uk_152 + 326368*uk_153 + 70688*uk_154 + 1367631*uk_155 + 2673657*uk_156 + 579087*uk_157 + 5226879*uk_158 + 1132089*uk_159 + 2225591*uk_16 + 245199*uk_160 + 10218313*uk_161 + 2213183*uk_162 + 479353*uk_163 + 103823*uk_164 + 3969*uk_17 + 4221*uk_18 + 2961*uk_19 + 63*uk_2 + 2016*uk_20 + 6993*uk_21 + 13671*uk_22 + 2961*uk_23 + 4489*uk_24 + 3149*uk_25 + 2144*uk_26 + 7437*uk_27 + 14539*uk_28 + 3149*uk_29 + 67*uk_3 + 2209*uk_30 + 1504*uk_31 + 5217*uk_32 + 10199*uk_33 + 2209*uk_34 + 1024*uk_35 + 3552*uk_36 + 6944*uk_37 + 1504*uk_38 + 12321*uk_39 + 47*uk_4 + 24087*uk_40 + 5217*uk_41 + 47089*uk_42 + 10199*uk_43 + 2209*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 150234542803*uk_47 + 105388410623*uk_48 + 71753811488*uk_49 + 32*uk_5 + 248896033599*uk_50 + 486580534153*uk_51 + 105388410623*uk_52 + 187944057*uk_53 + 199877013*uk_54 + 140212233*uk_55 + 95463648*uk_56 + 331139529*uk_57 + 647362863*uk_58 + 140212233*uk_59 + 111*uk_6 + 212567617*uk_60 + 149114597*uk_61 + 101524832*uk_62 + 352164261*uk_63 + 688465267*uk_64 + 149114597*uk_65 + 104602777*uk_66 + 71218912*uk_67 + 247040601*uk_68 + 482953247*uk_69 + 217*uk_7 + 104602777*uk_70 + 48489472*uk_71 + 168197856*uk_72 + 328819232*uk_73 + 71218912*uk_74 + 583436313*uk_75 + 1140591711*uk_76 + 247040601*uk_77 + 2229805417*uk_78 + 482953247*uk_79 + 47*uk_8 + 104602777*uk_80 + 250047*uk_81 + 265923*uk_82 + 186543*uk_83 + 127008*uk_84 + 440559*uk_85 + 861273*uk_86 + 186543*uk_87 + 282807*uk_88 + 198387*uk_89 + 2242306609*uk_9 + 135072*uk_90 + 468531*uk_91 + 915957*uk_92 + 198387*uk_93 + 139167*uk_94 + 94752*uk_95 + 328671*uk_96 + 642537*uk_97 + 139167*uk_98 + 64512*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 199332*uk_100 + 382788*uk_101 + 118188*uk_102 + 804447*uk_103 + 1544823*uk_104 + 476973*uk_105 + 2966607*uk_106 + 915957*uk_107 + 282807*uk_108 + 216*uk_109 + 284118*uk_11 + 2412*uk_110 + 1008*uk_111 + 4068*uk_112 + 7812*uk_113 + 2412*uk_114 + 26934*uk_115 + 11256*uk_116 + 45426*uk_117 + 87234*uk_118 + 26934*uk_119 + 3172651*uk_12 + 4704*uk_120 + 18984*uk_121 + 36456*uk_122 + 11256*uk_123 + 76614*uk_124 + 147126*uk_125 + 45426*uk_126 + 282534*uk_127 + 87234*uk_128 + 26934*uk_129 + 1325884*uk_13 + 300763*uk_130 + 125692*uk_131 + 507257*uk_132 + 974113*uk_133 + 300763*uk_134 + 52528*uk_135 + 211988*uk_136 + 407092*uk_137 + 125692*uk_138 + 855523*uk_139 + 5350889*uk_14 + 1642907*uk_140 + 507257*uk_141 + 3154963*uk_142 + 974113*uk_143 + 300763*uk_144 + 21952*uk_145 + 88592*uk_146 + 170128*uk_147 + 52528*uk_148 + 357532*uk_149 + 10275601*uk_15 + 686588*uk_150 + 211988*uk_151 + 1318492*uk_152 + 407092*uk_153 + 125692*uk_154 + 1442897*uk_155 + 2770873*uk_156 + 855523*uk_157 + 5321057*uk_158 + 1642907*uk_159 + 3172651*uk_16 + 507257*uk_160 + 10218313*uk_161 + 3154963*uk_162 + 974113*uk_163 + 300763*uk_164 + 3969*uk_17 + 378*uk_18 + 4221*uk_19 + 63*uk_2 + 1764*uk_20 + 7119*uk_21 + 13671*uk_22 + 4221*uk_23 + 36*uk_24 + 402*uk_25 + 168*uk_26 + 678*uk_27 + 1302*uk_28 + 402*uk_29 + 6*uk_3 + 4489*uk_30 + 1876*uk_31 + 7571*uk_32 + 14539*uk_33 + 4489*uk_34 + 784*uk_35 + 3164*uk_36 + 6076*uk_37 + 1876*uk_38 + 12769*uk_39 + 67*uk_4 + 24521*uk_40 + 7571*uk_41 + 47089*uk_42 + 14539*uk_43 + 4489*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 13453839654*uk_47 + 150234542803*uk_48 + 62784585052*uk_49 + 28*uk_5 + 253380646817*uk_50 + 486580534153*uk_51 + 150234542803*uk_52 + 187944057*uk_53 + 17899434*uk_54 + 199877013*uk_55 + 83530692*uk_56 + 337106007*uk_57 + 647362863*uk_58 + 199877013*uk_59 + 113*uk_6 + 1704708*uk_60 + 19035906*uk_61 + 7955304*uk_62 + 32105334*uk_63 + 61653606*uk_64 + 19035906*uk_65 + 212567617*uk_66 + 88834228*uk_67 + 358509563*uk_68 + 688465267*uk_69 + 217*uk_7 + 212567617*uk_70 + 37124752*uk_71 + 149824892*uk_72 + 287716828*uk_73 + 88834228*uk_74 + 604650457*uk_75 + 1161142913*uk_76 + 358509563*uk_77 + 2229805417*uk_78 + 688465267*uk_79 + 67*uk_8 + 212567617*uk_80 + 250047*uk_81 + 23814*uk_82 + 265923*uk_83 + 111132*uk_84 + 448497*uk_85 + 861273*uk_86 + 265923*uk_87 + 2268*uk_88 + 25326*uk_89 + 2242306609*uk_9 + 10584*uk_90 + 42714*uk_91 + 82026*uk_92 + 25326*uk_93 + 282807*uk_94 + 118188*uk_95 + 476973*uk_96 + 915957*uk_97 + 282807*uk_98 + 49392*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 231840*uk_100 + 437472*uk_101 + 12096*uk_102 + 833175*uk_103 + 1572165*uk_104 + 43470*uk_105 + 2966607*uk_106 + 82026*uk_107 + 2268*uk_108 + 681472*uk_109 + 4167064*uk_11 + 46464*uk_110 + 247808*uk_111 + 890560*uk_112 + 1680448*uk_113 + 46464*uk_114 + 3168*uk_115 + 16896*uk_116 + 60720*uk_117 + 114576*uk_118 + 3168*uk_119 + 284118*uk_12 + 90112*uk_120 + 323840*uk_121 + 611072*uk_122 + 16896*uk_123 + 1163800*uk_124 + 2196040*uk_125 + 60720*uk_126 + 4143832*uk_127 + 114576*uk_128 + 3168*uk_129 + 1515296*uk_13 + 216*uk_130 + 1152*uk_131 + 4140*uk_132 + 7812*uk_133 + 216*uk_134 + 6144*uk_135 + 22080*uk_136 + 41664*uk_137 + 1152*uk_138 + 79350*uk_139 + 5445595*uk_14 + 149730*uk_140 + 4140*uk_141 + 282534*uk_142 + 7812*uk_143 + 216*uk_144 + 32768*uk_145 + 117760*uk_146 + 222208*uk_147 + 6144*uk_148 + 423200*uk_149 + 10275601*uk_15 + 798560*uk_150 + 22080*uk_151 + 1506848*uk_152 + 41664*uk_153 + 1152*uk_154 + 1520875*uk_155 + 2869825*uk_156 + 79350*uk_157 + 5415235*uk_158 + 149730*uk_159 + 284118*uk_16 + 4140*uk_160 + 10218313*uk_161 + 282534*uk_162 + 7812*uk_163 + 216*uk_164 + 3969*uk_17 + 5544*uk_18 + 378*uk_19 + 63*uk_2 + 2016*uk_20 + 7245*uk_21 + 13671*uk_22 + 378*uk_23 + 7744*uk_24 + 528*uk_25 + 2816*uk_26 + 10120*uk_27 + 19096*uk_28 + 528*uk_29 + 88*uk_3 + 36*uk_30 + 192*uk_31 + 690*uk_32 + 1302*uk_33 + 36*uk_34 + 1024*uk_35 + 3680*uk_36 + 6944*uk_37 + 192*uk_38 + 13225*uk_39 + 6*uk_4 + 24955*uk_40 + 690*uk_41 + 47089*uk_42 + 1302*uk_43 + 36*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 197322981592*uk_47 + 13453839654*uk_48 + 71753811488*uk_49 + 32*uk_5 + 257865260035*uk_50 + 486580534153*uk_51 + 13453839654*uk_52 + 187944057*uk_53 + 262525032*uk_54 + 17899434*uk_55 + 95463648*uk_56 + 343072485*uk_57 + 647362863*uk_58 + 17899434*uk_59 + 115*uk_6 + 366701632*uk_60 + 25002384*uk_61 + 133346048*uk_62 + 479212360*uk_63 + 904252888*uk_64 + 25002384*uk_65 + 1704708*uk_66 + 9091776*uk_67 + 32673570*uk_68 + 61653606*uk_69 + 217*uk_7 + 1704708*uk_70 + 48489472*uk_71 + 174259040*uk_72 + 328819232*uk_73 + 9091776*uk_74 + 626243425*uk_75 + 1181694115*uk_76 + 32673570*uk_77 + 2229805417*uk_78 + 61653606*uk_79 + 6*uk_8 + 1704708*uk_80 + 250047*uk_81 + 349272*uk_82 + 23814*uk_83 + 127008*uk_84 + 456435*uk_85 + 861273*uk_86 + 23814*uk_87 + 487872*uk_88 + 33264*uk_89 + 2242306609*uk_9 + 177408*uk_90 + 637560*uk_91 + 1203048*uk_92 + 33264*uk_93 + 2268*uk_94 + 12096*uk_95 + 43470*uk_96 + 82026*uk_97 + 2268*uk_98 + 64512*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 206388*uk_100 + 382788*uk_101 + 155232*uk_102 + 862407*uk_103 + 1599507*uk_104 + 648648*uk_105 + 2966607*uk_106 + 1203048*uk_107 + 487872*uk_108 + 614125*uk_109 + 4025005*uk_11 + 635800*uk_110 + 202300*uk_111 + 845325*uk_112 + 1567825*uk_113 + 635800*uk_114 + 658240*uk_115 + 209440*uk_116 + 875160*uk_117 + 1623160*uk_118 + 658240*uk_119 + 4167064*uk_12 + 66640*uk_120 + 278460*uk_121 + 516460*uk_122 + 209440*uk_123 + 1163565*uk_124 + 2158065*uk_125 + 875160*uk_126 + 4002565*uk_127 + 1623160*uk_128 + 658240*uk_129 + 1325884*uk_13 + 681472*uk_130 + 216832*uk_131 + 906048*uk_132 + 1680448*uk_133 + 681472*uk_134 + 68992*uk_135 + 288288*uk_136 + 534688*uk_137 + 216832*uk_138 + 1204632*uk_139 + 5540301*uk_14 + 2234232*uk_140 + 906048*uk_141 + 4143832*uk_142 + 1680448*uk_143 + 681472*uk_144 + 21952*uk_145 + 91728*uk_146 + 170128*uk_147 + 68992*uk_148 + 383292*uk_149 + 10275601*uk_15 + 710892*uk_150 + 288288*uk_151 + 1318492*uk_152 + 534688*uk_153 + 216832*uk_154 + 1601613*uk_155 + 2970513*uk_156 + 1204632*uk_157 + 5509413*uk_158 + 2234232*uk_159 + 4167064*uk_16 + 906048*uk_160 + 10218313*uk_161 + 4143832*uk_162 + 1680448*uk_163 + 681472*uk_164 + 3969*uk_17 + 5355*uk_18 + 5544*uk_19 + 63*uk_2 + 1764*uk_20 + 7371*uk_21 + 13671*uk_22 + 5544*uk_23 + 7225*uk_24 + 7480*uk_25 + 2380*uk_26 + 9945*uk_27 + 18445*uk_28 + 7480*uk_29 + 85*uk_3 + 7744*uk_30 + 2464*uk_31 + 10296*uk_32 + 19096*uk_33 + 7744*uk_34 + 784*uk_35 + 3276*uk_36 + 6076*uk_37 + 2464*uk_38 + 13689*uk_39 + 88*uk_4 + 25389*uk_40 + 10296*uk_41 + 47089*uk_42 + 19096*uk_43 + 7744*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 190596061765*uk_47 + 197322981592*uk_48 + 62784585052*uk_49 + 28*uk_5 + 262349873253*uk_50 + 486580534153*uk_51 + 197322981592*uk_52 + 187944057*uk_53 + 253575315*uk_54 + 262525032*uk_55 + 83530692*uk_56 + 349038963*uk_57 + 647362863*uk_58 + 262525032*uk_59 + 117*uk_6 + 342125425*uk_60 + 354200440*uk_61 + 112700140*uk_62 + 470925585*uk_63 + 873426085*uk_64 + 354200440*uk_65 + 366701632*uk_66 + 116677792*uk_67 + 487546488*uk_68 + 904252888*uk_69 + 217*uk_7 + 366701632*uk_70 + 37124752*uk_71 + 155128428*uk_72 + 287716828*uk_73 + 116677792*uk_74 + 648215217*uk_75 + 1202245317*uk_76 + 487546488*uk_77 + 2229805417*uk_78 + 904252888*uk_79 + 88*uk_8 + 366701632*uk_80 + 250047*uk_81 + 337365*uk_82 + 349272*uk_83 + 111132*uk_84 + 464373*uk_85 + 861273*uk_86 + 349272*uk_87 + 455175*uk_88 + 471240*uk_89 + 2242306609*uk_9 + 149940*uk_90 + 626535*uk_91 + 1162035*uk_92 + 471240*uk_93 + 487872*uk_94 + 155232*uk_95 + 648648*uk_96 + 1203048*uk_97 + 487872*uk_98 + 49392*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 209916*uk_100 + 382788*uk_101 + 149940*uk_102 + 892143*uk_103 + 1626849*uk_104 + 637245*uk_105 + 2966607*uk_106 + 1162035*uk_107 + 455175*uk_108 + 1331000*uk_109 + 5208830*uk_11 + 1028500*uk_110 + 338800*uk_111 + 1439900*uk_112 + 2625700*uk_113 + 1028500*uk_114 + 794750*uk_115 + 261800*uk_116 + 1112650*uk_117 + 2028950*uk_118 + 794750*uk_119 + 4025005*uk_12 + 86240*uk_120 + 366520*uk_121 + 668360*uk_122 + 261800*uk_123 + 1557710*uk_124 + 2840530*uk_125 + 1112650*uk_126 + 5179790*uk_127 + 2028950*uk_128 + 794750*uk_129 + 1325884*uk_13 + 614125*uk_130 + 202300*uk_131 + 859775*uk_132 + 1567825*uk_133 + 614125*uk_134 + 66640*uk_135 + 283220*uk_136 + 516460*uk_137 + 202300*uk_138 + 1203685*uk_139 + 5635007*uk_14 + 2194955*uk_140 + 859775*uk_141 + 4002565*uk_142 + 1567825*uk_143 + 614125*uk_144 + 21952*uk_145 + 93296*uk_146 + 170128*uk_147 + 66640*uk_148 + 396508*uk_149 + 10275601*uk_15 + 723044*uk_150 + 283220*uk_151 + 1318492*uk_152 + 516460*uk_153 + 202300*uk_154 + 1685159*uk_155 + 3072937*uk_156 + 1203685*uk_157 + 5603591*uk_158 + 2194955*uk_159 + 4025005*uk_16 + 859775*uk_160 + 10218313*uk_161 + 4002565*uk_162 + 1567825*uk_163 + 614125*uk_164 + 3969*uk_17 + 6930*uk_18 + 5355*uk_19 + 63*uk_2 + 1764*uk_20 + 7497*uk_21 + 13671*uk_22 + 5355*uk_23 + 12100*uk_24 + 9350*uk_25 + 3080*uk_26 + 13090*uk_27 + 23870*uk_28 + 9350*uk_29 + 110*uk_3 + 7225*uk_30 + 2380*uk_31 + 10115*uk_32 + 18445*uk_33 + 7225*uk_34 + 784*uk_35 + 3332*uk_36 + 6076*uk_37 + 2380*uk_38 + 14161*uk_39 + 85*uk_4 + 25823*uk_40 + 10115*uk_41 + 47089*uk_42 + 18445*uk_43 + 7225*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 246653726990*uk_47 + 190596061765*uk_48 + 62784585052*uk_49 + 28*uk_5 + 266834486471*uk_50 + 486580534153*uk_51 + 190596061765*uk_52 + 187944057*uk_53 + 328156290*uk_54 + 253575315*uk_55 + 83530692*uk_56 + 355005441*uk_57 + 647362863*uk_58 + 253575315*uk_59 + 119*uk_6 + 572971300*uk_60 + 442750550*uk_61 + 145847240*uk_62 + 619850770*uk_63 + 1130316110*uk_64 + 442750550*uk_65 + 342125425*uk_66 + 112700140*uk_67 + 478975595*uk_68 + 873426085*uk_69 + 217*uk_7 + 342125425*uk_70 + 37124752*uk_71 + 157780196*uk_72 + 287716828*uk_73 + 112700140*uk_74 + 670565833*uk_75 + 1222796519*uk_76 + 478975595*uk_77 + 2229805417*uk_78 + 873426085*uk_79 + 85*uk_8 + 342125425*uk_80 + 250047*uk_81 + 436590*uk_82 + 337365*uk_83 + 111132*uk_84 + 472311*uk_85 + 861273*uk_86 + 337365*uk_87 + 762300*uk_88 + 589050*uk_89 + 2242306609*uk_9 + 194040*uk_90 + 824670*uk_91 + 1503810*uk_92 + 589050*uk_93 + 455175*uk_94 + 149940*uk_95 + 637245*uk_96 + 1162035*uk_97 + 455175*uk_98 + 49392*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 182952*uk_100 + 328104*uk_101 + 166320*uk_102 + 922383*uk_103 + 1654191*uk_104 + 838530*uk_105 + 2966607*uk_106 + 1503810*uk_107 + 762300*uk_108 + 74088*uk_109 + 1988826*uk_11 + 194040*uk_110 + 42336*uk_111 + 213444*uk_112 + 382788*uk_113 + 194040*uk_114 + 508200*uk_115 + 110880*uk_116 + 559020*uk_117 + 1002540*uk_118 + 508200*uk_119 + 5208830*uk_12 + 24192*uk_120 + 121968*uk_121 + 218736*uk_122 + 110880*uk_123 + 614922*uk_124 + 1102794*uk_125 + 559020*uk_126 + 1977738*uk_127 + 1002540*uk_128 + 508200*uk_129 + 1136472*uk_13 + 1331000*uk_130 + 290400*uk_131 + 1464100*uk_132 + 2625700*uk_133 + 1331000*uk_134 + 63360*uk_135 + 319440*uk_136 + 572880*uk_137 + 290400*uk_138 + 1610510*uk_139 + 5729713*uk_14 + 2888270*uk_140 + 1464100*uk_141 + 5179790*uk_142 + 2625700*uk_143 + 1331000*uk_144 + 13824*uk_145 + 69696*uk_146 + 124992*uk_147 + 63360*uk_148 + 351384*uk_149 + 10275601*uk_15 + 630168*uk_150 + 319440*uk_151 + 1130136*uk_152 + 572880*uk_153 + 290400*uk_154 + 1771561*uk_155 + 3177097*uk_156 + 1610510*uk_157 + 5697769*uk_158 + 2888270*uk_159 + 5208830*uk_16 + 1464100*uk_160 + 10218313*uk_161 + 5179790*uk_162 + 2625700*uk_163 + 1331000*uk_164 + 3969*uk_17 + 2646*uk_18 + 6930*uk_19 + 63*uk_2 + 1512*uk_20 + 7623*uk_21 + 13671*uk_22 + 6930*uk_23 + 1764*uk_24 + 4620*uk_25 + 1008*uk_26 + 5082*uk_27 + 9114*uk_28 + 4620*uk_29 + 42*uk_3 + 12100*uk_30 + 2640*uk_31 + 13310*uk_32 + 23870*uk_33 + 12100*uk_34 + 576*uk_35 + 2904*uk_36 + 5208*uk_37 + 2640*uk_38 + 14641*uk_39 + 110*uk_4 + 26257*uk_40 + 13310*uk_41 + 47089*uk_42 + 23870*uk_43 + 12100*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 94176877578*uk_47 + 246653726990*uk_48 + 53815358616*uk_49 + 24*uk_5 + 271319099689*uk_50 + 486580534153*uk_51 + 246653726990*uk_52 + 187944057*uk_53 + 125296038*uk_54 + 328156290*uk_55 + 71597736*uk_56 + 360971919*uk_57 + 647362863*uk_58 + 328156290*uk_59 + 121*uk_6 + 83530692*uk_60 + 218770860*uk_61 + 47731824*uk_62 + 240647946*uk_63 + 431575242*uk_64 + 218770860*uk_65 + 572971300*uk_66 + 125011920*uk_67 + 630268430*uk_68 + 1130316110*uk_69 + 217*uk_7 + 572971300*uk_70 + 27275328*uk_71 + 137513112*uk_72 + 246614424*uk_73 + 125011920*uk_74 + 693295273*uk_75 + 1243347721*uk_76 + 630268430*uk_77 + 2229805417*uk_78 + 1130316110*uk_79 + 110*uk_8 + 572971300*uk_80 + 250047*uk_81 + 166698*uk_82 + 436590*uk_83 + 95256*uk_84 + 480249*uk_85 + 861273*uk_86 + 436590*uk_87 + 111132*uk_88 + 291060*uk_89 + 2242306609*uk_9 + 63504*uk_90 + 320166*uk_91 + 574182*uk_92 + 291060*uk_93 + 762300*uk_94 + 166320*uk_95 + 838530*uk_96 + 1503810*uk_97 + 762300*uk_98 + 36288*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 216972*uk_100 + 382788*uk_101 + 74088*uk_102 + 953127*uk_103 + 1681533*uk_104 + 325458*uk_105 + 2966607*uk_106 + 574182*uk_107 + 111132*uk_108 + 1771561*uk_109 + 5729713*uk_11 + 614922*uk_110 + 409948*uk_111 + 1800843*uk_112 + 3177097*uk_113 + 614922*uk_114 + 213444*uk_115 + 142296*uk_116 + 625086*uk_117 + 1102794*uk_118 + 213444*uk_119 + 1988826*uk_12 + 94864*uk_120 + 416724*uk_121 + 735196*uk_122 + 142296*uk_123 + 1830609*uk_124 + 3229611*uk_125 + 625086*uk_126 + 5697769*uk_127 + 1102794*uk_128 + 213444*uk_129 + 1325884*uk_13 + 74088*uk_130 + 49392*uk_131 + 216972*uk_132 + 382788*uk_133 + 74088*uk_134 + 32928*uk_135 + 144648*uk_136 + 255192*uk_137 + 49392*uk_138 + 635418*uk_139 + 5824419*uk_14 + 1121022*uk_140 + 216972*uk_141 + 1977738*uk_142 + 382788*uk_143 + 74088*uk_144 + 21952*uk_145 + 96432*uk_146 + 170128*uk_147 + 32928*uk_148 + 423612*uk_149 + 10275601*uk_15 + 747348*uk_150 + 144648*uk_151 + 1318492*uk_152 + 255192*uk_153 + 49392*uk_154 + 1860867*uk_155 + 3282993*uk_156 + 635418*uk_157 + 5791947*uk_158 + 1121022*uk_159 + 1988826*uk_16 + 216972*uk_160 + 10218313*uk_161 + 1977738*uk_162 + 382788*uk_163 + 74088*uk_164 + 3969*uk_17 + 7623*uk_18 + 2646*uk_19 + 63*uk_2 + 1764*uk_20 + 7749*uk_21 + 13671*uk_22 + 2646*uk_23 + 14641*uk_24 + 5082*uk_25 + 3388*uk_26 + 14883*uk_27 + 26257*uk_28 + 5082*uk_29 + 121*uk_3 + 1764*uk_30 + 1176*uk_31 + 5166*uk_32 + 9114*uk_33 + 1764*uk_34 + 784*uk_35 + 3444*uk_36 + 6076*uk_37 + 1176*uk_38 + 15129*uk_39 + 42*uk_4 + 26691*uk_40 + 5166*uk_41 + 47089*uk_42 + 9114*uk_43 + 1764*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 271319099689*uk_47 + 94176877578*uk_48 + 62784585052*uk_49 + 28*uk_5 + 275803712907*uk_50 + 486580534153*uk_51 + 94176877578*uk_52 + 187944057*uk_53 + 360971919*uk_54 + 125296038*uk_55 + 83530692*uk_56 + 366938397*uk_57 + 647362863*uk_58 + 125296038*uk_59 + 123*uk_6 + 693295273*uk_60 + 240647946*uk_61 + 160431964*uk_62 + 704754699*uk_63 + 1243347721*uk_64 + 240647946*uk_65 + 83530692*uk_66 + 55687128*uk_67 + 244625598*uk_68 + 431575242*uk_69 + 217*uk_7 + 83530692*uk_70 + 37124752*uk_71 + 163083732*uk_72 + 287716828*uk_73 + 55687128*uk_74 + 716403537*uk_75 + 1263898923*uk_76 + 244625598*uk_77 + 2229805417*uk_78 + 431575242*uk_79 + 42*uk_8 + 83530692*uk_80 + 250047*uk_81 + 480249*uk_82 + 166698*uk_83 + 111132*uk_84 + 488187*uk_85 + 861273*uk_86 + 166698*uk_87 + 922383*uk_88 + 320166*uk_89 + 2242306609*uk_9 + 213444*uk_90 + 937629*uk_91 + 1654191*uk_92 + 320166*uk_93 + 111132*uk_94 + 74088*uk_95 + 325458*uk_96 + 574182*uk_97 + 111132*uk_98 + 49392*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 189000*uk_100 + 328104*uk_101 + 182952*uk_102 + 984375*uk_103 + 1708875*uk_104 + 952875*uk_105 + 2966607*uk_106 + 1654191*uk_107 + 922383*uk_108 + 1092727*uk_109 + 4877359*uk_11 + 1283689*uk_110 + 254616*uk_111 + 1326125*uk_112 + 2302153*uk_113 + 1283689*uk_114 + 1508023*uk_115 + 299112*uk_116 + 1557875*uk_117 + 2704471*uk_118 + 1508023*uk_119 + 5729713*uk_12 + 59328*uk_120 + 309000*uk_121 + 536424*uk_122 + 299112*uk_123 + 1609375*uk_124 + 2793875*uk_125 + 1557875*uk_126 + 4850167*uk_127 + 2704471*uk_128 + 1508023*uk_129 + 1136472*uk_13 + 1771561*uk_130 + 351384*uk_131 + 1830125*uk_132 + 3177097*uk_133 + 1771561*uk_134 + 69696*uk_135 + 363000*uk_136 + 630168*uk_137 + 351384*uk_138 + 1890625*uk_139 + 5919125*uk_14 + 3282125*uk_140 + 1830125*uk_141 + 5697769*uk_142 + 3177097*uk_143 + 1771561*uk_144 + 13824*uk_145 + 72000*uk_146 + 124992*uk_147 + 69696*uk_148 + 375000*uk_149 + 10275601*uk_15 + 651000*uk_150 + 363000*uk_151 + 1130136*uk_152 + 630168*uk_153 + 351384*uk_154 + 1953125*uk_155 + 3390625*uk_156 + 1890625*uk_157 + 5886125*uk_158 + 3282125*uk_159 + 5729713*uk_16 + 1830125*uk_160 + 10218313*uk_161 + 5697769*uk_162 + 3177097*uk_163 + 1771561*uk_164 + 3969*uk_17 + 6489*uk_18 + 7623*uk_19 + 63*uk_2 + 1512*uk_20 + 7875*uk_21 + 13671*uk_22 + 7623*uk_23 + 10609*uk_24 + 12463*uk_25 + 2472*uk_26 + 12875*uk_27 + 22351*uk_28 + 12463*uk_29 + 103*uk_3 + 14641*uk_30 + 2904*uk_31 + 15125*uk_32 + 26257*uk_33 + 14641*uk_34 + 576*uk_35 + 3000*uk_36 + 5208*uk_37 + 2904*uk_38 + 15625*uk_39 + 121*uk_4 + 27125*uk_40 + 15125*uk_41 + 47089*uk_42 + 26257*uk_43 + 14641*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 230957580727*uk_47 + 271319099689*uk_48 + 53815358616*uk_49 + 24*uk_5 + 280288326125*uk_50 + 486580534153*uk_51 + 271319099689*uk_52 + 187944057*uk_53 + 307273617*uk_54 + 360971919*uk_55 + 71597736*uk_56 + 372904875*uk_57 + 647362863*uk_58 + 360971919*uk_59 + 125*uk_6 + 502367977*uk_60 + 590160439*uk_61 + 117056616*uk_62 + 609669875*uk_63 + 1058386903*uk_64 + 590160439*uk_65 + 693295273*uk_66 + 137513112*uk_67 + 716214125*uk_68 + 1243347721*uk_69 + 217*uk_7 + 693295273*uk_70 + 27275328*uk_71 + 142059000*uk_72 + 246614424*uk_73 + 137513112*uk_74 + 739890625*uk_75 + 1284450125*uk_76 + 716214125*uk_77 + 2229805417*uk_78 + 1243347721*uk_79 + 121*uk_8 + 693295273*uk_80 + 250047*uk_81 + 408807*uk_82 + 480249*uk_83 + 95256*uk_84 + 496125*uk_85 + 861273*uk_86 + 480249*uk_87 + 668367*uk_88 + 785169*uk_89 + 2242306609*uk_9 + 155736*uk_90 + 811125*uk_91 + 1408113*uk_92 + 785169*uk_93 + 922383*uk_94 + 182952*uk_95 + 952875*uk_96 + 1654191*uk_97 + 922383*uk_98 + 36288*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 192024*uk_100 + 328104*uk_101 + 155736*uk_102 + 1016127*uk_103 + 1736217*uk_104 + 824103*uk_105 + 2966607*uk_106 + 1408113*uk_107 + 668367*uk_108 + 1295029*uk_109 + 5161477*uk_11 + 1223743*uk_110 + 285144*uk_111 + 1508887*uk_112 + 2578177*uk_113 + 1223743*uk_114 + 1156381*uk_115 + 269448*uk_116 + 1425829*uk_117 + 2436259*uk_118 + 1156381*uk_119 + 4877359*uk_12 + 62784*uk_120 + 332232*uk_121 + 567672*uk_122 + 269448*uk_123 + 1758061*uk_124 + 3003931*uk_125 + 1425829*uk_126 + 5132701*uk_127 + 2436259*uk_128 + 1156381*uk_129 + 1136472*uk_13 + 1092727*uk_130 + 254616*uk_131 + 1347343*uk_132 + 2302153*uk_133 + 1092727*uk_134 + 59328*uk_135 + 313944*uk_136 + 536424*uk_137 + 254616*uk_138 + 1661287*uk_139 + 6013831*uk_14 + 2838577*uk_140 + 1347343*uk_141 + 4850167*uk_142 + 2302153*uk_143 + 1092727*uk_144 + 13824*uk_145 + 73152*uk_146 + 124992*uk_147 + 59328*uk_148 + 387096*uk_149 + 10275601*uk_15 + 661416*uk_150 + 313944*uk_151 + 1130136*uk_152 + 536424*uk_153 + 254616*uk_154 + 2048383*uk_155 + 3499993*uk_156 + 1661287*uk_157 + 5980303*uk_158 + 2838577*uk_159 + 4877359*uk_16 + 1347343*uk_160 + 10218313*uk_161 + 4850167*uk_162 + 2302153*uk_163 + 1092727*uk_164 + 3969*uk_17 + 6867*uk_18 + 6489*uk_19 + 63*uk_2 + 1512*uk_20 + 8001*uk_21 + 13671*uk_22 + 6489*uk_23 + 11881*uk_24 + 11227*uk_25 + 2616*uk_26 + 13843*uk_27 + 23653*uk_28 + 11227*uk_29 + 109*uk_3 + 10609*uk_30 + 2472*uk_31 + 13081*uk_32 + 22351*uk_33 + 10609*uk_34 + 576*uk_35 + 3048*uk_36 + 5208*uk_37 + 2472*uk_38 + 16129*uk_39 + 103*uk_4 + 27559*uk_40 + 13081*uk_41 + 47089*uk_42 + 22351*uk_43 + 10609*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 244411420381*uk_47 + 230957580727*uk_48 + 53815358616*uk_49 + 24*uk_5 + 284772939343*uk_50 + 486580534153*uk_51 + 230957580727*uk_52 + 187944057*uk_53 + 325173051*uk_54 + 307273617*uk_55 + 71597736*uk_56 + 378871353*uk_57 + 647362863*uk_58 + 307273617*uk_59 + 127*uk_6 + 562600993*uk_60 + 531632131*uk_61 + 123875448*uk_62 + 655507579*uk_63 + 1120040509*uk_64 + 531632131*uk_65 + 502367977*uk_66 + 117056616*uk_67 + 619424593*uk_68 + 1058386903*uk_69 + 217*uk_7 + 502367977*uk_70 + 27275328*uk_71 + 144331944*uk_72 + 246614424*uk_73 + 117056616*uk_74 + 763756537*uk_75 + 1305001327*uk_76 + 619424593*uk_77 + 2229805417*uk_78 + 1058386903*uk_79 + 103*uk_8 + 502367977*uk_80 + 250047*uk_81 + 432621*uk_82 + 408807*uk_83 + 95256*uk_84 + 504063*uk_85 + 861273*uk_86 + 408807*uk_87 + 748503*uk_88 + 707301*uk_89 + 2242306609*uk_9 + 164808*uk_90 + 872109*uk_91 + 1490139*uk_92 + 707301*uk_93 + 668367*uk_94 + 155736*uk_95 + 824103*uk_96 + 1408113*uk_97 + 668367*uk_98 + 36288*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 162540*uk_100 + 273420*uk_101 + 137340*uk_102 + 1048383*uk_103 + 1763559*uk_104 + 885843*uk_105 + 2966607*uk_106 + 1490139*uk_107 + 748503*uk_108 + 1000*uk_109 + 473530*uk_11 + 10900*uk_110 + 2000*uk_111 + 12900*uk_112 + 21700*uk_113 + 10900*uk_114 + 118810*uk_115 + 21800*uk_116 + 140610*uk_117 + 236530*uk_118 + 118810*uk_119 + 5161477*uk_12 + 4000*uk_120 + 25800*uk_121 + 43400*uk_122 + 21800*uk_123 + 166410*uk_124 + 279930*uk_125 + 140610*uk_126 + 470890*uk_127 + 236530*uk_128 + 118810*uk_129 + 947060*uk_13 + 1295029*uk_130 + 237620*uk_131 + 1532649*uk_132 + 2578177*uk_133 + 1295029*uk_134 + 43600*uk_135 + 281220*uk_136 + 473060*uk_137 + 237620*uk_138 + 1813869*uk_139 + 6108537*uk_14 + 3051237*uk_140 + 1532649*uk_141 + 5132701*uk_142 + 2578177*uk_143 + 1295029*uk_144 + 8000*uk_145 + 51600*uk_146 + 86800*uk_147 + 43600*uk_148 + 332820*uk_149 + 10275601*uk_15 + 559860*uk_150 + 281220*uk_151 + 941780*uk_152 + 473060*uk_153 + 237620*uk_154 + 2146689*uk_155 + 3611097*uk_156 + 1813869*uk_157 + 6074481*uk_158 + 3051237*uk_159 + 5161477*uk_16 + 1532649*uk_160 + 10218313*uk_161 + 5132701*uk_162 + 2578177*uk_163 + 1295029*uk_164 + 3969*uk_17 + 630*uk_18 + 6867*uk_19 + 63*uk_2 + 1260*uk_20 + 8127*uk_21 + 13671*uk_22 + 6867*uk_23 + 100*uk_24 + 1090*uk_25 + 200*uk_26 + 1290*uk_27 + 2170*uk_28 + 1090*uk_29 + 10*uk_3 + 11881*uk_30 + 2180*uk_31 + 14061*uk_32 + 23653*uk_33 + 11881*uk_34 + 400*uk_35 + 2580*uk_36 + 4340*uk_37 + 2180*uk_38 + 16641*uk_39 + 109*uk_4 + 27993*uk_40 + 14061*uk_41 + 47089*uk_42 + 23653*uk_43 + 11881*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 22423066090*uk_47 + 244411420381*uk_48 + 44846132180*uk_49 + 20*uk_5 + 289257552561*uk_50 + 486580534153*uk_51 + 244411420381*uk_52 + 187944057*uk_53 + 29832390*uk_54 + 325173051*uk_55 + 59664780*uk_56 + 384837831*uk_57 + 647362863*uk_58 + 325173051*uk_59 + 129*uk_6 + 4735300*uk_60 + 51614770*uk_61 + 9470600*uk_62 + 61085370*uk_63 + 102756010*uk_64 + 51614770*uk_65 + 562600993*uk_66 + 103229540*uk_67 + 665830533*uk_68 + 1120040509*uk_69 + 217*uk_7 + 562600993*uk_70 + 18941200*uk_71 + 122170740*uk_72 + 205512020*uk_73 + 103229540*uk_74 + 788001273*uk_75 + 1325552529*uk_76 + 665830533*uk_77 + 2229805417*uk_78 + 1120040509*uk_79 + 109*uk_8 + 562600993*uk_80 + 250047*uk_81 + 39690*uk_82 + 432621*uk_83 + 79380*uk_84 + 512001*uk_85 + 861273*uk_86 + 432621*uk_87 + 6300*uk_88 + 68670*uk_89 + 2242306609*uk_9 + 12600*uk_90 + 81270*uk_91 + 136710*uk_92 + 68670*uk_93 + 748503*uk_94 + 137340*uk_95 + 885843*uk_96 + 1490139*uk_97 + 748503*uk_98 + 25200*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 198072*uk_100 + 328104*uk_101 + 15120*uk_102 + 1081143*uk_103 + 1790901*uk_104 + 82530*uk_105 + 2966607*uk_106 + 136710*uk_107 + 6300*uk_108 + 238328*uk_109 + 2935886*uk_11 + 38440*uk_110 + 92256*uk_111 + 503564*uk_112 + 834148*uk_113 + 38440*uk_114 + 6200*uk_115 + 14880*uk_116 + 81220*uk_117 + 134540*uk_118 + 6200*uk_119 + 473530*uk_12 + 35712*uk_120 + 194928*uk_121 + 322896*uk_122 + 14880*uk_123 + 1063982*uk_124 + 1762474*uk_125 + 81220*uk_126 + 2919518*uk_127 + 134540*uk_128 + 6200*uk_129 + 1136472*uk_13 + 1000*uk_130 + 2400*uk_131 + 13100*uk_132 + 21700*uk_133 + 1000*uk_134 + 5760*uk_135 + 31440*uk_136 + 52080*uk_137 + 2400*uk_138 + 171610*uk_139 + 6203243*uk_14 + 284270*uk_140 + 13100*uk_141 + 470890*uk_142 + 21700*uk_143 + 1000*uk_144 + 13824*uk_145 + 75456*uk_146 + 124992*uk_147 + 5760*uk_148 + 411864*uk_149 + 10275601*uk_15 + 682248*uk_150 + 31440*uk_151 + 1130136*uk_152 + 52080*uk_153 + 2400*uk_154 + 2248091*uk_155 + 3723937*uk_156 + 171610*uk_157 + 6168659*uk_158 + 284270*uk_159 + 473530*uk_16 + 13100*uk_160 + 10218313*uk_161 + 470890*uk_162 + 21700*uk_163 + 1000*uk_164 + 3969*uk_17 + 3906*uk_18 + 630*uk_19 + 63*uk_2 + 1512*uk_20 + 8253*uk_21 + 13671*uk_22 + 630*uk_23 + 3844*uk_24 + 620*uk_25 + 1488*uk_26 + 8122*uk_27 + 13454*uk_28 + 620*uk_29 + 62*uk_3 + 100*uk_30 + 240*uk_31 + 1310*uk_32 + 2170*uk_33 + 100*uk_34 + 576*uk_35 + 3144*uk_36 + 5208*uk_37 + 240*uk_38 + 17161*uk_39 + 10*uk_4 + 28427*uk_40 + 1310*uk_41 + 47089*uk_42 + 2170*uk_43 + 100*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 139023009758*uk_47 + 22423066090*uk_48 + 53815358616*uk_49 + 24*uk_5 + 293742165779*uk_50 + 486580534153*uk_51 + 22423066090*uk_52 + 187944057*uk_53 + 184960818*uk_54 + 29832390*uk_55 + 71597736*uk_56 + 390804309*uk_57 + 647362863*uk_58 + 29832390*uk_59 + 131*uk_6 + 182024932*uk_60 + 29358860*uk_61 + 70461264*uk_62 + 384601066*uk_63 + 637087262*uk_64 + 29358860*uk_65 + 4735300*uk_66 + 11364720*uk_67 + 62032430*uk_68 + 102756010*uk_69 + 217*uk_7 + 4735300*uk_70 + 27275328*uk_71 + 148877832*uk_72 + 246614424*uk_73 + 11364720*uk_74 + 812624833*uk_75 + 1346103731*uk_76 + 62032430*uk_77 + 2229805417*uk_78 + 102756010*uk_79 + 10*uk_8 + 4735300*uk_80 + 250047*uk_81 + 246078*uk_82 + 39690*uk_83 + 95256*uk_84 + 519939*uk_85 + 861273*uk_86 + 39690*uk_87 + 242172*uk_88 + 39060*uk_89 + 2242306609*uk_9 + 93744*uk_90 + 511686*uk_91 + 847602*uk_92 + 39060*uk_93 + 6300*uk_94 + 15120*uk_95 + 82530*uk_96 + 136710*uk_97 + 6300*uk_98 + 36288*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 167580*uk_100 + 273420*uk_101 + 78120*uk_102 + 1114407*uk_103 + 1818243*uk_104 + 519498*uk_105 + 2966607*uk_106 + 847602*uk_107 + 242172*uk_108 + 125*uk_109 + 236765*uk_11 + 1550*uk_110 + 500*uk_111 + 3325*uk_112 + 5425*uk_113 + 1550*uk_114 + 19220*uk_115 + 6200*uk_116 + 41230*uk_117 + 67270*uk_118 + 19220*uk_119 + 2935886*uk_12 + 2000*uk_120 + 13300*uk_121 + 21700*uk_122 + 6200*uk_123 + 88445*uk_124 + 144305*uk_125 + 41230*uk_126 + 235445*uk_127 + 67270*uk_128 + 19220*uk_129 + 947060*uk_13 + 238328*uk_130 + 76880*uk_131 + 511252*uk_132 + 834148*uk_133 + 238328*uk_134 + 24800*uk_135 + 164920*uk_136 + 269080*uk_137 + 76880*uk_138 + 1096718*uk_139 + 6297949*uk_14 + 1789382*uk_140 + 511252*uk_141 + 2919518*uk_142 + 834148*uk_143 + 238328*uk_144 + 8000*uk_145 + 53200*uk_146 + 86800*uk_147 + 24800*uk_148 + 353780*uk_149 + 10275601*uk_15 + 577220*uk_150 + 164920*uk_151 + 941780*uk_152 + 269080*uk_153 + 76880*uk_154 + 2352637*uk_155 + 3838513*uk_156 + 1096718*uk_157 + 6262837*uk_158 + 1789382*uk_159 + 2935886*uk_16 + 511252*uk_160 + 10218313*uk_161 + 2919518*uk_162 + 834148*uk_163 + 238328*uk_164 + 3969*uk_17 + 315*uk_18 + 3906*uk_19 + 63*uk_2 + 1260*uk_20 + 8379*uk_21 + 13671*uk_22 + 3906*uk_23 + 25*uk_24 + 310*uk_25 + 100*uk_26 + 665*uk_27 + 1085*uk_28 + 310*uk_29 + 5*uk_3 + 3844*uk_30 + 1240*uk_31 + 8246*uk_32 + 13454*uk_33 + 3844*uk_34 + 400*uk_35 + 2660*uk_36 + 4340*uk_37 + 1240*uk_38 + 17689*uk_39 + 62*uk_4 + 28861*uk_40 + 8246*uk_41 + 47089*uk_42 + 13454*uk_43 + 3844*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 11211533045*uk_47 + 139023009758*uk_48 + 44846132180*uk_49 + 20*uk_5 + 298226778997*uk_50 + 486580534153*uk_51 + 139023009758*uk_52 + 187944057*uk_53 + 14916195*uk_54 + 184960818*uk_55 + 59664780*uk_56 + 396770787*uk_57 + 647362863*uk_58 + 184960818*uk_59 + 133*uk_6 + 1183825*uk_60 + 14679430*uk_61 + 4735300*uk_62 + 31489745*uk_63 + 51378005*uk_64 + 14679430*uk_65 + 182024932*uk_66 + 58717720*uk_67 + 390472838*uk_68 + 637087262*uk_69 + 217*uk_7 + 182024932*uk_70 + 18941200*uk_71 + 125958980*uk_72 + 205512020*uk_73 + 58717720*uk_74 + 837627217*uk_75 + 1366654933*uk_76 + 390472838*uk_77 + 2229805417*uk_78 + 637087262*uk_79 + 62*uk_8 + 182024932*uk_80 + 250047*uk_81 + 19845*uk_82 + 246078*uk_83 + 79380*uk_84 + 527877*uk_85 + 861273*uk_86 + 246078*uk_87 + 1575*uk_88 + 19530*uk_89 + 2242306609*uk_9 + 6300*uk_90 + 41895*uk_91 + 68355*uk_92 + 19530*uk_93 + 242172*uk_94 + 78120*uk_95 + 519498*uk_96 + 847602*uk_97 + 242172*uk_98 + 25200*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 204120*uk_100 + 328104*uk_101 + 7560*uk_102 + 1148175*uk_103 + 1845585*uk_104 + 42525*uk_105 + 2966607*uk_106 + 68355*uk_107 + 1575*uk_108 + 1092727*uk_109 + 4877359*uk_11 + 53045*uk_110 + 254616*uk_111 + 1432215*uk_112 + 2302153*uk_113 + 53045*uk_114 + 2575*uk_115 + 12360*uk_116 + 69525*uk_117 + 111755*uk_118 + 2575*uk_119 + 236765*uk_12 + 59328*uk_120 + 333720*uk_121 + 536424*uk_122 + 12360*uk_123 + 1877175*uk_124 + 3017385*uk_125 + 69525*uk_126 + 4850167*uk_127 + 111755*uk_128 + 2575*uk_129 + 1136472*uk_13 + 125*uk_130 + 600*uk_131 + 3375*uk_132 + 5425*uk_133 + 125*uk_134 + 2880*uk_135 + 16200*uk_136 + 26040*uk_137 + 600*uk_138 + 91125*uk_139 + 6392655*uk_14 + 146475*uk_140 + 3375*uk_141 + 235445*uk_142 + 5425*uk_143 + 125*uk_144 + 13824*uk_145 + 77760*uk_146 + 124992*uk_147 + 2880*uk_148 + 437400*uk_149 + 10275601*uk_15 + 703080*uk_150 + 16200*uk_151 + 1130136*uk_152 + 26040*uk_153 + 600*uk_154 + 2460375*uk_155 + 3954825*uk_156 + 91125*uk_157 + 6357015*uk_158 + 146475*uk_159 + 236765*uk_16 + 3375*uk_160 + 10218313*uk_161 + 235445*uk_162 + 5425*uk_163 + 125*uk_164 + 3969*uk_17 + 6489*uk_18 + 315*uk_19 + 63*uk_2 + 1512*uk_20 + 8505*uk_21 + 13671*uk_22 + 315*uk_23 + 10609*uk_24 + 515*uk_25 + 2472*uk_26 + 13905*uk_27 + 22351*uk_28 + 515*uk_29 + 103*uk_3 + 25*uk_30 + 120*uk_31 + 675*uk_32 + 1085*uk_33 + 25*uk_34 + 576*uk_35 + 3240*uk_36 + 5208*uk_37 + 120*uk_38 + 18225*uk_39 + 5*uk_4 + 29295*uk_40 + 675*uk_41 + 47089*uk_42 + 1085*uk_43 + 25*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 230957580727*uk_47 + 11211533045*uk_48 + 53815358616*uk_49 + 24*uk_5 + 302711392215*uk_50 + 486580534153*uk_51 + 11211533045*uk_52 + 187944057*uk_53 + 307273617*uk_54 + 14916195*uk_55 + 71597736*uk_56 + 402737265*uk_57 + 647362863*uk_58 + 14916195*uk_59 + 135*uk_6 + 502367977*uk_60 + 24386795*uk_61 + 117056616*uk_62 + 658443465*uk_63 + 1058386903*uk_64 + 24386795*uk_65 + 1183825*uk_66 + 5682360*uk_67 + 31963275*uk_68 + 51378005*uk_69 + 217*uk_7 + 1183825*uk_70 + 27275328*uk_71 + 153423720*uk_72 + 246614424*uk_73 + 5682360*uk_74 + 863008425*uk_75 + 1387206135*uk_76 + 31963275*uk_77 + 2229805417*uk_78 + 51378005*uk_79 + 5*uk_8 + 1183825*uk_80 + 250047*uk_81 + 408807*uk_82 + 19845*uk_83 + 95256*uk_84 + 535815*uk_85 + 861273*uk_86 + 19845*uk_87 + 668367*uk_88 + 32445*uk_89 + 2242306609*uk_9 + 155736*uk_90 + 876015*uk_91 + 1408113*uk_92 + 32445*uk_93 + 1575*uk_94 + 7560*uk_95 + 42525*uk_96 + 68355*uk_97 + 1575*uk_98 + 36288*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 172620*uk_100 + 273420*uk_101 + 129780*uk_102 + 1182447*uk_103 + 1872927*uk_104 + 888993*uk_105 + 2966607*uk_106 + 1408113*uk_107 + 668367*uk_108 + 681472*uk_109 + 4167064*uk_11 + 797632*uk_110 + 154880*uk_111 + 1060928*uk_112 + 1680448*uk_113 + 797632*uk_114 + 933592*uk_115 + 181280*uk_116 + 1241768*uk_117 + 1966888*uk_118 + 933592*uk_119 + 4877359*uk_12 + 35200*uk_120 + 241120*uk_121 + 381920*uk_122 + 181280*uk_123 + 1651672*uk_124 + 2616152*uk_125 + 1241768*uk_126 + 4143832*uk_127 + 1966888*uk_128 + 933592*uk_129 + 947060*uk_13 + 1092727*uk_130 + 212180*uk_131 + 1453433*uk_132 + 2302153*uk_133 + 1092727*uk_134 + 41200*uk_135 + 282220*uk_136 + 447020*uk_137 + 212180*uk_138 + 1933207*uk_139 + 6487361*uk_14 + 3062087*uk_140 + 1453433*uk_141 + 4850167*uk_142 + 2302153*uk_143 + 1092727*uk_144 + 8000*uk_145 + 54800*uk_146 + 86800*uk_147 + 41200*uk_148 + 375380*uk_149 + 10275601*uk_15 + 594580*uk_150 + 282220*uk_151 + 941780*uk_152 + 447020*uk_153 + 212180*uk_154 + 2571353*uk_155 + 4072873*uk_156 + 1933207*uk_157 + 6451193*uk_158 + 3062087*uk_159 + 4877359*uk_16 + 1453433*uk_160 + 10218313*uk_161 + 4850167*uk_162 + 2302153*uk_163 + 1092727*uk_164 + 3969*uk_17 + 5544*uk_18 + 6489*uk_19 + 63*uk_2 + 1260*uk_20 + 8631*uk_21 + 13671*uk_22 + 6489*uk_23 + 7744*uk_24 + 9064*uk_25 + 1760*uk_26 + 12056*uk_27 + 19096*uk_28 + 9064*uk_29 + 88*uk_3 + 10609*uk_30 + 2060*uk_31 + 14111*uk_32 + 22351*uk_33 + 10609*uk_34 + 400*uk_35 + 2740*uk_36 + 4340*uk_37 + 2060*uk_38 + 18769*uk_39 + 103*uk_4 + 29729*uk_40 + 14111*uk_41 + 47089*uk_42 + 22351*uk_43 + 10609*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 197322981592*uk_47 + 230957580727*uk_48 + 44846132180*uk_49 + 20*uk_5 + 307196005433*uk_50 + 486580534153*uk_51 + 230957580727*uk_52 + 187944057*uk_53 + 262525032*uk_54 + 307273617*uk_55 + 59664780*uk_56 + 408703743*uk_57 + 647362863*uk_58 + 307273617*uk_59 + 137*uk_6 + 366701632*uk_60 + 429207592*uk_61 + 83341280*uk_62 + 570887768*uk_63 + 904252888*uk_64 + 429207592*uk_65 + 502367977*uk_66 + 97547180*uk_67 + 668198183*uk_68 + 1058386903*uk_69 + 217*uk_7 + 502367977*uk_70 + 18941200*uk_71 + 129747220*uk_72 + 205512020*uk_73 + 97547180*uk_74 + 888768457*uk_75 + 1407757337*uk_76 + 668198183*uk_77 + 2229805417*uk_78 + 1058386903*uk_79 + 103*uk_8 + 502367977*uk_80 + 250047*uk_81 + 349272*uk_82 + 408807*uk_83 + 79380*uk_84 + 543753*uk_85 + 861273*uk_86 + 408807*uk_87 + 487872*uk_88 + 571032*uk_89 + 2242306609*uk_9 + 110880*uk_90 + 759528*uk_91 + 1203048*uk_92 + 571032*uk_93 + 668367*uk_94 + 129780*uk_95 + 888993*uk_96 + 1408113*uk_97 + 668367*uk_98 + 25200*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 175140*uk_100 + 273420*uk_101 + 110880*uk_102 + 1217223*uk_103 + 1900269*uk_104 + 770616*uk_105 + 2966607*uk_106 + 1203048*uk_107 + 487872*uk_108 + 804357*uk_109 + 4403829*uk_11 + 761112*uk_110 + 172980*uk_111 + 1202211*uk_112 + 1876833*uk_113 + 761112*uk_114 + 720192*uk_115 + 163680*uk_116 + 1137576*uk_117 + 1775928*uk_118 + 720192*uk_119 + 4167064*uk_12 + 37200*uk_120 + 258540*uk_121 + 403620*uk_122 + 163680*uk_123 + 1796853*uk_124 + 2805159*uk_125 + 1137576*uk_126 + 4379277*uk_127 + 1775928*uk_128 + 720192*uk_129 + 947060*uk_13 + 681472*uk_130 + 154880*uk_131 + 1076416*uk_132 + 1680448*uk_133 + 681472*uk_134 + 35200*uk_135 + 244640*uk_136 + 381920*uk_137 + 154880*uk_138 + 1700248*uk_139 + 6582067*uk_14 + 2654344*uk_140 + 1076416*uk_141 + 4143832*uk_142 + 1680448*uk_143 + 681472*uk_144 + 8000*uk_145 + 55600*uk_146 + 86800*uk_147 + 35200*uk_148 + 386420*uk_149 + 10275601*uk_15 + 603260*uk_150 + 244640*uk_151 + 941780*uk_152 + 381920*uk_153 + 154880*uk_154 + 2685619*uk_155 + 4192657*uk_156 + 1700248*uk_157 + 6545371*uk_158 + 2654344*uk_159 + 4167064*uk_16 + 1076416*uk_160 + 10218313*uk_161 + 4143832*uk_162 + 1680448*uk_163 + 681472*uk_164 + 3969*uk_17 + 5859*uk_18 + 5544*uk_19 + 63*uk_2 + 1260*uk_20 + 8757*uk_21 + 13671*uk_22 + 5544*uk_23 + 8649*uk_24 + 8184*uk_25 + 1860*uk_26 + 12927*uk_27 + 20181*uk_28 + 8184*uk_29 + 93*uk_3 + 7744*uk_30 + 1760*uk_31 + 12232*uk_32 + 19096*uk_33 + 7744*uk_34 + 400*uk_35 + 2780*uk_36 + 4340*uk_37 + 1760*uk_38 + 19321*uk_39 + 88*uk_4 + 30163*uk_40 + 12232*uk_41 + 47089*uk_42 + 19096*uk_43 + 7744*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 208534514637*uk_47 + 197322981592*uk_48 + 44846132180*uk_49 + 20*uk_5 + 311680618651*uk_50 + 486580534153*uk_51 + 197322981592*uk_52 + 187944057*uk_53 + 277441227*uk_54 + 262525032*uk_55 + 59664780*uk_56 + 414670221*uk_57 + 647362863*uk_58 + 262525032*uk_59 + 139*uk_6 + 409556097*uk_60 + 387536952*uk_61 + 88076580*uk_62 + 612132231*uk_63 + 955630893*uk_64 + 387536952*uk_65 + 366701632*uk_66 + 83341280*uk_67 + 579221896*uk_68 + 904252888*uk_69 + 217*uk_7 + 366701632*uk_70 + 18941200*uk_71 + 131641340*uk_72 + 205512020*uk_73 + 83341280*uk_74 + 914907313*uk_75 + 1428308539*uk_76 + 579221896*uk_77 + 2229805417*uk_78 + 904252888*uk_79 + 88*uk_8 + 366701632*uk_80 + 250047*uk_81 + 369117*uk_82 + 349272*uk_83 + 79380*uk_84 + 551691*uk_85 + 861273*uk_86 + 349272*uk_87 + 544887*uk_88 + 515592*uk_89 + 2242306609*uk_9 + 117180*uk_90 + 814401*uk_91 + 1271403*uk_92 + 515592*uk_93 + 487872*uk_94 + 110880*uk_95 + 770616*uk_96 + 1203048*uk_97 + 487872*uk_98 + 25200*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 177660*uk_100 + 273420*uk_101 + 117180*uk_102 + 1252503*uk_103 + 1927611*uk_104 + 826119*uk_105 + 2966607*uk_106 + 1271403*uk_107 + 544887*uk_108 + 1643032*uk_109 + 5587654*uk_11 + 1294932*uk_110 + 278480*uk_111 + 1963284*uk_112 + 3021508*uk_113 + 1294932*uk_114 + 1020582*uk_115 + 219480*uk_116 + 1547334*uk_117 + 2381358*uk_118 + 1020582*uk_119 + 4403829*uk_12 + 47200*uk_120 + 332760*uk_121 + 512120*uk_122 + 219480*uk_123 + 2345958*uk_124 + 3610446*uk_125 + 1547334*uk_126 + 5556502*uk_127 + 2381358*uk_128 + 1020582*uk_129 + 947060*uk_13 + 804357*uk_130 + 172980*uk_131 + 1219509*uk_132 + 1876833*uk_133 + 804357*uk_134 + 37200*uk_135 + 262260*uk_136 + 403620*uk_137 + 172980*uk_138 + 1848933*uk_139 + 6676773*uk_14 + 2845521*uk_140 + 1219509*uk_141 + 4379277*uk_142 + 1876833*uk_143 + 804357*uk_144 + 8000*uk_145 + 56400*uk_146 + 86800*uk_147 + 37200*uk_148 + 397620*uk_149 + 10275601*uk_15 + 611940*uk_150 + 262260*uk_151 + 941780*uk_152 + 403620*uk_153 + 172980*uk_154 + 2803221*uk_155 + 4314177*uk_156 + 1848933*uk_157 + 6639549*uk_158 + 2845521*uk_159 + 4403829*uk_16 + 1219509*uk_160 + 10218313*uk_161 + 4379277*uk_162 + 1876833*uk_163 + 804357*uk_164 + 3969*uk_17 + 7434*uk_18 + 5859*uk_19 + 63*uk_2 + 1260*uk_20 + 8883*uk_21 + 13671*uk_22 + 5859*uk_23 + 13924*uk_24 + 10974*uk_25 + 2360*uk_26 + 16638*uk_27 + 25606*uk_28 + 10974*uk_29 + 118*uk_3 + 8649*uk_30 + 1860*uk_31 + 13113*uk_32 + 20181*uk_33 + 8649*uk_34 + 400*uk_35 + 2820*uk_36 + 4340*uk_37 + 1860*uk_38 + 19881*uk_39 + 93*uk_4 + 30597*uk_40 + 13113*uk_41 + 47089*uk_42 + 20181*uk_43 + 8649*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 264592179862*uk_47 + 208534514637*uk_48 + 44846132180*uk_49 + 20*uk_5 + 316165231869*uk_50 + 486580534153*uk_51 + 208534514637*uk_52 + 187944057*uk_53 + 352022202*uk_54 + 277441227*uk_55 + 59664780*uk_56 + 420636699*uk_57 + 647362863*uk_58 + 277441227*uk_59 + 141*uk_6 + 659343172*uk_60 + 519651822*uk_61 + 111753080*uk_62 + 787859214*uk_63 + 1212520918*uk_64 + 519651822*uk_65 + 409556097*uk_66 + 88076580*uk_67 + 620939889*uk_68 + 955630893*uk_69 + 217*uk_7 + 409556097*uk_70 + 18941200*uk_71 + 133535460*uk_72 + 205512020*uk_73 + 88076580*uk_74 + 941424993*uk_75 + 1448859741*uk_76 + 620939889*uk_77 + 2229805417*uk_78 + 955630893*uk_79 + 93*uk_8 + 409556097*uk_80 + 250047*uk_81 + 468342*uk_82 + 369117*uk_83 + 79380*uk_84 + 559629*uk_85 + 861273*uk_86 + 369117*uk_87 + 877212*uk_88 + 691362*uk_89 + 2242306609*uk_9 + 148680*uk_90 + 1048194*uk_91 + 1613178*uk_92 + 691362*uk_93 + 544887*uk_94 + 117180*uk_95 + 826119*uk_96 + 1271403*uk_97 + 544887*uk_98 + 25200*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 144144*uk_100 + 218736*uk_101 + 118944*uk_102 + 1288287*uk_103 + 1954953*uk_104 + 1063062*uk_105 + 2966607*uk_106 + 1613178*uk_107 + 877212*uk_108 + 8000*uk_109 + 947060*uk_11 + 47200*uk_110 + 6400*uk_111 + 57200*uk_112 + 86800*uk_113 + 47200*uk_114 + 278480*uk_115 + 37760*uk_116 + 337480*uk_117 + 512120*uk_118 + 278480*uk_119 + 5587654*uk_12 + 5120*uk_120 + 45760*uk_121 + 69440*uk_122 + 37760*uk_123 + 408980*uk_124 + 620620*uk_125 + 337480*uk_126 + 941780*uk_127 + 512120*uk_128 + 278480*uk_129 + 757648*uk_13 + 1643032*uk_130 + 222784*uk_131 + 1991132*uk_132 + 3021508*uk_133 + 1643032*uk_134 + 30208*uk_135 + 269984*uk_136 + 409696*uk_137 + 222784*uk_138 + 2412982*uk_139 + 6771479*uk_14 + 3661658*uk_140 + 1991132*uk_141 + 5556502*uk_142 + 3021508*uk_143 + 1643032*uk_144 + 4096*uk_145 + 36608*uk_146 + 55552*uk_147 + 30208*uk_148 + 327184*uk_149 + 10275601*uk_15 + 496496*uk_150 + 269984*uk_151 + 753424*uk_152 + 409696*uk_153 + 222784*uk_154 + 2924207*uk_155 + 4437433*uk_156 + 2412982*uk_157 + 6733727*uk_158 + 3661658*uk_159 + 5587654*uk_16 + 1991132*uk_160 + 10218313*uk_161 + 5556502*uk_162 + 3021508*uk_163 + 1643032*uk_164 + 3969*uk_17 + 1260*uk_18 + 7434*uk_19 + 63*uk_2 + 1008*uk_20 + 9009*uk_21 + 13671*uk_22 + 7434*uk_23 + 400*uk_24 + 2360*uk_25 + 320*uk_26 + 2860*uk_27 + 4340*uk_28 + 2360*uk_29 + 20*uk_3 + 13924*uk_30 + 1888*uk_31 + 16874*uk_32 + 25606*uk_33 + 13924*uk_34 + 256*uk_35 + 2288*uk_36 + 3472*uk_37 + 1888*uk_38 + 20449*uk_39 + 118*uk_4 + 31031*uk_40 + 16874*uk_41 + 47089*uk_42 + 25606*uk_43 + 13924*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 44846132180*uk_47 + 264592179862*uk_48 + 35876905744*uk_49 + 16*uk_5 + 320649845087*uk_50 + 486580534153*uk_51 + 264592179862*uk_52 + 187944057*uk_53 + 59664780*uk_54 + 352022202*uk_55 + 47731824*uk_56 + 426603177*uk_57 + 647362863*uk_58 + 352022202*uk_59 + 143*uk_6 + 18941200*uk_60 + 111753080*uk_61 + 15152960*uk_62 + 135429580*uk_63 + 205512020*uk_64 + 111753080*uk_65 + 659343172*uk_66 + 89402464*uk_67 + 799034522*uk_68 + 1212520918*uk_69 + 217*uk_7 + 659343172*uk_70 + 12122368*uk_71 + 108343664*uk_72 + 164409616*uk_73 + 89402464*uk_74 + 968321497*uk_75 + 1469410943*uk_76 + 799034522*uk_77 + 2229805417*uk_78 + 1212520918*uk_79 + 118*uk_8 + 659343172*uk_80 + 250047*uk_81 + 79380*uk_82 + 468342*uk_83 + 63504*uk_84 + 567567*uk_85 + 861273*uk_86 + 468342*uk_87 + 25200*uk_88 + 148680*uk_89 + 2242306609*uk_9 + 20160*uk_90 + 180180*uk_91 + 273420*uk_92 + 148680*uk_93 + 877212*uk_94 + 118944*uk_95 + 1063062*uk_96 + 1613178*uk_97 + 877212*uk_98 + 16128*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 182700*uk_100 + 273420*uk_101 + 25200*uk_102 + 1324575*uk_103 + 1982295*uk_104 + 182700*uk_105 + 2966607*uk_106 + 273420*uk_107 + 25200*uk_108 + 571787*uk_109 + 3930299*uk_11 + 137780*uk_110 + 137780*uk_111 + 998905*uk_112 + 1494913*uk_113 + 137780*uk_114 + 33200*uk_115 + 33200*uk_116 + 240700*uk_117 + 360220*uk_118 + 33200*uk_119 + 947060*uk_12 + 33200*uk_120 + 240700*uk_121 + 360220*uk_122 + 33200*uk_123 + 1745075*uk_124 + 2611595*uk_125 + 240700*uk_126 + 3908387*uk_127 + 360220*uk_128 + 33200*uk_129 + 947060*uk_13 + 8000*uk_130 + 8000*uk_131 + 58000*uk_132 + 86800*uk_133 + 8000*uk_134 + 8000*uk_135 + 58000*uk_136 + 86800*uk_137 + 8000*uk_138 + 420500*uk_139 + 6866185*uk_14 + 629300*uk_140 + 58000*uk_141 + 941780*uk_142 + 86800*uk_143 + 8000*uk_144 + 8000*uk_145 + 58000*uk_146 + 86800*uk_147 + 8000*uk_148 + 420500*uk_149 + 10275601*uk_15 + 629300*uk_150 + 58000*uk_151 + 941780*uk_152 + 86800*uk_153 + 8000*uk_154 + 3048625*uk_155 + 4562425*uk_156 + 420500*uk_157 + 6827905*uk_158 + 629300*uk_159 + 947060*uk_16 + 58000*uk_160 + 10218313*uk_161 + 941780*uk_162 + 86800*uk_163 + 8000*uk_164 + 3969*uk_17 + 5229*uk_18 + 1260*uk_19 + 63*uk_2 + 1260*uk_20 + 9135*uk_21 + 13671*uk_22 + 1260*uk_23 + 6889*uk_24 + 1660*uk_25 + 1660*uk_26 + 12035*uk_27 + 18011*uk_28 + 1660*uk_29 + 83*uk_3 + 400*uk_30 + 400*uk_31 + 2900*uk_32 + 4340*uk_33 + 400*uk_34 + 400*uk_35 + 2900*uk_36 + 4340*uk_37 + 400*uk_38 + 21025*uk_39 + 20*uk_4 + 31465*uk_40 + 2900*uk_41 + 47089*uk_42 + 4340*uk_43 + 400*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 186111448547*uk_47 + 44846132180*uk_48 + 44846132180*uk_49 + 20*uk_5 + 325134458305*uk_50 + 486580534153*uk_51 + 44846132180*uk_52 + 187944057*uk_53 + 247608837*uk_54 + 59664780*uk_55 + 59664780*uk_56 + 432569655*uk_57 + 647362863*uk_58 + 59664780*uk_59 + 145*uk_6 + 326214817*uk_60 + 78605980*uk_61 + 78605980*uk_62 + 569893355*uk_63 + 852874883*uk_64 + 78605980*uk_65 + 18941200*uk_66 + 18941200*uk_67 + 137323700*uk_68 + 205512020*uk_69 + 217*uk_7 + 18941200*uk_70 + 18941200*uk_71 + 137323700*uk_72 + 205512020*uk_73 + 18941200*uk_74 + 995596825*uk_75 + 1489962145*uk_76 + 137323700*uk_77 + 2229805417*uk_78 + 205512020*uk_79 + 20*uk_8 + 18941200*uk_80 + 250047*uk_81 + 329427*uk_82 + 79380*uk_83 + 79380*uk_84 + 575505*uk_85 + 861273*uk_86 + 79380*uk_87 + 434007*uk_88 + 104580*uk_89 + 2242306609*uk_9 + 104580*uk_90 + 758205*uk_91 + 1134693*uk_92 + 104580*uk_93 + 25200*uk_94 + 25200*uk_95 + 182700*uk_96 + 273420*uk_97 + 25200*uk_98 + 25200*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 148176*uk_100 + 218736*uk_101 + 83664*uk_102 + 1361367*uk_103 + 2009637*uk_104 + 768663*uk_105 + 2966607*uk_106 + 1134693*uk_107 + 434007*uk_108 + 6859*uk_109 + 899707*uk_11 + 29963*uk_110 + 5776*uk_111 + 53067*uk_112 + 78337*uk_113 + 29963*uk_114 + 130891*uk_115 + 25232*uk_116 + 231819*uk_117 + 342209*uk_118 + 130891*uk_119 + 3930299*uk_12 + 4864*uk_120 + 44688*uk_121 + 65968*uk_122 + 25232*uk_123 + 410571*uk_124 + 606081*uk_125 + 231819*uk_126 + 894691*uk_127 + 342209*uk_128 + 130891*uk_129 + 757648*uk_13 + 571787*uk_130 + 110224*uk_131 + 1012683*uk_132 + 1494913*uk_133 + 571787*uk_134 + 21248*uk_135 + 195216*uk_136 + 288176*uk_137 + 110224*uk_138 + 1793547*uk_139 + 6960891*uk_14 + 2647617*uk_140 + 1012683*uk_141 + 3908387*uk_142 + 1494913*uk_143 + 571787*uk_144 + 4096*uk_145 + 37632*uk_146 + 55552*uk_147 + 21248*uk_148 + 345744*uk_149 + 10275601*uk_15 + 510384*uk_150 + 195216*uk_151 + 753424*uk_152 + 288176*uk_153 + 110224*uk_154 + 3176523*uk_155 + 4689153*uk_156 + 1793547*uk_157 + 6922083*uk_158 + 2647617*uk_159 + 3930299*uk_16 + 1012683*uk_160 + 10218313*uk_161 + 3908387*uk_162 + 1494913*uk_163 + 571787*uk_164 + 3969*uk_17 + 1197*uk_18 + 5229*uk_19 + 63*uk_2 + 1008*uk_20 + 9261*uk_21 + 13671*uk_22 + 5229*uk_23 + 361*uk_24 + 1577*uk_25 + 304*uk_26 + 2793*uk_27 + 4123*uk_28 + 1577*uk_29 + 19*uk_3 + 6889*uk_30 + 1328*uk_31 + 12201*uk_32 + 18011*uk_33 + 6889*uk_34 + 256*uk_35 + 2352*uk_36 + 3472*uk_37 + 1328*uk_38 + 21609*uk_39 + 83*uk_4 + 31899*uk_40 + 12201*uk_41 + 47089*uk_42 + 18011*uk_43 + 6889*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 42603825571*uk_47 + 186111448547*uk_48 + 35876905744*uk_49 + 16*uk_5 + 329619071523*uk_50 + 486580534153*uk_51 + 186111448547*uk_52 + 187944057*uk_53 + 56681541*uk_54 + 247608837*uk_55 + 47731824*uk_56 + 438536133*uk_57 + 647362863*uk_58 + 247608837*uk_59 + 147*uk_6 + 17094433*uk_60 + 74675681*uk_61 + 14395312*uk_62 + 132256929*uk_63 + 195236419*uk_64 + 74675681*uk_65 + 326214817*uk_66 + 62884784*uk_67 + 577753953*uk_68 + 852874883*uk_69 + 217*uk_7 + 326214817*uk_70 + 12122368*uk_71 + 111374256*uk_72 + 164409616*uk_73 + 62884784*uk_74 + 1023250977*uk_75 + 1510513347*uk_76 + 577753953*uk_77 + 2229805417*uk_78 + 852874883*uk_79 + 83*uk_8 + 326214817*uk_80 + 250047*uk_81 + 75411*uk_82 + 329427*uk_83 + 63504*uk_84 + 583443*uk_85 + 861273*uk_86 + 329427*uk_87 + 22743*uk_88 + 99351*uk_89 + 2242306609*uk_9 + 19152*uk_90 + 175959*uk_91 + 259749*uk_92 + 99351*uk_93 + 434007*uk_94 + 83664*uk_95 + 768663*uk_96 + 1134693*uk_97 + 434007*uk_98 + 16128*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 187740*uk_100 + 273420*uk_101 + 23940*uk_102 + 1398663*uk_103 + 2036979*uk_104 + 178353*uk_105 + 2966607*uk_106 + 259749*uk_107 + 22743*uk_108 + 1728000*uk_109 + 5682360*uk_11 + 273600*uk_110 + 288000*uk_111 + 2145600*uk_112 + 3124800*uk_113 + 273600*uk_114 + 43320*uk_115 + 45600*uk_116 + 339720*uk_117 + 494760*uk_118 + 43320*uk_119 + 899707*uk_12 + 48000*uk_120 + 357600*uk_121 + 520800*uk_122 + 45600*uk_123 + 2664120*uk_124 + 3879960*uk_125 + 339720*uk_126 + 5650680*uk_127 + 494760*uk_128 + 43320*uk_129 + 947060*uk_13 + 6859*uk_130 + 7220*uk_131 + 53789*uk_132 + 78337*uk_133 + 6859*uk_134 + 7600*uk_135 + 56620*uk_136 + 82460*uk_137 + 7220*uk_138 + 421819*uk_139 + 7055597*uk_14 + 614327*uk_140 + 53789*uk_141 + 894691*uk_142 + 78337*uk_143 + 6859*uk_144 + 8000*uk_145 + 59600*uk_146 + 86800*uk_147 + 7600*uk_148 + 444020*uk_149 + 10275601*uk_15 + 646660*uk_150 + 56620*uk_151 + 941780*uk_152 + 82460*uk_153 + 7220*uk_154 + 3307949*uk_155 + 4817617*uk_156 + 421819*uk_157 + 7016261*uk_158 + 614327*uk_159 + 899707*uk_16 + 53789*uk_160 + 10218313*uk_161 + 894691*uk_162 + 78337*uk_163 + 6859*uk_164 + 3969*uk_17 + 7560*uk_18 + 1197*uk_19 + 63*uk_2 + 1260*uk_20 + 9387*uk_21 + 13671*uk_22 + 1197*uk_23 + 14400*uk_24 + 2280*uk_25 + 2400*uk_26 + 17880*uk_27 + 26040*uk_28 + 2280*uk_29 + 120*uk_3 + 361*uk_30 + 380*uk_31 + 2831*uk_32 + 4123*uk_33 + 361*uk_34 + 400*uk_35 + 2980*uk_36 + 4340*uk_37 + 380*uk_38 + 22201*uk_39 + 19*uk_4 + 32333*uk_40 + 2831*uk_41 + 47089*uk_42 + 4123*uk_43 + 361*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 269076793080*uk_47 + 42603825571*uk_48 + 44846132180*uk_49 + 20*uk_5 + 334103684741*uk_50 + 486580534153*uk_51 + 42603825571*uk_52 + 187944057*uk_53 + 357988680*uk_54 + 56681541*uk_55 + 59664780*uk_56 + 444502611*uk_57 + 647362863*uk_58 + 56681541*uk_59 + 149*uk_6 + 681883200*uk_60 + 107964840*uk_61 + 113647200*uk_62 + 846671640*uk_63 + 1233072120*uk_64 + 107964840*uk_65 + 17094433*uk_66 + 17994140*uk_67 + 134056343*uk_68 + 195236419*uk_69 + 217*uk_7 + 17094433*uk_70 + 18941200*uk_71 + 141111940*uk_72 + 205512020*uk_73 + 17994140*uk_74 + 1051283953*uk_75 + 1531064549*uk_76 + 134056343*uk_77 + 2229805417*uk_78 + 195236419*uk_79 + 19*uk_8 + 17094433*uk_80 + 250047*uk_81 + 476280*uk_82 + 75411*uk_83 + 79380*uk_84 + 591381*uk_85 + 861273*uk_86 + 75411*uk_87 + 907200*uk_88 + 143640*uk_89 + 2242306609*uk_9 + 151200*uk_90 + 1126440*uk_91 + 1640520*uk_92 + 143640*uk_93 + 22743*uk_94 + 23940*uk_95 + 178353*uk_96 + 259749*uk_97 + 22743*uk_98 + 25200*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 152208*uk_100 + 218736*uk_101 + 120960*uk_102 + 1436463*uk_103 + 2064321*uk_104 + 1141560*uk_105 + 2966607*uk_106 + 1640520*uk_107 + 907200*uk_108 + 729000*uk_109 + 4261770*uk_11 + 972000*uk_110 + 129600*uk_111 + 1223100*uk_112 + 1757700*uk_113 + 972000*uk_114 + 1296000*uk_115 + 172800*uk_116 + 1630800*uk_117 + 2343600*uk_118 + 1296000*uk_119 + 5682360*uk_12 + 23040*uk_120 + 217440*uk_121 + 312480*uk_122 + 172800*uk_123 + 2052090*uk_124 + 2949030*uk_125 + 1630800*uk_126 + 4238010*uk_127 + 2343600*uk_128 + 1296000*uk_129 + 757648*uk_13 + 1728000*uk_130 + 230400*uk_131 + 2174400*uk_132 + 3124800*uk_133 + 1728000*uk_134 + 30720*uk_135 + 289920*uk_136 + 416640*uk_137 + 230400*uk_138 + 2736120*uk_139 + 7150303*uk_14 + 3932040*uk_140 + 2174400*uk_141 + 5650680*uk_142 + 3124800*uk_143 + 1728000*uk_144 + 4096*uk_145 + 38656*uk_146 + 55552*uk_147 + 30720*uk_148 + 364816*uk_149 + 10275601*uk_15 + 524272*uk_150 + 289920*uk_151 + 753424*uk_152 + 416640*uk_153 + 230400*uk_154 + 3442951*uk_155 + 4947817*uk_156 + 2736120*uk_157 + 7110439*uk_158 + 3932040*uk_159 + 5682360*uk_16 + 2174400*uk_160 + 10218313*uk_161 + 5650680*uk_162 + 3124800*uk_163 + 1728000*uk_164 + 3969*uk_17 + 5670*uk_18 + 7560*uk_19 + 63*uk_2 + 1008*uk_20 + 9513*uk_21 + 13671*uk_22 + 7560*uk_23 + 8100*uk_24 + 10800*uk_25 + 1440*uk_26 + 13590*uk_27 + 19530*uk_28 + 10800*uk_29 + 90*uk_3 + 14400*uk_30 + 1920*uk_31 + 18120*uk_32 + 26040*uk_33 + 14400*uk_34 + 256*uk_35 + 2416*uk_36 + 3472*uk_37 + 1920*uk_38 + 22801*uk_39 + 120*uk_4 + 32767*uk_40 + 18120*uk_41 + 47089*uk_42 + 26040*uk_43 + 14400*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 201807594810*uk_47 + 269076793080*uk_48 + 35876905744*uk_49 + 16*uk_5 + 338588297959*uk_50 + 486580534153*uk_51 + 269076793080*uk_52 + 187944057*uk_53 + 268491510*uk_54 + 357988680*uk_55 + 47731824*uk_56 + 450469089*uk_57 + 647362863*uk_58 + 357988680*uk_59 + 151*uk_6 + 383559300*uk_60 + 511412400*uk_61 + 68188320*uk_62 + 643527270*uk_63 + 924804090*uk_64 + 511412400*uk_65 + 681883200*uk_66 + 90917760*uk_67 + 858036360*uk_68 + 1233072120*uk_69 + 217*uk_7 + 681883200*uk_70 + 12122368*uk_71 + 114404848*uk_72 + 164409616*uk_73 + 90917760*uk_74 + 1079695753*uk_75 + 1551615751*uk_76 + 858036360*uk_77 + 2229805417*uk_78 + 1233072120*uk_79 + 120*uk_8 + 681883200*uk_80 + 250047*uk_81 + 357210*uk_82 + 476280*uk_83 + 63504*uk_84 + 599319*uk_85 + 861273*uk_86 + 476280*uk_87 + 510300*uk_88 + 680400*uk_89 + 2242306609*uk_9 + 90720*uk_90 + 856170*uk_91 + 1230390*uk_92 + 680400*uk_93 + 907200*uk_94 + 120960*uk_95 + 1141560*uk_96 + 1640520*uk_97 + 907200*uk_98 + 16128*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 154224*uk_100 + 218736*uk_101 + 90720*uk_102 + 1474767*uk_103 + 2091663*uk_104 + 867510*uk_105 + 2966607*uk_106 + 1230390*uk_107 + 510300*uk_108 + 438976*uk_109 + 3598828*uk_11 + 519840*uk_110 + 92416*uk_111 + 883728*uk_112 + 1253392*uk_113 + 519840*uk_114 + 615600*uk_115 + 109440*uk_116 + 1046520*uk_117 + 1484280*uk_118 + 615600*uk_119 + 4261770*uk_12 + 19456*uk_120 + 186048*uk_121 + 263872*uk_122 + 109440*uk_123 + 1779084*uk_124 + 2523276*uk_125 + 1046520*uk_126 + 3578764*uk_127 + 1484280*uk_128 + 615600*uk_129 + 757648*uk_13 + 729000*uk_130 + 129600*uk_131 + 1239300*uk_132 + 1757700*uk_133 + 729000*uk_134 + 23040*uk_135 + 220320*uk_136 + 312480*uk_137 + 129600*uk_138 + 2106810*uk_139 + 7245009*uk_14 + 2988090*uk_140 + 1239300*uk_141 + 4238010*uk_142 + 1757700*uk_143 + 729000*uk_144 + 4096*uk_145 + 39168*uk_146 + 55552*uk_147 + 23040*uk_148 + 374544*uk_149 + 10275601*uk_15 + 531216*uk_150 + 220320*uk_151 + 753424*uk_152 + 312480*uk_153 + 129600*uk_154 + 3581577*uk_155 + 5079753*uk_156 + 2106810*uk_157 + 7204617*uk_158 + 2988090*uk_159 + 4261770*uk_16 + 1239300*uk_160 + 10218313*uk_161 + 4238010*uk_162 + 1757700*uk_163 + 729000*uk_164 + 3969*uk_17 + 4788*uk_18 + 5670*uk_19 + 63*uk_2 + 1008*uk_20 + 9639*uk_21 + 13671*uk_22 + 5670*uk_23 + 5776*uk_24 + 6840*uk_25 + 1216*uk_26 + 11628*uk_27 + 16492*uk_28 + 6840*uk_29 + 76*uk_3 + 8100*uk_30 + 1440*uk_31 + 13770*uk_32 + 19530*uk_33 + 8100*uk_34 + 256*uk_35 + 2448*uk_36 + 3472*uk_37 + 1440*uk_38 + 23409*uk_39 + 90*uk_4 + 33201*uk_40 + 13770*uk_41 + 47089*uk_42 + 19530*uk_43 + 8100*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 170415302284*uk_47 + 201807594810*uk_48 + 35876905744*uk_49 + 16*uk_5 + 343072911177*uk_50 + 486580534153*uk_51 + 201807594810*uk_52 + 187944057*uk_53 + 226726164*uk_54 + 268491510*uk_55 + 47731824*uk_56 + 456435567*uk_57 + 647362863*uk_58 + 268491510*uk_59 + 153*uk_6 + 273510928*uk_60 + 323894520*uk_61 + 57581248*uk_62 + 550620684*uk_63 + 780945676*uk_64 + 323894520*uk_65 + 383559300*uk_66 + 68188320*uk_67 + 652050810*uk_68 + 924804090*uk_69 + 217*uk_7 + 383559300*uk_70 + 12122368*uk_71 + 115920144*uk_72 + 164409616*uk_73 + 68188320*uk_74 + 1108486377*uk_75 + 1572166953*uk_76 + 652050810*uk_77 + 2229805417*uk_78 + 924804090*uk_79 + 90*uk_8 + 383559300*uk_80 + 250047*uk_81 + 301644*uk_82 + 357210*uk_83 + 63504*uk_84 + 607257*uk_85 + 861273*uk_86 + 357210*uk_87 + 363888*uk_88 + 430920*uk_89 + 2242306609*uk_9 + 76608*uk_90 + 732564*uk_91 + 1038996*uk_92 + 430920*uk_93 + 510300*uk_94 + 90720*uk_95 + 867510*uk_96 + 1230390*uk_97 + 510300*uk_98 + 16128*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 156240*uk_100 + 218736*uk_101 + 76608*uk_102 + 1513575*uk_103 + 2119005*uk_104 + 742140*uk_105 + 2966607*uk_106 + 1038996*uk_107 + 363888*uk_108 + 474552*uk_109 + 3693534*uk_11 + 462384*uk_110 + 97344*uk_111 + 943020*uk_112 + 1320228*uk_113 + 462384*uk_114 + 450528*uk_115 + 94848*uk_116 + 918840*uk_117 + 1286376*uk_118 + 450528*uk_119 + 3598828*uk_12 + 19968*uk_120 + 193440*uk_121 + 270816*uk_122 + 94848*uk_123 + 1873950*uk_124 + 2623530*uk_125 + 918840*uk_126 + 3672942*uk_127 + 1286376*uk_128 + 450528*uk_129 + 757648*uk_13 + 438976*uk_130 + 92416*uk_131 + 895280*uk_132 + 1253392*uk_133 + 438976*uk_134 + 19456*uk_135 + 188480*uk_136 + 263872*uk_137 + 92416*uk_138 + 1825900*uk_139 + 7339715*uk_14 + 2556260*uk_140 + 895280*uk_141 + 3578764*uk_142 + 1253392*uk_143 + 438976*uk_144 + 4096*uk_145 + 39680*uk_146 + 55552*uk_147 + 19456*uk_148 + 384400*uk_149 + 10275601*uk_15 + 538160*uk_150 + 188480*uk_151 + 753424*uk_152 + 263872*uk_153 + 92416*uk_154 + 3723875*uk_155 + 5213425*uk_156 + 1825900*uk_157 + 7298795*uk_158 + 2556260*uk_159 + 3598828*uk_16 + 895280*uk_160 + 10218313*uk_161 + 3578764*uk_162 + 1253392*uk_163 + 438976*uk_164 + 3969*uk_17 + 4914*uk_18 + 4788*uk_19 + 63*uk_2 + 1008*uk_20 + 9765*uk_21 + 13671*uk_22 + 4788*uk_23 + 6084*uk_24 + 5928*uk_25 + 1248*uk_26 + 12090*uk_27 + 16926*uk_28 + 5928*uk_29 + 78*uk_3 + 5776*uk_30 + 1216*uk_31 + 11780*uk_32 + 16492*uk_33 + 5776*uk_34 + 256*uk_35 + 2480*uk_36 + 3472*uk_37 + 1216*uk_38 + 24025*uk_39 + 76*uk_4 + 33635*uk_40 + 11780*uk_41 + 47089*uk_42 + 16492*uk_43 + 5776*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 174899915502*uk_47 + 170415302284*uk_48 + 35876905744*uk_49 + 16*uk_5 + 347557524395*uk_50 + 486580534153*uk_51 + 170415302284*uk_52 + 187944057*uk_53 + 232692642*uk_54 + 226726164*uk_55 + 47731824*uk_56 + 462402045*uk_57 + 647362863*uk_58 + 226726164*uk_59 + 155*uk_6 + 288095652*uk_60 + 280708584*uk_61 + 59096544*uk_62 + 572497770*uk_63 + 801496878*uk_64 + 280708584*uk_65 + 273510928*uk_66 + 57581248*uk_67 + 557818340*uk_68 + 780945676*uk_69 + 217*uk_7 + 273510928*uk_70 + 12122368*uk_71 + 117435440*uk_72 + 164409616*uk_73 + 57581248*uk_74 + 1137655825*uk_75 + 1592718155*uk_76 + 557818340*uk_77 + 2229805417*uk_78 + 780945676*uk_79 + 76*uk_8 + 273510928*uk_80 + 250047*uk_81 + 309582*uk_82 + 301644*uk_83 + 63504*uk_84 + 615195*uk_85 + 861273*uk_86 + 301644*uk_87 + 383292*uk_88 + 373464*uk_89 + 2242306609*uk_9 + 78624*uk_90 + 761670*uk_91 + 1066338*uk_92 + 373464*uk_93 + 363888*uk_94 + 76608*uk_95 + 742140*uk_96 + 1038996*uk_97 + 363888*uk_98 + 16128*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 158256*uk_100 + 218736*uk_101 + 78624*uk_102 + 1552887*uk_103 + 2146347*uk_104 + 771498*uk_105 + 2966607*uk_106 + 1066338*uk_107 + 383292*uk_108 + 884736*uk_109 + 4545888*uk_11 + 718848*uk_110 + 147456*uk_111 + 1446912*uk_112 + 1999872*uk_113 + 718848*uk_114 + 584064*uk_115 + 119808*uk_116 + 1175616*uk_117 + 1624896*uk_118 + 584064*uk_119 + 3693534*uk_12 + 24576*uk_120 + 241152*uk_121 + 333312*uk_122 + 119808*uk_123 + 2366304*uk_124 + 3270624*uk_125 + 1175616*uk_126 + 4520544*uk_127 + 1624896*uk_128 + 584064*uk_129 + 757648*uk_13 + 474552*uk_130 + 97344*uk_131 + 955188*uk_132 + 1320228*uk_133 + 474552*uk_134 + 19968*uk_135 + 195936*uk_136 + 270816*uk_137 + 97344*uk_138 + 1922622*uk_139 + 7434421*uk_14 + 2657382*uk_140 + 955188*uk_141 + 3672942*uk_142 + 1320228*uk_143 + 474552*uk_144 + 4096*uk_145 + 40192*uk_146 + 55552*uk_147 + 19968*uk_148 + 394384*uk_149 + 10275601*uk_15 + 545104*uk_150 + 195936*uk_151 + 753424*uk_152 + 270816*uk_153 + 97344*uk_154 + 3869893*uk_155 + 5348833*uk_156 + 1922622*uk_157 + 7392973*uk_158 + 2657382*uk_159 + 3693534*uk_16 + 955188*uk_160 + 10218313*uk_161 + 3672942*uk_162 + 1320228*uk_163 + 474552*uk_164 + 3969*uk_17 + 6048*uk_18 + 4914*uk_19 + 63*uk_2 + 1008*uk_20 + 9891*uk_21 + 13671*uk_22 + 4914*uk_23 + 9216*uk_24 + 7488*uk_25 + 1536*uk_26 + 15072*uk_27 + 20832*uk_28 + 7488*uk_29 + 96*uk_3 + 6084*uk_30 + 1248*uk_31 + 12246*uk_32 + 16926*uk_33 + 6084*uk_34 + 256*uk_35 + 2512*uk_36 + 3472*uk_37 + 1248*uk_38 + 24649*uk_39 + 78*uk_4 + 34069*uk_40 + 12246*uk_41 + 47089*uk_42 + 16926*uk_43 + 6084*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 215261434464*uk_47 + 174899915502*uk_48 + 35876905744*uk_49 + 16*uk_5 + 352042137613*uk_50 + 486580534153*uk_51 + 174899915502*uk_52 + 187944057*uk_53 + 286390944*uk_54 + 232692642*uk_55 + 47731824*uk_56 + 468368523*uk_57 + 647362863*uk_58 + 232692642*uk_59 + 157*uk_6 + 436405248*uk_60 + 354579264*uk_61 + 72734208*uk_62 + 713704416*uk_63 + 986457696*uk_64 + 354579264*uk_65 + 288095652*uk_66 + 59096544*uk_67 + 579884838*uk_68 + 801496878*uk_69 + 217*uk_7 + 288095652*uk_70 + 12122368*uk_71 + 118950736*uk_72 + 164409616*uk_73 + 59096544*uk_74 + 1167204097*uk_75 + 1613269357*uk_76 + 579884838*uk_77 + 2229805417*uk_78 + 801496878*uk_79 + 78*uk_8 + 288095652*uk_80 + 250047*uk_81 + 381024*uk_82 + 309582*uk_83 + 63504*uk_84 + 623133*uk_85 + 861273*uk_86 + 309582*uk_87 + 580608*uk_88 + 471744*uk_89 + 2242306609*uk_9 + 96768*uk_90 + 949536*uk_91 + 1312416*uk_92 + 471744*uk_93 + 383292*uk_94 + 78624*uk_95 + 771498*uk_96 + 1066338*uk_97 + 383292*uk_98 + 16128*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 160272*uk_100 + 218736*uk_101 + 96768*uk_102 + 1592703*uk_103 + 2173689*uk_104 + 961632*uk_105 + 2966607*uk_106 + 1312416*uk_107 + 580608*uk_108 + 2197000*uk_109 + 6155890*uk_11 + 1622400*uk_110 + 270400*uk_111 + 2687100*uk_112 + 3667300*uk_113 + 1622400*uk_114 + 1198080*uk_115 + 199680*uk_116 + 1984320*uk_117 + 2708160*uk_118 + 1198080*uk_119 + 4545888*uk_12 + 33280*uk_120 + 330720*uk_121 + 451360*uk_122 + 199680*uk_123 + 3286530*uk_124 + 4485390*uk_125 + 1984320*uk_126 + 6121570*uk_127 + 2708160*uk_128 + 1198080*uk_129 + 757648*uk_13 + 884736*uk_130 + 147456*uk_131 + 1465344*uk_132 + 1999872*uk_133 + 884736*uk_134 + 24576*uk_135 + 244224*uk_136 + 333312*uk_137 + 147456*uk_138 + 2426976*uk_139 + 7529127*uk_14 + 3312288*uk_140 + 1465344*uk_141 + 4520544*uk_142 + 1999872*uk_143 + 884736*uk_144 + 4096*uk_145 + 40704*uk_146 + 55552*uk_147 + 24576*uk_148 + 404496*uk_149 + 10275601*uk_15 + 552048*uk_150 + 244224*uk_151 + 753424*uk_152 + 333312*uk_153 + 147456*uk_154 + 4019679*uk_155 + 5485977*uk_156 + 2426976*uk_157 + 7487151*uk_158 + 3312288*uk_159 + 4545888*uk_16 + 1465344*uk_160 + 10218313*uk_161 + 4520544*uk_162 + 1999872*uk_163 + 884736*uk_164 + 3969*uk_17 + 8190*uk_18 + 6048*uk_19 + 63*uk_2 + 1008*uk_20 + 10017*uk_21 + 13671*uk_22 + 6048*uk_23 + 16900*uk_24 + 12480*uk_25 + 2080*uk_26 + 20670*uk_27 + 28210*uk_28 + 12480*uk_29 + 130*uk_3 + 9216*uk_30 + 1536*uk_31 + 15264*uk_32 + 20832*uk_33 + 9216*uk_34 + 256*uk_35 + 2544*uk_36 + 3472*uk_37 + 1536*uk_38 + 25281*uk_39 + 96*uk_4 + 34503*uk_40 + 15264*uk_41 + 47089*uk_42 + 20832*uk_43 + 9216*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 291499859170*uk_47 + 215261434464*uk_48 + 35876905744*uk_49 + 16*uk_5 + 356526750831*uk_50 + 486580534153*uk_51 + 215261434464*uk_52 + 187944057*uk_53 + 387821070*uk_54 + 286390944*uk_55 + 47731824*uk_56 + 474335001*uk_57 + 647362863*uk_58 + 286390944*uk_59 + 159*uk_6 + 800265700*uk_60 + 590965440*uk_61 + 98494240*uk_62 + 978786510*uk_63 + 1335828130*uk_64 + 590965440*uk_65 + 436405248*uk_66 + 72734208*uk_67 + 722796192*uk_68 + 986457696*uk_69 + 217*uk_7 + 436405248*uk_70 + 12122368*uk_71 + 120466032*uk_72 + 164409616*uk_73 + 72734208*uk_74 + 1197131193*uk_75 + 1633820559*uk_76 + 722796192*uk_77 + 2229805417*uk_78 + 986457696*uk_79 + 96*uk_8 + 436405248*uk_80 + 250047*uk_81 + 515970*uk_82 + 381024*uk_83 + 63504*uk_84 + 631071*uk_85 + 861273*uk_86 + 381024*uk_87 + 1064700*uk_88 + 786240*uk_89 + 2242306609*uk_9 + 131040*uk_90 + 1302210*uk_91 + 1777230*uk_92 + 786240*uk_93 + 580608*uk_94 + 96768*uk_95 + 961632*uk_96 + 1312416*uk_97 + 580608*uk_98 + 16128*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 121716*uk_100 + 164052*uk_101 + 98280*uk_102 + 1633023*uk_103 + 2201031*uk_104 + 1318590*uk_105 + 2966607*uk_106 + 1777230*uk_107 + 1064700*uk_108 + 6859*uk_109 + 899707*uk_11 + 46930*uk_110 + 4332*uk_111 + 58121*uk_112 + 78337*uk_113 + 46930*uk_114 + 321100*uk_115 + 29640*uk_116 + 397670*uk_117 + 535990*uk_118 + 321100*uk_119 + 6155890*uk_12 + 2736*uk_120 + 36708*uk_121 + 49476*uk_122 + 29640*uk_123 + 492499*uk_124 + 663803*uk_125 + 397670*uk_126 + 894691*uk_127 + 535990*uk_128 + 321100*uk_129 + 568236*uk_13 + 2197000*uk_130 + 202800*uk_131 + 2720900*uk_132 + 3667300*uk_133 + 2197000*uk_134 + 18720*uk_135 + 251160*uk_136 + 338520*uk_137 + 202800*uk_138 + 3369730*uk_139 + 7623833*uk_14 + 4541810*uk_140 + 2720900*uk_141 + 6121570*uk_142 + 3667300*uk_143 + 2197000*uk_144 + 1728*uk_145 + 23184*uk_146 + 31248*uk_147 + 18720*uk_148 + 311052*uk_149 + 10275601*uk_15 + 419244*uk_150 + 251160*uk_151 + 565068*uk_152 + 338520*uk_153 + 202800*uk_154 + 4173281*uk_155 + 5624857*uk_156 + 3369730*uk_157 + 7581329*uk_158 + 4541810*uk_159 + 6155890*uk_16 + 2720900*uk_160 + 10218313*uk_161 + 6121570*uk_162 + 3667300*uk_163 + 2197000*uk_164 + 3969*uk_17 + 1197*uk_18 + 8190*uk_19 + 63*uk_2 + 756*uk_20 + 10143*uk_21 + 13671*uk_22 + 8190*uk_23 + 361*uk_24 + 2470*uk_25 + 228*uk_26 + 3059*uk_27 + 4123*uk_28 + 2470*uk_29 + 19*uk_3 + 16900*uk_30 + 1560*uk_31 + 20930*uk_32 + 28210*uk_33 + 16900*uk_34 + 144*uk_35 + 1932*uk_36 + 2604*uk_37 + 1560*uk_38 + 25921*uk_39 + 130*uk_4 + 34937*uk_40 + 20930*uk_41 + 47089*uk_42 + 28210*uk_43 + 16900*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 42603825571*uk_47 + 291499859170*uk_48 + 26907679308*uk_49 + 12*uk_5 + 361011364049*uk_50 + 486580534153*uk_51 + 291499859170*uk_52 + 187944057*uk_53 + 56681541*uk_54 + 387821070*uk_55 + 35798868*uk_56 + 480301479*uk_57 + 647362863*uk_58 + 387821070*uk_59 + 161*uk_6 + 17094433*uk_60 + 116961910*uk_61 + 10796484*uk_62 + 144852827*uk_63 + 195236419*uk_64 + 116961910*uk_65 + 800265700*uk_66 + 73870680*uk_67 + 991098290*uk_68 + 1335828130*uk_69 + 217*uk_7 + 800265700*uk_70 + 6818832*uk_71 + 91485996*uk_72 + 123307212*uk_73 + 73870680*uk_74 + 1227437113*uk_75 + 1654371761*uk_76 + 991098290*uk_77 + 2229805417*uk_78 + 1335828130*uk_79 + 130*uk_8 + 800265700*uk_80 + 250047*uk_81 + 75411*uk_82 + 515970*uk_83 + 47628*uk_84 + 639009*uk_85 + 861273*uk_86 + 515970*uk_87 + 22743*uk_88 + 155610*uk_89 + 2242306609*uk_9 + 14364*uk_90 + 192717*uk_91 + 259749*uk_92 + 155610*uk_93 + 1064700*uk_94 + 98280*uk_95 + 1318590*uk_96 + 1777230*uk_97 + 1064700*uk_98 + 9072*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 164304*uk_100 + 218736*uk_101 + 19152*uk_102 + 1673847*uk_103 + 2228373*uk_104 + 195111*uk_105 + 2966607*uk_106 + 259749*uk_107 + 22743*uk_108 + 571787*uk_109 + 3930299*uk_11 + 130891*uk_110 + 110224*uk_111 + 1122907*uk_112 + 1494913*uk_113 + 130891*uk_114 + 29963*uk_115 + 25232*uk_116 + 257051*uk_117 + 342209*uk_118 + 29963*uk_119 + 899707*uk_12 + 21248*uk_120 + 216464*uk_121 + 288176*uk_122 + 25232*uk_123 + 2205227*uk_124 + 2935793*uk_125 + 257051*uk_126 + 3908387*uk_127 + 342209*uk_128 + 29963*uk_129 + 757648*uk_13 + 6859*uk_130 + 5776*uk_131 + 58843*uk_132 + 78337*uk_133 + 6859*uk_134 + 4864*uk_135 + 49552*uk_136 + 65968*uk_137 + 5776*uk_138 + 504811*uk_139 + 7718539*uk_14 + 672049*uk_140 + 58843*uk_141 + 894691*uk_142 + 78337*uk_143 + 6859*uk_144 + 4096*uk_145 + 41728*uk_146 + 55552*uk_147 + 4864*uk_148 + 425104*uk_149 + 10275601*uk_15 + 565936*uk_150 + 49552*uk_151 + 753424*uk_152 + 65968*uk_153 + 5776*uk_154 + 4330747*uk_155 + 5765473*uk_156 + 504811*uk_157 + 7675507*uk_158 + 672049*uk_159 + 899707*uk_16 + 58843*uk_160 + 10218313*uk_161 + 894691*uk_162 + 78337*uk_163 + 6859*uk_164 + 3969*uk_17 + 5229*uk_18 + 1197*uk_19 + 63*uk_2 + 1008*uk_20 + 10269*uk_21 + 13671*uk_22 + 1197*uk_23 + 6889*uk_24 + 1577*uk_25 + 1328*uk_26 + 13529*uk_27 + 18011*uk_28 + 1577*uk_29 + 83*uk_3 + 361*uk_30 + 304*uk_31 + 3097*uk_32 + 4123*uk_33 + 361*uk_34 + 256*uk_35 + 2608*uk_36 + 3472*uk_37 + 304*uk_38 + 26569*uk_39 + 19*uk_4 + 35371*uk_40 + 3097*uk_41 + 47089*uk_42 + 4123*uk_43 + 361*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 186111448547*uk_47 + 42603825571*uk_48 + 35876905744*uk_49 + 16*uk_5 + 365495977267*uk_50 + 486580534153*uk_51 + 42603825571*uk_52 + 187944057*uk_53 + 247608837*uk_54 + 56681541*uk_55 + 47731824*uk_56 + 486267957*uk_57 + 647362863*uk_58 + 56681541*uk_59 + 163*uk_6 + 326214817*uk_60 + 74675681*uk_61 + 62884784*uk_62 + 640638737*uk_63 + 852874883*uk_64 + 74675681*uk_65 + 17094433*uk_66 + 14395312*uk_67 + 146652241*uk_68 + 195236419*uk_69 + 217*uk_7 + 17094433*uk_70 + 12122368*uk_71 + 123496624*uk_72 + 164409616*uk_73 + 14395312*uk_74 + 1258121857*uk_75 + 1674922963*uk_76 + 146652241*uk_77 + 2229805417*uk_78 + 195236419*uk_79 + 19*uk_8 + 17094433*uk_80 + 250047*uk_81 + 329427*uk_82 + 75411*uk_83 + 63504*uk_84 + 646947*uk_85 + 861273*uk_86 + 75411*uk_87 + 434007*uk_88 + 99351*uk_89 + 2242306609*uk_9 + 83664*uk_90 + 852327*uk_91 + 1134693*uk_92 + 99351*uk_93 + 22743*uk_94 + 19152*uk_95 + 195111*uk_96 + 259749*uk_97 + 22743*uk_98 + 16128*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 166320*uk_100 + 218736*uk_101 + 83664*uk_102 + 1715175*uk_103 + 2255715*uk_104 + 862785*uk_105 + 2966607*uk_106 + 1134693*uk_107 + 434007*uk_108 + 4330747*uk_109 + 7718539*uk_11 + 2205227*uk_110 + 425104*uk_111 + 4383885*uk_112 + 5765473*uk_113 + 2205227*uk_114 + 1122907*uk_115 + 216464*uk_116 + 2232285*uk_117 + 2935793*uk_118 + 1122907*uk_119 + 3930299*uk_12 + 41728*uk_120 + 430320*uk_121 + 565936*uk_122 + 216464*uk_123 + 4437675*uk_124 + 5836215*uk_125 + 2232285*uk_126 + 7675507*uk_127 + 2935793*uk_128 + 1122907*uk_129 + 757648*uk_13 + 571787*uk_130 + 110224*uk_131 + 1136685*uk_132 + 1494913*uk_133 + 571787*uk_134 + 21248*uk_135 + 219120*uk_136 + 288176*uk_137 + 110224*uk_138 + 2259675*uk_139 + 7813245*uk_14 + 2971815*uk_140 + 1136685*uk_141 + 3908387*uk_142 + 1494913*uk_143 + 571787*uk_144 + 4096*uk_145 + 42240*uk_146 + 55552*uk_147 + 21248*uk_148 + 435600*uk_149 + 10275601*uk_15 + 572880*uk_150 + 219120*uk_151 + 753424*uk_152 + 288176*uk_153 + 110224*uk_154 + 4492125*uk_155 + 5907825*uk_156 + 2259675*uk_157 + 7769685*uk_158 + 2971815*uk_159 + 3930299*uk_16 + 1136685*uk_160 + 10218313*uk_161 + 3908387*uk_162 + 1494913*uk_163 + 571787*uk_164 + 3969*uk_17 + 10269*uk_18 + 5229*uk_19 + 63*uk_2 + 1008*uk_20 + 10395*uk_21 + 13671*uk_22 + 5229*uk_23 + 26569*uk_24 + 13529*uk_25 + 2608*uk_26 + 26895*uk_27 + 35371*uk_28 + 13529*uk_29 + 163*uk_3 + 6889*uk_30 + 1328*uk_31 + 13695*uk_32 + 18011*uk_33 + 6889*uk_34 + 256*uk_35 + 2640*uk_36 + 3472*uk_37 + 1328*uk_38 + 27225*uk_39 + 83*uk_4 + 35805*uk_40 + 13695*uk_41 + 47089*uk_42 + 18011*uk_43 + 6889*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 365495977267*uk_47 + 186111448547*uk_48 + 35876905744*uk_49 + 16*uk_5 + 369980590485*uk_50 + 486580534153*uk_51 + 186111448547*uk_52 + 187944057*uk_53 + 486267957*uk_54 + 247608837*uk_55 + 47731824*uk_56 + 492234435*uk_57 + 647362863*uk_58 + 247608837*uk_59 + 165*uk_6 + 1258121857*uk_60 + 640638737*uk_61 + 123496624*uk_62 + 1273558935*uk_63 + 1674922963*uk_64 + 640638737*uk_65 + 326214817*uk_66 + 62884784*uk_67 + 648499335*uk_68 + 852874883*uk_69 + 217*uk_7 + 326214817*uk_70 + 12122368*uk_71 + 125011920*uk_72 + 164409616*uk_73 + 62884784*uk_74 + 1289185425*uk_75 + 1695474165*uk_76 + 648499335*uk_77 + 2229805417*uk_78 + 852874883*uk_79 + 83*uk_8 + 326214817*uk_80 + 250047*uk_81 + 646947*uk_82 + 329427*uk_83 + 63504*uk_84 + 654885*uk_85 + 861273*uk_86 + 329427*uk_87 + 1673847*uk_88 + 852327*uk_89 + 2242306609*uk_9 + 164304*uk_90 + 1694385*uk_91 + 2228373*uk_92 + 852327*uk_93 + 434007*uk_94 + 83664*uk_95 + 862785*uk_96 + 1134693*uk_97 + 434007*uk_98 + 16128*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 126252*uk_100 + 164052*uk_101 + 123228*uk_102 + 1757007*uk_103 + 2283057*uk_104 + 1714923*uk_105 + 2966607*uk_106 + 2228373*uk_107 + 1673847*uk_108 + 778688*uk_109 + 4356476*uk_11 + 1379632*uk_110 + 101568*uk_111 + 1413488*uk_112 + 1836688*uk_113 + 1379632*uk_114 + 2444348*uk_115 + 179952*uk_116 + 2504332*uk_117 + 3254132*uk_118 + 2444348*uk_119 + 7718539*uk_12 + 13248*uk_120 + 184368*uk_121 + 239568*uk_122 + 179952*uk_123 + 2565788*uk_124 + 3333988*uk_125 + 2504332*uk_126 + 4332188*uk_127 + 3254132*uk_128 + 2444348*uk_129 + 568236*uk_13 + 4330747*uk_130 + 318828*uk_131 + 4437023*uk_132 + 5765473*uk_133 + 4330747*uk_134 + 23472*uk_135 + 326652*uk_136 + 424452*uk_137 + 318828*uk_138 + 4545907*uk_139 + 7907951*uk_14 + 5906957*uk_140 + 4437023*uk_141 + 7675507*uk_142 + 5765473*uk_143 + 4330747*uk_144 + 1728*uk_145 + 24048*uk_146 + 31248*uk_147 + 23472*uk_148 + 334668*uk_149 + 10275601*uk_15 + 434868*uk_150 + 326652*uk_151 + 565068*uk_152 + 424452*uk_153 + 318828*uk_154 + 4657463*uk_155 + 6051913*uk_156 + 4545907*uk_157 + 7863863*uk_158 + 5906957*uk_159 + 7718539*uk_16 + 4437023*uk_160 + 10218313*uk_161 + 7675507*uk_162 + 5765473*uk_163 + 4330747*uk_164 + 3969*uk_17 + 5796*uk_18 + 10269*uk_19 + 63*uk_2 + 756*uk_20 + 10521*uk_21 + 13671*uk_22 + 10269*uk_23 + 8464*uk_24 + 14996*uk_25 + 1104*uk_26 + 15364*uk_27 + 19964*uk_28 + 14996*uk_29 + 92*uk_3 + 26569*uk_30 + 1956*uk_31 + 27221*uk_32 + 35371*uk_33 + 26569*uk_34 + 144*uk_35 + 2004*uk_36 + 2604*uk_37 + 1956*uk_38 + 27889*uk_39 + 163*uk_4 + 36239*uk_40 + 27221*uk_41 + 47089*uk_42 + 35371*uk_43 + 26569*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 206292208028*uk_47 + 365495977267*uk_48 + 26907679308*uk_49 + 12*uk_5 + 374465203703*uk_50 + 486580534153*uk_51 + 365495977267*uk_52 + 187944057*uk_53 + 274457988*uk_54 + 486267957*uk_55 + 35798868*uk_56 + 498200913*uk_57 + 647362863*uk_58 + 486267957*uk_59 + 167*uk_6 + 400795792*uk_60 + 710105588*uk_61 + 52277712*uk_62 + 727531492*uk_63 + 945355292*uk_64 + 710105588*uk_65 + 1258121857*uk_66 + 92622468*uk_67 + 1288996013*uk_68 + 1674922963*uk_69 + 217*uk_7 + 1258121857*uk_70 + 6818832*uk_71 + 94895412*uk_72 + 123307212*uk_73 + 92622468*uk_74 + 1320627817*uk_75 + 1716025367*uk_76 + 1288996013*uk_77 + 2229805417*uk_78 + 1674922963*uk_79 + 163*uk_8 + 1258121857*uk_80 + 250047*uk_81 + 365148*uk_82 + 646947*uk_83 + 47628*uk_84 + 662823*uk_85 + 861273*uk_86 + 646947*uk_87 + 533232*uk_88 + 944748*uk_89 + 2242306609*uk_9 + 69552*uk_90 + 967932*uk_91 + 1257732*uk_92 + 944748*uk_93 + 1673847*uk_94 + 123228*uk_95 + 1714923*uk_96 + 2228373*uk_97 + 1673847*uk_98 + 9072*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 127764*uk_100 + 164052*uk_101 + 69552*uk_102 + 1799343*uk_103 + 2310399*uk_104 + 979524*uk_105 + 2966607*uk_106 + 1257732*uk_107 + 533232*uk_108 + 35937*uk_109 + 1562649*uk_11 + 100188*uk_110 + 13068*uk_111 + 184041*uk_112 + 236313*uk_113 + 100188*uk_114 + 279312*uk_115 + 36432*uk_116 + 513084*uk_117 + 658812*uk_118 + 279312*uk_119 + 4356476*uk_12 + 4752*uk_120 + 66924*uk_121 + 85932*uk_122 + 36432*uk_123 + 942513*uk_124 + 1210209*uk_125 + 513084*uk_126 + 1553937*uk_127 + 658812*uk_128 + 279312*uk_129 + 568236*uk_13 + 778688*uk_130 + 101568*uk_131 + 1430416*uk_132 + 1836688*uk_133 + 778688*uk_134 + 13248*uk_135 + 186576*uk_136 + 239568*uk_137 + 101568*uk_138 + 2627612*uk_139 + 8002657*uk_14 + 3373916*uk_140 + 1430416*uk_141 + 4332188*uk_142 + 1836688*uk_143 + 778688*uk_144 + 1728*uk_145 + 24336*uk_146 + 31248*uk_147 + 13248*uk_148 + 342732*uk_149 + 10275601*uk_15 + 440076*uk_150 + 186576*uk_151 + 565068*uk_152 + 239568*uk_153 + 101568*uk_154 + 4826809*uk_155 + 6197737*uk_156 + 2627612*uk_157 + 7958041*uk_158 + 3373916*uk_159 + 4356476*uk_16 + 1430416*uk_160 + 10218313*uk_161 + 4332188*uk_162 + 1836688*uk_163 + 778688*uk_164 + 3969*uk_17 + 2079*uk_18 + 5796*uk_19 + 63*uk_2 + 756*uk_20 + 10647*uk_21 + 13671*uk_22 + 5796*uk_23 + 1089*uk_24 + 3036*uk_25 + 396*uk_26 + 5577*uk_27 + 7161*uk_28 + 3036*uk_29 + 33*uk_3 + 8464*uk_30 + 1104*uk_31 + 15548*uk_32 + 19964*uk_33 + 8464*uk_34 + 144*uk_35 + 2028*uk_36 + 2604*uk_37 + 1104*uk_38 + 28561*uk_39 + 92*uk_4 + 36673*uk_40 + 15548*uk_41 + 47089*uk_42 + 19964*uk_43 + 8464*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 73996118097*uk_47 + 206292208028*uk_48 + 26907679308*uk_49 + 12*uk_5 + 378949816921*uk_50 + 486580534153*uk_51 + 206292208028*uk_52 + 187944057*uk_53 + 98446887*uk_54 + 274457988*uk_55 + 35798868*uk_56 + 504167391*uk_57 + 647362863*uk_58 + 274457988*uk_59 + 169*uk_6 + 51567417*uk_60 + 143763708*uk_61 + 18751788*uk_62 + 264087681*uk_63 + 339094833*uk_64 + 143763708*uk_65 + 400795792*uk_66 + 52277712*uk_67 + 736244444*uk_68 + 945355292*uk_69 + 217*uk_7 + 400795792*uk_70 + 6818832*uk_71 + 96031884*uk_72 + 123307212*uk_73 + 52277712*uk_74 + 1352449033*uk_75 + 1736576569*uk_76 + 736244444*uk_77 + 2229805417*uk_78 + 945355292*uk_79 + 92*uk_8 + 400795792*uk_80 + 250047*uk_81 + 130977*uk_82 + 365148*uk_83 + 47628*uk_84 + 670761*uk_85 + 861273*uk_86 + 365148*uk_87 + 68607*uk_88 + 191268*uk_89 + 2242306609*uk_9 + 24948*uk_90 + 351351*uk_91 + 451143*uk_92 + 191268*uk_93 + 533232*uk_94 + 69552*uk_95 + 979524*uk_96 + 1257732*uk_97 + 533232*uk_98 + 9072*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 172368*uk_100 + 218736*uk_101 + 33264*uk_102 + 1842183*uk_103 + 2337741*uk_104 + 355509*uk_105 + 2966607*uk_106 + 451143*uk_107 + 68607*uk_108 + 3869893*uk_109 + 7434421*uk_11 + 813417*uk_110 + 394384*uk_111 + 4214979*uk_112 + 5348833*uk_113 + 813417*uk_114 + 170973*uk_115 + 82896*uk_116 + 885951*uk_117 + 1124277*uk_118 + 170973*uk_119 + 1562649*uk_12 + 40192*uk_120 + 429552*uk_121 + 545104*uk_122 + 82896*uk_123 + 4590837*uk_124 + 5825799*uk_125 + 885951*uk_126 + 7392973*uk_127 + 1124277*uk_128 + 170973*uk_129 + 757648*uk_13 + 35937*uk_130 + 17424*uk_131 + 186219*uk_132 + 236313*uk_133 + 35937*uk_134 + 8448*uk_135 + 90288*uk_136 + 114576*uk_137 + 17424*uk_138 + 964953*uk_139 + 8097363*uk_14 + 1224531*uk_140 + 186219*uk_141 + 1553937*uk_142 + 236313*uk_143 + 35937*uk_144 + 4096*uk_145 + 43776*uk_146 + 55552*uk_147 + 8448*uk_148 + 467856*uk_149 + 10275601*uk_15 + 593712*uk_150 + 90288*uk_151 + 753424*uk_152 + 114576*uk_153 + 17424*uk_154 + 5000211*uk_155 + 6345297*uk_156 + 964953*uk_157 + 8052219*uk_158 + 1224531*uk_159 + 1562649*uk_16 + 186219*uk_160 + 10218313*uk_161 + 1553937*uk_162 + 236313*uk_163 + 35937*uk_164 + 3969*uk_17 + 9891*uk_18 + 2079*uk_19 + 63*uk_2 + 1008*uk_20 + 10773*uk_21 + 13671*uk_22 + 2079*uk_23 + 24649*uk_24 + 5181*uk_25 + 2512*uk_26 + 26847*uk_27 + 34069*uk_28 + 5181*uk_29 + 157*uk_3 + 1089*uk_30 + 528*uk_31 + 5643*uk_32 + 7161*uk_33 + 1089*uk_34 + 256*uk_35 + 2736*uk_36 + 3472*uk_37 + 528*uk_38 + 29241*uk_39 + 33*uk_4 + 37107*uk_40 + 5643*uk_41 + 47089*uk_42 + 7161*uk_43 + 1089*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 352042137613*uk_47 + 73996118097*uk_48 + 35876905744*uk_49 + 16*uk_5 + 383434430139*uk_50 + 486580534153*uk_51 + 73996118097*uk_52 + 187944057*uk_53 + 468368523*uk_54 + 98446887*uk_55 + 47731824*uk_56 + 510133869*uk_57 + 647362863*uk_58 + 98446887*uk_59 + 171*uk_6 + 1167204097*uk_60 + 245335893*uk_61 + 118950736*uk_62 + 1271285991*uk_63 + 1613269357*uk_64 + 245335893*uk_65 + 51567417*uk_66 + 25002384*uk_67 + 267212979*uk_68 + 339094833*uk_69 + 217*uk_7 + 51567417*uk_70 + 12122368*uk_71 + 129557808*uk_72 + 164409616*uk_73 + 25002384*uk_74 + 1384649073*uk_75 + 1757127771*uk_76 + 267212979*uk_77 + 2229805417*uk_78 + 339094833*uk_79 + 33*uk_8 + 51567417*uk_80 + 250047*uk_81 + 623133*uk_82 + 130977*uk_83 + 63504*uk_84 + 678699*uk_85 + 861273*uk_86 + 130977*uk_87 + 1552887*uk_88 + 326403*uk_89 + 2242306609*uk_9 + 158256*uk_90 + 1691361*uk_91 + 2146347*uk_92 + 326403*uk_93 + 68607*uk_94 + 33264*uk_95 + 355509*uk_96 + 451143*uk_97 + 68607*uk_98 + 16128*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 130788*uk_100 + 164052*uk_101 + 118692*uk_102 + 1885527*uk_103 + 2365083*uk_104 + 1711143*uk_105 + 2966607*uk_106 + 2146347*uk_107 + 1552887*uk_108 + 1906624*uk_109 + 5871772*uk_11 + 2414032*uk_110 + 184512*uk_111 + 2660048*uk_112 + 3336592*uk_113 + 2414032*uk_114 + 3056476*uk_115 + 233616*uk_116 + 3367964*uk_117 + 4224556*uk_118 + 3056476*uk_119 + 7434421*uk_12 + 17856*uk_120 + 257424*uk_121 + 322896*uk_122 + 233616*uk_123 + 3711196*uk_124 + 4655084*uk_125 + 3367964*uk_126 + 5839036*uk_127 + 4224556*uk_128 + 3056476*uk_129 + 568236*uk_13 + 3869893*uk_130 + 295788*uk_131 + 4264277*uk_132 + 5348833*uk_133 + 3869893*uk_134 + 22608*uk_135 + 325932*uk_136 + 408828*uk_137 + 295788*uk_138 + 4698853*uk_139 + 8192069*uk_14 + 5893937*uk_140 + 4264277*uk_141 + 7392973*uk_142 + 5348833*uk_143 + 3869893*uk_144 + 1728*uk_145 + 24912*uk_146 + 31248*uk_147 + 22608*uk_148 + 359148*uk_149 + 10275601*uk_15 + 450492*uk_150 + 325932*uk_151 + 565068*uk_152 + 408828*uk_153 + 295788*uk_154 + 5177717*uk_155 + 6494593*uk_156 + 4698853*uk_157 + 8146397*uk_158 + 5893937*uk_159 + 7434421*uk_16 + 4264277*uk_160 + 10218313*uk_161 + 7392973*uk_162 + 5348833*uk_163 + 3869893*uk_164 + 3969*uk_17 + 7812*uk_18 + 9891*uk_19 + 63*uk_2 + 756*uk_20 + 10899*uk_21 + 13671*uk_22 + 9891*uk_23 + 15376*uk_24 + 19468*uk_25 + 1488*uk_26 + 21452*uk_27 + 26908*uk_28 + 19468*uk_29 + 124*uk_3 + 24649*uk_30 + 1884*uk_31 + 27161*uk_32 + 34069*uk_33 + 24649*uk_34 + 144*uk_35 + 2076*uk_36 + 2604*uk_37 + 1884*uk_38 + 29929*uk_39 + 157*uk_4 + 37541*uk_40 + 27161*uk_41 + 47089*uk_42 + 34069*uk_43 + 24649*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 278046019516*uk_47 + 352042137613*uk_48 + 26907679308*uk_49 + 12*uk_5 + 387919043357*uk_50 + 486580534153*uk_51 + 352042137613*uk_52 + 187944057*uk_53 + 369921636*uk_54 + 468368523*uk_55 + 35798868*uk_56 + 516100347*uk_57 + 647362863*uk_58 + 468368523*uk_59 + 173*uk_6 + 728099728*uk_60 + 921868204*uk_61 + 70461264*uk_62 + 1015816556*uk_63 + 1274174524*uk_64 + 921868204*uk_65 + 1167204097*uk_66 + 89213052*uk_67 + 1286154833*uk_68 + 1613269357*uk_69 + 217*uk_7 + 1167204097*uk_70 + 6818832*uk_71 + 98304828*uk_72 + 123307212*uk_73 + 89213052*uk_74 + 1417227937*uk_75 + 1777678973*uk_76 + 1286154833*uk_77 + 2229805417*uk_78 + 1613269357*uk_79 + 157*uk_8 + 1167204097*uk_80 + 250047*uk_81 + 492156*uk_82 + 623133*uk_83 + 47628*uk_84 + 686637*uk_85 + 861273*uk_86 + 623133*uk_87 + 968688*uk_88 + 1226484*uk_89 + 2242306609*uk_9 + 93744*uk_90 + 1351476*uk_91 + 1695204*uk_92 + 1226484*uk_93 + 1552887*uk_94 + 118692*uk_95 + 1711143*uk_96 + 2146347*uk_97 + 1552887*uk_98 + 9072*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 132300*uk_100 + 164052*uk_101 + 93744*uk_102 + 1929375*uk_103 + 2392425*uk_104 + 1367100*uk_105 + 2966607*uk_106 + 1695204*uk_107 + 968688*uk_108 + 1092727*uk_109 + 4877359*uk_11 + 1315516*uk_110 + 127308*uk_111 + 1856575*uk_112 + 2302153*uk_113 + 1315516*uk_114 + 1583728*uk_115 + 153264*uk_116 + 2235100*uk_117 + 2771524*uk_118 + 1583728*uk_119 + 5871772*uk_12 + 14832*uk_120 + 216300*uk_121 + 268212*uk_122 + 153264*uk_123 + 3154375*uk_124 + 3911425*uk_125 + 2235100*uk_126 + 4850167*uk_127 + 2771524*uk_128 + 1583728*uk_129 + 568236*uk_13 + 1906624*uk_130 + 184512*uk_131 + 2690800*uk_132 + 3336592*uk_133 + 1906624*uk_134 + 17856*uk_135 + 260400*uk_136 + 322896*uk_137 + 184512*uk_138 + 3797500*uk_139 + 8286775*uk_14 + 4708900*uk_140 + 2690800*uk_141 + 5839036*uk_142 + 3336592*uk_143 + 1906624*uk_144 + 1728*uk_145 + 25200*uk_146 + 31248*uk_147 + 17856*uk_148 + 367500*uk_149 + 10275601*uk_15 + 455700*uk_150 + 260400*uk_151 + 565068*uk_152 + 322896*uk_153 + 184512*uk_154 + 5359375*uk_155 + 6645625*uk_156 + 3797500*uk_157 + 8240575*uk_158 + 4708900*uk_159 + 5871772*uk_16 + 2690800*uk_160 + 10218313*uk_161 + 5839036*uk_162 + 3336592*uk_163 + 1906624*uk_164 + 3969*uk_17 + 6489*uk_18 + 7812*uk_19 + 63*uk_2 + 756*uk_20 + 11025*uk_21 + 13671*uk_22 + 7812*uk_23 + 10609*uk_24 + 12772*uk_25 + 1236*uk_26 + 18025*uk_27 + 22351*uk_28 + 12772*uk_29 + 103*uk_3 + 15376*uk_30 + 1488*uk_31 + 21700*uk_32 + 26908*uk_33 + 15376*uk_34 + 144*uk_35 + 2100*uk_36 + 2604*uk_37 + 1488*uk_38 + 30625*uk_39 + 124*uk_4 + 37975*uk_40 + 21700*uk_41 + 47089*uk_42 + 26908*uk_43 + 15376*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 230957580727*uk_47 + 278046019516*uk_48 + 26907679308*uk_49 + 12*uk_5 + 392403656575*uk_50 + 486580534153*uk_51 + 278046019516*uk_52 + 187944057*uk_53 + 307273617*uk_54 + 369921636*uk_55 + 35798868*uk_56 + 522066825*uk_57 + 647362863*uk_58 + 369921636*uk_59 + 175*uk_6 + 502367977*uk_60 + 604792516*uk_61 + 58528308*uk_62 + 853537825*uk_63 + 1058386903*uk_64 + 604792516*uk_65 + 728099728*uk_66 + 70461264*uk_67 + 1027560100*uk_68 + 1274174524*uk_69 + 217*uk_7 + 728099728*uk_70 + 6818832*uk_71 + 99441300*uk_72 + 123307212*uk_73 + 70461264*uk_74 + 1450185625*uk_75 + 1798230175*uk_76 + 1027560100*uk_77 + 2229805417*uk_78 + 1274174524*uk_79 + 124*uk_8 + 728099728*uk_80 + 250047*uk_81 + 408807*uk_82 + 492156*uk_83 + 47628*uk_84 + 694575*uk_85 + 861273*uk_86 + 492156*uk_87 + 668367*uk_88 + 804636*uk_89 + 2242306609*uk_9 + 77868*uk_90 + 1135575*uk_91 + 1408113*uk_92 + 804636*uk_93 + 968688*uk_94 + 93744*uk_95 + 1367100*uk_96 + 1695204*uk_97 + 968688*uk_98 + 9072*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 133812*uk_100 + 164052*uk_101 + 77868*uk_102 + 1973727*uk_103 + 2419767*uk_104 + 1148553*uk_105 + 2966607*uk_106 + 1408113*uk_107 + 668367*uk_108 + 830584*uk_109 + 4451182*uk_11 + 910108*uk_110 + 106032*uk_111 + 1563972*uk_112 + 1917412*uk_113 + 910108*uk_114 + 997246*uk_115 + 116184*uk_116 + 1713714*uk_117 + 2100994*uk_118 + 997246*uk_119 + 4877359*uk_12 + 13536*uk_120 + 199656*uk_121 + 244776*uk_122 + 116184*uk_123 + 2944926*uk_124 + 3610446*uk_125 + 1713714*uk_126 + 4426366*uk_127 + 2100994*uk_128 + 997246*uk_129 + 568236*uk_13 + 1092727*uk_130 + 127308*uk_131 + 1877793*uk_132 + 2302153*uk_133 + 1092727*uk_134 + 14832*uk_135 + 218772*uk_136 + 268212*uk_137 + 127308*uk_138 + 3226887*uk_139 + 8381481*uk_14 + 3956127*uk_140 + 1877793*uk_141 + 4850167*uk_142 + 2302153*uk_143 + 1092727*uk_144 + 1728*uk_145 + 25488*uk_146 + 31248*uk_147 + 14832*uk_148 + 375948*uk_149 + 10275601*uk_15 + 460908*uk_150 + 218772*uk_151 + 565068*uk_152 + 268212*uk_153 + 127308*uk_154 + 5545233*uk_155 + 6798393*uk_156 + 3226887*uk_157 + 8334753*uk_158 + 3956127*uk_159 + 4877359*uk_16 + 1877793*uk_160 + 10218313*uk_161 + 4850167*uk_162 + 2302153*uk_163 + 1092727*uk_164 + 3969*uk_17 + 5922*uk_18 + 6489*uk_19 + 63*uk_2 + 756*uk_20 + 11151*uk_21 + 13671*uk_22 + 6489*uk_23 + 8836*uk_24 + 9682*uk_25 + 1128*uk_26 + 16638*uk_27 + 20398*uk_28 + 9682*uk_29 + 94*uk_3 + 10609*uk_30 + 1236*uk_31 + 18231*uk_32 + 22351*uk_33 + 10609*uk_34 + 144*uk_35 + 2124*uk_36 + 2604*uk_37 + 1236*uk_38 + 31329*uk_39 + 103*uk_4 + 38409*uk_40 + 18231*uk_41 + 47089*uk_42 + 22351*uk_43 + 10609*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 210776821246*uk_47 + 230957580727*uk_48 + 26907679308*uk_49 + 12*uk_5 + 396888269793*uk_50 + 486580534153*uk_51 + 230957580727*uk_52 + 187944057*uk_53 + 280424466*uk_54 + 307273617*uk_55 + 35798868*uk_56 + 528033303*uk_57 + 647362863*uk_58 + 307273617*uk_59 + 177*uk_6 + 418411108*uk_60 + 458471746*uk_61 + 53414184*uk_62 + 787859214*uk_63 + 965906494*uk_64 + 458471746*uk_65 + 502367977*uk_66 + 58528308*uk_67 + 863292543*uk_68 + 1058386903*uk_69 + 217*uk_7 + 502367977*uk_70 + 6818832*uk_71 + 100577772*uk_72 + 123307212*uk_73 + 58528308*uk_74 + 1483522137*uk_75 + 1818781377*uk_76 + 863292543*uk_77 + 2229805417*uk_78 + 1058386903*uk_79 + 103*uk_8 + 502367977*uk_80 + 250047*uk_81 + 373086*uk_82 + 408807*uk_83 + 47628*uk_84 + 702513*uk_85 + 861273*uk_86 + 408807*uk_87 + 556668*uk_88 + 609966*uk_89 + 2242306609*uk_9 + 71064*uk_90 + 1048194*uk_91 + 1285074*uk_92 + 609966*uk_93 + 668367*uk_94 + 77868*uk_95 + 1148553*uk_96 + 1408113*uk_97 + 668367*uk_98 + 9072*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 135324*uk_100 + 164052*uk_101 + 71064*uk_102 + 2018583*uk_103 + 2447109*uk_104 + 1060038*uk_105 + 2966607*uk_106 + 1285074*uk_107 + 556668*uk_108 + 912673*uk_109 + 4593241*uk_11 + 884446*uk_110 + 112908*uk_111 + 1684211*uk_112 + 2041753*uk_113 + 884446*uk_114 + 857092*uk_115 + 109416*uk_116 + 1632122*uk_117 + 1978606*uk_118 + 857092*uk_119 + 4451182*uk_12 + 13968*uk_120 + 208356*uk_121 + 252588*uk_122 + 109416*uk_123 + 3107977*uk_124 + 3767771*uk_125 + 1632122*uk_126 + 4567633*uk_127 + 1978606*uk_128 + 857092*uk_129 + 568236*uk_13 + 830584*uk_130 + 106032*uk_131 + 1581644*uk_132 + 1917412*uk_133 + 830584*uk_134 + 13536*uk_135 + 201912*uk_136 + 244776*uk_137 + 106032*uk_138 + 3011854*uk_139 + 8476187*uk_14 + 3651242*uk_140 + 1581644*uk_141 + 4426366*uk_142 + 1917412*uk_143 + 830584*uk_144 + 1728*uk_145 + 25776*uk_146 + 31248*uk_147 + 13536*uk_148 + 384492*uk_149 + 10275601*uk_15 + 466116*uk_150 + 201912*uk_151 + 565068*uk_152 + 244776*uk_153 + 106032*uk_154 + 5735339*uk_155 + 6952897*uk_156 + 3011854*uk_157 + 8428931*uk_158 + 3651242*uk_159 + 4451182*uk_16 + 1581644*uk_160 + 10218313*uk_161 + 4426366*uk_162 + 1917412*uk_163 + 830584*uk_164 + 3969*uk_17 + 6111*uk_18 + 5922*uk_19 + 63*uk_2 + 756*uk_20 + 11277*uk_21 + 13671*uk_22 + 5922*uk_23 + 9409*uk_24 + 9118*uk_25 + 1164*uk_26 + 17363*uk_27 + 21049*uk_28 + 9118*uk_29 + 97*uk_3 + 8836*uk_30 + 1128*uk_31 + 16826*uk_32 + 20398*uk_33 + 8836*uk_34 + 144*uk_35 + 2148*uk_36 + 2604*uk_37 + 1128*uk_38 + 32041*uk_39 + 94*uk_4 + 38843*uk_40 + 16826*uk_41 + 47089*uk_42 + 20398*uk_43 + 8836*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 217503741073*uk_47 + 210776821246*uk_48 + 26907679308*uk_49 + 12*uk_5 + 401372883011*uk_50 + 486580534153*uk_51 + 210776821246*uk_52 + 187944057*uk_53 + 289374183*uk_54 + 280424466*uk_55 + 35798868*uk_56 + 533999781*uk_57 + 647362863*uk_58 + 280424466*uk_59 + 179*uk_6 + 445544377*uk_60 + 431764654*uk_61 + 55118892*uk_62 + 822190139*uk_63 + 996733297*uk_64 + 431764654*uk_65 + 418411108*uk_66 + 53414184*uk_67 + 796761578*uk_68 + 965906494*uk_69 + 217*uk_7 + 418411108*uk_70 + 6818832*uk_71 + 101714244*uk_72 + 123307212*uk_73 + 53414184*uk_74 + 1517237473*uk_75 + 1839332579*uk_76 + 796761578*uk_77 + 2229805417*uk_78 + 965906494*uk_79 + 94*uk_8 + 418411108*uk_80 + 250047*uk_81 + 384993*uk_82 + 373086*uk_83 + 47628*uk_84 + 710451*uk_85 + 861273*uk_86 + 373086*uk_87 + 592767*uk_88 + 574434*uk_89 + 2242306609*uk_9 + 73332*uk_90 + 1093869*uk_91 + 1326087*uk_92 + 574434*uk_93 + 556668*uk_94 + 71064*uk_95 + 1060038*uk_96 + 1285074*uk_97 + 556668*uk_98 + 9072*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 136836*uk_100 + 164052*uk_101 + 73332*uk_102 + 2063943*uk_103 + 2474451*uk_104 + 1106091*uk_105 + 2966607*uk_106 + 1326087*uk_107 + 592767*uk_108 + 1404928*uk_109 + 5303536*uk_11 + 1216768*uk_110 + 150528*uk_111 + 2270464*uk_112 + 2722048*uk_113 + 1216768*uk_114 + 1053808*uk_115 + 130368*uk_116 + 1966384*uk_117 + 2357488*uk_118 + 1053808*uk_119 + 4593241*uk_12 + 16128*uk_120 + 243264*uk_121 + 291648*uk_122 + 130368*uk_123 + 3669232*uk_124 + 4399024*uk_125 + 1966384*uk_126 + 5273968*uk_127 + 2357488*uk_128 + 1053808*uk_129 + 568236*uk_13 + 912673*uk_130 + 112908*uk_131 + 1703029*uk_132 + 2041753*uk_133 + 912673*uk_134 + 13968*uk_135 + 210684*uk_136 + 252588*uk_137 + 112908*uk_138 + 3177817*uk_139 + 8570893*uk_14 + 3809869*uk_140 + 1703029*uk_141 + 4567633*uk_142 + 2041753*uk_143 + 912673*uk_144 + 1728*uk_145 + 26064*uk_146 + 31248*uk_147 + 13968*uk_148 + 393132*uk_149 + 10275601*uk_15 + 471324*uk_150 + 210684*uk_151 + 565068*uk_152 + 252588*uk_153 + 112908*uk_154 + 5929741*uk_155 + 7109137*uk_156 + 3177817*uk_157 + 8523109*uk_158 + 3809869*uk_159 + 4593241*uk_16 + 1703029*uk_160 + 10218313*uk_161 + 4567633*uk_162 + 2041753*uk_163 + 912673*uk_164 + 3969*uk_17 + 7056*uk_18 + 6111*uk_19 + 63*uk_2 + 756*uk_20 + 11403*uk_21 + 13671*uk_22 + 6111*uk_23 + 12544*uk_24 + 10864*uk_25 + 1344*uk_26 + 20272*uk_27 + 24304*uk_28 + 10864*uk_29 + 112*uk_3 + 9409*uk_30 + 1164*uk_31 + 17557*uk_32 + 21049*uk_33 + 9409*uk_34 + 144*uk_35 + 2172*uk_36 + 2604*uk_37 + 1164*uk_38 + 32761*uk_39 + 97*uk_4 + 39277*uk_40 + 17557*uk_41 + 47089*uk_42 + 21049*uk_43 + 9409*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 251138340208*uk_47 + 217503741073*uk_48 + 26907679308*uk_49 + 12*uk_5 + 405857496229*uk_50 + 486580534153*uk_51 + 217503741073*uk_52 + 187944057*uk_53 + 334122768*uk_54 + 289374183*uk_55 + 35798868*uk_56 + 539966259*uk_57 + 647362863*uk_58 + 289374183*uk_59 + 181*uk_6 + 593996032*uk_60 + 514442992*uk_61 + 63642432*uk_62 + 959940016*uk_63 + 1150867312*uk_64 + 514442992*uk_65 + 445544377*uk_66 + 55118892*uk_67 + 831376621*uk_68 + 996733297*uk_69 + 217*uk_7 + 445544377*uk_70 + 6818832*uk_71 + 102850716*uk_72 + 123307212*uk_73 + 55118892*uk_74 + 1551331633*uk_75 + 1859883781*uk_76 + 831376621*uk_77 + 2229805417*uk_78 + 996733297*uk_79 + 97*uk_8 + 445544377*uk_80 + 250047*uk_81 + 444528*uk_82 + 384993*uk_83 + 47628*uk_84 + 718389*uk_85 + 861273*uk_86 + 384993*uk_87 + 790272*uk_88 + 684432*uk_89 + 2242306609*uk_9 + 84672*uk_90 + 1277136*uk_91 + 1531152*uk_92 + 684432*uk_93 + 592767*uk_94 + 73332*uk_95 + 1106091*uk_96 + 1326087*uk_97 + 592767*uk_98 + 9072*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 138348*uk_100 + 164052*uk_101 + 84672*uk_102 + 2109807*uk_103 + 2501793*uk_104 + 1291248*uk_105 + 2966607*uk_106 + 1531152*uk_107 + 790272*uk_108 + 2685619*uk_109 + 6582067*uk_11 + 2163952*uk_110 + 231852*uk_111 + 3535743*uk_112 + 4192657*uk_113 + 2163952*uk_114 + 1743616*uk_115 + 186816*uk_116 + 2848944*uk_117 + 3378256*uk_118 + 1743616*uk_119 + 5303536*uk_12 + 20016*uk_120 + 305244*uk_121 + 361956*uk_122 + 186816*uk_123 + 4654971*uk_124 + 5519829*uk_125 + 2848944*uk_126 + 6545371*uk_127 + 3378256*uk_128 + 1743616*uk_129 + 568236*uk_13 + 1404928*uk_130 + 150528*uk_131 + 2295552*uk_132 + 2722048*uk_133 + 1404928*uk_134 + 16128*uk_135 + 245952*uk_136 + 291648*uk_137 + 150528*uk_138 + 3750768*uk_139 + 8665599*uk_14 + 4447632*uk_140 + 2295552*uk_141 + 5273968*uk_142 + 2722048*uk_143 + 1404928*uk_144 + 1728*uk_145 + 26352*uk_146 + 31248*uk_147 + 16128*uk_148 + 401868*uk_149 + 10275601*uk_15 + 476532*uk_150 + 245952*uk_151 + 565068*uk_152 + 291648*uk_153 + 150528*uk_154 + 6128487*uk_155 + 7267113*uk_156 + 3750768*uk_157 + 8617287*uk_158 + 4447632*uk_159 + 5303536*uk_16 + 2295552*uk_160 + 10218313*uk_161 + 5273968*uk_162 + 2722048*uk_163 + 1404928*uk_164 + 3969*uk_17 + 8757*uk_18 + 7056*uk_19 + 63*uk_2 + 756*uk_20 + 11529*uk_21 + 13671*uk_22 + 7056*uk_23 + 19321*uk_24 + 15568*uk_25 + 1668*uk_26 + 25437*uk_27 + 30163*uk_28 + 15568*uk_29 + 139*uk_3 + 12544*uk_30 + 1344*uk_31 + 20496*uk_32 + 24304*uk_33 + 12544*uk_34 + 144*uk_35 + 2196*uk_36 + 2604*uk_37 + 1344*uk_38 + 33489*uk_39 + 112*uk_4 + 39711*uk_40 + 20496*uk_41 + 47089*uk_42 + 24304*uk_43 + 12544*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 311680618651*uk_47 + 251138340208*uk_48 + 26907679308*uk_49 + 12*uk_5 + 410342109447*uk_50 + 486580534153*uk_51 + 251138340208*uk_52 + 187944057*uk_53 + 414670221*uk_54 + 334122768*uk_55 + 35798868*uk_56 + 545932737*uk_57 + 647362863*uk_58 + 334122768*uk_59 + 183*uk_6 + 914907313*uk_60 + 737191504*uk_61 + 78984804*uk_62 + 1204518261*uk_63 + 1428308539*uk_64 + 737191504*uk_65 + 593996032*uk_66 + 63642432*uk_67 + 970547088*uk_68 + 1150867312*uk_69 + 217*uk_7 + 593996032*uk_70 + 6818832*uk_71 + 103987188*uk_72 + 123307212*uk_73 + 63642432*uk_74 + 1585804617*uk_75 + 1880434983*uk_76 + 970547088*uk_77 + 2229805417*uk_78 + 1150867312*uk_79 + 112*uk_8 + 593996032*uk_80 + 250047*uk_81 + 551691*uk_82 + 444528*uk_83 + 47628*uk_84 + 726327*uk_85 + 861273*uk_86 + 444528*uk_87 + 1217223*uk_88 + 980784*uk_89 + 2242306609*uk_9 + 105084*uk_90 + 1602531*uk_91 + 1900269*uk_92 + 980784*uk_93 + 790272*uk_94 + 84672*uk_95 + 1291248*uk_96 + 1531152*uk_97 + 790272*uk_98 + 9072*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 139860*uk_100 + 164052*uk_101 + 105084*uk_102 + 2156175*uk_103 + 2529135*uk_104 + 1620045*uk_105 + 2966607*uk_106 + 1900269*uk_107 + 1217223*uk_108 + 5639752*uk_109 + 8428834*uk_11 + 4404076*uk_110 + 380208*uk_111 + 5861540*uk_112 + 6875428*uk_113 + 4404076*uk_114 + 3439138*uk_115 + 296904*uk_116 + 4577270*uk_117 + 5369014*uk_118 + 3439138*uk_119 + 6582067*uk_12 + 25632*uk_120 + 395160*uk_121 + 463512*uk_122 + 296904*uk_123 + 6092050*uk_124 + 7145810*uk_125 + 4577270*uk_126 + 8381842*uk_127 + 5369014*uk_128 + 3439138*uk_129 + 568236*uk_13 + 2685619*uk_130 + 231852*uk_131 + 3574385*uk_132 + 4192657*uk_133 + 2685619*uk_134 + 20016*uk_135 + 308580*uk_136 + 361956*uk_137 + 231852*uk_138 + 4757275*uk_139 + 8760305*uk_14 + 5580155*uk_140 + 3574385*uk_141 + 6545371*uk_142 + 4192657*uk_143 + 2685619*uk_144 + 1728*uk_145 + 26640*uk_146 + 31248*uk_147 + 20016*uk_148 + 410700*uk_149 + 10275601*uk_15 + 481740*uk_150 + 308580*uk_151 + 565068*uk_152 + 361956*uk_153 + 231852*uk_154 + 6331625*uk_155 + 7426825*uk_156 + 4757275*uk_157 + 8711465*uk_158 + 5580155*uk_159 + 6582067*uk_16 + 3574385*uk_160 + 10218313*uk_161 + 6545371*uk_162 + 4192657*uk_163 + 2685619*uk_164 + 3969*uk_17 + 11214*uk_18 + 8757*uk_19 + 63*uk_2 + 756*uk_20 + 11655*uk_21 + 13671*uk_22 + 8757*uk_23 + 31684*uk_24 + 24742*uk_25 + 2136*uk_26 + 32930*uk_27 + 38626*uk_28 + 24742*uk_29 + 178*uk_3 + 19321*uk_30 + 1668*uk_31 + 25715*uk_32 + 30163*uk_33 + 19321*uk_34 + 144*uk_35 + 2220*uk_36 + 2604*uk_37 + 1668*uk_38 + 34225*uk_39 + 139*uk_4 + 40145*uk_40 + 25715*uk_41 + 47089*uk_42 + 30163*uk_43 + 19321*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 399130576402*uk_47 + 311680618651*uk_48 + 26907679308*uk_49 + 12*uk_5 + 414826722665*uk_50 + 486580534153*uk_51 + 311680618651*uk_52 + 187944057*uk_53 + 531016542*uk_54 + 414670221*uk_55 + 35798868*uk_56 + 551899215*uk_57 + 647362863*uk_58 + 414670221*uk_59 + 185*uk_6 + 1500332452*uk_60 + 1171607926*uk_61 + 101146008*uk_62 + 1559334290*uk_63 + 1829056978*uk_64 + 1171607926*uk_65 + 914907313*uk_66 + 78984804*uk_67 + 1217682395*uk_68 + 1428308539*uk_69 + 217*uk_7 + 914907313*uk_70 + 6818832*uk_71 + 105123660*uk_72 + 123307212*uk_73 + 78984804*uk_74 + 1620656425*uk_75 + 1900986185*uk_76 + 1217682395*uk_77 + 2229805417*uk_78 + 1428308539*uk_79 + 139*uk_8 + 914907313*uk_80 + 250047*uk_81 + 706482*uk_82 + 551691*uk_83 + 47628*uk_84 + 734265*uk_85 + 861273*uk_86 + 551691*uk_87 + 1996092*uk_88 + 1558746*uk_89 + 2242306609*uk_9 + 134568*uk_90 + 2074590*uk_91 + 2433438*uk_92 + 1558746*uk_93 + 1217223*uk_94 + 105084*uk_95 + 1620045*uk_96 + 1900269*uk_97 + 1217223*uk_98 + 9072*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 94248*uk_100 + 109368*uk_101 + 89712*uk_102 + 2203047*uk_103 + 2556477*uk_104 + 2097018*uk_105 + 2966607*uk_106 + 2433438*uk_107 + 1996092*uk_108 + 74088*uk_109 + 1988826*uk_11 + 313992*uk_110 + 14112*uk_111 + 329868*uk_112 + 382788*uk_113 + 313992*uk_114 + 1330728*uk_115 + 59808*uk_116 + 1398012*uk_117 + 1622292*uk_118 + 1330728*uk_119 + 8428834*uk_12 + 2688*uk_120 + 62832*uk_121 + 72912*uk_122 + 59808*uk_123 + 1468698*uk_124 + 1704318*uk_125 + 1398012*uk_126 + 1977738*uk_127 + 1622292*uk_128 + 1330728*uk_129 + 378824*uk_13 + 5639752*uk_130 + 253472*uk_131 + 5924908*uk_132 + 6875428*uk_133 + 5639752*uk_134 + 11392*uk_135 + 266288*uk_136 + 309008*uk_137 + 253472*uk_138 + 6224482*uk_139 + 8855011*uk_14 + 7223062*uk_140 + 5924908*uk_141 + 8381842*uk_142 + 6875428*uk_143 + 5639752*uk_144 + 512*uk_145 + 11968*uk_146 + 13888*uk_147 + 11392*uk_148 + 279752*uk_149 + 10275601*uk_15 + 324632*uk_150 + 266288*uk_151 + 376712*uk_152 + 309008*uk_153 + 253472*uk_154 + 6539203*uk_155 + 7588273*uk_156 + 6224482*uk_157 + 8805643*uk_158 + 7223062*uk_159 + 8428834*uk_16 + 5924908*uk_160 + 10218313*uk_161 + 8381842*uk_162 + 6875428*uk_163 + 5639752*uk_164 + 3969*uk_17 + 2646*uk_18 + 11214*uk_19 + 63*uk_2 + 504*uk_20 + 11781*uk_21 + 13671*uk_22 + 11214*uk_23 + 1764*uk_24 + 7476*uk_25 + 336*uk_26 + 7854*uk_27 + 9114*uk_28 + 7476*uk_29 + 42*uk_3 + 31684*uk_30 + 1424*uk_31 + 33286*uk_32 + 38626*uk_33 + 31684*uk_34 + 64*uk_35 + 1496*uk_36 + 1736*uk_37 + 1424*uk_38 + 34969*uk_39 + 178*uk_4 + 40579*uk_40 + 33286*uk_41 + 47089*uk_42 + 38626*uk_43 + 31684*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 94176877578*uk_47 + 399130576402*uk_48 + 17938452872*uk_49 + 8*uk_5 + 419311335883*uk_50 + 486580534153*uk_51 + 399130576402*uk_52 + 187944057*uk_53 + 125296038*uk_54 + 531016542*uk_55 + 23865912*uk_56 + 557865693*uk_57 + 647362863*uk_58 + 531016542*uk_59 + 187*uk_6 + 83530692*uk_60 + 354011028*uk_61 + 15910608*uk_62 + 371910462*uk_63 + 431575242*uk_64 + 354011028*uk_65 + 1500332452*uk_66 + 67430672*uk_67 + 1576191958*uk_68 + 1829056978*uk_69 + 217*uk_7 + 1500332452*uk_70 + 3030592*uk_71 + 70840088*uk_72 + 82204808*uk_73 + 67430672*uk_74 + 1655887057*uk_75 + 1921537387*uk_76 + 1576191958*uk_77 + 2229805417*uk_78 + 1829056978*uk_79 + 178*uk_8 + 1500332452*uk_80 + 250047*uk_81 + 166698*uk_82 + 706482*uk_83 + 31752*uk_84 + 742203*uk_85 + 861273*uk_86 + 706482*uk_87 + 111132*uk_88 + 470988*uk_89 + 2242306609*uk_9 + 21168*uk_90 + 494802*uk_91 + 574182*uk_92 + 470988*uk_93 + 1996092*uk_94 + 89712*uk_95 + 2097018*uk_96 + 2433438*uk_97 + 1996092*uk_98 + 4032*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 142884*uk_100 + 164052*uk_101 + 31752*uk_102 + 2250423*uk_103 + 2583819*uk_104 + 500094*uk_105 + 2966607*uk_106 + 574182*uk_107 + 111132*uk_108 + 1092727*uk_109 + 4877359*uk_11 + 445578*uk_110 + 127308*uk_111 + 2005101*uk_112 + 2302153*uk_113 + 445578*uk_114 + 181692*uk_115 + 51912*uk_116 + 817614*uk_117 + 938742*uk_118 + 181692*uk_119 + 1988826*uk_12 + 14832*uk_120 + 233604*uk_121 + 268212*uk_122 + 51912*uk_123 + 3679263*uk_124 + 4224339*uk_125 + 817614*uk_126 + 4850167*uk_127 + 938742*uk_128 + 181692*uk_129 + 568236*uk_13 + 74088*uk_130 + 21168*uk_131 + 333396*uk_132 + 382788*uk_133 + 74088*uk_134 + 6048*uk_135 + 95256*uk_136 + 109368*uk_137 + 21168*uk_138 + 1500282*uk_139 + 8949717*uk_14 + 1722546*uk_140 + 333396*uk_141 + 1977738*uk_142 + 382788*uk_143 + 74088*uk_144 + 1728*uk_145 + 27216*uk_146 + 31248*uk_147 + 6048*uk_148 + 428652*uk_149 + 10275601*uk_15 + 492156*uk_150 + 95256*uk_151 + 565068*uk_152 + 109368*uk_153 + 21168*uk_154 + 6751269*uk_155 + 7751457*uk_156 + 1500282*uk_157 + 8899821*uk_158 + 1722546*uk_159 + 1988826*uk_16 + 333396*uk_160 + 10218313*uk_161 + 1977738*uk_162 + 382788*uk_163 + 74088*uk_164 + 3969*uk_17 + 6489*uk_18 + 2646*uk_19 + 63*uk_2 + 756*uk_20 + 11907*uk_21 + 13671*uk_22 + 2646*uk_23 + 10609*uk_24 + 4326*uk_25 + 1236*uk_26 + 19467*uk_27 + 22351*uk_28 + 4326*uk_29 + 103*uk_3 + 1764*uk_30 + 504*uk_31 + 7938*uk_32 + 9114*uk_33 + 1764*uk_34 + 144*uk_35 + 2268*uk_36 + 2604*uk_37 + 504*uk_38 + 35721*uk_39 + 42*uk_4 + 41013*uk_40 + 7938*uk_41 + 47089*uk_42 + 9114*uk_43 + 1764*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 230957580727*uk_47 + 94176877578*uk_48 + 26907679308*uk_49 + 12*uk_5 + 423795949101*uk_50 + 486580534153*uk_51 + 94176877578*uk_52 + 187944057*uk_53 + 307273617*uk_54 + 125296038*uk_55 + 35798868*uk_56 + 563832171*uk_57 + 647362863*uk_58 + 125296038*uk_59 + 189*uk_6 + 502367977*uk_60 + 204849078*uk_61 + 58528308*uk_62 + 921820851*uk_63 + 1058386903*uk_64 + 204849078*uk_65 + 83530692*uk_66 + 23865912*uk_67 + 375888114*uk_68 + 431575242*uk_69 + 217*uk_7 + 83530692*uk_70 + 6818832*uk_71 + 107396604*uk_72 + 123307212*uk_73 + 23865912*uk_74 + 1691496513*uk_75 + 1942088589*uk_76 + 375888114*uk_77 + 2229805417*uk_78 + 431575242*uk_79 + 42*uk_8 + 83530692*uk_80 + 250047*uk_81 + 408807*uk_82 + 166698*uk_83 + 47628*uk_84 + 750141*uk_85 + 861273*uk_86 + 166698*uk_87 + 668367*uk_88 + 272538*uk_89 + 2242306609*uk_9 + 77868*uk_90 + 1226421*uk_91 + 1408113*uk_92 + 272538*uk_93 + 111132*uk_94 + 31752*uk_95 + 500094*uk_96 + 574182*uk_97 + 111132*uk_98 + 9072*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 144396*uk_100 + 164052*uk_101 + 77868*uk_102 + 2298303*uk_103 + 2611161*uk_104 + 1239399*uk_105 + 2966607*uk_106 + 1408113*uk_107 + 668367*uk_108 + 5451776*uk_109 + 8334128*uk_11 + 3190528*uk_110 + 371712*uk_111 + 5916416*uk_112 + 6721792*uk_113 + 3190528*uk_114 + 1867184*uk_115 + 217536*uk_116 + 3462448*uk_117 + 3933776*uk_118 + 1867184*uk_119 + 4877359*uk_12 + 25344*uk_120 + 403392*uk_121 + 458304*uk_122 + 217536*uk_123 + 6420656*uk_124 + 7294672*uk_125 + 3462448*uk_126 + 8287664*uk_127 + 3933776*uk_128 + 1867184*uk_129 + 568236*uk_13 + 1092727*uk_130 + 127308*uk_131 + 2026319*uk_132 + 2302153*uk_133 + 1092727*uk_134 + 14832*uk_135 + 236076*uk_136 + 268212*uk_137 + 127308*uk_138 + 3757543*uk_139 + 9044423*uk_14 + 4269041*uk_140 + 2026319*uk_141 + 4850167*uk_142 + 2302153*uk_143 + 1092727*uk_144 + 1728*uk_145 + 27504*uk_146 + 31248*uk_147 + 14832*uk_148 + 437772*uk_149 + 10275601*uk_15 + 497364*uk_150 + 236076*uk_151 + 565068*uk_152 + 268212*uk_153 + 127308*uk_154 + 6967871*uk_155 + 7916377*uk_156 + 3757543*uk_157 + 8993999*uk_158 + 4269041*uk_159 + 4877359*uk_16 + 2026319*uk_160 + 10218313*uk_161 + 4850167*uk_162 + 2302153*uk_163 + 1092727*uk_164 + 3969*uk_17 + 11088*uk_18 + 6489*uk_19 + 63*uk_2 + 756*uk_20 + 12033*uk_21 + 13671*uk_22 + 6489*uk_23 + 30976*uk_24 + 18128*uk_25 + 2112*uk_26 + 33616*uk_27 + 38192*uk_28 + 18128*uk_29 + 176*uk_3 + 10609*uk_30 + 1236*uk_31 + 19673*uk_32 + 22351*uk_33 + 10609*uk_34 + 144*uk_35 + 2292*uk_36 + 2604*uk_37 + 1236*uk_38 + 36481*uk_39 + 103*uk_4 + 41447*uk_40 + 19673*uk_41 + 47089*uk_42 + 22351*uk_43 + 10609*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 394645963184*uk_47 + 230957580727*uk_48 + 26907679308*uk_49 + 12*uk_5 + 428280562319*uk_50 + 486580534153*uk_51 + 230957580727*uk_52 + 187944057*uk_53 + 525050064*uk_54 + 307273617*uk_55 + 35798868*uk_56 + 569798649*uk_57 + 647362863*uk_58 + 307273617*uk_59 + 191*uk_6 + 1466806528*uk_60 + 858415184*uk_61 + 100009536*uk_62 + 1591818448*uk_63 + 1808505776*uk_64 + 858415184*uk_65 + 502367977*uk_66 + 58528308*uk_67 + 931575569*uk_68 + 1058386903*uk_69 + 217*uk_7 + 502367977*uk_70 + 6818832*uk_71 + 108533076*uk_72 + 123307212*uk_73 + 58528308*uk_74 + 1727484793*uk_75 + 1962639791*uk_76 + 931575569*uk_77 + 2229805417*uk_78 + 1058386903*uk_79 + 103*uk_8 + 502367977*uk_80 + 250047*uk_81 + 698544*uk_82 + 408807*uk_83 + 47628*uk_84 + 758079*uk_85 + 861273*uk_86 + 408807*uk_87 + 1951488*uk_88 + 1142064*uk_89 + 2242306609*uk_9 + 133056*uk_90 + 2117808*uk_91 + 2406096*uk_92 + 1142064*uk_93 + 668367*uk_94 + 77868*uk_95 + 1239399*uk_96 + 1408113*uk_97 + 668367*uk_98 + 9072*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 97272*uk_100 + 109368*uk_101 + 88704*uk_102 + 2346687*uk_103 + 2638503*uk_104 + 2139984*uk_105 + 2966607*uk_106 + 2406096*uk_107 + 1951488*uk_108 + 314432*uk_109 + 3220004*uk_11 + 813824*uk_110 + 36992*uk_111 + 892432*uk_112 + 1003408*uk_113 + 813824*uk_114 + 2106368*uk_115 + 95744*uk_116 + 2309824*uk_117 + 2597056*uk_118 + 2106368*uk_119 + 8334128*uk_12 + 4352*uk_120 + 104992*uk_121 + 118048*uk_122 + 95744*uk_123 + 2532932*uk_124 + 2847908*uk_125 + 2309824*uk_126 + 3202052*uk_127 + 2597056*uk_128 + 2106368*uk_129 + 378824*uk_13 + 5451776*uk_130 + 247808*uk_131 + 5978368*uk_132 + 6721792*uk_133 + 5451776*uk_134 + 11264*uk_135 + 271744*uk_136 + 305536*uk_137 + 247808*uk_138 + 6555824*uk_139 + 9139129*uk_14 + 7371056*uk_140 + 5978368*uk_141 + 8287664*uk_142 + 6721792*uk_143 + 5451776*uk_144 + 512*uk_145 + 12352*uk_146 + 13888*uk_147 + 11264*uk_148 + 297992*uk_149 + 10275601*uk_15 + 335048*uk_150 + 271744*uk_151 + 376712*uk_152 + 305536*uk_153 + 247808*uk_154 + 7189057*uk_155 + 8083033*uk_156 + 6555824*uk_157 + 9088177*uk_158 + 7371056*uk_159 + 8334128*uk_16 + 5978368*uk_160 + 10218313*uk_161 + 8287664*uk_162 + 6721792*uk_163 + 5451776*uk_164 + 3969*uk_17 + 4284*uk_18 + 11088*uk_19 + 63*uk_2 + 504*uk_20 + 12159*uk_21 + 13671*uk_22 + 11088*uk_23 + 4624*uk_24 + 11968*uk_25 + 544*uk_26 + 13124*uk_27 + 14756*uk_28 + 11968*uk_29 + 68*uk_3 + 30976*uk_30 + 1408*uk_31 + 33968*uk_32 + 38192*uk_33 + 30976*uk_34 + 64*uk_35 + 1544*uk_36 + 1736*uk_37 + 1408*uk_38 + 37249*uk_39 + 176*uk_4 + 41881*uk_40 + 33968*uk_41 + 47089*uk_42 + 38192*uk_43 + 30976*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 152476849412*uk_47 + 394645963184*uk_48 + 17938452872*uk_49 + 8*uk_5 + 432765175537*uk_50 + 486580534153*uk_51 + 394645963184*uk_52 + 187944057*uk_53 + 202860252*uk_54 + 525050064*uk_55 + 23865912*uk_56 + 575765127*uk_57 + 647362863*uk_58 + 525050064*uk_59 + 193*uk_6 + 218960272*uk_60 + 566720704*uk_61 + 25760032*uk_62 + 621460772*uk_63 + 698740868*uk_64 + 566720704*uk_65 + 1466806528*uk_66 + 66673024*uk_67 + 1608486704*uk_68 + 1808505776*uk_69 + 217*uk_7 + 1466806528*uk_70 + 3030592*uk_71 + 73113032*uk_72 + 82204808*uk_73 + 66673024*uk_74 + 1763851897*uk_75 + 1983190993*uk_76 + 1608486704*uk_77 + 2229805417*uk_78 + 1808505776*uk_79 + 176*uk_8 + 1466806528*uk_80 + 250047*uk_81 + 269892*uk_82 + 698544*uk_83 + 31752*uk_84 + 766017*uk_85 + 861273*uk_86 + 698544*uk_87 + 291312*uk_88 + 753984*uk_89 + 2242306609*uk_9 + 34272*uk_90 + 826812*uk_91 + 929628*uk_92 + 753984*uk_93 + 1951488*uk_94 + 88704*uk_95 + 2139984*uk_96 + 2406096*uk_97 + 1951488*uk_98 + 4032*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 147420*uk_100 + 164052*uk_101 + 51408*uk_102 + 2395575*uk_103 + 2665845*uk_104 + 835380*uk_105 + 2966607*uk_106 + 929628*uk_107 + 291312*uk_108 + 4330747*uk_109 + 7718539*uk_11 + 1806692*uk_110 + 318828*uk_111 + 5180955*uk_112 + 5765473*uk_113 + 1806692*uk_114 + 753712*uk_115 + 133008*uk_116 + 2161380*uk_117 + 2405228*uk_118 + 753712*uk_119 + 3220004*uk_12 + 23472*uk_120 + 381420*uk_121 + 424452*uk_122 + 133008*uk_123 + 6198075*uk_124 + 6897345*uk_125 + 2161380*uk_126 + 7675507*uk_127 + 2405228*uk_128 + 753712*uk_129 + 568236*uk_13 + 314432*uk_130 + 55488*uk_131 + 901680*uk_132 + 1003408*uk_133 + 314432*uk_134 + 9792*uk_135 + 159120*uk_136 + 177072*uk_137 + 55488*uk_138 + 2585700*uk_139 + 9233835*uk_14 + 2877420*uk_140 + 901680*uk_141 + 3202052*uk_142 + 1003408*uk_143 + 314432*uk_144 + 1728*uk_145 + 28080*uk_146 + 31248*uk_147 + 9792*uk_148 + 456300*uk_149 + 10275601*uk_15 + 507780*uk_150 + 159120*uk_151 + 565068*uk_152 + 177072*uk_153 + 55488*uk_154 + 7414875*uk_155 + 8251425*uk_156 + 2585700*uk_157 + 9182355*uk_158 + 2877420*uk_159 + 3220004*uk_16 + 901680*uk_160 + 10218313*uk_161 + 3202052*uk_162 + 1003408*uk_163 + 314432*uk_164 + 3969*uk_17 + 10269*uk_18 + 4284*uk_19 + 63*uk_2 + 756*uk_20 + 12285*uk_21 + 13671*uk_22 + 4284*uk_23 + 26569*uk_24 + 11084*uk_25 + 1956*uk_26 + 31785*uk_27 + 35371*uk_28 + 11084*uk_29 + 163*uk_3 + 4624*uk_30 + 816*uk_31 + 13260*uk_32 + 14756*uk_33 + 4624*uk_34 + 144*uk_35 + 2340*uk_36 + 2604*uk_37 + 816*uk_38 + 38025*uk_39 + 68*uk_4 + 42315*uk_40 + 13260*uk_41 + 47089*uk_42 + 14756*uk_43 + 4624*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 365495977267*uk_47 + 152476849412*uk_48 + 26907679308*uk_49 + 12*uk_5 + 437249788755*uk_50 + 486580534153*uk_51 + 152476849412*uk_52 + 187944057*uk_53 + 486267957*uk_54 + 202860252*uk_55 + 35798868*uk_56 + 581731605*uk_57 + 647362863*uk_58 + 202860252*uk_59 + 195*uk_6 + 1258121857*uk_60 + 524860652*uk_61 + 92622468*uk_62 + 1505115105*uk_63 + 1674922963*uk_64 + 524860652*uk_65 + 218960272*uk_66 + 38640048*uk_67 + 627900780*uk_68 + 698740868*uk_69 + 217*uk_7 + 218960272*uk_70 + 6818832*uk_71 + 110806020*uk_72 + 123307212*uk_73 + 38640048*uk_74 + 1800597825*uk_75 + 2003742195*uk_76 + 627900780*uk_77 + 2229805417*uk_78 + 698740868*uk_79 + 68*uk_8 + 218960272*uk_80 + 250047*uk_81 + 646947*uk_82 + 269892*uk_83 + 47628*uk_84 + 773955*uk_85 + 861273*uk_86 + 269892*uk_87 + 1673847*uk_88 + 698292*uk_89 + 2242306609*uk_9 + 123228*uk_90 + 2002455*uk_91 + 2228373*uk_92 + 698292*uk_93 + 291312*uk_94 + 51408*uk_95 + 835380*uk_96 + 929628*uk_97 + 291312*uk_98 + 9072*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 99288*uk_100 + 109368*uk_101 + 82152*uk_102 + 2444967*uk_103 + 2693187*uk_104 + 2022993*uk_105 + 2966607*uk_106 + 2228373*uk_107 + 1673847*uk_108 + 389017*uk_109 + 3456769*uk_11 + 868627*uk_110 + 42632*uk_111 + 1049813*uk_112 + 1156393*uk_113 + 868627*uk_114 + 1939537*uk_115 + 95192*uk_116 + 2344103*uk_117 + 2582083*uk_118 + 1939537*uk_119 + 7718539*uk_12 + 4672*uk_120 + 115048*uk_121 + 126728*uk_122 + 95192*uk_123 + 2833057*uk_124 + 3120677*uk_125 + 2344103*uk_126 + 3437497*uk_127 + 2582083*uk_128 + 1939537*uk_129 + 378824*uk_13 + 4330747*uk_130 + 212552*uk_131 + 5234093*uk_132 + 5765473*uk_133 + 4330747*uk_134 + 10432*uk_135 + 256888*uk_136 + 282968*uk_137 + 212552*uk_138 + 6325867*uk_139 + 9328541*uk_14 + 6968087*uk_140 + 5234093*uk_141 + 7675507*uk_142 + 5765473*uk_143 + 4330747*uk_144 + 512*uk_145 + 12608*uk_146 + 13888*uk_147 + 10432*uk_148 + 310472*uk_149 + 10275601*uk_15 + 341992*uk_150 + 256888*uk_151 + 376712*uk_152 + 282968*uk_153 + 212552*uk_154 + 7645373*uk_155 + 8421553*uk_156 + 6325867*uk_157 + 9276533*uk_158 + 6968087*uk_159 + 7718539*uk_16 + 5234093*uk_160 + 10218313*uk_161 + 7675507*uk_162 + 5765473*uk_163 + 4330747*uk_164 + 3969*uk_17 + 4599*uk_18 + 10269*uk_19 + 63*uk_2 + 504*uk_20 + 12411*uk_21 + 13671*uk_22 + 10269*uk_23 + 5329*uk_24 + 11899*uk_25 + 584*uk_26 + 14381*uk_27 + 15841*uk_28 + 11899*uk_29 + 73*uk_3 + 26569*uk_30 + 1304*uk_31 + 32111*uk_32 + 35371*uk_33 + 26569*uk_34 + 64*uk_35 + 1576*uk_36 + 1736*uk_37 + 1304*uk_38 + 38809*uk_39 + 163*uk_4 + 42749*uk_40 + 32111*uk_41 + 47089*uk_42 + 35371*uk_43 + 26569*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 163688382457*uk_47 + 365495977267*uk_48 + 17938452872*uk_49 + 8*uk_5 + 441734401973*uk_50 + 486580534153*uk_51 + 365495977267*uk_52 + 187944057*uk_53 + 217776447*uk_54 + 486267957*uk_55 + 23865912*uk_56 + 587698083*uk_57 + 647362863*uk_58 + 486267957*uk_59 + 197*uk_6 + 252344137*uk_60 + 563453347*uk_61 + 27654152*uk_62 + 680983493*uk_63 + 750118873*uk_64 + 563453347*uk_65 + 1258121857*uk_66 + 61748312*uk_67 + 1520552183*uk_68 + 1674922963*uk_69 + 217*uk_7 + 1258121857*uk_70 + 3030592*uk_71 + 74628328*uk_72 + 82204808*uk_73 + 61748312*uk_74 + 1837722577*uk_75 + 2024293397*uk_76 + 1520552183*uk_77 + 2229805417*uk_78 + 1674922963*uk_79 + 163*uk_8 + 1258121857*uk_80 + 250047*uk_81 + 289737*uk_82 + 646947*uk_83 + 31752*uk_84 + 781893*uk_85 + 861273*uk_86 + 646947*uk_87 + 335727*uk_88 + 749637*uk_89 + 2242306609*uk_9 + 36792*uk_90 + 906003*uk_91 + 997983*uk_92 + 749637*uk_93 + 1673847*uk_94 + 82152*uk_95 + 2022993*uk_96 + 2228373*uk_97 + 1673847*uk_98 + 4032*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 150444*uk_100 + 164052*uk_101 + 55188*uk_102 + 2494863*uk_103 + 2720529*uk_104 + 915201*uk_105 + 2966607*uk_106 + 997983*uk_107 + 335727*uk_108 + 6859000*uk_109 + 8997070*uk_11 + 2635300*uk_110 + 433200*uk_111 + 7183900*uk_112 + 7833700*uk_113 + 2635300*uk_114 + 1012510*uk_115 + 166440*uk_116 + 2760130*uk_117 + 3009790*uk_118 + 1012510*uk_119 + 3456769*uk_12 + 27360*uk_120 + 453720*uk_121 + 494760*uk_122 + 166440*uk_123 + 7524190*uk_124 + 8204770*uk_125 + 2760130*uk_126 + 8946910*uk_127 + 3009790*uk_128 + 1012510*uk_129 + 568236*uk_13 + 389017*uk_130 + 63948*uk_131 + 1060471*uk_132 + 1156393*uk_133 + 389017*uk_134 + 10512*uk_135 + 174324*uk_136 + 190092*uk_137 + 63948*uk_138 + 2890873*uk_139 + 9423247*uk_14 + 3152359*uk_140 + 1060471*uk_141 + 3437497*uk_142 + 1156393*uk_143 + 389017*uk_144 + 1728*uk_145 + 28656*uk_146 + 31248*uk_147 + 10512*uk_148 + 475212*uk_149 + 10275601*uk_15 + 518196*uk_150 + 174324*uk_151 + 565068*uk_152 + 190092*uk_153 + 63948*uk_154 + 7880599*uk_155 + 8593417*uk_156 + 2890873*uk_157 + 9370711*uk_158 + 3152359*uk_159 + 3456769*uk_16 + 1060471*uk_160 + 10218313*uk_161 + 3437497*uk_162 + 1156393*uk_163 + 389017*uk_164 + 3969*uk_17 + 11970*uk_18 + 4599*uk_19 + 63*uk_2 + 756*uk_20 + 12537*uk_21 + 13671*uk_22 + 4599*uk_23 + 36100*uk_24 + 13870*uk_25 + 2280*uk_26 + 37810*uk_27 + 41230*uk_28 + 13870*uk_29 + 190*uk_3 + 5329*uk_30 + 876*uk_31 + 14527*uk_32 + 15841*uk_33 + 5329*uk_34 + 144*uk_35 + 2388*uk_36 + 2604*uk_37 + 876*uk_38 + 39601*uk_39 + 73*uk_4 + 43183*uk_40 + 14527*uk_41 + 47089*uk_42 + 15841*uk_43 + 5329*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 426038255710*uk_47 + 163688382457*uk_48 + 26907679308*uk_49 + 12*uk_5 + 446219015191*uk_50 + 486580534153*uk_51 + 163688382457*uk_52 + 187944057*uk_53 + 566815410*uk_54 + 217776447*uk_55 + 35798868*uk_56 + 593664561*uk_57 + 647362863*uk_58 + 217776447*uk_59 + 199*uk_6 + 1709443300*uk_60 + 656786110*uk_61 + 107964840*uk_62 + 1790416930*uk_63 + 1952364190*uk_64 + 656786110*uk_65 + 252344137*uk_66 + 41481228*uk_67 + 687897031*uk_68 + 750118873*uk_69 + 217*uk_7 + 252344137*uk_70 + 6818832*uk_71 + 113078964*uk_72 + 123307212*uk_73 + 41481228*uk_74 + 1875226153*uk_75 + 2044844599*uk_76 + 687897031*uk_77 + 2229805417*uk_78 + 750118873*uk_79 + 73*uk_8 + 252344137*uk_80 + 250047*uk_81 + 754110*uk_82 + 289737*uk_83 + 47628*uk_84 + 789831*uk_85 + 861273*uk_86 + 289737*uk_87 + 2274300*uk_88 + 873810*uk_89 + 2242306609*uk_9 + 143640*uk_90 + 2382030*uk_91 + 2597490*uk_92 + 873810*uk_93 + 335727*uk_94 + 55188*uk_95 + 915201*uk_96 + 997983*uk_97 + 335727*uk_98 + 9072*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 101304*uk_100 + 109368*uk_101 + 95760*uk_102 + 2545263*uk_103 + 2747871*uk_104 + 2405970*uk_105 + 2966607*uk_106 + 2597490*uk_107 + 2274300*uk_108 + 1643032*uk_109 + 5587654*uk_11 + 2645560*uk_110 + 111392*uk_111 + 2798724*uk_112 + 3021508*uk_113 + 2645560*uk_114 + 4259800*uk_115 + 179360*uk_116 + 4506420*uk_117 + 4865140*uk_118 + 4259800*uk_119 + 8997070*uk_12 + 7552*uk_120 + 189744*uk_121 + 204848*uk_122 + 179360*uk_123 + 4767318*uk_124 + 5146806*uk_125 + 4506420*uk_126 + 5556502*uk_127 + 4865140*uk_128 + 4259800*uk_129 + 378824*uk_13 + 6859000*uk_130 + 288800*uk_131 + 7256100*uk_132 + 7833700*uk_133 + 6859000*uk_134 + 12160*uk_135 + 305520*uk_136 + 329840*uk_137 + 288800*uk_138 + 7676190*uk_139 + 9517953*uk_14 + 8287230*uk_140 + 7256100*uk_141 + 8946910*uk_142 + 7833700*uk_143 + 6859000*uk_144 + 512*uk_145 + 12864*uk_146 + 13888*uk_147 + 12160*uk_148 + 323208*uk_149 + 10275601*uk_15 + 348936*uk_150 + 305520*uk_151 + 376712*uk_152 + 329840*uk_153 + 288800*uk_154 + 8120601*uk_155 + 8767017*uk_156 + 7676190*uk_157 + 9464889*uk_158 + 8287230*uk_159 + 8997070*uk_16 + 7256100*uk_160 + 10218313*uk_161 + 8946910*uk_162 + 7833700*uk_163 + 6859000*uk_164 + 3969*uk_17 + 7434*uk_18 + 11970*uk_19 + 63*uk_2 + 504*uk_20 + 12663*uk_21 + 13671*uk_22 + 11970*uk_23 + 13924*uk_24 + 22420*uk_25 + 944*uk_26 + 23718*uk_27 + 25606*uk_28 + 22420*uk_29 + 118*uk_3 + 36100*uk_30 + 1520*uk_31 + 38190*uk_32 + 41230*uk_33 + 36100*uk_34 + 64*uk_35 + 1608*uk_36 + 1736*uk_37 + 1520*uk_38 + 40401*uk_39 + 190*uk_4 + 43617*uk_40 + 38190*uk_41 + 47089*uk_42 + 41230*uk_43 + 36100*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 264592179862*uk_47 + 426038255710*uk_48 + 17938452872*uk_49 + 8*uk_5 + 450703628409*uk_50 + 486580534153*uk_51 + 426038255710*uk_52 + 187944057*uk_53 + 352022202*uk_54 + 566815410*uk_55 + 23865912*uk_56 + 599631039*uk_57 + 647362863*uk_58 + 566815410*uk_59 + 201*uk_6 + 659343172*uk_60 + 1061654260*uk_61 + 44701232*uk_62 + 1123118454*uk_63 + 1212520918*uk_64 + 1061654260*uk_65 + 1709443300*uk_66 + 71976560*uk_67 + 1808411070*uk_68 + 1952364190*uk_69 + 217*uk_7 + 1709443300*uk_70 + 3030592*uk_71 + 76143624*uk_72 + 82204808*uk_73 + 71976560*uk_74 + 1913108553*uk_75 + 2065395801*uk_76 + 1808411070*uk_77 + 2229805417*uk_78 + 1952364190*uk_79 + 190*uk_8 + 1709443300*uk_80 + 250047*uk_81 + 468342*uk_82 + 754110*uk_83 + 31752*uk_84 + 797769*uk_85 + 861273*uk_86 + 754110*uk_87 + 877212*uk_88 + 1412460*uk_89 + 2242306609*uk_9 + 59472*uk_90 + 1494234*uk_91 + 1613178*uk_92 + 1412460*uk_93 + 2274300*uk_94 + 95760*uk_95 + 2405970*uk_96 + 2597490*uk_97 + 2274300*uk_98 + 4032*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 102312*uk_100 + 109368*uk_101 + 59472*uk_102 + 2596167*uk_103 + 2775213*uk_104 + 1509102*uk_105 + 2966607*uk_106 + 1613178*uk_107 + 877212*uk_108 + 157464*uk_109 + 2557062*uk_11 + 344088*uk_110 + 23328*uk_111 + 591948*uk_112 + 632772*uk_113 + 344088*uk_114 + 751896*uk_115 + 50976*uk_116 + 1293516*uk_117 + 1382724*uk_118 + 751896*uk_119 + 5587654*uk_12 + 3456*uk_120 + 87696*uk_121 + 93744*uk_122 + 50976*uk_123 + 2225286*uk_124 + 2378754*uk_125 + 1293516*uk_126 + 2542806*uk_127 + 1382724*uk_128 + 751896*uk_129 + 378824*uk_13 + 1643032*uk_130 + 111392*uk_131 + 2826572*uk_132 + 3021508*uk_133 + 1643032*uk_134 + 7552*uk_135 + 191632*uk_136 + 204848*uk_137 + 111392*uk_138 + 4862662*uk_139 + 9612659*uk_14 + 5198018*uk_140 + 2826572*uk_141 + 5556502*uk_142 + 3021508*uk_143 + 1643032*uk_144 + 512*uk_145 + 12992*uk_146 + 13888*uk_147 + 7552*uk_148 + 329672*uk_149 + 10275601*uk_15 + 352408*uk_150 + 191632*uk_151 + 376712*uk_152 + 204848*uk_153 + 111392*uk_154 + 8365427*uk_155 + 8942353*uk_156 + 4862662*uk_157 + 9559067*uk_158 + 5198018*uk_159 + 5587654*uk_16 + 2826572*uk_160 + 10218313*uk_161 + 5556502*uk_162 + 3021508*uk_163 + 1643032*uk_164 + 3969*uk_17 + 3402*uk_18 + 7434*uk_19 + 63*uk_2 + 504*uk_20 + 12789*uk_21 + 13671*uk_22 + 7434*uk_23 + 2916*uk_24 + 6372*uk_25 + 432*uk_26 + 10962*uk_27 + 11718*uk_28 + 6372*uk_29 + 54*uk_3 + 13924*uk_30 + 944*uk_31 + 23954*uk_32 + 25606*uk_33 + 13924*uk_34 + 64*uk_35 + 1624*uk_36 + 1736*uk_37 + 944*uk_38 + 41209*uk_39 + 118*uk_4 + 44051*uk_40 + 23954*uk_41 + 47089*uk_42 + 25606*uk_43 + 13924*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 121084556886*uk_47 + 264592179862*uk_48 + 17938452872*uk_49 + 8*uk_5 + 455188241627*uk_50 + 486580534153*uk_51 + 264592179862*uk_52 + 187944057*uk_53 + 161094906*uk_54 + 352022202*uk_55 + 23865912*uk_56 + 605597517*uk_57 + 647362863*uk_58 + 352022202*uk_59 + 203*uk_6 + 138081348*uk_60 + 301733316*uk_61 + 20456496*uk_62 + 519083586*uk_63 + 554882454*uk_64 + 301733316*uk_65 + 659343172*uk_66 + 44701232*uk_67 + 1134293762*uk_68 + 1212520918*uk_69 + 217*uk_7 + 659343172*uk_70 + 3030592*uk_71 + 76901272*uk_72 + 82204808*uk_73 + 44701232*uk_74 + 1951369777*uk_75 + 2085947003*uk_76 + 1134293762*uk_77 + 2229805417*uk_78 + 1212520918*uk_79 + 118*uk_8 + 659343172*uk_80 + 250047*uk_81 + 214326*uk_82 + 468342*uk_83 + 31752*uk_84 + 805707*uk_85 + 861273*uk_86 + 468342*uk_87 + 183708*uk_88 + 401436*uk_89 + 2242306609*uk_9 + 27216*uk_90 + 690606*uk_91 + 738234*uk_92 + 401436*uk_93 + 877212*uk_94 + 59472*uk_95 + 1509102*uk_96 + 1613178*uk_97 + 877212*uk_98 + 4032*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 154980*uk_100 + 164052*uk_101 + 40824*uk_102 + 2647575*uk_103 + 2802555*uk_104 + 697410*uk_105 + 2966607*uk_106 + 738234*uk_107 + 183708*uk_108 + 8365427*uk_109 + 9612659*uk_11 + 2225286*uk_110 + 494508*uk_111 + 8447845*uk_112 + 8942353*uk_113 + 2225286*uk_114 + 591948*uk_115 + 131544*uk_116 + 2247210*uk_117 + 2378754*uk_118 + 591948*uk_119 + 2557062*uk_12 + 29232*uk_120 + 499380*uk_121 + 528612*uk_122 + 131544*uk_123 + 8531075*uk_124 + 9030455*uk_125 + 2247210*uk_126 + 9559067*uk_127 + 2378754*uk_128 + 591948*uk_129 + 568236*uk_13 + 157464*uk_130 + 34992*uk_131 + 597780*uk_132 + 632772*uk_133 + 157464*uk_134 + 7776*uk_135 + 132840*uk_136 + 140616*uk_137 + 34992*uk_138 + 2269350*uk_139 + 9707365*uk_14 + 2402190*uk_140 + 597780*uk_141 + 2542806*uk_142 + 632772*uk_143 + 157464*uk_144 + 1728*uk_145 + 29520*uk_146 + 31248*uk_147 + 7776*uk_148 + 504300*uk_149 + 10275601*uk_15 + 533820*uk_150 + 132840*uk_151 + 565068*uk_152 + 140616*uk_153 + 34992*uk_154 + 8615125*uk_155 + 9119425*uk_156 + 2269350*uk_157 + 9653245*uk_158 + 2402190*uk_159 + 2557062*uk_16 + 597780*uk_160 + 10218313*uk_161 + 2542806*uk_162 + 632772*uk_163 + 157464*uk_164 + 3969*uk_17 + 12789*uk_18 + 3402*uk_19 + 63*uk_2 + 756*uk_20 + 12915*uk_21 + 13671*uk_22 + 3402*uk_23 + 41209*uk_24 + 10962*uk_25 + 2436*uk_26 + 41615*uk_27 + 44051*uk_28 + 10962*uk_29 + 203*uk_3 + 2916*uk_30 + 648*uk_31 + 11070*uk_32 + 11718*uk_33 + 2916*uk_34 + 144*uk_35 + 2460*uk_36 + 2604*uk_37 + 648*uk_38 + 42025*uk_39 + 54*uk_4 + 44485*uk_40 + 11070*uk_41 + 47089*uk_42 + 11718*uk_43 + 2916*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 455188241627*uk_47 + 121084556886*uk_48 + 26907679308*uk_49 + 12*uk_5 + 459672854845*uk_50 + 486580534153*uk_51 + 121084556886*uk_52 + 187944057*uk_53 + 605597517*uk_54 + 161094906*uk_55 + 35798868*uk_56 + 611563995*uk_57 + 647362863*uk_58 + 161094906*uk_59 + 205*uk_6 + 1951369777*uk_60 + 519083586*uk_61 + 115351908*uk_62 + 1970595095*uk_63 + 2085947003*uk_64 + 519083586*uk_65 + 138081348*uk_66 + 30684744*uk_67 + 524197710*uk_68 + 554882454*uk_69 + 217*uk_7 + 138081348*uk_70 + 6818832*uk_71 + 116488380*uk_72 + 123307212*uk_73 + 30684744*uk_74 + 1990009825*uk_75 + 2106498205*uk_76 + 524197710*uk_77 + 2229805417*uk_78 + 554882454*uk_79 + 54*uk_8 + 138081348*uk_80 + 250047*uk_81 + 805707*uk_82 + 214326*uk_83 + 47628*uk_84 + 813645*uk_85 + 861273*uk_86 + 214326*uk_87 + 2596167*uk_88 + 690606*uk_89 + 2242306609*uk_9 + 153468*uk_90 + 2621745*uk_91 + 2775213*uk_92 + 690606*uk_93 + 183708*uk_94 + 40824*uk_95 + 697410*uk_96 + 738234*uk_97 + 183708*uk_98 + 9072*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 104328*uk_100 + 109368*uk_101 + 102312*uk_102 + 2699487*uk_103 + 2829897*uk_104 + 2647323*uk_105 + 2966607*uk_106 + 2775213*uk_107 + 2596167*uk_108 + 3869893*uk_109 + 7434421*uk_11 + 5003747*uk_110 + 197192*uk_111 + 5102343*uk_112 + 5348833*uk_113 + 5003747*uk_114 + 6469813*uk_115 + 254968*uk_116 + 6597297*uk_117 + 6916007*uk_118 + 6469813*uk_119 + 9612659*uk_12 + 10048*uk_120 + 259992*uk_121 + 272552*uk_122 + 254968*uk_123 + 6727293*uk_124 + 7052283*uk_125 + 6597297*uk_126 + 7392973*uk_127 + 6916007*uk_128 + 6469813*uk_129 + 378824*uk_13 + 8365427*uk_130 + 329672*uk_131 + 8530263*uk_132 + 8942353*uk_133 + 8365427*uk_134 + 12992*uk_135 + 336168*uk_136 + 352408*uk_137 + 329672*uk_138 + 8698347*uk_139 + 9802071*uk_14 + 9118557*uk_140 + 8530263*uk_141 + 9559067*uk_142 + 8942353*uk_143 + 8365427*uk_144 + 512*uk_145 + 13248*uk_146 + 13888*uk_147 + 12992*uk_148 + 342792*uk_149 + 10275601*uk_15 + 359352*uk_150 + 336168*uk_151 + 376712*uk_152 + 352408*uk_153 + 329672*uk_154 + 8869743*uk_155 + 9298233*uk_156 + 8698347*uk_157 + 9747423*uk_158 + 9118557*uk_159 + 9612659*uk_16 + 8530263*uk_160 + 10218313*uk_161 + 9559067*uk_162 + 8942353*uk_163 + 8365427*uk_164 + 3969*uk_17 + 9891*uk_18 + 12789*uk_19 + 63*uk_2 + 504*uk_20 + 13041*uk_21 + 13671*uk_22 + 12789*uk_23 + 24649*uk_24 + 31871*uk_25 + 1256*uk_26 + 32499*uk_27 + 34069*uk_28 + 31871*uk_29 + 157*uk_3 + 41209*uk_30 + 1624*uk_31 + 42021*uk_32 + 44051*uk_33 + 41209*uk_34 + 64*uk_35 + 1656*uk_36 + 1736*uk_37 + 1624*uk_38 + 42849*uk_39 + 203*uk_4 + 44919*uk_40 + 42021*uk_41 + 47089*uk_42 + 44051*uk_43 + 41209*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 352042137613*uk_47 + 455188241627*uk_48 + 17938452872*uk_49 + 8*uk_5 + 464157468063*uk_50 + 486580534153*uk_51 + 455188241627*uk_52 + 187944057*uk_53 + 468368523*uk_54 + 605597517*uk_55 + 23865912*uk_56 + 617530473*uk_57 + 647362863*uk_58 + 605597517*uk_59 + 207*uk_6 + 1167204097*uk_60 + 1509187463*uk_61 + 59475368*uk_62 + 1538925147*uk_63 + 1613269357*uk_64 + 1509187463*uk_65 + 1951369777*uk_66 + 76901272*uk_67 + 1989820413*uk_68 + 2085947003*uk_69 + 217*uk_7 + 1951369777*uk_70 + 3030592*uk_71 + 78416568*uk_72 + 82204808*uk_73 + 76901272*uk_74 + 2029028697*uk_75 + 2127049407*uk_76 + 1989820413*uk_77 + 2229805417*uk_78 + 2085947003*uk_79 + 203*uk_8 + 1951369777*uk_80 + 250047*uk_81 + 623133*uk_82 + 805707*uk_83 + 31752*uk_84 + 821583*uk_85 + 861273*uk_86 + 805707*uk_87 + 1552887*uk_88 + 2007873*uk_89 + 2242306609*uk_9 + 79128*uk_90 + 2047437*uk_91 + 2146347*uk_92 + 2007873*uk_93 + 2596167*uk_94 + 102312*uk_95 + 2647323*uk_96 + 2775213*uk_97 + 2596167*uk_98 + 4032*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 105336*uk_100 + 109368*uk_101 + 79128*uk_102 + 2751903*uk_103 + 2857239*uk_104 + 2067219*uk_105 + 2966607*uk_106 + 2146347*uk_107 + 1552887*uk_108 + 1685159*uk_109 + 5635007*uk_11 + 2223277*uk_110 + 113288*uk_111 + 2959649*uk_112 + 3072937*uk_113 + 2223277*uk_114 + 2933231*uk_115 + 149464*uk_116 + 3904747*uk_117 + 4054211*uk_118 + 2933231*uk_119 + 7434421*uk_12 + 7616*uk_120 + 198968*uk_121 + 206584*uk_122 + 149464*uk_123 + 5198039*uk_124 + 5397007*uk_125 + 3904747*uk_126 + 5603591*uk_127 + 4054211*uk_128 + 2933231*uk_129 + 378824*uk_13 + 3869893*uk_130 + 197192*uk_131 + 5151641*uk_132 + 5348833*uk_133 + 3869893*uk_134 + 10048*uk_135 + 262504*uk_136 + 272552*uk_137 + 197192*uk_138 + 6857917*uk_139 + 9896777*uk_14 + 7120421*uk_140 + 5151641*uk_141 + 7392973*uk_142 + 5348833*uk_143 + 3869893*uk_144 + 512*uk_145 + 13376*uk_146 + 13888*uk_147 + 10048*uk_148 + 349448*uk_149 + 10275601*uk_15 + 362824*uk_150 + 262504*uk_151 + 376712*uk_152 + 272552*uk_153 + 197192*uk_154 + 9129329*uk_155 + 9478777*uk_156 + 6857917*uk_157 + 9841601*uk_158 + 7120421*uk_159 + 7434421*uk_16 + 5151641*uk_160 + 10218313*uk_161 + 7392973*uk_162 + 5348833*uk_163 + 3869893*uk_164 + 3969*uk_17 + 7497*uk_18 + 9891*uk_19 + 63*uk_2 + 504*uk_20 + 13167*uk_21 + 13671*uk_22 + 9891*uk_23 + 14161*uk_24 + 18683*uk_25 + 952*uk_26 + 24871*uk_27 + 25823*uk_28 + 18683*uk_29 + 119*uk_3 + 24649*uk_30 + 1256*uk_31 + 32813*uk_32 + 34069*uk_33 + 24649*uk_34 + 64*uk_35 + 1672*uk_36 + 1736*uk_37 + 1256*uk_38 + 43681*uk_39 + 157*uk_4 + 45353*uk_40 + 32813*uk_41 + 47089*uk_42 + 34069*uk_43 + 24649*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 266834486471*uk_47 + 352042137613*uk_48 + 17938452872*uk_49 + 8*uk_5 + 468642081281*uk_50 + 486580534153*uk_51 + 352042137613*uk_52 + 187944057*uk_53 + 355005441*uk_54 + 468368523*uk_55 + 23865912*uk_56 + 623496951*uk_57 + 647362863*uk_58 + 468368523*uk_59 + 209*uk_6 + 670565833*uk_60 + 884696099*uk_61 + 45080056*uk_62 + 1177716463*uk_63 + 1222796519*uk_64 + 884696099*uk_65 + 1167204097*uk_66 + 59475368*uk_67 + 1553793989*uk_68 + 1613269357*uk_69 + 217*uk_7 + 1167204097*uk_70 + 3030592*uk_71 + 79174216*uk_72 + 82204808*uk_73 + 59475368*uk_74 + 2068426393*uk_75 + 2147600609*uk_76 + 1553793989*uk_77 + 2229805417*uk_78 + 1613269357*uk_79 + 157*uk_8 + 1167204097*uk_80 + 250047*uk_81 + 472311*uk_82 + 623133*uk_83 + 31752*uk_84 + 829521*uk_85 + 861273*uk_86 + 623133*uk_87 + 892143*uk_88 + 1177029*uk_89 + 2242306609*uk_9 + 59976*uk_90 + 1566873*uk_91 + 1626849*uk_92 + 1177029*uk_93 + 1552887*uk_94 + 79128*uk_95 + 2067219*uk_96 + 2146347*uk_97 + 1552887*uk_98 + 4032*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 106344*uk_100 + 109368*uk_101 + 59976*uk_102 + 2804823*uk_103 + 2884581*uk_104 + 1581867*uk_105 + 2966607*uk_106 + 1626849*uk_107 + 892143*uk_108 + 704969*uk_109 + 4214417*uk_11 + 942599*uk_110 + 63368*uk_111 + 1671331*uk_112 + 1718857*uk_113 + 942599*uk_114 + 1260329*uk_115 + 84728*uk_116 + 2234701*uk_117 + 2298247*uk_118 + 1260329*uk_119 + 5635007*uk_12 + 5696*uk_120 + 150232*uk_121 + 154504*uk_122 + 84728*uk_123 + 3962369*uk_124 + 4075043*uk_125 + 2234701*uk_126 + 4190921*uk_127 + 2298247*uk_128 + 1260329*uk_129 + 378824*uk_13 + 1685159*uk_130 + 113288*uk_131 + 2987971*uk_132 + 3072937*uk_133 + 1685159*uk_134 + 7616*uk_135 + 200872*uk_136 + 206584*uk_137 + 113288*uk_138 + 5297999*uk_139 + 9991483*uk_14 + 5448653*uk_140 + 2987971*uk_141 + 5603591*uk_142 + 3072937*uk_143 + 1685159*uk_144 + 512*uk_145 + 13504*uk_146 + 13888*uk_147 + 7616*uk_148 + 356168*uk_149 + 10275601*uk_15 + 366296*uk_150 + 200872*uk_151 + 376712*uk_152 + 206584*uk_153 + 113288*uk_154 + 9393931*uk_155 + 9661057*uk_156 + 5297999*uk_157 + 9935779*uk_158 + 5448653*uk_159 + 5635007*uk_16 + 2987971*uk_160 + 10218313*uk_161 + 5603591*uk_162 + 3072937*uk_163 + 1685159*uk_164 + 3969*uk_17 + 5607*uk_18 + 7497*uk_19 + 63*uk_2 + 504*uk_20 + 13293*uk_21 + 13671*uk_22 + 7497*uk_23 + 7921*uk_24 + 10591*uk_25 + 712*uk_26 + 18779*uk_27 + 19313*uk_28 + 10591*uk_29 + 89*uk_3 + 14161*uk_30 + 952*uk_31 + 25109*uk_32 + 25823*uk_33 + 14161*uk_34 + 64*uk_35 + 1688*uk_36 + 1736*uk_37 + 952*uk_38 + 44521*uk_39 + 119*uk_4 + 45787*uk_40 + 25109*uk_41 + 47089*uk_42 + 25823*uk_43 + 14161*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 199565288201*uk_47 + 266834486471*uk_48 + 17938452872*uk_49 + 8*uk_5 + 473126694499*uk_50 + 486580534153*uk_51 + 266834486471*uk_52 + 187944057*uk_53 + 265508271*uk_54 + 355005441*uk_55 + 23865912*uk_56 + 629463429*uk_57 + 647362863*uk_58 + 355005441*uk_59 + 211*uk_6 + 375083113*uk_60 + 501515623*uk_61 + 33715336*uk_62 + 889241987*uk_63 + 914528489*uk_64 + 501515623*uk_65 + 670565833*uk_66 + 45080056*uk_67 + 1188986477*uk_68 + 1222796519*uk_69 + 217*uk_7 + 670565833*uk_70 + 3030592*uk_71 + 79931864*uk_72 + 82204808*uk_73 + 45080056*uk_74 + 2108202913*uk_75 + 2168151811*uk_76 + 1188986477*uk_77 + 2229805417*uk_78 + 1222796519*uk_79 + 119*uk_8 + 670565833*uk_80 + 250047*uk_81 + 353241*uk_82 + 472311*uk_83 + 31752*uk_84 + 837459*uk_85 + 861273*uk_86 + 472311*uk_87 + 499023*uk_88 + 667233*uk_89 + 2242306609*uk_9 + 44856*uk_90 + 1183077*uk_91 + 1216719*uk_92 + 667233*uk_93 + 892143*uk_94 + 59976*uk_95 + 1581867*uk_96 + 1626849*uk_97 + 892143*uk_98 + 4032*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 107352*uk_100 + 109368*uk_101 + 44856*uk_102 + 2858247*uk_103 + 2911923*uk_104 + 1194291*uk_105 + 2966607*uk_106 + 1216719*uk_107 + 499023*uk_108 + 300763*uk_109 + 3172651*uk_11 + 399521*uk_110 + 35912*uk_111 + 956157*uk_112 + 974113*uk_113 + 399521*uk_114 + 530707*uk_115 + 47704*uk_116 + 1270119*uk_117 + 1293971*uk_118 + 530707*uk_119 + 4214417*uk_12 + 4288*uk_120 + 114168*uk_121 + 116312*uk_122 + 47704*uk_123 + 3039723*uk_124 + 3096807*uk_125 + 1270119*uk_126 + 3154963*uk_127 + 1293971*uk_128 + 530707*uk_129 + 378824*uk_13 + 704969*uk_130 + 63368*uk_131 + 1687173*uk_132 + 1718857*uk_133 + 704969*uk_134 + 5696*uk_135 + 151656*uk_136 + 154504*uk_137 + 63368*uk_138 + 4037841*uk_139 + 10086189*uk_14 + 4113669*uk_140 + 1687173*uk_141 + 4190921*uk_142 + 1718857*uk_143 + 704969*uk_144 + 512*uk_145 + 13632*uk_146 + 13888*uk_147 + 5696*uk_148 + 362952*uk_149 + 10275601*uk_15 + 369768*uk_150 + 151656*uk_151 + 376712*uk_152 + 154504*uk_153 + 63368*uk_154 + 9663597*uk_155 + 9845073*uk_156 + 4037841*uk_157 + 10029957*uk_158 + 4113669*uk_159 + 4214417*uk_16 + 1687173*uk_160 + 10218313*uk_161 + 4190921*uk_162 + 1718857*uk_163 + 704969*uk_164 + 3969*uk_17 + 4221*uk_18 + 5607*uk_19 + 63*uk_2 + 504*uk_20 + 13419*uk_21 + 13671*uk_22 + 5607*uk_23 + 4489*uk_24 + 5963*uk_25 + 536*uk_26 + 14271*uk_27 + 14539*uk_28 + 5963*uk_29 + 67*uk_3 + 7921*uk_30 + 712*uk_31 + 18957*uk_32 + 19313*uk_33 + 7921*uk_34 + 64*uk_35 + 1704*uk_36 + 1736*uk_37 + 712*uk_38 + 45369*uk_39 + 89*uk_4 + 46221*uk_40 + 18957*uk_41 + 47089*uk_42 + 19313*uk_43 + 7921*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 150234542803*uk_47 + 199565288201*uk_48 + 17938452872*uk_49 + 8*uk_5 + 477611307717*uk_50 + 486580534153*uk_51 + 199565288201*uk_52 + 187944057*uk_53 + 199877013*uk_54 + 265508271*uk_55 + 23865912*uk_56 + 635429907*uk_57 + 647362863*uk_58 + 265508271*uk_59 + 213*uk_6 + 212567617*uk_60 + 282365939*uk_61 + 25381208*uk_62 + 675774663*uk_63 + 688465267*uk_64 + 282365939*uk_65 + 375083113*uk_66 + 33715336*uk_67 + 897670821*uk_68 + 914528489*uk_69 + 217*uk_7 + 375083113*uk_70 + 3030592*uk_71 + 80689512*uk_72 + 82204808*uk_73 + 33715336*uk_74 + 2148358257*uk_75 + 2188703013*uk_76 + 897670821*uk_77 + 2229805417*uk_78 + 914528489*uk_79 + 89*uk_8 + 375083113*uk_80 + 250047*uk_81 + 265923*uk_82 + 353241*uk_83 + 31752*uk_84 + 845397*uk_85 + 861273*uk_86 + 353241*uk_87 + 282807*uk_88 + 375669*uk_89 + 2242306609*uk_9 + 33768*uk_90 + 899073*uk_91 + 915957*uk_92 + 375669*uk_93 + 499023*uk_94 + 44856*uk_95 + 1194291*uk_96 + 1216719*uk_97 + 499023*uk_98 + 4032*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 108360*uk_100 + 109368*uk_101 + 33768*uk_102 + 2912175*uk_103 + 2939265*uk_104 + 907515*uk_105 + 2966607*uk_106 + 915957*uk_107 + 282807*uk_108 + 148877*uk_109 + 2509709*uk_11 + 188203*uk_110 + 22472*uk_111 + 603935*uk_112 + 609553*uk_113 + 188203*uk_114 + 237917*uk_115 + 28408*uk_116 + 763465*uk_117 + 770567*uk_118 + 237917*uk_119 + 3172651*uk_12 + 3392*uk_120 + 91160*uk_121 + 92008*uk_122 + 28408*uk_123 + 2449925*uk_124 + 2472715*uk_125 + 763465*uk_126 + 2495717*uk_127 + 770567*uk_128 + 237917*uk_129 + 378824*uk_13 + 300763*uk_130 + 35912*uk_131 + 965135*uk_132 + 974113*uk_133 + 300763*uk_134 + 4288*uk_135 + 115240*uk_136 + 116312*uk_137 + 35912*uk_138 + 3097075*uk_139 + 10180895*uk_14 + 3125885*uk_140 + 965135*uk_141 + 3154963*uk_142 + 974113*uk_143 + 300763*uk_144 + 512*uk_145 + 13760*uk_146 + 13888*uk_147 + 4288*uk_148 + 369800*uk_149 + 10275601*uk_15 + 373240*uk_150 + 115240*uk_151 + 376712*uk_152 + 116312*uk_153 + 35912*uk_154 + 9938375*uk_155 + 10030825*uk_156 + 3097075*uk_157 + 10124135*uk_158 + 3125885*uk_159 + 3172651*uk_16 + 965135*uk_160 + 10218313*uk_161 + 3154963*uk_162 + 974113*uk_163 + 300763*uk_164 + 3969*uk_17 + 3339*uk_18 + 4221*uk_19 + 63*uk_2 + 504*uk_20 + 13545*uk_21 + 13671*uk_22 + 4221*uk_23 + 2809*uk_24 + 3551*uk_25 + 424*uk_26 + 11395*uk_27 + 11501*uk_28 + 3551*uk_29 + 53*uk_3 + 4489*uk_30 + 536*uk_31 + 14405*uk_32 + 14539*uk_33 + 4489*uk_34 + 64*uk_35 + 1720*uk_36 + 1736*uk_37 + 536*uk_38 + 46225*uk_39 + 67*uk_4 + 46655*uk_40 + 14405*uk_41 + 47089*uk_42 + 14539*uk_43 + 4489*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 118842250277*uk_47 + 150234542803*uk_48 + 17938452872*uk_49 + 8*uk_5 + 482095920935*uk_50 + 486580534153*uk_51 + 150234542803*uk_52 + 187944057*uk_53 + 158111667*uk_54 + 199877013*uk_55 + 23865912*uk_56 + 641396385*uk_57 + 647362863*uk_58 + 199877013*uk_59 + 215*uk_6 + 133014577*uk_60 + 168150503*uk_61 + 20077672*uk_62 + 539587435*uk_63 + 544606853*uk_64 + 168150503*uk_65 + 212567617*uk_66 + 25381208*uk_67 + 682119965*uk_68 + 688465267*uk_69 + 217*uk_7 + 212567617*uk_70 + 3030592*uk_71 + 81447160*uk_72 + 82204808*uk_73 + 25381208*uk_74 + 2188892425*uk_75 + 2209254215*uk_76 + 682119965*uk_77 + 2229805417*uk_78 + 688465267*uk_79 + 67*uk_8 + 212567617*uk_80 + 250047*uk_81 + 210357*uk_82 + 265923*uk_83 + 31752*uk_84 + 853335*uk_85 + 861273*uk_86 + 265923*uk_87 + 176967*uk_88 + 223713*uk_89 + 2242306609*uk_9 + 26712*uk_90 + 717885*uk_91 + 724563*uk_92 + 223713*uk_93 + 282807*uk_94 + 33768*uk_95 + 907515*uk_96 + 915957*uk_97 + 282807*uk_98 + 4032*uk_99, uk_0 + 47353*uk_1 + 2983239*uk_10 + 109368*uk_100 + 109368*uk_101 + 26712*uk_102 + 2966607*uk_103 + 2966607*uk_104 + 724563*uk_105 + 2966607*uk_106 + 724563*uk_107 + 176967*uk_108 + 103823*uk_109 + 2225591*uk_11 + 117077*uk_110 + 17672*uk_111 + 479353*uk_112 + 479353*uk_113 + 117077*uk_114 + 132023*uk_115 + 19928*uk_116 + 540547*uk_117 + 540547*uk_118 + 132023*uk_119 + 2509709*uk_12 + 3008*uk_120 + 81592*uk_121 + 81592*uk_122 + 19928*uk_123 + 2213183*uk_124 + 2213183*uk_125 + 540547*uk_126 + 2213183*uk_127 + 540547*uk_128 + 132023*uk_129 + 378824*uk_13 + 148877*uk_130 + 22472*uk_131 + 609553*uk_132 + 609553*uk_133 + 148877*uk_134 + 3392*uk_135 + 92008*uk_136 + 92008*uk_137 + 22472*uk_138 + 2495717*uk_139 + 10275601*uk_14 + 2495717*uk_140 + 609553*uk_141 + 2495717*uk_142 + 609553*uk_143 + 148877*uk_144 + 512*uk_145 + 13888*uk_146 + 13888*uk_147 + 3392*uk_148 + 376712*uk_149 + 10275601*uk_15 + 376712*uk_150 + 92008*uk_151 + 376712*uk_152 + 92008*uk_153 + 22472*uk_154 + 10218313*uk_155 + 10218313*uk_156 + 2495717*uk_157 + 10218313*uk_158 + 2495717*uk_159 + 2509709*uk_16 + 609553*uk_160 + 10218313*uk_161 + 2495717*uk_162 + 609553*uk_163 + 148877*uk_164 + 3969*uk_17 + 2961*uk_18 + 3339*uk_19 + 63*uk_2 + 504*uk_20 + 13671*uk_21 + 13671*uk_22 + 3339*uk_23 + 2209*uk_24 + 2491*uk_25 + 376*uk_26 + 10199*uk_27 + 10199*uk_28 + 2491*uk_29 + 47*uk_3 + 2809*uk_30 + 424*uk_31 + 11501*uk_32 + 11501*uk_33 + 2809*uk_34 + 64*uk_35 + 1736*uk_36 + 1736*uk_37 + 424*uk_38 + 47089*uk_39 + 53*uk_4 + 47089*uk_40 + 11501*uk_41 + 47089*uk_42 + 11501*uk_43 + 2809*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 105388410623*uk_47 + 118842250277*uk_48 + 17938452872*uk_49 + 8*uk_5 + 486580534153*uk_50 + 486580534153*uk_51 + 118842250277*uk_52 + 187944057*uk_53 + 140212233*uk_54 + 158111667*uk_55 + 23865912*uk_56 + 647362863*uk_57 + 647362863*uk_58 + 158111667*uk_59 + 217*uk_6 + 104602777*uk_60 + 117956323*uk_61 + 17804728*uk_62 + 482953247*uk_63 + 482953247*uk_64 + 117956323*uk_65 + 133014577*uk_66 + 20077672*uk_67 + 544606853*uk_68 + 544606853*uk_69 + 217*uk_7 + 133014577*uk_70 + 3030592*uk_71 + 82204808*uk_72 + 82204808*uk_73 + 20077672*uk_74 + 2229805417*uk_75 + 2229805417*uk_76 + 544606853*uk_77 + 2229805417*uk_78 + 544606853*uk_79 + 53*uk_8 + 133014577*uk_80 + 250047*uk_81 + 186543*uk_82 + 210357*uk_83 + 31752*uk_84 + 861273*uk_85 + 861273*uk_86 + 210357*uk_87 + 139167*uk_88 + 156933*uk_89 + 2242306609*uk_9 + 23688*uk_90 + 642537*uk_91 + 642537*uk_92 + 156933*uk_93 + 176967*uk_94 + 26712*uk_95 + 724563*uk_96 + 724563*uk_97 + 176967*uk_98 + 4032*uk_99, ] def sol_165x165(): return { uk_0: -QQ(295441,1683)*uk_2 - QQ(175799,1683)*uk_7 + QQ(2401696807,1)*uk_9 - QQ(9606787228,1683)*uk_10 + QQ(9606787228,1683)*uk_15 - QQ(29030443,1683)*uk_17 - QQ(5965893,187)*uk_22 + QQ(262901,99)*uk_42 + QQ(235539209256104,1)*uk_45 - QQ(232597130667529,1683)*uk_46 + QQ(1364372733998209,1683)*uk_51 - QQ(1133600892904,1683)*uk_53 - QQ(172922170104,187)*uk_58 + QQ(249776467928,99)*uk_78 - QQ(2401889209,1683)*uk_81 - QQ(636292759,187)*uk_86 - QQ(1034157281,187)*uk_106 + QQ(10558824289,1683)*uk_161, uk_1: QQ(4,1683)*uk_2 - QQ(4,1683)*uk_7 - QQ(98072,1)*uk_9 + QQ(96847,1683)*uk_10 - QQ(568087,1683)*uk_15 + QQ(472,1683)*uk_17 + QQ(72,187)*uk_22 - QQ(104,99)*uk_42 - QQ(7216420377,1)*uk_45 - QQ(108808244,1683)*uk_46 - QQ(46106641036,1683)*uk_51 + QQ(17259541,1683)*uk_53 + QQ(1095291,187)*uk_58 - QQ(9936587,99)*uk_78 + QQ(41836,1683)*uk_81 + QQ(10036,187)*uk_86 + QQ(10124,187)*uk_106 - QQ(8,1)*uk_149 - QQ(586156,1683)*uk_161, uk_3: -QQ(295441,1683)*uk_18 - QQ(175799,1683)*uk_28 + QQ(2401696807,1)*uk_47 - QQ(9606787228,1683)*uk_54 + QQ(9606787228,1683)*uk_64 - QQ(29030443,1683)*uk_82 - QQ(5965893,187)*uk_92 + QQ(262901,99)*uk_127 + QQ(8,1)*uk_149, uk_4: -QQ(295441,1683)*uk_19 + QQ(1602583,3366)*uk_29 - QQ(175799,1683)*uk_33 - QQ(45670,99)*uk_34 - QQ(76006,187)*uk_38 + QQ(295441,1683)*uk_41 - QQ(45670,99)*uk_44 + QQ(2401696807,1)*uk_48 - QQ(9606787228,1683)*uk_55 + QQ(74452601017,3366)*uk_65 + QQ(9606787228,1683)*uk_69 - QQ(2401696807,99)*uk_70 - QQ(4803393614,187)*uk_74 + QQ(9606787228,1683)*uk_77 - QQ(2401696807,99)*uk_80 - QQ(29030443,1683)*uk_83 + QQ(11596905,374)*uk_93 - QQ(5965893,187)*uk_97 - QQ(769658,33)*uk_98 - QQ(17335370,1683)*uk_102 + QQ(29030443,1683)*uk_105 - QQ(769658,33)*uk_108 + QQ(77314807,3366)*uk_114 + QQ(750229,198)*uk_119 + QQ(72457964,1683)*uk_123 + QQ(11596905,374)*uk_126 + QQ(31304645,306)*uk_128 + QQ(750229,198)*uk_129 - QQ(3191393,99)*uk_134 - QQ(647642,9)*uk_138 - QQ(769658,33)*uk_141 + QQ(262901,99)*uk_142 - QQ(10478626,99)*uk_143 - QQ(3191393,99)*uk_144 - QQ(20480616,187)*uk_148 - QQ(17335370,1683)*uk_151 - QQ(174199750,1683)*uk_153 - QQ(647642,9)*uk_154 + QQ(29030443,1683)*uk_157 + QQ(5965893,187)*uk_159 - QQ(769658,33)*uk_160 - QQ(10478626,99)*uk_163 - QQ(3191393,99)*uk_164, uk_5: -QQ(295441,1683)*uk_20 - QQ(175799,1683)*uk_37 + QQ(2401696807,1)*uk_49 - QQ(9606787228,1683)*uk_56 + QQ(9606787228,1683)*uk_73 - QQ(29030443,1683)*uk_84 - QQ(5965893,187)*uk_101 + QQ(262901,99)*uk_152, uk_6: -QQ(295441,1683)*uk_21 - QQ(175799,1683)*uk_40 + QQ(2401696807,1)*uk_50 - QQ(9606787228,1683)*uk_57 + QQ(9606787228,1683)*uk_76 - QQ(29030443,1683)*uk_85 - QQ(5965893,187)*uk_104 + QQ(262901,99)*uk_158, uk_8: -QQ(295441,1683)*uk_23 - QQ(1602583,3366)*uk_29 + QQ(45670,99)*uk_34 + QQ(76006,187)*uk_38 - QQ(295441,1683)*uk_41 - QQ(175799,1683)*uk_43 + QQ(45670,99)*uk_44 + QQ(2401696807,1)*uk_52 - QQ(9606787228,1683)*uk_59 - QQ(74452601017,3366)*uk_65 + QQ(2401696807,99)*uk_70 + QQ(4803393614,187)*uk_74 - QQ(9606787228,1683)*uk_77 + QQ(9606787228,1683)*uk_79 + QQ(2401696807,99)*uk_80 - QQ(29030443,1683)*uk_87 - QQ(11596905,374)*uk_93 + QQ(769658,33)*uk_98 + QQ(17335370,1683)*uk_102 - QQ(29030443,1683)*uk_105 - QQ(5965893,187)*uk_107 + QQ(769658,33)*uk_108 - QQ(77314807,3366)*uk_114 - QQ(750229,198)*uk_119 - QQ(72457964,1683)*uk_123 - QQ(11596905,374)*uk_126 - QQ(31304645,306)*uk_128 - QQ(750229,198)*uk_129 + QQ(3191393,99)*uk_134 + QQ(647642,9)*uk_138 + QQ(769658,33)*uk_141 + QQ(10478626,99)*uk_143 + QQ(3191393,99)*uk_144 + QQ(20480616,187)*uk_148 + QQ(17335370,1683)*uk_151 + QQ(174199750,1683)*uk_153 + QQ(647642,9)*uk_154 - QQ(29030443,1683)*uk_157 - QQ(5965893,187)*uk_159 + QQ(769658,33)*uk_160 + QQ(262901,99)*uk_162 + QQ(10478626,99)*uk_163 + QQ(3191393,99)*uk_164, uk_11: QQ(4,1683)*uk_18 - QQ(4,1683)*uk_28 - QQ(98072,1)*uk_47 + QQ(96847,1683)*uk_54 - QQ(568087,1683)*uk_64 + QQ(472,1683)*uk_82 + QQ(72,187)*uk_92 - QQ(104,99)*uk_127, uk_12: QQ(4,1683)*uk_19 - QQ(31,3366)*uk_29 - QQ(4,1683)*uk_33 + QQ(1,99)*uk_34 + QQ(2,187)*uk_38 - QQ(4,1683)*uk_41 + QQ(1,99)*uk_44 - QQ(98072,1)*uk_48 + QQ(96847,1683)*uk_55 - QQ(1437649,3366)*uk_65 - QQ(568087,1683)*uk_69 + QQ(52402,99)*uk_70 + QQ(120138,187)*uk_74 - QQ(96847,1683)*uk_77 + QQ(52402,99)*uk_80 + QQ(472,1683)*uk_83 - QQ(225,374)*uk_93 + QQ(72,187)*uk_97 + QQ(17,33)*uk_98 + QQ(590,1683)*uk_102 - QQ(472,1683)*uk_105 + QQ(17,33)*uk_108 - QQ(1519,3366)*uk_114 - QQ(13,198)*uk_119 - QQ(1388,1683)*uk_123 - QQ(225,374)*uk_126 - QQ(605,306)*uk_128 - QQ(13,198)*uk_129 + QQ(68,99)*uk_134 + QQ(14,9)*uk_138 + QQ(17,33)*uk_141 - QQ(104,99)*uk_142 + QQ(229,99)*uk_143 + QQ(68,99)*uk_144 + QQ(472,187)*uk_148 + QQ(590,1683)*uk_151 + QQ(4450,1683)*uk_153 + QQ(14,9)*uk_154 - QQ(472,1683)*uk_157 - QQ(72,187)*uk_159 + QQ(17,33)*uk_160 + QQ(229,99)*uk_163 + QQ(68,99)*uk_164, uk_13: QQ(4,1683)*uk_20 - QQ(4,1683)*uk_37 - QQ(98072,1)*uk_49 + QQ(96847,1683)*uk_56 - QQ(568087,1683)*uk_73 + QQ(472,1683)*uk_84 + QQ(72,187)*uk_101 - QQ(104,99)*uk_152, uk_14: QQ(4,1683)*uk_21 - QQ(4,1683)*uk_40 - QQ(98072,1)*uk_50 + QQ(96847,1683)*uk_57 - QQ(568087,1683)*uk_76 + QQ(472,1683)*uk_85 + QQ(72,187)*uk_104 - QQ(104,99)*uk_158, uk_16: QQ(4,1683)*uk_23 + QQ(31,3366)*uk_29 - QQ(1,99)*uk_34 - QQ(2,187)*uk_38 + QQ(4,1683)*uk_41 - QQ(4,1683)*uk_43 - QQ(1,99)*uk_44 - QQ(98072,1)*uk_52 + QQ(96847,1683)*uk_59 + QQ(1437649,3366)*uk_65 - QQ(52402,99)*uk_70 - QQ(120138,187)*uk_74 + QQ(96847,1683)*uk_77 - QQ(568087,1683)*uk_79 - QQ(52402,99)*uk_80 + QQ(472,1683)*uk_87 + QQ(225,374)*uk_93 - QQ(17,33)*uk_98 - QQ(590,1683)*uk_102 + QQ(472,1683)*uk_105 + QQ(72,187)*uk_107 - QQ(17,33)*uk_108 + QQ(1519,3366)*uk_114 + QQ(13,198)*uk_119 + QQ(1388,1683)*uk_123 + QQ(225,374)*uk_126 + QQ(605,306)*uk_128 + QQ(13,198)*uk_129 - QQ(68,99)*uk_134 - QQ(14,9)*uk_138 - QQ(17,33)*uk_141 - QQ(229,99)*uk_143 - QQ(68,99)*uk_144 - QQ(472,187)*uk_148 - QQ(590,1683)*uk_151 - QQ(4450,1683)*uk_153 - QQ(14,9)*uk_154 + QQ(472,1683)*uk_157 + QQ(72,187)*uk_159 - QQ(17,33)*uk_160 - QQ(104,99)*uk_162 - QQ(229,99)*uk_163 - QQ(68,99)*uk_164, uk_24: -QQ(295441,1683)*uk_88 - QQ(175799,1683)*uk_113, uk_26: -QQ(295441,1683)*uk_90 - QQ(175799,1683)*uk_122, uk_25: -uk_29 - QQ(295441,1683)*uk_89 - QQ(295441,1683)*uk_93 - QQ(175799,1683)*uk_118 - QQ(175799,1683)*uk_128, uk_27: -QQ(295441,1683)*uk_91 - QQ(175799,1683)*uk_125 - QQ(4,1)*uk_149, uk_30: -uk_34 - uk_44 - QQ(295441,1683)*uk_94 - QQ(295441,1683)*uk_98 - QQ(295441,1683)*uk_108 - QQ(175799,1683)*uk_133 - QQ(175799,1683)*uk_143 - QQ(175799,1683)*uk_163, uk_31: -uk_38 - QQ(295441,1683)*uk_95 - QQ(295441,1683)*uk_102 - QQ(175799,1683)*uk_137 - QQ(175799,1683)*uk_153, uk_32: -uk_41 - QQ(295441,1683)*uk_96 - QQ(295441,1683)*uk_105 - QQ(175799,1683)*uk_140 + QQ(4,1)*uk_149 - QQ(175799,1683)*uk_159, uk_35: -QQ(295441,1683)*uk_99 - QQ(175799,1683)*uk_147, uk_36: -QQ(295441,1683)*uk_100 - QQ(2,1)*uk_149 - QQ(175799,1683)*uk_150, uk_39: -QQ(295441,1683)*uk_103 - QQ(175799,1683)*uk_156, uk_60: QQ(4,1683)*uk_88 - QQ(4,1683)*uk_113, uk_61: -uk_65 + QQ(4,1683)*uk_89 + QQ(4,1683)*uk_93 - QQ(4,1683)*uk_118 - QQ(4,1683)*uk_128, uk_62: QQ(4,1683)*uk_90 - QQ(4,1683)*uk_122, uk_63: QQ(4,1683)*uk_91 - QQ(4,1683)*uk_125, uk_66: -uk_70 - uk_80 + QQ(4,1683)*uk_94 + QQ(4,1683)*uk_98 + QQ(4,1683)*uk_108 - QQ(4,1683)*uk_133 - QQ(4,1683)*uk_143 - QQ(4,1683)*uk_163, uk_67: -uk_74 + QQ(4,1683)*uk_95 + QQ(4,1683)*uk_102 - QQ(4,1683)*uk_137 - QQ(4,1683)*uk_153, uk_68: -uk_77 + QQ(4,1683)*uk_96 + QQ(4,1683)*uk_105 - QQ(4,1683)*uk_140 - QQ(4,1683)*uk_159, uk_71: QQ(4,1683)*uk_99 - QQ(4,1683)*uk_147, uk_72: QQ(4,1683)*uk_100 - QQ(4,1683)*uk_150, uk_75: QQ(4,1683)*uk_103 - QQ(4,1683)*uk_156, uk_109: 0, uk_110: -uk_114, uk_111: 0, uk_112: 0, uk_115: -uk_119 - uk_129, uk_116: -uk_123, uk_117: -uk_126, uk_120: 0, uk_121: 0, uk_124: 0, uk_130: -uk_134 - uk_144 - uk_164, uk_131: -uk_138 - uk_154, uk_132: -uk_141 - uk_160, uk_135: -uk_148, uk_136: -uk_151, uk_139: -uk_157, uk_145: 0, uk_146: 0, uk_155: 0, } def time_eqs_165x165(): if len(eqs_165x165()) != 165: raise ValueError("length should be 165") def time_solve_lin_sys_165x165(): eqs = eqs_165x165() sol = solve_lin_sys(eqs, R_165) if sol != sol_165x165(): raise ValueError("Value should be equal") def time_verify_sol_165x165(): eqs = eqs_165x165() sol = sol_165x165() zeros = [ eq.compose(sol) for eq in eqs ] if not all(zero == 0 for zero in zeros): raise ValueError("All should be 0") def time_to_expr_eqs_165x165(): eqs = eqs_165x165() assert [ R_165.from_expr(eq.as_expr()) for eq in eqs ] == eqs # Benchmark R_49: shows how fast are arithmetics in rational function fields. F_abc, a, b, c = field("a,b,c", ZZ) R_49, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k40, k41, k42, k43, k44, k45, k46, k47, k48, k49 = ring("k1:50", F_abc) def eqs_189x49(): return [ -b*k8/a+c*k8/a, -b*k11/a+c*k11/a, -b*k10/a+c*k10/a+k2, -k3-b*k9/a+c*k9/a, -b*k14/a+c*k14/a, -b*k15/a+c*k15/a, -b*k18/a+c*k18/a-k2, -b*k17/a+c*k17/a, -b*k16/a+c*k16/a+k4, -b*k13/a+c*k13/a-b*k21/a+c*k21/a+b*k5/a-c*k5/a, b*k44/a-c*k44/a, -b*k45/a+c*k45/a, -b*k20/a+c*k20/a, -b*k44/a+c*k44/a, b*k46/a-c*k46/a, b**2*k47/a**2-2*b*c*k47/a**2+c**2*k47/a**2, k3, -k4, -b*k12/a+c*k12/a-a*k6/b+c*k6/b, -b*k19/a+c*k19/a+a*k7/c-b*k7/c, b*k45/a-c*k45/a, -b*k46/a+c*k46/a, -k48+c*k48/a+c*k48/b-c**2*k48/(a*b), -k49+b*k49/a+b*k49/c-b**2*k49/(a*c), a*k1/b-c*k1/b, a*k4/b-c*k4/b, a*k3/b-c*k3/b+k9, -k10+a*k2/b-c*k2/b, a*k7/b-c*k7/b, -k9, k11, b*k12/a-c*k12/a+a*k6/b-c*k6/b, a*k15/b-c*k15/b, k10+a*k18/b-c*k18/b, -k11+a*k17/b-c*k17/b, a*k16/b-c*k16/b, -a*k13/b+c*k13/b+a*k21/b-c*k21/b+a*k5/b-c*k5/b, -a*k44/b+c*k44/b, a*k45/b-c*k45/b, a*k14/c-b*k14/c+a*k20/b-c*k20/b, a*k44/b-c*k44/b, -a*k46/b+c*k46/b, -k47+c*k47/a+c*k47/b-c**2*k47/(a*b), a*k19/b-c*k19/b, -a*k45/b+c*k45/b, a*k46/b-c*k46/b, a**2*k48/b**2-2*a*c*k48/b**2+c**2*k48/b**2, -k49+a*k49/b+a*k49/c-a**2*k49/(b*c), k16, -k17, -a*k1/c+b*k1/c, -k16-a*k4/c+b*k4/c, -a*k3/c+b*k3/c, k18-a*k2/c+b*k2/c, b*k19/a-c*k19/a-a*k7/c+b*k7/c, -a*k6/c+b*k6/c, -a*k8/c+b*k8/c, -a*k11/c+b*k11/c+k17, -a*k10/c+b*k10/c-k18, -a*k9/c+b*k9/c, -a*k14/c+b*k14/c-a*k20/b+c*k20/b, -a*k13/c+b*k13/c+a*k21/c-b*k21/c-a*k5/c+b*k5/c, a*k44/c-b*k44/c, -a*k45/c+b*k45/c, -a*k44/c+b*k44/c, a*k46/c-b*k46/c, -k47+b*k47/a+b*k47/c-b**2*k47/(a*c), -a*k12/c+b*k12/c, a*k45/c-b*k45/c, -a*k46/c+b*k46/c, -k48+a*k48/b+a*k48/c-a**2*k48/(b*c), a**2*k49/c**2-2*a*b*k49/c**2+b**2*k49/c**2, k8, k11, -k15, k10-k18, -k17, k9, -k16, -k29, k14-k32, -k21+k23-k31, -k24-k30, -k35, k44, -k45, k36, k13-k23+k39, -k20+k38, k25+k37, b*k26/a-c*k26/a-k34+k42, -2*k44, k45, k46, b*k47/a-c*k47/a, k41, k44, -k46, -b*k47/a+c*k47/a, k12+k24, -k19-k25, -a*k27/b+c*k27/b-k33, k45, -k46, -a*k48/b+c*k48/b, a*k28/c-b*k28/c+k40, -k45, k46, a*k48/b-c*k48/b, a*k49/c-b*k49/c, -a*k49/c+b*k49/c, -k1, -k4, -k3, k15, k18-k2, k17, k16, k22, k25-k7, k24+k30, k21+k23-k31, k28, -k44, k45, -k30-k6, k20+k32, k27+b*k33/a-c*k33/a, k44, -k46, -b*k47/a+c*k47/a, -k36, k31-k39-k5, -k32-k38, k19-k37, k26-a*k34/b+c*k34/b-k42, k44, -2*k45, k46, a*k48/b-c*k48/b, a*k35/c-b*k35/c-k41, -k44, k46, b*k47/a-c*k47/a, -a*k49/c+b*k49/c, -k40, k45, -k46, -a*k48/b+c*k48/b, a*k49/c-b*k49/c, k1, k4, k3, -k8, -k11, -k10+k2, -k9, k37+k7, -k14-k38, -k22, -k25-k37, -k24+k6, -k13-k23+k39, -k28+b*k40/a-c*k40/a, k44, -k45, -k27, -k44, k46, b*k47/a-c*k47/a, k29, k32+k38, k31-k39+k5, -k12+k30, k35-a*k41/b+c*k41/b, -k44, k45, -k26+k34+a*k42/c-b*k42/c, k44, k45, -2*k46, -b*k47/a+c*k47/a, -a*k48/b+c*k48/b, a*k49/c-b*k49/c, k33, -k45, k46, a*k48/b-c*k48/b, -a*k49/c+b*k49/c, ] def sol_189x49(): return { k49: 0, k48: 0, k47: 0, k46: 0, k45: 0, k44: 0, k41: 0, k40: 0, k38: 0, k37: 0, k36: 0, k35: 0, k33: 0, k32: 0, k30: 0, k29: 0, k28: 0, k27: 0, k25: 0, k24: 0, k22: 0, k21: 0, k20: 0, k19: 0, k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 0, k12: 0, k11: 0, k10: 0, k9: 0, k8: 0, k7: 0, k6: 0, k5: 0, k4: 0, k3: 0, k2: 0, k1: 0, k34: b/c*k42, k31: k39, k26: a/c*k42, k23: k39, } def time_eqs_189x49(): if len(eqs_189x49()) != 189: raise ValueError("Length should be equal to 189") def time_solve_lin_sys_189x49(): eqs = eqs_189x49() sol = solve_lin_sys(eqs, R_49) if sol != sol_189x49(): raise ValueError("Values should be equal") def time_verify_sol_189x49(): eqs = eqs_189x49() sol = sol_189x49() zeros = [ eq.compose(sol) for eq in eqs ] assert all(zero == 0 for zero in zeros) def time_to_expr_eqs_189x49(): eqs = eqs_189x49() assert [ R_49.from_expr(eq.as_expr()) for eq in eqs ] == eqs # Benchmark R_8: shows how fast polynomial GCDs are computed. F_a5_5, a_11, a_12, a_13, a_14, a_21, a_22, a_23, a_24, a_31, a_32, a_33, a_34, a_41, a_42, a_43, a_44 = field("a_(1:5)(1:5)", ZZ) R_8, x0, x1, x2, x3, x4, x5, x6, x7 = ring("x:8", F_a5_5) def eqs_10x8(): return [ (a_33*a_34 + a_33*a_44 + a_43*a_44)*x3 + (a_33*a_34 + a_33*a_44 + a_43*a_44)*x4 + (a_12*a_34 + a_12*a_44 + a_22*a_34 + a_22*a_44)*x5 + (a_12*a_44 + a_22*a_44)*x6 + (a_12*a_33 + a_22*a_33)*x7 - a_12*a_33 - a_12*a_43 - a_22*a_33 - a_22*a_43, (a_33 + a_34 + a_43 + a_44)*x3 + (a_33 + a_34 + a_43 + a_44)*x4 + (a_12 + a_22 + a_34 + a_44)*x5 + (a_12 + a_22 + a_44)*x6 + (a_12 + a_22 + a_33)*x7 - a_12 - a_22 - a_33 - a_43, x3 + x4 + x5 + x6 + x7 - 1, (a_12*a_33*a_34 + a_12*a_33*a_44 + a_12*a_43*a_44 + a_22*a_33*a_34 + a_22*a_33*a_44 + a_22*a_43*a_44)*x0 + (a_22*a_33*a_34 + a_22*a_33*a_44 + a_22*a_43*a_44)*x1 + (a_12*a_33*a_34 + a_12*a_33*a_44 + a_12*a_43*a_44 + a_22*a_33*a_34 + a_22*a_33*a_44 + a_22*a_43*a_44)*x2 + (a_11*a_33*a_34 + a_11*a_33*a_44 + a_11*a_43*a_44 + a_31*a_33*a_34 + a_31*a_33*a_44 + a_31*a_43*a_44)*x3 + (a_11*a_33*a_34 + a_11*a_33*a_44 + a_11*a_43*a_44 + a_21*a_33*a_34 + a_21*a_33*a_44 + a_21*a_43*a_44 + a_31*a_33*a_34 + a_31*a_33*a_44 + a_31*a_43*a_44)*x4 + (a_11*a_12*a_34 + a_11*a_12*a_44 + a_11*a_22*a_34 + a_11*a_22*a_44 + a_12*a_31*a_34 + a_12*a_31*a_44 + a_21*a_22*a_34 + a_21*a_22*a_44 + a_22*a_31*a_34 + a_22*a_31*a_44)*x5 + (a_11*a_12*a_44 + a_11*a_22*a_44 + a_12*a_31*a_44 + a_21*a_22*a_44 + a_22*a_31*a_44)*x6 + (a_11*a_12*a_33 + a_11*a_22*a_33 + a_12*a_31*a_33 + a_21*a_22*a_33 + a_22*a_31*a_33)*x7 - a_11*a_12*a_33 - a_11*a_12*a_43 - a_11*a_22*a_33 - a_11*a_22*a_43 - a_12*a_31*a_33 - a_12*a_31*a_43 - a_21*a_22*a_33 - a_21*a_22*a_43 - a_22*a_31*a_33 - a_22*a_31*a_43, (a_12*a_33 + a_12*a_34 + a_12*a_43 + a_12*a_44 + a_22*a_33 + a_22*a_34 + a_22*a_43 + a_22*a_44 + a_33*a_34 + a_33*a_44 + a_43*a_44)*x0 + (a_22*a_33 + a_22*a_34 + a_22*a_43 + a_22*a_44 + a_33*a_34 + a_33*a_44 + a_43*a_44)*x1 + (a_12*a_33 + a_12*a_34 + a_12*a_43 + a_12*a_44 + a_22*a_33 + a_22*a_34 + a_22*a_43 + a_22*a_44 + a_33*a_34 + a_33*a_44 + a_43*a_44)*x2 + (a_11*a_33 + a_11*a_34 + a_11*a_43 + a_11*a_44 + a_31*a_33 + a_31*a_34 + a_31*a_43 + a_31*a_44 + a_33*a_34 + a_33*a_44 + a_43*a_44)*x3 + (a_11*a_33 + a_11*a_34 + a_11*a_43 + a_11*a_44 + a_21*a_33 + a_21*a_34 + a_21*a_43 + a_21*a_44 + a_31*a_33 + a_31*a_34 + a_31*a_43 + a_31*a_44 + a_33*a_34 + a_33*a_44 + a_43*a_44)*x4 + (a_11*a_12 + a_11*a_22 + a_11*a_34 + a_11*a_44 + a_12*a_31 + a_12*a_34 + a_12*a_44 + a_21*a_22 + a_21*a_34 + a_21*a_44 + a_22*a_31 + a_22*a_34 + a_22*a_44 + a_31*a_34 + a_31*a_44)*x5 + (a_11*a_12 + a_11*a_22 + a_11*a_44 + a_12*a_31 + a_12*a_44 + a_21*a_22 + a_21*a_44 + a_22*a_31 + a_22*a_44 + a_31*a_44)*x6 + (a_11*a_12 + a_11*a_22 + a_11*a_33 + a_12*a_31 + a_12*a_33 + a_21*a_22 + a_21*a_33 + a_22*a_31 + a_22*a_33 + a_31*a_33)*x7 - a_11*a_12 - a_11*a_22 - a_11*a_33 - a_11*a_43 - a_12*a_31 - a_12*a_33 - a_12*a_43 - a_21*a_22 - a_21*a_33 - a_21*a_43 - a_22*a_31 - a_22*a_33 - a_22*a_43 - a_31*a_33 - a_31*a_43, (a_12 + a_22 + a_33 + a_34 + a_43 + a_44)*x0 + (a_22 + a_33 + a_34 + a_43 + a_44)*x1 + (a_12 + a_22 + a_33 + a_34 + a_43 + a_44)*x2 + (a_11 + a_31 + a_33 + a_34 + a_43 + a_44)*x3 + (a_11 + a_21 + a_31 + a_33 + a_34 + a_43 + a_44)*x4 + (a_11 + a_12 + a_21 + a_22 + a_31 + a_34 + a_44)*x5 + (a_11 + a_12 + a_21 + a_22 + a_31 + a_44)*x6 + (a_11 + a_12 + a_21 + a_22 + a_31 + a_33)*x7 - a_11 - a_12 - a_21 - a_22 - a_31 - a_33 - a_43, x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 - 1, (a_12*a_34 + a_12*a_44 + a_22*a_34 + a_22*a_44)*x2 + (a_31*a_34 + a_31*a_44)*x3 + (a_31*a_34 + a_31*a_44)*x4 + (a_12*a_31 + a_22*a_31)*x7 - a_12*a_31 - a_22*a_31, (a_12 + a_22 + a_34 + a_44)*x2 + a_31*x3 + a_31*x4 + a_31*x7 - a_31, x2, ] def sol_10x8(): return { x0: -a_21/a_12*x4, x1: a_21/a_12*x4, x2: 0, x3: -x4, x5: a_43/a_34, x6: -a_43/a_34, x7: 1, } def time_eqs_10x8(): if len(eqs_10x8()) != 10: raise ValueError("Value should be equal to 10") def time_solve_lin_sys_10x8(): eqs = eqs_10x8() sol = solve_lin_sys(eqs, R_8) if sol != sol_10x8(): raise ValueError("Values should be equal") def time_verify_sol_10x8(): eqs = eqs_10x8() sol = sol_10x8() zeros = [ eq.compose(sol) for eq in eqs ] if not all(zero == 0 for zero in zeros): raise ValueError("All values in zero should be 0") def time_to_expr_eqs_10x8(): eqs = eqs_10x8() assert [ R_8.from_expr(eq.as_expr()) for eq in eqs ] == eqs
442b423dee329aa39c1597d10950326b9c347faaa459aee8ef7bd04b556b979c
"""Implementation of mathematical domains. """ __all__ = [ 'Domain', 'FiniteField', 'IntegerRing', 'RationalField', 'RealField', 'ComplexField', 'AlgebraicField', 'PolynomialRing', 'FractionField', 'ExpressionDomain', 'PythonRational', 'GF', 'FF', 'ZZ', 'QQ', 'ZZ_I', 'QQ_I', 'RR', 'CC', 'EX', 'EXRAW', ] from .domain import Domain from .finitefield import FiniteField, FF, GF from .integerring import IntegerRing, ZZ from .rationalfield import RationalField, QQ from .algebraicfield import AlgebraicField from .gaussiandomains import ZZ_I, QQ_I from .realfield import RealField, RR from .complexfield import ComplexField, CC from .polynomialring import PolynomialRing from .fractionfield import FractionField from .expressiondomain import ExpressionDomain, EX from .expressionrawdomain import EXRAW from .pythonrational import PythonRational # This is imported purely for backwards compatibility because some parts of # the codebase used to import this from here and it's possible that downstream # does as well: from sympy.external.gmpy import GROUND_TYPES # noqa: F401 # # The rest of these are obsolete and provided only for backwards # compatibility: # from .pythonfinitefield import PythonFiniteField from .gmpyfinitefield import GMPYFiniteField from .pythonintegerring import PythonIntegerRing from .gmpyintegerring import GMPYIntegerRing from .pythonrationalfield import PythonRationalField from .gmpyrationalfield import GMPYRationalField FF_python = PythonFiniteField FF_gmpy = GMPYFiniteField ZZ_python = PythonIntegerRing ZZ_gmpy = GMPYIntegerRing QQ_python = PythonRationalField QQ_gmpy = GMPYRationalField __all__.extend(( 'PythonFiniteField', 'GMPYFiniteField', 'PythonIntegerRing', 'GMPYIntegerRing', 'PythonRational', 'GMPYRationalField', 'FF_python', 'FF_gmpy', 'ZZ_python', 'ZZ_gmpy', 'QQ_python', 'QQ_gmpy', ))
ca82f5bd319bf19b3ce2fd1023e84f6e0ce262ad0fdb228a286560541cc4e6a9
"""Tests for algorithms for partial fraction decomposition of rational functions. """ from sympy.polys.partfrac import ( apart_undetermined_coeffs, apart, apart_list, assemble_partfrac_list ) from sympy import (S, Poly, E, pi, I, Matrix, Eq, RootSum, Lambda, Symbol, Dummy, factor, together, sqrt, Expr, Rational) from sympy.testing.pytest import raises, XFAIL from sympy.abc import x, y, a, b, c def test_apart(): assert apart(1) == 1 assert apart(1, x) == 1 f, g = (x**2 + 1)/(x + 1), 2/(x + 1) + x - 1 assert apart(f, full=False) == g assert apart(f, full=True) == g f, g = 1/(x + 2)/(x + 1), 1/(1 + x) - 1/(2 + x) assert apart(f, full=False) == g assert apart(f, full=True) == g f, g = 1/(x + 1)/(x + 5), -1/(5 + x)/4 + 1/(1 + x)/4 assert apart(f, full=False) == g assert apart(f, full=True) == g assert apart((E*x + 2)/(x - pi)*(x - 1), x) == \ 2 - E + E*pi + E*x + (E*pi + 2)*(pi - 1)/(x - pi) assert apart(Eq((x**2 + 1)/(x + 1), x), x) == Eq(x - 1 + 2/(x + 1), x) assert apart(x/2, y) == x/2 f, g = (x+y)/(2*x - y), Rational(3, 2)*y/(2*x - y) + S.Half assert apart(f, x, full=False) == g assert apart(f, x, full=True) == g f, g = (x+y)/(2*x - y), 3*x/(2*x - y) - 1 assert apart(f, y, full=False) == g assert apart(f, y, full=True) == g raises(NotImplementedError, lambda: apart(1/(x + 1)/(y + 2))) def test_apart_matrix(): M = Matrix(2, 2, lambda i, j: 1/(x + i + 1)/(x + j)) assert apart(M) == Matrix([ [1/x - 1/(x + 1), (x + 1)**(-2)], [1/(2*x) - (S.Half)/(x + 2), 1/(x + 1) - 1/(x + 2)], ]) def test_apart_symbolic(): f = a*x**4 + (2*b + 2*a*c)*x**3 + (4*b*c - a**2 + a*c**2)*x**2 + \ (-2*a*b + 2*b*c**2)*x - b**2 g = a**2*x**4 + (2*a*b + 2*c*a**2)*x**3 + (4*a*b*c + b**2 + a**2*c**2)*x**2 + (2*c*b**2 + 2*a*b*c**2)*x + b**2*c**2 assert apart(f/g, x) == 1/a - 1/(x + c)**2 - b**2/(a*(a*x + b)**2) assert apart(1/((x + a)*(x + b)*(x + c)), x) == \ 1/((a - c)*(b - c)*(c + x)) - 1/((a - b)*(b - c)*(b + x)) + \ 1/((a - b)*(a - c)*(a + x)) def _make_extension_example(): # https://github.com/sympy/sympy/issues/18531 from sympy.core import Mul def mul2(expr): # 2-arg mul hack... return Mul(2, expr, evaluate=False) f = ((x**2 + 1)**3/((x - 1)**2*(x + 1)**2*(-x**2 + 2*x + 1)*(x**2 + 2*x - 1))) g = (1/mul2(x - sqrt(2) + 1) - 1/mul2(x - sqrt(2) - 1) + 1/mul2(x + 1 + sqrt(2)) - 1/mul2(x - 1 + sqrt(2)) + 1/mul2((x + 1)**2) + 1/mul2((x - 1)**2)) return f, g def test_apart_extension(): f = 2/(x**2 + 1) g = I/(x + I) - I/(x - I) assert apart(f, extension=I) == g assert apart(f, gaussian=True) == g f = x/((x - 2)*(x + I)) assert factor(together(apart(f)).expand()) == f f, g = _make_extension_example() # XXX: Only works with dotprodsimp. See test_apart_extension_xfail below from sympy.matrices import dotprodsimp with dotprodsimp(True): assert apart(f, x, extension={sqrt(2)}) == g def test_apart_extension_xfail(): f, g = _make_extension_example() assert apart(f, x, extension={sqrt(2)}) == g def test_apart_full(): f = 1/(x**2 + 1) assert apart(f, full=False) == f assert apart(f, full=True).dummy_eq( -RootSum(x**2 + 1, Lambda(a, a/(x - a)), auto=False)/2) f = 1/(x**3 + x + 1) assert apart(f, full=False) == f assert apart(f, full=True).dummy_eq( RootSum(x**3 + x + 1, Lambda(a, (a**2*Rational(6, 31) - a*Rational(9, 31) + Rational(4, 31))/(x - a)), auto=False)) f = 1/(x**5 + 1) assert apart(f, full=False) == \ (Rational(-1, 5))*((x**3 - 2*x**2 + 3*x - 4)/(x**4 - x**3 + x**2 - x + 1)) + (Rational(1, 5))/(x + 1) assert apart(f, full=True).dummy_eq( -RootSum(x**4 - x**3 + x**2 - x + 1, Lambda(a, a/(x - a)), auto=False)/5 + (Rational(1, 5))/(x + 1)) def test_apart_undetermined_coeffs(): p = Poly(2*x - 3) q = Poly(x**9 - x**8 - x**6 + x**5 - 2*x**2 + 3*x - 1) r = (-x**7 - x**6 - x**5 + 4)/(x**8 - x**5 - 2*x + 1) + 1/(x - 1) assert apart_undetermined_coeffs(p, q) == r p = Poly(1, x, domain='ZZ[a,b]') q = Poly((x + a)*(x + b), x, domain='ZZ[a,b]') r = 1/((a - b)*(b + x)) - 1/((a - b)*(a + x)) assert apart_undetermined_coeffs(p, q) == r def test_apart_list(): from sympy.utilities.iterables import numbered_symbols def dummy_eq(i, j): if type(i) in (list, tuple): return all(dummy_eq(i, j) for i, j in zip(i, j)) return i == j or i.dummy_eq(j) w0, w1, w2 = Symbol("w0"), Symbol("w1"), Symbol("w2") _a = Dummy("a") f = (-2*x - 2*x**2) / (3*x**2 - 6*x) got = apart_list(f, x, dummies=numbered_symbols("w")) ans = (-1, Poly(Rational(2, 3), x, domain='QQ'), [(Poly(w0 - 2, w0, domain='ZZ'), Lambda(_a, 2), Lambda(_a, -_a + x), 1)]) assert dummy_eq(got, ans) got = apart_list(2/(x**2-2), x, dummies=numbered_symbols("w")) ans = (1, Poly(0, x, domain='ZZ'), [(Poly(w0**2 - 2, w0, domain='ZZ'), Lambda(_a, _a/2), Lambda(_a, -_a + x), 1)]) assert dummy_eq(got, ans) f = 36 / (x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2) got = apart_list(f, x, dummies=numbered_symbols("w")) ans = (1, Poly(0, x, domain='ZZ'), [(Poly(w0 - 2, w0, domain='ZZ'), Lambda(_a, 4), Lambda(_a, -_a + x), 1), (Poly(w1**2 - 1, w1, domain='ZZ'), Lambda(_a, -3*_a - 6), Lambda(_a, -_a + x), 2), (Poly(w2 + 1, w2, domain='ZZ'), Lambda(_a, -4), Lambda(_a, -_a + x), 1)]) assert dummy_eq(got, ans) def test_assemble_partfrac_list(): f = 36 / (x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2) pfd = apart_list(f) assert assemble_partfrac_list(pfd) == -4/(x + 1) - 3/(x + 1)**2 - 9/(x - 1)**2 + 4/(x - 2) a = Dummy("a") pfd = (1, Poly(0, x, domain='ZZ'), [([sqrt(2),-sqrt(2)], Lambda(a, a/2), Lambda(a, -a + x), 1)]) assert assemble_partfrac_list(pfd) == -1/(sqrt(2)*(x + sqrt(2))) + 1/(sqrt(2)*(x - sqrt(2))) @XFAIL def test_noncommutative_pseudomultivariate(): # apart doesn't go inside noncommutative expressions class foo(Expr): is_commutative=False e = x/(x + x*y) c = 1/(1 + y) assert apart(e + foo(e)) == c + foo(c) assert apart(e*foo(e)) == c*foo(c) def test_noncommutative(): class foo(Expr): is_commutative=False e = x/(x + x*y) c = 1/(1 + y) assert apart(e + foo()) == c + foo() def test_issue_5798(): assert apart( 2*x/(x**2 + 1) - (x - 1)/(2*(x**2 + 1)) + 1/(2*(x + 1)) - 2/x) == \ (3*x + 1)/(x**2 + 1)/2 + 1/(x + 1)/2 - 2/x
428374494c522a9587ee3abb93ac9a60b0634bd182306e80dcef9802466d575d
"""Tests for algorithms for computing symbolic roots of polynomials. """ from sympy import (S, symbols, Symbol, Wild, Rational, sqrt, powsimp, sin, cos, pi, I, Interval, re, im, exp, ZZ, Piecewise, acos, root, conjugate) from sympy.polys import Poly, cyclotomic_poly, intervals, nroots, rootof from sympy.polys.polyroots import (root_factors, roots_linear, roots_quadratic, roots_cubic, roots_quartic, roots_cyclotomic, roots_binomial, preprocess_roots, roots) from sympy.polys.orthopolys import legendre_poly from sympy.polys.polyerrors import PolynomialError from sympy.polys.polyutils import _nsort from sympy.testing.pytest import raises, slow from sympy.testing.randtest import verify_numerically import mpmath from itertools import product a, b, c, d, e, q, t, x, y, z = symbols('a,b,c,d,e,q,t,x,y,z') def _check(roots): # this is the desired invariant for roots returned # by all_roots. It is trivially true for linear # polynomials. nreal = sum([1 if i.is_real else 0 for i in roots]) assert list(sorted(roots[:nreal])) == list(roots[:nreal]) for ix in range(nreal, len(roots), 2): if not ( roots[ix + 1] == roots[ix] or roots[ix + 1] == conjugate(roots[ix])): return False return True def test_roots_linear(): assert roots_linear(Poly(2*x + 1, x)) == [Rational(-1, 2)] def test_roots_quadratic(): assert roots_quadratic(Poly(2*x**2, x)) == [0, 0] assert roots_quadratic(Poly(2*x**2 + 3*x, x)) == [Rational(-3, 2), 0] assert roots_quadratic(Poly(2*x**2 + 3, x)) == [-I*sqrt(6)/2, I*sqrt(6)/2] assert roots_quadratic(Poly(2*x**2 + 4*x + 3, x)) == [-1 - I*sqrt(2)/2, -1 + I*sqrt(2)/2] _check(Poly(2*x**2 + 4*x + 3, x).all_roots()) f = x**2 + (2*a*e + 2*c*e)/(a - c)*x + (d - b + a*e**2 - c*e**2)/(a - c) assert roots_quadratic(Poly(f, x)) == \ [-e*(a + c)/(a - c) - sqrt(a*b + c*d - a*d - b*c + 4*a*c*e**2)/(a - c), -e*(a + c)/(a - c) + sqrt(a*b + c*d - a*d - b*c + 4*a*c*e**2)/(a - c)] # check for simplification f = Poly(y*x**2 - 2*x - 2*y, x) assert roots_quadratic(f) == \ [-sqrt(2*y**2 + 1)/y + 1/y, sqrt(2*y**2 + 1)/y + 1/y] f = Poly(x**2 + (-y**2 - 2)*x + y**2 + 1, x) assert roots_quadratic(f) == \ [1,y**2 + 1] f = Poly(sqrt(2)*x**2 - 1, x) r = roots_quadratic(f) assert r == _nsort(r) # issue 8255 f = Poly(-24*x**2 - 180*x + 264) assert [w.n(2) for w in f.all_roots(radicals=True)] == \ [w.n(2) for w in f.all_roots(radicals=False)] for _a, _b, _c in product((-2, 2), (-2, 2), (0, -1)): f = Poly(_a*x**2 + _b*x + _c) roots = roots_quadratic(f) assert roots == _nsort(roots) def test_issue_7724(): eq = Poly(x**4*I + x**2 + I, x) assert roots(eq) == { sqrt(I/2 + sqrt(5)*I/2): 1, sqrt(-sqrt(5)*I/2 + I/2): 1, -sqrt(I/2 + sqrt(5)*I/2): 1, -sqrt(-sqrt(5)*I/2 + I/2): 1} def test_issue_8438(): p = Poly([1, y, -2, -3], x).as_expr() roots = roots_cubic(Poly(p, x), x) z = Rational(-3, 2) - I*Rational(7, 2) # this will fail in code given in commit msg post = [r.subs(y, z) for r in roots] assert set(post) == \ set(roots_cubic(Poly(p.subs(y, z), x))) # /!\ if p is not made an expression, this is *very* slow assert all(p.subs({y: z, x: i}).n(2, chop=True) == 0 for i in post) def test_issue_8285(): roots = (Poly(4*x**8 - 1, x)*Poly(x**2 + 1)).all_roots() assert _check(roots) f = Poly(x**4 + 5*x**2 + 6, x) ro = [rootof(f, i) for i in range(4)] roots = Poly(x**4 + 5*x**2 + 6, x).all_roots() assert roots == ro assert _check(roots) # more than 2 complex roots from which to identify the # imaginary ones roots = Poly(2*x**8 - 1).all_roots() assert _check(roots) assert len(Poly(2*x**10 - 1).all_roots()) == 10 # doesn't fail def test_issue_8289(): roots = (Poly(x**2 + 2)*Poly(x**4 + 2)).all_roots() assert _check(roots) roots = Poly(x**6 + 3*x**3 + 2, x).all_roots() assert _check(roots) roots = Poly(x**6 - x + 1).all_roots() assert _check(roots) # all imaginary roots with multiplicity of 2 roots = Poly(x**4 + 4*x**2 + 4, x).all_roots() assert _check(roots) def test_issue_14291(): assert Poly(((x - 1)**2 + 1)*((x - 1)**2 + 2)*(x - 1) ).all_roots() == [1, 1 - I, 1 + I, 1 - sqrt(2)*I, 1 + sqrt(2)*I] p = x**4 + 10*x**2 + 1 ans = [rootof(p, i) for i in range(4)] assert Poly(p).all_roots() == ans _check(ans) def test_issue_13340(): eq = Poly(y**3 + exp(x)*y + x, y, domain='EX') roots_d = roots(eq) assert len(roots_d) == 3 def test_issue_14522(): eq = Poly(x**4 + x**3*(16 + 32*I) + x**2*(-285 + 386*I) + x*(-2824 - 448*I) - 2058 - 6053*I, x) roots_eq = roots(eq) assert all(eq(r) == 0 for r in roots_eq) def test_issue_15076(): sol = roots_quartic(Poly(t**4 - 6*t**2 + t/x - 3, t)) assert sol[0].has(x) def test_issue_16589(): eq = Poly(x**4 - 8*sqrt(2)*x**3 + 4*x**3 - 64*sqrt(2)*x**2 + 1024*x, x) roots_eq = roots(eq) assert 0 in roots_eq def test_roots_cubic(): assert roots_cubic(Poly(2*x**3, x)) == [0, 0, 0] assert roots_cubic(Poly(x**3 - 3*x**2 + 3*x - 1, x)) == [1, 1, 1] # valid for arbitrary y (issue 21263) r = root(y, 3) assert roots_cubic(Poly(x**3 - y, x)) == [r, r*(-S.Half + sqrt(3)*I/2), r*(-S.Half - sqrt(3)*I/2)] # simpler form when y is negative assert roots_cubic(Poly(x**3 - -1, x)) == \ [-1, S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2] assert roots_cubic(Poly(2*x**3 - 3*x**2 - 3*x - 1, x))[0] == \ S.Half + 3**Rational(1, 3)/2 + 3**Rational(2, 3)/2 eq = -x**3 + 2*x**2 + 3*x - 2 assert roots(eq, trig=True, multiple=True) == \ roots_cubic(Poly(eq, x), trig=True) == [ Rational(2, 3) + 2*sqrt(13)*cos(acos(8*sqrt(13)/169)/3)/3, -2*sqrt(13)*sin(-acos(8*sqrt(13)/169)/3 + pi/6)/3 + Rational(2, 3), -2*sqrt(13)*cos(-acos(8*sqrt(13)/169)/3 + pi/3)/3 + Rational(2, 3), ] def test_roots_quartic(): assert roots_quartic(Poly(x**4, x)) == [0, 0, 0, 0] assert roots_quartic(Poly(x**4 + x**3, x)) in [ [-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1] ] assert roots_quartic(Poly(x**4 - x**3, x)) in [ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ] lhs = roots_quartic(Poly(x**4 + x, x)) rhs = [S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2, S.Zero, -S.One] assert sorted(lhs, key=hash) == sorted(rhs, key=hash) # test of all branches of roots quartic for i, (a, b, c, d) in enumerate([(1, 2, 3, 0), (3, -7, -9, 9), (1, 2, 3, 4), (1, 2, 3, 4), (-7, -3, 3, -6), (-3, 5, -6, -4), (6, -5, -10, -3)]): if i == 2: c = -a*(a**2/S(8) - b/S(2)) elif i == 3: d = a*(a*(a**2*Rational(3, 256) - b/S(16)) + c/S(4)) eq = x**4 + a*x**3 + b*x**2 + c*x + d ans = roots_quartic(Poly(eq, x)) assert all(eq.subs(x, ai).n(chop=True) == 0 for ai in ans) # not all symbolic quartics are unresolvable eq = Poly(q*x + q/4 + x**4 + x**3 + 2*x**2 - Rational(1, 3), x) sol = roots_quartic(eq) assert all(verify_numerically(eq.subs(x, i), 0) for i in sol) z = symbols('z', negative=True) eq = x**4 + 2*x**3 + 3*x**2 + x*(z + 11) + 5 zans = roots_quartic(Poly(eq, x)) assert all([verify_numerically(eq.subs(((x, i), (z, -1))), 0) for i in zans]) # but some are (see also issue 4989) # it's ok if the solution is not Piecewise, but the tests below should pass eq = Poly(y*x**4 + x**3 - x + z, x) ans = roots_quartic(eq) assert all(type(i) == Piecewise for i in ans) reps = ( dict(y=Rational(-1, 3), z=Rational(-1, 4)), # 4 real dict(y=Rational(-1, 3), z=Rational(-1, 2)), # 2 real dict(y=Rational(-1, 3), z=-2)) # 0 real for rep in reps: sol = roots_quartic(Poly(eq.subs(rep), x)) assert all([verify_numerically(w.subs(rep) - s, 0) for w, s in zip(ans, sol)]) def test_issue_21287(): assert not any(isinstance(i, Piecewise) for i in roots_quartic( Poly(x**4 - x**2*(3 + 5*I) + 2*x*(-1 + I) - 1 + 3*I, x))) def test_roots_cyclotomic(): assert roots_cyclotomic(cyclotomic_poly(1, x, polys=True)) == [1] assert roots_cyclotomic(cyclotomic_poly(2, x, polys=True)) == [-1] assert roots_cyclotomic(cyclotomic_poly( 3, x, polys=True)) == [Rational(-1, 2) - I*sqrt(3)/2, Rational(-1, 2) + I*sqrt(3)/2] assert roots_cyclotomic(cyclotomic_poly(4, x, polys=True)) == [-I, I] assert roots_cyclotomic(cyclotomic_poly( 6, x, polys=True)) == [S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2] assert roots_cyclotomic(cyclotomic_poly(7, x, polys=True)) == [ -cos(pi/7) - I*sin(pi/7), -cos(pi/7) + I*sin(pi/7), -cos(pi*Rational(3, 7)) - I*sin(pi*Rational(3, 7)), -cos(pi*Rational(3, 7)) + I*sin(pi*Rational(3, 7)), cos(pi*Rational(2, 7)) - I*sin(pi*Rational(2, 7)), cos(pi*Rational(2, 7)) + I*sin(pi*Rational(2, 7)), ] assert roots_cyclotomic(cyclotomic_poly(8, x, polys=True)) == [ -sqrt(2)/2 - I*sqrt(2)/2, -sqrt(2)/2 + I*sqrt(2)/2, sqrt(2)/2 - I*sqrt(2)/2, sqrt(2)/2 + I*sqrt(2)/2, ] assert roots_cyclotomic(cyclotomic_poly(12, x, polys=True)) == [ -sqrt(3)/2 - I/2, -sqrt(3)/2 + I/2, sqrt(3)/2 - I/2, sqrt(3)/2 + I/2, ] assert roots_cyclotomic( cyclotomic_poly(1, x, polys=True), factor=True) == [1] assert roots_cyclotomic( cyclotomic_poly(2, x, polys=True), factor=True) == [-1] assert roots_cyclotomic(cyclotomic_poly(3, x, polys=True), factor=True) == \ [-root(-1, 3), -1 + root(-1, 3)] assert roots_cyclotomic(cyclotomic_poly(4, x, polys=True), factor=True) == \ [-I, I] assert roots_cyclotomic(cyclotomic_poly(5, x, polys=True), factor=True) == \ [-root(-1, 5), -root(-1, 5)**3, root(-1, 5)**2, -1 - root(-1, 5)**2 + root(-1, 5) + root(-1, 5)**3] assert roots_cyclotomic(cyclotomic_poly(6, x, polys=True), factor=True) == \ [1 - root(-1, 3), root(-1, 3)] def test_roots_binomial(): assert roots_binomial(Poly(5*x, x)) == [0] assert roots_binomial(Poly(5*x**4, x)) == [0, 0, 0, 0] assert roots_binomial(Poly(5*x + 2, x)) == [Rational(-2, 5)] A = 10**Rational(3, 4)/10 assert roots_binomial(Poly(5*x**4 + 2, x)) == \ [-A - A*I, -A + A*I, A - A*I, A + A*I] _check(roots_binomial(Poly(x**8 - 2))) a1 = Symbol('a1', nonnegative=True) b1 = Symbol('b1', nonnegative=True) r0 = roots_quadratic(Poly(a1*x**2 + b1, x)) r1 = roots_binomial(Poly(a1*x**2 + b1, x)) assert powsimp(r0[0]) == powsimp(r1[0]) assert powsimp(r0[1]) == powsimp(r1[1]) for a, b, s, n in product((1, 2), (1, 2), (-1, 1), (2, 3, 4, 5)): if a == b and a != 1: # a == b == 1 is sufficient continue p = Poly(a*x**n + s*b) ans = roots_binomial(p) assert ans == _nsort(ans) # issue 8813 assert roots(Poly(2*x**3 - 16*y**3, x)) == { 2*y*(Rational(-1, 2) - sqrt(3)*I/2): 1, 2*y: 1, 2*y*(Rational(-1, 2) + sqrt(3)*I/2): 1} def test_roots_preprocessing(): f = a*y*x**2 + y - b coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 1 assert poly == Poly(a*y*x**2 + y - b, x) f = c**3*x**3 + c**2*x**2 + c*x + a coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 1/c assert poly == Poly(x**3 + x**2 + x + a, x) f = c**3*x**3 + c**2*x**2 + a coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 1/c assert poly == Poly(x**3 + x**2 + a, x) f = c**3*x**3 + c*x + a coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 1/c assert poly == Poly(x**3 + x + a, x) f = c**3*x**3 + a coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 1/c assert poly == Poly(x**3 + a, x) E, F, J, L = symbols("E,F,J,L") f = -21601054687500000000*E**8*J**8/L**16 + \ 508232812500000000*F*x*E**7*J**7/L**14 - \ 4269543750000000*E**6*F**2*J**6*x**2/L**12 + \ 16194716250000*E**5*F**3*J**5*x**3/L**10 - \ 27633173750*E**4*F**4*J**4*x**4/L**8 + \ 14840215*E**3*F**5*J**3*x**5/L**6 + \ 54794*E**2*F**6*J**2*x**6/(5*L**4) - \ 1153*E*J*F**7*x**7/(80*L**2) + \ 633*F**8*x**8/160000 coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 20*E*J/(F*L**2) assert poly == 633*x**8 - 115300*x**7 + 4383520*x**6 + 296804300*x**5 - 27633173750*x**4 + \ 809735812500*x**3 - 10673859375000*x**2 + 63529101562500*x - 135006591796875 f = Poly(-y**2 + x**2*exp(x), y, domain=ZZ[x, exp(x)]) g = Poly(-y**2 + exp(x), y, domain=ZZ[exp(x)]) assert preprocess_roots(f) == (x, g) def test_roots0(): assert roots(1, x) == {} assert roots(x, x) == {S.Zero: 1} assert roots(x**9, x) == {S.Zero: 9} assert roots(((x - 2)*(x + 3)*(x - 4)).expand(), x) == {-S(3): 1, S(2): 1, S(4): 1} assert roots(2*x + 1, x) == {Rational(-1, 2): 1} assert roots((2*x + 1)**2, x) == {Rational(-1, 2): 2} assert roots((2*x + 1)**5, x) == {Rational(-1, 2): 5} assert roots((2*x + 1)**10, x) == {Rational(-1, 2): 10} assert roots(x**4 - 1, x) == {I: 1, S.One: 1, -S.One: 1, -I: 1} assert roots((x**4 - 1)**2, x) == {I: 2, S.One: 2, -S.One: 2, -I: 2} assert roots(((2*x - 3)**2).expand(), x) == {Rational( 3, 2): 2} assert roots(((2*x + 3)**2).expand(), x) == {Rational(-3, 2): 2} assert roots(((2*x - 3)**3).expand(), x) == {Rational( 3, 2): 3} assert roots(((2*x + 3)**3).expand(), x) == {Rational(-3, 2): 3} assert roots(((2*x - 3)**5).expand(), x) == {Rational( 3, 2): 5} assert roots(((2*x + 3)**5).expand(), x) == {Rational(-3, 2): 5} assert roots(((a*x - b)**5).expand(), x) == { b/a: 5} assert roots(((a*x + b)**5).expand(), x) == {-b/a: 5} assert roots(x**2 + (-a - 1)*x + a, x) == {a: 1, S.One: 1} assert roots(x**4 - 2*x**2 + 1, x) == {S.One: 2, S.NegativeOne: 2} assert roots(x**6 - 4*x**4 + 4*x**3 - x**2, x) == \ {S.One: 2, -1 - sqrt(2): 1, S.Zero: 2, -1 + sqrt(2): 1} assert roots(x**8 - 1, x) == { sqrt(2)/2 + I*sqrt(2)/2: 1, sqrt(2)/2 - I*sqrt(2)/2: 1, -sqrt(2)/2 + I*sqrt(2)/2: 1, -sqrt(2)/2 - I*sqrt(2)/2: 1, S.One: 1, -S.One: 1, I: 1, -I: 1 } f = -2016*x**2 - 5616*x**3 - 2056*x**4 + 3324*x**5 + 2176*x**6 - \ 224*x**7 - 384*x**8 - 64*x**9 assert roots(f) == {S.Zero: 2, -S(2): 2, S(2): 1, Rational(-7, 2): 1, Rational(-3, 2): 1, Rational(-1, 2): 1, Rational(3, 2): 1} assert roots((a + b + c)*x - (a + b + c + d), x) == {(a + b + c + d)/(a + b + c): 1} assert roots(x**3 + x**2 - x + 1, x, cubics=False) == {} assert roots(((x - 2)*( x + 3)*(x - 4)).expand(), x, cubics=False) == {-S(3): 1, S(2): 1, S(4): 1} assert roots(((x - 2)*(x + 3)*(x - 4)*(x - 5)).expand(), x, cubics=False) == \ {-S(3): 1, S(2): 1, S(4): 1, S(5): 1} assert roots(x**3 + 2*x**2 + 4*x + 8, x) == {-S(2): 1, -2*I: 1, 2*I: 1} assert roots(x**3 + 2*x**2 + 4*x + 8, x, cubics=True) == \ {-2*I: 1, 2*I: 1, -S(2): 1} assert roots((x**2 - x)*(x**3 + 2*x**2 + 4*x + 8), x ) == \ {S.One: 1, S.Zero: 1, -S(2): 1, -2*I: 1, 2*I: 1} r1_2, r1_3 = S.Half, Rational(1, 3) x0 = (3*sqrt(33) + 19)**r1_3 x1 = 4/x0/3 x2 = x0/3 x3 = sqrt(3)*I/2 x4 = x3 - r1_2 x5 = -x3 - r1_2 assert roots(x**3 + x**2 - x + 1, x, cubics=True) == { -x1 - x2 - r1_3: 1, -x1/x4 - x2*x4 - r1_3: 1, -x1/x5 - x2*x5 - r1_3: 1, } f = (x**2 + 2*x + 3).subs(x, 2*x**2 + 3*x).subs(x, 5*x - 4) r13_20, r1_20 = [ Rational(*r) for r in ((13, 20), (1, 20)) ] s2 = sqrt(2) assert roots(f, x) == { r13_20 + r1_20*sqrt(1 - 8*I*s2): 1, r13_20 - r1_20*sqrt(1 - 8*I*s2): 1, r13_20 + r1_20*sqrt(1 + 8*I*s2): 1, r13_20 - r1_20*sqrt(1 + 8*I*s2): 1, } f = x**4 + x**3 + x**2 + x + 1 r1_4, r1_8, r5_8 = [ Rational(*r) for r in ((1, 4), (1, 8), (5, 8)) ] assert roots(f, x) == { -r1_4 + r1_4*5**r1_2 + I*(r5_8 + r1_8*5**r1_2)**r1_2: 1, -r1_4 + r1_4*5**r1_2 - I*(r5_8 + r1_8*5**r1_2)**r1_2: 1, -r1_4 - r1_4*5**r1_2 + I*(r5_8 - r1_8*5**r1_2)**r1_2: 1, -r1_4 - r1_4*5**r1_2 - I*(r5_8 - r1_8*5**r1_2)**r1_2: 1, } f = z**3 + (-2 - y)*z**2 + (1 + 2*y - 2*x**2)*z - y + 2*x**2 assert roots(f, z) == { S.One: 1, S.Half + S.Half*y + S.Half*sqrt(1 - 2*y + y**2 + 8*x**2): 1, S.Half + S.Half*y - S.Half*sqrt(1 - 2*y + y**2 + 8*x**2): 1, } assert roots(a*b*c*x**3 + 2*x**2 + 4*x + 8, x, cubics=False) == {} assert roots(a*b*c*x**3 + 2*x**2 + 4*x + 8, x, cubics=True) != {} assert roots(x**4 - 1, x, filter='Z') == {S.One: 1, -S.One: 1} assert roots(x**4 - 1, x, filter='I') == {I: 1, -I: 1} assert roots((x - 1)*(x + 1), x) == {S.One: 1, -S.One: 1} assert roots( (x - 1)*(x + 1), x, predicate=lambda r: r.is_positive) == {S.One: 1} assert roots(x**4 - 1, x, filter='Z', multiple=True) == [-S.One, S.One] assert roots(x**4 - 1, x, filter='I', multiple=True) == [I, -I] ar, br = symbols('a, b', real=True) p = x**2*(ar-br)**2 + 2*x*(br-ar) + 1 assert roots(p, x, filter='R') == {1/(ar - br): 2} assert roots(x**3, x, multiple=True) == [S.Zero, S.Zero, S.Zero] assert roots(1234, x, multiple=True) == [] f = x**6 - x**5 + x**4 - x**3 + x**2 - x + 1 assert roots(f) == { -I*sin(pi/7) + cos(pi/7): 1, -I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 1, -I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 1, I*sin(pi/7) + cos(pi/7): 1, I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 1, I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 1, } g = ((x**2 + 1)*f**2).expand() assert roots(g) == { -I*sin(pi/7) + cos(pi/7): 2, -I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 2, -I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 2, I*sin(pi/7) + cos(pi/7): 2, I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 2, I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 2, -I: 1, I: 1, } r = roots(x**3 + 40*x + 64) real_root = [rx for rx in r if rx.is_real][0] cr = 108 + 6*sqrt(1074) assert real_root == -2*root(cr, 3)/3 + 20/root(cr, 3) eq = Poly((7 + 5*sqrt(2))*x**3 + (-6 - 4*sqrt(2))*x**2 + (-sqrt(2) - 1)*x + 2, x, domain='EX') assert roots(eq) == {-1 + sqrt(2): 1, -2 + 2*sqrt(2): 1, -sqrt(2) + 1: 1} eq = Poly(41*x**5 + 29*sqrt(2)*x**5 - 153*x**4 - 108*sqrt(2)*x**4 + 175*x**3 + 125*sqrt(2)*x**3 - 45*x**2 - 30*sqrt(2)*x**2 - 26*sqrt(2)*x - 26*x + 24, x, domain='EX') assert roots(eq) == {-sqrt(2) + 1: 1, -2 + 2*sqrt(2): 1, -1 + sqrt(2): 1, -4 + 4*sqrt(2): 1, -3 + 3*sqrt(2): 1} eq = Poly(x**3 - 2*x**2 + 6*sqrt(2)*x**2 - 8*sqrt(2)*x + 23*x - 14 + 14*sqrt(2), x, domain='EX') assert roots(eq) == {-2*sqrt(2) + 2: 1, -2*sqrt(2) + 1: 1, -2*sqrt(2) - 1: 1} assert roots(Poly((x + sqrt(2))**3 - 7, x, domain='EX')) == \ {-sqrt(2) + root(7, 3)*(-S.Half - sqrt(3)*I/2): 1, -sqrt(2) + root(7, 3)*(-S.Half + sqrt(3)*I/2): 1, -sqrt(2) + root(7, 3): 1} def test_roots_slow(): """Just test that calculating these roots does not hang. """ a, b, c, d, x = symbols("a,b,c,d,x") f1 = x**2*c + (a/b) + x*c*d - a f2 = x**2*(a + b*(c - d)*a) + x*a*b*c/(b*d - d) + (a*d - c/d) assert list(roots(f1, x).values()) == [1, 1] assert list(roots(f2, x).values()) == [1, 1] (zz, yy, xx, zy, zx, yx, k) = symbols("zz,yy,xx,zy,zx,yx,k") e1 = (zz - k)*(yy - k)*(xx - k) + zy*yx*zx + zx - zy - yx e2 = (zz - k)*yx*yx + zx*(yy - k)*zx + zy*zy*(xx - k) assert list(roots(e1 - e2, k).values()) == [1, 1, 1] f = x**3 + 2*x**2 + 8 R = list(roots(f).keys()) assert not any(i for i in [f.subs(x, ri).n(chop=True) for ri in R]) def test_roots_inexact(): R1 = roots(x**2 + x + 1, x, multiple=True) R2 = roots(x**2 + x + 1.0, x, multiple=True) for r1, r2 in zip(R1, R2): assert abs(r1 - r2) < 1e-12 f = x**4 + 3.0*sqrt(2.0)*x**3 - (78.0 + 24.0*sqrt(3.0))*x**2 \ + 144.0*(2*sqrt(3.0) + 9.0) R1 = roots(f, multiple=True) R2 = (-12.7530479110482, -3.85012393732929, 4.89897948556636, 7.46155167569183) for r1, r2 in zip(R1, R2): assert abs(r1 - r2) < 1e-10 def test_roots_preprocessed(): E, F, J, L = symbols("E,F,J,L") f = -21601054687500000000*E**8*J**8/L**16 + \ 508232812500000000*F*x*E**7*J**7/L**14 - \ 4269543750000000*E**6*F**2*J**6*x**2/L**12 + \ 16194716250000*E**5*F**3*J**5*x**3/L**10 - \ 27633173750*E**4*F**4*J**4*x**4/L**8 + \ 14840215*E**3*F**5*J**3*x**5/L**6 + \ 54794*E**2*F**6*J**2*x**6/(5*L**4) - \ 1153*E*J*F**7*x**7/(80*L**2) + \ 633*F**8*x**8/160000 assert roots(f, x) == {} R1 = roots(f.evalf(), x, multiple=True) R2 = [-1304.88375606366, 97.1168816800648, 186.946430171876, 245.526792947065, 503.441004174773, 791.549343830097, 1273.16678129348, 1850.10650616851] w = Wild('w') p = w*E*J/(F*L**2) assert len(R1) == len(R2) for r1, r2 in zip(R1, R2): match = r1.match(p) assert match is not None and abs(match[w] - r2) < 1e-10 def test_roots_mixed(): f = -1936 - 5056*x - 7592*x**2 + 2704*x**3 - 49*x**4 _re, _im = intervals(f, all=True) _nroots = nroots(f) _sroots = roots(f, multiple=True) _re = [ Interval(a, b) for (a, b), _ in _re ] _im = [ Interval(re(a), re(b))*Interval(im(a), im(b)) for (a, b), _ in _im ] _intervals = _re + _im _sroots = [ r.evalf() for r in _sroots ] _nroots = sorted(_nroots, key=lambda x: x.sort_key()) _sroots = sorted(_sroots, key=lambda x: x.sort_key()) for _roots in (_nroots, _sroots): for i, r in zip(_intervals, _roots): if r.is_real: assert r in i else: assert (re(r), im(r)) in i def test_root_factors(): assert root_factors(Poly(1, x)) == [Poly(1, x)] assert root_factors(Poly(x, x)) == [Poly(x, x)] assert root_factors(x**2 - 1, x) == [x + 1, x - 1] assert root_factors(x**2 - y, x) == [x - sqrt(y), x + sqrt(y)] assert root_factors((x**4 - 1)**2) == \ [x + 1, x + 1, x - 1, x - 1, x - I, x - I, x + I, x + I] assert root_factors(Poly(x**4 - 1, x), filter='Z') == \ [Poly(x + 1, x), Poly(x - 1, x), Poly(x**2 + 1, x)] assert root_factors(8*x**2 + 12*x**4 + 6*x**6 + x**8, x, filter='Q') == \ [x, x, x**6 + 6*x**4 + 12*x**2 + 8] @slow def test_nroots1(): n = 64 p = legendre_poly(n, x, polys=True) raises(mpmath.mp.NoConvergence, lambda: p.nroots(n=3, maxsteps=5)) roots = p.nroots(n=3) # The order of roots matters. They are ordered from smallest to the # largest. assert [str(r) for r in roots] == \ ['-0.999', '-0.996', '-0.991', '-0.983', '-0.973', '-0.961', '-0.946', '-0.930', '-0.911', '-0.889', '-0.866', '-0.841', '-0.813', '-0.784', '-0.753', '-0.720', '-0.685', '-0.649', '-0.611', '-0.572', '-0.531', '-0.489', '-0.446', '-0.402', '-0.357', '-0.311', '-0.265', '-0.217', '-0.170', '-0.121', '-0.0730', '-0.0243', '0.0243', '0.0730', '0.121', '0.170', '0.217', '0.265', '0.311', '0.357', '0.402', '0.446', '0.489', '0.531', '0.572', '0.611', '0.649', '0.685', '0.720', '0.753', '0.784', '0.813', '0.841', '0.866', '0.889', '0.911', '0.930', '0.946', '0.961', '0.973', '0.983', '0.991', '0.996', '0.999'] def test_nroots2(): p = Poly(x**5 + 3*x + 1, x) roots = p.nroots(n=3) # The order of roots matters. The roots are ordered by their real # components (if they agree, then by their imaginary components), # with real roots appearing first. assert [str(r) for r in roots] == \ ['-0.332', '-0.839 - 0.944*I', '-0.839 + 0.944*I', '1.01 - 0.937*I', '1.01 + 0.937*I'] roots = p.nroots(n=5) assert [str(r) for r in roots] == \ ['-0.33199', '-0.83907 - 0.94385*I', '-0.83907 + 0.94385*I', '1.0051 - 0.93726*I', '1.0051 + 0.93726*I'] def test_roots_composite(): assert len(roots(Poly(y**3 + y**2*sqrt(x) + y + x, y, composite=True))) == 3 def test_issue_19113(): eq = cos(x)**3 - cos(x) + 1 raises(PolynomialError, lambda: roots(eq)) def test_issue_17454(): assert roots([1, -3*(-4 - 4*I)**2/8 + 12*I, 0], multiple=True) == [0, 0]
de8c08b2fe012a66570727faa9a69d3599f816f6661b4d52dadff17a1f7fdf2d
'''Functions returning normal forms of matrices''' from .domainmatrix import DomainMatrix def smith_normal_form(m): ''' Return the Smith Normal Form of a matrix `m` over the ring `domain`. This will only work if the ring is a principal ideal domain. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.matrices.normalforms import smith_normal_form >>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)], ... [ZZ(3), ZZ(9), ZZ(6)], ... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ) >>> print(smith_normal_form(m).to_Matrix()) Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]]) ''' invs = invariant_factors(m) smf = DomainMatrix.diag(invs, m.domain, m.shape) return smf def invariant_factors(m): ''' Return the tuple of abelian invariants for a matrix `m` (as in the Smith-Normal form) References ========== [1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm [2] http://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf ''' domain = m.domain if not domain.is_PID: msg = "The matrix entries must be over a principal ideal domain" raise ValueError(msg) if 0 in m.shape: return () rows, cols = shape = m.shape m = list(m.to_dense().rep) def add_rows(m, i, j, a, b, c, d): # replace m[i, :] by a*m[i, :] + b*m[j, :] # and m[j, :] by c*m[i, :] + d*m[j, :] for k in range(cols): e = m[i][k] m[i][k] = a*e + b*m[j][k] m[j][k] = c*e + d*m[j][k] def add_columns(m, i, j, a, b, c, d): # replace m[:, i] by a*m[:, i] + b*m[:, j] # and m[:, j] by c*m[:, i] + d*m[:, j] for k in range(rows): e = m[k][i] m[k][i] = a*e + b*m[k][j] m[k][j] = c*e + d*m[k][j] def clear_column(m): # make m[1:, 0] zero by row and column operations if m[0][0] == 0: return m # pragma: nocover pivot = m[0][0] for j in range(1, rows): if m[j][0] == 0: continue d, r = domain.div(m[j][0], pivot) if r == 0: add_rows(m, 0, j, 1, 0, -d, 1) else: a, b, g = domain.gcdex(pivot, m[j][0]) d_0 = domain.div(m[j][0], g)[0] d_j = domain.div(pivot, g)[0] add_rows(m, 0, j, a, b, d_0, -d_j) pivot = g return m def clear_row(m): # make m[0, 1:] zero by row and column operations if m[0][0] == 0: return m # pragma: nocover pivot = m[0][0] for j in range(1, cols): if m[0][j] == 0: continue d, r = domain.div(m[0][j], pivot) if r == 0: add_columns(m, 0, j, 1, 0, -d, 1) else: a, b, g = domain.gcdex(pivot, m[0][j]) d_0 = domain.div(m[0][j], g)[0] d_j = domain.div(pivot, g)[0] add_columns(m, 0, j, a, b, d_0, -d_j) pivot = g return m # permute the rows and columns until m[0,0] is non-zero if possible ind = [i for i in range(rows) if m[i][0] != 0] if ind and ind[0] != 0: m[0], m[ind[0]] = m[ind[0]], m[0] else: ind = [j for j in range(cols) if m[0][j] != 0] if ind and ind[0] != 0: for row in m: row[0], row[ind[0]] = row[ind[0]], row[0] # make the first row and column except m[0,0] zero while (any(m[0][i] != 0 for i in range(1,cols)) or any(m[i][0] != 0 for i in range(1,rows))): m = clear_column(m) m = clear_row(m) if 1 in shape: invs = () else: lower_right = DomainMatrix([r[1:] for r in m[1:]], (rows-1, cols-1), domain) invs = invariant_factors(lower_right) if m[0][0]: result = [m[0][0]] result.extend(invs) # in case m[0] doesn't divide the invariants of the rest of the matrix for i in range(len(result)-1): if result[i] and domain.div(result[i+1], result[i])[1] != 0: g = domain.gcd(result[i+1], result[i]) result[i+1] = domain.div(result[i], g)[0]*result[i+1] result[i] = g else: break else: result = invs + (m[0][0],) return tuple(result)
63d6dd9d5c521735816db66501264f7ed31819658796a4e06b5693fe8354a432
"""Tests for classes defining properties of ground domains, e.g. ZZ, QQ, ZZ[x] ... """ from sympy import I, S, sqrt, sin, oo, Poly, Float, Integer, Rational, pi, exp, E from sympy.abc import x, y, z from sympy.core.compatibility import HAS_GMPY from sympy.polys.domains import (ZZ, QQ, RR, CC, FF, GF, EX, EXRAW, ZZ_gmpy, ZZ_python, QQ_gmpy, QQ_python) from sympy.polys.domains.algebraicfield import AlgebraicField from sympy.polys.domains.gaussiandomains import ZZ_I, QQ_I from sympy.polys.domains.polynomialring import PolynomialRing from sympy.polys.domains.realfield import RealField from sympy.polys.rings import ring from sympy.polys.fields import field from sympy.polys.agca.extensions import FiniteExtension from sympy.polys.polyerrors import ( UnificationFailed, GeneratorsError, CoercionFailed, NotInvertible, DomainError) from sympy.polys.polyutils import illegal from sympy.testing.pytest import raises from itertools import product ALG = QQ.algebraic_field(sqrt(2), sqrt(3)) def unify(K0, K1): return K0.unify(K1) def test_Domain_unify(): F3 = GF(3) assert unify(F3, F3) == F3 assert unify(F3, ZZ) == ZZ assert unify(F3, QQ) == QQ assert unify(F3, ALG) == ALG assert unify(F3, RR) == RR assert unify(F3, CC) == CC assert unify(F3, ZZ[x]) == ZZ[x] assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(F3, EX) == EX assert unify(ZZ, F3) == ZZ assert unify(ZZ, ZZ) == ZZ assert unify(ZZ, QQ) == QQ assert unify(ZZ, ALG) == ALG assert unify(ZZ, RR) == RR assert unify(ZZ, CC) == CC assert unify(ZZ, ZZ[x]) == ZZ[x] assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ, EX) == EX assert unify(QQ, F3) == QQ assert unify(QQ, ZZ) == QQ assert unify(QQ, QQ) == QQ assert unify(QQ, ALG) == ALG assert unify(QQ, RR) == RR assert unify(QQ, CC) == CC assert unify(QQ, ZZ[x]) == QQ[x] assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ, EX) == EX assert unify(ZZ_I, F3) == ZZ_I assert unify(ZZ_I, ZZ) == ZZ_I assert unify(ZZ_I, ZZ_I) == ZZ_I assert unify(ZZ_I, QQ) == QQ_I assert unify(ZZ_I, ALG) == QQ.algebraic_field(I, sqrt(2), sqrt(3)) assert unify(ZZ_I, RR) == CC assert unify(ZZ_I, CC) == CC assert unify(ZZ_I, ZZ[x]) == ZZ_I[x] assert unify(ZZ_I, ZZ_I[x]) == ZZ_I[x] assert unify(ZZ_I, ZZ.frac_field(x)) == ZZ_I.frac_field(x) assert unify(ZZ_I, ZZ_I.frac_field(x)) == ZZ_I.frac_field(x) assert unify(ZZ_I, EX) == EX assert unify(QQ_I, F3) == QQ_I assert unify(QQ_I, ZZ) == QQ_I assert unify(QQ_I, ZZ_I) == QQ_I assert unify(QQ_I, QQ) == QQ_I assert unify(QQ_I, ALG) == QQ.algebraic_field(I, sqrt(2), sqrt(3)) assert unify(QQ_I, RR) == CC assert unify(QQ_I, CC) == CC assert unify(QQ_I, ZZ[x]) == QQ_I[x] assert unify(QQ_I, ZZ_I[x]) == QQ_I[x] assert unify(QQ_I, QQ[x]) == QQ_I[x] assert unify(QQ_I, QQ_I[x]) == QQ_I[x] assert unify(QQ_I, ZZ.frac_field(x)) == QQ_I.frac_field(x) assert unify(QQ_I, ZZ_I.frac_field(x)) == QQ_I.frac_field(x) assert unify(QQ_I, QQ.frac_field(x)) == QQ_I.frac_field(x) assert unify(QQ_I, QQ_I.frac_field(x)) == QQ_I.frac_field(x) assert unify(QQ_I, EX) == EX assert unify(RR, F3) == RR assert unify(RR, ZZ) == RR assert unify(RR, QQ) == RR assert unify(RR, ALG) == RR assert unify(RR, RR) == RR assert unify(RR, CC) == CC assert unify(RR, ZZ[x]) == RR[x] assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x) assert unify(RR, EX) == EX assert RR[x].unify(ZZ.frac_field(y)) == RR.frac_field(x, y) assert unify(CC, F3) == CC assert unify(CC, ZZ) == CC assert unify(CC, QQ) == CC assert unify(CC, ALG) == CC assert unify(CC, RR) == CC assert unify(CC, CC) == CC assert unify(CC, ZZ[x]) == CC[x] assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x) assert unify(CC, EX) == EX assert unify(ZZ[x], F3) == ZZ[x] assert unify(ZZ[x], ZZ) == ZZ[x] assert unify(ZZ[x], QQ) == QQ[x] assert unify(ZZ[x], ALG) == ALG[x] assert unify(ZZ[x], RR) == RR[x] assert unify(ZZ[x], CC) == CC[x] assert unify(ZZ[x], ZZ[x]) == ZZ[x] assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ[x], EX) == EX assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x) assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x) assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x) assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), EX) == EX assert unify(EX, F3) == EX assert unify(EX, ZZ) == EX assert unify(EX, QQ) == EX assert unify(EX, ALG) == EX assert unify(EX, RR) == EX assert unify(EX, CC) == EX assert unify(EX, ZZ[x]) == EX assert unify(EX, ZZ.frac_field(x)) == EX assert unify(EX, EX) == EX def test_Domain_unify_composite(): assert unify(ZZ.poly_ring(x), ZZ) == ZZ.poly_ring(x) assert unify(ZZ.poly_ring(x), QQ) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), ZZ) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), QQ) == QQ.poly_ring(x) assert unify(ZZ, ZZ.poly_ring(x)) == ZZ.poly_ring(x) assert unify(QQ, ZZ.poly_ring(x)) == QQ.poly_ring(x) assert unify(ZZ, QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(QQ, QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(ZZ.poly_ring(x, y), ZZ) == ZZ.poly_ring(x, y) assert unify(ZZ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), ZZ) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y) assert unify(ZZ, ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y) assert unify(QQ, ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(ZZ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(QQ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(QQ.frac_field(x), ZZ) == QQ.frac_field(x) assert unify(QQ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ, QQ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ, QQ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ.frac_field(x, y), ZZ) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), QQ) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), ZZ) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), QQ) == QQ.frac_field(x, y) assert unify(ZZ, ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(QQ, ZZ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ, QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(QQ, QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x)) == ZZ.poly_ring(x) assert unify(ZZ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), ZZ.poly_ring(x)) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x)) == ZZ.poly_ring(x, y) assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y) assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y) assert unify(ZZ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x), ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x, z)) == ZZ.poly_ring(x, y, z) assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ.frac_field(x), ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), ZZ.frac_field(x)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x), ZZ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(ZZ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), ZZ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(ZZ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.poly_ring(x), QQ.frac_field(x)) == ZZ.frac_field(x) assert unify(QQ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(QQ.poly_ring(x), QQ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y) assert unify(ZZ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(ZZ.poly_ring(x), QQ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.poly_ring(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(ZZ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ.poly_ring(x)) == ZZ.frac_field(x) assert unify(QQ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x) assert unify(QQ.frac_field(x), QQ.poly_ring(x)) == QQ.frac_field(x) assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x, y), QQ.poly_ring(x)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x), QQ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x), QQ.poly_ring(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), QQ.poly_ring(x, z)) == QQ.frac_field(x, y, z) def test_Domain_unify_algebraic(): sqrt5 = QQ.algebraic_field(sqrt(5)) sqrt7 = QQ.algebraic_field(sqrt(7)) sqrt57 = QQ.algebraic_field(sqrt(5), sqrt(7)) assert sqrt5.unify(sqrt7) == sqrt57 assert sqrt5.unify(sqrt5[x, y]) == sqrt5[x, y] assert sqrt5[x, y].unify(sqrt5) == sqrt5[x, y] assert sqrt5.unify(sqrt5.frac_field(x, y)) == sqrt5.frac_field(x, y) assert sqrt5.frac_field(x, y).unify(sqrt5) == sqrt5.frac_field(x, y) assert sqrt5.unify(sqrt7[x, y]) == sqrt57[x, y] assert sqrt5[x, y].unify(sqrt7) == sqrt57[x, y] assert sqrt5.unify(sqrt7.frac_field(x, y)) == sqrt57.frac_field(x, y) assert sqrt5.frac_field(x, y).unify(sqrt7) == sqrt57.frac_field(x, y) def test_Domain_unify_FiniteExtension(): KxZZ = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ)) KxQQ = FiniteExtension(Poly(x**2 - 2, x, domain=QQ)) KxZZy = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ[y])) KxQQy = FiniteExtension(Poly(x**2 - 2, x, domain=QQ[y])) assert KxZZ.unify(KxZZ) == KxZZ assert KxQQ.unify(KxQQ) == KxQQ assert KxZZy.unify(KxZZy) == KxZZy assert KxQQy.unify(KxQQy) == KxQQy assert KxZZ.unify(ZZ) == KxZZ assert KxZZ.unify(QQ) == KxQQ assert KxQQ.unify(ZZ) == KxQQ assert KxQQ.unify(QQ) == KxQQ assert KxZZ.unify(ZZ[y]) == KxZZy assert KxZZ.unify(QQ[y]) == KxQQy assert KxQQ.unify(ZZ[y]) == KxQQy assert KxQQ.unify(QQ[y]) == KxQQy assert KxZZy.unify(ZZ) == KxZZy assert KxZZy.unify(QQ) == KxQQy assert KxQQy.unify(ZZ) == KxQQy assert KxQQy.unify(QQ) == KxQQy assert KxZZy.unify(ZZ[y]) == KxZZy assert KxZZy.unify(QQ[y]) == KxQQy assert KxQQy.unify(ZZ[y]) == KxQQy assert KxQQy.unify(QQ[y]) == KxQQy K = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ[y])) assert K.unify(ZZ) == K assert K.unify(ZZ[x]) == K assert K.unify(ZZ[y]) == K assert K.unify(ZZ[x, y]) == K Kz = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ[y, z])) assert K.unify(ZZ[z]) == Kz assert K.unify(ZZ[x, z]) == Kz assert K.unify(ZZ[y, z]) == Kz assert K.unify(ZZ[x, y, z]) == Kz Kx = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ)) Ky = FiniteExtension(Poly(y**2 - 2, y, domain=ZZ)) Kxy = FiniteExtension(Poly(y**2 - 2, y, domain=Kx)) assert Kx.unify(Kx) == Kx assert Ky.unify(Ky) == Ky assert Kx.unify(Ky) == Kxy assert Ky.unify(Kx) == Kxy def test_Domain_unify_with_symbols(): raises(UnificationFailed, lambda: ZZ[x, y].unify_with_symbols(ZZ, (y, z))) raises(UnificationFailed, lambda: ZZ.unify_with_symbols(ZZ[x, y], (y, z))) def test_Domain__contains__(): assert (0 in EX) is True assert (0 in ZZ) is True assert (0 in QQ) is True assert (0 in RR) is True assert (0 in CC) is True assert (0 in ALG) is True assert (0 in ZZ[x, y]) is True assert (0 in QQ[x, y]) is True assert (0 in RR[x, y]) is True assert (-7 in EX) is True assert (-7 in ZZ) is True assert (-7 in QQ) is True assert (-7 in RR) is True assert (-7 in CC) is True assert (-7 in ALG) is True assert (-7 in ZZ[x, y]) is True assert (-7 in QQ[x, y]) is True assert (-7 in RR[x, y]) is True assert (17 in EX) is True assert (17 in ZZ) is True assert (17 in QQ) is True assert (17 in RR) is True assert (17 in CC) is True assert (17 in ALG) is True assert (17 in ZZ[x, y]) is True assert (17 in QQ[x, y]) is True assert (17 in RR[x, y]) is True assert (Rational(-1, 7) in EX) is True assert (Rational(-1, 7) in ZZ) is False assert (Rational(-1, 7) in QQ) is True assert (Rational(-1, 7) in RR) is True assert (Rational(-1, 7) in CC) is True assert (Rational(-1, 7) in ALG) is True assert (Rational(-1, 7) in ZZ[x, y]) is False assert (Rational(-1, 7) in QQ[x, y]) is True assert (Rational(-1, 7) in RR[x, y]) is True assert (Rational(3, 5) in EX) is True assert (Rational(3, 5) in ZZ) is False assert (Rational(3, 5) in QQ) is True assert (Rational(3, 5) in RR) is True assert (Rational(3, 5) in CC) is True assert (Rational(3, 5) in ALG) is True assert (Rational(3, 5) in ZZ[x, y]) is False assert (Rational(3, 5) in QQ[x, y]) is True assert (Rational(3, 5) in RR[x, y]) is True assert (3.0 in EX) is True assert (3.0 in ZZ) is True assert (3.0 in QQ) is True assert (3.0 in RR) is True assert (3.0 in CC) is True assert (3.0 in ALG) is True assert (3.0 in ZZ[x, y]) is True assert (3.0 in QQ[x, y]) is True assert (3.0 in RR[x, y]) is True assert (3.14 in EX) is True assert (3.14 in ZZ) is False assert (3.14 in QQ) is True assert (3.14 in RR) is True assert (3.14 in CC) is True assert (3.14 in ALG) is True assert (3.14 in ZZ[x, y]) is False assert (3.14 in QQ[x, y]) is True assert (3.14 in RR[x, y]) is True assert (oo in ALG) is False assert (oo in ZZ[x, y]) is False assert (oo in QQ[x, y]) is False assert (-oo in ZZ) is False assert (-oo in QQ) is False assert (-oo in ALG) is False assert (-oo in ZZ[x, y]) is False assert (-oo in QQ[x, y]) is False assert (sqrt(7) in EX) is True assert (sqrt(7) in ZZ) is False assert (sqrt(7) in QQ) is False assert (sqrt(7) in RR) is True assert (sqrt(7) in CC) is True assert (sqrt(7) in ALG) is False assert (sqrt(7) in ZZ[x, y]) is False assert (sqrt(7) in QQ[x, y]) is False assert (sqrt(7) in RR[x, y]) is True assert (2*sqrt(3) + 1 in EX) is True assert (2*sqrt(3) + 1 in ZZ) is False assert (2*sqrt(3) + 1 in QQ) is False assert (2*sqrt(3) + 1 in RR) is True assert (2*sqrt(3) + 1 in CC) is True assert (2*sqrt(3) + 1 in ALG) is True assert (2*sqrt(3) + 1 in ZZ[x, y]) is False assert (2*sqrt(3) + 1 in QQ[x, y]) is False assert (2*sqrt(3) + 1 in RR[x, y]) is True assert (sin(1) in EX) is True assert (sin(1) in ZZ) is False assert (sin(1) in QQ) is False assert (sin(1) in RR) is True assert (sin(1) in CC) is True assert (sin(1) in ALG) is False assert (sin(1) in ZZ[x, y]) is False assert (sin(1) in QQ[x, y]) is False assert (sin(1) in RR[x, y]) is True assert (x**2 + 1 in EX) is True assert (x**2 + 1 in ZZ) is False assert (x**2 + 1 in QQ) is False assert (x**2 + 1 in RR) is False assert (x**2 + 1 in CC) is False assert (x**2 + 1 in ALG) is False assert (x**2 + 1 in ZZ[x]) is True assert (x**2 + 1 in QQ[x]) is True assert (x**2 + 1 in RR[x]) is True assert (x**2 + 1 in ZZ[x, y]) is True assert (x**2 + 1 in QQ[x, y]) is True assert (x**2 + 1 in RR[x, y]) is True assert (x**2 + y**2 in EX) is True assert (x**2 + y**2 in ZZ) is False assert (x**2 + y**2 in QQ) is False assert (x**2 + y**2 in RR) is False assert (x**2 + y**2 in CC) is False assert (x**2 + y**2 in ALG) is False assert (x**2 + y**2 in ZZ[x]) is False assert (x**2 + y**2 in QQ[x]) is False assert (x**2 + y**2 in RR[x]) is False assert (x**2 + y**2 in ZZ[x, y]) is True assert (x**2 + y**2 in QQ[x, y]) is True assert (x**2 + y**2 in RR[x, y]) is True assert (Rational(3, 2)*x/(y + 1) - z in QQ[x, y, z]) is False def test_Domain_get_ring(): assert ZZ.has_assoc_Ring is True assert QQ.has_assoc_Ring is True assert ZZ[x].has_assoc_Ring is True assert QQ[x].has_assoc_Ring is True assert ZZ[x, y].has_assoc_Ring is True assert QQ[x, y].has_assoc_Ring is True assert ZZ.frac_field(x).has_assoc_Ring is True assert QQ.frac_field(x).has_assoc_Ring is True assert ZZ.frac_field(x, y).has_assoc_Ring is True assert QQ.frac_field(x, y).has_assoc_Ring is True assert EX.has_assoc_Ring is False assert RR.has_assoc_Ring is False assert ALG.has_assoc_Ring is False assert ZZ.get_ring() == ZZ assert QQ.get_ring() == ZZ assert ZZ[x].get_ring() == ZZ[x] assert QQ[x].get_ring() == QQ[x] assert ZZ[x, y].get_ring() == ZZ[x, y] assert QQ[x, y].get_ring() == QQ[x, y] assert ZZ.frac_field(x).get_ring() == ZZ[x] assert QQ.frac_field(x).get_ring() == QQ[x] assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y] assert QQ.frac_field(x, y).get_ring() == QQ[x, y] assert EX.get_ring() == EX assert RR.get_ring() == RR # XXX: This should also be like RR raises(DomainError, lambda: ALG.get_ring()) def test_Domain_get_field(): assert EX.has_assoc_Field is True assert ZZ.has_assoc_Field is True assert QQ.has_assoc_Field is True assert RR.has_assoc_Field is True assert ALG.has_assoc_Field is True assert ZZ[x].has_assoc_Field is True assert QQ[x].has_assoc_Field is True assert ZZ[x, y].has_assoc_Field is True assert QQ[x, y].has_assoc_Field is True assert EX.get_field() == EX assert ZZ.get_field() == QQ assert QQ.get_field() == QQ assert RR.get_field() == RR assert ALG.get_field() == ALG assert ZZ[x].get_field() == ZZ.frac_field(x) assert QQ[x].get_field() == QQ.frac_field(x) assert ZZ[x, y].get_field() == ZZ.frac_field(x, y) assert QQ[x, y].get_field() == QQ.frac_field(x, y) def test_Domain_get_exact(): assert EX.get_exact() == EX assert ZZ.get_exact() == ZZ assert QQ.get_exact() == QQ assert RR.get_exact() == QQ assert ALG.get_exact() == ALG assert ZZ[x].get_exact() == ZZ[x] assert QQ[x].get_exact() == QQ[x] assert ZZ[x, y].get_exact() == ZZ[x, y] assert QQ[x, y].get_exact() == QQ[x, y] assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x) assert QQ.frac_field(x).get_exact() == QQ.frac_field(x) assert ZZ.frac_field(x, y).get_exact() == ZZ.frac_field(x, y) assert QQ.frac_field(x, y).get_exact() == QQ.frac_field(x, y) def test_Domain_is_unit(): nums = [-2, -1, 0, 1, 2] invring = [False, True, False, True, False] invfield = [True, True, False, True, True] ZZx, QQx, QQxf = ZZ[x], QQ[x], QQ.frac_field(x) assert [ZZ.is_unit(ZZ(n)) for n in nums] == invring assert [QQ.is_unit(QQ(n)) for n in nums] == invfield assert [ZZx.is_unit(ZZx(n)) for n in nums] == invring assert [QQx.is_unit(QQx(n)) for n in nums] == invfield assert [QQxf.is_unit(QQxf(n)) for n in nums] == invfield assert ZZx.is_unit(ZZx(x)) is False assert QQx.is_unit(QQx(x)) is False assert QQxf.is_unit(QQxf(x)) is True def test_Domain_convert(): def check_element(e1, e2, K1, K2, K3): assert type(e1) is type(e2), '%s, %s: %s %s -> %s' % (e1, e2, K1, K2, K3) assert e1 == e2, '%s, %s: %s %s -> %s' % (e1, e2, K1, K2, K3) def check_domains(K1, K2): K3 = K1.unify(K2) check_element(K3.convert_from(K1.one, K1), K3.one , K1, K2, K3) check_element(K3.convert_from(K2.one, K2), K3.one , K1, K2, K3) check_element(K3.convert_from(K1.zero, K1), K3.zero, K1, K2, K3) check_element(K3.convert_from(K2.zero, K2), K3.zero, K1, K2, K3) def composite_domains(K): domains = [ K, K[y], K[z], K[y, z], K.frac_field(y), K.frac_field(z), K.frac_field(y, z), # XXX: These should be tested and made to work... # K.old_poly_ring(y), K.old_frac_field(y), ] return domains QQ2 = QQ.algebraic_field(sqrt(2)) QQ3 = QQ.algebraic_field(sqrt(3)) doms = [ZZ, QQ, QQ2, QQ3, QQ_I, ZZ_I, RR, CC] for i, K1 in enumerate(doms): for K2 in doms[i:]: for K3 in composite_domains(K1): for K4 in composite_domains(K2): check_domains(K3, K4) assert QQ.convert(10e-52) == QQ(1684996666696915, 1684996666696914987166688442938726917102321526408785780068975640576) R, xr = ring("x", ZZ) assert ZZ.convert(xr - xr) == 0 assert ZZ.convert(xr - xr, R.to_domain()) == 0 assert CC.convert(ZZ_I(1, 2)) == CC(1, 2) assert CC.convert(QQ_I(1, 2)) == CC(1, 2) K1 = QQ.frac_field(x) K2 = ZZ.frac_field(x) K3 = QQ[x] K4 = ZZ[x] Ks = [K1, K2, K3, K4] for Ka, Kb in product(Ks, Ks): assert Ka.convert_from(Kb.from_sympy(x), Kb) == Ka.from_sympy(x) assert K2.convert_from(QQ(1, 2), QQ) == K2(QQ(1, 2)) def test_GlobalPolynomialRing_convert(): K1 = QQ.old_poly_ring(x) K2 = QQ[x] assert K1.convert(x) == K1.convert(K2.convert(x), K2) assert K2.convert(x) == K2.convert(K1.convert(x), K1) K1 = QQ.old_poly_ring(x, y) K2 = QQ[x] assert K1.convert(x) == K1.convert(K2.convert(x), K2) #assert K2.convert(x) == K2.convert(K1.convert(x), K1) K1 = ZZ.old_poly_ring(x, y) K2 = QQ[x] assert K1.convert(x) == K1.convert(K2.convert(x), K2) #assert K2.convert(x) == K2.convert(K1.convert(x), K1) def test_PolynomialRing__init(): R, = ring("", ZZ) assert ZZ.poly_ring() == R.to_domain() def test_FractionField__init(): F, = field("", ZZ) assert ZZ.frac_field() == F.to_domain() def test_FractionField_convert(): K = QQ.frac_field(x) assert K.convert(QQ(2, 3), QQ) == K.from_sympy(Rational(2, 3)) K = QQ.frac_field(x) assert K.convert(ZZ(2), ZZ) == K.from_sympy(Integer(2)) def test_inject(): assert ZZ.inject(x, y, z) == ZZ[x, y, z] assert ZZ[x].inject(y, z) == ZZ[x, y, z] assert ZZ.frac_field(x).inject(y, z) == ZZ.frac_field(x, y, z) raises(GeneratorsError, lambda: ZZ[x].inject(x)) def test_drop(): assert ZZ.drop(x) == ZZ assert ZZ[x].drop(x) == ZZ assert ZZ[x, y].drop(x) == ZZ[y] assert ZZ.frac_field(x).drop(x) == ZZ assert ZZ.frac_field(x, y).drop(x) == ZZ.frac_field(y) assert ZZ[x][y].drop(y) == ZZ[x] assert ZZ[x][y].drop(x) == ZZ[y] assert ZZ.frac_field(x)[y].drop(x) == ZZ[y] assert ZZ.frac_field(x)[y].drop(y) == ZZ.frac_field(x) Ky = FiniteExtension(Poly(x**2-1, x, domain=ZZ[y])) K = FiniteExtension(Poly(x**2-1, x, domain=ZZ)) assert Ky.drop(y) == K raises(GeneratorsError, lambda: Ky.drop(x)) def test_Domain_map(): seq = ZZ.map([1, 2, 3, 4]) assert all(ZZ.of_type(elt) for elt in seq) seq = ZZ.map([[1, 2, 3, 4]]) assert all(ZZ.of_type(elt) for elt in seq[0]) and len(seq) == 1 def test_Domain___eq__(): assert (ZZ[x, y] == ZZ[x, y]) is True assert (QQ[x, y] == QQ[x, y]) is True assert (ZZ[x, y] == QQ[x, y]) is False assert (QQ[x, y] == ZZ[x, y]) is False assert (ZZ.frac_field(x, y) == ZZ.frac_field(x, y)) is True assert (QQ.frac_field(x, y) == QQ.frac_field(x, y)) is True assert (ZZ.frac_field(x, y) == QQ.frac_field(x, y)) is False assert (QQ.frac_field(x, y) == ZZ.frac_field(x, y)) is False assert RealField()[x] == RR[x] def test_Domain__algebraic_field(): alg = ZZ.algebraic_field(sqrt(2)) assert alg.ext.minpoly == Poly(x**2 - 2) assert alg.dom == QQ alg = QQ.algebraic_field(sqrt(2)) assert alg.ext.minpoly == Poly(x**2 - 2) assert alg.dom == QQ alg = alg.algebraic_field(sqrt(3)) assert alg.ext.minpoly == Poly(x**4 - 10*x**2 + 1) assert alg.dom == QQ def test_PolynomialRing_from_FractionField(): F, x,y = field("x,y", ZZ) R, X,Y = ring("x,y", ZZ) f = (x**2 + y**2)/(x + 1) g = (x**2 + y**2)/4 h = x**2 + y**2 assert R.to_domain().from_FractionField(f, F.to_domain()) is None assert R.to_domain().from_FractionField(g, F.to_domain()) == X**2/4 + Y**2/4 assert R.to_domain().from_FractionField(h, F.to_domain()) == X**2 + Y**2 F, x,y = field("x,y", QQ) R, X,Y = ring("x,y", QQ) f = (x**2 + y**2)/(x + 1) g = (x**2 + y**2)/4 h = x**2 + y**2 assert R.to_domain().from_FractionField(f, F.to_domain()) is None assert R.to_domain().from_FractionField(g, F.to_domain()) == X**2/4 + Y**2/4 assert R.to_domain().from_FractionField(h, F.to_domain()) == X**2 + Y**2 def test_FractionField_from_PolynomialRing(): R, x,y = ring("x,y", QQ) F, X,Y = field("x,y", ZZ) f = 3*x**2 + 5*y**2 g = x**2/3 + y**2/5 assert F.to_domain().from_PolynomialRing(f, R.to_domain()) == 3*X**2 + 5*Y**2 assert F.to_domain().from_PolynomialRing(g, R.to_domain()) == (5*X**2 + 3*Y**2)/15 def test_FF_of_type(): assert FF(3).of_type(FF(3)(1)) is True assert FF(5).of_type(FF(5)(3)) is True assert FF(5).of_type(FF(7)(3)) is False def test___eq__(): assert not QQ[x] == ZZ[x] assert not QQ.frac_field(x) == ZZ.frac_field(x) def test_RealField_from_sympy(): assert RR.convert(S.Zero) == RR.dtype(0) assert RR.convert(S(0.0)) == RR.dtype(0.0) assert RR.convert(S.One) == RR.dtype(1) assert RR.convert(S(1.0)) == RR.dtype(1.0) assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf()) def test_not_in_any_domain(): check = illegal + [x] + [ float(i) for i in illegal if i != S.ComplexInfinity] for dom in (ZZ, QQ, RR, CC, EX): for i in check: if i == x and dom == EX: continue assert i not in dom, (i, dom) raises(CoercionFailed, lambda: dom.convert(i)) def test_ModularInteger(): F3 = FF(3) a = F3(0) assert isinstance(a, F3.dtype) and a == 0 a = F3(1) assert isinstance(a, F3.dtype) and a == 1 a = F3(2) assert isinstance(a, F3.dtype) and a == 2 a = F3(3) assert isinstance(a, F3.dtype) and a == 0 a = F3(4) assert isinstance(a, F3.dtype) and a == 1 a = F3(F3(0)) assert isinstance(a, F3.dtype) and a == 0 a = F3(F3(1)) assert isinstance(a, F3.dtype) and a == 1 a = F3(F3(2)) assert isinstance(a, F3.dtype) and a == 2 a = F3(F3(3)) assert isinstance(a, F3.dtype) and a == 0 a = F3(F3(4)) assert isinstance(a, F3.dtype) and a == 1 a = -F3(1) assert isinstance(a, F3.dtype) and a == 2 a = -F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 2 + F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2) + 2 assert isinstance(a, F3.dtype) and a == 1 a = F3(2) + F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2) + F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 3 - F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(3) - 2 assert isinstance(a, F3.dtype) and a == 1 a = F3(3) - F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(3) - F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 2*F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)*2 assert isinstance(a, F3.dtype) and a == 1 a = F3(2)*F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)*F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 2/F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)/2 assert isinstance(a, F3.dtype) and a == 1 a = F3(2)/F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)/F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 1 % F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(1) % 2 assert isinstance(a, F3.dtype) and a == 1 a = F3(1) % F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(1) % F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)**0 assert isinstance(a, F3.dtype) and a == 1 a = F3(2)**1 assert isinstance(a, F3.dtype) and a == 2 a = F3(2)**2 assert isinstance(a, F3.dtype) and a == 1 F7 = FF(7) a = F7(3)**100000000000 assert isinstance(a, F7.dtype) and a == 4 a = F7(3)**-100000000000 assert isinstance(a, F7.dtype) and a == 2 a = F7(3)**S(2) assert isinstance(a, F7.dtype) and a == 2 assert bool(F3(3)) is False assert bool(F3(4)) is True F5 = FF(5) a = F5(1)**(-1) assert isinstance(a, F5.dtype) and a == 1 a = F5(2)**(-1) assert isinstance(a, F5.dtype) and a == 3 a = F5(3)**(-1) assert isinstance(a, F5.dtype) and a == 2 a = F5(4)**(-1) assert isinstance(a, F5.dtype) and a == 4 assert (F5(1) < F5(2)) is True assert (F5(1) <= F5(2)) is True assert (F5(1) > F5(2)) is False assert (F5(1) >= F5(2)) is False assert (F5(3) < F5(2)) is False assert (F5(3) <= F5(2)) is False assert (F5(3) > F5(2)) is True assert (F5(3) >= F5(2)) is True assert (F5(1) < F5(7)) is True assert (F5(1) <= F5(7)) is True assert (F5(1) > F5(7)) is False assert (F5(1) >= F5(7)) is False assert (F5(3) < F5(7)) is False assert (F5(3) <= F5(7)) is False assert (F5(3) > F5(7)) is True assert (F5(3) >= F5(7)) is True assert (F5(1) < 2) is True assert (F5(1) <= 2) is True assert (F5(1) > 2) is False assert (F5(1) >= 2) is False assert (F5(3) < 2) is False assert (F5(3) <= 2) is False assert (F5(3) > 2) is True assert (F5(3) >= 2) is True assert (F5(1) < 7) is True assert (F5(1) <= 7) is True assert (F5(1) > 7) is False assert (F5(1) >= 7) is False assert (F5(3) < 7) is False assert (F5(3) <= 7) is False assert (F5(3) > 7) is True assert (F5(3) >= 7) is True raises(NotInvertible, lambda: F5(0)**(-1)) raises(NotInvertible, lambda: F5(5)**(-1)) raises(ValueError, lambda: FF(0)) raises(ValueError, lambda: FF(2.1)) def test_QQ_int(): assert int(QQ(2**2000, 3**1250)) == 455431 assert int(QQ(2**100, 3)) == 422550200076076467165567735125 def test_RR_double(): assert RR(3.14) > 1e-50 assert RR(1e-13) > 1e-50 assert RR(1e-14) > 1e-50 assert RR(1e-15) > 1e-50 assert RR(1e-20) > 1e-50 assert RR(1e-40) > 1e-50 def test_RR_Float(): f1 = Float("1.01") f2 = Float("1.0000000000000000000001") assert f1._prec == 53 assert f2._prec == 80 assert RR(f1)-1 > 1e-50 assert RR(f2)-1 < 1e-50 # RR's precision is lower than f2's RR2 = RealField(prec=f2._prec) assert RR2(f1)-1 > 1e-50 assert RR2(f2)-1 > 1e-50 # RR's precision is equal to f2's def test_CC_double(): assert CC(3.14).real > 1e-50 assert CC(1e-13).real > 1e-50 assert CC(1e-14).real > 1e-50 assert CC(1e-15).real > 1e-50 assert CC(1e-20).real > 1e-50 assert CC(1e-40).real > 1e-50 assert CC(3.14j).imag > 1e-50 assert CC(1e-13j).imag > 1e-50 assert CC(1e-14j).imag > 1e-50 assert CC(1e-15j).imag > 1e-50 assert CC(1e-20j).imag > 1e-50 assert CC(1e-40j).imag > 1e-50 def test_gaussian_domains(): I = S.ImaginaryUnit a, b, c, d = [ZZ_I.convert(x) for x in (5, 2 + I, 3 - I, 5 - 5)] ZZ_I.gcd(a, b) == b ZZ_I.gcd(a, c) == b ZZ_I.lcm(a, b) == a ZZ_I.lcm(a, c) == d assert ZZ_I(3, 4) != QQ_I(3, 4) # XXX is this right or should QQ->ZZ if possible? assert ZZ_I(3, 0) != 3 # and should this go to Integer? assert QQ_I(S(3)/4, 0) != S(3)/4 # and this to Rational? assert ZZ_I(0, 0).quadrant() == 0 assert ZZ_I(-1, 0).quadrant() == 2 assert QQ_I.convert(QQ(3, 2)) == QQ_I(QQ(3, 2), QQ(0)) assert QQ_I.convert(QQ(3, 2), QQ) == QQ_I(QQ(3, 2), QQ(0)) for G in (QQ_I, ZZ_I): q = G(3, 4) assert str(q) == '3 + 4*I' assert q.parent() == G assert q._get_xy(pi) == (None, None) assert q._get_xy(2) == (2, 0) assert q._get_xy(2*I) == (0, 2) assert hash(q) == hash((3, 4)) assert G(1, 2) == G(1, 2) assert G(1, 2) != G(1, 3) assert G(3, 0) == G(3) assert q + q == G(6, 8) assert q - q == G(0, 0) assert 3 - q == -q + 3 == G(0, -4) assert 3 + q == q + 3 == G(6, 4) assert q * q == G(-7, 24) assert 3 * q == q * 3 == G(9, 12) assert q ** 0 == G(1, 0) assert q ** 1 == q assert q ** 2 == q * q == G(-7, 24) assert q ** 3 == q * q * q == G(-117, 44) assert 1 / q == q ** -1 == QQ_I(S(3)/25, - S(4)/25) assert q / 1 == QQ_I(3, 4) assert q / 2 == QQ_I(S(3)/2, 2) assert q/3 == QQ_I(1, S(4)/3) assert 3/q == QQ_I(S(9)/25, -S(12)/25) i, r = divmod(q, 2) assert 2*i + r == q i, r = divmod(2, q) assert q*i + r == G(2, 0) raises(ZeroDivisionError, lambda: q % 0) raises(ZeroDivisionError, lambda: q / 0) raises(ZeroDivisionError, lambda: q // 0) raises(ZeroDivisionError, lambda: divmod(q, 0)) raises(ZeroDivisionError, lambda: divmod(q, 0)) raises(TypeError, lambda: q + x) raises(TypeError, lambda: q - x) raises(TypeError, lambda: x + q) raises(TypeError, lambda: x - q) raises(TypeError, lambda: q * x) raises(TypeError, lambda: x * q) raises(TypeError, lambda: q / x) raises(TypeError, lambda: x / q) raises(TypeError, lambda: q // x) raises(TypeError, lambda: x // q) assert G.from_sympy(S(2)) == G(2, 0) assert G.to_sympy(G(2, 0)) == S(2) raises(CoercionFailed, lambda: G.from_sympy(pi)) PR = G.inject(x) assert isinstance(PR, PolynomialRing) assert PR.domain == G assert len(PR.gens) == 1 and PR.gens[0].as_expr() == x if G is QQ_I: AF = G.as_AlgebraicField() assert isinstance(AF, AlgebraicField) assert AF.domain == QQ assert AF.ext.args[0] == I for qi in [G(-1, 0), G(1, 0), G(0, -1), G(0, 1)]: assert G.is_negative(qi) is False assert G.is_positive(qi) is False assert G.is_nonnegative(qi) is False assert G.is_nonpositive(qi) is False domains = [ZZ_python(), QQ_python(), AlgebraicField(QQ, I)] if HAS_GMPY: domains += [ZZ_gmpy(), QQ_gmpy()] for K in domains: assert G.convert(K(2)) == G(2, 0) assert G.convert(K(2), K) == G(2, 0) for K in ZZ_I, QQ_I: assert G.convert(K(1, 1)) == G(1, 1) assert G.convert(K(1, 1), K) == G(1, 1) if G == ZZ_I: assert repr(q) == 'ZZ_I(3, 4)' assert q//3 == G(1, 1) assert 12//q == G(1, -2) assert 12 % q == G(1, 2) assert q % 2 == G(-1, 0) assert i == G(0, 0) assert r == G(2, 0) assert G.get_ring() == G assert G.get_field() == QQ_I else: assert repr(q) == 'QQ_I(3, 4)' assert G.get_ring() == ZZ_I assert G.get_field() == G assert q//3 == G(1, S(4)/3) assert 12//q == G(S(36)/25, -S(48)/25) assert 12 % q == G(0, 0) assert q % 2 == G(0, 0) assert i == G(S(6)/25, -S(8)/25), (G,i) assert r == G(0, 0) q2 = G(S(3)/2, S(5)/3) assert G.numer(q2) == ZZ_I(9, 10) assert G.denom(q2) == ZZ_I(6) def test_EX_EXRAW(): assert EXRAW.zero is S.Zero assert EXRAW.one is S.One assert EX(1) == EX.Expression(1) assert EX(1).ex is S.One assert EXRAW(1) is S.One # EX has cancelling but EXRAW does not assert 2*EX((x + y*x)/x) == EX(2 + 2*y) != 2*((x + y*x)/x) assert 2*EXRAW((x + y*x)/x) == 2*((x + y*x)/x) != (1 + y) assert EXRAW.convert_from(EX(1), EX) is EXRAW.one assert EX.convert_from(EXRAW(1), EXRAW) == EX.one assert EXRAW.from_sympy(S.One) is S.One assert EXRAW.to_sympy(EXRAW.one) is S.One raises(CoercionFailed, lambda: EXRAW.from_sympy([])) assert EXRAW.get_field() == EXRAW assert EXRAW.unify(EX) == EXRAW assert EX.unify(EXRAW) == EXRAW def test_canonical_unit(): for K in [ZZ, QQ, RR]: # CC? assert K.canonical_unit(K(2)) == K(1) assert K.canonical_unit(K(-2)) == K(-1) for K in [ZZ_I, QQ_I]: i = K.from_sympy(I) assert K.canonical_unit(K(2)) == K(1) assert K.canonical_unit(K(2)*i) == -i assert K.canonical_unit(-K(2)) == K(-1) assert K.canonical_unit(-K(2)*i) == i K = ZZ[x] assert K.canonical_unit(K(x + 1)) == K(1) assert K.canonical_unit(K(-x + 1)) == K(-1) K = ZZ_I[x] assert K.canonical_unit(K.from_sympy(I*x)) == ZZ_I(0, -1) K = ZZ_I.frac_field(x, y) i = K.from_sympy(I) assert i / i == K.one assert (K.one + i)/(i - K.one) == -i def test_issue_18278(): assert str(RR(2).parent()) == 'RR' assert str(CC(2).parent()) == 'CC' def test_Domain_is_negative(): I = S.ImaginaryUnit a, b = [CC.convert(x) for x in (2 + I, 5)] assert CC.is_negative(a) == False assert CC.is_negative(b) == False def test_Domain_is_positive(): I = S.ImaginaryUnit a, b = [CC.convert(x) for x in (2 + I, 5)] assert CC.is_positive(a) == False assert CC.is_positive(b) == False def test_Domain_is_nonnegative(): I = S.ImaginaryUnit a, b = [CC.convert(x) for x in (2 + I, 5)] assert CC.is_nonnegative(a) == False assert CC.is_nonnegative(b) == False def test_Domain_is_nonpositive(): I = S.ImaginaryUnit a, b = [CC.convert(x) for x in (2 + I, 5)] assert CC.is_nonpositive(a) == False assert CC.is_nonpositive(b) == False def test_exponential_domain(): K = ZZ[E] eK = K.from_sympy(E) assert K.from_sympy(exp(3)) == eK ** 3 assert K.convert(exp(3)) == eK ** 3
df81abd55346c437ba9fe3dee299328dca649404896cf58b94a2e726bbb79a7a
from sympy.external import import_module lfortran = import_module('lfortran') if lfortran: from sympy.codegen.ast import (Variable, IntBaseType, FloatBaseType, String, Return, FunctionDefinition, Assignment) from sympy.core import Add, Mul, Integer, Float from sympy import Symbol asr_mod = lfortran.asr asr = lfortran.asr.asr src_to_ast = lfortran.ast.src_to_ast ast_to_asr = lfortran.semantic.ast_to_asr.ast_to_asr """ This module contains all the necessary Classes and Function used to Parse Fortran code into SymPy expression The module and its API are currently under development and experimental. It is also dependent on LFortran for the ASR that is converted to SymPy syntax which is also under development. The module only supports the features currently supported by the LFortran ASR which will be updated as the development of LFortran and this module progresses You might find unexpected bugs and exceptions while using the module, feel free to report them to the SymPy Issue Tracker The API for the module might also change while in development if better and more effective ways are discovered for the process Features Supported ================== - Variable Declarations (integers and reals) - Function Definitions - Assignments and Basic Binary Operations Notes ===== The module depends on an external dependency LFortran : Required to parse Fortran source code into ASR Refrences ========= .. [1] https://github.com/sympy/sympy/issues .. [2] https://gitlab.com/lfortran/lfortran .. [3] https://docs.lfortran.org/ """ class ASR2PyVisitor(asr.ASTVisitor): # type: ignore """ Visitor Class for LFortran ASR It is a Visitor class derived from asr.ASRVisitor which visits all the nodes of the LFortran ASR and creates corresponding AST node for each ASR node """ def __init__(self): """Initialize the Parser""" self._py_ast = [] def visit_TranslationUnit(self, node): """ Function to visit all the elements of the Translation Unit created by LFortran ASR """ for s in node.global_scope.symbols: sym = node.global_scope.symbols[s] self.visit(sym) for item in node.items: self.visit(item) def visit_Assignment(self, node): """Visitor Function for Assignment Visits each Assignment is the LFortran ASR and creates corresponding assignment for SymPy. Notes ===== The function currently only supports variable assignment and binary operation assignments of varying multitudes. Any type of numberS or array is not supported. Raises ====== NotImplementedError() when called for Numeric assignments or Arrays """ # TODO: Arithmatic Assignment if isinstance(node.target, asr.Variable): target = node.target value = node.value if isinstance(value, asr.Variable): new_node = Assignment( Variable( target.name ), Variable( value.name ) ) elif (type(value) == asr.BinOp): exp_ast = call_visitor(value) for expr in exp_ast: new_node = Assignment( Variable(target.name), expr ) else: raise NotImplementedError("Numeric assignments not supported") else: raise NotImplementedError("Arrays not supported") self._py_ast.append(new_node) def visit_BinOp(self, node): """Visitor Function for Binary Operations Visits each binary operation present in the LFortran ASR like addition, subtraction, multiplication, division and creates the corresponding operation node in SymPy's AST In case of more than one binary operations, the function calls the call_visitor() function on the child nodes of the binary operations recursively until all the operations have been processed. Notes ===== The function currently only supports binary operations with Variables or other binary operations. Numerics are not supported as of yet. Raises ====== NotImplementedError() when called for Numeric assignments """ # TODO: Integer Binary Operations op = node.op lhs = node.left rhs = node.right if (type(lhs) == asr.Variable): left_value = Symbol(lhs.name) elif(type(lhs) == asr.BinOp): l_exp_ast = call_visitor(lhs) for exp in l_exp_ast: left_value = exp else: raise NotImplementedError("Numbers Currently not supported") if (type(rhs) == asr.Variable): right_value = Symbol(rhs.name) elif(type(rhs) == asr.BinOp): r_exp_ast = call_visitor(rhs) for exp in r_exp_ast: right_value = exp else: raise NotImplementedError("Numbers Currently not supported") if isinstance(op, asr.Add): new_node = Add(left_value, right_value) elif isinstance(op, asr.Sub): new_node = Add(left_value, -right_value) elif isinstance(op, asr.Div): new_node = Mul(left_value, 1/right_value) elif isinstance(op, asr.Mul): new_node = Mul(left_value, right_value) self._py_ast.append(new_node) def visit_Variable(self, node): """Visitor Function for Variable Declaration Visits each variable declaration present in the ASR and creates a Symbol declaration for each variable Notes ===== The functions currently only support declaration of integer and real variables. Other data types are still under development. Raises ====== NotImplementedError() when called for unsupported data types """ if isinstance(node.type, asr.Integer): var_type = IntBaseType(String('integer')) value = Integer(0) elif isinstance(node.type, asr.Real): var_type = FloatBaseType(String('real')) value = Float(0.0) else: raise NotImplementedError("Data type not supported") if not (node.intent == 'in'): new_node = Variable( node.name ).as_Declaration( type = var_type, value = value ) self._py_ast.append(new_node) def visit_Sequence(self, seq): """Visitor Function for code sequence Visits a code sequence/ block and calls the visitor function on all the children of the code block to create corresponding code in python """ if seq is not None: for node in seq: self._py_ast.append(call_visitor(node)) def visit_Num(self, node): """Visitor Function for Numbers in ASR This function is currently under development and will be updated with improvements in the LFortran ASR """ # TODO:Numbers when the LFortran ASR is updated # self._py_ast.append(Integer(node.n)) pass def visit_Function(self, node): """Visitor Function for function Definitions Visits each function definition present in the ASR and creates a function definition node in the Python AST with all the elements of the given function The functions declare all the variables required as SymPy symbols in the function before the function definition This function also the call_visior_function to parse the contents of the function body """ # TODO: Return statement, variable declaration fn_args = [Variable(arg_iter.name) for arg_iter in node.args] fn_body = [] fn_name = node.name for i in node.body: fn_ast = call_visitor(i) try: fn_body_expr = fn_ast except UnboundLocalError: fn_body_expr = [] for sym in node.symtab.symbols: decl = call_visitor(node.symtab.symbols[sym]) for symbols in decl: fn_body.append(symbols) for elem in fn_body_expr: fn_body.append(elem) fn_body.append( Return( Variable( node.return_var.name ) ) ) if isinstance(node.return_var.type, asr.Integer): ret_type = IntBaseType(String('integer')) elif isinstance(node.return_var.type, asr.Real): ret_type = FloatBaseType(String('real')) else: raise NotImplementedError("Data type not supported") new_node = FunctionDefinition( return_type = ret_type, name = fn_name, parameters = fn_args, body = fn_body ) self._py_ast.append(new_node) def ret_ast(self): """Returns the AST nodes""" return self._py_ast else: class ASR2PyVisitor(): # type: ignore def __init__(self, *args, **kwargs): raise ImportError('lfortran not available') def call_visitor(fort_node): """Calls the AST Visitor on the Module This function is used to call the AST visitor for a program or module It imports all the required modules and calls the visit() function on the given node Parameters ========== fort_node : LFortran ASR object Node for the operation for which the NodeVisitor is called Returns ======= res_ast : list list of sympy AST Nodes """ v = ASR2PyVisitor() v.visit(fort_node) res_ast = v.ret_ast() return res_ast def src_to_sympy(src): """Wrapper function to convert the given Fortran source code to SymPy Expressions Parameters ========== src : string A string with the Fortran source code Returns ======= py_src : string A string with the python source code compatible with SymPy """ a_ast = src_to_ast(src, translation_unit=False) a = ast_to_asr(a_ast) py_src = call_visitor(a) return py_src
09bcef4d0224d5f530b923e1e4839de37c3b50c6c54586bab7570e899782f18f
