hash
stringlengths 64
64
| content
stringlengths 0
1.51M
|
---|---|
5e3e745ef74e45fa435367636717ba609fc1683b6ee89575291370df22044339 | from sympy import (symbols, Symbol, sinh, diff, Function, Derivative, Matrix, Rational, S,
I, Eq, sqrt, Mul, pi)
from sympy.core.containers import Tuple
from sympy.functions import exp, cos, sin, log, tan, Ci, Si, erf, erfi
from sympy.matrices import dotprodsimp, NonSquareMatrixError
from sympy.solvers.ode import dsolve
from sympy.solvers.ode.ode import constant_renumber
from sympy.solvers.ode.subscheck import checksysodesol
from sympy.solvers.ode.systems import (_classify_linear_system, linear_ode_to_matrix,
ODEOrderError, ODENonlinearError, _simpsol,
_is_commutative_anti_derivative, linodesolve,
canonical_odes, dsolve_system, _component_division,
_eqs2dict, _dict2graph)
from sympy.functions import airyai, airybi
from sympy.integrals.integrals import Integral
from sympy.simplify.ratsimp import ratsimp
from sympy.testing.pytest import ON_TRAVIS, raises, slow, skip, XFAIL
C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C0:11')
x = symbols('x')
f = Function('f')
g = Function('g')
h = Function('h')
def test_linear_ode_to_matrix():
f, g, h = symbols("f, g, h", cls=Function)
t = Symbol("t")
funcs = [f(t), g(t), h(t)]
f1 = f(t).diff(t)
g1 = g(t).diff(t)
h1 = h(t).diff(t)
f2 = f(t).diff(t, 2)
g2 = g(t).diff(t, 2)
h2 = h(t).diff(t, 2)
eqs_1 = [Eq(f1, g(t)), Eq(g1, f(t))]
sol_1 = ([Matrix([[1, 0], [0, 1]]), Matrix([[ 0, 1], [1, 0]])], Matrix([[0],[0]]))
assert linear_ode_to_matrix(eqs_1, funcs[:-1], t, 1) == sol_1
eqs_2 = [Eq(f1, f(t) + 2*g(t)), Eq(g1, h(t)), Eq(h1, g(t) + h(t) + f(t))]
sol_2 = ([Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]), Matrix([[1, 2, 0], [ 0, 0, 1], [1, 1, 1]])],
Matrix([[0], [0], [0]]))
assert linear_ode_to_matrix(eqs_2, funcs, t, 1) == sol_2
eqs_3 = [Eq(2*f1 + 3*h1, f(t) + g(t)), Eq(4*h1 + 5*g1, f(t) + h(t)), Eq(5*f1 + 4*g1, g(t) + h(t))]
sol_3 = ([Matrix([[2, 0, 3], [0, 5, 4], [5, 4, 0]]), Matrix([[1, 1, 0], [1, 0, 1], [0, 1, 1]])],
Matrix([[0], [0], [0]]))
assert linear_ode_to_matrix(eqs_3, funcs, t, 1) == sol_3
eqs_4 = [Eq(f2 + h(t), f1 + g(t)), Eq(2*h2 + g2 + g1 + g(t), 0), Eq(3*h1, 4)]
sol_4 = ([Matrix([[1, 0, 0], [0, 1, 2], [0, 0, 0]]), Matrix([[1, 0, 0], [0, -1, 0], [0, 0, -3]]),
Matrix([[0, 1, -1], [0, -1, 0], [0, 0, 0]])], Matrix([[0], [0], [4]]))
assert linear_ode_to_matrix(eqs_4, funcs, t, 2) == sol_4
eqs_5 = [Eq(f2, g(t)), Eq(f1 + g1, f(t))]
raises(ODEOrderError, lambda: linear_ode_to_matrix(eqs_5, funcs[:-1], t, 1))
eqs_6 = [Eq(f1, f(t)**2), Eq(g1, f(t) + g(t))]
raises(ODENonlinearError, lambda: linear_ode_to_matrix(eqs_6, funcs[:-1], t, 1))
def test__classify_linear_system():
x, y, z, w = symbols('x, y, z, w', cls=Function)
t, k, l = symbols('t k l')
x1 = diff(x(t), t)
y1 = diff(y(t), t)
z1 = diff(z(t), t)
w1 = diff(w(t), t)
x2 = diff(x(t), t, t)
y2 = diff(y(t), t, t)
funcs = [x(t), y(t)]
funcs_2 = funcs + [z(t), w(t)]
eqs_1 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * t * x(t) + 3 * y(t) + t))
assert _classify_linear_system(eqs_1, funcs, t) is None
eqs_2 = (5 * (x1**2) + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * t * x(t) + 3 * y(t) + t))
sol2 = {'is_implicit': True,
'canon_eqs': [[Eq(Derivative(x(t), t), -sqrt(-12*x(t)/5 + 6*y(t)/5)),
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)],
[Eq(Derivative(x(t), t), sqrt(-12*x(t)/5 + 6*y(t)/5)),
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)]]}
assert _classify_linear_system(eqs_2, funcs, t) == sol2
eqs_2_1 = [Eq(Derivative(x(t), t), -sqrt(-12*x(t)/5 + 6*y(t)/5)),
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)]
assert _classify_linear_system(eqs_2_1, funcs, t) is None
eqs_2_2 = [Eq(Derivative(x(t), t), sqrt(-12*x(t)/5 + 6*y(t)/5)),
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)]
assert _classify_linear_system(eqs_2_2, funcs, t) is None
eqs_3 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * x(t) + 3 * y(t)), (5 * w1 + z(t)), (z1 + w(t)))
answer_3 = {'no_of_equation': 4,
'eq': (12*x(t) - 6*y(t) + 5*Derivative(x(t), t),
-11*x(t) + 3*y(t) + 2*Derivative(y(t), t),
z(t) + 5*Derivative(w(t), t),
w(t) + Derivative(z(t), t)),
'func': [x(t), y(t), z(t), w(t)],
'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1},
'is_linear': True,
'is_constant': True,
'is_homogeneous': True,
'func_coeff': -Matrix([
[Rational(12, 5), Rational(-6, 5), 0, 0],
[Rational(-11, 2), Rational(3, 2), 0, 0],
[0, 0, 0, 1],
[0, 0, Rational(1, 5), 0]]),
'type_of_equation': 'type1',
'is_general': True}
assert _classify_linear_system(eqs_3, funcs_2, t) == answer_3
eqs_4 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * x(t) + 3 * y(t)), (z1 - w(t)), (w1 - z(t)))
answer_4 = {'no_of_equation': 4,
'eq': (12 * x(t) - 6 * y(t) + 5 * Derivative(x(t), t),
-11 * x(t) + 3 * y(t) + 2 * Derivative(y(t), t),
-w(t) + Derivative(z(t), t),
-z(t) + Derivative(w(t), t)),
'func': [x(t), y(t), z(t), w(t)],
'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1},
'is_linear': True,
'is_constant': True,
'is_homogeneous': True,
'func_coeff': -Matrix([
[Rational(12, 5), Rational(-6, 5), 0, 0],
[Rational(-11, 2), Rational(3, 2), 0, 0],
[0, 0, 0, -1],
[0, 0, -1, 0]]),
'type_of_equation': 'type1',
'is_general': True}
assert _classify_linear_system(eqs_4, funcs_2, t) == answer_4
eqs_5 = (5*x1 + 12*x(t) - 6*(y(t)) + x2, (2*y1 - 11*x(t) + 3*y(t)), (z1 - w(t)), (w1 - z(t)))
answer_5 = {'no_of_equation': 4, 'eq': (12*x(t) - 6*y(t) + 5*Derivative(x(t), t) + Derivative(x(t), (t, 2)),
-11*x(t) + 3*y(t) + 2*Derivative(y(t), t), -w(t) + Derivative(z(t), t), -z(t) + Derivative(w(t),
t)), 'func': [x(t), y(t), z(t), w(t)], 'order': {x(t): 2, y(t): 1, z(t): 1, w(t): 1}, 'is_linear':
True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation': 'type0', 'is_higher_order': True}
assert _classify_linear_system(eqs_5, funcs_2, t) == answer_5
eqs_6 = (Eq(x1, 3*y(t) - 11*z(t)), Eq(y1, 7*z(t) - 3*x(t)), Eq(z1, 11*x(t) - 7*y(t)))
answer_6 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)), Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)),
Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1},
'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[ 0, -3, 11],
[ 3, 0, -7],
[-11, 7, 0]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_6, funcs_2[:-1], t) == answer_6
eqs_7 = (Eq(x1, y(t)), Eq(y1, x(t)))
answer_7 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t))),
'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True,
'is_homogeneous': True, 'func_coeff': -Matrix([
[ 0, -1],
[-1, 0]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_7, funcs, t) == answer_7
eqs_8 = (Eq(x1, 21*x(t)), Eq(y1, 17*x(t) + 3*y(t)), Eq(z1, 5*x(t) + 7*y(t) + 9*z(t)))
answer_8 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 21*x(t)), Eq(Derivative(y(t), t), 17*x(t) + 3*y(t)),
Eq(Derivative(z(t), t), 5*x(t) + 7*y(t) + 9*z(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1},
'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[-21, 0, 0],
[-17, -3, 0],
[ -5, -7, -9]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_8, funcs_2[:-1], t) == answer_8
eqs_9 = (Eq(x1, 4*x(t) + 5*y(t) + 2*z(t)), Eq(y1, x(t) + 13*y(t) + 9*z(t)), Eq(z1, 32*x(t) + 41*y(t) + 11*z(t)))
answer_9 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 4*x(t) + 5*y(t) + 2*z(t)),
Eq(Derivative(y(t), t), x(t) + 13*y(t) + 9*z(t)), Eq(Derivative(z(t), t), 32*x(t) + 41*y(t) + 11*z(t))),
'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True,
'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[ -4, -5, -2],
[ -1, -13, -9],
[-32, -41, -11]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_9, funcs_2[:-1], t) == answer_9
eqs_10 = (Eq(3*x1, 4*5*(y(t) - z(t))), Eq(4*y1, 3*5*(z(t) - x(t))), Eq(5*z1, 3*4*(x(t) - y(t))))
answer_10 = {'no_of_equation': 3, 'eq': (Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)),
Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)), Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t))),
'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True,
'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[ 0, Rational(-20, 3), Rational(20, 3)],
[Rational(15, 4), 0, Rational(-15, 4)],
[Rational(-12, 5), Rational(12, 5), 0]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_10, funcs_2[:-1], t) == answer_10
eq11 = (Eq(x1, 3*y(t) - 11*z(t)), Eq(y1, 7*z(t) - 3*x(t)), Eq(z1, 11*x(t) - 7*y(t)))
sol11 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)), Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)),
Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1},
'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([
[ 0, -3, 11], [ 3, 0, -7], [-11, 7, 0]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq11, funcs_2[:-1], t) == sol11
eq12 = (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t)))
sol12 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t))),
'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True,
'is_homogeneous': True, 'func_coeff': -Matrix([
[0, -1],
[-1, 0]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq12, [x(t), y(t)], t) == sol12
eq13 = (Eq(Derivative(x(t), t), 21*x(t)), Eq(Derivative(y(t), t), 17*x(t) + 3*y(t)),
Eq(Derivative(z(t), t), 5*x(t) + 7*y(t) + 9*z(t)))
sol13 = {'no_of_equation': 3, 'eq': (
Eq(Derivative(x(t), t), 21 * x(t)), Eq(Derivative(y(t), t), 17 * x(t) + 3 * y(t)),
Eq(Derivative(z(t), t), 5 * x(t) + 7 * y(t) + 9 * z(t))), 'func': [x(t), y(t), z(t)],
'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[-21, 0, 0],
[-17, -3, 0],
[-5, -7, -9]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq13, [x(t), y(t), z(t)], t) == sol13
eq14 = (
Eq(Derivative(x(t), t), 4*x(t) + 5*y(t) + 2*z(t)), Eq(Derivative(y(t), t), x(t) + 13*y(t) + 9*z(t)),
Eq(Derivative(z(t), t), 32*x(t) + 41*y(t) + 11*z(t)))
sol14 = {'no_of_equation': 3, 'eq': (
Eq(Derivative(x(t), t), 4 * x(t) + 5 * y(t) + 2 * z(t)), Eq(Derivative(y(t), t), x(t) + 13 * y(t) + 9 * z(t)),
Eq(Derivative(z(t), t), 32 * x(t) + 41 * y(t) + 11 * z(t))), 'func': [x(t), y(t), z(t)],
'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[-4, -5, -2],
[-1, -13, -9],
[-32, -41, -11]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq14, [x(t), y(t), z(t)], t) == sol14
eq15 = (Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)), Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)),
Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t)))
sol15 = {'no_of_equation': 3, 'eq': (
Eq(3 * Derivative(x(t), t), 20 * y(t) - 20 * z(t)), Eq(4 * Derivative(y(t), t), -15 * x(t) + 15 * z(t)),
Eq(5 * Derivative(z(t), t), 12 * x(t) - 12 * y(t))), 'func': [x(t), y(t), z(t)],
'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[0, Rational(-20, 3), Rational(20, 3)],
[Rational(15, 4), 0, Rational(-15, 4)],
[Rational(-12, 5), Rational(12, 5), 0]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq15, [x(t), y(t), z(t)], t) == sol15
# Constant coefficient homogeneous ODEs
eq1 = (Eq(diff(x(t), t), x(t) + y(t) + 9), Eq(diff(y(t), t), 2*x(t) + 5*y(t) + 23))
sol1 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), x(t) + y(t) + 9),
Eq(Derivative(y(t), t), 2*x(t) + 5*y(t) + 23)), 'func': [x(t), y(t)],
'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': False, 'is_general': True,
'func_coeff': -Matrix([[-1, -1], [-2, -5]]), 'rhs': Matrix([[ 9], [23]]), 'type_of_equation': 'type2'}
assert _classify_linear_system(eq1, funcs, t) == sol1
# Non constant coefficient homogeneous ODEs
eq1 = (Eq(diff(x(t), t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t), t), 2*x(t) + 5*t*y(t)))
sol1 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), 5*t*x(t) + 2*y(t)), Eq(Derivative(y(t), t), 5*t*y(t) + 2*x(t))),
'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': False,
'is_homogeneous': True, 'func_coeff': -Matrix([ [-5*t, -2], [ -2, -5*t]]), 'commutative_antiderivative': Matrix([
[5*t**2/2, 2*t], [ 2*t, 5*t**2/2]]), 'type_of_equation': 'type3', 'is_general': True}
assert _classify_linear_system(eq1, funcs, t) == sol1
# Non constant coefficient non-homogeneous ODEs
eq1 = [Eq(x1, x(t) + t*y(t) + t), Eq(y1, t*x(t) + y(t))]
sol1 = {'no_of_equation': 2, 'eq': [Eq(Derivative(x(t), t), t*y(t) + t + x(t)), Eq(Derivative(y(t), t),
t*x(t) + y(t))], 'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True,
'is_constant': False, 'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-1, -t],
[-t, -1]]), 'commutative_antiderivative': Matrix([ [ t, t**2/2], [t**2/2, t]]), 'rhs':
Matrix([ [t], [0]]), 'type_of_equation': 'type4'}
assert _classify_linear_system(eq1, funcs, t) == sol1
eq2 = [Eq(x1, t*x(t) + t*y(t) + t), Eq(y1, t*x(t) + t*y(t) + cos(t))]
sol2 = {'no_of_equation': 2, 'eq': [Eq(Derivative(x(t), t), t*x(t) + t*y(t) + t), Eq(Derivative(y(t), t),
t*x(t) + t*y(t) + cos(t))], 'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True,
'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([ [ t], [cos(t)]]), 'func_coeff':
Matrix([ [t, t], [t, t]]), 'is_constant': False, 'type_of_equation': 'type4',
'commutative_antiderivative': Matrix([ [t**2/2, t**2/2], [t**2/2, t**2/2]])}
assert _classify_linear_system(eq2, funcs, t) == sol2
eq3 = [Eq(x1, t*(x(t) + y(t) + z(t) + 1)), Eq(y1, t*(x(t) + y(t) + z(t))), Eq(z1, t*(x(t) + y(t) + z(t)))]
sol3 = {'no_of_equation': 3, 'eq': [Eq(Derivative(x(t), t), t*(x(t) + y(t) + z(t) + 1)),
Eq(Derivative(y(t), t), t*(x(t) + y(t) + z(t))), Eq(Derivative(z(t), t), t*(x(t) + y(t) + z(t)))],
'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant':
False, 'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-t, -t, -t], [-t, -t,
-t], [-t, -t, -t]]), 'commutative_antiderivative': Matrix([ [t**2/2, t**2/2, t**2/2], [t**2/2,
t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2]]), 'rhs': Matrix([ [t], [0], [0]]), 'type_of_equation':
'type4'}
assert _classify_linear_system(eq3, funcs_2[:-1], t) == sol3
eq4 = [Eq(x1, x(t) + y(t) + t*z(t) + 1), Eq(y1, x(t) + t*y(t) + z(t) + 10), Eq(z1, t*x(t) + y(t) + z(t) + t)]
sol4 = {'no_of_equation': 3, 'eq': [Eq(Derivative(x(t), t), t*z(t) + x(t) + y(t) + 1), Eq(Derivative(y(t),
t), t*y(t) + x(t) + z(t) + 10), Eq(Derivative(z(t), t), t*x(t) + t + y(t) + z(t))], 'func': [x(t),
y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': False,
'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-1, -1, -t], [-1, -t, -1], [-t,
-1, -1]]), 'commutative_antiderivative': Matrix([ [ t, t, t**2/2], [ t, t**2/2,
t], [t**2/2, t, t]]), 'rhs': Matrix([ [ 1], [10], [ t]]), 'type_of_equation': 'type4'}
assert _classify_linear_system(eq4, funcs_2[:-1], t) == sol4
sum_terms = t*(x(t) + y(t) + z(t) + w(t))
eq5 = [Eq(x1, sum_terms), Eq(y1, sum_terms), Eq(z1, sum_terms + 1), Eq(w1, sum_terms)]
sol5 = {'no_of_equation': 4, 'eq': [Eq(Derivative(x(t), t), t*(w(t) + x(t) + y(t) + z(t))),
Eq(Derivative(y(t), t), t*(w(t) + x(t) + y(t) + z(t))), Eq(Derivative(z(t), t), t*(w(t) + x(t) +
y(t) + z(t)) + 1), Eq(Derivative(w(t), t), t*(w(t) + x(t) + y(t) + z(t)))], 'func': [x(t), y(t),
z(t), w(t)], 'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1}, 'is_linear': True, 'is_constant': False,
'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-t, -t, -t, -t], [-t, -t, -t,
-t], [-t, -t, -t, -t], [-t, -t, -t, -t]]), 'commutative_antiderivative': Matrix([ [t**2/2, t**2/2,
t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2, t**2/2], [t**2/2,
t**2/2, t**2/2, t**2/2]]), 'rhs': Matrix([ [0], [0], [1], [0]]), 'type_of_equation': 'type4'}
assert _classify_linear_system(eq5, funcs_2, t) == sol5
# Second Order
t_ = symbols("t_")
eq1 = (Eq(9*x(t) + 7*y(t) + 4*Derivative(x(t), t) + Derivative(x(t), (t, 2)) + 3*Derivative(y(t), t), 11*exp(I*t)),
Eq(3*x(t) + 12*y(t) + 5*Derivative(x(t), t) + 8*Derivative(y(t), t) + Derivative(y(t), (t, 2)), 2*exp(I*t)))
sol1 = {'no_of_equation': 2, 'eq': (Eq(9*x(t) + 7*y(t) + 4*Derivative(x(t), t) + Derivative(x(t), (t, 2)) +
3*Derivative(y(t), t), 11*exp(I*t)), Eq(3*x(t) + 12*y(t) + 5*Derivative(x(t), t) +
8*Derivative(y(t), t) + Derivative(y(t), (t, 2)), 2*exp(I*t))), 'func': [x(t), y(t)], 'order':
{x(t): 2, y(t): 2}, 'is_linear': True, 'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([
[11*exp(I*t)], [ 2*exp(I*t)]]), 'type_of_equation': 'type0', 'is_second_order': True,
'is_higher_order': True}
assert _classify_linear_system(eq1, funcs, t) == sol1
eq2 = (Eq((4*t**2 + 7*t + 1)**2*Derivative(x(t), (t, 2)), 5*x(t) + 35*y(t)),
Eq((4*t**2 + 7*t + 1)**2*Derivative(y(t), (t, 2)), x(t) + 9*y(t)))
sol2 = {'no_of_equation': 2, 'eq': (Eq((4*t**2 + 7*t + 1)**2*Derivative(x(t), (t, 2)), 5*x(t) + 35*y(t)),
Eq((4*t**2 + 7*t + 1)**2*Derivative(y(t), (t, 2)), x(t) + 9*y(t))), 'func': [x(t), y(t)], 'order':
{x(t): 2, y(t): 2}, 'is_linear': True, 'is_homogeneous': True, 'is_general': True,
'type_of_equation': 'type2', 'A0': Matrix([ [Rational(53, 4), 35], [ 1, Rational(69, 4)]]), 'g(t)': sqrt(4*t**2 + 7*t
+ 1), 'tau': sqrt(33)*log(t - sqrt(33)/8 + Rational(7, 8))/33 - sqrt(33)*log(t + sqrt(33)/8 + Rational(7, 8))/33,
'is_transformed': True, 't_': t_, 'is_second_order': True, 'is_higher_order': True}
assert _classify_linear_system(eq2, funcs, t) == sol2
eq3 = ((t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) - y(t))*exp(t) + Derivative(x(t), (t, 2)),
t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t), t) - y(t)) + Derivative(y(t), (t, 2)))
sol3 = {'no_of_equation': 2, 'eq': ((t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) -
y(t))*exp(t) + Derivative(x(t), (t, 2)), t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t),
t) - y(t)) + Derivative(y(t), (t, 2))), 'func': [x(t), y(t)], 'order': {x(t): 2, y(t): 2},
'is_linear': True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation': 'type1', 'A1':
Matrix([ [-t*log(t), -t*exp(t)], [ -t**3, -t**2]]), 'is_second_order': True,
'is_higher_order': True}
assert _classify_linear_system(eq3, funcs, t) == sol3
eq4 = (Eq(x2, k*x(t) - l*y1), Eq(y2, l*x1 + k*y(t)))
sol4 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), (t, 2)), k*x(t) - l*Derivative(y(t), t)),
Eq(Derivative(y(t), (t, 2)), k*y(t) + l*Derivative(x(t), t))), 'func': [x(t), y(t)], 'order': {x(t):
2, y(t): 2}, 'is_linear': True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation':
'type0', 'is_second_order': True, 'is_higher_order': True}
assert _classify_linear_system(eq4, funcs, t) == sol4
# Multiple matchs
f, g = symbols("f g", cls=Function)
y, t_ = symbols("y t_")
funcs = [f(t), g(t)]
eq1 = [Eq(Derivative(f(t), t)**2 - 2*Derivative(f(t), t) + 1, 4),
Eq(-y*f(t) + Derivative(g(t), t), 0)]
sol1 = {'is_implicit': True,
'canon_eqs': [[Eq(Derivative(f(t), t), -1), Eq(Derivative(g(t), t), y*f(t))],
[Eq(Derivative(f(t), t), 3), Eq(Derivative(g(t), t), y*f(t))]]}
assert _classify_linear_system(eq1, funcs, t) == sol1
raises(ValueError, lambda: _classify_linear_system(eq1, funcs[:1], t))
eq2 = [Eq(Derivative(f(t), t), (2*f(t) + g(t) + 1)/t), Eq(Derivative(g(t), t), (f(t) + 2*g(t))/t)]
sol2 = {'no_of_equation': 2, 'eq': [Eq(Derivative(f(t), t), (2*f(t) + g(t) + 1)/t), Eq(Derivative(g(t), t),
(f(t) + 2*g(t))/t)], 'func': [f(t), g(t)], 'order': {f(t): 1, g(t): 1}, 'is_linear': True,
'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([ [1], [0]]), 'func_coeff': Matrix([ [2,
1], [1, 2]]), 'is_constant': False, 'type_of_equation': 'type6', 't_': t_, 'tau': log(t),
'commutative_antiderivative': Matrix([ [2*log(t), log(t)], [ log(t), 2*log(t)]])}
assert _classify_linear_system(eq2, funcs, t) == sol2
eq3 = [Eq(Derivative(f(t), t), (2*f(t) + g(t))/t), Eq(Derivative(g(t), t), (f(t) + 2*g(t))/t)]
sol3 = {'no_of_equation': 2, 'eq': [Eq(Derivative(f(t), t), (2*f(t) + g(t))/t), Eq(Derivative(g(t), t),
(f(t) + 2*g(t))/t)], 'func': [f(t), g(t)], 'order': {f(t): 1, g(t): 1}, 'is_linear': True,
'is_homogeneous': True, 'is_general': True, 'func_coeff': Matrix([ [2, 1], [1, 2]]), 'is_constant':
False, 'type_of_equation': 'type5', 't_': t_, 'rhs': Matrix([ [0], [0]]), 'tau': log(t),
'commutative_antiderivative': Matrix([ [2*log(t), log(t)], [ log(t), 2*log(t)]])}
assert _classify_linear_system(eq3, funcs, t) == sol3
def test_matrix_exp():
from sympy.matrices.dense import Matrix, eye, zeros
from sympy.solvers.ode.systems import matrix_exp
t = Symbol('t')
for n in range(1, 6+1):
assert matrix_exp(zeros(n), t) == eye(n)
for n in range(1, 6+1):
A = eye(n)
expAt = exp(t) * eye(n)
assert matrix_exp(A, t) == expAt
for n in range(1, 6+1):
A = Matrix(n, n, lambda i,j: i+1 if i==j else 0)
expAt = Matrix(n, n, lambda i,j: exp((i+1)*t) if i==j else 0)
assert matrix_exp(A, t) == expAt
A = Matrix([[0, 1], [-1, 0]])
expAt = Matrix([[cos(t), sin(t)], [-sin(t), cos(t)]])
assert matrix_exp(A, t) == expAt
A = Matrix([[2, -5], [2, -4]])
expAt = Matrix([
[3*exp(-t)*sin(t) + exp(-t)*cos(t), -5*exp(-t)*sin(t)],
[2*exp(-t)*sin(t), -3*exp(-t)*sin(t) + exp(-t)*cos(t)]
])
assert matrix_exp(A, t) == expAt
A = Matrix([[21, 17, 6], [-5, -1, -6], [4, 4, 16]])
# TO update this.
# expAt = Matrix([
# [(8*t*exp(12*t) + 5*exp(12*t) - 1)*exp(4*t)/4,
# (8*t*exp(12*t) + 5*exp(12*t) - 5)*exp(4*t)/4,
# (exp(12*t) - 1)*exp(4*t)/2],
# [(-8*t*exp(12*t) - exp(12*t) + 1)*exp(4*t)/4,
# (-8*t*exp(12*t) - exp(12*t) + 5)*exp(4*t)/4,
# (-exp(12*t) + 1)*exp(4*t)/2],
# [4*t*exp(16*t), 4*t*exp(16*t), exp(16*t)]])
expAt = Matrix([
[2*t*exp(16*t) + 5*exp(16*t)/4 - exp(4*t)/4, 2*t*exp(16*t) + 5*exp(16*t)/4 - 5*exp(4*t)/4, exp(16*t)/2 - exp(4*t)/2],
[ -2*t*exp(16*t) - exp(16*t)/4 + exp(4*t)/4, -2*t*exp(16*t) - exp(16*t)/4 + 5*exp(4*t)/4, -exp(16*t)/2 + exp(4*t)/2],
[ 4*t*exp(16*t), 4*t*exp(16*t), exp(16*t)]
])
assert matrix_exp(A, t) == expAt
A = Matrix([[1, 1, 0, 0],
[0, 1, 1, 0],
[0, 0, 1, -S(1)/8],
[0, 0, S(1)/2, S(1)/2]])
expAt = Matrix([
[exp(t), t*exp(t), 4*t*exp(3*t/4) + 8*t*exp(t) + 48*exp(3*t/4) - 48*exp(t),
-2*t*exp(3*t/4) - 2*t*exp(t) - 16*exp(3*t/4) + 16*exp(t)],
[0, exp(t), -t*exp(3*t/4) - 8*exp(3*t/4) + 8*exp(t), t*exp(3*t/4)/2 + 2*exp(3*t/4) - 2*exp(t)],
[0, 0, t*exp(3*t/4)/4 + exp(3*t/4), -t*exp(3*t/4)/8],
[0, 0, t*exp(3*t/4)/2, -t*exp(3*t/4)/4 + exp(3*t/4)]
])
assert matrix_exp(A, t) == expAt
A = Matrix([
[ 0, 1, 0, 0],
[-1, 0, 0, 0],
[ 0, 0, 0, 1],
[ 0, 0, -1, 0]])
expAt = Matrix([
[ cos(t), sin(t), 0, 0],
[-sin(t), cos(t), 0, 0],
[ 0, 0, cos(t), sin(t)],
[ 0, 0, -sin(t), cos(t)]])
assert matrix_exp(A, t) == expAt
A = Matrix([
[ 0, 1, 1, 0],
[-1, 0, 0, 1],
[ 0, 0, 0, 1],
[ 0, 0, -1, 0]])
expAt = Matrix([
[ cos(t), sin(t), t*cos(t), t*sin(t)],
[-sin(t), cos(t), -t*sin(t), t*cos(t)],
[ 0, 0, cos(t), sin(t)],
[ 0, 0, -sin(t), cos(t)]])
assert matrix_exp(A, t) == expAt
# This case is unacceptably slow right now but should be solvable...
#a, b, c, d, e, f = symbols('a b c d e f')
#A = Matrix([
#[-a, b, c, d],
#[ a, -b, e, 0],
#[ 0, 0, -c - e - f, 0],
#[ 0, 0, f, -d]])
A = Matrix([[0, I], [I, 0]])
expAt = Matrix([
[exp(I*t)/2 + exp(-I*t)/2, exp(I*t)/2 - exp(-I*t)/2],
[exp(I*t)/2 - exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]])
assert matrix_exp(A, t) == expAt
# Testing Errors
M = Matrix([[1, 2, 3], [4, 5, 6], [7, 7, 7]])
M1 = Matrix([[t, 1], [1, 1]])
raises(ValueError, lambda: matrix_exp(M[:, :2], t))
raises(ValueError, lambda: matrix_exp(M[:2, :], t))
raises(ValueError, lambda: matrix_exp(M1, t))
raises(ValueError, lambda: matrix_exp(M1[:1, :1], t))
def test_canonical_odes():
f, g, h = symbols('f g h', cls=Function)
x = symbols('x')
funcs = [f(x), g(x), h(x)]
eqs1 = [Eq(f(x).diff(x, x), f(x) + 2*g(x)), Eq(g(x) + 1, g(x).diff(x) + f(x))]
sol1 = [[Eq(Derivative(f(x), (x, 2)), f(x) + 2*g(x)), Eq(Derivative(g(x), x), -f(x) + g(x) + 1)]]
assert canonical_odes(eqs1, funcs[:2], x) == sol1
eqs2 = [Eq(f(x).diff(x), h(x).diff(x) + f(x)), Eq(g(x).diff(x)**2, f(x) + h(x)), Eq(h(x).diff(x), f(x))]
sol2 = [[Eq(Derivative(f(x), x), 2*f(x)), Eq(Derivative(g(x), x), -sqrt(f(x) + h(x))), Eq(Derivative(h(x), x), f(x))],
[Eq(Derivative(f(x), x), 2*f(x)), Eq(Derivative(g(x), x), sqrt(f(x) + h(x))), Eq(Derivative(h(x), x), f(x))]]
assert canonical_odes(eqs2, funcs, x) == sol2
def test_sysode_linear_neq_order1_type1():
f, g, x, y, h = symbols('f g x y h', cls=Function)
a, b, c, t = symbols('a b c t')
eqs1 = [Eq(Derivative(x(t), t), x(t)),
Eq(Derivative(y(t), t), y(t))]
sol1 = [Eq(x(t), C1*exp(t)),
Eq(y(t), C2*exp(t))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(Derivative(x(t), t), 2*x(t)),
Eq(Derivative(y(t), t), 3*y(t))]
sol2 = [Eq(x(t), C1*exp(2*t)),
Eq(y(t), C2*exp(3*t))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(Derivative(x(t), t), a*x(t)),
Eq(Derivative(y(t), t), a*y(t))]
sol3 = [Eq(x(t), C1*exp(a*t)),
Eq(y(t), C2*exp(a*t))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
# Regression test case for issue #15474
# https://github.com/sympy/sympy/issues/15474
eqs4 = [Eq(Derivative(x(t), t), a*x(t)),
Eq(Derivative(y(t), t), b*y(t))]
sol4 = [Eq(x(t), C1*exp(a*t)),
Eq(y(t), C2*exp(b*t))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
eqs5 = [Eq(Derivative(x(t), t), -y(t)),
Eq(Derivative(y(t), t), x(t))]
sol5 = [Eq(x(t), -C1*sin(t) - C2*cos(t)),
Eq(y(t), C1*cos(t) - C2*sin(t))]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
eqs6 = [Eq(Derivative(x(t), t), -2*y(t)),
Eq(Derivative(y(t), t), 2*x(t))]
sol6 = [Eq(x(t), -C1*sin(2*t) - C2*cos(2*t)),
Eq(y(t), C1*cos(2*t) - C2*sin(2*t))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0])
eqs7 = [Eq(Derivative(x(t), t), I*y(t)),
Eq(Derivative(y(t), t), I*x(t))]
sol7 = [Eq(x(t), -C1*exp(-I*t) + C2*exp(I*t)),
Eq(y(t), C1*exp(-I*t) + C2*exp(I*t))]
assert dsolve(eqs7) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
eqs8 = [Eq(Derivative(x(t), t), -a*y(t)),
Eq(Derivative(y(t), t), a*x(t))]
sol8 = [Eq(x(t), -I*C1*exp(-I*a*t) + I*C2*exp(I*a*t)),
Eq(y(t), C1*exp(-I*a*t) + C2*exp(I*a*t))]
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0])
eqs9 = [Eq(Derivative(x(t), t), x(t) + y(t)),
Eq(Derivative(y(t), t), x(t) - y(t))]
sol9 = [Eq(x(t), C1*(1 - sqrt(2))*exp(-sqrt(2)*t) + C2*(1 + sqrt(2))*exp(sqrt(2)*t)),
Eq(y(t), C1*exp(-sqrt(2)*t) + C2*exp(sqrt(2)*t))]
assert dsolve(eqs9) == sol9
assert checksysodesol(eqs9, sol9) == (True, [0, 0])
eqs10 = [Eq(Derivative(x(t), t), x(t) + y(t)),
Eq(Derivative(y(t), t), x(t) + y(t))]
sol10 = [Eq(x(t), -C1 + C2*exp(2*t)),
Eq(y(t), C1 + C2*exp(2*t))]
assert dsolve(eqs10) == sol10
assert checksysodesol(eqs10, sol10) == (True, [0, 0])
eqs11 = [Eq(Derivative(x(t), t), 2*x(t) + y(t)),
Eq(Derivative(y(t), t), -x(t) + 2*y(t))]
sol11 = [Eq(x(t), C1*exp(2*t)*sin(t) + C2*exp(2*t)*cos(t)),
Eq(y(t), C1*exp(2*t)*cos(t) - C2*exp(2*t)*sin(t))]
assert dsolve(eqs11) == sol11
assert checksysodesol(eqs11, sol11) == (True, [0, 0])
eqs12 = [Eq(Derivative(x(t), t), x(t) + 2*y(t)),
Eq(Derivative(y(t), t), 2*x(t) + y(t))]
sol12 = [Eq(x(t), -C1*exp(-t) + C2*exp(3*t)),
Eq(y(t), C1*exp(-t) + C2*exp(3*t))]
assert dsolve(eqs12) == sol12
assert checksysodesol(eqs12, sol12) == (True, [0, 0])
eqs13 = [Eq(Derivative(x(t), t), 4*x(t) + y(t)),
Eq(Derivative(y(t), t), -x(t) + 2*y(t))]
sol13 = [Eq(x(t), C2*t*exp(3*t) + (C1 + C2)*exp(3*t)),
Eq(y(t), -C1*exp(3*t) - C2*t*exp(3*t))]
assert dsolve(eqs13) == sol13
assert checksysodesol(eqs13, sol13) == (True, [0, 0])
eqs14 = [Eq(Derivative(x(t), t), a*y(t)),
Eq(Derivative(y(t), t), a*x(t))]
sol14 = [Eq(x(t), -C1*exp(-a*t) + C2*exp(a*t)),
Eq(y(t), C1*exp(-a*t) + C2*exp(a*t))]
assert dsolve(eqs14) == sol14
assert checksysodesol(eqs14, sol14) == (True, [0, 0])
eqs15 = [Eq(Derivative(x(t), t), a*y(t)),
Eq(Derivative(y(t), t), b*x(t))]
sol15 = [Eq(x(t), -C1*a*exp(-t*sqrt(a*b))/sqrt(a*b) + C2*a*exp(t*sqrt(a*b))/sqrt(a*b)),
Eq(y(t), C1*exp(-t*sqrt(a*b)) + C2*exp(t*sqrt(a*b)))]
assert dsolve(eqs15) == sol15
assert checksysodesol(eqs15, sol15) == (True, [0, 0])
eqs16 = [Eq(Derivative(x(t), t), a*x(t) + b*y(t)),
Eq(Derivative(y(t), t), c*x(t))]
sol16 = [Eq(x(t), -2*C1*b*exp(t*(a + sqrt(a**2 + 4*b*c))/2)/(a - sqrt(a**2 + 4*b*c)) - 2*C2*b*exp(t*(a -
sqrt(a**2 + 4*b*c))/2)/(a + sqrt(a**2 + 4*b*c))),
Eq(y(t), C1*exp(t*(a + sqrt(a**2 + 4*b*c))/2) + C2*exp(t*(a - sqrt(a**2 + 4*b*c))/2))]
assert dsolve(eqs16) == sol16
assert checksysodesol(eqs16, sol16) == (True, [0, 0])
# Regression test case for issue #18562
# https://github.com/sympy/sympy/issues/18562
eqs17 = [Eq(Derivative(x(t), t), a*y(t) + x(t)),
Eq(Derivative(y(t), t), a*x(t) - y(t))]
sol17 = [Eq(x(t), C1*a*exp(t*sqrt(a**2 + 1))/(sqrt(a**2 + 1) - 1) - C2*a*exp(-t*sqrt(a**2 + 1))/(sqrt(a**2 +
1) + 1)),
Eq(y(t), C1*exp(t*sqrt(a**2 + 1)) + C2*exp(-t*sqrt(a**2 + 1)))]
assert dsolve(eqs17) == sol17
assert checksysodesol(eqs17, sol17) == (True, [0, 0])
eqs18 = [Eq(Derivative(x(t), t), 0),
Eq(Derivative(y(t), t), 0)]
sol18 = [Eq(x(t), C1),
Eq(y(t), C2)]
assert dsolve(eqs18) == sol18
assert checksysodesol(eqs18, sol18) == (True, [0, 0])
eqs19 = [Eq(Derivative(x(t), t), 2*x(t) - y(t)),
Eq(Derivative(y(t), t), x(t))]
sol19 = [Eq(x(t), C2*t*exp(t) + (C1 + C2)*exp(t)),
Eq(y(t), C1*exp(t) + C2*t*exp(t))]
assert dsolve(eqs19) == sol19
assert checksysodesol(eqs19, sol19) == (True, [0, 0])
eqs20 = [Eq(Derivative(x(t), t), x(t)),
Eq(Derivative(y(t), t), x(t) + y(t))]
sol20 = [Eq(x(t), C1*exp(t)),
Eq(y(t), C1*t*exp(t) + C2*exp(t))]
assert dsolve(eqs20) == sol20
assert checksysodesol(eqs20, sol20) == (True, [0, 0])
eqs21 = [Eq(Derivative(x(t), t), 3*x(t)),
Eq(Derivative(y(t), t), x(t) + y(t))]
sol21 = [Eq(x(t), 2*C1*exp(3*t)),
Eq(y(t), C1*exp(3*t) + C2*exp(t))]
assert dsolve(eqs21) == sol21
assert checksysodesol(eqs21, sol21) == (True, [0, 0])
eqs22 = [Eq(Derivative(x(t), t), 3*x(t)),
Eq(Derivative(y(t), t), y(t))]
sol22 = [Eq(x(t), C1*exp(3*t)),
Eq(y(t), C2*exp(t))]
assert dsolve(eqs22) == sol22
assert checksysodesol(eqs22, sol22) == (True, [0, 0])
@slow
def test_sysode_linear_neq_order1_type1_slow():
t = Symbol('t')
Z0 = Function('Z0')
Z1 = Function('Z1')
Z2 = Function('Z2')
Z3 = Function('Z3')
k01, k10, k20, k21, k23, k30 = symbols('k01 k10 k20 k21 k23 k30')
eqs1 = [Eq(Derivative(Z0(t), t), -k01*Z0(t) + k10*Z1(t) + k20*Z2(t) + k30*Z3(t)),
Eq(Derivative(Z1(t), t), k01*Z0(t) - k10*Z1(t) + k21*Z2(t)),
Eq(Derivative(Z2(t), t), (-k20 - k21 - k23)*Z2(t)),
Eq(Derivative(Z3(t), t), k23*Z2(t) - k30*Z3(t))]
sol1 = [Eq(Z0(t), C1*k10/k01 - C2*(k10 - k30)*exp(-k30*t)/(k01 + k10 - k30) - C3*(k10*(k20 + k21 - k30) -
k20**2 - k20*(k21 + k23 - k30) + k23*k30)*exp(-t*(k20 + k21 + k23))/(k23*(-k01 - k10 + k20 + k21 +
k23)) - C4*exp(-t*(k01 + k10))),
Eq(Z1(t), C1 - C2*k01*exp(-k30*t)/(k01 + k10 - k30) + C3*(-k01*(k20 + k21 - k30) + k20*k21 + k21**2
+ k21*(k23 - k30))*exp(-t*(k20 + k21 + k23))/(k23*(-k01 - k10 + k20 + k21 + k23)) + C4*exp(-t*(k01 +
k10))),
Eq(Z2(t), -C3*(k20 + k21 + k23 - k30)*exp(-t*(k20 + k21 + k23))/k23),
Eq(Z3(t), C2*exp(-k30*t) + C3*exp(-t*(k20 + k21 + k23)))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0, 0, 0])
x, y, z, u, v, w = symbols('x y z u v w', cls=Function)
k2, k3 = symbols('k2 k3')
a_b, a_c = symbols('a_b a_c', real=True)
eqs2 = [Eq(Derivative(z(t), t), k2*y(t)),
Eq(Derivative(x(t), t), k3*y(t)),
Eq(Derivative(y(t), t), (-k2 - k3)*y(t))]
sol2 = [Eq(z(t), C1 - C2*k2*exp(-t*(k2 + k3))/(k2 + k3)),
Eq(x(t), -C2*k3*exp(-t*(k2 + k3))/(k2 + k3) + C3),
Eq(y(t), C2*exp(-t*(k2 + k3)))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0, 0])
eqs3 = [4*u(t) - v(t) - 2*w(t) + Derivative(u(t), t),
2*u(t) + v(t) - 2*w(t) + Derivative(v(t), t),
5*u(t) + v(t) - 3*w(t) + Derivative(w(t), t)]
sol3 = [Eq(u(t), C3*exp(-2*t) + (C1/2 + sqrt(3)*C2/6)*cos(sqrt(3)*t) + sin(sqrt(3)*t)*(sqrt(3)*C1/6 +
C2*Rational(-1, 2))),
Eq(v(t), (C1/2 + sqrt(3)*C2/6)*cos(sqrt(3)*t) + sin(sqrt(3)*t)*(sqrt(3)*C1/6 + C2*Rational(-1, 2))),
Eq(w(t), C1*cos(sqrt(3)*t) - C2*sin(sqrt(3)*t) + C3*exp(-2*t))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0])
eqs4 = [Eq(Derivative(x(t), t), w(t)*Rational(-2, 9) + 2*x(t) + y(t) + z(t)*Rational(-8, 9)),
Eq(Derivative(y(t), t), w(t)*Rational(4, 9) + 2*y(t) + z(t)*Rational(16, 9)),
Eq(Derivative(z(t), t), w(t)*Rational(-2, 9) + z(t)*Rational(37, 9)),
Eq(Derivative(w(t), t), w(t)*Rational(44, 9) + z(t)*Rational(-4, 9))]
sol4 = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t)),
Eq(y(t), C2*exp(2*t) + 2*C3*exp(4*t)),
Eq(z(t), 2*C3*exp(4*t) + C4*exp(5*t)*Rational(-1, 4)),
Eq(w(t), C3*exp(4*t) + C4*exp(5*t))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0, 0])
# Regression test case for issue #15574
# https://github.com/sympy/sympy/issues/15574
eq5 = [Eq(x(t).diff(t), x(t)), Eq(y(t).diff(t), y(t)), Eq(z(t).diff(t), z(t)), Eq(w(t).diff(t), w(t))]
sol5 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t)), Eq(w(t), C4*exp(t))]
assert dsolve(eq5) == sol5
assert checksysodesol(eq5, sol5) == (True, [0, 0, 0, 0])
eqs6 = [Eq(Derivative(x(t), t), x(t) + y(t)),
Eq(Derivative(y(t), t), y(t) + z(t)),
Eq(Derivative(z(t), t), w(t)*Rational(-1, 8) + z(t)),
Eq(Derivative(w(t), t), w(t)/2 + z(t)/2)]
sol6 = [Eq(x(t), C1*exp(t) + C2*t*exp(t) + 4*C4*t*exp(t*Rational(3, 4)) + (4*C3 + 48*C4)*exp(t*Rational(3,
4))),
Eq(y(t), C2*exp(t) - C4*t*exp(t*Rational(3, 4)) - (C3 + 8*C4)*exp(t*Rational(3, 4))),
Eq(z(t), C4*t*exp(t*Rational(3, 4))/4 + (C3/4 + C4)*exp(t*Rational(3, 4))),
Eq(w(t), C3*exp(t*Rational(3, 4))/2 + C4*t*exp(t*Rational(3, 4))/2)]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0])
# Regression test case for issue #15574
# https://github.com/sympy/sympy/issues/15574
eq7 = [Eq(Derivative(x(t), t), x(t)), Eq(Derivative(y(t), t), y(t)), Eq(Derivative(z(t), t), z(t)),
Eq(Derivative(w(t), t), w(t)), Eq(Derivative(u(t), t), u(t))]
sol7 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t)), Eq(w(t), C4*exp(t)),
Eq(u(t), C5*exp(t))]
assert dsolve(eq7) == sol7
assert checksysodesol(eq7, sol7) == (True, [0, 0, 0, 0, 0])
eqs8 = [Eq(Derivative(x(t), t), 2*x(t) + y(t)),
Eq(Derivative(y(t), t), 2*y(t)),
Eq(Derivative(z(t), t), 4*z(t)),
Eq(Derivative(w(t), t), u(t) + 5*w(t)),
Eq(Derivative(u(t), t), 5*u(t))]
sol8 = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t)),
Eq(y(t), C2*exp(2*t)),
Eq(z(t), C3*exp(4*t)),
Eq(w(t), C4*exp(5*t) + C5*t*exp(5*t)),
Eq(u(t), C5*exp(5*t))]
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0, 0, 0, 0])
# Regression test case for issue #15574
# https://github.com/sympy/sympy/issues/15574
eq9 = [Eq(Derivative(x(t), t), x(t)), Eq(Derivative(y(t), t), y(t)), Eq(Derivative(z(t), t), z(t))]
sol9 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t))]
assert dsolve(eq9) == sol9
assert checksysodesol(eq9, sol9) == (True, [0, 0, 0])
# Regression test case for issue #15407
# https://github.com/sympy/sympy/issues/15407
eqs10 = [Eq(Derivative(x(t), t), (-a_b - a_c)*x(t)),
Eq(Derivative(y(t), t), a_b*y(t)),
Eq(Derivative(z(t), t), a_c*x(t))]
sol10 = [Eq(x(t), -C1*(a_b + a_c)*exp(-t*(a_b + a_c))/a_c),
Eq(y(t), C2*exp(a_b*t)),
Eq(z(t), C1*exp(-t*(a_b + a_c)) + C3)]
assert dsolve(eqs10) == sol10
assert checksysodesol(eqs10, sol10) == (True, [0, 0, 0])
# Regression test case for issue #14312
# https://github.com/sympy/sympy/issues/14312
eqs11 = [Eq(Derivative(x(t), t), k3*y(t)),
Eq(Derivative(y(t), t), (-k2 - k3)*y(t)),
Eq(Derivative(z(t), t), k2*y(t))]
sol11 = [Eq(x(t), C1 + C2*k3*exp(-t*(k2 + k3))/k2),
Eq(y(t), -C2*(k2 + k3)*exp(-t*(k2 + k3))/k2),
Eq(z(t), C2*exp(-t*(k2 + k3)) + C3)]
assert dsolve(eqs11) == sol11
assert checksysodesol(eqs11, sol11) == (True, [0, 0, 0])
# Regression test case for issue #14312
# https://github.com/sympy/sympy/issues/14312
eqs12 = [Eq(Derivative(z(t), t), k2*y(t)),
Eq(Derivative(x(t), t), k3*y(t)),
Eq(Derivative(y(t), t), (-k2 - k3)*y(t))]
sol12 = [Eq(z(t), C1 - C2*k2*exp(-t*(k2 + k3))/(k2 + k3)),
Eq(x(t), -C2*k3*exp(-t*(k2 + k3))/(k2 + k3) + C3),
Eq(y(t), C2*exp(-t*(k2 + k3)))]
assert dsolve(eqs12) == sol12
assert checksysodesol(eqs12, sol12) == (True, [0, 0, 0])
f, g, h = symbols('f, g, h', cls=Function)
a, b, c = symbols('a, b, c')
# Regression test case for issue #15474
# https://github.com/sympy/sympy/issues/15474
eqs13 = [Eq(Derivative(f(t), t), 2*f(t) + g(t)),
Eq(Derivative(g(t), t), a*f(t))]
sol13 = [Eq(f(t), C1*exp(t*(sqrt(a + 1) + 1))/(sqrt(a + 1) - 1) - C2*exp(-t*(sqrt(a + 1) - 1))/(sqrt(a + 1) +
1)),
Eq(g(t), C1*exp(t*(sqrt(a + 1) + 1)) + C2*exp(-t*(sqrt(a + 1) - 1)))]
assert dsolve(eqs13) == sol13
assert checksysodesol(eqs13, sol13) == (True, [0, 0])
eqs14 = [Eq(Derivative(f(t), t), 2*g(t) - 3*h(t)),
Eq(Derivative(g(t), t), -2*f(t) + 4*h(t)),
Eq(Derivative(h(t), t), 3*f(t) - 4*g(t))]
sol14 = [Eq(f(t), 2*C1 - sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(3, 25) + C3*Rational(-8, 25)) -
cos(sqrt(29)*t)*(C2*Rational(8, 25) + sqrt(29)*C3*Rational(3, 25))),
Eq(g(t), C1*Rational(3, 2) + sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(4, 25) + C3*Rational(6, 25)) -
cos(sqrt(29)*t)*(C2*Rational(6, 25) + sqrt(29)*C3*Rational(-4, 25))),
Eq(h(t), C1 + C2*cos(sqrt(29)*t) - C3*sin(sqrt(29)*t))]
assert dsolve(eqs14) == sol14
assert checksysodesol(eqs14, sol14) == (True, [0, 0, 0])
eqs15 = [Eq(2*Derivative(f(t), t), 12*g(t) - 12*h(t)),
Eq(3*Derivative(g(t), t), -8*f(t) + 8*h(t)),
Eq(4*Derivative(h(t), t), 6*f(t) - 6*g(t))]
sol15 = [Eq(f(t), C1 - sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(6, 13) + C3*Rational(-16, 13)) -
cos(sqrt(29)*t)*(C2*Rational(16, 13) + sqrt(29)*C3*Rational(6, 13))),
Eq(g(t), C1 + sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(8, 39) + C3*Rational(16, 13)) -
cos(sqrt(29)*t)*(C2*Rational(16, 13) + sqrt(29)*C3*Rational(-8, 39))),
Eq(h(t), C1 + C2*cos(sqrt(29)*t) - C3*sin(sqrt(29)*t))]
assert dsolve(eqs15) == sol15
assert checksysodesol(eqs15, sol15) == (True, [0, 0, 0])
eq16 = (Eq(diff(x(t), t), 21*x(t)), Eq(diff(y(t), t), 17*x(t) + 3*y(t)),
Eq(diff(z(t), t), 5*x(t) + 7*y(t) + 9*z(t)))
sol16 = [Eq(x(t), 216*C1*exp(21*t)/209),
Eq(y(t), 204*C1*exp(21*t)/209 - 6*C2*exp(3*t)/7),
Eq(z(t), C1*exp(21*t) + C2*exp(3*t) + C3*exp(9*t))]
assert dsolve(eq16) == sol16
assert checksysodesol(eq16, sol16) == (True, [0, 0, 0])
eqs17 = [Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)),
Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)),
Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))]
sol17 = [Eq(x(t), C1*Rational(7, 3) - sin(sqrt(179)*t)*(sqrt(179)*C2*Rational(11, 170) + C3*Rational(-21,
170)) - cos(sqrt(179)*t)*(C2*Rational(21, 170) + sqrt(179)*C3*Rational(11, 170))),
Eq(y(t), C1*Rational(11, 3) + sin(sqrt(179)*t)*(sqrt(179)*C2*Rational(7, 170) + C3*Rational(33,
170)) - cos(sqrt(179)*t)*(C2*Rational(33, 170) + sqrt(179)*C3*Rational(-7, 170))),
Eq(z(t), C1 + C2*cos(sqrt(179)*t) - C3*sin(sqrt(179)*t))]
assert dsolve(eqs17) == sol17
assert checksysodesol(eqs17, sol17) == (True, [0, 0, 0])
eqs18 = [Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)),
Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)),
Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t))]
sol18 = [Eq(x(t), C1 - sin(5*sqrt(2)*t)*(sqrt(2)*C2*Rational(4, 3) - C3) - cos(5*sqrt(2)*t)*(C2 +
sqrt(2)*C3*Rational(4, 3))),
Eq(y(t), C1 + sin(5*sqrt(2)*t)*(sqrt(2)*C2*Rational(3, 4) + C3) - cos(5*sqrt(2)*t)*(C2 +
sqrt(2)*C3*Rational(-3, 4))),
Eq(z(t), C1 + C2*cos(5*sqrt(2)*t) - C3*sin(5*sqrt(2)*t))]
assert dsolve(eqs18) == sol18
assert checksysodesol(eqs18, sol18) == (True, [0, 0, 0])
eqs19 = [Eq(Derivative(x(t), t), 4*x(t) - z(t)),
Eq(Derivative(y(t), t), 2*x(t) + 2*y(t) - z(t)),
Eq(Derivative(z(t), t), 3*x(t) + y(t))]
sol19 = [Eq(x(t), C2*t**2*exp(2*t)/2 + t*(2*C2 + C3)*exp(2*t) + (C1 + C2 + 2*C3)*exp(2*t)),
Eq(y(t), C2*t**2*exp(2*t)/2 + t*(2*C2 + C3)*exp(2*t) + (C1 + 2*C3)*exp(2*t)),
Eq(z(t), C2*t**2*exp(2*t) + t*(3*C2 + 2*C3)*exp(2*t) + (2*C1 + 3*C3)*exp(2*t))]
assert dsolve(eqs19) == sol19
assert checksysodesol(eqs19, sol19) == (True, [0, 0, 0])
eqs20 = [Eq(Derivative(x(t), t), 4*x(t) - y(t) - 2*z(t)),
Eq(Derivative(y(t), t), 2*x(t) + y(t) - 2*z(t)),
Eq(Derivative(z(t), t), 5*x(t) - 3*z(t))]
sol20 = [Eq(x(t), C1*exp(2*t) - sin(t)*(C2*Rational(3, 5) + C3/5) - cos(t)*(C2/5 + C3*Rational(-3, 5))),
Eq(y(t), -sin(t)*(C2*Rational(3, 5) + C3/5) - cos(t)*(C2/5 + C3*Rational(-3, 5))),
Eq(z(t), C1*exp(2*t) - C2*sin(t) + C3*cos(t))]
assert dsolve(eqs20) == sol20
assert checksysodesol(eqs20, sol20) == (True, [0, 0, 0])
eq21 = (Eq(diff(x(t), t), 9*y(t)), Eq(diff(y(t), t), 12*x(t)))
sol21 = [Eq(x(t), -sqrt(3)*C1*exp(-6*sqrt(3)*t)/2 + sqrt(3)*C2*exp(6*sqrt(3)*t)/2),
Eq(y(t), C1*exp(-6*sqrt(3)*t) + C2*exp(6*sqrt(3)*t))]
assert dsolve(eq21) == sol21
assert checksysodesol(eq21, sol21) == (True, [0, 0])
eqs22 = [Eq(Derivative(x(t), t), 2*x(t) + 4*y(t)),
Eq(Derivative(y(t), t), 12*x(t) + 41*y(t))]
sol22 = [Eq(x(t), C1*(39 - sqrt(1713))*exp(t*(sqrt(1713) + 43)/2)*Rational(-1, 24) + C2*(39 +
sqrt(1713))*exp(t*(43 - sqrt(1713))/2)*Rational(-1, 24)),
Eq(y(t), C1*exp(t*(sqrt(1713) + 43)/2) + C2*exp(t*(43 - sqrt(1713))/2))]
assert dsolve(eqs22) == sol22
assert checksysodesol(eqs22, sol22) == (True, [0, 0])
eqs23 = [Eq(Derivative(x(t), t), x(t) + y(t)),
Eq(Derivative(y(t), t), -2*x(t) + 2*y(t))]
sol23 = [Eq(x(t), (C1/4 + sqrt(7)*C2/4)*cos(sqrt(7)*t/2)*exp(t*Rational(3, 2)) +
sin(sqrt(7)*t/2)*(sqrt(7)*C1/4 + C2*Rational(-1, 4))*exp(t*Rational(3, 2))),
Eq(y(t), C1*cos(sqrt(7)*t/2)*exp(t*Rational(3, 2)) - C2*sin(sqrt(7)*t/2)*exp(t*Rational(3, 2)))]
assert dsolve(eqs23) == sol23
assert checksysodesol(eqs23, sol23) == (True, [0, 0])
# Regression test case for issue #15474
# https://github.com/sympy/sympy/issues/15474
a = Symbol("a", real=True)
eq24 = [x(t).diff(t) - a*y(t), y(t).diff(t) + a*x(t)]
sol24 = [Eq(x(t), C1*sin(a*t) + C2*cos(a*t)), Eq(y(t), C1*cos(a*t) - C2*sin(a*t))]
assert dsolve(eq24) == sol24
assert checksysodesol(eq24, sol24) == (True, [0, 0])
# Regression test case for issue #19150
# https://github.com/sympy/sympy/issues/19150
eqs25 = [Eq(Derivative(f(t), t), 0),
Eq(Derivative(g(t), t), (f(t) - 2*g(t) + x(t))/(b*c)),
Eq(Derivative(x(t), t), (g(t) - 2*x(t) + y(t))/(b*c)),
Eq(Derivative(y(t), t), (h(t) + x(t) - 2*y(t))/(b*c)),
Eq(Derivative(h(t), t), 0)]
sol25 = [Eq(f(t), -3*C1 + 4*C2),
Eq(g(t), -2*C1 + 3*C2 - C3*exp(-2*t/(b*c)) + C4*exp(-t*(sqrt(2) + 2)/(b*c)) + C5*exp(-t*(2 -
sqrt(2))/(b*c))),
Eq(x(t), -C1 + 2*C2 - sqrt(2)*C4*exp(-t*(sqrt(2) + 2)/(b*c)) + sqrt(2)*C5*exp(-t*(2 -
sqrt(2))/(b*c))),
Eq(y(t), C2 + C3*exp(-2*t/(b*c)) + C4*exp(-t*(sqrt(2) + 2)/(b*c)) + C5*exp(-t*(2 - sqrt(2))/(b*c))),
Eq(h(t), C1)]
assert dsolve(eqs25) == sol25
assert checksysodesol(eqs25, sol25) == (True, [0, 0, 0, 0, 0])
eq26 = [Eq(Derivative(f(t), t), 2*f(t)), Eq(Derivative(g(t), t), 3*f(t) + 7*g(t))]
sol26 = [Eq(f(t), -5*C1*exp(2*t)/3), Eq(g(t), C1*exp(2*t) + C2*exp(7*t))]
assert dsolve(eq26) == sol26
assert checksysodesol(eq26, sol26) == (True, [0, 0])
eq27 = [Eq(Derivative(f(t), t), -9*I*f(t) - 4*g(t)), Eq(Derivative(g(t), t), -4*I*g(t))]
sol27 = [Eq(f(t), 4*I*C1*exp(-4*I*t)/5 + C2*exp(-9*I*t)), Eq(g(t), C1*exp(-4*I*t))]
assert dsolve(eq27) == sol27
assert checksysodesol(eq27, sol27) == (True, [0, 0])
eq28 = [Eq(Derivative(f(t), t), -9*I*f(t)), Eq(Derivative(g(t), t), -4*I*g(t))]
sol28 = [Eq(f(t), C1*exp(-9*I*t)), Eq(g(t), C2*exp(-4*I*t))]
assert dsolve(eq28) == sol28
assert checksysodesol(eq28, sol28) == (True, [0, 0])
eq29 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), 0)]
sol29 = [Eq(f(t), C1), Eq(g(t), C2)]
assert dsolve(eq29) == sol29
assert checksysodesol(eq29, sol29) == (True, [0, 0])
eq30 = [Eq(Derivative(f(t), t), f(t)), Eq(Derivative(g(t), t), 0)]
sol30 = [Eq(f(t), C1*exp(t)), Eq(g(t), C2)]
assert dsolve(eq30) == sol30
assert checksysodesol(eq30, sol30) == (True, [0, 0])
eq31 = [Eq(Derivative(f(t), t), g(t)), Eq(Derivative(g(t), t), 0)]
sol31 = [Eq(f(t), C1 + C2*t), Eq(g(t), C2)]
assert dsolve(eq31) == sol31
assert checksysodesol(eq31, sol31) == (True, [0, 0])
eq32 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), f(t))]
sol32 = [Eq(f(t), C1), Eq(g(t), C1*t + C2)]
assert dsolve(eq32) == sol32
assert checksysodesol(eq32, sol32) == (True, [0, 0])
eq33 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), g(t))]
sol33 = [Eq(f(t), C1), Eq(g(t), C2*exp(t))]
assert dsolve(eq33) == sol33
assert checksysodesol(eq33, sol33) == (True, [0, 0])
eq34 = [Eq(Derivative(f(t), t), f(t)), Eq(Derivative(g(t), t), I*g(t))]
sol34 = [Eq(f(t), C1*exp(t)), Eq(g(t), C2*exp(I*t))]
assert dsolve(eq34) == sol34
assert checksysodesol(eq34, sol34) == (True, [0, 0])
eq35 = [Eq(Derivative(f(t), t), I*f(t)), Eq(Derivative(g(t), t), -I*g(t))]
sol35 = [Eq(f(t), C1*exp(I*t)), Eq(g(t), C2*exp(-I*t))]
assert dsolve(eq35) == sol35
assert checksysodesol(eq35, sol35) == (True, [0, 0])
eq36 = [Eq(Derivative(f(t), t), I*g(t)), Eq(Derivative(g(t), t), 0)]
sol36 = [Eq(f(t), I*C1 + I*C2*t), Eq(g(t), C2)]
assert dsolve(eq36) == sol36
assert checksysodesol(eq36, sol36) == (True, [0, 0])
eq37 = [Eq(Derivative(f(t), t), I*g(t)), Eq(Derivative(g(t), t), I*f(t))]
sol37 = [Eq(f(t), -C1*exp(-I*t) + C2*exp(I*t)), Eq(g(t), C1*exp(-I*t) + C2*exp(I*t))]
assert dsolve(eq37) == sol37
assert checksysodesol(eq37, sol37) == (True, [0, 0])
# Multiple systems
eq1 = [Eq(Derivative(f(t), t)**2, g(t)**2), Eq(-f(t) + Derivative(g(t), t), 0)]
sol1 = [[Eq(f(t), -C1*sin(t) - C2*cos(t)),
Eq(g(t), C1*cos(t) - C2*sin(t))],
[Eq(f(t), -C1*exp(-t) + C2*exp(t)),
Eq(g(t), C1*exp(-t) + C2*exp(t))]]
assert dsolve(eq1) == sol1
for sol in sol1:
assert checksysodesol(eq1, sol) == (True, [0, 0])
def test_sysode_linear_neq_order1_type2():
f, g, h, k = symbols('f g h k', cls=Function)
x, t, a, b, c, d, y = symbols('x t a b c d y')
k1, k2 = symbols('k1 k2')
eqs1 = [Eq(Derivative(f(x), x), f(x) + g(x) + 5),
Eq(Derivative(g(x), x), -f(x) - g(x) + 7)]
sol1 = [Eq(f(x), C1 + C2 + 6*x**2 + x*(C2 + 5)),
Eq(g(x), -C1 - 6*x**2 - x*(C2 - 7))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(Derivative(f(x), x), f(x) + g(x) + 5),
Eq(Derivative(g(x), x), f(x) + g(x) + 7)]
sol2 = [Eq(f(x), -C1 + C2*exp(2*x) - x - 3),
Eq(g(x), C1 + C2*exp(2*x) + x - 3)]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(Derivative(f(x), x), f(x) + 5),
Eq(Derivative(g(x), x), f(x) + 7)]
sol3 = [Eq(f(x), C1*exp(x) - 5),
Eq(g(x), C1*exp(x) + C2 + 2*x - 5)]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
eqs4 = [Eq(Derivative(f(x), x), f(x) + exp(x)),
Eq(Derivative(g(x), x), x*exp(x) + f(x) + g(x))]
sol4 = [Eq(f(x), C1*exp(x) + x*exp(x)),
Eq(g(x), C1*x*exp(x) + C2*exp(x) + x**2*exp(x))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
eqs5 = [Eq(Derivative(f(x), x), 5*x + f(x) + g(x)),
Eq(Derivative(g(x), x), f(x) - g(x))]
sol5 = [Eq(f(x), C1*(1 + sqrt(2))*exp(sqrt(2)*x) + C2*(1 - sqrt(2))*exp(-sqrt(2)*x) + x*Rational(-5, 2) +
Rational(-5, 2)),
Eq(g(x), C1*exp(sqrt(2)*x) + C2*exp(-sqrt(2)*x) + x*Rational(-5, 2))]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
eqs6 = [Eq(Derivative(f(x), x), -9*f(x) - 4*g(x)),
Eq(Derivative(g(x), x), -4*g(x)),
Eq(Derivative(h(x), x), h(x) + exp(x))]
sol6 = [Eq(f(x), C1*exp(-4*x)*Rational(-4, 5) + C2*exp(-9*x)),
Eq(g(x), C1*exp(-4*x)),
Eq(h(x), C3*exp(x) + x*exp(x))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0])
# Regression test case for issue #8859
# https://github.com/sympy/sympy/issues/8859
eqs7 = [Eq(Derivative(f(t), t), 3*t + f(t)),
Eq(Derivative(g(t), t), g(t))]
sol7 = [Eq(f(t), C1*exp(t) - 3*t - 3),
Eq(g(t), C2*exp(t))]
assert dsolve(eqs7) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
# Regression test case for issue #8567
# https://github.com/sympy/sympy/issues/8567
eqs8 = [Eq(Derivative(f(t), t), f(t) + 2*g(t)),
Eq(Derivative(g(t), t), -2*f(t) + g(t) + 2*exp(t))]
sol8 = [Eq(f(t), C1*exp(t)*sin(2*t) + C2*exp(t)*cos(2*t) + exp(t)*cos(2*t)**2 +
2*exp(t)*sin(2*t)*tan(t)/(tan(t)**2 + 1)),
Eq(g(t), C1*exp(t)*cos(2*t) - C2*exp(t)*sin(2*t) - exp(t)*sin(2*t)*cos(2*t) +
2*exp(t)*cos(2*t)*tan(t)/(tan(t)**2 + 1))]
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0])
# Regression test case for issue #19150
# https://github.com/sympy/sympy/issues/19150
eqs9 = [Eq(Derivative(f(t), t), (c - 2*f(t) + g(t))/(a*b)),
Eq(Derivative(g(t), t), (f(t) - 2*g(t) + h(t))/(a*b)),
Eq(Derivative(h(t), t), (d + g(t) - 2*h(t))/(a*b))]
sol9 = [Eq(f(t), -C1*exp(-2*t/(a*b)) + C2*exp(-t*(sqrt(2) + 2)/(a*b)) + C3*exp(-t*(2 - sqrt(2))/(a*b)) +
Mul(Rational(1, 4), 3*c + d, evaluate=False)),
Eq(g(t), -sqrt(2)*C2*exp(-t*(sqrt(2) + 2)/(a*b)) + sqrt(2)*C3*exp(-t*(2 - sqrt(2))/(a*b)) +
Mul(Rational(1, 2), c + d, evaluate=False)),
Eq(h(t), C1*exp(-2*t/(a*b)) + C2*exp(-t*(sqrt(2) + 2)/(a*b)) + C3*exp(-t*(2 - sqrt(2))/(a*b)) +
Mul(Rational(1, 4), c + 3*d, evaluate=False))]
assert dsolve(eqs9) == sol9
assert checksysodesol(eqs9, sol9) == (True, [0, 0, 0])
# Regression test case for issue #16635
# https://github.com/sympy/sympy/issues/16635
eqs10 = [Eq(Derivative(f(t), t), 15*t + f(t) - g(t) - 10),
Eq(Derivative(g(t), t), -15*t + f(t) - g(t) - 5)]
sol10 = [Eq(f(t), C1 + C2 + 5*t**3 + 5*t**2 + t*(C2 - 10)),
Eq(g(t), C1 + 5*t**3 - 10*t**2 + t*(C2 - 5))]
assert dsolve(eqs10) == sol10
assert checksysodesol(eqs10, sol10) == (True, [0, 0])
# Multiple solutions
eqs11 = [Eq(Derivative(f(t), t)**2 - 2*Derivative(f(t), t) + 1, 4),
Eq(-y*f(t) + Derivative(g(t), t), 0)]
sol11 = [[Eq(f(t), C1 - t), Eq(g(t), C1*t*y + C2*y + t**2*y*Rational(-1, 2))],
[Eq(f(t), C1 + 3*t), Eq(g(t), C1*t*y + C2*y + t**2*y*Rational(3, 2))]]
assert dsolve(eqs11) == sol11
for s11 in sol11:
assert checksysodesol(eqs11, s11) == (True, [0, 0])
# test case for issue #19831
# https://github.com/sympy/sympy/issues/19831
n = symbols('n', positive=True)
x0 = symbols('x_0')
t0 = symbols('t_0')
x_0 = symbols('x_0')
t_0 = symbols('t_0')
t = symbols('t')
x = Function('x')
y = Function('y')
T = symbols('T')
eqs12 = [Eq(Derivative(y(t), t), x(t)),
Eq(Derivative(x(t), t), n*(y(t) + 1))]
sol12 = [Eq(y(t), C1*exp(sqrt(n)*t)*n**Rational(-1, 2) - C2*exp(-sqrt(n)*t)*n**Rational(-1, 2) - 1),
Eq(x(t), C1*exp(sqrt(n)*t) + C2*exp(-sqrt(n)*t))]
assert dsolve(eqs12) == sol12
assert checksysodesol(eqs12, sol12) == (True, [0, 0])
sol12b = [
Eq(y(t), (T*exp(-sqrt(n)*t_0)/2 + exp(-sqrt(n)*t_0)/2 +
x_0*exp(-sqrt(n)*t_0)/(2*sqrt(n)))*exp(sqrt(n)*t) +
(T*exp(sqrt(n)*t_0)/2 + exp(sqrt(n)*t_0)/2 -
x_0*exp(sqrt(n)*t_0)/(2*sqrt(n)))*exp(-sqrt(n)*t) - 1),
Eq(x(t), (T*sqrt(n)*exp(-sqrt(n)*t_0)/2 + sqrt(n)*exp(-sqrt(n)*t_0)/2
+ x_0*exp(-sqrt(n)*t_0)/2)*exp(sqrt(n)*t)
- (T*sqrt(n)*exp(sqrt(n)*t_0)/2 + sqrt(n)*exp(sqrt(n)*t_0)/2 -
x_0*exp(sqrt(n)*t_0)/2)*exp(-sqrt(n)*t))
]
assert dsolve(eqs12, ics={y(t0): T, x(t0): x0}) == sol12b
assert checksysodesol(eqs12, sol12b) == (True, [0, 0])
#Test cases added for the issue 19763
#https://github.com/sympy/sympy/issues/19763
eq13 = [Eq(Derivative(f(t), t), f(t) + g(t) + 9),
Eq(Derivative(g(t), t), 2*f(t) + 5*g(t) + 23)]
sol13 = [Eq(f(t), -C1*(2 + sqrt(6))*exp(t*(3 - sqrt(6)))/2 - C2*(2 - sqrt(6))*exp(t*(sqrt(6) + 3))/2 -
Rational(22,3)),
Eq(g(t), C1*exp(t*(3 - sqrt(6))) + C2*exp(t*(sqrt(6) + 3)) - Rational(5,3))]
assert dsolve(eq13) == sol13
assert checksysodesol(eq13, sol13) == (True, [0, 0])
eq14 = [Eq(Derivative(f(t), t), f(t) + g(t) + 81),
Eq(Derivative(g(t), t), -2*f(t) + g(t) + 23)]
sol14 = [Eq(f(t), sqrt(2)*C1*exp(t)*sin(sqrt(2)*t)/2 + sqrt(2)*C2*exp(t)*cos(sqrt(2)*t)/2 +
sqrt(2)*exp(t)*sin(sqrt(2)*t)*Integral(-23*exp(-t)*sin(sqrt(2)*t)**2/cos(sqrt(2)*t) +
81*sqrt(2)*exp(-t)*sin(sqrt(2)*t) + 23*exp(-t)/cos(sqrt(2)*t), t)/2 +
185*sqrt(2)*sin(sqrt(2)*t)*cos(sqrt(2)*t)/6 - 58*cos(sqrt(2)*t)**2/3),
Eq(g(t), C1*exp(t)*cos(sqrt(2)*t) - C2*exp(t)*sin(sqrt(2)*t) +
exp(t)*cos(sqrt(2)*t)*Integral(-23*exp(-t)*sin(sqrt(2)*t)**2/cos(sqrt(2)*t) +
81*sqrt(2)*exp(-t)*sin(sqrt(2)*t) + 23*exp(-t)/cos(sqrt(2)*t), t) -
185*sin(sqrt(2)*t)**2/3 + 58*sqrt(2)*sin(sqrt(2)*t)*cos(sqrt(2)*t)/3)]
assert dsolve(eq14) == sol14
assert checksysodesol(eq14 , sol14) == (True , [0,0])
eq15 = [Eq(Derivative(f(t), t), f(t) + 2*g(t) + k1),
Eq(Derivative(g(t), t), 3*f(t) + 4*g(t) + k2)]
sol15 = [Eq(f(t), -C1*(3 - sqrt(33))*exp(t*(5 + sqrt(33))/2)/6 -
C2*(3 + sqrt(33))*exp(t*(5 - sqrt(33))/2)/6 + 2*k1 - k2),
Eq(g(t), C1*exp(t*(5 + sqrt(33))/2) + C2*exp(t*(5 - sqrt(33))/2) -
Mul(Rational(1,2) , 3*k1 - k2 , evaluate = False))]
assert dsolve(eq15) == sol15
assert checksysodesol(eq15 , sol15) == (True , [0,0])
eq16 = [Eq(Derivative(f(t), t), k1),
Eq(Derivative(g(t), t), k2)]
sol16 = [Eq(f(t), C1 + k1*t),
Eq(g(t), C2 + k2*t)]
assert dsolve(eq16) == sol16
assert checksysodesol(eq16 , sol16) == (True , [0,0])
eq17 = [Eq(Derivative(f(t), t), 0),
Eq(Derivative(g(t), t), c*f(t) + k2)]
sol17 = [Eq(f(t), C1),
Eq(g(t), C2*c + t*(C1*c + k2))]
assert dsolve(eq17) == sol17
assert checksysodesol(eq17 , sol17) == (True , [0,0])
eq18 = [Eq(Derivative(f(t), t), k1),
Eq(Derivative(g(t), t), f(t) + k2)]
sol18 = [Eq(f(t), C1 + k1*t),
Eq(g(t), C2 + k1*t**2/2 + t*(C1 + k2))]
assert dsolve(eq18) == sol18
assert checksysodesol(eq18 , sol18) == (True , [0,0])
eq19 = [Eq(Derivative(f(t), t), k1),
Eq(Derivative(g(t), t), f(t) + 2*g(t) + k2)]
sol19 = [Eq(f(t), -2*C1 + k1*t),
Eq(g(t), C1 + C2*exp(2*t) - k1*t/2 - Mul(Rational(1,4), k1 + 2*k2 , evaluate = False))]
assert dsolve(eq19) == sol19
assert checksysodesol(eq19 , sol19) == (True , [0,0])
eq20 = [Eq(diff(f(t), t), f(t) + k1),
Eq(diff(g(t), t), k2)]
sol20 = [Eq(f(t), C1*exp(t) - k1),
Eq(g(t), C2 + k2*t)]
assert dsolve(eq20) == sol20
assert checksysodesol(eq20 , sol20) == (True , [0,0])
eq21 = [Eq(diff(f(t), t), g(t) + k1),
Eq(diff(g(t), t), 0)]
sol21 = [Eq(f(t), C1 + t*(C2 + k1)),
Eq(g(t), C2)]
assert dsolve(eq21) == sol21
assert checksysodesol(eq21 , sol21) == (True , [0,0])
eq22 = [Eq(Derivative(f(t), t), f(t) + 2*g(t) + k1),
Eq(Derivative(g(t), t), k2)]
sol22 = [Eq(f(t), -2*C1 + C2*exp(t) - k1 - 2*k2*t - 2*k2),
Eq(g(t), C1 + k2*t)]
assert dsolve(eq22) == sol22
assert checksysodesol(eq22 , sol22) == (True , [0,0])
eq23 = [Eq(Derivative(f(t), t), g(t) + k1),
Eq(Derivative(g(t), t), 2*g(t) + k2)]
sol23 = [Eq(f(t), C1 + C2*exp(2*t)/2 - k2/4 + t*(2*k1 - k2)/2),
Eq(g(t), C2*exp(2*t) - k2/2)]
assert dsolve(eq23) == sol23
assert checksysodesol(eq23 , sol23) == (True , [0,0])
eq24 = [Eq(Derivative(f(t), t), f(t) + k1),
Eq(Derivative(g(t), t), 2*f(t) + k2)]
sol24 = [Eq(f(t), C1*exp(t)/2 - k1),
Eq(g(t), C1*exp(t) + C2 - 2*k1 - t*(2*k1 - k2))]
assert dsolve(eq24) == sol24
assert checksysodesol(eq24 , sol24) == (True , [0,0])
eq25 = [Eq(Derivative(f(t), t), f(t) + 2*g(t) + k1),
Eq(Derivative(g(t), t), 3*f(t) + 6*g(t) + k2)]
sol25 = [Eq(f(t), -2*C1 + C2*exp(7*t)/3 + 2*t*(3*k1 - k2)/7 -
Mul(Rational(1,49), k1 + 2*k2 , evaluate = False)),
Eq(g(t), C1 + C2*exp(7*t) - t*(3*k1 - k2)/7 -
Mul(Rational(3,49), k1 + 2*k2 , evaluate = False))]
assert dsolve(eq25) == sol25
assert checksysodesol(eq25 , sol25) == (True , [0,0])
eq26 = [Eq(Derivative(f(t), t), 2*f(t) - g(t) + k1),
Eq(Derivative(g(t), t), 4*f(t) - 2*g(t) + 2*k1)]
sol26 = [Eq(f(t), C1 + 2*C2 + t*(2*C1 + k1)),
Eq(g(t), 4*C2 + t*(4*C1 + 2*k1))]
assert dsolve(eq26) == sol26
assert checksysodesol(eq26 , sol26) == (True , [0,0])
def test_sysode_linear_neq_order1_type3():
f, g, h, k, x0 , y0 = symbols('f g h k x0 y0', cls=Function)
x, t, a = symbols('x t a')
r = symbols('r', real=True)
eqs1 = [Eq(Derivative(f(r), r), r*g(r) + f(r)),
Eq(Derivative(g(r), r), -r*f(r) + g(r))]
sol1 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2)),
Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(Derivative(f(x), x), x**2*g(x) + x*f(x)),
Eq(Derivative(g(x), x), 2*x**2*f(x) + (3*x**2 + x)*g(x))]
sol2 = [Eq(f(x), (sqrt(17)*C1/17 + C2*(17 - 3*sqrt(17))/34)*exp(x**3*(3 + sqrt(17))/6 + x**2/2) -
exp(x**3*(3 - sqrt(17))/6 + x**2/2)*(sqrt(17)*C1/17 + C2*(3*sqrt(17) + 17)*Rational(-1, 34))),
Eq(g(x), exp(x**3*(3 - sqrt(17))/6 + x**2/2)*(C1*(17 - 3*sqrt(17))/34 + sqrt(17)*C2*Rational(-2,
17)) + exp(x**3*(3 + sqrt(17))/6 + x**2/2)*(C1*(3*sqrt(17) + 17)/34 + sqrt(17)*C2*Rational(2, 17)))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(f(x).diff(x), x*f(x) + g(x)),
Eq(g(x).diff(x), -f(x) + x*g(x))]
sol3 = [Eq(f(x), (C1/2 + I*C2/2)*exp(x**2/2 - I*x) + exp(x**2/2 + I*x)*(C1/2 + I*C2*Rational(-1, 2))),
Eq(g(x), (I*C1/2 + C2/2)*exp(x**2/2 + I*x) - exp(x**2/2 - I*x)*(I*C1/2 + C2*Rational(-1, 2)))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
eqs4 = [Eq(f(x).diff(x), x*(f(x) + g(x) + h(x))), Eq(g(x).diff(x), x*(f(x) + g(x) + h(x))),
Eq(h(x).diff(x), x*(f(x) + g(x) + h(x)))]
sol4 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)),
Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)),
Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0])
eqs5 = [Eq(f(x).diff(x), x**2*(f(x) + g(x) + h(x))), Eq(g(x).diff(x), x**2*(f(x) + g(x) + h(x))),
Eq(h(x).diff(x), x**2*(f(x) + g(x) + h(x)))]
sol5 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3)),
Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3)),
Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3))]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0])
eqs6 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x) + k(x))),
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x) + k(x))),
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x) + k(x))),
Eq(Derivative(k(x), x), x*(f(x) + g(x) + h(x) + k(x)))]
sol6 = [Eq(f(x), -C1/4 - C2/4 - C3/4 + 3*C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)),
Eq(g(x), 3*C1/4 - C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)),
Eq(h(x), -C1/4 + 3*C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)),
Eq(k(x), -C1/4 - C2/4 + 3*C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0])
y = symbols("y", real=True)
eqs7 = [Eq(Derivative(f(y), y), y*f(y) + g(y)),
Eq(Derivative(g(y), y), y*g(y) - f(y))]
sol7 = [Eq(f(y), C1*exp(y**2/2)*sin(y) + C2*exp(y**2/2)*cos(y)),
Eq(g(y), C1*exp(y**2/2)*cos(y) - C2*exp(y**2/2)*sin(y))]
assert dsolve(eqs7) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
#Test cases added for the issue 19763
#https://github.com/sympy/sympy/issues/19763
eqs8 = [Eq(Derivative(f(t), t), 5*t*f(t) + 2*h(t)),
Eq(Derivative(h(t), t), 2*f(t) + 5*t*h(t))]
sol8 = [Eq(f(t), Mul(-1, (C1/2 - C2/2), evaluate = False)*exp(5*t**2/2 - 2*t) + (C1/2 + C2/2)*exp(5*t**2/2 + 2*t)),
Eq(h(t), (C1/2 - C2/2)*exp(5*t**2/2 - 2*t) + (C1/2 + C2/2)*exp(5*t**2/2 + 2*t))]
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0])
eqs9 = [Eq(diff(f(t), t), 5*t*f(t) + t**2*g(t)),
Eq(diff(g(t), t), -t**2*f(t) + 5*t*g(t))]
sol9 = [Eq(f(t), (C1/2 - I*C2/2)*exp(I*t**3/3 + 5*t**2/2) + (C1/2 + I*C2/2)*exp(-I*t**3/3 + 5*t**2/2)),
Eq(g(t), Mul(-1, (I*C1/2 - C2/2) , evaluate = False)*exp(-I*t**3/3 + 5*t**2/2) + (I*C1/2 + C2/2)*exp(I*t**3/3 + 5*t**2/2))]
assert dsolve(eqs9) == sol9
assert checksysodesol(eqs9 , sol9) == (True , [0,0])
eqs10 = [Eq(diff(f(t), t), t**2*g(t) + 5*t*f(t)),
Eq(diff(g(t), t), -t**2*f(t) + (9*t**2 + 5*t)*g(t))]
sol10 = [Eq(f(t), (C1*(77 - 9*sqrt(77))/154 + sqrt(77)*C2/77)*exp(t**3*(sqrt(77) + 9)/6 + 5*t**2/2) + (C1*(77 + 9*sqrt(77))/154 - sqrt(77)*C2/77)*exp(t**3*(9 - sqrt(77))/6 + 5*t**2/2)),
Eq(g(t), (sqrt(77)*C1/77 + C2*(77 - 9*sqrt(77))/154)*exp(t**3*(9 - sqrt(77))/6 + 5*t**2/2) - (sqrt(77)*C1/77 - C2*(77 + 9*sqrt(77))/154)*exp(t**3*(sqrt(77) + 9)/6 + 5*t**2/2))]
assert dsolve(eqs10) == sol10
assert checksysodesol(eqs10 , sol10) == (True , [0,0])
eqs11 = [Eq(diff(f(t), t), 5*t*f(t) + t**2*g(t)),
Eq(diff(g(t), t), (1-t**2)*f(t) + (5*t + 9*t**2)*g(t))]
sol11 = [Eq(f(t), C1*x0(t) + C2*x0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t)),
Eq(g(t), C1*y0(t) + C2*(y0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t) + exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)))]
assert dsolve(eqs11) == sol11
@slow
def test_sysode_linear_neq_order1_type4():
f, g, h, k = symbols('f g h k', cls=Function)
x, t, a = symbols('x t a')
r = symbols('r', real=True)
eqs1 = [Eq(diff(f(r), r), f(r) + r*g(r) + r**2), Eq(diff(g(r), r), -r*f(r) + g(r) + r)]
sol1 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2) + exp(r)*sin(r**2/2)*Integral(r**2*exp(-r)*sin(r**2/2) +
r*exp(-r)*cos(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r**2*exp(-r)*cos(r**2/2) - r*exp(-r)*sin(r**2/2), r)),
Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2) - exp(r)*sin(r**2/2)*Integral(r**2*exp(-r)*cos(r**2/2) -
r*exp(-r)*sin(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r**2*exp(-r)*sin(r**2/2) + r*exp(-r)*cos(r**2/2), r))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(diff(f(r), r), f(r) + r*g(r) + r), Eq(diff(g(r), r), -r*f(r) + g(r) + log(r))]
sol2 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2) + exp(r)*sin(r**2/2)*Integral(r*exp(-r)*sin(r**2/2) +
exp(-r)*log(r)*cos(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r*exp(-r)*cos(r**2/2) - exp(-r)*log(r)*sin(
r**2/2), r)),
Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2) - exp(r)*sin(r**2/2)*Integral(r*exp(-r)*cos(r**2/2) -
exp(-r)*log(r)*sin(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r*exp(-r)*sin(r**2/2) + exp(-r)*log(r)*cos(
r**2/2), r))]
# XXX: dsolve hangs for this in integration
assert dsolve_system(eqs2, simplify=False, doit=False) == [sol2]
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x)) + x),
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x)) + x),
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x)) + 1)]
sol3 = [Eq(f(x), C1*Rational(-1, 3) + C2*Rational(-1, 3) + C3*Rational(2, 3) + x**2/6 + x*Rational(-1, 3) +
(C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) +
sqrt(6)*sqrt(pi)*erf(sqrt(6)*x/2)*exp(x**2*Rational(3, 2))/18 + Rational(-2, 9)),
Eq(g(x), C1*Rational(2, 3) + C2*Rational(-1, 3) + C3*Rational(-1, 3) + x**2/6 + x*Rational(-1, 3) +
(C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) +
sqrt(6)*sqrt(pi)*erf(sqrt(6)*x/2)*exp(x**2*Rational(3, 2))/18 + Rational(-2, 9)),
Eq(h(x), C1*Rational(-1, 3) + C2*Rational(2, 3) + C3*Rational(-1, 3) + x**2*Rational(-1, 3) +
x*Rational(2, 3) + (C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) +
sqrt(6)*sqrt(pi)*erf(sqrt(6)*x/2)*exp(x**2*Rational(3, 2))/18 + Rational(-2, 9))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0])
eqs4 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x)) + sin(x)),
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x)) + sin(x)),
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x)) + sin(x))]
sol4 = [Eq(f(x), C1*Rational(-1, 3) + C2*Rational(-1, 3) + C3*Rational(2, 3) + (C1/3 + C2/3 +
C3/3)*exp(x**2*Rational(3, 2)) + Integral(sin(x)*exp(x**2*Rational(-3, 2)), x)*exp(x**2*Rational(3,
2))),
Eq(g(x), C1*Rational(2, 3) + C2*Rational(-1, 3) + C3*Rational(-1, 3) + (C1/3 + C2/3 +
C3/3)*exp(x**2*Rational(3, 2)) + Integral(sin(x)*exp(x**2*Rational(-3, 2)), x)*exp(x**2*Rational(3,
2))),
Eq(h(x), C1*Rational(-1, 3) + C2*Rational(2, 3) + C3*Rational(-1, 3) + (C1/3 + C2/3 +
C3/3)*exp(x**2*Rational(3, 2)) + Integral(sin(x)*exp(x**2*Rational(-3, 2)), x)*exp(x**2*Rational(3,
2)))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0])
eqs5 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(k(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1))]
sol5 = [Eq(f(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(3, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4)),
Eq(g(x), C1*Rational(3, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4)),
Eq(h(x), C1*Rational(-1, 4) + C2*Rational(3, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4)),
Eq(k(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(3, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4))]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0, 0])
eqs6 = [Eq(Derivative(f(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(g(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(h(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(k(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1))]
sol6 = [Eq(f(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(3, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4)),
Eq(g(x), C1*Rational(3, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4)),
Eq(h(x), C1*Rational(-1, 4) + C2*Rational(3, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4)),
Eq(k(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(3, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0])
eqs7 = [Eq(Derivative(f(x), x), (f(x) + g(x) + h(x))*log(x) + sin(x)), Eq(Derivative(g(x), x), (f(x) + g(x)
+ h(x))*log(x) + sin(x)), Eq(Derivative(h(x), x), (f(x) + g(x) + h(x))*log(x) + sin(x))]
sol7 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 +
C3/3)*exp(x*(3*log(x) - 3)) + exp(x*(3*log(x) -
3))*Integral(exp(3*x)*exp(-3*x*log(x))*sin(x), x)),
Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 +
C3/3)*exp(x*(3*log(x) - 3)) + exp(x*(3*log(x) -
3))*Integral(exp(3*x)*exp(-3*x*log(x))*sin(x), x)),
Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 +
C3/3)*exp(x*(3*log(x) - 3)) + exp(x*(3*log(x) -
3))*Integral(exp(3*x)*exp(-3*x*log(x))*sin(x), x))]
with dotprodsimp(True):
assert dsolve(eqs7, simplify=False, doit=False) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0, 0])
eqs8 = [Eq(Derivative(f(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) + sin(x)), Eq(Derivative(g(x), x), (f(x)
+ g(x) + h(x) + k(x))*log(x) + sin(x)), Eq(Derivative(h(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) +
sin(x)), Eq(Derivative(k(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) + sin(x))]
sol8 = [Eq(f(x), -C1/4 - C2/4 - C3/4 + 3*C4/4 + (C1/4 + C2/4 + C3/4 +
C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) -
4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x)),
Eq(g(x), 3*C1/4 - C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 +
C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) -
4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x)),
Eq(h(x), -C1/4 + 3*C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 +
C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) -
4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x)),
Eq(k(x), -C1/4 - C2/4 + 3*C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 +
C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) -
4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x))]
with dotprodsimp(True):
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0, 0, 0])
def test_sysode_linear_neq_order1_type5_type6():
f, g = symbols("f g", cls=Function)
x, x_ = symbols("x x_")
# Type 5
eqs1 = [Eq(Derivative(f(x), x), (2*f(x) + g(x))/x), Eq(Derivative(g(x), x), (f(x) + 2*g(x))/x)]
sol1 = [Eq(f(x), -C1*x + C2*x**3), Eq(g(x), C1*x + C2*x**3)]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
# Type 6
eqs2 = [Eq(Derivative(f(x), x), (2*f(x) + g(x) + 1)/x),
Eq(Derivative(g(x), x), (x + f(x) + 2*g(x))/x)]
sol2 = [Eq(f(x), C2*x**3 - x*(C1 + Rational(1, 4)) + x*log(x)*Rational(-1, 2) + Rational(-2, 3)),
Eq(g(x), C2*x**3 + x*log(x)/2 + x*(C1 + Rational(-1, 4)) + Rational(1, 3))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
def test_higher_order_to_first_order():
f, g = symbols('f g', cls=Function)
x = symbols('x')
eqs1 = [Eq(Derivative(f(x), (x, 2)), 2*f(x) + g(x)),
Eq(Derivative(g(x), (x, 2)), -f(x))]
sol1 = [Eq(f(x), -C2*x*exp(-x) + C3*x*exp(x) - (C1 - C2)*exp(-x) + (C3 + C4)*exp(x)),
Eq(g(x), C2*x*exp(-x) - C3*x*exp(x) + (C1 + C2)*exp(-x) + (C3 - C4)*exp(x))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(f(x).diff(x, 2), 0), Eq(g(x).diff(x, 2), f(x))]
sol2 = [Eq(f(x), C1 + C2*x), Eq(g(x), C1*x**2/2 + C2*x**3/6 + C3 + C4*x)]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(Derivative(f(x), (x, 2)), 2*f(x)),
Eq(Derivative(g(x), (x, 2)), -f(x) + 2*g(x))]
sol3 = [Eq(f(x), 4*C1*exp(-sqrt(2)*x) + 4*C2*exp(sqrt(2)*x)),
Eq(g(x), sqrt(2)*C1*x*exp(-sqrt(2)*x) - sqrt(2)*C2*x*exp(sqrt(2)*x) + (C1 +
sqrt(2)*C4)*exp(-sqrt(2)*x) + (C2 - sqrt(2)*C3)*exp(sqrt(2)*x))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
eqs4 = [Eq(Derivative(f(x), (x, 2)), 2*f(x) + g(x)),
Eq(Derivative(g(x), (x, 2)), 2*g(x))]
sol4 = [Eq(f(x), C1*x*exp(sqrt(2)*x)/4 + C3*x*exp(-sqrt(2)*x)/4 + (C2/4 + sqrt(2)*C3/8)*exp(-sqrt(2)*x) -
exp(sqrt(2)*x)*(sqrt(2)*C1/8 + C4*Rational(-1, 4))),
Eq(g(x), sqrt(2)*C1*exp(sqrt(2)*x)/2 + sqrt(2)*C3*exp(-sqrt(2)*x)*Rational(-1, 2))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
eqs5 = [Eq(f(x).diff(x, 2), f(x)), Eq(g(x).diff(x, 2), f(x))]
sol5 = [Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), -C1*exp(-x) + C2*exp(x) + C3 + C4*x)]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
eqs6 = [Eq(Derivative(f(x), (x, 2)), f(x) + g(x)),
Eq(Derivative(g(x), (x, 2)), -f(x) - g(x))]
sol6 = [Eq(f(x), C1 + C2*x**2/2 + C2 + C4*x**3/6 + x*(C3 + C4)),
Eq(g(x), -C1 + C2*x**2*Rational(-1, 2) - C3*x + C4*x**3*Rational(-1, 6))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0])
eqs7 = [Eq(Derivative(f(x), (x, 2)), f(x) + g(x) + 1),
Eq(Derivative(g(x), (x, 2)), f(x) + g(x) + 1)]
sol7 = [Eq(f(x), -C1 - C2*x + sqrt(2)*C3*exp(sqrt(2)*x)/2 + sqrt(2)*C4*exp(-sqrt(2)*x)*Rational(-1, 2) +
Rational(-1, 2)),
Eq(g(x), C1 + C2*x + sqrt(2)*C3*exp(sqrt(2)*x)/2 + sqrt(2)*C4*exp(-sqrt(2)*x)*Rational(-1, 2) +
Rational(-1, 2))]
assert dsolve(eqs7) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
eqs8 = [Eq(Derivative(f(x), (x, 2)), f(x) + g(x) + 1),
Eq(Derivative(g(x), (x, 2)), -f(x) - g(x) + 1)]
sol8 = [Eq(f(x), C1 + C2 + C4*x**3/6 + x**4/12 + x**2*(C2/2 + Rational(1, 2)) + x*(C3 + C4)),
Eq(g(x), -C1 - C3*x + C4*x**3*Rational(-1, 6) + x**4*Rational(-1, 12) - x**2*(C2/2 + Rational(-1,
2)))]
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0])
x, y = symbols('x, y', cls=Function)
t, l = symbols('t, l')
eqs10 = [Eq(Derivative(x(t), (t, 2)), 5*x(t) + 43*y(t)),
Eq(Derivative(y(t), (t, 2)), x(t) + 9*y(t))]
sol10 = [Eq(x(t), C1*(61 - 9*sqrt(47))*sqrt(sqrt(47) + 7)*exp(-t*sqrt(sqrt(47) + 7))/2 + C2*sqrt(7 -
sqrt(47))*(61 + 9*sqrt(47))*exp(-t*sqrt(7 - sqrt(47)))/2 + C3*(61 - 9*sqrt(47))*sqrt(sqrt(47) +
7)*exp(t*sqrt(sqrt(47) + 7))*Rational(-1, 2) + C4*sqrt(7 - sqrt(47))*(61 + 9*sqrt(47))*exp(t*sqrt(7
- sqrt(47)))*Rational(-1, 2)),
Eq(y(t), C1*(7 - sqrt(47))*sqrt(sqrt(47) + 7)*exp(-t*sqrt(sqrt(47) + 7))*Rational(-1, 2) + C2*sqrt(7
- sqrt(47))*(sqrt(47) + 7)*exp(-t*sqrt(7 - sqrt(47)))*Rational(-1, 2) + C3*(7 -
sqrt(47))*sqrt(sqrt(47) + 7)*exp(t*sqrt(sqrt(47) + 7))/2 + C4*sqrt(7 - sqrt(47))*(sqrt(47) +
7)*exp(t*sqrt(7 - sqrt(47)))/2)]
assert dsolve(eqs10) == sol10
assert checksysodesol(eqs10, sol10) == (True, [0, 0])
eqs11 = [Eq(7*x(t) + Derivative(x(t), (t, 2)) - 9*Derivative(y(t), t), 0),
Eq(7*y(t) + 9*Derivative(x(t), t) + Derivative(y(t), (t, 2)), 0)]
sol11 = [Eq(y(t), C1*(9 - sqrt(109))*sin(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)/14 + C2*(9 -
sqrt(109))*cos(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)*Rational(-1, 14) + C3*(9 +
sqrt(109))*sin(sqrt(2)*t*sqrt(95 - 9*sqrt(109))/2)/14 + C4*(9 + sqrt(109))*cos(sqrt(2)*t*sqrt(95 -
9*sqrt(109))/2)*Rational(-1, 14)),
Eq(x(t), C1*(9 - sqrt(109))*cos(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)*Rational(-1, 14) + C2*(9 -
sqrt(109))*sin(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)*Rational(-1, 14) + C3*(9 +
sqrt(109))*cos(sqrt(2)*t*sqrt(95 - 9*sqrt(109))/2)/14 + C4*(9 + sqrt(109))*sin(sqrt(2)*t*sqrt(95 -
9*sqrt(109))/2)/14)]
assert dsolve(eqs11) == sol11
assert checksysodesol(eqs11, sol11) == (True, [0, 0])
# Euler Systems
# Note: To add examples of euler systems solver with non-homogeneous term.
eqs13 = [Eq(Derivative(f(t), (t, 2)), Derivative(f(t), t)/t + f(t)/t**2 + g(t)/t**2),
Eq(Derivative(g(t), (t, 2)), g(t)/t**2)]
sol13 = [Eq(f(t), C1*(sqrt(5) + 3)*Rational(-1, 2)*t**(Rational(1, 2) +
sqrt(5)*Rational(-1, 2)) + C2*t**(Rational(1, 2) +
sqrt(5)/2)*(3 - sqrt(5))*Rational(-1, 2) - C3*t**(1 -
sqrt(2))*(1 + sqrt(2)) - C4*t**(1 + sqrt(2))*(1 - sqrt(2))),
Eq(g(t), C1*(1 + sqrt(5))*Rational(-1, 2)*t**(Rational(1, 2) +
sqrt(5)*Rational(-1, 2)) + C2*t**(Rational(1, 2) +
sqrt(5)/2)*(1 - sqrt(5))*Rational(-1, 2))]
assert dsolve(eqs13) == sol13
assert checksysodesol(eqs13, sol13) == (True, [0, 0])
# Solving systems using dsolve separately
eqs14 = [Eq(Derivative(f(t), (t, 2)), t*f(t)),
Eq(Derivative(g(t), (t, 2)), t*g(t))]
sol14 = [Eq(f(t), C1*airyai(t) + C2*airybi(t)),
Eq(g(t), C3*airyai(t) + C4*airybi(t))]
assert dsolve(eqs14) == sol14
assert checksysodesol(eqs14, sol14) == (True, [0, 0])
eqs15 = [Eq(Derivative(x(t), (t, 2)), t*(4*Derivative(x(t), t) + 8*Derivative(y(t), t))),
Eq(Derivative(y(t), (t, 2)), t*(12*Derivative(x(t), t) - 6*Derivative(y(t), t)))]
sol15 = [Eq(x(t), C1 - erf(sqrt(6)*t)*(sqrt(6)*sqrt(pi)*C2/33 + sqrt(6)*sqrt(pi)*C3*Rational(-1, 44)) +
erfi(sqrt(5)*t)*(sqrt(5)*sqrt(pi)*C2*Rational(2, 55) + sqrt(5)*sqrt(pi)*C3*Rational(4, 55))),
Eq(y(t), C4 + erf(sqrt(6)*t)*(sqrt(6)*sqrt(pi)*C2*Rational(2, 33) + sqrt(6)*sqrt(pi)*C3*Rational(-1,
22)) + erfi(sqrt(5)*t)*(sqrt(5)*sqrt(pi)*C2*Rational(3, 110) + sqrt(5)*sqrt(pi)*C3*Rational(3, 55)))]
assert dsolve(eqs15) == sol15
assert checksysodesol(eqs15, sol15) == (True, [0, 0])
@slow
def test_higher_order_to_first_order_9():
f, g = symbols('f g', cls=Function)
x = symbols('x')
eqs9 = [f(x) + g(x) - 2*exp(I*x) + 2*Derivative(f(x), x) + Derivative(f(x), (x, 2)),
f(x) + g(x) - 2*exp(I*x) + 2*Derivative(g(x), x) + Derivative(g(x), (x, 2))]
sol9 = [Eq(f(x), -C1 + C2*exp(-2*x)/2 + (C3/2 + C4/2)*exp(-x)*sin(x) + (2 +
I)*exp(I*x)*sin(x)**2*Rational(-1, 5) + (1 - 2*I)*exp(I*x)*sin(x)*cos(x)*Rational(2, 5) + (4 -
3*I)*exp(I*x)*cos(x)**2/5 + exp(-x)*sin(x)*Integral(-exp(x)*exp(I*x)*sin(x)**2/cos(x) +
exp(x)*exp(I*x)*sin(x) + exp(x)*exp(I*x)/cos(x), x) -
exp(-x)*cos(x)*Integral(-exp(x)*exp(I*x)*sin(x)**2/cos(x) + exp(x)*exp(I*x)*sin(x) +
exp(x)*exp(I*x)/cos(x), x) - exp(-x)*cos(x)*(C3/2 + C4*Rational(-1, 2))),
Eq(g(x), C1 + C2*exp(-2*x)*Rational(-1, 2) + (C3/2 + C4/2)*exp(-x)*sin(x) + (2 +
I)*exp(I*x)*sin(x)**2*Rational(-1, 5) + (1 - 2*I)*exp(I*x)*sin(x)*cos(x)*Rational(2, 5) + (4 -
3*I)*exp(I*x)*cos(x)**2/5 + exp(-x)*sin(x)*Integral(-exp(x)*exp(I*x)*sin(x)**2/cos(x) +
exp(x)*exp(I*x)*sin(x) + exp(x)*exp(I*x)/cos(x), x) -
exp(-x)*cos(x)*Integral(-exp(x)*exp(I*x)*sin(x)**2/cos(x) + exp(x)*exp(I*x)*sin(x) +
exp(x)*exp(I*x)/cos(x), x) - exp(-x)*cos(x)*(C3/2 + C4*Rational(-1, 2)))]
assert dsolve(eqs9) == sol9
assert checksysodesol(eqs9, sol9) == (True, [0, 0])
def test_higher_order_to_first_order_12():
f, g = symbols('f g', cls=Function)
x = symbols('x')
x, y = symbols('x, y', cls=Function)
t, l = symbols('t, l')
eqs12 = [Eq(4*x(t) + Derivative(x(t), (t, 2)) + 8*Derivative(y(t), t), 0),
Eq(4*y(t) - 8*Derivative(x(t), t) + Derivative(y(t), (t, 2)), 0)]
sol12 = [Eq(y(t), C1*(2 - sqrt(5))*sin(2*t*sqrt(4*sqrt(5) + 9))*Rational(-1, 2) + C2*(2 -
sqrt(5))*cos(2*t*sqrt(4*sqrt(5) + 9))/2 + C3*(2 + sqrt(5))*sin(2*t*sqrt(9 - 4*sqrt(5)))*Rational(-1,
2) + C4*(2 + sqrt(5))*cos(2*t*sqrt(9 - 4*sqrt(5)))/2),
Eq(x(t), C1*(2 - sqrt(5))*cos(2*t*sqrt(4*sqrt(5) + 9))*Rational(-1, 2) + C2*(2 -
sqrt(5))*sin(2*t*sqrt(4*sqrt(5) + 9))*Rational(-1, 2) + C3*(2 + sqrt(5))*cos(2*t*sqrt(9 -
4*sqrt(5)))/2 + C4*(2 + sqrt(5))*sin(2*t*sqrt(9 - 4*sqrt(5)))/2)]
assert dsolve(eqs12) == sol12
assert checksysodesol(eqs12, sol12) == (True, [0, 0])
def test_second_order_to_first_order_2():
f, g = symbols("f g", cls=Function)
x, t, x_, t_, d, a, m = symbols("x t x_ t_ d a m")
eqs2 = [Eq(f(x).diff(x, 2), 2*(x*g(x).diff(x) - g(x))),
Eq(g(x).diff(x, 2),-2*(x*f(x).diff(x) - f(x)))]
sol2 = [Eq(f(x), C1*x + x*Integral(C2*exp(-x_)*exp(I*exp(2*x_))/2 + C2*exp(-x_)*exp(-I*exp(2*x_))/2 -
I*C3*exp(-x_)*exp(I*exp(2*x_))/2 + I*C3*exp(-x_)*exp(-I*exp(2*x_))/2, (x_, log(x)))),
Eq(g(x), C4*x + x*Integral(I*C2*exp(-x_)*exp(I*exp(2*x_))/2 - I*C2*exp(-x_)*exp(-I*exp(2*x_))/2 +
C3*exp(-x_)*exp(I*exp(2*x_))/2 + C3*exp(-x_)*exp(-I*exp(2*x_))/2, (x_, log(x))))]
# XXX: dsolve hangs for this in integration
assert dsolve_system(eqs2, simplify=False, doit=False) == [sol2]
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = (Eq(diff(f(t),t,t), 9*t*diff(g(t),t)-9*g(t)), Eq(diff(g(t),t,t),7*t*diff(f(t),t)-7*f(t)))
sol3 = [Eq(f(t), C1*t + t*Integral(C2*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/2 + C2*exp(-t_)*
exp(-3*sqrt(7)*exp(2*t_)/2)/2 + 3*sqrt(7)*C3*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/14 -
3*sqrt(7)*C3*exp(-t_)*exp(-3*sqrt(7)*exp(2*t_)/2)/14, (t_, log(t)))),
Eq(g(t), C4*t + t*Integral(sqrt(7)*C2*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/6 - sqrt(7)*C2*exp(-t_)*
exp(-3*sqrt(7)*exp(2*t_)/2)/6 + C3*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/2 + C3*exp(-t_)*exp(-3*sqrt(7)*
exp(2*t_)/2)/2, (t_, log(t))))]
# XXX: dsolve hangs for this in integration
assert dsolve_system(eqs3, simplify=False, doit=False) == [sol3]
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
# Regression Test case for sympy#19238
# https://github.com/sympy/sympy/issues/19238
# Note: When the doit method is removed, these particular types of systems
# can be divided first so that we have lesser number of big matrices.
eqs5 = [Eq(Derivative(g(t), (t, 2)), a*m),
Eq(Derivative(f(t), (t, 2)), 0)]
sol5 = [Eq(g(t), C1 + C2*t + a*m*t**2/2),
Eq(f(t), C3 + C4*t)]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
# Type 2
eqs6 = [Eq(Derivative(f(t), (t, 2)), f(t)/t**4),
Eq(Derivative(g(t), (t, 2)), d*g(t)/t**4)]
sol6 = [Eq(f(t), C1*sqrt(t**2)*exp(-1/t) - C2*sqrt(t**2)*exp(1/t)),
Eq(g(t), C3*sqrt(t**2)*exp(-sqrt(d)/t)*d**Rational(-1, 2) -
C4*sqrt(t**2)*exp(sqrt(d)/t)*d**Rational(-1, 2))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0])
@slow
def test_second_order_to_first_order_slow1():
f, g = symbols("f g", cls=Function)
x, t, x_, t_, d, a, m = symbols("x t x_ t_ d a m")
# Type 1
eqs1 = [Eq(f(x).diff(x, 2), 2/x *(x*g(x).diff(x) - g(x))),
Eq(g(x).diff(x, 2),-2/x *(x*f(x).diff(x) - f(x)))]
sol1 = [Eq(f(x), C1*x + 2*C2*x*Ci(2*x) - C2*sin(2*x) - 2*C3*x*Si(2*x) - C3*cos(2*x)),
Eq(g(x), -2*C2*x*Si(2*x) - C2*cos(2*x) - 2*C3*x*Ci(2*x) + C3*sin(2*x) + C4*x)]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
def test_second_order_to_first_order_slow4():
f, g = symbols("f g", cls=Function)
x, t, x_, t_, d, a, m = symbols("x t x_ t_ d a m")
eqs4 = [Eq(Derivative(f(t), (t, 2)), t*sin(t)*Derivative(g(t), t) - g(t)*sin(t)),
Eq(Derivative(g(t), (t, 2)), t*sin(t)*Derivative(f(t), t) - f(t)*sin(t))]
sol4 = [Eq(f(t), C1*t + t*Integral(C2*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*exp(-sin(exp(t_)))/2 +
C2*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2 - C3*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*
exp(-sin(exp(t_)))/2 +
C3*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2, (t_, log(t)))),
Eq(g(t), C4*t + t*Integral(-C2*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*exp(-sin(exp(t_)))/2 +
C2*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2 + C3*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*
exp(-sin(exp(t_)))/2 + C3*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2, (t_, log(t))))]
# XXX: dsolve hangs for this in integration
assert dsolve_system(eqs4, simplify=False, doit=False) == [sol4]
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
def test_component_division():
f, g, h, k = symbols('f g h k', cls=Function)
x = symbols("x")
funcs = [f(x), g(x), h(x), k(x)]
eqs1 = [Eq(Derivative(f(x), x), 2*f(x)),
Eq(Derivative(g(x), x), f(x)),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), h(x)**4 + k(x))]
sol1 = [Eq(f(x), 2*C1*exp(2*x)),
Eq(g(x), C1*exp(2*x) + C2),
Eq(h(x), C3*exp(x)),
Eq(k(x), C3**4*exp(4*x)/3 + C4*exp(x))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0, 0, 0])
components1 = {((Eq(Derivative(f(x), x), 2*f(x)),), (Eq(Derivative(g(x), x), f(x)),)),
((Eq(Derivative(h(x), x), h(x)),), (Eq(Derivative(k(x), x), h(x)**4 + k(x)),))}
eqsdict1 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {h(x)}},
{f(x): Eq(Derivative(f(x), x), 2*f(x)),
g(x): Eq(Derivative(g(x), x), f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), h(x)**4 + k(x))})
graph1 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), h(x))}]
assert {tuple(tuple(scc) for scc in wcc) for wcc in _component_division(eqs1, funcs, x)} == components1
assert _eqs2dict(eqs1, funcs) == eqsdict1
assert [set(element) for element in _dict2graph(eqsdict1[0])] == graph1
eqs2 = [Eq(Derivative(f(x), x), 2*f(x)),
Eq(Derivative(g(x), x), f(x)),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
sol2 = [Eq(f(x), C1*exp(2*x)),
Eq(g(x), C1*exp(2*x)/2 + C2),
Eq(h(x), C3*exp(x)),
Eq(k(x), C1**4*exp(8*x)/7 + C4*exp(x))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0, 0, 0])
components2 = {frozenset([(Eq(Derivative(f(x), x), 2*f(x)),),
(Eq(Derivative(g(x), x), f(x)),),
(Eq(Derivative(k(x), x), f(x)**4 + k(x)),)]),
frozenset([(Eq(Derivative(h(x), x), h(x)),)])}
eqsdict2 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
{f(x): Eq(Derivative(f(x), x), 2*f(x)),
g(x): Eq(Derivative(g(x), x), f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
graph2 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), f(x))}]
assert {frozenset(tuple(scc) for scc in wcc) for wcc in _component_division(eqs2, funcs, x)} == components2
assert _eqs2dict(eqs2, funcs) == eqsdict2
assert [set(element) for element in _dict2graph(eqsdict2[0])] == graph2
eqs3 = [Eq(Derivative(f(x), x), 2*f(x)),
Eq(Derivative(g(x), x), x + f(x)),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
sol3 = [Eq(f(x), C1*exp(2*x)),
Eq(g(x), C1*exp(2*x)/2 + C2 + x**2/2),
Eq(h(x), C3*exp(x)),
Eq(k(x), C1**4*exp(8*x)/7 + C4*exp(x))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0, 0])
components3 = {frozenset([(Eq(Derivative(f(x), x), 2*f(x)),),
(Eq(Derivative(g(x), x), x + f(x)),),
(Eq(Derivative(k(x), x), f(x)**4 + k(x)),)]),
frozenset([(Eq(Derivative(h(x), x), h(x)),),])}
eqsdict3 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
{f(x): Eq(Derivative(f(x), x), 2*f(x)),
g(x): Eq(Derivative(g(x), x), x + f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
graph3 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), f(x))}]
assert {frozenset(tuple(scc) for scc in wcc) for wcc in _component_division(eqs3, funcs, x)} == components3
assert _eqs2dict(eqs3, funcs) == eqsdict3
assert [set(l) for l in _dict2graph(eqsdict3[0])] == graph3
# Note: To be uncommented when the default option to call dsolve first for
# single ODE system can be rearranged. This can be done after the doit
# option in dsolve is made False by default.
eqs4 = [Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
Eq(Derivative(g(x), x), f(x) + x*g(x) + x),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
sol4 = [Eq(f(x), (C1/2 - sqrt(2)*C2/2 - sqrt(2)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 +\
sqrt(2)*x)/2, x)/2 + Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 +\
sqrt(2)*x)/2, x)/2)*exp(x**2/2 - sqrt(2)*x) + (C1/2 + sqrt(2)*C2/2 + sqrt(2)*Integral(x*exp(-x**2/2
- sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2
- sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2)*exp(x**2/2 + sqrt(2)*x)),
Eq(g(x), (-sqrt(2)*C1/4 + C2/2 + Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 -\
sqrt(2)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2,
x)/4)*exp(x**2/2 - sqrt(2)*x) + (sqrt(2)*C1/4 + C2/2 + Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 +
x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + sqrt(2)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 -
sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/4)*exp(x**2/2 + sqrt(2)*x)),
Eq(h(x), C3*exp(x)),
Eq(k(x), C4*exp(x) + exp(x)*Integral((C1*exp(x**2/2 - sqrt(2)*x)/2 + C1*exp(x**2/2 + sqrt(2)*x)/2 -
sqrt(2)*C2*exp(x**2/2 - sqrt(2)*x)/2 + sqrt(2)*C2*exp(x**2/2 + sqrt(2)*x)/2 - sqrt(2)*exp(x**2/2 -
sqrt(2)*x)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + exp(x**2/2 -
sqrt(2)*x)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2,
x)/2 + sqrt(2)*exp(x**2/2 + sqrt(2)*x)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 +
sqrt(2)*x)/2, x)/2 + exp(x**2/2 + sqrt(2)*x)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 -
sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2)**4*exp(-x), x))]
components4 = {(frozenset([Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
Eq(Derivative(g(x), x), x*g(x) + x + f(x))]),
frozenset([Eq(Derivative(k(x), x), f(x)**4 + k(x)),])),
(frozenset([Eq(Derivative(h(x), x), h(x)),]),)}
eqsdict4 = ({f(x): {g(x)}, g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
{f(x): Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
g(x): Eq(Derivative(g(x), x), x*g(x) + x + f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
graph4 = [{f(x), g(x), h(x), k(x)}, {(f(x), g(x)), (g(x), f(x)), (k(x), f(x))}]
assert {tuple(frozenset(scc) for scc in wcc) for wcc in _component_division(eqs4, funcs, x)} == components4
assert _eqs2dict(eqs4, funcs) == eqsdict4
assert [set(element) for element in _dict2graph(eqsdict4[0])] == graph4
# XXX: dsolve hangs in integration here:
assert dsolve_system(eqs4, simplify=False, doit=False) == [sol4]
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0, 0])
eqs5 = [Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
Eq(Derivative(g(x), x), x*g(x) + f(x)),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
sol5 = [Eq(f(x), (C1/2 - sqrt(2)*C2/2)*exp(x**2/2 - sqrt(2)*x) + (C1/2 + sqrt(2)*C2/2)*exp(x**2/2 + sqrt(2)*x)),
Eq(g(x), (-sqrt(2)*C1/4 + C2/2)*exp(x**2/2 - sqrt(2)*x) + (sqrt(2)*C1/4 + C2/2)*exp(x**2/2 + sqrt(2)*x)),
Eq(h(x), C3*exp(x)),
Eq(k(x), C4*exp(x) + exp(x)*Integral((C1*exp(x**2/2 - sqrt(2)*x)/2 + C1*exp(x**2/2 + sqrt(2)*x)/2 -
sqrt(2)*C2*exp(x**2/2 - sqrt(2)*x)/2 + sqrt(2)*C2*exp(x**2/2 + sqrt(2)*x)/2)**4*exp(-x), x))]
components5 = {(frozenset([Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
Eq(Derivative(g(x), x), x*g(x) + f(x))]),
frozenset([Eq(Derivative(k(x), x), f(x)**4 + k(x)),])),
(frozenset([Eq(Derivative(h(x), x), h(x)),]),)}
eqsdict5 = ({f(x): {g(x)}, g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
{f(x): Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
g(x): Eq(Derivative(g(x), x), x*g(x) + f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
graph5 = [{f(x), g(x), h(x), k(x)}, {(f(x), g(x)), (g(x), f(x)), (k(x), f(x))}]
assert {tuple(frozenset(scc) for scc in wcc) for wcc in _component_division(eqs5, funcs, x)} == components5
assert _eqs2dict(eqs5, funcs) == eqsdict5
assert [set(element) for element in _dict2graph(eqsdict5[0])] == graph5
# XXX: dsolve hangs in integration here:
assert dsolve_system(eqs5, simplify=False, doit=False) == [sol5]
assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0, 0])
def test_linodesolve():
t, x, a = symbols("t x a")
f, g, h = symbols("f g h", cls=Function)
# Testing the Errors
raises(ValueError, lambda: linodesolve(1, t))
raises(ValueError, lambda: linodesolve(a, t))
A1 = Matrix([[1, 2], [2, 4], [4, 6]])
raises(NonSquareMatrixError, lambda: linodesolve(A1, t))
A2 = Matrix([[1, 2, 1], [3, 1, 2]])
raises(NonSquareMatrixError, lambda: linodesolve(A2, t))
# Testing auto functionality
func = [f(t), g(t)]
eq = [Eq(f(t).diff(t) + g(t).diff(t), g(t)), Eq(g(t).diff(t), f(t))]
ceq = canonical_odes(eq, func, t)
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1)
A = A0
sol = [C1*(-Rational(1, 2) + sqrt(5)/2)*exp(t*(-Rational(1, 2) + sqrt(5)/2)) + C2*(-sqrt(5)/2 - Rational(1, 2))*
exp(t*(-sqrt(5)/2 - Rational(1, 2))),
C1*exp(t*(-Rational(1, 2) + sqrt(5)/2)) + C2*exp(t*(-sqrt(5)/2 - Rational(1, 2)))]
assert constant_renumber(linodesolve(A, t), variables=Tuple(*eq).free_symbols) == sol
# Testing the Errors
raises(ValueError, lambda: linodesolve(1, t, b=Matrix([t+1])))
raises(ValueError, lambda: linodesolve(a, t, b=Matrix([log(t) + sin(t)])))
raises(ValueError, lambda: linodesolve(Matrix([7]), t, b=t**2))
raises(ValueError, lambda: linodesolve(Matrix([a+10]), t, b=log(t)*cos(t)))
raises(ValueError, lambda: linodesolve(7, t, b=t**2))
raises(ValueError, lambda: linodesolve(a, t, b=log(t) + sin(t)))
A1 = Matrix([[1, 2], [2, 4], [4, 6]])
b1 = Matrix([t, 1, t**2])
raises(NonSquareMatrixError, lambda: linodesolve(A1, t, b=b1))
A2 = Matrix([[1, 2, 1], [3, 1, 2]])
b2 = Matrix([t, t**2])
raises(NonSquareMatrixError, lambda: linodesolve(A2, t, b=b2))
raises(ValueError, lambda: linodesolve(A1[:2, :], t, b=b1))
raises(ValueError, lambda: linodesolve(A1[:2, :], t, b=b1[:1]))
# DOIT check
A1 = Matrix([[1, -1], [1, -1]])
b1 = Matrix([15*t - 10, -15*t - 5])
sol1 = [C1 + C2*t + C2 - 10*t**3 + 10*t**2 + t*(15*t**2 - 5*t) - 10*t,
C1 + C2*t - 10*t**3 - 5*t**2 + t*(15*t**2 - 5*t) - 5*t]
assert constant_renumber(linodesolve(A1, t, b=b1, type="type2", doit=True),
variables=[t]) == sol1
# Testing auto functionality
func = [f(t), g(t)]
eq = [Eq(f(t).diff(t) + g(t).diff(t), g(t) + t), Eq(g(t).diff(t), f(t))]
ceq = canonical_odes(eq, func, t)
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1)
A = A0
sol = [-C1*exp(-t/2 + sqrt(5)*t/2)/2 + sqrt(5)*C1*exp(-t/2 + sqrt(5)*t/2)/2 - sqrt(5)*C2*exp(-sqrt(5)*t/2 -
t/2)/2 - C2*exp(-sqrt(5)*t/2 - t/2)/2 - exp(-t/2 + sqrt(5)*t/2)*Integral(t*exp(-sqrt(5)*t/2 +
t/2)/(-5 + sqrt(5)) - sqrt(5)*t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)), t)/2 + sqrt(5)*exp(-t/2 +
sqrt(5)*t/2)*Integral(t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)) - sqrt(5)*t*exp(-sqrt(5)*t/2 +
t/2)/(-5 + sqrt(5)), t)/2 - sqrt(5)*exp(-sqrt(5)*t/2 - t/2)*Integral(-sqrt(5)*t*exp(t/2 +
sqrt(5)*t/2)/5, t)/2 - exp(-sqrt(5)*t/2 - t/2)*Integral(-sqrt(5)*t*exp(t/2 + sqrt(5)*t/2)/5, t)/2,
C1*exp(-t/2 + sqrt(5)*t/2) + C2*exp(-sqrt(5)*t/2 - t/2) + exp(-t/2 +
sqrt(5)*t/2)*Integral(t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)) - sqrt(5)*t*exp(-sqrt(5)*t/2 +
t/2)/(-5 + sqrt(5)), t) + exp(-sqrt(5)*t/2 -
t/2)*Integral(-sqrt(5)*t*exp(t/2 + sqrt(5)*t/2)/5, t)]
assert constant_renumber(linodesolve(A, t, b=b), variables=[t]) == sol
# non-homogeneous term assumed to be 0
sol1 = [-C1*exp(-t/2 + sqrt(5)*t/2)/2 + sqrt(5)*C1*exp(-t/2 + sqrt(5)*t/2)/2 - sqrt(5)*C2*exp(-sqrt(5)*t/2
- t/2)/2 - C2*exp(-sqrt(5)*t/2 - t/2)/2 - exp(-t/2 + sqrt(5)*t/2)*Integral(0, t)/2 +
sqrt(5)*exp(-t/2 + sqrt(5)*t/2)*Integral(0, t)/2 - sqrt(5)*exp(-sqrt(5)*t/2 - t/2)*Integral(0, t)/2
- exp(-sqrt(5)*t/2 - t/2)*Integral(0, t)/2,
C1*exp(-t/2 + sqrt(5)*t/2) + C2*exp(-sqrt(5)*t/2 - t/2)
+ exp(-t/2 + sqrt(5)*t/2)*Integral(0, t) + exp(-sqrt(5)*t/2 - t/2)*Integral(0, t)]
assert constant_renumber(linodesolve(A, t, type="type2"), variables=[t]) == sol1
# Testing the Errors
raises(ValueError, lambda: linodesolve(t+10, t))
raises(ValueError, lambda: linodesolve(a*t, t))
A1 = Matrix([[1, t], [-t, 1]])
B1, _ = _is_commutative_anti_derivative(A1, t)
raises(NonSquareMatrixError, lambda: linodesolve(A1[:, :1], t, B=B1))
raises(ValueError, lambda: linodesolve(A1, t, B=1))
A2 = Matrix([[t, t, t], [t, t, t], [t, t, t]])
B2, _ = _is_commutative_anti_derivative(A2, t)
raises(NonSquareMatrixError, lambda: linodesolve(A2, t, B=B2[:2, :]))
raises(ValueError, lambda: linodesolve(A2, t, B=2))
raises(ValueError, lambda: linodesolve(A2, t, B=B2, type="type31"))
raises(ValueError, lambda: linodesolve(A1, t, B=B2))
raises(ValueError, lambda: linodesolve(A2, t, B=B1))
# Testing auto functionality
func = [f(t), g(t)]
eq = [Eq(f(t).diff(t), f(t) + t*g(t)), Eq(g(t).diff(t), -t*f(t) + g(t))]
ceq = canonical_odes(eq, func, t)
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1)
A = A0
sol = [(C1/2 - I*C2/2)*exp(I*t**2/2 + t) + (C1/2 + I*C2/2)*exp(-I*t**2/2 + t),
(-I*C1/2 + C2/2)*exp(-I*t**2/2 + t) + (I*C1/2 + C2/2)*exp(I*t**2/2 + t)]
assert constant_renumber(linodesolve(A, t), variables=Tuple(*eq).free_symbols) == sol
assert constant_renumber(linodesolve(A, t, type="type3"), variables=Tuple(*eq).free_symbols) == sol
A1 = Matrix([[t, 1], [t, -1]])
raises(NotImplementedError, lambda: linodesolve(A1, t))
# Testing the Errors
raises(ValueError, lambda: linodesolve(t+10, t, b=Matrix([t+1])))
raises(ValueError, lambda: linodesolve(a*t, t, b=Matrix([log(t) + sin(t)])))
raises(ValueError, lambda: linodesolve(Matrix([7*t]), t, b=t**2))
raises(ValueError, lambda: linodesolve(Matrix([a + 10*log(t)]), t, b=log(t)*cos(t)))
raises(ValueError, lambda: linodesolve(7*t, t, b=t**2))
raises(ValueError, lambda: linodesolve(a*t**2, t, b=log(t) + sin(t)))
A1 = Matrix([[1, t], [-t, 1]])
b1 = Matrix([t, t ** 2])
B1, _ = _is_commutative_anti_derivative(A1, t)
raises(NonSquareMatrixError, lambda: linodesolve(A1[:, :1], t, b=b1))
A2 = Matrix([[t, t, t], [t, t, t], [t, t, t]])
b2 = Matrix([t, 1, t**2])
B2, _ = _is_commutative_anti_derivative(A2, t)
raises(NonSquareMatrixError, lambda: linodesolve(A2[:2, :], t, b=b2))
raises(ValueError, lambda: linodesolve(A1, t, b=b2))
raises(ValueError, lambda: linodesolve(A2, t, b=b1))
raises(ValueError, lambda: linodesolve(A1, t, b=b1, B=B2))
raises(ValueError, lambda: linodesolve(A2, t, b=b2, B=B1))
# Testing auto functionality
func = [f(x), g(x), h(x)]
eq = [Eq(f(x).diff(x), x*(f(x) + g(x) + h(x)) + x),
Eq(g(x).diff(x), x*(f(x) + g(x) + h(x)) + x),
Eq(h(x).diff(x), x*(f(x) + g(x) + h(x)) + 1)]
ceq = canonical_odes(eq, func, x)
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, x, 1)
A = A0
_x1 = exp(-3*x**2/2)
_x2 = exp(3*x**2/2)
_x3 = Integral(2*_x1*x/3 + _x1/3 + x/3 - Rational(1, 3), x)
_x4 = 2*_x2*_x3/3
_x5 = Integral(2*_x1*x/3 + _x1/3 - 2*x/3 + Rational(2, 3), x)
sol = [
C1*_x2/3 - C1/3 + C2*_x2/3 - C2/3 + C3*_x2/3 + 2*C3/3 + _x2*_x5/3 + _x3/3 + _x4 - _x5/3,
C1*_x2/3 + 2*C1/3 + C2*_x2/3 - C2/3 + C3*_x2/3 - C3/3 + _x2*_x5/3 + _x3/3 + _x4 - _x5/3,
C1*_x2/3 - C1/3 + C2*_x2/3 + 2*C2/3 + C3*_x2/3 - C3/3 + _x2*_x5/3 - 2*_x3/3 + _x4 + 2*_x5/3,
]
assert constant_renumber(linodesolve(A, x, b=b), variables=Tuple(*eq).free_symbols) == sol
assert constant_renumber(linodesolve(A, x, b=b, type="type4"),
variables=Tuple(*eq).free_symbols) == sol
A1 = Matrix([[t, 1], [t, -1]])
raises(NotImplementedError, lambda: linodesolve(A1, t, b=b1))
# non-homogeneous term not passed
sol1 = [-C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2),
-C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)]
assert constant_renumber(linodesolve(A, x, type="type4", doit=True), variables=Tuple(*eq).free_symbols) == sol1
@slow
def test_linear_3eq_order1_type4_slow():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
f = t ** 3 + log(t)
g = t ** 2 + sin(t)
eq1 = (Eq(diff(x(t), t), (4 * f + g) * x(t) - f * y(t) - 2 * f * z(t)),
Eq(diff(y(t), t), 2 * f * x(t) + (f + g) * y(t) - 2 * f * z(t)), Eq(diff(z(t), t), 5 * f * x(t) + f * y(
t) + (-3 * f + g) * z(t)))
with dotprodsimp(True):
dsolve(eq1)
@slow
def test_linear_neq_order1_type2_slow1():
i, r1, c1, r2, c2, t = symbols('i, r1, c1, r2, c2, t')
x1 = Function('x1')
x2 = Function('x2')
eq1 = r1*c1*Derivative(x1(t), t) + x1(t) - x2(t) - r1*i
eq2 = r2*c1*Derivative(x1(t), t) + r2*c2*Derivative(x2(t), t) + x2(t) - r2*i
eq = [eq1, eq2]
# XXX: Solution is too complicated
[sol] = dsolve_system(eq, simplify=False, doit=False)
assert checksysodesol(eq, sol) == (True, [0, 0])
# Regression test case for issue #9204
# https://github.com/sympy/sympy/issues/9204
@slow
def test_linear_new_order1_type2_de_lorentz_slow_check():
if ON_TRAVIS:
skip("Too slow for travis.")
m = Symbol("m", real=True)
q = Symbol("q", real=True)
t = Symbol("t", real=True)
e1, e2, e3 = symbols("e1:4", real=True)
b1, b2, b3 = symbols("b1:4", real=True)
v1, v2, v3 = symbols("v1:4", cls=Function, real=True)
eqs = [
-e1*q + m*Derivative(v1(t), t) - q*(-b2*v3(t) + b3*v2(t)),
-e2*q + m*Derivative(v2(t), t) - q*(b1*v3(t) - b3*v1(t)),
-e3*q + m*Derivative(v3(t), t) - q*(-b1*v2(t) + b2*v1(t))
]
sol = dsolve(eqs)
assert checksysodesol(eqs, sol) == (True, [0, 0, 0])
# Regression test case for issue #14001
# https://github.com/sympy/sympy/issues/14001
@slow
def test_linear_neq_order1_type2_slow_check():
RC, t, C, Vs, L, R1, V0, I0 = symbols("RC t C Vs L R1 V0 I0")
V = Function("V")
I = Function("I")
system = [Eq(V(t).diff(t), -1/RC*V(t) + I(t)/C), Eq(I(t).diff(t), -R1/L*I(t) - 1/L*V(t) + Vs/L)]
[sol] = dsolve_system(system, simplify=False, doit=False)
assert checksysodesol(system, sol) == (True, [0, 0])
def _linear_3eq_order1_type4_long():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
f = t ** 3 + log(t)
g = t ** 2 + sin(t)
eq1 = (Eq(diff(x(t), t), (4*f + g)*x(t) - f*y(t) - 2*f*z(t)),
Eq(diff(y(t), t), 2*f*x(t) + (f + g)*y(t) - 2*f*z(t)), Eq(diff(z(t), t), 5*f*x(t) + f*y(
t) + (-3*f + g)*z(t)))
dsolve_sol = dsolve(eq1)
dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol]
x_1 = sqrt(-t**6 - 8*t**3*log(t) + 8*t**3 - 16*log(t)**2 + 32*log(t) - 16)
x_2 = sqrt(3)
x_3 = 8324372644*C1*x_1*x_2 + 4162186322*C2*x_1*x_2 - 8324372644*C3*x_1*x_2
x_4 = 1 / (1903457163*t**3 + 3825881643*x_1*x_2 + 7613828652*log(t) - 7613828652)
x_5 = exp(t**3/3 + t*x_1*x_2/4 - cos(t))
x_6 = exp(t**3/3 - t*x_1*x_2/4 - cos(t))
x_7 = exp(t**4/2 + t**3/3 + 2*t*log(t) - 2*t - cos(t))
x_8 = 91238*C1*x_1*x_2 + 91238*C2*x_1*x_2 - 91238*C3*x_1*x_2
x_9 = 1 / (66049*t**3 - 50629*x_1*x_2 + 264196*log(t) - 264196)
x_10 = 50629 * C1 / 25189 + 37909*C2/25189 - 50629*C3/25189 - x_3*x_4
x_11 = -50629*C1/25189 - 12720*C2/25189 + 50629*C3/25189 + x_3*x_4
sol = [Eq(x(t), x_10*x_5 + x_11*x_6 + x_7*(C1 - C2)), Eq(y(t), x_10*x_5 + x_11*x_6), Eq(z(t), x_5*(
-424*C1/257 - 167*C2/257 + 424*C3/257 - x_8*x_9) + x_6*(167*C1/257 + 424*C2/257 -
167*C3/257 + x_8*x_9) + x_7*(C1 - C2))]
assert dsolve_sol1 == sol
assert checksysodesol(eq1, dsolve_sol1) == (True, [0, 0, 0])
@slow
def test_neq_order1_type4_slow_check1():
f, g = symbols("f g", cls=Function)
x = symbols("x")
eqs = [Eq(diff(f(x), x), x*f(x) + x**2*g(x) + x),
Eq(diff(g(x), x), 2*x**2*f(x) + (x + 3*x**2)*g(x) + 1)]
sol = dsolve(eqs)
assert checksysodesol(eqs, sol) == (True, [0, 0])
@slow
def test_neq_order1_type4_slow_check2():
f, g, h = symbols("f, g, h", cls=Function)
x = Symbol("x")
eqs = [
Eq(Derivative(f(x), x), x*h(x) + f(x) + g(x) + 1),
Eq(Derivative(g(x), x), x*g(x) + f(x) + h(x) + 10),
Eq(Derivative(h(x), x), x*f(x) + x + g(x) + h(x))
]
with dotprodsimp(True):
sol = dsolve(eqs)
assert checksysodesol(eqs, sol) == (True, [0, 0, 0])
def _neq_order1_type4_slow3():
f, g = symbols("f g", cls=Function)
x = symbols("x")
eqs = [
Eq(Derivative(f(x), x), x*f(x) + g(x) + sin(x)),
Eq(Derivative(g(x), x), x**2 + x*g(x) - f(x))
]
sol = [
Eq(f(x), (C1/2 - I*C2/2 - I*Integral(x**2*exp(-x**2/2 - I*x)/2 +
x**2*exp(-x**2/2 + I*x)/2 + I*exp(-x**2/2 - I*x)*sin(x)/2 -
I*exp(-x**2/2 + I*x)*sin(x)/2, x)/2 + Integral(-I*x**2*exp(-x**2/2
- I*x)/2 + I*x**2*exp(-x**2/2 + I*x)/2 + exp(-x**2/2 -
I*x)*sin(x)/2 + exp(-x**2/2 + I*x)*sin(x)/2, x)/2)*exp(x**2/2 +
I*x) + (C1/2 + I*C2/2 + I*Integral(x**2*exp(-x**2/2 - I*x)/2 +
x**2*exp(-x**2/2 + I*x)/2 + I*exp(-x**2/2 - I*x)*sin(x)/2 -
I*exp(-x**2/2 + I*x)*sin(x)/2, x)/2 + Integral(-I*x**2*exp(-x**2/2
- I*x)/2 + I*x**2*exp(-x**2/2 + I*x)/2 + exp(-x**2/2 -
I*x)*sin(x)/2 + exp(-x**2/2 + I*x)*sin(x)/2, x)/2)*exp(x**2/2 -
I*x)),
Eq(g(x), (-I*C1/2 + C2/2 + Integral(x**2*exp(-x**2/2 - I*x)/2 +
x**2*exp(-x**2/2 + I*x)/2 + I*exp(-x**2/2 - I*x)*sin(x)/2 -
I*exp(-x**2/2 + I*x)*sin(x)/2, x)/2 -
I*Integral(-I*x**2*exp(-x**2/2 - I*x)/2 + I*x**2*exp(-x**2/2 +
I*x)/2 + exp(-x**2/2 - I*x)*sin(x)/2 + exp(-x**2/2 +
I*x)*sin(x)/2, x)/2)*exp(x**2/2 - I*x) + (I*C1/2 + C2/2 +
Integral(x**2*exp(-x**2/2 - I*x)/2 + x**2*exp(-x**2/2 + I*x)/2 +
I*exp(-x**2/2 - I*x)*sin(x)/2 - I*exp(-x**2/2 + I*x)*sin(x)/2,
x)/2 + I*Integral(-I*x**2*exp(-x**2/2 - I*x)/2 +
I*x**2*exp(-x**2/2 + I*x)/2 + exp(-x**2/2 - I*x)*sin(x)/2 +
exp(-x**2/2 + I*x)*sin(x)/2, x)/2)*exp(x**2/2 + I*x))
]
return eqs, sol
def test_neq_order1_type4_slow3():
eqs, sol = _neq_order1_type4_slow3()
assert dsolve_system(eqs, simplify=False, doit=False) == [sol]
# XXX: dsolve gives an error in integration:
# assert dsolve(eqs) == sol
# https://github.com/sympy/sympy/issues/20155
@slow
def test_neq_order1_type4_slow_check3():
eqs, sol = _neq_order1_type4_slow3()
assert checksysodesol(eqs, sol) == (True, [0, 0])
@XFAIL
@slow
def test_linear_3eq_order1_type4_long_dsolve_slow_xfail():
if ON_TRAVIS:
skip("Too slow for travis.")
eq, sol = _linear_3eq_order1_type4_long()
dsolve_sol = dsolve(eq)
dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol]
assert dsolve_sol1 == sol
@slow
def test_linear_3eq_order1_type4_long_dsolve_dotprodsimp():
if ON_TRAVIS:
skip("Too slow for travis.")
eq, sol = _linear_3eq_order1_type4_long()
# XXX: Only works with dotprodsimp see
# test_linear_3eq_order1_type4_long_dsolve_slow_xfail which is too slow
with dotprodsimp(True):
dsolve_sol = dsolve(eq)
dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol]
assert dsolve_sol1 == sol
@slow
def test_linear_3eq_order1_type4_long_check():
if ON_TRAVIS:
skip("Too slow for travis.")
eq, sol = _linear_3eq_order1_type4_long()
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
def test_dsolve_system():
f, g = symbols("f g", cls=Function)
x = symbols("x")
eqs = [Eq(f(x).diff(x), f(x) + g(x)), Eq(g(x).diff(x), f(x) + g(x))]
funcs = [f(x), g(x)]
sol = [[Eq(f(x), -C1 + C2*exp(2*x)), Eq(g(x), C1 + C2*exp(2*x))]]
assert dsolve_system(eqs, funcs=funcs, t=x, doit=True) == sol
raises(ValueError, lambda: dsolve_system(1))
raises(ValueError, lambda: dsolve_system(eqs, 1))
raises(ValueError, lambda: dsolve_system(eqs, funcs, 1))
raises(ValueError, lambda: dsolve_system(eqs, funcs[:1], x))
eq = (Eq(f(x).diff(x), 12 * f(x) - 6 * g(x)), Eq(g(x).diff(x) ** 2, 11 * f(x) + 3 * g(x)))
raises(NotImplementedError, lambda: dsolve_system(eq) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)]) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], t=x) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], t=x, ics={f(0): 1, g(0): 1}) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, t=x, ics={f(0): 1, g(0): 1}) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, ics={f(0): 1, g(0): 1}) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], ics={f(0): 1, g(0): 1}) == ([], []))
def test_dsolve():
f, g = symbols('f g', cls=Function)
x, y = symbols('x y')
eqs = [f(x).diff(x) - x, f(x).diff(x) + x]
with raises(ValueError):
dsolve(eqs)
eqs = [f(x, y).diff(x)]
with raises(ValueError):
dsolve(eqs)
eqs = [f(x, y).diff(x)+g(x).diff(x), g(x).diff(x)]
with raises(ValueError):
dsolve(eqs)
@slow
def test_higher_order1_slow1():
x, y = symbols("x y", cls=Function)
t = symbols("t")
eq = [
Eq(diff(x(t),t,t), (log(t)+t**2)*diff(x(t),t)+(log(t)+t**2)*3*diff(y(t),t)),
Eq(diff(y(t),t,t), (log(t)+t**2)*2*diff(x(t),t)+(log(t)+t**2)*9*diff(y(t),t))
]
sol, = dsolve_system(eq, simplify=False, doit=False)
# The solution is too long to write out explicitly and checkodesol is too
# slow so we test for particular values of t:
for e in eq:
res = (e.lhs - e.rhs).subs({sol[0].lhs:sol[0].rhs, sol[1].lhs:sol[1].rhs})
res = res.subs({d: d.doit(deep=False) for d in res.atoms(Derivative)})
assert ratsimp(res.subs(t, 1)) == 0
def test_second_order_type2_slow1():
x, y, z = symbols('x, y, z', cls=Function)
t, l = symbols('t, l')
eqs1 = [Eq(Derivative(x(t), (t, 2)), t*(2*x(t) + y(t))),
Eq(Derivative(y(t), (t, 2)), t*(-x(t) + 2*y(t)))]
sol1 = [Eq(x(t), I*C1*airyai(t*(2 - I)**(S(1)/3)) + I*C2*airybi(t*(2 - I)**(S(1)/3)) - I*C3*airyai(t*(2 +
I)**(S(1)/3)) - I*C4*airybi(t*(2 + I)**(S(1)/3))),
Eq(y(t), C1*airyai(t*(2 - I)**(S(1)/3)) + C2*airybi(t*(2 - I)**(S(1)/3)) + C3*airyai(t*(2 + I)**(S(1)/3)) +
C4*airybi(t*(2 + I)**(S(1)/3)))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
@slow
@XFAIL
def test_nonlinear_3eq_order1_type1():
if ON_TRAVIS:
skip("Too slow for travis.")
a, b, c = symbols('a b c')
eqs = [
a * f(x).diff(x) - (b - c) * g(x) * h(x),
b * g(x).diff(x) - (c - a) * h(x) * f(x),
c * h(x).diff(x) - (a - b) * f(x) * g(x),
]
assert dsolve(eqs) # NotImplementedError
@XFAIL
def test_nonlinear_3eq_order1_type4():
eqs = [
Eq(f(x).diff(x), (2*h(x)*g(x) - 3*g(x)*h(x))),
Eq(g(x).diff(x), (4*f(x)*h(x) - 2*h(x)*f(x))),
Eq(h(x).diff(x), (3*g(x)*f(x) - 4*f(x)*g(x))),
]
dsolve(eqs) # KeyError when matching
# sol = ?
# assert dsolve_sol == sol
# assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
@slow
@XFAIL
def test_nonlinear_3eq_order1_type3():
if ON_TRAVIS:
skip("Too slow for travis.")
eqs = [
Eq(f(x).diff(x), (2*f(x)**2 - 3 )),
Eq(g(x).diff(x), (4 - 2*h(x) )),
Eq(h(x).diff(x), (3*h(x) - 4*f(x)**2)),
]
dsolve(eqs) # Not sure if this finishes...
# sol = ?
# assert dsolve_sol == sol
# assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
@XFAIL
def test_nonlinear_3eq_order1_type5():
eqs = [
Eq(f(x).diff(x), f(x)*(2*f(x) - 3*g(x))),
Eq(g(x).diff(x), g(x)*(4*g(x) - 2*h(x))),
Eq(h(x).diff(x), h(x)*(3*h(x) - 4*f(x))),
]
dsolve(eqs) # KeyError
# sol = ?
# assert dsolve_sol == sol
# assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
def test_linear_2eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
k, l, m, n = symbols('k, l, m, n', Integer=True)
t = Symbol('t')
x0, y0 = symbols('x0, y0', cls=Function)
eq1 = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23))
sol1 = [Eq(x(t), C1*exp(t*(sqrt(6) + 3)) + C2*exp(t*(-sqrt(6) + 3)) - Rational(22, 3)), \
Eq(y(t), C1*(2 + sqrt(6))*exp(t*(sqrt(6) + 3)) + C2*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) - Rational(5, 3))]
assert checksysodesol(eq1, sol1) == (True, [0, 0])
eq2 = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23))
sol2 = [Eq(x(t), (C1*cos(sqrt(2)*t) + C2*sin(sqrt(2)*t))*exp(t) - Rational(58, 3)), \
Eq(y(t), (-sqrt(2)*C1*sin(sqrt(2)*t) + sqrt(2)*C2*cos(sqrt(2)*t))*exp(t) - Rational(185, 3))]
assert checksysodesol(eq2, sol2) == (True, [0, 0])
eq3 = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t)))
sol3 = [Eq(x(t), (C1*exp(2*t) + C2*exp(-2*t))*exp(Rational(5, 2)*t**2)), \
Eq(y(t), (C1*exp(2*t) - C2*exp(-2*t))*exp(Rational(5, 2)*t**2))]
assert checksysodesol(eq3, sol3) == (True, [0, 0])
eq4 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t)))
sol4 = [Eq(x(t), (C1*cos((t**3)/3) + C2*sin((t**3)/3))*exp(Rational(5, 2)*t**2)), \
Eq(y(t), (-C1*sin((t**3)/3) + C2*cos((t**3)/3))*exp(Rational(5, 2)*t**2))]
assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t)))
sol5 = [Eq(x(t), (C1*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \
C2*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2)), \
Eq(y(t), (C1*(sqrt(77)/2 + Rational(9, 2))*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \
C2*(-sqrt(77)/2 + Rational(9, 2))*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2))]
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), (1-t**2)*x(t) + (5*t+9*t**2)*y(t)))
sol6 = [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t)), \
Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t) + \
exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)))]
s = dsolve(eq6)
assert s == sol6 # too complicated to test with subs and simplify
# assert checksysodesol(eq10, sol10) == (True, [0, 0]) # this one fails
def test_nonlinear_2eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
eq1 = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol1 = [
Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(Rational(-1, 4)))),
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert dsolve(eq1) == sol1
assert checksysodesol(eq1, sol1) == (True, [0, 0])
eq2 = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5))
sol2 = [
Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert dsolve(eq2) == sol2
assert checksysodesol(eq2, sol2) == (True, [0, 0])
eq3 = (Eq(diff(x(t),t), y(t)*x(t)), Eq(diff(y(t),t), x(t)**3))
tt = Rational(2, 3)
sol3 = [
Eq(x(t), 6**tt/(6*(-sinh(sqrt(C1)*(C2 + t)/2)/sqrt(C1))**tt)),
Eq(y(t), sqrt(C1 + C1/sinh(sqrt(C1)*(C2 + t)/2)**2)/3)]
assert dsolve(eq3) == sol3
# FIXME: assert checksysodesol(eq3, sol3) == (True, [0, 0])
eq4 = (Eq(diff(x(t),t),x(t)*y(t)*sin(t)**2), Eq(diff(y(t),t),y(t)**2*sin(t)**2))
sol4 = {Eq(x(t), -2*exp(C1)/(C2*exp(C1) + t - sin(2*t)/2)), Eq(y(t), -2/(C1 + t - sin(2*t)/2))}
assert dsolve(eq4) == sol4
# FIXME: assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2))
sol5 = {Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)}
assert dsolve(eq5) == sol5
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = (Eq(diff(x(t),t),x(t)**2*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol6 = [
Eq(x(t), 1/(C1 - 1/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), 1/(C1 + (-1/(4*C2 + 4*t))**(Rational(-1, 4)))),
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), 1/(C1 + I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), 1/(C1 - I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert dsolve(eq6) == sol6
assert checksysodesol(eq6, sol6) == (True, [0, 0])
@slow
def test_nonlinear_3eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t, u = symbols('t u')
eq1 = (4*diff(x(t),t) + 2*y(t)*z(t), 3*diff(y(t),t) - z(t)*x(t), 5*diff(z(t),t) - x(t)*y(t))
sol1 = [Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)), (u, x(t))),
C3 - sqrt(15)*t/15), Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)),
(u, y(t))), C3 + sqrt(5)*t/10), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)*
sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*t/6)]
assert [i.dummy_eq(j) for i, j in zip(dsolve(eq1), sol1)]
# FIXME: assert checksysodesol(eq1, sol1) == (True, [0, 0, 0])
eq2 = (4*diff(x(t),t) + 2*y(t)*z(t)*sin(t), 3*diff(y(t),t) - z(t)*x(t)*sin(t), 5*diff(z(t),t) - x(t)*y(t)*sin(t))
sol2 = [Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)), (u, x(t))), C3 +
sqrt(5)*cos(t)/10), Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)),
(u, y(t))), C3 - sqrt(15)*cos(t)/15), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)*
sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*cos(t)/6)]
assert [i.dummy_eq(j) for i, j in zip(dsolve(eq2), sol2)]
# FIXME: assert checksysodesol(eq2, sol2) == (True, [0, 0, 0])
def test_C1_function_9239():
t = Symbol('t')
C1 = Function('C1')
C2 = Function('C2')
C3 = Symbol('C3')
C4 = Symbol('C4')
eq = (Eq(diff(C1(t), t), 9*C2(t)), Eq(diff(C2(t), t), 12*C1(t)))
sol = [Eq(C1(t), 9*C3*exp(6*sqrt(3)*t) + 9*C4*exp(-6*sqrt(3)*t)),
Eq(C2(t), 6*sqrt(3)*C3*exp(6*sqrt(3)*t) - 6*sqrt(3)*C4*exp(-6*sqrt(3)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0])
def test_dsolve_linsystem_symbol():
eps = Symbol('epsilon', positive=True)
eq1 = (Eq(diff(f(x), x), -eps*g(x)), Eq(diff(g(x), x), eps*f(x)))
sol1 = [Eq(f(x), -C1*eps*cos(eps*x) - C2*eps*sin(eps*x)),
Eq(g(x), -C1*eps*sin(eps*x) + C2*eps*cos(eps*x))]
assert checksysodesol(eq1, sol1) == (True, [0, 0])
|
efb4dd0a52b4fe57cee657b4184b0f56585d855056ddd59442bd813219a75762 | """ Tests from Michael Wester's 1999 paper "Review of CAS mathematical
capabilities".
http://www.math.unm.edu/~wester/cas/book/Wester.pdf
See also http://math.unm.edu/~wester/cas_review.html for detailed output of
each tested system.
"""
from sympy import (Rational, symbols, Dummy, factorial, sqrt, log, exp, oo, zoo,
product, binomial, rf, pi, gamma, igcd, factorint, radsimp, combsimp,
npartitions, totient, primerange, factor, simplify, gcd, resultant, expand,
I, trigsimp, tan, sin, cos, cot, diff, nan, limit, EulerGamma, polygamma,
bernoulli, hyper, hyperexpand, besselj, asin, assoc_legendre, Function, re,
im, DiracDelta, chebyshevt, legendre_poly, polylog, series, O,
atan, sinh, cosh, tanh, floor, ceiling, solve, asinh, acot, csc, sec,
LambertW, N, apart, sqrtdenest, factorial2, powdenest, Mul, S, ZZ,
Poly, expand_func, E, Q, And, Lt, Min, ask, refine, AlgebraicNumber,
continued_fraction_iterator as cf_i, continued_fraction_periodic as cf_p,
continued_fraction_convergents as cf_c, continued_fraction_reduce as cf_r,
FiniteSet, elliptic_e, elliptic_f, powsimp, hessian, wronskian, fibonacci,
sign, Lambda, Piecewise, Subs, residue, Derivative, logcombine, Symbol,
Intersection, Union, EmptySet, Interval, idiff, ImageSet, acos, Max,
MatMul, conjugate, Eq)
import mpmath
from sympy.functions.combinatorial.numbers import stirling
from sympy.functions.special.delta_functions import Heaviside
from sympy.functions.special.error_functions import Ci, Si, erf
from sympy.functions.special.zeta_functions import zeta
from sympy.testing.pytest import (XFAIL, slow, SKIP, skip, ON_TRAVIS,
raises)
from sympy.utilities.iterables import partitions
from mpmath import mpi, mpc
from sympy.matrices import Matrix, GramSchmidt, eye
from sympy.matrices.expressions.blockmatrix import BlockMatrix, block_collapse
from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix
from sympy.physics.quantum import Commutator
from sympy.assumptions import assuming
from sympy.polys.rings import PolyRing
from sympy.polys.fields import FracField
from sympy.polys.solvers import solve_lin_sys
from sympy.concrete import Sum
from sympy.concrete.products import Product
from sympy.integrals import integrate
from sympy.integrals.transforms import laplace_transform,\
inverse_laplace_transform, LaplaceTransform, fourier_transform,\
mellin_transform
from sympy.solvers.recurr import rsolve
from sympy.solvers.solveset import solveset, solveset_real, linsolve
from sympy.solvers.ode import dsolve
from sympy.core.relational import Equality
from itertools import islice, takewhile
from sympy.series.formal import fps
from sympy.series.fourier import fourier_series
from sympy.calculus.util import minimum
R = Rational
x, y, z = symbols('x y z')
i, j, k, l, m, n = symbols('i j k l m n', integer=True)
f = Function('f')
g = Function('g')
# A. Boolean Logic and Quantifier Elimination
# Not implemented.
# B. Set Theory
def test_B1():
assert (FiniteSet(i, j, j, k, k, k) | FiniteSet(l, k, j) |
FiniteSet(j, m, j)) == FiniteSet(i, j, k, l, m)
def test_B2():
assert (FiniteSet(i, j, j, k, k, k) & FiniteSet(l, k, j) &
FiniteSet(j, m, j)) == Intersection({j, m}, {i, j, k}, {j, k, l})
# Previous output below. Not sure why that should be the expected output.
# There should probably be a way to rewrite Intersections that way but I
# don't see why an Intersection should evaluate like that:
#
# == Union({j}, Intersection({m}, Union({j, k}, Intersection({i}, {l}))))
def test_B3():
assert (FiniteSet(i, j, k, l, m) - FiniteSet(j) ==
FiniteSet(i, k, l, m))
def test_B4():
assert (FiniteSet(*(FiniteSet(i, j)*FiniteSet(k, l))) ==
FiniteSet((i, k), (i, l), (j, k), (j, l)))
# C. Numbers
def test_C1():
assert (factorial(50) ==
30414093201713378043612608166064768844377641568960512000000000000)
def test_C2():
assert (factorint(factorial(50)) == {2: 47, 3: 22, 5: 12, 7: 8,
11: 4, 13: 3, 17: 2, 19: 2, 23: 2, 29: 1, 31: 1, 37: 1,
41: 1, 43: 1, 47: 1})
def test_C3():
assert (factorial2(10), factorial2(9)) == (3840, 945)
# Base conversions; not really implemented by sympy
# Whatever. Take credit!
def test_C4():
assert 0xABC == 2748
def test_C5():
assert 123 == int('234', 7)
def test_C6():
assert int('677', 8) == int('1BF', 16) == 447
def test_C7():
assert log(32768, 8) == 5
def test_C8():
# Modular multiplicative inverse. Would be nice if divmod could do this.
assert ZZ.invert(5, 7) == 3
assert ZZ.invert(5, 6) == 5
def test_C9():
assert igcd(igcd(1776, 1554), 5698) == 74
def test_C10():
x = 0
for n in range(2, 11):
x += R(1, n)
assert x == R(4861, 2520)
def test_C11():
assert R(1, 7) == S('0.[142857]')
def test_C12():
assert R(7, 11) * R(22, 7) == 2
def test_C13():
test = R(10, 7) * (1 + R(29, 1000)) ** R(1, 3)
good = 3 ** R(1, 3)
assert test == good
def test_C14():
assert sqrtdenest(sqrt(2*sqrt(3) + 4)) == 1 + sqrt(3)
def test_C15():
test = sqrtdenest(sqrt(14 + 3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2))))))
good = sqrt(2) + 3
assert test == good
def test_C16():
test = sqrtdenest(sqrt(10 + 2*sqrt(6) + 2*sqrt(10) + 2*sqrt(15)))
good = sqrt(2) + sqrt(3) + sqrt(5)
assert test == good
def test_C17():
test = radsimp((sqrt(3) + sqrt(2)) / (sqrt(3) - sqrt(2)))
good = 5 + 2*sqrt(6)
assert test == good
def test_C18():
assert simplify((sqrt(-2 + sqrt(-5)) * sqrt(-2 - sqrt(-5))).expand(complex=True)) == 3
@XFAIL
def test_C19():
assert radsimp(simplify((90 + 34*sqrt(7)) ** R(1, 3))) == 3 + sqrt(7)
def test_C20():
inside = (135 + 78*sqrt(3))
test = AlgebraicNumber((inside**R(2, 3) + 3) * sqrt(3) / inside**R(1, 3))
assert simplify(test) == AlgebraicNumber(12)
def test_C21():
assert simplify(AlgebraicNumber((41 + 29*sqrt(2)) ** R(1, 5))) == \
AlgebraicNumber(1 + sqrt(2))
@XFAIL
def test_C22():
test = simplify(((6 - 4*sqrt(2))*log(3 - 2*sqrt(2)) + (3 - 2*sqrt(2))*log(17
- 12*sqrt(2)) + 32 - 24*sqrt(2)) / (48*sqrt(2) - 72))
good = sqrt(2)/3 - log(sqrt(2) - 1)/3
assert test == good
def test_C23():
assert 2 * oo - 3 is oo
@XFAIL
def test_C24():
raise NotImplementedError("2**aleph_null == aleph_1")
# D. Numerical Analysis
def test_D1():
assert 0.0 / sqrt(2) == 0.0
def test_D2():
assert str(exp(-1000000).evalf()) == '3.29683147808856e-434295'
def test_D3():
assert exp(pi*sqrt(163)).evalf(50).num.ae(262537412640768744)
def test_D4():
assert floor(R(-5, 3)) == -2
assert ceiling(R(-5, 3)) == -1
@XFAIL
def test_D5():
raise NotImplementedError("cubic_spline([1, 2, 4, 5], [1, 4, 2, 3], x)(3) == 27/8")
@XFAIL
def test_D6():
raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to FORTRAN")
@XFAIL
def test_D7():
raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to C")
@XFAIL
def test_D8():
# One way is to cheat by converting the sum to a string,
# and replacing the '[' and ']' with ''.
# E.g., horner(S(str(_).replace('[','').replace(']','')))
raise NotImplementedError("apply Horner's rule to sum(a[i]*x**i, (i,1,5))")
@XFAIL
def test_D9():
raise NotImplementedError("translate D8 to FORTRAN")
@XFAIL
def test_D10():
raise NotImplementedError("translate D8 to C")
@XFAIL
def test_D11():
#Is there a way to use count_ops?
raise NotImplementedError("flops(sum(product(f[i][k], (i,1,k)), (k,1,n)))")
@XFAIL
def test_D12():
assert (mpi(-4, 2) * x + mpi(1, 3)) ** 2 == mpi(-8, 16)*x**2 + mpi(-24, 12)*x + mpi(1, 9)
@XFAIL
def test_D13():
raise NotImplementedError("discretize a PDE: diff(f(x,t),t) == diff(diff(f(x,t),x),x)")
# E. Statistics
# See scipy; all of this is numerical.
# F. Combinatorial Theory.
def test_F1():
assert rf(x, 3) == x*(1 + x)*(2 + x)
def test_F2():
assert expand_func(binomial(n, 3)) == n*(n - 1)*(n - 2)/6
@XFAIL
def test_F3():
assert combsimp(2**n * factorial(n) * factorial2(2*n - 1)) == factorial(2*n)
@XFAIL
def test_F4():
assert combsimp(2**n * factorial(n) * product(2*k - 1, (k, 1, n))) == factorial(2*n)
@XFAIL
def test_F5():
assert gamma(n + R(1, 2)) / sqrt(pi) / factorial(n) == factorial(2*n)/2**(2*n)/factorial(n)**2
def test_F6():
partTest = [p.copy() for p in partitions(4)]
partDesired = [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2:1}, {1: 4}]
assert partTest == partDesired
def test_F7():
assert npartitions(4) == 5
def test_F8():
assert stirling(5, 2, signed=True) == -50 # if signed, then kind=1
def test_F9():
assert totient(1776) == 576
# G. Number Theory
def test_G1():
assert list(primerange(999983, 1000004)) == [999983, 1000003]
@XFAIL
def test_G2():
raise NotImplementedError("find the primitive root of 191 == 19")
@XFAIL
def test_G3():
raise NotImplementedError("(a+b)**p mod p == a**p + b**p mod p; p prime")
# ... G14 Modular equations are not implemented.
def test_G15():
assert Rational(sqrt(3).evalf()).limit_denominator(15) == R(26, 15)
assert list(takewhile(lambda x: x.q <= 15, cf_c(cf_i(sqrt(3)))))[-1] == \
R(26, 15)
def test_G16():
assert list(islice(cf_i(pi),10)) == [3, 7, 15, 1, 292, 1, 1, 1, 2, 1]
def test_G17():
assert cf_p(0, 1, 23) == [4, [1, 3, 1, 8]]
def test_G18():
assert cf_p(1, 2, 5) == [[1]]
assert cf_r([[1]]).expand() == S.Half + sqrt(5)/2
@XFAIL
def test_G19():
s = symbols('s', integer=True, positive=True)
it = cf_i((exp(1/s) - 1)/(exp(1/s) + 1))
assert list(islice(it, 5)) == [0, 2*s, 6*s, 10*s, 14*s]
def test_G20():
s = symbols('s', integer=True, positive=True)
# Wester erroneously has this as -s + sqrt(s**2 + 1)
assert cf_r([[2*s]]) == s + sqrt(s**2 + 1)
@XFAIL
def test_G20b():
s = symbols('s', integer=True, positive=True)
assert cf_p(s, 1, s**2 + 1) == [[2*s]]
# H. Algebra
def test_H1():
assert simplify(2*2**n) == simplify(2**(n + 1))
assert powdenest(2*2**n) == simplify(2**(n + 1))
def test_H2():
assert powsimp(4 * 2**n) == 2**(n + 2)
def test_H3():
assert (-1)**(n*(n + 1)) == 1
def test_H4():
expr = factor(6*x - 10)
assert type(expr) is Mul
assert expr.args[0] == 2
assert expr.args[1] == 3*x - 5
p1 = 64*x**34 - 21*x**47 - 126*x**8 - 46*x**5 - 16*x**60 - 81
p2 = 72*x**60 - 25*x**25 - 19*x**23 - 22*x**39 - 83*x**52 + 54*x**10 + 81
q = 34*x**19 - 25*x**16 + 70*x**7 + 20*x**3 - 91*x - 86
def test_H5():
assert gcd(p1, p2, x) == 1
def test_H6():
assert gcd(expand(p1 * q), expand(p2 * q)) == q
def test_H7():
p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
assert gcd(p1, p2, x, y, z) == 1
def test_H8():
p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
q = 11*x**12*y**7*z**13 - 23*x**2*y**8*z**10 + 47*x**17*y**5*z**8
assert gcd(p1 * q, p2 * q, x, y, z) == q
def test_H9():
p1 = 2*x**(n + 4) - x**(n + 2)
p2 = 4*x**(n + 1) + 3*x**n
assert gcd(p1, p2) == x**n
def test_H10():
p1 = 3*x**4 + 3*x**3 + x**2 - x - 2
p2 = x**3 - 3*x**2 + x + 5
assert resultant(p1, p2, x) == 0
def test_H11():
assert resultant(p1 * q, p2 * q, x) == 0
def test_H12():
num = x**2 - 4
den = x**2 + 4*x + 4
assert simplify(num/den) == (x - 2)/(x + 2)
@XFAIL
def test_H13():
assert simplify((exp(x) - 1) / (exp(x/2) + 1)) == exp(x/2) - 1
def test_H14():
p = (x + 1) ** 20
ep = expand(p)
assert ep == (1 + 20*x + 190*x**2 + 1140*x**3 + 4845*x**4 + 15504*x**5
+ 38760*x**6 + 77520*x**7 + 125970*x**8 + 167960*x**9 + 184756*x**10
+ 167960*x**11 + 125970*x**12 + 77520*x**13 + 38760*x**14 + 15504*x**15
+ 4845*x**16 + 1140*x**17 + 190*x**18 + 20*x**19 + x**20)
dep = diff(ep, x)
assert dep == (20 + 380*x + 3420*x**2 + 19380*x**3 + 77520*x**4
+ 232560*x**5 + 542640*x**6 + 1007760*x**7 + 1511640*x**8 + 1847560*x**9
+ 1847560*x**10 + 1511640*x**11 + 1007760*x**12 + 542640*x**13
+ 232560*x**14 + 77520*x**15 + 19380*x**16 + 3420*x**17 + 380*x**18
+ 20*x**19)
assert factor(dep) == 20*(1 + x)**19
def test_H15():
assert simplify(Mul(*[x - r for r in solveset(x**3 + x**2 - 7)])) == x**3 + x**2 - 7
def test_H16():
assert factor(x**100 - 1) == ((x - 1)*(x + 1)*(x**2 + 1)*(x**4 - x**3
+ x**2 - x + 1)*(x**4 + x**3 + x**2 + x + 1)*(x**8 - x**6 + x**4
- x**2 + 1)*(x**20 - x**15 + x**10 - x**5 + 1)*(x**20 + x**15 + x**10
+ x**5 + 1)*(x**40 - x**30 + x**20 - x**10 + 1))
def test_H17():
assert simplify(factor(expand(p1 * p2)) - p1*p2) == 0
@XFAIL
def test_H18():
# Factor over complex rationals.
test = factor(4*x**4 + 8*x**3 + 77*x**2 + 18*x + 153)
good = (2*x + 3*I)*(2*x - 3*I)*(x + 1 - 4*I)*(x + 1 + 4*I)
assert test == good
def test_H19():
a = symbols('a')
# The idea is to let a**2 == 2, then solve 1/(a-1). Answer is a+1")
assert Poly(a - 1).invert(Poly(a**2 - 2)) == a + 1
@XFAIL
def test_H20():
raise NotImplementedError("let a**2==2; (x**3 + (a-2)*x**2 - "
+ "(2*a+3)*x - 3*a) / (x**2-2) = (x**2 - 2*x - 3) / (x-a)")
@XFAIL
def test_H21():
raise NotImplementedError("evaluate (b+c)**4 assuming b**3==2, c**2==3. \
Answer is 2*b + 8*c + 18*b**2 + 12*b*c + 9")
def test_H22():
assert factor(x**4 - 3*x**2 + 1, modulus=5) == (x - 2)**2 * (x + 2)**2
def test_H23():
f = x**11 + x + 1
g = (x**2 + x + 1) * (x**9 - x**8 + x**6 - x**5 + x**3 - x**2 + 1)
assert factor(f, modulus=65537) == g
def test_H24():
phi = AlgebraicNumber(S.GoldenRatio.expand(func=True), alias='phi')
assert factor(x**4 - 3*x**2 + 1, extension=phi) == \
(x - phi)*(x + 1 - phi)*(x - 1 + phi)*(x + phi)
def test_H25():
e = (x - 2*y**2 + 3*z**3) ** 20
assert factor(expand(e)) == e
def test_H26():
g = expand((sin(x) - 2*cos(y)**2 + 3*tan(z)**3)**20)
assert factor(g, expand=False) == (-sin(x) + 2*cos(y)**2 - 3*tan(z)**3)**20
def test_H27():
f = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
g = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
h = -2*z*y**7 \
*(6*x**9*y**9*z**3 + 10*x**7*z**6 + 17*y*x**5*z**12 + 40*y**7) \
*(3*x**22 + 47*x**17*y**5*z**8 - 6*x**15*y**9*z**2 - 24*x*y**19*z**8 - 5)
assert factor(expand(f*g)) == h
@XFAIL
def test_H28():
raise NotImplementedError("expand ((1 - c**2)**5 * (1 - s**2)**5 * "
+ "(c**2 + s**2)**10) with c**2 + s**2 = 1. Answer is c**10*s**10.")
@XFAIL
def test_H29():
assert factor(4*x**2 - 21*x*y + 20*y**2, modulus=3) == (x + y)*(x - y)
def test_H30():
test = factor(x**3 + y**3, extension=sqrt(-3))
answer = (x + y)*(x + y*(-R(1, 2) - sqrt(3)/2*I))*(x + y*(-R(1, 2) + sqrt(3)/2*I))
assert answer == test
def test_H31():
f = (x**2 + 2*x + 3)/(x**3 + 4*x**2 + 5*x + 2)
g = 2 / (x + 1)**2 - 2 / (x + 1) + 3 / (x + 2)
assert apart(f) == g
@XFAIL
def test_H32(): # issue 6558
raise NotImplementedError("[A*B*C - (A*B*C)**(-1)]*A*C*B (product \
of a non-commuting product and its inverse)")
def test_H33():
A, B, C = symbols('A, B, C', commutative=False)
assert (Commutator(A, Commutator(B, C))
+ Commutator(B, Commutator(C, A))
+ Commutator(C, Commutator(A, B))).doit().expand() == 0
# I. Trigonometry
def test_I1():
assert tan(pi*R(7, 10)) == -sqrt(1 + 2/sqrt(5))
@XFAIL
def test_I2():
assert sqrt((1 + cos(6))/2) == -cos(3)
def test_I3():
assert cos(n*pi) + sin((4*n - 1)*pi/2) == (-1)**n - 1
def test_I4():
assert refine(cos(pi*cos(n*pi)) + sin(pi/2*cos(n*pi)), Q.integer(n)) == (-1)**n - 1
@XFAIL
def test_I5():
assert sin((n**5/5 + n**4/2 + n**3/3 - n/30) * pi) == 0
@XFAIL
def test_I6():
raise NotImplementedError("assuming -3*pi<x<-5*pi/2, abs(cos(x)) == -cos(x), abs(sin(x)) == -sin(x)")
@XFAIL
def test_I7():
assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2
@XFAIL
def test_I8():
assert cos(3*x)/cos(x) == 2*cos(2*x) - 1
@XFAIL
def test_I9():
# Supposed to do this with rewrite rules.
assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2
def test_I10():
assert trigsimp((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1)) is nan
@SKIP("hangs")
@XFAIL
def test_I11():
assert limit((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x, 0) != 0
@XFAIL
def test_I12():
# This should fail or return nan or something.
res = diff((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x)
assert res is nan # trigsimp(res) gives nan
# J. Special functions.
def test_J1():
assert bernoulli(16) == R(-3617, 510)
def test_J2():
assert diff(elliptic_e(x, y**2), y) == (elliptic_e(x, y**2) - elliptic_f(x, y**2))/y
@XFAIL
def test_J3():
raise NotImplementedError("Jacobi elliptic functions: diff(dn(u,k), u) == -k**2*sn(u,k)*cn(u,k)")
def test_J4():
assert gamma(R(-1, 2)) == -2*sqrt(pi)
def test_J5():
assert polygamma(0, R(1, 3)) == -log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3))
def test_J6():
assert mpmath.besselj(2, 1 + 1j).ae(mpc('0.04157988694396212', '0.24739764151330632'))
def test_J7():
assert simplify(besselj(R(-5,2), pi/2)) == 12/(pi**2)
def test_J8():
p = besselj(R(3,2), z)
q = (sin(z)/z - cos(z))/sqrt(pi*z/2)
assert simplify(expand_func(p) -q) == 0
def test_J9():
assert besselj(0, z).diff(z) == - besselj(1, z)
def test_J10():
mu, nu = symbols('mu, nu', integer=True)
assert assoc_legendre(nu, mu, 0) == 2**mu*sqrt(pi)/gamma((nu - mu)/2 + 1)/gamma((-nu - mu + 1)/2)
def test_J11():
assert simplify(assoc_legendre(3, 1, x)) == simplify(-R(3, 2)*sqrt(1 - x**2)*(5*x**2 - 1))
@slow
def test_J12():
assert simplify(chebyshevt(1008, x) - 2*x*chebyshevt(1007, x) + chebyshevt(1006, x)) == 0
def test_J13():
a = symbols('a', integer=True, negative=False)
assert chebyshevt(a, -1) == (-1)**a
def test_J14():
p = hyper([S.Half, S.Half], [R(3, 2)], z**2)
assert hyperexpand(p) == asin(z)/z
@XFAIL
def test_J15():
raise NotImplementedError("F((n+2)/2,-(n-2)/2,R(3,2),sin(z)**2) == sin(n*z)/(n*sin(z)*cos(z)); F(.) is hypergeometric function")
@XFAIL
def test_J16():
raise NotImplementedError("diff(zeta(x), x) @ x=0 == -log(2*pi)/2")
def test_J17():
assert integrate(f((x + 2)/5)*DiracDelta((x - 2)/3) - g(x)*diff(DiracDelta(x - 1), x), (x, 0, 3)) == 3*f(R(4, 5)) + Subs(Derivative(g(x), x), x, 1)
@XFAIL
def test_J18():
raise NotImplementedError("define an antisymmetric function")
# K. The Complex Domain
def test_K1():
z1, z2 = symbols('z1, z2', complex=True)
assert re(z1 + I*z2) == -im(z2) + re(z1)
assert im(z1 + I*z2) == im(z1) + re(z2)
def test_K2():
assert abs(3 - sqrt(7) + I*sqrt(6*sqrt(7) - 15)) == 1
@XFAIL
def test_K3():
a, b = symbols('a, b', real=True)
assert simplify(abs(1/(a + I/a + I*b))) == 1/sqrt(a**2 + (I/a + b)**2)
def test_K4():
assert log(3 + 4*I).expand(complex=True) == log(5) + I*atan(R(4, 3))
def test_K5():
x, y = symbols('x, y', real=True)
assert tan(x + I*y).expand(complex=True) == (sin(2*x)/(cos(2*x) +
cosh(2*y)) + I*sinh(2*y)/(cos(2*x) + cosh(2*y)))
def test_K6():
assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) == sqrt(x*y)/sqrt(x)
assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) != sqrt(y)
def test_K7():
y = symbols('y', real=True, negative=False)
expr = sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z))
sexpr = simplify(expr)
assert sexpr == sqrt(y)
def test_K8():
z = symbols('z', complex=True)
assert simplify(sqrt(1/z) - 1/sqrt(z)) != 0 # Passes
z = symbols('z', complex=True, negative=False)
assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0 # Fails
def test_K9():
z = symbols('z', real=True, positive=True)
assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0
def test_K10():
z = symbols('z', real=True, negative=True)
assert simplify(sqrt(1/z) + 1/sqrt(z)) == 0
# This goes up to K25
# L. Determining Zero Equivalence
def test_L1():
assert sqrt(997) - (997**3)**R(1, 6) == 0
def test_L2():
assert sqrt(999983) - (999983**3)**R(1, 6) == 0
def test_L3():
assert simplify((2**R(1, 3) + 4**R(1, 3))**3 - 6*(2**R(1, 3) + 4**R(1, 3)) - 6) == 0
def test_L4():
assert trigsimp(cos(x)**3 + cos(x)*sin(x)**2 - cos(x)) == 0
@XFAIL
def test_L5():
assert log(tan(R(1, 2)*x + pi/4)) - asinh(tan(x)) == 0
def test_L6():
assert (log(tan(x/2 + pi/4)) - asinh(tan(x))).diff(x).subs({x: 0}) == 0
@XFAIL
def test_L7():
assert simplify(log((2*sqrt(x) + 1)/(sqrt(4*x + 4*sqrt(x) + 1)))) == 0
@XFAIL
def test_L8():
assert simplify((4*x + 4*sqrt(x) + 1)**(sqrt(x)/(2*sqrt(x) + 1)) \
*(2*sqrt(x) + 1)**(1/(2*sqrt(x) + 1)) - 2*sqrt(x) - 1) == 0
@XFAIL
def test_L9():
z = symbols('z', complex=True)
assert simplify(2**(1 - z)*gamma(z)*zeta(z)*cos(z*pi/2) - pi**2*zeta(1 - z)) == 0
# M. Equations
@XFAIL
def test_M1():
assert Equality(x, 2)/2 + Equality(1, 1) == Equality(x/2 + 1, 2)
def test_M2():
# The roots of this equation should all be real. Note that this
# doesn't test that they are correct.
sol = solveset(3*x**3 - 18*x**2 + 33*x - 19, x)
assert all(s.expand(complex=True).is_real for s in sol)
@XFAIL
def test_M5():
assert solveset(x**6 - 9*x**4 - 4*x**3 + 27*x**2 - 36*x - 23, x) == FiniteSet(2**(1/3) + sqrt(3), 2**(1/3) - sqrt(3), +sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), +sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3))
def test_M6():
assert set(solveset(x**7 - 1, x)) == \
{cos(n*pi*R(2, 7)) + I*sin(n*pi*R(2, 7)) for n in range(0, 7)}
# The paper asks for exp terms, but sin's and cos's may be acceptable;
# if the results are simplified, exp terms appear for all but
# -sin(pi/14) - I*cos(pi/14) and -sin(pi/14) + I*cos(pi/14) which
# will simplify if you apply the transformation foo.rewrite(exp).expand()
def test_M7():
# TODO: Replace solve with solveset, as of now test fails for solveset
sol = solve(x**8 - 8*x**7 + 34*x**6 - 92*x**5 + 175*x**4 - 236*x**3 +
226*x**2 - 140*x + 46, x)
assert [s.simplify() for s in sol] == [
1 - sqrt(-6 - 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 + sqrt(-6 - 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 - sqrt(-6 + 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 + sqrt(-6 + 2*I*sqrt(3 + 4*sqrt (3)))/2,
1 - sqrt(-6 + 2*sqrt(-3 + 4*sqrt(3)))/2,
1 + sqrt(-6 + 2*sqrt(-3 + 4*sqrt(3)))/2,
1 - sqrt(-6 - 2*sqrt(-3 + 4*sqrt(3)))/2,
1 + sqrt(-6 - 2*sqrt(-3 + 4*sqrt(3)))/2]
@XFAIL # There are an infinite number of solutions.
def test_M8():
x = Symbol('x')
z = symbols('z', complex=True)
assert solveset(exp(2*x) + 2*exp(x) + 1 - z, x, S.Reals) == \
FiniteSet(log(1 + z - 2*sqrt(z))/2, log(1 + z + 2*sqrt(z))/2)
# This one could be simplified better (the 1/2 could be pulled into the log
# as a sqrt, and the function inside the log can be factored as a square,
# giving [log(sqrt(z) - 1), log(sqrt(z) + 1)]). Also, there should be an
# infinite number of solutions.
# x = {log(sqrt(z) - 1), log(sqrt(z) + 1) + i pi} [+ n 2 pi i, + n 2 pi i]
# where n is an arbitrary integer. See url of detailed output above.
@XFAIL
def test_M9():
# x = symbols('x')
raise NotImplementedError("solveset(exp(2-x**2)-exp(-x),x) has complex solutions.")
def test_M10():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(exp(x) - x, x) == [-LambertW(-1)]
@XFAIL
def test_M11():
assert solveset(x**x - x, x) == FiniteSet(-1, 1)
def test_M12():
# TODO: x = [-1, 2*(+/-asinh(1)*I + n*pi}, 3*(pi/6 + n*pi/3)]
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve((x + 1)*(sin(x)**2 + 1)**2*cos(3*x)**3, x) == [
-1, pi/6, pi/2,
- I*log(1 + sqrt(2)), I*log(1 + sqrt(2)),
pi - I*log(1 + sqrt(2)), pi + I*log(1 + sqrt(2)),
]
@XFAIL
def test_M13():
n = Dummy('n')
assert solveset_real(sin(x) - cos(x), x) == ImageSet(Lambda(n, n*pi - pi*R(7, 4)), S.Integers)
@XFAIL
def test_M14():
n = Dummy('n')
assert solveset_real(tan(x) - 1, x) == ImageSet(Lambda(n, n*pi + pi/4), S.Integers)
def test_M15():
n = Dummy('n')
got = solveset(sin(x) - S.Half)
assert any(got.dummy_eq(i) for i in (
Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi*R(5, 6)), S.Integers)),
Union(ImageSet(Lambda(n, 2*n*pi + pi*R(5, 6)), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers))))
@XFAIL
def test_M16():
n = Dummy('n')
assert solveset(sin(x) - tan(x), x) == ImageSet(Lambda(n, n*pi), S.Integers)
@XFAIL
def test_M17():
assert solveset_real(asin(x) - atan(x), x) == FiniteSet(0)
@XFAIL
def test_M18():
assert solveset_real(acos(x) - atan(x), x) == FiniteSet(sqrt((sqrt(5) - 1)/2))
def test_M19():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve((x - 2)/x**R(1, 3), x) == [2]
def test_M20():
assert solveset(sqrt(x**2 + 1) - x + 2, x) == EmptySet
def test_M21():
assert solveset(x + sqrt(x) - 2) == FiniteSet(1)
def test_M22():
assert solveset(2*sqrt(x) + 3*x**R(1, 4) - 2) == FiniteSet(R(1, 16))
def test_M23():
x = symbols('x', complex=True)
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(x - 1/sqrt(1 + x**2)) == [
-I*sqrt(S.Half + sqrt(5)/2), sqrt(Rational(-1, 2) + sqrt(5)/2)]
def test_M24():
# TODO: Replace solve with solveset, as of now test fails for solveset
solution = solve(1 - binomial(m, 2)*2**k, k)
answer = log(2/(m*(m - 1)), 2)
assert solution[0].expand() == answer.expand()
def test_M25():
a, b, c, d = symbols(':d', positive=True)
x = symbols('x')
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(a*b**x - c*d**x, x)[0].expand() == (log(c/a)/log(b/d)).expand()
def test_M26():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(sqrt(log(x)) - log(sqrt(x))) == [1, exp(4)]
def test_M27():
x = symbols('x', real=True)
b = symbols('b', real=True)
with assuming(sin(cos(1/E**2) + 1) + b > 0):
# TODO: Replace solve with solveset
solve(log(acos(asin(x**R(2, 3) - b) - 1)) + 2, x) == [-b - sin(1 + cos(1/E**2))**R(3/2), b + sin(1 + cos(1/E**2))**R(3/2)]
@XFAIL
def test_M28():
assert solveset_real(5*x + exp((x - 5)/2) - 8*x**3, x, assume=Q.real(x)) == [-0.784966, -0.016291, 0.802557]
def test_M29():
x = symbols('x')
assert solveset(abs(x - 1) - 2, domain=S.Reals) == FiniteSet(-1, 3)
def test_M30():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# assert solve(abs(2*x + 5) - abs(x - 2),x, assume=Q.real(x)) == [-1, -7]
assert solveset_real(abs(2*x + 5) - abs(x - 2), x) == FiniteSet(-1, -7)
def test_M31():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# assert solve(1 - abs(x) - max(-x - 2, x - 2),x, assume=Q.real(x)) == [-3/2, 3/2]
assert solveset_real(1 - abs(x) - Max(-x - 2, x - 2), x) == FiniteSet(R(-3, 2), R(3, 2))
@XFAIL
def test_M32():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
assert solveset_real(Max(2 - x**2, x)- Max(-x, (x**3)/9), x) == FiniteSet(-1, 3)
@XFAIL
def test_M33():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# Second answer can be written in another form. The second answer is the root of x**3 + 9*x**2 - 18 = 0 in the interval (-2, -1).
assert solveset_real(Max(2 - x**2, x) - x**3/9, x) == FiniteSet(-3, -1.554894, 3)
@XFAIL
def test_M34():
z = symbols('z', complex=True)
assert solveset((1 + I) * z + (2 - I) * conjugate(z) + 3*I, z) == FiniteSet(2 + 3*I)
def test_M35():
x, y = symbols('x y', real=True)
assert linsolve((3*x - 2*y - I*y + 3*I).as_real_imag(), y, x) == FiniteSet((3, 2))
def test_M36():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports solving for function
# assert solve(f**2 + f - 2, x) == [Eq(f(x), 1), Eq(f(x), -2)]
assert solveset(f(x)**2 + f(x) - 2, f(x)) == FiniteSet(-2, 1)
def test_M37():
assert linsolve([x + y + z - 6, 2*x + y + 2*z - 10, x + 3*y + z - 10 ], x, y, z) == \
FiniteSet((-z + 4, 2, z))
def test_M38():
a, b, c = symbols('a, b, c')
domain = FracField([a, b, c], ZZ).to_domain()
ring = PolyRing('k1:50', domain)
(k1, k2, k3, k4, k5, k6, k7, k8, k9, k10,
k11, k12, k13, k14, k15, k16, k17, k18, k19, k20,
k21, k22, k23, k24, k25, k26, k27, k28, k29, k30,
k31, k32, k33, k34, k35, k36, k37, k38, k39, k40,
k41, k42, k43, k44, k45, k46, k47, k48, k49) = ring.gens
system = [
-b*k8/a + c*k8/a, -b*k11/a + c*k11/a, -b*k10/a + c*k10/a + k2, -k3 - b*k9/a + c*k9/a,
-b*k14/a + c*k14/a, -b*k15/a + c*k15/a, -b*k18/a + c*k18/a - k2, -b*k17/a + c*k17/a,
-b*k16/a + c*k16/a + k4, -b*k13/a + c*k13/a - b*k21/a + c*k21/a + b*k5/a - c*k5/a,
b*k44/a - c*k44/a, -b*k45/a + c*k45/a, -b*k20/a + c*k20/a, -b*k44/a + c*k44/a,
b*k46/a - c*k46/a, b**2*k47/a**2 - 2*b*c*k47/a**2 + c**2*k47/a**2, k3, -k4,
-b*k12/a + c*k12/a - a*k6/b + c*k6/b, -b*k19/a + c*k19/a + a*k7/c - b*k7/c,
b*k45/a - c*k45/a, -b*k46/a + c*k46/a, -k48 + c*k48/a + c*k48/b - c**2*k48/(a*b),
-k49 + b*k49/a + b*k49/c - b**2*k49/(a*c), a*k1/b - c*k1/b, a*k4/b - c*k4/b,
a*k3/b - c*k3/b + k9, -k10 + a*k2/b - c*k2/b, a*k7/b - c*k7/b, -k9, k11,
b*k12/a - c*k12/a + a*k6/b - c*k6/b, a*k15/b - c*k15/b, k10 + a*k18/b - c*k18/b,
-k11 + a*k17/b - c*k17/b, a*k16/b - c*k16/b, -a*k13/b + c*k13/b + a*k21/b - c*k21/b + a*k5/b - c*k5/b,
-a*k44/b + c*k44/b, a*k45/b - c*k45/b, a*k14/c - b*k14/c + a*k20/b - c*k20/b,
a*k44/b - c*k44/b, -a*k46/b + c*k46/b, -k47 + c*k47/a + c*k47/b - c**2*k47/(a*b),
a*k19/b - c*k19/b, -a*k45/b + c*k45/b, a*k46/b - c*k46/b, a**2*k48/b**2 - 2*a*c*k48/b**2 + c**2*k48/b**2,
-k49 + a*k49/b + a*k49/c - a**2*k49/(b*c), k16, -k17, -a*k1/c + b*k1/c,
-k16 - a*k4/c + b*k4/c, -a*k3/c + b*k3/c, k18 - a*k2/c + b*k2/c, b*k19/a - c*k19/a - a*k7/c + b*k7/c,
-a*k6/c + b*k6/c, -a*k8/c + b*k8/c, -a*k11/c + b*k11/c + k17, -a*k10/c + b*k10/c - k18,
-a*k9/c + b*k9/c, -a*k14/c + b*k14/c - a*k20/b + c*k20/b, -a*k13/c + b*k13/c + a*k21/c - b*k21/c - a*k5/c + b*k5/c,
a*k44/c - b*k44/c, -a*k45/c + b*k45/c, -a*k44/c + b*k44/c, a*k46/c - b*k46/c,
-k47 + b*k47/a + b*k47/c - b**2*k47/(a*c), -a*k12/c + b*k12/c, a*k45/c - b*k45/c,
-a*k46/c + b*k46/c, -k48 + a*k48/b + a*k48/c - a**2*k48/(b*c),
a**2*k49/c**2 - 2*a*b*k49/c**2 + b**2*k49/c**2, k8, k11, -k15, k10 - k18,
-k17, k9, -k16, -k29, k14 - k32, -k21 + k23 - k31, -k24 - k30, -k35, k44,
-k45, k36, k13 - k23 + k39, -k20 + k38, k25 + k37, b*k26/a - c*k26/a - k34 + k42,
-2*k44, k45, k46, b*k47/a - c*k47/a, k41, k44, -k46, -b*k47/a + c*k47/a,
k12 + k24, -k19 - k25, -a*k27/b + c*k27/b - k33, k45, -k46, -a*k48/b + c*k48/b,
a*k28/c - b*k28/c + k40, -k45, k46, a*k48/b - c*k48/b, a*k49/c - b*k49/c,
-a*k49/c + b*k49/c, -k1, -k4, -k3, k15, k18 - k2, k17, k16, k22, k25 - k7,
k24 + k30, k21 + k23 - k31, k28, -k44, k45, -k30 - k6, k20 + k32, k27 + b*k33/a - c*k33/a,
k44, -k46, -b*k47/a + c*k47/a, -k36, k31 - k39 - k5, -k32 - k38, k19 - k37,
k26 - a*k34/b + c*k34/b - k42, k44, -2*k45, k46, a*k48/b - c*k48/b,
a*k35/c - b*k35/c - k41, -k44, k46, b*k47/a - c*k47/a, -a*k49/c + b*k49/c,
-k40, k45, -k46, -a*k48/b + c*k48/b, a*k49/c - b*k49/c, k1, k4, k3, -k8,
-k11, -k10 + k2, -k9, k37 + k7, -k14 - k38, -k22, -k25 - k37, -k24 + k6,
-k13 - k23 + k39, -k28 + b*k40/a - c*k40/a, k44, -k45, -k27, -k44, k46,
b*k47/a - c*k47/a, k29, k32 + k38, k31 - k39 + k5, -k12 + k30, k35 - a*k41/b + c*k41/b,
-k44, k45, -k26 + k34 + a*k42/c - b*k42/c, k44, k45, -2*k46, -b*k47/a + c*k47/a,
-a*k48/b + c*k48/b, a*k49/c - b*k49/c, k33, -k45, k46, a*k48/b - c*k48/b,
-a*k49/c + b*k49/c
]
solution = {
k49: 0, k48: 0, k47: 0, k46: 0, k45: 0, k44: 0, k41: 0, k40: 0,
k38: 0, k37: 0, k36: 0, k35: 0, k33: 0, k32: 0, k30: 0, k29: 0,
k28: 0, k27: 0, k25: 0, k24: 0, k22: 0, k21: 0, k20: 0, k19: 0,
k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 0, k12: 0, k11: 0,
k10: 0, k9: 0, k8: 0, k7: 0, k6: 0, k5: 0, k4: 0, k3: 0,
k2: 0, k1: 0,
k34: b/c*k42, k31: k39, k26: a/c*k42, k23: k39
}
assert solve_lin_sys(system, ring) == solution
def test_M39():
x, y, z = symbols('x y z', complex=True)
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports non-linear multivariate
assert solve([x**2*y + 3*y*z - 4, -3*x**2*z + 2*y**2 + 1, 2*y*z**2 - z**2 - 1 ]) ==\
[{y: 1, z: 1, x: -1}, {y: 1, z: 1, x: 1},\
{y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: -sqrt(-1 - sqrt(2)*I)},\
{y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: sqrt(-1 - sqrt(2)*I)},\
{y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: -sqrt(-1 + sqrt(2)*I)},\
{y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: sqrt(-1 + sqrt(2)*I)}]
# N. Inequalities
def test_N1():
assert ask(E**pi > pi**E)
@XFAIL
def test_N2():
x = symbols('x', real=True)
assert ask(x**4 - x + 1 > 0) is True
assert ask(x**4 - x + 1 > 1) is False
@XFAIL
def test_N3():
x = symbols('x', real=True)
assert ask(And(Lt(-1, x), Lt(x, 1)), abs(x) < 1 )
@XFAIL
def test_N4():
x, y = symbols('x y', real=True)
assert ask(2*x**2 > 2*y**2, (x > y) & (y > 0)) is True
@XFAIL
def test_N5():
x, y, k = symbols('x y k', real=True)
assert ask(k*x**2 > k*y**2, (x > y) & (y > 0) & (k > 0)) is True
@slow
@XFAIL
def test_N6():
x, y, k, n = symbols('x y k n', real=True)
assert ask(k*x**n > k*y**n, (x > y) & (y > 0) & (k > 0) & (n > 0)) is True
@XFAIL
def test_N7():
x, y = symbols('x y', real=True)
assert ask(y > 0, (x > 1) & (y >= x - 1)) is True
@XFAIL
@slow
def test_N8():
x, y, z = symbols('x y z', real=True)
assert ask(Eq(x, y) & Eq(y, z),
(x >= y) & (y >= z) & (z >= x))
def test_N9():
x = Symbol('x')
assert solveset(abs(x - 1) > 2, domain=S.Reals) == Union(Interval(-oo, -1, False, True),
Interval(3, oo, True))
def test_N10():
x = Symbol('x')
p = (x - 1)*(x - 2)*(x - 3)*(x - 4)*(x - 5)
assert solveset(expand(p) < 0, domain=S.Reals) == Union(Interval(-oo, 1, True, True),
Interval(2, 3, True, True),
Interval(4, 5, True, True))
def test_N11():
x = Symbol('x')
assert solveset(6/(x - 3) <= 3, domain=S.Reals) == Union(Interval(-oo, 3, True, True), Interval(5, oo))
def test_N12():
x = Symbol('x')
assert solveset(sqrt(x) < 2, domain=S.Reals) == Interval(0, 4, False, True)
def test_N13():
x = Symbol('x')
assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals
@XFAIL
def test_N14():
x = Symbol('x')
# Gives 'Union(Interval(Integer(0), Mul(Rational(1, 2), pi), false, true),
# Interval(Mul(Rational(1, 2), pi), Mul(Integer(2), pi), true, false))'
# which is not the correct answer, but the provided also seems wrong.
assert solveset(sin(x) < 1, x, domain=S.Reals) == Union(Interval(-oo, pi/2, True, True),
Interval(pi/2, oo, True, True))
def test_N15():
r, t = symbols('r t')
# raises NotImplementedError: only univariate inequalities are supported
solveset(abs(2*r*(cos(t) - 1) + 1) <= 1, r, S.Reals)
def test_N16():
r, t = symbols('r t')
solveset((r**2)*((cos(t) - 4)**2)*sin(t)**2 < 9, r, S.Reals)
@XFAIL
def test_N17():
# currently only univariate inequalities are supported
assert solveset((x + y > 0, x - y < 0), (x, y)) == (abs(x) < y)
def test_O1():
M = Matrix((1 + I, -2, 3*I))
assert sqrt(expand(M.dot(M.H))) == sqrt(15)
def test_O2():
assert Matrix((2, 2, -3)).cross(Matrix((1, 3, 1))) == Matrix([[11],
[-5],
[4]])
# The vector module has no way of representing vectors symbolically (without
# respect to a basis)
@XFAIL
def test_O3():
# assert (va ^ vb) | (vc ^ vd) == -(va | vc)*(vb | vd) + (va | vd)*(vb | vc)
raise NotImplementedError("""The vector module has no way of representing
vectors symbolically (without respect to a basis)""")
def test_O4():
from sympy.vector import CoordSys3D, Del
N = CoordSys3D("N")
delop = Del()
i, j, k = N.base_vectors()
x, y, z = N.base_scalars()
F = i*(x*y*z) + j*((x*y*z)**2) + k*((y**2)*(z**3))
assert delop.cross(F).doit() == (-2*x**2*y**2*z + 2*y*z**3)*i + x*y*j + (2*x*y**2*z**2 - x*z)*k
@XFAIL
def test_O5():
#assert grad|(f^g)-g|(grad^f)+f|(grad^g) == 0
raise NotImplementedError("""The vector module has no way of representing
vectors symbolically (without respect to a basis)""")
#testO8-O9 MISSING!!
def test_O10():
L = [Matrix([2, 3, 5]), Matrix([3, 6, 2]), Matrix([8, 3, 6])]
assert GramSchmidt(L) == [Matrix([
[2],
[3],
[5]]),
Matrix([
[R(23, 19)],
[R(63, 19)],
[R(-47, 19)]]),
Matrix([
[R(1692, 353)],
[R(-1551, 706)],
[R(-423, 706)]])]
def test_P1():
assert Matrix(3, 3, lambda i, j: j - i).diagonal(-1) == Matrix(
1, 2, [-1, -1])
def test_P2():
M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
M.row_del(1)
M.col_del(2)
assert M == Matrix([[1, 2],
[7, 8]])
def test_P3():
A = Matrix([
[11, 12, 13, 14],
[21, 22, 23, 24],
[31, 32, 33, 34],
[41, 42, 43, 44]])
A11 = A[0:3, 1:4]
A12 = A[(0, 1, 3), (2, 0, 3)]
A21 = A
A221 = -A[0:2, 2:4]
A222 = -A[(3, 0), (2, 1)]
A22 = BlockMatrix([[A221, A222]]).T
rows = [[-A11, A12], [A21, A22]]
raises(ValueError, lambda: BlockMatrix(rows))
B = Matrix(rows)
assert B == Matrix([
[-12, -13, -14, 13, 11, 14],
[-22, -23, -24, 23, 21, 24],
[-32, -33, -34, 43, 41, 44],
[11, 12, 13, 14, -13, -23],
[21, 22, 23, 24, -14, -24],
[31, 32, 33, 34, -43, -13],
[41, 42, 43, 44, -42, -12]])
@XFAIL
def test_P4():
raise NotImplementedError("Block matrix diagonalization not supported")
def test_P5():
M = Matrix([[7, 11],
[3, 8]])
assert M % 2 == Matrix([[1, 1],
[1, 0]])
def test_P6():
M = Matrix([[cos(x), sin(x)],
[-sin(x), cos(x)]])
assert M.diff(x, 2) == Matrix([[-cos(x), -sin(x)],
[sin(x), -cos(x)]])
def test_P7():
M = Matrix([[x, y]])*(
z*Matrix([[1, 3, 5],
[2, 4, 6]]) + Matrix([[7, -9, 11],
[-8, 10, -12]]))
assert M == Matrix([[x*(z + 7) + y*(2*z - 8), x*(3*z - 9) + y*(4*z + 10),
x*(5*z + 11) + y*(6*z - 12)]])
def test_P8():
M = Matrix([[1, -2*I],
[-3*I, 4]])
assert M.norm(ord=S.Infinity) == 7
def test_P9():
a, b, c = symbols('a b c', nonzero=True)
M = Matrix([[a/(b*c), 1/c, 1/b],
[1/c, b/(a*c), 1/a],
[1/b, 1/a, c/(a*b)]])
assert factor(M.norm('fro')) == (a**2 + b**2 + c**2)/(abs(a)*abs(b)*abs(c))
@XFAIL
def test_P10():
M = Matrix([[1, 2 + 3*I],
[f(4 - 5*I), 6]])
# conjugate(f(4 - 5*i)) is not simplified to f(4+5*I)
assert M.H == Matrix([[1, f(4 + 5*I)],
[2 + 3*I, 6]])
@XFAIL
def test_P11():
# raises NotImplementedError("Matrix([[x,y],[1,x*y]]).inv()
# not simplifying to extract common factor")
assert Matrix([[x, y],
[1, x*y]]).inv() == (1/(x**2 - 1))*Matrix([[x, -1],
[-1/y, x/y]])
def test_P11_workaround():
# This test was changed to inverse method ADJ because it depended on the
# specific form of inverse returned from the 'GE' method which has changed.
M = Matrix([[x, y], [1, x*y]]).inv('ADJ')
c = gcd(tuple(M))
assert MatMul(c, M/c, evaluate=False) == MatMul(c, Matrix([
[x*y, -y],
[ -1, x]]), evaluate=False)
def test_P12():
A11 = MatrixSymbol('A11', n, n)
A12 = MatrixSymbol('A12', n, n)
A22 = MatrixSymbol('A22', n, n)
B = BlockMatrix([[A11, A12],
[ZeroMatrix(n, n), A22]])
assert block_collapse(B.I) == BlockMatrix([[A11.I, (-1)*A11.I*A12*A22.I],
[ZeroMatrix(n, n), A22.I]])
def test_P13():
M = Matrix([[1, x - 2, x - 3],
[x - 1, x**2 - 3*x + 6, x**2 - 3*x - 2],
[x - 2, x**2 - 8, 2*(x**2) - 12*x + 14]])
L, U, _ = M.LUdecomposition()
assert simplify(L) == Matrix([[1, 0, 0],
[x - 1, 1, 0],
[x - 2, x - 3, 1]])
assert simplify(U) == Matrix([[1, x - 2, x - 3],
[0, 4, x - 5],
[0, 0, x - 7]])
def test_P14():
M = Matrix([[1, 2, 3, 1, 3],
[3, 2, 1, 1, 7],
[0, 2, 4, 1, 1],
[1, 1, 1, 1, 4]])
R, _ = M.rref()
assert R == Matrix([[1, 0, -1, 0, 2],
[0, 1, 2, 0, -1],
[0, 0, 0, 1, 3],
[0, 0, 0, 0, 0]])
def test_P15():
M = Matrix([[-1, 3, 7, -5],
[4, -2, 1, 3],
[2, 4, 15, -7]])
assert M.rank() == 2
def test_P16():
M = Matrix([[2*sqrt(2), 8],
[6*sqrt(6), 24*sqrt(3)]])
assert M.rank() == 1
def test_P17():
t = symbols('t', real=True)
M=Matrix([
[sin(2*t), cos(2*t)],
[2*(1 - (cos(t)**2))*cos(t), (1 - 2*(sin(t)**2))*sin(t)]])
assert M.rank() == 1
def test_P18():
M = Matrix([[1, 0, -2, 0],
[-2, 1, 0, 3],
[-1, 2, -6, 6]])
assert M.nullspace() == [Matrix([[2],
[4],
[1],
[0]]),
Matrix([[0],
[-3],
[0],
[1]])]
def test_P19():
w = symbols('w')
M = Matrix([[1, 1, 1, 1],
[w, x, y, z],
[w**2, x**2, y**2, z**2],
[w**3, x**3, y**3, z**3]])
assert M.det() == (w**3*x**2*y - w**3*x**2*z - w**3*x*y**2 + w**3*x*z**2
+ w**3*y**2*z - w**3*y*z**2 - w**2*x**3*y + w**2*x**3*z
+ w**2*x*y**3 - w**2*x*z**3 - w**2*y**3*z + w**2*y*z**3
+ w*x**3*y**2 - w*x**3*z**2 - w*x**2*y**3 + w*x**2*z**3
+ w*y**3*z**2 - w*y**2*z**3 - x**3*y**2*z + x**3*y*z**2
+ x**2*y**3*z - x**2*y*z**3 - x*y**3*z**2 + x*y**2*z**3
)
@XFAIL
def test_P20():
raise NotImplementedError("Matrix minimal polynomial not supported")
def test_P21():
M = Matrix([[5, -3, -7],
[-2, 1, 2],
[2, -3, -4]])
assert M.charpoly(x).as_expr() == x**3 - 2*x**2 - 5*x + 6
def test_P22():
d = 100
M = (2 - x)*eye(d)
assert M.eigenvals() == {-x + 2: d}
def test_P23():
M = Matrix([
[2, 1, 0, 0, 0],
[1, 2, 1, 0, 0],
[0, 1, 2, 1, 0],
[0, 0, 1, 2, 1],
[0, 0, 0, 1, 2]])
assert M.eigenvals() == {
S('1'): 1,
S('2'): 1,
S('3'): 1,
S('sqrt(3) + 2'): 1,
S('-sqrt(3) + 2'): 1}
def test_P24():
M = Matrix([[611, 196, -192, 407, -8, -52, -49, 29],
[196, 899, 113, -192, -71, -43, -8, -44],
[-192, 113, 899, 196, 61, 49, 8, 52],
[ 407, -192, 196, 611, 8, 44, 59, -23],
[ -8, -71, 61, 8, 411, -599, 208, 208],
[ -52, -43, 49, 44, -599, 411, 208, 208],
[ -49, -8, 8, 59, 208, 208, 99, -911],
[ 29, -44, 52, -23, 208, 208, -911, 99]])
assert M.eigenvals() == {
S('0'): 1,
S('10*sqrt(10405)'): 1,
S('100*sqrt(26) + 510'): 1,
S('1000'): 2,
S('-100*sqrt(26) + 510'): 1,
S('-10*sqrt(10405)'): 1,
S('1020'): 1}
def test_P25():
MF = N(Matrix([[ 611, 196, -192, 407, -8, -52, -49, 29],
[ 196, 899, 113, -192, -71, -43, -8, -44],
[-192, 113, 899, 196, 61, 49, 8, 52],
[ 407, -192, 196, 611, 8, 44, 59, -23],
[ -8, -71, 61, 8, 411, -599, 208, 208],
[ -52, -43, 49, 44, -599, 411, 208, 208],
[ -49, -8, 8, 59, 208, 208, 99, -911],
[ 29, -44, 52, -23, 208, 208, -911, 99]]))
ev_1 = sorted(MF.eigenvals(multiple=True))
ev_2 = sorted(
[-1020.0490184299969, 0.0, 0.09804864072151699, 1000.0, 1000.0,
1019.9019513592784, 1020.0, 1020.0490184299969])
for x, y in zip(ev_1, ev_2):
assert abs(x - y) < 1e-12
def test_P26():
a0, a1, a2, a3, a4 = symbols('a0 a1 a2 a3 a4')
M = Matrix([[-a4, -a3, -a2, -a1, -a0, 0, 0, 0, 0],
[ 1, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 1, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 1, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 1, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, -1, -1, 0, 0],
[ 0, 0, 0, 0, 0, 1, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 1, -1, -1],
[ 0, 0, 0, 0, 0, 0, 0, 1, 0]])
assert M.eigenvals(error_when_incomplete=False) == {
S('-1/2 - sqrt(3)*I/2'): 2,
S('-1/2 + sqrt(3)*I/2'): 2}
def test_P27():
a = symbols('a')
M = Matrix([[a, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 0, a, 0, 0],
[0, 0, 0, a, 0],
[0, -2, 0, 0, 2]])
assert M.eigenvects() == [
(a, 3, [
Matrix([1, 0, 0, 0, 0]),
Matrix([0, 0, 1, 0, 0]),
Matrix([0, 0, 0, 1, 0])
]),
(1 - I, 1, [
Matrix([0, (1 + I)/2, 0, 0, 1])
]),
(1 + I, 1, [
Matrix([0, (1 - I)/2, 0, 0, 1])
]),
]
@XFAIL
def test_P28():
raise NotImplementedError("Generalized eigenvectors not supported \
https://github.com/sympy/sympy/issues/5293")
@XFAIL
def test_P29():
raise NotImplementedError("Generalized eigenvectors not supported \
https://github.com/sympy/sympy/issues/5293")
def test_P30():
M = Matrix([[1, 0, 0, 1, -1],
[0, 1, -2, 3, -3],
[0, 0, -1, 2, -2],
[1, -1, 1, 0, 1],
[1, -1, 1, -1, 2]])
_, J = M.jordan_form()
assert J == Matrix([[-1, 0, 0, 0, 0],
[0, 1, 1, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 1],
[0, 0, 0, 0, 1]])
@XFAIL
def test_P31():
raise NotImplementedError("Smith normal form not implemented")
def test_P32():
M = Matrix([[1, -2],
[2, 1]])
assert exp(M).rewrite(cos).simplify() == Matrix([[E*cos(2), -E*sin(2)],
[E*sin(2), E*cos(2)]])
def test_P33():
w, t = symbols('w t')
M = Matrix([[0, 1, 0, 0],
[0, 0, 0, 2*w],
[0, 0, 0, 1],
[0, -2*w, 3*w**2, 0]])
assert exp(M*t).rewrite(cos).expand() == Matrix([
[1, -3*t + 4*sin(t*w)/w, 6*t*w - 6*sin(t*w), -2*cos(t*w)/w + 2/w],
[0, 4*cos(t*w) - 3, -6*w*cos(t*w) + 6*w, 2*sin(t*w)],
[0, 2*cos(t*w)/w - 2/w, -3*cos(t*w) + 4, sin(t*w)/w],
[0, -2*sin(t*w), 3*w*sin(t*w), cos(t*w)]])
@XFAIL
def test_P34():
a, b, c = symbols('a b c', real=True)
M = Matrix([[a, 1, 0, 0, 0, 0],
[0, a, 0, 0, 0, 0],
[0, 0, b, 0, 0, 0],
[0, 0, 0, c, 1, 0],
[0, 0, 0, 0, c, 1],
[0, 0, 0, 0, 0, c]])
# raises exception, sin(M) not supported. exp(M*I) also not supported
# https://github.com/sympy/sympy/issues/6218
assert sin(M) == Matrix([[sin(a), cos(a), 0, 0, 0, 0],
[0, sin(a), 0, 0, 0, 0],
[0, 0, sin(b), 0, 0, 0],
[0, 0, 0, sin(c), cos(c), -sin(c)/2],
[0, 0, 0, 0, sin(c), cos(c)],
[0, 0, 0, 0, 0, sin(c)]])
@XFAIL
def test_P35():
M = pi/2*Matrix([[2, 1, 1],
[2, 3, 2],
[1, 1, 2]])
# raises exception, sin(M) not supported. exp(M*I) also not supported
# https://github.com/sympy/sympy/issues/6218
assert sin(M) == eye(3)
@XFAIL
def test_P36():
M = Matrix([[10, 7],
[7, 17]])
assert sqrt(M) == Matrix([[3, 1],
[1, 4]])
def test_P37():
M = Matrix([[1, 1, 0],
[0, 1, 0],
[0, 0, 1]])
assert M**S.Half == Matrix([[1, R(1, 2), 0],
[0, 1, 0],
[0, 0, 1]])
@XFAIL
def test_P38():
M=Matrix([[0, 1, 0],
[0, 0, 0],
[0, 0, 0]])
#raises ValueError: Matrix det == 0; not invertible
M**S.Half
@XFAIL
def test_P39():
"""
M=Matrix([
[1, 1],
[2, 2],
[3, 3]])
M.SVD()
"""
raise NotImplementedError("Singular value decomposition not implemented")
def test_P40():
r, t = symbols('r t', real=True)
M = Matrix([r*cos(t), r*sin(t)])
assert M.jacobian(Matrix([r, t])) == Matrix([[cos(t), -r*sin(t)],
[sin(t), r*cos(t)]])
def test_P41():
r, t = symbols('r t', real=True)
assert hessian(r**2*sin(t),(r,t)) == Matrix([[ 2*sin(t), 2*r*cos(t)],
[2*r*cos(t), -r**2*sin(t)]])
def test_P42():
assert wronskian([cos(x), sin(x)], x).simplify() == 1
def test_P43():
def __my_jacobian(M, Y):
return Matrix([M.diff(v).T for v in Y]).T
r, t = symbols('r t', real=True)
M = Matrix([r*cos(t), r*sin(t)])
assert __my_jacobian(M,[r,t]) == Matrix([[cos(t), -r*sin(t)],
[sin(t), r*cos(t)]])
def test_P44():
def __my_hessian(f, Y):
V = Matrix([diff(f, v) for v in Y])
return Matrix([V.T.diff(v) for v in Y])
r, t = symbols('r t', real=True)
assert __my_hessian(r**2*sin(t), (r, t)) == Matrix([
[ 2*sin(t), 2*r*cos(t)],
[2*r*cos(t), -r**2*sin(t)]])
def test_P45():
def __my_wronskian(Y, v):
M = Matrix([Matrix(Y).T.diff(x, n) for n in range(0, len(Y))])
return M.det()
assert __my_wronskian([cos(x), sin(x)], x).simplify() == 1
# Q1-Q6 Tensor tests missing
@XFAIL
def test_R1():
i, j, n = symbols('i j n', integer=True, positive=True)
xn = MatrixSymbol('xn', n, 1)
Sm = Sum((xn[i, 0] - Sum(xn[j, 0], (j, 0, n - 1))/n)**2, (i, 0, n - 1))
# sum does not calculate
# Unknown result
Sm.doit()
raise NotImplementedError('Unknown result')
@XFAIL
def test_R2():
m, b = symbols('m b')
i, n = symbols('i n', integer=True, positive=True)
xn = MatrixSymbol('xn', n, 1)
yn = MatrixSymbol('yn', n, 1)
f = Sum((yn[i, 0] - m*xn[i, 0] - b)**2, (i, 0, n - 1))
f1 = diff(f, m)
f2 = diff(f, b)
# raises TypeError: solveset() takes at most 2 arguments (3 given)
solveset((f1, f2), (m, b), domain=S.Reals)
@XFAIL
def test_R3():
n, k = symbols('n k', integer=True, positive=True)
sk = ((-1)**k) * (binomial(2*n, k))**2
Sm = Sum(sk, (k, 1, oo))
T = Sm.doit()
T2 = T.combsimp()
# returns -((-1)**n*factorial(2*n)
# - (factorial(n))**2)*exp_polar(-I*pi)/(factorial(n))**2
assert T2 == (-1)**n*binomial(2*n, n)
@XFAIL
def test_R4():
# Macsyma indefinite sum test case:
#(c15) /* Check whether the full Gosper algorithm is implemented
# => 1/2^(n + 1) binomial(n, k - 1) */
#closedform(indefsum(binomial(n, k)/2^n - binomial(n + 1, k)/2^(n + 1), k));
#Time= 2690 msecs
# (- n + k - 1) binomial(n + 1, k)
#(d15) - --------------------------------
# n
# 2 2 (n + 1)
#
#(c16) factcomb(makefact(%));
#Time= 220 msecs
# n!
#(d16) ----------------
# n
# 2 k! 2 (n - k)!
# Might be possible after fixing https://github.com/sympy/sympy/pull/1879
raise NotImplementedError("Indefinite sum not supported")
@XFAIL
def test_R5():
a, b, c, n, k = symbols('a b c n k', integer=True, positive=True)
sk = ((-1)**k)*(binomial(a + b, a + k)
*binomial(b + c, b + k)*binomial(c + a, c + k))
Sm = Sum(sk, (k, 1, oo))
T = Sm.doit() # hypergeometric series not calculated
assert T == factorial(a+b+c)/(factorial(a)*factorial(b)*factorial(c))
def test_R6():
n, k = symbols('n k', integer=True, positive=True)
gn = MatrixSymbol('gn', n + 2, 1)
Sm = Sum(gn[k, 0] - gn[k - 1, 0], (k, 1, n + 1))
assert Sm.doit() == -gn[0, 0] + gn[n + 1, 0]
def test_R7():
n, k = symbols('n k', integer=True, positive=True)
T = Sum(k**3,(k,1,n)).doit()
assert T.factor() == n**2*(n + 1)**2/4
@XFAIL
def test_R8():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(k**2*binomial(n, k), (k, 1, n))
T = Sm.doit() #returns Piecewise function
assert T.combsimp() == n*(n + 1)*2**(n - 2)
def test_R9():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n, k - 1)/k, (k, 1, n + 1))
assert Sm.doit().simplify() == (2**(n + 1) - 1)/(n + 1)
@XFAIL
def test_R10():
n, m, r, k = symbols('n m r k', integer=True, positive=True)
Sm = Sum(binomial(n, k)*binomial(m, r - k), (k, 0, r))
T = Sm.doit()
T2 = T.combsimp().rewrite(factorial)
assert T2 == factorial(m + n)/(factorial(r)*factorial(m + n - r))
assert T2 == binomial(m + n, r).rewrite(factorial)
# rewrite(binomial) is not working.
# https://github.com/sympy/sympy/issues/7135
T3 = T2.rewrite(binomial)
assert T3 == binomial(m + n, r)
@XFAIL
def test_R11():
n, k = symbols('n k', integer=True, positive=True)
sk = binomial(n, k)*fibonacci(k)
Sm = Sum(sk, (k, 0, n))
T = Sm.doit()
# Fibonacci simplification not implemented
# https://github.com/sympy/sympy/issues/7134
assert T == fibonacci(2*n)
@XFAIL
def test_R12():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(fibonacci(k)**2, (k, 0, n))
T = Sm.doit()
assert T == fibonacci(n)*fibonacci(n + 1)
@XFAIL
def test_R13():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(sin(k*x), (k, 1, n))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == cot(x/2)/2 - cos(x*(2*n + 1)/2)/(2*sin(x/2))
@XFAIL
def test_R14():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(sin((2*k - 1)*x), (k, 1, n))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == sin(n*x)**2/sin(x)
@XFAIL
def test_R15():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n - k, k), (k, 0, floor(n/2)))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == fibonacci(n + 1)
def test_R16():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/k**2 + 1/k**3, (k, 1, oo))
assert Sm.doit() == zeta(3) + pi**2/6
def test_R17():
k = symbols('k', integer=True, positive=True)
assert abs(float(Sum(1/k**2 + 1/k**3, (k, 1, oo)))
- 2.8469909700078206) < 1e-15
def test_R18():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/(2**k*k**2), (k, 1, oo))
T = Sm.doit()
assert T.simplify() == -log(2)**2/2 + pi**2/12
@slow
@XFAIL
def test_R19():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/((3*k + 1)*(3*k + 2)*(3*k + 3)), (k, 0, oo))
T = Sm.doit()
# assert fails, T not simplified
assert T.simplify() == -log(3)/4 + sqrt(3)*pi/12
@XFAIL
def test_R20():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n, 4*k), (k, 0, oo))
T = Sm.doit()
# assert fails, T not simplified
assert T.simplify() == 2**(n/2)*cos(pi*n/4)/2 + 2**(n - 1)/2
@XFAIL
def test_R21():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/(sqrt(k*(k + 1)) * (sqrt(k) + sqrt(k + 1))), (k, 1, oo))
T = Sm.doit() # Sum not calculated
assert T.simplify() == 1
# test_R22 answer not available in Wester samples
# Sum(Sum(binomial(n, k)*binomial(n - k, n - 2*k)*x**n*y**(n - 2*k),
# (k, 0, floor(n/2))), (n, 0, oo)) with abs(x*y)<1?
@XFAIL
def test_R23():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(Sum((factorial(n)/(factorial(k)**2*factorial(n - 2*k)))*
(x/y)**k*(x*y)**(n - k), (n, 2*k, oo)), (k, 0, oo))
# Missing how to express constraint abs(x*y)<1?
T = Sm.doit() # Sum not calculated
assert T == -1/sqrt(x**2*y**2 - 4*x**2 - 2*x*y + 1)
def test_R24():
m, k = symbols('m k', integer=True, positive=True)
Sm = Sum(Product(k/(2*k - 1), (k, 1, m)), (m, 2, oo))
assert Sm.doit() == pi/2
def test_S1():
k = symbols('k', integer=True, positive=True)
Pr = Product(gamma(k/3), (k, 1, 8))
assert Pr.doit().simplify() == 640*sqrt(3)*pi**3/6561
def test_S2():
n, k = symbols('n k', integer=True, positive=True)
assert Product(k, (k, 1, n)).doit() == factorial(n)
def test_S3():
n, k = symbols('n k', integer=True, positive=True)
assert Product(x**k, (k, 1, n)).doit().simplify() == x**(n*(n + 1)/2)
def test_S4():
n, k = symbols('n k', integer=True, positive=True)
assert Product(1 + 1/k, (k, 1, n -1)).doit().simplify() == n
def test_S5():
n, k = symbols('n k', integer=True, positive=True)
assert (Product((2*k - 1)/(2*k), (k, 1, n)).doit().gammasimp() ==
gamma(n + S.Half)/(sqrt(pi)*gamma(n + 1)))
@XFAIL
def test_S6():
n, k = symbols('n k', integer=True, positive=True)
# Product does not evaluate
assert (Product(x**2 -2*x*cos(k*pi/n) + 1, (k, 1, n - 1)).doit().simplify()
== (x**(2*n) - 1)/(x**2 - 1))
@XFAIL
def test_S7():
k = symbols('k', integer=True, positive=True)
Pr = Product((k**3 - 1)/(k**3 + 1), (k, 2, oo))
T = Pr.doit() # Product does not evaluate
assert T.simplify() == R(2, 3)
@XFAIL
def test_S8():
k = symbols('k', integer=True, positive=True)
Pr = Product(1 - 1/(2*k)**2, (k, 1, oo))
T = Pr.doit()
# Product does not evaluate
assert T.simplify() == 2/pi
@XFAIL
def test_S9():
k = symbols('k', integer=True, positive=True)
Pr = Product(1 + (-1)**(k + 1)/(2*k - 1), (k, 1, oo))
T = Pr.doit()
# Product produces 0
# https://github.com/sympy/sympy/issues/7133
assert T.simplify() == sqrt(2)
@XFAIL
def test_S10():
k = symbols('k', integer=True, positive=True)
Pr = Product((k*(k + 1) + 1 + I)/(k*(k + 1) + 1 - I), (k, 0, oo))
T = Pr.doit()
# Product does not evaluate
assert T.simplify() == -1
def test_T1():
assert limit((1 + 1/n)**n, n, oo) == E
assert limit((1 - cos(x))/x**2, x, 0) == S.Half
def test_T2():
assert limit((3**x + 5**x)**(1/x), x, oo) == 5
def test_T3():
assert limit(log(x)/(log(x) + sin(x)), x, oo) == 1
def test_T4():
assert limit((exp(x*exp(-x)/(exp(-x) + exp(-2*x**2/(x + 1))))
- exp(x))/x, x, oo) == -exp(2)
def test_T5():
assert limit(x*log(x)*log(x*exp(x) - x**2)**2/log(log(x**2
+ 2*exp(exp(3*x**3*log(x))))), x, oo) == R(1, 3)
def test_T6():
assert limit(1/n * factorial(n)**(1/n), n, oo) == exp(-1)
def test_T7():
limit(1/n * gamma(n + 1)**(1/n), n, oo)
def test_T8():
a, z = symbols('a z', real=True, positive=True)
assert limit(gamma(z + a)/gamma(z)*exp(-a*log(z)), z, oo) == 1
@XFAIL
def test_T9():
z, k = symbols('z k', real=True, positive=True)
# raises NotImplementedError:
# Don't know how to calculate the mrv of '(1, k)'
assert limit(hyper((1, k), (1,), z/k), k, oo) == exp(z)
@XFAIL
def test_T10():
# No longer raises PoleError, but should return euler-mascheroni constant
assert limit(zeta(x) - 1/(x - 1), x, 1) == integrate(-1/x + 1/floor(x), (x, 1, oo))
@XFAIL
def test_T11():
n, k = symbols('n k', integer=True, positive=True)
# evaluates to 0
assert limit(n**x/(x*product((1 + x/k), (k, 1, n))), n, oo) == gamma(x)
def test_T12():
x, t = symbols('x t', real=True)
# Does not evaluate the limit but returns an expression with erf
assert limit(x * integrate(exp(-t**2), (t, 0, x))/(1 - exp(-x**2)),
x, 0) == 1
def test_T13():
x = symbols('x', real=True)
assert [limit(x/abs(x), x, 0, dir='-'),
limit(x/abs(x), x, 0, dir='+')] == [-1, 1]
def test_T14():
x = symbols('x', real=True)
assert limit(atan(-log(x)), x, 0, dir='+') == pi/2
def test_U1():
x = symbols('x', real=True)
assert diff(abs(x), x) == sign(x)
def test_U2():
f = Lambda(x, Piecewise((-x, x < 0), (x, x >= 0)))
assert diff(f(x), x) == Piecewise((-1, x < 0), (1, x >= 0))
def test_U3():
f = Lambda(x, Piecewise((x**2 - 1, x == 1), (x**3, x != 1)))
f1 = Lambda(x, diff(f(x), x))
assert f1(x) == 3*x**2
assert f1(1) == 3
@XFAIL
def test_U4():
n = symbols('n', integer=True, positive=True)
x = symbols('x', real=True)
d = diff(x**n, x, n)
assert d.rewrite(factorial) == factorial(n)
def test_U5():
# issue 6681
t = symbols('t')
ans = (
Derivative(f(g(t)), g(t))*Derivative(g(t), (t, 2)) +
Derivative(f(g(t)), (g(t), 2))*Derivative(g(t), t)**2)
assert f(g(t)).diff(t, 2) == ans
assert ans.doit() == ans
def test_U6():
h = Function('h')
T = integrate(f(y), (y, h(x), g(x)))
assert T.diff(x) == (
f(g(x))*Derivative(g(x), x) - f(h(x))*Derivative(h(x), x))
@XFAIL
def test_U7():
p, t = symbols('p t', real=True)
# Exact differential => d(V(P, T)) => dV/dP DP + dV/dT DT
# raises ValueError: Since there is more than one variable in the
# expression, the variable(s) of differentiation must be supplied to
# differentiate f(p,t)
diff(f(p, t))
def test_U8():
x, y = symbols('x y', real=True)
eq = cos(x*y) + x
# If SymPy had implicit_diff() function this hack could be avoided
# TODO: Replace solve with solveset, current test fails for solveset
assert idiff(y - eq, y, x) == (-y*sin(x*y) + 1)/(x*sin(x*y) + 1)
def test_U9():
# Wester sample case for Maple:
# O29 := diff(f(x, y), x) + diff(f(x, y), y);
# /d \ /d \
# |-- f(x, y)| + |-- f(x, y)|
# \dx / \dy /
#
# O30 := factor(subs(f(x, y) = g(x^2 + y^2), %));
# 2 2
# 2 D(g)(x + y ) (x + y)
x, y = symbols('x y', real=True)
su = diff(f(x, y), x) + diff(f(x, y), y)
s2 = su.subs(f(x, y), g(x**2 + y**2))
s3 = s2.doit().factor()
# Subs not performed, s3 = 2*(x + y)*Subs(Derivative(
# g(_xi_1), _xi_1), _xi_1, x**2 + y**2)
# Derivative(g(x*2 + y**2), x**2 + y**2) is not valid in SymPy,
# and probably will remain that way. You can take derivatives with respect
# to other expressions only if they are atomic, like a symbol or a
# function.
# D operator should be added to SymPy
# See https://github.com/sympy/sympy/issues/4719.
assert s3 == (x + y)*Subs(Derivative(g(x), x), x, x**2 + y**2)*2
def test_U10():
# see issue 2519:
assert residue((z**3 + 5)/((z**4 - 1)*(z + 1)), z, -1) == R(-9, 4)
@XFAIL
def test_U11():
# assert (2*dx + dz) ^ (3*dx + dy + dz) ^ (dx + dy + 4*dz) == 8*dx ^ dy ^dz
raise NotImplementedError
@XFAIL
def test_U12():
# Wester sample case:
# (c41) /* d(3 x^5 dy /\ dz + 5 x y^2 dz /\ dx + 8 z dx /\ dy)
# => (15 x^4 + 10 x y + 8) dx /\ dy /\ dz */
# factor(ext_diff(3*x^5 * dy ~ dz + 5*x*y^2 * dz ~ dx + 8*z * dx ~ dy));
# 4
# (d41) (10 x y + 15 x + 8) dx dy dz
raise NotImplementedError(
"External diff of differential form not supported")
def test_U13():
assert minimum(x**4 - x + 1, x) == -3*2**R(1,3)/8 + 1
@XFAIL
def test_U14():
#f = 1/(x**2 + y**2 + 1)
#assert [minimize(f), maximize(f)] == [0,1]
raise NotImplementedError("minimize(), maximize() not supported")
@XFAIL
def test_U15():
raise NotImplementedError("minimize() not supported and also solve does \
not support multivariate inequalities")
@XFAIL
def test_U16():
raise NotImplementedError("minimize() not supported in SymPy and also \
solve does not support multivariate inequalities")
@XFAIL
def test_U17():
raise NotImplementedError("Linear programming, symbolic simplex not \
supported in SymPy")
def test_V1():
x = symbols('x', real=True)
assert integrate(abs(x), x) == Piecewise((-x**2/2, x <= 0), (x**2/2, True))
def test_V2():
assert integrate(Piecewise((-x, x < 0), (x, x >= 0)), x
) == Piecewise((-x**2/2, x < 0), (x**2/2, True))
def test_V3():
assert integrate(1/(x**3 + 2),x).diff().simplify() == 1/(x**3 + 2)
def test_V4():
assert integrate(2**x/sqrt(1 + 4**x), x) == asinh(2**x)/log(2)
@XFAIL
def test_V5():
# Returns (-45*x**2 + 80*x - 41)/(5*sqrt(2*x - 1)*(4*x**2 - 4*x + 1))
assert (integrate((3*x - 5)**2/(2*x - 1)**R(7, 2), x).simplify() ==
(-41 + 80*x - 45*x**2)/(5*(2*x - 1)**R(5, 2)))
@XFAIL
def test_V6():
# returns RootSum(40*_z**2 - 1, Lambda(_i, _i*log(-4*_i + exp(-m*x))))/m
assert (integrate(1/(2*exp(m*x) - 5*exp(-m*x)), x) == sqrt(10)*(
log(2*exp(m*x) - sqrt(10)) - log(2*exp(m*x) + sqrt(10)))/(20*m))
def test_V7():
r1 = integrate(sinh(x)**4/cosh(x)**2)
assert r1.simplify() == x*R(-3, 2) + sinh(x)**3/(2*cosh(x)) + 3*tanh(x)/2
@XFAIL
def test_V8_V9():
#Macsyma test case:
#(c27) /* This example involves several symbolic parameters
# => 1/sqrt(b^2 - a^2) log([sqrt(b^2 - a^2) tan(x/2) + a + b]/
# [sqrt(b^2 - a^2) tan(x/2) - a - b]) (a^2 < b^2)
# [Gradshteyn and Ryzhik 2.553(3)] */
#assume(b^2 > a^2)$
#(c28) integrate(1/(a + b*cos(x)), x);
#(c29) trigsimp(ratsimp(diff(%, x)));
# 1
#(d29) ------------
# b cos(x) + a
raise NotImplementedError(
"Integrate with assumption not supported")
def test_V10():
assert integrate(1/(3 + 3*cos(x) + 4*sin(x)), x) == log(tan(x/2) + R(3, 4))/4
def test_V11():
r1 = integrate(1/(4 + 3*cos(x) + 4*sin(x)), x)
r2 = factor(r1)
assert (logcombine(r2, force=True) ==
log(((tan(x/2) + 1)/(tan(x/2) + 7))**R(1, 3)))
def test_V12():
r1 = integrate(1/(5 + 3*cos(x) + 4*sin(x)), x)
assert r1 == -1/(tan(x/2) + 2)
@XFAIL
def test_V13():
r1 = integrate(1/(6 + 3*cos(x) + 4*sin(x)), x)
# expression not simplified, returns: -sqrt(11)*I*log(tan(x/2) + 4/3
# - sqrt(11)*I/3)/11 + sqrt(11)*I*log(tan(x/2) + 4/3 + sqrt(11)*I/3)/11
assert r1.simplify() == 2*sqrt(11)*atan(sqrt(11)*(3*tan(x/2) + 4)/11)/11
@slow
@XFAIL
def test_V14():
r1 = integrate(log(abs(x**2 - y**2)), x)
# Piecewise result does not simplify to the desired result.
assert (r1.simplify() == x*log(abs(x**2 - y**2))
+ y*log(x + y) - y*log(x - y) - 2*x)
def test_V15():
r1 = integrate(x*acot(x/y), x)
assert simplify(r1 - (x*y + (x**2 + y**2)*acot(x/y))/2) == 0
@XFAIL
def test_V16():
# Integral not calculated
assert integrate(cos(5*x)*Ci(2*x), x) == Ci(2*x)*sin(5*x)/5 - (Si(3*x) + Si(7*x))/10
@XFAIL
def test_V17():
r1 = integrate((diff(f(x), x)*g(x)
- f(x)*diff(g(x), x))/(f(x)**2 - g(x)**2), x)
# integral not calculated
assert simplify(r1 - (f(x) - g(x))/(f(x) + g(x))/2) == 0
@XFAIL
def test_W1():
# The function has a pole at y.
# The integral has a Cauchy principal value of zero but SymPy returns -I*pi
# https://github.com/sympy/sympy/issues/7159
assert integrate(1/(x - y), (x, y - 1, y + 1)) == 0
@XFAIL
def test_W2():
# The function has a pole at y.
# The integral is divergent but SymPy returns -2
# https://github.com/sympy/sympy/issues/7160
# Test case in Macsyma:
# (c6) errcatch(integrate(1/(x - a)^2, x, a - 1, a + 1));
# Integral is divergent
assert integrate(1/(x - y)**2, (x, y - 1, y + 1)) is zoo
@XFAIL
@slow
def test_W3():
# integral is not calculated
# https://github.com/sympy/sympy/issues/7161
assert integrate(sqrt(x + 1/x - 2), (x, 0, 1)) == R(4, 3)
@XFAIL
@slow
def test_W4():
# integral is not calculated
assert integrate(sqrt(x + 1/x - 2), (x, 1, 2)) == -2*sqrt(2)/3 + R(4, 3)
@XFAIL
@slow
def test_W5():
# integral is not calculated
assert integrate(sqrt(x + 1/x - 2), (x, 0, 2)) == -2*sqrt(2)/3 + R(8, 3)
@XFAIL
@slow
def test_W6():
# integral is not calculated
assert integrate(sqrt(2 - 2*cos(2*x))/2, (x, pi*R(-3, 4), -pi/4)) == sqrt(2)
def test_W7():
a = symbols('a', real=True, positive=True)
r1 = integrate(cos(x)/(x**2 + a**2), (x, -oo, oo))
assert r1.simplify() == pi*exp(-a)/a
@XFAIL
def test_W8():
# Test case in Mathematica:
# In[19]:= Integrate[t^(a - 1)/(1 + t), {t, 0, Infinity},
# Assumptions -> 0 < a < 1]
# Out[19]= Pi Csc[a Pi]
raise NotImplementedError(
"Integrate with assumption 0 < a < 1 not supported")
@XFAIL
@slow
def test_W9():
# Integrand with a residue at infinity => -2 pi [sin(pi/5) + sin(2pi/5)]
# (principal value) [Levinson and Redheffer, p. 234] *)
r1 = integrate(5*x**3/(1 + x + x**2 + x**3 + x**4), (x, -oo, oo))
r2 = r1.doit()
assert r2 == -2*pi*(sqrt(-sqrt(5)/8 + 5/8) + sqrt(sqrt(5)/8 + 5/8))
@XFAIL
def test_W10():
# integrate(1/[1 + x + x^2 + ... + x^(2 n)], x = -infinity..infinity) =
# 2 pi/(2 n + 1) [1 + cos(pi/[2 n + 1])] csc(2 pi/[2 n + 1])
# [Levinson and Redheffer, p. 255] => 2 pi/5 [1 + cos(pi/5)] csc(2 pi/5) */
r1 = integrate(x/(1 + x + x**2 + x**4), (x, -oo, oo))
r2 = r1.doit()
assert r2 == 2*pi*(sqrt(5)/4 + 5/4)*csc(pi*R(2, 5))/5
@XFAIL
def test_W11():
# integral not calculated
assert (integrate(sqrt(1 - x**2)/(1 + x**2), (x, -1, 1)) ==
pi*(-1 + sqrt(2)))
def test_W12():
p = symbols('p', real=True, positive=True)
q = symbols('q', real=True)
r1 = integrate(x*exp(-p*x**2 + 2*q*x), (x, -oo, oo))
assert r1.simplify() == sqrt(pi)*q*exp(q**2/p)/p**R(3, 2)
@XFAIL
def test_W13():
# Integral not calculated. Expected result is 2*(Euler_mascheroni_constant)
r1 = integrate(1/log(x) + 1/(1 - x) - log(log(1/x)), (x, 0, 1))
assert r1 == 2*EulerGamma
def test_W14():
assert integrate(sin(x)/x*exp(2*I*x), (x, -oo, oo)) == 0
@XFAIL
def test_W15():
# integral not calculated
assert integrate(log(gamma(x))*cos(6*pi*x), (x, 0, 1)) == R(1, 12)
def test_W16():
assert integrate((1 + x)**3*legendre_poly(1, x)*legendre_poly(2, x),
(x, -1, 1)) == R(36, 35)
def test_W17():
a, b = symbols('a b', real=True, positive=True)
assert integrate(exp(-a*x)*besselj(0, b*x),
(x, 0, oo)) == 1/(b*sqrt(a**2/b**2 + 1))
def test_W18():
assert integrate((besselj(1, x)/x)**2, (x, 0, oo)) == 4/(3*pi)
@XFAIL
def test_W19():
# Integral not calculated
# Expected result is (cos 7 - 1)/7 [Gradshteyn and Ryzhik 6.782(3)]
assert integrate(Ci(x)*besselj(0, 2*sqrt(7*x)), (x, 0, oo)) == (cos(7) - 1)/7
@XFAIL
def test_W20():
# integral not calculated
assert (integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)) ==
-pi**2/36 - R(17, 108) + zeta(3)/4 +
(-pi**2/2 - 4*log(2) + log(2)**2 + 35/3)*log(2)/9)
def test_W21():
assert abs(N(integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)))
- 0.210882859565594) < 1e-15
def test_W22():
t, u = symbols('t u', real=True)
s = Lambda(x, Piecewise((1, And(x >= 1, x <= 2)), (0, True)))
assert integrate(s(t)*cos(t), (t, 0, u)) == Piecewise(
(0, u < 0),
(-sin(Min(1, u)) + sin(Min(2, u)), True))
@slow
def test_W23():
a, b = symbols('a b', real=True, positive=True)
r1 = integrate(integrate(x/(x**2 + y**2), (x, a, b)), (y, -oo, oo))
assert r1.collect(pi).cancel() == -pi*a + pi*b
def test_W23b():
# like W23 but limits are reversed
a, b = symbols('a b', real=True, positive=True)
r2 = integrate(integrate(x/(x**2 + y**2), (y, -oo, oo)), (x, a, b))
assert r2.collect(pi) == pi*(-a + b)
@XFAIL
@slow
def test_W24():
if ON_TRAVIS:
skip("Too slow for travis.")