"""Abstract tensor product.""" from sympy import Expr, Add, Mul, Matrix, Pow, sympify from sympy.core.trace import Tr from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.qexpr import QuantumError from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.state import Ket, Bra from sympy.physics.quantum.matrixutils import ( numpy_ndarray, scipy_sparse_matrix, matrix_tensor_product ) __all__ = [ 'TensorProduct', 'tensor_product_simp' ] #----------------------------------------------------------------------------- # Tensor product #----------------------------------------------------------------------------- _combined_printing = False def combined_tensor_printing(combined): """Set flag controlling whether tensor products of states should be printed as a combined bra/ket or as an explicit tensor product of different bra/kets. This is a global setting for all TensorProduct class instances. Parameters ---------- combine : bool When true, tensor product states are combined into one ket/bra, and when false explicit tensor product notation is used between each ket/bra. """ global _combined_printing _combined_printing = combined class TensorProduct(Expr): """The tensor product of two or more arguments. For matrices, this uses ``matrix_tensor_product`` to compute the Kronecker or tensor product matrix. For other objects a symbolic ``TensorProduct`` instance is returned. The tensor product is a non-commutative multiplication that is used primarily with operators and states in quantum mechanics. Currently, the tensor product distinguishes between commutative and non-commutative arguments. Commutative arguments are assumed to be scalars and are pulled out in front of the ``TensorProduct``. Non-commutative arguments remain in the resulting ``TensorProduct``. Parameters ========== args : tuple A sequence of the objects to take the tensor product of. Examples ======== Start with a simple tensor product of sympy matrices:: >>> from sympy import Matrix >>> from sympy.physics.quantum import TensorProduct >>> m1 = Matrix([[1,2],[3,4]]) >>> m2 = Matrix([[1,0],[0,1]]) >>> TensorProduct(m1, m2) Matrix([ [1, 0, 2, 0], [0, 1, 0, 2], [3, 0, 4, 0], [0, 3, 0, 4]]) >>> TensorProduct(m2, m1) Matrix([ [1, 2, 0, 0], [3, 4, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4]]) We can also construct tensor products of non-commutative symbols: >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> tp = TensorProduct(A, B) >>> tp AxB We can take the dagger of a tensor product (note the order does NOT reverse like the dagger of a normal product): >>> from sympy.physics.quantum import Dagger >>> Dagger(tp) Dagger(A)xDagger(B) Expand can be used to distribute a tensor product across addition: >>> C = Symbol('C',commutative=False) >>> tp = TensorProduct(A+B,C) >>> tp (A + B)xC >>> tp.expand(tensorproduct=True) AxC + BxC """ is_commutative = False def __new__(cls, *args): if isinstance(args[0], (Matrix, numpy_ndarray, scipy_sparse_matrix)): return matrix_tensor_product(*args) c_part, new_args = cls.flatten(sympify(args)) c_part = Mul(*c_part) if len(new_args) == 0: return c_part elif len(new_args) == 1: return c_part * new_args[0] else: tp = Expr.__new__(cls, *new_args) return c_part * tp @classmethod def flatten(cls, args): # TODO: disallow nested TensorProducts. c_part = [] nc_parts = [] for arg in args: cp, ncp = arg.args_cnc() c_part.extend(list(cp)) nc_parts.append(Mul._from_args(ncp)) return c_part, nc_parts def _eval_adjoint(self): return TensorProduct(*[Dagger(i) for i in self.args]) def _eval_rewrite(self, rule, args, **hints): return TensorProduct(*args).expand(tensorproduct=True) def _sympystr(self, printer, *args): length = len(self.args) s = '' for i in range(length): if isinstance(self.args[i], (Add, Pow, Mul)): s = s + '(' s = s + printer._print(self.args[i]) if isinstance(self.args[i], (Add, Pow, Mul)): s = s + ')' if i != length - 1: s = s + 'x' return s def _pretty(self, printer, *args): if (_combined_printing and (all(isinstance(arg, Ket) for arg in self.args) or all(isinstance(arg, Bra) for arg in self.args))): length = len(self.args) pform = printer._print('', *args) for i in range(length): next_pform = printer._print('', *args) length_i = len(self.args[i].args) for j in range(length_i): part_pform = printer._print(self.args[i].args[j], *args) next_pform = prettyForm(*next_pform.right(part_pform)) if j != length_i - 1: next_pform = prettyForm(*next_pform.right(', ')) if len(self.args[i].args) > 1: next_pform = prettyForm( *next_pform.parens(left='{', right='}')) pform = prettyForm(*pform.right(next_pform)) if i != length - 1: pform = prettyForm(*pform.right(',' + ' ')) pform = prettyForm(*pform.left(self.args[0].lbracket)) pform = prettyForm(*pform.right(self.args[0].rbracket)) return pform length = len(self.args) pform = printer._print('', *args) for i in range(length): next_pform = printer._print(self.args[i], *args) if isinstance(self.args[i], (Add, Mul)): next_pform = prettyForm( *next_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(next_pform)) if i != length - 1: if printer._use_unicode: pform = prettyForm(*pform.right('\N{N-ARY CIRCLED TIMES OPERATOR}' + ' ')) else: pform = prettyForm(*pform.right('x' + ' ')) return pform def _latex(self, printer, *args): if (_combined_printing and (all(isinstance(arg, Ket) for arg in self.args) or all(isinstance(arg, Bra) for arg in self.args))): def _label_wrap(label, nlabels): return label if nlabels == 1 else r"\left\{%s\right\}" % label s = r", ".join([_label_wrap(arg._print_label_latex(printer, *args), len(arg.args)) for arg in self.args]) return r"{%s%s%s}" % (self.args[0].lbracket_latex, s, self.args[0].rbracket_latex) length = len(self.args) s = '' for i in range(length): if isinstance(self.args[i], (Add, Mul)): s = s + '\\left(' # The extra {} brackets are needed to get matplotlib's latex # rendered to render this properly. s = s + '{' + printer._print(self.args[i], *args) + '}' if isinstance(self.args[i], (Add, Mul)): s = s + '\\right)' if i != length - 1: s = s + '\\otimes ' return s def doit(self, **hints): return TensorProduct(*[item.doit(**hints) for item in self.args]) def _eval_expand_tensorproduct(self, **hints): """Distribute TensorProducts across addition.""" args = self.args add_args = [] for i in range(len(args)): if isinstance(args[i], Add): for aa in args[i].args: tp = TensorProduct(*args[:i] + (aa,) + args[i + 1:]) if isinstance(tp, TensorProduct): tp = tp._eval_expand_tensorproduct() add_args.append(tp) break if add_args: return Add(*add_args) else: return self def _eval_trace(self, **kwargs): indices = kwargs.get('indices', None) exp = tensor_product_simp(self) if indices is None or len(indices) == 0: return Mul(*[Tr(arg).doit() for arg in exp.args]) else: return Mul(*[Tr(value).doit() if idx in indices else value for idx, value in enumerate(exp.args)]) def tensor_product_simp_Mul(e): """Simplify a Mul with TensorProducts. Current the main use of this is to simplify a ``Mul`` of ``TensorProduct``s to a ``TensorProduct`` of ``Muls``. It currently only works for relatively simple cases where the initial ``Mul`` only has scalars and raw ``TensorProduct``s, not ``Add``, ``Pow``, ``Commutator``s of ``TensorProduct``s. Parameters ========== e : Expr A ``Mul`` of ``TensorProduct``s to be simplified. Returns ======= e : Expr A ``TensorProduct`` of ``Mul``s. Examples ======== This is an example of the type of simplification that this function performs:: >>> from sympy.physics.quantum.tensorproduct import \ tensor_product_simp_Mul, TensorProduct >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> C = Symbol('C',commutative=False) >>> D = Symbol('D',commutative=False) >>> e = TensorProduct(A,B)*TensorProduct(C,D) >>> e AxB*CxD >>> tensor_product_simp_Mul(e) (A*C)x(B*D) """ # TODO: This won't work with Muls that have other composites of # TensorProducts, like an Add, Commutator, etc. # TODO: This only works for the equivalent of single Qbit gates. if not isinstance(e, Mul): return e c_part, nc_part = e.args_cnc() n_nc = len(nc_part) if n_nc == 0: return e elif n_nc == 1: if isinstance(nc_part[0], Pow): return Mul(*c_part) * tensor_product_simp_Pow(nc_part[0]) return e elif e.has(TensorProduct): current = nc_part[0] if not isinstance(current, TensorProduct): if isinstance(current, Pow): if isinstance(current.base, TensorProduct): current = tensor_product_simp_Pow(current) else: raise TypeError('TensorProduct expected, got: %r' % current) n_terms = len(current.args) new_args = list(current.args) for next in nc_part[1:]: # TODO: check the hilbert spaces of next and current here. if isinstance(next, TensorProduct): if n_terms != len(next.args): raise QuantumError( 'TensorProducts of different lengths: %r and %r' % (current, next) ) for i in range(len(new_args)): new_args[i] = new_args[i] * next.args[i] else: if isinstance(next, Pow): if isinstance(next.base, TensorProduct): new_tp = tensor_product_simp_Pow(next) for i in range(len(new_args)): new_args[i] = new_args[i] * new_tp.args[i] else: raise TypeError('TensorProduct expected, got: %r' % next) else: raise TypeError('TensorProduct expected, got: %r' % next) current = next return Mul(*c_part) * TensorProduct(*new_args) elif e.has(Pow): new_args = [ tensor_product_simp_Pow(nc) for nc in nc_part ] return tensor_product_simp_Mul(Mul(*c_part) * TensorProduct(*new_args)) else: return e def tensor_product_simp_Pow(e): """Evaluates ``Pow`` expressions whose base is ``TensorProduct``""" if not isinstance(e, Pow): return e if isinstance(e.base, TensorProduct): return TensorProduct(*[ b**e.exp for b in e.base.args]) else: return e def tensor_product_simp(e, **hints): """Try to simplify and combine TensorProducts. In general this will try to pull expressions inside of ``TensorProducts``. It currently only works for relatively simple cases where the products have only scalars, raw ``TensorProducts``, not ``Add``, ``Pow``, ``Commutators`` of ``TensorProducts``. It is best to see what it does by showing examples. Examples ======== >>> from sympy.physics.quantum import tensor_product_simp >>> from sympy.physics.quantum import TensorProduct >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> C = Symbol('C',commutative=False) >>> D = Symbol('D',commutative=False) First see what happens to products of tensor products: >>> e = TensorProduct(A,B)*TensorProduct(C,D) >>> e AxB*CxD >>> tensor_product_simp(e) (A*C)x(B*D) This is the core logic of this function, and it works inside, powers, sums, commutators and anticommutators as well: >>> tensor_product_simp(e**2) (A*C)x(B*D)**2 """ if isinstance(e, Add): return Add(*[tensor_product_simp(arg) for arg in e.args]) elif isinstance(e, Pow): if isinstance(e.base, TensorProduct): return tensor_product_simp_Pow(e) else: return tensor_product_simp(e.base) ** e.exp elif isinstance(e, Mul): return tensor_product_simp_Mul(e) elif isinstance(e, Commutator): return Commutator(*[tensor_product_simp(arg) for arg in e.args]) elif isinstance(e, AntiCommutator): return AntiCommutator(*[tensor_product_simp(arg) for arg in e.args]) else: return e
bc294508166887cfd7aba27e6010d934137f27b78c725f9605436a00ea28fffc
"""Dirac notation for states.""" from sympy import (cacheit, conjugate, Expr, Function, integrate, oo, sqrt, Tuple) from sympy.printing.pretty.stringpict import stringPict from sympy.physics.quantum.qexpr import QExpr, dispatch_method __all__ = [ 'KetBase', 'BraBase', 'StateBase', 'State', 'Ket', 'Bra', 'TimeDepState', 'TimeDepBra', 'TimeDepKet', 'OrthogonalKet', 'OrthogonalBra', 'OrthogonalState', 'Wavefunction' ] #----------------------------------------------------------------------------- # States, bras and kets. #----------------------------------------------------------------------------- # ASCII brackets _lbracket = "<" _rbracket = ">" _straight_bracket = "|" # Unicode brackets # MATHEMATICAL ANGLE BRACKETS _lbracket_ucode = "\N{MATHEMATICAL LEFT ANGLE BRACKET}" _rbracket_ucode = "\N{MATHEMATICAL RIGHT ANGLE BRACKET}" # LIGHT VERTICAL BAR _straight_bracket_ucode = "\N{LIGHT VERTICAL BAR}" # Other options for unicode printing of <, > and | for Dirac notation. # LEFT-POINTING ANGLE BRACKET # _lbracket = "\u2329" # _rbracket = "\u232A" # LEFT ANGLE BRACKET # _lbracket = "\u3008" # _rbracket = "\u3009" # VERTICAL LINE # _straight_bracket = "\u007C" class StateBase(QExpr): """Abstract base class for general abstract states in quantum mechanics. All other state classes defined will need to inherit from this class. It carries the basic structure for all other states such as dual, _eval_adjoint and label. This is an abstract base class and you should not instantiate it directly, instead use State. """ @classmethod def _operators_to_state(self, ops, **options): """ Returns the eigenstate instance for the passed operators. This method should be overridden in subclasses. It will handle being passed either an Operator instance or set of Operator instances. It should return the corresponding state INSTANCE or simply raise a NotImplementedError. See cartesian.py for an example. """ raise NotImplementedError("Cannot map operators to states in this class. Method not implemented!") def _state_to_operators(self, op_classes, **options): """ Returns the operators which this state instance is an eigenstate of. This method should be overridden in subclasses. It will be called on state instances and be passed the operator classes that we wish to make into instances. The state instance will then transform the classes appropriately, or raise a NotImplementedError if it cannot return operator instances. See cartesian.py for examples, """ raise NotImplementedError( "Cannot map this state to operators. Method not implemented!") @property def operators(self): """Return the operator(s) that this state is an eigenstate of""" from .operatorset import state_to_operators # import internally to avoid circular import errors return state_to_operators(self) def _enumerate_state(self, num_states, **options): raise NotImplementedError("Cannot enumerate this state!") def _represent_default_basis(self, **options): return self._represent(basis=self.operators) #------------------------------------------------------------------------- # Dagger/dual #------------------------------------------------------------------------- @property def dual(self): """Return the dual state of this one.""" return self.dual_class()._new_rawargs(self.hilbert_space, *self.args) @classmethod def dual_class(self): """Return the class used to construct the dual.""" raise NotImplementedError( 'dual_class must be implemented in a subclass' ) def _eval_adjoint(self): """Compute the dagger of this state using the dual.""" return self.dual #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- def _pretty_brackets(self, height, use_unicode=True): # Return pretty printed brackets for the state # Ideally, this could be done by pform.parens but it does not support the angled < and > # Setup for unicode vs ascii if use_unicode: lbracket, rbracket = self.lbracket_ucode, self.rbracket_ucode slash, bslash, vert = '\N{BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT}', \ '\N{BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT}', \ '\N{BOX DRAWINGS LIGHT VERTICAL}' else: lbracket, rbracket = self.lbracket, self.rbracket slash, bslash, vert = '/', '\\', '|' # If height is 1, just return brackets if height == 1: return stringPict(lbracket), stringPict(rbracket) # Make height even height += (height % 2) brackets = [] for bracket in lbracket, rbracket: # Create left bracket if bracket in {_lbracket, _lbracket_ucode}: bracket_args = [ ' ' * (height//2 - i - 1) + slash for i in range(height // 2)] bracket_args.extend( [' ' * i + bslash for i in range(height // 2)]) # Create right bracket elif bracket in {_rbracket, _rbracket_ucode}: bracket_args = [ ' ' * i + bslash for i in range(height // 2)] bracket_args.extend([ ' ' * ( height//2 - i - 1) + slash for i in range(height // 2)]) # Create straight bracket elif bracket in {_straight_bracket, _straight_bracket_ucode}: bracket_args = [vert] * height else: raise ValueError(bracket) brackets.append( stringPict('\n'.join(bracket_args), baseline=height//2)) return brackets def _sympystr(self, printer, *args): contents = self._print_contents(printer, *args) return '%s%s%s' % (self.lbracket, contents, self.rbracket) def _pretty(self, printer, *args): from sympy.printing.pretty.stringpict import prettyForm # Get brackets pform = self._print_contents_pretty(printer, *args) lbracket, rbracket = self._pretty_brackets( pform.height(), printer._use_unicode) # Put together state pform = prettyForm(*pform.left(lbracket)) pform = prettyForm(*pform.right(rbracket)) return pform def _latex(self, printer, *args): contents = self._print_contents_latex(printer, *args) # The extra {} brackets are needed to get matplotlib's latex # rendered to render this properly. return '{%s%s%s}' % (self.lbracket_latex, contents, self.rbracket_latex) class KetBase(StateBase): """Base class for Kets. This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead use Ket. """ lbracket = _straight_bracket rbracket = _rbracket lbracket_ucode = _straight_bracket_ucode rbracket_ucode = _rbracket_ucode lbracket_latex = r'\left|' rbracket_latex = r'\right\rangle ' @classmethod def default_args(self): return ("psi",) @classmethod def dual_class(self): return BraBase def __mul__(self, other): """KetBase*other""" from sympy.physics.quantum.operator import OuterProduct if isinstance(other, BraBase): return OuterProduct(self, other) else: return Expr.__mul__(self, other) def __rmul__(self, other): """other*KetBase""" from sympy.physics.quantum.innerproduct import InnerProduct if isinstance(other, BraBase): return InnerProduct(other, self) else: return Expr.__rmul__(self, other) #------------------------------------------------------------------------- # _eval_* methods #------------------------------------------------------------------------- def _eval_innerproduct(self, bra, **hints): """Evaluate the inner product between this ket and a bra. This is called to compute <bra|ket>, where the ket is ``self``. This method will dispatch to sub-methods having the format:: ``def _eval_innerproduct_BraClass(self, **hints):`` Subclasses should define these methods (one for each BraClass) to teach the ket how to take inner products with bras. """ return dispatch_method(self, '_eval_innerproduct', bra, **hints) def _apply_operator(self, op, **options): """Apply an Operator to this Ket. This method will dispatch to methods having the format:: ``def _apply_operator_OperatorName(op, **options):`` Subclasses should define these methods (one for each OperatorName) to teach the Ket how operators act on it. Parameters ========== op : Operator The Operator that is acting on the Ket. options : dict A dict of key/value pairs that control how the operator is applied to the Ket. """ return dispatch_method(self, '_apply_operator', op, **options) class BraBase(StateBase): """Base class for Bras. This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead use Bra. """ lbracket = _lbracket rbracket = _straight_bracket lbracket_ucode = _lbracket_ucode rbracket_ucode = _straight_bracket_ucode lbracket_latex = r'\left\langle ' rbracket_latex = r'\right|' @classmethod def _operators_to_state(self, ops, **options): state = self.dual_class()._operators_to_state(ops, **options) return state.dual def _state_to_operators(self, op_classes, **options): return self.dual._state_to_operators(op_classes, **options) def _enumerate_state(self, num_states, **options): dual_states = self.dual._enumerate_state(num_states, **options) return [x.dual for x in dual_states] @classmethod def default_args(self): return self.dual_class().default_args() @classmethod def dual_class(self): return KetBase def __mul__(self, other): """BraBase*other""" from sympy.physics.quantum.innerproduct import InnerProduct if isinstance(other, KetBase): return InnerProduct(self, other) else: return Expr.__mul__(self, other) def __rmul__(self, other): """other*BraBase""" from sympy.physics.quantum.operator import OuterProduct if isinstance(other, KetBase): return OuterProduct(other, self) else: return Expr.__rmul__(self, other) def _represent(self, **options): """A default represent that uses the Ket's version.""" from sympy.physics.quantum.dagger import Dagger return Dagger(self.dual._represent(**options)) class State(StateBase): """General abstract quantum state used as a base class for Ket and Bra.""" pass class Ket(State, KetBase): """A general time-independent Ket in quantum mechanics. Inherits from State and KetBase. This class should be used as the base class for all physical, time-independent Kets in a system. This class and its subclasses will be the main classes that users will use for expressing Kets in Dirac notation [1]_. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time. Examples ======== Create a simple Ket and looking at its properties:: >>> from sympy.physics.quantum import Ket >>> from sympy import symbols, I >>> k = Ket('psi') >>> k |psi> >>> k.hilbert_space H >>> k.is_commutative False >>> k.label (psi,) Ket's know about their associated bra:: >>> k.dual <psi| >>> k.dual_class() <class 'sympy.physics.quantum.state.Bra'> Take a linear combination of two kets:: >>> k0 = Ket(0) >>> k1 = Ket(1) >>> 2*I*k0 - 4*k1 2*I*|0> - 4*|1> Compound labels are passed as tuples:: >>> n, m = symbols('n,m') >>> k = Ket(n,m) >>> k |nm> References ========== .. [1] https://en.wikipedia.org/wiki/Bra-ket_notation """ @classmethod def dual_class(self): return Bra class Bra(State, BraBase): """A general time-independent Bra in quantum mechanics. Inherits from State and BraBase. A Bra is the dual of a Ket [1]_. This class and its subclasses will be the main classes that users will use for expressing Bras in Dirac notation. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time. Examples ======== Create a simple Bra and look at its properties:: >>> from sympy.physics.quantum import Bra >>> from sympy import symbols, I >>> b = Bra('psi') >>> b <psi| >>> b.hilbert_space H >>> b.is_commutative False Bra's know about their dual Ket's:: >>> b.dual |psi> >>> b.dual_class() <class 'sympy.physics.quantum.state.Ket'> Like Kets, Bras can have compound labels and be manipulated in a similar manner:: >>> n, m = symbols('n,m') >>> b = Bra(n,m) - I*Bra(m,n) >>> b -I*<mn| + <nm| Symbols in a Bra can be substituted using ``.subs``:: >>> b.subs(n,m) <mm| - I*<mm| References ========== .. [1] https://en.wikipedia.org/wiki/Bra-ket_notation """ @classmethod def dual_class(self): return Ket #----------------------------------------------------------------------------- # Time dependent states, bras and kets. #----------------------------------------------------------------------------- class TimeDepState(StateBase): """Base class for a general time-dependent quantum state. This class is used as a base class for any time-dependent state. The main difference between this class and the time-independent state is that this class takes a second argument that is the time in addition to the usual label argument. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. """ #------------------------------------------------------------------------- # Initialization #------------------------------------------------------------------------- @classmethod def default_args(self): return ("psi", "t") #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def label(self): """The label of the state.""" return self.args[:-1] @property def time(self): """The time of the state.""" return self.args[-1] #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- def _print_time(self, printer, *args): return printer._print(self.time, *args) _print_time_repr = _print_time _print_time_latex = _print_time def _print_time_pretty(self, printer, *args): pform = printer._print(self.time, *args) return pform def _print_contents(self, printer, *args): label = self._print_label(printer, *args) time = self._print_time(printer, *args) return '%s;%s' % (label, time) def _print_label_repr(self, printer, *args): label = self._print_sequence(self.label, ',', printer, *args) time = self._print_time_repr(printer, *args) return '%s,%s' % (label, time) def _print_contents_pretty(self, printer, *args): label = self._print_label_pretty(printer, *args) time = self._print_time_pretty(printer, *args) return printer._print_seq((label, time), delimiter=';') def _print_contents_latex(self, printer, *args): label = self._print_sequence( self.label, self._label_separator, printer, *args) time = self._print_time_latex(printer, *args) return '%s;%s' % (label, time) class TimeDepKet(TimeDepState, KetBase): """General time-dependent Ket in quantum mechanics. This inherits from ``TimeDepState`` and ``KetBase`` and is the main class that should be used for Kets that vary with time. Its dual is a ``TimeDepBra``. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. Examples ======== Create a TimeDepKet and look at its attributes:: >>> from sympy.physics.quantum import TimeDepKet >>> k = TimeDepKet('psi', 't') >>> k |psi;t> >>> k.time t >>> k.label (psi,) >>> k.hilbert_space H TimeDepKets know about their dual bra:: >>> k.dual <psi;t| >>> k.dual_class() <class 'sympy.physics.quantum.state.TimeDepBra'> """ @classmethod def dual_class(self): return TimeDepBra class TimeDepBra(TimeDepState, BraBase): """General time-dependent Bra in quantum mechanics. This inherits from TimeDepState and BraBase and is the main class that should be used for Bras that vary with time. Its dual is a TimeDepBra. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. Examples ======== >>> from sympy.physics.quantum import TimeDepBra >>> b = TimeDepBra('psi', 't') >>> b <psi;t| >>> b.time t >>> b.label (psi,) >>> b.hilbert_space H >>> b.dual |psi;t> """ @classmethod def dual_class(self): return TimeDepKet class OrthogonalState(State, StateBase): """General abstract quantum state used as a base class for Ket and Bra.""" pass class OrthogonalKet(OrthogonalState, KetBase): """Orthogonal Ket in quantum mechanics. The inner product of two states with different labels will give zero, states with the same label will give one. >>> from sympy.physics.quantum import OrthogonalBra, OrthogonalKet >>> from sympy.abc import m, n >>> (OrthogonalBra(n)*OrthogonalKet(n)).doit() 1 >>> (OrthogonalBra(n)*OrthogonalKet(n+1)).doit() 0 >>> (OrthogonalBra(n)*OrthogonalKet(m)).doit() <n|m> """ @classmethod def dual_class(self): return OrthogonalBra def _eval_innerproduct(self, bra, **hints): if len(self.args) != len(bra.args): raise ValueError('Cannot multiply a ket that has a different number of labels.') for i in range(len(self.args)): diff = self.args[i] - bra.args[i] diff = diff.expand() if diff.is_zero is False: return 0 if diff.is_zero is None: return None return 1 class OrthogonalBra(OrthogonalState, BraBase): """Orthogonal Bra in quantum mechanics. """ @classmethod def dual_class(self): return OrthogonalKet class Wavefunction(Function): """Class for representations in continuous bases This class takes an expression and coordinates in its constructor. It can be used to easily calculate normalizations and probabilities. Parameters ========== expr : Expr The expression representing the functional form of the w.f. coords : Symbol or tuple The coordinates to be integrated over, and their bounds Examples ======== Particle in a box, specifying bounds in the more primitive way of using Piecewise: >>> from sympy import Symbol, Piecewise, pi, N >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x = Symbol('x', real=True) >>> n = 1 >>> L = 1 >>> g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True)) >>> f = Wavefunction(g, x) >>> f.norm 1 >>> f.is_normalized True >>> p = f.prob() >>> p(0) 0 >>> p(L) 0 >>> p(0.5) 2 >>> p(0.85*L) 2*sin(0.85*pi)**2 >>> N(p(0.85*L)) 0.412214747707527 Additionally, you can specify the bounds of the function and the indices in a more compact way: >>> from sympy import symbols, pi, diff >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm 1 >>> f(L+1) 0 >>> f(L-1) sqrt(2)*sin(pi*n*(L - 1)/L)/sqrt(L) >>> f(-1) 0 >>> f(0.85) sqrt(2)*sin(0.85*pi*n/L)/sqrt(L) >>> f(0.85, n=1, L=1) sqrt(2)*sin(0.85*pi) >>> f.is_commutative False All arguments are automatically sympified, so you can define the variables as strings rather than symbols: >>> expr = x**2 >>> f = Wavefunction(expr, 'x') >>> type(f.variables[0]) <class 'sympy.core.symbol.Symbol'> Derivatives of Wavefunctions will return Wavefunctions: >>> diff(f, x) Wavefunction(2*x, x) """ #Any passed tuples for coordinates and their bounds need to be #converted to Tuples before Function's constructor is called, to #avoid errors from calling is_Float in the constructor def __new__(cls, *args, **options): new_args = [None for i in args] ct = 0 for arg in args: if isinstance(arg, tuple): new_args[ct] = Tuple(*arg) else: new_args[ct] = arg ct += 1 return super().__new__(cls, *new_args, **options) def __call__(self, *args, **options): var = self.variables if len(args) != len(var): raise NotImplementedError( "Incorrect number of arguments to function!") ct = 0 #If the passed value is outside the specified bounds, return 0 for v in var: lower, upper = self.limits[v] #Do the comparison to limits only if the passed symbol is actually #a symbol present in the limits; #Had problems with a comparison of x > L if isinstance(args[ct], Expr) and \ not (lower in args[ct].free_symbols or upper in args[ct].free_symbols): continue if (args[ct] < lower) == True or (args[ct] > upper) == True: return 0 ct += 1 expr = self.expr #Allows user to make a call like f(2, 4, m=1, n=1) for symbol in list(expr.free_symbols): if str(symbol) in options.keys(): val = options[str(symbol)] expr = expr.subs(symbol, val) return expr.subs(zip(var, args)) def _eval_derivative(self, symbol): expr = self.expr deriv = expr._eval_derivative(symbol) return Wavefunction(deriv, *self.args[1:]) def _eval_conjugate(self): return Wavefunction(conjugate(self.expr), *self.args[1:]) def _eval_transpose(self): return self @property def free_symbols(self): return self.expr.free_symbols @property def is_commutative(self): """ Override Function's is_commutative so that order is preserved in represented expressions """ return False @classmethod def eval(self, *args): return None @property def variables(self): """ Return the coordinates which the wavefunction depends on Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x,y = symbols('x,y') >>> f = Wavefunction(x*y, x, y) >>> f.variables (x, y) >>> g = Wavefunction(x*y, x) >>> g.variables (x,) """ var = [g[0] if isinstance(g, Tuple) else g for g in self._args[1:]] return tuple(var) @property def limits(self): """ Return the limits of the coordinates which the w.f. depends on If no limits are specified, defaults to ``(-oo, oo)``. Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x, y = symbols('x, y') >>> f = Wavefunction(x**2, (x, 0, 1)) >>> f.limits {x: (0, 1)} >>> f = Wavefunction(x**2, x) >>> f.limits {x: (-oo, oo)} >>> f = Wavefunction(x**2 + y**2, x, (y, -1, 2)) >>> f.limits {x: (-oo, oo), y: (-1, 2)} """ limits = [(g[1], g[2]) if isinstance(g, Tuple) else (-oo, oo) for g in self._args[1:]] return dict(zip(self.variables, tuple(limits))) @property def expr(self): """ Return the expression which is the functional form of the Wavefunction Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x, y = symbols('x, y') >>> f = Wavefunction(x**2, x) >>> f.expr x**2 """ return self._args[0] @property def is_normalized(self): """ Returns true if the Wavefunction is properly normalized Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.is_normalized True """ return (self.norm == 1.0) @property # type: ignore @cacheit def norm(self): """ Return the normalization of the specified functional form. This function integrates over the coordinates of the Wavefunction, with the bounds specified. Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm 1 >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm sqrt(2)*sqrt(L)/2 """ exp = self.expr*conjugate(self.expr) var = self.variables limits = self.limits for v in var: curr_limits = limits[v] exp = integrate(exp, (v, curr_limits[0], curr_limits[1])) return sqrt(exp) def normalize(self): """ Return a normalized version of the Wavefunction Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sin >>> from sympy.physics.quantum.state import Wavefunction >>> x = symbols('x', real=True) >>> L = symbols('L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.normalize() Wavefunction(sqrt(2)*sin(pi*n*x/L)/sqrt(L), (x, 0, L)) """ const = self.norm if const is oo: raise NotImplementedError("The function is not normalizable!") else: return Wavefunction((const)**(-1)*self.expr, *self.args[1:]) def prob(self): r""" Return the absolute magnitude of the w.f., `|\psi(x)|^2` Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', real=True) >>> n = symbols('n', integer=True) >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.prob() Wavefunction(sin(pi*n*x/L)**2, x) """ return Wavefunction(self.expr*conjugate(self.expr), *self.variables)
130563b4fa0d0e42e57186e9c44296d9e2b9be0c87bf72f6de9035798d12a4f9
"""Quantum mechanical operators. TODO: * Fix early 0 in apply_operators. * Debug and test apply_operators. * Get cse working with classes in this file. * Doctests and documentation of special methods for InnerProduct, Commutator, AntiCommutator, represent, apply_operators. """ from sympy import Derivative, Expr, Integer, oo, Mul, expand, Add from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.qexpr import QExpr, dispatch_method from sympy.matrices import eye __all__ = [ 'Operator', 'HermitianOperator', 'UnitaryOperator', 'IdentityOperator', 'OuterProduct', 'DifferentialOperator' ] #----------------------------------------------------------------------------- # Operators and outer products #----------------------------------------------------------------------------- class Operator(QExpr): """Base class for non-commuting quantum operators. An operator maps between quantum states [1]_. In quantum mechanics, observables (including, but not limited to, measured physical values) are represented as Hermitian operators [2]_. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the operator. For time-dependent operators, this will include the time. Examples ======== Create an operator and examine its attributes:: >>> from sympy.physics.quantum import Operator >>> from sympy import I >>> A = Operator('A') >>> A A >>> A.hilbert_space H >>> A.label (A,) >>> A.is_commutative False Create another operator and do some arithmetic operations:: >>> B = Operator('B') >>> C = 2*A*A + I*B >>> C 2*A**2 + I*B Operators don't commute:: >>> A.is_commutative False >>> B.is_commutative False >>> A*B == B*A False Polymonials of operators respect the commutation properties:: >>> e = (A+B)**3 >>> e.expand() A*B*A + A*B**2 + A**2*B + A**3 + B*A*B + B*A**2 + B**2*A + B**3 Operator inverses are handle symbolically:: >>> A.inv() A**(-1) >>> A*A.inv() 1 References ========== .. [1] https://en.wikipedia.org/wiki/Operator_%28physics%29 .. [2] https://en.wikipedia.org/wiki/Observable """ @classmethod def default_args(self): return ("O",) #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- _label_separator = ',' def _print_operator_name(self, printer, *args): return self.__class__.__name__ _print_operator_name_latex = _print_operator_name def _print_operator_name_pretty(self, printer, *args): return prettyForm(self.__class__.__name__) def _print_contents(self, printer, *args): if len(self.label) == 1: return self._print_label(printer, *args) else: return '%s(%s)' % ( self._print_operator_name(printer, *args), self._print_label(printer, *args) ) def _print_contents_pretty(self, printer, *args): if len(self.label) == 1: return self._print_label_pretty(printer, *args) else: pform = self._print_operator_name_pretty(printer, *args) label_pform = self._print_label_pretty(printer, *args) label_pform = prettyForm( *label_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(label_pform)) return pform def _print_contents_latex(self, printer, *args): if len(self.label) == 1: return self._print_label_latex(printer, *args) else: return r'%s\left(%s\right)' % ( self._print_operator_name_latex(printer, *args), self._print_label_latex(printer, *args) ) #------------------------------------------------------------------------- # _eval_* methods #------------------------------------------------------------------------- def _eval_commutator(self, other, **options): """Evaluate [self, other] if known, return None if not known.""" return dispatch_method(self, '_eval_commutator', other, **options) def _eval_anticommutator(self, other, **options): """Evaluate [self, other] if known.""" return dispatch_method(self, '_eval_anticommutator', other, **options) #------------------------------------------------------------------------- # Operator application #------------------------------------------------------------------------- def _apply_operator(self, ket, **options): return dispatch_method(self, '_apply_operator', ket, **options) def matrix_element(self, *args): raise NotImplementedError('matrix_elements is not defined') def inverse(self): return self._eval_inverse() inv = inverse def _eval_inverse(self): return self**(-1) def __mul__(self, other): if isinstance(other, IdentityOperator): return self return Mul(self, other) class HermitianOperator(Operator): """A Hermitian operator that satisfies H == Dagger(H). Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the operator. For time-dependent operators, this will include the time. Examples ======== >>> from sympy.physics.quantum import Dagger, HermitianOperator >>> H = HermitianOperator('H') >>> Dagger(H) H """ is_hermitian = True def _eval_inverse(self): if isinstance(self, UnitaryOperator): return self else: return Operator._eval_inverse(self) def _eval_power(self, exp): if isinstance(self, UnitaryOperator): if exp == -1: return Operator._eval_power(self, exp) elif abs(exp) % 2 == 0: return self*(Operator._eval_inverse(self)) else: return self else: return Operator._eval_power(self, exp) class UnitaryOperator(Operator): """A unitary operator that satisfies U*Dagger(U) == 1. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the operator. For time-dependent operators, this will include the time. Examples ======== >>> from sympy.physics.quantum import Dagger, UnitaryOperator >>> U = UnitaryOperator('U') >>> U*Dagger(U) 1 """ def _eval_adjoint(self): return self._eval_inverse() class IdentityOperator(Operator): """An identity operator I that satisfies op * I == I * op == op for any operator op. Parameters ========== N : Integer Optional parameter that specifies the dimension of the Hilbert space of operator. This is used when generating a matrix representation. Examples ======== >>> from sympy.physics.quantum import IdentityOperator >>> IdentityOperator() I """ @property def dimension(self): return self.N @classmethod def default_args(self): return (oo,) def __init__(self, *args, **hints): if not len(args) in (0, 1): raise ValueError('0 or 1 parameters expected, got %s' % args) self.N = args[0] if (len(args) == 1 and args[0]) else oo def _eval_commutator(self, other, **hints): return Integer(0) def _eval_anticommutator(self, other, **hints): return 2 * other def _eval_inverse(self): return self def _eval_adjoint(self): return self def _apply_operator(self, ket, **options): return ket def _eval_power(self, exp): return self def _print_contents(self, printer, *args): return 'I' def _print_contents_pretty(self, printer, *args): return prettyForm('I') def _print_contents_latex(self, printer, *args): return r'{\mathcal{I}}' def __mul__(self, other): if isinstance(other, (Operator, Dagger)): return other return Mul(self, other) def _represent_default_basis(self, **options): if not self.N or self.N == oo: raise NotImplementedError('Cannot represent infinite dimensional' + ' identity operator as a matrix') format = options.get('format', 'sympy') if format != 'sympy': raise NotImplementedError('Representation in format ' + '%s not implemented.' % format) return eye(self.N) class OuterProduct(Operator): """An unevaluated outer product between a ket and bra. This constructs an outer product between any subclass of ``KetBase`` and ``BraBase`` as ``|a><b|``. An ``OuterProduct`` inherits from Operator as they act as operators in quantum expressions. For reference see [1]_. Parameters ========== ket : KetBase The ket on the left side of the outer product. bar : BraBase The bra on the right side of the outer product. Examples ======== Create a simple outer product by hand and take its dagger:: >>> from sympy.physics.quantum import Ket, Bra, OuterProduct, Dagger >>> from sympy.physics.quantum import Operator >>> k = Ket('k') >>> b = Bra('b') >>> op = OuterProduct(k, b) >>> op |k><b| >>> op.hilbert_space H >>> op.ket |k> >>> op.bra <b| >>> Dagger(op) |b><k| In simple products of kets and bras outer products will be automatically identified and created:: >>> k*b |k><b| But in more complex expressions, outer products are not automatically created:: >>> A = Operator('A') >>> A*k*b A*|k>*<b| A user can force the creation of an outer product in a complex expression by using parentheses to group the ket and bra:: >>> A*(k*b) A*|k><b| References ========== .. [1] https://en.wikipedia.org/wiki/Outer_product """ is_commutative = False def __new__(cls, *args, **old_assumptions): from sympy.physics.quantum.state import KetBase, BraBase if len(args) != 2: raise ValueError('2 parameters expected, got %d' % len(args)) ket_expr = expand(args[0]) bra_expr = expand(args[1]) if (isinstance(ket_expr, (KetBase, Mul)) and isinstance(bra_expr, (BraBase, Mul))): ket_c, kets = ket_expr.args_cnc() bra_c, bras = bra_expr.args_cnc() if len(kets) != 1 or not isinstance(kets[0], KetBase): raise TypeError('KetBase subclass expected' ', got: %r' % Mul(*kets)) if len(bras) != 1 or not isinstance(bras[0], BraBase): raise TypeError('BraBase subclass expected' ', got: %r' % Mul(*bras)) if not kets[0].dual_class() == bras[0].__class__: raise TypeError( 'ket and bra are not dual classes: %r, %r' % (kets[0].__class__, bras[0].__class__) ) # TODO: make sure the hilbert spaces of the bra and ket are # compatible obj = Expr.__new__(cls, *(kets[0], bras[0]), **old_assumptions) obj.hilbert_space = kets[0].hilbert_space return Mul(*(ket_c + bra_c)) * obj op_terms = [] if isinstance(ket_expr, Add) and isinstance(bra_expr, Add): for ket_term in ket_expr.args: for bra_term in bra_expr.args: op_terms.append(OuterProduct(ket_term, bra_term, **old_assumptions)) elif isinstance(ket_expr, Add): for ket_term in ket_expr.args: op_terms.append(OuterProduct(ket_term, bra_expr, **old_assumptions)) elif isinstance(bra_expr, Add): for bra_term in bra_expr.args: op_terms.append(OuterProduct(ket_expr, bra_term, **old_assumptions)) else: raise TypeError( 'Expected ket and bra expression, got: %r, %r' % (ket_expr, bra_expr) ) return Add(*op_terms) @property def ket(self): """Return the ket on the left side of the outer product.""" return self.args[0] @property def bra(self): """Return the bra on the right side of the outer product.""" return self.args[1] def _eval_adjoint(self): return OuterProduct(Dagger(self.bra), Dagger(self.ket)) def _sympystr(self, printer, *args): return printer._print(self.ket) + printer._print(self.bra) def _sympyrepr(self, printer, *args): return '%s(%s,%s)' % (self.__class__.__name__, printer._print(self.ket, *args), printer._print(self.bra, *args)) def _pretty(self, printer, *args): pform = self.ket._pretty(printer, *args) return prettyForm(*pform.right(self.bra._pretty(printer, *args))) def _latex(self, printer, *args): k = printer._print(self.ket, *args) b = printer._print(self.bra, *args) return k + b def _represent(self, **options): k = self.ket._represent(**options) b = self.bra._represent(**options) return k*b def _eval_trace(self, **kwargs): # TODO if operands are tensorproducts this may be will be handled # differently. return self.ket._eval_trace(self.bra, **kwargs) class DifferentialOperator(Operator): """An operator for representing the differential operator, i.e. d/dx It is initialized by passing two arguments. The first is an arbitrary expression that involves a function, such as ``Derivative(f(x), x)``. The second is the function (e.g. ``f(x)``) which we are to replace with the ``Wavefunction`` that this ``DifferentialOperator`` is applied to. Parameters ========== expr : Expr The arbitrary expression which the appropriate Wavefunction is to be substituted into func : Expr A function (e.g. f(x)) which is to be replaced with the appropriate Wavefunction when this DifferentialOperator is applied Examples ======== You can define a completely arbitrary expression and specify where the Wavefunction is to be substituted >>> from sympy import Derivative, Function, Symbol >>> from sympy.physics.quantum.operator import DifferentialOperator >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy.physics.quantum.qapply import qapply >>> f = Function('f') >>> x = Symbol('x') >>> d = DifferentialOperator(1/x*Derivative(f(x), x), f(x)) >>> w = Wavefunction(x**2, x) >>> d.function f(x) >>> d.variables (x,) >>> qapply(d*w) Wavefunction(2, x) """ @property def variables(self): """ Returns the variables with which the function in the specified arbitrary expression is evaluated Examples ======== >>> from sympy.physics.quantum.operator import DifferentialOperator >>> from sympy import Symbol, Function, Derivative >>> x = Symbol('x') >>> f = Function('f') >>> d = DifferentialOperator(1/x*Derivative(f(x), x), f(x)) >>> d.variables (x,) >>> y = Symbol('y') >>> d = DifferentialOperator(Derivative(f(x, y), x) + ... Derivative(f(x, y), y), f(x, y)) >>> d.variables (x, y) """ return self.args[-1].args @property def function(self): """ Returns the function which is to be replaced with the Wavefunction Examples ======== >>> from sympy.physics.quantum.operator import DifferentialOperator >>> from sympy import Function, Symbol, Derivative >>> x = Symbol('x') >>> f = Function('f') >>> d = DifferentialOperator(Derivative(f(x), x), f(x)) >>> d.function f(x) >>> y = Symbol('y') >>> d = DifferentialOperator(Derivative(f(x, y), x) + ... Derivative(f(x, y), y), f(x, y)) >>> d.function f(x, y) """ return self.args[-1] @property def expr(self): """ Returns the arbitrary expression which is to have the Wavefunction substituted into it Examples ======== >>> from sympy.physics.quantum.operator import DifferentialOperator >>> from sympy import Function, Symbol, Derivative >>> x = Symbol('x') >>> f = Function('f') >>> d = DifferentialOperator(Derivative(f(x), x), f(x)) >>> d.expr Derivative(f(x), x) >>> y = Symbol('y') >>> d = DifferentialOperator(Derivative(f(x, y), x) + ... Derivative(f(x, y), y), f(x, y)) >>> d.expr Derivative(f(x, y), x) + Derivative(f(x, y), y) """ return self.args[0] @property def free_symbols(self): """ Return the free symbols of the expression. """ return self.expr.free_symbols def _apply_operator_Wavefunction(self, func): from sympy.physics.quantum.state import Wavefunction var = self.variables wf_vars = func.args[1:] f = self.function new_expr = self.expr.subs(f, func(*var)) new_expr = new_expr.doit() return Wavefunction(new_expr, *wf_vars) def _eval_derivative(self, symbol): new_expr = Derivative(self.expr, symbol) return DifferentialOperator(new_expr, self.args[-1]) #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- def _print(self, printer, *args): return '%s(%s)' % ( self._print_operator_name(printer, *args), self._print_label(printer, *args) ) def _print_pretty(self, printer, *args): pform = self._print_operator_name_pretty(printer, *args) label_pform = self._print_label_pretty(printer, *args) label_pform = prettyForm( *label_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(label_pform)) return pform
5a3a28304182113b31038da7a00a7fa6a204da8e96c238898d74ea9d86541de2
"""Quantum mechanical angular momemtum.""" from sympy import (Add, binomial, cos, exp, Expr, factorial, I, Integer, Mul, pi, Rational, S, sin, simplify, sqrt, Sum, symbols, sympify, Tuple, Dummy) from sympy.matrices import zeros from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.printing.pretty.pretty_symbology import pretty_symbol from sympy.physics.quantum.qexpr import QExpr from sympy.physics.quantum.operator import (HermitianOperator, Operator, UnitaryOperator) from sympy.physics.quantum.state import Bra, Ket, State from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.physics.quantum.constants import hbar from sympy.physics.quantum.hilbert import ComplexSpace, DirectSumHilbertSpace from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.cg import CG from sympy.physics.quantum.qapply import qapply __all__ = [ 'm_values', 'Jplus', 'Jminus', 'Jx', 'Jy', 'Jz', 'J2', 'Rotation', 'WignerD', 'JxKet', 'JxBra', 'JyKet', 'JyBra', 'JzKet', 'JzBra', 'JzOp', 'J2Op', 'JxKetCoupled', 'JxBraCoupled', 'JyKetCoupled', 'JyBraCoupled', 'JzKetCoupled', 'JzBraCoupled', 'couple', 'uncouple' ] def m_values(j): j = sympify(j) size = 2*j + 1 if not size.is_Integer or not size > 0: raise ValueError( 'Only integer or half-integer values allowed for j, got: : %r' % j ) return size, [j - i for i in range(int(2*j + 1))] #----------------------------------------------------------------------------- # Spin Operators #----------------------------------------------------------------------------- class SpinOpBase: """Base class for spin operators.""" @classmethod def _eval_hilbert_space(cls, label): # We consider all j values so our space is infinite. return ComplexSpace(S.Infinity) @property def name(self): return self.args[0] def _print_contents(self, printer, *args): return '%s%s' % (self.name, self._coord) def _print_contents_pretty(self, printer, *args): a = stringPict(str(self.name)) b = stringPict(self._coord) return self._print_subscript_pretty(a, b) def _print_contents_latex(self, printer, *args): return r'%s_%s' % ((self.name, self._coord)) def _represent_base(self, basis, **options): j = options.get('j', S.Half) size, mvals = m_values(j) result = zeros(size, size) for p in range(size): for q in range(size): me = self.matrix_element(j, mvals[p], j, mvals[q]) result[p, q] = me return result def _apply_op(self, ket, orig_basis, **options): state = ket.rewrite(self.basis) # If the state has only one term if isinstance(state, State): ret = (hbar*state.m)*state # state is a linear combination of states elif isinstance(state, Sum): ret = self._apply_operator_Sum(state, **options) else: ret = qapply(self*state) if ret == self*state: raise NotImplementedError return ret.rewrite(orig_basis) def _apply_operator_JxKet(self, ket, **options): return self._apply_op(ket, 'Jx', **options) def _apply_operator_JxKetCoupled(self, ket, **options): return self._apply_op(ket, 'Jx', **options) def _apply_operator_JyKet(self, ket, **options): return self._apply_op(ket, 'Jy', **options) def _apply_operator_JyKetCoupled(self, ket, **options): return self._apply_op(ket, 'Jy', **options) def _apply_operator_JzKet(self, ket, **options): return self._apply_op(ket, 'Jz', **options) def _apply_operator_JzKetCoupled(self, ket, **options): return self._apply_op(ket, 'Jz', **options) def _apply_operator_TensorProduct(self, tp, **options): # Uncoupling operator is only easily found for coordinate basis spin operators # TODO: add methods for uncoupling operators if not (isinstance(self, JxOp) or isinstance(self, JyOp) or isinstance(self, JzOp)): raise NotImplementedError result = [] for n in range(len(tp.args)): arg = [] arg.extend(tp.args[:n]) arg.append(self._apply_operator(tp.args[n])) arg.extend(tp.args[n + 1:]) result.append(tp.__class__(*arg)) return Add(*result).expand() # TODO: move this to qapply_Mul def _apply_operator_Sum(self, s, **options): new_func = qapply(self*s.function) if new_func == self*s.function: raise NotImplementedError return Sum(new_func, *s.limits) def _eval_trace(self, **options): #TODO: use options to use different j values #For now eval at default basis # is it efficient to represent each time # to do a trace? return self._represent_default_basis().trace() class JplusOp(SpinOpBase, Operator): """The J+ operator.""" _coord = '+' basis = 'Jz' def _eval_commutator_JminusOp(self, other): return 2*hbar*JzOp(self.name) def _apply_operator_JzKet(self, ket, **options): j = ket.j m = ket.m if m.is_Number and j.is_Number: if m >= j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m + S.One))*JzKet(j, m + S.One) def _apply_operator_JzKetCoupled(self, ket, **options): j = ket.j m = ket.m jn = ket.jn coupling = ket.coupling if m.is_Number and j.is_Number: if m >= j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m + S.One))*JzKetCoupled(j, m + S.One, jn, coupling) def matrix_element(self, j, m, jp, mp): result = hbar*sqrt(j*(j + S.One) - mp*(mp + S.One)) result *= KroneckerDelta(m, mp + 1) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _eval_rewrite_as_xyz(self, *args, **kwargs): return JxOp(args[0]) + I*JyOp(args[0]) class JminusOp(SpinOpBase, Operator): """The J- operator.""" _coord = '-' basis = 'Jz' def _apply_operator_JzKet(self, ket, **options): j = ket.j m = ket.m if m.is_Number and j.is_Number: if m <= -j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m - S.One))*JzKet(j, m - S.One) def _apply_operator_JzKetCoupled(self, ket, **options): j = ket.j m = ket.m jn = ket.jn coupling = ket.coupling if m.is_Number and j.is_Number: if m <= -j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m - S.One))*JzKetCoupled(j, m - S.One, jn, coupling) def matrix_element(self, j, m, jp, mp): result = hbar*sqrt(j*(j + S.One) - mp*(mp - S.One)) result *= KroneckerDelta(m, mp - 1) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _eval_rewrite_as_xyz(self, *args, **kwargs): return JxOp(args[0]) - I*JyOp(args[0]) class JxOp(SpinOpBase, HermitianOperator): """The Jx operator.""" _coord = 'x' basis = 'Jx' def _eval_commutator_JyOp(self, other): return I*hbar*JzOp(self.name) def _eval_commutator_JzOp(self, other): return -I*hbar*JyOp(self.name) def _apply_operator_JzKet(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options) return (jp + jm)/Integer(2) def _apply_operator_JzKetCoupled(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) return (jp + jm)/Integer(2) def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): jp = JplusOp(self.name)._represent_JzOp(basis, **options) jm = JminusOp(self.name)._represent_JzOp(basis, **options) return (jp + jm)/Integer(2) def _eval_rewrite_as_plusminus(self, *args, **kwargs): return (JplusOp(args[0]) + JminusOp(args[0]))/2 class JyOp(SpinOpBase, HermitianOperator): """The Jy operator.""" _coord = 'y' basis = 'Jy' def _eval_commutator_JzOp(self, other): return I*hbar*JxOp(self.name) def _eval_commutator_JxOp(self, other): return -I*hbar*J2Op(self.name) def _apply_operator_JzKet(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options) return (jp - jm)/(Integer(2)*I) def _apply_operator_JzKetCoupled(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) return (jp - jm)/(Integer(2)*I) def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): jp = JplusOp(self.name)._represent_JzOp(basis, **options) jm = JminusOp(self.name)._represent_JzOp(basis, **options) return (jp - jm)/(Integer(2)*I) def _eval_rewrite_as_plusminus(self, *args, **kwargs): return (JplusOp(args[0]) - JminusOp(args[0]))/(2*I) class JzOp(SpinOpBase, HermitianOperator): """The Jz operator.""" _coord = 'z' basis = 'Jz' def _eval_commutator_JxOp(self, other): return I*hbar*JyOp(self.name) def _eval_commutator_JyOp(self, other): return -I*hbar*JxOp(self.name) def _eval_commutator_JplusOp(self, other): return hbar*JplusOp(self.name) def _eval_commutator_JminusOp(self, other): return -hbar*JminusOp(self.name) def matrix_element(self, j, m, jp, mp): result = hbar*mp result *= KroneckerDelta(m, mp) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) class J2Op(SpinOpBase, HermitianOperator): """The J^2 operator.""" _coord = '2' def _eval_commutator_JxOp(self, other): return S.Zero def _eval_commutator_JyOp(self, other): return S.Zero def _eval_commutator_JzOp(self, other): return S.Zero def _eval_commutator_JplusOp(self, other): return S.Zero def _eval_commutator_JminusOp(self, other): return S.Zero def _apply_operator_JxKet(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JxKetCoupled(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JyKet(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JyKetCoupled(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JzKet(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JzKetCoupled(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def matrix_element(self, j, m, jp, mp): result = (hbar**2)*j*(j + 1) result *= KroneckerDelta(m, mp) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _print_contents_pretty(self, printer, *args): a = prettyForm(str(self.name)) b = prettyForm('2') return a**b def _print_contents_latex(self, printer, *args): return r'%s^2' % str(self.name) def _eval_rewrite_as_xyz(self, *args, **kwargs): return JxOp(args[0])**2 + JyOp(args[0])**2 + JzOp(args[0])**2 def _eval_rewrite_as_plusminus(self, *args, **kwargs): a = args[0] return JzOp(a)**2 + \ S.Half*(JplusOp(a)*JminusOp(a) + JminusOp(a)*JplusOp(a)) class Rotation(UnitaryOperator): """Wigner D operator in terms of Euler angles. Defines the rotation operator in terms of the Euler angles defined by the z-y-z convention for a passive transformation. That is the coordinate axes are rotated first about the z-axis, giving the new x'-y'-z' axes. Then this new coordinate system is rotated about the new y'-axis, giving new x''-y''-z'' axes. Then this new coordinate system is rotated about the z''-axis. Conventions follow those laid out in [1]_. Parameters ========== alpha : Number, Symbol First Euler Angle beta : Number, Symbol Second Euler angle gamma : Number, Symbol Third Euler angle Examples ======== A simple example rotation operator: >>> from sympy import pi >>> from sympy.physics.quantum.spin import Rotation >>> Rotation(pi, 0, pi/2) R(pi,0,pi/2) With symbolic Euler angles and calculating the inverse rotation operator: >>> from sympy import symbols >>> a, b, c = symbols('a b c') >>> Rotation(a, b, c) R(a,b,c) >>> Rotation(a, b, c).inverse() R(-c,-b,-a) See Also ======== WignerD: Symbolic Wigner-D function D: Wigner-D function d: Wigner small-d function References ========== .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. """ @classmethod def _eval_args(cls, args): args = QExpr._eval_args(args) if len(args) != 3: raise ValueError('3 Euler angles required, got: %r' % args) return args @classmethod def _eval_hilbert_space(cls, label): # We consider all j values so our space is infinite. return ComplexSpace(S.Infinity) @property def alpha(self): return self.label[0] @property def beta(self): return self.label[1] @property def gamma(self): return self.label[2] def _print_operator_name(self, printer, *args): return 'R' def _print_operator_name_pretty(self, printer, *args): if printer._use_unicode: return prettyForm('\N{SCRIPT CAPITAL R}' + ' ') else: return prettyForm("R ") def _print_operator_name_latex(self, printer, *args): return r'\mathcal{R}' def _eval_inverse(self): return Rotation(-self.gamma, -self.beta, -self.alpha) @classmethod def D(cls, j, m, mp, alpha, beta, gamma): """Wigner D-function. Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters. Parameters =========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis alpha : Number, Symbol First Euler angle of rotation beta : Number, Symbol Second Euler angle of rotation gamma : Number, Symbol Third Euler angle of rotation Examples ======== Return the Wigner-D matrix element for a defined rotation, both numerical and symbolic: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi, symbols >>> alpha, beta, gamma = symbols('alpha beta gamma') >>> Rotation.D(1, 1, 0,pi, pi/2,-pi) WignerD(1, 1, 0, pi, pi/2, -pi) See Also ======== WignerD: Symbolic Wigner-D function """ return WignerD(j, m, mp, alpha, beta, gamma) @classmethod def d(cls, j, m, mp, beta): """Wigner small-d function. Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters with the alpha and gamma angles given as 0. Parameters =========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis beta : Number, Symbol Second Euler angle of rotation Examples ======== Return the Wigner-D matrix element for a defined rotation, both numerical and symbolic: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi, symbols >>> beta = symbols('beta') >>> Rotation.d(1, 1, 0, pi/2) WignerD(1, 1, 0, 0, pi/2, 0) See Also ======== WignerD: Symbolic Wigner-D function """ return WignerD(j, m, mp, 0, beta, 0) def matrix_element(self, j, m, jp, mp): result = self.__class__.D( jp, m, mp, self.alpha, self.beta, self.gamma ) result *= KroneckerDelta(j, jp) return result def _represent_base(self, basis, **options): j = sympify(options.get('j', S.Half)) # TODO: move evaluation up to represent function/implement elsewhere evaluate = sympify(options.get('doit')) size, mvals = m_values(j) result = zeros(size, size) for p in range(size): for q in range(size): me = self.matrix_element(j, mvals[p], j, mvals[q]) if evaluate: result[p, q] = me.doit() else: result[p, q] = me return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _apply_operator_uncoupled(self, state, ket, *, dummy=True, **options): a = self.alpha b = self.beta g = self.gamma j = ket.j m = ket.m if j.is_number: s = [] size = m_values(j) sz = size[1] for mp in sz: r = Rotation.D(j, m, mp, a, b, g) z = r.doit() s.append(z*state(j, mp)) return Add(*s) else: if dummy: mp = Dummy('mp') else: mp = symbols('mp') return Sum(Rotation.D(j, m, mp, a, b, g)*state(j, mp), (mp, -j, j)) def _apply_operator_JxKet(self, ket, **options): return self._apply_operator_uncoupled(JxKet, ket, **options) def _apply_operator_JyKet(self, ket, **options): return self._apply_operator_uncoupled(JyKet, ket, **options) def _apply_operator_JzKet(self, ket, **options): return self._apply_operator_uncoupled(JzKet, ket, **options) def _apply_operator_coupled(self, state, ket, *, dummy=True, **options): a = self.alpha b = self.beta g = self.gamma j = ket.j m = ket.m jn = ket.jn coupling = ket.coupling if j.is_number: s = [] size = m_values(j) sz = size[1] for mp in sz: r = Rotation.D(j, m, mp, a, b, g) z = r.doit() s.append(z*state(j, mp, jn, coupling)) return Add(*s) else: if dummy: mp = Dummy('mp') else: mp = symbols('mp') return Sum(Rotation.D(j, m, mp, a, b, g)*state( j, mp, jn, coupling), (mp, -j, j)) def _apply_operator_JxKetCoupled(self, ket, **options): return self._apply_operator_coupled(JxKetCoupled, ket, **options) def _apply_operator_JyKetCoupled(self, ket, **options): return self._apply_operator_coupled(JyKetCoupled, ket, **options) def _apply_operator_JzKetCoupled(self, ket, **options): return self._apply_operator_coupled(JzKetCoupled, ket, **options) class WignerD(Expr): r"""Wigner-D function The Wigner D-function gives the matrix elements of the rotation operator in the jm-representation. For the Euler angles `\alpha`, `\beta`, `\gamma`, the D-function is defined such that: .. math :: <j,m| \mathcal{R}(\alpha, \beta, \gamma ) |j',m'> = \delta_{jj'} D(j, m, m', \alpha, \beta, \gamma) Where the rotation operator is as defined by the Rotation class [1]_. The Wigner D-function defined in this way gives: .. math :: D(j, m, m', \alpha, \beta, \gamma) = e^{-i m \alpha} d(j, m, m', \beta) e^{-i m' \gamma} Where d is the Wigner small-d function, which is given by Rotation.d. The Wigner small-d function gives the component of the Wigner D-function that is determined by the second Euler angle. That is the Wigner D-function is: .. math :: D(j, m, m', \alpha, \beta, \gamma) = e^{-i m \alpha} d(j, m, m', \beta) e^{-i m' \gamma} Where d is the small-d function. The Wigner D-function is given by Rotation.D. Note that to evaluate the D-function, the j, m and mp parameters must be integer or half integer numbers. Parameters ========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis alpha : Number, Symbol First Euler angle of rotation beta : Number, Symbol Second Euler angle of rotation gamma : Number, Symbol Third Euler angle of rotation Examples ======== Evaluate the Wigner-D matrix elements of a simple rotation: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi >>> rot = Rotation.D(1, 1, 0, pi, pi/2, 0) >>> rot WignerD(1, 1, 0, pi, pi/2, 0) >>> rot.doit() sqrt(2)/2 Evaluate the Wigner-d matrix elements of a simple rotation >>> rot = Rotation.d(1, 1, 0, pi/2) >>> rot WignerD(1, 1, 0, 0, pi/2, 0) >>> rot.doit() -sqrt(2)/2 See Also ======== Rotation: Rotation operator References ========== .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. """ is_commutative = True def __new__(cls, *args, **hints): if not len(args) == 6: raise ValueError('6 parameters expected, got %s' % args) args = sympify(args) evaluate = hints.get('evaluate', False) if evaluate: return Expr.__new__(cls, *args)._eval_wignerd() return Expr.__new__(cls, *args) @property def j(self): return self.args[0] @property def m(self): return self.args[1] @property def mp(self): return self.args[2] @property def alpha(self): return self.args[3] @property def beta(self): return self.args[4] @property def gamma(self): return self.args[5] def _latex(self, printer, *args): if self.alpha == 0 and self.gamma == 0: return r'd^{%s}_{%s,%s}\left(%s\right)' % \ ( printer._print(self.j), printer._print( self.m), printer._print(self.mp), printer._print(self.beta) ) return r'D^{%s}_{%s,%s}\left(%s,%s,%s\right)' % \ ( printer._print( self.j), printer._print(self.m), printer._print(self.mp), printer._print(self.alpha), printer._print(self.beta), printer._print(self.gamma) ) def _pretty(self, printer, *args): top = printer._print(self.j) bot = printer._print(self.m) bot = prettyForm(*bot.right(',')) bot = prettyForm(*bot.right(printer._print(self.mp))) pad = max(top.width(), bot.width()) top = prettyForm(*top.left(' ')) bot = prettyForm(*bot.left(' ')) if pad > top.width(): top = prettyForm(*top.right(' '*(pad - top.width()))) if pad > bot.width(): bot = prettyForm(*bot.right(' '*(pad - bot.width()))) if self.alpha == 0 and self.gamma == 0: args = printer._print(self.beta) s = stringPict('d' + ' '*pad) else: args = printer._print(self.alpha) args = prettyForm(*args.right(',')) args = prettyForm(*args.right(printer._print(self.beta))) args = prettyForm(*args.right(',')) args = prettyForm(*args.right(printer._print(self.gamma))) s = stringPict('D' + ' '*pad) args = prettyForm(*args.parens()) s = prettyForm(*s.above(top)) s = prettyForm(*s.below(bot)) s = prettyForm(*s.right(args)) return s def doit(self, **hints): hints['evaluate'] = True return WignerD(*self.args, **hints) def _eval_wignerd(self): j = sympify(self.j) m = sympify(self.m) mp = sympify(self.mp) alpha = sympify(self.alpha) beta = sympify(self.beta) gamma = sympify(self.gamma) if alpha == 0 and beta == 0 and gamma == 0: return KroneckerDelta(m, mp) if not j.is_number: raise ValueError( 'j parameter must be numerical to evaluate, got %s' % j) r = 0 if beta == pi/2: # Varshalovich Equation (5), Section 4.16, page 113, setting # alpha=gamma=0. for k in range(2*j + 1): if k > j + mp or k > j - m or k < mp - m: continue r += (S.NegativeOne)**k*binomial(j + mp, k)*binomial(j - mp, k + m - mp) r *= (S.NegativeOne)**(m - mp) / 2**j*sqrt(factorial(j + m) * factorial(j - m) / (factorial(j + mp)*factorial(j - mp))) else: # Varshalovich Equation(5), Section 4.7.2, page 87, where we set # beta1=beta2=pi/2, and we get alpha=gamma=pi/2 and beta=phi+pi, # then we use the Eq. (1), Section 4.4. page 79, to simplify: # d(j, m, mp, beta+pi) = (-1)**(j-mp)*d(j, m, -mp, beta) # This happens to be almost the same as in Eq.(10), Section 4.16, # except that we need to substitute -mp for mp. size, mvals = m_values(j) for mpp in mvals: r += Rotation.d(j, m, mpp, pi/2).doit()*(cos(-mpp*beta) + I*sin(-mpp*beta))*\ Rotation.d(j, mpp, -mp, pi/2).doit() # Empirical normalization factor so results match Varshalovich # Tables 4.3-4.12 # Note that this exact normalization does not follow from the # above equations r = r*I**(2*j - m - mp)*(-1)**(2*m) # Finally, simplify the whole expression r = simplify(r) r *= exp(-I*m*alpha)*exp(-I*mp*gamma) return r Jx = JxOp('J') Jy = JyOp('J') Jz = JzOp('J') J2 = J2Op('J') Jplus = JplusOp('J') Jminus = JminusOp('J') #----------------------------------------------------------------------------- # Spin States #----------------------------------------------------------------------------- class SpinState(State): """Base class for angular momentum states.""" _label_separator = ',' def __new__(cls, j, m): j = sympify(j) m = sympify(m) if j.is_number: if 2*j != int(2*j): raise ValueError( 'j must be integer or half-integer, got: %s' % j) if j < 0: raise ValueError('j must be >= 0, got: %s' % j) if m.is_number: if 2*m != int(2*m): raise ValueError( 'm must be integer or half-integer, got: %s' % m) if j.is_number and m.is_number: if abs(m) > j: raise ValueError('Allowed values for m are -j <= m <= j, got j, m: %s, %s' % (j, m)) if int(j - m) != j - m: raise ValueError('Both j and m must be integer or half-integer, got j, m: %s, %s' % (j, m)) return State.__new__(cls, j, m) @property def j(self): return self.label[0] @property def m(self): return self.label[1] @classmethod def _eval_hilbert_space(cls, label): return ComplexSpace(2*label[0] + 1) def _represent_base(self, **options): j = self.j m = self.m alpha = sympify(options.get('alpha', 0)) beta = sympify(options.get('beta', 0)) gamma = sympify(options.get('gamma', 0)) size, mvals = m_values(j) result = zeros(size, 1) # breaks finding angles on L930 for p, mval in enumerate(mvals): if m.is_number: result[p, 0] = Rotation.D( self.j, mval, self.m, alpha, beta, gamma).doit() else: result[p, 0] = Rotation.D(self.j, mval, self.m, alpha, beta, gamma) return result def _eval_rewrite_as_Jx(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jx, JxBra, **options) return self._rewrite_basis(Jx, JxKet, **options) def _eval_rewrite_as_Jy(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jy, JyBra, **options) return self._rewrite_basis(Jy, JyKet, **options) def _eval_rewrite_as_Jz(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jz, JzBra, **options) return self._rewrite_basis(Jz, JzKet, **options) def _rewrite_basis(self, basis, evect, **options): from sympy.physics.quantum.represent import represent j = self.j args = self.args[2:] if j.is_number: if isinstance(self, CoupledSpinState): if j == int(j): start = j**2 else: start = (2*j - 1)*(2*j + 1)/4 else: start = 0 vect = represent(self, basis=basis, **options) result = Add( *[vect[start + i]*evect(j, j - i, *args) for i in range(2*j + 1)]) if isinstance(self, CoupledSpinState) and options.get('coupled') is False: return uncouple(result) return result else: i = 0 mi = symbols('mi') # make sure not to introduce a symbol already in the state while self.subs(mi, 0) != self: i += 1 mi = symbols('mi%d' % i) break # TODO: better way to get angles of rotation if isinstance(self, CoupledSpinState): test_args = (0, mi, (0, 0)) else: test_args = (0, mi) if isinstance(self, Ket): angles = represent( self.__class__(*test_args), basis=basis)[0].args[3:6] else: angles = represent(self.__class__( *test_args), basis=basis)[0].args[0].args[3:6] if angles == (0, 0, 0): return self else: state = evect(j, mi, *args) lt = Rotation.D(j, mi, self.m, *angles) return Sum(lt*state, (mi, -j, j)) def _eval_innerproduct_JxBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if bra.dual_class() is not self.__class__: result *= self._represent_JxOp(None)[bra.j - bra.m] else: result *= KroneckerDelta( self.j, bra.j)*KroneckerDelta(self.m, bra.m) return result def _eval_innerproduct_JyBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if bra.dual_class() is not self.__class__: result *= self._represent_JyOp(None)[bra.j - bra.m] else: result *= KroneckerDelta( self.j, bra.j)*KroneckerDelta(self.m, bra.m) return result def _eval_innerproduct_JzBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if bra.dual_class() is not self.__class__: result *= self._represent_JzOp(None)[bra.j - bra.m] else: result *= KroneckerDelta( self.j, bra.j)*KroneckerDelta(self.m, bra.m) return result def _eval_trace(self, bra, **hints): # One way to implement this method is to assume the basis set k is # passed. # Then we can apply the discrete form of Trace formula here # Tr(|i><j| ) = \Sum_k <k|i><j|k> #then we do qapply() on each each inner product and sum over them. # OR # Inner product of |i><j| = Trace(Outer Product). # we could just use this unless there are cases when this is not true return (bra*self).doit() class JxKet(SpinState, Ket): """Eigenket of Jx. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JxBra @classmethod def coupled_class(self): return JxKetCoupled def _represent_default_basis(self, **options): return self._represent_JxOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(**options) def _represent_JyOp(self, basis, **options): return self._represent_base(alpha=pi*Rational(3, 2), **options) def _represent_JzOp(self, basis, **options): return self._represent_base(beta=pi/2, **options) class JxBra(SpinState, Bra): """Eigenbra of Jx. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JxKet @classmethod def coupled_class(self): return JxBraCoupled class JyKet(SpinState, Ket): """Eigenket of Jy. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JyBra @classmethod def coupled_class(self): return JyKetCoupled def _represent_default_basis(self, **options): return self._represent_JyOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(gamma=pi/2, **options) def _represent_JyOp(self, basis, **options): return self._represent_base(**options) def _represent_JzOp(self, basis, **options): return self._represent_base(alpha=pi*Rational(3, 2), beta=-pi/2, gamma=pi/2, **options) class JyBra(SpinState, Bra): """Eigenbra of Jy. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JyKet @classmethod def coupled_class(self): return JyBraCoupled class JzKet(SpinState, Ket): """Eigenket of Jz. Spin state which is an eigenstate of the Jz operator. Uncoupled states, that is states representing the interaction of multiple separate spin states, are defined as a tensor product of states. Parameters ========== j : Number, Symbol Total spin angular momentum m : Number, Symbol Eigenvalue of the Jz spin operator Examples ======== *Normal States:* Defining simple spin states, both numerical and symbolic: >>> from sympy.physics.quantum.spin import JzKet, JxKet >>> from sympy import symbols >>> JzKet(1, 0) |1,0> >>> j, m = symbols('j m') >>> JzKet(j, m) |j,m> Rewriting the JzKet in terms of eigenkets of the Jx operator: Note: that the resulting eigenstates are JxKet's >>> JzKet(1,1).rewrite("Jx") |1,-1>/2 - sqrt(2)*|1,0>/2 + |1,1>/2 Get the vector representation of a state in terms of the basis elements of the Jx operator: >>> from sympy.physics.quantum.represent import represent >>> from sympy.physics.quantum.spin import Jx, Jz >>> represent(JzKet(1,-1), basis=Jx) Matrix([ [ 1/2], [sqrt(2)/2], [ 1/2]]) Apply innerproducts between states: >>> from sympy.physics.quantum.innerproduct import InnerProduct >>> from sympy.physics.quantum.spin import JxBra >>> i = InnerProduct(JxBra(1,1), JzKet(1,1)) >>> i <1,1|1,1> >>> i.doit() 1/2 *Uncoupled States:* Define an uncoupled state as a TensorProduct between two Jz eigenkets: >>> from sympy.physics.quantum.tensorproduct import TensorProduct >>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2') >>> TensorProduct(JzKet(1,0), JzKet(1,1)) |1,0>x|1,1> >>> TensorProduct(JzKet(j1,m1), JzKet(j2,m2)) |j1,m1>x|j2,m2> A TensorProduct can be rewritten, in which case the eigenstates that make up the tensor product is rewritten to the new basis: >>> TensorProduct(JzKet(1,1),JxKet(1,1)).rewrite('Jz') |1,1>x|1,-1>/2 + sqrt(2)*|1,1>x|1,0>/2 + |1,1>x|1,1>/2 The represent method for TensorProduct's gives the vector representation of the state. Note that the state in the product basis is the equivalent of the tensor product of the vector representation of the component eigenstates: >>> represent(TensorProduct(JzKet(1,0),JzKet(1,1))) Matrix([ [0], [0], [0], [1], [0], [0], [0], [0], [0]]) >>> represent(TensorProduct(JzKet(1,1),JxKet(1,1)), basis=Jz) Matrix([ [ 1/2], [sqrt(2)/2], [ 1/2], [ 0], [ 0], [ 0], [ 0], [ 0], [ 0]]) See Also ======== JzKetCoupled: Coupled eigenstates sympy.physics.quantum.tensorproduct.TensorProduct: Used to specify uncoupled states uncouple: Uncouples states given coupling parameters couple: Couples uncoupled states """ @classmethod def dual_class(self): return JzBra @classmethod def coupled_class(self): return JzKetCoupled def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(beta=pi*Rational(3, 2), **options) def _represent_JyOp(self, basis, **options): return self._represent_base(alpha=pi*Rational(3, 2), beta=pi/2, gamma=pi/2, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(**options) class JzBra(SpinState, Bra): """Eigenbra of Jz. See the JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JzKet @classmethod def coupled_class(self): return JzBraCoupled # Method used primarily to create coupled_n and coupled_jn by __new__ in # CoupledSpinState # This same method is also used by the uncouple method, and is separated from # the CoupledSpinState class to maintain consistency in defining coupling def _build_coupled(jcoupling, length): n_list = [ [n + 1] for n in range(length) ] coupled_jn = [] coupled_n = [] for n1, n2, j_new in jcoupling: coupled_jn.append(j_new) coupled_n.append( (n_list[n1 - 1], n_list[n2 - 1]) ) n_sort = sorted(n_list[n1 - 1] + n_list[n2 - 1]) n_list[n_sort[0] - 1] = n_sort return coupled_n, coupled_jn class CoupledSpinState(SpinState): """Base class for coupled angular momentum states.""" def __new__(cls, j, m, jn, *jcoupling): # Check j and m values using SpinState SpinState(j, m) # Build and check coupling scheme from arguments if len(jcoupling) == 0: # Use default coupling scheme jcoupling = [] for n in range(2, len(jn)): jcoupling.append( (1, n, Add(*[jn[i] for i in range(n)])) ) jcoupling.append( (1, len(jn), j) ) elif len(jcoupling) == 1: # Use specified coupling scheme jcoupling = jcoupling[0] else: raise TypeError("CoupledSpinState only takes 3 or 4 arguments, got: %s" % (len(jcoupling) + 3) ) # Check arguments have correct form if not (isinstance(jn, list) or isinstance(jn, tuple) or isinstance(jn, Tuple)): raise TypeError('jn must be Tuple, list or tuple, got %s' % jn.__class__.__name__) if not (isinstance(jcoupling, list) or isinstance(jcoupling, tuple) or isinstance(jcoupling, Tuple)): raise TypeError('jcoupling must be Tuple, list or tuple, got %s' % jcoupling.__class__.__name__) if not all(isinstance(term, list) or isinstance(term, tuple) or isinstance(term, Tuple) for term in jcoupling): raise TypeError( 'All elements of jcoupling must be list, tuple or Tuple') if not len(jn) - 1 == len(jcoupling): raise ValueError('jcoupling must have length of %d, got %d' % (len(jn) - 1, len(jcoupling))) if not all(len(x) == 3 for x in jcoupling): raise ValueError('All elements of jcoupling must have length 3') # Build sympified args j = sympify(j) m = sympify(m) jn = Tuple( *[sympify(ji) for ji in jn] ) jcoupling = Tuple( *[Tuple(sympify( n1), sympify(n2), sympify(ji)) for (n1, n2, ji) in jcoupling] ) # Check values in coupling scheme give physical state if any(2*ji != int(2*ji) for ji in jn if ji.is_number): raise ValueError('All elements of jn must be integer or half-integer, got: %s' % jn) if any(n1 != int(n1) or n2 != int(n2) for (n1, n2, _) in jcoupling): raise ValueError('Indices in jcoupling must be integers') if any(n1 < 1 or n2 < 1 or n1 > len(jn) or n2 > len(jn) for (n1, n2, _) in jcoupling): raise ValueError('Indices must be between 1 and the number of coupled spin spaces') if any(2*ji != int(2*ji) for (_, _, ji) in jcoupling if ji.is_number): raise ValueError('All coupled j values in coupling scheme must be integer or half-integer') coupled_n, coupled_jn = _build_coupled(jcoupling, len(jn)) jvals = list(jn) for n, (n1, n2) in enumerate(coupled_n): j1 = jvals[min(n1) - 1] j2 = jvals[min(n2) - 1] j3 = coupled_jn[n] if sympify(j1).is_number and sympify(j2).is_number and sympify(j3).is_number: if j1 + j2 < j3: raise ValueError('All couplings must have j1+j2 >= j3, ' 'in coupling number %d got j1,j2,j3: %d,%d,%d' % (n + 1, j1, j2, j3)) if abs(j1 - j2) > j3: raise ValueError("All couplings must have |j1+j2| <= j3, " "in coupling number %d got j1,j2,j3: %d,%d,%d" % (n + 1, j1, j2, j3)) if int(j1 + j2) == j1 + j2: pass jvals[min(n1 + n2) - 1] = j3 if len(jcoupling) > 0 and jcoupling[-1][2] != j: raise ValueError('Last j value coupled together must be the final j of the state') # Return state return State.__new__(cls, j, m, jn, jcoupling) def _print_label(self, printer, *args): label = [printer._print(self.j), printer._print(self.m)] for i, ji in enumerate(self.jn, start=1): label.append('j%d=%s' % ( i, printer._print(ji) )) for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]): label.append('j(%s)=%s' % ( ','.join(str(i) for i in sorted(n1 + n2)), printer._print(jn) )) return ','.join(label) def _print_label_pretty(self, printer, *args): label = [self.j, self.m] for i, ji in enumerate(self.jn, start=1): symb = 'j%d' % i symb = pretty_symbol(symb) symb = prettyForm(symb + '=') item = prettyForm(*symb.right(printer._print(ji))) label.append(item) for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]): n = ','.join(pretty_symbol("j%d" % i)[-1] for i in sorted(n1 + n2)) symb = prettyForm('j' + n + '=') item = prettyForm(*symb.right(printer._print(jn))) label.append(item) return self._print_sequence_pretty( label, self._label_separator, printer, *args ) def _print_label_latex(self, printer, *args): label = [ printer._print(self.j, *args), printer._print(self.m, *args) ] for i, ji in enumerate(self.jn, start=1): label.append('j_{%d}=%s' % (i, printer._print(ji, *args)) ) for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]): n = ','.join(str(i) for i in sorted(n1 + n2)) label.append('j_{%s}=%s' % (n, printer._print(jn, *args)) ) return self._label_separator.join(label) @property def jn(self): return self.label[2] @property def coupling(self): return self.label[3] @property def coupled_jn(self): return _build_coupled(self.label[3], len(self.label[2]))[1] @property def coupled_n(self): return _build_coupled(self.label[3], len(self.label[2]))[0] @classmethod def _eval_hilbert_space(cls, label): j = Add(*label[2]) if j.is_number: return DirectSumHilbertSpace(*[ ComplexSpace(x) for x in range(int(2*j + 1), 0, -2) ]) else: # TODO: Need hilbert space fix, see issue 5732 # Desired behavior: #ji = symbols('ji') #ret = Sum(ComplexSpace(2*ji + 1), (ji, 0, j)) # Temporary fix: return ComplexSpace(2*j + 1) def _represent_coupled_base(self, **options): evect = self.uncoupled_class() if not self.j.is_number: raise ValueError( 'State must not have symbolic j value to represent') if not self.hilbert_space.dimension.is_number: raise ValueError( 'State must not have symbolic j values to represent') result = zeros(self.hilbert_space.dimension, 1) if self.j == int(self.j): start = self.j**2 else: start = (2*self.j - 1)*(1 + 2*self.j)/4 result[start:start + 2*self.j + 1, 0] = evect( self.j, self.m)._represent_base(**options) return result def _eval_rewrite_as_Jx(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jx, JxBraCoupled, **options) return self._rewrite_basis(Jx, JxKetCoupled, **options) def _eval_rewrite_as_Jy(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jy, JyBraCoupled, **options) return self._rewrite_basis(Jy, JyKetCoupled, **options) def _eval_rewrite_as_Jz(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jz, JzBraCoupled, **options) return self._rewrite_basis(Jz, JzKetCoupled, **options) class JxKetCoupled(CoupledSpinState, Ket): """Coupled eigenket of Jx. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JxBraCoupled @classmethod def uncoupled_class(self): return JxKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(**options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(alpha=pi*Rational(3, 2), **options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(beta=pi/2, **options) class JxBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jx. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JxKetCoupled @classmethod def uncoupled_class(self): return JxBra class JyKetCoupled(CoupledSpinState, Ket): """Coupled eigenket of Jy. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JyBraCoupled @classmethod def uncoupled_class(self): return JyKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(gamma=pi/2, **options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(**options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(alpha=pi*Rational(3, 2), beta=-pi/2, gamma=pi/2, **options) class JyBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jy. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JyKetCoupled @classmethod def uncoupled_class(self): return JyBra class JzKetCoupled(CoupledSpinState, Ket): r"""Coupled eigenket of Jz Spin state that is an eigenket of Jz which represents the coupling of separate spin spaces. The arguments for creating instances of JzKetCoupled are ``j``, ``m``, ``jn`` and an optional ``jcoupling`` argument. The ``j`` and ``m`` options are the total angular momentum quantum numbers, as used for normal states (e.g. JzKet). The other required parameter in ``jn``, which is a tuple defining the `j_n` angular momentum quantum numbers of the product spaces. So for example, if a state represented the coupling of the product basis state `\left|j_1,m_1\right\rangle\times\left|j_2,m_2\right\rangle`, the ``jn`` for this state would be ``(j1,j2)``. The final option is ``jcoupling``, which is used to define how the spaces specified by ``jn`` are coupled, which includes both the order these spaces are coupled together and the quantum numbers that arise from these couplings. The ``jcoupling`` parameter itself is a list of lists, such that each of the sublists defines a single coupling between the spin spaces. If there are N coupled angular momentum spaces, that is ``jn`` has N elements, then there must be N-1 sublists. Each of these sublists making up the ``jcoupling`` parameter have length 3. The first two elements are the indices of the product spaces that are considered to be coupled together. For example, if we want to couple `j_1` and `j_4`, the indices would be 1 and 4. If a state has already been coupled, it is referenced by the smallest index that is coupled, so if `j_2` and `j_4` has already been coupled to some `j_{24}`, then this value can be coupled by referencing it with index 2. The final element of the sublist is the quantum number of the coupled state. So putting everything together, into a valid sublist for ``jcoupling``, if `j_1` and `j_2` are coupled to an angular momentum space with quantum number `j_{12}` with the value ``j12``, the sublist would be ``(1,2,j12)``, N-1 of these sublists are used in the list for ``jcoupling``. Note the ``jcoupling`` parameter is optional, if it is not specified, the default coupling is taken. This default value is to coupled the spaces in order and take the quantum number of the coupling to be the maximum value. For example, if the spin spaces are `j_1`, `j_2`, `j_3`, `j_4`, then the default coupling couples `j_1` and `j_2` to `j_{12}=j_1+j_2`, then, `j_{12}` and `j_3` are coupled to `j_{123}=j_{12}+j_3`, and finally `j_{123}` and `j_4` to `j=j_{123}+j_4`. The jcoupling value that would correspond to this is: ``((1,2,j1+j2),(1,3,j1+j2+j3))`` Parameters ========== args : tuple The arguments that must be passed are ``j``, ``m``, ``jn``, and ``jcoupling``. The ``j`` value is the total angular momentum. The ``m`` value is the eigenvalue of the Jz spin operator. The ``jn`` list are the j values of argular momentum spaces coupled together. The ``jcoupling`` parameter is an optional parameter defining how the spaces are coupled together. See the above description for how these coupling parameters are defined. Examples ======== Defining simple spin states, both numerical and symbolic: >>> from sympy.physics.quantum.spin import JzKetCoupled >>> from sympy import symbols >>> JzKetCoupled(1, 0, (1, 1)) |1,0,j1=1,j2=1> >>> j, m, j1, j2 = symbols('j m j1 j2') >>> JzKetCoupled(j, m, (j1, j2)) |j,m,j1=j1,j2=j2> Defining coupled spin states for more than 2 coupled spaces with various coupling parameters: >>> JzKetCoupled(2, 1, (1, 1, 1)) |2,1,j1=1,j2=1,j3=1,j(1,2)=2> >>> JzKetCoupled(2, 1, (1, 1, 1), ((1,2,2),(1,3,2)) ) |2,1,j1=1,j2=1,j3=1,j(1,2)=2> >>> JzKetCoupled(2, 1, (1, 1, 1), ((2,3,1),(1,2,2)) ) |2,1,j1=1,j2=1,j3=1,j(2,3)=1> Rewriting the JzKetCoupled in terms of eigenkets of the Jx operator: Note: that the resulting eigenstates are JxKetCoupled >>> JzKetCoupled(1,1,(1,1)).rewrite("Jx") |1,-1,j1=1,j2=1>/2 - sqrt(2)*|1,0,j1=1,j2=1>/2 + |1,1,j1=1,j2=1>/2 The rewrite method can be used to convert a coupled state to an uncoupled state. This is done by passing coupled=False to the rewrite function: >>> JzKetCoupled(1, 0, (1, 1)).rewrite('Jz', coupled=False) -sqrt(2)*|1,-1>x|1,1>/2 + sqrt(2)*|1,1>x|1,-1>/2 Get the vector representation of a state in terms of the basis elements of the Jx operator: >>> from sympy.physics.quantum.represent import represent >>> from sympy.physics.quantum.spin import Jx >>> from sympy import S >>> represent(JzKetCoupled(1,-1,(S(1)/2,S(1)/2)), basis=Jx) Matrix([ [ 0], [ 1/2], [sqrt(2)/2], [ 1/2]]) See Also ======== JzKet: Normal spin eigenstates uncouple: Uncoupling of coupling spin states couple: Coupling of uncoupled spin states """ @classmethod def dual_class(self): return JzBraCoupled @classmethod def uncoupled_class(self): return JzKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(beta=pi*Rational(3, 2), **options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(alpha=pi*Rational(3, 2), beta=pi/2, gamma=pi/2, **options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(**options) class JzBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jz. See the JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JzKetCoupled @classmethod def uncoupled_class(self): return JzBra #----------------------------------------------------------------------------- # Coupling/uncoupling #----------------------------------------------------------------------------- def couple(expr, jcoupling_list=None): """ Couple a tensor product of spin states This function can be used to couple an uncoupled tensor product of spin states. All of the eigenstates to be coupled must be of the same class. It will return a linear combination of eigenstates that are subclasses of CoupledSpinState determined by Clebsch-Gordan angular momentum coupling coefficients. Parameters ========== expr : Expr An expression involving TensorProducts of spin states to be coupled. Each state must be a subclass of SpinState and they all must be the same class. jcoupling_list : list or tuple Elements of this list are sub-lists of length 2 specifying the order of the coupling of the spin spaces. The length of this must be N-1, where N is the number of states in the tensor product to be coupled. The elements of this sublist are the same as the first two elements of each sublist in the ``jcoupling`` parameter defined for JzKetCoupled. If this parameter is not specified, the default value is taken, which couples the first and second product basis spaces, then couples this new coupled space to the third product space, etc Examples ======== Couple a tensor product of numerical states for two spaces: >>> from sympy.physics.quantum.spin import JzKet, couple >>> from sympy.physics.quantum.tensorproduct import TensorProduct >>> couple(TensorProduct(JzKet(1,0), JzKet(1,1))) -sqrt(2)*|1,1,j1=1,j2=1>/2 + sqrt(2)*|2,1,j1=1,j2=1>/2 Numerical coupling of three spaces using the default coupling method, i.e. first and second spaces couple, then this couples to the third space: >>> couple(TensorProduct(JzKet(1,1), JzKet(1,1), JzKet(1,0))) sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,2)=2>/3 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,2)=2>/3 Perform this same coupling, but we define the coupling to first couple the first and third spaces: >>> couple(TensorProduct(JzKet(1,1), JzKet(1,1), JzKet(1,0)), ((1,3),(1,2)) ) sqrt(2)*|2,2,j1=1,j2=1,j3=1,j(1,3)=1>/2 - sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,3)=2>/6 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,3)=2>/3 Couple a tensor product of symbolic states: >>> from sympy import symbols >>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2') >>> couple(TensorProduct(JzKet(j1,m1), JzKet(j2,m2))) Sum(CG(j1, m1, j2, m2, j, m1 + m2)*|j,m1 + m2,j1=j1,j2=j2>, (j, m1 + m2, j1 + j2)) """ a = expr.atoms(TensorProduct) for tp in a: # Allow other tensor products to be in expression if not all(isinstance(state, SpinState) for state in tp.args): continue # If tensor product has all spin states, raise error for invalid tensor product state if not all(state.__class__ is tp.args[0].__class__ for state in tp.args): raise TypeError('All states must be the same basis') expr = expr.subs(tp, _couple(tp, jcoupling_list)) return expr def _couple(tp, jcoupling_list): states = tp.args coupled_evect = states[0].coupled_class() # Define default coupling if none is specified if jcoupling_list is None: jcoupling_list = [] for n in range(1, len(states)): jcoupling_list.append( (1, n + 1) ) # Check jcoupling_list valid if not len(jcoupling_list) == len(states) - 1: raise TypeError('jcoupling_list must be length %d, got %d' % (len(states) - 1, len(jcoupling_list))) if not all( len(coupling) == 2 for coupling in jcoupling_list): raise ValueError('Each coupling must define 2 spaces') if any(n1 == n2 for n1, n2 in jcoupling_list): raise ValueError('Spin spaces cannot couple to themselves') if all(sympify(n1).is_number and sympify(n2).is_number for n1, n2 in jcoupling_list): j_test = [0]*len(states) for n1, n2 in jcoupling_list: if j_test[n1 - 1] == -1 or j_test[n2 - 1] == -1: raise ValueError('Spaces coupling j_n\'s are referenced by smallest n value') j_test[max(n1, n2) - 1] = -1 # j values of states to be coupled together jn = [state.j for state in states] mn = [state.m for state in states] # Create coupling_list, which defines all the couplings between all # the spaces from jcoupling_list coupling_list = [] n_list = [ [i + 1] for i in range(len(states)) ] for j_coupling in jcoupling_list: # Least n for all j_n which is coupled as first and second spaces n1, n2 = j_coupling # List of all n's coupled in first and second spaces j1_n = list(n_list[n1 - 1]) j2_n = list(n_list[n2 - 1]) coupling_list.append( (j1_n, j2_n) ) # Set new j_n to be coupling of all j_n in both first and second spaces n_list[ min(n1, n2) - 1 ] = sorted(j1_n + j2_n) if all(state.j.is_number and state.m.is_number for state in states): # Numerical coupling # Iterate over difference between maximum possible j value of each coupling and the actual value diff_max = [ Add( *[ jn[n - 1] - mn[n - 1] for n in coupling[0] + coupling[1] ] ) for coupling in coupling_list ] result = [] for diff in range(diff_max[-1] + 1): # Determine available configurations n = len(coupling_list) tot = binomial(diff + n - 1, diff) for config_num in range(tot): diff_list = _confignum_to_difflist(config_num, diff, n) # Skip the configuration if non-physical # This is a lazy check for physical states given the loose restrictions of diff_max if any(d > m for d, m in zip(diff_list, diff_max)): continue # Determine term cg_terms = [] coupled_j = list(jn) jcoupling = [] for (j1_n, j2_n), coupling_diff in zip(coupling_list, diff_list): j1 = coupled_j[ min(j1_n) - 1 ] j2 = coupled_j[ min(j2_n) - 1 ] j3 = j1 + j2 - coupling_diff coupled_j[ min(j1_n + j2_n) - 1 ] = j3 m1 = Add( *[ mn[x - 1] for x in j1_n] ) m2 = Add( *[ mn[x - 1] for x in j2_n] ) m3 = m1 + m2 cg_terms.append( (j1, m1, j2, m2, j3, m3) ) jcoupling.append( (min(j1_n), min(j2_n), j3) ) # Better checks that state is physical if any(abs(term[5]) > term[4] for term in cg_terms): continue if any(term[0] + term[2] < term[4] for term in cg_terms): continue if any(abs(term[0] - term[2]) > term[4] for term in cg_terms): continue coeff = Mul( *[ CG(*term).doit() for term in cg_terms] ) state = coupled_evect(j3, m3, jn, jcoupling) result.append(coeff*state) return Add(*result) else: # Symbolic coupling cg_terms = [] jcoupling = [] sum_terms = [] coupled_j = list(jn) for j1_n, j2_n in coupling_list: j1 = coupled_j[ min(j1_n) - 1 ] j2 = coupled_j[ min(j2_n) - 1 ] if len(j1_n + j2_n) == len(states): j3 = symbols('j') else: j3_name = 'j' + ''.join(["%s" % n for n in j1_n + j2_n]) j3 = symbols(j3_name) coupled_j[ min(j1_n + j2_n) - 1 ] = j3 m1 = Add( *[ mn[x - 1] for x in j1_n] ) m2 = Add( *[ mn[x - 1] for x in j2_n] ) m3 = m1 + m2 cg_terms.append( (j1, m1, j2, m2, j3, m3) ) jcoupling.append( (min(j1_n), min(j2_n), j3) ) sum_terms.append((j3, m3, j1 + j2)) coeff = Mul( *[ CG(*term) for term in cg_terms] ) state = coupled_evect(j3, m3, jn, jcoupling) return Sum(coeff*state, *sum_terms) def uncouple(expr, jn=None, jcoupling_list=None): """ Uncouple a coupled spin state Gives the uncoupled representation of a coupled spin state. Arguments must be either a spin state that is a subclass of CoupledSpinState or a spin state that is a subclass of SpinState and an array giving the j values of the spaces that are to be coupled Parameters ========== expr : Expr The expression containing states that are to be coupled. If the states are a subclass of SpinState, the ``jn`` and ``jcoupling`` parameters must be defined. If the states are a subclass of CoupledSpinState, ``jn`` and ``jcoupling`` will be taken from the state. jn : list or tuple The list of the j-values that are coupled. If state is a CoupledSpinState, this parameter is ignored. This must be defined if state is not a subclass of CoupledSpinState. The syntax of this parameter is the same as the ``jn`` parameter of JzKetCoupled. jcoupling_list : list or tuple The list defining how the j-values are coupled together. If state is a CoupledSpinState, this parameter is ignored. This must be defined if state is not a subclass of CoupledSpinState. The syntax of this parameter is the same as the ``jcoupling`` parameter of JzKetCoupled. Examples ======== Uncouple a numerical state using a CoupledSpinState state: >>> from sympy.physics.quantum.spin import JzKetCoupled, uncouple >>> from sympy import S >>> uncouple(JzKetCoupled(1, 0, (S(1)/2, S(1)/2))) sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2 Perform the same calculation using a SpinState state: >>> from sympy.physics.quantum.spin import JzKet >>> uncouple(JzKet(1, 0), (S(1)/2, S(1)/2)) sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2 Uncouple a numerical state of three coupled spaces using a CoupledSpinState state: >>> uncouple(JzKetCoupled(1, 1, (1, 1, 1), ((1,3,1),(1,2,1)) )) |1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,1>/2 + |1,1>x|1,0>x|1,0>/2 - |1,1>x|1,1>x|1,-1>/2 Perform the same calculation using a SpinState state: >>> uncouple(JzKet(1, 1), (1, 1, 1), ((1,3,1),(1,2,1)) ) |1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,1>/2 + |1,1>x|1,0>x|1,0>/2 - |1,1>x|1,1>x|1,-1>/2 Uncouple a symbolic state using a CoupledSpinState state: >>> from sympy import symbols >>> j,m,j1,j2 = symbols('j m j1 j2') >>> uncouple(JzKetCoupled(j, m, (j1, j2))) Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2)) Perform the same calculation using a SpinState state >>> uncouple(JzKet(j, m), (j1, j2)) Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2)) """ a = expr.atoms(SpinState) for state in a: expr = expr.subs(state, _uncouple(state, jn, jcoupling_list)) return expr def _uncouple(state, jn, jcoupling_list): if isinstance(state, CoupledSpinState): jn = state.jn coupled_n = state.coupled_n coupled_jn = state.coupled_jn evect = state.uncoupled_class() elif isinstance(state, SpinState): if jn is None: raise ValueError("Must specify j-values for coupled state") if not (isinstance(jn, list) or isinstance(jn, tuple)): raise TypeError("jn must be list or tuple") if jcoupling_list is None: # Use default jcoupling_list = [] for i in range(1, len(jn)): jcoupling_list.append( (1, 1 + i, Add(*[jn[j] for j in range(i + 1)])) ) if not (isinstance(jcoupling_list, list) or isinstance(jcoupling_list, tuple)): raise TypeError("jcoupling must be a list or tuple") if not len(jcoupling_list) == len(jn) - 1: raise ValueError("Must specify 2 fewer coupling terms than the number of j values") coupled_n, coupled_jn = _build_coupled(jcoupling_list, len(jn)) evect = state.__class__ else: raise TypeError("state must be a spin state") j = state.j m = state.m coupling_list = [] j_list = list(jn) # Create coupling, which defines all the couplings between all the spaces for j3, (n1, n2) in zip(coupled_jn, coupled_n): # j's which are coupled as first and second spaces j1 = j_list[n1[0] - 1] j2 = j_list[n2[0] - 1] # Build coupling list coupling_list.append( (n1, n2, j1, j2, j3) ) # Set new value in j_list j_list[min(n1 + n2) - 1] = j3 if j.is_number and m.is_number: diff_max = [ 2*x for x in jn ] diff = Add(*jn) - m n = len(jn) tot = binomial(diff + n - 1, diff) result = [] for config_num in range(tot): diff_list = _confignum_to_difflist(config_num, diff, n) if any(d > p for d, p in zip(diff_list, diff_max)): continue cg_terms = [] for coupling in coupling_list: j1_n, j2_n, j1, j2, j3 = coupling m1 = Add( *[ jn[x - 1] - diff_list[x - 1] for x in j1_n ] ) m2 = Add( *[ jn[x - 1] - diff_list[x - 1] for x in j2_n ] ) m3 = m1 + m2 cg_terms.append( (j1, m1, j2, m2, j3, m3) ) coeff = Mul( *[ CG(*term).doit() for term in cg_terms ] ) state = TensorProduct( *[ evect(j, j - d) for j, d in zip(jn, diff_list) ] ) result.append(coeff*state) return Add(*result) else: # Symbolic coupling m_str = "m1:%d" % (len(jn) + 1) mvals = symbols(m_str) cg_terms = [(j1, Add(*[mvals[n - 1] for n in j1_n]), j2, Add(*[mvals[n - 1] for n in j2_n]), j3, Add(*[mvals[n - 1] for n in j1_n + j2_n])) for j1_n, j2_n, j1, j2, j3 in coupling_list[:-1] ] cg_terms.append(*[(j1, Add(*[mvals[n - 1] for n in j1_n]), j2, Add(*[mvals[n - 1] for n in j2_n]), j, m) for j1_n, j2_n, j1, j2, j3 in [coupling_list[-1]] ]) cg_coeff = Mul(*[CG(*cg_term) for cg_term in cg_terms]) sum_terms = [ (m, -j, j) for j, m in zip(jn, mvals) ] state = TensorProduct( *[ evect(j, m) for j, m in zip(jn, mvals) ] ) return Sum(cg_coeff*state, *sum_terms) def _confignum_to_difflist(config_num, diff, list_len): # Determines configuration of diffs into list_len number of slots diff_list = [] for n in range(list_len): prev_diff = diff # Number of spots after current one rem_spots = list_len - n - 1 # Number of configurations of distributing diff among the remaining spots rem_configs = binomial(diff + rem_spots - 1, diff) while config_num >= rem_configs: config_num -= rem_configs diff -= 1 rem_configs = binomial(diff + rem_spots - 1, diff) diff_list.append(prev_diff - diff) return diff_list
7f7996ab4277b174fa62284e7cb3ebda559984dff1500fd5a27a8d519abc8c37
#TODO: # -Implement Clebsch-Gordan symmetries # -Improve simplification method # -Implement new simpifications """Clebsch-Gordon Coefficients.""" from sympy import (Add, expand, Eq, Expr, Mul, Piecewise, Pow, sqrt, Sum, symbols, sympify, Wild) from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.physics.wigner import clebsch_gordan, wigner_3j, wigner_6j, wigner_9j from sympy.printing.precedence import PRECEDENCE __all__ = [ 'CG', 'Wigner3j', 'Wigner6j', 'Wigner9j', 'cg_simp' ] #----------------------------------------------------------------------------- # CG Coefficients #----------------------------------------------------------------------------- class Wigner3j(Expr): """Class for the Wigner-3j symbols. Explanation =========== Wigner 3j-symbols are coefficients determined by the coupling of two angular momenta. When created, they are expressed as symbolic quantities that, for numerical parameters, can be evaluated using the ``.doit()`` method [1]_. Parameters ========== j1, m1, j2, m2, j3, m3 : Number, Symbol Terms determining the angular momentum of coupled angular momentum systems. Examples ======== Declare a Wigner-3j coefficient and calculate its value >>> from sympy.physics.quantum.cg import Wigner3j >>> w3j = Wigner3j(6,0,4,0,2,0) >>> w3j Wigner3j(6, 0, 4, 0, 2, 0) >>> w3j.doit() sqrt(715)/143 See Also ======== CG: Clebsch-Gordan coefficients References ========== .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. """ is_commutative = True def __new__(cls, j1, m1, j2, m2, j3, m3): args = map(sympify, (j1, m1, j2, m2, j3, m3)) return Expr.__new__(cls, *args) @property def j1(self): return self.args[0] @property def m1(self): return self.args[1] @property def j2(self): return self.args[2] @property def m2(self): return self.args[3] @property def j3(self): return self.args[4] @property def m3(self): return self.args[5] @property def is_symbolic(self): return not all(arg.is_number for arg in self.args) # This is modified from the _print_Matrix method def _pretty(self, printer, *args): m = ((printer._print(self.j1), printer._print(self.m1)), (printer._print(self.j2), printer._print(self.m2)), (printer._print(self.j3), printer._print(self.m3))) hsep = 2 vsep = 1 maxw = [-1]*3 for j in range(3): maxw[j] = max([ m[j][i].width() for i in range(2) ]) D = None for i in range(2): D_row = None for j in range(3): s = m[j][i] wdelta = maxw[j] - s.width() wleft = wdelta //2 wright = wdelta - wleft s = prettyForm(*s.right(' '*wright)) s = prettyForm(*s.left(' '*wleft)) if D_row is None: D_row = s continue D_row = prettyForm(*D_row.right(' '*hsep)) D_row = prettyForm(*D_row.right(s)) if D is None: D = D_row continue for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) D = prettyForm(*D.parens()) return D def _latex(self, printer, *args): label = map(printer._print, (self.j1, self.j2, self.j3, self.m1, self.m2, self.m3)) return r'\left(\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right)' % \ tuple(label) def doit(self, **hints): if self.is_symbolic: raise ValueError("Coefficients must be numerical") return wigner_3j(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3) class CG(Wigner3j): r"""Class for Clebsch-Gordan coefficient. Explanation =========== Clebsch-Gordan coefficients describe the angular momentum coupling between two systems. The coefficients give the expansion of a coupled total angular momentum state and an uncoupled tensor product state. The Clebsch-Gordan coefficients are defined as [1]_: .. math :: C^{j_3,m_3}_{j_1,m_1,j_2,m_2} = \left\langle j_1,m_1;j_2,m_2 | j_3,m_3\right\rangle Parameters ========== j1, m1, j2, m2 : Number, Symbol Angular momenta of states 1 and 2. j3, m3: Number, Symbol Total angular momentum of the coupled system. Examples ======== Define a Clebsch-Gordan coefficient and evaluate its value >>> from sympy.physics.quantum.cg import CG >>> from sympy import S >>> cg = CG(S(3)/2, S(3)/2, S(1)/2, -S(1)/2, 1, 1) >>> cg CG(3/2, 3/2, 1/2, -1/2, 1, 1) >>> cg.doit() sqrt(3)/2 >>> CG(j1=S(1)/2, m1=-S(1)/2, j2=S(1)/2, m2=+S(1)/2, j3=1, m3=0).doit() sqrt(2)/2 Compare [2]_. See Also ======== Wigner3j: Wigner-3j symbols References ========== .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. .. [2] `Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions <https://pdg.lbl.gov/2020/reviews/rpp2020-rev-clebsch-gordan-coefs.pdf>`_ in P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020). """ precedence = PRECEDENCE["Pow"] - 1 def doit(self, **hints): if self.is_symbolic: raise ValueError("Coefficients must be numerical") return clebsch_gordan(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3) def _pretty(self, printer, *args): bot = printer._print_seq( (self.j1, self.m1, self.j2, self.m2), delimiter=',') top = printer._print_seq((self.j3, self.m3), delimiter=',') pad = max(top.width(), bot.width()) bot = prettyForm(*bot.left(' ')) top = prettyForm(*top.left(' ')) if not pad == bot.width(): bot = prettyForm(*bot.right(' '*(pad - bot.width()))) if not pad == top.width(): top = prettyForm(*top.right(' '*(pad - top.width()))) s = stringPict('C' + ' '*pad) s = prettyForm(*s.below(bot)) s = prettyForm(*s.above(top)) return s def _latex(self, printer, *args): label = map(printer._print, (self.j3, self.m3, self.j1, self.m1, self.j2, self.m2)) return r'C^{%s,%s}_{%s,%s,%s,%s}' % tuple(label) class Wigner6j(Expr): """Class for the Wigner-6j symbols See Also ======== Wigner3j: Wigner-3j symbols """ def __new__(cls, j1, j2, j12, j3, j, j23): args = map(sympify, (j1, j2, j12, j3, j, j23)) return Expr.__new__(cls, *args) @property def j1(self): return self.args[0] @property def j2(self): return self.args[1] @property def j12(self): return self.args[2] @property def j3(self): return self.args[3] @property def j(self): return self.args[4] @property def j23(self): return self.args[5] @property def is_symbolic(self): return not all(arg.is_number for arg in self.args) # This is modified from the _print_Matrix method def _pretty(self, printer, *args): m = ((printer._print(self.j1), printer._print(self.j3)), (printer._print(self.j2), printer._print(self.j)), (printer._print(self.j12), printer._print(self.j23))) hsep = 2 vsep = 1 maxw = [-1]*3 for j in range(3): maxw[j] = max([ m[j][i].width() for i in range(2) ]) D = None for i in range(2): D_row = None for j in range(3): s = m[j][i] wdelta = maxw[j] - s.width() wleft = wdelta //2 wright = wdelta - wleft s = prettyForm(*s.right(' '*wright)) s = prettyForm(*s.left(' '*wleft)) if D_row is None: D_row = s continue D_row = prettyForm(*D_row.right(' '*hsep)) D_row = prettyForm(*D_row.right(s)) if D is None: D = D_row continue for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) D = prettyForm(*D.parens(left='{', right='}')) return D def _latex(self, printer, *args): label = map(printer._print, (self.j1, self.j2, self.j12, self.j3, self.j, self.j23)) return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \ tuple(label) def doit(self, **hints): if self.is_symbolic: raise ValueError("Coefficients must be numerical") return wigner_6j(self.j1, self.j2, self.j12, self.j3, self.j, self.j23) class Wigner9j(Expr): """Class for the Wigner-9j symbols See Also ======== Wigner3j: Wigner-3j symbols """ def __new__(cls, j1, j2, j12, j3, j4, j34, j13, j24, j): args = map(sympify, (j1, j2, j12, j3, j4, j34, j13, j24, j)) return Expr.__new__(cls, *args) @property def j1(self): return self.args[0] @property def j2(self): return self.args[1] @property def j12(self): return self.args[2] @property def j3(self): return self.args[3] @property def j4(self): return self.args[4] @property def j34(self): return self.args[5] @property def j13(self): return self.args[6] @property def j24(self): return self.args[7] @property def j(self): return self.args[8] @property def is_symbolic(self): return not all(arg.is_number for arg in self.args) # This is modified from the _print_Matrix method def _pretty(self, printer, *args): m = ( (printer._print( self.j1), printer._print(self.j3), printer._print(self.j13)), (printer._print( self.j2), printer._print(self.j4), printer._print(self.j24)), (printer._print(self.j12), printer._print(self.j34), printer._print(self.j))) hsep = 2 vsep = 1 maxw = [-1]*3 for j in range(3): maxw[j] = max([ m[j][i].width() for i in range(3) ]) D = None for i in range(3): D_row = None for j in range(3): s = m[j][i] wdelta = maxw[j] - s.width() wleft = wdelta //2 wright = wdelta - wleft s = prettyForm(*s.right(' '*wright)) s = prettyForm(*s.left(' '*wleft)) if D_row is None: D_row = s continue D_row = prettyForm(*D_row.right(' '*hsep)) D_row = prettyForm(*D_row.right(s)) if D is None: D = D_row continue for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) D = prettyForm(*D.parens(left='{', right='}')) return D def _latex(self, printer, *args): label = map(printer._print, (self.j1, self.j2, self.j12, self.j3, self.j4, self.j34, self.j13, self.j24, self.j)) return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \ tuple(label) def doit(self, **hints): if self.is_symbolic: raise ValueError("Coefficients must be numerical") return wigner_9j(self.j1, self.j2, self.j12, self.j3, self.j4, self.j34, self.j13, self.j24, self.j) def cg_simp(e): """Simplify and combine CG coefficients. Explanation =========== This function uses various symmetry and properties of sums and products of Clebsch-Gordan coefficients to simplify statements involving these terms [1]_. Examples ======== Simplify the sum over CG(a,alpha,0,0,a,alpha) for all alpha to 2*a+1 >>> from sympy.physics.quantum.cg import CG, cg_simp >>> a = CG(1,1,0,0,1,1) >>> b = CG(1,0,0,0,1,0) >>> c = CG(1,-1,0,0,1,-1) >>> cg_simp(a+b+c) 3 See Also ======== CG: Clebsh-Gordan coefficients References ========== .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. """ if isinstance(e, Add): return _cg_simp_add(e) elif isinstance(e, Sum): return _cg_simp_sum(e) elif isinstance(e, Mul): return Mul(*[cg_simp(arg) for arg in e.args]) elif isinstance(e, Pow): return Pow(cg_simp(e.base), e.exp) else: return e def _cg_simp_add(e): #TODO: Improve simplification method """Takes a sum of terms involving Clebsch-Gordan coefficients and simplifies the terms. Explanation =========== First, we create two lists, cg_part, which is all the terms involving CG coefficients, and other_part, which is all other terms. The cg_part list is then passed to the simplification methods, which return the new cg_part and any additional terms that are added to other_part """ cg_part = [] other_part = [] e = expand(e) for arg in e.args: if arg.has(CG): if isinstance(arg, Sum): other_part.append(_cg_simp_sum(arg)) elif isinstance(arg, Mul): terms = 1 for term in arg.args: if isinstance(term, Sum): terms *= _cg_simp_sum(term) else: terms *= term if terms.has(CG): cg_part.append(terms) else: other_part.append(terms) else: cg_part.append(arg) else: other_part.append(arg) cg_part, other = _check_varsh_871_1(cg_part) other_part.append(other) cg_part, other = _check_varsh_871_2(cg_part) other_part.append(other) cg_part, other = _check_varsh_872_9(cg_part) other_part.append(other) return Add(*cg_part) + Add(*other_part) def _check_varsh_871_1(term_list): # Sum( CG(a,alpha,b,0,a,alpha), (alpha, -a, a)) == KroneckerDelta(b,0) a, alpha, b, lt = map(Wild, ('a', 'alpha', 'b', 'lt')) expr = lt*CG(a, alpha, b, 0, a, alpha) simp = (2*a + 1)*KroneckerDelta(b, 0) sign = lt/abs(lt) build_expr = 2*a + 1 index_expr = a + alpha return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, lt), (a, b), build_expr, index_expr) def _check_varsh_871_2(term_list): # Sum((-1)**(a-alpha)*CG(a,alpha,a,-alpha,c,0),(alpha,-a,a)) a, alpha, c, lt = map(Wild, ('a', 'alpha', 'c', 'lt')) expr = lt*CG(a, alpha, a, -alpha, c, 0) simp = sqrt(2*a + 1)*KroneckerDelta(c, 0) sign = (-1)**(a - alpha)*lt/abs(lt) build_expr = 2*a + 1 index_expr = a + alpha return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, c, lt), (a, c), build_expr, index_expr) def _check_varsh_872_9(term_list): # Sum( CG(a,alpha,b,beta,c,gamma)*CG(a,alpha',b,beta',c,gamma), (gamma, -c, c), (c, abs(a-b), a+b)) a, alpha, alphap, b, beta, betap, c, gamma, lt = map(Wild, ( 'a', 'alpha', 'alphap', 'b', 'beta', 'betap', 'c', 'gamma', 'lt')) # Case alpha==alphap, beta==betap # For numerical alpha,beta expr = lt*CG(a, alpha, b, beta, c, gamma)**2 simp = 1 sign = lt/abs(lt) x = abs(a - b) y = abs(alpha + beta) build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x)) index_expr = a + b - c term_list, other1 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr) # For symbolic alpha,beta x = abs(a - b) y = a + b build_expr = (y + 1 - x)*(x + y + 1) index_expr = (c - x)*(x + c) + c + gamma term_list, other2 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr) # Case alpha!=alphap or beta!=betap # Note: this only works with leading term of 1, pattern matching is unable to match when there is a Wild leading term # For numerical alpha,alphap,beta,betap expr = CG(a, alpha, b, beta, c, gamma)*CG(a, alphap, b, betap, c, gamma) simp = KroneckerDelta(alpha, alphap)*KroneckerDelta(beta, betap) sign = sympify(1) x = abs(a - b) y = abs(alpha + beta) build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x)) index_expr = a + b - c term_list, other3 = _check_cg_simp(expr, simp, sign, sympify(1), term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr) # For symbolic alpha,alphap,beta,betap x = abs(a - b) y = a + b build_expr = (y + 1 - x)*(x + y + 1) index_expr = (c - x)*(x + c) + c + gamma term_list, other4 = _check_cg_simp(expr, simp, sign, sympify(1), term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr) return term_list, other1 + other2 + other4 def _check_cg_simp(expr, simp, sign, lt, term_list, variables, dep_variables, build_index_expr, index_expr): """ Checks for simplifications that can be made, returning a tuple of the simplified list of terms and any terms generated by simplification. Parameters ========== expr: expression The expression with Wild terms that will be matched to the terms in the sum simp: expression The expression with Wild terms that is substituted in place of the CG terms in the case of simplification sign: expression The expression with Wild terms denoting the sign that is on expr that must match lt: expression The expression with Wild terms that gives the leading term of the matched expr term_list: list A list of all of the terms is the sum to be simplified variables: list A list of all the variables that appears in expr dep_variables: list A list of the variables that must match for all the terms in the sum, i.e. the dependent variables build_index_expr: expression Expression with Wild terms giving the number of elements in cg_index index_expr: expression Expression with Wild terms giving the index terms have when storing them to cg_index """ other_part = 0 i = 0 while i < len(term_list): sub_1 = _check_cg(term_list[i], expr, len(variables)) if sub_1 is None: i += 1 continue if not sympify(build_index_expr.subs(sub_1)).is_number: i += 1 continue sub_dep = [(x, sub_1[x]) for x in dep_variables] cg_index = [None]*build_index_expr.subs(sub_1) for j in range(i, len(term_list)): sub_2 = _check_cg(term_list[j], expr.subs(sub_dep), len(variables) - len(dep_variables), sign=(sign.subs(sub_1), sign.subs(sub_dep))) if sub_2 is None: continue if not sympify(index_expr.subs(sub_dep).subs(sub_2)).is_number: continue cg_index[index_expr.subs(sub_dep).subs(sub_2)] = j, expr.subs(lt, 1).subs(sub_dep).subs(sub_2), lt.subs(sub_2), sign.subs(sub_dep).subs(sub_2) if not any(i is None for i in cg_index): min_lt = min(*[ abs(term[2]) for term in cg_index ]) indices = [ term[0] for term in cg_index] indices.sort() indices.reverse() [ term_list.pop(j) for j in indices ] for term in cg_index: if abs(term[2]) > min_lt: term_list.append( (term[2] - min_lt*term[3])*term[1] ) other_part += min_lt*(sign*simp).subs(sub_1) else: i += 1 return term_list, other_part def _check_cg(cg_term, expr, length, sign=None): """Checks whether a term matches the given expression""" # TODO: Check for symmetries matches = cg_term.match(expr) if matches is None: return if sign is not None: if not isinstance(sign, tuple): raise TypeError('sign must be a tuple') if not sign[0] == (sign[1]).subs(matches): return if len(matches) == length: return matches def _cg_simp_sum(e): e = _check_varsh_sum_871_1(e) e = _check_varsh_sum_871_2(e) e = _check_varsh_sum_872_4(e) return e def _check_varsh_sum_871_1(e): a = Wild('a') alpha = symbols('alpha') b = Wild('b') match = e.match(Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a))) if match is not None and len(match) == 2: return ((2*a + 1)*KroneckerDelta(b, 0)).subs(match) return e def _check_varsh_sum_871_2(e): a = Wild('a') alpha = symbols('alpha') c = Wild('c') match = e.match( Sum((-1)**(a - alpha)*CG(a, alpha, a, -alpha, c, 0), (alpha, -a, a))) if match is not None and len(match) == 2: return (sqrt(2*a + 1)*KroneckerDelta(c, 0)).subs(match) return e def _check_varsh_sum_872_4(e): alpha = symbols('alpha') beta = symbols('beta') a = Wild('a') b = Wild('b') c = Wild('c') cp = Wild('cp') gamma = Wild('gamma') gammap = Wild('gammap') cg1 = CG(a, alpha, b, beta, c, gamma) cg2 = CG(a, alpha, b, beta, cp, gammap) match1 = e.match(Sum(cg1*cg2, (alpha, -a, a), (beta, -b, b))) if match1 is not None and len(match1) == 6: return (KroneckerDelta(c, cp)*KroneckerDelta(gamma, gammap)).subs(match1) match2 = e.match(Sum(cg1**2, (alpha, -a, a), (beta, -b, b))) if match2 is not None and len(match2) == 4: return 1 return e def _cg_list(term): if isinstance(term, CG): return (term,), 1, 1 cg = [] coeff = 1 if not (isinstance(term, Mul) or isinstance(term, Pow)): raise NotImplementedError('term must be CG, Add, Mul or Pow') if isinstance(term, Pow) and sympify(term.exp).is_number: if sympify(term.exp).is_number: [ cg.append(term.base) for _ in range(term.exp) ] else: return (term,), 1, 1 if isinstance(term, Mul): for arg in term.args: if isinstance(arg, CG): cg.append(arg) else: coeff *= arg return cg, coeff, coeff/abs(coeff)
35e7119d5105d25ae638cd2a46e099adff6a0c16ff05657f4f2b889bd252fa43
"""Fermionic quantum operators.""" from sympy import Integer from sympy.physics.quantum import Operator from sympy.physics.quantum import HilbertSpace, Ket, Bra from sympy.functions.special.tensor_functions import KroneckerDelta __all__ = [ 'FermionOp', 'FermionFockKet', 'FermionFockBra' ] class FermionOp(Operator): """A fermionic operator that satisfies {c, Dagger(c)} == 1. Parameters ========== name : str A string that labels the fermionic mode. annihilation : bool A bool that indicates if the fermionic operator is an annihilation (True, default value) or creation operator (False) Examples ======== >>> from sympy.physics.quantum import Dagger, AntiCommutator >>> from sympy.physics.quantum.fermion import FermionOp >>> c = FermionOp("c") >>> AntiCommutator(c, Dagger(c)).doit() 1 """ @property def name(self): return self.args[0] @property def is_annihilation(self): return bool(self.args[1]) @classmethod def default_args(self): return ("c", True) def __new__(cls, *args, **hints): if not len(args) in [1, 2]: raise ValueError('1 or 2 parameters expected, got %s' % args) if len(args) == 1: args = (args[0], Integer(1)) if len(args) == 2: args = (args[0], Integer(args[1])) return Operator.__new__(cls, *args) def _eval_commutator_FermionOp(self, other, **hints): if 'independent' in hints and hints['independent']: # [c, d] = 0 return Integer(0) return None def _eval_anticommutator_FermionOp(self, other, **hints): if self.name == other.name: # {a^\dagger, a} = 1 if not self.is_annihilation and other.is_annihilation: return Integer(1) elif 'independent' in hints and hints['independent']: # {c, d} = 2 * c * d, because [c, d] = 0 for independent operators return 2 * self * other return None def _eval_anticommutator_BosonOp(self, other, **hints): # because fermions and bosons commute return 2 * self * other def _eval_commutator_BosonOp(self, other, **hints): return Integer(0) def _eval_adjoint(self): return FermionOp(str(self.name), not self.is_annihilation) def _print_contents_latex(self, printer, *args): if self.is_annihilation: return r'{%s}' % str(self.name) else: return r'{{%s}^\dagger}' % str(self.name) def _print_contents(self, printer, *args): if self.is_annihilation: return r'%s' % str(self.name) else: return r'Dagger(%s)' % str(self.name) def _print_contents_pretty(self, printer, *args): from sympy.printing.pretty.stringpict import prettyForm pform = printer._print(self.args[0], *args) if self.is_annihilation: return pform else: return pform**prettyForm('\N{DAGGER}') class FermionFockKet(Ket): """Fock state ket for a fermionic mode. Parameters ========== n : Number The Fock state number. """ def __new__(cls, n): if n not in (0, 1): raise ValueError("n must be 0 or 1") return Ket.__new__(cls, n) @property def n(self): return self.label[0] @classmethod def dual_class(self): return FermionFockBra @classmethod def _eval_hilbert_space(cls, label): return HilbertSpace() def _eval_innerproduct_FermionFockBra(self, bra, **hints): return KroneckerDelta(self.n, bra.n) def _apply_operator_FermionOp(self, op, **options): if op.is_annihilation: if self.n == 1: return FermionFockKet(0) else: return Integer(0) else: if self.n == 0: return FermionFockKet(1) else: return Integer(0) class FermionFockBra(Bra): """Fock state bra for a fermionic mode. Parameters ========== n : Number The Fock state number. """ def __new__(cls, n): if n not in (0, 1): raise ValueError("n must be 0 or 1") return Bra.__new__(cls, n) @property def n(self): return self.label[0] @classmethod def dual_class(self): return FermionFockKet
e1ba57c727e3ba085f68d75a5f94c77a609fba7e1ab50b8366df4cd96bb73374
"""Pauli operators and states""" from sympy import I, Mul, Add, Pow, exp, Integer from sympy.physics.quantum import Operator, Ket, Bra from sympy.physics.quantum import ComplexSpace from sympy.matrices import Matrix from sympy.functions.special.tensor_functions import KroneckerDelta __all__ = [ 'SigmaX', 'SigmaY', 'SigmaZ', 'SigmaMinus', 'SigmaPlus', 'SigmaZKet', 'SigmaZBra', 'qsimplify_pauli' ] class SigmaOpBase(Operator): """Pauli sigma operator, base class""" @property def name(self): return self.args[0] @property def use_name(self): return bool(self.args[0]) is not False @classmethod def default_args(self): return (False,) def __new__(cls, *args, **hints): return Operator.__new__(cls, *args, **hints) def _eval_commutator_BosonOp(self, other, **hints): return Integer(0) class SigmaX(SigmaOpBase): """Pauli sigma x operator Parameters ========== name : str An optional string that labels the operator. Pauli operators with different names commute. Examples ======== >>> from sympy.physics.quantum import represent >>> from sympy.physics.quantum.pauli import SigmaX >>> sx = SigmaX() >>> sx SigmaX() >>> represent(sx) Matrix([ [0, 1], [1, 0]]) """ def __new__(cls, *args, **hints): return SigmaOpBase.__new__(cls, *args, **hints) def _eval_commutator_SigmaY(self, other, **hints): if self.name != other.name: return Integer(0) else: return 2 * I * SigmaZ(self.name) def _eval_commutator_SigmaZ(self, other, **hints): if self.name != other.name: return Integer(0) else: return - 2 * I * SigmaY(self.name) def _eval_commutator_BosonOp(self, other, **hints): return Integer(0) def _eval_anticommutator_SigmaY(self, other, **hints): return Integer(0) def _eval_anticommutator_SigmaZ(self, other, **hints): return Integer(0) def _eval_adjoint(self): return self def _print_contents_latex(self, printer, *args): if self.use_name: return r'{\sigma_x^{(%s)}}' % str(self.name) else: return r'{\sigma_x}' def _print_contents(self, printer, *args): return 'SigmaX()' def _eval_power(self, e): if e.is_Integer and e.is_positive: return SigmaX(self.name).__pow__(int(e) % 2) def _represent_default_basis(self, **options): format = options.get('format', 'sympy') if format == 'sympy': return Matrix([[0, 1], [1, 0]]) else: raise NotImplementedError('Representation in format ' + format + ' not implemented.') class SigmaY(SigmaOpBase): """Pauli sigma y operator Parameters ========== name : str An optional string that labels the operator. Pauli operators with different names commute. Examples ======== >>> from sympy.physics.quantum import represent >>> from sympy.physics.quantum.pauli import SigmaY >>> sy = SigmaY() >>> sy SigmaY() >>> represent(sy) Matrix([ [0, -I], [I, 0]]) """ def __new__(cls, *args, **hints): return SigmaOpBase.__new__(cls, *args) def _eval_commutator_SigmaZ(self, other, **hints): if self.name != other.name: return Integer(0) else: return 2 * I * SigmaX(self.name) def _eval_commutator_SigmaX(self, other, **hints): if self.name != other.name: return Integer(0) else: return - 2 * I * SigmaZ(self.name) def _eval_anticommutator_SigmaX(self, other, **hints): return Integer(0) def _eval_anticommutator_SigmaZ(self, other, **hints): return Integer(0) def _eval_adjoint(self): return self def _print_contents_latex(self, printer, *args): if self.use_name: return r'{\sigma_y^{(%s)}}' % str(self.name) else: return r'{\sigma_y}' def _print_contents(self, printer, *args): return 'SigmaY()' def _eval_power(self, e): if e.is_Integer and e.is_positive: return SigmaY(self.name).__pow__(int(e) % 2) def _represent_default_basis(self, **options): format = options.get('format', 'sympy') if format == 'sympy': return Matrix([[0, -I], [I, 0]]) else: raise NotImplementedError('Representation in format ' + format + ' not implemented.') class SigmaZ(SigmaOpBase): """Pauli sigma z operator Parameters ========== name : str An optional string that labels the operator. Pauli operators with different names commute. Examples ======== >>> from sympy.physics.quantum import represent >>> from sympy.physics.quantum.pauli import SigmaZ >>> sz = SigmaZ() >>> sz ** 3 SigmaZ() >>> represent(sz) Matrix([ [1, 0], [0, -1]]) """ def __new__(cls, *args, **hints): return SigmaOpBase.__new__(cls, *args) def _eval_commutator_SigmaX(self, other, **hints): if self.name != other.name: return Integer(0) else: return 2 * I * SigmaY(self.name) def _eval_commutator_SigmaY(self, other, **hints): if self.name != other.name: return Integer(0) else: return - 2 * I * SigmaX(self.name) def _eval_anticommutator_SigmaX(self, other, **hints): return Integer(0) def _eval_anticommutator_SigmaY(self, other, **hints): return Integer(0) def _eval_adjoint(self): return self def _print_contents_latex(self, printer, *args): if self.use_name: return r'{\sigma_z^{(%s)}}' % str(self.name) else: return r'{\sigma_z}' def _print_contents(self, printer, *args): return 'SigmaZ()' def _eval_power(self, e): if e.is_Integer and e.is_positive: return SigmaZ(self.name).__pow__(int(e) % 2) def _represent_default_basis(self, **options): format = options.get('format', 'sympy') if format == 'sympy': return Matrix([[1, 0], [0, -1]]) else: raise NotImplementedError('Representation in format ' + format + ' not implemented.') class SigmaMinus(SigmaOpBase): """Pauli sigma minus operator Parameters ========== name : str An optional string that labels the operator. Pauli operators with different names commute. Examples ======== >>> from sympy.physics.quantum import represent, Dagger >>> from sympy.physics.quantum.pauli import SigmaMinus >>> sm = SigmaMinus() >>> sm SigmaMinus() >>> Dagger(sm) SigmaPlus() >>> represent(sm) Matrix([ [0, 0], [1, 0]]) """ def __new__(cls, *args, **hints): return SigmaOpBase.__new__(cls, *args) def _eval_commutator_SigmaX(self, other, **hints): if self.name != other.name: return Integer(0) else: return -SigmaZ(self.name) def _eval_commutator_SigmaY(self, other, **hints): if self.name != other.name: return Integer(0) else: return I * SigmaZ(self.name) def _eval_commutator_SigmaZ(self, other, **hints): return 2 * self def _eval_commutator_SigmaMinus(self, other, **hints): return SigmaZ(self.name) def _eval_anticommutator_SigmaZ(self, other, **hints): return Integer(0) def _eval_anticommutator_SigmaX(self, other, **hints): return Integer(1) def _eval_anticommutator_SigmaY(self, other, **hints): return - I * Integer(1) def _eval_anticommutator_SigmaPlus(self, other, **hints): return Integer(1) def _eval_adjoint(self): return SigmaPlus(self.name) def _eval_power(self, e): if e.is_Integer and e.is_positive: return Integer(0) def _print_contents_latex(self, printer, *args): if self.use_name: return r'{\sigma_-^{(%s)}}' % str(self.name) else: return r'{\sigma_-}' def _print_contents(self, printer, *args): return 'SigmaMinus()' def _represent_default_basis(self, **options): format = options.get('format', 'sympy') if format == 'sympy': return Matrix([[0, 0], [1, 0]]) else: raise NotImplementedError('Representation in format ' + format + ' not implemented.') class SigmaPlus(SigmaOpBase): """Pauli sigma plus operator Parameters ========== name : str An optional string that labels the operator. Pauli operators with different names commute. Examples ======== >>> from sympy.physics.quantum import represent, Dagger >>> from sympy.physics.quantum.pauli import SigmaPlus >>> sp = SigmaPlus() >>> sp SigmaPlus() >>> Dagger(sp) SigmaMinus() >>> represent(sp) Matrix([ [0, 1], [0, 0]]) """ def __new__(cls, *args, **hints): return SigmaOpBase.__new__(cls, *args) def _eval_commutator_SigmaX(self, other, **hints): if self.name != other.name: return Integer(0) else: return SigmaZ(self.name) def _eval_commutator_SigmaY(self, other, **hints): if self.name != other.name: return Integer(0) else: return I * SigmaZ(self.name) def _eval_commutator_SigmaZ(self, other, **hints): if self.name != other.name: return Integer(0) else: return -2 * self def _eval_commutator_SigmaMinus(self, other, **hints): return SigmaZ(self.name) def _eval_anticommutator_SigmaZ(self, other, **hints): return Integer(0) def _eval_anticommutator_SigmaX(self, other, **hints): return Integer(1) def _eval_anticommutator_SigmaY(self, other, **hints): return I * Integer(1) def _eval_anticommutator_SigmaMinus(self, other, **hints): return Integer(1) def _eval_adjoint(self): return SigmaMinus(self.name) def _eval_mul(self, other): return self * other def _eval_power(self, e): if e.is_Integer and e.is_positive: return Integer(0) def _print_contents_latex(self, printer, *args): if self.use_name: return r'{\sigma_+^{(%s)}}' % str(self.name) else: return r'{\sigma_+}' def _print_contents(self, printer, *args): return 'SigmaPlus()' def _represent_default_basis(self, **options): format = options.get('format', 'sympy') if format == 'sympy': return Matrix([[0, 1], [0, 0]]) else: raise NotImplementedError('Representation in format ' + format + ' not implemented.') class SigmaZKet(Ket): """Ket for a two-level system quantum system. Parameters ========== n : Number The state number (0 or 1). """ def __new__(cls, n): if n not in (0, 1): raise ValueError("n must be 0 or 1") return Ket.__new__(cls, n) @property def n(self): return self.label[0] @classmethod def dual_class(self): return SigmaZBra @classmethod def _eval_hilbert_space(cls, label): return ComplexSpace(2) def _eval_innerproduct_SigmaZBra(self, bra, **hints): return KroneckerDelta(self.n, bra.n) def _apply_operator_SigmaZ(self, op, **options): if self.n == 0: return self else: return Integer(-1) * self def _apply_operator_SigmaX(self, op, **options): return SigmaZKet(1) if self.n == 0 else SigmaZKet(0) def _apply_operator_SigmaY(self, op, **options): return I * SigmaZKet(1) if self.n == 0 else (-I) * SigmaZKet(0) def _apply_operator_SigmaMinus(self, op, **options): if self.n == 0: return SigmaZKet(1) else: return Integer(0) def _apply_operator_SigmaPlus(self, op, **options): if self.n == 0: return Integer(0) else: return SigmaZKet(0) def _represent_default_basis(self, **options): format = options.get('format', 'sympy') if format == 'sympy': return Matrix([[1], [0]]) if self.n == 0 else Matrix([[0], [1]]) else: raise NotImplementedError('Representation in format ' + format + ' not implemented.') class SigmaZBra(Bra): """Bra for a two-level quantum system. Parameters ========== n : Number The state number (0 or 1). """ def __new__(cls, n): if n not in (0, 1): raise ValueError("n must be 0 or 1") return Bra.__new__(cls, n) @property def n(self): return self.label[0] @classmethod def dual_class(self): return SigmaZKet def _qsimplify_pauli_product(a, b): """ Internal helper function for simplifying products of Pauli operators. """ if not (isinstance(a, SigmaOpBase) and isinstance(b, SigmaOpBase)): return Mul(a, b) if a.name != b.name: # Pauli matrices with different labels commute; sort by name if a.name < b.name: return Mul(a, b) else: return Mul(b, a) elif isinstance(a, SigmaX): if isinstance(b, SigmaX): return Integer(1) if isinstance(b, SigmaY): return I * SigmaZ(a.name) if isinstance(b, SigmaZ): return - I * SigmaY(a.name) if isinstance(b, SigmaMinus): return (Integer(1)/2 + SigmaZ(a.name)/2) if isinstance(b, SigmaPlus): return (Integer(1)/2 - SigmaZ(a.name)/2) elif isinstance(a, SigmaY): if isinstance(b, SigmaX): return - I * SigmaZ(a.name) if isinstance(b, SigmaY): return Integer(1) if isinstance(b, SigmaZ): return I * SigmaX(a.name) if isinstance(b, SigmaMinus): return -I * (Integer(1) + SigmaZ(a.name))/2 if isinstance(b, SigmaPlus): return I * (Integer(1) - SigmaZ(a.name))/2 elif isinstance(a, SigmaZ): if isinstance(b, SigmaX): return I * SigmaY(a.name) if isinstance(b, SigmaY): return - I * SigmaX(a.name) if isinstance(b, SigmaZ): return Integer(1) if isinstance(b, SigmaMinus): return - SigmaMinus(a.name) if isinstance(b, SigmaPlus): return SigmaPlus(a.name) elif isinstance(a, SigmaMinus): if isinstance(b, SigmaX): return (Integer(1) - SigmaZ(a.name))/2 if isinstance(b, SigmaY): return - I * (Integer(1) - SigmaZ(a.name))/2 if isinstance(b, SigmaZ): # (SigmaX(a.name) - I * SigmaY(a.name))/2 return SigmaMinus(b.name) if isinstance(b, SigmaMinus): return Integer(0) if isinstance(b, SigmaPlus): return Integer(1)/2 - SigmaZ(a.name)/2 elif isinstance(a, SigmaPlus): if isinstance(b, SigmaX): return (Integer(1) + SigmaZ(a.name))/2 if isinstance(b, SigmaY): return I * (Integer(1) + SigmaZ(a.name))/2 if isinstance(b, SigmaZ): #-(SigmaX(a.name) + I * SigmaY(a.name))/2 return -SigmaPlus(a.name) if isinstance(b, SigmaMinus): return (Integer(1) + SigmaZ(a.name))/2 if isinstance(b, SigmaPlus): return Integer(0) else: return a * b def qsimplify_pauli(e): """ Simplify an expression that includes products of pauli operators. Parameters ========== e : expression An expression that contains products of Pauli operators that is to be simplified. Examples ======== >>> from sympy.physics.quantum.pauli import SigmaX, SigmaY >>> from sympy.physics.quantum.pauli import qsimplify_pauli >>> sx, sy = SigmaX(), SigmaY() >>> sx * sy SigmaX()*SigmaY() >>> qsimplify_pauli(sx * sy) I*SigmaZ() """ if isinstance(e, Operator): return e if isinstance(e, (Add, Pow, exp)): t = type(e) return t(*(qsimplify_pauli(arg) for arg in e.args)) if isinstance(e, Mul): c, nc = e.args_cnc() nc_s = [] while nc: curr = nc.pop(0) while (len(nc) and isinstance(curr, SigmaOpBase) and isinstance(nc[0], SigmaOpBase) and curr.name == nc[0].name): x = nc.pop(0) y = _qsimplify_pauli_product(curr, x) c1, nc1 = y.args_cnc() curr = Mul(*nc1) c = c + c1 nc_s.append(curr) return Mul(*c) * Mul(*nc_s) return e
9d0773cad8491e10a5e532e00568027da0481704654a9dbb0154e30bf371287d
"""Logic for applying operators to states. Todo: * Sometimes the final result needs to be expanded, we should do this by hand. """ from sympy import Add, Mul, Pow, sympify, S from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.innerproduct import InnerProduct from sympy.physics.quantum.operator import OuterProduct, Operator from sympy.physics.quantum.state import State, KetBase, BraBase, Wavefunction from sympy.physics.quantum.tensorproduct import TensorProduct __all__ = [ 'qapply' ] #----------------------------------------------------------------------------- # Main code #----------------------------------------------------------------------------- def qapply(e, **options): """Apply operators to states in a quantum expression. Parameters ========== e : Expr The expression containing operators and states. This expression tree will be walked to find operators acting on states symbolically. options : dict A dict of key/value pairs that determine how the operator actions are carried out. The following options are valid: * ``dagger``: try to apply Dagger operators to the left (default: False). * ``ip_doit``: call ``.doit()`` in inner products when they are encountered (default: True). Returns ======= e : Expr The original expression, but with the operators applied to states. Examples ======== >>> from sympy.physics.quantum import qapply, Ket, Bra >>> b = Bra('b') >>> k = Ket('k') >>> A = k * b >>> A |k><b| >>> qapply(A * b.dual / (b * b.dual)) |k> >>> qapply(k.dual * A / (k.dual * k), dagger=True) <b| >>> qapply(k.dual * A / (k.dual * k)) <k|*|k><b|/<k|k> """ from sympy.physics.quantum.density import Density dagger = options.get('dagger', False) if e == 0: return S.Zero # This may be a bit aggressive but ensures that everything gets expanded # to its simplest form before trying to apply operators. This includes # things like (A+B+C)*|a> and A*(|a>+|b>) and all Commutators and # TensorProducts. The only problem with this is that if we can't apply # all the Operators, we have just expanded everything. # TODO: don't expand the scalars in front of each Mul. e = e.expand(commutator=True, tensorproduct=True) # If we just have a raw ket, return it. if isinstance(e, KetBase): return e # We have an Add(a, b, c, ...) and compute # Add(qapply(a), qapply(b), ...) elif isinstance(e, Add): result = 0 for arg in e.args: result += qapply(arg, **options) return result.expand() # For a Density operator call qapply on its state elif isinstance(e, Density): new_args = [(qapply(state, **options), prob) for (state, prob) in e.args] return Density(*new_args) # For a raw TensorProduct, call qapply on its args. elif isinstance(e, TensorProduct): return TensorProduct(*[qapply(t, **options) for t in e.args]) # For a Pow, call qapply on its base. elif isinstance(e, Pow): return qapply(e.base, **options)**e.exp # We have a Mul where there might be actual operators to apply to kets. elif isinstance(e, Mul): c_part, nc_part = e.args_cnc() c_mul = Mul(*c_part) nc_mul = Mul(*nc_part) if isinstance(nc_mul, Mul): result = c_mul*qapply_Mul(nc_mul, **options) else: result = c_mul*qapply(nc_mul, **options) if result == e and dagger: return Dagger(qapply_Mul(Dagger(e), **options)) else: return result # In all other cases (State, Operator, Pow, Commutator, InnerProduct, # OuterProduct) we won't ever have operators to apply to kets. else: return e def qapply_Mul(e, **options): ip_doit = options.get('ip_doit', True) args = list(e.args) # If we only have 0 or 1 args, we have nothing to do and return. if len(args) <= 1 or not isinstance(e, Mul): return e rhs = args.pop() lhs = args.pop() # Make sure we have two non-commutative objects before proceeding. if (sympify(rhs).is_commutative and not isinstance(rhs, Wavefunction)) or \ (sympify(lhs).is_commutative and not isinstance(lhs, Wavefunction)): return e # For a Pow with an integer exponent, apply one of them and reduce the # exponent by one. if isinstance(lhs, Pow) and lhs.exp.is_Integer: args.append(lhs.base**(lhs.exp - 1)) lhs = lhs.base # Pull OuterProduct apart if isinstance(lhs, OuterProduct): args.append(lhs.ket) lhs = lhs.bra # Call .doit() on Commutator/AntiCommutator. if isinstance(lhs, (Commutator, AntiCommutator)): comm = lhs.doit() if isinstance(comm, Add): return qapply( e.func(*(args + [comm.args[0], rhs])) + e.func(*(args + [comm.args[1], rhs])), **options ) else: return qapply(e.func(*args)*comm*rhs, **options) # Apply tensor products of operators to states if isinstance(lhs, TensorProduct) and all(isinstance(arg, (Operator, State, Mul, Pow)) or arg == 1 for arg in lhs.args) and \ isinstance(rhs, TensorProduct) and all(isinstance(arg, (Operator, State, Mul, Pow)) or arg == 1 for arg in rhs.args) and \ len(lhs.args) == len(rhs.args): result = TensorProduct(*[qapply(lhs.args[n]*rhs.args[n], **options) for n in range(len(lhs.args))]).expand(tensorproduct=True) return qapply_Mul(e.func(*args), **options)*result # Now try to actually apply the operator and build an inner product. try: result = lhs._apply_operator(rhs, **options) except (NotImplementedError, AttributeError): try: result = rhs._apply_operator(lhs, **options) except (NotImplementedError, AttributeError): if isinstance(lhs, BraBase) and isinstance(rhs, KetBase): result = InnerProduct(lhs, rhs) if ip_doit: result = result.doit() else: result = None # TODO: I may need to expand before returning the final result. if result == 0: return S.Zero elif result is None: if len(args) == 0: # We had two args to begin with so args=[]. return e else: return qapply_Mul(e.func(*(args + [lhs])), **options)*rhs elif isinstance(result, InnerProduct): return result*qapply_Mul(e.func(*args), **options) else: # result is a scalar times a Mul, Add or TensorProduct return qapply(e.func(*args)*result, **options)
bb8cb87f10b5021edfffcdc4428df0ca9d06fc9940b57d7cd30e7638fe139ffe
""" Definition of physical dimensions. Unit systems will be constructed on top of these dimensions. Most of the examples in the doc use MKS system and are presented from the computer point of view: from a human point, adding length to time is not legal in MKS but it is in natural system; for a computer in natural system there is no time dimension (but a velocity dimension instead) - in the basis - so the question of adding time to length has no meaning. """ from typing import Dict as tDict import collections from functools import reduce from sympy import (Matrix, S, Symbol, sympify, Basic, Tuple, Dict, default_sort_key) from sympy.functions.elementary.trigonometric import TrigonometricFunction from sympy.core.expr import Expr from sympy.core.power import Pow from sympy.utilities.exceptions import SymPyDeprecationWarning class _QuantityMapper: _quantity_scale_factors_global = {} # type: tDict[Expr, Expr] _quantity_dimensional_equivalence_map_global = {} # type: tDict[Expr, Expr] _quantity_dimension_global = {} # type: tDict[Expr, Expr] def __init__(self, *args, **kwargs): self._quantity_dimension_map = {} self._quantity_scale_factors = {} def set_quantity_dimension(self, unit, dimension): from sympy.physics.units import Quantity dimension = sympify(dimension) if not isinstance(dimension, Dimension): if dimension == 1: dimension = Dimension(1) else: raise ValueError("expected dimension or 1") elif isinstance(dimension, Quantity): dimension = self.get_quantity_dimension(dimension) self._quantity_dimension_map[unit] = dimension def set_quantity_scale_factor(self, unit, scale_factor): from sympy.physics.units import Quantity from sympy.physics.units.prefixes import Prefix scale_factor = sympify(scale_factor) # replace all prefixes by their ratio to canonical units: scale_factor = scale_factor.replace( lambda x: isinstance(x, Prefix), lambda x: x.scale_factor ) # replace all quantities by their ratio to canonical units: scale_factor = scale_factor.replace( lambda x: isinstance(x, Quantity), lambda x: self.get_quantity_scale_factor(x) ) self._quantity_scale_factors[unit] = scale_factor def get_quantity_dimension(self, unit): from sympy.physics.units import Quantity # First look-up the local dimension map, then the global one: if unit in self._quantity_dimension_map: return self._quantity_dimension_map[unit] if unit in self._quantity_dimension_global: return self._quantity_dimension_global[unit] if unit in self._quantity_dimensional_equivalence_map_global: dep_unit = self._quantity_dimensional_equivalence_map_global[unit] if isinstance(dep_unit, Quantity): return self.get_quantity_dimension(dep_unit) else: return Dimension(self.get_dimensional_expr(dep_unit)) if isinstance(unit, Quantity): return Dimension(unit.name) else: return Dimension(1) def get_quantity_scale_factor(self, unit): if unit in self._quantity_scale_factors: return self._quantity_scale_factors[unit] if unit in self._quantity_scale_factors_global: mul_factor, other_unit = self._quantity_scale_factors_global[unit] return mul_factor*self.get_quantity_scale_factor(other_unit) return S.One class Dimension(Expr): """ This class represent the dimension of a physical quantities. The ``Dimension`` constructor takes as parameters a name and an optional symbol. For example, in classical mechanics we know that time is different from temperature and dimensions make this difference (but they do not provide any measure of these quantites. >>> from sympy.physics.units import Dimension >>> length = Dimension('length') >>> length Dimension(length) >>> time = Dimension('time') >>> time Dimension(time) Dimensions can be composed using multiplication, division and exponentiation (by a number) to give new dimensions. Addition and subtraction is defined only when the two objects are the same dimension. >>> velocity = length / time >>> velocity Dimension(length/time) It is possible to use a dimension system object to get the dimensionsal dependencies of a dimension, for example the dimension system used by the SI units convention can be used: >>> from sympy.physics.units.systems.si import dimsys_SI >>> dimsys_SI.get_dimensional_dependencies(velocity) {'length': 1, 'time': -1} >>> length + length Dimension(length) >>> l2 = length**2 >>> l2 Dimension(length**2) >>> dimsys_SI.get_dimensional_dependencies(l2) {'length': 2} """ _op_priority = 13.0 # XXX: This doesn't seem to be used anywhere... _dimensional_dependencies = dict() # type: ignore is_commutative = True is_number = False # make sqrt(M**2) --> M is_positive = True is_real = True def __new__(cls, name, symbol=None): if isinstance(name, str): name = Symbol(name) else: name = sympify(name) if not isinstance(name, Expr): raise TypeError("Dimension name needs to be a valid math expression") if isinstance(symbol, str): symbol = Symbol(symbol) elif symbol is not None: assert isinstance(symbol, Symbol) if symbol is not None: obj = Expr.__new__(cls, name, symbol) else: obj = Expr.__new__(cls, name) obj._name = name obj._symbol = symbol return obj @property def name(self): return self._name @property def symbol(self): return self._symbol def __hash__(self): return Expr.__hash__(self) def __eq__(self, other): if isinstance(other, Dimension): return self.name == other.name return False def __str__(self): """ Display the string representation of the dimension. """ if self.symbol is None: return "Dimension(%s)" % (self.name) else: return "Dimension(%s, %s)" % (self.name, self.symbol) def __repr__(self): return self.__str__() def __neg__(self): return self def __add__(self, other): from sympy.physics.units.quantities import Quantity other = sympify(other) if isinstance(other, Basic): if other.has(Quantity): raise TypeError("cannot sum dimension and quantity") if isinstance(other, Dimension) and self == other: return self return super().__add__(other) return self def __radd__(self, other): return self.__add__(other) def __sub__(self, other): # there is no notion of ordering (or magnitude) among dimension, # subtraction is equivalent to addition when the operation is legal return self + other def __rsub__(self, other): # there is no notion of ordering (or magnitude) among dimension, # subtraction is equivalent to addition when the operation is legal return self + other def __pow__(self, other): return self._eval_power(other) def _eval_power(self, other): other = sympify(other) return Dimension(self.name**other) def __mul__(self, other): from sympy.physics.units.quantities import Quantity if isinstance(other, Basic): if other.has(Quantity): raise TypeError("cannot sum dimension and quantity") if isinstance(other, Dimension): return Dimension(self.name*other.name) if not other.free_symbols: # other.is_number cannot be used return self return super().__mul__(other) return self def __rmul__(self, other): return self.__mul__(other) def __truediv__(self, other): return self*Pow(other, -1) def __rtruediv__(self, other): return other * pow(self, -1) @classmethod def _from_dimensional_dependencies(cls, dependencies): return reduce(lambda x, y: x * y, ( Dimension(d)**e for d, e in dependencies.items() ), 1) @classmethod def _get_dimensional_dependencies_for_name(cls, name): from sympy.physics.units.systems.si import dimsys_default SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="do not call from `Dimension` objects.", useinstead="DimensionSystem" ).warn() return dimsys_default.get_dimensional_dependencies(name) @property def is_dimensionless(self): """ Check if the dimension object really has a dimension. A dimension should have at least one component with non-zero power. """ if self.name == 1: return True from sympy.physics.units.systems.si import dimsys_default SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="wrong class", ).warn() dimensional_dependencies=dimsys_default return dimensional_dependencies.get_dimensional_dependencies(self) == {} def has_integer_powers(self, dim_sys): """ Check if the dimension object has only integer powers. All the dimension powers should be integers, but rational powers may appear in intermediate steps. This method may be used to check that the final result is well-defined. """ return all(dpow.is_Integer for dpow in dim_sys.get_dimensional_dependencies(self).values()) # Create dimensions according the the base units in MKSA. # For other unit systems, they can be derived by transforming the base # dimensional dependency dictionary. class DimensionSystem(Basic, _QuantityMapper): r""" DimensionSystem represents a coherent set of dimensions. The constructor takes three parameters: - base dimensions; - derived dimensions: these are defined in terms of the base dimensions (for example velocity is defined from the division of length by time); - dependency of dimensions: how the derived dimensions depend on the base dimensions. Optionally either the ``derived_dims`` or the ``dimensional_dependencies`` may be omitted. """ def __new__(cls, base_dims, derived_dims=(), dimensional_dependencies={}, name=None, descr=None): dimensional_dependencies = dict(dimensional_dependencies) if (name is not None) or (descr is not None): SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, useinstead="do not define a `name` or `descr`", ).warn() def parse_dim(dim): if isinstance(dim, str): dim = Dimension(Symbol(dim)) elif isinstance(dim, Dimension): pass elif isinstance(dim, Symbol): dim = Dimension(dim) else: raise TypeError("%s wrong type" % dim) return dim base_dims = [parse_dim(i) for i in base_dims] derived_dims = [parse_dim(i) for i in derived_dims] for dim in base_dims: dim = dim.name if (dim in dimensional_dependencies and (len(dimensional_dependencies[dim]) != 1 or dimensional_dependencies[dim].get(dim, None) != 1)): raise IndexError("Repeated value in base dimensions") dimensional_dependencies[dim] = Dict({dim: 1}) def parse_dim_name(dim): if isinstance(dim, Dimension): return dim.name elif isinstance(dim, str): return Symbol(dim) elif isinstance(dim, Symbol): return dim else: raise TypeError("unrecognized type %s for %s" % (type(dim), dim)) for dim in dimensional_dependencies.keys(): dim = parse_dim(dim) if (dim not in derived_dims) and (dim not in base_dims): derived_dims.append(dim) def parse_dict(d): return Dict({parse_dim_name(i): j for i, j in d.items()}) # Make sure everything is a SymPy type: dimensional_dependencies = {parse_dim_name(i): parse_dict(j) for i, j in dimensional_dependencies.items()} for dim in derived_dims: if dim in base_dims: raise ValueError("Dimension %s both in base and derived" % dim) if dim.name not in dimensional_dependencies: # TODO: should this raise a warning? dimensional_dependencies[dim.name] = Dict({dim.name: 1}) base_dims.sort(key=default_sort_key) derived_dims.sort(key=default_sort_key) base_dims = Tuple(*base_dims) derived_dims = Tuple(*derived_dims) dimensional_dependencies = Dict({i: Dict(j) for i, j in dimensional_dependencies.items()}) obj = Basic.__new__(cls, base_dims, derived_dims, dimensional_dependencies) return obj @property def base_dims(self): return self.args[0] @property def derived_dims(self): return self.args[1] @property def dimensional_dependencies(self): return self.args[2] def _get_dimensional_dependencies_for_name(self, name): if isinstance(name, Dimension): name = name.name if isinstance(name, str): name = Symbol(name) if name.is_Symbol: # Dimensions not included in the dependencies are considered # as base dimensions: return dict(self.dimensional_dependencies.get(name, {name: 1})) if name.is_number or name.is_NumberSymbol: return {} get_for_name = self._get_dimensional_dependencies_for_name if name.is_Mul: ret = collections.defaultdict(int) dicts = [get_for_name(i) for i in name.args] for d in dicts: for k, v in d.items(): ret[k] += v return {k: v for (k, v) in ret.items() if v != 0} if name.is_Add: dicts = [get_for_name(i) for i in name.args] if all(d == dicts[0] for d in dicts[1:]): return dicts[0] raise TypeError("Only equivalent dimensions can be added or subtracted.") if name.is_Pow: dim_base = get_for_name(name.base) dim_exp = get_for_name(name.exp) if dim_exp == {} or name.exp.is_Symbol: return {k: v*name.exp for (k, v) in dim_base.items()} else: raise TypeError("The exponent for the power operator must be a Symbol or dimensionless.") if name.is_Function: args = (Dimension._from_dimensional_dependencies( get_for_name(arg)) for arg in name.args) result = name.func(*args) dicts = [get_for_name(i) for i in name.args] if isinstance(result, Dimension): return self.get_dimensional_dependencies(result) elif result.func == name.func: if isinstance(name, TrigonometricFunction): if dicts[0] == {} or dicts[0] == {Symbol('angle'): 1}: return {} else: raise TypeError("The input argument for the function {} must be dimensionless or have dimensions of angle.".format(name.func)) else: if all( (item == {} for item in dicts) ): return {} else: raise TypeError("The input arguments for the function {} must be dimensionless.".format(name.func)) else: return get_for_name(result) raise TypeError("Type {} not implemented for get_dimensional_dependencies".format(type(name))) def get_dimensional_dependencies(self, name, mark_dimensionless=False): dimdep = self._get_dimensional_dependencies_for_name(name) if mark_dimensionless and dimdep == {}: return {'dimensionless': 1} return {str(i): j for i, j in dimdep.items()} def equivalent_dims(self, dim1, dim2): deps1 = self.get_dimensional_dependencies(dim1) deps2 = self.get_dimensional_dependencies(dim2) return deps1 == deps2 def extend(self, new_base_dims, new_derived_dims=(), new_dim_deps=None, name=None, description=None): if (name is not None) or (description is not None): SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="name and descriptions of DimensionSystem", useinstead="do not specify `name` or `description`", ).warn() deps = dict(self.dimensional_dependencies) if new_dim_deps: deps.update(new_dim_deps) new_dim_sys = DimensionSystem( tuple(self.base_dims) + tuple(new_base_dims), tuple(self.derived_dims) + tuple(new_derived_dims), deps ) new_dim_sys._quantity_dimension_map.update(self._quantity_dimension_map) new_dim_sys._quantity_scale_factors.update(self._quantity_scale_factors) return new_dim_sys @staticmethod def sort_dims(dims): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Sort dimensions given in argument using their str function. This function will ensure that we get always the same tuple for a given set of dimensions. """ SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="sort_dims", useinstead="sorted(..., key=default_sort_key)", ).warn() return tuple(sorted(dims, key=str)) def __getitem__(self, key): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Shortcut to the get_dim method, using key access. """ SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="the get [ ] operator", useinstead="the dimension definition", ).warn() d = self.get_dim(key) #TODO: really want to raise an error? if d is None: raise KeyError(key) return d def __call__(self, unit): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Wrapper to the method print_dim_base """ SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="call DimensionSystem", useinstead="the dimension definition", ).warn() return self.print_dim_base(unit) def is_dimensionless(self, dimension): """ Check if the dimension object really has a dimension. A dimension should have at least one component with non-zero power. """ if dimension.name == 1: return True return self.get_dimensional_dependencies(dimension) == {} @property def list_can_dims(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. List all canonical dimension names. """ dimset = set() for i in self.base_dims: dimset.update(set(self.get_dimensional_dependencies(i).keys())) return tuple(sorted(dimset, key=str)) @property def inv_can_transf_matrix(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Compute the inverse transformation matrix from the base to the canonical dimension basis. It corresponds to the matrix where columns are the vector of base dimensions in canonical basis. This matrix will almost never be used because dimensions are always defined with respect to the canonical basis, so no work has to be done to get them in this basis. Nonetheless if this matrix is not square (or not invertible) it means that we have chosen a bad basis. """ matrix = reduce(lambda x, y: x.row_join(y), [self.dim_can_vector(d) for d in self.base_dims]) return matrix @property def can_transf_matrix(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Return the canonical transformation matrix from the canonical to the base dimension basis. It is the inverse of the matrix computed with inv_can_transf_matrix(). """ #TODO: the inversion will fail if the system is inconsistent, for # example if the matrix is not a square return reduce(lambda x, y: x.row_join(y), [self.dim_can_vector(d) for d in sorted(self.base_dims, key=str)] ).inv() def dim_can_vector(self, dim): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Dimensional representation in terms of the canonical base dimensions. """ vec = [] for d in self.list_can_dims: vec.append(self.get_dimensional_dependencies(dim).get(d, 0)) return Matrix(vec) def dim_vector(self, dim): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Vector representation in terms of the base dimensions. """ return self.can_transf_matrix * Matrix(self.dim_can_vector(dim)) def print_dim_base(self, dim): """ Give the string expression of a dimension in term of the basis symbols. """ dims = self.dim_vector(dim) symbols = [i.symbol if i.symbol is not None else i.name for i in self.base_dims] res = S.One for (s, p) in zip(symbols, dims): res *= s**p return res @property def dim(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Give the dimension of the system. That is return the number of dimensions forming the basis. """ return len(self.base_dims) @property def is_consistent(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Check if the system is well defined. """ # not enough or too many base dimensions compared to independent # dimensions # in vector language: the set of vectors do not form a basis return self.inv_can_transf_matrix.is_square
2e6bf3d08bced4c6547bd89756af6557082946136a2db28853019dc4e7331093
from sympy import Derivative from sympy.core.function import UndefinedFunction, AppliedUndef from sympy.core.symbol import Symbol from sympy.interactive.printing import init_printing from sympy.printing.latex import LatexPrinter from sympy.printing.pretty.pretty import PrettyPrinter from sympy.printing.pretty.pretty_symbology import center_accent from sympy.printing.str import StrPrinter from sympy.printing.precedence import PRECEDENCE __all__ = ['vprint', 'vsstrrepr', 'vsprint', 'vpprint', 'vlatex', 'init_vprinting'] class VectorStrPrinter(StrPrinter): """String Printer for vector expressions. """ def _print_Derivative(self, e): from sympy.physics.vector.functions import dynamicsymbols t = dynamicsymbols._t if (bool(sum([i == t for i in e.variables])) & isinstance(type(e.args[0]), UndefinedFunction)): ol = str(e.args[0].func) for i, v in enumerate(e.variables): ol += dynamicsymbols._str return ol else: return StrPrinter().doprint(e) def _print_Function(self, e): from sympy.physics.vector.functions import dynamicsymbols t = dynamicsymbols._t if isinstance(type(e), UndefinedFunction): return StrPrinter().doprint(e).replace("(%s)" % t, '') return e.func.__name__ + "(%s)" % self.stringify(e.args, ", ") class VectorStrReprPrinter(VectorStrPrinter): """String repr printer for vector expressions.""" def _print_str(self, s): return repr(s) class VectorLatexPrinter(LatexPrinter): """Latex Printer for vector expressions. """ def _print_Function(self, expr, exp=None): from sympy.physics.vector.functions import dynamicsymbols func = expr.func.__name__ t = dynamicsymbols._t if hasattr(self, '_print_' + func) and \ not isinstance(type(expr), UndefinedFunction): return getattr(self, '_print_' + func)(expr, exp) elif isinstance(type(expr), UndefinedFunction) and (expr.args == (t,)): # treat this function like a symbol expr = Symbol(func) if exp is not None: # copied from LatexPrinter._helper_print_standard_power, which # we can't call because we only have exp as a string. base = self.parenthesize(expr, PRECEDENCE['Pow']) base = self.parenthesize_super(base) return r"%s^{%s}" % (base, exp) else: return super()._print(expr) else: return super()._print_Function(expr, exp) def _print_Derivative(self, der_expr): from sympy.physics.vector.functions import dynamicsymbols # make sure it is in the right form der_expr = der_expr.doit() if not isinstance(der_expr, Derivative): return r"\left(%s\right)" % self.doprint(der_expr) # check if expr is a dynamicsymbol t = dynamicsymbols._t expr = der_expr.expr red = expr.atoms(AppliedUndef) syms = der_expr.variables test1 = not all(True for i in red if i.free_symbols == {t}) test2 = not all(t == i for i in syms) if test1 or test2: return super()._print_Derivative(der_expr) # done checking dots = len(syms) base = self._print_Function(expr) base_split = base.split('_', 1) base = base_split[0] if dots == 1: base = r"\dot{%s}" % base elif dots == 2: base = r"\ddot{%s}" % base elif dots == 3: base = r"\dddot{%s}" % base elif dots == 4: base = r"\ddddot{%s}" % base else: # Fallback to standard printing return super()._print_Derivative(der_expr) if len(base_split) != 1: base += '_' + base_split[1] return base class VectorPrettyPrinter(PrettyPrinter): """Pretty Printer for vectorialexpressions. """ def _print_Derivative(self, deriv): from sympy.physics.vector.functions import dynamicsymbols # XXX use U('PARTIAL DIFFERENTIAL') here ? t = dynamicsymbols._t dot_i = 0 syms = list(reversed(deriv.variables)) while len(syms) > 0: if syms[-1] == t: syms.pop() dot_i += 1 else: return super()._print_Derivative(deriv) if not (isinstance(type(deriv.expr), UndefinedFunction) and (deriv.expr.args == (t,))): return super()._print_Derivative(deriv) else: pform = self._print_Function(deriv.expr) # the following condition would happen with some sort of non-standard # dynamic symbol I guess, so we'll just print the SymPy way if len(pform.picture) > 1: return super()._print_Derivative(deriv) # There are only special symbols up to fourth-order derivatives if dot_i >= 5: return super()._print_Derivative(deriv) # Deal with special symbols dots = {0 : "", 1 : "\N{COMBINING DOT ABOVE}", 2 : "\N{COMBINING DIAERESIS}", 3 : "\N{COMBINING THREE DOTS ABOVE}", 4 : "\N{COMBINING FOUR DOTS ABOVE}"} d = pform.__dict__ #if unicode is false then calculate number of apostrophes needed and add to output if not self._use_unicode: apostrophes = "" for i in range(0, dot_i): apostrophes += "'" d['picture'][0] += apostrophes + "(t)" else: d['picture'] = [center_accent(d['picture'][0], dots[dot_i])] return pform def _print_Function(self, e): from sympy.physics.vector.functions import dynamicsymbols t = dynamicsymbols._t # XXX works only for applied functions func = e.func args = e.args func_name = func.__name__ pform = self._print_Symbol(Symbol(func_name)) # If this function is an Undefined function of t, it is probably a # dynamic symbol, so we'll skip the (t). The rest of the code is # identical to the normal PrettyPrinter code if not (isinstance(func, UndefinedFunction) and (args == (t,))): return super()._print_Function(e) return pform def vprint(expr, **settings): r"""Function for printing of expressions generated in the sympy.physics vector package. Extends SymPy's StrPrinter, takes the same setting accepted by SymPy's :func:`~.sstr`, and is equivalent to ``print(sstr(foo))``. Parameters ========== expr : valid SymPy object SymPy expression to print. settings : args Same as the settings accepted by SymPy's sstr(). Examples ======== >>> from sympy.physics.vector import vprint, dynamicsymbols >>> u1 = dynamicsymbols('u1') >>> print(u1) u1(t) >>> vprint(u1) u1 """ outstr = vsprint(expr, **settings) import builtins if (outstr != 'None'): builtins._ = outstr print(outstr) def vsstrrepr(expr, **settings): """Function for displaying expression representation's with vector printing enabled. Parameters ========== expr : valid SymPy object SymPy expression to print. settings : args Same as the settings accepted by SymPy's sstrrepr(). """ p = VectorStrReprPrinter(settings) return p.doprint(expr) def vsprint(expr, **settings): r"""Function for displaying expressions generated in the sympy.physics vector package. Returns the output of vprint() as a string. Parameters ========== expr : valid SymPy object SymPy expression to print settings : args Same as the settings accepted by SymPy's sstr(). Examples ======== >>> from sympy.physics.vector import vsprint, dynamicsymbols >>> u1, u2 = dynamicsymbols('u1 u2') >>> u2d = dynamicsymbols('u2', level=1) >>> print("%s = %s" % (u1, u2 + u2d)) u1(t) = u2(t) + Derivative(u2(t), t) >>> print("%s = %s" % (vsprint(u1), vsprint(u2 + u2d))) u1 = u2 + u2' """ string_printer = VectorStrPrinter(settings) return string_printer.doprint(expr) def vpprint(expr, **settings): r"""Function for pretty printing of expressions generated in the sympy.physics vector package. Mainly used for expressions not inside a vector; the output of running scripts and generating equations of motion. Takes the same options as SymPy's :func:`~.pretty_print`; see that function for more information. Parameters ========== expr : valid SymPy object SymPy expression to pretty print settings : args Same as those accepted by SymPy's pretty_print. """ pp = VectorPrettyPrinter(settings) # Note that this is copied from sympy.printing.pretty.pretty_print: # XXX: this is an ugly hack, but at least it works use_unicode = pp._settings['use_unicode'] from sympy.printing.pretty.pretty_symbology import pretty_use_unicode uflag = pretty_use_unicode(use_unicode) try: return pp.doprint(expr) finally: pretty_use_unicode(uflag) def vlatex(expr, **settings): r"""Function for printing latex representation of sympy.physics.vector objects. For latex representation of Vectors, Dyadics, and dynamicsymbols. Takes the same options as SymPy's :func:`~.latex`; see that function for more information; Parameters ========== expr : valid SymPy object SymPy expression to represent in LaTeX form settings : args Same as latex() Examples ======== >>> from sympy.physics.vector import vlatex, ReferenceFrame, dynamicsymbols >>> N = ReferenceFrame('N') >>> q1, q2 = dynamicsymbols('q1 q2') >>> q1d, q2d = dynamicsymbols('q1 q2', 1) >>> q1dd, q2dd = dynamicsymbols('q1 q2', 2) >>> vlatex(N.x + N.y) '\\mathbf{\\hat{n}_x} + \\mathbf{\\hat{n}_y}' >>> vlatex(q1 + q2) 'q_{1} + q_{2}' >>> vlatex(q1d) '\\dot{q}_{1}' >>> vlatex(q1 * q2d) 'q_{1} \\dot{q}_{2}' >>> vlatex(q1dd * q1 / q1d) '\\frac{q_{1} \\ddot{q}_{1}}{\\dot{q}_{1}}' """ latex_printer = VectorLatexPrinter(settings) return latex_printer.doprint(expr) def init_vprinting(**kwargs): """Initializes time derivative printing for all SymPy objects, i.e. any functions of time will be displayed in a more compact notation. The main benefit of this is for printing of time derivatives; instead of displaying as ``Derivative(f(t),t)``, it will display ``f'``. This is only actually needed for when derivatives are present and are not in a physics.vector.Vector or physics.vector.Dyadic object. This function is a light wrapper to :func:`~.init_printing`. Any keyword arguments for it are valid here. {0} Examples ======== >>> from sympy import Function, symbols >>> t, x = symbols('t, x') >>> omega = Function('omega') >>> omega(x).diff() Derivative(omega(x), x) >>> omega(t).diff() Derivative(omega(t), t) Now use the string printer: >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> omega(x).diff() Derivative(omega(x), x) >>> omega(t).diff() omega' """ kwargs['str_printer'] = vsstrrepr kwargs['pretty_printer'] = vpprint kwargs['latex_printer'] = vlatex init_printing(**kwargs) params = init_printing.__doc__.split('Examples\n ========')[0] # type: ignore init_vprinting.__doc__ = init_vprinting.__doc__.format(params) # type: ignore
8f0158a78df6ef37e87379614012dc12a0a82eebc189a75e924037629c7061c1
from sympy.core.backend import (S, sympify, expand, sqrt, Add, zeros, acos, ImmutableMatrix as Matrix, _simplify_matrix) from sympy import trigsimp from sympy.printing.defaults import Printable from sympy.utilities.misc import filldedent from sympy.core.evalf import EvalfMixin, prec_to_dps __all__ = ['Vector'] class Vector(Printable, EvalfMixin): """The class used to define vectors. It along with ReferenceFrame are the building blocks of describing a classical mechanics system in PyDy and sympy.physics.vector. Attributes ========== simp : Boolean Let certain methods use trigsimp on their outputs """ simp = False is_number = False def __init__(self, inlist): """This is the constructor for the Vector class. You shouldn't be calling this, it should only be used by other functions. You should be treating Vectors like you would with if you were doing the math by hand, and getting the first 3 from the standard basis vectors from a ReferenceFrame. The only exception is to create a zero vector: zv = Vector(0) """ self.args = [] if inlist == 0: inlist = [] if isinstance(inlist, dict): d = inlist else: d = {} for inp in inlist: if inp[1] in d: d[inp[1]] += inp[0] else: d[inp[1]] = inp[0] for k, v in d.items(): if v != Matrix([0, 0, 0]): self.args.append((v, k)) @property def func(self): """Returns the class Vector. """ return Vector def __hash__(self): return hash(tuple(self.args)) def __add__(self, other): """The add operator for Vector. """ if other == 0: return self other = _check_vector(other) return Vector(self.args + other.args) def __and__(self, other): """Dot product of two vectors. Returns a scalar, the dot product of the two Vectors Parameters ========== other : Vector The Vector which we are dotting with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dot >>> from sympy import symbols >>> q1 = symbols('q1') >>> N = ReferenceFrame('N') >>> dot(N.x, N.x) 1 >>> dot(N.x, N.y) 0 >>> A = N.orientnew('A', 'Axis', [q1, N.x]) >>> dot(N.y, A.y) cos(q1) """ from sympy.physics.vector.dyadic import Dyadic if isinstance(other, Dyadic): return NotImplemented other = _check_vector(other) out = S.Zero for i, v1 in enumerate(self.args): for j, v2 in enumerate(other.args): out += ((v2[0].T) * (v2[1].dcm(v1[1])) * (v1[0]))[0] if Vector.simp: return trigsimp(sympify(out), recursive=True) else: return sympify(out) def __truediv__(self, other): """This uses mul and inputs self and 1 divided by other. """ return self.__mul__(sympify(1) / other) def __eq__(self, other): """Tests for equality. It is very import to note that this is only as good as the SymPy equality test; False does not always mean they are not equivalent Vectors. If other is 0, and self is empty, returns True. If other is 0 and self is not empty, returns False. If none of the above, only accepts other as a Vector. """ if other == 0: other = Vector(0) try: other = _check_vector(other) except TypeError: return False if (self.args == []) and (other.args == []): return True elif (self.args == []) or (other.args == []): return False frame = self.args[0][1] for v in frame: if expand((self - other) & v) != 0: return False return True def __mul__(self, other): """Multiplies the Vector by a sympifyable expression. Parameters ========== other : Sympifyable The scalar to multiply this Vector with Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import Symbol >>> N = ReferenceFrame('N') >>> b = Symbol('b') >>> V = 10 * b * N.x >>> print(V) 10*b*N.x """ newlist = [v for v in self.args] for i, v in enumerate(newlist): newlist[i] = (sympify(other) * newlist[i][0], newlist[i][1]) return Vector(newlist) def __ne__(self, other): return not self == other def __neg__(self): return self * -1 def __or__(self, other): """Outer product between two Vectors. A rank increasing operation, which returns a Dyadic from two Vectors Parameters ========== other : Vector The Vector to take the outer product with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> outer(N.x, N.x) (N.x|N.x) """ from sympy.physics.vector.dyadic import Dyadic other = _check_vector(other) ol = Dyadic(0) for i, v in enumerate(self.args): for i2, v2 in enumerate(other.args): # it looks this way because if we are in the same frame and # use the enumerate function on the same frame in a nested # fashion, then bad things happen ol += Dyadic([(v[0][0] * v2[0][0], v[1].x, v2[1].x)]) ol += Dyadic([(v[0][0] * v2[0][1], v[1].x, v2[1].y)]) ol += Dyadic([(v[0][0] * v2[0][2], v[1].x, v2[1].z)]) ol += Dyadic([(v[0][1] * v2[0][0], v[1].y, v2[1].x)]) ol += Dyadic([(v[0][1] * v2[0][1], v[1].y, v2[1].y)]) ol += Dyadic([(v[0][1] * v2[0][2], v[1].y, v2[1].z)]) ol += Dyadic([(v[0][2] * v2[0][0], v[1].z, v2[1].x)]) ol += Dyadic([(v[0][2] * v2[0][1], v[1].z, v2[1].y)]) ol += Dyadic([(v[0][2] * v2[0][2], v[1].z, v2[1].z)]) return ol def _latex(self, printer): """Latex Printing method. """ ar = self.args # just to shorten things if len(ar) == 0: return str(0) ol = [] # output list, to be concatenated to a string for i, v in enumerate(ar): for j in 0, 1, 2: # if the coef of the basis vector is 1, we skip the 1 if ar[i][0][j] == 1: ol.append(' + ' + ar[i][1].latex_vecs[j]) # if the coef of the basis vector is -1, we skip the 1 elif ar[i][0][j] == -1: ol.append(' - ' + ar[i][1].latex_vecs[j]) elif ar[i][0][j] != 0: # If the coefficient of the basis vector is not 1 or -1; # also, we might wrap it in parentheses, for readability. arg_str = printer._print(ar[i][0][j]) if isinstance(ar[i][0][j], Add): arg_str = "(%s)" % arg_str if arg_str[0] == '-': arg_str = arg_str[1:] str_start = ' - ' else: str_start = ' + ' ol.append(str_start + arg_str + ar[i][1].latex_vecs[j]) outstr = ''.join(ol) if outstr.startswith(' + '): outstr = outstr[3:] elif outstr.startswith(' '): outstr = outstr[1:] return outstr def _pretty(self, printer): """Pretty Printing method. """ from sympy.printing.pretty.stringpict import prettyForm e = self class Fake: def render(self, *args, **kwargs): ar = e.args # just to shorten things if len(ar) == 0: return str(0) pforms = [] # output list, to be concatenated to a string for i, v in enumerate(ar): for j in 0, 1, 2: # if the coef of the basis vector is 1, we skip the 1 if ar[i][0][j] == 1: pform = printer._print(ar[i][1].pretty_vecs[j]) # if the coef of the basis vector is -1, we skip the 1 elif ar[i][0][j] == -1: pform = printer._print(ar[i][1].pretty_vecs[j]) pform = prettyForm(*pform.left(" - ")) bin = prettyForm.NEG pform = prettyForm(binding=bin, *pform) elif ar[i][0][j] != 0: # If the basis vector coeff is not 1 or -1, # we might wrap it in parentheses, for readability. pform = printer._print(ar[i][0][j]) if isinstance(ar[i][0][j], Add): tmp = pform.parens() pform = prettyForm(tmp[0], tmp[1]) pform = prettyForm(*pform.right(" ", ar[i][1].pretty_vecs[j])) else: continue pforms.append(pform) pform = prettyForm.__add__(*pforms) kwargs["wrap_line"] = kwargs.get("wrap_line") kwargs["num_columns"] = kwargs.get("num_columns") out_str = pform.render(*args, **kwargs) mlines = [line.rstrip() for line in out_str.split("\n")] return "\n".join(mlines) return Fake() def __ror__(self, other): """Outer product between two Vectors. A rank increasing operation, which returns a Dyadic from two Vectors Parameters ========== other : Vector The Vector to take the outer product with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> outer(N.x, N.x) (N.x|N.x) """ from sympy.physics.vector.dyadic import Dyadic other = _check_vector(other) ol = Dyadic(0) for i, v in enumerate(other.args): for i2, v2 in enumerate(self.args): # it looks this way because if we are in the same frame and # use the enumerate function on the same frame in a nested # fashion, then bad things happen ol += Dyadic([(v[0][0] * v2[0][0], v[1].x, v2[1].x)]) ol += Dyadic([(v[0][0] * v2[0][1], v[1].x, v2[1].y)]) ol += Dyadic([(v[0][0] * v2[0][2], v[1].x, v2[1].z)]) ol += Dyadic([(v[0][1] * v2[0][0], v[1].y, v2[1].x)]) ol += Dyadic([(v[0][1] * v2[0][1], v[1].y, v2[1].y)]) ol += Dyadic([(v[0][1] * v2[0][2], v[1].y, v2[1].z)]) ol += Dyadic([(v[0][2] * v2[0][0], v[1].z, v2[1].x)]) ol += Dyadic([(v[0][2] * v2[0][1], v[1].z, v2[1].y)]) ol += Dyadic([(v[0][2] * v2[0][2], v[1].z, v2[1].z)]) return ol def __rsub__(self, other): return (-1 * self) + other def _sympystr(self, printer, order=True): """Printing method. """ if not order or len(self.args) == 1: ar = list(self.args) elif len(self.args) == 0: return printer._print(0) else: d = {v[1]: v[0] for v in self.args} keys = sorted(d.keys(), key=lambda x: x.index) ar = [] for key in keys: ar.append((d[key], key)) ol = [] # output list, to be concatenated to a string for i, v in enumerate(ar): for j in 0, 1, 2: # if the coef of the basis vector is 1, we skip the 1 if ar[i][0][j] == 1: ol.append(' + ' + ar[i][1].str_vecs[j]) # if the coef of the basis vector is -1, we skip the 1 elif ar[i][0][j] == -1: ol.append(' - ' + ar[i][1].str_vecs[j]) elif ar[i][0][j] != 0: # If the coefficient of the basis vector is not 1 or -1; # also, we might wrap it in parentheses, for readability. arg_str = printer._print(ar[i][0][j]) if isinstance(ar[i][0][j], Add): arg_str = "(%s)" % arg_str if arg_str[0] == '-': arg_str = arg_str[1:] str_start = ' - ' else: str_start = ' + ' ol.append(str_start + arg_str + '*' + ar[i][1].str_vecs[j]) outstr = ''.join(ol) if outstr.startswith(' + '): outstr = outstr[3:] elif outstr.startswith(' '): outstr = outstr[1:] return outstr def __sub__(self, other): """The subtraction operator. """ return self.__add__(other * -1) def __xor__(self, other): """The cross product operator for two Vectors. Returns a Vector, expressed in the same ReferenceFrames as self. Parameters ========== other : Vector The Vector which we are crossing with Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import symbols >>> q1 = symbols('q1') >>> N = ReferenceFrame('N') >>> N.x ^ N.y N.z >>> A = N.orientnew('A', 'Axis', [q1, N.x]) >>> A.x ^ N.y N.z >>> N.y ^ A.x - sin(q1)*A.y - cos(q1)*A.z """ from sympy.physics.vector.dyadic import Dyadic if isinstance(other, Dyadic): return NotImplemented other = _check_vector(other) if other.args == []: return Vector(0) def _det(mat): """This is needed as a little method for to find the determinant of a list in python; needs to work for a 3x3 list. SymPy's Matrix won't take in Vector, so need a custom function. You shouldn't be calling this. """ return (mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]) + mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]) + mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0])) outlist = [] ar = other.args # For brevity for i, v in enumerate(ar): tempx = v[1].x tempy = v[1].y tempz = v[1].z tempm = ([[tempx, tempy, tempz], [self & tempx, self & tempy, self & tempz], [Vector([ar[i]]) & tempx, Vector([ar[i]]) & tempy, Vector([ar[i]]) & tempz]]) outlist += _det(tempm).args return Vector(outlist) __radd__ = __add__ __rand__ = __and__ __rmul__ = __mul__ def separate(self): """ The constituents of this vector in different reference frames, as per its definition. Returns a dict mapping each ReferenceFrame to the corresponding constituent Vector. Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> R1 = ReferenceFrame('R1') >>> R2 = ReferenceFrame('R2') >>> v = R1.x + R2.x >>> v.separate() == {R1: R1.x, R2: R2.x} True """ components = {} for x in self.args: components[x[1]] = Vector([x]) return components def dot(self, other): return self & other dot.__doc__ = __and__.__doc__ def cross(self, other): return self ^ other cross.__doc__ = __xor__.__doc__ def outer(self, other): return self | other outer.__doc__ = __or__.__doc__ def diff(self, var, frame, var_in_dcm=True): """Returns the partial derivative of the vector with respect to a variable in the provided reference frame. Parameters ========== var : Symbol What the partial derivative is taken with respect to. frame : ReferenceFrame The reference frame that the partial derivative is taken in. var_in_dcm : boolean If true, the differentiation algorithm assumes that the variable may be present in any of the direction cosine matrices that relate the frame to the frames of any component of the vector. But if it is known that the variable is not present in the direction cosine matrices, false can be set to skip full reexpression in the desired frame. Examples ======== >>> from sympy import Symbol >>> from sympy.physics.vector import dynamicsymbols, ReferenceFrame >>> from sympy.physics.vector import Vector >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> Vector.simp = True >>> t = Symbol('t') >>> q1 = dynamicsymbols('q1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', [q1, N.y]) >>> A.x.diff(t, N) - q1'*A.z >>> B = ReferenceFrame('B') >>> u1, u2 = dynamicsymbols('u1, u2') >>> v = u1 * A.x + u2 * B.y >>> v.diff(u2, N, var_in_dcm=False) B.y """ from sympy.physics.vector.frame import _check_frame var = sympify(var) _check_frame(frame) inlist = [] for vector_component in self.args: measure_number = vector_component[0] component_frame = vector_component[1] if component_frame == frame: inlist += [(measure_number.diff(var), frame)] else: # If the direction cosine matrix relating the component frame # with the derivative frame does not contain the variable. if not var_in_dcm or (frame.dcm(component_frame).diff(var) == zeros(3, 3)): inlist += [(measure_number.diff(var), component_frame)] else: # else express in the frame reexp_vec_comp = Vector([vector_component]).express(frame) deriv = reexp_vec_comp.args[0][0].diff(var) inlist += Vector([(deriv, frame)]).express(component_frame).args return Vector(inlist) def express(self, otherframe, variables=False): """ Returns a Vector equivalent to this one, expressed in otherframe. Uses the global express method. Parameters ========== otherframe : ReferenceFrame The frame for this Vector to be described in variables : boolean If True, the coordinate symbols(if present) in this Vector are re-expressed in terms otherframe Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> q1 = dynamicsymbols('q1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', [q1, N.y]) >>> A.x.express(N) cos(q1)*N.x - sin(q1)*N.z """ from sympy.physics.vector import express return express(self, otherframe, variables=variables) def to_matrix(self, reference_frame): """Returns the matrix form of the vector with respect to the given frame. Parameters ---------- reference_frame : ReferenceFrame The reference frame that the rows of the matrix correspond to. Returns ------- matrix : ImmutableMatrix, shape(3,1) The matrix that gives the 1D vector. Examples ======== >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame >>> a, b, c = symbols('a, b, c') >>> N = ReferenceFrame('N') >>> vector = a * N.x + b * N.y + c * N.z >>> vector.to_matrix(N) Matrix([ [a], [b], [c]]) >>> beta = symbols('beta') >>> A = N.orientnew('A', 'Axis', (beta, N.x)) >>> vector.to_matrix(A) Matrix([ [ a], [ b*cos(beta) + c*sin(beta)], [-b*sin(beta) + c*cos(beta)]]) """ return Matrix([self.dot(unit_vec) for unit_vec in reference_frame]).reshape(3, 1) def doit(self, **hints): """Calls .doit() on each term in the Vector""" d = {} for v in self.args: d[v[1]] = v[0].applyfunc(lambda x: x.doit(**hints)) return Vector(d) def dt(self, otherframe): """ Returns a Vector which is the time derivative of the self Vector, taken in frame otherframe. Calls the global time_derivative method Parameters ========== otherframe : ReferenceFrame The frame to calculate the time derivative in """ from sympy.physics.vector import time_derivative return time_derivative(self, otherframe) def simplify(self): """Returns a simplified Vector.""" d = {} for v in self.args: d[v[1]] = _simplify_matrix(v[0]) return Vector(d) def subs(self, *args, **kwargs): """Substitution on the Vector. Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import Symbol >>> N = ReferenceFrame('N') >>> s = Symbol('s') >>> a = N.x * s >>> a.subs({s: 2}) 2*N.x """ d = {} for v in self.args: d[v[1]] = v[0].subs(*args, **kwargs) return Vector(d) def magnitude(self): """Returns the magnitude (Euclidean norm) of self. Warnings ======== Python ignores the leading negative sign so that might give wrong results. ``-A.x.magnitude()`` would be treated as ``-(A.x.magnitude())``, instead of ``(-A.x).magnitude()``. """ return sqrt(self & self) def normalize(self): """Returns a Vector of magnitude 1, codirectional with self.""" return Vector(self.args + []) / self.magnitude() def applyfunc(self, f): """Apply a function to each component of a vector.""" if not callable(f): raise TypeError("`f` must be callable.") d = {} for v in self.args: d[v[1]] = v[0].applyfunc(f) return Vector(d) def angle_between(self, vec): """ Returns the smallest angle between Vector 'vec' and self. Parameter ========= vec : Vector The Vector between which angle is needed. Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> A = ReferenceFrame("A") >>> v1 = A.x >>> v2 = A.y >>> v1.angle_between(v2) pi/2 >>> v3 = A.x + A.y + A.z >>> v1.angle_between(v3) acos(sqrt(3)/3) Warnings ======== Python ignores the leading negative sign so that might give wrong results. ``-A.x.angle_between()`` would be treated as ``-(A.x.angle_between())``, instead of ``(-A.x).angle_between()``. """ vec1 = self.normalize() vec2 = vec.normalize() angle = acos(vec1.dot(vec2)) return angle def free_symbols(self, reference_frame): """ Returns the free symbols in the measure numbers of the vector expressed in the given reference frame. Parameter ========= reference_frame : ReferenceFrame The frame with respect to which the free symbols of the given vector is to be determined. """ return self.to_matrix(reference_frame).free_symbols def _eval_evalf(self, prec): if not self.args: return self new_args = [] for mat, frame in self.args: new_args.append([mat.evalf(n=prec_to_dps(prec)), frame]) return Vector(new_args) def xreplace(self, rule): """ Replace occurrences of objects within the measure numbers of the vector. Parameters ========== rule : dict-like Expresses a replacement rule. Returns ======= Vector Result of the replacement. Examples ======== >>> from sympy import symbols, pi >>> from sympy.physics.vector import ReferenceFrame >>> A = ReferenceFrame('A') >>> x, y, z = symbols('x y z') >>> ((1 + x*y) * A.x).xreplace({x: pi}) (pi*y + 1)*A.x >>> ((1 + x*y) * A.x).xreplace({x: pi, y: 2}) (1 + 2*pi)*A.x Replacements occur only if an entire node in the expression tree is matched: >>> ((x*y + z) * A.x).xreplace({x*y: pi}) (z + pi)*A.x >>> ((x*y*z) * A.x).xreplace({x*y: pi}) x*y*z*A.x """ new_args = [] for mat, frame in self.args: mat = mat.xreplace(rule) new_args.append([mat, frame]) return Vector(new_args) class VectorTypeError(TypeError): def __init__(self, other, want): msg = filldedent("Expected an instance of %s, but received object " "'%s' of %s." % (type(want), other, type(other))) super().__init__(msg) def _check_vector(other): if not isinstance(other, Vector): raise TypeError('A Vector must be supplied') return other
387c143375cc0106f5f8d0538bbe68e865690fc23653d82f406fdcc6cbee4af2
from sympy.physics.secondquant import ( Dagger, Bd, VarBosonicBasis, BBra, B, BKet, FixedBosonicBasis, matrix_rep, apply_operators, InnerProduct, Commutator, KroneckerDelta, AnnihilateBoson, CreateBoson, BosonicOperator, F, Fd, FKet, BosonState, CreateFermion, AnnihilateFermion, evaluate_deltas, AntiSymmetricTensor, contraction, NO, wicks, PermutationOperator, simplify_index_permutations, _sort_anticommuting_fermions, _get_ordered_dummies, substitute_dummies, FockStateBosonKet, ContractionAppliesOnlyToFermions ) from sympy import (Dummy, expand, Function, I, S, simplify, sqrt, Sum, Symbol, symbols, srepr, Rational) from sympy.testing.pytest import slow, raises from sympy.printing.latex import latex def test_PermutationOperator(): p, q, r, s = symbols('p,q,r,s') f, g, h, i = map(Function, 'fghi') P = PermutationOperator assert P(p, q).get_permuted(f(p)*g(q)) == -f(q)*g(p) assert P(p, q).get_permuted(f(p, q)) == -f(q, p) assert P(p, q).get_permuted(f(p)) == f(p) expr = (f(p)*g(q)*h(r)*i(s) - f(q)*g(p)*h(r)*i(s) - f(p)*g(q)*h(s)*i(r) + f(q)*g(p)*h(s)*i(r)) perms = [P(p, q), P(r, s)] assert (simplify_index_permutations(expr, perms) == P(p, q)*P(r, s)*f(p)*g(q)*h(r)*i(s)) assert latex(P(p, q)) == 'P(pq)' def test_index_permutations_with_dummies(): a, b, c, d = symbols('a b c d') p, q, r, s = symbols('p q r s', cls=Dummy) f, g = map(Function, 'fg') P = PermutationOperator # No dummy substitution necessary expr = f(a, b, p, q) - f(b, a, p, q) assert simplify_index_permutations( expr, [P(a, b)]) == P(a, b)*f(a, b, p, q) # Cases where dummy substitution is needed expected = P(a, b)*substitute_dummies(f(a, b, p, q)) expr = f(a, b, p, q) - f(b, a, q, p) result = simplify_index_permutations(expr, [P(a, b)]) assert expected == substitute_dummies(result) expr = f(a, b, q, p) - f(b, a, p, q) result = simplify_index_permutations(expr, [P(a, b)]) assert expected == substitute_dummies(result) # A case where nothing can be done expr = f(a, b, q, p) - g(b, a, p, q) result = simplify_index_permutations(expr, [P(a, b)]) assert expr == result def test_dagger(): i, j, n, m = symbols('i,j,n,m') assert Dagger(1) == 1 assert Dagger(1.0) == 1.0 assert Dagger(2*I) == -2*I assert Dagger(S.Half*I/3.0) == I*Rational(-1, 2)/3.0 assert Dagger(BKet([n])) == BBra([n]) assert Dagger(B(0)) == Bd(0) assert Dagger(Bd(0)) == B(0) assert Dagger(B(n)) == Bd(n) assert Dagger(Bd(n)) == B(n) assert Dagger(B(0) + B(1)) == Bd(0) + Bd(1) assert Dagger(n*m) == Dagger(n)*Dagger(m) # n, m commute assert Dagger(B(n)*B(m)) == Bd(m)*Bd(n) assert Dagger(B(n)**10) == Dagger(B(n))**10 assert Dagger('a') == Dagger(Symbol('a')) assert Dagger(Dagger('a')) == Symbol('a') def test_operator(): i, j = symbols('i,j') o = BosonicOperator(i) assert o.state == i assert o.is_symbolic o = BosonicOperator(1) assert o.state == 1 assert not o.is_symbolic def test_create(): i, j, n, m = symbols('i,j,n,m') o = Bd(i) assert latex(o) == "{b^\\dagger_{i}}" assert isinstance(o, CreateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = Bd(0) assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1]) o = Bd(n) assert o.apply_operator(BKet([n])) == o*BKet([n]) def test_annihilate(): i, j, n, m = symbols('i,j,n,m') o = B(i) assert latex(o) == "b_{i}" assert isinstance(o, AnnihilateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = B(0) assert o.apply_operator(BKet([n])) == sqrt(n)*BKet([n - 1]) o = B(n) assert o.apply_operator(BKet([n])) == o*BKet([n]) def test_basic_state(): i, j, n, m = symbols('i,j,n,m') s = BosonState([0, 1, 2, 3, 4]) assert len(s) == 5 assert s.args[0] == tuple(range(5)) assert s.up(0) == BosonState([1, 1, 2, 3, 4]) assert s.down(4) == BosonState([0, 1, 2, 3, 3]) for i in range(5): assert s.up(i).down(i) == s assert s.down(0) == 0 for i in range(5): assert s[i] == i s = BosonState([n, m]) assert s.down(0) == BosonState([n - 1, m]) assert s.up(0) == BosonState([n + 1, m]) def test_basic_apply(): n = symbols("n") e = B(0)*BKet([n]) assert apply_operators(e) == sqrt(n)*BKet([n - 1]) e = Bd(0)*BKet([n]) assert apply_operators(e) == sqrt(n + 1)*BKet([n + 1]) def test_complex_apply(): n, m = symbols("n,m") o = Bd(0)*B(0)*Bd(1)*B(0) e = apply_operators(o*BKet([n, m])) answer = sqrt(n)*sqrt(m + 1)*(-1 + n)*BKet([-1 + n, 1 + m]) assert expand(e) == expand(answer) def test_number_operator(): n = symbols("n") o = Bd(0)*B(0) e = apply_operators(o*BKet([n])) assert e == n*BKet([n]) def test_inner_product(): i, j, k, l = symbols('i,j,k,l') s1 = BBra([0]) s2 = BKet([1]) assert InnerProduct(s1, Dagger(s1)) == 1 assert InnerProduct(s1, s2) == 0 s1 = BBra([i, j]) s2 = BKet([k, l]) r = InnerProduct(s1, s2) assert r == KroneckerDelta(i, k)*KroneckerDelta(j, l) def test_symbolic_matrix_elements(): n, m = symbols('n,m') s1 = BBra([n]) s2 = BKet([m]) o = B(0) e = apply_operators(s1*o*s2) assert e == sqrt(m)*KroneckerDelta(n, m - 1) def test_matrix_elements(): b = VarBosonicBasis(5) o = B(0) m = matrix_rep(o, b) for i in range(4): assert m[i, i + 1] == sqrt(i + 1) o = Bd(0) m = matrix_rep(o, b) for i in range(4): assert m[i + 1, i] == sqrt(i + 1) def test_fixed_bosonic_basis(): b = FixedBosonicBasis(2, 2) # assert b == [FockState((2, 0)), FockState((1, 1)), FockState((0, 2))] state = b.state(1) assert state == FockStateBosonKet((1, 1)) assert b.index(state) == 1 assert b.state(1) == b[1] assert len(b) == 3 assert str(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' assert repr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' assert srepr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' @slow def test_sho(): n, m = symbols('n,m') h_n = Bd(n)*B(n)*(n + S.Half) H = Sum(h_n, (n, 0, 5)) o = H.doit(deep=False) b = FixedBosonicBasis(2, 6) m = matrix_rep(o, b) # We need to double check these energy values to make sure that they # are correct and have the proper degeneracies! diag = [1, 2, 3, 3, 4, 5, 4, 5, 6, 7, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 11] for i in range(len(diag)): assert diag[i] == m[i, i] def test_commutation(): n, m = symbols("n,m", above_fermi=True) c = Commutator(B(0), Bd(0)) assert c == 1 c = Commutator(Bd(0), B(0)) assert c == -1 c = Commutator(B(n), Bd(0)) assert c == KroneckerDelta(n, 0) c = Commutator(B(0), B(0)) assert c == 0 c = Commutator(B(0), Bd(0)) e = simplify(apply_operators(c*BKet([n]))) assert e == BKet([n]) c = Commutator(B(0), B(1)) e = simplify(apply_operators(c*BKet([n, m]))) assert e == 0 c = Commutator(F(m), Fd(m)) assert c == +1 - 2*NO(Fd(m)*F(m)) c = Commutator(Fd(m), F(m)) assert c.expand() == -1 + 2*NO(Fd(m)*F(m)) C = Commutator X, Y, Z = symbols('X,Y,Z', commutative=False) assert C(C(X, Y), Z) != 0 assert C(C(X, Z), Y) != 0 assert C(Y, C(X, Z)) != 0 i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') D = KroneckerDelta assert C(Fd(a), F(i)) == -2*NO(F(i)*Fd(a)) assert C(Fd(j), NO(Fd(a)*F(i))).doit(wicks=True) == -D(j, i)*Fd(a) assert C(Fd(a)*F(i), Fd(b)*F(j)).doit(wicks=True) == 0 c1 = Commutator(F(a), Fd(a)) assert Commutator.eval(c1, c1) == 0 c = Commutator(Fd(a)*F(i),Fd(b)*F(j)) assert latex(c) == r'\left[{a^\dagger_{a}} a_{i},{a^\dagger_{b}} a_{j}\right]' assert repr(c) == 'Commutator(CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j))' assert str(c) == '[CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j)]' def test_create_f(): i, j, n, m = symbols('i,j,n,m') o = Fd(i) assert isinstance(o, CreateFermion) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = Fd(1) assert o.apply_operator(FKet([n])) == FKet([1, n]) assert o.apply_operator(FKet([n])) == -FKet([n, 1]) o = Fd(n) assert o.apply_operator(FKet([])) == FKet([n]) vacuum = FKet([], fermi_level=4) assert vacuum == FKet([], fermi_level=4) i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert Fd(i).apply_operator(FKet([i, j, k], 4)) == FKet([j, k], 4) assert Fd(a).apply_operator(FKet([i, b, k], 4)) == FKet([a, i, b, k], 4) assert Dagger(B(p)).apply_operator(q) == q*CreateBoson(p) assert repr(Fd(p)) == 'CreateFermion(p)' assert srepr(Fd(p)) == "CreateFermion(Symbol('p'))" assert latex(Fd(p)) == r'{a^\dagger_{p}}' def test_annihilate_f(): i, j, n, m = symbols('i,j,n,m') o = F(i) assert isinstance(o, AnnihilateFermion) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = F(1) assert o.apply_operator(FKet([1, n])) == FKet([n]) assert o.apply_operator(FKet([n, 1])) == -FKet([n]) o = F(n) assert o.apply_operator(FKet([n])) == FKet([]) i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert F(i).apply_operator(FKet([i, j, k], 4)) == 0 assert F(a).apply_operator(FKet([i, b, k], 4)) == 0 assert F(l).apply_operator(FKet([i, j, k], 3)) == 0 assert F(l).apply_operator(FKet([i, j, k], 4)) == FKet([l, i, j, k], 4) assert str(F(p)) == 'f(p)' assert repr(F(p)) == 'AnnihilateFermion(p)' assert srepr(F(p)) == "AnnihilateFermion(Symbol('p'))" assert latex(F(p)) == 'a_{p}' def test_create_b(): i, j, n, m = symbols('i,j,n,m') o = Bd(i) assert isinstance(o, CreateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = Bd(0) assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1]) o = Bd(n) assert o.apply_operator(BKet([n])) == o*BKet([n]) def test_annihilate_b(): i, j, n, m = symbols('i,j,n,m') o = B(i) assert isinstance(o, AnnihilateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = B(0) def test_wicks(): p, q, r, s = symbols('p,q,r,s', above_fermi=True) # Testing for particles only str = F(p)*Fd(q) assert wicks(str) == NO(F(p)*Fd(q)) + KroneckerDelta(p, q) str = Fd(p)*F(q) assert wicks(str) == NO(Fd(p)*F(q)) str = F(p)*Fd(q)*F(r)*Fd(s) nstr = wicks(str) fasit = NO( KroneckerDelta(p, q)*KroneckerDelta(r, s) + KroneckerDelta(p, q)*AnnihilateFermion(r)*CreateFermion(s) + KroneckerDelta(r, s)*AnnihilateFermion(p)*CreateFermion(q) - KroneckerDelta(p, s)*AnnihilateFermion(r)*CreateFermion(q) - AnnihilateFermion(p)*AnnihilateFermion(r)*CreateFermion(q)*CreateFermion(s)) assert nstr == fasit assert (p*q*nstr).expand() == wicks(p*q*str) assert (nstr*p*q*2).expand() == wicks(str*p*q*2) # Testing CC equations particles and holes i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) p, q, r, s = symbols('p q r s', cls=Dummy) assert (wicks(F(a)*NO(F(i)*F(j))*Fd(b)) == NO(F(a)*F(i)*F(j)*Fd(b)) + KroneckerDelta(a, b)*NO(F(i)*F(j))) assert (wicks(F(a)*NO(F(i)*F(j)*F(k))*Fd(b)) == NO(F(a)*F(i)*F(j)*F(k)*Fd(b)) - KroneckerDelta(a, b)*NO(F(i)*F(j)*F(k))) expr = wicks(Fd(i)*NO(Fd(j)*F(k))*F(l)) assert (expr == -KroneckerDelta(i, k)*NO(Fd(j)*F(l)) - KroneckerDelta(j, l)*NO(Fd(i)*F(k)) - KroneckerDelta(i, k)*KroneckerDelta(j, l) + KroneckerDelta(i, l)*NO(Fd(j)*F(k)) + NO(Fd(i)*Fd(j)*F(k)*F(l))) expr = wicks(F(a)*NO(F(b)*Fd(c))*Fd(d)) assert (expr == -KroneckerDelta(a, c)*NO(F(b)*Fd(d)) - KroneckerDelta(b, d)*NO(F(a)*Fd(c)) - KroneckerDelta(a, c)*KroneckerDelta(b, d) + KroneckerDelta(a, d)*NO(F(b)*Fd(c)) + NO(F(a)*F(b)*Fd(c)*Fd(d))) def test_NO(): i, j, k, l = symbols('i j k l', below_fermi=True) a, b, c, d = symbols('a b c d', above_fermi=True) p, q, r, s = symbols('p q r s', cls=Dummy) assert (NO(Fd(p)*F(q) + Fd(a)*F(b)) == NO(Fd(p)*F(q)) + NO(Fd(a)*F(b))) assert (NO(Fd(i)*NO(F(j)*Fd(a))) == NO(Fd(i)*F(j)*Fd(a))) assert NO(1) == 1 assert NO(i) == i assert (NO(Fd(a)*Fd(b)*(F(c) + F(d))) == NO(Fd(a)*Fd(b)*F(c)) + NO(Fd(a)*Fd(b)*F(d))) assert NO(Fd(a)*F(b))._remove_brackets() == Fd(a)*F(b) assert NO(F(j)*Fd(i))._remove_brackets() == F(j)*Fd(i) assert (NO(Fd(p)*F(q)).subs(Fd(p), Fd(a) + Fd(i)) == NO(Fd(a)*F(q)) + NO(Fd(i)*F(q))) assert (NO(Fd(p)*F(q)).subs(F(q), F(a) + F(i)) == NO(Fd(p)*F(a)) + NO(Fd(p)*F(i))) expr = NO(Fd(p)*F(q))._remove_brackets() assert wicks(expr) == NO(expr) assert NO(Fd(a)*F(b)) == - NO(F(b)*Fd(a)) no = NO(Fd(a)*F(i)*F(b)*Fd(j)) l1 = [ ind for ind in no.iter_q_creators() ] assert l1 == [0, 1] l2 = [ ind for ind in no.iter_q_annihilators() ] assert l2 == [3, 2] no = NO(Fd(a)*Fd(i)) assert no.has_q_creators == 1 assert no.has_q_annihilators == -1 assert str(no) == ':CreateFermion(a)*CreateFermion(i):' assert repr(no) == 'NO(CreateFermion(a)*CreateFermion(i))' assert latex(no) == r'\left\{{a^\dagger_{a}} {a^\dagger_{i}}\right\}' raises(NotImplementedError, lambda: NO(Bd(p)*F(q))) def test_sorting(): i, j = symbols('i,j', below_fermi=True) a, b = symbols('a,b', above_fermi=True) p, q = symbols('p,q') # p, q assert _sort_anticommuting_fermions([Fd(p), F(q)]) == ([Fd(p), F(q)], 0) assert _sort_anticommuting_fermions([F(p), Fd(q)]) == ([Fd(q), F(p)], 1) # i, p assert _sort_anticommuting_fermions([F(p), Fd(i)]) == ([F(p), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), F(p)]) == ([F(p), Fd(i)], 1) assert _sort_anticommuting_fermions([Fd(p), Fd(i)]) == ([Fd(p), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), Fd(p)]) == ([Fd(p), Fd(i)], 1) assert _sort_anticommuting_fermions([F(p), F(i)]) == ([F(i), F(p)], 1) assert _sort_anticommuting_fermions([F(i), F(p)]) == ([F(i), F(p)], 0) assert _sort_anticommuting_fermions([Fd(p), F(i)]) == ([F(i), Fd(p)], 1) assert _sort_anticommuting_fermions([F(i), Fd(p)]) == ([F(i), Fd(p)], 0) # a, p assert _sort_anticommuting_fermions([F(p), Fd(a)]) == ([Fd(a), F(p)], 1) assert _sort_anticommuting_fermions([Fd(a), F(p)]) == ([Fd(a), F(p)], 0) assert _sort_anticommuting_fermions([Fd(p), Fd(a)]) == ([Fd(a), Fd(p)], 1) assert _sort_anticommuting_fermions([Fd(a), Fd(p)]) == ([Fd(a), Fd(p)], 0) assert _sort_anticommuting_fermions([F(p), F(a)]) == ([F(p), F(a)], 0) assert _sort_anticommuting_fermions([F(a), F(p)]) == ([F(p), F(a)], 1) assert _sort_anticommuting_fermions([Fd(p), F(a)]) == ([Fd(p), F(a)], 0) assert _sort_anticommuting_fermions([F(a), Fd(p)]) == ([Fd(p), F(a)], 1) # i, a assert _sort_anticommuting_fermions([F(i), Fd(j)]) == ([F(i), Fd(j)], 0) assert _sort_anticommuting_fermions([Fd(j), F(i)]) == ([F(i), Fd(j)], 1) assert _sort_anticommuting_fermions([Fd(a), Fd(i)]) == ([Fd(a), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), Fd(a)]) == ([Fd(a), Fd(i)], 1) assert _sort_anticommuting_fermions([F(a), F(i)]) == ([F(i), F(a)], 1) assert _sort_anticommuting_fermions([F(i), F(a)]) == ([F(i), F(a)], 0) def test_contraction(): i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert contraction(Fd(i), F(j)) == KroneckerDelta(i, j) assert contraction(F(a), Fd(b)) == KroneckerDelta(a, b) assert contraction(F(a), Fd(i)) == 0 assert contraction(Fd(a), F(i)) == 0 assert contraction(F(i), Fd(a)) == 0 assert contraction(Fd(i), F(a)) == 0 assert contraction(Fd(i), F(p)) == KroneckerDelta(i, p) restr = evaluate_deltas(contraction(Fd(p), F(q))) assert restr.is_only_below_fermi restr = evaluate_deltas(contraction(F(p), Fd(q))) assert restr.is_only_above_fermi raises(ContractionAppliesOnlyToFermions, lambda: contraction(B(a), Fd(b))) def test_evaluate_deltas(): i, j, k = symbols('i,j,k') r = KroneckerDelta(i, j) * KroneckerDelta(j, k) assert evaluate_deltas(r) == KroneckerDelta(i, k) r = KroneckerDelta(i, 0) * KroneckerDelta(j, k) assert evaluate_deltas(r) == KroneckerDelta(i, 0) * KroneckerDelta(j, k) r = KroneckerDelta(1, j) * KroneckerDelta(j, k) assert evaluate_deltas(r) == KroneckerDelta(1, k) r = KroneckerDelta(j, 2) * KroneckerDelta(k, j) assert evaluate_deltas(r) == KroneckerDelta(2, k) r = KroneckerDelta(i, 0) * KroneckerDelta(i, j) * KroneckerDelta(j, 1) assert evaluate_deltas(r) == 0 r = (KroneckerDelta(0, i) * KroneckerDelta(0, j) * KroneckerDelta(1, j) * KroneckerDelta(1, j)) assert evaluate_deltas(r) == 0 def test_Tensors(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) p, q, r, s = symbols('p q r s') AT = AntiSymmetricTensor assert AT('t', (a, b), (i, j)) == -AT('t', (b, a), (i, j)) assert AT('t', (a, b), (i, j)) == AT('t', (b, a), (j, i)) assert AT('t', (a, b), (i, j)) == -AT('t', (a, b), (j, i)) assert AT('t', (a, a), (i, j)) == 0 assert AT('t', (a, b), (i, i)) == 0 assert AT('t', (a, b, c), (i, j)) == -AT('t', (b, a, c), (i, j)) assert AT('t', (a, b, c), (i, j, k)) == AT('t', (b, a, c), (i, k, j)) tabij = AT('t', (a, b), (i, j)) assert tabij.has(a) assert tabij.has(b) assert tabij.has(i) assert tabij.has(j) assert tabij.subs(b, c) == AT('t', (a, c), (i, j)) assert (2*tabij).subs(i, c) == 2*AT('t', (a, b), (c, j)) assert tabij.symbol == Symbol('t') assert latex(tabij) == '{t^{ab}_{ij}}' assert str(tabij) == 't((_a, _b),(_i, _j))' assert AT('t', (a, a), (i, j)).subs(a, b) == AT('t', (b, b), (i, j)) assert AT('t', (a, i), (a, j)).subs(a, b) == AT('t', (b, i), (b, j)) def test_fully_contracted(): i, j, k, l = symbols('i j k l', below_fermi=True) a, b, c, d = symbols('a b c d', above_fermi=True) p, q, r, s = symbols('p q r s', cls=Dummy) Fock = (AntiSymmetricTensor('f', (p,), (q,))* NO(Fd(p)*F(q))) V = (AntiSymmetricTensor('v', (p, q), (r, s))* NO(Fd(p)*Fd(q)*F(s)*F(r)))/4 Fai = wicks(NO(Fd(i)*F(a))*Fock, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) assert Fai == AntiSymmetricTensor('f', (a,), (i,)) Vabij = wicks(NO(Fd(i)*Fd(j)*F(b)*F(a))*V, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) assert Vabij == AntiSymmetricTensor('v', (a, b), (i, j)) def test_substitute_dummies_without_dummies(): i, j = symbols('i,j') assert substitute_dummies(att(i, j) + 2) == att(i, j) + 2 assert substitute_dummies(att(i, j) + 1) == att(i, j) + 1 def test_substitute_dummies_NO_operator(): i, j = symbols('i j', cls=Dummy) assert substitute_dummies(att(i, j)*NO(Fd(i)*F(j)) - att(j, i)*NO(Fd(j)*F(i))) == 0 def test_substitute_dummies_SQ_operator(): i, j = symbols('i j', cls=Dummy) assert substitute_dummies(att(i, j)*Fd(i)*F(j) - att(j, i)*Fd(j)*F(i)) == 0 def test_substitute_dummies_new_indices(): i, j = symbols('i j', below_fermi=True, cls=Dummy) a, b = symbols('a b', above_fermi=True, cls=Dummy) p, q = symbols('p q', cls=Dummy) f = Function('f') assert substitute_dummies(f(i, a, p) - f(j, b, q), new_indices=True) == 0 def test_substitute_dummies_substitution_order(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) f = Function('f') from sympy.utilities.iterables import variations for permut in variations([i, j, k, l], 4): assert substitute_dummies(f(*permut) - f(i, j, k, l)) == 0 def test_dummy_order_inner_outer_lines_VT1T1T1(): ii = symbols('i', below_fermi=True) aa = symbols('a', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies # Coupled-Cluster T1 terms with V*T1*T1*T1 # t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc} exprs = [ # permut v and t <=> swapping internal lines, equivalent # irrespective of symmetries in v v(k, l, c, d)*t(c, ii)*t(d, l)*t(aa, k), v(l, k, c, d)*t(c, ii)*t(d, k)*t(aa, l), v(k, l, d, c)*t(d, ii)*t(c, l)*t(aa, k), v(l, k, d, c)*t(d, ii)*t(c, k)*t(aa, l), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_dummy_order_inner_outer_lines_VT1T1T1T1(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies # Coupled-Cluster T2 terms with V*T1*T1*T1*T1 exprs = [ # permut t <=> swapping external lines, not equivalent # except if v has certain symmetries. v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(k, l, c, d)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l), v(k, l, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l), v(k, l, c, d)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permut v <=> swapping external lines, not equivalent # except if v has certain symmetries. # # Note that in contrast to above, these permutations have identical # dummy order. That is because the proximity to external indices # has higher influence on the canonical dummy ordering than the # position of a dummy on the factors. In fact, the terms here are # similar in structure as the result of the dummy substitutions above. v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(l, k, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(k, l, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(l, k, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), ] for permut in exprs[1:]: assert dums(exprs[0]) == dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permut t and v <=> swapping internal lines, equivalent. # Canonical dummy order is different, and a consistent # substitution reveals the equivalence. v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(k, l, d, c)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l), v(l, k, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l), v(l, k, d, c)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_get_subNO(): p, q, r = symbols('p,q,r') assert NO(F(p)*F(q)*F(r)).get_subNO(1) == NO(F(p)*F(r)) assert NO(F(p)*F(q)*F(r)).get_subNO(0) == NO(F(q)*F(r)) assert NO(F(p)*F(q)*F(r)).get_subNO(2) == NO(F(p)*F(q)) def test_equivalent_internal_lines_VT1T1(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ # permute v. Different dummy order. Not equivalent. v(i, j, a, b)*t(a, i)*t(b, j), v(j, i, a, b)*t(a, i)*t(b, j), v(i, j, b, a)*t(a, i)*t(b, j), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v. Different dummy order. Equivalent v(i, j, a, b)*t(a, i)*t(b, j), v(j, i, b, a)*t(a, i)*t(b, j), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ # permute t. Same dummy order, not equivalent. v(i, j, a, b)*t(a, i)*t(b, j), v(i, j, a, b)*t(b, i)*t(a, j), ] for permut in exprs[1:]: assert dums(exprs[0]) == dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Different dummy order, equivalent v(i, j, a, b)*t(a, i)*t(b, j), v(j, i, a, b)*t(a, j)*t(b, i), v(i, j, b, a)*t(b, i)*t(a, j), v(j, i, b, a)*t(b, j)*t(a, i), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_equivalent_internal_lines_VT2conjT2(): # this diagram requires special handling in TCE i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations v = Function('v') t = Function('t') dums = _get_ordered_dummies # v(abcd)t(abij)t(ijcd) template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) # v(abcd)t(abij)t(jicd) template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2conjT2_ambiguous_order(): # These diagrams invokes _determine_ambiguous() because the # dummies can not be ordered unambiguously by the key alone i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations v = Function('v') t = Function('t') dums = _get_ordered_dummies # v(abcd)t(abij)t(cdij) template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ # permute v. Same dummy order, not equivalent. # # This test show that the dummy order may not be sensitive to all # index permutations. The following expressions have identical # structure as the resulting terms from of the dummy substitutions # in the test above. Here, all expressions have the same dummy # order, so they cannot be simplified by means of dummy # substitution. In order to simplify further, it is necessary to # exploit symmetries in the objects, for instance if t or v is # antisymmetric. v(i, j, a, b)*t(a, b, i, j), v(j, i, a, b)*t(a, b, i, j), v(i, j, b, a)*t(a, b, i, j), v(j, i, b, a)*t(a, b, i, j), ] for permut in exprs[1:]: assert dums(exprs[0]) == dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute t. v(i, j, a, b)*t(a, b, i, j), v(i, j, a, b)*t(b, a, i, j), v(i, j, a, b)*t(a, b, j, i), v(i, j, a, b)*t(b, a, j, i), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Relabelling of dummies should be equivalent. v(i, j, a, b)*t(a, b, i, j), v(j, i, a, b)*t(a, b, j, i), v(i, j, b, a)*t(b, a, i, j), v(j, i, b, a)*t(b, a, j, i), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_VT2T2(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l), v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k), v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l), v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ v(k, l, c, d)*t(aa, c, ii, k)*t(d, bb, jj, l), v(l, k, c, d)*t(aa, c, ii, l)*t(d, bb, jj, k), v(k, l, d, c)*t(aa, d, ii, k)*t(c, bb, jj, l), v(l, k, d, c)*t(aa, d, ii, l)*t(c, bb, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ v(k, l, c, d)*t(c, aa, ii, k)*t(bb, d, jj, l), v(l, k, c, d)*t(c, aa, ii, l)*t(bb, d, jj, k), v(k, l, d, c)*t(d, aa, ii, k)*t(bb, c, jj, l), v(l, k, d, c)*t(d, aa, ii, l)*t(bb, c, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_pqrs(): ii, jj = symbols('i j') aa, bb = symbols('a b') k, l = symbols('k l', cls=Dummy) c, d = symbols('c d', cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l), v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k), v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l), v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_dummy_order_well_defined(): aa, bb = symbols('a b', above_fermi=True) k, l, m = symbols('k l m', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) p, q = symbols('p q', cls=Dummy) A = Function('A') B = Function('B') C = Function('C') dums = _get_ordered_dummies # We go through all key components in the order of increasing priority, # and consider only fully orderable expressions. Non-orderable expressions # are tested elsewhere. # pos in first factor determines sort order assert dums(A(k, l)*B(l, k)) == [k, l] assert dums(A(l, k)*B(l, k)) == [l, k] assert dums(A(k, l)*B(k, l)) == [k, l] assert dums(A(l, k)*B(k, l)) == [l, k] # factors involving the index assert dums(A(k, l)*B(l, m)*C(k, m)) == [l, k, m] assert dums(A(k, l)*B(l, m)*C(m, k)) == [l, k, m] assert dums(A(l, k)*B(l, m)*C(k, m)) == [l, k, m] assert dums(A(l, k)*B(l, m)*C(m, k)) == [l, k, m] assert dums(A(k, l)*B(m, l)*C(k, m)) == [l, k, m] assert dums(A(k, l)*B(m, l)*C(m, k)) == [l, k, m] assert dums(A(l, k)*B(m, l)*C(k, m)) == [l, k, m] assert dums(A(l, k)*B(m, l)*C(m, k)) == [l, k, m] # same, but with factor order determined by non-dummies assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, k, m)) == [l, k, m] assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, m, k)) == [l, k, m] assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, k, m)) == [l, k, m] assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, m, k)) == [l, k, m] assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, k, m)) == [l, k, m] assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, m, k)) == [l, k, m] assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, k, m)) == [l, k, m] assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, m, k)) == [l, k, m] # index range assert dums(A(p, c, k)*B(p, c, k)) == [k, c, p] assert dums(A(p, k, c)*B(p, c, k)) == [k, c, p] assert dums(A(c, k, p)*B(p, c, k)) == [k, c, p] assert dums(A(c, p, k)*B(p, c, k)) == [k, c, p] assert dums(A(k, c, p)*B(p, c, k)) == [k, c, p] assert dums(A(k, p, c)*B(p, c, k)) == [k, c, p] assert dums(B(p, c, k)*A(p, c, k)) == [k, c, p] assert dums(B(p, k, c)*A(p, c, k)) == [k, c, p] assert dums(B(c, k, p)*A(p, c, k)) == [k, c, p] assert dums(B(c, p, k)*A(p, c, k)) == [k, c, p] assert dums(B(k, c, p)*A(p, c, k)) == [k, c, p] assert dums(B(k, p, c)*A(p, c, k)) == [k, c, p] def test_dummy_order_ambiguous(): aa, bb = symbols('a b', above_fermi=True) i, j, k, l, m = symbols('i j k l m', below_fermi=True, cls=Dummy) a, b, c, d, e = symbols('a b c d e', above_fermi=True, cls=Dummy) p, q = symbols('p q', cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) p5, p6, p7, p8 = symbols('p5 p6 p7 p8', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) h5, h6, h7, h8 = symbols('h5 h6 h7 h8', below_fermi=True, cls=Dummy) A = Function('A') B = Function('B') from sympy.utilities.iterables import variations # A*A*A*A*B -- ordering of p5 and p4 is used to figure out the rest template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*B(p5, p4) permutator = variations([a, b, c, d, e], 5) base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4, p5], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) # A*A*A*A*A -- an arbitrary index is assigned and the rest are figured out template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*A(p5, p4) permutator = variations([a, b, c, d, e], 5) base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4, p5], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) # A*A*A -- ordering of p5 and p4 is used to figure out the rest template = A(p1, p2, p4, p1)*A(p2, p3, p3, p5)*A(p5, p4) permutator = variations([a, b, c, d, e], 5) base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4, p5], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) def atv(*args): return AntiSymmetricTensor('v', args[:2], args[2:] ) def att(*args): if len(args) == 4: return AntiSymmetricTensor('t', args[:2], args[2:] ) elif len(args) == 2: return AntiSymmetricTensor('t', (args[0],), (args[1],)) def test_dummy_order_inner_outer_lines_VT1T1T1_AT(): ii = symbols('i', below_fermi=True) aa = symbols('a', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) # Coupled-Cluster T1 terms with V*T1*T1*T1 # t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc} exprs = [ # permut v and t <=> swapping internal lines, equivalent # irrespective of symmetries in v atv(k, l, c, d)*att(c, ii)*att(d, l)*att(aa, k), atv(l, k, c, d)*att(c, ii)*att(d, k)*att(aa, l), atv(k, l, d, c)*att(d, ii)*att(c, l)*att(aa, k), atv(l, k, d, c)*att(d, ii)*att(c, k)*att(aa, l), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_dummy_order_inner_outer_lines_VT1T1T1T1_AT(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) # Coupled-Cluster T2 terms with V*T1*T1*T1*T1 # non-equivalent substitutions (change of sign) exprs = [ # permut t <=> swapping external lines atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l), atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(aa, k)*att(bb, l), atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(bb, k)*att(aa, l), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == -substitute_dummies(permut) # equivalent substitutions exprs = [ atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l), # permut t <=> swapping external lines atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(bb, k)*att(aa, l), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_equivalent_internal_lines_VT1T1_AT(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) exprs = [ # permute v. Different dummy order. Not equivalent. atv(i, j, a, b)*att(a, i)*att(b, j), atv(j, i, a, b)*att(a, i)*att(b, j), atv(i, j, b, a)*att(a, i)*att(b, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v. Different dummy order. Equivalent atv(i, j, a, b)*att(a, i)*att(b, j), atv(j, i, b, a)*att(a, i)*att(b, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ # permute t. Same dummy order, not equivalent. atv(i, j, a, b)*att(a, i)*att(b, j), atv(i, j, a, b)*att(b, i)*att(a, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Different dummy order, equivalent atv(i, j, a, b)*att(a, i)*att(b, j), atv(j, i, a, b)*att(a, j)*att(b, i), atv(i, j, b, a)*att(b, i)*att(a, j), atv(j, i, b, a)*att(b, j)*att(a, i), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_equivalent_internal_lines_VT2conjT2_AT(): # this diagram requires special handling in TCE i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations # atv(abcd)att(abij)att(ijcd) template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) # atv(abcd)att(abij)att(jicd) template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2conjT2_ambiguous_order_AT(): # These diagrams invokes _determine_ambiguous() because the # dummies can not be ordered unambiguously by the key alone i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations # atv(abcd)att(abij)att(cdij) template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2_AT(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) exprs = [ # permute v. Same dummy order, not equivalent. atv(i, j, a, b)*att(a, b, i, j), atv(j, i, a, b)*att(a, b, i, j), atv(i, j, b, a)*att(a, b, i, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute t. atv(i, j, a, b)*att(a, b, i, j), atv(i, j, a, b)*att(b, a, i, j), atv(i, j, a, b)*att(a, b, j, i), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Relabelling of dummies should be equivalent. atv(i, j, a, b)*att(a, b, i, j), atv(j, i, a, b)*att(a, b, j, i), atv(i, j, b, a)*att(b, a, i, j), atv(j, i, b, a)*att(b, a, j, i), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_VT2T2_AT(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) exprs = [ atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l), atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k), atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l), atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ atv(k, l, c, d)*att(aa, c, ii, k)*att(d, bb, jj, l), atv(l, k, c, d)*att(aa, c, ii, l)*att(d, bb, jj, k), atv(k, l, d, c)*att(aa, d, ii, k)*att(c, bb, jj, l), atv(l, k, d, c)*att(aa, d, ii, l)*att(c, bb, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ atv(k, l, c, d)*att(c, aa, ii, k)*att(bb, d, jj, l), atv(l, k, c, d)*att(c, aa, ii, l)*att(bb, d, jj, k), atv(k, l, d, c)*att(d, aa, ii, k)*att(bb, c, jj, l), atv(l, k, d, c)*att(d, aa, ii, l)*att(bb, c, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_pqrs_AT(): ii, jj = symbols('i j') aa, bb = symbols('a b') k, l = symbols('k l', cls=Dummy) c, d = symbols('c d', cls=Dummy) exprs = [ atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l), atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k), atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l), atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_issue_19661(): a = Symbol('0') assert latex(Commutator(Bd(a)**2, B(a)) ) == '- \\left[b_{0},{b^\\dagger_{0}}^{2}\\right]' def test_canonical_ordering_AntiSymmetricTensor(): v = symbols("v") c, d = symbols(('c','d'), above_fermi=True, cls=Dummy) k, l = symbols(('k','l'), below_fermi=True, cls=Dummy) # formerly, the left gave either the left or the right assert AntiSymmetricTensor(v, (k, l), (d, c) ) == -AntiSymmetricTensor(v, (l, k), (d, c))
6e4cafd7e0ea57b8ab8374f5d0a63aaf9489b08b0b80a3c50d91a6e2066d04a1
""" This module can be used to solve 2D beam bending problems with singularity functions in mechanics. """ from sympy.core import S, Symbol, diff, symbols from sympy.solvers import linsolve from sympy.printing import sstr from sympy.functions import SingularityFunction, Piecewise, factorial from sympy.core import sympify from sympy.integrals import integrate from sympy.series import limit from sympy.plotting import plot, PlotGrid from sympy.geometry.entity import GeometryEntity from sympy.external import import_module from sympy import lambdify, Add from sympy.core.compatibility import iterable from sympy.utilities.decorator import doctest_depends_on numpy = import_module('numpy', import_kwargs={'fromlist':['arange']}) class Beam: """ A Beam is a structural element that is capable of withstanding load primarily by resisting against bending. Beams are characterized by their cross sectional profile(Second moment of area), their length and their material. .. note:: While solving a beam bending problem, a user should choose its own sign convention and should stick to it. The results will automatically follow the chosen sign convention. However, the chosen sign convention must respect the rule that, on the positive side of beam's axis (in respect to current section), a loading force giving positive shear yields a negative moment, as below (the curved arrow shows the positive moment and rotation): .. image:: allowed-sign-conventions.png Examples ======== There is a beam of length 4 meters. A constant distributed load of 6 N/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. The deflection of the beam at the end is restricted. Using the sign convention of downwards forces being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols, Piecewise >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(4, E, I) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(6, 2, 0) >>> b.apply_load(R2, 4, -1) >>> b.bc_deflection = [(0, 0), (4, 0)] >>> b.boundary_conditions {'deflection': [(0, 0), (4, 0)], 'slope': []} >>> b.load R1*SingularityFunction(x, 0, -1) + R2*SingularityFunction(x, 4, -1) + 6*SingularityFunction(x, 2, 0) >>> b.solve_for_reaction_loads(R1, R2) >>> b.load -3*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 2, 0) - 9*SingularityFunction(x, 4, -1) >>> b.shear_force() 3*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 2, 1) + 9*SingularityFunction(x, 4, 0) >>> b.bending_moment() 3*SingularityFunction(x, 0, 1) - 3*SingularityFunction(x, 2, 2) + 9*SingularityFunction(x, 4, 1) >>> b.slope() (-3*SingularityFunction(x, 0, 2)/2 + SingularityFunction(x, 2, 3) - 9*SingularityFunction(x, 4, 2)/2 + 7)/(E*I) >>> b.deflection() (7*x - SingularityFunction(x, 0, 3)/2 + SingularityFunction(x, 2, 4)/4 - 3*SingularityFunction(x, 4, 3)/2)/(E*I) >>> b.deflection().rewrite(Piecewise) (7*x - Piecewise((x**3, x > 0), (0, True))/2 - 3*Piecewise(((x - 4)**3, x - 4 > 0), (0, True))/2 + Piecewise(((x - 2)**4, x - 2 > 0), (0, True))/4)/(E*I) """ def __init__(self, length, elastic_modulus, second_moment, area=Symbol('A'), variable=Symbol('x'), base_char='C'): """Initializes the class. Parameters ========== length : Sympifyable A Symbol or value representing the Beam's length. elastic_modulus : Sympifyable A SymPy expression representing the Beam's Modulus of Elasticity. It is a measure of the stiffness of the Beam material. It can also be a continuous function of position along the beam. second_moment : Sympifyable or Geometry object Describes the cross-section of the beam via a SymPy expression representing the Beam's second moment of area. It is a geometrical property of an area which reflects how its points are distributed with respect to its neutral axis. It can also be a continuous function of position along the beam. Alternatively ``second_moment`` can be a shape object such as a ``Polygon`` from the geometry module representing the shape of the cross-section of the beam. In such cases, it is assumed that the x-axis of the shape object is aligned with the bending axis of the beam. The second moment of area will be computed from the shape object internally. area : Symbol/float Represents the cross-section area of beam variable : Symbol, optional A Symbol object that will be used as the variable along the beam while representing the load, shear, moment, slope and deflection curve. By default, it is set to ``Symbol('x')``. base_char : String, optional A String that will be used as base character to generate sequential symbols for integration constants in cases where boundary conditions are not sufficient to solve them. """ self.length = length self.elastic_modulus = elastic_modulus if isinstance(second_moment, GeometryEntity): self.cross_section = second_moment else: self.cross_section = None self.second_moment = second_moment self.variable = variable self._base_char = base_char self._boundary_conditions = {'deflection': [], 'slope': []} self._load = 0 self._area = area self._applied_supports = [] self._support_as_loads = [] self._applied_loads = [] self._reaction_loads = {} self._ild_reactions = {} self._ild_shear = 0 self._ild_moment = 0 # _original_load is a copy of _load equations with unsubstituted reaction # forces. It is used for calculating reaction forces in case of I.L.D. self._original_load = 0 self._composite_type = None self._hinge_position = None def __str__(self): shape_description = self._cross_section if self._cross_section else self._second_moment str_sol = 'Beam({}, {}, {})'.format(sstr(self._length), sstr(self._elastic_modulus), sstr(shape_description)) return str_sol @property def reaction_loads(self): """ Returns the reaction forces in a dictionary.""" return self._reaction_loads @property def ild_shear(self): """ Returns the I.L.D. shear equation.""" return self._ild_shear @property def ild_reactions(self): """ Returns the I.L.D. reaction forces in a dictionary.""" return self._ild_reactions @property def ild_moment(self): """ Returns the I.L.D. moment equation.""" return self._ild_moment @property def length(self): """Length of the Beam.""" return self._length @length.setter def length(self, l): self._length = sympify(l) @property def area(self): """Cross-sectional area of the Beam. """ return self._area @area.setter def area(self, a): self._area = sympify(a) @property def variable(self): """ A symbol that can be used as a variable along the length of the beam while representing load distribution, shear force curve, bending moment, slope curve and the deflection curve. By default, it is set to ``Symbol('x')``, but this property is mutable. Examples ======== >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I, A = symbols('E, I, A') >>> x, y, z = symbols('x, y, z') >>> b = Beam(4, E, I) >>> b.variable x >>> b.variable = y >>> b.variable y >>> b = Beam(4, E, I, A, z) >>> b.variable z """ return self._variable @variable.setter def variable(self, v): if isinstance(v, Symbol): self._variable = v else: raise TypeError("""The variable should be a Symbol object.""") @property def elastic_modulus(self): """Young's Modulus of the Beam. """ return self._elastic_modulus @elastic_modulus.setter def elastic_modulus(self, e): self._elastic_modulus = sympify(e) @property def second_moment(self): """Second moment of area of the Beam. """ return self._second_moment @second_moment.setter def second_moment(self, i): self._cross_section = None if isinstance(i, GeometryEntity): raise ValueError("To update cross-section geometry use `cross_section` attribute") else: self._second_moment = sympify(i) @property def cross_section(self): """Cross-section of the beam""" return self._cross_section @cross_section.setter def cross_section(self, s): if s: self._second_moment = s.second_moment_of_area()[0] self._cross_section = s @property def boundary_conditions(self): """ Returns a dictionary of boundary conditions applied on the beam. The dictionary has three keywords namely moment, slope and deflection. The value of each keyword is a list of tuple, where each tuple contains location and value of a boundary condition in the format (location, value). Examples ======== There is a beam of length 4 meters. The bending moment at 0 should be 4 and at 4 it should be 0. The slope of the beam should be 1 at 0. The deflection should be 2 at 0. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.bc_deflection = [(0, 2)] >>> b.bc_slope = [(0, 1)] >>> b.boundary_conditions {'deflection': [(0, 2)], 'slope': [(0, 1)]} Here the deflection of the beam should be ``2`` at ``0``. Similarly, the slope of the beam should be ``1`` at ``0``. """ return self._boundary_conditions @property def bc_slope(self): return self._boundary_conditions['slope'] @bc_slope.setter def bc_slope(self, s_bcs): self._boundary_conditions['slope'] = s_bcs @property def bc_deflection(self): return self._boundary_conditions['deflection'] @bc_deflection.setter def bc_deflection(self, d_bcs): self._boundary_conditions['deflection'] = d_bcs def join(self, beam, via="fixed"): """ This method joins two beams to make a new composite beam system. Passed Beam class instance is attached to the right end of calling object. This method can be used to form beams having Discontinuous values of Elastic modulus or Second moment. Parameters ========== beam : Beam class object The Beam object which would be connected to the right of calling object. via : String States the way two Beam object would get connected - For axially fixed Beams, via="fixed" - For Beams connected via hinge, via="hinge" Examples ======== There is a cantilever beam of length 4 meters. For first 2 meters its moment of inertia is `1.5*I` and `I` for the other end. A pointload of magnitude 4 N is applied from the top at its free end. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b1 = Beam(2, E, 1.5*I) >>> b2 = Beam(2, E, I) >>> b = b1.join(b2, "fixed") >>> b.apply_load(20, 4, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 0, -2) >>> b.bc_slope = [(0, 0)] >>> b.bc_deflection = [(0, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.load 80*SingularityFunction(x, 0, -2) - 20*SingularityFunction(x, 0, -1) + 20*SingularityFunction(x, 4, -1) >>> b.slope() (-((-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))/I + 120/I)/E + 80.0/(E*I))*SingularityFunction(x, 2, 0) - 0.666666666666667*(-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 0, 0)/(E*I) + 0.666666666666667*(-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 2, 0)/(E*I) """ x = self.variable E = self.elastic_modulus new_length = self.length + beam.length if self.second_moment != beam.second_moment: new_second_moment = Piecewise((self.second_moment, x<=self.length), (beam.second_moment, x<=new_length)) else: new_second_moment = self.second_moment if via == "fixed": new_beam = Beam(new_length, E, new_second_moment, x) new_beam._composite_type = "fixed" return new_beam if via == "hinge": new_beam = Beam(new_length, E, new_second_moment, x) new_beam._composite_type = "hinge" new_beam._hinge_position = self.length return new_beam def apply_support(self, loc, type="fixed"): """ This method applies support to a particular beam object. Parameters ========== loc : Sympifyable Location of point at which support is applied. type : String Determines type of Beam support applied. To apply support structure with - zero degree of freedom, type = "fixed" - one degree of freedom, type = "pin" - two degrees of freedom, type = "roller" Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(30, E, I) >>> b.apply_support(10, 'roller') >>> b.apply_support(30, 'roller') >>> b.apply_load(-8, 0, -1) >>> b.apply_load(120, 30, -2) >>> R_10, R_30 = symbols('R_10, R_30') >>> b.solve_for_reaction_loads(R_10, R_30) >>> b.load -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1) >>> b.slope() (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I) """ loc = sympify(loc) self._applied_supports.append((loc, type)) if type in ("pin", "roller"): reaction_load = Symbol('R_'+str(loc)) self.apply_load(reaction_load, loc, -1) self.bc_deflection.append((loc, 0)) else: reaction_load = Symbol('R_'+str(loc)) reaction_moment = Symbol('M_'+str(loc)) self.apply_load(reaction_load, loc, -1) self.apply_load(reaction_moment, loc, -2) self.bc_deflection.append((loc, 0)) self.bc_slope.append((loc, 0)) self._support_as_loads.append((reaction_moment, loc, -2, None)) self._support_as_loads.append((reaction_load, loc, -1, None)) def apply_load(self, value, start, order, end=None): """ This method adds up the loads given to a particular beam object. Parameters ========== value : Sympifyable The value inserted should have the units [Force/(Distance**(n+1)] where n is the order of applied load. Units for applied loads: - For moments, unit = kN*m - For point loads, unit = kN - For constant distributed load, unit = kN/m - For ramp loads, unit = kN/m/m - For parabolic ramp loads, unit = kN/m/m/m - ... so on. start : Sympifyable The starting point of the applied load. For point moments and point forces this is the location of application. order : Integer The order of the applied load. - For moments, order = -2 - For point loads, order =-1 - For constant distributed load, order = 0 - For ramp loads, order = 1 - For parabolic ramp loads, order = 2 - ... so on. end : Sympifyable, optional An optional argument that can be used if the load has an end point within the length of the beam. Examples ======== There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A point load of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point and a parabolic ramp load of magnitude 2 N/m is applied below the beam starting from 2 meters to 3 meters away from the starting point of the beam. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.apply_load(-3, 0, -2) >>> b.apply_load(4, 2, -1) >>> b.apply_load(-2, 2, 2, end=3) >>> b.load -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2) """ x = self.variable value = sympify(value) start = sympify(start) order = sympify(order) self._applied_loads.append((value, start, order, end)) self._load += value*SingularityFunction(x, start, order) self._original_load += value*SingularityFunction(x, start, order) if end: # load has an end point within the length of the beam. self._handle_end(x, value, start, order, end, type="apply") def remove_load(self, value, start, order, end=None): """ This method removes a particular load present on the beam object. Returns a ValueError if the load passed as an argument is not present on the beam. Parameters ========== value : Sympifyable The magnitude of an applied load. start : Sympifyable The starting point of the applied load. For point moments and point forces this is the location of application. order : Integer The order of the applied load. - For moments, order= -2 - For point loads, order=-1 - For constant distributed load, order=0 - For ramp loads, order=1 - For parabolic ramp loads, order=2 - ... so on. end : Sympifyable, optional An optional argument that can be used if the load has an end point within the length of the beam. Examples ======== There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A pointload of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point and a parabolic ramp load of magnitude 2 N/m is applied below the beam starting from 2 meters to 3 meters away from the starting point of the beam. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.apply_load(-3, 0, -2) >>> b.apply_load(4, 2, -1) >>> b.apply_load(-2, 2, 2, end=3) >>> b.load -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2) >>> b.remove_load(-2, 2, 2, end = 3) >>> b.load -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) """ x = self.variable value = sympify(value) start = sympify(start) order = sympify(order) if (value, start, order, end) in self._applied_loads: self._load -= value*SingularityFunction(x, start, order) self._original_load -= value*SingularityFunction(x, start, order) self._applied_loads.remove((value, start, order, end)) else: msg = "No such load distribution exists on the beam object." raise ValueError(msg) if end: # load has an end point within the length of the beam. self._handle_end(x, value, start, order, end, type="remove") def _handle_end(self, x, value, start, order, end, type): """ This functions handles the optional `end` value in the `apply_load` and `remove_load` functions. When the value of end is not NULL, this function will be executed. """ if order.is_negative: msg = ("If 'end' is provided the 'order' of the load cannot " "be negative, i.e. 'end' is only valid for distributed " "loads.") raise ValueError(msg) # NOTE : A Taylor series can be used to define the summation of # singularity functions that subtract from the load past the end # point such that it evaluates to zero past 'end'. f = value*x**order if type == "apply": # iterating for "apply_load" method for i in range(0, order + 1): self._load -= (f.diff(x, i).subs(x, end - start) * SingularityFunction(x, end, i)/factorial(i)) self._original_load -= (f.diff(x, i).subs(x, end - start) * SingularityFunction(x, end, i)/factorial(i)) elif type == "remove": # iterating for "remove_load" method for i in range(0, order + 1): self._load += (f.diff(x, i).subs(x, end - start) * SingularityFunction(x, end, i)/factorial(i)) self._original_load += (f.diff(x, i).subs(x, end - start) * SingularityFunction(x, end, i)/factorial(i)) @property def load(self): """ Returns a Singularity Function expression which represents the load distribution curve of the Beam object. Examples ======== There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A point load of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point and a parabolic ramp load of magnitude 2 N/m is applied below the beam starting from 3 meters away from the starting point of the beam. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.apply_load(-3, 0, -2) >>> b.apply_load(4, 2, -1) >>> b.apply_load(-2, 3, 2) >>> b.load -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 3, 2) """ return self._load @property def applied_loads(self): """ Returns a list of all loads applied on the beam object. Each load in the list is a tuple of form (value, start, order, end). Examples ======== There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A pointload of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point. Another pointload of magnitude 5 N is applied at same position. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.apply_load(-3, 0, -2) >>> b.apply_load(4, 2, -1) >>> b.apply_load(5, 2, -1) >>> b.load -3*SingularityFunction(x, 0, -2) + 9*SingularityFunction(x, 2, -1) >>> b.applied_loads [(-3, 0, -2, None), (4, 2, -1, None), (5, 2, -1, None)] """ return self._applied_loads def _solve_hinge_beams(self, *reactions): """Method to find integration constants and reactional variables in a composite beam connected via hinge. This method resolves the composite Beam into its sub-beams and then equations of shear force, bending moment, slope and deflection are evaluated for both of them separately. These equations are then solved for unknown reactions and integration constants using the boundary conditions applied on the Beam. Equal deflection of both sub-beams at the hinge joint gives us another equation to solve the system. Examples ======== A combined beam, with constant fkexural rigidity E*I, is formed by joining a Beam of length 2*l to the right of another Beam of length l. The whole beam is fixed at both of its both end. A point load of magnitude P is also applied from the top at a distance of 2*l from starting point. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> l=symbols('l', positive=True) >>> b1=Beam(l ,E,I) >>> b2=Beam(2*l ,E,I) >>> b=b1.join(b2,"hinge") >>> M1, A1, M2, A2, P = symbols('M1 A1 M2 A2 P') >>> b.apply_load(A1,0,-1) >>> b.apply_load(M1,0,-2) >>> b.apply_load(P,2*l,-1) >>> b.apply_load(A2,3*l,-1) >>> b.apply_load(M2,3*l,-2) >>> b.bc_slope=[(0,0), (3*l, 0)] >>> b.bc_deflection=[(0,0), (3*l, 0)] >>> b.solve_for_reaction_loads(M1, A1, M2, A2) >>> b.reaction_loads {A1: -5*P/18, A2: -13*P/18, M1: 5*P*l/18, M2: -4*P*l/9} >>> b.slope() (5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, 0, 0)/(E*I) - (5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, l, 0)/(E*I) + (P*l**2/18 - 4*P*l*SingularityFunction(-l + x, 2*l, 1)/9 - 5*P*SingularityFunction(-l + x, 0, 2)/36 + P*SingularityFunction(-l + x, l, 2)/2 - 13*P*SingularityFunction(-l + x, 2*l, 2)/36)*SingularityFunction(x, l, 0)/(E*I) >>> b.deflection() (5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, 0, 0)/(E*I) - (5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, l, 0)/(E*I) + (5*P*l**3/54 + P*l**2*(-l + x)/18 - 2*P*l*SingularityFunction(-l + x, 2*l, 2)/9 - 5*P*SingularityFunction(-l + x, 0, 3)/108 + P*SingularityFunction(-l + x, l, 3)/6 - 13*P*SingularityFunction(-l + x, 2*l, 3)/108)*SingularityFunction(x, l, 0)/(E*I) """ x = self.variable l = self._hinge_position E = self._elastic_modulus I = self._second_moment if isinstance(I, Piecewise): I1 = I.args[0][0] I2 = I.args[1][0] else: I1 = I2 = I load_1 = 0 # Load equation on first segment of composite beam load_2 = 0 # Load equation on second segment of composite beam # Distributing load on both segments for load in self.applied_loads: if load[1] < l: load_1 += load[0]*SingularityFunction(x, load[1], load[2]) if load[2] == 0: load_1 -= load[0]*SingularityFunction(x, load[3], load[2]) elif load[2] > 0: load_1 -= load[0]*SingularityFunction(x, load[3], load[2]) + load[0]*SingularityFunction(x, load[3], 0) elif load[1] == l: load_1 += load[0]*SingularityFunction(x, load[1], load[2]) load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2]) elif load[1] > l: load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2]) if load[2] == 0: load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2]) elif load[2] > 0: load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2]) + load[0]*SingularityFunction(x, load[3] - l, 0) h = Symbol('h') # Force due to hinge load_1 += h*SingularityFunction(x, l, -1) load_2 -= h*SingularityFunction(x, 0, -1) eq = [] shear_1 = integrate(load_1, x) shear_curve_1 = limit(shear_1, x, l) eq.append(shear_curve_1) bending_1 = integrate(shear_1, x) moment_curve_1 = limit(bending_1, x, l) eq.append(moment_curve_1) shear_2 = integrate(load_2, x) shear_curve_2 = limit(shear_2, x, self.length - l) eq.append(shear_curve_2) bending_2 = integrate(shear_2, x) moment_curve_2 = limit(bending_2, x, self.length - l) eq.append(moment_curve_2) C1 = Symbol('C1') C2 = Symbol('C2') C3 = Symbol('C3') C4 = Symbol('C4') slope_1 = S.One/(E*I1)*(integrate(bending_1, x) + C1) def_1 = S.One/(E*I1)*(integrate((E*I)*slope_1, x) + C1*x + C2) slope_2 = S.One/(E*I2)*(integrate(integrate(integrate(load_2, x), x), x) + C3) def_2 = S.One/(E*I2)*(integrate((E*I)*slope_2, x) + C4) for position, value in self.bc_slope: if position<l: eq.append(slope_1.subs(x, position) - value) else: eq.append(slope_2.subs(x, position - l) - value) for position, value in self.bc_deflection: if position<l: eq.append(def_1.subs(x, position) - value) else: eq.append(def_2.subs(x, position - l) - value) eq.append(def_1.subs(x, l) - def_2.subs(x, 0)) # Deflection of both the segments at hinge would be equal constants = list(linsolve(eq, C1, C2, C3, C4, h, *reactions)) reaction_values = list(constants[0])[5:] self._reaction_loads = dict(zip(reactions, reaction_values)) self._load = self._load.subs(self._reaction_loads) # Substituting constants and reactional load and moments with their corresponding values slope_1 = slope_1.subs({C1: constants[0][0], h:constants[0][4]}).subs(self._reaction_loads) def_1 = def_1.subs({C1: constants[0][0], C2: constants[0][1], h:constants[0][4]}).subs(self._reaction_loads) slope_2 = slope_2.subs({x: x-l, C3: constants[0][2], h:constants[0][4]}).subs(self._reaction_loads) def_2 = def_2.subs({x: x-l,C3: constants[0][2], C4: constants[0][3], h:constants[0][4]}).subs(self._reaction_loads) self._hinge_beam_slope = slope_1*SingularityFunction(x, 0, 0) - slope_1*SingularityFunction(x, l, 0) + slope_2*SingularityFunction(x, l, 0) self._hinge_beam_deflection = def_1*SingularityFunction(x, 0, 0) - def_1*SingularityFunction(x, l, 0) + def_2*SingularityFunction(x, l, 0) def solve_for_reaction_loads(self, *reactions): """ Solves for the reaction forces. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) # Reaction force at x = 10 >>> b.apply_load(R2, 30, -1) # Reaction force at x = 30 >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.load R1*SingularityFunction(x, 10, -1) + R2*SingularityFunction(x, 30, -1) - 8*SingularityFunction(x, 0, -1) + 120*SingularityFunction(x, 30, -2) >>> b.solve_for_reaction_loads(R1, R2) >>> b.reaction_loads {R1: 6, R2: 2} >>> b.load -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1) """ if self._composite_type == "hinge": return self._solve_hinge_beams(*reactions) x = self.variable l = self.length C3 = Symbol('C3') C4 = Symbol('C4') shear_curve = limit(self.shear_force(), x, l) moment_curve = limit(self.bending_moment(), x, l) slope_eqs = [] deflection_eqs = [] slope_curve = integrate(self.bending_moment(), x) + C3 for position, value in self._boundary_conditions['slope']: eqs = slope_curve.subs(x, position) - value slope_eqs.append(eqs) deflection_curve = integrate(slope_curve, x) + C4 for position, value in self._boundary_conditions['deflection']: eqs = deflection_curve.subs(x, position) - value deflection_eqs.append(eqs) solution = list((linsolve([shear_curve, moment_curve] + slope_eqs + deflection_eqs, (C3, C4) + reactions).args)[0]) solution = solution[2:] self._reaction_loads = dict(zip(reactions, solution)) self._load = self._load.subs(self._reaction_loads) def shear_force(self): """ Returns a Singularity Function expression which represents the shear force curve of the Beam object. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.shear_force() 8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) - 120*SingularityFunction(x, 30, -1) - 2*SingularityFunction(x, 30, 0) """ x = self.variable return -integrate(self.load, x) def max_shear_force(self): """Returns maximum Shear force and its coordinate in the Beam object.""" from sympy import solve, Mul, Interval shear_curve = self.shear_force() x = self.variable terms = shear_curve.args singularity = [] # Points at which shear function changes for term in terms: if isinstance(term, Mul): term = term.args[-1] # SingularityFunction in the term singularity.append(term.args[1]) singularity.sort() singularity = list(set(singularity)) intervals = [] # List of Intervals with discrete value of shear force shear_values = [] # List of values of shear force in each interval for i, s in enumerate(singularity): if s == 0: continue try: shear_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self._load.rewrite(Piecewise), x<s), (float("nan"), True)) points = solve(shear_slope, x) val = [] for point in points: val.append(abs(shear_curve.subs(x, point))) points.extend([singularity[i-1], s]) val += [abs(limit(shear_curve, x, singularity[i-1], '+')), abs(limit(shear_curve, x, s, '-'))] max_shear = max(val) shear_values.append(max_shear) intervals.append(points[val.index(max_shear)]) # If shear force in a particular Interval has zero or constant # slope, then above block gives NotImplementedError as # solve can't represent Interval solutions. except NotImplementedError: initial_shear = limit(shear_curve, x, singularity[i-1], '+') final_shear = limit(shear_curve, x, s, '-') # If shear_curve has a constant slope(it is a line). if shear_curve.subs(x, (singularity[i-1] + s)/2) == (initial_shear + final_shear)/2 and initial_shear != final_shear: shear_values.extend([initial_shear, final_shear]) intervals.extend([singularity[i-1], s]) else: # shear_curve has same value in whole Interval shear_values.append(final_shear) intervals.append(Interval(singularity[i-1], s)) shear_values = list(map(abs, shear_values)) maximum_shear = max(shear_values) point = intervals[shear_values.index(maximum_shear)] return (point, maximum_shear) def bending_moment(self): """ Returns a Singularity Function expression which represents the bending moment curve of the Beam object. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.bending_moment() 8*SingularityFunction(x, 0, 1) - 6*SingularityFunction(x, 10, 1) - 120*SingularityFunction(x, 30, 0) - 2*SingularityFunction(x, 30, 1) """ x = self.variable return integrate(self.shear_force(), x) def max_bmoment(self): """Returns maximum Shear force and its coordinate in the Beam object.""" from sympy import solve, Mul, Interval bending_curve = self.bending_moment() x = self.variable terms = bending_curve.args singularity = [] # Points at which bending moment changes for term in terms: if isinstance(term, Mul): term = term.args[-1] # SingularityFunction in the term singularity.append(term.args[1]) singularity.sort() singularity = list(set(singularity)) intervals = [] # List of Intervals with discrete value of bending moment moment_values = [] # List of values of bending moment in each interval for i, s in enumerate(singularity): if s == 0: continue try: moment_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self.shear_force().rewrite(Piecewise), x<s), (float("nan"), True)) points = solve(moment_slope, x) val = [] for point in points: val.append(abs(bending_curve.subs(x, point))) points.extend([singularity[i-1], s]) val += [abs(limit(bending_curve, x, singularity[i-1], '+')), abs(limit(bending_curve, x, s, '-'))] max_moment = max(val) moment_values.append(max_moment) intervals.append(points[val.index(max_moment)]) # If bending moment in a particular Interval has zero or constant # slope, then above block gives NotImplementedError as solve # can't represent Interval solutions. except NotImplementedError: initial_moment = limit(bending_curve, x, singularity[i-1], '+') final_moment = limit(bending_curve, x, s, '-') # If bending_curve has a constant slope(it is a line). if bending_curve.subs(x, (singularity[i-1] + s)/2) == (initial_moment + final_moment)/2 and initial_moment != final_moment: moment_values.extend([initial_moment, final_moment]) intervals.extend([singularity[i-1], s]) else: # bending_curve has same value in whole Interval moment_values.append(final_moment) intervals.append(Interval(singularity[i-1], s)) moment_values = list(map(abs, moment_values)) maximum_moment = max(moment_values) point = intervals[moment_values.index(maximum_moment)] return (point, maximum_moment) def point_cflexure(self): """ Returns a Set of point(s) with zero bending moment and where bending moment curve of the beam object changes its sign from negative to positive or vice versa. Examples ======== There is is 10 meter long overhanging beam. There are two simple supports below the beam. One at the start and another one at a distance of 6 meters from the start. Point loads of magnitude 10KN and 20KN are applied at 2 meters and 4 meters from start respectively. A Uniformly distribute load of magnitude of magnitude 3KN/m is also applied on top starting from 6 meters away from starting point till end. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(10, E, I) >>> b.apply_load(-4, 0, -1) >>> b.apply_load(-46, 6, -1) >>> b.apply_load(10, 2, -1) >>> b.apply_load(20, 4, -1) >>> b.apply_load(3, 6, 0) >>> b.point_cflexure() [10/3] """ from sympy import solve # To restrict the range within length of the Beam moment_curve = Piecewise((float("nan"), self.variable<=0), (self.bending_moment(), self.variable<self.length), (float("nan"), True)) points = solve(moment_curve.rewrite(Piecewise), self.variable, domain=S.Reals) return points def slope(self): """ Returns a Singularity Function expression which represents the slope the elastic curve of the Beam object. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.slope() (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I) """ x = self.variable E = self.elastic_modulus I = self.second_moment if self._composite_type == "hinge": return self._hinge_beam_slope if not self._boundary_conditions['slope']: return diff(self.deflection(), x) if isinstance(I, Piecewise) and self._composite_type == "fixed": args = I.args slope = 0 prev_slope = 0 prev_end = 0 for i in range(len(args)): if i != 0: prev_end = args[i-1][1].args[1] slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x)) if i != len(args) - 1: slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0) - \ (prev_slope + slope_value)*SingularityFunction(x, args[i][1].args[1], 0) else: slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0) prev_slope = slope_value.subs(x, args[i][1].args[1]) return slope C3 = Symbol('C3') slope_curve = -integrate(S.One/(E*I)*self.bending_moment(), x) + C3 bc_eqs = [] for position, value in self._boundary_conditions['slope']: eqs = slope_curve.subs(x, position) - value bc_eqs.append(eqs) constants = list(linsolve(bc_eqs, C3)) slope_curve = slope_curve.subs({C3: constants[0][0]}) return slope_curve def deflection(self): """ Returns a Singularity Function expression which represents the elastic curve or deflection of the Beam object. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.deflection() (4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I) """ x = self.variable E = self.elastic_modulus I = self.second_moment if self._composite_type == "hinge": return self._hinge_beam_deflection if not self._boundary_conditions['deflection'] and not self._boundary_conditions['slope']: if isinstance(I, Piecewise) and self._composite_type == "fixed": args = I.args prev_slope = 0 prev_def = 0 prev_end = 0 deflection = 0 for i in range(len(args)): if i != 0: prev_end = args[i-1][1].args[1] slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x)) recent_segment_slope = prev_slope + slope_value deflection_value = integrate(recent_segment_slope, (x, prev_end, x)) if i != len(args) - 1: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \ - (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0) else: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) prev_slope = slope_value.subs(x, args[i][1].args[1]) prev_def = deflection_value.subs(x, args[i][1].args[1]) return deflection base_char = self._base_char constants = symbols(base_char + '3:5') return S.One/(E*I)*integrate(-integrate(self.bending_moment(), x), x) + constants[0]*x + constants[1] elif not self._boundary_conditions['deflection']: base_char = self._base_char constant = symbols(base_char + '4') return integrate(self.slope(), x) + constant elif not self._boundary_conditions['slope'] and self._boundary_conditions['deflection']: if isinstance(I, Piecewise) and self._composite_type == "fixed": args = I.args prev_slope = 0 prev_def = 0 prev_end = 0 deflection = 0 for i in range(len(args)): if i != 0: prev_end = args[i-1][1].args[1] slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x)) recent_segment_slope = prev_slope + slope_value deflection_value = integrate(recent_segment_slope, (x, prev_end, x)) if i != len(args) - 1: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \ - (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0) else: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) prev_slope = slope_value.subs(x, args[i][1].args[1]) prev_def = deflection_value.subs(x, args[i][1].args[1]) return deflection base_char = self._base_char C3, C4 = symbols(base_char + '3:5') # Integration constants slope_curve = -integrate(self.bending_moment(), x) + C3 deflection_curve = integrate(slope_curve, x) + C4 bc_eqs = [] for position, value in self._boundary_conditions['deflection']: eqs = deflection_curve.subs(x, position) - value bc_eqs.append(eqs) constants = list(linsolve(bc_eqs, (C3, C4))) deflection_curve = deflection_curve.subs({C3: constants[0][0], C4: constants[0][1]}) return S.One/(E*I)*deflection_curve if isinstance(I, Piecewise) and self._composite_type == "fixed": args = I.args prev_slope = 0 prev_def = 0 prev_end = 0 deflection = 0 for i in range(len(args)): if i != 0: prev_end = args[i-1][1].args[1] slope_value = S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x)) recent_segment_slope = prev_slope + slope_value deflection_value = integrate(recent_segment_slope, (x, prev_end, x)) if i != len(args) - 1: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \ - (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0) else: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) prev_slope = slope_value.subs(x, args[i][1].args[1]) prev_def = deflection_value.subs(x, args[i][1].args[1]) return deflection C4 = Symbol('C4') deflection_curve = integrate(self.slope(), x) + C4 bc_eqs = [] for position, value in self._boundary_conditions['deflection']: eqs = deflection_curve.subs(x, position) - value bc_eqs.append(eqs) constants = list(linsolve(bc_eqs, C4)) deflection_curve = deflection_curve.subs({C4: constants[0][0]}) return deflection_curve def max_deflection(self): """ Returns point of max deflection and its corresponding deflection value in a Beam object. """ from sympy import solve # To restrict the range within length of the Beam slope_curve = Piecewise((float("nan"), self.variable<=0), (self.slope(), self.variable<self.length), (float("nan"), True)) points = solve(slope_curve.rewrite(Piecewise), self.variable, domain=S.Reals) deflection_curve = self.deflection() deflections = [deflection_curve.subs(self.variable, x) for x in points] deflections = list(map(abs, deflections)) if len(deflections) != 0: max_def = max(deflections) return (points[deflections.index(max_def)], max_def) else: return None def shear_stress(self): """ Returns an expression representing the Shear Stress curve of the Beam object. """ return self.shear_force()/self._area def plot_shear_stress(self, subs=None): """ Returns a plot of shear stress present in the beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters and area of cross section 2 square meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6), 2) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_shear_stress() Plot object containing: [0]: cartesian line: 6875*SingularityFunction(x, 0, 0) - 2500*SingularityFunction(x, 2, 0) - 5000*SingularityFunction(x, 4, 1) + 15625*SingularityFunction(x, 8, 0) + 5000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0) """ shear_stress = self.shear_stress() x = self.variable length = self.length if subs is None: subs = {} for sym in shear_stress.atoms(Symbol): if sym != x and sym not in subs: raise ValueError('value of %s was not passed.' %sym) if length in subs: length = subs[length] # Returns Plot of Shear Stress return plot (shear_stress.subs(subs), (x, 0, length), title='Shear Stress', xlabel=r'$\mathrm{x}$', ylabel=r'$\tau$', line_color='r') def plot_shear_force(self, subs=None): """ Returns a plot for Shear force present in the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_shear_force() Plot object containing: [0]: cartesian line: 13750*SingularityFunction(x, 0, 0) - 5000*SingularityFunction(x, 2, 0) - 10000*SingularityFunction(x, 4, 1) + 31250*SingularityFunction(x, 8, 0) + 10000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0) """ shear_force = self.shear_force() if subs is None: subs = {} for sym in shear_force.atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(shear_force.subs(subs), (self.variable, 0, length), title='Shear Force', xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$', line_color='g') def plot_bending_moment(self, subs=None): """ Returns a plot for Bending moment present in the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_bending_moment() Plot object containing: [0]: cartesian line: 13750*SingularityFunction(x, 0, 1) - 5000*SingularityFunction(x, 2, 1) - 5000*SingularityFunction(x, 4, 2) + 31250*SingularityFunction(x, 8, 1) + 5000*SingularityFunction(x, 8, 2) for x over (0.0, 8.0) """ bending_moment = self.bending_moment() if subs is None: subs = {} for sym in bending_moment.atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(bending_moment.subs(subs), (self.variable, 0, length), title='Bending Moment', xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$', line_color='b') def plot_slope(self, subs=None): """ Returns a plot for slope of deflection curve of the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_slope() Plot object containing: [0]: cartesian line: -8.59375e-5*SingularityFunction(x, 0, 2) + 3.125e-5*SingularityFunction(x, 2, 2) + 2.08333333333333e-5*SingularityFunction(x, 4, 3) - 0.0001953125*SingularityFunction(x, 8, 2) - 2.08333333333333e-5*SingularityFunction(x, 8, 3) + 0.00138541666666667 for x over (0.0, 8.0) """ slope = self.slope() if subs is None: subs = {} for sym in slope.atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(slope.subs(subs), (self.variable, 0, length), title='Slope', xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$', line_color='m') def plot_deflection(self, subs=None): """ Returns a plot for deflection curve of the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_deflection() Plot object containing: [0]: cartesian line: 0.00138541666666667*x - 2.86458333333333e-5*SingularityFunction(x, 0, 3) + 1.04166666666667e-5*SingularityFunction(x, 2, 3) + 5.20833333333333e-6*SingularityFunction(x, 4, 4) - 6.51041666666667e-5*SingularityFunction(x, 8, 3) - 5.20833333333333e-6*SingularityFunction(x, 8, 4) for x over (0.0, 8.0) """ deflection = self.deflection() if subs is None: subs = {} for sym in deflection.atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(deflection.subs(subs), (self.variable, 0, length), title='Deflection', xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$', line_color='r') def plot_loading_results(self, subs=None): """ Returns a subplot of Shear Force, Bending Moment, Slope and Deflection of the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> axes = b.plot_loading_results() """ length = self.length variable = self.variable if subs is None: subs = {} for sym in self.deflection().atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if length in subs: length = subs[length] ax1 = plot(self.shear_force().subs(subs), (variable, 0, length), title="Shear Force", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$', line_color='g', show=False) ax2 = plot(self.bending_moment().subs(subs), (variable, 0, length), title="Bending Moment", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$', line_color='b', show=False) ax3 = plot(self.slope().subs(subs), (variable, 0, length), title="Slope", xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$', line_color='m', show=False) ax4 = plot(self.deflection().subs(subs), (variable, 0, length), title="Deflection", xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$', line_color='r', show=False) return PlotGrid(4, 1, ax1, ax2, ax3, ax4) def _solve_for_ild_equations(self): """ Helper function for I.L.D. It takes the unsubstituted copy of the load equation and uses it to calculate shear force and bending moment equations. """ x = self.variable shear_force = -integrate(self._original_load, x) bending_moment = integrate(shear_force, x) return shear_force, bending_moment def solve_for_ild_reactions(self, value, *reactions): """ Determines the Influence Line Diagram equations for reaction forces under the effect of a moving load. Parameters ========== value : Integer Magnitude of moving load reactions : The reaction forces applied on the beam. Examples ======== There is a beam of length 10 meters. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. Calculate the I.L.D. equations for reaction forces under the effect of a moving load of magnitude 1kN. .. image:: ildreaction.png Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.physics.continuum_mechanics.beam import Beam >>> E, I = symbols('E, I') >>> R_0, R_10 = symbols('R_0, R_10') >>> b = Beam(10, E, I) >>> b.apply_support(0, 'roller') >>> b.apply_support(10, 'roller') >>> b.solve_for_ild_reactions(1,R_0,R_10) >>> b.ild_reactions {R_0: x/10 - 1, R_10: -x/10} """ shear_force, bending_moment = self._solve_for_ild_equations() x = self.variable l = self.length C3 = Symbol('C3') C4 = Symbol('C4') shear_curve = limit(shear_force, x, l) - value moment_curve = limit(bending_moment, x, l) - value*(l-x) slope_eqs = [] deflection_eqs = [] slope_curve = integrate(bending_moment, x) + C3 for position, value in self._boundary_conditions['slope']: eqs = slope_curve.subs(x, position) - value slope_eqs.append(eqs) deflection_curve = integrate(slope_curve, x) + C4 for position, value in self._boundary_conditions['deflection']: eqs = deflection_curve.subs(x, position) - value deflection_eqs.append(eqs) solution = list((linsolve([shear_curve, moment_curve] + slope_eqs + deflection_eqs, (C3, C4) + reactions).args)[0]) solution = solution[2:] # Determining the equations and solving them. self._ild_reactions = dict(zip(reactions, solution)) def plot_ild_reactions(self, subs=None): """ Plots the Influence Line Diagram of Reaction Forces under the effect of a moving load. This function should be called after calling solve_for_ild_reactions(). Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 10 meters. A point load of magnitude 5KN is also applied from top of the beam, at a distance of 4 meters from the starting point. There are two simple supports below the beam, located at the starting point and at a distance of 7 meters from the starting point. Plot the I.L.D. equations for reactions at both support points under the effect of a moving load of magnitude 1kN. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.physics.continuum_mechanics.beam import Beam >>> E, I = symbols('E, I') >>> R_0, R_7 = symbols('R_0, R_7') >>> b = Beam(10, E, I) >>> b.apply_support(0, 'roller') >>> b.apply_support(7, 'roller') >>> b.apply_load(5,4,-1) >>> b.solve_for_ild_reactions(1,R_0,R_7) >>> b.ild_reactions {R_0: x/7 - 22/7, R_7: -x/7 - 20/7} >>> b.plot_ild_reactions() PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: x/7 - 22/7 for x over (0.0, 10.0) Plot[1]:Plot object containing: [0]: cartesian line: -x/7 - 20/7 for x over (0.0, 10.0) """ if not self._ild_reactions: raise ValueError("I.L.D. reaction equations not found. Please use solve_for_ild_reactions() to generate the I.L.D. reaction equations.") x = self.variable ildplots = [] if subs is None: subs = {} for reaction in self._ild_reactions: for sym in self._ild_reactions[reaction].atoms(Symbol): if sym != x and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) for sym in self._length.atoms(Symbol): if sym != x and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) for reaction in self._ild_reactions: ildplots.append(plot(self._ild_reactions[reaction].subs(subs), (x, 0, self._length.subs(subs)), title='I.L.D. for Reactions', xlabel=x, ylabel=reaction, line_color='blue', show=False)) return PlotGrid(len(ildplots), 1, *ildplots) def solve_for_ild_shear(self, distance, value, *reactions): """ Determines the Influence Line Diagram equations for shear at a specified point under the effect of a moving load. Parameters ========== distance : Integer Distance of the point from the start of the beam for which equations are to be determined value : Integer Magnitude of moving load reactions : The reaction forces applied on the beam. Examples ======== There is a beam of length 12 meters. There are two simple supports below the beam, one at the starting point and another at a distance of 8 meters. Calculate the I.L.D. equations for Shear at a distance of 4 meters under the effect of a moving load of magnitude 1kN. .. image:: ildshear.png Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.physics.continuum_mechanics.beam import Beam >>> E, I = symbols('E, I') >>> R_0, R_8 = symbols('R_0, R_8') >>> b = Beam(12, E, I) >>> b.apply_support(0, 'roller') >>> b.apply_support(8, 'roller') >>> b.solve_for_ild_reactions(1, R_0, R_8) >>> b.solve_for_ild_shear(4, 1, R_0, R_8) >>> b.ild_shear Piecewise((x/8, x < 4), (x/8 - 1, x > 4)) """ x = self.variable l = self.length shear_force, _ = self._solve_for_ild_equations() shear_curve1 = value - limit(shear_force, x, distance) shear_curve2 = (limit(shear_force, x, l) - limit(shear_force, x, distance)) - value for reaction in reactions: shear_curve1 = shear_curve1.subs(reaction,self._ild_reactions[reaction]) shear_curve2 = shear_curve2.subs(reaction,self._ild_reactions[reaction]) shear_eq = Piecewise((shear_curve1, x < distance), (shear_curve2, x > distance)) self._ild_shear = shear_eq def plot_ild_shear(self,subs=None): """ Plots the Influence Line Diagram for Shear under the effect of a moving load. This function should be called after calling solve_for_ild_shear(). Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 12 meters. There are two simple supports below the beam, one at the starting point and another at a distance of 8 meters. Plot the I.L.D. for Shear at a distance of 4 meters under the effect of a moving load of magnitude 1kN. .. image:: ildshear.png Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.physics.continuum_mechanics.beam import Beam >>> E, I = symbols('E, I') >>> R_0, R_8 = symbols('R_0, R_8') >>> b = Beam(12, E, I) >>> b.apply_support(0, 'roller') >>> b.apply_support(8, 'roller') >>> b.solve_for_ild_reactions(1, R_0, R_8) >>> b.solve_for_ild_shear(4, 1, R_0, R_8) >>> b.ild_shear Piecewise((x/8, x < 4), (x/8 - 1, x > 4)) >>> b.plot_ild_shear() Plot object containing: [0]: cartesian line: Piecewise((x/8, x < 4), (x/8 - 1, x > 4)) for x over (0.0, 12.0) """ if not self._ild_shear: raise ValueError("I.L.D. shear equation not found. Please use solve_for_ild_shear() to generate the I.L.D. shear equations.") x = self.variable l = self._length if subs is None: subs = {} for sym in self._ild_shear.atoms(Symbol): if sym != x and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) for sym in self._length.atoms(Symbol): if sym != x and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) return plot(self._ild_shear.subs(subs), (x, 0, l), title='I.L.D. for Shear', xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{V}$', line_color='blue',show=True) def solve_for_ild_moment(self, distance, value, *reactions): """ Determines the Influence Line Diagram equations for moment at a specified point under the effect of a moving load. Parameters ========== distance : Integer Distance of the point from the start of the beam for which equations are to be determined value : Integer Magnitude of moving load reactions : The reaction forces applied on the beam. Examples ======== There is a beam of length 12 meters. There are two simple supports below the beam, one at the starting point and another at a distance of 8 meters. Calculate the I.L.D. equations for Moment at a distance of 4 meters under the effect of a moving load of magnitude 1kN. .. image:: ildshear.png Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.physics.continuum_mechanics.beam import Beam >>> E, I = symbols('E, I') >>> R_0, R_8 = symbols('R_0, R_8') >>> b = Beam(12, E, I) >>> b.apply_support(0, 'roller') >>> b.apply_support(8, 'roller') >>> b.solve_for_ild_reactions(1, R_0, R_8) >>> b.solve_for_ild_moment(4, 1, R_0, R_8) >>> b.ild_moment Piecewise((-x/2, x < 4), (x/2 - 4, x > 4)) """ x = self.variable l = self.length _ , moment = self._solve_for_ild_equations() moment_curve1 = value*(distance-x) - limit(moment, x, distance) moment_curve2= (limit(moment, x, l)-limit(moment, x, distance))-value*(l-x) for reaction in reactions: moment_curve1 = moment_curve1.subs(reaction, self._ild_reactions[reaction]) moment_curve2 = moment_curve2.subs(reaction, self._ild_reactions[reaction]) moment_eq = Piecewise((moment_curve1, x < distance), (moment_curve2, x > distance)) self._ild_moment = moment_eq def plot_ild_moment(self,subs=None): """ Plots the Influence Line Diagram for Moment under the effect of a moving load. This function should be called after calling solve_for_ild_moment(). Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 12 meters. There are two simple supports below the beam, one at the starting point and another at a distance of 8 meters. Plot the I.L.D. for Moment at a distance of 4 meters under the effect of a moving load of magnitude 1kN. .. image:: ildshear.png Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.physics.continuum_mechanics.beam import Beam >>> E, I = symbols('E, I') >>> R_0, R_8 = symbols('R_0, R_8') >>> b = Beam(12, E, I) >>> b.apply_support(0, 'roller') >>> b.apply_support(8, 'roller') >>> b.solve_for_ild_reactions(1, R_0, R_8) >>> b.solve_for_ild_moment(4, 1, R_0, R_8) >>> b.ild_moment Piecewise((-x/2, x < 4), (x/2 - 4, x > 4)) >>> b.plot_ild_moment() Plot object containing: [0]: cartesian line: Piecewise((-x/2, x < 4), (x/2 - 4, x > 4)) for x over (0.0, 12.0) """ if not self._ild_moment: raise ValueError("I.L.D. moment equation not found. Please use solve_for_ild_moment() to generate the I.L.D. moment equations.") x = self.variable if subs is None: subs = {} for sym in self._ild_moment.atoms(Symbol): if sym != x and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) for sym in self._length.atoms(Symbol): if sym != x and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) return plot(self._ild_moment.subs(subs), (x, 0, self._length), title='I.L.D. for Moment', xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{M}$', line_color='blue', show=True) @doctest_depends_on(modules=('numpy',)) def draw(self, pictorial=True): """ Returns a plot object representing the beam diagram of the beam. .. note:: The user must be careful while entering load values. The draw function assumes a sign convention which is used for plotting loads. Given a right handed coordinate system with XYZ coordinates, the beam's length is assumed to be along the positive X axis. The draw function recognizes positve loads(with n>-2) as loads acting along negative Y direction and positve moments acting along positive Z direction. Parameters ========== pictorial: Boolean (default=True) Setting ``pictorial=True`` would simply create a pictorial (scaled) view of the beam diagram not with the exact dimensions. Although setting ``pictorial=False`` would create a beam diagram with the exact dimensions on the plot Examples ======== .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> E, I = symbols('E, I') >>> b = Beam(50, 20, 30) >>> b.apply_load(10, 2, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(90, 5, 0, 23) >>> b.apply_load(10, 30, 1, 50) >>> b.apply_support(50, "pin") >>> b.apply_support(0, "fixed") >>> b.apply_support(20, "roller") >>> p = b.draw() >>> p Plot object containing: [0]: cartesian line: 25*SingularityFunction(x, 5, 0) - 25*SingularityFunction(x, 23, 0) + SingularityFunction(x, 30, 1) - 20*SingularityFunction(x, 50, 0) - SingularityFunction(x, 50, 1) + 5 for x over (0.0, 50.0) [1]: cartesian line: 5 for x over (0.0, 50.0) >>> p.show() """ if not numpy: raise ImportError("To use this function numpy module is required") x = self.variable # checking whether length is an expression in terms of any Symbol. from sympy import Expr if isinstance(self.length, Expr): l = list(self.length.atoms(Symbol)) # assigning every Symbol a default value of 10 l = {i:10 for i in l} length = self.length.subs(l) else: l = {} length = self.length height = length/10 rectangles = [] rectangles.append({'xy':(0, 0), 'width':length, 'height': height, 'facecolor':"brown"}) annotations, markers, load_eq,load_eq1, fill = self._draw_load(pictorial, length, l) support_markers, support_rectangles = self._draw_supports(length, l) rectangles += support_rectangles markers += support_markers sing_plot = plot(height + load_eq, height + load_eq1, (x, 0, length), xlim=(-height, length + height), ylim=(-length, 1.25*length), annotations=annotations, markers=markers, rectangles=rectangles, line_color='brown', fill=fill, axis=False, show=False) return sing_plot def _draw_load(self, pictorial, length, l): loads = list(set(self.applied_loads) - set(self._support_as_loads)) height = length/10 x = self.variable annotations = [] markers = [] load_args = [] scaled_load = 0 load_args1 = [] scaled_load1 = 0 load_eq = 0 # For positive valued higher order loads load_eq1 = 0 # For negative valued higher order loads fill = None plus = 0 # For positive valued higher order loads minus = 0 # For negative valued higher order loads for load in loads: # check if the position of load is in terms of the beam length. if l: pos = load[1].subs(l) else: pos = load[1] # point loads if load[2] == -1: if isinstance(load[0], Symbol) or load[0].is_negative: annotations.append({'text':'', 'xy':(pos, 0), 'xytext':(pos, height - 4*height), 'arrowprops':dict(width= 1.5, headlength=5, headwidth=5, facecolor='black')}) else: annotations.append({'text':'', 'xy':(pos, height), 'xytext':(pos, height*4), 'arrowprops':dict(width= 1.5, headlength=4, headwidth=4, facecolor='black')}) # moment loads elif load[2] == -2: if load[0].is_negative: markers.append({'args':[[pos], [height/2]], 'marker': r'$\circlearrowright$', 'markersize':15}) else: markers.append({'args':[[pos], [height/2]], 'marker': r'$\circlearrowleft$', 'markersize':15}) # higher order loads elif load[2] >= 0: # `fill` will be assigned only when higher order loads are present value, start, order, end = load # Positive loads have their seperate equations if(value>0): plus = 1 # if pictorial is True we remake the load equation again with # some constant magnitude values. if pictorial: value = 10**(1-order) if order > 0 else length/2 scaled_load += value*SingularityFunction(x, start, order) if end: f2 = 10**(1-order)*x**order if order > 0 else length/2*x**order for i in range(0, order + 1): scaled_load -= (f2.diff(x, i).subs(x, end - start)* SingularityFunction(x, end, i)/factorial(i)) if pictorial: if isinstance(scaled_load, Add): load_args = scaled_load.args else: # when the load equation consists of only a single term load_args = (scaled_load,) load_eq = [i.subs(l) for i in load_args] else: if isinstance(self.load, Add): load_args = self.load.args else: load_args = (self.load,) load_eq = [i.subs(l) for i in load_args if list(i.atoms(SingularityFunction))[0].args[2] >= 0] load_eq = Add(*load_eq) # filling higher order loads with colour expr = height + load_eq.rewrite(Piecewise) y1 = lambdify(x, expr, 'numpy') # For loads with negative value else: minus = 1 # if pictorial is True we remake the load equation again with # some constant magnitude values. if pictorial: value = 10**(1-order) if order > 0 else length/2 scaled_load1 += value*SingularityFunction(x, start, order) if end: f2 = 10**(1-order)*x**order if order > 0 else length/2*x**order for i in range(0, order + 1): scaled_load1 -= (f2.diff(x, i).subs(x, end - start)* SingularityFunction(x, end, i)/factorial(i)) if pictorial: if isinstance(scaled_load1, Add): load_args1 = scaled_load1.args else: # when the load equation consists of only a single term load_args1 = (scaled_load1,) load_eq1 = [i.subs(l) for i in load_args1] else: if isinstance(self.load, Add): load_args1 = self.load.args1 else: load_args1 = (self.load,) load_eq1 = [i.subs(l) for i in load_args if list(i.atoms(SingularityFunction))[0].args[2] >= 0] load_eq1 = -Add(*load_eq1)-height # filling higher order loads with colour expr = height + load_eq1.rewrite(Piecewise) y1_ = lambdify(x, expr, 'numpy') y = numpy.arange(0, float(length), 0.001) y2 = float(height) if(plus == 1 and minus == 1): fill = {'x': y, 'y1': y1(y), 'y2': y1_(y), 'color':'darkkhaki'} elif(plus == 1): fill = {'x': y, 'y1': y1(y), 'y2': y2, 'color':'darkkhaki'} else: fill = {'x': y, 'y1': y1_(y), 'y2': y2 , 'color':'darkkhaki'} return annotations, markers, load_eq, load_eq1, fill def _draw_supports(self, length, l): height = float(length/10) support_markers = [] support_rectangles = [] for support in self._applied_supports: if l: pos = support[0].subs(l) else: pos = support[0] if support[1] == "pin": support_markers.append({'args':[pos, [0]], 'marker':6, 'markersize':13, 'color':"black"}) elif support[1] == "roller": support_markers.append({'args':[pos, [-height/2.5]], 'marker':'o', 'markersize':11, 'color':"black"}) elif support[1] == "fixed": if pos == 0: support_rectangles.append({'xy':(0, -3*height), 'width':-length/20, 'height':6*height + height, 'fill':False, 'hatch':'/////'}) else: support_rectangles.append({'xy':(length, -3*height), 'width':length/20, 'height': 6*height + height, 'fill':False, 'hatch':'/////'}) return support_markers, support_rectangles class Beam3D(Beam): """ This class handles loads applied in any direction of a 3D space along with unequal values of Second moment along different axes. .. note:: While solving a beam bending problem, a user should choose its own sign convention and should stick to it. The results will automatically follow the chosen sign convention. This class assumes that any kind of distributed load/moment is applied through out the span of a beam. Examples ======== There is a beam of l meters long. A constant distributed load of magnitude q is applied along y-axis from start till the end of beam. A constant distributed moment of magnitude m is also applied along z-axis from start till the end of beam. Beam is fixed at both of its end. So, deflection of the beam at the both ends is restricted. >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols, simplify, collect, factor >>> l, E, G, I, A = symbols('l, E, G, I, A') >>> b = Beam3D(l, E, G, I, A) >>> x, q, m = symbols('x, q, m') >>> b.apply_load(q, 0, 0, dir="y") >>> b.apply_moment_load(m, 0, -1, dir="z") >>> b.shear_force() [0, -q*x, 0] >>> b.bending_moment() [0, 0, -m*x + q*x**2/2] >>> b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])] >>> b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])] >>> b.solve_slope_deflection() >>> factor(b.slope()) [0, 0, x*(-l + x)*(-A*G*l**3*q + 2*A*G*l**2*q*x - 12*E*I*l*q - 72*E*I*m + 24*E*I*q*x)/(12*E*I*(A*G*l**2 + 12*E*I))] >>> dx, dy, dz = b.deflection() >>> dy = collect(simplify(dy), x) >>> dx == dz == 0 True >>> dy == (x*(12*E*I*l*(A*G*l**2*q - 2*A*G*l*m + 12*E*I*q) ... + x*(A*G*l*(3*l*(A*G*l**2*q - 2*A*G*l*m + 12*E*I*q) + x*(-2*A*G*l**2*q + 4*A*G*l*m - 24*E*I*q)) ... + A*G*(A*G*l**2 + 12*E*I)*(-2*l**2*q + 6*l*m - 4*m*x + q*x**2) ... - 12*E*I*q*(A*G*l**2 + 12*E*I)))/(24*A*E*G*I*(A*G*l**2 + 12*E*I))) True References ========== .. [1] http://homes.civil.aau.dk/jc/FemteSemester/Beams3D.pdf """ def __init__(self, length, elastic_modulus, shear_modulus , second_moment, area, variable=Symbol('x')): """Initializes the class. Parameters ========== length : Sympifyable A Symbol or value representing the Beam's length. elastic_modulus : Sympifyable A SymPy expression representing the Beam's Modulus of Elasticity. It is a measure of the stiffness of the Beam material. shear_modulus : Sympifyable A SymPy expression representing the Beam's Modulus of rigidity. It is a measure of rigidity of the Beam material. second_moment : Sympifyable or list A list of two elements having SymPy expression representing the Beam's Second moment of area. First value represent Second moment across y-axis and second across z-axis. Single SymPy expression can be passed if both values are same area : Sympifyable A SymPy expression representing the Beam's cross-sectional area in a plane prependicular to length of the Beam. variable : Symbol, optional A Symbol object that will be used as the variable along the beam while representing the load, shear, moment, slope and deflection curve. By default, it is set to ``Symbol('x')``. """ super().__init__(length, elastic_modulus, second_moment, variable) self.shear_modulus = shear_modulus self._area = area self._load_vector = [0, 0, 0] self._moment_load_vector = [0, 0, 0] self._load_Singularity = [0, 0, 0] self._slope = [0, 0, 0] self._deflection = [0, 0, 0] @property def shear_modulus(self): """Young's Modulus of the Beam. """ return self._shear_modulus @shear_modulus.setter def shear_modulus(self, e): self._shear_modulus = sympify(e) @property def second_moment(self): """Second moment of area of the Beam. """ return self._second_moment @second_moment.setter def second_moment(self, i): if isinstance(i, list): i = [sympify(x) for x in i] self._second_moment = i else: self._second_moment = sympify(i) @property def area(self): """Cross-sectional area of the Beam. """ return self._area @area.setter def area(self, a): self._area = sympify(a) @property def load_vector(self): """ Returns a three element list representing the load vector. """ return self._load_vector @property def moment_load_vector(self): """ Returns a three element list representing moment loads on Beam. """ return self._moment_load_vector @property def boundary_conditions(self): """ Returns a dictionary of boundary conditions applied on the beam. The dictionary has two keywords namely slope and deflection. The value of each keyword is a list of tuple, where each tuple contains location and value of a boundary condition in the format (location, value). Further each value is a list corresponding to slope or deflection(s) values along three axes at that location. Examples ======== There is a beam of length 4 meters. The slope at 0 should be 4 along the x-axis and 0 along others. At the other end of beam, deflection along all the three axes should be zero. >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(30, E, G, I, A, x) >>> b.bc_slope = [(0, (4, 0, 0))] >>> b.bc_deflection = [(4, [0, 0, 0])] >>> b.boundary_conditions {'deflection': [(4, [0, 0, 0])], 'slope': [(0, (4, 0, 0))]} Here the deflection of the beam should be ``0`` along all the three axes at ``4``. Similarly, the slope of the beam should be ``4`` along x-axis and ``0`` along y and z axis at ``0``. """ return self._boundary_conditions def polar_moment(self): """ Returns the polar moment of area of the beam about the X axis with respect to the centroid. Examples ======== >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A = symbols('l, E, G, I, A') >>> b = Beam3D(l, E, G, I, A) >>> b.polar_moment() 2*I >>> I1 = [9, 15] >>> b = Beam3D(l, E, G, I1, A) >>> b.polar_moment() 24 """ if not iterable(self.second_moment): return 2*self.second_moment return sum(self.second_moment) def apply_load(self, value, start, order, dir="y"): """ This method adds up the force load to a particular beam object. Parameters ========== value : Sympifyable The magnitude of an applied load. dir : String Axis along which load is applied. order : Integer The order of the applied load. - For point loads, order=-1 - For constant distributed load, order=0 - For ramp loads, order=1 - For parabolic ramp loads, order=2 - ... so on. """ x = self.variable value = sympify(value) start = sympify(start) order = sympify(order) if dir == "x": if not order == -1: self._load_vector[0] += value self._load_Singularity[0] += value*SingularityFunction(x, start, order) elif dir == "y": if not order == -1: self._load_vector[1] += value self._load_Singularity[1] += value*SingularityFunction(x, start, order) else: if not order == -1: self._load_vector[2] += value self._load_Singularity[2] += value*SingularityFunction(x, start, order) def apply_moment_load(self, value, start, order, dir="y"): """ This method adds up the moment loads to a particular beam object. Parameters ========== value : Sympifyable The magnitude of an applied moment. dir : String Axis along which moment is applied. order : Integer The order of the applied load. - For point moments, order=-2 - For constant distributed moment, order=-1 - For ramp moments, order=0 - For parabolic ramp moments, order=1 - ... so on. """ x = self.variable value = sympify(value) start = sympify(start) order = sympify(order) if dir == "x": if not order == -2: self._moment_load_vector[0] += value self._load_Singularity[0] += value*SingularityFunction(x, start, order) elif dir == "y": if not order == -2: self._moment_load_vector[1] += value self._load_Singularity[0] += value*SingularityFunction(x, start, order) else: if not order == -2: self._moment_load_vector[2] += value self._load_Singularity[0] += value*SingularityFunction(x, start, order) def apply_support(self, loc, type="fixed"): if type in ("pin", "roller"): reaction_load = Symbol('R_'+str(loc)) self._reaction_loads[reaction_load] = reaction_load self.bc_deflection.append((loc, [0, 0, 0])) else: reaction_load = Symbol('R_'+str(loc)) reaction_moment = Symbol('M_'+str(loc)) self._reaction_loads[reaction_load] = [reaction_load, reaction_moment] self.bc_deflection.append((loc, [0, 0, 0])) self.bc_slope.append((loc, [0, 0, 0])) def solve_for_reaction_loads(self, *reaction): """ Solves for the reaction forces. Examples ======== There is a beam of length 30 meters. It it supported by rollers at of its end. A constant distributed load of magnitude 8 N is applied from start till its end along y-axis. Another linear load having slope equal to 9 is applied along z-axis. >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(30, E, G, I, A, x) >>> b.apply_load(8, start=0, order=0, dir="y") >>> b.apply_load(9*x, start=0, order=0, dir="z") >>> b.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="y") >>> b.apply_load(R2, start=30, order=-1, dir="y") >>> b.apply_load(R3, start=0, order=-1, dir="z") >>> b.apply_load(R4, start=30, order=-1, dir="z") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.reaction_loads {R1: -120, R2: -120, R3: -1350, R4: -2700} """ x = self.variable l = self.length q = self._load_Singularity shear_curves = [integrate(load, x) for load in q] moment_curves = [integrate(shear, x) for shear in shear_curves] for i in range(3): react = [r for r in reaction if (shear_curves[i].has(r) or moment_curves[i].has(r))] if len(react) == 0: continue shear_curve = limit(shear_curves[i], x, l) moment_curve = limit(moment_curves[i], x, l) sol = list((linsolve([shear_curve, moment_curve], react).args)[0]) sol_dict = dict(zip(react, sol)) reaction_loads = self._reaction_loads # Check if any of the evaluated rection exists in another direction # and if it exists then it should have same value. for key in sol_dict: if key in reaction_loads and sol_dict[key] != reaction_loads[key]: raise ValueError("Ambiguous solution for %s in different directions." % key) self._reaction_loads.update(sol_dict) def shear_force(self): """ Returns a list of three expressions which represents the shear force curve of the Beam object along all three axes. """ x = self.variable q = self._load_vector return [integrate(-q[0], x), integrate(-q[1], x), integrate(-q[2], x)] def axial_force(self): """ Returns expression of Axial shear force present inside the Beam object. """ return self.shear_force()[0] def shear_stress(self): """ Returns a list of three expressions which represents the shear stress curve of the Beam object along all three axes. """ return [self.shear_force()[0]/self._area, self.shear_force()[1]/self._area, self.shear_force()[2]/self._area] def axial_stress(self): """ Returns expression of Axial stress present inside the Beam object. """ return self.axial_force()/self._area def bending_moment(self): """ Returns a list of three expressions which represents the bending moment curve of the Beam object along all three axes. """ x = self.variable m = self._moment_load_vector shear = self.shear_force() return [integrate(-m[0], x), integrate(-m[1] + shear[2], x), integrate(-m[2] - shear[1], x) ] def torsional_moment(self): """ Returns expression of Torsional moment present inside the Beam object. """ return self.bending_moment()[0] def solve_slope_deflection(self): from sympy import dsolve, Function, Derivative, Eq x = self.variable l = self.length E = self.elastic_modulus G = self.shear_modulus I = self.second_moment if isinstance(I, list): I_y, I_z = I[0], I[1] else: I_y = I_z = I A = self._area load = self._load_vector moment = self._moment_load_vector defl = Function('defl') theta = Function('theta') # Finding deflection along x-axis(and corresponding slope value by differentiating it) # Equation used: Derivative(E*A*Derivative(def_x(x), x), x) + load_x = 0 eq = Derivative(E*A*Derivative(defl(x), x), x) + load[0] def_x = dsolve(Eq(eq, 0), defl(x)).args[1] # Solving constants originated from dsolve C1 = Symbol('C1') C2 = Symbol('C2') constants = list((linsolve([def_x.subs(x, 0), def_x.subs(x, l)], C1, C2).args)[0]) def_x = def_x.subs({C1:constants[0], C2:constants[1]}) slope_x = def_x.diff(x) self._deflection[0] = def_x self._slope[0] = slope_x # Finding deflection along y-axis and slope across z-axis. System of equation involved: # 1: Derivative(E*I_z*Derivative(theta_z(x), x), x) + G*A*(Derivative(defl_y(x), x) - theta_z(x)) + moment_z = 0 # 2: Derivative(G*A*(Derivative(defl_y(x), x) - theta_z(x)), x) + load_y = 0 C_i = Symbol('C_i') # Substitute value of `G*A*(Derivative(defl_y(x), x) - theta_z(x))` from (2) in (1) eq1 = Derivative(E*I_z*Derivative(theta(x), x), x) + (integrate(-load[1], x) + C_i) + moment[2] slope_z = dsolve(Eq(eq1, 0)).args[1] # Solve for constants originated from using dsolve on eq1 constants = list((linsolve([slope_z.subs(x, 0), slope_z.subs(x, l)], C1, C2).args)[0]) slope_z = slope_z.subs({C1:constants[0], C2:constants[1]}) # Put value of slope obtained back in (2) to solve for `C_i` and find deflection across y-axis eq2 = G*A*(Derivative(defl(x), x)) + load[1]*x - C_i - G*A*slope_z def_y = dsolve(Eq(eq2, 0), defl(x)).args[1] # Solve for constants originated from using dsolve on eq2 constants = list((linsolve([def_y.subs(x, 0), def_y.subs(x, l)], C1, C_i).args)[0]) self._deflection[1] = def_y.subs({C1:constants[0], C_i:constants[1]}) self._slope[2] = slope_z.subs(C_i, constants[1]) # Finding deflection along z-axis and slope across y-axis. System of equation involved: # 1: Derivative(E*I_y*Derivative(theta_y(x), x), x) - G*A*(Derivative(defl_z(x), x) + theta_y(x)) + moment_y = 0 # 2: Derivative(G*A*(Derivative(defl_z(x), x) + theta_y(x)), x) + load_z = 0 # Substitute value of `G*A*(Derivative(defl_y(x), x) + theta_z(x))` from (2) in (1) eq1 = Derivative(E*I_y*Derivative(theta(x), x), x) + (integrate(load[2], x) - C_i) + moment[1] slope_y = dsolve(Eq(eq1, 0)).args[1] # Solve for constants originated from using dsolve on eq1 constants = list((linsolve([slope_y.subs(x, 0), slope_y.subs(x, l)], C1, C2).args)[0]) slope_y = slope_y.subs({C1:constants[0], C2:constants[1]}) # Put value of slope obtained back in (2) to solve for `C_i` and find deflection across z-axis eq2 = G*A*(Derivative(defl(x), x)) + load[2]*x - C_i + G*A*slope_y def_z = dsolve(Eq(eq2,0)).args[1] # Solve for constants originated from using dsolve on eq2 constants = list((linsolve([def_z.subs(x, 0), def_z.subs(x, l)], C1, C_i).args)[0]) self._deflection[2] = def_z.subs({C1:constants[0], C_i:constants[1]}) self._slope[1] = slope_y.subs(C_i, constants[1]) def slope(self): """ Returns a three element list representing slope of deflection curve along all the three axes. """ return self._slope def deflection(self): """ Returns a three element list representing deflection curve along all the three axes. """ return self._deflection def _plot_shear_force(self, dir, subs=None): shear_force = self.shear_force() if dir == 'x': dir_num = 0 color = 'r' elif dir == 'y': dir_num = 1 color = 'g' elif dir == 'z': dir_num = 2 color = 'b' if subs is None: subs = {} for sym in shear_force[dir_num].atoms(Symbol): if sym != self.variable and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(shear_force[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Shear Force along %c direction'%dir, xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{V(%c)}$'%dir, line_color=color) def plot_shear_force(self, dir="all", subs=None): """ Returns a plot for Shear force along all three directions present in the Beam object. Parameters ========== dir : string (default : "all") Direction along which shear force plot is required. If no direction is specified, all plots are displayed. subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, E, G, I, A, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.plot_shear_force() PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: 0 for x over (0.0, 20.0) Plot[1]:Plot object containing: [0]: cartesian line: -6*x**2 for x over (0.0, 20.0) Plot[2]:Plot object containing: [0]: cartesian line: -15*x for x over (0.0, 20.0) """ dir = dir.lower() # For shear force along x direction if dir == "x": Px = self._plot_shear_force('x', subs) return Px.show() # For shear force along y direction elif dir == "y": Py = self._plot_shear_force('y', subs) return Py.show() # For shear force along z direction elif dir == "z": Pz = self._plot_shear_force('z', subs) return Pz.show() # For shear force along all direction else: Px = self._plot_shear_force('x', subs) Py = self._plot_shear_force('y', subs) Pz = self._plot_shear_force('z', subs) return PlotGrid(3, 1, Px, Py, Pz) def _plot_bending_moment(self, dir, subs=None): bending_moment = self.bending_moment() if dir == 'x': dir_num = 0 color = 'g' elif dir == 'y': dir_num = 1 color = 'c' elif dir == 'z': dir_num = 2 color = 'm' if subs is None: subs = {} for sym in bending_moment[dir_num].atoms(Symbol): if sym != self.variable and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(bending_moment[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Bending Moment along %c direction'%dir, xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{M(%c)}$'%dir, line_color=color) def plot_bending_moment(self, dir="all", subs=None): """ Returns a plot for bending moment along all three directions present in the Beam object. Parameters ========== dir : string (default : "all") Direction along which bending moment plot is required. If no direction is specified, all plots are displayed. subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, E, G, I, A, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.plot_bending_moment() PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: 0 for x over (0.0, 20.0) Plot[1]:Plot object containing: [0]: cartesian line: -15*x**2/2 for x over (0.0, 20.0) Plot[2]:Plot object containing: [0]: cartesian line: 2*x**3 for x over (0.0, 20.0) """ dir = dir.lower() # For bending moment along x direction if dir == "x": Px = self._plot_bending_moment('x', subs) return Px.show() # For bending moment along y direction elif dir == "y": Py = self._plot_bending_moment('y', subs) return Py.show() # For bending moment along z direction elif dir == "z": Pz = self._plot_bending_moment('z', subs) return Pz.show() # For bending moment along all direction else: Px = self._plot_bending_moment('x', subs) Py = self._plot_bending_moment('y', subs) Pz = self._plot_bending_moment('z', subs) return PlotGrid(3, 1, Px, Py, Pz) def _plot_slope(self, dir, subs=None): slope = self.slope() if dir == 'x': dir_num = 0 color = 'b' elif dir == 'y': dir_num = 1 color = 'm' elif dir == 'z': dir_num = 2 color = 'g' if subs is None: subs = {} for sym in slope[dir_num].atoms(Symbol): if sym != self.variable and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(slope[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Slope along %c direction'%dir, xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{\theta(%c)}$'%dir, line_color=color) def plot_slope(self, dir="all", subs=None): """ Returns a plot for Slope along all three directions present in the Beam object. Parameters ========== dir : string (default : "all") Direction along which Slope plot is required. If no direction is specified, all plots are displayed. subs : dictionary Python dictionary containing Symbols as keys and their corresponding values. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, 40, 21, 100, 25, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.solve_slope_deflection() >>> b.plot_slope() PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: 0 for x over (0.0, 20.0) Plot[1]:Plot object containing: [0]: cartesian line: -x**3/1600 + 3*x**2/160 - x/8 for x over (0.0, 20.0) Plot[2]:Plot object containing: [0]: cartesian line: x**4/8000 - 19*x**2/172 + 52*x/43 for x over (0.0, 20.0) """ dir = dir.lower() # For Slope along x direction if dir == "x": Px = self._plot_slope('x', subs) return Px.show() # For Slope along y direction elif dir == "y": Py = self._plot_slope('y', subs) return Py.show() # For Slope along z direction elif dir == "z": Pz = self._plot_slope('z', subs) return Pz.show() # For Slope along all direction else: Px = self._plot_slope('x', subs) Py = self._plot_slope('y', subs) Pz = self._plot_slope('z', subs) return PlotGrid(3, 1, Px, Py, Pz) def _plot_deflection(self, dir, subs=None): deflection = self.deflection() if dir == 'x': dir_num = 0 color = 'm' elif dir == 'y': dir_num = 1 color = 'r' elif dir == 'z': dir_num = 2 color = 'c' if subs is None: subs = {} for sym in deflection[dir_num].atoms(Symbol): if sym != self.variable and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(deflection[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Deflection along %c direction'%dir, xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{\delta(%c)}$'%dir, line_color=color) def plot_deflection(self, dir="all", subs=None): """ Returns a plot for Deflection along all three directions present in the Beam object. Parameters ========== dir : string (default : "all") Direction along which deflection plot is required. If no direction is specified, all plots are displayed. subs : dictionary Python dictionary containing Symbols as keys and their corresponding values. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, 40, 21, 100, 25, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.solve_slope_deflection() >>> b.plot_deflection() PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: 0 for x over (0.0, 20.0) Plot[1]:Plot object containing: [0]: cartesian line: x**5/40000 - 4013*x**3/90300 + 26*x**2/43 + 1520*x/903 for x over (0.0, 20.0) Plot[2]:Plot object containing: [0]: cartesian line: x**4/6400 - x**3/160 + 27*x**2/560 + 2*x/7 for x over (0.0, 20.0) """ dir = dir.lower() # For deflection along x direction if dir == "x": Px = self._plot_deflection('x', subs) return Px.show() # For deflection along y direction elif dir == "y": Py = self._plot_deflection('y', subs) return Py.show() # For deflection along z direction elif dir == "z": Pz = self._plot_deflection('z', subs) return Pz.show() # For deflection along all direction else: Px = self._plot_deflection('x', subs) Py = self._plot_deflection('y', subs) Pz = self._plot_deflection('z', subs) return PlotGrid(3, 1, Px, Py, Pz) def plot_loading_results(self, dir='x', subs=None): """ Returns a subplot of Shear Force, Bending Moment, Slope and Deflection of the Beam object along the direction specified. Parameters ========== dir : string (default : "x") Direction along which plots are required. If no direction is specified, plots along x-axis are displayed. subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, E, G, I, A, x) >>> subs = {E:40, G:21, I:100, A:25} >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.solve_slope_deflection() >>> b.plot_loading_results('y',subs) PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: -6*x**2 for x over (0.0, 20.0) Plot[1]:Plot object containing: [0]: cartesian line: -15*x**2/2 for x over (0.0, 20.0) Plot[2]:Plot object containing: [0]: cartesian line: -x**3/1600 + 3*x**2/160 - x/8 for x over (0.0, 20.0) Plot[3]:Plot object containing: [0]: cartesian line: x**5/40000 - 4013*x**3/90300 + 26*x**2/43 + 1520*x/903 for x over (0.0, 20.0) """ dir = dir.lower() if subs is None: subs = {} ax1 = self._plot_shear_force(dir, subs) ax2 = self._plot_bending_moment(dir, subs) ax3 = self._plot_slope(dir, subs) ax4 = self._plot_deflection(dir, subs) return PlotGrid(4, 1, ax1, ax2, ax3, ax4) def _plot_shear_stress(self, dir, subs=None): shear_stress = self.shear_stress() if dir == 'x': dir_num = 0 color = 'r' elif dir == 'y': dir_num = 1 color = 'g' elif dir == 'z': dir_num = 2 color = 'b' if subs is None: subs = {} for sym in shear_stress[dir_num].atoms(Symbol): if sym != self.variable and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(shear_stress[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Shear stress along %c direction'%dir, xlabel=r'$\mathrm{X}$', ylabel=r'$\tau(%c)$'%dir, line_color=color) def plot_shear_stress(self, dir="all", subs=None): """ Returns a plot for Shear Stress along all three directions present in the Beam object. Parameters ========== dir : string (default : "all") Direction along which shear stress plot is required. If no direction is specified, all plots are displayed. subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 20 meters and area of cross section 2 square meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, E, G, I, 2, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.plot_shear_stress() PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: 0 for x over (0.0, 20.0) Plot[1]:Plot object containing: [0]: cartesian line: -3*x**2 for x over (0.0, 20.0) Plot[2]:Plot object containing: [0]: cartesian line: -15*x/2 for x over (0.0, 20.0) """ dir = dir.lower() # For shear stress along x direction if dir == "x": Px = self._plot_shear_stress('x', subs) return Px.show() # For shear stress along y direction elif dir == "y": Py = self._plot_shear_stress('y', subs) return Py.show() # For shear stress along z direction elif dir == "z": Pz = self._plot_shear_stress('z', subs) return Pz.show() # For shear stress along all direction else: Px = self._plot_shear_stress('x', subs) Py = self._plot_shear_stress('y', subs) Pz = self._plot_shear_stress('z', subs) return PlotGrid(3, 1, Px, Py, Pz) def _max_shear_force(self, dir): """ Helper function for max_shear_force(). """ dir = dir.lower() if dir == 'x': dir_num = 0 elif dir == 'y': dir_num = 1 elif dir == 'z': dir_num = 2 from sympy import solve if not self.shear_force()[dir_num]: return (0,0) # To restrict the range within length of the Beam load_curve = Piecewise((float("nan"), self.variable<=0), (self._load_vector[dir_num], self.variable<self.length), (float("nan"), True)) points = solve(load_curve.rewrite(Piecewise), self.variable, domain=S.Reals) points.append(0) points.append(self.length) shear_curve = self.shear_force()[dir_num] shear_values = [shear_curve.subs(self.variable, x) for x in points] shear_values = list(map(abs, shear_values)) max_shear = max(shear_values) return (points[shear_values.index(max_shear)], max_shear) def max_shear_force(self): """ Returns point of max shear force and its corresponding shear value along all directions in a Beam object as a list. solve_for_reaction_loads() must be called before using this function. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, 40, 21, 100, 25, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.max_shear_force() [(0, 0), (20, 2400), (20, 300)] """ max_shear = [] max_shear.append(self._max_shear_force('x')) max_shear.append(self._max_shear_force('y')) max_shear.append(self._max_shear_force('z')) return max_shear def _max_bending_moment(self, dir): """ Helper function for max_bending_moment(). """ dir = dir.lower() if dir == 'x': dir_num = 0 elif dir == 'y': dir_num = 1 elif dir == 'z': dir_num = 2 from sympy import solve if not self.bending_moment()[dir_num]: return (0,0) # To restrict the range within length of the Beam shear_curve = Piecewise((float("nan"), self.variable<=0), (self.shear_force()[dir_num], self.variable<self.length), (float("nan"), True)) points = solve(shear_curve.rewrite(Piecewise), self.variable, domain=S.Reals) points.append(0) points.append(self.length) bending_moment_curve = self.bending_moment()[dir_num] bending_moments = [bending_moment_curve.subs(self.variable, x) for x in points] bending_moments = list(map(abs, bending_moments)) max_bending_moment = max(bending_moments) return (points[bending_moments.index(max_bending_moment)], max_bending_moment) def max_bending_moment(self): """ Returns point of max bending moment and its corresponding bending moment value along all directions in a Beam object as a list. solve_for_reaction_loads() must be called before using this function. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, 40, 21, 100, 25, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.max_bending_moment() [(0, 0), (20, 3000), (20, 16000)] """ max_bmoment = [] max_bmoment.append(self._max_bending_moment('x')) max_bmoment.append(self._max_bending_moment('y')) max_bmoment.append(self._max_bending_moment('z')) return max_bmoment max_bmoment = max_bending_moment def _max_deflection(self, dir): """ Helper function for max_Deflection() """ dir = dir.lower() if dir == 'x': dir_num = 0 elif dir == 'y': dir_num = 1 elif dir == 'z': dir_num = 2 from sympy import solve if not self.deflection()[dir_num]: return (0,0) # To restrict the range within length of the Beam slope_curve = Piecewise((float("nan"), self.variable<=0), (self.slope()[dir_num], self.variable<self.length), (float("nan"), True)) points = solve(slope_curve.rewrite(Piecewise), self.variable, domain=S.Reals) points.append(0) points.append(self._length) deflection_curve = self.deflection()[dir_num] deflections = [deflection_curve.subs(self.variable, x) for x in points] deflections = list(map(abs, deflections)) max_def = max(deflections) return (points[deflections.index(max_def)], max_def) def max_deflection(self): """ Returns point of max deflection and its corresponding deflection value along all directions in a Beam object as a list. solve_for_reaction_loads() and solve_slope_deflection() must be called before using this function. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, 40, 21, 100, 25, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.solve_slope_deflection() >>> b.max_deflection() [(0, 0), (10, 495/14), (-10 + 10*sqrt(10793)/43, (10 - 10*sqrt(10793)/43)**3/160 - 20/7 + (10 - 10*sqrt(10793)/43)**4/6400 + 20*sqrt(10793)/301 + 27*(10 - 10*sqrt(10793)/43)**2/560)] """ max_def = [] max_def.append(self._max_deflection('x')) max_def.append(self._max_deflection('y')) max_def.append(self._max_deflection('z')) return max_def
c306faba38315d153a41cf4432bf71e45f13cb763087dd00f2d1eff157c39d4e
from sympy import sin, cos, Matrix, sqrt, pi, expand_mul, S from sympy.core.backend import _simplify_matrix from sympy.core.symbol import symbols from sympy.physics.mechanics import dynamicsymbols, Body, PinJoint, PrismaticJoint from sympy.physics.mechanics.joint import Joint from sympy.physics.vector import Vector, ReferenceFrame from sympy.testing.pytest import raises t = dynamicsymbols._t def _generate_body(): N = ReferenceFrame('N') A = ReferenceFrame('A') P = Body('P', frame=N) C = Body('C', frame=A) return N, A, P, C def test_Joint(): parent = Body('parent') child = Body('child') raises(TypeError, lambda: Joint('J', parent, child)) def test_pinjoint(): P = Body('P') C = Body('C') l, m = symbols('l m') theta, omega = dynamicsymbols('theta_J, omega_J') Pj = PinJoint('J', P, C) assert Pj.name == 'J' assert Pj.parent == P assert Pj.child == C assert Pj.coordinates == [theta] assert Pj.speeds == [omega] assert Pj.kdes == [omega - theta.diff(t)] assert Pj.parent_axis == P.frame.x assert Pj.child_point.pos_from(C.masscenter) == Vector(0) assert Pj.parent_point.pos_from(P.masscenter) == Vector(0) assert Pj.parent_point.pos_from(Pj._child_point) == Vector(0) assert C.masscenter.pos_from(P.masscenter) == Vector(0) assert Pj.__str__() == 'PinJoint: J parent: P child: C' P1 = Body('P1') C1 = Body('C1') J1 = PinJoint('J1', P1, C1, parent_joint_pos=l*P1.frame.x, child_joint_pos=m*C1.frame.y, parent_axis=P1.frame.z) assert J1._parent_axis == P1.frame.z assert J1._child_point.pos_from(C1.masscenter) == m * C1.frame.y assert J1._parent_point.pos_from(P1.masscenter) == l * P1.frame.x assert J1._parent_point.pos_from(J1._child_point) == Vector(0) assert (P1.masscenter.pos_from(C1.masscenter) == -l*P1.frame.x + m*C1.frame.y) def test_pin_joint_double_pendulum(): q1, q2 = dynamicsymbols('q1 q2') u1, u2 = dynamicsymbols('u1 u2') m, l = symbols('m l') N = ReferenceFrame('N') A = ReferenceFrame('A') B = ReferenceFrame('B') C = Body('C', frame=N) # ceiling PartP = Body('P', frame=A, mass=m) PartR = Body('R', frame=B, mass=m) J1 = PinJoint('J1', C, PartP, speeds=u1, coordinates=q1, child_joint_pos=-l*A.x, parent_axis=C.frame.z, child_axis=PartP.frame.z) J2 = PinJoint('J2', PartP, PartR, speeds=u2, coordinates=q2, child_joint_pos=-l*B.x, parent_axis=PartP.frame.z, child_axis=PartR.frame.z) # Check orientation assert N.dcm(A) == Matrix([[cos(q1), -sin(q1), 0], [sin(q1), cos(q1), 0], [0, 0, 1]]) assert A.dcm(B) == Matrix([[cos(q2), -sin(q2), 0], [sin(q2), cos(q2), 0], [0, 0, 1]]) assert _simplify_matrix(N.dcm(B)) == Matrix([[cos(q1 + q2), -sin(q1 + q2), 0], [sin(q1 + q2), cos(q1 + q2), 0], [0, 0, 1]]) # Check Angular Velocity assert A.ang_vel_in(N) == u1 * N.z assert B.ang_vel_in(A) == u2 * A.z assert B.ang_vel_in(N) == u1 * N.z + u2 * A.z # Check kde assert J1.kdes == [u1 - q1.diff(t)] assert J2.kdes == [u2 - q2.diff(t)] # Check Linear Velocity assert PartP.masscenter.vel(N) == l*u1*A.y assert PartR.masscenter.vel(A) == l*u2*B.y assert PartR.masscenter.vel(N) == l*u1*A.y + l*(u1 + u2)*B.y def test_pin_joint_chaos_pendulum(): mA, mB, lA, lB, h = symbols('mA, mB, lA, lB, h') theta, phi, omega, alpha = dynamicsymbols('theta phi omega alpha') N = ReferenceFrame('N') A = ReferenceFrame('A') B = ReferenceFrame('B') lA = (lB - h / 2) / 2 lC = (lB/2 + h/4) rod = Body('rod', frame=A, mass=mA) plate = Body('plate', mass=mB, frame=B) C = Body('C', frame=N) J1 = PinJoint('J1', C, rod, coordinates=theta, speeds=omega, child_joint_pos=lA*A.z, parent_axis=N.y, child_axis=A.y) J2 = PinJoint('J2', rod, plate, coordinates=phi, speeds=alpha, parent_joint_pos=lC*A.z, parent_axis=A.z, child_axis=B.z) # Check orientation assert A.dcm(N) == Matrix([[cos(theta), 0, -sin(theta)], [0, 1, 0], [sin(theta), 0, cos(theta)]]) assert A.dcm(B) == Matrix([[cos(phi), -sin(phi), 0], [sin(phi), cos(phi), 0], [0, 0, 1]]) assert B.dcm(N) == Matrix([ [cos(phi)*cos(theta), sin(phi), -sin(theta)*cos(phi)], [-sin(phi)*cos(theta), cos(phi), sin(phi)*sin(theta)], [sin(theta), 0, cos(theta)]]) # Check Angular Velocity assert A.ang_vel_in(N) == omega*N.y assert A.ang_vel_in(B) == -alpha*A.z assert N.ang_vel_in(B) == -omega*N.y - alpha*A.z # Check kde assert J1.kdes == [omega - theta.diff(t)] assert J2.kdes == [alpha - phi.diff(t)] # Check pos of masscenters assert C.masscenter.pos_from(rod.masscenter) == lA*A.z assert rod.masscenter.pos_from(plate.masscenter) == - lC * A.z # Check Linear Velocities assert rod.masscenter.vel(N) == (h/4 - lB/2)*omega*A.x assert plate.masscenter.vel(N) == ((h/4 - lB/2)*omega + (h/4 + lB/2)*omega)*A.x def test_pinjoint_arbitrary_axis(): theta, omega = dynamicsymbols('theta_J, omega_J') # When the bodies are attached though masscenters but axess are opposite. N, A, P, C = _generate_body() PinJoint('J', P, C, child_axis=-A.x) assert (-A.x).angle_between(N.x) == 0 assert -A.x.express(N) == N.x assert A.dcm(N) == Matrix([[-1, 0, 0], [0, -cos(theta), -sin(theta)], [0, -sin(theta), cos(theta)]]) assert A.ang_vel_in(N) == omega*N.x assert A.ang_vel_in(N).magnitude() == sqrt(omega**2) assert C.masscenter.pos_from(P.masscenter) == 0 assert C.masscenter.pos_from(P.masscenter).express(N).simplify() == 0 assert C.masscenter.vel(N) == 0 # When axes are different and parent joint is at masscenter but child joint # is at a unit vector from child masscenter. N, A, P, C = _generate_body() PinJoint('J', P, C, child_axis=A.y, child_joint_pos=A.x) assert A.y.angle_between(N.x) == 0 # Axis are aligned assert A.y.express(N) == N.x assert A.dcm(N) == Matrix([[0, -cos(theta), -sin(theta)], [1, 0, 0], [0, -sin(theta), cos(theta)]]) assert A.ang_vel_in(N) == omega*N.x assert A.ang_vel_in(N).express(A) == omega * A.y assert A.ang_vel_in(N).magnitude() == sqrt(omega**2) angle = A.ang_vel_in(N).angle_between(A.y) assert angle.xreplace({omega: 1}) == 0 assert C.masscenter.vel(N) == omega*A.z assert C.masscenter.pos_from(P.masscenter) == -A.x assert (C.masscenter.pos_from(P.masscenter).express(N).simplify() == cos(theta)*N.y + sin(theta)*N.z) assert C.masscenter.vel(N).angle_between(A.x) == pi/2 # Similar to previous case but wrt parent body N, A, P, C = _generate_body() PinJoint('J', P, C, parent_axis=N.y, parent_joint_pos=N.x) assert N.y.angle_between(A.x) == 0 # Axis are aligned assert N.y.express(A) == A.x assert A.dcm(N) == Matrix([[0, 1, 0], [-cos(theta), 0, sin(theta)], [sin(theta), 0, cos(theta)]]) assert A.ang_vel_in(N) == omega*N.y assert A.ang_vel_in(N).express(A) == omega*A.x assert A.ang_vel_in(N).magnitude() == sqrt(omega**2) angle = A.ang_vel_in(N).angle_between(A.x) assert angle.xreplace({omega: 1}) == 0 assert C.masscenter.vel(N).simplify() == - omega*N.z assert C.masscenter.pos_from(P.masscenter) == N.x # Both joint pos id defined but different axes N, A, P, C = _generate_body() PinJoint('J', P, C, parent_joint_pos=N.x, child_joint_pos=A.x, child_axis=A.x+A.y) assert expand_mul(N.x.angle_between(A.x + A.y)) == 0 # Axis are aligned assert (A.x + A.y).express(N).simplify() == sqrt(2)*N.x assert _simplify_matrix(A.dcm(N)) == Matrix([ [sqrt(2)/2, -sqrt(2)*cos(theta)/2, -sqrt(2)*sin(theta)/2], [sqrt(2)/2, sqrt(2)*cos(theta)/2, sqrt(2)*sin(theta)/2], [0, -sin(theta), cos(theta)]]) assert A.ang_vel_in(N) == omega*N.x assert (A.ang_vel_in(N).express(A).simplify() == (omega*A.x + omega*A.y)/sqrt(2)) assert A.ang_vel_in(N).magnitude() == sqrt(omega**2) angle = A.ang_vel_in(N).angle_between(A.x + A.y) assert angle.xreplace({omega: 1}) == 0 assert C.masscenter.vel(N).simplify() == (omega * A.z)/sqrt(2) assert C.masscenter.pos_from(P.masscenter) == N.x - A.x assert (C.masscenter.pos_from(P.masscenter).express(N).simplify() == (1 - sqrt(2)/2)*N.x + sqrt(2)*cos(theta)/2*N.y + sqrt(2)*sin(theta)/2*N.z) assert (C.masscenter.vel(N).express(N).simplify() == -sqrt(2)*omega*sin(theta)/2*N.y + sqrt(2)*omega*cos(theta)/2*N.z) assert C.masscenter.vel(N).angle_between(A.x) == pi/2 N, A, P, C = _generate_body() PinJoint('J', P, C, parent_joint_pos=N.x, child_joint_pos=A.x, child_axis=A.x+A.y-A.z) assert expand_mul(N.x.angle_between(A.x + A.y - A.z)) == 0 # Axis aligned assert (A.x + A.y - A.z).express(N).simplify() == sqrt(3)*N.x assert _simplify_matrix(A.dcm(N)) == Matrix([ [sqrt(3)/3, -sqrt(6)*sin(theta + pi/4)/3, sqrt(6)*cos(theta + pi/4)/3], [sqrt(3)/3, sqrt(6)*cos(theta + pi/12)/3, sqrt(6)*sin(theta + pi/12)/3], [-sqrt(3)/3, sqrt(6)*cos(theta + 5*pi/12)/3, sqrt(6)*sin(theta + 5*pi/12)/3]]) assert A.ang_vel_in(N) == omega*N.x assert A.ang_vel_in(N).express(A).simplify() == (omega*A.x + omega*A.y - omega*A.z)/sqrt(3) assert A.ang_vel_in(N).magnitude() == sqrt(omega**2) angle = A.ang_vel_in(N).angle_between(A.x + A.y-A.z) assert angle.xreplace({omega: 1}) == 0 assert C.masscenter.vel(N).simplify() == (omega*A.y + omega*A.z)/sqrt(3) assert C.masscenter.pos_from(P.masscenter) == N.x - A.x assert (C.masscenter.pos_from(P.masscenter).express(N).simplify() == (1 - sqrt(3)/3)*N.x + sqrt(6)*sin(theta + pi/4)/3*N.y - sqrt(6)*cos(theta + pi/4)/3*N.z) assert (C.masscenter.vel(N).express(N).simplify() == sqrt(6)*omega*cos(theta + pi/4)/3*N.y + sqrt(6)*omega*sin(theta + pi/4)/3*N.z) assert C.masscenter.vel(N).angle_between(A.x) == pi/2 N, A, P, C = _generate_body() m, n = symbols('m n') PinJoint('J', P, C, parent_joint_pos=m*N.x, child_joint_pos=n*A.x, child_axis=A.x+A.y-A.z, parent_axis=N.x-N.y+N.z) angle = (N.x-N.y+N.z).angle_between(A.x+A.y-A.z) assert expand_mul(angle) == 0 # Axis are aligned assert ((A.x-A.y+A.z).express(N).simplify() == (-4*cos(theta)/3 - S(1)/3)*N.x + (S(1)/3 - 4*sin(theta + pi/6)/3)*N.y + (4*cos(theta + pi/3)/3 - S(1)/3)*N.z) assert _simplify_matrix(A.dcm(N)) == Matrix([ [S(1)/3 - 2*cos(theta)/3, -2*sin(theta + pi/6)/3 - S(1)/3, 2*cos(theta + pi/3)/3 + S(1)/3], [2*cos(theta + pi/3)/3 + S(1)/3, 2*cos(theta)/3 - S(1)/3, 2*sin(theta + pi/6)/3 + S(1)/3], [-2*sin(theta + pi/6)/3 - S(1)/3, 2*cos(theta + pi/3)/3 + S(1)/3, 2*cos(theta)/3 - S(1)/3]]) assert A.ang_vel_in(N) == (omega*N.x - omega*N.y + omega*N.z)/sqrt(3) assert A.ang_vel_in(N).express(A).simplify() == (omega*A.x + omega*A.y - omega*A.z)/sqrt(3) assert A.ang_vel_in(N).magnitude() == sqrt(omega**2) angle = A.ang_vel_in(N).angle_between(A.x+A.y-A.z) assert angle.xreplace({omega: 1}) == 0 assert (C.masscenter.vel(N).simplify() == (m*omega*N.y + m*omega*N.z + n*omega*A.y + n*omega*A.z)/sqrt(3)) assert C.masscenter.pos_from(P.masscenter) == m*N.x - n*A.x assert (C.masscenter.pos_from(P.masscenter).express(N).simplify() == (m + n*(2*cos(theta) - 1)/3)*N.x + n*(2*sin(theta + pi/6) + 1)/3*N.y - n*(2*cos(theta + pi/3) + 1)/3*N.z) assert (C.masscenter.vel(N).express(N).simplify() == -2*n*omega*sin(theta)/3*N.x + (sqrt(3)*m + 2*n*cos(theta + pi/6))*omega/3*N.y + (sqrt(3)*m + 2*n*sin(theta + pi/3))*omega/3*N.z) assert expand_mul(C.masscenter.vel(N).angle_between(m*N.x - n*A.x)) == pi/2 def test_pinjoint_pi(): _, _, P, C = _generate_body() J = PinJoint('J', P, C, child_axis=-C.frame.x) assert J._generate_vector() == P.frame.z _, _, P, C = _generate_body() J = PinJoint('J', P, C, parent_axis=P.frame.y, child_axis=-C.frame.y) assert J._generate_vector() == P.frame.x _, _, P, C = _generate_body() J = PinJoint('J', P, C, parent_axis=P.frame.z, child_axis=-C.frame.z) assert J._generate_vector() == P.frame.y _, _, P, C = _generate_body() J = PinJoint('J', P, C, parent_axis=P.frame.x+P.frame.y, child_axis=-C.frame.y-C.frame.x) assert J._generate_vector() == P.frame.z _, _, P, C = _generate_body() J = PinJoint('J', P, C, parent_axis=P.frame.y+P.frame.z, child_axis=-C.frame.y-C.frame.z) assert J._generate_vector() == P.frame.x _, _, P, C = _generate_body() J = PinJoint('J', P, C, parent_axis=P.frame.x+P.frame.z, child_axis=-C.frame.z-C.frame.x) assert J._generate_vector() == P.frame.y _, _, P, C = _generate_body() J = PinJoint('J', P, C, parent_axis=P.frame.x+P.frame.y+P.frame.z, child_axis=-C.frame.x-C.frame.y-C.frame.z) assert J._generate_vector() == P.frame.y - P.frame.z def test_slidingjoint(): _, _, P, C = _generate_body() x, v = dynamicsymbols('x_S, v_S') S = PrismaticJoint('S', P, C) assert S.name == 'S' assert S.parent == P assert S.child == C assert S.coordinates == [x] assert S.speeds == [v] assert S.kdes == [v - x.diff(t)] assert S.parent_axis == P.frame.x assert S.child_axis == C.frame.x assert S.child_point.pos_from(C.masscenter) == Vector(0) assert S.parent_point.pos_from(P.masscenter) == Vector(0) assert S.parent_point.pos_from(S.child_point) == - x * P.frame.x assert P.masscenter.pos_from(C.masscenter) == - x * P.frame.x assert C.masscenter.vel(P.frame) == v * P.frame.x assert P.ang_vel_in(C) == 0 assert C.ang_vel_in(P) == 0 assert S.__str__() == 'PrismaticJoint: S parent: P child: C' N, A, P, C = _generate_body() l, m = symbols('l m') S = PrismaticJoint('S', P, C, parent_joint_pos= l * P.frame.x, child_joint_pos= m * C.frame.y, parent_axis = P.frame.z) assert S.parent_axis == P.frame.z assert S.child_point.pos_from(C.masscenter) == m * C.frame.y assert S.parent_point.pos_from(P.masscenter) == l * P.frame.x assert S.parent_point.pos_from(S.child_point) == - x * P.frame.z assert P.masscenter.pos_from(C.masscenter) == - l*N.x - x*N.z + m*A.y assert C.masscenter.vel(P.frame) == v * P.frame.z assert C.ang_vel_in(P) == 0 assert P.ang_vel_in(C) == 0 _, _, P, C = _generate_body() S = PrismaticJoint('S', P, C, parent_joint_pos= l * P.frame.z, child_joint_pos= m * C.frame.x, parent_axis = P.frame.z) assert S.parent_axis == P.frame.z assert S.child_point.pos_from(C.masscenter) == m * C.frame.x assert S.parent_point.pos_from(P.masscenter) == l * P.frame.z assert S.parent_point.pos_from(S.child_point) == - x * P.frame.z assert P.masscenter.pos_from(C.masscenter) == (-l - x)*P.frame.z + m*C.frame.x assert C.masscenter.vel(P.frame) == v * P.frame.z assert C.ang_vel_in(P) == 0 assert P.ang_vel_in(C) == 0 def test_slidingjoint_arbitrary_axis(): x, v = dynamicsymbols('x_S, v_S') N, A, P, C = _generate_body() PrismaticJoint('S', P, C, child_axis=-A.x) assert (-A.x).angle_between(N.x) == 0 assert -A.x.express(N) == N.x assert A.dcm(N) == Matrix([[-1, 0, 0], [0, -1, 0], [0, 0, 1]]) assert C.masscenter.pos_from(P.masscenter) == x * N.x assert C.masscenter.pos_from(P.masscenter).express(A).simplify() == -x * A.x assert C.masscenter.vel(N) == v * N.x assert C.masscenter.vel(N).express(A) == -v * A.x assert A.ang_vel_in(N) == 0 assert N.ang_vel_in(A) == 0 #When axes are different and parent joint is at masscenter but child joint is at a unit vector from #child masscenter. N, A, P, C = _generate_body() PrismaticJoint('S', P, C, child_axis=A.y, child_joint_pos=A.x) assert A.y.angle_between(N.x) == 0 #Axis are aligned assert A.y.express(N) == N.x assert A.dcm(N) == Matrix([[0, -1, 0], [1, 0, 0], [0, 0, 1]]) assert C.masscenter.vel(N) == v * N.x assert C.masscenter.vel(N).express(A) == v * A.y assert C.masscenter.pos_from(P.masscenter) == x*N.x - A.x assert C.masscenter.pos_from(P.masscenter).express(N).simplify() == x*N.x + N.y assert A.ang_vel_in(N) == 0 assert N.ang_vel_in(A) == 0 #Similar to previous case but wrt parent body N, A, P, C = _generate_body() PrismaticJoint('S', P, C, parent_axis=N.y, parent_joint_pos=N.x) assert N.y.angle_between(A.x) == 0 #Axis are aligned assert N.y.express(A) == A.x assert A.dcm(N) == Matrix([[0, 1, 0], [-1, 0, 0], [0, 0, 1]]) assert C.masscenter.vel(N) == v * N.y assert C.masscenter.vel(N).express(A) == v * A.x assert C.masscenter.pos_from(P.masscenter) == N.x + x*N.y assert A.ang_vel_in(N) == 0 assert N.ang_vel_in(A) == 0 #Both joint pos is defined but different axes N, A, P, C = _generate_body() PrismaticJoint('S', P, C, parent_joint_pos=N.x, child_joint_pos=A.x, child_axis=A.x+A.y) assert N.x.angle_between(A.x + A.y) == 0 #Axis are aligned assert (A.x + A.y).express(N) == sqrt(2)*N.x assert A.dcm(N) == Matrix([[sqrt(2)/2, -sqrt(2)/2, 0], [sqrt(2)/2, sqrt(2)/2, 0], [0, 0, 1]]) assert C.masscenter.pos_from(P.masscenter) == (x + 1)*N.x - A.x assert C.masscenter.pos_from(P.masscenter).express(N) == (x - sqrt(2)/2 + 1)*N.x + sqrt(2)/2*N.y assert C.masscenter.vel(N).express(A) == v * (A.x + A.y)/sqrt(2) assert C.masscenter.vel(N) == v*N.x assert A.ang_vel_in(N) == 0 assert N.ang_vel_in(A) == 0 N, A, P, C = _generate_body() PrismaticJoint('S', P, C, parent_joint_pos=N.x, child_joint_pos=A.x, child_axis=A.x+A.y-A.z) assert N.x.angle_between(A.x + A.y - A.z) == 0 #Axis are aligned assert (A.x + A.y - A.z).express(N) == sqrt(3)*N.x assert _simplify_matrix(A.dcm(N)) == Matrix([[sqrt(3)/3, -sqrt(3)/3, sqrt(3)/3], [sqrt(3)/3, sqrt(3)/6 + S(1)/2, S(1)/2 - sqrt(3)/6], [-sqrt(3)/3, S(1)/2 - sqrt(3)/6, sqrt(3)/6 + S(1)/2]]) assert C.masscenter.pos_from(P.masscenter) == (x + 1)*N.x - A.x assert C.masscenter.pos_from(P.masscenter).express(N) == \ (x - sqrt(3)/3 + 1)*N.x + sqrt(3)/3*N.y - sqrt(3)/3*N.z assert C.masscenter.vel(N) == v*N.x assert C.masscenter.vel(N).express(A) == sqrt(3)*v/3*A.x + sqrt(3)*v/3*A.y - sqrt(3)*v/3*A.z assert A.ang_vel_in(N) == 0 assert N.ang_vel_in(A) == 0 N, A, P, C = _generate_body() m, n = symbols('m n') PrismaticJoint('S', P, C, parent_joint_pos=m*N.x, child_joint_pos=n*A.x, child_axis=A.x+A.y-A.z, parent_axis=N.x-N.y+N.z) assert (N.x-N.y+N.z).angle_between(A.x+A.y-A.z) == 0 #Axis are aligned assert (A.x+A.y-A.z).express(N) == N.x - N.y + N.z assert _simplify_matrix(A.dcm(N)) == Matrix([[-S(1)/3, -S(2)/3, S(2)/3], [S(2)/3, S(1)/3, S(2)/3], [-S(2)/3, S(2)/3, S(1)/3]]) assert C.masscenter.pos_from(P.masscenter) == \ (m + sqrt(3)*x/3)*N.x - sqrt(3)*x/3*N.y + sqrt(3)*x/3*N.z - n*A.x assert C.masscenter.pos_from(P.masscenter).express(N) == \ (m + n/3 + sqrt(3)*x/3)*N.x + (2*n/3 - sqrt(3)*x/3)*N.y + (-2*n/3 + sqrt(3)*x/3)*N.z assert C.masscenter.vel(N) == sqrt(3)*v/3*N.x - sqrt(3)*v/3*N.y + sqrt(3)*v/3*N.z assert C.masscenter.vel(N).express(A) == sqrt(3)*v/3*A.x + sqrt(3)*v/3*A.y - sqrt(3)*v/3*A.z assert A.ang_vel_in(N) == 0 assert N.ang_vel_in(A) == 0
be4875cad072b79c3ff7bef7bd60b3a873a2fc6366fb98e3c86ef70196ff8fa7
from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame, Point, RigidBody, LagrangesMethod, Particle, inertia, Lagrangian) from sympy import symbols, pi, sin, cos, tan, simplify, Function, \ Derivative, Matrix def test_disc_on_an_incline_plane(): # Disc rolling on an inclined plane # First the generalized coordinates are created. The mass center of the # disc is located from top vertex of the inclined plane by the generalized # coordinate 'y'. The orientation of the disc is defined by the angle # 'theta'. The mass of the disc is 'm' and its radius is 'R'. The length of # the inclined path is 'l', the angle of inclination is 'alpha'. 'g' is the # gravitational constant. y, theta = dynamicsymbols('y theta') yd, thetad = dynamicsymbols('y theta', 1) m, g, R, l, alpha = symbols('m g R l alpha') # Next, we create the inertial reference frame 'N'. A reference frame 'A' # is attached to the inclined plane. Finally a frame is created which is attached to the disk. N = ReferenceFrame('N') A = N.orientnew('A', 'Axis', [pi/2 - alpha, N.z]) B = A.orientnew('B', 'Axis', [-theta, A.z]) # Creating the disc 'D'; we create the point that represents the mass # center of the disc and set its velocity. The inertia dyadic of the disc # is created. Finally, we create the disc. Do = Point('Do') Do.set_vel(N, yd * A.x) I = m * R**2/2 * B.z | B.z D = RigidBody('D', Do, B, m, (I, Do)) # To construct the Lagrangian, 'L', of the disc, we determine its kinetic # and potential energies, T and U, respectively. L is defined as the # difference between T and U. D.potential_energy = m * g * (l - y) * sin(alpha) L = Lagrangian(N, D) # We then create the list of generalized coordinates and constraint # equations. The constraint arises due to the disc rolling without slip on # on the inclined path. We then invoke the 'LagrangesMethod' class and # supply it the necessary arguments and generate the equations of motion. # The'rhs' method solves for the q_double_dots (i.e. the second derivative # with respect to time of the generalized coordinates and the lagrange # multipliers. q = [y, theta] hol_coneqs = [y - R * theta] m = LagrangesMethod(L, q, hol_coneqs=hol_coneqs) m.form_lagranges_equations() rhs = m.rhs() rhs.simplify() assert rhs[2] == 2*g*sin(alpha)/3 def test_simp_pen(): # This tests that the equations generated by LagrangesMethod are identical # to those obtained by hand calculations. The system under consideration is # the simple pendulum. # We begin by creating the generalized coordinates as per the requirements # of LagrangesMethod. Also we created the associate symbols # that characterize the system: 'm' is the mass of the bob, l is the length # of the massless rigid rod connecting the bob to a point O fixed in the # inertial frame. q, u = dynamicsymbols('q u') qd, ud = dynamicsymbols('q u ', 1) l, m, g = symbols('l m g') # We then create the inertial frame and a frame attached to the massless # string following which we define the inertial angular velocity of the # string. N = ReferenceFrame('N') A = N.orientnew('A', 'Axis', [q, N.z]) A.set_ang_vel(N, qd * N.z) # Next, we create the point O and fix it in the inertial frame. We then # locate the point P to which the bob is attached. Its corresponding # velocity is then determined by the 'two point formula'. O = Point('O') O.set_vel(N, 0) P = O.locatenew('P', l * A.x) P.v2pt_theory(O, N, A) # The 'Particle' which represents the bob is then created and its # Lagrangian generated. Pa = Particle('Pa', P, m) Pa.potential_energy = - m * g * l * cos(q) L = Lagrangian(N, Pa) # The 'LagrangesMethod' class is invoked to obtain equations of motion. lm = LagrangesMethod(L, [q]) lm.form_lagranges_equations() RHS = lm.rhs() assert RHS[1] == -g*sin(q)/l def test_nonminimal_pendulum(): q1, q2 = dynamicsymbols('q1:3') q1d, q2d = dynamicsymbols('q1:3', level=1) L, m, t = symbols('L, m, t') g = 9.8 # Compose World Frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # Create point P, the pendulum mass P = pN.locatenew('P1', q1*N.x + q2*N.y) P.set_vel(N, P.pos_from(pN).dt(N)) pP = Particle('pP', P, m) # Constraint Equations f_c = Matrix([q1**2 + q2**2 - L**2]) # Calculate the lagrangian, and form the equations of motion Lag = Lagrangian(N, pP) LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N) LM.form_lagranges_equations() # Check solution lam1 = LM.lam_vec[0, 0] eom_sol = Matrix([[m*Derivative(q1, t, t) - 9.8*m + 2*lam1*q1], [m*Derivative(q2, t, t) + 2*lam1*q2]]) assert LM.eom == eom_sol # Check multiplier solution lam_sol = Matrix([(19.6*q1 + 2*q1d**2 + 2*q2d**2)/(4*q1**2/m + 4*q2**2/m)]) assert simplify(LM.solve_multipliers(sol_type='Matrix')) == simplify(lam_sol) def test_dub_pen(): # The system considered is the double pendulum. Like in the # test of the simple pendulum above, we begin by creating the generalized # coordinates and the simple generalized speeds and accelerations which # will be used later. Following this we create frames and points necessary # for the kinematics. The procedure isn't explicitly explained as this is # similar to the simple pendulum. Also this is documented on the pydy.org # website. q1, q2 = dynamicsymbols('q1 q2') q1d, q2d = dynamicsymbols('q1 q2', 1) q1dd, q2dd = dynamicsymbols('q1 q2', 2) u1, u2 = dynamicsymbols('u1 u2') u1d, u2d = dynamicsymbols('u1 u2', 1) l, m, g = symbols('l m g') N = ReferenceFrame('N') A = N.orientnew('A', 'Axis', [q1, N.z]) B = N.orientnew('B', 'Axis', [q2, N.z]) A.set_ang_vel(N, q1d * A.z) B.set_ang_vel(N, q2d * A.z) O = Point('O') P = O.locatenew('P', l * A.x) R = P.locatenew('R', l * B.x) O.set_vel(N, 0) P.v2pt_theory(O, N, A) R.v2pt_theory(P, N, B) ParP = Particle('ParP', P, m) ParR = Particle('ParR', R, m) ParP.potential_energy = - m * g * l * cos(q1) ParR.potential_energy = - m * g * l * cos(q1) - m * g * l * cos(q2) L = Lagrangian(N, ParP, ParR) lm = LagrangesMethod(L, [q1, q2], bodies=[ParP, ParR]) lm.form_lagranges_equations() assert simplify(l*m*(2*g*sin(q1) + l*sin(q1)*sin(q2)*q2dd + l*sin(q1)*cos(q2)*q2d**2 - l*sin(q2)*cos(q1)*q2d**2 + l*cos(q1)*cos(q2)*q2dd + 2*l*q1dd) - lm.eom[0]) == 0 assert simplify(l*m*(g*sin(q2) + l*sin(q1)*sin(q2)*q1dd - l*sin(q1)*cos(q2)*q1d**2 + l*sin(q2)*cos(q1)*q1d**2 + l*cos(q1)*cos(q2)*q1dd + l*q2dd) - lm.eom[1]) == 0 assert lm.bodies == [ParP, ParR] def test_rolling_disc(): # Rolling Disc Example # Here the rolling disc is formed from the contact point up, removing the # need to introduce generalized speeds. Only 3 configuration and 3 # speed variables are need to describe this system, along with the # disc's mass and radius, and the local gravity. q1, q2, q3 = dynamicsymbols('q1 q2 q3') q1d, q2d, q3d = dynamicsymbols('q1 q2 q3', 1) r, m, g = symbols('r m g') # The kinematics are formed by a series of simple rotations. Each simple # rotation creates a new frame, and the next rotation is defined by the new # frame's basis vectors. This example uses a 3-1-2 series of rotations, or # Z, X, Y series of rotations. Angular velocity for this is defined using # the second frame's basis (the lean frame). N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) L = Y.orientnew('L', 'Axis', [q2, Y.x]) R = L.orientnew('R', 'Axis', [q3, L.y]) # This is the translational kinematics. We create a point with no velocity # in N; this is the contact point between the disc and ground. Next we form # the position vector from the contact point to the disc's center of mass. # Finally we form the velocity and acceleration of the disc. C = Point('C') C.set_vel(N, 0) Dmc = C.locatenew('Dmc', r * L.z) Dmc.v2pt_theory(C, N, R) # Forming the inertia dyadic. I = inertia(L, m/4 * r**2, m/2 * r**2, m/4 * r**2) BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) # Finally we form the equations of motion, using the same steps we did # before. Supply the Lagrangian, the generalized speeds. BodyD.potential_energy = - m * g * r * cos(q2) Lag = Lagrangian(N, BodyD) q = [q1, q2, q3] q1 = Function('q1') q2 = Function('q2') q3 = Function('q3') l = LagrangesMethod(Lag, q) l.form_lagranges_equations() RHS = l.rhs() RHS.simplify() t = symbols('t') assert (l.mass_matrix[3:6] == [0, 5*m*r**2/4, 0]) assert RHS[4].simplify() == ( (-8*g*sin(q2(t)) + r*(5*sin(2*q2(t))*Derivative(q1(t), t) + 12*cos(q2(t))*Derivative(q3(t), t))*Derivative(q1(t), t))/(10*r)) assert RHS[5] == (-5*cos(q2(t))*Derivative(q1(t), t) + 6*tan(q2(t) )*Derivative(q3(t), t) + 4*Derivative(q1(t), t)/cos(q2(t)) )*Derivative(q2(t), t)
c7b9e7b096abd9f1cb94640827b2bcd1977a37d0b81f3f6c1fc7afe1369365a5
from sympy.core.backend import (symbols, Matrix, cos, sin, atan, sqrt, Rational, _simplify_matrix) from sympy import solve, simplify, sympify from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame, Point,\ dot, cross, inertia, KanesMethod, Particle, RigidBody, Lagrangian,\ LagrangesMethod from sympy.testing.pytest import slow @slow def test_linearize_rolling_disc_kane(): # Symbols for time and constant parameters t, r, m, g, v = symbols('t r m g v') # Configuration variables and their time derivatives q1, q2, q3, q4, q5, q6 = q = dynamicsymbols('q1:7') q1d, q2d, q3d, q4d, q5d, q6d = qd = [qi.diff(t) for qi in q] # Generalized speeds and their time derivatives u = dynamicsymbols('u:6') u1, u2, u3, u4, u5, u6 = u = dynamicsymbols('u1:7') u1d, u2d, u3d, u4d, u5d, u6d = [ui.diff(t) for ui in u] # Reference frames N = ReferenceFrame('N') # Inertial frame NO = Point('NO') # Inertial origin A = N.orientnew('A', 'Axis', [q1, N.z]) # Yaw intermediate frame B = A.orientnew('B', 'Axis', [q2, A.x]) # Lean intermediate frame C = B.orientnew('C', 'Axis', [q3, B.y]) # Disc fixed frame CO = NO.locatenew('CO', q4*N.x + q5*N.y + q6*N.z) # Disc center # Disc angular velocity in N expressed using time derivatives of coordinates w_c_n_qd = C.ang_vel_in(N) w_b_n_qd = B.ang_vel_in(N) # Inertial angular velocity and angular acceleration of disc fixed frame C.set_ang_vel(N, u1*B.x + u2*B.y + u3*B.z) # Disc center velocity in N expressed using time derivatives of coordinates v_co_n_qd = CO.pos_from(NO).dt(N) # Disc center velocity in N expressed using generalized speeds CO.set_vel(N, u4*C.x + u5*C.y + u6*C.z) # Disc Ground Contact Point P = CO.locatenew('P', r*B.z) P.v2pt_theory(CO, N, C) # Configuration constraint f_c = Matrix([q6 - dot(CO.pos_from(P), N.z)]) # Velocity level constraints f_v = Matrix([dot(P.vel(N), uv) for uv in C]) # Kinematic differential equations kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] + [dot(v_co_n_qd - CO.vel(N), uv) for uv in N]) qdots = solve(kindiffs, qd) # Set angular velocity of remaining frames B.set_ang_vel(N, w_b_n_qd.subs(qdots)) C.set_ang_acc(N, C.ang_vel_in(N).dt(B) + cross(B.ang_vel_in(N), C.ang_vel_in(N))) # Active forces F_CO = m*g*A.z # Create inertia dyadic of disc C about point CO I = (m * r**2) / 4 J = (m * r**2) / 2 I_C_CO = inertia(C, I, J, I) Disc = RigidBody('Disc', CO, C, m, (I_C_CO, CO)) BL = [Disc] FL = [(CO, F_CO)] KM = KanesMethod(N, [q1, q2, q3, q4, q5], [u1, u2, u3], kd_eqs=kindiffs, q_dependent=[q6], configuration_constraints=f_c, u_dependent=[u4, u5, u6], velocity_constraints=f_v) (fr, fr_star) = KM.kanes_equations(BL, FL) # Test generalized form equations linearizer = KM.to_linearizer() assert linearizer.f_c == f_c assert linearizer.f_v == f_v assert linearizer.f_a == f_v.diff(t).subs(KM.kindiffdict()) sol = solve(linearizer.f_0 + linearizer.f_1, qd) for qi in qdots.keys(): assert sol[qi] == qdots[qi] assert simplify(linearizer.f_2 + linearizer.f_3 - fr - fr_star) == Matrix([0, 0, 0]) # Perform the linearization # Precomputed operating point q_op = {q6: -r*cos(q2)} u_op = {u1: 0, u2: sin(q2)*q1d + q3d, u3: cos(q2)*q1d, u4: -r*(sin(q2)*q1d + q3d)*cos(q3), u5: 0, u6: -r*(sin(q2)*q1d + q3d)*sin(q3)} qd_op = {q2d: 0, q4d: -r*(sin(q2)*q1d + q3d)*cos(q1), q5d: -r*(sin(q2)*q1d + q3d)*sin(q1), q6d: 0} ud_op = {u1d: 4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5, u2d: 0, u3d: 0, u4d: r*(sin(q2)*sin(q3)*q1d*q3d + sin(q3)*q3d**2), u5d: r*(4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5), u6d: -r*(sin(q2)*cos(q3)*q1d*q3d + cos(q3)*q3d**2)} A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op], A_and_B=True, simplify=True) upright_nominal = {q1d: 0, q2: 0, m: 1, r: 1, g: 1} # Precomputed solution A_sol = Matrix([[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [sin(q1)*q3d, 0, 0, 0, 0, -sin(q1), -cos(q1), 0], [-cos(q1)*q3d, 0, 0, 0, 0, cos(q1), -sin(q1), 0], [0, Rational(4, 5), 0, 0, 0, 0, 0, 6*q3d/5], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -2*q3d, 0, 0]]) B_sol = Matrix([]) # Check that linearization is correct assert A.subs(upright_nominal) == A_sol assert B.subs(upright_nominal) == B_sol # Check eigenvalues at critical speed are all zero: assert sympify(A.subs(upright_nominal).subs(q3d, 1/sqrt(3))).eigenvals() == {0: 8} def test_linearize_pendulum_kane_minimal(): q1 = dynamicsymbols('q1') # angle of pendulum u1 = dynamicsymbols('u1') # Angular velocity q1d = dynamicsymbols('q1', 1) # Angular velocity L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum A = N.orientnew('A', 'axis', [q1, N.z]) A.set_ang_vel(N, u1*N.z) # Locate point P relative to the origin N* P = pN.locatenew('P', L*A.x) P.v2pt_theory(pN, N, A) pP = Particle('pP', P, m) # Create Kinematic Differential Equations kde = Matrix([q1d - u1]) # Input the force resultant at P R = m*g*N.x # Solve for eom with kanes method KM = KanesMethod(N, q_ind=[q1], u_ind=[u1], kd_eqs=kde) (fr, frstar) = KM.kanes_equations([pP], [(P, R)]) # Linearize A, B, inp_vec = KM.linearize(A_and_B=True, simplify=True) assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_kane_nonminimal(): # Create generalized coordinates and speeds for this non-minimal realization # q1, q2 = N.x and N.y coordinates of pendulum # u1, u2 = N.x and N.y velocities of pendulum q1, q2 = dynamicsymbols('q1:3') q1d, q2d = dynamicsymbols('q1:3', level=1) u1, u2 = dynamicsymbols('u1:3') u1d, u2d = dynamicsymbols('u1:3', level=1) L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum theta1 = atan(q2/q1) A = N.orientnew('A', 'axis', [theta1, N.z]) # Locate the pendulum mass P = pN.locatenew('P1', q1*N.x + q2*N.y) pP = Particle('pP', P, m) # Calculate the kinematic differential equations kde = Matrix([q1d - u1, q2d - u2]) dq_dict = solve(kde, [q1d, q2d]) # Set velocity of point P P.set_vel(N, P.pos_from(pN).dt(N).subs(dq_dict)) # Configuration constraint is length of pendulum f_c = Matrix([P.pos_from(pN).magnitude() - L]) # Velocity constraint is that the velocity in the A.x direction is # always zero (the pendulum is never getting longer). f_v = Matrix([P.vel(N).express(A).dot(A.x)]) f_v.simplify() # Acceleration constraints is the time derivative of the velocity constraint f_a = f_v.diff(t) f_a.simplify() # Input the force resultant at P R = m*g*N.x # Derive the equations of motion using the KanesMethod class. KM = KanesMethod(N, q_ind=[q2], u_ind=[u2], q_dependent=[q1], u_dependent=[u1], configuration_constraints=f_c, velocity_constraints=f_v, acceleration_constraints=f_a, kd_eqs=kde) (fr, frstar) = KM.kanes_equations([pP], [(P, R)]) # Set the operating point to be straight down, and non-moving q_op = {q1: L, q2: 0} u_op = {u1: 0, u2: 0} ud_op = {u1d: 0, u2d: 0} A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op], A_and_B=True, simplify=True) assert A.expand() == Matrix([[0, 1], [-9.8/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_lagrange_minimal(): q1 = dynamicsymbols('q1') # angle of pendulum q1d = dynamicsymbols('q1', 1) # Angular velocity L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum A = N.orientnew('A', 'axis', [q1, N.z]) A.set_ang_vel(N, q1d*N.z) # Locate point P relative to the origin N* P = pN.locatenew('P', L*A.x) P.v2pt_theory(pN, N, A) pP = Particle('pP', P, m) # Solve for eom with Lagranges method Lag = Lagrangian(N, pP) LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N) LM.form_lagranges_equations() # Linearize A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True) assert _simplify_matrix(A) == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_lagrange_nonminimal(): q1, q2 = dynamicsymbols('q1:3') q1d, q2d = dynamicsymbols('q1:3', level=1) L, m, t = symbols('L, m, t') g = 9.8 # Compose World Frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum theta1 = atan(q2/q1) A = N.orientnew('A', 'axis', [theta1, N.z]) # Create point P, the pendulum mass P = pN.locatenew('P1', q1*N.x + q2*N.y) P.set_vel(N, P.pos_from(pN).dt(N)) pP = Particle('pP', P, m) # Constraint Equations f_c = Matrix([q1**2 + q2**2 - L**2]) # Calculate the lagrangian, and form the equations of motion Lag = Lagrangian(N, pP) LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N) LM.form_lagranges_equations() # Compose operating point op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0} # Solve for multiplier operating point lam_op = LM.solve_multipliers(op_point=op_point) op_point.update(lam_op) # Perform the Linearization A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d], op_point=op_point, A_and_B=True) assert _simplify_matrix(A) == Matrix([[0, 1], [-9.8/L, 0]]) assert B == Matrix([]) def test_linearize_rolling_disc_lagrange(): q1, q2, q3 = q = dynamicsymbols('q1 q2 q3') q1d, q2d, q3d = qd = dynamicsymbols('q1 q2 q3', 1) r, m, g = symbols('r m g') N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) L = Y.orientnew('L', 'Axis', [q2, Y.x]) R = L.orientnew('R', 'Axis', [q3, L.y]) C = Point('C') C.set_vel(N, 0) Dmc = C.locatenew('Dmc', r * L.z) Dmc.v2pt_theory(C, N, R) I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) BodyD.potential_energy = - m * g * r * cos(q2) Lag = Lagrangian(N, BodyD) l = LagrangesMethod(Lag, q) l.form_lagranges_equations() # Linearize about steady-state upright rolling op_point = {q1: 0, q2: 0, q3: 0, q1d: 0, q2d: 0, q1d.diff(): 0, q2d.diff(): 0, q3d.diff(): 0} A = l.linearize(q_ind=q, qd_ind=qd, op_point=op_point, A_and_B=True)[0] sol = Matrix([[0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, -6*q3d, 0], [0, -4*g/(5*r), 0, 6*q3d/5, 0, 0], [0, 0, 0, 0, 0, 0]]) assert A == sol
66a67965ffa12db11029d3afe0ad60dc67b4e20c2b68911fddb500384f3b4af3
""" MKS unit system. MKS stands for "meter, kilogram, second, ampere". """ from typing import List from sympy.physics.units.definitions import Z0, A, C, F, H, S, T, V, Wb, ohm from sympy.physics.units.definitions.dimension_definitions import ( capacitance, charge, conductance, current, impedance, inductance, magnetic_density, magnetic_flux, voltage) from sympy.physics.units.prefixes import PREFIXES, prefix_unit from sympy.physics.units.systems.mks import MKS, dimsys_length_weight_time from sympy.physics.units.quantities import Quantity dims = (voltage, impedance, conductance, current, capacitance, inductance, charge, magnetic_density, magnetic_flux) units = [A, V, ohm, S, F, H, C, T, Wb] all_units = [] # type: List[Quantity] for u in units: all_units.extend(prefix_unit(u, PREFIXES)) all_units.append(Z0) dimsys_MKSA = dimsys_length_weight_time.extend([ # Dimensional dependencies for base dimensions (MKSA not in MKS) current, ], new_dim_deps=dict( # Dimensional dependencies for derived dimensions voltage=dict(mass=1, length=2, current=-1, time=-3), impedance=dict(mass=1, length=2, current=-2, time=-3), conductance=dict(mass=-1, length=-2, current=2, time=3), capacitance=dict(mass=-1, length=-2, current=2, time=4), inductance=dict(mass=1, length=2, current=-2, time=-2), charge=dict(current=1, time=1), magnetic_density=dict(mass=1, current=-1, time=-2), magnetic_flux=dict(length=2, mass=1, current=-1, time=-2), )) MKSA = MKS.extend(base=(A,), units=all_units, name='MKSA', dimension_system=dimsys_MKSA)
279d592c51217d302e08e9e0480d21f81623597c0f79f02df4141837caeab70a
from sympy import expand, Symbol, symbols, S, Interval, pi, Rational, simplify from sympy.physics.continuum_mechanics.beam import Beam from sympy.functions import SingularityFunction, Piecewise, meijerg, Abs, log from sympy.testing.pytest import raises from sympy.physics.units import meter, newton, kilo, giga, milli from sympy.physics.continuum_mechanics.beam import Beam3D from sympy.geometry import Circle, Polygon, Point2D, Triangle from sympy import sympify x = Symbol('x') y = Symbol('y') R1, R2 = symbols('R1, R2') def test_Beam(): E = Symbol('E') E_1 = Symbol('E_1') I = Symbol('I') I_1 = Symbol('I_1') A = Symbol('A') b = Beam(1, E, I) assert b.length == 1 assert b.elastic_modulus == E assert b.second_moment == I assert b.variable == x # Test the length setter b.length = 4 assert b.length == 4 # Test the E setter b.elastic_modulus = E_1 assert b.elastic_modulus == E_1 # Test the I setter b.second_moment = I_1 assert b.second_moment is I_1 # Test the variable setter b.variable = y assert b.variable is y # Test for all boundary conditions. b.bc_deflection = [(0, 2)] b.bc_slope = [(0, 1)] assert b.boundary_conditions == {'deflection': [(0, 2)], 'slope': [(0, 1)]} # Test for slope boundary condition method b.bc_slope.extend([(4, 3), (5, 0)]) s_bcs = b.bc_slope assert s_bcs == [(0, 1), (4, 3), (5, 0)] # Test for deflection boundary condition method b.bc_deflection.extend([(4, 3), (5, 0)]) d_bcs = b.bc_deflection assert d_bcs == [(0, 2), (4, 3), (5, 0)] # Test for updated boundary conditions bcs_new = b.boundary_conditions assert bcs_new == { 'deflection': [(0, 2), (4, 3), (5, 0)], 'slope': [(0, 1), (4, 3), (5, 0)]} b1 = Beam(30, E, I) b1.apply_load(-8, 0, -1) b1.apply_load(R1, 10, -1) b1.apply_load(R2, 30, -1) b1.apply_load(120, 30, -2) b1.bc_deflection = [(10, 0), (30, 0)] b1.solve_for_reaction_loads(R1, R2) # Test for finding reaction forces p = b1.reaction_loads q = {R1: 6, R2: 2} assert p == q # Test for load distribution function. p = b1.load q = -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) \ + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1) assert p == q # Test for shear force distribution function p = b1.shear_force() q = 8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) \ - 120*SingularityFunction(x, 30, -1) - 2*SingularityFunction(x, 30, 0) assert p == q # Test for shear stress distribution function p = b1.shear_stress() q = (8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) \ - 120*SingularityFunction(x, 30, -1) \ - 2*SingularityFunction(x, 30, 0))/A assert p==q # Test for bending moment distribution function p = b1.bending_moment() q = 8*SingularityFunction(x, 0, 1) - 6*SingularityFunction(x, 10, 1) \ - 120*SingularityFunction(x, 30, 0) - 2*SingularityFunction(x, 30, 1) assert p == q # Test for slope distribution function p = b1.slope() q = -4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) \ + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) \ + Rational(4000, 3) assert p == q/(E*I) # Test for deflection distribution function p = b1.deflection() q = x*Rational(4000, 3) - 4*SingularityFunction(x, 0, 3)/3 \ + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) \ + SingularityFunction(x, 30, 3)/3 - 12000 assert p == q/(E*I) # Test using symbols l = Symbol('l') w0 = Symbol('w0') w2 = Symbol('w2') a1 = Symbol('a1') c = Symbol('c') c1 = Symbol('c1') d = Symbol('d') e = Symbol('e') f = Symbol('f') b2 = Beam(l, E, I) b2.apply_load(w0, a1, 1) b2.apply_load(w2, c1, -1) b2.bc_deflection = [(c, d)] b2.bc_slope = [(e, f)] # Test for load distribution function. p = b2.load q = w0*SingularityFunction(x, a1, 1) + w2*SingularityFunction(x, c1, -1) assert p == q # Test for shear force distribution function p = b2.shear_force() q = -w0*SingularityFunction(x, a1, 2)/2 \ - w2*SingularityFunction(x, c1, 0) assert p == q # Test for shear stress distribution function p = b2.shear_stress() q = (-w0*SingularityFunction(x, a1, 2)/2 \ - w2*SingularityFunction(x, c1, 0))/A assert p == q # Test for bending moment distribution function p = b2.bending_moment() q = -w0*SingularityFunction(x, a1, 3)/6 - w2*SingularityFunction(x, c1, 1) assert p == q # Test for slope distribution function p = b2.slope() q = (w0*SingularityFunction(x, a1, 4)/24 + w2*SingularityFunction(x, c1, 2)/2)/(E*I) + (E*I*f - w0*SingularityFunction(e, a1, 4)/24 - w2*SingularityFunction(e, c1, 2)/2)/(E*I) assert expand(p) == expand(q) # Test for deflection distribution function p = b2.deflection() q = x*(E*I*f - w0*SingularityFunction(e, a1, 4)/24 \ - w2*SingularityFunction(e, c1, 2)/2)/(E*I) \ + (w0*SingularityFunction(x, a1, 5)/120 \ + w2*SingularityFunction(x, c1, 3)/6)/(E*I) \ + (E*I*(-c*f + d) + c*w0*SingularityFunction(e, a1, 4)/24 \ + c*w2*SingularityFunction(e, c1, 2)/2 \ - w0*SingularityFunction(c, a1, 5)/120 \ - w2*SingularityFunction(c, c1, 3)/6)/(E*I) assert simplify(p - q) == 0 b3 = Beam(9, E, I, 2) b3.apply_load(value=-2, start=2, order=2, end=3) b3.bc_slope.append((0, 2)) C3 = symbols('C3') C4 = symbols('C4') p = b3.load q = -2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) \ + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2) assert p == q p = b3.shear_force() q = 2*SingularityFunction(x, 2, 3)/3 - 2*SingularityFunction(x, 3, 1) \ - 2*SingularityFunction(x, 3, 2) - 2*SingularityFunction(x, 3, 3)/3 assert p == q p = b3.shear_stress() q = SingularityFunction(x, 2, 3)/3 - 1*SingularityFunction(x, 3, 1) \ - 1*SingularityFunction(x, 3, 2) - 1*SingularityFunction(x, 3, 3)/3 assert p == q p = b3.slope() q = 2 - (SingularityFunction(x, 2, 5)/30 - SingularityFunction(x, 3, 3)/3 \ - SingularityFunction(x, 3, 4)/6 - SingularityFunction(x, 3, 5)/30)/(E*I) assert p == q p = b3.deflection() q = 2*x - (SingularityFunction(x, 2, 6)/180 \ - SingularityFunction(x, 3, 4)/12 - SingularityFunction(x, 3, 5)/30 \ - SingularityFunction(x, 3, 6)/180)/(E*I) assert p == q + C4 b4 = Beam(4, E, I, 3) b4.apply_load(-3, 0, 0, end=3) p = b4.load q = -3*SingularityFunction(x, 0, 0) + 3*SingularityFunction(x, 3, 0) assert p == q p = b4.shear_force() q = 3*SingularityFunction(x, 0, 1) \ - 3*SingularityFunction(x, 3, 1) assert p == q p = b4.shear_stress() q = SingularityFunction(x, 0, 1) - SingularityFunction(x, 3, 1) assert p == q p = b4.slope() q = -3*SingularityFunction(x, 0, 3)/6 + 3*SingularityFunction(x, 3, 3)/6 assert p == q/(E*I) + C3 p = b4.deflection() q = -3*SingularityFunction(x, 0, 4)/24 + 3*SingularityFunction(x, 3, 4)/24 assert p == q/(E*I) + C3*x + C4 # can't use end with point loads raises(ValueError, lambda: b4.apply_load(-3, 0, -1, end=3)) with raises(TypeError): b4.variable = 1 def test_insufficient_bconditions(): # Test cases when required number of boundary conditions # are not provided to solve the integration constants. L = symbols('L', positive=True) E, I, P, a3, a4 = symbols('E I P a3 a4') b = Beam(L, E, I, base_char='a') b.apply_load(R2, L, -1) b.apply_load(R1, 0, -1) b.apply_load(-P, L/2, -1) b.solve_for_reaction_loads(R1, R2) p = b.slope() q = P*SingularityFunction(x, 0, 2)/4 - P*SingularityFunction(x, L/2, 2)/2 + P*SingularityFunction(x, L, 2)/4 assert p == q/(E*I) + a3 p = b.deflection() q = P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12 assert p == q/(E*I) + a3*x + a4 b.bc_deflection = [(0, 0)] p = b.deflection() q = a3*x + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12 assert p == q/(E*I) b.bc_deflection = [(0, 0), (L, 0)] p = b.deflection() q = -L**2*P*x/16 + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12 assert p == q/(E*I) def test_statically_indeterminate(): E = Symbol('E') I = Symbol('I') M1, M2 = symbols('M1, M2') F = Symbol('F') l = Symbol('l', positive=True) b5 = Beam(l, E, I) b5.bc_deflection = [(0, 0),(l, 0)] b5.bc_slope = [(0, 0),(l, 0)] b5.apply_load(R1, 0, -1) b5.apply_load(M1, 0, -2) b5.apply_load(R2, l, -1) b5.apply_load(M2, l, -2) b5.apply_load(-F, l/2, -1) b5.solve_for_reaction_loads(R1, R2, M1, M2) p = b5.reaction_loads q = {R1: F/2, R2: F/2, M1: -F*l/8, M2: F*l/8} assert p == q def test_beam_units(): E = Symbol('E') I = Symbol('I') R1, R2 = symbols('R1, R2') kN = kilo*newton gN = giga*newton b = Beam(8*meter, 200*gN/meter**2, 400*1000000*(milli*meter)**4) b.apply_load(5*kN, 2*meter, -1) b.apply_load(R1, 0*meter, -1) b.apply_load(R2, 8*meter, -1) b.apply_load(10*kN/meter, 4*meter, 0, end=8*meter) b.bc_deflection = [(0*meter, 0*meter), (8*meter, 0*meter)] b.solve_for_reaction_loads(R1, R2) assert b.reaction_loads == {R1: -13750*newton, R2: -31250*newton} b = Beam(3*meter, E*newton/meter**2, I*meter**4) b.apply_load(8*kN, 1*meter, -1) b.apply_load(R1, 0*meter, -1) b.apply_load(R2, 3*meter, -1) b.apply_load(12*kN*meter, 2*meter, -2) b.bc_deflection = [(0*meter, 0*meter), (3*meter, 0*meter)] b.solve_for_reaction_loads(R1, R2) assert b.reaction_loads == {R1: newton*Rational(-28000, 3), R2: newton*Rational(4000, 3)} assert b.deflection().subs(x, 1*meter) == 62000*meter/(9*E*I) def test_variable_moment(): E = Symbol('E') I = Symbol('I') b = Beam(4, E, 2*(4 - x)) b.apply_load(20, 4, -1) R, M = symbols('R, M') b.apply_load(R, 0, -1) b.apply_load(M, 0, -2) b.bc_deflection = [(0, 0)] b.bc_slope = [(0, 0)] b.solve_for_reaction_loads(R, M) assert b.slope().expand() == ((10*x*SingularityFunction(x, 0, 0) - 10*(x - 4)*SingularityFunction(x, 4, 0))/E).expand() assert b.deflection().expand() == ((5*x**2*SingularityFunction(x, 0, 0) - 10*Piecewise((0, Abs(x)/4 < 1), (16*meijerg(((3, 1), ()), ((), (2, 0)), x/4), True)) + 40*SingularityFunction(x, 4, 1))/E).expand() b = Beam(4, E - x, I) b.apply_load(20, 4, -1) R, M = symbols('R, M') b.apply_load(R, 0, -1) b.apply_load(M, 0, -2) b.bc_deflection = [(0, 0)] b.bc_slope = [(0, 0)] b.solve_for_reaction_loads(R, M) assert b.slope().expand() == ((-80*(-log(-E) + log(-E + x))*SingularityFunction(x, 0, 0) + 80*(-log(-E + 4) + log(-E + x))*SingularityFunction(x, 4, 0) + 20*(-E*log(-E) + E*log(-E + x) + x)*SingularityFunction(x, 0, 0) - 20*(-E*log(-E + 4) + E*log(-E + x) + x - 4)*SingularityFunction(x, 4, 0))/I).expand() def test_composite_beam(): E = Symbol('E') I = Symbol('I') b1 = Beam(2, E, 1.5*I) b2 = Beam(2, E, I) b = b1.join(b2, "fixed") b.apply_load(-20, 0, -1) b.apply_load(80, 0, -2) b.apply_load(20, 4, -1) b.bc_slope = [(0, 0)] b.bc_deflection = [(0, 0)] assert b.length == 4 assert b.second_moment == Piecewise((1.5*I, x <= 2), (I, x <= 4)) assert b.slope().subs(x, 4) == 120.0/(E*I) assert b.slope().subs(x, 2) == 80.0/(E*I) assert int(b.deflection().subs(x, 4).args[0]) == -302 # Coefficient of 1/(E*I) l = symbols('l', positive=True) R1, M1, R2, R3, P = symbols('R1 M1 R2 R3 P') b1 = Beam(2*l, E, I) b2 = Beam(2*l, E, I) b = b1.join(b2,"hinge") b.apply_load(M1, 0, -2) b.apply_load(R1, 0, -1) b.apply_load(R2, l, -1) b.apply_load(R3, 4*l, -1) b.apply_load(P, 3*l, -1) b.bc_slope = [(0, 0)] b.bc_deflection = [(0, 0), (l, 0), (4*l, 0)] b.solve_for_reaction_loads(M1, R1, R2, R3) assert b.reaction_loads == {R3: -P/2, R2: P*Rational(-5, 4), M1: -P*l/4, R1: P*Rational(3, 4)} assert b.slope().subs(x, 3*l) == -7*P*l**2/(48*E*I) assert b.deflection().subs(x, 2*l) == 7*P*l**3/(24*E*I) assert b.deflection().subs(x, 3*l) == 5*P*l**3/(16*E*I) # When beams having same second moment are joined. b1 = Beam(2, 500, 10) b2 = Beam(2, 500, 10) b = b1.join(b2, "fixed") b.apply_load(M1, 0, -2) b.apply_load(R1, 0, -1) b.apply_load(R2, 1, -1) b.apply_load(R3, 4, -1) b.apply_load(10, 3, -1) b.bc_slope = [(0, 0)] b.bc_deflection = [(0, 0), (1, 0), (4, 0)] b.solve_for_reaction_loads(M1, R1, R2, R3) assert b.slope() == -2*SingularityFunction(x, 0, 1)/5625 + SingularityFunction(x, 0, 2)/1875\ - 133*SingularityFunction(x, 1, 2)/135000 + SingularityFunction(x, 3, 2)/1000\ - 37*SingularityFunction(x, 4, 2)/67500 assert b.deflection() == -SingularityFunction(x, 0, 2)/5625 + SingularityFunction(x, 0, 3)/5625\ - 133*SingularityFunction(x, 1, 3)/405000 + SingularityFunction(x, 3, 3)/3000\ - 37*SingularityFunction(x, 4, 3)/202500 def test_point_cflexure(): E = Symbol('E') I = Symbol('I') b = Beam(10, E, I) b.apply_load(-4, 0, -1) b.apply_load(-46, 6, -1) b.apply_load(10, 2, -1) b.apply_load(20, 4, -1) b.apply_load(3, 6, 0) assert b.point_cflexure() == [Rational(10, 3)] def test_remove_load(): E = Symbol('E') I = Symbol('I') b = Beam(4, E, I) try: b.remove_load(2, 1, -1) # As no load is applied on beam, ValueError should be returned. except ValueError: assert True else: assert False b.apply_load(-3, 0, -2) b.apply_load(4, 2, -1) b.apply_load(-2, 2, 2, end = 3) b.remove_load(-2, 2, 2, end = 3) assert b.load == -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) assert b.applied_loads == [(-3, 0, -2, None), (4, 2, -1, None)] try: b.remove_load(1, 2, -1) # As load of this magnitude was never applied at # this position, method should return a ValueError. except ValueError: assert True else: assert False b.remove_load(-3, 0, -2) b.remove_load(4, 2, -1) assert b.load == 0 assert b.applied_loads == [] def test_apply_support(): E = Symbol('E') I = Symbol('I') b = Beam(4, E, I) b.apply_support(0, "cantilever") b.apply_load(20, 4, -1) M_0, R_0 = symbols('M_0, R_0') b.solve_for_reaction_loads(R_0, M_0) assert simplify(b.slope()) == simplify((80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2) + 10*SingularityFunction(x, 4, 2))/(E*I)) assert simplify(b.deflection()) == simplify((40*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 0, 3)/3 + 10*SingularityFunction(x, 4, 3)/3)/(E*I)) b = Beam(30, E, I) b.apply_support(10, "pin") b.apply_support(30, "roller") b.apply_load(-8, 0, -1) b.apply_load(120, 30, -2) R_10, R_30 = symbols('R_10, R_30') b.solve_for_reaction_loads(R_10, R_30) assert b.slope() == (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + Rational(4000, 3))/(E*I) assert b.deflection() == (x*Rational(4000, 3) - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I) P = Symbol('P', positive=True) L = Symbol('L', positive=True) b = Beam(L, E, I) b.apply_support(0, type='fixed') b.apply_support(L, type='fixed') b.apply_load(-P, L/2, -1) R_0, R_L, M_0, M_L = symbols('R_0, R_L, M_0, M_L') b.solve_for_reaction_loads(R_0, R_L, M_0, M_L) assert b.reaction_loads == {R_0: P/2, R_L: P/2, M_0: -L*P/8, M_L: L*P/8} def test_max_shear_force(): E = Symbol('E') I = Symbol('I') b = Beam(3, E, I) R, M = symbols('R, M') b.apply_load(R, 0, -1) b.apply_load(M, 0, -2) b.apply_load(2, 3, -1) b.apply_load(4, 2, -1) b.apply_load(2, 2, 0, end=3) b.solve_for_reaction_loads(R, M) assert b.max_shear_force() == (Interval(0, 2), 8) l = symbols('l', positive=True) P = Symbol('P') b = Beam(l, E, I) R1, R2 = symbols('R1, R2') b.apply_load(R1, 0, -1) b.apply_load(R2, l, -1) b.apply_load(P, 0, 0, end=l) b.solve_for_reaction_loads(R1, R2) assert b.max_shear_force() == (0, l*Abs(P)/2) def test_max_bmoment(): E = Symbol('E') I = Symbol('I') l, P = symbols('l, P', positive=True) b = Beam(l, E, I) R1, R2 = symbols('R1, R2') b.apply_load(R1, 0, -1) b.apply_load(R2, l, -1) b.apply_load(P, l/2, -1) b.solve_for_reaction_loads(R1, R2) b.reaction_loads assert b.max_bmoment() == (l/2, P*l/4) b = Beam(l, E, I) R1, R2 = symbols('R1, R2') b.apply_load(R1, 0, -1) b.apply_load(R2, l, -1) b.apply_load(P, 0, 0, end=l) b.solve_for_reaction_loads(R1, R2) assert b.max_bmoment() == (l/2, P*l**2/8) def test_max_deflection(): E, I, l, F = symbols('E, I, l, F', positive=True) b = Beam(l, E, I) b.bc_deflection = [(0, 0),(l, 0)] b.bc_slope = [(0, 0),(l, 0)] b.apply_load(F/2, 0, -1) b.apply_load(-F*l/8, 0, -2) b.apply_load(F/2, l, -1) b.apply_load(F*l/8, l, -2) b.apply_load(-F, l/2, -1) assert b.max_deflection() == (l/2, F*l**3/(192*E*I)) def test_Beam3D(): l, E, G, I, A = symbols('l, E, G, I, A') R1, R2, R3, R4 = symbols('R1, R2, R3, R4') b = Beam3D(l, E, G, I, A) m, q = symbols('m, q') b.apply_load(q, 0, 0, dir="y") b.apply_moment_load(m, 0, 0, dir="z") b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])] b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])] b.solve_slope_deflection() assert b.polar_moment() == 2*I assert b.shear_force() == [0, -q*x, 0] assert b.shear_stress() == [0, -q*x/A, 0] assert b.axial_stress() == 0 assert b.bending_moment() == [0, 0, -m*x + q*x**2/2] expected_deflection = (x*(A*G*q*x**3/4 + A*G*x**2*(-l*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(A*G*l**2 + 12*E*I)/2 - m) + 3*E*I*l*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(A*G*l**2 + 12*E*I) + x*(-A*G*l**2*q/2 + 3*A*G*l**2*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(A*G*l**2 + 12*E*I)/4 + A*G*l*m*Rational(3, 2) - 3*E*I*q))/(6*A*E*G*I)) dx, dy, dz = b.deflection() assert dx == dz == 0 assert simplify(dy - expected_deflection) == 0 b2 = Beam3D(30, E, G, I, A, x) b2.apply_load(50, start=0, order=0, dir="y") b2.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])] b2.apply_load(R1, start=0, order=-1, dir="y") b2.apply_load(R2, start=30, order=-1, dir="y") b2.solve_for_reaction_loads(R1, R2) assert b2.reaction_loads == {R1: -750, R2: -750} b2.solve_slope_deflection() assert b2.slope() == [0, 0, 25*x**3/(3*E*I) - 375*x**2/(E*I) + 3750*x/(E*I)] expected_deflection = 25*x**4/(12*E*I) - 125*x**3/(E*I) + 1875*x**2/(E*I) - \ 25*x**2/(A*G) + 750*x/(A*G) dx, dy, dz = b2.deflection() assert dx == dz == 0 assert dy == expected_deflection # Test for solve_for_reaction_loads b3 = Beam3D(30, E, G, I, A, x) b3.apply_load(8, start=0, order=0, dir="y") b3.apply_load(9*x, start=0, order=0, dir="z") b3.apply_load(R1, start=0, order=-1, dir="y") b3.apply_load(R2, start=30, order=-1, dir="y") b3.apply_load(R3, start=0, order=-1, dir="z") b3.apply_load(R4, start=30, order=-1, dir="z") b3.solve_for_reaction_loads(R1, R2, R3, R4) assert b3.reaction_loads == {R1: -120, R2: -120, R3: -1350, R4: -2700} def test_polar_moment_Beam3D(): l, E, G, A, I1, I2 = symbols('l, E, G, A, I1, I2') I = [I1, I2] b = Beam3D(l, E, G, I, A) assert b.polar_moment() == I1 + I2 def test_parabolic_loads(): E, I, L = symbols('E, I, L', positive=True, real=True) R, M, P = symbols('R, M, P', real=True) # cantilever beam fixed at x=0 and parabolic distributed loading across # length of beam beam = Beam(L, E, I) beam.bc_deflection.append((0, 0)) beam.bc_slope.append((0, 0)) beam.apply_load(R, 0, -1) beam.apply_load(M, 0, -2) # parabolic load beam.apply_load(1, 0, 2) beam.solve_for_reaction_loads(R, M) assert beam.reaction_loads[R] == -L**3/3 # cantilever beam fixed at x=0 and parabolic distributed loading across # first half of beam beam = Beam(2*L, E, I) beam.bc_deflection.append((0, 0)) beam.bc_slope.append((0, 0)) beam.apply_load(R, 0, -1) beam.apply_load(M, 0, -2) # parabolic load from x=0 to x=L beam.apply_load(1, 0, 2, end=L) beam.solve_for_reaction_loads(R, M) # result should be the same as the prior example assert beam.reaction_loads[R] == -L**3/3 # check constant load beam = Beam(2*L, E, I) beam.apply_load(P, 0, 0, end=L) loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40}) assert loading.xreplace({x: 5}) == 40 assert loading.xreplace({x: 15}) == 0 # check ramp load beam = Beam(2*L, E, I) beam.apply_load(P, 0, 1, end=L) assert beam.load == (P*SingularityFunction(x, 0, 1) - P*SingularityFunction(x, L, 1) - P*L*SingularityFunction(x, L, 0)) # check higher order load: x**8 load from x=0 to x=L beam = Beam(2*L, E, I) beam.apply_load(P, 0, 8, end=L) loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40}) assert loading.xreplace({x: 5}) == 40*5**8 assert loading.xreplace({x: 15}) == 0 def test_cross_section(): I = Symbol('I') l = Symbol('l') E = Symbol('E') C3, C4 = symbols('C3, C4') a, c, g, h, r, n = symbols('a, c, g, h, r, n') # test for second_moment and cross_section setter b0 = Beam(l, E, I) assert b0.second_moment == I assert b0.cross_section == None b0.cross_section = Circle((0, 0), 5) assert b0.second_moment == pi*Rational(625, 4) assert b0.cross_section == Circle((0, 0), 5) b0.second_moment = 2*n - 6 assert b0.second_moment == 2*n-6 assert b0.cross_section == None with raises(ValueError): b0.second_moment = Circle((0, 0), 5) # beam with a circular cross-section b1 = Beam(50, E, Circle((0, 0), r)) assert b1.cross_section == Circle((0, 0), r) assert b1.second_moment == pi*r*Abs(r)**3/4 b1.apply_load(-10, 0, -1) b1.apply_load(R1, 5, -1) b1.apply_load(R2, 50, -1) b1.apply_load(90, 45, -2) b1.solve_for_reaction_loads(R1, R2) assert b1.load == (-10*SingularityFunction(x, 0, -1) + 82*SingularityFunction(x, 5, -1)/S(9) + 90*SingularityFunction(x, 45, -2) + 8*SingularityFunction(x, 50, -1)/9) assert b1.bending_moment() == (10*SingularityFunction(x, 0, 1) - 82*SingularityFunction(x, 5, 1)/9 - 90*SingularityFunction(x, 45, 0) - 8*SingularityFunction(x, 50, 1)/9) q = (-5*SingularityFunction(x, 0, 2) + 41*SingularityFunction(x, 5, 2)/S(9) + 90*SingularityFunction(x, 45, 1) + 4*SingularityFunction(x, 50, 2)/S(9))/(pi*E*r*Abs(r)**3) assert b1.slope() == C3 + 4*q q = (-5*SingularityFunction(x, 0, 3)/3 + 41*SingularityFunction(x, 5, 3)/27 + 45*SingularityFunction(x, 45, 2) + 4*SingularityFunction(x, 50, 3)/27)/(pi*E*r*Abs(r)**3) assert b1.deflection() == C3*x + C4 + 4*q # beam with a recatangular cross-section b2 = Beam(20, E, Polygon((0, 0), (a, 0), (a, c), (0, c))) assert b2.cross_section == Polygon((0, 0), (a, 0), (a, c), (0, c)) assert b2.second_moment == a*c**3/12 # beam with a triangular cross-section b3 = Beam(15, E, Triangle((0, 0), (g, 0), (g/2, h))) assert b3.cross_section == Triangle(Point2D(0, 0), Point2D(g, 0), Point2D(g/2, h)) assert b3.second_moment == g*h**3/36 # composite beam b = b2.join(b3, "fixed") b.apply_load(-30, 0, -1) b.apply_load(65, 0, -2) b.apply_load(40, 0, -1) b.bc_slope = [(0, 0)] b.bc_deflection = [(0, 0)] assert b.second_moment == Piecewise((a*c**3/12, x <= 20), (g*h**3/36, x <= 35)) assert b.cross_section == None assert b.length == 35 assert b.slope().subs(x, 7) == 8400/(E*a*c**3) assert b.slope().subs(x, 25) == 52200/(E*g*h**3) + 39600/(E*a*c**3) assert b.deflection().subs(x, 30) == -537000/(E*g*h**3) - 712000/(E*a*c**3) def test_max_shear_force_Beam3D(): x = symbols('x') b = Beam3D(20, 40, 21, 100, 25) b.apply_load(15, start=0, order=0, dir="z") b.apply_load(12*x, start=0, order=0, dir="y") b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] assert b.max_shear_force() == [(0, 0), (20, 2400), (20, 300)] def test_max_bending_moment_Beam3D(): x = symbols('x') b = Beam3D(20, 40, 21, 100, 25) b.apply_load(15, start=0, order=0, dir="z") b.apply_load(12*x, start=0, order=0, dir="y") b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] assert b.max_bmoment() == [(0, 0), (20, 3000), (20, 16000)] def test_max_deflection_Beam3D(): x = symbols('x') b = Beam3D(20, 40, 21, 100, 25) b.apply_load(15, start=0, order=0, dir="z") b.apply_load(12*x, start=0, order=0, dir="y") b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] b.solve_slope_deflection() c = sympify("495/14") p = sympify("-10 + 10*sqrt(10793)/43") q = sympify("(10 - 10*sqrt(10793)/43)**3/160 - 20/7 + (10 - 10*sqrt(10793)/43)**4/6400 + 20*sqrt(10793)/301 + 27*(10 - 10*sqrt(10793)/43)**2/560") assert b.max_deflection() == [(0, 0), (10, c), (p, q)]
2016d3985ab2c4a9a2034ef074e7c9e1def890bf536b8312b2900d2d187d3db6
import itertools from collections.abc import Iterable from sympy import S, Tuple, diff, Basic from sympy.core.sympify import _sympify from sympy.tensor.array.ndim_array import NDimArray from sympy.tensor.array.dense_ndim_array import DenseNDimArray, ImmutableDenseNDimArray from sympy.tensor.array.sparse_ndim_array import SparseNDimArray def _arrayfy(a): from sympy.matrices import MatrixBase if isinstance(a, NDimArray): return a if isinstance(a, (MatrixBase, list, tuple, Tuple)): return ImmutableDenseNDimArray(a) return a def tensorproduct(*args): """ Tensor product among scalars or array-like objects. Examples ======== >>> from sympy.tensor.array import tensorproduct, Array >>> from sympy.abc import x, y, z, t >>> A = Array([[1, 2], [3, 4]]) >>> B = Array([x, y]) >>> tensorproduct(A, B) [[[x, y], [2*x, 2*y]], [[3*x, 3*y], [4*x, 4*y]]] >>> tensorproduct(A, x) [[x, 2*x], [3*x, 4*x]] >>> tensorproduct(A, B, B) [[[[x**2, x*y], [x*y, y**2]], [[2*x**2, 2*x*y], [2*x*y, 2*y**2]]], [[[3*x**2, 3*x*y], [3*x*y, 3*y**2]], [[4*x**2, 4*x*y], [4*x*y, 4*y**2]]]] Applying this function on two matrices will result in a rank 4 array. >>> from sympy import Matrix, eye >>> m = Matrix([[x, y], [z, t]]) >>> p = tensorproduct(eye(3), m) >>> p [[[[x, y], [z, t]], [[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[x, y], [z, t]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]], [[x, y], [z, t]]]] """ from sympy.tensor.array import SparseNDimArray, ImmutableSparseNDimArray if len(args) == 0: return S.One if len(args) == 1: return _arrayfy(args[0]) from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct from sympy.tensor.array.expressions.array_expressions import _ArrayExpr from sympy import MatrixSymbol if any(isinstance(arg, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)) for arg in args): return ArrayTensorProduct(*args) if len(args) > 2: return tensorproduct(tensorproduct(args[0], args[1]), *args[2:]) # length of args is 2: a, b = map(_arrayfy, args) if not isinstance(a, NDimArray) or not isinstance(b, NDimArray): return a*b if isinstance(a, SparseNDimArray) and isinstance(b, SparseNDimArray): lp = len(b) new_array = {k1*lp + k2: v1*v2 for k1, v1 in a._sparse_array.items() for k2, v2 in b._sparse_array.items()} return ImmutableSparseNDimArray(new_array, a.shape + b.shape) product_list = [i*j for i in Flatten(a) for j in Flatten(b)] return ImmutableDenseNDimArray(product_list, a.shape + b.shape) def _util_contraction_diagonal(array, *contraction_or_diagonal_axes): array = _arrayfy(array) # Verify contraction_axes: taken_dims = set() for axes_group in contraction_or_diagonal_axes: if not isinstance(axes_group, Iterable): raise ValueError("collections of contraction/diagonal axes expected") dim = array.shape[axes_group[0]] for d in axes_group: if d in taken_dims: raise ValueError("dimension specified more than once") if dim != array.shape[d]: raise ValueError("cannot contract or diagonalize between axes of different dimension") taken_dims.add(d) rank = array.rank() remaining_shape = [dim for i, dim in enumerate(array.shape) if i not in taken_dims] cum_shape = [0]*rank _cumul = 1 for i in range(rank): cum_shape[rank - i - 1] = _cumul _cumul *= int(array.shape[rank - i - 1]) # DEFINITION: by absolute position it is meant the position along the one # dimensional array containing all the tensor components. # Possible future work on this module: move computation of absolute # positions to a class method. # Determine absolute positions of the uncontracted indices: remaining_indices = [[cum_shape[i]*j for j in range(array.shape[i])] for i in range(rank) if i not in taken_dims] # Determine absolute positions of the contracted indices: summed_deltas = [] for axes_group in contraction_or_diagonal_axes: lidx = [] for js in range(array.shape[axes_group[0]]): lidx.append(sum([cum_shape[ig] * js for ig in axes_group])) summed_deltas.append(lidx) return array, remaining_indices, remaining_shape, summed_deltas def tensorcontraction(array, *contraction_axes): """ Contraction of an array-like object on the specified axes. Examples ======== >>> from sympy import Array, tensorcontraction >>> from sympy import Matrix, eye >>> tensorcontraction(eye(3), (0, 1)) 3 >>> A = Array(range(18), (3, 2, 3)) >>> A [[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]] >>> tensorcontraction(A, (0, 2)) [21, 30] Matrix multiplication may be emulated with a proper combination of ``tensorcontraction`` and ``tensorproduct`` >>> from sympy import tensorproduct >>> from sympy.abc import a,b,c,d,e,f,g,h >>> m1 = Matrix([[a, b], [c, d]]) >>> m2 = Matrix([[e, f], [g, h]]) >>> p = tensorproduct(m1, m2) >>> p [[[[a*e, a*f], [a*g, a*h]], [[b*e, b*f], [b*g, b*h]]], [[[c*e, c*f], [c*g, c*h]], [[d*e, d*f], [d*g, d*h]]]] >>> tensorcontraction(p, (1, 2)) [[a*e + b*g, a*f + b*h], [c*e + d*g, c*f + d*h]] >>> m1*m2 Matrix([ [a*e + b*g, a*f + b*h], [c*e + d*g, c*f + d*h]]) """ from sympy.tensor.array.expressions.array_expressions import ArrayContraction from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract from sympy.tensor.array.expressions.array_expressions import _ArrayExpr from sympy import MatrixSymbol if isinstance(array, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)): return ArrayContraction(array, *contraction_axes) array, remaining_indices, remaining_shape, summed_deltas = _util_contraction_diagonal(array, *contraction_axes) # Compute the contracted array: # # 1. external for loops on all uncontracted indices. # Uncontracted indices are determined by the combinatorial product of # the absolute positions of the remaining indices. # 2. internal loop on all contracted indices. # It sums the values of the absolute contracted index and the absolute # uncontracted index for the external loop. contracted_array = [] for icontrib in itertools.product(*remaining_indices): index_base_position = sum(icontrib) isum = S.Zero for sum_to_index in itertools.product(*summed_deltas): idx = array._get_tuple_index(index_base_position + sum(sum_to_index)) isum += array[idx] contracted_array.append(isum) if len(remaining_indices) == 0: assert len(contracted_array) == 1 return contracted_array[0] return type(array)(contracted_array, remaining_shape) def tensordiagonal(array, *diagonal_axes): """ Diagonalization of an array-like object on the specified axes. This is equivalent to multiplying the expression by Kronecker deltas uniting the axes. The diagonal indices are put at the end of the axes. Examples ======== ``tensordiagonal`` acting on a 2-dimensional array by axes 0 and 1 is equivalent to the diagonal of the matrix: >>> from sympy import Array, tensordiagonal >>> from sympy import Matrix, eye >>> tensordiagonal(eye(3), (0, 1)) [1, 1, 1] >>> from sympy.abc import a,b,c,d >>> m1 = Matrix([[a, b], [c, d]]) >>> tensordiagonal(m1, [0, 1]) [a, d] In case of higher dimensional arrays, the diagonalized out dimensions are appended removed and appended as a single dimension at the end: >>> A = Array(range(18), (3, 2, 3)) >>> A [[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]] >>> tensordiagonal(A, (0, 2)) [[0, 7, 14], [3, 10, 17]] >>> from sympy import permutedims >>> tensordiagonal(A, (0, 2)) == permutedims(Array([A[0, :, 0], A[1, :, 1], A[2, :, 2]]), [1, 0]) True """ if any(len(i) <= 1 for i in diagonal_axes): raise ValueError("need at least two axes to diagonalize") from sympy.tensor.array.expressions.array_expressions import _ArrayExpr from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal from sympy import MatrixSymbol if isinstance(array, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)): return ArrayDiagonal(array, *diagonal_axes) array, remaining_indices, remaining_shape, diagonal_deltas = _util_contraction_diagonal(array, *diagonal_axes) # Compute the diagonalized array: # # 1. external for loops on all undiagonalized indices. # Undiagonalized indices are determined by the combinatorial product of # the absolute positions of the remaining indices. # 2. internal loop on all diagonal indices. # It appends the values of the absolute diagonalized index and the absolute # undiagonalized index for the external loop. diagonalized_array = [] diagonal_shape = [len(i) for i in diagonal_deltas] for icontrib in itertools.product(*remaining_indices): index_base_position = sum(icontrib) isum = [] for sum_to_index in itertools.product(*diagonal_deltas): idx = array._get_tuple_index(index_base_position + sum(sum_to_index)) isum.append(array[idx]) isum = type(array)(isum).reshape(*diagonal_shape) diagonalized_array.append(isum) return type(array)(diagonalized_array, remaining_shape + diagonal_shape) def derive_by_array(expr, dx): r""" Derivative by arrays. Supports both arrays and scalars. Explanation =========== Given the array `A_{i_1, \ldots, i_N}` and the array `X_{j_1, \ldots, j_M}` this function will return a new array `B` defined by `B_{j_1,\ldots,j_M,i_1,\ldots,i_N} := \frac{\partial A_{i_1,\ldots,i_N}}{\partial X_{j_1,\ldots,j_M}}` Examples ======== >>> from sympy import derive_by_array >>> from sympy.abc import x, y, z, t >>> from sympy import cos >>> derive_by_array(cos(x*t), x) -t*sin(t*x) >>> derive_by_array(cos(x*t), [x, y, z, t]) [-t*sin(t*x), 0, 0, -x*sin(t*x)] >>> derive_by_array([x, y**2*z], [[x, y], [z, t]]) [[[1, 0], [0, 2*y*z]], [[0, y**2], [0, 0]]] """ from sympy.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray array_types = (Iterable, MatrixBase, NDimArray) if isinstance(dx, array_types): dx = ImmutableDenseNDimArray(dx) for i in dx: if not i._diff_wrt: raise ValueError("cannot derive by this array") if isinstance(expr, array_types): if isinstance(expr, NDimArray): expr = expr.as_immutable() else: expr = ImmutableDenseNDimArray(expr) if isinstance(dx, array_types): if isinstance(expr, SparseNDimArray): lp = len(expr) new_array = {k + i*lp: v for i, x in enumerate(Flatten(dx)) for k, v in expr.diff(x)._sparse_array.items()} else: new_array = [[y.diff(x) for y in Flatten(expr)] for x in Flatten(dx)] return type(expr)(new_array, dx.shape + expr.shape) else: return expr.diff(dx) else: expr = _sympify(expr) if isinstance(dx, array_types): return ImmutableDenseNDimArray([expr.diff(i) for i in Flatten(dx)], dx.shape) else: dx = _sympify(dx) return diff(expr, dx) def permutedims(expr, perm): """ Permutes the indices of an array. Parameter specifies the permutation of the indices. Examples ======== >>> from sympy.abc import x, y, z, t >>> from sympy import sin >>> from sympy import Array, permutedims >>> a = Array([[x, y, z], [t, sin(x), 0]]) >>> a [[x, y, z], [t, sin(x), 0]] >>> permutedims(a, (1, 0)) [[x, t], [y, sin(x)], [z, 0]] If the array is of second order, ``transpose`` can be used: >>> from sympy import transpose >>> transpose(a) [[x, t], [y, sin(x)], [z, 0]] Examples on higher dimensions: >>> b = Array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) >>> permutedims(b, (2, 1, 0)) [[[1, 5], [3, 7]], [[2, 6], [4, 8]]] >>> permutedims(b, (1, 2, 0)) [[[1, 5], [2, 6]], [[3, 7], [4, 8]]] ``Permutation`` objects are also allowed: >>> from sympy.combinatorics import Permutation >>> permutedims(b, Permutation([1, 2, 0])) [[[1, 5], [2, 6]], [[3, 7], [4, 8]]] """ from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.expressions.array_expressions import _ArrayExpr from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract from sympy.tensor.array.expressions.array_expressions import PermuteDims from sympy import MatrixSymbol if isinstance(expr, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)): return PermuteDims(expr, perm) if not isinstance(expr, NDimArray): expr = ImmutableDenseNDimArray(expr) from sympy.combinatorics import Permutation if not isinstance(perm, Permutation): perm = Permutation(list(perm)) if perm.size != expr.rank(): raise ValueError("wrong permutation size") # Get the inverse permutation: iperm = ~perm new_shape = perm(expr.shape) if isinstance(expr, SparseNDimArray): return type(expr)({tuple(perm(expr._get_tuple_index(k))): v for k, v in expr._sparse_array.items()}, new_shape) indices_span = perm([range(i) for i in expr.shape]) new_array = [None]*len(expr) for i, idx in enumerate(itertools.product(*indices_span)): t = iperm(idx) new_array[i] = expr[t] return type(expr)(new_array, new_shape) class Flatten(Basic): ''' Flatten an iterable object to a list in a lazy-evaluation way. Notes ===== This class is an iterator with which the memory cost can be economised. Optimisation has been considered to ameliorate the performance for some specific data types like DenseNDimArray and SparseNDimArray. Examples ======== >>> from sympy.tensor.array.arrayop import Flatten >>> from sympy.tensor.array import Array >>> A = Array(range(6)).reshape(2, 3) >>> Flatten(A) Flatten([[0, 1, 2], [3, 4, 5]]) >>> [i for i in Flatten(A)] [0, 1, 2, 3, 4, 5] ''' def __init__(self, iterable): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import NDimArray if not isinstance(iterable, (Iterable, MatrixBase)): raise NotImplementedError("Data type not yet supported") if isinstance(iterable, list): iterable = NDimArray(iterable) self._iter = iterable self._idx = 0 def __iter__(self): return self def __next__(self): from sympy.matrices.matrices import MatrixBase if len(self._iter) > self._idx: if isinstance(self._iter, DenseNDimArray): result = self._iter._array[self._idx] elif isinstance(self._iter, SparseNDimArray): if self._idx in self._iter._sparse_array: result = self._iter._sparse_array[self._idx] else: result = 0 elif isinstance(self._iter, MatrixBase): result = self._iter[self._idx] elif hasattr(self._iter, '__next__'): result = next(self._iter) else: result = self._iter[self._idx] else: raise StopIteration self._idx += 1 return result def next(self): return self.__next__()
63218e9df021d37c3d54c6d44e4c556877d3c5bf30451ceb73bec3ff1f8964f7
from sympy import S, Dict, Basic, Tuple from sympy.core.sympify import _sympify from sympy.tensor.array.mutable_ndim_array import MutableNDimArray from sympy.tensor.array.ndim_array import NDimArray, ImmutableNDimArray import functools class SparseNDimArray(NDimArray): def __new__(self, *args, **kwargs): return ImmutableSparseNDimArray(*args, **kwargs) def __getitem__(self, index): """ Get an element from a sparse N-dim array. Examples ======== >>> from sympy import MutableSparseNDimArray >>> a = MutableSparseNDimArray(range(4), (2, 2)) >>> a [[0, 1], [2, 3]] >>> a[0, 0] 0 >>> a[1, 1] 3 >>> a[0] [0, 1] >>> a[1] [2, 3] Symbolic indexing: >>> from sympy.abc import i, j >>> a[i, j] [[0, 1], [2, 3]][i, j] Replace `i` and `j` to get element `(0, 0)`: >>> a[i, j].subs({i: 0, j: 0}) 0 """ syindex = self._check_symbolic_index(index) if syindex is not None: return syindex index = self._check_index_for_getitem(index) # `index` is a tuple with one or more slices: if isinstance(index, tuple) and any(isinstance(i, slice) for i in index): sl_factors, eindices = self._get_slice_data_for_array_access(index) array = [self._sparse_array.get(self._parse_index(i), S.Zero) for i in eindices] nshape = [len(el) for i, el in enumerate(sl_factors) if isinstance(index[i], slice)] return type(self)(array, nshape) else: index = self._parse_index(index) return self._sparse_array.get(index, S.Zero) @classmethod def zeros(cls, *shape): """ Return a sparse N-dim array of zeros. """ return cls({}, shape) def tomatrix(self): """ Converts MutableDenseNDimArray to Matrix. Can convert only 2-dim array, else will raise error. Examples ======== >>> from sympy import MutableSparseNDimArray >>> a = MutableSparseNDimArray([1 for i in range(9)], (3, 3)) >>> b = a.tomatrix() >>> b Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1]]) """ from sympy.matrices import SparseMatrix if self.rank() != 2: raise ValueError('Dimensions must be of size of 2') mat_sparse = {} for key, value in self._sparse_array.items(): mat_sparse[self._get_tuple_index(key)] = value return SparseMatrix(self.shape[0], self.shape[1], mat_sparse) def reshape(self, *newshape): new_total_size = functools.reduce(lambda x,y: x*y, newshape) if new_total_size != self._loop_size: raise ValueError("Invalid reshape parameters " + newshape) return type(self)(self._sparse_array, newshape) class ImmutableSparseNDimArray(SparseNDimArray, ImmutableNDimArray): def __new__(cls, iterable=None, shape=None, **kwargs): from sympy.utilities.iterables import flatten shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs) shape = Tuple(*map(_sympify, shape)) cls._check_special_bounds(flat_list, shape) loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list) # Sparse array: if isinstance(flat_list, (dict, Dict)): sparse_array = Dict(flat_list) else: sparse_array = {} for i, el in enumerate(flatten(flat_list)): if el != 0: sparse_array[i] = _sympify(el) sparse_array = Dict(sparse_array) self = Basic.__new__(cls, sparse_array, shape, **kwargs) self._shape = shape self._rank = len(shape) self._loop_size = loop_size self._sparse_array = sparse_array return self def __setitem__(self, index, value): raise TypeError("immutable N-dim array") def as_mutable(self): return MutableSparseNDimArray(self) class MutableSparseNDimArray(MutableNDimArray, SparseNDimArray): def __new__(cls, iterable=None, shape=None, **kwargs): from sympy.utilities.iterables import flatten shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs) self = object.__new__(cls) self._shape = shape self._rank = len(shape) self._loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list) # Sparse array: if isinstance(flat_list, (dict, Dict)): self._sparse_array = dict(flat_list) return self self._sparse_array = {} for i, el in enumerate(flatten(flat_list)): if el != 0: self._sparse_array[i] = _sympify(el) return self def __setitem__(self, index, value): """Allows to set items to MutableDenseNDimArray. Examples ======== >>> from sympy import MutableSparseNDimArray >>> a = MutableSparseNDimArray.zeros(2, 2) >>> a[0, 0] = 1 >>> a[1, 1] = 1 >>> a [[1, 0], [0, 1]] """ if isinstance(index, tuple) and any(isinstance(i, slice) for i in index): value, eindices, slice_offsets = self._get_slice_data_for_array_assignment(index, value) for i in eindices: other_i = [ind - j for ind, j in zip(i, slice_offsets) if j is not None] other_value = value[other_i] complete_index = self._parse_index(i) if other_value != 0: self._sparse_array[complete_index] = other_value elif complete_index in self._sparse_array: self._sparse_array.pop(complete_index) else: index = self._parse_index(index) value = _sympify(value) if value == 0 and index in self._sparse_array: self._sparse_array.pop(index) else: self._sparse_array[index] = value def as_immutable(self): return ImmutableSparseNDimArray(self) @property def free_symbols(self): return {i for j in self._sparse_array.values() for i in j.free_symbols}
5aace3174bc8523660e7bfb018caa39377eae40687b03425295387ac289a1961
from sympy import Basic from sympy import S from sympy.core.expr import Expr from sympy.core.numbers import Integer from sympy.core.sympify import sympify from sympy.core.kind import Kind, NumberKind, UndefinedKind from sympy.core.compatibility import SYMPY_INTS from sympy.printing.defaults import Printable import itertools from collections.abc import Iterable class ArrayKind(Kind): """ Kind for N-dimensional array in SymPy. This kind represents the multidimensional array that algebraic operations are defined. Basic class for this kind is ``NDimArray``, but any expression representing the array can have this. Parameters ========== element_kind : Kind Kind of the element. Default is :obj:NumberKind `<sympy.core.kind.NumberKind>`, which means that the array contains only numbers. Examples ======== Any instance of array class has ``ArrayKind``. >>> from sympy import NDimArray >>> NDimArray([1,2,3]).kind ArrayKind(NumberKind) Although expressions representing an array may be not instance of array class, it will have ``ArrayKind`` as well. >>> from sympy import Integral >>> from sympy.tensor.array import NDimArray >>> from sympy.abc import x >>> intA = Integral(NDimArray([1,2,3]), x) >>> isinstance(intA, NDimArray) False >>> intA.kind ArrayKind(NumberKind) Use ``isinstance()`` to check for ``ArrayKind` without specifying the element kind. Use ``is`` with specifying the element kind. >>> from sympy.tensor.array import ArrayKind >>> from sympy.core.kind import NumberKind >>> boolA = NDimArray([True, False]) >>> isinstance(boolA.kind, ArrayKind) True >>> boolA.kind is ArrayKind(NumberKind) False See Also ======== shape : Function to return the shape of objects with ``MatrixKind``. """ def __new__(cls, element_kind=NumberKind): obj = super().__new__(cls, element_kind) obj.element_kind = element_kind return obj def __repr__(self): return "ArrayKind(%s)" % self.element_kind class NDimArray(Printable): """ Examples ======== Create an N-dim array of zeros: >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(2, 3, 4) >>> a [[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]] Create an N-dim array from a list; >>> a = MutableDenseNDimArray([[2, 3], [4, 5]]) >>> a [[2, 3], [4, 5]] >>> b = MutableDenseNDimArray([[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]]) >>> b [[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]] Create an N-dim array from a flat list with dimension shape: >>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3)) >>> a [[1, 2, 3], [4, 5, 6]] Create an N-dim array from a matrix: >>> from sympy import Matrix >>> a = Matrix([[1,2],[3,4]]) >>> a Matrix([ [1, 2], [3, 4]]) >>> b = MutableDenseNDimArray(a) >>> b [[1, 2], [3, 4]] Arithmetic operations on N-dim arrays >>> a = MutableDenseNDimArray([1, 1, 1, 1], (2, 2)) >>> b = MutableDenseNDimArray([4, 4, 4, 4], (2, 2)) >>> c = a + b >>> c [[5, 5], [5, 5]] >>> a - b [[-3, -3], [-3, -3]] """ _diff_wrt = True is_scalar = False def __new__(cls, iterable, shape=None, **kwargs): from sympy.tensor.array import ImmutableDenseNDimArray return ImmutableDenseNDimArray(iterable, shape, **kwargs) @property def kind(self): elem_kinds = set(e.kind for e in self._array) if len(elem_kinds) == 1: elemkind, = elem_kinds else: elemkind = UndefinedKind return ArrayKind(elemkind) def _parse_index(self, index): if isinstance(index, (SYMPY_INTS, Integer)): raise ValueError("Only a tuple index is accepted") if self._loop_size == 0: raise ValueError("Index not valide with an empty array") if len(index) != self._rank: raise ValueError('Wrong number of array axes') real_index = 0 # check if input index can exist in current indexing for i in range(self._rank): if (index[i] >= self.shape[i]) or (index[i] < -self.shape[i]): raise ValueError('Index ' + str(index) + ' out of border') if index[i] < 0: real_index += 1 real_index = real_index*self.shape[i] + index[i] return real_index def _get_tuple_index(self, integer_index): index = [] for i, sh in enumerate(reversed(self.shape)): index.append(integer_index % sh) integer_index //= sh index.reverse() return tuple(index) def _check_symbolic_index(self, index): # Check if any index is symbolic: tuple_index = (index if isinstance(index, tuple) else (index,)) if any((isinstance(i, Expr) and (not i.is_number)) for i in tuple_index): for i, nth_dim in zip(tuple_index, self.shape): if ((i < 0) == True) or ((i >= nth_dim) == True): raise ValueError("index out of range") from sympy.tensor import Indexed return Indexed(self, *tuple_index) return None def _setter_iterable_check(self, value): from sympy.matrices.matrices import MatrixBase if isinstance(value, (Iterable, MatrixBase, NDimArray)): raise NotImplementedError @classmethod def _scan_iterable_shape(cls, iterable): def f(pointer): if not isinstance(pointer, Iterable): return [pointer], () result = [] elems, shapes = zip(*[f(i) for i in pointer]) if len(set(shapes)) != 1: raise ValueError("could not determine shape unambiguously") for i in elems: result.extend(i) return result, (len(shapes),)+shapes[0] return f(iterable) @classmethod def _handle_ndarray_creation_inputs(cls, iterable=None, shape=None, **kwargs): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray from sympy import Dict, Tuple if shape is None: if iterable is None: shape = () iterable = () # Construction of a sparse array from a sparse array elif isinstance(iterable, SparseNDimArray): return iterable._shape, iterable._sparse_array # Construct N-dim array from another N-dim array: elif isinstance(iterable, NDimArray): shape = iterable.shape # Construct N-dim array from an iterable (numpy arrays included): elif isinstance(iterable, Iterable): iterable, shape = cls._scan_iterable_shape(iterable) # Construct N-dim array from a Matrix: elif isinstance(iterable, MatrixBase): shape = iterable.shape else: shape = () iterable = (iterable,) if isinstance(iterable, (Dict, dict)) and shape is not None: new_dict = iterable.copy() for k, v in new_dict.items(): if isinstance(k, (tuple, Tuple)): new_key = 0 for i, idx in enumerate(k): new_key = new_key * shape[i] + idx iterable[new_key] = iterable[k] del iterable[k] if isinstance(shape, (SYMPY_INTS, Integer)): shape = (shape,) if not all(isinstance(dim, (SYMPY_INTS, Integer)) for dim in shape): raise TypeError("Shape should contain integers only.") return tuple(shape), iterable def __len__(self): """Overload common function len(). Returns number of elements in array. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(3, 3) >>> a [[0, 0, 0], [0, 0, 0], [0, 0, 0]] >>> len(a) 9 """ return self._loop_size @property def shape(self): """ Returns array shape (dimension). Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(3, 3) >>> a.shape (3, 3) """ return self._shape def rank(self): """ Returns rank of array. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(3,4,5,6,3) >>> a.rank() 5 """ return self._rank def diff(self, *args, **kwargs): """ Calculate the derivative of each element in the array. Examples ======== >>> from sympy import ImmutableDenseNDimArray >>> from sympy.abc import x, y >>> M = ImmutableDenseNDimArray([[x, y], [1, x*y]]) >>> M.diff(x) [[1, 0], [0, y]] """ from sympy.tensor.array.array_derivatives import ArrayDerivative kwargs.setdefault('evaluate', True) return ArrayDerivative(self.as_immutable(), *args, **kwargs) def _eval_derivative(self, base): # Types are (base: scalar, self: array) return self.applyfunc(lambda x: base.diff(x)) def _eval_derivative_n_times(self, s, n): return Basic._eval_derivative_n_times(self, s, n) def applyfunc(self, f): """Apply a function to each element of the N-dim array. Examples ======== >>> from sympy import ImmutableDenseNDimArray >>> m = ImmutableDenseNDimArray([i*2+j for i in range(2) for j in range(2)], (2, 2)) >>> m [[0, 1], [2, 3]] >>> m.applyfunc(lambda i: 2*i) [[0, 2], [4, 6]] """ from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(self, SparseNDimArray) and f(S.Zero) == 0: return type(self)({k: f(v) for k, v in self._sparse_array.items() if f(v) != 0}, self.shape) return type(self)(map(f, Flatten(self)), self.shape) def _sympystr(self, printer): def f(sh, shape_left, i, j): if len(shape_left) == 1: return "["+", ".join([printer._print(self[self._get_tuple_index(e)]) for e in range(i, j)])+"]" sh //= shape_left[0] return "[" + ", ".join([f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh) for e in range(shape_left[0])]) + "]" # + "\n"*len(shape_left) if self.rank() == 0: return printer._print(self[()]) return f(self._loop_size, self.shape, 0, self._loop_size) def tolist(self): """ Converting MutableDenseNDimArray to one-dim list Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray([1, 2, 3, 4], (2, 2)) >>> a [[1, 2], [3, 4]] >>> b = a.tolist() >>> b [[1, 2], [3, 4]] """ def f(sh, shape_left, i, j): if len(shape_left) == 1: return [self[self._get_tuple_index(e)] for e in range(i, j)] result = [] sh //= shape_left[0] for e in range(shape_left[0]): result.append(f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh)) return result return f(self._loop_size, self.shape, 0, self._loop_size) def __add__(self, other): from sympy.tensor.array.arrayop import Flatten if not isinstance(other, NDimArray): return NotImplemented if self.shape != other.shape: raise ValueError("array shape mismatch") result_list = [i+j for i,j in zip(Flatten(self), Flatten(other))] return type(self)(result_list, self.shape) def __sub__(self, other): from sympy.tensor.array.arrayop import Flatten if not isinstance(other, NDimArray): return NotImplemented if self.shape != other.shape: raise ValueError("array shape mismatch") result_list = [i-j for i,j in zip(Flatten(self), Flatten(other))] return type(self)(result_list, self.shape) def __mul__(self, other): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(other, (Iterable, NDimArray, MatrixBase)): raise ValueError("scalar expected, use tensorproduct(...) for tensorial product") other = sympify(other) if isinstance(self, SparseNDimArray): if other.is_zero: return type(self)({}, self.shape) return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape) result_list = [i*other for i in Flatten(self)] return type(self)(result_list, self.shape) def __rmul__(self, other): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(other, (Iterable, NDimArray, MatrixBase)): raise ValueError("scalar expected, use tensorproduct(...) for tensorial product") other = sympify(other) if isinstance(self, SparseNDimArray): if other.is_zero: return type(self)({}, self.shape) return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape) result_list = [other*i for i in Flatten(self)] return type(self)(result_list, self.shape) def __truediv__(self, other): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(other, (Iterable, NDimArray, MatrixBase)): raise ValueError("scalar expected") other = sympify(other) if isinstance(self, SparseNDimArray) and other != S.Zero: return type(self)({k: v/other for (k, v) in self._sparse_array.items()}, self.shape) result_list = [i/other for i in Flatten(self)] return type(self)(result_list, self.shape) def __rtruediv__(self, other): raise NotImplementedError('unsupported operation on NDimArray') def __neg__(self): from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(self, SparseNDimArray): return type(self)({k: -v for (k, v) in self._sparse_array.items()}, self.shape) result_list = [-i for i in Flatten(self)] return type(self)(result_list, self.shape) def __iter__(self): def iterator(): if self._shape: for i in range(self._shape[0]): yield self[i] else: yield self[()] return iterator() def __eq__(self, other): """ NDimArray instances can be compared to each other. Instances equal if they have same shape and data. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(2, 3) >>> b = MutableDenseNDimArray.zeros(2, 3) >>> a == b True >>> c = a.reshape(3, 2) >>> c == b False >>> a[0,0] = 1 >>> b[0,0] = 2 >>> a == b False """ from sympy.tensor.array import SparseNDimArray if not isinstance(other, NDimArray): return False if not self.shape == other.shape: return False if isinstance(self, SparseNDimArray) and isinstance(other, SparseNDimArray): return dict(self._sparse_array) == dict(other._sparse_array) return list(self) == list(other) def __ne__(self, other): return not self == other def _eval_transpose(self): if self.rank() != 2: raise ValueError("array rank not 2") from .arrayop import permutedims return permutedims(self, (1, 0)) def transpose(self): return self._eval_transpose() def _eval_conjugate(self): from sympy.tensor.array.arrayop import Flatten return self.func([i.conjugate() for i in Flatten(self)], self.shape) def conjugate(self): return self._eval_conjugate() def _eval_adjoint(self): return self.transpose().conjugate() def adjoint(self): return self._eval_adjoint() def _slice_expand(self, s, dim): if not isinstance(s, slice): return (s,) start, stop, step = s.indices(dim) return [start + i*step for i in range((stop-start)//step)] def _get_slice_data_for_array_access(self, index): sl_factors = [self._slice_expand(i, dim) for (i, dim) in zip(index, self.shape)] eindices = itertools.product(*sl_factors) return sl_factors, eindices def _get_slice_data_for_array_assignment(self, index, value): if not isinstance(value, NDimArray): value = type(self)(value) sl_factors, eindices = self._get_slice_data_for_array_access(index) slice_offsets = [min(i) if isinstance(i, list) else None for i in sl_factors] # TODO: add checks for dimensions for `value`? return value, eindices, slice_offsets @classmethod def _check_special_bounds(cls, flat_list, shape): if shape == () and len(flat_list) != 1: raise ValueError("arrays without shape need one scalar value") if shape == (0,) and len(flat_list) > 0: raise ValueError("if array shape is (0,) there cannot be elements") def _check_index_for_getitem(self, index): if isinstance(index, (SYMPY_INTS, Integer, slice)): index = (index, ) if len(index) < self.rank(): index = tuple([i for i in index] + \ [slice(None) for i in range(len(index), self.rank())]) if len(index) > self.rank(): raise ValueError('Dimension of index greater than rank of array') return index class ImmutableNDimArray(NDimArray, Basic): _op_priority = 11.0 def __hash__(self): return Basic.__hash__(self) def as_immutable(self): return self def as_mutable(self): raise NotImplementedError("abstract method")
cb487744c572b830db1a55efa403280b0d381a436d96bd16114a060ac810cafe
import functools from sympy import Basic, Tuple, S from sympy.core.sympify import _sympify from sympy.tensor.array.mutable_ndim_array import MutableNDimArray from sympy.tensor.array.ndim_array import NDimArray, ImmutableNDimArray from sympy.simplify.simplify import simplify class DenseNDimArray(NDimArray): def __new__(self, *args, **kwargs): return ImmutableDenseNDimArray(*args, **kwargs) def __getitem__(self, index): """ Allows to get items from N-dim array. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray([0, 1, 2, 3], (2, 2)) >>> a [[0, 1], [2, 3]] >>> a[0, 0] 0 >>> a[1, 1] 3 >>> a[0] [0, 1] >>> a[1] [2, 3] Symbolic index: >>> from sympy.abc import i, j >>> a[i, j] [[0, 1], [2, 3]][i, j] Replace `i` and `j` to get element `(1, 1)`: >>> a[i, j].subs({i: 1, j: 1}) 3 """ syindex = self._check_symbolic_index(index) if syindex is not None: return syindex index = self._check_index_for_getitem(index) if isinstance(index, tuple) and any(isinstance(i, slice) for i in index): sl_factors, eindices = self._get_slice_data_for_array_access(index) array = [self._array[self._parse_index(i)] for i in eindices] nshape = [len(el) for i, el in enumerate(sl_factors) if isinstance(index[i], slice)] return type(self)(array, nshape) else: index = self._parse_index(index) return self._array[index] @classmethod def zeros(cls, *shape): list_length = functools.reduce(lambda x, y: x*y, shape, S.One) return cls._new(([0]*list_length,), shape) def tomatrix(self): """ Converts MutableDenseNDimArray to Matrix. Can convert only 2-dim array, else will raise error. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray([1 for i in range(9)], (3, 3)) >>> b = a.tomatrix() >>> b Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1]]) """ from sympy.matrices import Matrix if self.rank() != 2: raise ValueError('Dimensions must be of size of 2') return Matrix(self.shape[0], self.shape[1], self._array) def reshape(self, *newshape): """ Returns MutableDenseNDimArray instance with new shape. Elements number must be suitable to new shape. The only argument of method sets new shape. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3)) >>> a.shape (2, 3) >>> a [[1, 2, 3], [4, 5, 6]] >>> b = a.reshape(3, 2) >>> b.shape (3, 2) >>> b [[1, 2], [3, 4], [5, 6]] """ new_total_size = functools.reduce(lambda x,y: x*y, newshape) if new_total_size != self._loop_size: raise ValueError("Invalid reshape parameters " + newshape) # there is no `.func` as this class does not subtype `Basic`: return type(self)(self._array, newshape) class ImmutableDenseNDimArray(DenseNDimArray, ImmutableNDimArray): """ """ def __new__(cls, iterable, shape=None, **kwargs): return cls._new(iterable, shape, **kwargs) @classmethod def _new(cls, iterable, shape, **kwargs): from sympy.utilities.iterables import flatten shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs) shape = Tuple(*map(_sympify, shape)) cls._check_special_bounds(flat_list, shape) flat_list = flatten(flat_list) flat_list = Tuple(*flat_list) self = Basic.__new__(cls, flat_list, shape, **kwargs) self._shape = shape self._array = list(flat_list) self._rank = len(shape) self._loop_size = functools.reduce(lambda x,y: x*y, shape, 1) return self def __setitem__(self, index, value): raise TypeError('immutable N-dim array') def as_mutable(self): return MutableDenseNDimArray(self) def _eval_simplify(self, **kwargs): return self.applyfunc(simplify) class MutableDenseNDimArray(DenseNDimArray, MutableNDimArray): def __new__(cls, iterable=None, shape=None, **kwargs): return cls._new(iterable, shape, **kwargs) @classmethod def _new(cls, iterable, shape, **kwargs): from sympy.utilities.iterables import flatten shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs) flat_list = flatten(flat_list) self = object.__new__(cls) self._shape = shape self._array = list(flat_list) self._rank = len(shape) self._loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list) return self def __setitem__(self, index, value): """Allows to set items to MutableDenseNDimArray. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(2, 2) >>> a[0,0] = 1 >>> a[1,1] = 1 >>> a [[1, 0], [0, 1]] """ if isinstance(index, tuple) and any(isinstance(i, slice) for i in index): value, eindices, slice_offsets = self._get_slice_data_for_array_assignment(index, value) for i in eindices: other_i = [ind - j for ind, j in zip(i, slice_offsets) if j is not None] self._array[self._parse_index(i)] = value[other_i] else: index = self._parse_index(index) self._setter_iterable_check(value) value = _sympify(value) self._array[index] = value def as_immutable(self): return ImmutableDenseNDimArray(self) @property def free_symbols(self): return {i for j in self._array for i in j.free_symbols}
ded8fd4363af39fc564ae40b5cf0cf6f38a71b3f940c9579b0800d726a6b52fa
import itertools from collections import defaultdict, Counter from typing import Tuple, Union, FrozenSet, Dict, List, Optional from functools import singledispatch from itertools import accumulate from sympy import Trace, MatrixExpr, Transpose, DiagMatrix, Mul, ZeroMatrix, hadamard_product, S, Identity, ask, Q from sympy.combinatorics.permutations import _af_invert, Permutation from sympy.matrices.common import MatrixCommon from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction from sympy.tensor.array.expressions.array_expressions import PermuteDims, ArrayDiagonal, \ ArrayTensorProduct, OneArray, get_rank, _get_subrank, ZeroArray, ArrayContraction, \ ArrayAdd, _CodegenArrayAbstract, get_shape, ArrayElementwiseApplyFunc, _ArrayExpr, _EditArrayContraction, _ArgE from sympy.tensor.array.expressions.utils import _get_mapping_from_subranks def _get_candidate_for_matmul_from_contraction(scan_indices: List[Optional[int]], remaining_args: List[_ArgE]) -> Tuple[Optional[_ArgE], bool, int]: scan_indices = [i for i in scan_indices if i is not None] if len(scan_indices) == 0: return None, False, -1 transpose: bool = False candidate: Optional[_ArgE] = None candidate_index: int = -1 for arg_with_ind2 in remaining_args: if not isinstance(arg_with_ind2.element, MatrixExpr): continue for index in scan_indices: if candidate_index != -1 and candidate_index != index: # A candidate index has already been selected, check # repetitions only for that index: continue if index in arg_with_ind2.indices: if set(arg_with_ind2.indices) == {index}: # Index repeated twice in arg_with_ind2 candidate = None break if candidate is None: candidate = arg_with_ind2 candidate_index = index transpose = (index == arg_with_ind2.indices[1]) else: # Index repeated more than twice, break candidate = None break return candidate, transpose, candidate_index def _insert_candidate_into_editor(editor: _EditArrayContraction, arg_with_ind: _ArgE, candidate: _ArgE, transpose1: bool, transpose2: bool): other = candidate.element other_index: int if transpose2: other = Transpose(other) other_index = candidate.indices[0] else: other_index = candidate.indices[1] new_element = (Transpose(arg_with_ind.element) if transpose1 else arg_with_ind.element) * other editor.args_with_ind.remove(candidate) new_arge = _ArgE(new_element) return new_arge, other_index def _support_function_tp1_recognize(contraction_indices, args): if len(contraction_indices) == 0: return _a2m_tensor_product(*args) ac = ArrayContraction(ArrayTensorProduct(*args), *contraction_indices) editor = _EditArrayContraction(ac) editor.track_permutation_start() while True: flag_stop: bool = True for i, arg_with_ind in enumerate(editor.args_with_ind): if not isinstance(arg_with_ind.element, MatrixExpr): continue first_index = arg_with_ind.indices[0] second_index = arg_with_ind.indices[1] first_frequency = editor.count_args_with_index(first_index) second_frequency = editor.count_args_with_index(second_index) if first_index is not None and first_frequency == 1 and first_index == second_index: flag_stop = False arg_with_ind.element = Trace(arg_with_ind.element)._normalize() arg_with_ind.indices = [] break scan_indices = [] if first_frequency == 2: scan_indices.append(first_index) if second_frequency == 2: scan_indices.append(second_index) candidate, transpose, found_index = _get_candidate_for_matmul_from_contraction(scan_indices, editor.args_with_ind[i+1:]) if candidate is not None: flag_stop = False editor.track_permutation_merge(arg_with_ind, candidate) transpose1 = found_index == first_index new_arge, other_index = _insert_candidate_into_editor(editor, arg_with_ind, candidate, transpose1, transpose) if found_index == first_index: new_arge.indices = [second_index, other_index] else: new_arge.indices = [first_index, other_index] set_indices = set(new_arge.indices) if len(set_indices) == 1 and set_indices != {None}: # This is a trace: new_arge.element = Trace(new_arge.element)._normalize() new_arge.indices = [] editor.args_with_ind[i] = new_arge # TODO: is this break necessary? break if flag_stop: break editor.refresh_indices() return editor.to_array_contraction() @singledispatch def _array2matrix(expr): return expr @_array2matrix.register(ZeroArray) def _(expr: ZeroArray): if get_rank(expr) == 2: return ZeroMatrix(*expr.shape) else: return expr @_array2matrix.register(ArrayTensorProduct) def _(expr: ArrayTensorProduct): return _a2m_tensor_product(*[_array2matrix(arg) for arg in expr.args]) @_array2matrix.register(ArrayContraction) def _(expr: ArrayContraction): expr = expr.flatten_contraction_of_diagonal() expr = identify_removable_identity_matrices(expr) expr = expr.split_multiple_contractions() expr = identify_hadamard_products(expr) if not isinstance(expr, ArrayContraction): return _array2matrix(expr) subexpr = expr.expr contraction_indices: Tuple[Tuple[int]] = expr.contraction_indices if isinstance(subexpr, ArrayTensorProduct): newexpr = ArrayContraction(_array2matrix(subexpr), *contraction_indices) contraction_indices = newexpr.contraction_indices if any(i > 2 for i in newexpr.subranks): addends = ArrayAdd(*[_a2m_tensor_product(*j) for j in itertools.product(*[i.args if isinstance(i, ArrayAdd) else [i] for i in expr.expr.args])]) newexpr = ArrayContraction(addends, *contraction_indices) if isinstance(newexpr, ArrayAdd): ret = _array2matrix(newexpr) return ret assert isinstance(newexpr, ArrayContraction) ret = _support_function_tp1_recognize(contraction_indices, list(newexpr.expr.args)) return ret elif not isinstance(subexpr, _CodegenArrayAbstract): ret = _array2matrix(subexpr) if isinstance(ret, MatrixExpr): assert expr.contraction_indices == ((0, 1),) return _a2m_trace(ret) else: return ArrayContraction(ret, *expr.contraction_indices) @_array2matrix.register(ArrayDiagonal) def _(expr: ArrayDiagonal): pexpr = ArrayDiagonal(_array2matrix(expr.expr), *expr.diagonal_indices) pexpr = identify_hadamard_products(pexpr) if isinstance(pexpr, ArrayDiagonal): pexpr = _array_diag2contr_diagmatrix(pexpr) if expr == pexpr: return expr return _array2matrix(pexpr) @_array2matrix.register(PermuteDims) def _(expr: PermuteDims): if expr.permutation.array_form == [1, 0]: return _a2m_transpose(_array2matrix(expr.expr)) elif isinstance(expr.expr, ArrayTensorProduct): ranks = expr.expr.subranks inv_permutation = expr.permutation**(-1) newrange = [inv_permutation(i) for i in range(sum(ranks))] newpos = [] counter = 0 for rank in ranks: newpos.append(newrange[counter:counter+rank]) counter += rank newargs = [] newperm = [] scalars = [] for pos, arg in zip(newpos, expr.expr.args): if len(pos) == 0: scalars.append(_array2matrix(arg)) elif pos == sorted(pos): newargs.append((_array2matrix(arg), pos[0])) newperm.extend(pos) elif len(pos) == 2: newargs.append((_a2m_transpose(_array2matrix(arg)), pos[0])) newperm.extend(reversed(pos)) else: raise NotImplementedError() newargs = [i[0] for i in newargs] return PermuteDims(_a2m_tensor_product(*scalars, *newargs), _af_invert(newperm)) elif isinstance(expr.expr, ArrayContraction): mat_mul_lines = _array2matrix(expr.expr) if not isinstance(mat_mul_lines, ArrayTensorProduct): flat_cyclic_form = [j for i in expr.permutation.cyclic_form for j in i] expr_shape = get_shape(expr) if all(expr_shape[i] == 1 for i in flat_cyclic_form): return mat_mul_lines return mat_mul_lines # TODO: this assumes that all arguments are matrices, it may not be the case: permutation = Permutation(2*len(mat_mul_lines.args)-1)*expr.permutation permuted = [permutation(i) for i in range(2*len(mat_mul_lines.args))] args_array = [None for i in mat_mul_lines.args] for i in range(len(mat_mul_lines.args)): p1 = permuted[2*i] p2 = permuted[2*i+1] if p1 // 2 != p2 // 2: return PermuteDims(mat_mul_lines, permutation) pos = p1 // 2 if p1 > p2: args_array[i] = _a2m_transpose(mat_mul_lines.args[pos]) else: args_array[i] = mat_mul_lines.args[pos] return _a2m_tensor_product(*args_array) else: return expr @_array2matrix.register(ArrayAdd) def _(expr: ArrayAdd): addends = [_array2matrix(arg) for arg in expr.args] return _a2m_add(*addends) @_array2matrix.register(ArrayElementwiseApplyFunc) def _(expr: ArrayElementwiseApplyFunc): subexpr = _array2matrix(expr.expr) if isinstance(subexpr, MatrixExpr): return ElementwiseApplyFunction(expr.function, subexpr) else: return ArrayElementwiseApplyFunc(expr.function, subexpr) @singledispatch def _remove_trivial_dims(expr): return expr, [] @_remove_trivial_dims.register(ArrayTensorProduct) def _(expr: ArrayTensorProduct): # Recognize expressions like [x, y] with shape (k, 1, k, 1) as `x*y.T`. # The matrix expression has to be equivalent to the tensor product of the # matrices, with trivial dimensions (i.e. dim=1) dropped. # That is, add contractions over trivial dimensions: removed = [] newargs = [] cumul = list(accumulate([0] + [get_rank(arg) for arg in expr.args])) pending = None prev_i = None for i, arg in enumerate(expr.args): current_range = list(range(cumul[i], cumul[i+1])) if isinstance(arg, OneArray): removed.extend(current_range) continue if not isinstance(arg, (MatrixExpr, MatrixCommon)): rarg, rem = _remove_trivial_dims(arg) removed.extend(rem) newargs.append(rarg) continue elif getattr(arg, "is_Identity", False): if arg.shape == (1, 1): # Ignore identity matrices of shape (1, 1) - they are equivalent to scalar 1. removed.extend(current_range) continue k = arg.shape[0] if pending == k: # OK, there is already removed.extend(current_range) continue elif pending is None: newargs.append(arg) pending = k prev_i = i else: pending = k prev_i = i newargs.append(arg) elif arg.shape == (1, 1): arg, _ = _remove_trivial_dims(arg) # Matrix is equivalent to scalar: if len(newargs) == 0: newargs.append(arg) elif 1 in get_shape(newargs[-1]): if newargs[-1].shape[1] == 1: newargs[-1] = newargs[-1]*arg else: newargs[-1] = arg*newargs[-1] removed.extend(current_range) else: newargs.append(arg) elif 1 in arg.shape: k = [i for i in arg.shape if i != 1][0] if pending is None: pending = k prev_i = i newargs.append(arg) elif pending == k: prev = newargs[-1] if prev.is_Identity: removed.extend([cumul[prev_i], cumul[prev_i]+1]) newargs[-1] = arg prev_i = i continue if prev.shape[0] == 1: d1 = cumul[prev_i] prev = _a2m_transpose(prev) else: d1 = cumul[prev_i] + 1 if arg.shape[1] == 1: d2 = cumul[i] + 1 arg = _a2m_transpose(arg) else: d2 = cumul[i] newargs[-1] = prev*arg pending = None removed.extend([d1, d2]) else: newargs.append(arg) pending = k prev_i = i else: newargs.append(arg) pending = None return _a2m_tensor_product(*newargs), sorted(removed) @_remove_trivial_dims.register(ArrayAdd) def _(expr: ArrayAdd): rec = [_remove_trivial_dims(arg) for arg in expr.args] newargs, removed = zip(*rec) if len(set(map(tuple, removed))) != 1: return expr, [] return _a2m_add(*newargs), removed[0] @_remove_trivial_dims.register(PermuteDims) def _(expr: PermuteDims): subexpr, subremoved = _remove_trivial_dims(expr.expr) p = expr.permutation.array_form pinv = _af_invert(expr.permutation.array_form) shift = list(accumulate([1 if i in subremoved else 0 for i in range(len(p))])) premoved = [pinv[i] for i in subremoved] p2 = [e - shift[e] for i, e in enumerate(p) if e not in subremoved] # TODO: check if subremoved should be permuted as well... newexpr = PermuteDims(subexpr, p2) if newexpr != expr: newexpr = _array2matrix(newexpr) return newexpr, sorted(premoved) @_remove_trivial_dims.register(ArrayContraction) def _(expr: ArrayContraction): rank1 = get_rank(expr) expr, removed1 = remove_identity_matrices(expr) if not isinstance(expr, ArrayContraction): expr2, removed2 = _remove_trivial_dims(expr) return expr2, _combine_removed(rank1, removed1, removed2) newexpr, removed2 = _remove_trivial_dims(expr.expr) shifts = list(accumulate([1 if i in removed2 else 0 for i in range(get_rank(expr.expr))])) new_contraction_indices = [tuple(j for j in i if j not in removed2) for i in expr.contraction_indices] # Remove possible empty tuples "()": new_contraction_indices = [i for i in new_contraction_indices if len(i) > 0] contraction_indices_flat = [j for i in expr.contraction_indices for j in i] removed2 = [i for i in removed2 if i not in contraction_indices_flat] new_contraction_indices = [tuple(j - shifts[j] for j in i) for i in new_contraction_indices] # Shift removed2: removed2 = ArrayContraction._push_indices_up(expr.contraction_indices, removed2) removed = _combine_removed(rank1, removed1, removed2) return ArrayContraction(newexpr, *new_contraction_indices), list(removed) @_remove_trivial_dims.register(ArrayDiagonal) def _(expr: ArrayDiagonal): newexpr, removed = _remove_trivial_dims(expr.expr) shifts = list(accumulate([0] + [1 if i in removed else 0 for i in range(get_rank(expr.expr))])) new_diag_indices = {i: tuple(j for j in i if j not in removed) for i in expr.diagonal_indices} for old_diag_tuple, new_diag_tuple in new_diag_indices.items(): if len(new_diag_tuple) == 1: removed = [i for i in removed if i not in old_diag_tuple] new_diag_indices = [tuple(j - shifts[j] for j in i) for i in new_diag_indices.values()] rank = get_rank(expr.expr) removed = ArrayDiagonal._push_indices_up(expr.diagonal_indices, removed, rank) removed = sorted({i for i in removed}) # If there are single axes to diagonalize remaining, it means that their # corresponding dimension has been removed, they no longer need diagonalization: new_diag_indices = [i for i in new_diag_indices if len(i) > 1] return ArrayDiagonal(newexpr, *new_diag_indices), removed @_remove_trivial_dims.register(ElementwiseApplyFunction) def _(expr: ElementwiseApplyFunction): subexpr, removed = _remove_trivial_dims(expr.expr) if subexpr.shape == (1, 1): # TODO: move this to ElementwiseApplyFunction return expr.function(subexpr), removed + [0, 1] return ElementwiseApplyFunction(expr.function, subexpr) @_remove_trivial_dims.register(ArrayElementwiseApplyFunc) def _(expr: ArrayElementwiseApplyFunc): subexpr, removed = _remove_trivial_dims(expr.expr) return ArrayElementwiseApplyFunc(expr.function, subexpr), removed def convert_array_to_matrix(expr): r""" Recognize matrix expressions in codegen objects. If more than one matrix multiplication line have been detected, return a list with the matrix expressions. Examples ======== >>> from sympy.tensor.array.expressions.conv_indexed_to_array import convert_indexed_to_array >>> from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct >>> from sympy import MatrixSymbol, Sum >>> from sympy.abc import i, j, k, l, N >>> from sympy.tensor.array.expressions.array_expressions import ArrayContraction >>> from sympy.tensor.array.expressions.conv_matrix_to_array import convert_matrix_to_array >>> from sympy.tensor.array.expressions.conv_array_to_matrix import convert_array_to_matrix >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) >>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1)) >>> cg = convert_indexed_to_array(expr) >>> convert_array_to_matrix(cg) A*B >>> cg = convert_indexed_to_array(expr, first_indices=[k]) >>> convert_array_to_matrix(cg) B.T*A.T Transposition is detected: >>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1)) >>> cg = convert_indexed_to_array(expr) >>> convert_array_to_matrix(cg) A.T*B >>> cg = convert_indexed_to_array(expr, first_indices=[k]) >>> convert_array_to_matrix(cg) B.T*A Detect the trace: >>> expr = Sum(A[i, i], (i, 0, N-1)) >>> cg = convert_indexed_to_array(expr) >>> convert_array_to_matrix(cg) Trace(A) Recognize some more complex traces: >>> expr = Sum(A[i, j]*B[j, i], (i, 0, N-1), (j, 0, N-1)) >>> cg = convert_indexed_to_array(expr) >>> convert_array_to_matrix(cg) Trace(A*B) More complicated expressions: >>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1)) >>> cg = convert_indexed_to_array(expr) >>> convert_array_to_matrix(cg) A*B.T*A.T Expressions constructed from matrix expressions do not contain literal indices, the positions of free indices are returned instead: >>> expr = A*B >>> cg = convert_matrix_to_array(expr) >>> convert_array_to_matrix(cg) A*B If more than one line of matrix multiplications is detected, return separate matrix multiplication factors embedded in a tensor product object: >>> cg = ArrayContraction(ArrayTensorProduct(A, B, C, D), (1, 2), (5, 6)) >>> convert_array_to_matrix(cg) ArrayTensorProduct(A*B, C*D) The two lines have free indices at axes 0, 3 and 4, 7, respectively. """ rec = _array2matrix(expr) rec, removed = _remove_trivial_dims(rec) return rec def _array_diag2contr_diagmatrix(expr: ArrayDiagonal): if isinstance(expr.expr, ArrayTensorProduct): args = list(expr.expr.args) diag_indices = list(expr.diagonal_indices) mapping = _get_mapping_from_subranks([_get_subrank(arg) for arg in args]) tuple_links = [[mapping[j] for j in i] for i in diag_indices] contr_indices = [] total_rank = get_rank(expr) replaced = [False for arg in args] for i, (abs_pos, rel_pos) in enumerate(zip(diag_indices, tuple_links)): if len(abs_pos) != 2: continue (pos1_outer, pos1_inner), (pos2_outer, pos2_inner) = rel_pos arg1 = args[pos1_outer] arg2 = args[pos2_outer] if get_rank(arg1) != 2 or get_rank(arg2) != 2: if replaced[pos1_outer]: diag_indices[i] = None if replaced[pos2_outer]: diag_indices[i] = None continue pos1_in2 = 1 - pos1_inner pos2_in2 = 1 - pos2_inner if arg1.shape[pos1_in2] == 1: if arg1.shape[pos1_inner] != 1: darg1 = DiagMatrix(arg1) else: darg1 = arg1 args.append(darg1) contr_indices.append(((pos2_outer, pos2_inner), (len(args)-1, pos1_inner))) total_rank += 1 diag_indices[i] = None args[pos1_outer] = OneArray(arg1.shape[pos1_in2]) replaced[pos1_outer] = True elif arg2.shape[pos2_in2] == 1: if arg2.shape[pos2_inner] != 1: darg2 = DiagMatrix(arg2) else: darg2 = arg2 args.append(darg2) contr_indices.append(((pos1_outer, pos1_inner), (len(args)-1, pos2_inner))) total_rank += 1 diag_indices[i] = None args[pos2_outer] = OneArray(arg2.shape[pos2_in2]) replaced[pos2_outer] = True diag_indices_new = [i for i in diag_indices if i is not None] cumul = list(accumulate([0] + [get_rank(arg) for arg in args])) contr_indices2 = [tuple(cumul[a] + b for a, b in i) for i in contr_indices] tc = ArrayContraction( ArrayTensorProduct(*args), *contr_indices2 ) td = ArrayDiagonal(tc, *diag_indices_new) return td return expr def _a2m_mul(*args): if not any(isinstance(i, _CodegenArrayAbstract) for i in args): from sympy import MatMul return MatMul(*args).doit() else: return ArrayContraction( ArrayTensorProduct(*args), *[(2*i-1, 2*i) for i in range(1, len(args))] ) def _a2m_tensor_product(*args): scalars = [] arrays = [] for arg in args: if isinstance(arg, (MatrixExpr, _ArrayExpr, _CodegenArrayAbstract)): arrays.append(arg) else: scalars.append(arg) scalar = Mul.fromiter(scalars) if len(arrays) == 0: return scalar if scalar != 1: if isinstance(arrays[0], _CodegenArrayAbstract): arrays = [scalar] + arrays else: arrays[0] *= scalar return ArrayTensorProduct(*arrays) def _a2m_add(*args): if not any(isinstance(i, _CodegenArrayAbstract) for i in args): from sympy import MatAdd return MatAdd(*args).doit() else: return ArrayAdd(*args) def _a2m_trace(arg): if isinstance(arg, _CodegenArrayAbstract): return ArrayContraction(arg, (0, 1)) else: from sympy import Trace return Trace(arg) def _a2m_transpose(arg): if isinstance(arg, _CodegenArrayAbstract): return PermuteDims(arg, [1, 0]) else: from sympy import Transpose return Transpose(arg).doit() def identify_hadamard_products(expr: Union[ArrayContraction, ArrayDiagonal]): mapping = _get_mapping_from_subranks(expr.subranks) editor: _EditArrayContraction if isinstance(expr, ArrayContraction): editor = _EditArrayContraction(expr) elif isinstance(expr, ArrayDiagonal): if isinstance(expr.expr, ArrayContraction): editor = _EditArrayContraction(expr.expr) diagonalized = ArrayContraction._push_indices_down(expr.expr.contraction_indices, expr.diagonal_indices) elif isinstance(expr.expr, ArrayTensorProduct): editor = _EditArrayContraction(None) editor.args_with_ind = [_ArgE(arg) for i, arg in enumerate(expr.expr.args)] diagonalized = expr.diagonal_indices else: return expr # Trick: add diagonalized indices as negative indices into the editor object: for i, e in enumerate(diagonalized): for j in e: arg_pos, rel_pos = mapping[j] editor.args_with_ind[arg_pos].indices[rel_pos] = -1 - i map_contr_to_args: Dict[FrozenSet, List[_ArgE]] = defaultdict(list) map_ind_to_inds = defaultdict(int) for arg_with_ind in editor.args_with_ind: for ind in arg_with_ind.indices: map_ind_to_inds[ind] += 1 if None in arg_with_ind.indices: continue map_contr_to_args[frozenset(arg_with_ind.indices)].append(arg_with_ind) k: FrozenSet[int] v: List[_ArgE] for k, v in map_contr_to_args.items(): make_trace: bool = False if len(k) == 1 and next(iter(k)) >= 0 and sum([next(iter(k)) in i for i in map_contr_to_args]) == 1: # This is a trace: the arguments are fully contracted with only one # index, and the index isn't used anywhere else: make_trace = True first_element = S.One elif len(k) != 2: # Hadamard product only defined for matrices: continue if len(v) == 1: # Hadamard product with a single argument makes no sense: continue for ind in k: if map_ind_to_inds[ind] <= 2: # There is no other contraction, skip: continue def check_transpose(x): x = [i if i >= 0 else -1-i for i in x] return x == sorted(x) # Check if expression is a trace: if all([map_ind_to_inds[j] == len(v) and j >= 0 for j in k]) and all([j >= 0 for j in k]): # This is a trace make_trace = True first_element = v[0].element if not check_transpose(v[0].indices): first_element = first_element.T hadamard_factors = v[1:] else: hadamard_factors = v # This is a Hadamard product: hp = hadamard_product(*[i.element if check_transpose(i.indices) else Transpose(i.element) for i in hadamard_factors]) hp_indices = v[0].indices if not check_transpose(hadamard_factors[0].indices): hp_indices = list(reversed(hp_indices)) if make_trace: hp = Trace(first_element*hp.T)._normalize() hp_indices = [] editor.insert_after(v[0], _ArgE(hp, hp_indices)) for i in v: editor.args_with_ind.remove(i) # Count the ranks of the arguments: counter = 0 # Create a collector for the new diagonal indices: diag_indices = defaultdict(list) count_index_freq = Counter() for arg_with_ind in editor.args_with_ind: count_index_freq.update(Counter(arg_with_ind.indices)) free_index_count = count_index_freq[None] # Construct the inverse permutation: inv_perm1 = [] inv_perm2 = [] # Keep track of which diagonal indices have already been processed: done = set([]) # Counter for the diagonal indices: counter4 = 0 for arg_with_ind in editor.args_with_ind: # If some diagonalization axes have been removed, they should be # permuted in order to keep the permutation. # Add permutation here counter2 = 0 # counter for the indices for i in arg_with_ind.indices: if i is None: inv_perm1.append(counter4) counter2 += 1 counter4 += 1 continue if i >= 0: continue # Reconstruct the diagonal indices: diag_indices[-1 - i].append(counter + counter2) if count_index_freq[i] == 1 and i not in done: inv_perm1.append(free_index_count - 1 - i) done.add(i) elif i not in done: inv_perm2.append(free_index_count - 1 - i) done.add(i) counter2 += 1 # Remove negative indices to restore a proper editor object: arg_with_ind.indices = [i if i is not None and i >= 0 else None for i in arg_with_ind.indices] counter += len([i for i in arg_with_ind.indices if i is None or i < 0]) inverse_permutation = inv_perm1 + inv_perm2 permutation = _af_invert(inverse_permutation) if isinstance(expr, ArrayContraction): return editor.to_array_contraction() else: # Get the diagonal indices after the detection of HadamardProduct in the expression: diag_indices_filtered = [tuple(v) for v in diag_indices.values() if len(v) > 1] expr1 = editor.to_array_contraction() expr2 = ArrayDiagonal(expr1, *diag_indices_filtered) expr3 = PermuteDims(expr2, permutation) return expr3 def identify_removable_identity_matrices(expr): editor = _EditArrayContraction(expr) flag: bool = True while flag: flag = False for arg_with_ind in editor.args_with_ind: if isinstance(arg_with_ind.element, Identity): k = arg_with_ind.element.shape[0] # Candidate for removal: if arg_with_ind.indices == [None, None]: # Free identity matrix, will be cleared by _remove_trivial_dims: continue elif None in arg_with_ind.indices: ind = [j for j in arg_with_ind.indices if j is not None][0] counted = editor.count_args_with_index(ind) if counted == 1: # Identity matrix contracted only on one index with itself, # transform to a OneArray(k) element: editor.insert_after(arg_with_ind, OneArray(k)) editor.args_with_ind.remove(arg_with_ind) flag = True break elif counted > 2: # Case counted = 2 is a matrix multiplication by identity matrix, skip it. # Case counted > 2 is a multiple contraction, # this is a case where the contraction becomes a diagonalization if the # identity matrix is dropped. continue elif arg_with_ind.indices[0] == arg_with_ind.indices[1]: ind = arg_with_ind.indices[0] counted = editor.count_args_with_index(ind) if counted > 1: editor.args_with_ind.remove(arg_with_ind) flag = True break else: # This is a trace, skip it as it will be recognized somewhere else: pass elif ask(Q.diagonal(arg_with_ind.element)): if arg_with_ind.indices == [None, None]: continue elif None in arg_with_ind.indices: pass elif arg_with_ind.indices[0] == arg_with_ind.indices[1]: ind = arg_with_ind.indices[0] counted = editor.count_args_with_index(ind) if counted == 3: # A_ai B_bi D_ii ==> A_ai D_ij B_bj ind_new = editor.get_new_contraction_index() other_args = [j for j in editor.args_with_ind if j != arg_with_ind] other_args[1].indices = [ind_new if j == ind else j for j in other_args[1].indices] arg_with_ind.indices = [ind, ind_new] flag = True break return editor.to_array_contraction() def remove_identity_matrices(expr: ArrayContraction): editor = _EditArrayContraction(expr) removed = [] permutation_map = {} free_indices = list(accumulate([0] + [sum([i is None for i in arg.indices]) for arg in editor.args_with_ind])) free_map = {k: v for k, v in zip(editor.args_with_ind, free_indices[:-1])} update_pairs = {} for ind in range(editor.number_of_contraction_indices): args = editor.get_args_with_index(ind) identity_matrices = [i for i in args if isinstance(i.element, Identity)] number_identity_matrices = len(identity_matrices) # If the contraction involves a non-identity matrix and multiple identity matrices: if number_identity_matrices != len(args) - 1: continue # Get the non-identity element: non_identity = [i for i in args if not isinstance(i.element, Identity)][0] # Check that all identity matrices have at least one free index # (otherwise they would be contractions to some other elements) if any([None not in i.indices for i in identity_matrices]): continue # Mark the identity matrices for removal: for i in identity_matrices: i.element = None removed.extend(range(free_map[i], free_map[i] + len([j for j in i.indices if j is None]))) last_removed = removed.pop(-1) update_pairs[last_removed, ind] = non_identity.indices[:] # Remove the indices from the non-identity matrix, as the contraction # no longer exists: non_identity.indices = [None if i == ind else i for i in non_identity.indices] removed.sort() shifts = list(accumulate([1 if i in removed else 0 for i in range(get_rank(expr))])) for (last_removed, ind), non_identity_indices in update_pairs.items(): pos = [free_map[non_identity] + i for i, e in enumerate(non_identity_indices) if e == ind] assert len(pos) == 1 for i in pos: permutation_map[i] = last_removed editor.args_with_ind = [i for i in editor.args_with_ind if i.element is not None] ret_expr = editor.to_array_contraction() permutation = [] counter = 0 counter2 = 0 for i in range(get_rank(expr)): if i in removed: continue if counter2 in permutation_map: target = permutation_map[counter2] permutation.append(target - shifts[target]) counter2 += 1 else: while counter in permutation_map.values(): counter += 1 permutation.append(counter) counter += 1 counter2 += 1 ret_expr2 = PermuteDims(ret_expr, _af_invert(permutation)) return ret_expr2, removed def _combine_removed(dim: int, removed1: List[int], removed2: List[int]) -> List[int]: # Concatenate two axis removal operations as performed by # _remove_trivial_dims, removed1 = sorted(removed1) removed2 = sorted(removed2) i = 0 j = 0 removed = [] while True: if j >= len(removed2): while i < len(removed1): removed.append(removed1[i]) i += 1 break elif i < len(removed1) and removed1[i] <= i + removed2[j]: removed.append(removed1[i]) i += 1 else: removed.append(i + removed2[j]) j += 1 return removed
28f3765982105ca2814858a8e02ee33b88f852027aaa366ddcb3080acaeb8ab5