# Not that slow, but does not fully evaluate so simplify is slow.
# Maybe also require doit()
x, y = symbols('x y', real=True)
r1 = integrate(integrate(sqrt(x**2 + y**2), (x, 0, 1)), (y, 0, 1))
assert (r1 - (sqrt(2) + asinh(1))/3).simplify() == 0
@XFAIL
@slow
def test_W25():
if ON_TRAVIS:
skip("Too slow for travis.")
a, x, y = symbols('a x y', real=True)
i1 = integrate(
sin(a)*sin(y)/sqrt(1 - sin(a)**2*sin(x)**2*sin(y)**2),
(x, 0, pi/2))
i2 = integrate(i1, (y, 0, pi/2))
assert (i2 - pi*a/2).simplify() == 0
def test_W26():
x, y = symbols('x y', real=True)
assert integrate(integrate(abs(y - x**2), (y, 0, 2)),
(x, -1, 1)) == R(46, 15)
def test_W27():
a, b, c = symbols('a b c')
assert integrate(integrate(integrate(1, (z, 0, c*(1 - x/a - y/b))),
(y, 0, b*(1 - x/a))),
(x, 0, a)) == a*b*c/6
def test_X1():
v, c = symbols('v c', real=True)
assert (series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8) ==
5*v**6/(16*c**6) + 3*v**4/(8*c**4) + v**2/(2*c**2) + 1 + O(v**8))
def test_X2():
v, c = symbols('v c', real=True)
s1 = series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8)
assert (1/s1**2).series(v, x0=0, n=8) == -v**2/c**2 + 1 + O(v**8)
def test_X3():
s1 = (sin(x).series()/cos(x).series()).series()
s2 = tan(x).series()
assert s2 == x + x**3/3 + 2*x**5/15 + O(x**6)
assert s1 == s2
def test_X4():
s1 = log(sin(x)/x).series()
assert s1 == -x**2/6 - x**4/180 + O(x**6)
assert log(series(sin(x)/x)).series() == s1
@XFAIL
def test_X5():
# test case in Mathematica syntax:
# In[21]:= (* => [a f'(a d) + g(b d) + integrate(h(c y), y = 0..d)]
# + [a^2 f''(a d) + b g'(b d) + h(c d)] (x - d) *)
# In[22]:= D[f[a*x], x] + g[b*x] + Integrate[h[c*y], {y, 0, x}]
# Out[22]= g[b x] + Integrate[h[c y], {y, 0, x}] + a f'[a x]
# In[23]:= Series[%, {x, d, 1}]
# Out[23]= (g[b d] + Integrate[h[c y], {y, 0, d}] + a f'[a d]) +
# 2 2
# (h[c d] + b g'[b d] + a f''[a d]) (-d + x) + O[-d + x]
h = Function('h')
a, b, c, d = symbols('a b c d', real=True)
# series() raises NotImplementedError:
# The _eval_nseries method should be added to <class
# 'sympy.core.function.Subs'> to give terms up to O(x**n) at x=0
series(diff(f(a*x), x) + g(b*x) + integrate(h(c*y), (y, 0, x)),
x, x0=d, n=2)
# assert missing, until exception is removed
def test_X6():
# Taylor series of nonscalar objects (noncommutative multiplication)
# expected result => (B A - A B) t^2/2 + O(t^3) [Stanly Steinberg]
a, b = symbols('a b', commutative=False, scalar=False)
assert (series(exp((a + b)*x) - exp(a*x) * exp(b*x), x, x0=0, n=3) ==
x**2*(-a*b/2 + b*a/2) + O(x**3))
def test_X7():
# => sum( Bernoulli[k]/k! x^(k - 2), k = 1..infinity )
# = 1/x^2 - 1/(2 x) + 1/12 - x^2/720 + x^4/30240 + O(x^6)
# [Levinson and Redheffer, p. 173]
assert (series(1/(x*(exp(x) - 1)), x, 0, 7) == x**(-2) - 1/(2*x) +
R(1, 12) - x**2/720 + x**4/30240 - x**6/1209600 + O(x**7))
def test_X8():
# Puiseux series (terms with fractional degree):
# => 1/sqrt(x - 3/2 pi) + (x - 3/2 pi)^(3/2) / 12 + O([x - 3/2 pi]^(7/2))
# see issue 7167:
x = symbols('x', real=True)
assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) ==
1/sqrt(x - pi*R(3, 2)) + (x - pi*R(3, 2))**R(3, 2)/12 +
(x - pi*R(3, 2))**R(7, 2)/160 + O((x - pi*R(3, 2))**4, (x, pi*R(3, 2))))
def test_X9():
assert (series(x**x, x, x0=0, n=4) == 1 + x*log(x) + x**2*log(x)**2/2 +
x**3*log(x)**3/6 + O(x**4*log(x)**4))
def test_X10():
z, w = symbols('z w')
assert (series(log(sinh(z)) + log(cosh(z + w)), z, x0=0, n=2) ==
log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2))
def test_X11():
z, w = symbols('z w')
assert (series(log(sinh(z) * cosh(z + w)), z, x0=0, n=2) ==
log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2))
@XFAIL
def test_X12():
# Look at the generalized Taylor series around x = 1
# Result => (x - 1)^a/e^b [1 - (a + 2 b) (x - 1) / 2 + O((x - 1)^2)]
a, b, x = symbols('a b x', real=True)
# series returns O(log(x-1)**2)
# https://github.com/sympy/sympy/issues/7168
assert (series(log(x)**a*exp(-b*x), x, x0=1, n=2) ==
(x - 1)**a/exp(b)*(1 - (a + 2*b)*(x - 1)/2 + O((x - 1)**2)))
def test_X13():
assert series(sqrt(2*x**2 + 1), x, x0=oo, n=1) == sqrt(2)*x + O(1/x, (x, oo))
@XFAIL
def test_X14():
# Wallis' product => 1/sqrt(pi n) + ... [Knopp, p. 385]
assert series(1/2**(2*n)*binomial(2*n, n),
n, x==oo, n=1) == 1/(sqrt(pi)*sqrt(n)) + O(1/x, (x, oo))
@SKIP("https://github.com/sympy/sympy/issues/7164")
def test_X15():
# => 0!/x - 1!/x^2 + 2!/x^3 - 3!/x^4 + O(1/x^5) [Knopp, p. 544]
x, t = symbols('x t', real=True)
# raises RuntimeError: maximum recursion depth exceeded
# https://github.com/sympy/sympy/issues/7164
# 2019-02-17: Raises
# PoleError:
# Asymptotic expansion of Ei around [-oo] is not implemented.
e1 = integrate(exp(-t)/t, (t, x, oo))
assert (series(e1, x, x0=oo, n=5) ==
6/x**4 + 2/x**3 - 1/x**2 + 1/x + O(x**(-5), (x, oo)))
def test_X16():
# Multivariate Taylor series expansion => 1 - (x^2 + 2 x y + y^2)/2 + O(x^4)
assert (series(cos(x + y), x + y, x0=0, n=4) == 1 - (x + y)**2/2 +
O(x**4 + x**3*y + x**2*y**2 + x*y**3 + y**4, x, y))
@XFAIL
def test_X17():
# Power series (compute the general formula)
# (c41) powerseries(log(sin(x)/x), x, 0);
# /aquarius/data2/opt/local/macsyma_422/library1/trgred.so being loaded.
# inf
# ==== i1 2 i1 2 i1
# \ (- 1) 2 bern(2 i1) x
# (d41) > ------------------------------
# / 2 i1 (2 i1)!
# ====
# i1 = 1
# fps does not calculate
assert fps(log(sin(x)/x)) == \
Sum((-1)**k*2**(2*k - 1)*bernoulli(2*k)*x**(2*k)/(k*factorial(2*k)), (k, 1, oo))
@XFAIL
def test_X18():
# Power series (compute the general formula). Maple FPS:
# > FormalPowerSeries(exp(-x)*sin(x), x = 0);
# infinity
# ----- (1/2 k) k
# \ 2 sin(3/4 k Pi) x
# ) -------------------------
# / k!
# -----
#
# Now, sympy returns
# oo
# _____
# \ `
# \ / k k\
# \ k |I*(-1 - I) I*(-1 + I) |
# \ x *|----------- - -----------|
# / \ 2 2 /
# / ------------------------------
# / k!
# /____,
# k = 0
k = Dummy('k')
assert fps(exp(-x)*sin(x)) == \
Sum(2**(S.Half*k)*sin(R(3, 4)*k*pi)*x**k/factorial(k), (k, 0, oo))
@XFAIL
def test_X19():
# (c45) /* Derive an explicit Taylor series solution of y as a function of
# x from the following implicit relation:
# y = x - 1 + (x - 1)^2/2 + 2/3 (x - 1)^3 + (x - 1)^4 +
# 17/10 (x - 1)^5 + ...
# */
# x = sin(y) + cos(y);
# Time= 0 msecs
# (d45) x = sin(y) + cos(y)
#
# (c46) taylor_revert(%, y, 7);
raise NotImplementedError("Solve using series not supported. \
Inverse Taylor series expansion also not supported")
@XFAIL
def test_X20():
# Pade (rational function) approximation => (2 - x)/(2 + x)
# > numapprox[pade](exp(-x), x = 0, [1, 1]);
# bytes used=9019816, alloc=3669344, time=13.12
# 1 - 1/2 x
# ---------
# 1 + 1/2 x
# mpmath support numeric Pade approximant but there is
# no symbolic implementation in SymPy
# https://en.wikipedia.org/wiki/Pad%C3%A9_approximant
raise NotImplementedError("Symbolic Pade approximant not supported")
def test_X21():
"""
Test whether `fourier_series` of x periodical on the [-p, p] interval equals
`- (2 p / pi) sum( (-1)^n / n sin(n pi x / p), n = 1..infinity )`.
"""
p = symbols('p', positive=True)
n = symbols('n', positive=True, integer=True)
s = fourier_series(x, (x, -p, p))
# All cosine coefficients are equal to 0
assert s.an.formula == 0
# Check for sine coefficients
assert s.bn.formula.subs(s.bn.variables[0], 0) == 0
assert s.bn.formula.subs(s.bn.variables[0], n) == \
-2*p/pi * (-1)**n / n * sin(n*pi*x/p)
@XFAIL
def test_X22():
# (c52) /* => p / 2
# - (2 p / pi^2) sum( [1 - (-1)^n] cos(n pi x / p) / n^2,
# n = 1..infinity ) */
# fourier_series(abs(x), x, p);
# p
# (e52) a = -
# 0 2
#
# %nn
# (2 (- 1) - 2) p
# (e53) a = ------------------
# %nn 2 2
# %pi %nn
#
# (e54) b = 0
# %nn
#
# Time= 5290 msecs
# inf %nn %pi %nn x
# ==== (2 (- 1) - 2) cos(---------)
# \ p
# p > -------------------------------
# / 2
# ==== %nn
# %nn = 1 p
# (d54) ----------------------------------------- + -
# 2 2
# %pi
raise NotImplementedError("Fourier series not supported")
def test_Y1():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
F, _, _ = laplace_transform(cos((w - 1)*t), t, s)
assert F == s/(s**2 + (w - 1)**2)
def test_Y2():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
f = inverse_laplace_transform(s/(s**2 + (w - 1)**2), s, t)
assert f == cos(t*w - t)
def test_Y3():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
F, _, _ = laplace_transform(sinh(w*t)*cosh(w*t), t, s)
assert F == w/(s**2 - 4*w**2)
def test_Y4():
t = symbols('t', real=True, positive=True)
s = symbols('s')
F, _, _ = laplace_transform(erf(3/sqrt(t)), t, s)
assert F == (1 - exp(-6*sqrt(s)))/s
@XFAIL
def test_Y5_Y6():
# Solve y'' + y = 4 [H(t - 1) - H(t - 2)], y(0) = 1, y'(0) = 0 where H is the
# Heaviside (unit step) function (the RHS describes a pulse of magnitude 4 and
# duration 1). See David A. Sanchez, Richard C. Allen, Jr. and Walter T.
# Kyner, _Differential Equations: An Introduction_, Addison-Wesley Publishing
# Company, 1983, p. 211. First, take the Laplace transform of the ODE
# => s^2 Y(s) - s + Y(s) = 4/s [e^(-s) - e^(-2 s)]
# where Y(s) is the Laplace transform of y(t)
t = symbols('t', real=True, positive=True)
s = symbols('s')
y = Function('y')
F, _, _ = laplace_transform(diff(y(t), t, 2)
+ y(t)
- 4*(Heaviside(t - 1)
- Heaviside(t - 2)), t, s)
# Laplace transform for diff() not calculated
# https://github.com/sympy/sympy/issues/7176
assert (F == s**2*LaplaceTransform(y(t), t, s) - s
+ LaplaceTransform(y(t), t, s) - 4*exp(-s)/s + 4*exp(-2*s)/s)
# TODO implement second part of test case
# Now, solve for Y(s) and then take the inverse Laplace transform
# => Y(s) = s/(s^2 + 1) + 4 [1/s - s/(s^2 + 1)] [e^(-s) - e^(-2 s)]
# => y(t) = cos t + 4 {[1 - cos(t - 1)] H(t - 1) - [1 - cos(t - 2)] H(t - 2)}
@XFAIL
def test_Y7():
# What is the Laplace transform of an infinite square wave?
# => 1/s + 2 sum( (-1)^n e^(- s n a)/s, n = 1..infinity )
# [Sanchez, Allen and Kyner, p. 213]
t = symbols('t', real=True, positive=True)
a = symbols('a', real=True)
s = symbols('s')
F, _, _ = laplace_transform(1 + 2*Sum((-1)**n*Heaviside(t - n*a),
(n, 1, oo)), t, s)
# returns 2*LaplaceTransform(Sum((-1)**n*Heaviside(-a*n + t),
# (n, 1, oo)), t, s) + 1/s
# https://github.com/sympy/sympy/issues/7177
assert F == 2*Sum((-1)**n*exp(-a*n*s)/s, (n, 1, oo)) + 1/s
@XFAIL
def test_Y8():
assert fourier_transform(1, x, z) == DiracDelta(z)
def test_Y9():
assert (fourier_transform(exp(-9*x**2), x, z) ==
sqrt(pi)*exp(-pi**2*z**2/9)/3)
def test_Y10():
assert (fourier_transform(abs(x)*exp(-3*abs(x)), x, z).cancel() ==
(-8*pi**2*z**2 + 18)/(16*pi**4*z**4 + 72*pi**2*z**2 + 81))
@SKIP("https://github.com/sympy/sympy/issues/7181")
@slow
def test_Y11():
# => pi cot(pi s) (0 < Re s < 1) [Gradshteyn and Ryzhik 17.43(5)]
x, s = symbols('x s')
# raises RuntimeError: maximum recursion depth exceeded
# https://github.com/sympy/sympy/issues/7181
# Update 2019-02-17 raises:
# TypeError: cannot unpack non-iterable MellinTransform object
F, _, _ = mellin_transform(1/(1 - x), x, s)
assert F == pi*cot(pi*s)
@XFAIL
def test_Y12():
# => 2^(s - 4) gamma(s/2)/gamma(4 - s/2) (0 < Re s < 1)
# [Gradshteyn and Ryzhik 17.43(16)]
x, s = symbols('x s')
# returns Wrong value -2**(s - 4)*gamma(s/2 - 3)/gamma(-s/2 + 1)
# https://github.com/sympy/sympy/issues/7182
F, _, _ = mellin_transform(besselj(3, x)/x**3, x, s)
assert F == -2**(s - 4)*gamma(s/2)/gamma(-s/2 + 4)
@XFAIL
def test_Y13():
# Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function) z
raise NotImplementedError("z-transform not supported")
@XFAIL
def test_Y14():
# Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function)
raise NotImplementedError("z-transform not supported")
def test_Z1():
r = Function('r')
assert (rsolve(r(n + 2) - 2*r(n + 1) + r(n) - 2, r(n),
{r(0): 1, r(1): m}).simplify() == n**2 + n*(m - 2) + 1)
def test_Z2():
r = Function('r')
assert (rsolve(r(n) - (5*r(n - 1) - 6*r(n - 2)), r(n), {r(0): 0, r(1): 1})
== -2**n + 3**n)
def test_Z3():
# => r(n) = Fibonacci[n + 1] [Cohen, p. 83]
r = Function('r')
# recurrence solution is correct, Wester expects it to be simplified to
# fibonacci(n+1), but that is quite hard
expected = ((S(1)/2 - sqrt(5)/2)**n*(S(1)/2 - sqrt(5)/10)
+ (S(1)/2 + sqrt(5)/2)**n*(sqrt(5)/10 + S(1)/2))
sol = rsolve(r(n) - (r(n - 1) + r(n - 2)), r(n), {r(1): 1, r(2): 2})
assert sol == expected
@XFAIL
def test_Z4():
# => [c^(n+1) [c^(n+1) - 2 c - 2] + (n+1) c^2 + 2 c - n] / [(c-1)^3 (c+1)]
# [Joan Z. Yu and Robert Israel in sci.math.symbolic]
r = Function('r')
c = symbols('c')
# raises ValueError: Polynomial or rational function expected,
# got '(c**2 - c**n)/(c - c**n)
s = rsolve(r(n) - ((1 + c - c**(n-1) - c**(n+1))/(1 - c**n)*r(n - 1)
- c*(1 - c**(n-2))/(1 - c**(n-1))*r(n - 2) + 1),
r(n), {r(1): 1, r(2): (2 + 2*c + c**2)/(1 + c)})
assert (s - (c*(n + 1)*(c*(n + 1) - 2*c - 2) +
(n + 1)*c**2 + 2*c - n)/((c-1)**3*(c+1)) == 0)
@XFAIL
def test_Z5():
# Second order ODE with initial conditions---solve directly
# transform: f(t) = sin(2 t)/8 - t cos(2 t)/4
C1, C2 = symbols('C1 C2')
# initial conditions not supported, this is a manual workaround
# https://github.com/sympy/sympy/issues/4720
eq = Derivative(f(x), x, 2) + 4*f(x) - sin(2*x)
sol = dsolve(eq, f(x))
f0 = Lambda(x, sol.rhs)
assert f0(x) == C2*sin(2*x) + (C1 - x/4)*cos(2*x)
f1 = Lambda(x, diff(f0(x), x))
# TODO: Replace solve with solveset, when it works for solveset
const_dict = solve((f0(0), f1(0)))
result = f0(x).subs(C1, const_dict[C1]).subs(C2, const_dict[C2])
assert result == -x*cos(2*x)/4 + sin(2*x)/8
# Result is OK, but ODE solving with initial conditions should be
# supported without all this manual work
raise NotImplementedError('ODE solving with initial conditions \
not supported')
@XFAIL
def test_Z6():
# Second order ODE with initial conditions---solve using Laplace
# transform: f(t) = sin(2 t)/8 - t cos(2 t)/4
t = symbols('t', real=True, positive=True)
s = symbols('s')
eq = Derivative(f(t), t, 2) + 4*f(t) - sin(2*t)
F, _, _ = laplace_transform(eq, t, s)
# Laplace transform for diff() not calculated
# https://github.com/sympy/sympy/issues/7176
assert (F == s**2*LaplaceTransform(f(t), t, s) +
4*LaplaceTransform(f(t), t, s) - 2/(s**2 + 4))
# rest of test case not implemented
|
12ceab880da59449913cf445ddf66e86e6a4dc59d06e2e6494d9b5c15d00a9b9 | from textwrap import dedent
from itertools import islice, product
from sympy import (
symbols, Integer, Integral, Tuple, Dummy, Basic, default_sort_key, Matrix,
factorial, true)
from sympy.combinatorics import RGS_enum, RGS_unrank, Permutation
from sympy.core.compatibility import iterable
from sympy.utilities.iterables import (
_partition, _set_partitions, binary_partitions, bracelets, capture,
cartes, common_prefix, common_suffix, connected_components, dict_merge,
filter_symbols, flatten, generate_bell, generate_derangements,
generate_involutions, generate_oriented_forest, group, has_dups, ibin,
iproduct, kbins, minlex, multiset, multiset_combinations,
multiset_partitions, multiset_permutations, necklaces, numbered_symbols,
ordered, partitions, permutations, postfixes, postorder_traversal,
prefixes, reshape, rotate_left, rotate_right, runs, sift,
strongly_connected_components, subsets, take, topological_sort, unflatten,
uniq, variations, ordered_partitions, rotations, is_palindromic)
from sympy.utilities.enumerative import (
factoring_visitor, multiset_partitions_taocp )
from sympy.core.singleton import S
from sympy.functions.elementary.piecewise import Piecewise, ExprCondPair
from sympy.testing.pytest import raises
w, x, y, z = symbols('w,x,y,z')
def test_is_palindromic():
assert is_palindromic('')
assert is_palindromic('x')
assert is_palindromic('xx')
assert is_palindromic('xyx')
assert not is_palindromic('xy')
assert not is_palindromic('xyzx')
assert is_palindromic('xxyzzyx', 1)
assert not is_palindromic('xxyzzyx', 2)
assert is_palindromic('xxyzzyx', 2, -1)
assert is_palindromic('xxyzzyx', 2, 6)
assert is_palindromic('xxyzyx', 1)
assert not is_palindromic('xxyzyx', 2)
assert is_palindromic('xxyzyx', 2, 2 + 3)
def test_postorder_traversal():
expr = z + w*(x + y)
expected = [z, w, x, y, x + y, w*(x + y), w*(x + y) + z]
assert list(postorder_traversal(expr, keys=default_sort_key)) == expected
assert list(postorder_traversal(expr, keys=True)) == expected
expr = Piecewise((x, x < 1), (x**2, True))
expected = [
x, 1, x, x < 1, ExprCondPair(x, x < 1),
2, x, x**2, true,
ExprCondPair(x**2, True), Piecewise((x, x < 1), (x**2, True))
]
assert list(postorder_traversal(expr, keys=default_sort_key)) == expected
assert list(postorder_traversal(
[expr], keys=default_sort_key)) == expected + [[expr]]
assert list(postorder_traversal(Integral(x**2, (x, 0, 1)),
keys=default_sort_key)) == [
2, x, x**2, 0, 1, x, Tuple(x, 0, 1),
Integral(x**2, Tuple(x, 0, 1))
]
assert list(postorder_traversal(('abc', ('d', 'ef')))) == [
'abc', 'd', 'ef', ('d', 'ef'), ('abc', ('d', 'ef'))]
def test_flatten():
assert flatten((1, (1,))) == [1, 1]
assert flatten((x, (x,))) == [x, x]
ls = [[(-2, -1), (1, 2)], [(0, 0)]]
assert flatten(ls, levels=0) == ls
assert flatten(ls, levels=1) == [(-2, -1), (1, 2), (0, 0)]
assert flatten(ls, levels=2) == [-2, -1, 1, 2, 0, 0]
assert flatten(ls, levels=3) == [-2, -1, 1, 2, 0, 0]
raises(ValueError, lambda: flatten(ls, levels=-1))
class MyOp(Basic):
pass
assert flatten([MyOp(x, y), z]) == [MyOp(x, y), z]
assert flatten([MyOp(x, y), z], cls=MyOp) == [x, y, z]
assert flatten({1, 11, 2}) == list({1, 11, 2})
def test_iproduct():
assert list(iproduct()) == [()]
assert list(iproduct([])) == []
assert list(iproduct([1,2,3])) == [(1,),(2,),(3,)]
assert sorted(iproduct([1, 2], [3, 4, 5])) == [
(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)]
assert sorted(iproduct([0,1],[0,1],[0,1])) == [
(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)]
assert iterable(iproduct(S.Integers)) is True
assert iterable(iproduct(S.Integers, S.Integers)) is True
assert (3,) in iproduct(S.Integers)
assert (4, 5) in iproduct(S.Integers, S.Integers)
assert (1, 2, 3) in iproduct(S.Integers, S.Integers, S.Integers)
triples = set(islice(iproduct(S.Integers, S.Integers, S.Integers), 1000))
for n1, n2, n3 in triples:
assert isinstance(n1, Integer)
assert isinstance(n2, Integer)
assert isinstance(n3, Integer)
for t in set(product(*([range(-2, 3)]*3))):
assert t in iproduct(S.Integers, S.Integers, S.Integers)
def test_group():
assert group([]) == []
assert group([], multiple=False) == []
assert group([1]) == [[1]]
assert group([1], multiple=False) == [(1, 1)]
assert group([1, 1]) == [[1, 1]]
assert group([1, 1], multiple=False) == [(1, 2)]
assert group([1, 1, 1]) == [[1, 1, 1]]
assert group([1, 1, 1], multiple=False) == [(1, 3)]
assert group([1, 2, 1]) == [[1], [2], [1]]
assert group([1, 2, 1], multiple=False) == [(1, 1), (2, 1), (1, 1)]
assert group([1, 1, 2, 2, 2, 1, 3, 3]) == [[1, 1], [2, 2, 2], [1], [3, 3]]
assert group([1, 1, 2, 2, 2, 1, 3, 3], multiple=False) == [(1, 2),
(2, 3), (1, 1), (3, 2)]
def test_subsets():
# combinations
assert list(subsets([1, 2, 3], 0)) == [()]
assert list(subsets([1, 2, 3], 1)) == [(1,), (2,), (3,)]
assert list(subsets([1, 2, 3], 2)) == [(1, 2), (1, 3), (2, 3)]
assert list(subsets([1, 2, 3], 3)) == [(1, 2, 3)]
l = list(range(4))
assert list(subsets(l, 0, repetition=True)) == [()]
assert list(subsets(l, 1, repetition=True)) == [(0,), (1,), (2,), (3,)]
assert list(subsets(l, 2, repetition=True)) == [(0, 0), (0, 1), (0, 2),
(0, 3), (1, 1), (1, 2),
(1, 3), (2, 2), (2, 3),
(3, 3)]
assert list(subsets(l, 3, repetition=True)) == [(0, 0, 0), (0, 0, 1),
(0, 0, 2), (0, 0, 3),
(0, 1, 1), (0, 1, 2),
(0, 1, 3), (0, 2, 2),
(0, 2, 3), (0, 3, 3),
(1, 1, 1), (1, 1, 2),
(1, 1, 3), (1, 2, 2),
(1, 2, 3), (1, 3, 3),
(2, 2, 2), (2, 2, 3),
(2, 3, 3), (3, 3, 3)]
assert len(list(subsets(l, 4, repetition=True))) == 35
assert list(subsets(l[:2], 3, repetition=False)) == []
assert list(subsets(l[:2], 3, repetition=True)) == [(0, 0, 0),
(0, 0, 1),
(0, 1, 1),
(1, 1, 1)]
assert list(subsets([1, 2], repetition=True)) == \
[(), (1,), (2,), (1, 1), (1, 2), (2, 2)]
assert list(subsets([1, 2], repetition=False)) == \
[(), (1,), (2,), (1, 2)]
assert list(subsets([1, 2, 3], 2)) == \
[(1, 2), (1, 3), (2, 3)]
assert list(subsets([1, 2, 3], 2, repetition=True)) == \
[(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)]
def test_variations():
# permutations
l = list(range(4))
assert list(variations(l, 0, repetition=False)) == [()]
assert list(variations(l, 1, repetition=False)) == [(0,), (1,), (2,), (3,)]
assert list(variations(l, 2, repetition=False)) == [(0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (2, 3), (3, 0), (3, 1), (3, 2)]
assert list(variations(l, 3, repetition=False)) == [(0, 1, 2), (0, 1, 3), (0, 2, 1), (0, 2, 3), (0, 3, 1), (0, 3, 2), (1, 0, 2), (1, 0, 3), (1, 2, 0), (1, 2, 3), (1, 3, 0), (1, 3, 2), (2, 0, 1), (2, 0, 3), (2, 1, 0), (2, 1, 3), (2, 3, 0), (2, 3, 1), (3, 0, 1), (3, 0, 2), (3, 1, 0), (3, 1, 2), (3, 2, 0), (3, 2, 1)]
assert list(variations(l, 0, repetition=True)) == [()]
assert list(variations(l, 1, repetition=True)) == [(0,), (1,), (2,), (3,)]
assert list(variations(l, 2, repetition=True)) == [(0, 0), (0, 1), (0, 2),
(0, 3), (1, 0), (1, 1),
(1, 2), (1, 3), (2, 0),
(2, 1), (2, 2), (2, 3),
(3, 0), (3, 1), (3, 2),
(3, 3)]
assert len(list(variations(l, 3, repetition=True))) == 64
assert len(list(variations(l, 4, repetition=True))) == 256
assert list(variations(l[:2], 3, repetition=False)) == []
assert list(variations(l[:2], 3, repetition=True)) == [
(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)
]
def test_cartes():
assert list(cartes([1, 2], [3, 4, 5])) == \
[(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)]
assert list(cartes()) == [()]
assert list(cartes('a')) == [('a',)]
assert list(cartes('a', repeat=2)) == [('a', 'a')]
assert list(cartes(list(range(2)))) == [(0,), (1,)]
def test_filter_symbols():
s = numbered_symbols()
filtered = filter_symbols(s, symbols("x0 x2 x3"))
assert take(filtered, 3) == list(symbols("x1 x4 x5"))
def test_numbered_symbols():
s = numbered_symbols(cls=Dummy)
assert isinstance(next(s), Dummy)
assert next(numbered_symbols('C', start=1, exclude=[symbols('C1')])) == \
symbols('C2')
def test_sift():
assert sift(list(range(5)), lambda _: _ % 2) == {1: [1, 3], 0: [0, 2, 4]}
assert sift([x, y], lambda _: _.has(x)) == {False: [y], True: [x]}
assert sift([S.One], lambda _: _.has(x)) == {False: [1]}
assert sift([0, 1, 2, 3], lambda x: x % 2, binary=True) == (
[1, 3], [0, 2])
assert sift([0, 1, 2, 3], lambda x: x % 3 == 1, binary=True) == (
[1], [0, 2, 3])
raises(ValueError, lambda:
sift([0, 1, 2, 3], lambda x: x % 3, binary=True))
def test_take():
X = numbered_symbols()
assert take(X, 5) == list(symbols('x0:5'))
assert take(X, 5) == list(symbols('x5:10'))
assert take([1, 2, 3, 4, 5], 5) == [1, 2, 3, 4, 5]
def test_dict_merge():
assert dict_merge({}, {1: x, y: z}) == {1: x, y: z}
assert dict_merge({1: x, y: z}, {}) == {1: x, y: z}
assert dict_merge({2: z}, {1: x, y: z}) == {1: x, 2: z, y: z}
assert dict_merge({1: x, y: z}, {2: z}) == {1: x, 2: z, y: z}
assert dict_merge({1: y, 2: z}, {1: x, y: z}) == {1: x, 2: z, y: z}
assert dict_merge({1: x, y: z}, {1: y, 2: z}) == {1: y, 2: z, y: z}
def test_prefixes():
assert list(prefixes([])) == []
assert list(prefixes([1])) == [[1]]
assert list(prefixes([1, 2])) == [[1], [1, 2]]
assert list(prefixes([1, 2, 3, 4, 5])) == \
[[1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 3, 4, 5]]
def test_postfixes():
assert list(postfixes([])) == []
assert list(postfixes([1])) == [[1]]
assert list(postfixes([1, 2])) == [[2], [1, 2]]
assert list(postfixes([1, 2, 3, 4, 5])) == \
[[5], [4, 5], [3, 4, 5], [2, 3, 4, 5], [1, 2, 3, 4, 5]]
def test_topological_sort():
V = [2, 3, 5, 7, 8, 9, 10, 11]
E = [(7, 11), (7, 8), (5, 11),
(3, 8), (3, 10), (11, 2),
(11, 9), (11, 10), (8, 9)]
assert topological_sort((V, E)) == [3, 5, 7, 8, 11, 2, 9, 10]
assert topological_sort((V, E), key=lambda v: -v) == \
[7, 5, 11, 3, 10, 8, 9, 2]
raises(ValueError, lambda: topological_sort((V, E + [(10, 7)])))
def test_strongly_connected_components():
assert strongly_connected_components(([], [])) == []
assert strongly_connected_components(([1, 2, 3], [])) == [[1], [2], [3]]
V = [1, 2, 3]
E = [(1, 2), (1, 3), (2, 1), (2, 3), (3, 1)]
assert strongly_connected_components((V, E)) == [[1, 2, 3]]
V = [1, 2, 3, 4]
E = [(1, 2), (2, 3), (3, 2), (3, 4)]
assert strongly_connected_components((V, E)) == [[4], [2, 3], [1]]
V = [1, 2, 3, 4]
E = [(1, 2), (2, 1), (3, 4), (4, 3)]
assert strongly_connected_components((V, E)) == [[1, 2], [3, 4]]
def test_connected_components():
assert connected_components(([], [])) == []
assert connected_components(([1, 2, 3], [])) == [[1], [2], [3]]
V = [1, 2, 3]
E = [(1, 2), (1, 3), (2, 1), (2, 3), (3, 1)]
assert connected_components((V, E)) == [[1, 2, 3]]
V = [1, 2, 3, 4]
E = [(1, 2), (2, 3), (3, 2), (3, 4)]
assert connected_components((V, E)) == [[1, 2, 3, 4]]
V = [1, 2, 3, 4]
E = [(1, 2), (3, 4)]
assert connected_components((V, E)) == [[1, 2], [3, 4]]
def test_rotate():
A = [0, 1, 2, 3, 4]
assert rotate_left(A, 2) == [2, 3, 4, 0, 1]
assert rotate_right(A, 1) == [4, 0, 1, 2, 3]
A = []
B = rotate_right(A, 1)
assert B == []
B.append(1)
assert A == []
B = rotate_left(A, 1)
assert B == []
B.append(1)
assert A == []
def test_multiset_partitions():
A = [0, 1, 2, 3, 4]
assert list(multiset_partitions(A, 5)) == [[[0], [1], [2], [3], [4]]]
assert len(list(multiset_partitions(A, 4))) == 10
assert len(list(multiset_partitions(A, 3))) == 25
assert list(multiset_partitions([1, 1, 1, 2, 2], 2)) == [
[[1, 1, 1, 2], [2]], [[1, 1, 1], [2, 2]], [[1, 1, 2, 2], [1]],
[[1, 1, 2], [1, 2]], [[1, 1], [1, 2, 2]]]
assert list(multiset_partitions([1, 1, 2, 2], 2)) == [
[[1, 1, 2], [2]], [[1, 1], [2, 2]], [[1, 2, 2], [1]],
[[1, 2], [1, 2]]]
assert list(multiset_partitions([1, 2, 3, 4], 2)) == [
[[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 2], [3, 4]],
[[1, 3, 4], [2]], [[1, 3], [2, 4]], [[1, 4], [2, 3]],
[[1], [2, 3, 4]]]
assert list(multiset_partitions([1, 2, 2], 2)) == [
[[1, 2], [2]], [[1], [2, 2]]]
assert list(multiset_partitions(3)) == [
[[0, 1, 2]], [[0, 1], [2]], [[0, 2], [1]], [[0], [1, 2]],
[[0], [1], [2]]]
assert list(multiset_partitions(3, 2)) == [
[[0, 1], [2]], [[0, 2], [1]], [[0], [1, 2]]]
assert list(multiset_partitions([1] * 3, 2)) == [[[1], [1, 1]]]
assert list(multiset_partitions([1] * 3)) == [
[[1, 1, 1]], [[1], [1, 1]], [[1], [1], [1]]]
a = [3, 2, 1]
assert list(multiset_partitions(a)) == \
list(multiset_partitions(sorted(a)))
assert list(multiset_partitions(a, 5)) == []
assert list(multiset_partitions(a, 1)) == [[[1, 2, 3]]]
assert list(multiset_partitions(a + [4], 5)) == []
assert list(multiset_partitions(a + [4], 1)) == [[[1, 2, 3, 4]]]
assert list(multiset_partitions(2, 5)) == []
assert list(multiset_partitions(2, 1)) == [[[0, 1]]]
assert list(multiset_partitions('a')) == [[['a']]]
assert list(multiset_partitions('a', 2)) == []
assert list(multiset_partitions('ab')) == [[['a', 'b']], [['a'], ['b']]]
assert list(multiset_partitions('ab', 1)) == [[['a', 'b']]]
assert list(multiset_partitions('aaa', 1)) == [['aaa']]
assert list(multiset_partitions([1, 1], 1)) == [[[1, 1]]]
ans = [('mpsyy',), ('mpsy', 'y'), ('mps', 'yy'), ('mps', 'y', 'y'),
('mpyy', 's'), ('mpy', 'sy'), ('mpy', 's', 'y'), ('mp', 'syy'),
('mp', 'sy', 'y'), ('mp', 's', 'yy'), ('mp', 's', 'y', 'y'),
('msyy', 'p'), ('msy', 'py'), ('msy', 'p', 'y'), ('ms', 'pyy'),
('ms', 'py', 'y'), ('ms', 'p', 'yy'), ('ms', 'p', 'y', 'y'),
('myy', 'ps'), ('myy', 'p', 's'), ('my', 'psy'), ('my', 'ps', 'y'),
('my', 'py', 's'), ('my', 'p', 'sy'), ('my', 'p', 's', 'y'),
('m', 'psyy'), ('m', 'psy', 'y'), ('m', 'ps', 'yy'),
('m', 'ps', 'y', 'y'), ('m', 'pyy', 's'), ('m', 'py', 'sy'),
('m', 'py', 's', 'y'), ('m', 'p', 'syy'),
('m', 'p', 'sy', 'y'), ('m', 'p', 's', 'yy'),
('m', 'p', 's', 'y', 'y')]
assert list(tuple("".join(part) for part in p)
for p in multiset_partitions('sympy')) == ans
factorings = [[24], [8, 3], [12, 2], [4, 6], [4, 2, 3],
[6, 2, 2], [2, 2, 2, 3]]
assert list(factoring_visitor(p, [2,3]) for
p in multiset_partitions_taocp([3, 1])) == factorings
def test_multiset_combinations():
ans = ['iii', 'iim', 'iip', 'iis', 'imp', 'ims', 'ipp', 'ips',
'iss', 'mpp', 'mps', 'mss', 'pps', 'pss', 'sss']
assert [''.join(i) for i in
list(multiset_combinations('mississippi', 3))] == ans
M = multiset('mississippi')
assert [''.join(i) for i in
list(multiset_combinations(M, 3))] == ans
assert [''.join(i) for i in multiset_combinations(M, 30)] == []
assert list(multiset_combinations([[1], [2, 3]], 2)) == [[[1], [2, 3]]]
assert len(list(multiset_combinations('a', 3))) == 0
assert len(list(multiset_combinations('a', 0))) == 1
assert list(multiset_combinations('abc', 1)) == [['a'], ['b'], ['c']]
def test_multiset_permutations():
ans = ['abby', 'abyb', 'aybb', 'baby', 'bayb', 'bbay', 'bbya', 'byab',
'byba', 'yabb', 'ybab', 'ybba']
assert [''.join(i) for i in multiset_permutations('baby')] == ans
assert [''.join(i) for i in multiset_permutations(multiset('baby'))] == ans
assert list(multiset_permutations([0, 0, 0], 2)) == [[0, 0]]
assert list(multiset_permutations([0, 2, 1], 2)) == [
[0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1]]
assert len(list(multiset_permutations('a', 0))) == 1
assert len(list(multiset_permutations('a', 3))) == 0
for nul in ([], {}, ''):
assert list(multiset_permutations(nul)) == [[]]
assert list(multiset_permutations(nul, 0)) == [[]]
# impossible requests give no result
assert list(multiset_permutations(nul, 1)) == []
assert list(multiset_permutations(nul, -1)) == []
def test():
for i in range(1, 7):
print(i)
for p in multiset_permutations([0, 0, 1, 0, 1], i):
print(p)
assert capture(lambda: test()) == dedent('''\
1
[0]
[1]
2
[0, 0]
[0, 1]
[1, 0]
[1, 1]
3
[0, 0, 0]
[0, 0, 1]
[0, 1, 0]
[0, 1, 1]
[1, 0, 0]
[1, 0, 1]
[1, 1, 0]
4
[0, 0, 0, 1]
[0, 0, 1, 0]
[0, 0, 1, 1]
[0, 1, 0, 0]
[0, 1, 0, 1]
[0, 1, 1, 0]
[1, 0, 0, 0]
[1, 0, 0, 1]
[1, 0, 1, 0]
[1, 1, 0, 0]
5
[0, 0, 0, 1, 1]
[0, 0, 1, 0, 1]
[0, 0, 1, 1, 0]
[0, 1, 0, 0, 1]
[0, 1, 0, 1, 0]
[0, 1, 1, 0, 0]
[1, 0, 0, 0, 1]
[1, 0, 0, 1, 0]
[1, 0, 1, 0, 0]
[1, 1, 0, 0, 0]
6\n''')
def test_partitions():
ans = [[{}], [(0, {})]]
for i in range(2):
assert list(partitions(0, size=i)) == ans[i]
assert list(partitions(1, 0, size=i)) == ans[i]
assert list(partitions(6, 2, 2, size=i)) == ans[i]
assert list(partitions(6, 2, None, size=i)) != ans[i]
assert list(partitions(6, None, 2, size=i)) != ans[i]
assert list(partitions(6, 2, 0, size=i)) == ans[i]
assert [p for p in partitions(6, k=2)] == [
{2: 3}, {1: 2, 2: 2}, {1: 4, 2: 1}, {1: 6}]
assert [p for p in partitions(6, k=3)] == [
{3: 2}, {1: 1, 2: 1, 3: 1}, {1: 3, 3: 1}, {2: 3}, {1: 2, 2: 2},
{1: 4, 2: 1}, {1: 6}]
assert [p for p in partitions(8, k=4, m=3)] == [
{4: 2}, {1: 1, 3: 1, 4: 1}, {2: 2, 4: 1}, {2: 1, 3: 2}] == [
i for i in partitions(8, k=4, m=3) if all(k <= 4 for k in i)
and sum(i.values()) <=3]
assert [p for p in partitions(S(3), m=2)] == [
{3: 1}, {1: 1, 2: 1}]
assert [i for i in partitions(4, k=3)] == [
{1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}] == [
i for i in partitions(4) if all(k <= 3 for k in i)]
# Consistency check on output of _partitions and RGS_unrank.
# This provides a sanity test on both routines. Also verifies that
# the total number of partitions is the same in each case.
# (from pkrathmann2)
for n in range(2, 6):
i = 0
for m, q in _set_partitions(n):
assert q == RGS_unrank(i, n)
i += 1
assert i == RGS_enum(n)
def test_binary_partitions():
assert [i[:] for i in binary_partitions(10)] == [[8, 2], [8, 1, 1],
[4, 4, 2], [4, 4, 1, 1], [4, 2, 2, 2], [4, 2, 2, 1, 1],
[4, 2, 1, 1, 1, 1], [4, 1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2],
[2, 2, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1, 1],
[2, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
assert len([j[:] for j in binary_partitions(16)]) == 36
def test_bell_perm():
assert [len(set(generate_bell(i))) for i in range(1, 7)] == [
factorial(i) for i in range(1, 7)]
assert list(generate_bell(3)) == [
(0, 1, 2), (0, 2, 1), (2, 0, 1), (2, 1, 0), (1, 2, 0), (1, 0, 2)]
# generate_bell and trotterjohnson are advertised to return the same
# permutations; this is not technically necessary so this test could
# be removed
for n in range(1, 5):
p = Permutation(range(n))
b = generate_bell(n)
for bi in b:
assert bi == tuple(p.array_form)
p = p.next_trotterjohnson()
raises(ValueError, lambda: list(generate_bell(0))) # XXX is this consistent with other permutation algorithms?
def test_involutions():
lengths = [1, 2, 4, 10, 26, 76]
for n, N in enumerate(lengths):
i = list(generate_involutions(n + 1))
assert len(i) == N
assert len({Permutation(j)**2 for j in i}) == 1
def test_derangements():
assert len(list(generate_derangements(list(range(6))))) == 265
assert ''.join(''.join(i) for i in generate_derangements('abcde')) == (
'badecbaecdbcaedbcdeabceadbdaecbdeacbdecabeacdbedacbedcacabedcadebcaebd'
'cdaebcdbeacdeabcdebaceabdcebadcedabcedbadabecdaebcdaecbdcaebdcbeadceab'
'dcebadeabcdeacbdebacdebcaeabcdeadbceadcbecabdecbadecdabecdbaedabcedacb'
'edbacedbca')
assert list(generate_derangements([0, 1, 2, 3])) == [
[1, 0, 3, 2], [1, 2, 3, 0], [1, 3, 0, 2], [2, 0, 3, 1],
[2, 3, 0, 1], [2, 3, 1, 0], [3, 0, 1, 2], [3, 2, 0, 1], [3, 2, 1, 0]]
assert list(generate_derangements([0, 1, 2, 2])) == [
[2, 2, 0, 1], [2, 2, 1, 0]]
assert list(generate_derangements('ba')) == [list('ab')]
def test_necklaces():
def count(n, k, f):
return len(list(necklaces(n, k, f)))
m = []
for i in range(1, 8):
m.append((
i, count(i, 2, 0), count(i, 2, 1), count(i, 3, 1)))
assert Matrix(m) == Matrix([
[1, 2, 2, 3],
[2, 3, 3, 6],
[3, 4, 4, 10],
[4, 6, 6, 21],
[5, 8, 8, 39],
[6, 14, 13, 92],
[7, 20, 18, 198]])
def test_bracelets():
bc = [i for i in bracelets(2, 4)]
assert Matrix(bc) == Matrix([
[0, 0],
[0, 1],
[0, 2],
[0, 3],
[1, 1],
[1, 2],
[1, 3],
[2, 2],
[2, 3],
[3, 3]
])
bc = [i for i in bracelets(4, 2)]
assert Matrix(bc) == Matrix([
[0, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 1],
[0, 1, 0, 1],
[0, 1, 1, 1],
[1, 1, 1, 1]
])
def test_generate_oriented_forest():
assert list(generate_oriented_forest(5)) == [[0, 1, 2, 3, 4],
[0, 1, 2, 3, 3], [0, 1, 2, 3, 2], [0, 1, 2, 3, 1], [0, 1, 2, 3, 0],
[0, 1, 2, 2, 2], [0, 1, 2, 2, 1], [0, 1, 2, 2, 0], [0, 1, 2, 1, 2],
[0, 1, 2, 1, 1], [0, 1, 2, 1, 0], [0, 1, 2, 0, 1], [0, 1, 2, 0, 0],
[0, 1, 1, 1, 1], [0, 1, 1, 1, 0], [0, 1, 1, 0, 1], [0, 1, 1, 0, 0],
[0, 1, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 0]]
assert len(list(generate_oriented_forest(10))) == 1842
def test_unflatten():
r = list(range(10))
assert unflatten(r) == list(zip(r[::2], r[1::2]))
assert unflatten(r, 5) == [tuple(r[:5]), tuple(r[5:])]
raises(ValueError, lambda: unflatten(list(range(10)), 3))
raises(ValueError, lambda: unflatten(list(range(10)), -2))
def test_common_prefix_suffix():
assert common_prefix([], [1]) == []
assert common_prefix(list(range(3))) == [0, 1, 2]
assert common_prefix(list(range(3)), list(range(4))) == [0, 1, 2]
assert common_prefix([1, 2, 3], [1, 2, 5]) == [1, 2]
assert common_prefix([1, 2, 3], [1, 3, 5]) == [1]
assert common_suffix([], [1]) == []
assert common_suffix(list(range(3))) == [0, 1, 2]
assert common_suffix(list(range(3)), list(range(3))) == [0, 1, 2]
assert common_suffix(list(range(3)), list(range(4))) == []
assert common_suffix([1, 2, 3], [9, 2, 3]) == [2, 3]
assert common_suffix([1, 2, 3], [9, 7, 3]) == [3]
def test_minlex():
assert minlex([1, 2, 0]) == (0, 1, 2)
assert minlex((1, 2, 0)) == (0, 1, 2)
assert minlex((1, 0, 2)) == (0, 2, 1)
assert minlex((1, 0, 2), directed=False) == (0, 1, 2)
assert minlex('aba') == 'aab'
assert minlex(('bb', 'aaa', 'c', 'a'), key=len) == ('c', 'a', 'bb', 'aaa')
def test_ordered():
assert list(ordered((x, y), hash, default=False)) in [[x, y], [y, x]]
assert list(ordered((x, y), hash, default=False)) == \
list(ordered((y, x), hash, default=False))
assert list(ordered((x, y))) == [x, y]
seq, keys = [[[1, 2, 1], [0, 3, 1], [1, 1, 3], [2], [1]],
(lambda x: len(x), lambda x: sum(x))]
assert list(ordered(seq, keys, default=False, warn=False)) == \
[[1], [2], [1, 2, 1], [0, 3, 1], [1, 1, 3]]
raises(ValueError, lambda:
list(ordered(seq, keys, default=False, warn=True)))
def test_runs():
assert runs([]) == []
assert runs([1]) == [[1]]
assert runs([1, 1]) == [[1], [1]]
assert runs([1, 1, 2]) == [[1], [1, 2]]
assert runs([1, 2, 1]) == [[1, 2], [1]]
assert runs([2, 1, 1]) == [[2], [1], [1]]
from operator import lt
assert runs([2, 1, 1], lt) == [[2, 1], [1]]
def test_reshape():
seq = list(range(1, 9))
assert reshape(seq, [4]) == \
[[1, 2, 3, 4], [5, 6, 7, 8]]
assert reshape(seq, (4,)) == \
[(1, 2, 3, 4), (5, 6, 7, 8)]
assert reshape(seq, (2, 2)) == \
[(1, 2, 3, 4), (5, 6, 7, 8)]
assert reshape(seq, (2, [2])) == \
[(1, 2, [3, 4]), (5, 6, [7, 8])]
assert reshape(seq, ((2,), [2])) == \
[((1, 2), [3, 4]), ((5, 6), [7, 8])]
assert reshape(seq, (1, [2], 1)) == \
[(1, [2, 3], 4), (5, [6, 7], 8)]
assert reshape(tuple(seq), ([[1], 1, (2,)],)) == \
(([[1], 2, (3, 4)],), ([[5], 6, (7, 8)],))
assert reshape(tuple(seq), ([1], 1, (2,))) == \
(([1], 2, (3, 4)), ([5], 6, (7, 8)))
assert reshape(list(range(12)), [2, [3], {2}, (1, (3,), 1)]) == \
[[0, 1, [2, 3, 4], {5, 6}, (7, (8, 9, 10), 11)]]
raises(ValueError, lambda: reshape([0, 1], [-1]))
raises(ValueError, lambda: reshape([0, 1], [3]))
def test_uniq():
assert list(uniq(p for p in partitions(4))) == \
[{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}]
assert list(uniq(x % 2 for x in range(5))) == [0, 1]
assert list(uniq('a')) == ['a']
assert list(uniq('ababc')) == list('abc')
assert list(uniq([[1], [2, 1], [1]])) == [[1], [2, 1]]
assert list(uniq(permutations(i for i in [[1], 2, 2]))) == \
[([1], 2, 2), (2, [1], 2), (2, 2, [1])]
assert list(uniq([2, 3, 2, 4, [2], [1], [2], [3], [1]])) == \
[2, 3, 4, [2], [1], [3]]
f = [1]
raises(RuntimeError, lambda: [f.remove(i) for i in uniq(f)])
f = [[1]]
raises(RuntimeError, lambda: [f.remove(i) for i in uniq(f)])
def test_kbins():
assert len(list(kbins('1123', 2, ordered=1))) == 24
assert len(list(kbins('1123', 2, ordered=11))) == 36
assert len(list(kbins('1123', 2, ordered=10))) == 10
assert len(list(kbins('1123', 2, ordered=0))) == 5
assert len(list(kbins('1123', 2, ordered=None))) == 3
def test1():
for orderedval in [None, 0, 1, 10, 11]:
print('ordered =', orderedval)
for p in kbins([0, 0, 1], 2, ordered=orderedval):
print(' ', p)
assert capture(lambda : test1()) == dedent('''\
ordered = None
[[0], [0, 1]]
[[0, 0], [1]]
ordered = 0
[[0, 0], [1]]
[[0, 1], [0]]
ordered = 1
[[0], [0, 1]]
[[0], [1, 0]]
[[1], [0, 0]]
ordered = 10
[[0, 0], [1]]
[[1], [0, 0]]
[[0, 1], [0]]
[[0], [0, 1]]
ordered = 11
[[0], [0, 1]]
[[0, 0], [1]]
[[0], [1, 0]]
[[0, 1], [0]]
[[1], [0, 0]]
[[1, 0], [0]]\n''')
def test2():
for orderedval in [None, 0, 1, 10, 11]:
print('ordered =', orderedval)
for p in kbins(list(range(3)), 2, ordered=orderedval):
print(' ', p)
assert capture(lambda : test2()) == dedent('''\
ordered = None
[[0], [1, 2]]
[[0, 1], [2]]
ordered = 0
[[0, 1], [2]]
[[0, 2], [1]]
[[0], [1, 2]]
ordered = 1
[[0], [1, 2]]
[[0], [2, 1]]
[[1], [0, 2]]
[[1], [2, 0]]
[[2], [0, 1]]
[[2], [1, 0]]
ordered = 10
[[0, 1], [2]]
[[2], [0, 1]]
[[0, 2], [1]]
[[1], [0, 2]]
[[0], [1, 2]]
[[1, 2], [0]]
ordered = 11
[[0], [1, 2]]
[[0, 1], [2]]
[[0], [2, 1]]
[[0, 2], [1]]
[[1], [0, 2]]
[[1, 0], [2]]
[[1], [2, 0]]
[[1, 2], [0]]
[[2], [0, 1]]
[[2, 0], [1]]
[[2], [1, 0]]
[[2, 1], [0]]\n''')
def test_has_dups():
assert has_dups(set()) is False
assert has_dups(list(range(3))) is False
assert has_dups([1, 2, 1]) is True
def test__partition():
assert _partition('abcde', [1, 0, 1, 2, 0]) == [
['b', 'e'], ['a', 'c'], ['d']]
assert _partition('abcde', [1, 0, 1, 2, 0], 3) == [
['b', 'e'], ['a', 'c'], ['d']]
output = (3, [1, 0, 1, 2, 0])
assert _partition('abcde', *output) == [['b', 'e'], ['a', 'c'], ['d']]
def test_ordered_partitions():
from sympy.functions.combinatorial.numbers import nT
f = ordered_partitions
assert list(f(0, 1)) == [[]]
assert list(f(1, 0)) == [[]]
for i in range(1, 7):
for j in [None] + list(range(1, i)):
assert (
sum(1 for p in f(i, j, 1)) ==
sum(1 for p in f(i, j, 0)) ==
nT(i, j))
def test_rotations():
assert list(rotations('ab')) == [['a', 'b'], ['b', 'a']]
assert list(rotations(range(3))) == [[0, 1, 2], [1, 2, 0], [2, 0, 1]]
assert list(rotations(range(3), dir=-1)) == [[0, 1, 2], [2, 0, 1], [1, 2, 0]]
def test_ibin():
assert ibin(3) == [1, 1]
assert ibin(3, 3) == [0, 1, 1]
assert ibin(3, str=True) == '11'
assert ibin(3, 3, str=True) == '011'
assert list(ibin(2, 'all')) == [(0, 0), (0, 1), (1, 0), (1, 1)]
assert list(ibin(2, '', str=True)) == ['00', '01', '10', '11']
raises(ValueError, lambda: ibin(-.5))
raises(ValueError, lambda: ibin(2, 1))
|
de6f8cb5b7b55f1c99ccb8449babe34d0fd01fa322e07e1c5c907893d39e6ec4 | import itertools
from sympy.core import S
from sympy.core.containers import Tuple
from sympy.core.function import _coeff_isneg
from sympy.core.mul import Mul
from sympy.core.numbers import Number, Rational
from sympy.core.power import Pow
from sympy.core.symbol import Symbol
from sympy.core.sympify import SympifyError
from sympy.printing.conventions import requires_partial
from sympy.printing.precedence import PRECEDENCE, precedence, precedence_traditional
from sympy.printing.printer import Printer, print_function
from sympy.printing.str import sstr
from sympy.utilities import default_sort_key
from sympy.utilities.iterables import has_variety
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.printing.pretty.stringpict import prettyForm, stringPict
from sympy.printing.pretty.pretty_symbology import hobj, vobj, xobj, \
xsym, pretty_symbol, pretty_atom, pretty_use_unicode, greek_unicode, U, \
pretty_try_use_unicode, annotated
# rename for usage from outside
pprint_use_unicode = pretty_use_unicode
pprint_try_use_unicode = pretty_try_use_unicode
class PrettyPrinter(Printer):
"""Printer, which converts an expression into 2D ASCII-art figure."""
printmethod = "_pretty"
_default_settings = {
"order": None,
"full_prec": "auto",
"use_unicode": None,
"wrap_line": True,
"num_columns": None,
"use_unicode_sqrt_char": True,
"root_notation": True,
"mat_symbol_style": "plain",
"imaginary_unit": "i",
"perm_cyclic": True
}
def __init__(self, settings=None):
Printer.__init__(self, settings)
if not isinstance(self._settings['imaginary_unit'], str):
raise TypeError("'imaginary_unit' must a string, not {}".format(self._settings['imaginary_unit']))
elif self._settings['imaginary_unit'] not in ["i", "j"]:
raise ValueError("'imaginary_unit' must be either 'i' or 'j', not '{}'".format(self._settings['imaginary_unit']))
def emptyPrinter(self, expr):
return prettyForm(str(expr))
@property
def _use_unicode(self):
if self._settings['use_unicode']:
return True
else:
return pretty_use_unicode()
def doprint(self, expr):
return self._print(expr).render(**self._settings)
# empty op so _print(stringPict) returns the same
def _print_stringPict(self, e):
return e
def _print_basestring(self, e):
return prettyForm(e)
def _print_atan2(self, e):
pform = prettyForm(*self._print_seq(e.args).parens())
pform = prettyForm(*pform.left('atan2'))
return pform
def _print_Symbol(self, e, bold_name=False):
symb = pretty_symbol(e.name, bold_name)
return prettyForm(symb)
_print_RandomSymbol = _print_Symbol
def _print_MatrixSymbol(self, e):
return self._print_Symbol(e, self._settings['mat_symbol_style'] == "bold")
def _print_Float(self, e):
# we will use StrPrinter's Float printer, but we need to handle the
# full_prec ourselves, according to the self._print_level
full_prec = self._settings["full_prec"]
if full_prec == "auto":
full_prec = self._print_level == 1
return prettyForm(sstr(e, full_prec=full_prec))
def _print_Cross(self, e):
vec1 = e._expr1
vec2 = e._expr2
pform = self._print(vec2)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
pform = prettyForm(*pform.left(')'))
pform = prettyForm(*pform.left(self._print(vec1)))
pform = prettyForm(*pform.left('('))
return pform
def _print_Curl(self, e):
vec = e._expr
pform = self._print(vec)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Divergence(self, e):
vec = e._expr
pform = self._print(vec)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Dot(self, e):
vec1 = e._expr1
vec2 = e._expr2
pform = self._print(vec2)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
pform = prettyForm(*pform.left(')'))
pform = prettyForm(*pform.left(self._print(vec1)))
pform = prettyForm(*pform.left('('))
return pform
def _print_Gradient(self, e):
func = e._expr
pform = self._print(func)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Laplacian(self, e):
func = e._expr
pform = self._print(func)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('INCREMENT'))))
return pform
def _print_Atom(self, e):
try:
# print atoms like Exp1 or Pi
return prettyForm(pretty_atom(e.__class__.__name__, printer=self))
except KeyError:
return self.emptyPrinter(e)
# Infinity inherits from Number, so we have to override _print_XXX order
_print_Infinity = _print_Atom
_print_NegativeInfinity = _print_Atom
_print_EmptySet = _print_Atom
_print_Naturals = _print_Atom
_print_Naturals0 = _print_Atom
_print_Integers = _print_Atom
_print_Rationals = _print_Atom
_print_Complexes = _print_Atom
_print_EmptySequence = _print_Atom
def _print_Reals(self, e):
if self._use_unicode:
return self._print_Atom(e)
else:
inf_list = ['-oo', 'oo']
return self._print_seq(inf_list, '(', ')')
def _print_subfactorial(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('!'))
return pform
def _print_factorial(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right('!'))
return pform
def _print_factorial2(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right('!!'))
return pform
def _print_binomial(self, e):
n, k = e.args
n_pform = self._print(n)
k_pform = self._print(k)
bar = ' '*max(n_pform.width(), k_pform.width())
pform = prettyForm(*k_pform.above(bar))
pform = prettyForm(*pform.above(n_pform))
pform = prettyForm(*pform.parens('(', ')'))
pform.baseline = (pform.baseline + 1)//2
return pform
def _print_Relational(self, e):
op = prettyForm(' ' + xsym(e.rel_op) + ' ')
l = self._print(e.lhs)
r = self._print(e.rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
def _print_Not(self, e):
from sympy import Equivalent, Implies
if self._use_unicode:
arg = e.args[0]
pform = self._print(arg)
if isinstance(arg, Equivalent):
return self._print_Equivalent(arg, altchar="\N{LEFT RIGHT DOUBLE ARROW WITH STROKE}")
if isinstance(arg, Implies):
return self._print_Implies(arg, altchar="\N{RIGHTWARDS ARROW WITH STROKE}")
if arg.is_Boolean and not arg.is_Not:
pform = prettyForm(*pform.parens())
return prettyForm(*pform.left("\N{NOT SIGN}"))
else:
return self._print_Function(e)
def __print_Boolean(self, e, char, sort=True):
args = e.args
if sort:
args = sorted(e.args, key=default_sort_key)
arg = args[0]
pform = self._print(arg)
if arg.is_Boolean and not arg.is_Not:
pform = prettyForm(*pform.parens())
for arg in args[1:]:
pform_arg = self._print(arg)
if arg.is_Boolean and not arg.is_Not:
pform_arg = prettyForm(*pform_arg.parens())
pform = prettyForm(*pform.right(' %s ' % char))
pform = prettyForm(*pform.right(pform_arg))
return pform
def _print_And(self, e):
if self._use_unicode:
return self.__print_Boolean(e, "\N{LOGICAL AND}")
else:
return self._print_Function(e, sort=True)
def _print_Or(self, e):
if self._use_unicode:
return self.__print_Boolean(e, "\N{LOGICAL OR}")
else:
return self._print_Function(e, sort=True)
def _print_Xor(self, e):
if self._use_unicode:
return self.__print_Boolean(e, "\N{XOR}")
else:
return self._print_Function(e, sort=True)
def _print_Nand(self, e):
if self._use_unicode:
return self.__print_Boolean(e, "\N{NAND}")
else:
return self._print_Function(e, sort=True)
def _print_Nor(self, e):
if self._use_unicode:
return self.__print_Boolean(e, "\N{NOR}")
else:
return self._print_Function(e, sort=True)
def _print_Implies(self, e, altchar=None):
if self._use_unicode:
return self.__print_Boolean(e, altchar or "\N{RIGHTWARDS ARROW}", sort=False)
else:
return self._print_Function(e)
def _print_Equivalent(self, e, altchar=None):
if self._use_unicode:
return self.__print_Boolean(e, altchar or "\N{LEFT RIGHT DOUBLE ARROW}")
else:
return self._print_Function(e, sort=True)
def _print_conjugate(self, e):
pform = self._print(e.args[0])
return prettyForm( *pform.above( hobj('_', pform.width())) )
def _print_Abs(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('|', '|'))
return pform
_print_Determinant = _print_Abs
def _print_floor(self, e):
if self._use_unicode:
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('lfloor', 'rfloor'))
return pform
else:
return self._print_Function(e)
def _print_ceiling(self, e):
if self._use_unicode:
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('lceil', 'rceil'))
return pform
else:
return self._print_Function(e)
def _print_Derivative(self, deriv):
if requires_partial(deriv.expr) and self._use_unicode:
deriv_symbol = U('PARTIAL DIFFERENTIAL')
else:
deriv_symbol = r'd'
x = None
count_total_deriv = 0
for sym, num in reversed(deriv.variable_count):
s = self._print(sym)
ds = prettyForm(*s.left(deriv_symbol))
count_total_deriv += num
if (not num.is_Integer) or (num > 1):
ds = ds**prettyForm(str(num))
if x is None:
x = ds
else:
x = prettyForm(*x.right(' '))
x = prettyForm(*x.right(ds))
f = prettyForm(
binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
pform = prettyForm(deriv_symbol)
if (count_total_deriv > 1) != False:
pform = pform**prettyForm(str(count_total_deriv))
pform = prettyForm(*pform.below(stringPict.LINE, x))
pform.baseline = pform.baseline + 1
pform = prettyForm(*stringPict.next(pform, f))
pform.binding = prettyForm.MUL
return pform
def _print_Cycle(self, dc):
from sympy.combinatorics.permutations import Permutation, Cycle
# for Empty Cycle
if dc == Cycle():
cyc = stringPict('')
return prettyForm(*cyc.parens())
dc_list = Permutation(dc.list()).cyclic_form
# for Identity Cycle
if dc_list == []:
cyc = self._print(dc.size - 1)
return prettyForm(*cyc.parens())
cyc = stringPict('')
for i in dc_list:
l = self._print(str(tuple(i)).replace(',', ''))
cyc = prettyForm(*cyc.right(l))
return cyc
def _print_Permutation(self, expr):
from sympy.combinatorics.permutations import Permutation, Cycle
perm_cyclic = Permutation.print_cyclic
if perm_cyclic is not None:
SymPyDeprecationWarning(
feature="Permutation.print_cyclic = {}".format(perm_cyclic),
useinstead="init_printing(perm_cyclic={})"
.format(perm_cyclic),
issue=15201,
deprecated_since_version="1.6").warn()
else:
perm_cyclic = self._settings.get("perm_cyclic", True)
if perm_cyclic:
return self._print_Cycle(Cycle(expr))
lower = expr.array_form
upper = list(range(len(lower)))
result = stringPict('')
first = True
for u, l in zip(upper, lower):
s1 = self._print(u)
s2 = self._print(l)
col = prettyForm(*s1.below(s2))
if first:
first = False
else:
col = prettyForm(*col.left(" "))
result = prettyForm(*result.right(col))
return prettyForm(*result.parens())
def _print_Integral(self, integral):
f = integral.function
# Add parentheses if arg involves addition of terms and
# create a pretty form for the argument
prettyF = self._print(f)
# XXX generalize parens
if f.is_Add:
prettyF = prettyForm(*prettyF.parens())
# dx dy dz ...
arg = prettyF
for x in integral.limits:
prettyArg = self._print(x[0])
# XXX qparens (parens if needs-parens)
if prettyArg.width() > 1:
prettyArg = prettyForm(*prettyArg.parens())
arg = prettyForm(*arg.right(' d', prettyArg))
# \int \int \int ...
firstterm = True
s = None
for lim in integral.limits:
# Create bar based on the height of the argument
h = arg.height()
H = h + 2
# XXX hack!
ascii_mode = not self._use_unicode
if ascii_mode:
H += 2
vint = vobj('int', H)
# Construct the pretty form with the integral sign and the argument
pform = prettyForm(vint)
pform.baseline = arg.baseline + (
H - h)//2 # covering the whole argument
if len(lim) > 1:
# Create pretty forms for endpoints, if definite integral.
# Do not print empty endpoints.
if len(lim) == 2:
prettyA = prettyForm("")
prettyB = self._print(lim[1])
if len(lim) == 3:
prettyA = self._print(lim[1])
prettyB = self._print(lim[2])
if ascii_mode: # XXX hack
# Add spacing so that endpoint can more easily be
# identified with the correct integral sign
spc = max(1, 3 - prettyB.width())
prettyB = prettyForm(*prettyB.left(' ' * spc))
spc = max(1, 4 - prettyA.width())
prettyA = prettyForm(*prettyA.right(' ' * spc))
pform = prettyForm(*pform.above(prettyB))
pform = prettyForm(*pform.below(prettyA))
if not ascii_mode: # XXX hack
pform = prettyForm(*pform.right(' '))
if firstterm:
s = pform # first term
firstterm = False
else:
s = prettyForm(*s.left(pform))
pform = prettyForm(*arg.left(s))
pform.binding = prettyForm.MUL
return pform
def _print_Product(self, expr):
func = expr.term
pretty_func = self._print(func)
horizontal_chr = xobj('_', 1)
corner_chr = xobj('_', 1)
vertical_chr = xobj('|', 1)
if self._use_unicode:
# use unicode corners
horizontal_chr = xobj('-', 1)
corner_chr = '\N{BOX DRAWINGS LIGHT DOWN AND HORIZONTAL}'
func_height = pretty_func.height()
first = True
max_upper = 0
sign_height = 0
for lim in expr.limits:
pretty_lower, pretty_upper = self.__print_SumProduct_Limits(lim)
width = (func_height + 2) * 5 // 3 - 2
sign_lines = [horizontal_chr + corner_chr + (horizontal_chr * (width-2)) + corner_chr + horizontal_chr]
for _ in range(func_height + 1):
sign_lines.append(' ' + vertical_chr + (' ' * (width-2)) + vertical_chr + ' ')
pretty_sign = stringPict('')
pretty_sign = prettyForm(*pretty_sign.stack(*sign_lines))
max_upper = max(max_upper, pretty_upper.height())
if first:
sign_height = pretty_sign.height()
pretty_sign = prettyForm(*pretty_sign.above(pretty_upper))
pretty_sign = prettyForm(*pretty_sign.below(pretty_lower))
if first:
pretty_func.baseline = 0
first = False
height = pretty_sign.height()
padding = stringPict('')
padding = prettyForm(*padding.stack(*[' ']*(height - 1)))
pretty_sign = prettyForm(*pretty_sign.right(padding))
pretty_func = prettyForm(*pretty_sign.right(pretty_func))
pretty_func.baseline = max_upper + sign_height//2
pretty_func.binding = prettyForm.MUL
return pretty_func
def __print_SumProduct_Limits(self, lim):
def print_start(lhs, rhs):
op = prettyForm(' ' + xsym("==") + ' ')
l = self._print(lhs)
r = self._print(rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
prettyUpper = self._print(lim[2])
prettyLower = print_start(lim[0], lim[1])
return prettyLower, prettyUpper
def _print_Sum(self, expr):
ascii_mode = not self._use_unicode
def asum(hrequired, lower, upper, use_ascii):
def adjust(s, wid=None, how='<^>'):
if not wid or len(s) > wid:
return s
need = wid - len(s)
if how == '<^>' or how == "<" or how not in list('<^>'):
return s + ' '*need
half = need//2
lead = ' '*half
if how == ">":
return " "*need + s
return lead + s + ' '*(need - len(lead))
h = max(hrequired, 2)
d = h//2
w = d + 1
more = hrequired % 2
lines = []
if use_ascii:
lines.append("_"*(w) + ' ')
lines.append(r"\%s`" % (' '*(w - 1)))
for i in range(1, d):
lines.append('%s\\%s' % (' '*i, ' '*(w - i)))
if more:
lines.append('%s)%s' % (' '*(d), ' '*(w - d)))
for i in reversed(range(1, d)):
lines.append('%s/%s' % (' '*i, ' '*(w - i)))
lines.append("/" + "_"*(w - 1) + ',')
return d, h + more, lines, more
else:
w = w + more
d = d + more
vsum = vobj('sum', 4)
lines.append("_"*(w))
for i in range(0, d):
lines.append('%s%s%s' % (' '*i, vsum[2], ' '*(w - i - 1)))
for i in reversed(range(0, d)):
lines.append('%s%s%s' % (' '*i, vsum[4], ' '*(w - i - 1)))
lines.append(vsum[8]*(w))
return d, h + 2*more, lines, more
f = expr.function
prettyF = self._print(f)
if f.is_Add: # add parens
prettyF = prettyForm(*prettyF.parens())
H = prettyF.height() + 2
# \sum \sum \sum ...
first = True
max_upper = 0
sign_height = 0
for lim in expr.limits:
prettyLower, prettyUpper = self.__print_SumProduct_Limits(lim)
max_upper = max(max_upper, prettyUpper.height())
# Create sum sign based on the height of the argument
d, h, slines, adjustment = asum(
H, prettyLower.width(), prettyUpper.width(), ascii_mode)
prettySign = stringPict('')
prettySign = prettyForm(*prettySign.stack(*slines))
if first:
sign_height = prettySign.height()
prettySign = prettyForm(*prettySign.above(prettyUpper))
prettySign = prettyForm(*prettySign.below(prettyLower))
if first:
# change F baseline so it centers on the sign
prettyF.baseline -= d - (prettyF.height()//2 -
prettyF.baseline)
first = False
# put padding to the right
pad = stringPict('')
pad = prettyForm(*pad.stack(*[' ']*h))
prettySign = prettyForm(*prettySign.right(pad))
# put the present prettyF to the right
prettyF = prettyForm(*prettySign.right(prettyF))
# adjust baseline of ascii mode sigma with an odd height so that it is
# exactly through the center
ascii_adjustment = ascii_mode if not adjustment else 0
prettyF.baseline = max_upper + sign_height//2 + ascii_adjustment
prettyF.binding = prettyForm.MUL
return prettyF
def _print_Limit(self, l):
e, z, z0, dir = l.args
E = self._print(e)
if precedence(e) <= PRECEDENCE["Mul"]:
E = prettyForm(*E.parens('(', ')'))
Lim = prettyForm('lim')
LimArg = self._print(z)
if self._use_unicode:
LimArg = prettyForm(*LimArg.right('\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{RIGHTWARDS ARROW}'))
else:
LimArg = prettyForm(*LimArg.right('->'))
LimArg = prettyForm(*LimArg.right(self._print(z0)))
if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity):
dir = ""
else:
if self._use_unicode:
dir = '\N{SUPERSCRIPT PLUS SIGN}' if str(dir) == "+" else '\N{SUPERSCRIPT MINUS}'
LimArg = prettyForm(*LimArg.right(self._print(dir)))
Lim = prettyForm(*Lim.below(LimArg))
Lim = prettyForm(*Lim.right(E), binding=prettyForm.MUL)
return Lim
def _print_matrix_contents(self, e):
"""
This method factors out what is essentially grid printing.
"""
M = e # matrix
Ms = {} # i,j -> pretty(M[i,j])
for i in range(M.rows):
for j in range(M.cols):
Ms[i, j] = self._print(M[i, j])
# h- and v- spacers
hsep = 2
vsep = 1
# max width for columns
maxw = [-1] * M.cols
for j in range(M.cols):
maxw[j] = max([Ms[i, j].width() for i in range(M.rows)] or [0])
# drawing result
D = None
for i in range(M.rows):
D_row = None
for j in range(M.cols):
s = Ms[i, j]
# reshape s to maxw
# XXX this should be generalized, and go to stringPict.reshape ?
assert s.width() <= maxw[j]
# hcenter it, +0.5 to the right 2
# ( it's better to align formula starts for say 0 and r )
# XXX this is not good in all cases -- maybe introduce vbaseline?
wdelta = maxw[j] - s.width()
wleft = wdelta // 2
wright = wdelta - wleft
s = prettyForm(*s.right(' '*wright))
s = prettyForm(*s.left(' '*wleft))
# we don't need vcenter cells -- this is automatically done in
# a pretty way because when their baselines are taking into
# account in .right()
if D_row is None:
D_row = s # first box in a row
continue
D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
D_row = prettyForm(*D_row.right(s))
if D is None:
D = D_row # first row in a picture
continue
# v-spacer
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
if D is None:
D = prettyForm('') # Empty Matrix
return D
def _print_MatrixBase(self, e):
D = self._print_matrix_contents(e)
D.baseline = D.height()//2
D = prettyForm(*D.parens('[', ']'))
return D
def _print_TensorProduct(self, expr):
# This should somehow share the code with _print_WedgeProduct:
circled_times = "\u2297"
return self._print_seq(expr.args, None, None, circled_times,
parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
def _print_WedgeProduct(self, expr):
# This should somehow share the code with _print_TensorProduct:
wedge_symbol = "\u2227"
return self._print_seq(expr.args, None, None, wedge_symbol,
parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
def _print_Trace(self, e):
D = self._print(e.arg)
D = prettyForm(*D.parens('(',')'))
D.baseline = D.height()//2
D = prettyForm(*D.left('\n'*(0) + 'tr'))
return D
def _print_MatrixElement(self, expr):
from sympy.matrices import MatrixSymbol
from sympy import Symbol
if (isinstance(expr.parent, MatrixSymbol)
and expr.i.is_number and expr.j.is_number):
return self._print(
Symbol(expr.parent.name + '_%d%d' % (expr.i, expr.j)))
else:
prettyFunc = self._print(expr.parent)
prettyFunc = prettyForm(*prettyFunc.parens())
prettyIndices = self._print_seq((expr.i, expr.j), delimiter=', '
).parens(left='[', right=']')[0]
pform = prettyForm(binding=prettyForm.FUNC,
*stringPict.next(prettyFunc, prettyIndices))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyIndices
return pform
def _print_MatrixSlice(self, m):
# XXX works only for applied functions
from sympy.matrices import MatrixSymbol
prettyFunc = self._print(m.parent)
if not isinstance(m.parent, MatrixSymbol):
prettyFunc = prettyForm(*prettyFunc.parens())
def ppslice(x, dim):
x = list(x)
if x[2] == 1:
del x[2]
if x[0] == 0:
x[0] = ''
if x[1] == dim:
x[1] = ''
return prettyForm(*self._print_seq(x, delimiter=':'))
prettyArgs = self._print_seq((ppslice(m.rowslice, m.parent.rows),
ppslice(m.colslice, m.parent.cols)), delimiter=', ').parens(left='[', right=']')[0]
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_Transpose(self, expr):
pform = self._print(expr.arg)
from sympy.matrices import MatrixSymbol
if not isinstance(expr.arg, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**(prettyForm('T'))
return pform
def _print_Adjoint(self, expr):
pform = self._print(expr.arg)
if self._use_unicode:
dag = prettyForm('\N{DAGGER}')
else:
dag = prettyForm('+')
from sympy.matrices import MatrixSymbol
if not isinstance(expr.arg, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**dag
return pform
def _print_BlockMatrix(self, B):
if B.blocks.shape == (1, 1):
return self._print(B.blocks[0, 0])
return self._print(B.blocks)
def _print_MatAdd(self, expr):
s = None
for item in expr.args:
pform = self._print(item)
if s is None:
s = pform # First element
else:
coeff = item.as_coeff_mmul()[0]
if _coeff_isneg(S(coeff)):
s = prettyForm(*stringPict.next(s, ' '))
pform = self._print(item)
else:
s = prettyForm(*stringPict.next(s, ' + '))
s = prettyForm(*stringPict.next(s, pform))
return s
def _print_MatMul(self, expr):
args = list(expr.args)
from sympy import Add, MatAdd, HadamardProduct, KroneckerProduct
for i, a in enumerate(args):
if (isinstance(a, (Add, MatAdd, HadamardProduct, KroneckerProduct))
and len(expr.args) > 1):
args[i] = prettyForm(*self._print(a).parens())
else:
args[i] = self._print(a)
return prettyForm.__mul__(*args)
def _print_Identity(self, expr):
if self._use_unicode:
return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL I}')
else:
return prettyForm('I')
def _print_ZeroMatrix(self, expr):
if self._use_unicode:
return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO}')
else:
return prettyForm('0')
def _print_OneMatrix(self, expr):
if self._use_unicode:
return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ONE}')
else:
return prettyForm('1')
def _print_DotProduct(self, expr):
args = list(expr.args)
for i, a in enumerate(args):
args[i] = self._print(a)
return prettyForm.__mul__(*args)
def _print_MatPow(self, expr):
pform = self._print(expr.base)
from sympy.matrices import MatrixSymbol
if not isinstance(expr.base, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**(self._print(expr.exp))
return pform
def _print_HadamardProduct(self, expr):
from sympy import MatAdd, MatMul, HadamardProduct
if self._use_unicode:
delim = pretty_atom('Ring')
else:
delim = '.*'
return self._print_seq(expr.args, None, None, delim,
parenthesize=lambda x: isinstance(x, (MatAdd, MatMul, HadamardProduct)))
def _print_HadamardPower(self, expr):
# from sympy import MatAdd, MatMul
if self._use_unicode:
circ = pretty_atom('Ring')
else:
circ = self._print('.')
pretty_base = self._print(expr.base)
pretty_exp = self._print(expr.exp)
if precedence(expr.exp) < PRECEDENCE["Mul"]:
pretty_exp = prettyForm(*pretty_exp.parens())
pretty_circ_exp = prettyForm(
binding=prettyForm.LINE,
*stringPict.next(circ, pretty_exp)
)
return pretty_base**pretty_circ_exp
def _print_KroneckerProduct(self, expr):
from sympy import MatAdd, MatMul
if self._use_unicode:
delim = ' \N{N-ARY CIRCLED TIMES OPERATOR} '
else:
delim = ' x '
return self._print_seq(expr.args, None, None, delim,
parenthesize=lambda x: isinstance(x, (MatAdd, MatMul)))
def _print_FunctionMatrix(self, X):
D = self._print(X.lamda.expr)
D = prettyForm(*D.parens('[', ']'))
return D
def _print_TransferFunction(self, expr):
if not expr.num == 1:
num, den = expr.num, expr.den
res = Mul(num, Pow(den, -1, evaluate=False), evaluate=False)
return self._print_Mul(res)
else:
return self._print(1)/self._print(expr.den)
def _print_Series(self, expr):
args = list(expr.args)
for i, a in enumerate(expr.args):
args[i] = prettyForm(*self._print(a).parens())
return prettyForm.__mul__(*args)
def _print_MIMOSeries(self, expr):
from sympy.physics.control.lti import MIMOParallel
args = list(expr.args)
pretty_args = []
for i, a in enumerate(reversed(args)):
if (isinstance(a, MIMOParallel) and len(expr.args) > 1):
expression = self._print(a)
expression.baseline = expression.height()//2
pretty_args.append(prettyForm(*expression.parens()))
else:
expression = self._print(a)
expression.baseline = expression.height()//2
pretty_args.append(expression)
return prettyForm.__mul__(*pretty_args)
def _print_Parallel(self, expr):
s = None
for item in expr.args:
pform = self._print(item)
if s is None:
s = pform # First element
else:
s = prettyForm(*stringPict.next(s))
s.baseline = s.height()//2
s = prettyForm(*stringPict.next(s, ' + '))
s = prettyForm(*stringPict.next(s, pform))
return s
def _print_MIMOParallel(self, expr):
from sympy.physics.control.lti import TransferFunctionMatrix
s = None
for item in expr.args:
pform = self._print(item)
if s is None:
s = pform # First element
else:
s = prettyForm(*stringPict.next(s))
s.baseline = s.height()//2
s = prettyForm(*stringPict.next(s, ' + '))
if isinstance(item, TransferFunctionMatrix):
s.baseline = s.height() - 1
s = prettyForm(*stringPict.next(s, pform))
# s.baseline = s.height()//2
return s
def _print_Feedback(self, expr):
from sympy.physics.control import TransferFunction, Series
num, tf = expr.sys1, TransferFunction(1, 1, expr.var)
num_arg_list = list(num.args) if isinstance(num, Series) else [num]
den_arg_list = list(expr.sys2.args) if \
isinstance(expr.sys2, Series) else [expr.sys2]
if isinstance(num, Series) and isinstance(expr.sys2, Series):
den = Series(*num_arg_list, *den_arg_list)
elif isinstance(num, Series) and isinstance(expr.sys2, TransferFunction):
if expr.sys2 == tf:
den = Series(*num_arg_list)
else:
den = Series(*num_arg_list, expr.sys2)
elif isinstance(num, TransferFunction) and isinstance(expr.sys2, Series):
if num == tf:
den = Series(*den_arg_list)
else:
den = Series(num, *den_arg_list)
else:
if num == tf:
den = Series(*den_arg_list)
elif expr.sys2 == tf:
den = Series(*num_arg_list)
else:
den = Series(*num_arg_list, *den_arg_list)
denom = prettyForm(*stringPict.next(self._print(tf)))
denom.baseline = denom.height()//2
denom = prettyForm(*stringPict.next(denom, ' + ')) if expr.sign == -1 \
else prettyForm(*stringPict.next(denom, ' - '))
denom = prettyForm(*stringPict.next(denom, self._print(den)))
return self._print(num)/denom
def _print_MIMOFeedback(self, expr):
from sympy.physics.control import MIMOSeries, TransferFunctionMatrix
inv_mat = self._print(MIMOSeries(expr.sys2, expr.sys1))
plant = self._print(expr.sys1)
_feedback = prettyForm(*stringPict.next(inv_mat))
_feedback = prettyForm(*stringPict.right("I + ", _feedback)) if expr.sign == -1 \
else prettyForm(*stringPict.right("I - ", _feedback))
_feedback = prettyForm(*stringPict.parens(_feedback))
_feedback.baseline = 0
_feedback = prettyForm(*stringPict.right(_feedback, '-1 '))
_feedback.baseline = _feedback.height()//2
_feedback = prettyForm.__mul__(_feedback, prettyForm(" "))
if isinstance(expr.sys1, TransferFunctionMatrix):
_feedback.baseline = _feedback.height() - 1
_feedback = prettyForm(*stringPict.next(_feedback, plant))
return _feedback
def _print_TransferFunctionMatrix(self, expr):
mat = self._print(expr._expr_mat)
mat.baseline = mat.height() - 1
subscript = greek_unicode['tau'] if self._use_unicode else r'{t}'
mat = prettyForm(*mat.right(subscript))
return mat
def _print_BasisDependent(self, expr):
from sympy.vector import Vector
if not self._use_unicode:
raise NotImplementedError("ASCII pretty printing of BasisDependent is not implemented")
if expr == expr.zero:
return prettyForm(expr.zero._pretty_form)
o1 = []
vectstrs = []
if isinstance(expr, Vector):
items = expr.separate().items()
else:
items = [(0, expr)]
for system, vect in items:
inneritems = list(vect.components.items())
inneritems.sort(key = lambda x: x[0].__str__())
for k, v in inneritems:
#if the coef of the basis vector is 1
#we skip the 1
if v == 1:
o1.append("" +
k._pretty_form)
#Same for -1
elif v == -1:
o1.append("(-1) " +
k._pretty_form)
#For a general expr
else:
#We always wrap the measure numbers in
#parentheses
arg_str = self._print(
v).parens()[0]
o1.append(arg_str + ' ' + k._pretty_form)
vectstrs.append(k._pretty_form)
#outstr = u("").join(o1)
if o1[0].startswith(" + "):
o1[0] = o1[0][3:]
elif o1[0].startswith(" "):
o1[0] = o1[0][1:]
#Fixing the newlines
lengths = []
strs = ['']
flag = []
for i, partstr in enumerate(o1):
flag.append(0)
# XXX: What is this hack?
if '\n' in partstr:
tempstr = partstr
tempstr = tempstr.replace(vectstrs[i], '')
if '\N{right parenthesis extension}' in tempstr: # If scalar is a fraction
for paren in range(len(tempstr)):
flag[i] = 1
if tempstr[paren] == '\N{right parenthesis extension}':
tempstr = tempstr[:paren] + '\N{right parenthesis extension}'\
+ ' ' + vectstrs[i] + tempstr[paren + 1:]
break
elif '\N{RIGHT PARENTHESIS LOWER HOOK}' in tempstr:
flag[i] = 1
tempstr = tempstr.replace('\N{RIGHT PARENTHESIS LOWER HOOK}',
'\N{RIGHT PARENTHESIS LOWER HOOK}'
+ ' ' + vectstrs[i])
else:
tempstr = tempstr.replace('\N{RIGHT PARENTHESIS UPPER HOOK}',
'\N{RIGHT PARENTHESIS UPPER HOOK}'
+ ' ' + vectstrs[i])
o1[i] = tempstr
o1 = [x.split('\n') for x in o1]
n_newlines = max([len(x) for x in o1]) # Width of part in its pretty form
if 1 in flag: # If there was a fractional scalar
for i, parts in enumerate(o1):
if len(parts) == 1: # If part has no newline
parts.insert(0, ' ' * (len(parts[0])))
flag[i] = 1
for i, parts in enumerate(o1):
lengths.append(len(parts[flag[i]]))
for j in range(n_newlines):
if j+1 <= len(parts):
if j >= len(strs):
strs.append(' ' * (sum(lengths[:-1]) +
3*(len(lengths)-1)))
if j == flag[i]:
strs[flag[i]] += parts[flag[i]] + ' + '
else:
strs[j] += parts[j] + ' '*(lengths[-1] -
len(parts[j])+
3)
else:
if j >= len(strs):
strs.append(' ' * (sum(lengths[:-1]) +
3*(len(lengths)-1)))
strs[j] += ' '*(lengths[-1]+3)
return prettyForm('\n'.join([s[:-3] for s in strs]))
def _print_NDimArray(self, expr):
from sympy import ImmutableMatrix
if expr.rank() == 0:
return self._print(expr[()])
level_str = [[]] + [[] for i in range(expr.rank())]
shape_ranges = [list(range(i)) for i in expr.shape]
# leave eventual matrix elements unflattened
mat = lambda x: ImmutableMatrix(x, evaluate=False)
for outer_i in itertools.product(*shape_ranges):
level_str[-1].append(expr[outer_i])
even = True
for back_outer_i in range(expr.rank()-1, -1, -1):
if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]:
break
if even:
level_str[back_outer_i].append(level_str[back_outer_i+1])
else:
level_str[back_outer_i].append(mat(
level_str[back_outer_i+1]))
if len(level_str[back_outer_i + 1]) == 1:
level_str[back_outer_i][-1] = mat(
[[level_str[back_outer_i][-1]]])
even = not even
level_str[back_outer_i+1] = []
out_expr = level_str[0][0]
if expr.rank() % 2 == 1:
out_expr = mat([out_expr])
return self._print(out_expr)
def _printer_tensor_indices(self, name, indices, index_map={}):
center = stringPict(name)
top = stringPict(" "*center.width())
bot = stringPict(" "*center.width())
last_valence = None
prev_map = None
for i, index in enumerate(indices):
indpic = self._print(index.args[0])
if ((index in index_map) or prev_map) and last_valence == index.is_up:
if index.is_up:
top = prettyForm(*stringPict.next(top, ","))
else:
bot = prettyForm(*stringPict.next(bot, ","))
if index in index_map:
indpic = prettyForm(*stringPict.next(indpic, "="))
indpic = prettyForm(*stringPict.next(indpic, self._print(index_map[index])))
prev_map = True
else:
prev_map = False
if index.is_up:
top = stringPict(*top.right(indpic))
center = stringPict(*center.right(" "*indpic.width()))
bot = stringPict(*bot.right(" "*indpic.width()))
else:
bot = stringPict(*bot.right(indpic))
center = stringPict(*center.right(" "*indpic.width()))
top = stringPict(*top.right(" "*indpic.width()))
last_valence = index.is_up
pict = prettyForm(*center.above(top))
pict = prettyForm(*pict.below(bot))
return pict
def _print_Tensor(self, expr):
name = expr.args[0].name
indices = expr.get_indices()
return self._printer_tensor_indices(name, indices)
def _print_TensorElement(self, expr):
name = expr.expr.args[0].name
indices = expr.expr.get_indices()
index_map = expr.index_map
return self._printer_tensor_indices(name, indices, index_map)
def _print_TensMul(self, expr):
sign, args = expr._get_args_for_traditional_printer()
args = [
prettyForm(*self._print(i).parens()) if
precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
for i in args
]
pform = prettyForm.__mul__(*args)
if sign:
return prettyForm(*pform.left(sign))
else:
return pform
def _print_TensAdd(self, expr):
args = [
prettyForm(*self._print(i).parens()) if
precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
for i in expr.args
]
return prettyForm.__add__(*args)
def _print_TensorIndex(self, expr):
sym = expr.args[0]
if not expr.is_up:
sym = -sym
return self._print(sym)
def _print_PartialDerivative(self, deriv):
if self._use_unicode:
deriv_symbol = U('PARTIAL DIFFERENTIAL')
else:
deriv_symbol = r'd'
x = None
for variable in reversed(deriv.variables):
s = self._print(variable)
ds = prettyForm(*s.left(deriv_symbol))
if x is None:
x = ds
else:
x = prettyForm(*x.right(' '))
x = prettyForm(*x.right(ds))
f = prettyForm(
binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
pform = prettyForm(deriv_symbol)
if len(deriv.variables) > 1:
pform = pform**self._print(len(deriv.variables))
pform = prettyForm(*pform.below(stringPict.LINE, x))
pform.baseline = pform.baseline + 1
pform = prettyForm(*stringPict.next(pform, f))
pform.binding = prettyForm.MUL
return pform
def _print_Piecewise(self, pexpr):
P = {}
for n, ec in enumerate(pexpr.args):
P[n, 0] = self._print(ec.expr)
if ec.cond == True:
P[n, 1] = prettyForm('otherwise')
else:
P[n, 1] = prettyForm(
*prettyForm('for ').right(self._print(ec.cond)))
hsep = 2
vsep = 1
len_args = len(pexpr.args)
# max widths
maxw = [max([P[i, j].width() for i in range(len_args)])
for j in range(2)]
# FIXME: Refactor this code and matrix into some tabular environment.
# drawing result
D = None
for i in range(len_args):
D_row = None
for j in range(2):
p = P[i, j]
assert p.width() <= maxw[j]
wdelta = maxw[j] - p.width()
wleft = wdelta // 2
wright = wdelta - wleft
p = prettyForm(*p.right(' '*wright))
p = prettyForm(*p.left(' '*wleft))
if D_row is None:
D_row = p
continue
D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
D_row = prettyForm(*D_row.right(p))
if D is None:
D = D_row # first row in a picture
continue
# v-spacer
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
D = prettyForm(*D.parens('{', ''))
D.baseline = D.height()//2
D.binding = prettyForm.OPEN
return D
def _print_ITE(self, ite):
from sympy.functions.elementary.piecewise import Piecewise
return self._print(ite.rewrite(Piecewise))
def _hprint_vec(self, v):
D = None
for a in v:
p = a
if D is None:
D = p
else:
D = prettyForm(*D.right(', '))
D = prettyForm(*D.right(p))
if D is None:
D = stringPict(' ')
return D
def _hprint_vseparator(self, p1, p2, left=None, right=None, delimiter='', ifascii_nougly=False):
if ifascii_nougly and not self._use_unicode:
return self._print_seq((p1, '|', p2), left=left, right=right,
delimiter=delimiter, ifascii_nougly=True)
tmp = self._print_seq((p1, p2,), left=left, right=right, delimiter=delimiter)
sep = stringPict(vobj('|', tmp.height()), baseline=tmp.baseline)
return self._print_seq((p1, sep, p2), left=left, right=right,
delimiter=delimiter)
def _print_hyper(self, e):
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
ap = [self._print(a) for a in e.ap]
bq = [self._print(b) for b in e.bq]
P = self._print(e.argument)
P.baseline = P.height()//2
# Drawing result - first create the ap, bq vectors
D = None
for v in [ap, bq]:
D_row = self._hprint_vec(v)
if D is None:
D = D_row # first row in a picture
else:
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
# make sure that the argument `z' is centred vertically
D.baseline = D.height()//2
# insert horizontal separator
P = prettyForm(*P.left(' '))
D = prettyForm(*D.right(' '))
# insert separating `|`
D = self._hprint_vseparator(D, P)
# add parens
D = prettyForm(*D.parens('(', ')'))
# create the F symbol
above = D.height()//2 - 1
below = D.height() - above - 1
sz, t, b, add, img = annotated('F')
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
baseline=above + sz)
add = (sz + 1)//2
F = prettyForm(*F.left(self._print(len(e.ap))))
F = prettyForm(*F.right(self._print(len(e.bq))))
F.baseline = above + add
D = prettyForm(*F.right(' ', D))
return D
def _print_meijerg(self, e):
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
v = {}
v[(0, 0)] = [self._print(a) for a in e.an]
v[(0, 1)] = [self._print(a) for a in e.aother]
v[(1, 0)] = [self._print(b) for b in e.bm]
v[(1, 1)] = [self._print(b) for b in e.bother]
P = self._print(e.argument)
P.baseline = P.height()//2
vp = {}
for idx in v:
vp[idx] = self._hprint_vec(v[idx])
for i in range(2):
maxw = max(vp[(0, i)].width(), vp[(1, i)].width())
for j in range(2):
s = vp[(j, i)]
left = (maxw - s.width()) // 2
right = maxw - left - s.width()
s = prettyForm(*s.left(' ' * left))
s = prettyForm(*s.right(' ' * right))
vp[(j, i)] = s
D1 = prettyForm(*vp[(0, 0)].right(' ', vp[(0, 1)]))
D1 = prettyForm(*D1.below(' '))
D2 = prettyForm(*vp[(1, 0)].right(' ', vp[(1, 1)]))
D = prettyForm(*D1.below(D2))
# make sure that the argument `z' is centred vertically
D.baseline = D.height()//2
# insert horizontal separator
P = prettyForm(*P.left(' '))
D = prettyForm(*D.right(' '))
# insert separating `|`
D = self._hprint_vseparator(D, P)
# add parens
D = prettyForm(*D.parens('(', ')'))
# create the G symbol
above = D.height()//2 - 1
below = D.height() - above - 1
sz, t, b, add, img = annotated('G')
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
baseline=above + sz)
pp = self._print(len(e.ap))
pq = self._print(len(e.bq))
pm = self._print(len(e.bm))
pn = self._print(len(e.an))
def adjust(p1, p2):
diff = p1.width() - p2.width()
if diff == 0:
return p1, p2
elif diff > 0:
return p1, prettyForm(*p2.left(' '*diff))
else:
return prettyForm(*p1.left(' '*-diff)), p2
pp, pm = adjust(pp, pm)
pq, pn = adjust(pq, pn)
pu = prettyForm(*pm.right(', ', pn))
pl = prettyForm(*pp.right(', ', pq))
ht = F.baseline - above - 2
if ht > 0:
pu = prettyForm(*pu.below('\n'*ht))
p = prettyForm(*pu.below(pl))
F.baseline = above
F = prettyForm(*F.right(p))
F.baseline = above + add
D = prettyForm(*F.right(' ', D))
return D
def _print_ExpBase(self, e):
# TODO should exp_polar be printed differently?
# what about exp_polar(0), exp_polar(1)?
base = prettyForm(pretty_atom('Exp1', 'e'))
return base ** self._print(e.args[0])
def _print_Exp1(self, e):
return prettyForm(pretty_atom('Exp1', 'e'))
def _print_Function(self, e, sort=False, func_name=None):
# optional argument func_name for supplying custom names
# XXX works only for applied functions
return self._helper_print_function(e.func, e.args, sort=sort, func_name=func_name)
def _print_mathieuc(self, e):
return self._print_Function(e, func_name='C')
def _print_mathieus(self, e):
return self._print_Function(e, func_name='S')
def _print_mathieucprime(self, e):
return self._print_Function(e, func_name="C'")
def _print_mathieusprime(self, e):
return self._print_Function(e, func_name="S'")
def _helper_print_function(self, func, args, sort=False, func_name=None, delimiter=', ', elementwise=False):
if sort:
args = sorted(args, key=default_sort_key)
if not func_name and hasattr(func, "__name__"):
func_name = func.__name__
if func_name:
prettyFunc = self._print(Symbol(func_name))
else:
prettyFunc = prettyForm(*self._print(func).parens())
if elementwise:
if self._use_unicode:
circ = pretty_atom('Modifier Letter Low Ring')
else:
circ = '.'
circ = self._print(circ)
prettyFunc = prettyForm(
binding=prettyForm.LINE,
*stringPict.next(prettyFunc, circ)
)
prettyArgs = prettyForm(*self._print_seq(args, delimiter=delimiter).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_ElementwiseApplyFunction(self, e):
func = e.function
arg = e.expr
args = [arg]
return self._helper_print_function(func, args, delimiter="", elementwise=True)
@property
def _special_function_classes(self):
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.functions.special.gamma_functions import gamma, lowergamma
from sympy.functions.special.zeta_functions import lerchphi
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.error_functions import Chi
return {KroneckerDelta: [greek_unicode['delta'], 'delta'],
gamma: [greek_unicode['Gamma'], 'Gamma'],
lerchphi: [greek_unicode['Phi'], 'lerchphi'],
lowergamma: [greek_unicode['gamma'], 'gamma'],
beta: [greek_unicode['Beta'], 'B'],
DiracDelta: [greek_unicode['delta'], 'delta'],
Chi: ['Chi', 'Chi']}
def _print_FunctionClass(self, expr):
for cls in self._special_function_classes:
if issubclass(expr, cls) and expr.__name__ == cls.__name__:
if self._use_unicode:
return prettyForm(self._special_function_classes[cls][0])
else:
return prettyForm(self._special_function_classes[cls][1])
func_name = expr.__name__
return prettyForm(pretty_symbol(func_name))
def _print_GeometryEntity(self, expr):
# GeometryEntity is based on Tuple but should not print like a Tuple
return self.emptyPrinter(expr)
def _print_lerchphi(self, e):
func_name = greek_unicode['Phi'] if self._use_unicode else 'lerchphi'
return self._print_Function(e, func_name=func_name)
def _print_dirichlet_eta(self, e):
func_name = greek_unicode['eta'] if self._use_unicode else 'dirichlet_eta'
return self._print_Function(e, func_name=func_name)
def _print_Heaviside(self, e):
func_name = greek_unicode['theta'] if self._use_unicode else 'Heaviside'
if e.args[1]==1/2:
pform = prettyForm(*self._print(e.args[0]).parens())
pform = prettyForm(*pform.left(func_name))
return pform
else:
return self._print_Function(e, func_name=func_name)
def _print_fresnels(self, e):
return self._print_Function(e, func_name="S")
def _print_fresnelc(self, e):
return self._print_Function(e, func_name="C")
def _print_airyai(self, e):
return self._print_Function(e, func_name="Ai")
def _print_airybi(self, e):
return self._print_Function(e, func_name="Bi")
def _print_airyaiprime(self, e):
return self._print_Function(e, func_name="Ai'")
def _print_airybiprime(self, e):
return self._print_Function(e, func_name="Bi'")
def _print_LambertW(self, e):
return self._print_Function(e, func_name="W")
def _print_Lambda(self, e):
expr = e.expr
sig = e.signature
if self._use_unicode:
arrow = " \N{RIGHTWARDS ARROW FROM BAR} "
else:
arrow = " -> "
if len(sig) == 1 and sig[0].is_symbol:
sig = sig[0]
var_form = self._print(sig)
return prettyForm(*stringPict.next(var_form, arrow, self._print(expr)), binding=8)
def _print_Order(self, expr):
pform = self._print(expr.expr)
if (expr.point and any(p != S.Zero for p in expr.point)) or \
len(expr.variables) > 1:
pform = prettyForm(*pform.right("; "))
if len(expr.variables) > 1:
pform = prettyForm(*pform.right(self._print(expr.variables)))
elif len(expr.variables):
pform = prettyForm(*pform.right(self._print(expr.variables[0])))
if self._use_unicode:
pform = prettyForm(*pform.right(" \N{RIGHTWARDS ARROW} "))
else:
pform = prettyForm(*pform.right(" -> "))
if len(expr.point) > 1:
pform = prettyForm(*pform.right(self._print(expr.point)))
else:
pform = prettyForm(*pform.right(self._print(expr.point[0])))
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left("O"))
return pform
def _print_SingularityFunction(self, e):
if self._use_unicode:
shift = self._print(e.args[0]-e.args[1])
n = self._print(e.args[2])
base = prettyForm("<")
base = prettyForm(*base.right(shift))
base = prettyForm(*base.right(">"))
pform = base**n
return pform
else:
n = self._print(e.args[2])
shift = self._print(e.args[0]-e.args[1])
base = self._print_seq(shift, "<", ">", ' ')
return base**n
def _print_beta(self, e):
func_name = greek_unicode['Beta'] if self._use_unicode else 'B'
return self._print_Function(e, func_name=func_name)
def _print_betainc(self, e):
func_name = "B'"
return self._print_Function(e, func_name=func_name)
def _print_betainc_regularized(self, e):
func_name = 'I'
return self._print_Function(e, func_name=func_name)
def _print_gamma(self, e):
func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
return self._print_Function(e, func_name=func_name)
def _print_uppergamma(self, e):
func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
return self._print_Function(e, func_name=func_name)
def _print_lowergamma(self, e):
func_name = greek_unicode['gamma'] if self._use_unicode else 'lowergamma'
return self._print_Function(e, func_name=func_name)
def _print_DiracDelta(self, e):
if self._use_unicode:
if len(e.args) == 2:
a = prettyForm(greek_unicode['delta'])
b = self._print(e.args[1])
b = prettyForm(*b.parens())
c = self._print(e.args[0])
c = prettyForm(*c.parens())
pform = a**b
pform = prettyForm(*pform.right(' '))
pform = prettyForm(*pform.right(c))
return pform
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(greek_unicode['delta']))
return pform
else:
return self._print_Function(e)
def _print_expint(self, e):
from sympy import Function
if e.args[0].is_Integer and self._use_unicode:
return self._print_Function(Function('E_%s' % e.args[0])(e.args[1]))
return self._print_Function(e)
def _print_Chi(self, e):
# This needs a special case since otherwise it comes out as greek
# letter chi...
prettyFunc = prettyForm("Chi")
prettyArgs = prettyForm(*self._print_seq(e.args).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_elliptic_e(self, e):
pforma0 = self._print(e.args[0])
if len(e.args) == 1:
pform = pforma0
else:
pforma1 = self._print(e.args[1])
pform = self._hprint_vseparator(pforma0, pforma1)
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('E'))
return pform
def _print_elliptic_k(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('K'))
return pform
def _print_elliptic_f(self, e):
pforma0 = self._print(e.args[0])
pforma1 = self._print(e.args[1])
pform = self._hprint_vseparator(pforma0, pforma1)
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('F'))
return pform
def _print_elliptic_pi(self, e):
name = greek_unicode['Pi'] if self._use_unicode else 'Pi'
pforma0 = self._print(e.args[0])
pforma1 = self._print(e.args[1])
if len(e.args) == 2:
pform = self._hprint_vseparator(pforma0, pforma1)
else:
pforma2 = self._print(e.args[2])
pforma = self._hprint_vseparator(pforma1, pforma2, ifascii_nougly=False)
pforma = prettyForm(*pforma.left('; '))
pform = prettyForm(*pforma.left(pforma0))
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(name))
return pform
def _print_GoldenRatio(self, expr):
if self._use_unicode:
return prettyForm(pretty_symbol('phi'))
return self._print(Symbol("GoldenRatio"))
def _print_EulerGamma(self, expr):
if self._use_unicode:
return prettyForm(pretty_symbol('gamma'))
return self._print(Symbol("EulerGamma"))
def _print_Mod(self, expr):
pform = self._print(expr.args[0])
if pform.binding > prettyForm.MUL:
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right(' mod '))
pform = prettyForm(*pform.right(self._print(expr.args[1])))
pform.binding = prettyForm.OPEN
return pform
def _print_Add(self, expr, order=None):
terms = self._as_ordered_terms(expr, order=order)
pforms, indices = [], []
def pretty_negative(pform, index):
"""Prepend a minus sign to a pretty form. """
#TODO: Move this code to prettyForm
if index == 0:
if pform.height() > 1:
pform_neg = '- '
else:
pform_neg = '-'
else:
pform_neg = ' - '
if (pform.binding > prettyForm.NEG
or pform.binding == prettyForm.ADD):
p = stringPict(*pform.parens())
else:
p = pform
p = stringPict.next(pform_neg, p)
# Lower the binding to NEG, even if it was higher. Otherwise, it
# will print as a + ( - (b)), instead of a - (b).
return prettyForm(binding=prettyForm.NEG, *p)
for i, term in enumerate(terms):
if term.is_Mul and _coeff_isneg(term):
coeff, other = term.as_coeff_mul(rational=False)
if coeff == -1:
negterm = Mul(*other, evaluate=False)
else:
negterm = Mul(-coeff, *other, evaluate=False)
pform = self._print(negterm)
pforms.append(pretty_negative(pform, i))
elif term.is_Rational and term.q > 1:
pforms.append(None)
indices.append(i)
elif term.is_Number and term < 0:
pform = self._print(-term)
pforms.append(pretty_negative(pform, i))
elif term.is_Relational:
pforms.append(prettyForm(*self._print(term).parens()))
else:
pforms.append(self._print(term))
if indices:
large = True
for pform in pforms:
if pform is not None and pform.height() > 1:
break
else:
large = False
for i in indices:
term, negative = terms[i], False
if term < 0:
term, negative = -term, True
if large:
pform = prettyForm(str(term.p))/prettyForm(str(term.q))
else:
pform = self._print(term)
if negative:
pform = pretty_negative(pform, i)
pforms[i] = pform
return prettyForm.__add__(*pforms)
def _print_Mul(self, product):
from sympy.physics.units import Quantity
# Check for unevaluated Mul. In this case we need to make sure the
# identities are visible, multiple Rational factors are not combined
# etc so we display in a straight-forward form that fully preserves all
# args and their order.
args = product.args
if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]):
strargs = list(map(self._print, args))
# XXX: This is a hack to work around the fact that
# prettyForm.__mul__ absorbs a leading -1 in the args. Probably it
# would be better to fix this in prettyForm.__mul__ instead.
negone = strargs[0] == '-1'
if negone:
strargs[0] = prettyForm('1', 0, 0)
obj = prettyForm.__mul__(*strargs)
if negone:
obj = prettyForm('-' + obj.s, obj.baseline, obj.binding)
return obj
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
if self.order not in ('old', 'none'):
args = product.as_ordered_factors()
else:
args = list(product.args)
# If quantities are present append them at the back
args = sorted(args, key=lambda x: isinstance(x, Quantity) or
(isinstance(x, Pow) and isinstance(x.base, Quantity)))
# Gather terms for numerator/denominator
for item in args:
if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
if item.exp != -1:
b.append(Pow(item.base, -item.exp, evaluate=False))
else:
b.append(Pow(item.base, -item.exp))
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append( Rational(item.p) )
if item.q != 1:
b.append( Rational(item.q) )
else:
a.append(item)
from sympy import Integral, Piecewise, Product, Sum
# Convert to pretty forms. Add parens to Add instances if there
# is more than one term in the numer/denom
for i in range(0, len(a)):
if (a[i].is_Add and len(a) > 1) or (i != len(a) - 1 and
isinstance(a[i], (Integral, Piecewise, Product, Sum))):
a[i] = prettyForm(*self._print(a[i]).parens())
elif a[i].is_Relational:
a[i] = prettyForm(*self._print(a[i]).parens())
else:
a[i] = self._print(a[i])
for i in range(0, len(b)):
if (b[i].is_Add and len(b) > 1) or (i != len(b) - 1 and
isinstance(b[i], (Integral, Piecewise, Product, Sum))):
b[i] = prettyForm(*self._print(b[i]).parens())
else:
b[i] = self._print(b[i])
# Construct a pretty form
if len(b) == 0:
return prettyForm.__mul__(*a)
else:
if len(a) == 0:
a.append( self._print(S.One) )
return prettyForm.__mul__(*a)/prettyForm.__mul__(*b)
# A helper function for _print_Pow to print x**(1/n)
def _print_nth_root(self, base, root):
bpretty = self._print(base)
# In very simple cases, use a single-char root sign
if (self._settings['use_unicode_sqrt_char'] and self._use_unicode
and root == 2 and bpretty.height() == 1
and (bpretty.width() == 1
or (base.is_Integer and base.is_nonnegative))):
return prettyForm(*bpretty.left('\N{SQUARE ROOT}'))
# Construct root sign, start with the \/ shape
_zZ = xobj('/', 1)
rootsign = xobj('\\', 1) + _zZ
# Constructing the number to put on root
rpretty = self._print(root)
# roots look bad if they are not a single line
if rpretty.height() != 1:
return self._print(base)**self._print(1/root)
# If power is half, no number should appear on top of root sign
exp = '' if root == 2 else str(rpretty).ljust(2)
if len(exp) > 2:
rootsign = ' '*(len(exp) - 2) + rootsign
# Stack the exponent
rootsign = stringPict(exp + '\n' + rootsign)
rootsign.baseline = 0
# Diagonal: length is one less than height of base
linelength = bpretty.height() - 1
diagonal = stringPict('\n'.join(
' '*(linelength - i - 1) + _zZ + ' '*i
for i in range(linelength)
))
# Put baseline just below lowest line: next to exp
diagonal.baseline = linelength - 1
# Make the root symbol
rootsign = prettyForm(*rootsign.right(diagonal))
# Det the baseline to match contents to fix the height
# but if the height of bpretty is one, the rootsign must be one higher
rootsign.baseline = max(1, bpretty.baseline)
#build result
s = prettyForm(hobj('_', 2 + bpretty.width()))
s = prettyForm(*bpretty.above(s))
s = prettyForm(*s.left(rootsign))
return s
def _print_Pow(self, power):
from sympy.simplify.simplify import fraction
b, e = power.as_base_exp()
if power.is_commutative:
if e is S.NegativeOne:
return prettyForm("1")/self._print(b)
n, d = fraction(e)
if n is S.One and d.is_Atom and not e.is_Integer and (e.is_Rational or d.is_Symbol) \
and self._settings['root_notation']:
return self._print_nth_root(b, d)
if e.is_Rational and e < 0:
return prettyForm("1")/self._print(Pow(b, -e, evaluate=False))
if b.is_Relational:
return prettyForm(*self._print(b).parens()).__pow__(self._print(e))
return self._print(b)**self._print(e)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def __print_numer_denom(self, p, q):
if q == 1:
if p < 0:
return prettyForm(str(p), binding=prettyForm.NEG)
else:
return prettyForm(str(p))
elif abs(p) >= 10 and abs(q) >= 10:
# If more than one digit in numer and denom, print larger fraction
if p < 0:
return prettyForm(str(p), binding=prettyForm.NEG)/prettyForm(str(q))
# Old printing method:
#pform = prettyForm(str(-p))/prettyForm(str(q))
#return prettyForm(binding=prettyForm.NEG, *pform.left('- '))
else:
return prettyForm(str(p))/prettyForm(str(q))
else:
return None
def _print_Rational(self, expr):
result = self.__print_numer_denom(expr.p, expr.q)
if result is not None:
return result
else:
return self.emptyPrinter(expr)
def _print_Fraction(self, expr):
result = self.__print_numer_denom(expr.numerator, expr.denominator)
if result is not None:
return result
else:
return self.emptyPrinter(expr)
def _print_ProductSet(self, p):
if len(p.sets) >= 1 and not has_variety(p.sets):
return self._print(p.sets[0]) ** self._print(len(p.sets))
else:
prod_char = "\N{MULTIPLICATION SIGN}" if self._use_unicode else 'x'
return self._print_seq(p.sets, None, None, ' %s ' % prod_char,
parenthesize=lambda set: set.is_Union or
set.is_Intersection or set.is_ProductSet)
def _print_FiniteSet(self, s):
items = sorted(s.args, key=default_sort_key)
return self._print_seq(items, '{', '}', ', ' )
def _print_Range(self, s):
if self._use_unicode:
dots = "\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
if s.start.is_infinite and s.stop.is_infinite:
if s.step.is_positive:
printset = dots, -1, 0, 1, dots
else:
printset = dots, 1, 0, -1, dots
elif s.start.is_infinite:
printset = dots, s[-1] - s.step, s[-1]
elif s.stop.is_infinite:
it = iter(s)
printset = next(it), next(it), dots
elif len(s) > 4:
it = iter(s)
printset = next(it), next(it), dots, s[-1]
else:
printset = tuple(s)
return self._print_seq(printset, '{', '}', ', ' )
def _print_Interval(self, i):
if i.start == i.end:
return self._print_seq(i.args[:1], '{', '}')
else:
if i.left_open:
left = '('
else:
left = '['
if i.right_open:
right = ')'
else:
right = ']'
return self._print_seq(i.args[:2], left, right)
def _print_AccumulationBounds(self, i):
left = '<'
right = '>'
return self._print_seq(i.args[:2], left, right)
def _print_Intersection(self, u):
delimiter = ' %s ' % pretty_atom('Intersection', 'n')
return self._print_seq(u.args, None, None, delimiter,
parenthesize=lambda set: set.is_ProductSet or
set.is_Union or set.is_Complement)
def _print_Union(self, u):
union_delimiter = ' %s ' % pretty_atom('Union', 'U')
return self._print_seq(u.args, None, None, union_delimiter,
parenthesize=lambda set: set.is_ProductSet or
set.is_Intersection or set.is_Complement)
def _print_SymmetricDifference(self, u):
if not self._use_unicode:
raise NotImplementedError("ASCII pretty printing of SymmetricDifference is not implemented")
sym_delimeter = ' %s ' % pretty_atom('SymmetricDifference')
return self._print_seq(u.args, None, None, sym_delimeter)
def _print_Complement(self, u):
delimiter = r' \ '
return self._print_seq(u.args, None, None, delimiter,
parenthesize=lambda set: set.is_ProductSet or set.is_Intersection
or set.is_Union)
def _print_ImageSet(self, ts):
if self._use_unicode:
inn = "\N{SMALL ELEMENT OF}"
else:
inn = 'in'
fun = ts.lamda
sets = ts.base_sets
signature = fun.signature
expr = self._print(fun.expr)
# TODO: the stuff to the left of the | and the stuff to the right of
# the | should have independent baselines, that way something like
# ImageSet(Lambda(x, 1/x**2), S.Naturals) prints the "x in N" part
# centered on the right instead of aligned with the fraction bar on
# the left. The same also applies to ConditionSet and ComplexRegion
if len(signature) == 1:
S = self._print_seq((signature[0], inn, sets[0]),
delimiter=' ')
return self._hprint_vseparator(expr, S,
left='{', right='}',
ifascii_nougly=True, delimiter=' ')
else:
pargs = tuple(j for var, setv in zip(signature, sets) for j in
(var, ' ', inn, ' ', setv, ", "))
S = self._print_seq(pargs[:-1], delimiter='')
return self._hprint_vseparator(expr, S,
left='{', right='}',
ifascii_nougly=True, delimiter=' ')
def _print_ConditionSet(self, ts):
if self._use_unicode:
inn = "\N{SMALL ELEMENT OF}"
# using _and because and is a keyword and it is bad practice to
# overwrite them
_and = "\N{LOGICAL AND}"
else:
inn = 'in'
_and = 'and'
variables = self._print_seq(Tuple(ts.sym))
as_expr = getattr(ts.condition, 'as_expr', None)
if as_expr is not None:
cond = self._print(ts.condition.as_expr())
else:
cond = self._print(ts.condition)
if self._use_unicode:
cond = self._print(cond)
cond = prettyForm(*cond.parens())
if ts.base_set is S.UniversalSet:
return self._hprint_vseparator(variables, cond, left="{",
right="}", ifascii_nougly=True,
delimiter=' ')
base = self._print(ts.base_set)
C = self._print_seq((variables, inn, base, _and, cond),
delimiter=' ')
return self._hprint_vseparator(variables, C, left="{", right="}",
ifascii_nougly=True, delimiter=' ')
def _print_ComplexRegion(self, ts):
if self._use_unicode:
inn = "\N{SMALL ELEMENT OF}"
else:
inn = 'in'
variables = self._print_seq(ts.variables)
expr = self._print(ts.expr)
prodsets = self._print(ts.sets)
C = self._print_seq((variables, inn, prodsets),
delimiter=' ')
return self._hprint_vseparator(expr, C, left="{", right="}",
ifascii_nougly=True, delimiter=' ')
def _print_Contains(self, e):
var, set = e.args
if self._use_unicode:
el = " \N{ELEMENT OF} "
return prettyForm(*stringPict.next(self._print(var),
el, self._print(set)), binding=8)
else:
return prettyForm(sstr(e))
def _print_FourierSeries(self, s):
if self._use_unicode:
dots = "\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
return self._print_Add(s.truncate()) + self._print(dots)
def _print_FormalPowerSeries(self, s):
return self._print_Add(s.infinite)
def _print_SetExpr(self, se):
pretty_set = prettyForm(*self._print(se.set).parens())
pretty_name = self._print(Symbol("SetExpr"))
return prettyForm(*pretty_name.right(pretty_set))
def _print_SeqFormula(self, s):
if self._use_unicode:
dots = "\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0:
raise NotImplementedError("Pretty printing of sequences with symbolic bound not implemented")
if s.start is S.NegativeInfinity:
stop = s.stop
printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2),
s.coeff(stop - 1), s.coeff(stop))
elif s.stop is S.Infinity or s.length > 4:
printset = s[:4]
printset.append(dots)
printset = tuple(printset)
else:
printset = tuple(s)
return self._print_list(printset)
_print_SeqPer = _print_SeqFormula
_print_SeqAdd = _print_SeqFormula
_print_SeqMul = _print_SeqFormula
def _print_seq(self, seq, left=None, right=None, delimiter=', ',
parenthesize=lambda x: False, ifascii_nougly=True):
try:
pforms = []
for item in seq:
pform = self._print(item)
if parenthesize(item):
pform = prettyForm(*pform.parens())
if pforms:
pforms.append(delimiter)
pforms.append(pform)
if not pforms:
s = stringPict('')
else:
s = prettyForm(*stringPict.next(*pforms))
# XXX: Under the tests from #15686 the above raises:
# AttributeError: 'Fake' object has no attribute 'baseline'
# This is caught below but that is not the right way to
# fix it.
except AttributeError:
s = None
for item in seq:
pform = self.doprint(item)
if parenthesize(item):
pform = prettyForm(*pform.parens())
if s is None:
# first element
s = pform
else :
s = prettyForm(*stringPict.next(s, delimiter))
s = prettyForm(*stringPict.next(s, pform))
if s is None:
s = stringPict('')
s = prettyForm(*s.parens(left, right, ifascii_nougly=ifascii_nougly))
return s
def join(self, delimiter, args):
pform = None
for arg in args:
if pform is None:
pform = arg
else:
pform = prettyForm(*pform.right(delimiter))
pform = prettyForm(*pform.right(arg))
if pform is None:
return prettyForm("")
else:
return pform
def _print_list(self, l):
return self._print_seq(l, '[', ']')
def _print_tuple(self, t):
if len(t) == 1:
ptuple = prettyForm(*stringPict.next(self._print(t[0]), ','))
return prettyForm(*ptuple.parens('(', ')', ifascii_nougly=True))
else:
return self._print_seq(t, '(', ')')
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for k in keys:
K = self._print(k)
V = self._print(d[k])
s = prettyForm(*stringPict.next(K, ': ', V))
items.append(s)
return self._print_seq(items, '{', '}')
def _print_Dict(self, d):
return self._print_dict(d)
def _print_set(self, s):
if not s:
return prettyForm('set()')
items = sorted(s, key=default_sort_key)
pretty = self._print_seq(items)
pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
return pretty
def _print_frozenset(self, s):
if not s:
return prettyForm('frozenset()')
items = sorted(s, key=default_sort_key)
pretty = self._print_seq(items)
pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
pretty = prettyForm(*pretty.parens('(', ')', ifascii_nougly=True))
pretty = prettyForm(*stringPict.next(type(s).__name__, pretty))
return pretty
def _print_UniversalSet(self, s):
if self._use_unicode:
return prettyForm("\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL U}")
else:
return prettyForm('UniversalSet')
def _print_PolyRing(self, ring):
return prettyForm(sstr(ring))
def _print_FracField(self, field):
return prettyForm(sstr(field))
def _print_FreeGroupElement(self, elm):
return prettyForm(str(elm))
def _print_PolyElement(self, poly):
return prettyForm(sstr(poly))
def _print_FracElement(self, frac):
return prettyForm(sstr(frac))
def _print_AlgebraicNumber(self, expr):
if expr.is_aliased:
return self._print(expr.as_poly().as_expr())
else:
return self._print(expr.as_expr())
def _print_ComplexRootOf(self, expr):
args = [self._print_Add(expr.expr, order='lex'), expr.index]
pform = prettyForm(*self._print_seq(args).parens())
pform = prettyForm(*pform.left('CRootOf'))
return pform
def _print_RootSum(self, expr):
args = [self._print_Add(expr.expr, order='lex')]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
pform = prettyForm(*self._print_seq(args).parens())
pform = prettyForm(*pform.left('RootSum'))
return pform
def _print_FiniteField(self, expr):
if self._use_unicode:
form = '\N{DOUBLE-STRUCK CAPITAL Z}_%d'
else:
form = 'GF(%d)'
return prettyForm(pretty_symbol(form % expr.mod))
def _print_IntegerRing(self, expr):
if self._use_unicode:
return prettyForm('\N{DOUBLE-STRUCK CAPITAL Z}')
else:
return prettyForm('ZZ')
def _print_RationalField(self, expr):
if self._use_unicode:
return prettyForm('\N{DOUBLE-STRUCK CAPITAL Q}')
else:
return prettyForm('QQ')
def _print_RealField(self, domain):
if self._use_unicode:
prefix = '\N{DOUBLE-STRUCK CAPITAL R}'
else:
prefix = 'RR'
if domain.has_default_precision:
return prettyForm(prefix)
else:
return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
def _print_ComplexField(self, domain):
if self._use_unicode:
prefix = '\N{DOUBLE-STRUCK CAPITAL C}'
else:
prefix = 'CC'
if domain.has_default_precision:
return prettyForm(prefix)
else:
return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
def _print_PolynomialRing(self, expr):
args = list(expr.symbols)
if not expr.order.is_default:
order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
args.append(order)
pform = self._print_seq(args, '[', ']')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_FractionField(self, expr):
args = list(expr.symbols)
if not expr.order.is_default:
order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
args.append(order)
pform = self._print_seq(args, '(', ')')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_PolynomialRingBase(self, expr):
g = expr.symbols
if str(expr.order) != str(expr.default_order):
g = g + ("order=" + str(expr.order),)
pform = self._print_seq(g, '[', ']')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_GroebnerBasis(self, basis):
exprs = [ self._print_Add(arg, order=basis.order)
for arg in basis.exprs ]
exprs = prettyForm(*self.join(", ", exprs).parens(left="[", right="]"))
gens = [ self._print(gen) for gen in basis.gens ]
domain = prettyForm(
*prettyForm("domain=").right(self._print(basis.domain)))
order = prettyForm(
*prettyForm("order=").right(self._print(basis.order)))
pform = self.join(", ", [exprs] + gens + [domain, order])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(basis.__class__.__name__))
return pform
def _print_Subs(self, e):
pform = self._print(e.expr)
pform = prettyForm(*pform.parens())
h = pform.height() if pform.height() > 1 else 2
rvert = stringPict(vobj('|', h), baseline=pform.baseline)
pform = prettyForm(*pform.right(rvert))
b = pform.baseline
pform.baseline = pform.height() - 1
pform = prettyForm(*pform.right(self._print_seq([
self._print_seq((self._print(v[0]), xsym('=='), self._print(v[1])),
delimiter='') for v in zip(e.variables, e.point) ])))
pform.baseline = b
return pform
def _print_number_function(self, e, name):
# Print name_arg[0] for one argument or name_arg[0](arg[1])
# for more than one argument
pform = prettyForm(name)
arg = self._print(e.args[0])
pform_arg = prettyForm(" "*arg.width())
pform_arg = prettyForm(*pform_arg.below(arg))
pform = prettyForm(*pform.right(pform_arg))
if len(e.args) == 1:
return pform
m, x = e.args
# TODO: copy-pasted from _print_Function: can we do better?
prettyFunc = pform
prettyArgs = prettyForm(*self._print_seq([x]).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_euler(self, e):
return self._print_number_function(e, "E")
def _print_catalan(self, e):
return self._print_number_function(e, "C")
def _print_bernoulli(self, e):
return self._print_number_function(e, "B")
_print_bell = _print_bernoulli
def _print_lucas(self, e):
return self._print_number_function(e, "L")
def _print_fibonacci(self, e):
return self._print_number_function(e, "F")
def _print_tribonacci(self, e):
return self._print_number_function(e, "T")
def _print_stieltjes(self, e):
if self._use_unicode:
return self._print_number_function(e, '\N{GREEK SMALL LETTER GAMMA}')
else:
return self._print_number_function(e, "stieltjes")
def _print_KroneckerDelta(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.right(prettyForm(',')))
pform = prettyForm(*pform.right(self._print(e.args[1])))
if self._use_unicode:
a = stringPict(pretty_symbol('delta'))
else:
a = stringPict('d')
b = pform
top = stringPict(*b.left(' '*a.width()))
bot = stringPict(*a.right(' '*b.width()))
return prettyForm(binding=prettyForm.POW, *bot.below(top))
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
pform = self._print('Domain: ')
pform = prettyForm(*pform.right(self._print(d.as_boolean())))
return pform
elif hasattr(d, 'set'):
pform = self._print('Domain: ')
pform = prettyForm(*pform.right(self._print(d.symbols)))
pform = prettyForm(*pform.right(self._print(' in ')))
pform = prettyForm(*pform.right(self._print(d.set)))
return pform
elif hasattr(d, 'symbols'):
pform = self._print('Domain on ')
pform = prettyForm(*pform.right(self._print(d.symbols)))
return pform
else:
return self._print(None)
def _print_DMP(self, p):
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
return self._print(repr(p))
def _print_DMF(self, p):
return self._print_DMP(p)
def _print_Object(self, object):
return self._print(pretty_symbol(object.name))
def _print_Morphism(self, morphism):
arrow = xsym("-->")
domain = self._print(morphism.domain)
codomain = self._print(morphism.codomain)
tail = domain.right(arrow, codomain)[0]
return prettyForm(tail)
def _print_NamedMorphism(self, morphism):
pretty_name = self._print(pretty_symbol(morphism.name))
pretty_morphism = self._print_Morphism(morphism)
return prettyForm(pretty_name.right(":", pretty_morphism)[0])
def _print_IdentityMorphism(self, morphism):
from sympy.categories import NamedMorphism
return self._print_NamedMorphism(
NamedMorphism(morphism.domain, morphism.codomain, "id"))
def _print_CompositeMorphism(self, morphism):
circle = xsym(".")
# All components of the morphism have names and it is thus
# possible to build the name of the composite.
component_names_list = [pretty_symbol(component.name) for
component in morphism.components]
component_names_list.reverse()
component_names = circle.join(component_names_list) + ":"
pretty_name = self._print(component_names)
pretty_morphism = self._print_Morphism(morphism)
return prettyForm(pretty_name.right(pretty_morphism)[0])
def _print_Category(self, category):
return self._print(pretty_symbol(category.name))
def _print_Diagram(self, diagram):
if not diagram.premises:
# This is an empty diagram.
return self._print(S.EmptySet)
pretty_result = self._print(diagram.premises)
if diagram.conclusions:
results_arrow = " %s " % xsym("==>")
pretty_conclusions = self._print(diagram.conclusions)[0]
pretty_result = pretty_result.right(
results_arrow, pretty_conclusions)
return prettyForm(pretty_result[0])
def _print_DiagramGrid(self, grid):
from sympy.matrices import Matrix
from sympy import Symbol
matrix = Matrix([[grid[i, j] if grid[i, j] else Symbol(" ")
for j in range(grid.width)]
for i in range(grid.height)])
return self._print_matrix_contents(matrix)
def _print_FreeModuleElement(self, m):
# Print as row vector for convenience, for now.
return self._print_seq(m, '[', ']')
def _print_SubModule(self, M):
return self._print_seq(M.gens, '<', '>')
def _print_FreeModule(self, M):
return self._print(M.ring)**self._print(M.rank)
def _print_ModuleImplementedIdeal(self, M):
return self._print_seq([x for [x] in M._module.gens], '<', '>')
def _print_QuotientRing(self, R):
return self._print(R.ring) / self._print(R.base_ideal)
def _print_QuotientRingElement(self, R):
return self._print(R.data) + self._print(R.ring.base_ideal)
def _print_QuotientModuleElement(self, m):
return self._print(m.data) + self._print(m.module.killed_module)
def _print_QuotientModule(self, M):
return self._print(M.base) / self._print(M.killed_module)
def _print_MatrixHomomorphism(self, h):
matrix = self._print(h._sympy_matrix())
matrix.baseline = matrix.height() // 2
pform = prettyForm(*matrix.right(' : ', self._print(h.domain),
' %s> ' % hobj('-', 2), self._print(h.codomain)))
return pform
def _print_Manifold(self, manifold):
return self._print(manifold.name)
def _print_Patch(self, patch):
return self._print(patch.name)
def _print_CoordSystem(self, coords):
return self._print(coords.name)
def _print_BaseScalarField(self, field):
string = field._coord_sys.symbols[field._index].name
return self._print(pretty_symbol(string))
def _print_BaseVectorField(self, field):
s = U('PARTIAL DIFFERENTIAL') + '_' + field._coord_sys.symbols[field._index].name
return self._print(pretty_symbol(s))
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
string = field._coord_sys.symbols[field._index].name
return self._print('\N{DOUBLE-STRUCK ITALIC SMALL D} ' + pretty_symbol(string))
else:
pform = self._print(field)
pform = prettyForm(*pform.parens())
return prettyForm(*pform.left("\N{DOUBLE-STRUCK ITALIC SMALL D}"))
def _print_Tr(self, p):
#TODO: Handle indices
pform = self._print(p.args[0])
pform = prettyForm(*pform.left('%s(' % (p.__class__.__name__)))
pform = prettyForm(*pform.right(')'))
return pform
def _print_primenu(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
if self._use_unicode:
pform = prettyForm(*pform.left(greek_unicode['nu']))
else:
pform = prettyForm(*pform.left('nu'))
return pform
def _print_primeomega(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
if self._use_unicode:
pform = prettyForm(*pform.left(greek_unicode['Omega']))
else:
pform = prettyForm(*pform.left('Omega'))
return pform
def _print_Quantity(self, e):
if e.name.name == 'degree':
pform = self._print("\N{DEGREE SIGN}")
return pform
else:
return self.emptyPrinter(e)
def _print_AssignmentBase(self, e):
op = prettyForm(' ' + xsym(e.op) + ' ')
l = self._print(e.lhs)
r = self._print(e.rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
def _print_Str(self, s):
return self._print(s.name)
@print_function(PrettyPrinter)
def pretty(expr, **settings):
"""Returns a string containing the prettified form of expr.
For information on keyword arguments see pretty_print function.
"""
pp = PrettyPrinter(settings)
# XXX: this is an ugly hack, but at least it works
use_unicode = pp._settings['use_unicode']
uflag = pretty_use_unicode(use_unicode)
try:
return pp.doprint(expr)
finally:
pretty_use_unicode(uflag)
def pretty_print(expr, **kwargs):
"""Prints expr in pretty form.
pprint is just a shortcut for this function.
Parameters
==========
expr : expression
The expression to print.
wrap_line : bool, optional (default=True)
Line wrapping enabled/disabled.
num_columns : int or None, optional (default=None)
Number of columns before line breaking (default to None which reads
the terminal width), useful when using SymPy without terminal.
use_unicode : bool or None, optional (default=None)
Use unicode characters, such as the Greek letter pi instead of
the string pi.
full_prec : bool or string, optional (default="auto")
Use full precision.
order : bool or string, optional (default=None)
Set to 'none' for long expressions if slow; default is None.
use_unicode_sqrt_char : bool, optional (default=True)
Use compact single-character square root symbol (when unambiguous).
root_notation : bool, optional (default=True)
Set to 'False' for printing exponents of the form 1/n in fractional form.
By default exponent is printed in root form.
mat_symbol_style : string, optional (default="plain")
Set to "bold" for printing MatrixSymbols using a bold mathematical symbol face.
By default the standard face is used.
imaginary_unit : string, optional (default="i")
Letter to use for imaginary unit when use_unicode is True.
Can be "i" (default) or "j".
"""
print(pretty(expr, **kwargs))
pprint = pretty_print
def pager_print(expr, **settings):
"""Prints expr using the pager, in pretty form.
This invokes a pager command using pydoc. Lines are not wrapped
automatically. This routine is meant to be used with a pager that allows
sideways scrolling, like ``less -S``.
Parameters are the same as for ``pretty_print``. If you wish to wrap lines,
pass ``num_columns=None`` to auto-detect the width of the terminal.
"""
from pydoc import pager
from locale import getpreferredencoding
if 'num_columns' not in settings:
settings['num_columns'] = 500000 # disable line wrap
pager(pretty(expr, **settings).encode(getpreferredencoding()))
|
c6f99d0482a4656c89e814442bbe765baca87a32e39b77a1e0cd89e37bbbb1ed | from sympy import (Add, Abs, Catalan, cos, Derivative, E, EulerGamma, exp,
factorial, factorial2, Function, GoldenRatio, TribonacciConstant, I,
Integer, Integral, Interval, Lambda, Limit, Matrix, nan, O, oo, pi, Pow,
Rational, Float, Rel, S, sin, SparseMatrix, sqrt, summation, Sum, Symbol,
symbols, Wild, WildFunction, zeta, zoo, Dummy, Dict, Tuple, FiniteSet, factor,
subfactorial, true, false, Equivalent, Xor, Complement, SymmetricDifference,
AccumBounds, UnevaluatedExpr, Eq, Ne, Quaternion, Subs, MatrixSymbol, MatrixSlice,
Q)
from sympy.core import Expr, Mul
from sympy.core.parameters import _exp_is_pow
from sympy.external import import_module
from sympy.physics.control.lti import TransferFunction, Series, Parallel, \
Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback
from sympy.physics.units import second, joule
from sympy.polys import (Poly, rootof, RootSum, groebner, ring, field, ZZ, QQ,
ZZ_I, QQ_I, lex, grlex)
from sympy.geometry import Point, Circle, Polygon, Ellipse, Triangle
from sympy.tensor import NDimArray
from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayElement
from sympy.testing.pytest import raises
from sympy.printing import sstr, sstrrepr, StrPrinter
from sympy.core.trace import Tr
x, y, z, w, t = symbols('x,y,z,w,t')
d = Dummy('d')
def test_printmethod():
class R(Abs):
def _sympystr(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert sstr(R(x)) == "foo(x)"
class R(Abs):
def _sympystr(self, printer):
return "foo"
assert sstr(R(x)) == "foo"
def test_Abs():
assert str(Abs(x)) == "Abs(x)"
assert str(Abs(Rational(1, 6))) == "1/6"
assert str(Abs(Rational(-1, 6))) == "1/6"
def test_Add():
assert str(x + y) == "x + y"
assert str(x + 1) == "x + 1"
assert str(x + x**2) == "x**2 + x"
assert str(Add(0, 1, evaluate=False)) == "0 + 1"
assert str(Add(0, 0, 1, evaluate=False)) == "0 + 0 + 1"
assert str(1.0*x) == "1.0*x"
assert str(5 + x + y + x*y + x**2 + y**2) == "x**2 + x*y + x + y**2 + y + 5"
assert str(1 + x + x**2/2 + x**3/3) == "x**3/3 + x**2/2 + x + 1"
assert str(2*x - 7*x**2 + 2 + 3*y) == "-7*x**2 + 2*x + 3*y + 2"
assert str(x - y) == "x - y"
assert str(2 - x) == "2 - x"
assert str(x - 2) == "x - 2"
assert str(x - y - z - w) == "-w + x - y - z"
assert str(x - z*y**2*z*w) == "-w*y**2*z**2 + x"
assert str(x - 1*y*x*y) == "-x*y**2 + x"
assert str(sin(x).series(x, 0, 15)) == "x - x**3/6 + x**5/120 - x**7/5040 + x**9/362880 - x**11/39916800 + x**13/6227020800 + O(x**15)"
def test_Catalan():
assert str(Catalan) == "Catalan"
def test_ComplexInfinity():
assert str(zoo) == "zoo"
def test_Derivative():
assert str(Derivative(x, y)) == "Derivative(x, y)"
assert str(Derivative(x**2, x, evaluate=False)) == "Derivative(x**2, x)"
assert str(Derivative(
x**2/y, x, y, evaluate=False)) == "Derivative(x**2/y, x, y)"
def test_dict():
assert str({1: 1 + x}) == sstr({1: 1 + x}) == "{1: x + 1}"
assert str({1: x**2, 2: y*x}) in ("{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
assert sstr({1: x**2, 2: y*x}) == "{1: x**2, 2: x*y}"
def test_Dict():
assert str(Dict({1: 1 + x})) == sstr({1: 1 + x}) == "{1: x + 1}"
assert str(Dict({1: x**2, 2: y*x})) in (
"{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
assert sstr(Dict({1: x**2, 2: y*x})) == "{1: x**2, 2: x*y}"
def test_Dummy():
assert str(d) == "_d"
assert str(d + x) == "_d + x"
def test_EulerGamma():
assert str(EulerGamma) == "EulerGamma"
def test_Exp():
assert str(E) == "E"
with _exp_is_pow(True):
assert str(exp(x)) == "E**x"
def test_factorial():
n = Symbol('n', integer=True)
assert str(factorial(-2)) == "zoo"
assert str(factorial(0)) == "1"
assert str(factorial(7)) == "5040"
assert str(factorial(n)) == "factorial(n)"
assert str(factorial(2*n)) == "factorial(2*n)"
assert str(factorial(factorial(n))) == 'factorial(factorial(n))'
assert str(factorial(factorial2(n))) == 'factorial(factorial2(n))'
assert str(factorial2(factorial(n))) == 'factorial2(factorial(n))'
assert str(factorial2(factorial2(n))) == 'factorial2(factorial2(n))'
assert str(subfactorial(3)) == "2"
assert str(subfactorial(n)) == "subfactorial(n)"
assert str(subfactorial(2*n)) == "subfactorial(2*n)"
def test_Function():
f = Function('f')
fx = f(x)
w = WildFunction('w')
assert str(f) == "f"
assert str(fx) == "f(x)"
assert str(w) == "w_"
def test_Geometry():
assert sstr(Point(0, 0)) == 'Point2D(0, 0)'
assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)'
assert sstr(Ellipse(Point(1, 2), 3, 4)) == 'Ellipse(Point2D(1, 2), 3, 4)'
assert sstr(Triangle(Point(1, 1), Point(7, 8), Point(0, -1))) == \
'Triangle(Point2D(1, 1), Point2D(7, 8), Point2D(0, -1))'
assert sstr(Polygon(Point(5, 6), Point(-2, -3), Point(0, 0), Point(4, 7))) == \
'Polygon(Point2D(5, 6), Point2D(-2, -3), Point2D(0, 0), Point2D(4, 7))'
assert sstr(Triangle(Point(0, 0), Point(1, 0), Point(0, 1)), sympy_integers=True) == \
'Triangle(Point2D(S(0), S(0)), Point2D(S(1), S(0)), Point2D(S(0), S(1)))'
assert sstr(Ellipse(Point(1, 2), 3, 4), sympy_integers=True) == \
'Ellipse(Point2D(S(1), S(2)), S(3), S(4))'
def test_GoldenRatio():
assert str(GoldenRatio) == "GoldenRatio"
def test_TribonacciConstant():
assert str(TribonacciConstant) == "TribonacciConstant"
def test_ImaginaryUnit():
assert str(I) == "I"
def test_Infinity():
assert str(oo) == "oo"
assert str(oo*I) == "oo*I"
def test_Integer():
assert str(Integer(-1)) == "-1"
assert str(Integer(1)) == "1"
assert str(Integer(-3)) == "-3"
assert str(Integer(0)) == "0"
assert str(Integer(25)) == "25"
def test_Integral():
assert str(Integral(sin(x), y)) == "Integral(sin(x), y)"
assert str(Integral(sin(x), (y, 0, 1))) == "Integral(sin(x), (y, 0, 1))"
def test_Interval():
n = (S.NegativeInfinity, 1, 2, S.Infinity)
for i in range(len(n)):
for j in range(i + 1, len(n)):
for l in (True, False):
for r in (True, False):
ival = Interval(n[i], n[j], l, r)
assert S(str(ival)) == ival
def test_AccumBounds():
a = Symbol('a', real=True)
assert str(AccumBounds(0, a)) == "AccumBounds(0, a)"
assert str(AccumBounds(0, 1)) == "AccumBounds(0, 1)"
def test_Lambda():
assert str(Lambda(d, d**2)) == "Lambda(_d, _d**2)"
# issue 2908
assert str(Lambda((), 1)) == "Lambda((), 1)"
assert str(Lambda((), x)) == "Lambda((), x)"
assert str(Lambda((x, y), x+y)) == "Lambda((x, y), x + y)"
assert str(Lambda(((x, y),), x+y)) == "Lambda(((x, y),), x + y)"
def test_Limit():
assert str(Limit(sin(x)/x, x, y)) == "Limit(sin(x)/x, x, y)"
assert str(Limit(1/x, x, 0)) == "Limit(1/x, x, 0)"
assert str(
Limit(sin(x)/x, x, y, dir="-")) == "Limit(sin(x)/x, x, y, dir='-')"
def test_list():
assert str([x]) == sstr([x]) == "[x]"
assert str([x**2, x*y + 1]) == sstr([x**2, x*y + 1]) == "[x**2, x*y + 1]"
assert str([x**2, [y + x]]) == sstr([x**2, [y + x]]) == "[x**2, [x + y]]"
def test_Matrix_str():
M = Matrix([[x**+1, 1], [y, x + y]])
assert str(M) == "Matrix([[x, 1], [y, x + y]])"
assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])"
M = Matrix([[1]])
assert str(M) == sstr(M) == "Matrix([[1]])"
M = Matrix([[1, 2]])
assert str(M) == sstr(M) == "Matrix([[1, 2]])"
M = Matrix()
assert str(M) == sstr(M) == "Matrix(0, 0, [])"
M = Matrix(0, 1, lambda i, j: 0)
assert str(M) == sstr(M) == "Matrix(0, 1, [])"
def test_Mul():
assert str(x/y) == "x/y"
assert str(y/x) == "y/x"
assert str(x/y/z) == "x/(y*z)"
assert str((x + 1)/(y + 2)) == "(x + 1)/(y + 2)"
assert str(2*x/3) == '2*x/3'
assert str(-2*x/3) == '-2*x/3'
assert str(-1.0*x) == '-1.0*x'
assert str(1.0*x) == '1.0*x'
assert str(Mul(0, 1, evaluate=False)) == '0*1'
assert str(Mul(1, 0, evaluate=False)) == '1*0'
assert str(Mul(1, 1, evaluate=False)) == '1*1'
assert str(Mul(1, 1, 1, evaluate=False)) == '1*1*1'
assert str(Mul(1, 2, evaluate=False)) == '1*2'
assert str(Mul(1, S.Half, evaluate=False)) == '1*(1/2)'
assert str(Mul(1, 1, S.Half, evaluate=False)) == '1*1*(1/2)'
assert str(Mul(1, 1, 2, 3, x, evaluate=False)) == '1*1*2*3*x'
assert str(Mul(1, -1, evaluate=False)) == '1*(-1)'
assert str(Mul(-1, 1, evaluate=False)) == '-1*1'
assert str(Mul(4, 3, 2, 1, 0, y, x, evaluate=False)) == '4*3*2*1*0*y*x'
assert str(Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)) == '4*3*2*(z + 1)*0*y*x'
assert str(Mul(Rational(2, 3), Rational(5, 7), evaluate=False)) == '(2/3)*(5/7)'
# For issue 14160
assert str(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x/(y*y)'
# issue 21537
assert str(Mul(x, Pow(1/y, -1, evaluate=False), evaluate=False)) == 'x/(1/y)'
class CustomClass1(Expr):
is_commutative = True
class CustomClass2(Expr):
is_commutative = True
cc1 = CustomClass1()
cc2 = CustomClass2()
assert str(Rational(2)*cc1) == '2*CustomClass1()'
assert str(cc1*Rational(2)) == '2*CustomClass1()'
assert str(cc1*Float("1.5")) == '1.5*CustomClass1()'
assert str(cc2*Rational(2)) == '2*CustomClass2()'
assert str(cc2*Rational(2)*cc1) == '2*CustomClass1()*CustomClass2()'
assert str(cc1*Rational(2)*cc2) == '2*CustomClass1()*CustomClass2()'
def test_NaN():
assert str(nan) == "nan"
def test_NegativeInfinity():
assert str(-oo) == "-oo"
def test_Order():
assert str(O(x)) == "O(x)"
assert str(O(x**2)) == "O(x**2)"
assert str(O(x*y)) == "O(x*y, x, y)"
assert str(O(x, x)) == "O(x)"
assert str(O(x, (x, 0))) == "O(x)"
assert str(O(x, (x, oo))) == "O(x, (x, oo))"
assert str(O(x, x, y)) == "O(x, x, y)"
assert str(O(x, x, y)) == "O(x, x, y)"
assert str(O(x, (x, oo), (y, oo))) == "O(x, (x, oo), (y, oo))"
def test_Permutation_Cycle():
from sympy.combinatorics import Permutation, Cycle
# general principle: economically, canonically show all moved elements
# and the size of the permutation.
for p, s in [
(Cycle(),
'()'),
(Cycle(2),
'(2)'),
(Cycle(2, 1),
'(1 2)'),
(Cycle(1, 2)(5)(6, 7)(10),
'(1 2)(6 7)(10)'),
(Cycle(3, 4)(1, 2)(3, 4),
'(1 2)(4)'),
]:
assert sstr(p) == s
for p, s in [
(Permutation([]),
'Permutation([])'),
(Permutation([], size=1),
'Permutation([0])'),
(Permutation([], size=2),
'Permutation([0, 1])'),
(Permutation([], size=10),
'Permutation([], size=10)'),
(Permutation([1, 0, 2]),
'Permutation([1, 0, 2])'),
(Permutation([1, 0, 2, 3, 4, 5]),
'Permutation([1, 0], size=6)'),
(Permutation([1, 0, 2, 3, 4, 5], size=10),
'Permutation([1, 0], size=10)'),
]:
assert sstr(p, perm_cyclic=False) == s
for p, s in [
(Permutation([]),
'()'),
(Permutation([], size=1),
'(0)'),
(Permutation([], size=2),
'(1)'),
(Permutation([], size=10),
'(9)'),
(Permutation([1, 0, 2]),
'(2)(0 1)'),
(Permutation([1, 0, 2, 3, 4, 5]),
'(5)(0 1)'),
(Permutation([1, 0, 2, 3, 4, 5], size=10),
'(9)(0 1)'),
(Permutation([0, 1, 3, 2, 4, 5], size=10),
'(9)(2 3)'),
]:
assert sstr(p) == s
def test_Pi():
assert str(pi) == "pi"
def test_Poly():
assert str(Poly(0, x)) == "Poly(0, x, domain='ZZ')"
assert str(Poly(1, x)) == "Poly(1, x, domain='ZZ')"
assert str(Poly(x, x)) == "Poly(x, x, domain='ZZ')"
assert str(Poly(2*x + 1, x)) == "Poly(2*x + 1, x, domain='ZZ')"
assert str(Poly(2*x - 1, x)) == "Poly(2*x - 1, x, domain='ZZ')"
assert str(Poly(-1, x)) == "Poly(-1, x, domain='ZZ')"
assert str(Poly(-x, x)) == "Poly(-x, x, domain='ZZ')"
assert str(Poly(-2*x + 1, x)) == "Poly(-2*x + 1, x, domain='ZZ')"
assert str(Poly(-2*x - 1, x)) == "Poly(-2*x - 1, x, domain='ZZ')"
assert str(Poly(x - 1, x)) == "Poly(x - 1, x, domain='ZZ')"
assert str(Poly(2*x + x**5, x)) == "Poly(x**5 + 2*x, x, domain='ZZ')"
assert str(Poly(3**(2*x), 3**x)) == "Poly((3**x)**2, 3**x, domain='ZZ')"
assert str(Poly((x**2)**x)) == "Poly(((x**2)**x), (x**2)**x, domain='ZZ')"
assert str(Poly((x + y)**3, (x + y), expand=False)
) == "Poly((x + y)**3, x + y, domain='ZZ')"
assert str(Poly((x - 1)**2, (x - 1), expand=False)
) == "Poly((x - 1)**2, x - 1, domain='ZZ')"
assert str(
Poly(x**2 + 1 + y, x)) == "Poly(x**2 + y + 1, x, domain='ZZ[y]')"
assert str(
Poly(x**2 - 1 + y, x)) == "Poly(x**2 + y - 1, x, domain='ZZ[y]')"
assert str(Poly(x**2 + I*x, x)) == "Poly(x**2 + I*x, x, domain='ZZ_I')"
assert str(Poly(x**2 - I*x, x)) == "Poly(x**2 - I*x, x, domain='ZZ_I')"
assert str(Poly(-x*y*z + x*y - 1, x, y, z)
) == "Poly(-x*y*z + x*y - 1, x, y, z, domain='ZZ')"
assert str(Poly(-w*x**21*y**7*z + (1 + w)*z**3 - 2*x*z + 1, x, y, z)) == \
"Poly(-w*x**21*y**7*z - 2*x*z + (w + 1)*z**3 + 1, x, y, z, domain='ZZ[w]')"
assert str(Poly(x**2 + 1, x, modulus=2)) == "Poly(x**2 + 1, x, modulus=2)"
assert str(Poly(2*x**2 + 3*x + 4, x, modulus=17)) == "Poly(2*x**2 + 3*x + 4, x, modulus=17)"
def test_PolyRing():
assert str(ring("x", ZZ, lex)[0]) == "Polynomial ring in x over ZZ with lex order"
assert str(ring("x,y", QQ, grlex)[0]) == "Polynomial ring in x, y over QQ with grlex order"
assert str(ring("x,y,z", ZZ["t"], lex)[0]) == "Polynomial ring in x, y, z over ZZ[t] with lex order"
def test_FracField():
assert str(field("x", ZZ, lex)[0]) == "Rational function field in x over ZZ with lex order"
assert str(field("x,y", QQ, grlex)[0]) == "Rational function field in x, y over QQ with grlex order"
assert str(field("x,y,z", ZZ["t"], lex)[0]) == "Rational function field in x, y, z over ZZ[t] with lex order"
def test_PolyElement():
Ruv, u,v = ring("u,v", ZZ)
Rxyz, x,y,z = ring("x,y,z", Ruv)
Rx_zzi, xz = ring("x", ZZ_I)
assert str(x - x) == "0"
assert str(x - 1) == "x - 1"
assert str(x + 1) == "x + 1"
assert str(x**2) == "x**2"
assert str(x**(-2)) == "x**(-2)"
assert str(x**QQ(1, 2)) == "x**(1/2)"
assert str((u**2 + 3*u*v + 1)*x**2*y + u + 1) == "(u**2 + 3*u*v + 1)*x**2*y + u + 1"
assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x"
assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1"
assert str((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == "-(u**2 - 3*u*v + 1)*x**2*y - (u + 1)*x - 1"
assert str(-(v**2 + v + 1)*x + 3*u*v + 1) == "-(v**2 + v + 1)*x + 3*u*v + 1"
assert str(-(v**2 + v + 1)*x - 3*u*v + 1) == "-(v**2 + v + 1)*x - 3*u*v + 1"
assert str((1+I)*xz + 2) == "(1 + 1*I)*x + (2 + 0*I)"
def test_FracElement():
Fuv, u,v = field("u,v", ZZ)
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
Rx_zzi, xz = field("x", QQ_I)
i = QQ_I(0, 1)
assert str(x - x) == "0"
assert str(x - 1) == "x - 1"
assert str(x + 1) == "x + 1"
assert str(x/3) == "x/3"
assert str(x/z) == "x/z"
assert str(x*y/z) == "x*y/z"
assert str(x/(z*t)) == "x/(z*t)"
assert str(x*y/(z*t)) == "x*y/(z*t)"
assert str((x - 1)/y) == "(x - 1)/y"
assert str((x + 1)/y) == "(x + 1)/y"
assert str((-x - 1)/y) == "(-x - 1)/y"
assert str((x + 1)/(y*z)) == "(x + 1)/(y*z)"
assert str(-y/(x + 1)) == "-y/(x + 1)"
assert str(y*z/(x + 1)) == "y*z/(x + 1)"
assert str(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - 1)"
assert str(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - u*v*t - 1)"
assert str((1+i)/xz) == "(1 + 1*I)/x"
assert str(((1+i)*xz - i)/xz) == "((1 + 1*I)*x + (0 + -1*I))/x"
def test_GaussianInteger():
assert str(ZZ_I(1, 0)) == "1"
assert str(ZZ_I(-1, 0)) == "-1"
assert str(ZZ_I(0, 1)) == "I"
assert str(ZZ_I(0, -1)) == "-I"
assert str(ZZ_I(0, 2)) == "2*I"
assert str(ZZ_I(0, -2)) == "-2*I"
assert str(ZZ_I(1, 1)) == "1 + I"
assert str(ZZ_I(-1, -1)) == "-1 - I"
assert str(ZZ_I(-1, -2)) == "-1 - 2*I"
def test_GaussianRational():
assert str(QQ_I(1, 0)) == "1"
assert str(QQ_I(QQ(2, 3), 0)) == "2/3"
assert str(QQ_I(0, QQ(2, 3))) == "2*I/3"
assert str(QQ_I(QQ(1, 2), QQ(-2, 3))) == "1/2 - 2*I/3"
def test_Pow():
assert str(x**-1) == "1/x"
assert str(x**-2) == "x**(-2)"
assert str(x**2) == "x**2"
assert str((x + y)**-1) == "1/(x + y)"
assert str((x + y)**-2) == "(x + y)**(-2)"
assert str((x + y)**2) == "(x + y)**2"
assert str((x + y)**(1 + x)) == "(x + y)**(x + 1)"
assert str(x**Rational(1, 3)) == "x**(1/3)"
assert str(1/x**Rational(1, 3)) == "x**(-1/3)"
assert str(sqrt(sqrt(x))) == "x**(1/4)"
# not the same as x**-1
assert str(x**-1.0) == 'x**(-1.0)'
# see issue #2860
assert str(Pow(S(2), -1.0, evaluate=False)) == '2**(-1.0)'
def test_sqrt():
assert str(sqrt(x)) == "sqrt(x)"
assert str(sqrt(x**2)) == "sqrt(x**2)"
assert str(1/sqrt(x)) == "1/sqrt(x)"
assert str(1/sqrt(x**2)) == "1/sqrt(x**2)"
assert str(y/sqrt(x)) == "y/sqrt(x)"
assert str(x**0.5) == "x**0.5"
assert str(1/x**0.5) == "x**(-0.5)"
def test_Rational():
n1 = Rational(1, 4)
n2 = Rational(1, 3)
n3 = Rational(2, 4)
n4 = Rational(2, -4)
n5 = Rational(0)
n7 = Rational(3)
n8 = Rational(-3)
assert str(n1*n2) == "1/12"
assert str(n1*n2) == "1/12"
assert str(n3) == "1/2"
assert str(n1*n3) == "1/8"
assert str(n1 + n3) == "3/4"
assert str(n1 + n2) == "7/12"
assert str(n1 + n4) == "-1/4"
assert str(n4*n4) == "1/4"
assert str(n4 + n2) == "-1/6"
assert str(n4 + n5) == "-1/2"
assert str(n4*n5) == "0"
assert str(n3 + n4) == "0"
assert str(n1**n7) == "1/64"
assert str(n2**n7) == "1/27"
assert str(n2**n8) == "27"
assert str(n7**n8) == "1/27"
assert str(Rational("-25")) == "-25"
assert str(Rational("1.25")) == "5/4"
assert str(Rational("-2.6e-2")) == "-13/500"
assert str(S("25/7")) == "25/7"
assert str(S("-123/569")) == "-123/569"
assert str(S("0.1[23]", rational=1)) == "61/495"
assert str(S("5.1[666]", rational=1)) == "31/6"
assert str(S("-5.1[666]", rational=1)) == "-31/6"
assert str(S("0.[9]", rational=1)) == "1"
assert str(S("-0.[9]", rational=1)) == "-1"
assert str(sqrt(Rational(1, 4))) == "1/2"
assert str(sqrt(Rational(1, 36))) == "1/6"
assert str((123**25) ** Rational(1, 25)) == "123"
assert str((123**25 + 1)**Rational(1, 25)) != "123"
assert str((123**25 - 1)**Rational(1, 25)) != "123"
assert str((123**25 - 1)**Rational(1, 25)) != "122"
assert str(sqrt(Rational(81, 36))**3) == "27/8"
assert str(1/sqrt(Rational(81, 36))**3) == "8/27"
assert str(sqrt(-4)) == str(2*I)
assert str(2**Rational(1, 10**10)) == "2**(1/10000000000)"
assert sstr(Rational(2, 3), sympy_integers=True) == "S(2)/3"
x = Symbol("x")
assert sstr(x**Rational(2, 3), sympy_integers=True) == "x**(S(2)/3)"
assert sstr(Eq(x, Rational(2, 3)), sympy_integers=True) == "Eq(x, S(2)/3)"
assert sstr(Limit(x, x, Rational(7, 2)), sympy_integers=True) == \
"Limit(x, x, S(7)/2)"
def test_Float():
# NOTE dps is the whole number of decimal digits
assert str(Float('1.23', dps=1 + 2)) == '1.23'
assert str(Float('1.23456789', dps=1 + 8)) == '1.23456789'
assert str(
Float('1.234567890123456789', dps=1 + 18)) == '1.234567890123456789'
assert str(pi.evalf(1 + 2)) == '3.14'
assert str(pi.evalf(1 + 14)) == '3.14159265358979'
assert str(pi.evalf(1 + 64)) == ('3.141592653589793238462643383279'
'5028841971693993751058209749445923')
assert str(pi.round(-1)) == '0.0'
assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88'
assert sstr(Float("100"), full_prec=False, min=-2, max=2) == '1.0e+2'
assert sstr(Float("100"), full_prec=False, min=-2, max=3) == '100.0'
assert sstr(Float("0.1"), full_prec=False, min=-2, max=3) == '0.1'
assert sstr(Float("0.099"), min=-2, max=3) == '9.90000000000000e-2'
def test_Relational():
assert str(Rel(x, y, "<")) == "x < y"
assert str(Rel(x + y, y, "==")) == "Eq(x + y, y)"
assert str(Rel(x, y, "!=")) == "Ne(x, y)"
assert str(Eq(x, 1) | Eq(x, 2)) == "Eq(x, 1) | Eq(x, 2)"
assert str(Ne(x, 1) & Ne(x, 2)) == "Ne(x, 1) & Ne(x, 2)"
def test_AppliedBinaryRelation():
assert str(Q.eq(x, y)) == "Q.eq(x, y)"
assert str(Q.ne(x, y)) == "Q.ne(x, y)"
def test_CRootOf():
assert str(rootof(x**5 + 2*x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)"
def test_RootSum():
f = x**5 + 2*x - 1
assert str(
RootSum(f, Lambda(z, z), auto=False)) == "RootSum(x**5 + 2*x - 1)"
assert str(RootSum(f, Lambda(
z, z**2), auto=False)) == "RootSum(x**5 + 2*x - 1, Lambda(z, z**2))"
def test_GroebnerBasis():
assert str(groebner(
[], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')"
F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
assert str(groebner(F, order='grlex')) == \
"GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')"
assert str(groebner(F, order='lex')) == \
"GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')"
def test_set():
assert sstr(set()) == 'set()'
assert sstr(frozenset()) == 'frozenset()'
assert sstr({1}) == '{1}'
assert sstr(frozenset([1])) == 'frozenset({1})'
assert sstr({1, 2, 3}) == '{1, 2, 3}'
assert sstr(frozenset([1, 2, 3])) == 'frozenset({1, 2, 3})'
assert sstr(
{1, x, x**2, x**3, x**4}) == '{1, x, x**2, x**3, x**4}'
assert sstr(
frozenset([1, x, x**2, x**3, x**4])) == 'frozenset({1, x, x**2, x**3, x**4})'
def test_SparseMatrix():
M = SparseMatrix([[x**+1, 1], [y, x + y]])
assert str(M) == "Matrix([[x, 1], [y, x + y]])"
assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])"
def test_Sum():
assert str(summation(cos(3*z), (z, x, y))) == "Sum(cos(3*z), (z, x, y))"
assert str(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
"Sum(x*y**2, (x, -2, 2), (y, -5, 5))"
def test_Symbol():
assert str(y) == "y"
assert str(x) == "x"
e = x
assert str(e) == "x"
def test_tuple():
assert str((x,)) == sstr((x,)) == "(x,)"
assert str((x + y, 1 + x)) == sstr((x + y, 1 + x)) == "(x + y, x + 1)"
assert str((x + y, (
1 + x, x**2))) == sstr((x + y, (1 + x, x**2))) == "(x + y, (x + 1, x**2))"
def test_Series_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert str(Series(tf1, tf2)) == \
"Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y))"
assert str(Series(tf1, tf2, tf3)) == \
"Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y), TransferFunction(t*x**2 - t**w*x + w, t - y, y))"
assert str(Series(-tf2, tf1)) == \
"Series(TransferFunction(-x + y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y))"
def test_MIMOSeries_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
assert str(MIMOSeries(tfm_1, tfm_2)) == \
"MIMOSeries(TransferFunctionMatrix(((TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), "\
"(TransferFunction(x - y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y)))), "\
"TransferFunctionMatrix(((TransferFunction(x - y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y)), "\
"(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)))))"
def test_TransferFunction_str():
tf1 = TransferFunction(x - 1, x + 1, x)
assert str(tf1) == "TransferFunction(x - 1, x + 1, x)"
tf2 = TransferFunction(x + 1, 2 - y, x)
assert str(tf2) == "TransferFunction(x + 1, 2 - y, x)"
tf3 = TransferFunction(y, y**2 + 2*y + 3, y)
assert str(tf3) == "TransferFunction(y, y**2 + 2*y + 3, y)"
def test_Parallel_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert str(Parallel(tf1, tf2)) == \
"Parallel(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y))"
assert str(Parallel(tf1, tf2, tf3)) == \
"Parallel(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y), TransferFunction(t*x**2 - t**w*x + w, t - y, y))"
assert str(Parallel(-tf2, tf1)) == \
"Parallel(TransferFunction(-x + y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y))"
def test_MIMOParallel_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
assert str(MIMOParallel(tfm_1, tfm_2)) == \
"MIMOParallel(TransferFunctionMatrix(((TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), "\
"(TransferFunction(x - y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y)))), "\
"TransferFunctionMatrix(((TransferFunction(x - y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y)), "\
"(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)))))"
def test_Feedback_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert str(Feedback(tf1*tf2, tf3)) == \
"Feedback(Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), " \
"TransferFunction(t*x**2 - t**w*x + w, t - y, y), -1)"
assert str(Feedback(tf1, TransferFunction(1, 1, y), 1)) == \
"Feedback(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(1, 1, y), 1)"
def test_MIMOFeedback_str():
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
tfm_1 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
tfm_2 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
assert (str(MIMOFeedback(tfm_1, tfm_2)) \
== "MIMOFeedback(TransferFunctionMatrix(((TransferFunction(-x + y, y + z, x), TransferFunction(x**2 - y**3, y - z, x))," \
" (TransferFunction(x**2 - y**3, y - z, x), TransferFunction(-x + y, y + z, x)))), " \
"TransferFunctionMatrix(((TransferFunction(x**2 - y**3, y - z, x), " \
"TransferFunction(-x + y, y + z, x)), (TransferFunction(-x + y, y + z, x), TransferFunction(x**2 - y**3, y - z, x)))), -1)")
assert (str(MIMOFeedback(tfm_1, tfm_2, 1)) \
== "MIMOFeedback(TransferFunctionMatrix(((TransferFunction(-x + y, y + z, x), TransferFunction(x**2 - y**3, y - z, x)), " \
"(TransferFunction(x**2 - y**3, y - z, x), TransferFunction(-x + y, y + z, x)))), " \
"TransferFunctionMatrix(((TransferFunction(x**2 - y**3, y - z, x), TransferFunction(-x + y, y + z, x)), "\
"(TransferFunction(-x + y, y + z, x), TransferFunction(x**2 - y**3, y - z, x)))), 1)")
def test_TransferFunctionMatrix_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert str(TransferFunctionMatrix([[tf1], [tf2]])) == \
"TransferFunctionMatrix(((TransferFunction(x*y**2 - z, -t**3 + y**3, y),), (TransferFunction(x - y, x + y, y),)))"
assert str(TransferFunctionMatrix([[tf1, tf2], [tf3, tf2]])) == \
"TransferFunctionMatrix(((TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), (TransferFunction(t*x**2 - t**w*x + w, t - y, y), TransferFunction(x - y, x + y, y))))"
def test_Quaternion_str_printer():
q = Quaternion(x, y, z, t)
assert str(q) == "x + y*i + z*j + t*k"
q = Quaternion(x,y,z,x*t)
assert str(q) == "x + y*i + z*j + t*x*k"
q = Quaternion(x,y,z,x+t)
assert str(q) == "x + y*i + z*j + (t + x)*k"
def test_Quantity_str():
assert sstr(second, abbrev=True) == "s"
assert sstr(joule, abbrev=True) == "J"
assert str(second) == "second"
assert str(joule) == "joule"
def test_wild_str():
# Check expressions containing Wild not causing infinite recursion
w = Wild('x')
assert str(w + 1) == 'x_ + 1'
assert str(exp(2**w) + 5) == 'exp(2**x_) + 5'
assert str(3*w + 1) == '3*x_ + 1'
assert str(1/w + 1) == '1 + 1/x_'
assert str(w**2 + 1) == 'x_**2 + 1'
assert str(1/(1 - w)) == '1/(1 - x_)'
def test_wild_matchpy():
from sympy.utilities.matchpy_connector import WildDot, WildPlus, WildStar
matchpy = import_module("matchpy")
if matchpy is None:
return
wd = WildDot('w_')
wp = WildPlus('w__')
ws = WildStar('w___')
assert str(wd) == 'w_'
assert str(wp) == 'w__'
assert str(ws) == 'w___'
assert str(wp/ws + 2**wd) == '2**w_ + w__/w___'
assert str(sin(wd)*cos(wp)*sqrt(ws)) == 'sqrt(w___)*sin(w_)*cos(w__)'
def test_zeta():
assert str(zeta(3)) == "zeta(3)"
def test_issue_3101():
e = x - y
a = str(e)
b = str(e)
assert a == b
def test_issue_3103():
e = -2*sqrt(x) - y/sqrt(x)/2
assert str(e) not in ["(-2)*x**1/2(-1/2)*x**(-1/2)*y",
"-2*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2-1/2*x**-1/2*w"]
assert str(e) == "-2*sqrt(x) - y/(2*sqrt(x))"
def test_issue_4021():
e = Integral(x, x) + 1
assert str(e) == 'Integral(x, x) + 1'
def test_sstrrepr():
assert sstr('abc') == 'abc'
assert sstrrepr('abc') == "'abc'"
e = ['a', 'b', 'c', x]
assert sstr(e) == "[a, b, c, x]"
assert sstrrepr(e) == "['a', 'b', 'c', x]"
def test_infinity():
assert sstr(oo*I) == "oo*I"
def test_full_prec():
assert sstr(S("0.3"), full_prec=True) == "0.300000000000000"
assert sstr(S("0.3"), full_prec="auto") == "0.300000000000000"
assert sstr(S("0.3"), full_prec=False) == "0.3"
assert sstr(S("0.3")*x, full_prec=True) in [
"0.300000000000000*x",
"x*0.300000000000000"
]
assert sstr(S("0.3")*x, full_prec="auto") in [
"0.3*x",
"x*0.3"
]
assert sstr(S("0.3")*x, full_prec=False) in [
"0.3*x",
"x*0.3"
]
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
assert sstr(A*B*C**-1) == "A*B*C**(-1)"
assert sstr(C**-1*A*B) == "C**(-1)*A*B"
assert sstr(A*C**-1*B) == "A*C**(-1)*B"
assert sstr(sqrt(A)) == "sqrt(A)"
assert sstr(1/sqrt(A)) == "A**(-1/2)"
def test_empty_printer():
str_printer = StrPrinter()
assert str_printer.emptyPrinter("foo") == "foo"
assert str_printer.emptyPrinter(x*y) == "x*y"
assert str_printer.emptyPrinter(32) == "32"
def test_settings():
raises(TypeError, lambda: sstr(S(4), method="garbage"))
def test_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
X = Normal('x1', 0, 1)
assert str(where(X > 0)) == "Domain: (0 < x1) & (x1 < oo)"
D = Die('d1', 6)
assert str(where(D > 4)) == "Domain: Eq(d1, 5) | Eq(d1, 6)"
A = Exponential('a', 1)
B = Exponential('b', 1)
assert str(pspace(Tuple(A, B)).domain) == "Domain: (0 <= a) & (0 <= b) & (a < oo) & (b < oo)"
def test_FiniteSet():
assert str(FiniteSet(*range(1, 51))) == (
'FiniteSet(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,'
' 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,'
' 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)'
)
assert str(FiniteSet(*range(1, 6))) == 'FiniteSet(1, 2, 3, 4, 5)'
def test_UniversalSet():
assert str(S.UniversalSet) == 'UniversalSet'
def test_PrettyPoly():
from sympy.polys.domains import QQ
F = QQ.frac_field(x, y)
R = QQ[x, y]
assert sstr(F.convert(x/(x + y))) == sstr(x/(x + y))
assert sstr(R.convert(x + y)) == sstr(x + y)
def test_categories():
from sympy.categories import (Object, NamedMorphism,
IdentityMorphism, Category)
A = Object("A")
B = Object("B")
f = NamedMorphism(A, B, "f")
id_A = IdentityMorphism(A)
K = Category("K")
assert str(A) == 'Object("A")'
assert str(f) == 'NamedMorphism(Object("A"), Object("B"), "f")'
assert str(id_A) == 'IdentityMorphism(Object("A"))'
assert str(K) == 'Category("K")'
def test_Tr():
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert str(t) == 'Tr(A*B)'
def test_issue_6387():
assert str(factor(-3.0*z + 3)) == '-3.0*(1.0*z - 1.0)'
def test_MatMul_MatAdd():
from sympy import MatrixSymbol
X, Y = MatrixSymbol("X", 2, 2), MatrixSymbol("Y", 2, 2)
assert str(2*(X + Y)) == "2*X + 2*Y"
assert str(I*X) == "I*X"
assert str(-I*X) == "-I*X"
assert str((1 + I)*X) == '(1 + I)*X'
assert str(-(1 + I)*X) == '(-1 - I)*X'
def test_MatrixSlice():
n = Symbol('n', integer=True)
X = MatrixSymbol('X', n, n)
Y = MatrixSymbol('Y', 10, 10)
Z = MatrixSymbol('Z', 10, 10)
assert str(MatrixSlice(X, (None, None, None), (None, None, None))) == 'X[:, :]'
assert str(X[x:x + 1, y:y + 1]) == 'X[x:x + 1, y:y + 1]'
assert str(X[x:x + 1:2, y:y + 1:2]) == 'X[x:x + 1:2, y:y + 1:2]'
assert str(X[:x, y:]) == 'X[:x, y:]'
assert str(X[:x, y:]) == 'X[:x, y:]'
assert str(X[x:, :y]) == 'X[x:, :y]'
assert str(X[x:y, z:w]) == 'X[x:y, z:w]'
assert str(X[x:y:t, w:t:x]) == 'X[x:y:t, w:t:x]'
assert str(X[x::y, t::w]) == 'X[x::y, t::w]'
assert str(X[:x:y, :t:w]) == 'X[:x:y, :t:w]'
assert str(X[::x, ::y]) == 'X[::x, ::y]'
assert str(MatrixSlice(X, (0, None, None), (0, None, None))) == 'X[:, :]'
assert str(MatrixSlice(X, (None, n, None), (None, n, None))) == 'X[:, :]'
assert str(MatrixSlice(X, (0, n, None), (0, n, None))) == 'X[:, :]'
assert str(MatrixSlice(X, (0, n, 2), (0, n, 2))) == 'X[::2, ::2]'
assert str(X[1:2:3, 4:5:6]) == 'X[1:2:3, 4:5:6]'
assert str(X[1:3:5, 4:6:8]) == 'X[1:3:5, 4:6:8]'
assert str(X[1:10:2]) == 'X[1:10:2, :]'
assert str(Y[:5, 1:9:2]) == 'Y[:5, 1:9:2]'
assert str(Y[:5, 1:10:2]) == 'Y[:5, 1::2]'
assert str(Y[5, :5:2]) == 'Y[5:6, :5:2]'
assert str(X[0:1, 0:1]) == 'X[:1, :1]'
assert str(X[0:1:2, 0:1:2]) == 'X[:1:2, :1:2]'
assert str((Y + Z)[2:, 2:]) == '(Y + Z)[2:, 2:]'
def test_true_false():
assert str(true) == repr(true) == sstr(true) == "True"
assert str(false) == repr(false) == sstr(false) == "False"
def test_Equivalent():
assert str(Equivalent(y, x)) == "Equivalent(x, y)"
def test_Xor():
assert str(Xor(y, x, evaluate=False)) == "x ^ y"
def test_Complement():
assert str(Complement(S.Reals, S.Naturals)) == 'Complement(Reals, Naturals)'
def test_SymmetricDifference():
assert str(SymmetricDifference(Interval(2, 3), Interval(3, 4),evaluate=False)) == \
'SymmetricDifference(Interval(2, 3), Interval(3, 4))'
def test_UnevaluatedExpr():
a, b = symbols("a b")
expr1 = 2*UnevaluatedExpr(a+b)
assert str(expr1) == "2*(a + b)"
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(str(A[0, 0]) == "A[0, 0]")
assert(str(3 * A[0, 0]) == "3*A[0, 0]")
F = C[0, 0].subs(C, A - B)
assert str(F) == "(A - B)[0, 0]"
def test_MatrixSymbol_printing():
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert str(A - A*B - B) == "A - A*B - B"
assert str(A*B - (A+B)) == "-A + A*B - B"
assert str(A**(-1)) == "A**(-1)"
assert str(A**3) == "A**3"
def test_MatrixExpressions():
n = Symbol('n', integer=True)
X = MatrixSymbol('X', n, n)
assert str(X) == "X"
# Apply function elementwise (`ElementwiseApplyFunc`):
expr = (X.T*X).applyfunc(sin)
assert str(expr) == 'Lambda(_d, sin(_d)).(X.T*X)'
lamda = Lambda(x, 1/x)
expr = (n*X).applyfunc(lamda)
assert str(expr) == 'Lambda(x, 1/x).(n*X)'
def test_Subs_printing():
assert str(Subs(x, (x,), (1,))) == 'Subs(x, x, 1)'
assert str(Subs(x + y, (x, y), (1, 2))) == 'Subs(x + y, (x, y), (1, 2))'
def test_issue_15716():
e = Integral(factorial(x), (x, -oo, oo))
assert e.as_terms() == ([(e, ((1.0, 0.0), (1,), ()))], [e])
def test_str_special_matrices():
from sympy.matrices import Identity, ZeroMatrix, OneMatrix
assert str(Identity(4)) == 'I'
assert str(ZeroMatrix(2, 2)) == '0'
assert str(OneMatrix(2, 2)) == '1'
def test_issue_14567():
assert factorial(Sum(-1, (x, 0, 0))) + y # doesn't raise an error
def test_issue_21119_21460():
ss = lambda x: str(S(x, evaluate=False))
assert ss('4/2') == '4/2'
assert ss('4/-2') == '4/(-2)'
assert ss('-4/2') == '-4/2'
assert ss('-4/-2') == '-4/(-2)'
assert ss('-2*3/-1') == '-2*3/(-1)'
assert ss('-2*3/-1/2') == '-2*3/(-1*2)'
assert ss('4/2/1') == '4/(2*1)'
assert ss('-2/-1/2') == '-2/(-1*2)'
assert ss('2*3*4**(-2*3)') == '2*3/4**(2*3)'
assert ss('2*3*1*4**(-2*3)') == '2*3*1/4**(2*3)'
def test_Str():
from sympy.core.symbol import Str
assert str(Str('x')) == 'x'
assert sstrrepr(Str('x')) == "Str('x')"
def test_diffgeom():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField
x,y = symbols('x y', real=True)
m = Manifold('M', 2)
assert str(m) == "M"
p = Patch('P', m)
assert str(p) == "P"
rect = CoordSystem('rect', p, [x, y])
assert str(rect) == "rect"
b = BaseScalarField(rect, 0)
assert str(b) == "x"
def test_NDimArray():
assert sstr(NDimArray(1.0), full_prec=True) == '1.00000000000000'
assert sstr(NDimArray(1.0), full_prec=False) == '1.0'
assert sstr(NDimArray([1.0, 2.0]), full_prec=True) == '[1.00000000000000, 2.00000000000000]'
assert sstr(NDimArray([1.0, 2.0]), full_prec=False) == '[1.0, 2.0]'
def test_Predicate():
assert sstr(Q.even) == 'Q.even'
def test_AppliedPredicate():
assert sstr(Q.even(x)) == 'Q.even(x)'
def test_printing_str_array_expressions():
assert sstr(ArraySymbol("A", 2, 3, 4)) == "A"
assert sstr(ArrayElement("A", (2, 1/(1-x), 0))) == "A[2, 1/(1 - x), 0]"
|
5a2e4ff62c71a016167c99e1fd4738ba5e422cf307a40f2ea06566a9b027e941 | from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayElement
from sympy.tensor.toperators import PartialDerivative
from sympy import (
Abs, Chi, Ci, CosineTransform, Dict, Ei, Eq, FallingFactorial,
FiniteSet, Float, FourierTransform, Function, Indexed, IndexedBase, Integral,
Interval, InverseCosineTransform, InverseFourierTransform, Derivative,
InverseLaplaceTransform, InverseMellinTransform, InverseSineTransform,
Lambda, LaplaceTransform, Limit, Matrix, Max, MellinTransform, Min, Mul,
Order, Piecewise, Poly, ring, field, ZZ, Pow, Product, Range, Rational, Integer,
RisingFactorial, rootof, RootSum, S, Shi, Si, SineTransform, Subs,
Sum, Symbol, ImageSet, Tuple, Ynm, Znm, arg, asin, acsc, asinh, Mod,
assoc_laguerre, assoc_legendre, beta, binomial, catalan, ceiling,
chebyshevt, chebyshevu, conjugate, cot, coth, diff, dirichlet_eta, euler,
exp, expint, factorial, factorial2, floor, gamma, gegenbauer, hermite,
hyper, im, jacobi, laguerre, legendre, lerchphi, log, frac,
meijerg, oo, polar_lift, polylog, re, root, sin, sqrt, symbols,
uppergamma, zeta, subfactorial, totient, elliptic_k, elliptic_f,
elliptic_e, elliptic_pi, cos, tan, Wild, true, false, Equivalent, Not,
Contains, divisor_sigma, SeqPer, SeqFormula, MatrixSlice,
SeqAdd, SeqMul, fourier_series, pi, ConditionSet, ComplexRegion, fps,
AccumBounds, reduced_totient, primenu, primeomega, SingularityFunction,
stieltjes, mathieuc, mathieus, mathieucprime, mathieusprime,
UnevaluatedExpr, Quaternion, I, KroneckerProduct, LambertW)
from sympy.ntheory.factor_ import udivisor_sigma
from sympy.abc import mu, tau
from sympy.printing.latex import (latex, translate, greek_letters_set,
tex_greek_dictionary, multiline_latex,
latex_escape, LatexPrinter)
from sympy.tensor.array import (ImmutableDenseNDimArray,
ImmutableSparseNDimArray,
MutableSparseNDimArray,
MutableDenseNDimArray,
tensorproduct)
from sympy.testing.pytest import XFAIL, raises, _both_exp_pow
from sympy.functions import DiracDelta, Heaviside, KroneckerDelta, LeviCivita
from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \
fibonacci, tribonacci
from sympy.logic import Implies
from sympy.logic.boolalg import And, Or, Xor
from sympy.physics.control.lti import TransferFunction, Series, Parallel, \
Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback
from sympy.physics.quantum import Commutator, Operator
from sympy.physics.units import meter, gibibyte, microgram, second
from sympy.core.trace import Tr
from sympy.combinatorics.permutations import \
Cycle, Permutation, AppliedPermutation
from sympy.matrices.expressions.permutation import PermutationMatrix
from sympy import MatrixSymbol, ln
from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian
from sympy.sets.setexpr import SetExpr
from sympy.sets.sets import \
Union, Intersection, Complement, SymmetricDifference, ProductSet
import sympy as sym
class lowergamma(sym.lowergamma):
pass # testing notation inheritance by a subclass with same name
x, y, z, t, w, a, b, c, s, p = symbols('x y z t w a b c s p')
k, m, n = symbols('k m n', integer=True)
def test_printmethod():
class R(Abs):
def _latex(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert latex(R(x)) == r"foo(x)"
class R(Abs):
def _latex(self, printer):
return "foo"
assert latex(R(x)) == r"foo"
def test_latex_basic():
assert latex(1 + x) == r"x + 1"
assert latex(x**2) == r"x^{2}"
assert latex(x**(1 + x)) == r"x^{x + 1}"
assert latex(x**3 + x + 1 + x**2) == r"x^{3} + x^{2} + x + 1"
assert latex(2*x*y) == r"2 x y"
assert latex(2*x*y, mul_symbol='dot') == r"2 \cdot x \cdot y"
assert latex(3*x**2*y, mul_symbol='\\,') == r"3\,x^{2}\,y"
assert latex(1.5*3**x, mul_symbol='\\,') == r"1.5 \cdot 3^{x}"
assert latex(Mul(0, 1, evaluate=False)) == r'0 \cdot 1'
assert latex(Mul(1, 0, evaluate=False)) == r'1 \cdot 0'
assert latex(Mul(1, 1, evaluate=False)) == r'1 \cdot 1'
assert latex(Mul(-1, 1, evaluate=False)) == r'\left(-1\right) 1'
assert latex(Mul(1, 1, 1, evaluate=False)) == r'1 \cdot 1 \cdot 1'
assert latex(Mul(1, 2, evaluate=False)) == r'1 \cdot 2'
assert latex(Mul(1, S.Half, evaluate=False)) == r'1 \frac{1}{2}'
assert latex(Mul(1, 1, S.Half, evaluate=False)) == \
r'1 \cdot 1 \frac{1}{2}'
assert latex(Mul(1, 1, 2, 3, x, evaluate=False)) == \
r'1 \cdot 1 \cdot 2 \cdot 3 x'
assert latex(Mul(1, -1, evaluate=False)) == r'1 \left(-1\right)'
assert latex(Mul(4, 3, 2, 1, 0, y, x, evaluate=False)) == \
r'4 \cdot 3 \cdot 2 \cdot 1 \cdot 0 y x'
assert latex(Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)) == \
r'4 \cdot 3 \cdot 2 \left(z + 1\right) 0 y x'
assert latex(Mul(Rational(2, 3), Rational(5, 7), evaluate=False)) == \
r'\frac{2}{3} \frac{5}{7}'
assert latex(1/x) == r"\frac{1}{x}"
assert latex(1/x, fold_short_frac=True) == r"1 / x"
assert latex(-S(3)/2) == r"- \frac{3}{2}"
assert latex(-S(3)/2, fold_short_frac=True) == r"- 3 / 2"
assert latex(1/x**2) == r"\frac{1}{x^{2}}"
assert latex(1/(x + y)/2) == r"\frac{1}{2 \left(x + y\right)}"
assert latex(x/2) == r"\frac{x}{2}"
assert latex(x/2, fold_short_frac=True) == r"x / 2"
assert latex((x + y)/(2*x)) == r"\frac{x + y}{2 x}"
assert latex((x + y)/(2*x), fold_short_frac=True) == \
r"\left(x + y\right) / 2 x"
assert latex((x + y)/(2*x), long_frac_ratio=0) == \
r"\frac{1}{2 x} \left(x + y\right)"
assert latex((x + y)/x) == r"\frac{x + y}{x}"
assert latex((x + y)/x, long_frac_ratio=3) == r"\frac{x + y}{x}"
assert latex((2*sqrt(2)*x)/3) == r"\frac{2 \sqrt{2} x}{3}"
assert latex((2*sqrt(2)*x)/3, long_frac_ratio=2) == \
r"\frac{2 x}{3} \sqrt{2}"
assert latex(binomial(x, y)) == r"{\binom{x}{y}}"
x_star = Symbol('x^*')
f = Function('f')
assert latex(x_star**2) == r"\left(x^{*}\right)^{2}"
assert latex(x_star**2, parenthesize_super=False) == r"{x^{*}}^{2}"
assert latex(Derivative(f(x_star), x_star,2)) == r"\frac{d^{2}}{d \left(x^{*}\right)^{2}} f{\left(x^{*} \right)}"
assert latex(Derivative(f(x_star), x_star,2), parenthesize_super=False) == r"\frac{d^{2}}{d {x^{*}}^{2}} f{\left(x^{*} \right)}"
assert latex(2*Integral(x, x)/3) == r"\frac{2 \int x\, dx}{3}"
assert latex(2*Integral(x, x)/3, fold_short_frac=True) == \
r"\left(2 \int x\, dx\right) / 3"
assert latex(sqrt(x)) == r"\sqrt{x}"
assert latex(x**Rational(1, 3)) == r"\sqrt[3]{x}"
assert latex(x**Rational(1, 3), root_notation=False) == r"x^{\frac{1}{3}}"
assert latex(sqrt(x)**3) == r"x^{\frac{3}{2}}"
assert latex(sqrt(x), itex=True) == r"\sqrt{x}"
assert latex(x**Rational(1, 3), itex=True) == r"\root{3}{x}"
assert latex(sqrt(x)**3, itex=True) == r"x^{\frac{3}{2}}"
assert latex(x**Rational(3, 4)) == r"x^{\frac{3}{4}}"
assert latex(x**Rational(3, 4), fold_frac_powers=True) == r"x^{3/4}"
assert latex((x + 1)**Rational(3, 4)) == \
r"\left(x + 1\right)^{\frac{3}{4}}"
assert latex((x + 1)**Rational(3, 4), fold_frac_powers=True) == \
r"\left(x + 1\right)^{3/4}"
assert latex(1.5e20*x) == r"1.5 \cdot 10^{20} x"
assert latex(1.5e20*x, mul_symbol='dot') == r"1.5 \cdot 10^{20} \cdot x"
assert latex(1.5e20*x, mul_symbol='times') == \
r"1.5 \times 10^{20} \times x"
assert latex(1/sin(x)) == r"\frac{1}{\sin{\left(x \right)}}"
assert latex(sin(x)**-1) == r"\frac{1}{\sin{\left(x \right)}}"
assert latex(sin(x)**Rational(3, 2)) == \
r"\sin^{\frac{3}{2}}{\left(x \right)}"
assert latex(sin(x)**Rational(3, 2), fold_frac_powers=True) == \
r"\sin^{3/2}{\left(x \right)}"
assert latex(~x) == r"\neg x"
assert latex(x & y) == r"x \wedge y"
assert latex(x & y & z) == r"x \wedge y \wedge z"
assert latex(x | y) == r"x \vee y"
assert latex(x | y | z) == r"x \vee y \vee z"
assert latex((x & y) | z) == r"z \vee \left(x \wedge y\right)"
assert latex(Implies(x, y)) == r"x \Rightarrow y"
assert latex(~(x >> ~y)) == r"x \not\Rightarrow \neg y"
assert latex(Implies(Or(x,y), z)) == r"\left(x \vee y\right) \Rightarrow z"
assert latex(Implies(z, Or(x,y))) == r"z \Rightarrow \left(x \vee y\right)"
assert latex(~(x & y)) == r"\neg \left(x \wedge y\right)"
assert latex(~x, symbol_names={x: "x_i"}) == r"\neg x_i"
assert latex(x & y, symbol_names={x: "x_i", y: "y_i"}) == \
r"x_i \wedge y_i"
assert latex(x & y & z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"x_i \wedge y_i \wedge z_i"
assert latex(x | y, symbol_names={x: "x_i", y: "y_i"}) == r"x_i \vee y_i"
assert latex(x | y | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"x_i \vee y_i \vee z_i"
assert latex((x & y) | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"z_i \vee \left(x_i \wedge y_i\right)"
assert latex(Implies(x, y), symbol_names={x: "x_i", y: "y_i"}) == \
r"x_i \Rightarrow y_i"
assert latex(Pow(Rational(1, 3), -1, evaluate=False)) == r"\frac{1}{\frac{1}{3}}"
assert latex(Pow(Rational(1, 3), -2, evaluate=False)) == r"\frac{1}{(\frac{1}{3})^{2}}"
assert latex(Pow(Integer(1)/100, -1, evaluate=False)) == r"\frac{1}{\frac{1}{100}}"
p = Symbol('p', positive=True)
assert latex(exp(-p)*log(p)) == r"e^{- p} \log{\left(p \right)}"
def test_latex_builtins():
assert latex(True) == r"\text{True}"
assert latex(False) == r"\text{False}"
assert latex(None) == r"\text{None}"
assert latex(true) == r"\text{True}"
assert latex(false) == r'\text{False}'
def test_latex_SingularityFunction():
assert latex(SingularityFunction(x, 4, 5)) == \
r"{\left\langle x - 4 \right\rangle}^{5}"
assert latex(SingularityFunction(x, -3, 4)) == \
r"{\left\langle x + 3 \right\rangle}^{4}"
assert latex(SingularityFunction(x, 0, 4)) == \
r"{\left\langle x \right\rangle}^{4}"
assert latex(SingularityFunction(x, a, n)) == \
r"{\left\langle - a + x \right\rangle}^{n}"
assert latex(SingularityFunction(x, 4, -2)) == \
r"{\left\langle x - 4 \right\rangle}^{-2}"
assert latex(SingularityFunction(x, 4, -1)) == \
r"{\left\langle x - 4 \right\rangle}^{-1}"
assert latex(SingularityFunction(x, 4, 5)**3) == \
r"{\left({\langle x - 4 \rangle}^{5}\right)}^{3}"
assert latex(SingularityFunction(x, -3, 4)**3) == \
r"{\left({\langle x + 3 \rangle}^{4}\right)}^{3}"
assert latex(SingularityFunction(x, 0, 4)**3) == \
r"{\left({\langle x \rangle}^{4}\right)}^{3}"
assert latex(SingularityFunction(x, a, n)**3) == \
r"{\left({\langle - a + x \rangle}^{n}\right)}^{3}"
assert latex(SingularityFunction(x, 4, -2)**3) == \
r"{\left({\langle x - 4 \rangle}^{-2}\right)}^{3}"
assert latex((SingularityFunction(x, 4, -1)**3)**3) == \
r"{\left({\langle x - 4 \rangle}^{-1}\right)}^{9}"
def test_latex_cycle():
assert latex(Cycle(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
assert latex(Cycle(1, 2)(4, 5, 6)) == \
r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
assert latex(Cycle()) == r"\left( \right)"
def test_latex_permutation():
assert latex(Permutation(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
assert latex(Permutation(1, 2)(4, 5, 6)) == \
r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
assert latex(Permutation()) == r"\left( \right)"
assert latex(Permutation(2, 4)*Permutation(5)) == \
r"\left( 2\; 4\right)\left( 5\right)"
assert latex(Permutation(5)) == r"\left( 5\right)"
assert latex(Permutation(0, 1), perm_cyclic=False) == \
r"\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}"
assert latex(Permutation(0, 1)(2, 3), perm_cyclic=False) == \
r"\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix}"
assert latex(Permutation(), perm_cyclic=False) == \
r"\left( \right)"
def test_latex_Float():
assert latex(Float(1.0e100)) == r"1.0 \cdot 10^{100}"
assert latex(Float(1.0e-100)) == r"1.0 \cdot 10^{-100}"
assert latex(Float(1.0e-100), mul_symbol="times") == \
r"1.0 \times 10^{-100}"
assert latex(Float('10000.0'), full_prec=False, min=-2, max=2) == \
r"1.0 \cdot 10^{4}"
assert latex(Float('10000.0'), full_prec=False, min=-2, max=4) == \
r"1.0 \cdot 10^{4}"
assert latex(Float('10000.0'), full_prec=False, min=-2, max=5) == \
r"10000.0"
assert latex(Float('0.099999'), full_prec=True, min=-2, max=5) == \
r"9.99990000000000 \cdot 10^{-2}"
def test_latex_vector_expressions():
A = CoordSys3D('A')
assert latex(Cross(A.i, A.j*A.x*3+A.k)) == \
r"\mathbf{\hat{i}_{A}} \times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
assert latex(Cross(A.i, A.j)) == \
r"\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}"
assert latex(x*Cross(A.i, A.j)) == \
r"x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)"
assert latex(Cross(x*A.i, A.j)) == \
r'- \mathbf{\hat{j}_{A}} \times \left((x)\mathbf{\hat{i}_{A}}\right)'
assert latex(Curl(3*A.x*A.j)) == \
r"\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Curl(3*A.x*A.j+A.i)) == \
r"\nabla\times \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Curl(3*x*A.x*A.j)) == \
r"\nabla\times \left((3 \mathbf{{x}_{A}} x)\mathbf{\hat{j}_{A}}\right)"
assert latex(x*Curl(3*A.x*A.j)) == \
r"x \left(\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)"
assert latex(Divergence(3*A.x*A.j+A.i)) == \
r"\nabla\cdot \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Divergence(3*A.x*A.j)) == \
r"\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(x*Divergence(3*A.x*A.j)) == \
r"x \left(\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)"
assert latex(Dot(A.i, A.j*A.x*3+A.k)) == \
r"\mathbf{\hat{i}_{A}} \cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
assert latex(Dot(A.i, A.j)) == \
r"\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}"
assert latex(Dot(x*A.i, A.j)) == \
r"\mathbf{\hat{j}_{A}} \cdot \left((x)\mathbf{\hat{i}_{A}}\right)"
assert latex(x*Dot(A.i, A.j)) == \
r"x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)"
assert latex(Gradient(A.x)) == r"\nabla \mathbf{{x}_{A}}"
assert latex(Gradient(A.x + 3*A.y)) == \
r"\nabla \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
assert latex(x*Gradient(A.x)) == r"x \left(\nabla \mathbf{{x}_{A}}\right)"
assert latex(Gradient(x*A.x)) == r"\nabla \left(\mathbf{{x}_{A}} x\right)"
assert latex(Laplacian(A.x)) == r"\triangle \mathbf{{x}_{A}}"
assert latex(Laplacian(A.x + 3*A.y)) == \
r"\triangle \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
assert latex(x*Laplacian(A.x)) == r"x \left(\triangle \mathbf{{x}_{A}}\right)"
assert latex(Laplacian(x*A.x)) == r"\triangle \left(\mathbf{{x}_{A}} x\right)"
def test_latex_symbols():
Gamma, lmbda, rho = symbols('Gamma, lambda, rho')
tau, Tau, TAU, taU = symbols('tau, Tau, TAU, taU')
assert latex(tau) == r"\tau"
assert latex(Tau) == r"T"
assert latex(TAU) == r"\tau"
assert latex(taU) == r"\tau"
# Check that all capitalized greek letters are handled explicitly
capitalized_letters = {l.capitalize() for l in greek_letters_set}
assert len(capitalized_letters - set(tex_greek_dictionary.keys())) == 0
assert latex(Gamma + lmbda) == r"\Gamma + \lambda"
assert latex(Gamma * lmbda) == r"\Gamma \lambda"
assert latex(Symbol('q1')) == r"q_{1}"
assert latex(Symbol('q21')) == r"q_{21}"
assert latex(Symbol('epsilon0')) == r"\epsilon_{0}"
assert latex(Symbol('omega1')) == r"\omega_{1}"
assert latex(Symbol('91')) == r"91"
assert latex(Symbol('alpha_new')) == r"\alpha_{new}"
assert latex(Symbol('C^orig')) == r"C^{orig}"
assert latex(Symbol('x^alpha')) == r"x^{\alpha}"
assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}"
assert latex(Symbol('e^Alpha')) == r"e^{A}"
assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}"
assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}"
@XFAIL
def test_latex_symbols_failing():
rho, mass, volume = symbols('rho, mass, volume')
assert latex(
volume * rho == mass) == r"\rho \mathrm{volume} = \mathrm{mass}"
assert latex(volume / mass * rho == 1) == \
r"\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1"
assert latex(mass**3 * volume**3) == \
r"{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}"
@_both_exp_pow
def test_latex_functions():
assert latex(exp(x)) == r"e^{x}"
assert latex(exp(1) + exp(2)) == r"e + e^{2}"
f = Function('f')
assert latex(f(x)) == r'f{\left(x \right)}'
assert latex(f) == r'f'
g = Function('g')
assert latex(g(x, y)) == r'g{\left(x,y \right)}'
assert latex(g) == r'g'
h = Function('h')
assert latex(h(x, y, z)) == r'h{\left(x,y,z \right)}'
assert latex(h) == r'h'
Li = Function('Li')
assert latex(Li) == r'\operatorname{Li}'
assert latex(Li(x)) == r'\operatorname{Li}{\left(x \right)}'
mybeta = Function('beta')
# not to be confused with the beta function
assert latex(mybeta(x, y, z)) == r"\beta{\left(x,y,z \right)}"
assert latex(beta(x, y)) == r'\operatorname{B}\left(x, y\right)'
assert latex(beta(x, y)**2) == r'\operatorname{B}^{2}\left(x, y\right)'
assert latex(mybeta(x)) == r"\beta{\left(x \right)}"
assert latex(mybeta) == r"\beta"
g = Function('gamma')
# not to be confused with the gamma function
assert latex(g(x, y, z)) == r"\gamma{\left(x,y,z \right)}"
assert latex(g(x)) == r"\gamma{\left(x \right)}"
assert latex(g) == r"\gamma"
a1 = Function('a_1')
assert latex(a1) == r"\operatorname{a_{1}}"
assert latex(a1(x)) == r"\operatorname{a_{1}}{\left(x \right)}"
# issue 5868
omega1 = Function('omega1')
assert latex(omega1) == r"\omega_{1}"
assert latex(omega1(x)) == r"\omega_{1}{\left(x \right)}"
assert latex(sin(x)) == r"\sin{\left(x \right)}"
assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
assert latex(sin(2*x**2), fold_func_brackets=True) == \
r"\sin {2 x^{2}}"
assert latex(sin(x**2), fold_func_brackets=True) == \
r"\sin {x^{2}}"
assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left(x \right)}"
assert latex(asin(x)**2, inv_trig_style="full") == \
r"\arcsin^{2}{\left(x \right)}"
assert latex(asin(x)**2, inv_trig_style="power") == \
r"\sin^{-1}{\left(x \right)}^{2}"
assert latex(asin(x**2), inv_trig_style="power",
fold_func_brackets=True) == \
r"\sin^{-1} {x^{2}}"
assert latex(acsc(x), inv_trig_style="full") == \
r"\operatorname{arccsc}{\left(x \right)}"
assert latex(asinh(x), inv_trig_style="full") == \
r"\operatorname{arcsinh}{\left(x \right)}"
assert latex(factorial(k)) == r"k!"