import operator from functools import reduce import itertools from itertools import accumulate from typing import Optional, List, Dict import typing from sympy import Expr, ImmutableDenseNDimArray, S, Symbol, ZeroMatrix, Basic, tensorproduct, Add, permutedims, \ Tuple, tensordiagonal, Lambda, Dummy, Function, MatrixExpr, NDimArray, Indexed, IndexedBase, default_sort_key, \ tensorcontraction, diagonalize_vector, Mul from sympy.matrices.expressions.matexpr import MatrixElement from sympy.tensor.array.expressions.utils import _apply_recursively_over_nested_lists, _sort_contraction_indices, \ _get_mapping_from_subranks, _build_push_indices_up_func_transformation, _get_contraction_links, \ _build_push_indices_down_func_transformation from sympy.combinatorics import Permutation from sympy.combinatorics.permutations import _af_invert from sympy.core.sympify import _sympify class _ArrayExpr(Expr): pass class ArraySymbol(_ArrayExpr): """ Symbol representing an array expression """ def __new__(cls, symbol, *shape): if isinstance(symbol, str): symbol = Symbol(symbol) # symbol = _sympify(symbol) shape = map(_sympify, shape) obj = Expr.__new__(cls, symbol, *shape) return obj @property def name(self): return self._args[0] @property def shape(self): return self._args[1:] def __getitem__(self, item): return ArrayElement(self, item) def as_explicit(self): if not all(i.is_Integer for i in self.shape): raise ValueError("cannot express explicit array with symbolic shape") data = [self[i] for i in itertools.product(*[range(j) for j in self.shape])] return ImmutableDenseNDimArray(data).reshape(*self.shape) class ArrayElement(_ArrayExpr): """ An element of an array. """ def __new__(cls, name, indices): if isinstance(name, str): name = Symbol(name) name = _sympify(name) indices = _sympify(indices) if hasattr(name, "shape"): if any((i >= s) == True for i, s in zip(indices, name.shape)): raise ValueError("shape is out of bounds") if any((i < 0) == True for i in indices): raise ValueError("shape contains negative values") obj = Expr.__new__(cls, name, indices) return obj @property def name(self): return self._args[0] @property def indices(self): return self._args[1] class ZeroArray(_ArrayExpr): """ Symbolic array of zeros. Equivalent to ``ZeroMatrix`` for matrices. """ def __new__(cls, *shape): if len(shape) == 0: return S.Zero shape = map(_sympify, shape) obj = Expr.__new__(cls, *shape) return obj @property def shape(self): return self._args def as_explicit(self): if not all(i.is_Integer for i in self.shape): raise ValueError("Cannot return explicit form for symbolic shape.") return ImmutableDenseNDimArray.zeros(*self.shape) class OneArray(_ArrayExpr): """ Symbolic array of ones. """ def __new__(cls, *shape): if len(shape) == 0: return S.One shape = map(_sympify, shape) obj = Expr.__new__(cls, *shape) return obj @property def shape(self): return self._args def as_explicit(self): if not all(i.is_Integer for i in self.shape): raise ValueError("Cannot return explicit form for symbolic shape.") return ImmutableDenseNDimArray([S.One for i in range(reduce(operator.mul, self.shape))]).reshape(*self.shape) class _CodegenArrayAbstract(Basic): @property def subranks(self): """ Returns the ranks of the objects in the uppermost tensor product inside the current object. In case no tensor products are contained, return the atomic ranks. Examples ======== >>> from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayContraction >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> N = MatrixSymbol("N", 3, 3) >>> P = MatrixSymbol("P", 3, 3) Important: do not confuse the rank of the matrix with the rank of an array. >>> tp = ArrayTensorProduct(M, N, P) >>> tp.subranks [2, 2, 2] >>> co = ArrayContraction(tp, (1, 2), (3, 4)) >>> co.subranks [2, 2, 2] """ return self._subranks[:] def subrank(self): """ The sum of ``subranks``. """ return sum(self.subranks) @property def shape(self): return self._shape class ArrayTensorProduct(_CodegenArrayAbstract): r""" Class to represent the tensor product of array-like objects. """ def __new__(cls, *args): args = [_sympify(arg) for arg in args] args = cls._flatten(args) ranks = [get_rank(arg) for arg in args] # Check if there are nested permutation and lift them up: permutation_cycles = [] for i, arg in enumerate(args): if not isinstance(arg, PermuteDims): continue permutation_cycles.extend([[k + sum(ranks[:i]) for k in j] for j in arg.permutation.cyclic_form]) args[i] = arg.expr if permutation_cycles: return PermuteDims(ArrayTensorProduct(*args), Permutation(sum(ranks)-1)*Permutation(permutation_cycles)) if len(args) == 1: return args[0] # If any object is a ZeroArray, return a ZeroArray: if any(isinstance(arg, (ZeroArray, ZeroMatrix)) for arg in args): shapes = reduce(operator.add, [get_shape(i) for i in args], ()) return ZeroArray(*shapes) # If there are contraction objects inside, transform the whole # expression into `ArrayContraction`: contractions = {i: arg for i, arg in enumerate(args) if isinstance(arg, ArrayContraction)} if contractions: ranks = [_get_subrank(arg) if isinstance(arg, ArrayContraction) else get_rank(arg) for arg in args] cumulative_ranks = list(accumulate([0] + ranks))[:-1] tp = cls(*[arg.expr if isinstance(arg, ArrayContraction) else arg for arg in args]) contraction_indices = [tuple(cumulative_ranks[i] + k for k in j) for i, arg in contractions.items() for j in arg.contraction_indices] return ArrayContraction(tp, *contraction_indices) diagonals = {i: arg for i, arg in enumerate(args) if isinstance(arg, ArrayDiagonal)} if diagonals: inverse_permutation = [] last_perm = [] ranks = [get_rank(arg) for arg in args] cumulative_ranks = list(accumulate([0] + ranks))[:-1] for i, arg in enumerate(args): if isinstance(arg, ArrayDiagonal): i1 = get_rank(arg) - len(arg.diagonal_indices) i2 = len(arg.diagonal_indices) inverse_permutation.extend([cumulative_ranks[i] + j for j in range(i1)]) last_perm.extend([cumulative_ranks[i] + j for j in range(i1, i1 + i2)]) else: inverse_permutation.extend([cumulative_ranks[i] + j for j in range(get_rank(arg))]) inverse_permutation.extend(last_perm) tp = cls(*[arg.expr if isinstance(arg, ArrayDiagonal) else arg for arg in args]) ranks2 = [_get_subrank(arg) if isinstance(arg, ArrayDiagonal) else get_rank(arg) for arg in args] cumulative_ranks2 = list(accumulate([0] + ranks2))[:-1] diagonal_indices = [tuple(cumulative_ranks2[i] + k for k in j) for i, arg in diagonals.items() for j in arg.diagonal_indices] return PermuteDims(ArrayDiagonal(tp, *diagonal_indices), _af_invert(inverse_permutation)) obj = Basic.__new__(cls, *args) obj._subranks = ranks shapes = [get_shape(i) for i in args] if any(i is None for i in shapes): obj._shape = None else: obj._shape = tuple(j for i in shapes for j in i) return obj @classmethod def _flatten(cls, args): args = [i for arg in args for i in (arg.args if isinstance(arg, cls) else [arg])] return args def as_explicit(self): return tensorproduct(*[arg.as_explicit() if hasattr(arg, "as_explicit") else arg for arg in self.args]) class ArrayAdd(_CodegenArrayAbstract): r""" Class for elementwise array additions. """ def __new__(cls, *args): args = [_sympify(arg) for arg in args] ranks = [get_rank(arg) for arg in args] ranks = list(set(ranks)) if len(ranks) != 1: raise ValueError("summing arrays of different ranks") shapes = [arg.shape for arg in args] if len({i for i in shapes if i is not None}) > 1: raise ValueError("mismatching shapes in addition") # Flatten: args = cls._flatten_args(args) args = [arg for arg in args if not isinstance(arg, (ZeroArray, ZeroMatrix))] if len(args) == 0: if any(i for i in shapes if i is None): raise NotImplementedError("cannot handle addition of ZeroMatrix/ZeroArray and undefined shape object") return ZeroArray(*shapes[0]) elif len(args) == 1: return args[0] obj = Basic.__new__(cls, *args) obj._subranks = ranks if any(i is None for i in shapes): obj._shape = None else: obj._shape = shapes[0] return obj @classmethod def _flatten_args(cls, args): new_args = [] for arg in args: if isinstance(arg, ArrayAdd): new_args.extend(arg.args) else: new_args.append(arg) return new_args def as_explicit(self): return Add.fromiter([arg.as_explicit() for arg in self.args]) class PermuteDims(_CodegenArrayAbstract): r""" Class to represent permutation of axes of arrays. Examples ======== >>> from sympy.tensor.array.expressions.array_expressions import PermuteDims >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> cg = PermuteDims(M, [1, 0]) The object ``cg`` represents the transposition of ``M``, as the permutation ``[1, 0]`` will act on its indices by switching them: `M_{ij} \Rightarrow M_{ji}` This is evident when transforming back to matrix form: >>> from sympy.tensor.array.expressions.conv_array_to_matrix import convert_array_to_matrix >>> convert_array_to_matrix(cg) M.T >>> N = MatrixSymbol("N", 3, 2) >>> cg = PermuteDims(N, [1, 0]) >>> cg.shape (2, 3) Permutations of tensor products are simplified in order to achieve a standard form: >>> from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct >>> M = MatrixSymbol("M", 4, 5) >>> tp = ArrayTensorProduct(M, N) >>> tp.shape (4, 5, 3, 2) >>> perm1 = PermuteDims(tp, [2, 3, 1, 0]) The args ``(M, N)`` have been sorted and the permutation has been simplified, the expression is equivalent: >>> perm1.expr.args (N, M) >>> perm1.shape (3, 2, 5, 4) >>> perm1.permutation (2 3) The permutation in its array form has been simplified from ``[2, 3, 1, 0]`` to ``[0, 1, 3, 2]``, as the arguments of the tensor product `M` and `N` have been switched: >>> perm1.permutation.array_form [0, 1, 3, 2] We can nest a second permutation: >>> perm2 = PermuteDims(perm1, [1, 0, 2, 3]) >>> perm2.shape (2, 3, 5, 4) >>> perm2.permutation.array_form [1, 0, 3, 2] """ def __new__(cls, expr, permutation, nest_permutation=True): from sympy.combinatorics import Permutation expr = _sympify(expr) permutation = Permutation(permutation) permutation_size = permutation.size expr_rank = get_rank(expr) if permutation_size != expr_rank: raise ValueError("Permutation size must be the length of the shape of expr") if isinstance(expr, PermuteDims): subexpr = expr.expr subperm = expr.permutation permutation = permutation * subperm expr = subexpr if isinstance(expr, ArrayContraction): expr, permutation = cls._handle_nested_contraction(expr, permutation) if isinstance(expr, ArrayTensorProduct): expr, permutation = cls._sort_components(expr, permutation) if isinstance(expr, (ZeroArray, ZeroMatrix)): return ZeroArray(*[expr.shape[i] for i in permutation.array_form]) plist = permutation.array_form if plist == sorted(plist): return expr obj = Basic.__new__(cls, expr, permutation) obj._subranks = [get_rank(expr)] shape = expr.shape if shape is None: obj._shape = None else: obj._shape = tuple(shape[permutation(i)] for i in range(len(shape))) return obj @property def expr(self): return self.args[0] @property def permutation(self): return self.args[1] @classmethod def _sort_components(cls, expr, permutation): # Get the permutation in its image-form: perm_image_form = _af_invert(permutation.array_form) args = list(expr.args) # Starting index global position for every arg: cumul = list(accumulate([0] + expr.subranks)) # Split `perm_image_form` into a list of list corresponding to the indices # of every argument: perm_image_form_in_components = [perm_image_form[cumul[i]:cumul[i+1]] for i in range(len(args))] # Create an index, target-position-key array: ps = [(i, sorted(comp)) for i, comp in enumerate(perm_image_form_in_components)] # Sort the array according to the target-position-key: # In this way, we define a canonical way to sort the arguments according # to the permutation. ps.sort(key=lambda x: x[1]) # Read the inverse-permutation (i.e. image-form) of the args: perm_args_image_form = [i[0] for i in ps] # Apply the args-permutation to the `args`: args_sorted = [args[i] for i in perm_args_image_form] # Apply the args-permutation to the array-form of the permutation of the axes (of `expr`): perm_image_form_sorted_args = [perm_image_form_in_components[i] for i in perm_args_image_form] new_permutation = Permutation(_af_invert([j for i in perm_image_form_sorted_args for j in i])) return ArrayTensorProduct(*args_sorted), new_permutation @classmethod def _handle_nested_contraction(cls, expr, permutation): if not isinstance(expr, ArrayContraction): return expr, permutation if not isinstance(expr.expr, ArrayTensorProduct): return expr, permutation args = expr.expr.args subranks = [get_rank(arg) for arg in expr.expr.args] contraction_indices = expr.contraction_indices contraction_indices_flat = [j for i in contraction_indices for j in i] cumul = list(accumulate([0] + subranks)) # Spread the permutation in its array form across the args in the corresponding # tensor-product arguments with free indices: permutation_array_blocks_up = [] image_form = _af_invert(permutation.array_form) counter = 0 for i, e in enumerate(subranks): current = [] for j in range(cumul[i], cumul[i+1]): if j in contraction_indices_flat: continue current.append(image_form[counter]) counter += 1 permutation_array_blocks_up.append(current) # Get the map of axis repositioning for every argument of tensor-product: index_blocks = [[j for j in range(cumul[i], cumul[i+1])] for i, e in enumerate(expr.subranks)] index_blocks_up = expr._push_indices_up(expr.contraction_indices, index_blocks) inverse_permutation = permutation**(-1) index_blocks_up_permuted = [[inverse_permutation(j) for j in i if j is not None] for i in index_blocks_up] # Sorting key is a list of tuple, first element is the index of `args`, second element of # the tuple is the sorting key to sort `args` of the tensor product: sorting_keys = list(enumerate(index_blocks_up_permuted)) sorting_keys.sort(key=lambda x: x[1]) # Now we can get the permutation acting on the args in its image-form: new_perm_image_form = [i[0] for i in sorting_keys] # Apply the args-level permutation to various elements: new_index_blocks = [index_blocks[i] for i in new_perm_image_form] new_index_perm_array_form = _af_invert([j for i in new_index_blocks for j in i]) new_args = [args[i] for i in new_perm_image_form] new_contraction_indices = [tuple(new_index_perm_array_form[j] for j in i) for i in contraction_indices] new_expr = ArrayContraction(ArrayTensorProduct(*new_args), *new_contraction_indices) new_permutation = Permutation(_af_invert([j for i in [permutation_array_blocks_up[k] for k in new_perm_image_form] for j in i])) return new_expr, new_permutation @classmethod def _check_permutation_mapping(cls, expr, permutation): subranks = expr.subranks index2arg = [i for i, arg in enumerate(expr.args) for j in range(expr.subranks[i])] permuted_indices = [permutation(i) for i in range(expr.subrank())] new_args = list(expr.args) arg_candidate_index = index2arg[permuted_indices[0]] current_indices = [] new_permutation = [] inserted_arg_cand_indices = set([]) for i, idx in enumerate(permuted_indices): if index2arg[idx] != arg_candidate_index: new_permutation.extend(current_indices) current_indices = [] arg_candidate_index = index2arg[idx] current_indices.append(idx) arg_candidate_rank = subranks[arg_candidate_index] if len(current_indices) == arg_candidate_rank: new_permutation.extend(sorted(current_indices)) local_current_indices = [j - min(current_indices) for j in current_indices] i1 = index2arg[i] new_args[i1] = PermuteDims(new_args[i1], Permutation(local_current_indices)) inserted_arg_cand_indices.add(arg_candidate_index) current_indices = [] new_permutation.extend(current_indices) # TODO: swap args positions in order to simplify the expression: # TODO: this should be in a function args_positions = list(range(len(new_args))) # Get possible shifts: maps = {} cumulative_subranks = [0] + list(accumulate(subranks)) for i in range(0, len(subranks)): s = set([index2arg[new_permutation[j]] for j in range(cumulative_subranks[i], cumulative_subranks[i+1])]) if len(s) != 1: continue elem = next(iter(s)) if i != elem: maps[i] = elem # Find cycles in the map: lines = [] current_line = [] while maps: if len(current_line) == 0: k, v = maps.popitem() current_line.append(k) else: k = current_line[-1] if k not in maps: current_line = [] continue v = maps.pop(k) if v in current_line: lines.append(current_line) current_line = [] continue current_line.append(v) for line in lines: for i, e in enumerate(line): args_positions[line[(i + 1) % len(line)]] = e # TODO: function in order to permute the args: permutation_blocks = [[new_permutation[cumulative_subranks[i] + j] for j in range(e)] for i, e in enumerate(subranks)] new_args = [new_args[i] for i in args_positions] new_permutation_blocks = [permutation_blocks[i] for i in args_positions] new_permutation2 = [j for i in new_permutation_blocks for j in i] return ArrayTensorProduct(*new_args), Permutation(new_permutation2) # **(-1) @classmethod def _check_if_there_are_closed_cycles(cls, expr, permutation): args = list(expr.args) subranks = expr.subranks cyclic_form = permutation.cyclic_form cumulative_subranks = [0] + list(accumulate(subranks)) cyclic_min = [min(i) for i in cyclic_form] cyclic_max = [max(i) for i in cyclic_form] cyclic_keep = [] for i, cycle in enumerate(cyclic_form): flag = True for j in range(0, len(cumulative_subranks) - 1): if cyclic_min[i] >= cumulative_subranks[j] and cyclic_max[i] < cumulative_subranks[j+1]: # Found a sinkable cycle. args[j] = PermuteDims(args[j], Permutation([[k - cumulative_subranks[j] for k in cyclic_form[i]]])) flag = False break if flag: cyclic_keep.append(cyclic_form[i]) return ArrayTensorProduct(*args), Permutation(cyclic_keep, size=permutation.size) def nest_permutation(self): r""" DEPRECATED. """ ret = self._nest_permutation(self.expr, self.permutation) if ret is None: return self return ret @classmethod def _nest_permutation(cls, expr, permutation): if isinstance(expr, ArrayTensorProduct): return PermuteDims(*cls._check_if_there_are_closed_cycles(expr, permutation)) elif isinstance(expr, ArrayContraction): # Invert tree hierarchy: put the contraction above. cycles = permutation.cyclic_form newcycles = ArrayContraction._convert_outer_indices_to_inner_indices(expr, *cycles) newpermutation = Permutation(newcycles) new_contr_indices = [tuple(newpermutation(j) for j in i) for i in expr.contraction_indices] return ArrayContraction(PermuteDims(expr.expr, newpermutation), *new_contr_indices) elif isinstance(expr, ArrayAdd): return ArrayAdd(*[PermuteDims(arg, permutation) for arg in expr.args]) return None def as_explicit(self): return permutedims(self.expr.as_explicit(), self.permutation) class ArrayDiagonal(_CodegenArrayAbstract): r""" Class to represent the diagonal operator. Explanation =========== In a 2-dimensional array it returns the diagonal, this looks like the operation: `A_{ij} \rightarrow A_{ii}` The diagonal over axes 1 and 2 (the second and third) of the tensor product of two 2-dimensional arrays `A \otimes B` is `\Big[ A_{ab} B_{cd} \Big]_{abcd} \rightarrow \Big[ A_{ai} B_{id} \Big]_{adi}` In this last example the array expression has been reduced from 4-dimensional to 3-dimensional. Notice that no contraction has occurred, rather there is a new index `i` for the diagonal, contraction would have reduced the array to 2 dimensions. Notice that the diagonalized out dimensions are added as new dimensions at the end of the indices. """ def __new__(cls, expr, *diagonal_indices): expr = _sympify(expr) diagonal_indices = [Tuple(*sorted(i)) for i in diagonal_indices] if isinstance(expr, ArrayAdd): return ArrayAdd(*[ArrayDiagonal(arg, *diagonal_indices) for arg in expr.args]) if isinstance(expr, ArrayDiagonal): return cls._flatten(expr, *diagonal_indices) if isinstance(expr, PermuteDims): return cls._handle_nested_permutedims_in_diag(expr, *diagonal_indices) shape = get_shape(expr) if shape is not None: cls._validate(expr, *diagonal_indices) # Get new shape: positions, shape = cls._get_positions_shape(shape, diagonal_indices) else: positions = None if len(diagonal_indices) == 0: return expr if isinstance(expr, (ZeroArray, ZeroMatrix)): return ZeroArray(*shape) obj = Basic.__new__(cls, expr, *diagonal_indices) obj._positions = positions obj._subranks = _get_subranks(expr) obj._shape = shape return obj @staticmethod def _validate(expr, *diagonal_indices): # Check that no diagonalization happens on indices with mismatched # dimensions: shape = get_shape(expr) for i in diagonal_indices: if any(j >= len(shape) for j in i): raise ValueError("index is larger than expression shape") if len({shape[j] for j in i}) != 1: raise ValueError("diagonalizing indices of different dimensions") if len(i) <= 1: raise ValueError("need at least two axes to diagonalize") @staticmethod def _remove_trivial_dimensions(shape, *diagonal_indices): return [tuple(j for j in i) for i in diagonal_indices if shape[i[0]] != 1] @property def expr(self): return self.args[0] @property def diagonal_indices(self): return self.args[1:] @staticmethod def _flatten(expr, *outer_diagonal_indices): inner_diagonal_indices = expr.diagonal_indices all_inner = [j for i in inner_diagonal_indices for j in i] all_inner.sort() # TODO: add API for total rank and cumulative rank: total_rank = _get_subrank(expr) inner_rank = len(all_inner) outer_rank = total_rank - inner_rank shifts = [0 for i in range(outer_rank)] counter = 0 pointer = 0 for i in range(outer_rank): while pointer < inner_rank and counter >= all_inner[pointer]: counter += 1 pointer += 1 shifts[i] += pointer counter += 1 outer_diagonal_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_diagonal_indices) diagonal_indices = inner_diagonal_indices + outer_diagonal_indices return ArrayDiagonal(expr.expr, *diagonal_indices) @classmethod def _handle_nested_permutedims_in_diag(cls, expr: PermuteDims, *diagonal_indices): back_diagonal_indices = [[expr.permutation(j) for j in i] for i in diagonal_indices] nondiag = [i for i in range(get_rank(expr)) if not any(i in j for j in diagonal_indices)] back_nondiag = [expr.permutation(i) for i in nondiag] remap = {e: i for i, e in enumerate(sorted(back_nondiag))} new_permutation1 = [remap[i] for i in back_nondiag] shift = len(new_permutation1) diag_block_perm = [i + shift for i in range(len(back_diagonal_indices))] new_permutation = new_permutation1 + diag_block_perm return PermuteDims( ArrayDiagonal( expr.expr, *back_diagonal_indices ), new_permutation ) def _push_indices_down_nonstatic(self, indices): transform = lambda x: self._positions[x] if x < len(self._positions) else None return _apply_recursively_over_nested_lists(transform, indices) def _push_indices_up_nonstatic(self, indices): def transform(x): for i, e in enumerate(self._positions): if (isinstance(e, int) and x == e) or (isinstance(e, tuple) and x in e): return i return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _push_indices_down(cls, diagonal_indices, indices, rank): positions, shape = cls._get_positions_shape(range(rank), diagonal_indices) transform = lambda x: positions[x] if x < len(positions) else None return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _push_indices_up(cls, diagonal_indices, indices, rank): positions, shape = cls._get_positions_shape(range(rank), diagonal_indices) def transform(x): for i, e in enumerate(positions): if (isinstance(e, int) and x == e) or (isinstance(e, (tuple, Tuple)) and (x in e)): return i return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _get_positions_shape(cls, shape, diagonal_indices): data1 = tuple((i, shp) for i, shp in enumerate(shape) if not any(i in j for j in diagonal_indices)) pos1, shp1 = zip(*data1) if data1 else ((), ()) data2 = tuple((i, shape[i[0]]) for i in diagonal_indices) pos2, shp2 = zip(*data2) if data2 else ((), ()) positions = pos1 + pos2 shape = shp1 + shp2 return positions, shape def as_explicit(self): return tensordiagonal(self.expr.as_explicit(), *self.diagonal_indices) class ArrayElementwiseApplyFunc(_CodegenArrayAbstract): def __new__(cls, function, element): if not isinstance(function, Lambda): d = Dummy('d') function = Lambda(d, function(d)) obj = _CodegenArrayAbstract.__new__(cls, function, element) obj._subranks = _get_subranks(element) return obj @property def function(self): return self.args[0] @property def expr(self): return self.args[1] @property def shape(self): return self.expr.shape def _get_function_fdiff(self): d = Dummy("d") function = self.function(d) fdiff = function.diff(d) if isinstance(fdiff, Function): fdiff = type(fdiff) else: fdiff = Lambda(d, fdiff) return fdiff class ArrayContraction(_CodegenArrayAbstract): r""" This class is meant to represent contractions of arrays in a form easily processable by the code printers. """ def __new__(cls, expr, *contraction_indices, **kwargs): contraction_indices = _sort_contraction_indices(contraction_indices) expr = _sympify(expr) if len(contraction_indices) == 0: return expr if isinstance(expr, ArrayContraction): return cls._flatten(expr, *contraction_indices) if isinstance(expr, (ZeroArray, ZeroMatrix)): contraction_indices_flat = [j for i in contraction_indices for j in i] shape = [e for i, e in enumerate(expr.shape) if i not in contraction_indices_flat] return ZeroArray(*shape) if isinstance(expr, PermuteDims): return cls._handle_nested_permute_dims(expr, *contraction_indices) if isinstance(expr, ArrayTensorProduct): expr, contraction_indices = cls._sort_fully_contracted_args(expr, contraction_indices) expr, contraction_indices = cls._lower_contraction_to_addends(expr, contraction_indices) if len(contraction_indices) == 0: return expr if isinstance(expr, ArrayDiagonal): return cls._handle_nested_diagonal(expr, *contraction_indices) if isinstance(expr, ArrayAdd): return ArrayAdd(*[ArrayContraction(i, *contraction_indices) for i in expr.args]) obj = Basic.__new__(cls, expr, *contraction_indices) obj._subranks = _get_subranks(expr) obj._mapping = _get_mapping_from_subranks(obj._subranks) free_indices_to_position = {i: i for i in range(sum(obj._subranks)) if all(i not in cind for cind in contraction_indices)} obj._free_indices_to_position = free_indices_to_position shape = expr.shape cls._validate(expr, *contraction_indices) if shape: shape = tuple(shp for i, shp in enumerate(shape) if not any(i in j for j in contraction_indices)) obj._shape = shape return obj def __mul__(self, other): if other == 1: return self else: raise NotImplementedError("Product of N-dim arrays is not uniquely defined. Use another method.") def __rmul__(self, other): if other == 1: return self else: raise NotImplementedError("Product of N-dim arrays is not uniquely defined. Use another method.") @staticmethod def _validate(expr, *contraction_indices): shape = expr.shape if shape is None: return # Check that no contraction happens when the shape is mismatched: for i in contraction_indices: if len({shape[j] for j in i if shape[j] != -1}) != 1: raise ValueError("contracting indices of different dimensions") @classmethod def _push_indices_down(cls, contraction_indices, indices): flattened_contraction_indices = [j for i in contraction_indices for j in i] flattened_contraction_indices.sort() transform = _build_push_indices_down_func_transformation(flattened_contraction_indices) return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _push_indices_up(cls, contraction_indices, indices): flattened_contraction_indices = [j for i in contraction_indices for j in i] flattened_contraction_indices.sort() transform = _build_push_indices_up_func_transformation(flattened_contraction_indices) return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _lower_contraction_to_addends(cls, expr, contraction_indices): if isinstance(expr, ArrayAdd): raise NotImplementedError() if not isinstance(expr, ArrayTensorProduct): return expr, contraction_indices subranks = expr.subranks cumranks = list(accumulate([0] + subranks)) contraction_indices_remaining = [] contraction_indices_args = [[] for i in expr.args] backshift = set([]) for i, contraction_group in enumerate(contraction_indices): for j in range(len(expr.args)): if not isinstance(expr.args[j], ArrayAdd): continue if all(cumranks[j] <= k < cumranks[j+1] for k in contraction_group): contraction_indices_args[j].append([k - cumranks[j] for k in contraction_group]) backshift.update(contraction_group) break else: contraction_indices_remaining.append(contraction_group) if len(contraction_indices_remaining) == len(contraction_indices): return expr, contraction_indices total_rank = get_rank(expr) shifts = list(accumulate([1 if i in backshift else 0 for i in range(total_rank)])) contraction_indices_remaining = [Tuple.fromiter(j - shifts[j] for j in i) for i in contraction_indices_remaining] ret = ArrayTensorProduct(*[ ArrayContraction(arg, *contr) for arg, contr in zip(expr.args, contraction_indices_args) ]) return ret, contraction_indices_remaining def split_multiple_contractions(self): """ Recognize multiple contractions and attempt at rewriting them as paired-contractions. This allows some contractions involving more than two indices to be rewritten as multiple contractions involving two indices, thus allowing the expression to be rewritten as a matrix multiplication line. Examples: * `A_ij b_j0 C_jk` ===> `A*DiagMatrix(b)*C` Care for: - matrix being diagonalized (i.e. `A_ii`) - vectors being diagonalized (i.e. `a_i0`) Multiple contractions can be split into matrix multiplications if not more than two arguments are non-diagonals or non-vectors. Vectors get diagonalized while diagonal matrices remain diagonal. The non-diagonal matrices can be at the beginning or at the end of the final matrix multiplication line. """ editor = _EditArrayContraction(self) contraction_indices = self.contraction_indices onearray_insert = [] for indl, links in enumerate(contraction_indices): if len(links) <= 2: continue # Check multiple contractions: # # Examples: # # * `A_ij b_j0 C_jk` ===> `A*DiagMatrix(b)*C \otimes OneArray(1)` with permutation (1 2) # # Care for: # - matrix being diagonalized (i.e. `A_ii`) # - vectors being diagonalized (i.e. `a_i0`) # Multiple contractions can be split into matrix multiplications if # not more than three arguments are non-diagonals or non-vectors. # # Vectors get diagonalized while diagonal matrices remain diagonal. # The non-diagonal matrices can be at the beginning or at the end # of the final matrix multiplication line. positions = editor.get_mapping_for_index(indl) # Also consider the case of diagonal matrices being contracted: current_dimension = self.expr.shape[links[0]] not_vectors: Tuple[_ArgE, int] = [] vectors: Tuple[_ArgE, int] = [] for arg_ind, rel_ind in positions: arg = editor.args_with_ind[arg_ind] mat = arg.element abs_arg_start, abs_arg_end = editor.get_absolute_range(arg) other_arg_pos = 1-rel_ind other_arg_abs = abs_arg_start + other_arg_pos if ((1 not in mat.shape) or ((current_dimension == 1) is True and mat.shape != (1, 1)) or any(other_arg_abs in l for li, l in enumerate(contraction_indices) if li != indl) ): not_vectors.append((arg, rel_ind)) else: vectors.append((arg, rel_ind)) if len(not_vectors) > 2: # If more than two arguments in the multiple contraction are # non-vectors and non-diagonal matrices, we cannot find a way # to split this contraction into a matrix multiplication line: continue # Three cases to handle: # - zero non-vectors # - one non-vector # - two non-vectors for v, rel_ind in vectors: v.element = diagonalize_vector(v.element) vectors_to_loop = not_vectors[:1] + vectors + not_vectors[1:] first_not_vector, rel_ind = vectors_to_loop[0] new_index = first_not_vector.indices[rel_ind] for v, rel_ind in vectors_to_loop[1:-1]: v.indices[rel_ind] = new_index new_index = editor.get_new_contraction_index() assert v.indices.index(None) == 1 - rel_ind v.indices[v.indices.index(None)] = new_index onearray_insert.append(v) last_vec, rel_ind = vectors_to_loop[-1] last_vec.indices[rel_ind] = new_index for v in onearray_insert: editor.insert_after(v, _ArgE(OneArray(1), [None])) return editor.to_array_contraction() def flatten_contraction_of_diagonal(self): if not isinstance(self.expr, ArrayDiagonal): return self contraction_down = self.expr._push_indices_down(self.expr.diagonal_indices, self.contraction_indices) new_contraction_indices = [] diagonal_indices = self.expr.diagonal_indices[:] for i in contraction_down: contraction_group = list(i) for j in i: diagonal_with = [k for k in diagonal_indices if j in k] contraction_group.extend([l for k in diagonal_with for l in k]) diagonal_indices = [k for k in diagonal_indices if k not in diagonal_with] new_contraction_indices.append(sorted(set(contraction_group))) new_contraction_indices = ArrayDiagonal._push_indices_up(diagonal_indices, new_contraction_indices) return ArrayContraction( ArrayDiagonal( self.expr.expr, *diagonal_indices ), *new_contraction_indices ) @staticmethod def _get_free_indices_to_position_map(free_indices, contraction_indices): free_indices_to_position = {} flattened_contraction_indices = [j for i in contraction_indices for j in i] counter = 0 for ind in free_indices: while counter in flattened_contraction_indices: counter += 1 free_indices_to_position[ind] = counter counter += 1 return free_indices_to_position @staticmethod def _get_index_shifts(expr): """ Get the mapping of indices at the positions before the contraction occurs. Examples ======== >>> from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct >>> from sympy.tensor.array.expressions.array_expressions import ArrayContraction >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> N = MatrixSymbol("N", 3, 3) >>> cg = ArrayContraction(ArrayTensorProduct(M, N), [1, 2]) >>> cg._get_index_shifts(cg) [0, 2] Indeed, ``cg`` after the contraction has two dimensions, 0 and 1. They need to be shifted by 0 and 2 to get the corresponding positions before the contraction (that is, 0 and 3). """ inner_contraction_indices = expr.contraction_indices all_inner = [j for i in inner_contraction_indices for j in i] all_inner.sort() # TODO: add API for total rank and cumulative rank: total_rank = _get_subrank(expr) inner_rank = len(all_inner) outer_rank = total_rank - inner_rank shifts = [0 for i in range(outer_rank)] counter = 0 pointer = 0 for i in range(outer_rank): while pointer < inner_rank and counter >= all_inner[pointer]: counter += 1 pointer += 1 shifts[i] += pointer counter += 1 return shifts @staticmethod def _convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices): shifts = ArrayContraction._get_index_shifts(expr) outer_contraction_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_contraction_indices) return outer_contraction_indices @staticmethod def _flatten(expr, *outer_contraction_indices): inner_contraction_indices = expr.contraction_indices outer_contraction_indices = ArrayContraction._convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices) contraction_indices = inner_contraction_indices + outer_contraction_indices return ArrayContraction(expr.expr, *contraction_indices) @classmethod def _handle_nested_permute_dims(cls, expr, *contraction_indices): permutation = expr.permutation plist = permutation.array_form new_contraction_indices = [tuple(permutation(j) for j in i) for i in contraction_indices] new_plist = [i for i in plist if not any(i in j for j in new_contraction_indices)] new_plist = cls._push_indices_up(new_contraction_indices, new_plist) return PermuteDims( ArrayContraction(expr.expr, *new_contraction_indices), Permutation(new_plist) ) @classmethod def _handle_nested_diagonal(cls, expr: 'ArrayDiagonal', *contraction_indices): diagonal_indices = list(expr.diagonal_indices) down_contraction_indices = expr._push_indices_down(expr.diagonal_indices, contraction_indices, get_rank(expr.expr)) # Flatten diagonally contracted indices: down_contraction_indices = [[k for j in i for k in (j if isinstance(j, (tuple, Tuple)) else [j])] for i in down_contraction_indices] new_contraction_indices = [] for contr_indgrp in down_contraction_indices: ind = contr_indgrp[:] for j, diag_indgrp in enumerate(diagonal_indices): if diag_indgrp is None: continue if any(i in diag_indgrp for i in contr_indgrp): ind.extend(diag_indgrp) diagonal_indices[j] = None new_contraction_indices.append(sorted(set(ind))) new_diagonal_indices_down = [i for i in diagonal_indices if i is not None] new_diagonal_indices = ArrayContraction._push_indices_up(new_contraction_indices, new_diagonal_indices_down) return ArrayDiagonal( ArrayContraction(expr.expr, *new_contraction_indices), *new_diagonal_indices ) @classmethod def _sort_fully_contracted_args(cls, expr, contraction_indices): if expr.shape is None: return expr, contraction_indices cumul = list(accumulate([0] + expr.subranks)) index_blocks = [list(range(cumul[i], cumul[i+1])) for i in range(len(expr.args))] contraction_indices_flat = {j for i in contraction_indices for j in i} fully_contracted = [all(j in contraction_indices_flat for j in range(cumul[i], cumul[i+1])) for i, arg in enumerate(expr.args)] new_pos = sorted(range(len(expr.args)), key=lambda x: (0, default_sort_key(expr.args[x])) if fully_contracted[x] else (1,)) new_args = [expr.args[i] for i in new_pos] new_index_blocks_flat = [j for i in new_pos for j in index_blocks[i]] index_permutation_array_form = _af_invert(new_index_blocks_flat) new_contraction_indices = [tuple(index_permutation_array_form[j] for j in i) for i in contraction_indices] new_contraction_indices = _sort_contraction_indices(new_contraction_indices) return ArrayTensorProduct(*new_args), new_contraction_indices def _get_contraction_tuples(self): r""" Return tuples containing the argument index and position within the argument of the index position. Examples ======== >>> from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct >>> from sympy import MatrixSymbol >>> from sympy.abc import N >>> from sympy.tensor.array.expressions.array_expressions import ArrayContraction >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> cg = ArrayContraction(ArrayTensorProduct(A, B), (1, 2)) >>> cg._get_contraction_tuples() [[(0, 1), (1, 0)]] Notes ===== Here the contraction pair `(1, 2)` meaning that the 2nd and 3rd indices of the tensor product `A\otimes B` are contracted, has been transformed into `(0, 1)` and `(1, 0)`, identifying the same indices in a different notation. `(0, 1)` is the second index (1) of the first argument (i.e. 0 or `A`). `(1, 0)` is the first index (i.e. 0) of the second argument (i.e. 1 or `B`). """ mapping = self._mapping return [[mapping[j] for j in i] for i in self.contraction_indices] @staticmethod def _contraction_tuples_to_contraction_indices(expr, contraction_tuples): # TODO: check that `expr` has `.subranks`: ranks = expr.subranks cumulative_ranks = [0] + list(accumulate(ranks)) return [tuple(cumulative_ranks[j]+k for j, k in i) for i in contraction_tuples] @property def free_indices(self): return self._free_indices[:] @property def free_indices_to_position(self): return dict(self._free_indices_to_position) @property def expr(self): return self.args[0] @property def contraction_indices(self): return self.args[1:] def _contraction_indices_to_components(self): expr = self.expr if not isinstance(expr, ArrayTensorProduct): raise NotImplementedError("only for contractions of tensor products") ranks = expr.subranks mapping = {} counter = 0 for i, rank in enumerate(ranks): for j in range(rank): mapping[counter] = (i, j) counter += 1 return mapping def sort_args_by_name(self): """ Sort arguments in the tensor product so that their order is lexicographical. Examples ======== >>> from sympy.tensor.array.expressions.conv_matrix_to_array import convert_matrix_to_array >>> from sympy import MatrixSymbol >>> from sympy.abc import N >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) >>> cg = convert_matrix_to_array(C*D*A*B) >>> cg ArrayContraction(ArrayTensorProduct(A, D, C, B), (0, 3), (1, 6), (2, 5)) >>> cg.sort_args_by_name() ArrayContraction(ArrayTensorProduct(A, D, B, C), (0, 3), (1, 4), (2, 7)) """ expr = self.expr if not isinstance(expr, ArrayTensorProduct): return self args = expr.args sorted_data = sorted(enumerate(args), key=lambda x: default_sort_key(x[1])) pos_sorted, args_sorted = zip(*sorted_data) reordering_map = {i: pos_sorted.index(i) for i, arg in enumerate(args)} contraction_tuples = self._get_contraction_tuples() contraction_tuples = [[(reordering_map[j], k) for j, k in i] for i in contraction_tuples] c_tp = ArrayTensorProduct(*args_sorted) new_contr_indices = self._contraction_tuples_to_contraction_indices( c_tp, contraction_tuples ) return ArrayContraction(c_tp, *new_contr_indices) def _get_contraction_links(self): r""" Returns a dictionary of links between arguments in the tensor product being contracted. See the example for an explanation of the values. Examples ======== >>> from sympy import MatrixSymbol >>> from sympy.abc import N >>> from sympy.tensor.array.expressions.conv_matrix_to_array import convert_matrix_to_array >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) Matrix multiplications are pairwise contractions between neighboring matrices: `A_{ij} B_{jk} C_{kl} D_{lm}` >>> cg = convert_matrix_to_array(A*B*C*D) >>> cg ArrayContraction(ArrayTensorProduct(B, C, A, D), (0, 5), (1, 2), (3, 6)) >>> cg._get_contraction_links() {0: {0: (2, 1), 1: (1, 0)}, 1: {0: (0, 1), 1: (3, 0)}, 2: {1: (0, 0)}, 3: {0: (1, 1)}} This dictionary is interpreted as follows: argument in position 0 (i.e. matrix `A`) has its second index (i.e. 1) contracted to `(1, 0)`, that is argument in position 1 (matrix `B`) on the first index slot of `B`, this is the contraction provided by the index `j` from `A`. The argument in position 1 (that is, matrix `B`) has two contractions, the ones provided by the indices `j` and `k`, respectively the first and second indices (0 and 1 in the sub-dict). The link `(0, 1)` and `(2, 0)` respectively. `(0, 1)` is the index slot 1 (the 2nd) of argument in position 0 (that is, `A_{\ldot j}`), and so on. """ args, dlinks = _get_contraction_links([self], self.subranks, *self.contraction_indices) return dlinks def as_explicit(self): return tensorcontraction(self.expr.as_explicit(), *self.contraction_indices) class _ArgE: """ The ``_ArgE`` object contains references to the array expression (``.element``) and a list containing the information about index contractions (``.indices``). Index contractions are numbered and contracted indices show the number of the contraction. Uncontracted indices have ``None`` value. For example: ``_ArgE(M, [None, 3])`` This object means that expression ``M`` is part of an array contraction and has two indices, the first is not contracted (value ``None``), the second index is contracted to the 4th (i.e. number ``3``) group of the array contraction object. """ def __init__(self, element, indices: Optional[List[Optional[int]]] = None): self.element = element if indices is None: self.indices: List[Optional[int]] = [None for i in range(get_rank(element))] else: self.indices: List[Optional[int]] = indices def __str__(self): return "_ArgE(%s, %s)" % (self.element, self.indices) __repr__ = __str__ class _IndPos: """ Index position, requiring two integers in the constructor: - arg: the position of the argument in the tensor product, - rel: the relative position of the index inside the argument. """ def __init__(self, arg: int, rel: int): self.arg = arg self.rel = rel def __str__(self): return "_IndPos(%i, %i)" % (self.arg, self.rel) __repr__ = __str__ def __iter__(self): yield from [self.arg, self.rel] class _EditArrayContraction: """ Utility class to help manipulate array contraction objects. This class takes as input an ``ArrayContraction`` object and turns it into an editable object. The field ``args_with_ind`` of this class is a list of ``_ArgE`` objects which can be used to easily edit the contraction structure of the expression. Once editing is finished, the ``ArrayContraction`` object may be recreated by calling the ``.to_array_contraction()`` method. """ def __init__(self, array_contraction: Optional[ArrayContraction]): if array_contraction is None: self.args_with_ind: List[_ArgE] = [] self.number_of_contraction_indices: int = 0 self._track_permutation: Optional[List[int]] = None return expr = array_contraction.expr if isinstance(expr, ArrayTensorProduct): args = list(expr.args) else: args = [expr] args_with_ind: List[_ArgE] = [_ArgE(arg) for arg in args] mapping = _get_mapping_from_subranks(array_contraction.subranks) for i, contraction_tuple in enumerate(array_contraction.contraction_indices): for j in contraction_tuple: arg_pos, rel_pos = mapping[j] args_with_ind[arg_pos].indices[rel_pos] = i self.args_with_ind: List[_ArgE] = args_with_ind self.number_of_contraction_indices: int = len(array_contraction.contraction_indices) self._track_permutation: Optional[List[int]] = None def insert_after(self, arg: _ArgE, new_arg: _ArgE): pos = self.args_with_ind.index(arg) self.args_with_ind.insert(pos + 1, new_arg) def get_new_contraction_index(self): self.number_of_contraction_indices += 1 return self.number_of_contraction_indices - 1 def refresh_indices(self): updates: Dict[int, int] = {} for arg_with_ind in self.args_with_ind: updates.update({i: -1 for i in arg_with_ind.indices if i is not None}) for i, e in enumerate(sorted(updates)): updates[e] = i self.number_of_contraction_indices: int = len(updates) for arg_with_ind in self.args_with_ind: arg_with_ind.indices = [updates.get(i, None) for i in arg_with_ind.indices] def merge_scalars(self): scalars = [] for arg_with_ind in self.args_with_ind: if len(arg_with_ind.indices) == 0: scalars.append(arg_with_ind) for i in scalars: self.args_with_ind.remove(i) scalar = Mul.fromiter([i.element for i in scalars]) if len(self.args_with_ind) == 0: self.args_with_ind.append(_ArgE(scalar)) else: from sympy.tensor.array.expressions.conv_array_to_matrix import _a2m_tensor_product self.args_with_ind[0].element = _a2m_tensor_product(scalar, self.args_with_ind[0].element) def to_array_contraction(self): self.merge_scalars() self.refresh_indices() args = [arg.element for arg in self.args_with_ind] contraction_indices = self.get_contraction_indices() expr = ArrayContraction(ArrayTensorProduct(*args), *contraction_indices) if self._track_permutation is not None: permutation = _af_invert([j for i in self._track_permutation for j in i]) expr = PermuteDims(expr, permutation) return expr def get_contraction_indices(self) -> List[List[int]]: contraction_indices: List[List[int]] = [[] for i in range(self.number_of_contraction_indices)] current_position: int = 0 for i, arg_with_ind in enumerate(self.args_with_ind): for j in arg_with_ind.indices: if j is not None: contraction_indices[j].append(current_position) current_position += 1 return contraction_indices def get_mapping_for_index(self, ind) -> List[_IndPos]: if ind >= self.number_of_contraction_indices: raise ValueError("index value exceeding the index range") positions: List[_IndPos] = [] for i, arg_with_ind in enumerate(self.args_with_ind): for j, arg_ind in enumerate(arg_with_ind.indices): if ind == arg_ind: positions.append(_IndPos(i, j)) return positions def get_contraction_indices_to_ind_rel_pos(self) -> List[List[_IndPos]]: contraction_indices: List[List[_IndPos]] = [[] for i in range(self.number_of_contraction_indices)] for i, arg_with_ind in enumerate(self.args_with_ind): for j, ind in enumerate(arg_with_ind.indices): if ind is not None: contraction_indices[ind].append(_IndPos(i, j)) return contraction_indices def count_args_with_index(self, index: int) -> int: """ Count the number of arguments that have the given index. """ counter: int = 0 for arg_with_ind in self.args_with_ind: if index in arg_with_ind.indices: counter += 1 return counter def get_args_with_index(self, index: int) -> List[_ArgE]: """ Get a list of arguments having the given index. """ ret: List[_ArgE] = [i for i in self.args_with_ind if index in i.indices] return ret def track_permutation_start(self): self._track_permutation = [] counter: int = 0 for arg_with_ind in self.args_with_ind: perm = [] for i in arg_with_ind.indices: if i is not None: continue perm.append(counter) counter += 1 self._track_permutation.append(perm) def track_permutation_merge(self, destination: _ArgE, from_element: _ArgE): index_destination = self.args_with_ind.index(destination) index_element = self.args_with_ind.index(from_element) self._track_permutation[index_destination].extend(self._track_permutation[index_element]) self._track_permutation.pop(index_element) def get_absolute_free_range(self, arg: _ArgE) -> typing.Tuple[int, int]: """ Return the range of the free indices of the arg as absolute positions among all free indices. """ counter = 0 for arg_with_ind in self.args_with_ind: number_free_indices = len([i for i in arg_with_ind.indices if i is None]) if arg_with_ind == arg: return counter, counter + number_free_indices counter += number_free_indices raise IndexError("argument not found") def get_absolute_range(self, arg: _ArgE) -> typing.Tuple[int, int]: """ Return the absolute range of indices for arg, disregarding dummy indices. """ counter = 0 for arg_with_ind in self.args_with_ind: number_indices = len(arg_with_ind.indices) if arg_with_ind == arg: return counter, counter + number_indices counter += number_indices raise IndexError("argument not found") def get_rank(expr): if isinstance(expr, (MatrixExpr, MatrixElement)): return 2 if isinstance(expr, _CodegenArrayAbstract): return len(expr.shape) if isinstance(expr, NDimArray): return expr.rank() if isinstance(expr, Indexed): return expr.rank if isinstance(expr, IndexedBase): shape = expr.shape if shape is None: return -1 else: return len(shape) if hasattr(expr, "shape"): return len(expr.shape) return 0 def _get_subrank(expr): if isinstance(expr, _CodegenArrayAbstract): return expr.subrank() return get_rank(expr) def _get_subranks(expr): if isinstance(expr, _CodegenArrayAbstract): return expr.subranks else: return [get_rank(expr)] def get_shape(expr): if hasattr(expr, "shape"): return expr.shape return () def nest_permutation(expr): if isinstance(expr, PermuteDims): return expr.nest_permutation() else: return expr
f812c7251b5594ab2d46824b960f53e3e6c6cecdccb6861c970459a5daa27688
from sympy import ( symbols, Identity, cos, ZeroMatrix, OneMatrix, sqrt, HadamardProduct) from sympy.tensor.array.expressions.conv_matrix_to_array import convert_matrix_to_array from sympy.tensor.array.expressions.conv_array_to_matrix import _support_function_tp1_recognize, \ _array_diag2contr_diagmatrix, convert_array_to_matrix, _remove_trivial_dims, _array2matrix, \ _combine_removed, identify_removable_identity_matrices from sympy import MatrixSymbol from sympy.combinatorics import Permutation from sympy.matrices.expressions.diagonal import DiagMatrix, DiagonalMatrix from sympy.matrices import Trace, MatMul, Transpose from sympy.tensor.array.expressions.array_expressions import ZeroArray, OneArray, \ ArrayTensorProduct, ArrayAdd, PermuteDims, ArrayDiagonal, \ ArrayContraction from sympy.testing.pytest import raises i, j, k, l, m, n = symbols("i j k l m n") I = Identity(k) I1 = Identity(1) M = MatrixSymbol("M", k, k) N = MatrixSymbol("N", k, k) P = MatrixSymbol("P", k, k) Q = MatrixSymbol("Q", k, k) A = MatrixSymbol("A", k, k) B = MatrixSymbol("B", k, k) C = MatrixSymbol("C", k, k) D = MatrixSymbol("D", k, k) X = MatrixSymbol("X", k, k) Y = MatrixSymbol("Y", k, k) a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) c = MatrixSymbol("c", k, 1) d = MatrixSymbol("d", k, 1) x = MatrixSymbol("x", k, 1) def test_arrayexpr_convert_array_to_matrix(): cg = ArrayContraction(ArrayTensorProduct(M), (0, 1)) assert convert_array_to_matrix(cg) == Trace(M) cg = ArrayContraction(ArrayTensorProduct(M, N), (0, 1), (2, 3)) assert convert_array_to_matrix(cg) == Trace(M) * Trace(N) cg = ArrayContraction(ArrayTensorProduct(M, N), (0, 3), (1, 2)) assert convert_array_to_matrix(cg) == Trace(M * N) cg = ArrayContraction(ArrayTensorProduct(M, N), (0, 2), (1, 3)) assert convert_array_to_matrix(cg) == Trace(M * N.T) cg = convert_matrix_to_array(M * N * P) assert convert_array_to_matrix(cg) == M * N * P cg = convert_matrix_to_array(M * N.T * P) assert convert_array_to_matrix(cg) == M * N.T * P cg = ArrayContraction(ArrayTensorProduct(M,N,P,Q), (1, 2), (5, 6)) assert convert_array_to_matrix(cg) == ArrayTensorProduct(M * N, P * Q) cg = ArrayContraction(ArrayTensorProduct(-2, M, N), (1, 2)) assert convert_array_to_matrix(cg) == -2 * M * N a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) c = MatrixSymbol("c", k, 1) cg = PermuteDims( ArrayContraction( ArrayTensorProduct( a, ArrayAdd( ArrayTensorProduct(b, c), ArrayTensorProduct(c, b), ) ), (2, 4)), [0, 1, 3, 2]) assert convert_array_to_matrix(cg) == a * (b.T * c + c.T * b) za = ZeroArray(m, n) assert convert_array_to_matrix(za) == ZeroMatrix(m, n) cg = ArrayTensorProduct(3, M) assert convert_array_to_matrix(cg) == 3 * M # Partial conversion to matrix multiplication: expr = ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 2), (1, 4, 6)) assert convert_array_to_matrix(expr) == ArrayContraction(ArrayTensorProduct(M.T*N, P, Q), (0, 2, 4)) x = MatrixSymbol("x", k, 1) cg = PermuteDims( ArrayContraction(ArrayTensorProduct(OneArray(1), x, OneArray(1), DiagMatrix(Identity(1))), (0, 5)), Permutation(1, 2, 3)) assert convert_array_to_matrix(cg) == x expr = ArrayAdd(M, PermuteDims(M, [1, 0])) assert convert_array_to_matrix(expr) == M + Transpose(M) def test_arrayexpr_convert_array_to_matrix2(): cg = ArrayContraction(ArrayTensorProduct(M, N), (1, 3)) assert convert_array_to_matrix(cg) == M * N.T cg = PermuteDims(ArrayTensorProduct(M, N), Permutation([0, 1, 3, 2])) assert convert_array_to_matrix(cg) == ArrayTensorProduct(M, N.T) cg = ArrayTensorProduct(M, PermuteDims(N, Permutation([1, 0]))) assert convert_array_to_matrix(cg) == ArrayTensorProduct(M, N.T) cg = ArrayContraction( PermuteDims( ArrayTensorProduct(M, N, P, Q), Permutation([0, 2, 3, 1, 4, 5, 7, 6])), (1, 2), (3, 5) ) assert convert_array_to_matrix(cg) == ArrayTensorProduct(M * P.T * Trace(N), Q.T) cg = ArrayContraction( ArrayTensorProduct(M, N, P, PermuteDims(Q, Permutation([1, 0]))), (1, 5), (2, 3) ) assert convert_array_to_matrix(cg) == ArrayTensorProduct(M * P.T * Trace(N), Q.T) cg = ArrayTensorProduct(M, PermuteDims(N, [1, 0])) assert convert_array_to_matrix(cg) == ArrayTensorProduct(M, N.T) cg = ArrayTensorProduct(PermuteDims(M, [1, 0]), PermuteDims(N, [1, 0])) assert convert_array_to_matrix(cg) == ArrayTensorProduct(M.T, N.T) cg = ArrayTensorProduct(PermuteDims(N, [1, 0]), PermuteDims(M, [1, 0])) assert convert_array_to_matrix(cg) == ArrayTensorProduct(N.T, M.T) def test_arrayexpr_convert_array_to_diagonalized_vector(): # Check matrix recognition over trivial dimensions: cg = ArrayTensorProduct(a, b) assert convert_array_to_matrix(cg) == a * b.T cg = ArrayTensorProduct(I1, a, b) assert convert_array_to_matrix(cg) == a * b.T # Recognize trace inside a tensor product: cg = ArrayContraction(ArrayTensorProduct(A, B, C), (0, 3), (1, 2)) assert convert_array_to_matrix(cg) == Trace(A * B) * C # Transform diagonal operator to contraction: cg = ArrayDiagonal(ArrayTensorProduct(A, a), (1, 2)) assert _array_diag2contr_diagmatrix(cg) == ArrayContraction(ArrayTensorProduct(A, OneArray(1), DiagMatrix(a)), (1, 3)) assert convert_array_to_matrix(cg) == A * DiagMatrix(a) cg = ArrayDiagonal(ArrayTensorProduct(a, b), (0, 2)) assert _array_diag2contr_diagmatrix(cg) == PermuteDims( ArrayContraction(ArrayTensorProduct(DiagMatrix(a), OneArray(1), b), (0, 3)), [1, 2, 0] ) assert convert_array_to_matrix(cg) == b.T * DiagMatrix(a) cg = ArrayDiagonal(ArrayTensorProduct(A, a), (0, 2)) assert _array_diag2contr_diagmatrix(cg) == ArrayContraction(ArrayTensorProduct(A, OneArray(1), DiagMatrix(a)), (0, 3)) assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a) cg = ArrayDiagonal(ArrayTensorProduct(I, x, I1), (0, 2), (3, 5)) assert _array_diag2contr_diagmatrix(cg) == ArrayContraction(ArrayTensorProduct(I, OneArray(1), I1, DiagMatrix(x)), (0, 5)) assert convert_array_to_matrix(cg) == DiagMatrix(x) cg = ArrayDiagonal(ArrayTensorProduct(I, x, A, B), (1, 2), (5, 6)) assert _array_diag2contr_diagmatrix(cg) == ArrayDiagonal(ArrayContraction(ArrayTensorProduct(I, OneArray(1), A, B, DiagMatrix(x)), (1, 7)), (5, 6)) # TODO: this is returning a wrong result: # convert_array_to_matrix(cg) cg = ArrayDiagonal(ArrayTensorProduct(I1, a, b), (1, 3, 5)) assert convert_array_to_matrix(cg) == a*b.T cg = ArrayDiagonal(ArrayTensorProduct(I1, a, b), (1, 3)) assert _array_diag2contr_diagmatrix(cg) == ArrayContraction(ArrayTensorProduct(OneArray(1), a, b, I1), (2, 6)) assert convert_array_to_matrix(cg) == a*b.T cg = ArrayDiagonal(ArrayTensorProduct(x, I1), (1, 2)) assert isinstance(cg, ArrayDiagonal) assert cg.diagonal_indices == ((1, 2),) assert convert_array_to_matrix(cg) == x cg = ArrayDiagonal(ArrayTensorProduct(x, I), (0, 2)) assert _array_diag2contr_diagmatrix(cg) == ArrayContraction(ArrayTensorProduct(OneArray(1), I, DiagMatrix(x)), (1, 3)) assert convert_array_to_matrix(cg).doit() == DiagMatrix(x) raises(ValueError, lambda: ArrayDiagonal(x, (1,))) # Ignore identity matrices with contractions: cg = ArrayContraction(ArrayTensorProduct(I, A, I, I), (0, 2), (1, 3), (5, 7)) assert cg.split_multiple_contractions() == cg assert convert_array_to_matrix(cg) == Trace(A) * I cg = ArrayContraction(ArrayTensorProduct(Trace(A) * I, I, I), (1, 5), (3, 4)) assert cg.split_multiple_contractions() == cg assert convert_array_to_matrix(cg).doit() == Trace(A) * I # Add DiagMatrix when required: cg = ArrayContraction(ArrayTensorProduct(A, a), (1, 2)) assert cg.split_multiple_contractions() == cg assert convert_array_to_matrix(cg) == A * a cg = ArrayContraction(ArrayTensorProduct(A, a, B), (1, 2, 4)) assert cg.split_multiple_contractions() == ArrayContraction(ArrayTensorProduct(A, DiagMatrix(a), OneArray(1), B), (1, 2), (3, 5)) assert convert_array_to_matrix(cg) == A * DiagMatrix(a) * B cg = ArrayContraction(ArrayTensorProduct(A, a, B), (0, 2, 4)) assert cg.split_multiple_contractions() == ArrayContraction(ArrayTensorProduct(A, DiagMatrix(a), OneArray(1), B), (0, 2), (3, 5)) assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a) * B cg = ArrayContraction(ArrayTensorProduct(A, a, b, a.T, B), (0, 2, 4, 7, 9)) assert cg.split_multiple_contractions() == ArrayContraction(ArrayTensorProduct(A, DiagMatrix(a), OneArray(1), DiagMatrix(b), OneArray(1), DiagMatrix(a), OneArray(1), B), (0, 2), (3, 5), (6, 9), (8, 12)) assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a) * DiagMatrix(b) * DiagMatrix(a) * B.T cg = ArrayContraction(ArrayTensorProduct(I1, I1, I1), (1, 2, 4)) assert cg.split_multiple_contractions() == ArrayContraction(ArrayTensorProduct(I1, I1, OneArray(1), I1), (1, 2), (3, 5)) assert convert_array_to_matrix(cg) == 1 cg = ArrayContraction(ArrayTensorProduct(I, I, I, I, A), (1, 2, 8), (5, 6, 9)) assert convert_array_to_matrix(cg.split_multiple_contractions()).doit() == A cg = ArrayContraction(ArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8)) expected = ArrayContraction(ArrayTensorProduct(A, DiagMatrix(a), OneArray(1), C, DiagMatrix(a), OneArray(1), B), (1, 3), (2, 5), (6, 7), (8, 10)) assert cg.split_multiple_contractions() == expected assert convert_array_to_matrix(cg) == A * DiagMatrix(a) * C * DiagMatrix(a) * B cg = ArrayContraction(ArrayTensorProduct(a, I1, b, I1, (a.T*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9)) expected = ArrayContraction(ArrayTensorProduct(a, I1, OneArray(1), b, I1, OneArray(1), (a.T*b).applyfunc(cos)), (1, 3), (2, 10), (6, 8), (7, 11)) assert cg.split_multiple_contractions().dummy_eq(expected) assert convert_array_to_matrix(cg).doit().dummy_eq(MatMul(a, (a.T * b).applyfunc(cos), b.T)) def test_arrayexpr_convert_array_contraction_tp_additions(): a = ArrayAdd( ArrayTensorProduct(M, N), ArrayTensorProduct(N, M) ) tp = ArrayTensorProduct(P, a, Q) expr = ArrayContraction(tp, (3, 4)) expected = ArrayTensorProduct( P, ArrayAdd( ArrayContraction(ArrayTensorProduct(M, N), (1, 2)), ArrayContraction(ArrayTensorProduct(N, M), (1, 2)), ), Q ) assert expr == expected assert convert_array_to_matrix(expr) == ArrayTensorProduct(P, M * N + N * M, Q) expr = ArrayContraction(tp, (1, 2), (3, 4), (5, 6)) result = ArrayContraction( ArrayTensorProduct( P, ArrayAdd( ArrayContraction(ArrayTensorProduct(M, N), (1, 2)), ArrayContraction(ArrayTensorProduct(N, M), (1, 2)), ), Q ), (1, 2), (3, 4)) assert expr == result assert convert_array_to_matrix(expr) == P * (M * N + N * M) * Q def test_arrayexpr_convert_array_to_implicit_matmul(): # Trivial dimensions are suppressed, so the result can be expressed in matrix form: cg = ArrayTensorProduct(a, b) assert convert_array_to_matrix(cg) == a * b.T cg = ArrayTensorProduct(a, I, b) assert convert_array_to_matrix(cg) == a * b.T cg = ArrayContraction(ArrayTensorProduct(I, I), (1, 2)) assert convert_array_to_matrix(cg) == I cg = PermuteDims(ArrayTensorProduct(I, Identity(1)), [0, 2, 1, 3]) assert convert_array_to_matrix(cg) == I def test_arrayexpr_convert_array_to_matrix_remove_trivial_dims(): # Tensor Product: assert _remove_trivial_dims(ArrayTensorProduct(a, b)) == (a * b.T, [1, 3]) assert _remove_trivial_dims(ArrayTensorProduct(a.T, b)) == (a * b.T, [0, 3]) assert _remove_trivial_dims(ArrayTensorProduct(a, b.T)) == (a * b.T, [1, 2]) assert _remove_trivial_dims(ArrayTensorProduct(a.T, b.T)) == (a * b.T, [0, 2]) assert _remove_trivial_dims(ArrayTensorProduct(I, a.T, b.T)) == (a * b.T, [0, 1, 2, 4]) assert _remove_trivial_dims(ArrayTensorProduct(a.T, I, b.T)) == (a * b.T, [0, 2, 3, 4]) assert _remove_trivial_dims(ArrayTensorProduct(a, I)) == (a, [2, 3]) assert _remove_trivial_dims(ArrayTensorProduct(I, a)) == (a, [0, 1]) assert _remove_trivial_dims(ArrayTensorProduct(a.T, b.T, c, d)) == ( ArrayTensorProduct(a * b.T, c * d.T), [0, 2, 5, 7]) assert _remove_trivial_dims(ArrayTensorProduct(a.T, I, b.T, c, d, I)) == ( ArrayTensorProduct(a * b.T, c * d.T, I), [0, 2, 3, 4, 7, 9]) # Addition: cg = ArrayAdd(ArrayTensorProduct(a, b), ArrayTensorProduct(c, d)) assert _remove_trivial_dims(cg) == (a * b.T + c * d.T, [1, 3]) # Permute Dims: cg = PermuteDims(ArrayTensorProduct(a, b), Permutation(3)(1, 2)) assert _remove_trivial_dims(cg) == (a * b.T, [2, 3]) cg = PermuteDims(ArrayTensorProduct(a, I, b), Permutation(5)(1, 2, 3, 4)) assert _remove_trivial_dims(cg) == (a * b.T, [1, 2, 4, 5]) cg = PermuteDims(ArrayTensorProduct(I, b, a), Permutation(5)(1, 2, 4, 5, 3)) assert _remove_trivial_dims(cg) == (b * a.T, [0, 3, 4, 5]) # Diagonal: cg = ArrayDiagonal(ArrayTensorProduct(M, a), (1, 2)) assert _remove_trivial_dims(cg) == (cg, []) # Contraction: cg = ArrayContraction(ArrayTensorProduct(M, a), (1, 2)) assert _remove_trivial_dims(cg) == (cg, []) # A few more cases to test the removal and shift of nested removed axes # with array contractions and array diagonals: tp = ArrayTensorProduct( OneMatrix(1, 1), M, x, OneMatrix(1, 1), Identity(1), ) expr = ArrayContraction(tp, (1, 8)) rexpr, removed = _remove_trivial_dims(expr) assert removed == [0, 5, 6, 7] expr = ArrayContraction(tp, (1, 8), (3, 4)) rexpr, removed = _remove_trivial_dims(expr) assert removed == [0, 3, 4, 5] expr = ArrayDiagonal(tp, (1, 8)) rexpr, removed = _remove_trivial_dims(expr) assert removed == [0, 5, 6, 7, 8] expr = ArrayDiagonal(tp, (1, 8), (3, 4)) rexpr, removed = _remove_trivial_dims(expr) assert removed == [0, 3, 4, 5, 6] expr = ArrayDiagonal(ArrayContraction(ArrayTensorProduct(A, x, I, I1), (1, 2, 5)), (1, 4)) rexpr, removed = _remove_trivial_dims(expr) assert removed == [1, 2] cg = ArrayDiagonal(ArrayTensorProduct(PermuteDims(ArrayTensorProduct(x, I1), Permutation(1, 2, 3)), (x.T*x).applyfunc(sqrt)), (2, 4), (3, 5)) rexpr, removed = _remove_trivial_dims(cg) assert removed == [1, 2] # Contractions with identity matrices need to be followed by a permutation # in order cg = ArrayContraction(ArrayTensorProduct(A, B, C, M, I), (1, 8)) ret, removed = _remove_trivial_dims(cg) assert ret == PermuteDims(ArrayTensorProduct(A, B, C, M), [0, 2, 3, 4, 5, 6, 7, 1]) assert removed == [] cg = ArrayContraction(ArrayTensorProduct(A, B, C, M, I), (1, 8), (3, 4)) ret, removed = _remove_trivial_dims(cg) assert ret == PermuteDims(ArrayContraction(ArrayTensorProduct(A, B, C, M), (3, 4)), [0, 2, 3, 4, 5, 1]) assert removed == [] def test_arrayexpr_convert_array_to_matrix_diag2contraction_diagmatrix(): cg = ArrayDiagonal(ArrayTensorProduct(M, a), (1, 2)) res = _array_diag2contr_diagmatrix(cg) assert res.shape == cg.shape assert res == ArrayContraction(ArrayTensorProduct(M, OneArray(1), DiagMatrix(a)), (1, 3)) raises(ValueError, lambda: ArrayDiagonal(ArrayTensorProduct(a, M), (1, 2))) cg = ArrayDiagonal(ArrayTensorProduct(a.T, M), (1, 2)) res = _array_diag2contr_diagmatrix(cg) assert res.shape == cg.shape assert res == ArrayContraction(ArrayTensorProduct(OneArray(1), M, DiagMatrix(a.T)), (1, 4)) cg = ArrayDiagonal(ArrayTensorProduct(a.T, M, N, b.T), (1, 2), (4, 7)) res = _array_diag2contr_diagmatrix(cg) assert res.shape == cg.shape assert res == ArrayContraction( ArrayTensorProduct(OneArray(1), M, N, OneArray(1), DiagMatrix(a.T), DiagMatrix(b.T)), (1, 7), (3, 9)) cg = ArrayDiagonal(ArrayTensorProduct(a, M, N, b.T), (0, 2), (4, 7)) res = _array_diag2contr_diagmatrix(cg) assert res.shape == cg.shape assert res == ArrayContraction( ArrayTensorProduct(OneArray(1), M, N, OneArray(1), DiagMatrix(a), DiagMatrix(b.T)), (1, 6), (3, 9)) cg = ArrayDiagonal(ArrayTensorProduct(a, M, N, b.T), (0, 4), (3, 7)) res = _array_diag2contr_diagmatrix(cg) assert res.shape == cg.shape assert res == ArrayContraction( ArrayTensorProduct(OneArray(1), M, N, OneArray(1), DiagMatrix(a), DiagMatrix(b.T)), (3, 6), (2, 9)) I1 = Identity(1) x = MatrixSymbol("x", k, 1) A = MatrixSymbol("A", k, k) cg = ArrayDiagonal(ArrayTensorProduct(x, A.T, I1), (0, 2)) assert _array_diag2contr_diagmatrix(cg).shape == cg.shape assert _array2matrix(cg).shape == cg.shape def test_arrayexpr_convert_array_to_matrix_support_function(): assert _support_function_tp1_recognize([], [2 * k]) == 2 * k assert _support_function_tp1_recognize([(1, 2)], [A, 2 * k, B, 3]) == 6 * k * A * B assert _support_function_tp1_recognize([(0, 3), (1, 2)], [A, B]) == Trace(A * B) assert _support_function_tp1_recognize([(1, 2)], [A, B]) == A * B assert _support_function_tp1_recognize([(0, 2)], [A, B]) == A.T * B assert _support_function_tp1_recognize([(1, 3)], [A, B]) == A * B.T assert _support_function_tp1_recognize([(0, 3)], [A, B]) == A.T * B.T assert _support_function_tp1_recognize([(1, 2), (5, 6)], [A, B, C, D]) == ArrayTensorProduct(A * B, C * D) assert _support_function_tp1_recognize([(1, 4), (3, 6)], [A, B, C, D]) == PermuteDims( ArrayTensorProduct(A * C, B * D), [0, 2, 1, 3]) assert _support_function_tp1_recognize([(0, 3), (1, 4)], [A, B, C]) == B * A * C assert _support_function_tp1_recognize([(9, 10), (1, 2), (5, 6), (3, 4), (7, 8)], [X, Y, A, B, C, D]) == X * Y * A * B * C * D assert _support_function_tp1_recognize([(9, 10), (1, 2), (5, 6), (3, 4)], [X, Y, A, B, C, D]) == ArrayTensorProduct(X * Y * A * B, C * D) assert _support_function_tp1_recognize([(1, 7), (3, 8), (4, 11)], [X, Y, A, B, C, D]) == PermuteDims( ArrayTensorProduct(X * B.T, Y * C, A.T * D.T), [0, 2, 4, 1, 3, 5] ) assert _support_function_tp1_recognize([(0, 1), (3, 6), (5, 8)], [X, A, B, C, D]) == PermuteDims( ArrayTensorProduct(Trace(X) * A * C, B * D), [0, 2, 1, 3]) assert _support_function_tp1_recognize([(1, 2), (3, 4), (5, 6), (7, 8)], [A, A, B, C, D]) == A ** 2 * B * C * D assert _support_function_tp1_recognize([(1, 2), (3, 4), (5, 6), (7, 8)], [X, A, B, C, D]) == X * A * B * C * D assert _support_function_tp1_recognize([(1, 6), (3, 8), (5, 10)], [X, Y, A, B, C, D]) == PermuteDims( ArrayTensorProduct(X * B, Y * C, A * D), [0, 2, 4, 1, 3, 5] ) assert _support_function_tp1_recognize([(1, 4), (3, 6)], [A, B, C, D]) == PermuteDims( ArrayTensorProduct(A * C, B * D), [0, 2, 1, 3]) assert _support_function_tp1_recognize([(0, 4), (1, 7), (2, 5), (3, 8)], [X, A, B, C, D]) == C*X.T*B*A*D assert _support_function_tp1_recognize([(0, 4), (1, 7), (2, 5), (3, 8)], [X, A, B, C, D]) == C*X.T*B*A*D def test_convert_array_to_hadamard_products(): expr = HadamardProduct(M, N) cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert ret == expr expr = HadamardProduct(M, N)*P cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert ret == expr expr = Q*HadamardProduct(M, N)*P cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert ret == expr expr = Q*HadamardProduct(M, N.T)*P cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert ret == expr expr = HadamardProduct(M, N)*HadamardProduct(Q, P) cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert expr == ret expr = P.T*HadamardProduct(M, N)*HadamardProduct(Q, P) cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert expr == ret # ArrayDiagonal should be converted cg = ArrayDiagonal(ArrayTensorProduct(M, N, Q), (1, 3), (0, 2, 4)) ret = convert_array_to_matrix(cg) expected = PermuteDims(ArrayDiagonal(ArrayTensorProduct(HadamardProduct(M.T, N.T), Q), (1, 2)), [1, 0, 2]) assert expected == ret # Special case that should return the same expression: cg = ArrayDiagonal(ArrayTensorProduct(HadamardProduct(M, N), Q), (0, 2)) ret = convert_array_to_matrix(cg) assert ret == cg # Hadamard products with traces: expr = Trace(HadamardProduct(M, N)) cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert ret == Trace(HadamardProduct(M.T, N.T)) expr = Trace(A*HadamardProduct(M, N)) cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert ret == Trace(HadamardProduct(M, N)*A) expr = Trace(HadamardProduct(A, M)*N) cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert ret == Trace(HadamardProduct(M.T, N)*A) # These should not be converted into Hadamard products: cg = ArrayDiagonal(ArrayTensorProduct(M, N), (0, 1, 2, 3)) ret = convert_array_to_matrix(cg) assert ret == cg cg = ArrayDiagonal(ArrayTensorProduct(A), (0, 1)) ret = convert_array_to_matrix(cg) assert ret == cg cg = ArrayDiagonal(ArrayTensorProduct(M, N, P), (0, 2, 4), (1, 3, 5)) assert convert_array_to_matrix(cg) == HadamardProduct(M, N, P) cg = ArrayDiagonal(ArrayTensorProduct(M, N, P), (0, 3, 4), (1, 2, 5)) assert convert_array_to_matrix(cg) == HadamardProduct(M, P, N.T) def test_identify_removable_identity_matrices(): D = DiagonalMatrix(MatrixSymbol("D", k, k)) cg = ArrayContraction(ArrayTensorProduct(A, B, I), (1, 2, 4, 5)) expected = ArrayContraction(ArrayTensorProduct(A, B), (1, 2)) assert identify_removable_identity_matrices(cg) == expected cg = ArrayContraction(ArrayTensorProduct(A, B, C, I), (1, 3, 5, 6, 7)) expected = ArrayContraction(ArrayTensorProduct(A, B, C), (1, 3, 5)) assert identify_removable_identity_matrices(cg) == expected # Tests with diagonal matrices: cg = ArrayContraction(ArrayTensorProduct(A, B, D), (1, 2, 4, 5)) ret = identify_removable_identity_matrices(cg) expected = ArrayContraction(ArrayTensorProduct(A, B, D), (1, 4), (2, 5)) assert ret == expected cg = ArrayContraction(ArrayTensorProduct(A, B, D, M, N), (1, 2, 4, 5, 6, 8)) ret = identify_removable_identity_matrices(cg) assert ret == cg def test_combine_removed(): assert _combine_removed(6, [0, 1, 2], [0, 1, 2]) == [0, 1, 2, 3, 4, 5] assert _combine_removed(8, [2, 5], [1, 3, 4]) == [1, 2, 4, 5, 6] assert _combine_removed(8, [7], []) == [7]
9764ef195754b867a2ff8f6a7c5eb977a73e29fde6d72c2b604b14d043978814
import random from sympy import symbols, ImmutableDenseNDimArray, tensorproduct, tensorcontraction, permutedims, MatrixSymbol, \ ZeroMatrix, sin, cos, DiagMatrix from sympy.combinatorics import Permutation from sympy.tensor.array.expressions.array_expressions import ZeroArray, OneArray, ArraySymbol, ArrayElement, \ PermuteDims, ArrayContraction, ArrayTensorProduct, ArrayDiagonal, \ ArrayAdd, nest_permutation, ArrayElementwiseApplyFunc, _EditArrayContraction, _ArgE from sympy.testing.pytest import raises i, j, k, l, m, n = symbols("i j k l m n") M = ArraySymbol("M", k, k) N = ArraySymbol("N", k, k) P = ArraySymbol("P", k, k) Q = ArraySymbol("Q", k, k) A = ArraySymbol("A", k, k) B = ArraySymbol("B", k, k) C = ArraySymbol("C", k, k) D = ArraySymbol("D", k, k) X = ArraySymbol("X", k, k) Y = ArraySymbol("Y", k, k) a = ArraySymbol("a", k, 1) b = ArraySymbol("b", k, 1) c = ArraySymbol("c", k, 1) d = ArraySymbol("d", k, 1) def test_array_symbol_and_element(): A = ArraySymbol("A", 2) A0 = ArrayElement(A, (0,)) A1 = ArrayElement(A, (1,)) assert A.as_explicit() == ImmutableDenseNDimArray([A0, A1]) A2 = tensorproduct(A, A) assert A2.shape == (2, 2) # TODO: not yet supported: # assert A2.as_explicit() == Array([[A[0]*A[0], A[1]*A[0]], [A[0]*A[1], A[1]*A[1]]]) A3 = tensorcontraction(A2, (0, 1)) assert A3.shape == () # TODO: not yet supported: # assert A3.as_explicit() == Array([]) A = ArraySymbol("A", 2, 3, 4) Ae = A.as_explicit() assert Ae == ImmutableDenseNDimArray( [[[ArrayElement(A, (i, j, k)) for k in range(4)] for j in range(3)] for i in range(2)]) p = permutedims(A, Permutation(0, 2, 1)) assert isinstance(p, PermuteDims) def test_zero_array(): assert ZeroArray() == 0 assert ZeroArray().is_Integer za = ZeroArray(3, 2, 4) assert za.shape == (3, 2, 4) za_e = za.as_explicit() assert za_e.shape == (3, 2, 4) m, n, k = symbols("m n k") za = ZeroArray(m, n, k, 2) assert za.shape == (m, n, k, 2) raises(ValueError, lambda: za.as_explicit()) def test_one_array(): assert OneArray() == 1 assert OneArray().is_Integer oa = OneArray(3, 2, 4) assert oa.shape == (3, 2, 4) oa_e = oa.as_explicit() assert oa_e.shape == (3, 2, 4) m, n, k = symbols("m n k") oa = OneArray(m, n, k, 2) assert oa.shape == (m, n, k, 2) raises(ValueError, lambda: oa.as_explicit()) def test_arrayexpr_contraction_construction(): cg = ArrayContraction(A) assert cg == A cg = ArrayContraction(ArrayTensorProduct(A, B), (1, 0)) assert cg == ArrayContraction(ArrayTensorProduct(A, B), (0, 1)) cg = ArrayContraction(ArrayTensorProduct(M, N), (0, 1)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 0), (0, 1)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 1)] cg = ArrayContraction(ArrayTensorProduct(M, N), (1, 2)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 1), (1, 0)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(1, 2)] cg = ArrayContraction(ArrayTensorProduct(M, M, N), (1, 4), (2, 5)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 0), (1, 1)], [(0, 1), (2, 0)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 3), (1, 4)] def test_arrayexpr_array_flatten(): # Flatten nested ArrayTensorProduct objects: expr1 = ArrayTensorProduct(M, N) expr2 = ArrayTensorProduct(P, Q) expr = ArrayTensorProduct(expr1, expr2) assert expr == ArrayTensorProduct(M, N, P, Q) assert expr.args == (M, N, P, Q) # Flatten mixed ArrayTensorProduct and ArrayContraction objects: cg1 = ArrayContraction(expr1, (1, 2)) cg2 = ArrayContraction(expr2, (0, 3)) expr = ArrayTensorProduct(cg1, cg2) assert expr == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (1, 2), (4, 7)) expr = ArrayTensorProduct(M, cg1) assert expr == ArrayContraction(ArrayTensorProduct(M, M, N), (3, 4)) # Flatten nested ArrayContraction objects: cgnested = ArrayContraction(cg1, (0, 1)) assert cgnested == ArrayContraction(ArrayTensorProduct(M, N), (0, 3), (1, 2)) cgnested = ArrayContraction(ArrayTensorProduct(cg1, cg2), (0, 3)) assert cgnested == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 6), (1, 2), (4, 7)) cg3 = ArrayContraction(ArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4)) cgnested = ArrayContraction(cg3, (0, 1)) assert cgnested == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 5), (1, 3), (2, 4)) cgnested = ArrayContraction(cg3, (0, 3), (1, 2)) assert cgnested == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 7), (1, 3), (2, 4), (5, 6)) cg4 = ArrayContraction(ArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7)) cgnested = ArrayContraction(cg4, (0, 1)) assert cgnested == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7)) cgnested = ArrayContraction(cg4, (0, 1), (2, 3)) assert cgnested == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7), (4, 6)) cg = ArrayDiagonal(cg4) assert cg == cg4 assert isinstance(cg, type(cg4)) # Flatten nested ArrayDiagonal objects: cg1 = ArrayDiagonal(expr1, (1, 2)) cg2 = ArrayDiagonal(expr2, (0, 3)) cg3 = ArrayDiagonal(ArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4)) cg4 = ArrayDiagonal(ArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7)) cgnested = ArrayDiagonal(cg1, (0, 1)) assert cgnested == ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2), (0, 3)) cgnested = ArrayDiagonal(cg3, (1, 2)) assert cgnested == ArrayDiagonal(ArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4), (5, 6)) cgnested = ArrayDiagonal(cg4, (1, 2)) assert cgnested == ArrayDiagonal(ArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7), (2, 4)) cg = ArrayAdd(M, N) cg2 = ArrayAdd(cg, P) assert isinstance(cg2, ArrayAdd) assert cg2.args == (M, N, P) assert cg2.shape == (k, k) expr = ArrayTensorProduct(ArrayDiagonal(X, (0, 1)), ArrayDiagonal(A, (0, 1))) assert expr == ArrayDiagonal(ArrayTensorProduct(X, A), (0, 1), (2, 3)) expr1 = ArrayDiagonal(ArrayTensorProduct(X, A), (1, 2)) expr2 = ArrayTensorProduct(expr1, a) assert expr2 == PermuteDims(ArrayDiagonal(ArrayTensorProduct(X, A, a), (1, 2)), [0, 1, 4, 2, 3]) expr1 = ArrayContraction(ArrayTensorProduct(X, A), (1, 2)) expr2 = ArrayTensorProduct(expr1, a) assert isinstance(expr2, ArrayContraction) assert isinstance(expr2.expr, ArrayTensorProduct) cg = ArrayTensorProduct(ArrayDiagonal(ArrayTensorProduct(A, X, Y), (0, 3), (1, 5)), a, b) assert cg == PermuteDims(ArrayDiagonal(ArrayTensorProduct(A, X, Y, a, b), (0, 3), (1, 5)), [0, 1, 6, 7, 2, 3, 4, 5]) def test_arrayexpr_array_diagonal(): cg = ArrayDiagonal(M, (1, 0)) assert cg == ArrayDiagonal(M, (0, 1)) cg = ArrayDiagonal(ArrayTensorProduct(M, N, P), (4, 1), (2, 0)) assert cg == ArrayDiagonal(ArrayTensorProduct(M, N, P), (1, 4), (0, 2)) def test_arrayexpr_array_shape(): expr = ArrayTensorProduct(M, N, P, Q) assert expr.shape == (k, k, k, k, k, k, k, k) Z = MatrixSymbol("Z", m, n) expr = ArrayTensorProduct(M, Z) assert expr.shape == (k, k, m, n) expr2 = ArrayContraction(expr, (0, 1)) assert expr2.shape == (m, n) expr2 = ArrayDiagonal(expr, (0, 1)) assert expr2.shape == (m, n, k) exprp = PermuteDims(expr, [2, 1, 3, 0]) assert exprp.shape == (m, k, n, k) expr3 = ArrayTensorProduct(N, Z) expr2 = ArrayAdd(expr, expr3) assert expr2.shape == (k, k, m, n) # Contraction along axes with discordant dimensions: raises(ValueError, lambda: ArrayContraction(expr, (1, 2))) # Also diagonal needs the same dimensions: raises(ValueError, lambda: ArrayDiagonal(expr, (1, 2))) # Diagonal requires at least to axes to compute the diagonal: raises(ValueError, lambda: ArrayDiagonal(expr, (1,))) def test_arrayexpr_permutedims_sink(): cg = PermuteDims(ArrayTensorProduct(M, N), [0, 1, 3, 2], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == ArrayTensorProduct(M, PermuteDims(N, [1, 0])) cg = PermuteDims(ArrayTensorProduct(M, N), [1, 0, 3, 2], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == ArrayTensorProduct(PermuteDims(M, [1, 0]), PermuteDims(N, [1, 0])) cg = PermuteDims(ArrayTensorProduct(M, N), [3, 2, 1, 0], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == ArrayTensorProduct(PermuteDims(N, [1, 0]), PermuteDims(M, [1, 0])) cg = PermuteDims(ArrayContraction(ArrayTensorProduct(M, N), (1, 2)), [1, 0], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == ArrayContraction(PermuteDims(ArrayTensorProduct(M, N), [[0, 3]]), (1, 2)) cg = PermuteDims(ArrayTensorProduct(M, N), [1, 0, 3, 2], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == ArrayTensorProduct(PermuteDims(M, [1, 0]), PermuteDims(N, [1, 0])) cg = PermuteDims(ArrayContraction(ArrayTensorProduct(M, N, P), (1, 2), (3, 4)), [1, 0], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == ArrayContraction(PermuteDims(ArrayTensorProduct(M, N, P), [[0, 5]]), (1, 2), (3, 4)) def test_arrayexpr_push_indices_up_and_down(): indices = list(range(12)) contr_diag_indices = [(0, 6), (2, 8)] assert ArrayContraction._push_indices_down(contr_diag_indices, indices) == (1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15) assert ArrayContraction._push_indices_up(contr_diag_indices, indices) == (None, 0, None, 1, 2, 3, None, 4, None, 5, 6, 7) assert ArrayDiagonal._push_indices_down(contr_diag_indices, indices, 10) == (1, 3, 4, 5, 7, 9, (0, 6), (2, 8), None, None, None, None) assert ArrayDiagonal._push_indices_up(contr_diag_indices, indices, 10) == (6, 0, 7, 1, 2, 3, 6, 4, 7, 5, None, None) contr_diag_indices = [(1, 2), (7, 8)] assert ArrayContraction._push_indices_down(contr_diag_indices, indices) == (0, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15) assert ArrayContraction._push_indices_up(contr_diag_indices, indices) == (0, None, None, 1, 2, 3, 4, None, None, 5, 6, 7) assert ArrayDiagonal._push_indices_down(contr_diag_indices, indices, 10) == (0, 3, 4, 5, 6, 9, (1, 2), (7, 8), None, None, None, None) assert ArrayDiagonal._push_indices_up(contr_diag_indices, indices, 10) == (0, 6, 6, 1, 2, 3, 4, 7, 7, 5, None, None) def test_arrayexpr_split_multiple_contractions(): a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) A = MatrixSymbol("A", k, k) B = MatrixSymbol("B", k, k) C = MatrixSymbol("C", k, k) X = MatrixSymbol("X", k, k) cg = ArrayContraction(ArrayTensorProduct(A.T, a, b, b.T, (A*X*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9)) expected = ArrayContraction(ArrayTensorProduct(A.T, DiagMatrix(a), OneArray(1), b, b.T, (A*X*b).applyfunc(cos)), (1, 3), (2, 9), (6, 7, 10)) assert cg.split_multiple_contractions().dummy_eq(expected) # Check no overlap of lines: cg = ArrayContraction(ArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8), (3, 7)) assert cg.split_multiple_contractions() == cg cg = ArrayContraction(ArrayTensorProduct(a, b, A), (0, 2, 4), (1, 3)) assert cg.split_multiple_contractions() == cg def test_arrayexpr_nested_permutations(): cg = PermuteDims(PermuteDims(M, (1, 0)), (1, 0)) assert cg == M times = 3 plist1 = [list(range(6)) for i in range(times)] plist2 = [list(range(6)) for i in range(times)] for i in range(times): random.shuffle(plist1[i]) random.shuffle(plist2[i]) plist1.append([2, 5, 4, 1, 0, 3]) plist2.append([3, 5, 0, 4, 1, 2]) plist1.append([2, 5, 4, 0, 3, 1]) plist2.append([3, 0, 5, 1, 2, 4]) plist1.append([5, 4, 2, 0, 3, 1]) plist2.append([4, 5, 0, 2, 3, 1]) Me = M.subs(k, 3).as_explicit() Ne = N.subs(k, 3).as_explicit() Pe = P.subs(k, 3).as_explicit() cge = tensorproduct(Me, Ne, Pe) for permutation_array1, permutation_array2 in zip(plist1, plist2): p1 = Permutation(permutation_array1) p2 = Permutation(permutation_array2) cg = PermuteDims( PermuteDims( ArrayTensorProduct(M, N, P), p1), p2 ) result = PermuteDims( ArrayTensorProduct(M, N, P), p2*p1 ) assert cg == result # Check that `permutedims` behaves the same way with explicit-component arrays: result1 = permutedims(permutedims(cge, p1), p2) result2 = permutedims(cge, p2*p1) assert result1 == result2 def test_arrayexpr_contraction_permutation_mix(): Me = M.subs(k, 3).as_explicit() Ne = N.subs(k, 3).as_explicit() cg1 = ArrayContraction(PermuteDims(ArrayTensorProduct(M, N), Permutation([0, 2, 1, 3])), (2, 3)) cg2 = ArrayContraction(ArrayTensorProduct(M, N), (1, 3)) assert cg1 == cg2 cge1 = tensorcontraction(permutedims(tensorproduct(Me, Ne), Permutation([0, 2, 1, 3])), (2, 3)) cge2 = tensorcontraction(tensorproduct(Me, Ne), (1, 3)) assert cge1 == cge2 cg1 = PermuteDims(ArrayTensorProduct(M, N), Permutation([0, 1, 3, 2])) cg2 = ArrayTensorProduct(M, PermuteDims(N, Permutation([1, 0]))) assert cg1 == cg2 cg1 = ArrayContraction( PermuteDims( ArrayTensorProduct(M, N, P, Q), Permutation([0, 2, 3, 1, 4, 5, 7, 6])), (1, 2), (3, 5) ) cg2 = ArrayContraction( ArrayTensorProduct(M, N, P, PermuteDims(Q, Permutation([1, 0]))), (1, 5), (2, 3) ) assert cg1 == cg2 cg1 = ArrayContraction( PermuteDims( ArrayTensorProduct(M, N, P, Q), Permutation([1, 0, 4, 6, 2, 7, 5, 3])), (0, 1), (2, 6), (3, 7) ) cg2 = PermuteDims( ArrayContraction( ArrayTensorProduct(M, P, Q, N), (0, 1), (2, 3), (4, 7)), [1, 0] ) assert cg1 == cg2 cg1 = ArrayContraction( PermuteDims( ArrayTensorProduct(M, N, P, Q), Permutation([1, 0, 4, 6, 7, 2, 5, 3])), (0, 1), (2, 6), (3, 7) ) cg2 = PermuteDims( ArrayContraction( ArrayTensorProduct(PermuteDims(M, [1, 0]), N, P, Q), (0, 1), (3, 6), (4, 5) ), Permutation([1, 0]) ) assert cg1 == cg2 def test_arrayexpr_permute_tensor_product(): cg1 = PermuteDims(ArrayTensorProduct(M, N, P, Q), Permutation([2, 3, 1, 0, 5, 4, 6, 7])) cg2 = ArrayTensorProduct(N, PermuteDims(M, [1, 0]), PermuteDims(P, [1, 0]), Q) assert cg1 == cg2 # TODO: reverse operation starting with `PermuteDims` and getting down to `bb`... cg1 = PermuteDims(ArrayTensorProduct(M, N, P, Q), Permutation([2, 3, 4, 5, 0, 1, 6, 7])) cg2 = ArrayTensorProduct(N, P, M, Q) assert cg1 == cg2 cg1 = PermuteDims(ArrayTensorProduct(M, N, P, Q), Permutation([2, 3, 4, 6, 5, 7, 0, 1])) assert cg1.expr == ArrayTensorProduct(N, P, Q, M) assert cg1.permutation == Permutation([0, 1, 2, 4, 3, 5, 6, 7]) cg1 = ArrayContraction( PermuteDims( ArrayTensorProduct(N, Q, Q, M), [2, 1, 5, 4, 0, 3, 6, 7]), [1, 2, 6]) cg2 = PermuteDims(ArrayContraction(ArrayTensorProduct(Q, Q, N, M), (3, 5, 6)), [0, 2, 3, 1, 4]) assert cg1 == cg2 cg1 = ArrayContraction( ArrayContraction( ArrayContraction( ArrayContraction( PermuteDims( ArrayTensorProduct(N, Q, Q, M), [2, 1, 5, 4, 0, 3, 6, 7]), [1, 2, 6]), [1, 3, 4]), [1]), [0]) cg2 = ArrayContraction(ArrayTensorProduct(M, N, Q, Q), (0, 3, 5), (1, 4, 7), (2,), (6,)) assert cg1 == cg2 def test_arrayexpr_normalize_diagonal_permutedims(): tp = ArrayTensorProduct(M, Q, N, P) expr = ArrayDiagonal( PermuteDims(tp, [0, 1, 2, 4, 7, 6, 3, 5]), (2, 4, 5), (6, 7), (0, 3)) result = ArrayDiagonal(tp, (2, 6, 7), (3, 5), (0, 4)) assert expr == result tp = ArrayTensorProduct(M, N, P, Q) expr = ArrayDiagonal(PermuteDims(tp, [0, 5, 2, 4, 1, 6, 3, 7]), (1, 2, 6), (3, 4)) result = ArrayDiagonal(ArrayTensorProduct(M, P, N, Q), (3, 4, 5), (1, 2)) assert expr == result def test_arrayexpr_normalize_diagonal_contraction(): tp = ArrayTensorProduct(M, N, P, Q) expr = ArrayContraction(ArrayDiagonal(tp, (1, 3, 4)), (0, 3)) result = ArrayDiagonal(ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 6)), (0, 2, 3)) assert expr == result expr = ArrayContraction(ArrayDiagonal(tp, (0, 1, 2, 3, 7)), (1, 2, 3)) result = ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 1, 2, 3, 5, 6, 7)) assert expr == result expr = ArrayContraction(ArrayDiagonal(tp, (0, 2, 6, 7)), (1, 2, 3)) result = ArrayDiagonal(ArrayContraction(tp, (3, 4, 5)), (0, 2, 3, 4)) assert expr == result td = ArrayDiagonal(ArrayTensorProduct(M, N, P, Q), (0, 3)) expr = ArrayContraction(td, (2, 1), (0, 4, 6, 5, 3)) result = ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 1, 3, 5, 6, 7), (2, 4)) assert expr == result def test_arrayexpr_array_wrong_permutation_size(): cg = ArrayTensorProduct(M, N) raises(ValueError, lambda: PermuteDims(cg, [1, 0])) raises(ValueError, lambda: PermuteDims(cg, [1, 0, 2, 3, 5, 4])) def test_arrayexpr_nested_array_elementwise_add(): cg = ArrayContraction(ArrayAdd( ArrayTensorProduct(M, N), ArrayTensorProduct(N, M) ), (1, 2)) result = ArrayAdd( ArrayContraction(ArrayTensorProduct(M, N), (1, 2)), ArrayContraction(ArrayTensorProduct(N, M), (1, 2)) ) assert cg == result cg = ArrayDiagonal(ArrayAdd( ArrayTensorProduct(M, N), ArrayTensorProduct(N, M) ), (1, 2)) result = ArrayAdd( ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2)), ArrayDiagonal(ArrayTensorProduct(N, M), (1, 2)) ) assert cg == result def test_arrayexpr_array_expr_zero_array(): za1 = ZeroArray(k, l, m, n) zm1 = ZeroMatrix(m, n) za2 = ZeroArray(k, m, m, n) zm2 = ZeroMatrix(m, m) zm3 = ZeroMatrix(k, k) assert ArrayTensorProduct(M, N, za1) == ZeroArray(k, k, k, k, k, l, m, n) assert ArrayTensorProduct(M, N, zm1) == ZeroArray(k, k, k, k, m, n) assert ArrayContraction(za1, (3,)) == ZeroArray(k, l, m) assert ArrayContraction(zm1, (1,)) == ZeroArray(m) assert ArrayContraction(za2, (1, 2)) == ZeroArray(k, n) assert ArrayContraction(zm2, (0, 1)) == 0 assert ArrayDiagonal(za2, (1, 2)) == ZeroArray(k, n, m) assert ArrayDiagonal(zm2, (0, 1)) == ZeroArray(m) assert PermuteDims(za1, [2, 1, 3, 0]) == ZeroArray(m, l, n, k) assert PermuteDims(zm1, [1, 0]) == ZeroArray(n, m) assert ArrayAdd(za1) == za1 assert ArrayAdd(zm1) == ZeroArray(m, n) tp1 = ArrayTensorProduct(MatrixSymbol("A", k, l), MatrixSymbol("B", m, n)) assert ArrayAdd(tp1, za1) == tp1 tp2 = ArrayTensorProduct(MatrixSymbol("C", k, l), MatrixSymbol("D", m, n)) assert ArrayAdd(tp1, za1, tp2) == ArrayAdd(tp1, tp2) assert ArrayAdd(M, zm3) == M assert ArrayAdd(M, N, zm3) == ArrayAdd(M, N) def test_arrayexpr_array_expr_applyfunc(): A = ArraySymbol("A", 3, k, 2) aaf = ArrayElementwiseApplyFunc(sin, A) assert aaf.shape == (3, k, 2) def test_edit_array_contraction(): cg = ArrayContraction(ArrayTensorProduct(A, B, C, D), (1, 2, 5)) ecg = _EditArrayContraction(cg) assert ecg.to_array_contraction() == cg ecg.args_with_ind[1], ecg.args_with_ind[2] = ecg.args_with_ind[2], ecg.args_with_ind[1] assert ecg.to_array_contraction() == ArrayContraction(ArrayTensorProduct(A, C, B, D), (1, 3, 4)) ci = ecg.get_new_contraction_index() new_arg = _ArgE(X) new_arg.indices = [ci, ci] ecg.args_with_ind.insert(2, new_arg) assert ecg.to_array_contraction() == ArrayContraction(ArrayTensorProduct(A, C, X, B, D), (1, 3, 6), (4, 5)) assert ecg.get_contraction_indices() == [[1, 3, 6], [4, 5]] assert [[tuple(j) for j in i] for i in ecg.get_contraction_indices_to_ind_rel_pos()] == [[(0, 1), (1, 1), (3, 0)], [(2, 0), (2, 1)]] assert [list(i) for i in ecg.get_mapping_for_index(0)] == [[0, 1], [1, 1], [3, 0]] assert [list(i) for i in ecg.get_mapping_for_index(1)] == [[2, 0], [2, 1]] raises(ValueError, lambda: ecg.get_mapping_for_index(2)) ecg.args_with_ind.pop(1) assert ecg.to_array_contraction() == ArrayContraction(ArrayTensorProduct(A, X, B, D), (1, 4), (2, 3)) ecg.args_with_ind[0].indices[1] = ecg.args_with_ind[1].indices[0] ecg.args_with_ind[1].indices[1] = ecg.args_with_ind[2].indices[0] assert ecg.to_array_contraction() == ArrayContraction(ArrayTensorProduct(A, X, B, D), (1, 2), (3, 4)) ecg.insert_after(ecg.args_with_ind[1], _ArgE(C)) assert ecg.to_array_contraction() == ArrayContraction(ArrayTensorProduct(A, X, C, B, D), (1, 2), (3, 6))
09962a18597c09e58288a33819da3f3a819d55d5797cb7ff73bb542e82c1f434
from sympy.assumptions.ask import Q from sympy.assumptions.refine import refine from sympy.core.numbers import oo from sympy.core.relational import Equality, Eq, Ne from sympy.core.singleton import S from sympy.core.symbol import (Dummy, symbols) from sympy.functions import Piecewise from sympy.functions.elementary.trigonometric import sin from sympy.sets.sets import (EmptySet, Interval, Union) from sympy.simplify.simplify import simplify from sympy.logic.boolalg import ( And, Boolean, Equivalent, ITE, Implies, Nand, Nor, Not, Or, POSform, SOPform, Xor, Xnor, conjuncts, disjuncts, distribute_or_over_and, distribute_and_over_or, eliminate_implications, is_nnf, is_cnf, is_dnf, simplify_logic, to_nnf, to_cnf, to_dnf, to_int_repr, bool_map, true, false, BooleanAtom, is_literal, term_to_integer, integer_to_term, truth_table, as_Boolean, to_anf, is_anf, distribute_xor_over_and, anf_coeffs, ANFform, bool_minterm, bool_maxterm, bool_monomial, _check_pair, _convert_to_varsSOP, _convert_to_varsPOS, Exclusive,) from sympy.assumptions.cnf import CNF from sympy.testing.pytest import raises, XFAIL, slow from itertools import combinations, permutations, product A, B, C, D = symbols('A:D') a, b, c, d, e, w, x, y, z = symbols('a:e w:z') def test_overloading(): """Test that |, & are overloaded as expected""" assert A & B == And(A, B) assert A | B == Or(A, B) assert (A & B) | C == Or(And(A, B), C) assert A >> B == Implies(A, B) assert A << B == Implies(B, A) assert ~A == Not(A) assert A ^ B == Xor(A, B) def test_And(): assert And() is true assert And(A) == A assert And(True) is true assert And(False) is false assert And(True, True) is true assert And(True, False) is false assert And(False, False) is false assert And(True, A) == A assert And(False, A) is false assert And(True, True, True) is true assert And(True, True, A) == A assert And(True, False, A) is false assert And(1, A) == A raises(TypeError, lambda: And(2, A)) raises(TypeError, lambda: And(A < 2, A)) assert And(A < 1, A >= 1) is false e = A > 1 assert And(e, e.canonical) == e.canonical g, l, ge, le = A > B, B < A, A >= B, B <= A assert And(g, l, ge, le) == And(ge, g) assert {And(*i) for i in permutations((l,g,le,ge))} == {And(ge, g)} assert And(And(Eq(a, 0), Eq(b, 0)), And(Ne(a, 0), Eq(c, 0))) is false def test_Or(): assert Or() is false assert Or(A) == A assert Or(True) is true assert Or(False) is false assert Or(True, True) is true assert Or(True, False) is true assert Or(False, False) is false assert Or(True, A) is true assert Or(False, A) == A assert Or(True, False, False) is true assert Or(True, False, A) is true assert Or(False, False, A) == A assert Or(1, A) is true raises(TypeError, lambda: Or(2, A)) raises(TypeError, lambda: Or(A < 2, A)) assert Or(A < 1, A >= 1) is true e = A > 1 assert Or(e, e.canonical) == e g, l, ge, le = A > B, B < A, A >= B, B <= A assert Or(g, l, ge, le) == Or(g, ge) def test_Xor(): assert Xor() is false assert Xor(A) == A assert Xor(A, A) is false assert Xor(True, A, A) is true assert Xor(A, A, A, A, A) == A assert Xor(True, False, False, A, B) == ~Xor(A, B) assert Xor(True) is true assert Xor(False) is false assert Xor(True, True) is false assert Xor(True, False) is true assert Xor(False, False) is false assert Xor(True, A) == ~A assert Xor(False, A) == A assert Xor(True, False, False) is true assert Xor(True, False, A) == ~A assert Xor(False, False, A) == A assert isinstance(Xor(A, B), Xor) assert Xor(A, B, Xor(C, D)) == Xor(A, B, C, D) assert Xor(A, B, Xor(B, C)) == Xor(A, C) assert Xor(A < 1, A >= 1, B) == Xor(0, 1, B) == Xor(1, 0, B) e = A > 1 assert Xor(e, e.canonical) == Xor(0, 0) == Xor(1, 1) def test_rewrite_as_And(): expr = x ^ y assert expr.rewrite(And) == (x | y) & (~x | ~y) def test_rewrite_as_Or(): expr = x ^ y assert expr.rewrite(Or) == (x & ~y) | (y & ~x) def test_rewrite_as_Nand(): expr = (y & z) | (z & ~w) assert expr.rewrite(Nand) == ~(~(y & z) & ~(z & ~w)) def test_rewrite_as_Nor(): expr = z & (y | ~w) assert expr.rewrite(Nor) == ~(~z | ~(y | ~w)) def test_Not(): raises(TypeError, lambda: Not(True, False)) assert Not(True) is false assert Not(False) is true assert Not(0) is true assert Not(1) is false assert Not(2) is false def test_Nand(): assert Nand() is false assert Nand(A) == ~A assert Nand(True) is false assert Nand(False) is true assert Nand(True, True) is false assert Nand(True, False) is true assert Nand(False, False) is true assert Nand(True, A) == ~A assert Nand(False, A) is true assert Nand(True, True, True) is false assert Nand(True, True, A) == ~A assert Nand(True, False, A) is true def test_Nor(): assert Nor() is true assert Nor(A) == ~A assert Nor(True) is false assert Nor(False) is true assert Nor(True, True) is false assert Nor(True, False) is false assert Nor(False, False) is true assert Nor(True, A) is false assert Nor(False, A) == ~A assert Nor(True, True, True) is false assert Nor(True, True, A) is false assert Nor(True, False, A) is false def test_Xnor(): assert Xnor() is true assert Xnor(A) == ~A assert Xnor(A, A) is true assert Xnor(True, A, A) is false assert Xnor(A, A, A, A, A) == ~A assert Xnor(True) is false assert Xnor(False) is true assert Xnor(True, True) is true assert Xnor(True, False) is false assert Xnor(False, False) is true assert Xnor(True, A) == A assert Xnor(False, A) == ~A assert Xnor(True, False, False) is false assert Xnor(True, False, A) == A assert Xnor(False, False, A) == ~A def test_Implies(): raises(ValueError, lambda: Implies(A, B, C)) assert Implies(True, True) is true assert Implies(True, False) is false assert Implies(False, True) is true assert Implies(False, False) is true assert Implies(0, A) is true assert Implies(1, 1) is true assert Implies(1, 0) is false assert A >> B == B << A assert (A < 1) >> (A >= 1) == (A >= 1) assert (A < 1) >> (S.One > A) is true assert A >> A is true def test_Equivalent(): assert Equivalent(A, B) == Equivalent(B, A) == Equivalent(A, B, A) assert Equivalent() is true assert Equivalent(A, A) == Equivalent(A) is true assert Equivalent(True, True) == Equivalent(False, False) is true assert Equivalent(True, False) == Equivalent(False, True) is false assert Equivalent(A, True) == A assert Equivalent(A, False) == Not(A) assert Equivalent(A, B, True) == A & B assert Equivalent(A, B, False) == ~A & ~B assert Equivalent(1, A) == A assert Equivalent(0, A) == Not(A) assert Equivalent(A, Equivalent(B, C)) != Equivalent(Equivalent(A, B), C) assert Equivalent(A < 1, A >= 1) is false assert Equivalent(A < 1, A >= 1, 0) is false assert Equivalent(A < 1, A >= 1, 1) is false assert Equivalent(A < 1, S.One > A) == Equivalent(1, 1) == Equivalent(0, 0) assert Equivalent(Equality(A, B), Equality(B, A)) is true def test_Exclusive(): assert Exclusive(False, False, False) is true assert Exclusive(True, False, False) is true assert Exclusive(True, True, False) is false assert Exclusive(True, True, True) is false def test_equals(): assert Not(Or(A, B)).equals(And(Not(A), Not(B))) is True assert Equivalent(A, B).equals((A >> B) & (B >> A)) is True assert ((A | ~B) & (~A | B)).equals((~A & ~B) | (A & B)) is True assert (A >> B).equals(~A >> ~B) is False assert (A >> (B >> A)).equals(A >> (C >> A)) is False raises(NotImplementedError, lambda: (A & B).equals(A > B)) def test_simplification(): """ Test working of simplification methods. """ set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]] set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]] assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x)) assert Not(SOPform([x, y, z], set2)) == \ Not(Or(And(Not(x), Not(z)), And(x, z))) assert POSform([x, y, z], set1 + set2) is true assert SOPform([x, y, z], set1 + set2) is true assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] assert ( SOPform([w, x, y, z], minterms, dontcares) == Or(And(y, z), And(Not(w), Not(x)))) assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z) minterms = [1, 3, 7, 11, 15] dontcares = [0, 2, 5] assert ( SOPform([w, x, y, z], minterms, dontcares) == Or(And(y, z), And(Not(w), Not(x)))) assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z) minterms = [1, [0, 0, 1, 1], 7, [1, 0, 1, 1], [1, 1, 1, 1]] dontcares = [0, [0, 0, 1, 0], 5] assert ( SOPform([w, x, y, z], minterms, dontcares) == Or(And(y, z), And(Not(w), Not(x)))) assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z) minterms = [1, {y: 1, z: 1}] dontcares = [0, [0, 0, 1, 0], 5] assert ( SOPform([w, x, y, z], minterms, dontcares) == Or(And(y, z), And(Not(w), Not(x)))) assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z) minterms = [{y: 1, z: 1}, 1] dontcares = [[0, 0, 0, 0]] minterms = [[0, 0, 0]] raises(ValueError, lambda: SOPform([w, x, y, z], minterms)) raises(ValueError, lambda: POSform([w, x, y, z], minterms)) raises(TypeError, lambda: POSform([w, x, y, z], ["abcdefg"])) # test simplification ans = And(A, Or(B, C)) assert simplify_logic(A & (B | C)) == ans assert simplify_logic((A & B) | (A & C)) == ans assert simplify_logic(Implies(A, B)) == Or(Not(A), B) assert simplify_logic(Equivalent(A, B)) == \ Or(And(A, B), And(Not(A), Not(B))) assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C) assert simplify_logic(And(Equality(A, 2), A)) is S.false assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A) assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C) assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \ == And(Equality(A, 3), Or(B, C)) b = (~x & ~y & ~z) | (~x & ~y & z) e = And(A, b) assert simplify_logic(e) == A & ~x & ~y raises(ValueError, lambda: simplify_logic(A & (B | C), form='blabla')) # Check that expressions with nine variables or more are not simplified # (without the force-flag) a, b, c, d, e, f, g, h, j = symbols('a b c d e f g h j') expr = a & b & c & d & e & f & g & h & j | \ a & b & c & d & e & f & g & h & ~j # This expression can be simplified to get rid of the j variables assert simplify_logic(expr) == expr # check input ans = SOPform([x, y], [[1, 0]]) assert SOPform([x, y], [[1, 0]]) == ans assert POSform([x, y], [[1, 0]]) == ans raises(ValueError, lambda: SOPform([x], [[1]], [[1]])) assert SOPform([x], [[1]], [[0]]) is true assert SOPform([x], [[0]], [[1]]) is true assert SOPform([x], [], []) is false raises(ValueError, lambda: POSform([x], [[1]], [[1]])) assert POSform([x], [[1]], [[0]]) is true assert POSform([x], [[0]], [[1]]) is true assert POSform([x], [], []) is false # check working of simplify assert simplify((A & B) | (A & C)) == And(A, Or(B, C)) assert simplify(And(x, Not(x))) == False assert simplify(Or(x, Not(x))) == True assert simplify(And(Eq(x, 0), Eq(x, y))) == And(Eq(x, 0), Eq(y, 0)) assert And(Eq(x - 1, 0), Eq(x, y)).simplify() == And(Eq(x, 1), Eq(y, 1)) assert And(Ne(x - 1, 0), Ne(x, y)).simplify() == And(Ne(x, 1), Ne(x, y)) assert And(Eq(x - 1, 0), Ne(x, y)).simplify() == And(Eq(x, 1), Ne(y, 1)) assert And(Eq(x - 1, 0), Eq(x, z + y), Eq(y + x, 0)).simplify( ) == And(Eq(x, 1), Eq(y, -1), Eq(z, 2)) assert And(Eq(x - 1, 0), Eq(x + 2, 3)).simplify() == Eq(x, 1) assert And(Ne(x - 1, 0), Ne(x + 2, 3)).simplify() == Ne(x, 1) assert And(Eq(x - 1, 0), Eq(x + 2, 2)).simplify() == False assert And(Ne(x - 1, 0), Ne(x + 2, 2)).simplify( ) == And(Ne(x, 1), Ne(x, 0)) def test_bool_map(): """ Test working of bool_map function. """ minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] assert bool_map(Not(Not(a)), a) == (a, {a: a}) assert bool_map(SOPform([w, x, y, z], minterms), POSform([w, x, y, z], minterms)) == \ (And(Or(Not(w), y), Or(Not(x), y), z), {x: x, w: w, z: z, y: y}) assert bool_map(SOPform([x, z, y], [[1, 0, 1]]), SOPform([a, b, c], [[1, 0, 1]])) != False function1 = SOPform([x, z, y], [[1, 0, 1], [0, 0, 1]]) function2 = SOPform([a, b, c], [[1, 0, 1], [1, 0, 0]]) assert bool_map(function1, function2) == \ (function1, {y: a, z: b}) assert bool_map(Xor(x, y), ~Xor(x, y)) == False assert bool_map(And(x, y), Or(x, y)) is None assert bool_map(And(x, y), And(x, y, z)) is None # issue 16179 assert bool_map(Xor(x, y, z), ~Xor(x, y, z)) == False assert bool_map(Xor(a, x, y, z), ~Xor(a, x, y, z)) == False def test_bool_symbol(): """Test that mixing symbols with boolean values works as expected""" assert And(A, True) == A assert And(A, True, True) == A assert And(A, False) is false assert And(A, True, False) is false assert Or(A, True) is true assert Or(A, False) == A def test_is_boolean(): assert isinstance(True, Boolean) is False assert isinstance(true, Boolean) is True assert 1 == True assert 1 != true assert (1 == true) is False assert 0 == False assert 0 != false assert (0 == false) is False assert true.is_Boolean is True assert (A & B).is_Boolean assert (A | B).is_Boolean assert (~A).is_Boolean assert (A ^ B).is_Boolean assert A.is_Boolean != isinstance(A, Boolean) assert isinstance(A, Boolean) def test_subs(): assert (A & B).subs(A, True) == B assert (A & B).subs(A, False) is false assert (A & B).subs(B, True) == A assert (A & B).subs(B, False) is false assert (A & B).subs({A: True, B: True}) is true assert (A | B).subs(A, True) is true assert (A | B).subs(A, False) == B assert (A | B).subs(B, True) is true assert (A | B).subs(B, False) == A assert (A | B).subs({A: True, B: True}) is true """ we test for axioms of boolean algebra see https://en.wikipedia.org/wiki/Boolean_algebra_(structure) """ def test_commutative(): """Test for commutativity of And and Or""" A, B = map(Boolean, symbols('A,B')) assert A & B == B & A assert A | B == B | A def test_and_associativity(): """Test for associativity of And""" assert (A & B) & C == A & (B & C) def test_or_assicativity(): assert ((A | B) | C) == (A | (B | C)) def test_double_negation(): a = Boolean() assert ~(~a) == a # test methods def test_eliminate_implications(): assert eliminate_implications(Implies(A, B, evaluate=False)) == (~A) | B assert eliminate_implications( A >> (C >> Not(B))) == Or(Or(Not(B), Not(C)), Not(A)) assert eliminate_implications(Equivalent(A, B, C, D)) == \ (~A | B) & (~B | C) & (~C | D) & (~D | A) def test_conjuncts(): assert conjuncts(A & B & C) == {A, B, C} assert conjuncts((A | B) & C) == {A | B, C} assert conjuncts(A) == {A} assert conjuncts(True) == {True} assert conjuncts(False) == {False} def test_disjuncts(): assert disjuncts(A | B | C) == {A, B, C} assert disjuncts((A | B) & C) == {(A | B) & C} assert disjuncts(A) == {A} assert disjuncts(True) == {True} assert disjuncts(False) == {False} def test_distribute(): assert distribute_and_over_or(Or(And(A, B), C)) == And(Or(A, C), Or(B, C)) assert distribute_or_over_and(And(A, Or(B, C))) == Or(And(A, B), And(A, C)) assert distribute_xor_over_and(And(A, Xor(B, C))) == Xor(And(A, B), And(A, C)) def test_to_anf(): x, y, z = symbols('x,y,z') assert to_anf(And(x, y)) == And(x, y) assert to_anf(Or(x, y)) == Xor(x, y, And(x, y)) assert to_anf(Or(Implies(x, y), And(x, y), y)) == \ Xor(x, True, x & y, remove_true=False) assert to_anf(Or(Nand(x, y), Nor(x, y), Xnor(x, y), Implies(x, y))) == True assert to_anf(Or(x, Not(y), Nor(x,z), And(x, y), Nand(y, z))) == \ Xor(True, And(y, z), And(x, y, z), remove_true=False) assert to_anf(Xor(x, y)) == Xor(x, y) assert to_anf(Not(x)) == Xor(x, True, remove_true=False) assert to_anf(Nand(x, y)) == Xor(True, And(x, y), remove_true=False) assert to_anf(Nor(x, y)) == Xor(x, y, True, And(x, y), remove_true=False) assert to_anf(Implies(x, y)) == Xor(x, True, And(x, y), remove_true=False) assert to_anf(Equivalent(x, y)) == Xor(x, y, True, remove_true=False) assert to_anf(Nand(x | y, x >> y), deep=False) == \ Xor(True, And(Or(x, y), Implies(x, y)), remove_true=False) assert to_anf(Nor(x ^ y, x & y), deep=False) == \ Xor(True, Or(Xor(x, y), And(x, y)), remove_true=False) def test_to_nnf(): assert to_nnf(true) is true assert to_nnf(false) is false assert to_nnf(A) == A assert to_nnf(A | ~A | B) is true assert to_nnf(A & ~A & B) is false assert to_nnf(A >> B) == ~A | B assert to_nnf(Equivalent(A, B, C)) == (~A | B) & (~B | C) & (~C | A) assert to_nnf(A ^ B ^ C) == \ (A | B | C) & (~A | ~B | C) & (A | ~B | ~C) & (~A | B | ~C) assert to_nnf(ITE(A, B, C)) == (~A | B) & (A | C) assert to_nnf(Not(A | B | C)) == ~A & ~B & ~C assert to_nnf(Not(A & B & C)) == ~A | ~B | ~C assert to_nnf(Not(A >> B)) == A & ~B assert to_nnf(Not(Equivalent(A, B, C))) == And(Or(A, B, C), Or(~A, ~B, ~C)) assert to_nnf(Not(A ^ B ^ C)) == \ (~A | B | C) & (A | ~B | C) & (A | B | ~C) & (~A | ~B | ~C) assert to_nnf(Not(ITE(A, B, C))) == (~A | ~B) & (A | ~C) assert to_nnf((A >> B) ^ (B >> A)) == (A & ~B) | (~A & B) assert to_nnf((A >> B) ^ (B >> A), False) == \ (~A | ~B | A | B) & ((A & ~B) | (~A & B)) assert ITE(A, 1, 0).to_nnf() == A assert ITE(A, 0, 1).to_nnf() == ~A # although ITE can hold non-Boolean, it will complain if # an attempt is made to convert the ITE to Boolean nnf raises(TypeError, lambda: ITE(A < 1, [1], B).to_nnf()) def test_to_cnf(): assert to_cnf(~(B | C)) == And(Not(B), Not(C)) assert to_cnf((A & B) | C) == And(Or(A, C), Or(B, C)) assert to_cnf(A >> B) == (~A) | B assert to_cnf(A >> (B & C)) == (~A | B) & (~A | C) assert to_cnf(A & (B | C) | ~A & (B | C), True) == B | C assert to_cnf(A & B) == And(A, B) assert to_cnf(Equivalent(A, B)) == And(Or(A, Not(B)), Or(B, Not(A))) assert to_cnf(Equivalent(A, B & C)) == \ (~A | B) & (~A | C) & (~B | ~C | A) assert to_cnf(Equivalent(A, B | C), True) == \ And(Or(Not(B), A), Or(Not(C), A), Or(B, C, Not(A))) assert to_cnf(A + 1) == A + 1 def test_issue_18904(): x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15 = symbols('x1:16') eq = (( x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 ) | ( x1 & x2 & x3 & x4 & x5 & x6 & x7 & x10 & x9 ) | ( x1 & x11 & x3 & x12 & x5 & x13 & x14 & x15 & x9 )) assert is_cnf(to_cnf(eq)) raises(ValueError, lambda: to_cnf(eq, simplify=True)) for f, t in zip((And, Or), (to_cnf, to_dnf)): eq = f(x1, x2, x3, x4, x5, x6, x7, x8, x9) raises(ValueError, lambda: to_cnf(eq, simplify=True)) assert t(eq, simplify=True, force=True) == eq def test_issue_9949(): assert is_cnf(to_cnf((b > -5) | (a > 2) & (a < 4))) def test_to_CNF(): assert CNF.CNF_to_cnf(CNF.to_CNF(~(B | C))) == to_cnf(~(B | C)) assert CNF.CNF_to_cnf(CNF.to_CNF((A & B) | C)) == to_cnf((A & B) | C) assert CNF.CNF_to_cnf(CNF.to_CNF(A >> B)) == to_cnf(A >> B) assert CNF.CNF_to_cnf(CNF.to_CNF(A >> (B & C))) == to_cnf(A >> (B & C)) assert CNF.CNF_to_cnf(CNF.to_CNF(A & (B | C) | ~A & (B | C))) == to_cnf(A & (B | C) | ~A & (B | C)) assert CNF.CNF_to_cnf(CNF.to_CNF(A & B)) == to_cnf(A & B) def test_to_dnf(): assert to_dnf(~(B | C)) == And(Not(B), Not(C)) assert to_dnf(A & (B | C)) == Or(And(A, B), And(A, C)) assert to_dnf(A >> B) == (~A) | B assert to_dnf(A >> (B & C)) == (~A) | (B & C) assert to_dnf(A | B) == A | B assert to_dnf(Equivalent(A, B), True) == \ Or(And(A, B), And(Not(A), Not(B))) assert to_dnf(Equivalent(A, B & C), True) == \ Or(And(A, B, C), And(Not(A), Not(B)), And(Not(A), Not(C))) assert to_dnf(A + 1) == A + 1 def test_to_int_repr(): x, y, z = map(Boolean, symbols('x,y,z')) def sorted_recursive(arg): try: return sorted(sorted_recursive(x) for x in arg) except TypeError: # arg is not a sequence return arg assert sorted_recursive(to_int_repr([x | y, z | x], [x, y, z])) == \ sorted_recursive([[1, 2], [1, 3]]) assert sorted_recursive(to_int_repr([x | y, z | ~x], [x, y, z])) == \ sorted_recursive([[1, 2], [3, -1]]) def test_is_anf(): x, y = symbols('x,y') assert is_anf(true) is True assert is_anf(false) is True assert is_anf(x) is True assert is_anf(And(x, y)) is True assert is_anf(Xor(x, y, And(x, y))) is True assert is_anf(Xor(x, y, Or(x, y))) is False assert is_anf(Xor(Not(x), y)) is False def test_is_nnf(): assert is_nnf(true) is True assert is_nnf(A) is True assert is_nnf(~A) is True assert is_nnf(A & B) is True assert is_nnf((A & B) | (~A & A) | (~B & B) | (~A & ~B), False) is True assert is_nnf((A | B) & (~A | ~B)) is True assert is_nnf(Not(Or(A, B))) is False assert is_nnf(A ^ B) is False assert is_nnf((A & B) | (~A & A) | (~B & B) | (~A & ~B), True) is False def test_is_cnf(): assert is_cnf(x) is True assert is_cnf(x | y | z) is True assert is_cnf(x & y & z) is True assert is_cnf((x | y) & z) is True assert is_cnf((x & y) | z) is False assert is_cnf(~(x & y) | z) is False def test_is_dnf(): assert is_dnf(x) is True assert is_dnf(x | y | z) is True assert is_dnf(x & y & z) is True assert is_dnf((x & y) | z) is True assert is_dnf((x | y) & z) is False assert is_dnf(~(x | y) & z) is False def test_ITE(): A, B, C = symbols('A:C') assert ITE(True, False, True) is false assert ITE(True, True, False) is true assert ITE(False, True, False) is false assert ITE(False, False, True) is true assert isinstance(ITE(A, B, C), ITE) A = True assert ITE(A, B, C) == B A = False assert ITE(A, B, C) == C B = True assert ITE(And(A, B), B, C) == C assert ITE(Or(A, False), And(B, True), False) is false assert ITE(x, A, B) == Not(x) assert ITE(x, B, A) == x assert ITE(1, x, y) == x assert ITE(0, x, y) == y raises(TypeError, lambda: ITE(2, x, y)) raises(TypeError, lambda: ITE(1, [], y)) raises(TypeError, lambda: ITE(1, (), y)) raises(TypeError, lambda: ITE(1, y, [])) assert ITE(1, 1, 1) is S.true assert isinstance(ITE(1, 1, 1, evaluate=False), ITE) raises(TypeError, lambda: ITE(x > 1, y, x)) assert ITE(Eq(x, True), y, x) == ITE(x, y, x) assert ITE(Eq(x, False), y, x) == ITE(~x, y, x) assert ITE(Ne(x, True), y, x) == ITE(~x, y, x) assert ITE(Ne(x, False), y, x) == ITE(x, y, x) assert ITE(Eq(S. true, x), y, x) == ITE(x, y, x) assert ITE(Eq(S.false, x), y, x) == ITE(~x, y, x) assert ITE(Ne(S.true, x), y, x) == ITE(~x, y, x) assert ITE(Ne(S.false, x), y, x) == ITE(x, y, x) # 0 and 1 in the context are not treated as True/False # so the equality must always be False since dissimilar # objects cannot be equal assert ITE(Eq(x, 0), y, x) == x assert ITE(Eq(x, 1), y, x) == x assert ITE(Ne(x, 0), y, x) == y assert ITE(Ne(x, 1), y, x) == y assert ITE(Eq(x, 0), y, z).subs(x, 0) == y assert ITE(Eq(x, 0), y, z).subs(x, 1) == z raises(ValueError, lambda: ITE(x > 1, y, x, z)) def test_is_literal(): assert is_literal(True) is True assert is_literal(False) is True assert is_literal(A) is True assert is_literal(~A) is True assert is_literal(Or(A, B)) is False assert is_literal(Q.zero(A)) is True assert is_literal(Not(Q.zero(A))) is True assert is_literal(Or(A, B)) is False assert is_literal(And(Q.zero(A), Q.zero(B))) is False assert is_literal(x < 3) assert not is_literal(x + y < 3) def test_operators(): # Mostly test __and__, __rand__, and so on assert True & A == A & True == A assert False & A == A & False == False assert A & B == And(A, B) assert True | A == A | True == True assert False | A == A | False == A assert A | B == Or(A, B) assert ~A == Not(A) assert True >> A == A << True == A assert False >> A == A << False == True assert A >> True == True << A == True assert A >> False == False << A == ~A assert A >> B == B << A == Implies(A, B) assert True ^ A == A ^ True == ~A assert False ^ A == A ^ False == A assert A ^ B == Xor(A, B) def test_true_false(): assert true is S.true assert false is S.false assert true is not True assert false is not False assert true assert not false assert true == True assert false == False assert not (true == False) assert not (false == True) assert not (true == false) assert hash(true) == hash(True) assert hash(false) == hash(False) assert len({true, True}) == len({false, False}) == 1 assert isinstance(true, BooleanAtom) assert isinstance(false, BooleanAtom) # We don't want to subclass from bool, because bool subclasses from # int. But operators like &, |, ^, <<, >>, and ~ act differently on 0 and # 1 then we want them to on true and false. See the docstrings of the # various And, Or, etc. functions for examples. assert not isinstance(true, bool) assert not isinstance(false, bool) # Note: using 'is' comparison is important here. We want these to return # true and false, not True and False assert Not(true) is false assert Not(True) is false assert Not(false) is true assert Not(False) is true assert ~true is false assert ~false is true for T, F in product((True, true), (False, false)): assert And(T, F) is false assert And(F, T) is false assert And(F, F) is false assert And(T, T) is true assert And(T, x) == x assert And(F, x) is false if not (T is True and F is False): assert T & F is false assert F & T is false if F is not False: assert F & F is false if T is not True: assert T & T is true assert Or(T, F) is true assert Or(F, T) is true assert Or(F, F) is false assert Or(T, T) is true assert Or(T, x) is true assert Or(F, x) == x if not (T is True and F is False): assert T | F is true assert F | T is true if F is not False: assert F | F is false if T is not True: assert T | T is true assert Xor(T, F) is true assert Xor(F, T) is true assert Xor(F, F) is false assert Xor(T, T) is false assert Xor(T, x) == ~x assert Xor(F, x) == x if not (T is True and F is False): assert T ^ F is true assert F ^ T is true if F is not False: assert F ^ F is false if T is not True: assert T ^ T is false assert Nand(T, F) is true assert Nand(F, T) is true assert Nand(F, F) is true assert Nand(T, T) is false assert Nand(T, x) == ~x assert Nand(F, x) is true assert Nor(T, F) is false assert Nor(F, T) is false assert Nor(F, F) is true assert Nor(T, T) is false assert Nor(T, x) is false assert Nor(F, x) == ~x assert Implies(T, F) is false assert Implies(F, T) is true assert Implies(F, F) is true assert Implies(T, T) is true assert Implies(T, x) == x assert Implies(F, x) is true assert Implies(x, T) is true assert Implies(x, F) == ~x if not (T is True and F is False): assert T >> F is false assert F << T is false assert F >> T is true assert T << F is true if F is not False: assert F >> F is true assert F << F is true if T is not True: assert T >> T is true assert T << T is true assert Equivalent(T, F) is false assert Equivalent(F, T) is false assert Equivalent(F, F) is true assert Equivalent(T, T) is true assert Equivalent(T, x) == x assert Equivalent(F, x) == ~x assert Equivalent(x, T) == x assert Equivalent(x, F) == ~x assert ITE(T, T, T) is true assert ITE(T, T, F) is true assert ITE(T, F, T) is false assert ITE(T, F, F) is false assert ITE(F, T, T) is true assert ITE(F, T, F) is false assert ITE(F, F, T) is true assert ITE(F, F, F) is false assert all(i.simplify(1, 2) is i for i in (S.true, S.false)) def test_bool_as_set(): assert ITE(y <= 0, False, y >= 1).as_set() == Interval(1, oo) assert And(x <= 2, x >= -2).as_set() == Interval(-2, 2) assert Or(x >= 2, x <= -2).as_set() == Interval(-oo, -2) + Interval(2, oo) assert Not(x > 2).as_set() == Interval(-oo, 2) # issue 10240 assert Not(And(x > 2, x < 3)).as_set() == \ Union(Interval(-oo, 2), Interval(3, oo)) assert true.as_set() == S.UniversalSet assert false.as_set() == EmptySet() assert x.as_set() == S.UniversalSet assert And(Or(x < 1, x > 3), x < 2).as_set() == Interval.open(-oo, 1) assert And(x < 1, sin(x) < 3).as_set() == (x < 1).as_set() raises(NotImplementedError, lambda: (sin(x) < 1).as_set()) @XFAIL def test_multivariate_bool_as_set(): x, y = symbols('x,y') assert And(x >= 0, y >= 0).as_set() == Interval(0, oo)*Interval(0, oo) assert Or(x >= 0, y >= 0).as_set() == S.Reals*S.Reals - \ Interval(-oo, 0, True, True)*Interval(-oo, 0, True, True) def test_all_or_nothing(): x = symbols('x', extended_real=True) args = x >= -oo, x <= oo v = And(*args) if v.func is And: assert len(v.args) == len(args) - args.count(S.true) else: assert v == True v = Or(*args) if v.func is Or: assert len(v.args) == 2 else: assert v == True def test_canonical_atoms(): assert true.canonical == true assert false.canonical == false def test_negated_atoms(): assert true.negated == false assert false.negated == true def test_issue_8777(): assert And(x > 2, x < oo).as_set() == Interval(2, oo, left_open=True) assert And(x >= 1, x < oo).as_set() == Interval(1, oo) assert (x < oo).as_set() == Interval(-oo, oo) assert (x > -oo).as_set() == Interval(-oo, oo) def test_issue_8975(): assert Or(And(-oo < x, x <= -2), And(2 <= x, x < oo)).as_set() == \ Interval(-oo, -2) + Interval(2, oo) def test_term_to_integer(): assert term_to_integer([1, 0, 1, 0, 0, 1, 0]) == 82 assert term_to_integer('0010101000111001') == 10809 def test_integer_to_term(): assert integer_to_term(777) == [1, 1, 0, 0, 0, 0, 1, 0, 0, 1] assert integer_to_term(123, 3) == [1, 1, 1, 1, 0, 1, 1] assert integer_to_term(456, 16) == [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0] def test_issue_21971(): a, b, c, d = symbols('a b c d') f = a & b & c | a & c assert f.subs(a & c, d) == b & d | d assert f.subs(a & b & c, d) == a & c | d f = (a | b | c) & (a | c) assert f.subs(a | c, d) == (b | d) & d assert f.subs(a | b | c, d) == (a | c) & d f = (a ^ b ^ c) & (a ^ c) assert f.subs(a ^ c, d) == (b ^ d) & d assert f.subs(a ^ b ^ c, d) == (a ^ c) & d def test_truth_table(): assert list(truth_table(And(x, y), [x, y], input=False)) == \ [False, False, False, True] assert list(truth_table(x | y, [x, y], input=False)) == \ [False, True, True, True] assert list(truth_table(x >> y, [x, y], input=False)) == \ [True, True, False, True] assert list(truth_table(And(x, y), [x, y])) == \ [([0, 0], False), ([0, 1], False), ([1, 0], False), ([1, 1], True)] def test_issue_8571(): for t in (S.true, S.false): raises(TypeError, lambda: +t) raises(TypeError, lambda: -t) raises(TypeError, lambda: abs(t)) # use int(bool(t)) to get 0 or 1 raises(TypeError, lambda: int(t)) for o in [S.Zero, S.One, x]: for _ in range(2): raises(TypeError, lambda: o + t) raises(TypeError, lambda: o - t) raises(TypeError, lambda: o % t) raises(TypeError, lambda: o*t) raises(TypeError, lambda: o/t) raises(TypeError, lambda: o**t) o, t = t, o # do again in reversed order def test_expand_relational(): n = symbols('n', negative=True) p, q = symbols('p q', positive=True) r = ((n + q*(-n/q + 1))/(q*(-n/q + 1)) < 0) assert r is not S.false assert r.expand() is S.false assert (q > 0).expand() is S.true def test_issue_12717(): assert S.true.is_Atom == True assert S.false.is_Atom == True def test_as_Boolean(): nz = symbols('nz', nonzero=True) assert all(as_Boolean(i) is S.true for i in (True, S.true, 1, nz)) z = symbols('z', zero=True) assert all(as_Boolean(i) is S.false for i in (False, S.false, 0, z)) assert all(as_Boolean(i) == i for i in (x, x < 0)) for i in (2, S(2), x + 1, []): raises(TypeError, lambda: as_Boolean(i)) def test_binary_symbols(): assert ITE(x < 1, y, z).binary_symbols == {y, z} for f in (Eq, Ne): assert f(x, 1).binary_symbols == set() assert f(x, True).binary_symbols == {x} assert f(x, False).binary_symbols == {x} assert S.true.binary_symbols == set() assert S.false.binary_symbols == set() assert x.binary_symbols == {x} assert And(x, Eq(y, False), Eq(z, 1)).binary_symbols == {x, y} assert Q.prime(x).binary_symbols == set() assert Q.lt(x, 1).binary_symbols == set() assert Q.is_true(x).binary_symbols == {x} assert Q.eq(x, True).binary_symbols == {x} assert Q.prime(x).binary_symbols == set() def test_BooleanFunction_diff(): assert And(x, y).diff(x) == Piecewise((0, Eq(y, False)), (1, True)) def test_issue_14700(): A, B, C, D, E, F, G, H = symbols('A B C D E F G H') q = ((B & D & H & ~F) | (B & H & ~C & ~D) | (B & H & ~C & ~F) | (B & H & ~D & ~G) | (B & H & ~F & ~G) | (C & G & ~B & ~D) | (C & G & ~D & ~H) | (C & G & ~F & ~H) | (D & F & H & ~B) | (D & F & ~G & ~H) | (B & D & F & ~C & ~H) | (D & E & F & ~B & ~C) | (D & F & ~A & ~B & ~C) | (D & F & ~A & ~C & ~H) | (A & B & D & F & ~E & ~H)) soldnf = ((B & D & H & ~F) | (D & F & H & ~B) | (B & H & ~C & ~D) | (B & H & ~D & ~G) | (C & G & ~B & ~D) | (C & G & ~D & ~H) | (C & G & ~F & ~H) | (D & F & ~G & ~H) | (D & E & F & ~C & ~H) | (D & F & ~A & ~C & ~H) | (A & B & D & F & ~E & ~H)) solcnf = ((B | C | D) & (B | D | G) & (C | D | H) & (C | F | H) & (D | G | H) & (F | G | H) & (B | F | ~D | ~H) & (~B | ~D | ~F | ~H) & (D | ~B | ~C | ~G | ~H) & (A | H | ~C | ~D | ~F | ~G) & (H | ~C | ~D | ~E | ~F | ~G) & (B | E | H | ~A | ~D | ~F | ~G)) assert simplify_logic(q, "dnf") == soldnf assert simplify_logic(q, "cnf") == solcnf minterms = [[0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1], [0, 0, 1, 1], [1, 0, 1, 1]] dontcares = [[1, 0, 0, 0], [1, 0, 0, 1], [1, 1, 0, 0], [1, 1, 0, 1]] assert SOPform([w, x, y, z], minterms) == (x & ~w) | (y & z & ~x) # Should not be more complicated with don't cares assert SOPform([w, x, y, z], minterms, dontcares) == \ (x & ~w) | (y & z & ~x) def test_relational_simplification(): w, x, y, z = symbols('w x y z', real=True) d, e = symbols('d e', real=False) # Test all combinations or sign and order assert Or(x >= y, x < y).simplify() == S.true assert Or(x >= y, y > x).simplify() == S.true assert Or(x >= y, -x > -y).simplify() == S.true assert Or(x >= y, -y < -x).simplify() == S.true assert Or(-x <= -y, x < y).simplify() == S.true assert Or(-x <= -y, -x > -y).simplify() == S.true assert Or(-x <= -y, y > x).simplify() == S.true assert Or(-x <= -y, -y < -x).simplify() == S.true assert Or(y <= x, x < y).simplify() == S.true assert Or(y <= x, y > x).simplify() == S.true assert Or(y <= x, -x > -y).simplify() == S.true assert Or(y <= x, -y < -x).simplify() == S.true assert Or(-y >= -x, x < y).simplify() == S.true assert Or(-y >= -x, y > x).simplify() == S.true assert Or(-y >= -x, -x > -y).simplify() == S.true assert Or(-y >= -x, -y < -x).simplify() == S.true assert Or(x < y, x >= y).simplify() == S.true assert Or(y > x, x >= y).simplify() == S.true assert Or(-x > -y, x >= y).simplify() == S.true assert Or(-y < -x, x >= y).simplify() == S.true assert Or(x < y, -x <= -y).simplify() == S.true assert Or(-x > -y, -x <= -y).simplify() == S.true assert Or(y > x, -x <= -y).simplify() == S.true assert Or(-y < -x, -x <= -y).simplify() == S.true assert Or(x < y, y <= x).simplify() == S.true assert Or(y > x, y <= x).simplify() == S.true assert Or(-x > -y, y <= x).simplify() == S.true assert Or(-y < -x, y <= x).simplify() == S.true assert Or(x < y, -y >= -x).simplify() == S.true assert Or(y > x, -y >= -x).simplify() == S.true assert Or(-x > -y, -y >= -x).simplify() == S.true assert Or(-y < -x, -y >= -x).simplify() == S.true # Some other tests assert Or(x >= y, w < z, x <= y).simplify() == S.true assert And(x >= y, x < y).simplify() == S.false assert Or(x >= y, Eq(y, x)).simplify() == (x >= y) assert And(x >= y, Eq(y, x)).simplify() == Eq(x, y) assert And(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y).simplify() == \ (Eq(x, y) & (x >= 1) & (y >= 5) & (y > z)) assert (Eq(x, y) & Eq(d, e) & (x >= y) & (d >= e)).simplify() == \ (Eq(x, y) & Eq(d, e) & (d >= e)) assert And(Eq(x, y), Eq(x, -y)).simplify() == And(Eq(x, 0), Eq(y, 0)) assert Xor(x >= y, x <= y).simplify() == Ne(x, y) @slow def test_relational_simplification_numerically(): def test_simplification_numerically_function(original, simplified): symb = original.free_symbols n = len(symb) valuelist = list(set(list(combinations(list(range(-(n-1), n))*n, n)))) for values in valuelist: sublist = dict(zip(symb, values)) originalvalue = original.subs(sublist) simplifiedvalue = simplified.subs(sublist) assert originalvalue == simplifiedvalue, "Original: {}\nand"\ " simplified: {}\ndo not evaluate to the same value for {}"\ "".format(original, simplified, sublist) w, x, y, z = symbols('w x y z', real=True) d, e = symbols('d e', real=False) expressions = (And(Eq(x, y), x >= y, w < y, y >= z, z < y), And(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y), Or(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y), And(x >= y, Eq(y, x)), Or(And(Eq(x, y), x >= y, w < y, Or(y >= z, z < y)), And(Eq(x, y), x >= 1, 2 < y, y >= -1, z < y)), (Eq(x, y) & Eq(d, e) & (x >= y) & (d >= e)), ) for expression in expressions: test_simplification_numerically_function(expression, expression.simplify()) def test_relational_simplification_patterns_numerically(): from sympy.core import Wild from sympy.logic.boolalg import simplify_patterns_and, \ simplify_patterns_or, simplify_patterns_xor a = Wild('a') b = Wild('b') c = Wild('c') symb = [a, b, c] patternlists = [simplify_patterns_and(), simplify_patterns_or(), simplify_patterns_xor()] for patternlist in patternlists: for pattern in patternlist: original = pattern[0] simplified = pattern[1] valuelist = list(set(list(combinations(list(range(-2, 2))*3, 3)))) for values in valuelist: sublist = dict(zip(symb, values)) originalvalue = original.subs(sublist) simplifiedvalue = simplified.subs(sublist) assert originalvalue == simplifiedvalue, "Original: {}\nand"\ " simplified: {}\ndo not evaluate to the same value for"\ "{}".format(original, simplified, sublist) def test_issue_16803(): n = symbols('n') # No simplification done, but should not raise an exception assert ((n > 3) | (n < 0) | ((n > 0) & (n < 3))).simplify() == \ ((n > 3) | (n < 0) | ((n > 0) & (n < 3))) def test_issue_17530(): r = {x: oo, y: oo} assert Or(x + y > 0, x - y < 0).subs(r) assert not And(x + y < 0, x - y < 0).subs(r) raises(TypeError, lambda: Or(x + y < 0, x - y < 0).subs(r)) raises(TypeError, lambda: And(x + y > 0, x - y < 0).subs(r)) raises(TypeError, lambda: And(x + y > 0, x - y < 0).subs(r)) def test_anf_coeffs(): assert anf_coeffs([1, 0]) == [1, 1] assert anf_coeffs([0, 0, 0, 1]) == [0, 0, 0, 1] assert anf_coeffs([0, 1, 1, 1]) == [0, 1, 1, 1] assert anf_coeffs([1, 1, 1, 0]) == [1, 0, 0, 1] assert anf_coeffs([1, 0, 0, 0]) == [1, 1, 1, 1] assert anf_coeffs([1, 0, 0, 1]) == [1, 1, 1, 0] assert anf_coeffs([1, 1, 0, 1]) == [1, 0, 1, 1] def test_ANFform(): x, y = symbols('x,y') assert ANFform([x], [1, 1]) == True assert ANFform([x], [0, 0]) == False assert ANFform([x], [1, 0]) == Xor(x, True, remove_true=False) assert ANFform([x, y], [1, 1, 1, 0]) == \ Xor(True, And(x, y), remove_true=False) def test_bool_minterm(): x, y = symbols('x,y') assert bool_minterm(3, [x, y]) == And(x, y) assert bool_minterm([1, 0], [x, y]) == And(Not(y), x) def test_bool_maxterm(): x, y = symbols('x,y') assert bool_maxterm(2, [x, y]) == Or(Not(x), y) assert bool_maxterm([0, 1], [x, y]) == Or(Not(y), x) def test_bool_monomial(): x, y = symbols('x,y') assert bool_monomial(1, [x, y]) == y assert bool_monomial([1, 1], [x, y]) == And(x, y) def test_check_pair(): assert _check_pair([0, 1, 0], [0, 1, 1]) == 2 assert _check_pair([0, 1, 0], [1, 1, 1]) == -1 def test_issue_19114(): expr = (B & C) | (A & ~C) | (~A & ~B) result = to_dnf(expr, simplify=True) assert result == expr def test_issue_20870(): result = SOPform([a, b, c, d], [1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15]) expected = ((d & ~b) | (a & b & c) | (a & ~c & ~d) | (b & ~a & ~c) | (c & ~a & ~d)) assert result == expected def test_convert_to_varsSOP(): assert _convert_to_varsSOP([0, 1, 0], [x, y, z]) == And(Not(x), y, Not(z)) assert _convert_to_varsSOP([3, 1, 0], [x, y, z]) == And(y, Not(z)) def test_convert_to_varsPOS(): assert _convert_to_varsPOS([0, 1, 0], [x, y, z]) == Or(x, Not(y), z) assert _convert_to_varsPOS([3, 1, 0], [x, y, z]) == Or(Not(y), z) def test_refine(): # relational assert not refine(x < 0, ~(x < 0)) assert refine(x < 0, (x < 0)) assert refine(x < 0, (0 > x)) is S.true assert refine(x < 0, (y < 0)) == (x < 0) assert not refine(x <= 0, ~(x <= 0)) assert refine(x <= 0, (x <= 0)) assert refine(x <= 0, (0 >= x)) is S.true assert refine(x <= 0, (y <= 0)) == (x <= 0) assert not refine(x > 0, ~(x > 0)) assert refine(x > 0, (x > 0)) assert refine(x > 0, (0 < x)) is S.true assert refine(x > 0, (y > 0)) == (x > 0) assert not refine(x >= 0, ~(x >= 0)) assert refine(x >= 0, (x >= 0)) assert refine(x >= 0, (0 <= x)) is S.true assert refine(x >= 0, (y >= 0)) == (x >= 0) assert not refine(Eq(x, 0), ~(Eq(x, 0))) assert refine(Eq(x, 0), (Eq(x, 0))) assert refine(Eq(x, 0), (Eq(0, x))) is S.true assert refine(Eq(x, 0), (Eq(y, 0))) == Eq(x, 0) assert not refine(Ne(x, 0), ~(Ne(x, 0))) assert refine(Ne(x, 0), (Ne(0, x))) is S.true assert refine(Ne(x, 0), (Ne(x, 0))) assert refine(Ne(x, 0), (Ne(y, 0))) == (Ne(x, 0)) # boolean functions assert refine(And(x > 0, y > 0), (x > 0)) == (y > 0) assert refine(And(x > 0, y > 0), (x > 0) & (y > 0)) is S.true # predicates assert refine(Q.positive(x), Q.positive(x)) is S.true assert refine(Q.positive(x), Q.negative(x)) is S.false assert refine(Q.positive(x), Q.real(x)) == Q.positive(x)
f0f979b13a848028cc5d0a9641fe146ca47743c423dee543495c82308f21814b
from sympy import ( Rational, Symbol, N, I, Abs, sqrt, exp, Float, sin, cos, symbols) from sympy.matrices import eye, Matrix from sympy.core.singleton import S from sympy.testing.pytest import raises, XFAIL from sympy.matrices.matrices import NonSquareMatrixError, MatrixError from sympy.matrices.expressions.fourier import DFT from sympy.simplify.simplify import simplify from sympy.matrices.immutable import ImmutableMatrix from sympy.testing.pytest import slow from sympy.testing.matrices import allclose def test_eigen(): R = Rational M = Matrix.eye(3) assert M.eigenvals(multiple=False) == {S.One: 3} assert M.eigenvals(multiple=True) == [1, 1, 1] assert M.eigenvects() == ( [(1, 3, [Matrix([1, 0, 0]), Matrix([0, 1, 0]), Matrix([0, 0, 1])])]) assert M.left_eigenvects() == ( [(1, 3, [Matrix([[1, 0, 0]]), Matrix([[0, 1, 0]]), Matrix([[0, 0, 1]])])]) M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) assert M.eigenvals() == {2*S.One: 1, -S.One: 1, S.Zero: 1} assert M.eigenvects() == ( [ (-1, 1, [Matrix([-1, 1, 0])]), ( 0, 1, [Matrix([0, -1, 1])]), ( 2, 1, [Matrix([R(2, 3), R(1, 3), 1])]) ]) assert M.left_eigenvects() == ( [ (-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2, 1, [Matrix([[1, 1, 1]])]) ]) a = Symbol('a') M = Matrix([[a, 0], [0, 1]]) assert M.eigenvals() == {a: 1, S.One: 1} M = Matrix([[1, -1], [1, 3]]) assert M.eigenvects() == ([(2, 2, [Matrix(2, 1, [-1, 1])])]) assert M.left_eigenvects() == ([(2, 2, [Matrix([[1, 1]])])]) M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a = R(15, 2) b = 3*33**R(1, 2) c = R(13, 2) d = (R(33, 8) + 3*b/8) e = (R(33, 8) - 3*b/8) def NS(e, n): return str(N(e, n)) r = [ (a - b/2, 1, [Matrix([(12 + 24/(c - b/2))/((c - b/2)*e) + 3/(c - b/2), (6 + 12/(c - b/2))/e, 1])]), ( 0, 1, [Matrix([1, -2, 1])]), (a + b/2, 1, [Matrix([(12 + 24/(c + b/2))/((c + b/2)*d) + 3/(c + b/2), (6 + 12/(c + b/2))/d, 1])]), ] r1 = [(NS(r[i][0], 2), NS(r[i][1], 2), [NS(j, 2) for j in r[i][2][0]]) for i in range(len(r))] r = M.eigenvects() r2 = [(NS(r[i][0], 2), NS(r[i][1], 2), [NS(j, 2) for j in r[i][2][0]]) for i in range(len(r))] assert sorted(r1) == sorted(r2) eps = Symbol('eps', real=True) M = Matrix([[abs(eps), I*eps ], [-I*eps, abs(eps) ]]) assert M.eigenvects() == ( [ ( 0, 1, [Matrix([[-I*eps/abs(eps)], [1]])]), ( 2*abs(eps), 1, [ Matrix([[I*eps/abs(eps)], [1]]) ] ), ]) assert M.left_eigenvects() == ( [ (0, 1, [Matrix([[I*eps/Abs(eps), 1]])]), (2*Abs(eps), 1, [Matrix([[-I*eps/Abs(eps), 1]])]) ]) M = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) M._eigenvects = M.eigenvects(simplify=False) assert max(i.q for i in M._eigenvects[0][2][0]) > 1 M._eigenvects = M.eigenvects(simplify=True) assert max(i.q for i in M._eigenvects[0][2][0]) == 1 M = Matrix([[Rational(1, 4), 1], [1, 1]]) assert M.eigenvects() == [ (Rational(5, 8) - sqrt(73)/8, 1, [Matrix([[-sqrt(73)/8 - Rational(3, 8)], [1]])]), (Rational(5, 8) + sqrt(73)/8, 1, [Matrix([[Rational(-3, 8) + sqrt(73)/8], [1]])])] # issue 10719 assert Matrix([]).eigenvals() == {} assert Matrix([]).eigenvals(multiple=True) == [] assert Matrix([]).eigenvects() == [] # issue 15119 raises(NonSquareMatrixError, lambda: Matrix([[1, 2], [0, 4], [0, 0]]).eigenvals()) raises(NonSquareMatrixError, lambda: Matrix([[1, 0], [3, 4], [5, 6]]).eigenvals()) raises(NonSquareMatrixError, lambda: Matrix([[1, 2, 3], [0, 5, 6]]).eigenvals()) raises(NonSquareMatrixError, lambda: Matrix([[1, 0, 0], [4, 5, 0]]).eigenvals()) raises(NonSquareMatrixError, lambda: Matrix([[1, 2, 3], [0, 5, 6]]).eigenvals( error_when_incomplete = False)) raises(NonSquareMatrixError, lambda: Matrix([[1, 0, 0], [4, 5, 0]]).eigenvals( error_when_incomplete = False)) m = Matrix([[1, 2], [3, 4]]) assert isinstance(m.eigenvals(simplify=True, multiple=False), dict) assert isinstance(m.eigenvals(simplify=True, multiple=True), list) assert isinstance(m.eigenvals(simplify=lambda x: x, multiple=False), dict) assert isinstance(m.eigenvals(simplify=lambda x: x, multiple=True), list) @slow def test_eigen_slow(): # issue 15125 from sympy.core.function import count_ops q = Symbol("q", positive = True) m = Matrix([[-2, exp(-q), 1], [exp(q), -2, 1], [1, 1, -2]]) assert count_ops(m.eigenvals(simplify=False)) > \ count_ops(m.eigenvals(simplify=True)) assert count_ops(m.eigenvals(simplify=lambda x: x)) > \ count_ops(m.eigenvals(simplify=True)) def test_float_eigenvals(): m = Matrix([[1, .6, .6], [.6, .9, .9], [.9, .6, .6]]) evals = [ Rational(5, 4) - sqrt(385)/20, sqrt(385)/20 + Rational(5, 4), S.Zero] n_evals = m.eigenvals(rational=True, multiple=True) n_evals = sorted(n_evals) s_evals = [x.evalf() for x in evals] s_evals = sorted(s_evals) for x, y in zip(n_evals, s_evals): assert abs(x-y) < 10**-9 @XFAIL def test_eigen_vects(): m = Matrix(2, 2, [1, 0, 0, I]) raises(NotImplementedError, lambda: m.is_diagonalizable(True)) # !!! bug because of eigenvects() or roots(x**2 + (-1 - I)*x + I, x) # see issue 5292 assert not m.is_diagonalizable(True) raises(MatrixError, lambda: m.diagonalize(True)) (P, D) = m.diagonalize(True) def test_issue_8240(): # Eigenvalues of large triangular matrices x, y = symbols('x y') n = 200 diagonal_variables = [Symbol('x%s' % i) for i in range(n)] M = [[0 for i in range(n)] for j in range(n)] for i in range(n): M[i][i] = diagonal_variables[i] M = Matrix(M) eigenvals = M.eigenvals() assert len(eigenvals) == n for i in range(n): assert eigenvals[diagonal_variables[i]] == 1 eigenvals = M.eigenvals(multiple=True) assert set(eigenvals) == set(diagonal_variables) # with multiplicity M = Matrix([[x, 0, 0], [1, y, 0], [2, 3, x]]) eigenvals = M.eigenvals() assert eigenvals == {x: 2, y: 1} eigenvals = M.eigenvals(multiple=True) assert len(eigenvals) == 3 assert eigenvals.count(x) == 2 assert eigenvals.count(y) == 1 def test_eigenvals(): M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) assert M.eigenvals() == {2*S.One: 1, -S.One: 1, S.Zero: 1} m = Matrix([ [3, 0, 0, 0, -3], [0, -3, -3, 0, 3], [0, 3, 0, 3, 0], [0, 0, 3, 0, 3], [3, 0, 0, 3, 0]]) # XXX Used dry-run test because arbitrary symbol that appears in # CRootOf may not be unique. assert m.eigenvals() def test_eigenvects(): M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) vecs = M.eigenvects() for val, mult, vec_list in vecs: assert len(vec_list) == 1 assert M*vec_list[0] == val*vec_list[0] def test_left_eigenvects(): M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) vecs = M.left_eigenvects() for val, mult, vec_list in vecs: assert len(vec_list) == 1 assert vec_list[0]*M == val*vec_list[0] @slow def test_bidiagonalize(): M = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) assert M.bidiagonalize() == M assert M.bidiagonalize(upper=False) == M assert M.bidiagonalize() == M assert M.bidiagonal_decomposition() == (M, M, M) assert M.bidiagonal_decomposition(upper=False) == (M, M, M) assert M.bidiagonalize() == M import random #Real Tests for real_test in range(2): test_values = [] row = 2 col = 2 for _ in range(row * col): value = random.randint(-1000000000, 1000000000) test_values = test_values + [value] # L -> Lower Bidiagonalization # M -> Mutable Matrix # N -> Immutable Matrix # 0 -> Bidiagonalized form # 1,2,3 -> Bidiagonal_decomposition matrices # 4 -> Product of 1 2 3 M = Matrix(row, col, test_values) N = ImmutableMatrix(M) N1, N2, N3 = N.bidiagonal_decomposition() M1, M2, M3 = M.bidiagonal_decomposition() M0 = M.bidiagonalize() N0 = N.bidiagonalize() N4 = N1 * N2 * N3 M4 = M1 * M2 * M3 N2.simplify() N4.simplify() N0.simplify() M0.simplify() M2.simplify() M4.simplify() LM0 = M.bidiagonalize(upper=False) LM1, LM2, LM3 = M.bidiagonal_decomposition(upper=False) LN0 = N.bidiagonalize(upper=False) LN1, LN2, LN3 = N.bidiagonal_decomposition(upper=False) LN4 = LN1 * LN2 * LN3 LM4 = LM1 * LM2 * LM3 LN2.simplify() LN4.simplify() LN0.simplify() LM0.simplify() LM2.simplify() LM4.simplify() assert M == M4 assert M2 == M0 assert N == N4 assert N2 == N0 assert M == LM4 assert LM2 == LM0 assert N == LN4 assert LN2 == LN0 #Complex Tests for complex_test in range(2): test_values = [] size = 2 for _ in range(size * size): real = random.randint(-1000000000, 1000000000) comp = random.randint(-1000000000, 1000000000) value = real + comp * I test_values = test_values + [value] M = Matrix(size, size, test_values) N = ImmutableMatrix(M) # L -> Lower Bidiagonalization # M -> Mutable Matrix # N -> Immutable Matrix # 0 -> Bidiagonalized form # 1,2,3 -> Bidiagonal_decomposition matrices # 4 -> Product of 1 2 3 N1, N2, N3 = N.bidiagonal_decomposition() M1, M2, M3 = M.bidiagonal_decomposition() M0 = M.bidiagonalize() N0 = N.bidiagonalize() N4 = N1 * N2 * N3 M4 = M1 * M2 * M3 N2.simplify() N4.simplify() N0.simplify() M0.simplify() M2.simplify() M4.simplify() LM0 = M.bidiagonalize(upper=False) LM1, LM2, LM3 = M.bidiagonal_decomposition(upper=False) LN0 = N.bidiagonalize(upper=False) LN1, LN2, LN3 = N.bidiagonal_decomposition(upper=False) LN4 = LN1 * LN2 * LN3 LM4 = LM1 * LM2 * LM3 LN2.simplify() LN4.simplify() LN0.simplify() LM0.simplify() LM2.simplify() LM4.simplify() assert M == M4 assert M2 == M0 assert N == N4 assert N2 == N0 assert M == LM4 assert LM2 == LM0 assert N == LN4 assert LN2 == LN0 M = Matrix(18, 8, range(1, 145)) M = M.applyfunc(lambda i: Float(i)) assert M.bidiagonal_decomposition()[1] == M.bidiagonalize() assert M.bidiagonal_decomposition(upper=False)[1] == M.bidiagonalize(upper=False) a, b, c = M.bidiagonal_decomposition() diff = a * b * c - M assert abs(max(diff)) < 10**-12 def test_diagonalize(): m = Matrix(2, 2, [0, -1, 1, 0]) raises(MatrixError, lambda: m.diagonalize(reals_only=True)) P, D = m.diagonalize() assert D.is_diagonal() assert D == Matrix([ [-I, 0], [ 0, I]]) # make sure we use floats out if floats are passed in m = Matrix(2, 2, [0, .5, .5, 0]) P, D = m.diagonalize() assert all(isinstance(e, Float) for e in D.values()) assert all(isinstance(e, Float) for e in P.values()) _, D2 = m.diagonalize(reals_only=True) assert D == D2 m = Matrix( [[0, 1, 0, 0], [1, 0, 0, 0.002], [0.002, 0, 0, 1], [0, 0, 1, 0]]) P, D = m.diagonalize() assert allclose(P*D, m*P) def test_is_diagonalizable(): a, b, c = symbols('a b c') m = Matrix(2, 2, [a, c, c, b]) assert m.is_symmetric() assert m.is_diagonalizable() assert not Matrix(2, 2, [1, 1, 0, 1]).is_diagonalizable() m = Matrix(2, 2, [0, -1, 1, 0]) assert m.is_diagonalizable() assert not m.is_diagonalizable(reals_only=True) def test_jordan_form(): m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10]) raises(NonSquareMatrixError, lambda: m.jordan_form()) # the next two tests test the cases where the old # algorithm failed due to the fact that the block structure can # *NOT* be determined from algebraic and geometric multiplicity alone # This can be seen most easily when one lets compute the J.c.f. of a matrix that # is in J.c.f already. m = Matrix(4, 4, [2, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2 ]) P, J = m.jordan_form() assert m == J m = Matrix(4, 4, [2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2 ]) P, J = m.jordan_form() assert m == J A = Matrix([[ 2, 4, 1, 0], [-4, 2, 0, 1], [ 0, 0, 2, 4], [ 0, 0, -4, 2]]) P, J = A.jordan_form() assert simplify(P*J*P.inv()) == A assert Matrix(1, 1, [1]).jordan_form() == (Matrix([1]), Matrix([1])) assert Matrix(1, 1, [1]).jordan_form(calc_transform=False) == Matrix([1]) # If we have eigenvalues in CRootOf form, raise errors m = Matrix([[3, 0, 0, 0, -3], [0, -3, -3, 0, 3], [0, 3, 0, 3, 0], [0, 0, 3, 0, 3], [3, 0, 0, 3, 0]]) raises(MatrixError, lambda: m.jordan_form()) # make sure that if the input has floats, the output does too m = Matrix([ [ 0.6875, 0.125 + 0.1875*sqrt(3)], [0.125 + 0.1875*sqrt(3), 0.3125]]) P, J = m.jordan_form() assert all(isinstance(x, Float) or x == 0 for x in P) assert all(isinstance(x, Float) or x == 0 for x in J) def test_singular_values(): x = Symbol('x', real=True) A = Matrix([[0, 1*I], [2, 0]]) # if singular values can be sorted, they should be in decreasing order assert A.singular_values() == [2, 1] A = eye(3) A[1, 1] = x A[2, 2] = 5 vals = A.singular_values() # since Abs(x) cannot be sorted, test set equality assert set(vals) == {5, 1, Abs(x)} A = Matrix([[sin(x), cos(x)], [-cos(x), sin(x)]]) vals = [sv.trigsimp() for sv in A.singular_values()] assert vals == [S.One, S.One] A = Matrix([ [2, 4], [1, 3], [0, 0], [0, 0] ]) assert A.singular_values() == \ [sqrt(sqrt(221) + 15), sqrt(15 - sqrt(221))] assert A.T.singular_values() == \ [sqrt(sqrt(221) + 15), sqrt(15 - sqrt(221)), 0, 0] def test___eq__(): assert (Matrix( [[0, 1, 1], [1, 0, 0], [1, 1, 1]]) == {}) is False def test_definite(): # Examples from Gilbert Strang, "Introduction to Linear Algebra" # Positive definite matrices m = Matrix([[2, -1, 0], [-1, 2, -1], [0, -1, 2]]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False m = Matrix([[5, 4], [4, 5]]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False # Positive semidefinite matrices m = Matrix([[2, -1, -1], [-1, 2, -1], [-1, -1, 2]]) assert m.is_positive_definite == False assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False m = Matrix([[1, 2], [2, 4]]) assert m.is_positive_definite == False assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False # Examples from Mathematica documentation # Non-hermitian positive definite matrices m = Matrix([[2, 3], [4, 8]]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False # Hermetian matrices m = Matrix([[1, 2*I], [-I, 4]]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False # Symbolic matrices examples a = Symbol('a', positive=True) b = Symbol('b', negative=True) m = Matrix([[a, 0, 0], [0, a, 0], [0, 0, a]]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False m = Matrix([[b, 0, 0], [0, b, 0], [0, 0, b]]) assert m.is_positive_definite == False assert m.is_positive_semidefinite == False assert m.is_negative_definite == True assert m.is_negative_semidefinite == True assert m.is_indefinite == False m = Matrix([[a, 0], [0, b]]) assert m.is_positive_definite == False assert m.is_positive_semidefinite == False assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == True m = Matrix([ [0.0228202735623867, 0.00518748979085398, -0.0743036351048907, -0.00709135324903921], [0.00518748979085398, 0.0349045359786350, 0.0830317991056637, 0.00233147902806909], [-0.0743036351048907, 0.0830317991056637, 1.15859676366277, 0.340359081555988], [-0.00709135324903921, 0.00233147902806909, 0.340359081555988, 0.928147644848199] ]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_indefinite == False # test for issue 19547: https://github.com/sympy/sympy/issues/19547 m = Matrix([ [0, 0, 0], [0, 1, 2], [0, 2, 1] ]) assert not m.is_positive_definite assert not m.is_positive_semidefinite def test_positive_semidefinite_cholesky(): from sympy.matrices.eigen import _is_positive_semidefinite_cholesky m = Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]]) assert _is_positive_semidefinite_cholesky(m) == True m = Matrix([[0, 0, 0], [0, 5, -10*I], [0, 10*I, 5]]) assert _is_positive_semidefinite_cholesky(m) == False m = Matrix([[1, 0, 0], [0, 0, 0], [0, 0, -1]]) assert _is_positive_semidefinite_cholesky(m) == False m = Matrix([[0, 1], [1, 0]]) assert _is_positive_semidefinite_cholesky(m) == False # https://www.value-at-risk.net/cholesky-factorization/ m = Matrix([[4, -2, -6], [-2, 10, 9], [-6, 9, 14]]) assert _is_positive_semidefinite_cholesky(m) == True m = Matrix([[9, -3, 3], [-3, 2, 1], [3, 1, 6]]) assert _is_positive_semidefinite_cholesky(m) == True m = Matrix([[4, -2, 2], [-2, 1, -1], [2, -1, 5]]) assert _is_positive_semidefinite_cholesky(m) == True m = Matrix([[1, 2, -1], [2, 5, 1], [-1, 1, 9]]) assert _is_positive_semidefinite_cholesky(m) == False def test_issue_20582(): A = Matrix([ [5, -5, -3, 2, -7], [-2, -5, 0, 2, 1], [-2, -7, -5, -2, -6], [7, 10, 3, 9, -2], [4, -10, 3, -8, -4] ]) # XXX Used dry-run test because arbitrary symbol that appears in # CRootOf may not be unique. assert A.eigenvects() def test_issue_20275(): # XXX We use complex expansions because complex exponentials are not # recognized by polys.domains A = DFT(3).as_explicit().expand(complex=True) eigenvects = A.eigenvects() assert eigenvects[0] == ( -1, 1, [Matrix([[1 - sqrt(3)], [1], [1]])] ) assert eigenvects[1] == ( 1, 1, [Matrix([[1 + sqrt(3)], [1], [1]])] ) assert eigenvects[2] == ( -I, 1, [Matrix([[0], [-1], [1]])] ) A = DFT(4).as_explicit().expand(complex=True) eigenvects = A.eigenvects() assert eigenvects[0] == ( -1, 1, [Matrix([[-1], [1], [1], [1]])] ) assert eigenvects[1] == ( 1, 2, [Matrix([[1], [0], [1], [0]]), Matrix([[2], [1], [0], [1]])] ) assert eigenvects[2] == ( -I, 1, [Matrix([[0], [-1], [0], [1]])] ) # XXX We skip test for some parts of eigenvectors which are very # complicated and fragile under expression tree changes A = DFT(5).as_explicit().expand(complex=True) eigenvects = A.eigenvects() assert eigenvects[0] == ( -1, 1, [Matrix([[1 - sqrt(5)], [1], [1], [1], [1]])] ) assert eigenvects[1] == ( 1, 2, [Matrix([[S(1)/2 + sqrt(5)/2], [0], [1], [1], [0]]), Matrix([[S(1)/2 + sqrt(5)/2], [1], [0], [0], [1]])] ) def test_issue_20752(): b = symbols('b', nonzero=True) m = Matrix([[0, 0, 0], [0, b, 0], [0, 0, b]]) assert m.is_positive_semidefinite is None
a96959169a08a9f35d613ab662bc428815c18ce8765c763c3d66524ea91fc17c
import random import concurrent.futures from collections.abc import Hashable from sympy import ( Abs, Add, E, Float, I, Integer, Max, Min, Poly, Pow, PurePoly, Rational, S, Symbol, cos, exp, log, nan, oo, pi, signsimp, simplify, sin, sqrt, symbols, sympify, trigsimp, tan, sstr, diff, Function, expand, FiniteSet) from sympy.matrices.matrices import (ShapeError, MatrixError, NonSquareMatrixError, DeferredVector, _find_reasonable_pivot_naive, _simplify) from sympy.matrices import ( GramSchmidt, ImmutableMatrix, ImmutableSparseMatrix, Matrix, SparseMatrix, casoratian, diag, eye, hessian, matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2, rot_axis3, wronskian, zeros, MutableDenseMatrix, ImmutableDenseMatrix, MatrixSymbol, dotprodsimp) from sympy.matrices.utilities import _dotprodsimp_state from sympy.core.compatibility import iterable from sympy.core import Tuple, Wild from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.utilities.iterables import flatten, capture from sympy.testing.pytest import raises, XFAIL, slow, skip, warns_deprecated_sympy from sympy.assumptions import Q from sympy.tensor.array import Array from sympy.matrices.expressions import MatPow from sympy.abc import a, b, c, d, x, y, z, t # don't re-order this list classes = (Matrix, SparseMatrix, ImmutableMatrix, ImmutableSparseMatrix) def test_args(): for n, cls in enumerate(classes): m = cls.zeros(3, 2) # all should give back the same type of arguments, e.g. ints for shape assert m.shape == (3, 2) and all(type(i) is int for i in m.shape) assert m.rows == 3 and type(m.rows) is int assert m.cols == 2 and type(m.cols) is int if not n % 2: assert type(m.flat()) in (list, tuple, Tuple) else: assert type(m.todok()) is dict def test_deprecated_mat_smat(): for cls in Matrix, ImmutableMatrix: m = cls.zeros(3, 2) with warns_deprecated_sympy(): mat = m._mat assert mat == m.flat() for cls in SparseMatrix, ImmutableSparseMatrix: m = cls.zeros(3, 2) with warns_deprecated_sympy(): smat = m._smat assert smat == m.todok() def test_division(): v = Matrix(1, 2, [x, y]) assert v/z == Matrix(1, 2, [x/z, y/z]) def test_sum(): m = Matrix([[1, 2, 3], [x, y, x], [2*y, -50, z*x]]) assert m + m == Matrix([[2, 4, 6], [2*x, 2*y, 2*x], [4*y, -100, 2*z*x]]) n = Matrix(1, 2, [1, 2]) raises(ShapeError, lambda: m + n) def test_abs(): m = Matrix(1, 2, [-3, x]) n = Matrix(1, 2, [3, Abs(x)]) assert abs(m) == n def test_addition(): a = Matrix(( (1, 2), (3, 1), )) b = Matrix(( (1, 2), (3, 0), )) assert a + b == a.add(b) == Matrix([[2, 4], [6, 1]]) def test_fancy_index_matrix(): for M in (Matrix, SparseMatrix): a = M(3, 3, range(9)) assert a == a[:, :] assert a[1, :] == Matrix(1, 3, [3, 4, 5]) assert a[:, 1] == Matrix([1, 4, 7]) assert a[[0, 1], :] == Matrix([[0, 1, 2], [3, 4, 5]]) assert a[[0, 1], 2] == a[[0, 1], [2]] assert a[2, [0, 1]] == a[[2], [0, 1]] assert a[:, [0, 1]] == Matrix([[0, 1], [3, 4], [6, 7]]) assert a[0, 0] == 0 assert a[0:2, :] == Matrix([[0, 1, 2], [3, 4, 5]]) assert a[:, 0:2] == Matrix([[0, 1], [3, 4], [6, 7]]) assert a[::2, 1] == a[[0, 2], 1] assert a[1, ::2] == a[1, [0, 2]] a = M(3, 3, range(9)) assert a[[0, 2, 1, 2, 1], :] == Matrix([ [0, 1, 2], [6, 7, 8], [3, 4, 5], [6, 7, 8], [3, 4, 5]]) assert a[:, [0,2,1,2,1]] == Matrix([ [0, 2, 1, 2, 1], [3, 5, 4, 5, 4], [6, 8, 7, 8, 7]]) a = SparseMatrix.zeros(3) a[1, 2] = 2 a[0, 1] = 3 a[2, 0] = 4 assert a.extract([1, 1], [2]) == Matrix([ [2], [2]]) assert a.extract([1, 0], [2, 2, 2]) == Matrix([ [2, 2, 2], [0, 0, 0]]) assert a.extract([1, 0, 1, 2], [2, 0, 1, 0]) == Matrix([ [2, 0, 0, 0], [0, 0, 3, 0], [2, 0, 0, 0], [0, 4, 0, 4]]) def test_multiplication(): a = Matrix(( (1, 2), (3, 1), (0, 6), )) b = Matrix(( (1, 2), (3, 0), )) c = a*b assert c[0, 0] == 7 assert c[0, 1] == 2 assert c[1, 0] == 6 assert c[1, 1] == 6 assert c[2, 0] == 18 assert c[2, 1] == 0 try: eval('c = a @ b') except SyntaxError: pass else: assert c[0, 0] == 7 assert c[0, 1] == 2 assert c[1, 0] == 6 assert c[1, 1] == 6 assert c[2, 0] == 18 assert c[2, 1] == 0 h = matrix_multiply_elementwise(a, c) assert h == a.multiply_elementwise(c) assert h[0, 0] == 7 assert h[0, 1] == 4 assert h[1, 0] == 18 assert h[1, 1] == 6 assert h[2, 0] == 0 assert h[2, 1] == 0 raises(ShapeError, lambda: matrix_multiply_elementwise(a, b)) c = b * Symbol("x") assert isinstance(c, Matrix) assert c[0, 0] == x assert c[0, 1] == 2*x assert c[1, 0] == 3*x assert c[1, 1] == 0 c2 = x * b assert c == c2 c = 5 * b assert isinstance(c, Matrix) assert c[0, 0] == 5 assert c[0, 1] == 2*5 assert c[1, 0] == 3*5 assert c[1, 1] == 0 try: eval('c = 5 @ b') except SyntaxError: pass else: assert isinstance(c, Matrix) assert c[0, 0] == 5 assert c[0, 1] == 2*5 assert c[1, 0] == 3*5 assert c[1, 1] == 0 M = Matrix([[oo, 0], [0, oo]]) assert M ** 2 == M M = Matrix([[oo, oo], [0, 0]]) assert M ** 2 == Matrix([[nan, nan], [nan, nan]]) def test_power(): raises(NonSquareMatrixError, lambda: Matrix((1, 2))**2) R = Rational A = Matrix([[2, 3], [4, 5]]) assert (A**-3)[:] == [R(-269)/8, R(153)/8, R(51)/2, R(-29)/2] assert (A**5)[:] == [6140, 8097, 10796, 14237] A = Matrix([[2, 1, 3], [4, 2, 4], [6, 12, 1]]) assert (A**3)[:] == [290, 262, 251, 448, 440, 368, 702, 954, 433] assert A**0 == eye(3) assert A**1 == A assert (Matrix([[2]]) ** 100)[0, 0] == 2**100 assert eye(2)**10000000 == eye(2) assert Matrix([[1, 2], [3, 4]])**Integer(2) == Matrix([[7, 10], [15, 22]]) A = Matrix([[33, 24], [48, 57]]) assert (A**S.Half)[:] == [5, 2, 4, 7] A = Matrix([[0, 4], [-1, 5]]) assert (A**S.Half)**2 == A assert Matrix([[1, 0], [1, 1]])**S.Half == Matrix([[1, 0], [S.Half, 1]]) assert Matrix([[1, 0], [1, 1]])**0.5 == Matrix([[1.0, 0], [0.5, 1.0]]) from sympy.abc import a, b, n assert Matrix([[1, a], [0, 1]])**n == Matrix([[1, a*n], [0, 1]]) assert Matrix([[b, a], [0, b]])**n == Matrix([[b**n, a*b**(n-1)*n], [0, b**n]]) assert Matrix([ [a**n, a**(n - 1)*n, (a**n*n**2 - a**n*n)/(2*a**2)], [ 0, a**n, a**(n - 1)*n], [ 0, 0, a**n]]) assert Matrix([[a, 1, 0], [0, a, 0], [0, 0, b]])**n == Matrix([ [a**n, a**(n-1)*n, 0], [0, a**n, 0], [0, 0, b**n]]) A = Matrix([[1, 0], [1, 7]]) assert A._matrix_pow_by_jordan_blocks(S(3)) == A._eval_pow_by_recursion(3) A = Matrix([[2]]) assert A**10 == Matrix([[2**10]]) == A._matrix_pow_by_jordan_blocks(S(10)) == \ A._eval_pow_by_recursion(10) # testing a matrix that cannot be jordan blocked issue 11766 m = Matrix([[3, 0, 0, 0, -3], [0, -3, -3, 0, 3], [0, 3, 0, 3, 0], [0, 0, 3, 0, 3], [3, 0, 0, 3, 0]]) raises(MatrixError, lambda: m._matrix_pow_by_jordan_blocks(S(10))) # test issue 11964 raises(MatrixError, lambda: Matrix([[1, 1], [3, 3]])._matrix_pow_by_jordan_blocks(S(-10))) A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 0]]) # Nilpotent jordan block size 3 assert A**10.0 == Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]]) raises(ValueError, lambda: A**2.1) raises(ValueError, lambda: A**Rational(3, 2)) A = Matrix([[8, 1], [3, 2]]) assert A**10.0 == Matrix([[1760744107, 272388050], [817164150, 126415807]]) A = Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) # Nilpotent jordan block size 1 assert A**10.0 == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) # Nilpotent jordan block size 2 assert A**10.0 == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) n = Symbol('n', integer=True) assert isinstance(A**n, MatPow) n = Symbol('n', integer=True, negative=True) raises(ValueError, lambda: A**n) n = Symbol('n', integer=True, nonnegative=True) assert A**n == Matrix([ [KroneckerDelta(0, n), KroneckerDelta(1, n), -KroneckerDelta(0, n) - KroneckerDelta(1, n) + 1], [ 0, KroneckerDelta(0, n), 1 - KroneckerDelta(0, n)], [ 0, 0, 1]]) assert A**(n + 2) == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) raises(ValueError, lambda: A**Rational(3, 2)) A = Matrix([[0, 0, 1], [3, 0, 1], [4, 3, 1]]) assert A**5.0 == Matrix([[168, 72, 89], [291, 144, 161], [572, 267, 329]]) assert A**5.0 == A**5 A = Matrix([[0, 1, 0],[-1, 0, 0],[0, 0, 0]]) n = Symbol("n") An = A**n assert An.subs(n, 2).doit() == A**2 raises(ValueError, lambda: An.subs(n, -2).doit()) assert An * An == A**(2*n) # concretizing behavior for non-integer and complex powers A = Matrix([[0,0,0],[0,0,0],[0,0,0]]) n = Symbol('n', integer=True, positive=True) assert A**n == A n = Symbol('n', integer=True, nonnegative=True) assert A**n == diag(0**n, 0**n, 0**n) assert (A**n).subs(n, 0) == eye(3) assert (A**n).subs(n, 1) == zeros(3) A = Matrix ([[2,0,0],[0,2,0],[0,0,2]]) assert A**2.1 == diag (2**2.1, 2**2.1, 2**2.1) assert A**I == diag (2**I, 2**I, 2**I) A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) raises(ValueError, lambda: A**2.1) raises(ValueError, lambda: A**I) A = Matrix([[S.Half, S.Half], [S.Half, S.Half]]) assert A**S.Half == A A = Matrix([[1, 1],[3, 3]]) assert A**S.Half == Matrix ([[S.Half, S.Half], [3*S.Half, 3*S.Half]]) def test_issue_17247_expression_blowup_1(): M = Matrix([[1+x, 1-x], [1-x, 1+x]]) with dotprodsimp(True): assert M.exp().expand() == Matrix([ [ (exp(2*x) + exp(2))/2, (-exp(2*x) + exp(2))/2], [(-exp(2*x) + exp(2))/2, (exp(2*x) + exp(2))/2]]) def test_issue_17247_expression_blowup_2(): M = Matrix([[1+x, 1-x], [1-x, 1+x]]) with dotprodsimp(True): P, J = M.jordan_form () assert P*J*P.inv() def test_issue_17247_expression_blowup_3(): M = Matrix([[1+x, 1-x], [1-x, 1+x]]) with dotprodsimp(True): assert M**100 == Matrix([ [633825300114114700748351602688*x**100 + 633825300114114700748351602688, 633825300114114700748351602688 - 633825300114114700748351602688*x**100], [633825300114114700748351602688 - 633825300114114700748351602688*x**100, 633825300114114700748351602688*x**100 + 633825300114114700748351602688]]) def test_issue_17247_expression_blowup_4(): # This matrix takes extremely long on current master even with intermediate simplification so an abbreviated version is used. It is left here for test in case of future optimizations. # M = Matrix(S('''[ # [ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128, 3/64 + 13*I/64, -23/32 - 59*I/256, 15/128 - 3*I/32, 19/256 + 551*I/1024], # [-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024, 119/128 + 143*I/128, -10879/2048 + 4343*I/4096, 129/256 - 549*I/512, 42533/16384 + 29103*I/8192], # [ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128, 3/64 + 13*I/64, -23/32 - 59*I/256], # [ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024, 119/128 + 143*I/128, -10879/2048 + 4343*I/4096], # [ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128], # [ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024], # [ -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64], # [ 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512], # [ -4*I, 27/2 + 6*I, -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64], # [ 1/4 + 5*I/2, -23/8 - 57*I/16, 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128], # [ -4, 9 - 5*I, -4*I, 27/2 + 6*I, -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16], # [ -2*I, 119/8 + 29*I/4, 1/4 + 5*I/2, -23/8 - 57*I/16, 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]''')) # assert M**10 == Matrix([ # [ 7*(-221393644768594642173548179825793834595 - 1861633166167425978847110897013541127952*I)/9671406556917033397649408, 15*(31670992489131684885307005100073928751695 + 10329090958303458811115024718207404523808*I)/77371252455336267181195264, 7*(-3710978679372178839237291049477017392703 + 1377706064483132637295566581525806894169*I)/19342813113834066795298816, (9727707023582419994616144751727760051598 - 59261571067013123836477348473611225724433*I)/9671406556917033397649408, (31896723509506857062605551443641668183707 + 54643444538699269118869436271152084599580*I)/38685626227668133590597632, (-2024044860947539028275487595741003997397402 + 130959428791783397562960461903698670485863*I)/309485009821345068724781056, 3*(26190251453797590396533756519358368860907 - 27221191754180839338002754608545400941638*I)/77371252455336267181195264, (1154643595139959842768960128434994698330461 + 3385496216250226964322872072260446072295634*I)/618970019642690137449562112, 3*(-31849347263064464698310044805285774295286 - 11877437776464148281991240541742691164309*I)/77371252455336267181195264, (4661330392283532534549306589669150228040221 - 4171259766019818631067810706563064103956871*I)/1237940039285380274899124224, (9598353794289061833850770474812760144506 + 358027153990999990968244906482319780943983*I)/309485009821345068724781056, (-9755135335127734571547571921702373498554177 - 4837981372692695195747379349593041939686540*I)/2475880078570760549798248448], # [(-379516731607474268954110071392894274962069 - 422272153179747548473724096872271700878296*I)/77371252455336267181195264, (41324748029613152354787280677832014263339501 - 12715121258662668420833935373453570749288074*I)/1237940039285380274899124224, (-339216903907423793947110742819264306542397 + 494174755147303922029979279454787373566517*I)/77371252455336267181195264, (-18121350839962855576667529908850640619878381 - 37413012454129786092962531597292531089199003*I)/1237940039285380274899124224, (2489661087330511608618880408199633556675926 + 1137821536550153872137379935240732287260863*I)/309485009821345068724781056, (-136644109701594123227587016790354220062972119 + 110130123468183660555391413889600443583585272*I)/4951760157141521099596496896, (1488043981274920070468141664150073426459593 - 9691968079933445130866371609614474474327650*I)/1237940039285380274899124224, 27*(4636797403026872518131756991410164760195942 + 3369103221138229204457272860484005850416533*I)/4951760157141521099596496896, (-8534279107365915284081669381642269800472363 + 2241118846262661434336333368511372725482742*I)/1237940039285380274899124224, (60923350128174260992536531692058086830950875 - 263673488093551053385865699805250505661590126*I)/9903520314283042199192993792, (18520943561240714459282253753348921824172569 + 24846649186468656345966986622110971925703604*I)/4951760157141521099596496896, (-232781130692604829085973604213529649638644431 + 35981505277760667933017117949103953338570617*I)/9903520314283042199192993792], # [ (8742968295129404279528270438201520488950 + 3061473358639249112126847237482570858327*I)/4835703278458516698824704, (-245657313712011778432792959787098074935273 + 253113767861878869678042729088355086740856*I)/38685626227668133590597632, (1947031161734702327107371192008011621193 - 19462330079296259148177542369999791122762*I)/9671406556917033397649408, (552856485625209001527688949522750288619217 + 392928441196156725372494335248099016686580*I)/77371252455336267181195264, (-44542866621905323121630214897126343414629 + 3265340021421335059323962377647649632959*I)/19342813113834066795298816, (136272594005759723105646069956434264218730 - 330975364731707309489523680957584684763587*I)/38685626227668133590597632, (27392593965554149283318732469825168894401 + 75157071243800133880129376047131061115278*I)/38685626227668133590597632, 7*(-357821652913266734749960136017214096276154 - 45509144466378076475315751988405961498243*I)/309485009821345068724781056, (104485001373574280824835174390219397141149 - 99041000529599568255829489765415726168162*I)/77371252455336267181195264, (1198066993119982409323525798509037696321291 + 4249784165667887866939369628840569844519936*I)/618970019642690137449562112, (-114985392587849953209115599084503853611014 - 52510376847189529234864487459476242883449*I)/77371252455336267181195264, (6094620517051332877965959223269600650951573 - 4683469779240530439185019982269137976201163*I)/1237940039285380274899124224], # [ (611292255597977285752123848828590587708323 - 216821743518546668382662964473055912169502*I)/77371252455336267181195264, (-1144023204575811464652692396337616594307487 + 12295317806312398617498029126807758490062855*I)/309485009821345068724781056, (-374093027769390002505693378578475235158281 - 573533923565898290299607461660384634333639*I)/77371252455336267181195264, (47405570632186659000138546955372796986832987 - 2837476058950808941605000274055970055096534*I)/1237940039285380274899124224, (-571573207393621076306216726219753090535121 + 533381457185823100878764749236639320783831*I)/77371252455336267181195264, (-7096548151856165056213543560958582513797519 - 24035731898756040059329175131592138642195366*I)/618970019642690137449562112, (2396762128833271142000266170154694033849225 + 1448501087375679588770230529017516492953051*I)/309485009821345068724781056, (-150609293845161968447166237242456473262037053 + 92581148080922977153207018003184520294188436*I)/4951760157141521099596496896, 5*(270278244730804315149356082977618054486347 - 1997830155222496880429743815321662710091562*I)/1237940039285380274899124224, (62978424789588828258068912690172109324360330 + 44803641177219298311493356929537007630129097*I)/2475880078570760549798248448, 19*(-451431106327656743945775812536216598712236 + 114924966793632084379437683991151177407937*I)/1237940039285380274899124224, (63417747628891221594106738815256002143915995 - 261508229397507037136324178612212080871150958*I)/9903520314283042199192993792], # [ (-2144231934021288786200752920446633703357 + 2305614436009705803670842248131563850246*I)/1208925819614629174706176, (-90720949337459896266067589013987007078153 - 221951119475096403601562347412753844534569*I)/19342813113834066795298816, (11590973613116630788176337262688659880376 + 6514520676308992726483494976339330626159*I)/4835703278458516698824704, 3*(-131776217149000326618649542018343107657237 + 79095042939612668486212006406818285287004*I)/38685626227668133590597632, (10100577916793945997239221374025741184951 - 28631383488085522003281589065994018550748*I)/9671406556917033397649408, 67*(10090295594251078955008130473573667572549 + 10449901522697161049513326446427839676762*I)/77371252455336267181195264, (-54270981296988368730689531355811033930513 - 3413683117592637309471893510944045467443*I)/19342813113834066795298816, (440372322928679910536575560069973699181278 - 736603803202303189048085196176918214409081*I)/77371252455336267181195264, (33220374714789391132887731139763250155295 + 92055083048787219934030779066298919603554*I)/38685626227668133590597632, 5*(-594638554579967244348856981610805281527116 - 82309245323128933521987392165716076704057*I)/309485009821345068724781056, (128056368815300084550013708313312073721955 - 114619107488668120303579745393765245911404*I)/77371252455336267181195264, 21*(59839959255173222962789517794121843393573 + 241507883613676387255359616163487405826334*I)/618970019642690137449562112], # [ (-13454485022325376674626653802541391955147 + 184471402121905621396582628515905949793486*I)/19342813113834066795298816, (-6158730123400322562149780662133074862437105 - 3416173052604643794120262081623703514107476*I)/154742504910672534362390528, (770558003844914708453618983120686116100419 - 127758381209767638635199674005029818518766*I)/77371252455336267181195264, (-4693005771813492267479835161596671660631703 + 12703585094750991389845384539501921531449948*I)/309485009821345068724781056, (-295028157441149027913545676461260860036601 - 841544569970643160358138082317324743450770*I)/77371252455336267181195264, (56716442796929448856312202561538574275502893 + 7216818824772560379753073185990186711454778*I)/1237940039285380274899124224, 15*(-87061038932753366532685677510172566368387 + 61306141156647596310941396434445461895538*I)/154742504910672534362390528, (-3455315109680781412178133042301025723909347 - 24969329563196972466388460746447646686670670*I)/618970019642690137449562112, (2453418854160886481106557323699250865361849 + 1497886802326243014471854112161398141242514*I)/309485009821345068724781056, (-151343224544252091980004429001205664193082173 + 90471883264187337053549090899816228846836628*I)/4951760157141521099596496896, (1652018205533026103358164026239417416432989 - 9959733619236515024261775397109724431400162*I)/1237940039285380274899124224, 3*(40676374242956907656984876692623172736522006 + 31023357083037817469535762230872667581366205*I)/4951760157141521099596496896], # [ (-1226990509403328460274658603410696548387 - 4131739423109992672186585941938392788458*I)/1208925819614629174706176, (162392818524418973411975140074368079662703 + 23706194236915374831230612374344230400704*I)/9671406556917033397649408, (-3935678233089814180000602553655565621193 + 2283744757287145199688061892165659502483*I)/1208925819614629174706176, (-2400210250844254483454290806930306285131 - 315571356806370996069052930302295432758205*I)/19342813113834066795298816, (13365917938215281056563183751673390817910 + 15911483133819801118348625831132324863881*I)/4835703278458516698824704, 3*(-215950551370668982657516660700301003897855 + 51684341999223632631602864028309400489378*I)/38685626227668133590597632, (20886089946811765149439844691320027184765 - 30806277083146786592790625980769214361844*I)/9671406556917033397649408, (562180634592713285745940856221105667874855 + 1031543963988260765153550559766662245114916*I)/77371252455336267181195264, (-65820625814810177122941758625652476012867 - 12429918324787060890804395323920477537595*I)/19342813113834066795298816, (319147848192012911298771180196635859221089 - 402403304933906769233365689834404519960394*I)/38685626227668133590597632, (23035615120921026080284733394359587955057 + 115351677687031786114651452775242461310624*I)/38685626227668133590597632, (-3426830634881892756966440108592579264936130 - 1022954961164128745603407283836365128598559*I)/309485009821345068724781056], # [ (-192574788060137531023716449082856117537757 - 69222967328876859586831013062387845780692*I)/19342813113834066795298816, (2736383768828013152914815341491629299773262 - 2773252698016291897599353862072533475408743*I)/77371252455336267181195264, (-23280005281223837717773057436155921656805 + 214784953368021840006305033048142888879224*I)/19342813113834066795298816, (-3035247484028969580570400133318947903462326 - 2195168903335435855621328554626336958674325*I)/77371252455336267181195264, (984552428291526892214541708637840971548653 - 64006622534521425620714598573494988589378*I)/77371252455336267181195264, (-3070650452470333005276715136041262898509903 + 7286424705750810474140953092161794621989080*I)/154742504910672534362390528, (-147848877109756404594659513386972921139270 - 416306113044186424749331418059456047650861*I)/38685626227668133590597632, (55272118474097814260289392337160619494260781 + 7494019668394781211907115583302403519488058*I)/1237940039285380274899124224, (-581537886583682322424771088996959213068864 + 542191617758465339135308203815256798407429*I)/77371252455336267181195264, (-6422548983676355789975736799494791970390991 - 23524183982209004826464749309156698827737702*I)/618970019642690137449562112, 7*(180747195387024536886923192475064903482083 + 84352527693562434817771649853047924991804*I)/154742504910672534362390528, (-135485179036717001055310712747643466592387031 + 102346575226653028836678855697782273460527608*I)/4951760157141521099596496896], # [ (3384238362616083147067025892852431152105 + 156724444932584900214919898954874618256*I)/604462909807314587353088, (-59558300950677430189587207338385764871866 + 114427143574375271097298201388331237478857*I)/4835703278458516698824704, (-1356835789870635633517710130971800616227 - 7023484098542340388800213478357340875410*I)/1208925819614629174706176, (234884918567993750975181728413524549575881 + 79757294640629983786895695752733890213506*I)/9671406556917033397649408, (-7632732774935120473359202657160313866419 + 2905452608512927560554702228553291839465*I)/1208925819614629174706176, (52291747908702842344842889809762246649489 - 520996778817151392090736149644507525892649*I)/19342813113834066795298816, (17472406829219127839967951180375981717322 + 23464704213841582137898905375041819568669*I)/4835703278458516698824704, (-911026971811893092350229536132730760943307 + 150799318130900944080399439626714846752360*I)/38685626227668133590597632, (26234457233977042811089020440646443590687 - 45650293039576452023692126463683727692890*I)/9671406556917033397649408, 3*(288348388717468992528382586652654351121357 + 454526517721403048270274049572136109264668*I)/77371252455336267181195264, (-91583492367747094223295011999405657956347 - 12704691128268298435362255538069612411331*I)/19342813113834066795298816, (411208730251327843849027957710164064354221 - 569898526380691606955496789378230959965898*I)/38685626227668133590597632], # [ (27127513117071487872628354831658811211795 - 37765296987901990355760582016892124833857*I)/4835703278458516698824704, (1741779916057680444272938534338833170625435 + 3083041729779495966997526404685535449810378*I)/77371252455336267181195264, 3*(-60642236251815783728374561836962709533401 - 24630301165439580049891518846174101510744*I)/19342813113834066795298816, 3*(445885207364591681637745678755008757483408 - 350948497734812895032502179455610024541643*I)/38685626227668133590597632, (-47373295621391195484367368282471381775684 + 219122969294089357477027867028071400054973*I)/19342813113834066795298816, (-2801565819673198722993348253876353741520438 - 2250142129822658548391697042460298703335701*I)/77371252455336267181195264, (801448252275607253266997552356128790317119 - 50890367688077858227059515894356594900558*I)/77371252455336267181195264, (-5082187758525931944557763799137987573501207 + 11610432359082071866576699236013484487676124*I)/309485009821345068724781056, (-328925127096560623794883760398247685166830 - 643447969697471610060622160899409680422019*I)/77371252455336267181195264, 15*(2954944669454003684028194956846659916299765 + 33434406416888505837444969347824812608566*I)/1237940039285380274899124224, (-415749104352001509942256567958449835766827 + 479330966144175743357171151440020955412219*I)/77371252455336267181195264, 3*(-4639987285852134369449873547637372282914255 - 11994411888966030153196659207284951579243273*I)/1237940039285380274899124224], # [ (-478846096206269117345024348666145495601 + 1249092488629201351470551186322814883283*I)/302231454903657293676544, (-17749319421930878799354766626365926894989 - 18264580106418628161818752318217357231971*I)/1208925819614629174706176, (2801110795431528876849623279389579072819 + 363258850073786330770713557775566973248*I)/604462909807314587353088, (-59053496693129013745775512127095650616252 + 78143588734197260279248498898321500167517*I)/4835703278458516698824704, (-283186724922498212468162690097101115349 - 6443437753863179883794497936345437398276*I)/1208925819614629174706176, (188799118826748909206887165661384998787543 + 84274736720556630026311383931055307398820*I)/9671406556917033397649408, (-5482217151670072904078758141270295025989 + 1818284338672191024475557065444481298568*I)/1208925819614629174706176, (56564463395350195513805521309731217952281 - 360208541416798112109946262159695452898431*I)/19342813113834066795298816, 11*(1259539805728870739006416869463689438068 + 1409136581547898074455004171305324917387*I)/4835703278458516698824704, 5*(-123701190701414554945251071190688818343325 + 30997157322590424677294553832111902279712*I)/38685626227668133590597632, (16130917381301373033736295883982414239781 - 32752041297570919727145380131926943374516*I)/9671406556917033397649408, (650301385108223834347093740500375498354925 + 899526407681131828596801223402866051809258*I)/77371252455336267181195264], # [ (9011388245256140876590294262420614839483 + 8167917972423946282513000869327525382672*I)/1208925819614629174706176, (-426393174084720190126376382194036323028924 + 180692224825757525982858693158209545430621*I)/9671406556917033397649408, (24588556702197802674765733448108154175535 - 45091766022876486566421953254051868331066*I)/4835703278458516698824704, (1872113939365285277373877183750416985089691 + 3030392393733212574744122057679633775773130*I)/77371252455336267181195264, (-222173405538046189185754954524429864167549 - 75193157893478637039381059488387511299116*I)/19342813113834066795298816, (2670821320766222522963689317316937579844558 - 2645837121493554383087981511645435472169191*I)/77371252455336267181195264, 5*(-2100110309556476773796963197283876204940 + 41957457246479840487980315496957337371937*I)/19342813113834066795298816, (-5733743755499084165382383818991531258980593 - 3328949988392698205198574824396695027195732*I)/154742504910672534362390528, (707827994365259025461378911159398206329247 - 265730616623227695108042528694302299777294*I)/77371252455336267181195264, (-1442501604682933002895864804409322823788319 + 11504137805563265043376405214378288793343879*I)/309485009821345068724781056, (-56130472299445561499538726459719629522285 - 61117552419727805035810982426639329818864*I)/9671406556917033397649408, (39053692321126079849054272431599539429908717 - 10209127700342570953247177602860848130710666*I)/1237940039285380274899124224]]) M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512], [ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64], [ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128], [ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16], [ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M**10 == Matrix(S('''[ [ 7369525394972778926719607798014571861/604462909807314587353088 - 229284202061790301477392339912557559*I/151115727451828646838272, -19704281515163975949388435612632058035/1208925819614629174706176 + 14319858347987648723768698170712102887*I/302231454903657293676544, -3623281909451783042932142262164941211/604462909807314587353088 - 6039240602494288615094338643452320495*I/604462909807314587353088, 109260497799140408739847239685705357695/2417851639229258349412352 - 7427566006564572463236368211555511431*I/2417851639229258349412352, -16095803767674394244695716092817006641/2417851639229258349412352 + 10336681897356760057393429626719177583*I/1208925819614629174706176, -42207883340488041844332828574359769743/2417851639229258349412352 - 182332262671671273188016400290188468499*I/4835703278458516698824704], [50566491050825573392726324995779608259/1208925819614629174706176 - 90047007594468146222002432884052362145*I/2417851639229258349412352, 74273703462900000967697427843983822011/1208925819614629174706176 + 265947522682943571171988741842776095421*I/1208925819614629174706176, -116900341394390200556829767923360888429/2417851639229258349412352 - 53153263356679268823910621474478756845*I/2417851639229258349412352, 195407378023867871243426523048612490249/1208925819614629174706176 - 1242417915995360200584837585002906728929*I/9671406556917033397649408, -863597594389821970177319682495878193/302231454903657293676544 + 476936100741548328800725360758734300481*I/9671406556917033397649408, -3154451590535653853562472176601754835575/19342813113834066795298816 - 232909875490506237386836489998407329215*I/2417851639229258349412352], [ -1715444997702484578716037230949868543/302231454903657293676544 + 5009695651321306866158517287924120777*I/302231454903657293676544, -30551582497996879620371947949342101301/604462909807314587353088 - 7632518367986526187139161303331519629*I/151115727451828646838272, 312680739924495153190604170938220575/18889465931478580854784 - 108664334509328818765959789219208459*I/75557863725914323419136, -14693696966703036206178521686918865509/604462909807314587353088 + 72345386220900843930147151999899692401*I/1208925819614629174706176, -8218872496728882299722894680635296519/1208925819614629174706176 - 16776782833358893712645864791807664983*I/1208925819614629174706176, 143237839169380078671242929143670635137/2417851639229258349412352 + 2883817094806115974748882735218469447*I/2417851639229258349412352], [ 3087979417831061365023111800749855987/151115727451828646838272 + 34441942370802869368851419102423997089*I/604462909807314587353088, -148309181940158040917731426845476175667/604462909807314587353088 - 263987151804109387844966835369350904919*I/9671406556917033397649408, 50259518594816377378747711930008883165/1208925819614629174706176 - 95713974916869240305450001443767979653*I/2417851639229258349412352, 153466447023875527996457943521467271119/2417851639229258349412352 + 517285524891117105834922278517084871349*I/2417851639229258349412352, -29184653615412989036678939366291205575/604462909807314587353088 - 27551322282526322041080173287022121083*I/1208925819614629174706176, 196404220110085511863671393922447671649/1208925819614629174706176 - 1204712019400186021982272049902206202145*I/9671406556917033397649408], [ -2632581805949645784625606590600098779/151115727451828646838272 - 589957435912868015140272627522612771*I/37778931862957161709568, 26727850893953715274702844733506310247/302231454903657293676544 - 10825791956782128799168209600694020481*I/302231454903657293676544, -1036348763702366164044671908440791295/151115727451828646838272 + 3188624571414467767868303105288107375*I/151115727451828646838272, -36814959939970644875593411585393242449/604462909807314587353088 - 18457555789119782404850043842902832647*I/302231454903657293676544, 12454491297984637815063964572803058647/604462909807314587353088 - 340489532842249733975074349495329171*I/302231454903657293676544, -19547211751145597258386735573258916681/604462909807314587353088 + 87299583775782199663414539883938008933*I/1208925819614629174706176], [ -40281994229560039213253423262678393183/604462909807314587353088 - 2939986850065527327299273003299736641*I/604462909807314587353088, 331940684638052085845743020267462794181/2417851639229258349412352 - 284574901963624403933361315517248458969*I/1208925819614629174706176, 6453843623051745485064693628073010961/302231454903657293676544 + 36062454107479732681350914931391590957*I/604462909807314587353088, -147665869053634695632880753646441962067/604462909807314587353088 - 305987938660447291246597544085345123927*I/9671406556917033397649408, 107821369195275772166593879711259469423/2417851639229258349412352 - 11645185518211204108659001435013326687*I/302231454903657293676544, 64121228424717666402009446088588091619/1208925819614629174706176 + 265557133337095047883844369272389762133*I/1208925819614629174706176]]''')) def test_issue_17247_expression_blowup_5(): M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) with dotprodsimp(True): assert M.charpoly('x') == PurePoly(x**6 + (-6 - 6*I)*x**5 + 36*I*x**4, x, domain='EX') def test_issue_17247_expression_blowup_6(): M = Matrix(8, 8, [x+i for i in range (64)]) with dotprodsimp(True): assert M.det('bareiss') == 0 def test_issue_17247_expression_blowup_7(): M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) with dotprodsimp(True): assert M.det('berkowitz') == 0 def test_issue_17247_expression_blowup_8(): M = Matrix(8, 8, [x+i for i in range (64)]) with dotprodsimp(True): assert M.det('lu') == 0 def test_issue_17247_expression_blowup_9(): M = Matrix(8, 8, [x+i for i in range (64)]) with dotprodsimp(True): assert M.rref() == (Matrix([ [1, 0, -1, -2, -3, -4, -5, -6], [0, 1, 2, 3, 4, 5, 6, 7], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]]), (0, 1)) def test_issue_17247_expression_blowup_10(): M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) with dotprodsimp(True): assert M.cofactor(0, 0) == 0 def test_issue_17247_expression_blowup_11(): M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) with dotprodsimp(True): assert M.cofactor_matrix() == Matrix(6, 6, [0]*36) def test_issue_17247_expression_blowup_12(): M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) with dotprodsimp(True): assert M.eigenvals() == {6: 1, 6*I: 1, 0: 4} def test_issue_17247_expression_blowup_13(): M = Matrix([ [ 0, 1 - x, x + 1, 1 - x], [1 - x, x + 1, 0, x + 1], [ 0, 1 - x, x + 1, 1 - x], [ 0, 0, 1 - x, 0]]) ev = M.eigenvects() assert ev[0] == (0, 2, [Matrix([0, -1, 0, 1])]) assert ev[1][0] == x - sqrt(2)*(x - 1) + 1 assert ev[1][1] == 1 assert ev[1][2][0].expand(deep=False, numer=True) == Matrix([ [(-x + sqrt(2)*(x - 1) - 1)/(x - 1)], [-4*x/(x**2 - 2*x + 1) + (x + 1)*(x - sqrt(2)*(x - 1) + 1)/(x**2 - 2*x + 1)], [(-x + sqrt(2)*(x - 1) - 1)/(x - 1)], [1] ]) assert ev[2][0] == x + sqrt(2)*(x - 1) + 1 assert ev[2][1] == 1 assert ev[2][2][0].expand(deep=False, numer=True) == Matrix([ [(-x - sqrt(2)*(x - 1) - 1)/(x - 1)], [-4*x/(x**2 - 2*x + 1) + (x + 1)*(x + sqrt(2)*(x - 1) + 1)/(x**2 - 2*x + 1)], [(-x - sqrt(2)*(x - 1) - 1)/(x - 1)], [1] ]) def test_issue_17247_expression_blowup_14(): M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4) with dotprodsimp(True): assert M.echelon_form() == Matrix([ [x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x], [ 0, 4*x, 0, 4*x, 0, 4*x, 0, 4*x], [ 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0]]) def test_issue_17247_expression_blowup_15(): M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4) with dotprodsimp(True): assert M.rowspace() == [Matrix([[x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x]]), Matrix([[0, 4*x, 0, 4*x, 0, 4*x, 0, 4*x]])] def test_issue_17247_expression_blowup_16(): M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4) with dotprodsimp(True): assert M.columnspace() == [Matrix([[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x]]), Matrix([[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1]])] def test_issue_17247_expression_blowup_17(): M = Matrix(8, 8, [x+i for i in range (64)]) with dotprodsimp(True): assert M.nullspace() == [ Matrix([[1],[-2],[1],[0],[0],[0],[0],[0]]), Matrix([[2],[-3],[0],[1],[0],[0],[0],[0]]), Matrix([[3],[-4],[0],[0],[1],[0],[0],[0]]), Matrix([[4],[-5],[0],[0],[0],[1],[0],[0]]), Matrix([[5],[-6],[0],[0],[0],[0],[1],[0]]), Matrix([[6],[-7],[0],[0],[0],[0],[0],[1]])] def test_issue_17247_expression_blowup_18(): M = Matrix(6, 6, ([1+x, 1-x]*3 + [1-x, 1+x]*3)*3) with dotprodsimp(True): assert not M.is_nilpotent() def test_issue_17247_expression_blowup_19(): M = Matrix(S('''[ [ -3/4, 0, 1/4 + I/2, 0], [ 0, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 1/2 - I, 0, 0, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert not M.is_diagonalizable() def test_issue_17247_expression_blowup_20(): M = Matrix([ [x + 1, 1 - x, 0, 0], [1 - x, x + 1, 0, x + 1], [ 0, 1 - x, x + 1, 0], [ 0, 0, 0, x + 1]]) with dotprodsimp(True): assert M.diagonalize() == (Matrix([ [1, 1, 0, (x + 1)/(x - 1)], [1, -1, 0, 0], [1, 1, 1, 0], [0, 0, 0, 1]]), Matrix([ [2, 0, 0, 0], [0, 2*x, 0, 0], [0, 0, x + 1, 0], [0, 0, 0, x + 1]])) def test_issue_17247_expression_blowup_21(): M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.inv(method='GE') == Matrix(S('''[ [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) def test_issue_17247_expression_blowup_22(): M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.inv(method='LU') == Matrix(S('''[ [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) def test_issue_17247_expression_blowup_23(): M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.inv(method='ADJ').expand() == Matrix(S('''[ [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) def test_issue_17247_expression_blowup_24(): M = SparseMatrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.inv(method='CH') == Matrix(S('''[ [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) def test_issue_17247_expression_blowup_25(): M = SparseMatrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.inv(method='LDL') == Matrix(S('''[ [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) def test_issue_17247_expression_blowup_26(): M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024], [ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64], [ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512], [ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64], [ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128], [ -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16], [ 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.rank() == 4 def test_issue_17247_expression_blowup_27(): M = Matrix([ [ 0, 1 - x, x + 1, 1 - x], [1 - x, x + 1, 0, x + 1], [ 0, 1 - x, x + 1, 1 - x], [ 0, 0, 1 - x, 0]]) with dotprodsimp(True): P, J = M.jordan_form() assert P.expand() == Matrix(S('''[ [ 0, 4*x/(x**2 - 2*x + 1), -(-17*x**4 + 12*sqrt(2)*x**4 - 4*sqrt(2)*x**3 + 6*x**3 - 6*x - 4*sqrt(2)*x + 12*sqrt(2) + 17)/(-7*x**4 + 5*sqrt(2)*x**4 - 6*sqrt(2)*x**3 + 8*x**3 - 2*x**2 + 8*x + 6*sqrt(2)*x - 5*sqrt(2) - 7), -(12*sqrt(2)*x**4 + 17*x**4 - 6*x**3 - 4*sqrt(2)*x**3 - 4*sqrt(2)*x + 6*x - 17 + 12*sqrt(2))/(7*x**4 + 5*sqrt(2)*x**4 - 6*sqrt(2)*x**3 - 8*x**3 + 2*x**2 - 8*x + 6*sqrt(2)*x - 5*sqrt(2) + 7)], [x - 1, x/(x - 1) + 1/(x - 1), (-7*x**3 + 5*sqrt(2)*x**3 - x**2 + sqrt(2)*x**2 - sqrt(2)*x - x - 5*sqrt(2) - 7)/(-3*x**3 + 2*sqrt(2)*x**3 - 2*sqrt(2)*x**2 + 3*x**2 + 2*sqrt(2)*x + 3*x - 3 - 2*sqrt(2)), (7*x**3 + 5*sqrt(2)*x**3 + x**2 + sqrt(2)*x**2 - sqrt(2)*x + x - 5*sqrt(2) + 7)/(2*sqrt(2)*x**3 + 3*x**3 - 3*x**2 - 2*sqrt(2)*x**2 - 3*x + 2*sqrt(2)*x - 2*sqrt(2) + 3)], [ 0, 1, -(-3*x**2 + 2*sqrt(2)*x**2 + 2*x - 3 - 2*sqrt(2))/(-x**2 + sqrt(2)*x**2 - 2*sqrt(2)*x + 1 + sqrt(2)), -(2*sqrt(2)*x**2 + 3*x**2 - 2*x - 2*sqrt(2) + 3)/(x**2 + sqrt(2)*x**2 - 2*sqrt(2)*x - 1 + sqrt(2))], [1 - x, 0, 1, 1]]''')).expand() assert J == Matrix(S('''[ [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, x - sqrt(2)*(x - 1) + 1, 0], [0, 0, 0, x + sqrt(2)*(x - 1) + 1]]''')) def test_issue_17247_expression_blowup_28(): M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.singular_values() == S('''[ sqrt(14609315/131072 + sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) + 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2 + sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2), sqrt(14609315/131072 - sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) + 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2 + sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2), sqrt(14609315/131072 - sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2 + sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) - 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2), sqrt(14609315/131072 - sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2 - sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) - 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2)]''') def test_issue_16823(): # This still needs to be fixed if not using dotprodsimp. M = Matrix(S('''[ [1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I,3/64+13/64*I,-23/32-59/256*I,15/128-3/32*I,19/256+551/1024*I], [21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I,119/128+143/128*I,-10879/2048+4343/4096*I,129/256-549/512*I,42533/16384+29103/8192*I], [-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I,3/64+13/64*I,-23/32-59/256*I], [1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I,119/128+143/128*I,-10879/2048+4343/4096*I], [-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I], [1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I], [-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I], [-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I], [0,-6,-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I], [1,-9/4+3*I,-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I], [0,-4*I,0,-6,-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I], [0,1/4+1/2*I,1,-9/4+3*I,-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I]]''')) with dotprodsimp(True): assert M.rank() == 8 def test_issue_18531(): # solve_linear_system still needs fixing but the rref works. M = Matrix([ [1, 1, 1, 1, 1, 0, 1, 0, 0], [1 + sqrt(2), -1 + sqrt(2), 1 - sqrt(2), -sqrt(2) - 1, 1, 1, -1, 1, 1], [-5 + 2*sqrt(2), -5 - 2*sqrt(2), -5 - 2*sqrt(2), -5 + 2*sqrt(2), -7, 2, -7, -2, 0], [-3*sqrt(2) - 1, 1 - 3*sqrt(2), -1 + 3*sqrt(2), 1 + 3*sqrt(2), -7, -5, 7, -5, 3], [7 - 4*sqrt(2), 4*sqrt(2) + 7, 4*sqrt(2) + 7, 7 - 4*sqrt(2), 7, -12, 7, 12, 0], [-1 + 3*sqrt(2), 1 + 3*sqrt(2), -3*sqrt(2) - 1, 1 - 3*sqrt(2), 7, -5, -7, -5, 3], [-3 + 2*sqrt(2), -3 - 2*sqrt(2), -3 - 2*sqrt(2), -3 + 2*sqrt(2), -1, 2, -1, -2, 0], [1 - sqrt(2), -sqrt(2) - 1, 1 + sqrt(2), -1 + sqrt(2), -1, 1, 1, 1, 1] ]) with dotprodsimp(True): assert M.rref() == (Matrix([ [1, 0, 0, 0, 0, 0, 0, 0, 1/2], [0, 1, 0, 0, 0, 0, 0, 0, -1/2], [0, 0, 1, 0, 0, 0, 0, 0, 1/2], [0, 0, 0, 1, 0, 0, 0, 0, -1/2], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, -1/2], [0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, -1/2]]), (0, 1, 2, 3, 4, 5, 6, 7)) def test_creation(): raises(ValueError, lambda: Matrix(5, 5, range(20))) raises(ValueError, lambda: Matrix(5, -1, [])) raises(IndexError, lambda: Matrix((1, 2))[2]) with raises(IndexError): Matrix((1, 2))[3] = 5 assert Matrix() == Matrix([]) == Matrix([[]]) == Matrix(0, 0, []) # anything used to be allowed in a matrix with warns_deprecated_sympy(): assert Matrix([[[1], (2,)]]).tolist() == [[[1], (2,)]] with warns_deprecated_sympy(): assert Matrix([[[1], (2,)]]).T.tolist() == [[[1]], [(2,)]] M = Matrix([[0]]) with warns_deprecated_sympy(): M[0, 0] = S.EmptySet a = Matrix([[x, 0], [0, 0]]) m = a assert m.cols == m.rows assert m.cols == 2 assert m[:] == [x, 0, 0, 0] b = Matrix(2, 2, [x, 0, 0, 0]) m = b assert m.cols == m.rows assert m.cols == 2 assert m[:] == [x, 0, 0, 0] assert a == b assert Matrix(b) == b c23 = Matrix(2, 3, range(1, 7)) c13 = Matrix(1, 3, range(7, 10)) c = Matrix([c23, c13]) assert c.cols == 3 assert c.rows == 3 assert c[:] == [1, 2, 3, 4, 5, 6, 7, 8, 9] assert Matrix(eye(2)) == eye(2) assert ImmutableMatrix(ImmutableMatrix(eye(2))) == ImmutableMatrix(eye(2)) assert ImmutableMatrix(c) == c.as_immutable() assert Matrix(ImmutableMatrix(c)) == ImmutableMatrix(c).as_mutable() assert c is not Matrix(c) dat = [[ones(3,2), ones(3,3)*2], [ones(2,3)*3, ones(2,2)*4]] M = Matrix(dat) assert M == Matrix([ [1, 1, 2, 2, 2], [1, 1, 2, 2, 2], [1, 1, 2, 2, 2], [3, 3, 3, 4, 4], [3, 3, 3, 4, 4]]) assert M.tolist() != dat # keep block form if evaluate=False assert Matrix(dat, evaluate=False).tolist() == dat A = MatrixSymbol("A", 2, 2) dat = [ones(2), A] assert Matrix(dat) == Matrix([ [ 1, 1], [ 1, 1], [A[0, 0], A[0, 1]], [A[1, 0], A[1, 1]]]) with warns_deprecated_sympy(): assert Matrix(dat, evaluate=False).tolist() == [[i] for i in dat] # 0-dim tolerance assert Matrix([ones(2), ones(0)]) == Matrix([ones(2)]) raises(ValueError, lambda: Matrix([ones(2), ones(0, 3)])) raises(ValueError, lambda: Matrix([ones(2), ones(3, 0)])) # mix of Matrix and iterable M = Matrix([[1, 2], [3, 4]]) M2 = Matrix([M, (5, 6)]) assert M2 == Matrix([[1, 2], [3, 4], [5, 6]]) def test_irregular_block(): assert Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3, ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7) == Matrix([ [1, 2, 2, 2, 3, 3], [1, 2, 2, 2, 3, 3], [4, 2, 2, 2, 5, 5], [6, 6, 7, 7, 5, 5]]) def test_tolist(): lst = [[S.One, S.Half, x*y, S.Zero], [x, y, z, x**2], [y, -S.One, z*x, 3]] m = Matrix(lst) assert m.tolist() == lst def test_as_mutable(): assert zeros(0, 3).as_mutable() == zeros(0, 3) assert zeros(0, 3).as_immutable() == ImmutableMatrix(zeros(0, 3)) assert zeros(3, 0).as_immutable() == ImmutableMatrix(zeros(3, 0)) def test_slicing(): m0 = eye(4) assert m0[:3, :3] == eye(3) assert m0[2:4, 0:2] == zeros(2) m1 = Matrix(3, 3, lambda i, j: i + j) assert m1[0, :] == Matrix(1, 3, (0, 1, 2)) assert m1[1:3, 1] == Matrix(2, 1, (2, 3)) m2 = Matrix([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]) assert m2[:, -1] == Matrix(4, 1, [3, 7, 11, 15]) assert m2[-2:, :] == Matrix([[8, 9, 10, 11], [12, 13, 14, 15]]) def test_submatrix_assignment(): m = zeros(4) m[2:4, 2:4] = eye(2) assert m == Matrix(((0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1))) m[:2, :2] = eye(2) assert m == eye(4) m[:, 0] = Matrix(4, 1, (1, 2, 3, 4)) assert m == Matrix(((1, 0, 0, 0), (2, 1, 0, 0), (3, 0, 1, 0), (4, 0, 0, 1))) m[:, :] = zeros(4) assert m == zeros(4) m[:, :] = [(1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16)] assert m == Matrix(((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))) m[:2, 0] = [0, 0] assert m == Matrix(((0, 2, 3, 4), (0, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))) def test_extract(): m = Matrix(4, 3, lambda i, j: i*3 + j) assert m.extract([0, 1, 3], [0, 1]) == Matrix(3, 2, [0, 1, 3, 4, 9, 10]) assert m.extract([0, 3], [0, 0, 2]) == Matrix(2, 3, [0, 0, 2, 9, 9, 11]) assert m.extract(range(4), range(3)) == m raises(IndexError, lambda: m.extract([4], [0])) raises(IndexError, lambda: m.extract([0], [3])) def test_reshape(): m0 = eye(3) assert m0.reshape(1, 9) == Matrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1)) m1 = Matrix(3, 4, lambda i, j: i + j) assert m1.reshape( 4, 3) == Matrix(((0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5))) assert m1.reshape(2, 6) == Matrix(((0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5))) def test_applyfunc(): m0 = eye(3) assert m0.applyfunc(lambda x: 2*x) == eye(3)*2 assert m0.applyfunc(lambda x: 0) == zeros(3) def test_expand(): m0 = Matrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]]) # Test if expand() returns a matrix m1 = m0.expand() assert m1 == Matrix( [[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]]) a = Symbol('a', real=True) assert Matrix([exp(I*a)]).expand(complex=True) == \ Matrix([cos(a) + I*sin(a)]) assert Matrix([[0, 1, 2], [0, 0, -1], [0, 0, 0]]).exp() == Matrix([ [1, 1, Rational(3, 2)], [0, 1, -1], [0, 0, 1]] ) def test_refine(): m0 = Matrix([[Abs(x)**2, sqrt(x**2)], [sqrt(x**2)*Abs(y)**2, sqrt(y**2)*Abs(x)**2]]) m1 = m0.refine(Q.real(x) & Q.real(y)) assert m1 == Matrix([[x**2, Abs(x)], [y**2*Abs(x), x**2*Abs(y)]]) m1 = m0.refine(Q.positive(x) & Q.positive(y)) assert m1 == Matrix([[x**2, x], [x*y**2, x**2*y]]) m1 = m0.refine(Q.negative(x) & Q.negative(y)) assert m1 == Matrix([[x**2, -x], [-x*y**2, -x**2*y]]) def test_random(): M = randMatrix(3, 3) M = randMatrix(3, 3, seed=3) assert M == randMatrix(3, 3, seed=3) M = randMatrix(3, 4, 0, 150) M = randMatrix(3, seed=4, symmetric=True) assert M == randMatrix(3, seed=4, symmetric=True) S = M.copy() S.simplify() assert S == M # doesn't fail when elements are Numbers, not int rng = random.Random(4) assert M == randMatrix(3, symmetric=True, prng=rng) # Ensure symmetry for size in (10, 11): # Test odd and even for percent in (100, 70, 30): M = randMatrix(size, symmetric=True, percent=percent, prng=rng) assert M == M.T M = randMatrix(10, min=1, percent=70) zero_count = 0 for i in range(M.shape[0]): for j in range(M.shape[1]): if M[i, j] == 0: zero_count += 1 assert zero_count == 30 def test_inverse(): A = eye(4) assert A.inv() == eye(4) assert A.inv(method="LU") == eye(4) assert A.inv(method="ADJ") == eye(4) assert A.inv(method="CH") == eye(4) assert A.inv(method="LDL") == eye(4) assert A.inv(method="QR") == eye(4) A = Matrix([[2, 3, 5], [3, 6, 2], [8, 3, 6]]) Ainv = A.inv() assert A*Ainv == eye(3) assert A.inv(method="LU") == Ainv assert A.inv(method="ADJ") == Ainv assert A.inv(method="CH") == Ainv assert A.inv(method="LDL") == Ainv assert A.inv(method="QR") == Ainv AA = Matrix([[0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0], [1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0], [1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1], [1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1], [0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0], [1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1], [0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1], [1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0], [0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0], [1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1], [1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0], [0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0], [1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1], [0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1], [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1], [0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0], [0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0]]) assert AA.inv(method="BLOCK") * AA == eye(AA.shape[0]) # test that immutability is not a problem cls = ImmutableMatrix m = cls([[48, 49, 31], [ 9, 71, 94], [59, 28, 65]]) assert all(type(m.inv(s)) is cls for s in 'GE ADJ LU CH LDL QR'.split()) cls = ImmutableSparseMatrix m = cls([[48, 49, 31], [ 9, 71, 94], [59, 28, 65]]) assert all(type(m.inv(s)) is cls for s in 'GE ADJ LU CH LDL QR'.split()) def test_matrix_inverse_mod(): A = Matrix(2, 1, [1, 0]) raises(NonSquareMatrixError, lambda: A.inv_mod(2)) A = Matrix(2, 2, [1, 0, 0, 0]) raises(ValueError, lambda: A.inv_mod(2)) A = Matrix(2, 2, [1, 2, 3, 4]) Ai = Matrix(2, 2, [1, 1, 0, 1]) assert A.inv_mod(3) == Ai A = Matrix(2, 2, [1, 0, 0, 1]) assert A.inv_mod(2) == A A = Matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]) raises(ValueError, lambda: A.inv_mod(5)) A = Matrix(3, 3, [5, 1, 3, 2, 6, 0, 2, 1, 1]) Ai = Matrix(3, 3, [6, 8, 0, 1, 5, 6, 5, 6, 4]) assert A.inv_mod(9) == Ai A = Matrix(3, 3, [1, 6, -3, 4, 1, -5, 3, -5, 5]) Ai = Matrix(3, 3, [4, 3, 3, 1, 2, 5, 1, 5, 1]) assert A.inv_mod(6) == Ai A = Matrix(3, 3, [1, 6, 1, 4, 1, 5, 3, 2, 5]) Ai = Matrix(3, 3, [6, 0, 3, 6, 6, 4, 1, 6, 1]) assert A.inv_mod(7) == Ai def test_jacobian_hessian(): L = Matrix(1, 2, [x**2*y, 2*y**2 + x*y]) syms = [x, y] assert L.jacobian(syms) == Matrix([[2*x*y, x**2], [y, 4*y + x]]) L = Matrix(1, 2, [x, x**2*y**3]) assert L.jacobian(syms) == Matrix([[1, 0], [2*x*y**3, x**2*3*y**2]]) f = x**2*y syms = [x, y] assert hessian(f, syms) == Matrix([[2*y, 2*x], [2*x, 0]]) f = x**2*y**3 assert hessian(f, syms) == \ Matrix([[2*y**3, 6*x*y**2], [6*x*y**2, 6*x**2*y]]) f = z + x*y**2 g = x**2 + 2*y**3 ans = Matrix([[0, 2*y], [2*y, 2*x]]) assert ans == hessian(f, Matrix([x, y])) assert ans == hessian(f, Matrix([x, y]).T) assert hessian(f, (y, x), [g]) == Matrix([ [ 0, 6*y**2, 2*x], [6*y**2, 2*x, 2*y], [ 2*x, 2*y, 0]]) def test_wronskian(): assert wronskian([cos(x), sin(x)], x) == cos(x)**2 + sin(x)**2 assert wronskian([exp(x), exp(2*x)], x) == exp(3*x) assert wronskian([exp(x), x], x) == exp(x) - x*exp(x) assert wronskian([1, x, x**2], x) == 2 w1 = -6*exp(x)*sin(x)*x + 6*cos(x)*exp(x)*x**2 - 6*exp(x)*cos(x)*x - \ exp(x)*cos(x)*x**3 + exp(x)*sin(x)*x**3 assert wronskian([exp(x), cos(x), x**3], x).expand() == w1 assert wronskian([exp(x), cos(x), x**3], x, method='berkowitz').expand() \ == w1 w2 = -x**3*cos(x)**2 - x**3*sin(x)**2 - 6*x*cos(x)**2 - 6*x*sin(x)**2 assert wronskian([sin(x), cos(x), x**3], x).expand() == w2 assert wronskian([sin(x), cos(x), x**3], x, method='berkowitz').expand() \ == w2 assert wronskian([], x) == 1 def test_subs(): assert Matrix([[1, x], [x, 4]]).subs(x, 5) == Matrix([[1, 5], [5, 4]]) assert Matrix([[x, 2], [x + y, 4]]).subs([[x, -1], [y, -2]]) == \ Matrix([[-1, 2], [-3, 4]]) assert Matrix([[x, 2], [x + y, 4]]).subs([(x, -1), (y, -2)]) == \ Matrix([[-1, 2], [-3, 4]]) assert Matrix([[x, 2], [x + y, 4]]).subs({x: -1, y: -2}) == \ Matrix([[-1, 2], [-3, 4]]) assert Matrix([x*y]).subs({x: y - 1, y: x - 1}, simultaneous=True) == \ Matrix([(x - 1)*(y - 1)]) for cls in classes: assert Matrix([[2, 0], [0, 2]]) == cls.eye(2).subs(1, 2) def test_xreplace(): assert Matrix([[1, x], [x, 4]]).xreplace({x: 5}) == \ Matrix([[1, 5], [5, 4]]) assert Matrix([[x, 2], [x + y, 4]]).xreplace({x: -1, y: -2}) == \ Matrix([[-1, 2], [-3, 4]]) for cls in classes: assert Matrix([[2, 0], [0, 2]]) == cls.eye(2).xreplace({1: 2}) def test_simplify(): n = Symbol('n') f = Function('f') M = Matrix([[ 1/x + 1/y, (x + x*y) / x ], [ (f(x) + y*f(x))/f(x), 2 * (1/n - cos(n * pi)/n) / pi ]]) M.simplify() assert M == Matrix([[ (x + y)/(x * y), 1 + y ], [ 1 + y, 2*((1 - 1*cos(pi*n))/(pi*n)) ]]) eq = (1 + x)**2 M = Matrix([[eq]]) M.simplify() assert M == Matrix([[eq]]) M.simplify(ratio=oo) == M assert M == Matrix([[eq.simplify(ratio=oo)]]) def test_transpose(): M = Matrix([[1, 2, 3, 4, 5, 6, 7, 8, 9, 0], [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]]) assert M.T == Matrix( [ [1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6], [7, 7], [8, 8], [9, 9], [0, 0] ]) assert M.T.T == M assert M.T == M.transpose() def test_conjugate(): M = Matrix([[0, I, 5], [1, 2, 0]]) assert M.T == Matrix([[0, 1], [I, 2], [5, 0]]) assert M.C == Matrix([[0, -I, 5], [1, 2, 0]]) assert M.C == M.conjugate() assert M.H == M.T.C assert M.H == Matrix([[ 0, 1], [-I, 2], [ 5, 0]]) def test_conj_dirac(): raises(AttributeError, lambda: eye(3).D) M = Matrix([[1, I, I, I], [0, 1, I, I], [0, 0, 1, I], [0, 0, 0, 1]]) assert M.D == Matrix([[ 1, 0, 0, 0], [-I, 1, 0, 0], [-I, -I, -1, 0], [-I, -I, I, -1]]) def test_trace(): M = Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 8]]) assert M.trace() == 14 def test_shape(): M = Matrix([[x, 0, 0], [0, y, 0]]) assert M.shape == (2, 3) def test_col_row_op(): M = Matrix([[x, 0, 0], [0, y, 0]]) M.row_op(1, lambda r, j: r + j + 1) assert M == Matrix([[x, 0, 0], [1, y + 2, 3]]) M.col_op(0, lambda c, j: c + y**j) assert M == Matrix([[x + 1, 0, 0], [1 + y, y + 2, 3]]) # neither row nor slice give copies that allow the original matrix to # be changed assert M.row(0) == Matrix([[x + 1, 0, 0]]) r1 = M.row(0) r1[0] = 42 assert M[0, 0] == x + 1 r1 = M[0, :-1] # also testing negative slice r1[0] = 42 assert M[0, 0] == x + 1 c1 = M.col(0) assert c1 == Matrix([x + 1, 1 + y]) c1[0] = 0 assert M[0, 0] == x + 1 c1 = M[:, 0] c1[0] = 42 assert M[0, 0] == x + 1 def test_zip_row_op(): for cls in classes[:2]: # XXX: immutable matrices don't support row ops M = cls.eye(3) M.zip_row_op(1, 0, lambda v, u: v + 2*u) assert M == cls([[1, 0, 0], [2, 1, 0], [0, 0, 1]]) M = cls.eye(3)*2 M[0, 1] = -1 M.zip_row_op(1, 0, lambda v, u: v + 2*u); M assert M == cls([[2, -1, 0], [4, 0, 0], [0, 0, 2]]) def test_issue_3950(): m = Matrix([1, 2, 3]) a = Matrix([1, 2, 3]) b = Matrix([2, 2, 3]) assert not (m in []) assert not (m in [1]) assert m != 1 assert m == a assert m != b def test_issue_3981(): class Index1: def __index__(self): return 1 class Index2: def __index__(self): return 2 index1 = Index1() index2 = Index2() m = Matrix([1, 2, 3]) assert m[index2] == 3 m[index2] = 5 assert m[2] == 5 m = Matrix([[1, 2, 3], [4, 5, 6]]) assert m[index1, index2] == 6 assert m[1, index2] == 6 assert m[index1, 2] == 6 m[index1, index2] = 4 assert m[1, 2] == 4 m[1, index2] = 6 assert m[1, 2] == 6 m[index1, 2] = 8 assert m[1, 2] == 8 def test_evalf(): a = Matrix([sqrt(5), 6]) assert all(a.evalf()[i] == a[i].evalf() for i in range(2)) assert all(a.evalf(2)[i] == a[i].evalf(2) for i in range(2)) assert all(a.n(2)[i] == a[i].n(2) for i in range(2)) def test_is_symbolic(): a = Matrix([[x, x], [x, x]]) assert a.is_symbolic() is True a = Matrix([[1, 2, 3, 4], [5, 6, 7, 8]]) assert a.is_symbolic() is False a = Matrix([[1, 2, 3, 4], [5, 6, x, 8]]) assert a.is_symbolic() is True a = Matrix([[1, x, 3]]) assert a.is_symbolic() is True a = Matrix([[1, 2, 3]]) assert a.is_symbolic() is False a = Matrix([[1], [x], [3]]) assert a.is_symbolic() is True a = Matrix([[1], [2], [3]]) assert a.is_symbolic() is False def test_is_upper(): a = Matrix([[1, 2, 3]]) assert a.is_upper is True a = Matrix([[1], [2], [3]]) assert a.is_upper is False a = zeros(4, 2) assert a.is_upper is True def test_is_lower(): a = Matrix([[1, 2, 3]]) assert a.is_lower is False a = Matrix([[1], [2], [3]]) assert a.is_lower is True def test_is_nilpotent(): a = Matrix(4, 4, [0, 2, 1, 6, 0, 0, 1, 2, 0, 0, 0, 3, 0, 0, 0, 0]) assert a.is_nilpotent() a = Matrix([[1, 0], [0, 1]]) assert not a.is_nilpotent() a = Matrix([]) assert a.is_nilpotent() def test_zeros_ones_fill(): n, m = 3, 5 a = zeros(n, m) a.fill( 5 ) b = 5 * ones(n, m) assert a == b assert a.rows == b.rows == 3 assert a.cols == b.cols == 5 assert a.shape == b.shape == (3, 5) assert zeros(2) == zeros(2, 2) assert ones(2) == ones(2, 2) assert zeros(2, 3) == Matrix(2, 3, [0]*6) assert ones(2, 3) == Matrix(2, 3, [1]*6) a.fill(0) assert a == zeros(n, m) def test_empty_zeros(): a = zeros(0) assert a == Matrix() a = zeros(0, 2) assert a.rows == 0 assert a.cols == 2 a = zeros(2, 0) assert a.rows == 2 assert a.cols == 0 def test_issue_3749(): a = Matrix([[x**2, x*y], [x*sin(y), x*cos(y)]]) assert a.diff(x) == Matrix([[2*x, y], [sin(y), cos(y)]]) assert Matrix([ [x, -x, x**2], [exp(x), 1/x - exp(-x), x + 1/x]]).limit(x, oo) == \ Matrix([[oo, -oo, oo], [oo, 0, oo]]) assert Matrix([ [(exp(x) - 1)/x, 2*x + y*x, x**x ], [1/x, abs(x), abs(sin(x + 1))]]).limit(x, 0) == \ Matrix([[1, 0, 1], [oo, 0, sin(1)]]) assert a.integrate(x) == Matrix([ [Rational(1, 3)*x**3, y*x**2/2], [x**2*sin(y)/2, x**2*cos(y)/2]]) def test_inv_iszerofunc(): A = eye(4) A.col_swap(0, 1) for method in "GE", "LU": assert A.inv(method=method, iszerofunc=lambda x: x == 0) == \ A.inv(method="ADJ") def test_jacobian_metrics(): rho, phi = symbols("rho,phi") X = Matrix([rho*cos(phi), rho*sin(phi)]) Y = Matrix([rho, phi]) J = X.jacobian(Y) assert J == X.jacobian(Y.T) assert J == (X.T).jacobian(Y) assert J == (X.T).jacobian(Y.T) g = J.T*eye(J.shape[0])*J g = g.applyfunc(trigsimp) assert g == Matrix([[1, 0], [0, rho**2]]) def test_jacobian2(): rho, phi = symbols("rho,phi") X = Matrix([rho*cos(phi), rho*sin(phi), rho**2]) Y = Matrix([rho, phi]) J = Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)], [ 2*rho, 0], ]) assert X.jacobian(Y) == J def test_issue_4564(): X = Matrix([exp(x + y + z), exp(x + y + z), exp(x + y + z)]) Y = Matrix([x, y, z]) for i in range(1, 3): for j in range(1, 3): X_slice = X[:i, :] Y_slice = Y[:j, :] J = X_slice.jacobian(Y_slice) assert J.rows == i assert J.cols == j for k in range(j): assert J[:, k] == X_slice def test_nonvectorJacobian(): X = Matrix([[exp(x + y + z), exp(x + y + z)], [exp(x + y + z), exp(x + y + z)]]) raises(TypeError, lambda: X.jacobian(Matrix([x, y, z]))) X = X[0, :] Y = Matrix([[x, y], [x, z]]) raises(TypeError, lambda: X.jacobian(Y)) raises(TypeError, lambda: X.jacobian(Matrix([ [x, y], [x, z] ]))) def test_vec(): m = Matrix([[1, 3], [2, 4]]) m_vec = m.vec() assert m_vec.cols == 1 for i in range(4): assert m_vec[i] == i + 1 def test_vech(): m = Matrix([[1, 2], [2, 3]]) m_vech = m.vech() assert m_vech.cols == 1 for i in range(3): assert m_vech[i] == i + 1 m_vech = m.vech(diagonal=False) assert m_vech[0] == 2 m = Matrix([[1, x*(x + y)], [y*x + x**2, 1]]) m_vech = m.vech(diagonal=False) assert m_vech[0] == y*x + x**2 m = Matrix([[1, x*(x + y)], [y*x, 1]]) m_vech = m.vech(diagonal=False, check_symmetry=False) assert m_vech[0] == y*x raises(ShapeError, lambda: Matrix([[1, 3]]).vech()) raises(ValueError, lambda: Matrix([[1, 3], [2, 4]]).vech()) raises(ShapeError, lambda: Matrix([[1, 3]]).vech()) raises(ValueError, lambda: Matrix([[1, 3], [2, 4]]).vech()) def test_diag(): # mostly tested in testcommonmatrix.py assert diag([1, 2, 3]) == Matrix([1, 2, 3]) m = [1, 2, [3]] raises(ValueError, lambda: diag(m)) assert diag(m, strict=False) == Matrix([1, 2, 3]) def test_get_diag_blocks1(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) assert a.get_diag_blocks() == [a] assert b.get_diag_blocks() == [b] assert c.get_diag_blocks() == [c] def test_get_diag_blocks2(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) assert diag(a, b, b).get_diag_blocks() == [a, b, b] assert diag(a, b, c).get_diag_blocks() == [a, b, c] assert diag(a, c, b).get_diag_blocks() == [a, c, b] assert diag(c, c, b).get_diag_blocks() == [c, c, b] def test_inv_block(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) A = diag(a, b, b) assert A.inv(try_block_diag=True) == diag(a.inv(), b.inv(), b.inv()) A = diag(a, b, c) assert A.inv(try_block_diag=True) == diag(a.inv(), b.inv(), c.inv()) A = diag(a, c, b) assert A.inv(try_block_diag=True) == diag(a.inv(), c.inv(), b.inv()) A = diag(a, a, b, a, c, a) assert A.inv(try_block_diag=True) == diag( a.inv(), a.inv(), b.inv(), a.inv(), c.inv(), a.inv()) assert A.inv(try_block_diag=True, method="ADJ") == diag( a.inv(method="ADJ"), a.inv(method="ADJ"), b.inv(method="ADJ"), a.inv(method="ADJ"), c.inv(method="ADJ"), a.inv(method="ADJ")) def test_creation_args(): """ Check that matrix dimensions can be specified using any reasonable type (see issue 4614). """ raises(ValueError, lambda: zeros(3, -1)) raises(TypeError, lambda: zeros(1, 2, 3, 4)) assert zeros(int(3)) == zeros(3) assert zeros(Integer(3)) == zeros(3) raises(ValueError, lambda: zeros(3.)) assert eye(int(3)) == eye(3) assert eye(Integer(3)) == eye(3) raises(ValueError, lambda: eye(3.)) assert ones(int(3), Integer(4)) == ones(3, 4) raises(TypeError, lambda: Matrix(5)) raises(TypeError, lambda: Matrix(1, 2)) raises(ValueError, lambda: Matrix([1, [2]])) def test_diagonal_symmetrical(): m = Matrix(2, 2, [0, 1, 1, 0]) assert not m.is_diagonal() assert m.is_symmetric() assert m.is_symmetric(simplify=False) m = Matrix(2, 2, [1, 0, 0, 1]) assert m.is_diagonal() m = diag(1, 2, 3) assert m.is_diagonal() assert m.is_symmetric() m = Matrix(3, 3, [1, 0, 0, 0, 2, 0, 0, 0, 3]) assert m == diag(1, 2, 3) m = Matrix(2, 3, zeros(2, 3)) assert not m.is_symmetric() assert m.is_diagonal() m = Matrix(((5, 0), (0, 6), (0, 0))) assert m.is_diagonal() m = Matrix(((5, 0, 0), (0, 6, 0))) assert m.is_diagonal() m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3]) assert m.is_symmetric() assert not m.is_symmetric(simplify=False) assert m.expand().is_symmetric(simplify=False) def test_diagonalization(): m = Matrix([[1, 2+I], [2-I, 3]]) assert m.is_diagonalizable() m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10]) assert not m.is_diagonalizable() assert not m.is_symmetric() raises(NonSquareMatrixError, lambda: m.diagonalize()) # diagonalizable m = diag(1, 2, 3) (P, D) = m.diagonalize() assert P == eye(3) assert D == m m = Matrix(2, 2, [0, 1, 1, 0]) assert m.is_symmetric() assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D m = Matrix(2, 2, [1, 0, 0, 3]) assert m.is_symmetric() assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D assert P == eye(2) assert D == m m = Matrix(2, 2, [1, 1, 0, 0]) assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D for i in P: assert i.as_numer_denom()[1] == 1 m = Matrix(2, 2, [1, 0, 0, 0]) assert m.is_diagonal() assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D assert P == Matrix([[0, 1], [1, 0]]) # diagonalizable, complex only m = Matrix(2, 2, [0, 1, -1, 0]) assert not m.is_diagonalizable(True) raises(MatrixError, lambda: m.diagonalize(True)) assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D # not diagonalizable m = Matrix(2, 2, [0, 1, 0, 0]) assert not m.is_diagonalizable() raises(MatrixError, lambda: m.diagonalize()) m = Matrix(3, 3, [-3, 1, -3, 20, 3, 10, 2, -2, 4]) assert not m.is_diagonalizable() raises(MatrixError, lambda: m.diagonalize()) # symbolic a, b, c, d = symbols('a b c d') m = Matrix(2, 2, [a, c, c, b]) assert m.is_symmetric() assert m.is_diagonalizable() def test_issue_15887(): # Mutable matrix should not use cache a = MutableDenseMatrix([[0, 1], [1, 0]]) assert a.is_diagonalizable() is True a[1, 0] = 0 assert a.is_diagonalizable() is False a = MutableDenseMatrix([[0, 1], [1, 0]]) a.diagonalize() a[1, 0] = 0 raises(MatrixError, lambda: a.diagonalize()) # Test deprecated cache and kwargs with warns_deprecated_sympy(): a.is_diagonalizable(clear_cache=True) with warns_deprecated_sympy(): a.is_diagonalizable(clear_subproducts=True) def test_jordan_form(): m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10]) raises(NonSquareMatrixError, lambda: m.jordan_form()) # diagonalizable m = Matrix(3, 3, [7, -12, 6, 10, -19, 10, 12, -24, 13]) Jmust = Matrix(3, 3, [-1, 0, 0, 0, 1, 0, 0, 0, 1]) P, J = m.jordan_form() assert Jmust == J assert Jmust == m.diagonalize()[1] # m = Matrix(3, 3, [0, 6, 3, 1, 3, 1, -2, 2, 1]) # m.jordan_form() # very long # m.jordan_form() # # diagonalizable, complex only # Jordan cells # complexity: one of eigenvalues is zero m = Matrix(3, 3, [0, 1, 0, -4, 4, 0, -2, 1, 2]) # The blocks are ordered according to the value of their eigenvalues, # in order to make the matrix compatible with .diagonalize() Jmust = Matrix(3, 3, [2, 1, 0, 0, 2, 0, 0, 0, 2]) P, J = m.jordan_form() assert Jmust == J # complexity: all of eigenvalues are equal m = Matrix(3, 3, [2, 6, -15, 1, 1, -5, 1, 2, -6]) # Jmust = Matrix(3, 3, [-1, 0, 0, 0, -1, 1, 0, 0, -1]) # same here see 1456ff Jmust = Matrix(3, 3, [-1, 1, 0, 0, -1, 0, 0, 0, -1]) P, J = m.jordan_form() assert Jmust == J # complexity: two of eigenvalues are zero m = Matrix(3, 3, [4, -5, 2, 5, -7, 3, 6, -9, 4]) Jmust = Matrix(3, 3, [0, 1, 0, 0, 0, 0, 0, 0, 1]) P, J = m.jordan_form() assert Jmust == J m = Matrix(4, 4, [6, 5, -2, -3, -3, -1, 3, 3, 2, 1, -2, -3, -1, 1, 5, 5]) Jmust = Matrix(4, 4, [2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2] ) P, J = m.jordan_form() assert Jmust == J m = Matrix(4, 4, [6, 2, -8, -6, -3, 2, 9, 6, 2, -2, -8, -6, -1, 0, 3, 4]) # Jmust = Matrix(4, 4, [2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, -2]) # same here see 1456ff Jmust = Matrix(4, 4, [-2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2]) P, J = m.jordan_form() assert Jmust == J m = Matrix(4, 4, [5, 4, 2, 1, 0, 1, -1, -1, -1, -1, 3, 0, 1, 1, -1, 2]) assert not m.is_diagonalizable() Jmust = Matrix(4, 4, [1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 1, 0, 0, 0, 4]) P, J = m.jordan_form() assert Jmust == J # checking for maximum precision to remain unchanged m = Matrix([[Float('1.0', precision=110), Float('2.0', precision=110)], [Float('3.14159265358979323846264338327', precision=110), Float('4.0', precision=110)]]) P, J = m.jordan_form() for term in J.values(): if isinstance(term, Float): assert term._prec == 110 def test_jordan_form_complex_issue_9274(): A = Matrix([[ 2, 4, 1, 0], [-4, 2, 0, 1], [ 0, 0, 2, 4], [ 0, 0, -4, 2]]) p = 2 - 4*I; q = 2 + 4*I; Jmust1 = Matrix([[p, 1, 0, 0], [0, p, 0, 0], [0, 0, q, 1], [0, 0, 0, q]]) Jmust2 = Matrix([[q, 1, 0, 0], [0, q, 0, 0], [0, 0, p, 1], [0, 0, 0, p]]) P, J = A.jordan_form() assert J == Jmust1 or J == Jmust2 assert simplify(P*J*P.inv()) == A def test_issue_10220(): # two non-orthogonal Jordan blocks with eigenvalue 1 M = Matrix([[1, 0, 0, 1], [0, 1, 1, 0], [0, 0, 1, 1], [0, 0, 0, 1]]) P, J = M.jordan_form() assert P == Matrix([[0, 1, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]) assert J == Matrix([ [1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) def test_jordan_form_issue_15858(): A = Matrix([ [1, 1, 1, 0], [-2, -1, 0, -1], [0, 0, -1, -1], [0, 0, 2, 1]]) (P, J) = A.jordan_form() assert P.expand() == Matrix([ [ -I, -I/2, I, I/2], [-1 + I, 0, -1 - I, 0], [ 0, -S(1)/2 - I/2, 0, -S(1)/2 + I/2], [ 0, 1, 0, 1]]) assert J == Matrix([ [-I, 1, 0, 0], [0, -I, 0, 0], [0, 0, I, 1], [0, 0, 0, I]]) def test_Matrix_berkowitz_charpoly(): UA, K_i, K_w = symbols('UA K_i K_w') A = Matrix([[-K_i - UA + K_i**2/(K_i + K_w), K_i*K_w/(K_i + K_w)], [ K_i*K_w/(K_i + K_w), -K_w + K_w**2/(K_i + K_w)]]) charpoly = A.charpoly(x) assert charpoly == \ Poly(x**2 + (K_i*UA + K_w*UA + 2*K_i*K_w)/(K_i + K_w)*x + K_i*K_w*UA/(K_i + K_w), x, domain='ZZ(K_i,K_w,UA)') assert type(charpoly) is PurePoly A = Matrix([[1, 3], [2, 0]]) assert A.charpoly() == A.charpoly(x) == PurePoly(x**2 - x - 6) A = Matrix([[1, 2], [x, 0]]) p = A.charpoly(x) assert p.gen != x assert p.as_expr().subs(p.gen, x) == x**2 - 3*x def test_exp_jordan_block(): l = Symbol('lamda') m = Matrix.jordan_block(1, l) assert m._eval_matrix_exp_jblock() == Matrix([[exp(l)]]) m = Matrix.jordan_block(3, l) assert m._eval_matrix_exp_jblock() == \ Matrix([ [exp(l), exp(l), exp(l)/2], [0, exp(l), exp(l)], [0, 0, exp(l)]]) def test_exp(): m = Matrix([[3, 4], [0, -2]]) m_exp = Matrix([[exp(3), -4*exp(-2)/5 + 4*exp(3)/5], [0, exp(-2)]]) assert m.exp() == m_exp assert exp(m) == m_exp m = Matrix([[1, 0], [0, 1]]) assert m.exp() == Matrix([[E, 0], [0, E]]) assert exp(m) == Matrix([[E, 0], [0, E]]) m = Matrix([[1, -1], [1, 1]]) assert m.exp() == Matrix([[E*cos(1), -E*sin(1)], [E*sin(1), E*cos(1)]]) def test_log(): l = Symbol('lamda') m = Matrix.jordan_block(1, l) assert m._eval_matrix_log_jblock() == Matrix([[log(l)]]) m = Matrix.jordan_block(4, l) assert m._eval_matrix_log_jblock() == \ Matrix( [ [log(l), 1/l, -1/(2*l**2), 1/(3*l**3)], [0, log(l), 1/l, -1/(2*l**2)], [0, 0, log(l), 1/l], [0, 0, 0, log(l)] ] ) m = Matrix( [[0, 0, 1], [0, 0, 0], [-1, 0, 0]] ) raises(MatrixError, lambda: m.log()) def test_has(): A = Matrix(((x, y), (2, 3))) assert A.has(x) assert not A.has(z) assert A.has(Symbol) A = A.subs(x, 2) assert not A.has(x) def test_find_reasonable_pivot_naive_finds_guaranteed_nonzero1(): # Test if matrices._find_reasonable_pivot_naive() # finds a guaranteed non-zero pivot when the # some of the candidate pivots are symbolic expressions. # Keyword argument: simpfunc=None indicates that no simplifications # should be performed during the search. x = Symbol('x') column = Matrix(3, 1, [x, cos(x)**2 + sin(x)**2, S.Half]) pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\ _find_reasonable_pivot_naive(column) assert pivot_val == S.Half def test_find_reasonable_pivot_naive_finds_guaranteed_nonzero2(): # Test if matrices._find_reasonable_pivot_naive() # finds a guaranteed non-zero pivot when the # some of the candidate pivots are symbolic expressions. # Keyword argument: simpfunc=_simplify indicates that the search # should attempt to simplify candidate pivots. x = Symbol('x') column = Matrix(3, 1, [x, cos(x)**2+sin(x)**2+x**2, cos(x)**2+sin(x)**2]) pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\ _find_reasonable_pivot_naive(column, simpfunc=_simplify) assert pivot_val == 1 def test_find_reasonable_pivot_naive_simplifies(): # Test if matrices._find_reasonable_pivot_naive() # simplifies candidate pivots, and reports # their offsets correctly. x = Symbol('x') column = Matrix(3, 1, [x, cos(x)**2+sin(x)**2+x, cos(x)**2+sin(x)**2]) pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\ _find_reasonable_pivot_naive(column, simpfunc=_simplify) assert len(simplified) == 2 assert simplified[0][0] == 1 assert simplified[0][1] == 1+x assert simplified[1][0] == 2 assert simplified[1][1] == 1 def test_errors(): raises(ValueError, lambda: Matrix([[1, 2], [1]])) raises(IndexError, lambda: Matrix([[1, 2]])[1.2, 5]) raises(IndexError, lambda: Matrix([[1, 2]])[1, 5.2]) raises(ValueError, lambda: randMatrix(3, c=4, symmetric=True)) raises(ValueError, lambda: Matrix([1, 2]).reshape(4, 6)) raises(ShapeError, lambda: Matrix([[1, 2], [3, 4]]).copyin_matrix([1, 0], Matrix([1, 2]))) raises(TypeError, lambda: Matrix([[1, 2], [3, 4]]).copyin_list([0, 1], set())) raises(NonSquareMatrixError, lambda: Matrix([[1, 2, 3], [2, 3, 0]]).inv()) raises(ShapeError, lambda: Matrix(1, 2, [1, 2]).row_join(Matrix([[1, 2], [3, 4]]))) raises( ShapeError, lambda: Matrix([1, 2]).col_join(Matrix([[1, 2], [3, 4]]))) raises(ShapeError, lambda: Matrix([1]).row_insert(1, Matrix([[1, 2], [3, 4]]))) raises(ShapeError, lambda: Matrix([1]).col_insert(1, Matrix([[1, 2], [3, 4]]))) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).trace()) raises(TypeError, lambda: Matrix([1]).applyfunc(1)) raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).minor(4, 5)) raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).minor_submatrix(4, 5)) raises(TypeError, lambda: Matrix([1, 2, 3]).cross(1)) raises(TypeError, lambda: Matrix([1, 2, 3]).dot(1)) raises(ShapeError, lambda: Matrix([1, 2, 3]).dot(Matrix([1, 2]))) raises(ShapeError, lambda: Matrix([1, 2]).dot([])) raises(TypeError, lambda: Matrix([1, 2]).dot('a')) with warns_deprecated_sympy(): Matrix([[1, 2], [3, 4]]).dot(Matrix([[4, 3], [1, 2]])) raises(ShapeError, lambda: Matrix([1, 2]).dot([1, 2, 3])) raises(NonSquareMatrixError, lambda: Matrix([1, 2, 3]).exp()) raises(ShapeError, lambda: Matrix([[1, 2], [3, 4]]).normalized()) raises(ValueError, lambda: Matrix([1, 2]).inv(method='not a method')) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_GE()) raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inverse_GE()) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_ADJ()) raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inverse_ADJ()) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_LU()) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).is_nilpotent()) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).det()) raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).det(method='Not a real method')) raises(ValueError, lambda: Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]).det(iszerofunc="Not function")) raises(ValueError, lambda: Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]).det(iszerofunc=False)) raises(ValueError, lambda: hessian(Matrix([[1, 2], [3, 4]]), Matrix([[1, 2], [2, 1]]))) raises(ValueError, lambda: hessian(Matrix([[1, 2], [3, 4]]), [])) raises(ValueError, lambda: hessian(Symbol('x')**2, 'a')) raises(IndexError, lambda: eye(3)[5, 2]) raises(IndexError, lambda: eye(3)[2, 5]) M = Matrix(((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))) raises(ValueError, lambda: M.det('method=LU_decomposition()')) V = Matrix([[10, 10, 10]]) M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(ValueError, lambda: M.row_insert(4.7, V)) M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(ValueError, lambda: M.col_insert(-4.2, V)) def test_len(): assert len(Matrix()) == 0 assert len(Matrix([[1, 2]])) == len(Matrix([[1], [2]])) == 2 assert len(Matrix(0, 2, lambda i, j: 0)) == \ len(Matrix(2, 0, lambda i, j: 0)) == 0 assert len(Matrix([[0, 1, 2], [3, 4, 5]])) == 6 assert Matrix([1]) == Matrix([[1]]) assert not Matrix() assert Matrix() == Matrix([]) def test_integrate(): A = Matrix(((1, 4, x), (y, 2, 4), (10, 5, x**2))) assert A.integrate(x) == \ Matrix(((x, 4*x, x**2/2), (x*y, 2*x, 4*x), (10*x, 5*x, x**3/3))) assert A.integrate(y) == \ Matrix(((y, 4*y, x*y), (y**2/2, 2*y, 4*y), (10*y, 5*y, y*x**2))) def test_limit(): A = Matrix(((1, 4, sin(x)/x), (y, 2, 4), (10, 5, x**2 + 1))) assert A.limit(x, 0) == Matrix(((1, 4, 1), (y, 2, 4), (10, 5, 1))) def test_diff(): A = MutableDenseMatrix(((1, 4, x), (y, 2, 4), (10, 5, x**2 + 1))) assert isinstance(A.diff(x), type(A)) assert A.diff(x) == MutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) assert A.diff(y) == MutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) assert diff(A, x) == MutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) assert diff(A, y) == MutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) A_imm = A.as_immutable() assert isinstance(A_imm.diff(x), type(A_imm)) assert A_imm.diff(x) == ImmutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) assert A_imm.diff(y) == ImmutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) assert diff(A_imm, x) == ImmutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) assert diff(A_imm, y) == ImmutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) def test_diff_by_matrix(): # Derive matrix by matrix: A = MutableDenseMatrix([[x, y], [z, t]]) assert A.diff(A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) assert diff(A, A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) A_imm = A.as_immutable() assert A_imm.diff(A_imm) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) assert diff(A_imm, A_imm) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) # Derive a constant matrix: assert A.diff(a) == MutableDenseMatrix([[0, 0], [0, 0]]) B = ImmutableDenseMatrix([a, b]) assert A.diff(B) == Array.zeros(2, 1, 2, 2) assert A.diff(A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) # Test diff with tuples: dB = B.diff([[a, b]]) assert dB.shape == (2, 2, 1) assert dB == Array([[[1], [0]], [[0], [1]]]) f = Function("f") fxyz = f(x, y, z) assert fxyz.diff([[x, y, z]]) == Array([fxyz.diff(x), fxyz.diff(y), fxyz.diff(z)]) assert fxyz.diff(([x, y, z], 2)) == Array([ [fxyz.diff(x, 2), fxyz.diff(x, y), fxyz.diff(x, z)], [fxyz.diff(x, y), fxyz.diff(y, 2), fxyz.diff(y, z)], [fxyz.diff(x, z), fxyz.diff(z, y), fxyz.diff(z, 2)], ]) expr = sin(x)*exp(y) assert expr.diff([[x, y]]) == Array([cos(x)*exp(y), sin(x)*exp(y)]) assert expr.diff(y, ((x, y),)) == Array([cos(x)*exp(y), sin(x)*exp(y)]) assert expr.diff(x, ((x, y),)) == Array([-sin(x)*exp(y), cos(x)*exp(y)]) assert expr.diff(((y, x),), [[x, y]]) == Array([[cos(x)*exp(y), -sin(x)*exp(y)], [sin(x)*exp(y), cos(x)*exp(y)]]) # Test different notations: fxyz.diff(x).diff(y).diff(x) == fxyz.diff(((x, y, z),), 3)[0, 1, 0] fxyz.diff(z).diff(y).diff(x) == fxyz.diff(((x, y, z),), 3)[2, 1, 0] fxyz.diff([[x, y, z]], ((z, y, x),)) == Array([[fxyz.diff(i).diff(j) for i in (x, y, z)] for j in (z, y, x)]) # Test scalar derived by matrix remains matrix: res = x.diff(Matrix([[x, y]])) assert isinstance(res, ImmutableDenseMatrix) assert res == Matrix([[1, 0]]) res = (x**3).diff(Matrix([[x, y]])) assert isinstance(res, ImmutableDenseMatrix) assert res == Matrix([[3*x**2, 0]]) def test_getattr(): A = Matrix(((1, 4, x), (y, 2, 4), (10, 5, x**2 + 1))) raises(AttributeError, lambda: A.nonexistantattribute) assert getattr(A, 'diff')(x) == Matrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) def test_hessenberg(): A = Matrix([[3, 4, 1], [2, 4, 5], [0, 1, 2]]) assert A.is_upper_hessenberg A = A.T assert A.is_lower_hessenberg A[0, -1] = 1 assert A.is_lower_hessenberg is False A = Matrix([[3, 4, 1], [2, 4, 5], [3, 1, 2]]) assert not A.is_upper_hessenberg A = zeros(5, 2) assert A.is_upper_hessenberg def test_cholesky(): raises(NonSquareMatrixError, lambda: Matrix((1, 2)).cholesky()) raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).cholesky()) raises(ValueError, lambda: Matrix(((5 + I, 0), (0, 1))).cholesky()) raises(ValueError, lambda: Matrix(((1, 5), (5, 1))).cholesky()) raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).cholesky(hermitian=False)) assert Matrix(((5 + I, 0), (0, 1))).cholesky(hermitian=False) == Matrix([ [sqrt(5 + I), 0], [0, 1]]) A = Matrix(((1, 5), (5, 1))) L = A.cholesky(hermitian=False) assert L == Matrix([[1, 0], [5, 2*sqrt(6)*I]]) assert L*L.T == A A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) L = A.cholesky() assert L * L.T == A assert L.is_lower assert L == Matrix([[5, 0, 0], [3, 3, 0], [-1, 1, 3]]) A = Matrix(((4, -2*I, 2 + 2*I), (2*I, 2, -1 + I), (2 - 2*I, -1 - I, 11))) assert A.cholesky().expand() == Matrix(((2, 0, 0), (I, 1, 0), (1 - I, 0, 3))) raises(NonSquareMatrixError, lambda: SparseMatrix((1, 2)).cholesky()) raises(ValueError, lambda: SparseMatrix(((1, 2), (3, 4))).cholesky()) raises(ValueError, lambda: SparseMatrix(((5 + I, 0), (0, 1))).cholesky()) raises(ValueError, lambda: SparseMatrix(((1, 5), (5, 1))).cholesky()) raises(ValueError, lambda: SparseMatrix(((1, 2), (3, 4))).cholesky(hermitian=False)) assert SparseMatrix(((5 + I, 0), (0, 1))).cholesky(hermitian=False) == Matrix([ [sqrt(5 + I), 0], [0, 1]]) A = SparseMatrix(((1, 5), (5, 1))) L = A.cholesky(hermitian=False) assert L == Matrix([[1, 0], [5, 2*sqrt(6)*I]]) assert L*L.T == A A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) L = A.cholesky() assert L * L.T == A assert L.is_lower assert L == Matrix([[5, 0, 0], [3, 3, 0], [-1, 1, 3]]) A = SparseMatrix(((4, -2*I, 2 + 2*I), (2*I, 2, -1 + I), (2 - 2*I, -1 - I, 11))) assert A.cholesky() == Matrix(((2, 0, 0), (I, 1, 0), (1 - I, 0, 3))) def test_matrix_norm(): # Vector Tests # Test columns and symbols x = Symbol('x', real=True) v = Matrix([cos(x), sin(x)]) assert trigsimp(v.norm(2)) == 1 assert v.norm(10) == Pow(cos(x)**10 + sin(x)**10, Rational(1, 10)) # Test Rows A = Matrix([[5, Rational(3, 2)]]) assert A.norm() == Pow(25 + Rational(9, 4), S.Half) assert A.norm(oo) == max(A) assert A.norm(-oo) == min(A) # Matrix Tests # Intuitive test A = Matrix([[1, 1], [1, 1]]) assert A.norm(2) == 2 assert A.norm(-2) == 0 assert A.norm('frobenius') == 2 assert eye(10).norm(2) == eye(10).norm(-2) == 1 assert A.norm(oo) == 2 # Test with Symbols and more complex entries A = Matrix([[3, y, y], [x, S.Half, -pi]]) assert (A.norm('fro') == sqrt(Rational(37, 4) + 2*abs(y)**2 + pi**2 + x**2)) # Check non-square A = Matrix([[1, 2, -3], [4, 5, Rational(13, 2)]]) assert A.norm(2) == sqrt(Rational(389, 8) + sqrt(78665)/8) assert A.norm(-2) is S.Zero assert A.norm('frobenius') == sqrt(389)/2 # Test properties of matrix norms # https://en.wikipedia.org/wiki/Matrix_norm#Definition # Two matrices A = Matrix([[1, 2], [3, 4]]) B = Matrix([[5, 5], [-2, 2]]) C = Matrix([[0, -I], [I, 0]]) D = Matrix([[1, 0], [0, -1]]) L = [A, B, C, D] alpha = Symbol('alpha', real=True) for order in ['fro', 2, -2]: # Zero Check assert zeros(3).norm(order) is S.Zero # Check Triangle Inequality for all Pairs of Matrices for X in L: for Y in L: dif = (X.norm(order) + Y.norm(order) - (X + Y).norm(order)) assert (dif >= 0) # Scalar multiplication linearity for M in [A, B, C, D]: dif = simplify((alpha*M).norm(order) - abs(alpha) * M.norm(order)) assert dif == 0 # Test Properties of Vector Norms # https://en.wikipedia.org/wiki/Vector_norm # Two column vectors a = Matrix([1, 1 - 1*I, -3]) b = Matrix([S.Half, 1*I, 1]) c = Matrix([-1, -1, -1]) d = Matrix([3, 2, I]) e = Matrix([Integer(1e2), Rational(1, 1e2), 1]) L = [a, b, c, d, e] alpha = Symbol('alpha', real=True) for order in [1, 2, -1, -2, S.Infinity, S.NegativeInfinity, pi]: # Zero Check if order > 0: assert Matrix([0, 0, 0]).norm(order) is S.Zero # Triangle inequality on all pairs if order >= 1: # Triangle InEq holds only for these norms for X in L: for Y in L: dif = (X.norm(order) + Y.norm(order) - (X + Y).norm(order)) assert simplify(dif >= 0) is S.true # Linear to scalar multiplication if order in [1, 2, -1, -2, S.Infinity, S.NegativeInfinity]: for X in L: dif = simplify((alpha*X).norm(order) - (abs(alpha) * X.norm(order))) assert dif == 0 # ord=1 M = Matrix(3, 3, [1, 3, 0, -2, -1, 0, 3, 9, 6]) assert M.norm(1) == 13 def test_condition_number(): x = Symbol('x', real=True) A = eye(3) A[0, 0] = 10 A[2, 2] = Rational(1, 10) assert A.condition_number() == 100 A[1, 1] = x assert A.condition_number() == Max(10, Abs(x)) / Min(Rational(1, 10), Abs(x)) M = Matrix([[cos(x), sin(x)], [-sin(x), cos(x)]]) Mc = M.condition_number() assert all(Float(1.).epsilon_eq(Mc.subs(x, val).evalf()) for val in [Rational(1, 5), S.Half, Rational(1, 10), pi/2, pi, pi*Rational(7, 4) ]) #issue 10782 assert Matrix([]).condition_number() == 0 def test_equality(): A = Matrix(((1, 2, 3), (4, 5, 6), (7, 8, 9))) B = Matrix(((9, 8, 7), (6, 5, 4), (3, 2, 1))) assert A == A[:, :] assert not A != A[:, :] assert not A == B assert A != B assert A != 10 assert not A == 10 # A SparseMatrix can be equal to a Matrix C = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) D = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) assert C == D assert not C != D def test_col_join(): assert eye(3).col_join(Matrix([[7, 7, 7]])) == \ Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1], [7, 7, 7]]) def test_row_insert(): r4 = Matrix([[4, 4, 4]]) for i in range(-4, 5): l = [1, 0, 0] l.insert(i, 4) assert flatten(eye(3).row_insert(i, r4).col(0).tolist()) == l def test_col_insert(): c4 = Matrix([4, 4, 4]) for i in range(-4, 5): l = [0, 0, 0] l.insert(i, 4) assert flatten(zeros(3).col_insert(i, c4).row(0).tolist()) == l def test_normalized(): assert Matrix([3, 4]).normalized() == \ Matrix([Rational(3, 5), Rational(4, 5)]) # Zero vector trivial cases assert Matrix([0, 0, 0]).normalized() == Matrix([0, 0, 0]) # Machine precision error truncation trivial cases m = Matrix([0,0,1.e-100]) assert m.normalized( iszerofunc=lambda x: x.evalf(n=10, chop=True).is_zero ) == Matrix([0, 0, 0]) def test_print_nonzero(): assert capture(lambda: eye(3).print_nonzero()) == \ '[X ]\n[ X ]\n[ X]\n' assert capture(lambda: eye(3).print_nonzero('.')) == \ '[. ]\n[ . ]\n[ .]\n' def test_zeros_eye(): assert Matrix.eye(3) == eye(3) assert Matrix.zeros(3) == zeros(3) assert ones(3, 4) == Matrix(3, 4, [1]*12) i = Matrix([[1, 0], [0, 1]]) z = Matrix([[0, 0], [0, 0]]) for cls in classes: m = cls.eye(2) assert i == m # but m == i will fail if m is immutable assert i == eye(2, cls=cls) assert type(m) == cls m = cls.zeros(2) assert z == m assert z == zeros(2, cls=cls) assert type(m) == cls def test_is_zero(): assert Matrix().is_zero_matrix assert Matrix([[0, 0], [0, 0]]).is_zero_matrix assert zeros(3, 4).is_zero_matrix assert not eye(3).is_zero_matrix assert Matrix([[x, 0], [0, 0]]).is_zero_matrix == None assert SparseMatrix([[x, 0], [0, 0]]).is_zero_matrix == None assert ImmutableMatrix([[x, 0], [0, 0]]).is_zero_matrix == None assert ImmutableSparseMatrix([[x, 0], [0, 0]]).is_zero_matrix == None assert Matrix([[x, 1], [0, 0]]).is_zero_matrix == False a = Symbol('a', nonzero=True) assert Matrix([[a, 0], [0, 0]]).is_zero_matrix == False def test_rotation_matrices(): # This tests the rotation matrices by rotating about an axis and back. theta = pi/3 r3_plus = rot_axis3(theta) r3_minus = rot_axis3(-theta) r2_plus = rot_axis2(theta) r2_minus = rot_axis2(-theta) r1_plus = rot_axis1(theta) r1_minus = rot_axis1(-theta) assert r3_minus*r3_plus*eye(3) == eye(3) assert r2_minus*r2_plus*eye(3) == eye(3) assert r1_minus*r1_plus*eye(3) == eye(3) # Check the correctness of the trace of the rotation matrix assert r1_plus.trace() == 1 + 2*cos(theta) assert r2_plus.trace() == 1 + 2*cos(theta) assert r3_plus.trace() == 1 + 2*cos(theta) # Check that a rotation with zero angle doesn't change anything. assert rot_axis1(0) == eye(3) assert rot_axis2(0) == eye(3) assert rot_axis3(0) == eye(3) def test_DeferredVector(): assert str(DeferredVector("vector")[4]) == "vector[4]" assert sympify(DeferredVector("d")) == DeferredVector("d") raises(IndexError, lambda: DeferredVector("d")[-1]) assert str(DeferredVector("d")) == "d" assert repr(DeferredVector("test")) == "DeferredVector('test')" def test_DeferredVector_not_iterable(): assert not iterable(DeferredVector('X')) def test_DeferredVector_Matrix(): raises(TypeError, lambda: Matrix(DeferredVector("V"))) def test_GramSchmidt(): R = Rational m1 = Matrix(1, 2, [1, 2]) m2 = Matrix(1, 2, [2, 3]) assert GramSchmidt([m1, m2]) == \ [Matrix(1, 2, [1, 2]), Matrix(1, 2, [R(2)/5, R(-1)/5])] assert GramSchmidt([m1.T, m2.T]) == \ [Matrix(2, 1, [1, 2]), Matrix(2, 1, [R(2)/5, R(-1)/5])] # from wikipedia assert GramSchmidt([Matrix([3, 1]), Matrix([2, 2])], True) == [ Matrix([3*sqrt(10)/10, sqrt(10)/10]), Matrix([-sqrt(10)/10, 3*sqrt(10)/10])] # https://github.com/sympy/sympy/issues/9488 L = FiniteSet(Matrix([1])) assert GramSchmidt(L) == [Matrix([[1]])] def test_casoratian(): assert casoratian([1, 2, 3, 4], 1) == 0 assert casoratian([1, 2, 3, 4], 1, zero=False) == 0 def test_zero_dimension_multiply(): assert (Matrix()*zeros(0, 3)).shape == (0, 3) assert zeros(3, 0)*zeros(0, 3) == zeros(3, 3) assert zeros(0, 3)*zeros(3, 0) == Matrix() def test_slice_issue_2884(): m = Matrix(2, 2, range(4)) assert m[1, :] == Matrix([[2, 3]]) assert m[-1, :] == Matrix([[2, 3]]) assert m[:, 1] == Matrix([[1, 3]]).T assert m[:, -1] == Matrix([[1, 3]]).T raises(IndexError, lambda: m[2, :]) raises(IndexError, lambda: m[2, 2]) def test_slice_issue_3401(): assert zeros(0, 3)[:, -1].shape == (0, 1) assert zeros(3, 0)[0, :] == Matrix(1, 0, []) def test_copyin(): s = zeros(3, 3) s[3] = 1 assert s[:, 0] == Matrix([0, 1, 0]) assert s[3] == 1 assert s[3: 4] == [1] s[1, 1] = 42 assert s[1, 1] == 42 assert s[1, 1:] == Matrix([[42, 0]]) s[1, 1:] = Matrix([[5, 6]]) assert s[1, :] == Matrix([[1, 5, 6]]) s[1, 1:] = [[42, 43]] assert s[1, :] == Matrix([[1, 42, 43]]) s[0, 0] = 17 assert s[:, :1] == Matrix([17, 1, 0]) s[0, 0] = [1, 1, 1] assert s[:, 0] == Matrix([1, 1, 1]) s[0, 0] = Matrix([1, 1, 1]) assert s[:, 0] == Matrix([1, 1, 1]) s[0, 0] = SparseMatrix([1, 1, 1]) assert s[:, 0] == Matrix([1, 1, 1]) def test_invertible_check(): # sometimes a singular matrix will have a pivot vector shorter than # the number of rows in a matrix... assert Matrix([[1, 2], [1, 2]]).rref() == (Matrix([[1, 2], [0, 0]]), (0,)) raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inv()) m = Matrix([ [-1, -1, 0], [ x, 1, 1], [ 1, x, -1], ]) assert len(m.rref()[1]) != m.rows # in addition, unless simplify=True in the call to rref, the identity # matrix will be returned even though m is not invertible assert m.rref()[0] != eye(3) assert m.rref(simplify=signsimp)[0] != eye(3) raises(ValueError, lambda: m.inv(method="ADJ")) raises(ValueError, lambda: m.inv(method="GE")) raises(ValueError, lambda: m.inv(method="LU")) def test_issue_3959(): x, y = symbols('x, y') e = x*y assert e.subs(x, Matrix([3, 5, 3])) == Matrix([3, 5, 3])*y def test_issue_5964(): assert str(Matrix([[1, 2], [3, 4]])) == 'Matrix([[1, 2], [3, 4]])' def test_issue_7604(): x, y = symbols("x y") assert sstr(Matrix([[x, 2*y], [y**2, x + 3]])) == \ 'Matrix([\n[ x, 2*y],\n[y**2, x + 3]])' def test_is_Identity(): assert eye(3).is_Identity assert eye(3).as_immutable().is_Identity assert not zeros(3).is_Identity assert not ones(3).is_Identity # issue 6242 assert not Matrix([[1, 0, 0]]).is_Identity # issue 8854 assert SparseMatrix(3,3, {(0,0):1, (1,1):1, (2,2):1}).is_Identity assert not SparseMatrix(2,3, range(6)).is_Identity assert not SparseMatrix(3,3, {(0,0):1, (1,1):1}).is_Identity assert not SparseMatrix(3,3, {(0,0):1, (1,1):1, (2,2):1, (0,1):2, (0,2):3}).is_Identity def test_dot(): assert ones(1, 3).dot(ones(3, 1)) == 3 assert ones(1, 3).dot([1, 1, 1]) == 3 assert Matrix([1, 2, 3]).dot(Matrix([1, 2, 3])) == 14 assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I])) == -5 + I assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=False) == -5 + I assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=True) == 13 + I assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=True, conjugate_convention="physics") == 13 - I assert Matrix([1, 2, 3*I]).dot(Matrix([4, 5*I, 6]), hermitian=True, conjugate_convention="right") == 4 + 8*I assert Matrix([1, 2, 3*I]).dot(Matrix([4, 5*I, 6]), hermitian=True, conjugate_convention="left") == 4 - 8*I assert Matrix([I, 2*I]).dot(Matrix([I, 2*I]), hermitian=False, conjugate_convention="left") == -5 assert Matrix([I, 2*I]).dot(Matrix([I, 2*I]), conjugate_convention="left") == 5 raises(ValueError, lambda: Matrix([1, 2]).dot(Matrix([3, 4]), hermitian=True, conjugate_convention="test")) def test_dual(): B_x, B_y, B_z, E_x, E_y, E_z = symbols( 'B_x B_y B_z E_x E_y E_z', real=True) F = Matrix(( ( 0, E_x, E_y, E_z), (-E_x, 0, B_z, -B_y), (-E_y, -B_z, 0, B_x), (-E_z, B_y, -B_x, 0) )) Fd = Matrix(( ( 0, -B_x, -B_y, -B_z), (B_x, 0, E_z, -E_y), (B_y, -E_z, 0, E_x), (B_z, E_y, -E_x, 0) )) assert F.dual().equals(Fd) assert eye(3).dual().equals(zeros(3)) assert F.dual().dual().equals(-F) def test_anti_symmetric(): assert Matrix([1, 2]).is_anti_symmetric() is False m = Matrix(3, 3, [0, x**2 + 2*x + 1, y, -(x + 1)**2, 0, x*y, -y, -x*y, 0]) assert m.is_anti_symmetric() is True assert m.is_anti_symmetric(simplify=False) is False assert m.is_anti_symmetric(simplify=lambda x: x) is False # tweak to fail m[2, 1] = -m[2, 1] assert m.is_anti_symmetric() is False # untweak m[2, 1] = -m[2, 1] m = m.expand() assert m.is_anti_symmetric(simplify=False) is True m[0, 0] = 1 assert m.is_anti_symmetric() is False def test_normalize_sort_diogonalization(): A = Matrix(((1, 2), (2, 1))) P, Q = A.diagonalize(normalize=True) assert P*P.T == P.T*P == eye(P.cols) P, Q = A.diagonalize(normalize=True, sort=True) assert P*P.T == P.T*P == eye(P.cols) assert P*Q*P.inv() == A def test_issue_5321(): raises(ValueError, lambda: Matrix([[1, 2, 3], Matrix(0, 1, [])])) def test_issue_5320(): assert Matrix.hstack(eye(2), 2*eye(2)) == Matrix([ [1, 0, 2, 0], [0, 1, 0, 2] ]) assert Matrix.vstack(eye(2), 2*eye(2)) == Matrix([ [1, 0], [0, 1], [2, 0], [0, 2] ]) cls = SparseMatrix assert cls.hstack(cls(eye(2)), cls(2*eye(2))) == Matrix([ [1, 0, 2, 0], [0, 1, 0, 2] ]) def test_issue_11944(): A = Matrix([[1]]) AIm = sympify(A) assert Matrix.hstack(AIm, A) == Matrix([[1, 1]]) assert Matrix.vstack(AIm, A) == Matrix([[1], [1]]) def test_cross(): a = [1, 2, 3] b = [3, 4, 5] col = Matrix([-2, 4, -2]) row = col.T def test(M, ans): assert ans == M assert type(M) == cls for cls in classes: A = cls(a) B = cls(b) test(A.cross(B), col) test(A.cross(B.T), col) test(A.T.cross(B.T), row) test(A.T.cross(B), row) raises(ShapeError, lambda: Matrix(1, 2, [1, 1]).cross(Matrix(1, 2, [1, 1]))) def test_hash(): for cls in classes[-2:]: s = {cls.eye(1), cls.eye(1)} assert len(s) == 1 and s.pop() == cls.eye(1) # issue 3979 for cls in classes[:2]: assert not isinstance(cls.eye(1), Hashable) @XFAIL def test_issue_3979(): # when this passes, delete this and change the [1:2] # to [:2] in the test_hash above for issue 3979 cls = classes[0] raises(AttributeError, lambda: hash(cls.eye(1))) def test_adjoint(): dat = [[0, I], [1, 0]] ans = Matrix([[0, 1], [-I, 0]]) for cls in classes: assert ans == cls(dat).adjoint() def test_simplify_immutable(): from sympy import simplify, sin, cos assert simplify(ImmutableMatrix([[sin(x)**2 + cos(x)**2]])) == \ ImmutableMatrix([[1]]) def test_replace(): from sympy import symbols, Function, Matrix F, G = symbols('F, G', cls=Function) K = Matrix(2, 2, lambda i, j: G(i+j)) M = Matrix(2, 2, lambda i, j: F(i+j)) N = M.replace(F, G) assert N == K def test_replace_map(): from sympy import symbols, Function, Matrix F, G = symbols('F, G', cls=Function) with warns_deprecated_sympy(): K = Matrix(2, 2, [(G(0), {F(0): G(0)}), (G(1), {F(1): G(1)}), (G(1), {F(1): G(1)}), (G(2), {F(2): G(2)})]) M = Matrix(2, 2, lambda i, j: F(i+j)) with warns_deprecated_sympy(): N = M.replace(F, G, True) assert N == K def test_atoms(): m = Matrix([[1, 2], [x, 1 - 1/x]]) assert m.atoms() == {S.One,S(2),S.NegativeOne, x} assert m.atoms(Symbol) == {x} def test_pinv(): # Pseudoinverse of an invertible matrix is the inverse. A1 = Matrix([[a, b], [c, d]]) assert simplify(A1.pinv(method="RD")) == simplify(A1.inv()) # Test the four properties of the pseudoinverse for various matrices. As = [Matrix([[13, 104], [2212, 3], [-3, 5]]), Matrix([[1, 7, 9], [11, 17, 19]]), Matrix([a, b])] for A in As: A_pinv = A.pinv(method="RD") AAp = A * A_pinv ApA = A_pinv * A assert simplify(AAp * A) == A assert simplify(ApA * A_pinv) == A_pinv assert AAp.H == AAp assert ApA.H == ApA # XXX Pinv with diagonalization makes expression too complicated. for A in As: A_pinv = simplify(A.pinv(method="ED")) AAp = A * A_pinv ApA = A_pinv * A assert simplify(AAp * A) == A assert simplify(ApA * A_pinv) == A_pinv assert AAp.H == AAp assert ApA.H == ApA # XXX Computing pinv using diagonalization makes an expression that # is too complicated to simplify. # A1 = Matrix([[a, b], [c, d]]) # assert simplify(A1.pinv(method="ED")) == simplify(A1.inv()) # so this is tested numerically at a fixed random point from sympy.core.numbers import comp q = A1.pinv(method="ED") w = A1.inv() reps = {a: -73633, b: 11362, c: 55486, d: 62570} assert all( comp(i.n(), j.n()) for i, j in zip(q.subs(reps), w.subs(reps)) ) @slow @XFAIL def test_pinv_rank_deficient_when_diagonalization_fails(): # Test the four properties of the pseudoinverse for matrices when # diagonalization of A.H*A fails. As = [ Matrix([ [61, 89, 55, 20, 71, 0], [62, 96, 85, 85, 16, 0], [69, 56, 17, 4, 54, 0], [10, 54, 91, 41, 71, 0], [ 7, 30, 10, 48, 90, 0], [0, 0, 0, 0, 0, 0]]) ] for A in As: A_pinv = A.pinv(method="ED") AAp = A * A_pinv ApA = A_pinv * A assert AAp.H == AAp assert ApA.H == ApA def test_issue_7201(): assert ones(0, 1) + ones(0, 1) == Matrix(0, 1, []) assert ones(1, 0) + ones(1, 0) == Matrix(1, 0, []) def test_free_symbols(): for M in ImmutableMatrix, ImmutableSparseMatrix, Matrix, SparseMatrix: assert M([[x], [0]]).free_symbols == {x} def test_from_ndarray(): """See issue 7465.""" try: from numpy import array except ImportError: skip('NumPy must be available to test creating matrices from ndarrays') assert Matrix(array([1, 2, 3])) == Matrix([1, 2, 3]) assert Matrix(array([[1, 2, 3]])) == Matrix([[1, 2, 3]]) assert Matrix(array([[1, 2, 3], [4, 5, 6]])) == \ Matrix([[1, 2, 3], [4, 5, 6]]) assert Matrix(array([x, y, z])) == Matrix([x, y, z]) raises(NotImplementedError, lambda: Matrix(array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]))) assert Matrix([array([1, 2]), array([3, 4])]) == Matrix([[1, 2], [3, 4]]) assert Matrix([array([1, 2]), [3, 4]]) == Matrix([[1, 2], [3, 4]]) assert Matrix([array([]), array([])]) == Matrix([]) def test_17522_numpy(): from sympy.matrices.common import _matrixify try: from numpy import array, matrix except ImportError: skip('NumPy must be available to test indexing matrixified NumPy ndarrays and matrices') m = _matrixify(array([[1, 2], [3, 4]])) assert m[3] == 4 assert list(m) == [1, 2, 3, 4] m = _matrixify(matrix([[1, 2], [3, 4]])) assert m[3] == 4 assert list(m) == [1, 2, 3, 4] def test_17522_mpmath(): from sympy.matrices.common import _matrixify try: from mpmath import matrix except ImportError: skip('mpmath must be available to test indexing matrixified mpmath matrices') m = _matrixify(matrix([[1, 2], [3, 4]])) assert m[3] == 4 assert list(m) == [1, 2, 3, 4] def test_17522_scipy(): from sympy.matrices.common import _matrixify try: from scipy.sparse import csr_matrix except ImportError: skip('SciPy must be available to test indexing matrixified SciPy sparse matrices') m = _matrixify(csr_matrix([[1, 2], [3, 4]])) assert m[3] == 4 assert list(m) == [1, 2, 3, 4] def test_hermitian(): a = Matrix([[1, I], [-I, 1]]) assert a.is_hermitian a[0, 0] = 2*I assert a.is_hermitian is False a[0, 0] = x assert a.is_hermitian is None a[0, 1] = a[1, 0]*I assert a.is_hermitian is False def test_doit(): a = Matrix([[Add(x,x, evaluate=False)]]) assert a[0] != 2*x assert a.doit() == Matrix([[2*x]]) def test_issue_9457_9467_9876(): # for row_del(index) M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) M.row_del(1) assert M == Matrix([[1, 2, 3], [3, 4, 5]]) N = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) N.row_del(-2) assert N == Matrix([[1, 2, 3], [3, 4, 5]]) O = Matrix([[1, 2, 3], [5, 6, 7], [9, 10, 11]]) O.row_del(-1) assert O == Matrix([[1, 2, 3], [5, 6, 7]]) P = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(IndexError, lambda: P.row_del(10)) Q = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(IndexError, lambda: Q.row_del(-10)) # for col_del(index) M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) M.col_del(1) assert M == Matrix([[1, 3], [2, 4], [3, 5]]) N = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) N.col_del(-2) assert N == Matrix([[1, 3], [2, 4], [3, 5]]) P = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(IndexError, lambda: P.col_del(10)) Q = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(IndexError, lambda: Q.col_del(-10)) def test_issue_9422(): x, y = symbols('x y', commutative=False) a, b = symbols('a b') M = eye(2) M1 = Matrix(2, 2, [x, y, y, z]) assert y*x*M != x*y*M assert b*a*M == a*b*M assert x*M1 != M1*x assert a*M1 == M1*a assert y*x*M == Matrix([[y*x, 0], [0, y*x]]) def test_issue_10770(): M = Matrix([]) a = ['col_insert', 'row_join'], Matrix([9, 6, 3]) b = ['row_insert', 'col_join'], a[1].T c = ['row_insert', 'col_insert'], Matrix([[1, 2], [3, 4]]) for ops, m in (a, b, c): for op in ops: f = getattr(M, op) new = f(m) if 'join' in op else f(42, m) assert new == m and id(new) != id(m) def test_issue_10658(): A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert A.extract([0, 1, 2], [True, True, False]) == \ Matrix([[1, 2], [4, 5], [7, 8]]) assert A.extract([0, 1, 2], [True, False, False]) == Matrix([[1], [4], [7]]) assert A.extract([True, False, False], [0, 1, 2]) == Matrix([[1, 2, 3]]) assert A.extract([True, False, True], [0, 1, 2]) == \ Matrix([[1, 2, 3], [7, 8, 9]]) assert A.extract([0, 1, 2], [False, False, False]) == Matrix(3, 0, []) assert A.extract([False, False, False], [0, 1, 2]) == Matrix(0, 3, []) assert A.extract([True, False, True], [False, True, False]) == \ Matrix([[2], [8]]) def test_opportunistic_simplification(): # this test relates to issue #10718, #9480, #11434 # issue #9480 m = Matrix([[-5 + 5*sqrt(2), -5], [-5*sqrt(2)/2 + 5, -5*sqrt(2)/2]]) assert m.rank() == 1 # issue #10781 m = Matrix([[3+3*sqrt(3)*I, -9],[4,-3+3*sqrt(3)*I]]) assert simplify(m.rref()[0] - Matrix([[1, -9/(3 + 3*sqrt(3)*I)], [0, 0]])) == zeros(2, 2) # issue #11434 ax,ay,bx,by,cx,cy,dx,dy,ex,ey,t0,t1 = symbols('a_x a_y b_x b_y c_x c_y d_x d_y e_x e_y t_0 t_1') m = Matrix([[ax,ay,ax*t0,ay*t0,0],[bx,by,bx*t0,by*t0,0],[cx,cy,cx*t0,cy*t0,1],[dx,dy,dx*t0,dy*t0,1],[ex,ey,2*ex*t1-ex*t0,2*ey*t1-ey*t0,0]]) assert m.rank() == 4 def test_partial_pivoting(): # example from https://en.wikipedia.org/wiki/Pivot_element # partial pivoting with back substitution gives a perfect result # naive pivoting give an error ~1e-13, so anything better than # 1e-15 is good mm=Matrix([[0.003 ,59.14, 59.17],[ 5.291, -6.13,46.78]]) assert (mm.rref()[0] - Matrix([[1.0, 0, 10.0], [ 0, 1.0, 1.0]])).norm() < 1e-15 # issue #11549 m_mixed = Matrix([[6e-17, 1.0, 4],[ -1.0, 0, 8],[ 0, 0, 1]]) m_float = Matrix([[6e-17, 1.0, 4.],[ -1.0, 0., 8.],[ 0., 0., 1.]]) m_inv = Matrix([[ 0, -1.0, 8.0],[1.0, 6.0e-17, -4.0],[ 0, 0, 1]]) # this example is numerically unstable and involves a matrix with a norm >= 8, # this comparing the difference of the results with 1e-15 is numerically sound. assert (m_mixed.inv() - m_inv).norm() < 1e-15 assert (m_float.inv() - m_inv).norm() < 1e-15 def test_iszero_substitution(): """ When doing numerical computations, all elements that pass the iszerofunc test should be set to numerically zero if they aren't already. """ # Matrix from issue #9060 m = Matrix([[0.9, -0.1, -0.2, 0],[-0.8, 0.9, -0.4, 0],[-0.1, -0.8, 0.6, 0]]) m_rref = m.rref(iszerofunc=lambda x: abs(x)<6e-15)[0] m_correct = Matrix([[1.0, 0, -0.301369863013699, 0],[ 0, 1.0, -0.712328767123288, 0],[ 0, 0, 0, 0]]) m_diff = m_rref - m_correct assert m_diff.norm() < 1e-15 # if a zero-substitution wasn't made, this entry will be -1.11022302462516e-16 assert m_rref[2,2] == 0 def test_issue_11238(): from sympy import Point xx = 8*tan(pi*Rational(13, 45))/(tan(pi*Rational(13, 45)) + sqrt(3)) yy = (-8*sqrt(3)*tan(pi*Rational(13, 45))**2 + 24*tan(pi*Rational(13, 45)))/(-3 + tan(pi*Rational(13, 45))**2) p1 = Point(0, 0) p2 = Point(1, -sqrt(3)) p0 = Point(xx,yy) m1 = Matrix([p1 - simplify(p0), p2 - simplify(p0)]) m2 = Matrix([p1 - p0, p2 - p0]) m3 = Matrix([simplify(p1 - p0), simplify(p2 - p0)]) # This system has expressions which are zero and # cannot be easily proved to be such, so without # numerical testing, these assertions will fail. Z = lambda x: abs(x.n()) < 1e-20 assert m1.rank(simplify=True, iszerofunc=Z) == 1 assert m2.rank(simplify=True, iszerofunc=Z) == 1 assert m3.rank(simplify=True, iszerofunc=Z) == 1 def test_as_real_imag(): m1 = Matrix(2,2,[1,2,3,4]) m2 = m1*S.ImaginaryUnit m3 = m1 + m2 for kls in classes: a,b = kls(m3).as_real_imag() assert list(a) == list(m1) assert list(b) == list(m1) def test_deprecated(): # Maintain tests for deprecated functions. We must capture # the deprecation warnings. When the deprecated functionality is # removed, the corresponding tests should be removed. m = Matrix(3, 3, [0, 1, 0, -4, 4, 0, -2, 1, 2]) P, Jcells = m.jordan_cells() assert Jcells[1] == Matrix(1, 1, [2]) assert Jcells[0] == Matrix(2, 2, [2, 1, 0, 2]) with warns_deprecated_sympy(): assert Matrix([[1,2],[3,4]]).dot(Matrix([[1,3],[4,5]])) == [10, 19, 14, 28] def test_issue_14489(): from sympy import Mod A = Matrix([-1, 1, 2]) B = Matrix([10, 20, -15]) assert Mod(A, 3) == Matrix([2, 1, 2]) assert Mod(B, 4) == Matrix([2, 0, 1]) def test_issue_14943(): # Test that __array__ accepts the optional dtype argument try: from numpy import array except ImportError: skip('NumPy must be available to test creating matrices from ndarrays') M = Matrix([[1,2], [3,4]]) assert array(M, dtype=float).dtype.name == 'float64' def test_case_6913(): m = MatrixSymbol('m', 1, 1) a = Symbol("a") a = m[0, 0]>0 assert str(a) == 'm[0, 0] > 0' def test_issue_11948(): A = MatrixSymbol('A', 3, 3) a = Wild('a') assert A.match(a) == {a: A} def test_gramschmidt_conjugate_dot(): vecs = [Matrix([1, I]), Matrix([1, -I])] assert Matrix.orthogonalize(*vecs) == \ [Matrix([[1], [I]]), Matrix([[1], [-I]])] vecs = [Matrix([1, I, 0]), Matrix([I, 0, -I])] assert Matrix.orthogonalize(*vecs) == \ [Matrix([[1], [I], [0]]), Matrix([[I/2], [S(1)/2], [-I]])] mat = Matrix([[1, I], [1, -I]]) Q, R = mat.QRdecomposition() assert Q * Q.H == Matrix.eye(2) def test_issue_8207(): a = Matrix(MatrixSymbol('a', 3, 1)) b = Matrix(MatrixSymbol('b', 3, 1)) c = a.dot(b) d = diff(c, a[0, 0]) e = diff(d, a[0, 0]) assert d == b[0, 0] assert e == 0 def test_func(): from sympy.simplify.simplify import nthroot A = Matrix([[1, 2],[0, 3]]) assert A.analytic_func(sin(x*t), x) == Matrix([[sin(t), sin(3*t) - sin(t)], [0, sin(3*t)]]) A = Matrix([[2, 1],[1, 2]]) assert (pi * A / 6).analytic_func(cos(x), x) == Matrix([[sqrt(3)/4, -sqrt(3)/4], [-sqrt(3)/4, sqrt(3)/4]]) raises(ValueError, lambda : zeros(5).analytic_func(log(x), x)) raises(ValueError, lambda : (A*x).analytic_func(log(x), x)) A = Matrix([[0, -1, -2, 3], [0, -1, -2, 3], [0, 1, 0, -1], [0, 0, -1, 1]]) assert A.analytic_func(exp(x), x) == A.exp() raises(ValueError, lambda : A.analytic_func(sqrt(x), x)) A = Matrix([[41, 12],[12, 34]]) assert simplify(A.analytic_func(sqrt(x), x)**2) == A A = Matrix([[3, -12, 4], [-1, 0, -2], [-1, 5, -1]]) assert simplify(A.analytic_func(nthroot(x, 3), x)**3) == A A = Matrix([[2, 0, 0, 0], [1, 2, 0, 0], [0, 1, 3, 0], [0, 0, 1, 3]]) assert A.analytic_func(exp(x), x) == A.exp() A = Matrix([[0, 2, 1, 6], [0, 0, 1, 2], [0, 0, 0, 3], [0, 0, 0, 0]]) assert A.analytic_func(exp(x*t), x) == expand(simplify((A*t).exp())) def test_issue_19809(): def f(): assert _dotprodsimp_state.state == None m = Matrix([[1]]) m = m * m return True with dotprodsimp(True): with concurrent.futures.ThreadPoolExecutor() as executor: future = executor.submit(f) assert future.result()
ba718b51d9704195c7f906f04f3a4c8c78cd462294e966841167c80f530abb95
from sympy import Basic, Expr, S, sympify from sympy.matrices.common import NonSquareMatrixError class Determinant(Expr): """Matrix Determinant Represents the determinant of a matrix expression. Examples ======== >>> from sympy import MatrixSymbol, Determinant, eye >>> A = MatrixSymbol('A', 3, 3) >>> Determinant(A) Determinant(A) >>> Determinant(eye(3)).doit() 1 """ is_commutative = True def __new__(cls, mat): mat = sympify(mat) if not mat.is_Matrix: raise TypeError("Input to Determinant, %s, not a matrix" % str(mat)) if not mat.is_square: raise NonSquareMatrixError("Det of a non-square matrix") return Basic.__new__(cls, mat) @property def arg(self): return self.args[0] @property def kind(self): return self.arg.kind.element_kind def doit(self, expand=False): try: return self.arg._eval_determinant() except (AttributeError, NotImplementedError): return self def det(matexpr): """ Matrix Determinant Examples ======== >>> from sympy import MatrixSymbol, det, eye >>> A = MatrixSymbol('A', 3, 3) >>> det(A) Determinant(A) >>> det(eye(3)) 1 """ return Determinant(matexpr).doit() class Permanent(Expr): """Matrix Permanent Represents the permanent of a matrix expression. Examples ======== >>> from sympy import MatrixSymbol, Permanent, ones >>> A = MatrixSymbol('A', 3, 3) >>> Permanent(A) Permanent(A) >>> Permanent(ones(3, 3)).doit() 6 """ def __new__(cls, mat): mat = sympify(mat) if not mat.is_Matrix: raise TypeError("Input to Permanent, %s, not a matrix" % str(mat)) return Basic.__new__(cls, mat) @property def arg(self): return self.args[0] def doit(self, expand=False): try: return self.arg.per() except (AttributeError, NotImplementedError): return self def per(matexpr): """ Matrix Permanent Examples ======== >>> from sympy import MatrixSymbol, Matrix, per, ones >>> A = MatrixSymbol('A', 3, 3) >>> per(A) Permanent(A) >>> per(ones(5, 5)) 120 >>> M = Matrix([1, 2, 5]) >>> per(M) 8 """ return Permanent(matexpr).doit() from sympy.assumptions.ask import ask, Q from sympy.assumptions.refine import handlers_dict def refine_Determinant(expr, assumptions): """ >>> from sympy import MatrixSymbol, Q, assuming, refine, det >>> X = MatrixSymbol('X', 2, 2) >>> det(X) Determinant(X) >>> with assuming(Q.orthogonal(X)): ... print(refine(det(X))) 1 """ if ask(Q.orthogonal(expr.arg), assumptions): return S.One elif ask(Q.singular(expr.arg), assumptions): return S.Zero elif ask(Q.unit_triangular(expr.arg), assumptions): return S.One return expr handlers_dict['Determinant'] = refine_Determinant
539cede71b6e0922ff046f5eaddaa4b7a73dc14b4b5004ce903963059cb4886c
from sympy import Number from sympy.core import Mul, Basic, sympify, S from sympy.core.mul import mul from sympy.functions import adjoint from sympy.strategies import (rm_id, unpack, typed, flatten, exhaust, do_one, new) from sympy.matrices.common import ShapeError, NonInvertibleMatrixError from sympy.matrices.matrices import MatrixBase from .inverse import Inverse from .matexpr import MatrixExpr from .matpow import MatPow from .transpose import transpose from .permutation import PermutationMatrix from .special import ZeroMatrix, Identity, GenericIdentity, OneMatrix # XXX: MatMul should perhaps not subclass directly from Mul class MatMul(MatrixExpr, Mul): """ A product of matrix expressions Examples ======== >>> from sympy import MatMul, MatrixSymbol >>> A = MatrixSymbol('A', 5, 4) >>> B = MatrixSymbol('B', 4, 3) >>> C = MatrixSymbol('C', 3, 6) >>> MatMul(A, B, C) A*B*C """ is_MatMul = True identity = GenericIdentity() def __new__(cls, *args, evaluate=False, check=True, _sympify=True): if not args: return cls.identity # This must be removed aggressively in the constructor to avoid # TypeErrors from GenericIdentity().shape args = list(filter(lambda i: cls.identity != i, args)) if _sympify: args = list(map(sympify, args)) obj = Basic.__new__(cls, *args) factor, matrices = obj.as_coeff_matrices() if check: validate(*matrices) if not matrices: # Should it be # # return Basic.__neq__(cls, factor, GenericIdentity()) ? return factor if evaluate: return canonicalize(obj) return obj @property def shape(self): matrices = [arg for arg in self.args if arg.is_Matrix] return (matrices[0].rows, matrices[-1].cols) def _entry(self, i, j, expand=True, **kwargs): from sympy import Dummy, Sum, Mul, ImmutableMatrix, Integer coeff, matrices = self.as_coeff_matrices() if len(matrices) == 1: # situation like 2*X, matmul is just X return coeff * matrices[0][i, j] indices = [None]*(len(matrices) + 1) ind_ranges = [None]*(len(matrices) - 1) indices[0] = i indices[-1] = j def f(): counter = 1 while True: yield Dummy("i_%i" % counter) counter += 1 dummy_generator = kwargs.get("dummy_generator", f()) for i in range(1, len(matrices)): indices[i] = next(dummy_generator) for i, arg in enumerate(matrices[:-1]): ind_ranges[i] = arg.shape[1] - 1 matrices = [arg._entry(indices[i], indices[i+1], dummy_generator=dummy_generator) for i, arg in enumerate(matrices)] expr_in_sum = Mul.fromiter(matrices) if any(v.has(ImmutableMatrix) for v in matrices): expand = True result = coeff*Sum( expr_in_sum, *zip(indices[1:-1], [0]*len(ind_ranges), ind_ranges) ) # Don't waste time in result.doit() if the sum bounds are symbolic if not any(isinstance(v, (Integer, int)) for v in ind_ranges): expand = False return result.doit() if expand else result def as_coeff_matrices(self): scalars = [x for x in self.args if not x.is_Matrix] matrices = [x for x in self.args if x.is_Matrix] coeff = Mul(*scalars) if coeff.is_commutative is False: raise NotImplementedError("noncommutative scalars in MatMul are not supported.") return coeff, matrices def as_coeff_mmul(self): coeff, matrices = self.as_coeff_matrices() return coeff, MatMul(*matrices) def _eval_transpose(self): """Transposition of matrix multiplication. Notes ===== The following rules are applied. Transposition for matrix multiplied with another matrix: `\\left(A B\\right)^{T} = B^{T} A^{T}` Transposition for matrix multiplied with scalar: `\\left(c A\\right)^{T} = c A^{T}` References ========== .. [1] https://en.wikipedia.org/wiki/Transpose """ coeff, matrices = self.as_coeff_matrices() return MatMul( coeff, *[transpose(arg) for arg in matrices[::-1]]).doit() def _eval_adjoint(self): return MatMul(*[adjoint(arg) for arg in self.args[::-1]]).doit() def _eval_trace(self): factor, mmul = self.as_coeff_mmul() if factor != 1: from .trace import trace return factor * trace(mmul.doit()) else: raise NotImplementedError("Can't simplify any further") def _eval_determinant(self): from sympy.matrices.expressions.determinant import Determinant factor, matrices = self.as_coeff_matrices() square_matrices = only_squares(*matrices) return factor**self.rows * Mul(*list(map(Determinant, square_matrices))) def _eval_inverse(self): try: return MatMul(*[ arg.inverse() if isinstance(arg, MatrixExpr) else arg**-1 for arg in self.args[::-1]]).doit() except ShapeError: return Inverse(self) def doit(self, **kwargs): deep = kwargs.get('deep', True) if deep: args = [arg.doit(**kwargs) for arg in self.args] else: args = self.args # treat scalar*MatrixSymbol or scalar*MatPow separately expr = canonicalize(MatMul(*args)) return expr # Needed for partial compatibility with Mul def args_cnc(self, **kwargs): coeff_c = [x for x in self.args if x.is_commutative] coeff_nc = [x for x in self.args if not x.is_commutative] return [coeff_c, coeff_nc] def _eval_derivative_matrix_lines(self, x): from .transpose import Transpose with_x_ind = [i for i, arg in enumerate(self.args) if arg.has(x)] lines = [] for ind in with_x_ind: left_args = self.args[:ind] right_args = self.args[ind+1:] if right_args: right_mat = MatMul.fromiter(right_args) else: right_mat = Identity(self.shape[1]) if left_args: left_rev = MatMul.fromiter([Transpose(i).doit() if i.is_Matrix else i for i in reversed(left_args)]) else: left_rev = Identity(self.shape[0]) d = self.args[ind]._eval_derivative_matrix_lines(x) for i in d: i.append_first(left_rev) i.append_second(right_mat) lines.append(i) return lines mul.register_handlerclass((Mul, MatMul), MatMul) def validate(*matrices): """ Checks for valid shapes for args of MatMul """ for i in range(len(matrices)-1): A, B = matrices[i:i+2] if A.cols != B.rows: raise ShapeError("Matrices %s and %s are not aligned"%(A, B)) # Rules def newmul(*args): if args[0] == 1: args = args[1:] return new(MatMul, *args) def any_zeros(mul): if any(arg.is_zero or (arg.is_Matrix and arg.is_ZeroMatrix) for arg in mul.args): matrices = [arg for arg in mul.args if arg.is_Matrix] return ZeroMatrix(matrices[0].rows, matrices[-1].cols) return mul def merge_explicit(matmul): """ Merge explicit MatrixBase arguments >>> from sympy import MatrixSymbol, Matrix, MatMul, pprint >>> from sympy.matrices.expressions.matmul import merge_explicit >>> A = MatrixSymbol('A', 2, 2) >>> B = Matrix([[1, 1], [1, 1]]) >>> C = Matrix([[1, 2], [3, 4]]) >>> X = MatMul(A, B, C) >>> pprint(X) [1 1] [1 2] A*[ ]*[ ] [1 1] [3 4] >>> pprint(merge_explicit(X)) [4 6] A*[ ] [4 6] >>> X = MatMul(B, A, C) >>> pprint(X) [1 1] [1 2] [ ]*A*[ ] [1 1] [3 4] >>> pprint(merge_explicit(X)) [1 1] [1 2] [ ]*A*[ ] [1 1] [3 4] """ if not any(isinstance(arg, MatrixBase) for arg in matmul.args): return matmul newargs = [] last = matmul.args[0] for arg in matmul.args[1:]: if isinstance(arg, (MatrixBase, Number)) and isinstance(last, (MatrixBase, Number)): last = last * arg else: newargs.append(last) last = arg newargs.append(last) return MatMul(*newargs) def remove_ids(mul): """ Remove Identities from a MatMul This is a modified version of sympy.strategies.rm_id. This is necesssary because MatMul may contain both MatrixExprs and Exprs as args. See Also ======== sympy.strategies.rm_id """ # Separate Exprs from MatrixExprs in args factor, mmul = mul.as_coeff_mmul() # Apply standard rm_id for MatMuls result = rm_id(lambda x: x.is_Identity is True)(mmul) if result != mmul: return newmul(factor, *result.args) # Recombine and return else: return mul def factor_in_front(mul): factor, matrices = mul.as_coeff_matrices() if factor != 1: return newmul(factor, *matrices) return mul def combine_powers(mul): """Combine consecutive powers with the same base into one e.g. A*A**2 -> A**3 This also cancels out the possible matrix inverses using the knowledgebase of ``Inverse``. e.g. Y * X * X.I -> Y """ factor, args = mul.as_coeff_matrices() new_args = [args[0]] for B in args[1:]: A = new_args[-1] if A.is_square == False or B.is_square == False: new_args.append(B) continue if isinstance(A, MatPow): A_base, A_exp = A.args else: A_base, A_exp = A, S.One if isinstance(B, MatPow): B_base, B_exp = B.args else: B_base, B_exp = B, S.One if A_base == B_base: new_exp = A_exp + B_exp new_args[-1] = MatPow(A_base, new_exp).doit(deep=False) continue elif not isinstance(B_base, MatrixBase): try: B_base_inv = B_base.inverse() except NonInvertibleMatrixError: B_base_inv = None if B_base_inv is not None and A_base == B_base_inv: new_exp = A_exp - B_exp new_args[-1] = MatPow(A_base, new_exp).doit(deep=False) continue new_args.append(B) return newmul(factor, *new_args) def combine_permutations(mul): """Refine products of permutation matrices as the products of cycles. """ args = mul.args l = len(args) if l < 2: return mul result = [args[0]] for i in range(1, l): A = result[-1] B = args[i] if isinstance(A, PermutationMatrix) and \ isinstance(B, PermutationMatrix): cycle_1 = A.args[0] cycle_2 = B.args[0] result[-1] = PermutationMatrix(cycle_1 * cycle_2) else: result.append(B) return MatMul(*result) def combine_one_matrices(mul): """ Combine products of OneMatrix e.g. OneMatrix(2, 3) * OneMatrix(3, 4) -> 3 * OneMatrix(2, 4) """ factor, args = mul.as_coeff_matrices() new_args = [args[0]] for B in args[1:]: A = new_args[-1] if not isinstance(A, OneMatrix) or not isinstance(B, OneMatrix): new_args.append(B) continue new_args.pop() new_args.append(OneMatrix(A.shape[0], B.shape[1])) factor *= A.shape[1] return newmul(factor, *new_args) def distribute_monom(mul): """ Simplify MatMul expressions but distributing rational term to MatMul. e.g. 2*(A+B) -> 2*A + 2*B """ args = mul.args if len(args) == 2: from .matadd import MatAdd if args[0].is_MatAdd and args[1].is_Rational: return MatAdd(*[MatMul(mat, args[1]).doit() for mat in args[0].args]) if args[1].is_MatAdd and args[0].is_Rational: return MatAdd(*[MatMul(args[0], mat).doit() for mat in args[1].args]) return mul rules = ( distribute_monom, any_zeros, remove_ids, combine_one_matrices, combine_powers, unpack, rm_id(lambda x: x == 1), merge_explicit, factor_in_front, flatten, combine_permutations) canonicalize = exhaust(typed({MatMul: do_one(*rules)})) def only_squares(*matrices): """factor matrices only if they are square""" if matrices[0].rows != matrices[-1].cols: raise RuntimeError("Invalid matrices being multiplied") out = [] start = 0 for i, M in enumerate(matrices): if M.cols == matrices[start].rows: out.append(MatMul(*matrices[start:i+1]).doit()) start = i+1 return out from sympy.assumptions.ask import ask, Q from sympy.assumptions.refine import handlers_dict def refine_MatMul(expr, assumptions): """ >>> from sympy import MatrixSymbol, Q, assuming, refine >>> X = MatrixSymbol('X', 2, 2) >>> expr = X * X.T >>> print(expr) X*X.T >>> with assuming(Q.orthogonal(X)): ... print(refine(expr)) I """ newargs = [] exprargs = [] for args in expr.args: if args.is_Matrix: exprargs.append(args) else: newargs.append(args) last = exprargs[0] for arg in exprargs[1:]: if arg == last.T and ask(Q.orthogonal(arg), assumptions): last = Identity(arg.shape[0]) elif arg == last.conjugate() and ask(Q.unitary(arg), assumptions): last = Identity(arg.shape[0]) else: newargs.append(last) last = arg newargs.append(last) return MatMul(*newargs) handlers_dict['MatMul'] = refine_MatMul
e44865684612423d0188eb17de7e46d9a23e06b61df2d62457b336b778cb0e3d
from typing import Tuple as tTuple from sympy.core.logic import FuzzyBool from functools import wraps, reduce import collections from sympy.core import S, Symbol, Integer, Basic, Expr, Mul, Add from sympy.core.decorators import call_highest_priority from sympy.core.compatibility import SYMPY_INTS, default_sort_key from sympy.core.symbol import Str from sympy.core.sympify import SympifyError, _sympify from sympy.functions import conjugate, adjoint from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.matrices.common import NonSquareMatrixError from sympy.simplify import simplify from sympy.matrices.matrices import MatrixKind from sympy.utilities.misc import filldedent from sympy.multipledispatch import dispatch def _sympifyit(arg, retval=None): # This version of _sympifyit sympifies MutableMatrix objects def deco(func): @wraps(func) def __sympifyit_wrapper(a, b): try: b = _sympify(b) return func(a, b) except SympifyError: return retval return __sympifyit_wrapper return deco class MatrixExpr(Expr): """Superclass for Matrix Expressions MatrixExprs represent abstract matrices, linear transformations represented within a particular basis. Examples ======== >>> from sympy import MatrixSymbol >>> A = MatrixSymbol('A', 3, 3) >>> y = MatrixSymbol('y', 3, 1) >>> x = (A.T*A).I * A * y See Also ======== MatrixSymbol, MatAdd, MatMul, Transpose, Inverse """ # Should not be considered iterable by the # sympy.core.compatibility.iterable function. Subclass that actually are # iterable (i.e., explicit matrices) should set this to True. _iterable = False _op_priority = 11.0 is_Matrix = True # type: bool is_MatrixExpr = True # type: bool is_Identity = None # type: FuzzyBool is_Inverse = False is_Transpose = False is_ZeroMatrix = False is_MatAdd = False is_MatMul = False is_commutative = False is_number = False is_symbol = False is_scalar = False kind = MatrixKind() def __new__(cls, *args, **kwargs): args = map(_sympify, args) return Basic.__new__(cls, *args, **kwargs) # The following is adapted from the core Expr object @property def shape(self) -> tTuple[Expr, Expr]: raise NotImplementedError @property def _add_handler(self): return MatAdd @property def _mul_handler(self): return MatMul def __neg__(self): return MatMul(S.NegativeOne, self).doit() def __abs__(self): raise NotImplementedError @_sympifyit('other', NotImplemented) @call_highest_priority('__radd__') def __add__(self, other): return MatAdd(self, other, check=True).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__add__') def __radd__(self, other): return MatAdd(other, self, check=True).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__rsub__') def __sub__(self, other): return MatAdd(self, -other, check=True).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__sub__') def __rsub__(self, other): return MatAdd(other, -self, check=True).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__rmul__') def __mul__(self, other): return MatMul(self, other).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__rmul__') def __matmul__(self, other): return MatMul(self, other).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__mul__') def __rmul__(self, other): return MatMul(other, self).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__mul__') def __rmatmul__(self, other): return MatMul(other, self).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__rpow__') def __pow__(self, other): return MatPow(self, other).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__pow__') def __rpow__(self, other): raise NotImplementedError("Matrix Power not defined") @_sympifyit('other', NotImplemented) @call_highest_priority('__rtruediv__') def __truediv__(self, other): return self * other**S.NegativeOne @_sympifyit('other', NotImplemented) @call_highest_priority('__truediv__') def __rtruediv__(self, other): raise NotImplementedError() #return MatMul(other, Pow(self, S.NegativeOne)) @property def rows(self): return self.shape[0] @property def cols(self): return self.shape[1] @property def is_square(self): return self.rows == self.cols def _eval_conjugate(self): from sympy.matrices.expressions.adjoint import Adjoint from sympy.matrices.expressions.transpose import Transpose return Adjoint(Transpose(self)) def as_real_imag(self, deep=True, **hints): from sympy import I real = S.Half * (self + self._eval_conjugate()) im = (self - self._eval_conjugate())/(2*I) return (real, im) def _eval_inverse(self): from sympy.matrices.expressions.inverse import Inverse return Inverse(self) def _eval_transpose(self): return Transpose(self) def _eval_power(self, exp): """ Override this in sub-classes to implement simplification of powers. The cases where the exponent is -1, 0, 1 are already covered in MatPow.doit(), so implementations can exclude these cases. """ return MatPow(self, exp) def _eval_simplify(self, **kwargs): if self.is_Atom: return self else: return self.func(*[simplify(x, **kwargs) for x in self.args]) def _eval_adjoint(self): from sympy.matrices.expressions.adjoint import Adjoint return Adjoint(self) def _eval_derivative_n_times(self, x, n): return Basic._eval_derivative_n_times(self, x, n) def _eval_derivative(self, x): # `x` is a scalar: if self.has(x): # See if there are other methods using it: return super()._eval_derivative(x) else: return ZeroMatrix(*self.shape) @classmethod def _check_dim(cls, dim): """Helper function to check invalid matrix dimensions""" from sympy.core.assumptions import check_assumptions ok = check_assumptions(dim, integer=True, nonnegative=True) if ok is False: raise ValueError( "The dimension specification {} should be " "a nonnegative integer.".format(dim)) def _entry(self, i, j, **kwargs): raise NotImplementedError( "Indexing not implemented for %s" % self.__class__.__name__) def adjoint(self): return adjoint(self) def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return S.One, self def conjugate(self): return conjugate(self) def transpose(self): from sympy.matrices.expressions.transpose import transpose return transpose(self) @property def T(self): '''Matrix transposition''' return self.transpose() def inverse(self): if not self.is_square: raise NonSquareMatrixError('Inverse of non-square matrix') return self._eval_inverse() def inv(self): return self.inverse() @property def I(self): return self.inverse() def valid_index(self, i, j): def is_valid(idx): return isinstance(idx, (int, Integer, Symbol, Expr)) return (is_valid(i) and is_valid(j) and (self.rows is None or (0 <= i) != False and (i < self.rows) != False) and (0 <= j) != False and (j < self.cols) != False) def __getitem__(self, key): if not isinstance(key, tuple) and isinstance(key, slice): from sympy.matrices.expressions.slice import MatrixSlice return MatrixSlice(self, key, (0, None, 1)) if isinstance(key, tuple) and len(key) == 2: i, j = key if isinstance(i, slice) or isinstance(j, slice): from sympy.matrices.expressions.slice import MatrixSlice return MatrixSlice(self, i, j) i, j = _sympify(i), _sympify(j) if self.valid_index(i, j) != False: return self._entry(i, j) else: raise IndexError("Invalid indices (%s, %s)" % (i, j)) elif isinstance(key, (SYMPY_INTS, Integer)): # row-wise decomposition of matrix rows, cols = self.shape # allow single indexing if number of columns is known if not isinstance(cols, Integer): raise IndexError(filldedent(''' Single indexing is only supported when the number of columns is known.''')) key = _sympify(key) i = key // cols j = key % cols if self.valid_index(i, j) != False: return self._entry(i, j) else: raise IndexError("Invalid index %s" % key) elif isinstance(key, (Symbol, Expr)): raise IndexError(filldedent(''' Only integers may be used when addressing the matrix with a single index.''')) raise IndexError("Invalid index, wanted %s[i,j]" % self) def as_explicit(self): """ Returns a dense Matrix with elements represented explicitly Returns an object of type ImmutableDenseMatrix. Examples ======== >>> from sympy import Identity >>> I = Identity(3) >>> I I >>> I.as_explicit() Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) See Also ======== as_mutable: returns mutable Matrix type """ if (not isinstance(self.rows, (SYMPY_INTS, Integer)) or not isinstance(self.cols, (SYMPY_INTS, Integer))): raise ValueError( 'Matrix with symbolic shape ' 'cannot be represented explicitly.') from sympy.matrices.immutable import ImmutableDenseMatrix return ImmutableDenseMatrix([[self[i, j] for j in range(self.cols)] for i in range(self.rows)]) def as_mutable(self): """ Returns a dense, mutable matrix with elements represented explicitly Examples ======== >>> from sympy import Identity >>> I = Identity(3) >>> I I >>> I.shape (3, 3) >>> I.as_mutable() Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) See Also ======== as_explicit: returns ImmutableDenseMatrix """ return self.as_explicit().as_mutable() def __array__(self): from numpy import empty a = empty(self.shape, dtype=object) for i in range(self.rows): for j in range(self.cols): a[i, j] = self[i, j] return a def equals(self, other): """ Test elementwise equality between matrices, potentially of different types >>> from sympy import Identity, eye >>> Identity(3).equals(eye(3)) True """ return self.as_explicit().equals(other) def canonicalize(self): return self def as_coeff_mmul(self): return 1, MatMul(self) @staticmethod def from_index_summation(expr, first_index=None, last_index=None, dimensions=None): r""" Parse expression of matrices with explicitly summed indices into a matrix expression without indices, if possible. This transformation expressed in mathematical notation: `\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}` Optional parameter ``first_index``: specify which free index to use as the index starting the expression. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum >>> from sympy.abc import i, j, k, l, N >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A*B Transposition is detected: >>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A.T*B Detect the trace: >>> expr = Sum(A[i, i], (i, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) Trace(A) More complicated expressions: >>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A*B.T*A.T """ from sympy import Sum, Mul, Add, MatMul, transpose, trace from sympy.strategies.traverse import bottom_up def remove_matelement(expr, i1, i2): def repl_match(pos): def func(x): if not isinstance(x, MatrixElement): return False if x.args[pos] != i1: return False if x.args[3-pos] == 0: if x.args[0].shape[2-pos] == 1: return True else: return False return True return func expr = expr.replace(repl_match(1), lambda x: x.args[0]) expr = expr.replace(repl_match(2), lambda x: transpose(x.args[0])) # Make sure that all Mul are transformed to MatMul and that they # are flattened: rule = bottom_up(lambda x: reduce(lambda a, b: a*b, x.args) if isinstance(x, (Mul, MatMul)) else x) return rule(expr) def recurse_expr(expr, index_ranges={}): if expr.is_Mul: nonmatargs = [] pos_arg = [] pos_ind = [] dlinks = {} link_ind = [] counter = 0 args_ind = [] for arg in expr.args: retvals = recurse_expr(arg, index_ranges) assert isinstance(retvals, list) if isinstance(retvals, list): for i in retvals: args_ind.append(i) else: args_ind.append(retvals) for arg_symbol, arg_indices in args_ind: if arg_indices is None: nonmatargs.append(arg_symbol) continue if isinstance(arg_symbol, MatrixElement): arg_symbol = arg_symbol.args[0] pos_arg.append(arg_symbol) pos_ind.append(arg_indices) link_ind.append([None]*len(arg_indices)) for i, ind in enumerate(arg_indices): if ind in dlinks: other_i = dlinks[ind] link_ind[counter][i] = other_i link_ind[other_i[0]][other_i[1]] = (counter, i) dlinks[ind] = (counter, i) counter += 1 counter2 = 0 lines = {} while counter2 < len(link_ind): for i, e in enumerate(link_ind): if None in e: line_start_index = (i, e.index(None)) break cur_ind_pos = line_start_index cur_line = [] index1 = pos_ind[cur_ind_pos[0]][cur_ind_pos[1]] while True: d, r = cur_ind_pos if pos_arg[d] != 1: if r % 2 == 1: cur_line.append(transpose(pos_arg[d])) else: cur_line.append(pos_arg[d]) next_ind_pos = link_ind[d][1-r] counter2 += 1 # Mark as visited, there will be no `None` anymore: link_ind[d] = (-1, -1) if next_ind_pos is None: index2 = pos_ind[d][1-r] lines[(index1, index2)] = cur_line break cur_ind_pos = next_ind_pos lines = {k: MatMul.fromiter(v) if len(v) != 1 else v[0] for k, v in lines.items()} return [(Mul.fromiter(nonmatargs), None)] + [ (MatrixElement(a, i, j), (i, j)) for (i, j), a in lines.items() ] elif expr.is_Add: res = [recurse_expr(i) for i in expr.args] d = collections.defaultdict(list) for res_addend in res: scalar = 1 for elem, indices in res_addend: if indices is None: scalar = elem continue indices = tuple(sorted(indices, key=default_sort_key)) d[indices].append(scalar*remove_matelement(elem, *indices)) scalar = 1 return [(MatrixElement(Add.fromiter(v), *k), k) for k, v in d.items()] elif isinstance(expr, KroneckerDelta): i1, i2 = expr.args shape = dimensions if shape is None: shape = [] for kr_ind in expr.args: if kr_ind not in index_ranges: continue r1, r2 = index_ranges[kr_ind] if r1 != 0: raise ValueError(f"index ranges should start from zero: {index_ranges}") shape.append(r2) if len(shape) == 0: shape = None elif len(shape) == 1: shape = (shape[0] + 1, shape[0] + 1) else: shape = (shape[0] + 1, shape[1] + 1) if shape[0] != shape[1]: raise ValueError(f"upper index ranges should be equal: {index_ranges}") identity = Identity(shape[0]) return [(MatrixElement(identity, i1, i2), (i1, i2))] elif isinstance(expr, MatrixElement): matrix_symbol, i1, i2 = expr.args if i1 in index_ranges: r1, r2 = index_ranges[i1] if r1 != 0 or matrix_symbol.shape[0] != r2+1: raise ValueError("index range mismatch: {} vs. (0, {})".format( (r1, r2), matrix_symbol.shape[0])) if i2 in index_ranges: r1, r2 = index_ranges[i2] if r1 != 0 or matrix_symbol.shape[1] != r2+1: raise ValueError("index range mismatch: {} vs. (0, {})".format( (r1, r2), matrix_symbol.shape[1])) if (i1 == i2) and (i1 in index_ranges): return [(trace(matrix_symbol), None)] return [(MatrixElement(matrix_symbol, i1, i2), (i1, i2))] elif isinstance(expr, Sum): return recurse_expr( expr.args[0], index_ranges={i[0]: i[1:] for i in expr.args[1:]} ) else: return [(expr, None)] retvals = recurse_expr(expr) factors, indices = zip(*retvals) retexpr = Mul.fromiter(factors) if len(indices) == 0 or list(set(indices)) == [None]: return retexpr if first_index is None: for i in indices: if i is not None: ind0 = i break return remove_matelement(retexpr, *ind0) else: return remove_matelement(retexpr, first_index, last_index) def applyfunc(self, func): from .applyfunc import ElementwiseApplyFunction return ElementwiseApplyFunction(func, self) @dispatch(MatrixExpr, Expr) def _eval_is_eq(lhs, rhs): # noqa:F811 return False @dispatch(MatrixExpr, MatrixExpr) # type: ignore def _eval_is_eq(lhs, rhs): # noqa:F811 if lhs.shape != rhs.shape: return False if (lhs - rhs).is_ZeroMatrix: return True def get_postprocessor(cls): def _postprocessor(expr): # To avoid circular imports, we can't have MatMul/MatAdd on the top level mat_class = {Mul: MatMul, Add: MatAdd}[cls] nonmatrices = [] matrices = [] for term in expr.args: if isinstance(term, MatrixExpr): matrices.append(term) else: nonmatrices.append(term) if not matrices: return cls._from_args(nonmatrices) if nonmatrices: if cls == Mul: for i in range(len(matrices)): if not matrices[i].is_MatrixExpr: # If one of the matrices explicit, absorb the scalar into it # (doit will combine all explicit matrices into one, so it # doesn't matter which) matrices[i] = matrices[i].__mul__(cls._from_args(nonmatrices)) nonmatrices = [] break else: # Maintain the ability to create Add(scalar, matrix) without # raising an exception. That way different algorithms can # replace matrix expressions with non-commutative symbols to # manipulate them like non-commutative scalars. return cls._from_args(nonmatrices + [mat_class(*matrices).doit(deep=False)]) if mat_class == MatAdd: return mat_class(*matrices).doit(deep=False) return mat_class(cls._from_args(nonmatrices), *matrices).doit(deep=False) return _postprocessor Basic._constructor_postprocessor_mapping[MatrixExpr] = { "Mul": [get_postprocessor(Mul)], "Add": [get_postprocessor(Add)], } def _matrix_derivative(expr, x): from sympy.tensor.array.array_derivatives import ArrayDerivative lines = expr._eval_derivative_matrix_lines(x) parts = [i.build() for i in lines] from sympy.tensor.array.expressions.conv_array_to_matrix import convert_array_to_matrix parts = [[convert_array_to_matrix(j) for j in i] for i in parts] def _get_shape(elem): if isinstance(elem, MatrixExpr): return elem.shape return 1, 1 def get_rank(parts): return sum([j not in (1, None) for i in parts for j in _get_shape(i)]) ranks = [get_rank(i) for i in parts] rank = ranks[0] def contract_one_dims(parts): if len(parts) == 1: return parts[0] else: p1, p2 = parts[:2] if p2.is_Matrix: p2 = p2.T if p1 == Identity(1): pbase = p2 elif p2 == Identity(1): pbase = p1 else: pbase = p1*p2 if len(parts) == 2: return pbase else: # len(parts) > 2 if pbase.is_Matrix: raise ValueError("") return pbase*Mul.fromiter(parts[2:]) if rank <= 2: return Add.fromiter([contract_one_dims(i) for i in parts]) return ArrayDerivative(expr, x) class MatrixElement(Expr): parent = property(lambda self: self.args[0]) i = property(lambda self: self.args[1]) j = property(lambda self: self.args[2]) _diff_wrt = True is_symbol = True is_commutative = True def __new__(cls, name, n, m): n, m = map(_sympify, (n, m)) from sympy import MatrixBase if isinstance(name, (MatrixBase,)): if n.is_Integer and m.is_Integer: return name[n, m] if isinstance(name, str): name = Symbol(name) else: name = _sympify(name) if not isinstance(name.kind, MatrixKind): raise TypeError("First argument of MatrixElement should be a matrix") obj = Expr.__new__(cls, name, n, m) return obj def doit(self, **kwargs): deep = kwargs.get('deep', True) if deep: args = [arg.doit(**kwargs) for arg in self.args] else: args = self.args return args[0][args[1], args[2]] @property def indices(self): return self.args[1:] def _eval_derivative(self, v): from sympy import Sum, symbols, Dummy if not isinstance(v, MatrixElement): from sympy import MatrixBase if isinstance(self.parent, MatrixBase): return self.parent.diff(v)[self.i, self.j] return S.Zero M = self.args[0] m, n = self.parent.shape if M == v.args[0]: return KroneckerDelta(self.args[1], v.args[1], (0, m-1)) * \ KroneckerDelta(self.args[2], v.args[2], (0, n-1)) if isinstance(M, Inverse): i, j = self.args[1:] i1, i2 = symbols("z1, z2", cls=Dummy) Y = M.args[0] r1, r2 = Y.shape return -Sum(M[i, i1]*Y[i1, i2].diff(v)*M[i2, j], (i1, 0, r1-1), (i2, 0, r2-1)) if self.has(v.args[0]): return None return S.Zero class MatrixSymbol(MatrixExpr): """Symbolic representation of a Matrix object Creates a SymPy Symbol to represent a Matrix. This matrix has a shape and can be included in Matrix Expressions Examples ======== >>> from sympy import MatrixSymbol, Identity >>> A = MatrixSymbol('A', 3, 4) # A 3 by 4 Matrix >>> B = MatrixSymbol('B', 4, 3) # A 4 by 3 Matrix >>> A.shape (3, 4) >>> 2*A*B + Identity(3) I + 2*A*B """ is_commutative = False is_symbol = True _diff_wrt = True def __new__(cls, name, n, m): n, m = _sympify(n), _sympify(m) cls._check_dim(m) cls._check_dim(n) if isinstance(name, str): name = Str(name) obj = Basic.__new__(cls, name, n, m) return obj @property def shape(self): return self.args[1], self.args[2] @property def name(self): return self.args[0].name def _entry(self, i, j, **kwargs): return MatrixElement(self, i, j) @property def free_symbols(self): return {self} def _eval_simplify(self, **kwargs): return self def _eval_derivative(self, x): # x is a scalar: return ZeroMatrix(self.shape[0], self.shape[1]) def _eval_derivative_matrix_lines(self, x): if self != x: first = ZeroMatrix(x.shape[0], self.shape[0]) if self.shape[0] != 1 else S.Zero second = ZeroMatrix(x.shape[1], self.shape[1]) if self.shape[1] != 1 else S.Zero return [_LeftRightArgs( [first, second], )] else: first = Identity(self.shape[0]) if self.shape[0] != 1 else S.One second = Identity(self.shape[1]) if self.shape[1] != 1 else S.One return [_LeftRightArgs( [first, second], )] def matrix_symbols(expr): return [sym for sym in expr.free_symbols if sym.is_Matrix] class _LeftRightArgs: r""" Helper class to compute matrix derivatives. The logic: when an expression is derived by a matrix `X_{mn}`, two lines of matrix multiplications are created: the one contracted to `m` (first line), and the one contracted to `n` (second line). Transposition flips the side by which new matrices are connected to the lines. The trace connects the end of the two lines. """ def __init__(self, lines, higher=S.One): self._lines = [i for i in lines] self._first_pointer_parent = self._lines self._first_pointer_index = 0 self._first_line_index = 0 self._second_pointer_parent = self._lines self._second_pointer_index = 1 self._second_line_index = 1 self.higher = higher @property def first_pointer(self): return self._first_pointer_parent[self._first_pointer_index] @first_pointer.setter def first_pointer(self, value): self._first_pointer_parent[self._first_pointer_index] = value @property def second_pointer(self): return self._second_pointer_parent[self._second_pointer_index] @second_pointer.setter def second_pointer(self, value): self._second_pointer_parent[self._second_pointer_index] = value def __repr__(self): built = [self._build(i) for i in self._lines] return "_LeftRightArgs(lines=%s, higher=%s)" % ( built, self.higher, ) def transpose(self): self._first_pointer_parent, self._second_pointer_parent = self._second_pointer_parent, self._first_pointer_parent self._first_pointer_index, self._second_pointer_index = self._second_pointer_index, self._first_pointer_index self._first_line_index, self._second_line_index = self._second_line_index, self._first_line_index return self @staticmethod def _build(expr): from sympy.core.expr import ExprBuilder if isinstance(expr, ExprBuilder): return expr.build() if isinstance(expr, list): if len(expr) == 1: return expr[0] else: return expr[0](*[_LeftRightArgs._build(i) for i in expr[1]]) else: return expr def build(self): data = [self._build(i) for i in self._lines] if self.higher != 1: data += [self._build(self.higher)] data = [i for i in data] return data def matrix_form(self): if self.first != 1 and self.higher != 1: raise ValueError("higher dimensional array cannot be represented") def _get_shape(elem): if isinstance(elem, MatrixExpr): return elem.shape return (None, None) if _get_shape(self.first)[1] != _get_shape(self.second)[1]: # Remove one-dimensional identity matrices: # (this is needed by `a.diff(a)` where `a` is a vector) if _get_shape(self.second) == (1, 1): return self.first*self.second[0, 0] if _get_shape(self.first) == (1, 1): return self.first[1, 1]*self.second.T raise ValueError("incompatible shapes") if self.first != 1: return self.first*self.second.T else: return self.higher def rank(self): """ Number of dimensions different from trivial (warning: not related to matrix rank). """ rank = 0 if self.first != 1: rank += sum([i != 1 for i in self.first.shape]) if self.second != 1: rank += sum([i != 1 for i in self.second.shape]) if self.higher != 1: rank += 2 return rank def _multiply_pointer(self, pointer, other): from sympy.core.expr import ExprBuilder from ...tensor.array.expressions.array_expressions import ArrayTensorProduct from ...tensor.array.expressions.array_expressions import ArrayContraction subexpr = ExprBuilder( ArrayContraction, [ ExprBuilder( ArrayTensorProduct, [ pointer, other ] ), (1, 2) ], validator=ArrayContraction._validate ) return subexpr def append_first(self, other): self.first_pointer *= other def append_second(self, other): self.second_pointer *= other def _make_matrix(x): from sympy import ImmutableDenseMatrix if isinstance(x, MatrixExpr): return x return ImmutableDenseMatrix([[x]]) from .matmul import MatMul from .matadd import MatAdd from .matpow import MatPow from .transpose import Transpose from .inverse import Inverse from .special import ZeroMatrix, Identity
c17e1702bc4263a1c5f9fe5e1a2f00401993878fac0fe81b1cbc14b13597e2c5
from functools import reduce import operator from sympy.core import Add, Basic, sympify from sympy.core.add import add from sympy.functions import adjoint from sympy.matrices.common import ShapeError from sympy.matrices.matrices import MatrixBase from sympy.matrices.expressions.transpose import transpose from sympy.strategies import (rm_id, unpack, flatten, sort, condition, exhaust, do_one, glom) from sympy.matrices.expressions.matexpr import MatrixExpr from sympy.matrices.expressions.special import ZeroMatrix, GenericZeroMatrix from sympy.utilities import default_sort_key, sift # XXX: MatAdd should perhaps not subclass directly from Add class MatAdd(MatrixExpr, Add): """A Sum of Matrix Expressions MatAdd inherits from and operates like SymPy Add Examples ======== >>> from sympy import MatAdd, MatrixSymbol >>> A = MatrixSymbol('A', 5, 5) >>> B = MatrixSymbol('B', 5, 5) >>> C = MatrixSymbol('C', 5, 5) >>> MatAdd(A, B, C) A + B + C """ is_MatAdd = True identity = GenericZeroMatrix() def __new__(cls, *args, evaluate=False, check=False, _sympify=True): if not args: return cls.identity # This must be removed aggressively in the constructor to avoid # TypeErrors from GenericZeroMatrix().shape args = list(filter(lambda i: cls.identity != i, args)) if _sympify: args = list(map(sympify, args)) obj = Basic.__new__(cls, *args) if check: if not any(isinstance(i, MatrixExpr) for i in args): return Add.fromiter(args) validate(*args) if evaluate: if not any(isinstance(i, MatrixExpr) for i in args): return Add(*args, evaluate=True) obj = canonicalize(obj) return obj @property def shape(self): return self.args[0].shape def _entry(self, i, j, **kwargs): return Add(*[arg._entry(i, j, **kwargs) for arg in self.args]) def _eval_transpose(self): return MatAdd(*[transpose(arg) for arg in self.args]).doit() def _eval_adjoint(self): return MatAdd(*[adjoint(arg) for arg in self.args]).doit() def _eval_trace(self): from .trace import trace return Add(*[trace(arg) for arg in self.args]).doit() def doit(self, **kwargs): deep = kwargs.get('deep', True) if deep: args = [arg.doit(**kwargs) for arg in self.args] else: args = self.args return canonicalize(MatAdd(*args)) def _eval_derivative_matrix_lines(self, x): add_lines = [arg._eval_derivative_matrix_lines(x) for arg in self.args] return [j for i in add_lines for j in i] add.register_handlerclass((Add, MatAdd), MatAdd) def validate(*args): if not all(arg.is_Matrix for arg in args): raise TypeError("Mix of Matrix and Scalar symbols") A = args[0] for B in args[1:]: if A.shape != B.shape: raise ShapeError("Matrices %s and %s are not aligned"%(A, B)) factor_of = lambda arg: arg.as_coeff_mmul()[0] matrix_of = lambda arg: unpack(arg.as_coeff_mmul()[1]) def combine(cnt, mat): if cnt == 1: return mat else: return cnt * mat def merge_explicit(matadd): """ Merge explicit MatrixBase arguments Examples ======== >>> from sympy import MatrixSymbol, eye, Matrix, MatAdd, pprint >>> from sympy.matrices.expressions.matadd import merge_explicit >>> A = MatrixSymbol('A', 2, 2) >>> B = eye(2) >>> C = Matrix([[1, 2], [3, 4]]) >>> X = MatAdd(A, B, C) >>> pprint(X) [1 0] [1 2] A + [ ] + [ ] [0 1] [3 4] >>> pprint(merge_explicit(X)) [2 2] A + [ ] [3 5] """ groups = sift(matadd.args, lambda arg: isinstance(arg, MatrixBase)) if len(groups[True]) > 1: return MatAdd(*(groups[False] + [reduce(operator.add, groups[True])])) else: return matadd rules = (rm_id(lambda x: x == 0 or isinstance(x, ZeroMatrix)), unpack, flatten, glom(matrix_of, factor_of, combine), merge_explicit, sort(default_sort_key)) canonicalize = exhaust(condition(lambda x: isinstance(x, MatAdd), do_one(*rules)))
07e4a8a5d607134a5116252c07ddf8d64231c38978792bd6f4268b69c652bdcc
from sympy import (KroneckerDelta, diff, Sum, Dummy, factor, expand, zeros, gcd_terms, Eq, Symbol) from sympy.core import (S, symbols, Add, Mul, SympifyError, Rational, Function) from sympy.functions import sin, cos, tan, sqrt, cbrt, exp from sympy.simplify import simplify from sympy.matrices import (ImmutableMatrix, Inverse, MatAdd, MatMul, MatPow, Matrix, MatrixExpr, MatrixSymbol, ShapeError, SparseMatrix, Transpose, Adjoint, NonSquareMatrixError, MatrixSet) from sympy.matrices.expressions.matexpr import MatrixElement from sympy.matrices.expressions.special import ZeroMatrix, Identity from sympy.testing.pytest import raises, XFAIL n, m, l, k, p = symbols('n m l k p', integer=True) x = symbols('x') A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', m, l) C = MatrixSymbol('C', n, n) D = MatrixSymbol('D', n, n) E = MatrixSymbol('E', m, n) w = MatrixSymbol('w', n, 1) def test_matrix_symbol_creation(): assert MatrixSymbol('A', 2, 2) assert MatrixSymbol('A', 0, 0) raises(ValueError, lambda: MatrixSymbol('A', -1, 2)) raises(ValueError, lambda: MatrixSymbol('A', 2.0, 2)) raises(ValueError, lambda: MatrixSymbol('A', 2j, 2)) raises(ValueError, lambda: MatrixSymbol('A', 2, -1)) raises(ValueError, lambda: MatrixSymbol('A', 2, 2.0)) raises(ValueError, lambda: MatrixSymbol('A', 2, 2j)) n = symbols('n') assert MatrixSymbol('A', n, n) n = symbols('n', integer=False) raises(ValueError, lambda: MatrixSymbol('A', n, n)) n = symbols('n', negative=True) raises(ValueError, lambda: MatrixSymbol('A', n, n)) def test_shape(): assert A.shape == (n, m) assert (A*B).shape == (n, l) raises(ShapeError, lambda: B*A) def test_matexpr(): assert (x*A).shape == A.shape assert (x*A).__class__ == MatMul assert 2*A - A - A == ZeroMatrix(*A.shape) assert (A*B).shape == (n, l) def test_subs(): A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', m, l) C = MatrixSymbol('C', m, l) assert A.subs(n, m).shape == (m, m) assert (A*B).subs(B, C) == A*C assert (A*B).subs(l, n).is_square A = SparseMatrix([[1, 2], [3, 4]]) B = Matrix([[1, 2], [3, 4]]) C, D = MatrixSymbol('C', 2, 2), MatrixSymbol('D', 2, 2) assert (C*D).subs({C: A, D: B}) == MatMul(A, B) def test_addition(): A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', n, m) assert isinstance(A + B, MatAdd) assert (A + B).shape == A.shape assert isinstance(A - A + 2*B, MatMul) raises(ShapeError, lambda: A + B.T) raises(TypeError, lambda: A + 1) raises(TypeError, lambda: 5 + A) raises(TypeError, lambda: 5 - A) assert A + ZeroMatrix(n, m) - A == ZeroMatrix(n, m) with raises(TypeError): ZeroMatrix(n,m) + S.Zero def test_multiplication(): A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', m, l) C = MatrixSymbol('C', n, n) assert (2*A*B).shape == (n, l) assert (A*0*B) == ZeroMatrix(n, l) raises(ShapeError, lambda: B*A) assert (2*A).shape == A.shape assert A * ZeroMatrix(m, m) * B == ZeroMatrix(n, l) assert C * Identity(n) * C.I == Identity(n) assert B/2 == S.Half*B raises(NotImplementedError, lambda: 2/B) A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, n) assert Identity(n) * (A + B) == A + B assert A**2*A == A**3 assert A**2*(A.I)**3 == A.I assert A**3*(A.I)**2 == A def test_MatPow(): A = MatrixSymbol('A', n, n) AA = MatPow(A, 2) assert AA.exp == 2 assert AA.base == A assert (A**n).exp == n assert A**0 == Identity(n) assert A**1 == A assert A**2 == AA assert A**-1 == Inverse(A) assert (A**-1)**-1 == A assert (A**2)**3 == A**6 assert A**S.Half == sqrt(A) assert A**Rational(1, 3) == cbrt(A) raises(NonSquareMatrixError, lambda: MatrixSymbol('B', 3, 2)**2) def test_MatrixSymbol(): n, m, t = symbols('n,m,t') X = MatrixSymbol('X', n, m) assert X.shape == (n, m) raises(TypeError, lambda: MatrixSymbol('X', n, m)(t)) # issue 5855 assert X.doit() == X def test_dense_conversion(): X = MatrixSymbol('X', 2, 2) assert ImmutableMatrix(X) == ImmutableMatrix(2, 2, lambda i, j: X[i, j]) assert Matrix(X) == Matrix(2, 2, lambda i, j: X[i, j]) def test_free_symbols(): assert (C*D).free_symbols == {C, D} def test_zero_matmul(): assert isinstance(S.Zero * MatrixSymbol('X', 2, 2), MatrixExpr) def test_matadd_simplify(): A = MatrixSymbol('A', 1, 1) assert simplify(MatAdd(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \ MatAdd(A, Matrix([[1]])) def test_matmul_simplify(): A = MatrixSymbol('A', 1, 1) assert simplify(MatMul(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \ MatMul(A, Matrix([[1]])) def test_invariants(): A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', m, l) X = MatrixSymbol('X', n, n) objs = [Identity(n), ZeroMatrix(m, n), A, MatMul(A, B), MatAdd(A, A), Transpose(A), Adjoint(A), Inverse(X), MatPow(X, 2), MatPow(X, -1), MatPow(X, 0)] for obj in objs: assert obj == obj.__class__(*obj.args) def test_indexing(): A = MatrixSymbol('A', n, m) A[1, 2] A[l, k] A[l+1, k+1] def test_single_indexing(): A = MatrixSymbol('A', 2, 3) assert A[1] == A[0, 1] assert A[int(1)] == A[0, 1] assert A[3] == A[1, 0] assert list(A[:2, :2]) == [A[0, 0], A[0, 1], A[1, 0], A[1, 1]] raises(IndexError, lambda: A[6]) raises(IndexError, lambda: A[n]) B = MatrixSymbol('B', n, m) raises(IndexError, lambda: B[1]) B = MatrixSymbol('B', n, 3) assert B[3] == B[1, 0] def test_MatrixElement_commutative(): assert A[0, 1]*A[1, 0] == A[1, 0]*A[0, 1] def test_MatrixSymbol_determinant(): A = MatrixSymbol('A', 4, 4) assert A.as_explicit().det() == A[0, 0]*A[1, 1]*A[2, 2]*A[3, 3] - \ A[0, 0]*A[1, 1]*A[2, 3]*A[3, 2] - A[0, 0]*A[1, 2]*A[2, 1]*A[3, 3] + \ A[0, 0]*A[1, 2]*A[2, 3]*A[3, 1] + A[0, 0]*A[1, 3]*A[2, 1]*A[3, 2] - \ A[0, 0]*A[1, 3]*A[2, 2]*A[3, 1] - A[0, 1]*A[1, 0]*A[2, 2]*A[3, 3] + \ A[0, 1]*A[1, 0]*A[2, 3]*A[3, 2] + A[0, 1]*A[1, 2]*A[2, 0]*A[3, 3] - \ A[0, 1]*A[1, 2]*A[2, 3]*A[3, 0] - A[0, 1]*A[1, 3]*A[2, 0]*A[3, 2] + \ A[0, 1]*A[1, 3]*A[2, 2]*A[3, 0] + A[0, 2]*A[1, 0]*A[2, 1]*A[3, 3] - \ A[0, 2]*A[1, 0]*A[2, 3]*A[3, 1] - A[0, 2]*A[1, 1]*A[2, 0]*A[3, 3] + \ A[0, 2]*A[1, 1]*A[2, 3]*A[3, 0] + A[0, 2]*A[1, 3]*A[2, 0]*A[3, 1] - \ A[0, 2]*A[1, 3]*A[2, 1]*A[3, 0] - A[0, 3]*A[1, 0]*A[2, 1]*A[3, 2] + \ A[0, 3]*A[1, 0]*A[2, 2]*A[3, 1] + A[0, 3]*A[1, 1]*A[2, 0]*A[3, 2] - \ A[0, 3]*A[1, 1]*A[2, 2]*A[3, 0] - A[0, 3]*A[1, 2]*A[2, 0]*A[3, 1] + \ A[0, 3]*A[1, 2]*A[2, 1]*A[3, 0] def test_MatrixElement_diff(): assert (A[3, 0]*A[0, 0]).diff(A[0, 0]) == A[3, 0] def test_MatrixElement_doit(): u = MatrixSymbol('u', 2, 1) v = ImmutableMatrix([3, 5]) assert u[0, 0].subs(u, v).doit() == v[0, 0] def test_identity_powers(): M = Identity(n) assert MatPow(M, 3).doit() == M**3 assert M**n == M assert MatPow(M, 0).doit() == M**2 assert M**-2 == M assert MatPow(M, -2).doit() == M**0 N = Identity(3) assert MatPow(N, 2).doit() == N**n assert MatPow(N, 3).doit() == N assert MatPow(N, -2).doit() == N**4 assert MatPow(N, 2).doit() == N**0 def test_Zero_power(): z1 = ZeroMatrix(n, n) assert z1**4 == z1 raises(ValueError, lambda:z1**-2) assert z1**0 == Identity(n) assert MatPow(z1, 2).doit() == z1**2 raises(ValueError, lambda:MatPow(z1, -2).doit()) z2 = ZeroMatrix(3, 3) assert MatPow(z2, 4).doit() == z2**4 raises(ValueError, lambda:z2**-3) assert z2**3 == MatPow(z2, 3).doit() assert z2**0 == Identity(3) raises(ValueError, lambda:MatPow(z2, -1).doit()) def test_matrixelement_diff(): dexpr = diff((D*w)[k,0], w[p,0]) assert w[k, p].diff(w[k, p]) == 1 assert w[k, p].diff(w[0, 0]) == KroneckerDelta(0, k, (0, n-1))*KroneckerDelta(0, p, (0, 0)) _i_1 = Dummy("_i_1") assert dexpr.dummy_eq(Sum(KroneckerDelta(_i_1, p, (0, n-1))*D[k, _i_1], (_i_1, 0, n - 1))) assert dexpr.doit() == D[k, p] def test_MatrixElement_with_values(): x, y, z, w = symbols("x y z w") M = Matrix([[x, y], [z, w]]) i, j = symbols("i, j") Mij = M[i, j] assert isinstance(Mij, MatrixElement) Ms = SparseMatrix([[2, 3], [4, 5]]) msij = Ms[i, j] assert isinstance(msij, MatrixElement) for oi, oj in [(0, 0), (0, 1), (1, 0), (1, 1)]: assert Mij.subs({i: oi, j: oj}) == M[oi, oj] assert msij.subs({i: oi, j: oj}) == Ms[oi, oj] A = MatrixSymbol("A", 2, 2) assert A[0, 0].subs(A, M) == x assert A[i, j].subs(A, M) == M[i, j] assert M[i, j].subs(M, A) == A[i, j] assert isinstance(M[3*i - 2, j], MatrixElement) assert M[3*i - 2, j].subs({i: 1, j: 0}) == M[1, 0] assert isinstance(M[i, 0], MatrixElement) assert M[i, 0].subs(i, 0) == M[0, 0] assert M[0, i].subs(i, 1) == M[0, 1] assert M[i, j].diff(x) == Matrix([[1, 0], [0, 0]])[i, j] raises(ValueError, lambda: M[i, 2]) raises(ValueError, lambda: M[i, -1]) raises(ValueError, lambda: M[2, i]) raises(ValueError, lambda: M[-1, i]) def test_inv(): B = MatrixSymbol('B', 3, 3) assert B.inv() == B**-1 # https://github.com/sympy/sympy/issues/19162 X = MatrixSymbol('X', 1, 1).as_explicit() assert X.inv() == Matrix([[1/X[0, 0]]]) X = MatrixSymbol('X', 2, 2).as_explicit() detX = X[0, 0]*X[1, 1] - X[0, 1]*X[1, 0] invX = Matrix([[ X[1, 1], -X[0, 1]], [-X[1, 0], X[0, 0]]]) / detX assert X.inv() == invX @XFAIL def test_factor_expand(): A = MatrixSymbol("A", n, n) B = MatrixSymbol("B", n, n) expr1 = (A + B)*(C + D) expr2 = A*C + B*C + A*D + B*D assert expr1 != expr2 assert expand(expr1) == expr2 assert factor(expr2) == expr1 expr = B**(-1)*(A**(-1)*B**(-1) - A**(-1)*C*B**(-1))**(-1)*A**(-1) I = Identity(n) # Ideally we get the first, but we at least don't want a wrong answer assert factor(expr) in [I - C, B**-1*(A**-1*(I - C)*B**-1)**-1*A**-1] def test_issue_2749(): A = MatrixSymbol("A", 5, 2) assert (A.T * A).I.as_explicit() == Matrix([[(A.T * A).I[0, 0], (A.T * A).I[0, 1]], \ [(A.T * A).I[1, 0], (A.T * A).I[1, 1]]]) def test_issue_2750(): x = MatrixSymbol('x', 1, 1) assert (x.T*x).as_explicit()**-1 == Matrix([[x[0, 0]**(-2)]]) def test_issue_7842(): A = MatrixSymbol('A', 3, 1) B = MatrixSymbol('B', 2, 1) assert Eq(A, B) == False assert Eq(A[1,0], B[1, 0]).func is Eq A = ZeroMatrix(2, 3) B = ZeroMatrix(2, 3) assert Eq(A, B) == True def test_issue_21195(): t = symbols('t') x = Function('x')(t) dx = x.diff(t) exp1 = cos(x) + cos(x)*dx exp2 = sin(x) + tan(x)*(dx.diff(t)) exp3 = sin(x)*sin(t)*(dx.diff(t)).diff(t) A = Matrix([[exp1], [exp2], [exp3]]) B = Matrix([[exp1.diff(x)], [exp2.diff(x)], [exp3.diff(x)]]) assert A.diff(x) == B def test_MatMul_postprocessor(): z = zeros(2) z1 = ZeroMatrix(2, 2) assert Mul(0, z) == Mul(z, 0) in [z, z1] M = Matrix([[1, 2], [3, 4]]) Mx = Matrix([[x, 2*x], [3*x, 4*x]]) assert Mul(x, M) == Mul(M, x) == Mx A = MatrixSymbol("A", 2, 2) assert Mul(A, M) == MatMul(A, M) assert Mul(M, A) == MatMul(M, A) # Scalars should be absorbed into constant matrices a = Mul(x, M, A) b = Mul(M, x, A) c = Mul(M, A, x) assert a == b == c == MatMul(Mx, A) a = Mul(x, A, M) b = Mul(A, x, M) c = Mul(A, M, x) assert a == b == c == MatMul(A, Mx) assert Mul(M, M) == M**2 assert Mul(A, M, M) == MatMul(A, M**2) assert Mul(M, M, A) == MatMul(M**2, A) assert Mul(M, A, M) == MatMul(M, A, M) assert Mul(A, x, M, M, x) == MatMul(A, Mx**2) @XFAIL def test_MatAdd_postprocessor_xfail(): # This is difficult to get working because of the way that Add processes # its args. z = zeros(2) assert Add(z, S.NaN) == Add(S.NaN, z) def test_MatAdd_postprocessor(): # Some of these are nonsensical, but we do not raise errors for Add # because that breaks algorithms that want to replace matrices with dummy # symbols. z = zeros(2) assert Add(0, z) == Add(z, 0) == z a = Add(S.Infinity, z) assert a == Add(z, S.Infinity) assert isinstance(a, Add) assert a.args == (S.Infinity, z) a = Add(S.ComplexInfinity, z) assert a == Add(z, S.ComplexInfinity) assert isinstance(a, Add) assert a.args == (S.ComplexInfinity, z) a = Add(z, S.NaN) # assert a == Add(S.NaN, z) # See the XFAIL above assert isinstance(a, Add) assert a.args == (S.NaN, z) M = Matrix([[1, 2], [3, 4]]) a = Add(x, M) assert a == Add(M, x) assert isinstance(a, Add) assert a.args == (x, M) A = MatrixSymbol("A", 2, 2) assert Add(A, M) == Add(M, A) == A + M # Scalars should be absorbed into constant matrices (producing an error) a = Add(x, M, A) assert a == Add(M, x, A) == Add(M, A, x) == Add(x, A, M) == Add(A, x, M) == Add(A, M, x) assert isinstance(a, Add) assert a.args == (x, A + M) assert Add(M, M) == 2*M assert Add(M, A, M) == Add(M, M, A) == Add(A, M, M) == A + 2*M a = Add(A, x, M, M, x) assert isinstance(a, Add) assert a.args == (2*x, A + 2*M) def test_simplify_matrix_expressions(): # Various simplification functions assert type(gcd_terms(C*D + D*C)) == MatAdd a = gcd_terms(2*C*D + 4*D*C) assert type(a) == MatAdd assert a.args == (2*C*D, 4*D*C) def test_exp(): A = MatrixSymbol('A', 2, 2) B = MatrixSymbol('B', 2, 2) expr1 = exp(A)*exp(B) expr2 = exp(B)*exp(A) assert expr1 != expr2 assert expr1 - expr2 != 0 assert not isinstance(expr1, exp) assert not isinstance(expr2, exp) def test_invalid_args(): raises(SympifyError, lambda: MatrixSymbol(1, 2, 'A')) def test_matrixsymbol_from_symbol(): # The label should be preserved during doit and subs A_label = Symbol('A', complex=True) A = MatrixSymbol(A_label, 2, 2) A_1 = A.doit() A_2 = A.subs(2, 3) assert A_1.args == A.args assert A_2.args[0] == A.args[0] def test_as_explicit(): Z = MatrixSymbol('Z', 2, 3) assert Z.as_explicit() == ImmutableMatrix([ [Z[0, 0], Z[0, 1], Z[0, 2]], [Z[1, 0], Z[1, 1], Z[1, 2]], ]) raises(ValueError, lambda: A.as_explicit()) def test_MatrixSet(): M = MatrixSet(2, 2, set=S.Reals) assert M.shape == (2, 2) assert M.set == S.Reals X = Matrix([[1, 2], [3, 4]]) assert X in M X = ZeroMatrix(2, 2) assert X in M raises(TypeError, lambda: A in M) raises(TypeError, lambda: 1 in M) M = MatrixSet(n, m, set=S.Reals) assert A in M raises(TypeError, lambda: C in M) raises(TypeError, lambda: X in M) M = MatrixSet(2, 2, set={1, 2, 3}) X = Matrix([[1, 2], [3, 4]]) Y = Matrix([[1, 2]]) assert (X in M) == S.false assert (Y in M) == S.false raises(ValueError, lambda: MatrixSet(2, -2, S.Reals)) raises(ValueError, lambda: MatrixSet(2.4, -1, S.Reals)) raises(TypeError, lambda: MatrixSet(2, 2, (1, 2, 3))) def test_matrixsymbol_solving(): A = MatrixSymbol('A', 2, 2) B = MatrixSymbol('B', 2, 2) Z = ZeroMatrix(2, 2) assert -(-A + B) - A + B == Z assert (-(-A + B) - A + B).simplify() == Z assert (-(-A + B) - A + B).expand() == Z assert (-(-A + B) - A + B - Z).simplify() == Z assert (-(-A + B) - A + B - Z).expand() == Z
816e2fda6363ad52edf3d4f287fb2dcf79db17a8d893812299ceeb057ad3d35d
from sympy import (S, Dummy, Lambda, symbols, Interval, Intersection, Set, EmptySet, FiniteSet, Union, ComplexRegion, Mul) from sympy.multipledispatch import dispatch from sympy.sets.conditionset import ConditionSet from sympy.sets.fancysets import (Integers, Naturals, Reals, Range, ImageSet, Rationals) from sympy.sets.sets import UniversalSet, imageset, ProductSet from sympy.simplify.radsimp import numer @dispatch(ConditionSet, ConditionSet) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return None @dispatch(ConditionSet, Set) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return ConditionSet(a.sym, a.condition, Intersection(a.base_set, b)) @dispatch(Naturals, Integers) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return a @dispatch(Naturals, Naturals) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return a if a is S.Naturals else b @dispatch(Interval, Naturals) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return intersection_sets(b, a) @dispatch(ComplexRegion, Set) # type: ignore # noqa:F811 def intersection_sets(self, other): # noqa:F811 if other.is_ComplexRegion: # self in rectangular form if (not self.polar) and (not other.polar): return ComplexRegion(Intersection(self.sets, other.sets)) # self in polar form elif self.polar and other.polar: r1, theta1 = self.a_interval, self.b_interval r2, theta2 = other.a_interval, other.b_interval new_r_interval = Intersection(r1, r2) new_theta_interval = Intersection(theta1, theta2) # 0 and 2*Pi means the same if ((2*S.Pi in theta1 and S.Zero in theta2) or (2*S.Pi in theta2 and S.Zero in theta1)): new_theta_interval = Union(new_theta_interval, FiniteSet(0)) return ComplexRegion(new_r_interval*new_theta_interval, polar=True) if other.is_subset(S.Reals): new_interval = [] x = symbols("x", cls=Dummy, real=True) # self in rectangular form if not self.polar: for element in self.psets: if S.Zero in element.args[1]: new_interval.append(element.args[0]) new_interval = Union(*new_interval) return Intersection(new_interval, other) # self in polar form elif self.polar: for element in self.psets: if S.Zero in element.args[1]: new_interval.append(element.args[0]) if S.Pi in element.args[1]: new_interval.append(ImageSet(Lambda(x, -x), element.args[0])) if S.Zero in element.args[0]: new_interval.append(FiniteSet(0)) new_interval = Union(*new_interval) return Intersection(new_interval, other) @dispatch(Integers, Reals) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return a @dispatch(Range, Interval) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 from sympy.functions.elementary.integers import floor, ceiling if not all(i.is_number for i in b.args[:2]): return # In case of null Range, return an EmptySet. if a.size == 0: return S.EmptySet # trim down to self's size, and represent # as a Range with step 1. start = ceiling(max(b.inf, a.inf)) if start not in b: start += 1 end = floor(min(b.sup, a.sup)) if end not in b: end -= 1 return intersection_sets(a, Range(start, end + 1)) @dispatch(Range, Naturals) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return intersection_sets(a, Interval(b.inf, S.Infinity)) @dispatch(Range, Range) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 from sympy.solvers.diophantine.diophantine import diop_linear from sympy.core.numbers import ilcm from sympy import sign # non-overlap quick exits if not b: return S.EmptySet if not a: return S.EmptySet if b.sup < a.inf: return S.EmptySet if b.inf > a.sup: return S.EmptySet # work with finite end at the start r1 = a if r1.start.is_infinite: r1 = r1.reversed r2 = b if r2.start.is_infinite: r2 = r2.reversed # If both ends are infinite then it means that one Range is just the set # of all integers (the step must be 1). if r1.start.is_infinite: return b if r2.start.is_infinite: return a # this equation represents the values of the Range; # it's a linear equation eq = lambda r, i: r.start + i*r.step # we want to know when the two equations might # have integer solutions so we use the diophantine # solver va, vb = diop_linear(eq(r1, Dummy('a')) - eq(r2, Dummy('b'))) # check for no solution no_solution = va is None and vb is None if no_solution: return S.EmptySet # there is a solution # ------------------- # find the coincident point, c a0 = va.as_coeff_Add()[0] c = eq(r1, a0) # find the first point, if possible, in each range # since c may not be that point def _first_finite_point(r1, c): if c == r1.start: return c # st is the signed step we need to take to # get from c to r1.start st = sign(r1.start - c)*step # use Range to calculate the first point: # we want to get as close as possible to # r1.start; the Range will not be null since # it will at least contain c s1 = Range(c, r1.start + st, st)[-1] if s1 == r1.start: pass else: # if we didn't hit r1.start then, if the # sign of st didn't match the sign of r1.step # we are off by one and s1 is not in r1 if sign(r1.step) != sign(st): s1 -= st if s1 not in r1: return return s1 # calculate the step size of the new Range step = abs(ilcm(r1.step, r2.step)) s1 = _first_finite_point(r1, c) if s1 is None: return S.EmptySet s2 = _first_finite_point(r2, c) if s2 is None: return S.EmptySet # replace the corresponding start or stop in # the original Ranges with these points; the # result must have at least one point since # we know that s1 and s2 are in the Ranges def _updated_range(r, first): st = sign(r.step)*step if r.start.is_finite: rv = Range(first, r.stop, st) else: rv = Range(r.start, first + st, st) return rv r1 = _updated_range(a, s1) r2 = _updated_range(b, s2) # work with them both in the increasing direction if sign(r1.step) < 0: r1 = r1.reversed if sign(r2.step) < 0: r2 = r2.reversed # return clipped Range with positive step; it # can't be empty at this point start = max(r1.start, r2.start) stop = min(r1.stop, r2.stop) return Range(start, stop, step) @dispatch(Range, Integers) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return a @dispatch(ImageSet, Set) # type: ignore # noqa:F811 def intersection_sets(self, other): # noqa:F811 from sympy.solvers.diophantine import diophantine # Only handle the straight-forward univariate case if (len(self.lamda.variables) > 1 or self.lamda.signature != self.lamda.variables): return None base_set = self.base_sets[0] # Intersection between ImageSets with Integers as base set # For {f(n) : n in Integers} & {g(m) : m in Integers} we solve the # diophantine equations f(n)=g(m). # If the solutions for n are {h(t) : t in Integers} then we return # {f(h(t)) : t in integers}. # If the solutions for n are {n_1, n_2, ..., n_k} then we return # {f(n_i) : 1 <= i <= k}. if base_set is S.Integers: gm = None if isinstance(other, ImageSet) and other.base_sets == (S.Integers,): gm = other.lamda.expr var = other.lamda.variables[0] # Symbol of second ImageSet lambda must be distinct from first m = Dummy('m') gm = gm.subs(var, m) elif other is S.Integers: m = gm = Dummy('m') if gm is not None: fn = self.lamda.expr n = self.lamda.variables[0] try: solns = list(diophantine(fn - gm, syms=(n, m), permute=True)) except (TypeError, NotImplementedError): # TypeError if equation not polynomial with rational coeff. # NotImplementedError if correct format but no solver. return # 3 cases are possible for solns: # - empty set, # - one or more parametric (infinite) solutions, # - a finite number of (non-parametric) solution couples. # Among those, there is one type of solution set that is # not helpful here: multiple parametric solutions. if len(solns) == 0: return EmptySet elif any(s.free_symbols for tupl in solns for s in tupl): if len(solns) == 1: soln, solm = solns[0] (t,) = soln.free_symbols expr = fn.subs(n, soln.subs(t, n)).expand() return imageset(Lambda(n, expr), S.Integers) else: return else: return FiniteSet(*(fn.subs(n, s[0]) for s in solns)) if other == S.Reals: from sympy.core.function import expand_complex from sympy.solvers.solvers import denoms, solve_linear from sympy.core.relational import Eq def _solution_union(exprs, sym): # return a union of linear solutions to i in expr; # if i cannot be solved, use a ConditionSet for solution sols = [] for i in exprs: x, xis = solve_linear(i, 0, [sym]) if x == sym: sols.append(FiniteSet(xis)) else: sols.append(ConditionSet(sym, Eq(i, 0))) return Union(*sols) f = self.lamda.expr n = self.lamda.variables[0] n_ = Dummy(n.name, real=True) f_ = f.subs(n, n_) re, im = f_.as_real_imag() im = expand_complex(im) re = re.subs(n_, n) im = im.subs(n_, n) ifree = im.free_symbols lam = Lambda(n, re) if im.is_zero: # allow re-evaluation # of self in this case to make # the result canonical pass elif im.is_zero is False: return S.EmptySet elif ifree != {n}: return None else: # univarite imaginary part in same variable; # use numer instead of as_numer_denom to keep # this as fast as possible while still handling # simple cases base_set &= _solution_union( Mul.make_args(numer(im)), n) # exclude values that make denominators 0 base_set -= _solution_union(denoms(f), n) return imageset(lam, base_set) elif isinstance(other, Interval): from sympy.solvers.solveset import (invert_real, invert_complex, solveset) f = self.lamda.expr n = self.lamda.variables[0] new_inf, new_sup = None, None new_lopen, new_ropen = other.left_open, other.right_open if f.is_real: inverter = invert_real else: inverter = invert_complex g1, h1 = inverter(f, other.inf, n) g2, h2 = inverter(f, other.sup, n) if all(isinstance(i, FiniteSet) for i in (h1, h2)): if g1 == n: if len(h1) == 1: new_inf = h1.args[0] if g2 == n: if len(h2) == 1: new_sup = h2.args[0] # TODO: Design a technique to handle multiple-inverse # functions # Any of the new boundary values cannot be determined if any(i is None for i in (new_sup, new_inf)): return range_set = S.EmptySet if all(i.is_real for i in (new_sup, new_inf)): # this assumes continuity of underlying function # however fixes the case when it is decreasing if new_inf > new_sup: new_inf, new_sup = new_sup, new_inf new_interval = Interval(new_inf, new_sup, new_lopen, new_ropen) range_set = base_set.intersect(new_interval) else: if other.is_subset(S.Reals): solutions = solveset(f, n, S.Reals) if not isinstance(range_set, (ImageSet, ConditionSet)): range_set = solutions.intersect(other) else: return if range_set is S.EmptySet: return S.EmptySet elif isinstance(range_set, Range) and range_set.size is not S.Infinity: range_set = FiniteSet(*list(range_set)) if range_set is not None: return imageset(Lambda(n, f), range_set) return else: return @dispatch(ProductSet, ProductSet) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 if len(b.args) != len(a.args): return S.EmptySet return ProductSet(*(i.intersect(j) for i, j in zip(a.sets, b.sets))) @dispatch(Interval, Interval) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 # handle (-oo, oo) infty = S.NegativeInfinity, S.Infinity if a == Interval(*infty): l, r = a.left, a.right if l.is_real or l in infty or r.is_real or r in infty: return b # We can't intersect [0,3] with [x,6] -- we don't know if x>0 or x<0 if not a._is_comparable(b): return None empty = False if a.start <= b.end and b.start <= a.end: # Get topology right. if a.start < b.start: start = b.start left_open = b.left_open elif a.start > b.start: start = a.start left_open = a.left_open else: start = a.start left_open = a.left_open or b.left_open if a.end < b.end: end = a.end right_open = a.right_open elif a.end > b.end: end = b.end right_open = b.right_open else: end = a.end right_open = a.right_open or b.right_open if end - start == 0 and (left_open or right_open): empty = True else: empty = True if empty: return S.EmptySet return Interval(start, end, left_open, right_open) @dispatch(type(EmptySet), Set) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return S.EmptySet @dispatch(UniversalSet, Set) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return b @dispatch(FiniteSet, FiniteSet) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return FiniteSet(*(a._elements & b._elements)) @dispatch(FiniteSet, Set) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 try: return FiniteSet(*[el for el in a if el in b]) except TypeError: return None # could not evaluate `el in b` due to symbolic ranges. @dispatch(Set, Set) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return None @dispatch(Integers, Rationals) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return a @dispatch(Naturals, Rationals) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return a @dispatch(Rationals, Reals) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return a def _intlike_interval(a, b): try: from sympy.functions.elementary.integers import floor, ceiling if b._inf is S.NegativeInfinity and b._sup is S.Infinity: return a s = Range(max(a.inf, ceiling(b.left)), floor(b.right) + 1) return intersection_sets(s, b) # take out endpoints if open interval except ValueError: return None @dispatch(Integers, Interval) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return _intlike_interval(a, b) @dispatch(Naturals, Interval) # type: ignore # noqa:F811 def intersection_sets(a, b): # noqa:F811 return _intlike_interval(a, b)
f80ea4ac2a8e49bfe4d16b2698f8fa9b05d45bdacf91b7d8e57a4f8c01d3fc69
from sympy.core.expr import unchanged from sympy.sets.fancysets import (ImageSet, Range, normalize_theta_set, ComplexRegion) from sympy.sets.sets import (FiniteSet, Interval, Union, imageset, Intersection, ProductSet, Contains) from sympy.sets.conditionset import ConditionSet from sympy.simplify.simplify import simplify from sympy import (S, Symbol, Lambda, symbols, cos, sin, pi, oo, Basic, Rational, sqrt, tan, log, exp, Abs, I, Tuple, eye, Dummy, floor, And, Eq) from sympy.testing.pytest import XFAIL, raises from sympy.abc import x, y, t, z from sympy.core.mod import Mod import itertools def test_naturals(): N = S.Naturals assert 5 in N assert -5 not in N assert 5.5 not in N ni = iter(N) a, b, c, d = next(ni), next(ni), next(ni), next(ni) assert (a, b, c, d) == (1, 2, 3, 4) assert isinstance(a, Basic) assert N.intersect(Interval(-5, 5)) == Range(1, 6) assert N.intersect(Interval(-5, 5, True, True)) == Range(1, 5) assert N.boundary == N assert N.is_open == False assert N.is_closed == True assert N.inf == 1 assert N.sup is oo assert not N.contains(oo) for s in (S.Naturals0, S.Naturals): assert s.intersection(S.Reals) is s assert s.is_subset(S.Reals) assert N.as_relational(x) == And(Eq(floor(x), x), x >= 1, x < oo) def test_naturals0(): N = S.Naturals0 assert 0 in N assert -1 not in N assert next(iter(N)) == 0 assert not N.contains(oo) assert N.contains(sin(x)) == Contains(sin(x), N) def test_integers(): Z = S.Integers assert 5 in Z assert -5 in Z assert 5.5 not in Z assert not Z.contains(oo) assert not Z.contains(-oo) zi = iter(Z) a, b, c, d = next(zi), next(zi), next(zi), next(zi) assert (a, b, c, d) == (0, 1, -1, 2) assert isinstance(a, Basic) assert Z.intersect(Interval(-5, 5)) == Range(-5, 6) assert Z.intersect(Interval(-5, 5, True, True)) == Range(-4, 5) assert Z.intersect(Interval(5, S.Infinity)) == Range(5, S.Infinity) assert Z.intersect(Interval.Lopen(5, S.Infinity)) == Range(6, S.Infinity) assert Z.inf is -oo assert Z.sup is oo assert Z.boundary == Z assert Z.is_open == False assert Z.is_closed == True assert Z.as_relational(x) == And(Eq(floor(x), x), -oo < x, x < oo) def test_ImageSet(): raises(ValueError, lambda: ImageSet(x, S.Integers)) assert ImageSet(Lambda(x, 1), S.Integers) == FiniteSet(1) assert ImageSet(Lambda(x, y), S.Integers) == {y} assert ImageSet(Lambda(x, 1), S.EmptySet) == S.EmptySet empty = Intersection(FiniteSet(log(2)/pi), S.Integers) assert unchanged(ImageSet, Lambda(x, 1), empty) # issue #17471 squares = ImageSet(Lambda(x, x**2), S.Naturals) assert 4 in squares assert 5 not in squares assert FiniteSet(*range(10)).intersect(squares) == FiniteSet(1, 4, 9) assert 16 not in squares.intersect(Interval(0, 10)) si = iter(squares) a, b, c, d = next(si), next(si), next(si), next(si) assert (a, b, c, d) == (1, 4, 9, 16) harmonics = ImageSet(Lambda(x, 1/x), S.Naturals) assert Rational(1, 5) in harmonics assert Rational(.25) in harmonics assert 0.25 not in harmonics assert Rational(.3) not in harmonics assert (1, 2) not in harmonics assert harmonics.is_iterable assert imageset(x, -x, Interval(0, 1)) == Interval(-1, 0) assert ImageSet(Lambda(x, x**2), Interval(0, 2)).doit() == Interval(0, 4) assert ImageSet(Lambda((x, y), 2*x), {4}, {3}).doit() == FiniteSet(8) assert (ImageSet(Lambda((x, y), x+y), {1, 2, 3}, {10, 20, 30}).doit() == FiniteSet(11, 12, 13, 21, 22, 23, 31, 32, 33)) c = Interval(1, 3) * Interval(1, 3) assert Tuple(2, 6) in ImageSet(Lambda(((x, y),), (x, 2*y)), c) assert Tuple(2, S.Half) in ImageSet(Lambda(((x, y),), (x, 1/y)), c) assert Tuple(2, -2) not in ImageSet(Lambda(((x, y),), (x, y**2)), c) assert Tuple(2, -2) in ImageSet(Lambda(((x, y),), (x, -2)), c) c3 = ProductSet(Interval(3, 7), Interval(8, 11), Interval(5, 9)) assert Tuple(8, 3, 9) in ImageSet(Lambda(((t, y, x),), (y, t, x)), c3) assert Tuple(Rational(1, 8), 3, 9) in ImageSet(Lambda(((t, y, x),), (1/y, t, x)), c3) assert 2/pi not in ImageSet(Lambda(((x, y),), 2/x), c) assert 2/S(100) not in ImageSet(Lambda(((x, y),), 2/x), c) assert Rational(2, 3) in ImageSet(Lambda(((x, y),), 2/x), c) S1 = imageset(lambda x, y: x + y, S.Integers, S.Naturals) assert S1.base_pset == ProductSet(S.Integers, S.Naturals) assert S1.base_sets == (S.Integers, S.Naturals) # Passing a set instead of a FiniteSet shouldn't raise assert unchanged(ImageSet, Lambda(x, x**2), {1, 2, 3}) S2 = ImageSet(Lambda(((x, y),), x+y), {(1, 2), (3, 4)}) assert 3 in S2.doit() # FIXME: This doesn't yet work: #assert 3 in S2 assert S2._contains(3) is None raises(TypeError, lambda: ImageSet(Lambda(x, x**2), 1)) def test_image_is_ImageSet(): assert isinstance(imageset(x, sqrt(sin(x)), Range(5)), ImageSet) def test_halfcircle(): r, th = symbols('r, theta', real=True) L = Lambda(((r, th),), (r*cos(th), r*sin(th))) halfcircle = ImageSet(L, Interval(0, 1)*Interval(0, pi)) assert (1, 0) in halfcircle assert (0, -1) not in halfcircle assert (0, 0) in halfcircle assert halfcircle._contains((r, 0)) is None # This one doesn't work: #assert (r, 2*pi) not in halfcircle assert not halfcircle.is_iterable def test_ImageSet_iterator_not_injective(): L = Lambda(x, x - x % 2) # produces 0, 2, 2, 4, 4, 6, 6, ... evens = ImageSet(L, S.Naturals) i = iter(evens) # No repeats here assert (next(i), next(i), next(i), next(i)) == (0, 2, 4, 6) def test_inf_Range_len(): raises(ValueError, lambda: len(Range(0, oo, 2))) assert Range(0, oo, 2).size is S.Infinity assert Range(0, -oo, -2).size is S.Infinity assert Range(oo, 0, -2).size is S.Infinity assert Range(-oo, 0, 2).size is S.Infinity def test_Range_set(): empty = Range(0) assert Range(5) == Range(0, 5) == Range(0, 5, 1) r = Range(10, 20, 2) assert 12 in r assert 8 not in r assert 11 not in r assert 30 not in r assert list(Range(0, 5)) == list(range(5)) assert list(Range(5, 0, -1)) == list(range(5, 0, -1)) assert Range(5, 15).sup == 14 assert Range(5, 15).inf == 5 assert Range(15, 5, -1).sup == 15 assert Range(15, 5, -1).inf == 6 assert Range(10, 67, 10).sup == 60 assert Range(60, 7, -10).inf == 10 assert len(Range(10, 38, 10)) == 3 assert Range(0, 0, 5) == empty assert Range(oo, oo, 1) == empty assert Range(oo, 1, 1) == empty assert Range(-oo, 1, -1) == empty assert Range(1, oo, -1) == empty assert Range(1, -oo, 1) == empty assert Range(1, -4, oo) == empty ip = symbols('ip', positive=True) assert Range(0, ip, -1) == empty assert Range(0, -ip, 1) == empty assert Range(1, -4, -oo) == Range(1, 2) assert Range(1, 4, oo) == Range(1, 2) assert Range(-oo, oo).size == oo assert Range(oo, -oo, -1).size == oo raises(ValueError, lambda: Range(-oo, oo, 2)) raises(ValueError, lambda: Range(x, pi, y)) raises(ValueError, lambda: Range(x, y, 0)) assert 5 in Range(0, oo, 5) assert -5 in Range(-oo, 0, 5) assert oo not in Range(0, oo) ni = symbols('ni', integer=False) assert ni not in Range(oo) u = symbols('u', integer=None) assert Range(oo).contains(u) is not False inf = symbols('inf', infinite=True) assert inf not in Range(-oo, oo) raises(ValueError, lambda: Range(0, oo, 2)[-1]) raises(ValueError, lambda: Range(0, -oo, -2)[-1]) assert Range(-oo, 1, 1)[-1] is S.Zero assert Range(oo, 1, -1)[-1] == 2 assert inf not in Range(oo) assert Range(1, 10, 1)[-1] == 9 assert all(i.is_Integer for i in Range(0, -1, 1)) it = iter(Range(-oo, 0, 2)) raises(TypeError, lambda: next(it)) assert empty.intersect(S.Integers) == empty assert Range(-1, 10, 1).intersect(S.Integers) == Range(-1, 10, 1) assert Range(-1, 10, 1).intersect(S.Naturals) == Range(1, 10, 1) assert Range(-1, 10, 1).intersect(S.Naturals0) == Range(0, 10, 1) # test slicing assert Range(1, 10, 1)[5] == 6 assert Range(1, 12, 2)[5] == 11 assert Range(1, 10, 1)[-1] == 9 assert Range(1, 10, 3)[-1] == 7 raises(ValueError, lambda: Range(oo,0,-1)[1:3:0]) raises(ValueError, lambda: Range(oo,0,-1)[:1]) raises(ValueError, lambda: Range(1, oo)[-2]) raises(ValueError, lambda: Range(-oo, 1)[2]) raises(IndexError, lambda: Range(10)[-20]) raises(IndexError, lambda: Range(10)[20]) raises(ValueError, lambda: Range(2, -oo, -2)[2:2:0]) assert Range(2, -oo, -2)[2:2:2] == empty assert Range(2, -oo, -2)[:2:2] == Range(2, -2, -4) raises(ValueError, lambda: Range(-oo, 4, 2)[:2:2]) assert Range(-oo, 4, 2)[::-2] == Range(2, -oo, -4) raises(ValueError, lambda: Range(-oo, 4, 2)[::2]) assert Range(oo, 2, -2)[::] == Range(oo, 2, -2) assert Range(-oo, 4, 2)[:-2:-2] == Range(2, 0, -4) assert Range(-oo, 4, 2)[:-2:2] == Range(-oo, 0, 4) raises(ValueError, lambda: Range(-oo, 4, 2)[:0:-2]) raises(ValueError, lambda: Range(-oo, 4, 2)[:2:-2]) assert Range(-oo, 4, 2)[-2::-2] == Range(0, -oo, -4) raises(ValueError, lambda: Range(-oo, 4, 2)[-2:0:-2]) raises(ValueError, lambda: Range(-oo, 4, 2)[0::2]) assert Range(oo, 2, -2)[0::] == Range(oo, 2, -2) raises(ValueError, lambda: Range(-oo, 4, 2)[0:-2:2]) assert Range(oo, 2, -2)[0:-2:] == Range(oo, 6, -2) raises(ValueError, lambda: Range(oo, 2, -2)[0:2:]) raises(ValueError, lambda: Range(-oo, 4, 2)[2::-1]) assert Range(-oo, 4, 2)[-2::2] == Range(0, 4, 4) assert Range(oo, 0, -2)[-10:0:2] == empty raises(ValueError, lambda: Range(oo, 0, -2)[0]) raises(ValueError, lambda: Range(oo, 0, -2)[-10:10:2]) raises(ValueError, lambda: Range(oo, 0, -2)[0::-2]) assert Range(oo, 0, -2)[0:-4:-2] == empty assert Range(oo, 0, -2)[:0:2] == empty raises(ValueError, lambda: Range(oo, 0, -2)[:1:-1]) # test empty Range assert Range(x, x, y) == empty assert empty.reversed == empty assert 0 not in empty assert list(empty) == [] assert len(empty) == 0 assert empty.size is S.Zero assert empty.intersect(FiniteSet(0)) is S.EmptySet assert bool(empty) is False raises(IndexError, lambda: empty[0]) assert empty[:0] == empty raises(NotImplementedError, lambda: empty.inf) raises(NotImplementedError, lambda: empty.sup) assert empty.as_relational(x) is S.false AB = [None] + list(range(12)) for R in [ Range(1, 10), Range(1, 10, 2), ]: r = list(R) for a, b, c in itertools.product(AB, AB, [-3, -1, None, 1, 3]): for reverse in range(2): r = list(reversed(r)) R = R.reversed result = list(R[a:b:c]) ans = r[a:b:c] txt = ('\n%s[%s:%s:%s] = %s -> %s' % ( R, a, b, c, result, ans)) check = ans == result assert check, txt assert Range(1, 10, 1).boundary == Range(1, 10, 1) for r in (Range(1, 10, 2), Range(1, oo, 2)): rev = r.reversed assert r.inf == rev.inf and r.sup == rev.sup assert r.step == -rev.step builtin_range = range raises(TypeError, lambda: Range(builtin_range(1))) assert S(builtin_range(10)) == Range(10) assert S(builtin_range(1000000000000)) == Range(1000000000000) # test Range.as_relational assert Range(1, 4).as_relational(x) == (x >= 1) & (x <= 3) & Eq(Mod(x, 1), 0) assert Range(oo, 1, -2).as_relational(x) == (x >= 3) & (x < oo) & Eq(Mod(x + 1, -2), 0) def test_Range_symbolic(): # symbolic Range xr = Range(x, x + 4, 5) sr = Range(x, y, t) i = Symbol('i', integer=True) ip = Symbol('i', integer=True, positive=True) ipr = Range(ip) inr = Range(0, -ip, -1) ir = Range(i, i + 19, 2) ir2 = Range(i, i*8, 3*i) i = Symbol('i', integer=True) inf = symbols('inf', infinite=True) raises(ValueError, lambda: Range(inf)) raises(ValueError, lambda: Range(inf, 0, -1)) raises(ValueError, lambda: Range(inf, inf, 1)) raises(ValueError, lambda: Range(1, 1, inf)) # args assert xr.args == (x, x + 5, 5) assert sr.args == (x, y, t) assert ir.args == (i, i + 20, 2) assert ir2.args == (i, 10*i, 3*i) # reversed raises(ValueError, lambda: xr.reversed) raises(ValueError, lambda: sr.reversed) assert ipr.reversed.args == (ip - 1, -1, -1) assert inr.reversed.args == (-ip + 1, 1, 1) assert ir.reversed.args == (i + 18, i - 2, -2) assert ir2.reversed.args == (7*i, -2*i, -3*i) # contains assert inf not in sr assert inf not in ir assert 0 in ipr assert 0 in inr raises(TypeError, lambda: 1 in ipr) raises(TypeError, lambda: -1 in inr) assert .1 not in sr assert .1 not in ir assert i + 1 not in ir assert i + 2 in ir raises(TypeError, lambda: x in xr) # XXX is this what contains is supposed to do? raises(TypeError, lambda: 1 in sr) # XXX is this what contains is supposed to do? # iter raises(ValueError, lambda: next(iter(xr))) raises(ValueError, lambda: next(iter(sr))) assert next(iter(ir)) == i assert next(iter(ir2)) == i assert sr.intersect(S.Integers) == sr assert sr.intersect(FiniteSet(x)) == Intersection({x}, sr) raises(ValueError, lambda: sr[:2]) raises(ValueError, lambda: xr[0]) raises(ValueError, lambda: sr[0]) # len assert len(ir) == ir.size == 10 assert len(ir2) == ir2.size == 3 raises(ValueError, lambda: len(xr)) raises(ValueError, lambda: xr.size) raises(ValueError, lambda: len(sr)) raises(ValueError, lambda: sr.size) # bool assert bool(Range(0)) == False assert bool(xr) assert bool(ir) assert bool(ipr) assert bool(inr) raises(ValueError, lambda: bool(sr)) raises(ValueError, lambda: bool(ir2)) # inf raises(ValueError, lambda: xr.inf) raises(ValueError, lambda: sr.inf) assert ipr.inf == 0 assert inr.inf == -ip + 1 assert ir.inf == i raises(ValueError, lambda: ir2.inf) # sup raises(ValueError, lambda: xr.sup) raises(ValueError, lambda: sr.sup) assert ipr.sup == ip - 1 assert inr.sup == 0 assert ir.inf == i raises(ValueError, lambda: ir2.sup) # getitem raises(ValueError, lambda: xr[0]) raises(ValueError, lambda: sr[0]) raises(ValueError, lambda: sr[-1]) raises(ValueError, lambda: sr[:2]) assert ir[:2] == Range(i, i + 4, 2) assert ir[0] == i assert ir[-2] == i + 16 assert ir[-1] == i + 18 assert ir2[:2] == Range(i, 7*i, 3*i) assert ir2[0] == i assert ir2[-2] == 4*i assert ir2[-1] == 7*i raises(ValueError, lambda: Range(i)[-1]) assert ipr[0] == ipr.inf == 0 assert ipr[-1] == ipr.sup == ip - 1 assert inr[0] == inr.sup == 0 assert inr[-1] == inr.inf == -ip + 1 raises(ValueError, lambda: ipr[-2]) assert ir.inf == i assert ir.sup == i + 18 raises(ValueError, lambda: Range(i).inf) # as_relational assert ir.as_relational(x) == ((x >= i) & (x <= i + 18) & Eq(Mod(-i + x, 2), 0)) assert ir2.as_relational(x) == Eq( Mod(-i + x, 3*i), 0) & (((x >= i) & (x <= 7*i) & (3*i >= 1)) | ((x <= i) & (x >= 7*i) & (3*i <= -1))) assert Range(i, i + 1).as_relational(x) == Eq(x, i) assert sr.as_relational(z) == Eq( Mod(t, 1), 0) & Eq(Mod(x, 1), 0) & Eq(Mod(-x + z, t), 0 ) & (((z >= x) & (z <= -t + y) & (t >= 1)) | ((z <= x) & (z >= -t + y) & (t <= -1))) assert xr.as_relational(z) == Eq(z, x) & Eq(Mod(x, 1), 0) # symbols can clash if user wants (but it must be integer) assert xr.as_relational(x) == Eq(Mod(x, 1), 0) # contains() for symbolic values (issue #18146) e = Symbol('e', integer=True, even=True) o = Symbol('o', integer=True, odd=True) assert Range(5).contains(i) == And(i >= 0, i <= 4) assert Range(1).contains(i) == Eq(i, 0) assert Range(-oo, 5, 1).contains(i) == (i <= 4) assert Range(-oo, oo).contains(i) == True assert Range(0, 8, 2).contains(i) == Contains(i, Range(0, 8, 2)) assert Range(0, 8, 2).contains(e) == And(e >= 0, e <= 6) assert Range(0, 8, 2).contains(2*i) == And(2*i >= 0, 2*i <= 6) assert Range(0, 8, 2).contains(o) == False assert Range(1, 9, 2).contains(e) == False assert Range(1, 9, 2).contains(o) == And(o >= 1, o <= 7) assert Range(8, 0, -2).contains(o) == False assert Range(9, 1, -2).contains(o) == And(o >= 3, o <= 9) assert Range(-oo, 8, 2).contains(i) == Contains(i, Range(-oo, 8, 2)) def test_range_range_intersection(): for a, b, r in [ (Range(0), Range(1), S.EmptySet), (Range(3), Range(4, oo), S.EmptySet), (Range(3), Range(-3, -1), S.EmptySet), (Range(1, 3), Range(0, 3), Range(1, 3)), (Range(1, 3), Range(1, 4), Range(1, 3)), (Range(1, oo, 2), Range(2, oo, 2), S.EmptySet), (Range(0, oo, 2), Range(oo), Range(0, oo, 2)), (Range(0, oo, 2), Range(100), Range(0, 100, 2)), (Range(2, oo, 2), Range(oo), Range(2, oo, 2)), (Range(0, oo, 2), Range(5, 6), S.EmptySet), (Range(2, 80, 1), Range(55, 71, 4), Range(55, 71, 4)), (Range(0, 6, 3), Range(-oo, 5, 3), S.EmptySet), (Range(0, oo, 2), Range(5, oo, 3), Range(8, oo, 6)), (Range(4, 6, 2), Range(2, 16, 7), S.EmptySet),]: assert a.intersect(b) == r assert a.intersect(b.reversed) == r assert a.reversed.intersect(b) == r assert a.reversed.intersect(b.reversed) == r a, b = b, a assert a.intersect(b) == r assert a.intersect(b.reversed) == r assert a.reversed.intersect(b) == r assert a.reversed.intersect(b.reversed) == r def test_range_interval_intersection(): p = symbols('p', positive=True) assert isinstance(Range(3).intersect(Interval(p, p + 2)), Intersection) assert Range(4).intersect(Interval(0, 3)) == Range(4) assert Range(4).intersect(Interval(-oo, oo)) == Range(4) assert Range(4).intersect(Interval(1, oo)) == Range(1, 4) assert Range(4).intersect(Interval(1.1, oo)) == Range(2, 4) assert Range(4).intersect(Interval(0.1, 3)) == Range(1, 4) assert Range(4).intersect(Interval(0.1, 3.1)) == Range(1, 4) assert Range(4).intersect(Interval.open(0, 3)) == Range(1, 3) assert Range(4).intersect(Interval.open(0.1, 0.5)) is S.EmptySet # Null Range intersections assert Range(0).intersect(Interval(0.2, 0.8)) is S.EmptySet assert Range(0).intersect(Interval(-oo, oo)) is S.EmptySet def test_range_is_finite_set(): assert Range(-100, 100).is_finite_set is True assert Range(2, oo).is_finite_set is False assert Range(-oo, 50).is_finite_set is False assert Range(-oo, oo).is_finite_set is False assert Range(oo, -oo).is_finite_set is True assert Range(0, 0).is_finite_set is True assert Range(oo, oo).is_finite_set is True assert Range(-oo, -oo).is_finite_set is True n = Symbol('n', integer=True) m = Symbol('m', integer=True) assert Range(n, n + 49).is_finite_set is True assert Range(n, 0).is_finite_set is True assert Range(-3, n + 7).is_finite_set is True assert Range(n, m).is_finite_set is True assert Range(n + m, m - n).is_finite_set is True assert Range(n, n + m + n).is_finite_set is True assert Range(n, oo).is_finite_set is False assert Range(-oo, n).is_finite_set is False # assert Range(n, -oo).is_finite_set is True # assert Range(oo, n).is_finite_set is True # Above tests fail due to a (potential) bug in sympy.sets.fancysets.Range.size (See issue #18999) def test_Integers_eval_imageset(): ans = ImageSet(Lambda(x, 2*x + Rational(3, 7)), S.Integers) im = imageset(Lambda(x, -2*x + Rational(3, 7)), S.Integers) assert im == ans im = imageset(Lambda(x, -2*x - Rational(11, 7)), S.Integers) assert im == ans y = Symbol('y') L = imageset(x, 2*x + y, S.Integers) assert y + 4 in L a, b, c = 0.092, 0.433, 0.341 assert a in imageset(x, a + c*x, S.Integers) assert b in imageset(x, b + c*x, S.Integers) _x = symbols('x', negative=True) eq = _x**2 - _x + 1 assert imageset(_x, eq, S.Integers).lamda.expr == _x**2 + _x + 1 eq = 3*_x - 1 assert imageset(_x, eq, S.Integers).lamda.expr == 3*_x + 2 assert imageset(x, (x, 1/x), S.Integers) == \ ImageSet(Lambda(x, (x, 1/x)), S.Integers) def test_Range_eval_imageset(): a, b, c = symbols('a b c') assert imageset(x, a*(x + b) + c, Range(3)) == \ imageset(x, a*x + a*b + c, Range(3)) eq = (x + 1)**2 assert imageset(x, eq, Range(3)).lamda.expr == eq eq = a*(x + b) + c r = Range(3, -3, -2) imset = imageset(x, eq, r) assert imset.lamda.expr != eq assert list(imset) == [eq.subs(x, i).expand() for i in list(r)] def test_fun(): assert (FiniteSet(*ImageSet(Lambda(x, sin(pi*x/4)), Range(-10, 11))) == FiniteSet(-1, -sqrt(2)/2, 0, sqrt(2)/2, 1)) def test_Reals(): assert 5 in S.Reals assert S.Pi in S.Reals assert -sqrt(2) in S.Reals assert (2, 5) not in S.Reals assert sqrt(-1) not in S.Reals assert S.Reals == Interval(-oo, oo) assert S.Reals != Interval(0, oo) assert S.Reals.is_subset(Interval(-oo, oo)) assert S.Reals.intersect(Range(-oo, oo)) == Range(-oo, oo) assert S.ComplexInfinity not in S.Reals assert S.NaN not in S.Reals assert x + S.ComplexInfinity not in S.Reals def test_Complex(): assert 5 in S.Complexes assert 5 + 4*I in S.Complexes assert S.Pi in S.Complexes assert -sqrt(2) in S.Complexes assert -I in S.Complexes assert sqrt(-1) in S.Complexes assert S.Complexes.intersect(S.Reals) == S.Reals assert S.Complexes.union(S.Reals) == S.Complexes assert S.Complexes == ComplexRegion(S.Reals*S.Reals) assert (S.Complexes == ComplexRegion(Interval(1, 2)*Interval(3, 4))) == False assert str(S.Complexes) == "S.Complexes" assert repr(S.Complexes) == "S.Complexes" def take(n, iterable): "Return first n items of the iterable as a list" return list(itertools.islice(iterable, n)) def test_intersections(): assert S.Integers.intersect(S.Reals) == S.Integers assert 5 in S.Integers.intersect(S.Reals) assert 5 in S.Integers.intersect(S.Reals) assert -5 not in S.Naturals.intersect(S.Reals) assert 5.5 not in S.Integers.intersect(S.Reals) assert 5 in S.Integers.intersect(Interval(3, oo)) assert -5 in S.Integers.intersect(Interval(-oo, 3)) assert all(x.is_Integer for x in take(10, S.Integers.intersect(Interval(3, oo)) )) def test_infinitely_indexed_set_1(): from sympy.abc import n, m, t assert imageset(Lambda(n, n), S.Integers) == imageset(Lambda(m, m), S.Integers) assert imageset(Lambda(n, 2*n), S.Integers).intersect( imageset(Lambda(m, 2*m + 1), S.Integers)) is S.EmptySet assert imageset(Lambda(n, 2*n), S.Integers).intersect( imageset(Lambda(n, 2*n + 1), S.Integers)) is S.EmptySet assert imageset(Lambda(m, 2*m), S.Integers).intersect( imageset(Lambda(n, 3*n), S.Integers)).dummy_eq( ImageSet(Lambda(t, 6*t), S.Integers)) assert imageset(x, x/2 + Rational(1, 3), S.Integers).intersect(S.Integers) is S.EmptySet assert imageset(x, x/2 + S.Half, S.Integers).intersect(S.Integers) is S.Integers # https://github.com/sympy/sympy/issues/17355 S53 = ImageSet(Lambda(n, 5*n + 3), S.Integers) assert S53.intersect(S.Integers) == S53 def test_infinitely_indexed_set_2(): from sympy.abc import n a = Symbol('a', integer=True) assert imageset(Lambda(n, n), S.Integers) == \ imageset(Lambda(n, n + a), S.Integers) assert imageset(Lambda(n, n + pi), S.Integers) == \ imageset(Lambda(n, n + a + pi), S.Integers) assert imageset(Lambda(n, n), S.Integers) == \ imageset(Lambda(n, -n + a), S.Integers) assert imageset(Lambda(n, -6*n), S.Integers) == \ ImageSet(Lambda(n, 6*n), S.Integers) assert imageset(Lambda(n, 2*n + pi), S.Integers) == \ ImageSet(Lambda(n, 2*n + pi - 2), S.Integers) def test_imageset_intersect_real(): from sympy import I from sympy.abc import n assert imageset(Lambda(n, n + (n - 1)*(n + 1)*I), S.Integers).intersect(S.Reals) == FiniteSet(-1, 1) im = (n - 1)*(n + S.Half) assert imageset(Lambda(n, n + im*I), S.Integers ).intersect(S.Reals) == FiniteSet(1) assert imageset(Lambda(n, n + im*(n + 1)*I), S.Naturals0 ).intersect(S.Reals) == FiniteSet(1) assert imageset(Lambda(n, n/2 + im.expand()*I), S.Integers ).intersect(S.Reals) == ImageSet(Lambda(x, x/2), ConditionSet( n, Eq(n**2 - n/2 - S(1)/2, 0), S.Integers)) assert imageset(Lambda(n, n/(1/n - 1) + im*(n + 1)*I), S.Integers ).intersect(S.Reals) == FiniteSet(S.Half) assert imageset(Lambda(n, n/(n - 6) + (n - 3)*(n + 1)*I/(2*n + 2)), S.Integers).intersect( S.Reals) == FiniteSet(-1) assert imageset(Lambda(n, n/(n**2 - 9) + (n - 3)*(n + 1)*I/(2*n + 2)), S.Integers).intersect( S.Reals) is S.EmptySet s = ImageSet( Lambda(n, -I*(I*(2*pi*n - pi/4) + log(Abs(sqrt(-I))))), S.Integers) # s is unevaluated, but after intersection the result # should be canonical assert s.intersect(S.Reals) == imageset( Lambda(n, 2*n*pi - pi/4), S.Integers) == ImageSet( Lambda(n, 2*pi*n + pi*Rational(7, 4)), S.Integers) def test_imageset_intersect_interval(): from sympy.abc import n f1 = ImageSet(Lambda(n, n*pi), S.Integers) f2 = ImageSet(Lambda(n, 2*n), Interval(0, pi)) f3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers) # complex expressions f4 = ImageSet(Lambda(n, n*I*pi), S.Integers) f5 = ImageSet(Lambda(n, 2*I*n*pi + pi/2), S.Integers) # non-linear expressions f6 = ImageSet(Lambda(n, log(n)), S.Integers) f7 = ImageSet(Lambda(n, n**2), S.Integers) f8 = ImageSet(Lambda(n, Abs(n)), S.Integers) f9 = ImageSet(Lambda(n, exp(n)), S.Naturals0) assert f1.intersect(Interval(-1, 1)) == FiniteSet(0) assert f1.intersect(Interval(0, 2*pi, False, True)) == FiniteSet(0, pi) assert f2.intersect(Interval(1, 2)) == Interval(1, 2) assert f3.intersect(Interval(-1, 1)) == S.EmptySet assert f3.intersect(Interval(-5, 5)) == FiniteSet(pi*Rational(-3, 2), pi/2) assert f4.intersect(Interval(-1, 1)) == FiniteSet(0) assert f4.intersect(Interval(1, 2)) == S.EmptySet assert f5.intersect(Interval(0, 1)) == S.EmptySet assert f6.intersect(Interval(0, 1)) == FiniteSet(S.Zero, log(2)) assert f7.intersect(Interval(0, 10)) == Intersection(f7, Interval(0, 10)) assert f8.intersect(Interval(0, 2)) == Intersection(f8, Interval(0, 2)) assert f9.intersect(Interval(1, 2)) == Intersection(f9, Interval(1, 2)) def test_imageset_intersect_diophantine(): from sympy.abc import m, n # Check that same lambda variable for both ImageSets is handled correctly img1 = ImageSet(Lambda(n, 2*n + 1), S.Integers) img2 = ImageSet(Lambda(n, 4*n + 1), S.Integers) assert img1.intersect(img2) == img2 # Empty solution set returned by diophantine: assert ImageSet(Lambda(n, 2*n), S.Integers).intersect( ImageSet(Lambda(n, 2*n + 1), S.Integers)) == S.EmptySet # Check intersection with S.Integers: assert ImageSet(Lambda(n, 9/n + 20*n/3), S.Integers).intersect( S.Integers) == FiniteSet(-61, -23, 23, 61) # Single solution (2, 3) for diophantine solution: assert ImageSet(Lambda(n, (n - 2)**2), S.Integers).intersect( ImageSet(Lambda(n, -(n - 3)**2), S.Integers)) == FiniteSet(0) # Single parametric solution for diophantine solution: assert ImageSet(Lambda(n, n**2 + 5), S.Integers).intersect( ImageSet(Lambda(m, 2*m), S.Integers)).dummy_eq(ImageSet( Lambda(n, 4*n**2 + 4*n + 6), S.Integers)) # 4 non-parametric solution couples for dioph. equation: assert ImageSet(Lambda(n, n**2 - 9), S.Integers).intersect( ImageSet(Lambda(m, -m**2), S.Integers)) == FiniteSet(-9, 0) # Double parametric solution for diophantine solution: assert ImageSet(Lambda(m, m**2 + 40), S.Integers).intersect( ImageSet(Lambda(n, 41*n), S.Integers)).dummy_eq(Intersection( ImageSet(Lambda(m, m**2 + 40), S.Integers), ImageSet(Lambda(n, 41*n), S.Integers))) # Check that diophantine returns *all* (8) solutions (permute=True) assert ImageSet(Lambda(n, n**4 - 2**4), S.Integers).intersect( ImageSet(Lambda(m, -m**4 + 3**4), S.Integers)) == FiniteSet(0, 65) assert ImageSet(Lambda(n, pi/12 + n*5*pi/12), S.Integers).intersect( ImageSet(Lambda(n, 7*pi/12 + n*11*pi/12), S.Integers)).dummy_eq(ImageSet( Lambda(n, 55*pi*n/12 + 17*pi/4), S.Integers)) # TypeError raised by diophantine (#18081) assert ImageSet(Lambda(n, n*log(2)), S.Integers).intersection( S.Integers).dummy_eq(Intersection(ImageSet( Lambda(n, n*log(2)), S.Integers), S.Integers)) # NotImplementedError raised by diophantine (no solver for cubic_thue) assert ImageSet(Lambda(n, n**3 + 1), S.Integers).intersect( ImageSet(Lambda(n, n**3), S.Integers)).dummy_eq(Intersection( ImageSet(Lambda(n, n**3 + 1), S.Integers), ImageSet(Lambda(n, n**3), S.Integers))) def test_infinitely_indexed_set_3(): from sympy.abc import n, m, t assert imageset(Lambda(m, 2*pi*m), S.Integers).intersect( imageset(Lambda(n, 3*pi*n), S.Integers)).dummy_eq( ImageSet(Lambda(t, 6*pi*t), S.Integers)) assert imageset(Lambda(n, 2*n + 1), S.Integers) == \ imageset(Lambda(n, 2*n - 1), S.Integers) assert imageset(Lambda(n, 3*n + 2), S.Integers) == \ imageset(Lambda(n, 3*n - 1), S.Integers) def test_ImageSet_simplification(): from sympy.abc import n, m assert imageset(Lambda(n, n), S.Integers) == S.Integers assert imageset(Lambda(n, sin(n)), imageset(Lambda(m, tan(m)), S.Integers)) == \ imageset(Lambda(m, sin(tan(m))), S.Integers) assert imageset(n, 1 + 2*n, S.Naturals) == Range(3, oo, 2) assert imageset(n, 1 + 2*n, S.Naturals0) == Range(1, oo, 2) assert imageset(n, 1 - 2*n, S.Naturals) == Range(-1, -oo, -2) def test_ImageSet_contains(): from sympy.abc import x assert (2, S.Half) in imageset(x, (x, 1/x), S.Integers) assert imageset(x, x + I*3, S.Integers).intersection(S.Reals) is S.EmptySet i = Dummy(integer=True) q = imageset(x, x + I*y, S.Integers).intersection(S.Reals) assert q.subs(y, I*i).intersection(S.Integers) is S.Integers q = imageset(x, x + I*y/x, S.Integers).intersection(S.Reals) assert q.subs(y, 0) is S.Integers assert q.subs(y, I*i*x).intersection(S.Integers) is S.Integers z = cos(1)**2 + sin(1)**2 - 1 q = imageset(x, x + I*z, S.Integers).intersection(S.Reals) assert q is not S.EmptySet def test_ComplexRegion_contains(): r = Symbol('r', real=True) # contains in ComplexRegion a = Interval(2, 3) b = Interval(4, 6) c = Interval(7, 9) c1 = ComplexRegion(a*b) c2 = ComplexRegion(Union(a*b, c*a)) assert 2.5 + 4.5*I in c1 assert 2 + 4*I in c1 assert 3 + 4*I in c1 assert 8 + 2.5*I in c2 assert 2.5 + 6.1*I not in c1 assert 4.5 + 3.2*I not in c1 assert c1.contains(x) == Contains(x, c1, evaluate=False) assert c1.contains(r) == False assert c2.contains(x) == Contains(x, c2, evaluate=False) assert c2.contains(r) == False r1 = Interval(0, 1) theta1 = Interval(0, 2*S.Pi) c3 = ComplexRegion(r1*theta1, polar=True) assert (0.5 + I*Rational(6, 10)) in c3 assert (S.Half + I*Rational(6, 10)) in c3 assert (S.Half + .6*I) in c3 assert (0.5 + .6*I) in c3 assert I in c3 assert 1 in c3 assert 0 in c3 assert 1 + I not in c3 assert 1 - I not in c3 assert c3.contains(x) == Contains(x, c3, evaluate=False) assert c3.contains(r + 2*I) == Contains( r + 2*I, c3, evaluate=False) # is in fact False assert c3.contains(1/(1 + r**2)) == Contains( 1/(1 + r**2), c3, evaluate=False) # is in fact True r2 = Interval(0, 3) theta2 = Interval(pi, 2*pi, left_open=True) c4 = ComplexRegion(r2*theta2, polar=True) assert c4.contains(0) == True assert c4.contains(2 + I) == False assert c4.contains(-2 + I) == False assert c4.contains(-2 - I) == True assert c4.contains(2 - I) == True assert c4.contains(-2) == False assert c4.contains(2) == True assert c4.contains(x) == Contains(x, c4, evaluate=False) assert c4.contains(3/(1 + r**2)) == Contains( 3/(1 + r**2), c4, evaluate=False) # is in fact True raises(ValueError, lambda: ComplexRegion(r1*theta1, polar=2)) def test_symbolic_Range(): n = Symbol('n') raises(ValueError, lambda: Range(n)[0]) raises(IndexError, lambda: Range(n, n)[0]) raises(ValueError, lambda: Range(n, n+1)[0]) raises(ValueError, lambda: Range(n).size) n = Symbol('n', integer=True) raises(ValueError, lambda: Range(n)[0]) raises(IndexError, lambda: Range(n, n)[0]) assert Range(n, n+1)[0] == n raises(ValueError, lambda: Range(n).size) assert Range(n, n+1).size == 1 n = Symbol('n', integer=True, nonnegative=True) raises(ValueError, lambda: Range(n)[0]) raises(IndexError, lambda: Range(n, n)[0]) assert Range(n+1)[0] == 0 assert Range(n, n+1)[0] == n assert Range(n).size == n assert Range(n+1).size == n+1 assert Range(n, n+1).size == 1 n = Symbol('n', integer=True, positive=True) assert Range(n)[0] == 0 assert Range(n, n+1)[0] == n assert Range(n).size == n assert Range(n, n+1).size == 1 m = Symbol('m', integer=True, positive=True) assert Range(n, n+m)[0] == n assert Range(n, n+m).size == m assert Range(n, n+1).size == 1 assert Range(n, n+m, 2).size == floor(m/2) m = Symbol('m', integer=True, positive=True, even=True) assert Range(n, n+m, 2).size == m/2 def test_issue_18400(): n = Symbol('n', integer=True) raises(ValueError, lambda: imageset(lambda x: x*2, Range(n))) n = Symbol('n', integer=True, positive=True) # No exception assert imageset(lambda x: x*2, Range(n)) == imageset(lambda x: x*2, Range(n)) def test_ComplexRegion_intersect(): # Polar form X_axis = ComplexRegion(Interval(0, oo)*FiniteSet(0, S.Pi), polar=True) unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True) upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True) upper_half_disk = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi), polar=True) lower_half_disk = ComplexRegion(Interval(0, oo)*Interval(S.Pi, 2*S.Pi), polar=True) right_half_disk = ComplexRegion(Interval(0, oo)*Interval(-S.Pi/2, S.Pi/2), polar=True) first_quad_disk = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi/2), polar=True) assert upper_half_disk.intersect(unit_disk) == upper_half_unit_disk assert right_half_disk.intersect(first_quad_disk) == first_quad_disk assert upper_half_disk.intersect(right_half_disk) == first_quad_disk assert upper_half_disk.intersect(lower_half_disk) == X_axis c1 = ComplexRegion(Interval(0, 4)*Interval(0, 2*S.Pi), polar=True) assert c1.intersect(Interval(1, 5)) == Interval(1, 4) assert c1.intersect(Interval(4, 9)) == FiniteSet(4) assert c1.intersect(Interval(5, 12)) is S.EmptySet # Rectangular form X_axis = ComplexRegion(Interval(-oo, oo)*FiniteSet(0)) unit_square = ComplexRegion(Interval(-1, 1)*Interval(-1, 1)) upper_half_unit_square = ComplexRegion(Interval(-1, 1)*Interval(0, 1)) upper_half_plane = ComplexRegion(Interval(-oo, oo)*Interval(0, oo)) lower_half_plane = ComplexRegion(Interval(-oo, oo)*Interval(-oo, 0)) right_half_plane = ComplexRegion(Interval(0, oo)*Interval(-oo, oo)) first_quad_plane = ComplexRegion(Interval(0, oo)*Interval(0, oo)) assert upper_half_plane.intersect(unit_square) == upper_half_unit_square assert right_half_plane.intersect(first_quad_plane) == first_quad_plane assert upper_half_plane.intersect(right_half_plane) == first_quad_plane assert upper_half_plane.intersect(lower_half_plane) == X_axis c1 = ComplexRegion(Interval(-5, 5)*Interval(-10, 10)) assert c1.intersect(Interval(2, 7)) == Interval(2, 5) assert c1.intersect(Interval(5, 7)) == FiniteSet(5) assert c1.intersect(Interval(6, 9)) is S.EmptySet # unevaluated object C1 = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True) C2 = ComplexRegion(Interval(-1, 1)*Interval(-1, 1)) assert C1.intersect(C2) == Intersection(C1, C2, evaluate=False) def test_ComplexRegion_union(): # Polar form c1 = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True) c2 = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True) c3 = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi), polar=True) c4 = ComplexRegion(Interval(0, oo)*Interval(S.Pi, 2*S.Pi), polar=True) p1 = Union(Interval(0, 1)*Interval(0, 2*S.Pi), Interval(0, 1)*Interval(0, S.Pi)) p2 = Union(Interval(0, oo)*Interval(0, S.Pi), Interval(0, oo)*Interval(S.Pi, 2*S.Pi)) assert c1.union(c2) == ComplexRegion(p1, polar=True) assert c3.union(c4) == ComplexRegion(p2, polar=True) # Rectangular form c5 = ComplexRegion(Interval(2, 5)*Interval(6, 9)) c6 = ComplexRegion(Interval(4, 6)*Interval(10, 12)) c7 = ComplexRegion(Interval(0, 10)*Interval(-10, 0)) c8 = ComplexRegion(Interval(12, 16)*Interval(14, 20)) p3 = Union(Interval(2, 5)*Interval(6, 9), Interval(4, 6)*Interval(10, 12)) p4 = Union(Interval(0, 10)*Interval(-10, 0), Interval(12, 16)*Interval(14, 20)) assert c5.union(c6) == ComplexRegion(p3) assert c7.union(c8) == ComplexRegion(p4) assert c1.union(Interval(2, 4)) == Union(c1, Interval(2, 4), evaluate=False) assert c5.union(Interval(2, 4)) == Union(c5, ComplexRegion.from_real(Interval(2, 4))) def test_ComplexRegion_from_real(): c1 = ComplexRegion(Interval(0, 1) * Interval(0, 2 * S.Pi), polar=True) raises(ValueError, lambda: c1.from_real(c1)) assert c1.from_real(Interval(-1, 1)) == ComplexRegion(Interval(-1, 1) * FiniteSet(0), False) def test_ComplexRegion_measure(): a, b = Interval(2, 5), Interval(4, 8) theta1, theta2 = Interval(0, 2*S.Pi), Interval(0, S.Pi) c1 = ComplexRegion(a*b) c2 = ComplexRegion(Union(a*theta1, b*theta2), polar=True) assert c1.measure == 12 assert c2.measure == 9*pi def test_normalize_theta_set(): # Interval assert normalize_theta_set(Interval(pi, 2*pi)) == \ Union(FiniteSet(0), Interval.Ropen(pi, 2*pi)) assert normalize_theta_set(Interval(pi*Rational(9, 2), 5*pi)) == Interval(pi/2, pi) assert normalize_theta_set(Interval(pi*Rational(-3, 2), pi/2)) == Interval.Ropen(0, 2*pi) assert normalize_theta_set(Interval.open(pi*Rational(-3, 2), pi/2)) == \ Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi)) assert normalize_theta_set(Interval.open(pi*Rational(-7, 2), pi*Rational(-3, 2))) == \ Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi)) assert normalize_theta_set(Interval(-pi/2, pi/2)) == \ Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi)) assert normalize_theta_set(Interval.open(-pi/2, pi/2)) == \ Union(Interval.Ropen(0, pi/2), Interval.open(pi*Rational(3, 2), 2*pi)) assert normalize_theta_set(Interval(-4*pi, 3*pi)) == Interval.Ropen(0, 2*pi) assert normalize_theta_set(Interval(pi*Rational(-3, 2), -pi/2)) == Interval(pi/2, pi*Rational(3, 2)) assert normalize_theta_set(Interval.open(0, 2*pi)) == Interval.open(0, 2*pi) assert normalize_theta_set(Interval.Ropen(-pi/2, pi/2)) == \ Union(Interval.Ropen(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi)) assert normalize_theta_set(Interval.Lopen(-pi/2, pi/2)) == \ Union(Interval(0, pi/2), Interval.open(pi*Rational(3, 2), 2*pi)) assert normalize_theta_set(Interval(-pi/2, pi/2)) == \ Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi)) assert normalize_theta_set(Interval.open(4*pi, pi*Rational(9, 2))) == Interval.open(0, pi/2) assert normalize_theta_set(Interval.Lopen(4*pi, pi*Rational(9, 2))) == Interval.Lopen(0, pi/2) assert normalize_theta_set(Interval.Ropen(4*pi, pi*Rational(9, 2))) == Interval.Ropen(0, pi/2) assert normalize_theta_set(Interval.open(3*pi, 5*pi)) == \ Union(Interval.Ropen(0, pi), Interval.open(pi, 2*pi)) # FiniteSet assert normalize_theta_set(FiniteSet(0, pi, 3*pi)) == FiniteSet(0, pi) assert normalize_theta_set(FiniteSet(0, pi/2, pi, 2*pi)) == FiniteSet(0, pi/2, pi) assert normalize_theta_set(FiniteSet(0, -pi/2, -pi, -2*pi)) == FiniteSet(0, pi, pi*Rational(3, 2)) assert normalize_theta_set(FiniteSet(pi*Rational(-3, 2), pi/2)) == \ FiniteSet(pi/2) assert normalize_theta_set(FiniteSet(2*pi)) == FiniteSet(0) # Unions assert normalize_theta_set(Union(Interval(0, pi/3), Interval(pi/2, pi))) == \ Union(Interval(0, pi/3), Interval(pi/2, pi)) assert normalize_theta_set(Union(Interval(0, pi), Interval(2*pi, pi*Rational(7, 3)))) == \ Interval(0, pi) # ValueError for non-real sets raises(ValueError, lambda: normalize_theta_set(S.Complexes)) # NotImplementedError for subset of reals raises(NotImplementedError, lambda: normalize_theta_set(Interval(0, 1))) # NotImplementedError without pi as coefficient raises(NotImplementedError, lambda: normalize_theta_set(Interval(1, 2*pi))) raises(NotImplementedError, lambda: normalize_theta_set(Interval(2*pi, 10))) raises(NotImplementedError, lambda: normalize_theta_set(FiniteSet(0, 3, 3*pi))) def test_ComplexRegion_FiniteSet(): x, y, z, a, b, c = symbols('x y z a b c') # Issue #9669 assert ComplexRegion(FiniteSet(a, b, c)*FiniteSet(x, y, z)) == \ FiniteSet(a + I*x, a + I*y, a + I*z, b + I*x, b + I*y, b + I*z, c + I*x, c + I*y, c + I*z) assert ComplexRegion(FiniteSet(2)*FiniteSet(3)) == FiniteSet(2 + 3*I) def test_union_RealSubSet(): assert (S.Complexes).union(Interval(1, 2)) == S.Complexes assert (S.Complexes).union(S.Integers) == S.Complexes def test_issue_9980(): c1 = ComplexRegion(Interval(1, 2)*Interval(2, 3)) c2 = ComplexRegion(Interval(1, 5)*Interval(1, 3)) R = Union(c1, c2) assert simplify(R) == ComplexRegion(Union(Interval(1, 2)*Interval(2, 3), \ Interval(1, 5)*Interval(1, 3)), False) assert c1.func(*c1.args) == c1 assert R.func(*R.args) == R def test_issue_11732(): interval12 = Interval(1, 2) finiteset1234 = FiniteSet(1, 2, 3, 4) pointComplex = Tuple(1, 5) assert (interval12 in S.Naturals) == False assert (interval12 in S.Naturals0) == False assert (interval12 in S.Integers) == False assert (interval12 in S.Complexes) == False assert (finiteset1234 in S.Naturals) == False assert (finiteset1234 in S.Naturals0) == False assert (finiteset1234 in S.Integers) == False assert (finiteset1234 in S.Complexes) == False assert (pointComplex in S.Naturals) == False assert (pointComplex in S.Naturals0) == False assert (pointComplex in S.Integers) == False assert (pointComplex in S.Complexes) == True def test_issue_11730(): unit = Interval(0, 1) square = ComplexRegion(unit ** 2) assert Union(S.Complexes, FiniteSet(oo)) != S.Complexes assert Union(S.Complexes, FiniteSet(eye(4))) != S.Complexes assert Union(unit, square) == square assert Intersection(S.Reals, square) == unit def test_issue_11938(): unit = Interval(0, 1) ival = Interval(1, 2) cr1 = ComplexRegion(ival * unit) assert Intersection(cr1, S.Reals) == ival assert Intersection(cr1, unit) == FiniteSet(1) arg1 = Interval(0, S.Pi) arg2 = FiniteSet(S.Pi) arg3 = Interval(S.Pi / 4, 3 * S.Pi / 4) cp1 = ComplexRegion(unit * arg1, polar=True) cp2 = ComplexRegion(unit * arg2, polar=True) cp3 = ComplexRegion(unit * arg3, polar=True) assert Intersection(cp1, S.Reals) == Interval(-1, 1) assert Intersection(cp2, S.Reals) == Interval(-1, 0) assert Intersection(cp3, S.Reals) == FiniteSet(0) def test_issue_11914(): a, b = Interval(0, 1), Interval(0, pi) c, d = Interval(2, 3), Interval(pi, 3 * pi / 2) cp1 = ComplexRegion(a * b, polar=True) cp2 = ComplexRegion(c * d, polar=True) assert -3 in cp1.union(cp2) assert -3 in cp2.union(cp1) assert -5 not in cp1.union(cp2) def test_issue_9543(): assert ImageSet(Lambda(x, x**2), S.Naturals).is_subset(S.Reals) def test_issue_16871(): assert ImageSet(Lambda(x, x), FiniteSet(1)) == {1} assert ImageSet(Lambda(x, x - 3), S.Integers ).intersection(S.Integers) is S.Integers @XFAIL def test_issue_16871b(): assert ImageSet(Lambda(x, x - 3), S.Integers).is_subset(S.Integers) def test_issue_18050(): assert imageset(Lambda(x, I*x + 1), S.Integers ) == ImageSet(Lambda(x, I*x + 1), S.Integers) assert imageset(Lambda(x, 3*I*x + 4 + 8*I), S.Integers ) == ImageSet(Lambda(x, 3*I*x + 4 + 2*I), S.Integers) # no 'Mod' for next 2 tests: assert imageset(Lambda(x, 2*x + 3*I), S.Integers ) == ImageSet(Lambda(x, 2*x + 3*I), S.Integers) r = Symbol('r', positive=True) assert imageset(Lambda(x, r*x + 10), S.Integers ) == ImageSet(Lambda(x, r*x + 10), S.Integers) # reduce real part: assert imageset(Lambda(x, 3*x + 8 + 5*I), S.Integers ) == ImageSet(Lambda(x, 3*x + 2 + 5*I), S.Integers) def test_Rationals(): assert S.Integers.is_subset(S.Rationals) assert S.Naturals.is_subset(S.Rationals) assert S.Naturals0.is_subset(S.Rationals) assert S.Rationals.is_subset(S.Reals) assert S.Rationals.inf is -oo assert S.Rationals.sup is oo it = iter(S.Rationals) assert [next(it) for i in range(12)] == [ 0, 1, -1, S.Half, 2, Rational(-1, 2), -2, Rational(1, 3), 3, Rational(-1, 3), -3, Rational(2, 3)] assert Basic() not in S.Rationals assert S.Half in S.Rationals assert S.Rationals.contains(0.5) == Contains(0.5, S.Rationals, evaluate=False) assert 2 in S.Rationals r = symbols('r', rational=True) assert r in S.Rationals raises(TypeError, lambda: x in S.Rationals) # issue #18134: assert S.Rationals.boundary == S.Reals assert S.Rationals.closure == S.Reals assert S.Rationals.is_open == False assert S.Rationals.is_closed == False def test_NZQRC_unions(): # check that all trivial number set unions are simplified: nbrsets = (S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals, S.Complexes) unions = (Union(a, b) for a in nbrsets for b in nbrsets) assert all(u.is_Union is False for u in unions) def test_imageset_intersection(): n = Dummy() s = ImageSet(Lambda(n, -I*(I*(2*pi*n - pi/4) + log(Abs(sqrt(-I))))), S.Integers) assert s.intersect(S.Reals) == ImageSet( Lambda(n, 2*pi*n + pi*Rational(7, 4)), S.Integers) def test_issue_17858(): assert 1 in Range(-oo, oo) assert 0 in Range(oo, -oo, -1) assert oo not in Range(-oo, oo) assert -oo not in Range(-oo, oo) def test_issue_17859(): r = Range(-oo,oo) raises(ValueError,lambda: r[::2]) raises(ValueError, lambda: r[::-2]) r = Range(oo,-oo,-1) raises(ValueError,lambda: r[::2]) raises(ValueError, lambda: r[::-2])
3bbf9a2a938bc27a51869d3a4d19a4e43e3267434c3b026be7f025cbd267b825
import pyglet.gl as pgl from pyglet import font from sympy.core import S from sympy.core.compatibility import is_sequence from sympy.plotting.pygletplot.plot_object import PlotObject from sympy.plotting.pygletplot.util import billboard_matrix, dot_product, \ get_direction_vectors, strided_range, vec_mag, vec_sub class PlotAxes(PlotObject): def __init__(self, *args, style='', none=None, frame=None, box=None, ordinate=None, stride=0.25, visible='', overlay='', colored='', label_axes='', label_ticks='', tick_length=0.1, font_face='Arial', font_size=28, **kwargs): # initialize style parameter style = style.lower() # allow alias kwargs to override style kwarg if none is not None: style = 'none' if frame is not None: style = 'frame' if box is not None: style = 'box' if ordinate is not None: style = 'ordinate' if style in ['', 'ordinate']: self._render_object = PlotAxesOrdinate(self) elif style in ['frame', 'box']: self._render_object = PlotAxesFrame(self) elif style in ['none']: self._render_object = None else: raise ValueError(("Unrecognized axes style %s.") % (style)) # initialize stride parameter try: stride = eval(stride) except TypeError: pass if is_sequence(stride): if len(stride) != 3: raise ValueError("length should be equal to 3") self._stride = stride else: self._stride = [stride, stride, stride] self._tick_length = float(tick_length) # setup bounding box and ticks self._origin = [0, 0, 0] self.reset_bounding_box() def flexible_boolean(input, default): if input in [True, False]: return input if input in ('f', 'F', 'false', 'False'): return False if input in ('t', 'T', 'true', 'True'): return True return default # initialize remaining parameters self.visible = flexible_boolean(kwargs, True) self._overlay = flexible_boolean(overlay, True) self._colored = flexible_boolean(colored, False) self._label_axes = flexible_boolean(label_axes, False) self._label_ticks = flexible_boolean(label_ticks, True) # setup label font self.font_face = font_face self.font_size = font_size # this is also used to reinit the # font on window close/reopen self.reset_resources() def reset_resources(self): self.label_font = None def reset_bounding_box(self): self._bounding_box = [[None, None], [None, None], [None, None]] self._axis_ticks = [[], [], []] def draw(self): if self._render_object: pgl.glPushAttrib(pgl.GL_ENABLE_BIT | pgl.GL_POLYGON_BIT | pgl.GL_DEPTH_BUFFER_BIT) if self._overlay: pgl.glDisable(pgl.GL_DEPTH_TEST) self._render_object.draw() pgl.glPopAttrib() def adjust_bounds(self, child_bounds): b = self._bounding_box c = child_bounds for i in range(3): if abs(c[i][0]) is S.Infinity or abs(c[i][1]) is S.Infinity: continue b[i][0] = c[i][0] if b[i][0] is None else min([b[i][0], c[i][0]]) b[i][1] = c[i][1] if b[i][1] is None else max([b[i][1], c[i][1]]) self._bounding_box = b self._recalculate_axis_ticks(i) def _recalculate_axis_ticks(self, axis): b = self._bounding_box if b[axis][0] is None or b[axis][1] is None: self._axis_ticks[axis] = [] else: self._axis_ticks[axis] = strided_range(b[axis][0], b[axis][1], self._stride[axis]) def toggle_visible(self): self.visible = not self.visible def toggle_colors(self): self._colored = not self._colored class PlotAxesBase(PlotObject): def __init__(self, parent_axes): self._p = parent_axes def draw(self): color = [([0.2, 0.1, 0.3], [0.2, 0.1, 0.3], [0.2, 0.1, 0.3]), ([0.9, 0.3, 0.5], [0.5, 1.0, 0.5], [0.3, 0.3, 0.9])][self._p._colored] self.draw_background(color) self.draw_axis(2, color[2]) self.draw_axis(1, color[1]) self.draw_axis(0, color[0]) def draw_background(self, color): pass # optional def draw_axis(self, axis, color): raise NotImplementedError() def draw_text(self, text, position, color, scale=1.0): if len(color) == 3: color = (color[0], color[1], color[2], 1.0) if self._p.label_font is None: self._p.label_font = font.load(self._p.font_face, self._p.font_size, bold=True, italic=False) label = font.Text(self._p.label_font, text, color=color, valign=font.Text.BASELINE, halign=font.Text.CENTER) pgl.glPushMatrix() pgl.glTranslatef(*position) billboard_matrix() scale_factor = 0.005 * scale pgl.glScalef(scale_factor, scale_factor, scale_factor) pgl.glColor4f(0, 0, 0, 0) label.draw() pgl.glPopMatrix() def draw_line(self, v, color): o = self._p._origin pgl.glBegin(pgl.GL_LINES) pgl.glColor3f(*color) pgl.glVertex3f(v[0][0] + o[0], v[0][1] + o[1], v[0][2] + o[2]) pgl.glVertex3f(v[1][0] + o[0], v[1][1] + o[1], v[1][2] + o[2]) pgl.glEnd() class PlotAxesOrdinate(PlotAxesBase): def __init__(self, parent_axes): super().__init__(parent_axes) def draw_axis(self, axis, color): ticks = self._p._axis_ticks[axis] radius = self._p._tick_length / 2.0 if len(ticks) < 2: return # calculate the vector for this axis axis_lines = [[0, 0, 0], [0, 0, 0]] axis_lines[0][axis], axis_lines[1][axis] = ticks[0], ticks[-1] axis_vector = vec_sub(axis_lines[1], axis_lines[0]) # calculate angle to the z direction vector pos_z = get_direction_vectors()[2] d = abs(dot_product(axis_vector, pos_z)) d = d / vec_mag(axis_vector) # don't draw labels if we're looking down the axis labels_visible = abs(d - 1.0) > 0.02 # draw the ticks and labels for tick in ticks: self.draw_tick_line(axis, color, radius, tick, labels_visible) # draw the axis line and labels self.draw_axis_line(axis, color, ticks[0], ticks[-1], labels_visible) def draw_axis_line(self, axis, color, a_min, a_max, labels_visible): axis_line = [[0, 0, 0], [0, 0, 0]] axis_line[0][axis], axis_line[1][axis] = a_min, a_max self.draw_line(axis_line, color) if labels_visible: self.draw_axis_line_labels(axis, color, axis_line) def draw_axis_line_labels(self, axis, color, axis_line): if not self._p._label_axes: return axis_labels = [axis_line[0][::], axis_line[1][::]] axis_labels[0][axis] -= 0.3 axis_labels[1][axis] += 0.3 a_str = ['X', 'Y', 'Z'][axis] self.draw_text("-" + a_str, axis_labels[0], color) self.draw_text("+" + a_str, axis_labels[1], color) def draw_tick_line(self, axis, color, radius, tick, labels_visible): tick_axis = {0: 1, 1: 0, 2: 1}[axis] tick_line = [[0, 0, 0], [0, 0, 0]] tick_line[0][axis] = tick_line[1][axis] = tick tick_line[0][tick_axis], tick_line[1][tick_axis] = -radius, radius self.draw_line(tick_line, color) if labels_visible: self.draw_tick_line_label(axis, color, radius, tick) def draw_tick_line_label(self, axis, color, radius, tick): if not self._p._label_axes: return tick_label_vector = [0, 0, 0] tick_label_vector[axis] = tick tick_label_vector[{0: 1, 1: 0, 2: 1}[axis]] = [-1, 1, 1][ axis] * radius * 3.5 self.draw_text(str(tick), tick_label_vector, color, scale=0.5) class PlotAxesFrame(PlotAxesBase): def __init__(self, parent_axes): super().__init__(parent_axes) def draw_background(self, color): pass def draw_axis(self, axis, color): raise NotImplementedError()
01428ba6ffdb64648692fc5e8827ee07da74c07cef6eb78b13522fed4698773b
#!/usr/bin/env python """Distutils based setup script for SymPy. This uses Distutils (https://python.org/sigs/distutils-sig/) the standard python mechanism for installing packages. Optionally, you can use Setuptools (https://setuptools.readthedocs.io/en/latest/) to automatically handle dependencies. For the easiest installation just type the command (you'll probably need root privileges for that): python setup.py install This will install the library in the default location. For instructions on how to customize the install procedure read the output of: python setup.py --help install In addition, there are some other commands: python setup.py clean -> will clean all trash (*.pyc and stuff) python setup.py test -> will run the complete test suite python setup.py bench -> will run the complete benchmark suite python setup.py audit -> will run pyflakes checker on source code To get a full list of available commands, read the output of: python setup.py --help-commands Or, if all else fails, feel free to write to the sympy list at [email protected] and ask for help. """ import sys import os import shutil import glob import subprocess from distutils.command.sdist import sdist min_mpmath_version = '0.19' # This directory dir_setup = os.path.dirname(os.path.realpath(__file__)) extra_kwargs = {} try: from setuptools import setup, Command extra_kwargs['zip_safe'] = False extra_kwargs['entry_points'] = { 'console_scripts': [ 'isympy = isympy:main', ] } except ImportError: from distutils.core import setup, Command extra_kwargs['scripts'] = ['bin/isympy'] # handle mpmath deps in the hard way: from sympy.external.importtools import version_tuple try: import mpmath if version_tuple(mpmath.__version__) < version_tuple(min_mpmath_version): raise ImportError except ImportError: print("Please install the mpmath package with a version >= %s" % min_mpmath_version) sys.exit(-1) if sys.version_info < (3, 7): print("SymPy requires Python 3.7 or newer. Python %d.%d detected" % sys.version_info[:2]) sys.exit(-1) # Check that this list is uptodate against the result of the command: # python bin/generate_module_list.py modules = [ 'sympy.algebras', 'sympy.assumptions', 'sympy.assumptions.handlers', 'sympy.assumptions.predicates', 'sympy.assumptions.relation', 'sympy.benchmarks', 'sympy.calculus', 'sympy.categories', 'sympy.codegen', 'sympy.combinatorics', 'sympy.concrete', 'sympy.core', 'sympy.core.benchmarks', 'sympy.crypto', 'sympy.diffgeom', 'sympy.discrete', 'sympy.external', 'sympy.functions', 'sympy.functions.combinatorial', 'sympy.functions.elementary', 'sympy.functions.elementary.benchmarks', 'sympy.functions.special', 'sympy.functions.special.benchmarks', 'sympy.geometry', 'sympy.holonomic', 'sympy.integrals', 'sympy.integrals.benchmarks', 'sympy.integrals.rubi', 'sympy.integrals.rubi.parsetools', 'sympy.integrals.rubi.rubi_tests', 'sympy.integrals.rubi.rules', 'sympy.interactive', 'sympy.liealgebras', 'sympy.logic', 'sympy.logic.algorithms', 'sympy.logic.utilities', 'sympy.matrices', 'sympy.matrices.benchmarks', 'sympy.matrices.expressions', 'sympy.multipledispatch', 'sympy.ntheory', 'sympy.parsing', 'sympy.parsing.autolev', 'sympy.parsing.autolev._antlr', 'sympy.parsing.c', 'sympy.parsing.fortran', 'sympy.parsing.latex', 'sympy.parsing.latex._antlr', 'sympy.physics', 'sympy.physics.continuum_mechanics', 'sympy.physics.control', 'sympy.physics.hep', 'sympy.physics.mechanics', 'sympy.physics.optics', 'sympy.physics.quantum', 'sympy.physics.units', 'sympy.physics.units.definitions', 'sympy.physics.units.systems', 'sympy.physics.vector', 'sympy.plotting', 'sympy.plotting.intervalmath', 'sympy.plotting.pygletplot', 'sympy.polys', 'sympy.polys.agca', 'sympy.polys.benchmarks', 'sympy.polys.domains', 'sympy.polys.matrices', 'sympy.polys.numberfields', 'sympy.printing', 'sympy.printing.pretty', 'sympy.sandbox', 'sympy.series', 'sympy.series.benchmarks', 'sympy.sets', 'sympy.sets.handlers', 'sympy.simplify', 'sympy.solvers', 'sympy.solvers.benchmarks', 'sympy.solvers.diophantine', 'sympy.solvers.ode', 'sympy.stats', 'sympy.stats.sampling', 'sympy.strategies', 'sympy.strategies.branch', 'sympy.tensor', 'sympy.tensor.array', 'sympy.tensor.array.expressions', 'sympy.testing', 'sympy.unify', 'sympy.utilities', 'sympy.utilities._compilation', 'sympy.utilities.mathml', 'sympy.vector', ] class audit(Command): """Audits SymPy's source code for following issues: - Names which are used but not defined or used before they are defined. - Names which are redefined without having been used. """ description = "Audit SymPy source with PyFlakes" user_options = [] def initialize_options(self): self.all = None def finalize_options(self): pass def run(self): try: import pyflakes.scripts.pyflakes as flakes except ImportError: print("In order to run the audit, you need to have PyFlakes installed.") sys.exit(-1) dirs = (os.path.join(*d) for d in (m.split('.') for m in modules)) warns = 0 for dir in dirs: for filename in os.listdir(dir): if filename.endswith('.py') and filename != '__init__.py': warns += flakes.checkPath(os.path.join(dir, filename)) if warns > 0: print("Audit finished with total %d warnings" % warns) class clean(Command): """Cleans *.pyc and debian trashs, so you should get the same copy as is in the VCS. """ description = "remove build files" user_options = [("all", "a", "the same")] def initialize_options(self): self.all = None def finalize_options(self): pass def run(self): curr_dir = os.getcwd() for root, dirs, files in os.walk(dir_setup): for file in files: if file.endswith('.pyc') and os.path.isfile: os.remove(os.path.join(root, file)) os.chdir(dir_setup) names = ["python-build-stamp-2.4", "MANIFEST", "build", "dist", "doc/_build", "sample.tex"] for f in names: if os.path.isfile(f): os.remove(f) elif os.path.isdir(f): shutil.rmtree(f) for name in glob.glob(os.path.join(dir_setup, "doc", "src", "modules", "physics", "vector", "*.pdf")): if os.path.isfile(name): os.remove(name) os.chdir(curr_dir) class test_sympy(Command): """Runs all tests under the sympy/ folder """ description = "run all tests and doctests; also see bin/test and bin/doctest" user_options = [] # distutils complains if this is not here. def __init__(self, *args): self.args = args[0] # so we can pass it to other classes Command.__init__(self, *args) def initialize_options(self): # distutils wants this pass def finalize_options(self): # this too pass def run(self): from sympy.utilities import runtests runtests.run_all_tests() class run_benchmarks(Command): """Runs all SymPy benchmarks""" description = "run all benchmarks" user_options = [] # distutils complains if this is not here. def __init__(self, *args): self.args = args[0] # so we can pass it to other classes Command.__init__(self, *args) def initialize_options(self): # distutils wants this pass def finalize_options(self): # this too pass # we use py.test like architecture: # # o collector -- collects benchmarks # o runner -- executes benchmarks # o presenter -- displays benchmarks results # # this is done in sympy.utilities.benchmarking on top of py.test def run(self): from sympy.utilities import benchmarking benchmarking.main(['sympy']) class antlr(Command): """Generate code with antlr4""" description = "generate parser code from antlr grammars" user_options = [] # distutils complains if this is not here. def __init__(self, *args): self.args = args[0] # so we can pass it to other classes Command.__init__(self, *args) def initialize_options(self): # distutils wants this pass def finalize_options(self): # this too pass def run(self): from sympy.parsing.latex._build_latex_antlr import build_parser if not build_parser(): sys.exit(-1) class sdist_sympy(sdist): def run(self): # Fetch git commit hash and write down to commit_hash.txt before # shipped in tarball. commit_hash = None commit_hash_filepath = 'doc/commit_hash.txt' try: commit_hash = \ subprocess.check_output(['git', 'rev-parse', 'HEAD']) commit_hash = commit_hash.decode('ascii') commit_hash = commit_hash.rstrip() print('Commit hash found : {}.'.format(commit_hash)) print('Writing it to {}.'.format(commit_hash_filepath)) except: pass if commit_hash: with open(commit_hash_filepath, 'w') as f: f.write(commit_hash) super(sdist_sympy, self).run() try: os.remove(commit_hash_filepath) print( 'Successfully removed temporary file {}.' .format(commit_hash_filepath)) except OSError as e: print("Error deleting %s - %s." % (e.filename, e.strerror)) # Check that this list is uptodate against the result of the command: # python bin/generate_test_list.py tests = [ 'sympy.algebras.tests', 'sympy.assumptions.tests', 'sympy.calculus.tests', 'sympy.categories.tests', 'sympy.codegen.tests', 'sympy.combinatorics.tests', 'sympy.concrete.tests', 'sympy.core.tests', 'sympy.crypto.tests', 'sympy.diffgeom.tests', 'sympy.discrete.tests', 'sympy.external.tests', 'sympy.functions.combinatorial.tests', 'sympy.functions.elementary.tests', 'sympy.functions.special.tests', 'sympy.geometry.tests', 'sympy.holonomic.tests', 'sympy.integrals.rubi.parsetools.tests', 'sympy.integrals.rubi.rubi_tests.tests', 'sympy.integrals.rubi.tests', 'sympy.integrals.tests', 'sympy.interactive.tests', 'sympy.liealgebras.tests', 'sympy.logic.tests', 'sympy.matrices.expressions.tests', 'sympy.matrices.tests', 'sympy.multipledispatch.tests', 'sympy.ntheory.tests', 'sympy.parsing.tests', 'sympy.physics.continuum_mechanics.tests', 'sympy.physics.control.tests', 'sympy.physics.hep.tests', 'sympy.physics.mechanics.tests', 'sympy.physics.optics.tests', 'sympy.physics.quantum.tests', 'sympy.physics.tests', 'sympy.physics.units.tests', 'sympy.physics.vector.tests', 'sympy.plotting.intervalmath.tests', 'sympy.plotting.pygletplot.tests', 'sympy.plotting.tests', 'sympy.polys.agca.tests', 'sympy.polys.domains.tests', 'sympy.polys.matrices.tests', 'sympy.polys.numberfields.tests', 'sympy.polys.tests', 'sympy.printing.pretty.tests', 'sympy.printing.tests', 'sympy.sandbox.tests', 'sympy.series.tests', 'sympy.sets.tests', 'sympy.simplify.tests', 'sympy.solvers.diophantine.tests', 'sympy.solvers.ode.tests', 'sympy.solvers.tests', 'sympy.stats.sampling.tests', 'sympy.stats.tests', 'sympy.strategies.branch.tests', 'sympy.strategies.tests', 'sympy.tensor.array.expressions.tests', 'sympy.tensor.array.tests', 'sympy.tensor.tests', 'sympy.testing.tests', 'sympy.unify.tests', 'sympy.utilities._compilation.tests', 'sympy.utilities.tests', 'sympy.vector.tests', ] with open(os.path.join(dir_setup, 'sympy', 'release.py')) as f: # Defines __version__ exec(f.read()) if __name__ == '__main__': setup(name='sympy', version=__version__, description='Computer algebra system (CAS) in Python', author='SymPy development team', author_email='[email protected]', license='BSD', keywords="Math CAS", url='https://sympy.org', py_modules=['isympy'], packages=['sympy'] + modules + tests, ext_modules=[], package_data={ 'sympy.utilities.mathml': ['data/*.xsl'], 'sympy.logic.benchmarks': ['input/*.cnf'], 'sympy.parsing.autolev': [ '*.g4', 'test-examples/*.al', 'test-examples/*.py', 'test-examples/pydy-example-repo/*.al', 'test-examples/pydy-example-repo/*.py', 'test-examples/README.txt', ], 'sympy.parsing.latex': ['*.txt', '*.g4'], 'sympy.integrals.rubi.parsetools': ['header.py.txt'], 'sympy.plotting.tests': ['test_region_*.png'], }, data_files=[('share/man/man1', ['doc/man/isympy.1'])], cmdclass={'test': test_sympy, 'bench': run_benchmarks, 'clean': clean, 'audit': audit, 'antlr': antlr, 'sdist': sdist_sympy, }, python_requires='>=3.7', classifiers=[ 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Scientific/Engineering :: Physics', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', ], install_requires=[ 'mpmath>=%s' % min_mpmath_version, ], **extra_kwargs )
96a84d89e3e4883cc741d7fec14ab988578253f9a40d693c6d93602291cf3628
# -*- coding: utf-8 -*- from __future__ import print_function, division, absolute_import import os from itertools import chain import json import sys import warnings import pytest from sympy.testing.runtests import setup_pprint, _get_doctest_blacklist durations_path = os.path.join(os.path.dirname(__file__), '.ci', 'durations.json') blacklist_path = os.path.join(os.path.dirname(__file__), '.ci', 'blacklisted.json') # Collecting tests from rubi_tests under pytest leads to errors even if the # tests will be skipped. collect_ignore = ["sympy/integrals/rubi"] + _get_doctest_blacklist() # Set up printing for doctests setup_pprint() sys.__displayhook__ = sys.displayhook #from sympy import pprint_use_unicode #pprint_use_unicode(False) def _mk_group(group_dict): return list(chain(*[[k+'::'+v for v in files] for k, files in group_dict.items()])) if os.path.exists(durations_path): veryslow_group, slow_group = [_mk_group(group_dict) for group_dict in json.loads(open(durations_path, 'rt').read())] else: # warnings in conftest has issues: https://github.com/pytest-dev/pytest/issues/2891 warnings.warn("conftest.py:22: Could not find %s, --quickcheck and --veryquickcheck will have no effect.\n" % durations_path) veryslow_group, slow_group = [], [] if os.path.exists(blacklist_path): with open(blacklist_path, 'rt') as stream: blacklist_group = _mk_group(json.loads(stream.read())) else: warnings.warn("conftest.py:28: Could not find %s, no tests will be skipped due to blacklisting\n" % blacklist_path) blacklist_group = [] def pytest_addoption(parser): parser.addoption("--quickcheck", dest="runquick", action="store_true", help="Skip very slow tests (see ./ci/parse_durations_log.py)") parser.addoption("--veryquickcheck", dest="runveryquick", action="store_true", help="Skip slow & very slow (see ./ci/parse_durations_log.py)") def pytest_configure(config): # register an additional marker config.addinivalue_line("markers", "slow: manually marked test as slow (use .ci/durations.json instead)") config.addinivalue_line("markers", "quickcheck: skip very slow tests") config.addinivalue_line("markers", "veryquickcheck: skip slow & very slow tests") def pytest_runtest_setup(item): if isinstance(item, pytest.Function): if item.nodeid in veryslow_group and (item.config.getvalue("runquick") or item.config.getvalue("runveryquick")): pytest.skip("very slow test, skipping since --quickcheck or --veryquickcheck was passed.") return if item.nodeid in slow_group and item.config.getvalue("runveryquick"): pytest.skip("slow test, skipping since --veryquickcheck was passed.") return if item.nodeid in blacklist_group: pytest.skip("blacklisted test, see %s" % blacklist_path) return
29cd2bacc4d3a2b05b5b980b49c6c2146ac4d34e0cdb591cf82902b3f6a5ce47
#!/usr/bin/env python # -*- coding: utf-8 -*- """ A tool to generate AUTHORS. We started tracking authors before moving to git, so we have to do some manual rearrangement of the git history authors in order to get the order in AUTHORS. bin/mailmap_update.py should be run before committing the results. """ from __future__ import unicode_literals from __future__ import print_function import codecs import sys import os if sys.version_info < (3, 7): sys.exit("This script requires Python 3.7 or newer") from subprocess import run, PIPE from sympy.external.importtools import version_tuple from collections import OrderedDict def red(text): return "\033[31m%s\033[0m" % text def yellow(text): return "\033[33m%s\033[0m" % text def green(text): return "\033[32m%s\033[0m" % text # put sympy on the path mailmap_update_path = os.path.abspath(__file__) mailmap_update_dir = os.path.dirname(mailmap_update_path) sympy_top = os.path.split(mailmap_update_dir)[0] sympy_dir = os.path.join(sympy_top, 'sympy') if os.path.isdir(sympy_dir): sys.path.insert(0, sympy_top) from sympy.utilities.misc import filldedent # check git version minimal = '1.8.4.2' git_ver = run(['git', '--version'], stdout=PIPE, encoding='utf-8').stdout[12:] if version_tuple(git_ver) < version_tuple(minimal): print(yellow("Please use a git version >= %s" % minimal)) def author_name(line): assert line.count("<") == line.count(">") == 1 assert line.endswith(">") return line.split("<", 1)[0].strip() def move(l, i1, i2, who): x = l.pop(i1) # this will fail if the .mailmap is not right assert who == author_name(x), \ '%s was not found at line %i' % (who, i1) l.insert(i2, x) # find who git knows ahout git_command = ["git", "log", "--topo-order", "--reverse", "--format=%aN <%aE>"] git_people = run(git_command, stdout=PIPE, encoding='utf-8').stdout.strip().split("\n") # remove duplicates, keeping the original order git_people = list(OrderedDict.fromkeys(git_people)) # Do the few changes necessary in order to reproduce AUTHORS: try: move(git_people, 2, 0, 'Ondřej Čertík') move(git_people, 42, 1, 'Fabian Pedregosa') move(git_people, 22, 2, 'Jurjen N.E. Bos') git_people.insert(4, "*Marc-Etienne M.Leveille <[email protected]>") move(git_people, 10, 5, 'Brian Jorgensen') git_people.insert(11, "*Ulrich Hecht <[email protected]>") # this will fail if the .mailmap is not right assert 'Kirill Smelkov' == author_name(git_people.pop(12) ), 'Kirill Smelkov was not found at line 12' move(git_people, 12, 32, 'Sebastian Krämer') move(git_people, 227, 35, 'Case Van Horsen') git_people.insert(43, "*Dan <[email protected]>") move(git_people, 57, 59, 'Aaron Meurer') move(git_people, 58, 57, 'Andrew Docherty') move(git_people, 67, 66, 'Chris Smith') move(git_people, 79, 76, 'Kevin Goodsell') git_people.insert(84, "*Chu-Ching Huang <[email protected]>") move(git_people, 93, 92, 'James Pearson') # this will fail if the .mailmap is not right assert 'Sergey B Kirpichev' == author_name(git_people.pop(226) ), 'Sergey B Kirpichev was not found at line 226.' index = git_people.index( "azure-pipelines[bot] " + "<azure-pipelines[bot]@users.noreply.github.com>") git_people.pop(index) index = git_people.index( "whitesource-bolt-for-github[bot] " + "<whitesource-bolt-for-github[bot]@users.noreply.github.com>") git_people.pop(index) except AssertionError as msg: print(red(msg)) sys.exit(1) # define new lines for the file header = filldedent(""" All people who contributed to SymPy by sending at least a patch or more (in the order of the date of their first contribution), except those who explicitly didn't want to be mentioned. People with a * next to their names are not found in the metadata of the git history. This file is generated automatically by running `./bin/authors_update.py`. """).lstrip() fmt = """There are a total of {authors_count} authors.""" header_extra = fmt.format(authors_count=len(git_people)) lines = header.splitlines() lines.append('') lines.append(header_extra) lines.append('') lines.extend(git_people) # compare to old lines and stop if no changes were made old_lines = codecs.open(os.path.realpath(os.path.join( __file__, os.path.pardir, os.path.pardir, "AUTHORS")), "r", "utf-8").read().splitlines() if old_lines == lines: print(green('No changes made to AUTHORS.')) sys.exit(0) # check for new additions new_authors = [] for i in sorted(set(lines) - set(old_lines)): try: author_name(i) new_authors.append(i) except AssertionError: continue # write the new file with codecs.open(os.path.realpath(os.path.join( __file__, os.path.pardir, os.path.pardir, "AUTHORS")), "w", "utf-8") as fd: fd.write('\n'.join(lines)) fd.write('\n') # warn about additions if new_authors: print(yellow(filldedent(""" The following authors were added to AUTHORS. If mailmap_update.py has already been run and each author appears as desired and is not a duplicate of some other author, then the changes can be committed. Otherwise, see .mailmap for instructions on how to change an author's entry."""))) print() for i in sorted(new_authors, key=lambda x: x.lower()): print('\t%s' % i) else: print(yellow("The AUTHORS file was updated.")) print(red("Changes were made in the authors file")) run(['git', 'diff']) # Show the changes sys.exit(1)
872d58a8c4d9fa144c32069e19e446efc9d67ba4dc964cbef1f6f8cd216e441b
#!/usr/bin/env python """ Program to test that all methods/functions have at least one example doctest. Also checks if docstrings are imported into Sphinx. For this to work, the Sphinx docs need to be built first. Use "cd doc; make html" to build the Sphinx docs. Usage: ./bin/coverage_doctest.py sympy/core or ./bin/coverage_doctest.py sympy/core/basic.py If no arguments are given, all files in sympy/ are checked. """ from __future__ import print_function import os import sys import inspect from argparse import ArgumentParser, RawDescriptionHelpFormatter try: from HTMLParser import HTMLParser except ImportError: # It's html.parser in Python 3 from html.parser import HTMLParser from sympy.utilities.misc import filldedent # Load color templates, duplicated from sympy/testing/runtests.py color_templates = ( ("Black", "0;30"), ("Red", "0;31"), ("Green", "0;32"), ("Brown", "0;33"), ("Blue", "0;34"), ("Purple", "0;35"), ("Cyan", "0;36"), ("LightGray", "0;37"), ("DarkGray", "1;30"), ("LightRed", "1;31"), ("LightGreen", "1;32"), ("Yellow", "1;33"), ("LightBlue", "1;34"), ("LightPurple", "1;35"), ("LightCyan", "1;36"), ("White", "1;37"), ) colors = {} for name, value in color_templates: colors[name] = value c_normal = '\033[0m' c_color = '\033[%sm' def print_header(name, underline=None, color=None): print() if color: print("%s%s%s" % (c_color % colors[color], name, c_normal)) else: print(name) if underline and not color: print(underline*len(name)) def print_coverage(module_path, c, c_missing_doc, c_missing_doctest, c_indirect_doctest, c_sph, f, f_missing_doc, f_missing_doctest, f_indirect_doctest, f_sph, score, total_doctests, total_members, sphinx_score, total_sphinx, verbose=False, no_color=False, sphinx=True): """ Prints details (depending on verbose) of a module """ doctest_color = "Brown" sphinx_color = "DarkGray" less_100_color = "Red" less_50_color = "LightRed" equal_100_color = "Green" big_header_color = "LightPurple" small_header_color = "Purple" if no_color: score_string = "Doctests: %s%% (%s of %s)" % (score, total_doctests, total_members) elif score < 100: if score < 50: score_string = "%sDoctests:%s %s%s%% (%s of %s)%s" % \ (c_color % colors[doctest_color], c_normal, c_color % colors[less_50_color], score, total_doctests, total_members, c_normal) else: score_string = "%sDoctests:%s %s%s%% (%s of %s)%s" % \ (c_color % colors[doctest_color], c_normal, c_color % colors[less_100_color], score, total_doctests, total_members, c_normal) else: score_string = "%sDoctests:%s %s%s%% (%s of %s)%s" % \ (c_color % colors[doctest_color], c_normal, c_color % colors[equal_100_color], score, total_doctests, total_members, c_normal) if sphinx: if no_color: sphinx_score_string = "Sphinx: %s%% (%s of %s)" % (sphinx_score, total_members - total_sphinx, total_members) elif sphinx_score < 100: if sphinx_score < 50: sphinx_score_string = "%sSphinx:%s %s%s%% (%s of %s)%s" % \ (c_color % colors[sphinx_color], c_normal, c_color % colors[less_50_color], sphinx_score, total_members - total_sphinx, total_members, c_normal) else: sphinx_score_string = "%sSphinx:%s %s%s%% (%s of %s)%s" % \ (c_color % colors[sphinx_color], c_normal, c_color % colors[less_100_color], sphinx_score, total_members - total_sphinx, total_members, c_normal) else: sphinx_score_string = "%sSphinx:%s %s%s%% (%s of %s)%s" % \ (c_color % colors[sphinx_color], c_normal, c_color % colors[equal_100_color], sphinx_score, total_members - total_sphinx, total_members, c_normal) if verbose: print('\n' + '-'*70) print(module_path) print('-'*70) else: if sphinx: print("%s: %s %s" % (module_path, score_string, sphinx_score_string)) else: print("%s: %s" % (module_path, score_string)) if verbose: print_header('CLASSES', '*', not no_color and big_header_color) if not c: print_header('No classes found!') else: if c_missing_doc: print_header('Missing docstrings', '-', not no_color and small_header_color) for md in c_missing_doc: print(' * ' + md) if c_missing_doctest: print_header('Missing doctests', '-', not no_color and small_header_color) for md in c_missing_doctest: print(' * ' + md) if c_indirect_doctest: # Use "# indirect doctest" in the docstring to # suppress this warning. print_header('Indirect doctests', '-', not no_color and small_header_color) for md in c_indirect_doctest: print(' * ' + md) print('\n Use \"# indirect doctest\" in the docstring to suppress this warning') if c_sph: print_header('Not imported into Sphinx', '-', not no_color and small_header_color) for md in c_sph: print(' * ' + md) print_header('FUNCTIONS', '*', not no_color and big_header_color) if not f: print_header('No functions found!') else: if f_missing_doc: print_header('Missing docstrings', '-', not no_color and small_header_color) for md in f_missing_doc: print(' * ' + md) if f_missing_doctest: print_header('Missing doctests', '-', not no_color and small_header_color) for md in f_missing_doctest: print(' * ' + md) if f_indirect_doctest: print_header('Indirect doctests', '-', not no_color and small_header_color) for md in f_indirect_doctest: print(' * ' + md) print('\n Use \"# indirect doctest\" in the docstring to suppress this warning') if f_sph: print_header('Not imported into Sphinx', '-', not no_color and small_header_color) for md in f_sph: print(' * ' + md) if verbose: print('\n' + '-'*70) print(score_string) if sphinx: print(sphinx_score_string) print('-'*70) def _is_indirect(member, doc): """ Given string repr of doc and member checks if the member contains indirect documentation """ d = member in doc e = 'indirect doctest' in doc if not d and not e: return True else: return False def _get_arg_list(name, fobj): """ Given a function object, constructs a list of arguments and their defaults. Takes care of varargs and kwargs """ trunc = 20 # Sometimes argument length can be huge argspec = inspect.getfullargspec(fobj) arg_list = [] if argspec.args: for arg in argspec.args: arg_list.append(str(arg)) arg_list.reverse() # Now add the defaults if argspec.defaults: for i in range(len(argspec.defaults)): arg_list[i] = str(arg_list[i]) + '=' + str(argspec.defaults[-i]) # Get the list in right order arg_list.reverse() # Add var args if argspec.varargs: arg_list.append(argspec.varargs) if argspec.varkw: arg_list.append(argspec.varkw) # Truncate long arguments arg_list = [x[:trunc] for x in arg_list] # Construct the parameter string (enclosed in brackets) str_param = "%s(%s)" % (name, ', '.join(arg_list)) return str_param def get_mod_name(path, base): """ Gets a module name, given the path of file/dir and base dir of sympy """ rel_path = os.path.relpath(path, base) # Remove the file extension rel_path, ign = os.path.splitext(rel_path) # Replace separators by . for module path file_module = "" h, t = os.path.split(rel_path) while h or t: if t: file_module = t + '.' + file_module h, t = os.path.split(h) return file_module[:-1] class FindInSphinx(HTMLParser): is_imported = [] def handle_starttag(self, tag, attr): a = dict(attr) if tag == "div" and a.get('class', None) == "viewcode-block": self.is_imported.append(a['id']) def find_sphinx(name, mod_path, found={}): if mod_path in found: # Cache results return name in found[mod_path] doc_path = mod_path.split('.') doc_path[-1] += '.html' sphinx_path = os.path.join(sympy_top, 'doc', '_build', 'html', '_modules', *doc_path) if not os.path.exists(sphinx_path): return False with open(sphinx_path) as f: html_txt = f.read() p = FindInSphinx() p.feed(html_txt) found[mod_path] = p.is_imported return name in p.is_imported def process_function(name, c_name, b_obj, mod_path, f_skip, f_missing_doc, f_missing_doctest, f_indirect_doctest, f_has_doctest, skip_list, sph, sphinx=True): """ Processes a function to get information regarding documentation. It is assume that the function calling this subrouting has already verified that it is a valid module function. """ if name in skip_list: return False, False # We add in the end, as inspect.getsourcelines is slow add_missing_doc = False add_missing_doctest = False add_indirect_doctest = False in_sphinx = True f_doctest = False function = False if inspect.isclass(b_obj): obj = getattr(b_obj, name) obj_name = c_name + '.' + name else: obj = b_obj obj_name = name full_name = _get_arg_list(name, obj) if name.startswith('_'): f_skip.append(full_name) else: doc = obj.__doc__ if isinstance(doc, str): if not doc: add_missing_doc = True elif not '>>>' in doc: add_missing_doctest = True elif _is_indirect(name, doc): add_indirect_doctest = True else: f_doctest = True elif doc is None: # this was a function defined in the docstring f_doctest = True else: raise TypeError('Current doc type for ', print(obj), ' is ', type(doc), '. Docstring must be a string, property, or none') function = True if sphinx: in_sphinx = find_sphinx(obj_name, mod_path) if add_missing_doc or add_missing_doctest or add_indirect_doctest or not in_sphinx: try: line_no = inspect.getsourcelines(obj)[1] except IOError: # Raised when source does not exist # which means the function is not there. return False, False full_name = "LINE %d: %s" % (line_no, full_name) if add_missing_doc: f_missing_doc.append(full_name) elif add_missing_doctest: f_missing_doctest.append(full_name) elif add_indirect_doctest: f_indirect_doctest.append(full_name) if not in_sphinx: sph.append(full_name) return f_doctest, function def process_class(c_name, obj, c_skip, c_missing_doc, c_missing_doctest, c_indirect_doctest, c_has_doctest, mod_path, sph, sphinx=True): """ Extracts information about the class regarding documentation. It is assumed that the function calling this subroutine has already checked that the class is valid. """ # Skip class case if c_name.startswith('_'): c_skip.append(c_name) return False, False, None c = False c_dt = False # Get the line number of class try: source, line_no = inspect.getsourcelines(obj) except IOError: # Raised when source does not exist # which means the class is not there. return False, False, None c = True full_name = "LINE %d: %s" % (line_no, c_name) doc = obj.__doc__ if isinstance(doc, str): if not doc: c_missing_doc.append(full_name) elif not '>>>' in doc: c_missing_doctest.append(full_name) elif _is_indirect(c_name, doc): c_indirect_doctest.append(full_name) else: c_dt = True c_has_doctest.append(full_name) elif doc is None: # this was a class defined in the docstring c_dt = True c_has_doctest.append(full_name) elif isinstance(doc, property): # skip class with dynamic doc c_skip.append(c_name) return False, False, None else: raise TypeError('Current doc type of ', print(obj), ' is ', type(doc), '. Docstring must be a string, property , or none') in_sphinx = False if sphinx: in_sphinx = find_sphinx(c_name, mod_path) if not in_sphinx: sph.append(full_name) return c_dt, c, source def coverage(module_path, verbose=False, no_color=False, sphinx=True): """ Given a module path, builds an index of all classes and functions contained. It then goes through each of the classes/functions to get the docstring and doctest coverage of the module. """ # Import the package and find members m = None try: __import__(module_path) m = sys.modules[module_path] except Exception as a: # Most likely cause, absence of __init__ print("%s could not be loaded due to %s." % (module_path, repr(a))) return 0, 0, 0 c_skipped = [] c_missing_doc = [] c_missing_doctest = [] c_has_doctest = [] c_indirect_doctest = [] classes = 0 c_doctests = 0 c_sph = [] f_skipped = [] f_missing_doc = [] f_missing_doctest = [] f_has_doctest = [] f_indirect_doctest = [] functions = 0 f_doctests = 0 f_sph = [] skip_members = ['__abstractmethods__'] # Get the list of members m_members = dir(m) for member in m_members: # Check for skipped functions first, they throw nasty errors # when combined with getattr if member in skip_members: continue # Identify if the member (class/def) is a part of this module obj = getattr(m, member) obj_mod = inspect.getmodule(obj) # Function not a part of this module if not obj_mod or not obj_mod.__name__ == module_path: continue # If it's a function if inspect.isfunction(obj) or inspect.ismethod(obj): f_dt, f = process_function(member, '', obj, module_path, f_skipped, f_missing_doc, f_missing_doctest, f_indirect_doctest, f_has_doctest, skip_members, f_sph, sphinx=sphinx) if f: functions += 1 if f_dt: f_doctests += 1 # If it's a class, look at it's methods too elif inspect.isclass(obj): # Process the class first c_dt, c, source = process_class(member, obj, c_skipped, c_missing_doc, c_missing_doctest, c_indirect_doctest, c_has_doctest, module_path, c_sph, sphinx=sphinx) if not c: continue else: classes += 1 if c_dt: c_doctests += 1 # Iterate through it's members for f_name in obj.__dict__: if f_name in skip_members or f_name.startswith('_'): continue # Check if def funcname appears in source if not ("def " + f_name) in ' '.join(source): continue # Identify the module of the current class member f_obj = getattr(obj, f_name) obj_mod = inspect.getmodule(f_obj) # Function not a part of this module if not obj_mod or not obj_mod.__name__ == module_path: continue # If it's a function if inspect.isfunction(f_obj) or inspect.ismethod(f_obj): f_dt, f = process_function(f_name, member, obj, module_path, f_skipped, f_missing_doc, f_missing_doctest, f_indirect_doctest, f_has_doctest, skip_members, f_sph, sphinx=sphinx) if f: functions += 1 if f_dt: f_doctests += 1 # Evaluate the percent coverage total_doctests = c_doctests + f_doctests total_members = classes + functions if total_members: score = 100 * float(total_doctests) / (total_members) else: score = 100 score = int(score) if sphinx: total_sphinx = len(c_sph) + len(f_sph) if total_members: sphinx_score = 100 - 100 * float(total_sphinx) / total_members else: sphinx_score = 100 sphinx_score = int(sphinx_score) else: total_sphinx = 0 sphinx_score = 0 # Sort functions/classes by line number c_missing_doc = sorted(c_missing_doc, key=lambda x: int(x.split()[1][:-1])) c_missing_doctest = sorted(c_missing_doctest, key=lambda x: int(x.split()[1][:-1])) c_indirect_doctest = sorted(c_indirect_doctest, key=lambda x: int(x.split()[1][:-1])) f_missing_doc = sorted(f_missing_doc, key=lambda x: int(x.split()[1][:-1])) f_missing_doctest = sorted(f_missing_doctest, key=lambda x: int(x.split()[1][:-1])) f_indirect_doctest = sorted(f_indirect_doctest, key=lambda x: int(x.split()[1][:-1])) print_coverage(module_path, classes, c_missing_doc, c_missing_doctest, c_indirect_doctest, c_sph, functions, f_missing_doc, f_missing_doctest, f_indirect_doctest, f_sph, score, total_doctests, total_members, sphinx_score, total_sphinx, verbose=verbose, no_color=no_color, sphinx=sphinx) return total_doctests, total_sphinx, total_members def go(sympy_top, file, verbose=False, no_color=False, exact=True, sphinx=True): # file names containing any string in skip_paths will be skipped, skip_paths = [] if os.path.isdir(file): doctests, total_sphinx, num_functions = 0, 0, 0 for F in os.listdir(file): _doctests, _total_sphinx, _num_functions = go(sympy_top, '%s/%s' % (file, F), verbose=verbose, no_color=no_color, exact=False, sphinx=sphinx) doctests += _doctests total_sphinx += _total_sphinx num_functions += _num_functions return doctests, total_sphinx, num_functions if (not (file.endswith('.py') or file.endswith('.pyx')) or file.endswith('__init__.py') or not exact and ('test_' in file or 'bench_' in file or any(name in file for name in skip_paths))): return 0, 0, 0 if not os.path.exists(file): print("File(%s does not exist." % file) sys.exit(1) # Relpath for constructing the module name return coverage(get_mod_name(file, sympy_top), verbose=verbose, no_color=no_color, sphinx=sphinx) if __name__ == "__main__": bintest_dir = os.path.abspath(os.path.dirname(__file__)) # bin/cover... sympy_top = os.path.split(bintest_dir)[0] # ../ sympy_dir = os.path.join(sympy_top, 'sympy') # ../sympy/ if os.path.isdir(sympy_dir): sys.path.insert(0, sympy_top) usage = "usage: ./bin/doctest_coverage.py PATHS" parser = ArgumentParser( description=__doc__, usage=usage, formatter_class=RawDescriptionHelpFormatter, ) parser.add_argument("path", nargs='*', default=[os.path.join(sympy_top, 'sympy')]) parser.add_argument("-v", "--verbose", action="store_true", dest="verbose", default=False) parser.add_argument("--no-colors", action="store_true", dest="no_color", help="use no colors", default=False) parser.add_argument("--no-sphinx", action="store_false", dest="sphinx", help="don't report Sphinx coverage", default=True) args = parser.parse_args() if args.sphinx and not os.path.exists(os.path.join(sympy_top, 'doc', '_build', 'html')): print(filldedent(""" Cannot check Sphinx coverage without a documentation build. To build the docs, run "cd doc; make html". To skip checking Sphinx coverage, pass --no-sphinx. """)) sys.exit(1) full_coverage = True for file in args.path: file = os.path.normpath(file) print('DOCTEST COVERAGE for %s' % (file)) print('='*70) print() doctests, total_sphinx, num_functions = go(sympy_top, file, verbose=args.verbose, no_color=args.no_color, sphinx=args.sphinx) if num_functions == 0: score = 100 sphinx_score = 100 else: score = 100 * float(doctests) / num_functions score = int(score) if doctests < num_functions: full_coverage = False if args.sphinx: sphinx_score = 100 - 100 * float(total_sphinx) / num_functions sphinx_score = int(sphinx_score) if total_sphinx > 0: full_coverage = False print() print('='*70) if args.no_color: print("TOTAL DOCTEST SCORE for %s: %s%% (%s of %s)" % \ (get_mod_name(file, sympy_top), score, doctests, num_functions)) elif score < 100: print("TOTAL DOCTEST SCORE for %s: %s%s%% (%s of %s)%s" % \ (get_mod_name(file, sympy_top), c_color % (colors["Red"]), score, doctests, num_functions, c_normal)) else: print("TOTAL DOCTEST SCORE for %s: %s%s%% (%s of %s)%s" % \ (get_mod_name(file, sympy_top), c_color % (colors["Green"]), score, doctests, num_functions, c_normal)) if args.sphinx: if args.no_color: print("TOTAL SPHINX SCORE for %s: %s%% (%s of %s)" % \ (get_mod_name(file, sympy_top), sphinx_score, num_functions - total_sphinx, num_functions)) elif sphinx_score < 100: print("TOTAL SPHINX SCORE for %s: %s%s%% (%s of %s)%s" % \ (get_mod_name(file, sympy_top), c_color % (colors["Red"]), sphinx_score, num_functions - total_sphinx, num_functions, c_normal)) else: print("TOTAL SPHINX SCORE for %s: %s%s%% (%s of %s)%s" % \ (get_mod_name(file, sympy_top), c_color % (colors["Green"]), sphinx_score, num_functions - total_sphinx, num_functions, c_normal)) print() sys.exit(not full_coverage)
79263b4658933e62730d1e35ffb0c80ec3f057c09d33fd36b29bc4e58034640c
#!/usr/bin/env python """ A tool to help keep .mailmap up-to-date with the current git authors. See also bin/authors_update.py """ import codecs import sys import os if sys.version_info < (3, 7): sys.exit("This script requires Python 3.7 or newer") from subprocess import run, PIPE from sympy.external.importtools import version_tuple from collections import defaultdict, OrderedDict def red(text): return "\033[31m%s\033[0m" % text def yellow(text): return "\033[33m%s\033[0m" % text def blue(text): return "\033[34m%s\033[0m" % text # put sympy on the path mailmap_update_path = os.path.abspath(__file__) mailmap_update_dir = os.path.dirname(mailmap_update_path) sympy_top = os.path.split(mailmap_update_dir)[0] sympy_dir = os.path.join(sympy_top, 'sympy') if os.path.isdir(sympy_dir): sys.path.insert(0, sympy_top) from sympy.utilities.misc import filldedent from sympy.utilities.iterables import sift # check git version minimal = '1.8.4.2' git_ver = run(['git', '--version'], stdout=PIPE, encoding='utf-8').stdout[12:] if version_tuple(git_ver) < version_tuple(minimal): print(yellow("Please use a git version >= %s" % minimal)) def author_name(line): assert line.count("<") == line.count(">") == 1 assert line.endswith(">") return line.split("<", 1)[0].strip() def author_email(line): assert line.count("<") == line.count(">") == 1 assert line.endswith(">") return line.split("<", 1)[1][:-1].strip() sysexit = 0 print(blue("checking git authors...")) # read git authors git_command = ['git', 'log', '--format=%aN <%aE>'] git_people = sorted(set(run(git_command, stdout=PIPE, encoding='utf-8').stdout.strip().split("\n"))) # check for ambiguous emails dups = defaultdict(list) near_dups = defaultdict(list) for i in git_people: k = i.split('<')[1] dups[k].append(i) near_dups[k.lower()].append((k, i)) multi = [k for k in dups if len(dups[k]) > 1] if multi: print() print(red(filldedent(""" Ambiguous email address error: each address should refer to a single author. Disambiguate the following in .mailmap. Then re-run this script."""))) for k in multi: print() for e in sorted(dups[k]): print('\t%s' % e) sysexit = 1 # warn for nearly ambiguous email addresses dups = near_dups # some may have been real dups, so disregard those # for which all email addresses were the same multi = [k for k in dups if len(dups[k]) > 1 and len(set([i for i, _ in dups[k]])) > 1] if multi: # not fatal but make it red print() print(red(filldedent(""" Ambiguous email address warning: git treats the following as distinct but .mailmap will treat them the same. If these are not all the same person then, when making an entry in .mailmap, be sure to include both commit name and address (not just the address)."""))) for k in multi: print() for _, e in sorted(dups[k]): print('\t%s' % e) sysexit = 1 # warn for ambiguous names dups = defaultdict(list) for i in git_people: dups[author_name(i)].append(i) multi = [k for k in dups if len(dups[k]) > 1] if multi: print() print(yellow(filldedent(""" Ambiguous name warning: if a person uses more than one email address, entries should be added to .mailmap to merge them into a single canonical address. Then re-run this script. """))) for k in multi: print() for e in sorted(dups[k]): print('\t%s' % e) sysexit = 1 bad_names = [] bad_emails = [] for i in git_people: name = author_name(i) email = author_email(i) if '@' in name: bad_names.append(i) elif '@' not in email: bad_emails.append(i) if bad_names: print() print(yellow(filldedent(""" The following people appear to have an email address listed for their name. Entries should be added to .mailmap so that names are formatted like "Name <email address>". """))) for i in bad_names: print("\t%s" % i) sysexit = 1 # TODO: Should we check for bad emails as well? Some people have empty email # addresses. The above check seems to catch people who get the name and email # backwards, so let's leave this alone for now. # if bad_emails: # print() # print(yellow(filldedent(""" # The following names do not appear to have valid # emails. Entries should be added to .mailmap that # use a proper email address. If there is no email # address for a person, use "[email protected]". # """))) # for i in bad_emails: # print("\t%s" % i) print() print(blue("checking .mailmap...")) # put entries in order -- this will help the user # to see if there are already existing entries for an author file = codecs.open(os.path.realpath(os.path.join( __file__, os.path.pardir, os.path.pardir, ".mailmap")), "r", "utf-8").read() blankline = not file or file.endswith('\n') lines = file.splitlines() def key(line): # return lower case first address on line or # raise an error if not an entry if '#' in line: line = line.split('#')[0] L, R = line.count("<"), line.count(">") assert L == R and L in (1, 2) return line.split(">", 1)[0].split("<")[1].lower() who = OrderedDict() for i, line in enumerate(lines): try: who.setdefault(key(line), []).append(line) except AssertionError: who[i] = [line] out = [] for k in who: # put long entries before short since if they match, the # short entries will be ignored. The ORDER MATTERS # so don't re-order the lines for a given address. # Other tidying up could be done but we won't do that here. def short_entry(line): if line.count('<') == 2: if line.split('>', 1)[1].split('<')[0].strip(): return False return True if len(who[k]) == 1: line = who[k][0] if not line.strip(): continue # ignore blank lines out.append(line) else: uniq = list(OrderedDict.fromkeys(who[k])) short, long = sift(uniq, short_entry, binary=True) out.extend(long) out.extend(short) if out != lines or not blankline: # write lines with codecs.open(os.path.realpath(os.path.join( __file__, os.path.pardir, os.path.pardir, ".mailmap")), "w", "utf-8") as fd: fd.write('\n'.join(out)) fd.write('\n') print() if out != lines: print(yellow('.mailmap lines were re-ordered.')) else: print(yellow('blank line added to end of .mailmap')) sysexit = 1 sys.exit(sysexit)
eb99e6c8ccd7643c07a1bfb382fede243a3ecead12bfdf09a3998a88e43c1b3e
# -*- coding: utf-8 -*- """ Fab file for releasing Please read the README in this directory. Guide for this file =================== Vagrant is a tool that gives us a reproducible VM, and fabric is a tool that we use to run commands on that VM. Each function in this file should be run as fab vagrant func Even those functions that do not use vagrant must be run this way, because of the vagrant configuration at the bottom of this file. Any function that should be made available from the command line needs to have the @task decorator. Save any files that should be reset between runs somewhere in the repos directory, so that the remove_userspace() function will clear it. It's best to do a complete vagrant destroy before a full release, but that takes a while, so the remove_userspace() ensures that things are mostly reset for testing. Do not enforce any naming conventions on the release branch. By tradition, the name of the release branch is the same as the version being released (like 0.7.3), but this is not required. Use get_sympy_version() and get_sympy_short_version() to get the SymPy version (the SymPy __version__ *must* be changed in sympy/release.py for this to work). """ from __future__ import print_function from collections import defaultdict, OrderedDict from contextlib import contextmanager from fabric.api import env, local, run, sudo, cd, hide, task from fabric.contrib.files import exists from fabric.colors import blue, red, green from fabric.utils import error, warn env.colorize_errors = True try: import requests from requests.auth import HTTPBasicAuth from requests_oauthlib import OAuth2 except ImportError: warn("requests and requests-oauthlib must be installed to upload to GitHub") requests = False import unicodedata import json from getpass import getpass import os import stat import sys import time import ConfigParser try: # https://pypi.python.org/pypi/fabric-virtualenv/ from fabvenv import virtualenv, make_virtualenv # Note, according to fabvenv docs, always use an absolute path with # virtualenv(). except ImportError: error("fabvenv is required. See https://pypi.python.org/pypi/fabric-virtualenv/") # Note, it's actually good practice to use absolute paths # everywhere. Otherwise, you will get surprising results if you call one # function from another, because your current working directory will be # whatever it was in the calling function, not ~. Also, due to what should # probably be considered a bug, ~ is not treated as an absolute path. You have # to explicitly write out /home/vagrant/ env.use_ssh_config = True def full_path_split(path): """ Function to do a full split on a path. """ # Based on https://stackoverflow.com/a/13505966/161801 rest, tail = os.path.split(path) if not rest or rest == os.path.sep: return (tail,) return full_path_split(rest) + (tail,) @contextmanager def use_venv(pyversion): """ Change make_virtualenv to use a given cmd pyversion should be '2' or '3' """ pyversion = str(pyversion) if pyversion == '2': yield elif pyversion == '3': oldvenv = env.virtualenv env.virtualenv = 'virtualenv -p /usr/bin/python3' yield env.virtualenv = oldvenv else: raise ValueError("pyversion must be one of '2' or '3', not %s" % pyversion) @task def prepare(): """ Setup the VM This only needs to be run once. It downloads all the necessary software, and a git cache. To reset this, use vagrant destroy and vagrant up. Note, this may take a while to finish, depending on your internet connection speed. """ prepare_apt() checkout_cache() @task def prepare_apt(): """ Download software from apt Note, on a slower internet connection, this will take a while to finish, because it has to download many packages, include latex and all its dependencies. """ sudo("apt-get -qq update") sudo("apt-get -y install git python3 make python-virtualenv zip python-dev python-mpmath python3-setuptools") # Need 7.1.2 for Python 3.2 support sudo("easy_install3 pip==7.1.2") sudo("pip3 install mpmath") # Be sure to use the Python 2 pip sudo("/usr/bin/pip install twine") # Needed to build the docs sudo("apt-get -y install graphviz inkscape texlive texlive-xetex texlive-fonts-recommended texlive-latex-extra librsvg2-bin docbook2x dbus") # Our Ubuntu is too old to include Python 3.3 sudo("apt-get -y install python-software-properties") sudo("add-apt-repository -y ppa:fkrull/deadsnakes") sudo("apt-get -y update") sudo("apt-get -y install python3.3") @task def remove_userspace(): """ Deletes (!) the SymPy changes. Use with great care. This should be run between runs to reset everything. """ run("rm -rf repos") if os.path.exists("release"): error("release directory already exists locally. Remove it to continue.") @task def checkout_cache(): """ Checkout a cache of SymPy This should only be run once. The cache is use as a --reference for git clone. This makes deleting and recreating the SymPy a la remove_userspace() and gitrepos() and clone very fast. """ run("rm -rf sympy-cache.git") run("git clone --bare https://github.com/sympy/sympy.git sympy-cache.git") @task def gitrepos(branch=None, fork='sympy'): """ Clone the repo fab vagrant prepare (namely, checkout_cache()) must be run first. By default, the branch checked out is the same one as the one checked out locally. The master branch is not allowed--use a release branch (see the README). No naming convention is put on the release branch. To test the release, create a branch in your fork, and set the fork option. """ with cd("/home/vagrant"): if not exists("sympy-cache.git"): error("Run fab vagrant prepare first") if not branch: # Use the current branch (of this git repo, not the one in Vagrant) branch = local("git rev-parse --abbrev-ref HEAD", capture=True) if branch == "master": raise Exception("Cannot release from master") run("mkdir -p repos") with cd("/home/vagrant/repos"): run("git clone --reference ../sympy-cache.git https://github.com/{fork}/sympy.git".format(fork=fork)) with cd("/home/vagrant/repos/sympy"): run("git checkout -t origin/%s" % branch) @task def get_sympy_version(version_cache=[]): """ Get the full version of SymPy being released (like 0.7.3.rc1) """ if version_cache: return version_cache[0] if not exists("/home/vagrant/repos/sympy"): gitrepos() with cd("/home/vagrant/repos/sympy"): version = run('python -c "import sympy;print(sympy.__version__)"') assert '\n' not in version assert ' ' not in version assert '\t' not in version version_cache.append(version) return version @task def get_sympy_short_version(): """ Get the short version of SymPy being released, not including any rc tags (like 0.7.3) """ version = get_sympy_version() parts = version.split('.') non_rc_parts = [i for i in parts if i.isdigit()] return '.'.join(non_rc_parts) # Remove any rc tags @task def test_sympy(): """ Run the SymPy test suite """ with cd("/home/vagrant/repos/sympy"): run("./setup.py test") @task def test_tarball(release='2'): """ Test that the tarball can be unpacked and installed, and that sympy imports in the install. """ if release not in {'2', '3'}: # TODO: Add win32 raise ValueError("release must be one of '2', '3', not %s" % release) venv = "/home/vagrant/repos/test-{release}-virtualenv".format(release=release) tarball_formatter_dict = tarball_formatter() with use_venv(release): make_virtualenv(venv) with virtualenv(venv): run("cp /vagrant/release/{source} releasetar.tar".format(**tarball_formatter_dict)) run("tar xvf releasetar.tar") with cd("/home/vagrant/{source-orig-notar}".format(**tarball_formatter_dict)): run("python setup.py install") run('python -c "import sympy; print(sympy.__version__)"') @task def release(branch=None, fork='sympy'): """ Perform all the steps required for the release, except uploading In particular, it builds all the release files, and puts them in the release/ directory in the same directory as this one. At the end, it prints some things that need to be pasted into various places as part of the release. To test the release, push a branch to your fork on GitHub and set the fork option to your username. """ remove_userspace() gitrepos(branch, fork) # This has to be run locally because it itself uses fabric. I split it out # into a separate script so that it can be used without vagrant. local("../bin/mailmap_update.py") test_sympy() source_tarball() build_docs() copy_release_files() test_tarball('2') test_tarball('3') compare_tar_against_git() print_authors() @task def source_tarball(): """ Build the source tarball """ with cd("/home/vagrant/repos/sympy"): run("git clean -dfx") run("./setup.py clean") run("./setup.py sdist --keep-temp") run("./setup.py bdist_wininst") run("mv dist/{win32-orig} dist/{win32}".format(**tarball_formatter())) @task def build_docs(): """ Build the html and pdf docs """ with cd("/home/vagrant/repos/sympy"): run("mkdir -p dist") venv = "/home/vagrant/docs-virtualenv" make_virtualenv(venv, dependencies=['sphinx==1.1.3', 'numpy', 'mpmath']) with virtualenv(venv): with cd("/home/vagrant/repos/sympy/doc"): run("make clean") run("make html") run("make man") with cd("/home/vagrant/repos/sympy/doc/_build"): run("mv html {html-nozip}".format(**tarball_formatter())) run("zip -9lr {html} {html-nozip}".format(**tarball_formatter())) run("cp {html} ../../dist/".format(**tarball_formatter())) run("make clean") run("make latex") with cd("/home/vagrant/repos/sympy/doc/_build/latex"): run("make") run("cp {pdf-orig} ../../../dist/{pdf}".format(**tarball_formatter())) @task def copy_release_files(): """ Move the release files from the VM to release/ locally """ with cd("/home/vagrant/repos/sympy"): run("mkdir -p /vagrant/release") run("cp dist/* /vagrant/release/") @task def show_files(file, print_=True): """ Show the contents of a tarball. The current options for file are source: The source tarball win: The Python 2 Windows installer (Not yet implemented!) html: The html docs zip Note, this runs locally, not in vagrant. """ # TODO: Test the unarchived name. See # https://github.com/sympy/sympy/issues/7087. if file == 'source': ret = local("tar tf release/{source}".format(**tarball_formatter()), capture=True) elif file == 'win': # TODO: Windows raise NotImplementedError("Windows installers") elif file == 'html': ret = local("unzip -l release/{html}".format(**tarball_formatter()), capture=True) else: raise ValueError(file + " is not valid") if print_: print(ret) return ret # If a file does not end up in the tarball that should, add it to setup.py if # it is Python, or MANIFEST.in if it is not. (There is a command at the top # of setup.py to gather all the things that should be there). # TODO: Also check that this whitelist isn't growning out of date from files # removed from git. # TODO: Address the "why?" comments below. # Files that are in git that should not be in the tarball git_whitelist = { # Git specific dotfiles '.gitattributes', '.gitignore', '.mailmap', # Travis '.travis.yml', # Code of conduct 'CODE_OF_CONDUCT.md', # Nothing from bin/ should be shipped unless we intend to install it. Most # of this stuff is for development anyway. To run the tests from the # tarball, use setup.py test, or import sympy and run sympy.test() or # sympy.doctest(). 'bin/adapt_paths.py', 'bin/ask_update.py', 'bin/authors_update.py', 'bin/coverage_doctest.py', 'bin/coverage_report.py', 'bin/build_doc.sh', 'bin/deploy_doc.sh', 'bin/diagnose_imports', 'bin/doctest', 'bin/generate_test_list.py', 'bin/get_sympy.py', 'bin/py.bench', 'bin/mailmap_update.py', 'bin/strip_whitespace', 'bin/sympy_time.py', 'bin/sympy_time_cache.py', 'bin/test', 'bin/test_import', 'bin/test_import.py', 'bin/test_isolated', 'bin/test_travis.sh', # The notebooks are not ready for shipping yet. They need to be cleaned # up, and preferably doctested. See also # https://github.com/sympy/sympy/issues/6039. 'examples/advanced/identitysearch_example.ipynb', 'examples/beginner/plot_advanced.ipynb', 'examples/beginner/plot_colors.ipynb', 'examples/beginner/plot_discont.ipynb', 'examples/beginner/plot_gallery.ipynb', 'examples/beginner/plot_intro.ipynb', 'examples/intermediate/limit_examples_advanced.ipynb', 'examples/intermediate/schwarzschild.ipynb', 'examples/notebooks/density.ipynb', 'examples/notebooks/fidelity.ipynb', 'examples/notebooks/fresnel_integrals.ipynb', 'examples/notebooks/qubits.ipynb', 'examples/notebooks/sho1d_example.ipynb', 'examples/notebooks/spin.ipynb', 'examples/notebooks/trace.ipynb', 'examples/notebooks/README.txt', # This stuff :) 'release/.gitignore', 'release/README.md', 'release/Vagrantfile', 'release/fabfile.py', # This is just a distribute version of setup.py. Used mainly for setup.py # develop, which we don't care about in the release tarball 'setupegg.py', # Example on how to use tox to test SymPy. For development. 'tox.ini.sample', } # Files that should be in the tarball should not be in git tarball_whitelist = { # Generated by setup.py. Contains metadata for PyPI. "PKG-INFO", # Generated by setuptools. More metadata. 'setup.cfg', 'sympy.egg-info/PKG-INFO', 'sympy.egg-info/SOURCES.txt', 'sympy.egg-info/dependency_links.txt', 'sympy.egg-info/requires.txt', 'sympy.egg-info/top_level.txt', } @task def compare_tar_against_git(): """ Compare the contents of the tarball against git ls-files """ with hide("commands"): with cd("/home/vagrant/repos/sympy"): git_lsfiles = set([i.strip() for i in run("git ls-files").split("\n")]) tar_output_orig = set(show_files('source', print_=False).split("\n")) tar_output = set() for file in tar_output_orig: # The tar files are like sympy-0.7.3/sympy/__init__.py, and the git # files are like sympy/__init__.py. split_path = full_path_split(file) if split_path[-1]: # Exclude directories, as git ls-files does not include them tar_output.add(os.path.join(*split_path[1:])) # print tar_output # print git_lsfiles fail = False print() print(blue("Files in the tarball from git that should not be there:", bold=True)) print() for line in sorted(tar_output.intersection(git_whitelist)): fail = True print(line) print() print(blue("Files in git but not in the tarball:", bold=True)) print() for line in sorted(git_lsfiles - tar_output - git_whitelist): fail = True print(line) print() print(blue("Files in the tarball but not in git:", bold=True)) print() for line in sorted(tar_output - git_lsfiles - tarball_whitelist): fail = True print(line) if fail: error("Non-whitelisted files found or not found in the tarball") @task def md5(file='*', print_=True): """ Print the md5 sums of the release files """ out = local("md5sum release/" + file, capture=True) # Remove the release/ part for printing. Useful for copy-pasting into the # release notes. out = [i.split() for i in out.strip().split('\n')] out = '\n'.join(["%s\t%s" % (i, os.path.split(j)[1]) for i, j in out]) if print_: print(out) return out descriptions = OrderedDict([ ('source', "The SymPy source installer.",), ('win32', "Python Windows 32-bit installer.",), ('html', '''Html documentation for the Python 2 version. This is the same as the <a href="https://docs.sympy.org/latest/index.html">online documentation</a>.''',), ('pdf', '''Pdf version of the <a href="https://docs.sympy.org/latest/index.html"> html documentation</a>.''',), ]) @task def size(file='*', print_=True): """ Print the sizes of the release files """ out = local("du -h release/" + file, capture=True) out = [i.split() for i in out.strip().split('\n')] out = '\n'.join(["%s\t%s" % (i, os.path.split(j)[1]) for i, j in out]) if print_: print(out) return out @task def table(): """ Make an html table of the downloads. This is for pasting into the GitHub releases page. See GitHub_release(). """ # TODO: Add the file size tarball_formatter_dict = tarball_formatter() shortversion = get_sympy_short_version() tarball_formatter_dict['version'] = shortversion md5s = [i.split('\t') for i in md5(print_=False).split('\n')] md5s_dict = {name: md5 for md5, name in md5s} sizes = [i.split('\t') for i in size(print_=False).split('\n')] sizes_dict = {name: size for size, name in sizes} table = [] version = get_sympy_version() # https://docs.python.org/2/library/contextlib.html#contextlib.contextmanager. Not # recommended as a real way to generate html, but it works better than # anything else I've tried. @contextmanager def tag(name): table.append("<%s>" % name) yield table.append("</%s>" % name) @contextmanager def a_href(link): table.append("<a href=\"%s\">" % link) yield table.append("</a>") with tag('table'): with tag('tr'): for headname in ["Filename", "Description", "size", "md5"]: with tag("th"): table.append(headname) for key in descriptions: name = get_tarball_name(key) with tag('tr'): with tag('td'): with a_href('https://github.com/sympy/sympy/releases/download/sympy-%s/%s' %(version,name)): with tag('b'): table.append(name) with tag('td'): table.append(descriptions[key].format(**tarball_formatter_dict)) with tag('td'): table.append(sizes_dict[name]) with tag('td'): table.append(md5s_dict[name]) out = ' '.join(table) return out @task def get_tarball_name(file): """ Get the name of a tarball file should be one of source-orig: The original name of the source tarball source-orig-notar: The name of the untarred directory source: The source tarball (after renaming) win32-orig: The original name of the win32 installer win32: The name of the win32 installer (after renaming) html: The name of the html zip html-nozip: The name of the html, without ".zip" pdf-orig: The original name of the pdf file pdf: The name of the pdf file (after renaming) """ version = get_sympy_version() doctypename = defaultdict(str, {'html': 'zip', 'pdf': 'pdf'}) winos = defaultdict(str, {'win32': 'win32', 'win32-orig': 'linux-i686'}) if file in {'source-orig', 'source'}: name = 'sympy-{version}.tar.gz' elif file == 'source-orig-notar': name = "sympy-{version}" elif file in {'win32', 'win32-orig'}: name = "sympy-{version}.{wintype}.exe" elif file in {'html', 'pdf', 'html-nozip'}: name = "sympy-docs-{type}-{version}" if file == 'html-nozip': # zip files keep the name of the original zipped directory. See # https://github.com/sympy/sympy/issues/7087. file = 'html' else: name += ".{extension}" elif file == 'pdf-orig': name = "sympy-{version}.pdf" else: raise ValueError(file + " is not a recognized argument") ret = name.format(version=version, type=file, extension=doctypename[file], wintype=winos[file]) return ret tarball_name_types = { 'source-orig', 'source-orig-notar', 'source', 'win32-orig', 'win32', 'html', 'html-nozip', 'pdf-orig', 'pdf', } # This has to be a function, because you cannot call any function here at # import time (before the vagrant() function is run). def tarball_formatter(): return {name: get_tarball_name(name) for name in tarball_name_types} @task def get_previous_version_tag(): """ Get the version of the previous release """ # We try, probably too hard, to portably get the number of the previous # release of SymPy. Our strategy is to look at the git tags. The # following assumptions are made about the git tags: # - The only tags are for releases # - The tags are given the consistent naming: # sympy-major.minor.micro[.rcnumber] # (e.g., sympy-0.7.2 or sympy-0.7.2.rc1) # In particular, it goes back in the tag history and finds the most recent # tag that doesn't contain the current short version number as a substring. shortversion = get_sympy_short_version() curcommit = "HEAD" with cd("/home/vagrant/repos/sympy"): while True: curtag = run("git describe --abbrev=0 --tags " + curcommit).strip() if shortversion in curtag: # If the tagged commit is a merge commit, we cannot be sure # that it will go back in the right direction. This almost # never happens, so just error parents = local("git rev-list --parents -n 1 " + curtag, capture=True).strip().split() # rev-list prints the current commit and then all its parents # If the tagged commit *is* a merge commit, just comment this # out, and make sure `fab vagrant get_previous_version_tag` is correct assert len(parents) == 2, curtag curcommit = curtag + "^" # The parent of the tagged commit else: print(blue("Using {tag} as the tag for the previous " "release.".format(tag=curtag), bold=True)) return curtag error("Could not find the tag for the previous release.") @task def get_authors(): """ Get the list of authors since the previous release Returns the list in alphabetical order by last name. Authors who contributed for the first time for this release will have a star appended to the end of their names. Note: it's a good idea to use ./bin/mailmap_update.py (from the base sympy directory) to make AUTHORS and .mailmap up-to-date first before using this. fab vagrant release does this automatically. """ def lastnamekey(name): """ Sort key to sort by last name Note, we decided to sort based on the last name, because that way is fair. We used to sort by commit count or line number count, but that bumps up people who made lots of maintenance changes like updating mpmath or moving some files around. """ # Note, this will do the wrong thing for people who have multi-word # last names, but there are also people with middle initials. I don't # know of a perfect way to handle everyone. Feel free to fix up the # list by hand. # Note, you must call unicode() *before* lower, or else it won't # lowercase non-ASCII characters like Č -> č text = unicode(name.strip().split()[-1], encoding='utf-8').lower() # Convert things like Čertík to Certik return unicodedata.normalize('NFKD', text).encode('ascii', 'ignore') old_release_tag = get_previous_version_tag() with cd("/home/vagrant/repos/sympy"), hide('commands'): releaseauthors = set(run('git --no-pager log {tag}.. --format="%aN"'.format(tag=old_release_tag)).strip().split('\n')) priorauthors = set(run('git --no-pager log {tag} --format="%aN"'.format(tag=old_release_tag)).strip().split('\n')) releaseauthors = {name.strip() for name in releaseauthors if name.strip()} priorauthors = {name.strip() for name in priorauthors if name.strip()} newauthors = releaseauthors - priorauthors starred_newauthors = {name + "*" for name in newauthors} authors = releaseauthors - newauthors | starred_newauthors return (sorted(authors, key=lastnamekey), len(releaseauthors), len(newauthors)) @task def print_authors(): """ Print authors text to put at the bottom of the release notes """ authors, authorcount, newauthorcount = get_authors() print(blue("Here are the authors to put at the bottom of the release " "notes.", bold=True)) print() print("""## Authors The following people contributed at least one patch to this release (names are given in alphabetical order by last name). A total of {authorcount} people contributed to this release. People with a * by their names contributed a patch for the first time for this release; {newauthorcount} people contributed for the first time for this release. Thanks to everyone who contributed to this release! """.format(authorcount=authorcount, newauthorcount=newauthorcount)) for name in authors: print("- " + name) print() @task def check_tag_exists(): """ Check if the tag for this release has been uploaded yet. """ version = get_sympy_version() tag = 'sympy-' + version with cd("/home/vagrant/repos/sympy"): all_tags = run("git ls-remote --tags origin") return tag in all_tags # ------------------------------------------------ # Updating websites @task def update_websites(): """ Update various websites owned by SymPy. So far, supports the docs and sympy.org """ update_docs() update_sympy_org() def get_location(location): """ Read/save a location from the configuration file. """ locations_file = os.path.expanduser('~/.sympy/sympy-locations') config = ConfigParser.SafeConfigParser() config.read(locations_file) the_location = config.has_option("Locations", location) and config.get("Locations", location) if not the_location: the_location = raw_input("Where is the SymPy {location} directory? ".format(location=location)) if not config.has_section("Locations"): config.add_section("Locations") config.set("Locations", location, the_location) save = raw_input("Save this to file [yes]? ") if save.lower().strip() in ['', 'y', 'yes']: print("saving to ", locations_file) with open(locations_file, 'w') as f: config.write(f) else: print("Reading {location} location from config".format(location=location)) return os.path.abspath(os.path.expanduser(the_location)) @task def update_docs(docs_location=None): """ Update the docs hosted at docs.sympy.org """ docs_location = docs_location or get_location("docs") print("Docs location:", docs_location) # Check that the docs directory is clean local("cd {docs_location} && git diff --exit-code > /dev/null".format(docs_location=docs_location)) local("cd {docs_location} && git diff --cached --exit-code > /dev/null".format(docs_location=docs_location)) # See the README of the docs repo. We have to remove the old redirects, # move in the new docs, and create redirects. current_version = get_sympy_version() previous_version = get_previous_version_tag().lstrip('sympy-') print("Removing redirects from previous version") local("cd {docs_location} && rm -r {previous_version}".format(docs_location=docs_location, previous_version=previous_version)) print("Moving previous latest docs to old version") local("cd {docs_location} && mv latest {previous_version}".format(docs_location=docs_location, previous_version=previous_version)) print("Unzipping docs into repo") release_dir = os.path.abspath(os.path.expanduser(os.path.join(os.path.curdir, 'release'))) docs_zip = os.path.abspath(os.path.join(release_dir, get_tarball_name('html'))) local("cd {docs_location} && unzip {docs_zip} > /dev/null".format(docs_location=docs_location, docs_zip=docs_zip)) local("cd {docs_location} && mv {docs_zip_name} {version}".format(docs_location=docs_location, docs_zip_name=get_tarball_name("html-nozip"), version=current_version)) print("Writing new version to releases.txt") with open(os.path.join(docs_location, "releases.txt"), 'a') as f: f.write("{version}:SymPy {version}\n".format(version=current_version)) print("Generating indexes") local("cd {docs_location} && ./generate_indexes.py".format(docs_location=docs_location)) local("cd {docs_location} && mv {version} latest".format(docs_location=docs_location, version=current_version)) print("Generating redirects") local("cd {docs_location} && ./generate_redirects.py latest {version} ".format(docs_location=docs_location, version=current_version)) print("Committing") local("cd {docs_location} && git add -A {version} latest".format(docs_location=docs_location, version=current_version)) local("cd {docs_location} && git commit -a -m \'Updating docs to {version}\'".format(docs_location=docs_location, version=current_version)) print("Pushing") local("cd {docs_location} && git push origin".format(docs_location=docs_location)) @task def update_sympy_org(website_location=None): """ Update sympy.org This just means adding an entry to the news section. """ website_location = website_location or get_location("sympy.github.com") # Check that the website directory is clean local("cd {website_location} && git diff --exit-code > /dev/null".format(website_location=website_location)) local("cd {website_location} && git diff --cached --exit-code > /dev/null".format(website_location=website_location)) release_date = time.gmtime(os.path.getctime(os.path.join("release", tarball_formatter()['source']))) release_year = str(release_date.tm_year) release_month = str(release_date.tm_mon) release_day = str(release_date.tm_mday) version = get_sympy_version() with open(os.path.join(website_location, "templates", "index.html"), 'r') as f: lines = f.read().split('\n') # We could try to use some html parser, but this way is easier try: news = lines.index(r" <h3>{% trans %}News{% endtrans %}</h3>") except ValueError: error("index.html format not as expected") lines.insert(news + 2, # There is a <p> after the news line. Put it # after that. r""" <span class="date">{{ datetime(""" + release_year + """, """ + release_month + """, """ + release_day + """) }}</span> {% trans v='""" + version + """' %}Version {{ v }} released{% endtrans %} (<a href="https://github.com/sympy/sympy/wiki/Release-Notes-for-""" + version + """">{% trans %}changes{% endtrans %}</a>)<br/> </p><p>""") with open(os.path.join(website_location, "templates", "index.html"), 'w') as f: print("Updating index.html template") f.write('\n'.join(lines)) print("Generating website pages") local("cd {website_location} && ./generate".format(website_location=website_location)) print("Committing") local("cd {website_location} && git commit -a -m \'Add {version} to the news\'".format(website_location=website_location, version=version)) print("Pushing") local("cd {website_location} && git push origin".format(website_location=website_location)) # ------------------------------------------------ # Uploading @task def upload(): """ Upload the files everywhere (PyPI and GitHub) """ distutils_check() GitHub_release() pypi_register() pypi_upload() test_pypi(2) test_pypi(3) @task def distutils_check(): """ Runs setup.py check """ with cd("/home/vagrant/repos/sympy"): run("python setup.py check") run("python3 setup.py check") @task def pypi_register(): """ Register a release with PyPI This should only be done for the final release. You need PyPI authentication to do this. """ with cd("/home/vagrant/repos/sympy"): run("python setup.py register") @task def pypi_upload(): """ Upload files to PyPI. You will need to enter a password. """ with cd("/home/vagrant/repos/sympy"): run("twine upload dist/*.tar.gz") run("twine upload dist/*.exe") @task def test_pypi(release='2'): """ Test that the sympy can be pip installed, and that sympy imports in the install. """ # This function is similar to test_tarball() version = get_sympy_version() release = str(release) if release not in {'2', '3'}: # TODO: Add win32 raise ValueError("release must be one of '2', '3', not %s" % release) venv = "/home/vagrant/repos/test-{release}-pip-virtualenv".format(release=release) with use_venv(release): make_virtualenv(venv) with virtualenv(venv): run("pip install sympy") run('python -c "import sympy; assert sympy.__version__ == \'{version}\'"'.format(version=version)) @task def GitHub_release_text(): """ Generate text to put in the GitHub release Markdown box """ shortversion = get_sympy_short_version() htmltable = table() out = """\ See https://github.com/sympy/sympy/wiki/release-notes-for-{shortversion} for the release notes. {htmltable} **Note**: Do not download the **Source code (zip)** or the **Source code (tar.gz)** files below. """ out = out.format(shortversion=shortversion, htmltable=htmltable) print(blue("Here are the release notes to copy into the GitHub release " "Markdown form:", bold=True)) print() print(out) return out @task def GitHub_release(username=None, user='sympy', token=None, token_file_path="~/.sympy/release-token", repo='sympy', draft=False): """ Upload the release files to GitHub. The tag must be pushed up first. You can test on another repo by changing user and repo. """ if not requests: error("requests and requests-oauthlib must be installed to upload to GitHub") release_text = GitHub_release_text() version = get_sympy_version() short_version = get_sympy_short_version() tag = 'sympy-' + version prerelease = short_version != version urls = URLs(user=user, repo=repo) if not username: username = raw_input("GitHub username: ") token = load_token_file(token_file_path) if not token: username, password, token = GitHub_authenticate(urls, username, token) # If the tag in question is not pushed up yet, then GitHub will just # create it off of master automatically, which is not what we want. We # could make it create it off the release branch, but even then, we would # not be sure that the correct commit is tagged. So we require that the # tag exist first. if not check_tag_exists(): error("The tag for this version has not been pushed yet. Cannot upload the release.") # See https://developer.github.com/v3/repos/releases/#create-a-release # First, create the release post = {} post['tag_name'] = tag post['name'] = "SymPy " + version post['body'] = release_text post['draft'] = draft post['prerelease'] = prerelease print("Creating release for tag", tag, end=' ') result = query_GitHub(urls.releases_url, username, password=None, token=token, data=json.dumps(post)).json() release_id = result['id'] print(green("Done")) # Then, upload all the files to it. for key in descriptions: tarball = get_tarball_name(key) params = {} params['name'] = tarball if tarball.endswith('gz'): headers = {'Content-Type':'application/gzip'} elif tarball.endswith('pdf'): headers = {'Content-Type':'application/pdf'} elif tarball.endswith('zip'): headers = {'Content-Type':'application/zip'} else: headers = {'Content-Type':'application/octet-stream'} print("Uploading", tarball, end=' ') sys.stdout.flush() with open(os.path.join("release", tarball), 'rb') as f: result = query_GitHub(urls.release_uploads_url % release_id, username, password=None, token=token, data=f, params=params, headers=headers).json() print(green("Done")) # TODO: download the files and check that they have the right md5 sum def GitHub_check_authentication(urls, username, password, token): """ Checks that username & password is valid. """ query_GitHub(urls.api_url, username, password, token) def GitHub_authenticate(urls, username, token=None): _login_message = """\ Enter your GitHub username & password or press ^C to quit. The password will be kept as a Python variable as long as this script is running and https to authenticate with GitHub, otherwise not saved anywhere else:\ """ if username: print("> Authenticating as %s" % username) else: print(_login_message) username = raw_input("Username: ") authenticated = False if token: print("> Authenticating using token") try: GitHub_check_authentication(urls, username, None, token) except AuthenticationFailed: print("> Authentication failed") else: print("> OK") password = None authenticated = True while not authenticated: password = getpass("Password: ") try: print("> Checking username and password ...") GitHub_check_authentication(urls, username, password, None) except AuthenticationFailed: print("> Authentication failed") else: print("> OK.") authenticated = True if password: generate = raw_input("> Generate API token? [Y/n] ") if generate.lower() in ["y", "ye", "yes", ""]: name = raw_input("> Name of token on GitHub? [SymPy Release] ") if name == "": name = "SymPy Release" token = generate_token(urls, username, password, name=name) print("Your token is", token) print("Use this token from now on as GitHub_release:token=" + token + ",username=" + username) print(red("DO NOT share this token with anyone")) save = raw_input("Do you want to save this token to a file [yes]? ") if save.lower().strip() in ['y', 'yes', 'ye', '']: save_token_file(token) return username, password, token def generate_token(urls, username, password, OTP=None, name="SymPy Release"): enc_data = json.dumps( { "scopes": ["public_repo"], "note": name } ) url = urls.authorize_url rep = query_GitHub(url, username=username, password=password, data=enc_data).json() return rep["token"] def save_token_file(token): token_file = raw_input("> Enter token file location [~/.sympy/release-token] ") token_file = token_file or "~/.sympy/release-token" token_file_expand = os.path.expanduser(token_file) token_file_expand = os.path.abspath(token_file_expand) token_folder, _ = os.path.split(token_file_expand) try: if not os.path.isdir(token_folder): os.mkdir(token_folder, 0o700) with open(token_file_expand, 'w') as f: f.write(token + '\n') os.chmod(token_file_expand, stat.S_IREAD | stat.S_IWRITE) except OSError as e: print("> Unable to create folder for token file: ", e) return except IOError as e: print("> Unable to save token file: ", e) return return token_file def load_token_file(path="~/.sympy/release-token"): print("> Using token file %s" % path) path = os.path.expanduser(path) path = os.path.abspath(path) if os.path.isfile(path): try: with open(path) as f: token = f.readline() except IOError: print("> Unable to read token file") return else: print("> Token file does not exist") return return token.strip() class URLs(object): """ This class contains URLs and templates which used in requests to GitHub API """ def __init__(self, user="sympy", repo="sympy", api_url="https://api.github.com", authorize_url="https://api.github.com/authorizations", uploads_url='https://uploads.github.com', main_url='https://github.com'): """Generates all URLs and templates""" self.user = user self.repo = repo self.api_url = api_url self.authorize_url = authorize_url self.uploads_url = uploads_url self.main_url = main_url self.pull_list_url = api_url + "/repos" + "/" + user + "/" + repo + "/pulls" self.issue_list_url = api_url + "/repos/" + user + "/" + repo + "/issues" self.releases_url = api_url + "/repos/" + user + "/" + repo + "/releases" self.single_issue_template = self.issue_list_url + "/%d" self.single_pull_template = self.pull_list_url + "/%d" self.user_info_template = api_url + "/users/%s" self.user_repos_template = api_url + "/users/%s/repos" self.issue_comment_template = (api_url + "/repos" + "/" + user + "/" + repo + "/issues/%d" + "/comments") self.release_uploads_url = (uploads_url + "/repos/" + user + "/" + repo + "/releases/%d" + "/assets") self.release_download_url = (main_url + "/" + user + "/" + repo + "/releases/download/%s/%s") class AuthenticationFailed(Exception): pass def query_GitHub(url, username=None, password=None, token=None, data=None, OTP=None, headers=None, params=None, files=None): """ Query GitHub API. In case of a multipage result, DOES NOT query the next page. """ headers = headers or {} if OTP: headers['X-GitHub-OTP'] = OTP if token: auth = OAuth2(client_id=username, token=dict(access_token=token, token_type='bearer')) else: auth = HTTPBasicAuth(username, password) if data: r = requests.post(url, auth=auth, data=data, headers=headers, params=params, files=files) else: r = requests.get(url, auth=auth, headers=headers, params=params, stream=True) if r.status_code == 401: two_factor = r.headers.get('X-GitHub-OTP') if two_factor: print("A two-factor authentication code is required:", two_factor.split(';')[1].strip()) OTP = raw_input("Authentication code: ") return query_GitHub(url, username=username, password=password, token=token, data=data, OTP=OTP) raise AuthenticationFailed("invalid username or password") r.raise_for_status() return r # ------------------------------------------------ # Vagrant related configuration @task def vagrant(): """ Run commands using vagrant """ vc = get_vagrant_config() # change from the default user to 'vagrant' env.user = vc['User'] # connect to the port-forwarded ssh env.hosts = ['%s:%s' % (vc['HostName'], vc['Port'])] # use vagrant ssh key env.key_filename = vc['IdentityFile'].strip('"') # Forward the agent if specified: env.forward_agent = vc.get('ForwardAgent', 'no') == 'yes' def get_vagrant_config(): """ Parses vagrant configuration and returns it as dict of ssh parameters and their values """ result = local('vagrant ssh-config', capture=True) conf = {} for line in iter(result.splitlines()): parts = line.split() conf[parts[0]] = ' '.join(parts[1:]) return conf @task def restart_network(): """ Do this if the VM won't connect to the internet. """ run("sudo /etc/init.d/networking restart") # --------------------------------------- # Just a simple testing command: @task def uname(): """ Get the uname in Vagrant. Useful for testing that Vagrant works. """ run('uname -a')
5668f1e0fb5b8126a329d38e43a821b0103c2d3d80c5b92d9d1ab48687639246
#!/usr/bin/env python3 from pathlib import Path from tempfile import TemporaryDirectory from subprocess import check_call PY_VERSIONS = '3.7', '3.8', '3.9' def main(version, outdir): for pyversion in PY_VERSIONS: test_sdist(pyversion, version, outdir) test_wheel(pyversion, version, outdir) def run(cmd, cwd=None): if isinstance(cmd, str): cmd = cmd.split() return check_call(cmd, cwd=cwd) def green(text): return "\033[32m%s\033[0m" % text def test_sdist(pyversion, version, outdir, wheel=False): print(green('-' * 80)) if not wheel: print(green(' Testing Python %s (sdist)' % pyversion)) else: print(green(' Testing Python %s (wheel)' % pyversion)) print(green('-' * 80)) python_exe = f'python{pyversion}' wheelname = f'sympy-{version}-py3-none-any.whl' tarname = f'sympy-{version}.tar.gz' tardir = f'sympy-{version}' with TemporaryDirectory() as tempdir: outdir = Path(outdir) tempdir = Path(tempdir) venv = tempdir / f'venv{pyversion}' pip = venv / "bin" / "pip" python = venv / "bin" / "python" run(f'{python_exe} -m venv {venv}') run(f'{pip} install -U -q pip') if not wheel: run(f'{pip} install -q mpmath') run(f'cp {outdir/tarname} {tempdir/tarname}') run(f'tar -xzf {tempdir/tarname} -C {tempdir}') run(f'{python} setup.py -q install', cwd=tempdir/tardir) else: run(f'{pip} install -q {outdir/wheelname}') isympy = venv / "bin" / "isympy" run([python, '-c', "import sympy; print(sympy.__version__); print('sympy installed successfully')"]) run(f'{python} -m isympy --version') run(f'{isympy} --version') def test_wheel(*args): return test_sdist(*args, wheel=True) if __name__ == "__main__": import sys sys.exit(main(*sys.argv[1:]))
71489e54191e7ea932f571d84bb717f8f7679a4b7469f6b58fb73f6a99a96697
""" SymPy is a Python library for symbolic mathematics. It aims to become a full-featured computer algebra system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily extensible. SymPy is written entirely in Python. It depends on mpmath, and other external libraries may be optionally for things like plotting support. See the webpage for more information and documentation: https://sympy.org """ import sys if sys.version_info < (3, 7): raise ImportError("Python version 3.7 or above is required for SymPy.") del sys try: import mpmath except ImportError: raise ImportError("SymPy now depends on mpmath as an external library. " "See https://docs.sympy.org/latest/install.html#mpmath for more information.") del mpmath from sympy.release import __version__ if 'dev' in __version__: def enable_warnings(): import warnings warnings.filterwarnings('default', '.*', DeprecationWarning, module='sympy.*') del warnings enable_warnings() del enable_warnings def __sympy_debug(): # helper function so we don't import os globally import os debug_str = os.getenv('SYMPY_DEBUG', 'False') if debug_str in ('True', 'False'): return eval(debug_str) else: raise RuntimeError("unrecognized value for SYMPY_DEBUG: %s" % debug_str) SYMPY_DEBUG = __sympy_debug() # type: bool from .core import (sympify, SympifyError, cacheit, Basic, Atom, preorder_traversal, S, Expr, AtomicExpr, UnevaluatedExpr, Symbol, Wild, Dummy, symbols, var, Number, Float, Rational, Integer, NumberSymbol, RealNumber, igcd, ilcm, seterr, E, I, nan, oo, pi, zoo, AlgebraicNumber, comp, mod_inverse, Pow, integer_nthroot, integer_log, Mul, prod, Add, Mod, Rel, Eq, Ne, Lt, Le, Gt, Ge, Equality, GreaterThan, LessThan, Unequality, StrictGreaterThan, StrictLessThan, vectorize, Lambda, WildFunction, Derivative, diff, FunctionClass, Function, Subs, expand, PoleError, count_ops, expand_mul, expand_log, expand_func, expand_trig, expand_complex, expand_multinomial, nfloat, expand_power_base, expand_power_exp, arity, PrecisionExhausted, N, evalf, Tuple, Dict, gcd_terms, factor_terms, factor_nc, evaluate, Catalan, EulerGamma, GoldenRatio, TribonacciConstant, bottom_up, use, postorder_traversal, default_sort_key, ordered) from .logic import (to_cnf, to_dnf, to_nnf, And, Or, Not, Xor, Nand, Nor, Implies, Equivalent, ITE, POSform, SOPform, simplify_logic, bool_map, true, false, satisfiable) from .assumptions import (AppliedPredicate, Predicate, AssumptionsContext, assuming, Q, ask, register_handler, remove_handler, refine) from .polys import (Poly, PurePoly, poly_from_expr, parallel_poly_from_expr, degree, total_degree, degree_list, LC, LM, LT, pdiv, prem, pquo, pexquo, div, rem, quo, exquo, half_gcdex, gcdex, invert, subresultants, resultant, discriminant, cofactors, gcd_list, gcd, lcm_list, lcm, terms_gcd, trunc, monic, content, primitive, compose, decompose, sturm, gff_list, gff, sqf_norm, sqf_part, sqf_list, sqf, factor_list, factor, intervals, refine_root, count_roots, real_roots, nroots, ground_roots, nth_power_roots_poly, cancel, reduced, groebner, is_zero_dimensional, GroebnerBasis, poly, symmetrize, horner, interpolate, rational_interpolate, viete, together, BasePolynomialError, ExactQuotientFailed, PolynomialDivisionFailed, OperationNotSupported, HeuristicGCDFailed, HomomorphismFailed, IsomorphismFailed, ExtraneousFactors, EvaluationFailed, RefinementFailed, CoercionFailed, NotInvertible, NotReversible, NotAlgebraic, DomainError, PolynomialError, UnificationFailed, GeneratorsError, GeneratorsNeeded, ComputationFailed, UnivariatePolynomialError, MultivariatePolynomialError, PolificationFailed, OptionError, FlagError, minpoly, minimal_polynomial, primitive_element, field_isomorphism, to_number_field, isolate, itermonomials, Monomial, lex, grlex, grevlex, ilex, igrlex, igrevlex, CRootOf, rootof, RootOf, ComplexRootOf, RootSum, roots, Domain, FiniteField, IntegerRing, RationalField, RealField, ComplexField, PythonFiniteField, GMPYFiniteField, PythonIntegerRing, GMPYIntegerRing, PythonRational, GMPYRationalField, AlgebraicField, PolynomialRing, FractionField, ExpressionDomain, FF_python, FF_gmpy, ZZ_python, ZZ_gmpy, QQ_python, QQ_gmpy, GF, FF, ZZ, QQ, ZZ_I, QQ_I, RR, CC, EX, EXRAW, construct_domain, swinnerton_dyer_poly, cyclotomic_poly, symmetric_poly, random_poly, interpolating_poly, jacobi_poly, chebyshevt_poly, chebyshevu_poly, hermite_poly, legendre_poly, laguerre_poly, apart, apart_list, assemble_partfrac_list, Options, ring, xring, vring, sring, field, xfield, vfield, sfield) from .series import (Order, O, limit, Limit, gruntz, series, approximants, residue, EmptySequence, SeqPer, SeqFormula, sequence, SeqAdd, SeqMul, fourier_series, fps, difference_delta, limit_seq) from .functions import (factorial, factorial2, rf, ff, binomial, RisingFactorial, FallingFactorial, subfactorial, carmichael, fibonacci, lucas, motzkin, tribonacci, harmonic, bernoulli, bell, euler, catalan, genocchi, partition, sqrt, root, Min, Max, Id, real_root, Rem, cbrt, re, im, sign, Abs, conjugate, arg, polar_lift, periodic_argument, unbranched_argument, principal_branch, transpose, adjoint, polarify, unpolarify, sin, cos, tan, sec, csc, cot, sinc, asin, acos, atan, asec, acsc, acot, atan2, exp_polar, exp, ln, log, LambertW, sinh, cosh, tanh, coth, sech, csch, asinh, acosh, atanh, acoth, asech, acsch, floor, ceiling, frac, Piecewise, piecewise_fold, erf, erfc, erfi, erf2, erfinv, erfcinv, erf2inv, Ei, expint, E1, li, Li, Si, Ci, Shi, Chi, fresnels, fresnelc, gamma, lowergamma, uppergamma, polygamma, loggamma, digamma, trigamma, multigamma, dirichlet_eta, zeta, lerchphi, polylog, stieltjes, Eijk, LeviCivita, KroneckerDelta, SingularityFunction, DiracDelta, Heaviside, bspline_basis, bspline_basis_set, interpolating_spline, besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn, jn_zeros, hn1, hn2, airyai, airybi, airyaiprime, airybiprime, marcumq, hyper, meijerg, appellf1, legendre, assoc_legendre, hermite, chebyshevt, chebyshevu, chebyshevu_root, chebyshevt_root, laguerre, assoc_laguerre, gegenbauer, jacobi, jacobi_normalized, Ynm, Ynm_c, Znm, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, beta, mathieus, mathieuc, mathieusprime, mathieucprime, riemann_xi, betainc, betainc_regularized) from .ntheory import (nextprime, prevprime, prime, primepi, primerange, randprime, Sieve, sieve, primorial, cycle_length, composite, compositepi, isprime, divisors, proper_divisors, factorint, multiplicity, perfect_power, pollard_pm1, pollard_rho, primefactors, totient, trailing, divisor_count, proper_divisor_count, divisor_sigma, factorrat, reduced_totient, primenu, primeomega, mersenne_prime_exponent, is_perfect, is_mersenne_prime, is_abundant, is_deficient, is_amicable, abundance, npartitions, is_primitive_root, is_quad_residue, legendre_symbol, jacobi_symbol, n_order, sqrt_mod, quadratic_residues, primitive_root, nthroot_mod, is_nthpow_residue, sqrt_mod_iter, mobius, discrete_log, quadratic_congruence, binomial_coefficients, binomial_coefficients_list, multinomial_coefficients, continued_fraction_periodic, continued_fraction_iterator, continued_fraction_reduce, continued_fraction_convergents, continued_fraction, egyptian_fraction) from .concrete import product, Product, summation, Sum from .discrete import (fft, ifft, ntt, intt, fwht, ifwht, mobius_transform, inverse_mobius_transform, convolution, covering_product, intersecting_product) from .simplify import (simplify, hypersimp, hypersimilar, logcombine, separatevars, posify, besselsimp, kroneckersimp, signsimp, nsimplify, FU, fu, sqrtdenest, cse, epath, EPath, hyperexpand, collect, rcollect, radsimp, collect_const, fraction, numer, denom, trigsimp, exptrigsimp, powsimp, powdenest, combsimp, gammasimp, ratsimp, ratsimpmodprime) from .sets import (Set, Interval, Union, EmptySet, FiniteSet, ProductSet, Intersection, DisjointUnion, imageset, Complement, SymmetricDifference, ImageSet, Range, ComplexRegion, Complexes, Reals, Contains, ConditionSet, Ordinal, OmegaPower, ord0, PowerSet, Naturals, Naturals0, UniversalSet, Integers, Rationals) from .solvers import (solve, solve_linear_system, solve_linear_system_LU, solve_undetermined_coeffs, nsolve, solve_linear, checksol, det_quick, inv_quick, check_assumptions, failing_assumptions, diophantine, rsolve, rsolve_poly, rsolve_ratio, rsolve_hyper, checkodesol, classify_ode, dsolve, homogeneous_order, solve_poly_system, solve_triangulated, pde_separate, pde_separate_add, pde_separate_mul, pdsolve, classify_pde, checkpdesol, ode_order, reduce_inequalities, reduce_abs_inequality, reduce_abs_inequalities, solve_poly_inequality, solve_rational_inequalities, solve_univariate_inequality, decompogen, solveset, linsolve, linear_eq_to_matrix, nonlinsolve, substitution) from .matrices import (ShapeError, NonSquareMatrixError, GramSchmidt, casoratian, diag, eye, hessian, jordan_cell, list2numpy, matrix2numpy, matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2, rot_axis3, symarray, wronskian, zeros, MutableDenseMatrix, DeferredVector, MatrixBase, Matrix, MutableMatrix, MutableSparseMatrix, banded, ImmutableDenseMatrix, ImmutableSparseMatrix, ImmutableMatrix, SparseMatrix, MatrixSlice, BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity, Inverse, MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace, Transpose, ZeroMatrix, OneMatrix, blockcut, block_collapse, matrix_symbols, Adjoint, hadamard_product, HadamardProduct, HadamardPower, Determinant, det, diagonalize_vector, DiagMatrix, DiagonalMatrix, DiagonalOf, trace, DotProduct, kronecker_product, KroneckerProduct, PermutationMatrix, MatrixPermute, Permanent, per) from .geometry import (Point, Point2D, Point3D, Line, Ray, Segment, Line2D, Segment2D, Ray2D, Line3D, Segment3D, Ray3D, Plane, Ellipse, Circle, Polygon, RegularPolygon, Triangle, rad, deg, are_similar, centroid, convex_hull, idiff, intersection, closest_points, farthest_points, GeometryError, Curve, Parabola) from .utilities import (flatten, group, take, subsets, variations, numbered_symbols, cartes, capture, dict_merge, prefixes, postfixes, sift, topological_sort, unflatten, has_dups, has_variety, reshape, rotations, filldedent, lambdify, source, threaded, xthreaded, public, memoize_property, timed) from .integrals import (integrate, Integral, line_integrate, mellin_transform, inverse_mellin_transform, MellinTransform, InverseMellinTransform, laplace_transform, inverse_laplace_transform, LaplaceTransform, InverseLaplaceTransform, fourier_transform, inverse_fourier_transform, FourierTransform, InverseFourierTransform, sine_transform, inverse_sine_transform, SineTransform, InverseSineTransform, cosine_transform, inverse_cosine_transform, CosineTransform, InverseCosineTransform, hankel_transform, inverse_hankel_transform, HankelTransform, InverseHankelTransform, singularityintegrate) from .tensor import (IndexedBase, Idx, Indexed, get_contraction_structure, get_indices, shape, MutableDenseNDimArray, ImmutableDenseNDimArray, MutableSparseNDimArray, ImmutableSparseNDimArray, NDimArray, tensorproduct, tensorcontraction, tensordiagonal, derive_by_array, permutedims, Array, DenseNDimArray, SparseNDimArray) from .parsing import parse_expr from .calculus import (euler_equations, singularities, is_increasing, is_strictly_increasing, is_decreasing, is_strictly_decreasing, is_monotonic, finite_diff_weights, apply_finite_diff, as_finite_diff, differentiate_finite, periodicity, not_empty_in, AccumBounds, is_convex, stationary_points, minimum, maximum) from .algebras import Quaternion from .printing import (pager_print, pretty, pretty_print, pprint, pprint_use_unicode, pprint_try_use_unicode, latex, print_latex, multiline_latex, mathml, print_mathml, python, print_python, pycode, ccode, print_ccode, glsl_code, print_glsl, cxxcode, fcode, print_fcode, rcode, print_rcode, jscode, print_jscode, julia_code, mathematica_code, octave_code, rust_code, print_gtk, preview, srepr, print_tree, StrPrinter, sstr, sstrrepr, TableForm, dotprint, maple_code, print_maple_code) from .testing import test, doctest # This module causes conflicts with other modules: # from .stats import * # Adds about .04-.05 seconds of import time # from combinatorics import * # This module is slow to import: #from physics import units from .plotting import plot, textplot, plot_backends, plot_implicit, plot_parametric from .interactive import init_session, init_printing, interactive_traversal evalf._create_evalf_table() __all__ = [ # sympy.core 'sympify', 'SympifyError', 'cacheit', 'Basic', 'Atom', 'preorder_traversal', 'S', 'Expr', 'AtomicExpr', 'UnevaluatedExpr', 'Symbol', 'Wild', 'Dummy', 'symbols', 'var', 'Number', 'Float', 'Rational', 'Integer', 'NumberSymbol', 'RealNumber', 'igcd', 'ilcm', 'seterr', 'E', 'I', 'nan', 'oo', 'pi', 'zoo', 'AlgebraicNumber', 'comp', 'mod_inverse', 'Pow', 'integer_nthroot', 'integer_log', 'Mul', 'prod', 'Add', 'Mod', 'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge', 'Equality', 'GreaterThan', 'LessThan', 'Unequality', 'StrictGreaterThan', 'StrictLessThan', 'vectorize', 'Lambda', 'WildFunction', 'Derivative', 'diff', 'FunctionClass', 'Function', 'Subs', 'expand', 'PoleError', 'count_ops', 'expand_mul', 'expand_log', 'expand_func', 'expand_trig', 'expand_complex', 'expand_multinomial', 'nfloat', 'expand_power_base', 'expand_power_exp', 'arity', 'PrecisionExhausted', 'N', 'evalf', 'Tuple', 'Dict', 'gcd_terms', 'factor_terms', 'factor_nc', 'evaluate', 'Catalan', 'EulerGamma', 'GoldenRatio', 'TribonacciConstant', 'bottom_up', 'use', 'postorder_traversal', 'default_sort_key', 'ordered', # sympy.logic 'to_cnf', 'to_dnf', 'to_nnf', 'And', 'Or', 'Not', 'Xor', 'Nand', 'Nor', 'Implies', 'Equivalent', 'ITE', 'POSform', 'SOPform', 'simplify_logic', 'bool_map', 'true', 'false', 'satisfiable', # sympy.assumptions 'AppliedPredicate', 'Predicate', 'AssumptionsContext', 'assuming', 'Q', 'ask', 'register_handler', 'remove_handler', 'refine', # sympy.polys 'Poly', 'PurePoly', 'poly_from_expr', 'parallel_poly_from_expr', 'degree', 'total_degree', 'degree_list', 'LC', 'LM', 'LT', 'pdiv', 'prem', 'pquo', 'pexquo', 'div', 'rem', 'quo', 'exquo', 'half_gcdex', 'gcdex', 'invert', 'subresultants', 'resultant', 'discriminant', 'cofactors', 'gcd_list', 'gcd', 'lcm_list', 'lcm', 'terms_gcd', 'trunc', 'monic', 'content', 'primitive', 'compose', 'decompose', 'sturm', 'gff_list', 'gff', 'sqf_norm', 'sqf_part', 'sqf_list', 'sqf', 'factor_list', 'factor', 'intervals', 'refine_root', 'count_roots', 'real_roots', 'nroots', 'ground_roots', 'nth_power_roots_poly', 'cancel', 'reduced', 'groebner', 'is_zero_dimensional', 'GroebnerBasis', 'poly', 'symmetrize', 'horner', 'interpolate', 'rational_interpolate', 'viete', 'together', 'BasePolynomialError', 'ExactQuotientFailed', 'PolynomialDivisionFailed', 'OperationNotSupported', 'HeuristicGCDFailed', 'HomomorphismFailed', 'IsomorphismFailed', 'ExtraneousFactors', 'EvaluationFailed', 'RefinementFailed', 'CoercionFailed', 'NotInvertible', 'NotReversible', 'NotAlgebraic', 'DomainError', 'PolynomialError', 'UnificationFailed', 'GeneratorsError', 'GeneratorsNeeded', 'ComputationFailed', 'UnivariatePolynomialError', 'MultivariatePolynomialError', 'PolificationFailed', 'OptionError', 'FlagError', 'minpoly', 'minimal_polynomial', 'primitive_element', 'field_isomorphism', 'to_number_field', 'isolate', 'itermonomials', 'Monomial', 'lex', 'grlex', 'grevlex', 'ilex', 'igrlex', 'igrevlex', 'CRootOf', 'rootof', 'RootOf', 'ComplexRootOf', 'RootSum', 'roots', 'Domain', 'FiniteField', 'IntegerRing', 'RationalField', 'RealField', 'ComplexField', 'PythonFiniteField', 'GMPYFiniteField', 'PythonIntegerRing', 'GMPYIntegerRing', 'PythonRational', 'GMPYRationalField', 'AlgebraicField', 'PolynomialRing', 'FractionField', 'ExpressionDomain', 'FF_python', 'FF_gmpy', 'ZZ_python', 'ZZ_gmpy', 'QQ_python', 'QQ_gmpy', 'GF', 'FF', 'ZZ', 'QQ', 'ZZ_I', 'QQ_I', 'RR', 'CC', 'EX', 'EXRAW', 'construct_domain', 'swinnerton_dyer_poly', 'cyclotomic_poly', 'symmetric_poly', 'random_poly', 'interpolating_poly', 'jacobi_poly', 'chebyshevt_poly', 'chebyshevu_poly', 'hermite_poly', 'legendre_poly', 'laguerre_poly', 'apart', 'apart_list', 'assemble_partfrac_list', 'Options', 'ring', 'xring', 'vring', 'sring', 'field', 'xfield', 'vfield', 'sfield', # sympy.series 'Order', 'O', 'limit', 'Limit', 'gruntz', 'series', 'approximants', 'residue', 'EmptySequence', 'SeqPer', 'SeqFormula', 'sequence', 'SeqAdd', 'SeqMul', 'fourier_series', 'fps', 'difference_delta', 'limit_seq', # sympy.functions 'factorial', 'factorial2', 'rf', 'ff', 'binomial', 'RisingFactorial', 'FallingFactorial', 'subfactorial', 'carmichael', 'fibonacci', 'lucas', 'motzkin', 'tribonacci', 'harmonic', 'bernoulli', 'bell', 'euler', 'catalan', 'genocchi', 'partition', 'sqrt', 'root', 'Min', 'Max', 'Id', 'real_root', 'Rem', 'cbrt', 're', 'im', 'sign', 'Abs', 'conjugate', 'arg', 'polar_lift', 'periodic_argument', 'unbranched_argument', 'principal_branch', 'transpose', 'adjoint', 'polarify', 'unpolarify', 'sin', 'cos', 'tan', 'sec', 'csc', 'cot', 'sinc', 'asin', 'acos', 'atan', 'asec', 'acsc', 'acot', 'atan2', 'exp_polar', 'exp', 'ln', 'log', 'LambertW', 'sinh', 'cosh', 'tanh', 'coth', 'sech', 'csch', 'asinh', 'acosh', 'atanh', 'acoth', 'asech', 'acsch', 'floor', 'ceiling', 'frac', 'Piecewise', 'piecewise_fold', 'erf', 'erfc', 'erfi', 'erf2', 'erfinv', 'erfcinv', 'erf2inv', 'Ei', 'expint', 'E1', 'li', 'Li', 'Si', 'Ci', 'Shi', 'Chi', 'fresnels', 'fresnelc', 'gamma', 'lowergamma', 'uppergamma', 'polygamma', 'loggamma', 'digamma', 'trigamma', 'multigamma', 'dirichlet_eta', 'zeta', 'lerchphi', 'polylog', 'stieltjes', 'Eijk', 'LeviCivita', 'KroneckerDelta', 'SingularityFunction', 'DiracDelta', 'Heaviside', 'bspline_basis', 'bspline_basis_set', 'interpolating_spline', 'besselj', 'bessely', 'besseli', 'besselk', 'hankel1', 'hankel2', 'jn', 'yn', 'jn_zeros', 'hn1', 'hn2', 'airyai', 'airybi', 'airyaiprime', 'airybiprime', 'marcumq', 'hyper', 'meijerg', 'appellf1', 'legendre', 'assoc_legendre', 'hermite', 'chebyshevt', 'chebyshevu', 'chebyshevu_root', 'chebyshevt_root', 'laguerre', 'assoc_laguerre', 'gegenbauer', 'jacobi', 'jacobi_normalized', 'Ynm', 'Ynm_c', 'Znm', 'elliptic_k', 'elliptic_f', 'elliptic_e', 'elliptic_pi', 'beta', 'mathieus', 'mathieuc', 'mathieusprime', 'mathieucprime', 'riemann_xi','betainc', 'betainc_regularized', # sympy.ntheory 'nextprime', 'prevprime', 'prime', 'primepi', 'primerange', 'randprime', 'Sieve', 'sieve', 'primorial', 'cycle_length', 'composite', 'compositepi', 'isprime', 'divisors', 'proper_divisors', 'factorint', 'multiplicity', 'perfect_power', 'pollard_pm1', 'pollard_rho', 'primefactors', 'totient', 'trailing', 'divisor_count', 'proper_divisor_count', 'divisor_sigma', 'factorrat', 'reduced_totient', 'primenu', 'primeomega', 'mersenne_prime_exponent', 'is_perfect', 'is_mersenne_prime', 'is_abundant', 'is_deficient', 'is_amicable', 'abundance', 'npartitions', 'is_primitive_root', 'is_quad_residue', 'legendre_symbol', 'jacobi_symbol', 'n_order', 'sqrt_mod', 'quadratic_residues', 'primitive_root', 'nthroot_mod', 'is_nthpow_residue', 'sqrt_mod_iter', 'mobius', 'discrete_log', 'quadratic_congruence', 'binomial_coefficients', 'binomial_coefficients_list', 'multinomial_coefficients', 'continued_fraction_periodic', 'continued_fraction_iterator', 'continued_fraction_reduce', 'continued_fraction_convergents', 'continued_fraction', 'egyptian_fraction', # sympy.concrete 'product', 'Product', 'summation', 'Sum', # sympy.discrete 'fft', 'ifft', 'ntt', 'intt', 'fwht', 'ifwht', 'mobius_transform', 'inverse_mobius_transform', 'convolution', 'covering_product', 'intersecting_product', # sympy.simplify 'simplify', 'hypersimp', 'hypersimilar', 'logcombine', 'separatevars', 'posify', 'besselsimp', 'kroneckersimp', 'signsimp', 'nsimplify', 'FU', 'fu', 'sqrtdenest', 'cse', 'epath', 'EPath', 'hyperexpand', 'collect', 'rcollect', 'radsimp', 'collect_const', 'fraction', 'numer', 'denom', 'trigsimp', 'exptrigsimp', 'powsimp', 'powdenest', 'combsimp', 'gammasimp', 'ratsimp', 'ratsimpmodprime', # sympy.sets 'Set', 'Interval', 'Union', 'EmptySet', 'FiniteSet', 'ProductSet', 'Intersection', 'imageset', 'DisjointUnion', 'Complement', 'SymmetricDifference', 'ImageSet', 'Range', 'ComplexRegion', 'Reals', 'Contains', 'ConditionSet', 'Ordinal', 'OmegaPower', 'ord0', 'PowerSet', 'Naturals', 'Naturals0', 'UniversalSet', 'Integers', 'Rationals', 'Complexes', # sympy.solvers 'solve', 'solve_linear_system', 'solve_linear_system_LU', 'solve_undetermined_coeffs', 'nsolve', 'solve_linear', 'checksol', 'det_quick', 'inv_quick', 'check_assumptions', 'failing_assumptions', 'diophantine', 'rsolve', 'rsolve_poly', 'rsolve_ratio', 'rsolve_hyper', 'checkodesol', 'classify_ode', 'dsolve', 'homogeneous_order', 'solve_poly_system', 'solve_triangulated', 'pde_separate', 'pde_separate_add', 'pde_separate_mul', 'pdsolve', 'classify_pde', 'checkpdesol', 'ode_order', 'reduce_inequalities', 'reduce_abs_inequality', 'reduce_abs_inequalities', 'solve_poly_inequality', 'solve_rational_inequalities', 'solve_univariate_inequality', 'decompogen', 'solveset', 'linsolve', 'linear_eq_to_matrix', 'nonlinsolve', 'substitution', # sympy.matrices 'ShapeError', 'NonSquareMatrixError', 'GramSchmidt', 'casoratian', 'diag', 'eye', 'hessian', 'jordan_cell', 'list2numpy', 'matrix2numpy', 'matrix_multiply_elementwise', 'ones', 'randMatrix', 'rot_axis1', 'rot_axis2', 'rot_axis3', 'symarray', 'wronskian', 'zeros', 'MutableDenseMatrix', 'DeferredVector', 'MatrixBase', 'Matrix', 'MutableMatrix', 'MutableSparseMatrix', 'banded', 'ImmutableDenseMatrix', 'ImmutableSparseMatrix', 'ImmutableMatrix', 'SparseMatrix', 'MatrixSlice', 'BlockDiagMatrix', 'BlockMatrix', 'FunctionMatrix', 'Identity', 'Inverse', 'MatAdd', 'MatMul', 'MatPow', 'MatrixExpr', 'MatrixSymbol', 'Trace', 'Transpose', 'ZeroMatrix', 'OneMatrix', 'blockcut', 'block_collapse', 'matrix_symbols', 'Adjoint', 'hadamard_product', 'HadamardProduct', 'HadamardPower', 'Determinant', 'det', 'diagonalize_vector', 'DiagMatrix', 'DiagonalMatrix', 'DiagonalOf', 'trace', 'DotProduct', 'kronecker_product', 'KroneckerProduct', 'PermutationMatrix', 'MatrixPermute', 'Permanent', 'per', # sympy.geometry 'Point', 'Point2D', 'Point3D', 'Line', 'Ray', 'Segment', 'Line2D', 'Segment2D', 'Ray2D', 'Line3D', 'Segment3D', 'Ray3D', 'Plane', 'Ellipse', 'Circle', 'Polygon', 'RegularPolygon', 'Triangle', 'rad', 'deg', 'are_similar', 'centroid', 'convex_hull', 'idiff', 'intersection', 'closest_points', 'farthest_points', 'GeometryError', 'Curve', 'Parabola', # sympy.utilities 'flatten', 'group', 'take', 'subsets', 'variations', 'numbered_symbols', 'cartes', 'capture', 'dict_merge', 'prefixes', 'postfixes', 'sift', 'topological_sort', 'unflatten', 'has_dups', 'has_variety', 'reshape', 'rotations', 'filldedent', 'lambdify', 'source', 'threaded', 'xthreaded', 'public', 'memoize_property', 'timed', # sympy.integrals 'integrate', 'Integral', 'line_integrate', 'mellin_transform', 'inverse_mellin_transform', 'MellinTransform', 'InverseMellinTransform', 'laplace_transform', 'inverse_laplace_transform', 'LaplaceTransform', 'InverseLaplaceTransform', 'fourier_transform', 'inverse_fourier_transform', 'FourierTransform', 'InverseFourierTransform', 'sine_transform', 'inverse_sine_transform', 'SineTransform', 'InverseSineTransform', 'cosine_transform', 'inverse_cosine_transform', 'CosineTransform', 'InverseCosineTransform', 'hankel_transform', 'inverse_hankel_transform', 'HankelTransform', 'InverseHankelTransform', 'singularityintegrate', # sympy.tensor 'IndexedBase', 'Idx', 'Indexed', 'get_contraction_structure', 'get_indices', 'shape', 'MutableDenseNDimArray', 'ImmutableDenseNDimArray', 'MutableSparseNDimArray', 'ImmutableSparseNDimArray', 'NDimArray', 'tensorproduct', 'tensorcontraction', 'tensordiagonal', 'derive_by_array', 'permutedims', 'Array', 'DenseNDimArray', 'SparseNDimArray', # sympy.parsing 'parse_expr', # sympy.calculus 'euler_equations', 'singularities', 'is_increasing', 'is_strictly_increasing', 'is_decreasing', 'is_strictly_decreasing', 'is_monotonic', 'finite_diff_weights', 'apply_finite_diff', 'as_finite_diff', 'differentiate_finite', 'periodicity', 'not_empty_in', 'AccumBounds', 'is_convex', 'stationary_points', 'minimum', 'maximum', # sympy.algebras 'Quaternion', # sympy.printing 'pager_print', 'pretty', 'pretty_print', 'pprint', 'pprint_use_unicode', 'pprint_try_use_unicode', 'latex', 'print_latex', 'multiline_latex', 'mathml', 'print_mathml', 'python', 'print_python', 'pycode', 'ccode', 'print_ccode', 'glsl_code', 'print_glsl', 'cxxcode', 'fcode', 'print_fcode', 'rcode', 'print_rcode', 'jscode', 'print_jscode', 'julia_code', 'mathematica_code', 'octave_code', 'rust_code', 'print_gtk', 'preview', 'srepr', 'print_tree', 'StrPrinter', 'sstr', 'sstrrepr', 'TableForm', 'dotprint', 'maple_code', 'print_maple_code', # sympy.plotting 'plot', 'textplot', 'plot_backends', 'plot_implicit', 'plot_parametric', # sympy.interactive 'init_session', 'init_printing', 'interactive_traversal', # sympy.testing 'test', 'doctest', ] #===========================================================================# # # # XXX: The names below were importable before SymPy 1.6 using # # # # from sympy import * # # # # This happened implicitly because there was no __all__ defined in this # # __init__.py file. Not every package is imported. The list matches what # # would have been imported before. It is possible that these packages will # # not be imported by a star-import from sympy in future. # # # #===========================================================================# __all__.extend(( 'algebras', 'assumptions', 'calculus', 'concrete', 'discrete', 'external', 'functions', 'geometry', 'interactive', 'multipledispatch', 'ntheory', 'parsing', 'plotting', 'polys', 'printing', 'release', 'strategies', 'tensor', 'utilities', ))
def83e1a50f0f18f0c1a86b7db81684494771da45a2616698977534d5a0d0282
import sys sys._running_pytest = True # type: ignore from sympy.external.importtools import version_tuple import pytest from sympy.core.cache import clear_cache, USE_CACHE from sympy.external.gmpy import GROUND_TYPES, HAS_GMPY from sympy.utilities.misc import ARCH import re sp = re.compile(r'([0-9]+)/([1-9][0-9]*)') def process_split(config, items): split = config.getoption("--split") if not split: return m = sp.match(split) if not m: raise ValueError("split must be a string of the form a/b " "where a and b are ints.") i, t = map(int, m.groups()) start, end = (i-1)*len(items)//t, i*len(items)//t if i < t: # remove elements from end of list first del items[end:] del items[:start] def pytest_report_header(config): s = "architecture: %s\n" % ARCH s += "cache: %s\n" % USE_CACHE version = '' if GROUND_TYPES =='gmpy': if HAS_GMPY == 1: import gmpy elif HAS_GMPY == 2: import gmpy2 as gmpy version = gmpy.version() s += "ground types: %s %s\n" % (GROUND_TYPES, version) return s def pytest_terminal_summary(terminalreporter): if (terminalreporter.stats.get('error', None) or terminalreporter.stats.get('failed', None)): terminalreporter.write_sep( ' ', 'DO *NOT* COMMIT!', red=True, bold=True) def pytest_addoption(parser): parser.addoption("--split", action="store", default="", help="split tests") def pytest_collection_modifyitems(config, items): """ pytest hook. """ # handle splits process_split(config, items) @pytest.fixture(autouse=True, scope='module') def file_clear_cache(): clear_cache() @pytest.fixture(autouse=True, scope='module') def check_disabled(request): if getattr(request.module, 'disabled', False): pytest.skip("test requirements not met.") elif getattr(request.module, 'ipython', False): # need to check version and options for ipython tests if (version_tuple(pytest.__version__) < version_tuple('2.6.3') and pytest.config.getvalue('-s') != 'no'): pytest.skip("run py.test with -s or upgrade to newer version.")