assert latex(factorial(-k)) == r"\left(- k\right)!"
assert latex(factorial(k)**2) == r"k!^{2}"
assert latex(subfactorial(k)) == r"!k"
assert latex(subfactorial(-k)) == r"!\left(- k\right)"
assert latex(subfactorial(k)**2) == r"\left(!k\right)^{2}"
assert latex(factorial2(k)) == r"k!!"
assert latex(factorial2(-k)) == r"\left(- k\right)!!"
assert latex(factorial2(k)**2) == r"k!!^{2}"
assert latex(binomial(2, k)) == r"{\binom{2}{k}}"
assert latex(binomial(2, k)**2) == r"{\binom{2}{k}}^{2}"
assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{k}"
assert latex(RisingFactorial(3, k)) == r"{3}^{\left(k\right)}"
assert latex(floor(x)) == r"\left\lfloor{x}\right\rfloor"
assert latex(ceiling(x)) == r"\left\lceil{x}\right\rceil"
assert latex(frac(x)) == r"\operatorname{frac}{\left(x\right)}"
assert latex(floor(x)**2) == r"\left\lfloor{x}\right\rfloor^{2}"
assert latex(ceiling(x)**2) == r"\left\lceil{x}\right\rceil^{2}"
assert latex(frac(x)**2) == r"\operatorname{frac}{\left(x\right)}^{2}"
assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
assert latex(Abs(x)) == r"\left|{x}\right|"
assert latex(Abs(x)**2) == r"\left|{x}\right|^{2}"
assert latex(re(x)) == r"\operatorname{re}{\left(x\right)}"
assert latex(re(x + y)) == \
r"\operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y\right)}"
assert latex(im(x)) == r"\operatorname{im}{\left(x\right)}"
assert latex(conjugate(x)) == r"\overline{x}"
assert latex(conjugate(x)**2) == r"\overline{x}^{2}"
assert latex(conjugate(x**2)) == r"\overline{x}^{2}"
assert latex(gamma(x)) == r"\Gamma\left(x\right)"
w = Wild('w')
assert latex(gamma(w)) == r"\Gamma\left(w\right)"
assert latex(Order(x)) == r"O\left(x\right)"
assert latex(Order(x, x)) == r"O\left(x\right)"
assert latex(Order(x, (x, 0))) == r"O\left(x\right)"
assert latex(Order(x, (x, oo))) == r"O\left(x; x\rightarrow \infty\right)"
assert latex(Order(x - y, (x, y))) == \
r"O\left(x - y; x\rightarrow y\right)"
assert latex(Order(x, x, y)) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
assert latex(Order(x, x, y)) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
assert latex(Order(x, (x, oo), (y, oo))) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( \infty, \ \infty\right)\right)"
assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
assert latex(lowergamma(x, y)**2) == r'\gamma^{2}\left(x, y\right)'
assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'
assert latex(uppergamma(x, y)**2) == r'\Gamma^{2}\left(x, y\right)'
assert latex(cot(x)) == r'\cot{\left(x \right)}'
assert latex(coth(x)) == r'\coth{\left(x \right)}'
assert latex(re(x)) == r'\operatorname{re}{\left(x\right)}'
assert latex(im(x)) == r'\operatorname{im}{\left(x\right)}'
assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
assert latex(arg(x)) == r'\arg{\left(x \right)}'
assert latex(zeta(x)) == r"\zeta\left(x\right)"
assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
assert latex(
polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"
assert latex(stieltjes(x)) == r"\gamma_{x}"
assert latex(stieltjes(x)**2) == r"\gamma_{x}^{2}"
assert latex(stieltjes(x, y)) == r"\gamma_{x}\left(y\right)"
assert latex(stieltjes(x, y)**2) == r"\gamma_{x}\left(y\right)^{2}"
assert latex(elliptic_k(z)) == r"K\left(z\right)"
assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(z)) == r"E\left(z\right)"
assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y, z)**2) == \
r"\Pi^{2}\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"
assert latex(Ei(x)) == r'\operatorname{Ei}{\left(x \right)}'
assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left(x \right)}'
assert latex(expint(x, y)) == r'\operatorname{E}_{x}\left(y\right)'
assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left(x \right)}'
assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left(x \right)}'
assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left(x \right)}'
assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}\left(x\right)'
assert latex(Chi(x)) == r'\operatorname{Chi}\left(x\right)'
assert latex(jacobi(n, a, b, x)) == \
r'P_{n}^{\left(a,b\right)}\left(x\right)'
assert latex(jacobi(n, a, b, x)**2) == \
r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
assert latex(gegenbauer(n, a, x)) == \
r'C_{n}^{\left(a\right)}\left(x\right)'
assert latex(gegenbauer(n, a, x)**2) == \
r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
assert latex(chebyshevt(n, x)**2) == \
r'\left(T_{n}\left(x\right)\right)^{2}'
assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
assert latex(chebyshevu(n, x)**2) == \
r'\left(U_{n}\left(x\right)\right)^{2}'
assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
assert latex(assoc_legendre(n, a, x)) == \
r'P_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_legendre(n, a, x)**2) == \
r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
assert latex(assoc_laguerre(n, a, x)) == \
r'L_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_laguerre(n, a, x)**2) == \
r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'
theta = Symbol("theta", real=True)
phi = Symbol("phi", real=True)
assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
assert latex(Ynm(n, m, theta, phi)**3) == \
r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
assert latex(Znm(n, m, theta, phi)**3) == \
r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
# Test latex printing of function names with "_"
assert latex(polar_lift(0)) == \
r"\operatorname{polar\_lift}{\left(0 \right)}"
assert latex(polar_lift(0)**3) == \
r"\operatorname{polar\_lift}^{3}{\left(0 \right)}"
assert latex(totient(n)) == r'\phi\left(n\right)'
assert latex(totient(n) ** 2) == r'\left(\phi\left(n\right)\right)^{2}'
assert latex(reduced_totient(n)) == r'\lambda\left(n\right)'
assert latex(reduced_totient(n) ** 2) == \
r'\left(\lambda\left(n\right)\right)^{2}'
assert latex(divisor_sigma(x)) == r"\sigma\left(x\right)"
assert latex(divisor_sigma(x)**2) == r"\sigma^{2}\left(x\right)"
assert latex(divisor_sigma(x, y)) == r"\sigma_y\left(x\right)"
assert latex(divisor_sigma(x, y)**2) == r"\sigma^{2}_y\left(x\right)"
assert latex(udivisor_sigma(x)) == r"\sigma^*\left(x\right)"
assert latex(udivisor_sigma(x)**2) == r"\sigma^*^{2}\left(x\right)"
assert latex(udivisor_sigma(x, y)) == r"\sigma^*_y\left(x\right)"
assert latex(udivisor_sigma(x, y)**2) == r"\sigma^*^{2}_y\left(x\right)"
assert latex(primenu(n)) == r'\nu\left(n\right)'
assert latex(primenu(n) ** 2) == r'\left(\nu\left(n\right)\right)^{2}'
assert latex(primeomega(n)) == r'\Omega\left(n\right)'
assert latex(primeomega(n) ** 2) == \
r'\left(\Omega\left(n\right)\right)^{2}'
assert latex(LambertW(n)) == r'W\left(n\right)'
assert latex(LambertW(n, -1)) == r'W_{-1}\left(n\right)'
assert latex(LambertW(n, k)) == r'W_{k}\left(n\right)'
assert latex(LambertW(n) * LambertW(n)) == r"W^{2}\left(n\right)"
assert latex(Pow(LambertW(n), 2)) == r"W^{2}\left(n\right)"
assert latex(LambertW(n)**k) == r"W^{k}\left(n\right)"
assert latex(LambertW(n, k)**p) == r"W^{p}_{k}\left(n\right)"
assert latex(Mod(x, 7)) == r'x\bmod{7}'
assert latex(Mod(x + 1, 7)) == r'\left(x + 1\right)\bmod{7}'
assert latex(Mod(2 * x, 7)) == r'2 x\bmod{7}'
assert latex(Mod(x, 7) + 1) == r'\left(x\bmod{7}\right) + 1'
assert latex(2 * Mod(x, 7)) == r'2 \left(x\bmod{7}\right)'
# some unknown function name should get rendered with \operatorname
fjlkd = Function('fjlkd')
assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left(x \right)}'
# even when it is referred to without an argument
assert latex(fjlkd) == r'\operatorname{fjlkd}'
# test that notation passes to subclasses of the same name only
def test_function_subclass_different_name():
class mygamma(gamma):
pass
assert latex(mygamma) == r"\operatorname{mygamma}"
assert latex(mygamma(x)) == r"\operatorname{mygamma}{\left(x \right)}"
def test_hyper_printing():
from sympy import pi
from sympy.abc import x, z
assert latex(meijerg(Tuple(pi, pi, x), Tuple(1),
(0, 1), Tuple(1, 2, 3/pi), z)) == \
r'{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, '\
r'\frac{3}{\pi} \end{matrix} \middle| {z} \right)}'
assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(), z)) == \
r'{G_{1, 1}^{1, 0}\left(\begin{matrix} & 1 \\0 & \end{matrix} \middle| {z} \right)}'
assert latex(hyper((x, 2), (3,), z)) == \
r'{{}_{2}F_{1}\left(\begin{matrix} x, 2 ' \
r'\\ 3 \end{matrix}\middle| {z} \right)}'
assert latex(hyper(Tuple(), Tuple(1), z)) == \
r'{{}_{0}F_{1}\left(\begin{matrix} ' \
r'\\ 1 \end{matrix}\middle| {z} \right)}'
def test_latex_bessel():
from sympy.functions.special.bessel import (besselj, bessely, besseli,
besselk, hankel1, hankel2,
jn, yn, hn1, hn2)
from sympy.abc import z
assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)'
assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)'
assert latex(besseli(n, z)) == r'I_{n}\left(z\right)'
assert latex(besselk(n, z)) == r'K_{n}\left(z\right)'
assert latex(hankel1(n, z**2)**2) == \
r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}'
assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)'
assert latex(jn(n, z)) == r'j_{n}\left(z\right)'
assert latex(yn(n, z)) == r'y_{n}\left(z\right)'
assert latex(hn1(n, z)) == r'h^{(1)}_{n}\left(z\right)'
assert latex(hn2(n, z)) == r'h^{(2)}_{n}\left(z\right)'
def test_latex_fresnel():
from sympy.functions.special.error_functions import (fresnels, fresnelc)
from sympy.abc import z
assert latex(fresnels(z)) == r'S\left(z\right)'
assert latex(fresnelc(z)) == r'C\left(z\right)'
assert latex(fresnels(z)**2) == r'S^{2}\left(z\right)'
assert latex(fresnelc(z)**2) == r'C^{2}\left(z\right)'
def test_latex_brackets():
assert latex((-1)**x) == r"\left(-1\right)^{x}"
def test_latex_indexed():
Psi_symbol = Symbol('Psi_0', complex=True, real=False)
Psi_indexed = IndexedBase(Symbol('Psi', complex=True, real=False))
symbol_latex = latex(Psi_symbol * conjugate(Psi_symbol))
indexed_latex = latex(Psi_indexed[0] * conjugate(Psi_indexed[0]))
# \\overline{{\\Psi}_{0}} {\\Psi}_{0} vs. \\Psi_{0} \\overline{\\Psi_{0}}
assert symbol_latex == r'\Psi_{0} \overline{\Psi_{0}}'
assert indexed_latex == r'\overline{{\Psi}_{0}} {\Psi}_{0}'
# Symbol('gamma') gives r'\gamma'
assert latex(Indexed('x1', Symbol('i'))) == r'{x_{1}}_{i}'
assert latex(IndexedBase('gamma')) == r'\gamma'
assert latex(IndexedBase('a b')) == r'a b'
assert latex(IndexedBase('a_b')) == r'a_{b}'
def test_latex_derivatives():
# regular "d" for ordinary derivatives
assert latex(diff(x**3, x, evaluate=False)) == \
r"\frac{d}{d x} x^{3}"
assert latex(diff(sin(x) + x**2, x, evaluate=False)) == \
r"\frac{d}{d x} \left(x^{2} + \sin{\left(x \right)}\right)"
assert latex(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False))\
== \
r"\frac{d^{2}}{d x^{2}} \left(x^{2} + \sin{\left(x \right)}\right)"
assert latex(diff(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False), evaluate=False)) == \
r"\frac{d^{3}}{d x^{3}} \left(x^{2} + \sin{\left(x \right)}\right)"
# \partial for partial derivatives
assert latex(diff(sin(x * y), x, evaluate=False)) == \
r"\frac{\partial}{\partial x} \sin{\left(x y \right)}"
assert latex(diff(sin(x * y) + x**2, x, evaluate=False)) == \
r"\frac{\partial}{\partial x} \left(x^{2} + \sin{\left(x y \right)}\right)"
assert latex(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False)) == \
r"\frac{\partial^{2}}{\partial x^{2}} \left(x^{2} + \sin{\left(x y \right)}\right)"
assert latex(diff(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False), x, evaluate=False)) == \
r"\frac{\partial^{3}}{\partial x^{3}} \left(x^{2} + \sin{\left(x y \right)}\right)"
# mixed partial derivatives
f = Function("f")
assert latex(diff(diff(f(x, y), x, evaluate=False), y, evaluate=False)) == \
r"\frac{\partial^{2}}{\partial y\partial x} " + latex(f(x, y))
assert latex(diff(diff(diff(f(x, y), x, evaluate=False), x, evaluate=False), y, evaluate=False)) == \
r"\frac{\partial^{3}}{\partial y\partial x^{2}} " + latex(f(x, y))
# for negative nested Derivative
assert latex(diff(-diff(y**2,x,evaluate=False),x,evaluate=False)) == r'\frac{d}{d x} \left(- \frac{d}{d x} y^{2}\right)'
assert latex(diff(diff(-diff(diff(y,x,evaluate=False),x,evaluate=False),x,evaluate=False),x,evaluate=False)) == \
r'\frac{d^{2}}{d x^{2}} \left(- \frac{d^{2}}{d x^{2}} y\right)'
# use ordinary d when one of the variables has been integrated out
assert latex(diff(Integral(exp(-x*y), (x, 0, oo)), y, evaluate=False)) == \
r"\frac{d}{d y} \int\limits_{0}^{\infty} e^{- x y}\, dx"
# Derivative wrapped in power:
assert latex(diff(x, x, evaluate=False)**2) == \
r"\left(\frac{d}{d x} x\right)^{2}"
assert latex(diff(f(x), x)**2) == \
r"\left(\frac{d}{d x} f{\left(x \right)}\right)^{2}"
assert latex(diff(f(x), (x, n))) == \
r"\frac{d^{n}}{d x^{n}} f{\left(x \right)}"
x1 = Symbol('x1')
x2 = Symbol('x2')
assert latex(diff(f(x1, x2), x1)) == r'\frac{\partial}{\partial x_{1}} f{\left(x_{1},x_{2} \right)}'
n1 = Symbol('n1')
assert latex(diff(f(x), (x, n1))) == r'\frac{d^{n_{1}}}{d x^{n_{1}}} f{\left(x \right)}'
n2 = Symbol('n2')
assert latex(diff(f(x), (x, Max(n1, n2)))) == \
r'\frac{d^{\max\left(n_{1}, n_{2}\right)}}{d x^{\max\left(n_{1}, n_{2}\right)}} f{\left(x \right)}'
def test_latex_subs():
assert latex(Subs(x*y, (x, y), (1, 2))) == r'\left. x y \right|_{\substack{ x=1\\ y=2 }}'
def test_latex_integrals():
assert latex(Integral(log(x), x)) == r"\int \log{\left(x \right)}\, dx"
assert latex(Integral(x**2, (x, 0, 1))) == \
r"\int\limits_{0}^{1} x^{2}\, dx"
assert latex(Integral(x**2, (x, 10, 20))) == \
r"\int\limits_{10}^{20} x^{2}\, dx"
assert latex(Integral(y*x**2, (x, 0, 1), y)) == \
r"\int\int\limits_{0}^{1} x^{2} y\, dx\, dy"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') == \
r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \
== r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$"
assert latex(Integral(x, (x, 0))) == r"\int\limits^{0} x\, dx"
assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy"
assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz"
assert latex(Integral(x*y*z*t, x, y, z, t)) == \
r"\iiiint t x y z\, dx\, dy\, dz\, dt"
assert latex(Integral(x, x, x, x, x, x, x)) == \
r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx"
assert latex(Integral(x, x, y, (z, 0, 1))) == \
r"\int\limits_{0}^{1}\int\int x\, dx\, dy\, dz"
# for negative nested Integral
assert latex(Integral(-Integral(y**2,x),x)) == \
r'\int \left(- \int y^{2}\, dx\right)\, dx'
assert latex(Integral(-Integral(-Integral(y,x),x),x)) == \
r'\int \left(- \int \left(- \int y\, dx\right)\, dx\right)\, dx'
# fix issue #10806
assert latex(Integral(z, z)**2) == r"\left(\int z\, dz\right)^{2}"
assert latex(Integral(x + z, z)) == r"\int \left(x + z\right)\, dz"
assert latex(Integral(x+z/2, z)) == \
r"\int \left(x + \frac{z}{2}\right)\, dz"
assert latex(Integral(x**y, z)) == r"\int x^{y}\, dz"
def test_latex_sets():
for s in (frozenset, set):
assert latex(s([x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
assert latex(s(range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
assert latex(s(range(1, 13))) == \
r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
s = FiniteSet
assert latex(s(*[x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
assert latex(s(*range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
assert latex(s(*range(1, 13))) == \
r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
def test_latex_SetExpr():
iv = Interval(1, 3)
se = SetExpr(iv)
assert latex(se) == r"SetExpr\left(\left[1, 3\right]\right)"
def test_latex_Range():
assert latex(Range(1, 51)) == r'\left\{1, 2, \ldots, 50\right\}'
assert latex(Range(1, 4)) == r'\left\{1, 2, 3\right\}'
assert latex(Range(0, 3, 1)) == r'\left\{0, 1, 2\right\}'
assert latex(Range(0, 30, 1)) == r'\left\{0, 1, \ldots, 29\right\}'
assert latex(Range(30, 1, -1)) == r'\left\{30, 29, \ldots, 2\right\}'
assert latex(Range(0, oo, 2)) == r'\left\{0, 2, \ldots\right\}'
assert latex(Range(oo, -2, -2)) == r'\left\{\ldots, 2, 0\right\}'
assert latex(Range(-2, -oo, -1)) == r'\left\{-2, -3, \ldots\right\}'
assert latex(Range(-oo, oo)) == r'\left\{\ldots, -1, 0, 1, \ldots\right\}'
assert latex(Range(oo, -oo, -1)) == r'\left\{\ldots, 1, 0, -1, \ldots\right\}'
a, b, c = symbols('a:c')
assert latex(Range(a, b, c)) == r'Range\left(a, b, c\right)'
assert latex(Range(a, 10, 1)) == r'Range\left(a, 10, 1\right)'
assert latex(Range(0, b, 1)) == r'Range\left(0, b, 1\right)'
assert latex(Range(0, 10, c)) == r'Range\left(0, 10, c\right)'
def test_latex_sequences():
s1 = SeqFormula(a**2, (0, oo))
s2 = SeqPer((1, 2))
latex_str = r'\left[0, 1, 4, 9, \ldots\right]'
assert latex(s1) == latex_str
latex_str = r'\left[1, 2, 1, 2, \ldots\right]'
assert latex(s2) == latex_str
s3 = SeqFormula(a**2, (0, 2))
s4 = SeqPer((1, 2), (0, 2))
latex_str = r'\left[0, 1, 4\right]'
assert latex(s3) == latex_str
latex_str = r'\left[1, 2, 1\right]'
assert latex(s4) == latex_str
s5 = SeqFormula(a**2, (-oo, 0))
s6 = SeqPer((1, 2), (-oo, 0))
latex_str = r'\left[\ldots, 9, 4, 1, 0\right]'
assert latex(s5) == latex_str
latex_str = r'\left[\ldots, 2, 1, 2, 1\right]'
assert latex(s6) == latex_str
latex_str = r'\left[1, 3, 5, 11, \ldots\right]'
assert latex(SeqAdd(s1, s2)) == latex_str
latex_str = r'\left[1, 3, 5\right]'
assert latex(SeqAdd(s3, s4)) == latex_str
latex_str = r'\left[\ldots, 11, 5, 3, 1\right]'
assert latex(SeqAdd(s5, s6)) == latex_str
latex_str = r'\left[0, 2, 4, 18, \ldots\right]'
assert latex(SeqMul(s1, s2)) == latex_str
latex_str = r'\left[0, 2, 4\right]'
assert latex(SeqMul(s3, s4)) == latex_str
latex_str = r'\left[\ldots, 18, 4, 2, 0\right]'
assert latex(SeqMul(s5, s6)) == latex_str
# Sequences with symbolic limits, issue 12629
s7 = SeqFormula(a**2, (a, 0, x))
latex_str = r'\left\{a^{2}\right\}_{a=0}^{x}'
assert latex(s7) == latex_str
b = Symbol('b')
s8 = SeqFormula(b*a**2, (a, 0, 2))
latex_str = r'\left[0, b, 4 b\right]'
assert latex(s8) == latex_str
def test_latex_FourierSeries():
latex_str = \
r'2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots'
assert latex(fourier_series(x, (x, -pi, pi))) == latex_str
def test_latex_FormalPowerSeries():
latex_str = r'\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}'
assert latex(fps(log(1 + x))) == latex_str
def test_latex_intervals():
a = Symbol('a', real=True)
assert latex(Interval(0, 0)) == r"\left\{0\right\}"
assert latex(Interval(0, a)) == r"\left[0, a\right]"
assert latex(Interval(0, a, False, False)) == r"\left[0, a\right]"
assert latex(Interval(0, a, True, False)) == r"\left(0, a\right]"
assert latex(Interval(0, a, False, True)) == r"\left[0, a\right)"
assert latex(Interval(0, a, True, True)) == r"\left(0, a\right)"
def test_latex_AccumuBounds():
a = Symbol('a', real=True)
assert latex(AccumBounds(0, 1)) == r"\left\langle 0, 1\right\rangle"
assert latex(AccumBounds(0, a)) == r"\left\langle 0, a\right\rangle"
assert latex(AccumBounds(a + 1, a + 2)) == \
r"\left\langle a + 1, a + 2\right\rangle"
def test_latex_emptyset():
assert latex(S.EmptySet) == r"\emptyset"
def test_latex_universalset():
assert latex(S.UniversalSet) == r"\mathbb{U}"
def test_latex_commutator():
A = Operator('A')
B = Operator('B')
comm = Commutator(B, A)
assert latex(comm.doit()) == r"- (A B - B A)"
def test_latex_union():
assert latex(Union(Interval(0, 1), Interval(2, 3))) == \
r"\left[0, 1\right] \cup \left[2, 3\right]"
assert latex(Union(Interval(1, 1), Interval(2, 2), Interval(3, 4))) == \
r"\left\{1, 2\right\} \cup \left[3, 4\right]"
def test_latex_intersection():
assert latex(Intersection(Interval(0, 1), Interval(x, y))) == \
r"\left[0, 1\right] \cap \left[x, y\right]"
def test_latex_symmetric_difference():
assert latex(SymmetricDifference(Interval(2, 5), Interval(4, 7),
evaluate=False)) == \
r'\left[2, 5\right] \triangle \left[4, 7\right]'
def test_latex_Complement():
assert latex(Complement(S.Reals, S.Naturals)) == \
r"\mathbb{R} \setminus \mathbb{N}"
def test_latex_productset():
line = Interval(0, 1)
bigline = Interval(0, 10)
fset = FiniteSet(1, 2, 3)
assert latex(line**2) == r"%s^{2}" % latex(line)
assert latex(line**10) == r"%s^{10}" % latex(line)
assert latex((line * bigline * fset).flatten()) == r"%s \times %s \times %s" % (
latex(line), latex(bigline), latex(fset))
def test_set_operators_parenthesis():
a, b, c, d = symbols('a:d')
A = FiniteSet(a)
B = FiniteSet(b)
C = FiniteSet(c)
D = FiniteSet(d)
U1 = Union(A, B, evaluate=False)
U2 = Union(C, D, evaluate=False)
I1 = Intersection(A, B, evaluate=False)
I2 = Intersection(C, D, evaluate=False)
C1 = Complement(A, B, evaluate=False)
C2 = Complement(C, D, evaluate=False)
D1 = SymmetricDifference(A, B, evaluate=False)
D2 = SymmetricDifference(C, D, evaluate=False)
# XXX ProductSet does not support evaluate keyword
P1 = ProductSet(A, B)
P2 = ProductSet(C, D)
assert latex(Intersection(A, U2, evaluate=False)) == \
r'\left\{a\right\} \cap ' \
r'\left(\left\{c\right\} \cup \left\{d\right\}\right)'
assert latex(Intersection(U1, U2, evaluate=False)) == \
r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
r'\cap \left(\left\{c\right\} \cup \left\{d\right\}\right)'
assert latex(Intersection(C1, C2, evaluate=False)) == \
r'\left(\left\{a\right\} \setminus ' \
r'\left\{b\right\}\right) \cap \left(\left\{c\right\} ' \
r'\setminus \left\{d\right\}\right)'
assert latex(Intersection(D1, D2, evaluate=False)) == \
r'\left(\left\{a\right\} \triangle ' \
r'\left\{b\right\}\right) \cap \left(\left\{c\right\} ' \
r'\triangle \left\{d\right\}\right)'
assert latex(Intersection(P1, P2, evaluate=False)) == \
r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \
r'\cap \left(\left\{c\right\} \times ' \
r'\left\{d\right\}\right)'
assert latex(Union(A, I2, evaluate=False)) == \
r'\left\{a\right\} \cup ' \
r'\left(\left\{c\right\} \cap \left\{d\right\}\right)'
assert latex(Union(I1, I2, evaluate=False)) == \
r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
r'\cup \left(\left\{c\right\} \cap \left\{d\right\}\right)'
assert latex(Union(C1, C2, evaluate=False)) == \
r'\left(\left\{a\right\} \setminus ' \
r'\left\{b\right\}\right) \cup \left(\left\{c\right\} ' \
r'\setminus \left\{d\right\}\right)'
assert latex(Union(D1, D2, evaluate=False)) == \
r'\left(\left\{a\right\} \triangle ' \
r'\left\{b\right\}\right) \cup \left(\left\{c\right\} ' \
r'\triangle \left\{d\right\}\right)'
assert latex(Union(P1, P2, evaluate=False)) == \
r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \
r'\cup \left(\left\{c\right\} \times ' \
r'\left\{d\right\}\right)'
assert latex(Complement(A, C2, evaluate=False)) == \
r'\left\{a\right\} \setminus \left(\left\{c\right\} ' \
r'\setminus \left\{d\right\}\right)'
assert latex(Complement(U1, U2, evaluate=False)) == \
r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
r'\setminus \left(\left\{c\right\} \cup ' \
r'\left\{d\right\}\right)'
assert latex(Complement(I1, I2, evaluate=False)) == \
r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
r'\setminus \left(\left\{c\right\} \cap ' \
r'\left\{d\right\}\right)'
assert latex(Complement(D1, D2, evaluate=False)) == \
r'\left(\left\{a\right\} \triangle ' \
r'\left\{b\right\}\right) \setminus ' \
r'\left(\left\{c\right\} \triangle \left\{d\right\}\right)'
assert latex(Complement(P1, P2, evaluate=False)) == \
r'\left(\left\{a\right\} \times \left\{b\right\}\right) '\
r'\setminus \left(\left\{c\right\} \times '\
r'\left\{d\right\}\right)'
assert latex(SymmetricDifference(A, D2, evaluate=False)) == \
r'\left\{a\right\} \triangle \left(\left\{c\right\} ' \
r'\triangle \left\{d\right\}\right)'
assert latex(SymmetricDifference(U1, U2, evaluate=False)) == \
r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
r'\triangle \left(\left\{c\right\} \cup ' \
r'\left\{d\right\}\right)'
assert latex(SymmetricDifference(I1, I2, evaluate=False)) == \
r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
r'\triangle \left(\left\{c\right\} \cap ' \
r'\left\{d\right\}\right)'
assert latex(SymmetricDifference(C1, C2, evaluate=False)) == \
r'\left(\left\{a\right\} \setminus ' \
r'\left\{b\right\}\right) \triangle ' \
r'\left(\left\{c\right\} \setminus \left\{d\right\}\right)'
assert latex(SymmetricDifference(P1, P2, evaluate=False)) == \
r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \
r'\triangle \left(\left\{c\right\} \times ' \
r'\left\{d\right\}\right)'
# XXX This can be incorrect since cartesian product is not associative
assert latex(ProductSet(A, P2).flatten()) == \
r'\left\{a\right\} \times \left\{c\right\} \times ' \
r'\left\{d\right\}'
assert latex(ProductSet(U1, U2)) == \
r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
r'\times \left(\left\{c\right\} \cup ' \
r'\left\{d\right\}\right)'
assert latex(ProductSet(I1, I2)) == \
r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
r'\times \left(\left\{c\right\} \cap ' \
r'\left\{d\right\}\right)'
assert latex(ProductSet(C1, C2)) == \
r'\left(\left\{a\right\} \setminus ' \
r'\left\{b\right\}\right) \times \left(\left\{c\right\} ' \
r'\setminus \left\{d\right\}\right)'
assert latex(ProductSet(D1, D2)) == \
r'\left(\left\{a\right\} \triangle ' \
r'\left\{b\right\}\right) \times \left(\left\{c\right\} ' \
r'\triangle \left\{d\right\}\right)'
def test_latex_Complexes():
assert latex(S.Complexes) == r"\mathbb{C}"
def test_latex_Naturals():
assert latex(S.Naturals) == r"\mathbb{N}"
def test_latex_Naturals0():
assert latex(S.Naturals0) == r"\mathbb{N}_0"
def test_latex_Integers():
assert latex(S.Integers) == r"\mathbb{Z}"
def test_latex_ImageSet():
x = Symbol('x')
assert latex(ImageSet(Lambda(x, x**2), S.Naturals)) == \
r"\left\{x^{2}\; \middle|\; x \in \mathbb{N}\right\}"
y = Symbol('y')
imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
assert latex(imgset) == \
r"\left\{x + y\; \middle|\; x \in \left\{1, 2, 3\right\} , y \in \left\{3, 4\right\}\right\}"
imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4}))
assert latex(imgset) == \
r"\left\{x + y\; \middle|\; \left( x, \ y\right) \in \left\{1, 2, 3\right\} \times \left\{3, 4\right\}\right\}"
def test_latex_ConditionSet():
x = Symbol('x')
assert latex(ConditionSet(x, Eq(x**2, 1), S.Reals)) == \
r"\left\{x\; \middle|\; x \in \mathbb{R} \wedge x^{2} = 1 \right\}"
assert latex(ConditionSet(x, Eq(x**2, 1), S.UniversalSet)) == \
r"\left\{x\; \middle|\; x^{2} = 1 \right\}"
def test_latex_ComplexRegion():
assert latex(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == \
r"\left\{x + y i\; \middle|\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}"
assert latex(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == \
r"\left\{r \left(i \sin{\left(\theta \right)} + \cos{\left(\theta "\
r"\right)}\right)\; \middle|\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\}"
def test_latex_Contains():
x = Symbol('x')
assert latex(Contains(x, S.Naturals)) == r"x \in \mathbb{N}"
def test_latex_sum():
assert latex(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
r"\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
assert latex(Sum(x**2, (x, -2, 2))) == \
r"\sum_{x=-2}^{2} x^{2}"
assert latex(Sum(x**2 + y, (x, -2, 2))) == \
r"\sum_{x=-2}^{2} \left(x^{2} + y\right)"
assert latex(Sum(x**2 + y, (x, -2, 2))**2) == \
r"\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2}"
def test_latex_product():
assert latex(Product(x*y**2, (x, -2, 2), (y, -5, 5))) == \
r"\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
assert latex(Product(x**2, (x, -2, 2))) == \
r"\prod_{x=-2}^{2} x^{2}"
assert latex(Product(x**2 + y, (x, -2, 2))) == \
r"\prod_{x=-2}^{2} \left(x^{2} + y\right)"
assert latex(Product(x, (x, -2, 2))**2) == \
r"\left(\prod_{x=-2}^{2} x\right)^{2}"
def test_latex_limits():
assert latex(Limit(x, x, oo)) == r"\lim_{x \to \infty} x"
# issue 8175
f = Function('f')
assert latex(Limit(f(x), x, 0)) == r"\lim_{x \to 0^+} f{\left(x \right)}"
assert latex(Limit(f(x), x, 0, "-")) == \
r"\lim_{x \to 0^-} f{\left(x \right)}"
# issue #10806
assert latex(Limit(f(x), x, 0)**2) == \
r"\left(\lim_{x \to 0^+} f{\left(x \right)}\right)^{2}"
# bi-directional limit
assert latex(Limit(f(x), x, 0, dir='+-')) == \
r"\lim_{x \to 0} f{\left(x \right)}"
def test_latex_log():
assert latex(log(x)) == r"\log{\left(x \right)}"
assert latex(ln(x)) == r"\log{\left(x \right)}"
assert latex(log(x), ln_notation=True) == r"\ln{\left(x \right)}"
assert latex(log(x)+log(y)) == \
r"\log{\left(x \right)} + \log{\left(y \right)}"
assert latex(log(x)+log(y), ln_notation=True) == \
r"\ln{\left(x \right)} + \ln{\left(y \right)}"
assert latex(pow(log(x), x)) == r"\log{\left(x \right)}^{x}"
assert latex(pow(log(x), x), ln_notation=True) == \
r"\ln{\left(x \right)}^{x}"
def test_issue_3568():
beta = Symbol(r'\beta')
y = beta + x
assert latex(y) in [r'\beta + x', r'x + \beta']
beta = Symbol(r'beta')
y = beta + x
assert latex(y) in [r'\beta + x', r'x + \beta']
def test_latex():
assert latex((2*tau)**Rational(7, 2)) == r"8 \sqrt{2} \tau^{\frac{7}{2}}"
assert latex((2*mu)**Rational(7, 2), mode='equation*') == \
r"\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}"
assert latex((2*mu)**Rational(7, 2), mode='equation', itex=True) == \
r"$$8 \sqrt{2} \mu^{\frac{7}{2}}$$"
assert latex([2/x, y]) == r"\left[ \frac{2}{x}, \ y\right]"
def test_latex_dict():
d = {Rational(1): 1, x**2: 2, x: 3, x**3: 4}
assert latex(d) == \
r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
D = Dict(d)
assert latex(D) == \
r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
def test_latex_list():
ll = [Symbol('omega1'), Symbol('a'), Symbol('alpha')]
assert latex(ll) == r'\left[ \omega_{1}, \ a, \ \alpha\right]'
def test_latex_rational():
# tests issue 3973
assert latex(-Rational(1, 2)) == r"- \frac{1}{2}"
assert latex(Rational(-1, 2)) == r"- \frac{1}{2}"
assert latex(Rational(1, -2)) == r"- \frac{1}{2}"
assert latex(-Rational(-1, 2)) == r"\frac{1}{2}"
assert latex(-Rational(1, 2)*x) == r"- \frac{x}{2}"
assert latex(-Rational(1, 2)*x + Rational(-2, 3)*y) == \
r"- \frac{x}{2} - \frac{2 y}{3}"
def test_latex_inverse():
# tests issue 4129
assert latex(1/x) == r"\frac{1}{x}"
assert latex(1/(x + y)) == r"\frac{1}{x + y}"
def test_latex_DiracDelta():
assert latex(DiracDelta(x)) == r"\delta\left(x\right)"
assert latex(DiracDelta(x)**2) == r"\left(\delta\left(x\right)\right)^{2}"
assert latex(DiracDelta(x, 0)) == r"\delta\left(x\right)"
assert latex(DiracDelta(x, 5)) == \
r"\delta^{\left( 5 \right)}\left( x \right)"
assert latex(DiracDelta(x, 5)**2) == \
r"\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2}"
def test_latex_Heaviside():
assert latex(Heaviside(x)) == r"\theta\left(x\right)"
assert latex(Heaviside(x)**2) == r"\left(\theta\left(x\right)\right)^{2}"
def test_latex_KroneckerDelta():
assert latex(KroneckerDelta(x, y)) == r"\delta_{x y}"
assert latex(KroneckerDelta(x, y + 1)) == r"\delta_{x, y + 1}"
# issue 6578
assert latex(KroneckerDelta(x + 1, y)) == r"\delta_{y, x + 1}"
assert latex(Pow(KroneckerDelta(x, y), 2, evaluate=False)) == \
r"\left(\delta_{x y}\right)^{2}"
def test_latex_LeviCivita():
assert latex(LeviCivita(x, y, z)) == r"\varepsilon_{x y z}"
assert latex(LeviCivita(x, y, z)**2) == \
r"\left(\varepsilon_{x y z}\right)^{2}"
assert latex(LeviCivita(x, y, z + 1)) == r"\varepsilon_{x, y, z + 1}"
assert latex(LeviCivita(x, y + 1, z)) == r"\varepsilon_{x, y + 1, z}"
assert latex(LeviCivita(x + 1, y, z)) == r"\varepsilon_{x + 1, y, z}"
def test_mode():
expr = x + y
assert latex(expr) == r'x + y'
assert latex(expr, mode='plain') == r'x + y'
assert latex(expr, mode='inline') == r'$x + y$'
assert latex(
expr, mode='equation*') == r'\begin{equation*}x + y\end{equation*}'
assert latex(
expr, mode='equation') == r'\begin{equation}x + y\end{equation}'
raises(ValueError, lambda: latex(expr, mode='foo'))
def test_latex_mathieu():
assert latex(mathieuc(x, y, z)) == r"C\left(x, y, z\right)"
assert latex(mathieus(x, y, z)) == r"S\left(x, y, z\right)"
assert latex(mathieuc(x, y, z)**2) == r"C\left(x, y, z\right)^{2}"
assert latex(mathieus(x, y, z)**2) == r"S\left(x, y, z\right)^{2}"
assert latex(mathieucprime(x, y, z)) == r"C^{\prime}\left(x, y, z\right)"
assert latex(mathieusprime(x, y, z)) == r"S^{\prime}\left(x, y, z\right)"
assert latex(mathieucprime(x, y, z)**2) == r"C^{\prime}\left(x, y, z\right)^{2}"
assert latex(mathieusprime(x, y, z)**2) == r"S^{\prime}\left(x, y, z\right)^{2}"
def test_latex_Piecewise():
p = Piecewise((x, x < 1), (x**2, True))
assert latex(p) == r"\begin{cases} x & \text{for}\: x < 1 \\x^{2} &" \
r" \text{otherwise} \end{cases}"
assert latex(p, itex=True) == \
r"\begin{cases} x & \text{for}\: x \lt 1 \\x^{2} &" \
r" \text{otherwise} \end{cases}"
p = Piecewise((x, x < 0), (0, x >= 0))
assert latex(p) == r'\begin{cases} x & \text{for}\: x < 0 \\0 &' \
r' \text{otherwise} \end{cases}'
A, B = symbols("A B", commutative=False)
p = Piecewise((A**2, Eq(A, B)), (A*B, True))
s = r"\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}"
assert latex(p) == s
assert latex(A*p) == r"A \left(%s\right)" % s
assert latex(p*A) == r"\left(%s\right) A" % s
assert latex(Piecewise((x, x < 1), (x**2, x < 2))) == \
r'\begin{cases} x & ' \
r'\text{for}\: x < 1 \\x^{2} & \text{for}\: x < 2 \end{cases}'
def test_latex_Matrix():
M = Matrix([[1 + x, y], [y, x - 1]])
assert latex(M) == \
r'\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]'
assert latex(M, mode='inline') == \
r'$\left[\begin{smallmatrix}x + 1 & y\\' \
r'y & x - 1\end{smallmatrix}\right]$'
assert latex(M, mat_str='array') == \
r'\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]'
assert latex(M, mat_str='bmatrix') == \
r'\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]'
assert latex(M, mat_delim=None, mat_str='bmatrix') == \
r'\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}'
M2 = Matrix(1, 11, range(11))
assert latex(M2) == \
r'\left[\begin{array}{ccccccccccc}' \
r'0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]'
def test_latex_matrix_with_functions():
t = symbols('t')
theta1 = symbols('theta1', cls=Function)
M = Matrix([[sin(theta1(t)), cos(theta1(t))],
[cos(theta1(t).diff(t)), sin(theta1(t).diff(t))]])
expected = (r'\left[\begin{matrix}\sin{\left('
r'\theta_{1}{\left(t \right)} \right)} & '
r'\cos{\left(\theta_{1}{\left(t \right)} \right)'
r'}\\\cos{\left(\frac{d}{d t} \theta_{1}{\left(t '
r'\right)} \right)} & \sin{\left(\frac{d}{d t} '
r'\theta_{1}{\left(t \right)} \right'
r')}\end{matrix}\right]')
assert latex(M) == expected
def test_latex_NDimArray():
x, y, z, w = symbols("x y z w")
for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
MutableDenseNDimArray, MutableSparseNDimArray):
# Basic: scalar array
M = ArrayType(x)
assert latex(M) == r"x"
M = ArrayType([[1 / x, y], [z, w]])
M1 = ArrayType([1 / x, y, z])
M2 = tensorproduct(M1, M)
M3 = tensorproduct(M, M)
assert latex(M) == \
r'\left[\begin{matrix}\frac{1}{x} & y\\z & w\end{matrix}\right]'
assert latex(M1) == \
r"\left[\begin{matrix}\frac{1}{x} & y & z\end{matrix}\right]"
assert latex(M2) == \
r"\left[\begin{matrix}" \
r"\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & " \
r"\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & " \
r"\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]" \
r"\end{matrix}\right]"
assert latex(M3) == \
r"""\left[\begin{matrix}"""\
r"""\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & """\
r"""\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\"""\
r"""\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & """\
r"""\left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]"""\
r"""\end{matrix}\right]"""
Mrow = ArrayType([[x, y, 1/z]])
Mcolumn = ArrayType([[x], [y], [1/z]])
Mcol2 = ArrayType([Mcolumn.tolist()])
assert latex(Mrow) == \
r"\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]"
assert latex(Mcolumn) == \
r"\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]"
assert latex(Mcol2) == \
r'\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right]'
def test_latex_mul_symbol():
assert latex(4*4**x, mul_symbol='times') == r"4 \times 4^{x}"
assert latex(4*4**x, mul_symbol='dot') == r"4 \cdot 4^{x}"
assert latex(4*4**x, mul_symbol='ldot') == r"4 \,.\, 4^{x}"
assert latex(4*x, mul_symbol='times') == r"4 \times x"
assert latex(4*x, mul_symbol='dot') == r"4 \cdot x"
assert latex(4*x, mul_symbol='ldot') == r"4 \,.\, x"
def test_latex_issue_4381():
y = 4*4**log(2)
assert latex(y) == r'4 \cdot 4^{\log{\left(2 \right)}}'
assert latex(1/y) == r'\frac{1}{4 \cdot 4^{\log{\left(2 \right)}}}'
def test_latex_issue_4576():
assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}"
assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}"
assert latex(Symbol("beta_13")) == r"\beta_{13}"
assert latex(Symbol("x_a_b")) == r"x_{a b}"
assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}"
assert latex(Symbol("x_a_b1")) == r"x_{a b1}"
assert latex(Symbol("x_a_1")) == r"x_{a 1}"
assert latex(Symbol("x_1_a")) == r"x_{1 a}"
assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_11^a")) == r"x^{a}_{11}"
assert latex(Symbol("x_11__a")) == r"x^{a}_{11}"
assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}"
assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}"
assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}"
assert latex(Symbol("alpha_11")) == r"\alpha_{11}"
assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}"
assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}"
assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}"
assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}"
def test_latex_pow_fraction():
x = Symbol('x')
# Testing exp
assert r'e^{-x}' in latex(exp(-x)/2).replace(' ', '') # Remove Whitespace
# Testing e^{-x} in case future changes alter behavior of muls or fracs
# In particular current output is \frac{1}{2}e^{- x} but perhaps this will
# change to \frac{e^{-x}}{2}
# Testing general, non-exp, power
assert r'3^{-x}' in latex(3**-x/2).replace(' ', '')
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
assert latex(A*B*C**-1) == r"A B C^{-1}"
assert latex(C**-1*A*B) == r"C^{-1} A B"
assert latex(A*C**-1*B) == r"A C^{-1} B"
def test_latex_order():
expr = x**3 + x**2*y + y**4 + 3*x*y**3
assert latex(expr, order='lex') == r"x^{3} + x^{2} y + 3 x y^{3} + y^{4}"
assert latex(
expr, order='rev-lex') == r"y^{4} + 3 x y^{3} + x^{2} y + x^{3}"
assert latex(expr, order='none') == r"x^{3} + y^{4} + y x^{2} + 3 x y^{3}"
def test_latex_Lambda():
assert latex(Lambda(x, x + 1)) == r"\left( x \mapsto x + 1 \right)"
assert latex(Lambda((x, y), x + 1)) == r"\left( \left( x, \ y\right) \mapsto x + 1 \right)"
assert latex(Lambda(x, x)) == r"\left( x \mapsto x \right)"
def test_latex_PolyElement():
Ruv, u, v = ring("u,v", ZZ)
Rxyz, x, y, z = ring("x,y,z", Ruv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex((u**2 + 3*u*v + 1)*x**2*y + u + 1) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1"
assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x"
assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1"
assert latex((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == \
r"-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1"
assert latex(-(v**2 + v + 1)*x + 3*u*v + 1) == \
r"-\left({v}^{2} + v + 1\right) x + 3 u v + 1"
assert latex(-(v**2 + v + 1)*x - 3*u*v + 1) == \
r"-\left({v}^{2} + v + 1\right) x - 3 u v + 1"
def test_latex_FracElement():
Fuv, u, v = field("u,v", ZZ)
Fxyzt, x, y, z, t = field("x,y,z,t", Fuv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex(x/3) == r"\frac{x}{3}"
assert latex(x/z) == r"\frac{x}{z}"
assert latex(x*y/z) == r"\frac{x y}{z}"
assert latex(x/(z*t)) == r"\frac{x}{z t}"
assert latex(x*y/(z*t)) == r"\frac{x y}{z t}"
assert latex((x - 1)/y) == r"\frac{x - 1}{y}"
assert latex((x + 1)/y) == r"\frac{x + 1}{y}"
assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}"
assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}"
assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}"
assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == \
r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == \
r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}"
def test_latex_Poly():
assert latex(Poly(x**2 + 2 * x, x)) == \
r"\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}"
assert latex(Poly(x/y, x)) == \
r"\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}"
assert latex(Poly(2.0*x + y)) == \
r"\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)}"
def test_latex_Poly_order():
assert latex(Poly([a, 1, b, 2, c, 3], x)) == \
r'\operatorname{Poly}{\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c'\
r' x + 3, x, domain=\mathbb{Z}\left[a, b, c\right] \right)}'
assert latex(Poly([a, 1, b+c, 2, 3], x)) == \
r'\operatorname{Poly}{\left( a x^{4} + x^{3} + \left(b + c\right) '\
r'x^{2} + 2 x + 3, x, domain=\mathbb{Z}\left[a, b, c\right] \right)}'
assert latex(Poly(a*x**3 + x**2*y - x*y - c*y**3 - b*x*y**2 + y - a*x + b,
(x, y))) == \
r'\operatorname{Poly}{\left( a x^{3} + x^{2}y - b xy^{2} - xy - '\
r'a x - c y^{3} + y + b, x, y, domain=\mathbb{Z}\left[a, b, c\right] \right)}'
def test_latex_ComplexRootOf():
assert latex(rootof(x**5 + x + 3, 0)) == \
r"\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)}"
def test_latex_RootSum():
assert latex(RootSum(x**5 + x + 3, sin)) == \
r"\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left(x \right)} \right)\right)}"
def test_settings():
raises(TypeError, lambda: latex(x*y, method="garbage"))
def test_latex_numbers():
assert latex(catalan(n)) == r"C_{n}"
assert latex(catalan(n)**2) == r"C_{n}^{2}"
assert latex(bernoulli(n)) == r"B_{n}"
assert latex(bernoulli(n, x)) == r"B_{n}\left(x\right)"
assert latex(bernoulli(n)**2) == r"B_{n}^{2}"
assert latex(bernoulli(n, x)**2) == r"B_{n}^{2}\left(x\right)"
assert latex(bell(n)) == r"B_{n}"
assert latex(bell(n, x)) == r"B_{n}\left(x\right)"
assert latex(bell(n, m, (x, y))) == r"B_{n, m}\left(x, y\right)"
assert latex(bell(n)**2) == r"B_{n}^{2}"
assert latex(bell(n, x)**2) == r"B_{n}^{2}\left(x\right)"
assert latex(bell(n, m, (x, y))**2) == r"B_{n, m}^{2}\left(x, y\right)"
assert latex(fibonacci(n)) == r"F_{n}"
assert latex(fibonacci(n, x)) == r"F_{n}\left(x\right)"
assert latex(fibonacci(n)**2) == r"F_{n}^{2}"
assert latex(fibonacci(n, x)**2) == r"F_{n}^{2}\left(x\right)"
assert latex(lucas(n)) == r"L_{n}"
assert latex(lucas(n)**2) == r"L_{n}^{2}"
assert latex(tribonacci(n)) == r"T_{n}"
assert latex(tribonacci(n, x)) == r"T_{n}\left(x\right)"
assert latex(tribonacci(n)**2) == r"T_{n}^{2}"
assert latex(tribonacci(n, x)**2) == r"T_{n}^{2}\left(x\right)"
def test_latex_euler():
assert latex(euler(n)) == r"E_{n}"
assert latex(euler(n, x)) == r"E_{n}\left(x\right)"
assert latex(euler(n, x)**2) == r"E_{n}^{2}\left(x\right)"
def test_lamda():
assert latex(Symbol('lamda')) == r"\lambda"
assert latex(Symbol('Lamda')) == r"\Lambda"
def test_custom_symbol_names():
x = Symbol('x')
y = Symbol('y')
assert latex(x) == r"x"
assert latex(x, symbol_names={x: "x_i"}) == r"x_i"
assert latex(x + y, symbol_names={x: "x_i"}) == r"x_i + y"
assert latex(x**2, symbol_names={x: "x_i"}) == r"x_i^{2}"
assert latex(x + y, symbol_names={x: "x_i", y: "y_j"}) == r"x_i + y_j"
def test_matAdd():
from sympy import MatrixSymbol
from sympy.printing.latex import LatexPrinter
C = MatrixSymbol('C', 5, 5)
B = MatrixSymbol('B', 5, 5)
l = LatexPrinter()
assert l._print(C - 2*B) in [r'- 2 B + C', r'C -2 B']
assert l._print(C + 2*B) in [r'2 B + C', r'C + 2 B']
assert l._print(B - 2*C) in [r'B - 2 C', r'- 2 C + B']
assert l._print(B + 2*C) in [r'B + 2 C', r'2 C + B']
def test_matMul():
from sympy import MatrixSymbol
from sympy.printing.latex import LatexPrinter
A = MatrixSymbol('A', 5, 5)
B = MatrixSymbol('B', 5, 5)
x = Symbol('x')
lp = LatexPrinter()
assert lp._print_MatMul(2*A) == r'2 A'
assert lp._print_MatMul(2*x*A) == r'2 x A'
assert lp._print_MatMul(-2*A) == r'- 2 A'
assert lp._print_MatMul(1.5*A) == r'1.5 A'
assert lp._print_MatMul(sqrt(2)*A) == r'\sqrt{2} A'
assert lp._print_MatMul(-sqrt(2)*A) == r'- \sqrt{2} A'
assert lp._print_MatMul(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A'
assert lp._print_MatMul(-2*A*(A + 2*B)) in [r'- 2 A \left(A + 2 B\right)',
r'- 2 A \left(2 B + A\right)']
def test_latex_MatrixSlice():
n = Symbol('n', integer=True)
x, y, z, w, t, = symbols('x y z w t')
X = MatrixSymbol('X', n, n)
Y = MatrixSymbol('Y', 10, 10)
Z = MatrixSymbol('Z', 10, 10)
assert latex(MatrixSlice(X, (None, None, None), (None, None, None))) == r'X\left[:, :\right]'
assert latex(X[x:x + 1, y:y + 1]) == r'X\left[x:x + 1, y:y + 1\right]'
assert latex(X[x:x + 1:2, y:y + 1:2]) == r'X\left[x:x + 1:2, y:y + 1:2\right]'
assert latex(X[:x, y:]) == r'X\left[:x, y:\right]'
assert latex(X[:x, y:]) == r'X\left[:x, y:\right]'
assert latex(X[x:, :y]) == r'X\left[x:, :y\right]'
assert latex(X[x:y, z:w]) == r'X\left[x:y, z:w\right]'
assert latex(X[x:y:t, w:t:x]) == r'X\left[x:y:t, w:t:x\right]'
assert latex(X[x::y, t::w]) == r'X\left[x::y, t::w\right]'
assert latex(X[:x:y, :t:w]) == r'X\left[:x:y, :t:w\right]'
assert latex(X[::x, ::y]) == r'X\left[::x, ::y\right]'
assert latex(MatrixSlice(X, (0, None, None), (0, None, None))) == r'X\left[:, :\right]'
assert latex(MatrixSlice(X, (None, n, None), (None, n, None))) == r'X\left[:, :\right]'
assert latex(MatrixSlice(X, (0, n, None), (0, n, None))) == r'X\left[:, :\right]'
assert latex(MatrixSlice(X, (0, n, 2), (0, n, 2))) == r'X\left[::2, ::2\right]'
assert latex(X[1:2:3, 4:5:6]) == r'X\left[1:2:3, 4:5:6\right]'
assert latex(X[1:3:5, 4:6:8]) == r'X\left[1:3:5, 4:6:8\right]'
assert latex(X[1:10:2]) == r'X\left[1:10:2, :\right]'
assert latex(Y[:5, 1:9:2]) == r'Y\left[:5, 1:9:2\right]'
assert latex(Y[:5, 1:10:2]) == r'Y\left[:5, 1::2\right]'
assert latex(Y[5, :5:2]) == r'Y\left[5:6, :5:2\right]'
assert latex(X[0:1, 0:1]) == r'X\left[:1, :1\right]'
assert latex(X[0:1:2, 0:1:2]) == r'X\left[:1:2, :1:2\right]'
assert latex((Y + Z)[2:, 2:]) == r'\left(Y + Z\right)\left[2:, 2:\right]'
def test_latex_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
from sympy.stats.rv import RandomDomain
X = Normal('x1', 0, 1)
assert latex(where(X > 0)) == r"\text{Domain: }0 < x_{1} \wedge x_{1} < \infty"
D = Die('d1', 6)
assert latex(where(D > 4)) == r"\text{Domain: }d_{1} = 5 \vee d_{1} = 6"
A = Exponential('a', 1)
B = Exponential('b', 1)
assert latex(
pspace(Tuple(A, B)).domain) == \
r"\text{Domain: }0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \infty"
assert latex(RandomDomain(FiniteSet(x), FiniteSet(1, 2))) == \
r'\text{Domain: }\left\{x\right\}\text{ in }\left\{1, 2\right\}'
def test_PrettyPoly():
from sympy.polys.domains import QQ
F = QQ.frac_field(x, y)
R = QQ[x, y]
assert latex(F.convert(x/(x + y))) == latex(x/(x + y))
assert latex(R.convert(x + y)) == latex(x + y)
def test_integral_transforms():
x = Symbol("x")
k = Symbol("k")
f = Function("f")
a = Symbol("a")
b = Symbol("b")
assert latex(MellinTransform(f(x), x, k)) == \
r"\mathcal{M}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseMellinTransform(f(k), k, x, a, b)) == \
r"\mathcal{M}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(LaplaceTransform(f(x), x, k)) == \
r"\mathcal{L}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == \
r"\mathcal{L}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(FourierTransform(f(x), x, k)) == \
r"\mathcal{F}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseFourierTransform(f(k), k, x)) == \
r"\mathcal{F}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(CosineTransform(f(x), x, k)) == \
r"\mathcal{COS}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseCosineTransform(f(k), k, x)) == \
r"\mathcal{COS}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(SineTransform(f(x), x, k)) == \
r"\mathcal{SIN}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseSineTransform(f(k), k, x)) == \
r"\mathcal{SIN}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
def test_PolynomialRingBase():
from sympy.polys.domains import QQ
assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]"
assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \
r"S_<^{-1}\mathbb{Q}\left[x, y\right]"
def test_categories():
from sympy.categories import (Object, IdentityMorphism,
NamedMorphism, Category, Diagram,
DiagramGrid)
A1 = Object("A1")
A2 = Object("A2")
A3 = Object("A3")
f1 = NamedMorphism(A1, A2, "f1")
f2 = NamedMorphism(A2, A3, "f2")
id_A1 = IdentityMorphism(A1)
K1 = Category("K1")
assert latex(A1) == r"A_{1}"
assert latex(f1) == r"f_{1}:A_{1}\rightarrow A_{2}"
assert latex(id_A1) == r"id:A_{1}\rightarrow A_{1}"
assert latex(f2*f1) == r"f_{2}\circ f_{1}:A_{1}\rightarrow A_{3}"
assert latex(K1) == r"\mathbf{K_{1}}"
d = Diagram()
assert latex(d) == r"\emptyset"
d = Diagram({f1: "unique", f2: S.EmptySet})
assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, " \
r"\ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}"
d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}," \
r" \ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" \
r"\Longrightarrow \left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \left\{unique\right\}\right\}"
# A linear diagram.
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
d = Diagram([f, g])
grid = DiagramGrid(d)
assert latex(grid) == r"\begin{array}{cc}" + "\n" \
r"A & B \\" + "\n" \
r" & C " + "\n" \
r"\end{array}" + "\n"
def test_Modules():
from sympy.polys.domains import QQ
from sympy.polys.agca import homomorphism
R = QQ.old_poly_ring(x, y)
F = R.free_module(2)
M = F.submodule([x, y], [1, x**2])
assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}"
assert latex(M) == \
r"\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle"
I = R.ideal(x**2, y)
assert latex(I) == r"\left\langle {x^{2}},{y} \right\rangle"
Q = F / M
assert latex(Q) == \
r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left\langle {\left[ {x},"\
r"{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}"
assert latex(Q.submodule([1, x**3/2], [2, y])) == \
r"\left\langle {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left"\
r"\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} "\
r"\right\rangle}},{{\left[ {2},{y} \right]} + {\left\langle {\left[ "\
r"{x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}} \right\rangle"
h = homomorphism(QQ.old_poly_ring(x).free_module(2),
QQ.old_poly_ring(x).free_module(2), [0, 0])
assert latex(h) == \
r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : "\
r"{{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}"
def test_QuotientRing():
from sympy.polys.domains import QQ
R = QQ.old_poly_ring(x)/[x**2 + 1]
assert latex(R) == \
r"\frac{\mathbb{Q}\left[x\right]}{\left\langle {x^{2} + 1} \right\rangle}"
assert latex(R.one) == r"{1} + {\left\langle {x^{2} + 1} \right\rangle}"
def test_Tr():
#TODO: Handle indices
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert latex(t) == r'\operatorname{tr}\left(A B\right)'
def test_Adjoint():
from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(Adjoint(X)) == r'X^{\dagger}'
assert latex(Adjoint(X + Y)) == r'\left(X + Y\right)^{\dagger}'
assert latex(Adjoint(X) + Adjoint(Y)) == r'X^{\dagger} + Y^{\dagger}'
assert latex(Adjoint(X*Y)) == r'\left(X Y\right)^{\dagger}'
assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^{\dagger} X^{\dagger}'
assert latex(Adjoint(X**2)) == r'\left(X^{2}\right)^{\dagger}'
assert latex(Adjoint(X)**2) == r'\left(X^{\dagger}\right)^{2}'
assert latex(Adjoint(Inverse(X))) == r'\left(X^{-1}\right)^{\dagger}'
assert latex(Inverse(Adjoint(X))) == r'\left(X^{\dagger}\right)^{-1}'
assert latex(Adjoint(Transpose(X))) == r'\left(X^{T}\right)^{\dagger}'
assert latex(Transpose(Adjoint(X))) == r'\left(X^{\dagger}\right)^{T}'
assert latex(Transpose(Adjoint(X) + Y)) == r'\left(X^{\dagger} + Y\right)^{T}'
def test_Transpose():
from sympy.matrices import Transpose, MatPow, HadamardPower
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(Transpose(X)) == r'X^{T}'
assert latex(Transpose(X + Y)) == r'\left(X + Y\right)^{T}'
assert latex(Transpose(HadamardPower(X, 2))) == r'\left(X^{\circ {2}}\right)^{T}'
assert latex(HadamardPower(Transpose(X), 2)) == r'\left(X^{T}\right)^{\circ {2}}'
assert latex(Transpose(MatPow(X, 2))) == r'\left(X^{2}\right)^{T}'
assert latex(MatPow(Transpose(X), 2)) == r'\left(X^{T}\right)^{2}'
def test_Hadamard():
from sympy.matrices import MatrixSymbol, HadamardProduct, HadamardPower
from sympy.matrices.expressions import MatAdd, MatMul, MatPow
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(HadamardProduct(X, Y*Y)) == r'X \circ Y^{2}'
assert latex(HadamardProduct(X, Y)*Y) == r'\left(X \circ Y\right) Y'
assert latex(HadamardPower(X, 2)) == r'X^{\circ {2}}'
assert latex(HadamardPower(X, -1)) == r'X^{\circ \left({-1}\right)}'
assert latex(HadamardPower(MatAdd(X, Y), 2)) == \
r'\left(X + Y\right)^{\circ {2}}'
assert latex(HadamardPower(MatMul(X, Y), 2)) == \
r'\left(X Y\right)^{\circ {2}}'
assert latex(HadamardPower(MatPow(X, -1), -1)) == \
r'\left(X^{-1}\right)^{\circ \left({-1}\right)}'
assert latex(MatPow(HadamardPower(X, -1), -1)) == \
r'\left(X^{\circ \left({-1}\right)}\right)^{-1}'
assert latex(HadamardPower(X, n+1)) == \
r'X^{\circ \left({n + 1}\right)}'
def test_ElementwiseApplyFunction():
from sympy.matrices import MatrixSymbol
X = MatrixSymbol('X', 2, 2)
expr = (X.T*X).applyfunc(sin)
assert latex(expr) == r"{\left( d \mapsto \sin{\left(d \right)} \right)}_{\circ}\left({X^{T} X}\right)"
expr = X.applyfunc(Lambda(x, 1/x))
assert latex(expr) == r'{\left( x \mapsto \frac{1}{x} \right)}_{\circ}\left({X}\right)'
def test_ZeroMatrix():
from sympy import ZeroMatrix
assert latex(ZeroMatrix(1, 1), mat_symbol_style='plain') == r"\mathbb{0}"
assert latex(ZeroMatrix(1, 1), mat_symbol_style='bold') == r"\mathbf{0}"
def test_OneMatrix():
from sympy import OneMatrix
assert latex(OneMatrix(3, 4), mat_symbol_style='plain') == r"\mathbb{1}"
assert latex(OneMatrix(3, 4), mat_symbol_style='bold') == r"\mathbf{1}"
def test_Identity():
from sympy import Identity
assert latex(Identity(1), mat_symbol_style='plain') == r"\mathbb{I}"
assert latex(Identity(1), mat_symbol_style='bold') == r"\mathbf{I}"
def test_boolean_args_order():
syms = symbols('a:f')
expr = And(*syms)
assert latex(expr) == r'a \wedge b \wedge c \wedge d \wedge e \wedge f'
expr = Or(*syms)
assert latex(expr) == r'a \vee b \vee c \vee d \vee e \vee f'
expr = Equivalent(*syms)
assert latex(expr) == \
r'a \Leftrightarrow b \Leftrightarrow c \Leftrightarrow d \Leftrightarrow e \Leftrightarrow f'
expr = Xor(*syms)
assert latex(expr) == \
r'a \veebar b \veebar c \veebar d \veebar e \veebar f'
def test_imaginary():
i = sqrt(-1)
assert latex(i) == r'i'
def test_builtins_without_args():
assert latex(sin) == r'\sin'
assert latex(cos) == r'\cos'
assert latex(tan) == r'\tan'
assert latex(log) == r'\log'
assert latex(Ei) == r'\operatorname{Ei}'
assert latex(zeta) == r'\zeta'
def test_latex_greek_functions():
# bug because capital greeks that have roman equivalents should not use
# \Alpha, \Beta, \Eta, etc.
s = Function('Alpha')
assert latex(s) == r'A'
assert latex(s(x)) == r'A{\left(x \right)}'
s = Function('Beta')
assert latex(s) == r'B'
s = Function('Eta')
assert latex(s) == r'H'
assert latex(s(x)) == r'H{\left(x \right)}'
# bug because sympy.core.numbers.Pi is special
p = Function('Pi')
# assert latex(p(x)) == r'\Pi{\left(x \right)}'
assert latex(p) == r'\Pi'
# bug because not all greeks are included
c = Function('chi')
assert latex(c(x)) == r'\chi{\left(x \right)}'
assert latex(c) == r'\chi'
def test_translate():
s = 'Alpha'
assert translate(s) == r'A'
s = 'Beta'
assert translate(s) == r'B'
s = 'Eta'
assert translate(s) == r'H'
s = 'omicron'
assert translate(s) == r'o'
s = 'Pi'
assert translate(s) == r'\Pi'
s = 'pi'
assert translate(s) == r'\pi'
s = 'LamdaHatDOT'
assert translate(s) == r'\dot{\hat{\Lambda}}'
def test_other_symbols():
from sympy.printing.latex import other_symbols
for s in other_symbols:
assert latex(symbols(s)) == r"" "\\" + s
def test_modifiers():
# Test each modifier individually in the simplest case
# (with funny capitalizations)
assert latex(symbols("xMathring")) == r"\mathring{x}"
assert latex(symbols("xCheck")) == r"\check{x}"
assert latex(symbols("xBreve")) == r"\breve{x}"
assert latex(symbols("xAcute")) == r"\acute{x}"
assert latex(symbols("xGrave")) == r"\grave{x}"
assert latex(symbols("xTilde")) == r"\tilde{x}"
assert latex(symbols("xPrime")) == r"{x}'"
assert latex(symbols("xddDDot")) == r"\ddddot{x}"
assert latex(symbols("xDdDot")) == r"\dddot{x}"
assert latex(symbols("xDDot")) == r"\ddot{x}"
assert latex(symbols("xBold")) == r"\boldsymbol{x}"
assert latex(symbols("xnOrM")) == r"\left\|{x}\right\|"
assert latex(symbols("xAVG")) == r"\left\langle{x}\right\rangle"
assert latex(symbols("xHat")) == r"\hat{x}"
assert latex(symbols("xDot")) == r"\dot{x}"
assert latex(symbols("xBar")) == r"\bar{x}"
assert latex(symbols("xVec")) == r"\vec{x}"
assert latex(symbols("xAbs")) == r"\left|{x}\right|"
assert latex(symbols("xMag")) == r"\left|{x}\right|"
assert latex(symbols("xPrM")) == r"{x}'"
assert latex(symbols("xBM")) == r"\boldsymbol{x}"
# Test strings that are *only* the names of modifiers
assert latex(symbols("Mathring")) == r"Mathring"
assert latex(symbols("Check")) == r"Check"
assert latex(symbols("Breve")) == r"Breve"
assert latex(symbols("Acute")) == r"Acute"
assert latex(symbols("Grave")) == r"Grave"
assert latex(symbols("Tilde")) == r"Tilde"
assert latex(symbols("Prime")) == r"Prime"
assert latex(symbols("DDot")) == r"\dot{D}"
assert latex(symbols("Bold")) == r"Bold"
assert latex(symbols("NORm")) == r"NORm"
assert latex(symbols("AVG")) == r"AVG"
assert latex(symbols("Hat")) == r"Hat"
assert latex(symbols("Dot")) == r"Dot"
assert latex(symbols("Bar")) == r"Bar"
assert latex(symbols("Vec")) == r"Vec"
assert latex(symbols("Abs")) == r"Abs"
assert latex(symbols("Mag")) == r"Mag"
assert latex(symbols("PrM")) == r"PrM"
assert latex(symbols("BM")) == r"BM"
assert latex(symbols("hbar")) == r"\hbar"
# Check a few combinations
assert latex(symbols("xvecdot")) == r"\dot{\vec{x}}"
assert latex(symbols("xDotVec")) == r"\vec{\dot{x}}"
assert latex(symbols("xHATNorm")) == r"\left\|{\hat{x}}\right\|"
# Check a couple big, ugly combinations
assert latex(symbols('xMathringBm_yCheckPRM__zbreveAbs')) == \
r"\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'}"
assert latex(symbols('alphadothat_nVECDOT__tTildePrime')) == \
r"\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}}"
def test_greek_symbols():
assert latex(Symbol('alpha')) == r'\alpha'
assert latex(Symbol('beta')) == r'\beta'
assert latex(Symbol('gamma')) == r'\gamma'
assert latex(Symbol('delta')) == r'\delta'
assert latex(Symbol('epsilon')) == r'\epsilon'
assert latex(Symbol('zeta')) == r'\zeta'
assert latex(Symbol('eta')) == r'\eta'
assert latex(Symbol('theta')) == r'\theta'
assert latex(Symbol('iota')) == r'\iota'
assert latex(Symbol('kappa')) == r'\kappa'
assert latex(Symbol('lambda')) == r'\lambda'
assert latex(Symbol('mu')) == r'\mu'
assert latex(Symbol('nu')) == r'\nu'
assert latex(Symbol('xi')) == r'\xi'
assert latex(Symbol('omicron')) == r'o'
assert latex(Symbol('pi')) == r'\pi'
assert latex(Symbol('rho')) == r'\rho'
assert latex(Symbol('sigma')) == r'\sigma'
assert latex(Symbol('tau')) == r'\tau'
assert latex(Symbol('upsilon')) == r'\upsilon'
assert latex(Symbol('phi')) == r'\phi'
assert latex(Symbol('chi')) == r'\chi'
assert latex(Symbol('psi')) == r'\psi'
assert latex(Symbol('omega')) == r'\omega'
assert latex(Symbol('Alpha')) == r'A'
assert latex(Symbol('Beta')) == r'B'
assert latex(Symbol('Gamma')) == r'\Gamma'
assert latex(Symbol('Delta')) == r'\Delta'
assert latex(Symbol('Epsilon')) == r'E'
assert latex(Symbol('Zeta')) == r'Z'
assert latex(Symbol('Eta')) == r'H'
assert latex(Symbol('Theta')) == r'\Theta'
assert latex(Symbol('Iota')) == r'I'
assert latex(Symbol('Kappa')) == r'K'
assert latex(Symbol('Lambda')) == r'\Lambda'
assert latex(Symbol('Mu')) == r'M'
assert latex(Symbol('Nu')) == r'N'
assert latex(Symbol('Xi')) == r'\Xi'
assert latex(Symbol('Omicron')) == r'O'
assert latex(Symbol('Pi')) == r'\Pi'
assert latex(Symbol('Rho')) == r'P'
assert latex(Symbol('Sigma')) == r'\Sigma'
assert latex(Symbol('Tau')) == r'T'
assert latex(Symbol('Upsilon')) == r'\Upsilon'
assert latex(Symbol('Phi')) == r'\Phi'
assert latex(Symbol('Chi')) == r'X'
assert latex(Symbol('Psi')) == r'\Psi'
assert latex(Symbol('Omega')) == r'\Omega'
assert latex(Symbol('varepsilon')) == r'\varepsilon'
assert latex(Symbol('varkappa')) == r'\varkappa'
assert latex(Symbol('varphi')) == r'\varphi'
assert latex(Symbol('varpi')) == r'\varpi'
assert latex(Symbol('varrho')) == r'\varrho'
assert latex(Symbol('varsigma')) == r'\varsigma'
assert latex(Symbol('vartheta')) == r'\vartheta'
def test_fancyset_symbols():
assert latex(S.Rationals) == r'\mathbb{Q}'
assert latex(S.Naturals) == r'\mathbb{N}'
assert latex(S.Naturals0) == r'\mathbb{N}_0'
assert latex(S.Integers) == r'\mathbb{Z}'
assert latex(S.Reals) == r'\mathbb{R}'
assert latex(S.Complexes) == r'\mathbb{C}'
@XFAIL
def test_builtin_without_args_mismatched_names():
assert latex(CosineTransform) == r'\mathcal{COS}'
def test_builtin_no_args():
assert latex(Chi) == r'\operatorname{Chi}'
assert latex(beta) == r'\operatorname{B}'
assert latex(gamma) == r'\Gamma'
assert latex(KroneckerDelta) == r'\delta'
assert latex(DiracDelta) == r'\delta'
assert latex(lowergamma) == r'\gamma'
def test_issue_6853():
p = Function('Pi')
assert latex(p(x)) == r"\Pi{\left(x \right)}"
def test_Mul():
e = Mul(-2, x + 1, evaluate=False)
assert latex(e) == r'- 2 \left(x + 1\right)'
e = Mul(2, x + 1, evaluate=False)
assert latex(e) == r'2 \left(x + 1\right)'
e = Mul(S.Half, x + 1, evaluate=False)
assert latex(e) == r'\frac{x + 1}{2}'
e = Mul(y, x + 1, evaluate=False)
assert latex(e) == r'y \left(x + 1\right)'
e = Mul(-y, x + 1, evaluate=False)
assert latex(e) == r'- y \left(x + 1\right)'
e = Mul(-2, x + 1)
assert latex(e) == r'- 2 x - 2'
e = Mul(2, x + 1)
assert latex(e) == r'2 x + 2'
def test_Pow():
e = Pow(2, 2, evaluate=False)
assert latex(e) == r'2^{2}'
assert latex(x**(Rational(-1, 3))) == r'\frac{1}{\sqrt[3]{x}}'
x2 = Symbol(r'x^2')
assert latex(x2**2) == r'\left(x^{2}\right)^{2}'
def test_issue_7180():
assert latex(Equivalent(x, y)) == r"x \Leftrightarrow y"
assert latex(Not(Equivalent(x, y))) == r"x \not\Leftrightarrow y"
def test_issue_8409():
assert latex(S.Half**n) == r"\left(\frac{1}{2}\right)^{n}"
def test_issue_8470():
from sympy.parsing.sympy_parser import parse_expr
e = parse_expr("-B*A", evaluate=False)
assert latex(e) == r"A \left(- B\right)"
def test_issue_15439():
x = MatrixSymbol('x', 2, 2)
y = MatrixSymbol('y', 2, 2)
assert latex((x * y).subs(y, -y)) == r"x \left(- y\right)"
assert latex((x * y).subs(y, -2*y)) == r"x \left(- 2 y\right)"
assert latex((x * y).subs(x, -x)) == r"- x y"
def test_issue_2934():
assert latex(Symbol(r'\frac{a_1}{b_1}')) == r'\frac{a_1}{b_1}'
def test_issue_10489():
latexSymbolWithBrace = r'C_{x_{0}}'
s = Symbol(latexSymbolWithBrace)
assert latex(s) == latexSymbolWithBrace
assert latex(cos(s)) == r'\cos{\left(C_{x_{0}} \right)}'
def test_issue_12886():
m__1, l__1 = symbols('m__1, l__1')
assert latex(m__1**2 + l__1**2) == \
r'\left(l^{1}\right)^{2} + \left(m^{1}\right)^{2}'
def test_issue_13559():
from sympy.parsing.sympy_parser import parse_expr
expr = parse_expr('5/1', evaluate=False)
assert latex(expr) == r"\frac{5}{1}"
def test_issue_13651():
expr = c + Mul(-1, a + b, evaluate=False)
assert latex(expr) == r"c - \left(a + b\right)"
def test_latex_UnevaluatedExpr():
x = symbols("x")
he = UnevaluatedExpr(1/x)
assert latex(he) == latex(1/x) == r"\frac{1}{x}"
assert latex(he**2) == r"\left(\frac{1}{x}\right)^{2}"
assert latex(he + 1) == r"1 + \frac{1}{x}"
assert latex(x*he) == r"x \frac{1}{x}"
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert latex(A[0, 0]) == r"A_{0, 0}"
assert latex(3 * A[0, 0]) == r"3 A_{0, 0}"
F = C[0, 0].subs(C, A - B)
assert latex(F) == r"\left(A - B\right)_{0, 0}"
i, j, k = symbols("i j k")
M = MatrixSymbol("M", k, k)
N = MatrixSymbol("N", k, k)
assert latex((M*N)[i, j]) == \
r'\sum_{i_{1}=0}^{k - 1} M_{i, i_{1}} N_{i_{1}, j}'
def test_MatrixSymbol_printing():
# test cases for issue #14237
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert latex(-A) == r"- A"
assert latex(A - A*B - B) == r"A - A B - B"
assert latex(-A*B - A*B*C - B) == r"- A B - A B C - B"
def test_KroneckerProduct_printing():
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 2, 2)
assert latex(KroneckerProduct(A, B)) == r'A \otimes B'
def test_Series_printing():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert latex(Series(tf1, tf2)) == \
r'\left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right) \left(\frac{x - y}{x + y}\right)'
assert latex(Series(tf1, tf2, tf3)) == \
r'\left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right) \left(\frac{x - y}{x + y}\right) \left(\frac{t x^{2} - t^{w} x + w}{t - y}\right)'
assert latex(Series(-tf2, tf1)) == \
r'\left(\frac{- x + y}{x + y}\right) \left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right)'
M_1 = Matrix([[5/s], [5/(2*s)]])
T_1 = TransferFunctionMatrix.from_Matrix(M_1, s)
M_2 = Matrix([[5, 6*s**3]])
T_2 = TransferFunctionMatrix.from_Matrix(M_2, s)
# Brackets
assert latex(T_1*(T_2 + T_2)) == \
r'\left[\begin{matrix}\frac{5}{s}\\\frac{5}{2 s}\end{matrix}\right]_\tau\cdot\left(\left[\begin{matrix}\frac{5}{1} &' \
r' \frac{6 s^{3}}{1}\end{matrix}\right]_\tau + \left[\begin{matrix}\frac{5}{1} & \frac{6 s^{3}}{1}\end{matrix}\right]_\tau\right)' \
== latex(MIMOSeries(MIMOParallel(T_2, T_2), T_1))
# No Brackets
M_3 = Matrix([[5, 6], [6, 5/s]])
T_3 = TransferFunctionMatrix.from_Matrix(M_3, s)
assert latex(T_1*T_2 + T_3) == r'\left[\begin{matrix}\frac{5}{s}\\\frac{5}{2 s}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}' \
r'\frac{5}{1} & \frac{6 s^{3}}{1}\end{matrix}\right]_\tau + \left[\begin{matrix}\frac{5}{1} & \frac{6}{1}\\\frac{6}{1} & ' \
r'\frac{5}{s}\end{matrix}\right]_\tau' == latex(MIMOParallel(MIMOSeries(T_2, T_1), T_3))
def test_TransferFunction_printing():
tf1 = TransferFunction(x - 1, x + 1, x)
assert latex(tf1) == r"\frac{x - 1}{x + 1}"
tf2 = TransferFunction(x + 1, 2 - y, x)
assert latex(tf2) == r"\frac{x + 1}{2 - y}"
tf3 = TransferFunction(y, y**2 + 2*y + 3, y)
assert latex(tf3) == r"\frac{y}{y^{2} + 2 y + 3}"
def test_Parallel_printing():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
assert latex(Parallel(tf1, tf2)) == \
r'\frac{x y^{2} - z}{- t^{3} + y^{3}} + \frac{x - y}{x + y}'
assert latex(Parallel(-tf2, tf1)) == \
r'\frac{- x + y}{x + y} + \frac{x y^{2} - z}{- t^{3} + y^{3}}'
M_1 = Matrix([[5, 6], [6, 5/s]])
T_1 = TransferFunctionMatrix.from_Matrix(M_1, s)
M_2 = Matrix([[5/s, 6], [6, 5/(s - 1)]])
T_2 = TransferFunctionMatrix.from_Matrix(M_2, s)
M_3 = Matrix([[6, 5/(s*(s - 1))], [5, 6]])
T_3 = TransferFunctionMatrix.from_Matrix(M_3, s)
assert latex(T_1 + T_2 + T_3) == r'\left[\begin{matrix}\frac{5}{1} & \frac{6}{1}\\\frac{6}{1} & \frac{5}{s}\end{matrix}\right]' \
r'_\tau + \left[\begin{matrix}\frac{5}{s} & \frac{6}{1}\\\frac{6}{1} & \frac{5}{s - 1}\end{matrix}\right]_\tau + \left[\begin{matrix}' \
r'\frac{6}{1} & \frac{5}{s \left(s - 1\right)}\\\frac{5}{1} & \frac{6}{1}\end{matrix}\right]_\tau' \
== latex(MIMOParallel(T_1, T_2, T_3)) == latex(MIMOParallel(T_1, MIMOParallel(T_2, T_3))) == latex(MIMOParallel(MIMOParallel(T_1, T_2), T_3))
def test_TransferFunctionMatrix_printing():
tf1 = TransferFunction(p, p + x, p)
tf2 = TransferFunction(-s + p, p + s, p)
tf3 = TransferFunction(p, y**2 + 2*y + 3, p)
assert latex(TransferFunctionMatrix([[tf1], [tf2]])) == \
r'\left[\begin{matrix}\frac{p}{p + x}\\\frac{p - s}{p + s}\end{matrix}\right]_\tau'
assert latex(TransferFunctionMatrix([[tf1, tf2], [tf3, -tf1]])) == \
r'\left[\begin{matrix}\frac{p}{p + x} & \frac{p - s}{p + s}\\\frac{p}{y^{2} + 2 y + 3} & \frac{\left(-1\right) p}{p + x}\end{matrix}\right]_\tau'
def test_Feedback_printing():
tf1 = TransferFunction(p, p + x, p)
tf2 = TransferFunction(-s + p, p + s, p)
# Negative Feedback (Default)
assert latex(Feedback(tf1, tf2)) == \
r'\frac{\frac{p}{p + x}}{\frac{1}{1} + \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
assert latex(Feedback(tf1*tf2, TransferFunction(1, 1, p))) == \
r'\frac{\left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}{\frac{1}{1} + \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
# Positive Feedback
assert latex(Feedback(tf1, tf2, 1)) == \
r'\frac{\frac{p}{p + x}}{\frac{1}{1} - \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
assert latex(Feedback(tf1*tf2, sign=1)) == \
r'\frac{\left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}{\frac{1}{1} - \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
def test_MIMOFeedback_printing():
tf1 = TransferFunction(1, s, s)
tf2 = TransferFunction(s, s**2 - 1, s)
tf3 = TransferFunction(s, s - 1, s)
tf4 = TransferFunction(s**2, s**2 - 1, s)
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
tfm_2 = TransferFunctionMatrix([[tf4, tf3], [tf2, tf1]])
# Negative Feedback (Default)
assert latex(MIMOFeedback(tfm_1, tfm_2)) == \
r'\left(I_{\tau} + \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left[' \
r'\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1} & \frac{1}{s}\end{matrix}\right]_\tau\right)^{-1} \cdot \left[\begin{matrix}' \
r'\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau'
# Positive Feedback
assert latex(MIMOFeedback(tfm_1*tfm_2, tfm_1, 1)) == \
r'\left(I_{\tau} - \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left' \
r'[\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1} & \frac{1}{s}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}' \
r'\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\right)^{-1} \cdot \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}' \
r'\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1}' \
r' & \frac{1}{s}\end{matrix}\right]_\tau'
def test_Quaternion_latex_printing():
q = Quaternion(x, y, z, t)
assert latex(q) == r"x + y i + z j + t k"
q = Quaternion(x, y, z, x*t)
assert latex(q) == r"x + y i + z j + t x k"
q = Quaternion(x, y, z, x + t)
assert latex(q) == r"x + y i + z j + \left(t + x\right) k"
def test_TensorProduct_printing():
from sympy.tensor.functions import TensorProduct
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert latex(TensorProduct(A, B)) == r"A \otimes B"
def test_WedgeProduct_printing():
from sympy.diffgeom.rn import R2
from sympy.diffgeom import WedgeProduct
wp = WedgeProduct(R2.dx, R2.dy)
assert latex(wp) == r"\operatorname{d}x \wedge \operatorname{d}y"
def test_issue_9216():
expr_1 = Pow(1, -1, evaluate=False)
assert latex(expr_1) == r"1^{-1}"
expr_2 = Pow(1, Pow(1, -1, evaluate=False), evaluate=False)
assert latex(expr_2) == r"1^{1^{-1}}"
expr_3 = Pow(3, -2, evaluate=False)
assert latex(expr_3) == r"\frac{1}{9}"
expr_4 = Pow(1, -2, evaluate=False)
assert latex(expr_4) == r"1^{-2}"
def test_latex_printer_tensor():
from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads
L = TensorIndexType("L")
i, j, k, l = tensor_indices("i j k l", L)
i0 = tensor_indices("i_0", L)
A, B, C, D = tensor_heads("A B C D", [L])
H = TensorHead("H", [L, L])
K = TensorHead("K", [L, L, L, L])
assert latex(i) == r"{}^{i}"
assert latex(-i) == r"{}_{i}"
expr = A(i)
assert latex(expr) == r"A{}^{i}"
expr = A(i0)
assert latex(expr) == r"A{}^{i_{0}}"
expr = A(-i)
assert latex(expr) == r"A{}_{i}"
expr = -3*A(i)
assert latex(expr) == r"-3A{}^{i}"
expr = K(i, j, -k, -i0)
assert latex(expr) == r"K{}^{ij}{}_{ki_{0}}"
expr = K(i, -j, -k, i0)
assert latex(expr) == r"K{}^{i}{}_{jk}{}^{i_{0}}"
expr = K(i, -j, k, -i0)
assert latex(expr) == r"K{}^{i}{}_{j}{}^{k}{}_{i_{0}}"
expr = H(i, -j)
assert latex(expr) == r"H{}^{i}{}_{j}"
expr = H(i, j)
assert latex(expr) == r"H{}^{ij}"
expr = H(-i, -j)
assert latex(expr) == r"H{}_{ij}"
expr = (1+x)*A(i)
assert latex(expr) == r"\left(x + 1\right)A{}^{i}"
expr = H(i, -i)
assert latex(expr) == r"H{}^{L_{0}}{}_{L_{0}}"
expr = H(i, -j)*A(j)*B(k)
assert latex(expr) == r"H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}"
expr = A(i) + 3*B(i)
assert latex(expr) == r"3B{}^{i} + A{}^{i}"
# Test ``TensorElement``:
from sympy.tensor.tensor import TensorElement
expr = TensorElement(K(i, j, k, l), {i: 3, k: 2})
assert latex(expr) == r'K{}^{i=3,j,k=2,l}'
expr = TensorElement(K(i, j, k, l), {i: 3})
assert latex(expr) == r'K{}^{i=3,jkl}'
expr = TensorElement(K(i, -j, k, l), {i: 3, k: 2})
assert latex(expr) == r'K{}^{i=3}{}_{j}{}^{k=2,l}'
expr = TensorElement(K(i, -j, k, -l), {i: 3, k: 2})
assert latex(expr) == r'K{}^{i=3}{}_{j}{}^{k=2}{}_{l}'
expr = TensorElement(K(i, j, -k, -l), {i: 3, -k: 2})
assert latex(expr) == r'K{}^{i=3,j}{}_{k=2,l}'
expr = TensorElement(K(i, j, -k, -l), {i: 3})
assert latex(expr) == r'K{}^{i=3,j}{}_{kl}'
expr = PartialDerivative(A(i), A(i))
assert latex(expr) == r"\frac{\partial}{\partial {A{}^{L_{0}}}}{A{}^{L_{0}}}"
expr = PartialDerivative(A(-i), A(-j))
assert latex(expr) == r"\frac{\partial}{\partial {A{}_{j}}}{A{}_{i}}"
expr = PartialDerivative(K(i, j, -k, -l), A(m), A(-n))
assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}^{m}} \partial {A{}_{n}}}{K{}^{ij}{}_{kl}}"
expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n))
assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(A{}_{i} + B{}_{i}\right)}"
expr = PartialDerivative(3*A(-i), A(-j), A(-n))
assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(3A{}_{i}\right)}"
def test_multiline_latex():
a, b, c, d, e, f = symbols('a b c d e f')
expr = -a + 2*b -3*c +4*d -5*e
expected = r"\begin{eqnarray}" + "\n"\
r"f & = &- a \nonumber\\" + "\n"\
r"& & + 2 b \nonumber\\" + "\n"\
r"& & - 3 c \nonumber\\" + "\n"\
r"& & + 4 d \nonumber\\" + "\n"\
r"& & - 5 e " + "\n"\
r"\end{eqnarray}"
assert multiline_latex(f, expr, environment="eqnarray") == expected
expected2 = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b \nonumber\\' + '\n'\
r'& & - 3 c + 4 d \nonumber\\' + '\n'\
r'& & - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 2, environment="eqnarray") == expected2
expected3 = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b - 3 c \nonumber\\'+ '\n'\
r'& & + 4 d - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 3, environment="eqnarray") == expected3
expected3dots = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b - 3 c \dots\nonumber\\'+ '\n'\
r'& & + 4 d - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 3, environment="eqnarray", use_dots=True) == expected3dots
expected3align = r'\begin{align*}' + '\n'\
r'f = &- a + 2 b - 3 c \\'+ '\n'\
r'& + 4 d - 5 e ' + '\n'\
r'\end{align*}'
assert multiline_latex(f, expr, 3) == expected3align
assert multiline_latex(f, expr, 3, environment='align*') == expected3align
expected2ieee = r'\begin{IEEEeqnarray}{rCl}' + '\n'\
r'f & = &- a + 2 b \nonumber\\' + '\n'\
r'& & - 3 c + 4 d \nonumber\\' + '\n'\
r'& & - 5 e ' + '\n'\
r'\end{IEEEeqnarray}'
assert multiline_latex(f, expr, 2, environment="IEEEeqnarray") == expected2ieee
raises(ValueError, lambda: multiline_latex(f, expr, environment="foo"))
def test_issue_15353():
from sympy import ConditionSet, Tuple, S, sin, cos
a, x = symbols('a x')
# Obtained from nonlinsolve([(sin(a*x)),cos(a*x)],[x,a])
sol = ConditionSet(
Tuple(x, a), Eq(sin(a*x), 0) & Eq(cos(a*x), 0), S.Complexes**2)
assert latex(sol) == \
r'\left\{\left( x, \ a\right)\; \middle|\; \left( x, \ a\right) \in ' \
r'\mathbb{C}^{2} \wedge \sin{\left(a x \right)} = 0 \wedge ' \
r'\cos{\left(a x \right)} = 0 \right\}'
def test_trace():
# Issue 15303
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert latex(trace(A)) == r"\operatorname{tr}\left(A \right)"
assert latex(trace(A**2)) == r"\operatorname{tr}\left(A^{2} \right)"
def test_print_basic():
# Issue 15303
from sympy import Basic, Expr
# dummy class for testing printing where the function is not
# implemented in latex.py
class UnimplementedExpr(Expr):
def __new__(cls, e):
return Basic.__new__(cls, e)
# dummy function for testing
def unimplemented_expr(expr):
return UnimplementedExpr(expr).doit()
# override class name to use superscript / subscript
def unimplemented_expr_sup_sub(expr):
result = UnimplementedExpr(expr)
result.__class__.__name__ = 'UnimplementedExpr_x^1'
return result
assert latex(unimplemented_expr(x)) == r'UnimplementedExpr\left(x\right)'
assert latex(unimplemented_expr(x**2)) == \
r'UnimplementedExpr\left(x^{2}\right)'
assert latex(unimplemented_expr_sup_sub(x)) == \
r'UnimplementedExpr^{1}_{x}\left(x\right)'
def test_MatrixSymbol_bold():
# Issue #15871
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert latex(trace(A), mat_symbol_style='bold') == \
r"\operatorname{tr}\left(\mathbf{A} \right)"
assert latex(trace(A), mat_symbol_style='plain') == \
r"\operatorname{tr}\left(A \right)"
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert latex(-A, mat_symbol_style='bold') == r"- \mathbf{A}"
assert latex(A - A*B - B, mat_symbol_style='bold') == \
r"\mathbf{A} - \mathbf{A} \mathbf{B} - \mathbf{B}"
assert latex(-A*B - A*B*C - B, mat_symbol_style='bold') == \
r"- \mathbf{A} \mathbf{B} - \mathbf{A} \mathbf{B} \mathbf{C} - \mathbf{B}"
A_k = MatrixSymbol("A_k", 3, 3)
assert latex(A_k, mat_symbol_style='bold') == r"\mathbf{A}_{k}"
A = MatrixSymbol(r"\nabla_k", 3, 3)
assert latex(A, mat_symbol_style='bold') == r"\mathbf{\nabla}_{k}"
def test_AppliedPermutation():
p = Permutation(0, 1, 2)
x = Symbol('x')
assert latex(AppliedPermutation(p, x)) == \
r'\sigma_{\left( 0\; 1\; 2\right)}(x)'
def test_PermutationMatrix():
p = Permutation(0, 1, 2)
assert latex(PermutationMatrix(p)) == r'P_{\left( 0\; 1\; 2\right)}'
p = Permutation(0, 3)(1, 2)
assert latex(PermutationMatrix(p)) == \
r'P_{\left( 0\; 3\right)\left( 1\; 2\right)}'
def test_imaginary_unit():
assert latex(1 + I) == r'1 + i'
assert latex(1 + I, imaginary_unit='i') == r'1 + i'
assert latex(1 + I, imaginary_unit='j') == r'1 + j'
assert latex(1 + I, imaginary_unit='foo') == r'1 + foo'
assert latex(I, imaginary_unit="ti") == r'\text{i}'
assert latex(I, imaginary_unit="tj") == r'\text{j}'
def test_text_re_im():
assert latex(im(x), gothic_re_im=True) == r'\Im{\left(x\right)}'
assert latex(im(x), gothic_re_im=False) == r'\operatorname{im}{\left(x\right)}'
assert latex(re(x), gothic_re_im=True) == r'\Re{\left(x\right)}'
assert latex(re(x), gothic_re_im=False) == r'\operatorname{re}{\left(x\right)}'
def test_latex_diffgeom():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential
from sympy.diffgeom.rn import R2
x,y = symbols('x y', real=True)
m = Manifold('M', 2)
assert latex(m) == r'\text{M}'
p = Patch('P', m)
assert latex(p) == r'\text{P}_{\text{M}}'
rect = CoordSystem('rect', p, [x, y])
assert latex(rect) == r'\text{rect}^{\text{P}}_{\text{M}}'
b = BaseScalarField(rect, 0)
assert latex(b) == r'\mathbf{x}'
g = Function('g')
s_field = g(R2.x, R2.y)
assert latex(Differential(s_field)) == \
r'\operatorname{d}\left(g{\left(\mathbf{x},\mathbf{y} \right)}\right)'
def test_unit_printing():
assert latex(5*meter) == r'5 \text{m}'
assert latex(3*gibibyte) == r'3 \text{gibibyte}'
assert latex(4*microgram/second) == r'\frac{4 \mu\text{g}}{\text{s}}'
def test_issue_17092():
x_star = Symbol('x^*')
assert latex(Derivative(x_star, x_star,2)) == r'\frac{d^{2}}{d \left(x^{*}\right)^{2}} x^{*}'
def test_latex_decimal_separator():
x, y, z, t = symbols('x y z t')
k, m, n = symbols('k m n', integer=True)
f, g, h = symbols('f g h', cls=Function)
# comma decimal_separator
assert(latex([1, 2.3, 4.5], decimal_separator='comma') == r'\left[ 1; \ 2{,}3; \ 4{,}5\right]')
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='comma') == r'\left\{1; 2{,}3; 4{,}5\right\}')
assert(latex((1, 2.3, 4.6), decimal_separator = 'comma') == r'\left( 1; \ 2{,}3; \ 4{,}6\right)')
assert(latex((1,), decimal_separator='comma') == r'\left( 1;\right)')
# period decimal_separator
assert(latex([1, 2.3, 4.5], decimal_separator='period') == r'\left[ 1, \ 2.3, \ 4.5\right]' )
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}')
assert(latex((1, 2.3, 4.6), decimal_separator = 'period') == r'\left( 1, \ 2.3, \ 4.6\right)')
assert(latex((1,), decimal_separator='period') == r'\left( 1,\right)')
# default decimal_separator
assert(latex([1, 2.3, 4.5]) == r'\left[ 1, \ 2.3, \ 4.5\right]')
assert(latex(FiniteSet(1, 2.3, 4.5)) == r'\left\{1, 2.3, 4.5\right\}')
assert(latex((1, 2.3, 4.6)) == r'\left( 1, \ 2.3, \ 4.6\right)')
assert(latex((1,)) == r'\left( 1,\right)')
assert(latex(Mul(3.4,5.3), decimal_separator = 'comma') == r'18{,}02')
assert(latex(3.4*5.3, decimal_separator = 'comma') == r'18{,}02')
x = symbols('x')
y = symbols('y')
z = symbols('z')
assert(latex(x*5.3 + 2**y**3.4 + 4.5 + z, decimal_separator = 'comma') == r'2^{y^{3{,}4}} + 5{,}3 x + z + 4{,}5')
assert(latex(0.987, decimal_separator='comma') == r'0{,}987')
assert(latex(S(0.987), decimal_separator='comma') == r'0{,}987')
assert(latex(.3, decimal_separator='comma') == r'0{,}3')
assert(latex(S(.3), decimal_separator='comma') == r'0{,}3')
assert(latex(5.8*10**(-7), decimal_separator='comma') == r'5{,}8 \cdot 10^{-7}')
assert(latex(S(5.7)*10**(-7), decimal_separator='comma') == r'5{,}7 \cdot 10^{-7}')
assert(latex(S(5.7*10**(-7)), decimal_separator='comma') == r'5{,}7 \cdot 10^{-7}')
x = symbols('x')
assert(latex(1.2*x+3.4, decimal_separator='comma') == r'1{,}2 x + 3{,}4')
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}')
# Error Handling tests
raises(ValueError, lambda: latex([1,2.3,4.5], decimal_separator='non_existing_decimal_separator_in_list'))
raises(ValueError, lambda: latex(FiniteSet(1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_set'))
raises(ValueError, lambda: latex((1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_tuple'))
def test_Str():
from sympy.core.symbol import Str
assert str(Str('x')) == r'x'
def test_latex_escape():
assert latex_escape(r"~^\&%$#_{}") == "".join([
r'\textasciitilde',
r'\textasciicircum',
r'\textbackslash',
r'\&',
r'\%',
r'\$',
r'\#',
r'\_',
r'\{',
r'\}',
])
def test_emptyPrinter():
class MyObject:
def __repr__(self):
return "<MyObject with {...}>"
# unknown objects are monospaced
assert latex(MyObject()) == r"\mathtt{\text{<MyObject with \{...\}>}}"
# even if they are nested within other objects
assert latex((MyObject(),)) == r"\left( \mathtt{\text{<MyObject with \{...\}>}},\right)"
def test_global_settings():
import inspect
# settings should be visible in the signature of `latex`
assert inspect.signature(latex).parameters['imaginary_unit'].default == r'i'
assert latex(I) == r'i'
try:
# but changing the defaults...
LatexPrinter.set_global_settings(imaginary_unit='j')
# ... should change the signature
assert inspect.signature(latex).parameters['imaginary_unit'].default == r'j'
assert latex(I) == r'j'
finally:
# there's no public API to undo this, but we need to make sure we do
# so as not to impact other tests
del LatexPrinter._global_settings['imaginary_unit']
# check we really did undo it
assert inspect.signature(latex).parameters['imaginary_unit'].default == r'i'
assert latex(I) == r'i'
def test_pickleable():
# this tests that the _PrintFunction instance is pickleable
import pickle
assert pickle.loads(pickle.dumps(latex)) is latex
def test_printing_latex_array_expressions():
assert latex(ArraySymbol("A", 2, 3, 4)) == "A"
assert latex(ArrayElement("A", (2, 1/(1-x), 0))) == "{{A}_{2, \\frac{1}{1 - x}, 0}}"
|
a5040c59b402162d89564c183331680dd13c7843d434aebb62279c7ea42de2e9 | # -*- coding: utf-8 -*-
from sympy import (
Add, And, Basic, Derivative, Dict, Eq, Equivalent, FF,
FiniteSet, Function, Ge, Gt, I, Implies, Integral, SingularityFunction,
Lambda, Le, Limit, Lt, Matrix, Mul, Nand, Ne, Nor, Not, O, Or,
Pow, Product, QQ, RR, Rational, Ray, rootof, RootSum, S,
Segment, Subs, Sum, Symbol, Tuple, Trace, Xor, ZZ, conjugate,
groebner, oo, pi, symbols, ilex, grlex, Range, Contains,
SeqPer, SeqFormula, SeqAdd, SeqMul, fourier_series, fps, ITE,
Complement, Interval, Intersection, Union, EulerGamma, GoldenRatio,
LambertW, airyai, airybi, airyaiprime, airybiprime, fresnelc, fresnels,
Heaviside, dirichlet_eta, diag, MatrixSlice)
from sympy.codegen.ast import (Assignment, AddAugmentedAssignment,
SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment)
from sympy.core.expr import UnevaluatedExpr
from sympy.core.trace import Tr
from sympy.functions import (Abs, Chi, Ci, Ei, KroneckerDelta,
Piecewise, Shi, Si, atan2, beta, binomial, catalan, ceiling, cos,
euler, exp, expint, factorial, factorial2, floor, gamma, hyper, log,
meijerg, sin, sqrt, subfactorial, tan, uppergamma, lerchphi,
elliptic_k, elliptic_f, elliptic_e, elliptic_pi, DiracDelta, bell,
bernoulli, fibonacci, tribonacci, lucas, stieltjes, mathieuc, mathieus,
mathieusprime, mathieucprime)
from sympy.matrices import Adjoint, Inverse, MatrixSymbol, Transpose, KroneckerProduct
from sympy.matrices.expressions import hadamard_power
from sympy.physics import mechanics
from sympy.physics.control.lti import (TransferFunction, Feedback, TransferFunctionMatrix,
Series, Parallel, MIMOSeries, MIMOParallel, MIMOFeedback)
from sympy.physics.units import joule, degree
from sympy.printing.pretty import pprint, pretty as xpretty
from sympy.printing.pretty.pretty_symbology import center_accent, is_combining
from sympy import ConditionSet
from sympy.sets import ImageSet, ProductSet
from sympy.sets.setexpr import SetExpr
from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
MutableDenseNDimArray, MutableSparseNDimArray, tensorproduct)
from sympy.tensor.functions import TensorProduct
from sympy.tensor.tensor import (TensorIndexType, tensor_indices, TensorHead,
TensorElement, tensor_heads)
from sympy.testing.pytest import raises, _both_exp_pow
from sympy.vector import CoordSys3D, Gradient, Curl, Divergence, Dot, Cross, Laplacian
import sympy as sym
class lowergamma(sym.lowergamma):
pass # testing notation inheritance by a subclass with same name
a, b, c, d, x, y, z, k, n, s, p = symbols('a,b,c,d,x,y,z,k,n,s,p')
f = Function("f")
th = Symbol('theta')
ph = Symbol('phi')
"""
Expressions whose pretty-printing is tested here:
(A '#' to the right of an expression indicates that its various acceptable
orderings are accounted for by the tests.)
BASIC EXPRESSIONS:
oo
(x**2)
1/x
y*x**-2
x**Rational(-5,2)
(-2)**x
Pow(3, 1, evaluate=False)
(x**2 + x + 1) #
1-x #
1-2*x #
x/y
-x/y
(x+2)/y #
(1+x)*y #3
-5*x/(x+10) # correct placement of negative sign
1 - Rational(3,2)*(x+1)
-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5) # issue 5524
ORDERING:
x**2 + x + 1
1 - x
1 - 2*x
2*x**4 + y**2 - x**2 + y**3
RELATIONAL:
Eq(x, y)
Lt(x, y)
Gt(x, y)
Le(x, y)
Ge(x, y)
Ne(x/(y+1), y**2) #
RATIONAL NUMBERS:
y*x**-2
y**Rational(3,2) * x**Rational(-5,2)
sin(x)**3/tan(x)**2
FUNCTIONS (ABS, CONJ, EXP, FUNCTION BRACES, FACTORIAL, FLOOR, CEILING):
(2*x + exp(x)) #
Abs(x)
Abs(x/(x**2+1)) #
Abs(1 / (y - Abs(x)))
factorial(n)
factorial(2*n)
subfactorial(n)
subfactorial(2*n)
factorial(factorial(factorial(n)))
factorial(n+1) #
conjugate(x)
conjugate(f(x+1)) #
f(x)
f(x, y)
f(x/(y+1), y) #
f(x**x**x**x**x**x)
sin(x)**2
conjugate(a+b*I)
conjugate(exp(a+b*I))
conjugate( f(1 + conjugate(f(x))) ) #
f(x/(y+1), y) # denom of first arg
floor(1 / (y - floor(x)))
ceiling(1 / (y - ceiling(x)))
SQRT:
sqrt(2)
2**Rational(1,3)
2**Rational(1,1000)
sqrt(x**2 + 1)
(1 + sqrt(5))**Rational(1,3)
2**(1/x)
sqrt(2+pi)
(2+(1+x**2)/(2+x))**Rational(1,4)+(1+x**Rational(1,1000))/sqrt(3+x**2)
DERIVATIVES:
Derivative(log(x), x, evaluate=False)
Derivative(log(x), x, evaluate=False) + x #
Derivative(log(x) + x**2, x, y, evaluate=False)
Derivative(2*x*y, y, x, evaluate=False) + x**2 #
beta(alpha).diff(alpha)
INTEGRALS:
Integral(log(x), x)
Integral(x**2, x)
Integral((sin(x))**2 / (tan(x))**2)
Integral(x**(2**x), x)
Integral(x**2, (x,1,2))
Integral(x**2, (x,Rational(1,2),10))
Integral(x**2*y**2, x,y)
Integral(x**2, (x, None, 1))
Integral(x**2, (x, 1, None))
Integral(sin(th)/cos(ph), (th,0,pi), (ph, 0, 2*pi))
MATRICES:
Matrix([[x**2+1, 1], [y, x+y]]) #
Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]])
PIECEWISE:
Piecewise((x,x<1),(x**2,True))
ITE:
ITE(x, y, z)
SEQUENCES (TUPLES, LISTS, DICTIONARIES):
()
[]
{}
(1/x,)
[x**2, 1/x, x, y, sin(th)**2/cos(ph)**2]
(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
{x: sin(x)}
{1/x: 1/y, x: sin(x)**2} #
[x**2]
(x**2,)
{x**2: 1}
LIMITS:
Limit(x, x, oo)
Limit(x**2, x, 0)
Limit(1/x, x, 0)
Limit(sin(x)/x, x, 0)
UNITS:
joule => kg*m**2/s
SUBS:
Subs(f(x), x, ph**2)
Subs(f(x).diff(x), x, 0)
Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2)))
ORDER:
O(1)
O(1/x)
O(x**2 + y**2)
"""
def pretty(expr, order=None):
"""ASCII pretty-printing"""
return xpretty(expr, order=order, use_unicode=False, wrap_line=False)
def upretty(expr, order=None):
"""Unicode pretty-printing"""
return xpretty(expr, order=order, use_unicode=True, wrap_line=False)
def test_pretty_ascii_str():
assert pretty( 'xxx' ) == 'xxx'
assert pretty( "xxx" ) == 'xxx'
assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx'
assert pretty( 'xxx"xxx' ) == 'xxx\"xxx'
assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx'
assert pretty( "xxx'xxx" ) == 'xxx\'xxx'
assert pretty( "xxx\'xxx" ) == 'xxx\'xxx'
assert pretty( "xxx\"xxx" ) == 'xxx\"xxx'
assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx'
assert pretty( "xxx\nxxx" ) == 'xxx\nxxx'
def test_pretty_unicode_str():
assert pretty( 'xxx' ) == 'xxx'
assert pretty( 'xxx' ) == 'xxx'
assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx'
assert pretty( 'xxx"xxx' ) == 'xxx\"xxx'
assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx'
assert pretty( "xxx'xxx" ) == 'xxx\'xxx'
assert pretty( "xxx\'xxx" ) == 'xxx\'xxx'
assert pretty( "xxx\"xxx" ) == 'xxx\"xxx'
assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx'
assert pretty( "xxx\nxxx" ) == 'xxx\nxxx'
def test_upretty_greek():
assert upretty( oo ) == '∞'
assert upretty( Symbol('alpha^+_1') ) == 'α⁺₁'
assert upretty( Symbol('beta') ) == 'β'
assert upretty(Symbol('lambda')) == 'λ'
def test_upretty_multiindex():
assert upretty( Symbol('beta12') ) == 'β₁₂'
assert upretty( Symbol('Y00') ) == 'Y₀₀'
assert upretty( Symbol('Y_00') ) == 'Y₀₀'
assert upretty( Symbol('F^+-') ) == 'F⁺⁻'
def test_upretty_sub_super():
assert upretty( Symbol('beta_1_2') ) == 'β₁ ₂'
assert upretty( Symbol('beta^1^2') ) == 'β¹ ²'
assert upretty( Symbol('beta_1^2') ) == 'β²₁'
assert upretty( Symbol('beta_10_20') ) == 'β₁₀ ₂₀'
assert upretty( Symbol('beta_ax_gamma^i') ) == 'βⁱₐₓ ᵧ'
assert upretty( Symbol("F^1^2_3_4") ) == 'F¹ ²₃ ₄'
assert upretty( Symbol("F_1_2^3^4") ) == 'F³ ⁴₁ ₂'
assert upretty( Symbol("F_1_2_3_4") ) == 'F₁ ₂ ₃ ₄'
assert upretty( Symbol("F^1^2^3^4") ) == 'F¹ ² ³ ⁴'
def test_upretty_subs_missing_in_24():
assert upretty( Symbol('F_beta') ) == 'Fᵦ'
assert upretty( Symbol('F_gamma') ) == 'Fᵧ'
assert upretty( Symbol('F_rho') ) == 'Fᵨ'
assert upretty( Symbol('F_phi') ) == 'Fᵩ'
assert upretty( Symbol('F_chi') ) == 'Fᵪ'
assert upretty( Symbol('F_a') ) == 'Fₐ'
assert upretty( Symbol('F_e') ) == 'Fₑ'
assert upretty( Symbol('F_i') ) == 'Fᵢ'
assert upretty( Symbol('F_o') ) == 'Fₒ'
assert upretty( Symbol('F_u') ) == 'Fᵤ'
assert upretty( Symbol('F_r') ) == 'Fᵣ'
assert upretty( Symbol('F_v') ) == 'Fᵥ'
assert upretty( Symbol('F_x') ) == 'Fₓ'
def test_missing_in_2X_issue_9047():
assert upretty( Symbol('F_h') ) == 'Fₕ'
assert upretty( Symbol('F_k') ) == 'Fₖ'
assert upretty( Symbol('F_l') ) == 'Fₗ'
assert upretty( Symbol('F_m') ) == 'Fₘ'
assert upretty( Symbol('F_n') ) == 'Fₙ'
assert upretty( Symbol('F_p') ) == 'Fₚ'
assert upretty( Symbol('F_s') ) == 'Fₛ'
assert upretty( Symbol('F_t') ) == 'Fₜ'
def test_upretty_modifiers():
# Accents
assert upretty( Symbol('Fmathring') ) == 'F̊'
assert upretty( Symbol('Fddddot') ) == 'F⃜'
assert upretty( Symbol('Fdddot') ) == 'F⃛'
assert upretty( Symbol('Fddot') ) == 'F̈'
assert upretty( Symbol('Fdot') ) == 'Ḟ'
assert upretty( Symbol('Fcheck') ) == 'F̌'
assert upretty( Symbol('Fbreve') ) == 'F̆'
assert upretty( Symbol('Facute') ) == 'F́'
assert upretty( Symbol('Fgrave') ) == 'F̀'
assert upretty( Symbol('Ftilde') ) == 'F̃'
assert upretty( Symbol('Fhat') ) == 'F̂'
assert upretty( Symbol('Fbar') ) == 'F̅'
assert upretty( Symbol('Fvec') ) == 'F⃗'
assert upretty( Symbol('Fprime') ) == 'F′'
assert upretty( Symbol('Fprm') ) == 'F′'
# No faces are actually implemented, but test to make sure the modifiers are stripped
assert upretty( Symbol('Fbold') ) == 'Fbold'
assert upretty( Symbol('Fbm') ) == 'Fbm'
assert upretty( Symbol('Fcal') ) == 'Fcal'
assert upretty( Symbol('Fscr') ) == 'Fscr'
assert upretty( Symbol('Ffrak') ) == 'Ffrak'
# Brackets
assert upretty( Symbol('Fnorm') ) == '‖F‖'
assert upretty( Symbol('Favg') ) == '⟨F⟩'
assert upretty( Symbol('Fabs') ) == '|F|'
assert upretty( Symbol('Fmag') ) == '|F|'
# Combinations
assert upretty( Symbol('xvecdot') ) == 'x⃗̇'
assert upretty( Symbol('xDotVec') ) == 'ẋ⃗'
assert upretty( Symbol('xHATNorm') ) == '‖x̂‖'
assert upretty( Symbol('xMathring_yCheckPRM__zbreveAbs') ) == 'x̊_y̌′__|z̆|'
assert upretty( Symbol('alphadothat_nVECDOT__tTildePrime') ) == 'α̇̂_n⃗̇__t̃′'
assert upretty( Symbol('x_dot') ) == 'x_dot'
assert upretty( Symbol('x__dot') ) == 'x__dot'
def test_pretty_Cycle():
from sympy.combinatorics.permutations import Cycle
assert pretty(Cycle(1, 2)) == '(1 2)'
assert pretty(Cycle(2)) == '(2)'
assert pretty(Cycle(1, 3)(4, 5)) == '(1 3)(4 5)'
assert pretty(Cycle()) == '()'
def test_pretty_Permutation():
from sympy.combinatorics.permutations import Permutation
p1 = Permutation(1, 2)(3, 4)
assert xpretty(p1, perm_cyclic=True, use_unicode=True) == "(1 2)(3 4)"
assert xpretty(p1, perm_cyclic=True, use_unicode=False) == "(1 2)(3 4)"
assert xpretty(p1, perm_cyclic=False, use_unicode=True) == \
'⎛0 1 2 3 4⎞\n'\
'⎝0 2 1 4 3⎠'
assert xpretty(p1, perm_cyclic=False, use_unicode=False) == \
"/0 1 2 3 4\\\n"\
"\\0 2 1 4 3/"
def test_pretty_basic():
assert pretty( -Rational(1)/2 ) == '-1/2'
assert pretty( -Rational(13)/22 ) == \
"""\
-13 \n\
----\n\
22 \
"""
expr = oo
ascii_str = \
"""\
oo\
"""
ucode_str = \
"""\
∞\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2)
ascii_str = \
"""\
2\n\
x \
"""
ucode_str = \
"""\
2\n\
x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 1/x
ascii_str = \
"""\
1\n\
-\n\
x\
"""
ucode_str = \
"""\
1\n\
─\n\
x\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# not the same as 1/x
expr = x**-1.0
ascii_str = \
"""\
-1.0\n\
x \
"""
ucode_str = \
"""\
-1.0\n\
x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# see issue #2860
expr = Pow(S(2), -1.0, evaluate=False)
ascii_str = \
"""\
-1.0\n\
2 \
"""
ucode_str = \
"""\
-1.0\n\
2 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y*x**-2
ascii_str = \
"""\
y \n\
--\n\
2\n\
x \
"""
ucode_str = \
"""\
y \n\
──\n\
2\n\
x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
#see issue #14033
expr = x**Rational(1, 3)
ascii_str = \
"""\
1/3\n\
x \
"""
ucode_str = \
"""\
1/3\n\
x \
"""
assert xpretty(expr, use_unicode=False, wrap_line=False,\
root_notation = False) == ascii_str
assert xpretty(expr, use_unicode=True, wrap_line=False,\
root_notation = False) == ucode_str
expr = x**Rational(-5, 2)
ascii_str = \
"""\
1 \n\
----\n\
5/2\n\
x \
"""
ucode_str = \
"""\
1 \n\
────\n\
5/2\n\
x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (-2)**x
ascii_str = \
"""\
x\n\
(-2) \
"""
ucode_str = \
"""\
x\n\
(-2) \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# See issue 4923
expr = Pow(3, 1, evaluate=False)
ascii_str = \
"""\
1\n\
3 \
"""
ucode_str = \
"""\
1\n\
3 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2 + x + 1)
ascii_str_1 = \
"""\
2\n\
1 + x + x \
"""
ascii_str_2 = \
"""\
2 \n\
x + x + 1\
"""
ascii_str_3 = \
"""\
2 \n\
x + 1 + x\
"""
ucode_str_1 = \
"""\
2\n\
1 + x + x \
"""
ucode_str_2 = \
"""\
2 \n\
x + x + 1\
"""
ucode_str_3 = \
"""\
2 \n\
x + 1 + x\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3]
assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3]
expr = 1 - x
ascii_str_1 = \
"""\
1 - x\
"""
ascii_str_2 = \
"""\
-x + 1\
"""
ucode_str_1 = \
"""\
1 - x\
"""
ucode_str_2 = \
"""\
-x + 1\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = 1 - 2*x
ascii_str_1 = \
"""\
1 - 2*x\
"""
ascii_str_2 = \
"""\
-2*x + 1\
"""
ucode_str_1 = \
"""\
1 - 2⋅x\
"""
ucode_str_2 = \
"""\
-2⋅x + 1\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = x/y
ascii_str = \
"""\
x\n\
-\n\
y\
"""
ucode_str = \
"""\
x\n\
─\n\
y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x/y
ascii_str = \
"""\
-x \n\
---\n\
y \
"""
ucode_str = \
"""\
-x \n\
───\n\
y \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x + 2)/y
ascii_str_1 = \
"""\
2 + x\n\
-----\n\
y \
"""
ascii_str_2 = \
"""\
x + 2\n\
-----\n\
y \
"""
ucode_str_1 = \
"""\
2 + x\n\
─────\n\
y \
"""
ucode_str_2 = \
"""\
x + 2\n\
─────\n\
y \
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = (1 + x)*y
ascii_str_1 = \
"""\
y*(1 + x)\
"""
ascii_str_2 = \
"""\
(1 + x)*y\
"""
ascii_str_3 = \
"""\
y*(x + 1)\
"""
ucode_str_1 = \
"""\
y⋅(1 + x)\
"""
ucode_str_2 = \
"""\
(1 + x)⋅y\
"""
ucode_str_3 = \
"""\
y⋅(x + 1)\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3]
assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3]
# Test for correct placement of the negative sign
expr = -5*x/(x + 10)
ascii_str_1 = \
"""\
-5*x \n\
------\n\
10 + x\
"""
ascii_str_2 = \
"""\
-5*x \n\
------\n\
x + 10\
"""
ucode_str_1 = \
"""\
-5⋅x \n\
──────\n\
10 + x\
"""
ucode_str_2 = \
"""\
-5⋅x \n\
──────\n\
x + 10\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = -S.Half - 3*x
ascii_str = \
"""\
-3*x - 1/2\
"""
ucode_str = \
"""\
-3⋅x - 1/2\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = S.Half - 3*x
ascii_str = \
"""\
1/2 - 3*x\
"""
ucode_str = \
"""\
1/2 - 3⋅x\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -S.Half - 3*x/2
ascii_str = \
"""\
3*x 1\n\
- --- - -\n\
2 2\
"""
ucode_str = \
"""\
3⋅x 1\n\
- ─── - ─\n\
2 2\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = S.Half - 3*x/2
ascii_str = \
"""\
1 3*x\n\
- - ---\n\
2 2 \
"""
ucode_str = \
"""\
1 3⋅x\n\
─ - ───\n\
2 2 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_negative_fractions():
expr = -x/y
ascii_str =\
"""\
-x \n\
---\n\
y \
"""
ucode_str =\
"""\
-x \n\
───\n\
y \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x*z/y
ascii_str =\
"""\
-x*z \n\
-----\n\
y \
"""
ucode_str =\
"""\
-x⋅z \n\
─────\n\
y \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x**2/y
ascii_str =\
"""\
2\n\
x \n\
--\n\
y \
"""
ucode_str =\
"""\
2\n\
x \n\
──\n\
y \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x**2/y
ascii_str =\
"""\
2 \n\
-x \n\
----\n\
y \
"""
ucode_str =\
"""\
2 \n\
-x \n\
────\n\
y \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x/(y*z)
ascii_str =\
"""\
-x \n\
---\n\
y*z\
"""
ucode_str =\
"""\
-x \n\
───\n\
y⋅z\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -a/y**2
ascii_str =\
"""\
-a \n\
---\n\
2\n\
y \
"""
ucode_str =\
"""\
-a \n\
───\n\
2\n\
y \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y**(-a/b)
ascii_str =\
"""\
-a \n\
---\n\
b \n\
y \
"""
ucode_str =\
"""\
-a \n\
───\n\
b \n\
y \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -1/y**2
ascii_str =\
"""\
-1 \n\
---\n\
2\n\
y \
"""
ucode_str =\
"""\
-1 \n\
───\n\
2\n\
y \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -10/b**2
ascii_str =\
"""\
-10 \n\
----\n\
2 \n\
b \
"""
ucode_str =\
"""\
-10 \n\
────\n\
2 \n\
b \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Rational(-200, 37)
ascii_str =\
"""\
-200 \n\
-----\n\
37 \
"""
ucode_str =\
"""\
-200 \n\
─────\n\
37 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Mul(0, 1, evaluate=False)
assert pretty(expr) == "0*1"
assert upretty(expr) == "0⋅1"
expr = Mul(1, 0, evaluate=False)
assert pretty(expr) == "1*0"
assert upretty(expr) == "1⋅0"
expr = Mul(1, 1, evaluate=False)
assert pretty(expr) == "1*1"
assert upretty(expr) == "1⋅1"
expr = Mul(1, 1, 1, evaluate=False)
assert pretty(expr) == "1*1*1"
assert upretty(expr) == "1⋅1⋅1"
expr = Mul(1, 2, evaluate=False)
assert pretty(expr) == "1*2"
assert upretty(expr) == "1⋅2"
expr = Add(0, 1, evaluate=False)
assert pretty(expr) == "0 + 1"
assert upretty(expr) == "0 + 1"
expr = Mul(1, 1, 2, evaluate=False)
assert pretty(expr) == "1*1*2"
assert upretty(expr) == "1⋅1⋅2"
expr = Add(0, 0, 1, evaluate=False)
assert pretty(expr) == "0 + 0 + 1"
assert upretty(expr) == "0 + 0 + 1"
expr = Mul(1, -1, evaluate=False)
assert pretty(expr) == "1*(-1)"
assert upretty(expr) == "1⋅(-1)"
expr = Mul(1.0, x, evaluate=False)
assert pretty(expr) == "1.0*x"
assert upretty(expr) == "1.0⋅x"
expr = Mul(1, 1, 2, 3, x, evaluate=False)
assert pretty(expr) == "1*1*2*3*x"
assert upretty(expr) == "1⋅1⋅2⋅3⋅x"
expr = Mul(-1, 1, evaluate=False)
assert pretty(expr) == "-1*1"
assert upretty(expr) == "-1⋅1"
expr = Mul(4, 3, 2, 1, 0, y, x, evaluate=False)
assert pretty(expr) == "4*3*2*1*0*y*x"
assert upretty(expr) == "4⋅3⋅2⋅1⋅0⋅y⋅x"
expr = Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)
assert pretty(expr) == "4*3*2*(z + 1)*0*y*x"
assert upretty(expr) == "4⋅3⋅2⋅(z + 1)⋅0⋅y⋅x"
expr = Mul(Rational(2, 3), Rational(5, 7), evaluate=False)
assert pretty(expr) == "2/3*5/7"
assert upretty(expr) == "2/3⋅5/7"
def test_issue_5524():
assert pretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \
"""\
2 / ___ \\\n\
- (5 - y) + (x - 5)*\\-x - 2*\\/ 2 + 5/\
"""
assert upretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \
"""\
2 \n\
- (5 - y) + (x - 5)⋅(-x - 2⋅√2 + 5)\
"""
def test_pretty_ordering():
assert pretty(x**2 + x + 1, order='lex') == \
"""\
2 \n\
x + x + 1\
"""
assert pretty(x**2 + x + 1, order='rev-lex') == \
"""\
2\n\
1 + x + x \
"""
assert pretty(1 - x, order='lex') == '-x + 1'
assert pretty(1 - x, order='rev-lex') == '1 - x'
assert pretty(1 - 2*x, order='lex') == '-2*x + 1'
assert pretty(1 - 2*x, order='rev-lex') == '1 - 2*x'
f = 2*x**4 + y**2 - x**2 + y**3
assert pretty(f, order=None) == \
"""\
4 2 3 2\n\
2*x - x + y + y \
"""
assert pretty(f, order='lex') == \
"""\
4 2 3 2\n\
2*x - x + y + y \
"""
assert pretty(f, order='rev-lex') == \
"""\
2 3 2 4\n\
y + y - x + 2*x \
"""
expr = x - x**3/6 + x**5/120 + O(x**6)
ascii_str = \
"""\
3 5 \n\
x x / 6\\\n\
x - -- + --- + O\\x /\n\
6 120 \
"""
ucode_str = \
"""\
3 5 \n\
x x ⎛ 6⎞\n\
x - ── + ─── + O⎝x ⎠\n\
6 120 \
"""
assert pretty(expr, order=None) == ascii_str
assert upretty(expr, order=None) == ucode_str
assert pretty(expr, order='lex') == ascii_str
assert upretty(expr, order='lex') == ucode_str
assert pretty(expr, order='rev-lex') == ascii_str
assert upretty(expr, order='rev-lex') == ucode_str
def test_EulerGamma():
assert pretty(EulerGamma) == str(EulerGamma) == "EulerGamma"
assert upretty(EulerGamma) == "γ"
def test_GoldenRatio():
assert pretty(GoldenRatio) == str(GoldenRatio) == "GoldenRatio"
assert upretty(GoldenRatio) == "φ"
def test_pretty_relational():
expr = Eq(x, y)
ascii_str = \
"""\
x = y\
"""
ucode_str = \
"""\
x = y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lt(x, y)
ascii_str = \
"""\
x < y\
"""
ucode_str = \
"""\
x < y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Gt(x, y)
ascii_str = \
"""\
x > y\
"""
ucode_str = \
"""\
x > y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Le(x, y)
ascii_str = \
"""\
x <= y\
"""
ucode_str = \
"""\
x ≤ y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Ge(x, y)
ascii_str = \
"""\
x >= y\
"""
ucode_str = \
"""\
x ≥ y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Ne(x/(y + 1), y**2)
ascii_str_1 = \
"""\
x 2\n\
----- != y \n\
1 + y \
"""
ascii_str_2 = \
"""\
x 2\n\
----- != y \n\
y + 1 \
"""
ucode_str_1 = \
"""\
x 2\n\
───── ≠ y \n\
1 + y \
"""
ucode_str_2 = \
"""\
x 2\n\
───── ≠ y \n\
y + 1 \
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
def test_Assignment():
expr = Assignment(x, y)
ascii_str = \
"""\
x := y\
"""
ucode_str = \
"""\
x := y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_AugmentedAssignment():
expr = AddAugmentedAssignment(x, y)
ascii_str = \
"""\
x += y\
"""
ucode_str = \
"""\
x += y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = SubAugmentedAssignment(x, y)
ascii_str = \
"""\
x -= y\
"""
ucode_str = \
"""\
x -= y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = MulAugmentedAssignment(x, y)
ascii_str = \
"""\
x *= y\
"""
ucode_str = \
"""\
x *= y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = DivAugmentedAssignment(x, y)
ascii_str = \
"""\
x /= y\
"""
ucode_str = \
"""\
x /= y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = ModAugmentedAssignment(x, y)
ascii_str = \
"""\
x %= y\
"""
ucode_str = \
"""\
x %= y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_rational():
expr = y*x**-2
ascii_str = \
"""\
y \n\
--\n\
2\n\
x \
"""
ucode_str = \
"""\
y \n\
──\n\
2\n\
x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y**Rational(3, 2) * x**Rational(-5, 2)
ascii_str = \
"""\
3/2\n\
y \n\
----\n\
5/2\n\
x \
"""
ucode_str = \
"""\
3/2\n\
y \n\
────\n\
5/2\n\
x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sin(x)**3/tan(x)**2
ascii_str = \
"""\
3 \n\
sin (x)\n\
-------\n\
2 \n\
tan (x)\
"""
ucode_str = \
"""\
3 \n\
sin (x)\n\
───────\n\
2 \n\
tan (x)\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
@_both_exp_pow
def test_pretty_functions():
"""Tests for Abs, conjugate, exp, function braces, and factorial."""
expr = (2*x + exp(x))
ascii_str_1 = \
"""\
x\n\
2*x + e \
"""
ascii_str_2 = \
"""\
x \n\
e + 2*x\
"""
ucode_str_1 = \
"""\
x\n\
2⋅x + ℯ \
"""
ucode_str_2 = \
"""\
x \n\
ℯ + 2⋅x\
"""
ucode_str_3 = \
"""\
x \n\
ℯ + 2⋅x\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3]
expr = Abs(x)
ascii_str = \
"""\
|x|\
"""
ucode_str = \
"""\
│x│\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Abs(x/(x**2 + 1))
ascii_str_1 = \
"""\
| x |\n\
|------|\n\
| 2|\n\
|1 + x |\
"""
ascii_str_2 = \
"""\
| x |\n\
|------|\n\
| 2 |\n\
|x + 1|\
"""
ucode_str_1 = \
"""\
│ x │\n\
│──────│\n\
│ 2│\n\
│1 + x │\
"""
ucode_str_2 = \
"""\
│ x │\n\
│──────│\n\
│ 2 │\n\
│x + 1│\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Abs(1 / (y - Abs(x)))
ascii_str = \
"""\
1 \n\
---------\n\
|y - |x||\
"""
ucode_str = \
"""\
1 \n\
─────────\n\
│y - │x││\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
n = Symbol('n', integer=True)
expr = factorial(n)
ascii_str = \
"""\
n!\
"""
ucode_str = \
"""\
n!\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(2*n)
ascii_str = \
"""\
(2*n)!\
"""
ucode_str = \
"""\
(2⋅n)!\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(factorial(factorial(n)))
ascii_str = \
"""\
((n!)!)!\
"""
ucode_str = \
"""\
((n!)!)!\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(n + 1)
ascii_str_1 = \
"""\
(1 + n)!\
"""
ascii_str_2 = \
"""\
(n + 1)!\
"""
ucode_str_1 = \
"""\
(1 + n)!\
"""
ucode_str_2 = \
"""\
(n + 1)!\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = subfactorial(n)
ascii_str = \
"""\
!n\
"""
ucode_str = \
"""\
!n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = subfactorial(2*n)
ascii_str = \
"""\
!(2*n)\
"""
ucode_str = \
"""\
!(2⋅n)\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
n = Symbol('n', integer=True)
expr = factorial2(n)
ascii_str = \
"""\
n!!\
"""
ucode_str = \
"""\
n!!\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(2*n)
ascii_str = \
"""\
(2*n)!!\
"""
ucode_str = \
"""\
(2⋅n)!!\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(factorial2(factorial2(n)))
ascii_str = \
"""\
((n!!)!!)!!\
"""
ucode_str = \
"""\
((n!!)!!)!!\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(n + 1)
ascii_str_1 = \
"""\
(1 + n)!!\
"""
ascii_str_2 = \
"""\
(n + 1)!!\
"""
ucode_str_1 = \
"""\
(1 + n)!!\
"""
ucode_str_2 = \
"""\
(n + 1)!!\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = 2*binomial(n, k)
ascii_str = \
"""\
/n\\\n\
2*| |\n\
\\k/\
"""
ucode_str = \
"""\
⎛n⎞\n\
2⋅⎜ ⎟\n\
⎝k⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*binomial(2*n, k)
ascii_str = \
"""\
/2*n\\\n\
2*| |\n\
\\ k /\
"""
ucode_str = \
"""\
⎛2⋅n⎞\n\
2⋅⎜ ⎟\n\
⎝ k ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*binomial(n**2, k)
ascii_str = \
"""\
/ 2\\\n\
|n |\n\
2*| |\n\
\\k /\
"""
ucode_str = \
"""\
⎛ 2⎞\n\
⎜n ⎟\n\
2⋅⎜ ⎟\n\
⎝k ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = catalan(n)
ascii_str = \
"""\
C \n\
n\
"""
ucode_str = \
"""\
C \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = catalan(n)
ascii_str = \
"""\
C \n\
n\
"""
ucode_str = \
"""\
C \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bell(n)
ascii_str = \
"""\
B \n\
n\
"""
ucode_str = \
"""\
B \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bernoulli(n)
ascii_str = \
"""\
B \n\
n\
"""
ucode_str = \
"""\
B \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bernoulli(n, x)
ascii_str = \
"""\
B (x)\n\
n \
"""
ucode_str = \
"""\
B (x)\n\
n \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = fibonacci(n)
ascii_str = \
"""\
F \n\
n\
"""
ucode_str = \
"""\
F \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = lucas(n)
ascii_str = \
"""\
L \n\
n\
"""
ucode_str = \
"""\
L \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = tribonacci(n)
ascii_str = \
"""\
T \n\
n\
"""
ucode_str = \
"""\
T \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = stieltjes(n)
ascii_str = \
"""\
stieltjes \n\
n\
"""
ucode_str = \
"""\
γ \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = stieltjes(n, x)
ascii_str = \
"""\
stieltjes (x)\n\
n \
"""
ucode_str = \
"""\
γ (x)\n\
n \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieuc(x, y, z)
ascii_str = 'C(x, y, z)'
ucode_str = 'C(x, y, z)'
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieus(x, y, z)
ascii_str = 'S(x, y, z)'
ucode_str = 'S(x, y, z)'
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieucprime(x, y, z)
ascii_str = "C'(x, y, z)"
ucode_str = "C'(x, y, z)"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieusprime(x, y, z)
ascii_str = "S'(x, y, z)"
ucode_str = "S'(x, y, z)"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(x)
ascii_str = \
"""\
_\n\
x\
"""
ucode_str = \
"""\
_\n\
x\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
f = Function('f')
expr = conjugate(f(x + 1))
ascii_str_1 = \
"""\
________\n\
f(1 + x)\
"""
ascii_str_2 = \
"""\
________\n\
f(x + 1)\
"""
ucode_str_1 = \
"""\
________\n\
f(1 + x)\
"""
ucode_str_2 = \
"""\
________\n\
f(x + 1)\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x)
ascii_str = \
"""\
f(x)\
"""
ucode_str = \
"""\
f(x)\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = f(x, y)
ascii_str = \
"""\
f(x, y)\
"""
ucode_str = \
"""\
f(x, y)\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = f(x/(y + 1), y)
ascii_str_1 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\1 + y /\
"""
ascii_str_2 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\y + 1 /\
"""
ucode_str_1 = \
"""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝1 + y ⎠\
"""
ucode_str_2 = \
"""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝y + 1 ⎠\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x**x**x**x**x**x)
ascii_str = \
"""\
/ / / / / x\\\\\\\\\\
| | | | \\x /||||
| | | \\x /|||
| | \\x /||
| \\x /|
f\\x /\
"""
ucode_str = \
"""\
⎛ ⎛ ⎛ ⎛ ⎛ x⎞⎞⎞⎞⎞
⎜ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟⎟
⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟
⎜ ⎜ ⎝x ⎠⎟⎟
⎜ ⎝x ⎠⎟
f⎝x ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sin(x)**2
ascii_str = \
"""\
2 \n\
sin (x)\
"""
ucode_str = \
"""\
2 \n\
sin (x)\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(a + b*I)
ascii_str = \
"""\
_ _\n\
a - I*b\
"""
ucode_str = \
"""\
_ _\n\
a - ⅈ⋅b\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(exp(a + b*I))
ascii_str = \
"""\
_ _\n\
a - I*b\n\
e \
"""
ucode_str = \
"""\
_ _\n\
a - ⅈ⋅b\n\
ℯ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate( f(1 + conjugate(f(x))) )
ascii_str_1 = \
"""\
___________\n\
/ ____\\\n\
f\\1 + f(x)/\
"""
ascii_str_2 = \
"""\
___________\n\
/____ \\\n\
f\\f(x) + 1/\
"""
ucode_str_1 = \
"""\
___________\n\
⎛ ____⎞\n\
f⎝1 + f(x)⎠\
"""
ucode_str_2 = \
"""\
___________\n\
⎛____ ⎞\n\
f⎝f(x) + 1⎠\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x/(y + 1), y)
ascii_str_1 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\1 + y /\
"""
ascii_str_2 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\y + 1 /\
"""
ucode_str_1 = \
"""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝1 + y ⎠\
"""
ucode_str_2 = \
"""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝y + 1 ⎠\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = floor(1 / (y - floor(x)))
ascii_str = \
"""\
/ 1 \\\n\
floor|------------|\n\
\\y - floor(x)/\
"""
ucode_str = \
"""\
⎢ 1 ⎥\n\
⎢───────⎥\n\
⎣y - ⌊x⌋⎦\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = ceiling(1 / (y - ceiling(x)))
ascii_str = \
"""\
/ 1 \\\n\
ceiling|--------------|\n\
\\y - ceiling(x)/\
"""
ucode_str = \
"""\
⎡ 1 ⎤\n\
⎢───────⎥\n\
⎢y - ⌈x⌉⎥\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n)
ascii_str = \
"""\
E \n\
n\
"""
ucode_str = \
"""\
E \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(1/(1 + 1/(1 + 1/n)))
ascii_str = \
"""\
E \n\
1 \n\
---------\n\
1 \n\
1 + -----\n\
1\n\
1 + -\n\
n\
"""
ucode_str = \
"""\
E \n\
1 \n\
─────────\n\
1 \n\
1 + ─────\n\
1\n\
1 + ─\n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n, x)
ascii_str = \
"""\
E (x)\n\
n \
"""
ucode_str = \
"""\
E (x)\n\
n \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n, x/2)
ascii_str = \
"""\
/x\\\n\
E |-|\n\
n\\2/\
"""
ucode_str = \
"""\
⎛x⎞\n\
E ⎜─⎟\n\
n⎝2⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_sqrt():
expr = sqrt(2)
ascii_str = \
"""\
___\n\
\\/ 2 \
"""
ucode_str = \
"√2"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**Rational(1, 3)
ascii_str = \
"""\
3 ___\n\
\\/ 2 \
"""
ucode_str = \
"""\
3 ___\n\
╲╱ 2 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**Rational(1, 1000)
ascii_str = \
"""\
1000___\n\
\\/ 2 \
"""
ucode_str = \
"""\
1000___\n\
╲╱ 2 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sqrt(x**2 + 1)
ascii_str = \
"""\
________\n\
/ 2 \n\
\\/ x + 1 \
"""
ucode_str = \
"""\
________\n\
╱ 2 \n\
╲╱ x + 1 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (1 + sqrt(5))**Rational(1, 3)
ascii_str = \
"""\
___________\n\
3 / ___ \n\
\\/ 1 + \\/ 5 \
"""
ucode_str = \
"""\
3 ________\n\
╲╱ 1 + √5 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**(1/x)
ascii_str = \
"""\
x ___\n\
\\/ 2 \
"""
ucode_str = \
"""\
x ___\n\
╲╱ 2 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sqrt(2 + pi)
ascii_str = \
"""\
________\n\
\\/ 2 + pi \
"""
ucode_str = \
"""\
_______\n\
╲╱ 2 + π \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (2 + (
1 + x**2)/(2 + x))**Rational(1, 4) + (1 + x**Rational(1, 1000))/sqrt(3 + x**2)
ascii_str = \
"""\
____________ \n\
/ 2 1000___ \n\
/ x + 1 \\/ x + 1\n\
4 / 2 + ------ + -----------\n\
\\/ x + 2 ________\n\
/ 2 \n\
\\/ x + 3 \
"""
ucode_str = \
"""\
____________ \n\
╱ 2 1000___ \n\
╱ x + 1 ╲╱ x + 1\n\
4 ╱ 2 + ────── + ───────────\n\
╲╱ x + 2 ________\n\
╱ 2 \n\
╲╱ x + 3 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_sqrt_char_knob():
# See PR #9234.
expr = sqrt(2)
ucode_str1 = \
"""\
___\n\
╲╱ 2 \
"""
ucode_str2 = \
"√2"
assert xpretty(expr, use_unicode=True,
use_unicode_sqrt_char=False) == ucode_str1
assert xpretty(expr, use_unicode=True,
use_unicode_sqrt_char=True) == ucode_str2
def test_pretty_sqrt_longsymbol_no_sqrt_char():
# Do not use unicode sqrt char for long symbols (see PR #9234).
expr = sqrt(Symbol('C1'))
ucode_str = \
"""\
____\n\
╲╱ C₁ \
"""
assert upretty(expr) == ucode_str
def test_pretty_KroneckerDelta():
x, y = symbols("x, y")
expr = KroneckerDelta(x, y)
ascii_str = \
"""\
d \n\
x,y\
"""
ucode_str = \
"""\
δ \n\
x,y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_product():
n, m, k, l = symbols('n m k l')
f = symbols('f', cls=Function)
expr = Product(f((n/3)**2), (n, k**2, l))
unicode_str = \
"""\
l \n\
─┬──────┬─ \n\
│ │ ⎛ 2⎞\n\
│ │ ⎜n ⎟\n\
│ │ f⎜──⎟\n\
│ │ ⎝9 ⎠\n\
│ │ \n\
2 \n\
n = k """
ascii_str = \
"""\
l \n\
__________ \n\
| | / 2\\\n\
| | |n |\n\
| | f|--|\n\
| | \\9 /\n\
| | \n\
2 \n\
n = k """
expr = Product(f((n/3)**2), (n, k**2, l), (l, 1, m))
unicode_str = \
"""\
m l \n\
─┬──────┬─ ─┬──────┬─ \n\
│ │ │ │ ⎛ 2⎞\n\
│ │ │ │ ⎜n ⎟\n\
│ │ │ │ f⎜──⎟\n\
│ │ │ │ ⎝9 ⎠\n\
│ │ │ │ \n\
l = 1 2 \n\
n = k """
ascii_str = \
"""\
m l \n\
__________ __________ \n\
| | | | / 2\\\n\
| | | | |n |\n\
| | | | f|--|\n\
| | | | \\9 /\n\
| | | | \n\
l = 1 2 \n\
n = k """
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
def test_pretty_Lambda():
# S.IdentityFunction is a special case
expr = Lambda(y, y)
assert pretty(expr) == "x -> x"
assert upretty(expr) == "x ↦ x"
expr = Lambda(x, x+1)
assert pretty(expr) == "x -> x + 1"
assert upretty(expr) == "x ↦ x + 1"
expr = Lambda(x, x**2)
ascii_str = \
"""\
2\n\
x -> x \
"""
ucode_str = \
"""\
2\n\
x ↦ x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda(x, x**2)**2
ascii_str = \
"""\
2
/ 2\\ \n\
\\x -> x / \
"""
ucode_str = \
"""\
2
⎛ 2⎞ \n\
⎝x ↦ x ⎠ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda((x, y), x)
ascii_str = "(x, y) -> x"
ucode_str = "(x, y) ↦ x"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda((x, y), x**2)
ascii_str = \
"""\
2\n\
(x, y) -> x \
"""
ucode_str = \
"""\
2\n\
(x, y) ↦ x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda(((x, y),), x**2)
ascii_str = \
"""\
2\n\
((x, y),) -> x \
"""
ucode_str = \
"""\
2\n\
((x, y),) ↦ x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_TransferFunction():
tf1 = TransferFunction(s - 1, s + 1, s)
assert upretty(tf1) == "s - 1\n─────\ns + 1"
tf2 = TransferFunction(2*s + 1, 3 - p, s)
assert upretty(tf2) == "2⋅s + 1\n───────\n 3 - p "
tf3 = TransferFunction(p, p + 1, p)
assert upretty(tf3) == " p \n─────\np + 1"
def test_pretty_Series():
tf1 = TransferFunction(x + y, x - 2*y, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(x**2 + y, y - x, y)
tf4 = TransferFunction(2, 3, y)
tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
tfm2 = TransferFunctionMatrix([[tf3], [-tf4]])
tfm3 = TransferFunctionMatrix([[tf1, -tf2, -tf3], [tf3, -tf4, tf2]])
tfm4 = TransferFunctionMatrix([[tf1, tf2], [tf3, -tf4], [-tf2, -tf1]])
tfm5 = TransferFunctionMatrix([[-tf2, -tf1], [tf4, -tf3], [tf1, tf2]])
expected1 = \
"""\
⎛ 2 ⎞\n\
⎛ x + y ⎞ ⎜x + y⎟\n\
⎜───────⎟⋅⎜──────⎟\n\
⎝x - 2⋅y⎠ ⎝-x + y⎠\
"""
expected2 = \
"""\
⎛-x + y⎞ ⎛ -x - y⎞\n\
⎜──────⎟⋅⎜───────⎟\n\
⎝x + y ⎠ ⎝x - 2⋅y⎠\
"""
expected3 = \
"""\
⎛ 2 ⎞ \n\
⎜x + y⎟ ⎛ x + y ⎞ ⎛ -x - y x - y⎞\n\
⎜──────⎟⋅⎜───────⎟⋅⎜─────── + ─────⎟\n\
⎝-x + y⎠ ⎝x - 2⋅y⎠ ⎝x - 2⋅y x + y⎠\
"""
expected4 = \
"""\
⎛ 2 ⎞\n\
⎛ x + y x - y⎞ ⎜x - y x + y⎟\n\
⎜─────── + ─────⎟⋅⎜───── + ──────⎟\n\
⎝x - 2⋅y x + y⎠ ⎝x + y -x + y⎠\
"""
expected5 = \
"""\
⎡ x + y x - y⎤ ⎡ 2 ⎤ \n\
⎢─────── ─────⎥ ⎢x + y⎥ \n\
⎢x - 2⋅y x + y⎥ ⎢──────⎥ \n\
⎢ ⎥ ⎢-x + y⎥ \n\
⎢ 2 ⎥ ⋅⎢ ⎥ \n\
⎢x + y 2 ⎥ ⎢ -2 ⎥ \n\
⎢────── ─ ⎥ ⎢ ─── ⎥ \n\
⎣-x + y 3 ⎦τ ⎣ 3 ⎦τ\
"""
expected6 = \
"""\
⎛⎡ x + y x - y ⎤ ⎡ x - y x + y ⎤ ⎞\n\
⎜⎢─────── ───── ⎥ ⎢ ───── ───────⎥ ⎟\n\
⎡ x + y x - y⎤ ⎡ 2 ⎤ ⎜⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ ⎟\n\
⎢─────── ─────⎥ ⎢ x + y -x + y - x - y⎥ ⎜⎢ ⎥ ⎢ ⎥ ⎟\n\
⎢x - 2⋅y x + y⎥ ⎢─────── ────── ────────⎥ ⎜⎢ 2 ⎥ ⎢ 2 ⎥ ⎟\n\
⎢ ⎥ ⎢x - 2⋅y x + y -x + y ⎥ ⎜⎢x + y -2 ⎥ ⎢ -2 x + y ⎥ ⎟\n\
⎢ 2 ⎥ ⋅⎢ ⎥ ⋅⎜⎢────── ─── ⎥ + ⎢ ─── ────── ⎥ ⎟\n\
⎢x + y 2 ⎥ ⎢ 2 ⎥ ⎜⎢-x + y 3 ⎥ ⎢ 3 -x + y ⎥ ⎟\n\
⎢────── ─ ⎥ ⎢x + y -2 x - y ⎥ ⎜⎢ ⎥ ⎢ ⎥ ⎟\n\
⎣-x + y 3 ⎦τ ⎢────── ─── ───── ⎥ ⎜⎢-x + y -x - y⎥ ⎢ -x - y -x + y ⎥ ⎟\n\
⎣-x + y 3 x + y ⎦τ ⎜⎢────── ───────⎥ ⎢─────── ────── ⎥ ⎟\n\
⎝⎣x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ⎠\
"""
assert upretty(Series(tf1, tf3)) == expected1
assert upretty(Series(-tf2, -tf1)) == expected2
assert upretty(Series(tf3, tf1, Parallel(-tf1, tf2))) == expected3
assert upretty(Series(Parallel(tf1, tf2), Parallel(tf2, tf3))) == expected4
assert upretty(MIMOSeries(tfm2, tfm1)) == expected5
assert upretty(MIMOSeries(MIMOParallel(tfm4, -tfm5), tfm3, tfm1)) == expected6
def test_pretty_Parallel():
tf1 = TransferFunction(x + y, x - 2*y, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(x**2 + y, y - x, y)
tf4 = TransferFunction(y**2 - x, x**3 + x, y)
tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf3, -tf4], [-tf2, -tf1]])
tfm2 = TransferFunctionMatrix([[-tf2, -tf1], [tf4, -tf3], [tf1, tf2]])
tfm3 = TransferFunctionMatrix([[-tf1, tf2], [-tf3, tf4], [tf2, tf1]])
tfm4 = TransferFunctionMatrix([[-tf1, -tf2], [-tf3, -tf4]])
expected1 = \
"""\
x + y x - y\n\
─────── + ─────\n\
x - 2⋅y x + y\
"""
expected2 = \
"""\
-x + y -x - y\n\
────── + ───────\n\
x + y x - 2⋅y\
"""
expected3 = \
"""\
2 \n\
x + y x + y ⎛ -x - y⎞ ⎛x - y⎞\n\
────── + ─────── + ⎜───────⎟⋅⎜─────⎟\n\
-x + y x - 2⋅y ⎝x - 2⋅y⎠ ⎝x + y⎠\
"""
expected4 = \
"""\
⎛ 2 ⎞\n\
⎛ x + y ⎞ ⎛x - y⎞ ⎛x - y⎞ ⎜x + y⎟\n\
⎜───────⎟⋅⎜─────⎟ + ⎜─────⎟⋅⎜──────⎟\n\
⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x + y⎠ ⎝-x + y⎠\
"""
expected5 = \
"""\
⎡ x + y -x + y ⎤ ⎡ x - y x + y ⎤ ⎡ x + y x - y ⎤ \n\
⎢─────── ────── ⎥ ⎢ ───── ───────⎥ ⎢─────── ───── ⎥ \n\
⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ ⎢x - 2⋅y x + y ⎥ \n\
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n\
⎢ 2 2 ⎥ ⎢ 2 2 ⎥ ⎢ 2 2 ⎥ \n\
⎢x + y x - y ⎥ ⎢x - y x + y ⎥ ⎢x + y x - y ⎥ \n\
⎢────── ────── ⎥ + ⎢────── ────── ⎥ + ⎢────── ────── ⎥ \n\
⎢-x + y 3 ⎥ ⎢ 3 -x + y ⎥ ⎢-x + y 3 ⎥ \n\
⎢ x + x ⎥ ⎢x + x ⎥ ⎢ x + x ⎥ \n\
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n\
⎢-x + y -x - y⎥ ⎢ -x - y -x + y ⎥ ⎢-x + y -x - y⎥ \n\
⎢────── ───────⎥ ⎢─────── ────── ⎥ ⎢────── ───────⎥ \n\
⎣x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ ⎣x + y x - 2⋅y⎦τ\
"""
expected6 = \
"""\
⎡ x - y x + y ⎤ ⎡-x + y -x - y ⎤ \n\
⎢ ───── ───────⎥ ⎢────── ─────── ⎥ \n\
⎢ x + y x - 2⋅y⎥ ⎡ -x - y -x + y⎤ ⎢x + y x - 2⋅y ⎥ \n\
⎢ ⎥ ⎢─────── ──────⎥ ⎢ ⎥ \n\
⎢ 2 2 ⎥ ⎢x - 2⋅y x + y ⎥ ⎢ 2 2 ⎥ \n\
⎢x - y x + y ⎥ ⎢ ⎥ ⎢-x + y - x - y⎥ \n\
⎢────── ────── ⎥ ⋅⎢ 2 2⎥ + ⎢─────── ────────⎥ \n\
⎢ 3 -x + y ⎥ ⎢- x - y x - y ⎥ ⎢ 3 -x + y ⎥ \n\
⎢x + x ⎥ ⎢──────── ──────⎥ ⎢ x + x ⎥ \n\
⎢ ⎥ ⎢ -x + y 3 ⎥ ⎢ ⎥ \n\
⎢ -x - y -x + y ⎥ ⎣ x + x⎦τ ⎢ x + y x - y ⎥ \n\
⎢─────── ────── ⎥ ⎢─────── ───── ⎥ \n\
⎣x - 2⋅y x + y ⎦τ ⎣x - 2⋅y x + y ⎦τ\
"""
assert upretty(Parallel(tf1, tf2)) == expected1
assert upretty(Parallel(-tf2, -tf1)) == expected2
assert upretty(Parallel(tf3, tf1, Series(-tf1, tf2))) == expected3
assert upretty(Parallel(Series(tf1, tf2), Series(tf2, tf3))) == expected4
assert upretty(MIMOParallel(-tfm3, -tfm2, tfm1)) == expected5
assert upretty(MIMOParallel(MIMOSeries(tfm4, -tfm2), tfm2)) == expected6
def test_pretty_Feedback():
tf = TransferFunction(1, 1, y)
tf1 = TransferFunction(x + y, x - 2*y, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(y**2 - 2*y + 1, y + 5, y)
tf4 = TransferFunction(x - 2*y**3, x + y, x)
tf5 = TransferFunction(1 - x, x - y, y)
tf6 = TransferFunction(2, 2, x)
expected1 = \
"""\
⎛1⎞ \n\
⎜─⎟ \n\
⎝1⎠ \n\
─────────────\n\
1 ⎛ x + y ⎞\n\
─ + ⎜───────⎟\n\
1 ⎝x - 2⋅y⎠\
"""
expected2 = \
"""\
⎛1⎞ \n\
⎜─⎟ \n\
⎝1⎠ \n\
────────────────────────────────────\n\
⎛ 2 ⎞\n\
1 ⎛x - y⎞ ⎛ x + y ⎞ ⎜y - 2⋅y + 1⎟\n\
─ + ⎜─────⎟⋅⎜───────⎟⋅⎜────────────⎟\n\
1 ⎝x + y⎠ ⎝x - 2⋅y⎠ ⎝ y + 5 ⎠\
"""
expected3 = \
"""\
⎛ x + y ⎞ \n\
⎜───────⎟ \n\
⎝x - 2⋅y⎠ \n\
────────────────────────────────────────────\n\
⎛ 2 ⎞ \n\
1 ⎛ x + y ⎞ ⎛x - y⎞ ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞\n\
─ + ⎜───────⎟⋅⎜─────⎟⋅⎜────────────⎟⋅⎜─────⎟\n\
1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝ y + 5 ⎠ ⎝x - y⎠\
"""
expected4 = \
"""\
⎛ x + y ⎞ ⎛x - y⎞ \n\
⎜───────⎟⋅⎜─────⎟ \n\
⎝x - 2⋅y⎠ ⎝x + y⎠ \n\
─────────────────────\n\
1 ⎛ x + y ⎞ ⎛x - y⎞\n\
─ + ⎜───────⎟⋅⎜─────⎟\n\
1 ⎝x - 2⋅y⎠ ⎝x + y⎠\
"""
expected5 = \
"""\
⎛ x + y ⎞ ⎛x - y⎞ \n\
⎜───────⎟⋅⎜─────⎟ \n\
⎝x - 2⋅y⎠ ⎝x + y⎠ \n\
─────────────────────────────\n\
1 ⎛ x + y ⎞ ⎛x - y⎞ ⎛1 - x⎞\n\
─ + ⎜───────⎟⋅⎜─────⎟⋅⎜─────⎟\n\
1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x - y⎠\
"""
expected6 = \
"""\
⎛ 2 ⎞ \n\
⎜y - 2⋅y + 1⎟ ⎛1 - x⎞ \n\
⎜────────────⎟⋅⎜─────⎟ \n\
⎝ y + 5 ⎠ ⎝x - y⎠ \n\
────────────────────────────────────────────\n\
⎛ 2 ⎞ \n\
1 ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞ ⎛x - y⎞ ⎛ x + y ⎞\n\
─ + ⎜────────────⎟⋅⎜─────⎟⋅⎜─────⎟⋅⎜───────⎟\n\
1 ⎝ y + 5 ⎠ ⎝x - y⎠ ⎝x + y⎠ ⎝x - 2⋅y⎠\
"""
expected7 = \
"""\
⎛ 3⎞ \n\
⎜x - 2⋅y ⎟ \n\
⎜────────⎟ \n\
⎝ x + y ⎠ \n\
──────────────────\n\
⎛ 3⎞ \n\
1 ⎜x - 2⋅y ⎟ ⎛2⎞\n\
─ + ⎜────────⎟⋅⎜─⎟\n\
1 ⎝ x + y ⎠ ⎝2⎠\
"""
expected8 = \
"""\
⎛1 - x⎞ \n\
⎜─────⎟ \n\
⎝x - y⎠ \n\
───────────\n\
1 ⎛1 - x⎞\n\
─ + ⎜─────⎟\n\
1 ⎝x - y⎠\
"""
expected9 = \
"""\
⎛ x + y ⎞ ⎛x - y⎞ \n\
⎜───────⎟⋅⎜─────⎟ \n\
⎝x - 2⋅y⎠ ⎝x + y⎠ \n\
─────────────────────────────\n\
1 ⎛ x + y ⎞ ⎛x - y⎞ ⎛1 - x⎞\n\
─ - ⎜───────⎟⋅⎜─────⎟⋅⎜─────⎟\n\
1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x - y⎠\
"""
expected10 = \
"""\
⎛1 - x⎞ \n\
⎜─────⎟ \n\
⎝x - y⎠ \n\
───────────\n\
1 ⎛1 - x⎞\n\
─ - ⎜─────⎟\n\
1 ⎝x - y⎠\
"""
assert upretty(Feedback(tf, tf1)) == expected1
assert upretty(Feedback(tf, tf2*tf1*tf3)) == expected2
assert upretty(Feedback(tf1, tf2*tf3*tf5)) == expected3
assert upretty(Feedback(tf1*tf2, tf)) == expected4
assert upretty(Feedback(tf1*tf2, tf5)) == expected5
assert upretty(Feedback(tf3*tf5, tf2*tf1)) == expected6
assert upretty(Feedback(tf4, tf6)) == expected7
assert upretty(Feedback(tf5, tf)) == expected8
assert upretty(Feedback(tf1*tf2, tf5, 1)) == expected9
assert upretty(Feedback(tf5, tf, 1)) == expected10
def test_pretty_MIMOFeedback():
tf1 = TransferFunction(x + y, x - 2*y, y)
tf2 = TransferFunction(x - y, x + y, y)
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
tfm_3 = TransferFunctionMatrix([[tf1, tf1], [tf2, tf2]])
expected1 = \
"""\
⎛ ⎡ x + y x - y ⎤ ⎡ x - y x + y ⎤ ⎞-1 ⎡ x + y x - y ⎤ \n\
⎜ ⎢─────── ───── ⎥ ⎢ ───── ───────⎥ ⎟ ⎢─────── ───── ⎥ \n\
⎜ ⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ ⎟ ⎢x - 2⋅y x + y ⎥ \n\
⎜I - ⎢ ⎥ ⋅⎢ ⎥ ⎟ ⋅ ⎢ ⎥ \n\
⎜ ⎢ x - y x + y ⎥ ⎢ x + y x - y ⎥ ⎟ ⎢ x - y x + y ⎥ \n\
⎜ ⎢ ───── ───────⎥ ⎢─────── ───── ⎥ ⎟ ⎢ ───── ───────⎥ \n\
⎝ ⎣ x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ⎠ ⎣ x + y x - 2⋅y⎦τ\
"""
expected2 = \
"""\
⎛ ⎡ x + y x - y ⎤ ⎡ x - y x + y ⎤ ⎡ x + y x + y ⎤ ⎞-1 ⎡ x + y x - y ⎤ ⎡ x - y x + y ⎤ \n\
⎜ ⎢─────── ───── ⎥ ⎢ ───── ───────⎥ ⎢─────── ───────⎥ ⎟ ⎢─────── ───── ⎥ ⎢ ───── ───────⎥ \n\
⎜ ⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ ⎢x - 2⋅y x - 2⋅y⎥ ⎟ ⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ \n\
⎜I + ⎢ ⎥ ⋅⎢ ⎥ ⋅⎢ ⎥ ⎟ ⋅ ⎢ ⎥ ⋅⎢ ⎥ \n\
⎜ ⎢ x - y x + y ⎥ ⎢ x + y x - y ⎥ ⎢ x - y x - y ⎥ ⎟ ⎢ x - y x + y ⎥ ⎢ x + y x - y ⎥ \n\
⎜ ⎢ ───── ───────⎥ ⎢─────── ───── ⎥ ⎢ ───── ───── ⎥ ⎟ ⎢ ───── ───────⎥ ⎢─────── ───── ⎥ \n\
⎝ ⎣ x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ ⎣ x + y x + y ⎦τ⎠ ⎣ x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ\
"""
assert upretty(MIMOFeedback(tfm_1, tfm_2, 1)) == \
expected1 # Positive MIMOFeedback
assert upretty(MIMOFeedback(tfm_1*tfm_2, tfm_3)) == \
expected2 # Negative MIMOFeedback (Default)
def test_pretty_TransferFunctionMatrix():
tf1 = TransferFunction(x + y, x - 2*y, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(y**2 - 2*y + 1, y + 5, y)
tf4 = TransferFunction(y, x**2 + x + 1, y)
tf5 = TransferFunction(1 - x, x - y, y)
tf6 = TransferFunction(2, 2, y)
expected1 = \
"""\
⎡ x + y ⎤ \n\
⎢───────⎥ \n\
⎢x - 2⋅y⎥ \n\
⎢ ⎥ \n\
⎢ x - y ⎥ \n\
⎢ ───── ⎥ \n\
⎣ x + y ⎦τ\
"""
expected2 = \
"""\
⎡ x + y ⎤ \n\
⎢ ─────── ⎥ \n\
⎢ x - 2⋅y ⎥ \n\
⎢ ⎥ \n\
⎢ x - y ⎥ \n\
⎢ ───── ⎥ \n\
⎢ x + y ⎥ \n\
⎢ ⎥ \n\
⎢ 2 ⎥ \n\
⎢- y + 2⋅y - 1⎥ \n\
⎢──────────────⎥ \n\
⎣ y + 5 ⎦τ\
"""
expected3 = \
"""\
⎡ x + y x - y ⎤ \n\
⎢ ─────── ───── ⎥ \n\
⎢ x - 2⋅y x + y ⎥ \n\
⎢ ⎥ \n\
⎢ 2 ⎥ \n\
⎢y - 2⋅y + 1 y ⎥ \n\
⎢──────────── ──────────⎥ \n\
⎢ y + 5 2 ⎥ \n\
⎢ x + x + 1⎥ \n\
⎢ ⎥ \n\
⎢ 1 - x 2 ⎥ \n\
⎢ ───── ─ ⎥ \n\
⎣ x - y 2 ⎦τ\
"""
expected4 = \
"""\
⎡ x - y x + y y ⎤ \n\
⎢ ───── ─────── ──────────⎥ \n\
⎢ x + y x - 2⋅y 2 ⎥ \n\
⎢ x + x + 1⎥ \n\
⎢ ⎥ \n\
⎢ 2 ⎥ \n\
⎢- y + 2⋅y - 1 x - 1 -2 ⎥ \n\
⎢────────────── ───── ─── ⎥ \n\
⎣ y + 5 x - y 2 ⎦τ\
"""
expected5 = \
"""\
⎡ x + y x - y x + y y ⎤ \n\
⎢───────⋅───── ─────── ──────────⎥ \n\
⎢x - 2⋅y x + y x - 2⋅y 2 ⎥ \n\
⎢ x + x + 1⎥ \n\
⎢ ⎥ \n\
⎢ 1 - x 2 x + y -2 ⎥ \n\
⎢ ───── + ─ ─────── ─── ⎥ \n\
⎣ x - y 2 x - 2⋅y 2 ⎦τ\
"""
assert upretty(TransferFunctionMatrix([[tf1], [tf2]])) == expected1
assert upretty(TransferFunctionMatrix([[tf1], [tf2], [-tf3]])) == expected2
assert upretty(TransferFunctionMatrix([[tf1, tf2], [tf3, tf4], [tf5, tf6]])) == expected3
assert upretty(TransferFunctionMatrix([[tf2, tf1, tf4], [-tf3, -tf5, -tf6]])) == expected4
assert upretty(TransferFunctionMatrix([[Series(tf2, tf1), tf1, tf4], [Parallel(tf6, tf5), tf1, -tf6]])) == \
expected5
def test_pretty_order():
expr = O(1)
ascii_str = \
"""\
O(1)\
"""
ucode_str = \
"""\
O(1)\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1/x)
ascii_str = \
"""\
/1\\\n\
O|-|\n\
\\x/\
"""
ucode_str = \
"""\
⎛1⎞\n\
O⎜─⎟\n\
⎝x⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(x**2 + y**2)
ascii_str = \
"""\
/ 2 2 \\\n\
O\\x + y ; (x, y) -> (0, 0)/\
"""
ucode_str = \
"""\
⎛ 2 2 ⎞\n\
O⎝x + y ; (x, y) → (0, 0)⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1, (x, oo))
ascii_str = \
"""\
O(1; x -> oo)\
"""
ucode_str = \
"""\
O(1; x → ∞)\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1/x, (x, oo))
ascii_str = \
"""\
/1 \\\n\
O|-; x -> oo|\n\
\\x /\
"""
ucode_str = \
"""\
⎛1 ⎞\n\
O⎜─; x → ∞⎟\n\
⎝x ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(x**2 + y**2, (x, oo), (y, oo))
ascii_str = \
"""\
/ 2 2 \\\n\
O\\x + y ; (x, y) -> (oo, oo)/\
"""
ucode_str = \
"""\
⎛ 2 2 ⎞\n\
O⎝x + y ; (x, y) → (∞, ∞)⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_derivatives():
# Simple
expr = Derivative(log(x), x, evaluate=False)
ascii_str = \
"""\
d \n\
--(log(x))\n\
dx \
"""
ucode_str = \
"""\
d \n\
──(log(x))\n\
dx \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(log(x), x, evaluate=False) + x
ascii_str_1 = \
"""\
d \n\
x + --(log(x))\n\
dx \
"""
ascii_str_2 = \
"""\
d \n\
--(log(x)) + x\n\
dx \
"""
ucode_str_1 = \
"""\
d \n\
x + ──(log(x))\n\
dx \
"""
ucode_str_2 = \
"""\
d \n\
──(log(x)) + x\n\
dx \
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
# basic partial derivatives
expr = Derivative(log(x + y) + x, x)
ascii_str_1 = \
"""\
d \n\
--(log(x + y) + x)\n\
dx \
"""
ascii_str_2 = \
"""\
d \n\
--(x + log(x + y))\n\
dx \
"""
ucode_str_1 = \
"""\
∂ \n\
──(log(x + y) + x)\n\
∂x \
"""
ucode_str_2 = \
"""\
∂ \n\
──(x + log(x + y))\n\
∂x \
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2], upretty(expr)
# Multiple symbols
expr = Derivative(log(x) + x**2, x, y)
ascii_str_1 = \
"""\
2 \n\
d / 2\\\n\
-----\\log(x) + x /\n\
dy dx \
"""
ascii_str_2 = \
"""\
2 \n\
d / 2 \\\n\
-----\\x + log(x)/\n\
dy dx \
"""
ucode_str_1 = \
"""\
2 \n\
d ⎛ 2⎞\n\
─────⎝log(x) + x ⎠\n\
dy dx \
"""
ucode_str_2 = \
"""\
2 \n\
d ⎛ 2 ⎞\n\
─────⎝x + log(x)⎠\n\
dy dx \
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Derivative(2*x*y, y, x) + x**2
ascii_str_1 = \
"""\
2 \n\
d 2\n\
-----(2*x*y) + x \n\
dx dy \
"""
ascii_str_2 = \
"""\
2 \n\
2 d \n\
x + -----(2*x*y)\n\
dx dy \
"""
ucode_str_1 = \
"""\
2 \n\
∂ 2\n\
─────(2⋅x⋅y) + x \n\
∂x ∂y \
"""
ucode_str_2 = \
"""\
2 \n\
2 ∂ \n\
x + ─────(2⋅x⋅y)\n\
∂x ∂y \
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Derivative(2*x*y, x, x)
ascii_str = \
"""\
2 \n\
d \n\
---(2*x*y)\n\
2 \n\
dx \
"""
ucode_str = \
"""\
2 \n\
∂ \n\
───(2⋅x⋅y)\n\
2 \n\
∂x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(2*x*y, x, 17)
ascii_str = \
"""\
17 \n\
d \n\
----(2*x*y)\n\
17 \n\
dx \
"""
ucode_str = \
"""\
17 \n\
∂ \n\
────(2⋅x⋅y)\n\
17 \n\
∂x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(2*x*y, x, x, y)
ascii_str = \
"""\
3 \n\
d \n\
------(2*x*y)\n\
2 \n\
dy dx \
"""
ucode_str = \
"""\
3 \n\
∂ \n\
──────(2⋅x⋅y)\n\
2 \n\
∂y ∂x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# Greek letters
alpha = Symbol('alpha')
beta = Function('beta')
expr = beta(alpha).diff(alpha)
ascii_str = \
"""\
d \n\
------(beta(alpha))\n\
dalpha \
"""
ucode_str = \
"""\
d \n\
──(β(α))\n\
dα \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(f(x), (x, n))
ascii_str = \
"""\
n \n\
d \n\
---(f(x))\n\
n \n\
dx \
"""
ucode_str = \
"""\
n \n\
d \n\
───(f(x))\n\
n \n\
dx \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_integrals():
expr = Integral(log(x), x)
ascii_str = \
"""\
/ \n\
| \n\
| log(x) dx\n\
| \n\
/ \
"""
ucode_str = \
"""\
⌠ \n\
⎮ log(x) dx\n\
⌡ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, x)
ascii_str = \
"""\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \
"""
ucode_str = \
"""\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral((sin(x))**2 / (tan(x))**2)
ascii_str = \
"""\
/ \n\
| \n\
| 2 \n\
| sin (x) \n\
| ------- dx\n\
| 2 \n\
| tan (x) \n\
| \n\
/ \
"""
ucode_str = \
"""\
⌠ \n\
⎮ 2 \n\
⎮ sin (x) \n\
⎮ ─────── dx\n\
⎮ 2 \n\
⎮ tan (x) \n\
⌡ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**(2**x), x)
ascii_str = \
"""\
/ \n\
| \n\
| / x\\ \n\
| \\2 / \n\
| x dx\n\
| \n\
/ \
"""
ucode_str = \
"""\
⌠ \n\
⎮ ⎛ x⎞ \n\
⎮ ⎝2 ⎠ \n\
⎮ x dx\n\
⌡ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, (x, 1, 2))
ascii_str = \
"""\
2 \n\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \n\
1 \
"""
ucode_str = \
"""\
2 \n\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \n\
1 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, (x, Rational(1, 2), 10))
ascii_str = \
"""\
10 \n\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \n\
1/2 \
"""
ucode_str = \
"""\
10 \n\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \n\
1/2 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2*y**2, x, y)
ascii_str = \
"""\
/ / \n\
| | \n\
| | 2 2 \n\
| | x *y dx dy\n\
| | \n\
/ / \
"""
ucode_str = \
"""\
⌠ ⌠ \n\
⎮ ⎮ 2 2 \n\
⎮ ⎮ x ⋅y dx dy\n\
⌡ ⌡ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(sin(th)/cos(ph), (th, 0, pi), (ph, 0, 2*pi))
ascii_str = \
"""\
2*pi pi \n\
/ / \n\
| | \n\
| | sin(theta) \n\
| | ---------- d(theta) d(phi)\n\
| | cos(phi) \n\
| | \n\
/ / \n\
0 0 \
"""
ucode_str = \
"""\
2⋅π π \n\
⌠ ⌠ \n\
⎮ ⎮ sin(θ) \n\
⎮ ⎮ ────── dθ dφ\n\
⎮ ⎮ cos(φ) \n\
⌡ ⌡ \n\
0 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_matrix():
# Empty Matrix
expr = Matrix()
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix(2, 0, lambda i, j: 0)
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix(0, 2, lambda i, j: 0)
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix([[x**2 + 1, 1], [y, x + y]])
ascii_str_1 = \
"""\
[ 2 ]
[1 + x 1 ]
[ ]
[ y x + y]\
"""
ascii_str_2 = \
"""\
[ 2 ]
[x + 1 1 ]
[ ]
[ y x + y]\
"""
ucode_str_1 = \
"""\
⎡ 2 ⎤
⎢1 + x 1 ⎥
⎢ ⎥
⎣ y x + y⎦\
"""
ucode_str_2 = \
"""\
⎡ 2 ⎤
⎢x + 1 1 ⎥
⎢ ⎥
⎣ y x + y⎦\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]])
ascii_str = \
"""\
[x ]
[- y theta]
[y ]
[ ]
[ I*k*phi ]
[0 e 1 ]\
"""
ucode_str = \
"""\
⎡x ⎤
⎢─ y θ⎥
⎢y ⎥
⎢ ⎥
⎢ ⅈ⋅k⋅φ ⎥
⎣0 ℯ 1⎦\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
unicode_str = \
"""\
⎡v̇_msc_00 0 0 ⎤
⎢ ⎥
⎢ 0 v̇_msc_01 0 ⎥
⎢ ⎥
⎣ 0 0 v̇_msc_02⎦\
"""
expr = diag(*MatrixSymbol('vdot_msc',1,3))
assert upretty(expr) == unicode_str
def test_pretty_ndim_arrays():
x, y, z, w = symbols("x y z w")
for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray):
# Basic: scalar array
M = ArrayType(x)
assert pretty(M) == "x"
assert upretty(M) == "x"
M = ArrayType([[1/x, y], [z, w]])
M1 = ArrayType([1/x, y, z])
M2 = tensorproduct(M1, M)
M3 = tensorproduct(M, M)
ascii_str = \
"""\
[1 ]\n\
[- y]\n\
[x ]\n\
[ ]\n\
[z w]\
"""
ucode_str = \
"""\
⎡1 ⎤\n\
⎢─ y⎥\n\
⎢x ⎥\n\
⎢ ⎥\n\
⎣z w⎦\
"""
assert pretty(M) == ascii_str
assert upretty(M) == ucode_str
ascii_str = \
"""\
[1 ]\n\
[- y z]\n\
[x ]\
"""
ucode_str = \
"""\
⎡1 ⎤\n\
⎢─ y z⎥\n\
⎣x ⎦\
"""
assert pretty(M1) == ascii_str
assert upretty(M1) == ucode_str
ascii_str = \
"""\
[[1 y] ]\n\
[[-- -] [z ]]\n\
[[ 2 x] [ y 2 ] [- y*z]]\n\
[[x ] [ - y ] [x ]]\n\
[[ ] [ x ] [ ]]\n\
[[z w] [ ] [ 2 ]]\n\
[[- -] [y*z w*y] [z w*z]]\n\
[[x x] ]\
"""
ucode_str = \
"""\
⎡⎡1 y⎤ ⎤\n\
⎢⎢── ─⎥ ⎡z ⎤⎥\n\
⎢⎢ 2 x⎥ ⎡ y 2 ⎤ ⎢─ y⋅z⎥⎥\n\
⎢⎢x ⎥ ⎢ ─ y ⎥ ⎢x ⎥⎥\n\
⎢⎢ ⎥ ⎢ x ⎥ ⎢ ⎥⎥\n\
⎢⎢z w⎥ ⎢ ⎥ ⎢ 2 ⎥⎥\n\
⎢⎢─ ─⎥ ⎣y⋅z w⋅y⎦ ⎣z w⋅z⎦⎥\n\
⎣⎣x x⎦ ⎦\
"""
assert pretty(M2) == ascii_str
assert upretty(M2) == ucode_str
ascii_str = \
"""\
[ [1 y] ]\n\
[ [-- -] ]\n\
[ [ 2 x] [ y 2 ]]\n\
[ [x ] [ - y ]]\n\
[ [ ] [ x ]]\n\
[ [z w] [ ]]\n\
[ [- -] [y*z w*y]]\n\
[ [x x] ]\n\
[ ]\n\
[[z ] [ w ]]\n\
[[- y*z] [ - w*y]]\n\
[[x ] [ x ]]\n\
[[ ] [ ]]\n\
[[ 2 ] [ 2 ]]\n\
[[z w*z] [w*z w ]]\
"""
ucode_str = \
"""\
⎡ ⎡1 y⎤ ⎤\n\
⎢ ⎢── ─⎥ ⎥\n\
⎢ ⎢ 2 x⎥ ⎡ y 2 ⎤⎥\n\
⎢ ⎢x ⎥ ⎢ ─ y ⎥⎥\n\
⎢ ⎢ ⎥ ⎢ x ⎥⎥\n\
⎢ ⎢z w⎥ ⎢ ⎥⎥\n\
⎢ ⎢─ ─⎥ ⎣y⋅z w⋅y⎦⎥\n\
⎢ ⎣x x⎦ ⎥\n\
⎢ ⎥\n\
⎢⎡z ⎤ ⎡ w ⎤⎥\n\
⎢⎢─ y⋅z⎥ ⎢ ─ w⋅y⎥⎥\n\
⎢⎢x ⎥ ⎢ x ⎥⎥\n\
⎢⎢ ⎥ ⎢ ⎥⎥\n\
⎢⎢ 2 ⎥ ⎢ 2 ⎥⎥\n\
⎣⎣z w⋅z⎦ ⎣w⋅z w ⎦⎦\
"""
assert pretty(M3) == ascii_str
assert upretty(M3) == ucode_str
Mrow = ArrayType([[x, y, 1 / z]])
Mcolumn = ArrayType([[x], [y], [1 / z]])
Mcol2 = ArrayType([Mcolumn.tolist()])
ascii_str = \
"""\
[[ 1]]\n\
[[x y -]]\n\
[[ z]]\
"""
ucode_str = \
"""\
⎡⎡ 1⎤⎤\n\
⎢⎢x y ─⎥⎥\n\
⎣⎣ z⎦⎦\
"""
assert pretty(Mrow) == ascii_str
assert upretty(Mrow) == ucode_str
ascii_str = \
"""\
[x]\n\
[ ]\n\
[y]\n\
[ ]\n\
[1]\n\
[-]\n\
[z]\
"""
ucode_str = \
"""\
⎡x⎤\n\
⎢ ⎥\n\
⎢y⎥\n\
⎢ ⎥\n\
⎢1⎥\n\
⎢─⎥\n\
⎣z⎦\
"""
assert pretty(Mcolumn) == ascii_str
assert upretty(Mcolumn) == ucode_str
ascii_str = \
"""\
[[x]]\n\
[[ ]]\n\
[[y]]\n\
[[ ]]\n\
[[1]]\n\
[[-]]\n\
[[z]]\
"""
ucode_str = \
"""\
⎡⎡x⎤⎤\n\
⎢⎢ ⎥⎥\n\
⎢⎢y⎥⎥\n\
⎢⎢ ⎥⎥\n\
⎢⎢1⎥⎥\n\
⎢⎢─⎥⎥\n\
⎣⎣z⎦⎦\
"""
assert pretty(Mcol2) == ascii_str
assert upretty(Mcol2) == ucode_str
def test_tensor_TensorProduct():
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert upretty(TensorProduct(A, B)) == "A\u2297B"
assert upretty(TensorProduct(A, B, A)) == "A\u2297B\u2297A"
def test_diffgeom_print_WedgeProduct():
from sympy.diffgeom.rn import R2
from sympy.diffgeom import WedgeProduct
wp = WedgeProduct(R2.dx, R2.dy)
assert upretty(wp) == "ⅆ x∧ⅆ y"
def test_Adjoint():
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert pretty(Adjoint(X)) == " +\nX "
assert pretty(Adjoint(X + Y)) == " +\n(X + Y) "
assert pretty(Adjoint(X) + Adjoint(Y)) == " + +\nX + Y "
assert pretty(Adjoint(X*Y)) == " +\n(X*Y) "
assert pretty(Adjoint(Y)*Adjoint(X)) == " + +\nY *X "
assert pretty(Adjoint(X**2)) == " +\n/ 2\\ \n\\X / "
assert pretty(Adjoint(X)**2) == " 2\n/ +\\ \n\\X / "
assert pretty(Adjoint(Inverse(X))) == " +\n/ -1\\ \n\\X / "
assert pretty(Inverse(Adjoint(X))) == " -1\n/ +\\ \n\\X / "
assert pretty(Adjoint(Transpose(X))) == " +\n/ T\\ \n\\X / "
assert pretty(Transpose(Adjoint(X))) == " T\n/ +\\ \n\\X / "
assert upretty(Adjoint(X)) == " †\nX "
assert upretty(Adjoint(X + Y)) == " †\n(X + Y) "
assert upretty(Adjoint(X) + Adjoint(Y)) == " † †\nX + Y "
assert upretty(Adjoint(X*Y)) == " †\n(X⋅Y) "
assert upretty(Adjoint(Y)*Adjoint(X)) == " † †\nY ⋅X "
assert upretty(Adjoint(X**2)) == \
" †\n⎛ 2⎞ \n⎝X ⎠ "
assert upretty(Adjoint(X)**2) == \
" 2\n⎛ †⎞ \n⎝X ⎠ "
assert upretty(Adjoint(Inverse(X))) == \
" †\n⎛ -1⎞ \n⎝X ⎠ "
assert upretty(Inverse(Adjoint(X))) == \
" -1\n⎛ †⎞ \n⎝X ⎠ "
assert upretty(Adjoint(Transpose(X))) == \
" †\n⎛ T⎞ \n⎝X ⎠ "
assert upretty(Transpose(Adjoint(X))) == \
" T\n⎛ †⎞ \n⎝X ⎠ "
def test_pretty_Trace_issue_9044():
X = Matrix([[1, 2], [3, 4]])
Y = Matrix([[2, 4], [6, 8]])
ascii_str_1 = \
"""\
/[1 2]\\
tr|[ ]|
\\[3 4]/\
"""
ucode_str_1 = \
"""\
⎛⎡1 2⎤⎞
tr⎜⎢ ⎥⎟
⎝⎣3 4⎦⎠\
"""
ascii_str_2 = \
"""\
/[1 2]\\ /[2 4]\\
tr|[ ]| + tr|[ ]|
\\[3 4]/ \\[6 8]/\
"""
ucode_str_2 = \
"""\
⎛⎡1 2⎤⎞ ⎛⎡2 4⎤⎞
tr⎜⎢ ⎥⎟ + tr⎜⎢ ⎥⎟
⎝⎣3 4⎦⎠ ⎝⎣6 8⎦⎠\
"""
assert pretty(Trace(X)) == ascii_str_1
assert upretty(Trace(X)) == ucode_str_1
assert pretty(Trace(X) + Trace(Y)) == ascii_str_2
assert upretty(Trace(X) + Trace(Y)) == ucode_str_2
def test_MatrixSlice():
n = Symbol('n', integer=True)
x, y, z, w, t, = symbols('x y z w t')
X = MatrixSymbol('X', n, n)
Y = MatrixSymbol('Y', 10, 10)
Z = MatrixSymbol('Z', 10, 10)
expr = MatrixSlice(X, (None, None, None), (None, None, None))
assert pretty(expr) == upretty(expr) == 'X[:, :]'
expr = X[x:x + 1, y:y + 1]
assert pretty(expr) == upretty(expr) == 'X[x:x + 1, y:y + 1]'
expr = X[x:x + 1:2, y:y + 1:2]
assert pretty(expr) == upretty(expr) == 'X[x:x + 1:2, y:y + 1:2]'
expr = X[:x, y:]
assert pretty(expr) == upretty(expr) == 'X[:x, y:]'
expr = X[:x, y:]
assert pretty(expr) == upretty(expr) == 'X[:x, y:]'
expr = X[x:, :y]
assert pretty(expr) == upretty(expr) == 'X[x:, :y]'
expr = X[x:y, z:w]
assert pretty(expr) == upretty(expr) == 'X[x:y, z:w]'
expr = X[x:y:t, w:t:x]
assert pretty(expr) == upretty(expr) == 'X[x:y:t, w:t:x]'
expr = X[x::y, t::w]
assert pretty(expr) == upretty(expr) == 'X[x::y, t::w]'
expr = X[:x:y, :t:w]
assert pretty(expr) == upretty(expr) == 'X[:x:y, :t:w]'
expr = X[::x, ::y]
assert pretty(expr) == upretty(expr) == 'X[::x, ::y]'
expr = MatrixSlice(X, (0, None, None), (0, None, None))
assert pretty(expr) == upretty(expr) == 'X[:, :]'
expr = MatrixSlice(X, (None, n, None), (None, n, None))
assert pretty(expr) == upretty(expr) == 'X[:, :]'
expr = MatrixSlice(X, (0, n, None), (0, n, None))
assert pretty(expr) == upretty(expr) == 'X[:, :]'
expr = MatrixSlice(X, (0, n, 2), (0, n, 2))
assert pretty(expr) == upretty(expr) == 'X[::2, ::2]'
expr = X[1:2:3, 4:5:6]
assert pretty(expr) == upretty(expr) == 'X[1:2:3, 4:5:6]'
expr = X[1:3:5, 4:6:8]
assert pretty(expr) == upretty(expr) == 'X[1:3:5, 4:6:8]'
expr = X[1:10:2]
assert pretty(expr) == upretty(expr) == 'X[1:10:2, :]'
expr = Y[:5, 1:9:2]
assert pretty(expr) == upretty(expr) == 'Y[:5, 1:9:2]'
expr = Y[:5, 1:10:2]
assert pretty(expr) == upretty(expr) == 'Y[:5, 1::2]'
expr = Y[5, :5:2]
assert pretty(expr) == upretty(expr) == 'Y[5:6, :5:2]'
expr = X[0:1, 0:1]
assert pretty(expr) == upretty(expr) == 'X[:1, :1]'
expr = X[0:1:2, 0:1:2]
assert pretty(expr) == upretty(expr) == 'X[:1:2, :1:2]'
expr = (Y + Z)[2:, 2:]
assert pretty(expr) == upretty(expr) == '(Y + Z)[2:, 2:]'
def test_MatrixExpressions():
n = Symbol('n', integer=True)
X = MatrixSymbol('X', n, n)
assert pretty(X) == upretty(X) == "X"
# Apply function elementwise (`ElementwiseApplyFunc`):
expr = (X.T*X).applyfunc(sin)
ascii_str = """\
/ T \\\n\
(d -> sin(d)).\\X *X/\
"""
ucode_str = """\
⎛ T ⎞\n\
(d ↦ sin(d))˳⎝X ⋅X⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
lamda = Lambda(x, 1/x)
expr = (n*X).applyfunc(lamda)
ascii_str = """\
/ 1\\ \n\
|x -> -|.(n*X)\n\
\\ x/ \
"""
ucode_str = """\
⎛ 1⎞ \n\
⎜x ↦ ─⎟˳(n⋅X)\n\
⎝ x⎠ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_dotproduct():
from sympy.matrices import Matrix, MatrixSymbol
from sympy.matrices.expressions.dotproduct import DotProduct
n = symbols("n", integer=True)
A = MatrixSymbol('A', n, 1)
B = MatrixSymbol('B', n, 1)
C = Matrix(1, 3, [1, 2, 3])
D = Matrix(1, 3, [1, 3, 4])
assert pretty(DotProduct(A, B)) == "A*B"
assert pretty(DotProduct(C, D)) == "[1 2 3]*[1 3 4]"
assert upretty(DotProduct(A, B)) == "A⋅B"
assert upretty(DotProduct(C, D)) == "[1 2 3]⋅[1 3 4]"
def test_pretty_piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
ascii_str = \
"""\
/x for x < 1\n\
| \n\
< 2 \n\
|x otherwise\n\
\\ \
"""
ucode_str = \
"""\
⎧x for x < 1\n\
⎪ \n\
⎨ 2 \n\
⎪x otherwise\n\
⎩ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -Piecewise((x, x < 1), (x**2, True))
ascii_str = \
"""\
//x for x < 1\\\n\
|| |\n\
-|< 2 |\n\
||x otherwise|\n\
\\\\ /\
"""
ucode_str = \
"""\
⎛⎧x for x < 1⎞\n\
⎜⎪ ⎟\n\
-⎜⎨ 2 ⎟\n\
⎜⎪x otherwise⎟\n\
⎝⎩ ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x + Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2),
(y**2, x > 2), (1, True)) + 1
ascii_str = \
"""\
//x \\ \n\
||- for x < 2| \n\
||y | \n\
//x for x > 0\\ || | \n\
x + |< | + |< 2 | + 1\n\
\\\\y otherwise/ ||y for x > 2| \n\
|| | \n\
||1 otherwise| \n\
\\\\ / \
"""
ucode_str = \
"""\
⎛⎧x ⎞ \n\
⎜⎪─ for x < 2⎟ \n\
⎜⎪y ⎟ \n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\
x + ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\
⎜⎪ ⎟ \n\
⎜⎪1 otherwise⎟ \n\
⎝⎩ ⎠ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x - Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2),
(y**2, x > 2), (1, True)) + 1
ascii_str = \
"""\
//x \\ \n\
||- for x < 2| \n\
||y | \n\
//x for x > 0\\ || | \n\
x - |< | + |< 2 | + 1\n\
\\\\y otherwise/ ||y for x > 2| \n\
|| | \n\
||1 otherwise| \n\
\\\\ / \
"""
ucode_str = \
"""\
⎛⎧x ⎞ \n\
⎜⎪─ for x < 2⎟ \n\
⎜⎪y ⎟ \n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\
x - ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\
⎜⎪ ⎟ \n\
⎜⎪1 otherwise⎟ \n\
⎝⎩ ⎠ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x*Piecewise((x, x > 0), (y, True))
ascii_str = \
"""\
//x for x > 0\\\n\
x*|< |\n\
\\\\y otherwise/\
"""
ucode_str = \
"""\
⎛⎧x for x > 0⎞\n\
x⋅⎜⎨ ⎟\n\
⎝⎩y otherwise⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x >
2), (1, True))
ascii_str = \
"""\
//x \\\n\
||- for x < 2|\n\
||y |\n\
//x for x > 0\\ || |\n\
|< |*|< 2 |\n\
\\\\y otherwise/ ||y for x > 2|\n\
|| |\n\
||1 otherwise|\n\
\\\\ /\
"""
ucode_str = \
"""\
⎛⎧x ⎞\n\
⎜⎪─ for x < 2⎟\n\
⎜⎪y ⎟\n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\
⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\
⎜⎪ ⎟\n\
⎜⎪1 otherwise⎟\n\
⎝⎩ ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x
> 2), (1, True))
ascii_str = \
"""\
//x \\\n\
||- for x < 2|\n\
||y |\n\
//x for x > 0\\ || |\n\
-|< |*|< 2 |\n\
\\\\y otherwise/ ||y for x > 2|\n\
|| |\n\
||1 otherwise|\n\
\\\\ /\
"""
ucode_str = \
"""\
⎛⎧x ⎞\n\
⎜⎪─ for x < 2⎟\n\
⎜⎪y ⎟\n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\
-⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\
⎜⎪ ⎟\n\
⎜⎪1 otherwise⎟\n\
⎝⎩ ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Piecewise((0, Abs(1/y) < 1), (1, Abs(y) < 1), (y*meijerg(((2, 1),
()), ((), (1, 0)), 1/y), True))
ascii_str = \
"""\
/ 1 \n\
| 0 for --- < 1\n\
| |y| \n\
| \n\
< 1 for |y| < 1\n\
| \n\
| __0, 2 /2, 1 | 1\\ \n\
|y*/__ | | -| otherwise \n\
\\ \\_|2, 2 \\ 1, 0 | y/ \
"""
ucode_str = \
"""\
⎧ 1 \n\
⎪ 0 for ─── < 1\n\
⎪ │y│ \n\
⎪ \n\
⎨ 1 for │y│ < 1\n\
⎪ \n\
⎪ ╭─╮0, 2 ⎛2, 1 │ 1⎞ \n\
⎪y⋅│╶┐ ⎜ │ ─⎟ otherwise \n\
⎩ ╰─╯2, 2 ⎝ 1, 0 │ y⎠ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# XXX: We have to use evaluate=False here because Piecewise._eval_power
# denests the power.
expr = Pow(Piecewise((x, x > 0), (y, True)), 2, evaluate=False)
ascii_str = \
"""\
2\n\
//x for x > 0\\ \n\
|< | \n\
\\\\y otherwise/ \
"""
ucode_str = \
"""\
2\n\
⎛⎧x for x > 0⎞ \n\
⎜⎨ ⎟ \n\
⎝⎩y otherwise⎠ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_ITE():
expr = ITE(x, y, z)
assert pretty(expr) == (
'/y for x \n'
'< \n'
'\\z otherwise'
)
assert upretty(expr) == """\
⎧y for x \n\
⎨ \n\
⎩z otherwise\
"""
def test_pretty_seq():
expr = ()
ascii_str = \
"""\
()\
"""
ucode_str = \
"""\
()\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = []
ascii_str = \
"""\
[]\
"""
ucode_str = \
"""\
[]\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {}
expr_2 = {}
ascii_str = \
"""\
{}\
"""
ucode_str = \
"""\
{}\
"""
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
expr = (1/x,)
ascii_str = \
"""\
1 \n\
(-,)\n\
x \
"""
ucode_str = \
"""\
⎛1 ⎞\n\
⎜─,⎟\n\
⎝x ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2]
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
[x , -, x, y, -----------]\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
"""\
⎡ 2 ⎤\n\
⎢ 2 1 sin (θ)⎥\n\
⎢x , ─, x, y, ───────⎥\n\
⎢ x 2 ⎥\n\
⎣ cos (φ)⎦\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
(x , -, x, y, -----------)\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
"""\
⎛ 2 ⎞\n\
⎜ 2 1 sin (θ)⎟\n\
⎜x , ─, x, y, ───────⎟\n\
⎜ x 2 ⎟\n\
⎝ cos (φ)⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Tuple(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
(x , -, x, y, -----------)\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
"""\
⎛ 2 ⎞\n\
⎜ 2 1 sin (θ)⎟\n\
⎜x , ─, x, y, ───────⎟\n\
⎜ x 2 ⎟\n\
⎝ cos (φ)⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {x: sin(x)}
expr_2 = Dict({x: sin(x)})
ascii_str = \
"""\
{x: sin(x)}\
"""
ucode_str = \
"""\
{x: sin(x)}\
"""
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
expr = {1/x: 1/y, x: sin(x)**2}
expr_2 = Dict({1/x: 1/y, x: sin(x)**2})
ascii_str = \
"""\
1 1 2 \n\
{-: -, x: sin (x)}\n\
x y \
"""
ucode_str = \
"""\
⎧1 1 2 ⎫\n\
⎨─: ─, x: sin (x)⎬\n\
⎩x y ⎭\
"""
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
# There used to be a bug with pretty-printing sequences of even height.
expr = [x**2]
ascii_str = \
"""\
2 \n\
[x ]\
"""
ucode_str = \
"""\
⎡ 2⎤\n\
⎣x ⎦\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2,)
ascii_str = \
"""\
2 \n\
(x ,)\
"""
ucode_str = \
"""\
⎛ 2 ⎞\n\
⎝x ,⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Tuple(x**2)
ascii_str = \
"""\
2 \n\
(x ,)\
"""
ucode_str = \
"""\
⎛ 2 ⎞\n\
⎝x ,⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {x**2: 1}
expr_2 = Dict({x**2: 1})
ascii_str = \
"""\
2 \n\
{x : 1}\
"""
ucode_str = \
"""\
⎧ 2 ⎫\n\
⎨x : 1⎬\n\
⎩ ⎭\
"""
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
def test_any_object_in_sequence():
# Cf. issue 5306
b1 = Basic()
b2 = Basic(Basic())
expr = [b2, b1]
assert pretty(expr) == "[Basic(Basic()), Basic()]"
assert upretty(expr) == "[Basic(Basic()), Basic()]"
expr = {b2, b1}
assert pretty(expr) == "{Basic(), Basic(Basic())}"
assert upretty(expr) == "{Basic(), Basic(Basic())}"
expr = {b2: b1, b1: b2}
expr2 = Dict({b2: b1, b1: b2})
assert pretty(expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert pretty(
expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert upretty(
expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert upretty(
expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
def test_print_builtin_set():
assert pretty(set()) == 'set()'
assert upretty(set()) == 'set()'
assert pretty(frozenset()) == 'frozenset()'
assert upretty(frozenset()) == 'frozenset()'
s1 = {1/x, x}
s2 = frozenset(s1)
assert pretty(s1) == \
"""\
1 \n\
{-, x}
x \
"""
assert upretty(s1) == \
"""\
⎧1 ⎫
⎨─, x⎬
⎩x ⎭\
"""
assert pretty(s2) == \
"""\
1 \n\
frozenset({-, x})
x \
"""
assert upretty(s2) == \
"""\
⎛⎧1 ⎫⎞
frozenset⎜⎨─, x⎬⎟
⎝⎩x ⎭⎠\
"""
def test_pretty_sets():
s = FiniteSet
assert pretty(s(*[x*y, x**2])) == \
"""\
2 \n\
{x , x*y}\
"""
assert pretty(s(*range(1, 6))) == "{1, 2, 3, 4, 5}"
assert pretty(s(*range(1, 13))) == "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}"
assert pretty({x*y, x**2}) == \
"""\
2 \n\
{x , x*y}\
"""
assert pretty(set(range(1, 6))) == "{1, 2, 3, 4, 5}"
assert pretty(set(range(1, 13))) == \
"{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}"
assert pretty(frozenset([x*y, x**2])) == \
"""\
2 \n\
frozenset({x , x*y})\
"""
assert pretty(frozenset(range(1, 6))) == "frozenset({1, 2, 3, 4, 5})"
assert pretty(frozenset(range(1, 13))) == \
"frozenset({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12})"
assert pretty(Range(0, 3, 1)) == '{0, 1, 2}'
ascii_str = '{0, 1, ..., 29}'
ucode_str = '{0, 1, …, 29}'
assert pretty(Range(0, 30, 1)) == ascii_str
assert upretty(Range(0, 30, 1)) == ucode_str
ascii_str = '{30, 29, ..., 2}'
ucode_str = '{30, 29, …, 2}'
assert pretty(Range(30, 1, -1)) == ascii_str
assert upretty(Range(30, 1, -1)) == ucode_str
ascii_str = '{0, 2, ...}'
ucode_str = '{0, 2, …}'
assert pretty(Range(0, oo, 2)) == ascii_str
assert upretty(Range(0, oo, 2)) == ucode_str
ascii_str = '{..., 2, 0}'
ucode_str = '{…, 2, 0}'
assert pretty(Range(oo, -2, -2)) == ascii_str
assert upretty(Range(oo, -2, -2)) == ucode_str
ascii_str = '{-2, -3, ...}'
ucode_str = '{-2, -3, …}'
assert pretty(Range(-2, -oo, -1)) == ascii_str
assert upretty(Range(-2, -oo, -1)) == ucode_str
def test_pretty_SetExpr():
iv = Interval(1, 3)
se = SetExpr(iv)
ascii_str = "SetExpr([1, 3])"
ucode_str = "SetExpr([1, 3])"
assert pretty(se) == ascii_str
assert upretty(se) == ucode_str
def test_pretty_ImageSet():
imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
ascii_str = '{x + y | x in {1, 2, 3}, y in {3, 4}}'
ucode_str = '{x + y │ x ∊ {1, 2, 3}, y ∊ {3, 4}}'
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4}))
ascii_str = '{x + y | (x, y) in {1, 2, 3} x {3, 4}}'
ucode_str = '{x + y │ (x, y) ∊ {1, 2, 3} × {3, 4}}'
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
imgset = ImageSet(Lambda(x, x**2), S.Naturals)
ascii_str = '''\
2 \n\
{x | x in Naturals}'''
ucode_str = '''\
⎧ 2 │ ⎫\n\
⎨x │ x ∊ ℕ⎬\n\
⎩ │ ⎭'''
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
# TODO: The "x in N" parts below should be centered independently of the
# 1/x**2 fraction
imgset = ImageSet(Lambda(x, 1/x**2), S.Naturals)
ascii_str = '''\
1 \n\
{-- | x in Naturals}
2 \n\
x '''
ucode_str = '''\
⎧1 │ ⎫\n\
⎪── │ x ∊ ℕ⎪\n\
⎨ 2 │ ⎬\n\
⎪x │ ⎪\n\
⎩ │ ⎭'''
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
imgset = ImageSet(Lambda((x, y), 1/(x + y)**2), S.Naturals, S.Naturals)
ascii_str = '''\
1 \n\
{-------- | x in Naturals, y in Naturals}
2 \n\
(x + y) '''
ucode_str = '''\
⎧ 1 │ ⎫
⎪──────── │ x ∊ ℕ, y ∊ ℕ⎪
⎨ 2 │ ⎬
⎪(x + y) │ ⎪
⎩ │ ⎭'''
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
def test_pretty_ConditionSet():
from sympy import ConditionSet
ascii_str = '{x | x in (-oo, oo) and sin(x) = 0}'
ucode_str = '{x │ x ∊ ℝ ∧ (sin(x) = 0)}'
assert pretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ascii_str
assert upretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ucode_str
assert pretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}'
assert upretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}'
assert pretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "EmptySet"
assert upretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "∅"
assert pretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}'
assert upretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}'
condset = ConditionSet(x, 1/x**2 > 0)
ascii_str = '''\
1 \n\
{x | -- > 0}
2 \n\
x '''
ucode_str = '''\
⎧ │ ⎛1 ⎞⎫
⎪x │ ⎜── > 0⎟⎪
⎨ │ ⎜ 2 ⎟⎬
⎪ │ ⎝x ⎠⎪
⎩ │ ⎭'''
assert pretty(condset) == ascii_str
assert upretty(condset) == ucode_str
condset = ConditionSet(x, 1/x**2 > 0, S.Reals)
ascii_str = '''\
1 \n\
{x | x in (-oo, oo) and -- > 0}
2 \n\
x '''
ucode_str = '''\
⎧ │ ⎛1 ⎞⎫
⎪x │ x ∊ ℝ ∧ ⎜── > 0⎟⎪
⎨ │ ⎜ 2 ⎟⎬
⎪ │ ⎝x ⎠⎪
⎩ │ ⎭'''
assert pretty(condset) == ascii_str
assert upretty(condset) == ucode_str
def test_pretty_ComplexRegion():
from sympy import ComplexRegion
cregion = ComplexRegion(Interval(3, 5)*Interval(4, 6))
ascii_str = '{x + y*I | x, y in [3, 5] x [4, 6]}'
ucode_str = '{x + y⋅ⅈ │ x, y ∊ [3, 5] × [4, 6]}'
assert pretty(cregion) == ascii_str
assert upretty(cregion) == ucode_str
cregion = ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)
ascii_str = '{r*(I*sin(theta) + cos(theta)) | r, theta in [0, 1] x [0, 2*pi)}'
ucode_str = '{r⋅(ⅈ⋅sin(θ) + cos(θ)) │ r, θ ∊ [0, 1] × [0, 2⋅π)}'
assert pretty(cregion) == ascii_str
assert upretty(cregion) == ucode_str
cregion = ComplexRegion(Interval(3, 1/a**2)*Interval(4, 6))
ascii_str = '''\
1 \n\
{x + y*I | x, y in [3, --] x [4, 6]}
2 \n\
a '''
ucode_str = '''\
⎧ │ ⎡ 1 ⎤ ⎫
⎪x + y⋅ⅈ │ x, y ∊ ⎢3, ──⎥ × [4, 6]⎪
⎨ │ ⎢ 2⎥ ⎬
⎪ │ ⎣ a ⎦ ⎪
⎩ │ ⎭'''
assert pretty(cregion) == ascii_str
assert upretty(cregion) == ucode_str
cregion = ComplexRegion(Interval(0, 1/a**2)*Interval(0, 2*pi), polar=True)
ascii_str = '''\
1 \n\
{r*(I*sin(theta) + cos(theta)) | r, theta in [0, --] x [0, 2*pi)}
2 \n\
a '''
ucode_str = '''\
⎧ │ ⎡ 1 ⎤ ⎫
⎪r⋅(ⅈ⋅sin(θ) + cos(θ)) │ r, θ ∊ ⎢0, ──⎥ × [0, 2⋅π)⎪
⎨ │ ⎢ 2⎥ ⎬
⎪ │ ⎣ a ⎦ ⎪
⎩ │ ⎭'''
assert pretty(cregion) == ascii_str
assert upretty(cregion) == ucode_str
def test_pretty_Union_issue_10414():
a, b = Interval(2, 3), Interval(4, 7)
ucode_str = '[2, 3] ∪ [4, 7]'
ascii_str = '[2, 3] U [4, 7]'
assert upretty(Union(a, b)) == ucode_str
assert pretty(Union(a, b)) == ascii_str
def test_pretty_Intersection_issue_10414():
x, y, z, w = symbols('x, y, z, w')
a, b = Interval(x, y), Interval(z, w)
ucode_str = '[x, y] ∩ [z, w]'
ascii_str = '[x, y] n [z, w]'
assert upretty(Intersection(a, b)) == ucode_str
assert pretty(Intersection(a, b)) == ascii_str
def test_ProductSet_exponent():
ucode_str = ' 1\n[0, 1] '
assert upretty(Interval(0, 1)**1) == ucode_str
ucode_str = ' 2\n[0, 1] '
assert upretty(Interval(0, 1)**2) == ucode_str
def test_ProductSet_parenthesis():
ucode_str = '([4, 7] × {1, 2}) ∪ ([2, 3] × [4, 7])'
a, b = Interval(2, 3), Interval(4, 7)
assert upretty(Union(a*b, b*FiniteSet(1, 2))) == ucode_str
def test_ProductSet_prod_char_issue_10413():
ascii_str = '[2, 3] x [4, 7]'
ucode_str = '[2, 3] × [4, 7]'
a, b = Interval(2, 3), Interval(4, 7)
assert pretty(a*b) == ascii_str
assert upretty(a*b) == ucode_str
def test_pretty_sequences():
s1 = SeqFormula(a**2, (0, oo))
s2 = SeqPer((1, 2))
ascii_str = '[0, 1, 4, 9, ...]'