168c627cdd5882cdcb247c6388e707bf4ebfa370362f38c16deec306d06651e5
""" This module exports all latin and greek letters as Symbols, so you can conveniently do >>> from sympy.abc import x, y instead of the slightly more clunky-looking >>> from sympy import symbols >>> x, y = symbols('x y') Caveats ======= 1. As of the time of writing this, the names ``O``, ``S``, ``I``, ``N``, ``E``, and ``Q`` are colliding with names defined in SymPy. If you import them from both ``sympy.abc`` and ``sympy``, the second import will "win". This is an issue only for * imports, which should only be used for short-lived code such as interactive sessions and throwaway scripts that do not survive until the next SymPy upgrade, where ``sympy`` may contain a different set of names. 2. This module does not define symbol names on demand, i.e. ``from sympy.abc import foo`` will be reported as an error because ``sympy.abc`` does not contain the name ``foo``. To get a symbol named ``foo``, you still need to use ``Symbol('foo')`` or ``symbols('foo')``. You can freely mix usage of ``sympy.abc`` and ``Symbol``/``symbols``, though sticking with one and only one way to get the symbols does tend to make the code more readable. The module also defines some special names to help detect which names clash with the default SymPy namespace. ``_clash1`` defines all the single letter variables that clash with SymPy objects; ``_clash2`` defines the multi-letter clashing symbols; and ``_clash`` is the union of both. These can be passed for ``locals`` during sympification if one desires Symbols rather than the non-Symbol objects for those names. Examples ======== >>> from sympy import S >>> from sympy.abc import _clash1, _clash2, _clash >>> S("Q & C", locals=_clash1) C & Q >>> S('pi(x)', locals=_clash2) pi(x) >>> S('pi(C, Q)', locals=_clash) pi(C, Q) """ from typing import Any, Dict as tDict import string from .core import Symbol, symbols from .core.alphabets import greeks ##### Symbol definitions ##### # Implementation note: The easiest way to avoid typos in the symbols() # parameter is to copy it from the left-hand side of the assignment. a, b, c, d, e, f, g, h, i, j = symbols('a, b, c, d, e, f, g, h, i, j') k, l, m, n, o, p, q, r, s, t = symbols('k, l, m, n, o, p, q, r, s, t') u, v, w, x, y, z = symbols('u, v, w, x, y, z') A, B, C, D, E, F, G, H, I, J = symbols('A, B, C, D, E, F, G, H, I, J') K, L, M, N, O, P, Q, R, S, T = symbols('K, L, M, N, O, P, Q, R, S, T') U, V, W, X, Y, Z = symbols('U, V, W, X, Y, Z') alpha, beta, gamma, delta = symbols('alpha, beta, gamma, delta') epsilon, zeta, eta, theta = symbols('epsilon, zeta, eta, theta') iota, kappa, lamda, mu = symbols('iota, kappa, lamda, mu') nu, xi, omicron, pi = symbols('nu, xi, omicron, pi') rho, sigma, tau, upsilon = symbols('rho, sigma, tau, upsilon') phi, chi, psi, omega = symbols('phi, chi, psi, omega') ##### Clashing-symbols diagnostics ##### # We want to know which names in SymPy collide with those in here. # This is mostly for diagnosing SymPy's namespace during SymPy development. _latin = list(string.ascii_letters) # QOSINE should not be imported as they clash; gamma, pi and zeta clash, too _greek = list(greeks) # make a copy, so we can mutate it # Note: We import lamda since lambda is a reserved keyword in Python _greek.remove("lambda") _greek.append("lamda") ns: tDict[str, Any] = {} exec('from sympy import *', ns) _clash1: tDict[str, Any] = {} _clash2: tDict[str, Any] = {} while ns: _k, _ = ns.popitem() if _k in _greek: _clash2[_k] = None _greek.remove(_k) elif _k in _latin: _clash1[_k] = None _latin.remove(_k) _clash = {} _clash.update(_clash1) _clash.update(_clash2) del _latin, _greek, Symbol, _k
4d11d87c2ec20c98d852c3aa27a14d032dd83b65c08b78a950e6a68558cc54c8
#!/usr/bin/env python """Pi digits example Example shows arbitrary precision using mpmath with the computation of the digits of pi. """ from mpmath import libmp, pi import math import sys from time import perf_counter def display_fraction(digits, *, skip=0, colwidth=10, columns=5): """Pretty printer for first n digits of a fraction""" perline = colwidth * columns printed = 0 for linecount in range((len(digits) - skip) // (colwidth * columns)): line = digits[skip + linecount*perline:skip + (linecount + 1)*perline] for i in range(columns): print(line[i*colwidth: (i + 1)*colwidth],) print(":", (linecount + 1)*perline) if (linecount + 1) % 10 == 0: print() printed += colwidth*columns rem = (len(digits) - skip) % (colwidth * columns) if rem: buf = digits[-rem:] s = "" for i in range(columns): s += buf[:colwidth].ljust(colwidth + 1, " ") buf = buf[colwidth:] print(s + ":", printed + colwidth*columns) def calculateit(func, base, n, tofile): """Writes first n base-digits of a mpmath function to file""" prec = 100 intpart = libmp.numeral(3, base) if intpart == 0: skip = 0 else: skip = len(intpart) print("Step 1 of 2: calculating binary value...") prec = int(n*math.log(base, 2)) + 10 t = perf_counter() a = func(prec) step1_time = perf_counter() - t print("Step 2 of 2: converting to specified base...") t = perf_counter() d = libmp.bin_to_radix(a.man, -a.exp, base, n) d = libmp.numeral(d, base, n) step2_time = perf_counter() - t print("\nWriting output...\n") if tofile: out_ = sys.stdout sys.stdout = tofile print("%i base-%i digits of pi:\n" % (n, base)) print(intpart, ".\n") display_fraction(d, skip=skip, colwidth=10, columns=5) if tofile: sys.stdout = out_ print("\nFinished in %f seconds (%f calc, %f convert)" % \ ((step1_time + step2_time), step1_time, step2_time)) def interactive(): """Simple function to interact with user""" print("Compute digits of pi with SymPy\n") base = int(input("Which base? (2-36, 10 for decimal) \n> ")) digits = int(input("How many digits? (enter a big number, say, 10000)\n> ")) tofile = input("Output to file? (enter a filename, or just press enter\nto print directly to the screen) \n> ") if tofile: tofile = open(tofile, "w") calculateit(pi, base, digits, tofile) def main(): """A non-interactive runner""" base = 16 digits = 500 tofile = None calculateit(pi, base, digits, tofile) if __name__ == "__main__": interactive()
637e2df2ed05d2273a6e79e7272ac664ad3cde1027431a381b073a9f14401cdd
#!/usr/bin/env python """ Plotting Examples Suggested Usage: python -i pyglet_plotting.py """ from sympy import symbols, sin, cos, pi, sqrt from sympy.plotting.pygletplot import PygletPlot from time import sleep, perf_counter def main(): x, y, z = symbols('x,y,z') # toggle axes visibility with F5, colors with F6 axes_options = 'visible=false; colored=true; label_ticks=true; label_axes=true; overlay=true; stride=0.5' # axes_options = 'colored=false; overlay=false; stride=(1.0, 0.5, 0.5)' p = PygletPlot( width=600, height=500, ortho=False, invert_mouse_zoom=False, axes=axes_options, antialiasing=True) examples = [] def example_wrapper(f): examples.append(f) return f @example_wrapper def mirrored_saddles(): p[5] = x**2 - y**2, [20], [20] p[6] = y**2 - x**2, [20], [20] @example_wrapper def mirrored_saddles_saveimage(): p[5] = x**2 - y**2, [20], [20] p[6] = y**2 - x**2, [20], [20] p.wait_for_calculations() # although the calculation is complete, # we still need to wait for it to be # rendered, so we'll sleep to be sure. sleep(1) p.saveimage("plot_example.png") @example_wrapper def mirrored_ellipsoids(): p[2] = x**2 + y**2, [40], [40], 'color=zfade' p[3] = -x**2 - y**2, [40], [40], 'color=zfade' @example_wrapper def saddle_colored_by_derivative(): f = x**2 - y**2 p[1] = f, 'style=solid' p[1].color = abs(f.diff(x)), abs(f.diff(x) + f.diff(y)), abs(f.diff(y)) @example_wrapper def ding_dong_surface(): f = sqrt(1.0 - y)*y p[1] = f, [x, 0, 2*pi, 40], [y, - 1, 4, 100], 'mode=cylindrical; style=solid; color=zfade4' @example_wrapper def polar_circle(): p[7] = 1, 'mode=polar' @example_wrapper def polar_flower(): p[8] = 1.5*sin(4*x), [160], 'mode=polar' p[8].color = z, x, y, (0.5, 0.5, 0.5), ( 0.8, 0.8, 0.8), (x, y, None, z) # z is used for t @example_wrapper def simple_cylinder(): p[9] = 1, 'mode=cylindrical' @example_wrapper def cylindrical_hyperbola(): # (note that polar is an alias for cylindrical) p[10] = 1/y, 'mode=polar', [x], [y, -2, 2, 20] @example_wrapper def extruded_hyperbolas(): p[11] = 1/x, [x, -10, 10, 100], [1], 'style=solid' p[12] = -1/x, [x, -10, 10, 100], [1], 'style=solid' @example_wrapper def torus(): a, b = 1, 0.5 # radius, thickness p[13] = (a + b*cos(x))*cos(y), (a + b*cos(x)) *\ sin(y), b*sin(x), [x, 0, pi*2, 40], [y, 0, pi*2, 40] @example_wrapper def warped_torus(): a, b = 2, 1 # radius, thickness p[13] = (a + b*cos(x))*cos(y), (a + b*cos(x))*sin(y), b *\ sin(x) + 0.5*sin(4*y), [x, 0, pi*2, 40], [y, 0, pi*2, 40] @example_wrapper def parametric_spiral(): p[14] = cos(y), sin(y), y / 10.0, [y, -4*pi, 4*pi, 100] p[14].color = x, (0.1, 0.9), y, (0.1, 0.9), z, (0.1, 0.9) @example_wrapper def multistep_gradient(): p[1] = 1, 'mode=spherical', 'style=both' # p[1] = exp(-x**2-y**2+(x*y)/4), [-1.7,1.7,100], [-1.7,1.7,100], 'style=solid' # p[1] = 5*x*y*exp(-x**2-y**2), [-2,2,100], [-2,2,100] gradient = [0.0, (0.3, 0.3, 1.0), 0.30, (0.3, 1.0, 0.3), 0.55, (0.95, 1.0, 0.2), 0.65, (1.0, 0.95, 0.2), 0.85, (1.0, 0.7, 0.2), 1.0, (1.0, 0.3, 0.2)] p[1].color = z, [None, None, z], gradient # p[1].color = 'zfade' # p[1].color = 'zfade3' @example_wrapper def lambda_vs_sympy_evaluation(): start = perf_counter() p[4] = x**2 + y**2, [100], [100], 'style=solid' p.wait_for_calculations() print("lambda-based calculation took %s seconds." % (perf_counter() - start)) start = perf_counter() p[4] = x**2 + y**2, [100], [100], 'style=solid; use_sympy_eval' p.wait_for_calculations() print( "sympy substitution-based calculation took %s seconds." % (perf_counter() - start)) @example_wrapper def gradient_vectors(): def gradient_vectors_inner(f, i): from sympy import lambdify from sympy.plotting.plot_interval import PlotInterval from pyglet.gl import glBegin, glColor3f from pyglet.gl import glVertex3f, glEnd, GL_LINES def draw_gradient_vectors(f, iu, iv): """ Create a function which draws vectors representing the gradient of f. """ dx, dy, dz = f.diff(x), f.diff(y), 0 FF = lambdify([x, y], [x, y, f]) FG = lambdify([x, y], [dx, dy, dz]) iu.v_steps /= 5 iv.v_steps /= 5 Gvl = list(list([FF(u, v), FG(u, v)] for v in iv.frange()) for u in iu.frange()) def draw_arrow(p1, p2): """ Draw a single vector. """ glColor3f(0.4, 0.4, 0.9) glVertex3f(*p1) glColor3f(0.9, 0.4, 0.4) glVertex3f(*p2) def draw(): """ Iterate through the calculated vectors and draw them. """ glBegin(GL_LINES) for u in Gvl: for v in u: point = [[v[0][0], v[0][1], v[0][2]], [v[0][0] + v[1][0], v[0][1] + v[1][1], v[0][2] + v[1][2]]] draw_arrow(point[0], point[1]) glEnd() return draw p[i] = f, [-0.5, 0.5, 25], [-0.5, 0.5, 25], 'style=solid' iu = PlotInterval(p[i].intervals[0]) iv = PlotInterval(p[i].intervals[1]) p[i].postdraw.append(draw_gradient_vectors(f, iu, iv)) gradient_vectors_inner(x**2 + y**2, 1) gradient_vectors_inner(-x**2 - y**2, 2) def help_str(): s = ("\nPlot p has been created. Useful commands: \n" " help(p), p[1] = x**2, print(p), p.clear() \n\n" "Available examples (see source in plotting.py):\n\n") for i in range(len(examples)): s += "(%i) %s\n" % (i, examples[i].__name__) s += "\n" s += "e.g. >>> example(2)\n" s += " >>> ding_dong_surface()\n" return s def example(i): if callable(i): p.clear() i() elif i >= 0 and i < len(examples): p.clear() examples[i]() else: print("Not a valid example.\n") print(p) example(0) # 0 - 15 are defined above print(help_str()) if __name__ == "__main__": main()
2eb85c69487de362a4c0aa9aa4022bb503467facd3c8db90662279f72aac7b5f
# # SymPy documentation build configuration file, created by # sphinx-quickstart.py on Sat Mar 22 19:34:32 2008. # # This file is execfile()d with the current directory set to its containing dir. # # The contents of this file are pickled, so don't put values in the namespace # that aren't pickleable (module imports are okay, they're removed automatically). # # All configuration values have a default value; values that are commented out # serve to show the default value. import sys import inspect import os import subprocess from datetime import datetime import sympy # If your extensions are in another directory, add it here. sys.path = ['ext'] + sys.path # General configuration # --------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.addons.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.linkcode', 'sphinx_math_dollar', 'sphinx.ext.mathjax', 'numpydoc', 'sympylive', 'sphinx_reredirects', 'sphinx.ext.graphviz', 'matplotlib.sphinxext.plot_directive'] redirects = { "install.rst": "guides/getting_started/install.html", "documentation-style-guide.rst": "guides/contributing/documentation-style-guide.html", "gotchas.rst": "explanation/gotchas.html", "special_topics/classification.rst": "explanation/classification.html", "special_topics/finite_diff_derivatives.rst": "explanation/finite_diff_derivatives.html", "special_topics/intro.rst": "explanation/index.html", "special_topics/index.rst": "explanation/index.html", } # Use this to use pngmath instead #extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.pngmath', ] # Enable warnings for all bad cross references. These are turned into errors # with the -W flag in the Makefile. nitpicky = True nitpick_ignore = [ ('py:class', 'sympy.logic.boolalg.Boolean') ] # To stop docstrings inheritance. autodoc_inherit_docstrings = False # See https://www.sympy.org/sphinx-math-dollar/ mathjax3_config = { "tex": { "inlineMath": [['\\(', '\\)']], "displayMath": [["\\[", "\\]"]], } } # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. master_doc = 'index' suppress_warnings = ['ref.citation', 'ref.footnote'] # General substitutions. project = 'SymPy' copyright = '{} SymPy Development Team'.format(datetime.utcnow().year) # The default replacements for |version| and |release|, also used in various # other places throughout the built documents. # # The short X.Y version. version = sympy.__version__ # The full version, including alpha/beta/rc tags. release = version # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # Don't show the source code hyperlinks when using matplotlib plot directive. plot_html_show_source_link = False # Options for HTML output # ----------------------- # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. html_style = 'default.css' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # was classic html_theme = "classic" html_logo = '_static/sympylogo.png' html_favicon = '../_build/logo/sympy-notailtext-favicon.ico' # See http://www.sphinx-doc.org/en/master/theming.html#builtin-themes # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Content template for the index page. #html_index = '' # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_use_modindex = True html_domain_indices = ['py-modindex'] # If true, the reST sources are included in the HTML build as _sources/<name>. #html_copy_source = True # Output file base name for HTML help builder. htmlhelp_basename = 'SymPydoc' # Options for LaTeX output # ------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, document class [howto/manual], toctree_only). # toctree_only is set to True so that the start file document itself is not included in the # output, only the documents referenced by it via TOC trees. The extra stuff in the master # document is intended to show up in the HTML, but doesn't really belong in the LaTeX output. latex_documents = [('index', 'sympy-%s.tex' % release, 'SymPy Documentation', 'SymPy Development Team', 'manual', True)] # Additional stuff for the LaTeX preamble. # Tweaked to work with XeTeX. latex_elements = { 'babel': '', 'fontenc': r''' % Define version of \LaTeX that is usable in math mode \let\OldLaTeX\LaTeX \renewcommand{\LaTeX}{\text{\OldLaTeX}} \usepackage{bm} \usepackage{amssymb} \usepackage{fontspec} \usepackage[english]{babel} \defaultfontfeatures{Mapping=tex-text} \setmainfont{DejaVu Serif} \setsansfont{DejaVu Sans} \setmonofont{DejaVu Sans Mono} ''', 'fontpkg': '', 'inputenc': '', 'utf8extra': '', 'preamble': r''' ''' } # SymPy logo on title page html_logo = '_static/sympylogo.png' latex_logo = '_static/sympylogo_big.png' # Documents to append as an appendix to all manuals. #latex_appendices = [] # Show page numbers next to internal references latex_show_pagerefs = True # We use False otherwise the module index gets generated twice. latex_use_modindex = False default_role = 'math' pngmath_divpng_args = ['-gamma 1.5', '-D 110'] # Note, this is ignored by the mathjax extension # Any \newcommand should be defined in the file pngmath_latex_preamble = '\\usepackage{amsmath}\n' \ '\\usepackage{bm}\n' \ '\\usepackage{amsfonts}\n' \ '\\usepackage{amssymb}\n' \ '\\setlength{\\parindent}{0pt}\n' texinfo_documents = [ (master_doc, 'sympy', 'SymPy Documentation', 'SymPy Development Team', 'SymPy', 'Computer algebra system (CAS) in Python', 'Programming', 1), ] # Use svg for graphviz graphviz_output_format = 'svg' # Requried for linkcode extension. # Get commit hash from the external file. commit_hash_filepath = '../commit_hash.txt' commit_hash = None if os.path.isfile(commit_hash_filepath): with open(commit_hash_filepath) as f: commit_hash = f.readline() # Get commit hash from the external file. if not commit_hash: try: commit_hash = subprocess.check_output(['git', 'rev-parse', 'HEAD']) commit_hash = commit_hash.decode('ascii') commit_hash = commit_hash.rstrip() except: import warnings warnings.warn( "Failed to get the git commit hash as the command " \ "'git rev-parse HEAD' is not working. The commit hash will be " \ "assumed as the SymPy master, but the lines may be misleading " \ "or nonexistent as it is not the correct branch the doc is " \ "built with. Check your installation of 'git' if you want to " \ "resolve this warning.") commit_hash = 'master' fork = 'sympy' blobpath = \ "https://github.com/{}/sympy/blob/{}/sympy/".format(fork, commit_hash) def linkcode_resolve(domain, info): """Determine the URL corresponding to Python object.""" if domain != 'py': return modname = info['module'] fullname = info['fullname'] submod = sys.modules.get(modname) if submod is None: return obj = submod for part in fullname.split('.'): try: obj = getattr(obj, part) except Exception: return # strip decorators, which would resolve to the source of the decorator # possibly an upstream bug in getsourcefile, bpo-1764286 try: unwrap = inspect.unwrap except AttributeError: pass else: obj = unwrap(obj) try: fn = inspect.getsourcefile(obj) except Exception: fn = None if not fn: return try: source, lineno = inspect.getsourcelines(obj) except Exception: lineno = None if lineno: linespec = "#L%d-L%d" % (lineno, lineno + len(source) - 1) else: linespec = "" fn = os.path.relpath(fn, start=os.path.dirname(sympy.__file__)) return blobpath + fn + linespec
c3d4982e536b1d0c7e8ab95af00c4677b760e1993f86362e31d6b5310a85286e
""" Continuous Random Variables - Prebuilt variables Contains ======== Arcsin Benini Beta BetaNoncentral BetaPrime BoundedPareto Cauchy Chi ChiNoncentral ChiSquared Dagum Erlang ExGaussian Exponential ExponentialPower FDistribution FisherZ Frechet Gamma GammaInverse Gumbel Gompertz Kumaraswamy Laplace Levy LogCauchy Logistic LogLogistic LogitNormal LogNormal Lomax Maxwell Moyal Nakagami Normal Pareto PowerFunction QuadraticU RaisedCosine Rayleigh Reciprocal ShiftedGompertz StudentT Trapezoidal Triangular Uniform UniformSum VonMises Wald Weibull WignerSemicircle """ from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.trigonometric import (atan, cos, sin, tan) from sympy.functions.special.bessel import (besseli, besselj, besselk) from sympy.functions.special.beta_functions import beta as beta_fn from sympy.concrete.summations import Sum from sympy.core.basic import Basic from sympy.core.function import Lambda from sympy.core.numbers import (I, Rational, pi) from sympy.core.relational import (Eq, Ne) from sympy.core.singleton import S from sympy.core.symbol import Dummy from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import (binomial, factorial) from sympy.functions.elementary.complexes import (Abs, sign) from sympy.functions.elementary.exponential import log from sympy.functions.elementary.hyperbolic import sinh from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import asin from sympy.functions.special.error_functions import (erf, erfc, erfi, erfinv, expint) from sympy.functions.special.gamma_functions import (gamma, lowergamma, uppergamma) from sympy.functions.special.hyper import hyper from sympy.integrals.integrals import integrate from sympy.logic.boolalg import And from sympy.sets.sets import Interval from sympy.matrices import MatrixBase from sympy.stats.crv import SingleContinuousPSpace, SingleContinuousDistribution from sympy.stats.rv import _value_check, is_random oo = S.Infinity __all__ = ['ContinuousRV', 'Arcsin', 'Benini', 'Beta', 'BetaNoncentral', 'BetaPrime', 'BoundedPareto', 'Cauchy', 'Chi', 'ChiNoncentral', 'ChiSquared', 'Dagum', 'Erlang', 'ExGaussian', 'Exponential', 'ExponentialPower', 'FDistribution', 'FisherZ', 'Frechet', 'Gamma', 'GammaInverse', 'Gompertz', 'Gumbel', 'Kumaraswamy', 'Laplace', 'Levy', 'LogCauchy', 'Logistic', 'LogLogistic', 'LogitNormal', 'LogNormal', 'Lomax', 'Maxwell', 'Moyal', 'Nakagami', 'Normal', 'GaussianInverse', 'Pareto', 'PowerFunction', 'QuadraticU', 'RaisedCosine', 'Rayleigh', 'Reciprocal', 'StudentT', 'ShiftedGompertz', 'Trapezoidal', 'Triangular', 'Uniform', 'UniformSum', 'VonMises', 'Wald', 'Weibull', 'WignerSemicircle', ] @is_random.register(MatrixBase) def _(x): return any(is_random(i) for i in x) def rv(symbol, cls, args, **kwargs): args = list(map(sympify, args)) dist = cls(*args) if kwargs.pop('check', True): dist.check(*args) pspace = SingleContinuousPSpace(symbol, dist) if any(is_random(arg) for arg in args): from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution pspace = CompoundPSpace(symbol, CompoundDistribution(dist)) return pspace.value class ContinuousDistributionHandmade(SingleContinuousDistribution): _argnames = ('pdf',) def __new__(cls, pdf, set=Interval(-oo, oo)): return Basic.__new__(cls, pdf, set) @property def set(self): return self.args[1] @staticmethod def check(pdf, set): x = Dummy('x') val = integrate(pdf(x), (x, set)) _value_check(Eq(val, 1) != S.false, "The pdf on the given set is incorrect.") def ContinuousRV(symbol, density, set=Interval(-oo, oo), **kwargs): """ Create a Continuous Random Variable given the following: Parameters ========== symbol : Symbol Represents name of the random variable. density : Expression containing symbol Represents probability density function. set : set/Interval Represents the region where the pdf is valid, by default is real line. check : bool If True, it will check whether the given density integrates to 1 over the given set. If False, it will not perform this check. Default is False. Returns ======= RandomSymbol Many common continuous random variable types are already implemented. This function should be necessary only very rarely. Examples ======== >>> from sympy import Symbol, sqrt, exp, pi >>> from sympy.stats import ContinuousRV, P, E >>> x = Symbol("x") >>> pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution >>> X = ContinuousRV(x, pdf) >>> E(X) 0 >>> P(X>0) 1/2 """ pdf = Piecewise((density, set.as_relational(symbol)), (0, True)) pdf = Lambda(symbol, pdf) # have a default of False while `rv` should have a default of True kwargs['check'] = kwargs.pop('check', False) return rv(symbol.name, ContinuousDistributionHandmade, (pdf, set), **kwargs) ######################################## # Continuous Probability Distributions # ######################################## #------------------------------------------------------------------------------- # Arcsin distribution ---------------------------------------------------------- class ArcsinDistribution(SingleContinuousDistribution): _argnames = ('a', 'b') @property def set(self): return Interval(self.a, self.b) def pdf(self, x): a, b = self.a, self.b return 1/(pi*sqrt((x - a)*(b - x))) def _cdf(self, x): a, b = self.a, self.b return Piecewise( (S.Zero, x < a), (2*asin(sqrt((x - a)/(b - a)))/pi, x <= b), (S.One, True)) def Arcsin(name, a=0, b=1): r""" Create a Continuous Random Variable with an arcsin distribution. The density of the arcsin distribution is given by .. math:: f(x) := \frac{1}{\pi\sqrt{(x-a)(b-x)}} with :math:`x \in (a,b)`. It must hold that :math:`-\infty < a < b < \infty`. Parameters ========== a : Real number, the left interval boundary b : Real number, the right interval boundary Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Arcsin, density, cdf >>> from sympy import Symbol >>> a = Symbol("a", real=True) >>> b = Symbol("b", real=True) >>> z = Symbol("z") >>> X = Arcsin("x", a, b) >>> density(X)(z) 1/(pi*sqrt((-a + z)*(b - z))) >>> cdf(X)(z) Piecewise((0, a > z), (2*asin(sqrt((-a + z)/(-a + b)))/pi, b >= z), (1, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Arcsine_distribution """ return rv(name, ArcsinDistribution, (a, b)) #------------------------------------------------------------------------------- # Benini distribution ---------------------------------------------------------- class BeniniDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta', 'sigma') @staticmethod def check(alpha, beta, sigma): _value_check(alpha > 0, "Shape parameter Alpha must be positive.") _value_check(beta > 0, "Shape parameter Beta must be positive.") _value_check(sigma > 0, "Scale parameter Sigma must be positive.") @property def set(self): return Interval(self.sigma, oo) def pdf(self, x): alpha, beta, sigma = self.alpha, self.beta, self.sigma return (exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2) *(alpha/x + 2*beta*log(x/sigma)/x)) def _moment_generating_function(self, t): raise NotImplementedError('The moment generating function of the ' 'Benini distribution does not exist.') def Benini(name, alpha, beta, sigma): r""" Create a Continuous Random Variable with a Benini distribution. The density of the Benini distribution is given by .. math:: f(x) := e^{-\alpha\log{\frac{x}{\sigma}} -\beta\log^2\left[{\frac{x}{\sigma}}\right]} \left(\frac{\alpha}{x}+\frac{2\beta\log{\frac{x}{\sigma}}}{x}\right) This is a heavy-tailed distribution and is also known as the log-Rayleigh distribution. Parameters ========== alpha : Real number, `\alpha > 0`, a shape beta : Real number, `\beta > 0`, a shape sigma : Real number, `\sigma > 0`, a scale Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Benini, density, cdf >>> from sympy import Symbol, pprint >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> sigma = Symbol("sigma", positive=True) >>> z = Symbol("z") >>> X = Benini("x", alpha, beta, sigma) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) / / z \\ / z \ 2/ z \ | 2*beta*log|-----|| - alpha*log|-----| - beta*log |-----| |alpha \sigma/| \sigma/ \sigma/ |----- + -----------------|*e \ z z / >>> cdf(X)(z) Piecewise((1 - exp(-alpha*log(z/sigma) - beta*log(z/sigma)**2), sigma <= z), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Benini_distribution .. [2] http://reference.wolfram.com/legacy/v8/ref/BeniniDistribution.html """ return rv(name, BeniniDistribution, (alpha, beta, sigma)) #------------------------------------------------------------------------------- # Beta distribution ------------------------------------------------------------ class BetaDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta') set = Interval(0, 1) @staticmethod def check(alpha, beta): _value_check(alpha > 0, "Shape parameter Alpha must be positive.") _value_check(beta > 0, "Shape parameter Beta must be positive.") def pdf(self, x): alpha, beta = self.alpha, self.beta return x**(alpha - 1) * (1 - x)**(beta - 1) / beta_fn(alpha, beta) def _characteristic_function(self, t): return hyper((self.alpha,), (self.alpha + self.beta,), I*t) def _moment_generating_function(self, t): return hyper((self.alpha,), (self.alpha + self.beta,), t) def Beta(name, alpha, beta): r""" Create a Continuous Random Variable with a Beta distribution. The density of the Beta distribution is given by .. math:: f(x) := \frac{x^{\alpha-1}(1-x)^{\beta-1}} {\mathrm{B}(\alpha,\beta)} with :math:`x \in [0,1]`. Parameters ========== alpha : Real number, `\alpha > 0`, a shape beta : Real number, `\beta > 0`, a shape Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Beta, density, E, variance >>> from sympy import Symbol, simplify, pprint, factor >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> z = Symbol("z") >>> X = Beta("x", alpha, beta) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) alpha - 1 beta - 1 z *(1 - z) -------------------------- B(alpha, beta) >>> simplify(E(X)) alpha/(alpha + beta) >>> factor(simplify(variance(X))) alpha*beta/((alpha + beta)**2*(alpha + beta + 1)) References ========== .. [1] https://en.wikipedia.org/wiki/Beta_distribution .. [2] http://mathworld.wolfram.com/BetaDistribution.html """ return rv(name, BetaDistribution, (alpha, beta)) #------------------------------------------------------------------------------- # Noncentral Beta distribution ------------------------------------------------------------ class BetaNoncentralDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta', 'lamda') set = Interval(0, 1) @staticmethod def check(alpha, beta, lamda): _value_check(alpha > 0, "Shape parameter Alpha must be positive.") _value_check(beta > 0, "Shape parameter Beta must be positive.") _value_check(lamda >= 0, "Noncentrality parameter Lambda must be positive") def pdf(self, x): alpha, beta, lamda = self.alpha, self.beta, self.lamda k = Dummy("k") return Sum(exp(-lamda / 2) * (lamda / 2)**k * x**(alpha + k - 1) *( 1 - x)**(beta - 1) / (factorial(k) * beta_fn(alpha + k, beta)), (k, 0, oo)) def BetaNoncentral(name, alpha, beta, lamda): r""" Create a Continuous Random Variable with a Type I Noncentral Beta distribution. The density of the Noncentral Beta distribution is given by .. math:: f(x) := \sum_{k=0}^\infty e^{-\lambda/2}\frac{(\lambda/2)^k}{k!} \frac{x^{\alpha+k-1}(1-x)^{\beta-1}}{\mathrm{B}(\alpha+k,\beta)} with :math:`x \in [0,1]`. Parameters ========== alpha : Real number, `\alpha > 0`, a shape beta : Real number, `\beta > 0`, a shape lamda: Real number, `\lambda >= 0`, noncentrality parameter Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import BetaNoncentral, density, cdf >>> from sympy import Symbol, pprint >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> lamda = Symbol("lamda", nonnegative=True) >>> z = Symbol("z") >>> X = BetaNoncentral("x", alpha, beta, lamda) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) oo _____ \ ` \ -lamda \ k ------- \ k + alpha - 1 /lamda\ beta - 1 2 ) z *|-----| *(1 - z) *e / \ 2 / / ------------------------------------------------ / B(k + alpha, beta)*k! /____, k = 0 Compute cdf with specific 'x', 'alpha', 'beta' and 'lamda' values as follows : >>> cdf(BetaNoncentral("x", 1, 1, 1), evaluate=False)(2).doit() 2*exp(1/2) The argument evaluate=False prevents an attempt at evaluation of the sum for general x, before the argument 2 is passed. References ========== .. [1] https://en.wikipedia.org/wiki/Noncentral_beta_distribution .. [2] https://reference.wolfram.com/language/ref/NoncentralBetaDistribution.html """ return rv(name, BetaNoncentralDistribution, (alpha, beta, lamda)) #------------------------------------------------------------------------------- # Beta prime distribution ------------------------------------------------------ class BetaPrimeDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta') @staticmethod def check(alpha, beta): _value_check(alpha > 0, "Shape parameter Alpha must be positive.") _value_check(beta > 0, "Shape parameter Beta must be positive.") set = Interval(0, oo) def pdf(self, x): alpha, beta = self.alpha, self.beta return x**(alpha - 1)*(1 + x)**(-alpha - beta)/beta_fn(alpha, beta) def BetaPrime(name, alpha, beta): r""" Create a continuous random variable with a Beta prime distribution. The density of the Beta prime distribution is given by .. math:: f(x) := \frac{x^{\alpha-1} (1+x)^{-\alpha -\beta}}{B(\alpha,\beta)} with :math:`x > 0`. Parameters ========== alpha : Real number, `\alpha > 0`, a shape beta : Real number, `\beta > 0`, a shape Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import BetaPrime, density >>> from sympy import Symbol, pprint >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> z = Symbol("z") >>> X = BetaPrime("x", alpha, beta) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) alpha - 1 -alpha - beta z *(z + 1) ------------------------------- B(alpha, beta) References ========== .. [1] https://en.wikipedia.org/wiki/Beta_prime_distribution .. [2] http://mathworld.wolfram.com/BetaPrimeDistribution.html """ return rv(name, BetaPrimeDistribution, (alpha, beta)) #------------------------------------------------------------------------------- # Bounded Pareto Distribution -------------------------------------------------- class BoundedParetoDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'left', 'right') @property def set(self): return Interval(self.left, self.right) @staticmethod def check(alpha, left, right): _value_check (alpha.is_positive, "Shape must be positive.") _value_check (left.is_positive, "Left value should be positive.") _value_check (right > left, "Right should be greater than left.") def pdf(self, x): alpha, left, right = self.alpha, self.left, self.right num = alpha * (left**alpha) * x**(- alpha -1) den = 1 - (left/right)**alpha return num/den def BoundedPareto(name, alpha, left, right): r""" Create a continuous random variable with a Bounded Pareto distribution. The density of the Bounded Pareto distribution is given by .. math:: f(x) := \frac{\alpha L^{\alpha}x^{-\alpha-1}}{1-(\frac{L}{H})^{\alpha}} Parameters ========== alpha : Real Number, `alpha > 0` Shape parameter left : Real Number, `left > 0` Location parameter right : Real Number, `right > left` Location parameter Examples ======== >>> from sympy.stats import BoundedPareto, density, cdf, E >>> from sympy import symbols >>> L, H = symbols('L, H', positive=True) >>> X = BoundedPareto('X', 2, L, H) >>> x = symbols('x') >>> density(X)(x) 2*L**2/(x**3*(1 - L**2/H**2)) >>> cdf(X)(x) Piecewise((-H**2*L**2/(x**2*(H**2 - L**2)) + H**2/(H**2 - L**2), L <= x), (0, True)) >>> E(X).simplify() 2*H*L/(H + L) Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Pareto_distribution#Bounded_Pareto_distribution """ return rv (name, BoundedParetoDistribution, (alpha, left, right)) # ------------------------------------------------------------------------------ # Cauchy distribution ---------------------------------------------------------- class CauchyDistribution(SingleContinuousDistribution): _argnames = ('x0', 'gamma') @staticmethod def check(x0, gamma): _value_check(gamma > 0, "Scale parameter Gamma must be positive.") _value_check(x0.is_real, "Location parameter must be real.") def pdf(self, x): return 1/(pi*self.gamma*(1 + ((x - self.x0)/self.gamma)**2)) def _cdf(self, x): x0, gamma = self.x0, self.gamma return (1/pi)*atan((x - x0)/gamma) + S.Half def _characteristic_function(self, t): return exp(self.x0 * I * t - self.gamma * Abs(t)) def _moment_generating_function(self, t): raise NotImplementedError("The moment generating function for the " "Cauchy distribution does not exist.") def _quantile(self, p): return self.x0 + self.gamma*tan(pi*(p - S.Half)) def Cauchy(name, x0, gamma): r""" Create a continuous random variable with a Cauchy distribution. The density of the Cauchy distribution is given by .. math:: f(x) := \frac{1}{\pi \gamma [1 + {(\frac{x-x_0}{\gamma})}^2]} Parameters ========== x0 : Real number, the location gamma : Real number, `\gamma > 0`, a scale Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Cauchy, density >>> from sympy import Symbol >>> x0 = Symbol("x0") >>> gamma = Symbol("gamma", positive=True) >>> z = Symbol("z") >>> X = Cauchy("x", x0, gamma) >>> density(X)(z) 1/(pi*gamma*(1 + (-x0 + z)**2/gamma**2)) References ========== .. [1] https://en.wikipedia.org/wiki/Cauchy_distribution .. [2] http://mathworld.wolfram.com/CauchyDistribution.html """ return rv(name, CauchyDistribution, (x0, gamma)) #------------------------------------------------------------------------------- # Chi distribution ------------------------------------------------------------- class ChiDistribution(SingleContinuousDistribution): _argnames = ('k',) @staticmethod def check(k): _value_check(k > 0, "Number of degrees of freedom (k) must be positive.") _value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.") set = Interval(0, oo) def pdf(self, x): return 2**(1 - self.k/2)*x**(self.k - 1)*exp(-x**2/2)/gamma(self.k/2) def _characteristic_function(self, t): k = self.k part_1 = hyper((k/2,), (S.Half,), -t**2/2) part_2 = I*t*sqrt(2)*gamma((k+1)/2)/gamma(k/2) part_3 = hyper(((k+1)/2,), (Rational(3, 2),), -t**2/2) return part_1 + part_2*part_3 def _moment_generating_function(self, t): k = self.k part_1 = hyper((k / 2,), (S.Half,), t ** 2 / 2) part_2 = t * sqrt(2) * gamma((k + 1) / 2) / gamma(k / 2) part_3 = hyper(((k + 1) / 2,), (S(3) / 2,), t ** 2 / 2) return part_1 + part_2 * part_3 def Chi(name, k): r""" Create a continuous random variable with a Chi distribution. The density of the Chi distribution is given by .. math:: f(x) := \frac{2^{1-k/2}x^{k-1}e^{-x^2/2}}{\Gamma(k/2)} with :math:`x \geq 0`. Parameters ========== k : Positive integer, The number of degrees of freedom Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Chi, density, E >>> from sympy import Symbol, simplify >>> k = Symbol("k", integer=True) >>> z = Symbol("z") >>> X = Chi("x", k) >>> density(X)(z) 2**(1 - k/2)*z**(k - 1)*exp(-z**2/2)/gamma(k/2) >>> simplify(E(X)) sqrt(2)*gamma(k/2 + 1/2)/gamma(k/2) References ========== .. [1] https://en.wikipedia.org/wiki/Chi_distribution .. [2] http://mathworld.wolfram.com/ChiDistribution.html """ return rv(name, ChiDistribution, (k,)) #------------------------------------------------------------------------------- # Non-central Chi distribution ------------------------------------------------- class ChiNoncentralDistribution(SingleContinuousDistribution): _argnames = ('k', 'l') @staticmethod def check(k, l): _value_check(k > 0, "Number of degrees of freedom (k) must be positive.") _value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.") _value_check(l > 0, "Shift parameter Lambda must be positive.") set = Interval(0, oo) def pdf(self, x): k, l = self.k, self.l return exp(-(x**2+l**2)/2)*x**k*l / (l*x)**(k/2) * besseli(k/2-1, l*x) def ChiNoncentral(name, k, l): r""" Create a continuous random variable with a non-central Chi distribution. Explanation =========== The density of the non-central Chi distribution is given by .. math:: f(x) := \frac{e^{-(x^2+\lambda^2)/2} x^k\lambda} {(\lambda x)^{k/2}} I_{k/2-1}(\lambda x) with `x \geq 0`. Here, `I_\nu (x)` is the :ref:`modified Bessel function of the first kind <besseli>`. Parameters ========== k : A positive Integer, $k > 0$ The number of degrees of freedom. lambda : Real number, `\lambda > 0` Shift parameter. Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import ChiNoncentral, density >>> from sympy import Symbol >>> k = Symbol("k", integer=True) >>> l = Symbol("l") >>> z = Symbol("z") >>> X = ChiNoncentral("x", k, l) >>> density(X)(z) l*z**k*exp(-l**2/2 - z**2/2)*besseli(k/2 - 1, l*z)/(l*z)**(k/2) References ========== .. [1] https://en.wikipedia.org/wiki/Noncentral_chi_distribution """ return rv(name, ChiNoncentralDistribution, (k, l)) #------------------------------------------------------------------------------- # Chi squared distribution ----------------------------------------------------- class ChiSquaredDistribution(SingleContinuousDistribution): _argnames = ('k',) @staticmethod def check(k): _value_check(k > 0, "Number of degrees of freedom (k) must be positive.") _value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.") set = Interval(0, oo) def pdf(self, x): k = self.k return 1/(2**(k/2)*gamma(k/2))*x**(k/2 - 1)*exp(-x/2) def _cdf(self, x): k = self.k return Piecewise( (S.One/gamma(k/2)*lowergamma(k/2, x/2), x >= 0), (0, True) ) def _characteristic_function(self, t): return (1 - 2*I*t)**(-self.k/2) def _moment_generating_function(self, t): return (1 - 2*t)**(-self.k/2) def ChiSquared(name, k): r""" Create a continuous random variable with a Chi-squared distribution. Explanation =========== The density of the Chi-squared distribution is given by .. math:: f(x) := \frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)} x^{\frac{k}{2}-1} e^{-\frac{x}{2}} with :math:`x \geq 0`. Parameters ========== k : Positive integer The number of degrees of freedom. Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import ChiSquared, density, E, variance, moment >>> from sympy import Symbol >>> k = Symbol("k", integer=True, positive=True) >>> z = Symbol("z") >>> X = ChiSquared("x", k) >>> density(X)(z) z**(k/2 - 1)*exp(-z/2)/(2**(k/2)*gamma(k/2)) >>> E(X) k >>> variance(X) 2*k >>> moment(X, 3) k**3 + 6*k**2 + 8*k References ========== .. [1] https://en.wikipedia.org/wiki/Chi_squared_distribution .. [2] http://mathworld.wolfram.com/Chi-SquaredDistribution.html """ return rv(name, ChiSquaredDistribution, (k, )) #------------------------------------------------------------------------------- # Dagum distribution ----------------------------------------------------------- class DagumDistribution(SingleContinuousDistribution): _argnames = ('p', 'a', 'b') set = Interval(0, oo) @staticmethod def check(p, a, b): _value_check(p > 0, "Shape parameter p must be positive.") _value_check(a > 0, "Shape parameter a must be positive.") _value_check(b > 0, "Scale parameter b must be positive.") def pdf(self, x): p, a, b = self.p, self.a, self.b return a*p/x*((x/b)**(a*p)/(((x/b)**a + 1)**(p + 1))) def _cdf(self, x): p, a, b = self.p, self.a, self.b return Piecewise(((S.One + (S(x)/b)**-a)**-p, x>=0), (S.Zero, True)) def Dagum(name, p, a, b): r""" Create a continuous random variable with a Dagum distribution. Explanation =========== The density of the Dagum distribution is given by .. math:: f(x) := \frac{a p}{x} \left( \frac{\left(\tfrac{x}{b}\right)^{a p}} {\left(\left(\tfrac{x}{b}\right)^a + 1 \right)^{p+1}} \right) with :math:`x > 0`. Parameters ========== p : Real number ``p > 0``, a shape. a : Real number ``a > 0``, a shape. b : Real number ``b > 0``, a scale. Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Dagum, density, cdf >>> from sympy import Symbol >>> p = Symbol("p", positive=True) >>> a = Symbol("a", positive=True) >>> b = Symbol("b", positive=True) >>> z = Symbol("z") >>> X = Dagum("x", p, a, b) >>> density(X)(z) a*p*(z/b)**(a*p)*((z/b)**a + 1)**(-p - 1)/z >>> cdf(X)(z) Piecewise(((1 + (z/b)**(-a))**(-p), z >= 0), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Dagum_distribution """ return rv(name, DagumDistribution, (p, a, b)) #------------------------------------------------------------------------------- # Erlang distribution ---------------------------------------------------------- def Erlang(name, k, l): r""" Create a continuous random variable with an Erlang distribution. Explanation =========== The density of the Erlang distribution is given by .. math:: f(x) := \frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!} with :math:`x \in [0,\infty]`. Parameters ========== k : Positive integer l : Real number, `\lambda > 0`, the rate Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Erlang, density, cdf, E, variance >>> from sympy import Symbol, simplify, pprint >>> k = Symbol("k", integer=True, positive=True) >>> l = Symbol("l", positive=True) >>> z = Symbol("z") >>> X = Erlang("x", k, l) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) k k - 1 -l*z l *z *e --------------- Gamma(k) >>> C = cdf(X)(z) >>> pprint(C, use_unicode=False) /lowergamma(k, l*z) |------------------ for z > 0 < Gamma(k) | \ 0 otherwise >>> E(X) k/l >>> simplify(variance(X)) k/l**2 References ========== .. [1] https://en.wikipedia.org/wiki/Erlang_distribution .. [2] http://mathworld.wolfram.com/ErlangDistribution.html """ return rv(name, GammaDistribution, (k, S.One/l)) # ------------------------------------------------------------------------------- # ExGaussian distribution ----------------------------------------------------- class ExGaussianDistribution(SingleContinuousDistribution): _argnames = ('mean', 'std', 'rate') set = Interval(-oo, oo) @staticmethod def check(mean, std, rate): _value_check( std > 0, "Standard deviation of ExGaussian must be positive.") _value_check(rate > 0, "Rate of ExGaussian must be positive.") def pdf(self, x): mean, std, rate = self.mean, self.std, self.rate term1 = rate/2 term2 = exp(rate * (2 * mean + rate * std**2 - 2*x)/2) term3 = erfc((mean + rate*std**2 - x)/(sqrt(2)*std)) return term1*term2*term3 def _cdf(self, x): from sympy.stats import cdf mean, std, rate = self.mean, self.std, self.rate u = rate*(x - mean) v = rate*std GaussianCDF1 = cdf(Normal('x', 0, v))(u) GaussianCDF2 = cdf(Normal('x', v**2, v))(u) return GaussianCDF1 - exp(-u + (v**2/2) + log(GaussianCDF2)) def _characteristic_function(self, t): mean, std, rate = self.mean, self.std, self.rate term1 = (1 - I*t/rate)**(-1) term2 = exp(I*mean*t - std**2*t**2/2) return term1 * term2 def _moment_generating_function(self, t): mean, std, rate = self.mean, self.std, self.rate term1 = (1 - t/rate)**(-1) term2 = exp(mean*t + std**2*t**2/2) return term1*term2 def ExGaussian(name, mean, std, rate): r""" Create a continuous random variable with an Exponentially modified Gaussian (EMG) distribution. Explanation =========== The density of the exponentially modified Gaussian distribution is given by .. math:: f(x) := \frac{\lambda}{2}e^{\frac{\lambda}{2}(2\mu+\lambda\sigma^2-2x)} \text{erfc}(\frac{\mu + \lambda\sigma^2 - x}{\sqrt{2}\sigma}) with $x > 0$. Note that the expected value is `1/\lambda`. Parameters ========== mu : A Real number, the mean of Gaussian component std: A positive Real number, :math: `\sigma^2 > 0` the variance of Gaussian component lambda: A positive Real number, :math: `\lambda > 0` the rate of Exponential component Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import ExGaussian, density, cdf, E >>> from sympy.stats import variance, skewness >>> from sympy import Symbol, pprint, simplify >>> mean = Symbol("mu") >>> std = Symbol("sigma", positive=True) >>> rate = Symbol("lamda", positive=True) >>> z = Symbol("z") >>> X = ExGaussian("x", mean, std, rate) >>> pprint(density(X)(z), use_unicode=False) / 2 \ lamda*\lamda*sigma + 2*mu - 2*z/ --------------------------------- / ___ / 2 \\ 2 |\/ 2 *\lamda*sigma + mu - z/| lamda*e *erfc|-----------------------------| \ 2*sigma / ---------------------------------------------------------------------------- 2 >>> cdf(X)(z) -(erf(sqrt(2)*(-lamda**2*sigma**2 + lamda*(-mu + z))/(2*lamda*sigma))/2 + 1/2)*exp(lamda**2*sigma**2/2 - lamda*(-mu + z)) + erf(sqrt(2)*(-mu + z)/(2*sigma))/2 + 1/2 >>> E(X) (lamda*mu + 1)/lamda >>> simplify(variance(X)) sigma**2 + lamda**(-2) >>> simplify(skewness(X)) 2/(lamda**2*sigma**2 + 1)**(3/2) References ========== .. [1] https://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution """ return rv(name, ExGaussianDistribution, (mean, std, rate)) #------------------------------------------------------------------------------- # Exponential distribution ----------------------------------------------------- class ExponentialDistribution(SingleContinuousDistribution): _argnames = ('rate',) set = Interval(0, oo) @staticmethod def check(rate): _value_check(rate > 0, "Rate must be positive.") def pdf(self, x): return self.rate * exp(-self.rate*x) def _cdf(self, x): return Piecewise( (S.One - exp(-self.rate*x), x >= 0), (0, True), ) def _characteristic_function(self, t): rate = self.rate return rate / (rate - I*t) def _moment_generating_function(self, t): rate = self.rate return rate / (rate - t) def _quantile(self, p): return -log(1-p)/self.rate def Exponential(name, rate): r""" Create a continuous random variable with an Exponential distribution. Explanation =========== The density of the exponential distribution is given by .. math:: f(x) := \lambda \exp(-\lambda x) with $x > 0$. Note that the expected value is `1/\lambda`. Parameters ========== rate : A positive Real number, `\lambda > 0`, the rate (or inverse scale/inverse mean) Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Exponential, density, cdf, E >>> from sympy.stats import variance, std, skewness, quantile >>> from sympy import Symbol >>> l = Symbol("lambda", positive=True) >>> z = Symbol("z") >>> p = Symbol("p") >>> X = Exponential("x", l) >>> density(X)(z) lambda*exp(-lambda*z) >>> cdf(X)(z) Piecewise((1 - exp(-lambda*z), z >= 0), (0, True)) >>> quantile(X)(p) -log(1 - p)/lambda >>> E(X) 1/lambda >>> variance(X) lambda**(-2) >>> skewness(X) 2 >>> X = Exponential('x', 10) >>> density(X)(z) 10*exp(-10*z) >>> E(X) 1/10 >>> std(X) 1/10 References ========== .. [1] https://en.wikipedia.org/wiki/Exponential_distribution .. [2] http://mathworld.wolfram.com/ExponentialDistribution.html """ return rv(name, ExponentialDistribution, (rate, )) # ------------------------------------------------------------------------------- # Exponential Power distribution ----------------------------------------------------- class ExponentialPowerDistribution(SingleContinuousDistribution): _argnames = ('mu', 'alpha', 'beta') set = Interval(-oo, oo) @staticmethod def check(mu, alpha, beta): _value_check(alpha > 0, "Scale parameter alpha must be positive.") _value_check(beta > 0, "Shape parameter beta must be positive.") def pdf(self, x): mu, alpha, beta = self.mu, self.alpha, self.beta num = beta*exp(-(Abs(x - mu)/alpha)**beta) den = 2*alpha*gamma(1/beta) return num/den def _cdf(self, x): mu, alpha, beta = self.mu, self.alpha, self.beta num = lowergamma(1/beta, (Abs(x - mu) / alpha)**beta) den = 2*gamma(1/beta) return sign(x - mu)*num/den + S.Half def ExponentialPower(name, mu, alpha, beta): r""" Create a Continuous Random Variable with Exponential Power distribution. This distribution is known also as Generalized Normal distribution version 1. Explanation =========== The density of the Exponential Power distribution is given by .. math:: f(x) := \frac{\beta}{2\alpha\Gamma(\frac{1}{\beta})} e^{{-(\frac{|x - \mu|}{\alpha})^{\beta}}} with :math:`x \in [ - \infty, \infty ]`. Parameters ========== mu : Real number A location. alpha : Real number,``alpha > 0`` A scale. beta : Real number, ``beta > 0`` A shape. Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import ExponentialPower, density, cdf >>> from sympy import Symbol, pprint >>> z = Symbol("z") >>> mu = Symbol("mu") >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> X = ExponentialPower("x", mu, alpha, beta) >>> pprint(density(X)(z), use_unicode=False) beta /|mu - z|\ -|--------| \ alpha / beta*e --------------------- / 1 \ 2*alpha*Gamma|----| \beta/ >>> cdf(X)(z) 1/2 + lowergamma(1/beta, (Abs(mu - z)/alpha)**beta)*sign(-mu + z)/(2*gamma(1/beta)) References ========== .. [1] https://reference.wolfram.com/language/ref/ExponentialPowerDistribution.html .. [2] https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1 """ return rv(name, ExponentialPowerDistribution, (mu, alpha, beta)) #------------------------------------------------------------------------------- # F distribution --------------------------------------------------------------- class FDistributionDistribution(SingleContinuousDistribution): _argnames = ('d1', 'd2') set = Interval(0, oo) @staticmethod def check(d1, d2): _value_check((d1 > 0, d1.is_integer), "Degrees of freedom d1 must be positive integer.") _value_check((d2 > 0, d2.is_integer), "Degrees of freedom d2 must be positive integer.") def pdf(self, x): d1, d2 = self.d1, self.d2 return (sqrt((d1*x)**d1*d2**d2 / (d1*x+d2)**(d1+d2)) / (x * beta_fn(d1/2, d2/2))) def _moment_generating_function(self, t): raise NotImplementedError('The moment generating function for the ' 'F-distribution does not exist.') def FDistribution(name, d1, d2): r""" Create a continuous random variable with a F distribution. Explanation =========== The density of the F distribution is given by .. math:: f(x) := \frac{\sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}} {(d_1 x + d_2)^{d_1 + d_2}}}} {x \mathrm{B} \left(\frac{d_1}{2}, \frac{d_2}{2}\right)} with :math:`x > 0`. Parameters ========== d1 : `d_1 > 0`, where d_1 is the degrees of freedom (n_1 - 1) d2 : `d_2 > 0`, where d_2 is the degrees of freedom (n_2 - 1) Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import FDistribution, density >>> from sympy import Symbol, pprint >>> d1 = Symbol("d1", positive=True) >>> d2 = Symbol("d2", positive=True) >>> z = Symbol("z") >>> X = FDistribution("x", d1, d2) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) d2 -- ______________________________ 2 / d1 -d1 - d2 d2 *\/ (d1*z) *(d1*z + d2) -------------------------------------- /d1 d2\ z*B|--, --| \2 2 / References ========== .. [1] https://en.wikipedia.org/wiki/F-distribution .. [2] http://mathworld.wolfram.com/F-Distribution.html """ return rv(name, FDistributionDistribution, (d1, d2)) #------------------------------------------------------------------------------- # Fisher Z distribution -------------------------------------------------------- class FisherZDistribution(SingleContinuousDistribution): _argnames = ('d1', 'd2') set = Interval(-oo, oo) @staticmethod def check(d1, d2): _value_check(d1 > 0, "Degree of freedom d1 must be positive.") _value_check(d2 > 0, "Degree of freedom d2 must be positive.") def pdf(self, x): d1, d2 = self.d1, self.d2 return (2*d1**(d1/2)*d2**(d2/2) / beta_fn(d1/2, d2/2) * exp(d1*x) / (d1*exp(2*x)+d2)**((d1+d2)/2)) def FisherZ(name, d1, d2): r""" Create a Continuous Random Variable with an Fisher's Z distribution. Explanation =========== The density of the Fisher's Z distribution is given by .. math:: f(x) := \frac{2d_1^{d_1/2} d_2^{d_2/2}} {\mathrm{B}(d_1/2, d_2/2)} \frac{e^{d_1z}}{\left(d_1e^{2z}+d_2\right)^{\left(d_1+d_2\right)/2}} .. TODO - What is the difference between these degrees of freedom? Parameters ========== d1 : ``d_1 > 0`` Degree of freedom. d2 : ``d_2 > 0`` Degree of freedom. Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import FisherZ, density >>> from sympy import Symbol, pprint >>> d1 = Symbol("d1", positive=True) >>> d2 = Symbol("d2", positive=True) >>> z = Symbol("z") >>> X = FisherZ("x", d1, d2) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) d1 d2 d1 d2 - -- - -- -- -- 2 2 2 2 / 2*z \ d1*z 2*d1 *d2 *\d1*e + d2/ *e ----------------------------------------- /d1 d2\ B|--, --| \2 2 / References ========== .. [1] https://en.wikipedia.org/wiki/Fisher%27s_z-distribution .. [2] http://mathworld.wolfram.com/Fishersz-Distribution.html """ return rv(name, FisherZDistribution, (d1, d2)) #------------------------------------------------------------------------------- # Frechet distribution --------------------------------------------------------- class FrechetDistribution(SingleContinuousDistribution): _argnames = ('a', 's', 'm') set = Interval(0, oo) @staticmethod def check(a, s, m): _value_check(a > 0, "Shape parameter alpha must be positive.") _value_check(s > 0, "Scale parameter s must be positive.") def __new__(cls, a, s=1, m=0): a, s, m = list(map(sympify, (a, s, m))) return Basic.__new__(cls, a, s, m) def pdf(self, x): a, s, m = self.a, self.s, self.m return a/s * ((x-m)/s)**(-1-a) * exp(-((x-m)/s)**(-a)) def _cdf(self, x): a, s, m = self.a, self.s, self.m return Piecewise((exp(-((x-m)/s)**(-a)), x >= m), (S.Zero, True)) def Frechet(name, a, s=1, m=0): r""" Create a continuous random variable with a Frechet distribution. Explanation =========== The density of the Frechet distribution is given by .. math:: f(x) := \frac{\alpha}{s} \left(\frac{x-m}{s}\right)^{-1-\alpha} e^{-(\frac{x-m}{s})^{-\alpha}} with :math:`x \geq m`. Parameters ========== a : Real number, :math:`a \in \left(0, \infty\right)` the shape s : Real number, :math:`s \in \left(0, \infty\right)` the scale m : Real number, :math:`m \in \left(-\infty, \infty\right)` the minimum Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Frechet, density, cdf >>> from sympy import Symbol >>> a = Symbol("a", positive=True) >>> s = Symbol("s", positive=True) >>> m = Symbol("m", real=True) >>> z = Symbol("z") >>> X = Frechet("x", a, s, m) >>> density(X)(z) a*((-m + z)/s)**(-a - 1)*exp(-1/((-m + z)/s)**a)/s >>> cdf(X)(z) Piecewise((exp(-1/((-m + z)/s)**a), m <= z), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Fr%C3%A9chet_distribution """ return rv(name, FrechetDistribution, (a, s, m)) #------------------------------------------------------------------------------- # Gamma distribution ----------------------------------------------------------- class GammaDistribution(SingleContinuousDistribution): _argnames = ('k', 'theta') set = Interval(0, oo) @staticmethod def check(k, theta): _value_check(k > 0, "k must be positive") _value_check(theta > 0, "Theta must be positive") def pdf(self, x): k, theta = self.k, self.theta return x**(k - 1) * exp(-x/theta) / (gamma(k)*theta**k) def _cdf(self, x): k, theta = self.k, self.theta return Piecewise( (lowergamma(k, S(x)/theta)/gamma(k), x > 0), (S.Zero, True)) def _characteristic_function(self, t): return (1 - self.theta*I*t)**(-self.k) def _moment_generating_function(self, t): return (1- self.theta*t)**(-self.k) def Gamma(name, k, theta): r""" Create a continuous random variable with a Gamma distribution. Explanation =========== The density of the Gamma distribution is given by .. math:: f(x) := \frac{1}{\Gamma(k) \theta^k} x^{k - 1} e^{-\frac{x}{\theta}} with :math:`x \in [0,1]`. Parameters ========== k : Real number, ``k > 0``, a shape theta : Real number, `\theta > 0`, a scale Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Gamma, density, cdf, E, variance >>> from sympy import Symbol, pprint, simplify >>> k = Symbol("k", positive=True) >>> theta = Symbol("theta", positive=True) >>> z = Symbol("z") >>> X = Gamma("x", k, theta) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) -z ----- -k k - 1 theta theta *z *e --------------------- Gamma(k) >>> C = cdf(X, meijerg=True)(z) >>> pprint(C, use_unicode=False) / / z \ |k*lowergamma|k, -----| | \ theta/ <---------------------- for z >= 0 | Gamma(k + 1) | \ 0 otherwise >>> E(X) k*theta >>> V = simplify(variance(X)) >>> pprint(V, use_unicode=False) 2 k*theta References ========== .. [1] https://en.wikipedia.org/wiki/Gamma_distribution .. [2] http://mathworld.wolfram.com/GammaDistribution.html """ return rv(name, GammaDistribution, (k, theta)) #------------------------------------------------------------------------------- # Inverse Gamma distribution --------------------------------------------------- class GammaInverseDistribution(SingleContinuousDistribution): _argnames = ('a', 'b') set = Interval(0, oo) @staticmethod def check(a, b): _value_check(a > 0, "alpha must be positive") _value_check(b > 0, "beta must be positive") def pdf(self, x): a, b = self.a, self.b return b**a/gamma(a) * x**(-a-1) * exp(-b/x) def _cdf(self, x): a, b = self.a, self.b return Piecewise((uppergamma(a,b/x)/gamma(a), x > 0), (S.Zero, True)) def _characteristic_function(self, t): a, b = self.a, self.b return 2 * (-I*b*t)**(a/2) * besselk(a, sqrt(-4*I*b*t)) / gamma(a) def _moment_generating_function(self, t): raise NotImplementedError('The moment generating function for the ' 'gamma inverse distribution does not exist.') def GammaInverse(name, a, b): r""" Create a continuous random variable with an inverse Gamma distribution. Explanation =========== The density of the inverse Gamma distribution is given by .. math:: f(x) := \frac{\beta^\alpha}{\Gamma(\alpha)} x^{-\alpha - 1} \exp\left(\frac{-\beta}{x}\right) with :math:`x > 0`. Parameters ========== a : Real number, `a > 0` a shape b : Real number, `b > 0` a scale Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import GammaInverse, density, cdf >>> from sympy import Symbol, pprint >>> a = Symbol("a", positive=True) >>> b = Symbol("b", positive=True) >>> z = Symbol("z") >>> X = GammaInverse("x", a, b) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) -b --- a -a - 1 z b *z *e --------------- Gamma(a) >>> cdf(X)(z) Piecewise((uppergamma(a, b/z)/gamma(a), z > 0), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Inverse-gamma_distribution """ return rv(name, GammaInverseDistribution, (a, b)) #------------------------------------------------------------------------------- # Gumbel distribution (Maximum and Minimum) -------------------------------------------------------- class GumbelDistribution(SingleContinuousDistribution): _argnames = ('beta', 'mu', 'minimum') set = Interval(-oo, oo) @staticmethod def check(beta, mu, minimum): _value_check(beta > 0, "Scale parameter beta must be positive.") def pdf(self, x): beta, mu = self.beta, self.mu z = (x - mu)/beta f_max = (1/beta)*exp(-z - exp(-z)) f_min = (1/beta)*exp(z - exp(z)) return Piecewise((f_min, self.minimum), (f_max, not self.minimum)) def _cdf(self, x): beta, mu = self.beta, self.mu z = (x - mu)/beta F_max = exp(-exp(-z)) F_min = 1 - exp(-exp(z)) return Piecewise((F_min, self.minimum), (F_max, not self.minimum)) def _characteristic_function(self, t): cf_max = gamma(1 - I*self.beta*t) * exp(I*self.mu*t) cf_min = gamma(1 + I*self.beta*t) * exp(I*self.mu*t) return Piecewise((cf_min, self.minimum), (cf_max, not self.minimum)) def _moment_generating_function(self, t): mgf_max = gamma(1 - self.beta*t) * exp(self.mu*t) mgf_min = gamma(1 + self.beta*t) * exp(self.mu*t) return Piecewise((mgf_min, self.minimum), (mgf_max, not self.minimum)) def Gumbel(name, beta, mu, minimum=False): r""" Create a Continuous Random Variable with Gumbel distribution. Explanation =========== The density of the Gumbel distribution is given by For Maximum .. math:: f(x) := \dfrac{1}{\beta} \exp \left( -\dfrac{x-\mu}{\beta} - \exp \left( -\dfrac{x - \mu}{\beta} \right) \right) with :math:`x \in [ - \infty, \infty ]`. For Minimum .. math:: f(x) := \frac{e^{- e^{\frac{- \mu + x}{\beta}} + \frac{- \mu + x}{\beta}}}{\beta} with :math:`x \in [ - \infty, \infty ]`. Parameters ========== mu : Real number, 'mu' is a location beta : Real number, 'beta > 0' is a scale minimum : Boolean, by default, False, set to True for enabling minimum distribution Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Gumbel, density, cdf >>> from sympy import Symbol >>> x = Symbol("x") >>> mu = Symbol("mu") >>> beta = Symbol("beta", positive=True) >>> X = Gumbel("x", beta, mu) >>> density(X)(x) exp(-exp(-(-mu + x)/beta) - (-mu + x)/beta)/beta >>> cdf(X)(x) exp(-exp(-(-mu + x)/beta)) References ========== .. [1] http://mathworld.wolfram.com/GumbelDistribution.html .. [2] https://en.wikipedia.org/wiki/Gumbel_distribution .. [3] http://www.mathwave.com/help/easyfit/html/analyses/distributions/gumbel_max.html .. [4] http://www.mathwave.com/help/easyfit/html/analyses/distributions/gumbel_min.html """ return rv(name, GumbelDistribution, (beta, mu, minimum)) #------------------------------------------------------------------------------- # Gompertz distribution -------------------------------------------------------- class GompertzDistribution(SingleContinuousDistribution): _argnames = ('b', 'eta') set = Interval(0, oo) @staticmethod def check(b, eta): _value_check(b > 0, "b must be positive") _value_check(eta > 0, "eta must be positive") def pdf(self, x): eta, b = self.eta, self.b return b*eta*exp(b*x)*exp(eta)*exp(-eta*exp(b*x)) def _cdf(self, x): eta, b = self.eta, self.b return 1 - exp(eta)*exp(-eta*exp(b*x)) def _moment_generating_function(self, t): eta, b = self.eta, self.b return eta * exp(eta) * expint(t/b, eta) def Gompertz(name, b, eta): r""" Create a Continuous Random Variable with Gompertz distribution. Explanation =========== The density of the Gompertz distribution is given by .. math:: f(x) := b \eta e^{b x} e^{\eta} \exp \left(-\eta e^{bx} \right) with :math: 'x \in [0, \inf)'. Parameters ========== b: Real number, 'b > 0' a scale eta: Real number, 'eta > 0' a shape Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Gompertz, density >>> from sympy import Symbol >>> b = Symbol("b", positive=True) >>> eta = Symbol("eta", positive=True) >>> z = Symbol("z") >>> X = Gompertz("x", b, eta) >>> density(X)(z) b*eta*exp(eta)*exp(b*z)*exp(-eta*exp(b*z)) References ========== .. [1] https://en.wikipedia.org/wiki/Gompertz_distribution """ return rv(name, GompertzDistribution, (b, eta)) #------------------------------------------------------------------------------- # Kumaraswamy distribution ----------------------------------------------------- class KumaraswamyDistribution(SingleContinuousDistribution): _argnames = ('a', 'b') set = Interval(0, oo) @staticmethod def check(a, b): _value_check(a > 0, "a must be positive") _value_check(b > 0, "b must be positive") def pdf(self, x): a, b = self.a, self.b return a * b * x**(a-1) * (1-x**a)**(b-1) def _cdf(self, x): a, b = self.a, self.b return Piecewise( (S.Zero, x < S.Zero), (1 - (1 - x**a)**b, x <= S.One), (S.One, True)) def Kumaraswamy(name, a, b): r""" Create a Continuous Random Variable with a Kumaraswamy distribution. Explanation =========== The density of the Kumaraswamy distribution is given by .. math:: f(x) := a b x^{a-1} (1-x^a)^{b-1} with :math:`x \in [0,1]`. Parameters ========== a : Real number, ``a > 0`` a shape b : Real number, ``b > 0`` a shape Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Kumaraswamy, density, cdf >>> from sympy import Symbol, pprint >>> a = Symbol("a", positive=True) >>> b = Symbol("b", positive=True) >>> z = Symbol("z") >>> X = Kumaraswamy("x", a, b) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) b - 1 a - 1 / a\ a*b*z *\1 - z / >>> cdf(X)(z) Piecewise((0, z < 0), (1 - (1 - z**a)**b, z <= 1), (1, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Kumaraswamy_distribution """ return rv(name, KumaraswamyDistribution, (a, b)) #------------------------------------------------------------------------------- # Laplace distribution --------------------------------------------------------- class LaplaceDistribution(SingleContinuousDistribution): _argnames = ('mu', 'b') set = Interval(-oo, oo) @staticmethod def check(mu, b): _value_check(b > 0, "Scale parameter b must be positive.") _value_check(mu.is_real, "Location parameter mu should be real") def pdf(self, x): mu, b = self.mu, self.b return 1/(2*b)*exp(-Abs(x - mu)/b) def _cdf(self, x): mu, b = self.mu, self.b return Piecewise( (S.Half*exp((x - mu)/b), x < mu), (S.One - S.Half*exp(-(x - mu)/b), x >= mu) ) def _characteristic_function(self, t): return exp(self.mu*I*t) / (1 + self.b**2*t**2) def _moment_generating_function(self, t): return exp(self.mu*t) / (1 - self.b**2*t**2) def Laplace(name, mu, b): r""" Create a continuous random variable with a Laplace distribution. Explanation =========== The density of the Laplace distribution is given by .. math:: f(x) := \frac{1}{2 b} \exp \left(-\frac{|x-\mu|}b \right) Parameters ========== mu : Real number or a list/matrix, the location (mean) or the location vector b : Real number or a positive definite matrix, representing a scale or the covariance matrix. Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Laplace, density, cdf >>> from sympy import Symbol, pprint >>> mu = Symbol("mu") >>> b = Symbol("b", positive=True) >>> z = Symbol("z") >>> X = Laplace("x", mu, b) >>> density(X)(z) exp(-Abs(mu - z)/b)/(2*b) >>> cdf(X)(z) Piecewise((exp((-mu + z)/b)/2, mu > z), (1 - exp((mu - z)/b)/2, True)) >>> L = Laplace('L', [1, 2], [[1, 0], [0, 1]]) >>> pprint(density(L)(1, 2), use_unicode=False) 5 / ____\ e *besselk\0, \/ 35 / --------------------- pi References ========== .. [1] https://en.wikipedia.org/wiki/Laplace_distribution .. [2] http://mathworld.wolfram.com/LaplaceDistribution.html """ if isinstance(mu, (list, MatrixBase)) and\ isinstance(b, (list, MatrixBase)): from sympy.stats.joint_rv_types import MultivariateLaplace return MultivariateLaplace(name, mu, b) return rv(name, LaplaceDistribution, (mu, b)) #------------------------------------------------------------------------------- # Levy distribution --------------------------------------------------------- class LevyDistribution(SingleContinuousDistribution): _argnames = ('mu', 'c') @property def set(self): return Interval(self.mu, oo) @staticmethod def check(mu, c): _value_check(c > 0, "c (scale parameter) must be positive") _value_check(mu.is_real, "mu (location paramater) must be real") def pdf(self, x): mu, c = self.mu, self.c return sqrt(c/(2*pi))*exp(-c/(2*(x - mu)))/((x - mu)**(S.One + S.Half)) def _cdf(self, x): mu, c = self.mu, self.c return erfc(sqrt(c/(2*(x - mu)))) def _characteristic_function(self, t): mu, c = self.mu, self.c return exp(I * mu * t - sqrt(-2 * I * c * t)) def _moment_generating_function(self, t): raise NotImplementedError('The moment generating function of Levy distribution does not exist.') def Levy(name, mu, c): r""" Create a continuous random variable with a Levy distribution. The density of the Levy distribution is given by .. math:: f(x) := \sqrt(\frac{c}{2 \pi}) \frac{\exp -\frac{c}{2 (x - \mu)}}{(x - \mu)^{3/2}} Parameters ========== mu : Real number The location parameter. c : Real number, ``c > 0`` A scale parameter. Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Levy, density, cdf >>> from sympy import Symbol >>> mu = Symbol("mu", real=True) >>> c = Symbol("c", positive=True) >>> z = Symbol("z") >>> X = Levy("x", mu, c) >>> density(X)(z) sqrt(2)*sqrt(c)*exp(-c/(-2*mu + 2*z))/(2*sqrt(pi)*(-mu + z)**(3/2)) >>> cdf(X)(z) erfc(sqrt(c)*sqrt(1/(-2*mu + 2*z))) References ========== .. [1] https://en.wikipedia.org/wiki/L%C3%A9vy_distribution .. [2] http://mathworld.wolfram.com/LevyDistribution.html """ return rv(name, LevyDistribution, (mu, c)) #------------------------------------------------------------------------------- # Log-Cauchy distribution -------------------------------------------------------- class LogCauchyDistribution(SingleContinuousDistribution): _argnames = ('mu', 'sigma') set = Interval.open(0, oo) @staticmethod def check(mu, sigma): _value_check((sigma > 0) != False, "Scale parameter Gamma must be positive.") _value_check(mu.is_real != False, "Location parameter must be real.") def pdf(self, x): mu, sigma = self.mu, self.sigma return 1/(x*pi)*(sigma/((log(x) - mu)**2 + sigma**2)) def _cdf(self, x): mu, sigma = self.mu, self.sigma return (1/pi)*atan((log(x) - mu)/sigma) + S.Half def _characteristic_function(self, t): raise NotImplementedError("The characteristic function for the " "Log-Cauchy distribution does not exist.") def _moment_generating_function(self, t): raise NotImplementedError("The moment generating function for the " "Log-Cauchy distribution does not exist.") def LogCauchy(name, mu, sigma): r""" Create a continuous random variable with a Log-Cauchy distribution. The density of the Log-Cauchy distribution is given by .. math:: f(x) := \frac{1}{\pi x} \frac{\sigma}{(log(x)-\mu^2) + \sigma^2} Parameters ========== mu : Real number, the location sigma : Real number, `\sigma > 0`, a scale Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import LogCauchy, density, cdf >>> from sympy import Symbol, S >>> mu = 2 >>> sigma = S.One / 5 >>> z = Symbol("z") >>> X = LogCauchy("x", mu, sigma) >>> density(X)(z) 1/(5*pi*z*((log(z) - 2)**2 + 1/25)) >>> cdf(X)(z) atan(5*log(z) - 10)/pi + 1/2 References ========== .. [1] https://en.wikipedia.org/wiki/Log-Cauchy_distribution """ return rv(name, LogCauchyDistribution, (mu, sigma)) #------------------------------------------------------------------------------- # Logistic distribution -------------------------------------------------------- class LogisticDistribution(SingleContinuousDistribution): _argnames = ('mu', 's') set = Interval(-oo, oo) @staticmethod def check(mu, s): _value_check(s > 0, "Scale parameter s must be positive.") def pdf(self, x): mu, s = self.mu, self.s return exp(-(x - mu)/s)/(s*(1 + exp(-(x - mu)/s))**2) def _cdf(self, x): mu, s = self.mu, self.s return S.One/(1 + exp(-(x - mu)/s)) def _characteristic_function(self, t): return Piecewise((exp(I*t*self.mu) * pi*self.s*t / sinh(pi*self.s*t), Ne(t, 0)), (S.One, True)) def _moment_generating_function(self, t): return exp(self.mu*t) * beta_fn(1 - self.s*t, 1 + self.s*t) def _quantile(self, p): return self.mu - self.s*log(-S.One + S.One/p) def Logistic(name, mu, s): r""" Create a continuous random variable with a logistic distribution. Explanation =========== The density of the logistic distribution is given by .. math:: f(x) := \frac{e^{-(x-\mu)/s}} {s\left(1+e^{-(x-\mu)/s}\right)^2} Parameters ========== mu : Real number, the location (mean) s : Real number, `s > 0` a scale Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Logistic, density, cdf >>> from sympy import Symbol >>> mu = Symbol("mu", real=True) >>> s = Symbol("s", positive=True) >>> z = Symbol("z") >>> X = Logistic("x", mu, s) >>> density(X)(z) exp((mu - z)/s)/(s*(exp((mu - z)/s) + 1)**2) >>> cdf(X)(z) 1/(exp((mu - z)/s) + 1) References ========== .. [1] https://en.wikipedia.org/wiki/Logistic_distribution .. [2] http://mathworld.wolfram.com/LogisticDistribution.html """ return rv(name, LogisticDistribution, (mu, s)) #------------------------------------------------------------------------------- # Log-logistic distribution -------------------------------------------------------- class LogLogisticDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta') set = Interval(0, oo) @staticmethod def check(alpha, beta): _value_check(alpha > 0, "Scale parameter Alpha must be positive.") _value_check(beta > 0, "Shape parameter Beta must be positive.") def pdf(self, x): a, b = self.alpha, self.beta return ((b/a)*(x/a)**(b - 1))/(1 + (x/a)**b)**2 def _cdf(self, x): a, b = self.alpha, self.beta return 1/(1 + (x/a)**(-b)) def _quantile(self, p): a, b = self.alpha, self.beta return a*((p/(1 - p))**(1/b)) def expectation(self, expr, var, **kwargs): a, b = self.args return Piecewise((S.NaN, b <= 1), (pi*a/(b*sin(pi/b)), True)) def LogLogistic(name, alpha, beta): r""" Create a continuous random variable with a log-logistic distribution. The distribution is unimodal when ``beta > 1``. Explanation =========== The density of the log-logistic distribution is given by .. math:: f(x) := \frac{(\frac{\beta}{\alpha})(\frac{x}{\alpha})^{\beta - 1}} {(1 + (\frac{x}{\alpha})^{\beta})^2} Parameters ========== alpha : Real number, `\alpha > 0`, scale parameter and median of distribution beta : Real number, `\beta > 0` a shape parameter Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import LogLogistic, density, cdf, quantile >>> from sympy import Symbol, pprint >>> alpha = Symbol("alpha", real=True, positive=True) >>> beta = Symbol("beta", real=True, positive=True) >>> p = Symbol("p") >>> z = Symbol("z", positive=True) >>> X = LogLogistic("x", alpha, beta) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) beta - 1 / z \ beta*|-----| \alpha/ ------------------------ 2 / beta \ |/ z \ | alpha*||-----| + 1| \\alpha/ / >>> cdf(X)(z) 1/(1 + (z/alpha)**(-beta)) >>> quantile(X)(p) alpha*(p/(1 - p))**(1/beta) References ========== .. [1] https://en.wikipedia.org/wiki/Log-logistic_distribution """ return rv(name, LogLogisticDistribution, (alpha, beta)) #------------------------------------------------------------------------------- #Logit-Normal distribution------------------------------------------------------ class LogitNormalDistribution(SingleContinuousDistribution): _argnames = ('mu', 's') set = Interval.open(0, 1) @staticmethod def check(mu, s): _value_check((s ** 2).is_real is not False and s ** 2 > 0, "Squared scale parameter s must be positive.") _value_check(mu.is_real is not False, "Location parameter must be real") def _logit(self, x): return log(x / (1 - x)) def pdf(self, x): mu, s = self.mu, self.s return exp(-(self._logit(x) - mu)**2/(2*s**2))*(S.One/sqrt(2*pi*(s**2)))*(1/(x*(1 - x))) def _cdf(self, x): mu, s = self.mu, self.s return (S.One/2)*(1 + erf((self._logit(x) - mu)/(sqrt(2*s**2)))) def LogitNormal(name, mu, s): r""" Create a continuous random variable with a Logit-Normal distribution. The density of the logistic distribution is given by .. math:: f(x) := \frac{1}{s \sqrt{2 \pi}} \frac{1}{x(1 - x)} e^{- \frac{(logit(x) - \mu)^2}{s^2}} where logit(x) = \log(\frac{x}{1 - x}) Parameters ========== mu : Real number, the location (mean) s : Real number, `s > 0` a scale Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import LogitNormal, density, cdf >>> from sympy import Symbol,pprint >>> mu = Symbol("mu", real=True) >>> s = Symbol("s", positive=True) >>> z = Symbol("z") >>> X = LogitNormal("x",mu,s) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) 2 / / z \\ -|-mu + log|-----|| \ \1 - z// --------------------- 2 ___ 2*s \/ 2 *e ---------------------------- ____ 2*\/ pi *s*z*(1 - z) >>> density(X)(z) sqrt(2)*exp(-(-mu + log(z/(1 - z)))**2/(2*s**2))/(2*sqrt(pi)*s*z*(1 - z)) >>> cdf(X)(z) erf(sqrt(2)*(-mu + log(z/(1 - z)))/(2*s))/2 + 1/2 References ========== .. [1] https://en.wikipedia.org/wiki/Logit-normal_distribution """ return rv(name, LogitNormalDistribution, (mu, s)) #------------------------------------------------------------------------------- # Log Normal distribution ------------------------------------------------------ class LogNormalDistribution(SingleContinuousDistribution): _argnames = ('mean', 'std') set = Interval(0, oo) @staticmethod def check(mean, std): _value_check(std > 0, "Parameter std must be positive.") def pdf(self, x): mean, std = self.mean, self.std return exp(-(log(x) - mean)**2 / (2*std**2)) / (x*sqrt(2*pi)*std) def _cdf(self, x): mean, std = self.mean, self.std return Piecewise( (S.Half + S.Half*erf((log(x) - mean)/sqrt(2)/std), x > 0), (S.Zero, True) ) def _moment_generating_function(self, t): raise NotImplementedError('Moment generating function of the log-normal distribution is not defined.') def LogNormal(name, mean, std): r""" Create a continuous random variable with a log-normal distribution. Explanation =========== The density of the log-normal distribution is given by .. math:: f(x) := \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-\frac{\left(\ln x-\mu\right)^2}{2\sigma^2}} with :math:`x \geq 0`. Parameters ========== mu : Real number The log-scale. sigma : Real number A shape. ($\sigma^2 > 0$) Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import LogNormal, density >>> from sympy import Symbol, pprint >>> mu = Symbol("mu", real=True) >>> sigma = Symbol("sigma", positive=True) >>> z = Symbol("z") >>> X = LogNormal("x", mu, sigma) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) 2 -(-mu + log(z)) ----------------- 2 ___ 2*sigma \/ 2 *e ------------------------ ____ 2*\/ pi *sigma*z >>> X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1 >>> density(X)(z) sqrt(2)*exp(-log(z)**2/2)/(2*sqrt(pi)*z) References ========== .. [1] https://en.wikipedia.org/wiki/Lognormal .. [2] http://mathworld.wolfram.com/LogNormalDistribution.html """ return rv(name, LogNormalDistribution, (mean, std)) #------------------------------------------------------------------------------- # Lomax Distribution ----------------------------------------------------------- class LomaxDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'lamda',) set = Interval(0, oo) @staticmethod def check(alpha, lamda): _value_check(alpha.is_real, "Shape parameter should be real.") _value_check(lamda.is_real, "Scale parameter should be real.") _value_check(alpha.is_positive, "Shape parameter should be positive.") _value_check(lamda.is_positive, "Scale parameter should be positive.") def pdf(self, x): lamba, alpha = self.lamda, self.alpha return (alpha/lamba) * (S.One + x/lamba)**(-alpha-1) def Lomax(name, alpha, lamda): r""" Create a continuous random variable with a Lomax distribution. Explanation =========== The density of the Lomax distribution is given by .. math:: f(x) := \frac{\alpha}{\lambda}\left[1+\frac{x}{\lambda}\right]^{-(\alpha+1)} Parameters ========== alpha : Real Number, `alpha > 0` Shape parameter lamda : Real Number, `lamda > 0` Scale parameter Examples ======== >>> from sympy.stats import Lomax, density, cdf, E >>> from sympy import symbols >>> a, l = symbols('a, l', positive=True) >>> X = Lomax('X', a, l) >>> x = symbols('x') >>> density(X)(x) a*(1 + x/l)**(-a - 1)/l >>> cdf(X)(x) Piecewise((1 - 1/(1 + x/l)**a, x >= 0), (0, True)) >>> a = 2 >>> X = Lomax('X', a, l) >>> E(X) l Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Lomax_distribution """ return rv(name, LomaxDistribution, (alpha, lamda)) #------------------------------------------------------------------------------- # Maxwell distribution --------------------------------------------------------- class MaxwellDistribution(SingleContinuousDistribution): _argnames = ('a',) set = Interval(0, oo) @staticmethod def check(a): _value_check(a > 0, "Parameter a must be positive.") def pdf(self, x): a = self.a return sqrt(2/pi)*x**2*exp(-x**2/(2*a**2))/a**3 def _cdf(self, x): a = self.a return erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a) def Maxwell(name, a): r""" Create a continuous random variable with a Maxwell distribution. Explanation =========== The density of the Maxwell distribution is given by .. math:: f(x) := \sqrt{\frac{2}{\pi}} \frac{x^2 e^{-x^2/(2a^2)}}{a^3} with :math:`x \geq 0`. .. TODO - what does the parameter mean? Parameters ========== a : Real number, `a > 0` Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Maxwell, density, E, variance >>> from sympy import Symbol, simplify >>> a = Symbol("a", positive=True) >>> z = Symbol("z") >>> X = Maxwell("x", a) >>> density(X)(z) sqrt(2)*z**2*exp(-z**2/(2*a**2))/(sqrt(pi)*a**3) >>> E(X) 2*sqrt(2)*a/sqrt(pi) >>> simplify(variance(X)) a**2*(-8 + 3*pi)/pi References ========== .. [1] https://en.wikipedia.org/wiki/Maxwell_distribution .. [2] http://mathworld.wolfram.com/MaxwellDistribution.html """ return rv(name, MaxwellDistribution, (a, )) #------------------------------------------------------------------------------- # Moyal Distribution ----------------------------------------------------------- class MoyalDistribution(SingleContinuousDistribution): _argnames = ('mu', 'sigma') @staticmethod def check(mu, sigma): _value_check(mu.is_real, "Location parameter must be real.") _value_check(sigma.is_real and sigma > 0, "Scale parameter must be real\ and positive.") def pdf(self, x): mu, sigma = self.mu, self.sigma num = exp(-(exp(-(x - mu)/sigma) + (x - mu)/(sigma))/2) den = (sqrt(2*pi) * sigma) return num/den def _characteristic_function(self, t): mu, sigma = self.mu, self.sigma term1 = exp(I*t*mu) term2 = (2**(-I*sigma*t) * gamma(Rational(1, 2) - I*t*sigma)) return (term1 * term2)/sqrt(pi) def _moment_generating_function(self, t): mu, sigma = self.mu, self.sigma term1 = exp(t*mu) term2 = (2**(-1*sigma*t) * gamma(Rational(1, 2) - t*sigma)) return (term1 * term2)/sqrt(pi) def Moyal(name, mu, sigma): r""" Create a continuous random variable with a Moyal distribution. Explanation =========== The density of the Moyal distribution is given by .. math:: f(x) := \frac{\exp-\frac{1}{2}\exp-\frac{x-\mu}{\sigma}-\frac{x-\mu}{2\sigma}}{\sqrt{2\pi}\sigma} with :math:`x \in \mathbb{R}`. Parameters ========== mu : Real number Location parameter sigma : Real positive number Scale parameter Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Moyal, density, cdf >>> from sympy import Symbol, simplify >>> mu = Symbol("mu", real=True) >>> sigma = Symbol("sigma", positive=True, real=True) >>> z = Symbol("z") >>> X = Moyal("x", mu, sigma) >>> density(X)(z) sqrt(2)*exp(-exp((mu - z)/sigma)/2 - (-mu + z)/(2*sigma))/(2*sqrt(pi)*sigma) >>> simplify(cdf(X)(z)) 1 - erf(sqrt(2)*exp((mu - z)/(2*sigma))/2) References ========== .. [1] https://reference.wolfram.com/language/ref/MoyalDistribution.html .. [2] http://www.stat.rice.edu/~dobelman/textfiles/DistributionsHandbook.pdf """ return rv(name, MoyalDistribution, (mu, sigma)) #------------------------------------------------------------------------------- # Nakagami distribution -------------------------------------------------------- class NakagamiDistribution(SingleContinuousDistribution): _argnames = ('mu', 'omega') set = Interval(0, oo) @staticmethod def check(mu, omega): _value_check(mu >= S.Half, "Shape parameter mu must be greater than equal to 1/2.") _value_check(omega > 0, "Spread parameter omega must be positive.") def pdf(self, x): mu, omega = self.mu, self.omega return 2*mu**mu/(gamma(mu)*omega**mu)*x**(2*mu - 1)*exp(-mu/omega*x**2) def _cdf(self, x): mu, omega = self.mu, self.omega return Piecewise( (lowergamma(mu, (mu/omega)*x**2)/gamma(mu), x > 0), (S.Zero, True)) def Nakagami(name, mu, omega): r""" Create a continuous random variable with a Nakagami distribution. Explanation =========== The density of the Nakagami distribution is given by .. math:: f(x) := \frac{2\mu^\mu}{\Gamma(\mu)\omega^\mu} x^{2\mu-1} \exp\left(-\frac{\mu}{\omega}x^2 \right) with :math:`x > 0`. Parameters ========== mu : Real number, `\mu \geq \frac{1}{2}` a shape omega : Real number, `\omega > 0`, the spread Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Nakagami, density, E, variance, cdf >>> from sympy import Symbol, simplify, pprint >>> mu = Symbol("mu", positive=True) >>> omega = Symbol("omega", positive=True) >>> z = Symbol("z") >>> X = Nakagami("x", mu, omega) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) 2 -mu*z ------- mu -mu 2*mu - 1 omega 2*mu *omega *z *e ---------------------------------- Gamma(mu) >>> simplify(E(X)) sqrt(mu)*sqrt(omega)*gamma(mu + 1/2)/gamma(mu + 1) >>> V = simplify(variance(X)) >>> pprint(V, use_unicode=False) 2 omega*Gamma (mu + 1/2) omega - ----------------------- Gamma(mu)*Gamma(mu + 1) >>> cdf(X)(z) Piecewise((lowergamma(mu, mu*z**2/omega)/gamma(mu), z > 0), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Nakagami_distribution """ return rv(name, NakagamiDistribution, (mu, omega)) #------------------------------------------------------------------------------- # Normal distribution ---------------------------------------------------------- class NormalDistribution(SingleContinuousDistribution): _argnames = ('mean', 'std') @staticmethod def check(mean, std): _value_check(std > 0, "Standard deviation must be positive") def pdf(self, x): return exp(-(x - self.mean)**2 / (2*self.std**2)) / (sqrt(2*pi)*self.std) def _cdf(self, x): mean, std = self.mean, self.std return erf(sqrt(2)*(-mean + x)/(2*std))/2 + S.Half def _characteristic_function(self, t): mean, std = self.mean, self.std return exp(I*mean*t - std**2*t**2/2) def _moment_generating_function(self, t): mean, std = self.mean, self.std return exp(mean*t + std**2*t**2/2) def _quantile(self, p): mean, std = self.mean, self.std return mean + std*sqrt(2)*erfinv(2*p - 1) def Normal(name, mean, std): r""" Create a continuous random variable with a Normal distribution. Explanation =========== The density of the Normal distribution is given by .. math:: f(x) := \frac{1}{\sigma\sqrt{2\pi}} e^{ -\frac{(x-\mu)^2}{2\sigma^2} } Parameters ========== mu : Real number or a list representing the mean or the mean vector sigma : Real number or a positive definite square matrix, :math:`\sigma^2 > 0` the variance Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Normal, density, E, std, cdf, skewness, quantile, marginal_distribution >>> from sympy import Symbol, simplify, pprint >>> mu = Symbol("mu") >>> sigma = Symbol("sigma", positive=True) >>> z = Symbol("z") >>> y = Symbol("y") >>> p = Symbol("p") >>> X = Normal("x", mu, sigma) >>> density(X)(z) sqrt(2)*exp(-(-mu + z)**2/(2*sigma**2))/(2*sqrt(pi)*sigma) >>> C = simplify(cdf(X))(z) # it needs a little more help... >>> pprint(C, use_unicode=False) / ___ \ |\/ 2 *(-mu + z)| erf|---------------| \ 2*sigma / 1 -------------------- + - 2 2 >>> quantile(X)(p) mu + sqrt(2)*sigma*erfinv(2*p - 1) >>> simplify(skewness(X)) 0 >>> X = Normal("x", 0, 1) # Mean 0, standard deviation 1 >>> density(X)(z) sqrt(2)*exp(-z**2/2)/(2*sqrt(pi)) >>> E(2*X + 1) 1 >>> simplify(std(2*X + 1)) 2 >>> m = Normal('X', [1, 2], [[2, 1], [1, 2]]) >>> pprint(density(m)(y, z), use_unicode=False) 2 2 y y*z z - -- + --- - -- + z - 1 ___ 3 3 3 \/ 3 *e ------------------------------ 6*pi >>> marginal_distribution(m, m[0])(1) 1/(2*sqrt(pi)) References ========== .. [1] https://en.wikipedia.org/wiki/Normal_distribution .. [2] http://mathworld.wolfram.com/NormalDistributionFunction.html """ if isinstance(mean, list) or getattr(mean, 'is_Matrix', False) and\ isinstance(std, list) or getattr(std, 'is_Matrix', False): from sympy.stats.joint_rv_types import MultivariateNormal return MultivariateNormal(name, mean, std) return rv(name, NormalDistribution, (mean, std)) #------------------------------------------------------------------------------- # Inverse Gaussian distribution ---------------------------------------------------------- class GaussianInverseDistribution(SingleContinuousDistribution): _argnames = ('mean', 'shape') @property def set(self): return Interval(0, oo) @staticmethod def check(mean, shape): _value_check(shape > 0, "Shape parameter must be positive") _value_check(mean > 0, "Mean must be positive") def pdf(self, x): mu, s = self.mean, self.shape return exp(-s*(x - mu)**2 / (2*x*mu**2)) * sqrt(s/(2*pi*x**3)) def _cdf(self, x): from sympy.stats import cdf mu, s = self.mean, self.shape stdNormalcdf = cdf(Normal('x', 0, 1)) first_term = stdNormalcdf(sqrt(s/x) * ((x/mu) - S.One)) second_term = exp(2*s/mu) * stdNormalcdf(-sqrt(s/x)*(x/mu + S.One)) return first_term + second_term def _characteristic_function(self, t): mu, s = self.mean, self.shape return exp((s/mu)*(1 - sqrt(1 - (2*mu**2*I*t)/s))) def _moment_generating_function(self, t): mu, s = self.mean, self.shape return exp((s/mu)*(1 - sqrt(1 - (2*mu**2*t)/s))) def GaussianInverse(name, mean, shape): r""" Create a continuous random variable with an Inverse Gaussian distribution. Inverse Gaussian distribution is also known as Wald distribution. Explanation =========== The density of the Inverse Gaussian distribution is given by .. math:: f(x) := \sqrt{\frac{\lambda}{2\pi x^3}} e^{-\frac{\lambda(x-\mu)^2}{2x\mu^2}} Parameters ========== mu : Positive number representing the mean. lambda : Positive number representing the shape parameter. Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import GaussianInverse, density, E, std, skewness >>> from sympy import Symbol, pprint >>> mu = Symbol("mu", positive=True) >>> lamda = Symbol("lambda", positive=True) >>> z = Symbol("z", positive=True) >>> X = GaussianInverse("x", mu, lamda) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) 2 -lambda*(-mu + z) ------------------- 2 ___ ________ 2*mu *z \/ 2 *\/ lambda *e ------------------------------------- ____ 3/2 2*\/ pi *z >>> E(X) mu >>> std(X).expand() mu**(3/2)/sqrt(lambda) >>> skewness(X).expand() 3*sqrt(mu)/sqrt(lambda) References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution .. [2] http://mathworld.wolfram.com/InverseGaussianDistribution.html """ return rv(name, GaussianInverseDistribution, (mean, shape)) Wald = GaussianInverse #------------------------------------------------------------------------------- # Pareto distribution ---------------------------------------------------------- class ParetoDistribution(SingleContinuousDistribution): _argnames = ('xm', 'alpha') @property def set(self): return Interval(self.xm, oo) @staticmethod def check(xm, alpha): _value_check(xm > 0, "Xm must be positive") _value_check(alpha > 0, "Alpha must be positive") def pdf(self, x): xm, alpha = self.xm, self.alpha return alpha * xm**alpha / x**(alpha + 1) def _cdf(self, x): xm, alpha = self.xm, self.alpha return Piecewise( (S.One - xm**alpha/x**alpha, x>=xm), (0, True), ) def _moment_generating_function(self, t): xm, alpha = self.xm, self.alpha return alpha * (-xm*t)**alpha * uppergamma(-alpha, -xm*t) def _characteristic_function(self, t): xm, alpha = self.xm, self.alpha return alpha * (-I * xm * t) ** alpha * uppergamma(-alpha, -I * xm * t) def Pareto(name, xm, alpha): r""" Create a continuous random variable with the Pareto distribution. Explanation =========== The density of the Pareto distribution is given by .. math:: f(x) := \frac{\alpha\,x_m^\alpha}{x^{\alpha+1}} with :math:`x \in [x_m,\infty]`. Parameters ========== xm : Real number, `x_m > 0`, a scale alpha : Real number, `\alpha > 0`, a shape Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Pareto, density >>> from sympy import Symbol >>> xm = Symbol("xm", positive=True) >>> beta = Symbol("beta", positive=True) >>> z = Symbol("z") >>> X = Pareto("x", xm, beta) >>> density(X)(z) beta*xm**beta*z**(-beta - 1) References ========== .. [1] https://en.wikipedia.org/wiki/Pareto_distribution .. [2] http://mathworld.wolfram.com/ParetoDistribution.html """ return rv(name, ParetoDistribution, (xm, alpha)) #------------------------------------------------------------------------------- # PowerFunction distribution --------------------------------------------------- class PowerFunctionDistribution(SingleContinuousDistribution): _argnames=('alpha','a','b') @property def set(self): return Interval(self.a, self.b) @staticmethod def check(alpha, a, b): _value_check(a.is_real, "Continuous Boundary parameter should be real.") _value_check(b.is_real, "Continuous Boundary parameter should be real.") _value_check(a < b, " 'a' the left Boundary must be smaller than 'b' the right Boundary." ) _value_check(alpha.is_positive, "Continuous Shape parameter should be positive.") def pdf(self, x): alpha, a, b = self.alpha, self.a, self.b num = alpha*(x - a)**(alpha - 1) den = (b - a)**alpha return num/den def PowerFunction(name, alpha, a, b): r""" Creates a continuous random variable with a Power Function Distribution. Explanation =========== The density of PowerFunction distribution is given by .. math:: f(x) := \frac{{\alpha}(x - a)^{\alpha - 1}}{(b - a)^{\alpha}} with :math:`x \in [a,b]`. Parameters ========== alpha: Positive number, `0 < alpha` the shape paramater a : Real number, :math:`-\infty < a` the left boundary b : Real number, :math:`a < b < \infty` the right boundary Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import PowerFunction, density, cdf, E, variance >>> from sympy import Symbol >>> alpha = Symbol("alpha", positive=True) >>> a = Symbol("a", real=True) >>> b = Symbol("b", real=True) >>> z = Symbol("z") >>> X = PowerFunction("X", 2, a, b) >>> density(X)(z) (-2*a + 2*z)/(-a + b)**2 >>> cdf(X)(z) Piecewise((a**2/(a**2 - 2*a*b + b**2) - 2*a*z/(a**2 - 2*a*b + b**2) + z**2/(a**2 - 2*a*b + b**2), a <= z), (0, True)) >>> alpha = 2 >>> a = 0 >>> b = 1 >>> Y = PowerFunction("Y", alpha, a, b) >>> E(Y) 2/3 >>> variance(Y) 1/18 References ========== .. [1] http://www.mathwave.com/help/easyfit/html/analyses/distributions/power_func.html """ return rv(name, PowerFunctionDistribution, (alpha, a, b)) #------------------------------------------------------------------------------- # QuadraticU distribution ------------------------------------------------------ class QuadraticUDistribution(SingleContinuousDistribution): _argnames = ('a', 'b') @property def set(self): return Interval(self.a, self.b) @staticmethod def check(a, b): _value_check(b > a, "Parameter b must be in range (%s, oo)."%(a)) def pdf(self, x): a, b = self.a, self.b alpha = 12 / (b-a)**3 beta = (a+b) / 2 return Piecewise( (alpha * (x-beta)**2, And(a<=x, x<=b)), (S.Zero, True)) def _moment_generating_function(self, t): a, b = self.a, self.b return -3 * (exp(a*t) * (4 + (a**2 + 2*a*(-2 + b) + b**2) * t) \ - exp(b*t) * (4 + (-4*b + (a + b)**2) * t)) / ((a-b)**3 * t**2) def _characteristic_function(self, t): a, b = self.a, self.b return -3*I*(exp(I*a*t*exp(I*b*t)) * (4*I - (-4*b + (a+b)**2)*t)) \ / ((a-b)**3 * t**2) def QuadraticU(name, a, b): r""" Create a Continuous Random Variable with a U-quadratic distribution. Explanation =========== The density of the U-quadratic distribution is given by .. math:: f(x) := \alpha (x-\beta)^2 with :math:`x \in [a,b]`. Parameters ========== a : Real number b : Real number, :math:`a < b` Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import QuadraticU, density >>> from sympy import Symbol, pprint >>> a = Symbol("a", real=True) >>> b = Symbol("b", real=True) >>> z = Symbol("z") >>> X = QuadraticU("x", a, b) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) / 2 | / a b \ |12*|- - - - + z| | \ 2 2 / <----------------- for And(b >= z, a <= z) | 3 | (-a + b) | \ 0 otherwise References ========== .. [1] https://en.wikipedia.org/wiki/U-quadratic_distribution """ return rv(name, QuadraticUDistribution, (a, b)) #------------------------------------------------------------------------------- # RaisedCosine distribution ---------------------------------------------------- class RaisedCosineDistribution(SingleContinuousDistribution): _argnames = ('mu', 's') @property def set(self): return Interval(self.mu - self.s, self.mu + self.s) @staticmethod def check(mu, s): _value_check(s > 0, "s must be positive") def pdf(self, x): mu, s = self.mu, self.s return Piecewise( ((1+cos(pi*(x-mu)/s)) / (2*s), And(mu-s<=x, x<=mu+s)), (S.Zero, True)) def _characteristic_function(self, t): mu, s = self.mu, self.s return Piecewise((exp(-I*pi*mu/s)/2, Eq(t, -pi/s)), (exp(I*pi*mu/s)/2, Eq(t, pi/s)), (pi**2*sin(s*t)*exp(I*mu*t) / (s*t*(pi**2 - s**2*t**2)), True)) def _moment_generating_function(self, t): mu, s = self.mu, self.s return pi**2 * sinh(s*t) * exp(mu*t) / (s*t*(pi**2 + s**2*t**2)) def RaisedCosine(name, mu, s): r""" Create a Continuous Random Variable with a raised cosine distribution. Explanation =========== The density of the raised cosine distribution is given by .. math:: f(x) := \frac{1}{2s}\left(1+\cos\left(\frac{x-\mu}{s}\pi\right)\right) with :math:`x \in [\mu-s,\mu+s]`. Parameters ========== mu : Real number s : Real number, `s > 0` Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import RaisedCosine, density >>> from sympy import Symbol, pprint >>> mu = Symbol("mu", real=True) >>> s = Symbol("s", positive=True) >>> z = Symbol("z") >>> X = RaisedCosine("x", mu, s) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) / /pi*(-mu + z)\ |cos|------------| + 1 | \ s / <--------------------- for And(z >= mu - s, z <= mu + s) | 2*s | \ 0 otherwise References ========== .. [1] https://en.wikipedia.org/wiki/Raised_cosine_distribution """ return rv(name, RaisedCosineDistribution, (mu, s)) #------------------------------------------------------------------------------- # Rayleigh distribution -------------------------------------------------------- class RayleighDistribution(SingleContinuousDistribution): _argnames = ('sigma',) set = Interval(0, oo) @staticmethod def check(sigma): _value_check(sigma > 0, "Scale parameter sigma must be positive.") def pdf(self, x): sigma = self.sigma return x/sigma**2*exp(-x**2/(2*sigma**2)) def _cdf(self, x): sigma = self.sigma return 1 - exp(-(x**2/(2*sigma**2))) def _characteristic_function(self, t): sigma = self.sigma return 1 - sigma*t*exp(-sigma**2*t**2/2) * sqrt(pi/2) * (erfi(sigma*t/sqrt(2)) - I) def _moment_generating_function(self, t): sigma = self.sigma return 1 + sigma*t*exp(sigma**2*t**2/2) * sqrt(pi/2) * (erf(sigma*t/sqrt(2)) + 1) def Rayleigh(name, sigma): r""" Create a continuous random variable with a Rayleigh distribution. Explanation =========== The density of the Rayleigh distribution is given by .. math :: f(x) := \frac{x}{\sigma^2} e^{-x^2/2\sigma^2} with :math:`x > 0`. Parameters ========== sigma : Real number, `\sigma > 0` Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Rayleigh, density, E, variance >>> from sympy import Symbol >>> sigma = Symbol("sigma", positive=True) >>> z = Symbol("z") >>> X = Rayleigh("x", sigma) >>> density(X)(z) z*exp(-z**2/(2*sigma**2))/sigma**2 >>> E(X) sqrt(2)*sqrt(pi)*sigma/2 >>> variance(X) -pi*sigma**2/2 + 2*sigma**2 References ========== .. [1] https://en.wikipedia.org/wiki/Rayleigh_distribution .. [2] http://mathworld.wolfram.com/RayleighDistribution.html """ return rv(name, RayleighDistribution, (sigma, )) #------------------------------------------------------------------------------- # Reciprocal distribution -------------------------------------------------------- class ReciprocalDistribution(SingleContinuousDistribution): _argnames = ('a', 'b') @property def set(self): return Interval(self.a, self.b) @staticmethod def check(a, b): _value_check(a > 0, "Parameter > 0. a = %s"%a) _value_check((a < b), "Parameter b must be in range (%s, +oo]. b = %s"%(a, b)) def pdf(self, x): a, b = self.a, self.b return 1/(x*(log(b) - log(a))) def Reciprocal(name, a, b): r"""Creates a continuous random variable with a reciprocal distribution. Parameters ========== a : Real number, :math:`0 < a` b : Real number, :math:`a < b` Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Reciprocal, density, cdf >>> from sympy import symbols >>> a, b, x = symbols('a, b, x', positive=True) >>> R = Reciprocal('R', a, b) >>> density(R)(x) 1/(x*(-log(a) + log(b))) >>> cdf(R)(x) Piecewise((log(a)/(log(a) - log(b)) - log(x)/(log(a) - log(b)), a <= x), (0, True)) Reference ========= .. [1] https://en.wikipedia.org/wiki/Reciprocal_distribution """ return rv(name, ReciprocalDistribution, (a, b)) #------------------------------------------------------------------------------- # Shifted Gompertz distribution ------------------------------------------------ class ShiftedGompertzDistribution(SingleContinuousDistribution): _argnames = ('b', 'eta') set = Interval(0, oo) @staticmethod def check(b, eta): _value_check(b > 0, "b must be positive") _value_check(eta > 0, "eta must be positive") def pdf(self, x): b, eta = self.b, self.eta return b*exp(-b*x)*exp(-eta*exp(-b*x))*(1+eta*(1-exp(-b*x))) def ShiftedGompertz(name, b, eta): r""" Create a continuous random variable with a Shifted Gompertz distribution. Explanation =========== The density of the Shifted Gompertz distribution is given by .. math:: f(x) := b e^{-b x} e^{-\eta \exp(-b x)} \left[1 + \eta(1 - e^(-bx)) \right] with :math: 'x \in [0, \inf)'. Parameters ========== b: Real number, 'b > 0' a scale eta: Real number, 'eta > 0' a shape Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import ShiftedGompertz, density >>> from sympy import Symbol >>> b = Symbol("b", positive=True) >>> eta = Symbol("eta", positive=True) >>> x = Symbol("x") >>> X = ShiftedGompertz("x", b, eta) >>> density(X)(x) b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x)) References ========== .. [1] https://en.wikipedia.org/wiki/Shifted_Gompertz_distribution """ return rv(name, ShiftedGompertzDistribution, (b, eta)) #------------------------------------------------------------------------------- # StudentT distribution -------------------------------------------------------- class StudentTDistribution(SingleContinuousDistribution): _argnames = ('nu',) set = Interval(-oo, oo) @staticmethod def check(nu): _value_check(nu > 0, "Degrees of freedom nu must be positive.") def pdf(self, x): nu = self.nu return 1/(sqrt(nu)*beta_fn(S.Half, nu/2))*(1 + x**2/nu)**(-(nu + 1)/2) def _cdf(self, x): nu = self.nu return S.Half + x*gamma((nu+1)/2)*hyper((S.Half, (nu+1)/2), (Rational(3, 2),), -x**2/nu)/(sqrt(pi*nu)*gamma(nu/2)) def _moment_generating_function(self, t): raise NotImplementedError('The moment generating function for the Student-T distribution is undefined.') def StudentT(name, nu): r""" Create a continuous random variable with a student's t distribution. Explanation =========== The density of the student's t distribution is given by .. math:: f(x) := \frac{\Gamma \left(\frac{\nu+1}{2} \right)} {\sqrt{\nu\pi}\Gamma \left(\frac{\nu}{2} \right)} \left(1+\frac{x^2}{\nu} \right)^{-\frac{\nu+1}{2}} Parameters ========== nu : Real number, `\nu > 0`, the degrees of freedom Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import StudentT, density, cdf >>> from sympy import Symbol, pprint >>> nu = Symbol("nu", positive=True) >>> z = Symbol("z") >>> X = StudentT("x", nu) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) nu 1 - -- - - 2 2 / 2\ | z | |1 + --| \ nu/ ----------------- ____ / nu\ \/ nu *B|1/2, --| \ 2 / >>> cdf(X)(z) 1/2 + z*gamma(nu/2 + 1/2)*hyper((1/2, nu/2 + 1/2), (3/2,), -z**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2)) References ========== .. [1] https://en.wikipedia.org/wiki/Student_t-distribution .. [2] http://mathworld.wolfram.com/Studentst-Distribution.html """ return rv(name, StudentTDistribution, (nu, )) #------------------------------------------------------------------------------- # Trapezoidal distribution ------------------------------------------------------ class TrapezoidalDistribution(SingleContinuousDistribution): _argnames = ('a', 'b', 'c', 'd') @property def set(self): return Interval(self.a, self.d) @staticmethod def check(a, b, c, d): _value_check(a < d, "Lower bound parameter a < %s. a = %s"%(d, a)) _value_check((a <= b, b < c), "Level start parameter b must be in range [%s, %s). b = %s"%(a, c, b)) _value_check((b < c, c <= d), "Level end parameter c must be in range (%s, %s]. c = %s"%(b, d, c)) _value_check(d >= c, "Upper bound parameter d > %s. d = %s"%(c, d)) def pdf(self, x): a, b, c, d = self.a, self.b, self.c, self.d return Piecewise( (2*(x-a) / ((b-a)*(d+c-a-b)), And(a <= x, x < b)), (2 / (d+c-a-b), And(b <= x, x < c)), (2*(d-x) / ((d-c)*(d+c-a-b)), And(c <= x, x <= d)), (S.Zero, True)) def Trapezoidal(name, a, b, c, d): r""" Create a continuous random variable with a trapezoidal distribution. Explanation =========== The density of the trapezoidal distribution is given by .. math:: f(x) := \begin{cases} 0 & \mathrm{for\ } x < a, \\ \frac{2(x-a)}{(b-a)(d+c-a-b)} & \mathrm{for\ } a \le x < b, \\ \frac{2}{d+c-a-b} & \mathrm{for\ } b \le x < c, \\ \frac{2(d-x)}{(d-c)(d+c-a-b)} & \mathrm{for\ } c \le x < d, \\ 0 & \mathrm{for\ } d < x. \end{cases} Parameters ========== a : Real number, :math:`a < d` b : Real number, :math:`a <= b < c` c : Real number, :math:`b < c <= d` d : Real number Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Trapezoidal, density >>> from sympy import Symbol, pprint >>> a = Symbol("a") >>> b = Symbol("b") >>> c = Symbol("c") >>> d = Symbol("d") >>> z = Symbol("z") >>> X = Trapezoidal("x", a,b,c,d) >>> pprint(density(X)(z), use_unicode=False) / -2*a + 2*z |------------------------- for And(a <= z, b > z) |(-a + b)*(-a - b + c + d) | | 2 | -------------- for And(b <= z, c > z) < -a - b + c + d | | 2*d - 2*z |------------------------- for And(d >= z, c <= z) |(-c + d)*(-a - b + c + d) | \ 0 otherwise References ========== .. [1] https://en.wikipedia.org/wiki/Trapezoidal_distribution """ return rv(name, TrapezoidalDistribution, (a, b, c, d)) #------------------------------------------------------------------------------- # Triangular distribution ------------------------------------------------------ class TriangularDistribution(SingleContinuousDistribution): _argnames = ('a', 'b', 'c') @property def set(self): return Interval(self.a, self.b) @staticmethod def check(a, b, c): _value_check(b > a, "Parameter b > %s. b = %s"%(a, b)) _value_check((a <= c, c <= b), "Parameter c must be in range [%s, %s]. c = %s"%(a, b, c)) def pdf(self, x): a, b, c = self.a, self.b, self.c return Piecewise( (2*(x - a)/((b - a)*(c - a)), And(a <= x, x < c)), (2/(b - a), Eq(x, c)), (2*(b - x)/((b - a)*(b - c)), And(c < x, x <= b)), (S.Zero, True)) def _characteristic_function(self, t): a, b, c = self.a, self.b, self.c return -2 *((b-c) * exp(I*a*t) - (b-a) * exp(I*c*t) + (c-a) * exp(I*b*t)) / ((b-a)*(c-a)*(b-c)*t**2) def _moment_generating_function(self, t): a, b, c = self.a, self.b, self.c return 2 * ((b - c) * exp(a * t) - (b - a) * exp(c * t) + (c - a) * exp(b * t)) / ( (b - a) * (c - a) * (b - c) * t ** 2) def Triangular(name, a, b, c): r""" Create a continuous random variable with a triangular distribution. Explanation =========== The density of the triangular distribution is given by .. math:: f(x) := \begin{cases} 0 & \mathrm{for\ } x < a, \\ \frac{2(x-a)}{(b-a)(c-a)} & \mathrm{for\ } a \le x < c, \\ \frac{2}{b-a} & \mathrm{for\ } x = c, \\ \frac{2(b-x)}{(b-a)(b-c)} & \mathrm{for\ } c < x \le b, \\ 0 & \mathrm{for\ } b < x. \end{cases} Parameters ========== a : Real number, :math:`a \in \left(-\infty, \infty\right)` b : Real number, :math:`a < b` c : Real number, :math:`a \leq c \leq b` Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Triangular, density >>> from sympy import Symbol, pprint >>> a = Symbol("a") >>> b = Symbol("b") >>> c = Symbol("c") >>> z = Symbol("z") >>> X = Triangular("x", a,b,c) >>> pprint(density(X)(z), use_unicode=False) / -2*a + 2*z |----------------- for And(a <= z, c > z) |(-a + b)*(-a + c) | | 2 | ------ for c = z < -a + b | | 2*b - 2*z |---------------- for And(b >= z, c < z) |(-a + b)*(b - c) | \ 0 otherwise References ========== .. [1] https://en.wikipedia.org/wiki/Triangular_distribution .. [2] http://mathworld.wolfram.com/TriangularDistribution.html """ return rv(name, TriangularDistribution, (a, b, c)) #------------------------------------------------------------------------------- # Uniform distribution --------------------------------------------------------- class UniformDistribution(SingleContinuousDistribution): _argnames = ('left', 'right') @property def set(self): return Interval(self.left, self.right) @staticmethod def check(left, right): _value_check(left < right, "Lower limit should be less than Upper limit.") def pdf(self, x): left, right = self.left, self.right return Piecewise( (S.One/(right - left), And(left <= x, x <= right)), (S.Zero, True) ) def _cdf(self, x): left, right = self.left, self.right return Piecewise( (S.Zero, x < left), ((x - left)/(right - left), x <= right), (S.One, True) ) def _characteristic_function(self, t): left, right = self.left, self.right return Piecewise(((exp(I*t*right) - exp(I*t*left)) / (I*t*(right - left)), Ne(t, 0)), (S.One, True)) def _moment_generating_function(self, t): left, right = self.left, self.right return Piecewise(((exp(t*right) - exp(t*left)) / (t * (right - left)), Ne(t, 0)), (S.One, True)) def expectation(self, expr, var, **kwargs): from sympy.functions.elementary.miscellaneous import (Max, Min) kwargs['evaluate'] = True result = SingleContinuousDistribution.expectation(self, expr, var, **kwargs) result = result.subs({Max(self.left, self.right): self.right, Min(self.left, self.right): self.left}) return result def Uniform(name, left, right): r""" Create a continuous random variable with a uniform distribution. Explanation =========== The density of the uniform distribution is given by .. math:: f(x) := \begin{cases} \frac{1}{b - a} & \text{for } x \in [a,b] \\ 0 & \text{otherwise} \end{cases} with :math:`x \in [a,b]`. Parameters ========== a : Real number, :math:`-\infty < a` the left boundary b : Real number, :math:`a < b < \infty` the right boundary Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Uniform, density, cdf, E, variance >>> from sympy import Symbol, simplify >>> a = Symbol("a", negative=True) >>> b = Symbol("b", positive=True) >>> z = Symbol("z") >>> X = Uniform("x", a, b) >>> density(X)(z) Piecewise((1/(-a + b), (b >= z) & (a <= z)), (0, True)) >>> cdf(X)(z) Piecewise((0, a > z), ((-a + z)/(-a + b), b >= z), (1, True)) >>> E(X) a/2 + b/2 >>> simplify(variance(X)) a**2/12 - a*b/6 + b**2/12 References ========== .. [1] https://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29 .. [2] http://mathworld.wolfram.com/UniformDistribution.html """ return rv(name, UniformDistribution, (left, right)) #------------------------------------------------------------------------------- # UniformSum distribution ------------------------------------------------------ class UniformSumDistribution(SingleContinuousDistribution): _argnames = ('n',) @property def set(self): return Interval(0, self.n) @staticmethod def check(n): _value_check((n > 0, n.is_integer), "Parameter n must be positive integer.") def pdf(self, x): n = self.n k = Dummy("k") return 1/factorial( n - 1)*Sum((-1)**k*binomial(n, k)*(x - k)**(n - 1), (k, 0, floor(x))) def _cdf(self, x): n = self.n k = Dummy("k") return Piecewise((S.Zero, x < 0), (1/factorial(n)*Sum((-1)**k*binomial(n, k)*(x - k)**(n), (k, 0, floor(x))), x <= n), (S.One, True)) def _characteristic_function(self, t): return ((exp(I*t) - 1) / (I*t))**self.n def _moment_generating_function(self, t): return ((exp(t) - 1) / t)**self.n def UniformSum(name, n): r""" Create a continuous random variable with an Irwin-Hall distribution. Explanation =========== The probability distribution function depends on a single parameter $n$ which is an integer. The density of the Irwin-Hall distribution is given by .. math :: f(x) := \frac{1}{(n-1)!}\sum_{k=0}^{\left\lfloor x\right\rfloor}(-1)^k \binom{n}{k}(x-k)^{n-1} Parameters ========== n : A positive Integer, `n > 0` Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import UniformSum, density, cdf >>> from sympy import Symbol, pprint >>> n = Symbol("n", integer=True) >>> z = Symbol("z") >>> X = UniformSum("x", n) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) floor(z) ___ \ ` \ k n - 1 /n\ ) (-1) *(-k + z) *| | / \k/ /__, k = 0 -------------------------------- (n - 1)! >>> cdf(X)(z) Piecewise((0, z < 0), (Sum((-1)**_k*(-_k + z)**n*binomial(n, _k), (_k, 0, floor(z)))/factorial(n), n >= z), (1, True)) Compute cdf with specific 'x' and 'n' values as follows : >>> cdf(UniformSum("x", 5), evaluate=False)(2).doit() 9/40 The argument evaluate=False prevents an attempt at evaluation of the sum for general n, before the argument 2 is passed. References ========== .. [1] https://en.wikipedia.org/wiki/Uniform_sum_distribution .. [2] http://mathworld.wolfram.com/UniformSumDistribution.html """ return rv(name, UniformSumDistribution, (n, )) #------------------------------------------------------------------------------- # VonMises distribution -------------------------------------------------------- class VonMisesDistribution(SingleContinuousDistribution): _argnames = ('mu', 'k') set = Interval(0, 2*pi) @staticmethod def check(mu, k): _value_check(k > 0, "k must be positive") def pdf(self, x): mu, k = self.mu, self.k return exp(k*cos(x-mu)) / (2*pi*besseli(0, k)) def VonMises(name, mu, k): r""" Create a Continuous Random Variable with a von Mises distribution. Explanation =========== The density of the von Mises distribution is given by .. math:: f(x) := \frac{e^{\kappa\cos(x-\mu)}}{2\pi I_0(\kappa)} with :math:`x \in [0,2\pi]`. Parameters ========== mu : Real number Measure of location. k : Real number Measure of concentration. Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import VonMises, density >>> from sympy import Symbol, pprint >>> mu = Symbol("mu") >>> k = Symbol("k", positive=True) >>> z = Symbol("z") >>> X = VonMises("x", mu, k) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) k*cos(mu - z) e ------------------ 2*pi*besseli(0, k) References ========== .. [1] https://en.wikipedia.org/wiki/Von_Mises_distribution .. [2] http://mathworld.wolfram.com/vonMisesDistribution.html """ return rv(name, VonMisesDistribution, (mu, k)) #------------------------------------------------------------------------------- # Weibull distribution --------------------------------------------------------- class WeibullDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta') set = Interval(0, oo) @staticmethod def check(alpha, beta): _value_check(alpha > 0, "Alpha must be positive") _value_check(beta > 0, "Beta must be positive") def pdf(self, x): alpha, beta = self.alpha, self.beta return beta * (x/alpha)**(beta - 1) * exp(-(x/alpha)**beta) / alpha def Weibull(name, alpha, beta): r""" Create a continuous random variable with a Weibull distribution. Explanation =========== The density of the Weibull distribution is given by .. math:: f(x) := \begin{cases} \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^{k}} & x\geq0\\ 0 & x<0 \end{cases} Parameters ========== lambda : Real number, :math:`\lambda > 0` a scale k : Real number, ``k > 0`` a shape Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Weibull, density, E, variance >>> from sympy import Symbol, simplify >>> l = Symbol("lambda", positive=True) >>> k = Symbol("k", positive=True) >>> z = Symbol("z") >>> X = Weibull("x", l, k) >>> density(X)(z) k*(z/lambda)**(k - 1)*exp(-(z/lambda)**k)/lambda >>> simplify(E(X)) lambda*gamma(1 + 1/k) >>> simplify(variance(X)) lambda**2*(-gamma(1 + 1/k)**2 + gamma(1 + 2/k)) References ========== .. [1] https://en.wikipedia.org/wiki/Weibull_distribution .. [2] http://mathworld.wolfram.com/WeibullDistribution.html """ return rv(name, WeibullDistribution, (alpha, beta)) #------------------------------------------------------------------------------- # Wigner semicircle distribution ----------------------------------------------- class WignerSemicircleDistribution(SingleContinuousDistribution): _argnames = ('R',) @property def set(self): return Interval(-self.R, self.R) @staticmethod def check(R): _value_check(R > 0, "Radius R must be positive.") def pdf(self, x): R = self.R return 2/(pi*R**2)*sqrt(R**2 - x**2) def _characteristic_function(self, t): return Piecewise((2 * besselj(1, self.R*t) / (self.R*t), Ne(t, 0)), (S.One, True)) def _moment_generating_function(self, t): return Piecewise((2 * besseli(1, self.R*t) / (self.R*t), Ne(t, 0)), (S.One, True)) def WignerSemicircle(name, R): r""" Create a continuous random variable with a Wigner semicircle distribution. Explanation =========== The density of the Wigner semicircle distribution is given by .. math:: f(x) := \frac2{\pi R^2}\,\sqrt{R^2-x^2} with :math:`x \in [-R,R]`. Parameters ========== R : Real number, `R > 0`, the radius Returns ======= A `RandomSymbol`. Examples ======== >>> from sympy.stats import WignerSemicircle, density, E >>> from sympy import Symbol >>> R = Symbol("R", positive=True) >>> z = Symbol("z") >>> X = WignerSemicircle("x", R) >>> density(X)(z) 2*sqrt(R**2 - z**2)/(pi*R**2) >>> E(X) 0 References ========== .. [1] https://en.wikipedia.org/wiki/Wigner_semicircle_distribution .. [2] http://mathworld.wolfram.com/WignersSemicircleLaw.html """ return rv(name, WignerSemicircleDistribution, (R,))
268e2119c2889e66ec91f0599e9c032e8ce102ac3e03ff45c947f091f20dc45d
""" Finite Discrete Random Variables - Prebuilt variable types Contains ======== FiniteRV DiscreteUniform Die Bernoulli Coin Binomial BetaBinomial Hypergeometric Rademacher IdealSoliton RobustSoliton """ from sympy.core.cache import cacheit from sympy.core.function import Lambda from sympy.core.numbers import (Integer, Rational) from sympy.core.relational import (Eq, Ge, Gt, Le, Lt) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol) from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import binomial from sympy.functions.elementary.exponential import log from sympy.functions.elementary.piecewise import Piecewise from sympy.logic.boolalg import Or from sympy.sets.contains import Contains from sympy.sets.fancysets import Range from sympy.sets.sets import (Intersection, Interval) from sympy.functions.special.beta_functions import beta as beta_fn from sympy.stats.frv import (SingleFiniteDistribution, SingleFinitePSpace) from sympy.stats.rv import _value_check, Density, is_random from sympy.utilities.iterables import multiset from sympy.utilities.misc import filldedent __all__ = ['FiniteRV', 'DiscreteUniform', 'Die', 'Bernoulli', 'Coin', 'Binomial', 'BetaBinomial', 'Hypergeometric', 'Rademacher', 'IdealSoliton', 'RobustSoliton', ] def rv(name, cls, *args, **kwargs): args = list(map(sympify, args)) dist = cls(*args) if kwargs.pop('check', True): dist.check(*args) pspace = SingleFinitePSpace(name, dist) if any(is_random(arg) for arg in args): from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution pspace = CompoundPSpace(name, CompoundDistribution(dist)) return pspace.value class FiniteDistributionHandmade(SingleFiniteDistribution): @property def dict(self): return self.args[0] def pmf(self, x): x = Symbol('x') return Lambda(x, Piecewise(*( [(v, Eq(k, x)) for k, v in self.dict.items()] + [(S.Zero, True)]))) @property def set(self): return set(self.dict.keys()) @staticmethod def check(density): for p in density.values(): _value_check((p >= 0, p <= 1), "Probability at a point must be between 0 and 1.") val = sum(density.values()) _value_check(Eq(val, 1) != S.false, "Total Probability must be 1.") def FiniteRV(name, density, **kwargs): r""" Create a Finite Random Variable given a dict representing the density. Parameters ========== name : Symbol Represents name of the random variable. density: A dict Dictionary conatining the pdf of finite distribution check : bool If True, it will check whether the given density integrates to 1 over the given set. If False, it will not perform this check. Default is False. Examples ======== >>> from sympy.stats import FiniteRV, P, E >>> density = {0: .1, 1: .2, 2: .3, 3: .4} >>> X = FiniteRV('X', density) >>> E(X) 2.00000000000000 >>> P(X >= 2) 0.700000000000000 Returns ======= RandomSymbol """ # have a default of False while `rv` should have a default of True kwargs['check'] = kwargs.pop('check', False) return rv(name, FiniteDistributionHandmade, density, **kwargs) class DiscreteUniformDistribution(SingleFiniteDistribution): @staticmethod def check(*args): # not using _value_check since there is a # suggestion for the user if len(set(args)) != len(args): weights = multiset(args) n = Integer(len(args)) for k in weights: weights[k] /= n raise ValueError(filldedent(""" Repeated args detected but set expected. For a distribution having different weights for each item use the following:""") + ( '\nS("FiniteRV(%s, %s)")' % ("'X'", weights))) @property def p(self): return Rational(1, len(self.args)) @property # type: ignore @cacheit def dict(self): return {k: self.p for k in self.set} @property def set(self): return set(self.args) def pmf(self, x): if x in self.args: return self.p else: return S.Zero def DiscreteUniform(name, items): r""" Create a Finite Random Variable representing a uniform distribution over the input set. Parameters ========== items: list/tuple Items over which Uniform distribution is to be made Examples ======== >>> from sympy.stats import DiscreteUniform, density >>> from sympy import symbols >>> X = DiscreteUniform('X', symbols('a b c')) # equally likely over a, b, c >>> density(X).dict {a: 1/3, b: 1/3, c: 1/3} >>> Y = DiscreteUniform('Y', list(range(5))) # distribution over a range >>> density(Y).dict {0: 1/5, 1: 1/5, 2: 1/5, 3: 1/5, 4: 1/5} Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Discrete_uniform_distribution .. [2] http://mathworld.wolfram.com/DiscreteUniformDistribution.html """ return rv(name, DiscreteUniformDistribution, *items) class DieDistribution(SingleFiniteDistribution): _argnames = ('sides',) @staticmethod def check(sides): _value_check((sides.is_positive, sides.is_integer), "number of sides must be a positive integer.") @property def is_symbolic(self): return not self.sides.is_number @property def high(self): return self.sides @property def low(self): return S.One @property def set(self): if self.is_symbolic: return Intersection(S.Naturals0, Interval(0, self.sides)) return set(map(Integer, list(range(1, self.sides + 1)))) def pmf(self, x): x = sympify(x) if not (x.is_number or x.is_Symbol or is_random(x)): raise ValueError("'x' expected as an argument of type 'number', 'Symbol', or " "'RandomSymbol' not %s" % (type(x))) cond = Ge(x, 1) & Le(x, self.sides) & Contains(x, S.Integers) return Piecewise((S.One/self.sides, cond), (S.Zero, True)) def Die(name, sides=6): r""" Create a Finite Random Variable representing a fair die. Parameters ========== sides: Integer Represents the number of sides of the Die, by default is 6 Examples ======== >>> from sympy.stats import Die, density >>> from sympy import Symbol >>> D6 = Die('D6', 6) # Six sided Die >>> density(D6).dict {1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6} >>> D4 = Die('D4', 4) # Four sided Die >>> density(D4).dict {1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4} >>> n = Symbol('n', positive=True, integer=True) >>> Dn = Die('Dn', n) # n sided Die >>> density(Dn).dict Density(DieDistribution(n)) >>> density(Dn).dict.subs(n, 4).doit() {1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4} Returns ======= RandomSymbol """ return rv(name, DieDistribution, sides) class BernoulliDistribution(SingleFiniteDistribution): _argnames = ('p', 'succ', 'fail') @staticmethod def check(p, succ, fail): _value_check((p >= 0, p <= 1), "p should be in range [0, 1].") @property def set(self): return {self.succ, self.fail} def pmf(self, x): if isinstance(self.succ, Symbol) and isinstance(self.fail, Symbol): return Piecewise((self.p, x == self.succ), (1 - self.p, x == self.fail), (S.Zero, True)) return Piecewise((self.p, Eq(x, self.succ)), (1 - self.p, Eq(x, self.fail)), (S.Zero, True)) def Bernoulli(name, p, succ=1, fail=0): r""" Create a Finite Random Variable representing a Bernoulli process. Parameters ========== p : Rational number between 0 and 1 Represents probability of success succ : Integer/symbol/string Represents event of success fail : Integer/symbol/string Represents event of failure Examples ======== >>> from sympy.stats import Bernoulli, density >>> from sympy import S >>> X = Bernoulli('X', S(3)/4) # 1-0 Bernoulli variable, probability = 3/4 >>> density(X).dict {0: 1/4, 1: 3/4} >>> X = Bernoulli('X', S.Half, 'Heads', 'Tails') # A fair coin toss >>> density(X).dict {Heads: 1/2, Tails: 1/2} Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Bernoulli_distribution .. [2] http://mathworld.wolfram.com/BernoulliDistribution.html """ return rv(name, BernoulliDistribution, p, succ, fail) def Coin(name, p=S.Half): r""" Create a Finite Random Variable representing a Coin toss. Parameters ========== p : Rational Numeber between 0 and 1 Represents probability of getting "Heads", by default is Half Examples ======== >>> from sympy.stats import Coin, density >>> from sympy import Rational >>> C = Coin('C') # A fair coin toss >>> density(C).dict {H: 1/2, T: 1/2} >>> C2 = Coin('C2', Rational(3, 5)) # An unfair coin >>> density(C2).dict {H: 3/5, T: 2/5} Returns ======= RandomSymbol See Also ======== sympy.stats.Binomial References ========== .. [1] https://en.wikipedia.org/wiki/Coin_flipping """ return rv(name, BernoulliDistribution, p, 'H', 'T') class BinomialDistribution(SingleFiniteDistribution): _argnames = ('n', 'p', 'succ', 'fail') @staticmethod def check(n, p, succ, fail): _value_check((n.is_integer, n.is_nonnegative), "'n' must be nonnegative integer.") _value_check((p <= 1, p >= 0), "p should be in range [0, 1].") @property def high(self): return self.n @property def low(self): return S.Zero @property def is_symbolic(self): return not self.n.is_number @property def set(self): if self.is_symbolic: return Intersection(S.Naturals0, Interval(0, self.n)) return set(self.dict.keys()) def pmf(self, x): n, p = self.n, self.p x = sympify(x) if not (x.is_number or x.is_Symbol or is_random(x)): raise ValueError("'x' expected as an argument of type 'number', 'Symbol', or " "'RandomSymbol' not %s" % (type(x))) cond = Ge(x, 0) & Le(x, n) & Contains(x, S.Integers) return Piecewise((binomial(n, x) * p**x * (1 - p)**(n - x), cond), (S.Zero, True)) @property # type: ignore @cacheit def dict(self): if self.is_symbolic: return Density(self) return {k*self.succ + (self.n-k)*self.fail: self.pmf(k) for k in range(0, self.n + 1)} def Binomial(name, n, p, succ=1, fail=0): r""" Create a Finite Random Variable representing a binomial distribution. Parameters ========== n : Positive Integer Represents number of trials p : Rational Number between 0 and 1 Represents probability of success succ : Integer/symbol/string Represents event of success, by default is 1 fail : Integer/symbol/string Represents event of failure, by default is 0 Examples ======== >>> from sympy.stats import Binomial, density >>> from sympy import S, Symbol >>> X = Binomial('X', 4, S.Half) # Four "coin flips" >>> density(X).dict {0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16} >>> n = Symbol('n', positive=True, integer=True) >>> p = Symbol('p', positive=True) >>> X = Binomial('X', n, S.Half) # n "coin flips" >>> density(X).dict Density(BinomialDistribution(n, 1/2, 1, 0)) >>> density(X).dict.subs(n, 4).doit() {0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16} Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Binomial_distribution .. [2] http://mathworld.wolfram.com/BinomialDistribution.html """ return rv(name, BinomialDistribution, n, p, succ, fail) #------------------------------------------------------------------------------- # Beta-binomial distribution ---------------------------------------------------------- class BetaBinomialDistribution(SingleFiniteDistribution): _argnames = ('n', 'alpha', 'beta') @staticmethod def check(n, alpha, beta): _value_check((n.is_integer, n.is_nonnegative), "'n' must be nonnegative integer. n = %s." % str(n)) _value_check((alpha > 0), "'alpha' must be: alpha > 0 . alpha = %s" % str(alpha)) _value_check((beta > 0), "'beta' must be: beta > 0 . beta = %s" % str(beta)) @property def high(self): return self.n @property def low(self): return S.Zero @property def is_symbolic(self): return not self.n.is_number @property def set(self): if self.is_symbolic: return Intersection(S.Naturals0, Interval(0, self.n)) return set(map(Integer, list(range(0, self.n + 1)))) def pmf(self, k): n, a, b = self.n, self.alpha, self.beta return binomial(n, k) * beta_fn(k + a, n - k + b) / beta_fn(a, b) def BetaBinomial(name, n, alpha, beta): r""" Create a Finite Random Variable representing a Beta-binomial distribution. Parameters ========== n : Positive Integer Represents number of trials alpha : Real positive number beta : Real positive number Examples ======== >>> from sympy.stats import BetaBinomial, density >>> X = BetaBinomial('X', 2, 1, 1) >>> density(X).dict {0: 1/3, 1: 2*beta(2, 2), 2: 1/3} Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Beta-binomial_distribution .. [2] http://mathworld.wolfram.com/BetaBinomialDistribution.html """ return rv(name, BetaBinomialDistribution, n, alpha, beta) class HypergeometricDistribution(SingleFiniteDistribution): _argnames = ('N', 'm', 'n') @staticmethod def check(n, N, m): _value_check((N.is_integer, N.is_nonnegative), "'N' must be nonnegative integer. N = %s." % str(n)) _value_check((n.is_integer, n.is_nonnegative), "'n' must be nonnegative integer. n = %s." % str(n)) _value_check((m.is_integer, m.is_nonnegative), "'m' must be nonnegative integer. m = %s." % str(n)) @property def is_symbolic(self): return not all(x.is_number for x in (self.N, self.m, self.n)) @property def high(self): return Piecewise((self.n, Lt(self.n, self.m) != False), (self.m, True)) @property def low(self): return Piecewise((0, Gt(0, self.n + self.m - self.N) != False), (self.n + self.m - self.N, True)) @property def set(self): N, m, n = self.N, self.m, self.n if self.is_symbolic: return Intersection(S.Naturals0, Interval(self.low, self.high)) return {i for i in range(max(0, n + m - N), min(n, m) + 1)} def pmf(self, k): N, m, n = self.N, self.m, self.n return S(binomial(m, k) * binomial(N - m, n - k))/binomial(N, n) def Hypergeometric(name, N, m, n): r""" Create a Finite Random Variable representing a hypergeometric distribution. Parameters ========== N : Positive Integer Represents finite population of size N. m : Positive Integer Represents number of trials with required feature. n : Positive Integer Represents numbers of draws. Examples ======== >>> from sympy.stats import Hypergeometric, density >>> X = Hypergeometric('X', 10, 5, 3) # 10 marbles, 5 white (success), 3 draws >>> density(X).dict {0: 1/12, 1: 5/12, 2: 5/12, 3: 1/12} Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Hypergeometric_distribution .. [2] http://mathworld.wolfram.com/HypergeometricDistribution.html """ return rv(name, HypergeometricDistribution, N, m, n) class RademacherDistribution(SingleFiniteDistribution): @property def set(self): return {-1, 1} @property def pmf(self): k = Dummy('k') return Lambda(k, Piecewise((S.Half, Or(Eq(k, -1), Eq(k, 1))), (S.Zero, True))) def Rademacher(name): r""" Create a Finite Random Variable representing a Rademacher distribution. Examples ======== >>> from sympy.stats import Rademacher, density >>> X = Rademacher('X') >>> density(X).dict {-1: 1/2, 1: 1/2} Returns ======= RandomSymbol See Also ======== sympy.stats.Bernoulli References ========== .. [1] https://en.wikipedia.org/wiki/Rademacher_distribution """ return rv(name, RademacherDistribution) class IdealSolitonDistribution(SingleFiniteDistribution): _argnames = ('k',) @staticmethod def check(k): _value_check(k.is_integer and k.is_positive, "'k' must be a positive integer.") @property def low(self): return S.One @property def high(self): return self.k @property def set(self): return set(list(Range(1, self.k+1))) @property # type: ignore @cacheit def dict(self): if self.k.is_Symbol: return Density(self) d = {1: Rational(1, self.k)} d.update(dict((i, Rational(1, i*(i - 1))) for i in range(2, self.k + 1))) return d def pmf(self, x): x = sympify(x) if not (x.is_number or x.is_Symbol or is_random(x)): raise ValueError("'x' expected as an argument of type 'number', 'Symbol', or " "'RandomSymbol' not %s" % (type(x))) cond1 = Eq(x, 1) & x.is_integer cond2 = Ge(x, 1) & Le(x, self.k) & x.is_integer return Piecewise((1/self.k, cond1), (1/(x*(x - 1)), cond2), (S.Zero, True)) def IdealSoliton(name, k): r""" Create a Finite Random Variable of Ideal Soliton Distribution Parameters ========== k : Positive Integer Represents the number of input symbols in an LT (Luby Transform) code. Examples ======== >>> from sympy.stats import IdealSoliton, density, P, E >>> sol = IdealSoliton('sol', 5) >>> density(sol).dict {1: 1/5, 2: 1/2, 3: 1/6, 4: 1/12, 5: 1/20} >>> density(sol).set {1, 2, 3, 4, 5} >>> from sympy import Symbol >>> k = Symbol('k', positive=True, integer=True) >>> sol = IdealSoliton('sol', k) >>> density(sol).dict Density(IdealSolitonDistribution(k)) >>> density(sol).dict.subs(k, 10).doit() {1: 1/10, 2: 1/2, 3: 1/6, 4: 1/12, 5: 1/20, 6: 1/30, 7: 1/42, 8: 1/56, 9: 1/72, 10: 1/90} >>> E(sol.subs(k, 10)) 7381/2520 >>> P(sol.subs(k, 4) > 2) 1/4 Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Soliton_distribution#Ideal_distribution .. [2] http://pages.cs.wisc.edu/~suman/courses/740/papers/luby02lt.pdf """ return rv(name, IdealSolitonDistribution, k) class RobustSolitonDistribution(SingleFiniteDistribution): _argnames= ('k', 'delta', 'c') @staticmethod def check(k, delta, c): _value_check(k.is_integer and k.is_positive, "'k' must be a positive integer") _value_check(Gt(delta, 0) and Le(delta, 1), "'delta' must be a real number in the interval (0,1)") _value_check(c.is_positive, "'c' must be a positive real number.") @property def R(self): return self.c * log(self.k/self.delta) * self.k**0.5 @property def Z(self): z = 0 for i in Range(1, round(self.k/self.R)): z += (1/i) z += log(self.R/self.delta) return 1 + z * self.R/self.k @property def low(self): return S.One @property def high(self): return self.k @property def set(self): return set(list(Range(1, self.k+1))) @property def is_symbolic(self): return not (self.k.is_number and self.c.is_number and self.delta.is_number) def pmf(self, x): x = sympify(x) if not (x.is_number or x.is_Symbol or is_random(x)): raise ValueError("'x' expected as an argument of type 'number', 'Symbol', or " "'RandomSymbol' not %s" % (type(x))) cond1 = Eq(x, 1) & x.is_integer cond2 = Ge(x, 1) & Le(x, self.k) & x.is_integer rho = Piecewise((Rational(1, self.k), cond1), (Rational(1, x*(x-1)), cond2), (S.Zero, True)) cond1 = Ge(x, 1) & Le(x, round(self.k/self.R)-1) cond2 = Eq(x, round(self.k/self.R)) tau = Piecewise((self.R/(self.k * x), cond1), (self.R * log(self.R/self.delta)/self.k, cond2), (S.Zero, True)) return (rho + tau)/self.Z def RobustSoliton(name, k, delta, c): r''' Create a Finite Random Variable of Robust Soliton Distribution Parameters ========== k : Positive Integer Represents the number of input symbols in an LT (Luby Transform) code. delta : Positive Rational Number Represents the failure probability. Must be in the interval (0,1). c : Positive Rational Number Constant of proportionality. Values close to 1 are recommended Examples ======== >>> from sympy.stats import RobustSoliton, density, P, E >>> robSol = RobustSoliton('robSol', 5, 0.5, 0.01) >>> density(robSol).dict {1: 0.204253668152708, 2: 0.490631107897393, 3: 0.165210624506162, 4: 0.0834387731899302, 5: 0.0505633404760675} >>> density(robSol).set {1, 2, 3, 4, 5} >>> from sympy import Symbol >>> k = Symbol('k', positive=True, integer=True) >>> c = Symbol('c', positive=True) >>> robSol = RobustSoliton('robSol', k, 0.5, c) >>> density(robSol).dict Density(RobustSolitonDistribution(k, 0.5, c)) >>> density(robSol).dict.subs(k, 10).subs(c, 0.03).doit() {1: 0.116641095387194, 2: 0.467045731687165, 3: 0.159984123349381, 4: 0.0821431680681869, 5: 0.0505765646770100, 6: 0.0345781523420719, 7: 0.0253132820710503, 8: 0.0194459129233227, 9: 0.0154831166726115, 10: 0.0126733075238887} >>> E(robSol.subs(k, 10).subs(c, 0.05)) 2.91358846104106 >>> P(robSol.subs(k, 4).subs(c, 0.1) > 2) 0.243650614389834 Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Soliton_distribution#Robust_distribution .. [2] http://www.inference.org.uk/mackay/itprnn/ps/588.596.pdf .. [3] http://pages.cs.wisc.edu/~suman/courses/740/papers/luby02lt.pdf ''' return rv(name, RobustSolitonDistribution, k, delta, c)
29bce7b5462c69e265a5d78ccc14a2bb619221869638c3992da74fb75b2d5da2
from __future__ import print_function, division import random import itertools from typing import (Sequence as tSequence, Union as tUnion, List as tList, Tuple as tTuple, Set as tSet) from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.cache import cacheit from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import (Function, Lambda) from sympy.core.mul import Mul from sympy.core.numbers import (Integer, Rational, igcd, oo, pi) from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol) from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.integers import ceiling from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.gamma_functions import gamma from sympy.logic.boolalg import (And, Not, Or) from sympy.matrices.common import NonSquareMatrixError from sympy.matrices.dense import (Matrix, eye, ones, zeros) from sympy.matrices.expressions.blockmatrix import BlockMatrix from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.special import Identity from sympy.matrices.immutable import ImmutableMatrix from sympy.sets.conditionset import ConditionSet from sympy.sets.contains import Contains from sympy.sets.fancysets import Range from sympy.sets.sets import (FiniteSet, Intersection, Interval, Set, Union) from sympy.solvers.solveset import linsolve from sympy.tensor.indexed import (Indexed, IndexedBase) from sympy.core.relational import Relational from sympy.logic.boolalg import Boolean from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import strongly_connected_components from sympy.stats.joint_rv import JointDistribution from sympy.stats.joint_rv_types import JointDistributionHandmade from sympy.stats.rv import (RandomIndexedSymbol, random_symbols, RandomSymbol, _symbol_converter, _value_check, pspace, given, dependent, is_random, sample_iter, Distribution, Density) from sympy.stats.stochastic_process import StochasticPSpace from sympy.stats.symbolic_probability import Probability, Expectation from sympy.stats.frv_types import Bernoulli, BernoulliDistribution, FiniteRV from sympy.stats.drv_types import Poisson, PoissonDistribution from sympy.stats.crv_types import Normal, NormalDistribution, Gamma, GammaDistribution from sympy.core.sympify import _sympify, sympify EmptySet = S.EmptySet __all__ = [ 'StochasticProcess', 'DiscreteTimeStochasticProcess', 'DiscreteMarkovChain', 'TransitionMatrixOf', 'StochasticStateSpaceOf', 'GeneratorMatrixOf', 'ContinuousMarkovChain', 'BernoulliProcess', 'PoissonProcess', 'WienerProcess', 'GammaProcess' ] @is_random.register(Indexed) def _(x): return is_random(x.base) @is_random.register(RandomIndexedSymbol) # type: ignore def _(x): return True def _set_converter(itr): """ Helper function for converting list/tuple/set to Set. If parameter is not an instance of list/tuple/set then no operation is performed. Returns ======= Set The argument converted to Set. Raises ====== TypeError If the argument is not an instance of list/tuple/set. """ if isinstance(itr, (list, tuple, set)): itr = FiniteSet(*itr) if not isinstance(itr, Set): raise TypeError("%s is not an instance of list/tuple/set."%(itr)) return itr def _state_converter(itr: tSequence) -> tUnion[Tuple, Range]: """ Helper function for converting list/tuple/set/Range/Tuple/FiniteSet to tuple/Range. """ itr_ret: tUnion[Tuple, Range] if isinstance(itr, (Tuple, set, FiniteSet)): itr_ret = Tuple(*(sympify(i) if isinstance(i, str) else i for i in itr)) elif isinstance(itr, (list, tuple)): # check if states are unique if len(set(itr)) != len(itr): raise ValueError('The state space must have unique elements.') itr_ret = Tuple(*(sympify(i) if isinstance(i, str) else i for i in itr)) elif isinstance(itr, Range): # the only ordered set in SymPy I know of # try to convert to tuple try: itr_ret = Tuple(*(sympify(i) if isinstance(i, str) else i for i in itr)) except (TypeError, ValueError): itr_ret = itr else: raise TypeError("%s is not an instance of list/tuple/set/Range/Tuple/FiniteSet." % (itr)) return itr_ret def _sym_sympify(arg): """ Converts an arbitrary expression to a type that can be used inside SymPy. As generally strings are unwise to use in the expressions, it returns the Symbol of argument if the string type argument is passed. Parameters ========= arg: The parameter to be converted to be used in SymPy. Returns ======= The converted parameter. """ if isinstance(arg, str): return Symbol(arg) else: return _sympify(arg) def _matrix_checks(matrix): if not isinstance(matrix, (Matrix, MatrixSymbol, ImmutableMatrix)): raise TypeError("Transition probabilities either should " "be a Matrix or a MatrixSymbol.") if matrix.shape[0] != matrix.shape[1]: raise NonSquareMatrixError("%s is not a square matrix"%(matrix)) if isinstance(matrix, Matrix): matrix = ImmutableMatrix(matrix.tolist()) return matrix class StochasticProcess(Basic): """ Base class for all the stochastic processes whether discrete or continuous. Parameters ========== sym: Symbol or str state_space: Set The state space of the stochastic process, by default S.Reals. For discrete sets it is zero indexed. See Also ======== DiscreteTimeStochasticProcess """ index_set = S.Reals def __new__(cls, sym, state_space=S.Reals, **kwargs): sym = _symbol_converter(sym) state_space = _set_converter(state_space) return Basic.__new__(cls, sym, state_space) @property def symbol(self): return self.args[0] @property def state_space(self) -> tUnion[FiniteSet, Range]: if not isinstance(self.args[1], (FiniteSet, Range)): assert isinstance(self.args[1], Tuple) return FiniteSet(*self.args[1]) return self.args[1] def _deprecation_warn_distribution(self): SymPyDeprecationWarning( feature="Calling distribution with RandomIndexedSymbol", useinstead="distribution with just timestamp as argument", issue=20078, deprecated_since_version="1.7.1" ).warn() def distribution(self, key=None): if key is None: self._deprecation_warn_distribution() return Distribution() def density(self, x): return Density() def __call__(self, time): """ Overridden in ContinuousTimeStochasticProcess. """ raise NotImplementedError("Use [] for indexing discrete time stochastic process.") def __getitem__(self, time): """ Overridden in DiscreteTimeStochasticProcess. """ raise NotImplementedError("Use () for indexing continuous time stochastic process.") def probability(self, condition): raise NotImplementedError() def joint_distribution(self, *args): """ Computes the joint distribution of the random indexed variables. Parameters ========== args: iterable The finite list of random indexed variables/the key of a stochastic process whose joint distribution has to be computed. Returns ======= JointDistribution The joint distribution of the list of random indexed variables. An unevaluated object is returned if it is not possible to compute the joint distribution. Raises ====== ValueError: When the arguments passed are not of type RandomIndexSymbol or Number. """ args = list(args) for i, arg in enumerate(args): if S(arg).is_Number: if self.index_set.is_subset(S.Integers): args[i] = self.__getitem__(arg) else: args[i] = self.__call__(arg) elif not isinstance(arg, RandomIndexedSymbol): raise ValueError("Expected a RandomIndexedSymbol or " "key not %s"%(type(arg))) if args[0].pspace.distribution == Distribution(): return JointDistribution(*args) density = Lambda(tuple(args), expr=Mul.fromiter(arg.pspace.process.density(arg) for arg in args)) return JointDistributionHandmade(density) def expectation(self, condition, given_condition): raise NotImplementedError("Abstract method for expectation queries.") def sample(self): raise NotImplementedError("Abstract method for sampling queries.") class DiscreteTimeStochasticProcess(StochasticProcess): """ Base class for all discrete stochastic processes. """ def __getitem__(self, time): """ For indexing discrete time stochastic processes. Returns ======= RandomIndexedSymbol """ time = sympify(time) if not time.is_symbol and time not in self.index_set: raise IndexError("%s is not in the index set of %s"%(time, self.symbol)) idx_obj = Indexed(self.symbol, time) pspace_obj = StochasticPSpace(self.symbol, self, self.distribution(time)) return RandomIndexedSymbol(idx_obj, pspace_obj) class ContinuousTimeStochasticProcess(StochasticProcess): """ Base class for all continuous time stochastic process. """ def __call__(self, time): """ For indexing continuous time stochastic processes. Returns ======= RandomIndexedSymbol """ time = sympify(time) if not time.is_symbol and time not in self.index_set: raise IndexError("%s is not in the index set of %s"%(time, self.symbol)) func_obj = Function(self.symbol)(time) pspace_obj = StochasticPSpace(self.symbol, self, self.distribution(time)) return RandomIndexedSymbol(func_obj, pspace_obj) class TransitionMatrixOf(Boolean): """ Assumes that the matrix is the transition matrix of the process. """ def __new__(cls, process, matrix): if not isinstance(process, DiscreteMarkovChain): raise ValueError("Currently only DiscreteMarkovChain " "support TransitionMatrixOf.") matrix = _matrix_checks(matrix) return Basic.__new__(cls, process, matrix) process = property(lambda self: self.args[0]) matrix = property(lambda self: self.args[1]) class GeneratorMatrixOf(TransitionMatrixOf): """ Assumes that the matrix is the generator matrix of the process. """ def __new__(cls, process, matrix): if not isinstance(process, ContinuousMarkovChain): raise ValueError("Currently only ContinuousMarkovChain " "support GeneratorMatrixOf.") matrix = _matrix_checks(matrix) return Basic.__new__(cls, process, matrix) class StochasticStateSpaceOf(Boolean): def __new__(cls, process, state_space): if not isinstance(process, (DiscreteMarkovChain, ContinuousMarkovChain)): raise ValueError("Currently only DiscreteMarkovChain and ContinuousMarkovChain " "support StochasticStateSpaceOf.") state_space = _state_converter(state_space) if isinstance(state_space, Range): ss_size = ceiling((state_space.stop - state_space.start) / state_space.step) else: ss_size = len(state_space) state_index = Range(ss_size) return Basic.__new__(cls, process, state_index) process = property(lambda self: self.args[0]) state_index = property(lambda self: self.args[1]) class MarkovProcess(StochasticProcess): """ Contains methods that handle queries common to Markov processes. """ @property def number_of_states(self) -> tUnion[Integer, Symbol]: """ The number of states in the Markov Chain. """ return _sympify(self.args[2].shape[0]) # type: ignore @property def _state_index(self): """ Returns state index as Range. """ return self.args[1] @classmethod def _sanity_checks(cls, state_space, trans_probs): # Try to never have None as state_space or trans_probs. # This helps a lot if we get it done at the start. if (state_space is None) and (trans_probs is None): _n = Dummy('n', integer=True, nonnegative=True) state_space = _state_converter(Range(_n)) trans_probs = _matrix_checks(MatrixSymbol('_T', _n, _n)) elif state_space is None: trans_probs = _matrix_checks(trans_probs) state_space = _state_converter(Range(trans_probs.shape[0])) elif trans_probs is None: state_space = _state_converter(state_space) if isinstance(state_space, Range): _n = ceiling((state_space.stop - state_space.start) / state_space.step) else: _n = len(state_space) trans_probs = MatrixSymbol('_T', _n, _n) else: state_space = _state_converter(state_space) trans_probs = _matrix_checks(trans_probs) # Range object doesn't want to give a symbolic size # so we do it ourselves. if isinstance(state_space, Range): ss_size = ceiling((state_space.stop - state_space.start) / state_space.step) else: ss_size = len(state_space) if ss_size != trans_probs.shape[0]: raise ValueError('The size of the state space and the number of ' 'rows of the transition matrix must be the same.') return state_space, trans_probs def _extract_information(self, given_condition): """ Helper function to extract information, like, transition matrix/generator matrix, state space, etc. """ if isinstance(self, DiscreteMarkovChain): trans_probs = self.transition_probabilities state_index = self._state_index elif isinstance(self, ContinuousMarkovChain): trans_probs = self.generator_matrix state_index = self._state_index if isinstance(given_condition, And): gcs = given_condition.args given_condition = S.true for gc in gcs: if isinstance(gc, TransitionMatrixOf): trans_probs = gc.matrix if isinstance(gc, StochasticStateSpaceOf): state_index = gc.state_index if isinstance(gc, Relational): given_condition = given_condition & gc if isinstance(given_condition, TransitionMatrixOf): trans_probs = given_condition.matrix given_condition = S.true if isinstance(given_condition, StochasticStateSpaceOf): state_index = given_condition.state_index given_condition = S.true return trans_probs, state_index, given_condition def _check_trans_probs(self, trans_probs, row_sum=1): """ Helper function for checking the validity of transition probabilities. """ if not isinstance(trans_probs, MatrixSymbol): rows = trans_probs.tolist() for row in rows: if (sum(row) - row_sum) != 0: raise ValueError("Values in a row must sum to %s. " "If you are using Float or floats then please use Rational."%(row_sum)) def _work_out_state_index(self, state_index, given_condition, trans_probs): """ Helper function to extract state space if there is a random symbol in the given condition. """ # if given condition is None, then there is no need to work out # state_space from random variables if given_condition != None: rand_var = list(given_condition.atoms(RandomSymbol) - given_condition.atoms(RandomIndexedSymbol)) if len(rand_var) == 1: state_index = rand_var[0].pspace.set # `not None` is `True`. So the old test fails for symbolic sizes. # Need to build the statement differently. sym_cond = not self.number_of_states.is_Integer cond1 = not sym_cond and len(state_index) != trans_probs.shape[0] if cond1: raise ValueError("state space is not compatible with the transition probabilities.") if not isinstance(trans_probs.shape[0], Symbol): state_index = FiniteSet(*[i for i in range(trans_probs.shape[0])]) return state_index @cacheit def _preprocess(self, given_condition, evaluate): """ Helper function for pre-processing the information. """ is_insufficient = False if not evaluate: # avoid pre-processing if the result is not to be evaluated return (True, None, None, None) # extracting transition matrix and state space trans_probs, state_index, given_condition = self._extract_information(given_condition) # given_condition does not have sufficient information # for computations if trans_probs is None or \ given_condition is None: is_insufficient = True else: # checking transition probabilities if isinstance(self, DiscreteMarkovChain): self._check_trans_probs(trans_probs, row_sum=1) elif isinstance(self, ContinuousMarkovChain): self._check_trans_probs(trans_probs, row_sum=0) # working out state space state_index = self._work_out_state_index(state_index, given_condition, trans_probs) return is_insufficient, trans_probs, state_index, given_condition def replace_with_index(self, condition): if isinstance(condition, Relational): lhs, rhs = condition.lhs, condition.rhs if not isinstance(lhs, RandomIndexedSymbol): lhs, rhs = rhs, lhs condition = type(condition)(self.index_of.get(lhs, lhs), self.index_of.get(rhs, rhs)) return condition def probability(self, condition, given_condition=None, evaluate=True, **kwargs): """ Handles probability queries for Markov process. Parameters ========== condition: Relational given_condition: Relational/And Returns ======= Probability If the information is not sufficient. Expr In all other cases. Note ==== Any information passed at the time of query overrides any information passed at the time of object creation like transition probabilities, state space. Pass the transition matrix using TransitionMatrixOf, generator matrix using GeneratorMatrixOf and state space using StochasticStateSpaceOf in given_condition using & or And. """ check, mat, state_index, new_given_condition = \ self._preprocess(given_condition, evaluate) rv = list(condition.atoms(RandomIndexedSymbol)) symbolic = False for sym in rv: if sym.key.is_symbol: symbolic = True break if check: return Probability(condition, new_given_condition) if isinstance(self, ContinuousMarkovChain): trans_probs = self.transition_probabilities(mat) elif isinstance(self, DiscreteMarkovChain): trans_probs = mat condition = self.replace_with_index(condition) given_condition = self.replace_with_index(given_condition) new_given_condition = self.replace_with_index(new_given_condition) if isinstance(condition, Relational): if isinstance(new_given_condition, And): gcs = new_given_condition.args else: gcs = (new_given_condition, ) min_key_rv = list(new_given_condition.atoms(RandomIndexedSymbol)) if len(min_key_rv): min_key_rv = min_key_rv[0] for r in rv: if min_key_rv.key.is_symbol or r.key.is_symbol: continue if min_key_rv.key > r.key: return Probability(condition) else: min_key_rv = None return Probability(condition) if symbolic: return self._symbolic_probability(condition, new_given_condition, rv, min_key_rv) if len(rv) > 1: rv[0] = condition.lhs rv[1] = condition.rhs if rv[0].key < rv[1].key: rv[0], rv[1] = rv[1], rv[0] if isinstance(condition, Gt): condition = Lt(condition.lhs, condition.rhs) elif isinstance(condition, Lt): condition = Gt(condition.lhs, condition.rhs) elif isinstance(condition, Ge): condition = Le(condition.lhs, condition.rhs) elif isinstance(condition, Le): condition = Ge(condition.lhs, condition.rhs) s = Rational(0, 1) n = len(self.state_space) if isinstance(condition, (Eq, Ne)): for i in range(0, n): s += self.probability(Eq(rv[0], i), Eq(rv[1], i)) * self.probability(Eq(rv[1], i), new_given_condition) return s if isinstance(condition, Eq) else 1 - s else: upper = 0 greater = False if isinstance(condition, (Ge, Lt)): upper = 1 if isinstance(condition, (Ge, Gt)): greater = True for i in range(0, n): if i <= n//2: for j in range(0, i + upper): s += self.probability(Eq(rv[0], i), Eq(rv[1], j)) * self.probability(Eq(rv[1], j), new_given_condition) else: s += self.probability(Eq(rv[0], i), new_given_condition) for j in range(i + upper, n): s -= self.probability(Eq(rv[0], i), Eq(rv[1], j)) * self.probability(Eq(rv[1], j), new_given_condition) return s if greater else 1 - s rv = rv[0] states = condition.as_set() prob, gstate = dict(), None for gc in gcs: if gc.has(min_key_rv): if gc.has(Probability): p, gp = (gc.rhs, gc.lhs) if isinstance(gc.lhs, Probability) \ else (gc.lhs, gc.rhs) gr = gp.args[0] gset = Intersection(gr.as_set(), state_index) gstate = list(gset)[0] prob[gset] = p else: _, gstate = (gc.lhs.key, gc.rhs) if isinstance(gc.lhs, RandomIndexedSymbol) \ else (gc.rhs.key, gc.lhs) if not all(k in self.index_set for k in (rv.key, min_key_rv.key)): raise IndexError("The timestamps of the process are not in it's index set.") states = Intersection(states, state_index) if not isinstance(self.number_of_states, Symbol) else states for state in Union(states, FiniteSet(gstate)): if not state.is_Integer or Ge(state, mat.shape[0]) is True: raise IndexError("No information is available for (%s, %s) in " "transition probabilities of shape, (%s, %s). " "State space is zero indexed." %(gstate, state, mat.shape[0], mat.shape[1])) if prob: gstates = Union(*prob.keys()) if len(gstates) == 1: gstate = list(gstates)[0] gprob = list(prob.values())[0] prob[gstates] = gprob elif len(gstates) == len(state_index) - 1: gstate = list(state_index - gstates)[0] gprob = S.One - sum(prob.values()) prob[state_index - gstates] = gprob else: raise ValueError("Conflicting information.") else: gprob = S.One if min_key_rv == rv: return sum([prob[FiniteSet(state)] for state in states]) if isinstance(self, ContinuousMarkovChain): return gprob * sum([trans_probs(rv.key - min_key_rv.key).__getitem__((gstate, state)) for state in states]) if isinstance(self, DiscreteMarkovChain): return gprob * sum([(trans_probs**(rv.key - min_key_rv.key)).__getitem__((gstate, state)) for state in states]) if isinstance(condition, Not): expr = condition.args[0] return S.One - self.probability(expr, given_condition, evaluate, **kwargs) if isinstance(condition, And): compute_later, state2cond, conds = [], dict(), condition.args for expr in conds: if isinstance(expr, Relational): ris = list(expr.atoms(RandomIndexedSymbol))[0] if state2cond.get(ris, None) is None: state2cond[ris] = S.true state2cond[ris] &= expr else: compute_later.append(expr) ris = [] for ri in state2cond: ris.append(ri) cset = Intersection(state2cond[ri].as_set(), state_index) if len(cset) == 0: return S.Zero state2cond[ri] = cset.as_relational(ri) sorted_ris = sorted(ris, key=lambda ri: ri.key) prod = self.probability(state2cond[sorted_ris[0]], given_condition, evaluate, **kwargs) for i in range(1, len(sorted_ris)): ri, prev_ri = sorted_ris[i], sorted_ris[i-1] if not isinstance(state2cond[ri], Eq): raise ValueError("The process is in multiple states at %s, unable to determine the probability."%(ri)) mat_of = TransitionMatrixOf(self, mat) if isinstance(self, DiscreteMarkovChain) else GeneratorMatrixOf(self, mat) prod *= self.probability(state2cond[ri], state2cond[prev_ri] & mat_of & StochasticStateSpaceOf(self, state_index), evaluate, **kwargs) for expr in compute_later: prod *= self.probability(expr, given_condition, evaluate, **kwargs) return prod if isinstance(condition, Or): return sum([self.probability(expr, given_condition, evaluate, **kwargs) for expr in condition.args]) raise NotImplementedError("Mechanism for handling (%s, %s) queries hasn't been " "implemented yet."%(condition, given_condition)) def _symbolic_probability(self, condition, new_given_condition, rv, min_key_rv): #Function to calculate probability for queries with symbols if isinstance(condition, Relational): curr_state = new_given_condition.rhs if isinstance(new_given_condition.lhs, RandomIndexedSymbol) \ else new_given_condition.lhs next_state = condition.rhs if isinstance(condition.lhs, RandomIndexedSymbol) \ else condition.lhs if isinstance(condition, (Eq, Ne)): if isinstance(self, DiscreteMarkovChain): P = self.transition_probabilities**(rv[0].key - min_key_rv.key) else: P = exp(self.generator_matrix*(rv[0].key - min_key_rv.key)) prob = P[curr_state, next_state] if isinstance(condition, Eq) else 1 - P[curr_state, next_state] return Piecewise((prob, rv[0].key > min_key_rv.key), (Probability(condition), True)) else: upper = 1 greater = False if isinstance(condition, (Ge, Lt)): upper = 0 if isinstance(condition, (Ge, Gt)): greater = True k = Dummy('k') condition = Eq(condition.lhs, k) if isinstance(condition.lhs, RandomIndexedSymbol)\ else Eq(condition.rhs, k) total = Sum(self.probability(condition, new_given_condition), (k, next_state + upper, self.state_space._sup)) return Piecewise((total, rv[0].key > min_key_rv.key), (Probability(condition), True)) if greater\ else Piecewise((1 - total, rv[0].key > min_key_rv.key), (Probability(condition), True)) else: return Probability(condition, new_given_condition) def expectation(self, expr, condition=None, evaluate=True, **kwargs): """ Handles expectation queries for markov process. Parameters ========== expr: RandomIndexedSymbol, Relational, Logic Condition for which expectation has to be computed. Must contain a RandomIndexedSymbol of the process. condition: Relational, Logic The given conditions under which computations should be done. Returns ======= Expectation Unevaluated object if computations cannot be done due to insufficient information. Expr In all other cases when the computations are successful. Note ==== Any information passed at the time of query overrides any information passed at the time of object creation like transition probabilities, state space. Pass the transition matrix using TransitionMatrixOf, generator matrix using GeneratorMatrixOf and state space using StochasticStateSpaceOf in given_condition using & or And. """ check, mat, state_index, condition = \ self._preprocess(condition, evaluate) if check: return Expectation(expr, condition) rvs = random_symbols(expr) if isinstance(expr, Expr) and isinstance(condition, Eq) \ and len(rvs) == 1: # handle queries similar to E(f(X[i]), Eq(X[i-m], <some-state>)) condition=self.replace_with_index(condition) state_index=self.replace_with_index(state_index) rv = list(rvs)[0] lhsg, rhsg = condition.lhs, condition.rhs if not isinstance(lhsg, RandomIndexedSymbol): lhsg, rhsg = (rhsg, lhsg) if rhsg not in state_index: raise ValueError("%s state is not in the state space."%(rhsg)) if rv.key < lhsg.key: raise ValueError("Incorrect given condition is given, expectation " "time %s < time %s"%(rv.key, rv.key)) mat_of = TransitionMatrixOf(self, mat) if isinstance(self, DiscreteMarkovChain) else GeneratorMatrixOf(self, mat) cond = condition & mat_of & \ StochasticStateSpaceOf(self, state_index) func = lambda s: self.probability(Eq(rv, s), cond) * expr.subs(rv, self._state_index[s]) return sum([func(s) for s in state_index]) raise NotImplementedError("Mechanism for handling (%s, %s) queries hasn't been " "implemented yet."%(expr, condition)) class DiscreteMarkovChain(DiscreteTimeStochasticProcess, MarkovProcess): """ Represents a finite discrete time-homogeneous Markov chain. This type of Markov Chain can be uniquely characterised by its (ordered) state space and its one-step transition probability matrix. Parameters ========== sym: The name given to the Markov Chain state_space: Optional, by default, Range(n) trans_probs: Optional, by default, MatrixSymbol('_T', n, n) Examples ======== >>> from sympy.stats import DiscreteMarkovChain, TransitionMatrixOf, P, E >>> from sympy import Matrix, MatrixSymbol, Eq, symbols >>> T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]]) >>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T) >>> YS = DiscreteMarkovChain("Y") >>> Y.state_space {0, 1, 2} >>> Y.transition_probabilities Matrix([ [0.5, 0.2, 0.3], [0.2, 0.5, 0.3], [0.2, 0.3, 0.5]]) >>> TS = MatrixSymbol('T', 3, 3) >>> P(Eq(YS[3], 2), Eq(YS[1], 1) & TransitionMatrixOf(YS, TS)) T[0, 2]*T[1, 0] + T[1, 1]*T[1, 2] + T[1, 2]*T[2, 2] >>> P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) 0.36 Probabilities will be calculated based on indexes rather than state names. For example, with the Sunny-Cloudy-Rainy model with string state names: >>> from sympy.core.symbol import Str >>> Y = DiscreteMarkovChain("Y", [Str('Sunny'), Str('Cloudy'), Str('Rainy')], T) >>> P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) 0.36 This gives the same answer as the ``[0, 1, 2]`` state space. Currently, there is no support for state names within probability and expectation statements. Here is a work-around using ``Str``: >>> P(Eq(Str('Rainy'), Y[3]), Eq(Y[1], Str('Cloudy'))).round(2) 0.36 Symbol state names can also be used: >>> sunny, cloudy, rainy = symbols('Sunny, Cloudy, Rainy') >>> Y = DiscreteMarkovChain("Y", [sunny, cloudy, rainy], T) >>> P(Eq(Y[3], rainy), Eq(Y[1], cloudy)).round(2) 0.36 Expectations will be calculated as follows: >>> E(Y[3], Eq(Y[1], cloudy)) 0.38*Cloudy + 0.36*Rainy + 0.26*Sunny Probability of expressions with multiple RandomIndexedSymbols can also be calculated provided there is only 1 RandomIndexedSymbol in the given condition. It is always better to use Rational instead of floating point numbers for the probabilities in the transition matrix to avoid errors. >>> from sympy import Gt, Le, Rational >>> T = Matrix([[Rational(5, 10), Rational(3, 10), Rational(2, 10)], [Rational(2, 10), Rational(7, 10), Rational(1, 10)], [Rational(3, 10), Rational(3, 10), Rational(4, 10)]]) >>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T) >>> P(Eq(Y[3], Y[1]), Eq(Y[0], 0)).round(3) 0.409 >>> P(Gt(Y[3], Y[1]), Eq(Y[0], 0)).round(2) 0.36 >>> P(Le(Y[15], Y[10]), Eq(Y[8], 2)).round(7) 0.6963328 Symbolic probability queries are also supported >>> from sympy import symbols, Matrix, Rational, Eq, Gt >>> from sympy.stats import P, DiscreteMarkovChain >>> a, b, c, d = symbols('a b c d') >>> T = Matrix([[Rational(1, 10), Rational(4, 10), Rational(5, 10)], [Rational(3, 10), Rational(4, 10), Rational(3, 10)], [Rational(7, 10), Rational(2, 10), Rational(1, 10)]]) >>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T) >>> query = P(Eq(Y[a], b), Eq(Y[c], d)) >>> query.subs({a:10, b:2, c:5, d:1}).round(4) 0.3096 >>> P(Eq(Y[10], 2), Eq(Y[5], 1)).evalf().round(4) 0.3096 >>> query_gt = P(Gt(Y[a], b), Eq(Y[c], d)) >>> query_gt.subs({a:21, b:0, c:5, d:0}).evalf().round(5) 0.64705 >>> P(Gt(Y[21], 0), Eq(Y[5], 0)).round(5) 0.64705 There is limited support for arbitrarily sized states: >>> n = symbols('n', nonnegative=True, integer=True) >>> T = MatrixSymbol('T', n, n) >>> Y = DiscreteMarkovChain("Y", trans_probs=T) >>> Y.state_space Range(0, n, 1) >>> query = P(Eq(Y[a], b), Eq(Y[c], d)) >>> query.subs({a:10, b:2, c:5, d:1}) (T**5)[1, 2] References ========== .. [1] https://en.wikipedia.org/wiki/Markov_chain#Discrete-time_Markov_chain .. [2] https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf """ index_set = S.Naturals0 def __new__(cls, sym, state_space=None, trans_probs=None): sym = _symbol_converter(sym) state_space, trans_probs = MarkovProcess._sanity_checks(state_space, trans_probs) obj = Basic.__new__(cls, sym, state_space, trans_probs) # type: ignore indices = dict() if isinstance(obj.number_of_states, Integer): for index, state in enumerate(obj._state_index): indices[state] = index obj.index_of = indices return obj @property def transition_probabilities(self): """ Transition probabilities of discrete Markov chain, either an instance of Matrix or MatrixSymbol. """ return self.args[2] def communication_classes(self) -> tList[tTuple[tList[Basic], Boolean, Integer]]: """ Returns the list of communication classes that partition the states of the markov chain. A communication class is defined to be a set of states such that every state in that set is reachable from every other state in that set. Due to its properties this forms a class in the mathematical sense. Communication classes are also known as recurrence classes. Returns ======= classes The ``classes`` are a list of tuples. Each tuple represents a single communication class with its properties. The first element in the tuple is the list of states in the class, the second element is whether the class is recurrent and the third element is the period of the communication class. Examples ======== >>> from sympy.stats import DiscreteMarkovChain >>> from sympy import Matrix >>> T = Matrix([[0, 1, 0], ... [1, 0, 0], ... [1, 0, 0]]) >>> X = DiscreteMarkovChain('X', [1, 2, 3], T) >>> classes = X.communication_classes() >>> for states, is_recurrent, period in classes: ... states, is_recurrent, period ([1, 2], True, 2) ([3], False, 1) From this we can see that states ``1`` and ``2`` communicate, are recurrent and have a period of 2. We can also see state ``3`` is transient with a period of 1. Notes ===== The algorithm used is of order ``O(n**2)`` where ``n`` is the number of states in the markov chain. It uses Tarjan's algorithm to find the classes themselves and then it uses a breadth-first search algorithm to find each class's periodicity. Most of the algorithm's components approach ``O(n)`` as the matrix becomes more and more sparse. References ========== .. [1] http://www.columbia.edu/~ww2040/4701Sum07/4701-06-Notes-MCII.pdf .. [2] http://cecas.clemson.edu/~shierd/Shier/markov.pdf .. [3] https://ujcontent.uj.ac.za/vital/access/services/Download/uj:7506/CONTENT1 .. [4] https://www.mathworks.com/help/econ/dtmc.classify.html """ n = self.number_of_states T = self.transition_probabilities if isinstance(T, MatrixSymbol): raise NotImplementedError("Cannot perform the operation with a symbolic matrix.") # begin Tarjan's algorithm V = Range(n) # don't use state names. Rather use state # indexes since we use them for matrix # indexing here and later onward E = [(i, j) for i in V for j in V if T[i, j] != 0] classes = strongly_connected_components((V, E)) # end Tarjan's algorithm recurrence = [] periods = [] for class_ in classes: # begin recurrent check (similar to self._check_trans_probs()) submatrix = T[class_, class_] # get the submatrix with those states is_recurrent = S.true rows = submatrix.tolist() for row in rows: if (sum(row) - 1) != 0: is_recurrent = S.false break recurrence.append(is_recurrent) # end recurrent check # begin breadth-first search non_tree_edge_values: tSet[int] = set() visited = {class_[0]} newly_visited = {class_[0]} level = {class_[0]: 0} current_level = 0 done = False # imitate a do-while loop while not done: # runs at most len(class_) times done = len(visited) == len(class_) current_level += 1 # this loop and the while loop above run a combined len(class_) number of times. # so this triple nested loop runs through each of the n states once. for i in newly_visited: # the loop below runs len(class_) number of times # complexity is around about O(n * avg(len(class_))) newly_visited = {j for j in class_ if T[i, j] != 0} new_tree_edges = newly_visited.difference(visited) for j in new_tree_edges: level[j] = current_level new_non_tree_edges = newly_visited.intersection(visited) new_non_tree_edge_values = {level[i]-level[j]+1 for j in new_non_tree_edges} non_tree_edge_values = non_tree_edge_values.union(new_non_tree_edge_values) visited = visited.union(new_tree_edges) # igcd needs at least 2 arguments positive_ntev = {val_e for val_e in non_tree_edge_values if val_e > 0} if len(positive_ntev) == 0: periods.append(len(class_)) elif len(positive_ntev) == 1: periods.append(positive_ntev.pop()) else: periods.append(igcd(*positive_ntev)) # end breadth-first search # convert back to the user's state names classes = [[self._state_index[i] for i in class_] for class_ in classes] return sympify(list(zip(classes, recurrence, periods))) def fundamental_matrix(self): """ Each entry fundamental matrix can be interpreted as the expected number of times the chains is in state j if it started in state i. References ========== .. [1] https://lips.cs.princeton.edu/the-fundamental-matrix-of-a-finite-markov-chain/ """ _, _, _, Q = self.decompose() if Q.shape[0] > 0: # if non-ergodic I = eye(Q.shape[0]) if (I - Q).det() == 0: raise ValueError("The fundamental matrix doesn't exist.") return (I - Q).inv().as_immutable() else: # if ergodic P = self.transition_probabilities I = eye(P.shape[0]) w = self.fixed_row_vector() W = Matrix([list(w) for i in range(0, P.shape[0])]) if (I - P + W).det() == 0: raise ValueError("The fundamental matrix doesn't exist.") return (I - P + W).inv().as_immutable() def absorbing_probabilities(self): """ Computes the absorbing probabilities, i.e., the ij-th entry of the matrix denotes the probability of Markov chain being absorbed in state j starting from state i. """ _, _, R, _ = self.decompose() N = self.fundamental_matrix() if R is None or N is None: return None return N*R def absorbing_probabilites(self): SymPyDeprecationWarning( feature="absorbing_probabilites", useinstead="absorbing_probabilities", issue=20042, deprecated_since_version="1.7" ).warn() return self.absorbing_probabilities() def is_regular(self): tuples = self.communication_classes() if len(tuples) == 0: return S.false # not defined for a 0x0 matrix classes, _, periods = list(zip(*tuples)) return And(len(classes) == 1, periods[0] == 1) def is_ergodic(self): tuples = self.communication_classes() if len(tuples) == 0: return S.false # not defined for a 0x0 matrix classes, _, _ = list(zip(*tuples)) return S(len(classes) == 1) def is_absorbing_state(self, state): trans_probs = self.transition_probabilities if isinstance(trans_probs, ImmutableMatrix) and \ state < trans_probs.shape[0]: return S(trans_probs[state, state]) is S.One def is_absorbing_chain(self): states, A, B, C = self.decompose() r = A.shape[0] return And(r > 0, A == Identity(r).as_explicit()) def stationary_distribution(self, condition_set=False) -> tUnion[ImmutableMatrix, ConditionSet, Lambda]: r""" The stationary distribution is any row vector, p, that solves p = pP, is row stochastic and each element in p must be nonnegative. That means in matrix form: :math:`(P-I)^T p^T = 0` and :math:`(1, \dots, 1) p = 1` where ``P`` is the one-step transition matrix. All time-homogeneous Markov Chains with a finite state space have at least one stationary distribution. In addition, if a finite time-homogeneous Markov Chain is irreducible, the stationary distribution is unique. Parameters ========== condition_set : bool If the chain has a symbolic size or transition matrix, it will return a ``Lambda`` if ``False`` and return a ``ConditionSet`` if ``True``. Examples ======== >>> from sympy.stats import DiscreteMarkovChain >>> from sympy import Matrix, S An irreducible Markov Chain >>> T = Matrix([[S(1)/2, S(1)/2, 0], ... [S(4)/5, S(1)/5, 0], ... [1, 0, 0]]) >>> X = DiscreteMarkovChain('X', trans_probs=T) >>> X.stationary_distribution() Matrix([[8/13, 5/13, 0]]) A reducible Markov Chain >>> T = Matrix([[S(1)/2, S(1)/2, 0], ... [S(4)/5, S(1)/5, 0], ... [0, 0, 1]]) >>> X = DiscreteMarkovChain('X', trans_probs=T) >>> X.stationary_distribution() Matrix([[8/13 - 8*tau0/13, 5/13 - 5*tau0/13, tau0]]) >>> Y = DiscreteMarkovChain('Y') >>> Y.stationary_distribution() Lambda((wm, _T), Eq(wm*_T, wm)) >>> Y.stationary_distribution(condition_set=True) ConditionSet(wm, Eq(wm*_T, wm)) References ========== .. [1] https://www.probabilitycourse.com/chapter11/11_2_6_stationary_and_limiting_distributions.php .. [2] https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf See Also ======== sympy.stats.DiscreteMarkovChain.limiting_distribution """ trans_probs = self.transition_probabilities n = self.number_of_states if n == 0: return ImmutableMatrix(Matrix([[]])) # symbolic matrix version if isinstance(trans_probs, MatrixSymbol): wm = MatrixSymbol('wm', 1, n) if condition_set: return ConditionSet(wm, Eq(wm * trans_probs, wm)) else: return Lambda((wm, trans_probs), Eq(wm * trans_probs, wm)) # numeric matrix version a = Matrix(trans_probs - Identity(n)).T a[0, 0:n] = ones(1, n) # type: ignore b = zeros(n, 1) b[0, 0] = 1 soln = list(linsolve((a, b)))[0] return ImmutableMatrix([[sol for sol in soln]]) def fixed_row_vector(self): """ A wrapper for ``stationary_distribution()``. """ return self.stationary_distribution() @property def limiting_distribution(self): """ The fixed row vector is the limiting distribution of a discrete Markov chain. """ return self.fixed_row_vector() def decompose(self) -> tTuple[tList[Basic], ImmutableMatrix, ImmutableMatrix, ImmutableMatrix]: """ Decomposes the transition matrix into submatrices with special properties. The transition matrix can be decomposed into 4 submatrices: - A - the submatrix from recurrent states to recurrent states. - B - the submatrix from transient to recurrent states. - C - the submatrix from transient to transient states. - O - the submatrix of zeros for recurrent to transient states. Returns ======= states, A, B, C ``states`` - a list of state names with the first being the recurrent states and the last being the transient states in the order of the row names of A and then the row names of C. ``A`` - the submatrix from recurrent states to recurrent states. ``B`` - the submatrix from transient to recurrent states. ``C`` - the submatrix from transient to transient states. Examples ======== >>> from sympy.stats import DiscreteMarkovChain >>> from sympy import Matrix, S One can decompose this chain for example: >>> T = Matrix([[S(1)/2, S(1)/2, 0, 0, 0], ... [S(2)/5, S(1)/5, S(2)/5, 0, 0], ... [0, 0, 1, 0, 0], ... [0, 0, S(1)/2, S(1)/2, 0], ... [S(1)/2, 0, 0, 0, S(1)/2]]) >>> X = DiscreteMarkovChain('X', trans_probs=T) >>> states, A, B, C = X.decompose() >>> states [2, 0, 1, 3, 4] >>> A # recurrent to recurrent Matrix([[1]]) >>> B # transient to recurrent Matrix([ [ 0], [2/5], [1/2], [ 0]]) >>> C # transient to transient Matrix([ [1/2, 1/2, 0, 0], [2/5, 1/5, 0, 0], [ 0, 0, 1/2, 0], [1/2, 0, 0, 1/2]]) This means that state 2 is the only absorbing state (since A is a 1x1 matrix). B is a 4x1 matrix since the 4 remaining transient states all merge into reccurent state 2. And C is the 4x4 matrix that shows how the transient states 0, 1, 3, 4 all interact. See Also ======== sympy.stats.DiscreteMarkovChain.communication_classes sympy.stats.DiscreteMarkovChain.canonical_form References ========== .. [1] https://en.wikipedia.org/wiki/Absorbing_Markov_chain .. [2] http://people.brandeis.edu/~igusa/Math56aS08/Math56a_S08_notes015.pdf """ trans_probs = self.transition_probabilities classes = self.communication_classes() r_states = [] t_states = [] for states, recurrent, period in classes: if recurrent: r_states += states else: t_states += states states = r_states + t_states indexes = [self.index_of[state] for state in states] # type: ignore A = Matrix(len(r_states), len(r_states), lambda i, j: trans_probs[indexes[i], indexes[j]]) B = Matrix(len(t_states), len(r_states), lambda i, j: trans_probs[indexes[len(r_states) + i], indexes[j]]) C = Matrix(len(t_states), len(t_states), lambda i, j: trans_probs[indexes[len(r_states) + i], indexes[len(r_states) + j]]) return states, A.as_immutable(), B.as_immutable(), C.as_immutable() def canonical_form(self) -> tTuple[tList[Basic], ImmutableMatrix]: """ Reorders the one-step transition matrix so that recurrent states appear first and transient states appear last. Other representations include inserting transient states first and recurrent states last. Returns ======= states, P_new ``states`` is the list that describes the order of the new states in the matrix so that the ith element in ``states`` is the state of the ith row of A. ``P_new`` is the new transition matrix in canonical form. Examples ======== >>> from sympy.stats import DiscreteMarkovChain >>> from sympy import Matrix, S You can convert your chain into canonical form: >>> T = Matrix([[S(1)/2, S(1)/2, 0, 0, 0], ... [S(2)/5, S(1)/5, S(2)/5, 0, 0], ... [0, 0, 1, 0, 0], ... [0, 0, S(1)/2, S(1)/2, 0], ... [S(1)/2, 0, 0, 0, S(1)/2]]) >>> X = DiscreteMarkovChain('X', list(range(1, 6)), trans_probs=T) >>> states, new_matrix = X.canonical_form() >>> states [3, 1, 2, 4, 5] >>> new_matrix Matrix([ [ 1, 0, 0, 0, 0], [ 0, 1/2, 1/2, 0, 0], [2/5, 2/5, 1/5, 0, 0], [1/2, 0, 0, 1/2, 0], [ 0, 1/2, 0, 0, 1/2]]) The new states are [3, 1, 2, 4, 5] and you can create a new chain with this and its canonical form will remain the same (since it is already in canonical form). >>> X = DiscreteMarkovChain('X', states, new_matrix) >>> states, new_matrix = X.canonical_form() >>> states [3, 1, 2, 4, 5] >>> new_matrix Matrix([ [ 1, 0, 0, 0, 0], [ 0, 1/2, 1/2, 0, 0], [2/5, 2/5, 1/5, 0, 0], [1/2, 0, 0, 1/2, 0], [ 0, 1/2, 0, 0, 1/2]]) This is not limited to absorbing chains: >>> T = Matrix([[0, 5, 5, 0, 0], ... [0, 0, 0, 10, 0], ... [5, 0, 5, 0, 0], ... [0, 10, 0, 0, 0], ... [0, 3, 0, 3, 4]])/10 >>> X = DiscreteMarkovChain('X', trans_probs=T) >>> states, new_matrix = X.canonical_form() >>> states [1, 3, 0, 2, 4] >>> new_matrix Matrix([ [ 0, 1, 0, 0, 0], [ 1, 0, 0, 0, 0], [ 1/2, 0, 0, 1/2, 0], [ 0, 0, 1/2, 1/2, 0], [3/10, 3/10, 0, 0, 2/5]]) See Also ======== sympy.stats.DiscreteMarkovChain.communication_classes sympy.stats.DiscreteMarkovChain.decompose References ========== .. [1] https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470316887.app1 .. [2] http://www.columbia.edu/~ww2040/6711F12/lect1023big.pdf """ states, A, B, C = self.decompose() O = zeros(A.shape[0], C.shape[1]) return states, BlockMatrix([[A, O], [B, C]]).as_explicit() def sample(self): """ Returns ======= sample: iterator object iterator object containing the sample """ if not isinstance(self.transition_probabilities, (Matrix, ImmutableMatrix)): raise ValueError("Transition Matrix must be provided for sampling") Tlist = self.transition_probabilities.tolist() samps = [random.choice(list(self.state_space))] yield samps[0] time = 1 densities = {} for state in self.state_space: states = list(self.state_space) densities[state] = {states[i]: Tlist[state][i] for i in range(len(states))} while time < S.Infinity: samps.append((next(sample_iter(FiniteRV("_", densities[samps[time - 1]]))))) yield samps[time] time += 1 class ContinuousMarkovChain(ContinuousTimeStochasticProcess, MarkovProcess): """ Represents continuous time Markov chain. Parameters ========== sym: Symbol/str state_space: Set Optional, by default, S.Reals gen_mat: Matrix/ImmutableMatrix/MatrixSymbol Optional, by default, None Examples ======== >>> from sympy.stats import ContinuousMarkovChain, P >>> from sympy import Matrix, S, Eq, Gt >>> G = Matrix([[-S(1), S(1)], [S(1), -S(1)]]) >>> C = ContinuousMarkovChain('C', state_space=[0, 1], gen_mat=G) >>> C.limiting_distribution() Matrix([[1/2, 1/2]]) >>> C.state_space {0, 1} >>> C.generator_matrix Matrix([ [-1, 1], [ 1, -1]]) Probability queries are supported >>> P(Eq(C(1.96), 0), Eq(C(0.78), 1)).round(5) 0.45279 >>> P(Gt(C(1.7), 0), Eq(C(0.82), 1)).round(5) 0.58602 Probability of expressions with multiple RandomIndexedSymbols can also be calculated provided there is only 1 RandomIndexedSymbol in the given condition. It is always better to use Rational instead of floating point numbers for the probabilities in the generator matrix to avoid errors. >>> from sympy import Gt, Le, Rational >>> G = Matrix([[-S(1), Rational(1, 10), Rational(9, 10)], [Rational(2, 5), -S(1), Rational(3, 5)], [Rational(1, 2), Rational(1, 2), -S(1)]]) >>> C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G) >>> P(Eq(C(3.92), C(1.75)), Eq(C(0.46), 0)).round(5) 0.37933 >>> P(Gt(C(3.92), C(1.75)), Eq(C(0.46), 0)).round(5) 0.34211 >>> P(Le(C(1.57), C(3.14)), Eq(C(1.22), 1)).round(4) 0.7143 Symbolic probability queries are also supported >>> from sympy import S, symbols, Matrix, Rational, Eq, Gt >>> from sympy.stats import P, ContinuousMarkovChain >>> a,b,c,d = symbols('a b c d') >>> G = Matrix([[-S(1), Rational(1, 10), Rational(9, 10)], [Rational(2, 5), -S(1), Rational(3, 5)], [Rational(1, 2), Rational(1, 2), -S(1)]]) >>> C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G) >>> query = P(Eq(C(a), b), Eq(C(c), d)) >>> query.subs({a:3.65, b:2, c:1.78, d:1}).evalf().round(10) 0.4002723175 >>> P(Eq(C(3.65), 2), Eq(C(1.78), 1)).round(10) 0.4002723175 >>> query_gt = P(Gt(C(a), b), Eq(C(c), d)) >>> query_gt.subs({a:43.2, b:0, c:3.29, d:2}).evalf().round(10) 0.6832579186 >>> P(Gt(C(43.2), 0), Eq(C(3.29), 2)).round(10) 0.6832579186 References ========== .. [1] https://en.wikipedia.org/wiki/Markov_chain#Continuous-time_Markov_chain .. [2] http://u.math.biu.ac.il/~amirgi/CTMCnotes.pdf """ index_set = S.Reals def __new__(cls, sym, state_space=None, gen_mat=None): sym = _symbol_converter(sym) state_space, gen_mat = MarkovProcess._sanity_checks(state_space, gen_mat) obj = Basic.__new__(cls, sym, state_space, gen_mat) indices = dict() if isinstance(obj.number_of_states, Integer): for index, state in enumerate(obj.state_space): indices[state] = index obj.index_of = indices return obj @property def generator_matrix(self): return self.args[2] @cacheit def transition_probabilities(self, gen_mat=None): t = Dummy('t') if isinstance(gen_mat, (Matrix, ImmutableMatrix)) and \ gen_mat.is_diagonalizable(): # for faster computation use diagonalized generator matrix Q, D = gen_mat.diagonalize() return Lambda(t, Q*exp(t*D)*Q.inv()) if gen_mat != None: return Lambda(t, exp(t*gen_mat)) def limiting_distribution(self): gen_mat = self.generator_matrix if gen_mat is None: return None if isinstance(gen_mat, MatrixSymbol): wm = MatrixSymbol('wm', 1, gen_mat.shape[0]) return Lambda((wm, gen_mat), Eq(wm*gen_mat, wm)) w = IndexedBase('w') wi = [w[i] for i in range(gen_mat.shape[0])] wm = Matrix([wi]) eqs = (wm*gen_mat).tolist()[0] eqs.append(sum(wi) - 1) soln = list(linsolve(eqs, wi))[0] return ImmutableMatrix([[sol for sol in soln]]) class BernoulliProcess(DiscreteTimeStochasticProcess): """ The Bernoulli process consists of repeated independent Bernoulli process trials with the same parameter `p`. It's assumed that the probability `p` applies to every trial and that the outcomes of each trial are independent of all the rest. Therefore Bernoulli Processs is Discrete State and Discrete Time Stochastic Process. Parameters ========== sym: Symbol/str success: Integer/str The event which is considered to be success, by default is 1. failure: Integer/str The event which is considered to be failure, by default is 0. p: Real Number between 0 and 1 Represents the probability of getting success. Examples ======== >>> from sympy.stats import BernoulliProcess, P, E >>> from sympy import Eq, Gt >>> B = BernoulliProcess("B", p=0.7, success=1, failure=0) >>> B.state_space {0, 1} >>> (B.p).round(2) 0.70 >>> B.success 1 >>> B.failure 0 >>> X = B[1] + B[2] + B[3] >>> P(Eq(X, 0)).round(2) 0.03 >>> P(Eq(X, 2)).round(2) 0.44 >>> P(Eq(X, 4)).round(2) 0 >>> P(Gt(X, 1)).round(2) 0.78 >>> P(Eq(B[1], 0) & Eq(B[2], 1) & Eq(B[3], 0) & Eq(B[4], 1)).round(2) 0.04 >>> B.joint_distribution(B[1], B[2]) JointDistributionHandmade(Lambda((B[1], B[2]), Piecewise((0.7, Eq(B[1], 1)), (0.3, Eq(B[1], 0)), (0, True))*Piecewise((0.7, Eq(B[2], 1)), (0.3, Eq(B[2], 0)), (0, True)))) >>> E(2*B[1] + B[2]).round(2) 2.10 >>> P(B[1] < 1).round(2) 0.30 References ========== .. [1] https://en.wikipedia.org/wiki/Bernoulli_process .. [2] https://mathcs.clarku.edu/~djoyce/ma217/bernoulli.pdf """ index_set = S.Naturals0 def __new__(cls, sym, p, success=1, failure=0): _value_check(p >= 0 and p <= 1, 'Value of p must be between 0 and 1.') sym = _symbol_converter(sym) p = _sympify(p) success = _sym_sympify(success) failure = _sym_sympify(failure) return Basic.__new__(cls, sym, p, success, failure) @property def symbol(self): return self.args[0] @property def p(self): return self.args[1] @property def success(self): return self.args[2] @property def failure(self): return self.args[3] @property def state_space(self): return _set_converter([self.success, self.failure]) def distribution(self, key=None): if key is None: self._deprecation_warn_distribution() return BernoulliDistribution(self.p) return BernoulliDistribution(self.p, self.success, self.failure) def simple_rv(self, rv): return Bernoulli(rv.name, p=self.p, succ=self.success, fail=self.failure) def expectation(self, expr, condition=None, evaluate=True, **kwargs): """ Computes expectation. Parameters ========== expr: RandomIndexedSymbol, Relational, Logic Condition for which expectation has to be computed. Must contain a RandomIndexedSymbol of the process. condition: Relational, Logic The given conditions under which computations should be done. Returns ======= Expectation of the RandomIndexedSymbol. """ return _SubstituteRV._expectation(expr, condition, evaluate, **kwargs) def probability(self, condition, given_condition=None, evaluate=True, **kwargs): """ Computes probability. Parameters ========== condition: Relational Condition for which probability has to be computed. Must contain a RandomIndexedSymbol of the process. given_condition: Relational/And The given conditions under which computations should be done. Returns ======= Probability of the condition. """ return _SubstituteRV._probability(condition, given_condition, evaluate, **kwargs) def density(self, x): return Piecewise((self.p, Eq(x, self.success)), (1 - self.p, Eq(x, self.failure)), (S.Zero, True)) class _SubstituteRV: """ Internal class to handle the queries of expectation and probability by substitution. """ @staticmethod def _rvindexed_subs(expr, condition=None): """ Substitutes the RandomIndexedSymbol with the RandomSymbol with same name, distribution and probability as RandomIndexedSymbol. Parameters ========== expr: RandomIndexedSymbol, Relational, Logic Condition for which expectation has to be computed. Must contain a RandomIndexedSymbol of the process. condition: Relational, Logic The given conditions under which computations should be done. """ rvs_expr = random_symbols(expr) if len(rvs_expr) != 0: swapdict_expr = {} for rv in rvs_expr: if isinstance(rv, RandomIndexedSymbol): newrv = rv.pspace.process.simple_rv(rv) # substitute with equivalent simple rv swapdict_expr[rv] = newrv expr = expr.subs(swapdict_expr) rvs_cond = random_symbols(condition) if len(rvs_cond)!=0: swapdict_cond = {} for rv in rvs_cond: if isinstance(rv, RandomIndexedSymbol): newrv = rv.pspace.process.simple_rv(rv) swapdict_cond[rv] = newrv condition = condition.subs(swapdict_cond) return expr, condition @classmethod def _expectation(self, expr, condition=None, evaluate=True, **kwargs): """ Internal method for computing expectation of indexed RV. Parameters ========== expr: RandomIndexedSymbol, Relational, Logic Condition for which expectation has to be computed. Must contain a RandomIndexedSymbol of the process. condition: Relational, Logic The given conditions under which computations should be done. Returns ======= Expectation of the RandomIndexedSymbol. """ new_expr, new_condition = self._rvindexed_subs(expr, condition) if not is_random(new_expr): return new_expr new_pspace = pspace(new_expr) if new_condition is not None: new_expr = given(new_expr, new_condition) if new_expr.is_Add: # As E is Linear return Add(*[new_pspace.compute_expectation( expr=arg, evaluate=evaluate, **kwargs) for arg in new_expr.args]) return new_pspace.compute_expectation( new_expr, evaluate=evaluate, **kwargs) @classmethod def _probability(self, condition, given_condition=None, evaluate=True, **kwargs): """ Internal method for computing probability of indexed RV Parameters ========== condition: Relational Condition for which probability has to be computed. Must contain a RandomIndexedSymbol of the process. given_condition: Relational/And The given conditions under which computations should be done. Returns ======= Probability of the condition. """ new_condition, new_givencondition = self._rvindexed_subs(condition, given_condition) if isinstance(new_givencondition, RandomSymbol): condrv = random_symbols(new_condition) if len(condrv) == 1 and condrv[0] == new_givencondition: return BernoulliDistribution(self._probability(new_condition), 0, 1) if any(dependent(rv, new_givencondition) for rv in condrv): return Probability(new_condition, new_givencondition) else: return self._probability(new_condition) if new_givencondition is not None and \ not isinstance(new_givencondition, (Relational, Boolean)): raise ValueError("%s is not a relational or combination of relationals" % (new_givencondition)) if new_givencondition == False or new_condition == False: return S.Zero if new_condition == True: return S.One if not isinstance(new_condition, (Relational, Boolean)): raise ValueError("%s is not a relational or combination of relationals" % (new_condition)) if new_givencondition is not None: # If there is a condition # Recompute on new conditional expr return self._probability(given(new_condition, new_givencondition, **kwargs), **kwargs) result = pspace(new_condition).probability(new_condition, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def get_timerv_swaps(expr, condition): """ Finds the appropriate interval for each time stamp in expr by parsing the given condition and returns intervals for each timestamp and dictionary that maps variable time-stamped Random Indexed Symbol to its corresponding Random Indexed variable with fixed time stamp. Parameters ========== expr: SymPy Expression Expression containing Random Indexed Symbols with variable time stamps condition: Relational/Boolean Expression Expression containing time bounds of variable time stamps in expr Examples ======== >>> from sympy.stats.stochastic_process_types import get_timerv_swaps, PoissonProcess >>> from sympy import symbols, Contains, Interval >>> x, t, d = symbols('x t d', positive=True) >>> X = PoissonProcess("X", 3) >>> get_timerv_swaps(x*X(t), Contains(t, Interval.Lopen(0, 1))) ([Interval.Lopen(0, 1)], {X(t): X(1)}) >>> get_timerv_swaps((X(t)**2 + X(d)**2), Contains(t, Interval.Lopen(0, 1)) ... & Contains(d, Interval.Ropen(1, 4))) # doctest: +SKIP ([Interval.Ropen(1, 4), Interval.Lopen(0, 1)], {X(d): X(3), X(t): X(1)}) Returns ======= intervals: list List of Intervals/FiniteSet on which each time stamp is defined rv_swap: dict Dictionary mapping variable time Random Indexed Symbol to constant time Random Indexed Variable """ if not isinstance(condition, (Relational, Boolean)): raise ValueError("%s is not a relational or combination of relationals" % (condition)) expr_syms = list(expr.atoms(RandomIndexedSymbol)) if isinstance(condition, (And, Or)): given_cond_args = condition.args else: # single condition given_cond_args = (condition, ) rv_swap = {} intervals = [] for expr_sym in expr_syms: for arg in given_cond_args: if arg.has(expr_sym.key) and isinstance(expr_sym.key, Symbol): intv = _set_converter(arg.args[1]) diff_key = intv._sup - intv._inf if diff_key == oo: raise ValueError("%s should have finite bounds" % str(expr_sym.name)) elif diff_key == S.Zero: # has singleton set diff_key = intv._sup rv_swap[expr_sym] = expr_sym.subs({expr_sym.key: diff_key}) intervals.append(intv) return intervals, rv_swap class CountingProcess(ContinuousTimeStochasticProcess): """ This class handles the common methods of the Counting Processes such as Poisson, Wiener and Gamma Processes """ index_set = _set_converter(Interval(0, oo)) @property def symbol(self): return self.args[0] def expectation(self, expr, condition=None, evaluate=True, **kwargs): """ Computes expectation Parameters ========== expr: RandomIndexedSymbol, Relational, Logic Condition for which expectation has to be computed. Must contain a RandomIndexedSymbol of the process. condition: Relational, Boolean The given conditions under which computations should be done, i.e, the intervals on which each variable time stamp in expr is defined Returns ======= Expectation of the given expr """ if condition is not None: intervals, rv_swap = get_timerv_swaps(expr, condition) # they are independent when they have non-overlapping intervals if len(intervals) == 1 or all(Intersection(*intv_comb) == EmptySet for intv_comb in itertools.combinations(intervals, 2)): if expr.is_Add: return Add.fromiter(self.expectation(arg, condition) for arg in expr.args) expr = expr.subs(rv_swap) else: return Expectation(expr, condition) return _SubstituteRV._expectation(expr, evaluate=evaluate, **kwargs) def _solve_argwith_tworvs(self, arg): if arg.args[0].key >= arg.args[1].key or isinstance(arg, Eq): diff_key = abs(arg.args[0].key - arg.args[1].key) rv = arg.args[0] arg = arg.__class__(rv.pspace.process(diff_key), 0) else: diff_key = arg.args[1].key - arg.args[0].key rv = arg.args[1] arg = arg.__class__(rv.pspace.process(diff_key), 0) return arg def _solve_numerical(self, condition, given_condition=None): if isinstance(condition, And): args_list = list(condition.args) else: args_list = [condition] if given_condition is not None: if isinstance(given_condition, And): args_list.extend(list(given_condition.args)) else: args_list.extend([given_condition]) # sort the args based on timestamp to get the independent increments in # each segment using all the condition args as well as given_condition args args_list = sorted(args_list, key=lambda x: x.args[0].key) result = [] cond_args = list(condition.args) if isinstance(condition, And) else [condition] if args_list[0] in cond_args and not (is_random(args_list[0].args[0]) and is_random(args_list[0].args[1])): result.append(_SubstituteRV._probability(args_list[0])) if is_random(args_list[0].args[0]) and is_random(args_list[0].args[1]): arg = self._solve_argwith_tworvs(args_list[0]) result.append(_SubstituteRV._probability(arg)) for i in range(len(args_list) - 1): curr, nex = args_list[i], args_list[i + 1] diff_key = nex.args[0].key - curr.args[0].key working_set = curr.args[0].pspace.process.state_space if curr.args[1] > nex.args[1]: #impossible condition so return 0 result.append(0) break if isinstance(curr, Eq): working_set = Intersection(working_set, Interval.Lopen(curr.args[1], oo)) else: working_set = Intersection(working_set, curr.as_set()) if isinstance(nex, Eq): working_set = Intersection(working_set, Interval(-oo, nex.args[1])) else: working_set = Intersection(working_set, nex.as_set()) if working_set == EmptySet: rv = Eq(curr.args[0].pspace.process(diff_key), 0) result.append(_SubstituteRV._probability(rv)) else: if working_set.is_finite_set: if isinstance(curr, Eq) and isinstance(nex, Eq): rv = Eq(curr.args[0].pspace.process(diff_key), len(working_set)) result.append(_SubstituteRV._probability(rv)) elif isinstance(curr, Eq) ^ isinstance(nex, Eq): result.append(Add.fromiter(_SubstituteRV._probability(Eq( curr.args[0].pspace.process(diff_key), x)) for x in range(len(working_set)))) else: n = len(working_set) result.append(Add.fromiter((n - x)*_SubstituteRV._probability(Eq( curr.args[0].pspace.process(diff_key), x)) for x in range(n))) else: result.append(_SubstituteRV._probability( curr.args[0].pspace.process(diff_key) <= working_set._sup - working_set._inf)) return Mul.fromiter(result) def probability(self, condition, given_condition=None, evaluate=True, **kwargs): """ Computes probability. Parameters ========== condition: Relational Condition for which probability has to be computed. Must contain a RandomIndexedSymbol of the process. given_condition: Relational, Boolean The given conditions under which computations should be done, i.e, the intervals on which each variable time stamp in expr is defined Returns ======= Probability of the condition """ check_numeric = True if isinstance(condition, (And, Or)): cond_args = condition.args else: cond_args = (condition, ) # check that condition args are numeric or not if not all(arg.args[0].key.is_number for arg in cond_args): check_numeric = False if given_condition is not None: check_given_numeric = True if isinstance(given_condition, (And, Or)): given_cond_args = given_condition.args else: given_cond_args = (given_condition, ) # check that given condition args are numeric or not if given_condition.has(Contains): check_given_numeric = False # Handle numerical queries if check_numeric and check_given_numeric: res = [] if isinstance(condition, Or): res.append(Add.fromiter(self._solve_numerical(arg, given_condition) for arg in condition.args)) if isinstance(given_condition, Or): res.append(Add.fromiter(self._solve_numerical(condition, arg) for arg in given_condition.args)) if res: return Add.fromiter(res) return self._solve_numerical(condition, given_condition) # No numeric queries, go by Contains?... then check that all the # given condition are in form of `Contains` if not all(arg.has(Contains) for arg in given_cond_args): raise ValueError("If given condition is passed with `Contains`, then " "please pass the evaluated condition with its corresponding information " "in terms of intervals of each time stamp to be passed in given condition.") intervals, rv_swap = get_timerv_swaps(condition, given_condition) # they are independent when they have non-overlapping intervals if len(intervals) == 1 or all(Intersection(*intv_comb) == EmptySet for intv_comb in itertools.combinations(intervals, 2)): if isinstance(condition, And): return Mul.fromiter(self.probability(arg, given_condition) for arg in condition.args) elif isinstance(condition, Or): return Add.fromiter(self.probability(arg, given_condition) for arg in condition.args) condition = condition.subs(rv_swap) else: return Probability(condition, given_condition) if check_numeric: return self._solve_numerical(condition) return _SubstituteRV._probability(condition, evaluate=evaluate, **kwargs) class PoissonProcess(CountingProcess): """ The Poisson process is a counting process. It is usually used in scenarios where we are counting the occurrences of certain events that appear to happen at a certain rate, but completely at random. Parameters ========== sym: Symbol/str lamda: Positive number Rate of the process, ``lamda > 0`` Examples ======== >>> from sympy.stats import PoissonProcess, P, E >>> from sympy import symbols, Eq, Ne, Contains, Interval >>> X = PoissonProcess("X", lamda=3) >>> X.state_space Naturals0 >>> X.lamda 3 >>> t1, t2 = symbols('t1 t2', positive=True) >>> P(X(t1) < 4) (9*t1**3/2 + 9*t1**2/2 + 3*t1 + 1)*exp(-3*t1) >>> P(Eq(X(t1), 2) | Ne(X(t1), 4), Contains(t1, Interval.Ropen(2, 4))) 1 - 36*exp(-6) >>> P(Eq(X(t1), 2) & Eq(X(t2), 3), Contains(t1, Interval.Lopen(0, 2)) ... & Contains(t2, Interval.Lopen(2, 4))) 648*exp(-12) >>> E(X(t1)) 3*t1 >>> E(X(t1)**2 + 2*X(t2), Contains(t1, Interval.Lopen(0, 1)) ... & Contains(t2, Interval.Lopen(1, 2))) 18 >>> P(X(3) < 1, Eq(X(1), 0)) exp(-6) >>> P(Eq(X(4), 3), Eq(X(2), 3)) exp(-6) >>> P(X(2) <= 3, X(1) > 1) 5*exp(-3) Merging two Poisson Processes >>> Y = PoissonProcess("Y", lamda=4) >>> Z = X + Y >>> Z.lamda 7 Splitting a Poisson Process into two independent Poisson Processes >>> N, M = Z.split(l1=2, l2=5) >>> N.lamda, M.lamda (2, 5) References ========== .. [1] https://www.probabilitycourse.com/chapter11/11_0_0_intro.php .. [2] https://en.wikipedia.org/wiki/Poisson_point_process """ def __new__(cls, sym, lamda): _value_check(lamda > 0, 'lamda should be a positive number.') sym = _symbol_converter(sym) lamda = _sympify(lamda) return Basic.__new__(cls, sym, lamda) @property def lamda(self): return self.args[1] @property def state_space(self): return S.Naturals0 def distribution(self, key): if isinstance(key, RandomIndexedSymbol): self._deprecation_warn_distribution() return PoissonDistribution(self.lamda*key.key) return PoissonDistribution(self.lamda*key) def density(self, x): return (self.lamda*x.key)**x / factorial(x) * exp(-(self.lamda*x.key)) def simple_rv(self, rv): return Poisson(rv.name, lamda=self.lamda*rv.key) def __add__(self, other): if not isinstance(other, PoissonProcess): raise ValueError("Only instances of Poisson Process can be merged") return PoissonProcess(Dummy(self.symbol.name + other.symbol.name), self.lamda + other.lamda) def split(self, l1, l2): if _sympify(l1 + l2) != self.lamda: raise ValueError("Sum of l1 and l2 should be %s" % str(self.lamda)) return PoissonProcess(Dummy("l1"), l1), PoissonProcess(Dummy("l2"), l2) class WienerProcess(CountingProcess): """ The Wiener process is a real valued continuous-time stochastic process. In physics it is used to study Brownian motion and therefore also known as Brownian Motion. Parameters ========== sym: Symbol/str Examples ======== >>> from sympy.stats import WienerProcess, P, E >>> from sympy import symbols, Contains, Interval >>> X = WienerProcess("X") >>> X.state_space Reals >>> t1, t2 = symbols('t1 t2', positive=True) >>> P(X(t1) < 7).simplify() erf(7*sqrt(2)/(2*sqrt(t1)))/2 + 1/2 >>> P((X(t1) > 2) | (X(t1) < 4), Contains(t1, Interval.Ropen(2, 4))).simplify() -erf(1)/2 + erf(2)/2 + 1 >>> E(X(t1)) 0 >>> E(X(t1) + 2*X(t2), Contains(t1, Interval.Lopen(0, 1)) ... & Contains(t2, Interval.Lopen(1, 2))) 0 References ========== .. [1] https://www.probabilitycourse.com/chapter11/11_4_0_brownian_motion_wiener_process.php .. [2] https://en.wikipedia.org/wiki/Wiener_process """ def __new__(cls, sym): sym = _symbol_converter(sym) return Basic.__new__(cls, sym) @property def state_space(self): return S.Reals def distribution(self, key): if isinstance(key, RandomIndexedSymbol): self._deprecation_warn_distribution() return NormalDistribution(0, sqrt(key.key)) return NormalDistribution(0, sqrt(key)) def density(self, x): return exp(-x**2/(2*x.key)) / (sqrt(2*pi)*sqrt(x.key)) def simple_rv(self, rv): return Normal(rv.name, 0, sqrt(rv.key)) class GammaProcess(CountingProcess): """ A Gamma process is a random process with independent gamma distributed increments. It is a pure-jump increasing Levy process. Parameters ========== sym: Symbol/str lamda: Positive number Jump size of the process, ``lamda > 0`` gamma: Positive number Rate of jump arrivals, ``gamma > 0`` Examples ======== >>> from sympy.stats import GammaProcess, E, P, variance >>> from sympy import symbols, Contains, Interval, Not >>> t, d, x, l, g = symbols('t d x l g', positive=True) >>> X = GammaProcess("X", l, g) >>> E(X(t)) g*t/l >>> variance(X(t)).simplify() g*t/l**2 >>> X = GammaProcess('X', 1, 2) >>> P(X(t) < 1).simplify() lowergamma(2*t, 1)/gamma(2*t) >>> P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) & ... Contains(d, Interval.Lopen(7, 8))).simplify() -4*exp(-3) + 472*exp(-8)/3 + 1 >>> E(X(2) + x*E(X(5))) 10*x + 4 References ========== .. [1] https://en.wikipedia.org/wiki/Gamma_process """ def __new__(cls, sym, lamda, gamma): _value_check(lamda > 0, 'lamda should be a positive number') _value_check(gamma > 0, 'gamma should be a positive number') sym = _symbol_converter(sym) gamma = _sympify(gamma) lamda = _sympify(lamda) return Basic.__new__(cls, sym, lamda, gamma) @property def lamda(self): return self.args[1] @property def gamma(self): return self.args[2] @property def state_space(self): return _set_converter(Interval(0, oo)) def distribution(self, key): if isinstance(key, RandomIndexedSymbol): self._deprecation_warn_distribution() return GammaDistribution(self.gamma*key.key, 1/self.lamda) return GammaDistribution(self.gamma*key, 1/self.lamda) def density(self, x): k = self.gamma*x.key theta = 1/self.lamda return x**(k - 1) * exp(-x/theta) / (gamma(k)*theta**k) def simple_rv(self, rv): return Gamma(rv.name, self.gamma*rv.key, 1/self.lamda)
bd606d6c6b52e57b5f47f17be4052c7ccab88e3bafaca2f2531ad12f49d84c36
from sympy.core.basic import Basic from sympy.core.mul import prod from sympy.core.numbers import pi from sympy.core.singleton import S from sympy.functions.elementary.exponential import exp from sympy.functions.special.gamma_functions import multigamma from sympy.core.sympify import sympify, _sympify from sympy.matrices import (ImmutableMatrix, Inverse, Trace, Determinant, MatrixSymbol, MatrixBase, Transpose, MatrixSet, matrix2numpy) from sympy.stats.rv import (_value_check, RandomMatrixSymbol, NamedArgsMixin, PSpace, _symbol_converter, MatrixDomain, Distribution) from sympy.external import import_module ################################################################################ #------------------------Matrix Probability Space------------------------------# ################################################################################ class MatrixPSpace(PSpace): """ Represents probability space for Matrix Distributions. """ def __new__(cls, sym, distribution, dim_n, dim_m): sym = _symbol_converter(sym) dim_n, dim_m = _sympify(dim_n), _sympify(dim_m) if not (dim_n.is_integer and dim_m.is_integer): raise ValueError("Dimensions should be integers") return Basic.__new__(cls, sym, distribution, dim_n, dim_m) distribution = property(lambda self: self.args[1]) symbol = property(lambda self: self.args[0]) @property def domain(self): return MatrixDomain(self.symbol, self.distribution.set) @property def value(self): return RandomMatrixSymbol(self.symbol, self.args[2], self.args[3], self) @property def values(self): return {self.value} def compute_density(self, expr, *args): rms = expr.atoms(RandomMatrixSymbol) if len(rms) > 1 or (not isinstance(expr, RandomMatrixSymbol)): raise NotImplementedError("Currently, no algorithm has been " "implemented to handle general expressions containing " "multiple matrix distributions.") return self.distribution.pdf(expr) def sample(self, size=(), library='scipy', seed=None): """ Internal sample method Returns dictionary mapping RandomMatrixSymbol to realization value. """ return {self.value: self.distribution.sample(size, library=library, seed=seed)} def rv(symbol, cls, args): args = list(map(sympify, args)) dist = cls(*args) dist.check(*args) dim = dist.dimension pspace = MatrixPSpace(symbol, dist, dim[0], dim[1]) return pspace.value class SampleMatrixScipy: """Returns the sample from scipy of the given distribution""" def __new__(cls, dist, size, seed=None): return cls._sample_scipy(dist, size, seed) @classmethod def _sample_scipy(cls, dist, size, seed): """Sample from SciPy.""" from scipy import stats as scipy_stats import numpy scipy_rv_map = { 'WishartDistribution': lambda dist, size, rand_state: scipy_stats.wishart.rvs( df=int(dist.n), scale=matrix2numpy(dist.scale_matrix, float), size=size), 'MatrixNormalDistribution': lambda dist, size, rand_state: scipy_stats.matrix_normal.rvs( mean=matrix2numpy(dist.location_matrix, float), rowcov=matrix2numpy(dist.scale_matrix_1, float), colcov=matrix2numpy(dist.scale_matrix_2, float), size=size, random_state=rand_state) } sample_shape = { 'WishartDistribution': lambda dist: dist.scale_matrix.shape, 'MatrixNormalDistribution' : lambda dist: dist.location_matrix.shape } dist_list = scipy_rv_map.keys() if dist.__class__.__name__ not in dist_list: return None if seed is None or isinstance(seed, int): rand_state = numpy.random.default_rng(seed=seed) else: rand_state = seed samp = scipy_rv_map[dist.__class__.__name__](dist, prod(size), rand_state) return samp.reshape(size + sample_shape[dist.__class__.__name__](dist)) class SampleMatrixNumpy: """Returns the sample from numpy of the given distribution""" ### TODO: Add tests after adding matrix distributions in numpy_rv_map def __new__(cls, dist, size, seed=None): return cls._sample_numpy(dist, size, seed) @classmethod def _sample_numpy(cls, dist, size, seed): """Sample from NumPy.""" numpy_rv_map = { } sample_shape = { } dist_list = numpy_rv_map.keys() if dist.__class__.__name__ not in dist_list: return None import numpy if seed is None or isinstance(seed, int): rand_state = numpy.random.default_rng(seed=seed) else: rand_state = seed samp = numpy_rv_map[dist.__class__.__name__](dist, prod(size), rand_state) return samp.reshape(size + sample_shape[dist.__class__.__name__](dist)) class SampleMatrixPymc: """Returns the sample from pymc3 of the given distribution""" def __new__(cls, dist, size, seed=None): return cls._sample_pymc3(dist, size, seed) @classmethod def _sample_pymc3(cls, dist, size, seed): """Sample from PyMC3.""" import pymc3 pymc3_rv_map = { 'MatrixNormalDistribution': lambda dist: pymc3.MatrixNormal('X', mu=matrix2numpy(dist.location_matrix, float), rowcov=matrix2numpy(dist.scale_matrix_1, float), colcov=matrix2numpy(dist.scale_matrix_2, float), shape=dist.location_matrix.shape), 'WishartDistribution': lambda dist: pymc3.WishartBartlett('X', nu=int(dist.n), S=matrix2numpy(dist.scale_matrix, float)) } sample_shape = { 'WishartDistribution': lambda dist: dist.scale_matrix.shape, 'MatrixNormalDistribution' : lambda dist: dist.location_matrix.shape } dist_list = pymc3_rv_map.keys() if dist.__class__.__name__ not in dist_list: return None import logging logging.getLogger("pymc3").setLevel(logging.ERROR) with pymc3.Model(): pymc3_rv_map[dist.__class__.__name__](dist) samps = pymc3.sample(draws=prod(size), chains=1, progressbar=False, random_seed=seed, return_inferencedata=False, compute_convergence_checks=False)['X'] return samps.reshape(size + sample_shape[dist.__class__.__name__](dist)) _get_sample_class_matrixrv = { 'scipy': SampleMatrixScipy, 'pymc3': SampleMatrixPymc, 'numpy': SampleMatrixNumpy } ################################################################################ #-------------------------Matrix Distribution----------------------------------# ################################################################################ class MatrixDistribution(Distribution, NamedArgsMixin): """ Abstract class for Matrix Distribution. """ def __new__(cls, *args): args = list(map(sympify, args)) return Basic.__new__(cls, *args) @staticmethod def check(*args): pass def __call__(self, expr): if isinstance(expr, list): expr = ImmutableMatrix(expr) return self.pdf(expr) def sample(self, size=(), library='scipy', seed=None): """ Internal sample method Returns dictionary mapping RandomSymbol to realization value. """ libraries = ['scipy', 'numpy', 'pymc3'] if library not in libraries: raise NotImplementedError("Sampling from %s is not supported yet." % str(library)) if not import_module(library): raise ValueError("Failed to import %s" % library) samps = _get_sample_class_matrixrv[library](self, size, seed) if samps is not None: return samps raise NotImplementedError( "Sampling for %s is not currently implemented from %s" % (self.__class__.__name__, library) ) ################################################################################ #------------------------Matrix Distribution Types-----------------------------# ################################################################################ #------------------------------------------------------------------------------- # Matrix Gamma distribution ---------------------------------------------------- class MatrixGammaDistribution(MatrixDistribution): _argnames = ('alpha', 'beta', 'scale_matrix') @staticmethod def check(alpha, beta, scale_matrix): if not isinstance(scale_matrix, MatrixSymbol): _value_check(scale_matrix.is_positive_definite, "The shape " "matrix must be positive definite.") _value_check(scale_matrix.is_square, "Should " "be square matrix") _value_check(alpha.is_positive, "Shape parameter should be positive.") _value_check(beta.is_positive, "Scale parameter should be positive.") @property def set(self): k = self.scale_matrix.shape[0] return MatrixSet(k, k, S.Reals) @property def dimension(self): return self.scale_matrix.shape def pdf(self, x): alpha, beta, scale_matrix = self.alpha, self.beta, self.scale_matrix p = scale_matrix.shape[0] if isinstance(x, list): x = ImmutableMatrix(x) if not isinstance(x, (MatrixBase, MatrixSymbol)): raise ValueError("%s should be an isinstance of Matrix " "or MatrixSymbol" % str(x)) sigma_inv_x = - Inverse(scale_matrix)*x / beta term1 = exp(Trace(sigma_inv_x))/((beta**(p*alpha)) * multigamma(alpha, p)) term2 = (Determinant(scale_matrix))**(-alpha) term3 = (Determinant(x))**(alpha - S(p + 1)/2) return term1 * term2 * term3 def MatrixGamma(symbol, alpha, beta, scale_matrix): """ Creates a random variable with Matrix Gamma Distribution. The density of the said distribution can be found at [1]. Parameters ========== alpha: Positive Real number Shape Parameter beta: Positive Real number Scale Parameter scale_matrix: Positive definite real square matrix Scale Matrix Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, MatrixGamma >>> from sympy import MatrixSymbol, symbols >>> a, b = symbols('a b', positive=True) >>> M = MatrixGamma('M', a, b, [[2, 1], [1, 2]]) >>> X = MatrixSymbol('X', 2, 2) >>> density(M)(X).doit() exp(Trace(Matrix([ [-2/3, 1/3], [ 1/3, -2/3]])*X)/b)*Determinant(X)**(a - 3/2)/(3**a*sqrt(pi)*b**(2*a)*gamma(a)*gamma(a - 1/2)) >>> density(M)([[1, 0], [0, 1]]).doit() exp(-4/(3*b))/(3**a*sqrt(pi)*b**(2*a)*gamma(a)*gamma(a - 1/2)) References ========== .. [1] https://en.wikipedia.org/wiki/Matrix_gamma_distribution """ if isinstance(scale_matrix, list): scale_matrix = ImmutableMatrix(scale_matrix) return rv(symbol, MatrixGammaDistribution, (alpha, beta, scale_matrix)) #------------------------------------------------------------------------------- # Wishart Distribution --------------------------------------------------------- class WishartDistribution(MatrixDistribution): _argnames = ('n', 'scale_matrix') @staticmethod def check(n, scale_matrix): if not isinstance(scale_matrix, MatrixSymbol): _value_check(scale_matrix.is_positive_definite, "The shape " "matrix must be positive definite.") _value_check(scale_matrix.is_square, "Should " "be square matrix") _value_check(n.is_positive, "Shape parameter should be positive.") @property def set(self): k = self.scale_matrix.shape[0] return MatrixSet(k, k, S.Reals) @property def dimension(self): return self.scale_matrix.shape def pdf(self, x): n, scale_matrix = self.n, self.scale_matrix p = scale_matrix.shape[0] if isinstance(x, list): x = ImmutableMatrix(x) if not isinstance(x, (MatrixBase, MatrixSymbol)): raise ValueError("%s should be an isinstance of Matrix " "or MatrixSymbol" % str(x)) sigma_inv_x = - Inverse(scale_matrix)*x / S(2) term1 = exp(Trace(sigma_inv_x))/((2**(p*n/S(2))) * multigamma(n/S(2), p)) term2 = (Determinant(scale_matrix))**(-n/S(2)) term3 = (Determinant(x))**(S(n - p - 1)/2) return term1 * term2 * term3 def Wishart(symbol, n, scale_matrix): """ Creates a random variable with Wishart Distribution. The density of the said distribution can be found at [1]. Parameters ========== n: Positive Real number Represents degrees of freedom scale_matrix: Positive definite real square matrix Scale Matrix Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, Wishart >>> from sympy import MatrixSymbol, symbols >>> n = symbols('n', positive=True) >>> W = Wishart('W', n, [[2, 1], [1, 2]]) >>> X = MatrixSymbol('X', 2, 2) >>> density(W)(X).doit() exp(Trace(Matrix([ [-1/3, 1/6], [ 1/6, -1/3]])*X))*Determinant(X)**(n/2 - 3/2)/(2**n*3**(n/2)*sqrt(pi)*gamma(n/2)*gamma(n/2 - 1/2)) >>> density(W)([[1, 0], [0, 1]]).doit() exp(-2/3)/(2**n*3**(n/2)*sqrt(pi)*gamma(n/2)*gamma(n/2 - 1/2)) References ========== .. [1] https://en.wikipedia.org/wiki/Wishart_distribution """ if isinstance(scale_matrix, list): scale_matrix = ImmutableMatrix(scale_matrix) return rv(symbol, WishartDistribution, (n, scale_matrix)) #------------------------------------------------------------------------------- # Matrix Normal distribution --------------------------------------------------- class MatrixNormalDistribution(MatrixDistribution): _argnames = ('location_matrix', 'scale_matrix_1', 'scale_matrix_2') @staticmethod def check(location_matrix, scale_matrix_1, scale_matrix_2): if not isinstance(scale_matrix_1, MatrixSymbol): _value_check(scale_matrix_1.is_positive_definite, "The shape " "matrix must be positive definite.") if not isinstance(scale_matrix_2, MatrixSymbol): _value_check(scale_matrix_2.is_positive_definite, "The shape " "matrix must be positive definite.") _value_check(scale_matrix_1.is_square, "Scale matrix 1 should be " "be square matrix") _value_check(scale_matrix_2.is_square, "Scale matrix 2 should be " "be square matrix") n = location_matrix.shape[0] p = location_matrix.shape[1] _value_check(scale_matrix_1.shape[0] == n, "Scale matrix 1 should be" " of shape %s x %s"% (str(n), str(n))) _value_check(scale_matrix_2.shape[0] == p, "Scale matrix 2 should be" " of shape %s x %s"% (str(p), str(p))) @property def set(self): n, p = self.location_matrix.shape return MatrixSet(n, p, S.Reals) @property def dimension(self): return self.location_matrix.shape def pdf(self, x): M, U, V = self.location_matrix, self.scale_matrix_1, self.scale_matrix_2 n, p = M.shape if isinstance(x, list): x = ImmutableMatrix(x) if not isinstance(x, (MatrixBase, MatrixSymbol)): raise ValueError("%s should be an isinstance of Matrix " "or MatrixSymbol" % str(x)) term1 = Inverse(V)*Transpose(x - M)*Inverse(U)*(x - M) num = exp(-Trace(term1)/S(2)) den = (2*pi)**(S(n*p)/2) * Determinant(U)**S(p)/2 * Determinant(V)**S(n)/2 return num/den def MatrixNormal(symbol, location_matrix, scale_matrix_1, scale_matrix_2): """ Creates a random variable with Matrix Normal Distribution. The density of the said distribution can be found at [1]. Parameters ========== location_matrix: Real ``n x p`` matrix Represents degrees of freedom scale_matrix_1: Positive definite matrix Scale Matrix of shape ``n x n`` scale_matrix_2: Positive definite matrix Scale Matrix of shape ``p x p`` Returns ======= RandomSymbol Examples ======== >>> from sympy import MatrixSymbol >>> from sympy.stats import density, MatrixNormal >>> M = MatrixNormal('M', [[1, 2]], [1], [[1, 0], [0, 1]]) >>> X = MatrixSymbol('X', 1, 2) >>> density(M)(X).doit() 2*exp(-Trace((Matrix([ [-1], [-2]]) + X.T)*(Matrix([[-1, -2]]) + X))/2)/pi >>> density(M)([[3, 4]]).doit() 2*exp(-4)/pi References ========== .. [1] https://en.wikipedia.org/wiki/Matrix_normal_distribution """ if isinstance(location_matrix, list): location_matrix = ImmutableMatrix(location_matrix) if isinstance(scale_matrix_1, list): scale_matrix_1 = ImmutableMatrix(scale_matrix_1) if isinstance(scale_matrix_2, list): scale_matrix_2 = ImmutableMatrix(scale_matrix_2) args = (location_matrix, scale_matrix_1, scale_matrix_2) return rv(symbol, MatrixNormalDistribution, args) #------------------------------------------------------------------------------- # Matrix Student's T distribution --------------------------------------------------- class MatrixStudentTDistribution(MatrixDistribution): _argnames = ('nu', 'location_matrix', 'scale_matrix_1', 'scale_matrix_2') @staticmethod def check(nu, location_matrix, scale_matrix_1, scale_matrix_2): if not isinstance(scale_matrix_1, MatrixSymbol): _value_check(scale_matrix_1.is_positive_definite != False, "The shape " "matrix must be positive definite.") if not isinstance(scale_matrix_2, MatrixSymbol): _value_check(scale_matrix_2.is_positive_definite != False, "The shape " "matrix must be positive definite.") _value_check(scale_matrix_1.is_square != False, "Scale matrix 1 should be " "be square matrix") _value_check(scale_matrix_2.is_square != False, "Scale matrix 2 should be " "be square matrix") n = location_matrix.shape[0] p = location_matrix.shape[1] _value_check(scale_matrix_1.shape[0] == p, "Scale matrix 1 should be" " of shape %s x %s" % (str(p), str(p))) _value_check(scale_matrix_2.shape[0] == n, "Scale matrix 2 should be" " of shape %s x %s" % (str(n), str(n))) _value_check(nu.is_positive != False, "Degrees of freedom must be positive") @property def set(self): n, p = self.location_matrix.shape return MatrixSet(n, p, S.Reals) @property def dimension(self): return self.location_matrix.shape def pdf(self, x): from sympy.matrices.dense import eye if isinstance(x, list): x = ImmutableMatrix(x) if not isinstance(x, (MatrixBase, MatrixSymbol)): raise ValueError("%s should be an isinstance of Matrix " "or MatrixSymbol" % str(x)) nu, M, Omega, Sigma = self.nu, self.location_matrix, self.scale_matrix_1, self.scale_matrix_2 n, p = M.shape K = multigamma((nu + n + p - 1)/2, p) * Determinant(Omega)**(-n/2) * Determinant(Sigma)**(-p/2) \ / ((pi)**(n*p/2) * multigamma((nu + p - 1)/2, p)) return K * (Determinant(eye(n) + Inverse(Sigma)*(x - M)*Inverse(Omega)*Transpose(x - M))) \ **(-(nu + n + p -1)/2) def MatrixStudentT(symbol, nu, location_matrix, scale_matrix_1, scale_matrix_2): """ Creates a random variable with Matrix Gamma Distribution. The density of the said distribution can be found at [1]. Parameters ========== nu: Positive Real number degrees of freedom location_matrix: Positive definite real square matrix Location Matrix of shape ``n x p`` scale_matrix_1: Positive definite real square matrix Scale Matrix of shape ``p x p`` scale_matrix_2: Positive definite real square matrix Scale Matrix of shape ``n x n`` Returns ======= RandomSymbol Examples ======== >>> from sympy import MatrixSymbol,symbols >>> from sympy.stats import density, MatrixStudentT >>> v = symbols('v',positive=True) >>> M = MatrixStudentT('M', v, [[1, 2]], [[1, 0], [0, 1]], [1]) >>> X = MatrixSymbol('X', 1, 2) >>> density(M)(X) gamma(v/2 + 1)*Determinant((Matrix([[-1, -2]]) + X)*(Matrix([ [-1], [-2]]) + X.T) + Matrix([[1]]))**(-v/2 - 1)/(pi**1.0*gamma(v/2)*Determinant(Matrix([[1]]))**1.0*Determinant(Matrix([ [1, 0], [0, 1]]))**0.5) References ========== .. [1] https://en.wikipedia.org/wiki/Matrix_t-distribution """ if isinstance(location_matrix, list): location_matrix = ImmutableMatrix(location_matrix) if isinstance(scale_matrix_1, list): scale_matrix_1 = ImmutableMatrix(scale_matrix_1) if isinstance(scale_matrix_2, list): scale_matrix_2 = ImmutableMatrix(scale_matrix_2) args = (nu, location_matrix, scale_matrix_1, scale_matrix_2) return rv(symbol, MatrixStudentTDistribution, args)
4c97979bb0541dca3fca48bf1b6b7ff5aae7924ca947f891e2aac218d4ab7b53
""" SymPy statistics module Introduces a random variable type into the SymPy language. Random variables may be declared using prebuilt functions such as Normal, Exponential, Coin, Die, etc... or built with functions like FiniteRV. Queries on random expressions can be made using the functions ========================= ============================= Expression Meaning ------------------------- ----------------------------- ``P(condition)`` Probability ``E(expression)`` Expected value ``H(expression)`` Entropy ``variance(expression)`` Variance ``density(expression)`` Probability Density Function ``sample(expression)`` Produce a realization ``where(condition)`` Where the condition is true ========================= ============================= Examples ======== >>> from sympy.stats import P, E, variance, Die, Normal >>> from sympy import Eq, simplify >>> X, Y = Die('X', 6), Die('Y', 6) # Define two six sided dice >>> Z = Normal('Z', 0, 1) # Declare a Normal random variable with mean 0, std 1 >>> P(X>3) # Probability X is greater than 3 1/2 >>> E(X+Y) # Expectation of the sum of two dice 7 >>> variance(X+Y) # Variance of the sum of two dice 35/6 >>> simplify(P(Z>1)) # Probability of Z being greater than 1 1/2 - erf(sqrt(2)/2)/2 One could also create custom distribution and define custom random variables as follows: 1. If you want to create a Continuous Random Variable: >>> from sympy.stats import ContinuousRV, P, E >>> from sympy import exp, Symbol, Interval, oo >>> x = Symbol('x') >>> pdf = exp(-x) # pdf of the Continuous Distribution >>> Z = ContinuousRV(x, pdf, set=Interval(0, oo)) >>> E(Z) 1 >>> P(Z > 5) exp(-5) 1.1 To create an instance of Continuous Distribution: >>> from sympy.stats import ContinuousDistributionHandmade >>> from sympy import Lambda >>> dist = ContinuousDistributionHandmade(Lambda(x, pdf), set=Interval(0, oo)) >>> dist.pdf(x) exp(-x) 2. If you want to create a Discrete Random Variable: >>> from sympy.stats import DiscreteRV, P, E >>> from sympy import Symbol, S >>> p = S(1)/2 >>> x = Symbol('x', integer=True, positive=True) >>> pdf = p*(1 - p)**(x - 1) >>> D = DiscreteRV(x, pdf, set=S.Naturals) >>> E(D) 2 >>> P(D > 3) 1/8 2.1 To create an instance of Discrete Distribution: >>> from sympy.stats import DiscreteDistributionHandmade >>> from sympy import Lambda >>> dist = DiscreteDistributionHandmade(Lambda(x, pdf), set=S.Naturals) >>> dist.pdf(x) 2**(1 - x)/2 3. If you want to create a Finite Random Variable: >>> from sympy.stats import FiniteRV, P, E >>> from sympy import Rational >>> pmf = {1: Rational(1, 3), 2: Rational(1, 6), 3: Rational(1, 4), 4: Rational(1, 4)} >>> X = FiniteRV('X', pmf) >>> E(X) 29/12 >>> P(X > 3) 1/4 3.1 To create an instance of Finite Distribution: >>> from sympy.stats import FiniteDistributionHandmade >>> dist = FiniteDistributionHandmade(pmf) >>> dist.pmf(x) Lambda(x, Piecewise((1/3, Eq(x, 1)), (1/6, Eq(x, 2)), (1/4, Eq(x, 3) | Eq(x, 4)), (0, True))) """ __all__ = [ 'P', 'E', 'H', 'density', 'where', 'given', 'sample', 'cdf','median', 'characteristic_function', 'pspace', 'sample_iter', 'variance', 'std', 'skewness', 'kurtosis', 'covariance', 'dependent', 'entropy', 'independent', 'random_symbols', 'correlation', 'factorial_moment', 'moment', 'cmoment', 'sampling_density', 'moment_generating_function', 'smoment', 'quantile', 'coskewness', 'sample_stochastic_process', 'FiniteRV', 'DiscreteUniform', 'Die', 'Bernoulli', 'Coin', 'Binomial', 'BetaBinomial', 'Hypergeometric', 'Rademacher', 'IdealSoliton', 'RobustSoliton', 'FiniteDistributionHandmade', 'ContinuousRV', 'Arcsin', 'Benini', 'Beta', 'BetaNoncentral', 'BetaPrime', 'BoundedPareto', 'Cauchy', 'Chi', 'ChiNoncentral', 'ChiSquared', 'Dagum', 'Erlang', 'ExGaussian', 'Exponential', 'ExponentialPower', 'FDistribution', 'FisherZ', 'Frechet', 'Gamma', 'GammaInverse', 'Gompertz', 'Gumbel', 'Kumaraswamy', 'Laplace', 'Levy', 'Logistic','LogCauchy', 'LogLogistic', 'LogitNormal', 'LogNormal', 'Lomax', 'Moyal', 'Maxwell', 'Nakagami', 'Normal', 'GaussianInverse', 'Pareto', 'PowerFunction', 'QuadraticU', 'RaisedCosine', 'Rayleigh','Reciprocal', 'StudentT', 'ShiftedGompertz', 'Trapezoidal', 'Triangular', 'Uniform', 'UniformSum', 'VonMises', 'Wald', 'Weibull', 'WignerSemicircle', 'ContinuousDistributionHandmade', 'FlorySchulz', 'Geometric','Hermite', 'Logarithmic', 'NegativeBinomial', 'Poisson', 'Skellam', 'YuleSimon', 'Zeta', 'DiscreteRV', 'DiscreteDistributionHandmade', 'JointRV', 'Dirichlet', 'GeneralizedMultivariateLogGamma', 'GeneralizedMultivariateLogGammaOmega', 'Multinomial', 'MultivariateBeta', 'MultivariateEwens', 'MultivariateT', 'NegativeMultinomial', 'NormalGamma', 'MultivariateNormal', 'MultivariateLaplace', 'marginal_distribution', 'StochasticProcess', 'DiscreteTimeStochasticProcess', 'DiscreteMarkovChain', 'TransitionMatrixOf', 'StochasticStateSpaceOf', 'GeneratorMatrixOf', 'ContinuousMarkovChain', 'BernoulliProcess', 'PoissonProcess', 'WienerProcess', 'GammaProcess', 'CircularEnsemble', 'CircularUnitaryEnsemble', 'CircularOrthogonalEnsemble', 'CircularSymplecticEnsemble', 'GaussianEnsemble', 'GaussianUnitaryEnsemble', 'GaussianOrthogonalEnsemble', 'GaussianSymplecticEnsemble', 'joint_eigen_distribution', 'JointEigenDistribution', 'level_spacing_distribution', 'MatrixGamma', 'Wishart', 'MatrixNormal', 'MatrixStudentT', 'Probability', 'Expectation', 'Variance', 'Covariance', 'Moment', 'CentralMoment', 'ExpectationMatrix', 'VarianceMatrix', 'CrossCovarianceMatrix' ] from .rv_interface import (P, E, H, density, where, given, sample, cdf, median, characteristic_function, pspace, sample_iter, variance, std, skewness, kurtosis, covariance, dependent, entropy, independent, random_symbols, correlation, factorial_moment, moment, cmoment, sampling_density, moment_generating_function, smoment, quantile, coskewness, sample_stochastic_process) from .frv_types import (FiniteRV, DiscreteUniform, Die, Bernoulli, Coin, Binomial, BetaBinomial, Hypergeometric, Rademacher, FiniteDistributionHandmade, IdealSoliton, RobustSoliton) from .crv_types import (ContinuousRV, Arcsin, Benini, Beta, BetaNoncentral, BetaPrime, BoundedPareto, Cauchy, Chi, ChiNoncentral, ChiSquared, Dagum, Erlang, ExGaussian, Exponential, ExponentialPower, FDistribution, FisherZ, Frechet, Gamma, GammaInverse, GaussianInverse, Gompertz, Gumbel, Kumaraswamy, Laplace, Levy, Logistic, LogCauchy, LogLogistic, LogitNormal, LogNormal, Lomax, Maxwell, Moyal, Nakagami, Normal, Pareto, QuadraticU, RaisedCosine, Rayleigh, Reciprocal, StudentT, PowerFunction, ShiftedGompertz, Trapezoidal, Triangular, Uniform, UniformSum, VonMises, Wald, Weibull, WignerSemicircle, ContinuousDistributionHandmade) from .drv_types import (FlorySchulz, Geometric, Hermite, Logarithmic, NegativeBinomial, Poisson, Skellam, YuleSimon, Zeta, DiscreteRV, DiscreteDistributionHandmade) from .joint_rv_types import (JointRV, Dirichlet, GeneralizedMultivariateLogGamma, GeneralizedMultivariateLogGammaOmega, Multinomial, MultivariateBeta, MultivariateEwens, MultivariateT, NegativeMultinomial, NormalGamma, MultivariateNormal, MultivariateLaplace, marginal_distribution) from .stochastic_process_types import (StochasticProcess, DiscreteTimeStochasticProcess, DiscreteMarkovChain, TransitionMatrixOf, StochasticStateSpaceOf, GeneratorMatrixOf, ContinuousMarkovChain, BernoulliProcess, PoissonProcess, WienerProcess, GammaProcess) from .random_matrix_models import (CircularEnsemble, CircularUnitaryEnsemble, CircularOrthogonalEnsemble, CircularSymplecticEnsemble, GaussianEnsemble, GaussianUnitaryEnsemble, GaussianOrthogonalEnsemble, GaussianSymplecticEnsemble, joint_eigen_distribution, JointEigenDistribution, level_spacing_distribution) from .matrix_distributions import MatrixGamma, Wishart, MatrixNormal, MatrixStudentT from .symbolic_probability import (Probability, Expectation, Variance, Covariance, Moment, CentralMoment) from .symbolic_multivariate_probability import (ExpectationMatrix, VarianceMatrix, CrossCovarianceMatrix)
188e8a15416438948299bc7ca098f36a55703b8d86b31d08a28f4297df5010df
from sympy.concrete.products import Product from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.function import Lambda from sympy.core.mul import Mul from sympy.core.numbers import (Integer, Rational, pi) from sympy.core.power import Pow from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import (rf, factorial) from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.bessel import besselk from sympy.functions.special.gamma_functions import gamma from sympy.matrices.dense import (Matrix, ones) from sympy.sets.fancysets import Range from sympy.sets.sets import (Intersection, Interval) from sympy.tensor.indexed import (Indexed, IndexedBase) from sympy.matrices import ImmutableMatrix, MatrixSymbol from sympy.matrices.expressions.determinant import det from sympy.matrices.expressions.matexpr import MatrixElement from sympy.stats.joint_rv import JointDistribution, JointPSpace, MarginalDistribution from sympy.stats.rv import _value_check, random_symbols __all__ = ['JointRV', 'MultivariateNormal', 'MultivariateLaplace', 'Dirichlet', 'GeneralizedMultivariateLogGamma', 'GeneralizedMultivariateLogGammaOmega', 'Multinomial', 'MultivariateBeta', 'MultivariateEwens', 'MultivariateT', 'NegativeMultinomial', 'NormalGamma' ] def multivariate_rv(cls, sym, *args): args = list(map(sympify, args)) dist = cls(*args) args = dist.args dist.check(*args) return JointPSpace(sym, dist).value def marginal_distribution(rv, *indices): """ Marginal distribution function of a joint random variable. Parameters ========== rv: A random variable with a joint probability distribution. indices: component indices or the indexed random symbol for which the joint distribution is to be calculated Returns ======= A Lambda expression in `sym`. Examples ======== >>> from sympy.stats import MultivariateNormal, marginal_distribution >>> m = MultivariateNormal('X', [1, 2], [[2, 1], [1, 2]]) >>> marginal_distribution(m, m[0])(1) 1/(2*sqrt(pi)) """ indices = list(indices) for i in range(len(indices)): if isinstance(indices[i], Indexed): indices[i] = indices[i].args[1] prob_space = rv.pspace if not indices: raise ValueError( "At least one component for marginal density is needed.") if hasattr(prob_space.distribution, '_marginal_distribution'): return prob_space.distribution._marginal_distribution(indices, rv.symbol) return prob_space.marginal_distribution(*indices) class JointDistributionHandmade(JointDistribution): _argnames = ('pdf',) is_Continuous = True @property def set(self): return self.args[1] def JointRV(symbol, pdf, _set=None): """ Create a Joint Random Variable where each of its component is conitinuous, given the following: -- a symbol -- a PDF in terms of indexed symbols of the symbol given as the first argument NOTE: As of now, the set for each component for a `JointRV` is equal to the set of all integers, which cannot be changed. Examples ======== >>> from sympy import exp, pi, Indexed, S >>> from sympy.stats import density, JointRV >>> x1, x2 = (Indexed('x', i) for i in (1, 2)) >>> pdf = exp(-x1**2/2 + x1 - x2**2/2 - S(1)/2)/(2*pi) >>> N1 = JointRV('x', pdf) #Multivariate Normal distribution >>> density(N1)(1, 2) exp(-2)/(2*pi) Returns ======= RandomSymbol """ #TODO: Add support for sets provided by the user symbol = sympify(symbol) syms = list(i for i in pdf.free_symbols if isinstance(i, Indexed) and i.base == IndexedBase(symbol)) syms = tuple(sorted(syms, key = lambda index: index.args[1])) _set = S.Reals**len(syms) pdf = Lambda(syms, pdf) dist = JointDistributionHandmade(pdf, _set) jrv = JointPSpace(symbol, dist).value rvs = random_symbols(pdf) if len(rvs) != 0: dist = MarginalDistribution(dist, (jrv,)) return JointPSpace(symbol, dist).value return jrv #------------------------------------------------------------------------------- # Multivariate Normal distribution --------------------------------------------- class MultivariateNormalDistribution(JointDistribution): _argnames = ('mu', 'sigma') is_Continuous=True @property def set(self): k = self.mu.shape[0] return S.Reals**k @staticmethod def check(mu, sigma): _value_check(mu.shape[0] == sigma.shape[0], "Size of the mean vector and covariance matrix are incorrect.") #check if covariance matrix is positive semi definite or not. if not isinstance(sigma, MatrixSymbol): _value_check(sigma.is_positive_semidefinite, "The covariance matrix must be positive semi definite. ") def pdf(self, *args): mu, sigma = self.mu, self.sigma k = mu.shape[0] if len(args) == 1 and args[0].is_Matrix: args = args[0] else: args = ImmutableMatrix(args) x = args - mu density = S.One/sqrt((2*pi)**(k)*det(sigma))*exp( Rational(-1, 2)*x.transpose()*(sigma.inv()*x)) return MatrixElement(density, 0, 0) def _marginal_distribution(self, indices, sym): sym = ImmutableMatrix([Indexed(sym, i) for i in indices]) _mu, _sigma = self.mu, self.sigma k = self.mu.shape[0] for i in range(k): if i not in indices: _mu = _mu.row_del(i) _sigma = _sigma.col_del(i) _sigma = _sigma.row_del(i) return Lambda(tuple(sym), S.One/sqrt((2*pi)**(len(_mu))*det(_sigma))*exp( Rational(-1, 2)*(_mu - sym).transpose()*(_sigma.inv()*\ (_mu - sym)))[0]) def MultivariateNormal(name, mu, sigma): """ Creates a continuous random variable with Multivariate Normal Distribution. The density of the multivariate normal distribution can be found at [1]. Parameters ========== mu : List representing the mean or the mean vector sigma : Positive semidefinite square matrix Represents covariance Matrix If `sigma` is noninvertible then only sampling is supported currently Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import MultivariateNormal, density, marginal_distribution >>> from sympy import symbols, MatrixSymbol >>> X = MultivariateNormal('X', [3, 4], [[2, 1], [1, 2]]) >>> y, z = symbols('y z') >>> density(X)(y, z) sqrt(3)*exp(-y**2/3 + y*z/3 + 2*y/3 - z**2/3 + 5*z/3 - 13/3)/(6*pi) >>> density(X)(1, 2) sqrt(3)*exp(-4/3)/(6*pi) >>> marginal_distribution(X, X[1])(y) exp(-(y - 4)**2/4)/(2*sqrt(pi)) >>> marginal_distribution(X, X[0])(y) exp(-(y - 3)**2/4)/(2*sqrt(pi)) The example below shows that it is also possible to use symbolic parameters to define the MultivariateNormal class. >>> n = symbols('n', integer=True, positive=True) >>> Sg = MatrixSymbol('Sg', n, n) >>> mu = MatrixSymbol('mu', n, 1) >>> obs = MatrixSymbol('obs', n, 1) >>> X = MultivariateNormal('X', mu, Sg) The density of a multivariate normal can be calculated using a matrix argument, as shown below. >>> density(X)(obs) (exp(((1/2)*mu.T - (1/2)*obs.T)*Sg**(-1)*(-mu + obs))/sqrt((2*pi)**n*Determinant(Sg)))[0, 0] References ========== .. [1] https://en.wikipedia.org/wiki/Multivariate_normal_distribution """ return multivariate_rv(MultivariateNormalDistribution, name, mu, sigma) #------------------------------------------------------------------------------- # Multivariate Laplace distribution -------------------------------------------- class MultivariateLaplaceDistribution(JointDistribution): _argnames = ('mu', 'sigma') is_Continuous=True @property def set(self): k = self.mu.shape[0] return S.Reals**k @staticmethod def check(mu, sigma): _value_check(mu.shape[0] == sigma.shape[0], "Size of the mean vector and covariance matrix are incorrect.") # check if covariance matrix is positive definite or not. if not isinstance(sigma, MatrixSymbol): _value_check(sigma.is_positive_definite, "The covariance matrix must be positive definite. ") def pdf(self, *args): mu, sigma = self.mu, self.sigma mu_T = mu.transpose() k = S(mu.shape[0]) sigma_inv = sigma.inv() args = ImmutableMatrix(args) args_T = args.transpose() x = (mu_T*sigma_inv*mu)[0] y = (args_T*sigma_inv*args)[0] v = 1 - k/2 return (2 * (y/(2 + x))**(v/2) * besselk(v, sqrt((2 + x)*y)) * exp((args_T * sigma_inv * mu)[0]) / ((2 * pi)**(k/2) * sqrt(det(sigma)))) def MultivariateLaplace(name, mu, sigma): """ Creates a continuous random variable with Multivariate Laplace Distribution. The density of the multivariate Laplace distribution can be found at [1]. Parameters ========== mu : List representing the mean or the mean vector sigma : Positive definite square matrix Represents covariance Matrix Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import MultivariateLaplace, density >>> from sympy import symbols >>> y, z = symbols('y z') >>> X = MultivariateLaplace('X', [2, 4], [[3, 1], [1, 3]]) >>> density(X)(y, z) sqrt(2)*exp(y/4 + 5*z/4)*besselk(0, sqrt(15*y*(3*y/8 - z/8)/2 + 15*z*(-y/8 + 3*z/8)/2))/(4*pi) >>> density(X)(1, 2) sqrt(2)*exp(11/4)*besselk(0, sqrt(165)/4)/(4*pi) References ========== .. [1] https://en.wikipedia.org/wiki/Multivariate_Laplace_distribution """ return multivariate_rv(MultivariateLaplaceDistribution, name, mu, sigma) #------------------------------------------------------------------------------- # Multivariate StudentT distribution ------------------------------------------- class MultivariateTDistribution(JointDistribution): _argnames = ('mu', 'shape_mat', 'dof') is_Continuous=True @property def set(self): k = self.mu.shape[0] return S.Reals**k @staticmethod def check(mu, sigma, v): _value_check(mu.shape[0] == sigma.shape[0], "Size of the location vector and shape matrix are incorrect.") # check if covariance matrix is positive definite or not. if not isinstance(sigma, MatrixSymbol): _value_check(sigma.is_positive_definite, "The shape matrix must be positive definite. ") def pdf(self, *args): mu, sigma = self.mu, self.shape_mat v = S(self.dof) k = S(mu.shape[0]) sigma_inv = sigma.inv() args = ImmutableMatrix(args) x = args - mu return gamma((k + v)/2)/(gamma(v/2)*(v*pi)**(k/2)*sqrt(det(sigma)))\ *(1 + 1/v*(x.transpose()*sigma_inv*x)[0])**((-v - k)/2) def MultivariateT(syms, mu, sigma, v): """ Creates a joint random variable with multivariate T-distribution. Parameters ========== syms: A symbol/str For identifying the random variable. mu: A list/matrix Representing the location vector sigma: The shape matrix for the distribution Examples ======== >>> from sympy.stats import density, MultivariateT >>> from sympy import Symbol >>> x = Symbol("x") >>> X = MultivariateT("x", [1, 1], [[1, 0], [0, 1]], 2) >>> density(X)(1, 2) 2/(9*pi) Returns ======= RandomSymbol """ return multivariate_rv(MultivariateTDistribution, syms, mu, sigma, v) #------------------------------------------------------------------------------- # Multivariate Normal Gamma distribution --------------------------------------- class NormalGammaDistribution(JointDistribution): _argnames = ('mu', 'lamda', 'alpha', 'beta') is_Continuous=True @staticmethod def check(mu, lamda, alpha, beta): _value_check(mu.is_real, "Location must be real.") _value_check(lamda > 0, "Lambda must be positive") _value_check(alpha > 0, "alpha must be positive") _value_check(beta > 0, "beta must be positive") @property def set(self): return S.Reals*Interval(0, S.Infinity) def pdf(self, x, tau): beta, alpha, lamda = self.beta, self.alpha, self.lamda mu = self.mu return beta**alpha*sqrt(lamda)/(gamma(alpha)*sqrt(2*pi))*\ tau**(alpha - S.Half)*exp(-1*beta*tau)*\ exp(-1*(lamda*tau*(x - mu)**2)/S(2)) def _marginal_distribution(self, indices, *sym): if len(indices) == 2: return self.pdf(*sym) if indices[0] == 0: #For marginal over `x`, return non-standardized Student-T's #distribution x = sym[0] v, mu, sigma = self.alpha - S.Half, self.mu, \ S(self.beta)/(self.lamda * self.alpha) return Lambda(sym, gamma((v + 1)/2)/(gamma(v/2)*sqrt(pi*v)*sigma)*\ (1 + 1/v*((x - mu)/sigma)**2)**((-v -1)/2)) #For marginal over `tau`, return Gamma distribution as per construction from sympy.stats.crv_types import GammaDistribution return Lambda(sym, GammaDistribution(self.alpha, self.beta)(sym[0])) def NormalGamma(sym, mu, lamda, alpha, beta): """ Creates a bivariate joint random variable with multivariate Normal gamma distribution. Parameters ========== sym: A symbol/str For identifying the random variable. mu: A real number The mean of the normal distribution lamda: A positive integer Parameter of joint distribution alpha: A positive integer Parameter of joint distribution beta: A positive integer Parameter of joint distribution Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, NormalGamma >>> from sympy import symbols >>> X = NormalGamma('x', 0, 1, 2, 3) >>> y, z = symbols('y z') >>> density(X)(y, z) 9*sqrt(2)*z**(3/2)*exp(-3*z)*exp(-y**2*z/2)/(2*sqrt(pi)) References ========== .. [1] https://en.wikipedia.org/wiki/Normal-gamma_distribution """ return multivariate_rv(NormalGammaDistribution, sym, mu, lamda, alpha, beta) #------------------------------------------------------------------------------- # Multivariate Beta/Dirichlet distribution ------------------------------------- class MultivariateBetaDistribution(JointDistribution): _argnames = ('alpha',) is_Continuous = True @staticmethod def check(alpha): _value_check(len(alpha) >= 2, "At least two categories should be passed.") for a_k in alpha: _value_check((a_k > 0) != False, "Each concentration parameter" " should be positive.") @property def set(self): k = len(self.alpha) return Interval(0, 1)**k def pdf(self, *syms): alpha = self.alpha B = Mul.fromiter(map(gamma, alpha))/gamma(Add(*alpha)) return Mul.fromiter(sym**(a_k - 1) for a_k, sym in zip(alpha, syms))/B def MultivariateBeta(syms, *alpha): """ Creates a continuous random variable with Dirichlet/Multivariate Beta Distribution. The density of the dirichlet distribution can be found at [1]. Parameters ========== alpha: Positive real numbers Signifies concentration numbers. Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, MultivariateBeta, marginal_distribution >>> from sympy import Symbol >>> a1 = Symbol('a1', positive=True) >>> a2 = Symbol('a2', positive=True) >>> B = MultivariateBeta('B', [a1, a2]) >>> C = MultivariateBeta('C', a1, a2) >>> x = Symbol('x') >>> y = Symbol('y') >>> density(B)(x, y) x**(a1 - 1)*y**(a2 - 1)*gamma(a1 + a2)/(gamma(a1)*gamma(a2)) >>> marginal_distribution(C, C[0])(x) x**(a1 - 1)*gamma(a1 + a2)/(a2*gamma(a1)*gamma(a2)) References ========== .. [1] https://en.wikipedia.org/wiki/Dirichlet_distribution .. [2] http://mathworld.wolfram.com/DirichletDistribution.html """ if not isinstance(alpha[0], list): alpha = (list(alpha),) return multivariate_rv(MultivariateBetaDistribution, syms, alpha[0]) Dirichlet = MultivariateBeta #------------------------------------------------------------------------------- # Multivariate Ewens distribution ---------------------------------------------- class MultivariateEwensDistribution(JointDistribution): _argnames = ('n', 'theta') is_Discrete = True is_Continuous = False @staticmethod def check(n, theta): _value_check((n > 0), "sample size should be positive integer.") _value_check(theta.is_positive, "mutation rate should be positive.") @property def set(self): if not isinstance(self.n, Integer): i = Symbol('i', integer=True, positive=True) return Product(Intersection(S.Naturals0, Interval(0, self.n//i)), (i, 1, self.n)) prod_set = Range(0, self.n + 1) for i in range(2, self.n + 1): prod_set *= Range(0, self.n//i + 1) return prod_set.flatten() def pdf(self, *syms): n, theta = self.n, self.theta condi = isinstance(self.n, Integer) if not (isinstance(syms[0], IndexedBase) or condi): raise ValueError("Please use IndexedBase object for syms as " "the dimension is symbolic") term_1 = factorial(n)/rf(theta, n) if condi: term_2 = Mul.fromiter(theta**syms[j]/((j+1)**syms[j]*factorial(syms[j])) for j in range(n)) cond = Eq(sum([(k + 1)*syms[k] for k in range(n)]), n) return Piecewise((term_1 * term_2, cond), (0, True)) syms = syms[0] j, k = symbols('j, k', positive=True, integer=True) term_2 = Product(theta**syms[j]/((j+1)**syms[j]*factorial(syms[j])), (j, 0, n - 1)) cond = Eq(Sum((k + 1)*syms[k], (k, 0, n - 1)), n) return Piecewise((term_1 * term_2, cond), (0, True)) def MultivariateEwens(syms, n, theta): """ Creates a discrete random variable with Multivariate Ewens Distribution. The density of the said distribution can be found at [1]. Parameters ========== n: Positive integer Size of the sample or the integer whose partitions are considered theta: Positive real number Denotes Mutation rate Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, marginal_distribution, MultivariateEwens >>> from sympy import Symbol >>> a1 = Symbol('a1', positive=True) >>> a2 = Symbol('a2', positive=True) >>> ed = MultivariateEwens('E', 2, 1) >>> density(ed)(a1, a2) Piecewise((1/(2**a2*factorial(a1)*factorial(a2)), Eq(a1 + 2*a2, 2)), (0, True)) >>> marginal_distribution(ed, ed[0])(a1) Piecewise((1/factorial(a1), Eq(a1, 2)), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Ewens%27s_sampling_formula .. [2] http://www.stat.rutgers.edu/home/hcrane/Papers/STS529.pdf """ return multivariate_rv(MultivariateEwensDistribution, syms, n, theta) #------------------------------------------------------------------------------- # Generalized Multivariate Log Gamma distribution ------------------------------ class GeneralizedMultivariateLogGammaDistribution(JointDistribution): _argnames = ('delta', 'v', 'lamda', 'mu') is_Continuous=True def check(self, delta, v, l, mu): _value_check((delta >= 0, delta <= 1), "delta must be in range [0, 1].") _value_check((v > 0), "v must be positive") for lk in l: _value_check((lk > 0), "lamda must be a positive vector.") for muk in mu: _value_check((muk > 0), "mu must be a positive vector.") _value_check(len(l) > 1,"the distribution should have at least" " two random variables.") @property def set(self): return S.Reals**len(self.lamda) def pdf(self, *y): from sympy.functions.special.gamma_functions import gamma d, v, l, mu = self.delta, self.v, self.lamda, self.mu n = Symbol('n', negative=False, integer=True) k = len(l) sterm1 = Pow((1 - d), n)/\ ((gamma(v + n)**(k - 1))*gamma(v)*gamma(n + 1)) sterm2 = Mul.fromiter(mui*li**(-v - n) for mui, li in zip(mu, l)) term1 = sterm1 * sterm2 sterm3 = (v + n) * sum([mui * yi for mui, yi in zip(mu, y)]) sterm4 = sum([exp(mui * yi)/li for (mui, yi, li) in zip(mu, y, l)]) term2 = exp(sterm3 - sterm4) return Pow(d, v) * Sum(term1 * term2, (n, 0, S.Infinity)) def GeneralizedMultivariateLogGamma(syms, delta, v, lamda, mu): """ Creates a joint random variable with generalized multivariate log gamma distribution. The joint pdf can be found at [1]. Parameters ========== syms: list/tuple/set of symbols for identifying each component delta: A constant in range [0, 1] v: Positive real number lamda: List of positive real numbers mu: List of positive real numbers Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density >>> from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGamma >>> from sympy import symbols, S >>> v = 1 >>> l, mu = [1, 1, 1], [1, 1, 1] >>> d = S.Half >>> y = symbols('y_1:4', positive=True) >>> Gd = GeneralizedMultivariateLogGamma('G', d, v, l, mu) >>> density(Gd)(y[0], y[1], y[2]) Sum(exp((n + 1)*(y_1 + y_2 + y_3) - exp(y_1) - exp(y_2) - exp(y_3))/(2**n*gamma(n + 1)**3), (n, 0, oo))/2 References ========== .. [1] https://en.wikipedia.org/wiki/Generalized_multivariate_log-gamma_distribution .. [2] https://www.researchgate.net/publication/234137346_On_a_multivariate_log-gamma_distribution_and_the_use_of_the_distribution_in_the_Bayesian_analysis Note ==== If the GeneralizedMultivariateLogGamma is too long to type use, `from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGamma as GMVLG` If you want to pass the matrix omega instead of the constant delta, then use, GeneralizedMultivariateLogGammaOmega. """ return multivariate_rv(GeneralizedMultivariateLogGammaDistribution, syms, delta, v, lamda, mu) def GeneralizedMultivariateLogGammaOmega(syms, omega, v, lamda, mu): """ Extends GeneralizedMultivariateLogGamma. Parameters ========== syms: list/tuple/set of symbols For identifying each component omega: A square matrix Every element of square matrix must be absolute value of square root of correlation coefficient v: Positive real number lamda: List of positive real numbers mu: List of positive real numbers Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density >>> from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaOmega >>> from sympy import Matrix, symbols, S >>> omega = Matrix([[1, S.Half, S.Half], [S.Half, 1, S.Half], [S.Half, S.Half, 1]]) >>> v = 1 >>> l, mu = [1, 1, 1], [1, 1, 1] >>> G = GeneralizedMultivariateLogGammaOmega('G', omega, v, l, mu) >>> y = symbols('y_1:4', positive=True) >>> density(G)(y[0], y[1], y[2]) sqrt(2)*Sum((1 - sqrt(2)/2)**n*exp((n + 1)*(y_1 + y_2 + y_3) - exp(y_1) - exp(y_2) - exp(y_3))/gamma(n + 1)**3, (n, 0, oo))/2 References ========== .. [1] https://en.wikipedia.org/wiki/Generalized_multivariate_log-gamma_distribution .. [2] https://www.researchgate.net/publication/234137346_On_a_multivariate_log-gamma_distribution_and_the_use_of_the_distribution_in_the_Bayesian_analysis Notes ===== If the GeneralizedMultivariateLogGammaOmega is too long to type use, `from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaOmega as GMVLGO` """ _value_check((omega.is_square, isinstance(omega, Matrix)), "omega must be a" " square matrix") for val in omega.values(): _value_check((val >= 0, val <= 1), "all values in matrix must be between 0 and 1(both inclusive).") _value_check(omega.diagonal().equals(ones(1, omega.shape[0])), "all the elements of diagonal should be 1.") _value_check((omega.shape[0] == len(lamda), len(lamda) == len(mu)), "lamda, mu should be of same length and omega should " " be of shape (length of lamda, length of mu)") _value_check(len(lamda) > 1,"the distribution should have at least" " two random variables.") delta = Pow(Rational(omega.det()), Rational(1, len(lamda) - 1)) return GeneralizedMultivariateLogGamma(syms, delta, v, lamda, mu) #------------------------------------------------------------------------------- # Multinomial distribution ----------------------------------------------------- class MultinomialDistribution(JointDistribution): _argnames = ('n', 'p') is_Continuous=False is_Discrete = True @staticmethod def check(n, p): _value_check(n > 0, "number of trials must be a positive integer") for p_k in p: _value_check((p_k >= 0, p_k <= 1), "probability must be in range [0, 1]") _value_check(Eq(sum(p), 1), "probabilities must sum to 1") @property def set(self): return Intersection(S.Naturals0, Interval(0, self.n))**len(self.p) def pdf(self, *x): n, p = self.n, self.p term_1 = factorial(n)/Mul.fromiter(factorial(x_k) for x_k in x) term_2 = Mul.fromiter(p_k**x_k for p_k, x_k in zip(p, x)) return Piecewise((term_1 * term_2, Eq(sum(x), n)), (0, True)) def Multinomial(syms, n, *p): """ Creates a discrete random variable with Multinomial Distribution. The density of the said distribution can be found at [1]. Parameters ========== n: Positive integer Represents number of trials p: List of event probabilites Must be in the range of [0, 1] Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, Multinomial, marginal_distribution >>> from sympy import symbols >>> x1, x2, x3 = symbols('x1, x2, x3', nonnegative=True, integer=True) >>> p1, p2, p3 = symbols('p1, p2, p3', positive=True) >>> M = Multinomial('M', 3, p1, p2, p3) >>> density(M)(x1, x2, x3) Piecewise((6*p1**x1*p2**x2*p3**x3/(factorial(x1)*factorial(x2)*factorial(x3)), Eq(x1 + x2 + x3, 3)), (0, True)) >>> marginal_distribution(M, M[0])(x1).subs(x1, 1) 3*p1*p2**2 + 6*p1*p2*p3 + 3*p1*p3**2 References ========== .. [1] https://en.wikipedia.org/wiki/Multinomial_distribution .. [2] http://mathworld.wolfram.com/MultinomialDistribution.html """ if not isinstance(p[0], list): p = (list(p), ) return multivariate_rv(MultinomialDistribution, syms, n, p[0]) #------------------------------------------------------------------------------- # Negative Multinomial Distribution -------------------------------------------- class NegativeMultinomialDistribution(JointDistribution): _argnames = ('k0', 'p') is_Continuous=False is_Discrete = True @staticmethod def check(k0, p): _value_check(k0 > 0, "number of failures must be a positive integer") for p_k in p: _value_check((p_k >= 0, p_k <= 1), "probability must be in range [0, 1].") _value_check(sum(p) <= 1, "success probabilities must not be greater than 1.") @property def set(self): return Range(0, S.Infinity)**len(self.p) def pdf(self, *k): k0, p = self.k0, self.p term_1 = (gamma(k0 + sum(k))*(1 - sum(p))**k0)/gamma(k0) term_2 = Mul.fromiter(pi**ki/factorial(ki) for pi, ki in zip(p, k)) return term_1 * term_2 def NegativeMultinomial(syms, k0, *p): """ Creates a discrete random variable with Negative Multinomial Distribution. The density of the said distribution can be found at [1]. Parameters ========== k0: positive integer Represents number of failures before the experiment is stopped p: List of event probabilites Must be in the range of [0, 1] Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, NegativeMultinomial, marginal_distribution >>> from sympy import symbols >>> x1, x2, x3 = symbols('x1, x2, x3', nonnegative=True, integer=True) >>> p1, p2, p3 = symbols('p1, p2, p3', positive=True) >>> N = NegativeMultinomial('M', 3, p1, p2, p3) >>> N_c = NegativeMultinomial('M', 3, 0.1, 0.1, 0.1) >>> density(N)(x1, x2, x3) p1**x1*p2**x2*p3**x3*(-p1 - p2 - p3 + 1)**3*gamma(x1 + x2 + x3 + 3)/(2*factorial(x1)*factorial(x2)*factorial(x3)) >>> marginal_distribution(N_c, N_c[0])(1).evalf().round(2) 0.25 References ========== .. [1] https://en.wikipedia.org/wiki/Negative_multinomial_distribution .. [2] http://mathworld.wolfram.com/NegativeBinomialDistribution.html """ if not isinstance(p[0], list): p = (list(p), ) return multivariate_rv(NegativeMultinomialDistribution, syms, k0, p[0])
efc444328a900893584376dc5c779773f6f4cfb443e186a0a2bf85f8543671a2
from sympy.core.basic import Basic from sympy.stats.rv import PSpace, _symbol_converter, RandomMatrixSymbol class RandomMatrixPSpace(PSpace): """ Represents probability space for random matrices. It contains the mechanics for handling the API calls for random matrices. """ def __new__(cls, sym, model=None): sym = _symbol_converter(sym) return Basic.__new__(cls, sym, model) model = property(lambda self: self.args[1]) def compute_density(self, expr, *args): rms = expr.atoms(RandomMatrixSymbol) if len(rms) > 2 or (not isinstance(expr, RandomMatrixSymbol)): raise NotImplementedError("Currently, no algorithm has been " "implemented to handle general expressions containing " "multiple random matrices.") return self.model.density(expr)
1d117391d1ed8f60b870552e89e751b0aeb0f42be90b9525475589bb02331138
import itertools from sympy.core.add import Add from sympy.core.expr import Expr from sympy.core.function import expand as _expand from sympy.core.mul import Mul from sympy.core.singleton import S from sympy.matrices.common import ShapeError from sympy.matrices.expressions.matexpr import MatrixExpr from sympy.matrices.expressions.matmul import MatMul from sympy.matrices.expressions.special import ZeroMatrix from sympy.stats.rv import RandomSymbol, is_random from sympy.core.sympify import _sympify from sympy.stats.symbolic_probability import Variance, Covariance, Expectation class ExpectationMatrix(Expectation, MatrixExpr): """ Expectation of a random matrix expression. Examples ======== >>> from sympy.stats import ExpectationMatrix, Normal >>> from sympy.stats.rv import RandomMatrixSymbol >>> from sympy import symbols, MatrixSymbol, Matrix >>> k = symbols("k") >>> A, B = MatrixSymbol("A", k, k), MatrixSymbol("B", k, k) >>> X, Y = RandomMatrixSymbol("X", k, 1), RandomMatrixSymbol("Y", k, 1) >>> ExpectationMatrix(X) ExpectationMatrix(X) >>> ExpectationMatrix(A*X).shape (k, 1) To expand the expectation in its expression, use ``expand()``: >>> ExpectationMatrix(A*X + B*Y).expand() A*ExpectationMatrix(X) + B*ExpectationMatrix(Y) >>> ExpectationMatrix((X + Y)*(X - Y).T).expand() ExpectationMatrix(X*X.T) - ExpectationMatrix(X*Y.T) + ExpectationMatrix(Y*X.T) - ExpectationMatrix(Y*Y.T) To evaluate the ``ExpectationMatrix``, use ``doit()``: >>> N11, N12 = Normal('N11', 11, 1), Normal('N12', 12, 1) >>> N21, N22 = Normal('N21', 21, 1), Normal('N22', 22, 1) >>> M11, M12 = Normal('M11', 1, 1), Normal('M12', 2, 1) >>> M21, M22 = Normal('M21', 3, 1), Normal('M22', 4, 1) >>> x1 = Matrix([[N11, N12], [N21, N22]]) >>> x2 = Matrix([[M11, M12], [M21, M22]]) >>> ExpectationMatrix(x1 + x2).doit() Matrix([ [12, 14], [24, 26]]) """ def __new__(cls, expr, condition=None): expr = _sympify(expr) if condition is None: if not is_random(expr): return expr obj = Expr.__new__(cls, expr) else: condition = _sympify(condition) obj = Expr.__new__(cls, expr, condition) obj._shape = expr.shape obj._condition = condition return obj @property def shape(self): return self._shape def expand(self, **hints): expr = self.args[0] condition = self._condition if not is_random(expr): return expr if isinstance(expr, Add): return Add.fromiter(Expectation(a, condition=condition).expand() for a in expr.args) expand_expr = _expand(expr) if isinstance(expand_expr, Add): return Add.fromiter(Expectation(a, condition=condition).expand() for a in expand_expr.args) elif isinstance(expr, (Mul, MatMul)): rv = [] nonrv = [] postnon = [] for a in expr.args: if is_random(a): if rv: rv.extend(postnon) else: nonrv.extend(postnon) postnon = [] rv.append(a) elif a.is_Matrix: postnon.append(a) else: nonrv.append(a) # In order to avoid infinite-looping (MatMul may call .doit() again), # do not rebuild if len(nonrv) == 0: return self return Mul.fromiter(nonrv)*Expectation(Mul.fromiter(rv), condition=condition)*Mul.fromiter(postnon) return self class VarianceMatrix(Variance, MatrixExpr): """ Variance of a random matrix probability expression. Also known as Covariance matrix, auto-covariance matrix, dispersion matrix, or variance-covariance matrix. Examples ======== >>> from sympy.stats import VarianceMatrix >>> from sympy.stats.rv import RandomMatrixSymbol >>> from sympy import symbols, MatrixSymbol >>> k = symbols("k") >>> A, B = MatrixSymbol("A", k, k), MatrixSymbol("B", k, k) >>> X, Y = RandomMatrixSymbol("X", k, 1), RandomMatrixSymbol("Y", k, 1) >>> VarianceMatrix(X) VarianceMatrix(X) >>> VarianceMatrix(X).shape (k, k) To expand the variance in its expression, use ``expand()``: >>> VarianceMatrix(A*X).expand() A*VarianceMatrix(X)*A.T >>> VarianceMatrix(A*X + B*Y).expand() 2*A*CrossCovarianceMatrix(X, Y)*B.T + A*VarianceMatrix(X)*A.T + B*VarianceMatrix(Y)*B.T """ def __new__(cls, arg, condition=None): arg = _sympify(arg) if 1 not in arg.shape: raise ShapeError("Expression is not a vector") shape = (arg.shape[0], arg.shape[0]) if arg.shape[1] == 1 else (arg.shape[1], arg.shape[1]) if condition: obj = Expr.__new__(cls, arg, condition) else: obj = Expr.__new__(cls, arg) obj._shape = shape obj._condition = condition return obj @property def shape(self): return self._shape def expand(self, **hints): arg = self.args[0] condition = self._condition if not is_random(arg): return ZeroMatrix(*self.shape) if isinstance(arg, RandomSymbol): return self elif isinstance(arg, Add): rv = [] for a in arg.args: if is_random(a): rv.append(a) variances = Add(*map(lambda xv: Variance(xv, condition).expand(), rv)) map_to_covar = lambda x: 2*Covariance(*x, condition=condition).expand() covariances = Add(*map(map_to_covar, itertools.combinations(rv, 2))) return variances + covariances elif isinstance(arg, (Mul, MatMul)): nonrv = [] rv = [] for a in arg.args: if is_random(a): rv.append(a) else: nonrv.append(a) if len(rv) == 0: return ZeroMatrix(*self.shape) # Avoid possible infinite loops with MatMul: if len(nonrv) == 0: return self # Variance of many multiple matrix products is not implemented: if len(rv) > 1: return self return Mul.fromiter(nonrv)*Variance(Mul.fromiter(rv), condition)*(Mul.fromiter(nonrv)).transpose() # this expression contains a RandomSymbol somehow: return self class CrossCovarianceMatrix(Covariance, MatrixExpr): """ Covariance of a random matrix probability expression. Examples ======== >>> from sympy.stats import CrossCovarianceMatrix >>> from sympy.stats.rv import RandomMatrixSymbol >>> from sympy import symbols, MatrixSymbol >>> k = symbols("k") >>> A, B = MatrixSymbol("A", k, k), MatrixSymbol("B", k, k) >>> C, D = MatrixSymbol("C", k, k), MatrixSymbol("D", k, k) >>> X, Y = RandomMatrixSymbol("X", k, 1), RandomMatrixSymbol("Y", k, 1) >>> Z, W = RandomMatrixSymbol("Z", k, 1), RandomMatrixSymbol("W", k, 1) >>> CrossCovarianceMatrix(X, Y) CrossCovarianceMatrix(X, Y) >>> CrossCovarianceMatrix(X, Y).shape (k, k) To expand the covariance in its expression, use ``expand()``: >>> CrossCovarianceMatrix(X + Y, Z).expand() CrossCovarianceMatrix(X, Z) + CrossCovarianceMatrix(Y, Z) >>> CrossCovarianceMatrix(A*X, Y).expand() A*CrossCovarianceMatrix(X, Y) >>> CrossCovarianceMatrix(A*X, B.T*Y).expand() A*CrossCovarianceMatrix(X, Y)*B >>> CrossCovarianceMatrix(A*X + B*Y, C.T*Z + D.T*W).expand() A*CrossCovarianceMatrix(X, W)*D + A*CrossCovarianceMatrix(X, Z)*C + B*CrossCovarianceMatrix(Y, W)*D + B*CrossCovarianceMatrix(Y, Z)*C """ def __new__(cls, arg1, arg2, condition=None): arg1 = _sympify(arg1) arg2 = _sympify(arg2) if (1 not in arg1.shape) or (1 not in arg2.shape) or (arg1.shape[1] != arg2.shape[1]): raise ShapeError("Expression is not a vector") shape = (arg1.shape[0], arg2.shape[0]) if arg1.shape[1] == 1 and arg2.shape[1] == 1 \ else (1, 1) if condition: obj = Expr.__new__(cls, arg1, arg2, condition) else: obj = Expr.__new__(cls, arg1, arg2) obj._shape = shape obj._condition = condition return obj @property def shape(self): return self._shape def expand(self, **hints): arg1 = self.args[0] arg2 = self.args[1] condition = self._condition if arg1 == arg2: return VarianceMatrix(arg1, condition).expand() if not is_random(arg1) or not is_random(arg2): return ZeroMatrix(*self.shape) if isinstance(arg1, RandomSymbol) and isinstance(arg2, RandomSymbol): return CrossCovarianceMatrix(arg1, arg2, condition) coeff_rv_list1 = self._expand_single_argument(arg1.expand()) coeff_rv_list2 = self._expand_single_argument(arg2.expand()) addends = [a*CrossCovarianceMatrix(r1, r2, condition=condition)*b.transpose() for (a, r1) in coeff_rv_list1 for (b, r2) in coeff_rv_list2] return Add.fromiter(addends) @classmethod def _expand_single_argument(cls, expr): # return (coefficient, random_symbol) pairs: if isinstance(expr, RandomSymbol): return [(S.One, expr)] elif isinstance(expr, Add): outval = [] for a in expr.args: if isinstance(a, (Mul, MatMul)): outval.append(cls._get_mul_nonrv_rv_tuple(a)) elif is_random(a): outval.append((S.One, a)) return outval elif isinstance(expr, (Mul, MatMul)): return [cls._get_mul_nonrv_rv_tuple(expr)] elif is_random(expr): return [(S.One, expr)] @classmethod def _get_mul_nonrv_rv_tuple(cls, m): rv = [] nonrv = [] for a in m.args: if is_random(a): rv.append(a) else: nonrv.append(a) return (Mul.fromiter(nonrv), Mul.fromiter(rv))
6be1fa19912276c88fff8fa2370ee7483f7d00cc8de83347b12974214646200b
"""Tools for arithmetic error propagation.""" from itertools import repeat, combinations from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.exponential import exp from sympy.simplify.simplify import simplify from sympy.stats.symbolic_probability import RandomSymbol, Variance, Covariance from sympy.stats.rv import is_random _arg0_or_var = lambda var: var.args[0] if len(var.args) > 0 else var def variance_prop(expr, consts=(), include_covar=False): r"""Symbolically propagates variance (`\sigma^2`) for expressions. This is computed as as seen in [1]_. Parameters ========== expr : Expr A SymPy expression to compute the variance for. consts : sequence of Symbols, optional Represents symbols that are known constants in the expr, and thus have zero variance. All symbols not in consts are assumed to be variant. include_covar : bool, optional Flag for whether or not to include covariances, default=False. Returns ======= var_expr : Expr An expression for the total variance of the expr. The variance for the original symbols (e.g. x) are represented via instance of the Variance symbol (e.g. Variance(x)). Examples ======== >>> from sympy import symbols, exp >>> from sympy.stats.error_prop import variance_prop >>> x, y = symbols('x y') >>> variance_prop(x + y) Variance(x) + Variance(y) >>> variance_prop(x * y) x**2*Variance(y) + y**2*Variance(x) >>> variance_prop(exp(2*x)) 4*exp(4*x)*Variance(x) References ========== .. [1] https://en.wikipedia.org/wiki/Propagation_of_uncertainty """ args = expr.args if len(args) == 0: if expr in consts: return S.Zero elif is_random(expr): return Variance(expr).doit() elif isinstance(expr, Symbol): return Variance(RandomSymbol(expr)).doit() else: return S.Zero nargs = len(args) var_args = list(map(variance_prop, args, repeat(consts, nargs), repeat(include_covar, nargs))) if isinstance(expr, Add): var_expr = Add(*var_args) if include_covar: terms = [2 * Covariance(_arg0_or_var(x), _arg0_or_var(y)).expand() \ for x, y in combinations(var_args, 2)] var_expr += Add(*terms) elif isinstance(expr, Mul): terms = [v/a**2 for a, v in zip(args, var_args)] var_expr = simplify(expr**2 * Add(*terms)) if include_covar: terms = [2*Covariance(_arg0_or_var(x), _arg0_or_var(y)).expand()/(a*b) \ for (a, b), (x, y) in zip(combinations(args, 2), combinations(var_args, 2))] var_expr += Add(*terms) elif isinstance(expr, Pow): b = args[1] v = var_args[0] * (expr * b / args[0])**2 var_expr = simplify(v) elif isinstance(expr, exp): var_expr = simplify(var_args[0] * expr**2) else: # unknown how to proceed, return variance of whole expr. var_expr = Variance(expr) return var_expr
cfd7feffb94f7582451aeed3ecc374447b5717d340417e224435e2ddf31d25cf
""" Contains ======== FlorySchulz Geometric Hermite Logarithmic NegativeBinomial Poisson Skellam YuleSimon Zeta """ from sympy.concrete.summations import Sum from sympy.core.basic import Basic from sympy.core.function import Lambda from sympy.core.numbers import I from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import Dummy from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import (binomial, factorial) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.bessel import besseli from sympy.functions.special.beta_functions import beta from sympy.functions.special.hyper import hyper from sympy.functions.special.zeta_functions import (polylog, zeta) from sympy.stats.drv import SingleDiscreteDistribution, SingleDiscretePSpace from sympy.stats.rv import _value_check, is_random __all__ = ['FlorySchulz', 'Geometric', 'Hermite', 'Logarithmic', 'NegativeBinomial', 'Poisson', 'Skellam', 'YuleSimon', 'Zeta' ] def rv(symbol, cls, *args, **kwargs): args = list(map(sympify, args)) dist = cls(*args) if kwargs.pop('check', True): dist.check(*args) pspace = SingleDiscretePSpace(symbol, dist) if any(is_random(arg) for arg in args): from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution pspace = CompoundPSpace(symbol, CompoundDistribution(dist)) return pspace.value class DiscreteDistributionHandmade(SingleDiscreteDistribution): _argnames = ('pdf',) def __new__(cls, pdf, set=S.Integers): return Basic.__new__(cls, pdf, set) @property def set(self): return self.args[1] @staticmethod def check(pdf, set): x = Dummy('x') val = Sum(pdf(x), (x, set._inf, set._sup)).doit() _value_check(Eq(val, 1) != S.false, "The pdf is incorrect on the given set.") def DiscreteRV(symbol, density, set=S.Integers, **kwargs): """ Create a Discrete Random Variable given the following: Parameters ========== symbol : Symbol Represents name of the random variable. density : Expression containing symbol Represents probability density function. set : set Represents the region where the pdf is valid, by default is real line. check : bool If True, it will check whether the given density integrates to 1 over the given set. If False, it will not perform this check. Default is False. Examples ======== >>> from sympy.stats import DiscreteRV, P, E >>> from sympy import Rational, Symbol >>> x = Symbol('x') >>> n = 10 >>> density = Rational(1, 10) >>> X = DiscreteRV(x, density, set=set(range(n))) >>> E(X) 9/2 >>> P(X>3) 3/5 Returns ======= RandomSymbol """ set = sympify(set) pdf = Piecewise((density, set.as_relational(symbol)), (0, True)) pdf = Lambda(symbol, pdf) # have a default of False while `rv` should have a default of True kwargs['check'] = kwargs.pop('check', False) return rv(symbol.name, DiscreteDistributionHandmade, pdf, set, **kwargs) #------------------------------------------------------------------------------- # Flory-Schulz distribution ------------------------------------------------------------ class FlorySchulzDistribution(SingleDiscreteDistribution): _argnames = ('a',) set = S.Naturals @staticmethod def check(a): _value_check((0 < a, a < 1), "a must be between 0 and 1") def pdf(self, k): a = self.a return (a**2 * k * (1 - a)**(k - 1)) def _characteristic_function(self, t): a = self.a return a**2*exp(I*t)/((1 + (a - 1)*exp(I*t))**2) def _moment_generating_function(self, t): a = self.a return a**2*exp(t)/((1 + (a - 1)*exp(t))**2) def FlorySchulz(name, a): r""" Create a discrete random variable with a FlorySchulz distribution. The density of the FlorySchulz distribution is given by .. math:: f(k) := (a^2) k (1 - a)^{k-1} Parameters ========== a A real number between 0 and 1 Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, E, variance, FlorySchulz >>> from sympy import Symbol, S >>> a = S.One / 5 >>> z = Symbol("z") >>> X = FlorySchulz("x", a) >>> density(X)(z) (4/5)**(z - 1)*z/25 >>> E(X) 9 >>> variance(X) 40 References ========== https://en.wikipedia.org/wiki/Flory%E2%80%93Schulz_distribution """ return rv(name, FlorySchulzDistribution, a) #------------------------------------------------------------------------------- # Geometric distribution ------------------------------------------------------------ class GeometricDistribution(SingleDiscreteDistribution): _argnames = ('p',) set = S.Naturals @staticmethod def check(p): _value_check((0 < p, p <= 1), "p must be between 0 and 1") def pdf(self, k): return (1 - self.p)**(k - 1) * self.p def _characteristic_function(self, t): p = self.p return p * exp(I*t) / (1 - (1 - p)*exp(I*t)) def _moment_generating_function(self, t): p = self.p return p * exp(t) / (1 - (1 - p) * exp(t)) def Geometric(name, p): r""" Create a discrete random variable with a Geometric distribution. Explanation =========== The density of the Geometric distribution is given by .. math:: f(k) := p (1 - p)^{k - 1} Parameters ========== p: A probability between 0 and 1 Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Geometric, density, E, variance >>> from sympy import Symbol, S >>> p = S.One / 5 >>> z = Symbol("z") >>> X = Geometric("x", p) >>> density(X)(z) (4/5)**(z - 1)/5 >>> E(X) 5 >>> variance(X) 20 References ========== .. [1] https://en.wikipedia.org/wiki/Geometric_distribution .. [2] http://mathworld.wolfram.com/GeometricDistribution.html """ return rv(name, GeometricDistribution, p) #------------------------------------------------------------------------------- # Hermite distribution --------------------------------------------------------- class HermiteDistribution(SingleDiscreteDistribution): _argnames = ('a1', 'a2') set = S.Naturals0 @staticmethod def check(a1, a2): _value_check(a1.is_nonnegative, 'Parameter a1 must be >= 0.') _value_check(a2.is_nonnegative, 'Parameter a2 must be >= 0.') def pdf(self, k): a1, a2 = self.a1, self.a2 term1 = exp(-(a1 + a2)) j = Dummy("j", integer=True) num = a1**(k - 2*j) * a2**j den = factorial(k - 2*j) * factorial(j) return term1 * Sum(num/den, (j, 0, k//2)).doit() def _moment_generating_function(self, t): a1, a2 = self.a1, self.a2 term1 = a1 * (exp(t) - 1) term2 = a2 * (exp(2*t) - 1) return exp(term1 + term2) def _characteristic_function(self, t): a1, a2 = self.a1, self.a2 term1 = a1 * (exp(I*t) - 1) term2 = a2 * (exp(2*I*t) - 1) return exp(term1 + term2) def Hermite(name, a1, a2): r""" Create a discrete random variable with a Hermite distribution. Explanation =========== The density of the Hermite distribution is given by .. math:: f(x):= e^{-a_1 -a_2}\sum_{j=0}^{\left \lfloor x/2 \right \rfloor} \frac{a_{1}^{x-2j}a_{2}^{j}}{(x-2j)!j!} Parameters ========== a1: A Positive number greater than equal to 0. a2: A Positive number greater than equal to 0. Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Hermite, density, E, variance >>> from sympy import Symbol >>> a1 = Symbol("a1", positive=True) >>> a2 = Symbol("a2", positive=True) >>> x = Symbol("x") >>> H = Hermite("H", a1=5, a2=4) >>> density(H)(2) 33*exp(-9)/2 >>> E(H) 13 >>> variance(H) 21 References ========== .. [1] https://en.wikipedia.org/wiki/Hermite_distribution """ return rv(name, HermiteDistribution, a1, a2) #------------------------------------------------------------------------------- # Logarithmic distribution ------------------------------------------------------------ class LogarithmicDistribution(SingleDiscreteDistribution): _argnames = ('p',) set = S.Naturals @staticmethod def check(p): _value_check((p > 0, p < 1), "p should be between 0 and 1") def pdf(self, k): p = self.p return (-1) * p**k / (k * log(1 - p)) def _characteristic_function(self, t): p = self.p return log(1 - p * exp(I*t)) / log(1 - p) def _moment_generating_function(self, t): p = self.p return log(1 - p * exp(t)) / log(1 - p) def Logarithmic(name, p): r""" Create a discrete random variable with a Logarithmic distribution. Explanation =========== The density of the Logarithmic distribution is given by .. math:: f(k) := \frac{-p^k}{k \ln{(1 - p)}} Parameters ========== p: A value between 0 and 1 Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Logarithmic, density, E, variance >>> from sympy import Symbol, S >>> p = S.One / 5 >>> z = Symbol("z") >>> X = Logarithmic("x", p) >>> density(X)(z) -1/(5**z*z*log(4/5)) >>> E(X) -1/(-4*log(5) + 8*log(2)) >>> variance(X) -1/((-4*log(5) + 8*log(2))*(-2*log(5) + 4*log(2))) + 1/(-64*log(2)*log(5) + 64*log(2)**2 + 16*log(5)**2) - 10/(-32*log(5) + 64*log(2)) References ========== .. [1] https://en.wikipedia.org/wiki/Logarithmic_distribution .. [2] http://mathworld.wolfram.com/LogarithmicDistribution.html """ return rv(name, LogarithmicDistribution, p) #------------------------------------------------------------------------------- # Negative binomial distribution ------------------------------------------------------------ class NegativeBinomialDistribution(SingleDiscreteDistribution): _argnames = ('r', 'p') set = S.Naturals0 @staticmethod def check(r, p): _value_check(r > 0, 'r should be positive') _value_check((p > 0, p < 1), 'p should be between 0 and 1') def pdf(self, k): r = self.r p = self.p return binomial(k + r - 1, k) * (1 - p)**r * p**k def _characteristic_function(self, t): r = self.r p = self.p return ((1 - p) / (1 - p * exp(I*t)))**r def _moment_generating_function(self, t): r = self.r p = self.p return ((1 - p) / (1 - p * exp(t)))**r def NegativeBinomial(name, r, p): r""" Create a discrete random variable with a Negative Binomial distribution. Explanation =========== The density of the Negative Binomial distribution is given by .. math:: f(k) := \binom{k + r - 1}{k} (1 - p)^r p^k Parameters ========== r: A positive value p: A value between 0 and 1 Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import NegativeBinomial, density, E, variance >>> from sympy import Symbol, S >>> r = 5 >>> p = S.One / 5 >>> z = Symbol("z") >>> X = NegativeBinomial("x", r, p) >>> density(X)(z) 1024*binomial(z + 4, z)/(3125*5**z) >>> E(X) 5/4 >>> variance(X) 25/16 References ========== .. [1] https://en.wikipedia.org/wiki/Negative_binomial_distribution .. [2] http://mathworld.wolfram.com/NegativeBinomialDistribution.html """ return rv(name, NegativeBinomialDistribution, r, p) #------------------------------------------------------------------------------- # Poisson distribution ------------------------------------------------------------ class PoissonDistribution(SingleDiscreteDistribution): _argnames = ('lamda',) set = S.Naturals0 @staticmethod def check(lamda): _value_check(lamda > 0, "Lambda must be positive") def pdf(self, k): return self.lamda**k / factorial(k) * exp(-self.lamda) def _characteristic_function(self, t): return exp(self.lamda * (exp(I*t) - 1)) def _moment_generating_function(self, t): return exp(self.lamda * (exp(t) - 1)) def Poisson(name, lamda): r""" Create a discrete random variable with a Poisson distribution. Explanation =========== The density of the Poisson distribution is given by .. math:: f(k) := \frac{\lambda^{k} e^{- \lambda}}{k!} Parameters ========== lamda: Positive number, a rate Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Poisson, density, E, variance >>> from sympy import Symbol, simplify >>> rate = Symbol("lambda", positive=True) >>> z = Symbol("z") >>> X = Poisson("x", rate) >>> density(X)(z) lambda**z*exp(-lambda)/factorial(z) >>> E(X) lambda >>> simplify(variance(X)) lambda References ========== .. [1] https://en.wikipedia.org/wiki/Poisson_distribution .. [2] http://mathworld.wolfram.com/PoissonDistribution.html """ return rv(name, PoissonDistribution, lamda) # ----------------------------------------------------------------------------- # Skellam distribution -------------------------------------------------------- class SkellamDistribution(SingleDiscreteDistribution): _argnames = ('mu1', 'mu2') set = S.Integers @staticmethod def check(mu1, mu2): _value_check(mu1 >= 0, 'Parameter mu1 must be >= 0') _value_check(mu2 >= 0, 'Parameter mu2 must be >= 0') def pdf(self, k): (mu1, mu2) = (self.mu1, self.mu2) term1 = exp(-(mu1 + mu2)) * (mu1 / mu2) ** (k / 2) term2 = besseli(k, 2 * sqrt(mu1 * mu2)) return term1 * term2 def _cdf(self, x): raise NotImplementedError( "Skellam doesn't have closed form for the CDF.") def _characteristic_function(self, t): (mu1, mu2) = (self.mu1, self.mu2) return exp(-(mu1 + mu2) + mu1 * exp(I * t) + mu2 * exp(-I * t)) def _moment_generating_function(self, t): (mu1, mu2) = (self.mu1, self.mu2) return exp(-(mu1 + mu2) + mu1 * exp(t) + mu2 * exp(-t)) def Skellam(name, mu1, mu2): r""" Create a discrete random variable with a Skellam distribution. Explanation =========== The Skellam is the distribution of the difference N1 - N2 of two statistically independent random variables N1 and N2 each Poisson-distributed with respective expected values mu1 and mu2. The density of the Skellam distribution is given by .. math:: f(k) := e^{-(\mu_1+\mu_2)}(\frac{\mu_1}{\mu_2})^{k/2}I_k(2\sqrt{\mu_1\mu_2}) Parameters ========== mu1: A non-negative value mu2: A non-negative value Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Skellam, density, E, variance >>> from sympy import Symbol, pprint >>> z = Symbol("z", integer=True) >>> mu1 = Symbol("mu1", positive=True) >>> mu2 = Symbol("mu2", positive=True) >>> X = Skellam("x", mu1, mu2) >>> pprint(density(X)(z), use_unicode=False) z - 2 /mu1\ -mu1 - mu2 / _____ _____\ |---| *e *besseli\z, 2*\/ mu1 *\/ mu2 / \mu2/ >>> E(X) mu1 - mu2 >>> variance(X).expand() mu1 + mu2 References ========== .. [1] https://en.wikipedia.org/wiki/Skellam_distribution """ return rv(name, SkellamDistribution, mu1, mu2) #------------------------------------------------------------------------------- # Yule-Simon distribution ------------------------------------------------------------ class YuleSimonDistribution(SingleDiscreteDistribution): _argnames = ('rho',) set = S.Naturals @staticmethod def check(rho): _value_check(rho > 0, 'rho should be positive') def pdf(self, k): rho = self.rho return rho * beta(k, rho + 1) def _cdf(self, x): return Piecewise((1 - floor(x) * beta(floor(x), self.rho + 1), x >= 1), (0, True)) def _characteristic_function(self, t): rho = self.rho return rho * hyper((1, 1), (rho + 2,), exp(I*t)) * exp(I*t) / (rho + 1) def _moment_generating_function(self, t): rho = self.rho return rho * hyper((1, 1), (rho + 2,), exp(t)) * exp(t) / (rho + 1) def YuleSimon(name, rho): r""" Create a discrete random variable with a Yule-Simon distribution. Explanation =========== The density of the Yule-Simon distribution is given by .. math:: f(k) := \rho B(k, \rho + 1) Parameters ========== rho: A positive value Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import YuleSimon, density, E, variance >>> from sympy import Symbol, simplify >>> p = 5 >>> z = Symbol("z") >>> X = YuleSimon("x", p) >>> density(X)(z) 5*beta(z, 6) >>> simplify(E(X)) 5/4 >>> simplify(variance(X)) 25/48 References ========== .. [1] https://en.wikipedia.org/wiki/Yule%E2%80%93Simon_distribution """ return rv(name, YuleSimonDistribution, rho) #------------------------------------------------------------------------------- # Zeta distribution ------------------------------------------------------------ class ZetaDistribution(SingleDiscreteDistribution): _argnames = ('s',) set = S.Naturals @staticmethod def check(s): _value_check(s > 1, 's should be greater than 1') def pdf(self, k): s = self.s return 1 / (k**s * zeta(s)) def _characteristic_function(self, t): return polylog(self.s, exp(I*t)) / zeta(self.s) def _moment_generating_function(self, t): return polylog(self.s, exp(t)) / zeta(self.s) def Zeta(name, s): r""" Create a discrete random variable with a Zeta distribution. Explanation =========== The density of the Zeta distribution is given by .. math:: f(k) := \frac{1}{k^s \zeta{(s)}} Parameters ========== s: A value greater than 1 Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Zeta, density, E, variance >>> from sympy import Symbol >>> s = 5 >>> z = Symbol("z") >>> X = Zeta("x", s) >>> density(X)(z) 1/(z**5*zeta(5)) >>> E(X) pi**4/(90*zeta(5)) >>> variance(X) -pi**8/(8100*zeta(5)**2) + zeta(3)/zeta(5) References ========== .. [1] https://en.wikipedia.org/wiki/Zeta_distribution """ return rv(name, ZetaDistribution, s)
dc4be4076b923be2297f679bb372b099ef4067b6c680f60e6ff1f3fe1f4d6c9b
from sympy.sets import FiniteSet from sympy.core.numbers import Rational from sympy.core.relational import Eq from sympy.core.symbol import Dummy from sympy.functions.combinatorial.factorials import FallingFactorial from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import piecewise_fold from sympy.integrals.integrals import Integral from sympy.solvers.solveset import solveset from .rv import (probability, expectation, density, where, given, pspace, cdf, PSpace, characteristic_function, sample, sample_iter, random_symbols, independent, dependent, sampling_density, moment_generating_function, quantile, is_random, sample_stochastic_process) __all__ = ['P', 'E', 'H', 'density', 'where', 'given', 'sample', 'cdf', 'characteristic_function', 'pspace', 'sample_iter', 'variance', 'std', 'skewness', 'kurtosis', 'covariance', 'dependent', 'entropy', 'median', 'independent', 'random_symbols', 'correlation', 'factorial_moment', 'moment', 'cmoment', 'sampling_density', 'moment_generating_function', 'smoment', 'quantile', 'sample_stochastic_process'] def moment(X, n, c=0, condition=None, *, evaluate=True, **kwargs): """ Return the nth moment of a random expression about c. .. math:: moment(X, c, n) = E((X-c)^{n}) Default value of c is 0. Examples ======== >>> from sympy.stats import Die, moment, E >>> X = Die('X', 6) >>> moment(X, 1, 6) -5/2 >>> moment(X, 2) 91/6 >>> moment(X, 1) == E(X) True """ from sympy.stats.symbolic_probability import Moment if evaluate: return Moment(X, n, c, condition).doit() return Moment(X, n, c, condition).rewrite(Integral) def variance(X, condition=None, **kwargs): """ Variance of a random expression. .. math:: variance(X) = E((X-E(X))^{2}) Examples ======== >>> from sympy.stats import Die, Bernoulli, variance >>> from sympy import simplify, Symbol >>> X = Die('X', 6) >>> p = Symbol('p') >>> B = Bernoulli('B', p, 1, 0) >>> variance(2*X) 35/3 >>> simplify(variance(B)) p*(1 - p) """ if is_random(X) and pspace(X) == PSpace(): from sympy.stats.symbolic_probability import Variance return Variance(X, condition) return cmoment(X, 2, condition, **kwargs) def standard_deviation(X, condition=None, **kwargs): r""" Standard Deviation of a random expression .. math:: std(X) = \sqrt(E((X-E(X))^{2})) Examples ======== >>> from sympy.stats import Bernoulli, std >>> from sympy import Symbol, simplify >>> p = Symbol('p') >>> B = Bernoulli('B', p, 1, 0) >>> simplify(std(B)) sqrt(p*(1 - p)) """ return sqrt(variance(X, condition, **kwargs)) std = standard_deviation def entropy(expr, condition=None, **kwargs): """ Calculuates entropy of a probability distribution. Parameters ========== expression : the random expression whose entropy is to be calculated condition : optional, to specify conditions on random expression b: base of the logarithm, optional By default, it is taken as Euler's number Returns ======= result : Entropy of the expression, a constant Examples ======== >>> from sympy.stats import Normal, Die, entropy >>> X = Normal('X', 0, 1) >>> entropy(X) log(2)/2 + 1/2 + log(pi)/2 >>> D = Die('D', 4) >>> entropy(D) log(4) References ========== .. [1] https://en.wikipedia.org/wiki/Entropy_(information_theory) .. [2] https://www.crmarsh.com/static/pdf/Charles_Marsh_Continuous_Entropy.pdf .. [3] http://www.math.uconn.edu/~kconrad/blurbs/analysis/entropypost.pdf """ pdf = density(expr, condition, **kwargs) base = kwargs.get('b', exp(1)) if isinstance(pdf, dict): return sum([-prob*log(prob, base) for prob in pdf.values()]) return expectation(-log(pdf(expr), base)) def covariance(X, Y, condition=None, **kwargs): """ Covariance of two random expressions. Explanation =========== The expectation that the two variables will rise and fall together .. math:: covariance(X,Y) = E((X-E(X)) (Y-E(Y))) Examples ======== >>> from sympy.stats import Exponential, covariance >>> from sympy import Symbol >>> rate = Symbol('lambda', positive=True, real=True, finite=True) >>> X = Exponential('X', rate) >>> Y = Exponential('Y', rate) >>> covariance(X, X) lambda**(-2) >>> covariance(X, Y) 0 >>> covariance(X, Y + rate*X) 1/lambda """ if (is_random(X) and pspace(X) == PSpace()) or (is_random(Y) and pspace(Y) == PSpace()): from sympy.stats.symbolic_probability import Covariance return Covariance(X, Y, condition) return expectation( (X - expectation(X, condition, **kwargs)) * (Y - expectation(Y, condition, **kwargs)), condition, **kwargs) def correlation(X, Y, condition=None, **kwargs): r""" Correlation of two random expressions, also known as correlation coefficient or Pearson's correlation. Explanation =========== The normalized expectation that the two variables will rise and fall together .. math:: correlation(X,Y) = E((X-E(X))(Y-E(Y)) / (\sigma_x \sigma_y)) Examples ======== >>> from sympy.stats import Exponential, correlation >>> from sympy import Symbol >>> rate = Symbol('lambda', positive=True, real=True, finite=True) >>> X = Exponential('X', rate) >>> Y = Exponential('Y', rate) >>> correlation(X, X) 1 >>> correlation(X, Y) 0 >>> correlation(X, Y + rate*X) 1/sqrt(1 + lambda**(-2)) """ return covariance(X, Y, condition, **kwargs)/(std(X, condition, **kwargs) * std(Y, condition, **kwargs)) def cmoment(X, n, condition=None, *, evaluate=True, **kwargs): """ Return the nth central moment of a random expression about its mean. .. math:: cmoment(X, n) = E((X - E(X))^{n}) Examples ======== >>> from sympy.stats import Die, cmoment, variance >>> X = Die('X', 6) >>> cmoment(X, 3) 0 >>> cmoment(X, 2) 35/12 >>> cmoment(X, 2) == variance(X) True """ from sympy.stats.symbolic_probability import CentralMoment if evaluate: return CentralMoment(X, n, condition).doit() return CentralMoment(X, n, condition).rewrite(Integral) def smoment(X, n, condition=None, **kwargs): r""" Return the nth Standardized moment of a random expression. .. math:: smoment(X, n) = E(((X - \mu)/\sigma_X)^{n}) Examples ======== >>> from sympy.stats import skewness, Exponential, smoment >>> from sympy import Symbol >>> rate = Symbol('lambda', positive=True, real=True, finite=True) >>> Y = Exponential('Y', rate) >>> smoment(Y, 4) 9 >>> smoment(Y, 4) == smoment(3*Y, 4) True >>> smoment(Y, 3) == skewness(Y) True """ sigma = std(X, condition, **kwargs) return (1/sigma)**n*cmoment(X, n, condition, **kwargs) def skewness(X, condition=None, **kwargs): r""" Measure of the asymmetry of the probability distribution. Explanation =========== Positive skew indicates that most of the values lie to the right of the mean. .. math:: skewness(X) = E(((X - E(X))/\sigma_X)^{3}) Parameters ========== condition : Expr containing RandomSymbols A conditional expression. skewness(X, X>0) is skewness of X given X > 0 Examples ======== >>> from sympy.stats import skewness, Exponential, Normal >>> from sympy import Symbol >>> X = Normal('X', 0, 1) >>> skewness(X) 0 >>> skewness(X, X > 0) # find skewness given X > 0 (-sqrt(2)/sqrt(pi) + 4*sqrt(2)/pi**(3/2))/(1 - 2/pi)**(3/2) >>> rate = Symbol('lambda', positive=True, real=True, finite=True) >>> Y = Exponential('Y', rate) >>> skewness(Y) 2 """ return smoment(X, 3, condition=condition, **kwargs) def kurtosis(X, condition=None, **kwargs): r""" Characterizes the tails/outliers of a probability distribution. Explanation =========== Kurtosis of any univariate normal distribution is 3. Kurtosis less than 3 means that the distribution produces fewer and less extreme outliers than the normal distribution. .. math:: kurtosis(X) = E(((X - E(X))/\sigma_X)^{4}) Parameters ========== condition : Expr containing RandomSymbols A conditional expression. kurtosis(X, X>0) is kurtosis of X given X > 0 Examples ======== >>> from sympy.stats import kurtosis, Exponential, Normal >>> from sympy import Symbol >>> X = Normal('X', 0, 1) >>> kurtosis(X) 3 >>> kurtosis(X, X > 0) # find kurtosis given X > 0 (-4/pi - 12/pi**2 + 3)/(1 - 2/pi)**2 >>> rate = Symbol('lamda', positive=True, real=True, finite=True) >>> Y = Exponential('Y', rate) >>> kurtosis(Y) 9 References ========== .. [1] https://en.wikipedia.org/wiki/Kurtosis .. [2] http://mathworld.wolfram.com/Kurtosis.html """ return smoment(X, 4, condition=condition, **kwargs) def factorial_moment(X, n, condition=None, **kwargs): """ The factorial moment is a mathematical quantity defined as the expectation or average of the falling factorial of a random variable. .. math:: factorial-moment(X, n) = E(X(X - 1)(X - 2)...(X - n + 1)) Parameters ========== n: A natural number, n-th factorial moment. condition : Expr containing RandomSymbols A conditional expression. Examples ======== >>> from sympy.stats import factorial_moment, Poisson, Binomial >>> from sympy import Symbol, S >>> lamda = Symbol('lamda') >>> X = Poisson('X', lamda) >>> factorial_moment(X, 2) lamda**2 >>> Y = Binomial('Y', 2, S.Half) >>> factorial_moment(Y, 2) 1/2 >>> factorial_moment(Y, 2, Y > 1) # find factorial moment for Y > 1 2 References ========== .. [1] https://en.wikipedia.org/wiki/Factorial_moment .. [2] http://mathworld.wolfram.com/FactorialMoment.html """ return expectation(FallingFactorial(X, n), condition=condition, **kwargs) def median(X, evaluate=True, **kwargs): r""" Calculuates the median of the probability distribution. Explanation =========== Mathematically, median of Probability distribution is defined as all those values of `m` for which the following condition is satisfied .. math:: P(X\leq m) \geq \frac{1}{2} \text{ and} \text{ } P(X\geq m)\geq \frac{1}{2} Parameters ========== X: The random expression whose median is to be calculated. Returns ======= The FiniteSet or an Interval which contains the median of the random expression. Examples ======== >>> from sympy.stats import Normal, Die, median >>> N = Normal('N', 3, 1) >>> median(N) {3} >>> D = Die('D') >>> median(D) {3, 4} References ========== .. [1] https://en.wikipedia.org/wiki/Median#Probability_distributions """ if not is_random(X): return X from sympy.stats.crv import ContinuousPSpace from sympy.stats.drv import DiscretePSpace from sympy.stats.frv import FinitePSpace if isinstance(pspace(X), FinitePSpace): cdf = pspace(X).compute_cdf(X) result = [] for key, value in cdf.items(): if value>= Rational(1, 2) and (1 - value) + \ pspace(X).probability(Eq(X, key)) >= Rational(1, 2): result.append(key) return FiniteSet(*result) if isinstance(pspace(X), (ContinuousPSpace, DiscretePSpace)): cdf = pspace(X).compute_cdf(X) x = Dummy('x') result = solveset(piecewise_fold(cdf(x) - Rational(1, 2)), x, pspace(X).set) return result raise NotImplementedError("The median of %s is not implemeted."%str(pspace(X))) def coskewness(X, Y, Z, condition=None, **kwargs): r""" Calculates the co-skewness of three random variables. Explanation =========== Mathematically Coskewness is defined as .. math:: coskewness(X,Y,Z)=\frac{E[(X-E[X]) * (Y-E[Y]) * (Z-E[Z])]} {\sigma_{X}\sigma_{Y}\sigma_{Z}} Parameters ========== X : RandomSymbol Random Variable used to calculate coskewness Y : RandomSymbol Random Variable used to calculate coskewness Z : RandomSymbol Random Variable used to calculate coskewness condition : Expr containing RandomSymbols A conditional expression Examples ======== >>> from sympy.stats import coskewness, Exponential, skewness >>> from sympy import symbols >>> p = symbols('p', positive=True) >>> X = Exponential('X', p) >>> Y = Exponential('Y', 2*p) >>> coskewness(X, Y, Y) 0 >>> coskewness(X, Y + X, Y + 2*X) 16*sqrt(85)/85 >>> coskewness(X + 2*Y, Y + X, Y + 2*X, X > 3) 9*sqrt(170)/85 >>> coskewness(Y, Y, Y) == skewness(Y) True >>> coskewness(X, Y + p*X, Y + 2*p*X) 4/(sqrt(1 + 1/(4*p**2))*sqrt(4 + 1/(4*p**2))) Returns ======= coskewness : The coskewness of the three random variables References ========== .. [1] https://en.wikipedia.org/wiki/Coskewness """ num = expectation((X - expectation(X, condition, **kwargs)) \ * (Y - expectation(Y, condition, **kwargs)) \ * (Z - expectation(Z, condition, **kwargs)), condition, **kwargs) den = std(X, condition, **kwargs) * std(Y, condition, **kwargs) \ * std(Z, condition, **kwargs) return num/den P = probability E = expectation H = entropy
7ee2bafaa0dbe364a2f39e1faa9cbb4d7d3ec8c7af36249da70bbc59a274665a
""" Main Random Variables Module Defines abstract random variable type. Contains interfaces for probability space object (PSpace) as well as standard operators, P, E, sample, density, where, quantile See Also ======== sympy.stats.crv sympy.stats.frv sympy.stats.rv_interface """ from functools import singledispatch from typing import Tuple as tTuple from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import (Function, Lambda) from sympy.core.logic import fuzzy_and from sympy.core.mul import (Mul, prod) from sympy.core.relational import (Eq, Ne) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol) from sympy.core.sympify import sympify from sympy.functions.special.delta_functions import DiracDelta from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.logic.boolalg import (And, Or) from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.tensor.indexed import Indexed from sympy.utilities.lambdify import lambdify from sympy.core.relational import Relational from sympy.core.sympify import _sympify from sympy.sets.sets import FiniteSet, ProductSet, Intersection from sympy.solvers.solveset import solveset from sympy.external import import_module from sympy.utilities.misc import filldedent from sympy.utilities.decorator import doctest_depends_on from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import iterable import warnings x = Symbol('x') @singledispatch def is_random(x): return False @is_random.register(Basic) def _(x): atoms = x.free_symbols return any(is_random(i) for i in atoms) class RandomDomain(Basic): """ Represents a set of variables and the values which they can take. See Also ======== sympy.stats.crv.ContinuousDomain sympy.stats.frv.FiniteDomain """ is_ProductDomain = False is_Finite = False is_Continuous = False is_Discrete = False def __new__(cls, symbols, *args): symbols = FiniteSet(*symbols) return Basic.__new__(cls, symbols, *args) @property def symbols(self): return self.args[0] @property def set(self): return self.args[1] def __contains__(self, other): raise NotImplementedError() def compute_expectation(self, expr): raise NotImplementedError() class SingleDomain(RandomDomain): """ A single variable and its domain. See Also ======== sympy.stats.crv.SingleContinuousDomain sympy.stats.frv.SingleFiniteDomain """ def __new__(cls, symbol, set): assert symbol.is_Symbol return Basic.__new__(cls, symbol, set) @property def symbol(self): return self.args[0] @property def symbols(self): return FiniteSet(self.symbol) def __contains__(self, other): if len(other) != 1: return False sym, val = tuple(other)[0] return self.symbol == sym and val in self.set class MatrixDomain(RandomDomain): """ A Random Matrix variable and its domain. """ def __new__(cls, symbol, set): symbol, set = _symbol_converter(symbol), _sympify(set) return Basic.__new__(cls, symbol, set) @property def symbol(self): return self.args[0] @property def symbols(self): return FiniteSet(self.symbol) class ConditionalDomain(RandomDomain): """ A RandomDomain with an attached condition. See Also ======== sympy.stats.crv.ConditionalContinuousDomain sympy.stats.frv.ConditionalFiniteDomain """ def __new__(cls, fulldomain, condition): condition = condition.xreplace({rs: rs.symbol for rs in random_symbols(condition)}) return Basic.__new__(cls, fulldomain, condition) @property def symbols(self): return self.fulldomain.symbols @property def fulldomain(self): return self.args[0] @property def condition(self): return self.args[1] @property def set(self): raise NotImplementedError("Set of Conditional Domain not Implemented") def as_boolean(self): return And(self.fulldomain.as_boolean(), self.condition) class PSpace(Basic): """ A Probability Space. Explanation =========== Probability Spaces encode processes that equal different values probabilistically. These underly Random Symbols which occur in SymPy expressions and contain the mechanics to evaluate statistical statements. See Also ======== sympy.stats.crv.ContinuousPSpace sympy.stats.frv.FinitePSpace """ is_Finite = None # type: bool is_Continuous = None # type: bool is_Discrete = None # type: bool is_real = None # type: bool @property def domain(self): return self.args[0] @property def density(self): return self.args[1] @property def values(self): return frozenset(RandomSymbol(sym, self) for sym in self.symbols) @property def symbols(self): return self.domain.symbols def where(self, condition): raise NotImplementedError() def compute_density(self, expr): raise NotImplementedError() def sample(self, size=(), library='scipy', seed=None): raise NotImplementedError() def probability(self, condition): raise NotImplementedError() def compute_expectation(self, expr): raise NotImplementedError() class SinglePSpace(PSpace): """ Represents the probabilities of a set of random events that can be attributed to a single variable/symbol. """ def __new__(cls, s, distribution): s = _symbol_converter(s) return Basic.__new__(cls, s, distribution) @property def value(self): return RandomSymbol(self.symbol, self) @property def symbol(self): return self.args[0] @property def distribution(self): return self.args[1] @property def pdf(self): return self.distribution.pdf(self.symbol) class RandomSymbol(Expr): """ Random Symbols represent ProbabilitySpaces in SymPy Expressions. In principle they can take on any value that their symbol can take on within the associated PSpace with probability determined by the PSpace Density. Explanation =========== Random Symbols contain pspace and symbol properties. The pspace property points to the represented Probability Space The symbol is a standard SymPy Symbol that is used in that probability space for example in defining a density. You can form normal SymPy expressions using RandomSymbols and operate on those expressions with the Functions E - Expectation of a random expression P - Probability of a condition density - Probability Density of an expression given - A new random expression (with new random symbols) given a condition An object of the RandomSymbol type should almost never be created by the user. They tend to be created instead by the PSpace class's value method. Traditionally a user doesn't even do this but instead calls one of the convenience functions Normal, Exponential, Coin, Die, FiniteRV, etc.... """ def __new__(cls, symbol, pspace=None): from sympy.stats.joint_rv import JointRandomSymbol if pspace is None: # Allow single arg, representing pspace == PSpace() pspace = PSpace() symbol = _symbol_converter(symbol) if not isinstance(pspace, PSpace): raise TypeError("pspace variable should be of type PSpace") if cls == JointRandomSymbol and isinstance(pspace, SinglePSpace): cls = RandomSymbol return Basic.__new__(cls, symbol, pspace) is_finite = True is_symbol = True is_Atom = True _diff_wrt = True pspace = property(lambda self: self.args[1]) symbol = property(lambda self: self.args[0]) name = property(lambda self: self.symbol.name) def _eval_is_positive(self): return self.symbol.is_positive def _eval_is_integer(self): return self.symbol.is_integer def _eval_is_real(self): return self.symbol.is_real or self.pspace.is_real @property def is_commutative(self): return self.symbol.is_commutative @property def free_symbols(self): return {self} class RandomIndexedSymbol(RandomSymbol): def __new__(cls, idx_obj, pspace=None): if pspace is None: # Allow single arg, representing pspace == PSpace() pspace = PSpace() if not isinstance(idx_obj, (Indexed, Function)): raise TypeError("An Function or Indexed object is expected not %s"%(idx_obj)) return Basic.__new__(cls, idx_obj, pspace) symbol = property(lambda self: self.args[0]) name = property(lambda self: str(self.args[0])) @property def key(self): if isinstance(self.symbol, Indexed): return self.symbol.args[1] elif isinstance(self.symbol, Function): return self.symbol.args[0] @property def free_symbols(self): if self.key.free_symbols: free_syms = self.key.free_symbols free_syms.add(self) return free_syms return {self} @property def pspace(self): return self.args[1] class RandomMatrixSymbol(RandomSymbol, MatrixSymbol): # type: ignore def __new__(cls, symbol, n, m, pspace=None): n, m = _sympify(n), _sympify(m) symbol = _symbol_converter(symbol) if pspace is None: # Allow single arg, representing pspace == PSpace() pspace = PSpace() return Basic.__new__(cls, symbol, n, m, pspace) symbol = property(lambda self: self.args[0]) pspace = property(lambda self: self.args[3]) class ProductPSpace(PSpace): """ Abstract class for representing probability spaces with multiple random variables. See Also ======== sympy.stats.rv.IndependentProductPSpace sympy.stats.joint_rv.JointPSpace """ pass class IndependentProductPSpace(ProductPSpace): """ A probability space resulting from the merger of two independent probability spaces. Often created using the function, pspace. """ def __new__(cls, *spaces): rs_space_dict = {} for space in spaces: for value in space.values: rs_space_dict[value] = space symbols = FiniteSet(*[val.symbol for val in rs_space_dict.keys()]) # Overlapping symbols from sympy.stats.joint_rv import MarginalDistribution from sympy.stats.compound_rv import CompoundDistribution if len(symbols) < sum(len(space.symbols) for space in spaces if not isinstance(space.distribution, ( CompoundDistribution, MarginalDistribution))): raise ValueError("Overlapping Random Variables") if all(space.is_Finite for space in spaces): from sympy.stats.frv import ProductFinitePSpace cls = ProductFinitePSpace obj = Basic.__new__(cls, *FiniteSet(*spaces)) return obj @property def pdf(self): p = Mul(*[space.pdf for space in self.spaces]) return p.subs({rv: rv.symbol for rv in self.values}) @property def rs_space_dict(self): d = {} for space in self.spaces: for value in space.values: d[value] = space return d @property def symbols(self): return FiniteSet(*[val.symbol for val in self.rs_space_dict.keys()]) @property def spaces(self): return FiniteSet(*self.args) @property def values(self): return sumsets(space.values for space in self.spaces) def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs): rvs = rvs or self.values rvs = frozenset(rvs) for space in self.spaces: expr = space.compute_expectation(expr, rvs & space.values, evaluate=False, **kwargs) if evaluate and hasattr(expr, 'doit'): return expr.doit(**kwargs) return expr @property def domain(self): return ProductDomain(*[space.domain for space in self.spaces]) @property def density(self): raise NotImplementedError("Density not available for ProductSpaces") def sample(self, size=(), library='scipy', seed=None): return {k: v for space in self.spaces for k, v in space.sample(size=size, library=library, seed=seed).items()} def probability(self, condition, **kwargs): cond_inv = False if isinstance(condition, Ne): condition = Eq(condition.args[0], condition.args[1]) cond_inv = True elif isinstance(condition, And): # they are independent return Mul(*[self.probability(arg) for arg in condition.args]) elif isinstance(condition, Or): # they are independent return Add(*[self.probability(arg) for arg in condition.args]) expr = condition.lhs - condition.rhs rvs = random_symbols(expr) dens = self.compute_density(expr) if any(pspace(rv).is_Continuous for rv in rvs): from sympy.stats.crv import SingleContinuousPSpace from sympy.stats.crv_types import ContinuousDistributionHandmade if expr in self.values: # Marginalize all other random symbols out of the density randomsymbols = tuple(set(self.values) - frozenset([expr])) symbols = tuple(rs.symbol for rs in randomsymbols) pdf = self.domain.integrate(self.pdf, symbols, **kwargs) return Lambda(expr.symbol, pdf) dens = ContinuousDistributionHandmade(dens) z = Dummy('z', real=True) space = SingleContinuousPSpace(z, dens) result = space.probability(condition.__class__(space.value, 0)) else: from sympy.stats.drv import SingleDiscretePSpace from sympy.stats.drv_types import DiscreteDistributionHandmade dens = DiscreteDistributionHandmade(dens) z = Dummy('z', integer=True) space = SingleDiscretePSpace(z, dens) result = space.probability(condition.__class__(space.value, 0)) return result if not cond_inv else S.One - result def compute_density(self, expr, **kwargs): rvs = random_symbols(expr) if any(pspace(rv).is_Continuous for rv in rvs): z = Dummy('z', real=True) expr = self.compute_expectation(DiracDelta(expr - z), **kwargs) else: z = Dummy('z', integer=True) expr = self.compute_expectation(KroneckerDelta(expr, z), **kwargs) return Lambda(z, expr) def compute_cdf(self, expr, **kwargs): raise ValueError("CDF not well defined on multivariate expressions") def conditional_space(self, condition, normalize=True, **kwargs): rvs = random_symbols(condition) condition = condition.xreplace({rv: rv.symbol for rv in self.values}) pspaces = [pspace(rv) for rv in rvs] if any(ps.is_Continuous for ps in pspaces): from sympy.stats.crv import (ConditionalContinuousDomain, ContinuousPSpace) space = ContinuousPSpace domain = ConditionalContinuousDomain(self.domain, condition) elif any(ps.is_Discrete for ps in pspaces): from sympy.stats.drv import (ConditionalDiscreteDomain, DiscretePSpace) space = DiscretePSpace domain = ConditionalDiscreteDomain(self.domain, condition) elif all(ps.is_Finite for ps in pspaces): from sympy.stats.frv import FinitePSpace return FinitePSpace.conditional_space(self, condition) if normalize: replacement = {rv: Dummy(str(rv)) for rv in self.symbols} norm = domain.compute_expectation(self.pdf, **kwargs) pdf = self.pdf / norm.xreplace(replacement) # XXX: Converting symbols from set to tuple. The order matters to # Lambda though so we shouldn't be starting with a set here... density = Lambda(tuple(domain.symbols), pdf) return space(domain, density) class ProductDomain(RandomDomain): """ A domain resulting from the merger of two independent domains. See Also ======== sympy.stats.crv.ProductContinuousDomain sympy.stats.frv.ProductFiniteDomain """ is_ProductDomain = True def __new__(cls, *domains): # Flatten any product of products domains2 = [] for domain in domains: if not domain.is_ProductDomain: domains2.append(domain) else: domains2.extend(domain.domains) domains2 = FiniteSet(*domains2) if all(domain.is_Finite for domain in domains2): from sympy.stats.frv import ProductFiniteDomain cls = ProductFiniteDomain if all(domain.is_Continuous for domain in domains2): from sympy.stats.crv import ProductContinuousDomain cls = ProductContinuousDomain if all(domain.is_Discrete for domain in domains2): from sympy.stats.drv import ProductDiscreteDomain cls = ProductDiscreteDomain return Basic.__new__(cls, *domains2) @property def sym_domain_dict(self): return {symbol: domain for domain in self.domains for symbol in domain.symbols} @property def symbols(self): return FiniteSet(*[sym for domain in self.domains for sym in domain.symbols]) @property def domains(self): return self.args @property def set(self): return ProductSet(*(domain.set for domain in self.domains)) def __contains__(self, other): # Split event into each subdomain for domain in self.domains: # Collect the parts of this event which associate to this domain elem = frozenset([item for item in other if sympify(domain.symbols.contains(item[0])) is S.true]) # Test this sub-event if elem not in domain: return False # All subevents passed return True def as_boolean(self): return And(*[domain.as_boolean() for domain in self.domains]) def random_symbols(expr): """ Returns all RandomSymbols within a SymPy Expression. """ atoms = getattr(expr, 'atoms', None) if atoms is not None: comp = lambda rv: rv.symbol.name l = list(atoms(RandomSymbol)) return sorted(l, key=comp) else: return [] def pspace(expr): """ Returns the underlying Probability Space of a random expression. For internal use. Examples ======== >>> from sympy.stats import pspace, Normal >>> X = Normal('X', 0, 1) >>> pspace(2*X + 1) == X.pspace True """ expr = sympify(expr) if isinstance(expr, RandomSymbol) and expr.pspace is not None: return expr.pspace if expr.has(RandomMatrixSymbol): rm = list(expr.atoms(RandomMatrixSymbol))[0] return rm.pspace rvs = random_symbols(expr) if not rvs: raise ValueError("Expression containing Random Variable expected, not %s" % (expr)) # If only one space present if all(rv.pspace == rvs[0].pspace for rv in rvs): return rvs[0].pspace from sympy.stats.compound_rv import CompoundPSpace from sympy.stats.stochastic_process import StochasticPSpace for rv in rvs: if isinstance(rv.pspace, (CompoundPSpace, StochasticPSpace)): return rv.pspace # Otherwise make a product space return IndependentProductPSpace(*[rv.pspace for rv in rvs]) def sumsets(sets): """ Union of sets """ return frozenset().union(*sets) def rs_swap(a, b): """ Build a dictionary to swap RandomSymbols based on their underlying symbol. i.e. if ``X = ('x', pspace1)`` and ``Y = ('x', pspace2)`` then ``X`` and ``Y`` match and the key, value pair ``{X:Y}`` will appear in the result Inputs: collections a and b of random variables which share common symbols Output: dict mapping RVs in a to RVs in b """ d = {} for rsa in a: d[rsa] = [rsb for rsb in b if rsa.symbol == rsb.symbol][0] return d def given(expr, condition=None, **kwargs): r""" Conditional Random Expression. Explanation =========== From a random expression and a condition on that expression creates a new probability space from the condition and returns the same expression on that conditional probability space. Examples ======== >>> from sympy.stats import given, density, Die >>> X = Die('X', 6) >>> Y = given(X, X > 3) >>> density(Y).dict {4: 1/3, 5: 1/3, 6: 1/3} Following convention, if the condition is a random symbol then that symbol is considered fixed. >>> from sympy.stats import Normal >>> from sympy import pprint >>> from sympy.abc import z >>> X = Normal('X', 0, 1) >>> Y = Normal('Y', 0, 1) >>> pprint(density(X + Y, Y)(z), use_unicode=False) 2 -(-Y + z) ----------- ___ 2 \/ 2 *e ------------------ ____ 2*\/ pi """ if not is_random(condition) or pspace_independent(expr, condition): return expr if isinstance(condition, RandomSymbol): condition = Eq(condition, condition.symbol) condsymbols = random_symbols(condition) if (isinstance(condition, Eq) and len(condsymbols) == 1 and not isinstance(pspace(expr).domain, ConditionalDomain)): rv = tuple(condsymbols)[0] results = solveset(condition, rv) if isinstance(results, Intersection) and S.Reals in results.args: results = list(results.args[1]) sums = 0 for res in results: temp = expr.subs(rv, res) if temp == True: return True if temp != False: # XXX: This seems nonsensical but preserves existing behaviour # after the change that Relational is no longer a subclass of # Expr. Here expr is sometimes Relational and sometimes Expr # but we are trying to add them with +=. This needs to be # fixed somehow. if sums == 0 and isinstance(expr, Relational): sums = expr.subs(rv, res) else: sums += expr.subs(rv, res) if sums == 0: return False return sums # Get full probability space of both the expression and the condition fullspace = pspace(Tuple(expr, condition)) # Build new space given the condition space = fullspace.conditional_space(condition, **kwargs) # Dictionary to swap out RandomSymbols in expr with new RandomSymbols # That point to the new conditional space swapdict = rs_swap(fullspace.values, space.values) # Swap random variables in the expression expr = expr.xreplace(swapdict) return expr def expectation(expr, condition=None, numsamples=None, evaluate=True, **kwargs): """ Returns the expected value of a random expression. Parameters ========== expr : Expr containing RandomSymbols The expression of which you want to compute the expectation value given : Expr containing RandomSymbols A conditional expression. E(X, X>0) is expectation of X given X > 0 numsamples : int Enables sampling and approximates the expectation with this many samples evalf : Bool (defaults to True) If sampling return a number rather than a complex expression evaluate : Bool (defaults to True) In case of continuous systems return unevaluated integral Examples ======== >>> from sympy.stats import E, Die >>> X = Die('X', 6) >>> E(X) 7/2 >>> E(2*X + 1) 8 >>> E(X, X > 3) # Expectation of X given that it is above 3 5 """ if not is_random(expr): # expr isn't random? return expr kwargs['numsamples'] = numsamples from sympy.stats.symbolic_probability import Expectation if evaluate: return Expectation(expr, condition).doit(**kwargs) return Expectation(expr, condition) def probability(condition, given_condition=None, numsamples=None, evaluate=True, **kwargs): """ Probability that a condition is true, optionally given a second condition. Parameters ========== condition : Combination of Relationals containing RandomSymbols The condition of which you want to compute the probability given_condition : Combination of Relationals containing RandomSymbols A conditional expression. P(X > 1, X > 0) is expectation of X > 1 given X > 0 numsamples : int Enables sampling and approximates the probability with this many samples evaluate : Bool (defaults to True) In case of continuous systems return unevaluated integral Examples ======== >>> from sympy.stats import P, Die >>> from sympy import Eq >>> X, Y = Die('X', 6), Die('Y', 6) >>> P(X > 3) 1/2 >>> P(Eq(X, 5), X > 2) # Probability that X == 5 given that X > 2 1/4 >>> P(X > Y) 5/12 """ kwargs['numsamples'] = numsamples from sympy.stats.symbolic_probability import Probability if evaluate: return Probability(condition, given_condition).doit(**kwargs) ### TODO: Remove the user warnings in the future releases message = ("Since version 1.7, using `evaluate=False` returns `Probability` " "object. If you want unevaluated Integral/Sum use " "`P(condition, given_condition, evaluate=False).rewrite(Integral)`") warnings.warn(filldedent(message)) return Probability(condition, given_condition) class Density(Basic): expr = property(lambda self: self.args[0]) @property def condition(self): if len(self.args) > 1: return self.args[1] else: return None def doit(self, evaluate=True, **kwargs): from sympy.stats.random_matrix import RandomMatrixPSpace from sympy.stats.joint_rv import JointPSpace from sympy.stats.matrix_distributions import MatrixPSpace from sympy.stats.compound_rv import CompoundPSpace from sympy.stats.frv import SingleFiniteDistribution expr, condition = self.expr, self.condition if isinstance(expr, SingleFiniteDistribution): return expr.dict if condition is not None: # Recompute on new conditional expr expr = given(expr, condition, **kwargs) if not random_symbols(expr): return Lambda(x, DiracDelta(x - expr)) if isinstance(expr, RandomSymbol): if isinstance(expr.pspace, (SinglePSpace, JointPSpace, MatrixPSpace)) and \ hasattr(expr.pspace, 'distribution'): return expr.pspace.distribution elif isinstance(expr.pspace, RandomMatrixPSpace): return expr.pspace.model if isinstance(pspace(expr), CompoundPSpace): kwargs['compound_evaluate'] = evaluate result = pspace(expr).compute_density(expr, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def density(expr, condition=None, evaluate=True, numsamples=None, **kwargs): """ Probability density of a random expression, optionally given a second condition. Explanation =========== This density will take on different forms for different types of probability spaces. Discrete variables produce Dicts. Continuous variables produce Lambdas. Parameters ========== expr : Expr containing RandomSymbols The expression of which you want to compute the density value condition : Relational containing RandomSymbols A conditional expression. density(X > 1, X > 0) is density of X > 1 given X > 0 numsamples : int Enables sampling and approximates the density with this many samples Examples ======== >>> from sympy.stats import density, Die, Normal >>> from sympy import Symbol >>> x = Symbol('x') >>> D = Die('D', 6) >>> X = Normal(x, 0, 1) >>> density(D).dict {1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6} >>> density(2*D).dict {2: 1/6, 4: 1/6, 6: 1/6, 8: 1/6, 10: 1/6, 12: 1/6} >>> density(X)(x) sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) """ if numsamples: return sampling_density(expr, condition, numsamples=numsamples, **kwargs) return Density(expr, condition).doit(evaluate=evaluate, **kwargs) def cdf(expr, condition=None, evaluate=True, **kwargs): """ Cumulative Distribution Function of a random expression. optionally given a second condition. Explanation =========== This density will take on different forms for different types of probability spaces. Discrete variables produce Dicts. Continuous variables produce Lambdas. Examples ======== >>> from sympy.stats import density, Die, Normal, cdf >>> D = Die('D', 6) >>> X = Normal('X', 0, 1) >>> density(D).dict {1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6} >>> cdf(D) {1: 1/6, 2: 1/3, 3: 1/2, 4: 2/3, 5: 5/6, 6: 1} >>> cdf(3*D, D > 2) {9: 1/4, 12: 1/2, 15: 3/4, 18: 1} >>> cdf(X) Lambda(_z, erf(sqrt(2)*_z/2)/2 + 1/2) """ if condition is not None: # If there is a condition # Recompute on new conditional expr return cdf(given(expr, condition, **kwargs), **kwargs) # Otherwise pass work off to the ProbabilitySpace result = pspace(expr).compute_cdf(expr, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def characteristic_function(expr, condition=None, evaluate=True, **kwargs): """ Characteristic function of a random expression, optionally given a second condition. Returns a Lambda. Examples ======== >>> from sympy.stats import Normal, DiscreteUniform, Poisson, characteristic_function >>> X = Normal('X', 0, 1) >>> characteristic_function(X) Lambda(_t, exp(-_t**2/2)) >>> Y = DiscreteUniform('Y', [1, 2, 7]) >>> characteristic_function(Y) Lambda(_t, exp(7*_t*I)/3 + exp(2*_t*I)/3 + exp(_t*I)/3) >>> Z = Poisson('Z', 2) >>> characteristic_function(Z) Lambda(_t, exp(2*exp(_t*I) - 2)) """ if condition is not None: return characteristic_function(given(expr, condition, **kwargs), **kwargs) result = pspace(expr).compute_characteristic_function(expr, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def moment_generating_function(expr, condition=None, evaluate=True, **kwargs): if condition is not None: return moment_generating_function(given(expr, condition, **kwargs), **kwargs) result = pspace(expr).compute_moment_generating_function(expr, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def where(condition, given_condition=None, **kwargs): """ Returns the domain where a condition is True. Examples ======== >>> from sympy.stats import where, Die, Normal >>> from sympy import And >>> D1, D2 = Die('a', 6), Die('b', 6) >>> a, b = D1.symbol, D2.symbol >>> X = Normal('x', 0, 1) >>> where(X**2<1) Domain: (-1 < x) & (x < 1) >>> where(X**2<1).set Interval.open(-1, 1) >>> where(And(D1<=D2, D2<3)) Domain: (Eq(a, 1) & Eq(b, 1)) | (Eq(a, 1) & Eq(b, 2)) | (Eq(a, 2) & Eq(b, 2)) """ if given_condition is not None: # If there is a condition # Recompute on new conditional expr return where(given(condition, given_condition, **kwargs), **kwargs) # Otherwise pass work off to the ProbabilitySpace return pspace(condition).where(condition, **kwargs) @doctest_depends_on(modules=('scipy',)) def sample(expr, condition=None, size=(), library='scipy', numsamples=1, seed=None, **kwargs): """ A realization of the random expression. Parameters ========== expr : Expression of random variables Expression from which sample is extracted condition : Expr containing RandomSymbols A conditional expression size : int, tuple Represents size of each sample in numsamples library : str - 'scipy' : Sample using scipy - 'numpy' : Sample using numpy - 'pymc3' : Sample using PyMC3 Choose any of the available options to sample from as string, by default is 'scipy' numsamples : int Number of samples, each with size as ``size``. The ``numsamples`` parameter is deprecated and is only provided for compatibility with v1.8. Use a list comprehension or an additional dimension in ``size`` instead. seed : An object to be used as seed by the given external library for sampling `expr`. Following is the list of possible types of object for the supported libraries, - 'scipy': int, numpy.random.RandomState, numpy.random.Generator - 'numpy': int, numpy.random.RandomState, numpy.random.Generator - 'pymc3': int Optional, by default None, in which case seed settings related to the given library will be used. No modifications to environment's global seed settings are done by this argument. Returns ======= sample: float/list/numpy.ndarray one sample or a collection of samples of the random expression. - sample(X) returns float/numpy.float64/numpy.int64 object. - sample(X, size=int/tuple) returns numpy.ndarray object. Examples ======== >>> from sympy.stats import Die, sample, Normal, Geometric >>> X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6) # Finite Random Variable >>> die_roll = sample(X + Y + Z) >>> die_roll # doctest: +SKIP 3 >>> N = Normal('N', 3, 4) # Continuous Random Variable >>> samp = sample(N) >>> samp in N.pspace.domain.set True >>> samp = sample(N, N>0) >>> samp > 0 True >>> samp_list = sample(N, size=4) >>> [sam in N.pspace.domain.set for sam in samp_list] [True, True, True, True] >>> sample(N, size = (2,3)) # doctest: +SKIP array([[5.42519758, 6.40207856, 4.94991743], [1.85819627, 6.83403519, 1.9412172 ]]) >>> G = Geometric('G', 0.5) # Discrete Random Variable >>> samp_list = sample(G, size=3) >>> samp_list # doctest: +SKIP [1, 3, 2] >>> [sam in G.pspace.domain.set for sam in samp_list] [True, True, True] >>> MN = Normal("MN", [3, 4], [[2, 1], [1, 2]]) # Joint Random Variable >>> samp_list = sample(MN, size=4) >>> samp_list # doctest: +SKIP [array([2.85768055, 3.38954165]), array([4.11163337, 4.3176591 ]), array([0.79115232, 1.63232916]), array([4.01747268, 3.96716083])] >>> [tuple(sam) in MN.pspace.domain.set for sam in samp_list] [True, True, True, True] .. versionchanged:: 1.7.0 sample used to return an iterator containing the samples instead of value. .. versionchanged:: 1.9.0 sample returns values or array of values instead of an iterator and numsamples is deprecated. """ iterator = sample_iter(expr, condition, size=size, library=library, numsamples=numsamples, seed=seed) if numsamples != 1: SymPyDeprecationWarning( feature="numsamples parameter", issue=21723, deprecated_since_version="1.9", useinstead="a list comprehension or an additional dimension in ``size``").warn() return [next(iterator) for i in range(numsamples)] return next(iterator) def quantile(expr, evaluate=True, **kwargs): r""" Return the :math:`p^{th}` order quantile of a probability distribution. Explanation =========== Quantile is defined as the value at which the probability of the random variable is less than or equal to the given probability. ..math:: Q(p) = inf{x \in (-\infty, \infty) such that p <= F(x)} Examples ======== >>> from sympy.stats import quantile, Die, Exponential >>> from sympy import Symbol, pprint >>> p = Symbol("p") >>> l = Symbol("lambda", positive=True) >>> X = Exponential("x", l) >>> quantile(X)(p) -log(1 - p)/lambda >>> D = Die("d", 6) >>> pprint(quantile(D)(p), use_unicode=False) /nan for Or(p > 1, p < 0) | | 1 for p <= 1/6 | | 2 for p <= 1/3 | < 3 for p <= 1/2 | | 4 for p <= 2/3 | | 5 for p <= 5/6 | \ 6 for p <= 1 """ result = pspace(expr).compute_quantile(expr, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def sample_iter(expr, condition=None, size=(), library='scipy', numsamples=S.Infinity, seed=None, **kwargs): """ Returns an iterator of realizations from the expression given a condition. Parameters ========== expr: Expr Random expression to be realized condition: Expr, optional A conditional expression size : int, tuple Represents size of each sample in numsamples numsamples: integer, optional Length of the iterator (defaults to infinity) seed : An object to be used as seed by the given external library for sampling `expr`. Following is the list of possible types of object for the supported libraries, - 'scipy': int, numpy.random.RandomState, numpy.random.Generator - 'numpy': int, numpy.random.RandomState, numpy.random.Generator - 'pymc3': int Optional, by default None, in which case seed settings related to the given library will be used. No modifications to environment's global seed settings are done by this argument. Examples ======== >>> from sympy.stats import Normal, sample_iter >>> X = Normal('X', 0, 1) >>> expr = X*X + 3 >>> iterator = sample_iter(expr, numsamples=3) # doctest: +SKIP >>> list(iterator) # doctest: +SKIP [12, 4, 7] Returns ======= sample_iter: iterator object iterator object containing the sample/samples of given expr See Also ======== sample sampling_P sampling_E """ from sympy.stats.joint_rv import JointRandomSymbol if not import_module(library): raise ValueError("Failed to import %s" % library) if condition is not None: ps = pspace(Tuple(expr, condition)) else: ps = pspace(expr) rvs = list(ps.values) if isinstance(expr, JointRandomSymbol): expr = expr.subs({expr: RandomSymbol(expr.symbol, expr.pspace)}) else: sub = {} for arg in expr.args: if isinstance(arg, JointRandomSymbol): sub[arg] = RandomSymbol(arg.symbol, arg.pspace) expr = expr.subs(sub) def fn_subs(*args): return expr.subs({rv: arg for rv, arg in zip(rvs, args)}) def given_fn_subs(*args): if condition is not None: return condition.subs({rv: arg for rv, arg in zip(rvs, args)}) return False if library == 'pymc3': # Currently unable to lambdify in pymc3 # TODO : Remove 'pymc3' when lambdify accepts 'pymc3' as module fn = lambdify(rvs, expr, **kwargs) else: fn = lambdify(rvs, expr, modules=library, **kwargs) if condition is not None: given_fn = lambdify(rvs, condition, **kwargs) def return_generator_infinite(): count = 0 _size = (1,)+((size,) if isinstance(size, int) else size) while count < numsamples: d = ps.sample(size=_size, library=library, seed=seed) # a dictionary that maps RVs to values args = [d[rv][0] for rv in rvs] if condition is not None: # Check that these values satisfy the condition # TODO: Replace the try-except block with only given_fn(*args) # once lambdify works with unevaluated SymPy objects. try: gd = given_fn(*args) except (NameError, TypeError): gd = given_fn_subs(*args) if gd != True and gd != False: raise ValueError( "Conditions must not contain free symbols") if not gd: # If the values don't satisfy then try again continue yield fn(*args) count += 1 def return_generator_finite(): faulty = True while faulty: d = ps.sample(size=(numsamples,) + ((size,) if isinstance(size, int) else size), library=library, seed=seed) # a dictionary that maps RVs to values faulty = False count = 0 while count < numsamples and not faulty: args = [d[rv][count] for rv in rvs] if condition is not None: # Check that these values satisfy the condition # TODO: Replace the try-except block with only given_fn(*args) # once lambdify works with unevaluated SymPy objects. try: gd = given_fn(*args) except (NameError, TypeError): gd = given_fn_subs(*args) if gd != True and gd != False: raise ValueError( "Conditions must not contain free symbols") if not gd: # If the values don't satisfy then try again faulty = True count += 1 count = 0 while count < numsamples: args = [d[rv][count] for rv in rvs] # TODO: Replace the try-except block with only fn(*args) # once lambdify works with unevaluated SymPy objects. try: yield fn(*args) except (NameError, TypeError): yield fn_subs(*args) count += 1 if numsamples is S.Infinity: return return_generator_infinite() return return_generator_finite() def sample_iter_lambdify(expr, condition=None, size=(), numsamples=S.Infinity, seed=None, **kwargs): return sample_iter(expr, condition=condition, size=size, numsamples=numsamples, seed=seed, **kwargs) def sample_iter_subs(expr, condition=None, size=(), numsamples=S.Infinity, seed=None, **kwargs): return sample_iter(expr, condition=condition, size=size, numsamples=numsamples, seed=seed, **kwargs) def sampling_P(condition, given_condition=None, library='scipy', numsamples=1, evalf=True, seed=None, **kwargs): """ Sampling version of P. See Also ======== P sampling_E sampling_density """ count_true = 0 count_false = 0 samples = sample_iter(condition, given_condition, library=library, numsamples=numsamples, seed=seed, **kwargs) for sample in samples: if sample: count_true += 1 else: count_false += 1 result = S(count_true) / numsamples if evalf: return result.evalf() else: return result def sampling_E(expr, given_condition=None, library='scipy', numsamples=1, evalf=True, seed=None, **kwargs): """ Sampling version of E. See Also ======== P sampling_P sampling_density """ samples = list(sample_iter(expr, given_condition, library=library, numsamples=numsamples, seed=seed, **kwargs)) result = Add(*[samp for samp in samples]) / numsamples if evalf: return result.evalf() else: return result def sampling_density(expr, given_condition=None, library='scipy', numsamples=1, seed=None, **kwargs): """ Sampling version of density. See Also ======== density sampling_P sampling_E """ results = {} for result in sample_iter(expr, given_condition, library=library, numsamples=numsamples, seed=seed, **kwargs): results[result] = results.get(result, 0) + 1 return results def dependent(a, b): """ Dependence of two random expressions. Two expressions are independent if knowledge of one does not change computations on the other. Examples ======== >>> from sympy.stats import Normal, dependent, given >>> from sympy import Tuple, Eq >>> X, Y = Normal('X', 0, 1), Normal('Y', 0, 1) >>> dependent(X, Y) False >>> dependent(2*X + Y, -Y) True >>> X, Y = given(Tuple(X, Y), Eq(X + Y, 3)) >>> dependent(X, Y) True See Also ======== independent """ if pspace_independent(a, b): return False z = Symbol('z', real=True) # Dependent if density is unchanged when one is given information about # the other return (density(a, Eq(b, z)) != density(a) or density(b, Eq(a, z)) != density(b)) def independent(a, b): """ Independence of two random expressions. Two expressions are independent if knowledge of one does not change computations on the other. Examples ======== >>> from sympy.stats import Normal, independent, given >>> from sympy import Tuple, Eq >>> X, Y = Normal('X', 0, 1), Normal('Y', 0, 1) >>> independent(X, Y) True >>> independent(2*X + Y, -Y) False >>> X, Y = given(Tuple(X, Y), Eq(X + Y, 3)) >>> independent(X, Y) False See Also ======== dependent """ return not dependent(a, b) def pspace_independent(a, b): """ Tests for independence between a and b by checking if their PSpaces have overlapping symbols. This is a sufficient but not necessary condition for independence and is intended to be used internally. Notes ===== pspace_independent(a, b) implies independent(a, b) independent(a, b) does not imply pspace_independent(a, b) """ a_symbols = set(pspace(b).symbols) b_symbols = set(pspace(a).symbols) if len(set(random_symbols(a)).intersection(random_symbols(b))) != 0: return False if len(a_symbols.intersection(b_symbols)) == 0: return True return None def rv_subs(expr, symbols=None): """ Given a random expression replace all random variables with their symbols. If symbols keyword is given restrict the swap to only the symbols listed. """ if symbols is None: symbols = random_symbols(expr) if not symbols: return expr swapdict = {rv: rv.symbol for rv in symbols} return expr.subs(swapdict) class NamedArgsMixin: _argnames = () # type: tTuple[str, ...] def __getattr__(self, attr): try: return self.args[self._argnames.index(attr)] except ValueError: raise AttributeError("'%s' object has no attribute '%s'" % ( type(self).__name__, attr)) class Distribution(Basic): def sample(self, size=(), library='scipy', seed=None): """ A random realization from the distribution """ module = import_module(library) if library in {'scipy', 'numpy', 'pymc3'} and module is None: raise ValueError("Failed to import %s" % library) if library == 'scipy': # scipy does not require map as it can handle using custom distributions. # However, we will still use a map where we can. # TODO: do this for drv.py and frv.py if necessary. # TODO: add more distributions here if there are more # See links below referring to sections beginning with "A common parametrization..." # I will remove all these comments if everything is ok. from sympy.stats.sampling.sample_scipy import do_sample_scipy import numpy if seed is None or isinstance(seed, int): rand_state = numpy.random.default_rng(seed=seed) else: rand_state = seed samps = do_sample_scipy(self, size, rand_state) elif library == 'numpy': from sympy.stats.sampling.sample_numpy import do_sample_numpy import numpy if seed is None or isinstance(seed, int): rand_state = numpy.random.default_rng(seed=seed) else: rand_state = seed _size = None if size == () else size samps = do_sample_numpy(self, _size, rand_state) elif library == 'pymc3': from sympy.stats.sampling.sample_pymc3 import do_sample_pymc3 import logging logging.getLogger("pymc3").setLevel(logging.ERROR) import pymc3 with pymc3.Model(): if do_sample_pymc3(self): samps = pymc3.sample(draws=prod(size), chains=1, compute_convergence_checks=False, progressbar=False, random_seed=seed, return_inferencedata=False)[:]['X'] samps = samps.reshape(size) else: samps = None else: raise NotImplementedError("Sampling from %s is not supported yet." % str(library)) if samps is not None: return samps raise NotImplementedError( "Sampling for %s is not currently implemented from %s" % (self, library)) def _value_check(condition, message): """ Raise a ValueError with message if condition is False, else return True if all conditions were True, else False. Examples ======== >>> from sympy.stats.rv import _value_check >>> from sympy.abc import a, b, c >>> from sympy import And, Dummy >>> _value_check(2 < 3, '') True Here, the condition is not False, but it doesn't evaluate to True so False is returned (but no error is raised). So checking if the return value is True or False will tell you if all conditions were evaluated. >>> _value_check(a < b, '') False In this case the condition is False so an error is raised: >>> r = Dummy(real=True) >>> _value_check(r < r - 1, 'condition is not true') Traceback (most recent call last): ... ValueError: condition is not true If no condition of many conditions must be False, they can be checked by passing them as an iterable: >>> _value_check((a < 0, b < 0, c < 0), '') False The iterable can be a generator, too: >>> _value_check((i < 0 for i in (a, b, c)), '') False The following are equivalent to the above but do not pass an iterable: >>> all(_value_check(i < 0, '') for i in (a, b, c)) False >>> _value_check(And(a < 0, b < 0, c < 0), '') False """ if not iterable(condition): condition = [condition] truth = fuzzy_and(condition) if truth == False: raise ValueError(message) return truth == True def _symbol_converter(sym): """ Casts the parameter to Symbol if it is 'str' otherwise no operation is performed on it. Parameters ========== sym The parameter to be converted. Returns ======= Symbol the parameter converted to Symbol. Raises ====== TypeError If the parameter is not an instance of both str and Symbol. Examples ======== >>> from sympy import Symbol >>> from sympy.stats.rv import _symbol_converter >>> s = _symbol_converter('s') >>> isinstance(s, Symbol) True >>> _symbol_converter(1) Traceback (most recent call last): ... TypeError: 1 is neither a Symbol nor a string >>> r = Symbol('r') >>> isinstance(r, Symbol) True """ if isinstance(sym, str): sym = Symbol(sym) if not isinstance(sym, Symbol): raise TypeError("%s is neither a Symbol nor a string"%(sym)) return sym def sample_stochastic_process(process): """ This function is used to sample from stochastic process. Parameters ========== process: StochasticProcess Process used to extract the samples. It must be an instance of StochasticProcess Examples ======== >>> from sympy.stats import sample_stochastic_process, DiscreteMarkovChain >>> from sympy import Matrix >>> T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]]) >>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T) >>> next(sample_stochastic_process(Y)) in Y.state_space # doctest: +SKIP True >>> next(sample_stochastic_process(Y)) # doctest: +SKIP 0 >>> next(sample_stochastic_process(Y)) # doctest: +SKIP 2 Returns ======= sample: iterator object iterator object containing the sample of given process """ from sympy.stats.stochastic_process_types import StochasticProcess if not isinstance(process, StochasticProcess): raise ValueError("Process must be an instance of Stochastic Process") return process.sample()
ca59a10a457699e1ddcc04803d5a168f02fa345b14966a97babe8df6bea08510
""" Joint Random Variables Module See Also ======== sympy.stats.rv sympy.stats.frv sympy.stats.crv sympy.stats.drv """ from sympy.core.basic import Basic from sympy.core.function import Lambda from sympy.core.mul import prod from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol) from sympy.core.sympify import sympify from sympy.sets.sets import ProductSet from sympy.tensor.indexed import Indexed from sympy.concrete.products import Product from sympy.concrete.summations import Sum, summation from sympy.core.containers import Tuple from sympy.integrals.integrals import Integral, integrate from sympy.matrices import ImmutableMatrix, matrix2numpy, list2numpy from sympy.stats.crv import SingleContinuousDistribution, SingleContinuousPSpace from sympy.stats.drv import SingleDiscreteDistribution, SingleDiscretePSpace from sympy.stats.rv import (ProductPSpace, NamedArgsMixin, Distribution, ProductDomain, RandomSymbol, random_symbols, SingleDomain, _symbol_converter) from sympy.utilities.iterables import iterable from sympy.utilities.misc import filldedent from sympy.external import import_module # __all__ = ['marginal_distribution'] class JointPSpace(ProductPSpace): """ Represents a joint probability space. Represented using symbols for each component and a distribution. """ def __new__(cls, sym, dist): if isinstance(dist, SingleContinuousDistribution): return SingleContinuousPSpace(sym, dist) if isinstance(dist, SingleDiscreteDistribution): return SingleDiscretePSpace(sym, dist) sym = _symbol_converter(sym) return Basic.__new__(cls, sym, dist) @property def set(self): return self.domain.set @property def symbol(self): return self.args[0] @property def distribution(self): return self.args[1] @property def value(self): return JointRandomSymbol(self.symbol, self) @property def component_count(self): _set = self.distribution.set if isinstance(_set, ProductSet): return S(len(_set.args)) elif isinstance(_set, Product): return _set.limits[0][-1] return S.One @property def pdf(self): sym = [Indexed(self.symbol, i) for i in range(self.component_count)] return self.distribution(*sym) @property def domain(self): rvs = random_symbols(self.distribution) if not rvs: return SingleDomain(self.symbol, self.distribution.set) return ProductDomain(*[rv.pspace.domain for rv in rvs]) def component_domain(self, index): return self.set.args[index] def marginal_distribution(self, *indices): count = self.component_count if count.atoms(Symbol): raise ValueError("Marginal distributions cannot be computed " "for symbolic dimensions. It is a work under progress.") orig = [Indexed(self.symbol, i) for i in range(count)] all_syms = [Symbol(str(i)) for i in orig] replace_dict = dict(zip(all_syms, orig)) sym = tuple(Symbol(str(Indexed(self.symbol, i))) for i in indices) limits = list([i,] for i in all_syms if i not in sym) index = 0 for i in range(count): if i not in indices: limits[index].append(self.distribution.set.args[i]) limits[index] = tuple(limits[index]) index += 1 if self.distribution.is_Continuous: f = Lambda(sym, integrate(self.distribution(*all_syms), *limits)) elif self.distribution.is_Discrete: f = Lambda(sym, summation(self.distribution(*all_syms), *limits)) return f.xreplace(replace_dict) def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs): syms = tuple(self.value[i] for i in range(self.component_count)) rvs = rvs or syms if not any(i in rvs for i in syms): return expr expr = expr*self.pdf for rv in rvs: if isinstance(rv, Indexed): expr = expr.xreplace({rv: Indexed(str(rv.base), rv.args[1])}) elif isinstance(rv, RandomSymbol): expr = expr.xreplace({rv: rv.symbol}) if self.value in random_symbols(expr): raise NotImplementedError(filldedent(''' Expectations of expression with unindexed joint random symbols cannot be calculated yet.''')) limits = tuple((Indexed(str(rv.base),rv.args[1]), self.distribution.set.args[rv.args[1]]) for rv in syms) return Integral(expr, *limits) def where(self, condition): raise NotImplementedError() def compute_density(self, expr): raise NotImplementedError() def sample(self, size=(), library='scipy', seed=None): """ Internal sample method Returns dictionary mapping RandomSymbol to realization value. """ return {RandomSymbol(self.symbol, self): self.distribution.sample(size, library=library, seed=seed)} def probability(self, condition): raise NotImplementedError() class SampleJointScipy: """Returns the sample from scipy of the given distribution""" def __new__(cls, dist, size, seed=None): return cls._sample_scipy(dist, size, seed) @classmethod def _sample_scipy(cls, dist, size, seed): """Sample from SciPy.""" import numpy if seed is None or isinstance(seed, int): rand_state = numpy.random.default_rng(seed=seed) else: rand_state = seed from scipy import stats as scipy_stats scipy_rv_map = { 'MultivariateNormalDistribution': lambda dist, size: scipy_stats.multivariate_normal.rvs( mean=matrix2numpy(dist.mu).flatten(), cov=matrix2numpy(dist.sigma), size=size, random_state=rand_state), 'MultivariateBetaDistribution': lambda dist, size: scipy_stats.dirichlet.rvs( alpha=list2numpy(dist.alpha, float).flatten(), size=size, random_state=rand_state), 'MultinomialDistribution': lambda dist, size: scipy_stats.multinomial.rvs( n=int(dist.n), p=list2numpy(dist.p, float).flatten(), size=size, random_state=rand_state) } sample_shape = { 'MultivariateNormalDistribution': lambda dist: matrix2numpy(dist.mu).flatten().shape, 'MultivariateBetaDistribution': lambda dist: list2numpy(dist.alpha).flatten().shape, 'MultinomialDistribution': lambda dist: list2numpy(dist.p).flatten().shape } dist_list = scipy_rv_map.keys() if dist.__class__.__name__ not in dist_list: return None samples = scipy_rv_map[dist.__class__.__name__](dist, size) return samples.reshape(size + sample_shape[dist.__class__.__name__](dist)) class SampleJointNumpy: """Returns the sample from numpy of the given distribution""" def __new__(cls, dist, size, seed=None): return cls._sample_numpy(dist, size, seed) @classmethod def _sample_numpy(cls, dist, size, seed): """Sample from NumPy.""" import numpy if seed is None or isinstance(seed, int): rand_state = numpy.random.default_rng(seed=seed) else: rand_state = seed numpy_rv_map = { 'MultivariateNormalDistribution': lambda dist, size: rand_state.multivariate_normal( mean=matrix2numpy(dist.mu, float).flatten(), cov=matrix2numpy(dist.sigma, float), size=size), 'MultivariateBetaDistribution': lambda dist, size: rand_state.dirichlet( alpha=list2numpy(dist.alpha, float).flatten(), size=size), 'MultinomialDistribution': lambda dist, size: rand_state.multinomial( n=int(dist.n), pvals=list2numpy(dist.p, float).flatten(), size=size) } sample_shape = { 'MultivariateNormalDistribution': lambda dist: matrix2numpy(dist.mu).flatten().shape, 'MultivariateBetaDistribution': lambda dist: list2numpy(dist.alpha).flatten().shape, 'MultinomialDistribution': lambda dist: list2numpy(dist.p).flatten().shape } dist_list = numpy_rv_map.keys() if dist.__class__.__name__ not in dist_list: return None samples = numpy_rv_map[dist.__class__.__name__](dist, prod(size)) return samples.reshape(size + sample_shape[dist.__class__.__name__](dist)) class SampleJointPymc: """Returns the sample from pymc3 of the given distribution""" def __new__(cls, dist, size, seed=None): return cls._sample_pymc3(dist, size, seed) @classmethod def _sample_pymc3(cls, dist, size, seed): """Sample from PyMC3.""" import pymc3 pymc3_rv_map = { 'MultivariateNormalDistribution': lambda dist: pymc3.MvNormal('X', mu=matrix2numpy(dist.mu, float).flatten(), cov=matrix2numpy(dist.sigma, float), shape=(1, dist.mu.shape[0])), 'MultivariateBetaDistribution': lambda dist: pymc3.Dirichlet('X', a=list2numpy(dist.alpha, float).flatten()), 'MultinomialDistribution': lambda dist: pymc3.Multinomial('X', n=int(dist.n), p=list2numpy(dist.p, float).flatten(), shape=(1, len(dist.p))) } sample_shape = { 'MultivariateNormalDistribution': lambda dist: matrix2numpy(dist.mu).flatten().shape, 'MultivariateBetaDistribution': lambda dist: list2numpy(dist.alpha).flatten().shape, 'MultinomialDistribution': lambda dist: list2numpy(dist.p).flatten().shape } dist_list = pymc3_rv_map.keys() if dist.__class__.__name__ not in dist_list: return None import logging logging.getLogger("pymc3").setLevel(logging.ERROR) with pymc3.Model(): pymc3_rv_map[dist.__class__.__name__](dist) samples = pymc3.sample(draws=prod(size), chains=1, progressbar=False, random_seed=seed, return_inferencedata=False, compute_convergence_checks=False)[:]['X'] return samples.reshape(size + sample_shape[dist.__class__.__name__](dist)) _get_sample_class_jrv = { 'scipy': SampleJointScipy, 'pymc3': SampleJointPymc, 'numpy': SampleJointNumpy } class JointDistribution(Distribution, NamedArgsMixin): """ Represented by the random variables part of the joint distribution. Contains methods for PDF, CDF, sampling, marginal densities, etc. """ _argnames = ('pdf', ) def __new__(cls, *args): args = list(map(sympify, args)) for i in range(len(args)): if isinstance(args[i], list): args[i] = ImmutableMatrix(args[i]) return Basic.__new__(cls, *args) @property def domain(self): return ProductDomain(self.symbols) @property def pdf(self): return self.density.args[1] def cdf(self, other): if not isinstance(other, dict): raise ValueError("%s should be of type dict, got %s"%(other, type(other))) rvs = other.keys() _set = self.domain.set.sets expr = self.pdf(tuple(i.args[0] for i in self.symbols)) for i in range(len(other)): if rvs[i].is_Continuous: density = Integral(expr, (rvs[i], _set[i].inf, other[rvs[i]])) elif rvs[i].is_Discrete: density = Sum(expr, (rvs[i], _set[i].inf, other[rvs[i]])) return density def sample(self, size=(), library='scipy', seed=None): """ A random realization from the distribution """ libraries = ['scipy', 'numpy', 'pymc3'] if library not in libraries: raise NotImplementedError("Sampling from %s is not supported yet." % str(library)) if not import_module(library): raise ValueError("Failed to import %s" % library) samps = _get_sample_class_jrv[library](self, size, seed=seed) if samps is not None: return samps raise NotImplementedError( "Sampling for %s is not currently implemented from %s" % (self.__class__.__name__, library) ) def __call__(self, *args): return self.pdf(*args) class JointRandomSymbol(RandomSymbol): """ Representation of random symbols with joint probability distributions to allow indexing." """ def __getitem__(self, key): if isinstance(self.pspace, JointPSpace): if (self.pspace.component_count <= key) == True: raise ValueError("Index keys for %s can only up to %s." % (self.name, self.pspace.component_count - 1)) return Indexed(self, key) class MarginalDistribution(Distribution): """ Represents the marginal distribution of a joint probability space. Initialised using a probability distribution and random variables(or their indexed components) which should be a part of the resultant distribution. """ def __new__(cls, dist, *rvs): if len(rvs) == 1 and iterable(rvs[0]): rvs = tuple(rvs[0]) if not all(isinstance(rv, (Indexed, RandomSymbol)) for rv in rvs): raise ValueError(filldedent('''Marginal distribution can be intitialised only in terms of random variables or indexed random variables''')) rvs = Tuple.fromiter(rv for rv in rvs) if not isinstance(dist, JointDistribution) and len(random_symbols(dist)) == 0: return dist return Basic.__new__(cls, dist, rvs) def check(self): pass @property def set(self): rvs = [i for i in self.args[1] if isinstance(i, RandomSymbol)] return ProductSet(*[rv.pspace.set for rv in rvs]) @property def symbols(self): rvs = self.args[1] return {rv.pspace.symbol for rv in rvs} def pdf(self, *x): expr, rvs = self.args[0], self.args[1] marginalise_out = [i for i in random_symbols(expr) if i not in rvs] if isinstance(expr, JointDistribution): count = len(expr.domain.args) x = Dummy('x', real=True, finite=True) syms = tuple(Indexed(x, i) for i in count) expr = expr.pdf(syms) else: syms = tuple(rv.pspace.symbol if isinstance(rv, RandomSymbol) else rv.args[0] for rv in rvs) return Lambda(syms, self.compute_pdf(expr, marginalise_out))(*x) def compute_pdf(self, expr, rvs): for rv in rvs: lpdf = 1 if isinstance(rv, RandomSymbol): lpdf = rv.pspace.pdf expr = self.marginalise_out(expr*lpdf, rv) return expr def marginalise_out(self, expr, rv): from sympy.concrete.summations import Sum if isinstance(rv, RandomSymbol): dom = rv.pspace.set elif isinstance(rv, Indexed): dom = rv.base.component_domain( rv.pspace.component_domain(rv.args[1])) expr = expr.xreplace({rv: rv.pspace.symbol}) if rv.pspace.is_Continuous: #TODO: Modify to support integration #for all kinds of sets. expr = Integral(expr, (rv.pspace.symbol, dom)) elif rv.pspace.is_Discrete: #incorporate this into `Sum`/`summation` if dom in (S.Integers, S.Naturals, S.Naturals0): dom = (dom.inf, dom.sup) expr = Sum(expr, (rv.pspace.symbol, dom)) return expr def __call__(self, *args): return self.pdf(*args)
7b0c589d4942caf685e5c78ca738a2cf87ba1408249f33f9702d5956f43f60b1
from sympy.concrete.summations import (Sum, summation) from sympy.core.basic import Basic from sympy.core.cache import cacheit from sympy.core.function import Lambda from sympy.core.numbers import I from sympy.core.relational import (Eq, Ne) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, symbols) from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.integers import floor from sympy.functions.elementary.piecewise import Piecewise from sympy.logic.boolalg import And from sympy.polys.polytools import poly from sympy.series.series import series from sympy.polys.polyerrors import PolynomialError from sympy.stats.crv import reduce_rational_inequalities_wrap from sympy.stats.rv import (NamedArgsMixin, SinglePSpace, SingleDomain, random_symbols, PSpace, ConditionalDomain, RandomDomain, ProductDomain, Distribution) from sympy.stats.symbolic_probability import Probability from sympy.sets.fancysets import Range, FiniteSet from sympy.sets.sets import Union from sympy.sets.contains import Contains from sympy.utilities import filldedent from sympy.core.sympify import _sympify class DiscreteDistribution(Distribution): def __call__(self, *args): return self.pdf(*args) class SingleDiscreteDistribution(DiscreteDistribution, NamedArgsMixin): """ Discrete distribution of a single variable. Serves as superclass for PoissonDistribution etc.... Provides methods for pdf, cdf, and sampling See Also: sympy.stats.crv_types.* """ set = S.Integers def __new__(cls, *args): args = list(map(sympify, args)) return Basic.__new__(cls, *args) @staticmethod def check(*args): pass @cacheit def compute_cdf(self, **kwargs): """ Compute the CDF from the PDF. Returns a Lambda. """ x = symbols('x', integer=True, cls=Dummy) z = symbols('z', real=True, cls=Dummy) left_bound = self.set.inf # CDF is integral of PDF from left bound to z pdf = self.pdf(x) cdf = summation(pdf, (x, left_bound, floor(z)), **kwargs) # CDF Ensure that CDF left of left_bound is zero cdf = Piecewise((cdf, z >= left_bound), (0, True)) return Lambda(z, cdf) def _cdf(self, x): return None def cdf(self, x, **kwargs): """ Cumulative density function """ if not kwargs: cdf = self._cdf(x) if cdf is not None: return cdf return self.compute_cdf(**kwargs)(x) @cacheit def compute_characteristic_function(self, **kwargs): """ Compute the characteristic function from the PDF. Returns a Lambda. """ x, t = symbols('x, t', real=True, cls=Dummy) pdf = self.pdf(x) cf = summation(exp(I*t*x)*pdf, (x, self.set.inf, self.set.sup)) return Lambda(t, cf) def _characteristic_function(self, t): return None def characteristic_function(self, t, **kwargs): """ Characteristic function """ if not kwargs: cf = self._characteristic_function(t) if cf is not None: return cf return self.compute_characteristic_function(**kwargs)(t) @cacheit def compute_moment_generating_function(self, **kwargs): t = Dummy('t', real=True) x = Dummy('x', integer=True) pdf = self.pdf(x) mgf = summation(exp(t*x)*pdf, (x, self.set.inf, self.set.sup)) return Lambda(t, mgf) def _moment_generating_function(self, t): return None def moment_generating_function(self, t, **kwargs): if not kwargs: mgf = self._moment_generating_function(t) if mgf is not None: return mgf return self.compute_moment_generating_function(**kwargs)(t) @cacheit def compute_quantile(self, **kwargs): """ Compute the Quantile from the PDF. Returns a Lambda. """ x = Dummy('x', integer=True) p = Dummy('p', real=True) left_bound = self.set.inf pdf = self.pdf(x) cdf = summation(pdf, (x, left_bound, x), **kwargs) set = ((x, p <= cdf), ) return Lambda(p, Piecewise(*set)) def _quantile(self, x): return None def quantile(self, x, **kwargs): """ Cumulative density function """ if not kwargs: quantile = self._quantile(x) if quantile is not None: return quantile return self.compute_quantile(**kwargs)(x) def expectation(self, expr, var, evaluate=True, **kwargs): """ Expectation of expression over distribution """ # TODO: support discrete sets with non integer stepsizes if evaluate: try: p = poly(expr, var) t = Dummy('t', real=True) mgf = self.moment_generating_function(t) deg = p.degree() taylor = poly(series(mgf, t, 0, deg + 1).removeO(), t) result = 0 for k in range(deg+1): result += p.coeff_monomial(var ** k) * taylor.coeff_monomial(t ** k) * factorial(k) return result except PolynomialError: return summation(expr * self.pdf(var), (var, self.set.inf, self.set.sup), **kwargs) else: return Sum(expr * self.pdf(var), (var, self.set.inf, self.set.sup), **kwargs) def __call__(self, *args): return self.pdf(*args) class DiscreteDomain(RandomDomain): """ A domain with discrete support with step size one. Represented using symbols and Range. """ is_Discrete = True class SingleDiscreteDomain(DiscreteDomain, SingleDomain): def as_boolean(self): return Contains(self.symbol, self.set) class ConditionalDiscreteDomain(DiscreteDomain, ConditionalDomain): """ Domain with discrete support of step size one, that is restricted by some condition. """ @property def set(self): rv = self.symbols if len(self.symbols) > 1: raise NotImplementedError(filldedent(''' Multivariate conditional domains are not yet implemented.''')) rv = list(rv)[0] return reduce_rational_inequalities_wrap(self.condition, rv).intersect(self.fulldomain.set) class DiscretePSpace(PSpace): is_real = True is_Discrete = True @property def pdf(self): return self.density(*self.symbols) def where(self, condition): rvs = random_symbols(condition) assert all(r.symbol in self.symbols for r in rvs) if len(rvs) > 1: raise NotImplementedError(filldedent('''Multivariate discrete random variables are not yet supported.''')) conditional_domain = reduce_rational_inequalities_wrap(condition, rvs[0]) conditional_domain = conditional_domain.intersect(self.domain.set) return SingleDiscreteDomain(rvs[0].symbol, conditional_domain) def probability(self, condition): complement = isinstance(condition, Ne) if complement: condition = Eq(condition.args[0], condition.args[1]) try: _domain = self.where(condition).set if condition == False or _domain is S.EmptySet: return S.Zero if condition == True or _domain == self.domain.set: return S.One prob = self.eval_prob(_domain) except NotImplementedError: from sympy.stats.rv import density expr = condition.lhs - condition.rhs dens = density(expr) if not isinstance(dens, DiscreteDistribution): from sympy.stats.drv_types import DiscreteDistributionHandmade dens = DiscreteDistributionHandmade(dens) z = Dummy('z', real=True) space = SingleDiscretePSpace(z, dens) prob = space.probability(condition.__class__(space.value, 0)) if prob is None: prob = Probability(condition) return prob if not complement else S.One - prob def eval_prob(self, _domain): sym = list(self.symbols)[0] if isinstance(_domain, Range): n = symbols('n', integer=True) inf, sup, step = (r for r in _domain.args) summand = ((self.pdf).replace( sym, n*step)) rv = summation(summand, (n, inf/step, (sup)/step - 1)).doit() return rv elif isinstance(_domain, FiniteSet): pdf = Lambda(sym, self.pdf) rv = sum(pdf(x) for x in _domain) return rv elif isinstance(_domain, Union): rv = sum(self.eval_prob(x) for x in _domain.args) return rv def conditional_space(self, condition): # XXX: Converting from set to tuple. The order matters to Lambda # though so we should be starting with a set... density = Lambda(tuple(self.symbols), self.pdf/self.probability(condition)) condition = condition.xreplace({rv: rv.symbol for rv in self.values}) domain = ConditionalDiscreteDomain(self.domain, condition) return DiscretePSpace(domain, density) class ProductDiscreteDomain(ProductDomain, DiscreteDomain): def as_boolean(self): return And(*[domain.as_boolean for domain in self.domains]) class SingleDiscretePSpace(DiscretePSpace, SinglePSpace): """ Discrete probability space over a single univariate variable """ is_real = True @property def set(self): return self.distribution.set @property def domain(self): return SingleDiscreteDomain(self.symbol, self.set) def sample(self, size=(), library='scipy', seed=None): """ Internal sample method. Returns dictionary mapping RandomSymbol to realization value. """ return {self.value: self.distribution.sample(size, library=library, seed=seed)} def compute_expectation(self, expr, rvs=None, evaluate=True, **kwargs): rvs = rvs or (self.value,) if self.value not in rvs: return expr expr = _sympify(expr) expr = expr.xreplace({rv: rv.symbol for rv in rvs}) x = self.value.symbol try: return self.distribution.expectation(expr, x, evaluate=evaluate, **kwargs) except NotImplementedError: return Sum(expr * self.pdf, (x, self.set.inf, self.set.sup), **kwargs) def compute_cdf(self, expr, **kwargs): if expr == self.value: x = Dummy("x", real=True) return Lambda(x, self.distribution.cdf(x, **kwargs)) else: raise NotImplementedError() def compute_density(self, expr, **kwargs): if expr == self.value: return self.distribution raise NotImplementedError() def compute_characteristic_function(self, expr, **kwargs): if expr == self.value: t = Dummy("t", real=True) return Lambda(t, self.distribution.characteristic_function(t, **kwargs)) else: raise NotImplementedError() def compute_moment_generating_function(self, expr, **kwargs): if expr == self.value: t = Dummy("t", real=True) return Lambda(t, self.distribution.moment_generating_function(t, **kwargs)) else: raise NotImplementedError() def compute_quantile(self, expr, **kwargs): if expr == self.value: p = Dummy("p", real=True) return Lambda(p, self.distribution.quantile(p, **kwargs)) else: raise NotImplementedError()
54aee3bd88901f9db76abe90bcbcd5fe4ebbbb4821702aeb5a5060b7770c75ac
""" Continuous Random Variables Module See Also ======== sympy.stats.crv_types sympy.stats.rv sympy.stats.frv """ from sympy.core.basic import Basic from sympy.core.cache import cacheit from sympy.core.function import Lambda, PoleError from sympy.core.numbers import (I, nan, oo) from sympy.core.relational import (Eq, Ne) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, symbols) from sympy.core.sympify import _sympify, sympify from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.delta_functions import DiracDelta from sympy.integrals.integrals import (Integral, integrate) from sympy.logic.boolalg import (And, Or) from sympy.polys.polyerrors import PolynomialError from sympy.polys.polytools import poly from sympy.series.series import series from sympy.sets.sets import (FiniteSet, Intersection, Interval, Union) from sympy.solvers.solveset import solveset from sympy.solvers.inequalities import reduce_rational_inequalities from sympy.stats.rv import (RandomDomain, SingleDomain, ConditionalDomain, is_random, ProductDomain, PSpace, SinglePSpace, random_symbols, NamedArgsMixin, Distribution) class ContinuousDomain(RandomDomain): """ A domain with continuous support Represented using symbols and Intervals. """ is_Continuous = True def as_boolean(self): raise NotImplementedError("Not Implemented for generic Domains") class SingleContinuousDomain(ContinuousDomain, SingleDomain): """ A univariate domain with continuous support Represented using a single symbol and interval. """ def compute_expectation(self, expr, variables=None, **kwargs): if variables is None: variables = self.symbols if not variables: return expr if frozenset(variables) != frozenset(self.symbols): raise ValueError("Values should be equal") # assumes only intervals return Integral(expr, (self.symbol, self.set), **kwargs) def as_boolean(self): return self.set.as_relational(self.symbol) class ProductContinuousDomain(ProductDomain, ContinuousDomain): """ A collection of independent domains with continuous support """ def compute_expectation(self, expr, variables=None, **kwargs): if variables is None: variables = self.symbols for domain in self.domains: domain_vars = frozenset(variables) & frozenset(domain.symbols) if domain_vars: expr = domain.compute_expectation(expr, domain_vars, **kwargs) return expr def as_boolean(self): return And(*[domain.as_boolean() for domain in self.domains]) class ConditionalContinuousDomain(ContinuousDomain, ConditionalDomain): """ A domain with continuous support that has been further restricted by a condition such as $x > 3$. """ def compute_expectation(self, expr, variables=None, **kwargs): if variables is None: variables = self.symbols if not variables: return expr # Extract the full integral fullintgrl = self.fulldomain.compute_expectation(expr, variables) # separate into integrand and limits integrand, limits = fullintgrl.function, list(fullintgrl.limits) conditions = [self.condition] while conditions: cond = conditions.pop() if cond.is_Boolean: if isinstance(cond, And): conditions.extend(cond.args) elif isinstance(cond, Or): raise NotImplementedError("Or not implemented here") elif cond.is_Relational: if cond.is_Equality: # Add the appropriate Delta to the integrand integrand *= DiracDelta(cond.lhs - cond.rhs) else: symbols = cond.free_symbols & set(self.symbols) if len(symbols) != 1: # Can't handle x > y raise NotImplementedError( "Multivariate Inequalities not yet implemented") # Can handle x > 0 symbol = symbols.pop() # Find the limit with x, such as (x, -oo, oo) for i, limit in enumerate(limits): if limit[0] == symbol: # Make condition into an Interval like [0, oo] cintvl = reduce_rational_inequalities_wrap( cond, symbol) # Make limit into an Interval like [-oo, oo] lintvl = Interval(limit[1], limit[2]) # Intersect them to get [0, oo] intvl = cintvl.intersect(lintvl) # Put back into limits list limits[i] = (symbol, intvl.left, intvl.right) else: raise TypeError( "Condition %s is not a relational or Boolean" % cond) return Integral(integrand, *limits, **kwargs) def as_boolean(self): return And(self.fulldomain.as_boolean(), self.condition) @property def set(self): if len(self.symbols) == 1: return (self.fulldomain.set & reduce_rational_inequalities_wrap( self.condition, tuple(self.symbols)[0])) else: raise NotImplementedError( "Set of Conditional Domain not Implemented") class ContinuousDistribution(Distribution): def __call__(self, *args): return self.pdf(*args) class SingleContinuousDistribution(ContinuousDistribution, NamedArgsMixin): """ Continuous distribution of a single variable. Explanation =========== Serves as superclass for Normal/Exponential/UniformDistribution etc.... Represented by parameters for each of the specific classes. E.g NormalDistribution is represented by a mean and standard deviation. Provides methods for pdf, cdf, and sampling. See Also ======== sympy.stats.crv_types.* """ set = Interval(-oo, oo) def __new__(cls, *args): args = list(map(sympify, args)) return Basic.__new__(cls, *args) @staticmethod def check(*args): pass @cacheit def compute_cdf(self, **kwargs): """ Compute the CDF from the PDF. Returns a Lambda. """ x, z = symbols('x, z', real=True, cls=Dummy) left_bound = self.set.start # CDF is integral of PDF from left bound to z pdf = self.pdf(x) cdf = integrate(pdf.doit(), (x, left_bound, z), **kwargs) # CDF Ensure that CDF left of left_bound is zero cdf = Piecewise((cdf, z >= left_bound), (0, True)) return Lambda(z, cdf) def _cdf(self, x): return None def cdf(self, x, **kwargs): """ Cumulative density function """ if len(kwargs) == 0: cdf = self._cdf(x) if cdf is not None: return cdf return self.compute_cdf(**kwargs)(x) @cacheit def compute_characteristic_function(self, **kwargs): """ Compute the characteristic function from the PDF. Returns a Lambda. """ x, t = symbols('x, t', real=True, cls=Dummy) pdf = self.pdf(x) cf = integrate(exp(I*t*x)*pdf, (x, self.set)) return Lambda(t, cf) def _characteristic_function(self, t): return None def characteristic_function(self, t, **kwargs): """ Characteristic function """ if len(kwargs) == 0: cf = self._characteristic_function(t) if cf is not None: return cf return self.compute_characteristic_function(**kwargs)(t) @cacheit def compute_moment_generating_function(self, **kwargs): """ Compute the moment generating function from the PDF. Returns a Lambda. """ x, t = symbols('x, t', real=True, cls=Dummy) pdf = self.pdf(x) mgf = integrate(exp(t * x) * pdf, (x, self.set)) return Lambda(t, mgf) def _moment_generating_function(self, t): return None def moment_generating_function(self, t, **kwargs): """ Moment generating function """ if not kwargs: mgf = self._moment_generating_function(t) if mgf is not None: return mgf return self.compute_moment_generating_function(**kwargs)(t) def expectation(self, expr, var, evaluate=True, **kwargs): """ Expectation of expression over distribution """ if evaluate: try: p = poly(expr, var) if p.is_zero: return S.Zero t = Dummy('t', real=True) mgf = self._moment_generating_function(t) if mgf is None: return integrate(expr * self.pdf(var), (var, self.set), **kwargs) deg = p.degree() taylor = poly(series(mgf, t, 0, deg + 1).removeO(), t) result = 0 for k in range(deg+1): result += p.coeff_monomial(var ** k) * taylor.coeff_monomial(t ** k) * factorial(k) return result except PolynomialError: return integrate(expr * self.pdf(var), (var, self.set), **kwargs) else: return Integral(expr * self.pdf(var), (var, self.set), **kwargs) @cacheit def compute_quantile(self, **kwargs): """ Compute the Quantile from the PDF. Returns a Lambda. """ x, p = symbols('x, p', real=True, cls=Dummy) left_bound = self.set.start pdf = self.pdf(x) cdf = integrate(pdf, (x, left_bound, x), **kwargs) quantile = solveset(cdf - p, x, self.set) return Lambda(p, Piecewise((quantile, (p >= 0) & (p <= 1) ), (nan, True))) def _quantile(self, x): return None def quantile(self, x, **kwargs): """ Cumulative density function """ if len(kwargs) == 0: quantile = self._quantile(x) if quantile is not None: return quantile return self.compute_quantile(**kwargs)(x) class ContinuousPSpace(PSpace): """ Continuous Probability Space Represents the likelihood of an event space defined over a continuum. Represented with a ContinuousDomain and a PDF (Lambda-Like) """ is_Continuous = True is_real = True @property def pdf(self): return self.density(*self.domain.symbols) def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs): if rvs is None: rvs = self.values else: rvs = frozenset(rvs) expr = expr.xreplace({rv: rv.symbol for rv in rvs}) domain_symbols = frozenset(rv.symbol for rv in rvs) return self.domain.compute_expectation(self.pdf * expr, domain_symbols, **kwargs) def compute_density(self, expr, **kwargs): # Common case Density(X) where X in self.values if expr in self.values: # Marginalize all other random symbols out of the density randomsymbols = tuple(set(self.values) - frozenset([expr])) symbols = tuple(rs.symbol for rs in randomsymbols) pdf = self.domain.compute_expectation(self.pdf, symbols, **kwargs) return Lambda(expr.symbol, pdf) z = Dummy('z', real=True) return Lambda(z, self.compute_expectation(DiracDelta(expr - z), **kwargs)) @cacheit def compute_cdf(self, expr, **kwargs): if not self.domain.set.is_Interval: raise ValueError( "CDF not well defined on multivariate expressions") d = self.compute_density(expr, **kwargs) x, z = symbols('x, z', real=True, cls=Dummy) left_bound = self.domain.set.start # CDF is integral of PDF from left bound to z cdf = integrate(d(x), (x, left_bound, z), **kwargs) # CDF Ensure that CDF left of left_bound is zero cdf = Piecewise((cdf, z >= left_bound), (0, True)) return Lambda(z, cdf) @cacheit def compute_characteristic_function(self, expr, **kwargs): if not self.domain.set.is_Interval: raise NotImplementedError("Characteristic function of multivariate expressions not implemented") d = self.compute_density(expr, **kwargs) x, t = symbols('x, t', real=True, cls=Dummy) cf = integrate(exp(I*t*x)*d(x), (x, -oo, oo), **kwargs) return Lambda(t, cf) @cacheit def compute_moment_generating_function(self, expr, **kwargs): if not self.domain.set.is_Interval: raise NotImplementedError("Moment generating function of multivariate expressions not implemented") d = self.compute_density(expr, **kwargs) x, t = symbols('x, t', real=True, cls=Dummy) mgf = integrate(exp(t * x) * d(x), (x, -oo, oo), **kwargs) return Lambda(t, mgf) @cacheit def compute_quantile(self, expr, **kwargs): if not self.domain.set.is_Interval: raise ValueError( "Quantile not well defined on multivariate expressions") d = self.compute_cdf(expr, **kwargs) x = Dummy('x', real=True) p = Dummy('p', positive=True) quantile = solveset(d(x) - p, x, self.set) return Lambda(p, quantile) def probability(self, condition, **kwargs): z = Dummy('z', real=True) cond_inv = False if isinstance(condition, Ne): condition = Eq(condition.args[0], condition.args[1]) cond_inv = True # Univariate case can be handled by where try: domain = self.where(condition) rv = [rv for rv in self.values if rv.symbol == domain.symbol][0] # Integrate out all other random variables pdf = self.compute_density(rv, **kwargs) # return S.Zero if `domain` is empty set if domain.set is S.EmptySet or isinstance(domain.set, FiniteSet): return S.Zero if not cond_inv else S.One if isinstance(domain.set, Union): return sum( Integral(pdf(z), (z, subset), **kwargs) for subset in domain.set.args if isinstance(subset, Interval)) # Integrate out the last variable over the special domain return Integral(pdf(z), (z, domain.set), **kwargs) # Other cases can be turned into univariate case # by computing a density handled by density computation except NotImplementedError: from sympy.stats.rv import density expr = condition.lhs - condition.rhs if not is_random(expr): dens = self.density comp = condition.rhs else: dens = density(expr, **kwargs) comp = 0 if not isinstance(dens, ContinuousDistribution): from sympy.stats.crv_types import ContinuousDistributionHandmade dens = ContinuousDistributionHandmade(dens, set=self.domain.set) # Turn problem into univariate case space = SingleContinuousPSpace(z, dens) result = space.probability(condition.__class__(space.value, comp)) return result if not cond_inv else S.One - result def where(self, condition): rvs = frozenset(random_symbols(condition)) if not (len(rvs) == 1 and rvs.issubset(self.values)): raise NotImplementedError( "Multiple continuous random variables not supported") rv = tuple(rvs)[0] interval = reduce_rational_inequalities_wrap(condition, rv) interval = interval.intersect(self.domain.set) return SingleContinuousDomain(rv.symbol, interval) def conditional_space(self, condition, normalize=True, **kwargs): condition = condition.xreplace({rv: rv.symbol for rv in self.values}) domain = ConditionalContinuousDomain(self.domain, condition) if normalize: # create a clone of the variable to # make sure that variables in nested integrals are different # from the variables outside the integral # this makes sure that they are evaluated separately # and in the correct order replacement = {rv: Dummy(str(rv)) for rv in self.symbols} norm = domain.compute_expectation(self.pdf, **kwargs) pdf = self.pdf / norm.xreplace(replacement) # XXX: Converting set to tuple. The order matters to Lambda though # so we shouldn't be starting with a set here... density = Lambda(tuple(domain.symbols), pdf) return ContinuousPSpace(domain, density) class SingleContinuousPSpace(ContinuousPSpace, SinglePSpace): """ A continuous probability space over a single univariate variable. These consist of a Symbol and a SingleContinuousDistribution This class is normally accessed through the various random variable functions, Normal, Exponential, Uniform, etc.... """ @property def set(self): return self.distribution.set @property def domain(self): return SingleContinuousDomain(sympify(self.symbol), self.set) def sample(self, size=(), library='scipy', seed=None): """ Internal sample method. Returns dictionary mapping RandomSymbol to realization value. """ return {self.value: self.distribution.sample(size, library=library, seed=seed)} def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs): rvs = rvs or (self.value,) if self.value not in rvs: return expr expr = _sympify(expr) expr = expr.xreplace({rv: rv.symbol for rv in rvs}) x = self.value.symbol try: return self.distribution.expectation(expr, x, evaluate=evaluate, **kwargs) except PoleError: return Integral(expr * self.pdf, (x, self.set), **kwargs) def compute_cdf(self, expr, **kwargs): if expr == self.value: z = Dummy("z", real=True) return Lambda(z, self.distribution.cdf(z, **kwargs)) else: return ContinuousPSpace.compute_cdf(self, expr, **kwargs) def compute_characteristic_function(self, expr, **kwargs): if expr == self.value: t = Dummy("t", real=True) return Lambda(t, self.distribution.characteristic_function(t, **kwargs)) else: return ContinuousPSpace.compute_characteristic_function(self, expr, **kwargs) def compute_moment_generating_function(self, expr, **kwargs): if expr == self.value: t = Dummy("t", real=True) return Lambda(t, self.distribution.moment_generating_function(t, **kwargs)) else: return ContinuousPSpace.compute_moment_generating_function(self, expr, **kwargs) def compute_density(self, expr, **kwargs): # https://en.wikipedia.org/wiki/Random_variable#Functions_of_random_variables if expr == self.value: return self.density y = Dummy('y', real=True) gs = solveset(expr - y, self.value, S.Reals) if isinstance(gs, Intersection) and S.Reals in gs.args: gs = list(gs.args[1]) if not gs: raise ValueError("Can not solve %s for %s"%(expr, self.value)) fx = self.compute_density(self.value) fy = sum(fx(g) * abs(g.diff(y)) for g in gs) return Lambda(y, fy) def compute_quantile(self, expr, **kwargs): if expr == self.value: p = Dummy("p", real=True) return Lambda(p, self.distribution.quantile(p, **kwargs)) else: return ContinuousPSpace.compute_quantile(self, expr, **kwargs) def _reduce_inequalities(conditions, var, **kwargs): try: return reduce_rational_inequalities(conditions, var, **kwargs) except PolynomialError: raise ValueError("Reduction of condition failed %s\n" % conditions[0]) def reduce_rational_inequalities_wrap(condition, var): if condition.is_Relational: return _reduce_inequalities([[condition]], var, relational=False) if isinstance(condition, Or): return Union(*[_reduce_inequalities([[arg]], var, relational=False) for arg in condition.args]) if isinstance(condition, And): intervals = [_reduce_inequalities([[arg]], var, relational=False) for arg in condition.args] I = intervals[0] for i in intervals: I = I.intersect(i) return I
b9123e1debe381c725c1f51bd26338ab1a39935208618878bd21db00c3450f76
from sympy.concrete.summations import Sum from sympy.core.basic import Basic from sympy.core.function import Lambda from sympy.core.symbol import Dummy from sympy.integrals.integrals import Integral from sympy.stats.rv import (NamedArgsMixin, random_symbols, _symbol_converter, PSpace, RandomSymbol, is_random, Distribution) from sympy.stats.crv import ContinuousDistribution, SingleContinuousPSpace from sympy.stats.drv import DiscreteDistribution, SingleDiscretePSpace from sympy.stats.frv import SingleFiniteDistribution, SingleFinitePSpace from sympy.stats.crv_types import ContinuousDistributionHandmade from sympy.stats.drv_types import DiscreteDistributionHandmade from sympy.stats.frv_types import FiniteDistributionHandmade class CompoundPSpace(PSpace): """ A temporary Probability Space for the Compound Distribution. After Marginalization, this returns the corresponding Probability Space of the parent distribution. """ def __new__(cls, s, distribution): s = _symbol_converter(s) if isinstance(distribution, ContinuousDistribution): return SingleContinuousPSpace(s, distribution) if isinstance(distribution, DiscreteDistribution): return SingleDiscretePSpace(s, distribution) if isinstance(distribution, SingleFiniteDistribution): return SingleFinitePSpace(s, distribution) if not isinstance(distribution, CompoundDistribution): raise ValueError("%s should be an isinstance of " "CompoundDistribution"%(distribution)) return Basic.__new__(cls, s, distribution) @property def value(self): return RandomSymbol(self.symbol, self) @property def symbol(self): return self.args[0] @property def is_Continuous(self): return self.distribution.is_Continuous @property def is_Finite(self): return self.distribution.is_Finite @property def is_Discrete(self): return self.distribution.is_Discrete @property def distribution(self): return self.args[1] @property def pdf(self): return self.distribution.pdf(self.symbol) @property def set(self): return self.distribution.set @property def domain(self): return self._get_newpspace().domain def _get_newpspace(self, evaluate=False): x = Dummy('x') parent_dist = self.distribution.args[0] func = Lambda(x, self.distribution.pdf(x, evaluate)) new_pspace = self._transform_pspace(self.symbol, parent_dist, func) if new_pspace is not None: return new_pspace message = ("Compound Distribution for %s is not implemeted yet" % str(parent_dist)) raise NotImplementedError(message) def _transform_pspace(self, sym, dist, pdf): """ This function returns the new pspace of the distribution using handmade Distributions and their corresponding pspace. """ pdf = Lambda(sym, pdf(sym)) _set = dist.set if isinstance(dist, ContinuousDistribution): return SingleContinuousPSpace(sym, ContinuousDistributionHandmade(pdf, _set)) elif isinstance(dist, DiscreteDistribution): return SingleDiscretePSpace(sym, DiscreteDistributionHandmade(pdf, _set)) elif isinstance(dist, SingleFiniteDistribution): dens = {k: pdf(k) for k in _set} return SingleFinitePSpace(sym, FiniteDistributionHandmade(dens)) def compute_density(self, expr, *, compound_evaluate=True, **kwargs): new_pspace = self._get_newpspace(compound_evaluate) expr = expr.subs({self.value: new_pspace.value}) return new_pspace.compute_density(expr, **kwargs) def compute_cdf(self, expr, *, compound_evaluate=True, **kwargs): new_pspace = self._get_newpspace(compound_evaluate) expr = expr.subs({self.value: new_pspace.value}) return new_pspace.compute_cdf(expr, **kwargs) def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs): new_pspace = self._get_newpspace(evaluate) expr = expr.subs({self.value: new_pspace.value}) if rvs: rvs = rvs.subs({self.value: new_pspace.value}) if isinstance(new_pspace, SingleFinitePSpace): return new_pspace.compute_expectation(expr, rvs, **kwargs) return new_pspace.compute_expectation(expr, rvs, evaluate, **kwargs) def probability(self, condition, *, compound_evaluate=True, **kwargs): new_pspace = self._get_newpspace(compound_evaluate) condition = condition.subs({self.value: new_pspace.value}) return new_pspace.probability(condition) def conditional_space(self, condition, *, compound_evaluate=True, **kwargs): new_pspace = self._get_newpspace(compound_evaluate) condition = condition.subs({self.value: new_pspace.value}) return new_pspace.conditional_space(condition) class CompoundDistribution(Distribution, NamedArgsMixin): """ Class for Compound Distributions. Parameters ========== dist : Distribution Distribution must contain a random parameter Examples ======== >>> from sympy.stats.compound_rv import CompoundDistribution >>> from sympy.stats.crv_types import NormalDistribution >>> from sympy.stats import Normal >>> from sympy.abc import x >>> X = Normal('X', 2, 4) >>> N = NormalDistribution(X, 4) >>> C = CompoundDistribution(N) >>> C.set Interval(-oo, oo) >>> C.pdf(x, evaluate=True).simplify() exp(-x**2/64 + x/16 - 1/16)/(8*sqrt(pi)) References ========== .. [1] https://en.wikipedia.org/wiki/Compound_probability_distribution """ def __new__(cls, dist): if not isinstance(dist, (ContinuousDistribution, SingleFiniteDistribution, DiscreteDistribution)): message = "Compound Distribution for %s is not implemeted yet" % str(dist) raise NotImplementedError(message) if not cls._compound_check(dist): return dist return Basic.__new__(cls, dist) @property def set(self): return self.args[0].set @property def is_Continuous(self): return isinstance(self.args[0], ContinuousDistribution) @property def is_Finite(self): return isinstance(self.args[0], SingleFiniteDistribution) @property def is_Discrete(self): return isinstance(self.args[0], DiscreteDistribution) def pdf(self, x, evaluate=False): dist = self.args[0] randoms = [rv for rv in dist.args if is_random(rv)] if isinstance(dist, SingleFiniteDistribution): y = Dummy('y', integer=True, negative=False) expr = dist.pmf(y) else: y = Dummy('y') expr = dist.pdf(y) for rv in randoms: expr = self._marginalise(expr, rv, evaluate) return Lambda(y, expr)(x) def _marginalise(self, expr, rv, evaluate): if isinstance(rv.pspace.distribution, SingleFiniteDistribution): rv_dens = rv.pspace.distribution.pmf(rv) else: rv_dens = rv.pspace.distribution.pdf(rv) rv_dom = rv.pspace.domain.set if rv.pspace.is_Discrete or rv.pspace.is_Finite: expr = Sum(expr*rv_dens, (rv, rv_dom._inf, rv_dom._sup)) else: expr = Integral(expr*rv_dens, (rv, rv_dom._inf, rv_dom._sup)) if evaluate: return expr.doit() return expr @classmethod def _compound_check(self, dist): """ Checks if the given distribution contains random parameters. """ randoms = [] for arg in dist.args: randoms.extend(random_symbols(arg)) if len(randoms) == 0: return False return True
90c36b2052c0676a3eeb5e148a09bb41c6b67760f5c2870ba9a9e38c4ced67cd
import itertools from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.expr import Expr from sympy.core.function import expand as _expand from sympy.core.mul import Mul from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.integrals.integrals import Integral from sympy.logic.boolalg import Not from sympy.core.parameters import global_parameters from sympy.core.sorting import default_sort_key from sympy.core.sympify import _sympify from sympy.core.relational import Relational from sympy.logic.boolalg import Boolean from sympy.stats import variance, covariance from sympy.stats.rv import (RandomSymbol, pspace, dependent, given, sampling_E, RandomIndexedSymbol, is_random, PSpace, sampling_P, random_symbols) __all__ = ['Probability', 'Expectation', 'Variance', 'Covariance'] @is_random.register(Expr) def _(x): atoms = x.free_symbols if len(atoms) == 1 and next(iter(atoms)) == x: return False return any(is_random(i) for i in atoms) @is_random.register(RandomSymbol) # type: ignore def _(x): return True class Probability(Expr): """ Symbolic expression for the probability. Examples ======== >>> from sympy.stats import Probability, Normal >>> from sympy import Integral >>> X = Normal("X", 0, 1) >>> prob = Probability(X > 1) >>> prob Probability(X > 1) Integral representation: >>> prob.rewrite(Integral) Integral(sqrt(2)*exp(-_z**2/2)/(2*sqrt(pi)), (_z, 1, oo)) Evaluation of the integral: >>> prob.evaluate_integral() sqrt(2)*(-sqrt(2)*sqrt(pi)*erf(sqrt(2)/2) + sqrt(2)*sqrt(pi))/(4*sqrt(pi)) """ def __new__(cls, prob, condition=None, **kwargs): prob = _sympify(prob) if condition is None: obj = Expr.__new__(cls, prob) else: condition = _sympify(condition) obj = Expr.__new__(cls, prob, condition) obj._condition = condition return obj def doit(self, **hints): condition = self.args[0] given_condition = self._condition numsamples = hints.get('numsamples', False) for_rewrite = not hints.get('for_rewrite', False) if isinstance(condition, Not): return S.One - self.func(condition.args[0], given_condition, evaluate=for_rewrite).doit(**hints) if condition.has(RandomIndexedSymbol): return pspace(condition).probability(condition, given_condition, evaluate=for_rewrite) if isinstance(given_condition, RandomSymbol): condrv = random_symbols(condition) if len(condrv) == 1 and condrv[0] == given_condition: from sympy.stats.frv_types import BernoulliDistribution return BernoulliDistribution(self.func(condition).doit(**hints), 0, 1) if any(dependent(rv, given_condition) for rv in condrv): return Probability(condition, given_condition) else: return Probability(condition).doit() if given_condition is not None and \ not isinstance(given_condition, (Relational, Boolean)): raise ValueError("%s is not a relational or combination of relationals" % (given_condition)) if given_condition == False or condition is S.false: return S.Zero if not isinstance(condition, (Relational, Boolean)): raise ValueError("%s is not a relational or combination of relationals" % (condition)) if condition is S.true: return S.One if numsamples: return sampling_P(condition, given_condition, numsamples=numsamples) if given_condition is not None: # If there is a condition # Recompute on new conditional expr return Probability(given(condition, given_condition)).doit() # Otherwise pass work off to the ProbabilitySpace if pspace(condition) == PSpace(): return Probability(condition, given_condition) result = pspace(condition).probability(condition) if hasattr(result, 'doit') and for_rewrite: return result.doit() else: return result def _eval_rewrite_as_Integral(self, arg, condition=None, **kwargs): return self.func(arg, condition=condition).doit(for_rewrite=True) _eval_rewrite_as_Sum = _eval_rewrite_as_Integral def evaluate_integral(self): return self.rewrite(Integral).doit() class Expectation(Expr): """ Symbolic expression for the expectation. Examples ======== >>> from sympy.stats import Expectation, Normal, Probability, Poisson >>> from sympy import symbols, Integral, Sum >>> mu = symbols("mu") >>> sigma = symbols("sigma", positive=True) >>> X = Normal("X", mu, sigma) >>> Expectation(X) Expectation(X) >>> Expectation(X).evaluate_integral().simplify() mu To get the integral expression of the expectation: >>> Expectation(X).rewrite(Integral) Integral(sqrt(2)*X*exp(-(X - mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (X, -oo, oo)) The same integral expression, in more abstract terms: >>> Expectation(X).rewrite(Probability) Integral(x*Probability(Eq(X, x)), (x, -oo, oo)) To get the Summation expression of the expectation for discrete random variables: >>> lamda = symbols('lamda', positive=True) >>> Z = Poisson('Z', lamda) >>> Expectation(Z).rewrite(Sum) Sum(Z*lamda**Z*exp(-lamda)/factorial(Z), (Z, 0, oo)) This class is aware of some properties of the expectation: >>> from sympy.abc import a >>> Expectation(a*X) Expectation(a*X) >>> Y = Normal("Y", 1, 2) >>> Expectation(X + Y) Expectation(X + Y) To expand the ``Expectation`` into its expression, use ``expand()``: >>> Expectation(X + Y).expand() Expectation(X) + Expectation(Y) >>> Expectation(a*X + Y).expand() a*Expectation(X) + Expectation(Y) >>> Expectation(a*X + Y) Expectation(a*X + Y) >>> Expectation((X + Y)*(X - Y)).expand() Expectation(X**2) - Expectation(Y**2) To evaluate the ``Expectation``, use ``doit()``: >>> Expectation(X + Y).doit() mu + 1 >>> Expectation(X + Expectation(Y + Expectation(2*X))).doit() 3*mu + 1 To prevent evaluating nested ``Expectation``, use ``doit(deep=False)`` >>> Expectation(X + Expectation(Y)).doit(deep=False) mu + Expectation(Expectation(Y)) >>> Expectation(X + Expectation(Y + Expectation(2*X))).doit(deep=False) mu + Expectation(Expectation(Y + Expectation(2*X))) """ def __new__(cls, expr, condition=None, **kwargs): expr = _sympify(expr) if expr.is_Matrix: from sympy.stats.symbolic_multivariate_probability import ExpectationMatrix return ExpectationMatrix(expr, condition) if condition is None: if not is_random(expr): return expr obj = Expr.__new__(cls, expr) else: condition = _sympify(condition) obj = Expr.__new__(cls, expr, condition) obj._condition = condition return obj def expand(self, **hints): expr = self.args[0] condition = self._condition if not is_random(expr): return expr if isinstance(expr, Add): return Add.fromiter(Expectation(a, condition=condition).expand() for a in expr.args) expand_expr = _expand(expr) if isinstance(expand_expr, Add): return Add.fromiter(Expectation(a, condition=condition).expand() for a in expand_expr.args) elif isinstance(expr, Mul): rv = [] nonrv = [] for a in expr.args: if is_random(a): rv.append(a) else: nonrv.append(a) return Mul.fromiter(nonrv)*Expectation(Mul.fromiter(rv), condition=condition) return self def doit(self, **hints): deep = hints.get('deep', True) condition = self._condition expr = self.args[0] numsamples = hints.get('numsamples', False) for_rewrite = not hints.get('for_rewrite', False) if deep: expr = expr.doit(**hints) if not is_random(expr) or isinstance(expr, Expectation): # expr isn't random? return expr if numsamples: # Computing by monte carlo sampling? evalf = hints.get('evalf', True) return sampling_E(expr, condition, numsamples=numsamples, evalf=evalf) if expr.has(RandomIndexedSymbol): return pspace(expr).compute_expectation(expr, condition) # Create new expr and recompute E if condition is not None: # If there is a condition return self.func(given(expr, condition)).doit(**hints) # A few known statements for efficiency if expr.is_Add: # We know that E is Linear return Add(*[self.func(arg, condition).doit(**hints) if not isinstance(arg, Expectation) else self.func(arg, condition) for arg in expr.args]) if expr.is_Mul: if expr.atoms(Expectation): return expr if pspace(expr) == PSpace(): return self.func(expr) # Otherwise case is simple, pass work off to the ProbabilitySpace result = pspace(expr).compute_expectation(expr, evaluate=for_rewrite) if hasattr(result, 'doit') and for_rewrite: return result.doit(**hints) else: return result def _eval_rewrite_as_Probability(self, arg, condition=None, **kwargs): rvs = arg.atoms(RandomSymbol) if len(rvs) > 1: raise NotImplementedError() if len(rvs) == 0: return arg rv = rvs.pop() if rv.pspace is None: raise ValueError("Probability space not known") symbol = rv.symbol if symbol.name[0].isupper(): symbol = Symbol(symbol.name.lower()) else : symbol = Symbol(symbol.name + "_1") if rv.pspace.is_Continuous: return Integral(arg.replace(rv, symbol)*Probability(Eq(rv, symbol), condition), (symbol, rv.pspace.domain.set.inf, rv.pspace.domain.set.sup)) else: if rv.pspace.is_Finite: raise NotImplementedError else: return Sum(arg.replace(rv, symbol)*Probability(Eq(rv, symbol), condition), (symbol, rv.pspace.domain.set.inf, rv.pspace.set.sup)) def _eval_rewrite_as_Integral(self, arg, condition=None, **kwargs): return self.func(arg, condition=condition).doit(deep=False, for_rewrite=True) _eval_rewrite_as_Sum = _eval_rewrite_as_Integral # For discrete this will be Sum def evaluate_integral(self): return self.rewrite(Integral).doit() evaluate_sum = evaluate_integral class Variance(Expr): """ Symbolic expression for the variance. Examples ======== >>> from sympy import symbols, Integral >>> from sympy.stats import Normal, Expectation, Variance, Probability >>> mu = symbols("mu", positive=True) >>> sigma = symbols("sigma", positive=True) >>> X = Normal("X", mu, sigma) >>> Variance(X) Variance(X) >>> Variance(X).evaluate_integral() sigma**2 Integral representation of the underlying calculations: >>> Variance(X).rewrite(Integral) Integral(sqrt(2)*(X - Integral(sqrt(2)*X*exp(-(X - mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (X, -oo, oo)))**2*exp(-(X - mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (X, -oo, oo)) Integral representation, without expanding the PDF: >>> Variance(X).rewrite(Probability) -Integral(x*Probability(Eq(X, x)), (x, -oo, oo))**2 + Integral(x**2*Probability(Eq(X, x)), (x, -oo, oo)) Rewrite the variance in terms of the expectation >>> Variance(X).rewrite(Expectation) -Expectation(X)**2 + Expectation(X**2) Some transformations based on the properties of the variance may happen: >>> from sympy.abc import a >>> Y = Normal("Y", 0, 1) >>> Variance(a*X) Variance(a*X) To expand the variance in its expression, use ``expand()``: >>> Variance(a*X).expand() a**2*Variance(X) >>> Variance(X + Y) Variance(X + Y) >>> Variance(X + Y).expand() 2*Covariance(X, Y) + Variance(X) + Variance(Y) """ def __new__(cls, arg, condition=None, **kwargs): arg = _sympify(arg) if arg.is_Matrix: from sympy.stats.symbolic_multivariate_probability import VarianceMatrix return VarianceMatrix(arg, condition) if condition is None: obj = Expr.__new__(cls, arg) else: condition = _sympify(condition) obj = Expr.__new__(cls, arg, condition) obj._condition = condition return obj def expand(self, **hints): arg = self.args[0] condition = self._condition if not is_random(arg): return S.Zero if isinstance(arg, RandomSymbol): return self elif isinstance(arg, Add): rv = [] for a in arg.args: if is_random(a): rv.append(a) variances = Add(*map(lambda xv: Variance(xv, condition).expand(), rv)) map_to_covar = lambda x: 2*Covariance(*x, condition=condition).expand() covariances = Add(*map(map_to_covar, itertools.combinations(rv, 2))) return variances + covariances elif isinstance(arg, Mul): nonrv = [] rv = [] for a in arg.args: if is_random(a): rv.append(a) else: nonrv.append(a**2) if len(rv) == 0: return S.Zero return Mul.fromiter(nonrv)*Variance(Mul.fromiter(rv), condition) # this expression contains a RandomSymbol somehow: return self def _eval_rewrite_as_Expectation(self, arg, condition=None, **kwargs): e1 = Expectation(arg**2, condition) e2 = Expectation(arg, condition)**2 return e1 - e2 def _eval_rewrite_as_Probability(self, arg, condition=None, **kwargs): return self.rewrite(Expectation).rewrite(Probability) def _eval_rewrite_as_Integral(self, arg, condition=None, **kwargs): return variance(self.args[0], self._condition, evaluate=False) _eval_rewrite_as_Sum = _eval_rewrite_as_Integral def evaluate_integral(self): return self.rewrite(Integral).doit() class Covariance(Expr): """ Symbolic expression for the covariance. Examples ======== >>> from sympy.stats import Covariance >>> from sympy.stats import Normal >>> X = Normal("X", 3, 2) >>> Y = Normal("Y", 0, 1) >>> Z = Normal("Z", 0, 1) >>> W = Normal("W", 0, 1) >>> cexpr = Covariance(X, Y) >>> cexpr Covariance(X, Y) Evaluate the covariance, `X` and `Y` are independent, therefore zero is the result: >>> cexpr.evaluate_integral() 0 Rewrite the covariance expression in terms of expectations: >>> from sympy.stats import Expectation >>> cexpr.rewrite(Expectation) Expectation(X*Y) - Expectation(X)*Expectation(Y) In order to expand the argument, use ``expand()``: >>> from sympy.abc import a, b, c, d >>> Covariance(a*X + b*Y, c*Z + d*W) Covariance(a*X + b*Y, c*Z + d*W) >>> Covariance(a*X + b*Y, c*Z + d*W).expand() a*c*Covariance(X, Z) + a*d*Covariance(W, X) + b*c*Covariance(Y, Z) + b*d*Covariance(W, Y) This class is aware of some properties of the covariance: >>> Covariance(X, X).expand() Variance(X) >>> Covariance(a*X, b*Y).expand() a*b*Covariance(X, Y) """ def __new__(cls, arg1, arg2, condition=None, **kwargs): arg1 = _sympify(arg1) arg2 = _sympify(arg2) if arg1.is_Matrix or arg2.is_Matrix: from sympy.stats.symbolic_multivariate_probability import CrossCovarianceMatrix return CrossCovarianceMatrix(arg1, arg2, condition) if kwargs.pop('evaluate', global_parameters.evaluate): arg1, arg2 = sorted([arg1, arg2], key=default_sort_key) if condition is None: obj = Expr.__new__(cls, arg1, arg2) else: condition = _sympify(condition) obj = Expr.__new__(cls, arg1, arg2, condition) obj._condition = condition return obj def expand(self, **hints): arg1 = self.args[0] arg2 = self.args[1] condition = self._condition if arg1 == arg2: return Variance(arg1, condition).expand() if not is_random(arg1): return S.Zero if not is_random(arg2): return S.Zero arg1, arg2 = sorted([arg1, arg2], key=default_sort_key) if isinstance(arg1, RandomSymbol) and isinstance(arg2, RandomSymbol): return Covariance(arg1, arg2, condition) coeff_rv_list1 = self._expand_single_argument(arg1.expand()) coeff_rv_list2 = self._expand_single_argument(arg2.expand()) addends = [a*b*Covariance(*sorted([r1, r2], key=default_sort_key), condition=condition) for (a, r1) in coeff_rv_list1 for (b, r2) in coeff_rv_list2] return Add.fromiter(addends) @classmethod def _expand_single_argument(cls, expr): # return (coefficient, random_symbol) pairs: if isinstance(expr, RandomSymbol): return [(S.One, expr)] elif isinstance(expr, Add): outval = [] for a in expr.args: if isinstance(a, Mul): outval.append(cls._get_mul_nonrv_rv_tuple(a)) elif is_random(a): outval.append((S.One, a)) return outval elif isinstance(expr, Mul): return [cls._get_mul_nonrv_rv_tuple(expr)] elif is_random(expr): return [(S.One, expr)] @classmethod def _get_mul_nonrv_rv_tuple(cls, m): rv = [] nonrv = [] for a in m.args: if is_random(a): rv.append(a) else: nonrv.append(a) return (Mul.fromiter(nonrv), Mul.fromiter(rv)) def _eval_rewrite_as_Expectation(self, arg1, arg2, condition=None, **kwargs): e1 = Expectation(arg1*arg2, condition) e2 = Expectation(arg1, condition)*Expectation(arg2, condition) return e1 - e2 def _eval_rewrite_as_Probability(self, arg1, arg2, condition=None, **kwargs): return self.rewrite(Expectation).rewrite(Probability) def _eval_rewrite_as_Integral(self, arg1, arg2, condition=None, **kwargs): return covariance(self.args[0], self.args[1], self._condition, evaluate=False) _eval_rewrite_as_Sum = _eval_rewrite_as_Integral def evaluate_integral(self): return self.rewrite(Integral).doit() class Moment(Expr): """ Symbolic class for Moment Examples ======== >>> from sympy import Symbol, Integral >>> from sympy.stats import Normal, Expectation, Probability, Moment >>> mu = Symbol('mu', real=True) >>> sigma = Symbol('sigma', real=True, positive=True) >>> X = Normal('X', mu, sigma) >>> M = Moment(X, 3, 1) To evaluate the result of Moment use `doit`: >>> M.doit() mu**3 - 3*mu**2 + 3*mu*sigma**2 + 3*mu - 3*sigma**2 - 1 Rewrite the Moment expression in terms of Expectation: >>> M.rewrite(Expectation) Expectation((X - 1)**3) Rewrite the Moment expression in terms of Probability: >>> M.rewrite(Probability) Integral((x - 1)**3*Probability(Eq(X, x)), (x, -oo, oo)) Rewrite the Moment expression in terms of Integral: >>> M.rewrite(Integral) Integral(sqrt(2)*(X - 1)**3*exp(-(X - mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (X, -oo, oo)) """ def __new__(cls, X, n, c=0, condition=None, **kwargs): X = _sympify(X) n = _sympify(n) c = _sympify(c) if condition is not None: condition = _sympify(condition) return super().__new__(cls, X, n, c, condition) else: return super().__new__(cls, X, n, c) def doit(self, **hints): return self.rewrite(Expectation).doit(**hints) def _eval_rewrite_as_Expectation(self, X, n, c=0, condition=None, **kwargs): return Expectation((X - c)**n, condition) def _eval_rewrite_as_Probability(self, X, n, c=0, condition=None, **kwargs): return self.rewrite(Expectation).rewrite(Probability) def _eval_rewrite_as_Integral(self, X, n, c=0, condition=None, **kwargs): return self.rewrite(Expectation).rewrite(Integral) class CentralMoment(Expr): """ Symbolic class Central Moment Examples ======== >>> from sympy import Symbol, Integral >>> from sympy.stats import Normal, Expectation, Probability, CentralMoment >>> mu = Symbol('mu', real=True) >>> sigma = Symbol('sigma', real=True, positive=True) >>> X = Normal('X', mu, sigma) >>> CM = CentralMoment(X, 4) To evaluate the result of CentralMoment use `doit`: >>> CM.doit().simplify() 3*sigma**4 Rewrite the CentralMoment expression in terms of Expectation: >>> CM.rewrite(Expectation) Expectation((X - Expectation(X))**4) Rewrite the CentralMoment expression in terms of Probability: >>> CM.rewrite(Probability) Integral((x - Integral(x*Probability(True), (x, -oo, oo)))**4*Probability(Eq(X, x)), (x, -oo, oo)) Rewrite the CentralMoment expression in terms of Integral: >>> CM.rewrite(Integral) Integral(sqrt(2)*(X - Integral(sqrt(2)*X*exp(-(X - mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (X, -oo, oo)))**4*exp(-(X - mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (X, -oo, oo)) """ def __new__(cls, X, n, condition=None, **kwargs): X = _sympify(X) n = _sympify(n) if condition is not None: condition = _sympify(condition) return super().__new__(cls, X, n, condition) else: return super().__new__(cls, X, n) def doit(self, **hints): return self.rewrite(Expectation).doit(**hints) def _eval_rewrite_as_Expectation(self, X, n, condition=None, **kwargs): mu = Expectation(X, condition, **kwargs) return Moment(X, n, mu, condition, **kwargs).rewrite(Expectation) def _eval_rewrite_as_Probability(self, X, n, condition=None, **kwargs): return self.rewrite(Expectation).rewrite(Probability) def _eval_rewrite_as_Integral(self, X, n, condition=None, **kwargs): return self.rewrite(Expectation).rewrite(Integral)
a3b0497f413a0c506bad21f3130c47586f27963ddbd8af2b68899d17cc550cb0
from sympy.concrete.products import Product from sympy.concrete.summations import Sum from sympy.core.basic import Basic from sympy.core.function import Lambda from sympy.core.numbers import (I, pi) from sympy.core.singleton import S from sympy.core.symbol import Dummy from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import exp from sympy.functions.special.gamma_functions import gamma from sympy.integrals.integrals import Integral from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.trace import Trace from sympy.tensor.indexed import IndexedBase from sympy.core.sympify import _sympify from sympy.stats.rv import _symbol_converter, Density, RandomMatrixSymbol, is_random from sympy.stats.joint_rv_types import JointDistributionHandmade from sympy.stats.random_matrix import RandomMatrixPSpace from sympy.tensor.array import ArrayComprehension __all__ = [ 'CircularEnsemble', 'CircularUnitaryEnsemble', 'CircularOrthogonalEnsemble', 'CircularSymplecticEnsemble', 'GaussianEnsemble', 'GaussianUnitaryEnsemble', 'GaussianOrthogonalEnsemble', 'GaussianSymplecticEnsemble', 'joint_eigen_distribution', 'JointEigenDistribution', 'level_spacing_distribution' ] @is_random.register(RandomMatrixSymbol) def _(x): return True class RandomMatrixEnsembleModel(Basic): """ Base class for random matrix ensembles. It acts as an umbrella and contains the methods common to all the ensembles defined in sympy.stats.random_matrix_models. """ def __new__(cls, sym, dim=None): sym, dim = _symbol_converter(sym), _sympify(dim) if dim.is_integer == False: raise ValueError("Dimension of the random matrices must be " "integers, received %s instead."%(dim)) return Basic.__new__(cls, sym, dim) symbol = property(lambda self: self.args[0]) dimension = property(lambda self: self.args[1]) def density(self, expr): return Density(expr) def __call__(self, expr): return self.density(expr) class GaussianEnsembleModel(RandomMatrixEnsembleModel): """ Abstract class for Gaussian ensembles. Contains the properties common to all the gaussian ensembles. References ========== .. [1] https://en.wikipedia.org/wiki/Random_matrix#Gaussian_ensembles .. [2] https://arxiv.org/pdf/1712.07903.pdf """ def _compute_normalization_constant(self, beta, n): """ Helper function for computing normalization constant for joint probability density of eigen values of Gaussian ensembles. References ========== .. [1] https://en.wikipedia.org/wiki/Selberg_integral#Mehta's_integral """ n = S(n) prod_term = lambda j: gamma(1 + beta*S(j)/2)/gamma(S.One + beta/S(2)) j = Dummy('j', integer=True, positive=True) term1 = Product(prod_term(j), (j, 1, n)).doit() term2 = (2/(beta*n))**(beta*n*(n - 1)/4 + n/2) term3 = (2*pi)**(n/2) return term1 * term2 * term3 def _compute_joint_eigen_distribution(self, beta): """ Helper function for computing the joint probability distribution of eigen values of the random matrix. """ n = self.dimension Zbn = self._compute_normalization_constant(beta, n) l = IndexedBase('l') i = Dummy('i', integer=True, positive=True) j = Dummy('j', integer=True, positive=True) k = Dummy('k', integer=True, positive=True) term1 = exp((-S(n)/2) * Sum(l[k]**2, (k, 1, n)).doit()) sub_term = Lambda(i, Product(Abs(l[j] - l[i])**beta, (j, i + 1, n))) term2 = Product(sub_term(i).doit(), (i, 1, n - 1)).doit() syms = ArrayComprehension(l[k], (k, 1, n)).doit() return Lambda(tuple(syms), (term1 * term2)/Zbn) class GaussianUnitaryEnsembleModel(GaussianEnsembleModel): @property def normalization_constant(self): n = self.dimension return 2**(S(n)/2) * pi**(S(n**2)/2) def density(self, expr): n, ZGUE = self.dimension, self.normalization_constant h_pspace = RandomMatrixPSpace('P', model=self) H = RandomMatrixSymbol('H', n, n, pspace=h_pspace) return Lambda(H, exp(-S(n)/2 * Trace(H**2))/ZGUE)(expr) def joint_eigen_distribution(self): return self._compute_joint_eigen_distribution(S(2)) def level_spacing_distribution(self): s = Dummy('s') f = (32/pi**2)*(s**2)*exp((-4/pi)*s**2) return Lambda(s, f) class GaussianOrthogonalEnsembleModel(GaussianEnsembleModel): @property def normalization_constant(self): n = self.dimension _H = MatrixSymbol('_H', n, n) return Integral(exp(-S(n)/4 * Trace(_H**2))) def density(self, expr): n, ZGOE = self.dimension, self.normalization_constant h_pspace = RandomMatrixPSpace('P', model=self) H = RandomMatrixSymbol('H', n, n, pspace=h_pspace) return Lambda(H, exp(-S(n)/4 * Trace(H**2))/ZGOE)(expr) def joint_eigen_distribution(self): return self._compute_joint_eigen_distribution(S.One) def level_spacing_distribution(self): s = Dummy('s') f = (pi/2)*s*exp((-pi/4)*s**2) return Lambda(s, f) class GaussianSymplecticEnsembleModel(GaussianEnsembleModel): @property def normalization_constant(self): n = self.dimension _H = MatrixSymbol('_H', n, n) return Integral(exp(-S(n) * Trace(_H**2))) def density(self, expr): n, ZGSE = self.dimension, self.normalization_constant h_pspace = RandomMatrixPSpace('P', model=self) H = RandomMatrixSymbol('H', n, n, pspace=h_pspace) return Lambda(H, exp(-S(n) * Trace(H**2))/ZGSE)(expr) def joint_eigen_distribution(self): return self._compute_joint_eigen_distribution(S(4)) def level_spacing_distribution(self): s = Dummy('s') f = ((S(2)**18)/((S(3)**6)*(pi**3)))*(s**4)*exp((-64/(9*pi))*s**2) return Lambda(s, f) def GaussianEnsemble(sym, dim): sym, dim = _symbol_converter(sym), _sympify(dim) model = GaussianEnsembleModel(sym, dim) rmp = RandomMatrixPSpace(sym, model=model) return RandomMatrixSymbol(sym, dim, dim, pspace=rmp) def GaussianUnitaryEnsemble(sym, dim): """ Represents Gaussian Unitary Ensembles. Examples ======== >>> from sympy.stats import GaussianUnitaryEnsemble as GUE, density >>> from sympy import MatrixSymbol >>> G = GUE('U', 2) >>> X = MatrixSymbol('X', 2, 2) >>> density(G)(X) exp(-Trace(X**2))/(2*pi**2) """ sym, dim = _symbol_converter(sym), _sympify(dim) model = GaussianUnitaryEnsembleModel(sym, dim) rmp = RandomMatrixPSpace(sym, model=model) return RandomMatrixSymbol(sym, dim, dim, pspace=rmp) def GaussianOrthogonalEnsemble(sym, dim): """ Represents Gaussian Orthogonal Ensembles. Examples ======== >>> from sympy.stats import GaussianOrthogonalEnsemble as GOE, density >>> from sympy import MatrixSymbol >>> G = GOE('U', 2) >>> X = MatrixSymbol('X', 2, 2) >>> density(G)(X) exp(-Trace(X**2)/2)/Integral(exp(-Trace(_H**2)/2), _H) """ sym, dim = _symbol_converter(sym), _sympify(dim) model = GaussianOrthogonalEnsembleModel(sym, dim) rmp = RandomMatrixPSpace(sym, model=model) return RandomMatrixSymbol(sym, dim, dim, pspace=rmp) def GaussianSymplecticEnsemble(sym, dim): """ Represents Gaussian Symplectic Ensembles. Examples ======== >>> from sympy.stats import GaussianSymplecticEnsemble as GSE, density >>> from sympy import MatrixSymbol >>> G = GSE('U', 2) >>> X = MatrixSymbol('X', 2, 2) >>> density(G)(X) exp(-2*Trace(X**2))/Integral(exp(-2*Trace(_H**2)), _H) """ sym, dim = _symbol_converter(sym), _sympify(dim) model = GaussianSymplecticEnsembleModel(sym, dim) rmp = RandomMatrixPSpace(sym, model=model) return RandomMatrixSymbol(sym, dim, dim, pspace=rmp) class CircularEnsembleModel(RandomMatrixEnsembleModel): """ Abstract class for Circular ensembles. Contains the properties and methods common to all the circular ensembles. References ========== .. [1] https://en.wikipedia.org/wiki/Circular_ensemble """ def density(self, expr): # TODO : Add support for Lie groups(as extensions of sympy.diffgeom) # and define measures on them raise NotImplementedError("Support for Haar measure hasn't been " "implemented yet, therefore the density of " "%s cannot be computed."%(self)) def _compute_joint_eigen_distribution(self, beta): """ Helper function to compute the joint distribution of phases of the complex eigen values of matrices belonging to any circular ensembles. """ n = self.dimension Zbn = ((2*pi)**n)*(gamma(beta*n/2 + 1)/S(gamma(beta/2 + 1))**n) t = IndexedBase('t') i, j, k = (Dummy('i', integer=True), Dummy('j', integer=True), Dummy('k', integer=True)) syms = ArrayComprehension(t[i], (i, 1, n)).doit() f = Product(Product(Abs(exp(I*t[k]) - exp(I*t[j]))**beta, (j, k + 1, n)).doit(), (k, 1, n - 1)).doit() return Lambda(tuple(syms), f/Zbn) class CircularUnitaryEnsembleModel(CircularEnsembleModel): def joint_eigen_distribution(self): return self._compute_joint_eigen_distribution(S(2)) class CircularOrthogonalEnsembleModel(CircularEnsembleModel): def joint_eigen_distribution(self): return self._compute_joint_eigen_distribution(S.One) class CircularSymplecticEnsembleModel(CircularEnsembleModel): def joint_eigen_distribution(self): return self._compute_joint_eigen_distribution(S(4)) def CircularEnsemble(sym, dim): sym, dim = _symbol_converter(sym), _sympify(dim) model = CircularEnsembleModel(sym, dim) rmp = RandomMatrixPSpace(sym, model=model) return RandomMatrixSymbol(sym, dim, dim, pspace=rmp) def CircularUnitaryEnsemble(sym, dim): """ Represents Cicular Unitary Ensembles. Examples ======== >>> from sympy.stats import CircularUnitaryEnsemble as CUE >>> from sympy.stats import joint_eigen_distribution >>> C = CUE('U', 1) >>> joint_eigen_distribution(C) Lambda(t[1], Product(Abs(exp(I*t[_j]) - exp(I*t[_k]))**2, (_j, _k + 1, 1), (_k, 1, 0))/(2*pi)) Note ==== As can be seen above in the example, density of CiruclarUnitaryEnsemble is not evaluated becuase the exact definition is based on haar measure of unitary group which is not unique. """ sym, dim = _symbol_converter(sym), _sympify(dim) model = CircularUnitaryEnsembleModel(sym, dim) rmp = RandomMatrixPSpace(sym, model=model) return RandomMatrixSymbol(sym, dim, dim, pspace=rmp) def CircularOrthogonalEnsemble(sym, dim): """ Represents Cicular Orthogonal Ensembles. Examples ======== >>> from sympy.stats import CircularOrthogonalEnsemble as COE >>> from sympy.stats import joint_eigen_distribution >>> C = COE('O', 1) >>> joint_eigen_distribution(C) Lambda(t[1], Product(Abs(exp(I*t[_j]) - exp(I*t[_k])), (_j, _k + 1, 1), (_k, 1, 0))/(2*pi)) Note ==== As can be seen above in the example, density of CiruclarOrthogonalEnsemble is not evaluated becuase the exact definition is based on haar measure of unitary group which is not unique. """ sym, dim = _symbol_converter(sym), _sympify(dim) model = CircularOrthogonalEnsembleModel(sym, dim) rmp = RandomMatrixPSpace(sym, model=model) return RandomMatrixSymbol(sym, dim, dim, pspace=rmp) def CircularSymplecticEnsemble(sym, dim): """ Represents Cicular Symplectic Ensembles. Examples ======== >>> from sympy.stats import CircularSymplecticEnsemble as CSE >>> from sympy.stats import joint_eigen_distribution >>> C = CSE('S', 1) >>> joint_eigen_distribution(C) Lambda(t[1], Product(Abs(exp(I*t[_j]) - exp(I*t[_k]))**4, (_j, _k + 1, 1), (_k, 1, 0))/(2*pi)) Note ==== As can be seen above in the example, density of CiruclarSymplecticEnsemble is not evaluated becuase the exact definition is based on haar measure of unitary group which is not unique. """ sym, dim = _symbol_converter(sym), _sympify(dim) model = CircularSymplecticEnsembleModel(sym, dim) rmp = RandomMatrixPSpace(sym, model=model) return RandomMatrixSymbol(sym, dim, dim, pspace=rmp) def joint_eigen_distribution(mat): """ For obtaining joint probability distribution of eigen values of random matrix. Parameters ========== mat: RandomMatrixSymbol The matrix symbol whose eigen values are to be considered. Returns ======= Lambda Examples ======== >>> from sympy.stats import GaussianUnitaryEnsemble as GUE >>> from sympy.stats import joint_eigen_distribution >>> U = GUE('U', 2) >>> joint_eigen_distribution(U) Lambda((l[1], l[2]), exp(-l[1]**2 - l[2]**2)*Product(Abs(l[_i] - l[_j])**2, (_j, _i + 1, 2), (_i, 1, 1))/pi) """ if not isinstance(mat, RandomMatrixSymbol): raise ValueError("%s is not of type, RandomMatrixSymbol."%(mat)) return mat.pspace.model.joint_eigen_distribution() def JointEigenDistribution(mat): """ Creates joint distribution of eigen values of matrices with random expressions. Parameters ========== mat: Matrix The matrix under consideration. Returns ======= JointDistributionHandmade Examples ======== >>> from sympy.stats import Normal, JointEigenDistribution >>> from sympy import Matrix >>> A = [[Normal('A00', 0, 1), Normal('A01', 0, 1)], ... [Normal('A10', 0, 1), Normal('A11', 0, 1)]] >>> JointEigenDistribution(Matrix(A)) JointDistributionHandmade(-sqrt(A00**2 - 2*A00*A11 + 4*A01*A10 + A11**2)/2 + A00/2 + A11/2, sqrt(A00**2 - 2*A00*A11 + 4*A01*A10 + A11**2)/2 + A00/2 + A11/2) """ eigenvals = mat.eigenvals(multiple=True) if not all(is_random(eigenval) for eigenval in set(eigenvals)): raise ValueError("Eigen values do not have any random expression, " "joint distribution cannot be generated.") return JointDistributionHandmade(*eigenvals) def level_spacing_distribution(mat): """ For obtaining distribution of level spacings. Parameters ========== mat: RandomMatrixSymbol The random matrix symbol whose eigen values are to be considered for finding the level spacings. Returns ======= Lambda Examples ======== >>> from sympy.stats import GaussianUnitaryEnsemble as GUE >>> from sympy.stats import level_spacing_distribution >>> U = GUE('U', 2) >>> level_spacing_distribution(U) Lambda(_s, 32*_s**2*exp(-4*_s**2/pi)/pi**2) References ========== .. [1] https://en.wikipedia.org/wiki/Random_matrix#Distribution_of_level_spacings """ return mat.pspace.model.level_spacing_distribution()
0b8147015b9c9317559d71a5993f79ec0b79c5d38b558bc7efa2a02f8e13477f
""" Finite Discrete Random Variables Module See Also ======== sympy.stats.frv_types sympy.stats.rv sympy.stats.crv """ from itertools import product from sympy.concrete.summations import Sum from sympy.core.basic import Basic from sympy.core.cache import cacheit from sympy.core.function import Lambda from sympy.core.mul import Mul from sympy.core.numbers import (I, nan) from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol) from sympy.core.sympify import sympify from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.piecewise import Piecewise from sympy.logic.boolalg import (And, Or) from sympy.sets.sets import Intersection from sympy.core.containers import Dict from sympy.core.logic import Logic from sympy.core.relational import Relational from sympy.core.sympify import _sympify from sympy.sets.sets import FiniteSet from sympy.stats.rv import (RandomDomain, ProductDomain, ConditionalDomain, PSpace, IndependentProductPSpace, SinglePSpace, random_symbols, sumsets, rv_subs, NamedArgsMixin, Density, Distribution) class FiniteDensity(dict): """ A domain with Finite Density. """ def __call__(self, item): """ Make instance of a class callable. If item belongs to current instance of a class, return it. Otherwise, return 0. """ item = sympify(item) if item in self: return self[item] else: return 0 @property def dict(self): """ Return item as dictionary. """ return dict(self) class FiniteDomain(RandomDomain): """ A domain with discrete finite support Represented using a FiniteSet. """ is_Finite = True @property def symbols(self): return FiniteSet(sym for sym, val in self.elements) @property def elements(self): return self.args[0] @property def dict(self): return FiniteSet(*[Dict(dict(el)) for el in self.elements]) def __contains__(self, other): return other in self.elements def __iter__(self): return self.elements.__iter__() def as_boolean(self): return Or(*[And(*[Eq(sym, val) for sym, val in item]) for item in self]) class SingleFiniteDomain(FiniteDomain): """ A FiniteDomain over a single symbol/set Example: The possibilities of a *single* die roll. """ def __new__(cls, symbol, set): if not isinstance(set, FiniteSet) and \ not isinstance(set, Intersection): set = FiniteSet(*set) return Basic.__new__(cls, symbol, set) @property def symbol(self): return self.args[0] @property def symbols(self): return FiniteSet(self.symbol) @property def set(self): return self.args[1] @property def elements(self): return FiniteSet(*[frozenset(((self.symbol, elem), )) for elem in self.set]) def __iter__(self): return (frozenset(((self.symbol, elem),)) for elem in self.set) def __contains__(self, other): sym, val = tuple(other)[0] return sym == self.symbol and val in self.set class ProductFiniteDomain(ProductDomain, FiniteDomain): """ A Finite domain consisting of several other FiniteDomains Example: The possibilities of the rolls of three independent dice """ def __iter__(self): proditer = product(*self.domains) return (sumsets(items) for items in proditer) @property def elements(self): return FiniteSet(*self) class ConditionalFiniteDomain(ConditionalDomain, ProductFiniteDomain): """ A FiniteDomain that has been restricted by a condition Example: The possibilities of a die roll under the condition that the roll is even. """ def __new__(cls, domain, condition): """ Create a new instance of ConditionalFiniteDomain class """ if condition is True: return domain cond = rv_subs(condition) return Basic.__new__(cls, domain, cond) def _test(self, elem): """ Test the value. If value is boolean, return it. If value is equality relational (two objects are equal), return it with left-hand side being equal to right-hand side. Otherwise, raise ValueError exception. """ val = self.condition.xreplace(dict(elem)) if val in [True, False]: return val elif val.is_Equality: return val.lhs == val.rhs raise ValueError("Undecidable if %s" % str(val)) def __contains__(self, other): return other in self.fulldomain and self._test(other) def __iter__(self): return (elem for elem in self.fulldomain if self._test(elem)) @property def set(self): if isinstance(self.fulldomain, SingleFiniteDomain): return FiniteSet(*[elem for elem in self.fulldomain.set if frozenset(((self.fulldomain.symbol, elem),)) in self]) else: raise NotImplementedError( "Not implemented on multi-dimensional conditional domain") def as_boolean(self): return FiniteDomain.as_boolean(self) class SingleFiniteDistribution(Distribution, NamedArgsMixin): def __new__(cls, *args): args = list(map(sympify, args)) return Basic.__new__(cls, *args) @staticmethod def check(*args): pass @property # type: ignore @cacheit def dict(self): if self.is_symbolic: return Density(self) return {k: self.pmf(k) for k in self.set} def pmf(self, *args): # to be overridden by specific distribution raise NotImplementedError() @property def set(self): # to be overridden by specific distribution raise NotImplementedError() values = property(lambda self: self.dict.values) items = property(lambda self: self.dict.items) is_symbolic = property(lambda self: False) __iter__ = property(lambda self: self.dict.__iter__) __getitem__ = property(lambda self: self.dict.__getitem__) def __call__(self, *args): return self.pmf(*args) def __contains__(self, other): return other in self.set #============================================= #========= Probability Space =============== #============================================= class FinitePSpace(PSpace): """ A Finite Probability Space Represents the probabilities of a finite number of events. """ is_Finite = True def __new__(cls, domain, density): density = {sympify(key): sympify(val) for key, val in density.items()} public_density = Dict(density) obj = PSpace.__new__(cls, domain, public_density) obj._density = density return obj def prob_of(self, elem): elem = sympify(elem) density = self._density if isinstance(list(density.keys())[0], FiniteSet): return density.get(elem, S.Zero) return density.get(tuple(elem)[0][1], S.Zero) def where(self, condition): assert all(r.symbol in self.symbols for r in random_symbols(condition)) return ConditionalFiniteDomain(self.domain, condition) def compute_density(self, expr): expr = rv_subs(expr, self.values) d = FiniteDensity() for elem in self.domain: val = expr.xreplace(dict(elem)) prob = self.prob_of(elem) d[val] = d.get(val, S.Zero) + prob return d @cacheit def compute_cdf(self, expr): d = self.compute_density(expr) cum_prob = S.Zero cdf = [] for key in sorted(d): prob = d[key] cum_prob += prob cdf.append((key, cum_prob)) return dict(cdf) @cacheit def sorted_cdf(self, expr, python_float=False): cdf = self.compute_cdf(expr) items = list(cdf.items()) sorted_items = sorted(items, key=lambda val_cumprob: val_cumprob[1]) if python_float: sorted_items = [(v, float(cum_prob)) for v, cum_prob in sorted_items] return sorted_items @cacheit def compute_characteristic_function(self, expr): d = self.compute_density(expr) t = Dummy('t', real=True) return Lambda(t, sum(exp(I*k*t)*v for k,v in d.items())) @cacheit def compute_moment_generating_function(self, expr): d = self.compute_density(expr) t = Dummy('t', real=True) return Lambda(t, sum(exp(k*t)*v for k,v in d.items())) def compute_expectation(self, expr, rvs=None, **kwargs): rvs = rvs or self.values expr = rv_subs(expr, rvs) probs = [self.prob_of(elem) for elem in self.domain] if isinstance(expr, (Logic, Relational)): parse_domain = [tuple(elem)[0][1] for elem in self.domain] bools = [expr.xreplace(dict(elem)) for elem in self.domain] else: parse_domain = [expr.xreplace(dict(elem)) for elem in self.domain] bools = [True for elem in self.domain] return sum([Piecewise((prob * elem, blv), (S.Zero, True)) for prob, elem, blv in zip(probs, parse_domain, bools)]) def compute_quantile(self, expr): cdf = self.compute_cdf(expr) p = Dummy('p', real=True) set = ((nan, (p < 0) | (p > 1)),) for key, value in cdf.items(): set = set + ((key, p <= value), ) return Lambda(p, Piecewise(*set)) def probability(self, condition): cond_symbols = frozenset(rs.symbol for rs in random_symbols(condition)) cond = rv_subs(condition) if not cond_symbols.issubset(self.symbols): raise ValueError("Cannot compare foreign random symbols, %s" %(str(cond_symbols - self.symbols))) if isinstance(condition, Relational) and \ (not cond.free_symbols.issubset(self.domain.free_symbols)): rv = condition.lhs if isinstance(condition.rhs, Symbol) else condition.rhs return sum(Piecewise( (self.prob_of(elem), condition.subs(rv, list(elem)[0][1])), (S.Zero, True)) for elem in self.domain) return sympify(sum(self.prob_of(elem) for elem in self.where(condition))) def conditional_space(self, condition): domain = self.where(condition) prob = self.probability(condition) density = {key: val / prob for key, val in self._density.items() if domain._test(key)} return FinitePSpace(domain, density) def sample(self, size=(), library='scipy', seed=None): """ Internal sample method Returns dictionary mapping RandomSymbol to realization value. """ return {self.value: self.distribution.sample(size, library, seed)} class SingleFinitePSpace(SinglePSpace, FinitePSpace): """ A single finite probability space Represents the probabilities of a set of random events that can be attributed to a single variable/symbol. This class is implemented by many of the standard FiniteRV types such as Die, Bernoulli, Coin, etc.... """ @property def domain(self): return SingleFiniteDomain(self.symbol, self.distribution.set) @property def _is_symbolic(self): """ Helper property to check if the distribution of the random variable is having symbolic dimension. """ return self.distribution.is_symbolic @property def distribution(self): return self.args[1] def pmf(self, expr): return self.distribution.pmf(expr) @property # type: ignore @cacheit def _density(self): return {FiniteSet((self.symbol, val)): prob for val, prob in self.distribution.dict.items()} @cacheit def compute_characteristic_function(self, expr): if self._is_symbolic: d = self.compute_density(expr) t = Dummy('t', real=True) ki = Dummy('ki') return Lambda(t, Sum(d(ki)*exp(I*ki*t), (ki, self.args[1].low, self.args[1].high))) expr = rv_subs(expr, self.values) return FinitePSpace(self.domain, self.distribution).compute_characteristic_function(expr) @cacheit def compute_moment_generating_function(self, expr): if self._is_symbolic: d = self.compute_density(expr) t = Dummy('t', real=True) ki = Dummy('ki') return Lambda(t, Sum(d(ki)*exp(ki*t), (ki, self.args[1].low, self.args[1].high))) expr = rv_subs(expr, self.values) return FinitePSpace(self.domain, self.distribution).compute_moment_generating_function(expr) def compute_quantile(self, expr): if self._is_symbolic: raise NotImplementedError("Computing quantile for random variables " "with symbolic dimension because the bounds of searching the required " "value is undetermined.") expr = rv_subs(expr, self.values) return FinitePSpace(self.domain, self.distribution).compute_quantile(expr) def compute_density(self, expr): if self._is_symbolic: rv = list(random_symbols(expr))[0] k = Dummy('k', integer=True) cond = True if not isinstance(expr, (Relational, Logic)) \ else expr.subs(rv, k) return Lambda(k, Piecewise((self.pmf(k), And(k >= self.args[1].low, k <= self.args[1].high, cond)), (S.Zero, True))) expr = rv_subs(expr, self.values) return FinitePSpace(self.domain, self.distribution).compute_density(expr) def compute_cdf(self, expr): if self._is_symbolic: d = self.compute_density(expr) k = Dummy('k') ki = Dummy('ki') return Lambda(k, Sum(d(ki), (ki, self.args[1].low, k))) expr = rv_subs(expr, self.values) return FinitePSpace(self.domain, self.distribution).compute_cdf(expr) def compute_expectation(self, expr, rvs=None, **kwargs): if self._is_symbolic: rv = random_symbols(expr)[0] k = Dummy('k', integer=True) expr = expr.subs(rv, k) cond = True if not isinstance(expr, (Relational, Logic)) \ else expr func = self.pmf(k) * k if cond != True else self.pmf(k) * expr return Sum(Piecewise((func, cond), (S.Zero, True)), (k, self.distribution.low, self.distribution.high)).doit() expr = _sympify(expr) expr = rv_subs(expr, rvs) return FinitePSpace(self.domain, self.distribution).compute_expectation(expr, rvs, **kwargs) def probability(self, condition): if self._is_symbolic: #TODO: Implement the mechanism for handling queries for symbolic sized distributions. raise NotImplementedError("Currently, probability queries are not " "supported for random variables with symbolic sized distributions.") condition = rv_subs(condition) return FinitePSpace(self.domain, self.distribution).probability(condition) def conditional_space(self, condition): """ This method is used for transferring the computation to probability method because conditional space of random variables with symbolic dimensions is currently not possible. """ if self._is_symbolic: self domain = self.where(condition) prob = self.probability(condition) density = {key: val / prob for key, val in self._density.items() if domain._test(key)} return FinitePSpace(domain, density) class ProductFinitePSpace(IndependentProductPSpace, FinitePSpace): """ A collection of several independent finite probability spaces """ @property def domain(self): return ProductFiniteDomain(*[space.domain for space in self.spaces]) @property # type: ignore @cacheit def _density(self): proditer = product(*[iter(space._density.items()) for space in self.spaces]) d = {} for items in proditer: elems, probs = list(zip(*items)) elem = sumsets(elems) prob = Mul(*probs) d[elem] = d.get(elem, S.Zero) + prob return Dict(d) @property # type: ignore @cacheit def density(self): return Dict(self._density) def probability(self, condition): return FinitePSpace.probability(self, condition) def compute_density(self, expr): return FinitePSpace.compute_density(self, expr)
a43cf4adb2974e268d98c9a6cfbd1d3f717f2962ff5e1a022851d804db7541e5
from sympy.core.basic import Basic from sympy.stats.joint_rv import ProductPSpace from sympy.stats.rv import ProductDomain, _symbol_converter, Distribution class StochasticPSpace(ProductPSpace): """ Represents probability space of stochastic processes and their random variables. Contains mechanics to do computations for queries of stochastic processes. Explanation =========== Initialized by symbol, the specific process and distribution(optional) if the random indexed symbols of the process follows any specific distribution, like, in Bernoulli Process, each random indexed symbol follows Bernoulli distribution. For processes with memory, this parameter should not be passed. """ def __new__(cls, sym, process, distribution=None): sym = _symbol_converter(sym) from sympy.stats.stochastic_process_types import StochasticProcess if not isinstance(process, StochasticProcess): raise TypeError("`process` must be an instance of StochasticProcess.") if distribution is None: distribution = Distribution() return Basic.__new__(cls, sym, process, distribution) @property def process(self): """ The associated stochastic process. """ return self.args[1] @property def domain(self): return ProductDomain(self.process.index_set, self.process.state_space) @property def symbol(self): return self.args[0] @property def distribution(self): return self.args[2] def probability(self, condition, given_condition=None, evaluate=True, **kwargs): """ Transfers the task of handling queries to the specific stochastic process because every process has their own logic of handling such queries. """ return self.process.probability(condition, given_condition, evaluate, **kwargs) def compute_expectation(self, expr, condition=None, evaluate=True, **kwargs): """ Transfers the task of handling queries to the specific stochastic process because every process has their own logic of handling such queries. """ return self.process.expectation(expr, condition, evaluate, **kwargs)
413ba42297f1defd575edce38eaf92cc92069865ef928448d0b6fda61eea01cc
#!/usr/bin/env python from random import random from sympy.core.numbers import (I, Integer, pi) from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin from sympy.polys.polytools import factor from sympy.simplify.simplify import simplify from sympy.abc import x, y, z from timeit import default_timer as clock def bench_R1(): "real(f(f(f(f(f(f(f(f(f(f(i/2)))))))))))" def f(z): return sqrt(Integer(1)/3)*z**2 + I/3 f(f(f(f(f(f(f(f(f(f(I/2)))))))))).as_real_imag()[0] def bench_R2(): "Hermite polynomial hermite(15, y)" def hermite(n, y): if n == 1: return 2*y if n == 0: return 1 return (2*y*hermite(n - 1, y) - 2*(n - 1)*hermite(n - 2, y)).expand() hermite(15, y) def bench_R3(): "a = [bool(f==f) for _ in range(10)]" f = x + y + z [bool(f == f) for _ in range(10)] def bench_R4(): # we don't have Tuples pass def bench_R5(): "blowup(L, 8); L=uniq(L)" def blowup(L, n): for i in range(n): L.append( (L[i] + L[i + 1]) * L[i + 2] ) def uniq(x): v = set(x) return v L = [x, y, z] blowup(L, 8) L = uniq(L) def bench_R6(): "sum(simplify((x+sin(i))/x+(x-sin(i))/x) for i in range(100))" sum(simplify((x + sin(i))/x + (x - sin(i))/x) for i in range(100)) def bench_R7(): "[f.subs(x, random()) for _ in range(10**4)]" f = x**24 + 34*x**12 + 45*x**3 + 9*x**18 + 34*x**10 + 32*x**21 [f.subs(x, random()) for _ in range(10**4)] def bench_R8(): "right(x^2,0,5,10^4)" def right(f, a, b, n): a = sympify(a) b = sympify(b) n = sympify(n) x = f.atoms(Symbol).pop() Deltax = (b - a)/n c = a est = 0 for i in range(n): c += Deltax est += f.subs(x, c) return est*Deltax right(x**2, 0, 5, 10**4) def _bench_R9(): "factor(x^20 - pi^5*y^20)" factor(x**20 - pi**5*y**20) def bench_R10(): "v = [-pi,-pi+1/10..,pi]" def srange(min, max, step): v = [min] while (max - v[-1]).evalf() > 0: v.append(v[-1] + step) return v[:-1] srange(-pi, pi, sympify(1)/10) def bench_R11(): "a = [random() + random()*I for w in [0..1000]]" [random() + random()*I for w in range(1000)] def bench_S1(): "e=(x+y+z+1)**7;f=e*(e+1);f.expand()" e = (x + y + z + 1)**7 f = e*(e + 1) f.expand() if __name__ == '__main__': benchmarks = [ bench_R1, bench_R2, bench_R3, bench_R5, bench_R6, bench_R7, bench_R8, #_bench_R9, bench_R10, bench_R11, #bench_S1, ] report = [] for b in benchmarks: t = clock() b() t = clock() - t print("%s%65s: %f" % (b.__name__, b.__doc__, t))
94689aced43546c2ce024557d1db6ef8cc37c6019cd00b29987a19dec2007a0a
# conceal the implicit import from the code quality tester from sympy.core.numbers import (oo, pi) from sympy.core.symbol import (Symbol, symbols) from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.special.bessel import besseli from sympy.functions.special.gamma_functions import gamma from sympy.integrals.integrals import integrate from sympy.integrals.transforms import (mellin_transform, inverse_fourier_transform, inverse_mellin_transform, laplace_transform, inverse_laplace_transform, fourier_transform) LT = laplace_transform FT = fourier_transform MT = mellin_transform IFT = inverse_fourier_transform ILT = inverse_laplace_transform IMT = inverse_mellin_transform from sympy.abc import x, y nu, beta, rho = symbols('nu beta rho') apos, bpos, cpos, dpos, posk, p = symbols('a b c d k p', positive=True) k = Symbol('k', real=True) negk = Symbol('k', negative=True) mu1, mu2 = symbols('mu1 mu2', real=True, nonzero=True, finite=True) sigma1, sigma2 = symbols('sigma1 sigma2', real=True, nonzero=True, finite=True, positive=True) rate = Symbol('lambda', real=True, positive=True, finite=True) def normal(x, mu, sigma): return 1/sqrt(2*pi*sigma**2)*exp(-(x - mu)**2/2/sigma**2) def exponential(x, rate): return rate*exp(-rate*x) alpha, beta = symbols('alpha beta', positive=True) betadist = x**(alpha - 1)*(1 + x)**(-alpha - beta)*gamma(alpha + beta) \ /gamma(alpha)/gamma(beta) kint = Symbol('k', integer=True, positive=True) chi = 2**(1 - kint/2)*x**(kint - 1)*exp(-x**2/2)/gamma(kint/2) chisquared = 2**(-k/2)/gamma(k/2)*x**(k/2 - 1)*exp(-x/2) dagum = apos*p/x*(x/bpos)**(apos*p)/(1 + x**apos/bpos**apos)**(p + 1) d1, d2 = symbols('d1 d2', positive=True) f = sqrt(((d1*x)**d1 * d2**d2)/(d1*x + d2)**(d1 + d2))/x \ /gamma(d1/2)/gamma(d2/2)*gamma((d1 + d2)/2) nupos, sigmapos = symbols('nu sigma', positive=True) rice = x/sigmapos**2*exp(-(x**2 + nupos**2)/2/sigmapos**2)*besseli(0, x* nupos/sigmapos**2) mu = Symbol('mu', real=True) laplace = exp(-abs(x - mu)/bpos)/2/bpos u = Symbol('u', polar=True) tpos = Symbol('t', positive=True) def E(expr): integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1), (x, 0, oo), (y, -oo, oo), meijerg=True) integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1), (y, -oo, oo), (x, 0, oo), meijerg=True) bench = [ 'MT(x**nu*Heaviside(x - 1), x, s)', 'MT(x**nu*Heaviside(1 - x), x, s)', 'MT((1-x)**(beta - 1)*Heaviside(1-x), x, s)', 'MT((x-1)**(beta - 1)*Heaviside(x-1), x, s)', 'MT((1+x)**(-rho), x, s)', 'MT(abs(1-x)**(-rho), x, s)', 'MT((1-x)**(beta-1)*Heaviside(1-x) + a*(x-1)**(beta-1)*Heaviside(x-1), x, s)', 'MT((x**a-b**a)/(x-b), x, s)', 'MT((x**a-bpos**a)/(x-bpos), x, s)', 'MT(exp(-x), x, s)', 'MT(exp(-1/x), x, s)', 'MT(log(x)**4*Heaviside(1-x), x, s)', 'MT(log(x)**3*Heaviside(x-1), x, s)', 'MT(log(x + 1), x, s)', 'MT(log(1/x + 1), x, s)', 'MT(log(abs(1 - x)), x, s)', 'MT(log(abs(1 - 1/x)), x, s)', 'MT(log(x)/(x+1), x, s)', 'MT(log(x)**2/(x+1), x, s)', 'MT(log(x)/(x+1)**2, x, s)', 'MT(erf(sqrt(x)), x, s)', 'MT(besselj(a, 2*sqrt(x)), x, s)', 'MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s)', 'MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s)', 'MT(besselj(a, sqrt(x))**2, x, s)', 'MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s)', 'MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s)', 'MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s)', 'MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)', 'MT(bessely(a, 2*sqrt(x)), x, s)', 'MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s)', 'MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s)', 'MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s)', 'MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s)', 'MT(bessely(a, sqrt(x))**2, x, s)', 'MT(besselk(a, 2*sqrt(x)), x, s)', 'MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk(a, 2*sqrt(2*sqrt(x))), x, s)', 'MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s)', 'MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s)', 'MT(exp(-x/2)*besselk(a, x/2), x, s)', # later: ILT, IMT 'LT((t-apos)**bpos*exp(-cpos*(t-apos))*Heaviside(t-apos), t, s)', 'LT(t**apos, t, s)', 'LT(Heaviside(t), t, s)', 'LT(Heaviside(t - apos), t, s)', 'LT(1 - exp(-apos*t), t, s)', 'LT((exp(2*t)-1)*exp(-bpos - t)*Heaviside(t)/2, t, s, noconds=True)', 'LT(exp(t), t, s)', 'LT(exp(2*t), t, s)', 'LT(exp(apos*t), t, s)', 'LT(log(t/apos), t, s)', 'LT(erf(t), t, s)', 'LT(sin(apos*t), t, s)', 'LT(cos(apos*t), t, s)', 'LT(exp(-apos*t)*sin(bpos*t), t, s)', 'LT(exp(-apos*t)*cos(bpos*t), t, s)', 'LT(besselj(0, t), t, s, noconds=True)', 'LT(besselj(1, t), t, s, noconds=True)', 'FT(Heaviside(1 - abs(2*apos*x)), x, k)', 'FT(Heaviside(1-abs(apos*x))*(1-abs(apos*x)), x, k)', 'FT(exp(-apos*x)*Heaviside(x), x, k)', 'IFT(1/(apos + 2*pi*I*x), x, posk, noconds=False)', 'IFT(1/(apos + 2*pi*I*x), x, -posk, noconds=False)', 'IFT(1/(apos + 2*pi*I*x), x, negk)', 'FT(x*exp(-apos*x)*Heaviside(x), x, k)', 'FT(exp(-apos*x)*sin(bpos*x)*Heaviside(x), x, k)', 'FT(exp(-apos*x**2), x, k)', 'IFT(sqrt(pi/apos)*exp(-(pi*k)**2/apos), k, x)', 'FT(exp(-apos*abs(x)), x, k)', 'integrate(normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True)', 'integrate(x*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True)', 'integrate(x**2*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True)', 'integrate(x**3*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True)', 'integrate(normal(x, mu1, sigma1)*normal(y, mu2, sigma2),' ' (x, -oo, oo), (y, -oo, oo), meijerg=True)', 'integrate(x*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),' ' (x, -oo, oo), (y, -oo, oo), meijerg=True)', 'integrate(y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),' ' (x, -oo, oo), (y, -oo, oo), meijerg=True)', 'integrate(x*y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),' ' (x, -oo, oo), (y, -oo, oo), meijerg=True)', 'integrate((x+y+1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),' ' (x, -oo, oo), (y, -oo, oo), meijerg=True)', 'integrate((x+y-1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),' ' (x, -oo, oo), (y, -oo, oo), meijerg=True)', 'integrate(x**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),' ' (x, -oo, oo), (y, -oo, oo), meijerg=True)', 'integrate(y**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),' ' (x, -oo, oo), (y, -oo, oo), meijerg=True)', 'integrate(exponential(x, rate), (x, 0, oo), meijerg=True)', 'integrate(x*exponential(x, rate), (x, 0, oo), meijerg=True)', 'integrate(x**2*exponential(x, rate), (x, 0, oo), meijerg=True)', 'E(1)', 'E(x*y)', 'E(x*y**2)', 'E((x+y+1)**2)', 'E(x+y+1)', 'E((x+y-1)**2)', 'integrate(betadist, (x, 0, oo), meijerg=True)', 'integrate(x*betadist, (x, 0, oo), meijerg=True)', 'integrate(x**2*betadist, (x, 0, oo), meijerg=True)', 'integrate(chi, (x, 0, oo), meijerg=True)', 'integrate(x*chi, (x, 0, oo), meijerg=True)', 'integrate(x**2*chi, (x, 0, oo), meijerg=True)', 'integrate(chisquared, (x, 0, oo), meijerg=True)', 'integrate(x*chisquared, (x, 0, oo), meijerg=True)', 'integrate(x**2*chisquared, (x, 0, oo), meijerg=True)', 'integrate(((x-k)/sqrt(2*k))**3*chisquared, (x, 0, oo), meijerg=True)', 'integrate(dagum, (x, 0, oo), meijerg=True)', 'integrate(x*dagum, (x, 0, oo), meijerg=True)', 'integrate(x**2*dagum, (x, 0, oo), meijerg=True)', 'integrate(f, (x, 0, oo), meijerg=True)', 'integrate(x*f, (x, 0, oo), meijerg=True)', 'integrate(x**2*f, (x, 0, oo), meijerg=True)', 'integrate(rice, (x, 0, oo), meijerg=True)', 'integrate(laplace, (x, -oo, oo), meijerg=True)', 'integrate(x*laplace, (x, -oo, oo), meijerg=True)', 'integrate(x**2*laplace, (x, -oo, oo), meijerg=True)', 'integrate(log(x) * x**(k-1) * exp(-x) / gamma(k), (x, 0, oo))', 'integrate(sin(z*x)*(x**2-1)**(-(y+S(1)/2)), (x, 1, oo), meijerg=True)', 'integrate(besselj(0,x)*besselj(1,x)*exp(-x**2), (x, 0, oo), meijerg=True)', 'integrate(besselj(0,x)*besselj(1,x)*besselk(0,x), (x, 0, oo), meijerg=True)', 'integrate(besselj(0,x)*besselj(1,x)*exp(-x**2), (x, 0, oo), meijerg=True)', 'integrate(besselj(a,x)*besselj(b,x)/x, (x,0,oo), meijerg=True)', 'hyperexpand(meijerg((-s - a/2 + 1, -s + a/2 + 1), (-a/2 - S(1)/2, -s + a/2 + S(3)/2), (a/2, -a/2), (-a/2 - S(1)/2, -s + a/2 + S(3)/2), 1))', "gammasimp(S('2**(2*s)*(-pi*gamma(-a + 1)*gamma(a + 1)*gamma(-a - s + 1)*gamma(-a + s - 1/2)*gamma(a - s + 3/2)*gamma(a + s + 1)/(a*(a + s)) - gamma(-a - 1/2)*gamma(-a + 1)*gamma(a + 1)*gamma(a + 3/2)*gamma(-s + 3/2)*gamma(s - 1/2)*gamma(-a + s + 1)*gamma(a - s + 1)/(a*(-a + s)))*gamma(-2*s + 1)*gamma(s + 1)/(pi*s*gamma(-a - 1/2)*gamma(a + 3/2)*gamma(-s + 1)*gamma(-s + 3/2)*gamma(s - 1/2)*gamma(-a - s + 1)*gamma(-a + s - 1/2)*gamma(a - s + 1)*gamma(a - s + 3/2))'))", 'mellin_transform(E1(x), x, s)', 'inverse_mellin_transform(gamma(s)/s, s, x, (0, oo))', 'mellin_transform(expint(a, x), x, s)', 'mellin_transform(Si(x), x, s)', 'inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2)/(2*s*gamma(-s/2 + 1)), s, x, (-1, 0))', 'mellin_transform(Ci(sqrt(x)), x, s)', 'inverse_mellin_transform(-4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + S(1)/2)),s, u, (0, 1))', 'laplace_transform(Ci(x), x, s)', 'laplace_transform(expint(a, x), x, s)', 'laplace_transform(expint(1, x), x, s)', 'laplace_transform(expint(2, x), x, s)', 'inverse_laplace_transform(-log(1 + s**2)/2/s, s, u)', 'inverse_laplace_transform(log(s + 1)/s, s, x)', 'inverse_laplace_transform((s - log(s + 1))/s**2, s, x)', 'laplace_transform(Chi(x), x, s)', 'laplace_transform(Shi(x), x, s)', 'integrate(exp(-z*x)/x, (x, 1, oo), meijerg=True, conds="none")', 'integrate(exp(-z*x)/x**2, (x, 1, oo), meijerg=True, conds="none")', 'integrate(exp(-z*x)/x**3, (x, 1, oo), meijerg=True,conds="none")', 'integrate(-cos(x)/x, (x, tpos, oo), meijerg=True)', 'integrate(-sin(x)/x, (x, tpos, oo), meijerg=True)', 'integrate(sin(x)/x, (x, 0, z), meijerg=True)', 'integrate(sinh(x)/x, (x, 0, z), meijerg=True)', 'integrate(exp(-x)/x, x, meijerg=True)', 'integrate(exp(-x)/x**2, x, meijerg=True)', 'integrate(cos(u)/u, u, meijerg=True)', 'integrate(cosh(u)/u, u, meijerg=True)', 'integrate(expint(1, x), x, meijerg=True)', 'integrate(expint(2, x), x, meijerg=True)', 'integrate(Si(x), x, meijerg=True)', 'integrate(Ci(u), u, meijerg=True)', 'integrate(Shi(x), x, meijerg=True)', 'integrate(Chi(u), u, meijerg=True)', 'integrate(Si(x)*exp(-x), (x, 0, oo), meijerg=True)', 'integrate(expint(1, x)*sin(x), (x, 0, oo), meijerg=True)' ] from time import time from sympy.core.cache import clear_cache import sys timings = [] if __name__ == '__main__': for n, string in enumerate(bench): clear_cache() _t = time() exec(string) _t = time() - _t timings += [(_t, string)] sys.stdout.write('.') sys.stdout.flush() if n % (len(bench) // 10) == 0: sys.stdout.write('%s' % (10*n // len(bench))) print() timings.sort(key=lambda x: -x[0]) for ti, string in timings: print('%.2fs %s' % (ti, string))
527bc7491e93b64e1393330969a1d2a52318189e887322479b1440af1e3dad84
from sympy.core.numbers import oo from sympy.core.relational import Eq from sympy.core.symbol import symbols from sympy.polys.domains import FiniteField, QQ, RationalField, FF from sympy.solvers.solvers import solve from sympy.utilities.iterables import is_sequence from sympy.utilities.misc import as_int from .factor_ import divisors from .residue_ntheory import polynomial_congruence class EllipticCurve: """ Create the following Elliptic Curve over domain. `y^{2} + a_{1} x y + a_{3} y = x^{3} + a_{2} x^{2} + a_{4} x + a_{6}` The default domain is ``QQ``. If no coefficient ``a1``, ``a2``, ``a3``, it create curve as following form. `y^{2} = x^{3} + a_{4} x + a_{6}` Examples ======== References ========== .. [1] J. Silverman "A Friendly Introduction to Number Theory" Third Edition .. [2] http://mathworld.wolfram.com/EllipticDiscriminant.html .. [3] G. Hardy, E. Wright "An Introduction to the Theory of Numbers" Sixth Edition """ def __init__(self, a4, a6, a1=0, a2=0, a3=0, modulus = 0): if modulus == 0: domain = QQ else: domain = FF(modulus) a1, a2, a3, a4, a6 = map(domain.convert, (a1, a2, a3, a4, a6)) self._domain = domain self.modulus = modulus # Calculate discriminant b2 = a1**2 + 4 * a2 b4 = 2 * a4 + a1 * a3 b6 = a3**2 + 4 * a6 b8 = a1**2 * a6 + 4 * a2 * a6 - a1 * a3 * a4 + a2 * a3**2 - a4**2 self._b2, self._b4, self._b6, self._b8 = b2, b4, b6, b8 self._discrim = -b2**2 * b8 - 8 * b4**3 - 27 * b6**2 + 9 * b2 * b4 * b6 self._a1 = a1 self._a2 = a2 self._a3 = a3 self._a4 = a4 self._a6 = a6 x, y, z = symbols('x y z') self.x, self.y, self.z = x, y, z self._eq = Eq(y**2*z + a1*x*y*z + a3*y*z**2, x**3 + a2*x**2*z + a4*x*z**2 + a6*z**3) if isinstance(self._domain, FiniteField): self._rank = 0 elif isinstance(self._domain, RationalField): self._rank = None def __call__(self, x, y, z=1): return EllipticCurvePoint(x, y, z, self) def __contains__(self, point): if is_sequence(point): if len(point) == 2: z1 = 1 else: z1 = point[2] x1, y1 = point[:2] elif isinstance(point, EllipticCurvePoint): x1, y1, z1 = point.x, point.y, point.z else: raise ValueError('Invalid point.') if self.characteristic == 0 and z1 == 0: return True return self._eq.subs({self.x: x1, self.y: y1, self.z: z1}) def __repr__(self): return 'E({}): {}'.format(self._domain, self._eq) def minimal(self): """ Return minimal Weierstrass equation. Examples ======== >>> from sympy.ntheory.elliptic_curve import EllipticCurve >>> e1 = EllipticCurve(-10, -20, 0, -1, 1) >>> e1.minimal() E(QQ): Eq(y**2*z, x**3 - 13392*x*z**2 - 1080432*z**3) """ char = self.characteristic if char == 2: return self if char == 3: return EllipticCurve(self._b4/2, self._b6/4, a2=self._b2/4, modulus=self.modulus) c4 = self._b2**2 - 24*self._b4 c6 = -self._b2**3 + 36*self._b2*self._b4 - 216*self._b6 return EllipticCurve(-27*c4, -54*c6, modulus=self.modulus) def points(self): """ Return points of curve over Finite Field. Examples ======== >>> from sympy.ntheory.elliptic_curve import EllipticCurve >>> e2 = EllipticCurve(1, 1, 1, 1, 1, modulus=5) >>> e2.points() {(0, 2), (1, 4), (2, 0), (2, 2), (3, 0), (3, 1), (4, 0)} """ char = self.characteristic all_pt = set() if char >= 1: for i in range(char): congruence_eq = ((self._eq.lhs - self._eq.rhs).subs({self.x: i, self.z: 1})) sol = polynomial_congruence(congruence_eq, char) for num in sol: all_pt.add((i, num)) return all_pt else: raise ValueError("Infinitely many points") def points_x(self, x): "Returns points on with curve where xcoordinate = x" pt = [] if self._domain == QQ: for y in solve(self._eq.subs(self.x, x)): pt.append((x, y)) congruence_eq = ((self._eq.lhs - self._eq.rhs).subs({self.x: x, self.z: 1})) for y in polynomial_congruence(congruence_eq, self.characteristic): pt.append((x, y)) return pt def torsion_points(self): """ Return torsion points of curve over Rational number. Return point objects those are finite order. According to Nagell-Lutz theorem, torsion point p(x, y) x and y are integers, either y = 0 or y**2 is divisor of discriminent. According to Mazur's theorem, there are at most 15 points in torsion collection. Examples ======== >>> from sympy.ntheory.elliptic_curve import EllipticCurve >>> e2 = EllipticCurve(-43, 166) >>> sorted(e2.torsion_points()) [(-5, -16), (-5, 16), O, (3, -8), (3, 8), (11, -32), (11, 32)] """ if self.characteristic > 0: raise ValueError("No torsion point for Finite Field.") l = [EllipticCurvePoint.point_at_infinity(self)] for xx in solve(self._eq.subs({self.y: 0, self.z: 1})): if xx.is_rational: l.append(self(xx, 0)) for i in divisors(self.discriminant, generator=True): j = int(i**.5) if j**2 == i: for xx in solve(self._eq.subs({self.y: j, self.z: 1})): if not xx.is_rational: continue p = self(xx, j) if p.order() != oo: l.extend([p, -p]) return l @property def characteristic(self): """ Return domain characteristic. Examples ======== >>> from sympy.ntheory.elliptic_curve import EllipticCurve >>> e2 = EllipticCurve(-43, 166) >>> e2.characteristic 0 """ return self._domain.characteristic() @property def discriminant(self): """ Return curve discriminant. Examples ======== >>> from sympy.ntheory.elliptic_curve import EllipticCurve >>> e2 = EllipticCurve(0, 17) >>> e2.discriminant -124848 """ return int(self._discrim) @property def is_singular(self): """ Return True if curve discriminant is equal to zero. """ return self.discriminant == 0 @property def j_invariant(self): """ Return curve j-invariant. Examples ======== >>> from sympy.ntheory.elliptic_curve import EllipticCurve >>> e1 = EllipticCurve(-2, 0, 0, 1, 1) >>> e1.j_invariant 1404928/389 """ c4 = self._b2**2 - 24*self._b4 return self._domain.to_sympy(c4**3 / self._discrim) @property def order(self): """ Number of points in Finite field. Examples ======== >>> from sympy.ntheory.elliptic_curve import EllipticCurve >>> e2 = EllipticCurve(1, 0, modulus=19) >>> e2.order 19 """ if self.characteristic == 0: raise NotImplementedError("Still not implemented") return len(list(self.points())) @property def rank(self): """ Number of independent points of infinite order. For Finite field, it must be 0. """ if self._rank is not None: return self._rank raise NotImplementedError("Still not implemented") class EllipticCurvePoint: """ Point of Elliptic Curve Examples ======== >>> from sympy.ntheory.elliptic_curve import EllipticCurve >>> e1 = EllipticCurve(-17, 16) >>> p1 = e1(0, -4, 1) >>> p2 = e1(1, 0) >>> p1 + p2 (15, -56) >>> e3 = EllipticCurve(-1, 9) >>> e3(1, -3) * 3 (664/169, 17811/2197) >>> (e3(1, -3) * 3).order() oo >>> e2 = EllipticCurve(-2, 0, 0, 1, 1) >>> p = e2(-1,1) >>> q = e2(0, -1) >>> p+q (4, 8) >>> p-q (1, 0) >>> 3*p-5*q (328/361, -2800/6859) """ @staticmethod def point_at_infinity(curve): return EllipticCurvePoint(0, 1, 0, curve) def __init__(self, x, y, z, curve): dom = curve._domain.convert self.x = dom(x) self.y = dom(y) self.z = dom(z) self._curve = curve self._domain = self._curve._domain if not self._curve.__contains__(self): raise ValueError("The curve does not contain this point") def __add__(self, p): if self.z == 0: return p if p.z == 0: return self x1, y1 = self.x/self.z, self.y/self.z x2, y2 = p.x/p.z, p.y/p.z a1 = self._curve._a1 a2 = self._curve._a2 a3 = self._curve._a3 a4 = self._curve._a4 a6 = self._curve._a6 if x1 != x2: slope = (y1 - y2) / (x1 - x2) yint = (y1 * x2 - y2 * x1) / (x2 - x1) else: if (y1 + y2) == 0: return self.point_at_infinity(self._curve) slope = (3 * x1**2 + 2*a2*x1 + a4 - a1*y1) / (a1 * x1 + a3 + 2 * y1) yint = (-x1**3 + a4*x1 + 2*a6 - a3*y1) / (a1*x1 + a3 + 2*y1) x3 = slope**2 + a1*slope - a2 - x1 - x2 y3 = -(slope + a1) * x3 - yint - a3 return self._curve(x3, y3, 1) def __lt__(self, other): return (self.x, self.y, self.z) < (other.x, other.y, other.z) def __mul__(self, n): n = as_int(n) r = self.point_at_infinity(self._curve) if n == 0: return r if n < 0: return -self * -n p = self while n: if n & 1: r = r + p n >>= 1 p = p + p return r def __rmul__(self, n): return self * n def __neg__(self): return EllipticCurvePoint(self.x, -self.y - self._curve._a1*self.x - self._curve._a3, self.z, self._curve) def __repr__(self): if self.z == 0: return 'O' dom = self._curve._domain try: return '({}, {})'.format(dom.to_sympy(self.x), dom.to_sympy(self.y)) except TypeError: pass return '({}, {})'.format(self.x, self.y) def __sub__(self, other): return self.__add__(-other) def order(self): """ Return point order n where nP = 0. """ if self.z == 0: return 1 if self.y == 0: # P = -P return 2 p = self * 2 if p.y == -self.y: # 2P = -P return 3 i = 2 if self._domain != QQ: while int(p.x) == p.x and int(p.y) == p.y: p = self + p i += 1 if p.z == 0: return i return oo while p.x.numerator == p.x and p.y.numerator == p.y: p = self + p i += 1 if i > 12: return oo if p.z == 0: return i return oo
dc57fe8a1c848aab88a8355479413b1b2003def71b66b9a077f0cfbb37ef4de5
''' This implementation is a heavily modified fixed point implementation of BBP_formula for calculating the nth position of pi. The original hosted at: http://en.literateprograms.org/Pi_with_the_BBP_formula_(Python) # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sub-license, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Modifications: 1.Once the nth digit and desired number of digits is selected, the number of digits of working precision is calculated to ensure that the hexadecimal digits returned are accurate. This is calculated as int(math.log(start + prec)/math.log(16) + prec + 3) --------------------------------------- -------- / / number of hex digits additional digits This was checked by the following code which completed without errors (and dig are the digits included in the test_bbp.py file): for i in range(0,1000): for j in range(1,1000): a, b = pi_hex_digits(i, j), dig[i:i+j] if a != b: print('%s\n%s'%(a,b)) Deceasing the additional digits by 1 generated errors, so '3' is the smallest additional precision needed to calculate the above loop without errors. The following trailing 10 digits were also checked to be accurate (and the times were slightly faster with some of the constant modifications that were made): >> from time import time >> t=time();pi_hex_digits(10**2-10 + 1, 10), time()-t ('e90c6cc0ac', 0.0) >> t=time();pi_hex_digits(10**4-10 + 1, 10), time()-t ('26aab49ec6', 0.17100000381469727) >> t=time();pi_hex_digits(10**5-10 + 1, 10), time()-t ('a22673c1a5', 4.7109999656677246) >> t=time();pi_hex_digits(10**6-10 + 1, 10), time()-t ('9ffd342362', 59.985999822616577) >> t=time();pi_hex_digits(10**7-10 + 1, 10), time()-t ('c1a42e06a1', 689.51800012588501) 2. The while loop to evaluate whether the series has converged quits when the addition amount `dt` has dropped to zero. 3. the formatting string to convert the decimal to hexadecimal is calculated for the given precision. 4. pi_hex_digits(n) changed to have coefficient to the formula in an array (perhaps just a matter of preference). ''' import math from sympy.utilities.misc import as_int def _series(j, n, prec=14): # Left sum from the bbp algorithm s = 0 D = _dn(n, prec) D4 = 4 * D k = 0 d = 8 * k + j for k in range(n + 1): s += (pow(16, n - k, d) << D4) // d d += 8 # Right sum iterates to infinity for full precision, but we # stop at the point where one iteration is beyond the precision # specified. t = 0 k = n + 1 e = 4*(D + n - k) d = 8 * k + j while True: dt = (1 << e) // d if not dt: break t += dt # k += 1 e -= 4 d += 8 total = s + t return total def pi_hex_digits(n, prec=14): """Returns a string containing ``prec`` (default 14) digits starting at the nth digit of pi in hex. Counting of digits starts at 0 and the decimal is not counted, so for n = 0 the returned value starts with 3; n = 1 corresponds to the first digit past the decimal point (which in hex is 2). Examples ======== >>> from sympy.ntheory.bbp_pi import pi_hex_digits >>> pi_hex_digits(0) '3243f6a8885a30' >>> pi_hex_digits(0, 3) '324' References ========== .. [1] http://www.numberworld.org/digits/Pi/ """ n, prec = as_int(n), as_int(prec) if n < 0: raise ValueError('n cannot be negative') if prec == 0: return '' # main of implementation arrays holding formulae coefficients n -= 1 a = [4, 2, 1, 1] j = [1, 4, 5, 6] #formulae D = _dn(n, prec) x = + (a[0]*_series(j[0], n, prec) - a[1]*_series(j[1], n, prec) - a[2]*_series(j[2], n, prec) - a[3]*_series(j[3], n, prec)) & (16**D - 1) s = ("%0" + "%ix" % prec) % (x // 16**(D - prec)) return s def _dn(n, prec): # controller for n dependence on precision # n = starting digit index # prec = the number of total digits to compute n += 1 # because we subtract 1 for _series return int(math.log(n + prec)/math.log(16) + prec + 3)
3f8c7591b1957436f825b09d8b120179ce75d895f421fadf3393b123bdd01157
""" Generating and counting primes. """ import random from bisect import bisect from itertools import count # Using arrays for sieving instead of lists greatly reduces # memory consumption from array import array as _array from sympy.core.function import Function from sympy.core.singleton import S from .primetest import isprime from sympy.utilities.misc import as_int def _azeros(n): return _array('l', [0]*n) def _aset(*v): return _array('l', v) def _arange(a, b): return _array('l', range(a, b)) class Sieve: """An infinite list of prime numbers, implemented as a dynamically growing sieve of Eratosthenes. When a lookup is requested involving an odd number that has not been sieved, the sieve is automatically extended up to that number. Examples ======== >>> from sympy import sieve >>> sieve._reset() # this line for doctest only >>> 25 in sieve False >>> sieve._list array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23]) """ # data shared (and updated) by all Sieve instances def __init__(self): self._n = 6 self._list = _aset(2, 3, 5, 7, 11, 13) # primes self._tlist = _aset(0, 1, 1, 2, 2, 4) # totient self._mlist = _aset(0, 1, -1, -1, 0, -1) # mobius assert all(len(i) == self._n for i in (self._list, self._tlist, self._mlist)) def __repr__(self): return ("<%s sieve (%i): %i, %i, %i, ... %i, %i\n" "%s sieve (%i): %i, %i, %i, ... %i, %i\n" "%s sieve (%i): %i, %i, %i, ... %i, %i>") % ( 'prime', len(self._list), self._list[0], self._list[1], self._list[2], self._list[-2], self._list[-1], 'totient', len(self._tlist), self._tlist[0], self._tlist[1], self._tlist[2], self._tlist[-2], self._tlist[-1], 'mobius', len(self._mlist), self._mlist[0], self._mlist[1], self._mlist[2], self._mlist[-2], self._mlist[-1]) def _reset(self, prime=None, totient=None, mobius=None): """Reset all caches (default). To reset one or more set the desired keyword to True.""" if all(i is None for i in (prime, totient, mobius)): prime = totient = mobius = True if prime: self._list = self._list[:self._n] if totient: self._tlist = self._tlist[:self._n] if mobius: self._mlist = self._mlist[:self._n] def extend(self, n): """Grow the sieve to cover all primes <= n (a real number). Examples ======== >>> from sympy import sieve >>> sieve._reset() # this line for doctest only >>> sieve.extend(30) >>> sieve[10] == 29 True """ n = int(n) if n <= self._list[-1]: return # We need to sieve against all bases up to sqrt(n). # This is a recursive call that will do nothing if there are enough # known bases already. maxbase = int(n**0.5) + 1 self.extend(maxbase) # Create a new sieve starting from sqrt(n) begin = self._list[-1] + 1 newsieve = _arange(begin, n + 1) # Now eliminate all multiples of primes in [2, sqrt(n)] for p in self.primerange(maxbase): # Start counting at a multiple of p, offsetting # the index to account for the new sieve's base index startindex = (-begin) % p for i in range(startindex, len(newsieve), p): newsieve[i] = 0 # Merge the sieves self._list += _array('l', [x for x in newsieve if x]) def extend_to_no(self, i): """Extend to include the ith prime number. Parameters ========== i : integer Examples ======== >>> from sympy import sieve >>> sieve._reset() # this line for doctest only >>> sieve.extend_to_no(9) >>> sieve._list array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23]) Notes ===== The list is extended by 50% if it is too short, so it is likely that it will be longer than requested. """ i = as_int(i) while len(self._list) < i: self.extend(int(self._list[-1] * 1.5)) def primerange(self, a, b=None): """Generate all prime numbers in the range [2, a) or [a, b). Examples ======== >>> from sympy import sieve, prime All primes less than 19: >>> print([i for i in sieve.primerange(19)]) [2, 3, 5, 7, 11, 13, 17] All primes greater than or equal to 7 and less than 19: >>> print([i for i in sieve.primerange(7, 19)]) [7, 11, 13, 17] All primes through the 10th prime >>> list(sieve.primerange(prime(10) + 1)) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] """ from sympy.functions.elementary.integers import ceiling # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not if b is None: b = as_int(ceiling(a)) a = 2 else: a = max(2, as_int(ceiling(a))) b = as_int(ceiling(b)) if a >= b: return self.extend(b) i = self.search(a)[1] maxi = len(self._list) + 1 while i < maxi: p = self._list[i - 1] if p < b: yield p i += 1 else: return def totientrange(self, a, b): """Generate all totient numbers for the range [a, b). Examples ======== >>> from sympy import sieve >>> print([i for i in sieve.totientrange(7, 18)]) [6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16] """ from sympy.functions.elementary.integers import ceiling # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not a = max(1, as_int(ceiling(a))) b = as_int(ceiling(b)) n = len(self._tlist) if a >= b: return elif b <= n: for i in range(a, b): yield self._tlist[i] else: self._tlist += _arange(n, b) for i in range(1, n): ti = self._tlist[i] startindex = (n + i - 1) // i * i for j in range(startindex, b, i): self._tlist[j] -= ti if i >= a: yield ti for i in range(n, b): ti = self._tlist[i] for j in range(2 * i, b, i): self._tlist[j] -= ti if i >= a: yield ti def mobiusrange(self, a, b): """Generate all mobius numbers for the range [a, b). Parameters ========== a : integer First number in range b : integer First number outside of range Examples ======== >>> from sympy import sieve >>> print([i for i in sieve.mobiusrange(7, 18)]) [-1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1] """ from sympy.functions.elementary.integers import ceiling # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not a = max(1, as_int(ceiling(a))) b = as_int(ceiling(b)) n = len(self._mlist) if a >= b: return elif b <= n: for i in range(a, b): yield self._mlist[i] else: self._mlist += _azeros(b - n) for i in range(1, n): mi = self._mlist[i] startindex = (n + i - 1) // i * i for j in range(startindex, b, i): self._mlist[j] -= mi if i >= a: yield mi for i in range(n, b): mi = self._mlist[i] for j in range(2 * i, b, i): self._mlist[j] -= mi if i >= a: yield mi def search(self, n): """Return the indices i, j of the primes that bound n. If n is prime then i == j. Although n can be an expression, if ceiling cannot convert it to an integer then an n error will be raised. Examples ======== >>> from sympy import sieve >>> sieve.search(25) (9, 10) >>> sieve.search(23) (9, 9) """ from sympy.functions.elementary.integers import ceiling # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not test = as_int(ceiling(n)) n = as_int(n) if n < 2: raise ValueError("n should be >= 2 but got: %s" % n) if n > self._list[-1]: self.extend(n) b = bisect(self._list, n) if self._list[b - 1] == test: return b, b else: return b, b + 1 def __contains__(self, n): try: n = as_int(n) assert n >= 2 except (ValueError, AssertionError): return False if n % 2 == 0: return n == 2 a, b = self.search(n) return a == b def __iter__(self): for n in count(1): yield self[n] def __getitem__(self, n): """Return the nth prime number""" if isinstance(n, slice): self.extend_to_no(n.stop) # Python 2.7 slices have 0 instead of None for start, so # we can't default to 1. start = n.start if n.start is not None else 0 if start < 1: # sieve[:5] would be empty (starting at -1), let's # just be explicit and raise. raise IndexError("Sieve indices start at 1.") return self._list[start - 1:n.stop - 1:n.step] else: if n < 1: # offset is one, so forbid explicit access to sieve[0] # (would surprisingly return the last one). raise IndexError("Sieve indices start at 1.") n = as_int(n) self.extend_to_no(n) return self._list[n - 1] # Generate a global object for repeated use in trial division etc sieve = Sieve() def prime(nth): """ Return the nth prime, with the primes indexed as prime(1) = 2, prime(2) = 3, etc.... The nth prime is approximately n*log(n). Logarithmic integral of x is a pretty nice approximation for number of primes <= x, i.e. li(x) ~ pi(x) In fact, for the numbers we are concerned about( x<1e11 ), li(x) - pi(x) < 50000 Also, li(x) > pi(x) can be safely assumed for the numbers which can be evaluated by this function. Here, we find the least integer m such that li(m) > n using binary search. Now pi(m-1) < li(m-1) <= n, We find pi(m - 1) using primepi function. Starting from m, we have to find n - pi(m-1) more primes. For the inputs this implementation can handle, we will have to test primality for at max about 10**5 numbers, to get our answer. Examples ======== >>> from sympy import prime >>> prime(10) 29 >>> prime(1) 2 >>> prime(100000) 1299709 See Also ======== sympy.ntheory.primetest.isprime : Test if n is prime primerange : Generate all primes in a given range primepi : Return the number of primes less than or equal to n References ========== .. [1] https://en.wikipedia.org/wiki/Prime_number_theorem#Table_of_.CF.80.28x.29.2C_x_.2F_log_x.2C_and_li.28x.29 .. [2] https://en.wikipedia.org/wiki/Prime_number_theorem#Approximations_for_the_nth_prime_number .. [3] https://en.wikipedia.org/wiki/Skewes%27_number """ n = as_int(nth) if n < 1: raise ValueError("nth must be a positive integer; prime(1) == 2") if n <= len(sieve._list): return sieve[n] from sympy.functions.special.error_functions import li from sympy.functions.elementary.exponential import log a = 2 # Lower bound for binary search b = int(n*(log(n) + log(log(n)))) # Upper bound for the search. while a < b: mid = (a + b) >> 1 if li(mid) > n: b = mid else: a = mid + 1 n_primes = primepi(a - 1) while n_primes < n: if isprime(a): n_primes += 1 a += 1 return a - 1 class primepi(Function): """ Represents the prime counting function pi(n) = the number of prime numbers less than or equal to n. Algorithm Description: In sieve method, we remove all multiples of prime p except p itself. Let phi(i,j) be the number of integers 2 <= k <= i which remain after sieving from primes less than or equal to j. Clearly, pi(n) = phi(n, sqrt(n)) If j is not a prime, phi(i,j) = phi(i, j - 1) if j is a prime, We remove all numbers(except j) whose smallest prime factor is j. Let x= j*a be such a number, where 2 <= a<= i / j Now, after sieving from primes <= j - 1, a must remain (because x, and hence a has no prime factor <= j - 1) Clearly, there are phi(i / j, j - 1) such a which remain on sieving from primes <= j - 1 Now, if a is a prime less than equal to j - 1, x= j*a has smallest prime factor = a, and has already been removed(by sieving from a). So, we don't need to remove it again. (Note: there will be pi(j - 1) such x) Thus, number of x, that will be removed are: phi(i / j, j - 1) - phi(j - 1, j - 1) (Note that pi(j - 1) = phi(j - 1, j - 1)) => phi(i,j) = phi(i, j - 1) - phi(i / j, j - 1) + phi(j - 1, j - 1) So,following recursion is used and implemented as dp: phi(a, b) = phi(a, b - 1), if b is not a prime phi(a, b) = phi(a, b-1)-phi(a / b, b-1) + phi(b-1, b-1), if b is prime Clearly a is always of the form floor(n / k), which can take at most 2*sqrt(n) values. Two arrays arr1,arr2 are maintained arr1[i] = phi(i, j), arr2[i] = phi(n // i, j) Finally the answer is arr2[1] Examples ======== >>> from sympy import primepi, prime, prevprime, isprime >>> primepi(25) 9 So there are 9 primes less than or equal to 25. Is 25 prime? >>> isprime(25) False It isn't. So the first prime less than 25 must be the 9th prime: >>> prevprime(25) == prime(9) True See Also ======== sympy.ntheory.primetest.isprime : Test if n is prime primerange : Generate all primes in a given range prime : Return the nth prime """ @classmethod def eval(cls, n): if n is S.Infinity: return S.Infinity if n is S.NegativeInfinity: return S.Zero try: n = int(n) except TypeError: if n.is_real == False or n is S.NaN: raise ValueError("n must be real") return if n < 2: return S.Zero if n <= sieve._list[-1]: return S(sieve.search(n)[0]) lim = int(n ** 0.5) lim -= 1 lim = max(lim, 0) while lim * lim <= n: lim += 1 lim -= 1 arr1 = [0] * (lim + 1) arr2 = [0] * (lim + 1) for i in range(1, lim + 1): arr1[i] = i - 1 arr2[i] = n // i - 1 for i in range(2, lim + 1): # Presently, arr1[k]=phi(k,i - 1), # arr2[k] = phi(n // k,i - 1) if arr1[i] == arr1[i - 1]: continue p = arr1[i - 1] for j in range(1, min(n // (i * i), lim) + 1): st = i * j if st <= lim: arr2[j] -= arr2[st] - p else: arr2[j] -= arr1[n // st] - p lim2 = min(lim, i * i - 1) for j in range(lim, lim2, -1): arr1[j] -= arr1[j // i] - p return S(arr2[1]) def nextprime(n, ith=1): """ Return the ith prime greater than n. i must be an integer. Notes ===== Potential primes are located at 6*j +/- 1. This property is used during searching. >>> from sympy import nextprime >>> [(i, nextprime(i)) for i in range(10, 15)] [(10, 11), (11, 13), (12, 13), (13, 17), (14, 17)] >>> nextprime(2, ith=2) # the 2nd prime after 2 5 See Also ======== prevprime : Return the largest prime smaller than n primerange : Generate all primes in a given range """ n = int(n) i = as_int(ith) if i > 1: pr = n j = 1 while 1: pr = nextprime(pr) j += 1 if j > i: break return pr if n < 2: return 2 if n < 7: return {2: 3, 3: 5, 4: 5, 5: 7, 6: 7}[n] if n <= sieve._list[-2]: l, u = sieve.search(n) if l == u: return sieve[u + 1] else: return sieve[u] nn = 6*(n//6) if nn == n: n += 1 if isprime(n): return n n += 4 elif n - nn == 5: n += 2 if isprime(n): return n n += 4 else: n = nn + 5 while 1: if isprime(n): return n n += 2 if isprime(n): return n n += 4 def prevprime(n): """ Return the largest prime smaller than n. Notes ===== Potential primes are located at 6*j +/- 1. This property is used during searching. >>> from sympy import prevprime >>> [(i, prevprime(i)) for i in range(10, 15)] [(10, 7), (11, 7), (12, 11), (13, 11), (14, 13)] See Also ======== nextprime : Return the ith prime greater than n primerange : Generates all primes in a given range """ from sympy.functions.elementary.integers import ceiling # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not n = as_int(ceiling(n)) if n < 3: raise ValueError("no preceding primes") if n < 8: return {3: 2, 4: 3, 5: 3, 6: 5, 7: 5}[n] if n <= sieve._list[-1]: l, u = sieve.search(n) if l == u: return sieve[l-1] else: return sieve[l] nn = 6*(n//6) if n - nn <= 1: n = nn - 1 if isprime(n): return n n -= 4 else: n = nn + 1 while 1: if isprime(n): return n n -= 2 if isprime(n): return n n -= 4 def primerange(a, b=None): """ Generate a list of all prime numbers in the range [2, a), or [a, b). If the range exists in the default sieve, the values will be returned from there; otherwise values will be returned but will not modify the sieve. Examples ======== >>> from sympy import primerange, prime All primes less than 19: >>> list(primerange(19)) [2, 3, 5, 7, 11, 13, 17] All primes greater than or equal to 7 and less than 19: >>> list(primerange(7, 19)) [7, 11, 13, 17] All primes through the 10th prime >>> list(primerange(prime(10) + 1)) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] The Sieve method, primerange, is generally faster but it will occupy more memory as the sieve stores values. The default instance of Sieve, named sieve, can be used: >>> from sympy import sieve >>> list(sieve.primerange(1, 30)) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] Notes ===== Some famous conjectures about the occurrence of primes in a given range are [1]: - Twin primes: though often not, the following will give 2 primes an infinite number of times: primerange(6*n - 1, 6*n + 2) - Legendre's: the following always yields at least one prime primerange(n**2, (n+1)**2+1) - Bertrand's (proven): there is always a prime in the range primerange(n, 2*n) - Brocard's: there are at least four primes in the range primerange(prime(n)**2, prime(n+1)**2) The average gap between primes is log(n) [2]; the gap between primes can be arbitrarily large since sequences of composite numbers are arbitrarily large, e.g. the numbers in the sequence n! + 2, n! + 3 ... n! + n are all composite. See Also ======== prime : Return the nth prime nextprime : Return the ith prime greater than n prevprime : Return the largest prime smaller than n randprime : Returns a random prime in a given range primorial : Returns the product of primes based on condition Sieve.primerange : return range from already computed primes or extend the sieve to contain the requested range. References ========== .. [1] https://en.wikipedia.org/wiki/Prime_number .. [2] http://primes.utm.edu/notes/gaps.html """ from sympy.functions.elementary.integers import ceiling if b is None: a, b = 2, a if a >= b: return # if we already have the range, return it if b <= sieve._list[-1]: yield from sieve.primerange(a, b) return # otherwise compute, without storing, the desired range. # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not a = as_int(ceiling(a)) - 1 b = as_int(ceiling(b)) while 1: a = nextprime(a) if a < b: yield a else: return def randprime(a, b): """ Return a random prime number in the range [a, b). Bertrand's postulate assures that randprime(a, 2*a) will always succeed for a > 1. Examples ======== >>> from sympy import randprime, isprime >>> randprime(1, 30) #doctest: +SKIP 13 >>> isprime(randprime(1, 30)) True See Also ======== primerange : Generate all primes in a given range References ========== .. [1] https://en.wikipedia.org/wiki/Bertrand's_postulate """ if a >= b: return a, b = map(int, (a, b)) n = random.randint(a - 1, b) p = nextprime(n) if p >= b: p = prevprime(b) if p < a: raise ValueError("no primes exist in the specified range") return p def primorial(n, nth=True): """ Returns the product of the first n primes (default) or the primes less than or equal to n (when ``nth=False``). Examples ======== >>> from sympy.ntheory.generate import primorial, primerange >>> from sympy import factorint, Mul, primefactors, sqrt >>> primorial(4) # the first 4 primes are 2, 3, 5, 7 210 >>> primorial(4, nth=False) # primes <= 4 are 2 and 3 6 >>> primorial(1) 2 >>> primorial(1, nth=False) 1 >>> primorial(sqrt(101), nth=False) 210 One can argue that the primes are infinite since if you take a set of primes and multiply them together (e.g. the primorial) and then add or subtract 1, the result cannot be divided by any of the original factors, hence either 1 or more new primes must divide this product of primes. In this case, the number itself is a new prime: >>> factorint(primorial(4) + 1) {211: 1} In this case two new primes are the factors: >>> factorint(primorial(4) - 1) {11: 1, 19: 1} Here, some primes smaller and larger than the primes multiplied together are obtained: >>> p = list(primerange(10, 20)) >>> sorted(set(primefactors(Mul(*p) + 1)).difference(set(p))) [2, 5, 31, 149] See Also ======== primerange : Generate all primes in a given range """ if nth: n = as_int(n) else: n = int(n) if n < 1: raise ValueError("primorial argument must be >= 1") p = 1 if nth: for i in range(1, n + 1): p *= prime(i) else: for i in primerange(2, n + 1): p *= i return p def cycle_length(f, x0, nmax=None, values=False): """For a given iterated sequence, return a generator that gives the length of the iterated cycle (lambda) and the length of terms before the cycle begins (mu); if ``values`` is True then the terms of the sequence will be returned instead. The sequence is started with value ``x0``. Note: more than the first lambda + mu terms may be returned and this is the cost of cycle detection with Brent's method; there are, however, generally less terms calculated than would have been calculated if the proper ending point were determined, e.g. by using Floyd's method. >>> from sympy.ntheory.generate import cycle_length This will yield successive values of i <-- func(i): >>> def iter(func, i): ... while 1: ... ii = func(i) ... yield ii ... i = ii ... A function is defined: >>> func = lambda i: (i**2 + 1) % 51 and given a seed of 4 and the mu and lambda terms calculated: >>> next(cycle_length(func, 4)) (6, 2) We can see what is meant by looking at the output: >>> n = cycle_length(func, 4, values=True) >>> list(ni for ni in n) [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14] There are 6 repeating values after the first 2. If a sequence is suspected of being longer than you might wish, ``nmax`` can be used to exit early (and mu will be returned as None): >>> next(cycle_length(func, 4, nmax = 4)) (4, None) >>> [ni for ni in cycle_length(func, 4, nmax = 4, values=True)] [17, 35, 2, 5] Code modified from: https://en.wikipedia.org/wiki/Cycle_detection. """ nmax = int(nmax or 0) # main phase: search successive powers of two power = lam = 1 tortoise, hare = x0, f(x0) # f(x0) is the element/node next to x0. i = 0 while tortoise != hare and (not nmax or i < nmax): i += 1 if power == lam: # time to start a new power of two? tortoise = hare power *= 2 lam = 0 if values: yield hare hare = f(hare) lam += 1 if nmax and i == nmax: if values: return else: yield nmax, None return if not values: # Find the position of the first repetition of length lambda mu = 0 tortoise = hare = x0 for i in range(lam): hare = f(hare) while tortoise != hare: tortoise = f(tortoise) hare = f(hare) mu += 1 if mu: mu -= 1 yield lam, mu def composite(nth): """ Return the nth composite number, with the composite numbers indexed as composite(1) = 4, composite(2) = 6, etc.... Examples ======== >>> from sympy import composite >>> composite(36) 52 >>> composite(1) 4 >>> composite(17737) 20000 See Also ======== sympy.ntheory.primetest.isprime : Test if n is prime primerange : Generate all primes in a given range primepi : Return the number of primes less than or equal to n prime : Return the nth prime compositepi : Return the number of positive composite numbers less than or equal to n """ n = as_int(nth) if n < 1: raise ValueError("nth must be a positive integer; composite(1) == 4") composite_arr = [4, 6, 8, 9, 10, 12, 14, 15, 16, 18] if n <= 10: return composite_arr[n - 1] a, b = 4, sieve._list[-1] if n <= b - primepi(b) - 1: while a < b - 1: mid = (a + b) >> 1 if mid - primepi(mid) - 1 > n: b = mid else: a = mid if isprime(a): a -= 1 return a from sympy.functions.special.error_functions import li from sympy.functions.elementary.exponential import log a = 4 # Lower bound for binary search b = int(n*(log(n) + log(log(n)))) # Upper bound for the search. while a < b: mid = (a + b) >> 1 if mid - li(mid) - 1 > n: b = mid else: a = mid + 1 n_composites = a - primepi(a) - 1 while n_composites > n: if not isprime(a): n_composites -= 1 a -= 1 if isprime(a): a -= 1 return a def compositepi(n): """ Return the number of positive composite numbers less than or equal to n. The first positive composite is 4, i.e. compositepi(4) = 1. Examples ======== >>> from sympy import compositepi >>> compositepi(25) 15 >>> compositepi(1000) 831 See Also ======== sympy.ntheory.primetest.isprime : Test if n is prime primerange : Generate all primes in a given range prime : Return the nth prime primepi : Return the number of primes less than or equal to n composite : Return the nth composite number """ n = int(n) if n < 4: return 0 return n - primepi(n) - 1
d630fd1c9fac41792224c30f784be8c71ef7b059764a3d856fbf3ea53afc4378
from sympy.ntheory import sieve, isprime from sympy.core.numbers import mod_inverse from sympy.core.power import integer_log from sympy.utilities.misc import as_int import random rgen = random.Random() #----------------------------------------------------------------------------# # # # Lenstra's Elliptic Curve Factorization # # # #----------------------------------------------------------------------------# class Point: """Montgomery form of Points in an elliptic curve. In this form, the addition and doubling of points does not need any y-coordinate information thus decreasing the number of operations. Using Montgomery form we try to perform point addition and doubling in least amount of multiplications. The elliptic curve used here is of the form (E : b*y**2*z = x**3 + a*x**2*z + x*z**2). The a_24 parameter is equal to (a + 2)/4. References ========== .. [1] http://www.hyperelliptic.org/tanja/SHARCS/talks06/Gaj.pdf """ def __init__(self, x_cord, z_cord, a_24, mod): """ Initial parameters for the Point class. Parameters ========== x_cord : X coordinate of the Point z_cord : Z coordinate of the Point a_24 : Parameter of the elliptic curve in Montgomery form mod : modulus """ self.x_cord = x_cord self.z_cord = z_cord self.a_24 = a_24 self.mod = mod def __eq__(self, other): """Two points are equal if X/Z of both points are equal """ if self.a_24 != other.a_24 or self.mod != other.mod: return False return self.x_cord * mod_inverse(self.z_cord, self.mod) % self.mod ==\ other.x_cord * mod_inverse(other.z_cord, self.mod) % self.mod def add(self, Q, diff): """ Add two points self and Q where diff = self - Q. Moreover the assumption is self.x_cord*Q.x_cord*(self.x_cord - Q.x_cord) != 0. This algorithm requires 6 multiplications. Here the difference between the points is already known and using this algorihtm speeds up the addition by reducing the number of multiplication required. Also in the mont_ladder algorithm is constructed in a way so that the difference between intermediate points is always equal to the initial point. So, we always know what the difference between the point is. Parameters ========== Q : point on the curve in Montgomery form diff : self - Q Examples ======== >>> from sympy.ntheory.ecm import Point >>> p1 = Point(11, 16, 7, 29) >>> p2 = Point(13, 10, 7, 29) >>> p3 = p2.add(p1, p1) >>> p3.x_cord 23 >>> p3.z_cord 17 """ u = (self.x_cord - self.z_cord)*(Q.x_cord + Q.z_cord) v = (self.x_cord + self.z_cord)*(Q.x_cord - Q.z_cord) add, subt = u + v, u - v x_cord = diff.z_cord * add * add % self.mod z_cord = diff.x_cord * subt * subt % self.mod return Point(x_cord, z_cord, self.a_24, self.mod) def double(self): """ Doubles a point in an elliptic curve in Montgomery form. This algorithm requires 5 multiplications. Examples ======== >>> from sympy.ntheory.ecm import Point >>> p1 = Point(11, 16, 7, 29) >>> p2 = p1.double() >>> p2.x_cord 13 >>> p2.z_cord 10 """ u, v = self.x_cord + self.z_cord, self.x_cord - self.z_cord u, v = u*u, v*v diff = u - v x_cord = u*v % self.mod z_cord = diff*(v + self.a_24*diff) % self.mod return Point(x_cord, z_cord, self.a_24, self.mod) def mont_ladder(self, k): """ Scalar multiplication of a point in Montgomery form using Montgomery Ladder Algorithm. A total of 11 multiplications are required in each step of this algorithm. Parameters ========== k : The positive integer multiplier Examples ======== >>> from sympy.ntheory.ecm import Point >>> p1 = Point(11, 16, 7, 29) >>> p3 = p1.mont_ladder(3) >>> p3.x_cord 23 >>> p3.z_cord 17 """ Q = self R = self.double() for i in bin(k)[3:]: if i == '1': Q = R.add(Q, self) R = R.double() else: R = Q.add(R, self) Q = Q.double() return Q def _ecm_one_factor(n, B1=10000, B2=100000, max_curve=200): """Returns one factor of n using Lenstra's 2 Stage Elliptic curve Factorization with Suyama's Parameterization. Here Montgomery arithmetic is used for fast computation of addition and doubling of points in elliptic curve. This ECM method considers elliptic curves in Montgomery form (E : b*y**2*z = x**3 + a*x**2*z + x*z**2) and involves elliptic curve operations (mod N), where the elements in Z are reduced (mod N). Since N is not a prime, E over FF(N) is not really an elliptic curve but we can still do point additions and doubling as if FF(N) was a field. Stage 1 : The basic algorithm involves taking a random point (P) on an elliptic curve in FF(N). The compute k*P using Montgomery ladder algorithm. Let q be an unknown factor of N. Then the order of the curve E, |E(FF(q))|, might be a smooth number that divides k. Then we have k = l * |E(FF(q))| for some l. For any point belonging to the curve E, |E(FF(q))|*P = O, hence k*P = l*|E(FF(q))|*P. Thus kP.z_cord = 0 (mod q), and the unknownn factor of N (q) can be recovered by taking gcd(kP.z_cord, N). Stage 2 : This is a continuation of Stage 1 if k*P != O. The idea utilize the fact that even if kP != 0, the value of k might miss just one large prime divisor of |E(FF(q))|. In this case we only need to compute the scalar multiplication by p to get p*k*P = O. Here a second bound B2 restrict the size of possible values of p. Parameters ========== n : Number to be Factored B1 : Stage 1 Bound B2 : Stage 2 Bound max_curve : Maximum number of curves generated References ========== .. [1] Carl Pomerance and Richard Crandall "Prime Numbers: A Computational Perspective" (2nd Ed.), page 344 """ from sympy.functions.elementary.miscellaneous import sqrt from sympy.polys.polytools import gcd n = as_int(n) if B1 % 2 != 0 or B2 % 2 != 0: raise ValueError("The Bounds should be an even integer") sieve.extend(B2) if isprime(n): return n curve = 0 D = int(sqrt(B2)) beta = [0]*(D + 1) S = [0]*(D + 1) k = 1 for p in sieve.primerange(1, B1 + 1): k *= pow(p, integer_log(B1, p)[0]) while(curve <= max_curve): curve += 1 #Suyama's Paramatrization sigma = rgen.randint(6, n - 1) u = (sigma*sigma - 5) % n v = (4*sigma) % n diff = v - u u_3 = pow(u, 3, n) try: C = (pow(diff, 3, n)*(3*u + v)*mod_inverse(4*u_3*v, n) - 2) % n except ValueError: #If the mod_inverse(4*u_3*v, n) doesn't exist return gcd(4*u_3*v, n) a24 = (C + 2)*mod_inverse(4, n) % n Q = Point(u_3, pow(v, 3, n), a24, n) Q = Q.mont_ladder(k) g = gcd(Q.z_cord, n) #Stage 1 factor if g != 1 and g != n: return g #Stage 1 failure. Q.z = 0, Try another curve elif g == n: continue #Stage 2 - Improved Standard Continuation S[1] = Q.double() S[2] = S[1].double() beta[1] = (S[1].x_cord*S[1].z_cord) % n beta[2] = (S[2].x_cord*S[2].z_cord) % n for d in range(3, D + 1): S[d] = S[d - 1].add(S[1], S[d - 2]) beta[d] = (S[d].x_cord*S[d].z_cord) % n g = 1 B = B1 - 1 T = Q.mont_ladder(B - 2*D) R = Q.mont_ladder(B) for r in range(B, B2, 2*D): alpha = (R.x_cord*R.z_cord) % n for q in sieve.primerange(r + 2, r + 2*D + 1): delta = (q - r) // 2 f = (R.x_cord - S[d].x_cord)*(R.z_cord + S[d].z_cord) -\ alpha + beta[delta] g = (g*f) % n #Swap T, R = R, R.add(S[D], T) g = gcd(n, g) #Stage 2 Factor found if g != 1 and g != n: return g #ECM failed, Increase the bounds raise ValueError("Increase the bounds") def ecm(n, B1=10000, B2=100000, max_curve=200, seed=1234): """Performs factorization using Lenstra's Elliptic curve method. This function repeatedly calls `ecm_one_factor` to compute the factors of n. First all the small factors are taken out using trial division. Then `ecm_one_factor` is used to compute one factor at a time. Parameters ========== n : Number to be Factored B1 : Stage 1 Bound B2 : Stage 2 Bound max_curve : Maximum number of curves generated seed : Initialize pseudorandom generator Examples ======== >>> from sympy.ntheory import ecm >>> ecm(25645121643901801) {5394769, 4753701529} >>> ecm(9804659461513846513) {4641991, 2112166839943} """ _factors = set() for prime in sieve.primerange(1, 100000): if n % prime == 0: _factors.add(prime) while(n % prime == 0): n //= prime rgen.seed(seed) while(n > 1): try: factor = _ecm_one_factor(n, B1, B2, max_curve) except ValueError: raise ValueError("Increase the bounds") _factors.add(factor) n //= factor factors = set() for factor in _factors: if isprime(factor): factors.add(factor) continue factors |= ecm(factor) return factors
6ca89bca1e9799c561fefe76ea2c214823df60cde48705e0fafacf6b8c50ba9f
from sympy.core.function import Function from sympy.core.numbers import igcd, igcdex, mod_inverse from sympy.core.power import isqrt from sympy.core.singleton import S from sympy.polys.domains import ZZ from .primetest import isprime from .factor_ import factorint, trailing, totient, multiplicity from sympy.utilities.misc import as_int from random import randint, Random from itertools import cycle, product def n_order(a, n): """Returns the order of ``a`` modulo ``n``. The order of ``a`` modulo ``n`` is the smallest integer ``k`` such that ``a**k`` leaves a remainder of 1 with ``n``. Examples ======== >>> from sympy.ntheory import n_order >>> n_order(3, 7) 6 >>> n_order(4, 7) 3 """ from collections import defaultdict a, n = as_int(a), as_int(n) if igcd(a, n) != 1: raise ValueError("The two numbers should be relatively prime") factors = defaultdict(int) f = factorint(n) for px, kx in f.items(): if kx > 1: factors[px] += kx - 1 fpx = factorint(px - 1) for py, ky in fpx.items(): factors[py] += ky group_order = 1 for px, kx in factors.items(): group_order *= px**kx order = 1 if a > n: a = a % n for p, e in factors.items(): exponent = group_order for f in range(e + 1): if pow(a, exponent, n) != 1: order *= p ** (e - f + 1) break exponent = exponent // p return order def _primitive_root_prime_iter(p): """ Generates the primitive roots for a prime ``p`` Examples ======== >>> from sympy.ntheory.residue_ntheory import _primitive_root_prime_iter >>> list(_primitive_root_prime_iter(19)) [2, 3, 10, 13, 14, 15] References ========== .. [1] W. Stein "Elementary Number Theory" (2011), page 44 """ # it is assumed that p is an int v = [(p - 1) // i for i in factorint(p - 1).keys()] a = 2 while a < p: for pw in v: # a TypeError below may indicate that p was not an int if pow(a, pw, p) == 1: break else: yield a a += 1 def primitive_root(p): """ Returns the smallest primitive root or None Parameters ========== p : positive integer Examples ======== >>> from sympy.ntheory.residue_ntheory import primitive_root >>> primitive_root(19) 2 References ========== .. [1] W. Stein "Elementary Number Theory" (2011), page 44 .. [2] P. Hackman "Elementary Number Theory" (2009), Chapter C """ p = as_int(p) if p < 1: raise ValueError('p is required to be positive') if p <= 2: return 1 f = factorint(p) if len(f) > 2: return None if len(f) == 2: if 2 not in f or f[2] > 1: return None # case p = 2*p1**k, p1 prime for p1, e1 in f.items(): if p1 != 2: break i = 1 while i < p: i += 2 if i % p1 == 0: continue if is_primitive_root(i, p): return i else: if 2 in f: if p == 4: return 3 return None p1, n = list(f.items())[0] if n > 1: # see Ref [2], page 81 g = primitive_root(p1) if is_primitive_root(g, p1**2): return g else: for i in range(2, g + p1 + 1): if igcd(i, p) == 1 and is_primitive_root(i, p): return i return next(_primitive_root_prime_iter(p)) def is_primitive_root(a, p): """ Returns True if ``a`` is a primitive root of ``p`` ``a`` is said to be the primitive root of ``p`` if gcd(a, p) == 1 and totient(p) is the smallest positive number s.t. a**totient(p) cong 1 mod(p) Examples ======== >>> from sympy.ntheory import is_primitive_root, n_order, totient >>> is_primitive_root(3, 10) True >>> is_primitive_root(9, 10) False >>> n_order(3, 10) == totient(10) True >>> n_order(9, 10) == totient(10) False """ a, p = as_int(a), as_int(p) if igcd(a, p) != 1: raise ValueError("The two numbers should be relatively prime") if a > p: a = a % p return n_order(a, p) == totient(p) def _sqrt_mod_tonelli_shanks(a, p): """ Returns the square root in the case of ``p`` prime with ``p == 1 (mod 8)`` References ========== .. [1] R. Crandall and C. Pomerance "Prime Numbers", 2nt Ed., page 101 """ s = trailing(p - 1) t = p >> s # find a non-quadratic residue while 1: d = randint(2, p - 1) r = legendre_symbol(d, p) if r == -1: break #assert legendre_symbol(d, p) == -1 A = pow(a, t, p) D = pow(d, t, p) m = 0 for i in range(s): adm = A*pow(D, m, p) % p adm = pow(adm, 2**(s - 1 - i), p) if adm % p == p - 1: m += 2**i #assert A*pow(D, m, p) % p == 1 x = pow(a, (t + 1)//2, p)*pow(D, m//2, p) % p return x def sqrt_mod(a, p, all_roots=False): """ Find a root of ``x**2 = a mod p`` Parameters ========== a : integer p : positive integer all_roots : if True the list of roots is returned or None Notes ===== If there is no root it is returned None; else the returned root is less or equal to ``p // 2``; in general is not the smallest one. It is returned ``p // 2`` only if it is the only root. Use ``all_roots`` only when it is expected that all the roots fit in memory; otherwise use ``sqrt_mod_iter``. Examples ======== >>> from sympy.ntheory import sqrt_mod >>> sqrt_mod(11, 43) 21 >>> sqrt_mod(17, 32, True) [7, 9, 23, 25] """ if all_roots: return sorted(list(sqrt_mod_iter(a, p))) try: p = abs(as_int(p)) it = sqrt_mod_iter(a, p) r = next(it) if r > p // 2: return p - r elif r < p // 2: return r else: try: r = next(it) if r > p // 2: return p - r except StopIteration: pass return r except StopIteration: return None def _product(*iters): """ Cartesian product generator Notes ===== Unlike itertools.product, it works also with iterables which do not fit in memory. See http://bugs.python.org/issue10109 Author: Fernando Sumudu with small changes """ inf_iters = tuple(cycle(enumerate(it)) for it in iters) num_iters = len(inf_iters) cur_val = [None]*num_iters first_v = True while True: i, p = 0, num_iters while p and not i: p -= 1 i, cur_val[p] = next(inf_iters[p]) if not p and not i: if first_v: first_v = False else: break yield cur_val def sqrt_mod_iter(a, p, domain=int): """ Iterate over solutions to ``x**2 = a mod p`` Parameters ========== a : integer p : positive integer domain : integer domain, ``int``, ``ZZ`` or ``Integer`` Examples ======== >>> from sympy.ntheory.residue_ntheory import sqrt_mod_iter >>> list(sqrt_mod_iter(11, 43)) [21, 22] """ from sympy.polys.galoistools import gf_crt1, gf_crt2 a, p = as_int(a), abs(as_int(p)) if isprime(p): a = a % p if a == 0: res = _sqrt_mod1(a, p, 1) else: res = _sqrt_mod_prime_power(a, p, 1) if res: if domain is ZZ: yield from res else: for x in res: yield domain(x) else: f = factorint(p) v = [] pv = [] for px, ex in f.items(): if a % px == 0: rx = _sqrt_mod1(a, px, ex) if not rx: return else: rx = _sqrt_mod_prime_power(a, px, ex) if not rx: return v.append(rx) pv.append(px**ex) mm, e, s = gf_crt1(pv, ZZ) if domain is ZZ: for vx in _product(*v): r = gf_crt2(vx, pv, mm, e, s, ZZ) yield r else: for vx in _product(*v): r = gf_crt2(vx, pv, mm, e, s, ZZ) yield domain(r) def _sqrt_mod_prime_power(a, p, k): """ Find the solutions to ``x**2 = a mod p**k`` when ``a % p != 0`` Parameters ========== a : integer p : prime number k : positive integer Examples ======== >>> from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power >>> _sqrt_mod_prime_power(11, 43, 1) [21, 22] References ========== .. [1] P. Hackman "Elementary Number Theory" (2009), page 160 .. [2] http://www.numbertheory.org/php/squareroot.html .. [3] [Gathen99]_ """ pk = p**k a = a % pk if k == 1: if p == 2: return [ZZ(a)] if not (a % p < 2 or pow(a, (p - 1) // 2, p) == 1): return None if p % 4 == 3: res = pow(a, (p + 1) // 4, p) elif p % 8 == 5: sign = pow(a, (p - 1) // 4, p) if sign == 1: res = pow(a, (p + 3) // 8, p) else: b = pow(4*a, (p - 5) // 8, p) x = (2*a*b) % p if pow(x, 2, p) == a: res = x else: res = _sqrt_mod_tonelli_shanks(a, p) # ``_sqrt_mod_tonelli_shanks(a, p)`` is not deterministic; # sort to get always the same result return sorted([ZZ(res), ZZ(p - res)]) if k > 1: # see Ref.[2] if p == 2: if a % 8 != 1: return None if k <= 3: s = set() for i in range(0, pk, 4): s.add(1 + i) s.add(-1 + i) return list(s) # according to Ref.[2] for k > 2 there are two solutions # (mod 2**k-1), that is four solutions (mod 2**k), which can be # obtained from the roots of x**2 = 0 (mod 8) rv = [ZZ(1), ZZ(3), ZZ(5), ZZ(7)] # hensel lift them to solutions of x**2 = 0 (mod 2**k) # if r**2 - a = 0 mod 2**nx but not mod 2**(nx+1) # then r + 2**(nx - 1) is a root mod 2**(nx+1) n = 3 res = [] for r in rv: nx = n while nx < k: r1 = (r**2 - a) >> nx if r1 % 2: r = r + (1 << (nx - 1)) #assert (r**2 - a)% (1 << (nx + 1)) == 0 nx += 1 if r not in res: res.append(r) x = r + (1 << (k - 1)) #assert (x**2 - a) % pk == 0 if x < (1 << nx) and x not in res: if (x**2 - a) % pk == 0: res.append(x) return res rv = _sqrt_mod_prime_power(a, p, 1) if not rv: return None r = rv[0] fr = r**2 - a # hensel lifting with Newton iteration, see Ref.[3] chapter 9 # with f(x) = x**2 - a; one has f'(a) != 0 (mod p) for p != 2 n = 1 px = p while 1: n1 = n n1 *= 2 if n1 > k: break n = n1 px = px**2 frinv = igcdex(2*r, px)[0] r = (r - fr*frinv) % px fr = r**2 - a if n < k: px = p**k frinv = igcdex(2*r, px)[0] r = (r - fr*frinv) % px return [r, px - r] def _sqrt_mod1(a, p, n): """ Find solution to ``x**2 == a mod p**n`` when ``a % p == 0`` see http://www.numbertheory.org/php/squareroot.html """ pn = p**n a = a % pn if a == 0: # case gcd(a, p**k) = p**n m = n // 2 if n % 2 == 1: pm1 = p**(m + 1) def _iter0a(): i = 0 while i < pn: yield i i += pm1 return _iter0a() else: pm = p**m def _iter0b(): i = 0 while i < pn: yield i i += pm return _iter0b() # case gcd(a, p**k) = p**r, r < n f = factorint(a) r = f[p] if r % 2 == 1: return None m = r // 2 a1 = a >> r if p == 2: if n - r == 1: pnm1 = 1 << (n - m + 1) pm1 = 1 << (m + 1) def _iter1(): k = 1 << (m + 2) i = 1 << m while i < pnm1: j = i while j < pn: yield j j += k i += pm1 return _iter1() if n - r == 2: res = _sqrt_mod_prime_power(a1, p, n - r) if res is None: return None pnm = 1 << (n - m) def _iter2(): s = set() for r in res: i = 0 while i < pn: x = (r << m) + i if x not in s: s.add(x) yield x i += pnm return _iter2() if n - r > 2: res = _sqrt_mod_prime_power(a1, p, n - r) if res is None: return None pnm1 = 1 << (n - m - 1) def _iter3(): s = set() for r in res: i = 0 while i < pn: x = ((r << m) + i) % pn if x not in s: s.add(x) yield x i += pnm1 return _iter3() else: m = r // 2 a1 = a // p**r res1 = _sqrt_mod_prime_power(a1, p, n - r) if res1 is None: return None pm = p**m pnr = p**(n-r) pnm = p**(n-m) def _iter4(): s = set() pm = p**m for rx in res1: i = 0 while i < pnm: x = ((rx + i) % pn) if x not in s: s.add(x) yield x*pm i += pnr return _iter4() def is_quad_residue(a, p): """ Returns True if ``a`` (mod ``p``) is in the set of squares mod ``p``, i.e a % p in set([i**2 % p for i in range(p)]). If ``p`` is an odd prime, an iterative method is used to make the determination: >>> from sympy.ntheory import is_quad_residue >>> sorted(set([i**2 % 7 for i in range(7)])) [0, 1, 2, 4] >>> [j for j in range(7) if is_quad_residue(j, 7)] [0, 1, 2, 4] See Also ======== legendre_symbol, jacobi_symbol """ a, p = as_int(a), as_int(p) if p < 1: raise ValueError('p must be > 0') if a >= p or a < 0: a = a % p if a < 2 or p < 3: return True if not isprime(p): if p % 2 and jacobi_symbol(a, p) == -1: return False r = sqrt_mod(a, p) if r is None: return False else: return True return pow(a, (p - 1) // 2, p) == 1 def is_nthpow_residue(a, n, m): """ Returns True if ``x**n == a (mod m)`` has solutions. References ========== .. [1] P. Hackman "Elementary Number Theory" (2009), page 76 """ a = a % m a, n, m = as_int(a), as_int(n), as_int(m) if m <= 0: raise ValueError('m must be > 0') if n < 0: raise ValueError('n must be >= 0') if n == 0: if m == 1: return False return a == 1 if a == 0: return True if n == 1: return True if n == 2: return is_quad_residue(a, m) return _is_nthpow_residue_bign(a, n, m) def _is_nthpow_residue_bign(a, n, m): """Returns True if ``x**n == a (mod m)`` has solutions for n > 2.""" # assert n > 2 # assert a > 0 and m > 0 if primitive_root(m) is None or igcd(a, m) != 1: # assert m >= 8 for prime, power in factorint(m).items(): if not _is_nthpow_residue_bign_prime_power(a, n, prime, power): return False return True f = totient(m) k = f // igcd(f, n) return pow(a, k, m) == 1 def _is_nthpow_residue_bign_prime_power(a, n, p, k): """Returns True/False if a solution for ``x**n == a (mod(p**k))`` does/doesn't exist.""" # assert a > 0 # assert n > 2 # assert p is prime # assert k > 0 if a % p: if p != 2: return _is_nthpow_residue_bign(a, n, pow(p, k)) if n & 1: return True c = trailing(n) return a % pow(2, min(c + 2, k)) == 1 else: a %= pow(p, k) if not a: return True mu = multiplicity(p, a) if mu % n: return False pm = pow(p, mu) return _is_nthpow_residue_bign_prime_power(a//pm, n, p, k - mu) def _nthroot_mod2(s, q, p): f = factorint(q) v = [] for b, e in f.items(): v.extend([b]*e) for qx in v: s = _nthroot_mod1(s, qx, p, False) return s def _nthroot_mod1(s, q, p, all_roots): """ Root of ``x**q = s mod p``, ``p`` prime and ``q`` divides ``p - 1`` References ========== .. [1] A. M. Johnston "A Generalized qth Root Algorithm" """ g = primitive_root(p) if not isprime(q): r = _nthroot_mod2(s, q, p) else: f = p - 1 assert (p - 1) % q == 0 # determine k k = 0 while f % q == 0: k += 1 f = f // q # find z, x, r1 f1 = igcdex(-f, q)[0] % q z = f*f1 x = (1 + z) // q r1 = pow(s, x, p) s1 = pow(s, f, p) h = pow(g, f*q, p) t = discrete_log(p, s1, h) g2 = pow(g, z*t, p) g3 = igcdex(g2, p)[0] r = r1*g3 % p #assert pow(r, q, p) == s res = [r] h = pow(g, (p - 1) // q, p) #assert pow(h, q, p) == 1 hx = r for i in range(q - 1): hx = (hx*h) % p res.append(hx) if all_roots: res.sort() return res return min(res) def _help(m, prime_modulo_method, diff_method, expr_val): """ Helper function for _nthroot_mod_composite and polynomial_congruence. Parameters ========== m : positive integer prime_modulo_method : function to calculate the root of the congruence equation for the prime divisors of m diff_method : function to calculate derivative of expression at any given point expr_val : function to calculate value of the expression at any given point """ from sympy.ntheory.modular import crt f = factorint(m) dd = {} for p, e in f.items(): tot_roots = set() if e == 1: tot_roots.update(prime_modulo_method(p)) else: for root in prime_modulo_method(p): diff = diff_method(root, p) if diff != 0: ppow = p m_inv = mod_inverse(diff, p) for j in range(1, e): ppow *= p root = (root - expr_val(root, ppow) * m_inv) % ppow tot_roots.add(root) else: new_base = p roots_in_base = {root} while new_base < pow(p, e): new_base *= p new_roots = set() for k in roots_in_base: if expr_val(k, new_base)!= 0: continue while k not in new_roots: new_roots.add(k) k = (k + (new_base // p)) % new_base roots_in_base = new_roots tot_roots = tot_roots | roots_in_base if tot_roots == set(): return [] dd[pow(p, e)] = tot_roots a = [] m = [] for x, y in dd.items(): m.append(x) a.append(list(y)) return sorted({crt(m, list(i))[0] for i in product(*a)}) def _nthroot_mod_composite(a, n, m): """ Find the solutions to ``x**n = a mod m`` when m is not prime. """ return _help(m, lambda p: nthroot_mod(a, n, p, True), lambda root, p: (pow(root, n - 1, p) * (n % p)) % p, lambda root, p: (pow(root, n, p) - a) % p) def nthroot_mod(a, n, p, all_roots=False): """ Find the solutions to ``x**n = a mod p`` Parameters ========== a : integer n : positive integer p : positive integer all_roots : if False returns the smallest root, else the list of roots Examples ======== >>> from sympy.ntheory.residue_ntheory import nthroot_mod >>> nthroot_mod(11, 4, 19) 8 >>> nthroot_mod(11, 4, 19, True) [8, 11] >>> nthroot_mod(68, 3, 109) 23 """ a = a % p a, n, p = as_int(a), as_int(n), as_int(p) if n == 2: return sqrt_mod(a, p, all_roots) # see Hackman "Elementary Number Theory" (2009), page 76 if not isprime(p): return _nthroot_mod_composite(a, n, p) if a % p == 0: return [0] if not is_nthpow_residue(a, n, p): return [] if all_roots else None if (p - 1) % n == 0: return _nthroot_mod1(a, n, p, all_roots) # The roots of ``x**n - a = 0 (mod p)`` are roots of # ``gcd(x**n - a, x**(p - 1) - 1) = 0 (mod p)`` pa = n pb = p - 1 b = 1 if pa < pb: a, pa, b, pb = b, pb, a, pa while pb: # x**pa - a = 0; x**pb - b = 0 # x**pa - a = x**(q*pb + r) - a = (x**pb)**q * x**r - a = # b**q * x**r - a; x**r - c = 0; c = b**-q * a mod p q, r = divmod(pa, pb) c = pow(b, q, p) c = igcdex(c, p)[0] c = (c * a) % p pa, pb = pb, r a, b = b, c if pa == 1: if all_roots: res = [a] else: res = a elif pa == 2: return sqrt_mod(a, p, all_roots) else: res = _nthroot_mod1(a, pa, p, all_roots) return res def quadratic_residues(p): """ Returns the list of quadratic residues. Examples ======== >>> from sympy.ntheory.residue_ntheory import quadratic_residues >>> quadratic_residues(7) [0, 1, 2, 4] """ p = as_int(p) r = set() for i in range(p // 2 + 1): r.add(pow(i, 2, p)) return sorted(list(r)) def legendre_symbol(a, p): r""" Returns the Legendre symbol `(a / p)`. For an integer ``a`` and an odd prime ``p``, the Legendre symbol is defined as .. math :: \genfrac(){}{}{a}{p} = \begin{cases} 0 & \text{if } p \text{ divides } a\\ 1 & \text{if } a \text{ is a quadratic residue modulo } p\\ -1 & \text{if } a \text{ is a quadratic nonresidue modulo } p \end{cases} Parameters ========== a : integer p : odd prime Examples ======== >>> from sympy.ntheory import legendre_symbol >>> [legendre_symbol(i, 7) for i in range(7)] [0, 1, 1, -1, 1, -1, -1] >>> sorted(set([i**2 % 7 for i in range(7)])) [0, 1, 2, 4] See Also ======== is_quad_residue, jacobi_symbol """ a, p = as_int(a), as_int(p) if not isprime(p) or p == 2: raise ValueError("p should be an odd prime") a = a % p if not a: return 0 if pow(a, (p - 1) // 2, p) == 1: return 1 return -1 def jacobi_symbol(m, n): r""" Returns the Jacobi symbol `(m / n)`. For any integer ``m`` and any positive odd integer ``n`` the Jacobi symbol is defined as the product of the Legendre symbols corresponding to the prime factors of ``n``: .. math :: \genfrac(){}{}{m}{n} = \genfrac(){}{}{m}{p^{1}}^{\alpha_1} \genfrac(){}{}{m}{p^{2}}^{\alpha_2} ... \genfrac(){}{}{m}{p^{k}}^{\alpha_k} \text{ where } n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k} Like the Legendre symbol, if the Jacobi symbol `\genfrac(){}{}{m}{n} = -1` then ``m`` is a quadratic nonresidue modulo ``n``. But, unlike the Legendre symbol, if the Jacobi symbol `\genfrac(){}{}{m}{n} = 1` then ``m`` may or may not be a quadratic residue modulo ``n``. Parameters ========== m : integer n : odd positive integer Examples ======== >>> from sympy.ntheory import jacobi_symbol, legendre_symbol >>> from sympy import S >>> jacobi_symbol(45, 77) -1 >>> jacobi_symbol(60, 121) 1 The relationship between the ``jacobi_symbol`` and ``legendre_symbol`` can be demonstrated as follows: >>> L = legendre_symbol >>> S(45).factors() {3: 2, 5: 1} >>> jacobi_symbol(7, 45) == L(7, 3)**2 * L(7, 5)**1 True See Also ======== is_quad_residue, legendre_symbol """ m, n = as_int(m), as_int(n) if n < 0 or not n % 2: raise ValueError("n should be an odd positive integer") if m < 0 or m > n: m %= n if not m: return int(n == 1) if n == 1 or m == 1: return 1 if igcd(m, n) != 1: return 0 j = 1 if m < 0: m = -m if n % 4 == 3: j = -j while m != 0: while m % 2 == 0 and m > 0: m >>= 1 if n % 8 in [3, 5]: j = -j m, n = n, m if m % 4 == n % 4 == 3: j = -j m %= n if n != 1: j = 0 return j class mobius(Function): """ Mobius function maps natural number to {-1, 0, 1} It is defined as follows: 1) `1` if `n = 1`. 2) `0` if `n` has a squared prime factor. 3) `(-1)^k` if `n` is a square-free positive integer with `k` number of prime factors. It is an important multiplicative function in number theory and combinatorics. It has applications in mathematical series, algebraic number theory and also physics (Fermion operator has very concrete realization with Mobius Function model). Parameters ========== n : positive integer Examples ======== >>> from sympy.ntheory import mobius >>> mobius(13*7) 1 >>> mobius(1) 1 >>> mobius(13*7*5) -1 >>> mobius(13**2) 0 References ========== .. [1] https://en.wikipedia.org/wiki/M%C3%B6bius_function .. [2] Thomas Koshy "Elementary Number Theory with Applications" """ @classmethod def eval(cls, n): if n.is_integer: if n.is_positive is not True: raise ValueError("n should be a positive integer") else: raise TypeError("n should be an integer") if n.is_prime: return S.NegativeOne elif n is S.One: return S.One elif n.is_Integer: a = factorint(n) if any(i > 1 for i in a.values()): return S.Zero return S.NegativeOne**len(a) def _discrete_log_trial_mul(n, a, b, order=None): """ Trial multiplication algorithm for computing the discrete logarithm of ``a`` to the base ``b`` modulo ``n``. The algorithm finds the discrete logarithm using exhaustive search. This naive method is used as fallback algorithm of ``discrete_log`` when the group order is very small. Examples ======== >>> from sympy.ntheory.residue_ntheory import _discrete_log_trial_mul >>> _discrete_log_trial_mul(41, 15, 7) 3 See Also ======== discrete_log References ========== .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., & Vanstone, S. A. (1997). """ a %= n b %= n if order is None: order = n x = 1 for i in range(order): if x == a: return i x = x * b % n raise ValueError("Log does not exist") def _discrete_log_shanks_steps(n, a, b, order=None): """ Baby-step giant-step algorithm for computing the discrete logarithm of ``a`` to the base ``b`` modulo ``n``. The algorithm is a time-memory trade-off of the method of exhaustive search. It uses `O(sqrt(m))` memory, where `m` is the group order. Examples ======== >>> from sympy.ntheory.residue_ntheory import _discrete_log_shanks_steps >>> _discrete_log_shanks_steps(41, 15, 7) 3 See Also ======== discrete_log References ========== .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., & Vanstone, S. A. (1997). """ a %= n b %= n if order is None: order = n_order(b, n) m = isqrt(order) + 1 T = dict() x = 1 for i in range(m): T[x] = i x = x * b % n z = mod_inverse(b, n) z = pow(z, m, n) x = a for i in range(m): if x in T: return i * m + T[x] x = x * z % n raise ValueError("Log does not exist") def _discrete_log_pollard_rho(n, a, b, order=None, retries=10, rseed=None): """ Pollard's Rho algorithm for computing the discrete logarithm of ``a`` to the base ``b`` modulo ``n``. It is a randomized algorithm with the same expected running time as ``_discrete_log_shanks_steps``, but requires a negligible amount of memory. Examples ======== >>> from sympy.ntheory.residue_ntheory import _discrete_log_pollard_rho >>> _discrete_log_pollard_rho(227, 3**7, 3) 7 See Also ======== discrete_log References ========== .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., & Vanstone, S. A. (1997). """ a %= n b %= n if order is None: order = n_order(b, n) prng = Random() if rseed is not None: prng.seed(rseed) for i in range(retries): aa = prng.randint(1, order - 1) ba = prng.randint(1, order - 1) xa = pow(b, aa, n) * pow(a, ba, n) % n c = xa % 3 if c == 0: xb = a * xa % n ab = aa bb = (ba + 1) % order elif c == 1: xb = xa * xa % n ab = (aa + aa) % order bb = (ba + ba) % order else: xb = b * xa % n ab = (aa + 1) % order bb = ba for j in range(order): c = xa % 3 if c == 0: xa = a * xa % n ba = (ba + 1) % order elif c == 1: xa = xa * xa % n aa = (aa + aa) % order ba = (ba + ba) % order else: xa = b * xa % n aa = (aa + 1) % order c = xb % 3 if c == 0: xb = a * xb % n bb = (bb + 1) % order elif c == 1: xb = xb * xb % n ab = (ab + ab) % order bb = (bb + bb) % order else: xb = b * xb % n ab = (ab + 1) % order c = xb % 3 if c == 0: xb = a * xb % n bb = (bb + 1) % order elif c == 1: xb = xb * xb % n ab = (ab + ab) % order bb = (bb + bb) % order else: xb = b * xb % n ab = (ab + 1) % order if xa == xb: r = (ba - bb) % order try: e = mod_inverse(r, order) * (ab - aa) % order if (pow(b, e, n) - a) % n == 0: return e except ValueError: pass break raise ValueError("Pollard's Rho failed to find logarithm") def _discrete_log_pohlig_hellman(n, a, b, order=None): """ Pohlig-Hellman algorithm for computing the discrete logarithm of ``a`` to the base ``b`` modulo ``n``. In order to compute the discrete logarithm, the algorithm takes advantage of the factorization of the group order. It is more efficient when the group order factors into many small primes. Examples ======== >>> from sympy.ntheory.residue_ntheory import _discrete_log_pohlig_hellman >>> _discrete_log_pohlig_hellman(251, 210, 71) 197 See Also ======== discrete_log References ========== .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., & Vanstone, S. A. (1997). """ from .modular import crt a %= n b %= n if order is None: order = n_order(b, n) f = factorint(order) l = [0] * len(f) for i, (pi, ri) in enumerate(f.items()): for j in range(ri): gj = pow(b, l[i], n) aj = pow(a * mod_inverse(gj, n), order // pi**(j + 1), n) bj = pow(b, order // pi, n) cj = discrete_log(n, aj, bj, pi, True) l[i] += cj * pi**j d, _ = crt([pi**ri for pi, ri in f.items()], l) return d def discrete_log(n, a, b, order=None, prime_order=None): """ Compute the discrete logarithm of ``a`` to the base ``b`` modulo ``n``. This is a recursive function to reduce the discrete logarithm problem in cyclic groups of composite order to the problem in cyclic groups of prime order. It employs different algorithms depending on the problem (subgroup order size, prime order or not): * Trial multiplication * Baby-step giant-step * Pollard's Rho * Pohlig-Hellman Examples ======== >>> from sympy.ntheory import discrete_log >>> discrete_log(41, 15, 7) 3 References ========== .. [1] http://mathworld.wolfram.com/DiscreteLogarithm.html .. [2] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., & Vanstone, S. A. (1997). """ n, a, b = as_int(n), as_int(a), as_int(b) if order is None: order = n_order(b, n) if prime_order is None: prime_order = isprime(order) if order < 1000: return _discrete_log_trial_mul(n, a, b, order) elif prime_order: if order < 1000000000000: return _discrete_log_shanks_steps(n, a, b, order) return _discrete_log_pollard_rho(n, a, b, order) return _discrete_log_pohlig_hellman(n, a, b, order) def quadratic_congruence(a, b, c, p): """ Find the solutions to ``a x**2 + b x + c = 0 mod p a : integer b : integer c : integer p : positive integer """ from sympy.polys.galoistools import linear_congruence a = as_int(a) b = as_int(b) c = as_int(c) p = as_int(p) a = a % p b = b % p c = c % p if a == 0: return linear_congruence(b, -c, p) if p == 2: roots = [] if c % 2 == 0: roots.append(0) if (a + b + c) % 2 == 0: roots.append(1) return roots if isprime(p): inv_a = mod_inverse(a, p) b *= inv_a c *= inv_a if b % 2 == 1: b = b + p d = ((b * b) // 4 - c) % p y = sqrt_mod(d, p, all_roots=True) res = set() for i in y: res.add((i - b // 2) % p) return sorted(res) y = sqrt_mod(b * b - 4 * a * c, 4 * a * p, all_roots=True) res = set() for i in y: root = linear_congruence(2 * a, i - b, 4 * a * p) for j in root: res.add(j % p) return sorted(res) def _polynomial_congruence_prime(coefficients, p): """A helper function used by polynomial_congruence. It returns the root of a polynomial modulo prime number by naive search from [0, p). Parameters ========== coefficients : list of integers p : prime number """ roots = [] rank = len(coefficients) for i in range(0, p): f_val = 0 for coeff in range(0,rank - 1): f_val = (f_val + pow(i, int(rank - coeff - 1), p) * coefficients[coeff]) % p f_val = f_val + coefficients[-1] if f_val % p == 0: roots.append(i) return roots def _diff_poly(root, coefficients, p): """A helper function used by polynomial_congruence. It returns the derivative of the polynomial evaluated at the root (mod p). Parameters ========== coefficients : list of integers p : prime number root : integer """ diff = 0 rank = len(coefficients) for coeff in range(0, rank - 1): if not coefficients[coeff]: continue diff = (diff + pow(root, rank - coeff - 2, p)*(rank - coeff - 1)* coefficients[coeff]) % p return diff % p def _val_poly(root, coefficients, p): """A helper function used by polynomial_congruence. It returns value of the polynomial at root (mod p). Parameters ========== coefficients : list of integers p : prime number root : integer """ rank = len(coefficients) f_val = 0 for coeff in range(0, rank - 1): f_val = (f_val + pow(root, rank - coeff - 1, p)* coefficients[coeff]) % p f_val = f_val + coefficients[-1] return f_val % p def _valid_expr(expr): """ return coefficients of expr if it is a univariate polynomial with integer coefficients else raise a ValueError. """ if not expr.is_polynomial(): raise ValueError("The expression should be a polynomial") from sympy.polys import Poly polynomial = Poly(expr) if not polynomial.is_univariate: raise ValueError("The expression should be univariate") if not polynomial.domain == ZZ: raise ValueError("The expression should should have integer coefficients") return polynomial.all_coeffs() def polynomial_congruence(expr, m): """ Find the solutions to a polynomial congruence equation modulo m. Parameters ========== coefficients : Coefficients of the Polynomial m : positive integer Examples ======== >>> from sympy.ntheory import polynomial_congruence >>> from sympy.abc import x >>> expr = x**6 - 2*x**5 -35 >>> polynomial_congruence(expr, 6125) [3257] """ coefficients = _valid_expr(expr) coefficients = [num % m for num in coefficients] rank = len(coefficients) if rank == 3: return quadratic_congruence(*coefficients, m) if rank == 2: return quadratic_congruence(0, *coefficients, m) if coefficients[0] == 1 and 1 + coefficients[-1] == sum(coefficients): return nthroot_mod(-coefficients[-1], rank - 1, m, True) if isprime(m): return _polynomial_congruence_prime(coefficients, m) return _help(m, lambda p: _polynomial_congruence_prime(coefficients, p), lambda root, p: _diff_poly(root, coefficients, p), lambda root, p: _val_poly(root, coefficients, p))
c45ce8332002dfa7cb4793afb537ada17512be13536cfdc7298fdca3c45412be
from collections import defaultdict from sympy.utilities.iterables import multiset, is_palindromic as _palindromic from sympy.utilities.misc import as_int def digits(n, b=10, digits=None): """ Return a list of the digits of ``n`` in base ``b``. The first element in the list is ``b`` (or ``-b`` if ``n`` is negative). Examples ======== >>> from sympy.ntheory.digits import digits >>> digits(35) [10, 3, 5] If the number is negative, the negative sign will be placed on the base (which is the first element in the returned list): >>> digits(-35) [-10, 3, 5] Bases other than 10 (and greater than 1) can be selected with ``b``: >>> digits(27, b=2) [2, 1, 1, 0, 1, 1] Use the ``digits`` keyword if a certain number of digits is desired: >>> digits(35, digits=4) [10, 0, 0, 3, 5] Parameters ========== n: integer The number whose digits are returned. b: integer The base in which digits are computed. digits: integer (or None for all digits) The number of digits to be returned (padded with zeros, if necessary). """ b = as_int(b) n = as_int(n) if b < 2: raise ValueError("b must be greater than 1") else: x, y = abs(n), [] while x >= b: x, r = divmod(x, b) y.append(r) y.append(x) y.append(-b if n < 0 else b) y.reverse() ndig = len(y) - 1 if digits is not None: if ndig > digits: raise ValueError( "For %s, at least %s digits are needed." % (n, ndig)) elif ndig < digits: y[1:1] = [0]*(digits - ndig) return y def count_digits(n, b=10): """ Return a dictionary whose keys are the digits of ``n`` in the given base, ``b``, with keys indicating the digits appearing in the number and values indicating how many times that digit appeared. Examples ======== >>> from sympy.ntheory import count_digits >>> count_digits(1111339) {1: 4, 3: 2, 9: 1} The digits returned are always represented in base-10 but the number itself can be entered in any format that is understood by Python; the base of the number can also be given if it is different than 10: >>> n = 0xFA; n 250 >>> count_digits(_) {0: 1, 2: 1, 5: 1} >>> count_digits(n, 16) {10: 1, 15: 1} The default dictionary will return a 0 for any digit that did not appear in the number. For example, which digits appear 7 times in ``77!``: >>> from sympy import factorial >>> c77 = count_digits(factorial(77)) >>> [i for i in range(10) if c77[i] == 7] [1, 3, 7, 9] """ rv = defaultdict(int, multiset(digits(n, b)).items()) rv.pop(b) if b in rv else rv.pop(-b) # b or -b is there return rv def is_palindromic(n, b=10): """return True if ``n`` is the same when read from left to right or right to left in the given base, ``b``. Examples ======== >>> from sympy.ntheory import is_palindromic >>> all(is_palindromic(i) for i in (-11, 1, 22, 121)) True The second argument allows you to test numbers in other bases. For example, 88 is palindromic in base-10 but not in base-8: >>> is_palindromic(88, 8) False On the other hand, a number can be palindromic in base-8 but not in base-10: >>> 0o121, is_palindromic(0o121) (81, False) Or it might be palindromic in both bases: >>> oct(121), is_palindromic(121, 8) and is_palindromic(121) ('0o171', True) """ return _palindromic(digits(n, b), 1)
45491be562fec714929c9112b3bf2bb527dc47bb90f96d2d11aa6d00af63dab4
from functools import reduce from sympy.core.mul import prod from sympy.core.numbers import igcdex, igcd from sympy.ntheory.primetest import isprime from sympy.polys.domains import ZZ from sympy.polys.galoistools import gf_crt, gf_crt1, gf_crt2 from sympy.utilities.misc import as_int def symmetric_residue(a, m): """Return the residual mod m such that it is within half of the modulus. >>> from sympy.ntheory.modular import symmetric_residue >>> symmetric_residue(1, 6) 1 >>> symmetric_residue(4, 6) -2 """ if a <= m // 2: return a return a - m def crt(m, v, symmetric=False, check=True): r"""Chinese Remainder Theorem. The moduli in m are assumed to be pairwise coprime. The output is then an integer f, such that f = v_i mod m_i for each pair out of v and m. If ``symmetric`` is False a positive integer will be returned, else \|f\| will be less than or equal to the LCM of the moduli, and thus f may be negative. If the moduli are not co-prime the correct result will be returned if/when the test of the result is found to be incorrect. This result will be None if there is no solution. The keyword ``check`` can be set to False if it is known that the moduli are coprime. Examples ======== As an example consider a set of residues ``U = [49, 76, 65]`` and a set of moduli ``M = [99, 97, 95]``. Then we have:: >>> from sympy.ntheory.modular import crt >>> crt([99, 97, 95], [49, 76, 65]) (639985, 912285) This is the correct result because:: >>> [639985 % m for m in [99, 97, 95]] [49, 76, 65] If the moduli are not co-prime, you may receive an incorrect result if you use ``check=False``: >>> crt([12, 6, 17], [3, 4, 2], check=False) (954, 1224) >>> [954 % m for m in [12, 6, 17]] [6, 0, 2] >>> crt([12, 6, 17], [3, 4, 2]) is None True >>> crt([3, 6], [2, 5]) (5, 6) Note: the order of gf_crt's arguments is reversed relative to crt, and that solve_congruence takes residue, modulus pairs. Programmer's note: rather than checking that all pairs of moduli share no GCD (an O(n**2) test) and rather than factoring all moduli and seeing that there is no factor in common, a check that the result gives the indicated residuals is performed -- an O(n) operation. See Also ======== solve_congruence sympy.polys.galoistools.gf_crt : low level crt routine used by this routine """ if check: m = list(map(as_int, m)) v = list(map(as_int, v)) result = gf_crt(v, m, ZZ) mm = prod(m) if check: if not all(v % m == result % m for v, m in zip(v, m)): result = solve_congruence(*list(zip(v, m)), check=False, symmetric=symmetric) if result is None: return result result, mm = result if symmetric: return symmetric_residue(result, mm), mm return result, mm def crt1(m): """First part of Chinese Remainder Theorem, for multiple application. Examples ======== >>> from sympy.ntheory.modular import crt1 >>> crt1([18, 42, 6]) (4536, [252, 108, 756], [0, 2, 0]) """ return gf_crt1(m, ZZ) def crt2(m, v, mm, e, s, symmetric=False): """Second part of Chinese Remainder Theorem, for multiple application. Examples ======== >>> from sympy.ntheory.modular import crt1, crt2 >>> mm, e, s = crt1([18, 42, 6]) >>> crt2([18, 42, 6], [0, 0, 0], mm, e, s) (0, 4536) """ result = gf_crt2(v, m, mm, e, s, ZZ) if symmetric: return symmetric_residue(result, mm), mm return result, mm def solve_congruence(*remainder_modulus_pairs, **hint): """Compute the integer ``n`` that has the residual ``ai`` when it is divided by ``mi`` where the ``ai`` and ``mi`` are given as pairs to this function: ((a1, m1), (a2, m2), ...). If there is no solution, return None. Otherwise return ``n`` and its modulus. The ``mi`` values need not be co-prime. If it is known that the moduli are not co-prime then the hint ``check`` can be set to False (default=True) and the check for a quicker solution via crt() (valid when the moduli are co-prime) will be skipped. If the hint ``symmetric`` is True (default is False), the value of ``n`` will be within 1/2 of the modulus, possibly negative. Examples ======== >>> from sympy.ntheory.modular import solve_congruence What number is 2 mod 3, 3 mod 5 and 2 mod 7? >>> solve_congruence((2, 3), (3, 5), (2, 7)) (23, 105) >>> [23 % m for m in [3, 5, 7]] [2, 3, 2] If you prefer to work with all remainder in one list and all moduli in another, send the arguments like this: >>> solve_congruence(*zip((2, 3, 2), (3, 5, 7))) (23, 105) The moduli need not be co-prime; in this case there may or may not be a solution: >>> solve_congruence((2, 3), (4, 6)) is None True >>> solve_congruence((2, 3), (5, 6)) (5, 6) The symmetric flag will make the result be within 1/2 of the modulus: >>> solve_congruence((2, 3), (5, 6), symmetric=True) (-1, 6) See Also ======== crt : high level routine implementing the Chinese Remainder Theorem """ def combine(c1, c2): """Return the tuple (a, m) which satisfies the requirement that n = a + i*m satisfy n = a1 + j*m1 and n = a2 = k*m2. References ========== .. [1] https://en.wikipedia.org/wiki/Method_of_successive_substitution """ a1, m1 = c1 a2, m2 = c2 a, b, c = m1, a2 - a1, m2 g = reduce(igcd, [a, b, c]) a, b, c = [i//g for i in [a, b, c]] if a != 1: inv_a, _, g = igcdex(a, c) if g != 1: return None b *= inv_a a, m = a1 + m1*b, m1*c return a, m rm = remainder_modulus_pairs symmetric = hint.get('symmetric', False) if hint.get('check', True): rm = [(as_int(r), as_int(m)) for r, m in rm] # ignore redundant pairs but raise an error otherwise; also # make sure that a unique set of bases is sent to gf_crt if # they are all prime. # # The routine will work out less-trivial violations and # return None, e.g. for the pairs (1,3) and (14,42) there # is no answer because 14 mod 42 (having a gcd of 14) implies # (14/2) mod (42/2), (14/7) mod (42/7) and (14/14) mod (42/14) # which, being 0 mod 3, is inconsistent with 1 mod 3. But to # preprocess the input beyond checking of another pair with 42 # or 3 as the modulus (for this example) is not necessary. uniq = {} for r, m in rm: r %= m if m in uniq: if r != uniq[m]: return None continue uniq[m] = r rm = [(r, m) for m, r in uniq.items()] del uniq # if the moduli are co-prime, the crt will be significantly faster; # checking all pairs for being co-prime gets to be slow but a prime # test is a good trade-off if all(isprime(m) for r, m in rm): r, m = list(zip(*rm)) return crt(m, r, symmetric=symmetric, check=False) rv = (0, 1) for rmi in rm: rv = combine(rv, rmi) if rv is None: break n, m = rv n = n % m else: if symmetric: return symmetric_residue(n, m), m return n, m
adb9b74938e07d16cd55b70f787ebdaad5a4b6d8520a4d2c0b7ef736e0cce9f5
from sympy.utilities.misc import as_int def binomial_coefficients(n): """Return a dictionary containing pairs :math:`{(k1,k2) : C_kn}` where :math:`C_kn` are binomial coefficients and :math:`n=k1+k2`. Examples ======== >>> from sympy.ntheory import binomial_coefficients >>> binomial_coefficients(9) {(0, 9): 1, (1, 8): 9, (2, 7): 36, (3, 6): 84, (4, 5): 126, (5, 4): 126, (6, 3): 84, (7, 2): 36, (8, 1): 9, (9, 0): 1} See Also ======== binomial_coefficients_list, multinomial_coefficients """ n = as_int(n) d = {(0, n): 1, (n, 0): 1} a = 1 for k in range(1, n//2 + 1): a = (a * (n - k + 1))//k d[k, n - k] = d[n - k, k] = a return d def binomial_coefficients_list(n): """ Return a list of binomial coefficients as rows of the Pascal's triangle. Examples ======== >>> from sympy.ntheory import binomial_coefficients_list >>> binomial_coefficients_list(9) [1, 9, 36, 84, 126, 126, 84, 36, 9, 1] See Also ======== binomial_coefficients, multinomial_coefficients """ n = as_int(n) d = [1] * (n + 1) a = 1 for k in range(1, n//2 + 1): a = (a * (n - k + 1))//k d[k] = d[n - k] = a return d def multinomial_coefficients(m, n): r"""Return a dictionary containing pairs ``{(k1,k2,..,km) : C_kn}`` where ``C_kn`` are multinomial coefficients such that ``n=k1+k2+..+km``. Examples ======== >>> from sympy.ntheory import multinomial_coefficients >>> multinomial_coefficients(2, 5) # indirect doctest {(0, 5): 1, (1, 4): 5, (2, 3): 10, (3, 2): 10, (4, 1): 5, (5, 0): 1} Notes ===== The algorithm is based on the following result: .. math:: \binom{n}{k_1, \ldots, k_m} = \frac{k_1 + 1}{n - k_1} \sum_{i=2}^m \binom{n}{k_1 + 1, \ldots, k_i - 1, \ldots} Code contributed to Sage by Yann Laigle-Chapuy, copied with permission of the author. See Also ======== binomial_coefficients_list, binomial_coefficients """ m = as_int(m) n = as_int(n) if not m: if n: return {} return {(): 1} if m == 2: return binomial_coefficients(n) if m >= 2*n and n > 1: return dict(multinomial_coefficients_iterator(m, n)) t = [n] + [0] * (m - 1) r = {tuple(t): 1} if n: j = 0 # j will be the leftmost nonzero position else: j = m # enumerate tuples in co-lex order while j < m - 1: # compute next tuple tj = t[j] if j: t[j] = 0 t[0] = tj if tj > 1: t[j + 1] += 1 j = 0 start = 1 v = 0 else: j += 1 start = j + 1 v = r[tuple(t)] t[j] += 1 # compute the value # NB: the initialization of v was done above for k in range(start, m): if t[k]: t[k] -= 1 v += r[tuple(t)] t[k] += 1 t[0] -= 1 r[tuple(t)] = (v * tj) // (n - t[0]) return r def multinomial_coefficients_iterator(m, n, _tuple=tuple): """multinomial coefficient iterator This routine has been optimized for `m` large with respect to `n` by taking advantage of the fact that when the monomial tuples `t` are stripped of zeros, their coefficient is the same as that of the monomial tuples from ``multinomial_coefficients(n, n)``. Therefore, the latter coefficients are precomputed to save memory and time. >>> from sympy.ntheory.multinomial import multinomial_coefficients >>> m53, m33 = multinomial_coefficients(5,3), multinomial_coefficients(3,3) >>> m53[(0,0,0,1,2)] == m53[(0,0,1,0,2)] == m53[(1,0,2,0,0)] == m33[(0,1,2)] True Examples ======== >>> from sympy.ntheory.multinomial import multinomial_coefficients_iterator >>> it = multinomial_coefficients_iterator(20,3) >>> next(it) ((3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1) """ m = as_int(m) n = as_int(n) if m < 2*n or n == 1: mc = multinomial_coefficients(m, n) yield from mc.items() else: mc = multinomial_coefficients(n, n) mc1 = {} for k, v in mc.items(): mc1[_tuple(filter(None, k))] = v mc = mc1 t = [n] + [0] * (m - 1) t1 = _tuple(t) b = _tuple(filter(None, t1)) yield (t1, mc[b]) if n: j = 0 # j will be the leftmost nonzero position else: j = m # enumerate tuples in co-lex order while j < m - 1: # compute next tuple tj = t[j] if j: t[j] = 0 t[0] = tj if tj > 1: t[j + 1] += 1 j = 0 else: j += 1 t[j] += 1 t[0] -= 1 t1 = _tuple(t) b = _tuple(filter(None, t1)) yield (t1, mc[b])
ee0f63d594280f6d92469473028f20d449c341ad7af8353e06ff6785be063fa9
""" Primality testing """ from sympy.core.numbers import igcd from sympy.core.power import integer_nthroot from sympy.core.sympify import sympify from sympy.external.gmpy import HAS_GMPY from sympy.utilities.misc import as_int from mpmath.libmp import bitcount as _bitlength def _int_tuple(*i): return tuple(int(_) for _ in i) def is_euler_pseudoprime(n, b): """Returns True if n is prime or an Euler pseudoprime to base b, else False. Euler Pseudoprime : In arithmetic, an odd composite integer n is called an euler pseudoprime to base a, if a and n are coprime and satisfy the modular arithmetic congruence relation : a ^ (n-1)/2 = + 1(mod n) or a ^ (n-1)/2 = - 1(mod n) (where mod refers to the modulo operation). Examples ======== >>> from sympy.ntheory.primetest import is_euler_pseudoprime >>> is_euler_pseudoprime(2, 5) True References ========== .. [1] https://en.wikipedia.org/wiki/Euler_pseudoprime """ from sympy.ntheory.factor_ import trailing if not mr(n, [b]): return False n = as_int(n) r = n - 1 c = pow(b, r >> trailing(r), n) if c == 1: return True while True: if c == n - 1: return True c = pow(c, 2, n) if c == 1: return False def is_square(n, prep=True): """Return True if n == a * a for some integer a, else False. If n is suspected of *not* being a square then this is a quick method of confirming that it is not. Examples ======== >>> from sympy.ntheory.primetest import is_square >>> is_square(25) True >>> is_square(2) False References ========== .. [1] http://mersenneforum.org/showpost.php?p=110896 See Also ======== sympy.core.power.integer_nthroot """ if prep: n = as_int(n) if n < 0: return False if n in (0, 1): return True # def magic(n): # s = {x**2 % n for x in range(n)} # return sum(1 << bit for bit in s) # >>> print(hex(magic(128))) # 0x2020212020202130202021202030213 # >>> print(hex(magic(99))) # 0x209060049048220348a410213 # >>> print(hex(magic(91))) # 0x102e403012a0c9862c14213 # >>> print(hex(magic(85))) # 0x121065188e001c46298213 if not 0x2020212020202130202021202030213 & (1 << (n & 127)): return False m = n % (99 * 91 * 85) if not 0x209060049048220348a410213 & (1 << (m % 99)): return False if not 0x102e403012a0c9862c14213 & (1 << (m % 91)): return False if not 0x121065188e001c46298213 & (1 << (m % 85)): return False return integer_nthroot(n, 2)[1] def _test(n, base, s, t): """Miller-Rabin strong pseudoprime test for one base. Return False if n is definitely composite, True if n is probably prime, with a probability greater than 3/4. """ # do the Fermat test b = pow(base, t, n) if b == 1 or b == n - 1: return True else: for j in range(1, s): b = pow(b, 2, n) if b == n - 1: return True # see I. Niven et al. "An Introduction to Theory of Numbers", page 78 if b == 1: return False return False def mr(n, bases): """Perform a Miller-Rabin strong pseudoprime test on n using a given list of bases/witnesses. References ========== .. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers: A Computational Perspective", Springer, 2nd edition, 135-138 A list of thresholds and the bases they require are here: https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants Examples ======== >>> from sympy.ntheory.primetest import mr >>> mr(1373651, [2, 3]) False >>> mr(479001599, [31, 73]) True """ from sympy.ntheory.factor_ import trailing from sympy.polys.domains import ZZ n = as_int(n) if n < 2: return False # remove powers of 2 from n-1 (= t * 2**s) s = trailing(n - 1) t = n >> s for base in bases: # Bases >= n are wrapped, bases < 2 are invalid if base >= n: base %= n if base >= 2: base = ZZ(base) if not _test(n, base, s, t): return False return True def _lucas_sequence(n, P, Q, k): """Return the modular Lucas sequence (U_k, V_k, Q_k). Given a Lucas sequence defined by P, Q, returns the kth values for U and V, along with Q^k, all modulo n. This is intended for use with possibly very large values of n and k, where the combinatorial functions would be completely unusable. The modular Lucas sequences are used in numerous places in number theory, especially in the Lucas compositeness tests and the various n + 1 proofs. Examples ======== >>> from sympy.ntheory.primetest import _lucas_sequence >>> N = 10**2000 + 4561 >>> sol = U, V, Qk = _lucas_sequence(N, 3, 1, N//2); sol (0, 2, 1) """ D = P*P - 4*Q if n < 2: raise ValueError("n must be >= 2") if k < 0: raise ValueError("k must be >= 0") if D == 0: raise ValueError("D must not be zero") if k == 0: return _int_tuple(0, 2, Q) U = 1 V = P Qk = Q b = _bitlength(k) if Q == 1: # Optimization for extra strong tests. while b > 1: U = (U*V) % n V = (V*V - 2) % n b -= 1 if (k >> (b - 1)) & 1: U, V = U*P + V, V*P + U*D if U & 1: U += n if V & 1: V += n U, V = U >> 1, V >> 1 elif P == 1 and Q == -1: # Small optimization for 50% of Selfridge parameters. while b > 1: U = (U*V) % n if Qk == 1: V = (V*V - 2) % n else: V = (V*V + 2) % n Qk = 1 b -= 1 if (k >> (b-1)) & 1: U, V = U + V, V + U*D if U & 1: U += n if V & 1: V += n U, V = U >> 1, V >> 1 Qk = -1 else: # The general case with any P and Q. while b > 1: U = (U*V) % n V = (V*V - 2*Qk) % n Qk *= Qk b -= 1 if (k >> (b - 1)) & 1: U, V = U*P + V, V*P + U*D if U & 1: U += n if V & 1: V += n U, V = U >> 1, V >> 1 Qk *= Q Qk %= n return _int_tuple(U % n, V % n, Qk) def _lucas_selfridge_params(n): """Calculates the Selfridge parameters (D, P, Q) for n. This is method A from page 1401 of Baillie and Wagstaff. References ========== .. [1] "Lucas Pseudoprimes", Baillie and Wagstaff, 1980. http://mpqs.free.fr/LucasPseudoprimes.pdf """ from sympy.ntheory.residue_ntheory import jacobi_symbol D = 5 while True: g = igcd(abs(D), n) if g > 1 and g != n: return (0, 0, 0) if jacobi_symbol(D, n) == -1: break if D > 0: D = -D - 2 else: D = -D + 2 return _int_tuple(D, 1, (1 - D)/4) def _lucas_extrastrong_params(n): """Calculates the "extra strong" parameters (D, P, Q) for n. References ========== .. [1] OEIS A217719: Extra Strong Lucas Pseudoprimes https://oeis.org/A217719 .. [1] https://en.wikipedia.org/wiki/Lucas_pseudoprime """ from sympy.ntheory.residue_ntheory import jacobi_symbol P, Q, D = 3, 1, 5 while True: g = igcd(D, n) if g > 1 and g != n: return (0, 0, 0) if jacobi_symbol(D, n) == -1: break P += 1 D = P*P - 4 return _int_tuple(D, P, Q) def is_lucas_prp(n): """Standard Lucas compositeness test with Selfridge parameters. Returns False if n is definitely composite, and True if n is a Lucas probable prime. This is typically used in combination with the Miller-Rabin test. References ========== - "Lucas Pseudoprimes", Baillie and Wagstaff, 1980. http://mpqs.free.fr/LucasPseudoprimes.pdf - OEIS A217120: Lucas Pseudoprimes https://oeis.org/A217120 - https://en.wikipedia.org/wiki/Lucas_pseudoprime Examples ======== >>> from sympy.ntheory.primetest import isprime, is_lucas_prp >>> for i in range(10000): ... if is_lucas_prp(i) and not isprime(i): ... print(i) 323 377 1159 1829 3827 5459 5777 9071 9179 """ n = as_int(n) if n == 2: return True if n < 2 or (n % 2) == 0: return False if is_square(n, False): return False D, P, Q = _lucas_selfridge_params(n) if D == 0: return False U, V, Qk = _lucas_sequence(n, P, Q, n+1) return U == 0 def is_strong_lucas_prp(n): """Strong Lucas compositeness test with Selfridge parameters. Returns False if n is definitely composite, and True if n is a strong Lucas probable prime. This is often used in combination with the Miller-Rabin test, and in particular, when combined with M-R base 2 creates the strong BPSW test. References ========== - "Lucas Pseudoprimes", Baillie and Wagstaff, 1980. http://mpqs.free.fr/LucasPseudoprimes.pdf - OEIS A217255: Strong Lucas Pseudoprimes https://oeis.org/A217255 - https://en.wikipedia.org/wiki/Lucas_pseudoprime - https://en.wikipedia.org/wiki/Baillie-PSW_primality_test Examples ======== >>> from sympy.ntheory.primetest import isprime, is_strong_lucas_prp >>> for i in range(20000): ... if is_strong_lucas_prp(i) and not isprime(i): ... print(i) 5459 5777 10877 16109 18971 """ from sympy.ntheory.factor_ import trailing n = as_int(n) if n == 2: return True if n < 2 or (n % 2) == 0: return False if is_square(n, False): return False D, P, Q = _lucas_selfridge_params(n) if D == 0: return False # remove powers of 2 from n+1 (= k * 2**s) s = trailing(n + 1) k = (n+1) >> s U, V, Qk = _lucas_sequence(n, P, Q, k) if U == 0 or V == 0: return True for r in range(1, s): V = (V*V - 2*Qk) % n if V == 0: return True Qk = pow(Qk, 2, n) return False def is_extra_strong_lucas_prp(n): """Extra Strong Lucas compositeness test. Returns False if n is definitely composite, and True if n is a "extra strong" Lucas probable prime. The parameters are selected using P = 3, Q = 1, then incrementing P until (D|n) == -1. The test itself is as defined in Grantham 2000, from the Mo and Jones preprint. The parameter selection and test are the same as used in OEIS A217719, Perl's Math::Prime::Util, and the Lucas pseudoprime page on Wikipedia. With these parameters, there are no counterexamples below 2^64 nor any known above that range. It is 20-50% faster than the strong test. Because of the different parameters selected, there is no relationship between the strong Lucas pseudoprimes and extra strong Lucas pseudoprimes. In particular, one is not a subset of the other. References ========== - "Frobenius Pseudoprimes", Jon Grantham, 2000. http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01197-2/ - OEIS A217719: Extra Strong Lucas Pseudoprimes https://oeis.org/A217719 - https://en.wikipedia.org/wiki/Lucas_pseudoprime Examples ======== >>> from sympy.ntheory.primetest import isprime, is_extra_strong_lucas_prp >>> for i in range(20000): ... if is_extra_strong_lucas_prp(i) and not isprime(i): ... print(i) 989 3239 5777 10877 """ # Implementation notes: # 1) the parameters differ from Thomas R. Nicely's. His parameter # selection leads to pseudoprimes that overlap M-R tests, and # contradict Baillie and Wagstaff's suggestion of (D|n) = -1. # 2) The MathWorld page as of June 2013 specifies Q=-1. The Lucas # sequence must have Q=1. See Grantham theorem 2.3, any of the # references on the MathWorld page, or run it and see Q=-1 is wrong. from sympy.ntheory.factor_ import trailing n = as_int(n) if n == 2: return True if n < 2 or (n % 2) == 0: return False if is_square(n, False): return False D, P, Q = _lucas_extrastrong_params(n) if D == 0: return False # remove powers of 2 from n+1 (= k * 2**s) s = trailing(n + 1) k = (n+1) >> s U, V, Qk = _lucas_sequence(n, P, Q, k) if U == 0 and (V == 2 or V == n - 2): return True for r in range(1, s): if V == 0: return True V = (V*V - 2) % n return False def isprime(n): """ Test if n is a prime number (True) or not (False). For n < 2^64 the answer is definitive; larger n values have a small probability of actually being pseudoprimes. Negative numbers (e.g. -2) are not considered prime. The first step is looking for trivial factors, which if found enables a quick return. Next, if the sieve is large enough, use bisection search on the sieve. For small numbers, a set of deterministic Miller-Rabin tests are performed with bases that are known to have no counterexamples in their range. Finally if the number is larger than 2^64, a strong BPSW test is performed. While this is a probable prime test and we believe counterexamples exist, there are no known counterexamples. Examples ======== >>> from sympy.ntheory import isprime >>> isprime(13) True >>> isprime(13.0) # limited precision False >>> isprime(15) False Notes ===== This routine is intended only for integer input, not numerical expressions which may represent numbers. Floats are also rejected as input because they represent numbers of limited precision. While it is tempting to permit 7.0 to represent an integer there are errors that may "pass silently" if this is allowed: >>> from sympy import Float, S >>> int(1e3) == 1e3 == 10**3 True >>> int(1e23) == 1e23 True >>> int(1e23) == 10**23 False >>> near_int = 1 + S(1)/10**19 >>> near_int == int(near_int) False >>> n = Float(near_int, 10) # truncated by precision >>> n == int(n) True >>> n = Float(near_int, 20) >>> n == int(n) False See Also ======== sympy.ntheory.generate.primerange : Generates all primes in a given range sympy.ntheory.generate.primepi : Return the number of primes less than or equal to n sympy.ntheory.generate.prime : Return the nth prime References ========== - https://en.wikipedia.org/wiki/Strong_pseudoprime - "Lucas Pseudoprimes", Baillie and Wagstaff, 1980. http://mpqs.free.fr/LucasPseudoprimes.pdf - https://en.wikipedia.org/wiki/Baillie-PSW_primality_test """ try: n = as_int(n) except ValueError: return False # Step 1, do quick composite testing via trial division. The individual # modulo tests benchmark faster than one or two primorial igcds for me. # The point here is just to speedily handle small numbers and many # composites. Step 2 only requires that n <= 2 get handled here. if n in [2, 3, 5]: return True if n < 2 or (n % 2) == 0 or (n % 3) == 0 or (n % 5) == 0: return False if n < 49: return True if (n % 7) == 0 or (n % 11) == 0 or (n % 13) == 0 or (n % 17) == 0 or \ (n % 19) == 0 or (n % 23) == 0 or (n % 29) == 0 or (n % 31) == 0 or \ (n % 37) == 0 or (n % 41) == 0 or (n % 43) == 0 or (n % 47) == 0: return False if n < 2809: return True if n <= 23001: return pow(2, n, n) == 2 and n not in [7957, 8321, 13747, 18721, 19951] # bisection search on the sieve if the sieve is large enough from sympy.ntheory.generate import sieve as s if n <= s._list[-1]: l, u = s.search(n) return l == u # If we have GMPY2, skip straight to step 3 and do a strong BPSW test. # This should be a bit faster than our step 2, and for large values will # be a lot faster than our step 3 (C+GMP vs. Python). if HAS_GMPY == 2: from gmpy2 import is_strong_prp, is_strong_selfridge_prp return is_strong_prp(n, 2) and is_strong_selfridge_prp(n) # Step 2: deterministic Miller-Rabin testing for numbers < 2^64. See: # https://miller-rabin.appspot.com/ # for lists. We have made sure the M-R routine will successfully handle # bases larger than n, so we can use the minimal set. if n < 341531: return mr(n, [9345883071009581737]) if n < 885594169: return mr(n, [725270293939359937, 3569819667048198375]) if n < 350269456337: return mr(n, [4230279247111683200, 14694767155120705706, 16641139526367750375]) if n < 55245642489451: return mr(n, [2, 141889084524735, 1199124725622454117, 11096072698276303650]) if n < 7999252175582851: return mr(n, [2, 4130806001517, 149795463772692060, 186635894390467037, 3967304179347715805]) if n < 585226005592931977: return mr(n, [2, 123635709730000, 9233062284813009, 43835965440333360, 761179012939631437, 1263739024124850375]) if n < 18446744073709551616: return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022]) # We could do this instead at any point: #if n < 18446744073709551616: # return mr(n, [2]) and is_extra_strong_lucas_prp(n) # Here are tests that are safe for MR routines that don't understand # large bases. #if n < 9080191: # return mr(n, [31, 73]) #if n < 19471033: # return mr(n, [2, 299417]) #if n < 38010307: # return mr(n, [2, 9332593]) #if n < 316349281: # return mr(n, [11000544, 31481107]) #if n < 4759123141: # return mr(n, [2, 7, 61]) #if n < 105936894253: # return mr(n, [2, 1005905886, 1340600841]) #if n < 31858317218647: # return mr(n, [2, 642735, 553174392, 3046413974]) #if n < 3071837692357849: # return mr(n, [2, 75088, 642735, 203659041, 3613982119]) #if n < 18446744073709551616: # return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022]) # Step 3: BPSW. # # Time for isprime(10**2000 + 4561), no gmpy or gmpy2 installed # 44.0s old isprime using 46 bases # 5.3s strong BPSW + one random base # 4.3s extra strong BPSW + one random base # 4.1s strong BPSW # 3.2s extra strong BPSW # Classic BPSW from page 1401 of the paper. See alternate ideas below. return mr(n, [2]) and is_strong_lucas_prp(n) # Using extra strong test, which is somewhat faster #return mr(n, [2]) and is_extra_strong_lucas_prp(n) # Add a random M-R base #import random #return mr(n, [2, random.randint(3, n-1)]) and is_strong_lucas_prp(n) def is_gaussian_prime(num): r"""Test if num is a Gaussian prime number. References ========== .. [1] https://oeis.org/wiki/Gaussian_primes """ num = sympify(num) a, b = num.as_real_imag() a = as_int(a, strict=False) b = as_int(b, strict=False) if a == 0: b = abs(b) return isprime(b) and b % 4 == 3 elif b == 0: a = abs(a) return isprime(a) and a % 4 == 3 return isprime(a**2 + b**2)
a71265dabdabad6c74ab4e0e141bc4b3f0316242ab59ae80cd6b220e65571af5
from sympy.core.containers import Tuple from sympy.core.numbers import (Integer, Rational) from sympy.core.singleton import S import sympy.polys from math import gcd def egyptian_fraction(r, algorithm="Greedy"): """ Return the list of denominators of an Egyptian fraction expansion [1]_ of the said rational `r`. Parameters ========== r : Rational or (p, q) a positive rational number, ``p/q``. algorithm : { "Greedy", "Graham Jewett", "Takenouchi", "Golomb" }, optional Denotes the algorithm to be used (the default is "Greedy"). Examples ======== >>> from sympy import Rational >>> from sympy.ntheory.egyptian_fraction import egyptian_fraction >>> egyptian_fraction(Rational(3, 7)) [3, 11, 231] >>> egyptian_fraction((3, 7), "Graham Jewett") [7, 8, 9, 56, 57, 72, 3192] >>> egyptian_fraction((3, 7), "Takenouchi") [4, 7, 28] >>> egyptian_fraction((3, 7), "Golomb") [3, 15, 35] >>> egyptian_fraction((11, 5), "Golomb") [1, 2, 3, 4, 9, 234, 1118, 2580] See Also ======== sympy.core.numbers.Rational Notes ===== Currently the following algorithms are supported: 1) Greedy Algorithm Also called the Fibonacci-Sylvester algorithm [2]_. At each step, extract the largest unit fraction less than the target and replace the target with the remainder. It has some distinct properties: a) Given `p/q` in lowest terms, generates an expansion of maximum length `p`. Even as the numerators get large, the number of terms is seldom more than a handful. b) Uses minimal memory. c) The terms can blow up (standard examples of this are 5/121 and 31/311). The denominator is at most squared at each step (doubly-exponential growth) and typically exhibits singly-exponential growth. 2) Graham Jewett Algorithm The algorithm suggested by the result of Graham and Jewett. Note that this has a tendency to blow up: the length of the resulting expansion is always ``2**(x/gcd(x, y)) - 1``. See [3]_. 3) Takenouchi Algorithm The algorithm suggested by Takenouchi (1921). Differs from the Graham-Jewett algorithm only in the handling of duplicates. See [3]_. 4) Golomb's Algorithm A method given by Golumb (1962), using modular arithmetic and inverses. It yields the same results as a method using continued fractions proposed by Bleicher (1972). See [4]_. If the given rational is greater than or equal to 1, a greedy algorithm of summing the harmonic sequence 1/1 + 1/2 + 1/3 + ... is used, taking all the unit fractions of this sequence until adding one more would be greater than the given number. This list of denominators is prefixed to the result from the requested algorithm used on the remainder. For example, if r is 8/3, using the Greedy algorithm, we get [1, 2, 3, 4, 5, 6, 7, 14, 420], where the beginning of the sequence, [1, 2, 3, 4, 5, 6, 7] is part of the harmonic sequence summing to 363/140, leaving a remainder of 31/420, which yields [14, 420] by the Greedy algorithm. The result of egyptian_fraction(Rational(8, 3), "Golomb") is [1, 2, 3, 4, 5, 6, 7, 14, 574, 2788, 6460, 11590, 33062, 113820], and so on. References ========== .. [1] https://en.wikipedia.org/wiki/Egyptian_fraction .. [2] https://en.wikipedia.org/wiki/Greedy_algorithm_for_Egyptian_fractions .. [3] https://www.ics.uci.edu/~eppstein/numth/egypt/conflict.html .. [4] http://ami.ektf.hu/uploads/papers/finalpdf/AMI_42_from129to134.pdf """ if not isinstance(r, Rational): if isinstance(r, (Tuple, tuple)) and len(r) == 2: r = Rational(*r) else: raise ValueError("Value must be a Rational or tuple of ints") if r <= 0: raise ValueError("Value must be positive") # common cases that all methods agree on x, y = r.as_numer_denom() if y == 1 and x == 2: return [Integer(i) for i in [1, 2, 3, 6]] if x == y + 1: return [S.One, y] prefix, rem = egypt_harmonic(r) if rem == 0: return prefix # work in Python ints x, y = rem.p, rem.q # assert x < y and gcd(x, y) = 1 if algorithm == "Greedy": postfix = egypt_greedy(x, y) elif algorithm == "Graham Jewett": postfix = egypt_graham_jewett(x, y) elif algorithm == "Takenouchi": postfix = egypt_takenouchi(x, y) elif algorithm == "Golomb": postfix = egypt_golomb(x, y) else: raise ValueError("Entered invalid algorithm") return prefix + [Integer(i) for i in postfix] def egypt_greedy(x, y): # assumes gcd(x, y) == 1 if x == 1: return [y] else: a = (-y) % x b = y*(y//x + 1) c = gcd(a, b) if c > 1: num, denom = a//c, b//c else: num, denom = a, b return [y//x + 1] + egypt_greedy(num, denom) def egypt_graham_jewett(x, y): # assumes gcd(x, y) == 1 l = [y] * x # l is now a list of integers whose reciprocals sum to x/y. # we shall now proceed to manipulate the elements of l without # changing the reciprocated sum until all elements are unique. while len(l) != len(set(l)): l.sort() # so the list has duplicates. find a smallest pair for i in range(len(l) - 1): if l[i] == l[i + 1]: break # we have now identified a pair of identical # elements: l[i] and l[i + 1]. # now comes the application of the result of graham and jewett: l[i + 1] = l[i] + 1 # and we just iterate that until the list has no duplicates. l.append(l[i]*(l[i] + 1)) return sorted(l) def egypt_takenouchi(x, y): # assumes gcd(x, y) == 1 # special cases for 3/y if x == 3: if y % 2 == 0: return [y//2, y] i = (y - 1)//2 j = i + 1 k = j + i return [j, k, j*k] l = [y] * x while len(l) != len(set(l)): l.sort() for i in range(len(l) - 1): if l[i] == l[i + 1]: break k = l[i] if k % 2 == 0: l[i] = l[i] // 2 del l[i + 1] else: l[i], l[i + 1] = (k + 1)//2, k*(k + 1)//2 return sorted(l) def egypt_golomb(x, y): # assumes x < y and gcd(x, y) == 1 if x == 1: return [y] xp = sympy.polys.ZZ.invert(int(x), int(y)) rv = [xp*y] rv.extend(egypt_golomb((x*xp - 1)//y, xp)) return sorted(rv) def egypt_harmonic(r): # assumes r is Rational rv = [] d = S.One acc = S.Zero while acc + 1/d <= r: acc += 1/d rv.append(d) d += 1 return (rv, r - acc)
8516c7162818ed85b72c0c84e71cde9b65a069fdee92489f13fba9f502e87925
from sympy.core.numbers import Integer, Rational from sympy.core.singleton import S from sympy.core.sympify import _sympify from sympy.utilities.misc import as_int def continued_fraction(a): """Return the continued fraction representation of a Rational or quadratic irrational. Examples ======== >>> from sympy.ntheory.continued_fraction import continued_fraction >>> from sympy import sqrt >>> continued_fraction((1 + 2*sqrt(3))/5) [0, 1, [8, 3, 34, 3]] See Also ======== continued_fraction_periodic, continued_fraction_reduce, continued_fraction_convergents """ e = _sympify(a) if all(i.is_Rational for i in e.atoms()): if e.is_Integer: return continued_fraction_periodic(e, 1, 0) elif e.is_Rational: return continued_fraction_periodic(e.p, e.q, 0) elif e.is_Pow and e.exp is S.Half and e.base.is_Integer: return continued_fraction_periodic(0, 1, e.base) elif e.is_Mul and len(e.args) == 2 and ( e.args[0].is_Rational and e.args[1].is_Pow and e.args[1].base.is_Integer and e.args[1].exp is S.Half): a, b = e.args return continued_fraction_periodic(0, a.q, b.base, a.p) else: # this should not have to work very hard- no # simplification, cancel, etc... which should be # done by the user. e.g. This is a fancy 1 but # the user should simplify it first: # sqrt(2)*(1 + sqrt(2))/(sqrt(2) + 2) p, d = e.expand().as_numer_denom() if d.is_Integer: if p.is_Rational: return continued_fraction_periodic(p, d) # look for a + b*c # with c = sqrt(s) if p.is_Add and len(p.args) == 2: a, bc = p.args else: a = S.Zero bc = p if a.is_Integer: b = S.NaN if bc.is_Mul and len(bc.args) == 2: b, c = bc.args elif bc.is_Pow: b = Integer(1) c = bc if b.is_Integer and ( c.is_Pow and c.exp is S.Half and c.base.is_Integer): # (a + b*sqrt(c))/d c = c.base return continued_fraction_periodic(a, d, c, b) raise ValueError( 'expecting a rational or quadratic irrational, not %s' % e) def continued_fraction_periodic(p, q, d=0, s=1): r""" Find the periodic continued fraction expansion of a quadratic irrational. Compute the continued fraction expansion of a rational or a quadratic irrational number, i.e. `\frac{p + s\sqrt{d}}{q}`, where `p`, `q \ne 0` and `d \ge 0` are integers. Returns the continued fraction representation (canonical form) as a list of integers, optionally ending (for quadratic irrationals) with list of integers representing the repeating digits. Parameters ========== p : int the rational part of the number's numerator q : int the denominator of the number d : int, optional the irrational part (discriminator) of the number's numerator s : int, optional the coefficient of the irrational part Examples ======== >>> from sympy.ntheory.continued_fraction import continued_fraction_periodic >>> continued_fraction_periodic(3, 2, 7) [2, [1, 4, 1, 1]] Golden ratio has the simplest continued fraction expansion: >>> continued_fraction_periodic(1, 2, 5) [[1]] If the discriminator is zero or a perfect square then the number will be a rational number: >>> continued_fraction_periodic(4, 3, 0) [1, 3] >>> continued_fraction_periodic(4, 3, 49) [3, 1, 2] See Also ======== continued_fraction_iterator, continued_fraction_reduce References ========== .. [1] https://en.wikipedia.org/wiki/Periodic_continued_fraction .. [2] K. Rosen. Elementary Number theory and its applications. Addison-Wesley, 3 Sub edition, pages 379-381, January 1992. """ from sympy.functions import sqrt, floor p, q, d, s = list(map(as_int, [p, q, d, s])) if d < 0: raise ValueError("expected non-negative for `d` but got %s" % d) if q == 0: raise ValueError("The denominator cannot be 0.") if not s: d = 0 # check for rational case sd = sqrt(d) if sd.is_Integer: return list(continued_fraction_iterator(Rational(p + s*sd, q))) # irrational case with sd != Integer if q < 0: p, q, s = -p, -q, -s n = (p + s*sd)/q if n < 0: w = floor(-n) f = -n - w one_f = continued_fraction(1 - f) # 1-f < 1 so cf is [0 ... [...]] one_f[0] -= w + 1 return one_f d *= s**2 sd *= s if (d - p**2)%q: d *= q**2 sd *= q p *= q q *= q terms = [] pq = {} while (p, q) not in pq: pq[(p, q)] = len(terms) terms.append((p + sd)//q) p = terms[-1]*q - p q = (d - p**2)//q i = pq[(p, q)] return terms[:i] + [terms[i:]] def continued_fraction_reduce(cf): """ Reduce a continued fraction to a rational or quadratic irrational. Compute the rational or quadratic irrational number from its terminating or periodic continued fraction expansion. The continued fraction expansion (cf) should be supplied as a terminating iterator supplying the terms of the expansion. For terminating continued fractions, this is equivalent to ``list(continued_fraction_convergents(cf))[-1]``, only a little more efficient. If the expansion has a repeating part, a list of the repeating terms should be returned as the last element from the iterator. This is the format returned by continued_fraction_periodic. For quadratic irrationals, returns the largest solution found, which is generally the one sought, if the fraction is in canonical form (all terms positive except possibly the first). Examples ======== >>> from sympy.ntheory.continued_fraction import continued_fraction_reduce >>> continued_fraction_reduce([1, 2, 3, 4, 5]) 225/157 >>> continued_fraction_reduce([-2, 1, 9, 7, 1, 2]) -256/233 >>> continued_fraction_reduce([2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8]).n(10) 2.718281835 >>> continued_fraction_reduce([1, 4, 2, [3, 1]]) (sqrt(21) + 287)/238 >>> continued_fraction_reduce([[1]]) (1 + sqrt(5))/2 >>> from sympy.ntheory.continued_fraction import continued_fraction_periodic >>> continued_fraction_reduce(continued_fraction_periodic(8, 5, 13)) (sqrt(13) + 8)/5 See Also ======== continued_fraction_periodic """ from sympy.core.exprtools import factor_terms from sympy.core.symbol import Dummy from sympy.solvers import solve period = [] x = Dummy('x') def untillist(cf): for nxt in cf: if isinstance(nxt, list): period.extend(nxt) yield x break yield nxt a = S.Zero for a in continued_fraction_convergents(untillist(cf)): pass if period: y = Dummy('y') solns = solve(continued_fraction_reduce(period + [y]) - y, y) solns.sort() pure = solns[-1] rv = a.subs(x, pure).radsimp() else: rv = a if rv.is_Add: rv = factor_terms(rv) if rv.is_Mul and rv.args[0] == -1: rv = rv.func(*rv.args) return rv def continued_fraction_iterator(x): """ Return continued fraction expansion of x as iterator. Examples ======== >>> from sympy import Rational, pi >>> from sympy.ntheory.continued_fraction import continued_fraction_iterator >>> list(continued_fraction_iterator(Rational(3, 8))) [0, 2, 1, 2] >>> list(continued_fraction_iterator(Rational(-3, 8))) [-1, 1, 1, 1, 2] >>> for i, v in enumerate(continued_fraction_iterator(pi)): ... if i > 7: ... break ... print(v) 3 7 15 1 292 1 1 1 References ========== .. [1] https://en.wikipedia.org/wiki/Continued_fraction """ from sympy.functions import floor while True: i = floor(x) yield i x -= i if not x: break x = 1/x def continued_fraction_convergents(cf): """ Return an iterator over the convergents of a continued fraction (cf). The parameter should be an iterable returning successive partial quotients of the continued fraction, such as might be returned by continued_fraction_iterator. In computing the convergents, the continued fraction need not be strictly in canonical form (all integers, all but the first positive). Rational and negative elements may be present in the expansion. Examples ======== >>> from sympy.core import pi >>> from sympy import S >>> from sympy.ntheory.continued_fraction import \ continued_fraction_convergents, continued_fraction_iterator >>> list(continued_fraction_convergents([0, 2, 1, 2])) [0, 1/2, 1/3, 3/8] >>> list(continued_fraction_convergents([1, S('1/2'), -7, S('1/4')])) [1, 3, 19/5, 7] >>> it = continued_fraction_convergents(continued_fraction_iterator(pi)) >>> for n in range(7): ... print(next(it)) 3 22/7 333/106 355/113 103993/33102 104348/33215 208341/66317 See Also ======== continued_fraction_iterator """ p_2, q_2 = S.Zero, S.One p_1, q_1 = S.One, S.Zero for a in cf: p, q = a*p_1 + p_2, a*q_1 + q_2 p_2, q_2 = p_1, q_1 p_1, q_1 = p, q yield p/q
bf037041b818bf9502f7b7f058eec512f86a2c82ef4779c68e16972cbedc5a0e