ucode_str = '[0, 1, 4, 9, …]'
assert pretty(s1) == ascii_str
assert upretty(s1) == ucode_str
ascii_str = '[1, 2, 1, 2, ...]'
ucode_str = '[1, 2, 1, 2, …]'
assert pretty(s2) == ascii_str
assert upretty(s2) == ucode_str
s3 = SeqFormula(a**2, (0, 2))
s4 = SeqPer((1, 2), (0, 2))
ascii_str = '[0, 1, 4]'
ucode_str = '[0, 1, 4]'
assert pretty(s3) == ascii_str
assert upretty(s3) == ucode_str
ascii_str = '[1, 2, 1]'
ucode_str = '[1, 2, 1]'
assert pretty(s4) == ascii_str
assert upretty(s4) == ucode_str
s5 = SeqFormula(a**2, (-oo, 0))
s6 = SeqPer((1, 2), (-oo, 0))
ascii_str = '[..., 9, 4, 1, 0]'
ucode_str = '[…, 9, 4, 1, 0]'
assert pretty(s5) == ascii_str
assert upretty(s5) == ucode_str
ascii_str = '[..., 2, 1, 2, 1]'
ucode_str = '[…, 2, 1, 2, 1]'
assert pretty(s6) == ascii_str
assert upretty(s6) == ucode_str
ascii_str = '[1, 3, 5, 11, ...]'
ucode_str = '[1, 3, 5, 11, …]'
assert pretty(SeqAdd(s1, s2)) == ascii_str
assert upretty(SeqAdd(s1, s2)) == ucode_str
ascii_str = '[1, 3, 5]'
ucode_str = '[1, 3, 5]'
assert pretty(SeqAdd(s3, s4)) == ascii_str
assert upretty(SeqAdd(s3, s4)) == ucode_str
ascii_str = '[..., 11, 5, 3, 1]'
ucode_str = '[…, 11, 5, 3, 1]'
assert pretty(SeqAdd(s5, s6)) == ascii_str
assert upretty(SeqAdd(s5, s6)) == ucode_str
ascii_str = '[0, 2, 4, 18, ...]'
ucode_str = '[0, 2, 4, 18, …]'
assert pretty(SeqMul(s1, s2)) == ascii_str
assert upretty(SeqMul(s1, s2)) == ucode_str
ascii_str = '[0, 2, 4]'
ucode_str = '[0, 2, 4]'
assert pretty(SeqMul(s3, s4)) == ascii_str
assert upretty(SeqMul(s3, s4)) == ucode_str
ascii_str = '[..., 18, 4, 2, 0]'
ucode_str = '[…, 18, 4, 2, 0]'
assert pretty(SeqMul(s5, s6)) == ascii_str
assert upretty(SeqMul(s5, s6)) == ucode_str
# Sequences with symbolic limits, issue 12629
s7 = SeqFormula(a**2, (a, 0, x))
raises(NotImplementedError, lambda: pretty(s7))
raises(NotImplementedError, lambda: upretty(s7))
b = Symbol('b')
s8 = SeqFormula(b*a**2, (a, 0, 2))
ascii_str = '[0, b, 4*b]'
ucode_str = '[0, b, 4⋅b]'
assert pretty(s8) == ascii_str
assert upretty(s8) == ucode_str
def test_pretty_FourierSeries():
f = fourier_series(x, (x, -pi, pi))
ascii_str = \
"""\
2*sin(3*x) \n\
2*sin(x) - sin(2*x) + ---------- + ...\n\
3 \
"""
ucode_str = \
"""\
2⋅sin(3⋅x) \n\
2⋅sin(x) - sin(2⋅x) + ────────── + …\n\
3 \
"""
assert pretty(f) == ascii_str
assert upretty(f) == ucode_str
def test_pretty_FormalPowerSeries():
f = fps(log(1 + x))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ -k k \n\
\\ -(-1) *x \n\
/ -----------\n\
/ k \n\
/___, \n\
k = 1 \
"""
ucode_str = \
"""\
∞ \n\
____ \n\
╲ \n\
╲ -k k \n\
╲ -(-1) ⋅x \n\
╱ ───────────\n\
╱ k \n\
╱ \n\
‾‾‾‾ \n\
k = 1 \
"""
assert pretty(f) == ascii_str
assert upretty(f) == ucode_str
def test_pretty_limits():
expr = Limit(x, x, oo)
ascii_str = \
"""\
lim x\n\
x->oo \
"""
ucode_str = \
"""\
lim x\n\
x─→∞ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x**2, x, 0)
ascii_str = \
"""\
2\n\
lim x \n\
x->0+ \
"""
ucode_str = \
"""\
2\n\
lim x \n\
x─→0⁺ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(1/x, x, 0)
ascii_str = \
"""\
1\n\
lim -\n\
x->0+x\
"""
ucode_str = \
"""\
1\n\
lim ─\n\
x─→0⁺x\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x)/x, x, 0)
ascii_str = \
"""\
/sin(x)\\\n\
lim |------|\n\
x->0+\\ x /\
"""
ucode_str = \
"""\
⎛sin(x)⎞\n\
lim ⎜──────⎟\n\
x─→0⁺⎝ x ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x)/x, x, 0, "-")
ascii_str = \
"""\
/sin(x)\\\n\
lim |------|\n\
x->0-\\ x /\
"""
ucode_str = \
"""\
⎛sin(x)⎞\n\
lim ⎜──────⎟\n\
x─→0⁻⎝ x ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x + sin(x), x, 0)
ascii_str = \
"""\
lim (x + sin(x))\n\
x->0+ \
"""
ucode_str = \
"""\
lim (x + sin(x))\n\
x─→0⁺ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x, x, 0)**2
ascii_str = \
"""\
2\n\
/ lim x\\ \n\
\\x->0+ / \
"""
ucode_str = \
"""\
2\n\
⎛ lim x⎞ \n\
⎝x─→0⁺ ⎠ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x*Limit(y/2,y,0), x, 0)
ascii_str = \
"""\
/ /y\\\\\n\
lim |x* lim |-||\n\
x->0+\\ y->0+\\2//\
"""
ucode_str = \
"""\
⎛ ⎛y⎞⎞\n\
lim ⎜x⋅ lim ⎜─⎟⎟\n\
x─→0⁺⎝ y─→0⁺⎝2⎠⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*Limit(x*Limit(y/2,y,0), x, 0)
ascii_str = \
"""\
/ /y\\\\\n\
2* lim |x* lim |-||\n\
x->0+\\ y->0+\\2//\
"""
ucode_str = \
"""\
⎛ ⎛y⎞⎞\n\
2⋅ lim ⎜x⋅ lim ⎜─⎟⎟\n\
x─→0⁺⎝ y─→0⁺⎝2⎠⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x), x, 0, dir='+-')
ascii_str = \
"""\
lim sin(x)\n\
x->0 \
"""
ucode_str = \
"""\
lim sin(x)\n\
x─→0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_ComplexRootOf():
expr = rootof(x**5 + 11*x - 2, 0)
ascii_str = \
"""\
/ 5 \\\n\
CRootOf\\x + 11*x - 2, 0/\
"""
ucode_str = \
"""\
⎛ 5 ⎞\n\
CRootOf⎝x + 11⋅x - 2, 0⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_RootSum():
expr = RootSum(x**5 + 11*x - 2, auto=False)
ascii_str = \
"""\
/ 5 \\\n\
RootSum\\x + 11*x - 2/\
"""
ucode_str = \
"""\
⎛ 5 ⎞\n\
RootSum⎝x + 11⋅x - 2⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = RootSum(x**5 + 11*x - 2, Lambda(z, exp(z)))
ascii_str = \
"""\
/ 5 z\\\n\
RootSum\\x + 11*x - 2, z -> e /\
"""
ucode_str = \
"""\
⎛ 5 z⎞\n\
RootSum⎝x + 11⋅x - 2, z ↦ ℯ ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_GroebnerBasis():
expr = groebner([], x, y)
ascii_str = \
"""\
GroebnerBasis([], x, y, domain=ZZ, order=lex)\
"""
ucode_str = \
"""\
GroebnerBasis([], x, y, domain=ℤ, order=lex)\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
expr = groebner(F, x, y, order='grlex')
ascii_str = \
"""\
/[ 2 2 ] \\\n\
GroebnerBasis\\[x - x - 3*y + 1, y - 2*x + y - 1], x, y, domain=ZZ, order=grlex/\
"""
ucode_str = \
"""\
⎛⎡ 2 2 ⎤ ⎞\n\
GroebnerBasis⎝⎣x - x - 3⋅y + 1, y - 2⋅x + y - 1⎦, x, y, domain=ℤ, order=grlex⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = expr.fglm('lex')
ascii_str = \
"""\
/[ 2 4 3 2 ] \\\n\
GroebnerBasis\\[2*x - y - y + 1, y + 2*y - 3*y - 16*y + 7], x, y, domain=ZZ, order=lex/\
"""
ucode_str = \
"""\
⎛⎡ 2 4 3 2 ⎤ ⎞\n\
GroebnerBasis⎝⎣2⋅x - y - y + 1, y + 2⋅y - 3⋅y - 16⋅y + 7⎦, x, y, domain=ℤ, order=lex⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_UniversalSet():
assert pretty(S.UniversalSet) == "UniversalSet"
assert upretty(S.UniversalSet) == '𝕌'
def test_pretty_Boolean():
expr = Not(x, evaluate=False)
assert pretty(expr) == "Not(x)"
assert upretty(expr) == "¬x"
expr = And(x, y)
assert pretty(expr) == "And(x, y)"
assert upretty(expr) == "x ∧ y"
expr = Or(x, y)
assert pretty(expr) == "Or(x, y)"
assert upretty(expr) == "x ∨ y"
syms = symbols('a:f')
expr = And(*syms)
assert pretty(expr) == "And(a, b, c, d, e, f)"
assert upretty(expr) == "a ∧ b ∧ c ∧ d ∧ e ∧ f"
expr = Or(*syms)
assert pretty(expr) == "Or(a, b, c, d, e, f)"
assert upretty(expr) == "a ∨ b ∨ c ∨ d ∨ e ∨ f"
expr = Xor(x, y, evaluate=False)
assert pretty(expr) == "Xor(x, y)"
assert upretty(expr) == "x ⊻ y"
expr = Nand(x, y, evaluate=False)
assert pretty(expr) == "Nand(x, y)"
assert upretty(expr) == "x ⊼ y"
expr = Nor(x, y, evaluate=False)
assert pretty(expr) == "Nor(x, y)"
assert upretty(expr) == "x ⊽ y"
expr = Implies(x, y, evaluate=False)
assert pretty(expr) == "Implies(x, y)"
assert upretty(expr) == "x → y"
# don't sort args
expr = Implies(y, x, evaluate=False)
assert pretty(expr) == "Implies(y, x)"
assert upretty(expr) == "y → x"
expr = Equivalent(x, y, evaluate=False)
assert pretty(expr) == "Equivalent(x, y)"
assert upretty(expr) == "x ⇔ y"
expr = Equivalent(y, x, evaluate=False)
assert pretty(expr) == "Equivalent(x, y)"
assert upretty(expr) == "x ⇔ y"
def test_pretty_Domain():
expr = FF(23)
assert pretty(expr) == "GF(23)"
assert upretty(expr) == "ℤ₂₃"
expr = ZZ
assert pretty(expr) == "ZZ"
assert upretty(expr) == "ℤ"
expr = QQ
assert pretty(expr) == "QQ"
assert upretty(expr) == "ℚ"
expr = RR
assert pretty(expr) == "RR"
assert upretty(expr) == "ℝ"
expr = QQ[x]
assert pretty(expr) == "QQ[x]"
assert upretty(expr) == "ℚ[x]"
expr = QQ[x, y]
assert pretty(expr) == "QQ[x, y]"
assert upretty(expr) == "ℚ[x, y]"
expr = ZZ.frac_field(x)
assert pretty(expr) == "ZZ(x)"
assert upretty(expr) == "ℤ(x)"
expr = ZZ.frac_field(x, y)
assert pretty(expr) == "ZZ(x, y)"
assert upretty(expr) == "ℤ(x, y)"
expr = QQ.poly_ring(x, y, order=grlex)
assert pretty(expr) == "QQ[x, y, order=grlex]"
assert upretty(expr) == "ℚ[x, y, order=grlex]"
expr = QQ.poly_ring(x, y, order=ilex)
assert pretty(expr) == "QQ[x, y, order=ilex]"
assert upretty(expr) == "ℚ[x, y, order=ilex]"
def test_pretty_prec():
assert xpretty(S("0.3"), full_prec=True, wrap_line=False) == "0.300000000000000"
assert xpretty(S("0.3"), full_prec="auto", wrap_line=False) == "0.300000000000000"
assert xpretty(S("0.3"), full_prec=False, wrap_line=False) == "0.3"
assert xpretty(S("0.3")*x, full_prec=True, use_unicode=False, wrap_line=False) in [
"0.300000000000000*x",
"x*0.300000000000000"
]
assert xpretty(S("0.3")*x, full_prec="auto", use_unicode=False, wrap_line=False) in [
"0.3*x",
"x*0.3"
]
assert xpretty(S("0.3")*x, full_prec=False, use_unicode=False, wrap_line=False) in [
"0.3*x",
"x*0.3"
]
def test_pprint():
import sys
from io import StringIO
fd = StringIO()
sso = sys.stdout
sys.stdout = fd
try:
pprint(pi, use_unicode=False, wrap_line=False)
finally:
sys.stdout = sso
assert fd.getvalue() == 'pi\n'
def test_pretty_class():
"""Test that the printer dispatcher correctly handles classes."""
class C:
pass # C has no .__class__ and this was causing problems
class D:
pass
assert pretty( C ) == str( C )
assert pretty( D ) == str( D )
def test_pretty_no_wrap_line():
huge_expr = 0
for i in range(20):
huge_expr += i*sin(i + x)
assert xpretty(huge_expr ).find('\n') != -1
assert xpretty(huge_expr, wrap_line=False).find('\n') == -1
def test_settings():
raises(TypeError, lambda: pretty(S(4), method="garbage"))
def test_pretty_sum():
from sympy.abc import x, a, b, k, m, n
expr = Sum(k**k, (k, 0, n))
ascii_str = \
"""\
n \n\
___ \n\
\\ ` \n\
\\ k\n\
/ k \n\
/__, \n\
k = 0 \
"""
ucode_str = \
"""\
n \n\
___ \n\
╲ \n\
╲ k\n\
╱ k \n\
╱ \n\
‾‾‾ \n\
k = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**k, (k, oo, n))
ascii_str = \
"""\
n \n\
___ \n\
\\ ` \n\
\\ k\n\
/ k \n\
/__, \n\
k = oo \
"""
ucode_str = \
"""\
n \n\
___ \n\
╲ \n\
╲ k\n\
╱ k \n\
╱ \n\
‾‾‾ \n\
k = ∞ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (k, 0, n**n))
ascii_str = \
"""\
n \n\
n \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
"""\
n \n\
n \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(
Integral(x**n, (x, -oo, oo))), (k, 0, Integral(x**x, (x, -oo, oo))))
ascii_str = \
"""\
oo \n\
/ \n\
| \n\
| x \n\
| x dx \n\
| \n\
/ \n\
-oo \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
"""\
∞ \n\
⌠ \n\
⎮ x \n\
⎮ x dx \n\
⌡ \n\
-∞ \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (
k, x + n + x**2 + n**2 + (x/n) + (1/x), Integral(x**x, (x, -oo, oo))))
ascii_str = \
"""\
oo \n\
/ \n\
| \n\
| x \n\
| x dx \n\
| \n\
/ \n\
-oo \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
2 2 1 x \n\
k = n + n + x + x + - + - \n\
x n \
"""
ucode_str = \
"""\
∞ \n\
⌠ \n\
⎮ x \n\
⎮ x dx \n\
⌡ \n\
-∞ \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
2 2 1 x \n\
k = n + n + x + x + ─ + ─ \n\
x n \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(
Integral(x**n, (x, -oo, oo))), (k, 0, x + n + x**2 + n**2 + (x/n) + (1/x)))
ascii_str = \
"""\
2 2 1 x \n\
n + n + x + x + - + - \n\
x n \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
"""\
2 2 1 x \n\
n + n + x + x + ─ + ─ \n\
x n \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x, (x, 0, oo))
ascii_str = \
"""\
oo \n\
__ \n\
\\ ` \n\
) x\n\
/_, \n\
x = 0 \
"""
ucode_str = \
"""\
∞ \n\
___ \n\
╲ \n\
╲ \n\
╱ x\n\
╱ \n\
‾‾‾ \n\
x = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x**2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
___ \n\
\\ ` \n\
\\ 2\n\
/ x \n\
/__, \n\
x = 0 \
"""
ucode_str = \
"""\
∞ \n\
___ \n\
╲ \n\
╲ 2\n\
╱ x \n\
╱ \n\
‾‾‾ \n\
x = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x/2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
___ \n\
\\ ` \n\
\\ x\n\
) -\n\
/ 2\n\
/__, \n\
x = 0 \
"""
ucode_str = \
"""\
∞ \n\
____ \n\
╲ \n\
╲ \n\
╲ x\n\
╱ ─\n\
╱ 2\n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x**3/2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ 3\n\
\\ x \n\
/ --\n\
/ 2 \n\
/___, \n\
x = 0 \
"""
ucode_str = \
"""\
∞ \n\
____ \n\
╲ \n\
╲ 3\n\
╲ x \n\
╱ ──\n\
╱ 2 \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum((x**3*y**(x/2))**n, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ n\n\
\\ / x\\ \n\
) | -| \n\
/ | 3 2| \n\
/ \\x *y / \n\
/___, \n\
x = 0 \
"""
ucode_str = \
"""\
∞ \n\
_____ \n\
╲ \n\
╲ \n\
╲ n\n\
╲ ⎛ x⎞ \n\
╱ ⎜ ─⎟ \n\
╱ ⎜ 3 2⎟ \n\
╱ ⎝x ⋅y ⎠ \n\
╱ \n\
‾‾‾‾‾ \n\
x = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/x**2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ 1 \n\
\\ --\n\
/ 2\n\
/ x \n\
/___, \n\
x = 0 \
"""
ucode_str = \
"""\
∞ \n\
____ \n\
╲ \n\
╲ 1 \n\
╲ ──\n\
╱ 2\n\
╱ x \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/y**(a/b), (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ -a \n\
\\ ---\n\
/ b \n\
/ y \n\
/___, \n\
x = 0 \
"""
ucode_str = \
"""\
∞ \n\
____ \n\
╲ \n\
╲ -a \n\
╲ ───\n\
╱ b \n\
╱ y \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/y**(a/b), (x, 0, oo), (y, 1, 2))
ascii_str = \
"""\
2 oo \n\
____ ____ \n\
\\ ` \\ ` \n\
\\ \\ -a\n\
\\ \\ --\n\
/ / b \n\
/ / y \n\
/___, /___, \n\
y = 1 x = 0 \
"""
ucode_str = \
"""\
2 ∞ \n\
____ ____ \n\
╲ ╲ \n\
╲ ╲ -a\n\
╲ ╲ ──\n\
╱ ╱ b \n\
╱ ╱ y \n\
╱ ╱ \n\
‾‾‾‾ ‾‾‾‾ \n\
y = 1 x = 0 \
"""
expr = Sum(1/(1 + 1/(
1 + 1/k)) + 1, (k, 111, 1 + 1/n), (k, 1/(1 + m), oo)) + 1/(1 + 1/k)
ascii_str = \
"""\
1 \n\
1 + - \n\
oo n \n\
_____ _____ \n\
\\ ` \\ ` \n\
\\ \\ / 1 \\ \n\
\\ \\ |1 + ---------| \n\
\\ \\ | 1 | 1 \n\
) ) | 1 + -----| + -----\n\
/ / | 1| 1\n\
/ / | 1 + -| 1 + -\n\
/ / \\ k/ k\n\
/____, /____, \n\
1 k = 111 \n\
k = ----- \n\
m + 1 \
"""
ucode_str = \
"""\
1 \n\
1 + ─ \n\
∞ n \n\
______ ______ \n\
╲ ╲ \n\
╲ ╲ \n\
╲ ╲ ⎛ 1 ⎞ \n\
╲ ╲ ⎜1 + ─────────⎟ \n\
╲ ╲ ⎜ 1 ⎟ 1 \n\
╱ ╱ ⎜ 1 + ─────⎟ + ─────\n\
╱ ╱ ⎜ 1⎟ 1\n\
╱ ╱ ⎜ 1 + ─⎟ 1 + ─\n\
╱ ╱ ⎝ k⎠ k\n\
╱ ╱ \n\
‾‾‾‾‾‾ ‾‾‾‾‾‾ \n\
1 k = 111 \n\
k = ───── \n\
m + 1 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_units():
expr = joule
ascii_str1 = \
"""\
2\n\
kilogram*meter \n\
---------------\n\
2 \n\
second \
"""
unicode_str1 = \
"""\
2\n\
kilogram⋅meter \n\
───────────────\n\
2 \n\
second \
"""
ascii_str2 = \
"""\
2\n\
3*x*y*kilogram*meter \n\
---------------------\n\
2 \n\
second \
"""
unicode_str2 = \
"""\
2\n\
3⋅x⋅y⋅kilogram⋅meter \n\
─────────────────────\n\
2 \n\
second \
"""
from sympy.physics.units import kg, m, s
assert upretty(expr) == "joule"
assert pretty(expr) == "joule"
assert upretty(expr.convert_to(kg*m**2/s**2)) == unicode_str1
assert pretty(expr.convert_to(kg*m**2/s**2)) == ascii_str1
assert upretty(3*kg*x*m**2*y/s**2) == unicode_str2
assert pretty(3*kg*x*m**2*y/s**2) == ascii_str2
def test_pretty_Subs():
f = Function('f')
expr = Subs(f(x), x, ph**2)
ascii_str = \
"""\
(f(x))| 2\n\
|x=phi \
"""
unicode_str = \
"""\
(f(x))│ 2\n\
│x=φ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Subs(f(x).diff(x), x, 0)
ascii_str = \
"""\
/d \\| \n\
|--(f(x))|| \n\
\\dx /|x=0\
"""
unicode_str = \
"""\
⎛d ⎞│ \n\
⎜──(f(x))⎟│ \n\
⎝dx ⎠│x=0\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2)))
ascii_str = \
"""\
/d \\| \n\
|--(f(x))|| \n\
|dx || \n\
|--------|| \n\
\\ y /|x=0, y=1/2\
"""
unicode_str = \
"""\
⎛d ⎞│ \n\
⎜──(f(x))⎟│ \n\
⎜dx ⎟│ \n\
⎜────────⎟│ \n\
⎝ y ⎠│x=0, y=1/2\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
def test_gammas():
assert upretty(lowergamma(x, y)) == "γ(x, y)"
assert upretty(uppergamma(x, y)) == "Γ(x, y)"
assert xpretty(gamma(x), use_unicode=True) == 'Γ(x)'
assert xpretty(gamma, use_unicode=True) == 'Γ'
assert xpretty(symbols('gamma', cls=Function)(x), use_unicode=True) == 'γ(x)'
assert xpretty(symbols('gamma', cls=Function), use_unicode=True) == 'γ'
def test_beta():
assert xpretty(beta(x,y), use_unicode=True) == 'Β(x, y)'
assert xpretty(beta(x,y), use_unicode=False) == 'B(x, y)'
assert xpretty(beta, use_unicode=True) == 'Β'
assert xpretty(beta, use_unicode=False) == 'B'
mybeta = Function('beta')
assert xpretty(mybeta(x), use_unicode=True) == 'β(x)'
assert xpretty(mybeta(x, y, z), use_unicode=False) == 'beta(x, y, z)'
assert xpretty(mybeta, use_unicode=True) == 'β'
# test that notation passes to subclasses of the same name only
def test_function_subclass_different_name():
class mygamma(gamma):
pass
assert xpretty(mygamma, use_unicode=True) == r"mygamma"
assert xpretty(mygamma(x), use_unicode=True) == r"mygamma(x)"
def test_SingularityFunction():
assert xpretty(SingularityFunction(x, 0, n), use_unicode=True) == (
"""\
n\n\
<x> \
""")
assert xpretty(SingularityFunction(x, 1, n), use_unicode=True) == (
"""\
n\n\
<x - 1> \
""")
assert xpretty(SingularityFunction(x, -1, n), use_unicode=True) == (
"""\
n\n\
<x + 1> \
""")
assert xpretty(SingularityFunction(x, a, n), use_unicode=True) == (
"""\
n\n\
<-a + x> \
""")
assert xpretty(SingularityFunction(x, y, n), use_unicode=True) == (
"""\
n\n\
<x - y> \
""")
assert xpretty(SingularityFunction(x, 0, n), use_unicode=False) == (
"""\
n\n\
<x> \
""")
assert xpretty(SingularityFunction(x, 1, n), use_unicode=False) == (
"""\
n\n\
<x - 1> \
""")
assert xpretty(SingularityFunction(x, -1, n), use_unicode=False) == (
"""\
n\n\
<x + 1> \
""")
assert xpretty(SingularityFunction(x, a, n), use_unicode=False) == (
"""\
n\n\
<-a + x> \
""")
assert xpretty(SingularityFunction(x, y, n), use_unicode=False) == (
"""\
n\n\
<x - y> \
""")
def test_deltas():
assert xpretty(DiracDelta(x), use_unicode=True) == 'δ(x)'
assert xpretty(DiracDelta(x, 1), use_unicode=True) == \
"""\
(1) \n\
δ (x)\
"""
assert xpretty(x*DiracDelta(x, 1), use_unicode=True) == \
"""\
(1) \n\
x⋅δ (x)\
"""
def test_hyper():
expr = hyper((), (), z)
ucode_str = \
"""\
┌─ ⎛ │ ⎞\n\
├─ ⎜ │ z⎟\n\
0╵ 0 ⎝ │ ⎠\
"""
ascii_str = \
"""\
_ \n\
|_ / | \\\n\
| | | z|\n\
0 0 \\ | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((), (1,), x)
ucode_str = \
"""\
┌─ ⎛ │ ⎞\n\
├─ ⎜ │ x⎟\n\
0╵ 1 ⎝1 │ ⎠\
"""
ascii_str = \
"""\
_ \n\
|_ / | \\\n\
| | | x|\n\
0 1 \\1 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper([2], [1], x)
ucode_str = \
"""\
┌─ ⎛2 │ ⎞\n\
├─ ⎜ │ x⎟\n\
1╵ 1 ⎝1 │ ⎠\
"""
ascii_str = \
"""\
_ \n\
|_ /2 | \\\n\
| | | x|\n\
1 1 \\1 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((pi/3, -2*k), (3, 4, 5, -3), x)
ucode_str = \
"""\
⎛ π │ ⎞\n\
┌─ ⎜ ─, -2⋅k │ ⎟\n\
├─ ⎜ 3 │ x⎟\n\
2╵ 4 ⎜ │ ⎟\n\
⎝3, 4, 5, -3 │ ⎠\
"""
ascii_str = \
"""\
\n\
_ / pi | \\\n\
|_ | --, -2*k | |\n\
| | 3 | x|\n\
2 4 | | |\n\
\\3, 4, 5, -3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((pi, S('2/3'), -2*k), (3, 4, 5, -3), x**2)
ucode_str = \
"""\
┌─ ⎛π, 2/3, -2⋅k │ 2⎞\n\
├─ ⎜ │ x ⎟\n\
3╵ 4 ⎝3, 4, 5, -3 │ ⎠\
"""
ascii_str = \
"""\
_ \n\
|_ /pi, 2/3, -2*k | 2\\\n\
| | | x |\n\
3 4 \\ 3, 4, 5, -3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper([1, 2], [3, 4], 1/(1/(1/(1/x + 1) + 1) + 1))
ucode_str = \
"""\
⎛ │ 1 ⎞\n\
⎜ │ ─────────────⎟\n\
⎜ │ 1 ⎟\n\
┌─ ⎜1, 2 │ 1 + ─────────⎟\n\
├─ ⎜ │ 1 ⎟\n\
2╵ 2 ⎜3, 4 │ 1 + ─────⎟\n\
⎜ │ 1⎟\n\
⎜ │ 1 + ─⎟\n\
⎝ │ x⎠\
"""
ascii_str = \
"""\
\n\
/ | 1 \\\n\
| | -------------|\n\
_ | | 1 |\n\
|_ |1, 2 | 1 + ---------|\n\
| | | 1 |\n\
2 2 |3, 4 | 1 + -----|\n\
| | 1|\n\
| | 1 + -|\n\
\\ | x/\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_meijerg():
expr = meijerg([pi, pi, x], [1], [0, 1], [1, 2, 3], z)
ucode_str = \
"""\
╭─╮2, 3 ⎛π, π, x 1 │ ⎞\n\
│╶┐ ⎜ │ z⎟\n\
╰─╯4, 5 ⎝ 0, 1 1, 2, 3 │ ⎠\
"""
ascii_str = \
"""\
__2, 3 /pi, pi, x 1 | \\\n\
/__ | | z|\n\
\\_|4, 5 \\ 0, 1 1, 2, 3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = meijerg([1, pi/7], [2, pi, 5], [], [], z**2)
ucode_str = \
"""\
⎛ π │ ⎞\n\
╭─╮0, 2 ⎜1, ─ 2, π, 5 │ 2⎟\n\
│╶┐ ⎜ 7 │ z ⎟\n\
╰─╯5, 0 ⎜ │ ⎟\n\
⎝ │ ⎠\
"""
ascii_str = \
"""\
/ pi | \\\n\
__0, 2 |1, -- 2, pi, 5 | 2|\n\
/__ | 7 | z |\n\
\\_|5, 0 | | |\n\
\\ | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ucode_str = \
"""\
╭─╮ 1, 10 ⎛1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 │ ⎞\n\
│╶┐ ⎜ │ z⎟\n\
╰─╯11, 2 ⎝ 1 1 │ ⎠\
"""
ascii_str = \
"""\
__ 1, 10 /1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 | \\\n\
/__ | | z|\n\
\\_|11, 2 \\ 1 1 | /\
"""
expr = meijerg([1]*10, [1], [1], [1], z)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = meijerg([1, 2, ], [4, 3], [3], [4, 5], 1/(1/(1/(1/x + 1) + 1) + 1))
ucode_str = \
"""\
⎛ │ 1 ⎞\n\
⎜ │ ─────────────⎟\n\
⎜ │ 1 ⎟\n\
╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟\n\
│╶┐ ⎜ │ 1 ⎟\n\
╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟\n\
⎜ │ 1⎟\n\
⎜ │ 1 + ─⎟\n\
⎝ │ x⎠\
"""
ascii_str = \
"""\
/ | 1 \\\n\
| | -------------|\n\
| | 1 |\n\
__1, 2 |1, 2 4, 3 | 1 + ---------|\n\
/__ | | 1 |\n\
\\_|4, 3 | 3 4, 5 | 1 + -----|\n\
| | 1|\n\
| | 1 + -|\n\
\\ | x/\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(expr, x)
ucode_str = \
"""\
⌠ \n\
⎮ ⎛ │ 1 ⎞ \n\
⎮ ⎜ │ ─────────────⎟ \n\
⎮ ⎜ │ 1 ⎟ \n\
⎮ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟ \n\
⎮ │╶┐ ⎜ │ 1 ⎟ dx\n\
⎮ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟ \n\
⎮ ⎜ │ 1⎟ \n\
⎮ ⎜ │ 1 + ─⎟ \n\
⎮ ⎝ │ x⎠ \n\
⌡ \
"""
ascii_str = \
"""\
/ \n\
| \n\
| / | 1 \\ \n\
| | | -------------| \n\
| | | 1 | \n\
| __1, 2 |1, 2 4, 3 | 1 + ---------| \n\
| /__ | | 1 | dx\n\
| \\_|4, 3 | 3 4, 5 | 1 + -----| \n\
| | | 1| \n\
| | | 1 + -| \n\
| \\ | x/ \n\
| \n\
/ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
expr = A*B*C**-1
ascii_str = \
"""\
-1\n\
A*B*C \
"""
ucode_str = \
"""\
-1\n\
A⋅B⋅C \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = C**-1*A*B
ascii_str = \
"""\
-1 \n\
C *A*B\
"""
ucode_str = \
"""\
-1 \n\
C ⋅A⋅B\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A*C**-1*B
ascii_str = \
"""\
-1 \n\
A*C *B\
"""
ucode_str = \
"""\
-1 \n\
A⋅C ⋅B\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A*C**-1*B/x
ascii_str = \
"""\
-1 \n\
A*C *B\n\
-------\n\
x \
"""
ucode_str = \
"""\
-1 \n\
A⋅C ⋅B\n\
───────\n\
x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_special_functions():
x, y = symbols("x y")
# atan2
expr = atan2(y/sqrt(200), sqrt(x))
ascii_str = \
"""\
/ ___ \\\n\
|\\/ 2 *y ___|\n\
atan2|-------, \\/ x |\n\
\\ 20 /\
"""
ucode_str = \
"""\
⎛√2⋅y ⎞\n\
atan2⎜────, √x⎟\n\
⎝ 20 ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_geometry():
e = Segment((0, 1), (0, 2))
assert pretty(e) == 'Segment2D(Point2D(0, 1), Point2D(0, 2))'
e = Ray((1, 1), angle=4.02*pi)
assert pretty(e) == 'Ray2D(Point2D(1, 1), Point2D(2, tan(pi/50) + 1))'
def test_expint():
expr = Ei(x)
string = 'Ei(x)'
assert pretty(expr) == string
assert upretty(expr) == string
expr = expint(1, z)
ucode_str = "E₁(z)"
ascii_str = "expint(1, z)"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
assert pretty(Shi(x)) == 'Shi(x)'
assert pretty(Si(x)) == 'Si(x)'
assert pretty(Ci(x)) == 'Ci(x)'
assert pretty(Chi(x)) == 'Chi(x)'
assert upretty(Shi(x)) == 'Shi(x)'
assert upretty(Si(x)) == 'Si(x)'
assert upretty(Ci(x)) == 'Ci(x)'
assert upretty(Chi(x)) == 'Chi(x)'
def test_elliptic_functions():
ascii_str = \
"""\
/ 1 \\\n\
K|-----|\n\
\\z + 1/\
"""
ucode_str = \
"""\
⎛ 1 ⎞\n\
K⎜─────⎟\n\
⎝z + 1⎠\
"""
expr = elliptic_k(1/(z + 1))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ | 1 \\\n\
F|1|-----|\n\
\\ |z + 1/\
"""
ucode_str = \
"""\
⎛ │ 1 ⎞\n\
F⎜1│─────⎟\n\
⎝ │z + 1⎠\
"""
expr = elliptic_f(1, 1/(1 + z))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ 1 \\\n\
E|-----|\n\
\\z + 1/\
"""
ucode_str = \
"""\
⎛ 1 ⎞\n\
E⎜─────⎟\n\
⎝z + 1⎠\
"""
expr = elliptic_e(1/(z + 1))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ | 1 \\\n\
E|1|-----|\n\
\\ |z + 1/\
"""
ucode_str = \
"""\
⎛ │ 1 ⎞\n\
E⎜1│─────⎟\n\
⎝ │z + 1⎠\
"""
expr = elliptic_e(1, 1/(1 + z))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ |4\\\n\
Pi|3|-|\n\
\\ |x/\
"""
ucode_str = \
"""\
⎛ │4⎞\n\
Π⎜3│─⎟\n\
⎝ │x⎠\
"""
expr = elliptic_pi(3, 4/x)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ 4| \\\n\
Pi|3; -|6|\n\
\\ x| /\
"""
ucode_str = \
"""\
⎛ 4│ ⎞\n\
Π⎜3; ─│6⎟\n\
⎝ x│ ⎠\
"""
expr = elliptic_pi(3, 4/x, 6)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
X = Normal('x1', 0, 1)
assert upretty(where(X > 0)) == "Domain: 0 < x₁ ∧ x₁ < ∞"
D = Die('d1', 6)
assert upretty(where(D > 4)) == 'Domain: d₁ = 5 ∨ d₁ = 6'
A = Exponential('a', 1)
B = Exponential('b', 1)
assert upretty(pspace(Tuple(A, B)).domain) == \
'Domain: 0 ≤ a ∧ 0 ≤ b ∧ a < ∞ ∧ b < ∞'
def test_PrettyPoly():
F = QQ.frac_field(x, y)
R = QQ.poly_ring(x, y)
expr = F.convert(x/(x + y))
assert pretty(expr) == "x/(x + y)"
assert upretty(expr) == "x/(x + y)"
expr = R.convert(x + y)
assert pretty(expr) == "x + y"
assert upretty(expr) == "x + y"
def test_issue_6285():
assert pretty(Pow(2, -5, evaluate=False)) == '1 \n--\n 5\n2 '
assert pretty(Pow(x, (1/pi))) == \
' 1 \n'\
' --\n'\
' pi\n'\
'x '
def test_issue_6359():
assert pretty(Integral(x**2, x)**2) == \
"""\
2
/ / \\ \n\
| | | \n\
| | 2 | \n\
| | x dx| \n\
| | | \n\
\\/ / \
"""
assert upretty(Integral(x**2, x)**2) == \
"""\
2
⎛⌠ ⎞ \n\
⎜⎮ 2 ⎟ \n\
⎜⎮ x dx⎟ \n\
⎝⌡ ⎠ \
"""
assert pretty(Sum(x**2, (x, 0, 1))**2) == \
"""\
2
/ 1 \\ \n\
| ___ | \n\
| \\ ` | \n\
| \\ 2| \n\
| / x | \n\
| /__, | \n\
\\x = 0 / \
"""
assert upretty(Sum(x**2, (x, 0, 1))**2) == \
"""\
2
⎛ 1 ⎞ \n\
⎜ ___ ⎟ \n\
⎜ ╲ ⎟ \n\
⎜ ╲ 2⎟ \n\
⎜ ╱ x ⎟ \n\
⎜ ╱ ⎟ \n\
⎜ ‾‾‾ ⎟ \n\
⎝x = 0 ⎠ \
"""
assert pretty(Product(x**2, (x, 1, 2))**2) == \
"""\
2
/ 2 \\ \n\
|______ | \n\
| | | 2| \n\
| | | x | \n\
| | | | \n\
\\x = 1 / \
"""
assert upretty(Product(x**2, (x, 1, 2))**2) == \
"""\
2
⎛ 2 ⎞ \n\
⎜─┬──┬─ ⎟ \n\
⎜ │ │ 2⎟ \n\
⎜ │ │ x ⎟ \n\
⎜ │ │ ⎟ \n\
⎝x = 1 ⎠ \
"""
f = Function('f')
assert pretty(Derivative(f(x), x)**2) == \
"""\
2
/d \\ \n\
|--(f(x))| \n\
\\dx / \
"""
assert upretty(Derivative(f(x), x)**2) == \
"""\
2
⎛d ⎞ \n\
⎜──(f(x))⎟ \n\
⎝dx ⎠ \
"""
def test_issue_6739():
ascii_str = \
"""\
1 \n\
-----\n\
___\n\
\\/ x \
"""
ucode_str = \
"""\
1 \n\
──\n\
√x\
"""
assert pretty(1/sqrt(x)) == ascii_str
assert upretty(1/sqrt(x)) == ucode_str
def test_complicated_symbol_unchanged():
for symb_name in ["dexpr2_d1tau", "dexpr2^d1tau"]:
assert pretty(Symbol(symb_name)) == symb_name
def test_categories():
from sympy.categories import (Object, IdentityMorphism,
NamedMorphism, Category, Diagram, DiagramGrid)
A1 = Object("A1")
A2 = Object("A2")
A3 = Object("A3")
f1 = NamedMorphism(A1, A2, "f1")
f2 = NamedMorphism(A2, A3, "f2")
id_A1 = IdentityMorphism(A1)
K1 = Category("K1")
assert pretty(A1) == "A1"
assert upretty(A1) == "A₁"
assert pretty(f1) == "f1:A1-->A2"
assert upretty(f1) == "f₁:A₁——▶A₂"
assert pretty(id_A1) == "id:A1-->A1"
assert upretty(id_A1) == "id:A₁——▶A₁"
assert pretty(f2*f1) == "f2*f1:A1-->A3"
assert upretty(f2*f1) == "f₂∘f₁:A₁——▶A₃"
assert pretty(K1) == "K1"
assert upretty(K1) == "K₁"
# Test how diagrams are printed.
d = Diagram()
assert pretty(d) == "EmptySet"
assert upretty(d) == "∅"
d = Diagram({f1: "unique", f2: S.EmptySet})
assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \
"EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \
"EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}"
assert upretty(d) == "{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, " \
"id:A₂——▶A₂: ∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}"
d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \
"EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \
"EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" \
" ==> {f2*f1:A1-->A3: {unique}}"
assert upretty(d) == "{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, id:A₂——▶A₂: " \
"∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" \
" ══▶ {f₂∘f₁:A₁——▶A₃: {unique}}"
grid = DiagramGrid(d)
assert pretty(grid) == "A1 A2\n \nA3 "
assert upretty(grid) == "A₁ A₂\n \nA₃ "
def test_PrettyModules():
R = QQ.old_poly_ring(x, y)
F = R.free_module(2)
M = F.submodule([x, y], [1, x**2])
ucode_str = \
"""\
2\n\
ℚ[x, y] \
"""
ascii_str = \
"""\
2\n\
QQ[x, y] \
"""
assert upretty(F) == ucode_str
assert pretty(F) == ascii_str
ucode_str = \
"""\
╱ ⎡ 2⎤╲\n\
╲[x, y], ⎣1, x ⎦╱\
"""
ascii_str = \
"""\
2 \n\
<[x, y], [1, x ]>\
"""
assert upretty(M) == ucode_str
assert pretty(M) == ascii_str
I = R.ideal(x**2, y)
ucode_str = \
"""\
╱ 2 ╲\n\
╲x , y╱\
"""
ascii_str = \
"""\
2 \n\
<x , y>\
"""
assert upretty(I) == ucode_str
assert pretty(I) == ascii_str
Q = F / M
ucode_str = \
"""\
2 \n\
ℚ[x, y] \n\
─────────────────\n\
╱ ⎡ 2⎤╲\n\
╲[x, y], ⎣1, x ⎦╱\
"""
ascii_str = \
"""\
2 \n\
QQ[x, y] \n\
-----------------\n\
2 \n\
<[x, y], [1, x ]>\
"""
assert upretty(Q) == ucode_str
assert pretty(Q) == ascii_str
ucode_str = \
"""\
╱⎡ 3⎤ ╲\n\
│⎢ x ⎥ ╱ ⎡ 2⎤╲ ╱ ⎡ 2⎤╲│\n\
│⎢1, ──⎥ + ╲[x, y], ⎣1, x ⎦╱, [2, y] + ╲[x, y], ⎣1, x ⎦╱│\n\
╲⎣ 2 ⎦ ╱\
"""
ascii_str = \
"""\
3 \n\
x 2 2 \n\
<[1, --] + <[x, y], [1, x ]>, [2, y] + <[x, y], [1, x ]>>\n\
2 \
"""
def test_QuotientRing():
R = QQ.old_poly_ring(x)/[x**2 + 1]
ucode_str = \
"""\
ℚ[x] \n\
────────\n\
╱ 2 ╲\n\
╲x + 1╱\
"""
ascii_str = \
"""\
QQ[x] \n\
--------\n\
2 \n\
<x + 1>\
"""
assert upretty(R) == ucode_str
assert pretty(R) == ascii_str
ucode_str = \
"""\
╱ 2 ╲\n\
1 + ╲x + 1╱\
"""
ascii_str = \
"""\
2 \n\
1 + <x + 1>\
"""
assert upretty(R.one) == ucode_str
assert pretty(R.one) == ascii_str
def test_Homomorphism():
from sympy.polys.agca import homomorphism
R = QQ.old_poly_ring(x)
expr = homomorphism(R.free_module(1), R.free_module(1), [0])
ucode_str = \
"""\
1 1\n\
[0] : ℚ[x] ──> ℚ[x] \
"""
ascii_str = \
"""\
1 1\n\
[0] : QQ[x] --> QQ[x] \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
expr = homomorphism(R.free_module(2), R.free_module(2), [0, 0])
ucode_str = \
"""\
⎡0 0⎤ 2 2\n\
⎢ ⎥ : ℚ[x] ──> ℚ[x] \n\
⎣0 0⎦ \
"""
ascii_str = \
"""\
[0 0] 2 2\n\
[ ] : QQ[x] --> QQ[x] \n\
[0 0] \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
expr = homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0])
ucode_str = \
"""\
1\n\
1 ℚ[x] \n\
[0] : ℚ[x] ──> ─────\n\
<[x]>\
"""
ascii_str = \
"""\
1\n\
1 QQ[x] \n\
[0] : QQ[x] --> ------\n\
<[x]> \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
def test_Tr():
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert pretty(t) == r'Tr(A*B)'
assert upretty(t) == 'Tr(A⋅B)'
def test_pretty_Add():
eq = Mul(-2, x - 2, evaluate=False) + 5
assert pretty(eq) == '5 - 2*(x - 2)'
def test_issue_7179():
assert upretty(Not(Equivalent(x, y))) == 'x ⇎ y'
assert upretty(Not(Implies(x, y))) == 'x ↛ y'
def test_issue_7180():
assert upretty(Equivalent(x, y)) == 'x ⇔ y'
def test_pretty_Complement():
assert pretty(S.Reals - S.Naturals) == '(-oo, oo) \\ Naturals'
assert upretty(S.Reals - S.Naturals) == 'ℝ \\ ℕ'
assert pretty(S.Reals - S.Naturals0) == '(-oo, oo) \\ Naturals0'
assert upretty(S.Reals - S.Naturals0) == 'ℝ \\ ℕ₀'
def test_pretty_SymmetricDifference():
from sympy import SymmetricDifference, Interval
from sympy.testing.pytest import raises
assert upretty(SymmetricDifference(Interval(2,3), Interval(3,5), \
evaluate = False)) == '[2, 3] ∆ [3, 5]'
with raises(NotImplementedError):
pretty(SymmetricDifference(Interval(2,3), Interval(3,5), evaluate = False))
def test_pretty_Contains():
assert pretty(Contains(x, S.Integers)) == 'Contains(x, Integers)'
assert upretty(Contains(x, S.Integers)) == 'x ∈ ℤ'
def test_issue_8292():
from sympy.core import sympify
e = sympify('((x+x**4)/(x-1))-(2*(x-1)**4/(x-1)**4)', evaluate=False)
ucode_str = \
"""\
4 4 \n\
2⋅(x - 1) x + x\n\
- ────────── + ──────\n\
4 x - 1 \n\
(x - 1) \
"""
ascii_str = \
"""\
4 4 \n\
2*(x - 1) x + x\n\
- ---------- + ------\n\
4 x - 1 \n\
(x - 1) \
"""
assert pretty(e) == ascii_str
assert upretty(e) == ucode_str
def test_issue_4335():
y = Function('y')
expr = -y(x).diff(x)
ucode_str = \
"""\
d \n\
-──(y(x))\n\
dx \
"""
ascii_str = \
"""\
d \n\
- --(y(x))\n\
dx \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_8344():
from sympy.core import sympify
e = sympify('2*x*y**2/1**2 + 1', evaluate=False)
ucode_str = \
"""\
2 \n\
2⋅x⋅y \n\
────── + 1\n\
2 \n\
1 \
"""
assert upretty(e) == ucode_str
def test_issue_6324():
x = Pow(2, 3, evaluate=False)
y = Pow(10, -2, evaluate=False)
e = Mul(x, y, evaluate=False)
ucode_str = \
"""\
3\n\
2 \n\
───\n\
2\n\
10 \
"""
assert upretty(e) == ucode_str
def test_issue_7927():
e = sin(x/2)**cos(x/2)
ucode_str = \
"""\
⎛x⎞\n\
cos⎜─⎟\n\
⎝2⎠\n\
⎛ ⎛x⎞⎞ \n\
⎜sin⎜─⎟⎟ \n\
⎝ ⎝2⎠⎠ \
"""
assert upretty(e) == ucode_str
e = sin(x)**(S(11)/13)
ucode_str = \
"""\
11\n\
──\n\
13\n\
(sin(x)) \
"""
assert upretty(e) == ucode_str
def test_issue_6134():
from sympy.abc import lamda, t
phi = Function('phi')
e = lamda*x*Integral(phi(t)*pi*sin(pi*t), (t, 0, 1)) + lamda*x**2*Integral(phi(t)*2*pi*sin(2*pi*t), (t, 0, 1))
ucode_str = \
"""\
1 1 \n\
2 ⌠ ⌠ \n\
λ⋅x ⋅⎮ 2⋅π⋅φ(t)⋅sin(2⋅π⋅t) dt + λ⋅x⋅⎮ π⋅φ(t)⋅sin(π⋅t) dt\n\
⌡ ⌡ \n\
0 0 \
"""
assert upretty(e) == ucode_str
def test_issue_9877():
ucode_str1 = '(2, 3) ∪ ([1, 2] \\ {x})'
a, b, c = Interval(2, 3, True, True), Interval(1, 2), FiniteSet(x)
assert upretty(Union(a, Complement(b, c))) == ucode_str1
ucode_str2 = '{x} ∩ {y} ∩ ({z} \\ [1, 2])'
d, e, f, g = FiniteSet(x), FiniteSet(y), FiniteSet(z), Interval(1, 2)
assert upretty(Intersection(d, e, Complement(f, g))) == ucode_str2
def test_issue_13651():
expr1 = c + Mul(-1, a + b, evaluate=False)
assert pretty(expr1) == 'c - (a + b)'
expr2 = c + Mul(-1, a - b + d, evaluate=False)
assert pretty(expr2) == 'c - (a - b + d)'
def test_pretty_primenu():
from sympy.ntheory.factor_ import primenu
ascii_str1 = "nu(n)"
ucode_str1 = "ν(n)"
n = symbols('n', integer=True)
assert pretty(primenu(n)) == ascii_str1
assert upretty(primenu(n)) == ucode_str1
def test_pretty_primeomega():
from sympy.ntheory.factor_ import primeomega
ascii_str1 = "Omega(n)"
ucode_str1 = "Ω(n)"
n = symbols('n', integer=True)
assert pretty(primeomega(n)) == ascii_str1
assert upretty(primeomega(n)) == ucode_str1
def test_pretty_Mod():
from sympy.core import Mod
ascii_str1 = "x mod 7"
ucode_str1 = "x mod 7"
ascii_str2 = "(x + 1) mod 7"
ucode_str2 = "(x + 1) mod 7"
ascii_str3 = "2*x mod 7"
ucode_str3 = "2⋅x mod 7"
ascii_str4 = "(x mod 7) + 1"
ucode_str4 = "(x mod 7) + 1"
ascii_str5 = "2*(x mod 7)"
ucode_str5 = "2⋅(x mod 7)"
x = symbols('x', integer=True)
assert pretty(Mod(x, 7)) == ascii_str1
assert upretty(Mod(x, 7)) == ucode_str1
assert pretty(Mod(x + 1, 7)) == ascii_str2
assert upretty(Mod(x + 1, 7)) == ucode_str2
assert pretty(Mod(2 * x, 7)) == ascii_str3
assert upretty(Mod(2 * x, 7)) == ucode_str3
assert pretty(Mod(x, 7) + 1) == ascii_str4
assert upretty(Mod(x, 7) + 1) == ucode_str4
assert pretty(2 * Mod(x, 7)) == ascii_str5
assert upretty(2 * Mod(x, 7)) == ucode_str5
def test_issue_11801():
assert pretty(Symbol("")) == ""
assert upretty(Symbol("")) == ""
def test_pretty_UnevaluatedExpr():
x = symbols('x')
he = UnevaluatedExpr(1/x)
ucode_str = \
"""\
1\n\
─\n\
x\
"""
assert upretty(he) == ucode_str
ucode_str = \
"""\
2\n\
⎛1⎞ \n\
⎜─⎟ \n\
⎝x⎠ \
"""
assert upretty(he**2) == ucode_str
ucode_str = \
"""\
1\n\
1 + ─\n\
x\
"""
assert upretty(he + 1) == ucode_str
ucode_str = \
('''\
1\n\
x⋅─\n\
x\
''')
assert upretty(x*he) == ucode_str
def test_issue_10472():
M = (Matrix([[0, 0], [0, 0]]), Matrix([0, 0]))
ucode_str = \
"""\
⎛⎡0 0⎤ ⎡0⎤⎞
⎜⎢ ⎥, ⎢ ⎥⎟
⎝⎣0 0⎦ ⎣0⎦⎠\
"""
assert upretty(M) == ucode_str
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
ascii_str1 = "A_00"
ucode_str1 = "A₀₀"
assert pretty(A[0, 0]) == ascii_str1
assert upretty(A[0, 0]) == ucode_str1
ascii_str1 = "3*A_00"
ucode_str1 = "3⋅A₀₀"
assert pretty(3*A[0, 0]) == ascii_str1
assert upretty(3*A[0, 0]) == ucode_str1
ascii_str1 = "(-B + A)[0, 0]"
ucode_str1 = "(-B + A)[0, 0]"
F = C[0, 0].subs(C, A - B)
assert pretty(F) == ascii_str1
assert upretty(F) == ucode_str1
def test_issue_12675():
from sympy.vector import CoordSys3D
x, y, t, j = symbols('x y t j')
e = CoordSys3D('e')
ucode_str = \
"""\
⎛ t⎞ \n\
⎜⎛x⎞ ⎟ j_e\n\
⎜⎜─⎟ ⎟ \n\
⎝⎝y⎠ ⎠ \
"""
assert upretty((x/y)**t*e.j) == ucode_str
ucode_str = \
"""\
⎛1⎞ \n\
⎜─⎟ j_e\n\
⎝y⎠ \
"""
assert upretty((1/y)*e.j) == ucode_str
def test_MatrixSymbol_printing():
# test cases for issue #14237
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert pretty(-A*B*C) == "-A*B*C"
assert pretty(A - B) == "-B + A"
assert pretty(A*B*C - A*B - B*C) == "-A*B -B*C + A*B*C"
# issue #14814
x = MatrixSymbol('x', n, n)
y = MatrixSymbol('y*', n, n)
assert pretty(x + y) == "x + y*"
ascii_str = \
"""\
2 \n\
-2*y* -a*x\
"""
assert pretty(-a*x + -2*y*y) == ascii_str
def test_degree_printing():
expr1 = 90*degree
assert pretty(expr1) == '90°'
expr2 = x*degree
assert pretty(expr2) == 'x°'
expr3 = cos(x*degree + 90*degree)
assert pretty(expr3) == 'cos(x° + 90°)'
def test_vector_expr_pretty_printing():
A = CoordSys3D('A')
assert upretty(Cross(A.i, A.x*A.i+3*A.y*A.j)) == "(i_A)×((x_A) i_A + (3⋅y_A) j_A)"
assert upretty(x*Cross(A.i, A.j)) == 'x⋅(i_A)×(j_A)'
assert upretty(Curl(A.x*A.i + 3*A.y*A.j)) == "∇×((x_A) i_A + (3⋅y_A) j_A)"
assert upretty(Divergence(A.x*A.i + 3*A.y*A.j)) == "∇⋅((x_A) i_A + (3⋅y_A) j_A)"
assert upretty(Dot(A.i, A.x*A.i+3*A.y*A.j)) == "(i_A)⋅((x_A) i_A + (3⋅y_A) j_A)"
assert upretty(Gradient(A.x+3*A.y)) == "∇(x_A + 3⋅y_A)"
assert upretty(Laplacian(A.x+3*A.y)) == "∆(x_A + 3⋅y_A)"
# TODO: add support for ASCII pretty.
def test_pretty_print_tensor_expr():
L = TensorIndexType("L")
i, j, k = tensor_indices("i j k", L)
i0 = tensor_indices("i_0", L)
A, B, C, D = tensor_heads("A B C D", [L])
H = TensorHead("H", [L, L])
expr = -i
ascii_str = \
"""\
-i\
"""
ucode_str = \
"""\
-i\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)
ascii_str = \
"""\
i\n\
A \n\
\
"""
ucode_str = \
"""\
i\n\
A \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i0)
ascii_str = \
"""\
i_0\n\
A \n\
\
"""
ucode_str = \
"""\
i₀\n\
A \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(-i)
ascii_str = \
"""\
\n\
A \n\
i\
"""
ucode_str = \
"""\
\n\
A \n\
i\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -3*A(-i)
ascii_str = \
"""\
\n\
-3*A \n\
i\
"""
ucode_str = \
"""\
\n\
-3⋅A \n\
i\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -j)
ascii_str = \
"""\
i \n\
H \n\
j\
"""
ucode_str = \
"""\
i \n\
H \n\
j\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -i)
ascii_str = \
"""\
L_0 \n\
H \n\
L_0\
"""
ucode_str = \
"""\
L₀ \n\
H \n\
L₀\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -j)*A(j)*B(k)
ascii_str = \
"""\
i L_0 k\n\
H *A *B \n\
L_0 \
"""
ucode_str = \
"""\
i L₀ k\n\
H ⋅A ⋅B \n\
L₀ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (1+x)*A(i)
ascii_str = \
"""\
i\n\
(x + 1)*A \n\
\
"""
ucode_str = \
"""\
i\n\
(x + 1)⋅A \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i) + 3*B(i)
ascii_str = \
"""\
i i\n\
3*B + A \n\
\
"""
ucode_str = \
"""\
i i\n\
3⋅B + A \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_print_tensor_partial_deriv():
from sympy.tensor.toperators import PartialDerivative
from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads
L = TensorIndexType("L")
i, j, k = tensor_indices("i j k", L)
A, B, C, D = tensor_heads("A B C D", [L])
H = TensorHead("H", [L, L])
expr = PartialDerivative(A(i), A(j))
ascii_str = \
"""\
d / i\\\n\
---|A |\n\
j\\ /\n\
dA \n\
\
"""
ucode_str = \
"""\
∂ ⎛ i⎞\n\
───⎜A ⎟\n\
j⎝ ⎠\n\
∂A \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)*PartialDerivative(H(k, -i), A(j))
ascii_str = \
"""\
L_0 d / k \\\n\
A *---|H |\n\
j\\ L_0/\n\
dA \n\
\
"""
ucode_str = \
"""\
L₀ ∂ ⎛ k ⎞\n\
A ⋅───⎜H ⎟\n\
j⎝ L₀⎠\n\
∂A \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)*PartialDerivative(B(k)*C(-i) + 3*H(k, -i), A(j))
ascii_str = \
"""\
L_0 d / k k \\\n\
A *---|3*H + B *C |\n\
j\\ L_0 L_0/\n\
dA \n\
\
"""
ucode_str = \
"""\
L₀ ∂ ⎛ k k ⎞\n\
A ⋅───⎜3⋅H + B ⋅C ⎟\n\
j⎝ L₀ L₀⎠\n\
∂A \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (A(i) + B(i))*PartialDerivative(C(j), D(j))
ascii_str = \
"""\
/ i i\\ d / L_0\\\n\
|A + B |*-----|C |\n\
\\ / L_0\\ /\n\
dD \n\
\
"""
ucode_str = \
"""\
⎛ i i⎞ ∂ ⎛ L₀⎞\n\
⎜A + B ⎟⋅────⎜C ⎟\n\
⎝ ⎠ L₀⎝ ⎠\n\
∂D \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (A(i) + B(i))*PartialDerivative(C(-i), D(j))
ascii_str = \
"""\
/ L_0 L_0\\ d / \\\n\
|A + B |*---|C |\n\
\\ / j\\ L_0/\n\
dD \n\
\
"""
ucode_str = \
"""\
⎛ L₀ L₀⎞ ∂ ⎛ ⎞\n\
⎜A + B ⎟⋅───⎜C ⎟\n\
⎝ ⎠ j⎝ L₀⎠\n\
∂D \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n))
ucode_str = """\
2 \n\
∂ ⎛ ⎞\n\
───────⎜A + B ⎟\n\
⎝ i i⎠\n\
∂A ∂A \n\
n j \
"""
assert upretty(expr) == ucode_str
expr = PartialDerivative(3*A(-i), A(-j), A(-n))
ucode_str = """\
2 \n\
∂ ⎛ ⎞\n\
───────⎜3⋅A ⎟\n\
⎝ i⎠\n\
∂A ∂A \n\
n j \
"""
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {i:1})
ascii_str = \
"""\
i=1,j\n\
H \n\
\
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {i: 1, j: 1})
ascii_str = \
"""\
i=1,j=1\n\
H \n\
\
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {j: 1})
ascii_str = \
"""\
i,j=1\n\
H \n\
\
"""
ucode_str = ascii_str
expr = TensorElement(H(-i, j), {-i: 1})
ascii_str = \
"""\
j\n\
H \n\
i=1 \
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_15560():
a = MatrixSymbol('a', 1, 1)
e = pretty(a*(KroneckerProduct(a, a)))
result = 'a*(a x a)'
assert e == result
def test_print_lerchphi():
# Part of issue 6013
a = Symbol('a')
pretty(lerchphi(a, 1, 2))
uresult = 'Φ(a, 1, 2)'
aresult = 'lerchphi(a, 1, 2)'
assert pretty(lerchphi(a, 1, 2)) == aresult
assert upretty(lerchphi(a, 1, 2)) == uresult
def test_issue_15583():
N = mechanics.ReferenceFrame('N')
result = '(n_x, n_y, n_z)'
e = pretty((N.x, N.y, N.z))
assert e == result
def test_matrixSymbolBold():
# Issue 15871
def boldpretty(expr):
return xpretty(expr, use_unicode=True, wrap_line=False, mat_symbol_style="bold")
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert boldpretty(trace(A)) == 'tr(𝐀)'
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert boldpretty(-A) == '-𝐀'
assert boldpretty(A - A*B - B) == '-𝐁 -𝐀⋅𝐁 + 𝐀'
assert boldpretty(-A*B - A*B*C - B) == '-𝐁 -𝐀⋅𝐁 -𝐀⋅𝐁⋅𝐂'
A = MatrixSymbol("Addot", 3, 3)
assert boldpretty(A) == '𝐀̈'
omega = MatrixSymbol("omega", 3, 3)
assert boldpretty(omega) == 'ω'
omega = MatrixSymbol("omeganorm", 3, 3)
assert boldpretty(omega) == '‖ω‖'
a = Symbol('alpha')
b = Symbol('b')
c = MatrixSymbol("c", 3, 1)
d = MatrixSymbol("d", 3, 1)
assert boldpretty(a*B*c+b*d) == 'b⋅𝐝 + α⋅𝐁⋅𝐜'
d = MatrixSymbol("delta", 3, 1)
B = MatrixSymbol("Beta", 3, 3)
assert boldpretty(a*B*c+b*d) == 'b⋅δ + α⋅Β⋅𝐜'
A = MatrixSymbol("A_2", 3, 3)
assert boldpretty(A) == '𝐀₂'
def test_center_accent():
assert center_accent('a', '\N{COMBINING TILDE}') == 'ã'
assert center_accent('aa', '\N{COMBINING TILDE}') == 'aã'
assert center_accent('aaa', '\N{COMBINING TILDE}') == 'aãa'
assert center_accent('aaaa', '\N{COMBINING TILDE}') == 'aaãa'
assert center_accent('aaaaa', '\N{COMBINING TILDE}') == 'aaãaa'
assert center_accent('abcdefg', '\N{COMBINING FOUR DOTS ABOVE}') == 'abcd⃜efg'
def test_imaginary_unit():
from sympy import pretty # As it is redefined above
assert pretty(1 + I, use_unicode=False) == '1 + I'
assert pretty(1 + I, use_unicode=True) == '1 + ⅈ'
assert pretty(1 + I, use_unicode=False, imaginary_unit='j') == '1 + I'
assert pretty(1 + I, use_unicode=True, imaginary_unit='j') == '1 + ⅉ'
raises(TypeError, lambda: pretty(I, imaginary_unit=I))
raises(ValueError, lambda: pretty(I, imaginary_unit="kkk"))
def test_str_special_matrices():
from sympy.matrices import Identity, ZeroMatrix, OneMatrix
assert pretty(Identity(4)) == 'I'
assert upretty(Identity(4)) == '𝕀'
assert pretty(ZeroMatrix(2, 2)) == '0'
assert upretty(ZeroMatrix(2, 2)) == '𝟘'
assert pretty(OneMatrix(2, 2)) == '1'
assert upretty(OneMatrix(2, 2)) == '𝟙'
def test_pretty_misc_functions():
assert pretty(LambertW(x)) == 'W(x)'
assert upretty(LambertW(x)) == 'W(x)'
assert pretty(LambertW(x, y)) == 'W(x, y)'
assert upretty(LambertW(x, y)) == 'W(x, y)'
assert pretty(airyai(x)) == 'Ai(x)'
assert upretty(airyai(x)) == 'Ai(x)'
assert pretty(airybi(x)) == 'Bi(x)'
assert upretty(airybi(x)) == 'Bi(x)'
assert pretty(airyaiprime(x)) == "Ai'(x)"
assert upretty(airyaiprime(x)) == "Ai'(x)"
assert pretty(airybiprime(x)) == "Bi'(x)"
assert upretty(airybiprime(x)) == "Bi'(x)"
assert pretty(fresnelc(x)) == 'C(x)'
assert upretty(fresnelc(x)) == 'C(x)'
assert pretty(fresnels(x)) == 'S(x)'
assert upretty(fresnels(x)) == 'S(x)'
assert pretty(Heaviside(x)) == 'Heaviside(x)'
assert upretty(Heaviside(x)) == 'θ(x)'
assert pretty(Heaviside(x, y)) == 'Heaviside(x, y)'
assert upretty(Heaviside(x, y)) == 'θ(x, y)'
assert pretty(dirichlet_eta(x)) == 'dirichlet_eta(x)'
assert upretty(dirichlet_eta(x)) == 'η(x)'
def test_hadamard_power():
m, n, p = symbols('m, n, p', integer=True)
A = MatrixSymbol('A', m, n)
B = MatrixSymbol('B', m, n)
# Testing printer:
expr = hadamard_power(A, n)
ascii_str = \
"""\
.n\n\
A \
"""
ucode_str = \
"""\
∘n\n\
A \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hadamard_power(A, 1+n)
ascii_str = \
"""\
.(n + 1)\n\
A \
"""
ucode_str = \
"""\
∘(n + 1)\n\
A \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hadamard_power(A*B.T, 1+n)
ascii_str = \
"""\
.(n + 1)\n\
/ T\\ \n\
\\A*B / \
"""
ucode_str = \
"""\
∘(n + 1)\n\
⎛ T⎞ \n\
⎝A⋅B ⎠ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_17258():
n = Symbol('n', integer=True)
assert pretty(Sum(n, (n, -oo, 1))) == \
' 1 \n'\
' __ \n'\
' \\ ` \n'\
' ) n\n'\
' /_, \n'\
'n = -oo '
assert upretty(Sum(n, (n, -oo, 1))) == \
"""\
1 \n\
___ \n\
╲ \n\
╲ \n\
╱ n\n\
╱ \n\
‾‾‾ \n\
n = -∞ \
"""
def test_is_combining():
line = "v̇_m"
assert [is_combining(sym) for sym in line] == \
[False, True, False, False]
def test_issue_17616():
assert pretty(pi**(1/exp(1))) == \
' / -1\\\n'\
' \\e /\n'\
'pi '
assert upretty(pi**(1/exp(1))) == \
' ⎛ -1⎞\n'\
' ⎝ℯ ⎠\n'\
'π '
assert pretty(pi**(1/pi)) == \
' 1 \n'\
' --\n'\
' pi\n'\
'pi '
assert upretty(pi**(1/pi)) == \
' 1\n'\
' ─\n'\
' π\n'\
'π '
assert pretty(pi**(1/EulerGamma)) == \
' 1 \n'\
' ----------\n'\
' EulerGamma\n'\
'pi '
assert upretty(pi**(1/EulerGamma)) == \
' 1\n'\
' ─\n'\
' γ\n'\
'π '
z = Symbol("x_17")
assert upretty(7**(1/z)) == \
'x₁₇___\n'\
' ╲╱ 7 '
assert pretty(7**(1/z)) == \
'x_17___\n'\
' \\/ 7 '
def test_issue_17857():
assert pretty(Range(-oo, oo)) == '{..., -1, 0, 1, ...}'
assert pretty(Range(oo, -oo, -1)) == '{..., 1, 0, -1, ...}'
def test_issue_18272():
x = Symbol('x')
n = Symbol('n')
assert upretty(ConditionSet(x, Eq(-x + exp(x), 0), S.Complexes)) == \
'⎧ │ ⎛ x ⎞⎫\n'\
'⎨x │ x ∊ ℂ ∧ ⎝-x + ℯ = 0⎠⎬\n'\
'⎩ │ ⎭'
assert upretty(ConditionSet(x, Contains(n/2, Interval(0, oo)), FiniteSet(-n/2, n/2))) == \
'⎧ │ ⎧-n n⎫ ⎛n ⎞⎫\n'\
'⎨x │ x ∊ ⎨───, ─⎬ ∧ ⎜─ ∈ [0, ∞)⎟⎬\n'\
'⎩ │ ⎩ 2 2⎭ ⎝2 ⎠⎭'
assert upretty(ConditionSet(x, Eq(Piecewise((1, x >= 3), (x/2 - 1/2, x >= 2), (1/2, x >= 1),
(x/2, True)) - 1/2, 0), Interval(0, 3))) == \
'⎧ │ ⎛⎛⎧ 1 for x ≥ 3⎞ ⎞⎫\n'\
'⎪ │ ⎜⎜⎪ ⎟ ⎟⎪\n'\
'⎪ │ ⎜⎜⎪x ⎟ ⎟⎪\n'\
'⎪ │ ⎜⎜⎪─ - 0.5 for x ≥ 2⎟ ⎟⎪\n'\
'⎪ │ ⎜⎜⎪2 ⎟ ⎟⎪\n'\
'⎨x │ x ∊ [0, 3] ∧ ⎜⎜⎨ ⎟ - 0.5 = 0⎟⎬\n'\
'⎪ │ ⎜⎜⎪ 0.5 for x ≥ 1⎟ ⎟⎪\n'\
'⎪ │ ⎜⎜⎪ ⎟ ⎟⎪\n'\
'⎪ │ ⎜⎜⎪ x ⎟ ⎟⎪\n'\
'⎪ │ ⎜⎜⎪ ─ otherwise⎟ ⎟⎪\n'\
'⎩ │ ⎝⎝⎩ 2 ⎠ ⎠⎭'
def test_Str():
from sympy.core.symbol import Str
assert pretty(Str('x')) == 'x'
def test_diffgeom():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField
x,y = symbols('x y', real=True)
m = Manifold('M', 2)
assert pretty(m) == 'M'
p = Patch('P', m)
assert pretty(p) == "P"
rect = CoordSystem('rect', p, [x, y])
assert pretty(rect) == "rect"
b = BaseScalarField(rect, 0)
assert pretty(b) == "x"
|
c531d8c24fb728b82f0e437f0d16ece3ea616b91a69aca189e30bae609815bf2 | from sympy import (
Abs, acos, acosh, Add, And, asin, asinh, atan, Ci, cos, sinh, cosh,
tanh, Derivative, diff, DiracDelta, E, Ei, Eq, exp, erf, erfc, erfi,
EulerGamma, Expr, factor, Function, gamma, gammasimp, I, Idx, im, IndexedBase,
integrate, Interval, Lambda, LambertW, log, Matrix, Max, meijerg, Min, nan,
Ne, O, oo, pi, Piecewise, polar_lift, Poly, polygamma, Rational, re, S, Si, sign,
simplify, sin, sinc, SingularityFunction, sqrt, sstr, Sum, Symbol, summation,
symbols, sympify, tan, trigsimp, Tuple, lerchphi, exp_polar, li, hyper,
Float
)
from sympy.core.expr import unchanged
from sympy.functions.elementary.complexes import periodic_argument
from sympy.functions.elementary.integers import floor
from sympy.integrals.integrals import Integral
from sympy.integrals.risch import NonElementaryIntegral
from sympy.physics import units
from sympy.testing.pytest import (raises, slow, skip, ON_TRAVIS,
warns_deprecated_sympy)
from sympy.testing.randtest import verify_numerically
x, y, a, t, x_1, x_2, z, s, b = symbols('x y a t x_1 x_2 z s b')
n = Symbol('n', integer=True)
f = Function('f')
def NS(e, n=15, **options):
return sstr(sympify(e).evalf(n, **options), full_prec=True)
def test_poly_deprecated():
p = Poly(2*x, x)
assert p.integrate(x) == Poly(x**2, x, domain='QQ')
with warns_deprecated_sympy():
integrate(p, x)
with warns_deprecated_sympy():
Integral(p, (x,))
@slow
def test_principal_value():
g = 1 / x
assert Integral(g, (x, -oo, oo)).principal_value() == 0
assert Integral(g, (y, -oo, oo)).principal_value() == oo * sign(1 / x)
raises(ValueError, lambda: Integral(g, (x)).principal_value())
raises(ValueError, lambda: Integral(g).principal_value())
l = 1 / ((x ** 3) - 1)
assert Integral(l, (x, -oo, oo)).principal_value().together() == -sqrt(3)*pi/3
raises(ValueError, lambda: Integral(l, (x, -oo, 1)).principal_value())
d = 1 / (x ** 2 - 1)
assert Integral(d, (x, -oo, oo)).principal_value() == 0
assert Integral(d, (x, -2, 2)).principal_value() == -log(3)
v = x / (x ** 2 - 1)
assert Integral(v, (x, -oo, oo)).principal_value() == 0
assert Integral(v, (x, -2, 2)).principal_value() == 0
s = x ** 2 / (x ** 2 - 1)
assert Integral(s, (x, -oo, oo)).principal_value() is oo
assert Integral(s, (x, -2, 2)).principal_value() == -log(3) + 4
f = 1 / ((x ** 2 - 1) * (1 + x ** 2))
assert Integral(f, (x, -oo, oo)).principal_value() == -pi / 2
assert Integral(f, (x, -2, 2)).principal_value() == -atan(2) - log(3) / 2
def diff_test(i):
"""Return the set of symbols, s, which were used in testing that
i.diff(s) agrees with i.doit().diff(s). If there is an error then
the assertion will fail, causing the test to fail."""
syms = i.free_symbols
for s in syms:
assert (i.diff(s).doit() - i.doit().diff(s)).expand() == 0
return syms
def test_improper_integral():
assert integrate(log(x), (x, 0, 1)) == -1
assert integrate(x**(-2), (x, 1, oo)) == 1
assert integrate(1/(1 + exp(x)), (x, 0, oo)) == log(2)
def test_constructor():
# this is shared by Sum, so testing Integral's constructor
# is equivalent to testing Sum's
s1 = Integral(n, n)
assert s1.limits == (Tuple(n),)
s2 = Integral(n, (n,))
assert s2.limits == (Tuple(n),)
s3 = Integral(Sum(x, (x, 1, y)))
assert s3.limits == (Tuple(y),)
s4 = Integral(n, Tuple(n,))
assert s4.limits == (Tuple(n),)
s5 = Integral(n, (n, Interval(1, 2)))
assert s5.limits == (Tuple(n, 1, 2),)
# Testing constructor with inequalities:
s6 = Integral(n, n > 10)
assert s6.limits == (Tuple(n, 10, oo),)
s7 = Integral(n, (n > 2) & (n < 5))
assert s7.limits == (Tuple(n, 2, 5),)
def test_basics():
assert Integral(0, x) != 0
assert Integral(x, (x, 1, 1)) != 0
assert Integral(oo, x) != oo
assert Integral(S.NaN, x) is S.NaN
assert diff(Integral(y, y), x) == 0
assert diff(Integral(x, (x, 0, 1)), x) == 0
assert diff(Integral(x, x), x) == x
assert diff(Integral(t, (t, 0, x)), x) == x
e = (t + 1)**2
assert diff(integrate(e, (t, 0, x)), x) == \
diff(Integral(e, (t, 0, x)), x).doit().expand() == \
((1 + x)**2).expand()
assert diff(integrate(e, (t, 0, x)), t) == \
diff(Integral(e, (t, 0, x)), t) == 0
assert diff(integrate(e, (t, 0, x)), a) == \
diff(Integral(e, (t, 0, x)), a) == 0
assert diff(integrate(e, t), a) == diff(Integral(e, t), a) == 0
assert integrate(e, (t, a, x)).diff(x) == \
Integral(e, (t, a, x)).diff(x).doit().expand()
assert Integral(e, (t, a, x)).diff(x).doit() == ((1 + x)**2)
assert integrate(e, (t, x, a)).diff(x).doit() == (-(1 + x)**2).expand()
assert integrate(t**2, (t, x, 2*x)).diff(x) == 7*x**2
assert Integral(x, x).atoms() == {x}
assert Integral(f(x), (x, 0, 1)).atoms() == {S.Zero, S.One, x}
assert diff_test(Integral(x, (x, 3*y))) == {y}
assert diff_test(Integral(x, (a, 3*y))) == {x, y}
assert integrate(x, (x, oo, oo)) == 0 #issue 8171
assert integrate(x, (x, -oo, -oo)) == 0
# sum integral of terms
assert integrate(y + x + exp(x), x) == x*y + x**2/2 + exp(x)
assert Integral(x).is_commutative
n = Symbol('n', commutative=False)
assert Integral(n + x, x).is_commutative is False
def test_diff_wrt():
class Test(Expr):
_diff_wrt = True
is_commutative = True
t = Test()
assert integrate(t + 1, t) == t**2/2 + t
assert integrate(t + 1, (t, 0, 1)) == Rational(3, 2)
raises(ValueError, lambda: integrate(x + 1, x + 1))
raises(ValueError, lambda: integrate(x + 1, (x + 1, 0, 1)))
def test_basics_multiple():
assert diff_test(Integral(x, (x, 3*x, 5*y), (y, x, 2*x))) == {x}
assert diff_test(Integral(x, (x, 5*y), (y, x, 2*x))) == {x}
assert diff_test(Integral(x, (x, 5*y), (y, y, 2*x))) == {x, y}
assert diff_test(Integral(y, y, x)) == {x, y}
assert diff_test(Integral(y*x, x, y)) == {x, y}
assert diff_test(Integral(x + y, y, (y, 1, x))) == {x}
assert diff_test(Integral(x + y, (x, x, y), (y, y, x))) == {x, y}
def test_conjugate_transpose():
A, B = symbols("A B", commutative=False)
x = Symbol("x", complex=True)
p = Integral(A*B, (x,))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
x = Symbol("x", real=True)
p = Integral(A*B, (x,))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
def test_integration():
assert integrate(0, (t, 0, x)) == 0
assert integrate(3, (t, 0, x)) == 3*x
assert integrate(t, (t, 0, x)) == x**2/2
assert integrate(3*t, (t, 0, x)) == 3*x**2/2
assert integrate(3*t**2, (t, 0, x)) == x**3
assert integrate(1/t, (t, 1, x)) == log(x)
assert integrate(-1/t**2, (t, 1, x)) == 1/x - 1
assert integrate(t**2 + 5*t - 8, (t, 0, x)) == x**3/3 + 5*x**2/2 - 8*x
assert integrate(x**2, x) == x**3/3
assert integrate((3*t*x)**5, x) == (3*t)**5 * x**6 / 6
b = Symbol("b")
c = Symbol("c")
assert integrate(a*t, (t, 0, x)) == a*x**2/2
assert integrate(a*t**4, (t, 0, x)) == a*x**5/5
assert integrate(a*t**2 + b*t + c, (t, 0, x)) == a*x**3/3 + b*x**2/2 + c*x
def test_multiple_integration():
assert integrate((x**2)*(y**2), (x, 0, 1), (y, -1, 2)) == Rational(1)
assert integrate((y**2)*(x**2), x, y) == Rational(1, 9)*(x**3)*(y**3)
assert integrate(1/(x + 3)/(1 + x)**3, x) == \
log(3 + x)*Rational(-1, 8) + log(1 + x)*Rational(1, 8) + x/(4 + 8*x + 4*x**2)
assert integrate(sin(x*y)*y, (x, 0, 1), (y, 0, 1)) == -sin(1) + 1
def test_issue_3532():
assert integrate(exp(-x), (x, 0, oo)) == 1
def test_issue_3560():
assert integrate(sqrt(x)**3, x) == 2*sqrt(x)**5/5
assert integrate(sqrt(x), x) == 2*sqrt(x)**3/3
assert integrate(1/sqrt(x)**3, x) == -2/sqrt(x)
def test_issue_18038():
raises(AttributeError, lambda: integrate((x, x)))
def test_integrate_poly():
p = Poly(x + x**2*y + y**3, x, y)
with warns_deprecated_sympy():
qx = integrate(p, x)
with warns_deprecated_sympy():
qy = integrate(p, y)
assert isinstance(qx, Poly) is True
assert isinstance(qy, Poly) is True
assert qx.gens == (x, y)
assert qy.gens == (x, y)
assert qx.as_expr() == x**2/2 + x**3*y/3 + x*y**3
assert qy.as_expr() == x*y + x**2*y**2/2 + y**4/4
def test_integrate_poly_defined():
p = Poly(x + x**2*y + y**3, x, y)
with warns_deprecated_sympy():
Qx = integrate(p, (x, 0, 1))
with warns_deprecated_sympy():
Qy = integrate(p, (y, 0, pi))
assert isinstance(Qx, Poly) is True
assert isinstance(Qy, Poly) is True
assert Qx.gens == (y,)
assert Qy.gens == (x,)
assert Qx.as_expr() == S.Half + y/3 + y**3
assert Qy.as_expr() == pi**4/4 + pi*x + pi**2*x**2/2
def test_integrate_omit_var():
y = Symbol('y')
assert integrate(x) == x**2/2
raises(ValueError, lambda: integrate(2))
raises(ValueError, lambda: integrate(x*y))
def test_integrate_poly_accurately():
y = Symbol('y')
assert integrate(x*sin(y), x) == x**2*sin(y)/2
# when passed to risch_norman, this will be a CPU hog, so this really
# checks, that integrated function is recognized as polynomial
assert integrate(x**1000*sin(y), x) == x**1001*sin(y)/1001
def test_issue_3635():
y = Symbol('y')
assert integrate(x**2, y) == x**2*y
assert integrate(x**2, (y, -1, 1)) == 2*x**2
# works in sympy and py.test but hangs in `setup.py test`
def test_integrate_linearterm_pow():
# check integrate((a*x+b)^c, x) -- issue 3499
y = Symbol('y', positive=True)
# TODO: Remove conds='none' below, let the assumption take care of it.
assert integrate(x**y, x, conds='none') == x**(y + 1)/(y + 1)
assert integrate((exp(y)*x + 1/y)**(1 + sin(y)), x, conds='none') == \
exp(-y)*(exp(y)*x + 1/y)**(2 + sin(y)) / (2 + sin(y))
def test_issue_3618():
assert integrate(pi*sqrt(x), x) == 2*pi*sqrt(x)**3/3
assert integrate(pi*sqrt(x) + E*sqrt(x)**3, x) == \
2*pi*sqrt(x)**3/3 + 2*E *sqrt(x)**5/5
def test_issue_3623():
assert integrate(cos((n + 1)*x), x) == Piecewise(
(sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True))
assert integrate(cos((n - 1)*x), x) == Piecewise(
(sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True))
assert integrate(cos((n + 1)*x) + cos((n - 1)*x), x) == \
Piecewise((sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True)) + \
Piecewise((sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True))
def test_issue_3664():
n = Symbol('n', integer=True, nonzero=True)
assert integrate(-1./2 * x * sin(n * pi * x/2), [x, -2, 0]) == \
2.0*cos(pi*n)/(pi*n)
assert integrate(x * sin(n * pi * x/2) * Rational(-1, 2), [x, -2, 0]) == \
2*cos(pi*n)/(pi*n)
def test_issue_3679():
# definite integration of rational functions gives wrong answers
assert NS(Integral(1/(x**2 - 8*x + 17), (x, 2, 4))) == '1.10714871779409'
def test_issue_3686(): # remove this when fresnel itegrals are implemented
from sympy import expand_func, fresnels
assert expand_func(integrate(sin(x**2), x)) == \
sqrt(2)*sqrt(pi)*fresnels(sqrt(2)*x/sqrt(pi))/2
def test_integrate_units():
m = units.m
s = units.s
assert integrate(x * m/s, (x, 1*s, 5*s)) == 12*m*s
def test_transcendental_functions():
assert integrate(LambertW(2*x), x) == \
-x + x*LambertW(2*x) + x/LambertW(2*x)
def test_log_polylog():
assert integrate(log(1 - x)/x, (x, 0, 1)) == -pi**2/6
assert integrate(log(x)*(1 - x)**(-1), (x, 0, 1)) == -pi**2/6
def test_issue_3740():
f = 4*log(x) - 2*log(x)**2
fid = diff(integrate(f, x), x)
assert abs(f.subs(x, 42).evalf() - fid.subs(x, 42).evalf()) < 1e-10
def test_issue_3788():
assert integrate(1/(1 + x**2), x) == atan(x)
def test_issue_3952():
f = sin(x)
assert integrate(f, x) == -cos(x)
raises(ValueError, lambda: integrate(f, 2*x))
def test_issue_4516():
assert integrate(2**x - 2*x, x) == 2**x/log(2) - x**2
def test_issue_7450():
ans = integrate(exp(-(1 + I)*x), (x, 0, oo))
assert re(ans) == S.Half and im(ans) == Rational(-1, 2)
def test_issue_8623():
assert integrate((1 + cos(2*x)) / (3 - 2*cos(2*x)), (x, 0, pi)) == -pi/2 + sqrt(5)*pi/2
assert integrate((1 + cos(2*x))/(3 - 2*cos(2*x))) == -x/2 + sqrt(5)*(atan(sqrt(5)*tan(x)) + \
pi*floor((x - pi/2)/pi))/2
def test_issue_9569():
assert integrate(1 / (2 - cos(x)), (x, 0, pi)) == pi/sqrt(3)
assert integrate(1/(2 - cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)) + pi*floor((x/2 - pi/2)/pi))/3
def test_issue_13733():
s = Symbol('s', positive=True)
pz = exp(-(z - y)**2/(2*s*s))/sqrt(2*pi*s*s)
pzgx = integrate(pz, (z, x, oo))
assert integrate(pzgx, (x, 0, oo)) == sqrt(2)*s*exp(-y**2/(2*s**2))/(2*sqrt(pi)) + \
y*erf(sqrt(2)*y/(2*s))/2 + y/2
def test_issue_13749():
assert integrate(1 / (2 + cos(x)), (x, 0, pi)) == pi/sqrt(3)
assert integrate(1/(2 + cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)/3) + pi*floor((x/2 - pi/2)/pi))/3
def test_issue_18133():
assert integrate(exp(x)/(1 + x)**2, x) == NonElementaryIntegral(exp(x)/(x + 1)**2, x)
def test_issue_21741():
a = Float('3999999.9999999995', precision=53)
b = Float('2.5000000000000004e-7', precision=53)
r = Piecewise((b*I*exp(-a*I*pi*t*y)*exp(-a*I*pi*x*z)/(pi*x),
Ne(1.0*pi*x*exp(a*I*pi*t*y), 0)),
(z*exp(-a*I*pi*t*y), True))
fun = E**((-2*I*pi*(z*x+t*y))/(500*10**(-9)))
assert integrate(fun, z) == r
def test_matrices():
M = Matrix(2, 2, lambda i, j: (i + j + 1)*sin((i + j + 1)*x))
assert integrate(M, x) == Matrix([
[-cos(x), -cos(2*x)],
[-cos(2*x), -cos(3*x)],
])
def test_integrate_functions():
# issue 4111
assert integrate(f(x), x) == Integral(f(x), x)
assert integrate(f(x), (x, 0, 1)) == Integral(f(x), (x, 0, 1))
assert integrate(f(x)*diff(f(x), x), x) == f(x)**2/2
assert integrate(diff(f(x), x) / f(x), x) == log(f(x))
def test_integrate_derivatives():
assert integrate(Derivative(f(x), x), x) == f(x)
assert integrate(Derivative(f(y), y), x) == x*Derivative(f(y), y)
assert integrate(Derivative(f(x), x)**2, x) == \
Integral(Derivative(f(x), x)**2, x)
def test_transform():
a = Integral(x**2 + 1, (x, -1, 2))
fx = x
fy = 3*y + 1
assert a.doit() == a.transform(fx, fy).doit()
assert a.transform(fx, fy).transform(fy, fx) == a
fx = 3*x + 1
fy = y
assert a.transform(fx, fy).transform(fy, fx) == a
a = Integral(sin(1/x), (x, 0, 1))
assert a.transform(x, 1/y) == Integral(sin(y)/y**2, (y, 1, oo))
assert a.transform(x, 1/y).transform(y, 1/x) == a
a = Integral(exp(-x**2), (x, -oo, oo))
assert a.transform(x, 2*y) == Integral(2*exp(-4*y**2), (y, -oo, oo))
# < 3 arg limit handled properly
assert Integral(x, x).transform(x, a*y).doit() == \
Integral(y*a**2, y).doit()
_3 = S(3)
assert Integral(x, (x, 0, -_3)).transform(x, 1/y).doit() == \
Integral(-1/x**3, (x, -oo, -1/_3)).doit()
assert Integral(x, (x, 0, _3)).transform(x, 1/y) == \
Integral(y**(-3), (y, 1/_3, oo))
# issue 8400
i = Integral(x + y, (x, 1, 2), (y, 1, 2))
assert i.transform(x, (x + 2*y, x)).doit() == \
i.transform(x, (x + 2*z, x)).doit() == 3
i = Integral(x, (x, a, b))
assert i.transform(x, 2*s) == Integral(4*s, (s, a/2, b/2))
raises(ValueError, lambda: i.transform(x, 1))
raises(ValueError, lambda: i.transform(x, s*t))
raises(ValueError, lambda: i.transform(x, -s))
raises(ValueError, lambda: i.transform(x, (s, t)))
raises(ValueError, lambda: i.transform(2*x, 2*s))
i = Integral(x**2, (x, 1, 2))
raises(ValueError, lambda: i.transform(x**2, s))
am = Symbol('a', negative=True)
bp = Symbol('b', positive=True)
i = Integral(x, (x, bp, am))
i.transform(x, 2*s)
assert i.transform(x, 2*s) == Integral(-4*s, (s, am/2, bp/2))
i = Integral(x, (x, a))
assert i.transform(x, 2*s) == Integral(4*s, (s, a/2))
def test_issue_4052():
f = S.Half*asin(x) + x*sqrt(1 - x**2)/2
assert integrate(cos(asin(x)), x) == f
assert integrate(sin(acos(x)), x) == f
@slow
def test_evalf_integrals():
assert NS(Integral(x, (x, 2, 5)), 15) == '10.5000000000000'
gauss = Integral(exp(-x**2), (x, -oo, oo))
assert NS(gauss, 15) == '1.77245385090552'
assert NS(gauss**2 - pi + E*Rational(
1, 10**20), 15) in ('2.71828182845904e-20', '2.71828182845905e-20')
# A monster of an integral from http://mathworld.wolfram.com/DefiniteIntegral.html
t = Symbol('t')
a = 8*sqrt(3)/(1 + 3*t**2)
b = 16*sqrt(2)*(3*t + 1)*sqrt(4*t**2 + t + 1)**3
c = (3*t**2 + 1)*(11*t**2 + 2*t + 3)**2
d = sqrt(2)*(249*t**2 + 54*t + 65)/(11*t**2 + 2*t + 3)**2
f = a - b/c - d
assert NS(Integral(f, (t, 0, 1)), 50) == \
NS((3*sqrt(2) - 49*pi + 162*atan(sqrt(2)))/12, 50)
# http://mathworld.wolfram.com/VardisIntegral.html
assert NS(Integral(log(log(1/x))/(1 + x + x**2), (x, 0, 1)), 15) == \
NS('pi/sqrt(3) * log(2*pi**(5/6) / gamma(1/6))', 15)
# http://mathworld.wolfram.com/AhmedsIntegral.html
assert NS(Integral(atan(sqrt(x**2 + 2))/(sqrt(x**2 + 2)*(x**2 + 1)), (x,
0, 1)), 15) == NS(5*pi**2/96, 15)
# http://mathworld.wolfram.com/AbelsIntegral.html
assert NS(Integral(x/((exp(pi*x) - exp(
-pi*x))*(x**2 + 1)), (x, 0, oo)), 15) == NS('log(2)/2-1/4', 15)
# Complex part trimming
# http://mathworld.wolfram.com/VardisIntegral.html
assert NS(Integral(log(log(sin(x)/cos(x))), (x, pi/4, pi/2)), 15, chop=True) == \
NS('pi/4*log(4*pi**3/gamma(1/4)**4)', 15)
#
# Endpoints causing trouble (rounding error in integration points -> complex log)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 17, chop=True) == NS(2, 17)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 20, chop=True) == NS(2, 20)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 22, chop=True) == NS(2, 22)
# Needs zero handling
assert NS(pi - 4*Integral(
'sqrt(1-x**2)', (x, 0, 1)), 15, maxn=30, chop=True) in ('0.0', '0')
# Oscillatory quadrature
a = Integral(sin(x)/x**2, (x, 1, oo)).evalf(maxn=15)
assert 0.49 < a < 0.51
assert NS(
Integral(sin(x)/x**2, (x, 1, oo)), quad='osc') == '0.504067061906928'
assert NS(Integral(
cos(pi*x + 1)/x, (x, -oo, -1)), quad='osc') == '0.276374705640365'
# indefinite integrals aren't evaluated
assert NS(Integral(x, x)) == 'Integral(x, x)'
assert NS(Integral(x, (x, y))) == 'Integral(x, (x, y))'
def test_evalf_issue_939():
# https://github.com/sympy/sympy/issues/4038
# The output form of an integral may differ by a step function between
# revisions, making this test a bit useless. This can't be said about
# other two tests. For now, all values of this evaluation are used here,
# but in future this should be reconsidered.
assert NS(integrate(1/(x**5 + 1), x).subs(x, 4), chop=True) in \
['-0.000976138910649103', '0.965906660135753', '1.93278945918216']
assert NS(Integral(1/(x**5 + 1), (x, 2, 4))) == '0.0144361088886740'
assert NS(
integrate(1/(x**5 + 1), (x, 2, 4)), chop=True) == '0.0144361088886740'
def test_double_previously_failing_integrals():
# Double integrals not implemented <- Sure it is!
res = integrate(sqrt(x) + x*y, (x, 1, 2), (y, -1, 1))
# Old numerical test
assert NS(res, 15) == '2.43790283299492'
# Symbolic test
assert res == Rational(-4, 3) + 8*sqrt(2)/3
# double integral + zero detection
assert integrate(sin(x + x*y), (x, -1, 1), (y, -1, 1)) is S.Zero
def test_integrate_SingularityFunction():
in_1 = SingularityFunction(x, a, 3) + SingularityFunction(x, 5, -1)
out_1 = SingularityFunction(x, a, 4)/4 + SingularityFunction(x, 5, 0)
assert integrate(in_1, x) == out_1
in_2 = 10*SingularityFunction(x, 4, 0) - 5*SingularityFunction(x, -6, -2)
out_2 = 10*SingularityFunction(x, 4, 1) - 5*SingularityFunction(x, -6, -1)
assert integrate(in_2, x) == out_2
in_3 = 2*x**2*y -10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -2)
out_3_1 = 2*x**3*y/3 - 2*x*SingularityFunction(y, 10, -2) - 5*SingularityFunction(x, -4, 8)/4
out_3_2 = x**2*y**2 - 10*y*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -1)
assert integrate(in_3, x) == out_3_1
assert integrate(in_3, y) == out_3_2
assert unchanged(Integral, in_3, (x,))
assert Integral(in_3, x) == Integral(in_3, (x,))
assert Integral(in_3, x).doit() == out_3_1
in_4 = 10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(x, 10, -2)
out_4 = 5*SingularityFunction(x, -4, 8)/4 - 2*SingularityFunction(x, 10, -1)
assert integrate(in_4, (x, -oo, x)) == out_4
assert integrate(SingularityFunction(x, 5, -1), x) == SingularityFunction(x, 5, 0)
assert integrate(SingularityFunction(x, 0, -1), (x, -oo, oo)) == 1
assert integrate(5*SingularityFunction(x, 5, -1), (x, -oo, oo)) == 5
assert integrate(SingularityFunction(x, 5, -1) * f(x), (x, -oo, oo)) == f(5)
def test_integrate_DiracDelta():
# This is here to check that deltaintegrate is being called, but also
# to test definite integrals. More tests are in test_deltafunctions.py
assert integrate(DiracDelta(x) * f(x), (x, -oo, oo)) == f(0)
assert integrate(DiracDelta(x)**2, (x, -oo, oo)) == DiracDelta(0)
# issue 4522
assert integrate(integrate((4 - 4*x + x*y - 4*y) * \
DiracDelta(x)*DiracDelta(y - 1), (x, 0, 1)), (y, 0, 1)) == 0
# issue 5729
p = exp(-(x**2 + y**2))/pi
assert integrate(p*DiracDelta(x - 10*y), (x, -oo, oo), (y, -oo, oo)) == \
integrate(p*DiracDelta(x - 10*y), (y, -oo, oo), (x, -oo, oo)) == \
integrate(p*DiracDelta(10*x - y), (x, -oo, oo), (y, -oo, oo)) == \
integrate(p*DiracDelta(10*x - y), (y, -oo, oo), (x, -oo, oo)) == \
1/sqrt(101*pi)
def test_integrate_returns_piecewise():
assert integrate(x**y, x) == Piecewise(
(x**(y + 1)/(y + 1), Ne(y, -1)), (log(x), True))
assert integrate(x**y, y) == Piecewise(
(x**y/log(x), Ne(log(x), 0)), (y, True))
assert integrate(exp(n*x), x) == Piecewise(
(exp(n*x)/n, Ne(n, 0)), (x, True))
assert integrate(x*exp(n*x), x) == Piecewise(
((n*x - 1)*exp(n*x)/n**2, Ne(n**2, 0)), (x**2/2, True))
assert integrate(x**(n*y), x) == Piecewise(
(x**(n*y + 1)/(n*y + 1), Ne(n*y, -1)), (log(x), True))
assert integrate(x**(n*y), y) == Piecewise(
(x**(n*y)/(n*log(x)), Ne(n*log(x), 0)), (y, True))
assert integrate(cos(n*x), x) == Piecewise(
(sin(n*x)/n, Ne(n, 0)), (x, True))
assert integrate(cos(n*x)**2, x) == Piecewise(
((n*x/2 + sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (x, True))
assert integrate(x*cos(n*x), x) == Piecewise(
(x*sin(n*x)/n + cos(n*x)/n**2, Ne(n, 0)), (x**2/2, True))
assert integrate(sin(n*x), x) == Piecewise(
(-cos(n*x)/n, Ne(n, 0)), (0, True))
assert integrate(sin(n*x)**2, x) == Piecewise(
((n*x/2 - sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (0, True))
assert integrate(x*sin(n*x), x) == Piecewise(
(-x*cos(n*x)/n + sin(n*x)/n**2, Ne(n, 0)), (0, True))
assert integrate(exp(x*y), (x, 0, z)) == Piecewise(
(exp(y*z)/y - 1/y, (y > -oo) & (y < oo) & Ne(y, 0)), (z, True))
def test_integrate_max_min():
x = symbols('x', real=True)
assert integrate(Min(x, 2), (x, 0, 3)) == 4
assert integrate(Max(x**2, x**3), (x, 0, 2)) == Rational(49, 12)
assert integrate(Min(exp(x), exp(-x))**2, x) == Piecewise( \
(exp(2*x)/2, x <= 0), (1 - exp(-2*x)/2, True))
# issue 7907
c = symbols('c', extended_real=True)
int1 = integrate(Max(c, x)*exp(-x**2), (x, -oo, oo))
int2 = integrate(c*exp(-x**2), (x, -oo, c))
int3 = integrate(x*exp(-x**2), (x, c, oo))
assert int1 == int2 + int3 == sqrt(pi)*c*erf(c)/2 + \
sqrt(pi)*c/2 + exp(-c**2)/2
def test_integrate_Abs_sign():
assert integrate(Abs(x), (x, -2, 1)) == Rational(5, 2)
assert integrate(Abs(x), (x, 0, 1)) == S.Half
assert integrate(Abs(x + 1), (x, 0, 1)) == Rational(3, 2)
assert integrate(Abs(x**2 - 1), (x, -2, 2)) == 4
assert integrate(Abs(x**2 - 3*x), (x, -15, 15)) == 2259
assert integrate(sign(x), (x, -1, 2)) == 1
assert integrate(sign(x)*sin(x), (x, -pi, pi)) == 4
assert integrate(sign(x - 2) * x**2, (x, 0, 3)) == Rational(11, 3)
t, s = symbols('t s', real=True)
assert integrate(Abs(t), t) == Piecewise(
(-t**2/2, t <= 0), (t**2/2, True))
assert integrate(Abs(2*t - 6), t) == Piecewise(
(-t**2 + 6*t, t <= 3), (t**2 - 6*t + 18, True))
assert (integrate(abs(t - s**2), (t, 0, 2)) ==
2*s**2*Min(2, s**2) - 2*s**2 - Min(2, s**2)**2 + 2)
assert integrate(exp(-Abs(t)), t) == Piecewise(
(exp(t), t <= 0), (2 - exp(-t), True))
assert integrate(sign(2*t - 6), t) == Piecewise(
(-t, t < 3), (t - 6, True))
assert integrate(2*t*sign(t**2 - 1), t) == Piecewise(
(t**2, t < -1), (-t**2 + 2, t < 1), (t**2, True))
assert integrate(sign(t), (t, s + 1)) == Piecewise(
(s + 1, s + 1 > 0), (-s - 1, s + 1 < 0), (0, True))
def test_subs1():
e = Integral(exp(x - y), x)
assert e.subs(y, 3) == Integral(exp(x - 3), x)
e = Integral(exp(x - y), (x, 0, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo))
def test_subs2():
e = Integral(exp(x - y), x, t)
assert e.subs(y, 3) == Integral(exp(x - 3), x, t)
e = Integral(exp(x - y), (x, 0, 1), (t, 0, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1), (t, 0, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, 0, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs3():
e = Integral(exp(x - y), (x, 0, y), (t, y, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 3), (t, 3, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, x, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs4():
e = Integral(exp(x), (x, 0, y), (t, y, 1))
assert e.subs(y, 3) == Integral(exp(x), (x, 0, 3), (t, 3, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(y)*f(y), (y, -oo, oo), (t, x, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs5():
e = Integral(exp(-x**2), (x, -oo, oo))
assert e.subs(x, 5) == e
e = Integral(exp(-x**2 + y), x)
assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x)
e = Integral(exp(-x**2 + y), (x, x))
assert e.subs(x, 5) == Integral(exp(y - x**2), (x, 5))
assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x)
e = Integral(exp(-x**2 + y), (y, -oo, oo), (x, -oo, oo))
assert e.subs(x, 5) == e
assert e.subs(y, 5) == e
# Test evaluation of antiderivatives
e = Integral(exp(-x**2), (x, x))
assert e.subs(x, 5) == Integral(exp(-x**2), (x, 5))
e = Integral(exp(x), x)
assert (e.subs(x,1) - e.subs(x,0) - Integral(exp(x), (x, 0, 1))
).doit().is_zero
def test_subs6():
a, b = symbols('a b')
e = Integral(x*y, (x, f(x), f(y)))
assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y)))
assert e.subs(y, 1) == Integral(x, (x, f(x), f(1)))
e = Integral(x*y, (x, f(x), f(y)), (y, f(x), f(y)))
assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y)), (y, f(1), f(y)))
assert e.subs(y, 1) == Integral(x*y, (x, f(x), f(y)), (y, f(x), f(1)))
e = Integral(x*y, (x, f(x), f(a)), (y, f(x), f(a)))
assert e.subs(a, 1) == Integral(x*y, (x, f(x), f(1)), (y, f(x), f(1)))
def test_subs7():
e = Integral(x, (x, 1, y), (y, 1, 2))
assert e.subs({x: 1, y: 2}) == e
e = Integral(sin(x) + sin(y), (x, sin(x), sin(y)),
(y, 1, 2))
assert e.subs(sin(y), 1) == e
assert e.subs(sin(x), 1) == Integral(sin(x) + sin(y), (x, 1, sin(y)),
(y, 1, 2))
def test_expand():
e = Integral(f(x)+f(x**2), (x, 1, y))
assert e.expand() == Integral(f(x), (x, 1, y)) + Integral(f(x**2), (x, 1, y))
def test_integration_variable():
raises(ValueError, lambda: Integral(exp(-x**2), 3))
raises(ValueError, lambda: Integral(exp(-x**2), (3, -oo, oo)))
def test_expand_integral():
assert Integral(cos(x**2)*(sin(x**2) + 1), (x, 0, 1)).expand() == \
Integral(cos(x**2)*sin(x**2), (x, 0, 1)) + \
Integral(cos(x**2), (x, 0, 1))
assert Integral(cos(x**2)*(sin(x**2) + 1), x).expand() == \
Integral(cos(x**2)*sin(x**2), x) + \
Integral(cos(x**2), x)
def test_as_sum_midpoint1():
e = Integral(sqrt(x**3 + 1), (x, 2, 10))
assert e.as_sum(1, method="midpoint") == 8*sqrt(217)
assert e.as_sum(2, method="midpoint") == 4*sqrt(65) + 12*sqrt(57)
assert e.as_sum(3, method="midpoint") == 8*sqrt(217)/3 + \
8*sqrt(3081)/27 + 8*sqrt(52809)/27
assert e.as_sum(4, method="midpoint") == 2*sqrt(730) + \
4*sqrt(7) + 4*sqrt(86) + 6*sqrt(14)
assert abs(e.as_sum(4, method="midpoint").n() - e.n()) < 0.5
e = Integral(sqrt(x**3 + y**3), (x, 2, 10), (y, 0, 10))
raises(NotImplementedError, lambda: e.as_sum(4))
def test_as_sum_midpoint2():
e = Integral((x + y)**2, (x, 0, 1))
n = Symbol('n', positive=True, integer=True)
assert e.as_sum(1, method="midpoint").expand() == Rational(1, 4) + y + y**2
assert e.as_sum(2, method="midpoint").expand() == Rational(5, 16) + y + y**2
assert e.as_sum(3, method="midpoint").expand() == Rational(35, 108) + y + y**2
assert e.as_sum(4, method="midpoint").expand() == Rational(21, 64) + y + y**2
assert e.as_sum(n, method="midpoint").expand() == \
y**2 + y + Rational(1, 3) - 1/(12*n**2)
def test_as_sum_left():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="left").expand() == y**2
assert e.as_sum(2, method="left").expand() == Rational(1, 8) + y/2 + y**2
assert e.as_sum(3, method="left").expand() == Rational(5, 27) + y*Rational(2, 3) + y**2
assert e.as_sum(4, method="left").expand() == Rational(7, 32) + y*Rational(3, 4) + y**2
assert e.as_sum(n, method="left").expand() == \
y**2 + y + Rational(1, 3) - y/n - 1/(2*n) + 1/(6*n**2)
assert e.as_sum(10, method="left", evaluate=False).has(Sum)
def test_as_sum_right():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="right").expand() == 1 + 2*y + y**2
assert e.as_sum(2, method="right").expand() == Rational(5, 8) + y*Rational(3, 2) + y**2
assert e.as_sum(3, method="right").expand() == Rational(14, 27) + y*Rational(4, 3) + y**2
assert e.as_sum(4, method="right").expand() == Rational(15, 32) + y*Rational(5, 4) + y**2
assert e.as_sum(n, method="right").expand() == \
y**2 + y + Rational(1, 3) + y/n + 1/(2*n) + 1/(6*n**2)
def test_as_sum_trapezoid():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="trapezoid").expand() == y**2 + y + S.Half
assert e.as_sum(2, method="trapezoid").expand() == y**2 + y + Rational(3, 8)
assert e.as_sum(3, method="trapezoid").expand() == y**2 + y + Rational(19, 54)
assert e.as_sum(4, method="trapezoid").expand() == y**2 + y + Rational(11, 32)
assert e.as_sum(n, method="trapezoid").expand() == \
y**2 + y + Rational(1, 3) + 1/(6*n**2)
assert Integral(sign(x), (x, 0, 1)).as_sum(1, 'trapezoid') == S.Half
def test_as_sum_raises():
e = Integral((x + y)**2, (x, 0, 1))
raises(ValueError, lambda: e.as_sum(-1))
raises(ValueError, lambda: e.as_sum(0))
raises(ValueError, lambda: Integral(x).as_sum(3))
raises(ValueError, lambda: e.as_sum(oo))
raises(ValueError, lambda: e.as_sum(3, method='xxxx2'))
def test_nested_doit():
e = Integral(Integral(x, x), x)
f = Integral(x, x, x)
assert e.doit() == f.doit()
def test_issue_4665():
# Allow only upper or lower limit evaluation
e = Integral(x**2, (x, None, 1))
f = Integral(x**2, (x, 1, None))
assert e.doit() == Rational(1, 3)
assert f.doit() == Rational(-1, 3)
assert Integral(x*y, (x, None, y)).subs(y, t) == Integral(x*t, (x, None, t))
assert Integral(x*y, (x, y, None)).subs(y, t) == Integral(x*t, (x, t, None))
assert integrate(x**2, (x, None, 1)) == Rational(1, 3)
assert integrate(x**2, (x, 1, None)) == Rational(-1, 3)
assert integrate("x**2", ("x", "1", None)) == Rational(-1, 3)
def test_integral_reconstruct():
e = Integral(x**2, (x, -1, 1))
assert e == Integral(*e.args)
def test_doit_integrals():
e = Integral(Integral(2*x), (x, 0, 1))
assert e.doit() == Rational(1, 3)
assert e.doit(deep=False) == Rational(1, 3)
f = Function('f')
# doesn't matter if the integral can't be performed
assert Integral(f(x), (x, 1, 1)).doit() == 0
# doesn't matter if the limits can't be evaluated
assert Integral(0, (x, 1, Integral(f(x), x))).doit() == 0
assert Integral(x, (a, 0)).doit() == 0
limits = ((a, 1, exp(x)), (x, 0))
assert Integral(a, *limits).doit() == Rational(1, 4)
assert Integral(a, *list(reversed(limits))).doit() == 0
def test_issue_4884():
assert integrate(sqrt(x)*(1 + x)) == \
Piecewise(
(2*sqrt(x)*(x + 1)**2/5 - 2*sqrt(x)*(x + 1)/15 - 4*sqrt(x)/15,
Abs(x + 1) > 1),
(2*I*sqrt(-x)*(x + 1)**2/5 - 2*I*sqrt(-x)*(x + 1)/15 -
4*I*sqrt(-x)/15, True))
assert integrate(x**x*(1 + log(x))) == x**x
def test_issue_18153():
assert integrate(x**n*log(x),x) == \
Piecewise(
(n*x*x**n*log(x)/(n**2 + 2*n + 1) +
x*x**n*log(x)/(n**2 + 2*n + 1) - x*x**n/(n**2 + 2*n + 1)
, Ne(n, -1)), (log(x)**2/2, True)
)
def test_is_number():
from sympy.abc import x, y, z
from sympy import cos, sin
assert Integral(x).is_number is False
assert Integral(1, x).is_number is False
assert Integral(1, (x, 1)).is_number is True
assert Integral(1, (x, 1, 2)).is_number is True
assert Integral(1, (x, 1, y)).is_number is False
assert Integral(1, (x, y)).is_number is False
assert Integral(x, y).is_number is False
assert Integral(x, (y, 1, x)).is_number is False
assert Integral(x, (y, 1, 2)).is_number is False
assert Integral(x, (x, 1, 2)).is_number is True
# `foo.is_number` should always be equivalent to `not foo.free_symbols`
# in each of these cases, there are pseudo-free symbols
i = Integral(x, (y, 1, 1))
assert i.is_number is False and i.n() == 0
i = Integral(x, (y, z, z))
assert i.is_number is False and i.n() == 0
i = Integral(1, (y, z, z + 2))
assert i.is_number is False and i.n() == 2
assert Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
assert Integral(x*y, (x, 1, 2), (y, 1, z)).is_number is False
assert Integral(x, (x, 1)).is_number is True
assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True
assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True
# it is possible to get a false negative if the integrand is
# actually an unsimplified zero, but this is true of is_number in general.
assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False
assert Integral(f(x), (x, 0, 1)).is_number is True
def test_symbols():
from sympy.abc import x, y, z
assert Integral(0, x).free_symbols == {x}
assert Integral(x).free_symbols == {x}
assert Integral(x, (x, None, y)).free_symbols == {y}
assert Integral(x, (x, y, None)).free_symbols == {y}
assert Integral(x, (x, 1, y)).free_symbols == {y}
assert Integral(x, (x, y, 1)).free_symbols == {y}
assert Integral(x, (x, x, y)).free_symbols == {x, y}
assert Integral(x, x, y).free_symbols == {x, y}
assert Integral(x, (x, 1, 2)).free_symbols == set()
assert Integral(x, (y, 1, 2)).free_symbols == {x}
# pseudo-free in this case
assert Integral(x, (y, z, z)).free_symbols == {x, z}
assert Integral(x, (y, 1, 2), (y, None, None)).free_symbols == {x, y}
assert Integral(x, (y, 1, 2), (x, 1, y)).free_symbols == {y}
assert Integral(2, (y, 1, 2), (y, 1, x), (x, 1, 2)).free_symbols == set()
assert Integral(2, (y, x, 2), (y, 1, x), (x, 1, 2)).free_symbols == set()
assert Integral(2, (x, 1, 2), (y, x, 2), (y, 1, 2)).free_symbols == \
{x}
def test_is_zero():
from sympy.abc import x, m
assert Integral(0, (x, 1, x)).is_zero
assert Integral(1, (x, 1, 1)).is_zero
assert Integral(1, (x, 1, 2), (y, 2)).is_zero is False
assert Integral(x, (m, 0)).is_zero
assert Integral(x + m, (m, 0)).is_zero is None
i = Integral(m, (m, 1, exp(x)), (x, 0))
assert i.is_zero is None
assert Integral(m, (x, 0), (m, 1, exp(x))).is_zero is True
assert Integral(x, (x, oo, oo)).is_zero # issue 8171
assert Integral(x, (x, -oo, -oo)).is_zero
# this is zero but is beyond the scope of what is_zero
# should be doing
assert Integral(sin(x), (x, 0, 2*pi)).is_zero is None
def test_series():
from sympy.abc import x
i = Integral(cos(x), (x, x))
e = i.lseries(x)
assert i.nseries(x, n=8).removeO() == Add(*[next(e) for j in range(4)])
def test_trig_nonelementary_integrals():
x = Symbol('x')
assert integrate((1 + sin(x))/x, x) == log(x) + Si(x)
# next one comes out as log(x) + log(x**2)/2 + Ci(x)
# so not hardcoding this log ugliness
assert integrate((cos(x) + 2)/x, x).has(Ci)
def test_issue_4403():
x = Symbol('x')
y = Symbol('y')
z = Symbol('z', positive=True)
assert integrate(sqrt(x**2 + z**2), x) == \
z**2*asinh(x/z)/2 + x*sqrt(x**2 + z**2)/2
assert integrate(sqrt(x**2 - z**2), x) == \
-z**2*acosh(x/z)/2 + x*sqrt(x**2 - z**2)/2
x = Symbol('x', real=True)
y = Symbol('y', positive=True)
assert integrate(1/(x**2 + y**2)**S('3/2'), x) == \
x/(y**2*sqrt(x**2 + y**2))
# If y is real and nonzero, we get x*Abs(y)/(y**3*sqrt(x**2 + y**2)),
# which results from sqrt(1 + x**2/y**2) = sqrt(x**2 + y**2)/|y|.
def test_issue_4403_2():
assert integrate(sqrt(-x**2 - 4), x) == \
-2*atan(x/sqrt(-4 - x**2)) + x*sqrt(-4 - x**2)/2
def test_issue_4100():
R = Symbol('R', positive=True)
assert integrate(sqrt(R**2 - x**2), (x, 0, R)) == pi*R**2/4
def test_issue_5167():
from sympy.abc import w, x, y, z
f = Function('f')
assert Integral(Integral(f(x), x), x) == Integral(f(x), x, x)
assert Integral(f(x)).args == (f(x), Tuple(x))
assert Integral(Integral(f(x))).args == (f(x), Tuple(x), Tuple(x))
assert Integral(Integral(f(x)), y).args == (f(x), Tuple(x), Tuple(y))
assert Integral(Integral(f(x), z), y).args == (f(x), Tuple(z), Tuple(y))
assert Integral(Integral(Integral(f(x), x), y), z).args == \
(f(x), Tuple(x), Tuple(y), Tuple(z))
assert integrate(Integral(f(x), x), x) == Integral(f(x), x, x)
assert integrate(Integral(f(x), y), x) == y*Integral(f(x), x)
assert integrate(Integral(f(x), x), y) in [Integral(y*f(x), x), y*Integral(f(x), x)]
assert integrate(Integral(2, x), x) == x**2
assert integrate(Integral(2, x), y) == 2*x*y
# don't re-order given limits
assert Integral(1, x, y).args != Integral(1, y, x).args
# do as many as possible
assert Integral(f(x), y, x, y, x).doit() == y**2*Integral(f(x), x, x)/2
assert Integral(f(x), (x, 1, 2), (w, 1, x), (z, 1, y)).doit() == \
y*(x - 1)*Integral(f(x), (x, 1, 2)) - (x - 1)*Integral(f(x), (x, 1, 2))
def test_issue_4890():
z = Symbol('z', positive=True)
assert integrate(exp(-log(x)**2), x) == \
sqrt(pi)*exp(Rational(1, 4))*erf(log(x) - S.Half)/2
assert integrate(exp(log(x)**2), x) == \
sqrt(pi)*exp(Rational(-1, 4))*erfi(log(x)+S.Half)/2
assert integrate(exp(-z*log(x)**2), x) == \
sqrt(pi)*exp(1/(4*z))*erf(sqrt(z)*log(x) - 1/(2*sqrt(z)))/(2*sqrt(z))
def test_issue_4551():
assert not integrate(1/(x*sqrt(1 - x**2)), x).has(Integral)
def test_issue_4376():
n = Symbol('n', integer=True, positive=True)
assert simplify(integrate(n*(x**(1/n) - 1), (x, 0, S.Half)) -
(n**2 - 2**(1/n)*n**2 - n*2**(1/n))/(2**(1 + 1/n) + n*2**(1 + 1/n))) == 0
def test_issue_4517():
assert integrate((sqrt(x) - x**3)/x**Rational(1, 3), x) == \
6*x**Rational(7, 6)/7 - 3*x**Rational(11, 3)/11
def test_issue_4527():
k, m = symbols('k m', integer=True)
assert integrate(sin(k*x)*sin(m*x), (x, 0, pi)).simplify() == \
Piecewise((0, Eq(k, 0) | Eq(m, 0)),
(-pi/2, Eq(k, -m) | (Eq(k, 0) & Eq(m, 0))),
(pi/2, Eq(k, m) | (Eq(k, 0) & Eq(m, 0))),
(0, True))
# Should be possible to further simplify to:
# Piecewise(
# (0, Eq(k, 0) | Eq(m, 0)),
# (-pi/2, Eq(k, -m)),
# (pi/2, Eq(k, m)),
# (0, True))
assert integrate(sin(k*x)*sin(m*x), (x,)) == Piecewise(
(0, And(Eq(k, 0), Eq(m, 0))),
(-x*sin(m*x)**2/2 - x*cos(m*x)**2/2 + sin(m*x)*cos(m*x)/(2*m), Eq(k, -m)),
(x*sin(m*x)**2/2 + x*cos(m*x)**2/2 - sin(m*x)*cos(m*x)/(2*m), Eq(k, m)),
(m*sin(k*x)*cos(m*x)/(k**2 - m**2) -
k*sin(m*x)*cos(k*x)/(k**2 - m**2), True))
def test_issue_4199():
ypos = Symbol('y', positive=True)
# TODO: Remove conds='none' below, let the assumption take care of it.
assert integrate(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo), conds='none') == \
Integral(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo))
def test_issue_3940():
a, b, c, d = symbols('a:d', positive=True, finite=True)
assert integrate(exp(-x**2 + I*c*x), x) == \
-sqrt(pi)*exp(-c**2/4)*erf(I*c/2 - x)/2
assert integrate(exp(a*x**2 + b*x + c), x) == \
sqrt(pi)*exp(c)*exp(-b**2/(4*a))*erfi(sqrt(a)*x + b/(2*sqrt(a)))/(2*sqrt(a))
from sympy import expand_mul
from sympy.abc import k
assert expand_mul(integrate(exp(-x**2)*exp(I*k*x), (x, -oo, oo))) == \
sqrt(pi)*exp(-k**2/4)
a, d = symbols('a d', positive=True)
assert expand_mul(integrate(exp(-a*x**2 + 2*d*x), (x, -oo, oo))) == \
sqrt(pi)*exp(d**2/a)/sqrt(a)
def test_issue_5413():
# Note that this is not the same as testing ratint() because integrate()
# pulls out the coefficient.
assert integrate(-a/(a**2 + x**2), x) == I*log(-I*a + x)/2 - I*log(I*a + x)/2
def test_issue_4892a():
A, z = symbols('A z')
c = Symbol('c', nonzero=True)
P1 = -A*exp(-z)
P2 = -A/(c*t)*(sin(x)**2 + cos(y)**2)
h1 = -sin(x)**2 - cos(y)**2
h2 = -sin(x)**2 + sin(y)**2 - 1
# there is still some non-deterministic behavior in integrate
# or trigsimp which permits one of the following
assert integrate(c*(P2 - P1), t) in [
c*(-A*(-h1)*log(c*t)/c + A*t*exp(-z)),
c*(-A*(-h2)*log(c*t)/c + A*t*exp(-z)),
c*( A* h1 *log(c*t)/c + A*t*exp(-z)),
c*( A* h2 *log(c*t)/c + A*t*exp(-z)),
(A*c*t - A*(-h1)*log(t)*exp(z))*exp(-z),
(A*c*t - A*(-h2)*log(t)*exp(z))*exp(-z),
]
def test_issue_4892b():
# Issues relating to issue 4596 are making the actual result of this hard
# to test. The answer should be something like
#
# (-sin(y) + sqrt(-72 + 48*cos(y) - 8*cos(y)**2)/2)*log(x + sqrt(-72 +
# 48*cos(y) - 8*cos(y)**2)/(2*(3 - cos(y)))) + (-sin(y) - sqrt(-72 +
# 48*cos(y) - 8*cos(y)**2)/2)*log(x - sqrt(-72 + 48*cos(y) -
# 8*cos(y)**2)/(2*(3 - cos(y)))) + x**2*sin(y)/2 + 2*x*cos(y)
expr = (sin(y)*x**3 + 2*cos(y)*x**2 + 12)/(x**2 + 2)
assert trigsimp(factor(integrate(expr, x).diff(x) - expr)) == 0
def test_issue_5178():
assert integrate(sin(x)*f(y, z), (x, 0, pi), (y, 0, pi), (z, 0, pi)) == \
2*Integral(f(y, z), (y, 0, pi), (z, 0, pi))
def test_integrate_series():
f = sin(x).series(x, 0, 10)
g = x**2/2 - x**4/24 + x**6/720 - x**8/40320 + x**10/3628800 + O(x**11)
assert integrate(f, x) == g
assert diff(integrate(f, x), x) == f
assert integrate(O(x**5), x) == O(x**6)
def test_atom_bug():
from sympy import meijerg
from sympy.integrals.heurisch import heurisch
assert heurisch(meijerg([], [], [1], [], x), x) is None
def test_limit_bug():
z = Symbol('z', zero=False)
assert integrate(sin(x*y*z), (x, 0, pi), (y, 0, pi)).together() == \
(log(z) - Ci(pi**2*z) + EulerGamma + 2*log(pi))/z
def test_issue_4703():
g = Function('g')
assert integrate(exp(x)*g(x), x).has(Integral)
def test_issue_1888():
f = Function('f')
assert integrate(f(x).diff(x)**2, x).has(Integral)
# The following tests work using meijerint.
def test_issue_3558():
from sympy import Si
assert integrate(cos(x*y), (x, -pi/2, pi/2), (y, 0, pi)) == 2*Si(pi**2/2)
def test_issue_4422():
assert integrate(1/sqrt(16 + 4*x**2), x) == asinh(x/2) / 2
def test_issue_4493():
from sympy import simplify
assert simplify(integrate(x*sqrt(1 + 2*x), x)) == \
sqrt(2*x + 1)*(6*x**2 + x - 1)/15
def test_issue_4737():
assert integrate(sin(x)/x, (x, -oo, oo)) == pi
assert integrate(sin(x)/x, (x, 0, oo)) == pi/2
assert integrate(sin(x)/x, x) == Si(x)
def test_issue_4992():
# Note: psi in _check_antecedents becomes NaN.
from sympy import simplify, expand_func, polygamma, gamma
a = Symbol('a', positive=True)
assert simplify(expand_func(integrate(exp(-x)*log(x)*x**a, (x, 0, oo)))) == \
(a*polygamma(0, a) + 1)*gamma(a)
def test_issue_4487():
from sympy import lowergamma, simplify
assert simplify(integrate(exp(-x)*x**y, x)) == lowergamma(y + 1, x)
def test_issue_4215():
x = Symbol("x")
assert integrate(1/(x**2), (x, -1, 1)) is oo
def test_issue_4400():
n = Symbol('n', integer=True, positive=True)
assert integrate((x**n)*log(x), x) == \
n*x*x**n*log(x)/(n**2 + 2*n + 1) + x*x**n*log(x)/(n**2 + 2*n + 1) - \
x*x**n/(n**2 + 2*n + 1)
def test_issue_6253():
# Note: this used to raise NotImplementedError
# Note: psi in _check_antecedents becomes NaN.
assert integrate((sqrt(1 - x) + sqrt(1 + x))**2/x, x, meijerg=True) == \
Integral((sqrt(-x + 1) + sqrt(x + 1))**2/x, x)
def test_issue_4153():
assert integrate(1/(1 + x + y + z), (x, 0, 1), (y, 0, 1), (z, 0, 1)) in [
-12*log(3) - 3*log(6)/2 + 3*log(8)/2 + 5*log(2) + 7*log(4),
6*log(2) + 8*log(4) - 27*log(3)/2, 22*log(2) - 27*log(3)/2,
-12*log(3) - 3*log(6)/2 + 47*log(2)/2]
def test_issue_4326():
R, b, h = symbols('R b h')
# It doesn't matter if we can do the integral. Just make sure the result
# doesn't contain nan. This is really a test against _eval_interval.
e = integrate(((h*(x - R + b))/b)*sqrt(R**2 - x**2), (x, R - b, R))
assert not e.has(nan)
# See that it evaluates
assert not e.has(Integral)
def test_powers():
assert integrate(2**x + 3**x, x) == 2**x/log(2) + 3**x/log(3)
def test_manual_option():
raises(ValueError, lambda: integrate(1/x, x, manual=True, meijerg=True))
# an example of a function that manual integration cannot handle
assert integrate(log(1+x)/x, (x, 0, 1), manual=True).has(Integral)
def test_meijerg_option():
raises(ValueError, lambda: integrate(1/x, x, meijerg=True, risch=True))
# an example of a function that meijerg integration cannot handle
assert integrate(tan(x), x, meijerg=True) == Integral(tan(x), x)
def test_risch_option():
# risch=True only allowed on indefinite integrals
raises(ValueError, lambda: integrate(1/log(x), (x, 0, oo), risch=True))
assert integrate(exp(-x**2), x, risch=True) == NonElementaryIntegral(exp(-x**2), x)
assert integrate(log(1/x)*y, x, y, risch=True) == y**2*(x*log(1/x)/2 + x/2)
assert integrate(erf(x), x, risch=True) == Integral(erf(x), x)
# TODO: How to test risch=False?
@slow
def test_heurisch_option():
raises(ValueError, lambda: integrate(1/x, x, risch=True, heurisch=True))
# an integral that heurisch can handle
assert integrate(exp(x**2), x, heurisch=True) == sqrt(pi)*erfi(x)/2
# an integral that heurisch currently cannot handle
assert integrate(exp(x)/x, x, heurisch=True) == Integral(exp(x)/x, x)
# an integral where heurisch currently hangs, issue 15471
assert integrate(log(x)*cos(log(x))/x**Rational(3, 4), x, heurisch=False) == (
-128*x**Rational(1, 4)*sin(log(x))/289 + 240*x**Rational(1, 4)*cos(log(x))/289 +
(16*x**Rational(1, 4)*sin(log(x))/17 + 4*x**Rational(1, 4)*cos(log(x))/17)*log(x))
def test_issue_6828():
f = 1/(1.08*x**2 - 4.3)
g = integrate(f, x).diff(x)
assert verify_numerically(f, g, tol=1e-12)
def test_issue_4803():
x_max = Symbol("x_max")
assert integrate(y/pi*exp(-(x_max - x)/cos(a)), x) == \
y*exp((x - x_max)/cos(a))*cos(a)/pi
def test_issue_4234():
assert integrate(1/sqrt(1 + tan(x)**2)) == tan(x)/sqrt(1 + tan(x)**2)
def test_issue_4492():
assert simplify(integrate(x**2 * sqrt(5 - x**2), x)) == Piecewise(
(I*(2*x**5 - 15*x**3 + 25*x - 25*sqrt(x**2 - 5)*acosh(sqrt(5)*x/5)) /
(8*sqrt(x**2 - 5)), 1 < Abs(x**2)/5),
((-2*x**5 + 15*x**3 - 25*x + 25*sqrt(-x**2 + 5)*asin(sqrt(5)*x/5)) /
(8*sqrt(-x**2 + 5)), True))
def test_issue_2708():
# This test needs to use an integration function that can
# not be evaluated in closed form. Update as needed.
f = 1/(a + z + log(z))
integral_f = NonElementaryIntegral(f, (z, 2, 3))
assert Integral(f, (z, 2, 3)).doit() == integral_f
assert integrate(f + exp(z), (z, 2, 3)) == integral_f - exp(2) + exp(3)
assert integrate(2*f + exp(z), (z, 2, 3)) == \
2*integral_f - exp(2) + exp(3)
assert integrate(exp(1.2*n*s*z*(-t + z)/t), (z, 0, x)) == \
NonElementaryIntegral(exp(-1.2*n*s*z)*exp(1.2*n*s*z**2/t),
(z, 0, x))
def test_issue_2884():
f = (4.000002016020*x + 4.000002016020*y + 4.000006024032)*exp(10.0*x)
e = integrate(f, (x, 0.1, 0.2))
assert str(e) == '1.86831064982608*y + 2.16387491480008'
def test_issue_8368():
assert integrate(exp(-s*x)*cosh(x), (x, 0, oo)) == \
Piecewise(
( pi*Piecewise(
( -s/(pi*(-s**2 + 1)),
Abs(s**2) < 1),
( 1/(pi*s*(1 - 1/s**2)),
Abs(s**(-2)) < 1),
( meijerg(
((S.Half,), (0, 0)),
((0, S.Half), (0,)),
polar_lift(s)**2),
True)
),
And(
Abs(periodic_argument(polar_lift(s)**2, oo)) < pi,
cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) - 1 > 0,
Ne(s**2, 1))
),
(
Integral(exp(-s*x)*cosh(x), (x, 0, oo)),
True))
assert integrate(exp(-s*x)*sinh(x), (x, 0, oo)) == \
Piecewise(
( -1/(s + 1)/2 - 1/(-s + 1)/2,
And(
Ne(1/s, 1),
Abs(periodic_argument(s, oo)) < pi/2,
Abs(periodic_argument(s, oo)) <= pi/2,
cos(Abs(periodic_argument(s, oo)))*Abs(s) - 1 > 0)),
( Integral(exp(-s*x)*sinh(x), (x, 0, oo)),
True))
def test_issue_8901():
assert integrate(sinh(1.0*x)) == 1.0*cosh(1.0*x)
assert integrate(tanh(1.0*x)) == 1.0*x - 1.0*log(tanh(1.0*x) + 1)
assert integrate(tanh(x)) == x - log(tanh(x) + 1)
@slow
def test_issue_8945():
assert integrate(sin(x)**3/x, (x, 0, 1)) == -Si(3)/4 + 3*Si(1)/4
assert integrate(sin(x)**3/x, (x, 0, oo)) == pi/4
assert integrate(cos(x)**2/x**2, x) == -Si(2*x) - cos(2*x)/(2*x) - 1/(2*x)
@slow
def test_issue_7130():
if ON_TRAVIS:
skip("Too slow for travis.")
i, L, a, b = symbols('i L a b')
integrand = (cos(pi*i*x/L)**2 / (a + b*x)).rewrite(exp)
assert x not in integrate(integrand, (x, 0, L)).free_symbols
def test_issue_10567():
a, b, c, t = symbols('a b c t')
vt = Matrix([a*t, b, c])
assert integrate(vt, t) == Integral(vt, t).doit()
assert integrate(vt, t) == Matrix([[a*t**2/2], [b*t], [c*t]])
def test_issue_11856():
t = symbols('t')
assert integrate(sinc(pi*t), t) == Si(pi*t)/pi
@slow
def test_issue_11876():
assert integrate(sqrt(log(1/x)), (x, 0, 1)) == sqrt(pi)/2
def test_issue_4950():
assert integrate((-60*exp(x) - 19.2*exp(4*x))*exp(4*x), x) ==\
-2.4*exp(8*x) - 12.0*exp(5*x)
def test_issue_4968():
assert integrate(sin(log(x**2))) == x*sin(log(x**2))/5 - 2*x*cos(log(x**2))/5
def test_singularities():
assert integrate(1/x**2, (x, -oo, oo)) is oo
assert integrate(1/x**2, (x, -1, 1)) is oo
assert integrate(1/(x - 1)**2, (x, -2, 2)) is oo
assert integrate(1/x**2, (x, 1, -1)) is -oo
assert integrate(1/(x - 1)**2, (x, 2, -2)) is -oo
def test_issue_12645():
x, y = symbols('x y', real=True)
assert (integrate(sin(x*x*x + y*y),
(x, -sqrt(pi - y*y), sqrt(pi - y*y)),
(y, -sqrt(pi), sqrt(pi)))
== Integral(sin(x**3 + y**2),
(x, -sqrt(-y**2 + pi), sqrt(-y**2 + pi)),
(y, -sqrt(pi), sqrt(pi))))
def test_issue_12677():
assert integrate(sin(x) / (cos(x)**3) , (x, 0, pi/6)) == Rational(1,6)
def test_issue_14078():
assert integrate((cos(3*x)-cos(x))/x, (x, 0, oo)) == -log(3)
def test_issue_14064():
assert integrate(1/cosh(x), (x, 0, oo)) == pi/2
def test_issue_14027():
assert integrate(1/(1 + exp(x - S.Half)/(1 + exp(x))), x) == \
x - exp(S.Half)*log(exp(x) + exp(S.Half)/(1 + exp(S.Half)))/(exp(S.Half) + E)
def test_issue_8170():
assert integrate(tan(x), (x, 0, pi/2)) is S.Infinity
def test_issue_8440_14040():
assert integrate(1/x, (x, -1, 1)) is S.NaN
assert integrate(1/(x + 1), (x, -2, 3)) is S.NaN
def test_issue_14096():
assert integrate(1/(x + y)**2, (x, 0, 1)) == -1/(y + 1) + 1/y
assert integrate(1/(1 + x + y + z)**2, (x, 0, 1), (y, 0, 1), (z, 0, 1)) == \
-4*log(4) - 6*log(2) + 9*log(3)
def test_issue_14144():
assert Abs(integrate(1/sqrt(1 - x**3), (x, 0, 1)).n() - 1.402182) < 1e-6
assert Abs(integrate(sqrt(1 - x**3), (x, 0, 1)).n() - 0.841309) < 1e-6
def test_issue_14375():
# This raised a TypeError. The antiderivative has exp_polar, which
# may be possible to unpolarify, so the exact output is not asserted here.
assert integrate(exp(I*x)*log(x), x).has(Ei)
def test_issue_14437():
f = Function('f')(x, y, z)
assert integrate(f, (x, 0, 1), (y, 0, 2), (z, 0, 3)) == \
Integral(f, (x, 0, 1), (y, 0, 2), (z, 0, 3))
def test_issue_14470():
assert integrate(1/sqrt(exp(x) + 1), x) == \
log(-1 + 1/sqrt(exp(x) + 1)) - log(1 + 1/sqrt(exp(x) + 1))
def test_issue_14877():
f = exp(1 - exp(x**2)*x + 2*x**2)*(2*x**3 + x)/(1 - exp(x**2)*x)**2
assert integrate(f, x) == \
-exp(2*x**2 - x*exp(x**2) + 1)/(x*exp(3*x**2) - exp(2*x**2))
def test_issue_14782():
f = sqrt(-x**2 + 1)*(-x**2 + x)
assert integrate(f, [x, -1, 1]) == - pi / 8
@slow
def test_issue_14782_slow():
f = sqrt(-x**2 + 1)*(-x**2 + x)
assert integrate(f, [x, 0, 1]) == S.One / 3 - pi / 16
def test_issue_12081():
f = x**(Rational(-3, 2))*exp(-x)
assert integrate(f, [x, 0, oo]) is oo
def test_issue_15285():
y = 1/x - 1
f = 4*y*exp(-2*y)/x**2
assert integrate(f, [x, 0, 1]) == 1
def test_issue_15432():
assert integrate(x**n * exp(-x) * log(x), (x, 0, oo)).gammasimp() == Piecewise(
(gamma(n + 1)*polygamma(0, n) + gamma(n + 1)/n, re(n) + 1 > 0),
(Integral(x**n*exp(-x)*log(x), (x, 0, oo)), True))
def test_issue_15124():
omega = IndexedBase('omega')
m, p = symbols('m p', cls=Idx)
assert integrate(exp(x*I*(omega[m] + omega[p])), x, conds='none') == \
-I*exp(I*x*omega[m])*exp(I*x*omega[p])/(omega[m] + omega[p])
def test_issue_15218():
with warns_deprecated_sympy():
Integral(Eq(x, y))
with warns_deprecated_sympy():
assert Integral(Eq(x, y), x) == Eq(Integral(x, x), Integral(y, x))
with warns_deprecated_sympy():
assert Integral(Eq(x, y), x).doit() == Eq(x**2/2, x*y)
with warns_deprecated_sympy():
assert Eq(x, y).integrate(x) == Eq(x**2/2, x*y)
# These are not deprecated because they are definite integrals
assert integrate(Eq(x, y), (x, 0, 1)) == Eq(S.Half, y)
assert Eq(x, y).integrate((x, 0, 1)) == Eq(S.Half, y)
def test_issue_15292():
res = integrate(exp(-x**2*cos(2*t)) * cos(x**2*sin(2*t)), (x, 0, oo))
assert isinstance(res, Piecewise)
assert gammasimp((res - sqrt(pi)/2 * cos(t)).subs(t, pi/6)) == 0
def test_issue_4514():
assert integrate(sin(2*x)/sin(x), x) == 2*sin(x)
def test_issue_15457():
x, a, b = symbols('x a b', real=True)
definite = integrate(exp(Abs(x-2)), (x, a, b))
indefinite = integrate(exp(Abs(x-2)), x)
assert definite.subs({a: 1, b: 3}) == -2 + 2*E
assert indefinite.subs(x, 3) - indefinite.subs(x, 1) == -2 + 2*E
assert definite.subs({a: -3, b: -1}) == -exp(3) + exp(5)
assert indefinite.subs(x, -1) - indefinite.subs(x, -3) == -exp(3) + exp(5)
def test_issue_15431():
assert integrate(x*exp(x)*log(x), x) == \
(x*exp(x) - exp(x))*log(x) - exp(x) + Ei(x)
def test_issue_15640_log_substitutions():
f = x/log(x)
F = Ei(2*log(x))
assert integrate(f, x) == F and F.diff(x) == f
f = x**3/log(x)**2
F = -x**4/log(x) + 4*Ei(4*log(x))
assert integrate(f, x) == F and F.diff(x) == f
f = sqrt(log(x))/x**2
F = -sqrt(pi)*erfc(sqrt(log(x)))/2 - sqrt(log(x))/x
assert integrate(f, x) == F and F.diff(x) == f
def test_issue_15509():
from sympy.vector import CoordSys3D
N = CoordSys3D('N')
x = N.x
assert integrate(cos(a*x + b), (x, x_1, x_2), heurisch=True) == Piecewise(
(-sin(a*x_1 + b)/a + sin(a*x_2 + b)/a, (a > -oo) & (a < oo) & Ne(a, 0)), \
(-x_1*cos(b) + x_2*cos(b), True))
def test_issue_4311_fast():
x = symbols('x', real=True)
assert integrate(x*abs(9-x**2), x) == Piecewise(
(x**4/4 - 9*x**2/2, x <= -3),
(-x**4/4 + 9*x**2/2 - Rational(81, 2), x <= 3),
(x**4/4 - 9*x**2/2, True))
def test_integrate_with_complex_constants():
K = Symbol('K', real=True, positive=True)
x = Symbol('x', real=True)
m = Symbol('m', real=True)
t = Symbol('t', real=True)
assert integrate(exp(-I*K*x**2+m*x), x) == sqrt(I)*sqrt(pi)*exp(-I*m**2
/(4*K))*erfi((-2*I*K*x + m)/(2*sqrt(K)*sqrt(-I)))/(2*sqrt(K))
assert integrate(1/(1 + I*x**2), x) == (-I*(sqrt(-I)*log(x - I*sqrt(-I))/2
- sqrt(-I)*log(x + I*sqrt(-I))/2))
assert integrate(exp(-I*x**2), x) == sqrt(pi)*erf(sqrt(I)*x)/(2*sqrt(I))
assert integrate((1/(exp(I*t)-2)), t) == -t/2 - I*log(exp(I*t) - 2)/2
assert integrate((1/(exp(I*t)-2)), (t, 0, 2*pi)) == -pi
def test_issue_14241():
x = Symbol('x')
n = Symbol('n', positive=True, integer=True)
assert integrate(n * x ** (n - 1) / (x + 1), x) == \
n**2*x**n*lerchphi(x*exp_polar(I*pi), 1, n)*gamma(n)/gamma(n + 1)
def test_issue_13112():
assert integrate(sin(t)**2 / (5 - 4*cos(t)), [t, 0, 2*pi]) == pi / 4
@slow
def test_issue_14709b():
h = Symbol('h', positive=True)
i = integrate(x*acos(1 - 2*x/h), (x, 0, h))
assert i == 5*h**2*pi/16
def test_issue_8614():
x = Symbol('x')
t = Symbol('t')
assert integrate(exp(t)/t, (t, -oo, x)) == Ei(x)
assert integrate((exp(-x) - exp(-2*x))/x, (x, 0, oo)) == log(2)
@slow
def test_issue_15494():
s = symbols('s', real=True, positive=True)
integrand = (exp(s/2) - 2*exp(1.6*s) + exp(s))*exp(s)
solution = integrate(integrand, s)
assert solution != S.NaN
# Not sure how to test this properly as it is a symbolic expression with floats
# assert str(solution) == '0.666666666666667*exp(1.5*s) + 0.5*exp(2.0*s) - 0.769230769230769*exp(2.6*s)'
# Maybe
assert abs(solution.subs(s, 1) - (-3.67440080236188)) <= 1e-8
integrand = (exp(s/2) - 2*exp(S(8)/5*s) + exp(s))*exp(s)
assert integrate(integrand, s) == -10*exp(13*s/5)/13 + 2*exp(3*s/2)/3 + exp(2*s)/2
def test_li_integral():
y = Symbol('y')
assert Integral(li(y*x**2), x).doit() == Piecewise((x*li(x**2*y) - \
x*Ei(3*log(x**2*y)/2)/sqrt(x**2*y),
Ne(y, 0)), (0, True))
def test_issue_17473():
x = Symbol('x')
n = Symbol('n')
assert integrate(sin(x**n), x) == \
x*x**n*gamma(S(1)/2 + 1/(2*n))*hyper((S(1)/2 + 1/(2*n),),
(S(3)/2, S(3)/2 + 1/(2*n)),
-x**(2*n)/4)/(2*n*gamma(S(3)/2 + 1/(2*n)))
def test_issue_17671():
assert integrate(log(log(x)) / x**2, [x, 1, oo]) == -EulerGamma
assert integrate(log(log(x)) / x**3, [x, 1, oo]) == -log(2)/2 - EulerGamma/2
assert integrate(log(log(x)) / x**10, [x, 1, oo]) == -2*log(3)/9 - EulerGamma/9
def test_issue_2975():
w = Symbol('w')
C = Symbol('C')
y = Symbol('y')
assert integrate(1/(y**2+C)**(S(3)/2), (y, -w/2, w/2)) == w/(C**(S(3)/2)*sqrt(1 + w**2/(4*C)))
def test_issue_7827():
x, n, M = symbols('x n M')
N = Symbol('N', integer=True)
assert integrate(summation(x*n, (n, 1, N)), x) == x**2*(N**2/4 + N/4)
assert integrate(summation(x*sin(n), (n,1,N)), x) == \
Sum(x**2*sin(n)/2, (n, 1, N))
assert integrate(summation(sin(n*x), (n,1,N)), x) == \
Sum(Piecewise((-cos(n*x)/n, Ne(n, 0)), (0, True)), (n, 1, N))
assert integrate(integrate(summation(sin(n*x), (n,1,N)), x), x) == \
Piecewise((Sum(Piecewise((-sin(n*x)/n**2, Ne(n, 0)), (-x/n, True)),
(n, 1, N)), (n > -oo) & (n < oo) & Ne(n, 0)), (0, True))
assert integrate(Sum(x, (n, 1, M)), x) == M*x**2/2
raises(ValueError, lambda: integrate(Sum(x, (x, y, n)), y))
raises(ValueError, lambda: integrate(Sum(x, (x, 1, n)), n))
raises(ValueError, lambda: integrate(Sum(x, (x, 1, y)), x))
def test_issue_4231():
f = (1 + 2*x + sqrt(x + log(x))*(1 + 3*x) + x**2)/(x*(x + sqrt(x + log(x)))*sqrt(x + log(x)))
assert integrate(f, x) == 2*sqrt(x + log(x)) + 2*log(x + sqrt(x + log(x)))
def test_issue_17841():
f = diff(1/(x**2+x+I), x)
assert integrate(f, x) == 1/(x**2 + x + I)
def test_issue_21034():
x = Symbol('x', real=True, nonzero=True)
f1 = x*(-x**4/asin(5)**4 - x*sinh(x + log(asin(5))) + 5)
f2 = (x + cosh(cos(4)))/(x*(x + 1/(12*x)))
assert integrate(f1, x) == \
-x**6/(6*asin(5)**4) - x**2*cosh(x + log(asin(5))) + 5*x**2/2 + 2*x*sinh(x + log(asin(5))) - 2*cosh(x + log(asin(5)))
assert integrate(f2, x) == \
log(x**2 + S(1)/12)/2 + 2*sqrt(3)*cosh(cos(4))*atan(2*sqrt(3)*x)
def test_issue_4187():
assert integrate(log(x)*exp(-x), x) == Ei(-x) - exp(-x)*log(x)
assert integrate(log(x)*exp(-x), (x, 0, oo)) == -EulerGamma
def test_issue_21024():
x = Symbol('x', real=True, nonzero=True)
f = log(x)*log(4*x) + log(3*x + exp(2))
F = x*log(x)**2 + x*(1 - 2*log(2)) + (-2*x + 2*x*log(2))*log(x) + \
(x + exp(2)/6)*log(3*x + exp(2)) + exp(2)*log(3*x + exp(2))/6
assert F == integrate(f, x)
f = (x + exp(3))/x**2
F = log(x) - exp(3)/x
assert F == integrate(f, x)
f = (x**2 + exp(5))/x
F = x**2/2 + exp(5)*log(x)
assert F == integrate(f, x)
f = x/(2*x + tanh(1))
F = x/2 - log(2*x + tanh(1))*tanh(1)/4
assert F == integrate(f, x)
f = x - sinh(4)/x
F = x**2/2 - log(x)*sinh(4)
assert F == integrate(f, x)
f = log(x + exp(5)/x)
F = x*log(x + exp(5)/x) - x + 2*exp(Rational(5, 2))*atan(x*exp(Rational(-5, 2)))
assert F == integrate(f, x)
f = x**5/(x + E)
F = x**5/5 - E*x**4/4 + x**3*exp(2)/3 - x**2*exp(3)/2 + x*exp(4) - exp(5)*log(x + E)
assert F == integrate(f, x)
f = 4*x/(x + sinh(5))
F = 4*x - 4*log(x + sinh(5))*sinh(5)
assert F == integrate(f, x)
f = x**2/(2*x + sinh(2))
F = x**2/4 - x*sinh(2)/4 + log(2*x + sinh(2))*sinh(2)**2/8
assert F == integrate(f, x)
f = -x**2/(x + E)
F = -x**2/2 + E*x - exp(2)*log(x + E)
assert F == integrate(f, x)
f = (2*x + 3)*exp(5)/x
F = 2*x*exp(5) + 3*exp(5)*log(x)
assert F == integrate(f, x)
f = x + 2 + cosh(3)/x
F = x**2/2 + 2*x + log(x)*cosh(3)
assert F == integrate(f, x)
f = x - tanh(1)/x**3
F = x**2/2 + tanh(1)/(2*x**2)
assert F == integrate(f, x)
f = (3*x - exp(6))/x
F = 3*x - exp(6)*log(x)
assert F == integrate(f, x)
f = x**4/(x + exp(5))**2 + x
F = x**3/3 + x**2*(Rational(1, 2) - exp(5)) + 3*x*exp(10) - 4*exp(15)*log(x + exp(5)) - exp(20)/(x + exp(5))
assert F == integrate(f, x)
f = x*(x + exp(10)/x**2) + x
F = x**3/3 + x**2/2 + exp(10)*log(x)
assert F == integrate(f, x)
f = x + x/(5*x + sinh(3))
F = x**2/2 + x/5 - log(5*x + sinh(3))*sinh(3)/25
assert F == integrate(f, x)
f = (x + exp(3))/(2*x**2 + 2*x)
F = exp(3)*log(x)/2 + (Rational(1, 2) - exp(3)/2)*log(x + 1)
assert F == integrate(f, x)
f = log(x + 4*sinh(4))
F = x*log(x + 4*sinh(4)) - x + 4*log(x + 4*sinh(4))*sinh(4)
assert F == integrate(f, x)
f = -x + 20*(exp(-5) - atan(4)/x)**3*sin(4)/x
F = (-x**2*exp(15)/2 + 20*log(x)*sin(4) - (-180*x**2*exp(5)*sin(4)*atan(4) + 90*x*exp(10)*sin(4)*atan(4)**2 - \
20*exp(15)*sin(4)*atan(4)**3)/(3*x**3))*exp(-15)
assert F == integrate(f, x)
f = 2*x**2*exp(-4) + 6/x
F_true = (2*x**3/3 + 6*exp(4)*log(x))*exp(-4)
assert F_true == integrate(f, x)
def test_issue_21831():
theta = symbols('theta')
assert integrate(cos(3*theta)/(5-4*cos(theta)), (theta, 0, 2*pi)) == pi/12
|
d91e60d1f085b7430ba9b3323e7cf27011f84009b146ca451c5c39e487715f33 | from sympy import (sin, cos, tan, sec, csc, cot, log, exp, atan, asin, acos,
Symbol, Integral, integrate, pi, Dummy, Derivative,
diff, I, sqrt, erf, Piecewise, Ne, symbols, Rational,
And, Heaviside, S, asinh, acosh, atanh, acoth, expand,
Function, jacobi, gegenbauer, chebyshevt, chebyshevu,
legendre, hermite, laguerre, assoc_laguerre, uppergamma, li,
Ei, Ci, Si, Chi, Shi, fresnels, fresnelc, polylog, erfi,
sinh, cosh, elliptic_f, elliptic_e ,asec, acsc, acot )
from sympy.integrals.manualintegrate import (manualintegrate, find_substitutions,
_parts_rule, integral_steps, contains_dont_know, manual_subs)
from sympy.testing.pytest import raises, slow
x, y, z, u, n, a, b, c = symbols('x y z u n a b c')
f = Function('f')
def test_find_substitutions():
assert find_substitutions((cot(x)**2 + 1)**2*csc(x)**2*cot(x)**2, x, u) == \
[(cot(x), 1, -u**6 - 2*u**4 - u**2)]
assert find_substitutions((sec(x)**2 + tan(x) * sec(x)) / (sec(x) + tan(x)),
x, u) == [(sec(x) + tan(x), 1, 1/u)]
assert find_substitutions(x * exp(-x**2), x, u) == [(-x**2, Rational(-1, 2), exp(u))]
def test_manualintegrate_polynomials():
assert manualintegrate(y, x) == x*y
assert manualintegrate(exp(2), x) == x * exp(2)
assert manualintegrate(x**2, x) == x**3 / 3
assert manualintegrate(3 * x**2 + 4 * x**3, x) == x**3 + x**4
assert manualintegrate((x + 2)**3, x) == (x + 2)**4 / 4
assert manualintegrate((3*x + 4)**2, x) == (3*x + 4)**3 / 9
assert manualintegrate((u + 2)**3, u) == (u + 2)**4 / 4
assert manualintegrate((3*u + 4)**2, u) == (3*u + 4)**3 / 9
def test_manualintegrate_exponentials():
assert manualintegrate(exp(2*x), x) == exp(2*x) / 2
assert manualintegrate(2**x, x) == (2 ** x) / log(2)
assert manualintegrate(1 / x, x) == log(x)
assert manualintegrate(1 / (2*x + 3), x) == log(2*x + 3) / 2
assert manualintegrate(log(x)**2 / x, x) == log(x)**3 / 3
def test_manualintegrate_parts():
assert manualintegrate(exp(x) * sin(x), x) == \
(exp(x) * sin(x)) / 2 - (exp(x) * cos(x)) / 2
assert manualintegrate(2*x*cos(x), x) == 2*x*sin(x) + 2*cos(x)
assert manualintegrate(x * log(x), x) == x**2*log(x)/2 - x**2/4
assert manualintegrate(log(x), x) == x * log(x) - x
assert manualintegrate((3*x**2 + 5) * exp(x), x) == \
3*x**2*exp(x) - 6*x*exp(x) + 11*exp(x)
assert manualintegrate(atan(x), x) == x*atan(x) - log(x**2 + 1)/2
# Make sure _parts_rule does not go into an infinite loop here
assert manualintegrate(log(1/x)/(x + 1), x).has(Integral)
# Make sure _parts_rule doesn't pick u = constant but can pick dv =
# constant if necessary, e.g. for integrate(atan(x))
assert _parts_rule(cos(x), x) == None
assert _parts_rule(exp(x), x) == None
assert _parts_rule(x**2, x) == None
result = _parts_rule(atan(x), x)
assert result[0] == atan(x) and result[1] == 1
def test_manualintegrate_trigonometry():
assert manualintegrate(sin(x), x) == -cos(x)
assert manualintegrate(tan(x), x) == -log(cos(x))
assert manualintegrate(sec(x), x) == log(sec(x) + tan(x))
assert manualintegrate(csc(x), x) == -log(csc(x) + cot(x))
assert manualintegrate(sin(x) * cos(x), x) in [sin(x) ** 2 / 2, -cos(x)**2 / 2]
assert manualintegrate(-sec(x) * tan(x), x) == -sec(x)
assert manualintegrate(csc(x) * cot(x), x) == -csc(x)
assert manualintegrate(sec(x)**2, x) == tan(x)
assert manualintegrate(csc(x)**2, x) == -cot(x)
assert manualintegrate(x * sec(x**2), x) == log(tan(x**2) + sec(x**2))/2
assert manualintegrate(cos(x)*csc(sin(x)), x) == -log(cot(sin(x)) + csc(sin(x)))
assert manualintegrate(cos(3*x)*sec(x), x) == -x + sin(2*x)
assert manualintegrate(sin(3*x)*sec(x), x) == \
-3*log(cos(x)) + 2*log(cos(x)**2) - 2*cos(x)**2
@slow
def test_manualintegrate_trigpowers():
assert manualintegrate(sin(x)**2 * cos(x), x) == sin(x)**3 / 3
assert manualintegrate(sin(x)**2 * cos(x) **2, x) == \
x / 8 - sin(4*x) / 32
assert manualintegrate(sin(x) * cos(x)**3, x) == -cos(x)**4 / 4
assert manualintegrate(sin(x)**3 * cos(x)**2, x) == \
cos(x)**5 / 5 - cos(x)**3 / 3
assert manualintegrate(tan(x)**3 * sec(x), x) == sec(x)**3/3 - sec(x)
assert manualintegrate(tan(x) * sec(x) **2, x) == sec(x)**2/2
assert manualintegrate(cot(x)**5 * csc(x), x) == \
-csc(x)**5/5 + 2*csc(x)**3/3 - csc(x)
assert manualintegrate(cot(x)**2 * csc(x)**6, x) == \
-cot(x)**7/7 - 2*cot(x)**5/5 - cot(x)**3/3
@slow
def test_manualintegrate_inversetrig():
# atan
assert manualintegrate(exp(x) / (1 + exp(2*x)), x) == atan(exp(x))
assert manualintegrate(1 / (4 + 9 * x**2), x) == atan(3 * x/2) / 6
assert manualintegrate(1 / (16 + 16 * x**2), x) == atan(x) / 16
assert manualintegrate(1 / (4 + x**2), x) == atan(x / 2) / 2
assert manualintegrate(1 / (1 + 4 * x**2), x) == atan(2*x) / 2
ra = Symbol('a', real=True)
rb = Symbol('b', real=True)
assert manualintegrate(1/(ra + rb*x**2), x) == \
Piecewise((atan(x/sqrt(ra/rb))/(rb*sqrt(ra/rb)), ra/rb > 0),
(-acoth(x/sqrt(-ra/rb))/(rb*sqrt(-ra/rb)), And(ra/rb < 0, x**2 > -ra/rb)),
(-atanh(x/sqrt(-ra/rb))/(rb*sqrt(-ra/rb)), And(ra/rb < 0, x**2 < -ra/rb)))
assert manualintegrate(1/(4 + rb*x**2), x) == \
Piecewise((atan(x/(2*sqrt(1/rb)))/(2*rb*sqrt(1/rb)), 4/rb > 0),
(-acoth(x/(2*sqrt(-1/rb)))/(2*rb*sqrt(-1/rb)), And(4/rb < 0, x**2 > -4/rb)),
(-atanh(x/(2*sqrt(-1/rb)))/(2*rb*sqrt(-1/rb)), And(4/rb < 0, x**2 < -4/rb)))
assert manualintegrate(1/(ra + 4*x**2), x) == \
Piecewise((atan(2*x/sqrt(ra))/(2*sqrt(ra)), ra/4 > 0),
(-acoth(2*x/sqrt(-ra))/(2*sqrt(-ra)), And(ra/4 < 0, x**2 > -ra/4)),
(-atanh(2*x/sqrt(-ra))/(2*sqrt(-ra)), And(ra/4 < 0, x**2 < -ra/4)))
assert manualintegrate(1/(4 + 4*x**2), x) == atan(x) / 4
assert manualintegrate(1/(a + b*x**2), x) == atan(x/sqrt(a/b))/(b*sqrt(a/b))
# asin
assert manualintegrate(1/sqrt(1-x**2), x) == asin(x)
assert manualintegrate(1/sqrt(4-4*x**2), x) == asin(x)/2
assert manualintegrate(3/sqrt(1-9*x**2), x) == asin(3*x)
assert manualintegrate(1/sqrt(4-9*x**2), x) == asin(x*Rational(3, 2))/3
# asinh
assert manualintegrate(1/sqrt(x**2 + 1), x) == \
asinh(x)
assert manualintegrate(1/sqrt(x**2 + 4), x) == \
asinh(x/2)
assert manualintegrate(1/sqrt(4*x**2 + 4), x) == \
asinh(x)/2
assert manualintegrate(1/sqrt(4*x**2 + 1), x) == \
asinh(2*x)/2
assert manualintegrate(1/sqrt(a*x**2 + 1), x) == \
Piecewise((sqrt(-1/a)*asin(x*sqrt(-a)), a < 0), (sqrt(1/a)*asinh(sqrt(a)*x), a > 0))
assert manualintegrate(1/sqrt(a + x**2), x) == \
Piecewise((asinh(x*sqrt(1/a)), a > 0), (acosh(x*sqrt(-1/a)), a < 0))
# acosh
assert manualintegrate(1/sqrt(x**2 - 1), x) == \
acosh(x)
assert manualintegrate(1/sqrt(x**2 - 4), x) == \
acosh(x/2)
assert manualintegrate(1/sqrt(4*x**2 - 4), x) == \
acosh(x)/2
assert manualintegrate(1/sqrt(9*x**2 - 1), x) == \
acosh(3*x)/3
assert manualintegrate(1/sqrt(a*x**2 - 4), x) == \
Piecewise((sqrt(1/a)*acosh(sqrt(a)*x/2), a > 0))
assert manualintegrate(1/sqrt(-a + 4*x**2), x) == \
Piecewise((asinh(2*x*sqrt(-1/a))/2, -a > 0), (acosh(2*x*sqrt(1/a))/2, -a < 0))
# From https://www.wikiwand.com/en/List_of_integrals_of_inverse_trigonometric_functions
# asin
assert manualintegrate(asin(x), x) == x*asin(x) + sqrt(1 - x**2)
assert manualintegrate(asin(a*x), x) == Piecewise(((a*x*asin(a*x) + sqrt(-a**2*x**2 + 1))/a, Ne(a, 0)), (0, True))
assert manualintegrate(x*asin(a*x), x) == -a*Integral(x**2/sqrt(-a**2*x**2 + 1), x)/2 + x**2*asin(a*x)/2
# acos
assert manualintegrate(acos(x), x) == x*acos(x) - sqrt(1 - x**2)
assert manualintegrate(acos(a*x), x) == Piecewise(((a*x*acos(a*x) - sqrt(-a**2*x**2 + 1))/a, Ne(a, 0)), (pi*x/2, True))
assert manualintegrate(x*acos(a*x), x) == a*Integral(x**2/sqrt(-a**2*x**2 + 1), x)/2 + x**2*acos(a*x)/2
# atan
assert manualintegrate(atan(x), x) == x*atan(x) - log(x**2 + 1)/2
assert manualintegrate(atan(a*x), x) == Piecewise(((a*x*atan(a*x) - log(a**2*x**2 + 1)/2)/a, Ne(a, 0)), (0, True))
assert manualintegrate(x*atan(a*x), x) == -a*(x/a**2 - atan(x/sqrt(a**(-2)))/(a**4*sqrt(a**(-2))))/2 + x**2*atan(a*x)/2
# acsc
assert manualintegrate(acsc(x), x) == x*acsc(x) + Integral(1/(x*sqrt(1 - 1/x**2)), x)
assert manualintegrate(acsc(a*x), x) == x*acsc(a*x) + Integral(1/(x*sqrt(1 - 1/(a**2*x**2))), x)/a
assert manualintegrate(x*acsc(a*x), x) == x**2*acsc(a*x)/2 + Integral(1/sqrt(1 - 1/(a**2*x**2)), x)/(2*a)
# asec
assert manualintegrate(asec(x), x) == x*asec(x) - Integral(1/(x*sqrt(1 - 1/x**2)), x)
assert manualintegrate(asec(a*x), x) == x*asec(a*x) - Integral(1/(x*sqrt(1 - 1/(a**2*x**2))), x)/a
assert manualintegrate(x*asec(a*x), x) == x**2*asec(a*x)/2 - Integral(1/sqrt(1 - 1/(a**2*x**2)), x)/(2*a)
# acot
assert manualintegrate(acot(x), x) == x*acot(x) + log(x**2 + 1)/2
assert manualintegrate(acot(a*x), x) == Piecewise(((a*x*acot(a*x) + log(a**2*x**2 + 1)/2)/a, Ne(a, 0)), (pi*x/2, True))
assert manualintegrate(x*acot(a*x), x) == a*(x/a**2 - atan(x/sqrt(a**(-2)))/(a**4*sqrt(a**(-2))))/2 + x**2*acot(a*x)/2
# piecewise
assert manualintegrate(1/sqrt(a-b*x**2), x) == \
Piecewise((sqrt(a/b)*asin(x*sqrt(b/a))/sqrt(a), And(-b < 0, a > 0)),
(sqrt(-a/b)*asinh(x*sqrt(-b/a))/sqrt(a), And(-b > 0, a > 0)),
(sqrt(a/b)*acosh(x*sqrt(b/a))/sqrt(-a), And(-b > 0, a < 0)))
assert manualintegrate(1/sqrt(a + b*x**2), x) == \
Piecewise((sqrt(-a/b)*asin(x*sqrt(-b/a))/sqrt(a), And(a > 0, b < 0)),
(sqrt(a/b)*asinh(x*sqrt(b/a))/sqrt(a), And(a > 0, b > 0)),
(sqrt(-a/b)*acosh(x*sqrt(-b/a))/sqrt(-a), And(a < 0, b > 0)))
def test_manualintegrate_trig_substitution():
assert manualintegrate(sqrt(16*x**2 - 9)/x, x) == \
Piecewise((sqrt(16*x**2 - 9) - 3*acos(3/(4*x)),
And(x < Rational(3, 4), x > Rational(-3, 4))))
assert manualintegrate(1/(x**4 * sqrt(25-x**2)), x) == \
Piecewise((-sqrt(-x**2/25 + 1)/(125*x) -
(-x**2/25 + 1)**(3*S.Half)/(15*x**3), And(x < 5, x > -5)))
assert manualintegrate(x**7/(49*x**2 + 1)**(3 * S.Half), x) == \
((49*x**2 + 1)**(5*S.Half)/28824005 -
(49*x**2 + 1)**(3*S.Half)/5764801 +
3*sqrt(49*x**2 + 1)/5764801 + 1/(5764801*sqrt(49*x**2 + 1)))
def test_manualintegrate_trivial_substitution():
assert manualintegrate((exp(x) - exp(-x))/x, x) == -Ei(-x) + Ei(x)
f = Function('f')
assert manualintegrate((f(x) - f(-x))/x, x) == \
-Integral(f(-x)/x, x) + Integral(f(x)/x, x)
def test_manualintegrate_rational():
assert manualintegrate(1/(4 - x**2), x) == Piecewise((acoth(x/2)/2, x**2 > 4), (atanh(x/2)/2, x**2 < 4))
assert manualintegrate(1/(-1 + x**2), x) == Piecewise((-acoth(x), x**2 > 1), (-atanh(x), x**2 < 1))
def test_manualintegrate_special():
f, F = 4*exp(-x**2/3), 2*sqrt(3)*sqrt(pi)*erf(sqrt(3)*x/3)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = 3*exp(4*x**2), 3*sqrt(pi)*erfi(2*x)/4
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = x**Rational(1, 3)*exp(-x/8), -16*uppergamma(Rational(4, 3), x/8)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = exp(2*x)/x, Ei(2*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = exp(1 + 2*x - x**2), sqrt(pi)*exp(2)*erf(x - 1)/2
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f = sin(x**2 + 4*x + 1)
F = (sqrt(2)*sqrt(pi)*(-sin(3)*fresnelc(sqrt(2)*(2*x + 4)/(2*sqrt(pi))) +
cos(3)*fresnels(sqrt(2)*(2*x + 4)/(2*sqrt(pi))))/2)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = cos(4*x**2), sqrt(2)*sqrt(pi)*fresnelc(2*sqrt(2)*x/sqrt(pi))/4
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = sin(3*x + 2)/x, sin(2)*Ci(3*x) + cos(2)*Si(3*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = sinh(3*x - 2)/x, -sinh(2)*Chi(3*x) + cosh(2)*Shi(3*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = 5*cos(2*x - 3)/x, 5*cos(3)*Ci(2*x) + 5*sin(3)*Si(2*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = cosh(x/2)/x, Chi(x/2)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = cos(x**2)/x, Ci(x**2)/2
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = 1/log(2*x + 1), li(2*x + 1)/2
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = polylog(2, 5*x)/x, polylog(3, 5*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = 5/sqrt(3 - 2*sin(x)**2), 5*sqrt(3)*elliptic_f(x, Rational(2, 3))/3
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = sqrt(4 + 9*sin(x)**2), 2*elliptic_e(x, Rational(-9, 4))
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
def test_manualintegrate_derivative():
assert manualintegrate(pi * Derivative(x**2 + 2*x + 3), x) == \
pi * (x**2 + 2*x + 3)
assert manualintegrate(Derivative(x**2 + 2*x + 3, y), x) == \
Integral(Derivative(x**2 + 2*x + 3, y))
assert manualintegrate(Derivative(sin(x), x, x, x, y), x) == \
Derivative(sin(x), x, x, y)
def test_manualintegrate_Heaviside():
assert manualintegrate(Heaviside(x), x) == x*Heaviside(x)
assert manualintegrate(x*Heaviside(2), x) == x**2/2
assert manualintegrate(x*Heaviside(-2), x) == 0
assert manualintegrate(x*Heaviside( x), x) == x**2*Heaviside( x)/2
assert manualintegrate(x*Heaviside(-x), x) == x**2*Heaviside(-x)/2
assert manualintegrate(Heaviside(2*x + 4), x) == (x+2)*Heaviside(2*x + 4)
assert manualintegrate(x*Heaviside(x), x) == x**2*Heaviside(x)/2
assert manualintegrate(Heaviside(x + 1)*Heaviside(1 - x)*x**2, x) == \
((x**3/3 + Rational(1, 3))*Heaviside(x + 1) - Rational(2, 3))*Heaviside(-x + 1)
y = Symbol('y')
assert manualintegrate(sin(7 + x)*Heaviside(3*x - 7), x) == \
(- cos(x + 7) + cos(Rational(28, 3)))*Heaviside(3*x - S(7))
assert manualintegrate(sin(y + x)*Heaviside(3*x - y), x) == \
(cos(y*Rational(4, 3)) - cos(x + y))*Heaviside(3*x - y)
def test_manualintegrate_orthogonal_poly():
n = symbols('n')
a, b = 7, Rational(5, 3)
polys = [jacobi(n, a, b, x), gegenbauer(n, a, x), chebyshevt(n, x),
chebyshevu(n, x), legendre(n, x), hermite(n, x), laguerre(n, x),
assoc_laguerre(n, a, x)]
for p in polys:
integral = manualintegrate(p, x)
for deg in [-2, -1, 0, 1, 3, 5, 8]:
# some accept negative "degree", some do not
try:
p_subbed = p.subs(n, deg)
except ValueError:
continue
assert (integral.subs(n, deg).diff(x) - p_subbed).expand() == 0
# can also integrate simple expressions with these polynomials
q = x*p.subs(x, 2*x + 1)
integral = manualintegrate(q, x)
for deg in [2, 4, 7]:
assert (integral.subs(n, deg).diff(x) - q.subs(n, deg)).expand() == 0
# cannot integrate with respect to any other parameter
t = symbols('t')
for i in range(len(p.args) - 1):
new_args = list(p.args)
new_args[i] = t
assert isinstance(manualintegrate(p.func(*new_args), t), Integral)
@slow
def test_issue_6799():
r, x, phi = map(Symbol, 'r x phi'.split())
n = Symbol('n', integer=True, positive=True)
integrand = (cos(n*(x-phi))*cos(n*x))
limits = (x, -pi, pi)
assert manualintegrate(integrand, x) == \
((n*x/2 + sin(2*n*x)/4)*cos(n*phi) - sin(n*phi)*cos(n*x)**2/2)/n
assert r * integrate(integrand, limits).trigsimp() / pi == r * cos(n * phi)
assert not integrate(integrand, limits).has(Dummy)
def test_issue_12251():
assert manualintegrate(x**y, x) == Piecewise(
(x**(y + 1)/(y + 1), Ne(y, -1)), (log(x), True))
def test_issue_3796():
assert manualintegrate(diff(exp(x + x**2)), x) == exp(x + x**2)
assert integrate(x * exp(x**4), x, risch=False) == -I*sqrt(pi)*erf(I*x**2)/4
def test_manual_true():
assert integrate(exp(x) * sin(x), x, manual=True) == \
(exp(x) * sin(x)) / 2 - (exp(x) * cos(x)) / 2
assert integrate(sin(x) * cos(x), x, manual=True) in \
[sin(x) ** 2 / 2, -cos(x)**2 / 2]
def test_issue_6746():
y = Symbol('y')
n = Symbol('n')
assert manualintegrate(y**x, x) == Piecewise(
(y**x/log(y), Ne(log(y), 0)), (x, True))
assert manualintegrate(y**(n*x), x) == Piecewise(
(Piecewise(
(y**(n*x)/log(y), Ne(log(y), 0)),
(n*x, True)
)/n, Ne(n, 0)),
(x, True))
assert manualintegrate(exp(n*x), x) == Piecewise(
(exp(n*x)/n, Ne(n, 0)), (x, True))
y = Symbol('y', positive=True)
assert manualintegrate((y + 1)**x, x) == (y + 1)**x/log(y + 1)
y = Symbol('y', zero=True)
assert manualintegrate((y + 1)**x, x) == x
y = Symbol('y')
n = Symbol('n', nonzero=True)
assert manualintegrate(y**(n*x), x) == Piecewise(
(y**(n*x)/log(y), Ne(log(y), 0)), (n*x, True))/n
y = Symbol('y', positive=True)
assert manualintegrate((y + 1)**(n*x), x) == \
(y + 1)**(n*x)/(n*log(y + 1))
a = Symbol('a', negative=True)
b = Symbol('b')
assert manualintegrate(1/(a + b*x**2), x) == atan(x/sqrt(a/b))/(b*sqrt(a/b))
b = Symbol('b', negative=True)
assert manualintegrate(1/(a + b*x**2), x) == \
atan(x/(sqrt(-a)*sqrt(-1/b)))/(b*sqrt(-a)*sqrt(-1/b))
assert manualintegrate(1/((x**a + y**b + 4)*sqrt(a*x**2 + 1)), x) == \
y**(-b)*Integral(x**(-a)/(y**(-b)*sqrt(a*x**2 + 1) +
x**(-a)*sqrt(a*x**2 + 1) + 4*x**(-a)*y**(-b)*sqrt(a*x**2 + 1)), x)
assert manualintegrate(1/((x**2 + 4)*sqrt(4*x**2 + 1)), x) == \
Integral(1/((x**2 + 4)*sqrt(4*x**2 + 1)), x)
assert manualintegrate(1/(x - a**x + x*b**2), x) == \
Integral(1/(-a**x + b**2*x + x), x)
@slow
def test_issue_2850():
assert manualintegrate(asin(x)*log(x), x) == -x*asin(x) - sqrt(-x**2 + 1) \
+ (x*asin(x) + sqrt(-x**2 + 1))*log(x) - Integral(sqrt(-x**2 + 1)/x, x)
assert manualintegrate(acos(x)*log(x), x) == -x*acos(x) + sqrt(-x**2 + 1) + \
(x*acos(x) - sqrt(-x**2 + 1))*log(x) + Integral(sqrt(-x**2 + 1)/x, x)
assert manualintegrate(atan(x)*log(x), x) == -x*atan(x) + (x*atan(x) - \
log(x**2 + 1)/2)*log(x) + log(x**2 + 1)/2 + Integral(log(x**2 + 1)/x, x)/2
def test_issue_9462():
assert manualintegrate(sin(2*x)*exp(x), x) == exp(x)*sin(2*x)/5 - 2*exp(x)*cos(2*x)/5
assert not contains_dont_know(integral_steps(sin(2*x)*exp(x), x))
assert manualintegrate((x - 3) / (x**2 - 2*x + 2)**2, x) == \
Integral(x/(x**4 - 4*x**3 + 8*x**2 - 8*x + 4), x) \
- 3*Integral(1/(x**4 - 4*x**3 + 8*x**2 - 8*x + 4), x)
def test_cyclic_parts():
f = cos(x)*exp(x/4)
F = 16*exp(x/4)*sin(x)/17 + 4*exp(x/4)*cos(x)/17
assert manualintegrate(f, x) == F and F.diff(x) == f
f = x*cos(x)*exp(x/4)
F = (x*(16*exp(x/4)*sin(x)/17 + 4*exp(x/4)*cos(x)/17) -
128*exp(x/4)*sin(x)/289 + 240*exp(x/4)*cos(x)/289)
assert manualintegrate(f, x) == F and F.diff(x) == f
@slow
def test_issue_10847_slow():
assert manualintegrate((4*x**4 + 4*x**3 + 16*x**2 + 12*x + 8)
/ (x**6 + 2*x**5 + 3*x**4 + 4*x**3 + 3*x**2 + 2*x + 1), x) == \
2*x/(x**2 + 1) + 3*atan(x) - 1/(x**2 + 1) - 3/(x + 1)
@slow
def test_issue_10847():
assert manualintegrate(x**2 / (x**2 - c), x) == c*atan(x/sqrt(-c))/sqrt(-c) + x
rc = Symbol('c', real=True)
assert manualintegrate(x**2 / (x**2 - rc), x) == \
rc*Piecewise((atan(x/sqrt(-rc))/sqrt(-rc), -rc > 0),
(-acoth(x/sqrt(rc))/sqrt(rc), And(-rc < 0, x**2 > rc)),
(-atanh(x/sqrt(rc))/sqrt(rc), And(-rc < 0, x**2 < rc))) + x
assert manualintegrate(sqrt(x - y) * log(z / x), x) == \
4*y**Rational(3, 2)*atan(sqrt(x - y)/sqrt(y))/3 - 4*y*sqrt(x - y)/3 +\
2*(x - y)**Rational(3, 2)*log(z/x)/3 + 4*(x - y)**Rational(3, 2)/9
ry = Symbol('y', real=True)
rz = Symbol('z', real=True)
assert manualintegrate(sqrt(x - ry) * log(rz / x), x) == \
4*ry**2*Piecewise((atan(sqrt(x - ry)/sqrt(ry))/sqrt(ry), ry > 0),
(-acoth(sqrt(x - ry)/sqrt(-ry))/sqrt(-ry), And(x - ry > -ry, ry < 0)),
(-atanh(sqrt(x - ry)/sqrt(-ry))/sqrt(-ry), And(x - ry < -ry, ry < 0)))/3 \
- 4*ry*sqrt(x - ry)/3 + 2*(x - ry)**Rational(3, 2)*log(rz/x)/3 \
+ 4*(x - ry)**Rational(3, 2)/9
assert manualintegrate(sqrt(x) * log(x), x) == 2*x**Rational(3, 2)*log(x)/3 - 4*x**Rational(3, 2)/9
assert manualintegrate(sqrt(a*x + b) / x, x) == \
2*b*atan(sqrt(a*x + b)/sqrt(-b))/sqrt(-b) + 2*sqrt(a*x + b)
ra = Symbol('a', real=True)
rb = Symbol('b', real=True)
assert manualintegrate(sqrt(ra*x + rb) / x, x) == \
-2*rb*Piecewise((-atan(sqrt(ra*x + rb)/sqrt(-rb))/sqrt(-rb), -rb > 0),
(acoth(sqrt(ra*x + rb)/sqrt(rb))/sqrt(rb), And(-rb < 0, ra*x + rb > rb)),
(atanh(sqrt(ra*x + rb)/sqrt(rb))/sqrt(rb), And(-rb < 0, ra*x + rb < rb))) \
+ 2*sqrt(ra*x + rb)
assert expand(manualintegrate(sqrt(ra*x + rb) / (x + rc), x)) == -2*ra*rc*Piecewise((atan(sqrt(ra*x + rb)/sqrt(ra*rc - rb))/sqrt(ra*rc - rb), \
ra*rc - rb > 0), (-acoth(sqrt(ra*x + rb)/sqrt(-ra*rc + rb))/sqrt(-ra*rc + rb), And(ra*rc - rb < 0, ra*x + rb > -ra*rc + rb)), \
(-atanh(sqrt(ra*x + rb)/sqrt(-ra*rc + rb))/sqrt(-ra*rc + rb), And(ra*rc - rb < 0, ra*x + rb < -ra*rc + rb))) \
+ 2*rb*Piecewise((atan(sqrt(ra*x + rb)/sqrt(ra*rc - rb))/sqrt(ra*rc - rb), ra*rc - rb > 0), \
(-acoth(sqrt(ra*x + rb)/sqrt(-ra*rc + rb))/sqrt(-ra*rc + rb), And(ra*rc - rb < 0, ra*x + rb > -ra*rc + rb)), \
(-atanh(sqrt(ra*x + rb)/sqrt(-ra*rc + rb))/sqrt(-ra*rc + rb), And(ra*rc - rb < 0, ra*x + rb < -ra*rc + rb))) + 2*sqrt(ra*x + rb)
assert manualintegrate(sqrt(2*x + 3) / (x + 1), x) == 2*sqrt(2*x + 3) - log(sqrt(2*x + 3) + 1) + log(sqrt(2*x + 3) - 1)
assert manualintegrate(sqrt(2*x + 3) / 2 * x, x) == (2*x + 3)**Rational(5, 2)/20 - (2*x + 3)**Rational(3, 2)/4
assert manualintegrate(x**Rational(3,2) * log(x), x) == 2*x**Rational(5,2)*log(x)/5 - 4*x**Rational(5,2)/25
assert manualintegrate(x**(-3) * log(x), x) == -log(x)/(2*x**2) - 1/(4*x**2)
assert manualintegrate(log(y)/(y**2*(1 - 1/y)), y) == \
log(y)*log(-1 + 1/y) - Integral(log(-1 + 1/y)/y, y)
def test_issue_12899():
assert manualintegrate(f(x,y).diff(x),y) == Integral(Derivative(f(x,y),x),y)
assert manualintegrate(f(x,y).diff(y).diff(x),y) == Derivative(f(x,y),x)
def test_constant_independent_of_symbol():
assert manualintegrate(Integral(y, (x, 1, 2)), x) == \
x*Integral(y, (x, 1, 2))
def test_issue_12641():
assert manualintegrate(sin(2*x), x) == -cos(2*x)/2
assert manualintegrate(cos(x)*sin(2*x), x) == -2*cos(x)**3/3
assert manualintegrate((sin(2*x)*cos(x))/(1 + cos(x)), x) == \
-2*log(cos(x) + 1) - cos(x)**2 + 2*cos(x)
@slow
def test_issue_13297():
assert manualintegrate(sin(x) * cos(x)**5, x) == -cos(x)**6 / 6
def test_issue_14470():
assert manualintegrate(1/(x*sqrt(x + 1)), x) == \
log(-1 + 1/sqrt(x + 1)) - log(1 + 1/sqrt(x + 1))
@slow
def test_issue_9858():
assert manualintegrate(exp(x)*cos(exp(x)), x) == sin(exp(x))
assert manualintegrate(exp(2*x)*cos(exp(x)), x) == \
exp(x)*sin(exp(x)) + cos(exp(x))
res = manualintegrate(exp(10*x)*sin(exp(x)), x)
assert not res.has(Integral)
assert res.diff(x) == exp(10*x)*sin(exp(x))
# an example with many similar integrations by parts
assert manualintegrate(sum([x*exp(k*x) for k in range(1, 8)]), x) == (
x*exp(7*x)/7 + x*exp(6*x)/6 + x*exp(5*x)/5 + x*exp(4*x)/4 +
x*exp(3*x)/3 + x*exp(2*x)/2 + x*exp(x) - exp(7*x)/49 -exp(6*x)/36 -
exp(5*x)/25 - exp(4*x)/16 - exp(3*x)/9 - exp(2*x)/4 - exp(x))
def test_issue_8520():
assert manualintegrate(x/(x**4 + 1), x) == atan(x**2)/2
assert manualintegrate(x**2/(x**6 + 25), x) == atan(x**3/5)/15
f = x/(9*x**4 + 4)**2
assert manualintegrate(f, x).diff(x).factor() == f
def test_manual_subs():
x, y = symbols('x y')
expr = log(x) + exp(x)
# if log(x) is y, then exp(y) is x
assert manual_subs(expr, log(x), y) == y + exp(exp(y))
# if exp(x) is y, then log(y) need not be x
assert manual_subs(expr, exp(x), y) == log(x) + y
raises(ValueError, lambda: manual_subs(expr, x))
raises(ValueError, lambda: manual_subs(expr, exp(x), x, y))
@slow
def test_issue_15471():
f = log(x)*cos(log(x))/x**Rational(3, 4)
F = -128*x**Rational(1, 4)*sin(log(x))/289 + 240*x**Rational(1, 4)*cos(log(x))/289 + (16*x**Rational(1, 4)*sin(log(x))/17 + 4*x**Rational(1, 4)*cos(log(x))/17)*log(x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
def test_quadratic_denom():
f = (5*x + 2)/(3*x**2 - 2*x + 8)
assert manualintegrate(f, x) == 5*log(3*x**2 - 2*x + 8)/6 + 11*sqrt(23)*atan(3*sqrt(23)*(x - Rational(1, 3))/23)/69
g = 3/(2*x**2 + 3*x + 1)
assert manualintegrate(g, x) == 3*log(4*x + 2) - 3*log(4*x + 4)
|
ecaf59a4e389faa0412543bfb5883c00bc5d86b327d65e2af3297480fc32b72f | from sympy.integrals.transforms import (mellin_transform,
inverse_mellin_transform, laplace_transform, inverse_laplace_transform,
fourier_transform, inverse_fourier_transform,
sine_transform, inverse_sine_transform,
cosine_transform, inverse_cosine_transform,
hankel_transform, inverse_hankel_transform,
LaplaceTransform, FourierTransform, SineTransform, CosineTransform,
InverseLaplaceTransform, InverseFourierTransform,
InverseSineTransform, InverseCosineTransform, IntegralTransformError)
from sympy import (
gamma, exp, oo, Heaviside, symbols, Symbol, re, factorial, pi, arg,
cos, S, Abs, And, sin, sqrt, I, log, tan, hyperexpand, meijerg,
EulerGamma, erf, erfc, besselj, bessely, besseli, besselk,
exp_polar, unpolarify, Function, expint, expand_mul, Rational,
gammasimp, trigsimp, atan, sinh, cosh, Ne, periodic_argument, atan2)
from sympy.testing.pytest import XFAIL, slow, skip, raises, warns_deprecated_sympy
from sympy.matrices import Matrix, eye
from sympy.abc import x, s, a, b, c, d
nu, beta, rho = symbols('nu beta rho')
def test_undefined_function():
from sympy import Function, MellinTransform
f = Function('f')
assert mellin_transform(f(x), x, s) == MellinTransform(f(x), x, s)
assert mellin_transform(f(x) + exp(-x), x, s) == \
(MellinTransform(f(x), x, s) + gamma(s), (0, oo), True)
assert laplace_transform(2*f(x), x, s) == 2*LaplaceTransform(f(x), x, s)
# TODO test derivative and other rules when implemented
def test_free_symbols():
from sympy import Function
f = Function('f')
assert mellin_transform(f(x), x, s).free_symbols == {s}
assert mellin_transform(f(x)*a, x, s).free_symbols == {s, a}
def test_as_integral():
from sympy import Function, Integral
f = Function('f')
assert mellin_transform(f(x), x, s).rewrite('Integral') == \
Integral(x**(s - 1)*f(x), (x, 0, oo))
assert fourier_transform(f(x), x, s).rewrite('Integral') == \
Integral(f(x)*exp(-2*I*pi*s*x), (x, -oo, oo))
assert laplace_transform(f(x), x, s).rewrite('Integral') == \
Integral(f(x)*exp(-s*x), (x, 0, oo))
assert str(2*pi*I*inverse_mellin_transform(f(s), s, x, (a, b)).rewrite('Integral')) \
== "Integral(f(s)/x**s, (s, _c - oo*I, _c + oo*I))"
assert str(2*pi*I*inverse_laplace_transform(f(s), s, x).rewrite('Integral')) == \
"Integral(f(s)*exp(s*x), (s, _c - oo*I, _c + oo*I))"
assert inverse_fourier_transform(f(s), s, x).rewrite('Integral') == \
Integral(f(s)*exp(2*I*pi*s*x), (s, -oo, oo))
# NOTE this is stuck in risch because meijerint cannot handle it
@slow
@XFAIL
def test_mellin_transform_fail():
skip("Risch takes forever.")
MT = mellin_transform
bpos = symbols('b', positive=True)
# bneg = symbols('b', negative=True)
expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2)
# TODO does not work with bneg, argument wrong. Needs changes to matching.
assert MT(expr.subs(b, -bpos), x, s) == \
((-1)**(a + 1)*2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(a + s)
*gamma(1 - a - 2*s)/gamma(1 - s),
(-re(a), -re(a)/2 + S.Half), True)
expr = (sqrt(x + b**2) + b)**a
assert MT(expr.subs(b, -bpos), x, s) == \
(
2**(a + 2*s)*a*bpos**(a + 2*s)*gamma(-a - 2*
s)*gamma(a + s)/gamma(-s + 1),
(-re(a), -re(a)/2), True)
# Test exponent 1:
assert MT(expr.subs({b: -bpos, a: 1}), x, s) == \
(-bpos**(2*s + 1)*gamma(s)*gamma(-s - S.Half)/(2*sqrt(pi)),
(-1, Rational(-1, 2)), True)
def test_mellin_transform():
from sympy import Max, Min
MT = mellin_transform
bpos = symbols('b', positive=True)
# 8.4.2
assert MT(x**nu*Heaviside(x - 1), x, s) == \
(-1/(nu + s), (-oo, -re(nu)), True)
assert MT(x**nu*Heaviside(1 - x), x, s) == \
(1/(nu + s), (-re(nu), oo), True)
assert MT((1 - x)**(beta - 1)*Heaviside(1 - x), x, s) == \
(gamma(beta)*gamma(s)/gamma(beta + s), (0, oo), re(beta) > 0)
assert MT((x - 1)**(beta - 1)*Heaviside(x - 1), x, s) == \
(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s),
(-oo, -re(beta) + 1), re(beta) > 0)
assert MT((1 + x)**(-rho), x, s) == \
(gamma(s)*gamma(rho - s)/gamma(rho), (0, re(rho)), True)
# TODO also the conditions should be simplified, e.g.
# And(re(rho) - 1 < 0, re(rho) < 1) should just be
# re(rho) < 1
assert MT(abs(1 - x)**(-rho), x, s) == (
2*sin(pi*rho/2)*gamma(1 - rho)*
cos(pi*(rho/2 - s))*gamma(s)*gamma(rho-s)/pi,
(0, re(rho)), And(re(rho) - 1 < 0, re(rho) < 1))
mt = MT((1 - x)**(beta - 1)*Heaviside(1 - x)
+ a*(x - 1)**(beta - 1)*Heaviside(x - 1), x, s)
assert mt[1], mt[2] == ((0, -re(beta) + 1), re(beta) > 0)
assert MT((x**a - b**a)/(x - b), x, s)[0] == \
pi*b**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s)))
assert MT((x**a - bpos**a)/(x - bpos), x, s) == \
(pi*bpos**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))),
(Max(-re(a), 0), Min(1 - re(a), 1)), True)
expr = (sqrt(x + b**2) + b)**a
assert MT(expr.subs(b, bpos), x, s) == \
(-a*(2*bpos)**(a + 2*s)*gamma(s)*gamma(-a - 2*s)/gamma(-a - s + 1),
(0, -re(a)/2), True)
expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2)
assert MT(expr.subs(b, bpos), x, s) == \
(2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(s)
*gamma(1 - a - 2*s)/gamma(1 - a - s),
(0, -re(a)/2 + S.Half), True)
# 8.4.2
assert MT(exp(-x), x, s) == (gamma(s), (0, oo), True)
assert MT(exp(-1/x), x, s) == (gamma(-s), (-oo, 0), True)
# 8.4.5
assert MT(log(x)**4*Heaviside(1 - x), x, s) == (24/s**5, (0, oo), True)
assert MT(log(x)**3*Heaviside(x - 1), x, s) == (6/s**4, (-oo, 0), True)
assert MT(log(x + 1), x, s) == (pi/(s*sin(pi*s)), (-1, 0), True)
assert MT(log(1/x + 1), x, s) == (pi/(s*sin(pi*s)), (0, 1), True)
assert MT(log(abs(1 - x)), x, s) == (pi/(s*tan(pi*s)), (-1, 0), True)
assert MT(log(abs(1 - 1/x)), x, s) == (pi/(s*tan(pi*s)), (0, 1), True)
# 8.4.14
assert MT(erf(sqrt(x)), x, s) == \
(-gamma(s + S.Half)/(sqrt(pi)*s), (Rational(-1, 2), 0), True)
def test_mellin_transform2():
MT = mellin_transform
# TODO we cannot currently do these (needs summation of 3F2(-1))
# this also implies that they cannot be written as a single g-function
# (although this is possible)
mt = MT(log(x)/(x + 1), x, s)
assert mt[1:] == ((0, 1), True)
assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg)
mt = MT(log(x)**2/(x + 1), x, s)
assert mt[1:] == ((0, 1), True)
assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg)
mt = MT(log(x)/(x + 1)**2, x, s)
assert mt[1:] == ((0, 2), True)
assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg)
@slow
def test_mellin_transform_bessel():
from sympy import Max
MT = mellin_transform
# 8.4.19
assert MT(besselj(a, 2*sqrt(x)), x, s) == \
(gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, Rational(3, 4)), True)
assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(2**a*gamma(-2*s + S.Half)*gamma(a/2 + s + S.Half)/(
gamma(-a/2 - s + 1)*gamma(a - 2*s + 1)), (
-re(a)/2 - S.Half, Rational(1, 4)), True)
assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(2**a*gamma(a/2 + s)*gamma(-2*s + S.Half)/(
gamma(-a/2 - s + S.Half)*gamma(a - 2*s + 1)), (
-re(a)/2, Rational(1, 4)), True)
assert MT(besselj(a, sqrt(x))**2, x, s) == \
(gamma(a + s)*gamma(S.Half - s)
/ (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)),
(-re(a), S.Half), True)
assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \
(gamma(s)*gamma(S.Half - s)
/ (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)),
(0, S.Half), True)
# NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as
# I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large)
assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(gamma(1 - s)*gamma(a + s - S.Half)
/ (sqrt(pi)*gamma(Rational(3, 2) - s)*gamma(a - s + S.Half)),
(S.Half - re(a), S.Half), True)
assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \
(4**s*gamma(1 - 2*s)*gamma((a + b)/2 + s)
/ (gamma(1 - s + (b - a)/2)*gamma(1 - s + (a - b)/2)
*gamma( 1 - s + (a + b)/2)),
(-(re(a) + re(b))/2, S.Half), True)
assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \
((Max(re(a), -re(a)), S.Half), True)
# Section 8.4.20
assert MT(bessely(a, 2*sqrt(x)), x, s) == \
(-cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)/pi,
(Max(-re(a)/2, re(a)/2), Rational(3, 4)), True)
assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-4**s*sin(pi*(a/2 - s))*gamma(S.Half - 2*s)
* gamma((1 - a)/2 + s)*gamma((1 + a)/2 + s)
/ (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)),
(Max(-(re(a) + 1)/2, (re(a) - 1)/2), Rational(1, 4)), True)
assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-4**s*cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)*gamma(S.Half - 2*s)
/ (sqrt(pi)*gamma(S.Half - s - a/2)*gamma(S.Half - s + a/2)),
(Max(-re(a)/2, re(a)/2), Rational(1, 4)), True)
assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(S.Half - s)
/ (pi**S('3/2')*gamma(1 + a - s)),
(Max(-re(a), 0), S.Half), True)
assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \
(-4**s*cos(pi*(a/2 - b/2 + s))*gamma(1 - 2*s)
* gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s)
/ (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
(Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), S.Half), True)
# NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x))
# are a mess (no matter what way you look at it ...)
assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \
((Max(-re(a), 0, re(a)), S.Half), True)
# Section 8.4.22
# TODO we can't do any of these (delicate cancellation)
# Section 8.4.23
assert MT(besselk(a, 2*sqrt(x)), x, s) == \
(gamma(
s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True)
assert MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk(
a, 2*sqrt(2*sqrt(x))), x, s) == (4**(-s)*gamma(2*s)*
gamma(a/2 + s)/(2*gamma(a/2 - s + 1)), (Max(0, -re(a)/2), oo), True)
# TODO bessely(a, x)*besselk(a, x) is a mess
assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
(gamma(s)*gamma(
a + s)*gamma(-s + S.Half)/(2*sqrt(pi)*gamma(a - s + 1)),
(Max(-re(a), 0), S.Half), True)
assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
(2**(2*s - 1)*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s)* \
gamma(a/2 + b/2 + s)/(gamma(-a/2 + b/2 - s + 1)* \
gamma(a/2 + b/2 - s + 1)), (Max(-re(a)/2 - re(b)/2, \
re(a)/2 - re(b)/2), S.Half), True)
# TODO products of besselk are a mess
mt = MT(exp(-x/2)*besselk(a, x/2), x, s)
mt0 = gammasimp(trigsimp(gammasimp(mt[0].expand(func=True))))
assert mt0 == 2*pi**Rational(3, 2)*cos(pi*s)*gamma(-s + S.Half)/(
(cos(2*pi*a) - cos(2*pi*s))*gamma(-a - s + 1)*gamma(a - s + 1))
assert mt[1:] == ((Max(-re(a), re(a)), oo), True)
# TODO exp(x/2)*besselk(a, x/2) [etc] cannot currently be done
# TODO various strange products of special orders
@slow
def test_expint():
from sympy import E1, expint, Max, re, lerchphi, Symbol, simplify, Si, Ci, Ei
aneg = Symbol('a', negative=True)
u = Symbol('u', polar=True)
assert mellin_transform(E1(x), x, s) == (gamma(s)/s, (0, oo), True)
assert inverse_mellin_transform(gamma(s)/s, s, x,
(0, oo)).rewrite(expint).expand() == E1(x)
assert mellin_transform(expint(a, x), x, s) == \
(gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True)
# XXX IMT has hickups with complicated strips ...
assert simplify(unpolarify(
inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x,
(1 - aneg, oo)).rewrite(expint).expand(func=True))) == \
expint(aneg, x)
assert mellin_transform(Si(x), x, s) == \
(-2**s*sqrt(pi)*gamma(s/2 + S.Half)/(
2*s*gamma(-s/2 + 1)), (-1, 0), True)
assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2)
/(2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \
== Si(x)
assert mellin_transform(Ci(sqrt(x)), x, s) == \
(-2**(2*s - 1)*sqrt(pi)*gamma(s)/(s*gamma(-s + S.Half)), (0, 1), True)
assert inverse_mellin_transform(
-4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + S.Half)),
s, u, (0, 1)).expand() == Ci(sqrt(u))
# TODO LT of Si, Shi, Chi is a mess ...
assert laplace_transform(Ci(x), x, s) == (-log(1 + s**2)/2/s, 0, True)
assert laplace_transform(expint(a, x), x, s) == \
(lerchphi(s*exp_polar(I*pi), 1, a), 0, re(a) > S.Zero)
assert laplace_transform(expint(1, x), x, s) == (log(s + 1)/s, 0, True)
assert laplace_transform(expint(2, x), x, s) == \
((s - log(s + 1))/s**2, 0, True)
assert inverse_laplace_transform(-log(1 + s**2)/2/s, s, u).expand() == \
Heaviside(u)*Ci(u)
assert inverse_laplace_transform(log(s + 1)/s, s, x).rewrite(expint) == \
Heaviside(x)*E1(x)
assert inverse_laplace_transform((s - log(s + 1))/s**2, s,
x).rewrite(expint).expand() == \
(expint(2, x)*Heaviside(x)).rewrite(Ei).rewrite(expint).expand()
@slow
def test_inverse_mellin_transform():
from sympy import (sin, simplify, Max, Min, expand,
powsimp, exp_polar, cos, cot)
IMT = inverse_mellin_transform
assert IMT(gamma(s), s, x, (0, oo)) == exp(-x)
assert IMT(gamma(-s), s, x, (-oo, 0)) == exp(-1/x)
assert simplify(IMT(s/(2*s**2 - 2), s, x, (2, oo))) == \
(x**2 + 1)*Heaviside(1 - x)/(4*x)
# test passing "None"
assert IMT(1/(s**2 - 1), s, x, (-1, None)) == \
-x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x)
assert IMT(1/(s**2 - 1), s, x, (None, 1)) == \
-x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x)
# test expansion of sums
assert IMT(gamma(s) + gamma(s - 1), s, x, (1, oo)) == (x + 1)*exp(-x)/x
# test factorisation of polys
r = symbols('r', real=True)
assert IMT(1/(s**2 + 1), s, exp(-x), (None, oo)
).subs(x, r).rewrite(sin).simplify() \
== sin(r)*Heaviside(1 - exp(-r))
# test multiplicative substitution
_a, _b = symbols('a b', positive=True)
assert IMT(_b**(-s/_a)*factorial(s/_a)/s, s, x, (0, oo)) == exp(-_b*x**_a)
assert IMT(factorial(_a/_b + s/_b)/(_a + s), s, x, (-_a, oo)) == x**_a*exp(-x**_b)
def simp_pows(expr):
return simplify(powsimp(expand_mul(expr, deep=False), force=True)).replace(exp_polar, exp)
# Now test the inverses of all direct transforms tested above
# Section 8.4.2
nu = symbols('nu', real=True)
assert IMT(-1/(nu + s), s, x, (-oo, None)) == x**nu*Heaviside(x - 1)
assert IMT(1/(nu + s), s, x, (None, oo)) == x**nu*Heaviside(1 - x)
assert simp_pows(IMT(gamma(beta)*gamma(s)/gamma(s + beta), s, x, (0, oo))) \
== (1 - x)**(beta - 1)*Heaviside(1 - x)
assert simp_pows(IMT(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s),
s, x, (-oo, None))) \
== (x - 1)**(beta - 1)*Heaviside(x - 1)
assert simp_pows(IMT(gamma(s)*gamma(rho - s)/gamma(rho), s, x, (0, None))) \
== (1/(x + 1))**rho
assert simp_pows(IMT(d**c*d**(s - 1)*sin(pi*c)
*gamma(s)*gamma(s + c)*gamma(1 - s)*gamma(1 - s - c)/pi,
s, x, (Max(-re(c), 0), Min(1 - re(c), 1)))) \
== (x**c - d**c)/(x - d)
assert simplify(IMT(1/sqrt(pi)*(-c/2)*gamma(s)*gamma((1 - c)/2 - s)
*gamma(-c/2 - s)/gamma(1 - c - s),
s, x, (0, -re(c)/2))) == \
(1 + sqrt(x + 1))**c
assert simplify(IMT(2**(a + 2*s)*b**(a + 2*s - 1)*gamma(s)*gamma(1 - a - 2*s)
/gamma(1 - a - s), s, x, (0, (-re(a) + 1)/2))) == \
b**(a - 1)*(sqrt(1 + x/b**2) + 1)**(a - 1)*(b**2*sqrt(1 + x/b**2) +
b**2 + x)/(b**2 + x)
assert simplify(IMT(-2**(c + 2*s)*c*b**(c + 2*s)*gamma(s)*gamma(-c - 2*s)
/ gamma(-c - s + 1), s, x, (0, -re(c)/2))) == \
b**c*(sqrt(1 + x/b**2) + 1)**c
# Section 8.4.5
assert IMT(24/s**5, s, x, (0, oo)) == log(x)**4*Heaviside(1 - x)
assert expand(IMT(6/s**4, s, x, (-oo, 0)), force=True) == \
log(x)**3*Heaviside(x - 1)
assert IMT(pi/(s*sin(pi*s)), s, x, (-1, 0)) == log(x + 1)
assert IMT(pi/(s*sin(pi*s/2)), s, x, (-2, 0)) == log(x**2 + 1)
assert IMT(pi/(s*sin(2*pi*s)), s, x, (Rational(-1, 2), 0)) == log(sqrt(x) + 1)
assert IMT(pi/(s*sin(pi*s)), s, x, (0, 1)) == log(1 + 1/x)
# TODO
def mysimp(expr):
from sympy import expand, logcombine, powsimp
return expand(
powsimp(logcombine(expr, force=True), force=True, deep=True),
force=True).replace(exp_polar, exp)
assert mysimp(mysimp(IMT(pi/(s*tan(pi*s)), s, x, (-1, 0)))) in [
log(1 - x)*Heaviside(1 - x) + log(x - 1)*Heaviside(x - 1),
log(x)*Heaviside(x - 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x +
1)*Heaviside(-x + 1)]
# test passing cot
assert mysimp(IMT(pi*cot(pi*s)/s, s, x, (0, 1))) in [
log(1/x - 1)*Heaviside(1 - x) + log(1 - 1/x)*Heaviside(x - 1),
-log(x)*Heaviside(-x + 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x +
1)*Heaviside(-x + 1), ]
# 8.4.14
assert IMT(-gamma(s + S.Half)/(sqrt(pi)*s), s, x, (Rational(-1, 2), 0)) == \
erf(sqrt(x))
# 8.4.19
assert simplify(IMT(gamma(a/2 + s)/gamma(a/2 - s + 1), s, x, (-re(a)/2, Rational(3, 4)))) \
== besselj(a, 2*sqrt(x))
assert simplify(IMT(2**a*gamma(S.Half - 2*s)*gamma(s + (a + 1)/2)
/ (gamma(1 - s - a/2)*gamma(1 - 2*s + a)),
s, x, (-(re(a) + 1)/2, Rational(1, 4)))) == \
sin(sqrt(x))*besselj(a, sqrt(x))
assert simplify(IMT(2**a*gamma(a/2 + s)*gamma(S.Half - 2*s)
/ (gamma(S.Half - s - a/2)*gamma(1 - 2*s + a)),
s, x, (-re(a)/2, Rational(1, 4)))) == \
cos(sqrt(x))*besselj(a, sqrt(x))
# TODO this comes out as an amazing mess, but simplifies nicely
assert simplify(IMT(gamma(a + s)*gamma(S.Half - s)
/ (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)),
s, x, (-re(a), S.Half))) == \
besselj(a, sqrt(x))**2
assert simplify(IMT(gamma(s)*gamma(S.Half - s)
/ (sqrt(pi)*gamma(1 - s - a)*gamma(1 + a - s)),
s, x, (0, S.Half))) == \
besselj(-a, sqrt(x))*besselj(a, sqrt(x))
assert simplify(IMT(4**s*gamma(-2*s + 1)*gamma(a/2 + b/2 + s)
/ (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1)
*gamma(a/2 + b/2 - s + 1)),
s, x, (-(re(a) + re(b))/2, S.Half))) == \
besselj(a, sqrt(x))*besselj(b, sqrt(x))
# Section 8.4.20
# TODO this can be further simplified!
assert simplify(IMT(-2**(2*s)*cos(pi*a/2 - pi*b/2 + pi*s)*gamma(-2*s + 1) *
gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) /
(pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
s, x,
(Max(-re(a)/2 - re(b)/2, -re(a)/2 + re(b)/2), S.Half))) == \
besselj(a, sqrt(x))*-(besselj(-b, sqrt(x)) -
besselj(b, sqrt(x))*cos(pi*b))/sin(pi*b)
# TODO more
# for coverage
assert IMT(pi/cos(pi*s), s, x, (0, S.Half)) == sqrt(x)/(x + 1)
@slow
def test_laplace_transform():
from sympy import fresnels, fresnelc, DiracDelta
LT = laplace_transform
a, b, c, = symbols('a b c', positive=True)
t = symbols('t')
w = Symbol("w")
f = Function("f")
# Test unevaluated form
assert laplace_transform(f(t), t, w) == LaplaceTransform(f(t), t, w)
assert inverse_laplace_transform(
f(w), w, t, plane=0) == InverseLaplaceTransform(f(w), w, t, 0)
# test a bug
spos = symbols('s', positive=True)
assert LT(exp(t), t, spos)[:2] == (1/(spos - 1), 1)
# basic tests from wikipedia
assert LT((t - a)**b*exp(-c*(t - a))*Heaviside(t - a), t, s) == \
((s + c)**(-b - 1)*exp(-a*s)*gamma(b + 1), -c, True)
assert LT(t**a, t, s) == (s**(-a - 1)*gamma(a + 1), 0, True)
assert LT(Heaviside(t), t, s) == (1/s, 0, True)
assert LT(Heaviside(t - a), t, s) == (exp(-a*s)/s, 0, True)
assert LT(1 - exp(-a*t), t, s) == (a/(s*(a + s)), 0, True)
assert LT((exp(2*t) - 1)*exp(-b - t)*Heaviside(t)/2, t, s, noconds=True) \
== exp(-b)/(s**2 - 1)
assert LT(exp(t), t, s)[:2] == (1/(s - 1), 1)
assert LT(exp(2*t), t, s)[:2] == (1/(s - 2), 2)
assert LT(exp(a*t), t, s)[:2] == (1/(s - a), a)
assert LT(log(t/a), t, s) == ((log(a*s) + EulerGamma)/s/-1, 0, True)
assert LT(erf(t), t, s) == (erfc(s/2)*exp(s**2/4)/s, 0, True)
assert LT(sin(a*t), t, s) == (a/(a**2 + s**2), 0, True)
assert LT(cos(a*t), t, s) == (s/(a**2 + s**2), 0, True)
# TODO would be nice to have these come out better
assert LT(exp(-a*t)*sin(b*t), t, s) == (b/(b**2 + (a + s)**2), -a, True)
assert LT(exp(-a*t)*cos(b*t), t, s) == \
((a + s)/(b**2 + (a + s)**2), -a, True)
assert LT(besselj(0, t), t, s) == (1/sqrt(1 + s**2), 0, True)
assert LT(besselj(1, t), t, s) == (1 - 1/sqrt(1 + 1/s**2), 0, True)
# TODO general order works, but is a *mess*
# TODO besseli also works, but is an even greater mess
# test a bug in conditions processing
# TODO the auxiliary condition should be recognised/simplified
assert LT(exp(t)*cos(t), t, s)[:-1] in [
((s - 1)/(s**2 - 2*s + 2), -oo),
((s - 1)/((s - 1)**2 + 1), -oo),
]
# DiracDelta function: standard cases
assert LT(DiracDelta(t), t, s) == (1, -oo, True)
assert LT(DiracDelta(a*t), t, s) == (1/a, -oo, True)
assert LT(DiracDelta(t/42), t, s) == (42, -oo, True)
assert LT(DiracDelta(t+42), t, s) == (0, -oo, True)
assert LT(DiracDelta(t)+DiracDelta(t-42), t, s) == \
(1 + exp(-42*s), -oo, True)
assert LT(DiracDelta(t)-a*exp(-a*t), t, s) == (-a/(a + s) + 1, 0, True)
assert LT(exp(-t)*(DiracDelta(t)+DiracDelta(t-42)), t, s) == \
(exp(-42*s - 42) + 1, -oo, True)
# Collection of cases that cannot be fully evaluated and/or would catch
# some common implementation errors
assert LT(DiracDelta(t**2), t, s) == LaplaceTransform(DiracDelta(t**2), t, s)
assert LT(DiracDelta(t**2 - 1), t, s) == (exp(-s)/2, -oo, True)
assert LT(DiracDelta(t*(1 - t)), t, s) == \
LaplaceTransform(DiracDelta(-t**2 + t), t, s)
assert LT((DiracDelta(t) + 1)*(DiracDelta(t - 1) + 1), t, s) == \
(LaplaceTransform(DiracDelta(t)*DiracDelta(t - 1), t, s) + \
1 + exp(-s) + 1/s, 0, True)
assert LT(DiracDelta(2*t - 2*exp(a)), t, s) == \
(exp(-s*exp(a))/2, -oo, True)
# Fresnel functions
assert laplace_transform(fresnels(t), t, s) == \
((-sin(s**2/(2*pi))*fresnels(s/pi) + sin(s**2/(2*pi))/2 -
cos(s**2/(2*pi))*fresnelc(s/pi) + cos(s**2/(2*pi))/2)/s, 0, True)
assert laplace_transform(fresnelc(t), t, s) == (
((2*sin(s**2/(2*pi))*fresnelc(s/pi) - 2*cos(s**2/(2*pi))*fresnels(s/pi)
+ sqrt(2)*cos(s**2/(2*pi) + pi/4))/(2*s), 0, True))
# What is this testing:
Ne(1/s, 1) & (0 < cos(Abs(periodic_argument(s, oo)))*Abs(s) - 1)
Mt = Matrix([[exp(t), t*exp(-t)], [t*exp(-t), exp(t)]])
Ms = Matrix([[ 1/(s - 1), (s + 1)**(-2)],
[(s + 1)**(-2), 1/(s - 1)]])
# The default behaviour for Laplace tranform of a Matrix returns a Matrix
# of Tuples and is deprecated:
with warns_deprecated_sympy():
Ms_conds = Matrix([[(1/(s - 1), 1, s > 1), ((s + 1)**(-2), 0, True)],
[((s + 1)**(-2), 0, True), (1/(s - 1), 1, s > 1)]])
with warns_deprecated_sympy():
assert LT(Mt, t, s) == Ms_conds
# The new behavior is to return a tuple of a Matrix and the convergence
# conditions for the matrix as a whole:
assert LT(Mt, t, s, legacy_matrix=False) == (Ms, 1, s > 1)
# With noconds=True the transformed matrix is returned without conditions
# either way:
assert LT(Mt, t, s, noconds=True) == Ms
assert LT(Mt, t, s, legacy_matrix=False, noconds=True) == Ms
@slow
def test_issue_8368_7173():
LT = laplace_transform
# hyperbolic
assert LT(sinh(x), x, s) == (1/(s**2 - 1), 1, s > 1)
assert LT(cosh(x), x, s) == (s/(s**2 - 1), 1, s > 1)
assert LT(sinh(x + 3), x, s) == (
(-s + (s + 1)*exp(6) + 1)*exp(-3)/(s - 1)/(s + 1)/2, 1, s > 1)
assert LT(sinh(x)*cosh(x), x, s) == (
1/(s**2 - 4), 2, s > 2)
# trig (make sure they are not being rewritten in terms of exp)
assert LT(cos(x + 3), x, s) == ((s*cos(3) - sin(3))/(s**2 + 1), 0, True)
@slow
def test_inverse_laplace_transform():
from sympy import sinh, cosh, besselj, besseli, simplify, factor_terms,\
DiracDelta
ILT = inverse_laplace_transform
a, b, c, = symbols('a b c', positive=True)
t = symbols('t')
def simp_hyp(expr):
return factor_terms(expand_mul(expr)).rewrite(sin)
assert ILT(1, s, t) == DiracDelta(t)
assert ILT(1/s, s, t) == Heaviside(t)
assert ILT(a/(a + s), s, t) == a*exp(-a*t)*Heaviside(t)
assert ILT(s/(a + s), s, t) == -a*exp(-a*t)*Heaviside(t) + DiracDelta(t)
assert ILT((a + s)**(-2), s, t) == t*exp(-a*t)*Heaviside(t)
assert ILT((a + s)**(-5), s, t) == t**4*exp(-a*t)*Heaviside(t)/24
assert ILT(a/(a**2 + s**2), s, t) == sin(a*t)*Heaviside(t)
assert ILT(s/(s**2 + a**2), s, t) == cos(a*t)*Heaviside(t)
assert ILT(b/(b**2 + (a + s)**2), s, t) == exp(-a*t)*sin(b*t)*Heaviside(t)
assert ILT(b*s/(b**2 + (a + s)**2), s, t) +\
(a*sin(b*t) - b*cos(b*t))*exp(-a*t)*Heaviside(t) == 0
assert ILT(exp(-a*s)/s, s, t) == Heaviside(-a + t)
assert ILT(exp(-a*s)/(b + s), s, t) == exp(b*(a - t))*Heaviside(-a + t)
assert ILT((b + s)/(a**2 + (b + s)**2), s, t) == \
exp(-b*t)*cos(a*t)*Heaviside(t)
assert ILT(exp(-a*s)/s**b, s, t) == \
(-a + t)**(b - 1)*Heaviside(-a + t)/gamma(b)
assert ILT(exp(-a*s)/sqrt(s**2 + 1), s, t) == \
Heaviside(-a + t)*besselj(0, a - t)
assert ILT(1/(s*sqrt(s + 1)), s, t) == Heaviside(t)*erf(sqrt(t))
assert ILT(1/(s**2*(s**2 + 1)), s, t) == (t - sin(t))*Heaviside(t)
assert ILT(s**2/(s**2 + 1), s, t) == -sin(t)*Heaviside(t) + DiracDelta(t)
assert ILT(1 - 1/(s**2 + 1), s, t) == -sin(t)*Heaviside(t) + DiracDelta(t)
assert ILT(1/s**2, s, t) == t*Heaviside(t)
assert ILT(1/s**5, s, t) == t**4*Heaviside(t)/24
assert simp_hyp(ILT(a/(s**2 - a**2), s, t)) == sinh(a*t)*Heaviside(t)
assert simp_hyp(ILT(s/(s**2 - a**2), s, t)) == cosh(a*t)*Heaviside(t)
# TODO sinh/cosh shifted come out a mess. also delayed trig is a mess
# TODO should this simplify further?
assert ILT(exp(-a*s)/s**b, s, t) == \
(t - a)**(b - 1)*Heaviside(t - a)/gamma(b)
assert ILT(exp(-a*s)/sqrt(1 + s**2), s, t) == \
Heaviside(t - a)*besselj(0, a - t) # note: besselj(0, x) is even
# XXX ILT turns these branch factor into trig functions ...
assert simplify(ILT(a**b*(s + sqrt(s**2 - a**2))**(-b)/sqrt(s**2 - a**2),
s, t).rewrite(exp)) == \
Heaviside(t)*besseli(b, a*t)
assert ILT(a**b*(s + sqrt(s**2 + a**2))**(-b)/sqrt(s**2 + a**2),
s, t).rewrite(exp) == \
Heaviside(t)*besselj(b, a*t)
assert ILT(1/(s*sqrt(s + 1)), s, t) == Heaviside(t)*erf(sqrt(t))
# TODO can we make erf(t) work?
assert ILT(1/(s**2*(s**2 + 1)),s,t) == (t - sin(t))*Heaviside(t)
assert ILT( (s * eye(2) - Matrix([[1, 0], [0, 2]])).inv(), s, t) ==\
Matrix([[exp(t)*Heaviside(t), 0], [0, exp(2*t)*Heaviside(t)]])
def test_inverse_laplace_transform_delta():
from sympy import DiracDelta
ILT = inverse_laplace_transform
t = symbols('t')
assert ILT(2, s, t) == 2*DiracDelta(t)
assert ILT(2*exp(3*s) - 5*exp(-7*s), s, t) == \
2*DiracDelta(t + 3) - 5*DiracDelta(t - 7)
a = cos(sin(7)/2)
assert ILT(a*exp(-3*s), s, t) == a*DiracDelta(t - 3)
assert ILT(exp(2*s), s, t) == DiracDelta(t + 2)
r = Symbol('r', real=True)
assert ILT(exp(r*s), s, t) == DiracDelta(t + r)
def test_inverse_laplace_transform_delta_cond():
from sympy import DiracDelta, Eq, im, Heaviside
ILT = inverse_laplace_transform
t = symbols('t')
r = Symbol('r', real=True)
assert ILT(exp(r*s), s, t, noconds=False) == (DiracDelta(t + r), True)
z = Symbol('z')
assert ILT(exp(z*s), s, t, noconds=False) == \
(DiracDelta(t + z), Eq(im(z), 0))
# inversion does not exist: verify it doesn't evaluate to DiracDelta
for z in (Symbol('z', extended_real=False),
Symbol('z', imaginary=True, zero=False)):
f = ILT(exp(z*s), s, t, noconds=False)
f = f[0] if isinstance(f, tuple) else f
assert f.func != DiracDelta
# issue 15043
assert ILT(1/s + exp(r*s)/s, s, t, noconds=False) == (
Heaviside(t) + Heaviside(r + t), True)
def test_fourier_transform():
from sympy import simplify, expand, expand_complex, factor, expand_trig
FT = fourier_transform
IFT = inverse_fourier_transform
def simp(x):
return simplify(expand_trig(expand_complex(expand(x))))
def sinc(x):
return sin(pi*x)/(pi*x)
k = symbols('k', real=True)
f = Function("f")
# TODO for this to work with real a, need to expand abs(a*x) to abs(a)*abs(x)
a = symbols('a', positive=True)
b = symbols('b', positive=True)
posk = symbols('posk', positive=True)
# Test unevaluated form
assert fourier_transform(f(x), x, k) == FourierTransform(f(x), x, k)
assert inverse_fourier_transform(
f(k), k, x) == InverseFourierTransform(f(k), k, x)
# basic examples from wikipedia
assert simp(FT(Heaviside(1 - abs(2*a*x)), x, k)) == sinc(k/a)/a
# TODO IFT is a *mess*
assert simp(FT(Heaviside(1 - abs(a*x))*(1 - abs(a*x)), x, k)) == sinc(k/a)**2/a
# TODO IFT
assert factor(FT(exp(-a*x)*Heaviside(x), x, k), extension=I) == \
1/(a + 2*pi*I*k)
# NOTE: the ift comes out in pieces
assert IFT(1/(a + 2*pi*I*x), x, posk,
noconds=False) == (exp(-a*posk), True)
assert IFT(1/(a + 2*pi*I*x), x, -posk,
noconds=False) == (0, True)
assert IFT(1/(a + 2*pi*I*x), x, symbols('k', negative=True),
noconds=False) == (0, True)
# TODO IFT without factoring comes out as meijer g
assert factor(FT(x*exp(-a*x)*Heaviside(x), x, k), extension=I) == \
1/(a + 2*pi*I*k)**2
assert FT(exp(-a*x)*sin(b*x)*Heaviside(x), x, k) == \
b/(b**2 + (a + 2*I*pi*k)**2)
assert FT(exp(-a*x**2), x, k) == sqrt(pi)*exp(-pi**2*k**2/a)/sqrt(a)
assert IFT(sqrt(pi/a)*exp(-(pi*k)**2/a), k, x) == exp(-a*x**2)
assert FT(exp(-a*abs(x)), x, k) == 2*a/(a**2 + 4*pi**2*k**2)
# TODO IFT (comes out as meijer G)
# TODO besselj(n, x), n an integer > 0 actually can be done...
# TODO are there other common transforms (no distributions!)?
def test_sine_transform():
from sympy import EulerGamma
t = symbols("t")
w = symbols("w")
a = symbols("a")
f = Function("f")
# Test unevaluated form
assert sine_transform(f(t), t, w) == SineTransform(f(t), t, w)
assert inverse_sine_transform(
f(w), w, t) == InverseSineTransform(f(w), w, t)
assert sine_transform(1/sqrt(t), t, w) == 1/sqrt(w)
assert inverse_sine_transform(1/sqrt(w), w, t) == 1/sqrt(t)
assert sine_transform((1/sqrt(t))**3, t, w) == 2*sqrt(w)
assert sine_transform(t**(-a), t, w) == 2**(
-a + S.Half)*w**(a - 1)*gamma(-a/2 + 1)/gamma((a + 1)/2)
assert inverse_sine_transform(2**(-a + S(
1)/2)*w**(a - 1)*gamma(-a/2 + 1)/gamma(a/2 + S.Half), w, t) == t**(-a)
assert sine_transform(
exp(-a*t), t, w) == sqrt(2)*w/(sqrt(pi)*(a**2 + w**2))
assert inverse_sine_transform(
sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t)
assert sine_transform(
log(t)/t, t, w) == -sqrt(2)*sqrt(pi)*(log(w**2) + 2*EulerGamma)/4
assert sine_transform(
t*exp(-a*t**2), t, w) == sqrt(2)*w*exp(-w**2/(4*a))/(4*a**Rational(3, 2))
assert inverse_sine_transform(
sqrt(2)*w*exp(-w**2/(4*a))/(4*a**Rational(3, 2)), w, t) == t*exp(-a*t**2)
def test_cosine_transform():
from sympy import Si, Ci
t = symbols("t")
w = symbols("w")
a = symbols("a")
f = Function("f")
# Test unevaluated form
assert cosine_transform(f(t), t, w) == CosineTransform(f(t), t, w)
assert inverse_cosine_transform(
f(w), w, t) == InverseCosineTransform(f(w), w, t)
assert cosine_transform(1/sqrt(t), t, w) == 1/sqrt(w)
assert inverse_cosine_transform(1/sqrt(w), w, t) == 1/sqrt(t)
assert cosine_transform(1/(
a**2 + t**2), t, w) == sqrt(2)*sqrt(pi)*exp(-a*w)/(2*a)
assert cosine_transform(t**(
-a), t, w) == 2**(-a + S.Half)*w**(a - 1)*gamma((-a + 1)/2)/gamma(a/2)
assert inverse_cosine_transform(2**(-a + S(
1)/2)*w**(a - 1)*gamma(-a/2 + S.Half)/gamma(a/2), w, t) == t**(-a)
assert cosine_transform(
exp(-a*t), t, w) == sqrt(2)*a/(sqrt(pi)*(a**2 + w**2))
assert inverse_cosine_transform(
sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t)
assert cosine_transform(exp(-a*sqrt(t))*cos(a*sqrt(
t)), t, w) == a*exp(-a**2/(2*w))/(2*w**Rational(3, 2))
assert cosine_transform(1/(a + t), t, w) == sqrt(2)*(
(-2*Si(a*w) + pi)*sin(a*w)/2 - cos(a*w)*Ci(a*w))/sqrt(pi)
assert inverse_cosine_transform(sqrt(2)*meijerg(((S.Half, 0), ()), (
(S.Half, 0, 0), (S.Half,)), a**2*w**2/4)/(2*pi), w, t) == 1/(a + t)
assert cosine_transform(1/sqrt(a**2 + t**2), t, w) == sqrt(2)*meijerg(
((S.Half,), ()), ((0, 0), (S.Half,)), a**2*w**2/4)/(2*sqrt(pi))
assert inverse_cosine_transform(sqrt(2)*meijerg(((S.Half,), ()), ((0, 0), (S.Half,)), a**2*w**2/4)/(2*sqrt(pi)), w, t) == 1/(t*sqrt(a**2/t**2 + 1))
def test_hankel_transform():
from sympy import gamma, sqrt, exp
r = Symbol("r")
k = Symbol("k")
nu = Symbol("nu")
m = Symbol("m")
a = symbols("a")
assert hankel_transform(1/r, r, k, 0) == 1/k
assert inverse_hankel_transform(1/k, k, r, 0) == 1/r
assert hankel_transform(
1/r**m, r, k, 0) == 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2)
assert inverse_hankel_transform(
2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2), k, r, 0) == r**(-m)
assert hankel_transform(1/r**m, r, k, nu) == (
2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2))
assert inverse_hankel_transform(2**(-m + 1)*k**(
m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2), k, r, nu) == r**(-m)
assert hankel_transform(r**nu*exp(-a*r), r, k, nu) == \
2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - S(
3)/2)*gamma(nu + Rational(3, 2))/sqrt(pi)
assert inverse_hankel_transform(
2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - Rational(3, 2))*gamma(
nu + Rational(3, 2))/sqrt(pi), k, r, nu) == r**nu*exp(-a*r)
def test_issue_7181():
assert mellin_transform(1/(1 - x), x, s) != None
def test_issue_8882():
# This is the original test.
# from sympy import diff, Integral, integrate
# r = Symbol('r')
# psi = 1/r*sin(r)*exp(-(a0*r))
# h = -1/2*diff(psi, r, r) - 1/r*psi
# f = 4*pi*psi*h*r**2
# assert integrate(f, (r, -oo, 3), meijerg=True).has(Integral) == True
# To save time, only the critical part is included.
F = -a**(-s + 1)*(4 + 1/a**2)**(-s/2)*sqrt(1/a**2)*exp(-s*I*pi)* \
sin(s*atan(sqrt(1/a**2)/2))*gamma(s)
raises(IntegralTransformError, lambda:
inverse_mellin_transform(F, s, x, (-1, oo),
**{'as_meijerg': True, 'needeval': True}))
def test_issue_7173():
from sympy import cse
x0, x1, x2, x3 = symbols('x:4')
ans = laplace_transform(sinh(a*x)*cosh(a*x), x, s)
r, e = cse(ans)
assert r == [
(x0, arg(a)),
(x1, Abs(x0)),
(x2, pi/2),
(x3, Abs(x0 + pi))]
assert e == [
a/(-4*a**2 + s**2),
0,
((x1 <= x2) | (x1 < x2)) & ((x3 <= x2) | (x3 < x2))]
def test_issue_8514():
from sympy import simplify
a, b, c, = symbols('a b c', positive=True)
t = symbols('t', positive=True)
ft = simplify(inverse_laplace_transform(1/(a*s**2+b*s+c),s, t))
assert ft == (I*exp(t*cos(atan2(0, -4*a*c + b**2)/2)*sqrt(Abs(4*a*c -
b**2))/a)*sin(t*sin(atan2(0, -4*a*c + b**2)/2)*sqrt(Abs(
4*a*c - b**2))/(2*a)) + exp(t*cos(atan2(0, -4*a*c + b**2)
/2)*sqrt(Abs(4*a*c - b**2))/a)*cos(t*sin(atan2(0, -4*a*c
+ b**2)/2)*sqrt(Abs(4*a*c - b**2))/(2*a)) + I*sin(t*sin(
atan2(0, -4*a*c + b**2)/2)*sqrt(Abs(4*a*c - b**2))/(2*a))
- cos(t*sin(atan2(0, -4*a*c + b**2)/2)*sqrt(Abs(4*a*c -
b**2))/(2*a)))*exp(-t*(b + cos(atan2(0, -4*a*c + b**2)/2)
*sqrt(Abs(4*a*c - b**2)))/(2*a))/sqrt(-4*a*c + b**2)
def test_issue_12591():
x, y = symbols("x y", real=True)
assert fourier_transform(exp(x), x, y) == FourierTransform(exp(x), x, y)
def test_issue_14692():
b = Symbol('b', negative=True)
assert laplace_transform(1/(I*x - b), x, s) == \
(-I*exp(I*b*s)*expint(1, b*s*exp_polar(I*pi/2)), 0, True)
|
dd7da38e3205a9529bb4d3e44fc708032f5555d3ba7316f60945ecf8985ab6b7 | """Test whether all elements of cls.args are instances of Basic. """
# NOTE: keep tests sorted by (module, class name) key. If a class can't
# be instantiated, add it here anyway with @SKIP("abstract class) (see
# e.g. Function).
import os
import re
from sympy import (Basic, S, symbols, sqrt, sin, oo, Interval, exp, Lambda, pi,
Eq, log, Function, Rational, Q)
from sympy.testing.pytest import XFAIL, SKIP
a, b, c, x, y, z = symbols('a,b,c,x,y,z')
whitelist = [
"sympy.assumptions.predicates", # tested by test_predicates()
"sympy.assumptions.relation.equality", # tested by test_predicates()
]
def test_all_classes_are_tested():
this = os.path.split(__file__)[0]
path = os.path.join(this, os.pardir, os.pardir)
sympy_path = os.path.abspath(path)
prefix = os.path.split(sympy_path)[0] + os.sep
re_cls = re.compile(r"^class ([A-Za-z][A-Za-z0-9_]*)\s*\(", re.MULTILINE)
modules = {}
for root, dirs, files in os.walk(sympy_path):
module = root.replace(prefix, "").replace(os.sep, ".")
for file in files:
if file.startswith(("_", "test_", "bench_")):
continue
if not file.endswith(".py"):
continue
with open(os.path.join(root, file), encoding='utf-8') as f:
text = f.read()
submodule = module + '.' + file[:-3]
if any(submodule.startswith(wpath) for wpath in whitelist):
continue
names = re_cls.findall(text)
if not names:
continue
try:
mod = __import__(submodule, fromlist=names)
except ImportError:
continue
def is_Basic(name):
cls = getattr(mod, name)
if hasattr(cls, '_sympy_deprecated_func'):
cls = cls._sympy_deprecated_func
if not isinstance(cls, type):
# check instance of singleton class with same name
cls = type(cls)
return issubclass(cls, Basic)
names = list(filter(is_Basic, names))
if names:
modules[submodule] = names
ns = globals()
failed = []
for module, names in modules.items():
mod = module.replace('.', '__')
for name in names:
test = 'test_' + mod + '__' + name
if test not in ns:
failed.append(module + '.' + name)
assert not failed, "Missing classes: %s. Please add tests for these to sympy/core/tests/test_args.py." % ", ".join(failed)
def _test_args(obj):
all_basic = all(isinstance(arg, Basic) for arg in obj.args)
# Ideally obj.func(*obj.args) would always recreate the object, but for
# now, we only require it for objects with non-empty .args
recreatable = not obj.args or obj.func(*obj.args) == obj
return all_basic and recreatable
def test_sympy__assumptions__assume__AppliedPredicate():
from sympy.assumptions.assume import AppliedPredicate, Predicate
assert _test_args(AppliedPredicate(Predicate("test"), 2))
assert _test_args(Q.is_true(True))
@SKIP("abstract class")
def test_sympy__assumptions__assume__Predicate():
pass
def test_predicates():
predicates = [
getattr(Q, attr)
for attr in Q.__class__.__dict__
if not attr.startswith('__')]
for p in predicates:
assert _test_args(p)
def test_sympy__assumptions__assume__UndefinedPredicate():
from sympy.assumptions.assume import Predicate
assert _test_args(Predicate("test"))
@SKIP('abstract class')
def test_sympy__assumptions__relation__binrel__BinaryRelation():
pass
def test_sympy__assumptions__relation__binrel__AppliedBinaryRelation():
assert _test_args(Q.eq(1, 2))
def test_sympy__assumptions__wrapper__AssumptionsWrapper():
from sympy.assumptions.wrapper import AssumptionsWrapper
assert _test_args(AssumptionsWrapper(x, Q.positive(x)))
@SKIP("abstract Class")
def test_sympy__codegen__ast__AssignmentBase():
from sympy.codegen.ast import AssignmentBase
assert _test_args(AssignmentBase(x, 1))
@SKIP("abstract Class")
def test_sympy__codegen__ast__AugmentedAssignment():
from sympy.codegen.ast import AugmentedAssignment
assert _test_args(AugmentedAssignment(x, 1))
def test_sympy__codegen__ast__AddAugmentedAssignment():
from sympy.codegen.ast import AddAugmentedAssignment
assert _test_args(AddAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__SubAugmentedAssignment():
from sympy.codegen.ast import SubAugmentedAssignment
assert _test_args(SubAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__MulAugmentedAssignment():
from sympy.codegen.ast import MulAugmentedAssignment
assert _test_args(MulAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__DivAugmentedAssignment():
from sympy.codegen.ast import DivAugmentedAssignment
assert _test_args(DivAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__ModAugmentedAssignment():
from sympy.codegen.ast import ModAugmentedAssignment
assert _test_args(ModAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__CodeBlock():
from sympy.codegen.ast import CodeBlock, Assignment
assert _test_args(CodeBlock(Assignment(x, 1), Assignment(y, 2)))
def test_sympy__codegen__ast__For():
from sympy.codegen.ast import For, CodeBlock, AddAugmentedAssignment
from sympy import Range
assert _test_args(For(x, Range(10), CodeBlock(AddAugmentedAssignment(y, 1))))
def test_sympy__codegen__ast__Token():
from sympy.codegen.ast import Token
assert _test_args(Token())
def test_sympy__codegen__ast__ContinueToken():
from sympy.codegen.ast import ContinueToken
assert _test_args(ContinueToken())
def test_sympy__codegen__ast__BreakToken():
from sympy.codegen.ast import BreakToken
assert _test_args(BreakToken())
def test_sympy__codegen__ast__NoneToken():
from sympy.codegen.ast import NoneToken
assert _test_args(NoneToken())
def test_sympy__codegen__ast__String():
from sympy.codegen.ast import String
assert _test_args(String('foobar'))
def test_sympy__codegen__ast__QuotedString():
from sympy.codegen.ast import QuotedString
assert _test_args(QuotedString('foobar'))
def test_sympy__codegen__ast__Comment():
from sympy.codegen.ast import Comment
assert _test_args(Comment('this is a comment'))
def test_sympy__codegen__ast__Node():
from sympy.codegen.ast import Node
assert _test_args(Node())
assert _test_args(Node(attrs={1, 2, 3}))
def test_sympy__codegen__ast__Type():
from sympy.codegen.ast import Type
assert _test_args(Type('float128'))
def test_sympy__codegen__ast__IntBaseType():
from sympy.codegen.ast import IntBaseType
assert _test_args(IntBaseType('bigint'))
def test_sympy__codegen__ast___SizedIntType():
from sympy.codegen.ast import _SizedIntType
assert _test_args(_SizedIntType('int128', 128))
def test_sympy__codegen__ast__SignedIntType():
from sympy.codegen.ast import SignedIntType
assert _test_args(SignedIntType('int128_with_sign', 128))
def test_sympy__codegen__ast__UnsignedIntType():
from sympy.codegen.ast import UnsignedIntType
assert _test_args(UnsignedIntType('unt128', 128))
def test_sympy__codegen__ast__FloatBaseType():
from sympy.codegen.ast import FloatBaseType
assert _test_args(FloatBaseType('positive_real'))
def test_sympy__codegen__ast__FloatType():
from sympy.codegen.ast import FloatType
assert _test_args(FloatType('float242', 242, nmant=142, nexp=99))
def test_sympy__codegen__ast__ComplexBaseType():
from sympy.codegen.ast import ComplexBaseType
assert _test_args(ComplexBaseType('positive_cmplx'))
def test_sympy__codegen__ast__ComplexType():
from sympy.codegen.ast import ComplexType
assert _test_args(ComplexType('complex42', 42, nmant=15, nexp=5))
def test_sympy__codegen__ast__Attribute():
from sympy.codegen.ast import Attribute
assert _test_args(Attribute('noexcept'))
def test_sympy__codegen__ast__Variable():
from sympy.codegen.ast import Variable, Type, value_const
assert _test_args(Variable(x))
assert _test_args(Variable(y, Type('float32'), {value_const}))
assert _test_args(Variable(z, type=Type('float64')))
def test_sympy__codegen__ast__Pointer():
from sympy.codegen.ast import Pointer, Type, pointer_const
assert _test_args(Pointer(x))
assert _test_args(Pointer(y, type=Type('float32')))
assert _test_args(Pointer(z, Type('float64'), {pointer_const}))
def test_sympy__codegen__ast__Declaration():
from sympy.codegen.ast import Declaration, Variable, Type
vx = Variable(x, type=Type('float'))
assert _test_args(Declaration(vx))
def test_sympy__codegen__ast__While():
from sympy.codegen.ast import While, AddAugmentedAssignment
assert _test_args(While(abs(x) < 1, [AddAugmentedAssignment(x, -1)]))
def test_sympy__codegen__ast__Scope():
from sympy.codegen.ast import Scope, AddAugmentedAssignment
assert _test_args(Scope([AddAugmentedAssignment(x, -1)]))
def test_sympy__codegen__ast__Stream():
from sympy.codegen.ast import Stream
assert _test_args(Stream('stdin'))
def test_sympy__codegen__ast__Print():
from sympy.codegen.ast import Print
assert _test_args(Print([x, y]))
assert _test_args(Print([x, y], "%d %d"))
def test_sympy__codegen__ast__FunctionPrototype():
from sympy.codegen.ast import FunctionPrototype, real, Declaration, Variable
inp_x = Declaration(Variable(x, type=real))
assert _test_args(FunctionPrototype(real, 'pwer', [inp_x]))
def test_sympy__codegen__ast__FunctionDefinition():
from sympy.codegen.ast import FunctionDefinition, real, Declaration, Variable, Assignment
inp_x = Declaration(Variable(x, type=real))
assert _test_args(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)]))
def test_sympy__codegen__ast__Return():
from sympy.codegen.ast import Return
assert _test_args(Return(x))
def test_sympy__codegen__ast__FunctionCall():
from sympy.codegen.ast import FunctionCall
assert _test_args(FunctionCall('pwer', [x]))
def test_sympy__codegen__ast__Element():
from sympy.codegen.ast import Element
assert _test_args(Element('x', range(3)))
def test_sympy__codegen__cnodes__CommaOperator():
from sympy.codegen.cnodes import CommaOperator
assert _test_args(CommaOperator(1, 2))
def test_sympy__codegen__cnodes__goto():
from sympy.codegen.cnodes import goto
assert _test_args(goto('early_exit'))
def test_sympy__codegen__cnodes__Label():
from sympy.codegen.cnodes import Label
assert _test_args(Label('early_exit'))
def test_sympy__codegen__cnodes__PreDecrement():
from sympy.codegen.cnodes import PreDecrement
assert _test_args(PreDecrement(x))
def test_sympy__codegen__cnodes__PostDecrement():
from sympy.codegen.cnodes import PostDecrement
assert _test_args(PostDecrement(x))
def test_sympy__codegen__cnodes__PreIncrement():
from sympy.codegen.cnodes import PreIncrement
assert _test_args(PreIncrement(x))
def test_sympy__codegen__cnodes__PostIncrement():
from sympy.codegen.cnodes import PostIncrement
assert _test_args(PostIncrement(x))
def test_sympy__codegen__cnodes__struct():
from sympy.codegen.ast import real, Variable
from sympy.codegen.cnodes import struct
assert _test_args(struct(declarations=[
Variable(x, type=real),
Variable(y, type=real)
]))
def test_sympy__codegen__cnodes__union():
from sympy.codegen.ast import float32, int32, Variable
from sympy.codegen.cnodes import union
assert _test_args(union(declarations=[
Variable(x, type=float32),
Variable(y, type=int32)
]))
def test_sympy__codegen__cxxnodes__using():
from sympy.codegen.cxxnodes import using
assert _test_args(using('std::vector'))
assert _test_args(using('std::vector', 'vec'))
def test_sympy__codegen__fnodes__Program():
from sympy.codegen.fnodes import Program
assert _test_args(Program('foobar', []))
def test_sympy__codegen__fnodes__Module():
from sympy.codegen.fnodes import Module
assert _test_args(Module('foobar', [], []))
def test_sympy__codegen__fnodes__Subroutine():
from sympy.codegen.fnodes import Subroutine
x = symbols('x', real=True)
assert _test_args(Subroutine('foo', [x], []))
def test_sympy__codegen__fnodes__GoTo():
from sympy.codegen.fnodes import GoTo
assert _test_args(GoTo([10]))
assert _test_args(GoTo([10, 20], x > 1))
def test_sympy__codegen__fnodes__FortranReturn():
from sympy.codegen.fnodes import FortranReturn
assert _test_args(FortranReturn(10))
def test_sympy__codegen__fnodes__Extent():
from sympy.codegen.fnodes import Extent
assert _test_args(Extent())
assert _test_args(Extent(None))
assert _test_args(Extent(':'))
assert _test_args(Extent(-3, 4))
assert _test_args(Extent(x, y))
def test_sympy__codegen__fnodes__use_rename():
from sympy.codegen.fnodes import use_rename
assert _test_args(use_rename('loc', 'glob'))
def test_sympy__codegen__fnodes__use():
from sympy.codegen.fnodes import use
assert _test_args(use('modfoo', only='bar'))
def test_sympy__codegen__fnodes__SubroutineCall():
from sympy.codegen.fnodes import SubroutineCall
assert _test_args(SubroutineCall('foo', ['bar', 'baz']))
def test_sympy__codegen__fnodes__Do():
from sympy.codegen.fnodes import Do
assert _test_args(Do([], 'i', 1, 42))
def test_sympy__codegen__fnodes__ImpliedDoLoop():
from sympy.codegen.fnodes import ImpliedDoLoop
assert _test_args(ImpliedDoLoop('i', 'i', 1, 42))
def test_sympy__codegen__fnodes__ArrayConstructor():
from sympy.codegen.fnodes import ArrayConstructor
assert _test_args(ArrayConstructor([1, 2, 3]))
from sympy.codegen.fnodes import ImpliedDoLoop
idl = ImpliedDoLoop('i', 'i', 1, 42)
assert _test_args(ArrayConstructor([1, idl, 3]))
def test_sympy__codegen__fnodes__sum_():
from sympy.codegen.fnodes import sum_
assert _test_args(sum_('arr'))
def test_sympy__codegen__fnodes__product_():
from sympy.codegen.fnodes import product_
assert _test_args(product_('arr'))
def test_sympy__codegen__numpy_nodes__logaddexp():
from sympy.codegen.numpy_nodes import logaddexp
assert _test_args(logaddexp(x, y))
def test_sympy__codegen__numpy_nodes__logaddexp2():
from sympy.codegen.numpy_nodes import logaddexp2
assert _test_args(logaddexp2(x, y))
def test_sympy__codegen__scipy_nodes__cosm1():
from sympy.codegen.scipy_nodes import cosm1
assert _test_args(cosm1(x))
@XFAIL
def test_sympy__combinatorics__graycode__GrayCode():
from sympy.combinatorics.graycode import GrayCode
# an integer is given and returned from GrayCode as the arg
assert _test_args(GrayCode(3, start='100'))
assert _test_args(GrayCode(3, rank=1))
def test_sympy__combinatorics__subsets__Subset():
from sympy.combinatorics.subsets import Subset
assert _test_args(Subset([0, 1], [0, 1, 2, 3]))
assert _test_args(Subset(['c', 'd'], ['a', 'b', 'c', 'd']))
def test_sympy__combinatorics__permutations__Permutation():
from sympy.combinatorics.permutations import Permutation
assert _test_args(Permutation([0, 1, 2, 3]))
def test_sympy__combinatorics__permutations__AppliedPermutation():
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.permutations import AppliedPermutation
p = Permutation([0, 1, 2, 3])
assert _test_args(AppliedPermutation(p, 1))
def test_sympy__combinatorics__perm_groups__PermutationGroup():
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.perm_groups import PermutationGroup
assert _test_args(PermutationGroup([Permutation([0, 1])]))
def test_sympy__combinatorics__polyhedron__Polyhedron():
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.polyhedron import Polyhedron
from sympy.abc import w, x, y, z
pgroup = [Permutation([[0, 1, 2], [3]]),
Permutation([[0, 1, 3], [2]]),
Permutation([[0, 2, 3], [1]]),
Permutation([[1, 2, 3], [0]]),
Permutation([[0, 1], [2, 3]]),
Permutation([[0, 2], [1, 3]]),
Permutation([[0, 3], [1, 2]]),
Permutation([[0, 1, 2, 3]])]
corners = [w, x, y, z]
faces = [(w, x, y), (w, y, z), (w, z, x), (x, y, z)]
assert _test_args(Polyhedron(corners, faces, pgroup))
@XFAIL
def test_sympy__combinatorics__prufer__Prufer():
from sympy.combinatorics.prufer import Prufer
assert _test_args(Prufer([[0, 1], [0, 2], [0, 3]], 4))
def test_sympy__combinatorics__partitions__Partition():
from sympy.combinatorics.partitions import Partition
assert _test_args(Partition([1]))
@XFAIL
def test_sympy__combinatorics__partitions__IntegerPartition():
from sympy.combinatorics.partitions import IntegerPartition
assert _test_args(IntegerPartition([1]))
def test_sympy__concrete__products__Product():
from sympy.concrete.products import Product
assert _test_args(Product(x, (x, 0, 10)))
assert _test_args(Product(x, (x, 0, y), (y, 0, 10)))
@SKIP("abstract Class")
def test_sympy__concrete__expr_with_limits__ExprWithLimits():
from sympy.concrete.expr_with_limits import ExprWithLimits
assert _test_args(ExprWithLimits(x, (x, 0, 10)))
assert _test_args(ExprWithLimits(x*y, (x, 0, 10.),(y,1.,3)))
@SKIP("abstract Class")
def test_sympy__concrete__expr_with_limits__AddWithLimits():
from sympy.concrete.expr_with_limits import AddWithLimits
assert _test_args(AddWithLimits(x, (x, 0, 10)))
assert _test_args(AddWithLimits(x*y, (x, 0, 10),(y,1,3)))
@SKIP("abstract Class")
def test_sympy__concrete__expr_with_intlimits__ExprWithIntLimits():
from sympy.concrete.expr_with_intlimits import ExprWithIntLimits
assert _test_args(ExprWithIntLimits(x, (x, 0, 10)))
assert _test_args(ExprWithIntLimits(x*y, (x, 0, 10),(y,1,3)))
def test_sympy__concrete__summations__Sum():
from sympy.concrete.summations import Sum
assert _test_args(Sum(x, (x, 0, 10)))
assert _test_args(Sum(x, (x, 0, y), (y, 0, 10)))
def test_sympy__core__add__Add():
from sympy.core.add import Add
assert _test_args(Add(x, y, z, 2))
def test_sympy__core__basic__Atom():
from sympy.core.basic import Atom
assert _test_args(Atom())
def test_sympy__core__basic__Basic():
from sympy.core.basic import Basic
assert _test_args(Basic())
def test_sympy__core__containers__Dict():
from sympy.core.containers import Dict
assert _test_args(Dict({x: y, y: z}))
def test_sympy__core__containers__Tuple():
from sympy.core.containers import Tuple
assert _test_args(Tuple(x, y, z, 2))
def test_sympy__core__expr__AtomicExpr():
from sympy.core.expr import AtomicExpr
assert _test_args(AtomicExpr())
def test_sympy__core__expr__Expr():
from sympy.core.expr import Expr
assert _test_args(Expr())
def test_sympy__core__expr__UnevaluatedExpr():
from sympy.core.expr import UnevaluatedExpr
from sympy.abc import x
assert _test_args(UnevaluatedExpr(x))
def test_sympy__core__function__Application():
from sympy.core.function import Application
assert _test_args(Application(1, 2, 3))
def test_sympy__core__function__AppliedUndef():
from sympy.core.function import AppliedUndef
assert _test_args(AppliedUndef(1, 2, 3))
def test_sympy__core__function__Derivative():
from sympy.core.function import Derivative
assert _test_args(Derivative(2, x, y, 3))
@SKIP("abstract class")
def test_sympy__core__function__Function():
pass
def test_sympy__core__function__Lambda():
assert _test_args(Lambda((x, y), x + y + z))
def test_sympy__core__function__Subs():
from sympy.core.function import Subs
assert _test_args(Subs(x + y, x, 2))
def test_sympy__core__function__WildFunction():
from sympy.core.function import WildFunction
assert _test_args(WildFunction('f'))
def test_sympy__core__mod__Mod():
from sympy.core.mod import Mod
assert _test_args(Mod(x, 2))
def test_sympy__core__mul__Mul():
from sympy.core.mul import Mul
assert _test_args(Mul(2, x, y, z))
def test_sympy__core__numbers__Catalan():
from sympy.core.numbers import Catalan
assert _test_args(Catalan())
def test_sympy__core__numbers__ComplexInfinity():
from sympy.core.numbers import ComplexInfinity
assert _test_args(ComplexInfinity())
def test_sympy__core__numbers__EulerGamma():
from sympy.core.numbers import EulerGamma
assert _test_args(EulerGamma())
def test_sympy__core__numbers__Exp1():
from sympy.core.numbers import Exp1
assert _test_args(Exp1())
def test_sympy__core__numbers__Float():
from sympy.core.numbers import Float
assert _test_args(Float(1.23))
def test_sympy__core__numbers__GoldenRatio():
from sympy.core.numbers import GoldenRatio
assert _test_args(GoldenRatio())
def test_sympy__core__numbers__TribonacciConstant():
from sympy.core.numbers import TribonacciConstant
assert _test_args(TribonacciConstant())
def test_sympy__core__numbers__Half():
from sympy.core.numbers import Half
assert _test_args(Half())
def test_sympy__core__numbers__ImaginaryUnit():
from sympy.core.numbers import ImaginaryUnit
assert _test_args(ImaginaryUnit())
def test_sympy__core__numbers__Infinity():
from sympy.core.numbers import Infinity
assert _test_args(Infinity())
def test_sympy__core__numbers__Integer():
from sympy.core.numbers import Integer
assert _test_args(Integer(7))
@SKIP("abstract class")
def test_sympy__core__numbers__IntegerConstant():
pass
def test_sympy__core__numbers__NaN():
from sympy.core.numbers import NaN
assert _test_args(NaN())
def test_sympy__core__numbers__NegativeInfinity():
from sympy.core.numbers import NegativeInfinity
assert _test_args(NegativeInfinity())
def test_sympy__core__numbers__NegativeOne():
from sympy.core.numbers import NegativeOne
assert _test_args(NegativeOne())
def test_sympy__core__numbers__Number():
from sympy.core.numbers import Number
assert _test_args(Number(1, 7))
def test_sympy__core__numbers__NumberSymbol():
from sympy.core.numbers import NumberSymbol
assert _test_args(NumberSymbol())
def test_sympy__core__numbers__One():
from sympy.core.numbers import One
assert _test_args(One())
def test_sympy__core__numbers__Pi():
from sympy.core.numbers import Pi
assert _test_args(Pi())
def test_sympy__core__numbers__Rational():
from sympy.core.numbers import Rational
assert _test_args(Rational(1, 7))
@SKIP("abstract class")
def test_sympy__core__numbers__RationalConstant():
pass
def test_sympy__core__numbers__Zero():
from sympy.core.numbers import Zero
assert _test_args(Zero())
@SKIP("abstract class")
def test_sympy__core__operations__AssocOp():
pass
@SKIP("abstract class")
def test_sympy__core__operations__LatticeOp():
pass
def test_sympy__core__power__Pow():
from sympy.core.power import Pow
assert _test_args(Pow(x, 2))
def test_sympy__algebras__quaternion__Quaternion():
from sympy.algebras.quaternion import Quaternion
assert _test_args(Quaternion(x, 1, 2, 3))
def test_sympy__core__relational__Equality():
from sympy.core.relational import Equality
assert _test_args(Equality(x, 2))
def test_sympy__core__relational__GreaterThan():
from sympy.core.relational import GreaterThan
assert _test_args(GreaterThan(x, 2))
def test_sympy__core__relational__LessThan():
from sympy.core.relational import LessThan
assert _test_args(LessThan(x, 2))
@SKIP("abstract class")
def test_sympy__core__relational__Relational():
pass
def test_sympy__core__relational__StrictGreaterThan():
from sympy.core.relational import StrictGreaterThan
assert _test_args(StrictGreaterThan(x, 2))
def test_sympy__core__relational__StrictLessThan():
from sympy.core.relational import StrictLessThan
assert _test_args(StrictLessThan(x, 2))
def test_sympy__core__relational__Unequality():
from sympy.core.relational import Unequality
assert _test_args(Unequality(x, 2))
def test_sympy__sandbox__indexed_integrals__IndexedIntegral():
from sympy.tensor import IndexedBase, Idx
from sympy.sandbox.indexed_integrals import IndexedIntegral
A = IndexedBase('A')
i, j = symbols('i j', integer=True)
a1, a2 = symbols('a1:3', cls=Idx)
assert _test_args(IndexedIntegral(A[a1], A[a2]))
assert _test_args(IndexedIntegral(A[i], A[j]))
def test_sympy__calculus__util__AccumulationBounds():
from sympy.calculus.util import AccumulationBounds
assert _test_args(AccumulationBounds(0, 1))
def test_sympy__sets__ordinals__OmegaPower():
from sympy.sets.ordinals import OmegaPower
assert _test_args(OmegaPower(1, 1))
def test_sympy__sets__ordinals__Ordinal():
from sympy.sets.ordinals import Ordinal, OmegaPower
assert _test_args(Ordinal(OmegaPower(2, 1)))
def test_sympy__sets__ordinals__OrdinalOmega():
from sympy.sets.ordinals import OrdinalOmega
assert _test_args(OrdinalOmega())
def test_sympy__sets__ordinals__OrdinalZero():
from sympy.sets.ordinals import OrdinalZero
assert _test_args(OrdinalZero())
def test_sympy__sets__powerset__PowerSet():
from sympy.sets.powerset import PowerSet
from sympy.core.singleton import S
assert _test_args(PowerSet(S.EmptySet))
def test_sympy__sets__sets__EmptySet():
from sympy.sets.sets import EmptySet
assert _test_args(EmptySet())
def test_sympy__sets__sets__UniversalSet():
from sympy.sets.sets import UniversalSet
assert _test_args(UniversalSet())
def test_sympy__sets__sets__FiniteSet():
from sympy.sets.sets import FiniteSet
assert _test_args(FiniteSet(x, y, z))
def test_sympy__sets__sets__Interval():
from sympy.sets.sets import Interval
assert _test_args(Interval(0, 1))
def test_sympy__sets__sets__ProductSet():
from sympy.sets.sets import ProductSet, Interval
assert _test_args(ProductSet(Interval(0, 1), Interval(0, 1)))
@SKIP("does it make sense to test this?")
def test_sympy__sets__sets__Set():
from sympy.sets.sets import Set
assert _test_args(Set())
def test_sympy__sets__sets__Intersection():
from sympy.sets.sets import Intersection, Interval
from sympy.core.symbol import Symbol
x = Symbol('x')
y = Symbol('y')
S = Intersection(Interval(0, x), Interval(y, 1))
assert isinstance(S, Intersection)
assert _test_args(S)
def test_sympy__sets__sets__Union():
from sympy.sets.sets import Union, Interval
assert _test_args(Union(Interval(0, 1), Interval(2, 3)))
def test_sympy__sets__sets__Complement():
from sympy.sets.sets import Complement
assert _test_args(Complement(Interval(0, 2), Interval(0, 1)))
def test_sympy__sets__sets__SymmetricDifference():
from sympy.sets.sets import FiniteSet, SymmetricDifference
assert _test_args(SymmetricDifference(FiniteSet(1, 2, 3), \
FiniteSet(2, 3, 4)))
def test_sympy__sets__sets__DisjointUnion():
from sympy.sets.sets import FiniteSet, DisjointUnion
assert _test_args(DisjointUnion(FiniteSet(1, 2, 3), \
FiniteSet(2, 3, 4)))
def test_sympy__core__trace__Tr():
from sympy.core.trace import Tr
a, b = symbols('a b')
assert _test_args(Tr(a + b))
def test_sympy__sets__setexpr__SetExpr():
from sympy.sets.setexpr import SetExpr
assert _test_args(SetExpr(Interval(0, 1)))
def test_sympy__sets__fancysets__Rationals():
from sympy.sets.fancysets import Rationals
assert _test_args(Rationals())
def test_sympy__sets__fancysets__Naturals():
from sympy.sets.fancysets import Naturals
assert _test_args(Naturals())
def test_sympy__sets__fancysets__Naturals0():
from sympy.sets.fancysets import Naturals0
assert _test_args(Naturals0())
def test_sympy__sets__fancysets__Integers():
from sympy.sets.fancysets import Integers
assert _test_args(Integers())
def test_sympy__sets__fancysets__Reals():
from sympy.sets.fancysets import Reals
assert _test_args(Reals())
def test_sympy__sets__fancysets__Complexes():
from sympy.sets.fancysets import Complexes
assert _test_args(Complexes())
def test_sympy__sets__fancysets__ComplexRegion():
from sympy.sets.fancysets import ComplexRegion
from sympy import S
from sympy.sets import Interval
a = Interval(0, 1)
b = Interval(2, 3)
theta = Interval(0, 2*S.Pi)
assert _test_args(ComplexRegion(a*b))
assert _test_args(ComplexRegion(a*theta, polar=True))
def test_sympy__sets__fancysets__CartesianComplexRegion():
from sympy.sets.fancysets import CartesianComplexRegion
from sympy.sets import Interval
a = Interval(0, 1)
b = Interval(2, 3)
assert _test_args(CartesianComplexRegion(a*b))
def test_sympy__sets__fancysets__PolarComplexRegion():
from sympy.sets.fancysets import PolarComplexRegion
from sympy import S
from sympy.sets import Interval
a = Interval(0, 1)
theta = Interval(0, 2*S.Pi)
assert _test_args(PolarComplexRegion(a*theta))
def test_sympy__sets__fancysets__ImageSet():
from sympy.sets.fancysets import ImageSet
from sympy import S, Symbol
x = Symbol('x')
assert _test_args(ImageSet(Lambda(x, x**2), S.Naturals))
def test_sympy__sets__fancysets__Range():
from sympy.sets.fancysets import Range
assert _test_args(Range(1, 5, 1))
def test_sympy__sets__conditionset__ConditionSet():
from sympy.sets.conditionset import ConditionSet
from sympy import S, Symbol
x = Symbol('x')
assert _test_args(ConditionSet(x, Eq(x**2, 1), S.Reals))
def test_sympy__sets__contains__Contains():
from sympy.sets.fancysets import Range
from sympy.sets.contains import Contains
assert _test_args(Contains(x, Range(0, 10, 2)))
# STATS
from sympy.stats.crv_types import NormalDistribution
nd = NormalDistribution(0, 1)
from sympy.stats.frv_types import DieDistribution
die = DieDistribution(6)
def test_sympy__stats__crv__ContinuousDomain():
from sympy.stats.crv import ContinuousDomain
assert _test_args(ContinuousDomain({x}, Interval(-oo, oo)))
def test_sympy__stats__crv__SingleContinuousDomain():
from sympy.stats.crv import SingleContinuousDomain
assert _test_args(SingleContinuousDomain(x, Interval(-oo, oo)))
def test_sympy__stats__crv__ProductContinuousDomain():
from sympy.stats.crv import SingleContinuousDomain, ProductContinuousDomain
D = SingleContinuousDomain(x, Interval(-oo, oo))
E = SingleContinuousDomain(y, Interval(0, oo))
assert _test_args(ProductContinuousDomain(D, E))
def test_sympy__stats__crv__ConditionalContinuousDomain():
from sympy.stats.crv import (SingleContinuousDomain,
ConditionalContinuousDomain)
D = SingleContinuousDomain(x, Interval(-oo, oo))
assert _test_args(ConditionalContinuousDomain(D, x > 0))
def test_sympy__stats__crv__ContinuousPSpace():
from sympy.stats.crv import ContinuousPSpace, SingleContinuousDomain
D = SingleContinuousDomain(x, Interval(-oo, oo))
assert _test_args(ContinuousPSpace(D, nd))
def test_sympy__stats__crv__SingleContinuousPSpace():
from sympy.stats.crv import SingleContinuousPSpace
assert _test_args(SingleContinuousPSpace(x, nd))
@SKIP("abstract class")
def test_sympy__stats__rv__Distribution():
pass
@SKIP("abstract class")
def test_sympy__stats__crv__SingleContinuousDistribution():
pass
def test_sympy__stats__drv__SingleDiscreteDomain():
from sympy.stats.drv import SingleDiscreteDomain
assert _test_args(SingleDiscreteDomain(x, S.Naturals))
def test_sympy__stats__drv__ProductDiscreteDomain():
from sympy.stats.drv import SingleDiscreteDomain, ProductDiscreteDomain
X = SingleDiscreteDomain(x, S.Naturals)
Y = SingleDiscreteDomain(y, S.Integers)
assert _test_args(ProductDiscreteDomain(X, Y))
def test_sympy__stats__drv__SingleDiscretePSpace():
from sympy.stats.drv import SingleDiscretePSpace
from sympy.stats.drv_types import PoissonDistribution
assert _test_args(SingleDiscretePSpace(x, PoissonDistribution(1)))
def test_sympy__stats__drv__DiscretePSpace():
from sympy.stats.drv import DiscretePSpace, SingleDiscreteDomain
density = Lambda(x, 2**(-x))
domain = SingleDiscreteDomain(x, S.Naturals)
assert _test_args(DiscretePSpace(domain, density))
def test_sympy__stats__drv__ConditionalDiscreteDomain():
from sympy.stats.drv import ConditionalDiscreteDomain, SingleDiscreteDomain
X = SingleDiscreteDomain(x, S.Naturals0)
assert _test_args(ConditionalDiscreteDomain(X, x > 2))
def test_sympy__stats__joint_rv__JointPSpace():
from sympy.stats.joint_rv import JointPSpace, JointDistribution
assert _test_args(JointPSpace('X', JointDistribution(1)))
def test_sympy__stats__joint_rv__JointRandomSymbol():
from sympy.stats.joint_rv import JointRandomSymbol
assert _test_args(JointRandomSymbol(x))
def test_sympy__stats__joint_rv_types__JointDistributionHandmade():
from sympy import Indexed
from sympy.stats.joint_rv_types import JointDistributionHandmade
x1, x2 = (Indexed('x', i) for i in (1, 2))
assert _test_args(JointDistributionHandmade(x1 + x2, S.Reals**2))
def test_sympy__stats__joint_rv__MarginalDistribution():
from sympy.stats.rv import RandomSymbol
from sympy.stats.joint_rv import MarginalDistribution
r = RandomSymbol(S('r'))
assert _test_args(MarginalDistribution(r, (r,)))
def test_sympy__stats__compound_rv__CompoundDistribution():
from sympy.stats.compound_rv import CompoundDistribution
from sympy.stats.drv_types import PoissonDistribution, Poisson
r = Poisson('r', 10)
assert _test_args(CompoundDistribution(PoissonDistribution(r)))
def test_sympy__stats__compound_rv__CompoundPSpace():
from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution
from sympy.stats.drv_types import PoissonDistribution, Poisson
r = Poisson('r', 5)
C = CompoundDistribution(PoissonDistribution(r))
assert _test_args(CompoundPSpace('C', C))
@SKIP("abstract class")
def test_sympy__stats__drv__SingleDiscreteDistribution():
pass
@SKIP("abstract class")
def test_sympy__stats__drv__DiscreteDistribution():
pass
@SKIP("abstract class")
def test_sympy__stats__drv__DiscreteDomain():
pass
def test_sympy__stats__rv__RandomDomain():
from sympy.stats.rv import RandomDomain
from sympy.sets.sets import FiniteSet
assert _test_args(RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3)))
def test_sympy__stats__rv__SingleDomain():
from sympy.stats.rv import SingleDomain
from sympy.sets.sets import FiniteSet
assert _test_args(SingleDomain(x, FiniteSet(1, 2, 3)))
def test_sympy__stats__rv__ConditionalDomain():
from sympy.stats.rv import ConditionalDomain, RandomDomain
from sympy.sets.sets import FiniteSet
D = RandomDomain(FiniteSet(x), FiniteSet(1, 2))
assert _test_args(ConditionalDomain(D, x > 1))
def test_sympy__stats__rv__MatrixDomain():
from sympy.stats.rv import MatrixDomain
from sympy.matrices import MatrixSet
from sympy import S
assert _test_args(MatrixDomain(x, MatrixSet(2, 2, S.Reals)))
def test_sympy__stats__rv__PSpace():
from sympy.stats.rv import PSpace, RandomDomain
from sympy import FiniteSet
D = RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3, 4, 5, 6))
assert _test_args(PSpace(D, die))
@SKIP("abstract Class")
def test_sympy__stats__rv__SinglePSpace():
pass
def test_sympy__stats__rv__RandomSymbol():
from sympy.stats.rv import RandomSymbol
from sympy.stats.crv import SingleContinuousPSpace
A = SingleContinuousPSpace(x, nd)
assert _test_args(RandomSymbol(x, A))
@SKIP("abstract Class")
def test_sympy__stats__rv__ProductPSpace():
pass
def test_sympy__stats__rv__IndependentProductPSpace():
from sympy.stats.rv import IndependentProductPSpace
from sympy.stats.crv import SingleContinuousPSpace
A = SingleContinuousPSpace(x, nd)
B = SingleContinuousPSpace(y, nd)
assert _test_args(IndependentProductPSpace(A, B))
def test_sympy__stats__rv__ProductDomain():
from sympy.stats.rv import ProductDomain, SingleDomain
D = SingleDomain(x, Interval(-oo, oo))
E = SingleDomain(y, Interval(0, oo))
assert _test_args(ProductDomain(D, E))
def test_sympy__stats__symbolic_probability__Probability():
from sympy.stats.symbolic_probability import Probability
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Probability(X > 0))
def test_sympy__stats__symbolic_probability__Expectation():
from sympy.stats.symbolic_probability import Expectation
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Expectation(X > 0))
def test_sympy__stats__symbolic_probability__Covariance():
from sympy.stats.symbolic_probability import Covariance
from sympy.stats import Normal
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 3)
assert _test_args(Covariance(X, Y))
def test_sympy__stats__symbolic_probability__Variance():
from sympy.stats.symbolic_probability import Variance
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Variance(X))
def test_sympy__stats__symbolic_probability__Moment():
from sympy.stats.symbolic_probability import Moment
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Moment(X, 3, 2, X > 3))
def test_sympy__stats__symbolic_probability__CentralMoment():
from sympy.stats.symbolic_probability import CentralMoment
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(CentralMoment(X, 2, X > 1))
def test_sympy__stats__frv_types__DiscreteUniformDistribution():
from sympy.stats.frv_types import DiscreteUniformDistribution
from sympy.core.containers import Tuple
assert _test_args(DiscreteUniformDistribution(Tuple(*list(range(6)))))
def test_sympy__stats__frv_types__DieDistribution():
assert _test_args(die)
def test_sympy__stats__frv_types__BernoulliDistribution():
from sympy.stats.frv_types import BernoulliDistribution
assert _test_args(BernoulliDistribution(S.Half, 0, 1))
def test_sympy__stats__frv_types__BinomialDistribution():
from sympy.stats.frv_types import BinomialDistribution
assert _test_args(BinomialDistribution(5, S.Half, 1, 0))
def test_sympy__stats__frv_types__BetaBinomialDistribution():
from sympy.stats.frv_types import BetaBinomialDistribution
assert _test_args(BetaBinomialDistribution(5, 1, 1))
def test_sympy__stats__frv_types__HypergeometricDistribution():
from sympy.stats.frv_types import HypergeometricDistribution
assert _test_args(HypergeometricDistribution(10, 5, 3))
def test_sympy__stats__frv_types__RademacherDistribution():
from sympy.stats.frv_types import RademacherDistribution
assert _test_args(RademacherDistribution())
def test_sympy__stats__frv_types__IdealSolitonDistribution():
from sympy.stats.frv_types import IdealSolitonDistribution
assert _test_args(IdealSolitonDistribution(10))
def test_sympy__stats__frv_types__RobustSolitonDistribution():
from sympy.stats.frv_types import RobustSolitonDistribution
assert _test_args(RobustSolitonDistribution(1000, 0.5, 0.1))
def test_sympy__stats__frv__FiniteDomain():
from sympy.stats.frv import FiniteDomain
assert _test_args(FiniteDomain({(x, 1), (x, 2)})) # x can be 1 or 2
def test_sympy__stats__frv__SingleFiniteDomain():
from sympy.stats.frv import SingleFiniteDomain
assert _test_args(SingleFiniteDomain(x, {1, 2})) # x can be 1 or 2
def test_sympy__stats__frv__ProductFiniteDomain():
from sympy.stats.frv import SingleFiniteDomain, ProductFiniteDomain
xd = SingleFiniteDomain(x, {1, 2})
yd = SingleFiniteDomain(y, {1, 2})
assert _test_args(ProductFiniteDomain(xd, yd))
def test_sympy__stats__frv__ConditionalFiniteDomain():
from sympy.stats.frv import SingleFiniteDomain, ConditionalFiniteDomain
xd = SingleFiniteDomain(x, {1, 2})
assert _test_args(ConditionalFiniteDomain(xd, x > 1))
def test_sympy__stats__frv__FinitePSpace():
from sympy.stats.frv import FinitePSpace, SingleFiniteDomain
xd = SingleFiniteDomain(x, {1, 2, 3, 4, 5, 6})
assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half}))
xd = SingleFiniteDomain(x, {1, 2})
assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half}))
def test_sympy__stats__frv__SingleFinitePSpace():
from sympy.stats.frv import SingleFinitePSpace
from sympy import Symbol
assert _test_args(SingleFinitePSpace(Symbol('x'), die))
def test_sympy__stats__frv__ProductFinitePSpace():
from sympy.stats.frv import SingleFinitePSpace, ProductFinitePSpace
from sympy import Symbol
xp = SingleFinitePSpace(Symbol('x'), die)
yp = SingleFinitePSpace(Symbol('y'), die)
assert _test_args(ProductFinitePSpace(xp, yp))
@SKIP("abstract class")
def test_sympy__stats__frv__SingleFiniteDistribution():
pass
@SKIP("abstract class")
def test_sympy__stats__crv__ContinuousDistribution():
pass
def test_sympy__stats__frv_types__FiniteDistributionHandmade():
from sympy.stats.frv_types import FiniteDistributionHandmade
from sympy import Dict
assert _test_args(FiniteDistributionHandmade(Dict({1: 1})))
def test_sympy__stats__crv_types__ContinuousDistributionHandmade():
from sympy.stats.crv_types import ContinuousDistributionHandmade
from sympy import Interval, Lambda
from sympy.abc import x
assert _test_args(ContinuousDistributionHandmade(Lambda(x, 2*x),
Interval(0, 1)))
def test_sympy__stats__drv_types__DiscreteDistributionHandmade():
from sympy.stats.drv_types import DiscreteDistributionHandmade
from sympy import Lambda, FiniteSet
from sympy.abc import x
assert _test_args(DiscreteDistributionHandmade(Lambda(x, Rational(1, 10)),
FiniteSet(*range(10))))
def test_sympy__stats__rv__Density():
from sympy.stats.rv import Density
from sympy.stats.crv_types import Normal
assert _test_args(Density(Normal('x', 0, 1)))
def test_sympy__stats__crv_types__ArcsinDistribution():
from sympy.stats.crv_types import ArcsinDistribution
assert _test_args(ArcsinDistribution(0, 1))
def test_sympy__stats__crv_types__BeniniDistribution():
from sympy.stats.crv_types import BeniniDistribution
assert _test_args(BeniniDistribution(1, 1, 1))
def test_sympy__stats__crv_types__BetaDistribution():
from sympy.stats.crv_types import BetaDistribution
assert _test_args(BetaDistribution(1, 1))
def test_sympy__stats__crv_types__BetaNoncentralDistribution():
from sympy.stats.crv_types import BetaNoncentralDistribution
assert _test_args(BetaNoncentralDistribution(1, 1, 1))
def test_sympy__stats__crv_types__BetaPrimeDistribution():
from sympy.stats.crv_types import BetaPrimeDistribution
assert _test_args(BetaPrimeDistribution(1, 1))
def test_sympy__stats__crv_types__BoundedParetoDistribution():
from sympy.stats.crv_types import BoundedParetoDistribution
assert _test_args(BoundedParetoDistribution(1, 1, 2))
def test_sympy__stats__crv_types__CauchyDistribution():
from sympy.stats.crv_types import CauchyDistribution
assert _test_args(CauchyDistribution(0, 1))
def test_sympy__stats__crv_types__ChiDistribution():
from sympy.stats.crv_types import ChiDistribution
assert _test_args(ChiDistribution(1))
def test_sympy__stats__crv_types__ChiNoncentralDistribution():
from sympy.stats.crv_types import ChiNoncentralDistribution
assert _test_args(ChiNoncentralDistribution(1,1))
def test_sympy__stats__crv_types__ChiSquaredDistribution():
from sympy.stats.crv_types import ChiSquaredDistribution
assert _test_args(ChiSquaredDistribution(1))
def test_sympy__stats__crv_types__DagumDistribution():
from sympy.stats.crv_types import DagumDistribution
assert _test_args(DagumDistribution(1, 1, 1))
def test_sympy__stats__crv_types__ExGaussianDistribution():
from sympy.stats.crv_types import ExGaussianDistribution
assert _test_args(ExGaussianDistribution(1, 1, 1))
def test_sympy__stats__crv_types__ExponentialDistribution():
from sympy.stats.crv_types import ExponentialDistribution
assert _test_args(ExponentialDistribution(1))
def test_sympy__stats__crv_types__ExponentialPowerDistribution():
from sympy.stats.crv_types import ExponentialPowerDistribution
assert _test_args(ExponentialPowerDistribution(0, 1, 1))
def test_sympy__stats__crv_types__FDistributionDistribution():
from sympy.stats.crv_types import FDistributionDistribution
assert _test_args(FDistributionDistribution(1, 1))
def test_sympy__stats__crv_types__FisherZDistribution():
from sympy.stats.crv_types import FisherZDistribution
assert _test_args(FisherZDistribution(1, 1))
def test_sympy__stats__crv_types__FrechetDistribution():
from sympy.stats.crv_types import FrechetDistribution
assert _test_args(FrechetDistribution(1, 1, 1))
def test_sympy__stats__crv_types__GammaInverseDistribution():
from sympy.stats.crv_types import GammaInverseDistribution
assert _test_args(GammaInverseDistribution(1, 1))
def test_sympy__stats__crv_types__GammaDistribution():
from sympy.stats.crv_types import GammaDistribution
assert _test_args(GammaDistribution(1, 1))
def test_sympy__stats__crv_types__GumbelDistribution():
from sympy.stats.crv_types import GumbelDistribution
assert _test_args(GumbelDistribution(1, 1, False))
def test_sympy__stats__crv_types__GompertzDistribution():
from sympy.stats.crv_types import GompertzDistribution
assert _test_args(GompertzDistribution(1, 1))
def test_sympy__stats__crv_types__KumaraswamyDistribution():
from sympy.stats.crv_types import KumaraswamyDistribution
assert _test_args(KumaraswamyDistribution(1, 1))
def test_sympy__stats__crv_types__LaplaceDistribution():
from sympy.stats.crv_types import LaplaceDistribution
assert _test_args(LaplaceDistribution(0, 1))
def test_sympy__stats__crv_types__LevyDistribution():
from sympy.stats.crv_types import LevyDistribution
assert _test_args(LevyDistribution(0, 1))
def test_sympy__stats__crv_types__LogCauchyDistribution():
from sympy.stats.crv_types import LogCauchyDistribution
assert _test_args(LogCauchyDistribution(0, 1))
def test_sympy__stats__crv_types__LogisticDistribution():
from sympy.stats.crv_types import LogisticDistribution
assert _test_args(LogisticDistribution(0, 1))
def test_sympy__stats__crv_types__LogLogisticDistribution():
from sympy.stats.crv_types import LogLogisticDistribution
assert _test_args(LogLogisticDistribution(1, 1))
def test_sympy__stats__crv_types__LogitNormalDistribution():
from sympy.stats.crv_types import LogitNormalDistribution
assert _test_args(LogitNormalDistribution(0, 1))
def test_sympy__stats__crv_types__LogNormalDistribution():
from sympy.stats.crv_types import LogNormalDistribution
assert _test_args(LogNormalDistribution(0, 1))
def test_sympy__stats__crv_types__LomaxDistribution():
from sympy.stats.crv_types import LomaxDistribution
assert _test_args(LomaxDistribution(1, 2))
def test_sympy__stats__crv_types__MaxwellDistribution():
from sympy.stats.crv_types import MaxwellDistribution
assert _test_args(MaxwellDistribution(1))
def test_sympy__stats__crv_types__MoyalDistribution():
from sympy.stats.crv_types import MoyalDistribution
assert _test_args(MoyalDistribution(1,2))
def test_sympy__stats__crv_types__NakagamiDistribution():
from sympy.stats.crv_types import NakagamiDistribution
assert _test_args(NakagamiDistribution(1, 1))
def test_sympy__stats__crv_types__NormalDistribution():
from sympy.stats.crv_types import NormalDistribution
assert _test_args(NormalDistribution(0, 1))
def test_sympy__stats__crv_types__GaussianInverseDistribution():
from sympy.stats.crv_types import GaussianInverseDistribution
assert _test_args(GaussianInverseDistribution(1, 1))
def test_sympy__stats__crv_types__ParetoDistribution():
from sympy.stats.crv_types import ParetoDistribution
assert _test_args(ParetoDistribution(1, 1))
def test_sympy__stats__crv_types__PowerFunctionDistribution():
from sympy.stats.crv_types import PowerFunctionDistribution
assert _test_args(PowerFunctionDistribution(2,0,1))
def test_sympy__stats__crv_types__QuadraticUDistribution():
from sympy.stats.crv_types import QuadraticUDistribution
assert _test_args(QuadraticUDistribution(1, 2))
def test_sympy__stats__crv_types__RaisedCosineDistribution():
from sympy.stats.crv_types import RaisedCosineDistribution
assert _test_args(RaisedCosineDistribution(1, 1))
def test_sympy__stats__crv_types__RayleighDistribution():
from sympy.stats.crv_types import RayleighDistribution
assert _test_args(RayleighDistribution(1))
def test_sympy__stats__crv_types__ReciprocalDistribution():
from sympy.stats.crv_types import ReciprocalDistribution
assert _test_args(ReciprocalDistribution(5, 30))
def test_sympy__stats__crv_types__ShiftedGompertzDistribution():
from sympy.stats.crv_types import ShiftedGompertzDistribution
assert _test_args(ShiftedGompertzDistribution(1, 1))
def test_sympy__stats__crv_types__StudentTDistribution():
from sympy.stats.crv_types import StudentTDistribution
assert _test_args(StudentTDistribution(1))
def test_sympy__stats__crv_types__TrapezoidalDistribution():
from sympy.stats.crv_types import TrapezoidalDistribution
assert _test_args(TrapezoidalDistribution(1, 2, 3, 4))
def test_sympy__stats__crv_types__TriangularDistribution():
from sympy.stats.crv_types import TriangularDistribution
assert _test_args(TriangularDistribution(-1, 0, 1))
def test_sympy__stats__crv_types__UniformDistribution():
from sympy.stats.crv_types import UniformDistribution
assert _test_args(UniformDistribution(0, 1))
def test_sympy__stats__crv_types__UniformSumDistribution():
from sympy.stats.crv_types import UniformSumDistribution
assert _test_args(UniformSumDistribution(1))
def test_sympy__stats__crv_types__VonMisesDistribution():
from sympy.stats.crv_types import VonMisesDistribution
assert _test_args(VonMisesDistribution(1, 1))
def test_sympy__stats__crv_types__WeibullDistribution():
from sympy.stats.crv_types import WeibullDistribution
assert _test_args(WeibullDistribution(1, 1))
def test_sympy__stats__crv_types__WignerSemicircleDistribution():
from sympy.stats.crv_types import WignerSemicircleDistribution
assert _test_args(WignerSemicircleDistribution(1))
def test_sympy__stats__drv_types__GeometricDistribution():
from sympy.stats.drv_types import GeometricDistribution
assert _test_args(GeometricDistribution(.5))
def test_sympy__stats__drv_types__HermiteDistribution():
from sympy.stats.drv_types import HermiteDistribution
assert _test_args(HermiteDistribution(1, 2))
def test_sympy__stats__drv_types__LogarithmicDistribution():
from sympy.stats.drv_types import LogarithmicDistribution
assert _test_args(LogarithmicDistribution(.5))
def test_sympy__stats__drv_types__NegativeBinomialDistribution():
from sympy.stats.drv_types import NegativeBinomialDistribution
assert _test_args(NegativeBinomialDistribution(.5, .5))
def test_sympy__stats__drv_types__FlorySchulzDistribution():
from sympy.stats.drv_types import FlorySchulzDistribution
assert _test_args(FlorySchulzDistribution(.5))
def test_sympy__stats__drv_types__PoissonDistribution():
from sympy.stats.drv_types import PoissonDistribution
assert _test_args(PoissonDistribution(1))
def test_sympy__stats__drv_types__SkellamDistribution():
from sympy.stats.drv_types import SkellamDistribution
assert _test_args(SkellamDistribution(1, 1))
def test_sympy__stats__drv_types__YuleSimonDistribution():
from sympy.stats.drv_types import YuleSimonDistribution
assert _test_args(YuleSimonDistribution(.5))
def test_sympy__stats__drv_types__ZetaDistribution():
from sympy.stats.drv_types import ZetaDistribution
assert _test_args(ZetaDistribution(1.5))
def test_sympy__stats__joint_rv__JointDistribution():
from sympy.stats.joint_rv import JointDistribution
assert _test_args(JointDistribution(1, 2, 3, 4))
def test_sympy__stats__joint_rv_types__MultivariateNormalDistribution():
from sympy.stats.joint_rv_types import MultivariateNormalDistribution
assert _test_args(
MultivariateNormalDistribution([0, 1], [[1, 0],[0, 1]]))
def test_sympy__stats__joint_rv_types__MultivariateLaplaceDistribution():
from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution
assert _test_args(MultivariateLaplaceDistribution([0, 1], [[1, 0],[0, 1]]))
def test_sympy__stats__joint_rv_types__MultivariateTDistribution():
from sympy.stats.joint_rv_types import MultivariateTDistribution
assert _test_args(MultivariateTDistribution([0, 1], [[1, 0],[0, 1]], 1))
def test_sympy__stats__joint_rv_types__NormalGammaDistribution():
from sympy.stats.joint_rv_types import NormalGammaDistribution
assert _test_args(NormalGammaDistribution(1, 2, 3, 4))
def test_sympy__stats__joint_rv_types__GeneralizedMultivariateLogGammaDistribution():
from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaDistribution
v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4])
assert _test_args(GeneralizedMultivariateLogGammaDistribution(S.Half, v, l, mu))
def test_sympy__stats__joint_rv_types__MultivariateBetaDistribution():
from sympy.stats.joint_rv_types import MultivariateBetaDistribution
assert _test_args(MultivariateBetaDistribution([1, 2, 3]))
def test_sympy__stats__joint_rv_types__MultivariateEwensDistribution():
from sympy.stats.joint_rv_types import MultivariateEwensDistribution
assert _test_args(MultivariateEwensDistribution(5, 1))
def test_sympy__stats__joint_rv_types__MultinomialDistribution():
from sympy.stats.joint_rv_types import MultinomialDistribution
assert _test_args(MultinomialDistribution(5, [0.5, 0.1, 0.3]))
def test_sympy__stats__joint_rv_types__NegativeMultinomialDistribution():
from sympy.stats.joint_rv_types import NegativeMultinomialDistribution
assert _test_args(NegativeMultinomialDistribution(5, [0.5, 0.1, 0.3]))
def test_sympy__stats__rv__RandomIndexedSymbol():
from sympy.stats.rv import RandomIndexedSymbol, pspace
from sympy.stats.stochastic_process_types import DiscreteMarkovChain
X = DiscreteMarkovChain("X")
assert _test_args(RandomIndexedSymbol(X[0].symbol, pspace(X[0])))
def test_sympy__stats__rv__RandomMatrixSymbol():
from sympy.stats.rv import RandomMatrixSymbol
from sympy.stats.random_matrix import RandomMatrixPSpace
pspace = RandomMatrixPSpace('P')
assert _test_args(RandomMatrixSymbol('M', 3, 3, pspace))
def test_sympy__stats__stochastic_process__StochasticPSpace():
from sympy.stats.stochastic_process import StochasticPSpace
from sympy.stats.stochastic_process_types import StochasticProcess
from sympy.stats.frv_types import BernoulliDistribution
assert _test_args(StochasticPSpace("Y", StochasticProcess("Y", [1, 2, 3]), BernoulliDistribution(S.Half, 1, 0)))
def test_sympy__stats__stochastic_process_types__StochasticProcess():
from sympy.stats.stochastic_process_types import StochasticProcess
assert _test_args(StochasticProcess("Y", [1, 2, 3]))
def test_sympy__stats__stochastic_process_types__MarkovProcess():
from sympy.stats.stochastic_process_types import MarkovProcess
assert _test_args(MarkovProcess("Y", [1, 2, 3]))
def test_sympy__stats__stochastic_process_types__DiscreteTimeStochasticProcess():
from sympy.stats.stochastic_process_types import DiscreteTimeStochasticProcess
assert _test_args(DiscreteTimeStochasticProcess("Y", [1, 2, 3]))
def test_sympy__stats__stochastic_process_types__ContinuousTimeStochasticProcess():
from sympy.stats.stochastic_process_types import ContinuousTimeStochasticProcess
assert _test_args(ContinuousTimeStochasticProcess("Y", [1, 2, 3]))
def test_sympy__stats__stochastic_process_types__TransitionMatrixOf():
from sympy.stats.stochastic_process_types import TransitionMatrixOf, DiscreteMarkovChain
from sympy import MatrixSymbol
DMC = DiscreteMarkovChain("Y")
assert _test_args(TransitionMatrixOf(DMC, MatrixSymbol('T', 3, 3)))
def test_sympy__stats__stochastic_process_types__GeneratorMatrixOf():
from sympy.stats.stochastic_process_types import GeneratorMatrixOf, ContinuousMarkovChain
from sympy import MatrixSymbol
DMC = ContinuousMarkovChain("Y")
assert _test_args(GeneratorMatrixOf(DMC, MatrixSymbol('T', 3, 3)))
def test_sympy__stats__stochastic_process_types__StochasticStateSpaceOf():
from sympy.stats.stochastic_process_types import StochasticStateSpaceOf, DiscreteMarkovChain
DMC = DiscreteMarkovChain("Y")
assert _test_args(StochasticStateSpaceOf(DMC, [0, 1, 2]))
def test_sympy__stats__stochastic_process_types__DiscreteMarkovChain():
from sympy.stats.stochastic_process_types import DiscreteMarkovChain
from sympy import MatrixSymbol
assert _test_args(DiscreteMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3)))
def test_sympy__stats__stochastic_process_types__ContinuousMarkovChain():
from sympy.stats.stochastic_process_types import ContinuousMarkovChain
from sympy import MatrixSymbol
assert _test_args(ContinuousMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3)))
def test_sympy__stats__stochastic_process_types__BernoulliProcess():
from sympy.stats.stochastic_process_types import BernoulliProcess
assert _test_args(BernoulliProcess("B", 0.5, 1, 0))
def test_sympy__stats__stochastic_process_types__CountingProcess():
from sympy.stats.stochastic_process_types import CountingProcess
assert _test_args(CountingProcess("C"))
def test_sympy__stats__stochastic_process_types__PoissonProcess():
from sympy.stats.stochastic_process_types import PoissonProcess
assert _test_args(PoissonProcess("X", 2))
def test_sympy__stats__stochastic_process_types__WienerProcess():
from sympy.stats.stochastic_process_types import WienerProcess
assert _test_args(WienerProcess("X"))
def test_sympy__stats__stochastic_process_types__GammaProcess():
from sympy.stats.stochastic_process_types import GammaProcess
assert _test_args(GammaProcess("X", 1, 2))
def test_sympy__stats__random_matrix__RandomMatrixPSpace():
from sympy.stats.random_matrix import RandomMatrixPSpace
from sympy.stats.random_matrix_models import RandomMatrixEnsembleModel
model = RandomMatrixEnsembleModel('R', 3)
assert _test_args(RandomMatrixPSpace('P', model=model))
def test_sympy__stats__random_matrix_models__RandomMatrixEnsembleModel():
from sympy.stats.random_matrix_models import RandomMatrixEnsembleModel
assert _test_args(RandomMatrixEnsembleModel('R', 3))
def test_sympy__stats__random_matrix_models__GaussianEnsembleModel():
from sympy.stats.random_matrix_models import GaussianEnsembleModel
assert _test_args(GaussianEnsembleModel('G', 3))
def test_sympy__stats__random_matrix_models__GaussianUnitaryEnsembleModel():
from sympy.stats.random_matrix_models import GaussianUnitaryEnsembleModel
assert _test_args(GaussianUnitaryEnsembleModel('U', 3))
def test_sympy__stats__random_matrix_models__GaussianOrthogonalEnsembleModel():
from sympy.stats.random_matrix_models import GaussianOrthogonalEnsembleModel
assert _test_args(GaussianOrthogonalEnsembleModel('U', 3))
def test_sympy__stats__random_matrix_models__GaussianSymplecticEnsembleModel():
from sympy.stats.random_matrix_models import GaussianSymplecticEnsembleModel
assert _test_args(GaussianSymplecticEnsembleModel('U', 3))
def test_sympy__stats__random_matrix_models__CircularEnsembleModel():
from sympy.stats.random_matrix_models import CircularEnsembleModel
assert _test_args(CircularEnsembleModel('C', 3))
def test_sympy__stats__random_matrix_models__CircularUnitaryEnsembleModel():
from sympy.stats.random_matrix_models import CircularUnitaryEnsembleModel
assert _test_args(CircularUnitaryEnsembleModel('U', 3))
def test_sympy__stats__random_matrix_models__CircularOrthogonalEnsembleModel():
from sympy.stats.random_matrix_models import CircularOrthogonalEnsembleModel
assert _test_args(CircularOrthogonalEnsembleModel('O', 3))
def test_sympy__stats__random_matrix_models__CircularSymplecticEnsembleModel():
from sympy.stats.random_matrix_models import CircularSymplecticEnsembleModel
assert _test_args(CircularSymplecticEnsembleModel('S', 3))
def test_sympy__stats__symbolic_multivariate_probability__ExpectationMatrix():
from sympy.stats import ExpectationMatrix
from sympy.stats.rv import RandomMatrixSymbol
assert _test_args(ExpectationMatrix(RandomMatrixSymbol('R', 2, 1)))
def test_sympy__stats__symbolic_multivariate_probability__VarianceMatrix():
from sympy.stats import VarianceMatrix
from sympy.stats.rv import RandomMatrixSymbol
assert _test_args(VarianceMatrix(RandomMatrixSymbol('R', 3, 1)))
def test_sympy__stats__symbolic_multivariate_probability__CrossCovarianceMatrix():
from sympy.stats import CrossCovarianceMatrix
from sympy.stats.rv import RandomMatrixSymbol
assert _test_args(CrossCovarianceMatrix(RandomMatrixSymbol('R', 3, 1),
RandomMatrixSymbol('X', 3, 1)))
def test_sympy__stats__matrix_distributions__MatrixPSpace():
from sympy.stats.matrix_distributions import MatrixDistribution, MatrixPSpace
from sympy import Matrix
M = MatrixDistribution(1, Matrix([[1, 0], [0, 1]]))
assert _test_args(MatrixPSpace('M', M, 2, 2))
def test_sympy__stats__matrix_distributions__MatrixDistribution():
from sympy.stats.matrix_distributions import MatrixDistribution
from sympy import Matrix
assert _test_args(MatrixDistribution(1, Matrix([[1, 0], [0, 1]])))
def test_sympy__stats__matrix_distributions__MatrixGammaDistribution():
from sympy.stats.matrix_distributions import MatrixGammaDistribution
from sympy import Matrix
assert _test_args(MatrixGammaDistribution(3, 4, Matrix([[1, 0], [0, 1]])))
def test_sympy__stats__matrix_distributions__WishartDistribution():
from sympy.stats.matrix_distributions import WishartDistribution
from sympy import Matrix
assert _test_args(WishartDistribution(3, Matrix([[1, 0], [0, 1]])))
def test_sympy__stats__matrix_distributions__MatrixNormalDistribution():
from sympy.stats.matrix_distributions import MatrixNormalDistribution
from sympy import MatrixSymbol
L = MatrixSymbol('L', 1, 2)
S1 = MatrixSymbol('S1', 1, 1)
S2 = MatrixSymbol('S2', 2, 2)
assert _test_args(MatrixNormalDistribution(L, S1, S2))
def test_sympy__stats__matrix_distributions__MatrixStudentTDistribution():
from sympy.stats.matrix_distributions import MatrixStudentTDistribution
from sympy import MatrixSymbol
v = symbols('v', positive=True)
Omega = MatrixSymbol('Omega', 3, 3)
Sigma = MatrixSymbol('Sigma', 1, 1)
Location = MatrixSymbol('Location', 1, 3)
assert _test_args(MatrixStudentTDistribution(v, Location, Omega, Sigma))
def test_sympy__utilities__matchpy_connector__WildDot():
from sympy.utilities.matchpy_connector import WildDot
assert _test_args(WildDot("w_"))
def test_sympy__utilities__matchpy_connector__WildPlus():
from sympy.utilities.matchpy_connector import WildPlus
assert _test_args(WildPlus("w__"))
def test_sympy__utilities__matchpy_connector__WildStar():
from sympy.utilities.matchpy_connector import WildStar
assert _test_args(WildStar("w___"))
def test_sympy__core__symbol__Str():
from sympy.core.symbol import Str
assert _test_args(Str('t'))
def test_sympy__core__symbol__Dummy():
from sympy.core.symbol import Dummy
assert _test_args(Dummy('t'))
def test_sympy__core__symbol__Symbol():
from sympy.core.symbol import Symbol
assert _test_args(Symbol('t'))
def test_sympy__core__symbol__Wild():
from sympy.core.symbol import Wild
assert _test_args(Wild('x', exclude=[x]))
@SKIP("abstract class")
def test_sympy__functions__combinatorial__factorials__CombinatorialFunction():
pass
def test_sympy__functions__combinatorial__factorials__FallingFactorial():
from sympy.functions.combinatorial.factorials import FallingFactorial
assert _test_args(FallingFactorial(2, x))
def test_sympy__functions__combinatorial__factorials__MultiFactorial():
from sympy.functions.combinatorial.factorials import MultiFactorial
assert _test_args(MultiFactorial(x))
def test_sympy__functions__combinatorial__factorials__RisingFactorial():
from sympy.functions.combinatorial.factorials import RisingFactorial
assert _test_args(RisingFactorial(2, x))
def test_sympy__functions__combinatorial__factorials__binomial():
from sympy.functions.combinatorial.factorials import binomial
assert _test_args(binomial(2, x))
def test_sympy__functions__combinatorial__factorials__subfactorial():
from sympy.functions.combinatorial.factorials import subfactorial
assert _test_args(subfactorial(1))
def test_sympy__functions__combinatorial__factorials__factorial():
from sympy.functions.combinatorial.factorials import factorial
assert _test_args(factorial(x))
def test_sympy__functions__combinatorial__factorials__factorial2():
from sympy.functions.combinatorial.factorials import factorial2
assert _test_args(factorial2(x))
def test_sympy__functions__combinatorial__numbers__bell():
from sympy.functions.combinatorial.numbers import bell
assert _test_args(bell(x, y))
def test_sympy__functions__combinatorial__numbers__bernoulli():
from sympy.functions.combinatorial.numbers import bernoulli
assert _test_args(bernoulli(x))
def test_sympy__functions__combinatorial__numbers__catalan():
from sympy.functions.combinatorial.numbers import catalan
assert _test_args(catalan(x))
def test_sympy__functions__combinatorial__numbers__genocchi():
from sympy.functions.combinatorial.numbers import genocchi
assert _test_args(genocchi(x))
def test_sympy__functions__combinatorial__numbers__euler():
from sympy.functions.combinatorial.numbers import euler
assert _test_args(euler(x))
def test_sympy__functions__combinatorial__numbers__carmichael():
from sympy.functions.combinatorial.numbers import carmichael
assert _test_args(carmichael(x))
def test_sympy__functions__combinatorial__numbers__motzkin():
from sympy.functions.combinatorial.numbers import motzkin
assert _test_args(motzkin(5))
def test_sympy__functions__combinatorial__numbers__fibonacci():
from sympy.functions.combinatorial.numbers import fibonacci
assert _test_args(fibonacci(x))
def test_sympy__functions__combinatorial__numbers__tribonacci():
from sympy.functions.combinatorial.numbers import tribonacci
assert _test_args(tribonacci(x))
def test_sympy__functions__combinatorial__numbers__harmonic():
from sympy.functions.combinatorial.numbers import harmonic
assert _test_args(harmonic(x, 2))
def test_sympy__functions__combinatorial__numbers__lucas():
from sympy.functions.combinatorial.numbers import lucas
assert _test_args(lucas(x))
def test_sympy__functions__combinatorial__numbers__partition():
from sympy.core.symbol import Symbol
from sympy.functions.combinatorial.numbers import partition
assert _test_args(partition(Symbol('a', integer=True)))
def test_sympy__functions__elementary__complexes__Abs():
from sympy.functions.elementary.complexes import Abs
assert _test_args(Abs(x))
def test_sympy__functions__elementary__complexes__adjoint():
from sympy.functions.elementary.complexes import adjoint
assert _test_args(adjoint(x))
def test_sympy__functions__elementary__complexes__arg():
from sympy.functions.elementary.complexes import arg
assert _test_args(arg(x))
def test_sympy__functions__elementary__complexes__conjugate():
from sympy.functions.elementary.complexes import conjugate
assert _test_args(conjugate(x))
def test_sympy__functions__elementary__complexes__im():
from sympy.functions.elementary.complexes import im
assert _test_args(im(x))
def test_sympy__functions__elementary__complexes__re():
from sympy.functions.elementary.complexes import re
assert _test_args(re(x))
def test_sympy__functions__elementary__complexes__sign():
from sympy.functions.elementary.complexes import sign
assert _test_args(sign(x))
def test_sympy__functions__elementary__complexes__polar_lift():
from sympy.functions.elementary.complexes import polar_lift
assert _test_args(polar_lift(x))
def test_sympy__functions__elementary__complexes__periodic_argument():
from sympy.functions.elementary.complexes import periodic_argument
assert _test_args(periodic_argument(x, y))
def test_sympy__functions__elementary__complexes__principal_branch():
from sympy.functions.elementary.complexes import principal_branch
assert _test_args(principal_branch(x, y))
def test_sympy__functions__elementary__complexes__transpose():
from sympy.functions.elementary.complexes import transpose
assert _test_args(transpose(x))
def test_sympy__functions__elementary__exponential__LambertW():
from sympy.functions.elementary.exponential import LambertW
assert _test_args(LambertW(2))
@SKIP("abstract class")
def test_sympy__functions__elementary__exponential__ExpBase():
pass
def test_sympy__functions__elementary__exponential__exp():
from sympy.functions.elementary.exponential import exp
assert _test_args(exp(2))
def test_sympy__functions__elementary__exponential__exp_polar():
from sympy.functions.elementary.exponential import exp_polar
assert _test_args(exp_polar(2))
def test_sympy__functions__elementary__exponential__log():
from sympy.functions.elementary.exponential import log
assert _test_args(log(2))
@SKIP("abstract class")
def test_sympy__functions__elementary__hyperbolic__HyperbolicFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__hyperbolic__ReciprocalHyperbolicFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__hyperbolic__InverseHyperbolicFunction():
pass
def test_sympy__functions__elementary__hyperbolic__acosh():
from sympy.functions.elementary.hyperbolic import acosh
assert _test_args(acosh(2))
def test_sympy__functions__elementary__hyperbolic__acoth():
from sympy.functions.elementary.hyperbolic import acoth
assert _test_args(acoth(2))
def test_sympy__functions__elementary__hyperbolic__asinh():
from sympy.functions.elementary.hyperbolic import asinh
assert _test_args(asinh(2))
def test_sympy__functions__elementary__hyperbolic__atanh():
from sympy.functions.elementary.hyperbolic import atanh
assert _test_args(atanh(2))
def test_sympy__functions__elementary__hyperbolic__asech():
from sympy.functions.elementary.hyperbolic import asech
assert _test_args(asech(2))
def test_sympy__functions__elementary__hyperbolic__acsch():
from sympy.functions.elementary.hyperbolic import acsch
assert _test_args(acsch(2))
def test_sympy__functions__elementary__hyperbolic__cosh():
from sympy.functions.elementary.hyperbolic import cosh
assert _test_args(cosh(2))
def test_sympy__functions__elementary__hyperbolic__coth():
from sympy.functions.elementary.hyperbolic import coth
assert _test_args(coth(2))
def test_sympy__functions__elementary__hyperbolic__csch():
from sympy.functions.elementary.hyperbolic import csch
assert _test_args(csch(2))
def test_sympy__functions__elementary__hyperbolic__sech():
from sympy.functions.elementary.hyperbolic import sech
assert _test_args(sech(2))
def test_sympy__functions__elementary__hyperbolic__sinh():
from sympy.functions.elementary.hyperbolic import sinh
assert _test_args(sinh(2))
def test_sympy__functions__elementary__hyperbolic__tanh():
from sympy.functions.elementary.hyperbolic import tanh
assert _test_args(tanh(2))
@SKIP("does this work at all?")
def test_sympy__functions__elementary__integers__RoundFunction():
from sympy.functions.elementary.integers import RoundFunction
assert _test_args(RoundFunction())
def test_sympy__functions__elementary__integers__ceiling():
from sympy.functions.elementary.integers import ceiling
assert _test_args(ceiling(x))
def test_sympy__functions__elementary__integers__floor():
from sympy.functions.elementary.integers import floor
assert _test_args(floor(x))
def test_sympy__functions__elementary__integers__frac():
from sympy.functions.elementary.integers import frac
assert _test_args(frac(x))
def test_sympy__functions__elementary__miscellaneous__IdentityFunction():
from sympy.functions.elementary.miscellaneous import IdentityFunction
assert _test_args(IdentityFunction())
def test_sympy__functions__elementary__miscellaneous__Max():
from sympy.functions.elementary.miscellaneous import Max
assert _test_args(Max(x, 2))
def test_sympy__functions__elementary__miscellaneous__Min():
from sympy.functions.elementary.miscellaneous import Min
assert _test_args(Min(x, 2))
@SKIP("abstract class")
def test_sympy__functions__elementary__miscellaneous__MinMaxBase():
pass
def test_sympy__functions__elementary__piecewise__ExprCondPair():
from sympy.functions.elementary.piecewise import ExprCondPair
assert _test_args(ExprCondPair(1, True))
def test_sympy__functions__elementary__piecewise__Piecewise():
from sympy.functions.elementary.piecewise import Piecewise
assert _test_args(Piecewise((1, x >= 0), (0, True)))
@SKIP("abstract class")
def test_sympy__functions__elementary__trigonometric__TrigonometricFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__trigonometric__ReciprocalTrigonometricFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__trigonometric__InverseTrigonometricFunction():
pass
def test_sympy__functions__elementary__trigonometric__acos():
from sympy.functions.elementary.trigonometric import acos
assert _test_args(acos(2))
def test_sympy__functions__elementary__trigonometric__acot():
from sympy.functions.elementary.trigonometric import acot
assert _test_args(acot(2))
def test_sympy__functions__elementary__trigonometric__asin():
from sympy.functions.elementary.trigonometric import asin
assert _test_args(asin(2))
def test_sympy__functions__elementary__trigonometric__asec():
from sympy.functions.elementary.trigonometric import asec
assert _test_args(asec(2))
def test_sympy__functions__elementary__trigonometric__acsc():
from sympy.functions.elementary.trigonometric import acsc
assert _test_args(acsc(2))
def test_sympy__functions__elementary__trigonometric__atan():
from sympy.functions.elementary.trigonometric import atan
assert _test_args(atan(2))
def test_sympy__functions__elementary__trigonometric__atan2():
from sympy.functions.elementary.trigonometric import atan2
assert _test_args(atan2(2, 3))
def test_sympy__functions__elementary__trigonometric__cos():
from sympy.functions.elementary.trigonometric import cos
assert _test_args(cos(2))
def test_sympy__functions__elementary__trigonometric__csc():
from sympy.functions.elementary.trigonometric import csc
assert _test_args(csc(2))
def test_sympy__functions__elementary__trigonometric__cot():
from sympy.functions.elementary.trigonometric import cot
assert _test_args(cot(2))
def test_sympy__functions__elementary__trigonometric__sin():
assert _test_args(sin(2))
def test_sympy__functions__elementary__trigonometric__sinc():
from sympy.functions.elementary.trigonometric import sinc
assert _test_args(sinc(2))
def test_sympy__functions__elementary__trigonometric__sec():
from sympy.functions.elementary.trigonometric import sec
assert _test_args(sec(2))
def test_sympy__functions__elementary__trigonometric__tan():
from sympy.functions.elementary.trigonometric import tan
assert _test_args(tan(2))
@SKIP("abstract class")
def test_sympy__functions__special__bessel__BesselBase():
pass
@SKIP("abstract class")
def test_sympy__functions__special__bessel__SphericalBesselBase():
pass
@SKIP("abstract class")
def test_sympy__functions__special__bessel__SphericalHankelBase():
pass
def test_sympy__functions__special__bessel__besseli():
from sympy.functions.special.bessel import besseli
assert _test_args(besseli(x, 1))
def test_sympy__functions__special__bessel__besselj():
from sympy.functions.special.bessel import besselj
assert _test_args(besselj(x, 1))
def test_sympy__functions__special__bessel__besselk():
from sympy.functions.special.bessel import besselk
assert _test_args(besselk(x, 1))
def test_sympy__functions__special__bessel__bessely():
from sympy.functions.special.bessel import bessely
assert _test_args(bessely(x, 1))
def test_sympy__functions__special__bessel__hankel1():
from sympy.functions.special.bessel import hankel1
assert _test_args(hankel1(x, 1))
def test_sympy__functions__special__bessel__hankel2():
from sympy.functions.special.bessel import hankel2
assert _test_args(hankel2(x, 1))
def test_sympy__functions__special__bessel__jn():
from sympy.functions.special.bessel import jn
assert _test_args(jn(0, x))
def test_sympy__functions__special__bessel__yn():
from sympy.functions.special.bessel import yn
assert _test_args(yn(0, x))
def test_sympy__functions__special__bessel__hn1():
from sympy.functions.special.bessel import hn1
assert _test_args(hn1(0, x))
def test_sympy__functions__special__bessel__hn2():
from sympy.functions.special.bessel import hn2
assert _test_args(hn2(0, x))
def test_sympy__functions__special__bessel__AiryBase():
pass
def test_sympy__functions__special__bessel__airyai():
from sympy.functions.special.bessel import airyai
assert _test_args(airyai(2))
def test_sympy__functions__special__bessel__airybi():
from sympy.functions.special.bessel import airybi
assert _test_args(airybi(2))
def test_sympy__functions__special__bessel__airyaiprime():
from sympy.functions.special.bessel import airyaiprime
assert _test_args(airyaiprime(2))
def test_sympy__functions__special__bessel__airybiprime():
from sympy.functions.special.bessel import airybiprime
assert _test_args(airybiprime(2))
def test_sympy__functions__special__bessel__marcumq():
from sympy.functions.special.bessel import marcumq
assert _test_args(marcumq(x, y, z))
def test_sympy__functions__special__elliptic_integrals__elliptic_k():
from sympy.functions.special.elliptic_integrals import elliptic_k as K
assert _test_args(K(x))
def test_sympy__functions__special__elliptic_integrals__elliptic_f():
from sympy.functions.special.elliptic_integrals import elliptic_f as F
assert _test_args(F(x, y))
def test_sympy__functions__special__elliptic_integrals__elliptic_e():
from sympy.functions.special.elliptic_integrals import elliptic_e as E
assert _test_args(E(x))
assert _test_args(E(x, y))
def test_sympy__functions__special__elliptic_integrals__elliptic_pi():
from sympy.functions.special.elliptic_integrals import elliptic_pi as P
assert _test_args(P(x, y))
assert _test_args(P(x, y, z))
def test_sympy__functions__special__delta_functions__DiracDelta():
from sympy.functions.special.delta_functions import DiracDelta
assert _test_args(DiracDelta(x, 1))
def test_sympy__functions__special__singularity_functions__SingularityFunction():
from sympy.functions.special.singularity_functions import SingularityFunction
assert _test_args(SingularityFunction(x, y, z))
def test_sympy__functions__special__delta_functions__Heaviside():
from sympy.functions.special.delta_functions import Heaviside
assert _test_args(Heaviside(x))
def test_sympy__functions__special__error_functions__erf():
from sympy.functions.special.error_functions import erf
assert _test_args(erf(2))
def test_sympy__functions__special__error_functions__erfc():
from sympy.functions.special.error_functions import erfc
assert _test_args(erfc(2))
def test_sympy__functions__special__error_functions__erfi():
from sympy.functions.special.error_functions import erfi
assert _test_args(erfi(2))
def test_sympy__functions__special__error_functions__erf2():
from sympy.functions.special.error_functions import erf2
assert _test_args(erf2(2, 3))
def test_sympy__functions__special__error_functions__erfinv():
from sympy.functions.special.error_functions import erfinv
assert _test_args(erfinv(2))
def test_sympy__functions__special__error_functions__erfcinv():
from sympy.functions.special.error_functions import erfcinv
assert _test_args(erfcinv(2))
def test_sympy__functions__special__error_functions__erf2inv():
from sympy.functions.special.error_functions import erf2inv
assert _test_args(erf2inv(2, 3))
@SKIP("abstract class")
def test_sympy__functions__special__error_functions__FresnelIntegral():
pass
def test_sympy__functions__special__error_functions__fresnels():
from sympy.functions.special.error_functions import fresnels
assert _test_args(fresnels(2))
def test_sympy__functions__special__error_functions__fresnelc():
from sympy.functions.special.error_functions import fresnelc
assert _test_args(fresnelc(2))
def test_sympy__functions__special__error_functions__erfs():
from sympy.functions.special.error_functions import _erfs
assert _test_args(_erfs(2))
def test_sympy__functions__special__error_functions__Ei():
from sympy.functions.special.error_functions import Ei
assert _test_args(Ei(2))
def test_sympy__functions__special__error_functions__li():
from sympy.functions.special.error_functions import li
assert _test_args(li(2))
def test_sympy__functions__special__error_functions__Li():
from sympy.functions.special.error_functions import Li
assert _test_args(Li(2))
@SKIP("abstract class")
def test_sympy__functions__special__error_functions__TrigonometricIntegral():
pass
def test_sympy__functions__special__error_functions__Si():
from sympy.functions.special.error_functions import Si
assert _test_args(Si(2))
def test_sympy__functions__special__error_functions__Ci():
from sympy.functions.special.error_functions import Ci
assert _test_args(Ci(2))
def test_sympy__functions__special__error_functions__Shi():
from sympy.functions.special.error_functions import Shi
assert _test_args(Shi(2))
def test_sympy__functions__special__error_functions__Chi():
from sympy.functions.special.error_functions import Chi
assert _test_args(Chi(2))
def test_sympy__functions__special__error_functions__expint():
from sympy.functions.special.error_functions import expint
assert _test_args(expint(y, x))
def test_sympy__functions__special__gamma_functions__gamma():
from sympy.functions.special.gamma_functions import gamma
assert _test_args(gamma(x))
def test_sympy__functions__special__gamma_functions__loggamma():
from sympy.functions.special.gamma_functions import loggamma
assert _test_args(loggamma(2))
def test_sympy__functions__special__gamma_functions__lowergamma():
from sympy.functions.special.gamma_functions import lowergamma
assert _test_args(lowergamma(x, 2))
def test_sympy__functions__special__gamma_functions__polygamma():
from sympy.functions.special.gamma_functions import polygamma
assert _test_args(polygamma(x, 2))
def test_sympy__functions__special__gamma_functions__digamma():
from sympy.functions.special.gamma_functions import digamma
assert _test_args(digamma(x))
def test_sympy__functions__special__gamma_functions__trigamma():
from sympy.functions.special.gamma_functions import trigamma
assert _test_args(trigamma(x))
def test_sympy__functions__special__gamma_functions__uppergamma():
from sympy.functions.special.gamma_functions import uppergamma
assert _test_args(uppergamma(x, 2))
def test_sympy__functions__special__gamma_functions__multigamma():
from sympy.functions.special.gamma_functions import multigamma
assert _test_args(multigamma(x, 1))
def test_sympy__functions__special__beta_functions__beta():
from sympy.functions.special.beta_functions import beta
assert _test_args(beta(x))
assert _test_args(beta(x, x))
def test_sympy__functions__special__beta_functions__betainc():
from sympy.functions.special.beta_functions import betainc
assert _test_args(betainc(a, b, x, y))
def test_sympy__functions__special__beta_functions__betainc_regularized():
from sympy.functions.special.beta_functions import betainc_regularized
assert _test_args(betainc_regularized(a, b, x, y))
def test_sympy__functions__special__mathieu_functions__MathieuBase():
pass
def test_sympy__functions__special__mathieu_functions__mathieus():
from sympy.functions.special.mathieu_functions import mathieus
assert _test_args(mathieus(1, 1, 1))
def test_sympy__functions__special__mathieu_functions__mathieuc():
from sympy.functions.special.mathieu_functions import mathieuc
assert _test_args(mathieuc(1, 1, 1))
def test_sympy__functions__special__mathieu_functions__mathieusprime():
from sympy.functions.special.mathieu_functions import mathieusprime
assert _test_args(mathieusprime(1, 1, 1))
def test_sympy__functions__special__mathieu_functions__mathieucprime():
from sympy.functions.special.mathieu_functions import mathieucprime
assert _test_args(mathieucprime(1, 1, 1))
@SKIP("abstract class")
def test_sympy__functions__special__hyper__TupleParametersBase():
pass
@SKIP("abstract class")
def test_sympy__functions__special__hyper__TupleArg():
pass
def test_sympy__functions__special__hyper__hyper():
from sympy.functions.special.hyper import hyper
assert _test_args(hyper([1, 2, 3], [4, 5], x))
def test_sympy__functions__special__hyper__meijerg():
from sympy.functions.special.hyper import meijerg
assert _test_args(meijerg([1, 2, 3], [4, 5], [6], [], x))
@SKIP("abstract class")
def test_sympy__functions__special__hyper__HyperRep():
pass
def test_sympy__functions__special__hyper__HyperRep_power1():
from sympy.functions.special.hyper import HyperRep_power1
assert _test_args(HyperRep_power1(x, y))
def test_sympy__functions__special__hyper__HyperRep_power2():
from sympy.functions.special.hyper import HyperRep_power2
assert _test_args(HyperRep_power2(x, y))
def test_sympy__functions__special__hyper__HyperRep_log1():
from sympy.functions.special.hyper import HyperRep_log1
assert _test_args(HyperRep_log1(x))
def test_sympy__functions__special__hyper__HyperRep_atanh():
from sympy.functions.special.hyper import HyperRep_atanh
assert _test_args(HyperRep_atanh(x))
def test_sympy__functions__special__hyper__HyperRep_asin1():
from sympy.functions.special.hyper import HyperRep_asin1
assert _test_args(HyperRep_asin1(x))
def test_sympy__functions__special__hyper__HyperRep_asin2():
from sympy.functions.special.hyper import HyperRep_asin2
assert _test_args(HyperRep_asin2(x))
def test_sympy__functions__special__hyper__HyperRep_sqrts1():
from sympy.functions.special.hyper import HyperRep_sqrts1
assert _test_args(HyperRep_sqrts1(x, y))
def test_sympy__functions__special__hyper__HyperRep_sqrts2():
from sympy.functions.special.hyper import HyperRep_sqrts2
assert _test_args(HyperRep_sqrts2(x, y))
def test_sympy__functions__special__hyper__HyperRep_log2():
from sympy.functions.special.hyper import HyperRep_log2
assert _test_args(HyperRep_log2(x))
def test_sympy__functions__special__hyper__HyperRep_cosasin():
from sympy.functions.special.hyper import HyperRep_cosasin
assert _test_args(HyperRep_cosasin(x, y))
def test_sympy__functions__special__hyper__HyperRep_sinasin():
from sympy.functions.special.hyper import HyperRep_sinasin
assert _test_args(HyperRep_sinasin(x, y))
def test_sympy__functions__special__hyper__appellf1():
from sympy.functions.special.hyper import appellf1
a, b1, b2, c, x, y = symbols('a b1 b2 c x y')
assert _test_args(appellf1(a, b1, b2, c, x, y))
@SKIP("abstract class")
def test_sympy__functions__special__polynomials__OrthogonalPolynomial():
pass
def test_sympy__functions__special__polynomials__jacobi():
from sympy.functions.special.polynomials import jacobi
assert _test_args(jacobi(x, 2, 2, 2))
def test_sympy__functions__special__polynomials__gegenbauer():
from sympy.functions.special.polynomials import gegenbauer
assert _test_args(gegenbauer(x, 2, 2))
def test_sympy__functions__special__polynomials__chebyshevt():
from sympy.functions.special.polynomials import chebyshevt
assert _test_args(chebyshevt(x, 2))
def test_sympy__functions__special__polynomials__chebyshevt_root():
from sympy.functions.special.polynomials import chebyshevt_root
assert _test_args(chebyshevt_root(3, 2))
def test_sympy__functions__special__polynomials__chebyshevu():
from sympy.functions.special.polynomials import chebyshevu
assert _test_args(chebyshevu(x, 2))
def test_sympy__functions__special__polynomials__chebyshevu_root():
from sympy.functions.special.polynomials import chebyshevu_root
assert _test_args(chebyshevu_root(3, 2))
def test_sympy__functions__special__polynomials__hermite():
from sympy.functions.special.polynomials import hermite
assert _test_args(hermite(x, 2))
def test_sympy__functions__special__polynomials__legendre():
from sympy.functions.special.polynomials import legendre
assert _test_args(legendre(x, 2))
def test_sympy__functions__special__polynomials__assoc_legendre():
from sympy.functions.special.polynomials import assoc_legendre
assert _test_args(assoc_legendre(x, 0, y))
def test_sympy__functions__special__polynomials__laguerre():
from sympy.functions.special.polynomials import laguerre
assert _test_args(laguerre(x, 2))
def test_sympy__functions__special__polynomials__assoc_laguerre():
from sympy.functions.special.polynomials import assoc_laguerre
assert _test_args(assoc_laguerre(x, 0, y))
def test_sympy__functions__special__spherical_harmonics__Ynm():
from sympy.functions.special.spherical_harmonics import Ynm
assert _test_args(Ynm(1, 1, x, y))
def test_sympy__functions__special__spherical_harmonics__Znm():
from sympy.functions.special.spherical_harmonics import Znm
assert _test_args(Znm(1, 1, x, y))
def test_sympy__functions__special__tensor_functions__LeviCivita():
from sympy.functions.special.tensor_functions import LeviCivita
assert _test_args(LeviCivita(x, y, 2))
def test_sympy__functions__special__tensor_functions__KroneckerDelta():
from sympy.functions.special.tensor_functions import KroneckerDelta
assert _test_args(KroneckerDelta(x, y))
def test_sympy__functions__special__zeta_functions__dirichlet_eta():
from sympy.functions.special.zeta_functions import dirichlet_eta
assert _test_args(dirichlet_eta(x))
def test_sympy__functions__special__zeta_functions__riemann_xi():
from sympy.functions.special.zeta_functions import riemann_xi
assert _test_args(riemann_xi(x))
def test_sympy__functions__special__zeta_functions__zeta():
from sympy.functions.special.zeta_functions import zeta
assert _test_args(zeta(101))
def test_sympy__functions__special__zeta_functions__lerchphi():
from sympy.functions.special.zeta_functions import lerchphi
assert _test_args(lerchphi(x, y, z))
def test_sympy__functions__special__zeta_functions__polylog():
from sympy.functions.special.zeta_functions import polylog
assert _test_args(polylog(x, y))
def test_sympy__functions__special__zeta_functions__stieltjes():
from sympy.functions.special.zeta_functions import stieltjes
assert _test_args(stieltjes(x, y))
def test_sympy__integrals__integrals__Integral():
from sympy.integrals.integrals import Integral
assert _test_args(Integral(2, (x, 0, 1)))
def test_sympy__integrals__risch__NonElementaryIntegral():
from sympy.integrals.risch import NonElementaryIntegral
assert _test_args(NonElementaryIntegral(exp(-x**2), x))
@SKIP("abstract class")
def test_sympy__integrals__transforms__IntegralTransform():
pass
def test_sympy__integrals__transforms__MellinTransform():
from sympy.integrals.transforms import MellinTransform
assert _test_args(MellinTransform(2, x, y))
def test_sympy__integrals__transforms__InverseMellinTransform():
from sympy.integrals.transforms import InverseMellinTransform
assert _test_args(InverseMellinTransform(2, x, y, 0, 1))
def test_sympy__integrals__transforms__LaplaceTransform():
from sympy.integrals.transforms import LaplaceTransform
assert _test_args(LaplaceTransform(2, x, y))
def test_sympy__integrals__transforms__InverseLaplaceTransform():
from sympy.integrals.transforms import InverseLaplaceTransform
assert _test_args(InverseLaplaceTransform(2, x, y, 0))
@SKIP("abstract class")
def test_sympy__integrals__transforms__FourierTypeTransform():
pass
def test_sympy__integrals__transforms__InverseFourierTransform():
from sympy.integrals.transforms import InverseFourierTransform
assert _test_args(InverseFourierTransform(2, x, y))
def test_sympy__integrals__transforms__FourierTransform():
from sympy.integrals.transforms import FourierTransform
assert _test_args(FourierTransform(2, x, y))
@SKIP("abstract class")
def test_sympy__integrals__transforms__SineCosineTypeTransform():
pass
def test_sympy__integrals__transforms__InverseSineTransform():
from sympy.integrals.transforms import InverseSineTransform
assert _test_args(InverseSineTransform(2, x, y))
def test_sympy__integrals__transforms__SineTransform():
from sympy.integrals.transforms import SineTransform
assert _test_args(SineTransform(2, x, y))
def test_sympy__integrals__transforms__InverseCosineTransform():
from sympy.integrals.transforms import InverseCosineTransform
assert _test_args(InverseCosineTransform(2, x, y))
def test_sympy__integrals__transforms__CosineTransform():
from sympy.integrals.transforms import CosineTransform
assert _test_args(CosineTransform(2, x, y))
@SKIP("abstract class")
def test_sympy__integrals__transforms__HankelTypeTransform():
pass
def test_sympy__integrals__transforms__InverseHankelTransform():
from sympy.integrals.transforms import InverseHankelTransform
assert _test_args(InverseHankelTransform(2, x, y, 0))
def test_sympy__integrals__transforms__HankelTransform():
from sympy.integrals.transforms import HankelTransform
assert _test_args(HankelTransform(2, x, y, 0))
@XFAIL
def test_sympy__liealgebras__cartan_type__CartanType_generator():
from sympy.liealgebras.cartan_type import CartanType_generator
assert _test_args(CartanType_generator("A2"))
@XFAIL
def test_sympy__liealgebras__cartan_type__Standard_Cartan():
from sympy.liealgebras.cartan_type import Standard_Cartan
assert _test_args(Standard_Cartan("A", 2))
@XFAIL
def test_sympy__liealgebras__weyl_group__WeylGroup():
from sympy.liealgebras.weyl_group import WeylGroup
assert _test_args(WeylGroup("B4"))
@XFAIL
def test_sympy__liealgebras__root_system__RootSystem():
from sympy.liealgebras.root_system import RootSystem
assert _test_args(RootSystem("A2"))
@XFAIL
def test_sympy__liealgebras__type_a__TypeA():
from sympy.liealgebras.type_a import TypeA
assert _test_args(TypeA(2))
@XFAIL
def test_sympy__liealgebras__type_b__TypeB():
from sympy.liealgebras.type_b import TypeB
assert _test_args(TypeB(4))
@XFAIL
def test_sympy__liealgebras__type_c__TypeC():
from sympy.liealgebras.type_c import TypeC
assert _test_args(TypeC(4))
@XFAIL
def test_sympy__liealgebras__type_d__TypeD():
from sympy.liealgebras.type_d import TypeD
assert _test_args(TypeD(4))
@XFAIL
def test_sympy__liealgebras__type_e__TypeE():
from sympy.liealgebras.type_e import TypeE
assert _test_args(TypeE(6))
@XFAIL
def test_sympy__liealgebras__type_f__TypeF():
from sympy.liealgebras.type_f import TypeF
assert _test_args(TypeF(4))
@XFAIL
def test_sympy__liealgebras__type_g__TypeG():
from sympy.liealgebras.type_g import TypeG
assert _test_args(TypeG(2))
def test_sympy__logic__boolalg__And():
from sympy.logic.boolalg import And
assert _test_args(And(x, y, 1))
@SKIP("abstract class")
def test_sympy__logic__boolalg__Boolean():
pass
def test_sympy__logic__boolalg__BooleanFunction():
from sympy.logic.boolalg import BooleanFunction
assert _test_args(BooleanFunction(1, 2, 3))
@SKIP("abstract class")
def test_sympy__logic__boolalg__BooleanAtom():
pass
def test_sympy__logic__boolalg__BooleanTrue():
from sympy.logic.boolalg import true
assert _test_args(true)
def test_sympy__logic__boolalg__BooleanFalse():
from sympy.logic.boolalg import false
assert _test_args(false)
def test_sympy__logic__boolalg__Equivalent():
from sympy.logic.boolalg import Equivalent
assert _test_args(Equivalent(x, 2))
def test_sympy__logic__boolalg__ITE():
from sympy.logic.boolalg import ITE
assert _test_args(ITE(x, y, 1))
def test_sympy__logic__boolalg__Implies():
from sympy.logic.boolalg import Implies
assert _test_args(Implies(x, y))
def test_sympy__logic__boolalg__Nand():
from sympy.logic.boolalg import Nand
assert _test_args(Nand(x, y, 1))
def test_sympy__logic__boolalg__Nor():
from sympy.logic.boolalg import Nor
assert _test_args(Nor(x, y))
def test_sympy__logic__boolalg__Not():
from sympy.logic.boolalg import Not
assert _test_args(Not(x))
def test_sympy__logic__boolalg__Or():
from sympy.logic.boolalg import Or
assert _test_args(Or(x, y))
def test_sympy__logic__boolalg__Xor():
from sympy.logic.boolalg import Xor
assert _test_args(Xor(x, y, 2))
def test_sympy__logic__boolalg__Xnor():
from sympy.logic.boolalg import Xnor
assert _test_args(Xnor(x, y, 2))
def test_sympy__logic__boolalg__Exclusive():
from sympy.logic.boolalg import Exclusive
assert _test_args(Exclusive(x, y, z))
def test_sympy__matrices__matrices__DeferredVector():
from sympy.matrices.matrices import DeferredVector
assert _test_args(DeferredVector("X"))
@SKIP("abstract class")
def test_sympy__matrices__expressions__matexpr__MatrixBase():
pass
@SKIP("abstract class")
def test_sympy__matrices__immutable__ImmutableRepMatrix():
pass
def test_sympy__matrices__immutable__ImmutableDenseMatrix():
from sympy.matrices.immutable import ImmutableDenseMatrix
m = ImmutableDenseMatrix([[1, 2], [3, 4]])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableDenseMatrix(1, 1, [1])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableDenseMatrix(2, 2, lambda i, j: 1)
assert m[0, 0] is S.One
m = ImmutableDenseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j))
assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified
assert _test_args(m)
assert _test_args(Basic(*list(m)))
def test_sympy__matrices__immutable__ImmutableSparseMatrix():
from sympy.matrices.immutable import ImmutableSparseMatrix
m = ImmutableSparseMatrix([[1, 2], [3, 4]])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableSparseMatrix(1, 1, {(0, 0): 1})
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableSparseMatrix(1, 1, [1])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableSparseMatrix(2, 2, lambda i, j: 1)
assert m[0, 0] is S.One
m = ImmutableSparseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j))
assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified
assert _test_args(m)
assert _test_args(Basic(*list(m)))
def test_sympy__matrices__expressions__slice__MatrixSlice():
from sympy.matrices.expressions.slice import MatrixSlice
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', 4, 4)
assert _test_args(MatrixSlice(X, (0, 2), (0, 2)))
def test_sympy__matrices__expressions__applyfunc__ElementwiseApplyFunction():
from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol("X", x, x)
func = Lambda(x, x**2)
assert _test_args(ElementwiseApplyFunction(func, X))
def test_sympy__matrices__expressions__blockmatrix__BlockDiagMatrix():
from sympy.matrices.expressions.blockmatrix import BlockDiagMatrix
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, x)
Y = MatrixSymbol('Y', y, y)
assert _test_args(BlockDiagMatrix(X, Y))
def test_sympy__matrices__expressions__blockmatrix__BlockMatrix():
from sympy.matrices.expressions.blockmatrix import BlockMatrix
from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix
X = MatrixSymbol('X', x, x)
Y = MatrixSymbol('Y', y, y)
Z = MatrixSymbol('Z', x, y)
O = ZeroMatrix(y, x)
assert _test_args(BlockMatrix([[X, Z], [O, Y]]))
def test_sympy__matrices__expressions__inverse__Inverse():
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Inverse(MatrixSymbol('A', 3, 3)))
def test_sympy__matrices__expressions__matadd__MatAdd():
from sympy.matrices.expressions.matadd import MatAdd
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', x, y)
assert _test_args(MatAdd(X, Y))
@SKIP("abstract class")
def test_sympy__matrices__expressions__matexpr__MatrixExpr():
pass
def test_sympy__matrices__expressions__matexpr__MatrixElement():
from sympy.matrices.expressions.matexpr import MatrixSymbol, MatrixElement
from sympy import S
assert _test_args(MatrixElement(MatrixSymbol('A', 3, 5), S(2), S(3)))
def test_sympy__matrices__expressions__matexpr__MatrixSymbol():
from sympy.matrices.expressions.matexpr import MatrixSymbol
assert _test_args(MatrixSymbol('A', 3, 5))
def test_sympy__matrices__expressions__special__OneMatrix():
from sympy.matrices.expressions.special import OneMatrix
assert _test_args(OneMatrix(3, 5))
def test_sympy__matrices__expressions__special__ZeroMatrix():
from sympy.matrices.expressions.special import ZeroMatrix
assert _test_args(ZeroMatrix(3, 5))
def test_sympy__matrices__expressions__special__GenericZeroMatrix():
from sympy.matrices.expressions.special import GenericZeroMatrix
assert _test_args(GenericZeroMatrix())
def test_sympy__matrices__expressions__special__Identity():
from sympy.matrices.expressions.special import Identity
assert _test_args(Identity(3))
def test_sympy__matrices__expressions__special__GenericIdentity():
from sympy.matrices.expressions.special import GenericIdentity
assert _test_args(GenericIdentity())
def test_sympy__matrices__expressions__sets__MatrixSet():
from sympy.matrices.expressions.sets import MatrixSet
from sympy import S
assert _test_args(MatrixSet(2, 2, S.Reals))
def test_sympy__matrices__expressions__matmul__MatMul():
from sympy.matrices.expressions.matmul import MatMul
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', y, x)
assert _test_args(MatMul(X, Y))
def test_sympy__matrices__expressions__dotproduct__DotProduct():
from sympy.matrices.expressions.dotproduct import DotProduct
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, 1)
Y = MatrixSymbol('Y', x, 1)
assert _test_args(DotProduct(X, Y))
def test_sympy__matrices__expressions__diagonal__DiagonalMatrix():
from sympy.matrices.expressions.diagonal import DiagonalMatrix
from sympy.matrices.expressions import MatrixSymbol
x = MatrixSymbol('x', 10, 1)
assert _test_args(DiagonalMatrix(x))
def test_sympy__matrices__expressions__diagonal__DiagonalOf():
from sympy.matrices.expressions.diagonal import DiagonalOf
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('x', 10, 10)
assert _test_args(DiagonalOf(X))
def test_sympy__matrices__expressions__diagonal__DiagMatrix():
from sympy.matrices.expressions.diagonal import DiagMatrix
from sympy.matrices.expressions import MatrixSymbol
x = MatrixSymbol('x', 10, 1)
assert _test_args(DiagMatrix(x))
def test_sympy__matrices__expressions__hadamard__HadamardProduct():
from sympy.matrices.expressions.hadamard import HadamardProduct
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', x, y)
assert _test_args(HadamardProduct(X, Y))
def test_sympy__matrices__expressions__hadamard__HadamardPower():
from sympy.matrices.expressions.hadamard import HadamardPower
from sympy.matrices.expressions import MatrixSymbol
from sympy import Symbol
X = MatrixSymbol('X', x, y)
n = Symbol("n")
assert _test_args(HadamardPower(X, n))
def test_sympy__matrices__expressions__kronecker__KroneckerProduct():
from sympy.matrices.expressions.kronecker import KroneckerProduct
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', x, y)
assert _test_args(KroneckerProduct(X, Y))
def test_sympy__matrices__expressions__matpow__MatPow():
from sympy.matrices.expressions.matpow import MatPow
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, x)
assert _test_args(MatPow(X, 2))
def test_sympy__matrices__expressions__transpose__Transpose():
from sympy.matrices.expressions.transpose import Transpose
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Transpose(MatrixSymbol('A', 3, 5)))
def test_sympy__matrices__expressions__adjoint__Adjoint():
from sympy.matrices.expressions.adjoint import Adjoint
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Adjoint(MatrixSymbol('A', 3, 5)))
def test_sympy__matrices__expressions__trace__Trace():
from sympy.matrices.expressions.trace import Trace
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Trace(MatrixSymbol('A', 3, 3)))
def test_sympy__matrices__expressions__determinant__Determinant():
from sympy.matrices.expressions.determinant import Determinant
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Determinant(MatrixSymbol('A', 3, 3)))
def test_sympy__matrices__expressions__determinant__Permanent():
from sympy.matrices.expressions.determinant import Permanent
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Permanent(MatrixSymbol('A', 3, 4)))
def test_sympy__matrices__expressions__funcmatrix__FunctionMatrix():
from sympy.matrices.expressions.funcmatrix import FunctionMatrix
from sympy import symbols
i, j = symbols('i,j')
assert _test_args(FunctionMatrix(3, 3, Lambda((i, j), i - j) ))
def test_sympy__matrices__expressions__fourier__DFT():
from sympy.matrices.expressions.fourier import DFT
from sympy import S
assert _test_args(DFT(S(2)))
def test_sympy__matrices__expressions__fourier__IDFT():
from sympy.matrices.expressions.fourier import IDFT
from sympy import S
assert _test_args(IDFT(S(2)))
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', 10, 10)
def test_sympy__matrices__expressions__factorizations__LofLU():
from sympy.matrices.expressions.factorizations import LofLU
assert _test_args(LofLU(X))
def test_sympy__matrices__expressions__factorizations__UofLU():
from sympy.matrices.expressions.factorizations import UofLU
assert _test_args(UofLU(X))
def test_sympy__matrices__expressions__factorizations__QofQR():
from sympy.matrices.expressions.factorizations import QofQR
assert _test_args(QofQR(X))
def test_sympy__matrices__expressions__factorizations__RofQR():
from sympy.matrices.expressions.factorizations import RofQR
assert _test_args(RofQR(X))
def test_sympy__matrices__expressions__factorizations__LofCholesky():
from sympy.matrices.expressions.factorizations import LofCholesky
assert _test_args(LofCholesky(X))
def test_sympy__matrices__expressions__factorizations__UofCholesky():
from sympy.matrices.expressions.factorizations import UofCholesky
assert _test_args(UofCholesky(X))
def test_sympy__matrices__expressions__factorizations__EigenVectors():
from sympy.matrices.expressions.factorizations import EigenVectors
assert _test_args(EigenVectors(X))
def test_sympy__matrices__expressions__factorizations__EigenValues():
from sympy.matrices.expressions.factorizations import EigenValues
assert _test_args(EigenValues(X))
def test_sympy__matrices__expressions__factorizations__UofSVD():
from sympy.matrices.expressions.factorizations import UofSVD
assert _test_args(UofSVD(X))
def test_sympy__matrices__expressions__factorizations__VofSVD():
from sympy.matrices.expressions.factorizations import VofSVD
assert _test_args(VofSVD(X))
def test_sympy__matrices__expressions__factorizations__SofSVD():
from sympy.matrices.expressions.factorizations import SofSVD
assert _test_args(SofSVD(X))
@SKIP("abstract class")
def test_sympy__matrices__expressions__factorizations__Factorization():
pass
def test_sympy__matrices__expressions__permutation__PermutationMatrix():
from sympy.combinatorics import Permutation
from sympy.matrices.expressions.permutation import PermutationMatrix
assert _test_args(PermutationMatrix(Permutation([2, 0, 1])))
def test_sympy__matrices__expressions__permutation__MatrixPermute():
from sympy.combinatorics import Permutation
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.permutation import MatrixPermute
A = MatrixSymbol('A', 3, 3)
assert _test_args(MatrixPermute(A, Permutation([2, 0, 1])))
def test_sympy__matrices__expressions__companion__CompanionMatrix():
from sympy.core.symbol import Symbol
from sympy.matrices.expressions.companion import CompanionMatrix
from sympy.polys.polytools import Poly
x = Symbol('x')
p = Poly([1, 2, 3], x)
assert _test_args(CompanionMatrix(p))
def test_sympy__physics__vector__frame__CoordinateSym():
from sympy.physics.vector import CoordinateSym
from sympy.physics.vector import ReferenceFrame
assert _test_args(CoordinateSym('R_x', ReferenceFrame('R'), 0))
def test_sympy__physics__paulialgebra__Pauli():
from sympy.physics.paulialgebra import Pauli
assert _test_args(Pauli(1))
def test_sympy__physics__quantum__anticommutator__AntiCommutator():
from sympy.physics.quantum.anticommutator import AntiCommutator
assert _test_args(AntiCommutator(x, y))
def test_sympy__physics__quantum__cartesian__PositionBra3D():
from sympy.physics.quantum.cartesian import PositionBra3D
assert _test_args(PositionBra3D(x, y, z))
def test_sympy__physics__quantum__cartesian__PositionKet3D():
from sympy.physics.quantum.cartesian import PositionKet3D
assert _test_args(PositionKet3D(x, y, z))
def test_sympy__physics__quantum__cartesian__PositionState3D():
from sympy.physics.quantum.cartesian import PositionState3D
assert _test_args(PositionState3D(x, y, z))
def test_sympy__physics__quantum__cartesian__PxBra():
from sympy.physics.quantum.cartesian import PxBra
assert _test_args(PxBra(x, y, z))
def test_sympy__physics__quantum__cartesian__PxKet():
from sympy.physics.quantum.cartesian import PxKet
assert _test_args(PxKet(x, y, z))
def test_sympy__physics__quantum__cartesian__PxOp():
from sympy.physics.quantum.cartesian import PxOp
assert _test_args(PxOp(x, y, z))
def test_sympy__physics__quantum__cartesian__XBra():
from sympy.physics.quantum.cartesian import XBra
assert _test_args(XBra(x))
def test_sympy__physics__quantum__cartesian__XKet():
from sympy.physics.quantum.cartesian import XKet
assert _test_args(XKet(x))
def test_sympy__physics__quantum__cartesian__XOp():
from sympy.physics.quantum.cartesian import XOp
assert _test_args(XOp(x))
def test_sympy__physics__quantum__cartesian__YOp():
from sympy.physics.quantum.cartesian import YOp
assert _test_args(YOp(x))
def test_sympy__physics__quantum__cartesian__ZOp():
from sympy.physics.quantum.cartesian import ZOp
assert _test_args(ZOp(x))
def test_sympy__physics__quantum__cg__CG():
from sympy.physics.quantum.cg import CG
from sympy import S
assert _test_args(CG(Rational(3, 2), Rational(3, 2), S.Half, Rational(-1, 2), 1, 1))
def test_sympy__physics__quantum__cg__Wigner3j():
from sympy.physics.quantum.cg import Wigner3j
assert _test_args(Wigner3j(6, 0, 4, 0, 2, 0))
def test_sympy__physics__quantum__cg__Wigner6j():
from sympy.physics.quantum.cg import Wigner6j
assert _test_args(Wigner6j(1, 2, 3, 2, 1, 2))
def test_sympy__physics__quantum__cg__Wigner9j():
from sympy.physics.quantum.cg import Wigner9j
assert _test_args(Wigner9j(2, 1, 1, Rational(3, 2), S.Half, 1, S.Half, S.Half, 0))
def test_sympy__physics__quantum__circuitplot__Mz():
from sympy.physics.quantum.circuitplot import Mz
assert _test_args(Mz(0))
def test_sympy__physics__quantum__circuitplot__Mx():
from sympy.physics.quantum.circuitplot import Mx
assert _test_args(Mx(0))
def test_sympy__physics__quantum__commutator__Commutator():
from sympy.physics.quantum.commutator import Commutator
A, B = symbols('A,B', commutative=False)
assert _test_args(Commutator(A, B))
def test_sympy__physics__quantum__constants__HBar():
from sympy.physics.quantum.constants import HBar
assert _test_args(HBar())
def test_sympy__physics__quantum__dagger__Dagger():
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.state import Ket
assert _test_args(Dagger(Dagger(Ket('psi'))))
def test_sympy__physics__quantum__gate__CGate():
from sympy.physics.quantum.gate import CGate, Gate
assert _test_args(CGate((0, 1), Gate(2)))
def test_sympy__physics__quantum__gate__CGateS():
from sympy.physics.quantum.gate import CGateS, Gate
assert _test_args(CGateS((0, 1), Gate(2)))
def test_sympy__physics__quantum__gate__CNotGate():
from sympy.physics.quantum.gate import CNotGate
assert _test_args(CNotGate(0, 1))
def test_sympy__physics__quantum__gate__Gate():
from sympy.physics.quantum.gate import Gate
assert _test_args(Gate(0))
def test_sympy__physics__quantum__gate__HadamardGate():
from sympy.physics.quantum.gate import HadamardGate
assert _test_args(HadamardGate(0))
def test_sympy__physics__quantum__gate__IdentityGate():
from sympy.physics.quantum.gate import IdentityGate
assert _test_args(IdentityGate(0))
def test_sympy__physics__quantum__gate__OneQubitGate():
from sympy.physics.quantum.gate import OneQubitGate
assert _test_args(OneQubitGate(0))
def test_sympy__physics__quantum__gate__PhaseGate():
from sympy.physics.quantum.gate import PhaseGate
assert _test_args(PhaseGate(0))
def test_sympy__physics__quantum__gate__SwapGate():
from sympy.physics.quantum.gate import SwapGate
assert _test_args(SwapGate(0, 1))
def test_sympy__physics__quantum__gate__TGate():
from sympy.physics.quantum.gate import TGate
assert _test_args(TGate(0))
def test_sympy__physics__quantum__gate__TwoQubitGate():
from sympy.physics.quantum.gate import TwoQubitGate
assert _test_args(TwoQubitGate(0))
def test_sympy__physics__quantum__gate__UGate():
from sympy.physics.quantum.gate import UGate
from sympy.matrices.immutable import ImmutableDenseMatrix
from sympy import Integer, Tuple
assert _test_args(
UGate(Tuple(Integer(1)), ImmutableDenseMatrix([[1, 0], [0, 2]])))
def test_sympy__physics__quantum__gate__XGate():
from sympy.physics.quantum.gate import XGate
assert _test_args(XGate(0))
def test_sympy__physics__quantum__gate__YGate():
from sympy.physics.quantum.gate import YGate
assert _test_args(YGate(0))
def test_sympy__physics__quantum__gate__ZGate():
from sympy.physics.quantum.gate import ZGate
assert _test_args(ZGate(0))
@SKIP("TODO: sympy.physics")
def test_sympy__physics__quantum__grover__OracleGate():
from sympy.physics.quantum.grover import OracleGate
assert _test_args(OracleGate())
def test_sympy__physics__quantum__grover__WGate():
from sympy.physics.quantum.grover import WGate
assert _test_args(WGate(1))
def test_sympy__physics__quantum__hilbert__ComplexSpace():
from sympy.physics.quantum.hilbert import ComplexSpace
assert _test_args(ComplexSpace(x))
def test_sympy__physics__quantum__hilbert__DirectSumHilbertSpace():
from sympy.physics.quantum.hilbert import DirectSumHilbertSpace, ComplexSpace, FockSpace
c = ComplexSpace(2)
f = FockSpace()
assert _test_args(DirectSumHilbertSpace(c, f))
def test_sympy__physics__quantum__hilbert__FockSpace():
from sympy.physics.quantum.hilbert import FockSpace
assert _test_args(FockSpace())
def test_sympy__physics__quantum__hilbert__HilbertSpace():
from sympy.physics.quantum.hilbert import HilbertSpace
assert _test_args(HilbertSpace())
def test_sympy__physics__quantum__hilbert__L2():
from sympy.physics.quantum.hilbert import L2
from sympy import oo, Interval
assert _test_args(L2(Interval(0, oo)))
def test_sympy__physics__quantum__hilbert__TensorPowerHilbertSpace():
from sympy.physics.quantum.hilbert import TensorPowerHilbertSpace, FockSpace
f = FockSpace()
assert _test_args(TensorPowerHilbertSpace(f, 2))
def test_sympy__physics__quantum__hilbert__TensorProductHilbertSpace():
from sympy.physics.quantum.hilbert import TensorProductHilbertSpace, FockSpace, ComplexSpace
c = ComplexSpace(2)
f = FockSpace()
assert _test_args(TensorProductHilbertSpace(f, c))
def test_sympy__physics__quantum__innerproduct__InnerProduct():
from sympy.physics.quantum import Bra, Ket, InnerProduct
b = Bra('b')
k = Ket('k')
assert _test_args(InnerProduct(b, k))
def test_sympy__physics__quantum__operator__DifferentialOperator():
from sympy.physics.quantum.operator import DifferentialOperator
from sympy import Derivative, Function
f = Function('f')
assert _test_args(DifferentialOperator(1/x*Derivative(f(x), x), f(x)))
def test_sympy__physics__quantum__operator__HermitianOperator():
from sympy.physics.quantum.operator import HermitianOperator
assert _test_args(HermitianOperator('H'))
def test_sympy__physics__quantum__operator__IdentityOperator():
from sympy.physics.quantum.operator import IdentityOperator
assert _test_args(IdentityOperator(5))
def test_sympy__physics__quantum__operator__Operator():
from sympy.physics.quantum.operator import Operator
assert _test_args(Operator('A'))
def test_sympy__physics__quantum__operator__OuterProduct():
from sympy.physics.quantum.operator import OuterProduct
from sympy.physics.quantum import Ket, Bra
b = Bra('b')
k = Ket('k')
assert _test_args(OuterProduct(k, b))
def test_sympy__physics__quantum__operator__UnitaryOperator():
from sympy.physics.quantum.operator import UnitaryOperator
assert _test_args(UnitaryOperator('U'))
def test_sympy__physics__quantum__piab__PIABBra():
from sympy.physics.quantum.piab import PIABBra
assert _test_args(PIABBra('B'))
def test_sympy__physics__quantum__boson__BosonOp():
from sympy.physics.quantum.boson import BosonOp
assert _test_args(BosonOp('a'))
assert _test_args(BosonOp('a', False))
def test_sympy__physics__quantum__boson__BosonFockKet():
from sympy.physics.quantum.boson import BosonFockKet
assert _test_args(BosonFockKet(1))
def test_sympy__physics__quantum__boson__BosonFockBra():
from sympy.physics.quantum.boson import BosonFockBra
assert _test_args(BosonFockBra(1))
def test_sympy__physics__quantum__boson__BosonCoherentKet():
from sympy.physics.quantum.boson import BosonCoherentKet
assert _test_args(BosonCoherentKet(1))
def test_sympy__physics__quantum__boson__BosonCoherentBra():
from sympy.physics.quantum.boson import BosonCoherentBra
assert _test_args(BosonCoherentBra(1))
def test_sympy__physics__quantum__fermion__FermionOp():
from sympy.physics.quantum.fermion import FermionOp
assert _test_args(FermionOp('c'))
assert _test_args(FermionOp('c', False))
def test_sympy__physics__quantum__fermion__FermionFockKet():
from sympy.physics.quantum.fermion import FermionFockKet
assert _test_args(FermionFockKet(1))
def test_sympy__physics__quantum__fermion__FermionFockBra():
from sympy.physics.quantum.fermion import FermionFockBra
assert _test_args(FermionFockBra(1))
def test_sympy__physics__quantum__pauli__SigmaOpBase():
from sympy.physics.quantum.pauli import SigmaOpBase
assert _test_args(SigmaOpBase())
def test_sympy__physics__quantum__pauli__SigmaX():
from sympy.physics.quantum.pauli import SigmaX
assert _test_args(SigmaX())
def test_sympy__physics__quantum__pauli__SigmaY():
from sympy.physics.quantum.pauli import SigmaY
assert _test_args(SigmaY())
def test_sympy__physics__quantum__pauli__SigmaZ():
from sympy.physics.quantum.pauli import SigmaZ
assert _test_args(SigmaZ())
def test_sympy__physics__quantum__pauli__SigmaMinus():
from sympy.physics.quantum.pauli import SigmaMinus
assert _test_args(SigmaMinus())
def test_sympy__physics__quantum__pauli__SigmaPlus():
from sympy.physics.quantum.pauli import SigmaPlus
assert _test_args(SigmaPlus())
def test_sympy__physics__quantum__pauli__SigmaZKet():
from sympy.physics.quantum.pauli import SigmaZKet
assert _test_args(SigmaZKet(0))
def test_sympy__physics__quantum__pauli__SigmaZBra():
from sympy.physics.quantum.pauli import SigmaZBra
assert _test_args(SigmaZBra(0))
def test_sympy__physics__quantum__piab__PIABHamiltonian():
from sympy.physics.quantum.piab import PIABHamiltonian
assert _test_args(PIABHamiltonian('P'))
def test_sympy__physics__quantum__piab__PIABKet():
from sympy.physics.quantum.piab import PIABKet
assert _test_args(PIABKet('K'))
def test_sympy__physics__quantum__qexpr__QExpr():
from sympy.physics.quantum.qexpr import QExpr
assert _test_args(QExpr(0))
def test_sympy__physics__quantum__qft__Fourier():
from sympy.physics.quantum.qft import Fourier
assert _test_args(Fourier(0, 1))
def test_sympy__physics__quantum__qft__IQFT():
from sympy.physics.quantum.qft import IQFT
assert _test_args(IQFT(0, 1))
def test_sympy__physics__quantum__qft__QFT():
from sympy.physics.quantum.qft import QFT
assert _test_args(QFT(0, 1))
def test_sympy__physics__quantum__qft__RkGate():
from sympy.physics.quantum.qft import RkGate
assert _test_args(RkGate(0, 1))
def test_sympy__physics__quantum__qubit__IntQubit():
from sympy.physics.quantum.qubit import IntQubit
assert _test_args(IntQubit(0))
def test_sympy__physics__quantum__qubit__IntQubitBra():
from sympy.physics.quantum.qubit import IntQubitBra
assert _test_args(IntQubitBra(0))
def test_sympy__physics__quantum__qubit__IntQubitState():
from sympy.physics.quantum.qubit import IntQubitState, QubitState
assert _test_args(IntQubitState(QubitState(0, 1)))
def test_sympy__physics__quantum__qubit__Qubit():
from sympy.physics.quantum.qubit import Qubit
assert _test_args(Qubit(0, 0, 0))
def test_sympy__physics__quantum__qubit__QubitBra():
from sympy.physics.quantum.qubit import QubitBra
assert _test_args(QubitBra('1', 0))
def test_sympy__physics__quantum__qubit__QubitState():
from sympy.physics.quantum.qubit import QubitState
assert _test_args(QubitState(0, 1))
def test_sympy__physics__quantum__density__Density():
from sympy.physics.quantum.density import Density
from sympy.physics.quantum.state import Ket
assert _test_args(Density([Ket(0), 0.5], [Ket(1), 0.5]))
@SKIP("TODO: sympy.physics.quantum.shor: Cmod Not Implemented")
def test_sympy__physics__quantum__shor__CMod():
from sympy.physics.quantum.shor import CMod
assert _test_args(CMod())
def test_sympy__physics__quantum__spin__CoupledSpinState():
from sympy.physics.quantum.spin import CoupledSpinState
assert _test_args(CoupledSpinState(1, 0, (1, 1)))
assert _test_args(CoupledSpinState(1, 0, (1, S.Half, S.Half)))
assert _test_args(CoupledSpinState(
1, 0, (1, S.Half, S.Half), ((2, 3, S.Half), (1, 2, 1)) ))
j, m, j1, j2, j3, j12, x = symbols('j m j1:4 j12 x')
assert CoupledSpinState(
j, m, (j1, j2, j3)).subs(j2, x) == CoupledSpinState(j, m, (j1, x, j3))
assert CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, j12), (1, 2, j)) ).subs(j12, x) == \
CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, x), (1, 2, j)) )
def test_sympy__physics__quantum__spin__J2Op():
from sympy.physics.quantum.spin import J2Op
assert _test_args(J2Op('J'))
def test_sympy__physics__quantum__spin__JminusOp():
from sympy.physics.quantum.spin import JminusOp
assert _test_args(JminusOp('J'))
def test_sympy__physics__quantum__spin__JplusOp():
from sympy.physics.quantum.spin import JplusOp
assert _test_args(JplusOp('J'))
def test_sympy__physics__quantum__spin__JxBra():
from sympy.physics.quantum.spin import JxBra
assert _test_args(JxBra(1, 0))
def test_sympy__physics__quantum__spin__JxBraCoupled():
from sympy.physics.quantum.spin import JxBraCoupled
assert _test_args(JxBraCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JxKet():
from sympy.physics.quantum.spin import JxKet
assert _test_args(JxKet(1, 0))
def test_sympy__physics__quantum__spin__JxKetCoupled():
from sympy.physics.quantum.spin import JxKetCoupled
assert _test_args(JxKetCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JxOp():
from sympy.physics.quantum.spin import JxOp
assert _test_args(JxOp('J'))
def test_sympy__physics__quantum__spin__JyBra():
from sympy.physics.quantum.spin import JyBra
assert _test_args(JyBra(1, 0))
def test_sympy__physics__quantum__spin__JyBraCoupled():
from sympy.physics.quantum.spin import JyBraCoupled
assert _test_args(JyBraCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JyKet():
from sympy.physics.quantum.spin import JyKet
assert _test_args(JyKet(1, 0))
def test_sympy__physics__quantum__spin__JyKetCoupled():
from sympy.physics.quantum.spin import JyKetCoupled
assert _test_args(JyKetCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JyOp():
from sympy.physics.quantum.spin import JyOp
assert _test_args(JyOp('J'))
def test_sympy__physics__quantum__spin__JzBra():
from sympy.physics.quantum.spin import JzBra
assert _test_args(JzBra(1, 0))
def test_sympy__physics__quantum__spin__JzBraCoupled():
from sympy.physics.quantum.spin import JzBraCoupled
assert _test_args(JzBraCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JzKet():
from sympy.physics.quantum.spin import JzKet
assert _test_args(JzKet(1, 0))
def test_sympy__physics__quantum__spin__JzKetCoupled():
from sympy.physics.quantum.spin import JzKetCoupled
assert _test_args(JzKetCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JzOp():
from sympy.physics.quantum.spin import JzOp
assert _test_args(JzOp('J'))
def test_sympy__physics__quantum__spin__Rotation():
from sympy.physics.quantum.spin import Rotation
assert _test_args(Rotation(pi, 0, pi/2))
def test_sympy__physics__quantum__spin__SpinState():
from sympy.physics.quantum.spin import SpinState
assert _test_args(SpinState(1, 0))
def test_sympy__physics__quantum__spin__WignerD():
from sympy.physics.quantum.spin import WignerD
assert _test_args(WignerD(0, 1, 2, 3, 4, 5))
def test_sympy__physics__quantum__state__Bra():
from sympy.physics.quantum.state import Bra
assert _test_args(Bra(0))
def test_sympy__physics__quantum__state__BraBase():
from sympy.physics.quantum.state import BraBase
assert _test_args(BraBase(0))
def test_sympy__physics__quantum__state__Ket():
from sympy.physics.quantum.state import Ket
assert _test_args(Ket(0))
def test_sympy__physics__quantum__state__KetBase():
from sympy.physics.quantum.state import KetBase
assert _test_args(KetBase(0))
def test_sympy__physics__quantum__state__State():
from sympy.physics.quantum.state import State
assert _test_args(State(0))
def test_sympy__physics__quantum__state__StateBase():
from sympy.physics.quantum.state import StateBase
assert _test_args(StateBase(0))
def test_sympy__physics__quantum__state__OrthogonalBra():
from sympy.physics.quantum.state import OrthogonalBra
assert _test_args(OrthogonalBra(0))
def test_sympy__physics__quantum__state__OrthogonalKet():
from sympy.physics.quantum.state import OrthogonalKet
assert _test_args(OrthogonalKet(0))
def test_sympy__physics__quantum__state__OrthogonalState():
from sympy.physics.quantum.state import OrthogonalState
assert _test_args(OrthogonalState(0))
def test_sympy__physics__quantum__state__TimeDepBra():
from sympy.physics.quantum.state import TimeDepBra
assert _test_args(TimeDepBra('psi', 't'))
def test_sympy__physics__quantum__state__TimeDepKet():
from sympy.physics.quantum.state import TimeDepKet
assert _test_args(TimeDepKet('psi', 't'))
def test_sympy__physics__quantum__state__TimeDepState():
from sympy.physics.quantum.state import TimeDepState
assert _test_args(TimeDepState('psi', 't'))
def test_sympy__physics__quantum__state__Wavefunction():
from sympy.physics.quantum.state import Wavefunction
from sympy.functions import sin
from sympy import Piecewise
n = 1
L = 1
g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True))
assert _test_args(Wavefunction(g, x))
def test_sympy__physics__quantum__tensorproduct__TensorProduct():
from sympy.physics.quantum.tensorproduct import TensorProduct
assert _test_args(TensorProduct(x, y))
def test_sympy__physics__quantum__identitysearch__GateIdentity():
from sympy.physics.quantum.gate import X
from sympy.physics.quantum.identitysearch import GateIdentity
assert _test_args(GateIdentity(X(0), X(0)))
def test_sympy__physics__quantum__sho1d__SHOOp():
from sympy.physics.quantum.sho1d import SHOOp
assert _test_args(SHOOp('a'))
def test_sympy__physics__quantum__sho1d__RaisingOp():
from sympy.physics.quantum.sho1d import RaisingOp
assert _test_args(RaisingOp('a'))
def test_sympy__physics__quantum__sho1d__LoweringOp():
from sympy.physics.quantum.sho1d import LoweringOp
assert _test_args(LoweringOp('a'))
def test_sympy__physics__quantum__sho1d__NumberOp():
from sympy.physics.quantum.sho1d import NumberOp
assert _test_args(NumberOp('N'))
def test_sympy__physics__quantum__sho1d__Hamiltonian():
from sympy.physics.quantum.sho1d import Hamiltonian
assert _test_args(Hamiltonian('H'))
def test_sympy__physics__quantum__sho1d__SHOState():
from sympy.physics.quantum.sho1d import SHOState
assert _test_args(SHOState(0))
def test_sympy__physics__quantum__sho1d__SHOKet():
from sympy.physics.quantum.sho1d import SHOKet
assert _test_args(SHOKet(0))
def test_sympy__physics__quantum__sho1d__SHOBra():
from sympy.physics.quantum.sho1d import SHOBra
assert _test_args(SHOBra(0))
def test_sympy__physics__secondquant__AnnihilateBoson():
from sympy.physics.secondquant import AnnihilateBoson
assert _test_args(AnnihilateBoson(0))
def test_sympy__physics__secondquant__AnnihilateFermion():
from sympy.physics.secondquant import AnnihilateFermion
assert _test_args(AnnihilateFermion(0))
@SKIP("abstract class")
def test_sympy__physics__secondquant__Annihilator():
pass
def test_sympy__physics__secondquant__AntiSymmetricTensor():
from sympy.physics.secondquant import AntiSymmetricTensor
i, j = symbols('i j', below_fermi=True)
a, b = symbols('a b', above_fermi=True)
assert _test_args(AntiSymmetricTensor('v', (a, i), (b, j)))
def test_sympy__physics__secondquant__BosonState():
from sympy.physics.secondquant import BosonState
assert _test_args(BosonState((0, 1)))
@SKIP("abstract class")
def test_sympy__physics__secondquant__BosonicOperator():
pass
def test_sympy__physics__secondquant__Commutator():
from sympy.physics.secondquant import Commutator
assert _test_args(Commutator(x, y))
def test_sympy__physics__secondquant__CreateBoson():
from sympy.physics.secondquant import CreateBoson
assert _test_args(CreateBoson(0))
def test_sympy__physics__secondquant__CreateFermion():
from sympy.physics.secondquant import CreateFermion
assert _test_args(CreateFermion(0))
@SKIP("abstract class")
def test_sympy__physics__secondquant__Creator():
pass
def test_sympy__physics__secondquant__Dagger():
from sympy.physics.secondquant import Dagger
from sympy import I
assert _test_args(Dagger(2*I))
def test_sympy__physics__secondquant__FermionState():
from sympy.physics.secondquant import FermionState
assert _test_args(FermionState((0, 1)))
def test_sympy__physics__secondquant__FermionicOperator():
from sympy.physics.secondquant import FermionicOperator
assert _test_args(FermionicOperator(0))
def test_sympy__physics__secondquant__FockState():
from sympy.physics.secondquant import FockState
assert _test_args(FockState((0, 1)))
def test_sympy__physics__secondquant__FockStateBosonBra():
from sympy.physics.secondquant import FockStateBosonBra
assert _test_args(FockStateBosonBra((0, 1)))
def test_sympy__physics__secondquant__FockStateBosonKet():
from sympy.physics.secondquant import FockStateBosonKet
assert _test_args(FockStateBosonKet((0, 1)))
def test_sympy__physics__secondquant__FockStateBra():
from sympy.physics.secondquant import FockStateBra
assert _test_args(FockStateBra((0, 1)))
def test_sympy__physics__secondquant__FockStateFermionBra():
from sympy.physics.secondquant import FockStateFermionBra
assert _test_args(FockStateFermionBra((0, 1)))
def test_sympy__physics__secondquant__FockStateFermionKet():
from sympy.physics.secondquant import FockStateFermionKet
assert _test_args(FockStateFermionKet((0, 1)))
def test_sympy__physics__secondquant__FockStateKet():
from sympy.physics.secondquant import FockStateKet
assert _test_args(FockStateKet((0, 1)))
def test_sympy__physics__secondquant__InnerProduct():
from sympy.physics.secondquant import InnerProduct
from sympy.physics.secondquant import FockStateKet, FockStateBra
assert _test_args(InnerProduct(FockStateBra((0, 1)), FockStateKet((0, 1))))
def test_sympy__physics__secondquant__NO():
from sympy.physics.secondquant import NO, F, Fd
assert _test_args(NO(Fd(x)*F(y)))
def test_sympy__physics__secondquant__PermutationOperator():
from sympy.physics.secondquant import PermutationOperator
assert _test_args(PermutationOperator(0, 1))
def test_sympy__physics__secondquant__SqOperator():
from sympy.physics.secondquant import SqOperator
assert _test_args(SqOperator(0))
def test_sympy__physics__secondquant__TensorSymbol():
from sympy.physics.secondquant import TensorSymbol
assert _test_args(TensorSymbol(x))
def test_sympy__physics__control__lti__LinearTimeInvariant():
# Direct instances of LinearTimeInvariant class are not allowed.
# func(*args) tests for its derived classes (TransferFunction,
# Series, Parallel and TransferFunctionMatrix) should pass.
pass
def test_sympy__physics__control__lti__SISOLinearTimeInvariant():
# Direct instances of SISOLinearTimeInvariant class are not allowed.
pass
def test_sympy__physics__control__lti__MIMOLinearTimeInvariant():
# Direct instances of MIMOLinearTimeInvariant class are not allowed.
pass
def test_sympy__physics__control__lti__TransferFunction():
from sympy.physics.control.lti import TransferFunction
assert _test_args(TransferFunction(2, 3, x))
def test_sympy__physics__control__lti__Series():
from sympy.physics.control import Series, TransferFunction
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
assert _test_args(Series(tf1, tf2))
def test_sympy__physics__control__lti__MIMOSeries():
from sympy.physics.control import MIMOSeries, TransferFunction, TransferFunctionMatrix
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
tfm_1 = TransferFunctionMatrix([[tf2, tf1]])
tfm_2 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
tfm_3 = TransferFunctionMatrix([[tf1], [tf2]])
assert _test_args(MIMOSeries(tfm_3, tfm_2, tfm_1))
def test_sympy__physics__control__lti__Parallel():
from sympy.physics.control import Parallel, TransferFunction
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
assert _test_args(Parallel(tf1, tf2))
def test_sympy__physics__control__lti__MIMOParallel():
from sympy.physics.control import MIMOParallel, TransferFunction, TransferFunctionMatrix
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
assert _test_args(MIMOParallel(tfm_1, tfm_2))
def test_sympy__physics__control__lti__Feedback():
from sympy.physics.control import TransferFunction, Feedback
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
assert _test_args(Feedback(tf1, tf2))
assert _test_args(Feedback(tf1, tf2, 1))
def test_sympy__physics__control__lti__MIMOFeedback():
from sympy.physics.control import TransferFunction, MIMOFeedback, TransferFunctionMatrix
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
tfm_1 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
tfm_2 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
assert _test_args(MIMOFeedback(tfm_1, tfm_2))
assert _test_args(MIMOFeedback(tfm_1, tfm_2, 1))
def test_sympy__physics__control__lti__TransferFunctionMatrix():
from sympy.physics.control import TransferFunction, TransferFunctionMatrix
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
assert _test_args(TransferFunctionMatrix([[tf1, tf2]]))
def test_sympy__physics__units__dimensions__Dimension():
from sympy.physics.units.dimensions import Dimension
assert _test_args(Dimension("length", "L"))
def test_sympy__physics__units__dimensions__DimensionSystem():
from sympy.physics.units.dimensions import DimensionSystem
from sympy.physics.units.definitions.dimension_definitions import length, time, velocity
assert _test_args(DimensionSystem((length, time), (velocity,)))
def test_sympy__physics__units__quantities__Quantity():
from sympy.physics.units.quantities import Quantity
assert _test_args(Quantity("dam"))
def test_sympy__physics__units__prefixes__Prefix():
from sympy.physics.units.prefixes import Prefix
assert _test_args(Prefix('kilo', 'k', 3))
def test_sympy__core__numbers__AlgebraicNumber():
from sympy.core.numbers import AlgebraicNumber
assert _test_args(AlgebraicNumber(sqrt(2), [1, 2, 3]))
def test_sympy__polys__polytools__GroebnerBasis():
from sympy.polys.polytools import GroebnerBasis
assert _test_args(GroebnerBasis([x, y, z], x, y, z))
def test_sympy__polys__polytools__Poly():
from sympy.polys.polytools import Poly
assert _test_args(Poly(2, x, y))
def test_sympy__polys__polytools__PurePoly():
from sympy.polys.polytools import PurePoly
assert _test_args(PurePoly(2, x, y))
@SKIP('abstract class')
def test_sympy__polys__rootoftools__RootOf():
pass
def test_sympy__polys__rootoftools__ComplexRootOf():
from sympy.polys.rootoftools import ComplexRootOf
assert _test_args(ComplexRootOf(x**3 + x + 1, 0))
def test_sympy__polys__rootoftools__RootSum():
from sympy.polys.rootoftools import RootSum
assert _test_args(RootSum(x**3 + x + 1, sin))
def test_sympy__series__limits__Limit():
from sympy.series.limits import Limit
assert _test_args(Limit(x, x, 0, dir='-'))
def test_sympy__series__order__Order():
from sympy.series.order import Order
assert _test_args(Order(1, x, y))
@SKIP('Abstract Class')
def test_sympy__series__sequences__SeqBase():
pass
def test_sympy__series__sequences__EmptySequence():
# Need to imort the instance from series not the class from
# series.sequence
from sympy.series import EmptySequence
assert _test_args(EmptySequence)
@SKIP('Abstract Class')
def test_sympy__series__sequences__SeqExpr():
pass
def test_sympy__series__sequences__SeqPer():
from sympy.series.sequences import SeqPer
assert _test_args(SeqPer((1, 2, 3), (0, 10)))
def test_sympy__series__sequences__SeqFormula():
from sympy.series.sequences import SeqFormula
assert _test_args(SeqFormula(x**2, (0, 10)))
def test_sympy__series__sequences__RecursiveSeq():
from sympy.series.sequences import RecursiveSeq
y = Function("y")
n = symbols("n")
assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y(n), n, (0, 1)))
assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y(n), n))
def test_sympy__series__sequences__SeqExprOp():
from sympy.series.sequences import SeqExprOp, sequence
s1 = sequence((1, 2, 3))
s2 = sequence(x**2)
assert _test_args(SeqExprOp(s1, s2))
def test_sympy__series__sequences__SeqAdd():
from sympy.series.sequences import SeqAdd, sequence
s1 = sequence((1, 2, 3))
s2 = sequence(x**2)
assert _test_args(SeqAdd(s1, s2))
def test_sympy__series__sequences__SeqMul():
from sympy.series.sequences import SeqMul, sequence
s1 = sequence((1, 2, 3))
s2 = sequence(x**2)
assert _test_args(SeqMul(s1, s2))
@SKIP('Abstract Class')
def test_sympy__series__series_class__SeriesBase():
pass
def test_sympy__series__fourier__FourierSeries():
from sympy.series.fourier import fourier_series
assert _test_args(fourier_series(x, (x, -pi, pi)))
def test_sympy__series__fourier__FiniteFourierSeries():
from sympy.series.fourier import fourier_series
assert _test_args(fourier_series(sin(pi*x), (x, -1, 1)))
def test_sympy__series__formal__FormalPowerSeries():
from sympy.series.formal import fps
assert _test_args(fps(log(1 + x), x))
def test_sympy__series__formal__Coeff():
from sympy.series.formal import fps
assert _test_args(fps(x**2 + x + 1, x))
@SKIP('Abstract Class')
def test_sympy__series__formal__FiniteFormalPowerSeries():
pass
def test_sympy__series__formal__FormalPowerSeriesProduct():
from sympy.series.formal import fps
f1, f2 = fps(sin(x)), fps(exp(x))
assert _test_args(f1.product(f2, x))
def test_sympy__series__formal__FormalPowerSeriesCompose():
from sympy.series.formal import fps
f1, f2 = fps(exp(x)), fps(sin(x))
assert _test_args(f1.compose(f2, x))
def test_sympy__series__formal__FormalPowerSeriesInverse():
from sympy.series.formal import fps
f1 = fps(exp(x))
assert _test_args(f1.inverse(x))
def test_sympy__simplify__hyperexpand__Hyper_Function():
from sympy.simplify.hyperexpand import Hyper_Function
assert _test_args(Hyper_Function([2], [1]))
def test_sympy__simplify__hyperexpand__G_Function():
from sympy.simplify.hyperexpand import G_Function
assert _test_args(G_Function([2], [1], [], []))
@SKIP("abstract class")
def test_sympy__tensor__array__ndim_array__ImmutableNDimArray():
pass
def test_sympy__tensor__array__dense_ndim_array__ImmutableDenseNDimArray():
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
densarr = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4))
assert _test_args(densarr)
def test_sympy__tensor__array__sparse_ndim_array__ImmutableSparseNDimArray():
from sympy.tensor.array.sparse_ndim_array import ImmutableSparseNDimArray
sparr = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4))
assert _test_args(sparr)
def test_sympy__tensor__array__array_comprehension__ArrayComprehension():
from sympy.tensor.array.array_comprehension import ArrayComprehension
arrcom = ArrayComprehension(x, (x, 1, 5))
assert _test_args(arrcom)
def test_sympy__tensor__array__array_comprehension__ArrayComprehensionMap():
from sympy.tensor.array.array_comprehension import ArrayComprehensionMap
arrcomma = ArrayComprehensionMap(lambda: 0, (x, 1, 5))
assert _test_args(arrcomma)
def test_sympy__tensor__array__arrayop__Flatten():
from sympy.tensor.array.arrayop import Flatten
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
fla = Flatten(ImmutableDenseNDimArray(range(24)).reshape(2, 3, 4))
assert _test_args(fla)
def test_sympy__tensor__array__array_derivatives__ArrayDerivative():
from sympy.tensor.array.array_derivatives import ArrayDerivative
A = MatrixSymbol("A", 2, 2)
arrder = ArrayDerivative(A, A, evaluate=False)
assert _test_args(arrder)
def test_sympy__tensor__array__expressions__array_expressions__ArraySymbol():
from sympy.tensor.array.expressions.array_expressions import ArraySymbol
m, n, k = symbols("m n k")
array = ArraySymbol("A", m, n, k, 2)
assert _test_args(array)
def test_sympy__tensor__array__expressions__array_expressions__ArrayElement():
from sympy.tensor.array.expressions.array_expressions import ArrayElement
m, n, k = symbols("m n k")
ae = ArrayElement("A", (m, n, k, 2))
assert _test_args(ae)
def test_sympy__tensor__array__expressions__array_expressions__ZeroArray():
from sympy.tensor.array.expressions.array_expressions import ZeroArray
m, n, k = symbols("m n k")
za = ZeroArray(m, n, k, 2)
assert _test_args(za)
def test_sympy__tensor__array__expressions__array_expressions__OneArray():
from sympy.tensor.array.expressions.array_expressions import OneArray
m, n, k = symbols("m n k")
za = OneArray(m, n, k, 2)
assert _test_args(za)
def test_sympy__tensor__functions__TensorProduct():
from sympy.tensor.functions import TensorProduct
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 3, 3)
tp = TensorProduct(A, B)
assert _test_args(tp)
def test_sympy__tensor__indexed__Idx():
from sympy.tensor.indexed import Idx
assert _test_args(Idx('test'))
assert _test_args(Idx(1, (0, 10)))
def test_sympy__tensor__indexed__Indexed():
from sympy.tensor.indexed import Indexed, Idx
assert _test_args(Indexed('A', Idx('i'), Idx('j')))
def test_sympy__tensor__indexed__IndexedBase():
from sympy.tensor.indexed import IndexedBase
assert _test_args(IndexedBase('A', shape=(x, y)))
assert _test_args(IndexedBase('A', 1))
assert _test_args(IndexedBase('A')[0, 1])
def test_sympy__tensor__tensor__TensorIndexType():
from sympy.tensor.tensor import TensorIndexType
assert _test_args(TensorIndexType('Lorentz'))
@SKIP("deprecated class")
def test_sympy__tensor__tensor__TensorType():
pass
def test_sympy__tensor__tensor__TensorSymmetry():
from sympy.tensor.tensor import TensorSymmetry, get_symmetric_group_sgs
assert _test_args(TensorSymmetry(get_symmetric_group_sgs(2)))
def test_sympy__tensor__tensor__TensorHead():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
sym = TensorSymmetry(get_symmetric_group_sgs(1))
assert _test_args(TensorHead('p', [Lorentz], sym, 0))
def test_sympy__tensor__tensor__TensorIndex():
from sympy.tensor.tensor import TensorIndexType, TensorIndex
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
assert _test_args(TensorIndex('i', Lorentz))
@SKIP("abstract class")
def test_sympy__tensor__tensor__TensExpr():
pass
def test_sympy__tensor__tensor__TensAdd():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, TensAdd, tensor_heads
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
a, b = tensor_indices('a,b', Lorentz)
sym = TensorSymmetry(get_symmetric_group_sgs(1))
p, q = tensor_heads('p,q', [Lorentz], sym)
t1 = p(a)
t2 = q(a)
assert _test_args(TensAdd(t1, t2))
def test_sympy__tensor__tensor__Tensor():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, TensorHead
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
a, b = tensor_indices('a,b', Lorentz)
sym = TensorSymmetry(get_symmetric_group_sgs(1))
p = TensorHead('p', [Lorentz], sym)
assert _test_args(p(a))
def test_sympy__tensor__tensor__TensMul():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, tensor_heads
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
a, b = tensor_indices('a,b', Lorentz)
sym = TensorSymmetry(get_symmetric_group_sgs(1))
p, q = tensor_heads('p, q', [Lorentz], sym)
assert _test_args(3*p(a)*q(b))
def test_sympy__tensor__tensor__TensorElement():
from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorElement
L = TensorIndexType("L")
A = TensorHead("A", [L, L])
telem = TensorElement(A(x, y), {x: 1})
assert _test_args(telem)
def test_sympy__tensor__toperators__PartialDerivative():
from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead
from sympy.tensor.toperators import PartialDerivative
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
a, b = tensor_indices('a,b', Lorentz)
A = TensorHead("A", [Lorentz])
assert _test_args(PartialDerivative(A(a), A(b)))
def test_as_coeff_add():
assert (7, (3*x, 4*x**2)) == (7 + 3*x + 4*x**2).as_coeff_add()
def test_sympy__geometry__curve__Curve():
from sympy.geometry.curve import Curve
assert _test_args(Curve((x, 1), (x, 0, 1)))
def test_sympy__geometry__point__Point():
from sympy.geometry.point import Point
assert _test_args(Point(0, 1))
def test_sympy__geometry__point__Point2D():
from sympy.geometry.point import Point2D
assert _test_args(Point2D(0, 1))
def test_sympy__geometry__point__Point3D():
from sympy.geometry.point import Point3D
assert _test_args(Point3D(0, 1, 2))
def test_sympy__geometry__ellipse__Ellipse():
from sympy.geometry.ellipse import Ellipse
assert _test_args(Ellipse((0, 1), 2, 3))
def test_sympy__geometry__ellipse__Circle():
from sympy.geometry.ellipse import Circle
assert _test_args(Circle((0, 1), 2))
def test_sympy__geometry__parabola__Parabola():
from sympy.geometry.parabola import Parabola
from sympy.geometry.line import Line
assert _test_args(Parabola((0, 0), Line((2, 3), (4, 3))))
@SKIP("abstract class")
def test_sympy__geometry__line__LinearEntity():
pass
def test_sympy__geometry__line__Line():
from sympy.geometry.line import Line
assert _test_args(Line((0, 1), (2, 3)))
def test_sympy__geometry__line__Ray():
from sympy.geometry.line import Ray
assert _test_args(Ray((0, 1), (2, 3)))
def test_sympy__geometry__line__Segment():
from sympy.geometry.line import Segment
assert _test_args(Segment((0, 1), (2, 3)))
@SKIP("abstract class")
def test_sympy__geometry__line__LinearEntity2D():
pass
def test_sympy__geometry__line__Line2D():
from sympy.geometry.line import Line2D
assert _test_args(Line2D((0, 1), (2, 3)))
def test_sympy__geometry__line__Ray2D():
from sympy.geometry.line import Ray2D
assert _test_args(Ray2D((0, 1), (2, 3)))
def test_sympy__geometry__line__Segment2D():
from sympy.geometry.line import Segment2D
assert _test_args(Segment2D((0, 1), (2, 3)))
@SKIP("abstract class")
def test_sympy__geometry__line__LinearEntity3D():
pass
def test_sympy__geometry__line__Line3D():
from sympy.geometry.line import Line3D
assert _test_args(Line3D((0, 1, 1), (2, 3, 4)))
def test_sympy__geometry__line__Segment3D():
from sympy.geometry.line import Segment3D
assert _test_args(Segment3D((0, 1, 1), (2, 3, 4)))
def test_sympy__geometry__line__Ray3D():
from sympy.geometry.line import Ray3D
assert _test_args(Ray3D((0, 1, 1), (2, 3, 4)))
def test_sympy__geometry__plane__Plane():
from sympy.geometry.plane import Plane
assert _test_args(Plane((1, 1, 1), (-3, 4, -2), (1, 2, 3)))
def test_sympy__geometry__polygon__Polygon():
from sympy.geometry.polygon import Polygon
assert _test_args(Polygon((0, 1), (2, 3), (4, 5), (6, 7)))
def test_sympy__geometry__polygon__RegularPolygon():
from sympy.geometry.polygon import RegularPolygon
assert _test_args(RegularPolygon((0, 1), 2, 3, 4))
def test_sympy__geometry__polygon__Triangle():
from sympy.geometry.polygon import Triangle
assert _test_args(Triangle((0, 1), (2, 3), (4, 5)))
def test_sympy__geometry__entity__GeometryEntity():
from sympy.geometry.entity import GeometryEntity
from sympy.geometry.point import Point
assert _test_args(GeometryEntity(Point(1, 0), 1, [1, 2]))
@SKIP("abstract class")
def test_sympy__geometry__entity__GeometrySet():
pass
def test_sympy__diffgeom__diffgeom__Manifold():
from sympy.diffgeom import Manifold
assert _test_args(Manifold('name', 3))
def test_sympy__diffgeom__diffgeom__Patch():
from sympy.diffgeom import Manifold, Patch
assert _test_args(Patch('name', Manifold('name', 3)))
def test_sympy__diffgeom__diffgeom__CoordSystem():
from sympy.diffgeom import Manifold, Patch, CoordSystem
assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3))))
assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]))
def test_sympy__diffgeom__diffgeom__CoordinateSymbol():
from sympy.diffgeom import Manifold, Patch, CoordSystem, CoordinateSymbol
assert _test_args(CoordinateSymbol(CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]), 0))
def test_sympy__diffgeom__diffgeom__Point():
from sympy.diffgeom import Manifold, Patch, CoordSystem, Point
assert _test_args(Point(
CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]), [x, y]))
def test_sympy__diffgeom__diffgeom__BaseScalarField():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
assert _test_args(BaseScalarField(cs, 0))
def test_sympy__diffgeom__diffgeom__BaseVectorField():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
assert _test_args(BaseVectorField(cs, 0))
def test_sympy__diffgeom__diffgeom__Differential():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
assert _test_args(Differential(BaseScalarField(cs, 0)))
def test_sympy__diffgeom__diffgeom__Commutator():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, Commutator
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
cs1 = CoordSystem('name1', Patch('name', Manifold('name', 3)), [a, b, c])
v = BaseVectorField(cs, 0)
v1 = BaseVectorField(cs1, 0)
assert _test_args(Commutator(v, v1))
def test_sympy__diffgeom__diffgeom__TensorProduct():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, TensorProduct
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
d = Differential(BaseScalarField(cs, 0))
assert _test_args(TensorProduct(d, d))
def test_sympy__diffgeom__diffgeom__WedgeProduct():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, WedgeProduct
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
d = Differential(BaseScalarField(cs, 0))
d1 = Differential(BaseScalarField(cs, 1))
assert _test_args(WedgeProduct(d, d1))
def test_sympy__diffgeom__diffgeom__LieDerivative():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, BaseVectorField, LieDerivative
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
d = Differential(BaseScalarField(cs, 0))
v = BaseVectorField(cs, 0)
assert _test_args(LieDerivative(v, d))
@XFAIL
def test_sympy__diffgeom__diffgeom__BaseCovarDerivativeOp():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseCovarDerivativeOp
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
assert _test_args(BaseCovarDerivativeOp(cs, 0, [[[0, ]*3, ]*3, ]*3))
def test_sympy__diffgeom__diffgeom__CovarDerivativeOp():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, CovarDerivativeOp
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
v = BaseVectorField(cs, 0)
_test_args(CovarDerivativeOp(v, [[[0, ]*3, ]*3, ]*3))
def test_sympy__categories__baseclasses__Class():
from sympy.categories.baseclasses import Class
assert _test_args(Class())
def test_sympy__categories__baseclasses__Object():
from sympy.categories import Object
assert _test_args(Object("A"))
@XFAIL
def test_sympy__categories__baseclasses__Morphism():
from sympy.categories import Object, Morphism
assert _test_args(Morphism(Object("A"), Object("B")))
def test_sympy__categories__baseclasses__IdentityMorphism():
from sympy.categories import Object, IdentityMorphism
assert _test_args(IdentityMorphism(Object("A")))
def test_sympy__categories__baseclasses__NamedMorphism():
from sympy.categories import Object, NamedMorphism
assert _test_args(NamedMorphism(Object("A"), Object("B"), "f"))
def test_sympy__categories__baseclasses__CompositeMorphism():
from sympy.categories import Object, NamedMorphism, CompositeMorphism
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
assert _test_args(CompositeMorphism(f, g))
def test_sympy__categories__baseclasses__Diagram():
from sympy.categories import Object, NamedMorphism, Diagram
A = Object("A")
B = Object("B")
f = NamedMorphism(A, B, "f")
d = Diagram([f])
assert _test_args(d)
def test_sympy__categories__baseclasses__Category():
from sympy.categories import Object, NamedMorphism, Diagram, Category
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
d1 = Diagram([f, g])
d2 = Diagram([f])
K = Category("K", commutative_diagrams=[d1, d2])
assert _test_args(K)
def test_sympy__ntheory__factor___totient():
from sympy.ntheory.factor_ import totient
k = symbols('k', integer=True)
t = totient(k)
assert _test_args(t)
def test_sympy__ntheory__factor___reduced_totient():
from sympy.ntheory.factor_ import reduced_totient
k = symbols('k', integer=True)
t = reduced_totient(k)
assert _test_args(t)
def test_sympy__ntheory__factor___divisor_sigma():
from sympy.ntheory.factor_ import divisor_sigma
k = symbols('k', integer=True)
n = symbols('n', integer=True)
t = divisor_sigma(n, k)
assert _test_args(t)
def test_sympy__ntheory__factor___udivisor_sigma():
from sympy.ntheory.factor_ import udivisor_sigma
k = symbols('k', integer=True)
n = symbols('n', integer=True)
t = udivisor_sigma(n, k)
assert _test_args(t)
def test_sympy__ntheory__factor___primenu():
from sympy.ntheory.factor_ import primenu
n = symbols('n', integer=True)
t = primenu(n)
assert _test_args(t)
def test_sympy__ntheory__factor___primeomega():
from sympy.ntheory.factor_ import primeomega
n = symbols('n', integer=True)
t = primeomega(n)
assert _test_args(t)
def test_sympy__ntheory__residue_ntheory__mobius():
from sympy.ntheory import mobius
assert _test_args(mobius(2))
def test_sympy__ntheory__generate__primepi():
from sympy.ntheory import primepi
n = symbols('n')
t = primepi(n)
assert _test_args(t)
def test_sympy__physics__optics__waves__TWave():
from sympy.physics.optics import TWave
A, f, phi = symbols('A, f, phi')
assert _test_args(TWave(A, f, phi))
def test_sympy__physics__optics__gaussopt__BeamParameter():
from sympy.physics.optics import BeamParameter
assert _test_args(BeamParameter(530e-9, 1, w=1e-3))
def test_sympy__physics__optics__medium__Medium():
from sympy.physics.optics import Medium
assert _test_args(Medium('m'))
def test_sympy__tensor__array__expressions__array_expressions__ArrayContraction():
from sympy.tensor.array.expressions.array_expressions import ArrayContraction
from sympy import IndexedBase
A = symbols("A", cls=IndexedBase)
assert _test_args(ArrayContraction(A, (0, 1)))
def test_sympy__tensor__array__expressions__array_expressions__ArrayDiagonal():
from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal
from sympy import IndexedBase
A = symbols("A", cls=IndexedBase)
assert _test_args(ArrayDiagonal(A, (0, 1)))
def test_sympy__tensor__array__expressions__array_expressions__ArrayTensorProduct():
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
from sympy import IndexedBase
A, B = symbols("A B", cls=IndexedBase)
assert _test_args(ArrayTensorProduct(A, B))
def test_sympy__tensor__array__expressions__array_expressions__ArrayAdd():
from sympy.tensor.array.expressions.array_expressions import ArrayAdd
from sympy import IndexedBase
A, B = symbols("A B", cls=IndexedBase)
assert _test_args(ArrayAdd(A, B))
def test_sympy__tensor__array__expressions__array_expressions__PermuteDims():
from sympy.tensor.array.expressions.array_expressions import PermuteDims
A = MatrixSymbol("A", 4, 4)
assert _test_args(PermuteDims(A, (1, 0)))
def test_sympy__tensor__array__expressions__array_expressions__ArrayElementwiseApplyFunc():
from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayElementwiseApplyFunc
A = ArraySymbol("A", 4)
assert _test_args(ArrayElementwiseApplyFunc(exp, A))
def test_sympy__codegen__ast__Assignment():
from sympy.codegen.ast import Assignment
assert _test_args(Assignment(x, y))
def test_sympy__codegen__cfunctions__expm1():
from sympy.codegen.cfunctions import expm1
assert _test_args(expm1(x))
def test_sympy__codegen__cfunctions__log1p():
from sympy.codegen.cfunctions import log1p
assert _test_args(log1p(x))
def test_sympy__codegen__cfunctions__exp2():
from sympy.codegen.cfunctions import exp2
assert _test_args(exp2(x))
def test_sympy__codegen__cfunctions__log2():
from sympy.codegen.cfunctions import log2
assert _test_args(log2(x))
def test_sympy__codegen__cfunctions__fma():
from sympy.codegen.cfunctions import fma
assert _test_args(fma(x, y, z))
def test_sympy__codegen__cfunctions__log10():
from sympy.codegen.cfunctions import log10
assert _test_args(log10(x))
def test_sympy__codegen__cfunctions__Sqrt():
from sympy.codegen.cfunctions import Sqrt
assert _test_args(Sqrt(x))
def test_sympy__codegen__cfunctions__Cbrt():
from sympy.codegen.cfunctions import Cbrt
assert _test_args(Cbrt(x))
def test_sympy__codegen__cfunctions__hypot():
from sympy.codegen.cfunctions import hypot
assert _test_args(hypot(x, y))
def test_sympy__codegen__fnodes__FFunction():
from sympy.codegen.fnodes import FFunction
assert _test_args(FFunction('f'))
def test_sympy__codegen__fnodes__F95Function():
from sympy.codegen.fnodes import F95Function
assert _test_args(F95Function('f'))
def test_sympy__codegen__fnodes__isign():
from sympy.codegen.fnodes import isign
assert _test_args(isign(1, x))
def test_sympy__codegen__fnodes__dsign():
from sympy.codegen.fnodes import dsign
assert _test_args(dsign(1, x))
def test_sympy__codegen__fnodes__cmplx():
from sympy.codegen.fnodes import cmplx
assert _test_args(cmplx(x, y))
def test_sympy__codegen__fnodes__kind():
from sympy.codegen.fnodes import kind
assert _test_args(kind(x))
def test_sympy__codegen__fnodes__merge():
from sympy.codegen.fnodes import merge
assert _test_args(merge(1, 2, Eq(x, 0)))
def test_sympy__codegen__fnodes___literal():
from sympy.codegen.fnodes import _literal
assert _test_args(_literal(1))
def test_sympy__codegen__fnodes__literal_sp():
from sympy.codegen.fnodes import literal_sp
assert _test_args(literal_sp(1))
def test_sympy__codegen__fnodes__literal_dp():
from sympy.codegen.fnodes import literal_dp
assert _test_args(literal_dp(1))
def test_sympy__codegen__matrix_nodes__MatrixSolve():
from sympy.matrices import MatrixSymbol
from sympy.codegen.matrix_nodes import MatrixSolve
A = MatrixSymbol('A', 3, 3)
v = MatrixSymbol('x', 3, 1)
assert _test_args(MatrixSolve(A, v))
def test_sympy__vector__coordsysrect__CoordSys3D():
from sympy.vector.coordsysrect import CoordSys3D
assert _test_args(CoordSys3D('C'))
def test_sympy__vector__point__Point():
from sympy.vector.point import Point
assert _test_args(Point('P'))
def test_sympy__vector__basisdependent__BasisDependent():
#from sympy.vector.basisdependent import BasisDependent
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
pass
def test_sympy__vector__basisdependent__BasisDependentMul():
#from sympy.vector.basisdependent import BasisDependentMul
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
pass
def test_sympy__vector__basisdependent__BasisDependentAdd():
#from sympy.vector.basisdependent import BasisDependentAdd
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
pass
def test_sympy__vector__basisdependent__BasisDependentZero():
#from sympy.vector.basisdependent import BasisDependentZero
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
pass
def test_sympy__vector__vector__BaseVector():
from sympy.vector.vector import BaseVector
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(BaseVector(0, C, ' ', ' '))
def test_sympy__vector__vector__VectorAdd():
from sympy.vector.vector import VectorAdd, VectorMul
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
from sympy.abc import a, b, c, x, y, z
v1 = a*C.i + b*C.j + c*C.k
v2 = x*C.i + y*C.j + z*C.k
assert _test_args(VectorAdd(v1, v2))
assert _test_args(VectorMul(x, v1))
def test_sympy__vector__vector__VectorMul():
from sympy.vector.vector import VectorMul
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
from sympy.abc import a
assert _test_args(VectorMul(a, C.i))
def test_sympy__vector__vector__VectorZero():
from sympy.vector.vector import VectorZero
assert _test_args(VectorZero())
def test_sympy__vector__vector__Vector():
#from sympy.vector.vector import Vector
#Vector is never to be initialized using args
pass
def test_sympy__vector__vector__Cross():
from sympy.vector.vector import Cross
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
_test_args(Cross(C.i, C.j))
def test_sympy__vector__vector__Dot():
from sympy.vector.vector import Dot
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
_test_args(Dot(C.i, C.j))
def test_sympy__vector__dyadic__Dyadic():
#from sympy.vector.dyadic import Dyadic
#Dyadic is never to be initialized using args
pass
def test_sympy__vector__dyadic__BaseDyadic():
from sympy.vector.dyadic import BaseDyadic
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(BaseDyadic(C.i, C.j))
def test_sympy__vector__dyadic__DyadicMul():
from sympy.vector.dyadic import BaseDyadic, DyadicMul
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(DyadicMul(3, BaseDyadic(C.i, C.j)))
def test_sympy__vector__dyadic__DyadicAdd():
from sympy.vector.dyadic import BaseDyadic, DyadicAdd
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(2 * DyadicAdd(BaseDyadic(C.i, C.i),
BaseDyadic(C.i, C.j)))
def test_sympy__vector__dyadic__DyadicZero():
from sympy.vector.dyadic import DyadicZero
assert _test_args(DyadicZero())
def test_sympy__vector__deloperator__Del():
from sympy.vector.deloperator import Del
assert _test_args(Del())
def test_sympy__vector__implicitregion__ImplicitRegion():
from sympy.vector.implicitregion import ImplicitRegion
from sympy.abc import x, y
assert _test_args(ImplicitRegion((x, y), y**3 - 4*x))
def test_sympy__vector__integrals__ParametricIntegral():
from sympy.vector.integrals import ParametricIntegral
from sympy.vector.parametricregion import ParametricRegion
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(ParametricIntegral(C.y*C.i - 10*C.j,\
ParametricRegion((x, y), (x, 1, 3), (y, -2, 2))))
def test_sympy__vector__operators__Curl():
from sympy.vector.operators import Curl
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Curl(C.i))
def test_sympy__vector__operators__Laplacian():
from sympy.vector.operators import Laplacian
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Laplacian(C.i))
def test_sympy__vector__operators__Divergence():
from sympy.vector.operators import Divergence
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Divergence(C.i))
def test_sympy__vector__operators__Gradient():
from sympy.vector.operators import Gradient
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Gradient(C.x))
def test_sympy__vector__orienters__Orienter():
#from sympy.vector.orienters import Orienter
#Not to be initialized
pass
def test_sympy__vector__orienters__ThreeAngleOrienter():
#from sympy.vector.orienters import ThreeAngleOrienter
#Not to be initialized
pass
def test_sympy__vector__orienters__AxisOrienter():
from sympy.vector.orienters import AxisOrienter
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(AxisOrienter(x, C.i))
def test_sympy__vector__orienters__BodyOrienter():
from sympy.vector.orienters import BodyOrienter
assert _test_args(BodyOrienter(x, y, z, '123'))
def test_sympy__vector__orienters__SpaceOrienter():
from sympy.vector.orienters import SpaceOrienter
assert _test_args(SpaceOrienter(x, y, z, '123'))
def test_sympy__vector__orienters__QuaternionOrienter():
from sympy.vector.orienters import QuaternionOrienter
a, b, c, d = symbols('a b c d')
assert _test_args(QuaternionOrienter(a, b, c, d))
def test_sympy__vector__parametricregion__ParametricRegion():
from sympy.abc import t
from sympy.vector.parametricregion import ParametricRegion
assert _test_args(ParametricRegion((t, t**3), (t, 0, 2)))
def test_sympy__vector__scalar__BaseScalar():
from sympy.vector.scalar import BaseScalar
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(BaseScalar(0, C, ' ', ' '))
def test_sympy__physics__wigner__Wigner3j():
from sympy.physics.wigner import Wigner3j
assert _test_args(Wigner3j(0, 0, 0, 0, 0, 0))
def test_sympy__integrals__rubi__symbol__matchpyWC():
from sympy.integrals.rubi.symbol import matchpyWC
assert _test_args(matchpyWC(1, True, 'a'))
def test_sympy__integrals__rubi__utility_function__rubi_unevaluated_expr():
from sympy.integrals.rubi.utility_function import rubi_unevaluated_expr
a = symbols('a')
assert _test_args(rubi_unevaluated_expr(a))
def test_sympy__integrals__rubi__utility_function__rubi_exp():
from sympy.integrals.rubi.utility_function import rubi_exp
assert _test_args(rubi_exp(5))
def test_sympy__integrals__rubi__utility_function__rubi_log():
from sympy.integrals.rubi.utility_function import rubi_log
assert _test_args(rubi_log(5))
def test_sympy__integrals__rubi__utility_function__Int():
from sympy.integrals.rubi.utility_function import Int
assert _test_args(Int(5, x))
def test_sympy__integrals__rubi__utility_function__Util_Coefficient():
from sympy.integrals.rubi.utility_function import Util_Coefficient
a, x = symbols('a x')
assert _test_args(Util_Coefficient(a, x))
def test_sympy__integrals__rubi__utility_function__Gamma():
from sympy.integrals.rubi.utility_function import Gamma
assert _test_args(Gamma(5))
def test_sympy__integrals__rubi__utility_function__Util_Part():
from sympy.integrals.rubi.utility_function import Util_Part
a, b = symbols('a b')
assert _test_args(Util_Part(a + b, 0))
def test_sympy__integrals__rubi__utility_function__PolyGamma():
from sympy.integrals.rubi.utility_function import PolyGamma
assert _test_args(PolyGamma(1, 1))
def test_sympy__integrals__rubi__utility_function__ProductLog():
from sympy.integrals.rubi.utility_function import ProductLog
assert _test_args(ProductLog(1))
def test_sympy__combinatorics__schur_number__SchurNumber():
from sympy.combinatorics.schur_number import SchurNumber
assert _test_args(SchurNumber(1))
def test_sympy__combinatorics__perm_groups__SymmetricPermutationGroup():
from sympy.combinatorics.perm_groups import SymmetricPermutationGroup
assert _test_args(SymmetricPermutationGroup(5))
def test_sympy__combinatorics__perm_groups__Coset():
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.perm_groups import PermutationGroup, Coset
a = Permutation(1, 2)
b = Permutation(0, 1)
G = PermutationGroup([a, b])
assert _test_args(Coset(a, G))
|
fde39ccac63530d24f291debac165ce59b543590c503b61a20c1f9c7de595497 | from sympy.core import (
Basic, Rational, Symbol, S, Float, Integer, Mul, Number, Pow,
Expr, I, nan, pi, symbols, oo, zoo, N)
from sympy.core.parameters import global_parameters
from sympy.core.tests.test_evalf import NS
from sympy.core.function import expand_multinomial
from sympy.functions.elementary.miscellaneous import sqrt, cbrt
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.special.error_functions import erf
from sympy.functions.elementary.trigonometric import (
sin, cos, tan, sec, csc, sinh, cosh, tanh, atan)
from sympy.polys import Poly
from sympy.series.order import O
from sympy.sets import FiniteSet
from sympy.core.expr import unchanged
from sympy.core.power import power
from sympy.testing.pytest import warns_deprecated_sympy, _both_exp_pow
def test_rational():
a = Rational(1, 5)
r = sqrt(5)/5
assert sqrt(a) == r
assert 2*sqrt(a) == 2*r
r = a*a**S.Half
assert a**Rational(3, 2) == r
assert 2*a**Rational(3, 2) == 2*r
r = a**5*a**Rational(2, 3)
assert a**Rational(17, 3) == r
assert 2 * a**Rational(17, 3) == 2*r
def test_large_rational():
e = (Rational(123712**12 - 1, 7) + Rational(1, 7))**Rational(1, 3)
assert e == 234232585392159195136 * (Rational(1, 7)**Rational(1, 3))
def test_negative_real():
def feq(a, b):
return abs(a - b) < 1E-10
assert feq(S.One / Float(-0.5), -Integer(2))
def test_expand():
x = Symbol('x')
assert (2**(-1 - x)).expand() == S.Half*2**(-x)
def test_issue_3449():
#test if powers are simplified correctly
#see also issue 3995
x = Symbol('x')
assert ((x**Rational(1, 3))**Rational(2)) == x**Rational(2, 3)
assert (
(x**Rational(3))**Rational(2, 5)) == (x**Rational(3))**Rational(2, 5)
a = Symbol('a', real=True)
b = Symbol('b', real=True)
assert (a**2)**b == (abs(a)**b)**2
assert sqrt(1/a) != 1/sqrt(a) # e.g. for a = -1
assert (a**3)**Rational(1, 3) != a
assert (x**a)**b != x**(a*b) # e.g. x = -1, a=2, b=1/2
assert (x**.5)**b == x**(.5*b)
assert (x**.5)**.5 == x**.25
assert (x**2.5)**.5 != x**1.25 # e.g. for x = 5*I
k = Symbol('k', integer=True)
m = Symbol('m', integer=True)
assert (x**k)**m == x**(k*m)
assert Number(5)**Rational(2, 3) == Number(25)**Rational(1, 3)
assert (x**.5)**2 == x**1.0
assert (x**2)**k == (x**k)**2 == x**(2*k)
a = Symbol('a', positive=True)
assert (a**3)**Rational(2, 5) == a**Rational(6, 5)
assert (a**2)**b == (a**b)**2
assert (a**Rational(2, 3))**x == a**(x*Rational(2, 3)) != (a**x)**Rational(2, 3)
def test_issue_3866():
assert --sqrt(sqrt(5) - 1) == sqrt(sqrt(5) - 1)
def test_negative_one():
x = Symbol('x', complex=True)
y = Symbol('y', complex=True)
assert 1/x**y == x**(-y)
def test_issue_4362():
neg = Symbol('neg', negative=True)
nonneg = Symbol('nonneg', nonnegative=True)
any = Symbol('any')
num, den = sqrt(1/neg).as_numer_denom()
assert num == sqrt(-1)
assert den == sqrt(-neg)
num, den = sqrt(1/nonneg).as_numer_denom()
assert num == 1
assert den == sqrt(nonneg)
num, den = sqrt(1/any).as_numer_denom()
assert num == sqrt(1/any)
assert den == 1
def eqn(num, den, pow):
return (num/den)**pow
npos = 1
nneg = -1
dpos = 2 - sqrt(3)
dneg = 1 - sqrt(3)
assert dpos > 0 and dneg < 0 and npos > 0 and nneg < 0
# pos or neg integer
eq = eqn(npos, dpos, 2)
assert eq.is_Pow and eq.as_numer_denom() == (1, dpos**2)
eq = eqn(npos, dneg, 2)
assert eq.is_Pow and eq.as_numer_denom() == (1, dneg**2)
eq = eqn(nneg, dpos, 2)
assert eq.is_Pow and eq.as_numer_denom() == (1, dpos**2)
eq = eqn(nneg, dneg, 2)
assert eq.is_Pow and eq.as_numer_denom() == (1, dneg**2)
eq = eqn(npos, dpos, -2)
assert eq.is_Pow and eq.as_numer_denom() == (dpos**2, 1)
eq = eqn(npos, dneg, -2)
assert eq.is_Pow and eq.as_numer_denom() == (dneg**2, 1)
eq = eqn(nneg, dpos, -2)
assert eq.is_Pow and eq.as_numer_denom() == (dpos**2, 1)
eq = eqn(nneg, dneg, -2)
assert eq.is_Pow and eq.as_numer_denom() == (dneg**2, 1)
# pos or neg rational
pow = S.Half
eq = eqn(npos, dpos, pow)
assert eq.is_Pow and eq.as_numer_denom() == (npos**pow, dpos**pow)
eq = eqn(npos, dneg, pow)
assert eq.is_Pow is False and eq.as_numer_denom() == ((-npos)**pow, (-dneg)**pow)
eq = eqn(nneg, dpos, pow)
assert not eq.is_Pow or eq.as_numer_denom() == (nneg**pow, dpos**pow)
eq = eqn(nneg, dneg, pow)
assert eq.is_Pow and eq.as_numer_denom() == ((-nneg)**pow, (-dneg)**pow)
eq = eqn(npos, dpos, -pow)
assert eq.is_Pow and eq.as_numer_denom() == (dpos**pow, npos**pow)
eq = eqn(npos, dneg, -pow)
assert eq.is_Pow is False and eq.as_numer_denom() == (-(-npos)**pow*(-dneg)**pow, npos)
eq = eqn(nneg, dpos, -pow)
assert not eq.is_Pow or eq.as_numer_denom() == (dpos**pow, nneg**pow)
eq = eqn(nneg, dneg, -pow)
assert eq.is_Pow and eq.as_numer_denom() == ((-dneg)**pow, (-nneg)**pow)
# unknown exponent
pow = 2*any
eq = eqn(npos, dpos, pow)
assert eq.is_Pow and eq.as_numer_denom() == (npos**pow, dpos**pow)
eq = eqn(npos, dneg, pow)
assert eq.is_Pow and eq.as_numer_denom() == ((-npos)**pow, (-dneg)**pow)
eq = eqn(nneg, dpos, pow)
assert eq.is_Pow and eq.as_numer_denom() == (nneg**pow, dpos**pow)
eq = eqn(nneg, dneg, pow)
assert eq.is_Pow and eq.as_numer_denom() == ((-nneg)**pow, (-dneg)**pow)
eq = eqn(npos, dpos, -pow)
assert eq.as_numer_denom() == (dpos**pow, npos**pow)
eq = eqn(npos, dneg, -pow)
assert eq.is_Pow and eq.as_numer_denom() == ((-dneg)**pow, (-npos)**pow)
eq = eqn(nneg, dpos, -pow)
assert eq.is_Pow and eq.as_numer_denom() == (dpos**pow, nneg**pow)
eq = eqn(nneg, dneg, -pow)
assert eq.is_Pow and eq.as_numer_denom() == ((-dneg)**pow, (-nneg)**pow)
x = Symbol('x')
y = Symbol('y')
assert ((1/(1 + x/3))**(-S.One)).as_numer_denom() == (3 + x, 3)
notp = Symbol('notp', positive=False) # not positive does not imply real
b = ((1 + x/notp)**-2)
assert (b**(-y)).as_numer_denom() == (1, b**y)
assert (b**(-S.One)).as_numer_denom() == ((notp + x)**2, notp**2)
nonp = Symbol('nonp', nonpositive=True)
assert (((1 + x/nonp)**-2)**(-S.One)).as_numer_denom() == ((-nonp -
x)**2, nonp**2)
n = Symbol('n', negative=True)
assert (x**n).as_numer_denom() == (1, x**-n)
assert sqrt(1/n).as_numer_denom() == (S.ImaginaryUnit, sqrt(-n))
n = Symbol('0 or neg', nonpositive=True)
# if x and n are split up without negating each term and n is negative
# then the answer might be wrong; if n is 0 it won't matter since
# 1/oo and 1/zoo are both zero as is sqrt(0)/sqrt(-x) unless x is also
# zero (in which case the negative sign doesn't matter):
# 1/sqrt(1/-1) = -I but sqrt(-1)/sqrt(1) = I
assert (1/sqrt(x/n)).as_numer_denom() == (sqrt(-n), sqrt(-x))
c = Symbol('c', complex=True)
e = sqrt(1/c)
assert e.as_numer_denom() == (e, 1)
i = Symbol('i', integer=True)
assert ((1 + x/y)**i).as_numer_denom() == ((x + y)**i, y**i)
def test_Pow_Expr_args():
x = Symbol('x')
bases = [Basic(), Poly(x, x), FiniteSet(x)]
for base in bases:
with warns_deprecated_sympy():
Pow(base, S.One)
def test_Pow_signs():
"""Cf. issues 4595 and 5250"""
x = Symbol('x')
y = Symbol('y')
n = Symbol('n', even=True)
assert (3 - y)**2 != (y - 3)**2
assert (3 - y)**n != (y - 3)**n
assert (-3 + y - x)**2 != (3 - y + x)**2
assert (y - 3)**3 != -(3 - y)**3
def test_power_with_noncommutative_mul_as_base():
x = Symbol('x', commutative=False)
y = Symbol('y', commutative=False)
assert not (x*y)**3 == x**3*y**3
assert (2*x*y)**3 == 8*(x*y)**3
@_both_exp_pow
def test_power_rewrite_exp():
assert (I**I).rewrite(exp) == exp(-pi/2)
expr = (2 + 3*I)**(4 + 5*I)
assert expr.rewrite(exp) == exp((4 + 5*I)*(log(sqrt(13)) + I*atan(Rational(3, 2))))
assert expr.rewrite(exp).expand() == \
169*exp(5*I*log(13)/2)*exp(4*I*atan(Rational(3, 2)))*exp(-5*atan(Rational(3, 2)))
assert ((6 + 7*I)**5).rewrite(exp) == 7225*sqrt(85)*exp(5*I*atan(Rational(7, 6)))
expr = 5**(6 + 7*I)
assert expr.rewrite(exp) == exp((6 + 7*I)*log(5))
assert expr.rewrite(exp).expand() == 15625*exp(7*I*log(5))
assert Pow(123, 789, evaluate=False).rewrite(exp) == 123**789
assert (1**I).rewrite(exp) == 1**I
assert (0**I).rewrite(exp) == 0**I
expr = (-2)**(2 + 5*I)
assert expr.rewrite(exp) == exp((2 + 5*I)*(log(2) + I*pi))
assert expr.rewrite(exp).expand() == 4*exp(-5*pi)*exp(5*I*log(2))
assert ((-2)**S(-5)).rewrite(exp) == (-2)**S(-5)
x, y = symbols('x y')
assert (x**y).rewrite(exp) == exp(y*log(x))
if global_parameters.exp_is_pow:
assert (7**x).rewrite(exp) == Pow(S.Exp1, x*log(7), evaluate=False)
else:
assert (7**x).rewrite(exp) == exp(x*log(7), evaluate=False)
assert ((2 + 3*I)**x).rewrite(exp) == exp(x*(log(sqrt(13)) + I*atan(Rational(3, 2))))
assert (y**(5 + 6*I)).rewrite(exp) == exp(log(y)*(5 + 6*I))
assert all((1/func(x)).rewrite(exp) == 1/(func(x).rewrite(exp)) for func in
(sin, cos, tan, sec, csc, sinh, cosh, tanh))
def test_zero():
x = Symbol('x')
y = Symbol('y')
assert 0**x != 0
assert 0**(2*x) == 0**x
assert 0**(1.0*x) == 0**x
assert 0**(2.0*x) == 0**x
assert (0**(2 - x)).as_base_exp() == (0, 2 - x)
assert 0**(x - 2) != S.Infinity**(2 - x)
assert 0**(2*x*y) == 0**(x*y)
assert 0**(-2*x*y) == S.ComplexInfinity**(x*y)
#Test issue 19572
assert 0 ** -oo is zoo
assert power(0, -oo) is zoo
def test_pow_as_base_exp():
x = Symbol('x')
assert (S.Infinity**(2 - x)).as_base_exp() == (S.Infinity, 2 - x)
assert (S.Infinity**(x - 2)).as_base_exp() == (S.Infinity, x - 2)
p = S.Half**x
assert p.base, p.exp == p.as_base_exp() == (S(2), -x)
# issue 8344:
assert Pow(1, 2, evaluate=False).as_base_exp() == (S.One, S(2))
def test_nseries():
x = Symbol('x')
assert sqrt(I*x - 1)._eval_nseries(x, 4, None, 1) == I + x/2 + I*x**2/8 - x**3/16 + O(x**4)
assert sqrt(I*x - 1)._eval_nseries(x, 4, None, -1) == -I - x/2 - I*x**2/8 + x**3/16 + O(x**4)
assert cbrt(I*x - 1)._eval_nseries(x, 4, None, 1) == (-1)**(S(1)/3) - (-1)**(S(5)/6)*x/3 + \
(-1)**(S(1)/3)*x**2/9 + 5*(-1)**(S(5)/6)*x**3/81 + O(x**4)
assert cbrt(I*x - 1)._eval_nseries(x, 4, None, -1) == (-1)**(S(1)/3)*exp(-2*I*pi/3) - \
(-1)**(S(5)/6)*x*exp(-2*I*pi/3)/3 + (-1)**(S(1)/3)*x**2*exp(-2*I*pi/3)/9 + \
5*(-1)**(S(5)/6)*x**3*exp(-2*I*pi/3)/81 + O(x**4)
assert (1 / (exp(-1/x) + 1/x))._eval_nseries(x, 2, None) == x + O(x**2)
def test_issue_6100_12942_4473():
x = Symbol('x')
y = Symbol('y')
assert x**1.0 != x
assert x != x**1.0
assert True != x**1.0
assert x**1.0 is not True
assert x is not True
assert x*y != (x*y)**1.0
# Pow != Symbol
assert (x**1.0)**1.0 != x
assert (x**1.0)**2.0 != x**2
b = Expr()
assert Pow(b, 1.0, evaluate=False) != b
# if the following gets distributed as a Mul (x**1.0*y**1.0 then
# __eq__ methods could be added to Symbol and Pow to detect the
# power-of-1.0 case.
assert ((x*y)**1.0).func is Pow
def test_issue_6208():
from sympy import root
assert sqrt(33**(I*Rational(9, 10))) == -33**(I*Rational(9, 20))
assert root((6*I)**(2*I), 3).as_base_exp()[1] == Rational(1, 3) # != 2*I/3
assert root((6*I)**(I/3), 3).as_base_exp()[1] == I/9
assert sqrt(exp(3*I)) == exp(I*Rational(3, 2))
assert sqrt(-sqrt(3)*(1 + 2*I)) == sqrt(sqrt(3))*sqrt(-1 - 2*I)
assert sqrt(exp(5*I)) == -exp(I*Rational(5, 2))
assert root(exp(5*I), 3).exp == Rational(1, 3)
def test_issue_6990():
x = Symbol('x')
a = Symbol('a')
b = Symbol('b')
assert (sqrt(a + b*x + x**2)).series(x, 0, 3).removeO() == \
sqrt(a)*x**2*(1/(2*a) - b**2/(8*a**2)) + sqrt(a) + b*x/(2*sqrt(a))
def test_issue_6068():
x = Symbol('x')
assert sqrt(sin(x)).series(x, 0, 7) == \
sqrt(x) - x**Rational(5, 2)/12 + x**Rational(9, 2)/1440 - \
x**Rational(13, 2)/24192 + O(x**7)
assert sqrt(sin(x)).series(x, 0, 9) == \
sqrt(x) - x**Rational(5, 2)/12 + x**Rational(9, 2)/1440 - \
x**Rational(13, 2)/24192 - 67*x**Rational(17, 2)/29030400 + O(x**9)
assert sqrt(sin(x**3)).series(x, 0, 19) == \
x**Rational(3, 2) - x**Rational(15, 2)/12 + x**Rational(27, 2)/1440 + O(x**19)
assert sqrt(sin(x**3)).series(x, 0, 20) == \
x**Rational(3, 2) - x**Rational(15, 2)/12 + x**Rational(27, 2)/1440 - \
x**Rational(39, 2)/24192 + O(x**20)
def test_issue_6782():
x = Symbol('x')
assert sqrt(sin(x**3)).series(x, 0, 7) == x**Rational(3, 2) + O(x**7)
assert sqrt(sin(x**4)).series(x, 0, 3) == x**2 + O(x**3)
def test_issue_6653():
x = Symbol('x')
assert (1 / sqrt(1 + sin(x**2))).series(x, 0, 3) == 1 - x**2/2 + O(x**3)
def test_issue_6429():
x = Symbol('x')
c = Symbol('c')
f = (c**2 + x)**(0.5)
assert f.series(x, x0=0, n=1) == (c**2)**0.5 + O(x)
assert f.taylor_term(0, x) == (c**2)**0.5
assert f.taylor_term(1, x) == 0.5*x*(c**2)**(-0.5)
assert f.taylor_term(2, x) == -0.125*x**2*(c**2)**(-1.5)
def test_issue_7638():
f = pi/log(sqrt(2))
assert ((1 + I)**(I*f/2))**0.3 == (1 + I)**(0.15*I*f)
# if 1/3 -> 1.0/3 this should fail since it cannot be shown that the
# sign will be +/-1; for the previous "small arg" case, it didn't matter
# that this could not be proved
assert (1 + I)**(4*I*f) == ((1 + I)**(12*I*f))**Rational(1, 3)
assert (((1 + I)**(I*(1 + 7*f)))**Rational(1, 3)).exp == Rational(1, 3)
r = symbols('r', real=True)
assert sqrt(r**2) == abs(r)
assert cbrt(r**3) != r
assert sqrt(Pow(2*I, 5*S.Half)) != (2*I)**Rational(5, 4)
p = symbols('p', positive=True)
assert cbrt(p**2) == p**Rational(2, 3)
assert NS(((0.2 + 0.7*I)**(0.7 + 1.0*I))**(0.5 - 0.1*I), 1) == '0.4 + 0.2*I'
assert sqrt(1/(1 + I)) == sqrt(1 - I)/sqrt(2) # or 1/sqrt(1 + I)
e = 1/(1 - sqrt(2))
assert sqrt(e) == I/sqrt(-1 + sqrt(2))
assert e**Rational(-1, 2) == -I*sqrt(-1 + sqrt(2))
assert sqrt((cos(1)**2 + sin(1)**2 - 1)**(3 + I)).exp in [S.Half,
Rational(3, 2) + I/2]
assert sqrt(r**Rational(4, 3)) != r**Rational(2, 3)
assert sqrt((p + I)**Rational(4, 3)) == (p + I)**Rational(2, 3)
assert sqrt((p - p**2*I)**2) == p - p**2*I
assert sqrt((p + r*I)**2) != p + r*I
e = (1 + I/5)
assert sqrt(e**5) == e**(5*S.Half)
assert sqrt(e**6) == e**3
assert sqrt((1 + I*r)**6) != (1 + I*r)**3
def test_issue_8582():
assert 1**oo is nan
assert 1**(-oo) is nan
assert 1**zoo is nan
assert 1**(oo + I) is nan
assert 1**(1 + I*oo) is nan
assert 1**(oo + I*oo) is nan
def test_issue_8650():
n = Symbol('n', integer=True, nonnegative=True)
assert (n**n).is_positive is True
x = 5*n + 5
assert (x**(5*(n + 1))).is_positive is True
def test_issue_13914():
b = Symbol('b')
assert (-1)**zoo is nan
assert 2**zoo is nan
assert (S.Half)**(1 + zoo) is nan
assert I**(zoo + I) is nan
assert b**(I + zoo) is nan
def test_better_sqrt():
n = Symbol('n', integer=True, nonnegative=True)
assert sqrt(3 + 4*I) == 2 + I
assert sqrt(3 - 4*I) == 2 - I
assert sqrt(-3 - 4*I) == 1 - 2*I
assert sqrt(-3 + 4*I) == 1 + 2*I
assert sqrt(32 + 24*I) == 6 + 2*I
assert sqrt(32 - 24*I) == 6 - 2*I
assert sqrt(-32 - 24*I) == 2 - 6*I
assert sqrt(-32 + 24*I) == 2 + 6*I
# triple (3, 4, 5):
# parity of 3 matches parity of 5 and
# den, 4, is a square
assert sqrt((3 + 4*I)/4) == 1 + I/2
# triple (8, 15, 17)
# parity of 8 doesn't match parity of 17 but
# den/2, 8/2, is a square
assert sqrt((8 + 15*I)/8) == (5 + 3*I)/4
# handle the denominator
assert sqrt((3 - 4*I)/25) == (2 - I)/5
assert sqrt((3 - 4*I)/26) == (2 - I)/sqrt(26)
# mul
# issue #12739
assert sqrt((3 + 4*I)/(3 - 4*I)) == (3 + 4*I)/5
assert sqrt(2/(3 + 4*I)) == sqrt(2)/5*(2 - I)
assert sqrt(n/(3 + 4*I)).subs(n, 2) == sqrt(2)/5*(2 - I)
assert sqrt(-2/(3 + 4*I)) == sqrt(2)/5*(1 + 2*I)
assert sqrt(-n/(3 + 4*I)).subs(n, 2) == sqrt(2)/5*(1 + 2*I)
# power
assert sqrt(1/(3 + I*4)) == (2 - I)/5
assert sqrt(1/(3 - I)) == sqrt(10)*sqrt(3 + I)/10
# symbolic
i = symbols('i', imaginary=True)
assert sqrt(3/i) == Mul(sqrt(3), 1/sqrt(i), evaluate=False)
# multiples of 1/2; don't make this too automatic
assert sqrt(3 + 4*I)**3 == (2 + I)**3
assert Pow(3 + 4*I, Rational(3, 2)) == 2 + 11*I
assert Pow(6 + 8*I, Rational(3, 2)) == 2*sqrt(2)*(2 + 11*I)
n, d = (3 + 4*I), (3 - 4*I)**3
a = n/d
assert a.args == (1/d, n)
eq = sqrt(a)
assert eq.args == (a, S.Half)
assert expand_multinomial(eq) == sqrt((-117 + 44*I)*(3 + 4*I))/125
assert eq.expand() == (7 - 24*I)/125
# issue 12775
# pos im part
assert sqrt(2*I) == (1 + I)
assert sqrt(2*9*I) == Mul(3, 1 + I, evaluate=False)
assert Pow(2*I, 3*S.Half) == (1 + I)**3
# neg im part
assert sqrt(-I/2) == Mul(S.Half, 1 - I, evaluate=False)
# fractional im part
assert Pow(Rational(-9, 2)*I, Rational(3, 2)) == 27*(1 - I)**3/8
def test_issue_2993():
x = Symbol('x')
assert str((2.3*x - 4)**0.3) == '1.5157165665104*(0.575*x - 1)**0.3'
assert str((2.3*x + 4)**0.3) == '1.5157165665104*(0.575*x + 1)**0.3'
assert str((-2.3*x + 4)**0.3) == '1.5157165665104*(1 - 0.575*x)**0.3'
assert str((-2.3*x - 4)**0.3) == '1.5157165665104*(-0.575*x - 1)**0.3'
assert str((2.3*x - 2)**0.3) == '1.28386201800527*(x - 0.869565217391304)**0.3'
assert str((-2.3*x - 2)**0.3) == '1.28386201800527*(-x - 0.869565217391304)**0.3'
assert str((-2.3*x + 2)**0.3) == '1.28386201800527*(0.869565217391304 - x)**0.3'
assert str((2.3*x + 2)**0.3) == '1.28386201800527*(x + 0.869565217391304)**0.3'
assert str((2.3*x - 4)**Rational(1, 3)) == '2**(2/3)*(0.575*x - 1)**(1/3)'
eq = (2.3*x + 4)
assert eq**2 == 16*(0.575*x + 1)**2
assert (1/eq).args == (eq, -1) # don't change trivial power
# issue 17735
q=.5*exp(x) - .5*exp(-x) + 0.1
assert int((q**2).subs(x, 1)) == 1
# issue 17756
y = Symbol('y')
assert len(sqrt(x/(x + y)**2 + Float('0.008', 30)).subs(y, pi.n(25)).atoms(Float)) == 2
# issue 17756
a, b, c, d, e, f, g = symbols('a:g')
expr = sqrt(1 + a*(c**4 + g*d - 2*g*e - f*(-g + d))**2/
(c**3*b**2*(d - 3*e + 2*f)**2))/2
r = [
(a, N('0.0170992456333788667034850458615', 30)),
(b, N('0.0966594956075474769169134801223', 30)),
(c, N('0.390911862903463913632151616184', 30)),
(d, N('0.152812084558656566271750185933', 30)),
(e, N('0.137562344465103337106561623432', 30)),
(f, N('0.174259178881496659302933610355', 30)),
(g, N('0.220745448491223779615401870086', 30))]
tru = expr.n(30, subs=dict(r))
seq = expr.subs(r)
# although `tru` is the right way to evaluate
# expr with numerical values, `seq` will have
# significant loss of precision if extraction of
# the largest coefficient of a power's base's terms
# is done improperly
assert seq == tru
def test_issue_17450():
assert (erf(cosh(1)**7)**I).is_real is None
assert (erf(cosh(1)**7)**I).is_imaginary is False
assert (Pow(exp(1+sqrt(2)), ((1-sqrt(2))*I*pi), evaluate=False)).is_real is None
assert ((-10)**(10*I*pi/3)).is_real is False
assert ((-5)**(4*I*pi)).is_real is False
def test_issue_18190():
assert sqrt(1 / tan(1 + I)) == 1 / sqrt(tan(1 + I))
def test_issue_14815():
x = Symbol('x', real=True)
assert sqrt(x).is_extended_negative is False
x = Symbol('x', real=False)
assert sqrt(x).is_extended_negative is None
x = Symbol('x', complex=True)
assert sqrt(x).is_extended_negative is False
x = Symbol('x', extended_real=True)
assert sqrt(x).is_extended_negative is False
assert sqrt(zoo, evaluate=False).is_extended_negative is None
assert sqrt(nan, evaluate=False).is_extended_negative is None
def test_issue_18509():
assert unchanged(Mul, oo, 1/pi**oo)
assert (1/pi**oo).is_extended_positive == False
def test_issue_18762():
e, p = symbols('e p')
g0 = sqrt(1 + e**2 - 2*e*cos(p))
assert len(g0.series(e, 1, 3).args) == 4
def test_issue_21860():
x = Symbol('x')
e = 3*2**Rational(66666666667,200000000000)*3**Rational(16666666667,50000000000)*x**Rational(66666666667, 200000000000)
ans = Mul(Rational(3, 2),
Pow(Integer(2), Rational(33333333333, 100000000000)),
Pow(Integer(3), Rational(26666666667, 40000000000)))
assert e.xreplace({x: Rational(3,8)}) == ans
def test_issue_21647():
x = Symbol('x')
e = log((Integer(567)/500)**(811*(Integer(567)/500)**x/100))
ans = log(Mul(Rational(64701150190720499096094005280169087619821081527,
76293945312500000000000000000000000000000000000),
Pow(Integer(2), Rational(396204892125479941, 781250000000000000)),
Pow(Integer(3), Rational(385045107874520059, 390625000000000000)),
Pow(Integer(5), Rational(407364676376439823, 1562500000000000000)),
Pow(Integer(7), Rational(385045107874520059, 1562500000000000000))))
assert e.xreplace({x: 6}) == ans
def test_issue_21762():
x = Symbol('x')
e = (x**2 + 6)**(Integer(33333333333333333)/50000000000000000)
ans = Mul(Rational(5, 4),
Pow(Integer(2), Rational(16666666666666667, 25000000000000000)),
Pow(Integer(5), Rational(8333333333333333, 25000000000000000)))
assert e.xreplace({x: S.Half}) == ans
def test_rational_powers_larger_than_one():
assert Rational(2, 3)**Rational(3, 2) == 2*sqrt(6)/9
assert Rational(1, 6)**Rational(9, 4) == 6**Rational(3, 4)/216
assert Rational(3, 7)**Rational(7, 3) == 9*3**Rational(1, 3)*7**Rational(2, 3)/343
def test_power_dispatcher():
class NewBase(Expr):
pass
class NewPow(NewBase, Pow):
pass
a, b = Symbol('a'), NewBase()
@power.register(Expr, NewBase)
@power.register(NewBase, Expr)
@power.register(NewBase, NewBase)
def _(a, b):
return NewPow(a, b)
# Pow called as fallback
assert power(2, 3) == 8*S.One
assert power(a, 2) == Pow(a, 2)
assert power(a, a) == Pow(a, a)
# NewPow called by dispatch
assert power(a, b) == NewPow(a, b)
assert power(b, a) == NewPow(b, a)
assert power(b, b) == NewPow(b, b)
def test_powers_of_I():
assert [sqrt(I)**i for i in range(13)] == [
1, sqrt(I), I, sqrt(I)**3, -1, -sqrt(I), -I, -sqrt(I)**3,
1, sqrt(I), I, sqrt(I)**3, -1]
assert sqrt(I)**(S(9)/2) == -I**(S(1)/4)
|
28dc8f7d18b22e78587cf975c8ec67e214486145e8db397cb876dd5177e47514 | from sympy import (Symbol, exp, Integer, Float, sin, cos, log, Poly, Lambda,
Function, I, S, sqrt, srepr, Rational, Tuple, Matrix, Interval, Add, Mul,
Pow, Or, true, false, Abs, pi, Range, Xor)
from sympy.abc import x, y
from sympy.core.sympify import (sympify, _sympify, SympifyError, kernS,
CantSympify)
from sympy.core.decorators import _sympifyit
from sympy.external import import_module
from sympy.testing.pytest import raises, XFAIL, skip, warns_deprecated_sympy
from sympy.utilities.decorator import conserve_mpmath_dps
from sympy.geometry import Point, Line
from sympy.functions.combinatorial.factorials import factorial, factorial2
from sympy.abc import _clash, _clash1, _clash2
from sympy.core.compatibility import HAS_GMPY
from sympy.sets import FiniteSet, EmptySet
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
import mpmath
from collections import defaultdict, OrderedDict
from mpmath.rational import mpq
numpy = import_module('numpy')
def test_issue_3538():
v = sympify("exp(x)")
assert v == exp(x)
assert type(v) == type(exp(x))
assert str(type(v)) == str(type(exp(x)))
def test_sympify1():
assert sympify("x") == Symbol("x")
assert sympify(" x") == Symbol("x")
assert sympify(" x ") == Symbol("x")
# issue 4877
n1 = S.Half
assert sympify('--.5') == n1
assert sympify('-1/2') == -n1
assert sympify('-+--.5') == -n1
assert sympify('-.[3]') == Rational(-1, 3)
assert sympify('.[3]') == Rational(1, 3)
assert sympify('+.[3]') == Rational(1, 3)
assert sympify('+0.[3]*10**-2') == Rational(1, 300)
assert sympify('.[052631578947368421]') == Rational(1, 19)
assert sympify('.0[526315789473684210]') == Rational(1, 19)
assert sympify('.034[56]') == Rational(1711, 49500)
# options to make reals into rationals
assert sympify('1.22[345]', rational=True) == \
1 + Rational(22, 100) + Rational(345, 99900)
assert sympify('2/2.6', rational=True) == Rational(10, 13)
assert sympify('2.6/2', rational=True) == Rational(13, 10)
assert sympify('2.6e2/17', rational=True) == Rational(260, 17)
assert sympify('2.6e+2/17', rational=True) == Rational(260, 17)
assert sympify('2.6e-2/17', rational=True) == Rational(26, 17000)
assert sympify('2.1+3/4', rational=True) == \
Rational(21, 10) + Rational(3, 4)
assert sympify('2.234456', rational=True) == Rational(279307, 125000)
assert sympify('2.234456e23', rational=True) == 223445600000000000000000
assert sympify('2.234456e-23', rational=True) == \
Rational(279307, 12500000000000000000000000000)
assert sympify('-2.234456e-23', rational=True) == \
Rational(-279307, 12500000000000000000000000000)
assert sympify('12345678901/17', rational=True) == \
Rational(12345678901, 17)
assert sympify('1/.3 + x', rational=True) == Rational(10, 3) + x
# make sure longs in fractions work
assert sympify('222222222222/11111111111') == \
Rational(222222222222, 11111111111)
# ... even if they come from repetend notation
assert sympify('1/.2[123456789012]') == Rational(333333333333, 70781892967)
# ... or from high precision reals
assert sympify('.1234567890123456', rational=True) == \
Rational(19290123283179, 156250000000000)
def test_sympify_Fraction():
try:
import fractions
except ImportError:
pass
else:
value = sympify(fractions.Fraction(101, 127))
assert value == Rational(101, 127) and type(value) is Rational
def test_sympify_gmpy():
if HAS_GMPY:
if HAS_GMPY == 2:
import gmpy2 as gmpy
elif HAS_GMPY == 1:
import gmpy
value = sympify(gmpy.mpz(1000001))
assert value == Integer(1000001) and type(value) is Integer
value = sympify(gmpy.mpq(101, 127))
assert value == Rational(101, 127) and type(value) is Rational
@conserve_mpmath_dps
def test_sympify_mpmath():
value = sympify(mpmath.mpf(1.0))
assert value == Float(1.0) and type(value) is Float
mpmath.mp.dps = 12
assert sympify(
mpmath.pi).epsilon_eq(Float("3.14159265359"), Float("1e-12")) == True
assert sympify(
mpmath.pi).epsilon_eq(Float("3.14159265359"), Float("1e-13")) == False
mpmath.mp.dps = 6
assert sympify(
mpmath.pi).epsilon_eq(Float("3.14159"), Float("1e-5")) == True
assert sympify(
mpmath.pi).epsilon_eq(Float("3.14159"), Float("1e-6")) == False
assert sympify(mpmath.mpc(1.0 + 2.0j)) == Float(1.0) + Float(2.0)*I
assert sympify(mpq(1, 2)) == S.Half
def test_sympify2():
class A:
def _sympy_(self):
return Symbol("x")**3
a = A()
assert _sympify(a) == x**3
assert sympify(a) == x**3
assert a == x**3
def test_sympify3():
assert sympify("x**3") == x**3
assert sympify("x^3") == x**3
assert sympify("1/2") == Integer(1)/2
raises(SympifyError, lambda: _sympify('x**3'))
raises(SympifyError, lambda: _sympify('1/2'))
def test_sympify_keywords():
raises(SympifyError, lambda: sympify('if'))
raises(SympifyError, lambda: sympify('for'))
raises(SympifyError, lambda: sympify('while'))
raises(SympifyError, lambda: sympify('lambda'))
def test_sympify_float():
assert sympify("1e-64") != 0
assert sympify("1e-20000") != 0
def test_sympify_bool():
assert sympify(True) is true
assert sympify(False) is false
def test_sympyify_iterables():
ans = [Rational(3, 10), Rational(1, 5)]
assert sympify(['.3', '.2'], rational=True) == ans
assert sympify(dict(x=0, y=1)) == {x: 0, y: 1}
assert sympify(['1', '2', ['3', '4']]) == [S(1), S(2), [S(3), S(4)]]
@XFAIL
def test_issue_16772():
# because there is a converter for tuple, the
# args are only sympified without the flags being passed
# along; list, on the other hand, is not converted
# with a converter so its args are traversed later
ans = [Rational(3, 10), Rational(1, 5)]
assert sympify(tuple(['.3', '.2']), rational=True) == Tuple(*ans)
def test_issue_16859():
class no(float, CantSympify):
pass
raises(SympifyError, lambda: sympify(no(1.2)))
def test_sympify4():
class A:
def _sympy_(self):
return Symbol("x")
a = A()
assert _sympify(a)**3 == x**3
assert sympify(a)**3 == x**3
assert a == x
def test_sympify_text():
assert sympify('some') == Symbol('some')
assert sympify('core') == Symbol('core')
assert sympify('True') is True
assert sympify('False') is False
assert sympify('Poly') == Poly
assert sympify('sin') == sin
def test_sympify_function():
assert sympify('factor(x**2-1, x)') == -(1 - x)*(x + 1)
assert sympify('sin(pi/2)*cos(pi)') == -Integer(1)
def test_sympify_poly():
p = Poly(x**2 + x + 1, x)
assert _sympify(p) is p
assert sympify(p) is p
def test_sympify_factorial():
assert sympify('x!') == factorial(x)
assert sympify('(x+1)!') == factorial(x + 1)
assert sympify('(1 + y*(x + 1))!') == factorial(1 + y*(x + 1))
assert sympify('(1 + y*(x + 1)!)^2') == (1 + y*factorial(x + 1))**2
assert sympify('y*x!') == y*factorial(x)
assert sympify('x!!') == factorial2(x)
assert sympify('(x+1)!!') == factorial2(x + 1)
assert sympify('(1 + y*(x + 1))!!') == factorial2(1 + y*(x + 1))
assert sympify('(1 + y*(x + 1)!!)^2') == (1 + y*factorial2(x + 1))**2
assert sympify('y*x!!') == y*factorial2(x)
assert sympify('factorial2(x)!') == factorial(factorial2(x))
raises(SympifyError, lambda: sympify("+!!"))
raises(SympifyError, lambda: sympify(")!!"))
raises(SympifyError, lambda: sympify("!"))
raises(SympifyError, lambda: sympify("(!)"))
raises(SympifyError, lambda: sympify("x!!!"))
def test_sage():
# how to effectivelly test for the _sage_() method without having SAGE
# installed?
assert hasattr(x, "_sage_")
assert hasattr(Integer(3), "_sage_")
assert hasattr(sin(x), "_sage_")
assert hasattr(cos(x), "_sage_")
assert hasattr(x**2, "_sage_")
assert hasattr(x + y, "_sage_")
assert hasattr(exp(x), "_sage_")
assert hasattr(log(x), "_sage_")
def test_issue_3595():
assert sympify("a_") == Symbol("a_")
assert sympify("_a") == Symbol("_a")
def test_lambda():
x = Symbol('x')
assert sympify('lambda: 1') == Lambda((), 1)
assert sympify('lambda x: x') == Lambda(x, x)
assert sympify('lambda x: 2*x') == Lambda(x, 2*x)
assert sympify('lambda x, y: 2*x+y') == Lambda((x, y), 2*x + y)
def test_lambda_raises():
raises(SympifyError, lambda: sympify("lambda *args: args")) # args argument error
raises(SympifyError, lambda: sympify("lambda **kwargs: kwargs[0]")) # kwargs argument error
raises(SympifyError, lambda: sympify("lambda x = 1: x")) # Keyword argument error
with raises(SympifyError):
_sympify('lambda: 1')
def test_sympify_raises():
raises(SympifyError, lambda: sympify("fx)"))
class A:
def __str__(self):
return 'x'
with warns_deprecated_sympy():
assert sympify(A()) == Symbol('x')
def test__sympify():
x = Symbol('x')
f = Function('f')
# positive _sympify
assert _sympify(x) is x
assert _sympify(1) == Integer(1)
assert _sympify(0.5) == Float("0.5")
assert _sympify(1 + 1j) == 1.0 + I*1.0
# Function f is not Basic and can't sympify to Basic. We allow it to pass
# with sympify but not with _sympify.
# https://github.com/sympy/sympy/issues/20124
assert sympify(f) is f
raises(SympifyError, lambda: _sympify(f))
class A:
def _sympy_(self):
return Integer(5)
a = A()
assert _sympify(a) == Integer(5)
# negative _sympify
raises(SympifyError, lambda: _sympify('1'))
raises(SympifyError, lambda: _sympify([1, 2, 3]))
def test_sympifyit():
x = Symbol('x')
y = Symbol('y')
@_sympifyit('b', NotImplemented)
def add(a, b):
return a + b
assert add(x, 1) == x + 1
assert add(x, 0.5) == x + Float('0.5')
assert add(x, y) == x + y
assert add(x, '1') == NotImplemented
@_sympifyit('b')
def add_raises(a, b):
return a + b
assert add_raises(x, 1) == x + 1
assert add_raises(x, 0.5) == x + Float('0.5')
assert add_raises(x, y) == x + y
raises(SympifyError, lambda: add_raises(x, '1'))
def test_int_float():
class F1_1:
def __float__(self):
return 1.1
class F1_1b:
"""
This class is still a float, even though it also implements __int__().