from sympy.core.numbers import igcd, mod_inverse from sympy.core.power import integer_nthroot from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power from sympy.ntheory import isprime from math import log, sqrt import random rgen = random.Random() class SievePolynomial: def __init__(self, modified_coeff=(), a=None, b=None): """This class denotes the seive polynomial. If ``g(x) = (a*x + b)**2 - N``. `g(x)` can be expanded to ``a*x**2 + 2*a*b*x + b**2 - N``, so the coefficient is stored in the form `[a**2, 2*a*b, b**2 - N]`. This ensures faster `eval` method because we dont have to perform `a**2, 2*a*b, b**2` every time we call the `eval` method. As multiplication is more expensive than addition, by using modified_coefficient we get a faster seiving process. Parameters ========== modified_coeff : modified_coefficient of sieve polynomial a : parameter of the sieve polynomial b : parameter of the sieve polynomial """ self.modified_coeff = modified_coeff self.a = a self.b = b def eval(self, x): """ Compute the value of the sieve polynomial at point x. Parameters ========== x : Integer parameter for sieve polynomial """ ans = 0 for coeff in self.modified_coeff: ans *= x ans += coeff return ans class FactorBaseElem: """This class stores an element of the `factor_base`. """ def __init__(self, prime, tmem_p, log_p): """ Initialization of factor_base_elem. Parameters ========== prime : prime number of the factor_base tmem_p : Integer square root of x**2 = n mod prime log_p : Compute Natural Logarithm of the prime """ self.prime = prime self.tmem_p = tmem_p self.log_p = log_p self.soln1 = None self.soln2 = None self.a_inv = None self.b_ainv = None def _generate_factor_base(prime_bound, n): """Generate `factor_base` for Quadratic Sieve. The `factor_base` consists of all the points whose ``legendre_symbol(n, p) == 1`` and ``p < num_primes``. Along with the prime `factor_base` also stores natural logarithm of prime and the residue n modulo p. It also returns the of primes numbers in the `factor_base` which are close to 1000 and 5000. Parameters ========== prime_bound : upper prime bound of the factor_base n : integer to be factored """ from sympy.ntheory.generate import sieve factor_base = [] idx_1000, idx_5000 = None, None for prime in sieve.primerange(1, prime_bound): if pow(n, (prime - 1) // 2, prime) == 1: if prime > 1000 and idx_1000 is None: idx_1000 = len(factor_base) - 1 if prime > 5000 and idx_5000 is None: idx_5000 = len(factor_base) - 1 residue = _sqrt_mod_prime_power(n, prime, 1)[0] log_p = round(log(prime)*2**10) factor_base.append(FactorBaseElem(prime, residue, log_p)) return idx_1000, idx_5000, factor_base def _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000, seed=None): """This step is the initialization of the 1st sieve polynomial. Here `a` is selected as a product of several primes of the factor_base such that `a` is about to ``sqrt(2*N) / M``. Other initial values of factor_base elem are also intialized which includes a_inv, b_ainv, soln1, soln2 which are used when the sieve polynomial is changed. The b_ainv is required for fast polynomial change as we do not have to calculate `2*b*mod_inverse(a, prime)` every time. We also ensure that the `factor_base` primes which make `a` are between 1000 and 5000. Parameters ========== N : Number to be factored M : sieve interval factor_base : factor_base primes idx_1000 : index of prime numbe in the factor_base near 1000 idx_5000 : index of primenumber in the factor_base near to 5000 seed : Generate pseudoprime numbers """ if seed is not None: rgen.seed(seed) approx_val = sqrt(2*N) / M # `a` is a parameter of the sieve polynomial and `q` is the prime factors of `a` # randomly search for a combination of primes whose multiplication is close to approx_val # This multiplication of primes will be `a` and the primes will be `q` # `best_a` denotes that `a` is close to approx_val in the random search of combination best_a, best_q, best_ratio = None, None, None start = 0 if idx_1000 is None else idx_1000 end = len(factor_base) - 1 if idx_5000 is None else idx_5000 for _ in range(50): a = 1 q = [] while(a < approx_val): rand_p = 0 while(rand_p == 0 or rand_p in q): rand_p = rgen.randint(start, end) p = factor_base[rand_p].prime a *= p q.append(rand_p) ratio = a / approx_val if best_ratio is None or abs(ratio - 1) < abs(best_ratio - 1): best_q = q best_a = a best_ratio = ratio a = best_a q = best_q B = [] for idx, val in enumerate(q): q_l = factor_base[val].prime gamma = factor_base[val].tmem_p * mod_inverse(a // q_l, q_l) % q_l if gamma > q_l / 2: gamma = q_l - gamma B.append(a//q_l*gamma) b = sum(B) g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b) for fb in factor_base: if a % fb.prime == 0: continue fb.a_inv = mod_inverse(a, fb.prime) fb.b_ainv = [2*b_elem*fb.a_inv % fb.prime for b_elem in B] fb.soln1 = (fb.a_inv*(fb.tmem_p - b)) % fb.prime fb.soln2 = (fb.a_inv*(-fb.tmem_p - b)) % fb.prime return g, B def _initialize_ith_poly(N, factor_base, i, g, B): """Initialization stage of ith poly. After we finish sieving 1`st polynomial here we quickly change to the next polynomial from which we will again start sieving. Suppose we generated ith sieve polynomial and now we want to generate (i + 1)th polynomial, where ``1 <= i <= 2**(j - 1) - 1`` where `j` is the number of prime factors of the coefficient `a` then this function can be used to go to the next polynomial. If ``i = 2**(j - 1) - 1`` then go to _initialize_first_polynomial stage. Parameters ========== N : number to be factored factor_base : factor_base primes i : integer denoting ith polynomial g : (i - 1)th polynomial B : array that stores a//q_l*gamma """ from sympy.functions.elementary.integers import ceiling v = 1 j = i while(j % 2 == 0): v += 1 j //= 2 if ceiling(i / (2**v)) % 2 == 1: neg_pow = -1 else: neg_pow = 1 b = g.b + 2*neg_pow*B[v - 1] a = g.a g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b) for fb in factor_base: if a % fb.prime == 0: continue fb.soln1 = (fb.soln1 - neg_pow*fb.b_ainv[v - 1]) % fb.prime fb.soln2 = (fb.soln2 - neg_pow*fb.b_ainv[v - 1]) % fb.prime return g def _gen_sieve_array(M, factor_base): """Sieve Stage of the Quadratic Sieve. For every prime in the factor_base that doesn't divide the coefficient `a` we add log_p over the sieve_array such that ``-M <= soln1 + i*p <= M`` and ``-M <= soln2 + i*p <= M`` where `i` is an integer. When p = 2 then log_p is only added using ``-M <= soln1 + i*p <= M``. Parameters ========== M : sieve interval factor_base : factor_base primes """ sieve_array = [0]*(2*M + 1) for factor in factor_base: if factor.soln1 is None: #The prime does not divides a continue for idx in range((M + factor.soln1) % factor.prime, 2*M, factor.prime): sieve_array[idx] += factor.log_p if factor.prime == 2: continue #if prime is 2 then sieve only with soln_1_p for idx in range((M + factor.soln2) % factor.prime, 2*M, factor.prime): sieve_array[idx] += factor.log_p return sieve_array def _check_smoothness(num, factor_base): """Here we check that if `num` is a smooth number or not. If `a` is a smooth number then it returns a vector of prime exponents modulo 2. For example if a = 2 * 5**2 * 7**3 and the factor base contains {2, 3, 5, 7} then `a` is a smooth number and this function returns ([1, 0, 0, 1], True). If `a` is a partial relation which means that `a` a has one prime factor greater than the `factor_base` then it returns `(a, False)` which denotes `a` is a partial relation. Parameters ========== a : integer whose smootheness is to be checked factor_base : factor_base primes """ vec = [] if num < 0: vec.append(1) num *= -1 else: vec.append(0) #-1 is not included in factor_base add -1 in vector for factor in factor_base: if num % factor.prime != 0: vec.append(0) continue factor_exp = 0 while num % factor.prime == 0: factor_exp += 1 num //= factor.prime vec.append(factor_exp % 2) if num == 1: return vec, True if isprime(num): return num, False return None, None def _trial_division_stage(N, M, factor_base, sieve_array, sieve_poly, partial_relations, ERROR_TERM): """Trial division stage. Here we trial divide the values generetated by sieve_poly in the sieve interval and if it is a smooth number then it is stored in `smooth_relations`. Moreover, if we find two partial relations with same large prime then they are combined to form a smooth relation. First we iterate over sieve array and look for values which are greater than accumulated_val, as these values have a high chance of being smooth number. Then using these values we find smooth relations. In general, let ``t**2 = u*p modN`` and ``r**2 = v*p modN`` be two partial relations with the same large prime p. Then they can be combined ``(t*r/p)**2 = u*v modN`` to form a smooth relation. Parameters ========== N : Number to be factored M : sieve interval factor_base : factor_base primes sieve_array : stores log_p values sieve_poly : polynomial from which we find smooth relations partial_relations : stores partial relations with one large prime ERROR_TERM : error term for accumulated_val """ sqrt_n = sqrt(float(N)) accumulated_val = log(M * sqrt_n)*2**10 - ERROR_TERM smooth_relations = [] proper_factor = set() partial_relation_upper_bound = 128*factor_base[-1].prime for idx, val in enumerate(sieve_array): if val < accumulated_val: continue x = idx - M v = sieve_poly.eval(x) vec, is_smooth = _check_smoothness(v, factor_base) if is_smooth is None:#Neither smooth nor partial continue u = sieve_poly.a*x + sieve_poly.b # Update the partial relation # If 2 partial relation with same large prime is found then generate smooth relation if is_smooth is False:#partial relation found large_prime = vec #Consider the large_primes under 128*F if large_prime > partial_relation_upper_bound: continue if large_prime not in partial_relations: partial_relations[large_prime] = (u, v) continue else: u_prev, v_prev = partial_relations[large_prime] partial_relations.pop(large_prime) try: large_prime_inv = mod_inverse(large_prime, N) except ValueError:#if large_prine divides N proper_factor.add(large_prime) continue u = u*u_prev*large_prime_inv v = v*v_prev // (large_prime*large_prime) vec, is_smooth = _check_smoothness(v, factor_base) #assert u*u % N == v % N smooth_relations.append((u, v, vec)) return smooth_relations, proper_factor #LINEAR ALGEBRA STAGE def _build_matrix(smooth_relations): """Build a 2D matrix from smooth relations. Parameters ========== smooth_relations : Stores smooth relations """ matrix = [] for s_relation in smooth_relations: matrix.append(s_relation[2]) return matrix def _gauss_mod_2(A): """Fast gaussian reduction for modulo 2 matrix. Parameters ========== A : Matrix Examples ======== >>> from sympy.ntheory.qs import _gauss_mod_2 >>> _gauss_mod_2([[0, 1, 1], [1, 0, 1], [0, 1, 0], [1, 1, 1]]) ([[[1, 0, 1], 3]], [True, True, True, False], [[0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 1]]) Reference ========== .. [1] A fast algorithm for gaussian elimination over GF(2) and its implementation on the GAPP. Cetin K.Koc, Sarath N.Arachchige""" import copy matrix = copy.deepcopy(A) row = len(matrix) col = len(matrix[0]) mark = [False]*row for c in range(col): for r in range(row): if matrix[r][c] == 1: break mark[r] = True for c1 in range(col): if c1 == c: continue if matrix[r][c1] == 1: for r2 in range(row): matrix[r2][c1] = (matrix[r2][c1] + matrix[r2][c]) % 2 dependent_row = [] for idx, val in enumerate(mark): if val == False: dependent_row.append([matrix[idx], idx]) return dependent_row, mark, matrix def _find_factor(dependent_rows, mark, gauss_matrix, index, smooth_relations, N): """Finds proper factor of N. Here, transform the dependent rows as a combination of independent rows of the gauss_matrix to form the desired relation of the form ``X**2 = Y**2 modN``. After obtaining the desired relation we obtain a proper factor of N by `gcd(X - Y, N)`. Parameters ========== dependent_rows : denoted dependent rows in the reduced matrix form mark : boolean array to denoted dependent and independent rows gauss_matrix : Reduced form of the smooth relations matrix index : denoted the index of the dependent_rows smooth_relations : Smooth relations vectors matrix N : Number to be factored """ idx_in_smooth = dependent_rows[index][1] independent_u = [smooth_relations[idx_in_smooth][0]] independent_v = [smooth_relations[idx_in_smooth][1]] dept_row = dependent_rows[index][0] for idx, val in enumerate(dept_row): if val == 1: for row in range(len(gauss_matrix)): if gauss_matrix[row][idx] == 1 and mark[row] == True: independent_u.append(smooth_relations[row][0]) independent_v.append(smooth_relations[row][1]) break u = 1 v = 1 for i in independent_u: u *= i for i in independent_v: v *= i #assert u**2 % N == v % N v = integer_nthroot(v, 2)[0] return igcd(u - v, N) def qs(N, prime_bound, M, ERROR_TERM=25, seed=1234): """Performs factorization using Self-Initializing Quadratic Sieve. In SIQS, let N be a number to be factored, and this N should not be a perfect power. If we find two integers such that ``X**2 = Y**2 modN`` and ``X != +-Y modN``, then `gcd(X + Y, N)` will reveal a proper factor of N. In order to find these integers X and Y we try to find relations of form t**2 = u modN where u is a product of small primes. If we have enough of these relations then we can form ``(t1*t2...ti)**2 = u1*u2...ui modN`` such that the right hand side is a square, thus we found a relation of ``X**2 = Y**2 modN``. Here, several optimizations are done like using muliple polynomials for sieving, fast changing between polynomials and using partial relations. The use of partial relations can speeds up the factoring by 2 times. Parameters ========== N : Number to be Factored prime_bound : upper bound for primes in the factor base M : Sieve Interval ERROR_TERM : Error term for checking smoothness threshold : Extra smooth relations for factorization seed : generate pseudo prime numbers Examples ======== >>> from sympy.ntheory import qs >>> qs(25645121643901801, 2000, 10000) {5394769, 4753701529} >>> qs(9804659461513846513, 2000, 10000) {4641991, 2112166839943} References ========== .. [1] https://pdfs.semanticscholar.org/5c52/8a975c1405bd35c65993abf5a4edb667c1db.pdf .. [2] https://www.rieselprime.de/ziki/Self-initializing_quadratic_sieve """ ERROR_TERM*=2**10 rgen.seed(seed) idx_1000, idx_5000, factor_base = _generate_factor_base(prime_bound, N) smooth_relations = [] ith_poly = 0 partial_relations = {} proper_factor = set() threshold = 5*len(factor_base) // 100 while True: if ith_poly == 0: ith_sieve_poly, B_array = _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000) else: ith_sieve_poly = _initialize_ith_poly(N, factor_base, ith_poly, ith_sieve_poly, B_array) ith_poly += 1 if ith_poly >= 2**(len(B_array) - 1): # time to start with a new sieve polynomial ith_poly = 0 sieve_array = _gen_sieve_array(M, factor_base) s_rel, p_f = _trial_division_stage(N, M, factor_base, sieve_array, ith_sieve_poly, partial_relations, ERROR_TERM) smooth_relations += s_rel proper_factor |= p_f if len(smooth_relations) >= len(factor_base) + threshold: break matrix = _build_matrix(smooth_relations) dependent_row, mark, gauss_matrix = _gauss_mod_2(matrix) N_copy = N for index in range(len(dependent_row)): factor = _find_factor(dependent_row, mark, gauss_matrix, index, smooth_relations, N) if factor > 1 and factor < N: proper_factor.add(factor) while(N_copy % factor == 0): N_copy //= factor if isprime(N_copy): proper_factor.add(N_copy) break if(N_copy == 1): break return proper_factor
491aa72af194f0baac5319273f948d8f25cd0c48fde60c8755fdd019a562a1ee
""" Integer factorization """ from collections import defaultdict import random import math from sympy.core import sympify from sympy.core.containers import Dict from sympy.core.evalf import bitcount from sympy.core.expr import Expr from sympy.core.function import Function from sympy.core.logic import fuzzy_and from sympy.core.mul import Mul, prod from sympy.core.numbers import igcd, ilcm, Rational, Integer from sympy.core.power import integer_nthroot, Pow, integer_log from sympy.core.singleton import S from sympy.external.gmpy import SYMPY_INTS from .primetest import isprime from .generate import sieve, primerange, nextprime from .digits import digits from sympy.utilities.iterables import flatten from sympy.utilities.misc import as_int, filldedent from .ecm import _ecm_one_factor # Note: This list should be updated whenever new Mersenne primes are found. # Refer: https://www.mersenne.org/ MERSENNE_PRIME_EXPONENTS = (2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933) # compute more when needed for i in Mersenne prime exponents PERFECT = [6] # 2**(i-1)*(2**i-1) MERSENNES = [3] # 2**i - 1 def _ismersenneprime(n): global MERSENNES j = len(MERSENNES) while n > MERSENNES[-1] and j < len(MERSENNE_PRIME_EXPONENTS): # conservatively grow the list MERSENNES.append(2**MERSENNE_PRIME_EXPONENTS[j] - 1) j += 1 return n in MERSENNES def _isperfect(n): global PERFECT if n % 2 == 0: j = len(PERFECT) while n > PERFECT[-1] and j < len(MERSENNE_PRIME_EXPONENTS): # conservatively grow the list t = 2**(MERSENNE_PRIME_EXPONENTS[j] - 1) PERFECT.append(t*(2*t - 1)) j += 1 return n in PERFECT small_trailing = [0] * 256 for j in range(1,8): small_trailing[1<<j::1<<(j+1)] = [j] * (1<<(7-j)) def smoothness(n): """ Return the B-smooth and B-power smooth values of n. The smoothness of n is the largest prime factor of n; the power- smoothness is the largest divisor raised to its multiplicity. Examples ======== >>> from sympy.ntheory.factor_ import smoothness >>> smoothness(2**7*3**2) (3, 128) >>> smoothness(2**4*13) (13, 16) >>> smoothness(2) (2, 2) See Also ======== factorint, smoothness_p """ if n == 1: return (1, 1) # not prime, but otherwise this causes headaches facs = factorint(n) return max(facs), max(m**facs[m] for m in facs) def smoothness_p(n, m=-1, power=0, visual=None): """ Return a list of [m, (p, (M, sm(p + m), psm(p + m)))...] where: 1. p**M is the base-p divisor of n 2. sm(p + m) is the smoothness of p + m (m = -1 by default) 3. psm(p + m) is the power smoothness of p + m The list is sorted according to smoothness (default) or by power smoothness if power=1. The smoothness of the numbers to the left (m = -1) or right (m = 1) of a factor govern the results that are obtained from the p +/- 1 type factoring methods. >>> from sympy.ntheory.factor_ import smoothness_p, factorint >>> smoothness_p(10431, m=1) (1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))]) >>> smoothness_p(10431) (-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))]) >>> smoothness_p(10431, power=1) (-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))]) If visual=True then an annotated string will be returned: >>> print(smoothness_p(21477639576571, visual=1)) p**i=4410317**1 has p-1 B=1787, B-pow=1787 p**i=4869863**1 has p-1 B=2434931, B-pow=2434931 This string can also be generated directly from a factorization dictionary and vice versa: >>> factorint(17*9) {3: 2, 17: 1} >>> smoothness_p(_) 'p**i=3**2 has p-1 B=2, B-pow=2\\np**i=17**1 has p-1 B=2, B-pow=16' >>> smoothness_p(_) {3: 2, 17: 1} The table of the output logic is: ====== ====== ======= ======= | Visual ------ ---------------------- Input True False other ====== ====== ======= ======= dict str tuple str str str tuple dict tuple str tuple str n str tuple tuple mul str tuple tuple ====== ====== ======= ======= See Also ======== factorint, smoothness """ # visual must be True, False or other (stored as None) if visual in (1, 0): visual = bool(visual) elif visual not in (True, False): visual = None if isinstance(n, str): if visual: return n d = {} for li in n.splitlines(): k, v = [int(i) for i in li.split('has')[0].split('=')[1].split('**')] d[k] = v if visual is not True and visual is not False: return d return smoothness_p(d, visual=False) elif not isinstance(n, tuple): facs = factorint(n, visual=False) if power: k = -1 else: k = 1 if isinstance(n, tuple): rv = n else: rv = (m, sorted([(f, tuple([M] + list(smoothness(f + m)))) for f, M in [i for i in facs.items()]], key=lambda x: (x[1][k], x[0]))) if visual is False or (visual is not True) and (type(n) in [int, Mul]): return rv lines = [] for dat in rv[1]: dat = flatten(dat) dat.insert(2, m) lines.append('p**i=%i**%i has p%+i B=%i, B-pow=%i' % tuple(dat)) return '\n'.join(lines) def trailing(n): """Count the number of trailing zero digits in the binary representation of n, i.e. determine the largest power of 2 that divides n. Examples ======== >>> from sympy import trailing >>> trailing(128) 7 >>> trailing(63) 0 """ n = abs(int(n)) if not n: return 0 low_byte = n & 0xff if low_byte: return small_trailing[low_byte] # 2**m is quick for z up through 2**30 z = bitcount(n) - 1 if isinstance(z, SYMPY_INTS): if n == 1 << z: return z if z < 300: # fixed 8-byte reduction t = 8 n >>= 8 while not n & 0xff: n >>= 8 t += 8 return t + small_trailing[n & 0xff] # binary reduction important when there might be a large # number of trailing 0s t = 0 p = 8 while not n & 1: while not n & ((1 << p) - 1): n >>= p t += p p *= 2 p //= 2 return t def multiplicity(p, n): """ Find the greatest integer m such that p**m divides n. Examples ======== >>> from sympy import multiplicity, Rational >>> [multiplicity(5, n) for n in [8, 5, 25, 125, 250]] [0, 1, 2, 3, 3] >>> multiplicity(3, Rational(1, 9)) -2 Note: when checking for the multiplicity of a number in a large factorial it is most efficient to send it as an unevaluated factorial or to call ``multiplicity_in_factorial`` directly: >>> from sympy.ntheory import multiplicity_in_factorial >>> from sympy import factorial >>> p = factorial(25) >>> n = 2**100 >>> nfac = factorial(n, evaluate=False) >>> multiplicity(p, nfac) 52818775009509558395695966887 >>> _ == multiplicity_in_factorial(p, n) True """ from sympy.functions.combinatorial.factorials import factorial try: p, n = as_int(p), as_int(n) except ValueError: if all(isinstance(i, (SYMPY_INTS, Rational)) for i in (p, n)): p = Rational(p) n = Rational(n) if p.q == 1: if n.p == 1: return -multiplicity(p.p, n.q) return multiplicity(p.p, n.p) - multiplicity(p.p, n.q) elif p.p == 1: return multiplicity(p.q, n.q) else: like = min( multiplicity(p.p, n.p), multiplicity(p.q, n.q)) cross = min( multiplicity(p.q, n.p), multiplicity(p.p, n.q)) return like - cross elif (isinstance(p, (SYMPY_INTS, Integer)) and isinstance(n, factorial) and isinstance(n.args[0], Integer) and n.args[0] >= 0): return multiplicity_in_factorial(p, n.args[0]) raise ValueError('expecting ints or fractions, got %s and %s' % (p, n)) if n == 0: raise ValueError('no such integer exists: multiplicity of %s is not-defined' %(n)) if p == 2: return trailing(n) if p < 2: raise ValueError('p must be an integer, 2 or larger, but got %s' % p) if p == n: return 1 m = 0 n, rem = divmod(n, p) while not rem: m += 1 if m > 5: # The multiplicity could be very large. Better # to increment in powers of two e = 2 while 1: ppow = p**e if ppow < n: nnew, rem = divmod(n, ppow) if not rem: m += e e *= 2 n = nnew continue return m + multiplicity(p, n) n, rem = divmod(n, p) return m def multiplicity_in_factorial(p, n): """return the largest integer ``m`` such that ``p**m`` divides ``n!`` without calculating the factorial of ``n``. Examples ======== >>> from sympy.ntheory import multiplicity_in_factorial >>> from sympy import factorial >>> multiplicity_in_factorial(2, 3) 1 An instructive use of this is to tell how many trailing zeros a given factorial has. For example, there are 6 in 25!: >>> factorial(25) 15511210043330985984000000 >>> multiplicity_in_factorial(10, 25) 6 For large factorials, it is much faster/feasible to use this function rather than computing the actual factorial: >>> multiplicity_in_factorial(factorial(25), 2**100) 52818775009509558395695966887 """ p, n = as_int(p), as_int(n) if p <= 0: raise ValueError('expecting positive integer got %s' % p ) if n < 0: raise ValueError('expecting non-negative integer got %s' % n ) factors = factorint(p) # keep only the largest of a given multiplicity since those # of a given multiplicity will be goverened by the behavior # of the largest factor test = defaultdict(int) for k, v in factors.items(): test[v] = max(k, test[v]) keep = set(test.values()) # remove others from factors for k in list(factors.keys()): if k not in keep: factors.pop(k) mp = S.Infinity for i in factors: # multiplicity of i in n! is mi = (n - (sum(digits(n, i)) - i))//(i - 1) # multiplicity of p in n! depends on multiplicity # of prime `i` in p, so we floor divide by factors[i] # and keep it if smaller than the multiplicity of p # seen so far mp = min(mp, mi//factors[i]) return mp def perfect_power(n, candidates=None, big=True, factor=True): """ Return ``(b, e)`` such that ``n`` == ``b**e`` if ``n`` is a perfect power with ``e > 1``, else ``False``. A ValueError is raised if ``n`` is not an integer or is not positive. By default, the base is recursively decomposed and the exponents collected so the largest possible ``e`` is sought. If ``big=False`` then the smallest possible ``e`` (thus prime) will be chosen. If ``factor=True`` then simultaneous factorization of ``n`` is attempted since finding a factor indicates the only possible root for ``n``. This is True by default since only a few small factors will be tested in the course of searching for the perfect power. The use of ``candidates`` is primarily for internal use; if provided, False will be returned if ``n`` cannot be written as a power with one of the candidates as an exponent and factoring (beyond testing for a factor of 2) will not be attempted. Examples ======== >>> from sympy import perfect_power >>> perfect_power(16) (2, 4) >>> perfect_power(16, big=False) (4, 2) Notes ===== To know whether an integer is a perfect power of 2 use >>> is2pow = lambda n: bool(n and not n & (n - 1)) >>> [(i, is2pow(i)) for i in range(5)] [(0, False), (1, True), (2, True), (3, False), (4, True)] It is not necessary to provide ``candidates``. When provided it will be assumed that they are ints. The first one that is larger than the computed maximum possible exponent will signal failure for the routine. >>> perfect_power(3**8, [9]) False >>> perfect_power(3**8, [2, 4, 8]) (3, 8) >>> perfect_power(3**8, [4, 8], big=False) (9, 4) See Also ======== sympy.core.power.integer_nthroot sympy.ntheory.primetest.is_square """ n = as_int(n) if n < 3: if n < 1: raise ValueError('expecting positive n') return False logn = math.log(n, 2) max_possible = int(logn) + 2 # only check values less than this not_square = n % 10 in [2, 3, 7, 8] # squares cannot end in 2, 3, 7, 8 min_possible = 2 + not_square if not candidates: candidates = primerange(min_possible, max_possible) else: candidates = sorted([i for i in candidates if min_possible <= i < max_possible]) if n%2 == 0: e = trailing(n) candidates = [i for i in candidates if e%i == 0] if big: candidates = reversed(candidates) for e in candidates: r, ok = integer_nthroot(n, e) if ok: return (r, e) return False def _factors(): rv = 2 + n % 2 while True: yield rv rv = nextprime(rv) for fac, e in zip(_factors(), candidates): # see if there is a factor present if factor and n % fac == 0: # find what the potential power is if fac == 2: e = trailing(n) else: e = multiplicity(fac, n) # if it's a trivial power we are done if e == 1: return False # maybe the e-th root of n is exact r, exact = integer_nthroot(n, e) if not exact: # Having a factor, we know that e is the maximal # possible value for a root of n. # If n = fac**e*m can be written as a perfect # power then see if m can be written as r**E where # gcd(e, E) != 1 so n = (fac**(e//E)*r)**E m = n//fac**e rE = perfect_power(m, candidates=divisors(e, generator=True)) if not rE: return False else: r, E = rE r, e = fac**(e//E)*r, E if not big: e0 = primefactors(e) if e0[0] != e: r, e = r**(e//e0[0]), e0[0] return r, e # Weed out downright impossible candidates if logn/e < 40: b = 2.0**(logn/e) if abs(int(b + 0.5) - b) > 0.01: continue # now see if the plausible e makes a perfect power r, exact = integer_nthroot(n, e) if exact: if big: m = perfect_power(r, big=big, factor=factor) if m: r, e = m[0], e*m[1] return int(r), e return False def pollard_rho(n, s=2, a=1, retries=5, seed=1234, max_steps=None, F=None): r""" Use Pollard's rho method to try to extract a nontrivial factor of ``n``. The returned factor may be a composite number. If no factor is found, ``None`` is returned. The algorithm generates pseudo-random values of x with a generator function, replacing x with F(x). If F is not supplied then the function x**2 + ``a`` is used. The first value supplied to F(x) is ``s``. Upon failure (if ``retries`` is > 0) a new ``a`` and ``s`` will be supplied; the ``a`` will be ignored if F was supplied. The sequence of numbers generated by such functions generally have a a lead-up to some number and then loop around back to that number and begin to repeat the sequence, e.g. 1, 2, 3, 4, 5, 3, 4, 5 -- this leader and loop look a bit like the Greek letter rho, and thus the name, 'rho'. For a given function, very different leader-loop values can be obtained so it is a good idea to allow for retries: >>> from sympy.ntheory.generate import cycle_length >>> n = 16843009 >>> F = lambda x:(2048*pow(x, 2, n) + 32767) % n >>> for s in range(5): ... print('loop length = %4i; leader length = %3i' % next(cycle_length(F, s))) ... loop length = 2489; leader length = 42 loop length = 78; leader length = 120 loop length = 1482; leader length = 99 loop length = 1482; leader length = 285 loop length = 1482; leader length = 100 Here is an explicit example where there is a two element leadup to a sequence of 3 numbers (11, 14, 4) that then repeat: >>> x=2 >>> for i in range(9): ... x=(x**2+12)%17 ... print(x) ... 16 13 11 14 4 11 14 4 11 >>> next(cycle_length(lambda x: (x**2+12)%17, 2)) (3, 2) >>> list(cycle_length(lambda x: (x**2+12)%17, 2, values=True)) [16, 13, 11, 14, 4] Instead of checking the differences of all generated values for a gcd with n, only the kth and 2*kth numbers are checked, e.g. 1st and 2nd, 2nd and 4th, 3rd and 6th until it has been detected that the loop has been traversed. Loops may be many thousands of steps long before rho finds a factor or reports failure. If ``max_steps`` is specified, the iteration is cancelled with a failure after the specified number of steps. Examples ======== >>> from sympy import pollard_rho >>> n=16843009 >>> F=lambda x:(2048*pow(x,2,n) + 32767) % n >>> pollard_rho(n, F=F) 257 Use the default setting with a bad value of ``a`` and no retries: >>> pollard_rho(n, a=n-2, retries=0) If retries is > 0 then perhaps the problem will correct itself when new values are generated for a: >>> pollard_rho(n, a=n-2, retries=1) 257 References ========== .. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers: A Computational Perspective", Springer, 2nd edition, 229-231 """ n = int(n) if n < 5: raise ValueError('pollard_rho should receive n > 4') prng = random.Random(seed + retries) V = s for i in range(retries + 1): U = V if not F: F = lambda x: (pow(x, 2, n) + a) % n j = 0 while 1: if max_steps and (j > max_steps): break j += 1 U = F(U) V = F(F(V)) # V is 2x further along than U g = igcd(U - V, n) if g == 1: continue if g == n: break return int(g) V = prng.randint(0, n - 1) a = prng.randint(1, n - 3) # for x**2 + a, a%n should not be 0 or -2 F = None return None def pollard_pm1(n, B=10, a=2, retries=0, seed=1234): """ Use Pollard's p-1 method to try to extract a nontrivial factor of ``n``. Either a divisor (perhaps composite) or ``None`` is returned. The value of ``a`` is the base that is used in the test gcd(a**M - 1, n). The default is 2. If ``retries`` > 0 then if no factor is found after the first attempt, a new ``a`` will be generated randomly (using the ``seed``) and the process repeated. Note: the value of M is lcm(1..B) = reduce(ilcm, range(2, B + 1)). A search is made for factors next to even numbers having a power smoothness less than ``B``. Choosing a larger B increases the likelihood of finding a larger factor but takes longer. Whether a factor of n is found or not depends on ``a`` and the power smoothness of the even number just less than the factor p (hence the name p - 1). Although some discussion of what constitutes a good ``a`` some descriptions are hard to interpret. At the modular.math site referenced below it is stated that if gcd(a**M - 1, n) = N then a**M % q**r is 1 for every prime power divisor of N. But consider the following: >>> from sympy.ntheory.factor_ import smoothness_p, pollard_pm1 >>> n=257*1009 >>> smoothness_p(n) (-1, [(257, (1, 2, 256)), (1009, (1, 7, 16))]) So we should (and can) find a root with B=16: >>> pollard_pm1(n, B=16, a=3) 1009 If we attempt to increase B to 256 we find that it doesn't work: >>> pollard_pm1(n, B=256) >>> But if the value of ``a`` is changed we find that only multiples of 257 work, e.g.: >>> pollard_pm1(n, B=256, a=257) 1009 Checking different ``a`` values shows that all the ones that didn't work had a gcd value not equal to ``n`` but equal to one of the factors: >>> from sympy import ilcm, igcd, factorint, Pow >>> M = 1 >>> for i in range(2, 256): ... M = ilcm(M, i) ... >>> set([igcd(pow(a, M, n) - 1, n) for a in range(2, 256) if ... igcd(pow(a, M, n) - 1, n) != n]) {1009} But does aM % d for every divisor of n give 1? >>> aM = pow(255, M, n) >>> [(d, aM%Pow(*d.args)) for d in factorint(n, visual=True).args] [(257**1, 1), (1009**1, 1)] No, only one of them. So perhaps the principle is that a root will be found for a given value of B provided that: 1) the power smoothness of the p - 1 value next to the root does not exceed B 2) a**M % p != 1 for any of the divisors of n. By trying more than one ``a`` it is possible that one of them will yield a factor. Examples ======== With the default smoothness bound, this number cannot be cracked: >>> from sympy.ntheory import pollard_pm1 >>> pollard_pm1(21477639576571) Increasing the smoothness bound helps: >>> pollard_pm1(21477639576571, B=2000) 4410317 Looking at the smoothness of the factors of this number we find: >>> from sympy.ntheory.factor_ import smoothness_p, factorint >>> print(smoothness_p(21477639576571, visual=1)) p**i=4410317**1 has p-1 B=1787, B-pow=1787 p**i=4869863**1 has p-1 B=2434931, B-pow=2434931 The B and B-pow are the same for the p - 1 factorizations of the divisors because those factorizations had a very large prime factor: >>> factorint(4410317 - 1) {2: 2, 617: 1, 1787: 1} >>> factorint(4869863-1) {2: 1, 2434931: 1} Note that until B reaches the B-pow value of 1787, the number is not cracked; >>> pollard_pm1(21477639576571, B=1786) >>> pollard_pm1(21477639576571, B=1787) 4410317 The B value has to do with the factors of the number next to the divisor, not the divisors themselves. A worst case scenario is that the number next to the factor p has a large prime divisisor or is a perfect power. If these conditions apply then the power-smoothness will be about p/2 or p. The more realistic is that there will be a large prime factor next to p requiring a B value on the order of p/2. Although primes may have been searched for up to this level, the p/2 is a factor of p - 1, something that we do not know. The modular.math reference below states that 15% of numbers in the range of 10**15 to 15**15 + 10**4 are 10**6 power smooth so a B of 10**6 will fail 85% of the time in that range. From 10**8 to 10**8 + 10**3 the percentages are nearly reversed...but in that range the simple trial division is quite fast. References ========== .. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers: A Computational Perspective", Springer, 2nd edition, 236-238 .. [2] http://modular.math.washington.edu/edu/2007/spring/ent/ent-html/node81.html .. [3] https://www.cs.toronto.edu/~yuvalf/Factorization.pdf """ n = int(n) if n < 4 or B < 3: raise ValueError('pollard_pm1 should receive n > 3 and B > 2') prng = random.Random(seed + B) # computing a**lcm(1,2,3,..B) % n for B > 2 # it looks weird, but it's right: primes run [2, B] # and the answer's not right until the loop is done. for i in range(retries + 1): aM = a for p in sieve.primerange(2, B + 1): e = int(math.log(B, p)) aM = pow(aM, pow(p, e), n) g = igcd(aM - 1, n) if 1 < g < n: return int(g) # get a new a: # since the exponent, lcm(1..B), is even, if we allow 'a' to be 'n-1' # then (n - 1)**even % n will be 1 which will give a g of 0 and 1 will # give a zero, too, so we set the range as [2, n-2]. Some references # say 'a' should be coprime to n, but either will detect factors. a = prng.randint(2, n - 2) def _trial(factors, n, candidates, verbose=False): """ Helper function for integer factorization. Trial factors ``n` against all integers given in the sequence ``candidates`` and updates the dict ``factors`` in-place. Returns the reduced value of ``n`` and a flag indicating whether any factors were found. """ if verbose: factors0 = list(factors.keys()) nfactors = len(factors) for d in candidates: if n % d == 0: m = multiplicity(d, n) n //= d**m factors[d] = m if verbose: for k in sorted(set(factors).difference(set(factors0))): print(factor_msg % (k, factors[k])) return int(n), len(factors) != nfactors def _check_termination(factors, n, limitp1, use_trial, use_rho, use_pm1, verbose): """ Helper function for integer factorization. Checks if ``n`` is a prime or a perfect power, and in those cases updates the factorization and raises ``StopIteration``. """ if verbose: print('Check for termination') # since we've already been factoring there is no need to do # simultaneous factoring with the power check p = perfect_power(n, factor=False) if p is not False: base, exp = p if limitp1: limit = limitp1 - 1 else: limit = limitp1 facs = factorint(base, limit, use_trial, use_rho, use_pm1, verbose=False) for b, e in facs.items(): if verbose: print(factor_msg % (b, e)) factors[b] = exp*e raise StopIteration if isprime(n): factors[int(n)] = 1 raise StopIteration if n == 1: raise StopIteration trial_int_msg = "Trial division with ints [%i ... %i] and fail_max=%i" trial_msg = "Trial division with primes [%i ... %i]" rho_msg = "Pollard's rho with retries %i, max_steps %i and seed %i" pm1_msg = "Pollard's p-1 with smoothness bound %i and seed %i" ecm_msg = "Elliptic Curve with B1 bound %i, B2 bound %i, num_curves %i" factor_msg = '\t%i ** %i' fermat_msg = 'Close factors satisying Fermat condition found.' complete_msg = 'Factorization is complete.' def _factorint_small(factors, n, limit, fail_max): """ Return the value of n and either a 0 (indicating that factorization up to the limit was complete) or else the next near-prime that would have been tested. Factoring stops if there are fail_max unsuccessful tests in a row. If factors of n were found they will be in the factors dictionary as {factor: multiplicity} and the returned value of n will have had those factors removed. The factors dictionary is modified in-place. """ def done(n, d): """return n, d if the sqrt(n) wasn't reached yet, else n, 0 indicating that factoring is done. """ if d*d <= n: return n, d return n, 0 d = 2 m = trailing(n) if m: factors[d] = m n >>= m d = 3 if limit < d: if n > 1: factors[n] = 1 return done(n, d) # reduce m = 0 while n % d == 0: n //= d m += 1 if m == 20: mm = multiplicity(d, n) m += mm n //= d**mm break if m: factors[d] = m # when d*d exceeds maxx or n we are done; if limit**2 is greater # than n then maxx is set to zero so the value of n will flag the finish if limit*limit > n: maxx = 0 else: maxx = limit*limit dd = maxx or n d = 5 fails = 0 while fails < fail_max: if d*d > dd: break # d = 6*i - 1 # reduce m = 0 while n % d == 0: n //= d m += 1 if m == 20: mm = multiplicity(d, n) m += mm n //= d**mm break if m: factors[d] = m dd = maxx or n fails = 0 else: fails += 1 d += 2 if d*d > dd: break # d = 6*i - 1 # reduce m = 0 while n % d == 0: n //= d m += 1 if m == 20: mm = multiplicity(d, n) m += mm n //= d**mm break if m: factors[d] = m dd = maxx or n fails = 0 else: fails += 1 # d = 6*(i + 1) - 1 d += 4 return done(n, d) def factorint(n, limit=None, use_trial=True, use_rho=True, use_pm1=True, use_ecm=True, verbose=False, visual=None, multiple=False): r""" Given a positive integer ``n``, ``factorint(n)`` returns a dict containing the prime factors of ``n`` as keys and their respective multiplicities as values. For example: >>> from sympy.ntheory import factorint >>> factorint(2000) # 2000 = (2**4) * (5**3) {2: 4, 5: 3} >>> factorint(65537) # This number is prime {65537: 1} For input less than 2, factorint behaves as follows: - ``factorint(1)`` returns the empty factorization, ``{}`` - ``factorint(0)`` returns ``{0:1}`` - ``factorint(-n)`` adds ``-1:1`` to the factors and then factors ``n`` Partial Factorization: If ``limit`` (> 3) is specified, the search is stopped after performing trial division up to (and including) the limit (or taking a corresponding number of rho/p-1 steps). This is useful if one has a large number and only is interested in finding small factors (if any). Note that setting a limit does not prevent larger factors from being found early; it simply means that the largest factor may be composite. Since checking for perfect power is relatively cheap, it is done regardless of the limit setting. This number, for example, has two small factors and a huge semi-prime factor that cannot be reduced easily: >>> from sympy.ntheory import isprime >>> a = 1407633717262338957430697921446883 >>> f = factorint(a, limit=10000) >>> f == {991: 1, int(202916782076162456022877024859): 1, 7: 1} True >>> isprime(max(f)) False This number has a small factor and a residual perfect power whose base is greater than the limit: >>> factorint(3*101**7, limit=5) {3: 1, 101: 7} List of Factors: If ``multiple`` is set to ``True`` then a list containing the prime factors including multiplicities is returned. >>> factorint(24, multiple=True) [2, 2, 2, 3] Visual Factorization: If ``visual`` is set to ``True``, then it will return a visual factorization of the integer. For example: >>> from sympy import pprint >>> pprint(factorint(4200, visual=True)) 3 1 2 1 2 *3 *5 *7 Note that this is achieved by using the evaluate=False flag in Mul and Pow. If you do other manipulations with an expression where evaluate=False, it may evaluate. Therefore, you should use the visual option only for visualization, and use the normal dictionary returned by visual=False if you want to perform operations on the factors. You can easily switch between the two forms by sending them back to factorint: >>> from sympy import Mul >>> regular = factorint(1764); regular {2: 2, 3: 2, 7: 2} >>> pprint(factorint(regular)) 2 2 2 2 *3 *7 >>> visual = factorint(1764, visual=True); pprint(visual) 2 2 2 2 *3 *7 >>> print(factorint(visual)) {2: 2, 3: 2, 7: 2} If you want to send a number to be factored in a partially factored form you can do so with a dictionary or unevaluated expression: >>> factorint(factorint({4: 2, 12: 3})) # twice to toggle to dict form {2: 10, 3: 3} >>> factorint(Mul(4, 12, evaluate=False)) {2: 4, 3: 1} The table of the output logic is: ====== ====== ======= ======= Visual ------ ---------------------- Input True False other ====== ====== ======= ======= dict mul dict mul n mul dict dict mul mul dict dict ====== ====== ======= ======= Notes ===== Algorithm: The function switches between multiple algorithms. Trial division quickly finds small factors (of the order 1-5 digits), and finds all large factors if given enough time. The Pollard rho and p-1 algorithms are used to find large factors ahead of time; they will often find factors of the order of 10 digits within a few seconds: >>> factors = factorint(12345678910111213141516) >>> for base, exp in sorted(factors.items()): ... print('%s %s' % (base, exp)) ... 2 2 2507191691 1 1231026625769 1 Any of these methods can optionally be disabled with the following boolean parameters: - ``use_trial``: Toggle use of trial division - ``use_rho``: Toggle use of Pollard's rho method - ``use_pm1``: Toggle use of Pollard's p-1 method ``factorint`` also periodically checks if the remaining part is a prime number or a perfect power, and in those cases stops. For unevaluated factorial, it uses Legendre's formula(theorem). If ``verbose`` is set to ``True``, detailed progress is printed. See Also ======== smoothness, smoothness_p, divisors """ if isinstance(n, Dict): n = dict(n) if multiple: fac = factorint(n, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False, multiple=False) factorlist = sum(([p] * fac[p] if fac[p] > 0 else [S.One/p]*(-fac[p]) for p in sorted(fac)), []) return factorlist factordict = {} if visual and not isinstance(n, (Mul, dict)): factordict = factorint(n, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False) elif isinstance(n, Mul): factordict = {int(k): int(v) for k, v in n.as_powers_dict().items()} elif isinstance(n, dict): factordict = n if factordict and isinstance(n, (Mul, dict)): # check it for key in list(factordict.keys()): if isprime(key): continue e = factordict.pop(key) d = factorint(key, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False) for k, v in d.items(): if k in factordict: factordict[k] += v*e else: factordict[k] = v*e if visual or (type(n) is dict and visual is not True and visual is not False): if factordict == {}: return S.One if -1 in factordict: factordict.pop(-1) args = [S.NegativeOne] else: args = [] args.extend([Pow(*i, evaluate=False) for i in sorted(factordict.items())]) return Mul(*args, evaluate=False) elif isinstance(n, dict) or isinstance(n, Mul): return factordict assert use_trial or use_rho or use_pm1 or use_ecm from sympy.functions.combinatorial.factorials import factorial if isinstance(n, factorial): x = as_int(n.args[0]) if x >= 20: factors = {} m = 2 # to initialize the if condition below for p in sieve.primerange(2, x + 1): if m > 1: m, q = 0, x // p while q != 0: m += q q //= p factors[p] = m if factors and verbose: for k in sorted(factors): print(factor_msg % (k, factors[k])) if verbose: print(complete_msg) return factors else: # if n < 20!, direct computation is faster # since it uses a lookup table n = n.func(x) n = as_int(n) if limit: limit = int(limit) use_ecm = False # special cases if n < 0: factors = factorint( -n, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False) factors[-1] = 1 return factors if limit and limit < 2: if n == 1: return {} return {n: 1} elif n < 10: # doing this we are assured of getting a limit > 2 # when we have to compute it later return [{0: 1}, {}, {2: 1}, {3: 1}, {2: 2}, {5: 1}, {2: 1, 3: 1}, {7: 1}, {2: 3}, {3: 2}][n] factors = {} # do simplistic factorization if verbose: sn = str(n) if len(sn) > 50: print('Factoring %s' % sn[:5] + \ '..(%i other digits)..' % (len(sn) - 10) + sn[-5:]) else: print('Factoring', n) if use_trial: # this is the preliminary factorization for small factors small = 2**15 fail_max = 600 small = min(small, limit or small) if verbose: print(trial_int_msg % (2, small, fail_max)) n, next_p = _factorint_small(factors, n, small, fail_max) else: next_p = 2 if factors and verbose: for k in sorted(factors): print(factor_msg % (k, factors[k])) if next_p == 0: if n > 1: factors[int(n)] = 1 if verbose: print(complete_msg) return factors # continue with more advanced factorization methods # first check if the simplistic run didn't finish # because of the limit and check for a perfect # power before exiting try: if limit and next_p > limit: if verbose: print('Exceeded limit:', limit) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) if n > 1: factors[int(n)] = 1 return factors else: # Before quitting (or continuing on)... # ...do a Fermat test since it's so easy and we need the # square root anyway. Finding 2 factors is easy if they are # "close enough." This is the big root equivalent of dividing by # 2, 3, 5. sqrt_n = integer_nthroot(n, 2)[0] a = sqrt_n + 1 a2 = a**2 b2 = a2 - n for i in range(3): b, fermat = integer_nthroot(b2, 2) if fermat: break b2 += 2*a + 1 # equiv to (a + 1)**2 - n a += 1 if fermat: if verbose: print(fermat_msg) if limit: limit -= 1 for r in [a - b, a + b]: facs = factorint(r, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose) for k, v in facs.items(): factors[k] = factors.get(k, 0) + v raise StopIteration # ...see if factorization can be terminated _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) except StopIteration: if verbose: print(complete_msg) return factors # these are the limits for trial division which will # be attempted in parallel with pollard methods low, high = next_p, 2*next_p limit = limit or sqrt_n # add 1 to make sure limit is reached in primerange calls limit += 1 iteration = 0 while 1: try: high_ = high if limit < high_: high_ = limit # Trial division if use_trial: if verbose: print(trial_msg % (low, high_)) ps = sieve.primerange(low, high_) n, found_trial = _trial(factors, n, ps, verbose) if found_trial: _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) else: found_trial = False if high > limit: if verbose: print('Exceeded limit:', limit) if n > 1: factors[int(n)] = 1 raise StopIteration # Only used advanced methods when no small factors were found if not found_trial: if (use_pm1 or use_rho): high_root = max(int(math.log(high_**0.7)), low, 3) # Pollard p-1 if use_pm1: if verbose: print(pm1_msg % (high_root, high_)) c = pollard_pm1(n, B=high_root, seed=high_) if c: # factor it and let _trial do the update ps = factorint(c, limit=limit - 1, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, use_ecm=use_ecm, verbose=verbose) n, _ = _trial(factors, n, ps, verbose=False) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) # Pollard rho if use_rho: max_steps = high_root if verbose: print(rho_msg % (1, max_steps, high_)) c = pollard_rho(n, retries=1, max_steps=max_steps, seed=high_) if c: # factor it and let _trial do the update ps = factorint(c, limit=limit - 1, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, use_ecm=use_ecm, verbose=verbose) n, _ = _trial(factors, n, ps, verbose=False) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) except StopIteration: if verbose: print(complete_msg) return factors #Use subexponential algorithms if use_ecm #Use pollard algorithms for finding small factors for 3 iterations #if after small factors the number of digits of n is >= 20 then use ecm iteration += 1 if use_ecm and iteration >= 3 and len(str(n)) >= 25: break low, high = high, high*2 B1 = 10000 B2 = 100*B1 num_curves = 50 while(1): if verbose: print(ecm_msg % (B1, B2, num_curves)) while(1): try: factor = _ecm_one_factor(n, B1, B2, num_curves) ps = factorint(factor, limit=limit - 1, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, use_ecm=use_ecm, verbose=verbose) n, _ = _trial(factors, n, ps, verbose=False) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) except ValueError: break except StopIteration: if verbose: print(complete_msg) return factors B1 *= 5 B2 = 100*B1 num_curves *= 4 def factorrat(rat, limit=None, use_trial=True, use_rho=True, use_pm1=True, verbose=False, visual=None, multiple=False): r""" Given a Rational ``r``, ``factorrat(r)`` returns a dict containing the prime factors of ``r`` as keys and their respective multiplicities as values. For example: >>> from sympy import factorrat, S >>> factorrat(S(8)/9) # 8/9 = (2**3) * (3**-2) {2: 3, 3: -2} >>> factorrat(S(-1)/987) # -1/789 = -1 * (3**-1) * (7**-1) * (47**-1) {-1: 1, 3: -1, 7: -1, 47: -1} Please see the docstring for ``factorint`` for detailed explanations and examples of the following keywords: - ``limit``: Integer limit up to which trial division is done - ``use_trial``: Toggle use of trial division - ``use_rho``: Toggle use of Pollard's rho method - ``use_pm1``: Toggle use of Pollard's p-1 method - ``verbose``: Toggle detailed printing of progress - ``multiple``: Toggle returning a list of factors or dict - ``visual``: Toggle product form of output """ if multiple: fac = factorrat(rat, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False, multiple=False) factorlist = sum(([p] * fac[p] if fac[p] > 0 else [S.One/p]*(-fac[p]) for p, _ in sorted(fac.items(), key=lambda elem: elem[0] if elem[1] > 0 else 1/elem[0])), []) return factorlist f = factorint(rat.p, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose).copy() f = defaultdict(int, f) for p, e in factorint(rat.q, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose).items(): f[p] += -e if len(f) > 1 and 1 in f: del f[1] if not visual: return dict(f) else: if -1 in f: f.pop(-1) args = [S.NegativeOne] else: args = [] args.extend([Pow(*i, evaluate=False) for i in sorted(f.items())]) return Mul(*args, evaluate=False) def primefactors(n, limit=None, verbose=False): """Return a sorted list of n's prime factors, ignoring multiplicity and any composite factor that remains if the limit was set too low for complete factorization. Unlike factorint(), primefactors() does not return -1 or 0. Examples ======== >>> from sympy.ntheory import primefactors, factorint, isprime >>> primefactors(6) [2, 3] >>> primefactors(-5) [5] >>> sorted(factorint(123456).items()) [(2, 6), (3, 1), (643, 1)] >>> primefactors(123456) [2, 3, 643] >>> sorted(factorint(10000000001, limit=200).items()) [(101, 1), (99009901, 1)] >>> isprime(99009901) False >>> primefactors(10000000001, limit=300) [101] See Also ======== divisors """ n = int(n) factors = sorted(factorint(n, limit=limit, verbose=verbose).keys()) s = [f for f in factors[:-1:] if f not in [-1, 0, 1]] if factors and isprime(factors[-1]): s += [factors[-1]] return s def _divisors(n, proper=False): """Helper function for divisors which generates the divisors.""" factordict = factorint(n) ps = sorted(factordict.keys()) def rec_gen(n=0): if n == len(ps): yield 1 else: pows = [1] for j in range(factordict[ps[n]]): pows.append(pows[-1] * ps[n]) for q in rec_gen(n + 1): for p in pows: yield p * q if proper: for p in rec_gen(): if p != n: yield p else: yield from rec_gen() def divisors(n, generator=False, proper=False): r""" Return all divisors of n sorted from 1..n by default. If generator is ``True`` an unordered generator is returned. The number of divisors of n can be quite large if there are many prime factors (counting repeated factors). If only the number of factors is desired use divisor_count(n). Examples ======== >>> from sympy import divisors, divisor_count >>> divisors(24) [1, 2, 3, 4, 6, 8, 12, 24] >>> divisor_count(24) 8 >>> list(divisors(120, generator=True)) [1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60, 120] Notes ===== This is a slightly modified version of Tim Peters referenced at: https://stackoverflow.com/questions/1010381/python-factorization See Also ======== primefactors, factorint, divisor_count """ n = as_int(abs(n)) if isprime(n): if proper: return [1] return [1, n] if n == 1: if proper: return [] return [1] if n == 0: return [] rv = _divisors(n, proper) if not generator: return sorted(rv) return rv def divisor_count(n, modulus=1, proper=False): """ Return the number of divisors of ``n``. If ``modulus`` is not 1 then only those that are divisible by ``modulus`` are counted. If ``proper`` is True then the divisor of ``n`` will not be counted. Examples ======== >>> from sympy import divisor_count >>> divisor_count(6) 4 >>> divisor_count(6, 2) 2 >>> divisor_count(6, proper=True) 3 See Also ======== factorint, divisors, totient, proper_divisor_count """ if not modulus: return 0 elif modulus != 1: n, r = divmod(n, modulus) if r: return 0 if n == 0: return 0 n = Mul(*[v + 1 for k, v in factorint(n).items() if k > 1]) if n and proper: n -= 1 return n def proper_divisors(n, generator=False): """ Return all divisors of n except n, sorted by default. If generator is ``True`` an unordered generator is returned. Examples ======== >>> from sympy import proper_divisors, proper_divisor_count >>> proper_divisors(24) [1, 2, 3, 4, 6, 8, 12] >>> proper_divisor_count(24) 7 >>> list(proper_divisors(120, generator=True)) [1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60] See Also ======== factorint, divisors, proper_divisor_count """ return divisors(n, generator=generator, proper=True) def proper_divisor_count(n, modulus=1): """ Return the number of proper divisors of ``n``. Examples ======== >>> from sympy import proper_divisor_count >>> proper_divisor_count(6) 3 >>> proper_divisor_count(6, modulus=2) 1 See Also ======== divisors, proper_divisors, divisor_count """ return divisor_count(n, modulus=modulus, proper=True) def _udivisors(n): """Helper function for udivisors which generates the unitary divisors.""" factorpows = [p**e for p, e in factorint(n).items()] for i in range(2**len(factorpows)): d, j, k = 1, i, 0 while j: if (j & 1): d *= factorpows[k] j >>= 1 k += 1 yield d def udivisors(n, generator=False): r""" Return all unitary divisors of n sorted from 1..n by default. If generator is ``True`` an unordered generator is returned. The number of unitary divisors of n can be quite large if there are many prime factors. If only the number of unitary divisors is desired use udivisor_count(n). Examples ======== >>> from sympy.ntheory.factor_ import udivisors, udivisor_count >>> udivisors(15) [1, 3, 5, 15] >>> udivisor_count(15) 4 >>> sorted(udivisors(120, generator=True)) [1, 3, 5, 8, 15, 24, 40, 120] See Also ======== primefactors, factorint, divisors, divisor_count, udivisor_count References ========== .. [1] https://en.wikipedia.org/wiki/Unitary_divisor .. [2] http://mathworld.wolfram.com/UnitaryDivisor.html """ n = as_int(abs(n)) if isprime(n): return [1, n] if n == 1: return [1] if n == 0: return [] rv = _udivisors(n) if not generator: return sorted(rv) return rv def udivisor_count(n): """ Return the number of unitary divisors of ``n``. Parameters ========== n : integer Examples ======== >>> from sympy.ntheory.factor_ import udivisor_count >>> udivisor_count(120) 8 See Also ======== factorint, divisors, udivisors, divisor_count, totient References ========== .. [1] http://mathworld.wolfram.com/UnitaryDivisorFunction.html """ if n == 0: return 0 return 2**len([p for p in factorint(n) if p > 1]) def _antidivisors(n): """Helper function for antidivisors which generates the antidivisors.""" for d in _divisors(n): y = 2*d if n > y and n % y: yield y for d in _divisors(2*n-1): if n > d >= 2 and n % d: yield d for d in _divisors(2*n+1): if n > d >= 2 and n % d: yield d def antidivisors(n, generator=False): r""" Return all antidivisors of n sorted from 1..n by default. Antidivisors [1]_ of n are numbers that do not divide n by the largest possible margin. If generator is True an unordered generator is returned. Examples ======== >>> from sympy.ntheory.factor_ import antidivisors >>> antidivisors(24) [7, 16] >>> sorted(antidivisors(128, generator=True)) [3, 5, 15, 17, 51, 85] See Also ======== primefactors, factorint, divisors, divisor_count, antidivisor_count References ========== .. [1] definition is described in https://oeis.org/A066272/a066272a.html """ n = as_int(abs(n)) if n <= 2: return [] rv = _antidivisors(n) if not generator: return sorted(rv) return rv def antidivisor_count(n): """ Return the number of antidivisors [1]_ of ``n``. Parameters ========== n : integer Examples ======== >>> from sympy.ntheory.factor_ import antidivisor_count >>> antidivisor_count(13) 4 >>> antidivisor_count(27) 5 See Also ======== factorint, divisors, antidivisors, divisor_count, totient References ========== .. [1] formula from https://oeis.org/A066272 """ n = as_int(abs(n)) if n <= 2: return 0 return divisor_count(2*n - 1) + divisor_count(2*n + 1) + \ divisor_count(n) - divisor_count(n, 2) - 5 class totient(Function): r""" Calculate the Euler totient function phi(n) ``totient(n)`` or `\phi(n)` is the number of positive integers `\leq` n that are relatively prime to n. Parameters ========== n : integer Examples ======== >>> from sympy.ntheory import totient >>> totient(1) 1 >>> totient(25) 20 >>> totient(45) == totient(5)*totient(9) True See Also ======== divisor_count References ========== .. [1] https://en.wikipedia.org/wiki/Euler%27s_totient_function .. [2] http://mathworld.wolfram.com/TotientFunction.html """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n < 1: raise ValueError("n must be a positive integer") factors = factorint(n) return cls._from_factors(factors) elif not isinstance(n, Expr) or (n.is_integer is False) or (n.is_positive is False): raise ValueError("n must be a positive integer") def _eval_is_integer(self): return fuzzy_and([self.args[0].is_integer, self.args[0].is_positive]) @classmethod def _from_distinct_primes(self, *args): """Subroutine to compute totient from the list of assumed distinct primes Examples ======== >>> from sympy.ntheory.factor_ import totient >>> totient._from_distinct_primes(5, 7) 24 """ from functools import reduce return reduce(lambda i, j: i * (j-1), args, 1) @classmethod def _from_factors(self, factors): """Subroutine to compute totient from already-computed factors Examples ======== >>> from sympy.ntheory.factor_ import totient >>> totient._from_factors({5: 2}) 20 """ t = 1 for p, k in factors.items(): t *= (p - 1) * p**(k - 1) return t class reduced_totient(Function): r""" Calculate the Carmichael reduced totient function lambda(n) ``reduced_totient(n)`` or `\lambda(n)` is the smallest m > 0 such that `k^m \equiv 1 \mod n` for all k relatively prime to n. Examples ======== >>> from sympy.ntheory import reduced_totient >>> reduced_totient(1) 1 >>> reduced_totient(8) 2 >>> reduced_totient(30) 4 See Also ======== totient References ========== .. [1] https://en.wikipedia.org/wiki/Carmichael_function .. [2] http://mathworld.wolfram.com/CarmichaelFunction.html """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n < 1: raise ValueError("n must be a positive integer") factors = factorint(n) return cls._from_factors(factors) @classmethod def _from_factors(self, factors): """Subroutine to compute totient from already-computed factors """ t = 1 for p, k in factors.items(): if p == 2 and k > 2: t = ilcm(t, 2**(k - 2)) else: t = ilcm(t, (p - 1) * p**(k - 1)) return t @classmethod def _from_distinct_primes(self, *args): """Subroutine to compute totient from the list of assumed distinct primes """ args = [p - 1 for p in args] return ilcm(*args) def _eval_is_integer(self): return fuzzy_and([self.args[0].is_integer, self.args[0].is_positive]) class divisor_sigma(Function): r""" Calculate the divisor function `\sigma_k(n)` for positive integer n ``divisor_sigma(n, k)`` is equal to ``sum([x**k for x in divisors(n)])`` If n's prime factorization is: .. math :: n = \prod_{i=1}^\omega p_i^{m_i}, then .. math :: \sigma_k(n) = \prod_{i=1}^\omega (1+p_i^k+p_i^{2k}+\cdots + p_i^{m_ik}). Parameters ========== n : integer k : integer, optional power of divisors in the sum for k = 0, 1: ``divisor_sigma(n, 0)`` is equal to ``divisor_count(n)`` ``divisor_sigma(n, 1)`` is equal to ``sum(divisors(n))`` Default for k is 1. Examples ======== >>> from sympy.ntheory import divisor_sigma >>> divisor_sigma(18, 0) 6 >>> divisor_sigma(39, 1) 56 >>> divisor_sigma(12, 2) 210 >>> divisor_sigma(37) 38 See Also ======== divisor_count, totient, divisors, factorint References ========== .. [1] https://en.wikipedia.org/wiki/Divisor_function """ @classmethod def eval(cls, n, k=1): n = sympify(n) k = sympify(k) if n.is_prime: return 1 + n**k if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") elif k.is_Integer: k = int(k) return Integer(prod( (p**(k*(e + 1)) - 1)//(p**k - 1) if k != 0 else e + 1 for p, e in factorint(n).items())) else: return Mul(*[(p**(k*(e + 1)) - 1)/(p**k - 1) if k != 0 else e + 1 for p, e in factorint(n).items()]) if n.is_integer: # symbolic case args = [] for p, e in (_.as_base_exp() for _ in Mul.make_args(n)): if p.is_prime and e.is_positive: args.append((p**(k*(e + 1)) - 1)/(p**k - 1) if k != 0 else e + 1) else: return return Mul(*args) def core(n, t=2): r""" Calculate core(n, t) = `core_t(n)` of a positive integer n ``core_2(n)`` is equal to the squarefree part of n If n's prime factorization is: .. math :: n = \prod_{i=1}^\omega p_i^{m_i}, then .. math :: core_t(n) = \prod_{i=1}^\omega p_i^{m_i \mod t}. Parameters ========== n : integer t : integer core(n, t) calculates the t-th power free part of n ``core(n, 2)`` is the squarefree part of ``n`` ``core(n, 3)`` is the cubefree part of ``n`` Default for t is 2. Examples ======== >>> from sympy.ntheory.factor_ import core >>> core(24, 2) 6 >>> core(9424, 3) 1178 >>> core(379238) 379238 >>> core(15**11, 10) 15 See Also ======== factorint, sympy.solvers.diophantine.diophantine.square_factor References ========== .. [1] https://en.wikipedia.org/wiki/Square-free_integer#Squarefree_core """ n = as_int(n) t = as_int(t) if n <= 0: raise ValueError("n must be a positive integer") elif t <= 1: raise ValueError("t must be >= 2") else: y = 1 for p, e in factorint(n).items(): y *= p**(e % t) return y class udivisor_sigma(Function): r""" Calculate the unitary divisor function `\sigma_k^*(n)` for positive integer n ``udivisor_sigma(n, k)`` is equal to ``sum([x**k for x in udivisors(n)])`` If n's prime factorization is: .. math :: n = \prod_{i=1}^\omega p_i^{m_i}, then .. math :: \sigma_k^*(n) = \prod_{i=1}^\omega (1+ p_i^{m_ik}). Parameters ========== k : power of divisors in the sum for k = 0, 1: ``udivisor_sigma(n, 0)`` is equal to ``udivisor_count(n)`` ``udivisor_sigma(n, 1)`` is equal to ``sum(udivisors(n))`` Default for k is 1. Examples ======== >>> from sympy.ntheory.factor_ import udivisor_sigma >>> udivisor_sigma(18, 0) 4 >>> udivisor_sigma(74, 1) 114 >>> udivisor_sigma(36, 3) 47450 >>> udivisor_sigma(111) 152 See Also ======== divisor_count, totient, divisors, udivisors, udivisor_count, divisor_sigma, factorint References ========== .. [1] http://mathworld.wolfram.com/UnitaryDivisorFunction.html """ @classmethod def eval(cls, n, k=1): n = sympify(n) k = sympify(k) if n.is_prime: return 1 + n**k if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") else: return Mul(*[1+p**(k*e) for p, e in factorint(n).items()]) class primenu(Function): r""" Calculate the number of distinct prime factors for a positive integer n. If n's prime factorization is: .. math :: n = \prod_{i=1}^k p_i^{m_i}, then ``primenu(n)`` or `\nu(n)` is: .. math :: \nu(n) = k. Examples ======== >>> from sympy.ntheory.factor_ import primenu >>> primenu(1) 0 >>> primenu(30) 3 See Also ======== factorint References ========== .. [1] http://mathworld.wolfram.com/PrimeFactor.html """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") else: return len(factorint(n).keys()) class primeomega(Function): r""" Calculate the number of prime factors counting multiplicities for a positive integer n. If n's prime factorization is: .. math :: n = \prod_{i=1}^k p_i^{m_i}, then ``primeomega(n)`` or `\Omega(n)` is: .. math :: \Omega(n) = \sum_{i=1}^k m_i. Examples ======== >>> from sympy.ntheory.factor_ import primeomega >>> primeomega(1) 0 >>> primeomega(20) 3 See Also ======== factorint References ========== .. [1] http://mathworld.wolfram.com/PrimeFactor.html """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") else: return sum(factorint(n).values()) def mersenne_prime_exponent(nth): """Returns the exponent ``i`` for the nth Mersenne prime (which has the form `2^i - 1`). Examples ======== >>> from sympy.ntheory.factor_ import mersenne_prime_exponent >>> mersenne_prime_exponent(1) 2 >>> mersenne_prime_exponent(20) 4423 """ n = as_int(nth) if n < 1: raise ValueError("nth must be a positive integer; mersenne_prime_exponent(1) == 2") if n > 51: raise ValueError("There are only 51 perfect numbers; nth must be less than or equal to 51") return MERSENNE_PRIME_EXPONENTS[n - 1] def is_perfect(n): """Returns True if ``n`` is a perfect number, else False. A perfect number is equal to the sum of its positive, proper divisors. Examples ======== >>> from sympy.ntheory.factor_ import is_perfect, divisors, divisor_sigma >>> is_perfect(20) False >>> is_perfect(6) True >>> 6 == divisor_sigma(6) - 6 == sum(divisors(6)[:-1]) True References ========== .. [1] http://mathworld.wolfram.com/PerfectNumber.html .. [2] https://en.wikipedia.org/wiki/Perfect_number """ n = as_int(n) if _isperfect(n): return True # all perfect numbers for Mersenne primes with exponents # less than or equal to 43112609 are known iknow = MERSENNE_PRIME_EXPONENTS.index(43112609) if iknow <= len(PERFECT) - 1 and n <= PERFECT[iknow]: # there may be gaps between this and larger known values # so only conclude in the range for which all values # are known return False if n%2 == 0: last2 = n % 100 if last2 != 28 and last2 % 10 != 6: return False r, b = integer_nthroot(1 + 8*n, 2) if not b: return False m, x = divmod(1 + r, 4) if x: return False e, b = integer_log(m, 2) if not b: return False else: if n < 10**2000: # http://www.lirmm.fr/~ochem/opn/ return False if n % 105 == 0: # not divis by 105 return False if not any(n%m == r for m, r in [(12, 1), (468, 117), (324, 81)]): return False # there are many criteria that the factor structure of n # must meet; since we will have to factor it to test the # structure we will have the factors and can then check # to see whether it is a perfect number or not. So we # skip the structure checks and go straight to the final # test below. rv = divisor_sigma(n) - n if rv == n: if n%2 == 0: raise ValueError(filldedent(''' This even number is perfect and is associated with a Mersenne Prime, 2^%s - 1. It should be added to SymPy.''' % (e + 1))) else: raise ValueError(filldedent('''In 1888, Sylvester stated: " ...a prolonged meditation on the subject has satisfied me that the existence of any one such [odd perfect number] -- its escape, so to say, from the complex web of conditions which hem it in on all sides -- would be little short of a miracle." I guess SymPy just found that miracle and it factors like this: %s''' % factorint(n))) def is_mersenne_prime(n): """Returns True if ``n`` is a Mersenne prime, else False. A Mersenne prime is a prime number having the form `2^i - 1`. Examples ======== >>> from sympy.ntheory.factor_ import is_mersenne_prime >>> is_mersenne_prime(6) False >>> is_mersenne_prime(127) True References ========== .. [1] http://mathworld.wolfram.com/MersennePrime.html """ n = as_int(n) if _ismersenneprime(n): return True if not isprime(n): return False r, b = integer_log(n + 1, 2) if not b: return False raise ValueError(filldedent(''' This Mersenne Prime, 2^%s - 1, should be added to SymPy's known values.''' % r)) def abundance(n): """Returns the difference between the sum of the positive proper divisors of a number and the number. Examples ======== >>> from sympy.ntheory import abundance, is_perfect, is_abundant >>> abundance(6) 0 >>> is_perfect(6) True >>> abundance(10) -2 >>> is_abundant(10) False """ return divisor_sigma(n, 1) - 2 * n def is_abundant(n): """Returns True if ``n`` is an abundant number, else False. A abundant number is smaller than the sum of its positive proper divisors. Examples ======== >>> from sympy.ntheory.factor_ import is_abundant >>> is_abundant(20) True >>> is_abundant(15) False References ========== .. [1] http://mathworld.wolfram.com/AbundantNumber.html """ n = as_int(n) if is_perfect(n): return False return n % 6 == 0 or bool(abundance(n) > 0) def is_deficient(n): """Returns True if ``n`` is a deficient number, else False. A deficient number is greater than the sum of its positive proper divisors. Examples ======== >>> from sympy.ntheory.factor_ import is_deficient >>> is_deficient(20) False >>> is_deficient(15) True References ========== .. [1] http://mathworld.wolfram.com/DeficientNumber.html """ n = as_int(n) if is_perfect(n): return False return bool(abundance(n) < 0) def is_amicable(m, n): """Returns True if the numbers `m` and `n` are "amicable", else False. Amicable numbers are two different numbers so related that the sum of the proper divisors of each is equal to that of the other. Examples ======== >>> from sympy.ntheory.factor_ import is_amicable, divisor_sigma >>> is_amicable(220, 284) True >>> divisor_sigma(220) == divisor_sigma(284) True References ========== .. [1] https://en.wikipedia.org/wiki/Amicable_numbers """ if m == n: return False a, b = map(lambda i: divisor_sigma(i), (m, n)) return a == b == (m + n) def dra(n, b): """ Returns the additive digital root of a natural number ``n`` in base ``b`` which is a single digit value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. Examples ======== >>> from sympy.ntheory.factor_ import dra >>> dra(3110, 12) 8 References ========== .. [1] https://en.wikipedia.org/wiki/Digital_root """ num = abs(as_int(n)) b = as_int(b) if b <= 1: raise ValueError("Base should be an integer greater than 1") if num == 0: return 0 return (1 + (num - 1) % (b - 1)) def drm(n, b): """ Returns the multiplicative digital root of a natural number ``n`` in a given base ``b`` which is a single digit value obtained by an iterative process of multiplying digits, on each iteration using the result from the previous iteration to compute the digit multiplication. Examples ======== >>> from sympy.ntheory.factor_ import drm >>> drm(9876, 10) 0 >>> drm(49, 10) 8 References ========== .. [1] http://mathworld.wolfram.com/MultiplicativeDigitalRoot.html """ n = abs(as_int(n)) b = as_int(b) if b <= 1: raise ValueError("Base should be an integer greater than 1") while n > b: mul = 1 while n > 1: n, r = divmod(n, b) if r == 0: return 0 mul *= r n = mul return n
280d26e8e6e7bb3efe763536d00215f4d108989f097558a3d88fe65905dc02ba
from sympy.combinatorics import Permutation from sympy.combinatorics.util import _distribute_gens_by_base rmul = Permutation.rmul def _cmp_perm_lists(first, second): """ Compare two lists of permutations as sets. Explanation =========== This is used for testing purposes. Since the array form of a permutation is currently a list, Permutation is not hashable and cannot be put into a set. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.testutil import _cmp_perm_lists >>> a = Permutation([0, 2, 3, 4, 1]) >>> b = Permutation([1, 2, 0, 4, 3]) >>> c = Permutation([3, 4, 0, 1, 2]) >>> ls1 = [a, b, c] >>> ls2 = [b, c, a] >>> _cmp_perm_lists(ls1, ls2) True """ return {tuple(a) for a in first} == \ {tuple(a) for a in second} def _naive_list_centralizer(self, other, af=False): from sympy.combinatorics.perm_groups import PermutationGroup """ Return a list of elements for the centralizer of a subgroup/set/element. Explanation =========== This is a brute force implementation that goes over all elements of the group and checks for membership in the centralizer. It is used to test ``.centralizer()`` from ``sympy.combinatorics.perm_groups``. Examples ======== >>> from sympy.combinatorics.testutil import _naive_list_centralizer >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(4) >>> _naive_list_centralizer(D, D) [Permutation([0, 1, 2, 3]), Permutation([2, 3, 0, 1])] See Also ======== sympy.combinatorics.perm_groups.centralizer """ from sympy.combinatorics.permutations import _af_commutes_with if hasattr(other, 'generators'): elements = list(self.generate_dimino(af=True)) gens = [x._array_form for x in other.generators] commutes_with_gens = lambda x: all(_af_commutes_with(x, gen) for gen in gens) centralizer_list = [] if not af: for element in elements: if commutes_with_gens(element): centralizer_list.append(Permutation._af_new(element)) else: for element in elements: if commutes_with_gens(element): centralizer_list.append(element) return centralizer_list elif hasattr(other, 'getitem'): return _naive_list_centralizer(self, PermutationGroup(other), af) elif hasattr(other, 'array_form'): return _naive_list_centralizer(self, PermutationGroup([other]), af) def _verify_bsgs(group, base, gens): """ Verify the correctness of a base and strong generating set. Explanation =========== This is a naive implementation using the definition of a base and a strong generating set relative to it. There are other procedures for verifying a base and strong generating set, but this one will serve for more robust testing. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> from sympy.combinatorics.testutil import _verify_bsgs >>> A = AlternatingGroup(4) >>> A.schreier_sims() >>> _verify_bsgs(A, A.base, A.strong_gens) True See Also ======== sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims """ from sympy.combinatorics.perm_groups import PermutationGroup strong_gens_distr = _distribute_gens_by_base(base, gens) current_stabilizer = group for i in range(len(base)): candidate = PermutationGroup(strong_gens_distr[i]) if current_stabilizer.order() != candidate.order(): return False current_stabilizer = current_stabilizer.stabilizer(base[i]) if current_stabilizer.order() != 1: return False return True def _verify_centralizer(group, arg, centr=None): """ Verify the centralizer of a group/set/element inside another group. This is used for testing ``.centralizer()`` from ``sympy.combinatorics.perm_groups`` Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... AlternatingGroup) >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.testutil import _verify_centralizer >>> S = SymmetricGroup(5) >>> A = AlternatingGroup(5) >>> centr = PermutationGroup([Permutation([0, 1, 2, 3, 4])]) >>> _verify_centralizer(S, A, centr) True See Also ======== _naive_list_centralizer, sympy.combinatorics.perm_groups.PermutationGroup.centralizer, _cmp_perm_lists """ if centr is None: centr = group.centralizer(arg) centr_list = list(centr.generate_dimino(af=True)) centr_list_naive = _naive_list_centralizer(group, arg, af=True) return _cmp_perm_lists(centr_list, centr_list_naive) def _verify_normal_closure(group, arg, closure=None): from sympy.combinatorics.perm_groups import PermutationGroup """ Verify the normal closure of a subgroup/subset/element in a group. This is used to test sympy.combinatorics.perm_groups.PermutationGroup.normal_closure Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... AlternatingGroup) >>> from sympy.combinatorics.testutil import _verify_normal_closure >>> S = SymmetricGroup(3) >>> A = AlternatingGroup(3) >>> _verify_normal_closure(S, A, closure=A) True See Also ======== sympy.combinatorics.perm_groups.PermutationGroup.normal_closure """ if closure is None: closure = group.normal_closure(arg) conjugates = set() if hasattr(arg, 'generators'): subgr_gens = arg.generators elif hasattr(arg, '__getitem__'): subgr_gens = arg elif hasattr(arg, 'array_form'): subgr_gens = [arg] for el in group.generate_dimino(): for gen in subgr_gens: conjugates.add(gen ^ el) naive_closure = PermutationGroup(list(conjugates)) return closure.is_subgroup(naive_closure) def canonicalize_naive(g, dummies, sym, *v): """ Canonicalize tensor formed by tensors of the different types. Explanation =========== sym_i symmetry under exchange of two component tensors of type `i` None no symmetry 0 commuting 1 anticommuting Parameters ========== g : Permutation representing the tensor. dummies : List of dummy indices. msym : Symmetry of the metric. v : A list of (base_i, gens_i, n_i, sym_i) for tensors of type `i`. base_i, gens_i BSGS for tensors of this type n_i number ot tensors of type `i` Returns ======= Returns 0 if the tensor is zero, else returns the array form of the permutation representing the canonical form of the tensor. Examples ======== >>> from sympy.combinatorics.testutil import canonicalize_naive >>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs >>> from sympy.combinatorics import Permutation >>> g = Permutation([1, 3, 2, 0, 4, 5]) >>> base2, gens2 = get_symmetric_group_sgs(2) >>> canonicalize_naive(g, [2, 3], 0, (base2, gens2, 2, 0)) [0, 2, 1, 3, 4, 5] """ from sympy.combinatorics.perm_groups import PermutationGroup from sympy.combinatorics.tensor_can import gens_products, dummy_sgs from sympy.combinatorics.permutations import _af_rmul v1 = [] for i in range(len(v)): base_i, gens_i, n_i, sym_i = v[i] v1.append((base_i, gens_i, [[]]*n_i, sym_i)) size, sbase, sgens = gens_products(*v1) dgens = dummy_sgs(dummies, sym, size-2) if isinstance(sym, int): num_types = 1 dummies = [dummies] sym = [sym] else: num_types = len(sym) dgens = [] for i in range(num_types): dgens.extend(dummy_sgs(dummies[i], sym[i], size - 2)) S = PermutationGroup(sgens) D = PermutationGroup([Permutation(x) for x in dgens]) dlist = list(D.generate(af=True)) g = g.array_form st = set() for s in S.generate(af=True): h = _af_rmul(g, s) for d in dlist: q = tuple(_af_rmul(d, h)) st.add(q) a = list(st) a.sort() prev = (0,)*size for h in a: if h[:-2] == prev[:-2]: if h[-1] != prev[-1]: return 0 prev = h return list(a[0]) def graph_certificate(gr): """ Return a certificate for the graph Parameters ========== gr : adjacency list Explanation =========== The graph is assumed to be unoriented and without external lines. Associate to each vertex of the graph a symmetric tensor with number of indices equal to the degree of the vertex; indices are contracted when they correspond to the same line of the graph. The canonical form of the tensor gives a certificate for the graph. This is not an efficient algorithm to get the certificate of a graph. Examples ======== >>> from sympy.combinatorics.testutil import graph_certificate >>> gr1 = {0:[1, 2, 3, 5], 1:[0, 2, 4], 2:[0, 1, 3, 4], 3:[0, 2, 4], 4:[1, 2, 3, 5], 5:[0, 4]} >>> gr2 = {0:[1, 5], 1:[0, 2, 3, 4], 2:[1, 3, 5], 3:[1, 2, 4, 5], 4:[1, 3, 5], 5:[0, 2, 3, 4]} >>> c1 = graph_certificate(gr1) >>> c2 = graph_certificate(gr2) >>> c1 [0, 2, 4, 6, 1, 8, 10, 12, 3, 14, 16, 18, 5, 9, 15, 7, 11, 17, 13, 19, 20, 21] >>> c1 == c2 True """ from sympy.combinatorics.permutations import _af_invert from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize items = list(gr.items()) items.sort(key=lambda x: len(x[1]), reverse=True) pvert = [x[0] for x in items] pvert = _af_invert(pvert) # the indices of the tensor are twice the number of lines of the graph num_indices = 0 for v, neigh in items: num_indices += len(neigh) # associate to each vertex its indices; for each line # between two vertices assign the # even index to the vertex which comes first in items, # the odd index to the other vertex vertices = [[] for i in items] i = 0 for v, neigh in items: for v2 in neigh: if pvert[v] < pvert[v2]: vertices[pvert[v]].append(i) vertices[pvert[v2]].append(i+1) i += 2 g = [] for v in vertices: g.extend(v) assert len(g) == num_indices g += [num_indices, num_indices + 1] size = num_indices + 2 assert sorted(g) == list(range(size)) g = Permutation(g) vlen = [0]*(len(vertices[0])+1) for neigh in vertices: vlen[len(neigh)] += 1 v = [] for i in range(len(vlen)): n = vlen[i] if n: base, gens = get_symmetric_group_sgs(i) v.append((base, gens, n, 0)) v.reverse() dummies = list(range(num_indices)) can = canonicalize(g, dummies, 0, *v) return can
c7453a6200e901c57ad4d8fbe872ee927a45758308f4557269b6b6bf010876d4
from random import randrange, choice from math import log from sympy.ntheory import primefactors from sympy.core.symbol import Symbol from sympy.ntheory.factor_ import (factorint, multiplicity) from sympy.combinatorics import Permutation from sympy.combinatorics.permutations import (_af_commutes_with, _af_invert, _af_rmul, _af_rmuln, _af_pow, Cycle) from sympy.combinatorics.util import (_check_cycles_alt_sym, _distribute_gens_by_base, _orbits_transversals_from_bsgs, _handle_precomputed_bsgs, _base_ordering, _strong_gens_from_distr, _strip, _strip_af) from sympy.core import Basic from sympy.functions.combinatorial.factorials import factorial from sympy.ntheory import sieve from sympy.utilities.iterables import has_variety, is_sequence, uniq from sympy.testing.randtest import _randrange from itertools import islice from sympy.core.sympify import _sympify rmul = Permutation.rmul_with_af _af_new = Permutation._af_new class PermutationGroup(Basic): r"""The class defining a Permutation group. Explanation =========== ``PermutationGroup([p1, p2, ..., pn])`` returns the permutation group generated by the list of permutations. This group can be supplied to Polyhedron if one desires to decorate the elements to which the indices of the permutation refer. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.polyhedron import Polyhedron >>> from sympy.combinatorics.perm_groups import PermutationGroup The permutations corresponding to motion of the front, right and bottom face of a $2 \times 2$ Rubik's cube are defined: >>> F = Permutation(2, 19, 21, 8)(3, 17, 20, 10)(4, 6, 7, 5) >>> R = Permutation(1, 5, 21, 14)(3, 7, 23, 12)(8, 10, 11, 9) >>> D = Permutation(6, 18, 14, 10)(7, 19, 15, 11)(20, 22, 23, 21) These are passed as permutations to PermutationGroup: >>> G = PermutationGroup(F, R, D) >>> G.order() 3674160 The group can be supplied to a Polyhedron in order to track the objects being moved. An example involving the $2 \times 2$ Rubik's cube is given there, but here is a simple demonstration: >>> a = Permutation(2, 1) >>> b = Permutation(1, 0) >>> G = PermutationGroup(a, b) >>> P = Polyhedron(list('ABC'), pgroup=G) >>> P.corners (A, B, C) >>> P.rotate(0) # apply permutation 0 >>> P.corners (A, C, B) >>> P.reset() >>> P.corners (A, B, C) Or one can make a permutation as a product of selected permutations and apply them to an iterable directly: >>> P10 = G.make_perm([0, 1]) >>> P10('ABC') ['C', 'A', 'B'] See Also ======== sympy.combinatorics.polyhedron.Polyhedron, sympy.combinatorics.permutations.Permutation References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of Computational Group Theory" .. [2] Seress, A. "Permutation Group Algorithms" .. [3] https://en.wikipedia.org/wiki/Schreier_vector .. [4] https://en.wikipedia.org/wiki/Nielsen_transformation#Product_replacement_algorithm .. [5] Frank Celler, Charles R.Leedham-Green, Scott H.Murray, Alice C.Niemeyer, and E.A.O'Brien. "Generating Random Elements of a Finite Group" .. [6] https://en.wikipedia.org/wiki/Block_%28permutation_group_theory%29 .. [7] http://www.algorithmist.com/index.php/Union_Find .. [8] https://en.wikipedia.org/wiki/Multiply_transitive_group#Multiply_transitive_groups .. [9] https://en.wikipedia.org/wiki/Center_%28group_theory%29 .. [10] https://en.wikipedia.org/wiki/Centralizer_and_normalizer .. [11] http://groupprops.subwiki.org/wiki/Derived_subgroup .. [12] https://en.wikipedia.org/wiki/Nilpotent_group .. [13] http://www.math.colostate.edu/~hulpke/CGT/cgtnotes.pdf .. [14] https://www.gap-system.org/Manuals/doc/ref/manual.pdf """ is_group = True def __new__(cls, *args, dups=True, **kwargs): """The default constructor. Accepts Cycle and Permutation forms. Removes duplicates unless ``dups`` keyword is ``False``. """ if not args: args = [Permutation()] else: args = list(args[0] if is_sequence(args[0]) else args) if not args: args = [Permutation()] if any(isinstance(a, Cycle) for a in args): args = [Permutation(a) for a in args] if has_variety(a.size for a in args): degree = kwargs.pop('degree', None) if degree is None: degree = max(a.size for a in args) for i in range(len(args)): if args[i].size != degree: args[i] = Permutation(args[i], size=degree) if dups: args = list(uniq([_af_new(list(a)) for a in args])) if len(args) > 1: args = [g for g in args if not g.is_identity] return Basic.__new__(cls, *args, **kwargs) def __init__(self, *args, **kwargs): self._generators = list(self.args) self._order = None self._center = [] self._is_abelian = None self._is_transitive = None self._is_sym = None self._is_alt = None self._is_primitive = None self._is_nilpotent = None self._is_solvable = None self._is_trivial = None self._transitivity_degree = None self._max_div = None self._is_perfect = None self._is_cyclic = None self._r = len(self._generators) self._degree = self._generators[0].size # these attributes are assigned after running schreier_sims self._base = [] self._strong_gens = [] self._strong_gens_slp = [] self._basic_orbits = [] self._transversals = [] self._transversal_slp = [] # these attributes are assigned after running _random_pr_init self._random_gens = [] # finite presentation of the group as an instance of `FpGroup` self._fp_presentation = None def __getitem__(self, i): return self._generators[i] def __contains__(self, i): """Return ``True`` if *i* is contained in PermutationGroup. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> p = Permutation(1, 2, 3) >>> Permutation(3) in PermutationGroup(p) True """ if not isinstance(i, Permutation): raise TypeError("A PermutationGroup contains only Permutations as " "elements, not elements of type %s" % type(i)) return self.contains(i) def __len__(self): return len(self._generators) def __eq__(self, other): """Return ``True`` if PermutationGroup generated by elements in the group are same i.e they represent the same PermutationGroup. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> p = Permutation(0, 1, 2, 3, 4, 5) >>> G = PermutationGroup([p, p**2]) >>> H = PermutationGroup([p**2, p]) >>> G.generators == H.generators False >>> G == H True """ if not isinstance(other, PermutationGroup): return False set_self_gens = set(self.generators) set_other_gens = set(other.generators) # before reaching the general case there are also certain # optimisation and obvious cases requiring less or no actual # computation. if set_self_gens == set_other_gens: return True # in the most general case it will check that each generator of # one group belongs to the other PermutationGroup and vice-versa for gen1 in set_self_gens: if not other.contains(gen1): return False for gen2 in set_other_gens: if not self.contains(gen2): return False return True def __mul__(self, other): """ Return the direct product of two permutation groups as a permutation group. Explanation =========== This implementation realizes the direct product by shifting the index set for the generators of the second group: so if we have ``G`` acting on ``n1`` points and ``H`` acting on ``n2`` points, ``G*H`` acts on ``n1 + n2`` points. Examples ======== >>> from sympy.combinatorics.named_groups import CyclicGroup >>> G = CyclicGroup(5) >>> H = G*G >>> H PermutationGroup([ (9)(0 1 2 3 4), (5 6 7 8 9)]) >>> H.order() 25 """ if isinstance(other, Permutation): return Coset(other, self, dir='+') gens1 = [perm._array_form for perm in self.generators] gens2 = [perm._array_form for perm in other.generators] n1 = self._degree n2 = other._degree start = list(range(n1)) end = list(range(n1, n1 + n2)) for i in range(len(gens2)): gens2[i] = [x + n1 for x in gens2[i]] gens2 = [start + gen for gen in gens2] gens1 = [gen + end for gen in gens1] together = gens1 + gens2 gens = [_af_new(x) for x in together] return PermutationGroup(gens) def _random_pr_init(self, r, n, _random_prec_n=None): r"""Initialize random generators for the product replacement algorithm. Explanation =========== The implementation uses a modification of the original product replacement algorithm due to Leedham-Green, as described in [1], pp. 69-71; also, see [2], pp. 27-29 for a detailed theoretical analysis of the original product replacement algorithm, and [4]. The product replacement algorithm is used for producing random, uniformly distributed elements of a group `G` with a set of generators `S`. For the initialization ``_random_pr_init``, a list ``R`` of `\max\{r, |S|\}` group generators is created as the attribute ``G._random_gens``, repeating elements of `S` if necessary, and the identity element of `G` is appended to ``R`` - we shall refer to this last element as the accumulator. Then the function ``random_pr()`` is called ``n`` times, randomizing the list ``R`` while preserving the generation of `G` by ``R``. The function ``random_pr()`` itself takes two random elements ``g, h`` among all elements of ``R`` but the accumulator and replaces ``g`` with a randomly chosen element from `\{gh, g(~h), hg, (~h)g\}`. Then the accumulator is multiplied by whatever ``g`` was replaced by. The new value of the accumulator is then returned by ``random_pr()``. The elements returned will eventually (for ``n`` large enough) become uniformly distributed across `G` ([5]). For practical purposes however, the values ``n = 50, r = 11`` are suggested in [1]. Notes ===== THIS FUNCTION HAS SIDE EFFECTS: it changes the attribute self._random_gens See Also ======== random_pr """ deg = self.degree random_gens = [x._array_form for x in self.generators] k = len(random_gens) if k < r: for i in range(k, r): random_gens.append(random_gens[i - k]) acc = list(range(deg)) random_gens.append(acc) self._random_gens = random_gens # handle randomized input for testing purposes if _random_prec_n is None: for i in range(n): self.random_pr() else: for i in range(n): self.random_pr(_random_prec=_random_prec_n[i]) def _union_find_merge(self, first, second, ranks, parents, not_rep): """Merges two classes in a union-find data structure. Explanation =========== Used in the implementation of Atkinson's algorithm as suggested in [1], pp. 83-87. The class merging process uses union by rank as an optimization. ([7]) Notes ===== THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, ``parents``, the list of class sizes, ``ranks``, and the list of elements that are not representatives, ``not_rep``, are changed due to class merging. See Also ======== minimal_block, _union_find_rep References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of computational group theory" .. [7] http://www.algorithmist.com/index.php/Union_Find """ rep_first = self._union_find_rep(first, parents) rep_second = self._union_find_rep(second, parents) if rep_first != rep_second: # union by rank if ranks[rep_first] >= ranks[rep_second]: new_1, new_2 = rep_first, rep_second else: new_1, new_2 = rep_second, rep_first total_rank = ranks[new_1] + ranks[new_2] if total_rank > self.max_div: return -1 parents[new_2] = new_1 ranks[new_1] = total_rank not_rep.append(new_2) return 1 return 0 def _union_find_rep(self, num, parents): """Find representative of a class in a union-find data structure. Explanation =========== Used in the implementation of Atkinson's algorithm as suggested in [1], pp. 83-87. After the representative of the class to which ``num`` belongs is found, path compression is performed as an optimization ([7]). Notes ===== THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, ``parents``, is altered due to path compression. See Also ======== minimal_block, _union_find_merge References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of computational group theory" .. [7] http://www.algorithmist.com/index.php/Union_Find """ rep, parent = num, parents[num] while parent != rep: rep = parent parent = parents[rep] # path compression temp, parent = num, parents[num] while parent != rep: parents[temp] = rep temp = parent parent = parents[temp] return rep @property def base(self): r"""Return a base from the Schreier-Sims algorithm. Explanation =========== For a permutation group `G`, a base is a sequence of points `B = (b_1, b_2, \dots, b_k)` such that no element of `G` apart from the identity fixes all the points in `B`. The concepts of a base and strong generating set and their applications are discussed in depth in [1], pp. 87-89 and [2], pp. 55-57. An alternative way to think of `B` is that it gives the indices of the stabilizer cosets that contain more than the identity permutation. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> G = PermutationGroup([Permutation(0, 1, 3)(2, 4)]) >>> G.base [0, 2] See Also ======== strong_gens, basic_transversals, basic_orbits, basic_stabilizers """ if self._base == []: self.schreier_sims() return self._base def baseswap(self, base, strong_gens, pos, randomized=False, transversals=None, basic_orbits=None, strong_gens_distr=None): r"""Swap two consecutive base points in base and strong generating set. Explanation =========== If a base for a group `G` is given by `(b_1, b_2, \dots, b_k)`, this function returns a base `(b_1, b_2, \dots, b_{i+1}, b_i, \dots, b_k)`, where `i` is given by ``pos``, and a strong generating set relative to that base. The original base and strong generating set are not modified. The randomized version (default) is of Las Vegas type. Parameters ========== base, strong_gens The base and strong generating set. pos The position at which swapping is performed. randomized A switch between randomized and deterministic version. transversals The transversals for the basic orbits, if known. basic_orbits The basic orbits, if known. strong_gens_distr The strong generators distributed by basic stabilizers, if known. Returns ======= (base, strong_gens) ``base`` is the new base, and ``strong_gens`` is a generating set relative to it. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.testutil import _verify_bsgs >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> S = SymmetricGroup(4) >>> S.schreier_sims() >>> S.base [0, 1, 2] >>> base, gens = S.baseswap(S.base, S.strong_gens, 1, randomized=False) >>> base, gens ([0, 2, 1], [(0 1 2 3), (3)(0 1), (1 3 2), (2 3), (1 3)]) check that base, gens is a BSGS >>> S1 = PermutationGroup(gens) >>> _verify_bsgs(S1, base, gens) True See Also ======== schreier_sims Notes ===== The deterministic version of the algorithm is discussed in [1], pp. 102-103; the randomized version is discussed in [1], p.103, and [2], p.98. It is of Las Vegas type. Notice that [1] contains a mistake in the pseudocode and discussion of BASESWAP: on line 3 of the pseudocode, `|\beta_{i+1}^{\left\langle T\right\rangle}|` should be replaced by `|\beta_{i}^{\left\langle T\right\rangle}|`, and the same for the discussion of the algorithm. """ # construct the basic orbits, generators for the stabilizer chain # and transversal elements from whatever was provided transversals, basic_orbits, strong_gens_distr = \ _handle_precomputed_bsgs(base, strong_gens, transversals, basic_orbits, strong_gens_distr) base_len = len(base) degree = self.degree # size of orbit of base[pos] under the stabilizer we seek to insert # in the stabilizer chain at position pos + 1 size = len(basic_orbits[pos])*len(basic_orbits[pos + 1]) \ //len(_orbit(degree, strong_gens_distr[pos], base[pos + 1])) # initialize the wanted stabilizer by a subgroup if pos + 2 > base_len - 1: T = [] else: T = strong_gens_distr[pos + 2][:] # randomized version if randomized is True: stab_pos = PermutationGroup(strong_gens_distr[pos]) schreier_vector = stab_pos.schreier_vector(base[pos + 1]) # add random elements of the stabilizer until they generate it while len(_orbit(degree, T, base[pos])) != size: new = stab_pos.random_stab(base[pos + 1], schreier_vector=schreier_vector) T.append(new) # deterministic version else: Gamma = set(basic_orbits[pos]) Gamma.remove(base[pos]) if base[pos + 1] in Gamma: Gamma.remove(base[pos + 1]) # add elements of the stabilizer until they generate it by # ruling out member of the basic orbit of base[pos] along the way while len(_orbit(degree, T, base[pos])) != size: gamma = next(iter(Gamma)) x = transversals[pos][gamma] temp = x._array_form.index(base[pos + 1]) # (~x)(base[pos + 1]) if temp not in basic_orbits[pos + 1]: Gamma = Gamma - _orbit(degree, T, gamma) else: y = transversals[pos + 1][temp] el = rmul(x, y) if el(base[pos]) not in _orbit(degree, T, base[pos]): T.append(el) Gamma = Gamma - _orbit(degree, T, base[pos]) # build the new base and strong generating set strong_gens_new_distr = strong_gens_distr[:] strong_gens_new_distr[pos + 1] = T base_new = base[:] base_new[pos], base_new[pos + 1] = base_new[pos + 1], base_new[pos] strong_gens_new = _strong_gens_from_distr(strong_gens_new_distr) for gen in T: if gen not in strong_gens_new: strong_gens_new.append(gen) return base_new, strong_gens_new @property def basic_orbits(self): r""" Return the basic orbits relative to a base and strong generating set. Explanation =========== If `(b_1, b_2, \dots, b_k)` is a base for a group `G`, and `G^{(i)} = G_{b_1, b_2, \dots, b_{i-1}}` is the ``i``-th basic stabilizer (so that `G^{(1)} = G`), the ``i``-th basic orbit relative to this base is the orbit of `b_i` under `G^{(i)}`. See [1], pp. 87-89 for more information. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(4) >>> S.basic_orbits [[0, 1, 2, 3], [1, 2, 3], [2, 3]] See Also ======== base, strong_gens, basic_transversals, basic_stabilizers """ if self._basic_orbits == []: self.schreier_sims() return self._basic_orbits @property def basic_stabilizers(self): r""" Return a chain of stabilizers relative to a base and strong generating set. Explanation =========== The ``i``-th basic stabilizer `G^{(i)}` relative to a base `(b_1, b_2, \dots, b_k)` is `G_{b_1, b_2, \dots, b_{i-1}}`. For more information, see [1], pp. 87-89. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> A = AlternatingGroup(4) >>> A.schreier_sims() >>> A.base [0, 1] >>> for g in A.basic_stabilizers: ... print(g) ... PermutationGroup([ (3)(0 1 2), (1 2 3)]) PermutationGroup([ (1 2 3)]) See Also ======== base, strong_gens, basic_orbits, basic_transversals """ if self._transversals == []: self.schreier_sims() strong_gens = self._strong_gens base = self._base if not base: # e.g. if self is trivial return [] strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_stabilizers = [] for gens in strong_gens_distr: basic_stabilizers.append(PermutationGroup(gens)) return basic_stabilizers @property def basic_transversals(self): """ Return basic transversals relative to a base and strong generating set. Explanation =========== The basic transversals are transversals of the basic orbits. They are provided as a list of dictionaries, each dictionary having keys - the elements of one of the basic orbits, and values - the corresponding transversal elements. See [1], pp. 87-89 for more information. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> A = AlternatingGroup(4) >>> A.basic_transversals [{0: (3), 1: (3)(0 1 2), 2: (3)(0 2 1), 3: (0 3 1)}, {1: (3), 2: (1 2 3), 3: (1 3 2)}] See Also ======== strong_gens, base, basic_orbits, basic_stabilizers """ if self._transversals == []: self.schreier_sims() return self._transversals def composition_series(self): r""" Return the composition series for a group as a list of permutation groups. Explanation =========== The composition series for a group `G` is defined as a subnormal series `G = H_0 > H_1 > H_2 \ldots` A composition series is a subnormal series such that each factor group `H(i+1) / H(i)` is simple. A subnormal series is a composition series only if it is of maximum length. The algorithm works as follows: Starting with the derived series the idea is to fill the gap between `G = der[i]` and `H = der[i+1]` for each `i` independently. Since, all subgroups of the abelian group `G/H` are normal so, first step is to take the generators `g` of `G` and add them to generators of `H` one by one. The factor groups formed are not simple in general. Each group is obtained from the previous one by adding one generator `g`, if the previous group is denoted by `H` then the next group `K` is generated by `g` and `H`. The factor group `K/H` is cyclic and it's order is `K.order()//G.order()`. The series is then extended between `K` and `H` by groups generated by powers of `g` and `H`. The series formed is then prepended to the already existing series. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.named_groups import CyclicGroup >>> S = SymmetricGroup(12) >>> G = S.sylow_subgroup(2) >>> C = G.composition_series() >>> [H.order() for H in C] [1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1] >>> G = S.sylow_subgroup(3) >>> C = G.composition_series() >>> [H.order() for H in C] [243, 81, 27, 9, 3, 1] >>> G = CyclicGroup(12) >>> C = G.composition_series() >>> [H.order() for H in C] [12, 6, 3, 1] """ der = self.derived_series() if not all(g.is_identity for g in der[-1].generators): raise NotImplementedError('Group should be solvable') series = [] for i in range(len(der)-1): H = der[i+1] up_seg = [] for g in der[i].generators: K = PermutationGroup([g] + H.generators) order = K.order() // H.order() down_seg = [] for p, e in factorint(order).items(): for _ in range(e): down_seg.append(PermutationGroup([g] + H.generators)) g = g**p up_seg = down_seg + up_seg H = K up_seg[0] = der[i] series.extend(up_seg) series.append(der[-1]) return series def coset_transversal(self, H): """Return a transversal of the right cosets of self by its subgroup H using the second method described in [1], Subsection 4.6.7 """ if not H.is_subgroup(self): raise ValueError("The argument must be a subgroup") if H.order() == 1: return self._elements self._schreier_sims(base=H.base) # make G.base an extension of H.base base = self.base base_ordering = _base_ordering(base, self.degree) identity = Permutation(self.degree - 1) transversals = self.basic_transversals[:] # transversals is a list of dictionaries. Get rid of the keys # so that it is a list of lists and sort each list in # the increasing order of base[l]^x for l, t in enumerate(transversals): transversals[l] = sorted(t.values(), key = lambda x: base_ordering[base[l]^x]) orbits = H.basic_orbits h_stabs = H.basic_stabilizers g_stabs = self.basic_stabilizers indices = [x.order()//y.order() for x, y in zip(g_stabs, h_stabs)] # T^(l) should be a right transversal of H^(l) in G^(l) for # 1<=l<=len(base). While H^(l) is the trivial group, T^(l) # contains all the elements of G^(l) so we might just as well # start with l = len(h_stabs)-1 if len(g_stabs) > len(h_stabs): T = g_stabs[len(h_stabs)]._elements else: T = [identity] l = len(h_stabs)-1 t_len = len(T) while l > -1: T_next = [] for u in transversals[l]: if u == identity: continue b = base_ordering[base[l]^u] for t in T: p = t*u if all(base_ordering[h^p] >= b for h in orbits[l]): T_next.append(p) if t_len + len(T_next) == indices[l]: break if t_len + len(T_next) == indices[l]: break T += T_next t_len += len(T_next) l -= 1 T.remove(identity) T = [identity] + T return T def _coset_representative(self, g, H): """Return the representative of Hg from the transversal that would be computed by ``self.coset_transversal(H)``. """ if H.order() == 1: return g # The base of self must be an extension of H.base. if not(self.base[:len(H.base)] == H.base): self._schreier_sims(base=H.base) orbits = H.basic_orbits[:] h_transversals = [list(_.values()) for _ in H.basic_transversals] transversals = [list(_.values()) for _ in self.basic_transversals] base = self.base base_ordering = _base_ordering(base, self.degree) def step(l, x): gamma = sorted(orbits[l], key = lambda y: base_ordering[y^x])[0] i = [base[l]^h for h in h_transversals[l]].index(gamma) x = h_transversals[l][i]*x if l < len(orbits)-1: for u in transversals[l]: if base[l]^u == base[l]^x: break x = step(l+1, x*u**-1)*u return x return step(0, g) def coset_table(self, H): """Return the standardised (right) coset table of self in H as a list of lists. """ # Maybe this should be made to return an instance of CosetTable # from fp_groups.py but the class would need to be changed first # to be compatible with PermutationGroups from itertools import chain, product if not H.is_subgroup(self): raise ValueError("The argument must be a subgroup") T = self.coset_transversal(H) n = len(T) A = list(chain.from_iterable((gen, gen**-1) for gen in self.generators)) table = [] for i in range(n): row = [self._coset_representative(T[i]*x, H) for x in A] row = [T.index(r) for r in row] table.append(row) # standardize (this is the same as the algorithm used in coset_table) # If CosetTable is made compatible with PermutationGroups, this # should be replaced by table.standardize() A = range(len(A)) gamma = 1 for alpha, a in product(range(n), A): beta = table[alpha][a] if beta >= gamma: if beta > gamma: for x in A: z = table[gamma][x] table[gamma][x] = table[beta][x] table[beta][x] = z for i in range(n): if table[i][x] == beta: table[i][x] = gamma elif table[i][x] == gamma: table[i][x] = beta gamma += 1 if gamma >= n-1: return table def center(self): r""" Return the center of a permutation group. Explanation =========== The center for a group `G` is defined as `Z(G) = \{z\in G | \forall g\in G, zg = gz \}`, the set of elements of `G` that commute with all elements of `G`. It is equal to the centralizer of `G` inside `G`, and is naturally a subgroup of `G` ([9]). Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(4) >>> G = D.center() >>> G.order() 2 See Also ======== centralizer Notes ===== This is a naive implementation that is a straightforward application of ``.centralizer()`` """ return self.centralizer(self) def centralizer(self, other): r""" Return the centralizer of a group/set/element. Explanation =========== The centralizer of a set of permutations ``S`` inside a group ``G`` is the set of elements of ``G`` that commute with all elements of ``S``:: `C_G(S) = \{ g \in G | gs = sg \forall s \in S\}` ([10]) Usually, ``S`` is a subset of ``G``, but if ``G`` is a proper subgroup of the full symmetric group, we allow for ``S`` to have elements outside ``G``. It is naturally a subgroup of ``G``; the centralizer of a permutation group is equal to the centralizer of any set of generators for that group, since any element commuting with the generators commutes with any product of the generators. Parameters ========== other a permutation group/list of permutations/single permutation Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... CyclicGroup) >>> S = SymmetricGroup(6) >>> C = CyclicGroup(6) >>> H = S.centralizer(C) >>> H.is_subgroup(C) True See Also ======== subgroup_search Notes ===== The implementation is an application of ``.subgroup_search()`` with tests using a specific base for the group ``G``. """ if hasattr(other, 'generators'): if other.is_trivial or self.is_trivial: return self degree = self.degree identity = _af_new(list(range(degree))) orbits = other.orbits() num_orbits = len(orbits) orbits.sort(key=lambda x: -len(x)) long_base = [] orbit_reps = [None]*num_orbits orbit_reps_indices = [None]*num_orbits orbit_descr = [None]*degree for i in range(num_orbits): orbit = list(orbits[i]) orbit_reps[i] = orbit[0] orbit_reps_indices[i] = len(long_base) for point in orbit: orbit_descr[point] = i long_base = long_base + orbit base, strong_gens = self.schreier_sims_incremental(base=long_base) strong_gens_distr = _distribute_gens_by_base(base, strong_gens) i = 0 for i in range(len(base)): if strong_gens_distr[i] == [identity]: break base = base[:i] base_len = i for j in range(num_orbits): if base[base_len - 1] in orbits[j]: break rel_orbits = orbits[: j + 1] num_rel_orbits = len(rel_orbits) transversals = [None]*num_rel_orbits for j in range(num_rel_orbits): rep = orbit_reps[j] transversals[j] = dict( other.orbit_transversal(rep, pairs=True)) trivial_test = lambda x: True tests = [None]*base_len for l in range(base_len): if base[l] in orbit_reps: tests[l] = trivial_test else: def test(computed_words, l=l): g = computed_words[l] rep_orb_index = orbit_descr[base[l]] rep = orbit_reps[rep_orb_index] im = g._array_form[base[l]] im_rep = g._array_form[rep] tr_el = transversals[rep_orb_index][base[l]] # using the definition of transversal, # base[l]^g = rep^(tr_el*g); # if g belongs to the centralizer, then # base[l]^g = (rep^g)^tr_el return im == tr_el._array_form[im_rep] tests[l] = test def prop(g): return [rmul(g, gen) for gen in other.generators] == \ [rmul(gen, g) for gen in other.generators] return self.subgroup_search(prop, base=base, strong_gens=strong_gens, tests=tests) elif hasattr(other, '__getitem__'): gens = list(other) return self.centralizer(PermutationGroup(gens)) elif hasattr(other, 'array_form'): return self.centralizer(PermutationGroup([other])) def commutator(self, G, H): """ Return the commutator of two subgroups. Explanation =========== For a permutation group ``K`` and subgroups ``G``, ``H``, the commutator of ``G`` and ``H`` is defined as the group generated by all the commutators `[g, h] = hgh^{-1}g^{-1}` for ``g`` in ``G`` and ``h`` in ``H``. It is naturally a subgroup of ``K`` ([1], p.27). Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... AlternatingGroup) >>> S = SymmetricGroup(5) >>> A = AlternatingGroup(5) >>> G = S.commutator(S, A) >>> G.is_subgroup(A) True See Also ======== derived_subgroup Notes ===== The commutator of two subgroups `H, G` is equal to the normal closure of the commutators of all the generators, i.e. `hgh^{-1}g^{-1}` for `h` a generator of `H` and `g` a generator of `G` ([1], p.28) """ ggens = G.generators hgens = H.generators commutators = [] for ggen in ggens: for hgen in hgens: commutator = rmul(hgen, ggen, ~hgen, ~ggen) if commutator not in commutators: commutators.append(commutator) res = self.normal_closure(commutators) return res def coset_factor(self, g, factor_index=False): """Return ``G``'s (self's) coset factorization of ``g`` Explanation =========== If ``g`` is an element of ``G`` then it can be written as the product of permutations drawn from the Schreier-Sims coset decomposition, The permutations returned in ``f`` are those for which the product gives ``g``: ``g = f[n]*...f[1]*f[0]`` where ``n = len(B)`` and ``B = G.base``. f[i] is one of the permutations in ``self._basic_orbits[i]``. If factor_index==True, returns a tuple ``[b[0],..,b[n]]``, where ``b[i]`` belongs to ``self._basic_orbits[i]`` Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5) >>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6) >>> G = PermutationGroup([a, b]) Define g: >>> g = Permutation(7)(1, 2, 4)(3, 6, 5) Confirm that it is an element of G: >>> G.contains(g) True Thus, it can be written as a product of factors (up to 3) drawn from u. See below that a factor from u1 and u2 and the Identity permutation have been used: >>> f = G.coset_factor(g) >>> f[2]*f[1]*f[0] == g True >>> f1 = G.coset_factor(g, True); f1 [0, 4, 4] >>> tr = G.basic_transversals >>> f[0] == tr[0][f1[0]] True If g is not an element of G then [] is returned: >>> c = Permutation(5, 6, 7) >>> G.coset_factor(c) [] See Also ======== sympy.combinatorics.util._strip """ if isinstance(g, (Cycle, Permutation)): g = g.list() if len(g) != self._degree: # this could either adjust the size or return [] immediately # but we don't choose between the two and just signal a possible # error raise ValueError('g should be the same size as permutations of G') I = list(range(self._degree)) basic_orbits = self.basic_orbits transversals = self._transversals factors = [] base = self.base h = g for i in range(len(base)): beta = h[base[i]] if beta == base[i]: factors.append(beta) continue if beta not in basic_orbits[i]: return [] u = transversals[i][beta]._array_form h = _af_rmul(_af_invert(u), h) factors.append(beta) if h != I: return [] if factor_index: return factors tr = self.basic_transversals factors = [tr[i][factors[i]] for i in range(len(base))] return factors def generator_product(self, g, original=False): r''' Return a list of strong generators `[s1, \dots, sn]` s.t `g = sn \times \dots \times s1`. If ``original=True``, make the list contain only the original group generators ''' product = [] if g.is_identity: return [] if g in self.strong_gens: if not original or g in self.generators: return [g] else: slp = self._strong_gens_slp[g] for s in slp: product.extend(self.generator_product(s, original=True)) return product elif g**-1 in self.strong_gens: g = g**-1 if not original or g in self.generators: return [g**-1] else: slp = self._strong_gens_slp[g] for s in slp: product.extend(self.generator_product(s, original=True)) l = len(product) product = [product[l-i-1]**-1 for i in range(l)] return product f = self.coset_factor(g, True) for i, j in enumerate(f): slp = self._transversal_slp[i][j] for s in slp: if not original: product.append(self.strong_gens[s]) else: s = self.strong_gens[s] product.extend(self.generator_product(s, original=True)) return product def coset_rank(self, g): """rank using Schreier-Sims representation. Explanation =========== The coset rank of ``g`` is the ordering number in which it appears in the lexicographic listing according to the coset decomposition The ordering is the same as in G.generate(method='coset'). If ``g`` does not belong to the group it returns None. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5) >>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6) >>> G = PermutationGroup([a, b]) >>> c = Permutation(7)(2, 4)(3, 5) >>> G.coset_rank(c) 16 >>> G.coset_unrank(16) (7)(2 4)(3 5) See Also ======== coset_factor """ factors = self.coset_factor(g, True) if not factors: return None rank = 0 b = 1 transversals = self._transversals base = self._base basic_orbits = self._basic_orbits for i in range(len(base)): k = factors[i] j = basic_orbits[i].index(k) rank += b*j b = b*len(transversals[i]) return rank def coset_unrank(self, rank, af=False): """unrank using Schreier-Sims representation coset_unrank is the inverse operation of coset_rank if 0 <= rank < order; otherwise it returns None. """ if rank < 0 or rank >= self.order(): return None base = self.base transversals = self.basic_transversals basic_orbits = self.basic_orbits m = len(base) v = [0]*m for i in range(m): rank, c = divmod(rank, len(transversals[i])) v[i] = basic_orbits[i][c] a = [transversals[i][v[i]]._array_form for i in range(m)] h = _af_rmuln(*a) if af: return h else: return _af_new(h) @property def degree(self): """Returns the size of the permutations in the group. Explanation =========== The number of permutations comprising the group is given by ``len(group)``; the number of permutations that can be generated by the group is given by ``group.order()``. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 0, 2]) >>> G = PermutationGroup([a]) >>> G.degree 3 >>> len(G) 1 >>> G.order() 2 >>> list(G.generate()) [(2), (2)(0 1)] See Also ======== order """ return self._degree @property def identity(self): ''' Return the identity element of the permutation group. ''' return _af_new(list(range(self.degree))) @property def elements(self): """Returns all the elements of the permutation group as a set Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2)) >>> p.elements {(1 2 3), (1 3 2), (1 3), (2 3), (3), (3)(1 2)} """ return set(self._elements) @property def _elements(self): """Returns all the elements of the permutation group as a list Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2)) >>> p._elements [(3), (3)(1 2), (1 3), (2 3), (1 2 3), (1 3 2)] """ return list(islice(self.generate(), None)) def derived_series(self): r"""Return the derived series for the group. Explanation =========== The derived series for a group `G` is defined as `G = G_0 > G_1 > G_2 > \ldots` where `G_i = [G_{i-1}, G_{i-1}]`, i.e. `G_i` is the derived subgroup of `G_{i-1}`, for `i\in\mathbb{N}`. When we have `G_k = G_{k-1}` for some `k\in\mathbb{N}`, the series terminates. Returns ======= A list of permutation groups containing the members of the derived series in the order `G = G_0, G_1, G_2, \ldots`. Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... AlternatingGroup, DihedralGroup) >>> A = AlternatingGroup(5) >>> len(A.derived_series()) 1 >>> S = SymmetricGroup(4) >>> len(S.derived_series()) 4 >>> S.derived_series()[1].is_subgroup(AlternatingGroup(4)) True >>> S.derived_series()[2].is_subgroup(DihedralGroup(2)) True See Also ======== derived_subgroup """ res = [self] current = self nxt = self.derived_subgroup() while not current.is_subgroup(nxt): res.append(nxt) current = nxt nxt = nxt.derived_subgroup() return res def derived_subgroup(self): r"""Compute the derived subgroup. Explanation =========== The derived subgroup, or commutator subgroup is the subgroup generated by all commutators `[g, h] = hgh^{-1}g^{-1}` for `g, h\in G` ; it is equal to the normal closure of the set of commutators of the generators ([1], p.28, [11]). Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 0, 2, 4, 3]) >>> b = Permutation([0, 1, 3, 2, 4]) >>> G = PermutationGroup([a, b]) >>> C = G.derived_subgroup() >>> list(C.generate(af=True)) [[0, 1, 2, 3, 4], [0, 1, 3, 4, 2], [0, 1, 4, 2, 3]] See Also ======== derived_series """ r = self._r gens = [p._array_form for p in self.generators] set_commutators = set() degree = self._degree rng = list(range(degree)) for i in range(r): for j in range(r): p1 = gens[i] p2 = gens[j] c = list(range(degree)) for k in rng: c[p2[p1[k]]] = p1[p2[k]] ct = tuple(c) if not ct in set_commutators: set_commutators.add(ct) cms = [_af_new(p) for p in set_commutators] G2 = self.normal_closure(cms) return G2 def generate(self, method="coset", af=False): """Return iterator to generate the elements of the group. Explanation =========== Iteration is done with one of these methods:: method='coset' using the Schreier-Sims coset representation method='dimino' using the Dimino method If ``af = True`` it yields the array form of the permutations Examples ======== >>> from sympy.combinatorics import PermutationGroup >>> from sympy.combinatorics.polyhedron import tetrahedron The permutation group given in the tetrahedron object is also true groups: >>> G = tetrahedron.pgroup >>> G.is_group True Also the group generated by the permutations in the tetrahedron pgroup -- even the first two -- is a proper group: >>> H = PermutationGroup(G[0], G[1]) >>> J = PermutationGroup(list(H.generate())); J PermutationGroup([ (0 1)(2 3), (1 2 3), (1 3 2), (0 3 1), (0 2 3), (0 3)(1 2), (0 1 3), (3)(0 2 1), (0 3 2), (3)(0 1 2), (0 2)(1 3)]) >>> _.is_group True """ if method == "coset": return self.generate_schreier_sims(af) elif method == "dimino": return self.generate_dimino(af) else: raise NotImplementedError('No generation defined for %s' % method) def generate_dimino(self, af=False): """Yield group elements using Dimino's algorithm. If ``af == True`` it yields the array form of the permutations. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([0, 2, 3, 1]) >>> g = PermutationGroup([a, b]) >>> list(g.generate_dimino(af=True)) [[0, 1, 2, 3], [0, 2, 1, 3], [0, 2, 3, 1], [0, 1, 3, 2], [0, 3, 2, 1], [0, 3, 1, 2]] References ========== .. [1] The Implementation of Various Algorithms for Permutation Groups in the Computer Algebra System: AXIOM, N.J. Doye, M.Sc. Thesis """ idn = list(range(self.degree)) order = 0 element_list = [idn] set_element_list = {tuple(idn)} if af: yield idn else: yield _af_new(idn) gens = [p._array_form for p in self.generators] for i in range(len(gens)): # D elements of the subgroup G_i generated by gens[:i] D = element_list[:] N = [idn] while N: A = N N = [] for a in A: for g in gens[:i + 1]: ag = _af_rmul(a, g) if tuple(ag) not in set_element_list: # produce G_i*g for d in D: order += 1 ap = _af_rmul(d, ag) if af: yield ap else: p = _af_new(ap) yield p element_list.append(ap) set_element_list.add(tuple(ap)) N.append(ap) self._order = len(element_list) def generate_schreier_sims(self, af=False): """Yield group elements using the Schreier-Sims representation in coset_rank order If ``af = True`` it yields the array form of the permutations Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([0, 2, 3, 1]) >>> g = PermutationGroup([a, b]) >>> list(g.generate_schreier_sims(af=True)) [[0, 1, 2, 3], [0, 2, 1, 3], [0, 3, 2, 1], [0, 1, 3, 2], [0, 2, 3, 1], [0, 3, 1, 2]] """ n = self._degree u = self.basic_transversals basic_orbits = self._basic_orbits if len(u) == 0: for x in self.generators: if af: yield x._array_form else: yield x return if len(u) == 1: for i in basic_orbits[0]: if af: yield u[0][i]._array_form else: yield u[0][i] return u = list(reversed(u)) basic_orbits = basic_orbits[::-1] # stg stack of group elements stg = [list(range(n))] posmax = [len(x) for x in u] n1 = len(posmax) - 1 pos = [0]*n1 h = 0 while 1: # backtrack when finished iterating over coset if pos[h] >= posmax[h]: if h == 0: return pos[h] = 0 h -= 1 stg.pop() continue p = _af_rmul(u[h][basic_orbits[h][pos[h]]]._array_form, stg[-1]) pos[h] += 1 stg.append(p) h += 1 if h == n1: if af: for i in basic_orbits[-1]: p = _af_rmul(u[-1][i]._array_form, stg[-1]) yield p else: for i in basic_orbits[-1]: p = _af_rmul(u[-1][i]._array_form, stg[-1]) p1 = _af_new(p) yield p1 stg.pop() h -= 1 @property def generators(self): """Returns the generators of the group. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.generators [(1 2), (2)(0 1)] """ return self._generators def contains(self, g, strict=True): """Test if permutation ``g`` belong to self, ``G``. Explanation =========== If ``g`` is an element of ``G`` it can be written as a product of factors drawn from the cosets of ``G``'s stabilizers. To see if ``g`` is one of the actual generators defining the group use ``G.has(g)``. If ``strict`` is not ``True``, ``g`` will be resized, if necessary, to match the size of permutations in ``self``. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(1, 2) >>> b = Permutation(2, 3, 1) >>> G = PermutationGroup(a, b, degree=5) >>> G.contains(G[0]) # trivial check True >>> elem = Permutation([[2, 3]], size=5) >>> G.contains(elem) True >>> G.contains(Permutation(4)(0, 1, 2, 3)) False If strict is False, a permutation will be resized, if necessary: >>> H = PermutationGroup(Permutation(5)) >>> H.contains(Permutation(3)) False >>> H.contains(Permutation(3), strict=False) True To test if a given permutation is present in the group: >>> elem in G.generators False >>> G.has(elem) False See Also ======== coset_factor, sympy.core.basic.Basic.has, __contains__ """ if not isinstance(g, Permutation): return False if g.size != self.degree: if strict: return False g = Permutation(g, size=self.degree) if g in self.generators: return True return bool(self.coset_factor(g.array_form, True)) @property def is_perfect(self): """Return ``True`` if the group is perfect. A group is perfect if it equals to its derived subgroup. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(1,2,3)(4,5) >>> b = Permutation(1,2,3,4,5) >>> G = PermutationGroup([a, b]) >>> G.is_perfect False """ if self._is_perfect is None: self._is_perfect = self == self.derived_subgroup() return self._is_perfect @property def is_abelian(self): """Test if the group is Abelian. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.is_abelian False >>> a = Permutation([0, 2, 1]) >>> G = PermutationGroup([a]) >>> G.is_abelian True """ if self._is_abelian is not None: return self._is_abelian self._is_abelian = True gens = [p._array_form for p in self.generators] for x in gens: for y in gens: if y <= x: continue if not _af_commutes_with(x, y): self._is_abelian = False return False return True def abelian_invariants(self): """ Returns the abelian invariants for the given group. Let ``G`` be a nontrivial finite abelian group. Then G is isomorphic to the direct product of finitely many nontrivial cyclic groups of prime-power order. Explanation =========== The prime-powers that occur as the orders of the factors are uniquely determined by G. More precisely, the primes that occur in the orders of the factors in any such decomposition of ``G`` are exactly the primes that divide ``|G|`` and for any such prime ``p``, if the orders of the factors that are p-groups in one such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, then the orders of the factors that are p-groups in any such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``. The uniquely determined integers ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, taken for all primes that divide ``|G|`` are called the invariants of the nontrivial group ``G`` as suggested in ([14], p. 542). Notes ===== We adopt the convention that the invariants of a trivial group are []. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.abelian_invariants() [2] >>> from sympy.combinatorics.named_groups import CyclicGroup >>> G = CyclicGroup(7) >>> G.abelian_invariants() [7] """ if self.is_trivial: return [] gns = self.generators inv = [] G = self H = G.derived_subgroup() Hgens = H.generators for p in primefactors(G.order()): ranks = [] while True: pows = [] for g in gns: elm = g**p if not H.contains(elm): pows.append(elm) K = PermutationGroup(Hgens + pows) if pows else H r = G.order()//K.order() G = K gns = pows if r == 1: break ranks.append(multiplicity(p, r)) if ranks: pows = [1]*ranks[0] for i in ranks: for j in range(0, i): pows[j] = pows[j]*p inv.extend(pows) inv.sort() return inv def is_elementary(self, p): """Return ``True`` if the group is elementary abelian. An elementary abelian group is a finite abelian group, where every nontrivial element has order `p`, where `p` is a prime. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> G = PermutationGroup([a]) >>> G.is_elementary(2) True >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([3, 1, 2, 0]) >>> G = PermutationGroup([a, b]) >>> G.is_elementary(2) True >>> G.is_elementary(3) False """ return self.is_abelian and all(g.order() == p for g in self.generators) def _eval_is_alt_sym_naive(self, only_sym=False, only_alt=False): """A naive test using the group order.""" if only_sym and only_alt: raise ValueError( "Both {} and {} cannot be set to True" .format(only_sym, only_alt)) n = self.degree sym_order = 1 for i in range(2, n+1): sym_order *= i order = self.order() if order == sym_order: self._is_sym = True self._is_alt = False if only_alt: return False return True elif 2*order == sym_order: self._is_sym = False self._is_alt = True if only_sym: return False return True return False def _eval_is_alt_sym_monte_carlo(self, eps=0.05, perms=None): """A test using monte-carlo algorithm. Parameters ========== eps : float, optional The criterion for the incorrect ``False`` return. perms : list[Permutation], optional If explicitly given, it tests over the given candidats for testing. If ``None``, it randomly computes ``N_eps`` and chooses ``N_eps`` sample of the permutation from the group. See Also ======== _check_cycles_alt_sym """ if perms is None: n = self.degree if n < 17: c_n = 0.34 else: c_n = 0.57 d_n = (c_n*log(2))/log(n) N_eps = int(-log(eps)/d_n) perms = (self.random_pr() for i in range(N_eps)) return self._eval_is_alt_sym_monte_carlo(perms=perms) for perm in perms: if _check_cycles_alt_sym(perm): return True return False def is_alt_sym(self, eps=0.05, _random_prec=None): r"""Monte Carlo test for the symmetric/alternating group for degrees >= 8. Explanation =========== More specifically, it is one-sided Monte Carlo with the answer True (i.e., G is symmetric/alternating) guaranteed to be correct, and the answer False being incorrect with probability eps. For degree < 8, the order of the group is checked so the test is deterministic. Notes ===== The algorithm itself uses some nontrivial results from group theory and number theory: 1) If a transitive group ``G`` of degree ``n`` contains an element with a cycle of length ``n/2 < p < n-2`` for ``p`` a prime, ``G`` is the symmetric or alternating group ([1], pp. 81-82) 2) The proportion of elements in the symmetric/alternating group having the property described in 1) is approximately `\log(2)/\log(n)` ([1], p.82; [2], pp. 226-227). The helper function ``_check_cycles_alt_sym`` is used to go over the cycles in a permutation and look for ones satisfying 1). Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(10) >>> D.is_alt_sym() False See Also ======== _check_cycles_alt_sym """ if _random_prec is not None: N_eps = _random_prec['N_eps'] perms= (_random_prec[i] for i in range(N_eps)) return self._eval_is_alt_sym_monte_carlo(perms=perms) if self._is_sym or self._is_alt: return True if self._is_sym is False and self._is_alt is False: return False n = self.degree if n < 8: return self._eval_is_alt_sym_naive() elif self.is_transitive(): return self._eval_is_alt_sym_monte_carlo(eps=eps) self._is_sym, self._is_alt = False, False return False @property def is_nilpotent(self): """Test if the group is nilpotent. Explanation =========== A group `G` is nilpotent if it has a central series of finite length. Alternatively, `G` is nilpotent if its lower central series terminates with the trivial group. Every nilpotent group is also solvable ([1], p.29, [12]). Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... CyclicGroup) >>> C = CyclicGroup(6) >>> C.is_nilpotent True >>> S = SymmetricGroup(5) >>> S.is_nilpotent False See Also ======== lower_central_series, is_solvable """ if self._is_nilpotent is None: lcs = self.lower_central_series() terminator = lcs[len(lcs) - 1] gens = terminator.generators degree = self.degree identity = _af_new(list(range(degree))) if all(g == identity for g in gens): self._is_solvable = True self._is_nilpotent = True return True else: self._is_nilpotent = False return False else: return self._is_nilpotent def is_normal(self, gr, strict=True): """Test if ``G=self`` is a normal subgroup of ``gr``. Explanation =========== G is normal in gr if for each g2 in G, g1 in gr, ``g = g1*g2*g1**-1`` belongs to G It is sufficient to check this for each g1 in gr.generators and g2 in G.generators. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 2, 0]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G1 = PermutationGroup([a, Permutation([2, 0, 1])]) >>> G1.is_normal(G) True """ if not self.is_subgroup(gr, strict=strict): return False d_self = self.degree d_gr = gr.degree if self.is_trivial and (d_self == d_gr or not strict): return True if self._is_abelian: return True new_self = self.copy() if not strict and d_self != d_gr: if d_self < d_gr: new_self = PermGroup(new_self.generators + [Permutation(d_gr - 1)]) else: gr = PermGroup(gr.generators + [Permutation(d_self - 1)]) gens2 = [p._array_form for p in new_self.generators] gens1 = [p._array_form for p in gr.generators] for g1 in gens1: for g2 in gens2: p = _af_rmuln(g1, g2, _af_invert(g1)) if not new_self.coset_factor(p, True): return False return True def is_primitive(self, randomized=True): r"""Test if a group is primitive. Explanation =========== A permutation group ``G`` acting on a set ``S`` is called primitive if ``S`` contains no nontrivial block under the action of ``G`` (a block is nontrivial if its cardinality is more than ``1``). Notes ===== The algorithm is described in [1], p.83, and uses the function minimal_block to search for blocks of the form `\{0, k\}` for ``k`` ranging over representatives for the orbits of `G_0`, the stabilizer of ``0``. This algorithm has complexity `O(n^2)` where ``n`` is the degree of the group, and will perform badly if `G_0` is small. There are two implementations offered: one finds `G_0` deterministically using the function ``stabilizer``, and the other (default) produces random elements of `G_0` using ``random_stab``, hoping that they generate a subgroup of `G_0` with not too many more orbits than `G_0` (this is suggested in [1], p.83). Behavior is changed by the ``randomized`` flag. Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(10) >>> D.is_primitive() False See Also ======== minimal_block, random_stab """ if self._is_primitive is not None: return self._is_primitive if self.is_transitive() is False: return False if randomized: random_stab_gens = [] v = self.schreier_vector(0) for _ in range(len(self)): random_stab_gens.append(self.random_stab(0, v)) stab = PermutationGroup(random_stab_gens) else: stab = self.stabilizer(0) orbits = stab.orbits() for orb in orbits: x = orb.pop() if x != 0 and any(e != 0 for e in self.minimal_block([0, x])): self._is_primitive = False return False self._is_primitive = True return True def minimal_blocks(self, randomized=True): ''' For a transitive group, return the list of all minimal block systems. If a group is intransitive, return `False`. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> DihedralGroup(6).minimal_blocks() [[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]] >>> G = PermutationGroup(Permutation(1,2,5)) >>> G.minimal_blocks() False See Also ======== minimal_block, is_transitive, is_primitive ''' def _number_blocks(blocks): # number the blocks of a block system # in order and return the number of # blocks and the tuple with the # reordering n = len(blocks) appeared = {} m = 0 b = [None]*n for i in range(n): if blocks[i] not in appeared: appeared[blocks[i]] = m b[i] = m m += 1 else: b[i] = appeared[blocks[i]] return tuple(b), m if not self.is_transitive(): return False blocks = [] num_blocks = [] rep_blocks = [] if randomized: random_stab_gens = [] v = self.schreier_vector(0) for i in range(len(self)): random_stab_gens.append(self.random_stab(0, v)) stab = PermutationGroup(random_stab_gens) else: stab = self.stabilizer(0) orbits = stab.orbits() for orb in orbits: x = orb.pop() if x != 0: block = self.minimal_block([0, x]) num_block, _ = _number_blocks(block) # a representative block (containing 0) rep = {j for j in range(self.degree) if num_block[j] == 0} # check if the system is minimal with # respect to the already discovere ones minimal = True blocks_remove_mask = [False] * len(blocks) for i, r in enumerate(rep_blocks): if len(r) > len(rep) and rep.issubset(r): # i-th block system is not minimal blocks_remove_mask[i] = True elif len(r) < len(rep) and r.issubset(rep): # the system being checked is not minimal minimal = False break # remove non-minimal representative blocks blocks = [b for i, b in enumerate(blocks) if not blocks_remove_mask[i]] num_blocks = [n for i, n in enumerate(num_blocks) if not blocks_remove_mask[i]] rep_blocks = [r for i, r in enumerate(rep_blocks) if not blocks_remove_mask[i]] if minimal and num_block not in num_blocks: blocks.append(block) num_blocks.append(num_block) rep_blocks.append(rep) return blocks @property def is_solvable(self): """Test if the group is solvable. ``G`` is solvable if its derived series terminates with the trivial group ([1], p.29). Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(3) >>> S.is_solvable True See Also ======== is_nilpotent, derived_series """ if self._is_solvable is None: if self.order() % 2 != 0: return True ds = self.derived_series() terminator = ds[len(ds) - 1] gens = terminator.generators degree = self.degree identity = _af_new(list(range(degree))) if all(g == identity for g in gens): self._is_solvable = True return True else: self._is_solvable = False return False else: return self._is_solvable def is_subgroup(self, G, strict=True): """Return ``True`` if all elements of ``self`` belong to ``G``. If ``strict`` is ``False`` then if ``self``'s degree is smaller than ``G``'s, the elements will be resized to have the same degree. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... CyclicGroup) Testing is strict by default: the degree of each group must be the same: >>> p = Permutation(0, 1, 2, 3, 4, 5) >>> G1 = PermutationGroup([Permutation(0, 1, 2), Permutation(0, 1)]) >>> G2 = PermutationGroup([Permutation(0, 2), Permutation(0, 1, 2)]) >>> G3 = PermutationGroup([p, p**2]) >>> assert G1.order() == G2.order() == G3.order() == 6 >>> G1.is_subgroup(G2) True >>> G1.is_subgroup(G3) False >>> G3.is_subgroup(PermutationGroup(G3[1])) False >>> G3.is_subgroup(PermutationGroup(G3[0])) True To ignore the size, set ``strict`` to ``False``: >>> S3 = SymmetricGroup(3) >>> S5 = SymmetricGroup(5) >>> S3.is_subgroup(S5, strict=False) True >>> C7 = CyclicGroup(7) >>> G = S5*C7 >>> S5.is_subgroup(G, False) True >>> C7.is_subgroup(G, 0) False """ if isinstance(G, SymmetricPermutationGroup): if self.degree != G.degree: return False return True if not isinstance(G, PermutationGroup): return False if self == G or self.generators[0]==Permutation(): return True if G.order() % self.order() != 0: return False if self.degree == G.degree or \ (self.degree < G.degree and not strict): gens = self.generators else: return False return all(G.contains(g, strict=strict) for g in gens) @property def is_polycyclic(self): """Return ``True`` if a group is polycyclic. A group is polycyclic if it has a subnormal series with cyclic factors. For finite groups, this is the same as if the group is solvable. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([2, 0, 1, 3]) >>> G = PermutationGroup([a, b]) >>> G.is_polycyclic True """ return self.is_solvable def is_transitive(self, strict=True): """Test if the group is transitive. Explanation =========== A group is transitive if it has a single orbit. If ``strict`` is ``False`` the group is transitive if it has a single orbit of length different from 1. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([2, 0, 1, 3]) >>> G1 = PermutationGroup([a, b]) >>> G1.is_transitive() False >>> G1.is_transitive(strict=False) True >>> c = Permutation([2, 3, 0, 1]) >>> G2 = PermutationGroup([a, c]) >>> G2.is_transitive() True >>> d = Permutation([1, 0, 2, 3]) >>> e = Permutation([0, 1, 3, 2]) >>> G3 = PermutationGroup([d, e]) >>> G3.is_transitive() or G3.is_transitive(strict=False) False """ if self._is_transitive: # strict or not, if True then True return self._is_transitive if strict: if self._is_transitive is not None: # we only store strict=True return self._is_transitive ans = len(self.orbit(0)) == self.degree self._is_transitive = ans return ans got_orb = False for x in self.orbits(): if len(x) > 1: if got_orb: return False got_orb = True return got_orb @property def is_trivial(self): """Test if the group is the trivial group. This is true if the group contains only the identity permutation. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> G = PermutationGroup([Permutation([0, 1, 2])]) >>> G.is_trivial True """ if self._is_trivial is None: self._is_trivial = len(self) == 1 and self[0].is_Identity return self._is_trivial def lower_central_series(self): r"""Return the lower central series for the group. The lower central series for a group `G` is the series `G = G_0 > G_1 > G_2 > \ldots` where `G_k = [G, G_{k-1}]`, i.e. every term after the first is equal to the commutator of `G` and the previous term in `G1` ([1], p.29). Returns ======= A list of permutation groups in the order `G = G_0, G_1, G_2, \ldots` Examples ======== >>> from sympy.combinatorics.named_groups import (AlternatingGroup, ... DihedralGroup) >>> A = AlternatingGroup(4) >>> len(A.lower_central_series()) 2 >>> A.lower_central_series()[1].is_subgroup(DihedralGroup(2)) True See Also ======== commutator, derived_series """ res = [self] current = self nxt = self.commutator(self, current) while not current.is_subgroup(nxt): res.append(nxt) current = nxt nxt = self.commutator(self, current) return res @property def max_div(self): """Maximum proper divisor of the degree of a permutation group. Explanation =========== Obviously, this is the degree divided by its minimal proper divisor (larger than ``1``, if one exists). As it is guaranteed to be prime, the ``sieve`` from ``sympy.ntheory`` is used. This function is also used as an optimization tool for the functions ``minimal_block`` and ``_union_find_merge``. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> G = PermutationGroup([Permutation([0, 2, 1, 3])]) >>> G.max_div 2 See Also ======== minimal_block, _union_find_merge """ if self._max_div is not None: return self._max_div n = self.degree if n == 1: return 1 for x in sieve: if n % x == 0: d = n//x self._max_div = d return d def minimal_block(self, points): r"""For a transitive group, finds the block system generated by ``points``. Explanation =========== If a group ``G`` acts on a set ``S``, a nonempty subset ``B`` of ``S`` is called a block under the action of ``G`` if for all ``g`` in ``G`` we have ``gB = B`` (``g`` fixes ``B``) or ``gB`` and ``B`` have no common points (``g`` moves ``B`` entirely). ([1], p.23; [6]). The distinct translates ``gB`` of a block ``B`` for ``g`` in ``G`` partition the set ``S`` and this set of translates is known as a block system. Moreover, we obviously have that all blocks in the partition have the same size, hence the block size divides ``|S|`` ([1], p.23). A ``G``-congruence is an equivalence relation ``~`` on the set ``S`` such that ``a ~ b`` implies ``g(a) ~ g(b)`` for all ``g`` in ``G``. For a transitive group, the equivalence classes of a ``G``-congruence and the blocks of a block system are the same thing ([1], p.23). The algorithm below checks the group for transitivity, and then finds the ``G``-congruence generated by the pairs ``(p_0, p_1), (p_0, p_2), ..., (p_0,p_{k-1})`` which is the same as finding the maximal block system (i.e., the one with minimum block size) such that ``p_0, ..., p_{k-1}`` are in the same block ([1], p.83). It is an implementation of Atkinson's algorithm, as suggested in [1], and manipulates an equivalence relation on the set ``S`` using a union-find data structure. The running time is just above `O(|points||S|)`. ([1], pp. 83-87; [7]). Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(10) >>> D.minimal_block([0, 5]) [0, 1, 2, 3, 4, 0, 1, 2, 3, 4] >>> D.minimal_block([0, 1]) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] See Also ======== _union_find_rep, _union_find_merge, is_transitive, is_primitive """ if not self.is_transitive(): return False n = self.degree gens = self.generators # initialize the list of equivalence class representatives parents = list(range(n)) ranks = [1]*n not_rep = [] k = len(points) # the block size must divide the degree of the group if k > self.max_div: return [0]*n for i in range(k - 1): parents[points[i + 1]] = points[0] not_rep.append(points[i + 1]) ranks[points[0]] = k i = 0 len_not_rep = k - 1 while i < len_not_rep: gamma = not_rep[i] i += 1 for gen in gens: # find has side effects: performs path compression on the list # of representatives delta = self._union_find_rep(gamma, parents) # union has side effects: performs union by rank on the list # of representatives temp = self._union_find_merge(gen(gamma), gen(delta), ranks, parents, not_rep) if temp == -1: return [0]*n len_not_rep += temp for i in range(n): # force path compression to get the final state of the equivalence # relation self._union_find_rep(i, parents) # rewrite result so that block representatives are minimal new_reps = {} return [new_reps.setdefault(r, i) for i, r in enumerate(parents)] def conjugacy_class(self, x): r"""Return the conjugacy class of an element in the group. Explanation =========== The conjugacy class of an element ``g`` in a group ``G`` is the set of elements ``x`` in ``G`` that are conjugate with ``g``, i.e. for which ``g = xax^{-1}`` for some ``a`` in ``G``. Note that conjugacy is an equivalence relation, and therefore that conjugacy classes are partitions of ``G``. For a list of all the conjugacy classes of the group, use the conjugacy_classes() method. In a permutation group, each conjugacy class corresponds to a particular `cycle structure': for example, in ``S_3``, the conjugacy classes are: * the identity class, ``{()}`` * all transpositions, ``{(1 2), (1 3), (2 3)}`` * all 3-cycles, ``{(1 2 3), (1 3 2)}`` Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S3 = SymmetricGroup(3) >>> S3.conjugacy_class(Permutation(0, 1, 2)) {(0 1 2), (0 2 1)} Notes ===== This procedure computes the conjugacy class directly by finding the orbit of the element under conjugation in G. This algorithm is only feasible for permutation groups of relatively small order, but is like the orbit() function itself in that respect. """ # Ref: "Computing the conjugacy classes of finite groups"; Butler, G. # Groups '93 Galway/St Andrews; edited by Campbell, C. M. new_class = {x} last_iteration = new_class while len(last_iteration) > 0: this_iteration = set() for y in last_iteration: for s in self.generators: conjugated = s * y * (~s) if conjugated not in new_class: this_iteration.add(conjugated) new_class.update(last_iteration) last_iteration = this_iteration return new_class def conjugacy_classes(self): r"""Return the conjugacy classes of the group. Explanation =========== As described in the documentation for the .conjugacy_class() function, conjugacy is an equivalence relation on a group G which partitions the set of elements. This method returns a list of all these conjugacy classes of G. Examples ======== >>> from sympy.combinatorics import SymmetricGroup >>> SymmetricGroup(3).conjugacy_classes() [{(2)}, {(0 1 2), (0 2 1)}, {(0 2), (1 2), (2)(0 1)}] """ identity = _af_new(list(range(self.degree))) known_elements = {identity} classes = [known_elements.copy()] for x in self.generate(): if x not in known_elements: new_class = self.conjugacy_class(x) classes.append(new_class) known_elements.update(new_class) return classes def normal_closure(self, other, k=10): r"""Return the normal closure of a subgroup/set of permutations. Explanation =========== If ``S`` is a subset of a group ``G``, the normal closure of ``A`` in ``G`` is defined as the intersection of all normal subgroups of ``G`` that contain ``A`` ([1], p.14). Alternatively, it is the group generated by the conjugates ``x^{-1}yx`` for ``x`` a generator of ``G`` and ``y`` a generator of the subgroup ``\left\langle S\right\rangle`` generated by ``S`` (for some chosen generating set for ``\left\langle S\right\rangle``) ([1], p.73). Parameters ========== other a subgroup/list of permutations/single permutation k an implementation-specific parameter that determines the number of conjugates that are adjoined to ``other`` at once Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... CyclicGroup, AlternatingGroup) >>> S = SymmetricGroup(5) >>> C = CyclicGroup(5) >>> G = S.normal_closure(C) >>> G.order() 60 >>> G.is_subgroup(AlternatingGroup(5)) True See Also ======== commutator, derived_subgroup, random_pr Notes ===== The algorithm is described in [1], pp. 73-74; it makes use of the generation of random elements for permutation groups by the product replacement algorithm. """ if hasattr(other, 'generators'): degree = self.degree identity = _af_new(list(range(degree))) if all(g == identity for g in other.generators): return other Z = PermutationGroup(other.generators[:]) base, strong_gens = Z.schreier_sims_incremental() strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_orbits, basic_transversals = \ _orbits_transversals_from_bsgs(base, strong_gens_distr) self._random_pr_init(r=10, n=20) _loop = True while _loop: Z._random_pr_init(r=10, n=10) for _ in range(k): g = self.random_pr() h = Z.random_pr() conj = h^g res = _strip(conj, base, basic_orbits, basic_transversals) if res[0] != identity or res[1] != len(base) + 1: gens = Z.generators gens.append(conj) Z = PermutationGroup(gens) strong_gens.append(conj) temp_base, temp_strong_gens = \ Z.schreier_sims_incremental(base, strong_gens) base, strong_gens = temp_base, temp_strong_gens strong_gens_distr = \ _distribute_gens_by_base(base, strong_gens) basic_orbits, basic_transversals = \ _orbits_transversals_from_bsgs(base, strong_gens_distr) _loop = False for g in self.generators: for h in Z.generators: conj = h^g res = _strip(conj, base, basic_orbits, basic_transversals) if res[0] != identity or res[1] != len(base) + 1: _loop = True break if _loop: break return Z elif hasattr(other, '__getitem__'): return self.normal_closure(PermutationGroup(other)) elif hasattr(other, 'array_form'): return self.normal_closure(PermutationGroup([other])) def orbit(self, alpha, action='tuples'): r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set. Explanation =========== The time complexity of the algorithm used here is `O(|Orb|*r)` where `|Orb|` is the size of the orbit and ``r`` is the number of generators of the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21. Here alpha can be a single point, or a list of points. If alpha is a single point, the ordinary orbit is computed. if alpha is a list of points, there are three available options: 'union' - computes the union of the orbits of the points in the list 'tuples' - computes the orbit of the list interpreted as an ordered tuple under the group action ( i.e., g((1,2,3)) = (g(1), g(2), g(3)) ) 'sets' - computes the orbit of the list interpreted as a sets Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 2, 0, 4, 5, 6, 3]) >>> G = PermutationGroup([a]) >>> G.orbit(0) {0, 1, 2} >>> G.orbit([0, 4], 'union') {0, 1, 2, 3, 4, 5, 6} See Also ======== orbit_transversal """ return _orbit(self.degree, self.generators, alpha, action) def orbit_rep(self, alpha, beta, schreier_vector=None): """Return a group element which sends ``alpha`` to ``beta``. Explanation =========== If ``beta`` is not in the orbit of ``alpha``, the function returns ``False``. This implementation makes use of the schreier vector. For a proof of correctness, see [1], p.80 Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> G = AlternatingGroup(5) >>> G.orbit_rep(0, 4) (0 4 1 2 3) See Also ======== schreier_vector """ if schreier_vector is None: schreier_vector = self.schreier_vector(alpha) if schreier_vector[beta] is None: return False k = schreier_vector[beta] gens = [x._array_form for x in self.generators] a = [] while k != -1: a.append(gens[k]) beta = gens[k].index(beta) # beta = (~gens[k])(beta) k = schreier_vector[beta] if a: return _af_new(_af_rmuln(*a)) else: return _af_new(list(range(self._degree))) def orbit_transversal(self, alpha, pairs=False): r"""Computes a transversal for the orbit of ``alpha`` as a set. Explanation =========== For a permutation group `G`, a transversal for the orbit `Orb = \{g(\alpha) | g \in G\}` is a set `\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`. Note that there may be more than one possible transversal. If ``pairs`` is set to ``True``, it returns the list of pairs `(\beta, g_\beta)`. For a proof of correctness, see [1], p.79 Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> G = DihedralGroup(6) >>> G.orbit_transversal(0) [(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)] See Also ======== orbit """ return _orbit_transversal(self._degree, self.generators, alpha, pairs) def orbits(self, rep=False): """Return the orbits of ``self``, ordered according to lowest element in each orbit. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(1, 5)(2, 3)(4, 0, 6) >>> b = Permutation(1, 5)(3, 4)(2, 6, 0) >>> G = PermutationGroup([a, b]) >>> G.orbits() [{0, 2, 3, 4, 6}, {1, 5}] """ return _orbits(self._degree, self._generators) def order(self): """Return the order of the group: the number of permutations that can be generated from elements of the group. The number of permutations comprising the group is given by ``len(group)``; the length of each permutation in the group is given by ``group.size``. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 0, 2]) >>> G = PermutationGroup([a]) >>> G.degree 3 >>> len(G) 1 >>> G.order() 2 >>> list(G.generate()) [(2), (2)(0 1)] >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.order() 6 See Also ======== degree """ if self._order is not None: return self._order if self._is_sym: n = self._degree self._order = factorial(n) return self._order if self._is_alt: n = self._degree self._order = factorial(n)/2 return self._order basic_transversals = self.basic_transversals m = 1 for x in basic_transversals: m *= len(x) self._order = m return m def index(self, H): """ Returns the index of a permutation group. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(1,2,3) >>> b =Permutation(3) >>> G = PermutationGroup([a]) >>> H = PermutationGroup([b]) >>> G.index(H) 3 """ if H.is_subgroup(self): return self.order()//H.order() @property def is_symmetric(self): """Return ``True`` if the group is symmetric. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> g = SymmetricGroup(5) >>> g.is_symmetric True >>> from sympy.combinatorics import Permutation, PermutationGroup >>> g = PermutationGroup( ... Permutation(0, 1, 2, 3, 4), ... Permutation(2, 3)) >>> g.is_symmetric True Notes ===== This uses a naive test involving the computation of the full group order. If you need more quicker taxonomy for large groups, you can use :meth:`PermutationGroup.is_alt_sym`. However, :meth:`PermutationGroup.is_alt_sym` may not be accurate and is not able to distinguish between an alternating group and a symmetric group. See Also ======== is_alt_sym """ _is_sym = self._is_sym if _is_sym is not None: return _is_sym n = self.degree if n >= 8: if self.is_transitive(): _is_alt_sym = self._eval_is_alt_sym_monte_carlo() if _is_alt_sym: if any(g.is_odd for g in self.generators): self._is_sym, self._is_alt = True, False return True self._is_sym, self._is_alt = False, True return False return self._eval_is_alt_sym_naive(only_sym=True) self._is_sym, self._is_alt = False, False return False return self._eval_is_alt_sym_naive(only_sym=True) @property def is_alternating(self): """Return ``True`` if the group is alternating. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> g = AlternatingGroup(5) >>> g.is_alternating True >>> from sympy.combinatorics import Permutation, PermutationGroup >>> g = PermutationGroup( ... Permutation(0, 1, 2, 3, 4), ... Permutation(2, 3, 4)) >>> g.is_alternating True Notes ===== This uses a naive test involving the computation of the full group order. If you need more quicker taxonomy for large groups, you can use :meth:`PermutationGroup.is_alt_sym`. However, :meth:`PermutationGroup.is_alt_sym` may not be accurate and is not able to distinguish between an alternating group and a symmetric group. See Also ======== is_alt_sym """ _is_alt = self._is_alt if _is_alt is not None: return _is_alt n = self.degree if n >= 8: if self.is_transitive(): _is_alt_sym = self._eval_is_alt_sym_monte_carlo() if _is_alt_sym: if all(g.is_even for g in self.generators): self._is_sym, self._is_alt = False, True return True self._is_sym, self._is_alt = True, False return False return self._eval_is_alt_sym_naive(only_alt=True) self._is_sym, self._is_alt = False, False return False return self._eval_is_alt_sym_naive(only_alt=True) @classmethod def _distinct_primes_lemma(cls, primes): """Subroutine to test if there is only one cyclic group for the order.""" primes = sorted(primes) l = len(primes) for i in range(l): for j in range(i+1, l): if primes[j] % primes[i] == 1: return None return True @property def is_cyclic(self): r""" Return ``True`` if the group is Cyclic. Examples ======== >>> from sympy.combinatorics.named_groups import AbelianGroup >>> G = AbelianGroup(3, 4) >>> G.is_cyclic True >>> G = AbelianGroup(4, 4) >>> G.is_cyclic False Notes ===== If the order of a group $n$ can be factored into the distinct primes $p_1, p_2, \dots , p_s$ and if .. math:: \forall i, j \in \{1, 2, \dots, s \}: p_i \not \equiv 1 \pmod {p_j} holds true, there is only one group of the order $n$ which is a cyclic group. [1]_ This is a generalization of the lemma that the group of order $15, 35, ...$ are cyclic. And also, these additional lemmas can be used to test if a group is cyclic if the order of the group is already found. - If the group is abelian and the order of the group is square-free, the group is cyclic. - If the order of the group is less than $6$ and is not $4$, the group is cyclic. - If the order of the group is prime, the group is cyclic. References ========== .. [1] 1978: John S. Rose: A Course on Group Theory, Introduction to Finite Group Theory: 1.4 """ if self._is_cyclic is not None: return self._is_cyclic if len(self.generators) == 1: self._is_cyclic = True self._is_abelian = True return True if self._is_abelian is False: self._is_cyclic = False return False order = self.order() if order < 6: self._is_abelian = True if order != 4: self._is_cyclic = True return True factors = factorint(order) if all(v == 1 for v in factors.values()): if self._is_abelian: self._is_cyclic = True return True primes = list(factors.keys()) if PermutationGroup._distinct_primes_lemma(primes) is True: self._is_cyclic = True self._is_abelian = True return True for p in factors: pgens = [] for g in self.generators: pgens.append(g**p) if self.index(self.subgroup(pgens)) != p: self._is_cyclic = False return False self._is_cyclic = True self._is_abelian = True return True def pointwise_stabilizer(self, points, incremental=True): r"""Return the pointwise stabilizer for a set of points. Explanation =========== For a permutation group `G` and a set of points `\{p_1, p_2,\ldots, p_k\}`, the pointwise stabilizer of `p_1, p_2, \ldots, p_k` is defined as `G_{p_1,\ldots, p_k} = \{g\in G | g(p_i) = p_i \forall i\in\{1, 2,\ldots,k\}\}` ([1],p20). It is a subgroup of `G`. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(7) >>> Stab = S.pointwise_stabilizer([2, 3, 5]) >>> Stab.is_subgroup(S.stabilizer(2).stabilizer(3).stabilizer(5)) True See Also ======== stabilizer, schreier_sims_incremental Notes ===== When incremental == True, rather than the obvious implementation using successive calls to ``.stabilizer()``, this uses the incremental Schreier-Sims algorithm to obtain a base with starting segment - the given points. """ if incremental: base, strong_gens = self.schreier_sims_incremental(base=points) stab_gens = [] degree = self.degree for gen in strong_gens: if [gen(point) for point in points] == points: stab_gens.append(gen) if not stab_gens: stab_gens = _af_new(list(range(degree))) return PermutationGroup(stab_gens) else: gens = self._generators degree = self.degree for x in points: gens = _stabilizer(degree, gens, x) return PermutationGroup(gens) def make_perm(self, n, seed=None): """ Multiply ``n`` randomly selected permutations from pgroup together, starting with the identity permutation. If ``n`` is a list of integers, those integers will be used to select the permutations and they will be applied in L to R order: make_perm((A, B, C)) will give CBA(I) where I is the identity permutation. ``seed`` is used to set the seed for the random selection of permutations from pgroup. If this is a list of integers, the corresponding permutations from pgroup will be selected in the order give. This is mainly used for testing purposes. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a, b = [Permutation([1, 0, 3, 2]), Permutation([1, 3, 0, 2])] >>> G = PermutationGroup([a, b]) >>> G.make_perm(1, [0]) (0 1)(2 3) >>> G.make_perm(3, [0, 1, 0]) (0 2 3 1) >>> G.make_perm([0, 1, 0]) (0 2 3 1) See Also ======== random """ if is_sequence(n): if seed is not None: raise ValueError('If n is a sequence, seed should be None') n, seed = len(n), n else: try: n = int(n) except TypeError: raise ValueError('n must be an integer or a sequence.') randomrange = _randrange(seed) # start with the identity permutation result = Permutation(list(range(self.degree))) m = len(self) for _ in range(n): p = self[randomrange(m)] result = rmul(result, p) return result def random(self, af=False): """Return a random group element """ rank = randrange(self.order()) return self.coset_unrank(rank, af) def random_pr(self, gen_count=11, iterations=50, _random_prec=None): """Return a random group element using product replacement. Explanation =========== For the details of the product replacement algorithm, see ``_random_pr_init`` In ``random_pr`` the actual 'product replacement' is performed. Notice that if the attribute ``_random_gens`` is empty, it needs to be initialized by ``_random_pr_init``. See Also ======== _random_pr_init """ if self._random_gens == []: self._random_pr_init(gen_count, iterations) random_gens = self._random_gens r = len(random_gens) - 1 # handle randomized input for testing purposes if _random_prec is None: s = randrange(r) t = randrange(r - 1) if t == s: t = r - 1 x = choice([1, 2]) e = choice([-1, 1]) else: s = _random_prec['s'] t = _random_prec['t'] if t == s: t = r - 1 x = _random_prec['x'] e = _random_prec['e'] if x == 1: random_gens[s] = _af_rmul(random_gens[s], _af_pow(random_gens[t], e)) random_gens[r] = _af_rmul(random_gens[r], random_gens[s]) else: random_gens[s] = _af_rmul(_af_pow(random_gens[t], e), random_gens[s]) random_gens[r] = _af_rmul(random_gens[s], random_gens[r]) return _af_new(random_gens[r]) def random_stab(self, alpha, schreier_vector=None, _random_prec=None): """Random element from the stabilizer of ``alpha``. The schreier vector for ``alpha`` is an optional argument used for speeding up repeated calls. The algorithm is described in [1], p.81 See Also ======== random_pr, orbit_rep """ if schreier_vector is None: schreier_vector = self.schreier_vector(alpha) if _random_prec is None: rand = self.random_pr() else: rand = _random_prec['rand'] beta = rand(alpha) h = self.orbit_rep(alpha, beta, schreier_vector) return rmul(~h, rand) def schreier_sims(self): """Schreier-Sims algorithm. Explanation =========== It computes the generators of the chain of stabilizers `G > G_{b_1} > .. > G_{b1,..,b_r} > 1` in which `G_{b_1,..,b_i}` stabilizes `b_1,..,b_i`, and the corresponding ``s`` cosets. An element of the group can be written as the product `h_1*..*h_s`. We use the incremental Schreier-Sims algorithm. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.schreier_sims() >>> G.basic_transversals [{0: (2)(0 1), 1: (2), 2: (1 2)}, {0: (2), 2: (0 2)}] """ if self._transversals: return self._schreier_sims() return def _schreier_sims(self, base=None): schreier = self.schreier_sims_incremental(base=base, slp_dict=True) base, strong_gens = schreier[:2] self._base = base self._strong_gens = strong_gens self._strong_gens_slp = schreier[2] if not base: self._transversals = [] self._basic_orbits = [] return strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_orbits, transversals, slps = _orbits_transversals_from_bsgs(base,\ strong_gens_distr, slp=True) # rewrite the indices stored in slps in terms of strong_gens for i, slp in enumerate(slps): gens = strong_gens_distr[i] for k in slp: slp[k] = [strong_gens.index(gens[s]) for s in slp[k]] self._transversals = transversals self._basic_orbits = [sorted(x) for x in basic_orbits] self._transversal_slp = slps def schreier_sims_incremental(self, base=None, gens=None, slp_dict=False): """Extend a sequence of points and generating set to a base and strong generating set. Parameters ========== base The sequence of points to be extended to a base. Optional parameter with default value ``[]``. gens The generating set to be extended to a strong generating set relative to the base obtained. Optional parameter with default value ``self.generators``. slp_dict If `True`, return a dictionary `{g: gens}` for each strong generator `g` where `gens` is a list of strong generators coming before `g` in `strong_gens`, such that the product of the elements of `gens` is equal to `g`. Returns ======= (base, strong_gens) ``base`` is the base obtained, and ``strong_gens`` is the strong generating set relative to it. The original parameters ``base``, ``gens`` remain unchanged. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> from sympy.combinatorics.testutil import _verify_bsgs >>> A = AlternatingGroup(7) >>> base = [2, 3] >>> seq = [2, 3] >>> base, strong_gens = A.schreier_sims_incremental(base=seq) >>> _verify_bsgs(A, base, strong_gens) True >>> base[:2] [2, 3] Notes ===== This version of the Schreier-Sims algorithm runs in polynomial time. There are certain assumptions in the implementation - if the trivial group is provided, ``base`` and ``gens`` are returned immediately, as any sequence of points is a base for the trivial group. If the identity is present in the generators ``gens``, it is removed as it is a redundant generator. The implementation is described in [1], pp. 90-93. See Also ======== schreier_sims, schreier_sims_random """ if base is None: base = [] if gens is None: gens = self.generators[:] degree = self.degree id_af = list(range(degree)) # handle the trivial group if len(gens) == 1 and gens[0].is_Identity: if slp_dict: return base, gens, {gens[0]: [gens[0]]} return base, gens # prevent side effects _base, _gens = base[:], gens[:] # remove the identity as a generator _gens = [x for x in _gens if not x.is_Identity] # make sure no generator fixes all base points for gen in _gens: if all(x == gen._array_form[x] for x in _base): for new in id_af: if gen._array_form[new] != new: break else: assert None # can this ever happen? _base.append(new) # distribute generators according to basic stabilizers strong_gens_distr = _distribute_gens_by_base(_base, _gens) strong_gens_slp = [] # initialize the basic stabilizers, basic orbits and basic transversals orbs = {} transversals = {} slps = {} base_len = len(_base) for i in range(base_len): transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i], _base[i], pairs=True, af=True, slp=True) transversals[i] = dict(transversals[i]) orbs[i] = list(transversals[i].keys()) # main loop: amend the stabilizer chain until we have generators # for all stabilizers i = base_len - 1 while i >= 0: # this flag is used to continue with the main loop from inside # a nested loop continue_i = False # test the generators for being a strong generating set db = {} for beta, u_beta in list(transversals[i].items()): for j, gen in enumerate(strong_gens_distr[i]): gb = gen._array_form[beta] u1 = transversals[i][gb] g1 = _af_rmul(gen._array_form, u_beta) slp = [(i, g) for g in slps[i][beta]] slp = [(i, j)] + slp if g1 != u1: # test if the schreier generator is in the i+1-th # would-be basic stabilizer y = True try: u1_inv = db[gb] except KeyError: u1_inv = db[gb] = _af_invert(u1) schreier_gen = _af_rmul(u1_inv, g1) u1_inv_slp = slps[i][gb][:] u1_inv_slp.reverse() u1_inv_slp = [(i, (g,)) for g in u1_inv_slp] slp = u1_inv_slp + slp h, j, slp = _strip_af(schreier_gen, _base, orbs, transversals, i, slp=slp, slps=slps) if j <= base_len: # new strong generator h at level j y = False elif h: # h fixes all base points y = False moved = 0 while h[moved] == moved: moved += 1 _base.append(moved) base_len += 1 strong_gens_distr.append([]) if y is False: # if a new strong generator is found, update the # data structures and start over h = _af_new(h) strong_gens_slp.append((h, slp)) for l in range(i + 1, j): strong_gens_distr[l].append(h) transversals[l], slps[l] =\ _orbit_transversal(degree, strong_gens_distr[l], _base[l], pairs=True, af=True, slp=True) transversals[l] = dict(transversals[l]) orbs[l] = list(transversals[l].keys()) i = j - 1 # continue main loop using the flag continue_i = True if continue_i is True: break if continue_i is True: break if continue_i is True: continue i -= 1 strong_gens = _gens[:] if slp_dict: # create the list of the strong generators strong_gens and # rewrite the indices of strong_gens_slp in terms of the # elements of strong_gens for k, slp in strong_gens_slp: strong_gens.append(k) for i in range(len(slp)): s = slp[i] if isinstance(s[1], tuple): slp[i] = strong_gens_distr[s[0]][s[1][0]]**-1 else: slp[i] = strong_gens_distr[s[0]][s[1]] strong_gens_slp = dict(strong_gens_slp) # add the original generators for g in _gens: strong_gens_slp[g] = [g] return (_base, strong_gens, strong_gens_slp) strong_gens.extend([k for k, _ in strong_gens_slp]) return _base, strong_gens def schreier_sims_random(self, base=None, gens=None, consec_succ=10, _random_prec=None): r"""Randomized Schreier-Sims algorithm. Explanation =========== The randomized Schreier-Sims algorithm takes the sequence ``base`` and the generating set ``gens``, and extends ``base`` to a base, and ``gens`` to a strong generating set relative to that base with probability of a wrong answer at most `2^{-consec\_succ}`, provided the random generators are sufficiently random. Parameters ========== base The sequence to be extended to a base. gens The generating set to be extended to a strong generating set. consec_succ The parameter defining the probability of a wrong answer. _random_prec An internal parameter used for testing purposes. Returns ======= (base, strong_gens) ``base`` is the base and ``strong_gens`` is the strong generating set relative to it. Examples ======== >>> from sympy.combinatorics.testutil import _verify_bsgs >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(5) >>> base, strong_gens = S.schreier_sims_random(consec_succ=5) >>> _verify_bsgs(S, base, strong_gens) #doctest: +SKIP True Notes ===== The algorithm is described in detail in [1], pp. 97-98. It extends the orbits ``orbs`` and the permutation groups ``stabs`` to basic orbits and basic stabilizers for the base and strong generating set produced in the end. The idea of the extension process is to "sift" random group elements through the stabilizer chain and amend the stabilizers/orbits along the way when a sift is not successful. The helper function ``_strip`` is used to attempt to decompose a random group element according to the current state of the stabilizer chain and report whether the element was fully decomposed (successful sift) or not (unsuccessful sift). In the latter case, the level at which the sift failed is reported and used to amend ``stabs``, ``base``, ``gens`` and ``orbs`` accordingly. The halting condition is for ``consec_succ`` consecutive successful sifts to pass. This makes sure that the current ``base`` and ``gens`` form a BSGS with probability at least `1 - 1/\text{consec\_succ}`. See Also ======== schreier_sims """ if base is None: base = [] if gens is None: gens = self.generators base_len = len(base) n = self.degree # make sure no generator fixes all base points for gen in gens: if all(gen(x) == x for x in base): new = 0 while gen._array_form[new] == new: new += 1 base.append(new) base_len += 1 # distribute generators according to basic stabilizers strong_gens_distr = _distribute_gens_by_base(base, gens) # initialize the basic stabilizers, basic transversals and basic orbits transversals = {} orbs = {} for i in range(base_len): transversals[i] = dict(_orbit_transversal(n, strong_gens_distr[i], base[i], pairs=True)) orbs[i] = list(transversals[i].keys()) # initialize the number of consecutive elements sifted c = 0 # start sifting random elements while the number of consecutive sifts # is less than consec_succ while c < consec_succ: if _random_prec is None: g = self.random_pr() else: g = _random_prec['g'].pop() h, j = _strip(g, base, orbs, transversals) y = True # determine whether a new base point is needed if j <= base_len: y = False elif not h.is_Identity: y = False moved = 0 while h(moved) == moved: moved += 1 base.append(moved) base_len += 1 strong_gens_distr.append([]) # if the element doesn't sift, amend the strong generators and # associated stabilizers and orbits if y is False: for l in range(1, j): strong_gens_distr[l].append(h) transversals[l] = dict(_orbit_transversal(n, strong_gens_distr[l], base[l], pairs=True)) orbs[l] = list(transversals[l].keys()) c = 0 else: c += 1 # build the strong generating set strong_gens = strong_gens_distr[0][:] for gen in strong_gens_distr[1]: if gen not in strong_gens: strong_gens.append(gen) return base, strong_gens def schreier_vector(self, alpha): """Computes the schreier vector for ``alpha``. Explanation =========== The Schreier vector efficiently stores information about the orbit of ``alpha``. It can later be used to quickly obtain elements of the group that send ``alpha`` to a particular element in the orbit. Notice that the Schreier vector depends on the order in which the group generators are listed. For a definition, see [3]. Since list indices start from zero, we adopt the convention to use "None" instead of 0 to signify that an element doesn't belong to the orbit. For the algorithm and its correctness, see [2], pp.78-80. Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.permutations import Permutation >>> a = Permutation([2, 4, 6, 3, 1, 5, 0]) >>> b = Permutation([0, 1, 3, 5, 4, 6, 2]) >>> G = PermutationGroup([a, b]) >>> G.schreier_vector(0) [-1, None, 0, 1, None, 1, 0] See Also ======== orbit """ n = self.degree v = [None]*n v[alpha] = -1 orb = [alpha] used = [False]*n used[alpha] = True gens = self.generators r = len(gens) for b in orb: for i in range(r): temp = gens[i]._array_form[b] if used[temp] is False: orb.append(temp) used[temp] = True v[temp] = i return v def stabilizer(self, alpha): r"""Return the stabilizer subgroup of ``alpha``. Explanation =========== The stabilizer of `\alpha` is the group `G_\alpha = \{g \in G | g(\alpha) = \alpha\}`. For a proof of correctness, see [1], p.79. Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> G = DihedralGroup(6) >>> G.stabilizer(5) PermutationGroup([ (5)(0 4)(1 3)]) See Also ======== orbit """ return PermGroup(_stabilizer(self._degree, self._generators, alpha)) @property def strong_gens(self): r"""Return a strong generating set from the Schreier-Sims algorithm. Explanation =========== A generating set `S = \{g_1, g_2, \dots, g_t\}` for a permutation group `G` is a strong generating set relative to the sequence of points (referred to as a "base") `(b_1, b_2, \dots, b_k)` if, for `1 \leq i \leq k` we have that the intersection of the pointwise stabilizer `G^{(i+1)} := G_{b_1, b_2, \dots, b_i}` with `S` generates the pointwise stabilizer `G^{(i+1)}`. The concepts of a base and strong generating set and their applications are discussed in depth in [1], pp. 87-89 and [2], pp. 55-57. Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(4) >>> D.strong_gens [(0 1 2 3), (0 3)(1 2), (1 3)] >>> D.base [0, 1] See Also ======== base, basic_transversals, basic_orbits, basic_stabilizers """ if self._strong_gens == []: self.schreier_sims() return self._strong_gens def subgroup(self, gens): """ Return the subgroup generated by `gens` which is a list of elements of the group """ if not all(g in self for g in gens): raise ValueError("The group doesn't contain the supplied generators") G = PermutationGroup(gens) return G def subgroup_search(self, prop, base=None, strong_gens=None, tests=None, init_subgroup=None): """Find the subgroup of all elements satisfying the property ``prop``. Explanation =========== This is done by a depth-first search with respect to base images that uses several tests to prune the search tree. Parameters ========== prop The property to be used. Has to be callable on group elements and always return ``True`` or ``False``. It is assumed that all group elements satisfying ``prop`` indeed form a subgroup. base A base for the supergroup. strong_gens A strong generating set for the supergroup. tests A list of callables of length equal to the length of ``base``. These are used to rule out group elements by partial base images, so that ``tests[l](g)`` returns False if the element ``g`` is known not to satisfy prop base on where g sends the first ``l + 1`` base points. init_subgroup if a subgroup of the sought group is known in advance, it can be passed to the function as this parameter. Returns ======= res The subgroup of all elements satisfying ``prop``. The generating set for this group is guaranteed to be a strong generating set relative to the base ``base``. Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... AlternatingGroup) >>> from sympy.combinatorics.testutil import _verify_bsgs >>> S = SymmetricGroup(7) >>> prop_even = lambda x: x.is_even >>> base, strong_gens = S.schreier_sims_incremental() >>> G = S.subgroup_search(prop_even, base=base, strong_gens=strong_gens) >>> G.is_subgroup(AlternatingGroup(7)) True >>> _verify_bsgs(G, base, G.generators) True Notes ===== This function is extremely lengthy and complicated and will require some careful attention. The implementation is described in [1], pp. 114-117, and the comments for the code here follow the lines of the pseudocode in the book for clarity. The complexity is exponential in general, since the search process by itself visits all members of the supergroup. However, there are a lot of tests which are used to prune the search tree, and users can define their own tests via the ``tests`` parameter, so in practice, and for some computations, it's not terrible. A crucial part in the procedure is the frequent base change performed (this is line 11 in the pseudocode) in order to obtain a new basic stabilizer. The book mentiones that this can be done by using ``.baseswap(...)``, however the current implementation uses a more straightforward way to find the next basic stabilizer - calling the function ``.stabilizer(...)`` on the previous basic stabilizer. """ # initialize BSGS and basic group properties def get_reps(orbits): # get the minimal element in the base ordering return [min(orbit, key = lambda x: base_ordering[x]) \ for orbit in orbits] def update_nu(l): temp_index = len(basic_orbits[l]) + 1 -\ len(res_basic_orbits_init_base[l]) # this corresponds to the element larger than all points if temp_index >= len(sorted_orbits[l]): nu[l] = base_ordering[degree] else: nu[l] = sorted_orbits[l][temp_index] if base is None: base, strong_gens = self.schreier_sims_incremental() base_len = len(base) degree = self.degree identity = _af_new(list(range(degree))) base_ordering = _base_ordering(base, degree) # add an element larger than all points base_ordering.append(degree) # add an element smaller than all points base_ordering.append(-1) # compute BSGS-related structures strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_orbits, transversals = _orbits_transversals_from_bsgs(base, strong_gens_distr) # handle subgroup initialization and tests if init_subgroup is None: init_subgroup = PermutationGroup([identity]) if tests is None: trivial_test = lambda x: True tests = [] for i in range(base_len): tests.append(trivial_test) # line 1: more initializations. res = init_subgroup f = base_len - 1 l = base_len - 1 # line 2: set the base for K to the base for G res_base = base[:] # line 3: compute BSGS and related structures for K res_base, res_strong_gens = res.schreier_sims_incremental( base=res_base) res_strong_gens_distr = _distribute_gens_by_base(res_base, res_strong_gens) res_generators = res.generators res_basic_orbits_init_base = \ [_orbit(degree, res_strong_gens_distr[i], res_base[i])\ for i in range(base_len)] # initialize orbit representatives orbit_reps = [None]*base_len # line 4: orbit representatives for f-th basic stabilizer of K orbits = _orbits(degree, res_strong_gens_distr[f]) orbit_reps[f] = get_reps(orbits) # line 5: remove the base point from the representatives to avoid # getting the identity element as a generator for K orbit_reps[f].remove(base[f]) # line 6: more initializations c = [0]*base_len u = [identity]*base_len sorted_orbits = [None]*base_len for i in range(base_len): sorted_orbits[i] = basic_orbits[i][:] sorted_orbits[i].sort(key=lambda point: base_ordering[point]) # line 7: initializations mu = [None]*base_len nu = [None]*base_len # this corresponds to the element smaller than all points mu[l] = degree + 1 update_nu(l) # initialize computed words computed_words = [identity]*base_len # line 8: main loop while True: # apply all the tests while l < base_len - 1 and \ computed_words[l](base[l]) in orbit_reps[l] and \ base_ordering[mu[l]] < \ base_ordering[computed_words[l](base[l])] < \ base_ordering[nu[l]] and \ tests[l](computed_words): # line 11: change the (partial) base of K new_point = computed_words[l](base[l]) res_base[l] = new_point new_stab_gens = _stabilizer(degree, res_strong_gens_distr[l], new_point) res_strong_gens_distr[l + 1] = new_stab_gens # line 12: calculate minimal orbit representatives for the # l+1-th basic stabilizer orbits = _orbits(degree, new_stab_gens) orbit_reps[l + 1] = get_reps(orbits) # line 13: amend sorted orbits l += 1 temp_orbit = [computed_words[l - 1](point) for point in basic_orbits[l]] temp_orbit.sort(key=lambda point: base_ordering[point]) sorted_orbits[l] = temp_orbit # lines 14 and 15: update variables used minimality tests new_mu = degree + 1 for i in range(l): if base[l] in res_basic_orbits_init_base[i]: candidate = computed_words[i](base[i]) if base_ordering[candidate] > base_ordering[new_mu]: new_mu = candidate mu[l] = new_mu update_nu(l) # line 16: determine the new transversal element c[l] = 0 temp_point = sorted_orbits[l][c[l]] gamma = computed_words[l - 1]._array_form.index(temp_point) u[l] = transversals[l][gamma] # update computed words computed_words[l] = rmul(computed_words[l - 1], u[l]) # lines 17 & 18: apply the tests to the group element found g = computed_words[l] temp_point = g(base[l]) if l == base_len - 1 and \ base_ordering[mu[l]] < \ base_ordering[temp_point] < base_ordering[nu[l]] and \ temp_point in orbit_reps[l] and \ tests[l](computed_words) and \ prop(g): # line 19: reset the base of K res_generators.append(g) res_base = base[:] # line 20: recalculate basic orbits (and transversals) res_strong_gens.append(g) res_strong_gens_distr = _distribute_gens_by_base(res_base, res_strong_gens) res_basic_orbits_init_base = \ [_orbit(degree, res_strong_gens_distr[i], res_base[i]) \ for i in range(base_len)] # line 21: recalculate orbit representatives # line 22: reset the search depth orbit_reps[f] = get_reps(orbits) l = f # line 23: go up the tree until in the first branch not fully # searched while l >= 0 and c[l] == len(basic_orbits[l]) - 1: l = l - 1 # line 24: if the entire tree is traversed, return K if l == -1: return PermutationGroup(res_generators) # lines 25-27: update orbit representatives if l < f: # line 26 f = l c[l] = 0 # line 27 temp_orbits = _orbits(degree, res_strong_gens_distr[f]) orbit_reps[f] = get_reps(temp_orbits) # line 28: update variables used for minimality testing mu[l] = degree + 1 temp_index = len(basic_orbits[l]) + 1 - \ len(res_basic_orbits_init_base[l]) if temp_index >= len(sorted_orbits[l]): nu[l] = base_ordering[degree] else: nu[l] = sorted_orbits[l][temp_index] # line 29: set the next element from the current branch and update # accordingly c[l] += 1 if l == 0: gamma = sorted_orbits[l][c[l]] else: gamma = computed_words[l - 1]._array_form.index(sorted_orbits[l][c[l]]) u[l] = transversals[l][gamma] if l == 0: computed_words[l] = u[l] else: computed_words[l] = rmul(computed_words[l - 1], u[l]) @property def transitivity_degree(self): r"""Compute the degree of transitivity of the group. Explanation =========== A permutation group `G` acting on `\Omega = \{0, 1, \dots, n-1\}` is ``k``-fold transitive, if, for any `k` points `(a_1, a_2, \dots, a_k) \in \Omega` and any `k` points `(b_1, b_2, \dots, b_k) \in \Omega` there exists `g \in G` such that `g(a_1) = b_1, g(a_2) = b_2, \dots, g(a_k) = b_k` The degree of transitivity of `G` is the maximum ``k`` such that `G` is ``k``-fold transitive. ([8]) Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.permutations import Permutation >>> a = Permutation([1, 2, 0]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.transitivity_degree 3 See Also ======== is_transitive, orbit """ if self._transitivity_degree is None: n = self.degree G = self # if G is k-transitive, a tuple (a_0,..,a_k) # can be brought to (b_0,...,b_(k-1), b_k) # where b_0,...,b_(k-1) are fixed points; # consider the group G_k which stabilizes b_0,...,b_(k-1) # if G_k is transitive on the subset excluding b_0,...,b_(k-1) # then G is (k+1)-transitive for i in range(n): orb = G.orbit(i) if len(orb) != n - i: self._transitivity_degree = i return i G = G.stabilizer(i) self._transitivity_degree = n return n else: return self._transitivity_degree def _p_elements_group(self, p): ''' For an abelian p-group, return the subgroup consisting of all elements of order p (and the identity) ''' gens = self.generators[:] gens = sorted(gens, key=lambda x: x.order(), reverse=True) gens_p = [g**(g.order()/p) for g in gens] gens_r = [] for i in range(len(gens)): x = gens[i] x_order = x.order() # x_p has order p x_p = x**(x_order/p) if i > 0: P = PermutationGroup(gens_p[:i]) else: P = PermutationGroup(self.identity) if x**(x_order/p) not in P: gens_r.append(x**(x_order/p)) else: # replace x by an element of order (x.order()/p) # so that gens still generates G g = P.generator_product(x_p, original=True) for s in g: x = x*s**-1 x_order = x_order/p # insert x to gens so that the sorting is preserved del gens[i] del gens_p[i] j = i - 1 while j < len(gens) and gens[j].order() >= x_order: j += 1 gens = gens[:j] + [x] + gens[j:] gens_p = gens_p[:j] + [x] + gens_p[j:] return PermutationGroup(gens_r) def _sylow_alt_sym(self, p): ''' Return a p-Sylow subgroup of a symmetric or an alternating group. Explanation =========== The algorithm for this is hinted at in [1], Chapter 4, Exercise 4. For Sym(n) with n = p^i, the idea is as follows. Partition the interval [0..n-1] into p equal parts, each of length p^(i-1): [0..p^(i-1)-1], [p^(i-1)..2*p^(i-1)-1]...[(p-1)*p^(i-1)..p^i-1]. Find a p-Sylow subgroup of Sym(p^(i-1)) (treated as a subgroup of ``self``) acting on each of the parts. Call the subgroups P_1, P_2...P_p. The generators for the subgroups P_2...P_p can be obtained from those of P_1 by applying a "shifting" permutation to them, that is, a permutation mapping [0..p^(i-1)-1] to the second part (the other parts are obtained by using the shift multiple times). The union of this permutation and the generators of P_1 is a p-Sylow subgroup of ``self``. For n not equal to a power of p, partition [0..n-1] in accordance with how n would be written in base p. E.g. for p=2 and n=11, 11 = 2^3 + 2^2 + 1 so the partition is [[0..7], [8..9], {10}]. To generate a p-Sylow subgroup, take the union of the generators for each of the parts. For the above example, {(0 1), (0 2)(1 3), (0 4), (1 5)(2 7)} from the first part, {(8 9)} from the second part and nothing from the third. This gives 4 generators in total, and the subgroup they generate is p-Sylow. Alternating groups are treated the same except when p=2. In this case, (0 1)(s s+1) should be added for an appropriate s (the start of a part) for each part in the partitions. See Also ======== sylow_subgroup, is_alt_sym ''' n = self.degree gens = [] identity = Permutation(n-1) # the case of 2-sylow subgroups of alternating groups # needs special treatment alt = p == 2 and all(g.is_even for g in self.generators) # find the presentation of n in base p coeffs = [] m = n while m > 0: coeffs.append(m % p) m = m // p power = len(coeffs)-1 # for a symmetric group, gens[:i] is the generating # set for a p-Sylow subgroup on [0..p**(i-1)-1]. For # alternating groups, the same is given by gens[:2*(i-1)] for i in range(1, power+1): if i == 1 and alt: # (0 1) shouldn't be added for alternating groups continue gen = Permutation([(j + p**(i-1)) % p**i for j in range(p**i)]) gens.append(identity*gen) if alt: gen = Permutation(0, 1)*gen*Permutation(0, 1)*gen gens.append(gen) # the first point in the current part (see the algorithm # description in the docstring) start = 0 while power > 0: a = coeffs[power] # make the permutation shifting the start of the first # part ([0..p^i-1] for some i) to the current one for _ in range(a): shift = Permutation() if start > 0: for i in range(p**power): shift = shift(i, start + i) if alt: gen = Permutation(0, 1)*shift*Permutation(0, 1)*shift gens.append(gen) j = 2*(power - 1) else: j = power for i, gen in enumerate(gens[:j]): if alt and i % 2 == 1: continue # shift the generator to the start of the # partition part gen = shift*gen*shift gens.append(gen) start += p**power power = power-1 return gens def sylow_subgroup(self, p): ''' Return a p-Sylow subgroup of the group. The algorithm is described in [1], Chapter 4, Section 7 Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> D = DihedralGroup(6) >>> S = D.sylow_subgroup(2) >>> S.order() 4 >>> G = SymmetricGroup(6) >>> S = G.sylow_subgroup(5) >>> S.order() 5 >>> G1 = AlternatingGroup(3) >>> G2 = AlternatingGroup(5) >>> G3 = AlternatingGroup(9) >>> S1 = G1.sylow_subgroup(3) >>> S2 = G2.sylow_subgroup(3) >>> S3 = G3.sylow_subgroup(3) >>> len1 = len(S1.lower_central_series()) >>> len2 = len(S2.lower_central_series()) >>> len3 = len(S3.lower_central_series()) >>> len1 == len2 True >>> len1 < len3 True ''' from sympy.combinatorics.homomorphisms import ( orbit_homomorphism, block_homomorphism) from sympy.ntheory.primetest import isprime if not isprime(p): raise ValueError("p must be a prime") def is_p_group(G): # check if the order of G is a power of p # and return the power m = G.order() n = 0 while m % p == 0: m = m/p n += 1 if m == 1: return True, n return False, n def _sylow_reduce(mu, nu): # reduction based on two homomorphisms # mu and nu with trivially intersecting # kernels Q = mu.image().sylow_subgroup(p) Q = mu.invert_subgroup(Q) nu = nu.restrict_to(Q) R = nu.image().sylow_subgroup(p) return nu.invert_subgroup(R) order = self.order() if order % p != 0: return PermutationGroup([self.identity]) p_group, n = is_p_group(self) if p_group: return self if self.is_alt_sym(): return PermutationGroup(self._sylow_alt_sym(p)) # if there is a non-trivial orbit with size not divisible # by p, the sylow subgroup is contained in its stabilizer # (by orbit-stabilizer theorem) orbits = self.orbits() non_p_orbits = [o for o in orbits if len(o) % p != 0 and len(o) != 1] if non_p_orbits: G = self.stabilizer(list(non_p_orbits[0]).pop()) return G.sylow_subgroup(p) if not self.is_transitive(): # apply _sylow_reduce to orbit actions orbits = sorted(orbits, key=len) omega1 = orbits.pop() omega2 = orbits[0].union(*orbits) mu = orbit_homomorphism(self, omega1) nu = orbit_homomorphism(self, omega2) return _sylow_reduce(mu, nu) blocks = self.minimal_blocks() if len(blocks) > 1: # apply _sylow_reduce to block system actions mu = block_homomorphism(self, blocks[0]) nu = block_homomorphism(self, blocks[1]) return _sylow_reduce(mu, nu) elif len(blocks) == 1: block = list(blocks)[0] if any(e != 0 for e in block): # self is imprimitive mu = block_homomorphism(self, block) if not is_p_group(mu.image())[0]: S = mu.image().sylow_subgroup(p) return mu.invert_subgroup(S).sylow_subgroup(p) # find an element of order p g = self.random() g_order = g.order() while g_order % p != 0 or g_order == 0: g = self.random() g_order = g.order() g = g**(g_order // p) if order % p**2 != 0: return PermutationGroup(g) C = self.centralizer(g) while C.order() % p**n != 0: S = C.sylow_subgroup(p) s_order = S.order() Z = S.center() P = Z._p_elements_group(p) h = P.random() C_h = self.centralizer(h) while C_h.order() % p*s_order != 0: h = P.random() C_h = self.centralizer(h) C = C_h return C.sylow_subgroup(p) def _block_verify(self, L, alpha): delta = sorted(list(self.orbit(alpha))) # p[i] will be the number of the block # delta[i] belongs to p = [-1]*len(delta) blocks = [-1]*len(delta) B = [[]] # future list of blocks u = [0]*len(delta) # u[i] in L s.t. alpha^u[i] = B[0][i] t = L.orbit_transversal(alpha, pairs=True) for a, beta in t: B[0].append(a) i_a = delta.index(a) p[i_a] = 0 blocks[i_a] = alpha u[i_a] = beta rho = 0 m = 0 # number of blocks - 1 while rho <= m: beta = B[rho][0] for g in self.generators: d = beta^g i_d = delta.index(d) sigma = p[i_d] if sigma < 0: # define a new block m += 1 sigma = m u[i_d] = u[delta.index(beta)]*g p[i_d] = sigma rep = d blocks[i_d] = rep newb = [rep] for gamma in B[rho][1:]: i_gamma = delta.index(gamma) d = gamma^g i_d = delta.index(d) if p[i_d] < 0: u[i_d] = u[i_gamma]*g p[i_d] = sigma blocks[i_d] = rep newb.append(d) else: # B[rho] is not a block s = u[i_gamma]*g*u[i_d]**(-1) return False, s B.append(newb) else: for h in B[rho][1:]: if not h^g in B[sigma]: # B[rho] is not a block s = u[delta.index(beta)]*g*u[i_d]**(-1) return False, s rho += 1 return True, blocks def _verify(H, K, phi, z, alpha): ''' Return a list of relators ``rels`` in generators ``gens`_h` that are mapped to ``H.generators`` by ``phi`` so that given a finite presentation <gens_k | rels_k> of ``K`` on a subset of ``gens_h`` <gens_h | rels_k + rels> is a finite presentation of ``H``. Explanation =========== ``H`` should be generated by the union of ``K.generators`` and ``z`` (a single generator), and ``H.stabilizer(alpha) == K``; ``phi`` is a canonical injection from a free group into a permutation group containing ``H``. The algorithm is described in [1], Chapter 6. Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.homomorphisms import homomorphism >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup >>> H = PermutationGroup(Permutation(0, 2), Permutation (1, 5)) >>> K = PermutationGroup(Permutation(5)(0, 2)) >>> F = free_group("x_0 x_1")[0] >>> gens = F.generators >>> phi = homomorphism(F, H, F.generators, H.generators) >>> rels_k = [gens[0]**2] # relators for presentation of K >>> z= Permutation(1, 5) >>> check, rels_h = H._verify(K, phi, z, 1) >>> check True >>> rels = rels_k + rels_h >>> G = FpGroup(F, rels) # presentation of H >>> G.order() == H.order() True See also ======== strong_presentation, presentation, stabilizer ''' orbit = H.orbit(alpha) beta = alpha^(z**-1) K_beta = K.stabilizer(beta) # orbit representatives of K_beta gammas = [alpha, beta] orbits = list({tuple(K_beta.orbit(o)) for o in orbit}) orbit_reps = [orb[0] for orb in orbits] for rep in orbit_reps: if rep not in gammas: gammas.append(rep) # orbit transversal of K betas = [alpha, beta] transversal = {alpha: phi.invert(H.identity), beta: phi.invert(z**-1)} for s, g in K.orbit_transversal(beta, pairs=True): if not s in transversal: transversal[s] = transversal[beta]*phi.invert(g) union = K.orbit(alpha).union(K.orbit(beta)) while (len(union) < len(orbit)): for gamma in gammas: if gamma in union: r = gamma^z if r not in union: betas.append(r) transversal[r] = transversal[gamma]*phi.invert(z) for s, g in K.orbit_transversal(r, pairs=True): if not s in transversal: transversal[s] = transversal[r]*phi.invert(g) union = union.union(K.orbit(r)) break # compute relators rels = [] for b in betas: k_gens = K.stabilizer(b).generators for y in k_gens: new_rel = transversal[b] gens = K.generator_product(y, original=True) for g in gens[::-1]: new_rel = new_rel*phi.invert(g) new_rel = new_rel*transversal[b]**-1 perm = phi(new_rel) try: gens = K.generator_product(perm, original=True) except ValueError: return False, perm for g in gens: new_rel = new_rel*phi.invert(g)**-1 if new_rel not in rels: rels.append(new_rel) for gamma in gammas: new_rel = transversal[gamma]*phi.invert(z)*transversal[gamma^z]**-1 perm = phi(new_rel) try: gens = K.generator_product(perm, original=True) except ValueError: return False, perm for g in gens: new_rel = new_rel*phi.invert(g)**-1 if new_rel not in rels: rels.append(new_rel) return True, rels def strong_presentation(self): ''' Return a strong finite presentation of group. The generators of the returned group are in the same order as the strong generators of group. The algorithm is based on Sims' Verify algorithm described in [1], Chapter 6. Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> P = DihedralGroup(4) >>> G = P.strong_presentation() >>> P.order() == G.order() True See Also ======== presentation, _verify ''' from sympy.combinatorics.fp_groups import (FpGroup, simplify_presentation) from sympy.combinatorics.free_groups import free_group from sympy.combinatorics.homomorphisms import (block_homomorphism, homomorphism, GroupHomomorphism) strong_gens = self.strong_gens[:] stabs = self.basic_stabilizers[:] base = self.base[:] # injection from a free group on len(strong_gens) # generators into G gen_syms = [('x_%d'%i) for i in range(len(strong_gens))] F = free_group(', '.join(gen_syms))[0] phi = homomorphism(F, self, F.generators, strong_gens) H = PermutationGroup(self.identity) while stabs: alpha = base.pop() K = H H = stabs.pop() new_gens = [g for g in H.generators if g not in K] if K.order() == 1: z = new_gens.pop() rels = [F.generators[-1]**z.order()] intermediate_gens = [z] K = PermutationGroup(intermediate_gens) # add generators one at a time building up from K to H while new_gens: z = new_gens.pop() intermediate_gens = [z] + intermediate_gens K_s = PermutationGroup(intermediate_gens) orbit = K_s.orbit(alpha) orbit_k = K.orbit(alpha) # split into cases based on the orbit of K_s if orbit_k == orbit: if z in K: rel = phi.invert(z) perm = z else: t = K.orbit_rep(alpha, alpha^z) rel = phi.invert(z)*phi.invert(t)**-1 perm = z*t**-1 for g in K.generator_product(perm, original=True): rel = rel*phi.invert(g)**-1 new_rels = [rel] elif len(orbit_k) == 1: # `success` is always true because `strong_gens` # and `base` are already a verified BSGS. Later # this could be changed to start with a randomly # generated (potential) BSGS, and then new elements # would have to be appended to it when `success` # is false. success, new_rels = K_s._verify(K, phi, z, alpha) else: # K.orbit(alpha) should be a block # under the action of K_s on K_s.orbit(alpha) check, block = K_s._block_verify(K, alpha) if check: # apply _verify to the action of K_s # on the block system; for convenience, # add the blocks as additional points # that K_s should act on t = block_homomorphism(K_s, block) m = t.codomain.degree # number of blocks d = K_s.degree # conjugating with p will shift # permutations in t.image() to # higher numbers, e.g. # p*(0 1)*p = (m m+1) p = Permutation() for i in range(m): p *= Permutation(i, i+d) t_img = t.images # combine generators of K_s with their # action on the block system images = {g: g*p*t_img[g]*p for g in t_img} for g in self.strong_gens[:-len(K_s.generators)]: images[g] = g K_s_act = PermutationGroup(list(images.values())) f = GroupHomomorphism(self, K_s_act, images) K_act = PermutationGroup([f(g) for g in K.generators]) success, new_rels = K_s_act._verify(K_act, f.compose(phi), f(z), d) for n in new_rels: if not n in rels: rels.append(n) K = K_s group = FpGroup(F, rels) return simplify_presentation(group) def presentation(self, eliminate_gens=True): ''' Return an `FpGroup` presentation of the group. The algorithm is described in [1], Chapter 6.1. ''' from sympy.combinatorics.fp_groups import (FpGroup, simplify_presentation) from sympy.combinatorics.coset_table import CosetTable from sympy.combinatorics.free_groups import free_group from sympy.combinatorics.homomorphisms import homomorphism from itertools import product if self._fp_presentation: return self._fp_presentation def _factor_group_by_rels(G, rels): if isinstance(G, FpGroup): rels.extend(G.relators) return FpGroup(G.free_group, list(set(rels))) return FpGroup(G, rels) gens = self.generators len_g = len(gens) if len_g == 1: order = gens[0].order() # handle the trivial group if order == 1: return free_group([])[0] F, x = free_group('x') return FpGroup(F, [x**order]) if self.order() > 20: half_gens = self.generators[0:(len_g+1)//2] else: half_gens = [] H = PermutationGroup(half_gens) H_p = H.presentation() len_h = len(H_p.generators) C = self.coset_table(H) n = len(C) # subgroup index gen_syms = [('x_%d'%i) for i in range(len(gens))] F = free_group(', '.join(gen_syms))[0] # mapping generators of H_p to those of F images = [F.generators[i] for i in range(len_h)] R = homomorphism(H_p, F, H_p.generators, images, check=False) # rewrite relators rels = R(H_p.relators) G_p = FpGroup(F, rels) # injective homomorphism from G_p into self T = homomorphism(G_p, self, G_p.generators, gens) C_p = CosetTable(G_p, []) C_p.table = [[None]*(2*len_g) for i in range(n)] # initiate the coset transversal transversal = [None]*n transversal[0] = G_p.identity # fill in the coset table as much as possible for i in range(2*len_h): C_p.table[0][i] = 0 gamma = 1 for alpha, x in product(range(0, n), range(2*len_g)): beta = C[alpha][x] if beta == gamma: gen = G_p.generators[x//2]**((-1)**(x % 2)) transversal[beta] = transversal[alpha]*gen C_p.table[alpha][x] = beta C_p.table[beta][x + (-1)**(x % 2)] = alpha gamma += 1 if gamma == n: break C_p.p = list(range(n)) beta = x = 0 while not C_p.is_complete(): # find the first undefined entry while C_p.table[beta][x] == C[beta][x]: x = (x + 1) % (2*len_g) if x == 0: beta = (beta + 1) % n # define a new relator gen = G_p.generators[x//2]**((-1)**(x % 2)) new_rel = transversal[beta]*gen*transversal[C[beta][x]]**-1 perm = T(new_rel) nxt = G_p.identity for s in H.generator_product(perm, original=True): nxt = nxt*T.invert(s)**-1 new_rel = new_rel*nxt # continue coset enumeration G_p = _factor_group_by_rels(G_p, [new_rel]) C_p.scan_and_fill(0, new_rel) C_p = G_p.coset_enumeration([], strategy="coset_table", draft=C_p, max_cosets=n, incomplete=True) self._fp_presentation = simplify_presentation(G_p) return self._fp_presentation def polycyclic_group(self): """ Return the PolycyclicGroup instance with below parameters: Explanation =========== * ``pc_sequence`` : Polycyclic sequence is formed by collecting all the missing generators between the adjacent groups in the derived series of given permutation group. * ``pc_series`` : Polycyclic series is formed by adding all the missing generators of ``der[i+1]`` in ``der[i]``, where ``der`` represents the derived series. * ``relative_order`` : A list, computed by the ratio of adjacent groups in pc_series. """ from sympy.combinatorics.pc_groups import PolycyclicGroup if not self.is_polycyclic: raise ValueError("The group must be solvable") der = self.derived_series() pc_series = [] pc_sequence = [] relative_order = [] pc_series.append(der[-1]) der.reverse() for i in range(len(der)-1): H = der[i] for g in der[i+1].generators: if g not in H: H = PermutationGroup([g] + H.generators) pc_series.insert(0, H) pc_sequence.insert(0, g) G1 = pc_series[0].order() G2 = pc_series[1].order() relative_order.insert(0, G1 // G2) return PolycyclicGroup(pc_sequence, pc_series, relative_order, collector=None) def _orbit(degree, generators, alpha, action='tuples'): r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set. Explanation =========== The time complexity of the algorithm used here is `O(|Orb|*r)` where `|Orb|` is the size of the orbit and ``r`` is the number of generators of the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21. Here alpha can be a single point, or a list of points. If alpha is a single point, the ordinary orbit is computed. if alpha is a list of points, there are three available options: 'union' - computes the union of the orbits of the points in the list 'tuples' - computes the orbit of the list interpreted as an ordered tuple under the group action ( i.e., g((1, 2, 3)) = (g(1), g(2), g(3)) ) 'sets' - computes the orbit of the list interpreted as a sets Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup, _orbit >>> a = Permutation([1, 2, 0, 4, 5, 6, 3]) >>> G = PermutationGroup([a]) >>> _orbit(G.degree, G.generators, 0) {0, 1, 2} >>> _orbit(G.degree, G.generators, [0, 4], 'union') {0, 1, 2, 3, 4, 5, 6} See Also ======== orbit, orbit_transversal """ if not hasattr(alpha, '__getitem__'): alpha = [alpha] gens = [x._array_form for x in generators] if len(alpha) == 1 or action == 'union': orb = alpha used = [False]*degree for el in alpha: used[el] = True for b in orb: for gen in gens: temp = gen[b] if used[temp] == False: orb.append(temp) used[temp] = True return set(orb) elif action == 'tuples': alpha = tuple(alpha) orb = [alpha] used = {alpha} for b in orb: for gen in gens: temp = tuple([gen[x] for x in b]) if temp not in used: orb.append(temp) used.add(temp) return set(orb) elif action == 'sets': alpha = frozenset(alpha) orb = [alpha] used = {alpha} for b in orb: for gen in gens: temp = frozenset([gen[x] for x in b]) if temp not in used: orb.append(temp) used.add(temp) return {tuple(x) for x in orb} def _orbits(degree, generators): """Compute the orbits of G. If ``rep=False`` it returns a list of sets else it returns a list of representatives of the orbits Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import _orbits >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> _orbits(a.size, [a, b]) [{0, 1, 2}] """ orbs = [] sorted_I = list(range(degree)) I = set(sorted_I) while I: i = sorted_I[0] orb = _orbit(degree, generators, i) orbs.append(orb) # remove all indices that are in this orbit I -= orb sorted_I = [i for i in sorted_I if i not in orb] return orbs def _orbit_transversal(degree, generators, alpha, pairs, af=False, slp=False): r"""Computes a transversal for the orbit of ``alpha`` as a set. Explanation =========== generators generators of the group ``G`` For a permutation group ``G``, a transversal for the orbit `Orb = \{g(\alpha) | g \in G\}` is a set `\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`. Note that there may be more than one possible transversal. If ``pairs`` is set to ``True``, it returns the list of pairs `(\beta, g_\beta)`. For a proof of correctness, see [1], p.79 if ``af`` is ``True``, the transversal elements are given in array form. If `slp` is `True`, a dictionary `{beta: slp_beta}` is returned for `\beta \in Orb` where `slp_beta` is a list of indices of the generators in `generators` s.t. if `slp_beta = [i_1 \dots i_n]` `g_\beta = generators[i_n] \times \dots \times generators[i_1]`. Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> from sympy.combinatorics.perm_groups import _orbit_transversal >>> G = DihedralGroup(6) >>> _orbit_transversal(G.degree, G.generators, 0, False) [(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)] """ tr = [(alpha, list(range(degree)))] slp_dict = {alpha: []} used = [False]*degree used[alpha] = True gens = [x._array_form for x in generators] for x, px in tr: px_slp = slp_dict[x] for gen in gens: temp = gen[x] if used[temp] == False: slp_dict[temp] = [gens.index(gen)] + px_slp tr.append((temp, _af_rmul(gen, px))) used[temp] = True if pairs: if not af: tr = [(x, _af_new(y)) for x, y in tr] if not slp: return tr return tr, slp_dict if af: tr = [y for _, y in tr] if not slp: return tr return tr, slp_dict tr = [_af_new(y) for _, y in tr] if not slp: return tr return tr, slp_dict def _stabilizer(degree, generators, alpha): r"""Return the stabilizer subgroup of ``alpha``. Explanation =========== The stabilizer of `\alpha` is the group `G_\alpha = \{g \in G | g(\alpha) = \alpha\}`. For a proof of correctness, see [1], p.79. degree : degree of G generators : generators of G Examples ======== >>> from sympy.combinatorics.perm_groups import _stabilizer >>> from sympy.combinatorics.named_groups import DihedralGroup >>> G = DihedralGroup(6) >>> _stabilizer(G.degree, G.generators, 5) [(5)(0 4)(1 3), (5)] See Also ======== orbit """ orb = [alpha] table = {alpha: list(range(degree))} table_inv = {alpha: list(range(degree))} used = [False]*degree used[alpha] = True gens = [x._array_form for x in generators] stab_gens = [] for b in orb: for gen in gens: temp = gen[b] if used[temp] is False: gen_temp = _af_rmul(gen, table[b]) orb.append(temp) table[temp] = gen_temp table_inv[temp] = _af_invert(gen_temp) used[temp] = True else: schreier_gen = _af_rmuln(table_inv[temp], gen, table[b]) if schreier_gen not in stab_gens: stab_gens.append(schreier_gen) return [_af_new(x) for x in stab_gens] PermGroup = PermutationGroup class SymmetricPermutationGroup(Basic): """ The class defining the lazy form of SymmetricGroup. deg : int """ def __new__(cls, deg): deg = _sympify(deg) obj = Basic.__new__(cls, deg) return obj def __init__(self, *args, **kwargs): self._deg = self.args[0] self._order = None def __contains__(self, i): """Return ``True`` if *i* is contained in SymmetricPermutationGroup. Examples ======== >>> from sympy.combinatorics import Permutation, SymmetricPermutationGroup >>> G = SymmetricPermutationGroup(4) >>> Permutation(1, 2, 3) in G True """ if not isinstance(i, Permutation): raise TypeError("A SymmetricPermutationGroup contains only Permutations as " "elements, not elements of type %s" % type(i)) return i.size == self.degree def order(self): """ Return the order of the SymmetricPermutationGroup. Examples ======== >>> from sympy.combinatorics import SymmetricPermutationGroup >>> G = SymmetricPermutationGroup(4) >>> G.order() 24 """ if self._order is not None: return self._order n = self._deg self._order = factorial(n) return self._order @property def degree(self): """ Return the degree of the SymmetricPermutationGroup. Examples ======== >>> from sympy.combinatorics import SymmetricPermutationGroup >>> G = SymmetricPermutationGroup(4) >>> G.degree 4 """ return self._deg @property def identity(self): ''' Return the identity element of the SymmetricPermutationGroup. Examples ======== >>> from sympy.combinatorics import SymmetricPermutationGroup >>> G = SymmetricPermutationGroup(4) >>> G.identity() (3) ''' return _af_new(list(range(self._deg))) class Coset(Basic): """A left coset of a permutation group with respect to an element. Parameters ========== g : Permutation H : PermutationGroup dir : "+" or "-", If not specified by default it will be "+" here ``dir`` specified the type of coset "+" represent the right coset and "-" represent the left coset. G : PermutationGroup, optional The group which contains *H* as its subgroup and *g* as its element. If not specified, it would automatically become a symmetric group ``SymmetricPermutationGroup(g.size)`` and ``SymmetricPermutationGroup(H.degree)`` if ``g.size`` and ``H.degree`` are matching.``SymmetricPermutationGroup`` is a lazy form of SymmetricGroup used for representation purpose. """ def __new__(cls, g, H, G=None, dir="+"): g = _sympify(g) if not isinstance(g, Permutation): raise NotImplementedError H = _sympify(H) if not isinstance(H, PermutationGroup): raise NotImplementedError if G is not None: G = _sympify(G) if not isinstance(G, PermutationGroup) and not isinstance(G, SymmetricPermutationGroup): raise NotImplementedError if not H.is_subgroup(G): raise ValueError("{} must be a subgroup of {}.".format(H, G)) if g not in G: raise ValueError("{} must be an element of {}.".format(g, G)) else: g_size = g.size h_degree = H.degree if g_size != h_degree: raise ValueError( "The size of the permutation {} and the degree of " "the permutation group {} should be matching " .format(g, H)) G = SymmetricPermutationGroup(g.size) if isinstance(dir, str): dir = Symbol(dir) elif not isinstance(dir, Symbol): raise TypeError("dir must be of type basestring or " "Symbol, not %s" % type(dir)) if str(dir) not in ('+', '-'): raise ValueError("dir must be one of '+' or '-' not %s" % dir) obj = Basic.__new__(cls, g, H, G, dir) return obj def __init__(self, *args, **kwargs): self._dir = self.args[3] @property def is_left_coset(self): """ Check if the coset is left coset that is ``gH``. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup, Coset >>> a = Permutation(1, 2) >>> b = Permutation(0, 1) >>> G = PermutationGroup([a, b]) >>> cst = Coset(a, G, dir="-") >>> cst.is_left_coset True """ return str(self._dir) == '-' @property def is_right_coset(self): """ Check if the coset is right coset that is ``Hg``. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup, Coset >>> a = Permutation(1, 2) >>> b = Permutation(0, 1) >>> G = PermutationGroup([a, b]) >>> cst = Coset(a, G, dir="+") >>> cst.is_right_coset True """ return str(self._dir) == '+' def as_list(self): """ Return all the elements of coset in the form of list. """ g = self.args[0] H = self.args[1] cst = [] if str(self._dir) == '+': for h in H.elements: cst.append(h*g) else: for h in H.elements: cst.append(g*h) return cst
982bde9ca324119d38478ba24692565b382b14fbac9b2d184fdb835691fbbb77
from sympy.core import Basic import random class GrayCode(Basic): """ A Gray code is essentially a Hamiltonian walk on a n-dimensional cube with edge length of one. The vertices of the cube are represented by vectors whose values are binary. The Hamilton walk visits each vertex exactly once. The Gray code for a 3d cube is ['000','100','110','010','011','111','101', '001']. A Gray code solves the problem of sequentially generating all possible subsets of n objects in such a way that each subset is obtained from the previous one by either deleting or adding a single object. In the above example, 1 indicates that the object is present, and 0 indicates that its absent. Gray codes have applications in statistics as well when we want to compute various statistics related to subsets in an efficient manner. Examples ======== >>> from sympy.combinatorics.graycode import GrayCode >>> a = GrayCode(3) >>> list(a.generate_gray()) ['000', '001', '011', '010', '110', '111', '101', '100'] >>> a = GrayCode(4) >>> list(a.generate_gray()) ['0000', '0001', '0011', '0010', '0110', '0111', '0101', '0100', \ '1100', '1101', '1111', '1110', '1010', '1011', '1001', '1000'] References ========== .. [1] Nijenhuis,A. and Wilf,H.S.(1978). Combinatorial Algorithms. Academic Press. .. [2] Knuth, D. (2011). The Art of Computer Programming, Vol 4 Addison Wesley """ _skip = False _current = 0 _rank = None def __new__(cls, n, *args, **kw_args): """ Default constructor. It takes a single argument ``n`` which gives the dimension of the Gray code. The starting Gray code string (``start``) or the starting ``rank`` may also be given; the default is to start at rank = 0 ('0...0'). Examples ======== >>> from sympy.combinatorics.graycode import GrayCode >>> a = GrayCode(3) >>> a GrayCode(3) >>> a.n 3 >>> a = GrayCode(3, start='100') >>> a.current '100' >>> a = GrayCode(4, rank=4) >>> a.current '0110' >>> a.rank 4 """ if n < 1 or int(n) != n: raise ValueError( 'Gray code dimension must be a positive integer, not %i' % n) n = int(n) args = (n,) + args obj = Basic.__new__(cls, *args) if 'start' in kw_args: obj._current = kw_args["start"] if len(obj._current) > n: raise ValueError('Gray code start has length %i but ' 'should not be greater than %i' % (len(obj._current), n)) elif 'rank' in kw_args: if int(kw_args["rank"]) != kw_args["rank"]: raise ValueError('Gray code rank must be a positive integer, ' 'not %i' % kw_args["rank"]) obj._rank = int(kw_args["rank"]) % obj.selections obj._current = obj.unrank(n, obj._rank) return obj def next(self, delta=1): """ Returns the Gray code a distance ``delta`` (default = 1) from the current value in canonical order. Examples ======== >>> from sympy.combinatorics.graycode import GrayCode >>> a = GrayCode(3, start='110') >>> a.next().current '111' >>> a.next(-1).current '010' """ return GrayCode(self.n, rank=(self.rank + delta) % self.selections) @property def selections(self): """ Returns the number of bit vectors in the Gray code. Examples ======== >>> from sympy.combinatorics.graycode import GrayCode >>> a = GrayCode(3) >>> a.selections 8 """ return 2**self.n @property def n(self): """ Returns the dimension of the Gray code. Examples ======== >>> from sympy.combinatorics.graycode import GrayCode >>> a = GrayCode(5) >>> a.n 5 """ return self.args[0] def generate_gray(self, **hints): """ Generates the sequence of bit vectors of a Gray Code. Examples ======== >>> from sympy.combinatorics.graycode import GrayCode >>> a = GrayCode(3) >>> list(a.generate_gray()) ['000', '001', '011', '010', '110', '111', '101', '100'] >>> list(a.generate_gray(start='011')) ['011', '010', '110', '111', '101', '100'] >>> list(a.generate_gray(rank=4)) ['110', '111', '101', '100'] See Also ======== skip References ========== .. [1] Knuth, D. (2011). The Art of Computer Programming, Vol 4, Addison Wesley """ bits = self.n start = None if "start" in hints: start = hints["start"] elif "rank" in hints: start = GrayCode.unrank(self.n, hints["rank"]) if start is not None: self._current = start current = self.current graycode_bin = gray_to_bin(current) if len(graycode_bin) > self.n: raise ValueError('Gray code start has length %i but should ' 'not be greater than %i' % (len(graycode_bin), bits)) self._current = int(current, 2) graycode_int = int(''.join(graycode_bin), 2) for i in range(graycode_int, 1 << bits): if self._skip: self._skip = False else: yield self.current bbtc = (i ^ (i + 1)) gbtc = (bbtc ^ (bbtc >> 1)) self._current = (self._current ^ gbtc) self._current = 0 def skip(self): """ Skips the bit generation. Examples ======== >>> from sympy.combinatorics.graycode import GrayCode >>> a = GrayCode(3) >>> for i in a.generate_gray(): ... if i == '010': ... a.skip() ... print(i) ... 000 001 011 010 111 101 100 See Also ======== generate_gray """ self._skip = True @property def rank(self): """ Ranks the Gray code. A ranking algorithm determines the position (or rank) of a combinatorial object among all the objects w.r.t. a given order. For example, the 4 bit binary reflected Gray code (BRGC) '0101' has a rank of 6 as it appears in the 6th position in the canonical ordering of the family of 4 bit Gray codes. Examples ======== >>> from sympy.combinatorics.graycode import GrayCode >>> a = GrayCode(3) >>> list(a.generate_gray()) ['000', '001', '011', '010', '110', '111', '101', '100'] >>> GrayCode(3, start='100').rank 7 >>> GrayCode(3, rank=7).current '100' See Also ======== unrank References ========== .. [1] http://statweb.stanford.edu/~susan/courses/s208/node12.html """ if self._rank is None: self._rank = int(gray_to_bin(self.current), 2) return self._rank @property def current(self): """ Returns the currently referenced Gray code as a bit string. Examples ======== >>> from sympy.combinatorics.graycode import GrayCode >>> GrayCode(3, start='100').current '100' """ rv = self._current or '0' if not isinstance(rv, str): rv = bin(rv)[2:] return rv.rjust(self.n, '0') @classmethod def unrank(self, n, rank): """ Unranks an n-bit sized Gray code of rank k. This method exists so that a derivative GrayCode class can define its own code of a given rank. The string here is generated in reverse order to allow for tail-call optimization. Examples ======== >>> from sympy.combinatorics.graycode import GrayCode >>> GrayCode(5, rank=3).current '00010' >>> GrayCode.unrank(5, 3) '00010' See Also ======== rank """ def _unrank(k, n): if n == 1: return str(k % 2) m = 2**(n - 1) if k < m: return '0' + _unrank(k, n - 1) return '1' + _unrank(m - (k % m) - 1, n - 1) return _unrank(rank, n) def random_bitstring(n): """ Generates a random bitlist of length n. Examples ======== >>> from sympy.combinatorics.graycode import random_bitstring >>> random_bitstring(3) # doctest: +SKIP 100 """ return ''.join([random.choice('01') for i in range(n)]) def gray_to_bin(bin_list): """ Convert from Gray coding to binary coding. We assume big endian encoding. Examples ======== >>> from sympy.combinatorics.graycode import gray_to_bin >>> gray_to_bin('100') '111' See Also ======== bin_to_gray """ b = [bin_list[0]] for i in range(1, len(bin_list)): b += str(int(b[i - 1] != bin_list[i])) return ''.join(b) def bin_to_gray(bin_list): """ Convert from binary coding to gray coding. We assume big endian encoding. Examples ======== >>> from sympy.combinatorics.graycode import bin_to_gray >>> bin_to_gray('111') '100' See Also ======== gray_to_bin """ b = [bin_list[0]] for i in range(1, len(bin_list)): b += str(int(bin_list[i]) ^ int(bin_list[i - 1])) return ''.join(b) def get_subset_from_bitstring(super_set, bitstring): """ Gets the subset defined by the bitstring. Examples ======== >>> from sympy.combinatorics.graycode import get_subset_from_bitstring >>> get_subset_from_bitstring(['a', 'b', 'c', 'd'], '0011') ['c', 'd'] >>> get_subset_from_bitstring(['c', 'a', 'c', 'c'], '1100') ['c', 'a'] See Also ======== graycode_subsets """ if len(super_set) != len(bitstring): raise ValueError("The sizes of the lists are not equal") return [super_set[i] for i, j in enumerate(bitstring) if bitstring[i] == '1'] def graycode_subsets(gray_code_set): """ Generates the subsets as enumerated by a Gray code. Examples ======== >>> from sympy.combinatorics.graycode import graycode_subsets >>> list(graycode_subsets(['a', 'b', 'c'])) [[], ['c'], ['b', 'c'], ['b'], ['a', 'b'], ['a', 'b', 'c'], \ ['a', 'c'], ['a']] >>> list(graycode_subsets(['a', 'b', 'c', 'c'])) [[], ['c'], ['c', 'c'], ['c'], ['b', 'c'], ['b', 'c', 'c'], \ ['b', 'c'], ['b'], ['a', 'b'], ['a', 'b', 'c'], ['a', 'b', 'c', 'c'], \ ['a', 'b', 'c'], ['a', 'c'], ['a', 'c', 'c'], ['a', 'c'], ['a']] See Also ======== get_subset_from_bitstring """ for bitstring in list(GrayCode(len(gray_code_set)).generate_gray()): yield get_subset_from_bitstring(gray_code_set, bitstring)
4fc290533b01b3f9c9d9172f8809b51e84bb4acaed8f5efbe35da6ec2867a38c
import random from collections import defaultdict from collections.abc import Iterable from functools import reduce from sympy.core.parameters import global_parameters from sympy.core.basic import Atom from sympy.core.expr import Expr from sympy.core.numbers import Integer from sympy.core.sympify import _sympify from sympy.matrices import zeros from sympy.polys.polytools import lcm from sympy.utilities.iterables import (flatten, has_variety, minlex, has_dups, runs, is_sequence) from sympy.utilities.misc import as_int from mpmath.libmp.libintmath import ifac from sympy.multipledispatch import dispatch def _af_rmul(a, b): """ Return the product b*a; input and output are array forms. The ith value is a[b[i]]. Examples ======== >>> from sympy.combinatorics.permutations import _af_rmul, Permutation >>> a, b = [1, 0, 2], [0, 2, 1] >>> _af_rmul(a, b) [1, 2, 0] >>> [a[b[i]] for i in range(3)] [1, 2, 0] This handles the operands in reverse order compared to the ``*`` operator: >>> a = Permutation(a) >>> b = Permutation(b) >>> list(a*b) [2, 0, 1] >>> [b(a(i)) for i in range(3)] [2, 0, 1] See Also ======== rmul, _af_rmuln """ return [a[i] for i in b] def _af_rmuln(*abc): """ Given [a, b, c, ...] return the product of ...*c*b*a using array forms. The ith value is a[b[c[i]]]. Examples ======== >>> from sympy.combinatorics.permutations import _af_rmul, Permutation >>> a, b = [1, 0, 2], [0, 2, 1] >>> _af_rmul(a, b) [1, 2, 0] >>> [a[b[i]] for i in range(3)] [1, 2, 0] This handles the operands in reverse order compared to the ``*`` operator: >>> a = Permutation(a); b = Permutation(b) >>> list(a*b) [2, 0, 1] >>> [b(a(i)) for i in range(3)] [2, 0, 1] See Also ======== rmul, _af_rmul """ a = abc m = len(a) if m == 3: p0, p1, p2 = a return [p0[p1[i]] for i in p2] if m == 4: p0, p1, p2, p3 = a return [p0[p1[p2[i]]] for i in p3] if m == 5: p0, p1, p2, p3, p4 = a return [p0[p1[p2[p3[i]]]] for i in p4] if m == 6: p0, p1, p2, p3, p4, p5 = a return [p0[p1[p2[p3[p4[i]]]]] for i in p5] if m == 7: p0, p1, p2, p3, p4, p5, p6 = a return [p0[p1[p2[p3[p4[p5[i]]]]]] for i in p6] if m == 8: p0, p1, p2, p3, p4, p5, p6, p7 = a return [p0[p1[p2[p3[p4[p5[p6[i]]]]]]] for i in p7] if m == 1: return a[0][:] if m == 2: a, b = a return [a[i] for i in b] if m == 0: raise ValueError("String must not be empty") p0 = _af_rmuln(*a[:m//2]) p1 = _af_rmuln(*a[m//2:]) return [p0[i] for i in p1] def _af_parity(pi): """ Computes the parity of a permutation in array form. Explanation =========== The parity of a permutation reflects the parity of the number of inversions in the permutation, i.e., the number of pairs of x and y such that x > y but p[x] < p[y]. Examples ======== >>> from sympy.combinatorics.permutations import _af_parity >>> _af_parity([0, 1, 2, 3]) 0 >>> _af_parity([3, 2, 0, 1]) 1 See Also ======== Permutation """ n = len(pi) a = [0] * n c = 0 for j in range(n): if a[j] == 0: c += 1 a[j] = 1 i = j while pi[i] != j: i = pi[i] a[i] = 1 return (n - c) % 2 def _af_invert(a): """ Finds the inverse, ~A, of a permutation, A, given in array form. Examples ======== >>> from sympy.combinatorics.permutations import _af_invert, _af_rmul >>> A = [1, 2, 0, 3] >>> _af_invert(A) [2, 0, 1, 3] >>> _af_rmul(_, A) [0, 1, 2, 3] See Also ======== Permutation, __invert__ """ inv_form = [0] * len(a) for i, ai in enumerate(a): inv_form[ai] = i return inv_form def _af_pow(a, n): """ Routine for finding powers of a permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation, _af_pow >>> p = Permutation([2, 0, 3, 1]) >>> p.order() 4 >>> _af_pow(p._array_form, 4) [0, 1, 2, 3] """ if n == 0: return list(range(len(a))) if n < 0: return _af_pow(_af_invert(a), -n) if n == 1: return a[:] elif n == 2: b = [a[i] for i in a] elif n == 3: b = [a[a[i]] for i in a] elif n == 4: b = [a[a[a[i]]] for i in a] else: # use binary multiplication b = list(range(len(a))) while 1: if n & 1: b = [b[i] for i in a] n -= 1 if not n: break if n % 4 == 0: a = [a[a[a[i]]] for i in a] n = n // 4 elif n % 2 == 0: a = [a[i] for i in a] n = n // 2 return b def _af_commutes_with(a, b): """ Checks if the two permutations with array forms given by ``a`` and ``b`` commute. Examples ======== >>> from sympy.combinatorics.permutations import _af_commutes_with >>> _af_commutes_with([1, 2, 0], [0, 2, 1]) False See Also ======== Permutation, commutes_with """ return not any(a[b[i]] != b[a[i]] for i in range(len(a) - 1)) class Cycle(dict): """ Wrapper around dict which provides the functionality of a disjoint cycle. Explanation =========== A cycle shows the rule to use to move subsets of elements to obtain a permutation. The Cycle class is more flexible than Permutation in that 1) all elements need not be present in order to investigate how multiple cycles act in sequence and 2) it can contain singletons: >>> from sympy.combinatorics.permutations import Perm, Cycle A Cycle will automatically parse a cycle given as a tuple on the rhs: >>> Cycle(1, 2)(2, 3) (1 3 2) The identity cycle, Cycle(), can be used to start a product: >>> Cycle()(1, 2)(2, 3) (1 3 2) The array form of a Cycle can be obtained by calling the list method (or passing it to the list function) and all elements from 0 will be shown: >>> a = Cycle(1, 2) >>> a.list() [0, 2, 1] >>> list(a) [0, 2, 1] If a larger (or smaller) range is desired use the list method and provide the desired size -- but the Cycle cannot be truncated to a size smaller than the largest element that is out of place: >>> b = Cycle(2, 4)(1, 2)(3, 1, 4)(1, 3) >>> b.list() [0, 2, 1, 3, 4] >>> b.list(b.size + 1) [0, 2, 1, 3, 4, 5] >>> b.list(-1) [0, 2, 1] Singletons are not shown when printing with one exception: the largest element is always shown -- as a singleton if necessary: >>> Cycle(1, 4, 10)(4, 5) (1 5 4 10) >>> Cycle(1, 2)(4)(5)(10) (1 2)(10) The array form can be used to instantiate a Permutation so other properties of the permutation can be investigated: >>> Perm(Cycle(1, 2)(3, 4).list()).transpositions() [(1, 2), (3, 4)] Notes ===== The underlying structure of the Cycle is a dictionary and although the __iter__ method has been redefined to give the array form of the cycle, the underlying dictionary items are still available with the such methods as items(): >>> list(Cycle(1, 2).items()) [(1, 2), (2, 1)] See Also ======== Permutation """ def __missing__(self, arg): """Enter arg into dictionary and return arg.""" return as_int(arg) def __iter__(self): yield from self.list() def __call__(self, *other): """Return product of cycles processed from R to L. Examples ======== >>> from sympy.combinatorics.permutations import Cycle as C >>> C(1, 2)(2, 3) (1 3 2) An instance of a Cycle will automatically parse list-like objects and Permutations that are on the right. It is more flexible than the Permutation in that all elements need not be present: >>> a = C(1, 2) >>> a(2, 3) (1 3 2) >>> a(2, 3)(4, 5) (1 3 2)(4 5) """ rv = Cycle(*other) for k, v in zip(list(self.keys()), [rv[self[k]] for k in self.keys()]): rv[k] = v return rv def list(self, size=None): """Return the cycles as an explicit list starting from 0 up to the greater of the largest value in the cycles and size. Truncation of trailing unmoved items will occur when size is less than the maximum element in the cycle; if this is desired, setting ``size=-1`` will guarantee such trimming. Examples ======== >>> from sympy.combinatorics.permutations import Cycle >>> p = Cycle(2, 3)(4, 5) >>> p.list() [0, 1, 3, 2, 5, 4] >>> p.list(10) [0, 1, 3, 2, 5, 4, 6, 7, 8, 9] Passing a length too small will trim trailing, unchanged elements in the permutation: >>> Cycle(2, 4)(1, 2, 4).list(-1) [0, 2, 1] """ if not self and size is None: raise ValueError('must give size for empty Cycle') if size is not None: big = max([i for i in self.keys() if self[i] != i] + [0]) size = max(size, big + 1) else: size = self.size return [self[i] for i in range(size)] def __repr__(self): """We want it to print as a Cycle, not as a dict. Examples ======== >>> from sympy.combinatorics import Cycle >>> Cycle(1, 2) (1 2) >>> print(_) (1 2) >>> list(Cycle(1, 2).items()) [(1, 2), (2, 1)] """ if not self: return 'Cycle()' cycles = Permutation(self).cyclic_form s = ''.join(str(tuple(c)) for c in cycles) big = self.size - 1 if not any(i == big for c in cycles for i in c): s += '(%s)' % big return 'Cycle%s' % s def __str__(self): """We want it to be printed in a Cycle notation with no comma in-between. Examples ======== >>> from sympy.combinatorics import Cycle >>> Cycle(1, 2) (1 2) >>> Cycle(1, 2, 4)(5, 6) (1 2 4)(5 6) """ if not self: return '()' cycles = Permutation(self).cyclic_form s = ''.join(str(tuple(c)) for c in cycles) big = self.size - 1 if not any(i == big for c in cycles for i in c): s += '(%s)' % big s = s.replace(',', '') return s def __init__(self, *args): """Load up a Cycle instance with the values for the cycle. Examples ======== >>> from sympy.combinatorics.permutations import Cycle >>> Cycle(1, 2, 6) (1 2 6) """ if not args: return if len(args) == 1: if isinstance(args[0], Permutation): for c in args[0].cyclic_form: self.update(self(*c)) return elif isinstance(args[0], Cycle): for k, v in args[0].items(): self[k] = v return args = [as_int(a) for a in args] if any(i < 0 for i in args): raise ValueError('negative integers are not allowed in a cycle.') if has_dups(args): raise ValueError('All elements must be unique in a cycle.') for i in range(-len(args), 0): self[args[i]] = args[i + 1] @property def size(self): if not self: return 0 return max(self.keys()) + 1 def copy(self): return Cycle(self) class Permutation(Atom): """ A permutation, alternatively known as an 'arrangement number' or 'ordering' is an arrangement of the elements of an ordered list into a one-to-one mapping with itself. The permutation of a given arrangement is given by indicating the positions of the elements after re-arrangement [2]_. For example, if one started with elements [x, y, a, b] (in that order) and they were reordered as [x, y, b, a] then the permutation would be [0, 1, 3, 2]. Notice that (in SymPy) the first element is always referred to as 0 and the permutation uses the indices of the elements in the original ordering, not the elements (a, b, etc...) themselves. >>> from sympy.combinatorics import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) Permutations Notation ===================== Permutations are commonly represented in disjoint cycle or array forms. Array Notation and 2-line Form ------------------------------------ In the 2-line form, the elements and their final positions are shown as a matrix with 2 rows: [0 1 2 ... n-1] [p(0) p(1) p(2) ... p(n-1)] Since the first line is always range(n), where n is the size of p, it is sufficient to represent the permutation by the second line, referred to as the "array form" of the permutation. This is entered in brackets as the argument to the Permutation class: >>> p = Permutation([0, 2, 1]); p Permutation([0, 2, 1]) Given i in range(p.size), the permutation maps i to i^p >>> [i^p for i in range(p.size)] [0, 2, 1] The composite of two permutations p*q means first apply p, then q, so i^(p*q) = (i^p)^q which is i^p^q according to Python precedence rules: >>> q = Permutation([2, 1, 0]) >>> [i^p^q for i in range(3)] [2, 0, 1] >>> [i^(p*q) for i in range(3)] [2, 0, 1] One can use also the notation p(i) = i^p, but then the composition rule is (p*q)(i) = q(p(i)), not p(q(i)): >>> [(p*q)(i) for i in range(p.size)] [2, 0, 1] >>> [q(p(i)) for i in range(p.size)] [2, 0, 1] >>> [p(q(i)) for i in range(p.size)] [1, 2, 0] Disjoint Cycle Notation ----------------------- In disjoint cycle notation, only the elements that have shifted are indicated. For example, [1, 3, 2, 0] can be represented as (0, 1, 3)(2). This can be understood from the 2 line format of the given permutation. In the 2-line form, [0 1 2 3] [1 3 2 0] The element in the 0th position is 1, so 0 -> 1. The element in the 1st position is three, so 1 -> 3. And the element in the third position is again 0, so 3 -> 0. Thus, 0 -> 1 -> 3 -> 0, and 2 -> 2. Thus, this can be represented as 2 cycles: (0, 1, 3)(2). In common notation, singular cycles are not explicitly written as they can be inferred implicitly. Only the relative ordering of elements in a cycle matter: >>> Permutation(1,2,3) == Permutation(2,3,1) == Permutation(3,1,2) True The disjoint cycle notation is convenient when representing permutations that have several cycles in them: >>> Permutation(1, 2)(3, 5) == Permutation([[1, 2], [3, 5]]) True It also provides some economy in entry when computing products of permutations that are written in disjoint cycle notation: >>> Permutation(1, 2)(1, 3)(2, 3) Permutation([0, 3, 2, 1]) >>> _ == Permutation([[1, 2]])*Permutation([[1, 3]])*Permutation([[2, 3]]) True Caution: when the cycles have common elements between them then the order in which the permutations are applied matters. This module applies the permutations from *left to right*. >>> Permutation(1, 2)(2, 3) == Permutation([(1, 2), (2, 3)]) True >>> Permutation(1, 2)(2, 3).list() [0, 3, 1, 2] In the above case, (1,2) is computed before (2,3). As 0 -> 0, 0 -> 0, element in position 0 is 0. As 1 -> 2, 2 -> 3, element in position 1 is 3. As 2 -> 1, 1 -> 1, element in position 2 is 1. As 3 -> 3, 3 -> 2, element in position 3 is 2. If the first and second elements had been swapped first, followed by the swapping of the second and third, the result would have been [0, 2, 3, 1]. If, you want to apply the cycles in the conventional right to left order, call the function with arguments in reverse order as demonstrated below: >>> Permutation([(1, 2), (2, 3)][::-1]).list() [0, 2, 3, 1] Entering a singleton in a permutation is a way to indicate the size of the permutation. The ``size`` keyword can also be used. Array-form entry: >>> Permutation([[1, 2], [9]]) Permutation([0, 2, 1], size=10) >>> Permutation([[1, 2]], size=10) Permutation([0, 2, 1], size=10) Cyclic-form entry: >>> Permutation(1, 2, size=10) Permutation([0, 2, 1], size=10) >>> Permutation(9)(1, 2) Permutation([0, 2, 1], size=10) Caution: no singleton containing an element larger than the largest in any previous cycle can be entered. This is an important difference in how Permutation and Cycle handle the __call__ syntax. A singleton argument at the start of a Permutation performs instantiation of the Permutation and is permitted: >>> Permutation(5) Permutation([], size=6) A singleton entered after instantiation is a call to the permutation -- a function call -- and if the argument is out of range it will trigger an error. For this reason, it is better to start the cycle with the singleton: The following fails because there is no element 3: >>> Permutation(1, 2)(3) Traceback (most recent call last): ... IndexError: list index out of range This is ok: only the call to an out of range singleton is prohibited; otherwise the permutation autosizes: >>> Permutation(3)(1, 2) Permutation([0, 2, 1, 3]) >>> Permutation(1, 2)(3, 4) == Permutation(3, 4)(1, 2) True Equality testing ---------------- The array forms must be the same in order for permutations to be equal: >>> Permutation([1, 0, 2, 3]) == Permutation([1, 0]) False Identity Permutation -------------------- The identity permutation is a permutation in which no element is out of place. It can be entered in a variety of ways. All the following create an identity permutation of size 4: >>> I = Permutation([0, 1, 2, 3]) >>> all(p == I for p in [ ... Permutation(3), ... Permutation(range(4)), ... Permutation([], size=4), ... Permutation(size=4)]) True Watch out for entering the range *inside* a set of brackets (which is cycle notation): >>> I == Permutation([range(4)]) False Permutation Printing ==================== There are a few things to note about how Permutations are printed. 1) If you prefer one form (array or cycle) over another, you can set ``init_printing`` with the ``perm_cyclic`` flag. >>> from sympy import init_printing >>> p = Permutation(1, 2)(4, 5)(3, 4) >>> p Permutation([0, 2, 1, 4, 5, 3]) >>> init_printing(perm_cyclic=True, pretty_print=False) >>> p (1 2)(3 4 5) 2) Regardless of the setting, a list of elements in the array for cyclic form can be obtained and either of those can be copied and supplied as the argument to Permutation: >>> p.array_form [0, 2, 1, 4, 5, 3] >>> p.cyclic_form [[1, 2], [3, 4, 5]] >>> Permutation(_) == p True 3) Printing is economical in that as little as possible is printed while retaining all information about the size of the permutation: >>> init_printing(perm_cyclic=False, pretty_print=False) >>> Permutation([1, 0, 2, 3]) Permutation([1, 0, 2, 3]) >>> Permutation([1, 0, 2, 3], size=20) Permutation([1, 0], size=20) >>> Permutation([1, 0, 2, 4, 3, 5, 6], size=20) Permutation([1, 0, 2, 4, 3], size=20) >>> p = Permutation([1, 0, 2, 3]) >>> init_printing(perm_cyclic=True, pretty_print=False) >>> p (3)(0 1) >>> init_printing(perm_cyclic=False, pretty_print=False) The 2 was not printed but it is still there as can be seen with the array_form and size methods: >>> p.array_form [1, 0, 2, 3] >>> p.size 4 Short introduction to other methods =================================== The permutation can act as a bijective function, telling what element is located at a given position >>> q = Permutation([5, 2, 3, 4, 1, 0]) >>> q.array_form[1] # the hard way 2 >>> q(1) # the easy way 2 >>> {i: q(i) for i in range(q.size)} # showing the bijection {0: 5, 1: 2, 2: 3, 3: 4, 4: 1, 5: 0} The full cyclic form (including singletons) can be obtained: >>> p.full_cyclic_form [[0, 1], [2], [3]] Any permutation can be factored into transpositions of pairs of elements: >>> Permutation([[1, 2], [3, 4, 5]]).transpositions() [(1, 2), (3, 5), (3, 4)] >>> Permutation.rmul(*[Permutation([ti], size=6) for ti in _]).cyclic_form [[1, 2], [3, 4, 5]] The number of permutations on a set of n elements is given by n! and is called the cardinality. >>> p.size 4 >>> p.cardinality 24 A given permutation has a rank among all the possible permutations of the same elements, but what that rank is depends on how the permutations are enumerated. (There are a number of different methods of doing so.) The lexicographic rank is given by the rank method and this rank is used to increment a permutation with addition/subtraction: >>> p.rank() 6 >>> p + 1 Permutation([1, 0, 3, 2]) >>> p.next_lex() Permutation([1, 0, 3, 2]) >>> _.rank() 7 >>> p.unrank_lex(p.size, rank=7) Permutation([1, 0, 3, 2]) The product of two permutations p and q is defined as their composition as functions, (p*q)(i) = q(p(i)) [6]_. >>> p = Permutation([1, 0, 2, 3]) >>> q = Permutation([2, 3, 1, 0]) >>> list(q*p) [2, 3, 0, 1] >>> list(p*q) [3, 2, 1, 0] >>> [q(p(i)) for i in range(p.size)] [3, 2, 1, 0] The permutation can be 'applied' to any list-like object, not only Permutations: >>> p(['zero', 'one', 'four', 'two']) ['one', 'zero', 'four', 'two'] >>> p('zo42') ['o', 'z', '4', '2'] If you have a list of arbitrary elements, the corresponding permutation can be found with the from_sequence method: >>> Permutation.from_sequence('SymPy') Permutation([1, 3, 2, 0, 4]) Checking if a Permutation is contained in a Group ================================================= Generally if you have a group of permutations G on n symbols, and you're checking if a permutation on less than n symbols is part of that group, the check will fail. Here is an example for n=5 and we check if the cycle (1,2,3) is in G: >>> from sympy import init_printing >>> init_printing(perm_cyclic=True, pretty_print=False) >>> from sympy.combinatorics import Cycle, Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> G = PermutationGroup(Cycle(2, 3)(4, 5), Cycle(1, 2, 3, 4, 5)) >>> p1 = Permutation(Cycle(2, 5, 3)) >>> p2 = Permutation(Cycle(1, 2, 3)) >>> a1 = Permutation(Cycle(1, 2, 3).list(6)) >>> a2 = Permutation(Cycle(1, 2, 3)(5)) >>> a3 = Permutation(Cycle(1, 2, 3),size=6) >>> for p in [p1,p2,a1,a2,a3]: p, G.contains(p) ((2 5 3), True) ((1 2 3), False) ((5)(1 2 3), True) ((5)(1 2 3), True) ((5)(1 2 3), True) The check for p2 above will fail. Checking if p1 is in G works because SymPy knows G is a group on 5 symbols, and p1 is also on 5 symbols (its largest element is 5). For ``a1``, the ``.list(6)`` call will extend the permutation to 5 symbols, so the test will work as well. In the case of ``a2`` the permutation is being extended to 5 symbols by using a singleton, and in the case of ``a3`` it's extended through the constructor argument ``size=6``. There is another way to do this, which is to tell the ``contains`` method that the number of symbols the group is on doesn't need to match perfectly the number of symbols for the permutation: >>> G.contains(p2,strict=False) True This can be via the ``strict`` argument to the ``contains`` method, and SymPy will try to extend the permutation on its own and then perform the containment check. See Also ======== Cycle References ========== .. [1] Skiena, S. 'Permutations.' 1.1 in Implementing Discrete Mathematics Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 3-16, 1990. .. [2] Knuth, D. E. The Art of Computer Programming, Vol. 4: Combinatorial Algorithms, 1st ed. Reading, MA: Addison-Wesley, 2011. .. [3] Wendy Myrvold and Frank Ruskey. 2001. Ranking and unranking permutations in linear time. Inf. Process. Lett. 79, 6 (September 2001), 281-284. DOI=10.1016/S0020-0190(01)00141-7 .. [4] D. L. Kreher, D. R. Stinson 'Combinatorial Algorithms' CRC Press, 1999 .. [5] Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994. .. [6] https://en.wikipedia.org/wiki/Permutation#Product_and_inverse .. [7] https://en.wikipedia.org/wiki/Lehmer_code """ is_Permutation = True _array_form = None _cyclic_form = None _cycle_structure = None _size = None _rank = None def __new__(cls, *args, size=None, **kwargs): """ Constructor for the Permutation object from a list or a list of lists in which all elements of the permutation may appear only once. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) Permutations entered in array-form are left unaltered: >>> Permutation([0, 2, 1]) Permutation([0, 2, 1]) Permutations entered in cyclic form are converted to array form; singletons need not be entered, but can be entered to indicate the largest element: >>> Permutation([[4, 5, 6], [0, 1]]) Permutation([1, 0, 2, 3, 5, 6, 4]) >>> Permutation([[4, 5, 6], [0, 1], [19]]) Permutation([1, 0, 2, 3, 5, 6, 4], size=20) All manipulation of permutations assumes that the smallest element is 0 (in keeping with 0-based indexing in Python) so if the 0 is missing when entering a permutation in array form, an error will be raised: >>> Permutation([2, 1]) Traceback (most recent call last): ... ValueError: Integers 0 through 2 must be present. If a permutation is entered in cyclic form, it can be entered without singletons and the ``size`` specified so those values can be filled in, otherwise the array form will only extend to the maximum value in the cycles: >>> Permutation([[1, 4], [3, 5, 2]], size=10) Permutation([0, 4, 3, 5, 1, 2], size=10) >>> _.array_form [0, 4, 3, 5, 1, 2, 6, 7, 8, 9] """ if size is not None: size = int(size) #a) () #b) (1) = identity #c) (1, 2) = cycle #d) ([1, 2, 3]) = array form #e) ([[1, 2]]) = cyclic form #f) (Cycle) = conversion to permutation #g) (Permutation) = adjust size or return copy ok = True if not args: # a return cls._af_new(list(range(size or 0))) elif len(args) > 1: # c return cls._af_new(Cycle(*args).list(size)) if len(args) == 1: a = args[0] if isinstance(a, cls): # g if size is None or size == a.size: return a return cls(a.array_form, size=size) if isinstance(a, Cycle): # f return cls._af_new(a.list(size)) if not is_sequence(a): # b if size is not None and a + 1 > size: raise ValueError('size is too small when max is %s' % a) return cls._af_new(list(range(a + 1))) if has_variety(is_sequence(ai) for ai in a): ok = False else: ok = False if not ok: raise ValueError("Permutation argument must be a list of ints, " "a list of lists, Permutation or Cycle.") # safe to assume args are valid; this also makes a copy # of the args args = list(args[0]) is_cycle = args and is_sequence(args[0]) if is_cycle: # e args = [[int(i) for i in c] for c in args] else: # d args = [int(i) for i in args] # if there are n elements present, 0, 1, ..., n-1 should be present # unless a cycle notation has been provided. A 0 will be added # for convenience in case one wants to enter permutations where # counting starts from 1. temp = flatten(args) if has_dups(temp) and not is_cycle: raise ValueError('there were repeated elements.') temp = set(temp) if not is_cycle: if temp != set(range(len(temp))): raise ValueError('Integers 0 through %s must be present.' % max(temp)) if size is not None and temp and max(temp) + 1 > size: raise ValueError('max element should not exceed %s' % (size - 1)) if is_cycle: # it's not necessarily canonical so we won't store # it -- use the array form instead c = Cycle() for ci in args: c = c(*ci) aform = c.list() else: aform = list(args) if size and size > len(aform): # don't allow for truncation of permutation which # might split a cycle and lead to an invalid aform # but do allow the permutation size to be increased aform.extend(list(range(len(aform), size))) return cls._af_new(aform) @classmethod def _af_new(cls, perm): """A method to produce a Permutation object from a list; the list is bound to the _array_form attribute, so it must not be modified; this method is meant for internal use only; the list ``a`` is supposed to be generated as a temporary value in a method, so p = Perm._af_new(a) is the only object to hold a reference to ``a``:: Examples ======== >>> from sympy.combinatorics.permutations import Perm >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> a = [2, 1, 3, 0] >>> p = Perm._af_new(a) >>> p Permutation([2, 1, 3, 0]) """ p = super().__new__(cls) p._array_form = perm p._size = len(perm) return p def _hashable_content(self): # the array_form (a list) is the Permutation arg, so we need to # return a tuple, instead return tuple(self.array_form) @property def array_form(self): """ Return a copy of the attribute _array_form Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([[2, 0], [3, 1]]) >>> p.array_form [2, 3, 0, 1] >>> Permutation([[2, 0, 3, 1]]).array_form [3, 2, 0, 1] >>> Permutation([2, 0, 3, 1]).array_form [2, 0, 3, 1] >>> Permutation([[1, 2], [4, 5]]).array_form [0, 2, 1, 3, 5, 4] """ return self._array_form[:] def list(self, size=None): """Return the permutation as an explicit list, possibly trimming unmoved elements if size is less than the maximum element in the permutation; if this is desired, setting ``size=-1`` will guarantee such trimming. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation(2, 3)(4, 5) >>> p.list() [0, 1, 3, 2, 5, 4] >>> p.list(10) [0, 1, 3, 2, 5, 4, 6, 7, 8, 9] Passing a length too small will trim trailing, unchanged elements in the permutation: >>> Permutation(2, 4)(1, 2, 4).list(-1) [0, 2, 1] >>> Permutation(3).list(-1) [] """ if not self and size is None: raise ValueError('must give size for empty Cycle') rv = self.array_form if size is not None: if size > self.size: rv.extend(list(range(self.size, size))) else: # find first value from rhs where rv[i] != i i = self.size - 1 while rv: if rv[-1] != i: break rv.pop() i -= 1 return rv @property def cyclic_form(self): """ This is used to convert to the cyclic notation from the canonical notation. Singletons are omitted. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 3, 1, 2]) >>> p.cyclic_form [[1, 3, 2]] >>> Permutation([1, 0, 2, 4, 3, 5]).cyclic_form [[0, 1], [3, 4]] See Also ======== array_form, full_cyclic_form """ if self._cyclic_form is not None: return list(self._cyclic_form) array_form = self.array_form unchecked = [True] * len(array_form) cyclic_form = [] for i in range(len(array_form)): if unchecked[i]: cycle = [] cycle.append(i) unchecked[i] = False j = i while unchecked[array_form[j]]: j = array_form[j] cycle.append(j) unchecked[j] = False if len(cycle) > 1: cyclic_form.append(cycle) assert cycle == list(minlex(cycle)) cyclic_form.sort() self._cyclic_form = cyclic_form[:] return cyclic_form @property def full_cyclic_form(self): """Return permutation in cyclic form including singletons. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation([0, 2, 1]).full_cyclic_form [[0], [1, 2]] """ need = set(range(self.size)) - set(flatten(self.cyclic_form)) rv = self.cyclic_form + [[i] for i in need] rv.sort() return rv @property def size(self): """ Returns the number of elements in the permutation. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([[3, 2], [0, 1]]).size 4 See Also ======== cardinality, length, order, rank """ return self._size def support(self): """Return the elements in permutation, P, for which P[i] != i. Examples ======== >>> from sympy.combinatorics import Permutation >>> p = Permutation([[3, 2], [0, 1], [4]]) >>> p.array_form [1, 0, 3, 2, 4] >>> p.support() [0, 1, 2, 3] """ a = self.array_form return [i for i, e in enumerate(a) if a[i] != i] def __add__(self, other): """Return permutation that is other higher in rank than self. The rank is the lexicographical rank, with the identity permutation having rank of 0. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> I = Permutation([0, 1, 2, 3]) >>> a = Permutation([2, 1, 3, 0]) >>> I + a.rank() == a True See Also ======== __sub__, inversion_vector """ rank = (self.rank() + other) % self.cardinality rv = self.unrank_lex(self.size, rank) rv._rank = rank return rv def __sub__(self, other): """Return the permutation that is other lower in rank than self. See Also ======== __add__ """ return self.__add__(-other) @staticmethod def rmul(*args): """ Return product of Permutations [a, b, c, ...] as the Permutation whose ith value is a(b(c(i))). a, b, c, ... can be Permutation objects or tuples. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> a, b = [1, 0, 2], [0, 2, 1] >>> a = Permutation(a); b = Permutation(b) >>> list(Permutation.rmul(a, b)) [1, 2, 0] >>> [a(b(i)) for i in range(3)] [1, 2, 0] This handles the operands in reverse order compared to the ``*`` operator: >>> a = Permutation(a); b = Permutation(b) >>> list(a*b) [2, 0, 1] >>> [b(a(i)) for i in range(3)] [2, 0, 1] Notes ===== All items in the sequence will be parsed by Permutation as necessary as long as the first item is a Permutation: >>> Permutation.rmul(a, [0, 2, 1]) == Permutation.rmul(a, b) True The reverse order of arguments will raise a TypeError. """ rv = args[0] for i in range(1, len(args)): rv = args[i]*rv return rv @classmethod def rmul_with_af(cls, *args): """ same as rmul, but the elements of args are Permutation objects which have _array_form """ a = [x._array_form for x in args] rv = cls._af_new(_af_rmuln(*a)) return rv def mul_inv(self, other): """ other*~self, self and other have _array_form """ a = _af_invert(self._array_form) b = other._array_form return self._af_new(_af_rmul(a, b)) def __rmul__(self, other): """This is needed to coerce other to Permutation in rmul.""" cls = type(self) return cls(other)*self def __mul__(self, other): """ Return the product a*b as a Permutation; the ith value is b(a(i)). Examples ======== >>> from sympy.combinatorics.permutations import _af_rmul, Permutation >>> a, b = [1, 0, 2], [0, 2, 1] >>> a = Permutation(a); b = Permutation(b) >>> list(a*b) [2, 0, 1] >>> [b(a(i)) for i in range(3)] [2, 0, 1] This handles operands in reverse order compared to _af_rmul and rmul: >>> al = list(a); bl = list(b) >>> _af_rmul(al, bl) [1, 2, 0] >>> [al[bl[i]] for i in range(3)] [1, 2, 0] It is acceptable for the arrays to have different lengths; the shorter one will be padded to match the longer one: >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> b*Permutation([1, 0]) Permutation([1, 2, 0]) >>> Permutation([1, 0])*b Permutation([2, 0, 1]) It is also acceptable to allow coercion to handle conversion of a single list to the left of a Permutation: >>> [0, 1]*a # no change: 2-element identity Permutation([1, 0, 2]) >>> [[0, 1]]*a # exchange first two elements Permutation([0, 1, 2]) You cannot use more than 1 cycle notation in a product of cycles since coercion can only handle one argument to the left. To handle multiple cycles it is convenient to use Cycle instead of Permutation: >>> [[1, 2]]*[[2, 3]]*Permutation([]) # doctest: +SKIP >>> from sympy.combinatorics.permutations import Cycle >>> Cycle(1, 2)(2, 3) (1 3 2) """ from sympy.combinatorics.perm_groups import PermutationGroup, Coset if isinstance(other, PermutationGroup): return Coset(self, other, dir='-') a = self.array_form # __rmul__ makes sure the other is a Permutation b = other.array_form if not b: perm = a else: b.extend(list(range(len(b), len(a)))) perm = [b[i] for i in a] + b[len(a):] return self._af_new(perm) def commutes_with(self, other): """ Checks if the elements are commuting. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> a = Permutation([1, 4, 3, 0, 2, 5]) >>> b = Permutation([0, 1, 2, 3, 4, 5]) >>> a.commutes_with(b) True >>> b = Permutation([2, 3, 5, 4, 1, 0]) >>> a.commutes_with(b) False """ a = self.array_form b = other.array_form return _af_commutes_with(a, b) def __pow__(self, n): """ Routine for finding powers of a permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> p = Permutation([2, 0, 3, 1]) >>> p.order() 4 >>> p**4 Permutation([0, 1, 2, 3]) """ if isinstance(n, Permutation): raise NotImplementedError( 'p**p is not defined; do you mean p^p (conjugate)?') n = int(n) return self._af_new(_af_pow(self.array_form, n)) def __rxor__(self, i): """Return self(i) when ``i`` is an int. Examples ======== >>> from sympy.combinatorics import Permutation >>> p = Permutation(1, 2, 9) >>> 2^p == p(2) == 9 True """ if int(i) == i: return self(i) else: raise NotImplementedError( "i^p = p(i) when i is an integer, not %s." % i) def __xor__(self, h): """Return the conjugate permutation ``~h*self*h` `. Explanation =========== If ``a`` and ``b`` are conjugates, ``a = h*b*~h`` and ``b = ~h*a*h`` and both have the same cycle structure. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation(1, 2, 9) >>> q = Permutation(6, 9, 8) >>> p*q != q*p True Calculate and check properties of the conjugate: >>> c = p^q >>> c == ~q*p*q and p == q*c*~q True The expression q^p^r is equivalent to q^(p*r): >>> r = Permutation(9)(4, 6, 8) >>> q^p^r == q^(p*r) True If the term to the left of the conjugate operator, i, is an integer then this is interpreted as selecting the ith element from the permutation to the right: >>> all(i^p == p(i) for i in range(p.size)) True Note that the * operator as higher precedence than the ^ operator: >>> q^r*p^r == q^(r*p)^r == Permutation(9)(1, 6, 4) True Notes ===== In Python the precedence rule is p^q^r = (p^q)^r which differs in general from p^(q^r) >>> q^p^r (9)(1 4 8) >>> q^(p^r) (9)(1 8 6) For a given r and p, both of the following are conjugates of p: ~r*p*r and r*p*~r. But these are not necessarily the same: >>> ~r*p*r == r*p*~r True >>> p = Permutation(1, 2, 9)(5, 6) >>> ~r*p*r == r*p*~r False The conjugate ~r*p*r was chosen so that ``p^q^r`` would be equivalent to ``p^(q*r)`` rather than ``p^(r*q)``. To obtain r*p*~r, pass ~r to this method: >>> p^~r == r*p*~r True """ if self.size != h.size: raise ValueError("The permutations must be of equal size.") a = [None]*self.size h = h._array_form p = self._array_form for i in range(self.size): a[h[i]] = h[p[i]] return self._af_new(a) def transpositions(self): """ Return the permutation decomposed into a list of transpositions. Explanation =========== It is always possible to express a permutation as the product of transpositions, see [1] Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([[1, 2, 3], [0, 4, 5, 6, 7]]) >>> t = p.transpositions() >>> t [(0, 7), (0, 6), (0, 5), (0, 4), (1, 3), (1, 2)] >>> print(''.join(str(c) for c in t)) (0, 7)(0, 6)(0, 5)(0, 4)(1, 3)(1, 2) >>> Permutation.rmul(*[Permutation([ti], size=p.size) for ti in t]) == p True References ========== .. [1] https://en.wikipedia.org/wiki/Transposition_%28mathematics%29#Properties """ a = self.cyclic_form res = [] for x in a: nx = len(x) if nx == 2: res.append(tuple(x)) elif nx > 2: first = x[0] for y in x[nx - 1:0:-1]: res.append((first, y)) return res @classmethod def from_sequence(self, i, key=None): """Return the permutation needed to obtain ``i`` from the sorted elements of ``i``. If custom sorting is desired, a key can be given. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.from_sequence('SymPy') (4)(0 1 3) >>> _(sorted("SymPy")) ['S', 'y', 'm', 'P', 'y'] >>> Permutation.from_sequence('SymPy', key=lambda x: x.lower()) (4)(0 2)(1 3) """ ic = list(zip(i, list(range(len(i))))) if key: ic.sort(key=lambda x: key(x[0])) else: ic.sort() return ~Permutation([i[1] for i in ic]) def __invert__(self): """ Return the inverse of the permutation. A permutation multiplied by its inverse is the identity permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> p = Permutation([[2, 0], [3, 1]]) >>> ~p Permutation([2, 3, 0, 1]) >>> _ == p**-1 True >>> p*~p == ~p*p == Permutation([0, 1, 2, 3]) True """ return self._af_new(_af_invert(self._array_form)) def __iter__(self): """Yield elements from array form. Examples ======== >>> from sympy.combinatorics import Permutation >>> list(Permutation(range(3))) [0, 1, 2] """ yield from self.array_form def __repr__(self): from sympy.printing.repr import srepr return srepr(self) def __call__(self, *i): """ Allows applying a permutation instance as a bijective function. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([[2, 0], [3, 1]]) >>> p.array_form [2, 3, 0, 1] >>> [p(i) for i in range(4)] [2, 3, 0, 1] If an array is given then the permutation selects the items from the array (i.e. the permutation is applied to the array): >>> from sympy.abc import x >>> p([x, 1, 0, x**2]) [0, x**2, x, 1] """ # list indices can be Integer or int; leave this # as it is (don't test or convert it) because this # gets called a lot and should be fast if len(i) == 1: i = i[0] if not isinstance(i, Iterable): i = as_int(i) if i < 0 or i > self.size: raise TypeError( "{} should be an integer between 0 and {}" .format(i, self.size-1)) return self._array_form[i] # P([a, b, c]) if len(i) != self.size: raise TypeError( "{} should have the length {}.".format(i, self.size)) return [i[j] for j in self._array_form] # P(1, 2, 3) return self*Permutation(Cycle(*i), size=self.size) def atoms(self): """ Returns all the elements of a permutation Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([0, 1, 2, 3, 4, 5]).atoms() {0, 1, 2, 3, 4, 5} >>> Permutation([[0, 1], [2, 3], [4, 5]]).atoms() {0, 1, 2, 3, 4, 5} """ return set(self.array_form) def apply(self, i): r"""Apply the permutation to an expression. Parameters ========== i : Expr It should be an integer between $0$ and $n-1$ where $n$ is the size of the permutation. If it is a symbol or a symbolic expression that can have integer values, an ``AppliedPermutation`` object will be returned which can represent an unevaluated function. Notes ===== Any permutation can be defined as a bijective function $\sigma : \{ 0, 1, \dots, n-1 \} \rightarrow \{ 0, 1, \dots, n-1 \}$ where $n$ denotes the size of the permutation. The definition may even be extended for any set with distinctive elements, such that the permutation can even be applied for real numbers or such, however, it is not implemented for now for computational reasons and the integrity with the group theory module. This function is similar to the ``__call__`` magic, however, ``__call__`` magic already has some other applications like permuting an array or attatching new cycles, which would not always be mathematically consistent. This also guarantees that the return type is a SymPy integer, which guarantees the safety to use assumptions. """ i = _sympify(i) if i.is_integer is False: raise NotImplementedError("{} should be an integer.".format(i)) n = self.size if (i < 0) == True or (i >= n) == True: raise NotImplementedError( "{} should be an integer between 0 and {}".format(i, n-1)) if i.is_Integer: return Integer(self._array_form[i]) return AppliedPermutation(self, i) def next_lex(self): """ Returns the next permutation in lexicographical order. If self is the last permutation in lexicographical order it returns None. See [4] section 2.4. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([2, 3, 1, 0]) >>> p = Permutation([2, 3, 1, 0]); p.rank() 17 >>> p = p.next_lex(); p.rank() 18 See Also ======== rank, unrank_lex """ perm = self.array_form[:] n = len(perm) i = n - 2 while perm[i + 1] < perm[i]: i -= 1 if i == -1: return None else: j = n - 1 while perm[j] < perm[i]: j -= 1 perm[j], perm[i] = perm[i], perm[j] i += 1 j = n - 1 while i < j: perm[j], perm[i] = perm[i], perm[j] i += 1 j -= 1 return self._af_new(perm) @classmethod def unrank_nonlex(self, n, r): """ This is a linear time unranking algorithm that does not respect lexicographic order [3]. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> Permutation.unrank_nonlex(4, 5) Permutation([2, 0, 3, 1]) >>> Permutation.unrank_nonlex(4, -1) Permutation([0, 1, 2, 3]) See Also ======== next_nonlex, rank_nonlex """ def _unrank1(n, r, a): if n > 0: a[n - 1], a[r % n] = a[r % n], a[n - 1] _unrank1(n - 1, r//n, a) id_perm = list(range(n)) n = int(n) r = r % ifac(n) _unrank1(n, r, id_perm) return self._af_new(id_perm) def rank_nonlex(self, inv_perm=None): """ This is a linear time ranking algorithm that does not enforce lexicographic order [3]. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.rank_nonlex() 23 See Also ======== next_nonlex, unrank_nonlex """ def _rank1(n, perm, inv_perm): if n == 1: return 0 s = perm[n - 1] t = inv_perm[n - 1] perm[n - 1], perm[t] = perm[t], s inv_perm[n - 1], inv_perm[s] = inv_perm[s], t return s + n*_rank1(n - 1, perm, inv_perm) if inv_perm is None: inv_perm = (~self).array_form if not inv_perm: return 0 perm = self.array_form[:] r = _rank1(len(perm), perm, inv_perm) return r def next_nonlex(self): """ Returns the next permutation in nonlex order [3]. If self is the last permutation in this order it returns None. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> p = Permutation([2, 0, 3, 1]); p.rank_nonlex() 5 >>> p = p.next_nonlex(); p Permutation([3, 0, 1, 2]) >>> p.rank_nonlex() 6 See Also ======== rank_nonlex, unrank_nonlex """ r = self.rank_nonlex() if r == ifac(self.size) - 1: return None return self.unrank_nonlex(self.size, r + 1) def rank(self): """ Returns the lexicographic rank of the permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.rank() 0 >>> p = Permutation([3, 2, 1, 0]) >>> p.rank() 23 See Also ======== next_lex, unrank_lex, cardinality, length, order, size """ if not self._rank is None: return self._rank rank = 0 rho = self.array_form[:] n = self.size - 1 size = n + 1 psize = int(ifac(n)) for j in range(size - 1): rank += rho[j]*psize for i in range(j + 1, size): if rho[i] > rho[j]: rho[i] -= 1 psize //= n n -= 1 self._rank = rank return rank @property def cardinality(self): """ Returns the number of all possible permutations. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.cardinality 24 See Also ======== length, order, rank, size """ return int(ifac(self.size)) def parity(self): """ Computes the parity of a permutation. Explanation =========== The parity of a permutation reflects the parity of the number of inversions in the permutation, i.e., the number of pairs of x and y such that ``x > y`` but ``p[x] < p[y]``. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.parity() 0 >>> p = Permutation([3, 2, 0, 1]) >>> p.parity() 1 See Also ======== _af_parity """ if self._cyclic_form is not None: return (self.size - self.cycles) % 2 return _af_parity(self.array_form) @property def is_even(self): """ Checks if a permutation is even. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.is_even True >>> p = Permutation([3, 2, 1, 0]) >>> p.is_even True See Also ======== is_odd """ return not self.is_odd @property def is_odd(self): """ Checks if a permutation is odd. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.is_odd False >>> p = Permutation([3, 2, 0, 1]) >>> p.is_odd True See Also ======== is_even """ return bool(self.parity() % 2) @property def is_Singleton(self): """ Checks to see if the permutation contains only one number and is thus the only possible permutation of this set of numbers Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([0]).is_Singleton True >>> Permutation([0, 1]).is_Singleton False See Also ======== is_Empty """ return self.size == 1 @property def is_Empty(self): """ Checks to see if the permutation is a set with zero elements Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([]).is_Empty True >>> Permutation([0]).is_Empty False See Also ======== is_Singleton """ return self.size == 0 @property def is_identity(self): return self.is_Identity @property def is_Identity(self): """ Returns True if the Permutation is an identity permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([]) >>> p.is_Identity True >>> p = Permutation([[0], [1], [2]]) >>> p.is_Identity True >>> p = Permutation([0, 1, 2]) >>> p.is_Identity True >>> p = Permutation([0, 2, 1]) >>> p.is_Identity False See Also ======== order """ af = self.array_form return not af or all(i == af[i] for i in range(self.size)) def ascents(self): """ Returns the positions of ascents in a permutation, ie, the location where p[i] < p[i+1] Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([4, 0, 1, 3, 2]) >>> p.ascents() [1, 2] See Also ======== descents, inversions, min, max """ a = self.array_form pos = [i for i in range(len(a) - 1) if a[i] < a[i + 1]] return pos def descents(self): """ Returns the positions of descents in a permutation, ie, the location where p[i] > p[i+1] Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([4, 0, 1, 3, 2]) >>> p.descents() [0, 3] See Also ======== ascents, inversions, min, max """ a = self.array_form pos = [i for i in range(len(a) - 1) if a[i] > a[i + 1]] return pos def max(self): """ The maximum element moved by the permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([1, 0, 2, 3, 4]) >>> p.max() 1 See Also ======== min, descents, ascents, inversions """ max = 0 a = self.array_form for i in range(len(a)): if a[i] != i and a[i] > max: max = a[i] return max def min(self): """ The minimum element moved by the permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 4, 3, 2]) >>> p.min() 2 See Also ======== max, descents, ascents, inversions """ a = self.array_form min = len(a) for i in range(len(a)): if a[i] != i and a[i] < min: min = a[i] return min def inversions(self): """ Computes the number of inversions of a permutation. Explanation =========== An inversion is where i > j but p[i] < p[j]. For small length of p, it iterates over all i and j values and calculates the number of inversions. For large length of p, it uses a variation of merge sort to calculate the number of inversions. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3, 4, 5]) >>> p.inversions() 0 >>> Permutation([3, 2, 1, 0]).inversions() 6 See Also ======== descents, ascents, min, max References ========== .. [1] http://www.cp.eng.chula.ac.th/~piak/teaching/algo/algo2008/count-inv.htm """ inversions = 0 a = self.array_form n = len(a) if n < 130: for i in range(n - 1): b = a[i] for c in a[i + 1:]: if b > c: inversions += 1 else: k = 1 right = 0 arr = a[:] temp = a[:] while k < n: i = 0 while i + k < n: right = i + k * 2 - 1 if right >= n: right = n - 1 inversions += _merge(arr, temp, i, i + k, right) i = i + k * 2 k = k * 2 return inversions def commutator(self, x): """Return the commutator of ``self`` and ``x``: ``~x*~self*x*self`` If f and g are part of a group, G, then the commutator of f and g is the group identity iff f and g commute, i.e. fg == gf. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> p = Permutation([0, 2, 3, 1]) >>> x = Permutation([2, 0, 3, 1]) >>> c = p.commutator(x); c Permutation([2, 1, 3, 0]) >>> c == ~x*~p*x*p True >>> I = Permutation(3) >>> p = [I + i for i in range(6)] >>> for i in range(len(p)): ... for j in range(len(p)): ... c = p[i].commutator(p[j]) ... if p[i]*p[j] == p[j]*p[i]: ... assert c == I ... else: ... assert c != I ... References ========== .. [1] https://en.wikipedia.org/wiki/Commutator """ a = self.array_form b = x.array_form n = len(a) if len(b) != n: raise ValueError("The permutations must be of equal size.") inva = [None]*n for i in range(n): inva[a[i]] = i invb = [None]*n for i in range(n): invb[b[i]] = i return self._af_new([a[b[inva[i]]] for i in invb]) def signature(self): """ Gives the signature of the permutation needed to place the elements of the permutation in canonical order. The signature is calculated as (-1)^<number of inversions> Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2]) >>> p.inversions() 0 >>> p.signature() 1 >>> q = Permutation([0,2,1]) >>> q.inversions() 1 >>> q.signature() -1 See Also ======== inversions """ if self.is_even: return 1 return -1 def order(self): """ Computes the order of a permutation. When the permutation is raised to the power of its order it equals the identity permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> p = Permutation([3, 1, 5, 2, 4, 0]) >>> p.order() 4 >>> (p**(p.order())) Permutation([], size=6) See Also ======== identity, cardinality, length, rank, size """ return reduce(lcm, [len(cycle) for cycle in self.cyclic_form], 1) def length(self): """ Returns the number of integers moved by a permutation. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([0, 3, 2, 1]).length() 2 >>> Permutation([[0, 1], [2, 3]]).length() 4 See Also ======== min, max, support, cardinality, order, rank, size """ return len(self.support()) @property def cycle_structure(self): """Return the cycle structure of the permutation as a dictionary indicating the multiplicity of each cycle length. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation(3).cycle_structure {1: 4} >>> Permutation(0, 4, 3)(1, 2)(5, 6).cycle_structure {2: 2, 3: 1} """ if self._cycle_structure: rv = self._cycle_structure else: rv = defaultdict(int) singletons = self.size for c in self.cyclic_form: rv[len(c)] += 1 singletons -= len(c) if singletons: rv[1] = singletons self._cycle_structure = rv return dict(rv) # make a copy @property def cycles(self): """ Returns the number of cycles contained in the permutation (including singletons). Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([0, 1, 2]).cycles 3 >>> Permutation([0, 1, 2]).full_cyclic_form [[0], [1], [2]] >>> Permutation(0, 1)(2, 3).cycles 2 See Also ======== sympy.functions.combinatorial.numbers.stirling """ return len(self.full_cyclic_form) def index(self): """ Returns the index of a permutation. The index of a permutation is the sum of all subscripts j such that p[j] is greater than p[j+1]. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([3, 0, 2, 1, 4]) >>> p.index() 2 """ a = self.array_form return sum([j for j in range(len(a) - 1) if a[j] > a[j + 1]]) def runs(self): """ Returns the runs of a permutation. An ascending sequence in a permutation is called a run [5]. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([2, 5, 7, 3, 6, 0, 1, 4, 8]) >>> p.runs() [[2, 5, 7], [3, 6], [0, 1, 4, 8]] >>> q = Permutation([1,3,2,0]) >>> q.runs() [[1, 3], [2], [0]] """ return runs(self.array_form) def inversion_vector(self): """Return the inversion vector of the permutation. The inversion vector consists of elements whose value indicates the number of elements in the permutation that are lesser than it and lie on its right hand side. The inversion vector is the same as the Lehmer encoding of a permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([4, 8, 0, 7, 1, 5, 3, 6, 2]) >>> p.inversion_vector() [4, 7, 0, 5, 0, 2, 1, 1] >>> p = Permutation([3, 2, 1, 0]) >>> p.inversion_vector() [3, 2, 1] The inversion vector increases lexicographically with the rank of the permutation, the -ith element cycling through 0..i. >>> p = Permutation(2) >>> while p: ... print('%s %s %s' % (p, p.inversion_vector(), p.rank())) ... p = p.next_lex() (2) [0, 0] 0 (1 2) [0, 1] 1 (2)(0 1) [1, 0] 2 (0 1 2) [1, 1] 3 (0 2 1) [2, 0] 4 (0 2) [2, 1] 5 See Also ======== from_inversion_vector """ self_array_form = self.array_form n = len(self_array_form) inversion_vector = [0] * (n - 1) for i in range(n - 1): val = 0 for j in range(i + 1, n): if self_array_form[j] < self_array_form[i]: val += 1 inversion_vector[i] = val return inversion_vector def rank_trotterjohnson(self): """ Returns the Trotter Johnson rank, which we get from the minimal change algorithm. See [4] section 2.4. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.rank_trotterjohnson() 0 >>> p = Permutation([0, 2, 1, 3]) >>> p.rank_trotterjohnson() 7 See Also ======== unrank_trotterjohnson, next_trotterjohnson """ if self.array_form == [] or self.is_Identity: return 0 if self.array_form == [1, 0]: return 1 perm = self.array_form n = self.size rank = 0 for j in range(1, n): k = 1 i = 0 while perm[i] != j: if perm[i] < j: k += 1 i += 1 j1 = j + 1 if rank % 2 == 0: rank = j1*rank + j1 - k else: rank = j1*rank + k - 1 return rank @classmethod def unrank_trotterjohnson(cls, size, rank): """ Trotter Johnson permutation unranking. See [4] section 2.4. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> Permutation.unrank_trotterjohnson(5, 10) Permutation([0, 3, 1, 2, 4]) See Also ======== rank_trotterjohnson, next_trotterjohnson """ perm = [0]*size r2 = 0 n = ifac(size) pj = 1 for j in range(2, size + 1): pj *= j r1 = (rank * pj) // n k = r1 - j*r2 if r2 % 2 == 0: for i in range(j - 1, j - k - 1, -1): perm[i] = perm[i - 1] perm[j - k - 1] = j - 1 else: for i in range(j - 1, k, -1): perm[i] = perm[i - 1] perm[k] = j - 1 r2 = r1 return cls._af_new(perm) def next_trotterjohnson(self): """ Returns the next permutation in Trotter-Johnson order. If self is the last permutation it returns None. See [4] section 2.4. If it is desired to generate all such permutations, they can be generated in order more quickly with the ``generate_bell`` function. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> p = Permutation([3, 0, 2, 1]) >>> p.rank_trotterjohnson() 4 >>> p = p.next_trotterjohnson(); p Permutation([0, 3, 2, 1]) >>> p.rank_trotterjohnson() 5 See Also ======== rank_trotterjohnson, unrank_trotterjohnson, sympy.utilities.iterables.generate_bell """ pi = self.array_form[:] n = len(pi) st = 0 rho = pi[:] done = False m = n-1 while m > 0 and not done: d = rho.index(m) for i in range(d, m): rho[i] = rho[i + 1] par = _af_parity(rho[:m]) if par == 1: if d == m: m -= 1 else: pi[st + d], pi[st + d + 1] = pi[st + d + 1], pi[st + d] done = True else: if d == 0: m -= 1 st += 1 else: pi[st + d], pi[st + d - 1] = pi[st + d - 1], pi[st + d] done = True if m == 0: return None return self._af_new(pi) def get_precedence_matrix(self): """ Gets the precedence matrix. This is used for computing the distance between two permutations. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> p = Permutation.josephus(3, 6, 1) >>> p Permutation([2, 5, 3, 1, 4, 0]) >>> p.get_precedence_matrix() Matrix([ [0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0], [1, 1, 0, 1, 1, 0]]) See Also ======== get_precedence_distance, get_adjacency_matrix, get_adjacency_distance """ m = zeros(self.size) perm = self.array_form for i in range(m.rows): for j in range(i + 1, m.cols): m[perm[i], perm[j]] = 1 return m def get_precedence_distance(self, other): """ Computes the precedence distance between two permutations. Explanation =========== Suppose p and p' represent n jobs. The precedence metric counts the number of times a job j is preceded by job i in both p and p'. This metric is commutative. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([2, 0, 4, 3, 1]) >>> q = Permutation([3, 1, 2, 4, 0]) >>> p.get_precedence_distance(q) 7 >>> q.get_precedence_distance(p) 7 See Also ======== get_precedence_matrix, get_adjacency_matrix, get_adjacency_distance """ if self.size != other.size: raise ValueError("The permutations must be of equal size.") self_prec_mat = self.get_precedence_matrix() other_prec_mat = other.get_precedence_matrix() n_prec = 0 for i in range(self.size): for j in range(self.size): if i == j: continue if self_prec_mat[i, j] * other_prec_mat[i, j] == 1: n_prec += 1 d = self.size * (self.size - 1)//2 - n_prec return d def get_adjacency_matrix(self): """ Computes the adjacency matrix of a permutation. Explanation =========== If job i is adjacent to job j in a permutation p then we set m[i, j] = 1 where m is the adjacency matrix of p. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation.josephus(3, 6, 1) >>> p.get_adjacency_matrix() Matrix([ [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]) >>> q = Permutation([0, 1, 2, 3]) >>> q.get_adjacency_matrix() Matrix([ [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 0]]) See Also ======== get_precedence_matrix, get_precedence_distance, get_adjacency_distance """ m = zeros(self.size) perm = self.array_form for i in range(self.size - 1): m[perm[i], perm[i + 1]] = 1 return m def get_adjacency_distance(self, other): """ Computes the adjacency distance between two permutations. Explanation =========== This metric counts the number of times a pair i,j of jobs is adjacent in both p and p'. If n_adj is this quantity then the adjacency distance is n - n_adj - 1 [1] [1] Reeves, Colin R. Landscapes, Operators and Heuristic search, Annals of Operational Research, 86, pp 473-490. (1999) Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 3, 1, 2, 4]) >>> q = Permutation.josephus(4, 5, 2) >>> p.get_adjacency_distance(q) 3 >>> r = Permutation([0, 2, 1, 4, 3]) >>> p.get_adjacency_distance(r) 4 See Also ======== get_precedence_matrix, get_precedence_distance, get_adjacency_matrix """ if self.size != other.size: raise ValueError("The permutations must be of the same size.") self_adj_mat = self.get_adjacency_matrix() other_adj_mat = other.get_adjacency_matrix() n_adj = 0 for i in range(self.size): for j in range(self.size): if i == j: continue if self_adj_mat[i, j] * other_adj_mat[i, j] == 1: n_adj += 1 d = self.size - n_adj - 1 return d def get_positional_distance(self, other): """ Computes the positional distance between two permutations. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 3, 1, 2, 4]) >>> q = Permutation.josephus(4, 5, 2) >>> r = Permutation([3, 1, 4, 0, 2]) >>> p.get_positional_distance(q) 12 >>> p.get_positional_distance(r) 12 See Also ======== get_precedence_distance, get_adjacency_distance """ a = self.array_form b = other.array_form if len(a) != len(b): raise ValueError("The permutations must be of the same size.") return sum([abs(a[i] - b[i]) for i in range(len(a))]) @classmethod def josephus(cls, m, n, s=1): """Return as a permutation the shuffling of range(n) using the Josephus scheme in which every m-th item is selected until all have been chosen. The returned permutation has elements listed by the order in which they were selected. The parameter ``s`` stops the selection process when there are ``s`` items remaining and these are selected by continuing the selection, counting by 1 rather than by ``m``. Consider selecting every 3rd item from 6 until only 2 remain:: choices chosen ======== ====== 012345 01 345 2 01 34 25 01 4 253 0 4 2531 0 25314 253140 Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.josephus(3, 6, 2).array_form [2, 5, 3, 1, 4, 0] References ========== .. [1] https://en.wikipedia.org/wiki/Flavius_Josephus .. [2] https://en.wikipedia.org/wiki/Josephus_problem .. [3] http://www.wou.edu/~burtonl/josephus.html """ from collections import deque m -= 1 Q = deque(list(range(n))) perm = [] while len(Q) > max(s, 1): for dp in range(m): Q.append(Q.popleft()) perm.append(Q.popleft()) perm.extend(list(Q)) return cls(perm) @classmethod def from_inversion_vector(cls, inversion): """ Calculates the permutation from the inversion vector. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> Permutation.from_inversion_vector([3, 2, 1, 0, 0]) Permutation([3, 2, 1, 0, 4, 5]) """ size = len(inversion) N = list(range(size + 1)) perm = [] try: for k in range(size): val = N[inversion[k]] perm.append(val) N.remove(val) except IndexError: raise ValueError("The inversion vector is not valid.") perm.extend(N) return cls._af_new(perm) @classmethod def random(cls, n): """ Generates a random permutation of length ``n``. Uses the underlying Python pseudo-random number generator. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1])) True """ perm_array = list(range(n)) random.shuffle(perm_array) return cls._af_new(perm_array) @classmethod def unrank_lex(cls, size, rank): """ Lexicographic permutation unranking. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> a = Permutation.unrank_lex(5, 10) >>> a.rank() 10 >>> a Permutation([0, 2, 4, 1, 3]) See Also ======== rank, next_lex """ perm_array = [0] * size psize = 1 for i in range(size): new_psize = psize*(i + 1) d = (rank % new_psize) // psize rank -= d*psize perm_array[size - i - 1] = d for j in range(size - i, size): if perm_array[j] > d - 1: perm_array[j] += 1 psize = new_psize return cls._af_new(perm_array) def resize(self, n): """Resize the permutation to the new size ``n``. Parameters ========== n : int The new size of the permutation. Raises ====== ValueError If the permutation cannot be resized to the given size. This may only happen when resized to a smaller size than the original. Examples ======== >>> from sympy.combinatorics.permutations import Permutation Increasing the size of a permutation: >>> p = Permutation(0, 1, 2) >>> p = p.resize(5) >>> p (4)(0 1 2) Decreasing the size of the permutation: >>> p = p.resize(4) >>> p (3)(0 1 2) If resizing to the specific size breaks the cycles: >>> p.resize(2) Traceback (most recent call last): ... ValueError: The permutation cannot be resized to 2 because the cycle (0, 1, 2) may break. """ aform = self.array_form l = len(aform) if n > l: aform += list(range(l, n)) return Permutation._af_new(aform) elif n < l: cyclic_form = self.full_cyclic_form new_cyclic_form = [] for cycle in cyclic_form: cycle_min = min(cycle) cycle_max = max(cycle) if cycle_min <= n-1: if cycle_max > n-1: raise ValueError( "The permutation cannot be resized to {} " "because the cycle {} may break." .format(n, tuple(cycle))) new_cyclic_form.append(cycle) return Permutation(new_cyclic_form) return self # XXX Deprecated flag print_cyclic = None def _merge(arr, temp, left, mid, right): """ Merges two sorted arrays and calculates the inversion count. Helper function for calculating inversions. This method is for internal use only. """ i = k = left j = mid inv_count = 0 while i < mid and j <= right: if arr[i] < arr[j]: temp[k] = arr[i] k += 1 i += 1 else: temp[k] = arr[j] k += 1 j += 1 inv_count += (mid -i) while i < mid: temp[k] = arr[i] k += 1 i += 1 if j <= right: k += right - j + 1 j += right - j + 1 arr[left:k + 1] = temp[left:k + 1] else: arr[left:right + 1] = temp[left:right + 1] return inv_count Perm = Permutation _af_new = Perm._af_new class AppliedPermutation(Expr): """A permutation applied to a symbolic variable. Parameters ========== perm : Permutation x : Expr Examples ======== >>> from sympy import Symbol >>> from sympy.combinatorics import Permutation Creating a symbolic permutation function application: >>> x = Symbol('x') >>> p = Permutation(0, 1, 2) >>> p.apply(x) AppliedPermutation((0 1 2), x) >>> _.subs(x, 1) 2 """ def __new__(cls, perm, x, evaluate=None): if evaluate is None: evaluate = global_parameters.evaluate perm = _sympify(perm) x = _sympify(x) if not isinstance(perm, Permutation): raise ValueError("{} must be a Permutation instance." .format(perm)) if evaluate: if x.is_Integer: return perm.apply(x) obj = super().__new__(cls, perm, x) return obj @dispatch(Permutation, Permutation) def _eval_is_eq(lhs, rhs): if lhs._size != rhs._size: return None return lhs._array_form == rhs._array_form