"""
def __float__(self):
return 1.1
def __int__(self):
return 1
class F1_1c:
"""
This class is still a float, because it implements _sympy_()
"""
def __float__(self):
return 1.1
def __int__(self):
return 1
def _sympy_(self):
return Float(1.1)
class I5:
def __int__(self):
return 5
class I5b:
"""
This class implements both __int__() and __float__(), so it will be
treated as Float in SymPy. One could change this behavior, by using
float(a) == int(a), but deciding that integer-valued floats represent
exact numbers is arbitrary and often not correct, so we do not do it.
If, in the future, we decide to do it anyway, the tests for I5b need to
be changed.
"""
def __float__(self):
return 5.0
def __int__(self):
return 5
class I5c:
"""
This class implements both __int__() and __float__(), but also
a _sympy_() method, so it will be Integer.
"""
def __float__(self):
return 5.0
def __int__(self):
return 5
def _sympy_(self):
return Integer(5)
i5 = I5()
i5b = I5b()
i5c = I5c()
f1_1 = F1_1()
f1_1b = F1_1b()
f1_1c = F1_1c()
assert sympify(i5) == 5
assert isinstance(sympify(i5), Integer)
assert sympify(i5b) == 5
assert isinstance(sympify(i5b), Float)
assert sympify(i5c) == 5
assert isinstance(sympify(i5c), Integer)
assert abs(sympify(f1_1) - 1.1) < 1e-5
assert abs(sympify(f1_1b) - 1.1) < 1e-5
assert abs(sympify(f1_1c) - 1.1) < 1e-5
assert _sympify(i5) == 5
assert isinstance(_sympify(i5), Integer)
assert _sympify(i5b) == 5
assert isinstance(_sympify(i5b), Float)
assert _sympify(i5c) == 5
assert isinstance(_sympify(i5c), Integer)
assert abs(_sympify(f1_1) - 1.1) < 1e-5
assert abs(_sympify(f1_1b) - 1.1) < 1e-5
assert abs(_sympify(f1_1c) - 1.1) < 1e-5
def test_evaluate_false():
cases = {
'2 + 3': Add(2, 3, evaluate=False),
'2**2 / 3': Mul(Pow(2, 2, evaluate=False), Pow(3, -1, evaluate=False), evaluate=False),
'2 + 3 * 5': Add(2, Mul(3, 5, evaluate=False), evaluate=False),
'2 - 3 * 5': Add(2, Mul(-1, Mul(3, 5,evaluate=False), evaluate=False), evaluate=False),
'1 / 3': Mul(1, Pow(3, -1, evaluate=False), evaluate=False),
'True | False': Or(True, False, evaluate=False),
'1 + 2 + 3 + 5*3 + integrate(x)': Add(1, 2, 3, Mul(5, 3, evaluate=False), x**2/2, evaluate=False),
'2 * 4 * 6 + 8': Add(Mul(2, 4, 6, evaluate=False), 8, evaluate=False),
'2 - 8 / 4': Add(2, Mul(-1, Mul(8, Pow(4, -1, evaluate=False), evaluate=False), evaluate=False), evaluate=False),
'2 - 2**2': Add(2, Mul(-1, Pow(2, 2, evaluate=False), evaluate=False), evaluate=False),
}
for case, result in cases.items():
assert sympify(case, evaluate=False) == result
def test_issue_4133():
a = sympify('Integer(4)')
assert a == Integer(4)
assert a.is_Integer
def test_issue_3982():
a = [3, 2.0]
assert sympify(a) == [Integer(3), Float(2.0)]
assert sympify(tuple(a)) == Tuple(Integer(3), Float(2.0))
assert sympify(set(a)) == FiniteSet(Integer(3), Float(2.0))
def test_S_sympify():
assert S(1)/2 == sympify(1)/2
assert (-2)**(S(1)/2) == sqrt(2)*I
def test_issue_4788():
assert srepr(S(1.0 + 0J)) == srepr(S(1.0)) == srepr(Float(1.0))
def test_issue_4798_None():
assert S(None) is None
def test_issue_3218():
assert sympify("x+\ny") == x + y
def test_issue_4988_builtins():
C = Symbol('C')
vars = {'C': C}
exp1 = sympify('C')
assert exp1 == C # Make sure it did not get mixed up with sympy.C
exp2 = sympify('C', vars)
assert exp2 == C # Make sure it did not get mixed up with sympy.C
def test_geometry():
p = sympify(Point(0, 1))
assert p == Point(0, 1) and isinstance(p, Point)
L = sympify(Line(p, (1, 0)))
assert L == Line((0, 1), (1, 0)) and isinstance(L, Line)
def test_kernS():
s = '-1 - 2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x)))'
# when 1497 is fixed, this no longer should pass: the expression
# should be unchanged
assert -1 - 2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) == -1
# sympification should not allow the constant to enter a Mul
# or else the structure can change dramatically
ss = kernS(s)
assert ss != -1 and ss.simplify() == -1
s = '-1 - 2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x)))'.replace(
'x', '_kern')
ss = kernS(s)
assert ss != -1 and ss.simplify() == -1
# issue 6687
assert (kernS('Interval(-1,-2 - 4*(-3))')
== Interval(-1, Add(-2, Mul(12, 1, evaluate=False), evaluate=False)))
assert kernS('_kern') == Symbol('_kern')
assert kernS('E**-(x)') == exp(-x)
e = 2*(x + y)*y
assert kernS(['2*(x + y)*y', ('2*(x + y)*y',)]) == [e, (e,)]
assert kernS('-(2*sin(x)**2 + 2*sin(x)*cos(x))*y/2') == \
-y*(2*sin(x)**2 + 2*sin(x)*cos(x))/2
# issue 15132
assert kernS('(1 - x)/(1 - x*(1-y))') == kernS('(1-x)/(1-(1-y)*x)')
assert kernS('(1-2**-(4+1)*(1-y)*x)') == (1 - x*(1 - y)/32)
assert kernS('(1-2**(4+1)*(1-y)*x)') == (1 - 32*x*(1 - y))
assert kernS('(1-2.*(1-y)*x)') == 1 - 2.*x*(1 - y)
one = kernS('x - (x - 1)')
assert one != 1 and one.expand() == 1
assert kernS("(2*x)/(x-1)") == 2*x/(x-1)
def test_issue_6540_6552():
assert S('[[1/3,2], (2/5,)]') == [[Rational(1, 3), 2], (Rational(2, 5),)]
assert S('[[2/6,2], (2/4,)]') == [[Rational(1, 3), 2], (S.Half,)]
assert S('[[[2*(1)]]]') == [[[2]]]
assert S('Matrix([2*(1)])') == Matrix([2])
def test_issue_6046():
assert str(S("Q & C", locals=_clash1)) == 'C & Q'
assert str(S('pi(x)', locals=_clash2)) == 'pi(x)'
locals = {}
exec("from sympy.abc import Q, C", locals)
assert str(S('C&Q', locals)) == 'C & Q'
# clash can act as Symbol or Function
assert str(S('pi(C, Q)', locals=_clash)) == 'pi(C, Q)'
assert len(S('pi + x', locals=_clash2).free_symbols) == 2
# but not both
raises(TypeError, lambda: S('pi + pi(x)', locals=_clash2))
assert all(set(i.values()) == {None} for i in (
_clash, _clash1, _clash2))
def test_issue_8821_highprec_from_str():
s = str(pi.evalf(128))
p = sympify(s)
assert Abs(sin(p)) < 1e-127
def test_issue_10295():
if not numpy:
skip("numpy not installed.")
A = numpy.array([[1, 3, -1],
[0, 1, 7]])
sA = S(A)
assert sA.shape == (2, 3)
for (ri, ci), val in numpy.ndenumerate(A):
assert sA[ri, ci] == val
B = numpy.array([-7, x, 3*y**2])
sB = S(B)
assert sB.shape == (3,)
assert B[0] == sB[0] == -7
assert B[1] == sB[1] == x
assert B[2] == sB[2] == 3*y**2
C = numpy.arange(0, 24)
C.resize(2,3,4)
sC = S(C)
assert sC[0, 0, 0].is_integer
assert sC[0, 0, 0] == 0
a1 = numpy.array([1, 2, 3])
a2 = numpy.array([i for i in range(24)])
a2.resize(2, 4, 3)
assert sympify(a1) == ImmutableDenseNDimArray([1, 2, 3])
assert sympify(a2) == ImmutableDenseNDimArray([i for i in range(24)], (2, 4, 3))
def test_Range():
# Only works in Python 3 where range returns a range type
assert sympify(range(10)) == Range(10)
assert _sympify(range(10)) == Range(10)
def test_sympify_set():
n = Symbol('n')
assert sympify({n}) == FiniteSet(n)
assert sympify(set()) == EmptySet
def test_sympify_numpy():
if not numpy:
skip('numpy not installed. Abort numpy tests.')
np = numpy
def equal(x, y):
return x == y and type(x) == type(y)
assert sympify(np.bool_(1)) is S(True)
try:
assert equal(
sympify(np.int_(1234567891234567891)), S(1234567891234567891))
assert equal(
sympify(np.intp(1234567891234567891)), S(1234567891234567891))
except OverflowError:
# May fail on 32-bit systems: Python int too large to convert to C long
pass
assert equal(sympify(np.intc(1234567891)), S(1234567891))
assert equal(sympify(np.int8(-123)), S(-123))
assert equal(sympify(np.int16(-12345)), S(-12345))
assert equal(sympify(np.int32(-1234567891)), S(-1234567891))
assert equal(
sympify(np.int64(-1234567891234567891)), S(-1234567891234567891))
assert equal(sympify(np.uint8(123)), S(123))
assert equal(sympify(np.uint16(12345)), S(12345))
assert equal(sympify(np.uint32(1234567891)), S(1234567891))
assert equal(
sympify(np.uint64(1234567891234567891)), S(1234567891234567891))
assert equal(sympify(np.float32(1.123456)), Float(1.123456, precision=24))
assert equal(sympify(np.float64(1.1234567891234)),
Float(1.1234567891234, precision=53))
assert equal(sympify(np.longdouble(1.123456789)),
Float(1.123456789, precision=80))
assert equal(sympify(np.complex64(1 + 2j)), S(1.0 + 2.0*I))
assert equal(sympify(np.complex128(1 + 2j)), S(1.0 + 2.0*I))
assert equal(sympify(np.longcomplex(1 + 2j)), S(1.0 + 2.0*I))
#float96 does not exist on all platforms
if hasattr(np, 'float96'):
assert equal(sympify(np.float96(1.123456789)),
Float(1.123456789, precision=80))
#float128 does not exist on all platforms
if hasattr(np, 'float128'):
assert equal(sympify(np.float128(1.123456789123)),
Float(1.123456789123, precision=80))
@XFAIL
def test_sympify_rational_numbers_set():
ans = [Rational(3, 10), Rational(1, 5)]
assert sympify({'.3', '.2'}, rational=True) == FiniteSet(*ans)
def test_issue_13924():
if not numpy:
skip("numpy not installed.")
a = sympify(numpy.array([1]))
assert isinstance(a, ImmutableDenseNDimArray)
assert a[0] == 1
def test_numpy_sympify_args():
# Issue 15098. Make sure sympify args work with numpy types (like numpy.str_)
if not numpy:
skip("numpy not installed.")
a = sympify(numpy.str_('a'))
assert type(a) is Symbol
assert a == Symbol('a')
class CustomSymbol(Symbol):
pass
a = sympify(numpy.str_('a'), {"Symbol": CustomSymbol})
assert isinstance(a, CustomSymbol)
a = sympify(numpy.str_('x^y'))
assert a == x**y
a = sympify(numpy.str_('x^y'), convert_xor=False)
assert a == Xor(x, y)
raises(SympifyError, lambda: sympify(numpy.str_('x'), strict=True))
a = sympify(numpy.str_('1.1'))
assert isinstance(a, Float)
assert a == 1.1
a = sympify(numpy.str_('1.1'), rational=True)
assert isinstance(a, Rational)
assert a == Rational(11, 10)
a = sympify(numpy.str_('x + x'))
assert isinstance(a, Mul)
assert a == 2*x
a = sympify(numpy.str_('x + x'), evaluate=False)
assert isinstance(a, Add)
assert a == Add(x, x, evaluate=False)
def test_issue_5939():
a = Symbol('a')
b = Symbol('b')
assert sympify('''a+\nb''') == a + b
def test_issue_16759():
d = sympify({.5: 1})
assert S.Half not in d
assert Float(.5) in d
assert d[.5] is S.One
d = sympify(OrderedDict({.5: 1}))
assert S.Half not in d
assert Float(.5) in d
assert d[.5] is S.One
d = sympify(defaultdict(int, {.5: 1}))
assert S.Half not in d
assert Float(.5) in d
assert d[.5] is S.One
def test_issue_17811():
a = Function('a')
assert sympify('a(x)*5', evaluate=False) == Mul(a(x), 5, evaluate=False)
def test_issue_14706():
if not numpy:
skip("numpy not installed.")
z1 = numpy.zeros((1, 1), dtype=numpy.float64)
z2 = numpy.zeros((2, 2), dtype=numpy.float64)
z3 = numpy.zeros((), dtype=numpy.float64)
y1 = numpy.ones((1, 1), dtype=numpy.float64)
y2 = numpy.ones((2, 2), dtype=numpy.float64)
y3 = numpy.ones((), dtype=numpy.float64)
assert numpy.all(x + z1 == numpy.full((1, 1), x))
assert numpy.all(x + z2 == numpy.full((2, 2), x))
assert numpy.all(z1 + x == numpy.full((1, 1), x))
assert numpy.all(z2 + x == numpy.full((2, 2), x))
for z in [z3,
numpy.int64(0),
numpy.float64(0),
numpy.complex64(0)]:
assert x + z == x
assert z + x == x
assert isinstance(x + z, Symbol)
assert isinstance(z + x, Symbol)
# If these tests fail, then it means that numpy has finally
# fixed the issue of scalar conversion for rank>0 arrays
# which is mentioned in numpy/numpy#10404. In that case,
# some changes have to be made in sympify.py.
# Note: For future reference, for anyone who takes up this
# issue when numpy has finally fixed their side of the problem,
# the changes for this temporary fix were introduced in PR 18651
assert numpy.all(x + y1 == numpy.full((1, 1), x + 1.0))
assert numpy.all(x + y2 == numpy.full((2, 2), x + 1.0))
assert numpy.all(y1 + x == numpy.full((1, 1), x + 1.0))
assert numpy.all(y2 + x == numpy.full((2, 2), x + 1.0))
for y_ in [y3,
numpy.int64(1),
numpy.float64(1),
numpy.complex64(1)]:
assert x + y_ == y_ + x
assert isinstance(x + y_, Add)
assert isinstance(y_ + x, Add)
assert x + numpy.array(x) == 2 * x
assert x + numpy.array([x]) == numpy.array([2*x], dtype=object)
assert sympify(numpy.array([1])) == ImmutableDenseNDimArray([1], 1)
assert sympify(numpy.array([[[1]]])) == ImmutableDenseNDimArray([1], (1, 1, 1))
assert sympify(z1) == ImmutableDenseNDimArray([0], (1, 1))
assert sympify(z2) == ImmutableDenseNDimArray([0, 0, 0, 0], (2, 2))
assert sympify(z3) == ImmutableDenseNDimArray([0], ())
assert sympify(z3, strict=True) == 0.0
raises(SympifyError, lambda: sympify(numpy.array([1]), strict=True))
raises(SympifyError, lambda: sympify(z1, strict=True))
raises(SympifyError, lambda: sympify(z2, strict=True))
def test_issue_21536():
#test to check evaluate=False in case of iterable input
u = sympify("x+3*x+2", evaluate=False)
v = sympify("2*x+4*x+2+4", evaluate=False)
assert u.is_Add and set(u.args) == {x, 3*x, 2}
assert v.is_Add and set(v.args) == {2*x, 4*x, 2, 4}
assert sympify(["x+3*x+2", "2*x+4*x+2+4"], evaluate=False) == [u, v]
#test to check evaluate=True in case of iterable input
u = sympify("x+3*x+2", evaluate=True)
v = sympify("2*x+4*x+2+4", evaluate=True)
assert u.is_Add and set(u.args) == {4*x, 2}
assert v.is_Add and set(v.args) == {6*x, 6}
assert sympify(["x+3*x+2", "2*x+4*x+2+4"], evaluate=True) == [u, v]
#test to check evaluate with no input in case of iterable input
u = sympify("x+3*x+2")
v = sympify("2*x+4*x+2+4")
assert u.is_Add and set(u.args) == {4*x, 2}
assert v.is_Add and set(v.args) == {6*x, 6}
assert sympify(["x+3*x+2", "2*x+4*x+2+4"]) == [u, v]
|
6d8d39ec80c5c95b3ceb88dc278e992132efe7bc4c28d7c1570042fa69f324b0 | """Tests for tools and arithmetics for monomials of distributed polynomials. """
from sympy.polys.monomials import (
itermonomials, monomial_count,
monomial_mul, monomial_div,
monomial_gcd, monomial_lcm,
monomial_max, monomial_min,
monomial_divides, monomial_pow,
Monomial,
)
from sympy.polys.polyerrors import ExactQuotientFailed
from sympy.abc import a, b, c, x, y, z
from sympy.core import S, symbols
from sympy.testing.pytest import raises
def test_monomials():
# total_degree tests
assert set(itermonomials([], 0)) == {S.One}
assert set(itermonomials([], 1)) == {S.One}
assert set(itermonomials([], 2)) == {S.One}
assert set(itermonomials([], 0, 0)) == {S.One}
assert set(itermonomials([], 1, 0)) == {S.One}
assert set(itermonomials([], 2, 0)) == {S.One}
raises(StopIteration, lambda: next(itermonomials([], 0, 1)))
raises(StopIteration, lambda: next(itermonomials([], 0, 2)))
raises(StopIteration, lambda: next(itermonomials([], 0, 3)))
assert set(itermonomials([], 0, 1)) == set()
assert set(itermonomials([], 0, 2)) == set()
assert set(itermonomials([], 0, 3)) == set()
raises(ValueError, lambda: set(itermonomials([], -1)))
raises(ValueError, lambda: set(itermonomials([x], -1)))
raises(ValueError, lambda: set(itermonomials([x, y], -1)))
assert set(itermonomials([x], 0)) == {S.One}
assert set(itermonomials([x], 1)) == {S.One, x}
assert set(itermonomials([x], 2)) == {S.One, x, x**2}
assert set(itermonomials([x], 3)) == {S.One, x, x**2, x**3}
assert set(itermonomials([x, y], 0)) == {S.One}
assert set(itermonomials([x, y], 1)) == {S.One, x, y}
assert set(itermonomials([x, y], 2)) == {S.One, x, y, x**2, y**2, x*y}
assert set(itermonomials([x, y], 3)) == \
{S.One, x, y, x**2, x**3, y**2, y**3, x*y, x*y**2, y*x**2}
i, j, k = symbols('i j k', commutative=False)
assert set(itermonomials([i, j, k], 0)) == {S.One}
assert set(itermonomials([i, j, k], 1)) == {S.One, i, j, k}
assert set(itermonomials([i, j, k], 2)) == \
{S.One, i, j, k, i**2, j**2, k**2, i*j, i*k, j*i, j*k, k*i, k*j}
assert set(itermonomials([i, j, k], 3)) == \
{S.One, i, j, k, i**2, j**2, k**2, i*j, i*k, j*i, j*k, k*i, k*j,
i**3, j**3, k**3,
i**2 * j, i**2 * k, j * i**2, k * i**2,
j**2 * i, j**2 * k, i * j**2, k * j**2,
k**2 * i, k**2 * j, i * k**2, j * k**2,
i*j*i, i*k*i, j*i*j, j*k*j, k*i*k, k*j*k,
i*j*k, i*k*j, j*i*k, j*k*i, k*i*j, k*j*i,
}
assert set(itermonomials([x, i, j], 0)) == {S.One}
assert set(itermonomials([x, i, j], 1)) == {S.One, x, i, j}
assert set(itermonomials([x, i, j], 2)) == {S.One, x, i, j, x*i, x*j, i*j, j*i, x**2, i**2, j**2}
assert set(itermonomials([x, i, j], 3)) == \
{S.One, x, i, j, x*i, x*j, i*j, j*i, x**2, i**2, j**2,
x**3, i**3, j**3,
x**2 * i, x**2 * j,
x * i**2, j * i**2, i**2 * j, i*j*i,
x * j**2, i * j**2, j**2 * i, j*i*j,
x * i * j, x * j * i
}
# degree_list tests
assert set(itermonomials([], [])) == {S.One}
raises(ValueError, lambda: set(itermonomials([], [0])))
raises(ValueError, lambda: set(itermonomials([], [1])))
raises(ValueError, lambda: set(itermonomials([], [2])))
raises(ValueError, lambda: set(itermonomials([x], [1], [])))
raises(ValueError, lambda: set(itermonomials([x], [1, 2], [])))
raises(ValueError, lambda: set(itermonomials([x], [1, 2, 3], [])))
raises(ValueError, lambda: set(itermonomials([x], [], [1])))
raises(ValueError, lambda: set(itermonomials([x], [], [1, 2])))
raises(ValueError, lambda: set(itermonomials([x], [], [1, 2, 3])))
raises(ValueError, lambda: set(itermonomials([x, y], [1, 2], [1, 2, 3])))
raises(ValueError, lambda: set(itermonomials([x, y, z], [1, 2, 3], [0, 1])))
raises(ValueError, lambda: set(itermonomials([x], [1], [-1])))
raises(ValueError, lambda: set(itermonomials([x, y], [1, 2], [1, -1])))
raises(ValueError, lambda: set(itermonomials([], [], 1)))
raises(ValueError, lambda: set(itermonomials([], [], 2)))
raises(ValueError, lambda: set(itermonomials([], [], 3)))
raises(ValueError, lambda: set(itermonomials([x, y], [0, 1], [1, 2])))
raises(ValueError, lambda: set(itermonomials([x, y, z], [0, 0, 3], [0, 1, 2])))
assert set(itermonomials([x], [0])) == {S.One}
assert set(itermonomials([x], [1])) == {S.One, x}
assert set(itermonomials([x], [2])) == {S.One, x, x**2}
assert set(itermonomials([x], [3])) == {S.One, x, x**2, x**3}
assert set(itermonomials([x], [3], [1])) == {x, x**3, x**2}
assert set(itermonomials([x], [3], [2])) == {x**3, x**2}
assert set(itermonomials([x, y], 3, 3)) == {x**3, x**2*y, x*y**2, y**3}
assert set(itermonomials([x, y], 3, 2)) == {x**2, x*y, y**2, x**3, x**2*y, x*y**2, y**3}
assert set(itermonomials([x, y], [0, 0])) == {S.One}
assert set(itermonomials([x, y], [0, 1])) == {S.One, y}
assert set(itermonomials([x, y], [0, 2])) == {S.One, y, y**2}
assert set(itermonomials([x, y], [0, 2], [0, 1])) == {y, y**2}
assert set(itermonomials([x, y], [0, 2], [0, 2])) == {y**2}
assert set(itermonomials([x, y], [1, 0])) == {S.One, x}
assert set(itermonomials([x, y], [1, 1])) == {S.One, x, y, x*y}
assert set(itermonomials([x, y], [1, 2])) == {S.One, x, y, x*y, y**2, x*y**2}
assert set(itermonomials([x, y], [1, 2], [1, 1])) == {x*y, x*y**2}
assert set(itermonomials([x, y], [1, 2], [1, 2])) == {x*y**2}
assert set(itermonomials([x, y], [2, 0])) == {S.One, x, x**2}
assert set(itermonomials([x, y], [2, 1])) == {S.One, x, y, x*y, x**2, x**2*y}
assert set(itermonomials([x, y], [2, 2])) == \
{S.One, y**2, x*y**2, x, x*y, x**2, x**2*y**2, y, x**2*y}
i, j, k = symbols('i j k', commutative=False)
assert set(itermonomials([i, j, k], 2, 2)) == \
{k*i, i**2, i*j, j*k, j*i, k**2, j**2, k*j, i*k}
assert set(itermonomials([i, j, k], 3, 2)) == \
{j*k**2, i*k**2, k*i*j, k*i**2, k**2, j*k*j, k*j**2, i*k*i, i*j,
j**2*k, i**2*j, j*i*k, j**3, i**3, k*j*i, j*k*i, j*i,
k**2*j, j*i**2, k*j, k*j*k, i*j*i, j*i*j, i*j**2, j**2,
k*i*k, i**2, j*k, i*k, i*k*j, k**3, i**2*k, j**2*i, k**2*i,
i*j*k, k*i
}
assert set(itermonomials([i, j, k], [0, 0, 0])) == {S.One}
assert set(itermonomials([i, j, k], [0, 0, 1])) == {1, k}
assert set(itermonomials([i, j, k], [0, 1, 0])) == {1, j}
assert set(itermonomials([i, j, k], [1, 0, 0])) == {i, 1}
assert set(itermonomials([i, j, k], [0, 0, 2])) == {k**2, 1, k}
assert set(itermonomials([i, j, k], [0, 2, 0])) == {1, j, j**2}
assert set(itermonomials([i, j, k], [2, 0, 0])) == {i, 1, i**2}
assert set(itermonomials([i, j, k], [1, 1, 1])) == {1, k, j, j*k, i*k, i, i*j, i*j*k}
assert set(itermonomials([i, j, k], [2, 2, 2])) == \
{1, k, i**2*k**2, j*k, j**2, i, i*k, j*k**2, i*j**2*k**2,
i**2*j, i**2*j**2, k**2, j**2*k, i*j**2*k,
j**2*k**2, i*j, i**2*k, i**2*j**2*k, j, i**2*j*k,
i*j**2, i*k**2, i*j*k, i**2*j**2*k**2, i*j*k**2, i**2, i**2*j*k**2
}
assert set(itermonomials([x, j, k], [0, 0, 0])) == {S.One}
assert set(itermonomials([x, j, k], [0, 0, 1])) == {1, k}
assert set(itermonomials([x, j, k], [0, 1, 0])) == {1, j}
assert set(itermonomials([x, j, k], [1, 0, 0])) == {x, 1}
assert set(itermonomials([x, j, k], [0, 0, 2])) == {k**2, 1, k}
assert set(itermonomials([x, j, k], [0, 2, 0])) == {1, j, j**2}
assert set(itermonomials([x, j, k], [2, 0, 0])) == {x, 1, x**2}
assert set(itermonomials([x, j, k], [1, 1, 1])) == {1, k, j, j*k, x*k, x, x*j, x*j*k}
assert set(itermonomials([x, j, k], [2, 2, 2])) == \
{1, k, x**2*k**2, j*k, j**2, x, x*k, j*k**2, x*j**2*k**2,
x**2*j, x**2*j**2, k**2, j**2*k, x*j**2*k,
j**2*k**2, x*j, x**2*k, x**2*j**2*k, j, x**2*j*k,
x*j**2, x*k**2, x*j*k, x**2*j**2*k**2, x*j*k**2, x**2, x**2*j*k**2
}
def test_monomial_count():
assert monomial_count(2, 2) == 6
assert monomial_count(2, 3) == 10
def test_monomial_mul():
assert monomial_mul((3, 4, 1), (1, 2, 0)) == (4, 6, 1)
def test_monomial_div():
assert monomial_div((3, 4, 1), (1, 2, 0)) == (2, 2, 1)
def test_monomial_gcd():
assert monomial_gcd((3, 4, 1), (1, 2, 0)) == (1, 2, 0)
def test_monomial_lcm():
assert monomial_lcm((3, 4, 1), (1, 2, 0)) == (3, 4, 1)
def test_monomial_max():
assert monomial_max((3, 4, 5), (0, 5, 1), (6, 3, 9)) == (6, 5, 9)
def test_monomial_pow():
assert monomial_pow((1, 2, 3), 3) == (3, 6, 9)
def test_monomial_min():
assert monomial_min((3, 4, 5), (0, 5, 1), (6, 3, 9)) == (0, 3, 1)
def test_monomial_divides():
assert monomial_divides((1, 2, 3), (4, 5, 6)) is True
assert monomial_divides((1, 2, 3), (0, 5, 6)) is False
def test_Monomial():
m = Monomial((3, 4, 1), (x, y, z))
n = Monomial((1, 2, 0), (x, y, z))
assert m.as_expr() == x**3*y**4*z
assert n.as_expr() == x**1*y**2
assert m.as_expr(a, b, c) == a**3*b**4*c
assert n.as_expr(a, b, c) == a**1*b**2
assert m.exponents == (3, 4, 1)
assert m.gens == (x, y, z)
assert n.exponents == (1, 2, 0)
assert n.gens == (x, y, z)
assert m == (3, 4, 1)
assert n != (3, 4, 1)
assert m != (1, 2, 0)
assert n == (1, 2, 0)
assert (m == 1) is False
assert m[0] == m[-3] == 3
assert m[1] == m[-2] == 4
assert m[2] == m[-1] == 1
assert n[0] == n[-3] == 1
assert n[1] == n[-2] == 2
assert n[2] == n[-1] == 0
assert m[:2] == (3, 4)
assert n[:2] == (1, 2)
assert m*n == Monomial((4, 6, 1))
assert m/n == Monomial((2, 2, 1))
assert m*(1, 2, 0) == Monomial((4, 6, 1))
assert m/(1, 2, 0) == Monomial((2, 2, 1))
assert m.gcd(n) == Monomial((1, 2, 0))
assert m.lcm(n) == Monomial((3, 4, 1))
assert m.gcd((1, 2, 0)) == Monomial((1, 2, 0))
assert m.lcm((1, 2, 0)) == Monomial((3, 4, 1))
assert m**0 == Monomial((0, 0, 0))
assert m**1 == m
assert m**2 == Monomial((6, 8, 2))
assert m**3 == Monomial((9, 12, 3))
raises(ExactQuotientFailed, lambda: m/Monomial((5, 2, 0)))
mm = Monomial((1, 2, 3))
raises(ValueError, lambda: mm.as_expr())
assert str(mm) == 'Monomial((1, 2, 3))'
assert str(m) == 'x**3*y**4*z**1'
raises(NotImplementedError, lambda: m*1)
raises(NotImplementedError, lambda: m/1)
raises(ValueError, lambda: m**-1)
raises(TypeError, lambda: m.gcd(3))
raises(TypeError, lambda: m.lcm(3))
|
fc478d0cd7aa2328f4cc7a2f20b89a0a86b75cba125e1ce91b94c158e80ab1e1 | from .lti import (TransferFunction, Series, MIMOSeries, Parallel, MIMOParallel,
Feedback, MIMOFeedback, TransferFunctionMatrix)
from .control_plots import (pole_zero_numerical_data, pole_zero_plot, step_response_numerical_data,
step_response_plot, impulse_response_numerical_data, impulse_response_plot, ramp_response_numerical_data,
ramp_response_plot, bode_magnitude_numerical_data, bode_phase_numerical_data, bode_magnitude_plot,
bode_phase_plot, bode_plot)
__all__ = ['TransferFunction', 'Series', 'MIMOSeries', 'Parallel',
'MIMOParallel', 'Feedback', 'MIMOFeedback', 'TransferFunctionMatrix',
'pole_zero_numerical_data',
'pole_zero_plot', 'step_response_numerical_data', 'step_response_plot',
'impulse_response_numerical_data', 'impulse_response_plot',
'ramp_response_numerical_data', 'ramp_response_plot',
'bode_magnitude_numerical_data', 'bode_phase_numerical_data',
'bode_magnitude_plot', 'bode_phase_plot', 'bode_plot']
|
86d246fd48d839ff64afbbf4ac26732bbc1e8d7f9cca14eafedbd421ec193c5d | from sympy import Basic, Add, Mul, Pow, degree, Symbol, expand, cancel, Expr, roots
from sympy.core.containers import Tuple
from sympy.core.evalf import EvalfMixin, prec_to_dps
from sympy.core.logic import fuzzy_and
from sympy.core.numbers import Integer, ComplexInfinity
from sympy.core.symbol import Dummy
from sympy.core.sympify import sympify, _sympify
from sympy.polys import Poly, rootof
from sympy.series import limit
from sympy.matrices import ImmutableMatrix, eye
from sympy.matrices.expressions import MatMul, MatAdd
__all__ = ['TransferFunction', 'Series', 'MIMOSeries', 'Parallel', 'MIMOParallel',
'Feedback', 'MIMOFeedback', 'TransferFunctionMatrix']
def _roots(poly, var):
""" like roots, but works on higher-order polynomials. """
r = roots(poly, var, multiple=True)
n = degree(poly)
if len(r) != n:
r = [rootof(poly, var, k) for k in range(n)]
return r
class LinearTimeInvariant(Basic, EvalfMixin):
"""A common class for all the Linear Time-Invariant Dynamical Systems."""
# Users should not directly interact with this class.
def __new__(cls, *system, **kwargs):
if cls is LinearTimeInvariant:
raise NotImplementedError('The LTICommon class is not meant to be used directly.')
return super(LinearTimeInvariant, cls).__new__(cls, *system, **kwargs)
@classmethod
def _check_args(cls, args):
if not args:
raise ValueError("Atleast 1 argument must be passed.")
if not all(isinstance(arg, cls._clstype) for arg in args):
raise TypeError(f"All arguments must be of type {cls._clstype}.")
var_set = {arg.var for arg in args}
if len(var_set) != 1:
raise ValueError("All transfer functions should use the same complex variable"
f" of the Laplace transform. {len(var_set)} different values found.")
@property
def is_SISO(self):
"""Returns `True` if the passed LTI system is SISO else returns False."""
return self._is_SISO
class SISOLinearTimeInvariant(LinearTimeInvariant):
"""A common class for all the SISO Linear Time-Invariant Dynamical Systems."""
# Users should not directly interact with this class.
_is_SISO = True
class MIMOLinearTimeInvariant(LinearTimeInvariant):
"""A common class for all the MIMO Linear Time-Invariant Dynamical Systems."""
# Users should not directly interact with this class.
_is_SISO = False
SISOLinearTimeInvariant._clstype = SISOLinearTimeInvariant
MIMOLinearTimeInvariant._clstype = MIMOLinearTimeInvariant
def _check_other_SISO(func):
def wrapper(*args, **kwargs):
if not isinstance(args[-1], SISOLinearTimeInvariant):
return NotImplemented
else:
return func(*args, **kwargs)
return wrapper
def _check_other_MIMO(func):
def wrapper(*args, **kwargs):
if not isinstance(args[-1], MIMOLinearTimeInvariant):
return NotImplemented
else:
return func(*args, **kwargs)
return wrapper
class TransferFunction(SISOLinearTimeInvariant):
r"""
A class for representing LTI (Linear, time-invariant) systems that can be strictly described
by ratio of polynomials in the Laplace transform complex variable. The arguments
are ``num``, ``den``, and ``var``, where ``num`` and ``den`` are numerator and
denominator polynomials of the ``TransferFunction`` respectively, and the third argument is
a complex variable of the Laplace transform used by these polynomials of the transfer function.
``num`` and ``den`` can be either polynomials or numbers, whereas ``var``
has to be a Symbol.
Explanation
===========
Generally, a dynamical system representing a physical model can be described in terms of Linear
Ordinary Differential Equations like -
$\small{b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y=
a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x}$
Here, $x$ is the input signal and $y$ is the output signal and superscript on both is the order of derivative
(not exponent). Derivative is taken with respect to the independent variable, $t$. Also, generally $m$ is greater
than $n$.
It is not feasible to analyse the properties of such systems in their native form therefore, we use
mathematical tools like Laplace transform to get a better perspective. Taking the Laplace transform
of both the sides in the equation (at zero initial conditions), we get -
$\small{\mathcal{L}[b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y]=
\mathcal{L}[a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x]}$
Using the linearity property of Laplace transform and also considering zero initial conditions
(i.e. $\small{y(0^{-}) = 0}$, $\small{y'(0^{-}) = 0}$ and so on), the equation
above gets translated to -
$\small{b_{m}\mathcal{L}[y^{\left(m\right)}]+\dots+b_{1}\mathcal{L}[y^{\left(1\right)}]+b_{0}\mathcal{L}[y]=
a_{n}\mathcal{L}[x^{\left(n\right)}]+\dots+a_{1}\mathcal{L}[x^{\left(1\right)}]+a_{0}\mathcal{L}[x]}$
Now, applying Derivative property of Laplace transform,
$\small{b_{m}s^{m}\mathcal{L}[y]+\dots+b_{1}s\mathcal{L}[y]+b_{0}\mathcal{L}[y]=
a_{n}s^{n}\mathcal{L}[x]+\dots+a_{1}s\mathcal{L}[x]+a_{0}\mathcal{L}[x]}$
Here, the superscript on $s$ is **exponent**. Note that the zero initial conditions assumption, mentioned above, is very important
and cannot be ignored otherwise the dynamical system cannot be considered time-independent and the simplified equation above
cannot be reached.
Collecting $\mathcal{L}[y]$ and $\mathcal{L}[x]$ terms from both the sides and taking the ratio
$\frac{ \mathcal{L}\left\{y\right\} }{ \mathcal{L}\left\{x\right\} }$, we get the typical rational form of transfer
function.
The numerator of the transfer function is, therefore, the Laplace transform of the output signal
(The signals are represented as functions of time) and similarly, the denominator
of the transfer function is the Laplace transform of the input signal. It is also a convention
to denote the input and output signal's Laplace transform with capital alphabets like shown below.
$H(s) = \frac{Y(s)}{X(s)} = \frac{ \mathcal{L}\left\{y(t)\right\} }{ \mathcal{L}\left\{x(t)\right\} }$
$s$, also known as complex frequency, is a complex variable in the Laplace domain. It corresponds to the
equivalent variable $t$, in the time domain. Transfer functions are sometimes also referred to as the Laplace
transform of the system's impulse response. Transfer function, $H$, is represented as a rational
function in $s$ like,
$H(s) =\ \frac{a_{n}s^{n}+a_{n-1}s^{n-1}+\dots+a_{1}s+a_{0}}{b_{m}s^{m}+b_{m-1}s^{m-1}+\dots+b_{1}s+b_{0}}$
Parameters
==========
num : Expr, Number
The numerator polynomial of the transfer function.
den : Expr, Number
The denominator polynomial of the transfer function.
var : Symbol
Complex variable of the Laplace transform used by the
polynomials of the transfer function.
Raises
======
TypeError
When ``var`` is not a Symbol or when ``num`` or ``den`` is not a
number or a polynomial.
ValueError
When ``den`` is zero.
Examples
========
>>> from sympy.abc import s, p, a
>>> from sympy.physics.control.lti import TransferFunction
>>> tf1 = TransferFunction(s + a, s**2 + s + 1, s)
>>> tf1
TransferFunction(a + s, s**2 + s + 1, s)
>>> tf1.num
a + s
>>> tf1.den
s**2 + s + 1
>>> tf1.var
s
>>> tf1.args
(a + s, s**2 + s + 1, s)
Any complex variable can be used for ``var``.
>>> tf2 = TransferFunction(a*p**3 - a*p**2 + s*p, p + a**2, p)
>>> tf2
TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p)
>>> tf3 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
>>> tf3
TransferFunction((p - 1)*(p + 3), (p - 1)*(p + 5), p)
To negate a transfer function the ``-`` operator can be prepended:
>>> tf4 = TransferFunction(-a + s, p**2 + s, p)
>>> -tf4
TransferFunction(a - s, p**2 + s, p)
>>> tf5 = TransferFunction(s**4 - 2*s**3 + 5*s + 4, s + 4, s)
>>> -tf5
TransferFunction(-s**4 + 2*s**3 - 5*s - 4, s + 4, s)
You can use a Float or an Integer (or other constants) as numerator and denominator:
>>> tf6 = TransferFunction(1/2, 4, s)
>>> tf6.num
0.500000000000000
>>> tf6.den
4
>>> tf6.var
s
>>> tf6.args
(0.5, 4, s)
You can take the integer power of a transfer function using the ``**`` operator:
>>> tf7 = TransferFunction(s + a, s - a, s)
>>> tf7**3
TransferFunction((a + s)**3, (-a + s)**3, s)
>>> tf7**0
TransferFunction(1, 1, s)
>>> tf8 = TransferFunction(p + 4, p - 3, p)
>>> tf8**-1
TransferFunction(p - 3, p + 4, p)
Addition, subtraction, and multiplication of transfer functions can form
unevaluated ``Series`` or ``Parallel`` objects.
>>> tf9 = TransferFunction(s + 1, s**2 + s + 1, s)
>>> tf10 = TransferFunction(s - p, s + 3, s)
>>> tf11 = TransferFunction(4*s**2 + 2*s - 4, s - 1, s)
>>> tf12 = TransferFunction(1 - s, s**2 + 4, s)
>>> tf9 + tf10
Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s))
>>> tf10 - tf11
Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-4*s**2 - 2*s + 4, s - 1, s))
>>> tf9 * tf10
Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s))
>>> tf10 - (tf9 + tf12)
Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-s - 1, s**2 + s + 1, s), TransferFunction(s - 1, s**2 + 4, s))
>>> tf10 - (tf9 * tf12)
Parallel(TransferFunction(-p + s, s + 3, s), Series(TransferFunction(-1, 1, s), TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s)))
>>> tf11 * tf10 * tf9
Series(TransferFunction(4*s**2 + 2*s - 4, s - 1, s), TransferFunction(-p + s, s + 3, s), TransferFunction(s + 1, s**2 + s + 1, s))
>>> tf9 * tf11 + tf10 * tf12
Parallel(Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s)), Series(TransferFunction(-p + s, s + 3, s), TransferFunction(1 - s, s**2 + 4, s)))
>>> (tf9 + tf12) * (tf10 + tf11)
Series(Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s)), Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s)))
These unevaluated ``Series`` or ``Parallel`` objects can convert into the
resultant transfer function using ``.doit()`` method or by ``.rewrite(TransferFunction)``.
>>> ((tf9 + tf10) * tf12).doit()
TransferFunction((1 - s)*((-p + s)*(s**2 + s + 1) + (s + 1)*(s + 3)), (s + 3)*(s**2 + 4)*(s**2 + s + 1), s)
>>> (tf9 * tf10 - tf11 * tf12).rewrite(TransferFunction)
TransferFunction(-(1 - s)*(s + 3)*(s**2 + s + 1)*(4*s**2 + 2*s - 4) + (-p + s)*(s - 1)*(s + 1)*(s**2 + 4), (s - 1)*(s + 3)*(s**2 + 4)*(s**2 + s + 1), s)
See Also
========
Feedback, Series, Parallel
References
==========
.. [1] https://en.wikipedia.org/wiki/Transfer_function
.. [2] https://en.wikipedia.org/wiki/Laplace_transform
"""
def __new__(cls, num, den, var):
num, den = _sympify(num), _sympify(den)
if not isinstance(var, Symbol):
raise TypeError("Variable input must be a Symbol.")
if den == 0:
raise ValueError("TransferFunction can't have a zero denominator.")
if (((isinstance(num, Expr) and num.has(Symbol)) or num.is_number) and
((isinstance(den, Expr) and den.has(Symbol)) or den.is_number)):
obj = super(TransferFunction, cls).__new__(cls, num, den, var)
obj._num = num
obj._den = den
obj._var = var
return obj
else:
raise TypeError("Unsupported type for numerator or denominator of TransferFunction.")
@classmethod
def from_rational_expression(cls, expr, var=None):
r"""
Creates a new ``TransferFunction`` efficiently from a rational expression.
Parameters
==========
expr : Expr, Number
The rational expression representing the ``TransferFunction``.
var : Symbol, optional
Complex variable of the Laplace transform used by the
polynomials of the transfer function.
Raises
======
ValueError
When ``expr`` is of type ``Number`` and optional parameter ``var``
is not passed.
When ``expr`` has more than one variables and an optional parameter
``var`` is not passed.
ZeroDivisionError
When denominator of ``expr`` is zero or it has ``ComplexInfinity``
in its numerator.
Examples
========
>>> from sympy.abc import s, p, a
>>> from sympy.physics.control.lti import TransferFunction
>>> expr1 = (s + 5)/(3*s**2 + 2*s + 1)
>>> tf1 = TransferFunction.from_rational_expression(expr1)
>>> tf1
TransferFunction(s + 5, 3*s**2 + 2*s + 1, s)
>>> expr2 = (a*p**3 - a*p**2 + s*p)/(p + a**2) # Expr with more than one variables
>>> tf2 = TransferFunction.from_rational_expression(expr2, p)
>>> tf2
TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p)
In case of conflict between two or more variables in a expression, SymPy will
raise a ``ValueError``, if ``var`` is not passed by the user.
>>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1))
Traceback (most recent call last):
...
ValueError: Conflicting values found for positional argument `var` ({a, s}). Specify it manually.
This can be corrected by specifying the ``var`` parameter manually.
>>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1), s)
>>> tf
TransferFunction(a*s + a, s**2 + s + 1, s)
``var`` also need to be specified when ``expr`` is a ``Number``
>>> tf3 = TransferFunction.from_rational_expression(10, s)
>>> tf3
TransferFunction(10, 1, s)
"""
expr = _sympify(expr)
if var is None:
_free_symbols = expr.free_symbols
_len_free_symbols = len(_free_symbols)
if _len_free_symbols == 1:
var = list(_free_symbols)[0]
elif _len_free_symbols == 0:
raise ValueError("Positional argument `var` not found in the TransferFunction defined. Specify it manually.")
else:
raise ValueError("Conflicting values found for positional argument `var` ({}). Specify it manually.".format(_free_symbols))
_num, _den = expr.as_numer_denom()
if _den == 0 or _num.has(ComplexInfinity):
raise ZeroDivisionError("TransferFunction can't have a zero denominator.")
return cls(_num, _den, var)
@property
def num(self):
"""
Returns the numerator polynomial of the transfer function.
Examples
========
>>> from sympy.abc import s, p
>>> from sympy.physics.control.lti import TransferFunction
>>> G1 = TransferFunction(s**2 + p*s + 3, s - 4, s)
>>> G1.num
p*s + s**2 + 3
>>> G2 = TransferFunction((p + 5)*(p - 3), (p - 3)*(p + 1), p)
>>> G2.num
(p - 3)*(p + 5)
"""
return self._num
@property
def den(self):
"""
Returns the denominator polynomial of the transfer function.
Examples
========
>>> from sympy.abc import s, p
>>> from sympy.physics.control.lti import TransferFunction
>>> G1 = TransferFunction(s + 4, p**3 - 2*p + 4, s)
>>> G1.den
p**3 - 2*p + 4
>>> G2 = TransferFunction(3, 4, s)
>>> G2.den
4
"""
return self._den
@property
def var(self):
"""
Returns the complex variable of the Laplace transform used by the polynomials of
the transfer function.
Examples
========
>>> from sympy.abc import s, p
>>> from sympy.physics.control.lti import TransferFunction
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
>>> G1.var
p
>>> G2 = TransferFunction(0, s - 5, s)
>>> G2.var
s
"""
return self._var
def _eval_subs(self, old, new):
arg_num = self.num.subs(old, new)
arg_den = self.den.subs(old, new)
argnew = TransferFunction(arg_num, arg_den, self.var)
return self if old == self.var else argnew
def _eval_evalf(self, prec):
return TransferFunction(
self.num._eval_evalf(prec),
self.den._eval_evalf(prec),
self.var)
def _eval_simplify(self, **kwargs):
tf = cancel(Mul(self.num, 1/self.den, evaluate=False), expand=False).as_numer_denom()
num_, den_ = tf[0], tf[1]
return TransferFunction(num_, den_, self.var)
def expand(self):
"""
Returns the transfer function with numerator and denominator
in expanded form.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction
>>> G1 = TransferFunction((a - s)**2, (s**2 + a)**2, s)
>>> G1.expand()
TransferFunction(a**2 - 2*a*s + s**2, a**2 + 2*a*s**2 + s**4, s)
>>> G2 = TransferFunction((p + 3*b)*(p - b), (p - b)*(p + 2*b), p)
>>> G2.expand()
TransferFunction(-3*b**2 + 2*b*p + p**2, -2*b**2 + b*p + p**2, p)
"""
return TransferFunction(expand(self.num), expand(self.den), self.var)
def dc_gain(self):
"""
Computes the gain of the response as the frequency approaches zero.
The DC gain is infinite for systems with pure integrators.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction
>>> tf1 = TransferFunction(s + 3, s**2 - 9, s)
>>> tf1.dc_gain()
-1/3
>>> tf2 = TransferFunction(p**2, p - 3 + p**3, p)
>>> tf2.dc_gain()
0
>>> tf3 = TransferFunction(a*p**2 - b, s + b, s)
>>> tf3.dc_gain()
(a*p**2 - b)/b
>>> tf4 = TransferFunction(1, s, s)
>>> tf4.dc_gain()
oo
"""
m = Mul(self.num, Pow(self.den, -1, evaluate=False), evaluate=False)
return limit(m, self.var, 0)
def poles(self):
"""
Returns the poles of a transfer function.
Examples
========
>>> from sympy.abc import s, p, a
>>> from sympy.physics.control.lti import TransferFunction
>>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
>>> tf1.poles()
[-5, 1]
>>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
>>> tf2.poles()
[I, I, -I, -I]
>>> tf3 = TransferFunction(s**2, a*s + p, s)
>>> tf3.poles()
[-p/a]
"""
return _roots(Poly(self.den, self.var), self.var)
def zeros(self):
"""
Returns the zeros of a transfer function.
Examples
========
>>> from sympy.abc import s, p, a
>>> from sympy.physics.control.lti import TransferFunction
>>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
>>> tf1.zeros()
[-3, 1]
>>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
>>> tf2.zeros()
[1, 1]
>>> tf3 = TransferFunction(s**2, a*s + p, s)
>>> tf3.zeros()
[0, 0]
"""
return _roots(Poly(self.num, self.var), self.var)
def is_stable(self):
"""
Returns True if the transfer function is asymptotically stable; else False.
This would not check the marginal or conditional stability of the system.
Examples
========
>>> from sympy.abc import s, p, a
>>> from sympy import symbols
>>> from sympy.physics.control.lti import TransferFunction
>>> q, r = symbols('q, r', negative=True)
>>> tf1 = TransferFunction((1 - s)**2, (s + 1)**2, s)
>>> tf1.is_stable()
True
>>> tf2 = TransferFunction((1 - p)**2, (s**2 + 1)**2, s)
>>> tf2.is_stable()
False
>>> tf3 = TransferFunction(4, q*s - r, s)
>>> tf3.is_stable()
False
>>> tf4 = TransferFunction(p + 1, a*p - s**2, p)
>>> tf4.is_stable() is None # Not enough info about the symbols to determine stability
True
"""
return fuzzy_and(pole.as_real_imag()[0].is_negative for pole in self.poles())
def __add__(self, other):
if isinstance(other, (TransferFunction, Series)):
if not self.var == other.var:
raise ValueError("All the transfer functions should use the same complex variable "
"of the Laplace transform.")
return Parallel(self, other)
elif isinstance(other, Parallel):
if not self.var == other.var:
raise ValueError("All the transfer functions should use the same complex variable "
"of the Laplace transform.")
arg_list = list(other.args)
return Parallel(self, *arg_list)
else:
raise ValueError("TransferFunction cannot be added with {}.".
format(type(other)))
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, (TransferFunction, Series)):
if not self.var == other.var:
raise ValueError("All the transfer functions should use the same complex variable "
"of the Laplace transform.")
return Parallel(self, -other)
elif isinstance(other, Parallel):
if not self.var == other.var:
raise ValueError("All the transfer functions should use the same complex variable "
"of the Laplace transform.")
arg_list = [-i for i in list(other.args)]
return Parallel(self, *arg_list)
else:
raise ValueError("{} cannot be subtracted from a TransferFunction."
.format(type(other)))
def __rsub__(self, other):
return -self + other
def __mul__(self, other):
if isinstance(other, (TransferFunction, Parallel)):
if not self.var == other.var:
raise ValueError("All the transfer functions should use the same complex variable "
"of the Laplace transform.")
return Series(self, other)
elif isinstance(other, Series):
if not self.var == other.var:
raise ValueError("All the transfer functions should use the same complex variable "
"of the Laplace transform.")
arg_list = list(other.args)
return Series(self, *arg_list)
else:
raise ValueError("TransferFunction cannot be multiplied with {}."
.format(type(other)))
__rmul__ = __mul__
def __truediv__(self, other):
if (isinstance(other, Parallel) and len(other.args) == 2 and isinstance(other.args[0], TransferFunction)
and isinstance(other.args[1], (Series, TransferFunction))):
if not self.var == other.var:
raise ValueError("Both TransferFunction and Parallel should use the"
" same complex variable of the Laplace transform.")
if other.args[1] == self:
# plant and controller with unit feedback.
return Feedback(self, other.args[0])
other_arg_list = list(other.args[1].args) if isinstance(other.args[1], Series) else other.args[1]
if other_arg_list == other.args[1]:
return Feedback(self, other_arg_list)
elif self in other_arg_list:
other_arg_list.remove(self)
else:
return Feedback(self, Series(*other_arg_list))
if len(other_arg_list) == 1:
return Feedback(self, *other_arg_list)
else:
return Feedback(self, Series(*other_arg_list))
else:
raise ValueError("TransferFunction cannot be divided by {}.".
format(type(other)))
__rtruediv__ = __truediv__
def __pow__(self, p):
p = sympify(p)
if not isinstance(p, Integer):
raise ValueError("Exponent must be an Integer.")
if p == 0:
return TransferFunction(1, 1, self.var)
elif p > 0:
num_, den_ = self.num**p, self.den**p
else:
p = abs(p)
num_, den_ = self.den**p, self.num**p
return TransferFunction(num_, den_, self.var)
def __neg__(self):
return TransferFunction(-self.num, self.den, self.var)
@property
def is_proper(self):
"""
Returns True if degree of the numerator polynomial is less than
or equal to degree of the denominator polynomial, else False.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction
>>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
>>> tf1.is_proper
False
>>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*p + 2, p)
>>> tf2.is_proper
True
"""
return degree(self.num, self.var) <= degree(self.den, self.var)
@property
def is_strictly_proper(self):
"""
Returns True if degree of the numerator polynomial is strictly less
than degree of the denominator polynomial, else False.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf1.is_strictly_proper
False
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
>>> tf2.is_strictly_proper
True
"""
return degree(self.num, self.var) < degree(self.den, self.var)
@property
def is_biproper(self):
"""
Returns True if degree of the numerator polynomial is equal to
degree of the denominator polynomial, else False.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf1.is_biproper
True
>>> tf2 = TransferFunction(p**2, p + a, p)
>>> tf2.is_biproper
False
"""
return degree(self.num, self.var) == degree(self.den, self.var)
def to_expr(self):
"""
Converts a ``TransferFunction`` object to SymPy Expr.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy import Expr
>>> tf1 = TransferFunction(s, a*s**2 + 1, s)
>>> tf1.to_expr()
s/(a*s**2 + 1)
>>> isinstance(_, Expr)
True
>>> tf2 = TransferFunction(1, (p + 3*b)*(b - p), p)
>>> tf2.to_expr()
1/((b - p)*(3*b + p))
>>> tf3 = TransferFunction((s - 2)*(s - 3), (s - 1)*(s - 2)*(s - 3), s)
>>> tf3.to_expr()
((s - 3)*(s - 2))/(((s - 3)*(s - 2)*(s - 1)))
"""
if self.num != 1:
return Mul(self.num, Pow(self.den, -1, evaluate=False), evaluate=False)
else:
return Pow(self.den, -1, evaluate=False)
def _flatten_args(args, _cls):
temp_args = []
for arg in args:
if isinstance(arg, _cls):
temp_args.extend(arg.args)
else:
temp_args.append(arg)
return tuple(temp_args)
def _dummify_args(_arg, var):
dummy_dict = {}
dummy_arg_list = []
for arg in _arg:
_s = Dummy()
dummy_dict[_s] = var
dummy_arg = arg.subs({var: _s})
dummy_arg_list.append(dummy_arg)
return dummy_arg_list, dummy_dict
class Series(SISOLinearTimeInvariant):
r"""
A class for representing a series configuration of SISO systems.
Parameters
==========
args : SISOLinearTimeInvariant
SISO systems in a series configuration.
evaluate : Boolean, Keyword
When passed ``True``, returns the equivalent
``Series(*args).doit()``. Set to ``False`` by default.
Raises
======
ValueError
When no argument is passed.
``var`` attribute is not same for every system.
TypeError
Any of the passed ``*args`` has unsupported type
A combination of SISO and MIMO systems is
passed. There should be homogeneity in the
type of systems passed, SISO in this case.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Series, Parallel
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
>>> tf3 = TransferFunction(p**2, p + s, s)
>>> S1 = Series(tf1, tf2)
>>> S1
Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s))
>>> S1.var
s
>>> S2 = Series(tf2, Parallel(tf3, -tf1))
>>> S2
Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Parallel(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s)))
>>> S2.var
s
>>> S3 = Series(Parallel(tf1, tf2), Parallel(tf2, tf3))
>>> S3
Series(Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s)))
>>> S3.var
s
You can get the resultant transfer function by using ``.doit()`` method:
>>> S3 = Series(tf1, tf2, -tf3)
>>> S3.doit()
TransferFunction(-p**2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(p + s)*(s**4 + 5*s + 6), s)
>>> S4 = Series(tf2, Parallel(tf1, -tf3))
>>> S4.doit()
TransferFunction((s**3 - 2)*(-p**2*(-p + s) + (p + s)*(a*p**2 + b*s)), (-p + s)*(p + s)*(s**4 + 5*s + 6), s)
Notes
=====
All the transfer functions should use the same complex variable
``var`` of the Laplace transform.
See Also
========
MIMOSeries, Parallel, TransferFunction, Feedback
"""
def __new__(cls, *args, evaluate=False):
args = _flatten_args(args, Series)
cls._check_args(args)
obj = super().__new__(cls, *args)
return obj.doit() if evaluate else obj
@property
def var(self):
"""
Returns the complex variable used by all the transfer functions.
Examples
========
>>> from sympy.abc import p
>>> from sympy.physics.control.lti import TransferFunction, Series, Parallel
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
>>> G2 = TransferFunction(p, 4 - p, p)
>>> G3 = TransferFunction(0, p**4 - 1, p)
>>> Series(G1, G2).var
p
>>> Series(-G3, Parallel(G1, G2)).var
p
"""
return self.args[0].var
def doit(self, **kwargs):
"""
Returns the resultant transfer function obtained after evaluating
the transfer functions in series configuration.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Series
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
>>> Series(tf2, tf1).doit()
TransferFunction((s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s)
>>> Series(-tf1, -tf2).doit()
TransferFunction((2 - s**3)*(-a*p**2 - b*s), (-p + s)*(s**4 + 5*s + 6), s)
"""
_num_arg = (arg.doit().num for arg in self.args)
_den_arg = (arg.doit().den for arg in self.args)
res_num = Mul(*_num_arg, evaluate=True)
res_den = Mul(*_den_arg, evaluate=True)
return TransferFunction(res_num, res_den, self.var)
def _eval_rewrite_as_TransferFunction(self, *args, **kwargs):
return self.doit()
@_check_other_SISO
def __add__(self, other):
if isinstance(other, Parallel):
arg_list = list(other.args)
return Parallel(self, *arg_list)
return Parallel(self, other)
__radd__ = __add__
@_check_other_SISO
def __sub__(self, other):
return self + (-other)
def __rsub__(self, other):
return -self + other
@_check_other_SISO
def __mul__(self, other):
arg_list = list(self.args)
return Series(*arg_list, other)
def __truediv__(self, other):
if (isinstance(other, Parallel) and len(other.args) == 2
and isinstance(other.args[0], TransferFunction) and isinstance(other.args[1], Series)):
if not self.var == other.var:
raise ValueError("All the transfer functions should use the same complex variable "
"of the Laplace transform.")
self_arg_list = set(list(self.args))
other_arg_list = set(list(other.args[1].args))
res = list(self_arg_list ^ other_arg_list)
if len(res) == 0:
return Feedback(self, other.args[0])
elif len(res) == 1:
return Feedback(self, *res)
else:
return Feedback(self, Series(*res))
else:
raise ValueError("This transfer function expression is invalid.")
def __neg__(self):
return Series(TransferFunction(-1, 1, self.var), self)
def to_expr(self):
"""Returns the equivalent ``Expr`` object."""
return Mul(*(arg.to_expr() for arg in self.args), evaluate=False)
@property
def is_proper(self):
"""
Returns True if degree of the numerator polynomial of the resultant transfer
function is less than or equal to degree of the denominator polynomial of
the same, else False.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Series
>>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
>>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s)
>>> tf3 = TransferFunction(s, s**2 + s + 1, s)
>>> S1 = Series(-tf2, tf1)
>>> S1.is_proper
False
>>> S2 = Series(tf1, tf2, tf3)
>>> S2.is_proper
True
"""
return self.doit().is_proper
@property
def is_strictly_proper(self):
"""
Returns True if degree of the numerator polynomial of the resultant transfer
function is strictly less than degree of the denominator polynomial of
the same, else False.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Series
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(s**3 - 2, s**2 + 5*s + 6, s)
>>> tf3 = TransferFunction(1, s**2 + s + 1, s)
>>> S1 = Series(tf1, tf2)
>>> S1.is_strictly_proper
False
>>> S2 = Series(tf1, tf2, tf3)
>>> S2.is_strictly_proper
True
"""
return self.doit().is_strictly_proper
@property
def is_biproper(self):
r"""
Returns True if degree of the numerator polynomial of the resultant transfer
function is equal to degree of the denominator polynomial of
the same, else False.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Series
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(p, s**2, s)
>>> tf3 = TransferFunction(s**2, 1, s)
>>> S1 = Series(tf1, -tf2)
>>> S1.is_biproper
False
>>> S2 = Series(tf2, tf3)
>>> S2.is_biproper
True
"""
return self.doit().is_biproper
def _mat_mul_compatible(*args):
"""To check whether shapes are compatible for matrix mul."""
return all(args[i].num_outputs == args[i+1].num_inputs for i in range(len(args)-1))
class MIMOSeries(MIMOLinearTimeInvariant):
r"""
A class for representing a series configuration of MIMO systems.
Parameters
==========
args : MIMOLinearTimeInvariant
MIMO systems in a series configuration.
evaluate : Boolean, Keyword
When passed ``True``, returns the equivalent
``MIMOSeries(*args).doit()``. Set to ``False`` by default.
Raises
======
ValueError
When no argument is passed.
``var`` attribute is not same for every system.
``num_outputs`` of the MIMO system is not equal to the
``num_inputs`` of its adjacent MIMO system. (Matrix
multiplication constraint, basically)
TypeError
Any of the passed ``*args`` has unsupported type
A combination of SISO and MIMO systems is
passed. There should be homogeneity in the
type of systems passed, MIMO in this case.
Examples
========
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import MIMOSeries, TransferFunctionMatrix
>>> from sympy import Matrix, pprint
>>> mat_a = Matrix([[5*s], [5]]) # 2 Outputs 1 Input
>>> mat_b = Matrix([[5, 1/(6*s**2)]]) # 1 Output 2 Inputs
>>> mat_c = Matrix([[1, s], [5/s, 1]]) # 2 Outputs 2 Inputs
>>> tfm_a = TransferFunctionMatrix.from_Matrix(mat_a, s)
>>> tfm_b = TransferFunctionMatrix.from_Matrix(mat_b, s)
>>> tfm_c = TransferFunctionMatrix.from_Matrix(mat_c, s)
>>> MIMOSeries(tfm_c, tfm_b, tfm_a)
MIMOSeries(TransferFunctionMatrix(((TransferFunction(1, 1, s), TransferFunction(s, 1, s)), (TransferFunction(5, s, s), TransferFunction(1, 1, s)))), TransferFunctionMatrix(((TransferFunction(5, 1, s), TransferFunction(1, 6*s**2, s)),)), TransferFunctionMatrix(((TransferFunction(5*s, 1, s),), (TransferFunction(5, 1, s),))))
>>> pprint(_, use_unicode=False) # For Better Visualization
[5*s] [1 s]
[---] [5 1 ] [- -]
[ 1 ] [- ----] [1 1]
[ ] *[1 2] *[ ]
[ 5 ] [ 6*s ]{t} [5 1]
[ - ] [- -]
[ 1 ]{t} [s 1]{t}
>>> MIMOSeries(tfm_c, tfm_b, tfm_a).doit()
TransferFunctionMatrix(((TransferFunction(150*s**4 + 25*s, 6*s**3, s), TransferFunction(150*s**4 + 5*s, 6*s**2, s)), (TransferFunction(150*s**3 + 25, 6*s**3, s), TransferFunction(150*s**3 + 5, 6*s**2, s))))
>>> pprint(_, use_unicode=False) # (2 Inputs -A-> 2 Outputs) -> (2 Inputs -B-> 1 Output) -> (1 Input -C-> 2 Outputs) is equivalent to (2 Inputs -Series Equivalent-> 2 Outputs).
[ 4 4 ]
[150*s + 25*s 150*s + 5*s]
[------------- ------------]
[ 3 2 ]
[ 6*s 6*s ]
[ ]
[ 3 3 ]
[ 150*s + 25 150*s + 5 ]
[ ----------- ---------- ]
[ 3 2 ]
[ 6*s 6*s ]{t}
Notes
=====
All the transfer function matrices should use the same complex variable ``var`` of the Laplace transform.
``MIMOSeries(A, B)`` is not equivalent to ``A*B``. It is always in the reverse order, that is ``B*A``.
See Also
========
Series, MIMOParallel
"""
def __new__(cls, *args, evaluate=False):
cls._check_args(args)
if _mat_mul_compatible(*args):
obj = super().__new__(cls, *args)
else:
raise ValueError("Number of input signals do not match the number"
" of output signals of adjacent systems for some args.")
return obj.doit() if evaluate else obj
@property
def var(self):
"""
Returns the complex variable used by all the transfer functions.
Examples
========
>>> from sympy.abc import p
>>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
>>> G2 = TransferFunction(p, 4 - p, p)
>>> G3 = TransferFunction(0, p**4 - 1, p)
>>> tfm_1 = TransferFunctionMatrix([[G1, G2, G3]])
>>> tfm_2 = TransferFunctionMatrix([[G1], [G2], [G3]])
>>> MIMOSeries(tfm_2, tfm_1).var
p
"""
return self.args[0].var
@property
def num_inputs(self):
"""Returns the number of input signals of the series system."""
return self.args[0].num_inputs
@property
def num_outputs(self):
"""Returns the number of output signals of the series system."""
return self.args[-1].num_outputs
@property
def shape(self):
"""Returns the shape of the equivalent MIMO system."""
return self.num_outputs, self.num_inputs
def doit(self, cancel=False, **kwargs):
"""
Returns the resultant transfer function matrix obtained after evaluating
the MIMO systems arranged in a series configuration.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
>>> tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf2]])
>>> tfm2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf1]])
>>> MIMOSeries(tfm2, tfm1).doit()
TransferFunctionMatrix(((TransferFunction(2*(-p + s)*(s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)**2*(s**4 + 5*s + 6)**2, s), TransferFunction((-p + s)**2*(s**3 - 2)*(a*p**2 + b*s) + (-p + s)*(a*p**2 + b*s)**2*(s**4 + 5*s + 6), (-p + s)**3*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2)**2*(s**4 + 5*s + 6) + (s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6)**2, (-p + s)*(s**4 + 5*s + 6)**3, s), TransferFunction(2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s))))
"""
_arg = (arg.doit()._expr_mat for arg in reversed(self.args))
if cancel:
res = MatMul(*_arg, evaluate=True)
return TransferFunctionMatrix.from_Matrix(res, self.var)
_dummy_args, _dummy_dict = _dummify_args(_arg, self.var)
res = MatMul(*_dummy_args, evaluate=True)
temp_tfm = TransferFunctionMatrix.from_Matrix(res, self.var)
return temp_tfm.subs(_dummy_dict)
def _eval_rewrite_as_TransferFunctionMatrix(self, *args, **kwargs):
return self.doit()
@_check_other_MIMO
def __add__(self, other):
if isinstance(other, MIMOParallel):
arg_list = list(other.args)
return MIMOParallel(self, *arg_list)
return MIMOParallel(self, other)
__radd__ = __add__
@_check_other_MIMO
def __sub__(self, other):
return self + (-other)
def __rsub__(self, other):
return -self + other
@_check_other_MIMO
def __mul__(self, other):
if isinstance(other, MIMOSeries):
self_arg_list = list(self.args)
other_arg_list = list(other.args)
return MIMOSeries(*other_arg_list, *self_arg_list) # A*B = MIMOSeries(B, A)
arg_list = list(self.args)
return MIMOSeries(other, *arg_list)
def __neg__(self):
arg_list = list(self.args)
arg_list[0] = -arg_list[0]
return MIMOSeries(*arg_list)
class Parallel(SISOLinearTimeInvariant):
r"""
A class for representing a parallel configuration of SISO systems.
Parameters
==========
args : SISOLinearTimeInvariant
SISO systems in a parallel arrangement.
evaluate : Boolean, Keyword
When passed ``True``, returns the equivalent
``Parallel(*args).doit()``. Set to ``False`` by default.
Raises
======
ValueError
When no argument is passed.
``var`` attribute is not same for every system.
TypeError
Any of the passed ``*args`` has unsupported type
A combination of SISO and MIMO systems is
passed. There should be homogeneity in the
type of systems passed.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Parallel, Series
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
>>> tf3 = TransferFunction(p**2, p + s, s)
>>> P1 = Parallel(tf1, tf2)
>>> P1
Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s))
>>> P1.var
s
>>> P2 = Parallel(tf2, Series(tf3, -tf1))
>>> P2
Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Series(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s)))
>>> P2.var
s
>>> P3 = Parallel(Series(tf1, tf2), Series(tf2, tf3))
>>> P3
Parallel(Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s)))
>>> P3.var
s
You can get the resultant transfer function by using ``.doit()`` method:
>>> Parallel(tf1, tf2, -tf3).doit()
TransferFunction(-p**2*(-p + s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2) + (p + s)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(p + s)*(s**4 + 5*s + 6), s)
>>> Parallel(tf2, Series(tf1, -tf3)).doit()
TransferFunction(-p**2*(a*p**2 + b*s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2), (-p + s)*(p + s)*(s**4 + 5*s + 6), s)
Notes
=====
All the transfer functions should use the same complex variable
``var`` of the Laplace transform.
See Also
========
Series, TransferFunction, Feedback
"""
def __new__(cls, *args, evaluate=False):
args = _flatten_args(args, Parallel)
cls._check_args(args)
obj = super().__new__(cls, *args)
return obj.doit() if evaluate else obj
@property
def var(self):
"""
Returns the complex variable used by all the transfer functions.
Examples
========
>>> from sympy.abc import p
>>> from sympy.physics.control.lti import TransferFunction, Parallel, Series
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
>>> G2 = TransferFunction(p, 4 - p, p)
>>> G3 = TransferFunction(0, p**4 - 1, p)
>>> Parallel(G1, G2).var
p
>>> Parallel(-G3, Series(G1, G2)).var
p
"""
return self.args[0].var
def doit(self, **kwargs):
"""
Returns the resultant transfer function obtained after evaluating
the transfer functions in parallel configuration.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Parallel
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
>>> Parallel(tf2, tf1).doit()
TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)
>>> Parallel(-tf1, -tf2).doit()
TransferFunction((2 - s**3)*(-p + s) + (-a*p**2 - b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)
"""
_arg = (arg.doit().to_expr() for arg in self.args)
res = Add(*_arg).as_numer_denom()
return TransferFunction(*res, self.var)
def _eval_rewrite_as_TransferFunction(self, *args, **kwargs):
return self.doit()
@_check_other_SISO
def __add__(self, other):
self_arg_list = list(self.args)
return Parallel(*self_arg_list, other)
__radd__ = __add__
@_check_other_SISO
def __sub__(self, other):
return self + (-other)
def __rsub__(self, other):
return -self + other
@_check_other_SISO
def __mul__(self, other):
if isinstance(other, Series):
arg_list = list(other.args)
return Series(self, *arg_list)
return Series(self, other)
def __neg__(self):
return Series(TransferFunction(-1, 1, self.var), self)
def to_expr(self):
"""Returns the equivalent ``Expr`` object."""
return Add(*(arg.to_expr() for arg in self.args), evaluate=False)
@property
def is_proper(self):
"""
Returns True if degree of the numerator polynomial of the resultant transfer
function is less than or equal to degree of the denominator polynomial of
the same, else False.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Parallel
>>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
>>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s)
>>> tf3 = TransferFunction(s, s**2 + s + 1, s)
>>> P1 = Parallel(-tf2, tf1)
>>> P1.is_proper
False
>>> P2 = Parallel(tf2, tf3)
>>> P2.is_proper
True
"""
return self.doit().is_proper
@property
def is_strictly_proper(self):
"""
Returns True if degree of the numerator polynomial of the resultant transfer
function is strictly less than degree of the denominator polynomial of
the same, else False.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Parallel
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
>>> tf3 = TransferFunction(s, s**2 + s + 1, s)
>>> P1 = Parallel(tf1, tf2)
>>> P1.is_strictly_proper
False
>>> P2 = Parallel(tf2, tf3)
>>> P2.is_strictly_proper
True
"""
return self.doit().is_strictly_proper
@property
def is_biproper(self):
"""
Returns True if degree of the numerator polynomial of the resultant transfer
function is equal to degree of the denominator polynomial of
the same, else False.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Parallel
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(p**2, p + s, s)
>>> tf3 = TransferFunction(s, s**2 + s + 1, s)
>>> P1 = Parallel(tf1, -tf2)
>>> P1.is_biproper
True
>>> P2 = Parallel(tf2, tf3)
>>> P2.is_biproper
False
"""
return self.doit().is_biproper
class MIMOParallel(MIMOLinearTimeInvariant):
r"""
A class for representing a parallel configuration of MIMO systems.
Parameters
==========
args : MIMOLinearTimeInvariant
MIMO Systems in a parallel arrangement.
evaluate : Boolean, Keyword
When passed ``True``, returns the equivalent
``MIMOParallel(*args).doit()``. Set to ``False`` by default.
Raises
======
ValueError
When no argument is passed.
``var`` attribute is not same for every system.
All MIMO systems passed don't have same shape.
TypeError
Any of the passed ``*args`` has unsupported type
A combination of SISO and MIMO systems is
passed. There should be homogeneity in the
type of systems passed, MIMO in this case.
Examples
========
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOParallel
>>> from sympy import Matrix, pprint
>>> expr_1 = 1/s
>>> expr_2 = s/(s**2-1)
>>> expr_3 = (2 + s)/(s**2 - 1)
>>> expr_4 = 5
>>> tfm_a = TransferFunctionMatrix.from_Matrix(Matrix([[expr_1, expr_2], [expr_3, expr_4]]), s)
>>> tfm_b = TransferFunctionMatrix.from_Matrix(Matrix([[expr_2, expr_1], [expr_4, expr_3]]), s)
>>> tfm_c = TransferFunctionMatrix.from_Matrix(Matrix([[expr_3, expr_4], [expr_1, expr_2]]), s)
>>> MIMOParallel(tfm_a, tfm_b, tfm_c)
MIMOParallel(TransferFunctionMatrix(((TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s)), (TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)))), TransferFunctionMatrix(((TransferFunction(s, s**2 - 1, s), TransferFunction(1, s, s)), (TransferFunction(5, 1, s), TransferFunction(s + 2, s**2 - 1, s)))), TransferFunctionMatrix(((TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)), (TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s)))))
>>> pprint(_, use_unicode=False) # For Better Visualization
[ 1 s ] [ s 1 ] [s + 2 5 ]
[ - ------] [------ - ] [------ - ]
[ s 2 ] [ 2 s ] [ 2 1 ]
[ s - 1] [s - 1 ] [s - 1 ]
[ ] + [ ] + [ ]
[s + 2 5 ] [ 5 s + 2 ] [ 1 s ]
[------ - ] [ - ------] [ - ------]
[ 2 1 ] [ 1 2 ] [ s 2 ]
[s - 1 ]{t} [ s - 1]{t} [ s - 1]{t}
>>> MIMOParallel(tfm_a, tfm_b, tfm_c).doit()
TransferFunctionMatrix(((TransferFunction(s**2 + s*(2*s + 2) - 1, s*(s**2 - 1), s), TransferFunction(2*s**2 + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s)), (TransferFunction(s**2 + s*(s + 2) + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s), TransferFunction(5*s**2 + 2*s - 3, s**2 - 1, s))))
>>> pprint(_, use_unicode=False)
[ 2 2 / 2 \ ]
[ s + s*(2*s + 2) - 1 2*s + 5*s*\s - 1/ - 1]
[ -------------------- -----------------------]
[ / 2 \ / 2 \ ]
[ s*\s - 1/ s*\s - 1/ ]
[ ]
[ 2 / 2 \ 2 ]
[s + s*(s + 2) + 5*s*\s - 1/ - 1 5*s + 2*s - 3 ]
[--------------------------------- -------------- ]
[ / 2 \ 2 ]
[ s*\s - 1/ s - 1 ]{t}
Notes
=====
All the transfer function matrices should use the same complex variable
``var`` of the Laplace transform.
See Also
========
Parallel, MIMOSeries
"""
def __new__(cls, *args, evaluate=False):
args = _flatten_args(args, MIMOParallel)
cls._check_args(args)
if any(arg.shape != args[0].shape for arg in args):
raise TypeError("Shape of all the args is not equal.")
obj = super().__new__(cls, *args)
return obj.doit() if evaluate else obj
@property
def var(self):
"""
Returns the complex variable used by all the systems.
Examples
========
>>> from sympy.abc import p
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOParallel
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
>>> G2 = TransferFunction(p, 4 - p, p)
>>> G3 = TransferFunction(0, p**4 - 1, p)
>>> G4 = TransferFunction(p**2, p**2 - 1, p)
>>> tfm_a = TransferFunctionMatrix([[G1, G2], [G3, G4]])
>>> tfm_b = TransferFunctionMatrix([[G2, G1], [G4, G3]])
>>> MIMOParallel(tfm_a, tfm_b).var
p
"""
return self.args[0].var
@property
def num_inputs(self):
"""Returns the number of input signals of the parallel system."""
return self.args[0].num_inputs
@property
def num_outputs(self):
"""Returns the number of output signals of the parallel system."""
return self.args[0].num_outputs
@property
def shape(self):
"""Returns the shape of the equivalent MIMO system."""
return self.num_outputs, self.num_inputs
def doit(self, **kwargs):
"""
Returns the resultant transfer function matrix obtained after evaluating
the MIMO systems arranged in a parallel configuration.
Examples
========
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, MIMOParallel, TransferFunctionMatrix
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
>>> tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
>>> tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
>>> MIMOParallel(tfm_1, tfm_2).doit()
TransferFunctionMatrix(((TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s))))
"""
_arg = (arg.doit()._expr_mat for arg in self.args)
res = MatAdd(*_arg, evaluate=True)
return TransferFunctionMatrix.from_Matrix(res, self.var)
def _eval_rewrite_as_TransferFunctionMatrix(self, *args, **kwargs):
return self.doit()
@_check_other_MIMO
def __add__(self, other):
self_arg_list = list(self.args)
return MIMOParallel(*self_arg_list, other)
__radd__ = __add__
@_check_other_MIMO
def __sub__(self, other):
return self + (-other)
def __rsub__(self, other):
return -self + other
@_check_other_MIMO
def __mul__(self, other):
if isinstance(other, MIMOSeries):
arg_list = list(other.args)
return MIMOSeries(*arg_list, self)
return MIMOSeries(other, self)
def __neg__(self):
arg_list = [-arg for arg in list(self.args)]
return MIMOParallel(*arg_list)
class Feedback(SISOLinearTimeInvariant):
r"""
A class for representing closed-loop feedback interconnection between two
SISO input/output systems.
The first argument, ``sys1``, is the feedforward part of the closed-loop
system or in simple words, the dynamical model representing the process
to be controlled. The second argument, ``sys2``, is the feedback system
and controls the fed back signal to ``sys1``. Both ``sys1`` and ``sys2``
can either be ``Series`` or ``TransferFunction`` objects.
Parameters
==========
sys1 : Series, TransferFunction
The feedforward path system.
sys2 : Series, TransferFunction, optional
The feedback path system (often a feedback controller).
It is the model sitting on the feedback path.
If not specified explicitly, the sys2 is
assumed to be unit (1.0) transfer function.
sign : int, optional
The sign of feedback. Can either be ``1``
(for positive feedback) or ``-1`` (for negative feedback).
Default value is `-1`.
Raises
======
ValueError
When ``sys1`` and ``sys2`` are not using the
same complex variable of the Laplace transform.
When a combination of ``sys1`` and ``sys2`` yields
zero denominator.
TypeError
When either ``sys1`` or ``sys2`` is not a ``Series`` or a
``TransferFunction`` object.
Examples
========
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction, Feedback
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> controller = TransferFunction(5*s - 10, s + 7, s)
>>> F1 = Feedback(plant, controller)
>>> F1
Feedback(TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1)
>>> F1.var
s
>>> F1.args
(TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1)
You can get the feedforward and feedback path systems by using ``.sys1`` and ``.sys2`` respectively.
>>> F1.sys1
TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> F1.sys2
TransferFunction(5*s - 10, s + 7, s)
You can get the resultant closed loop transfer function obtained by negative feedback
interconnection using ``.doit()`` method.
>>> F1.doit()
TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s)
>>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s)
>>> C = TransferFunction(5*s + 10, s + 10, s)
>>> F2 = Feedback(G*C, TransferFunction(1, 1, s))
>>> F2.doit()
TransferFunction((s + 10)*(5*s + 10)*(s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s + 10)*((s + 10)*(s**2 + 2*s + 3) + (5*s + 10)*(2*s**2 + 5*s + 1))*(s**2 + 2*s + 3), s)
To negate a ``Feedback`` object, the ``-`` operator can be prepended:
>>> -F1
Feedback(TransferFunction(-3*s**2 - 7*s + 3, s**2 - 4*s + 2, s), TransferFunction(10 - 5*s, s + 7, s), -1)
>>> -F2
Feedback(Series(TransferFunction(-1, 1, s), TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s), TransferFunction(5*s + 10, s + 10, s)), TransferFunction(-1, 1, s), -1)
See Also
========
MIMOFeedback, Series, Parallel
"""
def __new__(cls, sys1, sys2=None, sign=-1):
if not sys2:
sys2 = TransferFunction(1, 1, sys1.var)
if not (isinstance(sys1, (TransferFunction, Series))
and isinstance(sys2, (TransferFunction, Series))):
raise TypeError("Unsupported type for `sys1` or `sys2` of Feedback.")
if sign not in [-1, 1]:
raise ValueError("Unsupported type for feedback. `sign` arg should "
"either be 1 (positive feedback loop) or -1 (negative feedback loop).")
if Mul(sys1.to_expr(), sys2.to_expr()).simplify() == sign:
raise ValueError("The equivalent system will have zero denominator.")
if sys1.var != sys2.var:
raise ValueError("Both `sys1` and `sys2` should be using the"
" same complex variable.")
return super().__new__(cls, sys1, sys2, _sympify(sign))
@property
def sys1(self):
"""
Returns the feedforward system of the feedback interconnection.
Examples
========
>>> from sympy.abc import s, p
>>> from sympy.physics.control.lti import TransferFunction, Feedback
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> controller = TransferFunction(5*s - 10, s + 7, s)
>>> F1 = Feedback(plant, controller)
>>> F1.sys1
TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p)
>>> C = TransferFunction(5*p + 10, p + 10, p)
>>> P = TransferFunction(1 - s, p + 2, p)
>>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P)
>>> F2.sys1
TransferFunction(1, 1, p)
"""
return self.args[0]
@property
def sys2(self):
"""
Returns the feedback controller of the feedback interconnection.
Examples
========
>>> from sympy.abc import s, p
>>> from sympy.physics.control.lti import TransferFunction, Feedback
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> controller = TransferFunction(5*s - 10, s + 7, s)
>>> F1 = Feedback(plant, controller)
>>> F1.sys2
TransferFunction(5*s - 10, s + 7, s)
>>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p)
>>> C = TransferFunction(5*p + 10, p + 10, p)
>>> P = TransferFunction(1 - s, p + 2, p)
>>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P)
>>> F2.sys2
Series(TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p), TransferFunction(5*p + 10, p + 10, p), TransferFunction(1 - s, p + 2, p))
"""
return self.args[1]
@property
def var(self):
"""
Returns the complex variable of the Laplace transform used by all
the transfer functions involved in the feedback interconnection.
Examples
========
>>> from sympy.abc import s, p
>>> from sympy.physics.control.lti import TransferFunction, Feedback
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> controller = TransferFunction(5*s - 10, s + 7, s)
>>> F1 = Feedback(plant, controller)
>>> F1.var
s
>>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p)
>>> C = TransferFunction(5*p + 10, p + 10, p)
>>> P = TransferFunction(1 - s, p + 2, p)
>>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P)
>>> F2.var
p
"""
return self.sys1.var
@property
def sign(self):
"""
Returns the type of MIMO Feedback model. ``1``
for Positive and ``-1`` for Negative.
"""
return self.args[2]
@property
def sensitivity(self):
"""
Returns the sensitivity function of the feedback loop.
Sensitivity of a Feedback system is the ratio
of change in the open loop gain to the change in
the closed loop gain.
.. note::
This method would not return the complementary
sensitivity function.
Examples
========
>>> from sympy.abc import p
>>> from sympy.physics.control.lti import TransferFunction, Feedback
>>> C = TransferFunction(5*p + 10, p + 10, p)
>>> P = TransferFunction(1 - p, p + 2, p)
>>> F_1 = Feedback(P, C)
>>> F_1.sensitivity
1/((1 - p)*(5*p + 10)/((p + 2)*(p + 10)) + 1)
"""
return 1/(1 - self.sign*self.sys1.to_expr()*self.sys2.to_expr())
def doit(self, cancel=False, expand=False, **kwargs):
"""
Returns the resultant transfer function obtained by the
feedback interconnection.
Examples
========
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction, Feedback
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> controller = TransferFunction(5*s - 10, s + 7, s)
>>> F1 = Feedback(plant, controller)
>>> F1.doit()
TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s)
>>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s)
>>> F2 = Feedback(G, TransferFunction(1, 1, s))
>>> F2.doit()
TransferFunction((s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s**2 + 2*s + 3)*(3*s**2 + 7*s + 4), s)
Use kwarg ``expand=True`` to expand the resultant transfer function.
Use ``cancel=True`` to cancel out the common terms in numerator and
denominator.
>>> F2.doit(cancel=True, expand=True)
TransferFunction(2*s**2 + 5*s + 1, 3*s**2 + 7*s + 4, s)
>>> F2.doit(expand=True)
TransferFunction(2*s**4 + 9*s**3 + 17*s**2 + 17*s + 3, 3*s**4 + 13*s**3 + 27*s**2 + 29*s + 12, s)
"""
arg_list = list(self.sys1.args) if isinstance(self.sys1, Series) else [self.sys1]
# F_n and F_d are resultant TFs of num and den of Feedback.
F_n, unit = self.sys1.doit(), TransferFunction(1, 1, self.sys1.var)
if self.sign == -1:
F_d = Parallel(unit, Series(self.sys2, *arg_list)).doit()
else:
F_d = Parallel(unit, -Series(self.sys2, *arg_list)).doit()
_resultant_tf = TransferFunction(F_n.num * F_d.den, F_n.den * F_d.num, F_n.var)
if cancel:
_resultant_tf = _resultant_tf.simplify()
if expand:
_resultant_tf = _resultant_tf.expand()
return _resultant_tf
def _eval_rewrite_as_TransferFunction(self, num, den, sign, **kwargs):
return self.doit()
def __neg__(self):
return Feedback(-self.sys1, -self.sys2, self.sign)
def _is_invertible(a, b, sign):
"""
Checks whether a given pair of MIMO
systems passed is invertible or not.
"""
_mat = eye(a.num_outputs) - sign*(a.doit()._expr_mat)*(b.doit()._expr_mat)
_det = _mat.det()
return _det != 0
class MIMOFeedback(MIMOLinearTimeInvariant):
r"""
A class for representing closed-loop feedback interconnection between two
MIMO input/output systems.
Parameters
==========
sys1 : MIMOSeries, TransferFunctionMatrix
The MIMO system placed on the feedforward path.
sys2 : MIMOSeries, TransferFunctionMatrix
The system placed on the feedback path
(often a feedback controller).
sign : int, optional
The sign of feedback. Can either be ``1``
(for positive feedback) or ``-1`` (for negative feedback).
Default value is `-1`.
Raises
======
ValueError
When ``sys1`` and ``sys2`` are not using the
same complex variable of the Laplace transform.
Forward path model should have an equal number of inputs/outputs
to the feedback path outputs/inputs.
When product of ``sys1`` and ``sys2`` is not a square matrix.
When the equivalent MIMO system is not invertible.
TypeError
When either ``sys1`` or ``sys2`` is not a ``MIMOSeries`` or a
``TransferFunctionMatrix`` object.
Examples
========
>>> from sympy import Matrix, pprint
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOFeedback
>>> plant_mat = Matrix([[1, 1/s], [0, 1]])
>>> controller_mat = Matrix([[10, 0], [0, 10]]) # Constant Gain
>>> plant = TransferFunctionMatrix.from_Matrix(plant_mat, s)
>>> controller = TransferFunctionMatrix.from_Matrix(controller_mat, s)
>>> feedback = MIMOFeedback(plant, controller) # Negative Feedback (default)
>>> pprint(feedback, use_unicode=False)
/ [1 1] [10 0 ] \-1 [1 1]
| [- -] [-- - ] | [- -]
| [1 s] [1 1 ] | [1 s]
|I + [ ] *[ ] | * [ ]
| [0 1] [0 10] | [0 1]
| [- -] [- --] | [- -]
\ [1 1]{t} [1 1 ]{t}/ [1 1]{t}
To get the equivalent system matrix, use either ``doit`` or ``rewrite`` method.
>>> pprint(feedback.doit(), use_unicode=False)
[1 1 ]
[-- -----]
[11 121*s]
[ ]
[0 1 ]
[- -- ]
[1 11 ]{t}
To negate the ``MIMOFeedback`` object, use ``-`` operator.
>>> neg_feedback = -feedback
>>> pprint(neg_feedback.doit(), use_unicode=False)
[-1 -1 ]
[--- -----]
[ 11 121*s]
[ ]
[ 0 -1 ]
[ - --- ]
[ 1 11 ]{t}
See Also
========
Feedback, MIMOSeries, MIMOParallel
"""
def __new__(cls, sys1, sys2, sign=-1):
if not (isinstance(sys1, (TransferFunctionMatrix, MIMOSeries))
and isinstance(sys2, (TransferFunctionMatrix, MIMOSeries))):
raise TypeError("Unsupported type for `sys1` or `sys2` of MIMO Feedback.")
if sys1.num_inputs != sys2.num_outputs or \
sys1.num_outputs != sys2.num_inputs:
raise ValueError("Product of `sys1` and `sys2` "
"must yield a square matrix.")
if sign not in [-1, 1]:
raise ValueError("Unsupported type for feedback. `sign` arg should "
"either be 1 (positive feedback loop) or -1 (negative feedback loop).")
if not _is_invertible(sys1, sys2, sign):
raise ValueError("Non-Invertible system inputted.")
if sys1.var != sys2.var:
raise ValueError("Both `sys1` and `sys2` should be using the"
" same complex variable.")
return super().__new__(cls, sys1, sys2, _sympify(sign))
@property
def sys1(self):
r"""
Returns the system placed on the feedforward path of the MIMO feedback interconnection.
Examples
========
>>> from sympy import pprint
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback
>>> tf1 = TransferFunction(s**2 + s + 1, s**2 - s + 1, s)
>>> tf2 = TransferFunction(1, s, s)
>>> tf3 = TransferFunction(1, 1, s)
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
>>> sys2 = TransferFunctionMatrix([[tf3, tf3], [tf3, tf2]])
>>> F_1 = MIMOFeedback(sys1, sys2, 1)
>>> F_1.sys1
TransferFunctionMatrix(((TransferFunction(s**2 + s + 1, s**2 - s + 1, s), TransferFunction(1, s, s)), (TransferFunction(1, s, s), TransferFunction(s**2 + s + 1, s**2 - s + 1, s))))
>>> pprint(_, use_unicode=False)
[ 2 ]
[s + s + 1 1 ]
[---------- - ]
[ 2 s ]
[s - s + 1 ]
[ ]
[ 2 ]
[ 1 s + s + 1]
[ - ----------]
[ s 2 ]
[ s - s + 1]{t}
"""
return self.args[0]
@property
def sys2(self):
r"""
Returns the feedback controller of the MIMO feedback interconnection.
Examples
========
>>> from sympy import pprint
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback
>>> tf1 = TransferFunction(s**2, s**3 - s + 1, s)
>>> tf2 = TransferFunction(1, s, s)
>>> tf3 = TransferFunction(1, 1, s)
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
>>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]])
>>> F_1 = MIMOFeedback(sys1, sys2)
>>> F_1.sys2
TransferFunctionMatrix(((TransferFunction(s**2, s**3 - s + 1, s), TransferFunction(1, 1, s)), (TransferFunction(1, 1, s), TransferFunction(1, s, s))))
>>> pprint(_, use_unicode=False)
[ 2 ]
[ s 1]
[---------- -]
[ 3 1]
[s - s + 1 ]
[ ]
[ 1 1]
[ - -]
[ 1 s]{t}
"""
return self.args[1]
@property
def var(self):
r"""
Returns the complex variable of the Laplace transform used by all
the transfer functions involved in the MIMO feedback loop.
Examples
========
>>> from sympy.abc import p
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback
>>> tf1 = TransferFunction(p, 1 - p, p)
>>> tf2 = TransferFunction(1, p, p)
>>> tf3 = TransferFunction(1, 1, p)
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
>>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]])
>>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback
>>> F_1.var
p
"""
return self.sys1.var
@property
def sign(self):
r"""
Returns the type of feedback interconnection of two models. ``1``
for Positive and ``-1`` for Negative.
"""
return self.args[2]
@property
def sensitivity(self):
r"""
Returns the sensitivity function matrix of the feedback loop.
Sensitivity of a closed-loop system is the ratio of change
in the open loop gain to the change in the closed loop gain.
.. note::
This method would not return the complementary
sensitivity function.
Examples
========
>>> from sympy import pprint
>>> from sympy.abc import p
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback
>>> tf1 = TransferFunction(p, 1 - p, p)
>>> tf2 = TransferFunction(1, p, p)
>>> tf3 = TransferFunction(1, 1, p)
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
>>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]])
>>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback
>>> F_2 = MIMOFeedback(sys1, sys2) # Negative feedback
>>> pprint(F_1.sensitivity, use_unicode=False)
[ 4 3 2 5 4 2 ]
[- p + 3*p - 4*p + 3*p - 1 p - 2*p + 3*p - 3*p + 1 ]
[---------------------------- -----------------------------]
[ 4 3 2 5 4 3 2 ]
[ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3*p]
[ ]
[ 4 3 2 3 2 ]
[ p - p - p + p 3*p - 6*p + 4*p - 1 ]
[ -------------------------- -------------------------- ]
[ 4 3 2 4 3 2 ]
[ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3 ]
>>> pprint(F_2.sensitivity, use_unicode=False)
[ 4 3 2 5 4 2 ]
[p - 3*p + 2*p + p - 1 p - 2*p + 3*p - 3*p + 1]
[------------------------ --------------------------]
[ 4 3 5 4 2 ]
[ p - 3*p + 2*p - 1 p - 3*p + 2*p - p ]
[ ]
[ 4 3 2 4 3 ]
[ p - p - p + p 2*p - 3*p + 2*p - 1 ]
[ ------------------- --------------------- ]
[ 4 3 4 3 ]
[ p - 3*p + 2*p - 1 p - 3*p + 2*p - 1 ]
"""
_sys1_mat = self.sys1.doit()._expr_mat
_sys2_mat = self.sys2.doit()._expr_mat
return (eye(self.sys1.num_inputs) - \
self.sign*_sys1_mat*_sys2_mat).inv()
def doit(self, cancel=True, expand=False, **kwargs):
r"""
Returns the resultant transfer function matrix obtained by the
feedback interconnection.
Examples
========
>>> from sympy import pprint
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback
>>> tf1 = TransferFunction(s, 1 - s, s)
>>> tf2 = TransferFunction(1, s, s)
>>> tf3 = TransferFunction(5, 1, s)
>>> tf4 = TransferFunction(s - 1, s, s)
>>> tf5 = TransferFunction(0, 1, s)
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
>>> sys2 = TransferFunctionMatrix([[tf3, tf5], [tf5, tf5]])
>>> F_1 = MIMOFeedback(sys1, sys2, 1)
>>> pprint(F_1, use_unicode=False)
/ [ s 1 ] [5 0] \-1 [ s 1 ]
| [----- - ] [- -] | [----- - ]
| [1 - s s ] [1 1] | [1 - s s ]
|I - [ ] *[ ] | * [ ]
| [ 5 s - 1] [0 0] | [ 5 s - 1]
| [ - -----] [- -] | [ - -----]
\ [ 1 s ]{t} [1 1]{t}/ [ 1 s ]{t}
>>> pprint(F_1.doit(), use_unicode=False)
[ -s 1 - s ]
[ ------- ----------- ]
[ 6*s - 1 s*(1 - 6*s) ]
[ ]
[25*s*(s - 1) + 5*(1 - s)*(6*s - 1) (s - 1)*(6*s + 24)]
[---------------------------------- ------------------]
[ (1 - s)*(6*s - 1) s*(6*s - 1) ]{t}
If the user wants the resultant ``TransferFunctionMatrix`` object without
canceling the common factors then the ``cancel`` kwarg should be passed ``False``.
>>> pprint(F_1.doit(cancel=False), use_unicode=False)
[ 25*s*(1 - s) 25 - 25*s ]
[ -------------------- -------------- ]
[ 25*(1 - 6*s)*(1 - s) 25*s*(1 - 6*s) ]
[ ]
[s*(25*s - 25) + 5*(1 - s)*(6*s - 1) s*(s - 1)*(6*s - 1) + s*(25*s - 25)]
[----------------------------------- -----------------------------------]
[ (1 - s)*(6*s - 1) 2 ]
[ s *(6*s - 1) ]{t}
If the user wants the expanded form of the resultant transfer function matrix,
the ``expand`` kwarg should be passed as ``True``.
>>> pprint(F_1.doit(expand=True), use_unicode=False)
[ -s 1 - s ]
[ ------- ---------- ]
[ 6*s - 1 2 ]
[ - 6*s + s ]
[ ]
[ 2 2 ]
[- 5*s + 10*s - 5 6*s + 18*s - 24]
[----------------- ----------------]
[ 2 2 ]
[ - 6*s + 7*s - 1 6*s - s ]{t}
"""
_mat = self.sensitivity * self.sys1.doit()._expr_mat
_resultant_tfm = _to_TFM(_mat, self.var)
if cancel:
_resultant_tfm = _resultant_tfm.simplify()
if expand:
_resultant_tfm = _resultant_tfm.expand()
return _resultant_tfm
def _eval_rewrite_as_TransferFunctionMatrix(self, sys1, sys2, sign, **kwargs):
return self.doit()
def __neg__(self):
return MIMOFeedback(-self.sys1, -self.sys2, self.sign)
def _to_TFM(mat, var):
"""Private method to convert ImmutableMatrix to TransferFunctionMatrix efficiently"""
to_tf = lambda expr: TransferFunction.from_rational_expression(expr, var)
arg = [[to_tf(expr) for expr in row] for row in mat.tolist()]
return TransferFunctionMatrix(arg)
class TransferFunctionMatrix(MIMOLinearTimeInvariant):
r"""
A class for representing the MIMO (multiple-input and multiple-output)
generalization of the SISO (single-input and single-output) transfer function.
It is a matrix of transfer functions (``TransferFunction``, SISO-``Series`` or SISO-``Parallel``).
There is only one argument, ``arg`` which is also the compulsory argument.
``arg`` is expected to be strictly of the type list of lists
which holds the transfer functions or reducible to transfer functions.
Parameters
==========
arg : Nested ``List`` (strictly).
Users are expected to input a nested list of ``TransferFunction``, ``Series``
and/or ``Parallel`` objects.
Examples
========
.. note::
``pprint()`` can be used for better visualization of ``TransferFunctionMatrix`` objects.
>>> from sympy.abc import s, p, a
>>> from sympy import pprint
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel
>>> tf_1 = TransferFunction(s + a, s**2 + s + 1, s)
>>> tf_2 = TransferFunction(p**4 - 3*p + 2, s + p, s)
>>> tf_3 = TransferFunction(3, s + 2, s)
>>> tf_4 = TransferFunction(-a + p, 9*s - 9, s)
>>> tfm_1 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_3]])
>>> tfm_1
TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),)))
>>> tfm_1.var
s
>>> tfm_1.num_inputs
1
>>> tfm_1.num_outputs
3
>>> tfm_1.shape
(3, 1)
>>> tfm_1.args
(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),)),)
>>> tfm_2 = TransferFunctionMatrix([[tf_1, -tf_3], [tf_2, -tf_1], [tf_3, -tf_2]])
>>> tfm_2
TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-p**4 + 3*p - 2, p + s, s))))
>>> pprint(tfm_2, use_unicode=False) # pretty-printing for better visualization
[ a + s -3 ]
[ ---------- ----- ]
[ 2 s + 2 ]
[ s + s + 1 ]
[ ]
[ 4 ]
[p - 3*p + 2 -a - s ]
[------------ ---------- ]
[ p + s 2 ]
[ s + s + 1 ]
[ ]
[ 4 ]
[ 3 - p + 3*p - 2]
[ ----- --------------]
[ s + 2 p + s ]{t}
TransferFunctionMatrix can be transposed, if user wants to switch the input and output transfer functions
>>> tfm_2.transpose()
TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(3, s + 2, s)), (TransferFunction(-3, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s))))
>>> pprint(_, use_unicode=False)
[ 4 ]
[ a + s p - 3*p + 2 3 ]
[---------- ------------ ----- ]
[ 2 p + s s + 2 ]
[s + s + 1 ]
[ ]
[ 4 ]
[ -3 -a - s - p + 3*p - 2]
[ ----- ---------- --------------]
[ s + 2 2 p + s ]
[ s + s + 1 ]{t}
>>> tf_5 = TransferFunction(5, s, s)
>>> tf_6 = TransferFunction(5*s, (2 + s**2), s)
>>> tf_7 = TransferFunction(5, (s*(2 + s**2)), s)
>>> tf_8 = TransferFunction(5, 1, s)
>>> tfm_3 = TransferFunctionMatrix([[tf_5, tf_6], [tf_7, tf_8]])
>>> tfm_3
TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s))))
>>> pprint(tfm_3, use_unicode=False)
[ 5 5*s ]
[ - ------]
[ s 2 ]
[ s + 2]
[ ]
[ 5 5 ]
[---------- - ]
[ / 2 \ 1 ]
[s*\s + 2/ ]{t}
>>> tfm_3.var
s
>>> tfm_3.shape
(2, 2)
>>> tfm_3.num_outputs
2
>>> tfm_3.num_inputs
2
>>> tfm_3.args
(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s))),)
To access the ``TransferFunction`` at any index in the ``TransferFunctionMatrix``, use the index notation.
>>> tfm_3[1, 0] # gives the TransferFunction present at 2nd Row and 1st Col. Similar to that in Matrix classes
TransferFunction(5, s*(s**2 + 2), s)
>>> tfm_3[0, 0] # gives the TransferFunction present at 1st Row and 1st Col.
TransferFunction(5, s, s)
>>> tfm_3[:, 0] # gives the first column
TransferFunctionMatrix(((TransferFunction(5, s, s),), (TransferFunction(5, s*(s**2 + 2), s),)))
>>> pprint(_, use_unicode=False)
[ 5 ]
[ - ]
[ s ]
[ ]
[ 5 ]
[----------]
[ / 2 \]
[s*\s + 2/]{t}
>>> tfm_3[0, :] # gives the first row
TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)),))
>>> pprint(_, use_unicode=False)
[5 5*s ]
[- ------]
[s 2 ]
[ s + 2]{t}
To negate a transfer function matrix, ``-`` operator can be prepended:
>>> tfm_4 = TransferFunctionMatrix([[tf_2], [-tf_1], [tf_3]])
>>> -tfm_4
TransferFunctionMatrix(((TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(-3, s + 2, s),)))
>>> tfm_5 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, -tf_1]])
>>> -tfm_5
TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)), (TransferFunction(-3, s + 2, s), TransferFunction(a + s, s**2 + s + 1, s))))
``subs()`` returns the ``TransferFunctionMatrix`` object with the value substituted in the expression. This will not
mutate your original ``TransferFunctionMatrix``.
>>> tfm_2.subs(p, 2) # substituting p everywhere in tfm_2 with 2.
TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s))))
>>> pprint(_, use_unicode=False)
[ a + s -3 ]
[---------- ----- ]
[ 2 s + 2 ]
[s + s + 1 ]
[ ]
[ 12 -a - s ]
[ ----- ----------]
[ s + 2 2 ]
[ s + s + 1]
[ ]
[ 3 -12 ]
[ ----- ----- ]
[ s + 2 s + 2 ]{t}
>>> pprint(tfm_2, use_unicode=False) # State of tfm_2 is unchanged after substitution
[ a + s -3 ]
[ ---------- ----- ]
[ 2 s + 2 ]
[ s + s + 1 ]
[ ]
[ 4 ]
[p - 3*p + 2 -a - s ]
[------------ ---------- ]
[ p + s 2 ]
[ s + s + 1 ]
[ ]
[ 4 ]
[ 3 - p + 3*p - 2]
[ ----- --------------]
[ s + 2 p + s ]{t}
``subs()`` also supports multiple substitutions.
>>> tfm_2.subs({p: 2, a: 1}) # substituting p with 2 and a with 1
TransferFunctionMatrix(((TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-s - 1, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s))))
>>> pprint(_, use_unicode=False)
[ s + 1 -3 ]
[---------- ----- ]
[ 2 s + 2 ]
[s + s + 1 ]
[ ]
[ 12 -s - 1 ]
[ ----- ----------]
[ s + 2 2 ]
[ s + s + 1]
[ ]
[ 3 -12 ]
[ ----- ----- ]
[ s + 2 s + 2 ]{t}
Users can reduce the ``Series`` and ``Parallel`` elements of the matrix to ``TransferFunction`` by using
``doit()``.
>>> tfm_6 = TransferFunctionMatrix([[Series(tf_3, tf_4), Parallel(tf_3, tf_4)]])
>>> tfm_6
TransferFunctionMatrix(((Series(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s)), Parallel(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s))),))
>>> pprint(tfm_6, use_unicode=False)
[ -a + p 3 -a + p 3 ]
[-------*----- ------- + -----]
[9*s - 9 s + 2 9*s - 9 s + 2]{t}
>>> tfm_6.doit()
TransferFunctionMatrix(((TransferFunction(-3*a + 3*p, (s + 2)*(9*s - 9), s), TransferFunction(27*s + (-a + p)*(s + 2) - 27, (s + 2)*(9*s - 9), s)),))
>>> pprint(_, use_unicode=False)
[ -3*a + 3*p 27*s + (-a + p)*(s + 2) - 27]
[----------------- ----------------------------]
[(s + 2)*(9*s - 9) (s + 2)*(9*s - 9) ]{t}
>>> tf_9 = TransferFunction(1, s, s)
>>> tf_10 = TransferFunction(1, s**2, s)
>>> tfm_7 = TransferFunctionMatrix([[Series(tf_9, tf_10), tf_9], [tf_10, Parallel(tf_9, tf_10)]])
>>> tfm_7
TransferFunctionMatrix(((Series(TransferFunction(1, s, s), TransferFunction(1, s**2, s)), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), Parallel(TransferFunction(1, s, s), TransferFunction(1, s**2, s)))))
>>> pprint(tfm_7, use_unicode=False)
[ 1 1 ]
[---- - ]
[ 2 s ]
[s*s ]
[ ]
[ 1 1 1]
[ -- -- + -]
[ 2 2 s]
[ s s ]{t}
>>> tfm_7.doit()
TransferFunctionMatrix(((TransferFunction(1, s**3, s), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), TransferFunction(s**2 + s, s**3, s))))
>>> pprint(_, use_unicode=False)
[1 1 ]
[-- - ]
[ 3 s ]
[s ]
[ ]
[ 2 ]
[1 s + s]
[-- ------]
[ 2 3 ]
[s s ]{t}
Addition, subtraction, and multiplication of transfer function matrices can form
unevaluated ``Series`` or ``Parallel`` objects.
- For addition and subtraction:
All the transfer function matrices must have the same shape.
- For multiplication (C = A * B):
The number of inputs of the first transfer function matrix (A) must be equal to the
number of outputs of the second transfer function matrix (B).
Also, use pretty-printing (``pprint``) to analyse better.
>>> tfm_8 = TransferFunctionMatrix([[tf_3], [tf_2], [-tf_1]])
>>> tfm_9 = TransferFunctionMatrix([[-tf_3]])
>>> tfm_10 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_4]])
>>> tfm_11 = TransferFunctionMatrix([[tf_4], [-tf_1]])
>>> tfm_12 = TransferFunctionMatrix([[tf_4, -tf_1, tf_3], [-tf_2, -tf_4, -tf_3]])
>>> tfm_8 + tfm_10
MIMOParallel(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),))))
>>> pprint(_, use_unicode=False)
[ 3 ] [ a + s ]
[ ----- ] [ ---------- ]
[ s + 2 ] [ 2 ]
[ ] [ s + s + 1 ]
[ 4 ] [ ]
[p - 3*p + 2] [ 4 ]
[------------] + [p - 3*p + 2]
[ p + s ] [------------]
[ ] [ p + s ]
[ -a - s ] [ ]
[ ---------- ] [ -a + p ]
[ 2 ] [ ------- ]
[ s + s + 1 ]{t} [ 9*s - 9 ]{t}
>>> -tfm_10 - tfm_8
MIMOParallel(TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a - p, 9*s - 9, s),))), TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),))))
>>> pprint(_, use_unicode=False)
[ -a - s ] [ -3 ]
[ ---------- ] [ ----- ]
[ 2 ] [ s + 2 ]
[ s + s + 1 ] [ ]
[ ] [ 4 ]
[ 4 ] [- p + 3*p - 2]
[- p + 3*p - 2] + [--------------]
[--------------] [ p + s ]
[ p + s ] [ ]
[ ] [ a + s ]
[ a - p ] [ ---------- ]
[ ------- ] [ 2 ]
[ 9*s - 9 ]{t} [ s + s + 1 ]{t}
>>> tfm_12 * tfm_8
MIMOSeries(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s)))))
>>> pprint(_, use_unicode=False)
[ 3 ]
[ ----- ]
[ -a + p -a - s 3 ] [ s + 2 ]
[ ------- ---------- -----] [ ]
[ 9*s - 9 2 s + 2] [ 4 ]
[ s + s + 1 ] [p - 3*p + 2]
[ ] *[------------]
[ 4 ] [ p + s ]
[- p + 3*p - 2 a - p -3 ] [ ]
[-------------- ------- -----] [ -a - s ]
[ p + s 9*s - 9 s + 2]{t} [ ---------- ]
[ 2 ]
[ s + s + 1 ]{t}
>>> tfm_12 * tfm_8 * tfm_9
MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s)))))
>>> pprint(_, use_unicode=False)
[ 3 ]
[ ----- ]
[ -a + p -a - s 3 ] [ s + 2 ]
[ ------- ---------- -----] [ ]
[ 9*s - 9 2 s + 2] [ 4 ]
[ s + s + 1 ] [p - 3*p + 2] [ -3 ]
[ ] *[------------] *[-----]
[ 4 ] [ p + s ] [s + 2]{t}
[- p + 3*p - 2 a - p -3 ] [ ]
[-------------- ------- -----] [ -a - s ]
[ p + s 9*s - 9 s + 2]{t} [ ---------- ]
[ 2 ]
[ s + s + 1 ]{t}
>>> tfm_10 + tfm_8*tfm_9
MIMOParallel(TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),))), MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),)))))
>>> pprint(_, use_unicode=False)
[ a + s ] [ 3 ]
[ ---------- ] [ ----- ]
[ 2 ] [ s + 2 ]
[ s + s + 1 ] [ ]
[ ] [ 4 ]
[ 4 ] [p - 3*p + 2] [ -3 ]
[p - 3*p + 2] + [------------] *[-----]
[------------] [ p + s ] [s + 2]{t}
[ p + s ] [ ]
[ ] [ -a - s ]
[ -a + p ] [ ---------- ]
[ ------- ] [ 2 ]
[ 9*s - 9 ]{t} [ s + s + 1 ]{t}
These unevaluated ``Series`` or ``Parallel`` objects can convert into the
resultant transfer function matrix using ``.doit()`` method or by
``.rewrite(TransferFunctionMatrix)``.
>>> (-tfm_8 + tfm_10 + tfm_8*tfm_9).doit()
TransferFunctionMatrix(((TransferFunction((a + s)*(s + 2)**3 - 3*(s + 2)**2*(s**2 + s + 1) - 9*(s + 2)*(s**2 + s + 1), (s + 2)**3*(s**2 + s + 1), s),), (TransferFunction((p + s)*(-3*p**4 + 9*p - 6), (p + s)**2*(s + 2), s),), (TransferFunction((-a + p)*(s + 2)*(s**2 + s + 1)**2 + (a + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + (3*a + 3*s)*(9*s - 9)*(s**2 + s + 1), (s + 2)*(9*s - 9)*(s**2 + s + 1)**2, s),)))
>>> (-tfm_12 * -tfm_8 * -tfm_9).rewrite(TransferFunctionMatrix)
TransferFunctionMatrix(((TransferFunction(3*(-3*a + 3*p)*(p + s)*(s + 2)*(s**2 + s + 1)**2 + 3*(-3*a - 3*s)*(p + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + 3*(a + s)*(s + 2)**2*(9*s - 9)*(-p**4 + 3*p - 2)*(s**2 + s + 1), (p + s)*(s + 2)**3*(9*s - 9)*(s**2 + s + 1)**2, s),), (TransferFunction(3*(-a + p)*(p + s)*(s + 2)**2*(-p**4 + 3*p - 2)*(s**2 + s + 1) + 3*(3*a + 3*s)*(p + s)**2*(s + 2)*(9*s - 9) + 3*(p + s)*(s + 2)*(9*s - 9)*(-3*p**4 + 9*p - 6)*(s**2 + s + 1), (p + s)**2*(s + 2)**3*(9*s - 9)*(s**2 + s + 1), s),)))
See Also
========
TransferFunction, MIMOSeries, MIMOParallel, Feedback
"""
def __new__(cls, arg):
expr_mat_arg = []
try:
var = arg[0][0].var
except TypeError:
raise ValueError("`arg` param in TransferFunctionMatrix should "
"strictly be a nested list containing TransferFunction objects.")
for row_index, row in enumerate(arg):
temp = []
for col_index, element in enumerate(row):
if not isinstance(element, SISOLinearTimeInvariant):
raise TypeError("Each element is expected to be of type `SISOLinearTimeInvariant`.")
if var != element.var:
raise ValueError("Conflicting value(s) found for `var`. All TransferFunction instances in "
"TransferFunctionMatrix should use the same complex variable in Laplace domain.")
temp.append(element.to_expr())
expr_mat_arg.append(temp)
if isinstance(arg, (list, Tuple)):
# Making nested Tuple (sympy.core.containers.Tuple) from nested list or nested python tuple
arg = Tuple(*(Tuple(*r, sympify=False) for r in arg), sympify=False)
obj = super(TransferFunctionMatrix, cls).__new__(cls, arg)
obj._expr_mat = ImmutableMatrix(expr_mat_arg)
return obj
@classmethod
def from_Matrix(cls, matrix, var):
"""
Creates a new ``TransferFunctionMatrix`` efficiently from a SymPy Matrix of ``Expr`` objects.
Parameters
==========
matrix : ``ImmutableMatrix`` having ``Expr``/``Number`` elements.
var : Symbol
Complex variable of the Laplace transform which will be used by the
all the ``TransferFunction`` objects in the ``TransferFunctionMatrix``.
Examples
========
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunctionMatrix
>>> from sympy import Matrix, pprint
>>> M = Matrix([[s, 1/s], [1/(s+1), s]])
>>> M_tf = TransferFunctionMatrix.from_Matrix(M, s)
>>> pprint(M_tf, use_unicode=False)
[ s 1]
[ - -]
[ 1 s]
[ ]
[ 1 s]
[----- -]
[s + 1 1]{t}
>>> M_tf.elem_poles()
[[[], [0]], [[-1], []]]
>>> M_tf.elem_zeros()
[[[0], []], [[], [0]]]
"""
return _to_TFM(matrix, var)
@property
def var(self):
"""
Returns the complex variable used by all the transfer functions or
``Series``/``Parallel`` objects in a transfer function matrix.
Examples
========
>>> from sympy.abc import p, s
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
>>> G2 = TransferFunction(p, 4 - p, p)
>>> G3 = TransferFunction(0, p**4 - 1, p)
>>> G4 = TransferFunction(s + 1, s**2 + s + 1, s)
>>> S1 = Series(G1, G2)
>>> S2 = Series(-G3, Parallel(G2, -G1))
>>> tfm1 = TransferFunctionMatrix([[G1], [G2], [G3]])
>>> tfm1.var
p
>>> tfm2 = TransferFunctionMatrix([[-S1, -S2], [S1, S2]])
>>> tfm2.var
p
>>> tfm3 = TransferFunctionMatrix([[G4]])
>>> tfm3.var
s
"""
return self.args[0][0][0].var
@property
def num_inputs(self):
"""
Returns the number of inputs of the system.
Examples
========
>>> from sympy.abc import s, p
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix
>>> G1 = TransferFunction(s + 3, s**2 - 3, s)
>>> G2 = TransferFunction(4, s**2, s)
>>> G3 = TransferFunction(p**2 + s**2, p - 3, s)
>>> tfm_1 = TransferFunctionMatrix([[G2, -G1, G3], [-G2, -G1, -G3]])
>>> tfm_1.num_inputs
3
See Also
========
num_outputs
"""
return self._expr_mat.shape[1]
@property
def num_outputs(self):
"""
Returns the number of outputs of the system.
Examples
========
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunctionMatrix
>>> from sympy import Matrix
>>> M_1 = Matrix([[s], [1/s]])
>>> TFM = TransferFunctionMatrix.from_Matrix(M_1, s)
>>> print(TFM)
TransferFunctionMatrix(((TransferFunction(s, 1, s),), (TransferFunction(1, s, s),)))
>>> TFM.num_outputs
2
See Also
========
num_inputs
"""
return self._expr_mat.shape[0]
@property
def shape(self):
"""
Returns the shape of the transfer function matrix, that is, ``(# of outputs, # of inputs)``.
Examples
========
>>> from sympy.abc import s, p
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix
>>> tf1 = TransferFunction(p**2 - 1, s**4 + s**3 - p, p)
>>> tf2 = TransferFunction(1 - p, p**2 - 3*p + 7, p)
>>> tf3 = TransferFunction(3, 4, p)
>>> tfm1 = TransferFunctionMatrix([[tf1, -tf2]])
>>> tfm1.shape
(1, 2)
>>> tfm2 = TransferFunctionMatrix([[-tf2, tf3], [tf1, -tf1]])
>>> tfm2.shape
(2, 2)
"""
return self._expr_mat.shape
def __neg__(self):
neg = -self._expr_mat
return _to_TFM(neg, self.var)
@_check_other_MIMO
def __add__(self, other):
if not isinstance(other, MIMOParallel):
return MIMOParallel(self, other)
other_arg_list = list(other.args)
return MIMOParallel(self, *other_arg_list)
@_check_other_MIMO
def __sub__(self, other):
return self + (-other)
@_check_other_MIMO
def __mul__(self, other):
if not isinstance(other, MIMOSeries):
return MIMOSeries(other, self)
other_arg_list = list(other.args)
return MIMOSeries(*other_arg_list, self)
def __getitem__(self, key):
trunc = self._expr_mat.__getitem__(key)
if isinstance(trunc, ImmutableMatrix):
return _to_TFM(trunc, self.var)
return TransferFunction.from_rational_expression(trunc, self.var)
def transpose(self):
"""Returns the transpose of the ``TransferFunctionMatrix`` (switched input and output layers)."""
transposed_mat = self._expr_mat.transpose()
return _to_TFM(transposed_mat, self.var)
def elem_poles(self):
"""
Returns the poles of each element of the ``TransferFunctionMatrix``.
.. note::
Actual poles of a MIMO system are NOT the poles of individual elements.
Examples
========
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix
>>> tf_1 = TransferFunction(3, (s + 1), s)
>>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s)
>>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s)
>>> tf_4 = TransferFunction(s + 2, s**2 + 5*s - 10, s)
>>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]])
>>> tfm_1
TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s + 2, s**2 + 5*s - 10, s))))
>>> tfm_1.elem_poles()
[[[-1], [-2, -1]], [[-2, -1], [-5/2 + sqrt(65)/2, -sqrt(65)/2 - 5/2]]]
See Also
========
elem_zeros
"""
return [[element.poles() for element in row] for row in self.doit().args[0]]
def elem_zeros(self):
"""
Returns the zeros of each element of the ``TransferFunctionMatrix``.
.. note::
Actual zeros of a MIMO system are NOT the zeros of individual elements.
Examples
========
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix
>>> tf_1 = TransferFunction(3, (s + 1), s)
>>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s)
>>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s)
>>> tf_4 = TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s)
>>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]])
>>> tfm_1
TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s))))
>>> tfm_1.elem_zeros()
[[[], [-6]], [[-3], [4, 5]]]
See Also
========
elem_poles
"""
return [[element.zeros() for element in row] for row in self.doit().args[0]]
def _flat(self):
"""Returns flattened list of args in TransferFunctionMatrix"""
return [elem for tup in self.args[0] for elem in tup]
def _eval_evalf(self, prec):
"""Calls evalf() on each transfer function in the transfer function matrix"""
mat = self._expr_mat.applyfunc(lambda a: a.evalf(n=prec_to_dps(prec)))
return _to_TFM(mat, self.var)
def _eval_simplify(self, **kwargs):
"""Simplifies the transfer function matrix"""
simp_mat = self._expr_mat.applyfunc(lambda a: cancel(a, expand=False))
return _to_TFM(simp_mat, self.var)
def expand(self, **hints):
"""Expands the transfer function matrix"""
expand_mat = self._expr_mat.expand(**hints)
return _to_TFM(expand_mat, self.var)
|
4fddda2a0103a89f7b82bd45b1abc4b4a1d38c4ff210392c88c45ff7d7e0f26b | from sympy import I, log, apart, exp
from sympy.core.symbol import Dummy
from sympy.external import import_module
from sympy.functions import arg, Abs
from sympy.integrals.transforms import _fast_inverse_laplace
from sympy.physics.control.lti import SISOLinearTimeInvariant
from sympy.plotting.plot import LineOver1DRangeSeries
from sympy.polys.polytools import Poly
from sympy.printing.latex import latex
__all__ = ['pole_zero_numerical_data', 'pole_zero_plot',
'step_response_numerical_data', 'step_response_plot',
'impulse_response_numerical_data', 'impulse_response_plot',
'ramp_response_numerical_data', 'ramp_response_plot',
'bode_magnitude_numerical_data', 'bode_phase_numerical_data',
'bode_magnitude_plot', 'bode_phase_plot', 'bode_plot']
matplotlib = import_module(
'matplotlib', import_kwargs={'fromlist': ['pyplot']},
catch=(RuntimeError,))
numpy = import_module('numpy')
if matplotlib:
plt = matplotlib.pyplot
if numpy:
np = numpy # Matplotlib already has numpy as a compulsory dependency. No need to install it separately.
def _check_system(system):
"""Function to check whether the dynamical system passed for plots is
compatible or not."""
if not isinstance(system, SISOLinearTimeInvariant):
raise NotImplementedError("Only SISO LTI systems are currently supported.")
sys = system.to_expr()
len_free_symbols = len(sys.free_symbols)
if len_free_symbols > 1:
raise ValueError("Extra degree of freedom found. Make sure"
" that there are no free symbols in the dynamical system other"
" than the variable of Laplace transform.")
if sys.has(exp):
raise NotImplementedError("Time delay terms are not supported.")
def pole_zero_numerical_data(system):
"""
Returns the numerical data of poles and zeros of the system.
It is internally used by ``pole_zero_plot`` to get the data
for plotting poles and zeros. Users can use this data to further
analyse the dynamics of the system or plot using a different
backend/plotting-module.
Parameters
==========
system : SISOLinearTimeInvariant
The system for which the pole-zero data is to be computed.
Returns
=======
tuple : (zeros, poles)
zeros = Zeros of the system. NumPy array of complex numbers.
poles = Poles of the system. NumPy array of complex numbers.
Raises
======
NotImplementedError
When a SISO LTI system is not passed.
When time delay terms are present in the system.
ValueError
When more than one free symbol is present in the system.
The only variable in the transfer function should be
the variable of the Laplace transform.
Examples
========
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import pole_zero_numerical_data
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
>>> pole_zero_numerical_data(tf1) # doctest: +SKIP
([-0.+1.j 0.-1.j], [-2. +0.j -0.5+0.8660254j -0.5-0.8660254j -1. +0.j ])
See Also
========
pole_zero_plot
"""
_check_system(system)
system = system.doit() # Get the equivalent TransferFunction object.
num_poly = Poly(system.num, system.var).all_coeffs()
den_poly = Poly(system.den, system.var).all_coeffs()
num_poly = np.array(num_poly, dtype=np.float64)
den_poly = np.array(den_poly, dtype=np.float64)
zeros = np.roots(num_poly)
poles = np.roots(den_poly)
return zeros, poles
def pole_zero_plot(system, pole_color='blue', pole_markersize=10,
zero_color='orange', zero_markersize=7, grid=True, show_axes=True,
show=True, **kwargs):
r"""
Returns the Pole-Zero plot (also known as PZ Plot or PZ Map) of a system.
A Pole-Zero plot is a graphical representation of a system's poles and
zeros. It is plotted on a complex plane, with circular markers representing
the system's zeros and 'x' shaped markers representing the system's poles.
Parameters
==========
system : SISOLinearTimeInvariant type systems
The system for which the pole-zero plot is to be computed.
pole_color : str, tuple, optional
The color of the pole points on the plot. Default color
is blue. The color can be provided as a matplotlib color string,
or a 3-tuple of floats each in the 0-1 range.
pole_markersize : Number, optional
The size of the markers used to mark the poles in the plot.
Default pole markersize is 10.
zero_color : str, tuple, optional
The color of the zero points on the plot. Default color
is orange. The color can be provided as a matplotlib color string,
or a 3-tuple of floats each in the 0-1 range.
zero_markersize : Number, optional
The size of the markers used to mark the zeros in the plot.
Default zero markersize is 7.
grid : boolean, optional
If ``True``, the plot will have a grid. Defaults to True.
show_axes : boolean, optional
If ``True``, the coordinate axes will be shown. Defaults to False.
show : boolean, optional
If ``True``, the plot will be displayed otherwise
the equivalent matplotlib ``plot`` object will be returned.
Defaults to True.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import pole_zero_plot
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
>>> pole_zero_plot(tf1) # doctest: +SKIP
See Also
========
pole_zero_numerical_data
References
==========
.. [1] https://en.wikipedia.org/wiki/Pole%E2%80%93zero_plot
"""
zeros, poles = pole_zero_numerical_data(system)
zero_real = np.real(zeros)
zero_imag = np.imag(zeros)
pole_real = np.real(poles)
pole_imag = np.imag(poles)
plt.plot(pole_real, pole_imag, 'x', mfc='none',
markersize=pole_markersize, color=pole_color)
plt.plot(zero_real, zero_imag, 'o', markersize=zero_markersize,
color=zero_color)
plt.xlabel('Real Axis')
plt.ylabel('Imaginary Axis')
plt.title(f'Poles and Zeros of ${latex(system)}$', pad=20)
if grid:
plt.grid()
if show_axes:
plt.axhline(0, color='black')
plt.axvline(0, color='black')
if show:
plt.show()
return
return plt
def step_response_numerical_data(system, prec=8, lower_limit=0,
upper_limit=10, **kwargs):
"""
Returns the numerical values of the points in the step response plot
of a SISO continuous-time system. By default, adaptive sampling
is used. If the user wants to instead get an uniformly
sampled response, then ``adaptive`` kwarg should be passed ``False``
and ``nb_of_points`` must be passed as additional kwargs.
Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries`
for more details.
Parameters
==========
system : SISOLinearTimeInvariant
The system for which the unit step response data is to be computed.
prec : int, optional
The decimal point precision for the point coordinate values.
Defaults to 8.
lower_limit : Number, optional
The lower limit of the plot range. Defaults to 0.
upper_limit : Number, optional
The upper limit of the plot range. Defaults to 10.
kwargs :
Additional keyword arguments are passed to the underlying
:class:`sympy.plotting.plot.LineOver1DRangeSeries` class.
Returns
=======
tuple : (x, y)
x = Time-axis values of the points in the step response. NumPy array.
y = Amplitude-axis values of the points in the step response. NumPy array.
Raises
======
NotImplementedError
When a SISO LTI system is not passed.
When time delay terms are present in the system.
ValueError
When more than one free symbol is present in the system.
The only variable in the transfer function should be
the variable of the Laplace transform.
When ``lower_limit`` parameter is less than 0.
Examples
========
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import step_response_numerical_data
>>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
>>> step_response_numerical_data(tf1) # doctest: +SKIP
([0.0, 0.025413462339411542, 0.0484508722725343, ... , 9.670250533855183, 9.844291913708725, 10.0],
[0.0, 0.023844582399907256, 0.042894276802320226, ..., 6.828770759094287e-12, 6.456457160755703e-12])
See Also
========
step_response_plot
"""
if lower_limit < 0:
raise ValueError("Lower limit of time must be greater "
"than or equal to zero.")
_check_system(system)
_x = Dummy("x")
expr = system.to_expr()/(system.var)
expr = apart(expr, system.var, full=True)
_y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
**kwargs).get_points()
def step_response_plot(system, color='b', prec=8, lower_limit=0,
upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
r"""
Returns the unit step response of a continuous-time system. It is
the response of the system when the input signal is a step function.
Parameters
==========
system : SISOLinearTimeInvariant type
The LTI SISO system for which the Step Response is to be computed.
color : str, tuple, optional
The color of the line. Default is Blue.
show : boolean, optional
If ``True``, the plot will be displayed otherwise
the equivalent matplotlib ``plot`` object will be returned.
Defaults to True.
lower_limit : Number, optional
The lower limit of the plot range. Defaults to 0.
upper_limit : Number, optional
The upper limit of the plot range. Defaults to 10.
prec : int, optional
The decimal point precision for the point coordinate values.
Defaults to 8.
show_axes : boolean, optional
If ``True``, the coordinate axes will be shown. Defaults to False.
grid : boolean, optional
If ``True``, the plot will have a grid. Defaults to True.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import step_response_plot
>>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s)
>>> step_response_plot(tf1) # doctest: +SKIP
See Also
========
impulse_response_plot, ramp_response_plot
References
==========
.. [1] https://www.mathworks.com/help/control/ref/lti.step.html
"""
x, y = step_response_numerical_data(system, prec=prec,
lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
plt.plot(x, y, color=color)
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.title(f'Unit Step Response of ${latex(system)}$', pad=20)
if grid:
plt.grid()
if show_axes:
plt.axhline(0, color='black')
plt.axvline(0, color='black')
if show:
plt.show()
return
return plt
def impulse_response_numerical_data(system, prec=8, lower_limit=0,
upper_limit=10, **kwargs):
"""
Returns the numerical values of the points in the impulse response plot
of a SISO continuous-time system. By default, adaptive sampling
is used. If the user wants to instead get an uniformly
sampled response, then ``adaptive`` kwarg should be passed ``False``
and ``nb_of_points`` must be passed as additional kwargs.
Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries`
for more details.
Parameters
==========
system : SISOLinearTimeInvariant
The system for which the impulse response data is to be computed.
prec : int, optional
The decimal point precision for the point coordinate values.
Defaults to 8.
lower_limit : Number, optional
The lower limit of the plot range. Defaults to 0.
upper_limit : Number, optional
The upper limit of the plot range. Defaults to 10.
kwargs :
Additional keyword arguments are passed to the underlying
:class:`sympy.plotting.plot.LineOver1DRangeSeries` class.
Returns
=======
tuple : (x, y)
x = Time-axis values of the points in the impulse response. NumPy array.
y = Amplitude-axis values of the points in the impulse response. NumPy array.
Raises
======
NotImplementedError
When a SISO LTI system is not passed.
When time delay terms are present in the system.
ValueError
When more than one free symbol is present in the system.
The only variable in the transfer function should be
the variable of the Laplace transform.
When ``lower_limit`` parameter is less than 0.
Examples
========
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import impulse_response_numerical_data
>>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
>>> impulse_response_numerical_data(tf1) # doctest: +SKIP
([0.0, 0.06616480200395854,... , 9.854500743565858, 10.0],
[0.9999999799999999, 0.7042848373025861,...,7.170748906965121e-13, -5.1901263495547205e-12])
See Also
========
impulse_response_plot
"""
if lower_limit < 0:
raise ValueError("Lower limit of time must be greater "
"than or equal to zero.")
_check_system(system)
_x = Dummy("x")
expr = system.to_expr()
expr = apart(expr, system.var, full=True)
_y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
**kwargs).get_points()
def impulse_response_plot(system, color='b', prec=8, lower_limit=0,
upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
r"""
Returns the unit impulse response (Input is the Dirac-Delta Function) of a
continuous-time system.
Parameters
==========
system : SISOLinearTimeInvariant type
The LTI SISO system for which the Impulse Response is to be computed.
color : str, tuple, optional
The color of the line. Default is Blue.
show : boolean, optional
If ``True``, the plot will be displayed otherwise
the equivalent matplotlib ``plot`` object will be returned.
Defaults to True.
lower_limit : Number, optional
The lower limit of the plot range. Defaults to 0.
upper_limit : Number, optional
The upper limit of the plot range. Defaults to 10.
prec : int, optional
The decimal point precision for the point coordinate values.
Defaults to 8.
show_axes : boolean, optional
If ``True``, the coordinate axes will be shown. Defaults to False.
grid : boolean, optional
If ``True``, the plot will have a grid. Defaults to True.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import impulse_response_plot
>>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s)
>>> impulse_response_plot(tf1) # doctest: +SKIP
See Also
========
step_response_plot, ramp_response_plot
References
==========
.. [1] https://www.mathworks.com/help/control/ref/lti.impulse.html
"""
x, y = impulse_response_numerical_data(system, prec=prec,
lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
plt.plot(x, y, color=color)
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.title(f'Impulse Response of ${latex(system)}$', pad=20)
if grid:
plt.grid()
if show_axes:
plt.axhline(0, color='black')
plt.axvline(0, color='black')
if show:
plt.show()
return
return plt
def ramp_response_numerical_data(system, slope=1, prec=8,
lower_limit=0, upper_limit=10, **kwargs):
"""
Returns the numerical values of the points in the ramp response plot
of a SISO continuous-time system. By default, adaptive sampling
is used. If the user wants to instead get an uniformly
sampled response, then ``adaptive`` kwarg should be passed ``False``
and ``nb_of_points`` must be passed as additional kwargs.
Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries`
for more details.
Parameters
==========
system : SISOLinearTimeInvariant
The system for which the ramp response data is to be computed.
slope : Number, optional
The slope of the input ramp function. Defaults to 1.
prec : int, optional
The decimal point precision for the point coordinate values.
Defaults to 8.
lower_limit : Number, optional
The lower limit of the plot range. Defaults to 0.
upper_limit : Number, optional
The upper limit of the plot range. Defaults to 10.
kwargs :
Additional keyword arguments are passed to the underlying
:class:`sympy.plotting.plot.LineOver1DRangeSeries` class.
Returns
=======
tuple : (x, y)
x = Time-axis values of the points in the ramp response plot. NumPy array.
y = Amplitude-axis values of the points in the ramp response plot. NumPy array.
Raises
======
NotImplementedError
When a SISO LTI system is not passed.
When time delay terms are present in the system.
ValueError
When more than one free symbol is present in the system.
The only variable in the transfer function should be
the variable of the Laplace transform.
When ``lower_limit`` parameter is less than 0.
When ``slope`` is negative.
Examples
========
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import ramp_response_numerical_data
>>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
>>> ramp_response_numerical_data(tf1) # doctest: +SKIP
(([0.0, 0.12166980856813935,..., 9.861246379582118, 10.0],
[1.4504508011325967e-09, 0.006046440489058766,..., 0.12499999999568202, 0.12499999999661349]))
See Also
========
ramp_response_plot
"""
if slope < 0:
raise ValueError("Slope must be greater than or equal"
" to zero.")
if lower_limit < 0:
raise ValueError("Lower limit of time must be greater "
"than or equal to zero.")
_check_system(system)
_x = Dummy("x")
expr = (slope*system.to_expr())/((system.var)**2)
expr = apart(expr, system.var, full=True)
_y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
**kwargs).get_points()
def ramp_response_plot(system, slope=1, color='b', prec=8, lower_limit=0,
upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
r"""
Returns the ramp response of a continuous-time system.
Ramp function is defined as the straight line
passing through origin ($f(x) = mx$). The slope of
the ramp function can be varied by the user and
the default value is 1.
Parameters
==========
system : SISOLinearTimeInvariant type
The LTI SISO system for which the Ramp Response is to be computed.
slope : Number, optional
The slope of the input ramp function. Defaults to 1.
color : str, tuple, optional
The color of the line. Default is Blue.
show : boolean, optional
If ``True``, the plot will be displayed otherwise
the equivalent matplotlib ``plot`` object will be returned.
Defaults to True.
lower_limit : Number, optional
The lower limit of the plot range. Defaults to 0.
upper_limit : Number, optional
The upper limit of the plot range. Defaults to 10.
prec : int, optional
The decimal point precision for the point coordinate values.
Defaults to 8.
show_axes : boolean, optional
If ``True``, the coordinate axes will be shown. Defaults to False.
grid : boolean, optional
If ``True``, the plot will have a grid. Defaults to True.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import ramp_response_plot
>>> tf1 = TransferFunction(s, (s+4)*(s+8), s)
>>> ramp_response_plot(tf1, upper_limit=2) # doctest: +SKIP
See Also
========
step_response_plot, ramp_response_plot
References
==========
.. [1] https://en.wikipedia.org/wiki/Ramp_function
"""
x, y = ramp_response_numerical_data(system, slope=slope, prec=prec,
lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
plt.plot(x, y, color=color)
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.title(f'Ramp Response of ${latex(system)}$ [Slope = {slope}]', pad=20)
if grid:
plt.grid()
if show_axes:
plt.axhline(0, color='black')
plt.axvline(0, color='black')
if show:
plt.show()
return
return plt
def bode_magnitude_numerical_data(system, initial_exp=-5, final_exp=5, **kwargs):
"""
Returns the numerical data of the Bode magnitude plot of the system.
It is internally used by ``bode_magnitude_plot`` to get the data
for plotting Bode magnitude plot. Users can use this data to further
analyse the dynamics of the system or plot using a different
backend/plotting-module.
Parameters
==========
system : SISOLinearTimeInvariant
The system for which the data is to be computed.
initial_exp : Number, optional
The initial exponent of 10 of the semilog plot. Defaults to -5.
final_exp : Number, optional
The final exponent of 10 of the semilog plot. Defaults to 5.
Returns
=======
tuple : (x, y)
x = x-axis values of the Bode magnitude plot.
y = y-axis values of the Bode magnitude plot.
Raises
======
NotImplementedError
When a SISO LTI system is not passed.
When time delay terms are present in the system.
ValueError
When more than one free symbol is present in the system.
The only variable in the transfer function should be
the variable of the Laplace transform.
Examples
========
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import bode_magnitude_numerical_data
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
>>> bode_magnitude_numerical_data(tf1) # doctest: +SKIP
([1e-05, 1.5148378120533502e-05,..., 68437.36188804005, 100000.0],
[-6.020599914256786, -6.0205999155219505,..., -193.4117304087953, -200.00000000260573])
See Also
========
bode_magnitude_plot, bode_phase_numerical_data
"""
_check_system(system)
expr = system.to_expr()
_w = Dummy("w", real=True)
w_expr = expr.subs({system.var: I*_w})
mag = 20*log(Abs(w_expr), 10)
return LineOver1DRangeSeries(mag,
(_w, 10**initial_exp, 10**final_exp), xscale='log', **kwargs).get_points()
def bode_magnitude_plot(system, initial_exp=-5, final_exp=5,
color='b', show_axes=False, grid=True, show=True, **kwargs):
r"""
Returns the Bode magnitude plot of a continuous-time system.
See ``bode_plot`` for all the parameters.
"""
x, y = bode_magnitude_numerical_data(system, initial_exp=initial_exp,
final_exp=final_exp)
plt.plot(x, y, color=color, **kwargs)
plt.xscale('log')
plt.xlabel('Frequency (Hz) [Log Scale]')
plt.ylabel('Magnitude (dB)')
plt.title(f'Bode Plot (Magnitude) of ${latex(system)}$', pad=20)
if grid:
plt.grid(True)
if show_axes:
plt.axhline(0, color='black')
plt.axvline(0, color='black')
if show:
plt.show()
return
return plt
def bode_phase_numerical_data(system, initial_exp=-5, final_exp=5, **kwargs):
"""
Returns the numerical data of the Bode phase plot of the system.
It is internally used by ``bode_phase_plot`` to get the data
for plotting Bode phase plot. Users can use this data to further
analyse the dynamics of the system or plot using a different
backend/plotting-module.
Parameters
==========
system : SISOLinearTimeInvariant
The system for which the Bode phase plot data is to be computed.
initial_exp : Number, optional
The initial exponent of 10 of the semilog plot. Defaults to -5.
final_exp : Number, optional
The final exponent of 10 of the semilog plot. Defaults to 5.
Returns
=======
tuple : (x, y)
x = x-axis values of the Bode phase plot.
y = y-axis values of the Bode phase plot.
Raises
======
NotImplementedError
When a SISO LTI system is not passed.
When time delay terms are present in the system.
ValueError
When more than one free symbol is present in the system.
The only variable in the transfer function should be
the variable of the Laplace transform.
Examples
========
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import bode_phase_numerical_data
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
>>> bode_phase_numerical_data(tf1) # doctest: +SKIP
([1e-05, 1.4472354033813751e-05, 2.035581932165858e-05,..., 47577.3248186011, 67884.09326036123, 100000.0],
[-2.5000000000291665e-05, -3.6180885085e-05, -5.08895483066e-05,...,-3.1415085799262523, -3.14155265358979])
See Also
========
bode_magnitude_plot, bode_phase_numerical_data
"""
_check_system(system)
expr = system.to_expr()
_w = Dummy("w", real=True)
w_expr = expr.subs({system.var: I*_w})
phase = arg(w_expr)
return LineOver1DRangeSeries(phase,
(_w, 10**initial_exp, 10**final_exp), xscale='log', **kwargs).get_points()
def bode_phase_plot(system, initial_exp=-5, final_exp=5,
color='b', show_axes=False, grid=True, show=True, **kwargs):
r"""
Returns the Bode phase plot of a continuous-time system.
See ``bode_plot`` for all the parameters.
"""
x, y = bode_phase_numerical_data(system, initial_exp=initial_exp,
final_exp=final_exp)
plt.plot(x, y, color=color, **kwargs)
plt.xscale('log')
plt.xlabel('Frequency (Hz) [Log Scale]')
plt.ylabel('Phase (rad)')
plt.title(f'Bode Plot (Phase) of ${latex(system)}$', pad=20)
if grid:
plt.grid(True)
if show_axes:
plt.axhline(0, color='black')
plt.axvline(0, color='black')
if show:
plt.show()
return
return plt
def bode_plot(system, initial_exp=-5, final_exp=5,
grid=True, show_axes=False, show=True, **kwargs):
r"""
Returns the Bode phase and magnitude plots of a continuous-time system.
Parameters
==========
system : SISOLinearTimeInvariant type
The LTI SISO system for which the Bode Plot is to be computed.
initial_exp : Number, optional
The initial exponent of 10 of the semilog plot. Defaults to -5.
final_exp : Number, optional
The final exponent of 10 of the semilog plot. Defaults to 5.
show : boolean, optional
If ``True``, the plot will be displayed otherwise
the equivalent matplotlib ``plot`` object will be returned.
Defaults to True.
prec : int, optional
The decimal point precision for the point coordinate values.
Defaults to 8.
grid : boolean, optional
If ``True``, the plot will have a grid. Defaults to True.
show_axes : boolean, optional
If ``True``, the coordinate axes will be shown. Defaults to False.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import bode_plot
>>> tf1 = TransferFunction(1*s**2 + 0.1*s + 7.5, 1*s**4 + 0.12*s**3 + 9*s**2, s)
>>> bode_plot(tf1, initial_exp=0.2, final_exp=0.7) # doctest: +SKIP
See Also
========
bode_magnitude_plot, bode_phase_plot
"""
plt.subplot(211)
bode_magnitude_plot(system, initial_exp=initial_exp, final_exp=final_exp,
show=False, grid=grid, show_axes=show_axes,
**kwargs).title(f'Bode Plot of ${latex(system)}$', pad=20)
plt.subplot(212)
bode_phase_plot(system, initial_exp=initial_exp, final_exp=final_exp,
show=False, grid=grid, show_axes=show_axes, **kwargs).title(None)
if show:
plt.show()
return
return plt
|
0f426fe80fde8284e1a261f31a1337f61ecaa0c7c9e4b9bbbaa97c48a01ef837 | from sympy.core.backend import Symbol
from sympy.physics.vector import Point, Vector, ReferenceFrame
from sympy.physics.mechanics import RigidBody, Particle, inertia
__all__ = ['Body']
# XXX: We use type:ignore because the classes RigidBody and Particle have
# inconsistent parallel axis methods that take different numbers of arguments.
class Body(RigidBody, Particle): # type: ignore
"""
Body is a common representation of either a RigidBody or a Particle SymPy
object depending on what is passed in during initialization. If a mass is
passed in and central_inertia is left as None, the Particle object is
created. Otherwise a RigidBody object will be created.
Explanation
===========
The attributes that Body possesses will be the same as a Particle instance
or a Rigid Body instance depending on which was created. Additional
attributes are listed below.
Attributes
==========
name : string
The body's name
masscenter : Point
The point which represents the center of mass of the rigid body
frame : ReferenceFrame
The reference frame which the body is fixed in
mass : Sympifyable
The body's mass
inertia : (Dyadic, Point)
The body's inertia around its center of mass. This attribute is specific
to the rigid body form of Body and is left undefined for the Particle
form
loads : iterable
This list contains information on the different loads acting on the
Body. Forces are listed as a (point, vector) tuple and torques are
listed as (reference frame, vector) tuples.
Parameters
==========
name : String
Defines the name of the body. It is used as the base for defining
body specific properties.
masscenter : Point, optional
A point that represents the center of mass of the body or particle.
If no point is given, a point is generated.
mass : Sympifyable, optional
A Sympifyable object which represents the mass of the body. If no
mass is passed, one is generated.
frame : ReferenceFrame, optional
The ReferenceFrame that represents the reference frame of the body.
If no frame is given, a frame is generated.
central_inertia : Dyadic, optional
Central inertia dyadic of the body. If none is passed while creating
RigidBody, a default inertia is generated.
Examples
========
Default behaviour. This results in the creation of a RigidBody object for
which the mass, mass center, frame and inertia attributes are given default
values. ::
>>> from sympy.physics.mechanics import Body
>>> body = Body('name_of_body')
This next example demonstrates the code required to specify all of the
values of the Body object. Note this will also create a RigidBody version of
the Body object. ::
>>> from sympy import Symbol
>>> from sympy.physics.mechanics import ReferenceFrame, Point, inertia
>>> from sympy.physics.mechanics import Body
>>> mass = Symbol('mass')
>>> masscenter = Point('masscenter')
>>> frame = ReferenceFrame('frame')
>>> ixx = Symbol('ixx')
>>> body_inertia = inertia(frame, ixx, 0, 0)
>>> body = Body('name_of_body', masscenter, mass, frame, body_inertia)
The minimal code required to create a Particle version of the Body object
involves simply passing in a name and a mass. ::
>>> from sympy import Symbol
>>> from sympy.physics.mechanics import Body
>>> mass = Symbol('mass')
>>> body = Body('name_of_body', mass=mass)
The Particle version of the Body object can also receive a masscenter point
and a reference frame, just not an inertia.
"""
def __init__(self, name, masscenter=None, mass=None, frame=None,
central_inertia=None):
self.name = name
self._loads = []
if frame is None:
frame = ReferenceFrame(name + '_frame')
if masscenter is None:
masscenter = Point(name + '_masscenter')
if central_inertia is None and mass is None:
ixx = Symbol(name + '_ixx')
iyy = Symbol(name + '_iyy')
izz = Symbol(name + '_izz')
izx = Symbol(name + '_izx')
ixy = Symbol(name + '_ixy')
iyz = Symbol(name + '_iyz')
_inertia = (inertia(frame, ixx, iyy, izz, ixy, iyz, izx),
masscenter)
else:
_inertia = (central_inertia, masscenter)
if mass is None:
_mass = Symbol(name + '_mass')
else:
_mass = mass
masscenter.set_vel(frame, 0)
# If user passes masscenter and mass then a particle is created
# otherwise a rigidbody. As a result a body may or may not have inertia.
if central_inertia is None and mass is not None:
self.frame = frame
self.masscenter = masscenter
Particle.__init__(self, name, masscenter, _mass)
self._central_inertia = None
else:
RigidBody.__init__(self, name, masscenter, frame, _mass, _inertia)
@property
def loads(self):
return self._loads
@property
def x(self):
"""The basis Vector for the Body, in the x direction. """
return self.frame.x
@property
def y(self):
"""The basis Vector for the Body, in the y direction. """
return self.frame.y
@property
def z(self):
"""The basis Vector for the Body, in the z direction. """
return self.frame.z
@property
def is_rigidbody(self):
if self.central_inertia is not None:
return True
return False
def kinetic_energy(self, frame):
"""Kinetic energy of the body.
Parameters
==========
frame : ReferenceFrame or Body
The Body's angular velocity and the velocity of it's mass
center are typically defined with respect to an inertial frame but
any relevant frame in which the velocities are known can be supplied.
Examples
========
>>> from sympy.physics.mechanics import Body, ReferenceFrame, Point
>>> from sympy import symbols
>>> m, v, r, omega = symbols('m v r omega')
>>> N = ReferenceFrame('N')
>>> O = Point('O')
>>> P = Body('P', masscenter=O, mass=m)
>>> P.masscenter.set_vel(N, v * N.y)
>>> P.kinetic_energy(N)
m*v**2/2
>>> N = ReferenceFrame('N')
>>> b = ReferenceFrame('b')
>>> b.set_ang_vel(N, omega * b.x)
>>> P = Point('P')
>>> P.set_vel(N, v * N.x)
>>> B = Body('B', masscenter=P, frame=b)
>>> B.kinetic_energy(N)
B_ixx*omega**2/2 + B_mass*v**2/2
See Also
========
sympy.physics.mechanics : Particle, RigidBody
"""
if isinstance(frame, Body):
frame = Body.frame
if self.is_rigidbody:
return RigidBody(self.name, self.masscenter, self.frame, self.mass,
(self.central_inertia, self.masscenter)).kinetic_energy(frame)
return Particle(self.name, self.masscenter, self.mass).kinetic_energy(frame)
def apply_force(self, force, point=None, reaction_body=None, reaction_point=None):
"""Add force to the body(s).
Explanation
===========
Applies the force on self or equal and oppposite forces on
self and other body if both are given on the desried point on the bodies.
The force applied on other body is taken opposite of self, i.e, -force.
Parameters
==========
force: Vector
The force to be applied.
point: Point, optional
The point on self on which force is applied.
By default self's masscenter.
reaction_body: Body, optional
Second body on which equal and opposite force
is to be applied.
reaction_point : Point, optional
The point on other body on which equal and opposite
force is applied. By default masscenter of other body.
Example
=======
>>> from sympy import symbols
>>> from sympy.physics.mechanics import Body, Point, dynamicsymbols
>>> m, g = symbols('m g')
>>> B = Body('B')
>>> force1 = m*g*B.z
>>> B.apply_force(force1) #Applying force on B's masscenter
>>> B.loads
[(B_masscenter, g*m*B_frame.z)]
We can also remove some part of force from any point on the body by
adding the opposite force to the body on that point.
>>> f1, f2 = dynamicsymbols('f1 f2')
>>> P = Point('P') #Considering point P on body B
>>> B.apply_force(f1*B.x + f2*B.y, P)
>>> B.loads
[(B_masscenter, g*m*B_frame.z), (P, f1(t)*B_frame.x + f2(t)*B_frame.y)]
Let's remove f1 from point P on body B.
>>> B.apply_force(-f1*B.x, P)
>>> B.loads
[(B_masscenter, g*m*B_frame.z), (P, f2(t)*B_frame.y)]
To further demonstrate the use of ``apply_force`` attribute,
consider two bodies connected through a spring.
>>> from sympy.physics.mechanics import Body, dynamicsymbols
>>> N = Body('N') #Newtonion Frame
>>> x = dynamicsymbols('x')
>>> B1 = Body('B1')
>>> B2 = Body('B2')
>>> spring_force = x*N.x
Now let's apply equal and opposite spring force to the bodies.
>>> P1 = Point('P1')
>>> P2 = Point('P2')
>>> B1.apply_force(spring_force, point=P1, reaction_body=B2, reaction_point=P2)
We can check the loads(forces) applied to bodies now.
>>> B1.loads
[(P1, x(t)*N_frame.x)]
>>> B2.loads
[(P2, - x(t)*N_frame.x)]
Notes
=====
If a new force is applied to a body on a point which already has some
force applied on it, then the new force is added to the already applied
force on that point.
"""
if not isinstance(point, Point):
if point is None:
point = self.masscenter # masscenter
else:
raise TypeError("Force must be applied to a point on the body.")
if not isinstance(force, Vector):
raise TypeError("Force must be a vector.")
if reaction_body is not None:
reaction_body.apply_force(-force, point=reaction_point)
for load in self._loads:
if point in load:
force += load[1]
self._loads.remove(load)
break
self._loads.append((point, force))
def apply_torque(self, torque, reaction_body=None):
"""Add torque to the body(s).
Explanation
===========
Applies the torque on self or equal and oppposite torquess on
self and other body if both are given.
The torque applied on other body is taken opposite of self,
i.e, -torque.
Parameters
==========
torque: Vector
The torque to be applied.
reaction_body: Body, optional
Second body on which equal and opposite torque
is to be applied.
Example
=======
>>> from sympy import symbols
>>> from sympy.physics.mechanics import Body, dynamicsymbols
>>> t = symbols('t')
>>> B = Body('B')
>>> torque1 = t*B.z
>>> B.apply_torque(torque1)
>>> B.loads
[(B_frame, t*B_frame.z)]
We can also remove some part of torque from the body by
adding the opposite torque to the body.
>>> t1, t2 = dynamicsymbols('t1 t2')
>>> B.apply_torque(t1*B.x + t2*B.y)
>>> B.loads
[(B_frame, t1(t)*B_frame.x + t2(t)*B_frame.y + t*B_frame.z)]
Let's remove t1 from Body B.
>>> B.apply_torque(-t1*B.x)
>>> B.loads
[(B_frame, t2(t)*B_frame.y + t*B_frame.z)]
To further demonstrate the use, let us consider two bodies such that
a torque `T` is acting on one body, and `-T` on the other.
>>> from sympy.physics.mechanics import Body, dynamicsymbols
>>> N = Body('N') #Newtonion frame
>>> B1 = Body('B1')
>>> B2 = Body('B2')
>>> v = dynamicsymbols('v')
>>> T = v*N.y #Torque
Now let's apply equal and opposite torque to the bodies.
>>> B1.apply_torque(T, B2)
We can check the loads (torques) applied to bodies now.
>>> B1.loads
[(B1_frame, v(t)*N_frame.y)]
>>> B2.loads
[(B2_frame, - v(t)*N_frame.y)]
Notes
=====
If a new torque is applied on body which already has some torque applied on it,
then the new torque is added to the previous torque about the body's frame.
"""
if not isinstance(torque, Vector):
raise TypeError("A Vector must be supplied to add torque.")
if reaction_body is not None:
reaction_body.apply_torque(-torque)
for load in self._loads:
if self.frame in load:
torque += load[1]
self._loads.remove(load)
break
self._loads.append((self.frame, torque))
def clear_loads(self):
"""
Clears the Body's loads list.
Example
=======
>>> from sympy.physics.mechanics import Body
>>> B = Body('B')
>>> force = B.x + B.y
>>> B.apply_force(force)
>>> B.loads
[(B_masscenter, B_frame.x + B_frame.y)]
>>> B.clear_loads()
>>> B.loads
[]
"""
self._loads = []
def remove_load(self, about=None):
"""
Remove load about a point or frame.
Parameters
==========
about : Point or ReferenceFrame, optional
The point about which force is applied,
and is to be removed.
If about is None, then the torque about
self's frame is removed.
Example
=======
>>> from sympy.physics.mechanics import Body, Point
>>> B = Body('B')
>>> P = Point('P')
>>> f1 = B.x
>>> f2 = B.y
>>> B.apply_force(f1)
>>> B.apply_force(f2, P)
>>> B.loads
[(B_masscenter, B_frame.x), (P, B_frame.y)]
>>> B.remove_load(P)
>>> B.loads
[(B_masscenter, B_frame.x)]
"""
if about is not None:
if not isinstance(about, Point):
raise TypeError('Load is applied about Point or ReferenceFrame.')
else:
about = self.frame
for load in self._loads:
if about in load:
self._loads.remove(load)
break
def masscenter_vel(self, body):
"""
Returns the velocity of the mass center with respect to the provided
rigid body or reference frame.
Parameters
==========
body: Body or ReferenceFrame
The rigid body or reference frame to calculate the velocity in.
Example
=======
>>> from sympy.physics.mechanics import Body
>>> A = Body('A')
>>> B = Body('B')
>>> A.masscenter.set_vel(B.frame, 5*B.frame.x)
>>> A.masscenter_vel(B)
5*B_frame.x
>>> A.masscenter_vel(B.frame)
5*B_frame.x
"""
if isinstance(body, ReferenceFrame):
frame=body
elif isinstance(body, Body):
frame = body.frame
return self.masscenter.vel(frame)
def ang_vel_in(self, body):
"""
Returns this body's angular velocity with respect to the provided
rigid body or reference frame.
Parameters
==========
body: Body or ReferenceFrame
The rigid body or reference frame to calculate the angular velocity in.
Example
=======
>>> from sympy.physics.mechanics import Body, ReferenceFrame
>>> A = Body('A')
>>> N = ReferenceFrame('N')
>>> B = Body('B', frame=N)
>>> A.frame.set_ang_vel(N, 5*N.x)
>>> A.ang_vel_in(B)
5*N.x
>>> A.ang_vel_in(N)
5*N.x
"""
if isinstance(body, ReferenceFrame):
frame=body
elif isinstance(body, Body):
frame = body.frame
return self.frame.ang_vel_in(frame)
def dcm(self, body):
"""
Returns the direction cosine matrix of this body relative to the
provided rigid body or reference frame.
Parameters
==========
body: Body or ReferenceFrame
The rigid body or reference frame to calculate the dcm.
Example
=======
>>> from sympy.physics.mechanics import Body
>>> A = Body('A')
>>> B = Body('B')
>>> A.frame.orient_axis(B.frame, B.frame.x, 5)
>>> A.dcm(B)
Matrix([
[1, 0, 0],
[0, cos(5), sin(5)],
[0, -sin(5), cos(5)]])
>>> A.dcm(B.frame)
Matrix([
[1, 0, 0],
[0, cos(5), sin(5)],
[0, -sin(5), cos(5)]])
"""
if isinstance(body, ReferenceFrame):
frame=body
elif isinstance(body, Body):
frame = body.frame
return self.frame.dcm(frame)
|
1526356b6516ce1567fecba6906ddc2e65d13e633688393a0d4f1012f2cfb62a | __all__ = [
'vector',
'CoordinateSym', 'ReferenceFrame', 'Dyadic', 'Vector', 'Point', 'cross',
'dot', 'express', 'time_derivative', 'outer', 'kinematic_equations',
'get_motion_params', 'partial_velocity', 'dynamicsymbols', 'vprint',
'vsstrrepr', 'vsprint', 'vpprint', 'vlatex', 'init_vprinting', 'curl',
'divergence', 'gradient', 'is_conservative', 'is_solenoidal',
'scalar_potential', 'scalar_potential_difference',
'KanesMethod',
'RigidBody',
'inertia', 'inertia_of_point_mass', 'linear_momentum', 'angular_momentum',
'kinetic_energy', 'potential_energy', 'Lagrangian', 'mechanics_printing',
'mprint', 'msprint', 'mpprint', 'mlatex', 'msubs', 'find_dynamicsymbols',
'Particle',
'LagrangesMethod',
'Linearizer',
'Body',
'SymbolicSystem',
'PinJoint', 'PrismaticJoint',
'JointsMethod'
]
from sympy.physics import vector
from sympy.physics.vector import (CoordinateSym, ReferenceFrame, Dyadic, Vector, Point,
cross, dot, express, time_derivative, outer, kinematic_equations,
get_motion_params, partial_velocity, dynamicsymbols, vprint,
vsstrrepr, vsprint, vpprint, vlatex, init_vprinting, curl, divergence,
gradient, is_conservative, is_solenoidal, scalar_potential,
scalar_potential_difference)
from .kane import KanesMethod
from .rigidbody import RigidBody
from .functions import (inertia, inertia_of_point_mass, linear_momentum,
angular_momentum, kinetic_energy, potential_energy, Lagrangian,
mechanics_printing, mprint, msprint, mpprint, mlatex, msubs,
find_dynamicsymbols)
from .particle import Particle
from .lagrange import LagrangesMethod
from .linearize import Linearizer
from .body import Body
from .system import SymbolicSystem
from .jointsmethod import JointsMethod
from .joint import PinJoint, PrismaticJoint
|
c69bddd2b66f454c8ef41f936525cd3938873fcc5833795587b300f6cd3bc4fa | from sympy.core.backend import zeros, Matrix, diff, eye
from sympy import solve_linear_system_LU
from sympy.utilities import default_sort_key
from sympy.physics.vector import (ReferenceFrame, dynamicsymbols,
partial_velocity)
from sympy.physics.mechanics.method import _Methods
from sympy.physics.mechanics.particle import Particle
from sympy.physics.mechanics.rigidbody import RigidBody
from sympy.physics.mechanics.functions import (msubs, find_dynamicsymbols,
_f_list_parser)
from sympy.physics.mechanics.linearize import Linearizer
from sympy.utilities.iterables import iterable
__all__ = ['KanesMethod']
class KanesMethod(_Methods):
"""Kane's method object.
Explanation
===========
This object is used to do the "book-keeping" as you go through and form
equations of motion in the way Kane presents in:
Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill
The attributes are for equations in the form [M] udot = forcing.
Attributes
==========
q, u : Matrix
Matrices of the generalized coordinates and speeds
bodies : iterable
Iterable of Point and RigidBody objects in the system.
loads : iterable
Iterable of (Point, vector) or (ReferenceFrame, vector) tuples
describing the forces on the system.
auxiliary : Matrix
If applicable, the set of auxiliary Kane's
equations used to solve for non-contributing
forces.
mass_matrix : Matrix
The system's mass matrix
forcing : Matrix
The system's forcing vector
mass_matrix_full : Matrix
The "mass matrix" for the u's and q's
forcing_full : Matrix
The "forcing vector" for the u's and q's
Examples
========
This is a simple example for a one degree of freedom translational
spring-mass-damper.
In this example, we first need to do the kinematics.
This involves creating generalized speeds and coordinates and their
derivatives.
Then we create a point and set its velocity in a frame.
>>> from sympy import symbols
>>> from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame
>>> from sympy.physics.mechanics import Point, Particle, KanesMethod
>>> q, u = dynamicsymbols('q u')
>>> qd, ud = dynamicsymbols('q u', 1)
>>> m, c, k = symbols('m c k')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> P.set_vel(N, u * N.x)
Next we need to arrange/store information in the way that KanesMethod
requires. The kinematic differential equations need to be stored in a
dict. A list of forces/torques must be constructed, where each entry in
the list is a (Point, Vector) or (ReferenceFrame, Vector) tuple, where the
Vectors represent the Force or Torque.
Next a particle needs to be created, and it needs to have a point and mass
assigned to it.
Finally, a list of all bodies and particles needs to be created.
>>> kd = [qd - u]
>>> FL = [(P, (-k * q - c * u) * N.x)]
>>> pa = Particle('pa', P, m)
>>> BL = [pa]
Finally we can generate the equations of motion.
First we create the KanesMethod object and supply an inertial frame,
coordinates, generalized speeds, and the kinematic differential equations.
Additional quantities such as configuration and motion constraints,
dependent coordinates and speeds, and auxiliary speeds are also supplied
here (see the online documentation).
Next we form FR* and FR to complete: Fr + Fr* = 0.
We have the equations of motion at this point.
It makes sense to rearrange them though, so we calculate the mass matrix and
the forcing terms, for E.o.M. in the form: [MM] udot = forcing, where MM is
the mass matrix, udot is a vector of the time derivatives of the
generalized speeds, and forcing is a vector representing "forcing" terms.
>>> KM = KanesMethod(N, q_ind=[q], u_ind=[u], kd_eqs=kd)
>>> (fr, frstar) = KM.kanes_equations(BL, FL)
>>> MM = KM.mass_matrix
>>> forcing = KM.forcing
>>> rhs = MM.inv() * forcing
>>> rhs
Matrix([[(-c*u(t) - k*q(t))/m]])
>>> KM.linearize(A_and_B=True)[0]
Matrix([
[ 0, 1],
[-k/m, -c/m]])
Please look at the documentation pages for more information on how to
perform linearization and how to deal with dependent coordinates & speeds,
and how do deal with bringing non-contributing forces into evidence.
"""
def __init__(self, frame, q_ind, u_ind, kd_eqs=None, q_dependent=None,
configuration_constraints=None, u_dependent=None,
velocity_constraints=None, acceleration_constraints=None,
u_auxiliary=None, bodies=None, forcelist=None):
"""Please read the online documentation. """
if not q_ind:
q_ind = [dynamicsymbols('dummy_q')]
kd_eqs = [dynamicsymbols('dummy_kd')]
if not isinstance(frame, ReferenceFrame):
raise TypeError('An inertial ReferenceFrame must be supplied')
self._inertial = frame
self._fr = None
self._frstar = None
self._forcelist = forcelist
self._bodylist = bodies
self._initialize_vectors(q_ind, q_dependent, u_ind, u_dependent,
u_auxiliary)
self._initialize_kindiffeq_matrices(kd_eqs)
self._initialize_constraint_matrices(configuration_constraints,
velocity_constraints, acceleration_constraints)
def _initialize_vectors(self, q_ind, q_dep, u_ind, u_dep, u_aux):
"""Initialize the coordinate and speed vectors."""
none_handler = lambda x: Matrix(x) if x else Matrix()
# Initialize generalized coordinates
q_dep = none_handler(q_dep)
if not iterable(q_ind):
raise TypeError('Generalized coordinates must be an iterable.')
if not iterable(q_dep):
raise TypeError('Dependent coordinates must be an iterable.')
q_ind = Matrix(q_ind)
self._qdep = q_dep
self._q = Matrix([q_ind, q_dep])
self._qdot = self.q.diff(dynamicsymbols._t)
# Initialize generalized speeds
u_dep = none_handler(u_dep)
if not iterable(u_ind):
raise TypeError('Generalized speeds must be an iterable.')
if not iterable(u_dep):
raise TypeError('Dependent speeds must be an iterable.')
u_ind = Matrix(u_ind)
self._udep = u_dep
self._u = Matrix([u_ind, u_dep])
self._udot = self.u.diff(dynamicsymbols._t)
self._uaux = none_handler(u_aux)
def _initialize_constraint_matrices(self, config, vel, acc):
"""Initializes constraint matrices."""
# Define vector dimensions
o = len(self.u)
m = len(self._udep)
p = o - m
none_handler = lambda x: Matrix(x) if x else Matrix()
# Initialize configuration constraints
config = none_handler(config)
if len(self._qdep) != len(config):
raise ValueError('There must be an equal number of dependent '
'coordinates and configuration constraints.')
self._f_h = none_handler(config)
# Initialize velocity and acceleration constraints
vel = none_handler(vel)
acc = none_handler(acc)
if len(vel) != m:
raise ValueError('There must be an equal number of dependent '
'speeds and velocity constraints.')
if acc and (len(acc) != m):
raise ValueError('There must be an equal number of dependent '
'speeds and acceleration constraints.')
if vel:
u_zero = {i: 0 for i in self.u}
udot_zero = {i: 0 for i in self._udot}
# When calling kanes_equations, another class instance will be
# created if auxiliary u's are present. In this case, the
# computation of kinetic differential equation matrices will be
# skipped as this was computed during the original KanesMethod
# object, and the qd_u_map will not be available.
if self._qdot_u_map is not None:
vel = msubs(vel, self._qdot_u_map)
self._f_nh = msubs(vel, u_zero)
self._k_nh = (vel - self._f_nh).jacobian(self.u)
# If no acceleration constraints given, calculate them.
if not acc:
_f_dnh = (self._k_nh.diff(dynamicsymbols._t) * self.u +
self._f_nh.diff(dynamicsymbols._t))
if self._qdot_u_map is not None:
_f_dnh = msubs(_f_dnh, self._qdot_u_map)
self._f_dnh = _f_dnh
self._k_dnh = self._k_nh
else:
if self._qdot_u_map is not None:
acc = msubs(acc, self._qdot_u_map)
self._f_dnh = msubs(acc, udot_zero)
self._k_dnh = (acc - self._f_dnh).jacobian(self._udot)
# Form of non-holonomic constraints is B*u + C = 0.
# We partition B into independent and dependent columns:
# Ars is then -B_dep.inv() * B_ind, and it relates dependent speeds
# to independent speeds as: udep = Ars*uind, neglecting the C term.
B_ind = self._k_nh[:, :p]
B_dep = self._k_nh[:, p:o]
self._Ars = -B_dep.LUsolve(B_ind)
else:
self._f_nh = Matrix()
self._k_nh = Matrix()
self._f_dnh = Matrix()
self._k_dnh = Matrix()
self._Ars = Matrix()
def _initialize_kindiffeq_matrices(self, kdeqs):
"""Initialize the kinematic differential equation matrices."""
if kdeqs:
if len(self.q) != len(kdeqs):
raise ValueError('There must be an equal number of kinematic '
'differential equations and coordinates.')
kdeqs = Matrix(kdeqs)
u = self.u
qdot = self._qdot
# Dictionaries setting things to zero
u_zero = {i: 0 for i in u}
uaux_zero = {i: 0 for i in self._uaux}
qdot_zero = {i: 0 for i in qdot}
f_k = msubs(kdeqs, u_zero, qdot_zero)
k_ku = (msubs(kdeqs, qdot_zero) - f_k).jacobian(u)
k_kqdot = (msubs(kdeqs, u_zero) - f_k).jacobian(qdot)
f_k = k_kqdot.LUsolve(f_k)
k_ku = k_kqdot.LUsolve(k_ku)
k_kqdot = eye(len(qdot))
self._qdot_u_map = solve_linear_system_LU(
Matrix([k_kqdot.T, -(k_ku * u + f_k).T]).T, qdot)
self._f_k = msubs(f_k, uaux_zero)
self._k_ku = msubs(k_ku, uaux_zero)
self._k_kqdot = k_kqdot
else:
self._qdot_u_map = None
self._f_k = Matrix()
self._k_ku = Matrix()
self._k_kqdot = Matrix()
def _form_fr(self, fl):
"""Form the generalized active force."""
if fl is not None and (len(fl) == 0 or not iterable(fl)):
raise ValueError('Force pairs must be supplied in an '
'non-empty iterable or None.')
N = self._inertial
# pull out relevant velocities for constructing partial velocities
vel_list, f_list = _f_list_parser(fl, N)
vel_list = [msubs(i, self._qdot_u_map) for i in vel_list]
f_list = [msubs(i, self._qdot_u_map) for i in f_list]
# Fill Fr with dot product of partial velocities and forces
o = len(self.u)
b = len(f_list)
FR = zeros(o, 1)
partials = partial_velocity(vel_list, self.u, N)
for i in range(o):
FR[i] = sum(partials[j][i] & f_list[j] for j in range(b))
# In case there are dependent speeds
if self._udep:
p = o - len(self._udep)
FRtilde = FR[:p, 0]
FRold = FR[p:o, 0]
FRtilde += self._Ars.T * FRold
FR = FRtilde
self._forcelist = fl
self._fr = FR
return FR
def _form_frstar(self, bl):
"""Form the generalized inertia force."""
if not iterable(bl):
raise TypeError('Bodies must be supplied in an iterable.')
t = dynamicsymbols._t
N = self._inertial
# Dicts setting things to zero
udot_zero = {i: 0 for i in self._udot}
uaux_zero = {i: 0 for i in self._uaux}
uauxdot = [diff(i, t) for i in self._uaux]
uauxdot_zero = {i: 0 for i in uauxdot}
# Dictionary of q' and q'' to u and u'
q_ddot_u_map = {k.diff(t): v.diff(t) for (k, v) in
self._qdot_u_map.items()}
q_ddot_u_map.update(self._qdot_u_map)
# Fill up the list of partials: format is a list with num elements
# equal to number of entries in body list. Each of these elements is a
# list - either of length 1 for the translational components of
# particles or of length 2 for the translational and rotational
# components of rigid bodies. The inner most list is the list of
# partial velocities.
def get_partial_velocity(body):
if isinstance(body, RigidBody):
vlist = [body.masscenter.vel(N), body.frame.ang_vel_in(N)]
elif isinstance(body, Particle):
vlist = [body.point.vel(N),]
else:
raise TypeError('The body list may only contain either '
'RigidBody or Particle as list elements.')
v = [msubs(vel, self._qdot_u_map) for vel in vlist]
return partial_velocity(v, self.u, N)
partials = [get_partial_velocity(body) for body in bl]
# Compute fr_star in two components:
# fr_star = -(MM*u' + nonMM)
o = len(self.u)
MM = zeros(o, o)
nonMM = zeros(o, 1)
zero_uaux = lambda expr: msubs(expr, uaux_zero)
zero_udot_uaux = lambda expr: msubs(msubs(expr, udot_zero), uaux_zero)
for i, body in enumerate(bl):
if isinstance(body, RigidBody):
M = zero_uaux(body.mass)
I = zero_uaux(body.central_inertia)
vel = zero_uaux(body.masscenter.vel(N))
omega = zero_uaux(body.frame.ang_vel_in(N))
acc = zero_udot_uaux(body.masscenter.acc(N))
inertial_force = (M.diff(t) * vel + M * acc)
inertial_torque = zero_uaux((I.dt(body.frame) & omega) +
msubs(I & body.frame.ang_acc_in(N), udot_zero) +
(omega ^ (I & omega)))
for j in range(o):
tmp_vel = zero_uaux(partials[i][0][j])
tmp_ang = zero_uaux(I & partials[i][1][j])
for k in range(o):
# translational
MM[j, k] += M * (tmp_vel & partials[i][0][k])
# rotational
MM[j, k] += (tmp_ang & partials[i][1][k])
nonMM[j] += inertial_force & partials[i][0][j]
nonMM[j] += inertial_torque & partials[i][1][j]
else:
M = zero_uaux(body.mass)
vel = zero_uaux(body.point.vel(N))
acc = zero_udot_uaux(body.point.acc(N))
inertial_force = (M.diff(t) * vel + M * acc)
for j in range(o):
temp = zero_uaux(partials[i][0][j])
for k in range(o):
MM[j, k] += M * (temp & partials[i][0][k])
nonMM[j] += inertial_force & partials[i][0][j]
# Compose fr_star out of MM and nonMM
MM = zero_uaux(msubs(MM, q_ddot_u_map))
nonMM = msubs(msubs(nonMM, q_ddot_u_map),
udot_zero, uauxdot_zero, uaux_zero)
fr_star = -(MM * msubs(Matrix(self._udot), uauxdot_zero) + nonMM)
# If there are dependent speeds, we need to find fr_star_tilde
if self._udep:
p = o - len(self._udep)
fr_star_ind = fr_star[:p, 0]
fr_star_dep = fr_star[p:o, 0]
fr_star = fr_star_ind + (self._Ars.T * fr_star_dep)
# Apply the same to MM
MMi = MM[:p, :]
MMd = MM[p:o, :]
MM = MMi + (self._Ars.T * MMd)
self._bodylist = bl
self._frstar = fr_star
self._k_d = MM
self._f_d = -msubs(self._fr + self._frstar, udot_zero)
return fr_star
def to_linearizer(self):
"""Returns an instance of the Linearizer class, initiated from the
data in the KanesMethod class. This may be more desirable than using
the linearize class method, as the Linearizer object will allow more
efficient recalculation (i.e. about varying operating points)."""
if (self._fr is None) or (self._frstar is None):
raise ValueError('Need to compute Fr, Fr* first.')
# Get required equation components. The Kane's method class breaks
# these into pieces. Need to reassemble
f_c = self._f_h
if self._f_nh and self._k_nh:
f_v = self._f_nh + self._k_nh*Matrix(self.u)
else:
f_v = Matrix()
if self._f_dnh and self._k_dnh:
f_a = self._f_dnh + self._k_dnh*Matrix(self._udot)
else:
f_a = Matrix()
# Dicts to sub to zero, for splitting up expressions
u_zero = {i: 0 for i in self.u}
ud_zero = {i: 0 for i in self._udot}
qd_zero = {i: 0 for i in self._qdot}
qd_u_zero = {i: 0 for i in Matrix([self._qdot, self.u])}
# Break the kinematic differential eqs apart into f_0 and f_1
f_0 = msubs(self._f_k, u_zero) + self._k_kqdot*Matrix(self._qdot)
f_1 = msubs(self._f_k, qd_zero) + self._k_ku*Matrix(self.u)
# Break the dynamic differential eqs into f_2 and f_3
f_2 = msubs(self._frstar, qd_u_zero)
f_3 = msubs(self._frstar, ud_zero) + self._fr
f_4 = zeros(len(f_2), 1)
# Get the required vector components
q = self.q
u = self.u
if self._qdep:
q_i = q[:-len(self._qdep)]
else:
q_i = q
q_d = self._qdep
if self._udep:
u_i = u[:-len(self._udep)]
else:
u_i = u
u_d = self._udep
# Form dictionary to set auxiliary speeds & their derivatives to 0.
uaux = self._uaux
uauxdot = uaux.diff(dynamicsymbols._t)
uaux_zero = {i: 0 for i in Matrix([uaux, uauxdot])}
# Checking for dynamic symbols outside the dynamic differential
# equations; throws error if there is.
sym_list = set(Matrix([q, self._qdot, u, self._udot, uaux, uauxdot]))
if any(find_dynamicsymbols(i, sym_list) for i in [self._k_kqdot,
self._k_ku, self._f_k, self._k_dnh, self._f_dnh, self._k_d]):
raise ValueError('Cannot have dynamicsymbols outside dynamic \
forcing vector.')
# Find all other dynamic symbols, forming the forcing vector r.
# Sort r to make it canonical.
r = list(find_dynamicsymbols(msubs(self._f_d, uaux_zero), sym_list))
r.sort(key=default_sort_key)
# Check for any derivatives of variables in r that are also found in r.
for i in r:
if diff(i, dynamicsymbols._t) in r:
raise ValueError('Cannot have derivatives of specified \
quantities when linearizing forcing terms.')
return Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i,
q_d, u_i, u_d, r)
# TODO : Remove `new_method` after 1.1 has been released.
def linearize(self, *, new_method=None, **kwargs):
""" Linearize the equations of motion about a symbolic operating point.
Explanation
===========
If kwarg A_and_B is False (default), returns M, A, B, r for the
linearized form, M*[q', u']^T = A*[q_ind, u_ind]^T + B*r.
If kwarg A_and_B is True, returns A, B, r for the linearized form
dx = A*x + B*r, where x = [q_ind, u_ind]^T. Note that this is
computationally intensive if there are many symbolic parameters. For
this reason, it may be more desirable to use the default A_and_B=False,
returning M, A, and B. Values may then be substituted in to these
matrices, and the state space form found as
A = P.T*M.inv()*A, B = P.T*M.inv()*B, where P = Linearizer.perm_mat.
In both cases, r is found as all dynamicsymbols in the equations of
motion that are not part of q, u, q', or u'. They are sorted in
canonical form.
The operating points may be also entered using the ``op_point`` kwarg.
This takes a dictionary of {symbol: value}, or a an iterable of such
dictionaries. The values may be numeric or symbolic. The more values
you can specify beforehand, the faster this computation will run.
For more documentation, please see the ``Linearizer`` class."""
linearizer = self.to_linearizer()
result = linearizer.linearize(**kwargs)
return result + (linearizer.r,)
def kanes_equations(self, bodies=None, loads=None):
""" Method to form Kane's equations, Fr + Fr* = 0.
Explanation
===========
Returns (Fr, Fr*). In the case where auxiliary generalized speeds are
present (say, s auxiliary speeds, o generalized speeds, and m motion
constraints) the length of the returned vectors will be o - m + s in
length. The first o - m equations will be the constrained Kane's
equations, then the s auxiliary Kane's equations. These auxiliary
equations can be accessed with the auxiliary_eqs().
Parameters
==========
bodies : iterable
An iterable of all RigidBody's and Particle's in the system.
A system must have at least one body.
loads : iterable
Takes in an iterable of (Particle, Vector) or (ReferenceFrame, Vector)
tuples which represent the force at a point or torque on a frame.
Must be either a non-empty iterable of tuples or None which corresponds
to a system with no constraints.
"""
if bodies is None:
bodies = self.bodies
if loads is None and self._forcelist is not None:
loads = self._forcelist
if loads == []:
loads = None
if not self._k_kqdot:
raise AttributeError('Create an instance of KanesMethod with '
'kinematic differential equations to use this method.')
fr = self._form_fr(loads)
frstar = self._form_frstar(bodies)
if self._uaux:
if not self._udep:
km = KanesMethod(self._inertial, self.q, self._uaux,
u_auxiliary=self._uaux)
else:
km = KanesMethod(self._inertial, self.q, self._uaux,
u_auxiliary=self._uaux, u_dependent=self._udep,
velocity_constraints=(self._k_nh * self.u +
self._f_nh))
km._qdot_u_map = self._qdot_u_map
self._km = km
fraux = km._form_fr(loads)
frstaraux = km._form_frstar(bodies)
self._aux_eq = fraux + frstaraux
self._fr = fr.col_join(fraux)
self._frstar = frstar.col_join(frstaraux)
return (self._fr, self._frstar)
def _form_eoms(self):
fr, frstar = self.kanes_equations(self.bodylist, self.forcelist)
return fr + frstar
def rhs(self, inv_method=None):
"""Returns the system's equations of motion in first order form. The
output is the right hand side of::
x' = |q'| =: f(q, u, r, p, t)
|u'|
The right hand side is what is needed by most numerical ODE
integrators.
Parameters
==========
inv_method : str
The specific sympy inverse matrix calculation method to use. For a
list of valid methods, see
:meth:`~sympy.matrices.matrices.MatrixBase.inv`
"""
rhs = zeros(len(self.q) + len(self.u), 1)
kdes = self.kindiffdict()
for i, q_i in enumerate(self.q):
rhs[i] = kdes[q_i.diff()]
if inv_method is None:
rhs[len(self.q):, 0] = self.mass_matrix.LUsolve(self.forcing)
else:
rhs[len(self.q):, 0] = (self.mass_matrix.inv(inv_method,
try_block_diag=True) *
self.forcing)
return rhs
def kindiffdict(self):
"""Returns a dictionary mapping q' to u."""
if not self._qdot_u_map:
raise AttributeError('Create an instance of KanesMethod with '
'kinematic differential equations to use this method.')
return self._qdot_u_map
@property
def auxiliary_eqs(self):
"""A matrix containing the auxiliary equations."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
if not self._uaux:
raise ValueError('No auxiliary speeds have been declared.')
return self._aux_eq
@property
def mass_matrix(self):
"""The mass matrix of the system."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
return Matrix([self._k_d, self._k_dnh])
@property
def mass_matrix_full(self):
"""The mass matrix of the system, augmented by the kinematic
differential equations."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
o = len(self.u)
n = len(self.q)
return ((self._k_kqdot).row_join(zeros(n, o))).col_join((zeros(o,
n)).row_join(self.mass_matrix))
@property
def forcing(self):
"""The forcing vector of the system."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
return -Matrix([self._f_d, self._f_dnh])
@property
def forcing_full(self):
"""The forcing vector of the system, augmented by the kinematic
differential equations."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
f1 = self._k_ku * Matrix(self.u) + self._f_k
return -Matrix([f1, self._f_d, self._f_dnh])
@property
def q(self):
return self._q
@property
def u(self):
return self._u
@property
def bodylist(self):
return self._bodylist
@property
def forcelist(self):
return self._forcelist
@property
def bodies(self):
return self._bodylist
@property
def loads(self):
return self._forcelist
|
8b953d611e29259ec460b1aff846c8be45270e603d00d78ac9a979c0d0f00330 | from sympy.physics.mechanics import (Body, Lagrangian, KanesMethod, LagrangesMethod,
RigidBody, Particle)
from sympy.physics.mechanics.method import _Methods
__all__ = ['JointsMethod']
class JointsMethod(_Methods):
"""Method for formulating the equations of motion using a set of interconnected bodies with joints.
Parameters
==========
newtonion : Body or ReferenceFrame
The newtonion(inertial) frame.
*joints : Joint
The joints in the system
Attributes
==========
q, u : iterable
Iterable of the generalized coordinates and speeds
bodies : iterable
Iterable of Body objects in the system.
loads : iterable
Iterable of (Point, vector) or (ReferenceFrame, vector) tuples
describing the forces on the system.
mass_matrix : Matrix, shape(n, n)
The system's mass matrix
forcing : Matrix, shape(n, 1)
The system's forcing vector
mass_matrix_full : Matrix, shape(2*n, 2*n)
The "mass matrix" for the u's and q's
forcing_full : Matrix, shape(2*n, 1)
The "forcing vector" for the u's and q's
method : KanesMethod or Lagrange's method
Method's object.
kdes : iterable
Iterable of kde in they system.
Examples
========
This is a simple example for a one degree of freedom translational
spring-mass-damper.
>>> from sympy import symbols
>>> from sympy.physics.mechanics import Body, JointsMethod, PrismaticJoint
>>> from sympy.physics.vector import dynamicsymbols
>>> c, k = symbols('c k')
>>> x, v = dynamicsymbols('x v')
>>> wall = Body('W')
>>> body = Body('B')
>>> J = PrismaticJoint('J', wall, body, coordinates=x, speeds=v)
>>> wall.apply_force(c*v*wall.x, reaction_body=body)
>>> wall.apply_force(k*x*wall.x, reaction_body=body)
>>> method = JointsMethod(wall, J)
>>> method.form_eoms()
Matrix([[-B_mass*Derivative(v(t), t) - c*v(t) - k*x(t)]])
>>> M = method.mass_matrix_full
>>> F = method.forcing_full
>>> rhs = M.LUsolve(F)
>>> rhs
Matrix([
[ v(t)],
[(-c*v(t) - k*x(t))/B_mass]])
Notes
=====
``JointsMethod`` currently only works with systems that do not have any
configuration or motion constraints.
"""
def __init__(self, newtonion, *joints):
if isinstance(newtonion, Body):
self.frame = newtonion.frame
else:
self.frame = newtonion
self._joints = joints
self._bodies = self._generate_bodylist()
self._loads = self._generate_loadlist()
self._q = self._generate_q()
self._u = self._generate_u()
self._kdes = self._generate_kdes()
self._method = None
@property
def bodies(self):
"""List of bodies in they system."""
return self._bodies
@property
def loads(self):
"""List of loads on the system."""
return self._loads
@property
def q(self):
"""List of the generalized coordinates."""
return self._q
@property
def u(self):
"""List of the generalized speeds."""
return self._u
@property
def kdes(self):
"""List of the generalized coordinates."""
return self._kdes
@property
def forcing_full(self):
"""The "forcing vector" for the u's and q's."""
return self.method.forcing_full
@property
def mass_matrix_full(self):
"""The "mass matrix" for the u's and q's."""
return self.method.mass_matrix_full
@property
def mass_matrix(self):
"""The system's mass matrix."""
return self.method.mass_matrix
@property
def forcing(self):
"""The system's forcing vector."""
return self.method.forcing
@property
def method(self):
"""Object of method used to form equations of systems."""
return self._method
def _generate_bodylist(self):
bodies = []
for joint in self._joints:
if joint.child not in bodies:
bodies.append(joint.child)
if joint.parent not in bodies:
bodies.append(joint.parent)
return bodies
def _generate_loadlist(self):
load_list = []
for body in self.bodies:
load_list.extend(body.loads)
return load_list
def _generate_q(self):
q_ind = []
for joint in self._joints:
for coordinate in joint.coordinates:
if coordinate in q_ind:
raise ValueError('Coordinates of joints should be unique.')
q_ind.append(coordinate)
return q_ind
def _generate_u(self):
u_ind = []
for joint in self._joints:
for speed in joint.speeds:
if speed in u_ind:
raise ValueError('Speeds of joints should be unique.')
u_ind.append(speed)
return u_ind
def _generate_kdes(self):
kd_ind = []
for joint in self._joints:
kd_ind.extend(joint.kdes)
return kd_ind
def _convert_bodies(self):
# Convert `Body` to `Particle` and `RigidBody`
bodylist = []
for body in self.bodies:
if body.is_rigidbody:
rb = RigidBody(body.name, body.masscenter, body.frame, body.mass,
(body.central_inertia, body.masscenter))
rb.potential_energy = body.potential_energy
bodylist.append(rb)
else:
part = Particle(body.name, body.masscenter, body.mass)
part.potential_energy = body.potential_energy
bodylist.append(part)
return bodylist
def form_eoms(self, method=KanesMethod):
"""Method to form system's equation of motions.
Parameters
==========
method : Class
Class name of method.
Returns
========
Matrix
Vector of equations of motions.
Examples
========
This is a simple example for a one degree of freedom translational
spring-mass-damper.
>>> from sympy import S, symbols
>>> from sympy.physics.mechanics import LagrangesMethod, dynamicsymbols, Body
>>> from sympy.physics.mechanics import PrismaticJoint, JointsMethod
>>> q = dynamicsymbols('q')
>>> qd = dynamicsymbols('q', 1)
>>> m, k, b = symbols('m k b')
>>> wall = Body('W')
>>> part = Body('P', mass=m)
>>> part.potential_energy = k * q**2 / S(2)
>>> J = PrismaticJoint('J', wall, part, coordinates=q, speeds=qd)
>>> wall.apply_force(b * qd * wall.x, reaction_body=part)
>>> method = JointsMethod(wall, J)
>>> method.form_eoms(LagrangesMethod)
Matrix([[b*Derivative(q(t), t) + k*q(t) + m*Derivative(q(t), (t, 2))]])
We can also solve for the states using the 'rhs' method.
>>> method.rhs()
Matrix([
[ Derivative(q(t), t)],
[(-b*Derivative(q(t), t) - k*q(t))/m]])
"""
bodylist = self._convert_bodies()
if issubclass(method, LagrangesMethod): #LagrangesMethod or similar
L = Lagrangian(self.frame, *bodylist)
self._method = method(L, self.q, self.loads, bodylist, self.frame)
else: #KanesMethod or similar
self._method = method(self.frame, q_ind=self.q, u_ind=self.u, kd_eqs=self.kdes,
forcelist=self.loads, bodies=bodylist)
soln = self.method._form_eoms()
return soln
def rhs(self, inv_method=None):
"""Returns equations that can be solved numerically.
Parameters
==========
inv_method : str
The specific sympy inverse matrix calculation method to use. For a
list of valid methods, see
:meth:`~sympy.matrices.matrices.MatrixBase.inv`
Returns
========
Matrix
Numerically solveable equations.
See Also
========
sympy.physics.mechanics.KanesMethod.rhs():
KanesMethod's rhs function.
sympy.physics.mechanics.LagrangesMethod.rhs():
LagrangesMethod's rhs function.
"""
return self.method.rhs(inv_method=inv_method)
|
a08a06220b88218b73aea2addcb88e957e7b4d4eae68100dc8362d2d948c1e80 | from sympy.core.backend import diff, zeros, Matrix, eye, sympify
from sympy.physics.vector import dynamicsymbols, ReferenceFrame
from sympy.physics.mechanics.method import _Methods
from sympy.physics.mechanics.functions import (find_dynamicsymbols, msubs,
_f_list_parser)
from sympy.physics.mechanics.linearize import Linearizer
from sympy.utilities import default_sort_key
from sympy.utilities.iterables import iterable
__all__ = ['LagrangesMethod']
class LagrangesMethod(_Methods):
"""Lagrange's method object.
Explanation
===========
This object generates the equations of motion in a two step procedure. The
first step involves the initialization of LagrangesMethod by supplying the
Lagrangian and the generalized coordinates, at the bare minimum. If there
are any constraint equations, they can be supplied as keyword arguments.
The Lagrange multipliers are automatically generated and are equal in
number to the constraint equations. Similarly any non-conservative forces
can be supplied in an iterable (as described below and also shown in the
example) along with a ReferenceFrame. This is also discussed further in the
__init__ method.
Attributes
==========
q, u : Matrix
Matrices of the generalized coordinates and speeds
loads : iterable
Iterable of (Point, vector) or (ReferenceFrame, vector) tuples
describing the forces on the system.
bodies : iterable
Iterable containing the rigid bodies and particles of the system.
mass_matrix : Matrix
The system's mass matrix
forcing : Matrix
The system's forcing vector
mass_matrix_full : Matrix
The "mass matrix" for the qdot's, qdoubledot's, and the
lagrange multipliers (lam)
forcing_full : Matrix
The forcing vector for the qdot's, qdoubledot's and
lagrange multipliers (lam)
Examples
========
This is a simple example for a one degree of freedom translational
spring-mass-damper.
In this example, we first need to do the kinematics.
This involves creating generalized coordinates and their derivatives.
Then we create a point and set its velocity in a frame.
>>> from sympy.physics.mechanics import LagrangesMethod, Lagrangian
>>> from sympy.physics.mechanics import ReferenceFrame, Particle, Point
>>> from sympy.physics.mechanics import dynamicsymbols
>>> from sympy import symbols
>>> q = dynamicsymbols('q')
>>> qd = dynamicsymbols('q', 1)
>>> m, k, b = symbols('m k b')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> P.set_vel(N, qd * N.x)
We need to then prepare the information as required by LagrangesMethod to
generate equations of motion.
First we create the Particle, which has a point attached to it.
Following this the lagrangian is created from the kinetic and potential
energies.
Then, an iterable of nonconservative forces/torques must be constructed,
where each item is a (Point, Vector) or (ReferenceFrame, Vector) tuple,
with the Vectors representing the nonconservative forces or torques.
>>> Pa = Particle('Pa', P, m)
>>> Pa.potential_energy = k * q**2 / 2.0
>>> L = Lagrangian(N, Pa)
>>> fl = [(P, -b * qd * N.x)]
Finally we can generate the equations of motion.
First we create the LagrangesMethod object. To do this one must supply
the Lagrangian, and the generalized coordinates. The constraint equations,
the forcelist, and the inertial frame may also be provided, if relevant.
Next we generate Lagrange's equations of motion, such that:
Lagrange's equations of motion = 0.
We have the equations of motion at this point.
>>> l = LagrangesMethod(L, [q], forcelist = fl, frame = N)
>>> print(l.form_lagranges_equations())
Matrix([[b*Derivative(q(t), t) + 1.0*k*q(t) + m*Derivative(q(t), (t, 2))]])
We can also solve for the states using the 'rhs' method.
>>> print(l.rhs())
Matrix([[Derivative(q(t), t)], [(-b*Derivative(q(t), t) - 1.0*k*q(t))/m]])
Please refer to the docstrings on each method for more details.
"""
def __init__(self, Lagrangian, qs, forcelist=None, bodies=None, frame=None,
hol_coneqs=None, nonhol_coneqs=None):
"""Supply the following for the initialization of LagrangesMethod.
Lagrangian : Sympifyable
qs : array_like
The generalized coordinates
hol_coneqs : array_like, optional
The holonomic constraint equations
nonhol_coneqs : array_like, optional
The nonholonomic constraint equations
forcelist : iterable, optional
Takes an iterable of (Point, Vector) or (ReferenceFrame, Vector)
tuples which represent the force at a point or torque on a frame.
This feature is primarily to account for the nonconservative forces
and/or moments.
bodies : iterable, optional
Takes an iterable containing the rigid bodies and particles of the
system.
frame : ReferenceFrame, optional
Supply the inertial frame. This is used to determine the
generalized forces due to non-conservative forces.
"""
self._L = Matrix([sympify(Lagrangian)])
self.eom = None
self._m_cd = Matrix() # Mass Matrix of differentiated coneqs
self._m_d = Matrix() # Mass Matrix of dynamic equations
self._f_cd = Matrix() # Forcing part of the diff coneqs
self._f_d = Matrix() # Forcing part of the dynamic equations
self.lam_coeffs = Matrix() # The coeffecients of the multipliers
forcelist = forcelist if forcelist else []
if not iterable(forcelist):
raise TypeError('Force pairs must be supplied in an iterable.')
self._forcelist = forcelist
if frame and not isinstance(frame, ReferenceFrame):
raise TypeError('frame must be a valid ReferenceFrame')
self._bodies = bodies
self.inertial = frame
self.lam_vec = Matrix()
self._term1 = Matrix()
self._term2 = Matrix()
self._term3 = Matrix()
self._term4 = Matrix()
# Creating the qs, qdots and qdoubledots
if not iterable(qs):
raise TypeError('Generalized coordinates must be an iterable')
self._q = Matrix(qs)
self._qdots = self.q.diff(dynamicsymbols._t)
self._qdoubledots = self._qdots.diff(dynamicsymbols._t)
mat_build = lambda x: Matrix(x) if x else Matrix()
hol_coneqs = mat_build(hol_coneqs)
nonhol_coneqs = mat_build(nonhol_coneqs)
self.coneqs = Matrix([hol_coneqs.diff(dynamicsymbols._t),
nonhol_coneqs])
self._hol_coneqs = hol_coneqs
def form_lagranges_equations(self):
"""Method to form Lagrange's equations of motion.
Returns a vector of equations of motion using Lagrange's equations of
the second kind.
"""
qds = self._qdots
qdd_zero = {i: 0 for i in self._qdoubledots}
n = len(self.q)
# Internally we represent the EOM as four terms:
# EOM = term1 - term2 - term3 - term4 = 0
# First term
self._term1 = self._L.jacobian(qds)
self._term1 = self._term1.diff(dynamicsymbols._t).T
# Second term
self._term2 = self._L.jacobian(self.q).T
# Third term
if self.coneqs:
coneqs = self.coneqs
m = len(coneqs)
# Creating the multipliers
self.lam_vec = Matrix(dynamicsymbols('lam1:' + str(m + 1)))
self.lam_coeffs = -coneqs.jacobian(qds)
self._term3 = self.lam_coeffs.T * self.lam_vec
# Extracting the coeffecients of the qdds from the diff coneqs
diffconeqs = coneqs.diff(dynamicsymbols._t)
self._m_cd = diffconeqs.jacobian(self._qdoubledots)
# The remaining terms i.e. the 'forcing' terms in diff coneqs
self._f_cd = -diffconeqs.subs(qdd_zero)
else:
self._term3 = zeros(n, 1)
# Fourth term
if self.forcelist:
N = self.inertial
self._term4 = zeros(n, 1)
for i, qd in enumerate(qds):
flist = zip(*_f_list_parser(self.forcelist, N))
self._term4[i] = sum(v.diff(qd, N) & f for (v, f) in flist)
else:
self._term4 = zeros(n, 1)
# Form the dynamic mass and forcing matrices
without_lam = self._term1 - self._term2 - self._term4
self._m_d = without_lam.jacobian(self._qdoubledots)
self._f_d = -without_lam.subs(qdd_zero)
# Form the EOM
self.eom = without_lam - self._term3
return self.eom
def _form_eoms(self):
return self.form_lagranges_equations()
@property
def mass_matrix(self):
"""Returns the mass matrix, which is augmented by the Lagrange
multipliers, if necessary.
Explanation
===========
If the system is described by 'n' generalized coordinates and there are
no constraint equations then an n X n matrix is returned.
If there are 'n' generalized coordinates and 'm' constraint equations
have been supplied during initialization then an n X (n+m) matrix is
returned. The (n + m - 1)th and (n + m)th columns contain the
coefficients of the Lagrange multipliers.
"""
if self.eom is None:
raise ValueError('Need to compute the equations of motion first')
if self.coneqs:
return (self._m_d).row_join(self.lam_coeffs.T)
else:
return self._m_d
@property
def mass_matrix_full(self):
"""Augments the coefficients of qdots to the mass_matrix."""
if self.eom is None:
raise ValueError('Need to compute the equations of motion first')
n = len(self.q)
m = len(self.coneqs)
row1 = eye(n).row_join(zeros(n, n + m))
row2 = zeros(n, n).row_join(self.mass_matrix)
if self.coneqs:
row3 = zeros(m, n).row_join(self._m_cd).row_join(zeros(m, m))
return row1.col_join(row2).col_join(row3)
else:
return row1.col_join(row2)
@property
def forcing(self):
"""Returns the forcing vector from 'lagranges_equations' method."""
if self.eom is None:
raise ValueError('Need to compute the equations of motion first')
return self._f_d
@property
def forcing_full(self):
"""Augments qdots to the forcing vector above."""
if self.eom is None:
raise ValueError('Need to compute the equations of motion first')
if self.coneqs:
return self._qdots.col_join(self.forcing).col_join(self._f_cd)
else:
return self._qdots.col_join(self.forcing)
def to_linearizer(self, q_ind=None, qd_ind=None, q_dep=None, qd_dep=None):
"""Returns an instance of the Linearizer class, initiated from the
data in the LagrangesMethod class. This may be more desirable than using
the linearize class method, as the Linearizer object will allow more
efficient recalculation (i.e. about varying operating points).
Parameters
==========
q_ind, qd_ind : array_like, optional
The independent generalized coordinates and speeds.
q_dep, qd_dep : array_like, optional
The dependent generalized coordinates and speeds.
"""
# Compose vectors
t = dynamicsymbols._t
q = self.q
u = self._qdots
ud = u.diff(t)
# Get vector of lagrange multipliers
lams = self.lam_vec
mat_build = lambda x: Matrix(x) if x else Matrix()
q_i = mat_build(q_ind)
q_d = mat_build(q_dep)
u_i = mat_build(qd_ind)
u_d = mat_build(qd_dep)
# Compose general form equations
f_c = self._hol_coneqs
f_v = self.coneqs
f_a = f_v.diff(t)
f_0 = u
f_1 = -u
f_2 = self._term1
f_3 = -(self._term2 + self._term4)
f_4 = -self._term3
# Check that there are an appropriate number of independent and
# dependent coordinates
if len(q_d) != len(f_c) or len(u_d) != len(f_v):
raise ValueError(("Must supply {:} dependent coordinates, and " +
"{:} dependent speeds").format(len(f_c), len(f_v)))
if set(Matrix([q_i, q_d])) != set(q):
raise ValueError("Must partition q into q_ind and q_dep, with " +
"no extra or missing symbols.")
if set(Matrix([u_i, u_d])) != set(u):
raise ValueError("Must partition qd into qd_ind and qd_dep, " +
"with no extra or missing symbols.")
# Find all other dynamic symbols, forming the forcing vector r.
# Sort r to make it canonical.
insyms = set(Matrix([q, u, ud, lams]))
r = list(find_dynamicsymbols(f_3, insyms))
r.sort(key=default_sort_key)
# Check for any derivatives of variables in r that are also found in r.
for i in r:
if diff(i, dynamicsymbols._t) in r:
raise ValueError('Cannot have derivatives of specified \
quantities when linearizing forcing terms.')
return Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i,
q_d, u_i, u_d, r, lams)
def linearize(self, q_ind=None, qd_ind=None, q_dep=None, qd_dep=None,
**kwargs):
"""Linearize the equations of motion about a symbolic operating point.
Explanation
===========
If kwarg A_and_B is False (default), returns M, A, B, r for the
linearized form, M*[q', u']^T = A*[q_ind, u_ind]^T + B*r.
If kwarg A_and_B is True, returns A, B, r for the linearized form
dx = A*x + B*r, where x = [q_ind, u_ind]^T. Note that this is
computationally intensive if there are many symbolic parameters. For
this reason, it may be more desirable to use the default A_and_B=False,
returning M, A, and B. Values may then be substituted in to these
matrices, and the state space form found as
A = P.T*M.inv()*A, B = P.T*M.inv()*B, where P = Linearizer.perm_mat.
In both cases, r is found as all dynamicsymbols in the equations of
motion that are not part of q, u, q', or u'. They are sorted in
canonical form.
The operating points may be also entered using the ``op_point`` kwarg.
This takes a dictionary of {symbol: value}, or a an iterable of such
dictionaries. The values may be numeric or symbolic. The more values
you can specify beforehand, the faster this computation will run.
For more documentation, please see the ``Linearizer`` class."""
linearizer = self.to_linearizer(q_ind, qd_ind, q_dep, qd_dep)
result = linearizer.linearize(**kwargs)
return result + (linearizer.r,)
def solve_multipliers(self, op_point=None, sol_type='dict'):
"""Solves for the values of the lagrange multipliers symbolically at
the specified operating point.
Parameters
==========
op_point : dict or iterable of dicts, optional
Point at which to solve at. The operating point is specified as
a dictionary or iterable of dictionaries of {symbol: value}. The
value may be numeric or symbolic itself.
sol_type : str, optional
Solution return type. Valid options are:
- 'dict': A dict of {symbol : value} (default)
- 'Matrix': An ordered column matrix of the solution
"""
# Determine number of multipliers
k = len(self.lam_vec)
if k == 0:
raise ValueError("System has no lagrange multipliers to solve for.")
# Compose dict of operating conditions
if isinstance(op_point, dict):
op_point_dict = op_point
elif iterable(op_point):
op_point_dict = {}
for op in op_point:
op_point_dict.update(op)
elif op_point is None:
op_point_dict = {}
else:
raise TypeError("op_point must be either a dictionary or an "
"iterable of dictionaries.")
# Compose the system to be solved
mass_matrix = self.mass_matrix.col_join(-self.lam_coeffs.row_join(
zeros(k, k)))
force_matrix = self.forcing.col_join(self._f_cd)
# Sub in the operating point
mass_matrix = msubs(mass_matrix, op_point_dict)
force_matrix = msubs(force_matrix, op_point_dict)
# Solve for the multipliers
sol_list = mass_matrix.LUsolve(-force_matrix)[-k:]
if sol_type == 'dict':
return dict(zip(self.lam_vec, sol_list))
elif sol_type == 'Matrix':
return Matrix(sol_list)
else:
raise ValueError("Unknown sol_type {:}.".format(sol_type))
def rhs(self, inv_method=None, **kwargs):
"""Returns equations that can be solved numerically.
Parameters
==========
inv_method : str
The specific sympy inverse matrix calculation method to use. For a
list of valid methods, see
:meth:`~sympy.matrices.matrices.MatrixBase.inv`
"""
if inv_method is None:
self._rhs = self.mass_matrix_full.LUsolve(self.forcing_full)
else:
self._rhs = (self.mass_matrix_full.inv(inv_method,
try_block_diag=True) * self.forcing_full)
return self._rhs
@property
def q(self):
return self._q
@property
def u(self):
return self._qdots
@property
def bodies(self):
return self._bodies
@property
def forcelist(self):
return self._forcelist
@property
def loads(self):
return self._forcelist
|
daf151840efdadae0747a0335411ccaf7a0d9dcadcaa02cb311a9dca27f40eb2 | from abc import ABC, abstractmethod
class _Methods(ABC):
"""Abstract Base Class for all methods."""
@abstractmethod
def q(self):
pass
@abstractmethod
def u(self):
pass
@abstractmethod
def bodies(self):
pass
@abstractmethod
def loads(self):
pass
@abstractmethod
def mass_matrix(self):
pass
@abstractmethod
def forcing(self):
pass
@abstractmethod
def mass_matrix_full(self):
pass
@abstractmethod
def forcing_full(self):
pass
def _form_eoms(self):
raise NotImplementedError("Subclasses must implement this.")
|
ffc4f2a9560b53bc767cf5f5abc2969c8f20d8edd7d00b1dda158f9f2764ce4e | from sympy.physics.matrices import msigma, mgamma, minkowski_tensor, pat_matrix, mdft
from sympy import zeros, eye, I, Matrix, sqrt, Rational, S
from sympy.testing.pytest import warns_deprecated_sympy
def test_parallel_axis_theorem():
# This tests the parallel axis theorem matrix by comparing to test
# matrices.
# First case, 1 in all directions.
mat1 = Matrix(((2, -1, -1), (-1, 2, -1), (-1, -1, 2)))
assert pat_matrix(1, 1, 1, 1) == mat1
assert pat_matrix(2, 1, 1, 1) == 2*mat1
# Second case, 1 in x, 0 in all others
mat2 = Matrix(((0, 0, 0), (0, 1, 0), (0, 0, 1)))
assert pat_matrix(1, 1, 0, 0) == mat2
assert pat_matrix(2, 1, 0, 0) == 2*mat2
# Third case, 1 in y, 0 in all others
mat3 = Matrix(((1, 0, 0), (0, 0, 0), (0, 0, 1)))
assert pat_matrix(1, 0, 1, 0) == mat3
assert pat_matrix(2, 0, 1, 0) == 2*mat3
# Fourth case, 1 in z, 0 in all others
mat4 = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 0)))
assert pat_matrix(1, 0, 0, 1) == mat4
assert pat_matrix(2, 0, 0, 1) == 2*mat4
def test_Pauli():
#this and the following test are testing both Pauli and Dirac matrices
#and also that the general Matrix class works correctly in a real world
#situation
sigma1 = msigma(1)
sigma2 = msigma(2)
sigma3 = msigma(3)
assert sigma1 == sigma1
assert sigma1 != sigma2
# sigma*I -> I*sigma (see #354)
assert sigma1*sigma2 == sigma3*I
assert sigma3*sigma1 == sigma2*I
assert sigma2*sigma3 == sigma1*I
assert sigma1*sigma1 == eye(2)
assert sigma2*sigma2 == eye(2)
assert sigma3*sigma3 == eye(2)
assert sigma1*2*sigma1 == 2*eye(2)
assert sigma1*sigma3*sigma1 == -sigma3
def test_Dirac():
gamma0 = mgamma(0)
gamma1 = mgamma(1)
gamma2 = mgamma(2)
gamma3 = mgamma(3)
gamma5 = mgamma(5)
# gamma*I -> I*gamma (see #354)
assert gamma5 == gamma0 * gamma1 * gamma2 * gamma3 * I
assert gamma1 * gamma2 + gamma2 * gamma1 == zeros(4)
assert gamma0 * gamma0 == eye(4) * minkowski_tensor[0, 0]
assert gamma2 * gamma2 != eye(4) * minkowski_tensor[0, 0]
assert gamma2 * gamma2 == eye(4) * minkowski_tensor[2, 2]
assert mgamma(5, True) == \
mgamma(0, True)*mgamma(1, True)*mgamma(2, True)*mgamma(3, True)*I
def test_mdft():
with warns_deprecated_sympy():
assert mdft(1) == Matrix([[1]])
with warns_deprecated_sympy():
assert mdft(2) == 1/sqrt(2)*Matrix([[1,1],[1,-1]])
with warns_deprecated_sympy():
assert mdft(4) == Matrix([[S.Half, S.Half, S.Half, S.Half],
[S.Half, -I/2, Rational(-1,2), I/2],
[S.Half, Rational(-1,2), S.Half, Rational(-1,2)],
[S.Half, I/2, Rational(-1,2), -I/2]])
|
df68db20581eeaef85d1ca8f14cded5a0ee4b04b0a949270c8eff0546f03929a | """
This module can be used to solve 2D beam bending problems with
singularity functions in mechanics.
"""
from sympy.core import S, Symbol, diff, symbols
from sympy.solvers import linsolve
from sympy.printing import sstr
from sympy.functions import SingularityFunction, Piecewise, factorial
from sympy.core import sympify
from sympy.integrals import integrate
from sympy.series import limit
from sympy.plotting import plot, PlotGrid
from sympy.geometry.entity import GeometryEntity
from sympy.external import import_module
from sympy import lambdify, Add
from sympy.core.compatibility import iterable
from sympy.utilities.decorator import doctest_depends_on
numpy = import_module('numpy', import_kwargs={'fromlist':['arange']})
class Beam:
"""
A Beam is a structural element that is capable of withstanding load
primarily by resisting against bending. Beams are characterized by
their cross sectional profile(Second moment of area), their length
and their material.
.. note::
While solving a beam bending problem, a user should choose its
own sign convention and should stick to it. The results will
automatically follow the chosen sign convention. However, the
chosen sign convention must respect the rule that, on the positive
side of beam's axis (in respect to current section), a loading force
giving positive shear yields a negative moment, as below (the
curved arrow shows the positive moment and rotation):
.. image:: allowed-sign-conventions.png
Examples
========
There is a beam of length 4 meters. A constant distributed load of 6 N/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. The deflection of the beam at the end is restricted.
Using the sign convention of downwards forces being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols, Piecewise
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(4, E, I)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(6, 2, 0)
>>> b.apply_load(R2, 4, -1)
>>> b.bc_deflection = [(0, 0), (4, 0)]
>>> b.boundary_conditions
{'deflection': [(0, 0), (4, 0)], 'slope': []}
>>> b.load
R1*SingularityFunction(x, 0, -1) + R2*SingularityFunction(x, 4, -1) + 6*SingularityFunction(x, 2, 0)
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.load
-3*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 2, 0) - 9*SingularityFunction(x, 4, -1)
>>> b.shear_force()
3*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 2, 1) + 9*SingularityFunction(x, 4, 0)
>>> b.bending_moment()
3*SingularityFunction(x, 0, 1) - 3*SingularityFunction(x, 2, 2) + 9*SingularityFunction(x, 4, 1)
>>> b.slope()
(-3*SingularityFunction(x, 0, 2)/2 + SingularityFunction(x, 2, 3) - 9*SingularityFunction(x, 4, 2)/2 + 7)/(E*I)
>>> b.deflection()
(7*x - SingularityFunction(x, 0, 3)/2 + SingularityFunction(x, 2, 4)/4 - 3*SingularityFunction(x, 4, 3)/2)/(E*I)
>>> b.deflection().rewrite(Piecewise)
(7*x - Piecewise((x**3, x > 0), (0, True))/2
- 3*Piecewise(((x - 4)**3, x - 4 > 0), (0, True))/2
+ Piecewise(((x - 2)**4, x - 2 > 0), (0, True))/4)/(E*I)
"""
def __init__(self, length, elastic_modulus, second_moment, area=Symbol('A'), variable=Symbol('x'), base_char='C'):
"""Initializes the class.
Parameters
==========
length : Sympifyable
A Symbol or value representing the Beam's length.
elastic_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of Elasticity.
It is a measure of the stiffness of the Beam material. It can
also be a continuous function of position along the beam.
second_moment : Sympifyable or Geometry object
Describes the cross-section of the beam via a SymPy expression
representing the Beam's second moment of area. It is a geometrical
property of an area which reflects how its points are distributed
with respect to its neutral axis. It can also be a continuous
function of position along the beam. Alternatively ``second_moment``
can be a shape object such as a ``Polygon`` from the geometry module
representing the shape of the cross-section of the beam. In such cases,
it is assumed that the x-axis of the shape object is aligned with the
bending axis of the beam. The second moment of area will be computed
from the shape object internally.
area : Symbol/float
Represents the cross-section area of beam
variable : Symbol, optional
A Symbol object that will be used as the variable along the beam
while representing the load, shear, moment, slope and deflection
curve. By default, it is set to ``Symbol('x')``.
base_char : String, optional
A String that will be used as base character to generate sequential
symbols for integration constants in cases where boundary conditions
are not sufficient to solve them.
"""
self.length = length
self.elastic_modulus = elastic_modulus
if isinstance(second_moment, GeometryEntity):
self.cross_section = second_moment
else:
self.cross_section = None
self.second_moment = second_moment
self.variable = variable
self._base_char = base_char
self._boundary_conditions = {'deflection': [], 'slope': []}
self._load = 0
self._area = area
self._applied_supports = []
self._support_as_loads = []
self._applied_loads = []
self._reaction_loads = {}
self._ild_reactions = {}
self._ild_shear = 0
self._ild_moment = 0
# _original_load is a copy of _load equations with unsubstituted reaction
# forces. It is used for calculating reaction forces in case of I.L.D.
self._original_load = 0
self._composite_type = None
self._hinge_position = None
def __str__(self):
shape_description = self._cross_section if self._cross_section else self._second_moment
str_sol = 'Beam({}, {}, {})'.format(sstr(self._length), sstr(self._elastic_modulus), sstr(shape_description))
return str_sol
@property
def reaction_loads(self):
""" Returns the reaction forces in a dictionary."""
return self._reaction_loads
@property
def ild_shear(self):
""" Returns the I.L.D. shear equation."""
return self._ild_shear
@property
def ild_reactions(self):
""" Returns the I.L.D. reaction forces in a dictionary."""
return self._ild_reactions
@property
def ild_moment(self):
""" Returns the I.L.D. moment equation."""
return self._ild_moment
@property
def length(self):
"""Length of the Beam."""
return self._length
@length.setter
def length(self, l):
self._length = sympify(l)
@property
def area(self):
"""Cross-sectional area of the Beam. """
return self._area
@area.setter
def area(self, a):
self._area = sympify(a)
@property
def variable(self):
"""
A symbol that can be used as a variable along the length of the beam
while representing load distribution, shear force curve, bending
moment, slope curve and the deflection curve. By default, it is set
to ``Symbol('x')``, but this property is mutable.
Examples
========
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I, A = symbols('E, I, A')
>>> x, y, z = symbols('x, y, z')
>>> b = Beam(4, E, I)
>>> b.variable
x
>>> b.variable = y
>>> b.variable
y
>>> b = Beam(4, E, I, A, z)
>>> b.variable
z
"""
return self._variable
@variable.setter
def variable(self, v):
if isinstance(v, Symbol):
self._variable = v
else:
raise TypeError("""The variable should be a Symbol object.""")
@property
def elastic_modulus(self):
"""Young's Modulus of the Beam. """
return self._elastic_modulus
@elastic_modulus.setter
def elastic_modulus(self, e):
self._elastic_modulus = sympify(e)
@property
def second_moment(self):
"""Second moment of area of the Beam. """
return self._second_moment
@second_moment.setter
def second_moment(self, i):
self._cross_section = None
if isinstance(i, GeometryEntity):
raise ValueError("To update cross-section geometry use `cross_section` attribute")
else:
self._second_moment = sympify(i)
@property
def cross_section(self):
"""Cross-section of the beam"""
return self._cross_section
@cross_section.setter
def cross_section(self, s):
if s:
self._second_moment = s.second_moment_of_area()[0]
self._cross_section = s
@property
def boundary_conditions(self):
"""
Returns a dictionary of boundary conditions applied on the beam.
The dictionary has three keywords namely moment, slope and deflection.
The value of each keyword is a list of tuple, where each tuple
contains location and value of a boundary condition in the format
(location, value).
Examples
========
There is a beam of length 4 meters. The bending moment at 0 should be 4
and at 4 it should be 0. The slope of the beam should be 1 at 0. The
deflection should be 2 at 0.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.bc_deflection = [(0, 2)]
>>> b.bc_slope = [(0, 1)]
>>> b.boundary_conditions
{'deflection': [(0, 2)], 'slope': [(0, 1)]}
Here the deflection of the beam should be ``2`` at ``0``.
Similarly, the slope of the beam should be ``1`` at ``0``.
"""
return self._boundary_conditions
@property
def bc_slope(self):
return self._boundary_conditions['slope']
@bc_slope.setter
def bc_slope(self, s_bcs):
self._boundary_conditions['slope'] = s_bcs
@property
def bc_deflection(self):
return self._boundary_conditions['deflection']
@bc_deflection.setter
def bc_deflection(self, d_bcs):
self._boundary_conditions['deflection'] = d_bcs
def join(self, beam, via="fixed"):
"""
This method joins two beams to make a new composite beam system.
Passed Beam class instance is attached to the right end of calling
object. This method can be used to form beams having Discontinuous
values of Elastic modulus or Second moment.
Parameters
==========
beam : Beam class object
The Beam object which would be connected to the right of calling
object.
via : String
States the way two Beam object would get connected
- For axially fixed Beams, via="fixed"
- For Beams connected via hinge, via="hinge"
Examples
========
There is a cantilever beam of length 4 meters. For first 2 meters
its moment of inertia is `1.5*I` and `I` for the other end.
A pointload of magnitude 4 N is applied from the top at its free end.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b1 = Beam(2, E, 1.5*I)
>>> b2 = Beam(2, E, I)
>>> b = b1.join(b2, "fixed")
>>> b.apply_load(20, 4, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 0, -2)
>>> b.bc_slope = [(0, 0)]
>>> b.bc_deflection = [(0, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.load
80*SingularityFunction(x, 0, -2) - 20*SingularityFunction(x, 0, -1) + 20*SingularityFunction(x, 4, -1)
>>> b.slope()
(-((-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))/I + 120/I)/E + 80.0/(E*I))*SingularityFunction(x, 2, 0)
- 0.666666666666667*(-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 0, 0)/(E*I)
+ 0.666666666666667*(-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 2, 0)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
new_length = self.length + beam.length
if self.second_moment != beam.second_moment:
new_second_moment = Piecewise((self.second_moment, x<=self.length),
(beam.second_moment, x<=new_length))
else:
new_second_moment = self.second_moment
if via == "fixed":
new_beam = Beam(new_length, E, new_second_moment, x)
new_beam._composite_type = "fixed"
return new_beam
if via == "hinge":
new_beam = Beam(new_length, E, new_second_moment, x)
new_beam._composite_type = "hinge"
new_beam._hinge_position = self.length
return new_beam
def apply_support(self, loc, type="fixed"):
"""
This method applies support to a particular beam object.
Parameters
==========
loc : Sympifyable
Location of point at which support is applied.
type : String
Determines type of Beam support applied. To apply support structure
with
- zero degree of freedom, type = "fixed"
- one degree of freedom, type = "pin"
- two degrees of freedom, type = "roller"
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(30, E, I)
>>> b.apply_support(10, 'roller')
>>> b.apply_support(30, 'roller')
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(120, 30, -2)
>>> R_10, R_30 = symbols('R_10, R_30')
>>> b.solve_for_reaction_loads(R_10, R_30)
>>> b.load
-8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1)
+ 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
>>> b.slope()
(-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
"""
loc = sympify(loc)
self._applied_supports.append((loc, type))
if type == "pin" or type == "roller":
reaction_load = Symbol('R_'+str(loc))
self.apply_load(reaction_load, loc, -1)
self.bc_deflection.append((loc, 0))
else:
reaction_load = Symbol('R_'+str(loc))
reaction_moment = Symbol('M_'+str(loc))
self.apply_load(reaction_load, loc, -1)
self.apply_load(reaction_moment, loc, -2)
self.bc_deflection.append((loc, 0))
self.bc_slope.append((loc, 0))
self._support_as_loads.append((reaction_moment, loc, -2, None))
self._support_as_loads.append((reaction_load, loc, -1, None))
def apply_load(self, value, start, order, end=None):
"""
This method adds up the loads given to a particular beam object.
Parameters
==========
value : Sympifyable
The value inserted should have the units [Force/(Distance**(n+1)]
where n is the order of applied load.
Units for applied loads:
- For moments, unit = kN*m
- For point loads, unit = kN
- For constant distributed load, unit = kN/m
- For ramp loads, unit = kN/m/m
- For parabolic ramp loads, unit = kN/m/m/m
- ... so on.
start : Sympifyable
The starting point of the applied load. For point moments and
point forces this is the location of application.
order : Integer
The order of the applied load.
- For moments, order = -2
- For point loads, order =-1
- For constant distributed load, order = 0
- For ramp loads, order = 1
- For parabolic ramp loads, order = 2
- ... so on.
end : Sympifyable, optional
An optional argument that can be used if the load has an end point
within the length of the beam.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A point load of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 2 meters to 3 meters
away from the starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 2, 2, end=3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
self._applied_loads.append((value, start, order, end))
self._load += value*SingularityFunction(x, start, order)
self._original_load += value*SingularityFunction(x, start, order)
if end:
# load has an end point within the length of the beam.
self._handle_end(x, value, start, order, end, type="apply")
def remove_load(self, value, start, order, end=None):
"""
This method removes a particular load present on the beam object.
Returns a ValueError if the load passed as an argument is not
present on the beam.
Parameters
==========
value : Sympifyable
The magnitude of an applied load.
start : Sympifyable
The starting point of the applied load. For point moments and
point forces this is the location of application.
order : Integer
The order of the applied load.
- For moments, order= -2
- For point loads, order=-1
- For constant distributed load, order=0
- For ramp loads, order=1
- For parabolic ramp loads, order=2
- ... so on.
end : Sympifyable, optional
An optional argument that can be used if the load has an end point
within the length of the beam.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A pointload of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 2 meters to 3 meters
away from the starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 2, 2, end=3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
>>> b.remove_load(-2, 2, 2, end = 3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1)
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if (value, start, order, end) in self._applied_loads:
self._load -= value*SingularityFunction(x, start, order)
self._original_load -= value*SingularityFunction(x, start, order)
self._applied_loads.remove((value, start, order, end))
else:
msg = "No such load distribution exists on the beam object."
raise ValueError(msg)
if end:
# load has an end point within the length of the beam.
self._handle_end(x, value, start, order, end, type="remove")
def _handle_end(self, x, value, start, order, end, type):
"""
This functions handles the optional `end` value in the
`apply_load` and `remove_load` functions. When the value
of end is not NULL, this function will be executed.
"""
if order.is_negative:
msg = ("If 'end' is provided the 'order' of the load cannot "
"be negative, i.e. 'end' is only valid for distributed "
"loads.")
raise ValueError(msg)
# NOTE : A Taylor series can be used to define the summation of
# singularity functions that subtract from the load past the end
# point such that it evaluates to zero past 'end'.
f = value*x**order
if type == "apply":
# iterating for "apply_load" method
for i in range(0, order + 1):
self._load -= (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i)/factorial(i))
self._original_load -= (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i)/factorial(i))
elif type == "remove":
# iterating for "remove_load" method
for i in range(0, order + 1):
self._load += (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i)/factorial(i))
self._original_load += (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i)/factorial(i))
@property
def load(self):
"""
Returns a Singularity Function expression which represents
the load distribution curve of the Beam object.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A point load of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 3 meters away from the
starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 3, 2)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 3, 2)
"""
return self._load
@property
def applied_loads(self):
"""
Returns a list of all loads applied on the beam object.
Each load in the list is a tuple of form (value, start, order, end).
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A pointload of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point. Another pointload of magnitude 5 N
is applied at same position.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(5, 2, -1)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 9*SingularityFunction(x, 2, -1)
>>> b.applied_loads
[(-3, 0, -2, None), (4, 2, -1, None), (5, 2, -1, None)]
"""
return self._applied_loads
def _solve_hinge_beams(self, *reactions):
"""Method to find integration constants and reactional variables in a
composite beam connected via hinge.
This method resolves the composite Beam into its sub-beams and then
equations of shear force, bending moment, slope and deflection are
evaluated for both of them separately. These equations are then solved
for unknown reactions and integration constants using the boundary
conditions applied on the Beam. Equal deflection of both sub-beams
at the hinge joint gives us another equation to solve the system.
Examples
========
A combined beam, with constant fkexural rigidity E*I, is formed by joining
a Beam of length 2*l to the right of another Beam of length l. The whole beam
is fixed at both of its both end. A point load of magnitude P is also applied
from the top at a distance of 2*l from starting point.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> l=symbols('l', positive=True)
>>> b1=Beam(l ,E,I)
>>> b2=Beam(2*l ,E,I)
>>> b=b1.join(b2,"hinge")
>>> M1, A1, M2, A2, P = symbols('M1 A1 M2 A2 P')
>>> b.apply_load(A1,0,-1)
>>> b.apply_load(M1,0,-2)
>>> b.apply_load(P,2*l,-1)
>>> b.apply_load(A2,3*l,-1)
>>> b.apply_load(M2,3*l,-2)
>>> b.bc_slope=[(0,0), (3*l, 0)]
>>> b.bc_deflection=[(0,0), (3*l, 0)]
>>> b.solve_for_reaction_loads(M1, A1, M2, A2)
>>> b.reaction_loads
{A1: -5*P/18, A2: -13*P/18, M1: 5*P*l/18, M2: -4*P*l/9}
>>> b.slope()
(5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, 0, 0)/(E*I)
- (5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, l, 0)/(E*I)
+ (P*l**2/18 - 4*P*l*SingularityFunction(-l + x, 2*l, 1)/9 - 5*P*SingularityFunction(-l + x, 0, 2)/36 + P*SingularityFunction(-l + x, l, 2)/2
- 13*P*SingularityFunction(-l + x, 2*l, 2)/36)*SingularityFunction(x, l, 0)/(E*I)
>>> b.deflection()
(5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, 0, 0)/(E*I)
- (5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, l, 0)/(E*I)
+ (5*P*l**3/54 + P*l**2*(-l + x)/18 - 2*P*l*SingularityFunction(-l + x, 2*l, 2)/9 - 5*P*SingularityFunction(-l + x, 0, 3)/108 + P*SingularityFunction(-l + x, l, 3)/6
- 13*P*SingularityFunction(-l + x, 2*l, 3)/108)*SingularityFunction(x, l, 0)/(E*I)
"""
x = self.variable
l = self._hinge_position
E = self._elastic_modulus
I = self._second_moment
if isinstance(I, Piecewise):
I1 = I.args[0][0]
I2 = I.args[1][0]
else:
I1 = I2 = I
load_1 = 0 # Load equation on first segment of composite beam
load_2 = 0 # Load equation on second segment of composite beam
# Distributing load on both segments
for load in self.applied_loads:
if load[1] < l:
load_1 += load[0]*SingularityFunction(x, load[1], load[2])
if load[2] == 0:
load_1 -= load[0]*SingularityFunction(x, load[3], load[2])
elif load[2] > 0:
load_1 -= load[0]*SingularityFunction(x, load[3], load[2]) + load[0]*SingularityFunction(x, load[3], 0)
elif load[1] == l:
load_1 += load[0]*SingularityFunction(x, load[1], load[2])
load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2])
elif load[1] > l:
load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2])
if load[2] == 0:
load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2])
elif load[2] > 0:
load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2]) + load[0]*SingularityFunction(x, load[3] - l, 0)
h = Symbol('h') # Force due to hinge
load_1 += h*SingularityFunction(x, l, -1)
load_2 -= h*SingularityFunction(x, 0, -1)
eq = []
shear_1 = integrate(load_1, x)
shear_curve_1 = limit(shear_1, x, l)
eq.append(shear_curve_1)
bending_1 = integrate(shear_1, x)
moment_curve_1 = limit(bending_1, x, l)
eq.append(moment_curve_1)
shear_2 = integrate(load_2, x)
shear_curve_2 = limit(shear_2, x, self.length - l)
eq.append(shear_curve_2)
bending_2 = integrate(shear_2, x)
moment_curve_2 = limit(bending_2, x, self.length - l)
eq.append(moment_curve_2)
C1 = Symbol('C1')
C2 = Symbol('C2')
C3 = Symbol('C3')
C4 = Symbol('C4')
slope_1 = S.One/(E*I1)*(integrate(bending_1, x) + C1)
def_1 = S.One/(E*I1)*(integrate((E*I)*slope_1, x) + C1*x + C2)
slope_2 = S.One/(E*I2)*(integrate(integrate(integrate(load_2, x), x), x) + C3)
def_2 = S.One/(E*I2)*(integrate((E*I)*slope_2, x) + C4)
for position, value in self.bc_slope:
if position<l:
eq.append(slope_1.subs(x, position) - value)
else:
eq.append(slope_2.subs(x, position - l) - value)
for position, value in self.bc_deflection:
if position<l:
eq.append(def_1.subs(x, position) - value)
else:
eq.append(def_2.subs(x, position - l) - value)
eq.append(def_1.subs(x, l) - def_2.subs(x, 0)) # Deflection of both the segments at hinge would be equal
constants = list(linsolve(eq, C1, C2, C3, C4, h, *reactions))
reaction_values = list(constants[0])[5:]
self._reaction_loads = dict(zip(reactions, reaction_values))
self._load = self._load.subs(self._reaction_loads)
# Substituting constants and reactional load and moments with their corresponding values
slope_1 = slope_1.subs({C1: constants[0][0], h:constants[0][4]}).subs(self._reaction_loads)
def_1 = def_1.subs({C1: constants[0][0], C2: constants[0][1], h:constants[0][4]}).subs(self._reaction_loads)
slope_2 = slope_2.subs({x: x-l, C3: constants[0][2], h:constants[0][4]}).subs(self._reaction_loads)
def_2 = def_2.subs({x: x-l,C3: constants[0][2], C4: constants[0][3], h:constants[0][4]}).subs(self._reaction_loads)
self._hinge_beam_slope = slope_1*SingularityFunction(x, 0, 0) - slope_1*SingularityFunction(x, l, 0) + slope_2*SingularityFunction(x, l, 0)
self._hinge_beam_deflection = def_1*SingularityFunction(x, 0, 0) - def_1*SingularityFunction(x, l, 0) + def_2*SingularityFunction(x, l, 0)
def solve_for_reaction_loads(self, *reactions):
"""
Solves for the reaction forces.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1) # Reaction force at x = 10
>>> b.apply_load(R2, 30, -1) # Reaction force at x = 30
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.load
R1*SingularityFunction(x, 10, -1) + R2*SingularityFunction(x, 30, -1)
- 8*SingularityFunction(x, 0, -1) + 120*SingularityFunction(x, 30, -2)
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.reaction_loads
{R1: 6, R2: 2}
>>> b.load
-8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1)
+ 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
"""
if self._composite_type == "hinge":
return self._solve_hinge_beams(*reactions)
x = self.variable
l = self.length
C3 = Symbol('C3')
C4 = Symbol('C4')
shear_curve = limit(self.shear_force(), x, l)
moment_curve = limit(self.bending_moment(), x, l)
slope_eqs = []
deflection_eqs = []
slope_curve = integrate(self.bending_moment(), x) + C3
for position, value in self._boundary_conditions['slope']:
eqs = slope_curve.subs(x, position) - value
slope_eqs.append(eqs)
deflection_curve = integrate(slope_curve, x) + C4
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
deflection_eqs.append(eqs)
solution = list((linsolve([shear_curve, moment_curve] + slope_eqs
+ deflection_eqs, (C3, C4) + reactions).args)[0])
solution = solution[2:]
self._reaction_loads = dict(zip(reactions, solution))
self._load = self._load.subs(self._reaction_loads)
def shear_force(self):
"""
Returns a Singularity Function expression which represents
the shear force curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.shear_force()
8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) - 120*SingularityFunction(x, 30, -1) - 2*SingularityFunction(x, 30, 0)
"""
x = self.variable
return -integrate(self.load, x)
def max_shear_force(self):
"""Returns maximum Shear force and its coordinate
in the Beam object."""
from sympy import solve, Mul, Interval
shear_curve = self.shear_force()
x = self.variable
terms = shear_curve.args
singularity = [] # Points at which shear function changes
for term in terms:
if isinstance(term, Mul):
term = term.args[-1] # SingularityFunction in the term
singularity.append(term.args[1])
singularity.sort()
singularity = list(set(singularity))
intervals = [] # List of Intervals with discrete value of shear force
shear_values = [] # List of values of shear force in each interval
for i, s in enumerate(singularity):
if s == 0:
continue
try:
shear_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self._load.rewrite(Piecewise), x<s), (float("nan"), True))
points = solve(shear_slope, x)
val = []
for point in points:
val.append(shear_curve.subs(x, point))
points.extend([singularity[i-1], s])
val.extend([limit(shear_curve, x, singularity[i-1], '+'), limit(shear_curve, x, s, '-')])
val = list(map(abs, val))
max_shear = max(val)
shear_values.append(max_shear)
intervals.append(points[val.index(max_shear)])
# If shear force in a particular Interval has zero or constant
# slope, then above block gives NotImplementedError as
# solve can't represent Interval solutions.
except NotImplementedError:
initial_shear = limit(shear_curve, x, singularity[i-1], '+')
final_shear = limit(shear_curve, x, s, '-')
# If shear_curve has a constant slope(it is a line).
if shear_curve.subs(x, (singularity[i-1] + s)/2) == (initial_shear + final_shear)/2 and initial_shear != final_shear:
shear_values.extend([initial_shear, final_shear])
intervals.extend([singularity[i-1], s])
else: # shear_curve has same value in whole Interval
shear_values.append(final_shear)
intervals.append(Interval(singularity[i-1], s))
shear_values = list(map(abs, shear_values))
maximum_shear = max(shear_values)
point = intervals[shear_values.index(maximum_shear)]
return (point, maximum_shear)
def bending_moment(self):
"""
Returns a Singularity Function expression which represents
the bending moment curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.bending_moment()
8*SingularityFunction(x, 0, 1) - 6*SingularityFunction(x, 10, 1) - 120*SingularityFunction(x, 30, 0) - 2*SingularityFunction(x, 30, 1)
"""
x = self.variable
return integrate(self.shear_force(), x)
def max_bmoment(self):
"""Returns maximum Shear force and its coordinate
in the Beam object."""
from sympy import solve, Mul, Interval
bending_curve = self.bending_moment()
x = self.variable
terms = bending_curve.args
singularity = [] # Points at which bending moment changes
for term in terms:
if isinstance(term, Mul):
term = term.args[-1] # SingularityFunction in the term
singularity.append(term.args[1])
singularity.sort()
singularity = list(set(singularity))
intervals = [] # List of Intervals with discrete value of bending moment
moment_values = [] # List of values of bending moment in each interval
for i, s in enumerate(singularity):
if s == 0:
continue
try:
moment_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self.shear_force().rewrite(Piecewise), x<s), (float("nan"), True))
points = solve(moment_slope, x)
val = []
for point in points:
val.append(bending_curve.subs(x, point))
points.extend([singularity[i-1], s])
val.extend([limit(bending_curve, x, singularity[i-1], '+'), limit(bending_curve, x, s, '-')])
val = list(map(abs, val))
max_moment = max(val)
moment_values.append(max_moment)
intervals.append(points[val.index(max_moment)])
# If bending moment in a particular Interval has zero or constant
# slope, then above block gives NotImplementedError as solve
# can't represent Interval solutions.
except NotImplementedError:
initial_moment = limit(bending_curve, x, singularity[i-1], '+')
final_moment = limit(bending_curve, x, s, '-')
# If bending_curve has a constant slope(it is a line).
if bending_curve.subs(x, (singularity[i-1] + s)/2) == (initial_moment + final_moment)/2 and initial_moment != final_moment:
moment_values.extend([initial_moment, final_moment])
intervals.extend([singularity[i-1], s])
else: # bending_curve has same value in whole Interval
moment_values.append(final_moment)
intervals.append(Interval(singularity[i-1], s))
moment_values = list(map(abs, moment_values))
maximum_moment = max(moment_values)
point = intervals[moment_values.index(maximum_moment)]
return (point, maximum_moment)
def point_cflexure(self):
"""
Returns a Set of point(s) with zero bending moment and
where bending moment curve of the beam object changes
its sign from negative to positive or vice versa.
Examples
========
There is is 10 meter long overhanging beam. There are
two simple supports below the beam. One at the start
and another one at a distance of 6 meters from the start.
Point loads of magnitude 10KN and 20KN are applied at
2 meters and 4 meters from start respectively. A Uniformly
distribute load of magnitude of magnitude 3KN/m is also
applied on top starting from 6 meters away from starting
point till end.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(10, E, I)
>>> b.apply_load(-4, 0, -1)
>>> b.apply_load(-46, 6, -1)
>>> b.apply_load(10, 2, -1)
>>> b.apply_load(20, 4, -1)
>>> b.apply_load(3, 6, 0)
>>> b.point_cflexure()
[10/3]
"""
from sympy import solve, Piecewise
# To restrict the range within length of the Beam
moment_curve = Piecewise((float("nan"), self.variable<=0),
(self.bending_moment(), self.variable<self.length),
(float("nan"), True))
points = solve(moment_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
return points
def slope(self):
"""
Returns a Singularity Function expression which represents
the slope the elastic curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.slope()
(-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
I = self.second_moment
if self._composite_type == "hinge":
return self._hinge_beam_slope
if not self._boundary_conditions['slope']:
return diff(self.deflection(), x)
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
slope = 0
prev_slope = 0
prev_end = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
if i != len(args) - 1:
slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0) - \
(prev_slope + slope_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
return slope
C3 = Symbol('C3')
slope_curve = -integrate(S.One/(E*I)*self.bending_moment(), x) + C3
bc_eqs = []
for position, value in self._boundary_conditions['slope']:
eqs = slope_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, C3))
slope_curve = slope_curve.subs({C3: constants[0][0]})
return slope_curve
def deflection(self):
"""
Returns a Singularity Function expression which represents
the elastic curve or deflection of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.deflection()
(4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
+ 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
I = self.second_moment
if self._composite_type == "hinge":
return self._hinge_beam_deflection
if not self._boundary_conditions['deflection'] and not self._boundary_conditions['slope']:
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
base_char = self._base_char
constants = symbols(base_char + '3:5')
return S.One/(E*I)*integrate(-integrate(self.bending_moment(), x), x) + constants[0]*x + constants[1]
elif not self._boundary_conditions['deflection']:
base_char = self._base_char
constant = symbols(base_char + '4')
return integrate(self.slope(), x) + constant
elif not self._boundary_conditions['slope'] and self._boundary_conditions['deflection']:
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
base_char = self._base_char
C3, C4 = symbols(base_char + '3:5') # Integration constants
slope_curve = -integrate(self.bending_moment(), x) + C3
deflection_curve = integrate(slope_curve, x) + C4
bc_eqs = []
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, (C3, C4)))
deflection_curve = deflection_curve.subs({C3: constants[0][0], C4: constants[0][1]})
return S.One/(E*I)*deflection_curve
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
C4 = Symbol('C4')
deflection_curve = integrate(self.slope(), x) + C4
bc_eqs = []
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, C4))
deflection_curve = deflection_curve.subs({C4: constants[0][0]})
return deflection_curve
def max_deflection(self):
"""
Returns point of max deflection and its corresponding deflection value
in a Beam object.
"""
from sympy import solve, Piecewise
# To restrict the range within length of the Beam
slope_curve = Piecewise((float("nan"), self.variable<=0),
(self.slope(), self.variable<self.length),
(float("nan"), True))
points = solve(slope_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
deflection_curve = self.deflection()
deflections = [deflection_curve.subs(self.variable, x) for x in points]
deflections = list(map(abs, deflections))
if len(deflections) != 0:
max_def = max(deflections)
return (points[deflections.index(max_def)], max_def)
else:
return None
def shear_stress(self):
"""
Returns an expression representing the Shear Stress
curve of the Beam object.
"""
return self.shear_force()/self._area
def plot_shear_stress(self, subs=None):
"""
Returns a plot of shear stress present in the beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters and area of cross section 2 square
meters. A constant distributed load of 10 KN/m is applied from half of
the beam till the end. There are two simple supports below the beam,
one at the starting point and another at the ending point of the beam.
A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6), 2)
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_shear_stress()
Plot object containing:
[0]: cartesian line: 6875*SingularityFunction(x, 0, 0) - 2500*SingularityFunction(x, 2, 0)
- 5000*SingularityFunction(x, 4, 1) + 15625*SingularityFunction(x, 8, 0)
+ 5000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0)
"""
shear_stress = self.shear_stress()
x = self.variable
length = self.length
if subs is None:
subs = {}
for sym in shear_stress.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('value of %s was not passed.' %sym)
if length in subs:
length = subs[length]
# Returns Plot of Shear Stress
return plot (shear_stress.subs(subs), (x, 0, length),
title='Shear Stress', xlabel=r'$\mathrm{x}$', ylabel=r'$\tau$',
line_color='r')
def plot_shear_force(self, subs=None):
"""
Returns a plot for Shear force present in the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_shear_force()
Plot object containing:
[0]: cartesian line: 13750*SingularityFunction(x, 0, 0) - 5000*SingularityFunction(x, 2, 0)
- 10000*SingularityFunction(x, 4, 1) + 31250*SingularityFunction(x, 8, 0)
+ 10000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0)
"""
shear_force = self.shear_force()
if subs is None:
subs = {}
for sym in shear_force.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(shear_force.subs(subs), (self.variable, 0, length), title='Shear Force',
xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$', line_color='g')
def plot_bending_moment(self, subs=None):
"""
Returns a plot for Bending moment present in the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_bending_moment()
Plot object containing:
[0]: cartesian line: 13750*SingularityFunction(x, 0, 1) - 5000*SingularityFunction(x, 2, 1)
- 5000*SingularityFunction(x, 4, 2) + 31250*SingularityFunction(x, 8, 1)
+ 5000*SingularityFunction(x, 8, 2) for x over (0.0, 8.0)
"""
bending_moment = self.bending_moment()
if subs is None:
subs = {}
for sym in bending_moment.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(bending_moment.subs(subs), (self.variable, 0, length), title='Bending Moment',
xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$', line_color='b')
def plot_slope(self, subs=None):
"""
Returns a plot for slope of deflection curve of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_slope()
Plot object containing:
[0]: cartesian line: -8.59375e-5*SingularityFunction(x, 0, 2) + 3.125e-5*SingularityFunction(x, 2, 2)
+ 2.08333333333333e-5*SingularityFunction(x, 4, 3) - 0.0001953125*SingularityFunction(x, 8, 2)
- 2.08333333333333e-5*SingularityFunction(x, 8, 3) + 0.00138541666666667 for x over (0.0, 8.0)
"""
slope = self.slope()
if subs is None:
subs = {}
for sym in slope.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(slope.subs(subs), (self.variable, 0, length), title='Slope',
xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$', line_color='m')
def plot_deflection(self, subs=None):
"""
Returns a plot for deflection curve of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_deflection()
Plot object containing:
[0]: cartesian line: 0.00138541666666667*x - 2.86458333333333e-5*SingularityFunction(x, 0, 3)
+ 1.04166666666667e-5*SingularityFunction(x, 2, 3) + 5.20833333333333e-6*SingularityFunction(x, 4, 4)
- 6.51041666666667e-5*SingularityFunction(x, 8, 3) - 5.20833333333333e-6*SingularityFunction(x, 8, 4)
for x over (0.0, 8.0)
"""
deflection = self.deflection()
if subs is None:
subs = {}
for sym in deflection.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(deflection.subs(subs), (self.variable, 0, length),
title='Deflection', xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$',
line_color='r')
def plot_loading_results(self, subs=None):
"""
Returns a subplot of Shear Force, Bending Moment,
Slope and Deflection of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> axes = b.plot_loading_results()
"""
length = self.length
variable = self.variable
if subs is None:
subs = {}
for sym in self.deflection().atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if length in subs:
length = subs[length]
ax1 = plot(self.shear_force().subs(subs), (variable, 0, length),
title="Shear Force", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$',
line_color='g', show=False)
ax2 = plot(self.bending_moment().subs(subs), (variable, 0, length),
title="Bending Moment", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$',
line_color='b', show=False)
ax3 = plot(self.slope().subs(subs), (variable, 0, length),
title="Slope", xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$',
line_color='m', show=False)
ax4 = plot(self.deflection().subs(subs), (variable, 0, length),
title="Deflection", xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$',
line_color='r', show=False)
return PlotGrid(4, 1, ax1, ax2, ax3, ax4)
def _solve_for_ild_equations(self):
"""
Helper function for I.L.D. It takes the unsubstituted
copy of the load equation and uses it to calculate shear force and bending
moment equations.
"""
x = self.variable
shear_force = -integrate(self._original_load, x)
bending_moment = integrate(shear_force, x)
return shear_force, bending_moment
def solve_for_ild_reactions(self, value, *reactions):
"""
Determines the Influence Line Diagram equations for reaction
forces under the effect of a moving load.
Parameters
==========
value : Integer
Magnitude of moving load
reactions :
The reaction forces applied on the beam.
Examples
========
There is a beam of length 10 meters. There are two simple supports
below the beam, one at the starting point and another at the ending
point of the beam. Calculate the I.L.D. equations for reaction forces
under the effect of a moving load of magnitude 1kN.
.. image:: ildreaction.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_10 = symbols('R_0, R_10')
>>> b = Beam(10, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(10, 'roller')
>>> b.solve_for_ild_reactions(1,R_0,R_10)
>>> b.ild_reactions
{R_0: x/10 - 1, R_10: -x/10}
"""
shear_force, bending_moment = self._solve_for_ild_equations()
x = self.variable
l = self.length
C3 = Symbol('C3')
C4 = Symbol('C4')
shear_curve = limit(shear_force, x, l) - value
moment_curve = limit(bending_moment, x, l) - value*(l-x)
slope_eqs = []
deflection_eqs = []
slope_curve = integrate(bending_moment, x) + C3
for position, value in self._boundary_conditions['slope']:
eqs = slope_curve.subs(x, position) - value
slope_eqs.append(eqs)
deflection_curve = integrate(slope_curve, x) + C4
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
deflection_eqs.append(eqs)
solution = list((linsolve([shear_curve, moment_curve] + slope_eqs
+ deflection_eqs, (C3, C4) + reactions).args)[0])
solution = solution[2:]
# Determining the equations and solving them.
self._ild_reactions = dict(zip(reactions, solution))
def plot_ild_reactions(self, subs=None):
"""
Plots the Influence Line Diagram of Reaction Forces
under the effect of a moving load. This function
should be called after calling solve_for_ild_reactions().
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 10 meters. A point load of magnitude 5KN
is also applied from top of the beam, at a distance of 4 meters
from the starting point. There are two simple supports below the
beam, located at the starting point and at a distance of 7 meters
from the starting point. Plot the I.L.D. equations for reactions
at both support points under the effect of a moving load
of magnitude 1kN.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_7 = symbols('R_0, R_7')
>>> b = Beam(10, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(7, 'roller')
>>> b.apply_load(5,4,-1)
>>> b.solve_for_ild_reactions(1,R_0,R_7)
>>> b.ild_reactions
{R_0: x/7 - 22/7, R_7: -x/7 - 20/7}
>>> b.plot_ild_reactions()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: x/7 - 22/7 for x over (0.0, 10.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -x/7 - 20/7 for x over (0.0, 10.0)
"""
if not self._ild_reactions:
raise ValueError("I.L.D. reaction equations not found. Please use solve_for_ild_reactions() to generate the I.L.D. reaction equations.")
x = self.variable
ildplots = []
if subs is None:
subs = {}
for reaction in self._ild_reactions:
for sym in self._ild_reactions[reaction].atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
for sym in self._length.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
for reaction in self._ild_reactions:
ildplots.append(plot(self._ild_reactions[reaction].subs(subs),
(x, 0, self._length.subs(subs)), title='I.L.D. for Reactions',
xlabel=x, ylabel=reaction, line_color='blue', show=False))
return PlotGrid(len(ildplots), 1, *ildplots)
def solve_for_ild_shear(self, distance, value, *reactions):
"""
Determines the Influence Line Diagram equations for shear at a
specified point under the effect of a moving load.
Parameters
==========
distance : Integer
Distance of the point from the start of the beam
for which equations are to be determined
value : Integer
Magnitude of moving load
reactions :
The reaction forces applied on the beam.
Examples
========
There is a beam of length 12 meters. There are two simple supports
below the beam, one at the starting point and another at a distance
of 8 meters. Calculate the I.L.D. equations for Shear at a distance
of 4 meters under the effect of a moving load of magnitude 1kN.
.. image:: ildshear.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_shear(4, 1, R_0, R_8)
>>> b.ild_shear
Piecewise((x/8, x < 4), (x/8 - 1, x > 4))
"""
x = self.variable
l = self.length
shear_force, _ = self._solve_for_ild_equations()
shear_curve1 = value - limit(shear_force, x, distance)
shear_curve2 = (limit(shear_force, x, l) - limit(shear_force, x, distance)) - value
for reaction in reactions:
shear_curve1 = shear_curve1.subs(reaction,self._ild_reactions[reaction])
shear_curve2 = shear_curve2.subs(reaction,self._ild_reactions[reaction])
shear_eq = Piecewise((shear_curve1, x < distance), (shear_curve2, x > distance))
self._ild_shear = shear_eq
def plot_ild_shear(self,subs=None):
"""
Plots the Influence Line Diagram for Shear under the effect
of a moving load. This function should be called after
calling solve_for_ild_shear().
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 12 meters. There are two simple supports
below the beam, one at the starting point and another at a distance
of 8 meters. Plot the I.L.D. for Shear at a distance
of 4 meters under the effect of a moving load of magnitude 1kN.
.. image:: ildshear.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_shear(4, 1, R_0, R_8)
>>> b.ild_shear
Piecewise((x/8, x < 4), (x/8 - 1, x > 4))
>>> b.plot_ild_shear()
Plot object containing:
[0]: cartesian line: Piecewise((x/8, x < 4), (x/8 - 1, x > 4)) for x over (0.0, 12.0)
"""
if not self._ild_shear:
raise ValueError("I.L.D. shear equation not found. Please use solve_for_ild_shear() to generate the I.L.D. shear equations.")
x = self.variable
l = self._length
if subs is None:
subs = {}
for sym in self._ild_shear.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
for sym in self._length.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
return plot(self._ild_shear.subs(subs), (x, 0, l), title='I.L.D. for Shear',
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{V}$', line_color='blue',show=True)
def solve_for_ild_moment(self, distance, value, *reactions):
"""
Determines the Influence Line Diagram equations for moment at a
specified point under the effect of a moving load.
Parameters
==========
distance : Integer
Distance of the point from the start of the beam
for which equations are to be determined
value : Integer
Magnitude of moving load
reactions :
The reaction forces applied on the beam.
Examples
========
There is a beam of length 12 meters. There are two simple supports
below the beam, one at the starting point and another at a distance
of 8 meters. Calculate the I.L.D. equations for Moment at a distance
of 4 meters under the effect of a moving load of magnitude 1kN.
.. image:: ildshear.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_moment(4, 1, R_0, R_8)
>>> b.ild_moment
Piecewise((-x/2, x < 4), (x/2 - 4, x > 4))
"""
x = self.variable
l = self.length
_ , moment = self._solve_for_ild_equations()
moment_curve1 = value*(distance-x) - limit(moment, x, distance)
moment_curve2= (limit(moment, x, l)-limit(moment, x, distance))-value*(l-x)
for reaction in reactions:
moment_curve1 = moment_curve1.subs(reaction, self._ild_reactions[reaction])
moment_curve2 = moment_curve2.subs(reaction, self._ild_reactions[reaction])
moment_eq = Piecewise((moment_curve1, x < distance), (moment_curve2, x > distance))
self._ild_moment = moment_eq
def plot_ild_moment(self,subs=None):
"""
Plots the Influence Line Diagram for Moment under the effect
of a moving load. This function should be called after
calling solve_for_ild_moment().
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 12 meters. There are two simple supports
below the beam, one at the starting point and another at a distance
of 8 meters. Plot the I.L.D. for Moment at a distance
of 4 meters under the effect of a moving load of magnitude 1kN.
.. image:: ildshear.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_moment(4, 1, R_0, R_8)
>>> b.ild_moment
Piecewise((-x/2, x < 4), (x/2 - 4, x > 4))
>>> b.plot_ild_moment()
Plot object containing:
[0]: cartesian line: Piecewise((-x/2, x < 4), (x/2 - 4, x > 4)) for x over (0.0, 12.0)
"""
if not self._ild_moment:
raise ValueError("I.L.D. moment equation not found. Please use solve_for_ild_moment() to generate the I.L.D. moment equations.")
x = self.variable
if subs is None:
subs = {}
for sym in self._ild_moment.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
for sym in self._length.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
return plot(self._ild_moment.subs(subs), (x, 0, self._length), title='I.L.D. for Moment',
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{M}$', line_color='blue', show=True)
@doctest_depends_on(modules=('numpy',))
def draw(self, pictorial=True):
"""
Returns a plot object representing the beam diagram of the beam.
.. note::
The user must be careful while entering load values.
The draw function assumes a sign convention which is used
for plotting loads.
Given a right handed coordinate system with XYZ coordinates,
the beam's length is assumed to be along the positive X axis.
The draw function recognizes positve loads(with n>-2) as loads
acting along negative Y direction and positve moments acting
along positive Z direction.
Parameters
==========
pictorial: Boolean (default=True)
Setting ``pictorial=True`` would simply create a pictorial (scaled) view
of the beam diagram not with the exact dimensions.
Although setting ``pictorial=False`` would create a beam diagram with
the exact dimensions on the plot
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> E, I = symbols('E, I')
>>> b = Beam(50, 20, 30)
>>> b.apply_load(10, 2, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(90, 5, 0, 23)
>>> b.apply_load(10, 30, 1, 50)
>>> b.apply_support(50, "pin")
>>> b.apply_support(0, "fixed")
>>> b.apply_support(20, "roller")
>>> p = b.draw()
>>> p
Plot object containing:
[0]: cartesian line: 25*SingularityFunction(x, 5, 0) - 25*SingularityFunction(x, 23, 0)
+ SingularityFunction(x, 30, 1) - 20*SingularityFunction(x, 50, 0)
- SingularityFunction(x, 50, 1) + 5 for x over (0.0, 50.0)
[1]: cartesian line: 5 for x over (0.0, 50.0)
>>> p.show()
"""
if not numpy:
raise ImportError("To use this function numpy module is required")
x = self.variable
# checking whether length is an expression in terms of any Symbol.
from sympy import Expr
if isinstance(self.length, Expr):
l = list(self.length.atoms(Symbol))
# assigning every Symbol a default value of 10
l = {i:10 for i in l}
length = self.length.subs(l)
else:
l = {}
length = self.length
height = length/10
rectangles = []
rectangles.append({'xy':(0, 0), 'width':length, 'height': height, 'facecolor':"brown"})
annotations, markers, load_eq,load_eq1, fill = self._draw_load(pictorial, length, l)
support_markers, support_rectangles = self._draw_supports(length, l)
rectangles += support_rectangles
markers += support_markers
sing_plot = plot(height + load_eq, height + load_eq1, (x, 0, length),
xlim=(-height, length + height), ylim=(-length, 1.25*length), annotations=annotations,
markers=markers, rectangles=rectangles, line_color='brown', fill=fill, axis=False, show=False)
return sing_plot
def _draw_load(self, pictorial, length, l):
loads = list(set(self.applied_loads) - set(self._support_as_loads))
height = length/10
x = self.variable
annotations = []
markers = []
load_args = []
scaled_load = 0
load_args1 = []
scaled_load1 = 0
load_eq = 0 # For positive valued higher order loads
load_eq1 = 0 # For negative valued higher order loads
fill = None
plus = 0 # For positive valued higher order loads
minus = 0 # For negative valued higher order loads
for load in loads:
# check if the position of load is in terms of the beam length.
if l:
pos = load[1].subs(l)
else:
pos = load[1]
# point loads
if load[2] == -1:
if isinstance(load[0], Symbol) or load[0].is_negative:
annotations.append({'s':'', 'xy':(pos, 0), 'xytext':(pos, height - 4*height), 'arrowprops':dict(width= 1.5, headlength=5, headwidth=5, facecolor='black')})
else:
annotations.append({'s':'', 'xy':(pos, height), 'xytext':(pos, height*4), 'arrowprops':dict(width= 1.5, headlength=4, headwidth=4, facecolor='black')})
# moment loads
elif load[2] == -2:
if load[0].is_negative:
markers.append({'args':[[pos], [height/2]], 'marker': r'$\circlearrowright$', 'markersize':15})
else:
markers.append({'args':[[pos], [height/2]], 'marker': r'$\circlearrowleft$', 'markersize':15})
# higher order loads
elif load[2] >= 0:
# `fill` will be assigned only when higher order loads are present
value, start, order, end = load
# Positive loads have their seperate equations
if(value>0):
plus = 1
# if pictorial is True we remake the load equation again with
# some constant magnitude values.
if pictorial:
value = 10**(1-order) if order > 0 else length/2
scaled_load += value*SingularityFunction(x, start, order)
if end:
f2 = 10**(1-order)*x**order if order > 0 else length/2*x**order
for i in range(0, order + 1):
scaled_load -= (f2.diff(x, i).subs(x, end - start)*
SingularityFunction(x, end, i)/factorial(i))
if pictorial:
if isinstance(scaled_load, Add):
load_args = scaled_load.args
else:
# when the load equation consists of only a single term
load_args = (scaled_load,)
load_eq = [i.subs(l) for i in load_args]
else:
if isinstance(self.load, Add):
load_args = self.load.args
else:
load_args = (self.load,)
load_eq = [i.subs(l) for i in load_args if list(i.atoms(SingularityFunction))[0].args[2] >= 0]
load_eq = Add(*load_eq)
# filling higher order loads with colour
expr = height + load_eq.rewrite(Piecewise)
y1 = lambdify(x, expr, 'numpy')
# For loads with negative value
else:
minus = 1
# if pictorial is True we remake the load equation again with
# some constant magnitude values.
if pictorial:
value = 10**(1-order) if order > 0 else length/2
scaled_load1 += value*SingularityFunction(x, start, order)
if end:
f2 = 10**(1-order)*x**order if order > 0 else length/2*x**order
for i in range(0, order + 1):
scaled_load1 -= (f2.diff(x, i).subs(x, end - start)*
SingularityFunction(x, end, i)/factorial(i))
if pictorial:
if isinstance(scaled_load1, Add):
load_args1 = scaled_load1.args
else:
# when the load equation consists of only a single term
load_args1 = (scaled_load1,)
load_eq1 = [i.subs(l) for i in load_args1]
else:
if isinstance(self.load, Add):
load_args1 = self.load.args1
else:
load_args1 = (self.load,)
load_eq1 = [i.subs(l) for i in load_args if list(i.atoms(SingularityFunction))[0].args[2] >= 0]
load_eq1 = -Add(*load_eq1)-height
# filling higher order loads with colour
expr = height + load_eq1.rewrite(Piecewise)
y1_ = lambdify(x, expr, 'numpy')
y = numpy.arange(0, float(length), 0.001)
y2 = float(height)
if(plus == 1 and minus == 1):
fill = {'x': y, 'y1': y1(y), 'y2': y1_(y), 'color':'darkkhaki'}
elif(plus == 1):
fill = {'x': y, 'y1': y1(y), 'y2': y2, 'color':'darkkhaki'}
else:
fill = {'x': y, 'y1': y1_(y), 'y2': y2 , 'color':'darkkhaki'}
return annotations, markers, load_eq, load_eq1, fill
def _draw_supports(self, length, l):
height = float(length/10)
support_markers = []
support_rectangles = []
for support in self._applied_supports:
if l:
pos = support[0].subs(l)
else:
pos = support[0]
if support[1] == "pin":
support_markers.append({'args':[pos, [0]], 'marker':6, 'markersize':13, 'color':"black"})
elif support[1] == "roller":
support_markers.append({'args':[pos, [-height/2.5]], 'marker':'o', 'markersize':11, 'color':"black"})
elif support[1] == "fixed":
if pos == 0:
support_rectangles.append({'xy':(0, -3*height), 'width':-length/20, 'height':6*height + height, 'fill':False, 'hatch':'/////'})
else:
support_rectangles.append({'xy':(length, -3*height), 'width':length/20, 'height': 6*height + height, 'fill':False, 'hatch':'/////'})
return support_markers, support_rectangles
class Beam3D(Beam):
"""
This class handles loads applied in any direction of a 3D space along
with unequal values of Second moment along different axes.
.. note::
While solving a beam bending problem, a user should choose its
own sign convention and should stick to it. The results will
automatically follow the chosen sign convention.
This class assumes that any kind of distributed load/moment is
applied through out the span of a beam.
Examples
========
There is a beam of l meters long. A constant distributed load of magnitude q
is applied along y-axis from start till the end of beam. A constant distributed
moment of magnitude m is also applied along z-axis from start till the end of beam.
Beam is fixed at both of its end. So, deflection of the beam at the both ends
is restricted.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols, simplify, collect, factor
>>> l, E, G, I, A = symbols('l, E, G, I, A')
>>> b = Beam3D(l, E, G, I, A)
>>> x, q, m = symbols('x, q, m')
>>> b.apply_load(q, 0, 0, dir="y")
>>> b.apply_moment_load(m, 0, -1, dir="z")
>>> b.shear_force()
[0, -q*x, 0]
>>> b.bending_moment()
[0, 0, -m*x + q*x**2/2]
>>> b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])]
>>> b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])]
>>> b.solve_slope_deflection()
>>> factor(b.slope())
[0, 0, x*(-l + x)*(-A*G*l**3*q + 2*A*G*l**2*q*x - 12*E*I*l*q
- 72*E*I*m + 24*E*I*q*x)/(12*E*I*(A*G*l**2 + 12*E*I))]
>>> dx, dy, dz = b.deflection()
>>> dy = collect(simplify(dy), x)
>>> dx == dz == 0
True
>>> dy == (x*(12*E*I*l*(A*G*l**2*q - 2*A*G*l*m + 12*E*I*q)
... + x*(A*G*l*(3*l*(A*G*l**2*q - 2*A*G*l*m + 12*E*I*q) + x*(-2*A*G*l**2*q + 4*A*G*l*m - 24*E*I*q))
... + A*G*(A*G*l**2 + 12*E*I)*(-2*l**2*q + 6*l*m - 4*m*x + q*x**2)
... - 12*E*I*q*(A*G*l**2 + 12*E*I)))/(24*A*E*G*I*(A*G*l**2 + 12*E*I)))
True
References
==========
.. [1] http://homes.civil.aau.dk/jc/FemteSemester/Beams3D.pdf
"""
def __init__(self, length, elastic_modulus, shear_modulus , second_moment, area, variable=Symbol('x')):
"""Initializes the class.
Parameters
==========
length : Sympifyable
A Symbol or value representing the Beam's length.
elastic_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of Elasticity.
It is a measure of the stiffness of the Beam material.
shear_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of rigidity.
It is a measure of rigidity of the Beam material.
second_moment : Sympifyable or list
A list of two elements having SymPy expression representing the
Beam's Second moment of area. First value represent Second moment
across y-axis and second across z-axis.
Single SymPy expression can be passed if both values are same
area : Sympifyable
A SymPy expression representing the Beam's cross-sectional area
in a plane prependicular to length of the Beam.
variable : Symbol, optional
A Symbol object that will be used as the variable along the beam
while representing the load, shear, moment, slope and deflection
curve. By default, it is set to ``Symbol('x')``.
"""
super().__init__(length, elastic_modulus, second_moment, variable)
self.shear_modulus = shear_modulus
self._area = area
self._load_vector = [0, 0, 0]
self._moment_load_vector = [0, 0, 0]
self._load_Singularity = [0, 0, 0]
self._slope = [0, 0, 0]
self._deflection = [0, 0, 0]
@property
def shear_modulus(self):
"""Young's Modulus of the Beam. """
return self._shear_modulus
@shear_modulus.setter
def shear_modulus(self, e):
self._shear_modulus = sympify(e)
@property
def second_moment(self):
"""Second moment of area of the Beam. """
return self._second_moment
@second_moment.setter
def second_moment(self, i):
if isinstance(i, list):
i = [sympify(x) for x in i]
self._second_moment = i
else:
self._second_moment = sympify(i)
@property
def area(self):
"""Cross-sectional area of the Beam. """
return self._area
@area.setter
def area(self, a):
self._area = sympify(a)
@property
def load_vector(self):
"""
Returns a three element list representing the load vector.
"""
return self._load_vector
@property
def moment_load_vector(self):
"""
Returns a three element list representing moment loads on Beam.
"""
return self._moment_load_vector
@property
def boundary_conditions(self):
"""
Returns a dictionary of boundary conditions applied on the beam.
The dictionary has two keywords namely slope and deflection.
The value of each keyword is a list of tuple, where each tuple
contains location and value of a boundary condition in the format
(location, value). Further each value is a list corresponding to
slope or deflection(s) values along three axes at that location.
Examples
========
There is a beam of length 4 meters. The slope at 0 should be 4 along
the x-axis and 0 along others. At the other end of beam, deflection
along all the three axes should be zero.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(30, E, G, I, A, x)
>>> b.bc_slope = [(0, (4, 0, 0))]
>>> b.bc_deflection = [(4, [0, 0, 0])]
>>> b.boundary_conditions
{'deflection': [(4, [0, 0, 0])], 'slope': [(0, (4, 0, 0))]}
Here the deflection of the beam should be ``0`` along all the three axes at ``4``.
Similarly, the slope of the beam should be ``4`` along x-axis and ``0``
along y and z axis at ``0``.
"""
return self._boundary_conditions
def polar_moment(self):
"""
Returns the polar moment of area of the beam
about the X axis with respect to the centroid.
Examples
========
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A = symbols('l, E, G, I, A')
>>> b = Beam3D(l, E, G, I, A)
>>> b.polar_moment()
2*I
>>> I1 = [9, 15]
>>> b = Beam3D(l, E, G, I1, A)
>>> b.polar_moment()
24
"""
if not iterable(self.second_moment):
return 2*self.second_moment
return sum(self.second_moment)
def apply_load(self, value, start, order, dir="y"):
"""
This method adds up the force load to a particular beam object.
Parameters
==========
value : Sympifyable
The magnitude of an applied load.
dir : String
Axis along which load is applied.
order : Integer
The order of the applied load.
- For point loads, order=-1
- For constant distributed load, order=0
- For ramp loads, order=1
- For parabolic ramp loads, order=2
- ... so on.
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if dir == "x":
if not order == -1:
self._load_vector[0] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
elif dir == "y":
if not order == -1:
self._load_vector[1] += value
self._load_Singularity[1] += value*SingularityFunction(x, start, order)
else:
if not order == -1:
self._load_vector[2] += value
self._load_Singularity[2] += value*SingularityFunction(x, start, order)
def apply_moment_load(self, value, start, order, dir="y"):
"""
This method adds up the moment loads to a particular beam object.
Parameters
==========
value : Sympifyable
The magnitude of an applied moment.
dir : String
Axis along which moment is applied.
order : Integer
The order of the applied load.
- For point moments, order=-2
- For constant distributed moment, order=-1
- For ramp moments, order=0
- For parabolic ramp moments, order=1
- ... so on.
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if dir == "x":
if not order == -2:
self._moment_load_vector[0] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
elif dir == "y":
if not order == -2:
self._moment_load_vector[1] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
else:
if not order == -2:
self._moment_load_vector[2] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
def apply_support(self, loc, type="fixed"):
if type == "pin" or type == "roller":
reaction_load = Symbol('R_'+str(loc))
self._reaction_loads[reaction_load] = reaction_load
self.bc_deflection.append((loc, [0, 0, 0]))
else:
reaction_load = Symbol('R_'+str(loc))
reaction_moment = Symbol('M_'+str(loc))
self._reaction_loads[reaction_load] = [reaction_load, reaction_moment]
self.bc_deflection.append((loc, [0, 0, 0]))
self.bc_slope.append((loc, [0, 0, 0]))
def solve_for_reaction_loads(self, *reaction):
"""
Solves for the reaction forces.
Examples
========
There is a beam of length 30 meters. It it supported by rollers at
of its end. A constant distributed load of magnitude 8 N is applied
from start till its end along y-axis. Another linear load having
slope equal to 9 is applied along z-axis.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(30, E, G, I, A, x)
>>> b.apply_load(8, start=0, order=0, dir="y")
>>> b.apply_load(9*x, start=0, order=0, dir="z")
>>> b.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="y")
>>> b.apply_load(R2, start=30, order=-1, dir="y")
>>> b.apply_load(R3, start=0, order=-1, dir="z")
>>> b.apply_load(R4, start=30, order=-1, dir="z")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.reaction_loads
{R1: -120, R2: -120, R3: -1350, R4: -2700}
"""
x = self.variable
l = self.length
q = self._load_Singularity
shear_curves = [integrate(load, x) for load in q]
moment_curves = [integrate(shear, x) for shear in shear_curves]
for i in range(3):
react = [r for r in reaction if (shear_curves[i].has(r) or moment_curves[i].has(r))]
if len(react) == 0:
continue
shear_curve = limit(shear_curves[i], x, l)
moment_curve = limit(moment_curves[i], x, l)
sol = list((linsolve([shear_curve, moment_curve], react).args)[0])
sol_dict = dict(zip(react, sol))
reaction_loads = self._reaction_loads
# Check if any of the evaluated rection exists in another direction
# and if it exists then it should have same value.
for key in sol_dict:
if key in reaction_loads and sol_dict[key] != reaction_loads[key]:
raise ValueError("Ambiguous solution for %s in different directions." % key)
self._reaction_loads.update(sol_dict)
def shear_force(self):
"""
Returns a list of three expressions which represents the shear force
curve of the Beam object along all three axes.
"""
x = self.variable
q = self._load_vector
return [integrate(-q[0], x), integrate(-q[1], x), integrate(-q[2], x)]
def axial_force(self):
"""
Returns expression of Axial shear force present inside the Beam object.
"""
return self.shear_force()[0]
def shear_stress(self):
"""
Returns a list of three expressions which represents the shear stress
curve of the Beam object along all three axes.
"""
return [self.shear_force()[0]/self._area, self.shear_force()[1]/self._area, self.shear_force()[2]/self._area]
def axial_stress(self):
"""
Returns expression of Axial stress present inside the Beam object.
"""
return self.axial_force()/self._area
def bending_moment(self):
"""
Returns a list of three expressions which represents the bending moment
curve of the Beam object along all three axes.
"""
x = self.variable
m = self._moment_load_vector
shear = self.shear_force()
return [integrate(-m[0], x), integrate(-m[1] + shear[2], x),
integrate(-m[2] - shear[1], x) ]
def torsional_moment(self):
"""
Returns expression of Torsional moment present inside the Beam object.
"""
return self.bending_moment()[0]
def solve_slope_deflection(self):
from sympy import dsolve, Function, Derivative, Eq
x = self.variable
l = self.length
E = self.elastic_modulus
G = self.shear_modulus
I = self.second_moment
if isinstance(I, list):
I_y, I_z = I[0], I[1]
else:
I_y = I_z = I
A = self._area
load = self._load_vector
moment = self._moment_load_vector
defl = Function('defl')
theta = Function('theta')
# Finding deflection along x-axis(and corresponding slope value by differentiating it)
# Equation used: Derivative(E*A*Derivative(def_x(x), x), x) + load_x = 0
eq = Derivative(E*A*Derivative(defl(x), x), x) + load[0]
def_x = dsolve(Eq(eq, 0), defl(x)).args[1]
# Solving constants originated from dsolve
C1 = Symbol('C1')
C2 = Symbol('C2')
constants = list((linsolve([def_x.subs(x, 0), def_x.subs(x, l)], C1, C2).args)[0])
def_x = def_x.subs({C1:constants[0], C2:constants[1]})
slope_x = def_x.diff(x)
self._deflection[0] = def_x
self._slope[0] = slope_x
# Finding deflection along y-axis and slope across z-axis. System of equation involved:
# 1: Derivative(E*I_z*Derivative(theta_z(x), x), x) + G*A*(Derivative(defl_y(x), x) - theta_z(x)) + moment_z = 0
# 2: Derivative(G*A*(Derivative(defl_y(x), x) - theta_z(x)), x) + load_y = 0
C_i = Symbol('C_i')
# Substitute value of `G*A*(Derivative(defl_y(x), x) - theta_z(x))` from (2) in (1)
eq1 = Derivative(E*I_z*Derivative(theta(x), x), x) + (integrate(-load[1], x) + C_i) + moment[2]
slope_z = dsolve(Eq(eq1, 0)).args[1]
# Solve for constants originated from using dsolve on eq1
constants = list((linsolve([slope_z.subs(x, 0), slope_z.subs(x, l)], C1, C2).args)[0])
slope_z = slope_z.subs({C1:constants[0], C2:constants[1]})
# Put value of slope obtained back in (2) to solve for `C_i` and find deflection across y-axis
eq2 = G*A*(Derivative(defl(x), x)) + load[1]*x - C_i - G*A*slope_z
def_y = dsolve(Eq(eq2, 0), defl(x)).args[1]
# Solve for constants originated from using dsolve on eq2
constants = list((linsolve([def_y.subs(x, 0), def_y.subs(x, l)], C1, C_i).args)[0])
self._deflection[1] = def_y.subs({C1:constants[0], C_i:constants[1]})
self._slope[2] = slope_z.subs(C_i, constants[1])
# Finding deflection along z-axis and slope across y-axis. System of equation involved:
# 1: Derivative(E*I_y*Derivative(theta_y(x), x), x) - G*A*(Derivative(defl_z(x), x) + theta_y(x)) + moment_y = 0
# 2: Derivative(G*A*(Derivative(defl_z(x), x) + theta_y(x)), x) + load_z = 0
# Substitute value of `G*A*(Derivative(defl_y(x), x) + theta_z(x))` from (2) in (1)
eq1 = Derivative(E*I_y*Derivative(theta(x), x), x) + (integrate(load[2], x) - C_i) + moment[1]
slope_y = dsolve(Eq(eq1, 0)).args[1]
# Solve for constants originated from using dsolve on eq1
constants = list((linsolve([slope_y.subs(x, 0), slope_y.subs(x, l)], C1, C2).args)[0])
slope_y = slope_y.subs({C1:constants[0], C2:constants[1]})
# Put value of slope obtained back in (2) to solve for `C_i` and find deflection across z-axis
eq2 = G*A*(Derivative(defl(x), x)) + load[2]*x - C_i + G*A*slope_y
def_z = dsolve(Eq(eq2,0)).args[1]
# Solve for constants originated from using dsolve on eq2
constants = list((linsolve([def_z.subs(x, 0), def_z.subs(x, l)], C1, C_i).args)[0])
self._deflection[2] = def_z.subs({C1:constants[0], C_i:constants[1]})
self._slope[1] = slope_y.subs(C_i, constants[1])
def slope(self):
"""
Returns a three element list representing slope of deflection curve
along all the three axes.
"""
return self._slope
def deflection(self):
"""
Returns a three element list representing deflection curve along all
the three axes.
"""
return self._deflection
def _plot_shear_force(self, dir, subs=None):
shear_force = self.shear_force()
if dir == 'x':
dir_num = 0
color = 'r'
elif dir == 'y':
dir_num = 1
color = 'g'
elif dir == 'z':
dir_num = 2
color = 'b'
if subs is None:
subs = {}
for sym in shear_force[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(shear_force[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Shear Force along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{V(%c)}$'%dir, line_color=color)
def plot_shear_force(self, dir="all", subs=None):
"""
Returns a plot for Shear force along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which shear force plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.plot_shear_force()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -6*x**2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: -15*x for x over (0.0, 20.0)
"""
dir = dir.lower()
# For shear force along x direction
if dir == "x":
Px = self._plot_shear_force('x', subs)
return Px.show()
# For shear force along y direction
elif dir == "y":
Py = self._plot_shear_force('y', subs)
return Py.show()
# For shear force along z direction
elif dir == "z":
Pz = self._plot_shear_force('z', subs)
return Pz.show()
# For shear force along all direction
else:
Px = self._plot_shear_force('x', subs)
Py = self._plot_shear_force('y', subs)
Pz = self._plot_shear_force('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def _plot_bending_moment(self, dir, subs=None):
bending_moment = self.bending_moment()
if dir == 'x':
dir_num = 0
color = 'g'
elif dir == 'y':
dir_num = 1
color = 'c'
elif dir == 'z':
dir_num = 2
color = 'm'
if subs is None:
subs = {}
for sym in bending_moment[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(bending_moment[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Bending Moment along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{M(%c)}$'%dir, line_color=color)
def plot_bending_moment(self, dir="all", subs=None):
"""
Returns a plot for bending moment along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which bending moment plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.plot_bending_moment()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -15*x**2/2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: 2*x**3 for x over (0.0, 20.0)
"""
dir = dir.lower()
# For bending moment along x direction
if dir == "x":
Px = self._plot_bending_moment('x', subs)
return Px.show()
# For bending moment along y direction
elif dir == "y":
Py = self._plot_bending_moment('y', subs)
return Py.show()
# For bending moment along z direction
elif dir == "z":
Pz = self._plot_bending_moment('z', subs)
return Pz.show()
# For bending moment along all direction
else:
Px = self._plot_bending_moment('x', subs)
Py = self._plot_bending_moment('y', subs)
Pz = self._plot_bending_moment('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def _plot_slope(self, dir, subs=None):
slope = self.slope()
if dir == 'x':
dir_num = 0
color = 'b'
elif dir == 'y':
dir_num = 1
color = 'm'
elif dir == 'z':
dir_num = 2
color = 'g'
if subs is None:
subs = {}
for sym in slope[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(slope[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Slope along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{\theta(%c)}$'%dir, line_color=color)
def plot_slope(self, dir="all", subs=None):
"""
Returns a plot for Slope along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which Slope plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as keys and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.plot_slope()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -x**3/1600 + 3*x**2/160 - x/8 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: x**4/8000 - 19*x**2/172 + 52*x/43 for x over (0.0, 20.0)
"""
dir = dir.lower()
# For Slope along x direction
if dir == "x":
Px = self._plot_slope('x', subs)
return Px.show()
# For Slope along y direction
elif dir == "y":
Py = self._plot_slope('y', subs)
return Py.show()
# For Slope along z direction
elif dir == "z":
Pz = self._plot_slope('z', subs)
return Pz.show()
# For Slope along all direction
else:
Px = self._plot_slope('x', subs)
Py = self._plot_slope('y', subs)
Pz = self._plot_slope('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def _plot_deflection(self, dir, subs=None):
deflection = self.deflection()
if dir == 'x':
dir_num = 0
color = 'm'
elif dir == 'y':
dir_num = 1
color = 'r'
elif dir == 'z':
dir_num = 2
color = 'c'
if subs is None:
subs = {}
for sym in deflection[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(deflection[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Deflection along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{\delta(%c)}$'%dir, line_color=color)
def plot_deflection(self, dir="all", subs=None):
"""
Returns a plot for Deflection along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which deflection plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as keys and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.plot_deflection()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: x**5/40000 - 4013*x**3/90300 + 26*x**2/43 + 1520*x/903 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: x**4/6400 - x**3/160 + 27*x**2/560 + 2*x/7 for x over (0.0, 20.0)
"""
dir = dir.lower()
# For deflection along x direction
if dir == "x":
Px = self._plot_deflection('x', subs)
return Px.show()
# For deflection along y direction
elif dir == "y":
Py = self._plot_deflection('y', subs)
return Py.show()
# For deflection along z direction
elif dir == "z":
Pz = self._plot_deflection('z', subs)
return Pz.show()
# For deflection along all direction
else:
Px = self._plot_deflection('x', subs)
Py = self._plot_deflection('y', subs)
Pz = self._plot_deflection('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def plot_loading_results(self, dir='x', subs=None):
"""
Returns a subplot of Shear Force, Bending Moment,
Slope and Deflection of the Beam object along the direction specified.
Parameters
==========
dir : string (default : "x")
Direction along which plots are required.
If no direction is specified, plots along x-axis are displayed.
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> subs = {E:40, G:21, I:100, A:25}
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.plot_loading_results('y',subs)
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: -6*x**2 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -15*x**2/2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: -x**3/1600 + 3*x**2/160 - x/8 for x over (0.0, 20.0)
Plot[3]:Plot object containing:
[0]: cartesian line: x**5/40000 - 4013*x**3/90300 + 26*x**2/43 + 1520*x/903 for x over (0.0, 20.0)
"""
dir = dir.lower();
if subs is None:
subs = {}
ax1 = self._plot_shear_force(dir, subs)
ax2 = self._plot_bending_moment(dir, subs)
ax3 = self._plot_slope(dir, subs)
ax4 = self._plot_deflection(dir, subs)
return PlotGrid(4, 1, ax1, ax2, ax3, ax4)
def _plot_shear_stress(self, dir, subs=None):
shear_stress = self.shear_stress()
if dir == 'x':
dir_num = 0
color = 'r'
elif dir == 'y':
dir_num = 1
color = 'g'
elif dir == 'z':
dir_num = 2
color = 'b'
if subs is None:
subs = {}
for sym in shear_stress[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(shear_stress[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Shear stress along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\tau(%c)$'%dir, line_color=color)
def plot_shear_stress(self, dir="all", subs=None):
"""
Returns a plot for Shear Stress along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which shear stress plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 20 meters and area of cross section 2 square
meters. It it supported by rollers at of its end. A linear load having
slope equal to 12 is applied along y-axis. A constant distributed load
of magnitude 15 N is applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, 2, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.plot_shear_stress()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -3*x**2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: -15*x/2 for x over (0.0, 20.0)
"""
dir = dir.lower()
# For shear stress along x direction
if dir == "x":
Px = self._plot_shear_stress('x', subs)
return Px.show()
# For shear stress along y direction
elif dir == "y":
Py = self._plot_shear_stress('y', subs)
return Py.show()
# For shear stress along z direction
elif dir == "z":
Pz = self._plot_shear_stress('z', subs)
return Pz.show()
# For shear stress along all direction
else:
Px = self._plot_shear_stress('x', subs)
Py = self._plot_shear_stress('y', subs)
Pz = self._plot_shear_stress('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
|
b89d3648928cf4901c7d6a55420d39fefecc0ebf186138a2f4d2910a468a30c5 | from sympy import (symbols, factor, Function, simplify, exp, oo, I,
S, Mul, Pow, Add, Rational, sqrt, CRootOf, eye)
from sympy.core.containers import Tuple
from sympy.matrices import ImmutableMatrix, Matrix
from sympy.physics.control import (TransferFunction, Series, Parallel,
Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback)
from sympy.testing.pytest import raises
a, x, b, s, g, d, p, k, a0, a1, a2, b0, b1, b2, tau, zeta, wn = symbols('a, x, b, s, g, d, p, k,\
a0:3, b0:3, tau, zeta, wn')
TF1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
TF2 = TransferFunction(k, 1, s)
TF3 = TransferFunction(a2*p - s, a2*s + p, s)
def test_TransferFunction_construction():
tf = TransferFunction(s + 1, s**2 + s + 1, s)
assert tf.num == (s + 1)
assert tf.den == (s**2 + s + 1)
assert tf.args == (s + 1, s**2 + s + 1, s)
tf1 = TransferFunction(s + 4, s - 5, s)
assert tf1.num == (s + 4)
assert tf1.den == (s - 5)
assert tf1.args == (s + 4, s - 5, s)
# using different polynomial variables.
tf2 = TransferFunction(p + 3, p**2 - 9, p)
assert tf2.num == (p + 3)
assert tf2.den == (p**2 - 9)
assert tf2.args == (p + 3, p**2 - 9, p)
tf3 = TransferFunction(p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p)
assert tf3.args == (p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p)
# no pole-zero cancellation on its own.
tf4 = TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s)
assert tf4.den == (s - 1)*(s + 5)
assert tf4.args == ((s + 3)*(s - 1), (s - 1)*(s + 5), s)
tf4_ = TransferFunction(p + 2, p + 2, p)
assert tf4_.args == (p + 2, p + 2, p)
tf5 = TransferFunction(s - 1, 4 - p, s)
assert tf5.args == (s - 1, 4 - p, s)
tf5_ = TransferFunction(s - 1, s - 1, s)
assert tf5_.args == (s - 1, s - 1, s)
tf6 = TransferFunction(5, 6, s)
assert tf6.num == 5
assert tf6.den == 6
assert tf6.args == (5, 6, s)
tf6_ = TransferFunction(1/2, 4, s)
assert tf6_.num == 0.5
assert tf6_.den == 4
assert tf6_.args == (0.500000000000000, 4, s)
tf7 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, s)
tf8 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, p)
assert not tf7 == tf8
tf7_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s)
tf8_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s)
assert tf7_ == tf8_
assert -(-tf7_) == tf7_ == -(-(-(-tf7_)))
tf9 = TransferFunction(a*s**3 + b*s**2 + g*s + d, d*p + g*p**2 + g*s, s)
assert tf9.args == (a*s**3 + b*s**2 + d + g*s, d*p + g*p**2 + g*s, s)
tf10 = TransferFunction(p**3 + d, g*s**2 + d*s + a, p)
tf10_ = TransferFunction(p**3 + d, g*s**2 + d*s + a, p)
assert tf10.args == (d + p**3, a + d*s + g*s**2, p)
assert tf10_ == tf10
tf11 = TransferFunction(a1*s + a0, b2*s**2 + b1*s + b0, s)
assert tf11.num == (a0 + a1*s)
assert tf11.den == (b0 + b1*s + b2*s**2)
assert tf11.args == (a0 + a1*s, b0 + b1*s + b2*s**2, s)
# when just the numerator is 0, leave the denominator alone.
tf12 = TransferFunction(0, p**2 - p + 1, p)
assert tf12.args == (0, p**2 - p + 1, p)
tf13 = TransferFunction(0, 1, s)
assert tf13.args == (0, 1, s)
# float exponents
tf14 = TransferFunction(a0*s**0.5 + a2*s**0.6 - a1, a1*p**(-8.7), s)
assert tf14.args == (a0*s**0.5 - a1 + a2*s**0.6, a1*p**(-8.7), s)
tf15 = TransferFunction(a2**2*p**(1/4) + a1*s**(-4/5), a0*s - p, p)
assert tf15.args == (a1*s**(-0.8) + a2**2*p**0.25, a0*s - p, p)
omega_o, k_p, k_o, k_i = symbols('omega_o, k_p, k_o, k_i')
tf18 = TransferFunction((k_p + k_o*s + k_i/s), s**2 + 2*omega_o*s + omega_o**2, s)
assert tf18.num == k_i/s + k_o*s + k_p
assert tf18.args == (k_i/s + k_o*s + k_p, omega_o**2 + 2*omega_o*s + s**2, s)
# ValueError when denominator is zero.
raises(ValueError, lambda: TransferFunction(4, 0, s))
raises(ValueError, lambda: TransferFunction(s, 0, s))
raises(ValueError, lambda: TransferFunction(0, 0, s))
raises(TypeError, lambda: TransferFunction(Matrix([1, 2, 3]), s, s))
raises(TypeError, lambda: TransferFunction(s**2 + 2*s - 1, s + 3, 3))
raises(TypeError, lambda: TransferFunction(p + 1, 5 - p, 4))
raises(TypeError, lambda: TransferFunction(3, 4, 8))
def test_TransferFunction_functions():
# classmethod from_rational_expression
expr_1 = Mul(0, Pow(s, -1, evaluate=False), evaluate=False)
expr_2 = s/0
expr_3 = (p*s**2 + 5*s)/(s + 1)**3
expr_4 = 6
expr_5 = ((2 + 3*s)*(5 + 2*s))/((9 + 3*s)*(5 + 2*s**2))
expr_6 = (9*s**4 + 4*s**2 + 8)/((s + 1)*(s + 9))
tf = TransferFunction(s + 1, s**2 + 2, s)
delay = exp(-s/tau)
expr_7 = delay*tf.to_expr()
H1 = TransferFunction.from_rational_expression(expr_7, s)
H2 = TransferFunction(s + 1, (s**2 + 2)*exp(s/tau), s)
expr_8 = Add(2, 3*s/(s**2 + 1), evaluate=False)
assert TransferFunction.from_rational_expression(expr_1) == TransferFunction(0, s, s)
raises(ZeroDivisionError, lambda: TransferFunction.from_rational_expression(expr_2))
raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_3))
assert TransferFunction.from_rational_expression(expr_3, s) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, s)
assert TransferFunction.from_rational_expression(expr_3, p) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, p)
raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_4))
assert TransferFunction.from_rational_expression(expr_4, s) == TransferFunction(6, 1, s)
assert TransferFunction.from_rational_expression(expr_5, s) == \
TransferFunction((2 + 3*s)*(5 + 2*s), (9 + 3*s)*(5 + 2*s**2), s)
assert TransferFunction.from_rational_expression(expr_6, s) == \
TransferFunction((9*s**4 + 4*s**2 + 8), (s + 1)*(s + 9), s)
assert H1 == H2
assert TransferFunction.from_rational_expression(expr_8, s) == \
TransferFunction(2*s**2 + 3*s + 2, s**2 + 1, s)
# explicitly cancel poles and zeros.
tf0 = TransferFunction(s**5 + s**3 + s, s - s**2, s)
a = TransferFunction(-(s**4 + s**2 + 1), s - 1, s)
assert tf0.simplify() == simplify(tf0) == a
tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
b = TransferFunction(p + 3, p + 5, p)
assert tf1.simplify() == simplify(tf1) == b
# expand the numerator and the denominator.
G1 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
G2 = TransferFunction(1, -3, p)
c = (a2*s**p + a1*s**s + a0*p**p)*(p**s + s**p)
d = (b0*s**s + b1*p**s)*(b2*s*p + p**p)
e = a0*p**p*p**s + a0*p**p*s**p + a1*p**s*s**s + a1*s**p*s**s + a2*p**s*s**p + a2*s**(2*p)
f = b0*b2*p*s*s**s + b0*p**p*s**s + b1*b2*p*p**s*s + b1*p**p*p**s
g = a1*a2*s*s**p + a1*p*s + a2*b1*p*s*s**p + b1*p**2*s
G3 = TransferFunction(c, d, s)
G4 = TransferFunction(a0*s**s - b0*p**p, (a1*s + b1*s*p)*(a2*s**p + p), p)
assert G1.expand() == TransferFunction(s**2 - 2*s + 1, s**4 + 2*s**2 + 1, s)
assert tf1.expand() == TransferFunction(p**2 + 2*p - 3, p**2 + 4*p - 5, p)
assert G2.expand() == G2
assert G3.expand() == TransferFunction(e, f, s)
assert G4.expand() == TransferFunction(a0*s**s - b0*p**p, g, p)
# purely symbolic polynomials.
p1 = a1*s + a0
p2 = b2*s**2 + b1*s + b0
SP1 = TransferFunction(p1, p2, s)
expect1 = TransferFunction(2.0*s + 1.0, 5.0*s**2 + 4.0*s + 3.0, s)
expect1_ = TransferFunction(2*s + 1, 5*s**2 + 4*s + 3, s)
assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}) == expect1_
assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}).evalf() == expect1
assert expect1_.evalf() == expect1
c1, d0, d1, d2 = symbols('c1, d0:3')
p3, p4 = c1*p, d2*p**3 + d1*p**2 - d0
SP2 = TransferFunction(p3, p4, p)
expect2 = TransferFunction(2.0*p, 5.0*p**3 + 2.0*p**2 - 3.0, p)
expect2_ = TransferFunction(2*p, 5*p**3 + 2*p**2 - 3, p)
assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}) == expect2_
assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}).evalf() == expect2
assert expect2_.evalf() == expect2
SP3 = TransferFunction(a0*p**3 + a1*s**2 - b0*s + b1, a1*s + p, s)
expect3 = TransferFunction(2.0*p**3 + 4.0*s**2 - s + 5.0, p + 4.0*s, s)
expect3_ = TransferFunction(2*p**3 + 4*s**2 - s + 5, p + 4*s, s)
assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}) == expect3_
assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}).evalf() == expect3
assert expect3_.evalf() == expect3
SP4 = TransferFunction(s - a1*p**3, a0*s + p, p)
expect4 = TransferFunction(7.0*p**3 + s, p - s, p)
expect4_ = TransferFunction(7*p**3 + s, p - s, p)
assert SP4.subs({a0: -1, a1: -7}) == expect4_
assert SP4.subs({a0: -1, a1: -7}).evalf() == expect4
assert expect4_.evalf() == expect4
# Low-frequency (or DC) gain.
assert tf0.dc_gain() == 1
assert tf1.dc_gain() == Rational(3, 5)
assert SP2.dc_gain() == 0
assert expect4.dc_gain() == -1
assert expect2_.dc_gain() == 0
assert TransferFunction(1, s, s).dc_gain() == oo
# Poles of a transfer function.
tf_ = TransferFunction(x**3 - k, k, x)
_tf = TransferFunction(k, x**4 - k, x)
TF_ = TransferFunction(x**2, x**10 + x + x**2, x)
_TF = TransferFunction(x**10 + x + x**2, x**2, x)
assert G1.poles() == [I, I, -I, -I]
assert G2.poles() == []
assert tf1.poles() == [-5, 1]
assert expect4_.poles() == [s]
assert SP4.poles() == [-a0*s]
assert expect3.poles() == [-0.25*p]
assert str(expect2.poles()) == str([0.729001428685125, -0.564500714342563 - 0.710198984796332*I, -0.564500714342563 + 0.710198984796332*I])
assert str(expect1.poles()) == str([-0.4 - 0.66332495807108*I, -0.4 + 0.66332495807108*I])
assert _tf.poles() == [k**(Rational(1, 4)), -k**(Rational(1, 4)), I*k**(Rational(1, 4)), -I*k**(Rational(1, 4))]
assert TF_.poles() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2),
CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6),
CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)]
raises(NotImplementedError, lambda: TransferFunction(x**2, a0*x**10 + x + x**2, x).poles())
# Stability of a transfer function.
q, r = symbols('q, r', negative=True)
t = symbols('t', positive=True)
TF_ = TransferFunction(s**2 + a0 - a1*p, q*s - r, s)
stable_tf = TransferFunction(s**2 + a0 - a1*p, q*s - 1, s)
stable_tf_ = TransferFunction(s**2 + a0 - a1*p, q*s - t, s)
assert G1.is_stable() is False
assert G2.is_stable() is True
assert tf1.is_stable() is False # as one pole is +ve, and the other is -ve.
assert expect2.is_stable() is False
assert expect1.is_stable() is True
assert stable_tf.is_stable() is True
assert stable_tf_.is_stable() is True
assert TF_.is_stable() is False
assert expect4_.is_stable() is None # no assumption provided for the only pole 's'.
assert SP4.is_stable() is None
# Zeros of a transfer function.
assert G1.zeros() == [1, 1]
assert G2.zeros() == []
assert tf1.zeros() == [-3, 1]
assert expect4_.zeros() == [7**(Rational(2, 3))*(-s)**(Rational(1, 3))/7, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 -
sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 + sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14]
assert SP4.zeros() == [(s/a1)**(Rational(1, 3)), -(s/a1)**(Rational(1, 3))/2 - sqrt(3)*I*(s/a1)**(Rational(1, 3))/2,
-(s/a1)**(Rational(1, 3))/2 + sqrt(3)*I*(s/a1)**(Rational(1, 3))/2]
assert str(expect3.zeros()) == str([0.125 - 1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0),
1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0) + 0.125])
assert tf_.zeros() == [k**(Rational(1, 3)), -k**(Rational(1, 3))/2 - sqrt(3)*I*k**(Rational(1, 3))/2,
-k**(Rational(1, 3))/2 + sqrt(3)*I*k**(Rational(1, 3))/2]
assert _TF.zeros() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2),
CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6),
CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)]
raises(NotImplementedError, lambda: TransferFunction(a0*x**10 + x + x**2, x**2, x).zeros())
# negation of TF.
tf2 = TransferFunction(s + 3, s**2 - s**3 + 9, s)
tf3 = TransferFunction(-3*p + 3, 1 - p, p)
assert -tf2 == TransferFunction(-s - 3, s**2 - s**3 + 9, s)
assert -tf3 == TransferFunction(3*p - 3, 1 - p, p)
# taking power of a TF.
tf4 = TransferFunction(p + 4, p - 3, p)
tf5 = TransferFunction(s**2 + 1, 1 - s, s)
expect2 = TransferFunction((s**2 + 1)**3, (1 - s)**3, s)
expect1 = TransferFunction((p + 4)**2, (p - 3)**2, p)
assert (tf4*tf4).doit() == tf4**2 == pow(tf4, 2) == expect1
assert (tf5*tf5*tf5).doit() == tf5**3 == pow(tf5, 3) == expect2
assert tf5**0 == pow(tf5, 0) == TransferFunction(1, 1, s)
assert Series(tf4).doit()**-1 == tf4**-1 == pow(tf4, -1) == TransferFunction(p - 3, p + 4, p)
assert (tf5*tf5).doit()**-1 == tf5**-2 == pow(tf5, -2) == TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
raises(ValueError, lambda: tf4**(s**2 + s - 1))
raises(ValueError, lambda: tf5**s)
raises(ValueError, lambda: tf4**tf5)
# sympy's own functions.
tf = TransferFunction(s - 1, s**2 - 2*s + 1, s)
tf6 = TransferFunction(s + p, p**2 - 5, s)
assert factor(tf) == TransferFunction(s - 1, (s - 1)**2, s)
assert tf.num.subs(s, 2) == tf.den.subs(s, 2) == 1
# subs & xreplace
assert tf.subs(s, 2) == TransferFunction(s - 1, s**2 - 2*s + 1, s)
assert tf6.subs(p, 3) == TransferFunction(s + 3, 4, s)
assert tf3.xreplace({p: s}) == TransferFunction(-3*s + 3, 1 - s, s)
raises(TypeError, lambda: tf3.xreplace({p: exp(2)}))
assert tf3.subs(p, exp(2)) == tf3
tf7 = TransferFunction(a0*s**p + a1*p**s, a2*p - s, s)
assert tf7.xreplace({s: k}) == TransferFunction(a0*k**p + a1*p**k, a2*p - k, k)
assert tf7.subs(s, k) == TransferFunction(a0*s**p + a1*p**s, a2*p - s, s)
# Conversion to Expr with to_expr()
tf8 = TransferFunction(a0*s**5 + 5*s**2 + 3, s**6 - 3, s)
tf9 = TransferFunction((5 + s), (5 + s)*(6 + s), s)
tf10 = TransferFunction(0, 1, s)
tf11 = TransferFunction(1, 1, s)
assert tf8.to_expr() == Mul((a0*s**5 + 5*s**2 + 3), Pow((s**6 - 3), -1, evaluate=False), evaluate=False)
assert tf9.to_expr() == Mul((s + 5), Pow((5 + s)*(6 + s), -1, evaluate=False), evaluate=False)
assert tf10.to_expr() == Mul(S(0), Pow(1, -1, evaluate=False), evaluate=False)
assert tf11.to_expr() == Pow(1, -1, evaluate=False)
def test_TransferFunction_addition_and_subtraction():
tf1 = TransferFunction(s + 6, s - 5, s)
tf2 = TransferFunction(s + 3, s + 1, s)
tf3 = TransferFunction(s + 1, s**2 + s + 1, s)
tf4 = TransferFunction(p, 2 - p, p)
# addition
assert tf1 + tf2 == Parallel(tf1, tf2)
assert tf3 + tf1 == Parallel(tf3, tf1)
assert -tf1 + tf2 + tf3 == Parallel(-tf1, tf2, tf3)
assert tf1 + (tf2 + tf3) == Parallel(tf1, tf2, tf3)
c = symbols("c", commutative=False)
raises(ValueError, lambda: tf1 + Matrix([1, 2, 3]))
raises(ValueError, lambda: tf2 + c)
raises(ValueError, lambda: tf3 + tf4)
raises(ValueError, lambda: tf1 + (s - 1))
raises(ValueError, lambda: tf1 + 8)
raises(ValueError, lambda: (1 - p**3) + tf1)
# subtraction
assert tf1 - tf2 == Parallel(tf1, -tf2)
assert tf3 - tf2 == Parallel(tf3, -tf2)
assert -tf1 - tf3 == Parallel(-tf1, -tf3)
assert tf1 - tf2 + tf3 == Parallel(tf1, -tf2, tf3)
raises(ValueError, lambda: tf1 - Matrix([1, 2, 3]))
raises(ValueError, lambda: tf3 - tf4)
raises(ValueError, lambda: tf1 - (s - 1))
raises(ValueError, lambda: tf1 - 8)
raises(ValueError, lambda: (s + 5) - tf2)
raises(ValueError, lambda: (1 + p**4) - tf1)
def test_TransferFunction_multiplication_and_division():
G1 = TransferFunction(s + 3, -s**3 + 9, s)
G2 = TransferFunction(s + 1, s - 5, s)
G3 = TransferFunction(p, p**4 - 6, p)
G4 = TransferFunction(p + 4, p - 5, p)
G5 = TransferFunction(s + 6, s - 5, s)
G6 = TransferFunction(s + 3, s + 1, s)
G7 = TransferFunction(1, 1, s)
# multiplication
assert G1*G2 == Series(G1, G2)
assert -G1*G5 == Series(-G1, G5)
assert -G2*G5*-G6 == Series(-G2, G5, -G6)
assert -G1*-G2*-G5*-G6 == Series(-G1, -G2, -G5, -G6)
assert G3*G4 == Series(G3, G4)
assert (G1*G2)*-(G5*G6) == \
Series(G1, G2, TransferFunction(-1, 1, s), Series(G5, G6))
assert G1*G2*(G5 + G6) == Series(G1, G2, Parallel(G5, G6))
c = symbols("c", commutative=False)
raises(ValueError, lambda: G3 * Matrix([1, 2, 3]))
raises(ValueError, lambda: G1 * c)
raises(ValueError, lambda: G3 * G5)
raises(ValueError, lambda: G5 * (s - 1))
raises(ValueError, lambda: 9 * G5)
raises(ValueError, lambda: G3 / Matrix([1, 2, 3]))
raises(ValueError, lambda: G6 / 0)
raises(ValueError, lambda: G3 / G5)
raises(ValueError, lambda: G5 / 2)
raises(ValueError, lambda: G5 / s**2)
raises(ValueError, lambda: (s - 4*s**2) / G2)
raises(ValueError, lambda: 0 / G4)
raises(ValueError, lambda: G5 / G6)
raises(ValueError, lambda: -G3 /G4)
raises(ValueError, lambda: G7 / (1 + G6))
raises(ValueError, lambda: G7 / (G5 * G6))
raises(ValueError, lambda: G7 / (G7 + (G5 + G6)))
def test_TransferFunction_is_proper():
omega_o, zeta, tau = symbols('omega_o, zeta, tau')
G1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
G2 = TransferFunction(tau - s**3, tau + p**4, tau)
G3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
G4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
assert G1.is_proper
assert G2.is_proper
assert G3.is_proper
assert not G4.is_proper
def test_TransferFunction_is_strictly_proper():
omega_o, zeta, tau = symbols('omega_o, zeta, tau')
tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
tf2 = TransferFunction(tau - s**3, tau + p**4, tau)
tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
assert not tf1.is_strictly_proper
assert not tf2.is_strictly_proper
assert tf3.is_strictly_proper
assert not tf4.is_strictly_proper
def test_TransferFunction_is_biproper():
tau, omega_o, zeta = symbols('tau, omega_o, zeta')
tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
tf2 = TransferFunction(tau - s**3, tau + p**4, tau)
tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
assert tf1.is_biproper
assert tf2.is_biproper
assert not tf3.is_biproper
assert not tf4.is_biproper
def test_Series_construction():
tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
tf2 = TransferFunction(a2*p - s, a2*s + p, s)
tf3 = TransferFunction(a0*p + p**a1 - s, p, p)
tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
inp = Function('X_d')(s)
out = Function('X')(s)
s0 = Series(tf, tf2)
assert s0.args == (tf, tf2)
assert s0.var == s
s1 = Series(Parallel(tf, -tf2), tf2)
assert s1.args == (Parallel(tf, -tf2), tf2)
assert s1.var == s
tf3_ = TransferFunction(inp, 1, s)
tf4_ = TransferFunction(-out, 1, s)
s2 = Series(tf, Parallel(tf3_, tf4_), tf2)
assert s2.args == (tf, Parallel(tf3_, tf4_), tf2)
s3 = Series(tf, tf2, tf4)
assert s3.args == (tf, tf2, tf4)
s4 = Series(tf3_, tf4_)
assert s4.args == (tf3_, tf4_)
assert s4.var == s
s6 = Series(tf2, tf4, Parallel(tf2, -tf), tf4)
assert s6.args == (tf2, tf4, Parallel(tf2, -tf), tf4)
s7 = Series(tf, tf2)
assert s0 == s7
assert not s0 == s2
raises(ValueError, lambda: Series(tf, tf3))
raises(ValueError, lambda: Series(tf, tf2, tf3, tf4))
raises(ValueError, lambda: Series(-tf3, tf2))
raises(TypeError, lambda: Series(2, tf, tf4))
raises(TypeError, lambda: Series(s**2 + p*s, tf3, tf2))
raises(TypeError, lambda: Series(tf3, Matrix([1, 2, 3, 4])))
def test_MIMOSeries_construction():
tf_1 = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
tf_2 = TransferFunction(a2*p - s, a2*s + p, s)
tf_3 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
tfm_1 = TransferFunctionMatrix([[tf_1, tf_2, tf_3], [-tf_3, -tf_2, tf_1]])
tfm_2 = TransferFunctionMatrix([[-tf_2], [-tf_2], [-tf_3]])
tfm_3 = TransferFunctionMatrix([[-tf_3]])
tfm_4 = TransferFunctionMatrix([[TF3], [TF2], [-TF1]])
tfm_5 = TransferFunctionMatrix.from_Matrix(Matrix([1/p]), p)
s8 = MIMOSeries(tfm_2, tfm_1)
assert s8.args == (tfm_2, tfm_1)
assert s8.var == s
assert s8.shape == (s8.num_outputs, s8.num_inputs) == (2, 1)
s9 = MIMOSeries(tfm_3, tfm_2, tfm_1)
assert s9.args == (tfm_3, tfm_2, tfm_1)
assert s9.var == s
assert s9.shape == (s9.num_outputs, s9.num_inputs) == (2, 1)
s11 = MIMOSeries(tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1)
assert s11.args == (tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1)
assert s11.shape == (s11.num_outputs, s11.num_inputs) == (2, 1)
# arg cannot be empty tuple.
raises(ValueError, lambda: MIMOSeries())
# arg cannot contain SISO as well as MIMO systems.
raises(TypeError, lambda: MIMOSeries(tfm_1, tf_1))
# for all the adjascent transfer function matrices:
# no. of inputs of first TFM must be equal to the no. of outputs of the second TFM.
raises(ValueError, lambda: MIMOSeries(tfm_1, tfm_2, -tfm_1))
# all the TFMs must use the same complex variable.
raises(ValueError, lambda: MIMOSeries(tfm_3, tfm_5))
# Number or expression not allowed in the arguments.
raises(TypeError, lambda: MIMOSeries(2, tfm_2, tfm_3))
raises(TypeError, lambda: MIMOSeries(s**2 + p*s, -tfm_2, tfm_3))
raises(TypeError, lambda: MIMOSeries(Matrix([1/p]), tfm_3))
def test_Series_functions():
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
tf2 = TransferFunction(k, 1, s)
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
assert tf1*tf2*tf3 == Series(tf1, tf2, tf3) == Series(Series(tf1, tf2), tf3) \
== Series(tf1, Series(tf2, tf3))
assert tf1*(tf2 + tf3) == Series(tf1, Parallel(tf2, tf3))
assert tf1*tf2 + tf5 == Parallel(Series(tf1, tf2), tf5)
assert tf1*tf2 - tf5 == Parallel(Series(tf1, tf2), -tf5)
assert tf1*tf2 + tf3 + tf5 == Parallel(Series(tf1, tf2), tf3, tf5)
assert tf1*tf2 - tf3 - tf5 == Parallel(Series(tf1, tf2), -tf3, -tf5)
assert tf1*tf2 - tf3 + tf5 == Parallel(Series(tf1, tf2), -tf3, tf5)
assert tf1*tf2 + tf3*tf5 == Parallel(Series(tf1, tf2), Series(tf3, tf5))
assert tf1*tf2 - tf3*tf5 == Parallel(Series(tf1, tf2), Series(TransferFunction(-1, 1, s), Series(tf3, tf5)))
assert tf2*tf3*(tf2 - tf1)*tf3 == Series(tf2, tf3, Parallel(tf2, -tf1), tf3)
assert -tf1*tf2 == Series(-tf1, tf2)
assert -(tf1*tf2) == Series(TransferFunction(-1, 1, s), Series(tf1, tf2))
raises(ValueError, lambda: tf1*tf2*tf4)
raises(ValueError, lambda: tf1*(tf2 - tf4))
raises(ValueError, lambda: tf3*Matrix([1, 2, 3]))
# evaluate=True -> doit()
assert Series(tf1, tf2, evaluate=True) == Series(tf1, tf2).doit() == \
TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s)
assert Series(tf1, tf2, Parallel(tf1, -tf3), evaluate=True) == Series(tf1, tf2, Parallel(tf1, -tf3)).doit() == \
TransferFunction(k*(a2*s + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2, s)
assert Series(tf2, tf1, -tf3, evaluate=True) == Series(tf2, tf1, -tf3).doit() == \
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert not Series(tf1, -tf2, evaluate=False) == Series(tf1, -tf2).doit()
assert Series(Parallel(tf1, tf2), Parallel(tf2, -tf3)).doit() == \
TransferFunction((k*(s**2 + 2*s*wn*zeta + wn**2) + 1)*(-a2*p + k*(a2*s + p) + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Series(-tf1, -tf2, -tf3).doit() == \
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert -Series(tf1, tf2, tf3).doit() == \
TransferFunction(-k*(a2*p - s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Series(tf2, tf3, Parallel(tf2, -tf1), tf3).doit() == \
TransferFunction(k*(a2*p - s)**2*(k*(s**2 + 2*s*wn*zeta + wn**2) - 1), (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Series(tf1, tf2).rewrite(TransferFunction) == TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s)
assert Series(tf2, tf1, -tf3).rewrite(TransferFunction) == \
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
S1 = Series(Parallel(tf1, tf2), Parallel(tf2, -tf3))
assert S1.is_proper
assert not S1.is_strictly_proper
assert S1.is_biproper
S2 = Series(tf1, tf2, tf3)
assert S2.is_proper
assert S2.is_strictly_proper
assert not S2.is_biproper
S3 = Series(tf1, -tf2, Parallel(tf1, -tf3))
assert S3.is_proper
assert S3.is_strictly_proper
assert not S3.is_biproper
def test_MIMOSeries_functions():
tfm1 = TransferFunctionMatrix([[TF1, TF2, TF3], [-TF3, -TF2, TF1]])
tfm2 = TransferFunctionMatrix([[-TF1], [-TF2], [-TF3]])
tfm3 = TransferFunctionMatrix([[-TF1]])
tfm4 = TransferFunctionMatrix([[-TF2, -TF3], [-TF1, TF2]])
tfm5 = TransferFunctionMatrix([[TF2, -TF2], [-TF3, -TF2]])
tfm6 = TransferFunctionMatrix([[-TF3], [TF1]])
tfm7 = TransferFunctionMatrix([[TF1], [-TF2]])
assert tfm1*tfm2 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm6)
assert tfm1*tfm2 + tfm7 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm7, tfm6)
assert tfm1*tfm2 - tfm6 - tfm7 == MIMOParallel(MIMOSeries(tfm2, tfm1), -tfm6, -tfm7)
assert tfm4*tfm5 + (tfm4 - tfm5) == MIMOParallel(MIMOSeries(tfm5, tfm4), tfm4, -tfm5)
assert tfm4*-tfm6 + (-tfm4*tfm6) == MIMOParallel(MIMOSeries(-tfm6, tfm4), MIMOSeries(tfm6, -tfm4))
raises(ValueError, lambda: tfm1*tfm2 + TF1)
raises(TypeError, lambda: tfm1*tfm2 + a0)
raises(TypeError, lambda: tfm4*tfm6 - (s - 1))
raises(TypeError, lambda: tfm4*-tfm6 - 8)
raises(TypeError, lambda: (-1 + p**5) + tfm1*tfm2)
# Shape criteria.
raises(TypeError, lambda: -tfm1*tfm2 + tfm4)
raises(TypeError, lambda: tfm1*tfm2 - tfm4 + tfm5)
raises(TypeError, lambda: tfm1*tfm2 - tfm4*tfm5)
assert tfm1*tfm2*-tfm3 == MIMOSeries(-tfm3, tfm2, tfm1)
assert (tfm1*-tfm2)*tfm3 == MIMOSeries(tfm3, -tfm2, tfm1)
# Multiplication of a Series object with a SISO TF not allowed.
raises(ValueError, lambda: tfm4*tfm5*TF1)
raises(TypeError, lambda: tfm4*tfm5*a1)
raises(TypeError, lambda: tfm4*-tfm5*(s - 2))
raises(TypeError, lambda: tfm5*tfm4*9)
raises(TypeError, lambda: (-p**3 + 1)*tfm5*tfm4)
# Transfer function matrix in the arguments.
assert (MIMOSeries(tfm2, tfm1, evaluate=True) == MIMOSeries(tfm2, tfm1).doit()
== TransferFunctionMatrix(((TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2)**2 - (a2*s + p)**2,
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),),
(TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2),
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),))))
# doit() should not cancel poles and zeros.
mat_1 = Matrix([[1/(1+s), (1+s)/(1+s**2+2*s)**3]])
mat_2 = Matrix([[(1+s)], [(1+s**2+2*s)**3/(1+s)]])
tm_1, tm_2 = TransferFunctionMatrix.from_Matrix(mat_1, s), TransferFunctionMatrix.from_Matrix(mat_2, s)
assert (MIMOSeries(tm_2, tm_1).doit()
== TransferFunctionMatrix(((TransferFunction(2*(s + 1)**2*(s**2 + 2*s + 1)**3, (s + 1)**2*(s**2 + 2*s + 1)**3, s),),)))
assert MIMOSeries(tm_2, tm_1).doit().simplify() == TransferFunctionMatrix(((TransferFunction(2, 1, s),),))
# calling doit() will expand the internal Series and Parallel objects.
assert (MIMOSeries(-tfm3, -tfm2, tfm1, evaluate=True)
== MIMOSeries(-tfm3, -tfm2, tfm1).doit()
== TransferFunctionMatrix(((TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*p - s)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*s + p)**2,
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),),
(TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2),
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),))))
assert (MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5, evaluate=True)
== MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).doit()
== TransferFunctionMatrix(((TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), TransferFunction(k*(-a2*p - \
k*(a2*s + p) + s), a2*s + p, s)), (TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), \
TransferFunction((-a2*p + s)*(-a2*p - k*(a2*s + p) + s), (a2*s + p)**2, s)))) == MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).rewrite(TransferFunctionMatrix))
def test_Parallel_construction():
tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
tf2 = TransferFunction(a2*p - s, a2*s + p, s)
tf3 = TransferFunction(a0*p + p**a1 - s, p, p)
tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
inp = Function('X_d')(s)
out = Function('X')(s)
p0 = Parallel(tf, tf2)
assert p0.args == (tf, tf2)
assert p0.var == s
p1 = Parallel(Series(tf, -tf2), tf2)
assert p1.args == (Series(tf, -tf2), tf2)
assert p1.var == s
tf3_ = TransferFunction(inp, 1, s)
tf4_ = TransferFunction(-out, 1, s)
p2 = Parallel(tf, Series(tf3_, -tf4_), tf2)
assert p2.args == (tf, Series(tf3_, -tf4_), tf2)
p3 = Parallel(tf, tf2, tf4)
assert p3.args == (tf, tf2, tf4)
p4 = Parallel(tf3_, tf4_)
assert p4.args == (tf3_, tf4_)
assert p4.var == s
p5 = Parallel(tf, tf2)
assert p0 == p5
assert not p0 == p1
p6 = Parallel(tf2, tf4, Series(tf2, -tf4))
assert p6.args == (tf2, tf4, Series(tf2, -tf4))
p7 = Parallel(tf2, tf4, Series(tf2, -tf), tf4)
assert p7.args == (tf2, tf4, Series(tf2, -tf), tf4)
raises(ValueError, lambda: Parallel(tf, tf3))
raises(ValueError, lambda: Parallel(tf, tf2, tf3, tf4))
raises(ValueError, lambda: Parallel(-tf3, tf4))
raises(TypeError, lambda: Parallel(2, tf, tf4))
raises(TypeError, lambda: Parallel(s**2 + p*s, tf3, tf2))
raises(TypeError, lambda: Parallel(tf3, Matrix([1, 2, 3, 4])))
def test_MIMOParallel_construction():
tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]])
tfm2 = TransferFunctionMatrix([[-TF3], [TF2], [TF1]])
tfm3 = TransferFunctionMatrix([[TF1]])
tfm4 = TransferFunctionMatrix([[TF2], [TF1], [TF3]])
tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF2, TF1]])
tfm6 = TransferFunctionMatrix([[TF2, TF1], [TF1, TF2]])
tfm7 = TransferFunctionMatrix.from_Matrix(Matrix([[1/p]]), p)
p8 = MIMOParallel(tfm1, tfm2)
assert p8.args == (tfm1, tfm2)
assert p8.var == s
assert p8.shape == (p8.num_outputs, p8.num_inputs) == (3, 1)
p9 = MIMOParallel(MIMOSeries(tfm3, tfm1), tfm2)
assert p9.args == (MIMOSeries(tfm3, tfm1), tfm2)
assert p9.var == s
assert p9.shape == (p9.num_outputs, p9.num_inputs) == (3, 1)
p10 = MIMOParallel(tfm1, MIMOSeries(tfm3, tfm4), tfm2)
assert p10.args == (tfm1, MIMOSeries(tfm3, tfm4), tfm2)
assert p10.var == s
assert p10.shape == (p10.num_outputs, p10.num_inputs) == (3, 1)
p11 = MIMOParallel(tfm2, tfm1, tfm4)
assert p11.args == (tfm2, tfm1, tfm4)
assert p11.shape == (p11.num_outputs, p11.num_inputs) == (3, 1)
p12 = MIMOParallel(tfm6, tfm5)
assert p12.args == (tfm6, tfm5)
assert p12.shape == (p12.num_outputs, p12.num_inputs) == (2, 2)
p13 = MIMOParallel(tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4)
assert p13.args == (tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4)
assert p13.shape == (p13.num_outputs, p13.num_inputs) == (3, 1)
# arg cannot be empty tuple.
raises(TypeError, lambda: MIMOParallel(()))
# arg cannot contain SISO as well as MIMO systems.
raises(TypeError, lambda: MIMOParallel(tfm1, tfm2, TF1))
# all TFMs must have same shapes.
raises(TypeError, lambda: MIMOParallel(tfm1, tfm3, tfm4))
# all TFMs must be using the same complex variable.
raises(ValueError, lambda: MIMOParallel(tfm3, tfm7))
# Number or expression not allowed in the arguments.
raises(TypeError, lambda: MIMOParallel(2, tfm1, tfm4))
raises(TypeError, lambda: MIMOParallel(s**2 + p*s, -tfm4, tfm2))
def test_Parallel_functions():
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
tf2 = TransferFunction(k, 1, s)
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
assert tf1 + tf2 + tf3 == Parallel(tf1, tf2, tf3)
assert tf1 + tf2 + tf3 + tf5 == Parallel(tf1, tf2, tf3, tf5)
assert tf1 + tf2 - tf3 - tf5 == Parallel(tf1, tf2, -tf3, -tf5)
assert tf1 + tf2*tf3 == Parallel(tf1, Series(tf2, tf3))
assert tf1 - tf2*tf3 == Parallel(tf1, -Series(tf2,tf3))
assert -tf1 - tf2 == Parallel(-tf1, -tf2)
assert -(tf1 + tf2) == Series(TransferFunction(-1, 1, s), Parallel(tf1, tf2))
assert (tf2 + tf3)*tf1 == Series(Parallel(tf2, tf3), tf1)
assert (tf1 + tf2)*(tf3*tf5) == Series(Parallel(tf1, tf2), tf3, tf5)
assert -(tf2 + tf3)*-tf5 == Series(TransferFunction(-1, 1, s), Parallel(tf2, tf3), -tf5)
assert tf2 + tf3 + tf2*tf1 + tf5 == Parallel(tf2, tf3, Series(tf2, tf1), tf5)
assert tf2 + tf3 + tf2*tf1 - tf3 == Parallel(tf2, tf3, Series(tf2, tf1), -tf3)
assert (tf1 + tf2 + tf5)*(tf3 + tf5) == Series(Parallel(tf1, tf2, tf5), Parallel(tf3, tf5))
raises(ValueError, lambda: tf1 + tf2 + tf4)
raises(ValueError, lambda: tf1 - tf2*tf4)
raises(ValueError, lambda: tf3 + Matrix([1, 2, 3]))
# evaluate=True -> doit()
assert Parallel(tf1, tf2, evaluate=True) == Parallel(tf1, tf2).doit() == \
TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s)
assert Parallel(tf1, tf2, Series(-tf1, tf3), evaluate=True) == \
Parallel(tf1, tf2, Series(-tf1, tf3)).doit() == TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2 + \
(-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + \
2*s*wn*zeta + wn**2)**2, s)
assert Parallel(tf2, tf1, -tf3, evaluate=True) == Parallel(tf2, tf1, -tf3).doit() == \
TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) \
, (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert not Parallel(tf1, -tf2, evaluate=False) == Parallel(tf1, -tf2).doit()
assert Parallel(Series(tf1, tf2), Series(tf2, tf3)).doit() == \
TransferFunction(k*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2) + k*(a2*s + p), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Parallel(-tf1, -tf2, -tf3).doit() == \
TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2), \
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert -Parallel(tf1, tf2, tf3).doit() == \
TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p - (a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2), \
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Parallel(tf2, tf3, Series(tf2, -tf1), tf3).doit() == \
TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - k*(a2*s + p) + (2*a2*p - 2*s)*(s**2 + 2*s*wn*zeta \
+ wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Parallel(tf1, tf2).rewrite(TransferFunction) == \
TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s)
assert Parallel(tf2, tf1, -tf3).rewrite(TransferFunction) == \
TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + \
wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Parallel(tf1, Parallel(tf2, tf3)) == Parallel(tf1, tf2, tf3) == Parallel(Parallel(tf1, tf2), tf3)
P1 = Parallel(Series(tf1, tf2), Series(tf2, tf3))
assert P1.is_proper
assert not P1.is_strictly_proper
assert P1.is_biproper
P2 = Parallel(tf1, -tf2, -tf3)
assert P2.is_proper
assert not P2.is_strictly_proper
assert P2.is_biproper
P3 = Parallel(tf1, -tf2, Series(tf1, tf3))
assert P3.is_proper
assert not P3.is_strictly_proper
assert P3.is_biproper
def test_MIMOParallel_functions():
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]])
tfm2 = TransferFunctionMatrix([[-TF2], [tf5], [-TF1]])
tfm3 = TransferFunctionMatrix([[tf5], [-tf5], [TF2]])
tfm4 = TransferFunctionMatrix([[TF2, -tf5], [TF1, tf5]])
tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5]])
tfm6 = TransferFunctionMatrix([[-TF2]])
tfm7 = TransferFunctionMatrix([[tf4], [-tf4], [tf4]])
assert tfm1 + tfm2 + tfm3 == MIMOParallel(tfm1, tfm2, tfm3) == MIMOParallel(MIMOParallel(tfm1, tfm2), tfm3)
assert tfm2 - tfm1 - tfm3 == MIMOParallel(tfm2, -tfm1, -tfm3)
assert tfm2 - tfm3 + (-tfm1*tfm6*-tfm6) == MIMOParallel(tfm2, -tfm3, MIMOSeries(-tfm6, tfm6, -tfm1))
assert tfm1 + tfm1 - (-tfm1*tfm6) == MIMOParallel(tfm1, tfm1, -MIMOSeries(tfm6, -tfm1))
assert tfm2 - tfm3 - tfm1 + tfm2 == MIMOParallel(tfm2, -tfm3, -tfm1, tfm2)
assert tfm1 + tfm2 - tfm3 - tfm1 == MIMOParallel(tfm1, tfm2, -tfm3, -tfm1)
raises(ValueError, lambda: tfm1 + tfm2 + TF2)
raises(TypeError, lambda: tfm1 - tfm2 - a1)
raises(TypeError, lambda: tfm2 - tfm3 - (s - 1))
raises(TypeError, lambda: -tfm3 - tfm2 - 9)
raises(TypeError, lambda: (1 - p**3) - tfm3 - tfm2)
# All TFMs must use the same complex var. tfm7 uses 'p'.
raises(ValueError, lambda: tfm3 - tfm2 - tfm7)
raises(ValueError, lambda: tfm2 - tfm1 + tfm7)
# (tfm1 +/- tfm2) has (3, 1) shape while tfm4 has (2, 2) shape.
raises(TypeError, lambda: tfm1 + tfm2 + tfm4)
raises(TypeError, lambda: (tfm1 - tfm2) - tfm4)
assert (tfm1 + tfm2)*tfm6 == MIMOSeries(tfm6, MIMOParallel(tfm1, tfm2))
assert (tfm2 - tfm3)*tfm6*-tfm6 == MIMOSeries(-tfm6, tfm6, MIMOParallel(tfm2, -tfm3))
assert (tfm2 - tfm1 - tfm3)*(tfm6 + tfm6) == MIMOSeries(MIMOParallel(tfm6, tfm6), MIMOParallel(tfm2, -tfm1, -tfm3))
raises(ValueError, lambda: (tfm4 + tfm5)*TF1)
raises(TypeError, lambda: (tfm2 - tfm3)*a2)
raises(TypeError, lambda: (tfm3 + tfm2)*(s - 6))
raises(TypeError, lambda: (tfm1 + tfm2 + tfm3)*0)
raises(TypeError, lambda: (1 - p**3)*(tfm1 + tfm3))
# (tfm3 - tfm2) has (3, 1) shape while tfm4*tfm5 has (2, 2) shape.
raises(ValueError, lambda: (tfm3 - tfm2)*tfm4*tfm5)
# (tfm1 - tfm2) has (3, 1) shape while tfm5 has (2, 2) shape.
raises(ValueError, lambda: (tfm1 - tfm2)*tfm5)
# TFM in the arguments.
assert (MIMOParallel(tfm1, tfm2, evaluate=True) == MIMOParallel(tfm1, tfm2).doit()
== MIMOParallel(tfm1, tfm2).rewrite(TransferFunctionMatrix)
== TransferFunctionMatrix(((TransferFunction(-k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s),), \
(TransferFunction(-a0 + a1*s**2 + a2*s + k*(a0 + s), a0 + s, s),), (TransferFunction(-a2*s - p + (a2*p - s)* \
(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s),))))
def test_Feedback_construction():
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
tf2 = TransferFunction(k, 1, s)
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
tf6 = TransferFunction(s - p, p + s, p)
f1 = Feedback(TransferFunction(1, 1, s), tf1*tf2*tf3)
assert f1.args == (TransferFunction(1, 1, s), Series(tf1, tf2, tf3), -1)
assert f1.sys1 == TransferFunction(1, 1, s)
assert f1.sys2 == Series(tf1, tf2, tf3)
assert f1.var == s
f2 = Feedback(tf1, tf2*tf3)
assert f2.args == (tf1, Series(tf2, tf3), -1)
assert f2.sys1 == tf1
assert f2.sys2 == Series(tf2, tf3)
assert f2.var == s
f3 = Feedback(tf1*tf2, tf5)
assert f3.args == (Series(tf1, tf2), tf5, -1)
assert f3.sys1 == Series(tf1, tf2)
f4 = Feedback(tf4, tf6)
assert f4.args == (tf4, tf6, -1)
assert f4.sys1 == tf4
assert f4.var == p
f5 = Feedback(tf5, TransferFunction(1, 1, s))
assert f5.args == (tf5, TransferFunction(1, 1, s), -1)
assert f5.var == s
assert f5 == Feedback(tf5) # When sys2 is not passed explicitly, it is assumed to be unit tf.
f6 = Feedback(TransferFunction(1, 1, p), tf4)
assert f6.args == (TransferFunction(1, 1, p), tf4, -1)
assert f6.var == p
f7 = -Feedback(tf4*tf6, TransferFunction(1, 1, p))
assert f7.args == (Series(TransferFunction(-1, 1, p), Series(tf4, tf6)), -TransferFunction(1, 1, p), -1)
assert f7.sys1 == Series(TransferFunction(-1, 1, p), Series(tf4, tf6))
# denominator can't be a Parallel instance
raises(TypeError, lambda: Feedback(tf1, tf2 + tf3))
raises(TypeError, lambda: Feedback(tf1, Matrix([1, 2, 3])))
raises(TypeError, lambda: Feedback(TransferFunction(1, 1, s), s - 1))
raises(TypeError, lambda: Feedback(1, 1))
# raises(ValueError, lambda: Feedback(TransferFunction(1, 1, s), TransferFunction(1, 1, s)))
raises(ValueError, lambda: Feedback(tf2, tf4*tf5))
raises(ValueError, lambda: Feedback(tf2, tf1, 1.5)) # `sign` can only be -1 or 1
raises(ValueError, lambda: Feedback(tf1, -tf1**-1)) # denominator can't be zero
raises(ValueError, lambda: Feedback(tf4, tf5)) # Both systems should use the same `var`
def test_Feedback_functions():
tf = TransferFunction(1, 1, s)
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
tf2 = TransferFunction(k, 1, s)
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
tf6 = TransferFunction(s - p, p + s, p)
assert tf / (tf + tf1) == Feedback(tf, tf1)
assert tf / (tf + tf1*tf2*tf3) == Feedback(tf, tf1*tf2*tf3)
assert tf1 / (tf + tf1*tf2*tf3) == Feedback(tf1, tf2*tf3)
assert (tf1*tf2) / (tf + tf1*tf2) == Feedback(tf1*tf2, tf)
assert (tf1*tf2) / (tf + tf1*tf2*tf5) == Feedback(tf1*tf2, tf5)
assert (tf1*tf2) / (tf + tf1*tf2*tf5*tf3) in (Feedback(tf1*tf2, tf5*tf3), Feedback(tf1*tf2, tf3*tf5))
assert tf4 / (TransferFunction(1, 1, p) + tf4*tf6) == Feedback(tf4, tf6)
assert tf5 / (tf + tf5) == Feedback(tf5, tf)
raises(TypeError, lambda: tf1*tf2*tf3 / (1 + tf1*tf2*tf3))
raises(ValueError, lambda: tf1*tf2*tf3 / tf3*tf5)
raises(ValueError, lambda: tf2*tf3 / (tf + tf2*tf3*tf4))
assert Feedback(tf, tf1*tf2*tf3).doit() == \
TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), k*(a2*p - s) + \
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Feedback(tf, tf1*tf2*tf3).sensitivity == \
1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
assert Feedback(tf1, tf2*tf3).doit() == \
TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (k*(a2*p - s) + \
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Feedback(tf1, tf2*tf3).sensitivity == \
1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
assert Feedback(tf1*tf2, tf5).doit() == \
TransferFunction(k*(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \
(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Feedback(tf1*tf2, tf5, 1).sensitivity == \
1/(-k*(-a0 + a1*s**2 + a2*s)/((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
assert Feedback(tf4, tf6).doit() == \
TransferFunction(p*(p + s)*(a0*p + p**a1 - s), p*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p)
assert -Feedback(tf4*tf6, TransferFunction(1, 1, p)).doit() == \
TransferFunction(-p*(-p + s)*(p + s)*(a0*p + p**a1 - s), p*(p + s)*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p)
assert Feedback(tf, tf).doit() == TransferFunction(1, 2, s)
assert Feedback(tf1, tf2*tf5).rewrite(TransferFunction) == \
TransferFunction((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \
(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Feedback(TransferFunction(1, 1, p), tf4).rewrite(TransferFunction) == \
TransferFunction(p, a0*p + p + p**a1 - s, p)
def test_MIMOFeedback_construction():
tf1 = TransferFunction(1, s, s)
tf2 = TransferFunction(s, s**3 - 1, s)
tf3 = TransferFunction(s, s + 1, s)
tf4 = TransferFunction(s, s**2 + 1, s)
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]])
tfm_3 = TransferFunctionMatrix([[tf3, tf4], [tf1, tf2]])
f1 = MIMOFeedback(tfm_1, tfm_2)
assert f1.args == (tfm_1, tfm_2, -1)
assert f1.sys1 == tfm_1
assert f1.sys2 == tfm_2
assert f1.var == s
assert f1.sign == -1
assert -(-f1) == f1
f2 = MIMOFeedback(tfm_2, tfm_1, 1)
assert f2.args == (tfm_2, tfm_1, 1)
assert f2.sys1 == tfm_2
assert f2.sys2 == tfm_1
assert f2.var == s
assert f2.sign == 1
f3 = MIMOFeedback(tfm_1, MIMOSeries(tfm_3, tfm_2))
assert f3.args == (tfm_1, MIMOSeries(tfm_3, tfm_2), -1)
assert f3.sys1 == tfm_1
assert f3.sys2 == MIMOSeries(tfm_3, tfm_2)
assert f3.var == s
assert f3.sign == -1
mat = Matrix([[1, 1/s], [0, 1]])
sys1 = controller = TransferFunctionMatrix.from_Matrix(mat, s)
f4 = MIMOFeedback(sys1, controller)
assert f4.args == (sys1, controller, -1)
assert f4.sys1 == f4.sys2 == sys1
def test_MIMOFeedback_errors():
tf1 = TransferFunction(1, s, s)
tf2 = TransferFunction(s, s**3 - 1, s)
tf3 = TransferFunction(s, s - 1, s)
tf4 = TransferFunction(s, s**2 + 1, s)
tf5 = TransferFunction(1, 1, s)
tf6 = TransferFunction(-1, s - 1, s)
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]])
tfm_3 = TransferFunctionMatrix.from_Matrix(eye(2), var=s)
tfm_4 = TransferFunctionMatrix([[tf1, tf5], [tf5, tf5]])
tfm_5 = TransferFunctionMatrix([[-tf3, tf3], [tf3, tf6]])
# tfm_4 is inverse of tfm_5. Therefore tfm_5*tfm_4 = I
tfm_6 = TransferFunctionMatrix([[-tf3]])
tfm_7 = TransferFunctionMatrix([[tf3, tf4]])
# Unsupported Types
raises(TypeError, lambda: MIMOFeedback(tf1, tf2))
raises(TypeError, lambda: MIMOFeedback(MIMOParallel(tfm_1, tfm_2), tfm_3))
# Shape Errors
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_6, 1))
raises(ValueError, lambda: MIMOFeedback(tfm_7, tfm_7))
# sign not 1/-1
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_2, -2))
# Non-Invertible Systems
raises(ValueError, lambda: MIMOFeedback(tfm_5, tfm_4, 1))
raises(ValueError, lambda: MIMOFeedback(tfm_4, -tfm_5))
raises(ValueError, lambda: MIMOFeedback(tfm_3, tfm_3, 1))
# Variable not same in both the systems
tfm_8 = TransferFunctionMatrix.from_Matrix(eye(2), var=p)
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_8, 1))
def test_MIMOFeedback_functions():
tf1 = TransferFunction(1, s, s)
tf2 = TransferFunction(s, s - 1, s)
tf3 = TransferFunction(1, 1, s)
tf4 = TransferFunction(-1, s - 1, s)
tfm_1 = TransferFunctionMatrix.from_Matrix(eye(2), var=s)
tfm_2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf3]])
tfm_3 = TransferFunctionMatrix([[-tf2, tf2], [tf2, tf4]])
tfm_4 = TransferFunctionMatrix([[tf1, tf2], [-tf2, tf1]])
# sensitivity, doit(), rewrite()
F_1 = MIMOFeedback(tfm_2, tfm_3)
F_2 = MIMOFeedback(tfm_2, MIMOSeries(tfm_4, -tfm_1), 1)
assert F_1.sensitivity == Matrix([[1/2, 0], [0, 1/2]])
assert F_2.sensitivity == Matrix([[(-2*s**4 + s**2)/(s**2 - s + 1),
(2*s**3 - s**2)/(s**2 - s + 1)], [-s**2, s]])
assert F_1.doit() == \
TransferFunctionMatrix(((TransferFunction(1, 2*s, s),
TransferFunction(1, 2, s)), (TransferFunction(1, 2, s),
TransferFunction(1, 2, s)))) == F_1.rewrite(TransferFunctionMatrix)
assert F_2.doit(cancel=False, expand=True) == \
TransferFunctionMatrix(((TransferFunction(-s**5 + 2*s**4 - 2*s**3 + s**2, s**5 - 2*s**4 + 3*s**3 - 2*s**2 + s, s),
TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
assert F_2.doit(cancel=False) == \
TransferFunctionMatrix(((TransferFunction(s*(2*s**3 - s**2)*(s**2 - s + 1) + \
(-2*s**4 + s**2)*(s**2 - s + 1), s*(s**2 - s + 1)**2, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)),
(TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
assert F_2.doit() == \
TransferFunctionMatrix(((TransferFunction(s*(-2*s**2 + s*(2*s - 1) + 1), s**2 - s + 1, s),
TransferFunction(2*s**3*(1 - s), s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(s*(1 - s), 1, s))))
assert F_2.doit(expand=True) == \
TransferFunctionMatrix(((TransferFunction(-s**2 + s, s**2 - s + 1, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)),
(TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
assert -(F_1.doit()) == (-F_1).doit() # First negating then calculating vs calculating then negating.
def test_TransferFunctionMatrix_construction():
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
tfm3_ = TransferFunctionMatrix([[-TF3]])
assert tfm3_.shape == (tfm3_.num_outputs, tfm3_.num_inputs) == (1, 1)
assert tfm3_.args == Tuple(Tuple(Tuple(-TF3)))
assert tfm3_.var == s
tfm5 = TransferFunctionMatrix([[TF1, -TF2], [TF3, tf5]])
assert tfm5.shape == (tfm5.num_outputs, tfm5.num_inputs) == (2, 2)
assert tfm5.args == Tuple(Tuple(Tuple(TF1, -TF2), Tuple(TF3, tf5)))
assert tfm5.var == s
tfm7 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5], [-tf5, TF2]])
assert tfm7.shape == (tfm7.num_outputs, tfm7.num_inputs) == (3, 2)
assert tfm7.args == Tuple(Tuple(Tuple(TF1, TF2), Tuple(TF3, -tf5), Tuple(-tf5, TF2)))
assert tfm7.var == s
# all transfer functions will use the same complex variable. tf4 uses 'p'.
raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF2], [tf4]]))
raises(ValueError, lambda: TransferFunctionMatrix([[TF1, tf4], [TF3, tf5]]))
# length of all the lists in the TFM should be equal.
raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF3, tf5]]))
raises(ValueError, lambda: TransferFunctionMatrix([[TF1, TF3], [tf5]]))
# lists should only support transfer functions in them.
raises(TypeError, lambda: TransferFunctionMatrix([[TF1, TF2], [TF3, Matrix([1, 2])]]))
raises(TypeError, lambda: TransferFunctionMatrix([[TF1, Matrix([1, 2])], [TF3, TF2]]))
# `arg` should strictly be nested list of TransferFunction
raises(ValueError, lambda: TransferFunctionMatrix([TF1, TF2, tf5]))
raises(ValueError, lambda: TransferFunctionMatrix([TF1]))
def test_TransferFunctionMatrix_functions():
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
# Classmethod (from_matrix)
mat_1 = ImmutableMatrix([
[s*(s + 1)*(s - 3)/(s**4 + 1), 2],
[p, p*(s + 1)/(s*(s**1 + 1))]
])
mat_2 = ImmutableMatrix([[(2*s + 1)/(s**2 - 9)]])
mat_3 = ImmutableMatrix([[1, 2], [3, 4]])
assert TransferFunctionMatrix.from_Matrix(mat_1, s) == \
TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)],
[TransferFunction(p, 1, s), TransferFunction(p, s, s)]])
assert TransferFunctionMatrix.from_Matrix(mat_2, s) == \
TransferFunctionMatrix([[TransferFunction(2*s + 1, s**2 - 9, s)]])
assert TransferFunctionMatrix.from_Matrix(mat_3, p) == \
TransferFunctionMatrix([[TransferFunction(1, 1, p), TransferFunction(2, 1, p)],
[TransferFunction(3, 1, p), TransferFunction(4, 1, p)]])
# Negating a TFM
tfm1 = TransferFunctionMatrix([[TF1], [TF2]])
assert -tfm1 == TransferFunctionMatrix([[-TF1], [-TF2]])
tfm2 = TransferFunctionMatrix([[TF1, TF2, TF3], [tf5, -TF1, -TF3]])
assert -tfm2 == TransferFunctionMatrix([[-TF1, -TF2, -TF3], [-tf5, TF1, TF3]])
# subs()
H_1 = TransferFunctionMatrix.from_Matrix(mat_1, s)
H_2 = TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(s**2 - a), s)]])
assert H_1.subs(p, 1) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]])
assert H_1.subs({p: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]])
assert H_1.subs({p: 1, s: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) # This should ignore `s` as it is `var`
assert H_2.subs(p, 2) == TransferFunctionMatrix([[TransferFunction(2*a*s, k*s**2, s), TransferFunction(2*s, k*(-a + s**2), s)]])
assert H_2.subs(k, 1) == TransferFunctionMatrix([[TransferFunction(a*p*s, s**2, s), TransferFunction(p*s, -a + s**2, s)]])
assert H_2.subs(a, 0) == TransferFunctionMatrix([[TransferFunction(0, k*s**2, s), TransferFunction(p*s, k*s**2, s)]])
assert H_2.subs({p: 1, k: 1, a: a0}) == TransferFunctionMatrix([[TransferFunction(a0*s, s**2, s), TransferFunction(s, -a0 + s**2, s)]])
# transpose()
assert H_1.transpose() == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(p, 1, s)], [TransferFunction(2, 1, s), TransferFunction(p, s, s)]])
assert H_2.transpose() == TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s)], [TransferFunction(p*s, k*(-a + s**2), s)]])
assert H_1.transpose().transpose() == H_1
assert H_2.transpose().transpose() == H_2
# elem_poles()
assert H_1.elem_poles() == [[[-sqrt(2)/2 - sqrt(2)*I/2, -sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2, sqrt(2)/2 + sqrt(2)*I/2], []],
[[], [0]]]
assert H_2.elem_poles() == [[[0, 0], [sqrt(a), -sqrt(a)]]]
assert tfm2.elem_poles() == [[[wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [], [-p/a2]],
[[-a0], [wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [-p/a2]]]
# elem_zeros()
assert H_1.elem_zeros() == [[[-1, 0, 3], []], [[], []]]
assert H_2.elem_zeros() == [[[0], [0]]]
assert tfm2.elem_zeros() == [[[], [], [a2*p]],
[[-a2/(2*a1) - sqrt(4*a0*a1 + a2**2)/(2*a1), -a2/(2*a1) + sqrt(4*a0*a1 + a2**2)/(2*a1)], [], [a2*p]]]
# doit()
H_3 = TransferFunctionMatrix([[Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))]])
H_4 = TransferFunctionMatrix([[Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))]])
assert H_3.doit() == TransferFunctionMatrix([[TransferFunction(s**2 - 2*s + 5, s*(s**3 - 3), s)]])
assert H_4.doit() == TransferFunctionMatrix([[TransferFunction(1, 4*s**4 - s**2 - 2*s + 5, s)]])
# _flat()
assert H_1._flat() == [TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s), TransferFunction(p, 1, s), TransferFunction(p, s, s)]
assert H_2._flat() == [TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(-a + s**2), s)]
assert H_3._flat() == [Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))]
assert H_4._flat() == [Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))]
# evalf()
assert H_1.evalf() == \
TransferFunctionMatrix(((TransferFunction(s*(s - 3.0)*(s + 1.0), s**4 + 1.0, s), TransferFunction(2.0, 1, s)), (TransferFunction(1.0*p, 1, s), TransferFunction(p, s, s))))
assert H_2.subs({a:3.141, p:2.88, k:2}).evalf() == \
TransferFunctionMatrix(((TransferFunction(4.5230399999999999494093572138808667659759521484375, s, s),
TransferFunction(2.87999999999999989341858963598497211933135986328125*s, 2.0*s**2 - 6.282000000000000028421709430404007434844970703125, s)),))
# simplify()
H_5 = TransferFunctionMatrix([[TransferFunction(s**5 + s**3 + s, s - s**2, s),
TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s)]])
assert H_5.simplify() == simplify(H_5) == \
TransferFunctionMatrix(((TransferFunction(-s**4 - s**2 - 1, s - 1, s), TransferFunction(s + 3, s + 5, s)),))
# expand()
assert (H_1.expand()
== TransferFunctionMatrix(((TransferFunction(s**3 - 2*s**2 - 3*s, s**4 + 1, s), TransferFunction(2, 1, s)),
(TransferFunction(p, 1, s), TransferFunction(p, s, s)))))
assert H_5.expand() == \
TransferFunctionMatrix(((TransferFunction(s**5 + s**3 + s, -s**2 + s, s), TransferFunction(s**2 + 2*s - 3, s**2 + 4*s - 5, s)),))
|
f8b5aea73157241f8254420e09fe00f5d306195cf2ee80bd0d7775800eba5f1f | from sympy import Dummy, arg, I, Abs, log
from sympy.abc import s, p, a
from sympy.external import import_module
from sympy.physics.control.control_plots import \
(pole_zero_numerical_data, pole_zero_plot, step_response_numerical_data,
step_response_plot, impulse_response_numerical_data,
impulse_response_plot, ramp_response_numerical_data,
ramp_response_plot, bode_magnitude_numerical_data,
bode_phase_numerical_data, bode_plot)
from sympy.physics.control.lti import (TransferFunction,
Series, Parallel, TransferFunctionMatrix)
from sympy.testing.pytest import raises, skip
matplotlib = import_module(
'matplotlib', import_kwargs={'fromlist': ['pyplot']},
catch=(RuntimeError,))
numpy = import_module('numpy')
tf1 = TransferFunction(1, p**2 + 0.5*p + 2, p)
tf2 = TransferFunction(p, 6*p**2 + 3*p + 1, p)
tf3 = TransferFunction(p, p**3 - 1, p)
tf4 = TransferFunction(10, p**3, p)
tf5 = TransferFunction(5, s**2 + 2*s + 10, s)
tf6 = TransferFunction(1, 1, s)
tf7 = TransferFunction(4*s*3 + 9*s**2 + 0.1*s + 11, 8*s**6 + 9*s**4 + 11, s)
ser1 = Series(tf4, TransferFunction(1, p - 5, p))
ser2 = Series(tf3, TransferFunction(p, p + 2, p))
par1 = Parallel(tf1, tf2)
par2 = Parallel(tf1, tf2, tf3)
def _to_tuple(a, b):
return tuple(a), tuple(b)
def _trim_tuple(a, b):
a, b = _to_tuple(a, b)
return tuple(a[0: 2] + a[len(a)//2 : len(a)//2 + 1] + a[-2:]), \
tuple(b[0: 2] + b[len(b)//2 : len(b)//2 + 1] + b[-2:])
def y_coordinate_equality(plot_data_func, evalf_func, system):
"""Checks whether the y-coordinate value of the plotted
data point is equal to the value of the function at a
particular x."""
x, y = plot_data_func(system)
x, y = _trim_tuple(x, y)
y_exp = tuple(evalf_func(system, x_i) for x_i in x)
return all(Abs(y_exp_i - y_i) < 1e-8 for y_exp_i, y_i in zip(y_exp, y))
def test_errors():
if not matplotlib:
skip("Matplotlib not the default backend")
# Invalid `system` check
tfm = TransferFunctionMatrix([[tf6, tf5], [tf5, tf6]])
expr = 1/(s**2 - 1)
raises(NotImplementedError, lambda: pole_zero_plot(tfm))
raises(NotImplementedError, lambda: pole_zero_numerical_data(expr))
raises(NotImplementedError, lambda: impulse_response_plot(expr))
raises(NotImplementedError, lambda: impulse_response_numerical_data(tfm))
raises(NotImplementedError, lambda: step_response_plot(tfm))
raises(NotImplementedError, lambda: step_response_numerical_data(expr))
raises(NotImplementedError, lambda: ramp_response_plot(expr))
raises(NotImplementedError, lambda: ramp_response_numerical_data(tfm))
raises(NotImplementedError, lambda: bode_plot(tfm))
# More than 1 variables
tf_a = TransferFunction(a, s + 1, s)
raises(ValueError, lambda: pole_zero_plot(tf_a))
raises(ValueError, lambda: pole_zero_numerical_data(tf_a))
raises(ValueError, lambda: impulse_response_plot(tf_a))
raises(ValueError, lambda: impulse_response_numerical_data(tf_a))
raises(ValueError, lambda: step_response_plot(tf_a))
raises(ValueError, lambda: step_response_numerical_data(tf_a))
raises(ValueError, lambda: ramp_response_plot(tf_a))
raises(ValueError, lambda: ramp_response_numerical_data(tf_a))
raises(ValueError, lambda: bode_plot(tf_a))
# lower_limit > 0 for response plots
raises(ValueError, lambda: impulse_response_plot(tf1, lower_limit=-1))
raises(ValueError, lambda: step_response_plot(tf1, lower_limit=-0.1))
raises(ValueError, lambda: ramp_response_plot(tf1, lower_limit=-4/3))
# slope in ramp_response_plot() is negative
raises(ValueError, lambda: ramp_response_plot(tf1, slope=-0.1))
def test_pole_zero():
if not matplotlib:
skip("Matplotlib not the default backend")
assert _to_tuple(*pole_zero_numerical_data(tf1)) == \
((), ((-0.24999999999999994+1.3919410907075054j), (-0.24999999999999994-1.3919410907075054j)))
assert _to_tuple(*pole_zero_numerical_data(tf2)) == \
((0.0,), ((-0.25+0.3227486121839514j), (-0.25-0.3227486121839514j)))
assert _to_tuple(*pole_zero_numerical_data(tf3)) == \
((0.0,), ((-0.5000000000000004+0.8660254037844395j),
(-0.5000000000000004-0.8660254037844395j), (0.9999999999999998+0j)))
assert _to_tuple(*pole_zero_numerical_data(tf7)) == \
(((-0.6722222222222222+0.8776898690157247j), (-0.6722222222222222-0.8776898690157247j)),
((2.220446049250313e-16+1.2797182176061541j), (2.220446049250313e-16-1.2797182176061541j),
(-0.7657146670186428+0.5744385024099056j), (-0.7657146670186428-0.5744385024099056j),
(0.7657146670186427+0.5744385024099052j), (0.7657146670186427-0.5744385024099052j)))
assert _to_tuple(*pole_zero_numerical_data(ser1)) == \
((), (5.0, 0.0, 0.0, 0.0))
assert _to_tuple(*pole_zero_numerical_data(par1)) == \
((-5.645751311064592, -0.5000000000000008, -0.3542486889354093),
((-0.24999999999999986+1.3919410907075052j),
(-0.24999999999999986-1.3919410907075052j), (-0.2499999999999998+0.32274861218395134j),
(-0.2499999999999998-0.32274861218395134j)))
def test_bode():
if not matplotlib:
skip("Matplotlib not the default backend")
def bode_phase_evalf(system, point):
expr = system.to_expr()
_w = Dummy("w", real=True)
w_expr = expr.subs({system.var: I*_w})
return arg(w_expr).subs({_w: point}).evalf()
def bode_mag_evalf(system, point):
expr = system.to_expr()
_w = Dummy("w", real=True)
w_expr = expr.subs({system.var: I*_w})
return 20*log(Abs(w_expr), 10).subs({_w: point}).evalf()
def test_bode_data(sys):
return y_coordinate_equality(bode_magnitude_numerical_data, bode_mag_evalf, sys) \
and y_coordinate_equality(bode_phase_numerical_data, bode_phase_evalf, sys)
assert test_bode_data(tf1)
assert test_bode_data(tf2)
assert test_bode_data(tf3)
assert test_bode_data(tf4)
assert test_bode_data(tf5)
def check_point_accuracy(a, b):
return all(Abs(a_i - b_i) < 1e-12 for \
a_i, b_i in zip(a, b))
def test_impulse_response():
if not matplotlib:
skip("Matplotlib not the default backend")
def impulse_res_tester(sys, expected_value):
x, y = _to_tuple(*impulse_response_numerical_data(sys,
adaptive=False, nb_of_points=10))
x_check = check_point_accuracy(x, expected_value[0])
y_check = check_point_accuracy(y, expected_value[1])
return x_check and y_check
exp1 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
(0.0, 0.544019738507865, 0.01993849743234938, -0.31140243360893216, -0.022852779906491996, 0.1778306498155759,
0.01962941084328499, -0.1013115194573652, -0.014975541213105696, 0.0575789724730714))
exp2 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.1666666675, 0.08389223412935855,
0.02338051973475047, -0.014966807776379383, -0.034645954223054234, -0.040560075735512804,
-0.037658628907103885, -0.030149507719590022, -0.021162090730736834, -0.012721292737437523))
exp3 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (4.369893391586999e-09, 1.1750333000630964,
3.2922404058312473, 9.432290008148343, 28.37098083007151, 86.18577464367974, 261.90356653762115,
795.6538758627842, 2416.9920942096983, 7342.159505206647))
exp4 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 6.17283950617284, 24.69135802469136,
55.555555555555564, 98.76543209876544, 154.320987654321, 222.22222222222226, 302.46913580246917,
395.0617283950618, 500.0))
exp5 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, -0.10455606138085417,
0.06757671513476461, -0.03234567568833768, 0.013582514927757873, -0.005273419510705473,
0.0019364083003354075, -0.000680070134067832, 0.00022969845960406913, -7.476094359583917e-05))
exp6 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
(-6.016699583000218e-09, 0.35039802056107394, 3.3728423827689884, 12.119846079276684,
25.86101014293389, 29.352480635282088, -30.49475907497664, -273.8717189554019, -863.2381702029659,
-1747.0262164682233))
exp7 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335,
4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779,
8.88888888888889, 10.0), (0.0, 18.934638095560974, 5346.93244680907, 1384609.8718249386,
358161126.65801865, 92645770015.70108, 23964739753087.42, 6198974342083139.0, 1.603492601616059e+18,
4.147764422869658e+20))
assert impulse_res_tester(tf1, exp1)
assert impulse_res_tester(tf2, exp2)
assert impulse_res_tester(tf3, exp3)
assert impulse_res_tester(tf4, exp4)
assert impulse_res_tester(tf5, exp5)
assert impulse_res_tester(tf7, exp6)
assert impulse_res_tester(ser1, exp7)
def test_step_response():
if not matplotlib:
skip("Matplotlib not the default backend")
def step_res_tester(sys, expected_value):
x, y = _to_tuple(*step_response_numerical_data(sys,
adaptive=False, nb_of_points=10))
x_check = check_point_accuracy(x, expected_value[0])
y_check = check_point_accuracy(y, expected_value[1])
return x_check and y_check
exp1 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
(-1.9193285738516863e-08, 0.42283495488246126, 0.7840485977945262, 0.5546841805655717,
0.33903033806932087, 0.4627251747410237, 0.5909907598988051, 0.5247213989553071,
0.4486997874319281, 0.4839358435839171))
exp2 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
(0.0, 0.13728409095645816, 0.19474559355325086, 0.1974909129243011, 0.16841657696573073,
0.12559777736159378, 0.08153828016664713, 0.04360471317348958, 0.015072994568868221,
-0.003636420058445484))
exp3 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
(0.0, 0.6314542141914303, 2.9356520038101035, 9.37731009663807, 28.452300356688376,
86.25721933273988, 261.9236645044672, 795.6435410577224, 2416.9786984578764, 7342.154119725917))
exp4 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
(0.0, 2.286236899862826, 18.28989519890261, 61.72839629629631, 146.31916159122088, 285.7796124828532,
493.8271703703705, 784.1792566529494, 1170.553292729767, 1666.6667))
exp5 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
(-3.999999997894577e-09, 0.6720357068882895, 0.4429938256137113, 0.5182010838004518,
0.4944139147159695, 0.5016379853883338, 0.4995466896527733, 0.5001154784851325,
0.49997448824584123, 0.5000039745919259))
exp6 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
(-1.5433688493882158e-09, 0.3428705539937336, 1.1253619102202777, 3.1849962651016517,
9.47532757182671, 28.727231099148135, 87.29426924860557, 265.2138681048606, 805.6636260007757,
2447.387582370878))
assert step_res_tester(tf1, exp1)
assert step_res_tester(tf2, exp2)
assert step_res_tester(tf3, exp3)
assert step_res_tester(tf4, exp4)
assert step_res_tester(tf5, exp5)
assert step_res_tester(ser2, exp6)
def test_ramp_response():
if not matplotlib:
skip("Matplotlib not the default backend")
def ramp_res_tester(sys, num_points, expected_value, slope=1):
x, y = _to_tuple(*ramp_response_numerical_data(sys,
slope=slope, adaptive=False, nb_of_points=num_points))
x_check = check_point_accuracy(x, expected_value[0])
y_check = check_point_accuracy(y, expected_value[1])
return x_check and y_check
exp1 = ((0.0, 2.0, 4.0, 6.0, 8.0, 10.0), (0.0, 0.7324667795033895, 1.9909720978650398,
2.7956587704217783, 3.9224897567931514, 4.85022655284895))
exp2 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
(2.4360213402019326e-08, 0.10175320182493253, 0.33057612497658406, 0.5967937263298935,
0.8431511866718248, 1.0398805391471613, 1.1776043125035738, 1.2600994825747305, 1.2981042689274653,
1.304684417610106))
exp3 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (-3.9329040468771836e-08,
0.34686634635794555, 2.9998828170537903, 12.33303690737476, 40.993913948137795, 127.84145222317912,
391.41713691996, 1192.0006858708389, 3623.9808672503405, 11011.728034546572))
exp4 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 1.9051973784484078, 30.483158055174524,
154.32098765432104, 487.7305288827924, 1190.7483615302544, 2469.1358024691367, 4574.3789056546275,
7803.688462124678, 12500.0))
exp5 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 3.8844361856975635, 9.141792069209865,
14.096349157657231, 19.09783068994694, 24.10179770390321, 29.09907319114121, 34.10040420185154,
39.09983919254265, 44.10006013058409))
exp6 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 1.1111111111111112, 2.2222222222222223,
3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0))
assert ramp_res_tester(tf1, 6, exp1)
assert ramp_res_tester(tf2, 10, exp2, 1.2)
assert ramp_res_tester(tf3, 10, exp3, 1.5)
assert ramp_res_tester(tf4, 10, exp4, 3)
assert ramp_res_tester(tf5, 10, exp5, 9)
assert ramp_res_tester(tf6, 10, exp6)
|
9b7c2e8d1c721eaf3b19f74f083365cbd41a4e03f68cca6aefc6ea23435a4376 | from sympy.core.backend import (cos, expand, Matrix, sin, symbols, tan, sqrt, S,
zeros)
from sympy import simplify
from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame, Point,
RigidBody, KanesMethod, inertia, Particle,
dot)
def test_one_dof():
# This is for a 1 dof spring-mass-damper case.
# It is described in more detail in the KanesMethod docstring.
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u', 1)
m, c, k = symbols('m c k')
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, u * N.x)
kd = [qd - u]
FL = [(P, (-k * q - c * u) * N.x)]
pa = Particle('pa', P, m)
BL = [pa]
KM = KanesMethod(N, [q], [u], kd)
KM.kanes_equations(BL, FL)
assert KM.bodies == BL
assert KM.loads == FL
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
assert expand(rhs[0]) == expand(-(q * k + u * c) / m)
assert simplify(KM.rhs() -
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)
assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1], [-k/m, -c/m]]))
def test_two_dof():
# This is for a 2 d.o.f., 2 particle spring-mass-damper.
# The first coordinate is the displacement of the first particle, and the
# second is the relative displacement between the first and second
# particles. Speeds are defined as the time derivatives of the particles.
q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
N = ReferenceFrame('N')
P1 = Point('P1')
P2 = Point('P2')
P1.set_vel(N, u1 * N.x)
P2.set_vel(N, (u1 + u2) * N.x)
kd = [q1d - u1, q2d - u2]
# Now we create the list of forces, then assign properties to each
# particle, then create a list of all particles.
FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
q2 - c2 * u2) * N.x)]
pa1 = Particle('pa1', P1, m)
pa2 = Particle('pa2', P2, m)
BL = [pa1, pa2]
# Finally we create the KanesMethod object, specify the inertial frame,
# pass relevant information, and form Fr & Fr*. Then we calculate the mass
# matrix and forcing terms, and finally solve for the udots.
KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
KM.kanes_equations(BL, FL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
c2 * u2) / m)
assert simplify(KM.rhs() -
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(4, 1)
def test_pend():
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u', 1)
m, l, g = symbols('m l g')
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
kd = [qd - u]
FL = [(P, m * g * N.x)]
pa = Particle('pa', P, m)
BL = [pa]
KM = KanesMethod(N, [q], [u], kd)
KM.kanes_equations(BL, FL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
rhs.simplify()
assert expand(rhs[0]) == expand(-g / l * sin(q))
assert simplify(KM.rhs() -
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)
def test_rolling_disc():
# Rolling Disc Example
# Here the rolling disc is formed from the contact point up, removing the
# need to introduce generalized speeds. Only 3 configuration and three
# speed variables are need to describe this system, along with the disc's
# mass and radius, and the local gravity (note that mass will drop out).
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
r, m, g = symbols('r m g')
# The kinematics are formed by a series of simple rotations. Each simple
# rotation creates a new frame, and the next rotation is defined by the new
# frame's basis vectors. This example uses a 3-1-2 series of rotations, or
# Z, X, Y series of rotations. Angular velocity for this is defined using
# the second frame's basis (the lean frame).
N = ReferenceFrame('N')
Y = N.orientnew('Y', 'Axis', [q1, N.z])
L = Y.orientnew('L', 'Axis', [q2, Y.x])
R = L.orientnew('R', 'Axis', [q3, L.y])
w_R_N_qd = R.ang_vel_in(N)
R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
# This is the translational kinematics. We create a point with no velocity
# in N; this is the contact point between the disc and ground. Next we form
# the position vector from the contact point to the disc's center of mass.
# Finally we form the velocity and acceleration of the disc.
C = Point('C')
C.set_vel(N, 0)
Dmc = C.locatenew('Dmc', r * L.z)
Dmc.v2pt_theory(C, N, R)
# This is a simple way to form the inertia dyadic.
I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
# Kinematic differential equations; how the generalized coordinate time
# derivatives relate to generalized speeds.
kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]
# Creation of the force list; it is the gravitational force at the mass
# center of the disc. Then we create the disc by assigning a Point to the
# center of mass attribute, a ReferenceFrame to the frame attribute, and mass
# and inertia. Then we form the body list.
ForceList = [(Dmc, - m * g * Y.z)]
BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
BodyList = [BodyD]
# Finally we form the equations of motion, using the same steps we did
# before. Specify inertial frame, supply generalized speeds, supply
# kinematic differential equation dictionary, compute Fr from the force
# list and Fr* from the body list, compute the mass matrix and forcing
# terms, then solve for the u dots (time derivatives of the generalized
# speeds).
KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd)
KM.kanes_equations(BodyList, ForceList)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
kdd = KM.kindiffdict()
rhs = rhs.subs(kdd)
rhs.simplify()
assert rhs.expand() == Matrix([(6*u2*u3*r - u3**2*r*tan(q2) +
4*g*sin(q2))/(5*r), -2*u1*u3/3, u1*(-2*u2 + u3*tan(q2))]).expand()
assert simplify(KM.rhs() -
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(6, 1)
# This code tests our output vs. benchmark values. When r=g=m=1, the
# critical speed (where all eigenvalues of the linearized equations are 0)
# is 1 / sqrt(3) for the upright case.
A = KM.linearize(A_and_B=True)[0]
A_upright = A.subs({r: 1, g: 1, m: 1}).subs({q1: 0, q2: 0, q3: 0, u1: 0, u3: 0})
import sympy
assert sympy.sympify(A_upright.subs({u2: 1 / sqrt(3)})).eigenvals() == {S.Zero: 6}
def test_aux():
# Same as above, except we have 2 auxiliary speeds for the ground contact
# point, which is known to be zero. In one case, we go through then
# substitute the aux. speeds in at the end (they are zero, as well as their
# derivative), in the other case, we use the built-in auxiliary speed part
# of KanesMethod. The equations from each should be the same.
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
u4d, u5d = dynamicsymbols('u4, u5', 1)
r, m, g = symbols('r m g')
N = ReferenceFrame('N')
Y = N.orientnew('Y', 'Axis', [q1, N.z])
L = Y.orientnew('L', 'Axis', [q2, Y.x])
R = L.orientnew('R', 'Axis', [q3, L.y])
w_R_N_qd = R.ang_vel_in(N)
R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
C = Point('C')
C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
Dmc = C.locatenew('Dmc', r * L.z)
Dmc.v2pt_theory(C, N, R)
Dmc.a2pt_theory(C, N, R)
I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]
ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
BodyList = [BodyD]
KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3, u4, u5],
kd_eqs=kd)
(fr, frstar) = KM.kanes_equations(BodyList, ForceList)
fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
KM2 = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd,
u_auxiliary=[u4, u5])
(fr2, frstar2) = KM2.kanes_equations(BodyList, ForceList)
fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
frstar.simplify()
frstar2.simplify()
assert (fr - fr2).expand() == Matrix([0, 0, 0, 0, 0])
assert (frstar - frstar2).expand() == Matrix([0, 0, 0, 0, 0])
def test_parallel_axis():
# This is for a 2 dof inverted pendulum on a cart.
# This tests the parallel axis code in KanesMethod. The inertia of the
# pendulum is defined about the hinge, not about the center of mass.
# Defining the constants and knowns of the system
gravity = symbols('g')
k, ls = symbols('k ls')
a, mA, mC = symbols('a mA mC')
F = dynamicsymbols('F')
Ix, Iy, Iz = symbols('Ix Iy Iz')
# Declaring the Generalized coordinates and speeds
q1, q2 = dynamicsymbols('q1 q2')
q1d, q2d = dynamicsymbols('q1 q2', 1)
u1, u2 = dynamicsymbols('u1 u2')
u1d, u2d = dynamicsymbols('u1 u2', 1)
# Creating reference frames
N = ReferenceFrame('N')
A = ReferenceFrame('A')
A.orient(N, 'Axis', [-q2, N.z])
A.set_ang_vel(N, -u2 * N.z)
# Origin of Newtonian reference frame
O = Point('O')
# Creating and Locating the positions of the cart, C, and the
# center of mass of the pendulum, A
C = O.locatenew('C', q1 * N.x)
Ao = C.locatenew('Ao', a * A.y)
# Defining velocities of the points
O.set_vel(N, 0)
C.set_vel(N, u1 * N.x)
Ao.v2pt_theory(C, N, A)
Cart = Particle('Cart', C, mC)
Pendulum = RigidBody('Pendulum', Ao, A, mA, (inertia(A, Ix, Iy, Iz), C))
# kinematical differential equations
kindiffs = [q1d - u1, q2d - u2]
bodyList = [Cart, Pendulum]
forceList = [(Ao, -N.y * gravity * mA),
(C, -N.y * gravity * mC),
(C, -N.x * k * (q1 - ls)),
(C, N.x * F)]
km = KanesMethod(N, [q1, q2], [u1, u2], kindiffs)
(fr, frstar) = km.kanes_equations(bodyList, forceList)
mm = km.mass_matrix_full
assert mm[3, 3] == Iz
def test_input_format():
# 1 dof problem from test_one_dof
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u', 1)
m, c, k = symbols('m c k')
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, u * N.x)
kd = [qd - u]
FL = [(P, (-k * q - c * u) * N.x)]
pa = Particle('pa', P, m)
BL = [pa]
KM = KanesMethod(N, [q], [u], kd)
# test for input format kane.kanes_equations((body1, body2, particle1))
assert KM.kanes_equations(BL)[0] == Matrix([0])
# test for input format kane.kanes_equations(bodies=(body1, body 2), loads=(load1,load2))
assert KM.kanes_equations(bodies=BL, loads=None)[0] == Matrix([0])
# test for input format kane.kanes_equations(bodies=(body1, body 2), loads=None)
assert KM.kanes_equations(BL, loads=None)[0] == Matrix([0])
# test for input format kane.kanes_equations(bodies=(body1, body 2))
assert KM.kanes_equations(BL)[0] == Matrix([0])
# test for input format kane.kanes_equations(bodies=(body1, body2), loads=[])
assert KM.kanes_equations(BL, [])[0] == Matrix([0])
# test for error raised when a wrong force list (in this case a string) is provided
from sympy.testing.pytest import raises
raises(ValueError, lambda: KM._form_fr('bad input'))
# 1 dof problem from test_one_dof with FL & BL in instance
KM = KanesMethod(N, [q], [u], kd, bodies=BL, forcelist=FL)
assert KM.kanes_equations()[0] == Matrix([-c*u - k*q])
# 2 dof problem from test_two_dof
q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
N = ReferenceFrame('N')
P1 = Point('P1')
P2 = Point('P2')
P1.set_vel(N, u1 * N.x)
P2.set_vel(N, (u1 + u2) * N.x)
kd = [q1d - u1, q2d - u2]
FL = ((P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
q2 - c2 * u2) * N.x))
pa1 = Particle('pa1', P1, m)
pa2 = Particle('pa2', P2, m)
BL = (pa1, pa2)
KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
# test for input format
# kane.kanes_equations((body1, body2), (load1, load2))
KM.kanes_equations(BL, FL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
c2 * u2) / m)
|
3db6d98705d689c0a252d1e96f989945652d415645f4fa970511bd550ca0da09 | from sympy import symbols, Matrix, cos, sin, expand, trigsimp
from sympy.physics.mechanics import (PinJoint, JointsMethod, Body, KanesMethod,
PrismaticJoint, LagrangesMethod, inertia)
from sympy.physics.vector import dynamicsymbols, ReferenceFrame
from sympy.testing.pytest import raises
t = dynamicsymbols._t
def test_jointsmethod():
P = Body('P')
C = Body('C')
Pin = PinJoint('P1', P, C)
C_ixx, g = symbols('C_ixx g')
theta, omega = dynamicsymbols('theta_P1, omega_P1')
P.apply_force(g*P.y)
method = JointsMethod(P, Pin)
assert method.frame == P.frame
assert method.bodies == [C, P]
assert method.loads == [(P.masscenter, g*P.frame.y)]
assert method.q == [theta]
assert method.u == [omega]
assert method.kdes == [omega - theta.diff()]
soln = method.form_eoms()
assert soln == Matrix([[-C_ixx*omega.diff()]])
assert method.forcing_full == Matrix([[omega], [0]])
assert method.mass_matrix_full == Matrix([[1, 0], [0, C_ixx]])
assert isinstance(method.method, KanesMethod)
def test_jointmethod_duplicate_coordinates_speeds():
P = Body('P')
C = Body('C')
T = Body('T')
q, u = dynamicsymbols('q u')
P1 = PinJoint('P1', P, C, q)
P2 = PrismaticJoint('P2', C, T, q)
raises(ValueError, lambda: JointsMethod(P, P1, P2))
P1 = PinJoint('P1', P, C, speeds=u)
P2 = PrismaticJoint('P2', C, T, speeds=u)
raises(ValueError, lambda: JointsMethod(P, P1, P2))
P1 = PinJoint('P1', P, C, q, u)
P2 = PrismaticJoint('P2', C, T, q, u)
raises(ValueError, lambda: JointsMethod(P, P1, P2))
def test_complete_simple_double_pendulum():
q1, q2 = dynamicsymbols('q1 q2')
u1, u2 = dynamicsymbols('u1 u2')
m, l, g = symbols('m l g')
C = Body('C') # ceiling
PartP = Body('P', mass=m)
PartR = Body('R', mass=m)
J1 = PinJoint('J1', C, PartP, speeds=u1, coordinates=q1,
child_joint_pos=-l*PartP.x, parent_axis=C.z,
child_axis=PartP.z)
J2 = PinJoint('J2', PartP, PartR, speeds=u2, coordinates=q2,
child_joint_pos=-l*PartR.x, parent_axis=PartP.z,
child_axis=PartR.z)
PartP.apply_force(m*g*C.x)
PartR.apply_force(m*g*C.x)
method = JointsMethod(C, J1, J2)
method.form_eoms()
assert expand(method.mass_matrix_full) == Matrix([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 2*l**2*m*cos(q2) + 3*l**2*m, l**2*m*cos(q2) + l**2*m],
[0, 0, l**2*m*cos(q2) + l**2*m, l**2*m]])
assert trigsimp(method.forcing_full) == trigsimp(Matrix([[u1], [u2], [-g*l*m*(sin(q1 + q2) + sin(q1)) -
g*l*m*sin(q1) + l**2*m*(2*u1 + u2)*u2*sin(q2)],
[-g*l*m*sin(q1 + q2) - l**2*m*u1**2*sin(q2)]]))
def test_two_dof_joints():
q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
W = Body('W')
B1 = Body('B1', mass=m)
B2 = Body('B2', mass=m)
J1 = PrismaticJoint('J1', W, B1, coordinates=q1, speeds=u1)
J2 = PrismaticJoint('J2', B1, B2, coordinates=q2, speeds=u2)
W.apply_force(k1*q1*W.x, reaction_body=B1)
W.apply_force(c1*u1*W.x, reaction_body=B1)
B1.apply_force(k2*q2*W.x, reaction_body=B2)
B1.apply_force(c2*u2*W.x, reaction_body=B2)
method = JointsMethod(W, J1, J2)
method.form_eoms()
MM = method.mass_matrix
forcing = method.forcing
rhs = MM.LUsolve(forcing)
assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
c2 * u2) / m)
def test_simple_pedulum():
l, m, g = symbols('l m g')
C = Body('C')
b = Body('b', mass=m)
q = dynamicsymbols('q')
P = PinJoint('P', C, b, speeds=q.diff(t), coordinates=q, child_joint_pos = -l*b.x,
parent_axis=C.z, child_axis=b.z)
b.potential_energy = - m * g * l * cos(q)
method = JointsMethod(C, P)
method.form_eoms(LagrangesMethod)
rhs = method.rhs()
assert rhs[1] == -g*sin(q)/l
def test_chaos_pendulum():
#https://www.pydy.org/examples/chaos_pendulum.html
mA, mB, lA, lB, IAxx, IBxx, IByy, IBzz, g = symbols('mA, mB, lA, lB, IAxx, IBxx, IByy, IBzz, g')
theta, phi, omega, alpha = dynamicsymbols('theta phi omega alpha')
A = ReferenceFrame('A')
B = ReferenceFrame('B')
rod = Body('rod', mass=mA, frame=A, central_inertia=inertia(A, IAxx, IAxx, 0))
plate = Body('plate', mass=mB, frame=B, central_inertia=inertia(B, IBxx, IByy, IBzz))
C = Body('C')
J1 = PinJoint('J1', C, rod, coordinates=theta, speeds=omega,
child_joint_pos=-lA*rod.z, parent_axis=C.y, child_axis=rod.y)
J2 = PinJoint('J2', rod, plate, coordinates=phi, speeds=alpha,
parent_joint_pos=(lB-lA)*rod.z, parent_axis=rod.z, child_axis=plate.z)
rod.apply_force(mA*g*C.z)
plate.apply_force(mB*g*C.z)
method = JointsMethod(C, J1, J2)
method.form_eoms()
MM = method.mass_matrix
forcing = method.forcing
rhs = MM.LUsolve(forcing)
xd = (-2 * IBxx * alpha * omega * sin(phi) * cos(phi) + 2 * IByy * alpha * omega * sin(phi) *
cos(phi) - g * lA * mA * sin(theta) - g * lB * mB * sin(theta)) / (IAxx + IBxx *
sin(phi)**2 + IByy * cos(phi)**2 + lA**2 * mA + lB**2 * mB)
assert (rhs[0] - xd).simplify() == 0
xd = (IBxx - IByy) * omega**2 * sin(phi) * cos(phi) / IBzz
assert (rhs[1] - xd).simplify() == 0
|
aef7db49d1fcf8b45f4596b34f712c0b97983bc5c6395662bbd2a5e8b3b3cb41 | from sympy.core.backend import Symbol, symbols, sin, cos, Matrix
from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols
from sympy.physics.mechanics import inertia, Body
from sympy.testing.pytest import raises
def test_default():
body = Body('body')
assert body.name == 'body'
assert body.loads == []
point = Point('body_masscenter')
point.set_vel(body.frame, 0)
com = body.masscenter
frame = body.frame
assert com.vel(frame) == point.vel(frame)
assert body.mass == Symbol('body_mass')
ixx, iyy, izz = symbols('body_ixx body_iyy body_izz')
ixy, iyz, izx = symbols('body_ixy body_iyz body_izx')
assert body.inertia == (inertia(body.frame, ixx, iyy, izz, ixy, iyz, izx),
body.masscenter)
def test_custom_rigid_body():
# Body with RigidBody.
rigidbody_masscenter = Point('rigidbody_masscenter')
rigidbody_mass = Symbol('rigidbody_mass')
rigidbody_frame = ReferenceFrame('rigidbody_frame')
body_inertia = inertia(rigidbody_frame, 1, 0, 0)
rigid_body = Body('rigidbody_body', rigidbody_masscenter, rigidbody_mass,
rigidbody_frame, body_inertia)
com = rigid_body.masscenter
frame = rigid_body.frame
rigidbody_masscenter.set_vel(rigidbody_frame, 0)
assert com.vel(frame) == rigidbody_masscenter.vel(frame)
assert com.pos_from(com) == rigidbody_masscenter.pos_from(com)
assert rigid_body.mass == rigidbody_mass
assert rigid_body.inertia == (body_inertia, rigidbody_masscenter)
assert rigid_body.is_rigidbody
assert hasattr(rigid_body, 'masscenter')
assert hasattr(rigid_body, 'mass')
assert hasattr(rigid_body, 'frame')
assert hasattr(rigid_body, 'inertia')
def test_particle_body():
# Body with Particle
particle_masscenter = Point('particle_masscenter')
particle_mass = Symbol('particle_mass')
particle_frame = ReferenceFrame('particle_frame')
particle_body = Body('particle_body', particle_masscenter, particle_mass,
particle_frame)
com = particle_body.masscenter
frame = particle_body.frame
particle_masscenter.set_vel(particle_frame, 0)
assert com.vel(frame) == particle_masscenter.vel(frame)
assert com.pos_from(com) == particle_masscenter.pos_from(com)
assert particle_body.mass == particle_mass
assert not hasattr(particle_body, "_inertia")
assert hasattr(particle_body, 'frame')
assert hasattr(particle_body, 'masscenter')
assert hasattr(particle_body, 'mass')
assert not particle_body.is_rigidbody
def test_particle_body_add_force():
# Body with Particle
particle_masscenter = Point('particle_masscenter')
particle_mass = Symbol('particle_mass')
particle_frame = ReferenceFrame('particle_frame')
particle_body = Body('particle_body', particle_masscenter, particle_mass,
particle_frame)
a = Symbol('a')
force_vector = a * particle_body.frame.x
particle_body.apply_force(force_vector, particle_body.masscenter)
assert len(particle_body.loads) == 1
point = particle_body.masscenter.locatenew(
particle_body._name + '_point0', 0)
point.set_vel(particle_body.frame, 0)
force_point = particle_body.loads[0][0]
frame = particle_body.frame
assert force_point.vel(frame) == point.vel(frame)
assert force_point.pos_from(force_point) == point.pos_from(force_point)
assert particle_body.loads[0][1] == force_vector
def test_body_add_force():
# Body with RigidBody.
rigidbody_masscenter = Point('rigidbody_masscenter')
rigidbody_mass = Symbol('rigidbody_mass')
rigidbody_frame = ReferenceFrame('rigidbody_frame')
body_inertia = inertia(rigidbody_frame, 1, 0, 0)
rigid_body = Body('rigidbody_body', rigidbody_masscenter, rigidbody_mass,
rigidbody_frame, body_inertia)
l = Symbol('l')
Fa = Symbol('Fa')
point = rigid_body.masscenter.locatenew(
'rigidbody_body_point0',
l * rigid_body.frame.x)
point.set_vel(rigid_body.frame, 0)
force_vector = Fa * rigid_body.frame.z
# apply_force with point
rigid_body.apply_force(force_vector, point)
assert len(rigid_body.loads) == 1
force_point = rigid_body.loads[0][0]
frame = rigid_body.frame
assert force_point.vel(frame) == point.vel(frame)
assert force_point.pos_from(force_point) == point.pos_from(force_point)
assert rigid_body.loads[0][1] == force_vector
# apply_force without point
rigid_body.apply_force(force_vector)
assert len(rigid_body.loads) == 2
assert rigid_body.loads[1][1] == force_vector
# passing something else than point
raises(TypeError, lambda: rigid_body.apply_force(force_vector, 0))
raises(TypeError, lambda: rigid_body.apply_force(0))
def test_body_add_torque():
body = Body('body')
torque_vector = body.frame.x
body.apply_torque(torque_vector)
assert len(body.loads) == 1
assert body.loads[0] == (body.frame, torque_vector)
raises(TypeError, lambda: body.apply_torque(0))
def test_body_masscenter_vel():
A = Body('A')
N = ReferenceFrame('N')
B = Body('B', frame=N)
A.masscenter.set_vel(N, N.z)
assert A.masscenter_vel(B) == N.z
assert A.masscenter_vel(N) == N.z
def test_body_ang_vel():
A = Body('A')
N = ReferenceFrame('N')
B = Body('B', frame=N)
A.frame.set_ang_vel(N, N.y)
assert A.ang_vel_in(B) == N.y
assert B.ang_vel_in(A) == -N.y
assert A.ang_vel_in(N) == N.y
def test_body_dcm():
A = Body('A')
B = Body('B')
A.frame.orient_axis(B.frame, B.frame.z, 10)
assert A.dcm(B) == Matrix([[cos(10), sin(10), 0], [-sin(10), cos(10), 0], [0, 0, 1]])
assert A.dcm(B.frame) == Matrix([[cos(10), sin(10), 0], [-sin(10), cos(10), 0], [0, 0, 1]])
def test_body_axis():
N = ReferenceFrame('N')
B = Body('B', frame=N)
assert B.x == N.x
assert B.y == N.y
assert B.z == N.z
def test_apply_force_multiple_one_point():
a, b = symbols('a b')
P = Point('P')
B = Body('B')
f1 = a*B.x
f2 = b*B.y
B.apply_force(f1, P)
assert B.loads == [(P, f1)]
B.apply_force(f2, P)
assert B.loads == [(P, f1+f2)]
def test_apply_force():
f, g = symbols('f g')
q, x, v1, v2 = dynamicsymbols('q x v1 v2')
P1 = Point('P1')
P2 = Point('P2')
B1 = Body('B1')
B2 = Body('B2')
N = ReferenceFrame('N')
P1.set_vel(B1.frame, v1*B1.x)
P2.set_vel(B2.frame, v2*B2.x)
force = f*q*N.z # time varying force
B1.apply_force(force, P1, B2, P2) #applying equal and opposite force on moving points
assert B1.loads == [(P1, force)]
assert B2.loads == [(P2, -force)]
g1 = B1.mass*g*N.y
g2 = B2.mass*g*N.y
B1.apply_force(g1) #applying gravity on B1 masscenter
B2.apply_force(g2) #applying gravity on B2 masscenter
assert B1.loads == [(P1,force), (B1.masscenter, g1)]
assert B2.loads == [(P2, -force), (B2.masscenter, g2)]
force2 = x*N.x
B1.apply_force(force2, reaction_body=B2) #Applying time varying force on masscenter
assert B1.loads == [(P1, force), (B1.masscenter, force2+g1)]
assert B2.loads == [(P2, -force), (B2.masscenter, -force2+g2)]
def test_apply_torque():
t = symbols('t')
q = dynamicsymbols('q')
B1 = Body('B1')
B2 = Body('B2')
N = ReferenceFrame('N')
torque = t*q*N.x
B1.apply_torque(torque, B2) #Applying equal and opposite torque
assert B1.loads == [(B1.frame, torque)]
assert B2.loads == [(B2.frame, -torque)]
torque2 = t*N.y
B1.apply_torque(torque2)
assert B1.loads == [(B1.frame, torque+torque2)]
def test_clear_load():
a = symbols('a')
P = Point('P')
B = Body('B')
force = a*B.z
B.apply_force(force, P)
assert B.loads == [(P, force)]
B.clear_loads()
assert B.loads == []
def test_remove_load():
P1 = Point('P1')
P2 = Point('P2')
B = Body('B')
f1 = B.x
f2 = B.y
B.apply_force(f1, P1)
B.apply_force(f2, P2)
B.loads == [(P1, f1), (P2, f2)]
B.remove_load(P2)
B.loads == [(P1, f1)]
B.apply_torque(f1.cross(f2))
B.loads == [(P1, f1), (B.frame, f1.cross(f2))]
B.remove_load()
B.loads == [(P1, f1)]
def test_apply_loads_on_multi_degree_freedom_holonomic_system():
"""Example based on: https://pydy.readthedocs.io/en/latest/examples/multidof-holonomic.html"""
W = Body('W') #Wall
B = Body('B') #Block
P = Body('P') #Pendulum
b = Body('b') #bob
q1, q2 = dynamicsymbols('q1 q2') #generalized coordinates
k, c, g, kT = symbols('k c g kT') #constants
F, T = dynamicsymbols('F T') #Specified forces
#Applying forces
B.apply_force(F*W.x)
W.apply_force(k*q1*W.x, reaction_body=B) #Spring force
W.apply_force(c*q1.diff()*W.x, reaction_body=B) #dampner
P.apply_force(P.mass*g*W.y)
b.apply_force(b.mass*g*W.y)
#Applying torques
P.apply_torque(kT*q2*W.z, reaction_body=b)
P.apply_torque(T*W.z)
assert B.loads == [(B.masscenter, (F - k*q1 - c*q1.diff())*W.x)]
assert P.loads == [(P.masscenter, P.mass*g*W.y), (P.frame, (T + kT*q2)*W.z)]
assert b.loads == [(b.masscenter, b.mass*g*W.y), (b.frame, -kT*q2*W.z)]
assert W.loads == [(W.masscenter, (c*q1.diff() + k*q1)*W.x)]
|
281bcfc8f891954e9924928bbf578a430966ab6ad1fc3516e2be0fb9f16bad44 | from sympy import Basic
from sympy import S
from sympy.core.expr import Expr
from sympy.core.numbers import Integer
from sympy.core.sympify import sympify
from sympy.core.kind import Kind, NumberKind, UndefinedKind
from sympy.core.compatibility import SYMPY_INTS
from sympy.printing.defaults import Printable
import itertools
from collections.abc import Iterable
class ArrayKind(Kind):
"""
Kind for N-dimensional array in SymPy.
This kind represents the multidimensional array that algebraic
operations are defined. Basic class for this kind is ``NDimArray``,
but any expression representing the array can have this.
Parameters
==========
element_kind : Kind
Kind of the element. Default is :obj:NumberKind `<sympy.core.kind.NumberKind>`,
which means that the array contains only numbers.
Examples
========
Any instance of array class has ``ArrayKind``.
>>> from sympy import NDimArray
>>> NDimArray([1,2,3]).kind
ArrayKind(NumberKind)
Although expressions representing an array may be not instance of
array class, it will have ``ArrayKind`` as well.
>>> from sympy import Integral
>>> from sympy.tensor.array import NDimArray
>>> from sympy.abc import x
>>> intA = Integral(NDimArray([1,2,3]), x)
>>> isinstance(intA, NDimArray)
False
>>> intA.kind
ArrayKind(NumberKind)
Use ``isinstance()`` to check for ``ArrayKind` without specifying
the element kind. Use ``is`` with specifying the element kind.
>>> from sympy.tensor.array import ArrayKind
>>> from sympy.core.kind import NumberKind
>>> boolA = NDimArray([True, False])
>>> isinstance(boolA.kind, ArrayKind)
True
>>> boolA.kind is ArrayKind(NumberKind)
False
See Also
========
shape : Function to return the shape of objects with ``MatrixKind``.
"""
def __new__(cls, element_kind=NumberKind):
obj = super().__new__(cls, element_kind)
obj.element_kind = element_kind
return obj
def __repr__(self):
return "ArrayKind(%s)" % self.element_kind
class NDimArray(Printable):
"""
Examples
========
Create an N-dim array of zeros:
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(2, 3, 4)
>>> a
[[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]
Create an N-dim array from a list;
>>> a = MutableDenseNDimArray([[2, 3], [4, 5]])
>>> a
[[2, 3], [4, 5]]
>>> b = MutableDenseNDimArray([[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]])
>>> b
[[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]]
Create an N-dim array from a flat list with dimension shape:
>>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3))
>>> a
[[1, 2, 3], [4, 5, 6]]
Create an N-dim array from a matrix:
>>> from sympy import Matrix
>>> a = Matrix([[1,2],[3,4]])
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> b = MutableDenseNDimArray(a)
>>> b
[[1, 2], [3, 4]]
Arithmetic operations on N-dim arrays
>>> a = MutableDenseNDimArray([1, 1, 1, 1], (2, 2))
>>> b = MutableDenseNDimArray([4, 4, 4, 4], (2, 2))
>>> c = a + b
>>> c
[[5, 5], [5, 5]]
>>> a - b
[[-3, -3], [-3, -3]]
"""
_diff_wrt = True
is_scalar = False
def __new__(cls, iterable, shape=None, **kwargs):
from sympy.tensor.array import ImmutableDenseNDimArray
return ImmutableDenseNDimArray(iterable, shape, **kwargs)
@property
def kind(self):
elem_kinds = set(e.kind for e in self._array)
if len(elem_kinds) == 1:
elemkind, = elem_kinds
else:
elemkind = UndefinedKind
return ArrayKind(elemkind)
def _parse_index(self, index):
if isinstance(index, (SYMPY_INTS, Integer)):
raise ValueError("Only a tuple index is accepted")
if self._loop_size == 0:
raise ValueError("Index not valide with an empty array")
if len(index) != self._rank:
raise ValueError('Wrong number of array axes')
real_index = 0
# check if input index can exist in current indexing
for i in range(self._rank):
if (index[i] >= self.shape[i]) or (index[i] < -self.shape[i]):
raise ValueError('Index ' + str(index) + ' out of border')
if index[i] < 0:
real_index += 1
real_index = real_index*self.shape[i] + index[i]
return real_index
def _get_tuple_index(self, integer_index):
index = []
for i, sh in enumerate(reversed(self.shape)):
index.append(integer_index % sh)
integer_index //= sh
index.reverse()
return tuple(index)
def _check_symbolic_index(self, index):
# Check if any index is symbolic:
tuple_index = (index if isinstance(index, tuple) else (index,))
if any([(isinstance(i, Expr) and (not i.is_number)) for i in tuple_index]):
for i, nth_dim in zip(tuple_index, self.shape):
if ((i < 0) == True) or ((i >= nth_dim) == True):
raise ValueError("index out of range")
from sympy.tensor import Indexed
return Indexed(self, *tuple_index)
return None
def _setter_iterable_check(self, value):
from sympy.matrices.matrices import MatrixBase
if isinstance(value, (Iterable, MatrixBase, NDimArray)):
raise NotImplementedError
@classmethod
def _scan_iterable_shape(cls, iterable):
def f(pointer):
if not isinstance(pointer, Iterable):
return [pointer], ()
result = []
elems, shapes = zip(*[f(i) for i in pointer])
if len(set(shapes)) != 1:
raise ValueError("could not determine shape unambiguously")
for i in elems:
result.extend(i)
return result, (len(shapes),)+shapes[0]
return f(iterable)
@classmethod
def _handle_ndarray_creation_inputs(cls, iterable=None, shape=None, **kwargs):
from sympy.matrices.matrices import MatrixBase
from sympy.tensor.array import SparseNDimArray
from sympy import Dict, Tuple
if shape is None:
if iterable is None:
shape = ()
iterable = ()
# Construction of a sparse array from a sparse array
elif isinstance(iterable, SparseNDimArray):
return iterable._shape, iterable._sparse_array
# Construct N-dim array from another N-dim array:
elif isinstance(iterable, NDimArray):
shape = iterable.shape
# Construct N-dim array from an iterable (numpy arrays included):
elif isinstance(iterable, Iterable):
iterable, shape = cls._scan_iterable_shape(iterable)
# Construct N-dim array from a Matrix:
elif isinstance(iterable, MatrixBase):
shape = iterable.shape
else:
shape = ()
iterable = (iterable,)
if isinstance(iterable, (Dict, dict)) and shape is not None:
new_dict = iterable.copy()
for k, v in new_dict.items():
if isinstance(k, (tuple, Tuple)):
new_key = 0
for i, idx in enumerate(k):
new_key = new_key * shape[i] + idx
iterable[new_key] = iterable[k]
del iterable[k]
if isinstance(shape, (SYMPY_INTS, Integer)):
shape = (shape,)
if any([not isinstance(dim, (SYMPY_INTS, Integer)) for dim in shape]):
raise TypeError("Shape should contain integers only.")
return tuple(shape), iterable
def __len__(self):
"""Overload common function len(). Returns number of elements in array.
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(3, 3)
>>> a
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]
>>> len(a)
9
"""
return self._loop_size
@property
def shape(self):
"""
Returns array shape (dimension).
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(3, 3)
>>> a.shape
(3, 3)
"""
return self._shape
def rank(self):
"""
Returns rank of array.
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(3,4,5,6,3)
>>> a.rank()
5
"""
return self._rank
def diff(self, *args, **kwargs):
"""
Calculate the derivative of each element in the array.
Examples
========
>>> from sympy import ImmutableDenseNDimArray
>>> from sympy.abc import x, y
>>> M = ImmutableDenseNDimArray([[x, y], [1, x*y]])
>>> M.diff(x)
[[1, 0], [0, y]]
"""
from sympy.tensor.array.array_derivatives import ArrayDerivative
kwargs.setdefault('evaluate', True)
return ArrayDerivative(self.as_immutable(), *args, **kwargs)
def _eval_derivative(self, base):
# Types are (base: scalar, self: array)
return self.applyfunc(lambda x: base.diff(x))
def _eval_derivative_n_times(self, s, n):
return Basic._eval_derivative_n_times(self, s, n)
def applyfunc(self, f):
"""Apply a function to each element of the N-dim array.
Examples
========
>>> from sympy import ImmutableDenseNDimArray
>>> m = ImmutableDenseNDimArray([i*2+j for i in range(2) for j in range(2)], (2, 2))
>>> m
[[0, 1], [2, 3]]
>>> m.applyfunc(lambda i: 2*i)
[[0, 2], [4, 6]]
"""
from sympy.tensor.array import SparseNDimArray
from sympy.tensor.array.arrayop import Flatten
if isinstance(self, SparseNDimArray) and f(S.Zero) == 0:
return type(self)({k: f(v) for k, v in self._sparse_array.items() if f(v) != 0}, self.shape)
return type(self)(map(f, Flatten(self)), self.shape)
def _sympystr(self, printer):
def f(sh, shape_left, i, j):
if len(shape_left) == 1:
return "["+", ".join([printer._print(self[self._get_tuple_index(e)]) for e in range(i, j)])+"]"
sh //= shape_left[0]
return "[" + ", ".join([f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh) for e in range(shape_left[0])]) + "]" # + "\n"*len(shape_left)
if self.rank() == 0:
return printer._print(self[()])
return f(self._loop_size, self.shape, 0, self._loop_size)
def tolist(self):
"""
Converting MutableDenseNDimArray to one-dim list
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray([1, 2, 3, 4], (2, 2))
>>> a
[[1, 2], [3, 4]]
>>> b = a.tolist()
>>> b
[[1, 2], [3, 4]]
"""
def f(sh, shape_left, i, j):
if len(shape_left) == 1:
return [self[self._get_tuple_index(e)] for e in range(i, j)]
result = []
sh //= shape_left[0]
for e in range(shape_left[0]):
result.append(f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh))
return result
return f(self._loop_size, self.shape, 0, self._loop_size)
def __add__(self, other):
from sympy.tensor.array.arrayop import Flatten
if not isinstance(other, NDimArray):
return NotImplemented
if self.shape != other.shape:
raise ValueError("array shape mismatch")
result_list = [i+j for i,j in zip(Flatten(self), Flatten(other))]
return type(self)(result_list, self.shape)
def __sub__(self, other):
from sympy.tensor.array.arrayop import Flatten
if not isinstance(other, NDimArray):
return NotImplemented
if self.shape != other.shape:
raise ValueError("array shape mismatch")
result_list = [i-j for i,j in zip(Flatten(self), Flatten(other))]
return type(self)(result_list, self.shape)
def __mul__(self, other):
from sympy.matrices.matrices import MatrixBase
from sympy.tensor.array import SparseNDimArray
from sympy.tensor.array.arrayop import Flatten
if isinstance(other, (Iterable, NDimArray, MatrixBase)):
raise ValueError("scalar expected, use tensorproduct(...) for tensorial product")
other = sympify(other)
if isinstance(self, SparseNDimArray):
if other.is_zero:
return type(self)({}, self.shape)
return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape)
result_list = [i*other for i in Flatten(self)]
return type(self)(result_list, self.shape)
def __rmul__(self, other):
from sympy.matrices.matrices import MatrixBase
from sympy.tensor.array import SparseNDimArray
from sympy.tensor.array.arrayop import Flatten
if isinstance(other, (Iterable, NDimArray, MatrixBase)):
raise ValueError("scalar expected, use tensorproduct(...) for tensorial product")
other = sympify(other)
if isinstance(self, SparseNDimArray):
if other.is_zero:
return type(self)({}, self.shape)
return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape)
result_list = [other*i for i in Flatten(self)]
return type(self)(result_list, self.shape)
def __truediv__(self, other):
from sympy.matrices.matrices import MatrixBase
from sympy.tensor.array import SparseNDimArray
from sympy.tensor.array.arrayop import Flatten
if isinstance(other, (Iterable, NDimArray, MatrixBase)):
raise ValueError("scalar expected")
other = sympify(other)
if isinstance(self, SparseNDimArray) and other != S.Zero:
return type(self)({k: v/other for (k, v) in self._sparse_array.items()}, self.shape)
result_list = [i/other for i in Flatten(self)]
return type(self)(result_list, self.shape)
def __rtruediv__(self, other):
raise NotImplementedError('unsupported operation on NDimArray')
def __neg__(self):
from sympy.tensor.array import SparseNDimArray
from sympy.tensor.array.arrayop import Flatten
if isinstance(self, SparseNDimArray):
return type(self)({k: -v for (k, v) in self._sparse_array.items()}, self.shape)
result_list = [-i for i in Flatten(self)]
return type(self)(result_list, self.shape)
def __iter__(self):
def iterator():
if self._shape:
for i in range(self._shape[0]):
yield self[i]
else:
yield self[()]
return iterator()
def __eq__(self, other):
"""
NDimArray instances can be compared to each other.
Instances equal if they have same shape and data.
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(2, 3)
>>> b = MutableDenseNDimArray.zeros(2, 3)
>>> a == b
True
>>> c = a.reshape(3, 2)
>>> c == b
False
>>> a[0,0] = 1
>>> b[0,0] = 2
>>> a == b
False
"""
from sympy.tensor.array import SparseNDimArray
if not isinstance(other, NDimArray):
return False
if not self.shape == other.shape:
return False
if isinstance(self, SparseNDimArray) and isinstance(other, SparseNDimArray):
return dict(self._sparse_array) == dict(other._sparse_array)
return list(self) == list(other)
def __ne__(self, other):
return not self == other
def _eval_transpose(self):
if self.rank() != 2:
raise ValueError("array rank not 2")
from .arrayop import permutedims
return permutedims(self, (1, 0))
def transpose(self):
return self._eval_transpose()
def _eval_conjugate(self):
from sympy.tensor.array.arrayop import Flatten
return self.func([i.conjugate() for i in Flatten(self)], self.shape)
def conjugate(self):
return self._eval_conjugate()
def _eval_adjoint(self):
return self.transpose().conjugate()
def adjoint(self):
return self._eval_adjoint()
def _slice_expand(self, s, dim):
if not isinstance(s, slice):
return (s,)
start, stop, step = s.indices(dim)
return [start + i*step for i in range((stop-start)//step)]
def _get_slice_data_for_array_access(self, index):
sl_factors = [self._slice_expand(i, dim) for (i, dim) in zip(index, self.shape)]
eindices = itertools.product(*sl_factors)
return sl_factors, eindices
def _get_slice_data_for_array_assignment(self, index, value):
if not isinstance(value, NDimArray):
value = type(self)(value)
sl_factors, eindices = self._get_slice_data_for_array_access(index)
slice_offsets = [min(i) if isinstance(i, list) else None for i in sl_factors]
# TODO: add checks for dimensions for `value`?
return value, eindices, slice_offsets
@classmethod
def _check_special_bounds(cls, flat_list, shape):
if shape == () and len(flat_list) != 1:
raise ValueError("arrays without shape need one scalar value")
if shape == (0,) and len(flat_list) > 0:
raise ValueError("if array shape is (0,) there cannot be elements")
def _check_index_for_getitem(self, index):
if isinstance(index, (SYMPY_INTS, Integer, slice)):
index = (index, )
if len(index) < self.rank():
index = tuple([i for i in index] + \
[slice(None) for i in range(len(index), self.rank())])
if len(index) > self.rank():
raise ValueError('Dimension of index greater than rank of array')
return index
class ImmutableNDimArray(NDimArray, Basic):
_op_priority = 11.0
def __hash__(self):
return Basic.__hash__(self)
def as_immutable(self):
return self
def as_mutable(self):
raise NotImplementedError("abstract method")
|
8bf68f2e5d441e91c91844cb11ab5d1d5caa2d392337d77e93ed37f535324c57 | from copy import copy
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
from sympy import Symbol, Rational, SparseMatrix, Dict, diff, symbols, Indexed, IndexedBase, S
from sympy.matrices import Matrix
from sympy.tensor.array.sparse_ndim_array import ImmutableSparseNDimArray
from sympy.testing.pytest import raises
def test_ndim_array_initiation():
arr_with_no_elements = ImmutableDenseNDimArray([], shape=(0,))
assert len(arr_with_no_elements) == 0
assert arr_with_no_elements.rank() == 1
raises(ValueError, lambda: ImmutableDenseNDimArray([0], shape=(0,)))
raises(ValueError, lambda: ImmutableDenseNDimArray([1, 2, 3], shape=(0,)))
raises(ValueError, lambda: ImmutableDenseNDimArray([], shape=()))
raises(ValueError, lambda: ImmutableSparseNDimArray([0], shape=(0,)))
raises(ValueError, lambda: ImmutableSparseNDimArray([1, 2, 3], shape=(0,)))
raises(ValueError, lambda: ImmutableSparseNDimArray([], shape=()))
arr_with_one_element = ImmutableDenseNDimArray([23])
assert len(arr_with_one_element) == 1
assert arr_with_one_element[0] == 23
assert arr_with_one_element[:] == ImmutableDenseNDimArray([23])
assert arr_with_one_element.rank() == 1
arr_with_symbol_element = ImmutableDenseNDimArray([Symbol('x')])
assert len(arr_with_symbol_element) == 1
assert arr_with_symbol_element[0] == Symbol('x')
assert arr_with_symbol_element[:] == ImmutableDenseNDimArray([Symbol('x')])
assert arr_with_symbol_element.rank() == 1
number5 = 5
vector = ImmutableDenseNDimArray.zeros(number5)
assert len(vector) == number5
assert vector.shape == (number5,)
assert vector.rank() == 1
vector = ImmutableSparseNDimArray.zeros(number5)
assert len(vector) == number5
assert vector.shape == (number5,)
assert vector._sparse_array == Dict()
assert vector.rank() == 1
n_dim_array = ImmutableDenseNDimArray(range(3**4), (3, 3, 3, 3,))
assert len(n_dim_array) == 3 * 3 * 3 * 3
assert n_dim_array.shape == (3, 3, 3, 3)
assert n_dim_array.rank() == 4
array_shape = (3, 3, 3, 3)
sparse_array = ImmutableSparseNDimArray.zeros(*array_shape)
assert len(sparse_array._sparse_array) == 0
assert len(sparse_array) == 3 * 3 * 3 * 3
assert n_dim_array.shape == array_shape
assert n_dim_array.rank() == 4
one_dim_array = ImmutableDenseNDimArray([2, 3, 1])
assert len(one_dim_array) == 3
assert one_dim_array.shape == (3,)
assert one_dim_array.rank() == 1
assert one_dim_array.tolist() == [2, 3, 1]
shape = (3, 3)
array_with_many_args = ImmutableSparseNDimArray.zeros(*shape)
assert len(array_with_many_args) == 3 * 3
assert array_with_many_args.shape == shape
assert array_with_many_args[0, 0] == 0
assert array_with_many_args.rank() == 2
shape = (int(3), int(3))
array_with_long_shape = ImmutableSparseNDimArray.zeros(*shape)
assert len(array_with_long_shape) == 3 * 3
assert array_with_long_shape.shape == shape
assert array_with_long_shape[int(0), int(0)] == 0
assert array_with_long_shape.rank() == 2
vector_with_long_shape = ImmutableDenseNDimArray(range(5), int(5))
assert len(vector_with_long_shape) == 5
assert vector_with_long_shape.shape == (int(5),)
assert vector_with_long_shape.rank() == 1
raises(ValueError, lambda: vector_with_long_shape[int(5)])
from sympy.abc import x
for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]:
rank_zero_array = ArrayType(x)
assert len(rank_zero_array) == 1
assert rank_zero_array.shape == ()
assert rank_zero_array.rank() == 0
assert rank_zero_array[()] == x
raises(ValueError, lambda: rank_zero_array[0])
def test_reshape():
array = ImmutableDenseNDimArray(range(50), 50)
assert array.shape == (50,)
assert array.rank() == 1
array = array.reshape(5, 5, 2)
assert array.shape == (5, 5, 2)
assert array.rank() == 3
assert len(array) == 50
def test_getitem():
for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]:
array = ArrayType(range(24)).reshape(2, 3, 4)
assert array.tolist() == [[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]
assert array[0] == ArrayType([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]])
assert array[0, 0] == ArrayType([0, 1, 2, 3])
value = 0
for i in range(2):
for j in range(3):
for k in range(4):
assert array[i, j, k] == value
value += 1
raises(ValueError, lambda: array[3, 4, 5])
raises(ValueError, lambda: array[3, 4, 5, 6])
raises(ValueError, lambda: array[3, 4, 5, 3:4])
def test_iterator():
array = ImmutableDenseNDimArray(range(4), (2, 2))
array[0] == ImmutableDenseNDimArray([0, 1])
array[1] == ImmutableDenseNDimArray([2, 3])
array = array.reshape(4)
j = 0
for i in array:
assert i == j
j += 1
def test_sparse():
sparse_array = ImmutableSparseNDimArray([0, 0, 0, 1], (2, 2))
assert len(sparse_array) == 2 * 2
# dictionary where all data is, only non-zero entries are actually stored:
assert len(sparse_array._sparse_array) == 1
assert sparse_array.tolist() == [[0, 0], [0, 1]]
for i, j in zip(sparse_array, [[0, 0], [0, 1]]):
assert i == ImmutableSparseNDimArray(j)
def sparse_assignment():
sparse_array[0, 0] = 123
assert len(sparse_array._sparse_array) == 1
raises(TypeError, sparse_assignment)
assert len(sparse_array._sparse_array) == 1
assert sparse_array[0, 0] == 0
assert sparse_array/0 == ImmutableSparseNDimArray([[S.NaN, S.NaN], [S.NaN, S.ComplexInfinity]], (2, 2))
# test for large scale sparse array
# equality test
assert ImmutableSparseNDimArray.zeros(100000, 200000) == ImmutableSparseNDimArray.zeros(100000, 200000)
# __mul__ and __rmul__
a = ImmutableSparseNDimArray({200001: 1}, (100000, 200000))
assert a * 3 == ImmutableSparseNDimArray({200001: 3}, (100000, 200000))
assert 3 * a == ImmutableSparseNDimArray({200001: 3}, (100000, 200000))
assert a * 0 == ImmutableSparseNDimArray({}, (100000, 200000))
assert 0 * a == ImmutableSparseNDimArray({}, (100000, 200000))
# __truediv__
assert a/3 == ImmutableSparseNDimArray({200001: Rational(1, 3)}, (100000, 200000))
# __neg__
assert -a == ImmutableSparseNDimArray({200001: -1}, (100000, 200000))
def test_calculation():
a = ImmutableDenseNDimArray([1]*9, (3, 3))
b = ImmutableDenseNDimArray([9]*9, (3, 3))
c = a + b
for i in c:
assert i == ImmutableDenseNDimArray([10, 10, 10])
assert c == ImmutableDenseNDimArray([10]*9, (3, 3))
assert c == ImmutableSparseNDimArray([10]*9, (3, 3))
c = b - a
for i in c:
assert i == ImmutableDenseNDimArray([8, 8, 8])
assert c == ImmutableDenseNDimArray([8]*9, (3, 3))
assert c == ImmutableSparseNDimArray([8]*9, (3, 3))
def test_ndim_array_converting():
dense_array = ImmutableDenseNDimArray([1, 2, 3, 4], (2, 2))
alist = dense_array.tolist()
alist == [[1, 2], [3, 4]]
matrix = dense_array.tomatrix()
assert (isinstance(matrix, Matrix))
for i in range(len(dense_array)):
assert dense_array[dense_array._get_tuple_index(i)] == matrix[i]
assert matrix.shape == dense_array.shape
assert ImmutableDenseNDimArray(matrix) == dense_array
assert ImmutableDenseNDimArray(matrix.as_immutable()) == dense_array
assert ImmutableDenseNDimArray(matrix.as_mutable()) == dense_array
sparse_array = ImmutableSparseNDimArray([1, 2, 3, 4], (2, 2))
alist = sparse_array.tolist()
assert alist == [[1, 2], [3, 4]]
matrix = sparse_array.tomatrix()
assert(isinstance(matrix, SparseMatrix))
for i in range(len(sparse_array)):
assert sparse_array[sparse_array._get_tuple_index(i)] == matrix[i]
assert matrix.shape == sparse_array.shape
assert ImmutableSparseNDimArray(matrix) == sparse_array
assert ImmutableSparseNDimArray(matrix.as_immutable()) == sparse_array
assert ImmutableSparseNDimArray(matrix.as_mutable()) == sparse_array
def test_converting_functions():
arr_list = [1, 2, 3, 4]
arr_matrix = Matrix(((1, 2), (3, 4)))
# list
arr_ndim_array = ImmutableDenseNDimArray(arr_list, (2, 2))
assert (isinstance(arr_ndim_array, ImmutableDenseNDimArray))
assert arr_matrix.tolist() == arr_ndim_array.tolist()
# Matrix
arr_ndim_array = ImmutableDenseNDimArray(arr_matrix)
assert (isinstance(arr_ndim_array, ImmutableDenseNDimArray))
assert arr_matrix.tolist() == arr_ndim_array.tolist()
assert arr_matrix.shape == arr_ndim_array.shape
def test_equality():
first_list = [1, 2, 3, 4]
second_list = [1, 2, 3, 4]
third_list = [4, 3, 2, 1]
assert first_list == second_list
assert first_list != third_list
first_ndim_array = ImmutableDenseNDimArray(first_list, (2, 2))
second_ndim_array = ImmutableDenseNDimArray(second_list, (2, 2))
fourth_ndim_array = ImmutableDenseNDimArray(first_list, (2, 2))
assert first_ndim_array == second_ndim_array
def assignment_attempt(a):
a[0, 0] = 0
raises(TypeError, lambda: assignment_attempt(second_ndim_array))
assert first_ndim_array == second_ndim_array
assert first_ndim_array == fourth_ndim_array
def test_arithmetic():
a = ImmutableDenseNDimArray([3 for i in range(9)], (3, 3))
b = ImmutableDenseNDimArray([7 for i in range(9)], (3, 3))
c1 = a + b
c2 = b + a
assert c1 == c2
d1 = a - b
d2 = b - a
assert d1 == d2 * (-1)
e1 = a * 5
e2 = 5 * a
e3 = copy(a)
e3 *= 5
assert e1 == e2 == e3
f1 = a / 5
f2 = copy(a)
f2 /= 5
assert f1 == f2
assert f1[0, 0] == f1[0, 1] == f1[0, 2] == f1[1, 0] == f1[1, 1] == \
f1[1, 2] == f1[2, 0] == f1[2, 1] == f1[2, 2] == Rational(3, 5)
assert type(a) == type(b) == type(c1) == type(c2) == type(d1) == type(d2) \
== type(e1) == type(e2) == type(e3) == type(f1)
z0 = -a
assert z0 == ImmutableDenseNDimArray([-3 for i in range(9)], (3, 3))
def test_higher_dimenions():
m3 = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4))
assert m3.tolist() == [[[10, 11, 12, 13],
[14, 15, 16, 17],
[18, 19, 20, 21]],
[[22, 23, 24, 25],
[26, 27, 28, 29],
[30, 31, 32, 33]]]
assert m3._get_tuple_index(0) == (0, 0, 0)
assert m3._get_tuple_index(1) == (0, 0, 1)
assert m3._get_tuple_index(4) == (0, 1, 0)
assert m3._get_tuple_index(12) == (1, 0, 0)
assert str(m3) == '[[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]]'
m3_rebuilt = ImmutableDenseNDimArray([[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]])
assert m3 == m3_rebuilt
m3_other = ImmutableDenseNDimArray([[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]], (2, 3, 4))
assert m3 == m3_other
def test_rebuild_immutable_arrays():
sparr = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4))
densarr = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4))
assert sparr == sparr.func(*sparr.args)
assert densarr == densarr.func(*densarr.args)
def test_slices():
md = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4))
assert md[:] == ImmutableDenseNDimArray(range(10, 34), (2, 3, 4))
assert md[:, :, 0].tomatrix() == Matrix([[10, 14, 18], [22, 26, 30]])
assert md[0, 1:2, :].tomatrix() == Matrix([[14, 15, 16, 17]])
assert md[0, 1:3, :].tomatrix() == Matrix([[14, 15, 16, 17], [18, 19, 20, 21]])
assert md[:, :, :] == md
sd = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4))
assert sd == ImmutableSparseNDimArray(md)
assert sd[:] == ImmutableSparseNDimArray(range(10, 34), (2, 3, 4))
assert sd[:, :, 0].tomatrix() == Matrix([[10, 14, 18], [22, 26, 30]])
assert sd[0, 1:2, :].tomatrix() == Matrix([[14, 15, 16, 17]])
assert sd[0, 1:3, :].tomatrix() == Matrix([[14, 15, 16, 17], [18, 19, 20, 21]])
assert sd[:, :, :] == sd
def test_diff_and_applyfunc():
from sympy.abc import x, y, z
md = ImmutableDenseNDimArray([[x, y], [x*z, x*y*z]])
assert md.diff(x) == ImmutableDenseNDimArray([[1, 0], [z, y*z]])
assert diff(md, x) == ImmutableDenseNDimArray([[1, 0], [z, y*z]])
sd = ImmutableSparseNDimArray(md)
assert sd == ImmutableSparseNDimArray([x, y, x*z, x*y*z], (2, 2))
assert sd.diff(x) == ImmutableSparseNDimArray([[1, 0], [z, y*z]])
assert diff(sd, x) == ImmutableSparseNDimArray([[1, 0], [z, y*z]])
mdn = md.applyfunc(lambda x: x*3)
assert mdn == ImmutableDenseNDimArray([[3*x, 3*y], [3*x*z, 3*x*y*z]])
assert md != mdn
sdn = sd.applyfunc(lambda x: x/2)
assert sdn == ImmutableSparseNDimArray([[x/2, y/2], [x*z/2, x*y*z/2]])
assert sd != sdn
sdp = sd.applyfunc(lambda x: x+1)
assert sdp == ImmutableSparseNDimArray([[x + 1, y + 1], [x*z + 1, x*y*z + 1]])
assert sd != sdp
def test_op_priority():
from sympy.abc import x
md = ImmutableDenseNDimArray([1, 2, 3])
e1 = (1+x)*md
e2 = md*(1+x)
assert e1 == ImmutableDenseNDimArray([1+x, 2+2*x, 3+3*x])
assert e1 == e2
sd = ImmutableSparseNDimArray([1, 2, 3])
e3 = (1+x)*sd
e4 = sd*(1+x)
assert e3 == ImmutableDenseNDimArray([1+x, 2+2*x, 3+3*x])
assert e3 == e4
def test_symbolic_indexing():
x, y, z, w = symbols("x y z w")
M = ImmutableDenseNDimArray([[x, y], [z, w]])
i, j = symbols("i, j")
Mij = M[i, j]
assert isinstance(Mij, Indexed)
Ms = ImmutableSparseNDimArray([[2, 3*x], [4, 5]])
msij = Ms[i, j]
assert isinstance(msij, Indexed)
for oi, oj in [(0, 0), (0, 1), (1, 0), (1, 1)]:
assert Mij.subs({i: oi, j: oj}) == M[oi, oj]
assert msij.subs({i: oi, j: oj}) == Ms[oi, oj]
A = IndexedBase("A", (0, 2))
assert A[0, 0].subs(A, M) == x
assert A[i, j].subs(A, M) == M[i, j]
assert M[i, j].subs(M, A) == A[i, j]
assert isinstance(M[3 * i - 2, j], Indexed)
assert M[3 * i - 2, j].subs({i: 1, j: 0}) == M[1, 0]
assert isinstance(M[i, 0], Indexed)
assert M[i, 0].subs(i, 0) == M[0, 0]
assert M[0, i].subs(i, 1) == M[0, 1]
assert M[i, j].diff(x) == ImmutableDenseNDimArray([[1, 0], [0, 0]])[i, j]
assert Ms[i, j].diff(x) == ImmutableSparseNDimArray([[0, 3], [0, 0]])[i, j]
Mo = ImmutableDenseNDimArray([1, 2, 3])
assert Mo[i].subs(i, 1) == 2
Mos = ImmutableSparseNDimArray([1, 2, 3])
assert Mos[i].subs(i, 1) == 2
raises(ValueError, lambda: M[i, 2])
raises(ValueError, lambda: M[i, -1])
raises(ValueError, lambda: M[2, i])
raises(ValueError, lambda: M[-1, i])
raises(ValueError, lambda: Ms[i, 2])
raises(ValueError, lambda: Ms[i, -1])
raises(ValueError, lambda: Ms[2, i])
raises(ValueError, lambda: Ms[-1, i])
def test_issue_12665():
# Testing Python 3 hash of immutable arrays:
arr = ImmutableDenseNDimArray([1, 2, 3])
# This should NOT raise an exception:
hash(arr)
def test_zeros_without_shape():
arr = ImmutableDenseNDimArray.zeros()
assert arr == ImmutableDenseNDimArray(0)
def test_issue_21870():
a0 = ImmutableDenseNDimArray(0)
assert a0.rank() == 0
a1 = ImmutableDenseNDimArray(a0)
assert a1.rank() == 0
|
001bb9879f8a3ffc6ed50188629133900381ef70482eaea9c811678ce9210fa7 | import itertools
from typing import Tuple, Optional, List
from functools import singledispatch
from itertools import accumulate
from sympy import Trace, MatrixExpr, Transpose, DiagMatrix, Mul, ZeroMatrix
from sympy.combinatorics.permutations import _af_invert, Permutation
from sympy.matrices.common import MatrixCommon
from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
from sympy.tensor.array.expressions.array_expressions import PermuteDims, ArrayDiagonal, \
ArrayTensorProduct, OneArray, get_rank, _get_subrank, ZeroArray, ArrayContraction, \
ArrayAdd, _CodegenArrayAbstract, get_shape, ArrayElementwiseApplyFunc, _ArrayExpr, _EditArrayContraction, _ArgE
from sympy.tensor.array.expressions.utils import _get_mapping_from_subranks
def _get_candidate_for_matmul_from_contraction(scan_indices: List[Optional[int]], remaining_args: List[_ArgE]) -> Tuple[Optional[_ArgE], bool, int]:
scan_indices = [i for i in scan_indices if i is not None]
if len(scan_indices) == 0:
return None, False, -1
transpose: bool = False
candidate: Optional[_ArgE] = None
candidate_index: int = -1
for arg_with_ind2 in remaining_args:
if not isinstance(arg_with_ind2.element, MatrixExpr):
continue
for index in scan_indices:
if candidate_index != -1 and candidate_index != index:
# A candidate index has already been selected, check
# repetitions only for that index:
continue
if index in arg_with_ind2.indices:
if set(arg_with_ind2.indices) == {index}:
# Index repeated twice in arg_with_ind2
candidate = None
break
if candidate is None:
candidate = arg_with_ind2
candidate_index = index
transpose = (index == arg_with_ind2.indices[1])
else:
# Index repeated more than twice, break
candidate = None
break
return candidate, transpose, candidate_index
def _insert_candidate_into_editor(editor: _EditArrayContraction, arg_with_ind: _ArgE, candidate: _ArgE, transpose1: bool, transpose2: bool):
other = candidate.element
other_index: int
if transpose2:
other = Transpose(other)
other_index = candidate.indices[0]
else:
other_index = candidate.indices[1]
new_element = (Transpose(arg_with_ind.element) if transpose1 else arg_with_ind.element) * other
editor.args_with_ind.remove(candidate)
new_arge = _ArgE(new_element)
return new_arge, other_index
def _support_function_tp1_recognize(contraction_indices, args):
if len(contraction_indices) == 0:
return _a2m_tensor_product(*args)
ac = ArrayContraction(ArrayTensorProduct(*args), *contraction_indices)
editor = _EditArrayContraction(ac)
editor.track_permutation_start()
while True:
flag_stop: bool = True
for i, arg_with_ind in enumerate(editor.args_with_ind):
if not isinstance(arg_with_ind.element, MatrixExpr):
continue
first_index = arg_with_ind.indices[0]
second_index = arg_with_ind.indices[1]
first_frequency = editor.count_args_with_index(first_index)
second_frequency = editor.count_args_with_index(second_index)
if first_index is not None and first_frequency == 1 and first_index == second_index:
flag_stop = False
arg_with_ind.element = Trace(arg_with_ind.element)._normalize()
arg_with_ind.indices = []
break
scan_indices = []
if first_frequency == 2:
scan_indices.append(first_index)
if second_frequency == 2:
scan_indices.append(second_index)
candidate, transpose, found_index = _get_candidate_for_matmul_from_contraction(scan_indices, editor.args_with_ind[i+1:])
if candidate is not None:
flag_stop = False
editor.track_permutation_merge(arg_with_ind, candidate)
transpose1 = found_index == first_index
new_arge, other_index = _insert_candidate_into_editor(editor, arg_with_ind, candidate, transpose1, transpose)
if found_index == first_index:
new_arge.indices = [second_index, other_index]
else:
new_arge.indices = [first_index, other_index]
set_indices = set(new_arge.indices)
if len(set_indices) == 1 and set_indices != {None}:
# This is a trace:
new_arge.element = Trace(new_arge.element)._normalize()
new_arge.indices = []
editor.args_with_ind[i] = new_arge
# TODO: is this break necessary?
break
if flag_stop:
break
editor.refresh_indices()
return editor.to_array_contraction()
@singledispatch
def _array2matrix(expr):
return expr
@_array2matrix.register(ZeroArray)
def _(expr: ZeroArray):
if get_rank(expr) == 2:
return ZeroMatrix(*expr.shape)
else:
return expr
@_array2matrix.register(ArrayTensorProduct)
def _(expr: ArrayTensorProduct):
return _a2m_tensor_product(*[_array2matrix(arg) for arg in expr.args])
@_array2matrix.register(ArrayContraction)
def _(expr: ArrayContraction):
expr = expr.flatten_contraction_of_diagonal()
expr = expr.split_multiple_contractions()
subexpr = expr.expr
contraction_indices: Tuple[Tuple[int]] = expr.contraction_indices
if isinstance(subexpr, ArrayTensorProduct):
newexpr = ArrayContraction(_array2matrix(subexpr), *contraction_indices)
contraction_indices = newexpr.contraction_indices
if any(i > 2 for i in newexpr.subranks):
addends = ArrayAdd(*[_a2m_tensor_product(*j) for j in itertools.product(*[i.args if isinstance(i,
ArrayAdd) else [i] for i in expr.expr.args])])
newexpr = ArrayContraction(addends, *contraction_indices)
if isinstance(newexpr, ArrayAdd):
ret = _array2matrix(newexpr)
return ret
assert isinstance(newexpr, ArrayContraction)
ret = _support_function_tp1_recognize(contraction_indices, list(newexpr.expr.args))
return ret
elif not isinstance(subexpr, _CodegenArrayAbstract):
ret = _array2matrix(subexpr)
if isinstance(ret, MatrixExpr):
assert expr.contraction_indices == ((0, 1),)
return _a2m_trace(ret)
else:
return ArrayContraction(ret, *expr.contraction_indices)
@_array2matrix.register(ArrayDiagonal)
def _(expr: ArrayDiagonal):
expr2 = _array2matrix(expr.expr)
pexpr = _array_diag2contr_diagmatrix(ArrayDiagonal(expr2, *expr.diagonal_indices))
if expr == pexpr:
return expr
return _array2matrix(pexpr)
@_array2matrix.register(PermuteDims)
def _(expr: PermuteDims):
if expr.permutation.array_form == [1, 0]:
return _a2m_transpose(_array2matrix(expr.expr))
elif isinstance(expr.expr, ArrayTensorProduct):
ranks = expr.expr.subranks
inv_permutation = expr.permutation**(-1)
newrange = [inv_permutation(i) for i in range(sum(ranks))]
newpos = []
counter = 0
for rank in ranks:
newpos.append(newrange[counter:counter+rank])
counter += rank
newargs = []
newperm = []
scalars = []
for pos, arg in zip(newpos, expr.expr.args):
if len(pos) == 0:
scalars.append(_array2matrix(arg))
elif pos == sorted(pos):
newargs.append((_array2matrix(arg), pos[0]))
newperm.extend(pos)
elif len(pos) == 2:
newargs.append((_a2m_transpose(_array2matrix(arg)), pos[0]))
newperm.extend(reversed(pos))
else:
raise NotImplementedError()
newargs = [i[0] for i in newargs]
return PermuteDims(_a2m_tensor_product(*scalars, *newargs), _af_invert(newperm))
elif isinstance(expr.expr, ArrayContraction):
mat_mul_lines = _array2matrix(expr.expr)
if not isinstance(mat_mul_lines, ArrayTensorProduct):
flat_cyclic_form = [j for i in expr.permutation.cyclic_form for j in i]
expr_shape = get_shape(expr)
if all(expr_shape[i] == 1 for i in flat_cyclic_form):
return mat_mul_lines
return mat_mul_lines
# TODO: this assumes that all arguments are matrices, it may not be the case:
permutation = Permutation(2*len(mat_mul_lines.args)-1)*expr.permutation
permuted = [permutation(i) for i in range(2*len(mat_mul_lines.args))]
args_array = [None for i in mat_mul_lines.args]
for i in range(len(mat_mul_lines.args)):
p1 = permuted[2*i]
p2 = permuted[2*i+1]
if p1 // 2 != p2 // 2:
return PermuteDims(mat_mul_lines, permutation)
pos = p1 // 2
if p1 > p2:
args_array[i] = _a2m_transpose(mat_mul_lines.args[pos])
else:
args_array[i] = mat_mul_lines.args[pos]
return _a2m_tensor_product(*args_array)
else:
raise NotImplementedError()
@_array2matrix.register(ArrayAdd)
def _(expr: ArrayAdd):
addends = [_array2matrix(arg) for arg in expr.args]
return _a2m_add(*addends)
@_array2matrix.register(ArrayElementwiseApplyFunc)
def _(expr: ArrayElementwiseApplyFunc):
subexpr = _array2matrix(expr.expr)
if isinstance(subexpr, MatrixExpr):
return ElementwiseApplyFunction(expr.function, subexpr)
else:
return ArrayElementwiseApplyFunc(expr.function, subexpr)
@singledispatch
def _remove_trivial_dims(expr):
return expr, []
@_remove_trivial_dims.register(ArrayTensorProduct)
def _(expr: ArrayTensorProduct):
# Recognize expressions like [x, y] with shape (k, 1, k, 1) as `x*y.T`.
# The matrix expression has to be equivalent to the tensor product of the
# matrices, with trivial dimensions (i.e. dim=1) dropped.
# That is, add contractions over trivial dimensions:
removed = []
newargs = []
cumul = list(accumulate([0] + [get_rank(arg) for arg in expr.args]))
pending = None
prev_i = None
for i, arg in enumerate(expr.args):
current_range = list(range(cumul[i], cumul[i+1]))
if isinstance(arg, OneArray):
removed.extend(current_range)
continue
if not isinstance(arg, (MatrixExpr, MatrixCommon)):
rarg, rem = _remove_trivial_dims(arg)
removed.extend(rem)
newargs.append(rarg)
continue
elif getattr(arg, "is_Identity", False):
if arg.shape == (1, 1):
# Ignore identity matrices of shape (1, 1) - they are equivalent to scalar 1.
removed.extend(current_range)
continue
k = arg.shape[0]
if pending == k:
# OK, there is already
removed.extend(current_range)
continue
elif pending is None:
newargs.append(arg)
pending = k
prev_i = i
else:
pending = k
prev_i = i
newargs.append(arg)
elif arg.shape == (1, 1):
arg, _ = _remove_trivial_dims(arg)
# Matrix is equivalent to scalar:
if len(newargs) == 0:
newargs.append(arg)
elif 1 in get_shape(newargs[-1]):
if newargs[-1].shape[1] == 1:
newargs[-1] = newargs[-1]*arg
else:
newargs[-1] = arg*newargs[-1]
removed.extend(current_range)
else:
newargs.append(arg)
elif 1 in arg.shape:
k = [i for i in arg.shape if i != 1][0]
if pending is None:
pending = k
prev_i = i
newargs.append(arg)
elif pending == k:
prev = newargs[-1]
if prev.is_Identity:
removed.extend([cumul[prev_i], cumul[prev_i]+1])
newargs[-1] = arg
prev_i = i
continue
if prev.shape[0] == 1:
d1 = cumul[prev_i]
prev = _a2m_transpose(prev)
else:
d1 = cumul[prev_i] + 1
if arg.shape[1] == 1:
d2 = cumul[i] + 1
arg = _a2m_transpose(arg)
else:
d2 = cumul[i]
newargs[-1] = prev*arg
pending = None
removed.extend([d1, d2])
else:
newargs.append(arg)
pending = k
prev_i = i
else:
newargs.append(arg)
pending = None
return _a2m_tensor_product(*newargs), sorted(removed)
@_remove_trivial_dims.register(ArrayAdd)
def _(expr: ArrayAdd):
rec = [_remove_trivial_dims(arg) for arg in expr.args]
newargs, removed = zip(*rec)
if len(set(map(tuple, removed))) != 1:
return expr, []
return _a2m_add(*newargs), removed[0]
@_remove_trivial_dims.register(PermuteDims)
def _(expr: PermuteDims):
subexpr, subremoved = _remove_trivial_dims(expr.expr)
p = expr.permutation.array_form
pinv = _af_invert(expr.permutation.array_form)
shift = list(accumulate([1 if i in subremoved else 0 for i in range(len(p))]))
premoved = [pinv[i] for i in subremoved]
p2 = [e - shift[e] for i, e in enumerate(p) if e not in subremoved]
# TODO: check if subremoved should be permuted as well...
newexpr = PermuteDims(subexpr, p2)
if newexpr != expr:
newexpr = _array2matrix(newexpr)
return newexpr, sorted(premoved)
@_remove_trivial_dims.register(ArrayContraction)
def _(expr: ArrayContraction):
newexpr, removed = _remove_trivial_dims(expr.expr)
shifts = list(accumulate([1 if i in removed else 0 for i in range(get_rank(expr.expr))]))
new_contraction_indices = [tuple(j for j in i if j not in removed) for i in expr.contraction_indices]
# Remove possible empty tuples "()":
new_contraction_indices = [i for i in new_contraction_indices if len(i) > 0]
contraction_indices_flat = [j for i in expr.contraction_indices for j in i]
removed = [i for i in removed if i not in contraction_indices_flat]
new_contraction_indices = [tuple(j - shifts[j] for j in i) for i in new_contraction_indices]
# Shift removed:
removed = ArrayContraction._push_indices_up(expr.contraction_indices, removed)
return ArrayContraction(newexpr, *new_contraction_indices), list(removed)
@_remove_trivial_dims.register(ArrayDiagonal)
def _(expr: ArrayDiagonal):
newexpr, removed = _remove_trivial_dims(expr.expr)
shifts = list(accumulate([0] + [1 if i in removed else 0 for i in range(get_rank(expr.expr))]))
new_diag_indices = [tuple(j for j in i if j not in removed) for i in expr.diagonal_indices]
new_diag_indices = [tuple(j - shifts[j] for j in i) for i in new_diag_indices]
rank = get_rank(expr.expr)
removed = ArrayDiagonal._push_indices_up(expr.diagonal_indices, removed, rank)
removed = sorted({i for i in removed})
# If there are single axes to diagonalize remaining, it means that their
# corresponding dimension has been removed, they no longer need diagonalization:
new_diag_indices = [i for i in new_diag_indices if len(i) > 1]
return ArrayDiagonal(newexpr, *new_diag_indices), removed
@_remove_trivial_dims.register(ElementwiseApplyFunction)
def _(expr: ElementwiseApplyFunction):
subexpr, removed = _remove_trivial_dims(expr.expr)
if subexpr.shape == (1, 1):
# TODO: move this to ElementwiseApplyFunction
return expr.function(subexpr), removed + [0, 1]
return ElementwiseApplyFunction(expr.function, subexpr)
@_remove_trivial_dims.register(ArrayElementwiseApplyFunc)
def _(expr: ArrayElementwiseApplyFunc):
subexpr, removed = _remove_trivial_dims(expr.expr)
return ArrayElementwiseApplyFunc(expr.function, subexpr), removed
def convert_array_to_matrix(expr):
r"""
Recognize matrix expressions in codegen objects.
If more than one matrix multiplication line have been detected, return a
list with the matrix expressions.
Examples
========
>>> from sympy.tensor.array.expressions.conv_indexed_to_array import convert_indexed_to_array
>>> from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
>>> from sympy import MatrixSymbol, Sum
>>> from sympy.abc import i, j, k, l, N
>>> from sympy.tensor.array.expressions.array_expressions import ArrayContraction
>>> from sympy.tensor.array.expressions.conv_matrix_to_array import convert_matrix_to_array
>>> from sympy.tensor.array.expressions.conv_array_to_matrix import convert_array_to_matrix
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> C = MatrixSymbol("C", N, N)
>>> D = MatrixSymbol("D", N, N)
>>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1))
>>> cg = convert_indexed_to_array(expr)
>>> convert_array_to_matrix(cg)
A*B
>>> cg = convert_indexed_to_array(expr, first_indices=[k])
>>> convert_array_to_matrix(cg)
B.T*A.T
Transposition is detected:
>>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1))
>>> cg = convert_indexed_to_array(expr)
>>> convert_array_to_matrix(cg)
A.T*B
>>> cg = convert_indexed_to_array(expr, first_indices=[k])
>>> convert_array_to_matrix(cg)
B.T*A
Detect the trace:
>>> expr = Sum(A[i, i], (i, 0, N-1))
>>> cg = convert_indexed_to_array(expr)
>>> convert_array_to_matrix(cg)
Trace(A)
Recognize some more complex traces:
>>> expr = Sum(A[i, j]*B[j, i], (i, 0, N-1), (j, 0, N-1))
>>> cg = convert_indexed_to_array(expr)
>>> convert_array_to_matrix(cg)
Trace(A*B)
More complicated expressions:
>>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1))
>>> cg = convert_indexed_to_array(expr)
>>> convert_array_to_matrix(cg)
A*B.T*A.T
Expressions constructed from matrix expressions do not contain literal
indices, the positions of free indices are returned instead:
>>> expr = A*B
>>> cg = convert_matrix_to_array(expr)
>>> convert_array_to_matrix(cg)
A*B
If more than one line of matrix multiplications is detected, return
separate matrix multiplication factors embedded in a tensor product object:
>>> cg = ArrayContraction(ArrayTensorProduct(A, B, C, D), (1, 2), (5, 6))
>>> convert_array_to_matrix(cg)
ArrayTensorProduct(A*B, C*D)
The two lines have free indices at axes 0, 3 and 4, 7, respectively.
"""
rec = _array2matrix(expr)
rec, removed = _remove_trivial_dims(rec)
return rec
def _array_diag2contr_diagmatrix(expr: ArrayDiagonal):
if isinstance(expr.expr, ArrayTensorProduct):
args = list(expr.expr.args)
diag_indices = list(expr.diagonal_indices)
mapping = _get_mapping_from_subranks([_get_subrank(arg) for arg in args])
tuple_links = [[mapping[j] for j in i] for i in diag_indices]
contr_indices = []
total_rank = get_rank(expr)
replaced = [False for arg in args]
for i, (abs_pos, rel_pos) in enumerate(zip(diag_indices, tuple_links)):
if len(abs_pos) != 2:
continue
(pos1_outer, pos1_inner), (pos2_outer, pos2_inner) = rel_pos
arg1 = args[pos1_outer]
arg2 = args[pos2_outer]
if get_rank(arg1) != 2 or get_rank(arg2) != 2:
if replaced[pos1_outer]:
diag_indices[i] = None
if replaced[pos2_outer]:
diag_indices[i] = None
continue
pos1_in2 = 1 - pos1_inner
pos2_in2 = 1 - pos2_inner
if arg1.shape[pos1_in2] == 1:
darg1 = DiagMatrix(arg1)
args.append(darg1)
contr_indices.append(((pos2_outer, pos2_inner), (len(args)-1, pos1_inner)))
total_rank += 1
diag_indices[i] = None
args[pos1_outer] = OneArray(arg1.shape[pos1_in2])
replaced[pos1_outer] = True
elif arg2.shape[pos2_in2] == 1:
darg2 = DiagMatrix(arg2)
args.append(darg2)
contr_indices.append(((pos1_outer, pos1_inner), (len(args)-1, pos2_inner)))
total_rank += 1
diag_indices[i] = None
args[pos2_outer] = OneArray(arg2.shape[pos2_in2])
replaced[pos2_outer] = True
diag_indices_new = [i for i in diag_indices if i is not None]
cumul = list(accumulate([0] + [get_rank(arg) for arg in args]))
contr_indices2 = [tuple(cumul[a] + b for a, b in i) for i in contr_indices]
tc = ArrayContraction(
ArrayTensorProduct(*args), *contr_indices2
)
td = ArrayDiagonal(tc, *diag_indices_new)
return td
return expr
def _a2m_mul(*args):
if all(not isinstance(i, _CodegenArrayAbstract) for i in args):
from sympy import MatMul
return MatMul(*args).doit()
else:
return ArrayContraction(
ArrayTensorProduct(*args),
*[(2*i-1, 2*i) for i in range(1, len(args))]
)
def _a2m_tensor_product(*args):
scalars = []
arrays = []
for arg in args:
if isinstance(arg, (MatrixExpr, _ArrayExpr, _CodegenArrayAbstract)):
arrays.append(arg)
else:
scalars.append(arg)
scalar = Mul.fromiter(scalars)
if len(arrays) == 0:
return scalar
if scalar != 1:
if isinstance(arrays[0], _CodegenArrayAbstract):
arrays = [scalar] + arrays
else:
arrays[0] *= scalar
return ArrayTensorProduct(*arrays)
def _a2m_add(*args):
if all(not isinstance(i, _CodegenArrayAbstract) for i in args):
from sympy import MatAdd
return MatAdd(*args).doit()
else:
return ArrayAdd(*args)
def _a2m_trace(arg):
if isinstance(arg, _CodegenArrayAbstract):
return ArrayContraction(arg, (0, 1))
else:
from sympy import Trace
return Trace(arg)
def _a2m_transpose(arg):
if isinstance(arg, _CodegenArrayAbstract):
return PermuteDims(arg, [1, 0])
else:
from sympy import Transpose
return Transpose(arg).doit()
|
fb185c01aa7f3ff62969aee8d8a17d886b48f08ee20d3dca2867ecbe1734c053 | import operator
from functools import reduce
import itertools
from itertools import accumulate
from typing import Optional, List, Dict
from sympy import Expr, ImmutableDenseNDimArray, S, Symbol, Integer, ZeroMatrix, Basic, tensorproduct, Add, permutedims, \
Tuple, tensordiagonal, Lambda, Dummy, Function, MatrixExpr, NDimArray, Indexed, IndexedBase, default_sort_key, \
tensorcontraction, diagonalize_vector, Mul
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.tensor.array.expressions.utils import _apply_recursively_over_nested_lists, _sort_contraction_indices, \
_get_mapping_from_subranks, _build_push_indices_up_func_transformation, _get_contraction_links, \
_build_push_indices_down_func_transformation
from sympy.combinatorics import Permutation
from sympy.combinatorics.permutations import _af_invert
from sympy.core.sympify import _sympify
class _ArrayExpr(Expr):
pass
class ArraySymbol(_ArrayExpr):
"""
Symbol representing an array expression
"""
def __new__(cls, symbol, *shape):
if isinstance(symbol, str):
symbol = Symbol(symbol)
# symbol = _sympify(symbol)
shape = map(_sympify, shape)
obj = Expr.__new__(cls, symbol, *shape)
return obj
@property
def name(self):
return self._args[0]
@property
def shape(self):
return self._args[1:]
def __getitem__(self, item):
return ArrayElement(self, item)
def as_explicit(self):
if any(not isinstance(i, (int, Integer)) for i in self.shape):
raise ValueError("cannot express explicit array with symbolic shape")
data = [self[i] for i in itertools.product(*[range(j) for j in self.shape])]
return ImmutableDenseNDimArray(data).reshape(*self.shape)
class ArrayElement(_ArrayExpr):
"""
An element of an array.
"""
def __new__(cls, name, indices):
if isinstance(name, str):
name = Symbol(name)
name = _sympify(name)
indices = _sympify(indices)
if hasattr(name, "shape"):
if any([(i >= s) == True for i, s in zip(indices, name.shape)]):
raise ValueError("shape is out of bounds")
if any([(i < 0) == True for i in indices]):
raise ValueError("shape contains negative values")
obj = Expr.__new__(cls, name, indices)
return obj
@property
def name(self):
return self._args[0]
@property
def indices(self):
return self._args[1]
class ZeroArray(_ArrayExpr):
"""
Symbolic array of zeros. Equivalent to ``ZeroMatrix`` for matrices.
"""
def __new__(cls, *shape):
if len(shape) == 0:
return S.Zero
shape = map(_sympify, shape)
obj = Expr.__new__(cls, *shape)
return obj
@property
def shape(self):
return self._args
def as_explicit(self):
if any(not i.is_Integer for i in self.shape):
raise ValueError("Cannot return explicit form for symbolic shape.")
return ImmutableDenseNDimArray.zeros(*self.shape)
class OneArray(_ArrayExpr):
"""
Symbolic array of ones.
"""
def __new__(cls, *shape):
if len(shape) == 0:
return S.One
shape = map(_sympify, shape)
obj = Expr.__new__(cls, *shape)
return obj
@property
def shape(self):
return self._args
def as_explicit(self):
if any(not i.is_Integer for i in self.shape):
raise ValueError("Cannot return explicit form for symbolic shape.")
return ImmutableDenseNDimArray([S.One for i in range(reduce(operator.mul, self.shape))]).reshape(*self.shape)
class _CodegenArrayAbstract(Basic):
@property
def subranks(self):
"""
Returns the ranks of the objects in the uppermost tensor product inside
the current object. In case no tensor products are contained, return
the atomic ranks.
Examples
========
>>> from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayContraction
>>> from sympy import MatrixSymbol
>>> M = MatrixSymbol("M", 3, 3)
>>> N = MatrixSymbol("N", 3, 3)
>>> P = MatrixSymbol("P", 3, 3)
Important: do not confuse the rank of the matrix with the rank of an array.
>>> tp = ArrayTensorProduct(M, N, P)
>>> tp.subranks
[2, 2, 2]
>>> co = ArrayContraction(tp, (1, 2), (3, 4))
>>> co.subranks
[2, 2, 2]
"""
return self._subranks[:]
def subrank(self):
"""
The sum of ``subranks``.
"""
return sum(self.subranks)
@property
def shape(self):
return self._shape
class ArrayTensorProduct(_CodegenArrayAbstract):
r"""
Class to represent the tensor product of array-like objects.
"""
def __new__(cls, *args):
args = [_sympify(arg) for arg in args]
args = cls._flatten(args)
ranks = [get_rank(arg) for arg in args]
# Check if there are nested permutation and lift them up:
permutation_cycles = []
for i, arg in enumerate(args):
if not isinstance(arg, PermuteDims):
continue
permutation_cycles.extend([[k + sum(ranks[:i]) for k in j] for j in arg.permutation.cyclic_form])
args[i] = arg.expr
if permutation_cycles:
return PermuteDims(ArrayTensorProduct(*args), Permutation(sum(ranks)-1)*Permutation(permutation_cycles))
if len(args) == 1:
return args[0]
# If any object is a ZeroArray, return a ZeroArray:
if any(isinstance(arg, (ZeroArray, ZeroMatrix)) for arg in args):
shapes = reduce(operator.add, [get_shape(i) for i in args], ())
return ZeroArray(*shapes)
# If there are contraction objects inside, transform the whole
# expression into `ArrayContraction`:
contractions = {i: arg for i, arg in enumerate(args) if isinstance(arg, ArrayContraction)}
if contractions:
ranks = [_get_subrank(arg) if isinstance(arg, ArrayContraction) else get_rank(arg) for arg in args]
cumulative_ranks = list(accumulate([0] + ranks))[:-1]
tp = cls(*[arg.expr if isinstance(arg, ArrayContraction) else arg for arg in args])
contraction_indices = [tuple(cumulative_ranks[i] + k for k in j) for i, arg in contractions.items() for j in arg.contraction_indices]
return ArrayContraction(tp, *contraction_indices)
diagonals = {i: arg for i, arg in enumerate(args) if isinstance(arg, ArrayDiagonal)}
if diagonals:
permutation = []
last_perm = []
ranks = [get_rank(arg) for arg in args]
cumulative_ranks = list(accumulate([0] + ranks))[:-1]
for i, arg in enumerate(args):
if isinstance(arg, ArrayDiagonal):
i1 = get_rank(arg) - len(arg.diagonal_indices)
i2 = len(arg.diagonal_indices)
permutation.extend([cumulative_ranks[i] + j for j in range(i1)])
last_perm.extend([cumulative_ranks[i] + j for j in range(i1, i1 + i2)])
else:
permutation.extend([cumulative_ranks[i] + j for j in range(get_rank(arg))])
permutation.extend(last_perm)
tp = cls(*[arg.expr if isinstance(arg, ArrayDiagonal) else arg for arg in args])
ranks2 = [_get_subrank(arg) if isinstance(arg, ArrayDiagonal) else get_rank(arg) for arg in args]
cumulative_ranks2 = list(accumulate([0] + ranks2))[:-1]
diagonal_indices = [tuple(cumulative_ranks2[i] + k for k in j) for i, arg in diagonals.items() for j in arg.diagonal_indices]
return PermuteDims(ArrayDiagonal(tp, *diagonal_indices), permutation)
obj = Basic.__new__(cls, *args)
obj._subranks = ranks
shapes = [get_shape(i) for i in args]
if any(i is None for i in shapes):
obj._shape = None
else:
obj._shape = tuple(j for i in shapes for j in i)
return obj
@classmethod
def _flatten(cls, args):
args = [i for arg in args for i in (arg.args if isinstance(arg, cls) else [arg])]
return args
def as_explicit(self):
return tensorproduct(*[arg.as_explicit() if hasattr(arg, "as_explicit") else arg for arg in self.args])
class ArrayAdd(_CodegenArrayAbstract):
r"""
Class for elementwise array additions.
"""
def __new__(cls, *args):
args = [_sympify(arg) for arg in args]
ranks = [get_rank(arg) for arg in args]
ranks = list(set(ranks))
if len(ranks) != 1:
raise ValueError("summing arrays of different ranks")
shapes = [arg.shape for arg in args]
if len({i for i in shapes if i is not None}) > 1:
raise ValueError("mismatching shapes in addition")
# Flatten:
args = cls._flatten_args(args)
args = [arg for arg in args if not isinstance(arg, (ZeroArray, ZeroMatrix))]
if len(args) == 0:
if any(i for i in shapes if i is None):
raise NotImplementedError("cannot handle addition of ZeroMatrix/ZeroArray and undefined shape object")
return ZeroArray(*shapes[0])
elif len(args) == 1:
return args[0]
obj = Basic.__new__(cls, *args)
obj._subranks = ranks
if any(i is None for i in shapes):
obj._shape = None
else:
obj._shape = shapes[0]
return obj
@classmethod
def _flatten_args(cls, args):
new_args = []
for arg in args:
if isinstance(arg, ArrayAdd):
new_args.extend(arg.args)
else:
new_args.append(arg)
return new_args
def as_explicit(self):
return Add.fromiter([arg.as_explicit() for arg in self.args])
class PermuteDims(_CodegenArrayAbstract):
r"""
Class to represent permutation of axes of arrays.
Examples
========
>>> from sympy.tensor.array.expressions.array_expressions import PermuteDims
>>> from sympy import MatrixSymbol
>>> M = MatrixSymbol("M", 3, 3)
>>> cg = PermuteDims(M, [1, 0])
The object ``cg`` represents the transposition of ``M``, as the permutation
``[1, 0]`` will act on its indices by switching them:
`M_{ij} \Rightarrow M_{ji}`
This is evident when transforming back to matrix form:
>>> from sympy.tensor.array.expressions.conv_array_to_matrix import convert_array_to_matrix
>>> convert_array_to_matrix(cg)
M.T
>>> N = MatrixSymbol("N", 3, 2)
>>> cg = PermuteDims(N, [1, 0])
>>> cg.shape
(2, 3)
Permutations of tensor products are simplified in order to achieve a
standard form:
>>> from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
>>> M = MatrixSymbol("M", 4, 5)
>>> tp = ArrayTensorProduct(M, N)
>>> tp.shape
(4, 5, 3, 2)
>>> perm1 = PermuteDims(tp, [2, 3, 1, 0])
The args ``(M, N)`` have been sorted and the permutation has been
simplified, the expression is equivalent:
>>> perm1.expr.args
(N, M)
>>> perm1.shape
(3, 2, 5, 4)
>>> perm1.permutation
(2 3)
The permutation in its array form has been simplified from
``[2, 3, 1, 0]`` to ``[0, 1, 3, 2]``, as the arguments of the tensor
product `M` and `N` have been switched:
>>> perm1.permutation.array_form
[0, 1, 3, 2]
We can nest a second permutation:
>>> perm2 = PermuteDims(perm1, [1, 0, 2, 3])
>>> perm2.shape
(2, 3, 5, 4)
>>> perm2.permutation.array_form
[1, 0, 3, 2]
"""
def __new__(cls, expr, permutation, nest_permutation=True):
from sympy.combinatorics import Permutation
expr = _sympify(expr)
permutation = Permutation(permutation)
permutation_size = permutation.size
expr_rank = get_rank(expr)
if permutation_size != expr_rank:
raise ValueError("Permutation size must be the length of the shape of expr")
if isinstance(expr, PermuteDims):
subexpr = expr.expr
subperm = expr.permutation
permutation = permutation * subperm
expr = subexpr
if isinstance(expr, ArrayContraction):
expr, permutation = cls._handle_nested_contraction(expr, permutation)
if isinstance(expr, ArrayTensorProduct):
expr, permutation = cls._sort_components(expr, permutation)
if isinstance(expr, (ZeroArray, ZeroMatrix)):
return ZeroArray(*[expr.shape[i] for i in permutation.array_form])
plist = permutation.array_form
if plist == sorted(plist):
return expr
obj = Basic.__new__(cls, expr, permutation)
obj._subranks = [get_rank(expr)]
shape = expr.shape
if shape is None:
obj._shape = None
else:
obj._shape = tuple(shape[permutation(i)] for i in range(len(shape)))
return obj
@property
def expr(self):
return self.args[0]
@property
def permutation(self):
return self.args[1]
@classmethod
def _sort_components(cls, expr, permutation):
# Get the permutation in its image-form:
perm_image_form = _af_invert(permutation.array_form)
args = list(expr.args)
# Starting index global position for every arg:
cumul = list(accumulate([0] + expr.subranks))
# Split `perm_image_form` into a list of list corresponding to the indices
# of every argument:
perm_image_form_in_components = [perm_image_form[cumul[i]:cumul[i+1]] for i in range(len(args))]
# Create an index, target-position-key array:
ps = [(i, sorted(comp)) for i, comp in enumerate(perm_image_form_in_components)]
# Sort the array according to the target-position-key:
# In this way, we define a canonical way to sort the arguments according
# to the permutation.
ps.sort(key=lambda x: x[1])
# Read the inverse-permutation (i.e. image-form) of the args:
perm_args_image_form = [i[0] for i in ps]
# Apply the args-permutation to the `args`:
args_sorted = [args[i] for i in perm_args_image_form]
# Apply the args-permutation to the array-form of the permutation of the axes (of `expr`):
perm_image_form_sorted_args = [perm_image_form_in_components[i] for i in perm_args_image_form]
new_permutation = Permutation(_af_invert([j for i in perm_image_form_sorted_args for j in i]))
return ArrayTensorProduct(*args_sorted), new_permutation
@classmethod
def _handle_nested_contraction(cls, expr, permutation):
if not isinstance(expr, ArrayContraction):
return expr, permutation
if not isinstance(expr.expr, ArrayTensorProduct):
return expr, permutation
args = expr.expr.args
subranks = [get_rank(arg) for arg in expr.expr.args]
contraction_indices = expr.contraction_indices
contraction_indices_flat = [j for i in contraction_indices for j in i]
cumul = list(accumulate([0] + subranks))
# Spread the permutation in its array form across the args in the corresponding
# tensor-product arguments with free indices:
permutation_array_blocks_up = []
image_form = _af_invert(permutation.array_form)
counter = 0
for i, e in enumerate(subranks):
current = []
for j in range(cumul[i], cumul[i+1]):
if j in contraction_indices_flat:
continue
current.append(image_form[counter])
counter += 1
permutation_array_blocks_up.append(current)
# Get the map of axis repositioning for every argument of tensor-product:
index_blocks = [[j for j in range(cumul[i], cumul[i+1])] for i, e in enumerate(expr.subranks)]
index_blocks_up = expr._push_indices_up(expr.contraction_indices, index_blocks)
inverse_permutation = permutation**(-1)
index_blocks_up_permuted = [[inverse_permutation(j) for j in i if j is not None] for i in index_blocks_up]
# Sorting key is a list of tuple, first element is the index of `args`, second element of
# the tuple is the sorting key to sort `args` of the tensor product:
sorting_keys = list(enumerate(index_blocks_up_permuted))
sorting_keys.sort(key=lambda x: x[1])
# Now we can get the permutation acting on the args in its image-form:
new_perm_image_form = [i[0] for i in sorting_keys]
# Apply the args-level permutation to various elements:
new_index_blocks = [index_blocks[i] for i in new_perm_image_form]
new_index_perm_array_form = _af_invert([j for i in new_index_blocks for j in i])
new_args = [args[i] for i in new_perm_image_form]
new_contraction_indices = [tuple(new_index_perm_array_form[j] for j in i) for i in contraction_indices]
new_expr = ArrayContraction(ArrayTensorProduct(*new_args), *new_contraction_indices)
new_permutation = Permutation(_af_invert([j for i in [permutation_array_blocks_up[k] for k in new_perm_image_form] for j in i]))
return new_expr, new_permutation
@classmethod
def _check_permutation_mapping(cls, expr, permutation):
subranks = expr.subranks
index2arg = [i for i, arg in enumerate(expr.args) for j in range(expr.subranks[i])]
permuted_indices = [permutation(i) for i in range(expr.subrank())]
new_args = list(expr.args)
arg_candidate_index = index2arg[permuted_indices[0]]
current_indices = []
new_permutation = []
inserted_arg_cand_indices = set([])
for i, idx in enumerate(permuted_indices):
if index2arg[idx] != arg_candidate_index:
new_permutation.extend(current_indices)
current_indices = []
arg_candidate_index = index2arg[idx]
current_indices.append(idx)
arg_candidate_rank = subranks[arg_candidate_index]
if len(current_indices) == arg_candidate_rank:
new_permutation.extend(sorted(current_indices))
local_current_indices = [j - min(current_indices) for j in current_indices]
i1 = index2arg[i]
new_args[i1] = PermuteDims(new_args[i1], Permutation(local_current_indices))
inserted_arg_cand_indices.add(arg_candidate_index)
current_indices = []
new_permutation.extend(current_indices)
# TODO: swap args positions in order to simplify the expression:
# TODO: this should be in a function
args_positions = list(range(len(new_args)))
# Get possible shifts:
maps = {}
cumulative_subranks = [0] + list(accumulate(subranks))
for i in range(0, len(subranks)):
s = set([index2arg[new_permutation[j]] for j in range(cumulative_subranks[i], cumulative_subranks[i+1])])
if len(s) != 1:
continue
elem = next(iter(s))
if i != elem:
maps[i] = elem
# Find cycles in the map:
lines = []
current_line = []
while maps:
if len(current_line) == 0:
k, v = maps.popitem()
current_line.append(k)
else:
k = current_line[-1]
if k not in maps:
current_line = []
continue
v = maps.pop(k)
if v in current_line:
lines.append(current_line)
current_line = []
continue
current_line.append(v)
for line in lines:
for i, e in enumerate(line):
args_positions[line[(i + 1) % len(line)]] = e
# TODO: function in order to permute the args:
permutation_blocks = [[new_permutation[cumulative_subranks[i] + j] for j in range(e)] for i, e in enumerate(subranks)]
new_args = [new_args[i] for i in args_positions]
new_permutation_blocks = [permutation_blocks[i] for i in args_positions]
new_permutation2 = [j for i in new_permutation_blocks for j in i]
return ArrayTensorProduct(*new_args), Permutation(new_permutation2) # **(-1)
@classmethod
def _check_if_there_are_closed_cycles(cls, expr, permutation):
args = list(expr.args)
subranks = expr.subranks
cyclic_form = permutation.cyclic_form
cumulative_subranks = [0] + list(accumulate(subranks))
cyclic_min = [min(i) for i in cyclic_form]
cyclic_max = [max(i) for i in cyclic_form]
cyclic_keep = []
for i, cycle in enumerate(cyclic_form):
flag = True
for j in range(0, len(cumulative_subranks) - 1):
if cyclic_min[i] >= cumulative_subranks[j] and cyclic_max[i] < cumulative_subranks[j+1]:
# Found a sinkable cycle.
args[j] = PermuteDims(args[j], Permutation([[k - cumulative_subranks[j] for k in cyclic_form[i]]]))
flag = False
break
if flag:
cyclic_keep.append(cyclic_form[i])
return ArrayTensorProduct(*args), Permutation(cyclic_keep, size=permutation.size)
def nest_permutation(self):
r"""
DEPRECATED.
"""
ret = self._nest_permutation(self.expr, self.permutation)
if ret is None:
return self
return ret
@classmethod
def _nest_permutation(cls, expr, permutation):
if isinstance(expr, ArrayTensorProduct):
return PermuteDims(*cls._check_if_there_are_closed_cycles(expr, permutation))
elif isinstance(expr, ArrayContraction):
# Invert tree hierarchy: put the contraction above.
cycles = permutation.cyclic_form
newcycles = ArrayContraction._convert_outer_indices_to_inner_indices(expr, *cycles)
newpermutation = Permutation(newcycles)
new_contr_indices = [tuple(newpermutation(j) for j in i) for i in expr.contraction_indices]
return ArrayContraction(PermuteDims(expr.expr, newpermutation), *new_contr_indices)
elif isinstance(expr, ArrayAdd):
return ArrayAdd(*[PermuteDims(arg, permutation) for arg in expr.args])
return None
def as_explicit(self):
return permutedims(self.expr.as_explicit(), self.permutation)
class ArrayDiagonal(_CodegenArrayAbstract):
r"""
Class to represent the diagonal operator.
Explanation
===========
In a 2-dimensional array it returns the diagonal, this looks like the
operation:
`A_{ij} \rightarrow A_{ii}`
The diagonal over axes 1 and 2 (the second and third) of the tensor product
of two 2-dimensional arrays `A \otimes B` is
`\Big[ A_{ab} B_{cd} \Big]_{abcd} \rightarrow \Big[ A_{ai} B_{id} \Big]_{adi}`
In this last example the array expression has been reduced from
4-dimensional to 3-dimensional. Notice that no contraction has occurred,
rather there is a new index `i` for the diagonal, contraction would have
reduced the array to 2 dimensions.
Notice that the diagonalized out dimensions are added as new dimensions at
the end of the indices.
"""
def __new__(cls, expr, *diagonal_indices):
expr = _sympify(expr)
diagonal_indices = [Tuple(*sorted(i)) for i in diagonal_indices]
if isinstance(expr, ArrayAdd):
return ArrayAdd(*[ArrayDiagonal(arg, *diagonal_indices) for arg in expr.args])
if isinstance(expr, ArrayDiagonal):
return cls._flatten(expr, *diagonal_indices)
if isinstance(expr, PermuteDims):
return cls._handle_nested_permutedims_in_diag(expr, *diagonal_indices)
shape = expr.shape
if shape is not None:
cls._validate(expr, *diagonal_indices)
# Get new shape:
positions, shape = cls._get_positions_shape(shape, diagonal_indices)
else:
positions = None
if len(diagonal_indices) == 0:
return expr
if isinstance(expr, (ZeroArray, ZeroMatrix)):
return ZeroArray(*shape)
obj = Basic.__new__(cls, expr, *diagonal_indices)
obj._positions = positions
obj._subranks = _get_subranks(expr)
obj._shape = shape
return obj
@staticmethod
def _validate(expr, *diagonal_indices):
# Check that no diagonalization happens on indices with mismatched
# dimensions:
shape = expr.shape
for i in diagonal_indices:
if len({shape[j] for j in i}) != 1:
raise ValueError("diagonalizing indices of different dimensions")
if len(i) <= 1:
raise ValueError("need at least two axes to diagonalize")
@staticmethod
def _remove_trivial_dimensions(shape, *diagonal_indices):
return [tuple(j for j in i) for i in diagonal_indices if shape[i[0]] != 1]
@property
def expr(self):
return self.args[0]
@property
def diagonal_indices(self):
return self.args[1:]
@staticmethod
def _flatten(expr, *outer_diagonal_indices):
inner_diagonal_indices = expr.diagonal_indices
all_inner = [j for i in inner_diagonal_indices for j in i]
all_inner.sort()
# TODO: add API for total rank and cumulative rank:
total_rank = _get_subrank(expr)
inner_rank = len(all_inner)
outer_rank = total_rank - inner_rank
shifts = [0 for i in range(outer_rank)]
counter = 0
pointer = 0
for i in range(outer_rank):
while pointer < inner_rank and counter >= all_inner[pointer]:
counter += 1
pointer += 1
shifts[i] += pointer
counter += 1
outer_diagonal_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_diagonal_indices)
diagonal_indices = inner_diagonal_indices + outer_diagonal_indices
return ArrayDiagonal(expr.expr, *diagonal_indices)
@classmethod
def _handle_nested_permutedims_in_diag(cls, expr: PermuteDims, *diagonal_indices):
back_diagonal_indices = [[expr.permutation(j) for j in i] for i in diagonal_indices]
nondiag = [i for i in range(get_rank(expr)) if not any(i in j for j in diagonal_indices)]
back_nondiag = [expr.permutation(i) for i in nondiag]
remap = {e: i for i, e in enumerate(sorted(back_nondiag))}
new_permutation1 = [remap[i] for i in back_nondiag]
shift = len(new_permutation1)
diag_block_perm = [i + shift for i in range(len(back_diagonal_indices))]
new_permutation = new_permutation1 + diag_block_perm
return PermuteDims(
ArrayDiagonal(
expr.expr,
*back_diagonal_indices
),
new_permutation
)
def _push_indices_down_nonstatic(self, indices):
transform = lambda x: self._positions[x] if x < len(self._positions) else None
return _apply_recursively_over_nested_lists(transform, indices)
def _push_indices_up_nonstatic(self, indices):
def transform(x):
for i, e in enumerate(self._positions):
if (isinstance(e, int) and x == e) or (isinstance(e, tuple) and x in e):
return i
return _apply_recursively_over_nested_lists(transform, indices)
@classmethod
def _push_indices_down(cls, diagonal_indices, indices, rank):
positions, shape = cls._get_positions_shape(range(rank), diagonal_indices)
transform = lambda x: positions[x] if x < len(positions) else None
return _apply_recursively_over_nested_lists(transform, indices)
@classmethod
def _push_indices_up(cls, diagonal_indices, indices, rank):
positions, shape = cls._get_positions_shape(range(rank), diagonal_indices)
def transform(x):
for i, e in enumerate(positions):
if (isinstance(e, int) and x == e) or (isinstance(e, (tuple, Tuple)) and (x in e)):
return i
return _apply_recursively_over_nested_lists(transform, indices)
@classmethod
def _get_positions_shape(cls, shape, diagonal_indices):
data1 = tuple((i, shp) for i, shp in enumerate(shape) if not any(i in j for j in diagonal_indices))
pos1, shp1 = zip(*data1) if data1 else ((), ())
data2 = tuple((i, shape[i[0]]) for i in diagonal_indices)
pos2, shp2 = zip(*data2) if data2 else ((), ())
positions = pos1 + pos2
shape = shp1 + shp2
return positions, shape
def as_explicit(self):
return tensordiagonal(self.expr.as_explicit(), *self.diagonal_indices)
class ArrayElementwiseApplyFunc(_CodegenArrayAbstract):
def __new__(cls, function, element):
if not isinstance(function, Lambda):
d = Dummy('d')
function = Lambda(d, function(d))
obj = _CodegenArrayAbstract.__new__(cls, function, element)
obj._subranks = _get_subranks(element)
return obj
@property
def function(self):
return self.args[0]
@property
def expr(self):
return self.args[1]
@property
def shape(self):
return self.expr.shape
def _get_function_fdiff(self):
d = Dummy("d")
function = self.function(d)
fdiff = function.diff(d)
if isinstance(fdiff, Function):
fdiff = type(fdiff)
else:
fdiff = Lambda(d, fdiff)
return fdiff
class ArrayContraction(_CodegenArrayAbstract):
r"""
This class is meant to represent contractions of arrays in a form easily
processable by the code printers.
"""
def __new__(cls, expr, *contraction_indices, **kwargs):
contraction_indices = _sort_contraction_indices(contraction_indices)
expr = _sympify(expr)
if len(contraction_indices) == 0:
return expr
if isinstance(expr, ArrayContraction):
return cls._flatten(expr, *contraction_indices)
if isinstance(expr, (ZeroArray, ZeroMatrix)):
contraction_indices_flat = [j for i in contraction_indices for j in i]
shape = [e for i, e in enumerate(expr.shape) if i not in contraction_indices_flat]
return ZeroArray(*shape)
if isinstance(expr, PermuteDims):
return cls._handle_nested_permute_dims(expr, *contraction_indices)
if isinstance(expr, ArrayTensorProduct):
expr, contraction_indices = cls._sort_fully_contracted_args(expr, contraction_indices)
expr, contraction_indices = cls._lower_contraction_to_addends(expr, contraction_indices)
if len(contraction_indices) == 0:
return expr
if isinstance(expr, ArrayDiagonal):
return cls._handle_nested_diagonal(expr, *contraction_indices)
if isinstance(expr, ArrayAdd):
return ArrayAdd(*[ArrayContraction(i, *contraction_indices) for i in expr.args])
obj = Basic.__new__(cls, expr, *contraction_indices)
obj._subranks = _get_subranks(expr)
obj._mapping = _get_mapping_from_subranks(obj._subranks)
free_indices_to_position = {i: i for i in range(sum(obj._subranks)) if all([i not in cind for cind in contraction_indices])}
obj._free_indices_to_position = free_indices_to_position
shape = expr.shape
cls._validate(expr, *contraction_indices)
if shape:
shape = tuple(shp for i, shp in enumerate(shape) if not any(i in j for j in contraction_indices))
obj._shape = shape
return obj
def __mul__(self, other):
if other == 1:
return self
else:
raise NotImplementedError("Product of N-dim arrays is not uniquely defined. Use another method.")
def __rmul__(self, other):
if other == 1:
return self
else:
raise NotImplementedError("Product of N-dim arrays is not uniquely defined. Use another method.")
@staticmethod
def _validate(expr, *contraction_indices):
shape = expr.shape
if shape is None:
return
# Check that no contraction happens when the shape is mismatched:
for i in contraction_indices:
if len({shape[j] for j in i if shape[j] != -1}) != 1:
raise ValueError("contracting indices of different dimensions")
@classmethod
def _push_indices_down(cls, contraction_indices, indices):
flattened_contraction_indices = [j for i in contraction_indices for j in i]
flattened_contraction_indices.sort()
transform = _build_push_indices_down_func_transformation(flattened_contraction_indices)
return _apply_recursively_over_nested_lists(transform, indices)
@classmethod
def _push_indices_up(cls, contraction_indices, indices):
flattened_contraction_indices = [j for i in contraction_indices for j in i]
flattened_contraction_indices.sort()
transform = _build_push_indices_up_func_transformation(flattened_contraction_indices)
return _apply_recursively_over_nested_lists(transform, indices)
@classmethod
def _lower_contraction_to_addends(cls, expr, contraction_indices):
if isinstance(expr, ArrayAdd):
raise NotImplementedError()
if not isinstance(expr, ArrayTensorProduct):
return expr, contraction_indices
subranks = expr.subranks
cumranks = list(accumulate([0] + subranks))
contraction_indices_remaining = []
contraction_indices_args = [[] for i in expr.args]
backshift = set([])
for i, contraction_group in enumerate(contraction_indices):
for j in range(len(expr.args)):
if not isinstance(expr.args[j], ArrayAdd):
continue
if all(cumranks[j] <= k < cumranks[j+1] for k in contraction_group):
contraction_indices_args[j].append([k - cumranks[j] for k in contraction_group])
backshift.update(contraction_group)
break
else:
contraction_indices_remaining.append(contraction_group)
if len(contraction_indices_remaining) == len(contraction_indices):
return expr, contraction_indices
total_rank = get_rank(expr)
shifts = list(accumulate([1 if i in backshift else 0 for i in range(total_rank)]))
contraction_indices_remaining = [Tuple.fromiter(j - shifts[j] for j in i) for i in contraction_indices_remaining]
ret = ArrayTensorProduct(*[
ArrayContraction(arg, *contr) for arg, contr in zip(expr.args, contraction_indices_args)
])
return ret, contraction_indices_remaining
def split_multiple_contractions(self):
"""
Recognize multiple contractions and attempt at rewriting them as paired-contractions.
This allows some contractions involving more than two indices to be
rewritten as multiple contractions involving two indices, thus allowing
the expression to be rewritten as a matrix multiplication line.
Examples:
* `A_ij b_j0 C_jk` ===> `A*DiagMatrix(b)*C`
Care for:
- matrix being diagonalized (i.e. `A_ii`)
- vectors being diagonalized (i.e. `a_i0`)
Multiple contractions can be split into matrix multiplications if
not more than two arguments are non-diagonals or non-vectors.
Vectors get diagonalized while diagonal matrices remain diagonal.
The non-diagonal matrices can be at the beginning or at the end
of the final matrix multiplication line.
"""
from sympy import ask, Q
editor = _EditArrayContraction(self)
contraction_indices = self.contraction_indices
if isinstance(self.expr, ArrayTensorProduct):
args = list(self.expr.args)
else:
args = [self.expr]
# TODO: unify API, best location in ArrayTensorProduct
subranks = [get_rank(i) for i in args]
# TODO: unify API
mapping = _get_mapping_from_subranks(subranks)
reverse_mapping = {v: k for k, v in mapping.items()}
for indl, links in enumerate(contraction_indices):
if len(links) <= 2:
continue
positions = editor.get_mapping_for_index(indl)
# Also consider the case of diagonal matrices being contracted:
current_dimension = self.expr.shape[links[0]]
not_vectors: Tuple[_ArgE, int] = []
vectors: Tuple[_ArgE, int] = []
for arg_ind, rel_ind in positions:
mat = args[arg_ind]
other_arg_pos = 1-rel_ind
other_arg_abs = reverse_mapping[arg_ind, other_arg_pos]
arg = editor.args_with_ind[arg_ind]
if (((1 not in mat.shape) and (not ask(Q.diagonal(mat)))) or
((current_dimension == 1) is True and mat.shape != (1, 1)) or
any([other_arg_abs in l for li, l in enumerate(contraction_indices) if li != indl])
):
not_vectors.append((arg, rel_ind))
else:
vectors.append((arg, rel_ind))
if len(not_vectors) > 2:
# If more than two arguments in the multiple contraction are
# non-vectors and non-diagonal matrices, we cannot find a way
# to split this contraction into a matrix multiplication line:
continue
# Three cases to handle:
# - zero non-vectors
# - one non-vector
# - two non-vectors
for v, rel_ind in vectors:
v.element = diagonalize_vector(v.element)
vectors_to_loop = not_vectors[:1] + vectors + not_vectors[1:]
first_not_vector, rel_ind = vectors_to_loop[0]
new_index = first_not_vector.indices[rel_ind]
for v, rel_ind in vectors_to_loop[1:-1]:
v.indices[rel_ind] = new_index
new_index = editor.get_new_contraction_index()
assert v.indices.index(None) == 1 - rel_ind
v.indices[v.indices.index(None)] = new_index
last_vec, rel_ind = vectors_to_loop[-1]
last_vec.indices[rel_ind] = new_index
return editor.to_array_contraction()
def flatten_contraction_of_diagonal(self):
if not isinstance(self.expr, ArrayDiagonal):
return self
contraction_down = self.expr._push_indices_down(self.expr.diagonal_indices, self.contraction_indices)
new_contraction_indices = []
diagonal_indices = self.expr.diagonal_indices[:]
for i in contraction_down:
contraction_group = list(i)
for j in i:
diagonal_with = [k for k in diagonal_indices if j in k]
contraction_group.extend([l for k in diagonal_with for l in k])
diagonal_indices = [k for k in diagonal_indices if k not in diagonal_with]
new_contraction_indices.append(sorted(set(contraction_group)))
new_contraction_indices = ArrayDiagonal._push_indices_up(diagonal_indices, new_contraction_indices)
return ArrayContraction(
ArrayDiagonal(
self.expr.expr,
*diagonal_indices
),
*new_contraction_indices
)
@staticmethod
def _get_free_indices_to_position_map(free_indices, contraction_indices):
free_indices_to_position = {}
flattened_contraction_indices = [j for i in contraction_indices for j in i]
counter = 0
for ind in free_indices:
while counter in flattened_contraction_indices:
counter += 1
free_indices_to_position[ind] = counter
counter += 1
return free_indices_to_position
@staticmethod
def _get_index_shifts(expr):
"""
Get the mapping of indices at the positions before the contraction
occurs.
Examples
========
>>> from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
>>> from sympy.tensor.array.expressions.array_expressions import ArrayContraction
>>> from sympy import MatrixSymbol
>>> M = MatrixSymbol("M", 3, 3)
>>> N = MatrixSymbol("N", 3, 3)
>>> cg = ArrayContraction(ArrayTensorProduct(M, N), [1, 2])
>>> cg._get_index_shifts(cg)
[0, 2]
Indeed, ``cg`` after the contraction has two dimensions, 0 and 1. They
need to be shifted by 0 and 2 to get the corresponding positions before
the contraction (that is, 0 and 3).
"""
inner_contraction_indices = expr.contraction_indices
all_inner = [j for i in inner_contraction_indices for j in i]
all_inner.sort()
# TODO: add API for total rank and cumulative rank:
total_rank = _get_subrank(expr)
inner_rank = len(all_inner)
outer_rank = total_rank - inner_rank
shifts = [0 for i in range(outer_rank)]
counter = 0
pointer = 0
for i in range(outer_rank):
while pointer < inner_rank and counter >= all_inner[pointer]:
counter += 1
pointer += 1
shifts[i] += pointer
counter += 1
return shifts
@staticmethod
def _convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices):
shifts = ArrayContraction._get_index_shifts(expr)
outer_contraction_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_contraction_indices)
return outer_contraction_indices
@staticmethod
def _flatten(expr, *outer_contraction_indices):
inner_contraction_indices = expr.contraction_indices
outer_contraction_indices = ArrayContraction._convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices)
contraction_indices = inner_contraction_indices + outer_contraction_indices
return ArrayContraction(expr.expr, *contraction_indices)
@classmethod
def _handle_nested_permute_dims(cls, expr, *contraction_indices):
permutation = expr.permutation
plist = permutation.array_form
new_contraction_indices = [tuple(permutation(j) for j in i) for i in contraction_indices]
new_plist = [i for i in plist if all(i not in j for j in new_contraction_indices)]
new_plist = cls._push_indices_up(new_contraction_indices, new_plist)
return PermuteDims(
ArrayContraction(expr.expr, *new_contraction_indices),
Permutation(new_plist)
)
@classmethod
def _handle_nested_diagonal(cls, expr: 'ArrayDiagonal', *contraction_indices):
diagonal_indices = list(expr.diagonal_indices)
down_contraction_indices = expr._push_indices_down(expr.diagonal_indices, contraction_indices, get_rank(expr.expr))
# Flatten diagonally contracted indices:
down_contraction_indices = [[k for j in i for k in (j if isinstance(j, (tuple, Tuple)) else [j])] for i in down_contraction_indices]
new_contraction_indices = []
for contr_indgrp in down_contraction_indices:
ind = contr_indgrp[:]
for j, diag_indgrp in enumerate(diagonal_indices):
if diag_indgrp is None:
continue
if any(i in diag_indgrp for i in contr_indgrp):
ind.extend(diag_indgrp)
diagonal_indices[j] = None
new_contraction_indices.append(sorted(set(ind)))
new_diagonal_indices_down = [i for i in diagonal_indices if i is not None]
new_diagonal_indices = ArrayContraction._push_indices_up(new_contraction_indices, new_diagonal_indices_down)
return ArrayDiagonal(
ArrayContraction(expr.expr, *new_contraction_indices),
*new_diagonal_indices
)
@classmethod
def _sort_fully_contracted_args(cls, expr, contraction_indices):
if expr.shape is None:
return expr, contraction_indices
cumul = list(accumulate([0] + expr.subranks))
index_blocks = [list(range(cumul[i], cumul[i+1])) for i in range(len(expr.args))]
contraction_indices_flat = {j for i in contraction_indices for j in i}
fully_contracted = [all(j in contraction_indices_flat for j in range(cumul[i], cumul[i+1])) for i, arg in enumerate(expr.args)]
new_pos = sorted(range(len(expr.args)), key=lambda x: (0, default_sort_key(expr.args[x])) if fully_contracted[x] else (1,))
new_args = [expr.args[i] for i in new_pos]
new_index_blocks_flat = [j for i in new_pos for j in index_blocks[i]]
index_permutation_array_form = _af_invert(new_index_blocks_flat)
new_contraction_indices = [tuple(index_permutation_array_form[j] for j in i) for i in contraction_indices]
new_contraction_indices = _sort_contraction_indices(new_contraction_indices)
return ArrayTensorProduct(*new_args), new_contraction_indices
def _get_contraction_tuples(self):
r"""
Return tuples containing the argument index and position within the
argument of the index position.
Examples
========
>>> from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
>>> from sympy import MatrixSymbol
>>> from sympy.abc import N
>>> from sympy.tensor.array.expressions.array_expressions import ArrayContraction
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> cg = ArrayContraction(ArrayTensorProduct(A, B), (1, 2))
>>> cg._get_contraction_tuples()
[[(0, 1), (1, 0)]]
Notes
=====
Here the contraction pair `(1, 2)` meaning that the 2nd and 3rd indices
of the tensor product `A\otimes B` are contracted, has been transformed
into `(0, 1)` and `(1, 0)`, identifying the same indices in a different
notation. `(0, 1)` is the second index (1) of the first argument (i.e.
0 or `A`). `(1, 0)` is the first index (i.e. 0) of the second
argument (i.e. 1 or `B`).
"""
mapping = self._mapping
return [[mapping[j] for j in i] for i in self.contraction_indices]
@staticmethod
def _contraction_tuples_to_contraction_indices(expr, contraction_tuples):
# TODO: check that `expr` has `.subranks`:
ranks = expr.subranks
cumulative_ranks = [0] + list(accumulate(ranks))
return [tuple(cumulative_ranks[j]+k for j, k in i) for i in contraction_tuples]
@property
def free_indices(self):
return self._free_indices[:]
@property
def free_indices_to_position(self):
return dict(self._free_indices_to_position)
@property
def expr(self):
return self.args[0]
@property
def contraction_indices(self):
return self.args[1:]
def _contraction_indices_to_components(self):
expr = self.expr
if not isinstance(expr, ArrayTensorProduct):
raise NotImplementedError("only for contractions of tensor products")
ranks = expr.subranks
mapping = {}
counter = 0
for i, rank in enumerate(ranks):
for j in range(rank):
mapping[counter] = (i, j)
counter += 1
return mapping
def sort_args_by_name(self):
"""
Sort arguments in the tensor product so that their order is lexicographical.
Examples
========
>>> from sympy.tensor.array.expressions.conv_matrix_to_array import convert_matrix_to_array
>>> from sympy import MatrixSymbol
>>> from sympy.abc import N
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> C = MatrixSymbol("C", N, N)
>>> D = MatrixSymbol("D", N, N)
>>> cg = convert_matrix_to_array(C*D*A*B)
>>> cg
ArrayContraction(ArrayTensorProduct(A, D, C, B), (0, 3), (1, 6), (2, 5))
>>> cg.sort_args_by_name()
ArrayContraction(ArrayTensorProduct(A, D, B, C), (0, 3), (1, 4), (2, 7))
"""
expr = self.expr
if not isinstance(expr, ArrayTensorProduct):
return self
args = expr.args
sorted_data = sorted(enumerate(args), key=lambda x: default_sort_key(x[1]))
pos_sorted, args_sorted = zip(*sorted_data)
reordering_map = {i: pos_sorted.index(i) for i, arg in enumerate(args)}
contraction_tuples = self._get_contraction_tuples()
contraction_tuples = [[(reordering_map[j], k) for j, k in i] for i in contraction_tuples]
c_tp = ArrayTensorProduct(*args_sorted)
new_contr_indices = self._contraction_tuples_to_contraction_indices(
c_tp,
contraction_tuples
)
return ArrayContraction(c_tp, *new_contr_indices)
def _get_contraction_links(self):
r"""
Returns a dictionary of links between arguments in the tensor product
being contracted.
See the example for an explanation of the values.
Examples
========
>>> from sympy import MatrixSymbol
>>> from sympy.abc import N
>>> from sympy.tensor.array.expressions.conv_matrix_to_array import convert_matrix_to_array
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> C = MatrixSymbol("C", N, N)
>>> D = MatrixSymbol("D", N, N)
Matrix multiplications are pairwise contractions between neighboring
matrices:
`A_{ij} B_{jk} C_{kl} D_{lm}`
>>> cg = convert_matrix_to_array(A*B*C*D)
>>> cg
ArrayContraction(ArrayTensorProduct(B, C, A, D), (0, 5), (1, 2), (3, 6))
>>> cg._get_contraction_links()
{0: {0: (2, 1), 1: (1, 0)}, 1: {0: (0, 1), 1: (3, 0)}, 2: {1: (0, 0)}, 3: {0: (1, 1)}}
This dictionary is interpreted as follows: argument in position 0 (i.e.
matrix `A`) has its second index (i.e. 1) contracted to `(1, 0)`, that
is argument in position 1 (matrix `B`) on the first index slot of `B`,
this is the contraction provided by the index `j` from `A`.
The argument in position 1 (that is, matrix `B`) has two contractions,
the ones provided by the indices `j` and `k`, respectively the first
and second indices (0 and 1 in the sub-dict). The link `(0, 1)` and
`(2, 0)` respectively. `(0, 1)` is the index slot 1 (the 2nd) of
argument in position 0 (that is, `A_{\ldot j}`), and so on.
"""
args, dlinks = _get_contraction_links([self], self.subranks, *self.contraction_indices)
return dlinks
def as_explicit(self):
return tensorcontraction(self.expr.as_explicit(), *self.contraction_indices)
class _ArgE:
"""
The ``_ArgE`` object contains references to the array expression
(``.element``) and a list containing the information about index
contractions (``.indices``).
Index contractions are numbered and contracted indices show the number of
the contraction. Uncontracted indices have ``None`` value.
For example:
``_ArgE(M, [None, 3])``
This object means that expression ``M`` is part of an array contraction
and has two indices, the first is not contracted (value ``None``),
the second index is contracted to the 4th (i.e. number ``3``) group of the
array contraction object.
"""
def __init__(self, element):
self.element = element
self.indices: List[Optional[int]] = [None for i in range(get_rank(element))]
def __str__(self):
return "_ArgE(%s, %s)" % (self.element, self.indices)
__repr__ = __str__
class _IndPos:
"""
Index position, requiring two integers in the constructor:
- arg: the position of the argument in the tensor product,
- rel: the relative position of the index inside the argument.
"""
def __init__(self, arg: int, rel: int):
self.arg = arg
self.rel = rel
def __str__(self):
return "_IndPos(%i, %i)" % (self.arg, self.rel)
__repr__ = __str__
def __iter__(self):
yield from [self.arg, self.rel]
class _EditArrayContraction:
"""
Utility class to help manipulate array contraction objects.
This class takes as input an ``ArrayContraction`` object and turns it into
an editable object.
The field ``args_with_ind`` of this class is a list of ``_ArgE`` objects
which can be used to easily edit the contraction structure of the
expression.
Once editing is finished, the ``ArrayContraction`` object may be recreated
by calling the ``.to_array_contraction()`` method.
"""
def __init__(self, array_contraction: ArrayContraction):
expr = array_contraction.expr
if isinstance(expr, ArrayTensorProduct):
args = list(expr.args)
else:
args = [expr]
args_with_ind: List[_ArgE] = [_ArgE(arg) for arg in args]
mapping = _get_mapping_from_subranks(array_contraction.subranks)
for i, contraction_tuple in enumerate(array_contraction.contraction_indices):
for j in contraction_tuple:
arg_pos, rel_pos = mapping[j]
args_with_ind[arg_pos].indices[rel_pos] = i
self.args_with_ind: List[_ArgE] = args_with_ind
self.number_of_contraction_indices: int = len(array_contraction.contraction_indices)
def insert_after(self, arg: _ArgE, new_arg: _ArgE):
pos = self.args_with_ind.index(arg)
self.args_with_ind.insert(pos + 1, new_arg)
def get_new_contraction_index(self):
self.number_of_contraction_indices += 1
return self.number_of_contraction_indices - 1
def refresh_indices(self):
updates: Dict[int, int] = {}
for arg_with_ind in self.args_with_ind:
updates.update({i: -1 for i in arg_with_ind.indices if i is not None})
for i, e in enumerate(sorted(updates)):
updates[e] = i
self.number_of_contraction_indices: int = len(updates)
for arg_with_ind in self.args_with_ind:
arg_with_ind.indices = [updates.get(i, None) for i in arg_with_ind.indices]
def merge_scalars(self):
scalars = []
for arg_with_ind in self.args_with_ind:
if len(arg_with_ind.indices) == 0:
scalars.append(arg_with_ind)
for i in scalars:
self.args_with_ind.remove(i)
scalar = Mul.fromiter([i.element for i in scalars])
if len(self.args_with_ind) == 0:
self.args_with_ind.append(_ArgE(scalar))
else:
from sympy.tensor.array.expressions.conv_array_to_matrix import _a2m_tensor_product
self.args_with_ind[0].element = _a2m_tensor_product(scalar, self.args_with_ind[0].element)
def to_array_contraction(self):
self.merge_scalars()
args = [arg.element for arg in self.args_with_ind]
contraction_indices = self.get_contraction_indices()
expr = ArrayContraction(ArrayTensorProduct(*args), *contraction_indices)
if hasattr(self, '_track_permutation'):
permutation = _af_invert([j for i in self._track_permutation for j in i])
expr = PermuteDims(expr, permutation)
return expr
def get_contraction_indices(self) -> List[List[int]]:
contraction_indices: List[List[int]] = [[] for i in range(self.number_of_contraction_indices)]
current_position: int = 0
for i, arg_with_ind in enumerate(self.args_with_ind):
for j in arg_with_ind.indices:
if j is not None:
contraction_indices[j].append(current_position)
current_position += 1
return contraction_indices
def get_mapping_for_index(self, ind) -> List[_IndPos]:
if ind >= self.number_of_contraction_indices:
raise ValueError("index value exceeding the index range")
positions: List[_IndPos] = []
for i, arg_with_ind in enumerate(self.args_with_ind):
for j, arg_ind in enumerate(arg_with_ind.indices):
if ind == arg_ind:
positions.append(_IndPos(i, j))
return positions
def get_contraction_indices_to_ind_rel_pos(self) -> List[List[_IndPos]]:
contraction_indices: List[List[_IndPos]] = [[] for i in range(self.number_of_contraction_indices)]
for i, arg_with_ind in enumerate(self.args_with_ind):
for j, ind in enumerate(arg_with_ind.indices):
if ind is not None:
contraction_indices[ind].append(_IndPos(i, j))
return contraction_indices
def count_args_with_index(self, index: int) -> int:
"""
Count the number of arguments that have the given index.
"""
counter: int = 0
for arg_with_ind in self.args_with_ind:
if index in arg_with_ind.indices:
counter += 1
return counter
def track_permutation_start(self):
self._track_permutation = []
counter: int = 0
for arg_with_ind in self.args_with_ind:
perm = []
for i in arg_with_ind.indices:
if i is not None:
continue
perm.append(counter)
counter += 1
self._track_permutation.append(perm)
def track_permutation_merge(self, destination: _ArgE, from_element: _ArgE):
index_destination = self.args_with_ind.index(destination)
index_element = self.args_with_ind.index(from_element)
self._track_permutation[index_destination].extend(self._track_permutation[index_element])
self._track_permutation.pop(index_element)
def get_rank(expr):
if isinstance(expr, (MatrixExpr, MatrixElement)):
return 2
if isinstance(expr, _CodegenArrayAbstract):
return len(expr.shape)
if isinstance(expr, NDimArray):
return expr.rank()
if isinstance(expr, Indexed):
return expr.rank
if isinstance(expr, IndexedBase):
shape = expr.shape
if shape is None:
return -1
else:
return len(shape)
if hasattr(expr, "shape"):
return len(expr.shape)
return 0
def _get_subrank(expr):
if isinstance(expr, _CodegenArrayAbstract):
return expr.subrank()
return get_rank(expr)
def _get_subranks(expr):
if isinstance(expr, _CodegenArrayAbstract):
return expr.subranks
else:
return [get_rank(expr)]
def get_shape(expr):
if hasattr(expr, "shape"):
return expr.shape
return ()
def nest_permutation(expr):
if isinstance(expr, PermuteDims):
return expr.nest_permutation()
else:
return expr
|
7ac44bf5c7aa4e38f39613f41bf11b2378312e46279cbc598bebc3a8d8eb652d | from sympy import (
symbols, Identity, cos, ZeroMatrix, OneMatrix, sqrt)
from sympy.tensor.array.expressions.conv_matrix_to_array import convert_matrix_to_array
from sympy.tensor.array.expressions.conv_array_to_matrix import _support_function_tp1_recognize, \
_array_diag2contr_diagmatrix, convert_array_to_matrix, _remove_trivial_dims, _array2matrix
from sympy import MatrixSymbol
from sympy.combinatorics import Permutation
from sympy.matrices.expressions.diagonal import DiagMatrix
from sympy.matrices import Trace, MatMul, Transpose
from sympy.tensor.array.expressions.array_expressions import ZeroArray, OneArray, \
ArrayTensorProduct, ArrayAdd, PermuteDims, ArrayDiagonal, \
ArrayContraction
from sympy.testing.pytest import raises
i, j, k, l, m, n = symbols("i j k l m n")
I = Identity(k)
I1 = Identity(1)
M = MatrixSymbol("M", k, k)
N = MatrixSymbol("N", k, k)
P = MatrixSymbol("P", k, k)
Q = MatrixSymbol("Q", k, k)
A = MatrixSymbol("A", k, k)
B = MatrixSymbol("B", k, k)
C = MatrixSymbol("C", k, k)
D = MatrixSymbol("D", k, k)
X = MatrixSymbol("X", k, k)
Y = MatrixSymbol("Y", k, k)
a = MatrixSymbol("a", k, 1)
b = MatrixSymbol("b", k, 1)
c = MatrixSymbol("c", k, 1)
d = MatrixSymbol("d", k, 1)
x = MatrixSymbol("x", k, 1)
def test_arrayexpr_convert_array_to_matrix():
cg = ArrayContraction(ArrayTensorProduct(M), (0, 1))
assert convert_array_to_matrix(cg) == Trace(M)
cg = ArrayContraction(ArrayTensorProduct(M, N), (0, 1), (2, 3))
assert convert_array_to_matrix(cg) == Trace(M) * Trace(N)
cg = ArrayContraction(ArrayTensorProduct(M, N), (0, 3), (1, 2))
assert convert_array_to_matrix(cg) == Trace(M * N)
cg = ArrayContraction(ArrayTensorProduct(M, N), (0, 2), (1, 3))
assert convert_array_to_matrix(cg) == Trace(M * N.T)
cg = convert_matrix_to_array(M * N * P)
assert convert_array_to_matrix(cg) == M * N * P
cg = convert_matrix_to_array(M * N.T * P)
assert convert_array_to_matrix(cg) == M * N.T * P
cg = ArrayContraction(ArrayTensorProduct(M,N,P,Q), (1, 2), (5, 6))
assert convert_array_to_matrix(cg) == ArrayTensorProduct(M * N, P * Q)
cg = ArrayContraction(ArrayTensorProduct(-2, M, N), (1, 2))
assert convert_array_to_matrix(cg) == -2 * M * N
a = MatrixSymbol("a", k, 1)
b = MatrixSymbol("b", k, 1)
c = MatrixSymbol("c", k, 1)
cg = PermuteDims(
ArrayContraction(
ArrayTensorProduct(
a,
ArrayAdd(
ArrayTensorProduct(b, c),
ArrayTensorProduct(c, b),
)
), (2, 4)), [0, 1, 3, 2])
assert convert_array_to_matrix(cg) == a * (b.T * c + c.T * b)
za = ZeroArray(m, n)
assert convert_array_to_matrix(za) == ZeroMatrix(m, n)
cg = ArrayTensorProduct(3, M)
assert convert_array_to_matrix(cg) == 3 * M
# Partial conversion to matrix multiplication:
expr = ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 2), (1, 4, 6))
assert convert_array_to_matrix(expr) == ArrayContraction(ArrayTensorProduct(M.T*N, P, Q), (0, 2, 4))
# TODO: not yet supported:
# cg = ArrayDiagonal(ArrayTensorProduct(M, N, P), (0, 2, 4), (1, 3, 5))
# assert recognize_matrix_expression(cg) == HadamardProduct(M, N, P)
# cg = ArrayDiagonal(ArrayTensorProduct(M, N, P), (0, 3, 4), (1, 2, 5))
# assert recognize_matrix_expression(cg) == HadamardProduct(M, N.T, P)
x = MatrixSymbol("x", k, 1)
cg = PermuteDims(
ArrayContraction(ArrayTensorProduct(OneArray(1), x, OneArray(1), DiagMatrix(Identity(1))),
(0, 5)), Permutation(1, 2, 3))
assert convert_array_to_matrix(cg) == x
expr = ArrayAdd(M, PermuteDims(M, [1, 0]))
assert convert_array_to_matrix(expr) == M + Transpose(M)
def test_arrayexpr_convert_array_to_matrix2():
cg = ArrayContraction(ArrayTensorProduct(M, N), (1, 3))
assert convert_array_to_matrix(cg) == M * N.T
cg = PermuteDims(ArrayTensorProduct(M, N), Permutation([0, 1, 3, 2]))
assert convert_array_to_matrix(cg) == ArrayTensorProduct(M, N.T)
cg = ArrayTensorProduct(M, PermuteDims(N, Permutation([1, 0])))
assert convert_array_to_matrix(cg) == ArrayTensorProduct(M, N.T)
cg = ArrayContraction(
PermuteDims(
ArrayTensorProduct(M, N, P, Q), Permutation([0, 2, 3, 1, 4, 5, 7, 6])),
(1, 2), (3, 5)
)
assert convert_array_to_matrix(cg) == ArrayTensorProduct(M * P.T * Trace(N), Q.T)
cg = ArrayContraction(
ArrayTensorProduct(M, N, P, PermuteDims(Q, Permutation([1, 0]))),
(1, 5), (2, 3)
)
assert convert_array_to_matrix(cg) == ArrayTensorProduct(M * P.T * Trace(N), Q.T)
cg = ArrayTensorProduct(M, PermuteDims(N, [1, 0]))
assert convert_array_to_matrix(cg) == ArrayTensorProduct(M, N.T)
cg = ArrayTensorProduct(PermuteDims(M, [1, 0]), PermuteDims(N, [1, 0]))
assert convert_array_to_matrix(cg) == ArrayTensorProduct(M.T, N.T)
cg = ArrayTensorProduct(PermuteDims(N, [1, 0]), PermuteDims(M, [1, 0]))
assert convert_array_to_matrix(cg) == ArrayTensorProduct(N.T, M.T)
def test_arrayexpr_convert_array_to_diagonalized_vector():
# Check matrix recognition over trivial dimensions:
cg = ArrayTensorProduct(a, b)
assert convert_array_to_matrix(cg) == a * b.T
cg = ArrayTensorProduct(I1, a, b)
assert convert_array_to_matrix(cg) == a * b.T
# Recognize trace inside a tensor product:
cg = ArrayContraction(ArrayTensorProduct(A, B, C), (0, 3), (1, 2))
assert convert_array_to_matrix(cg) == Trace(A * B) * C
# Transform diagonal operator to contraction:
cg = ArrayDiagonal(ArrayTensorProduct(A, a), (1, 2))
assert _array_diag2contr_diagmatrix(cg) == ArrayContraction(ArrayTensorProduct(A, OneArray(1), DiagMatrix(a)), (1, 3))
assert convert_array_to_matrix(cg) == A * DiagMatrix(a)
cg = ArrayDiagonal(ArrayTensorProduct(a, b), (0, 2))
assert _array_diag2contr_diagmatrix(cg) == PermuteDims(
ArrayContraction(ArrayTensorProduct(DiagMatrix(a), OneArray(1), b), (0, 3)), [1, 2, 0]
)
assert convert_array_to_matrix(cg) == b.T * DiagMatrix(a)
cg = ArrayDiagonal(ArrayTensorProduct(A, a), (0, 2))
assert _array_diag2contr_diagmatrix(cg) == ArrayContraction(ArrayTensorProduct(A, OneArray(1), DiagMatrix(a)), (0, 3))
assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a)
cg = ArrayDiagonal(ArrayTensorProduct(I, x, I1), (0, 2), (3, 5))
assert _array_diag2contr_diagmatrix(cg) == ArrayContraction(ArrayTensorProduct(I, OneArray(1), I1, DiagMatrix(x)), (0, 5))
assert convert_array_to_matrix(cg) == DiagMatrix(x)
cg = ArrayDiagonal(ArrayTensorProduct(I, x, A, B), (1, 2), (5, 6))
assert _array_diag2contr_diagmatrix(cg) == ArrayDiagonal(ArrayContraction(ArrayTensorProduct(I, OneArray(1), A, B, DiagMatrix(x)), (1, 7)), (5, 6))
# TODO: not yet working
# assert convert_array_to_matrix(cg)
cg = ArrayDiagonal(ArrayTensorProduct(x, I1), (1, 2))
assert isinstance(cg, ArrayDiagonal)
assert cg.diagonal_indices == ((1, 2),)
assert convert_array_to_matrix(cg) == x
cg = ArrayDiagonal(ArrayTensorProduct(x, I), (0, 2))
assert _array_diag2contr_diagmatrix(cg) == ArrayContraction(ArrayTensorProduct(OneArray(1), I, DiagMatrix(x)), (1, 3))
assert convert_array_to_matrix(cg).doit() == DiagMatrix(x)
raises(ValueError, lambda: ArrayDiagonal(x, (1,)))
# Ignore identity matrices with contractions:
cg = ArrayContraction(ArrayTensorProduct(I, A, I, I), (0, 2), (1, 3), (5, 7))
assert cg.split_multiple_contractions() == cg
assert convert_array_to_matrix(cg) == Trace(A) * I
cg = ArrayContraction(ArrayTensorProduct(Trace(A) * I, I, I), (1, 5), (3, 4))
assert cg.split_multiple_contractions() == cg
assert convert_array_to_matrix(cg).doit() == Trace(A) * I
# Add DiagMatrix when required:
cg = ArrayContraction(ArrayTensorProduct(A, a), (1, 2))
assert cg.split_multiple_contractions() == cg
assert convert_array_to_matrix(cg) == A * a
cg = ArrayContraction(ArrayTensorProduct(A, a, B), (1, 2, 4))
assert cg.split_multiple_contractions() == ArrayContraction(ArrayTensorProduct(A, DiagMatrix(a), B), (1, 2), (3, 4))
assert convert_array_to_matrix(cg) == A * DiagMatrix(a) * B
cg = ArrayContraction(ArrayTensorProduct(A, a, B), (0, 2, 4))
assert cg.split_multiple_contractions() == ArrayContraction(ArrayTensorProduct(A, DiagMatrix(a), B), (0, 2), (3, 4))
assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a) * B
cg = ArrayContraction(ArrayTensorProduct(A, a, b, a.T, B), (0, 2, 4, 7, 9))
assert cg.split_multiple_contractions() == ArrayContraction(ArrayTensorProduct(A, DiagMatrix(a), DiagMatrix(b),
DiagMatrix(a), B),
(0, 2), (3, 4), (5, 7), (6, 9))
assert convert_array_to_matrix(cg).doit() == A.T * DiagMatrix(a) * DiagMatrix(b) * DiagMatrix(a) * B.T
cg = ArrayContraction(ArrayTensorProduct(I1, I1, I1), (1, 2, 4))
assert cg.split_multiple_contractions() == ArrayContraction(ArrayTensorProduct(I1, I1, I1), (1, 2), (3, 4))
assert convert_array_to_matrix(cg).doit() == Identity(1)
cg = ArrayContraction(ArrayTensorProduct(I, I, I, I, A), (1, 2, 8), (5, 6, 9))
assert convert_array_to_matrix(cg.split_multiple_contractions()).doit() == A
cg = ArrayContraction(ArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8))
expected = ArrayContraction(ArrayTensorProduct(DiagMatrix(a), DiagMatrix(a), C, A, B), (0, 4), (1, 7), (2, 5), (3, 8))
assert cg.split_multiple_contractions() == expected
assert convert_array_to_matrix(cg) == A * DiagMatrix(a) * C * DiagMatrix(a) * B
cg = ArrayContraction(ArrayTensorProduct(a, I1, b, I1, (a.T*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9))
assert cg.split_multiple_contractions().dummy_eq(ArrayContraction(ArrayTensorProduct((a.T * b).applyfunc(cos), I1, I1, a, b), (0, 2), (1, 4), (3, 7), (5, 9)))
assert convert_array_to_matrix(cg).doit().dummy_eq(MatMul(a, (a.T * b).applyfunc(cos), b.T))
def test_arrayexpr_convert_array_contraction_tp_additions():
a = ArrayAdd(
ArrayTensorProduct(M, N),
ArrayTensorProduct(N, M)
)
tp = ArrayTensorProduct(P, a, Q)
expr = ArrayContraction(tp, (3, 4))
expected = ArrayTensorProduct(
P,
ArrayAdd(
ArrayContraction(ArrayTensorProduct(M, N), (1, 2)),
ArrayContraction(ArrayTensorProduct(N, M), (1, 2)),
),
Q
)
assert expr == expected
assert convert_array_to_matrix(expr) == ArrayTensorProduct(P, M * N + N * M, Q)
expr = ArrayContraction(tp, (1, 2), (3, 4), (5, 6))
result = ArrayContraction(
ArrayTensorProduct(
P,
ArrayAdd(
ArrayContraction(ArrayTensorProduct(M, N), (1, 2)),
ArrayContraction(ArrayTensorProduct(N, M), (1, 2)),
),
Q
), (1, 2), (3, 4))
assert expr == result
assert convert_array_to_matrix(expr) == P * (M * N + N * M) * Q
def test_arrayexpr_convert_array_to_implicit_matmul():
# Trivial dimensions are suppressed, so the result can be expressed in matrix form:
cg = ArrayTensorProduct(a, b)
assert convert_array_to_matrix(cg) == a * b.T
cg = ArrayTensorProduct(a, I, b)
assert convert_array_to_matrix(cg) == a * b.T
cg = ArrayContraction(ArrayTensorProduct(I, I), (1, 2))
assert convert_array_to_matrix(cg) == I
cg = PermuteDims(ArrayTensorProduct(I, Identity(1)), [0, 2, 1, 3])
assert convert_array_to_matrix(cg) == I
def test_arrayexpr_convert_array_to_matrix_remove_trivial_dims():
# Tensor Product:
assert _remove_trivial_dims(ArrayTensorProduct(a, b)) == (a * b.T, [1, 3])
assert _remove_trivial_dims(ArrayTensorProduct(a.T, b)) == (a * b.T, [0, 3])
assert _remove_trivial_dims(ArrayTensorProduct(a, b.T)) == (a * b.T, [1, 2])
assert _remove_trivial_dims(ArrayTensorProduct(a.T, b.T)) == (a * b.T, [0, 2])
assert _remove_trivial_dims(ArrayTensorProduct(I, a.T, b.T)) == (a * b.T, [0, 1, 2, 4])
assert _remove_trivial_dims(ArrayTensorProduct(a.T, I, b.T)) == (a * b.T, [0, 2, 3, 4])
assert _remove_trivial_dims(ArrayTensorProduct(a, I)) == (a, [2, 3])
assert _remove_trivial_dims(ArrayTensorProduct(I, a)) == (a, [0, 1])
assert _remove_trivial_dims(ArrayTensorProduct(a.T, b.T, c, d)) == (
ArrayTensorProduct(a * b.T, c * d.T), [0, 2, 5, 7])
assert _remove_trivial_dims(ArrayTensorProduct(a.T, I, b.T, c, d, I)) == (
ArrayTensorProduct(a * b.T, c * d.T, I), [0, 2, 3, 4, 7, 9])
# Addition:
cg = ArrayAdd(ArrayTensorProduct(a, b), ArrayTensorProduct(c, d))
assert _remove_trivial_dims(cg) == (a * b.T + c * d.T, [1, 3])
# Permute Dims:
cg = PermuteDims(ArrayTensorProduct(a, b), Permutation(3)(1, 2))
assert _remove_trivial_dims(cg) == (a * b.T, [2, 3])
cg = PermuteDims(ArrayTensorProduct(a, I, b), Permutation(5)(1, 2, 3, 4))
assert _remove_trivial_dims(cg) == (a * b.T, [1, 2, 4, 5])
cg = PermuteDims(ArrayTensorProduct(I, b, a), Permutation(5)(1, 2, 4, 5, 3))
assert _remove_trivial_dims(cg) == (b * a.T, [0, 3, 4, 5])
# Diagonal:
cg = ArrayDiagonal(ArrayTensorProduct(M, a), (1, 2))
assert _remove_trivial_dims(cg) == (cg, [])
# Contraction:
cg = ArrayContraction(ArrayTensorProduct(M, a), (1, 2))
assert _remove_trivial_dims(cg) == (cg, [])
# A few more cases to test the removal and shift of nested removed axes
# with array contractions and array diagonals:
tp = ArrayTensorProduct(
OneMatrix(1, 1),
M,
x,
OneMatrix(1, 1),
Identity(1),
)
expr = ArrayContraction(tp, (1, 8))
rexpr, removed = _remove_trivial_dims(expr)
assert removed == [0, 5, 6, 7]
expr = ArrayContraction(tp, (1, 8), (3, 4))
rexpr, removed = _remove_trivial_dims(expr)
assert removed == [0, 3, 4, 5]
expr = ArrayDiagonal(tp, (1, 8))
rexpr, removed = _remove_trivial_dims(expr)
assert removed == [0, 5, 6, 7, 8]
expr = ArrayDiagonal(tp, (1, 8), (3, 4))
rexpr, removed = _remove_trivial_dims(expr)
assert removed == [0, 3, 4, 5, 6]
cg = ArrayDiagonal(ArrayTensorProduct(PermuteDims(ArrayTensorProduct(x, I1), Permutation(1, 2, 3)), (x.T*x).applyfunc(sqrt)), (2, 4), (3, 5))
rexpr, removed = _remove_trivial_dims(cg)
assert removed == [1, 2, 3]
def test_arrayexpr_convert_array_to_matrix_diag2contraction_diagmatrix():
cg = ArrayDiagonal(ArrayTensorProduct(M, a), (1, 2))
res = _array_diag2contr_diagmatrix(cg)
assert res.shape == cg.shape
assert res == ArrayContraction(ArrayTensorProduct(M, OneArray(1), DiagMatrix(a)), (1, 3))
raises(ValueError, lambda: ArrayDiagonal(ArrayTensorProduct(a, M), (1, 2)))
cg = ArrayDiagonal(ArrayTensorProduct(a.T, M), (1, 2))
res = _array_diag2contr_diagmatrix(cg)
assert res.shape == cg.shape
assert res == ArrayContraction(ArrayTensorProduct(OneArray(1), M, DiagMatrix(a.T)), (1, 4))
cg = ArrayDiagonal(ArrayTensorProduct(a.T, M, N, b.T), (1, 2), (4, 7))
res = _array_diag2contr_diagmatrix(cg)
assert res.shape == cg.shape
assert res == ArrayContraction(
ArrayTensorProduct(OneArray(1), M, N, OneArray(1), DiagMatrix(a.T), DiagMatrix(b.T)), (1, 7), (3, 9))
cg = ArrayDiagonal(ArrayTensorProduct(a, M, N, b.T), (0, 2), (4, 7))
res = _array_diag2contr_diagmatrix(cg)
assert res.shape == cg.shape
assert res == ArrayContraction(
ArrayTensorProduct(OneArray(1), M, N, OneArray(1), DiagMatrix(a), DiagMatrix(b.T)), (1, 6), (3, 9))
cg = ArrayDiagonal(ArrayTensorProduct(a, M, N, b.T), (0, 4), (3, 7))
res = _array_diag2contr_diagmatrix(cg)
assert res.shape == cg.shape
assert res == ArrayContraction(
ArrayTensorProduct(OneArray(1), M, N, OneArray(1), DiagMatrix(a), DiagMatrix(b.T)), (3, 6), (2, 9))
I1 = Identity(1)
x = MatrixSymbol("x", k, 1)
A = MatrixSymbol("A", k, k)
cg = ArrayDiagonal(ArrayTensorProduct(x, A.T, I1), (0, 2))
assert _array_diag2contr_diagmatrix(cg).shape == cg.shape
assert _array2matrix(cg).shape == cg.shape
def test_arrayexpr_convert_array_to_matrix_support_function():
assert _support_function_tp1_recognize([], [2 * k]) == 2 * k
assert _support_function_tp1_recognize([(1, 2)], [A, 2 * k, B, 3]) == 6 * k * A * B
assert _support_function_tp1_recognize([(0, 3), (1, 2)], [A, B]) == Trace(A * B)
assert _support_function_tp1_recognize([(1, 2)], [A, B]) == A * B
assert _support_function_tp1_recognize([(0, 2)], [A, B]) == A.T * B
assert _support_function_tp1_recognize([(1, 3)], [A, B]) == A * B.T
assert _support_function_tp1_recognize([(0, 3)], [A, B]) == A.T * B.T
assert _support_function_tp1_recognize([(1, 2), (5, 6)], [A, B, C, D]) == ArrayTensorProduct(A * B, C * D)
assert _support_function_tp1_recognize([(1, 4), (3, 6)], [A, B, C, D]) == PermuteDims(
ArrayTensorProduct(A * C, B * D), [0, 2, 1, 3])
assert _support_function_tp1_recognize([(0, 3), (1, 4)], [A, B, C]) == B * A * C
assert _support_function_tp1_recognize([(9, 10), (1, 2), (5, 6), (3, 4), (7, 8)],
[X, Y, A, B, C, D]) == X * Y * A * B * C * D
assert _support_function_tp1_recognize([(9, 10), (1, 2), (5, 6), (3, 4)],
[X, Y, A, B, C, D]) == ArrayTensorProduct(X * Y * A * B, C * D)
assert _support_function_tp1_recognize([(1, 7), (3, 8), (4, 11)], [X, Y, A, B, C, D]) == PermuteDims(
ArrayTensorProduct(X * B.T, Y * C, A.T * D.T), [0, 2, 4, 1, 3, 5]
)
assert _support_function_tp1_recognize([(0, 1), (3, 6), (5, 8)], [X, A, B, C, D]) == PermuteDims(
ArrayTensorProduct(Trace(X) * A * C, B * D), [0, 2, 1, 3])
assert _support_function_tp1_recognize([(1, 2), (3, 4), (5, 6), (7, 8)], [A, A, B, C, D]) == A ** 2 * B * C * D
assert _support_function_tp1_recognize([(1, 2), (3, 4), (5, 6), (7, 8)], [X, A, B, C, D]) == X * A * B * C * D
assert _support_function_tp1_recognize([(1, 6), (3, 8), (5, 10)], [X, Y, A, B, C, D]) == PermuteDims(
ArrayTensorProduct(X * B, Y * C, A * D), [0, 2, 4, 1, 3, 5]
)
assert _support_function_tp1_recognize([(1, 4), (3, 6)], [A, B, C, D]) == PermuteDims(
ArrayTensorProduct(A * C, B * D), [0, 2, 1, 3])
assert _support_function_tp1_recognize([(0, 4), (1, 7), (2, 5), (3, 8)], [X, A, B, C, D]) == C*X.T*B*A*D
assert _support_function_tp1_recognize([(0, 4), (1, 7), (2, 5), (3, 8)], [X, A, B, C, D]) == C*X.T*B*A*D
|
2ff2fceef887a0ee21a66c399a04ae974841eb718446005e6e4e5b94385c4548 | import random
from sympy import symbols, ImmutableDenseNDimArray, tensorproduct, tensorcontraction, permutedims, MatrixSymbol, \
ZeroMatrix, sin, cos, DiagMatrix
from sympy.combinatorics import Permutation
from sympy.tensor.array.expressions.array_expressions import ZeroArray, OneArray, ArraySymbol, ArrayElement, \
PermuteDims, ArrayContraction, ArrayTensorProduct, ArrayDiagonal, \
ArrayAdd, nest_permutation, ArrayElementwiseApplyFunc, _EditArrayContraction, _ArgE
from sympy.testing.pytest import raises
i, j, k, l, m, n = symbols("i j k l m n")
M = ArraySymbol("M", k, k)
N = ArraySymbol("N", k, k)
P = ArraySymbol("P", k, k)
Q = ArraySymbol("Q", k, k)
A = ArraySymbol("A", k, k)
B = ArraySymbol("B", k, k)
C = ArraySymbol("C", k, k)
D = ArraySymbol("D", k, k)
X = ArraySymbol("X", k, k)
Y = ArraySymbol("Y", k, k)
a = ArraySymbol("a", k, 1)
b = ArraySymbol("b", k, 1)
c = ArraySymbol("c", k, 1)
d = ArraySymbol("d", k, 1)
def test_array_symbol_and_element():
A = ArraySymbol("A", 2)
A0 = ArrayElement(A, (0,))
A1 = ArrayElement(A, (1,))
assert A.as_explicit() == ImmutableDenseNDimArray([A0, A1])
A2 = tensorproduct(A, A)
assert A2.shape == (2, 2)
# TODO: not yet supported:
# assert A2.as_explicit() == Array([[A[0]*A[0], A[1]*A[0]], [A[0]*A[1], A[1]*A[1]]])
A3 = tensorcontraction(A2, (0, 1))
assert A3.shape == ()
# TODO: not yet supported:
# assert A3.as_explicit() == Array([])
A = ArraySymbol("A", 2, 3, 4)
Ae = A.as_explicit()
assert Ae == ImmutableDenseNDimArray(
[[[ArrayElement(A, (i, j, k)) for k in range(4)] for j in range(3)] for i in range(2)])
p = permutedims(A, Permutation(0, 2, 1))
assert isinstance(p, PermuteDims)
def test_zero_array():
assert ZeroArray() == 0
assert ZeroArray().is_Integer
za = ZeroArray(3, 2, 4)
assert za.shape == (3, 2, 4)
za_e = za.as_explicit()
assert za_e.shape == (3, 2, 4)
m, n, k = symbols("m n k")
za = ZeroArray(m, n, k, 2)
assert za.shape == (m, n, k, 2)
raises(ValueError, lambda: za.as_explicit())
def test_one_array():
assert OneArray() == 1
assert OneArray().is_Integer
oa = OneArray(3, 2, 4)
assert oa.shape == (3, 2, 4)
oa_e = oa.as_explicit()
assert oa_e.shape == (3, 2, 4)
m, n, k = symbols("m n k")
oa = OneArray(m, n, k, 2)
assert oa.shape == (m, n, k, 2)
raises(ValueError, lambda: oa.as_explicit())
def test_arrayexpr_contraction_construction():
cg = ArrayContraction(A)
assert cg == A
cg = ArrayContraction(ArrayTensorProduct(A, B), (1, 0))
assert cg == ArrayContraction(ArrayTensorProduct(A, B), (0, 1))
cg = ArrayContraction(ArrayTensorProduct(M, N), (0, 1))
indtup = cg._get_contraction_tuples()
assert indtup == [[(0, 0), (0, 1)]]
assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 1)]
cg = ArrayContraction(ArrayTensorProduct(M, N), (1, 2))
indtup = cg._get_contraction_tuples()
assert indtup == [[(0, 1), (1, 0)]]
assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(1, 2)]
cg = ArrayContraction(ArrayTensorProduct(M, M, N), (1, 4), (2, 5))
indtup = cg._get_contraction_tuples()
assert indtup == [[(0, 0), (1, 1)], [(0, 1), (2, 0)]]
assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 3), (1, 4)]
def test_arrayexpr_array_flatten():
# Flatten nested ArrayTensorProduct objects:
expr1 = ArrayTensorProduct(M, N)
expr2 = ArrayTensorProduct(P, Q)
expr = ArrayTensorProduct(expr1, expr2)
assert expr == ArrayTensorProduct(M, N, P, Q)
assert expr.args == (M, N, P, Q)
# Flatten mixed ArrayTensorProduct and ArrayContraction objects:
cg1 = ArrayContraction(expr1, (1, 2))
cg2 = ArrayContraction(expr2, (0, 3))
expr = ArrayTensorProduct(cg1, cg2)
assert expr == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (1, 2), (4, 7))
expr = ArrayTensorProduct(M, cg1)
assert expr == ArrayContraction(ArrayTensorProduct(M, M, N), (3, 4))
# Flatten nested ArrayContraction objects:
cgnested = ArrayContraction(cg1, (0, 1))
assert cgnested == ArrayContraction(ArrayTensorProduct(M, N), (0, 3), (1, 2))
cgnested = ArrayContraction(ArrayTensorProduct(cg1, cg2), (0, 3))
assert cgnested == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 6), (1, 2), (4, 7))
cg3 = ArrayContraction(ArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4))
cgnested = ArrayContraction(cg3, (0, 1))
assert cgnested == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 5), (1, 3), (2, 4))
cgnested = ArrayContraction(cg3, (0, 3), (1, 2))
assert cgnested == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 7), (1, 3), (2, 4), (5, 6))
cg4 = ArrayContraction(ArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7))
cgnested = ArrayContraction(cg4, (0, 1))
assert cgnested == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7))
cgnested = ArrayContraction(cg4, (0, 1), (2, 3))
assert cgnested == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7), (4, 6))
cg = ArrayDiagonal(cg4)
assert cg == cg4
assert isinstance(cg, type(cg4))
# Flatten nested ArrayDiagonal objects:
cg1 = ArrayDiagonal(expr1, (1, 2))
cg2 = ArrayDiagonal(expr2, (0, 3))
cg3 = ArrayDiagonal(ArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4))
cg4 = ArrayDiagonal(ArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7))
cgnested = ArrayDiagonal(cg1, (0, 1))
assert cgnested == ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2), (0, 3))
cgnested = ArrayDiagonal(cg3, (1, 2))
assert cgnested == ArrayDiagonal(ArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4), (5, 6))
cgnested = ArrayDiagonal(cg4, (1, 2))
assert cgnested == ArrayDiagonal(ArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7), (2, 4))
cg = ArrayAdd(M, N)
cg2 = ArrayAdd(cg, P)
assert isinstance(cg2, ArrayAdd)
assert cg2.args == (M, N, P)
assert cg2.shape == (k, k)
expr = ArrayTensorProduct(ArrayDiagonal(X, (0, 1)), ArrayDiagonal(A, (0, 1)))
assert expr == ArrayDiagonal(ArrayTensorProduct(X, A), (0, 1), (2, 3))
expr1 = ArrayDiagonal(ArrayTensorProduct(X, A), (1, 2))
expr2 = ArrayTensorProduct(expr1, a)
assert expr2 == PermuteDims(ArrayDiagonal(ArrayTensorProduct(X, A, a), (1, 2)), [0, 1, 3, 4, 2])
expr1 = ArrayContraction(ArrayTensorProduct(X, A), (1, 2))
expr2 = ArrayTensorProduct(expr1, a)
assert isinstance(expr2, ArrayContraction)
assert isinstance(expr2.expr, ArrayTensorProduct)
def test_arrayexpr_array_diagonal():
cg = ArrayDiagonal(M, (1, 0))
assert cg == ArrayDiagonal(M, (0, 1))
cg = ArrayDiagonal(ArrayTensorProduct(M, N, P), (4, 1), (2, 0))
assert cg == ArrayDiagonal(ArrayTensorProduct(M, N, P), (1, 4), (0, 2))
def test_arrayexpr_array_shape():
expr = ArrayTensorProduct(M, N, P, Q)
assert expr.shape == (k, k, k, k, k, k, k, k)
Z = MatrixSymbol("Z", m, n)
expr = ArrayTensorProduct(M, Z)
assert expr.shape == (k, k, m, n)
expr2 = ArrayContraction(expr, (0, 1))
assert expr2.shape == (m, n)
expr2 = ArrayDiagonal(expr, (0, 1))
assert expr2.shape == (m, n, k)
exprp = PermuteDims(expr, [2, 1, 3, 0])
assert exprp.shape == (m, k, n, k)
expr3 = ArrayTensorProduct(N, Z)
expr2 = ArrayAdd(expr, expr3)
assert expr2.shape == (k, k, m, n)
# Contraction along axes with discordant dimensions:
raises(ValueError, lambda: ArrayContraction(expr, (1, 2)))
# Also diagonal needs the same dimensions:
raises(ValueError, lambda: ArrayDiagonal(expr, (1, 2)))
# Diagonal requires at least to axes to compute the diagonal:
raises(ValueError, lambda: ArrayDiagonal(expr, (1,)))
def test_arrayexpr_permutedims_sink():
cg = PermuteDims(ArrayTensorProduct(M, N), [0, 1, 3, 2], nest_permutation=False)
sunk = nest_permutation(cg)
assert sunk == ArrayTensorProduct(M, PermuteDims(N, [1, 0]))
cg = PermuteDims(ArrayTensorProduct(M, N), [1, 0, 3, 2], nest_permutation=False)
sunk = nest_permutation(cg)
assert sunk == ArrayTensorProduct(PermuteDims(M, [1, 0]), PermuteDims(N, [1, 0]))
cg = PermuteDims(ArrayTensorProduct(M, N), [3, 2, 1, 0], nest_permutation=False)
sunk = nest_permutation(cg)
assert sunk == ArrayTensorProduct(PermuteDims(N, [1, 0]), PermuteDims(M, [1, 0]))
cg = PermuteDims(ArrayContraction(ArrayTensorProduct(M, N), (1, 2)), [1, 0], nest_permutation=False)
sunk = nest_permutation(cg)
assert sunk == ArrayContraction(PermuteDims(ArrayTensorProduct(M, N), [[0, 3]]), (1, 2))
cg = PermuteDims(ArrayTensorProduct(M, N), [1, 0, 3, 2], nest_permutation=False)
sunk = nest_permutation(cg)
assert sunk == ArrayTensorProduct(PermuteDims(M, [1, 0]), PermuteDims(N, [1, 0]))
cg = PermuteDims(ArrayContraction(ArrayTensorProduct(M, N, P), (1, 2), (3, 4)), [1, 0], nest_permutation=False)
sunk = nest_permutation(cg)
assert sunk == ArrayContraction(PermuteDims(ArrayTensorProduct(M, N, P), [[0, 5]]), (1, 2), (3, 4))
def test_arrayexpr_push_indices_up_and_down():
indices = list(range(12))
contr_diag_indices = [(0, 6), (2, 8)]
assert ArrayContraction._push_indices_down(contr_diag_indices, indices) == (1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15)
assert ArrayContraction._push_indices_up(contr_diag_indices, indices) == (None, 0, None, 1, 2, 3, None, 4, None, 5, 6, 7)
assert ArrayDiagonal._push_indices_down(contr_diag_indices, indices, 10) == (1, 3, 4, 5, 7, 9, (0, 6), (2, 8), None, None, None, None)
assert ArrayDiagonal._push_indices_up(contr_diag_indices, indices, 10) == (6, 0, 7, 1, 2, 3, 6, 4, 7, 5, None, None)
contr_diag_indices = [(1, 2), (7, 8)]
assert ArrayContraction._push_indices_down(contr_diag_indices, indices) == (0, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15)
assert ArrayContraction._push_indices_up(contr_diag_indices, indices) == (0, None, None, 1, 2, 3, 4, None, None, 5, 6, 7)
assert ArrayDiagonal._push_indices_down(contr_diag_indices, indices, 10) == (0, 3, 4, 5, 6, 9, (1, 2), (7, 8), None, None, None, None)
assert ArrayDiagonal._push_indices_up(contr_diag_indices, indices, 10) == (0, 6, 6, 1, 2, 3, 4, 7, 7, 5, None, None)
def test_arrayexpr_split_multiple_contractions():
a = MatrixSymbol("a", k, 1)
b = MatrixSymbol("b", k, 1)
A = MatrixSymbol("A", k, k)
B = MatrixSymbol("B", k, k)
C = MatrixSymbol("C", k, k)
X = MatrixSymbol("X", k, k)
cg = ArrayContraction(ArrayTensorProduct(A.T, a, b, b.T, (A*X*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9))
assert cg.split_multiple_contractions().dummy_eq(ArrayContraction(ArrayTensorProduct(DiagMatrix(a), (A*X*b).applyfunc(cos), A.T, b, b.T), (0, 2), (1, 5), (3, 7, 8)))
# assert recognize_matrix_expression(cg)
# Check no overlap of lines:
cg = ArrayContraction(ArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8), (3, 7))
assert cg.split_multiple_contractions() == cg
cg = ArrayContraction(ArrayTensorProduct(a, b, A), (0, 2, 4), (1, 3))
assert cg.split_multiple_contractions() == cg
def test_arrayexpr_nested_permutations():
cg = PermuteDims(PermuteDims(M, (1, 0)), (1, 0))
assert cg == M
times = 3
plist1 = [list(range(6)) for i in range(times)]
plist2 = [list(range(6)) for i in range(times)]
for i in range(times):
random.shuffle(plist1[i])
random.shuffle(plist2[i])
plist1.append([2, 5, 4, 1, 0, 3])
plist2.append([3, 5, 0, 4, 1, 2])
plist1.append([2, 5, 4, 0, 3, 1])
plist2.append([3, 0, 5, 1, 2, 4])
plist1.append([5, 4, 2, 0, 3, 1])
plist2.append([4, 5, 0, 2, 3, 1])
Me = M.subs(k, 3).as_explicit()
Ne = N.subs(k, 3).as_explicit()
Pe = P.subs(k, 3).as_explicit()
cge = tensorproduct(Me, Ne, Pe)
for permutation_array1, permutation_array2 in zip(plist1, plist2):
p1 = Permutation(permutation_array1)
p2 = Permutation(permutation_array2)
cg = PermuteDims(
PermuteDims(
ArrayTensorProduct(M, N, P),
p1),
p2
)
result = PermuteDims(
ArrayTensorProduct(M, N, P),
p2*p1
)
assert cg == result
# Check that `permutedims` behaves the same way with explicit-component arrays:
result1 = permutedims(permutedims(cge, p1), p2)
result2 = permutedims(cge, p2*p1)
assert result1 == result2
def test_arrayexpr_contraction_permutation_mix():
Me = M.subs(k, 3).as_explicit()
Ne = N.subs(k, 3).as_explicit()
cg1 = ArrayContraction(PermuteDims(ArrayTensorProduct(M, N), Permutation([0, 2, 1, 3])), (2, 3))
cg2 = ArrayContraction(ArrayTensorProduct(M, N), (1, 3))
assert cg1 == cg2
cge1 = tensorcontraction(permutedims(tensorproduct(Me, Ne), Permutation([0, 2, 1, 3])), (2, 3))
cge2 = tensorcontraction(tensorproduct(Me, Ne), (1, 3))
assert cge1 == cge2
cg1 = PermuteDims(ArrayTensorProduct(M, N), Permutation([0, 1, 3, 2]))
cg2 = ArrayTensorProduct(M, PermuteDims(N, Permutation([1, 0])))
assert cg1 == cg2
cg1 = ArrayContraction(
PermuteDims(
ArrayTensorProduct(M, N, P, Q), Permutation([0, 2, 3, 1, 4, 5, 7, 6])),
(1, 2), (3, 5)
)
cg2 = ArrayContraction(
ArrayTensorProduct(M, N, P, PermuteDims(Q, Permutation([1, 0]))),
(1, 5), (2, 3)
)
assert cg1 == cg2
cg1 = ArrayContraction(
PermuteDims(
ArrayTensorProduct(M, N, P, Q), Permutation([1, 0, 4, 6, 2, 7, 5, 3])),
(0, 1), (2, 6), (3, 7)
)
cg2 = PermuteDims(
ArrayContraction(
ArrayTensorProduct(M, P, Q, N),
(0, 1), (2, 3), (4, 7)),
[1, 0]
)
assert cg1 == cg2
cg1 = ArrayContraction(
PermuteDims(
ArrayTensorProduct(M, N, P, Q), Permutation([1, 0, 4, 6, 7, 2, 5, 3])),
(0, 1), (2, 6), (3, 7)
)
cg2 = PermuteDims(
ArrayContraction(
ArrayTensorProduct(PermuteDims(M, [1, 0]), N, P, Q),
(0, 1), (3, 6), (4, 5)
),
Permutation([1, 0])
)
assert cg1 == cg2
def test_arrayexpr_permute_tensor_product():
cg1 = PermuteDims(ArrayTensorProduct(M, N, P, Q), Permutation([2, 3, 1, 0, 5, 4, 6, 7]))
cg2 = ArrayTensorProduct(N, PermuteDims(M, [1, 0]),
PermuteDims(P, [1, 0]), Q)
assert cg1 == cg2
# TODO: reverse operation starting with `PermuteDims` and getting down to `bb`...
cg1 = PermuteDims(ArrayTensorProduct(M, N, P, Q), Permutation([2, 3, 4, 5, 0, 1, 6, 7]))
cg2 = ArrayTensorProduct(N, P, M, Q)
assert cg1 == cg2
cg1 = PermuteDims(ArrayTensorProduct(M, N, P, Q), Permutation([2, 3, 4, 6, 5, 7, 0, 1]))
assert cg1.expr == ArrayTensorProduct(N, P, Q, M)
assert cg1.permutation == Permutation([0, 1, 2, 4, 3, 5, 6, 7])
cg1 = ArrayContraction(
PermuteDims(
ArrayTensorProduct(N, Q, Q, M),
[2, 1, 5, 4, 0, 3, 6, 7]),
[1, 2, 6])
cg2 = PermuteDims(ArrayContraction(ArrayTensorProduct(Q, Q, N, M), (3, 5, 6)), [0, 2, 3, 1, 4])
assert cg1 == cg2
cg1 = ArrayContraction(
ArrayContraction(
ArrayContraction(
ArrayContraction(
PermuteDims(
ArrayTensorProduct(N, Q, Q, M),
[2, 1, 5, 4, 0, 3, 6, 7]),
[1, 2, 6]),
[1, 3, 4]),
[1]),
[0])
cg2 = ArrayContraction(ArrayTensorProduct(M, N, Q, Q), (0, 3, 5), (1, 4, 7), (2,), (6,))
assert cg1 == cg2
def test_arrayexpr_normalize_diagonal_permutedims():
tp = ArrayTensorProduct(M, Q, N, P)
expr = ArrayDiagonal(
PermuteDims(tp, [0, 1, 2, 4, 7, 6, 3, 5]), (2, 4, 5), (6, 7),
(0, 3))
result = ArrayDiagonal(tp, (2, 6, 7), (3, 5), (0, 4))
assert expr == result
tp = ArrayTensorProduct(M, N, P, Q)
expr = ArrayDiagonal(PermuteDims(tp, [0, 5, 2, 4, 1, 6, 3, 7]), (1, 2, 6), (3, 4))
result = ArrayDiagonal(ArrayTensorProduct(M, P, N, Q), (3, 4, 5), (1, 2))
assert expr == result
def test_arrayexpr_normalize_diagonal_contraction():
tp = ArrayTensorProduct(M, N, P, Q)
expr = ArrayContraction(ArrayDiagonal(tp, (1, 3, 4)), (0, 3))
result = ArrayDiagonal(ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 6)), (0, 2, 3))
assert expr == result
expr = ArrayContraction(ArrayDiagonal(tp, (0, 1, 2, 3, 7)), (1, 2, 3))
result = ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 1, 2, 3, 5, 6, 7))
assert expr == result
expr = ArrayContraction(ArrayDiagonal(tp, (0, 2, 6, 7)), (1, 2, 3))
result = ArrayDiagonal(ArrayContraction(tp, (3, 4, 5)), (0, 2, 3, 4))
assert expr == result
td = ArrayDiagonal(ArrayTensorProduct(M, N, P, Q), (0, 3))
expr = ArrayContraction(td, (2, 1), (0, 4, 6, 5, 3))
result = ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 1, 3, 5, 6, 7), (2, 4))
assert expr == result
def test_arrayexpr_array_wrong_permutation_size():
cg = ArrayTensorProduct(M, N)
raises(ValueError, lambda: PermuteDims(cg, [1, 0]))
raises(ValueError, lambda: PermuteDims(cg, [1, 0, 2, 3, 5, 4]))
def test_arrayexpr_nested_array_elementwise_add():
cg = ArrayContraction(ArrayAdd(
ArrayTensorProduct(M, N),
ArrayTensorProduct(N, M)
), (1, 2))
result = ArrayAdd(
ArrayContraction(ArrayTensorProduct(M, N), (1, 2)),
ArrayContraction(ArrayTensorProduct(N, M), (1, 2))
)
assert cg == result
cg = ArrayDiagonal(ArrayAdd(
ArrayTensorProduct(M, N),
ArrayTensorProduct(N, M)
), (1, 2))
result = ArrayAdd(
ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2)),
ArrayDiagonal(ArrayTensorProduct(N, M), (1, 2))
)
assert cg == result
def test_arrayexpr_array_expr_zero_array():
za1 = ZeroArray(k, l, m, n)
zm1 = ZeroMatrix(m, n)
za2 = ZeroArray(k, m, m, n)
zm2 = ZeroMatrix(m, m)
zm3 = ZeroMatrix(k, k)
assert ArrayTensorProduct(M, N, za1) == ZeroArray(k, k, k, k, k, l, m, n)
assert ArrayTensorProduct(M, N, zm1) == ZeroArray(k, k, k, k, m, n)
assert ArrayContraction(za1, (3,)) == ZeroArray(k, l, m)
assert ArrayContraction(zm1, (1,)) == ZeroArray(m)
assert ArrayContraction(za2, (1, 2)) == ZeroArray(k, n)
assert ArrayContraction(zm2, (0, 1)) == 0
assert ArrayDiagonal(za2, (1, 2)) == ZeroArray(k, n, m)
assert ArrayDiagonal(zm2, (0, 1)) == ZeroArray(m)
assert PermuteDims(za1, [2, 1, 3, 0]) == ZeroArray(m, l, n, k)
assert PermuteDims(zm1, [1, 0]) == ZeroArray(n, m)
assert ArrayAdd(za1) == za1
assert ArrayAdd(zm1) == ZeroArray(m, n)
tp1 = ArrayTensorProduct(MatrixSymbol("A", k, l), MatrixSymbol("B", m, n))
assert ArrayAdd(tp1, za1) == tp1
tp2 = ArrayTensorProduct(MatrixSymbol("C", k, l), MatrixSymbol("D", m, n))
assert ArrayAdd(tp1, za1, tp2) == ArrayAdd(tp1, tp2)
assert ArrayAdd(M, zm3) == M
assert ArrayAdd(M, N, zm3) == ArrayAdd(M, N)
def test_arrayexpr_array_expr_applyfunc():
A = ArraySymbol("A", 3, k, 2)
aaf = ArrayElementwiseApplyFunc(sin, A)
assert aaf.shape == (3, k, 2)
def test_edit_array_contraction():
cg = ArrayContraction(ArrayTensorProduct(A, B, C, D), (1, 2, 5))
ecg = _EditArrayContraction(cg)
assert ecg.to_array_contraction() == cg
ecg.args_with_ind[1], ecg.args_with_ind[2] = ecg.args_with_ind[2], ecg.args_with_ind[1]
assert ecg.to_array_contraction() == ArrayContraction(ArrayTensorProduct(A, C, B, D), (1, 3, 4))
ci = ecg.get_new_contraction_index()
new_arg = _ArgE(X)
new_arg.indices = [ci, ci]
ecg.args_with_ind.insert(2, new_arg)
assert ecg.to_array_contraction() == ArrayContraction(ArrayTensorProduct(A, C, X, B, D), (1, 3, 6), (4, 5))
assert ecg.get_contraction_indices() == [[1, 3, 6], [4, 5]]
assert [[tuple(j) for j in i] for i in ecg.get_contraction_indices_to_ind_rel_pos()] == [[(0, 1), (1, 1), (3, 0)], [(2, 0), (2, 1)]]
assert [list(i) for i in ecg.get_mapping_for_index(0)] == [[0, 1], [1, 1], [3, 0]]
assert [list(i) for i in ecg.get_mapping_for_index(1)] == [[2, 0], [2, 1]]
raises(ValueError, lambda: ecg.get_mapping_for_index(2))
ecg.args_with_ind.pop(1)
assert ecg.to_array_contraction() == ArrayContraction(ArrayTensorProduct(A, X, B, D), (1, 4), (2, 3))
ecg.args_with_ind[0].indices[1] = ecg.args_with_ind[1].indices[0]
ecg.args_with_ind[1].indices[1] = ecg.args_with_ind[2].indices[0]
assert ecg.to_array_contraction() == ArrayContraction(ArrayTensorProduct(A, X, B, D), (1, 2), (3, 4))
ecg.insert_after(ecg.args_with_ind[1], _ArgE(C))
assert ecg.to_array_contraction() == ArrayContraction(ArrayTensorProduct(A, X, C, B, D), (1, 2), (3, 6))
|
8bd0e0810394a1aca1143da09d253381a3b4977132e5f2655982728e90bf78fd | from sympy.matrices.expressions import MatrixExpr
from sympy import MatrixBase, Dummy, Lambda, Function, FunctionClass
from sympy.core.sympify import sympify, _sympify
class ElementwiseApplyFunction(MatrixExpr):
r"""
Apply function to a matrix elementwise without evaluating.
Examples
========
It can be created by calling ``.applyfunc(<function>)`` on a matrix
expression:
>>> from sympy.matrices.expressions import MatrixSymbol
>>> from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
>>> from sympy import exp
>>> X = MatrixSymbol("X", 3, 3)
>>> X.applyfunc(exp)
Lambda(_d, exp(_d)).(X)
Otherwise using the class constructor:
>>> from sympy import eye
>>> expr = ElementwiseApplyFunction(exp, eye(3))
>>> expr
Lambda(_d, exp(_d)).(Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]))
>>> expr.doit()
Matrix([
[E, 1, 1],
[1, E, 1],
[1, 1, E]])
Notice the difference with the real mathematical functions:
>>> exp(eye(3))
Matrix([
[E, 0, 0],
[0, E, 0],
[0, 0, E]])
"""
def __new__(cls, function, expr):
expr = _sympify(expr)
if not expr.is_Matrix:
raise ValueError("{} must be a matrix instance.".format(expr))
if expr.shape == (1, 1):
# Check if the function returns a matrix, in that case, just apply
# the function instead of creating an ElementwiseApplyFunc object:
ret = function(expr)
if isinstance(ret, MatrixExpr):
return ret
if not isinstance(function, (FunctionClass, Lambda)):
d = Dummy('d')
function = Lambda(d, function(d))
function = sympify(function)
if not isinstance(function, (FunctionClass, Lambda)):
raise ValueError(
"{} should be compatible with SymPy function classes."
.format(function))
if 1 not in function.nargs:
raise ValueError(
'{} should be able to accept 1 arguments.'.format(function))
if not isinstance(function, Lambda):
d = Dummy('d')
function = Lambda(d, function(d))
obj = MatrixExpr.__new__(cls, function, expr)
return obj
@property
def function(self):
return self.args[0]
@property
def expr(self):
return self.args[1]
@property
def shape(self):
return self.expr.shape
def doit(self, **kwargs):
deep = kwargs.get("deep", True)
expr = self.expr
if deep:
expr = expr.doit(**kwargs)
function = self.function
if isinstance(function, Lambda) and function.is_identity:
# This is a Lambda containing the identity function.
return expr
if isinstance(expr, MatrixBase):
return expr.applyfunc(self.function)
elif isinstance(expr, ElementwiseApplyFunction):
return ElementwiseApplyFunction(
lambda x: self.function(expr.function(x)),
expr.expr
).doit()
else:
return self
def _entry(self, i, j, **kwargs):
return self.function(self.expr._entry(i, j, **kwargs))
def _get_function_fdiff(self):
d = Dummy("d")
function = self.function(d)
fdiff = function.diff(d)
if isinstance(fdiff, Function):
fdiff = type(fdiff)
else:
fdiff = Lambda(d, fdiff)
return fdiff
def _eval_derivative(self, x):
from sympy import hadamard_product
dexpr = self.expr.diff(x)
fdiff = self._get_function_fdiff()
return hadamard_product(
dexpr,
ElementwiseApplyFunction(fdiff, self.expr)
)
def _eval_derivative_matrix_lines(self, x):
from sympy import Identity
from sympy.tensor.array.expressions.array_expressions import ArrayContraction
from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
from sympy.core.expr import ExprBuilder
fdiff = self._get_function_fdiff()
lr = self.expr._eval_derivative_matrix_lines(x)
ewdiff = ElementwiseApplyFunction(fdiff, self.expr)
if 1 in x.shape:
# Vector:
iscolumn = self.shape[1] == 1
for i in lr:
if iscolumn:
ptr1 = i.first_pointer
ptr2 = Identity(self.shape[1])
else:
ptr1 = Identity(self.shape[0])
ptr2 = i.second_pointer
subexpr = ExprBuilder(
ArrayDiagonal,
[
ExprBuilder(
ArrayTensorProduct,
[
ewdiff,
ptr1,
ptr2,
]
),
(0, 2) if iscolumn else (1, 4)
],
validator=ArrayDiagonal._validate
)
i._lines = [subexpr]
i._first_pointer_parent = subexpr.args[0].args
i._first_pointer_index = 1
i._second_pointer_parent = subexpr.args[0].args
i._second_pointer_index = 2
else:
# Matrix case:
for i in lr:
ptr1 = i.first_pointer
ptr2 = i.second_pointer
newptr1 = Identity(ptr1.shape[1])
newptr2 = Identity(ptr2.shape[1])
subexpr = ExprBuilder(
ArrayContraction,
[
ExprBuilder(
ArrayTensorProduct,
[ptr1, newptr1, ewdiff, ptr2, newptr2]
),
(1, 2, 4),
(5, 7, 8),
],
validator=ArrayContraction._validate
)
i._first_pointer_parent = subexpr.args[0].args
i._first_pointer_index = 1
i._second_pointer_parent = subexpr.args[0].args
i._second_pointer_index = 4
i._lines = [subexpr]
return lr
def _eval_transpose(self):
from sympy import Transpose
return self.func(self.function, Transpose(self.expr).doit())
|
774bd2591ea72bc3e343d94057c38356c652b5ee82692b22214ebcdad0046722 | from sympy.core.sympify import _sympify
from sympy.matrices.expressions import MatrixExpr
from sympy import S, I, sqrt, exp
class DFT(MatrixExpr):
r"""
Returns a discrete Fourier transform matrix. The matrix is scaled
with :math:`\frac{1}{\sqrt{n}}` so that it is unitary.
Parameters
==========
n : integer or Symbol
Size of the transform.
Examples
========
>>> from sympy.abc import n
>>> from sympy.matrices.expressions.fourier import DFT
>>> DFT(3)
DFT(3)
>>> DFT(3).as_explicit()
Matrix([
[sqrt(3)/3, sqrt(3)/3, sqrt(3)/3],
[sqrt(3)/3, sqrt(3)*exp(-2*I*pi/3)/3, sqrt(3)*exp(2*I*pi/3)/3],
[sqrt(3)/3, sqrt(3)*exp(2*I*pi/3)/3, sqrt(3)*exp(-2*I*pi/3)/3]])
>>> DFT(n).shape
(n, n)
References
==========
.. [1] https://en.wikipedia.org/wiki/DFT_matrix
"""
def __new__(cls, n):
n = _sympify(n)
cls._check_dim(n)
obj = super().__new__(cls, n)
return obj
n = property(lambda self: self.args[0]) # type: ignore
shape = property(lambda self: (self.n, self.n)) # type: ignore
def _entry(self, i, j, **kwargs):
w = exp(-2*S.Pi*I/self.n)
return w**(i*j) / sqrt(self.n)
def _eval_inverse(self):
return IDFT(self.n)
class IDFT(DFT):
r"""
Returns an inverse discrete Fourier transform matrix. The matrix is scaled
with :math:`\frac{1}{\sqrt{n}}` so that it is unitary.
Parameters
==========
n : integer or Symbol
Size of the transform
Examples
========
>>> from sympy.matrices.expressions.fourier import DFT, IDFT
>>> IDFT(3)
IDFT(3)
>>> IDFT(4)*DFT(4)
I
See Also
========
DFT
"""
def _entry(self, i, j, **kwargs):
w = exp(-2*S.Pi*I/self.n)
return w**(-i*j) / sqrt(self.n)
def _eval_inverse(self):
return DFT(self.n)
|
9beaebfef3c5f990a010fb48e2082081734b9f6ef63b627e26d628fadb2cc1af | from sympy import Basic, Expr, sympify, S
from sympy.matrices.matrices import MatrixBase
from sympy.matrices.common import NonSquareMatrixError
class Trace(Expr):
"""Matrix Trace
Represents the trace of a matrix expression.
Examples
========
>>> from sympy import MatrixSymbol, Trace, eye
>>> A = MatrixSymbol('A', 3, 3)
>>> Trace(A)
Trace(A)
>>> Trace(eye(3))
Trace(Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]))
>>> Trace(eye(3)).simplify()
3
"""
is_Trace = True
is_commutative = True
def __new__(cls, mat):
mat = sympify(mat)
if not mat.is_Matrix:
raise TypeError("input to Trace, %s, is not a matrix" % str(mat))
if not mat.is_square:
raise NonSquareMatrixError("Trace of a non-square matrix")
return Basic.__new__(cls, mat)
def _eval_transpose(self):
return self
def _eval_derivative(self, v):
from sympy import Sum
from .matexpr import MatrixElement
if isinstance(v, MatrixElement):
return self.rewrite(Sum).diff(v)
expr = self.doit()
if isinstance(expr, Trace):
# Avoid looping infinitely:
raise NotImplementedError
return expr._eval_derivative(v)
def _eval_derivative_matrix_lines(self, x):
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayContraction
from sympy.core.expr import ExprBuilder
r = self.args[0]._eval_derivative_matrix_lines(x)
for lr in r:
if lr.higher == 1:
lr.higher = ExprBuilder(
ArrayContraction,
[
ExprBuilder(
ArrayTensorProduct,
[
lr._lines[0],
lr._lines[1],
]
),
(1, 3),
],
validator=ArrayContraction._validate
)
else:
# This is not a matrix line:
lr.higher = ExprBuilder(
ArrayContraction,
[
ExprBuilder(
ArrayTensorProduct,
[
lr._lines[0],
lr._lines[1],
lr.higher,
]
),
(1, 3), (0, 2)
]
)
lr._lines = [S.One, S.One]
lr._first_pointer_parent = lr._lines
lr._second_pointer_parent = lr._lines
lr._first_pointer_index = 0
lr._second_pointer_index = 1
return r
@property
def arg(self):
return self.args[0]
def doit(self, **kwargs):
if kwargs.get('deep', True):
arg = self.arg.doit(**kwargs)
try:
return arg._eval_trace()
except (AttributeError, NotImplementedError):
return Trace(arg)
else:
# _eval_trace would go too deep here
if isinstance(self.arg, MatrixBase):
return trace(self.arg)
else:
return Trace(self.arg)
def _normalize(self):
# Normalization of trace of matrix products. Use transposition and
# cyclic properties of traces to make sure the arguments of the matrix
# product are sorted and the first argument is not a trasposition.
from sympy import MatMul, Transpose, default_sort_key
trace_arg = self.arg
if isinstance(trace_arg, MatMul):
def get_arg_key(x):
a = trace_arg.args[x]
if isinstance(a, Transpose):
a = a.arg
return default_sort_key(a)
indmin = min(range(len(trace_arg.args)), key=get_arg_key)
if isinstance(trace_arg.args[indmin], Transpose):
trace_arg = Transpose(trace_arg).doit()
indmin = min(range(len(trace_arg.args)), key=lambda x: default_sort_key(trace_arg.args[x]))
trace_arg = MatMul.fromiter(trace_arg.args[indmin:] + trace_arg.args[:indmin])
return Trace(trace_arg)
return self
def _eval_rewrite_as_Sum(self, expr, **kwargs):
from sympy import Sum, Dummy
i = Dummy('i')
return Sum(self.arg[i, i], (i, 0, self.arg.rows-1)).doit()
def trace(expr):
"""Trace of a Matrix. Sum of the diagonal elements.
Examples
========
>>> from sympy import trace, Symbol, MatrixSymbol, eye
>>> n = Symbol('n')
>>> X = MatrixSymbol('X', n, n) # A square matrix
>>> trace(2*X)
2*Trace(X)
>>> trace(eye(3))
3
"""
return Trace(expr).doit()
|
521d5661e750b4cd0dce07a27e5945ef3c052ffe45b2d8978632d0741490d861 | from sympy import S, I, ask, Q, Abs, simplify, exp, sqrt, Rational
from sympy.core.symbol import symbols
from sympy.matrices.expressions.fourier import DFT, IDFT
from sympy.matrices import det, Matrix, Identity
from sympy.testing.pytest import raises
def test_dft_creation():
assert DFT(2)
assert DFT(0)
raises(ValueError, lambda: DFT(-1))
raises(ValueError, lambda: DFT(2.0))
raises(ValueError, lambda: DFT(2 + 1j))
n = symbols('n')
assert DFT(n)
n = symbols('n', integer=False)
raises(ValueError, lambda: DFT(n))
n = symbols('n', negative=True)
raises(ValueError, lambda: DFT(n))
def test_dft():
n, i, j = symbols('n i j')
assert DFT(4).shape == (4, 4)
assert ask(Q.unitary(DFT(4)))
assert Abs(simplify(det(Matrix(DFT(4))))) == 1
assert DFT(n)*IDFT(n) == Identity(n)
assert DFT(n)[i, j] == exp(-2*S.Pi*I/n)**(i*j) / sqrt(n)
def test_dft2():
assert DFT(1).as_explicit() == Matrix([[1]])
assert DFT(2).as_explicit() == 1/sqrt(2)*Matrix([[1,1],[1,-1]])
assert DFT(4).as_explicit() == Matrix([[S.Half, S.Half, S.Half, S.Half],
[S.Half, -I/2, Rational(-1,2), I/2],
[S.Half, Rational(-1,2), S.Half, Rational(-1,2)],
[S.Half, I/2, Rational(-1,2), -I/2]])
|
1d1bf3d0448f70c12f8e2b8d6d538bb9721e3072da5941a91cadc2cc5b7ed640 | from sympy.core.symbol import symbols, Dummy
from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
from sympy import Matrix, Lambda, MatrixSymbol, exp, MatMul, sin, simplify
from sympy.testing.pytest import raises
from sympy.matrices.common import ShapeError
X = MatrixSymbol("X", 3, 3)
Y = MatrixSymbol("Y", 3, 3)
k = symbols("k")
Xk = MatrixSymbol("X", k, k)
Xd = X.as_explicit()
x, y, z, t = symbols("x y z t")
def test_applyfunc_matrix():
x = Dummy('x')
double = Lambda(x, x**2)
expr = ElementwiseApplyFunction(double, Xd)
assert isinstance(expr, ElementwiseApplyFunction)
assert expr.doit() == Xd.applyfunc(lambda x: x**2)
assert expr.shape == (3, 3)
assert expr.func(*expr.args) == expr
assert simplify(expr) == expr
assert expr[0, 0] == double(Xd[0, 0])
expr = ElementwiseApplyFunction(double, X)
assert isinstance(expr, ElementwiseApplyFunction)
assert isinstance(expr.doit(), ElementwiseApplyFunction)
assert expr == X.applyfunc(double)
assert expr.func(*expr.args) == expr
expr = ElementwiseApplyFunction(exp, X*Y)
assert expr.expr == X*Y
assert expr.function.dummy_eq(Lambda(x, exp(x)))
assert expr.dummy_eq((X*Y).applyfunc(exp))
assert expr.func(*expr.args) == expr
assert isinstance(X*expr, MatMul)
assert (X*expr).shape == (3, 3)
Z = MatrixSymbol("Z", 2, 3)
assert (Z*expr).shape == (2, 3)
expr = ElementwiseApplyFunction(exp, Z.T)*ElementwiseApplyFunction(exp, Z)
assert expr.shape == (3, 3)
expr = ElementwiseApplyFunction(exp, Z)*ElementwiseApplyFunction(exp, Z.T)
assert expr.shape == (2, 2)
raises(ShapeError, lambda: ElementwiseApplyFunction(exp, Z)*ElementwiseApplyFunction(exp, Z))
M = Matrix([[x, y], [z, t]])
expr = ElementwiseApplyFunction(sin, M)
assert isinstance(expr, ElementwiseApplyFunction)
assert expr.function.dummy_eq(Lambda(x, sin(x)))
assert expr.expr == M
assert expr.doit() == M.applyfunc(sin)
assert expr.doit() == Matrix([[sin(x), sin(y)], [sin(z), sin(t)]])
assert expr.func(*expr.args) == expr
expr = ElementwiseApplyFunction(double, Xk)
assert expr.doit() == expr
assert expr.subs(k, 2).shape == (2, 2)
assert (expr*expr).shape == (k, k)
M = MatrixSymbol("M", k, t)
expr2 = M.T*expr*M
assert isinstance(expr2, MatMul)
assert expr2.args[1] == expr
assert expr2.shape == (t, t)
expr3 = expr*M
assert expr3.shape == (k, t)
raises(ShapeError, lambda: M*expr)
expr1 = ElementwiseApplyFunction(lambda x: x+1, Xk)
expr2 = ElementwiseApplyFunction(lambda x: x, Xk)
assert expr1 != expr2
def test_applyfunc_entry():
af = X.applyfunc(sin)
assert af[0, 0] == sin(X[0, 0])
af = Xd.applyfunc(sin)
assert af[0, 0] == sin(X[0, 0])
def test_applyfunc_as_explicit():
af = X.applyfunc(sin)
assert af.as_explicit() == Matrix([
[sin(X[0, 0]), sin(X[0, 1]), sin(X[0, 2])],
[sin(X[1, 0]), sin(X[1, 1]), sin(X[1, 2])],
[sin(X[2, 0]), sin(X[2, 1]), sin(X[2, 2])],
])
def test_applyfunc_transpose():
af = Xk.applyfunc(sin)
assert af.T.dummy_eq(Xk.T.applyfunc(sin))
def test_applyfunc_shape_11_matrices():
M = MatrixSymbol("M", 1, 1)
double = Lambda(x, x*2)
expr = M.applyfunc(sin)
assert isinstance(expr, ElementwiseApplyFunction)
expr = M.applyfunc(double)
assert isinstance(expr, MatMul)
assert expr == 2*M
|
59bde399e680cf195b49fd88711d109a51f75114f9a463eb9a1b47389cc3e647 | from sympy.core import Lambda, S, symbols
from sympy.concrete import Sum
from sympy.functions import adjoint, conjugate, transpose
from sympy.matrices import eye, Matrix, ShapeError, ImmutableMatrix
from sympy.matrices.expressions import (
Adjoint, Identity, FunctionMatrix, MatrixExpr, MatrixSymbol, Trace,
ZeroMatrix, trace, MatPow, MatAdd, MatMul
)
from sympy.matrices.expressions.special import OneMatrix
from sympy.testing.pytest import raises
n = symbols('n', integer=True)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
C = MatrixSymbol('C', 3, 4)
def test_Trace():
assert isinstance(Trace(A), Trace)
assert not isinstance(Trace(A), MatrixExpr)
raises(ShapeError, lambda: Trace(C))
assert trace(eye(3)) == 3
assert trace(Matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])) == 15
assert adjoint(Trace(A)) == trace(Adjoint(A))
assert conjugate(Trace(A)) == trace(Adjoint(A))
assert transpose(Trace(A)) == Trace(A)
A / Trace(A) # Make sure this is possible
# Some easy simplifications
assert trace(Identity(5)) == 5
assert trace(ZeroMatrix(5, 5)) == 0
assert trace(OneMatrix(1, 1)) == 1
assert trace(OneMatrix(2, 2)) == 2
assert trace(OneMatrix(n, n)) == n
assert trace(2*A*B) == 2*Trace(A*B)
assert trace(A.T) == trace(A)
i, j = symbols('i j')
F = FunctionMatrix(3, 3, Lambda((i, j), i + j))
assert trace(F) == (0 + 0) + (1 + 1) + (2 + 2)
raises(TypeError, lambda: Trace(S.One))
assert Trace(A).arg is A
assert str(trace(A)) == str(Trace(A).doit())
assert Trace(A).is_commutative is True
def test_Trace_A_plus_B():
assert trace(A + B) == Trace(A) + Trace(B)
assert Trace(A + B).arg == MatAdd(A, B)
assert Trace(A + B).doit() == Trace(A) + Trace(B)
def test_Trace_MatAdd_doit():
# See issue #9028
X = ImmutableMatrix([[1, 2, 3]]*3)
Y = MatrixSymbol('Y', 3, 3)
q = MatAdd(X, 2*X, Y, -3*Y)
assert Trace(q).arg == q
assert Trace(q).doit() == 18 - 2*Trace(Y)
def test_Trace_MatPow_doit():
X = Matrix([[1, 2], [3, 4]])
assert Trace(X).doit() == 5
q = MatPow(X, 2)
assert Trace(q).arg == q
assert Trace(q).doit() == 29
def test_Trace_MutableMatrix_plus():
# See issue #9043
X = Matrix([[1, 2], [3, 4]])
assert Trace(X) + Trace(X) == 2*Trace(X)
def test_Trace_doit_deep_False():
X = Matrix([[1, 2], [3, 4]])
q = MatPow(X, 2)
assert Trace(q).doit(deep=False).arg == q
q = MatAdd(X, 2*X)
assert Trace(q).doit(deep=False).arg == q
q = MatMul(X, 2*X)
assert Trace(q).doit(deep=False).arg == q
def test_trace_constant_factor():
# Issue 9052: gave 2*Trace(MatMul(A)) instead of 2*Trace(A)
assert trace(2*A) == 2*Trace(A)
X = ImmutableMatrix([[1, 2], [3, 4]])
assert trace(MatMul(2, X)) == 10
def test_rewrite():
assert isinstance(trace(A).rewrite(Sum), Sum)
def test_trace_normalize():
assert Trace(B*A) != Trace(A*B)
assert Trace(B*A)._normalize() == Trace(A*B)
assert Trace(B*A.T)._normalize() == Trace(A*B.T)
|
8e4c3f6a32526779c8c3d18057d5a212ad76b5e21c371c803e7a2c8bc5e17c45 | #!/usr/bin/env python
"""Distutils based setup script for SymPy.
This uses Distutils (https://python.org/sigs/distutils-sig/) the standard
python mechanism for installing packages. Optionally, you can use
Setuptools (https://setuptools.readthedocs.io/en/latest/)
to automatically handle dependencies. For the easiest installation
just type the command (you'll probably need root privileges for that):
python setup.py install
This will install the library in the default location. For instructions on
how to customize the install procedure read the output of:
python setup.py --help install
In addition, there are some other commands:
python setup.py clean -> will clean all trash (*.pyc and stuff)
python setup.py test -> will run the complete test suite
python setup.py bench -> will run the complete benchmark suite
python setup.py audit -> will run pyflakes checker on source code
To get a full list of available commands, read the output of:
python setup.py --help-commands
Or, if all else fails, feel free to write to the sympy list at
[email protected] and ask for help.
"""
import sys
import os
import shutil
import glob
import subprocess
from distutils.command.sdist import sdist
min_mpmath_version = '0.19'
# This directory
dir_setup = os.path.dirname(os.path.realpath(__file__))
extra_kwargs = {}
try:
from setuptools import setup, Command
extra_kwargs['zip_safe'] = False
extra_kwargs['entry_points'] = {
'console_scripts': [
'isympy = isympy:main',
]
}
except ImportError:
from distutils.core import setup, Command
extra_kwargs['scripts'] = ['bin/isympy']
# handle mpmath deps in the hard way:
from sympy.external.importtools import version_tuple
try:
import mpmath
if version_tuple(mpmath.__version__) < version_tuple(min_mpmath_version):
raise ImportError
except ImportError:
print("Please install the mpmath package with a version >= %s"
% min_mpmath_version)
sys.exit(-1)
if sys.version_info < (3, 6):
print("SymPy requires Python 3.6 or newer. Python %d.%d detected"
% sys.version_info[:2])
sys.exit(-1)
# Check that this list is uptodate against the result of the command:
# python bin/generate_module_list.py
modules = [
'sympy.algebras',
'sympy.assumptions',
'sympy.assumptions.handlers',
'sympy.assumptions.predicates',
'sympy.assumptions.relation',
'sympy.benchmarks',
'sympy.calculus',
'sympy.categories',
'sympy.codegen',
'sympy.combinatorics',
'sympy.concrete',
'sympy.core',
'sympy.core.benchmarks',
'sympy.crypto',
'sympy.diffgeom',
'sympy.discrete',
'sympy.external',
'sympy.functions',
'sympy.functions.combinatorial',
'sympy.functions.elementary',
'sympy.functions.elementary.benchmarks',
'sympy.functions.special',
'sympy.functions.special.benchmarks',
'sympy.geometry',
'sympy.holonomic',
'sympy.integrals',
'sympy.integrals.benchmarks',
'sympy.integrals.rubi',
'sympy.integrals.rubi.parsetools',
'sympy.integrals.rubi.rubi_tests',
'sympy.integrals.rubi.rules',
'sympy.interactive',
'sympy.liealgebras',
'sympy.logic',
'sympy.logic.algorithms',
'sympy.logic.utilities',
'sympy.matrices',
'sympy.matrices.benchmarks',
'sympy.matrices.expressions',
'sympy.multipledispatch',
'sympy.ntheory',
'sympy.parsing',
'sympy.parsing.autolev',
'sympy.parsing.autolev._antlr',
'sympy.parsing.c',
'sympy.parsing.fortran',
'sympy.parsing.latex',
'sympy.parsing.latex._antlr',
'sympy.physics',
'sympy.physics.continuum_mechanics',
'sympy.physics.control',
'sympy.physics.hep',
'sympy.physics.mechanics',
'sympy.physics.optics',
'sympy.physics.quantum',
'sympy.physics.units',
'sympy.physics.units.definitions',
'sympy.physics.units.systems',
'sympy.physics.vector',
'sympy.plotting',
'sympy.plotting.intervalmath',
'sympy.plotting.pygletplot',
'sympy.polys',
'sympy.polys.agca',
'sympy.polys.benchmarks',
'sympy.polys.domains',
'sympy.polys.matrices',
'sympy.printing',
'sympy.printing.pretty',
'sympy.sandbox',
'sympy.series',
'sympy.series.benchmarks',
'sympy.sets',
'sympy.sets.handlers',
'sympy.simplify',
'sympy.solvers',
'sympy.solvers.benchmarks',
'sympy.solvers.diophantine',
'sympy.solvers.ode',
'sympy.stats',
'sympy.stats.sampling',
'sympy.strategies',
'sympy.strategies.branch',
'sympy.tensor',
'sympy.tensor.array',
'sympy.tensor.array.expressions',
'sympy.testing',
'sympy.unify',
'sympy.utilities',
'sympy.utilities._compilation',
'sympy.utilities.mathml',
'sympy.vector',
]
class audit(Command):
"""Audits SymPy's source code for following issues:
- Names which are used but not defined or used before they are defined.
- Names which are redefined without having been used.
"""
description = "Audit SymPy source with PyFlakes"
user_options = []
def initialize_options(self):
self.all = None
def finalize_options(self):
pass
def run(self):
try:
import pyflakes.scripts.pyflakes as flakes
except ImportError:
print("In order to run the audit, you need to have PyFlakes installed.")
sys.exit(-1)
dirs = (os.path.join(*d) for d in (m.split('.') for m in modules))
warns = 0
for dir in dirs:
for filename in os.listdir(dir):
if filename.endswith('.py') and filename != '__init__.py':
warns += flakes.checkPath(os.path.join(dir, filename))
if warns > 0:
print("Audit finished with total %d warnings" % warns)
class clean(Command):
"""Cleans *.pyc and debian trashs, so you should get the same copy as
is in the VCS.
"""
description = "remove build files"
user_options = [("all", "a", "the same")]
def initialize_options(self):
self.all = None
def finalize_options(self):
pass
def run(self):
curr_dir = os.getcwd()
for root, dirs, files in os.walk(dir_setup):
for file in files:
if file.endswith('.pyc') and os.path.isfile:
os.remove(os.path.join(root, file))
os.chdir(dir_setup)
names = ["python-build-stamp-2.4", "MANIFEST", "build",
"dist", "doc/_build", "sample.tex"]
for f in names:
if os.path.isfile(f):
os.remove(f)
elif os.path.isdir(f):
shutil.rmtree(f)
for name in glob.glob(os.path.join(dir_setup, "doc", "src", "modules",
"physics", "vector", "*.pdf")):
if os.path.isfile(name):
os.remove(name)
os.chdir(curr_dir)
class test_sympy(Command):
"""Runs all tests under the sympy/ folder
"""
description = "run all tests and doctests; also see bin/test and bin/doctest"
user_options = [] # distutils complains if this is not here.
def __init__(self, *args):
self.args = args[0] # so we can pass it to other classes
Command.__init__(self, *args)
def initialize_options(self): # distutils wants this
pass
def finalize_options(self): # this too
pass
def run(self):
from sympy.utilities import runtests
runtests.run_all_tests()
class run_benchmarks(Command):
"""Runs all SymPy benchmarks"""
description = "run all benchmarks"
user_options = [] # distutils complains if this is not here.
def __init__(self, *args):
self.args = args[0] # so we can pass it to other classes
Command.__init__(self, *args)
def initialize_options(self): # distutils wants this
pass
def finalize_options(self): # this too
pass
# we use py.test like architecture:
#
# o collector -- collects benchmarks
# o runner -- executes benchmarks
# o presenter -- displays benchmarks results
#
# this is done in sympy.utilities.benchmarking on top of py.test
def run(self):
from sympy.utilities import benchmarking
benchmarking.main(['sympy'])
class antlr(Command):
"""Generate code with antlr4"""
description = "generate parser code from antlr grammars"
user_options = [] # distutils complains if this is not here.
def __init__(self, *args):
self.args = args[0] # so we can pass it to other classes
Command.__init__(self, *args)
def initialize_options(self): # distutils wants this
pass
def finalize_options(self): # this too
pass
def run(self):
from sympy.parsing.latex._build_latex_antlr import build_parser
if not build_parser():
sys.exit(-1)
class sdist_sympy(sdist):
def run(self):
# Fetch git commit hash and write down to commit_hash.txt before
# shipped in tarball.
commit_hash = None
commit_hash_filepath = 'doc/commit_hash.txt'
try:
commit_hash = \
subprocess.check_output(['git', 'rev-parse', 'HEAD'])
commit_hash = commit_hash.decode('ascii')
commit_hash = commit_hash.rstrip()
print('Commit hash found : {}.'.format(commit_hash))
print('Writing it to {}.'.format(commit_hash_filepath))
except:
pass
if commit_hash:
with open(commit_hash_filepath, 'w') as f:
f.write(commit_hash)
super(sdist_sympy, self).run()
try:
os.remove(commit_hash_filepath)
print(
'Successfully removed temporary file {}.'
.format(commit_hash_filepath))
except OSError as e:
print("Error deleting %s - %s." % (e.filename, e.strerror))
# Check that this list is uptodate against the result of the command:
# python bin/generate_test_list.py
tests = [
'sympy.algebras.tests',
'sympy.assumptions.tests',
'sympy.calculus.tests',
'sympy.categories.tests',
'sympy.codegen.tests',
'sympy.combinatorics.tests',
'sympy.concrete.tests',
'sympy.core.tests',
'sympy.crypto.tests',
'sympy.diffgeom.tests',
'sympy.discrete.tests',
'sympy.external.tests',
'sympy.functions.combinatorial.tests',
'sympy.functions.elementary.tests',
'sympy.functions.special.tests',
'sympy.geometry.tests',
'sympy.holonomic.tests',
'sympy.integrals.rubi.parsetools.tests',
'sympy.integrals.rubi.rubi_tests.tests',
'sympy.integrals.rubi.tests',
'sympy.integrals.tests',
'sympy.interactive.tests',
'sympy.liealgebras.tests',
'sympy.logic.tests',
'sympy.matrices.expressions.tests',
'sympy.matrices.tests',
'sympy.multipledispatch.tests',
'sympy.ntheory.tests',
'sympy.parsing.tests',
'sympy.physics.continuum_mechanics.tests',
'sympy.physics.control.tests',
'sympy.physics.hep.tests',
'sympy.physics.mechanics.tests',
'sympy.physics.optics.tests',
'sympy.physics.quantum.tests',
'sympy.physics.tests',
'sympy.physics.units.tests',
'sympy.physics.vector.tests',
'sympy.plotting.intervalmath.tests',
'sympy.plotting.pygletplot.tests',
'sympy.plotting.tests',
'sympy.polys.agca.tests',
'sympy.polys.domains.tests',
'sympy.polys.matrices.tests',
'sympy.polys.tests',
'sympy.printing.pretty.tests',
'sympy.printing.tests',
'sympy.sandbox.tests',
'sympy.series.tests',
'sympy.sets.tests',
'sympy.simplify.tests',
'sympy.solvers.diophantine.tests',
'sympy.solvers.ode.tests',
'sympy.solvers.tests',
'sympy.stats.sampling.tests',
'sympy.stats.tests',
'sympy.strategies.branch.tests',
'sympy.strategies.tests',
'sympy.tensor.array.expressions.tests',
'sympy.tensor.array.tests',
'sympy.tensor.tests',
'sympy.testing.tests',
'sympy.unify.tests',
'sympy.utilities._compilation.tests',
'sympy.utilities.tests',
'sympy.vector.tests',
]
with open(os.path.join(dir_setup, 'sympy', 'release.py')) as f:
# Defines __version__
exec(f.read())
if __name__ == '__main__':
setup(name='sympy',
version=__version__,
description='Computer algebra system (CAS) in Python',
author='SymPy development team',
author_email='[email protected]',
license='BSD',
keywords="Math CAS",
url='https://sympy.org',
py_modules=['isympy'],
packages=['sympy'] + modules + tests,
ext_modules=[],
package_data={
'sympy.utilities.mathml': ['data/*.xsl'],
'sympy.logic.benchmarks': ['input/*.cnf'],
'sympy.parsing.autolev': [
'*.g4', 'test-examples/*.al', 'test-examples/*.py',
'test-examples/pydy-example-repo/*.al',
'test-examples/pydy-example-repo/*.py',
'test-examples/README.txt',
],
'sympy.parsing.latex': ['*.txt', '*.g4'],
'sympy.integrals.rubi.parsetools': ['header.py.txt'],
'sympy.plotting.tests': ['test_region_*.png'],
},
data_files=[('share/man/man1', ['doc/man/isympy.1'])],
cmdclass={'test': test_sympy,
'bench': run_benchmarks,
'clean': clean,
'audit': audit,
'antlr': antlr,
'sdist': sdist_sympy,
},
python_requires='>=3.6',
classifiers=[
'License :: OSI Approved :: BSD License',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Mathematics',
'Topic :: Scientific/Engineering :: Physics',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3 :: Only',
'Programming Language :: Python :: Implementation :: CPython',
'Programming Language :: Python :: Implementation :: PyPy',
],
install_requires=[
'mpmath>=%s' % min_mpmath_version,
],
**extra_kwargs
)
|
97edca1aa77b656c8ee3fa51d9361b8c3132c8ea87faff82d96ae303fc2f3166 | #!/usr/bin/env python
"""
Run tests involving symengine
These are separate from the other optional dependency tests because they need
to be run with the USE_SYMENGINE=1 environment variable set. This script does
not set the environment variable by default so that the same tests can be run
with and without symengine.
Run this as:
$ USE_SYMENGINE=1 bin/test_symengine.py
"""
# Add the local sympy to sys.path (needed for CI)
from get_sympy import path_hack
path_hack()
class TestsFailedError(Exception):
pass
test_list = [
'sympy/physics/mechanics',
'sympy/liealgebras',
]
print('Testing optional dependencies')
#
# XXX: The doctests are not tested here but there are many failures when
# running them with symengine.
#
import sympy
if not sympy.test(*test_list, verbose=True):
raise TestsFailedError('Tests failed')
|
89e32c873d39e44c1ab105a7a112e66ff7348dc338ad3617c3e6b2993d8b165d | #!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
A tool to generate AUTHORS. We started tracking authors before moving
to git, so we have to do some manual rearrangement of the git history
authors in order to get the order in AUTHORS. bin/mailmap_update.py
should be run before committing the results.
"""
from __future__ import unicode_literals
from __future__ import print_function
import codecs
import sys
import os
if sys.version_info < (3, 6):
sys.exit("This script requires Python 3.6 or newer")
from subprocess import run, PIPE
from sympy.external.importtools import version_tuple
from collections import OrderedDict
def red(text):
return "\033[31m%s\033[0m" % text
def yellow(text):
return "\033[33m%s\033[0m" % text
def green(text):
return "\033[32m%s\033[0m" % text
# put sympy on the path
mailmap_update_path = os.path.abspath(__file__)
mailmap_update_dir = os.path.dirname(mailmap_update_path)
sympy_top = os.path.split(mailmap_update_dir)[0]
sympy_dir = os.path.join(sympy_top, 'sympy')
if os.path.isdir(sympy_dir):
sys.path.insert(0, sympy_top)
from sympy.utilities.misc import filldedent
# check git version
minimal = '1.8.4.2'
git_ver = run(['git', '--version'], stdout=PIPE, encoding='utf-8').stdout[12:]
if version_tuple(git_ver) < version_tuple(minimal):
print(yellow("Please use a git version >= %s" % minimal))
def author_name(line):
assert line.count("<") == line.count(">") == 1
assert line.endswith(">")
return line.split("<", 1)[0].strip()
def move(l, i1, i2, who):
x = l.pop(i1)
# this will fail if the .mailmap is not right
assert who == author_name(x), \
'%s was not found at line %i' % (who, i1)
l.insert(i2, x)
# find who git knows ahout
git_command = ["git", "log", "--topo-order", "--reverse", "--format=%aN <%aE>"]
git_people = run(git_command, stdout=PIPE, encoding='utf-8').stdout.strip().split("\n")
# remove duplicates, keeping the original order
git_people = list(OrderedDict.fromkeys(git_people))
# Do the few changes necessary in order to reproduce AUTHORS:
try:
move(git_people, 2, 0, 'Ondřej Čertík')
move(git_people, 42, 1, 'Fabian Pedregosa')
move(git_people, 22, 2, 'Jurjen N.E. Bos')
git_people.insert(4, "*Marc-Etienne M.Leveille <[email protected]>")
move(git_people, 10, 5, 'Brian Jorgensen')
git_people.insert(11, "*Ulrich Hecht <[email protected]>")
# this will fail if the .mailmap is not right
assert 'Kirill Smelkov' == author_name(git_people.pop(12)
), 'Kirill Smelkov was not found at line 12'
move(git_people, 12, 32, 'Sebastian Krämer')
move(git_people, 227, 35, 'Case Van Horsen')
git_people.insert(43, "*Dan <[email protected]>")
move(git_people, 57, 59, 'Aaron Meurer')
move(git_people, 58, 57, 'Andrew Docherty')
move(git_people, 67, 66, 'Chris Smith')
move(git_people, 79, 76, 'Kevin Goodsell')
git_people.insert(84, "*Chu-Ching Huang <[email protected]>")
move(git_people, 93, 92, 'James Pearson')
# this will fail if the .mailmap is not right
assert 'Sergey B Kirpichev' == author_name(git_people.pop(226)
), 'Sergey B Kirpichev was not found at line 226.'
index = git_people.index(
"azure-pipelines[bot] " +
"<azure-pipelines[bot]@users.noreply.github.com>")
git_people.pop(index)
index = git_people.index(
"whitesource-bolt-for-github[bot] " +
"<whitesource-bolt-for-github[bot]@users.noreply.github.com>")
git_people.pop(index)
except AssertionError as msg:
print(red(msg))
sys.exit(1)
# define new lines for the file
header = filldedent("""
All people who contributed to SymPy by sending at least a patch or
more (in the order of the date of their first contribution), except
those who explicitly didn't want to be mentioned. People with a * next
to their names are not found in the metadata of the git history. This
file is generated automatically by running `./bin/authors_update.py`.
""").lstrip()
fmt = """There are a total of {authors_count} authors."""
header_extra = fmt.format(authors_count=len(git_people))
lines = header.splitlines()
lines.append('')
lines.append(header_extra)
lines.append('')
lines.extend(git_people)
# compare to old lines and stop if no changes were made
old_lines = codecs.open(os.path.realpath(os.path.join(
__file__, os.path.pardir, os.path.pardir, "AUTHORS")),
"r", "utf-8").read().splitlines()
if old_lines == lines:
print(green('No changes made to AUTHORS.'))
sys.exit(0)
# check for new additions
new_authors = []
for i in sorted(set(lines) - set(old_lines)):
try:
author_name(i)
new_authors.append(i)
except AssertionError:
continue
# write the new file
with codecs.open(os.path.realpath(os.path.join(
__file__, os.path.pardir, os.path.pardir, "AUTHORS")),
"w", "utf-8") as fd:
fd.write('\n'.join(lines))
fd.write('\n')
# warn about additions
if new_authors:
print(yellow(filldedent("""
The following authors were added to AUTHORS.
If mailmap_update.py has already been run and
each author appears as desired and is not a
duplicate of some other author, then the
changes can be committed. Otherwise, see
.mailmap for instructions on how to change
an author's entry.""")))
print()
for i in sorted(new_authors, key=lambda x: x.lower()):
print('\t%s' % i)
else:
print(yellow("The AUTHORS file was updated."))
print(red("Changes were made in the authors file"))
run(['git', 'diff']) # Show the changes
sys.exit(1)
|
5250bd84e7effce2b00c6d5fa7f098aefd1ac2b15d15d31b656a9f1fcb8c67f1 | #!/usr/bin/env python
"""
Run tests for specific packages that use optional dependencies.
The optional dependencies need to be installed before running this.
"""
# Add the local sympy to sys.path (needed for CI)
from get_sympy import path_hack
path_hack()
class TestsFailedError(Exception):
pass
print('Testing optional dependencies')
import sympy
test_list = [
# numpy
'*numpy*',
'sympy/core/',
'sympy/matrices/',
'sympy/physics/quantum/',
'sympy/utilities/tests/test_lambdify.py',
# scipy
'*scipy*',
# llvmlite
'*llvm*',
# aesara
'*aesara*',
# gmpy
'polys',
# autowrap
'*autowrap*',
# ipython
'*ipython*',
# antlr, lfortran, clang
'sympy/parsing/',
# matchpy
'*rubi*',
# codegen
'sympy/codegen/',
'sympy/utilities/tests/test_codegen',
'sympy/utilities/_compilation/tests/test_compilation',
# cloudpickle
'pickling',
# pycosat
'sympy/logic',
'sympy/assumptions',
#stats
'sympy/stats',
]
blacklist = [
'sympy/physics/quantum/tests/test_circuitplot.py',
]
doctest_list = [
# numpy
'sympy/matrices/',
'sympy/utilities/lambdify.py',
# scipy
'*scipy*',
# llvmlite
'*llvm*',
# aesara
'*aesara*',
# gmpy
'polys',
# autowrap
'*autowrap*',
# ipython
'*ipython*',
# antlr, lfortran, clang
'sympy/parsing/',
# matchpy
'*rubi*',
# codegen
'sympy/codegen/',
# pycosat
'sympy/logic',
'sympy/assumptions',
#stats
'sympy/stats',
]
if not (sympy.test(*test_list, verbose=True, blacklist=blacklist) and sympy.doctest(*doctest_list)):
raise TestsFailedError('Tests failed')
print('Testing MATPLOTLIB')
# Set matplotlib so that it works correctly in headless Travis. We have to do
# this here because it doesn't work after the sympy plotting module is
# imported.
import matplotlib
matplotlib.use("Agg")
import sympy
# Unfortunately, we have to use subprocess=False so that the above will be
# applied, so no hash randomization here.
if not (sympy.test('sympy/plotting', 'sympy/physics/quantum/tests/test_circuitplot.py',
subprocess=False) and sympy.doctest('sympy/plotting', subprocess=False)):
raise TestsFailedError('Tests failed')
|
f8a5fa373c936d909b0ead0ed2104d317f5b15475b46233185c99f0fdc0deb52 | #!/usr/bin/env python
"""
Run tests involving tensorflow
These are separate from the other optional dependency tests because tensorflow
pins the numpy version.
"""
# Add the local sympy to sys.path (needed for CI)
from get_sympy import path_hack
path_hack()
class TestsFailedError(Exception):
pass
test_list = doctest_list = [
'sympy/printing/tensorflow.py',
'sympy/printing/tests/test_tensorflow.py',
'sympy/stats/sampling',
'sympy/utilities/lambdify.py',
'sympy/utilities/tests/test_lambdify.py',
]
print('Testing optional dependencies')
import sympy
if not (sympy.test(*test_list, verbose=True) and sympy.doctest(*doctest_list)):
raise TestsFailedError('Tests failed')
|
41e7929e49e1f49ae5e44c0d230a162d589b758cd0bf6d7ab5edd8ab45c6b057 | #!/usr/bin/env python
"""
A tool to help keep .mailmap up-to-date with the
current git authors.
See also bin/authors_update.py
"""
import codecs
import sys
import os
if sys.version_info < (3, 6):
sys.exit("This script requires Python 3.6 or newer")
from subprocess import run, PIPE
from sympy.external.importtools import version_tuple
from collections import defaultdict, OrderedDict
def red(text):
return "\033[31m%s\033[0m" % text
def yellow(text):
return "\033[33m%s\033[0m" % text
def blue(text):
return "\033[34m%s\033[0m" % text
# put sympy on the path
mailmap_update_path = os.path.abspath(__file__)
mailmap_update_dir = os.path.dirname(mailmap_update_path)
sympy_top = os.path.split(mailmap_update_dir)[0]
sympy_dir = os.path.join(sympy_top, 'sympy')
if os.path.isdir(sympy_dir):
sys.path.insert(0, sympy_top)
from sympy.utilities.misc import filldedent
from sympy.utilities.iterables import sift
# check git version
minimal = '1.8.4.2'
git_ver = run(['git', '--version'], stdout=PIPE, encoding='utf-8').stdout[12:]
if version_tuple(git_ver) < version_tuple(minimal):
print(yellow("Please use a git version >= %s" % minimal))
def author_name(line):
assert line.count("<") == line.count(">") == 1
assert line.endswith(">")
return line.split("<", 1)[0].strip()
def author_email(line):
assert line.count("<") == line.count(">") == 1
assert line.endswith(">")
return line.split("<", 1)[1][:-1].strip()
sysexit = 0
print(blue("checking git authors..."))
# read git authors
git_command = ['git', 'log', '--format=%aN <%aE>']
git_people = sorted(set(run(git_command, stdout=PIPE, encoding='utf-8').stdout.strip().split("\n")))
# check for ambiguous emails
dups = defaultdict(list)
near_dups = defaultdict(list)
for i in git_people:
k = i.split('<')[1]
dups[k].append(i)
near_dups[k.lower()].append((k, i))
multi = [k for k in dups if len(dups[k]) > 1]
if multi:
print()
print(red(filldedent("""
Ambiguous email address error: each address should refer to a
single author. Disambiguate the following in .mailmap.
Then re-run this script.""")))
for k in multi:
print()
for e in sorted(dups[k]):
print('\t%s' % e)
sysexit = 1
# warn for nearly ambiguous email addresses
dups = near_dups
# some may have been real dups, so disregard those
# for which all email addresses were the same
multi = [k for k in dups if len(dups[k]) > 1 and
len(set([i for i, _ in dups[k]])) > 1]
if multi:
# not fatal but make it red
print()
print(red(filldedent("""
Ambiguous email address warning: git treats the
following as distinct but .mailmap will treat them
the same. If these are not all the same person then,
when making an entry in .mailmap, be sure to include
both commit name and address (not just the address).""")))
for k in multi:
print()
for _, e in sorted(dups[k]):
print('\t%s' % e)
sysexit = 1
# warn for ambiguous names
dups = defaultdict(list)
for i in git_people:
dups[author_name(i)].append(i)
multi = [k for k in dups if len(dups[k]) > 1]
if multi:
print()
print(yellow(filldedent("""
Ambiguous name warning: if a person uses more than
one email address, entries should be added to .mailmap
to merge them into a single canonical address.
Then re-run this script.
""")))
for k in multi:
print()
for e in sorted(dups[k]):
print('\t%s' % e)
sysexit = 1
bad_names = []
bad_emails = []
for i in git_people:
name = author_name(i)
email = author_email(i)
if '@' in name:
bad_names.append(i)
elif '@' not in email:
bad_emails.append(i)
if bad_names:
print()
print(yellow(filldedent("""
The following people appear to have an email address
listed for their name. Entries should be added to
.mailmap so that names are formatted like
"Name <email address>".
""")))
for i in bad_names:
print("\t%s" % i)
sysexit = 1
# TODO: Should we check for bad emails as well? Some people have empty email
# addresses. The above check seems to catch people who get the name and email
# backwards, so let's leave this alone for now.
# if bad_emails:
# print()
# print(yellow(filldedent("""
# The following names do not appear to have valid
# emails. Entries should be added to .mailmap that
# use a proper email address. If there is no email
# address for a person, use "[email protected]".
# """)))
# for i in bad_emails:
# print("\t%s" % i)
print()
print(blue("checking .mailmap..."))
# put entries in order -- this will help the user
# to see if there are already existing entries for an author
file = codecs.open(os.path.realpath(os.path.join(
__file__, os.path.pardir, os.path.pardir, ".mailmap")),
"r", "utf-8").read()
blankline = not file or file.endswith('\n')
lines = file.splitlines()
def key(line):
# return lower case first address on line or
# raise an error if not an entry
if '#' in line:
line = line.split('#')[0]
L, R = line.count("<"), line.count(">")
assert L == R and L in (1, 2)
return line.split(">", 1)[0].split("<")[1].lower()
who = OrderedDict()
for i, line in enumerate(lines):
try:
who.setdefault(key(line), []).append(line)
except AssertionError:
who[i] = [line]
out = []
for k in who:
# put long entries before short since if they match, the
# short entries will be ignored. The ORDER MATTERS
# so don't re-order the lines for a given address.
# Other tidying up could be done but we won't do that here.
def short_entry(line):
if line.count('<') == 2:
if line.split('>', 1)[1].split('<')[0].strip():
return False
return True
if len(who[k]) == 1:
line = who[k][0]
if not line.strip():
continue # ignore blank lines
out.append(line)
else:
uniq = list(OrderedDict.fromkeys(who[k]))
short, long = sift(uniq, short_entry, binary=True)
out.extend(long)
out.extend(short)
if out != lines or not blankline:
# write lines
with codecs.open(os.path.realpath(os.path.join(
__file__, os.path.pardir, os.path.pardir, ".mailmap")),
"w", "utf-8") as fd:
fd.write('\n'.join(out))
fd.write('\n')
print()
if out != lines:
print(yellow('.mailmap lines were re-ordered.'))
else:
print(yellow('blank line added to end of .mailmap'))
sysexit = 1
sys.exit(sysexit)
|
3ce3da865cccfcd52e47fc8b1e568d5135cab2ff6e2f7dd7e1c42eabc5fa04c2 | """
SymPy is a Python library for symbolic mathematics. It aims to become a
full-featured computer algebra system (CAS) while keeping the code as simple
as possible in order to be comprehensible and easily extensible. SymPy is
written entirely in Python. It depends on mpmath, and other external libraries
may be optionally for things like plotting support.
See the webpage for more information and documentation:
https://sympy.org
"""
import sys
if sys.version_info < (3, 6):
raise ImportError("Python version 3.6 or above is required for SymPy.")
del sys
try:
import mpmath
except ImportError:
raise ImportError("SymPy now depends on mpmath as an external library. "
"See https://docs.sympy.org/latest/install.html#mpmath for more information.")
del mpmath
from sympy.release import __version__
if 'dev' in __version__:
def enable_warnings():
import warnings
warnings.filterwarnings('default', '.*', DeprecationWarning, module='sympy.*')
del warnings
enable_warnings()
del enable_warnings
def __sympy_debug():
# helper function so we don't import os globally
import os
debug_str = os.getenv('SYMPY_DEBUG', 'False')
if debug_str in ('True', 'False'):
return eval(debug_str)
else:
raise RuntimeError("unrecognized value for SYMPY_DEBUG: %s" %
debug_str)
SYMPY_DEBUG = __sympy_debug() # type: bool
from .core import (sympify, SympifyError, cacheit, Basic, Atom,
preorder_traversal, S, Expr, AtomicExpr, UnevaluatedExpr, Symbol,
Wild, Dummy, symbols, var, Number, Float, Rational, Integer,
NumberSymbol, RealNumber, igcd, ilcm, seterr, E, I, nan, oo, pi, zoo,
AlgebraicNumber, comp, mod_inverse, Pow, integer_nthroot, integer_log,
Mul, prod, Add, Mod, Rel, Eq, Ne, Lt, Le, Gt, Ge, Equality,
GreaterThan, LessThan, Unequality, StrictGreaterThan, StrictLessThan,
vectorize, Lambda, WildFunction, Derivative, diff, FunctionClass,
Function, Subs, expand, PoleError, count_ops, expand_mul, expand_log,
expand_func, expand_trig, expand_complex, expand_multinomial, nfloat,
expand_power_base, expand_power_exp, arity, PrecisionExhausted, N,
evalf, Tuple, Dict, gcd_terms, factor_terms, factor_nc, evaluate,
Catalan, EulerGamma, GoldenRatio, TribonacciConstant)
from .logic import (to_cnf, to_dnf, to_nnf, And, Or, Not, Xor, Nand, Nor,
Implies, Equivalent, ITE, POSform, SOPform, simplify_logic, bool_map,
true, false, satisfiable)
from .assumptions import (AppliedPredicate, Predicate, AssumptionsContext,
assuming, Q, ask, register_handler, remove_handler, refine)
from .polys import (Poly, PurePoly, poly_from_expr, parallel_poly_from_expr,
degree, total_degree, degree_list, LC, LM, LT, pdiv, prem, pquo,
pexquo, div, rem, quo, exquo, half_gcdex, gcdex, invert,
subresultants, resultant, discriminant, cofactors, gcd_list, gcd,
lcm_list, lcm, terms_gcd, trunc, monic, content, primitive, compose,
decompose, sturm, gff_list, gff, sqf_norm, sqf_part, sqf_list, sqf,
factor_list, factor, intervals, refine_root, count_roots, real_roots,
nroots, ground_roots, nth_power_roots_poly, cancel, reduced, groebner,
is_zero_dimensional, GroebnerBasis, poly, symmetrize, horner,
interpolate, rational_interpolate, viete, together,
BasePolynomialError, ExactQuotientFailed, PolynomialDivisionFailed,
OperationNotSupported, HeuristicGCDFailed, HomomorphismFailed,
IsomorphismFailed, ExtraneousFactors, EvaluationFailed,
RefinementFailed, CoercionFailed, NotInvertible, NotReversible,
NotAlgebraic, DomainError, PolynomialError, UnificationFailed,
GeneratorsError, GeneratorsNeeded, ComputationFailed,
UnivariatePolynomialError, MultivariatePolynomialError,
PolificationFailed, OptionError, FlagError, minpoly,
minimal_polynomial, primitive_element, field_isomorphism,
to_number_field, isolate, itermonomials, Monomial, lex, grlex,
grevlex, ilex, igrlex, igrevlex, CRootOf, rootof, RootOf,
ComplexRootOf, RootSum, roots, Domain, FiniteField, IntegerRing,
RationalField, RealField, ComplexField, PythonFiniteField,
GMPYFiniteField, PythonIntegerRing, GMPYIntegerRing, PythonRational,
GMPYRationalField, AlgebraicField, PolynomialRing, FractionField,
ExpressionDomain, FF_python, FF_gmpy, ZZ_python, ZZ_gmpy, QQ_python,
QQ_gmpy, GF, FF, ZZ, QQ, ZZ_I, QQ_I, RR, CC, EX, EXRAW,
construct_domain, swinnerton_dyer_poly, cyclotomic_poly,
symmetric_poly, random_poly, interpolating_poly, jacobi_poly,
chebyshevt_poly, chebyshevu_poly, hermite_poly, legendre_poly,
laguerre_poly, apart, apart_list, assemble_partfrac_list, Options,
ring, xring, vring, sring, field, xfield, vfield, sfield)
from .series import (Order, O, limit, Limit, gruntz, series, approximants,
residue, EmptySequence, SeqPer, SeqFormula, sequence, SeqAdd, SeqMul,
fourier_series, fps, difference_delta, limit_seq)
from .functions import (factorial, factorial2, rf, ff, binomial,
RisingFactorial, FallingFactorial, subfactorial, carmichael,
fibonacci, lucas, motzkin, tribonacci, harmonic, bernoulli, bell, euler,
catalan, genocchi, partition, sqrt, root, Min, Max, Id, real_root,
cbrt, re, im, sign, Abs, conjugate, arg, polar_lift,
periodic_argument, unbranched_argument, principal_branch, transpose,
adjoint, polarify, unpolarify, sin, cos, tan, sec, csc, cot, sinc,
asin, acos, atan, asec, acsc, acot, atan2, exp_polar, exp, ln, log,
LambertW, sinh, cosh, tanh, coth, sech, csch, asinh, acosh, atanh,
acoth, asech, acsch, floor, ceiling, frac, Piecewise, piecewise_fold,
erf, erfc, erfi, erf2, erfinv, erfcinv, erf2inv, Ei, expint, E1, li,
Li, Si, Ci, Shi, Chi, fresnels, fresnelc, gamma, lowergamma,
uppergamma, polygamma, loggamma, digamma, trigamma, multigamma,
dirichlet_eta, zeta, lerchphi, polylog, stieltjes, Eijk, LeviCivita,
KroneckerDelta, SingularityFunction, DiracDelta, Heaviside,
bspline_basis, bspline_basis_set, interpolating_spline, besselj,
bessely, besseli, besselk, hankel1, hankel2, jn, yn, jn_zeros, hn1,
hn2, airyai, airybi, airyaiprime, airybiprime, marcumq, hyper,
meijerg, appellf1, legendre, assoc_legendre, hermite, chebyshevt,
chebyshevu, chebyshevu_root, chebyshevt_root, laguerre,
assoc_laguerre, gegenbauer, jacobi, jacobi_normalized, Ynm, Ynm_c,
Znm, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, beta, mathieus,
mathieuc, mathieusprime, mathieucprime, riemann_xi, betainc, betainc_regularized)
from .ntheory import (nextprime, prevprime, prime, primepi, primerange,
randprime, Sieve, sieve, primorial, cycle_length, composite,
compositepi, isprime, divisors, proper_divisors, factorint,
multiplicity, perfect_power, pollard_pm1, pollard_rho, primefactors,
totient, trailing, divisor_count, proper_divisor_count, divisor_sigma,
factorrat, reduced_totient, primenu, primeomega,
mersenne_prime_exponent, is_perfect, is_mersenne_prime, is_abundant,
is_deficient, is_amicable, abundance, npartitions, is_primitive_root,
is_quad_residue, legendre_symbol, jacobi_symbol, n_order, sqrt_mod,
quadratic_residues, primitive_root, nthroot_mod, is_nthpow_residue,
sqrt_mod_iter, mobius, discrete_log, quadratic_congruence,
binomial_coefficients, binomial_coefficients_list,
multinomial_coefficients, continued_fraction_periodic,
continued_fraction_iterator, continued_fraction_reduce,
continued_fraction_convergents, continued_fraction, egyptian_fraction)
from .concrete import product, Product, summation, Sum
from .discrete import (fft, ifft, ntt, intt, fwht, ifwht, mobius_transform,
inverse_mobius_transform, convolution, covering_product,
intersecting_product)
from .simplify import (simplify, hypersimp, hypersimilar, logcombine,
separatevars, posify, besselsimp, kroneckersimp, signsimp, bottom_up,
nsimplify, FU, fu, sqrtdenest, cse, use, epath, EPath, hyperexpand,
collect, rcollect, radsimp, collect_const, fraction, numer, denom,
trigsimp, exptrigsimp, powsimp, powdenest, combsimp, gammasimp,
ratsimp, ratsimpmodprime)
from .sets import (Set, Interval, Union, EmptySet, FiniteSet, ProductSet,
Intersection, DisjointUnion, imageset, Complement, SymmetricDifference, ImageSet,
Range, ComplexRegion, Reals, Contains, ConditionSet, Ordinal,
OmegaPower, ord0, PowerSet, Naturals, Naturals0, UniversalSet,
Integers, Rationals)
from .solvers import (solve, solve_linear_system, solve_linear_system_LU,
solve_undetermined_coeffs, nsolve, solve_linear, checksol, det_quick,
inv_quick, check_assumptions, failing_assumptions, diophantine,
rsolve, rsolve_poly, rsolve_ratio, rsolve_hyper, checkodesol,
classify_ode, dsolve, homogeneous_order, solve_poly_system,
solve_triangulated, pde_separate, pde_separate_add, pde_separate_mul,
pdsolve, classify_pde, checkpdesol, ode_order, reduce_inequalities,
reduce_abs_inequality, reduce_abs_inequalities, solve_poly_inequality,
solve_rational_inequalities, solve_univariate_inequality, decompogen,
solveset, linsolve, linear_eq_to_matrix, nonlinsolve, substitution,
Complexes)
from .matrices import (ShapeError, NonSquareMatrixError, GramSchmidt,
casoratian, diag, eye, hessian, jordan_cell, list2numpy, matrix2numpy,
matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2,
rot_axis3, symarray, wronskian, zeros, MutableDenseMatrix,
DeferredVector, MatrixBase, Matrix, MutableMatrix,
MutableSparseMatrix, banded, ImmutableDenseMatrix,
ImmutableSparseMatrix, ImmutableMatrix, SparseMatrix, MatrixSlice,
BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity, Inverse,
MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace, Transpose,
ZeroMatrix, OneMatrix, blockcut, block_collapse, matrix_symbols,
Adjoint, hadamard_product, HadamardProduct, HadamardPower,
Determinant, det, diagonalize_vector, DiagMatrix, DiagonalMatrix,
DiagonalOf, trace, DotProduct, kronecker_product, KroneckerProduct,
PermutationMatrix, MatrixPermute, Permanent, per)
from .geometry import (Point, Point2D, Point3D, Line, Ray, Segment, Line2D,
Segment2D, Ray2D, Line3D, Segment3D, Ray3D, Plane, Ellipse, Circle,
Polygon, RegularPolygon, Triangle, rad, deg, are_similar, centroid,
convex_hull, idiff, intersection, closest_points, farthest_points,
GeometryError, Curve, Parabola)
from .utilities import (flatten, group, take, subsets, variations,
numbered_symbols, cartes, capture, dict_merge, postorder_traversal,
interactive_traversal, prefixes, postfixes, sift, topological_sort,
unflatten, has_dups, has_variety, reshape, default_sort_key, ordered,
rotations, filldedent, lambdify, source, threaded, xthreaded, public,
memoize_property, timed)
from .integrals import (integrate, Integral, line_integrate, mellin_transform,
inverse_mellin_transform, MellinTransform, InverseMellinTransform,
laplace_transform, inverse_laplace_transform, LaplaceTransform,
InverseLaplaceTransform, fourier_transform, inverse_fourier_transform,
FourierTransform, InverseFourierTransform, sine_transform,
inverse_sine_transform, SineTransform, InverseSineTransform,
cosine_transform, inverse_cosine_transform, CosineTransform,
InverseCosineTransform, hankel_transform, inverse_hankel_transform,
HankelTransform, InverseHankelTransform, singularityintegrate)
from .tensor import (IndexedBase, Idx, Indexed, get_contraction_structure,
get_indices, shape, MutableDenseNDimArray, ImmutableDenseNDimArray,
MutableSparseNDimArray, ImmutableSparseNDimArray, NDimArray,
tensorproduct, tensorcontraction, tensordiagonal, derive_by_array,
permutedims, Array, DenseNDimArray, SparseNDimArray)
from .parsing import parse_expr
from .calculus import (euler_equations, singularities, is_increasing,
is_strictly_increasing, is_decreasing, is_strictly_decreasing,
is_monotonic, finite_diff_weights, apply_finite_diff, as_finite_diff,
differentiate_finite, periodicity, not_empty_in, AccumBounds,
is_convex, stationary_points, minimum, maximum)
from .algebras import Quaternion
from .printing import (pager_print, pretty, pretty_print, pprint,
pprint_use_unicode, pprint_try_use_unicode, latex, print_latex,
multiline_latex, mathml, print_mathml, python, print_python, pycode,
ccode, print_ccode, glsl_code, print_glsl, cxxcode, fcode,
print_fcode, rcode, print_rcode, jscode, print_jscode, julia_code,
mathematica_code, octave_code, rust_code, print_gtk, preview, srepr,
print_tree, StrPrinter, sstr, sstrrepr, TableForm, dotprint,
maple_code, print_maple_code)
from .testing import test, doctest
# This module causes conflicts with other modules:
# from .stats import *
# Adds about .04-.05 seconds of import time
# from combinatorics import *
# This module is slow to import:
#from physics import units
from .plotting import plot, textplot, plot_backends, plot_implicit, plot_parametric
from .interactive import init_session, init_printing
evalf._create_evalf_table()
__all__ = [
# sympy.core
'sympify', 'SympifyError', 'cacheit', 'Basic', 'Atom',
'preorder_traversal', 'S', 'Expr', 'AtomicExpr', 'UnevaluatedExpr',
'Symbol', 'Wild', 'Dummy', 'symbols', 'var', 'Number', 'Float',
'Rational', 'Integer', 'NumberSymbol', 'RealNumber', 'igcd', 'ilcm',
'seterr', 'E', 'I', 'nan', 'oo', 'pi', 'zoo', 'AlgebraicNumber', 'comp',
'mod_inverse', 'Pow', 'integer_nthroot', 'integer_log', 'Mul', 'prod',
'Add', 'Mod', 'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge', 'Equality',
'GreaterThan', 'LessThan', 'Unequality', 'StrictGreaterThan',
'StrictLessThan', 'vectorize', 'Lambda', 'WildFunction', 'Derivative',
'diff', 'FunctionClass', 'Function', 'Subs', 'expand', 'PoleError',
'count_ops', 'expand_mul', 'expand_log', 'expand_func', 'expand_trig',
'expand_complex', 'expand_multinomial', 'nfloat', 'expand_power_base',
'expand_power_exp', 'arity', 'PrecisionExhausted', 'N', 'evalf', 'Tuple',
'Dict', 'gcd_terms', 'factor_terms', 'factor_nc', 'evaluate', 'Catalan',
'EulerGamma', 'GoldenRatio', 'TribonacciConstant',
# sympy.logic
'to_cnf', 'to_dnf', 'to_nnf', 'And', 'Or', 'Not', 'Xor', 'Nand', 'Nor',
'Implies', 'Equivalent', 'ITE', 'POSform', 'SOPform', 'simplify_logic',
'bool_map', 'true', 'false', 'satisfiable',
# sympy.assumptions
'AppliedPredicate', 'Predicate', 'AssumptionsContext', 'assuming', 'Q',
'ask', 'register_handler', 'remove_handler', 'refine',
# sympy.polys
'Poly', 'PurePoly', 'poly_from_expr', 'parallel_poly_from_expr', 'degree',
'total_degree', 'degree_list', 'LC', 'LM', 'LT', 'pdiv', 'prem', 'pquo',
'pexquo', 'div', 'rem', 'quo', 'exquo', 'half_gcdex', 'gcdex', 'invert',
'subresultants', 'resultant', 'discriminant', 'cofactors', 'gcd_list',
'gcd', 'lcm_list', 'lcm', 'terms_gcd', 'trunc', 'monic', 'content',
'primitive', 'compose', 'decompose', 'sturm', 'gff_list', 'gff',
'sqf_norm', 'sqf_part', 'sqf_list', 'sqf', 'factor_list', 'factor',
'intervals', 'refine_root', 'count_roots', 'real_roots', 'nroots',
'ground_roots', 'nth_power_roots_poly', 'cancel', 'reduced', 'groebner',
'is_zero_dimensional', 'GroebnerBasis', 'poly', 'symmetrize', 'horner',
'interpolate', 'rational_interpolate', 'viete', 'together',
'BasePolynomialError', 'ExactQuotientFailed', 'PolynomialDivisionFailed',
'OperationNotSupported', 'HeuristicGCDFailed', 'HomomorphismFailed',
'IsomorphismFailed', 'ExtraneousFactors', 'EvaluationFailed',
'RefinementFailed', 'CoercionFailed', 'NotInvertible', 'NotReversible',
'NotAlgebraic', 'DomainError', 'PolynomialError', 'UnificationFailed',
'GeneratorsError', 'GeneratorsNeeded', 'ComputationFailed',
'UnivariatePolynomialError', 'MultivariatePolynomialError',
'PolificationFailed', 'OptionError', 'FlagError', 'minpoly',
'minimal_polynomial', 'primitive_element', 'field_isomorphism',
'to_number_field', 'isolate', 'itermonomials', 'Monomial', 'lex', 'grlex',
'grevlex', 'ilex', 'igrlex', 'igrevlex', 'CRootOf', 'rootof', 'RootOf',
'ComplexRootOf', 'RootSum', 'roots', 'Domain', 'FiniteField',
'IntegerRing', 'RationalField', 'RealField', 'ComplexField',
'PythonFiniteField', 'GMPYFiniteField', 'PythonIntegerRing',
'GMPYIntegerRing', 'PythonRational', 'GMPYRationalField',
'AlgebraicField', 'PolynomialRing', 'FractionField', 'ExpressionDomain',
'FF_python', 'FF_gmpy', 'ZZ_python', 'ZZ_gmpy', 'QQ_python', 'QQ_gmpy',
'GF', 'FF', 'ZZ', 'QQ', 'ZZ_I', 'QQ_I', 'RR', 'CC', 'EX', 'EXRAW',
'construct_domain', 'swinnerton_dyer_poly', 'cyclotomic_poly',
'symmetric_poly', 'random_poly', 'interpolating_poly', 'jacobi_poly',
'chebyshevt_poly', 'chebyshevu_poly', 'hermite_poly', 'legendre_poly',
'laguerre_poly', 'apart', 'apart_list', 'assemble_partfrac_list',
'Options', 'ring', 'xring', 'vring', 'sring', 'field', 'xfield', 'vfield',
'sfield',
# sympy.series
'Order', 'O', 'limit', 'Limit', 'gruntz', 'series', 'approximants',
'residue', 'EmptySequence', 'SeqPer', 'SeqFormula', 'sequence', 'SeqAdd',
'SeqMul', 'fourier_series', 'fps', 'difference_delta', 'limit_seq',
# sympy.functions
'factorial', 'factorial2', 'rf', 'ff', 'binomial', 'RisingFactorial',
'FallingFactorial', 'subfactorial', 'carmichael', 'fibonacci', 'lucas',
'motzkin', 'tribonacci', 'harmonic', 'bernoulli', 'bell', 'euler', 'catalan',
'genocchi', 'partition', 'sqrt', 'root', 'Min', 'Max', 'Id', 'real_root',
'cbrt', 're', 'im', 'sign', 'Abs', 'conjugate', 'arg', 'polar_lift',
'periodic_argument', 'unbranched_argument', 'principal_branch',
'transpose', 'adjoint', 'polarify', 'unpolarify', 'sin', 'cos', 'tan',
'sec', 'csc', 'cot', 'sinc', 'asin', 'acos', 'atan', 'asec', 'acsc',
'acot', 'atan2', 'exp_polar', 'exp', 'ln', 'log', 'LambertW', 'sinh',
'cosh', 'tanh', 'coth', 'sech', 'csch', 'asinh', 'acosh', 'atanh',
'acoth', 'asech', 'acsch', 'floor', 'ceiling', 'frac', 'Piecewise',
'piecewise_fold', 'erf', 'erfc', 'erfi', 'erf2', 'erfinv', 'erfcinv',
'erf2inv', 'Ei', 'expint', 'E1', 'li', 'Li', 'Si', 'Ci', 'Shi', 'Chi',
'fresnels', 'fresnelc', 'gamma', 'lowergamma', 'uppergamma', 'polygamma',
'loggamma', 'digamma', 'trigamma', 'multigamma', 'dirichlet_eta', 'zeta',
'lerchphi', 'polylog', 'stieltjes', 'Eijk', 'LeviCivita',
'KroneckerDelta', 'SingularityFunction', 'DiracDelta', 'Heaviside',
'bspline_basis', 'bspline_basis_set', 'interpolating_spline', 'besselj',
'bessely', 'besseli', 'besselk', 'hankel1', 'hankel2', 'jn', 'yn',
'jn_zeros', 'hn1', 'hn2', 'airyai', 'airybi', 'airyaiprime',
'airybiprime', 'marcumq', 'hyper', 'meijerg', 'appellf1', 'legendre',
'assoc_legendre', 'hermite', 'chebyshevt', 'chebyshevu',
'chebyshevu_root', 'chebyshevt_root', 'laguerre', 'assoc_laguerre',
'gegenbauer', 'jacobi', 'jacobi_normalized', 'Ynm', 'Ynm_c', 'Znm',
'elliptic_k', 'elliptic_f', 'elliptic_e', 'elliptic_pi', 'beta',
'mathieus', 'mathieuc', 'mathieusprime', 'mathieucprime', 'riemann_xi','betainc',
'betainc_regularized',
# sympy.ntheory
'nextprime', 'prevprime', 'prime', 'primepi', 'primerange', 'randprime',
'Sieve', 'sieve', 'primorial', 'cycle_length', 'composite', 'compositepi',
'isprime', 'divisors', 'proper_divisors', 'factorint', 'multiplicity',
'perfect_power', 'pollard_pm1', 'pollard_rho', 'primefactors', 'totient',
'trailing', 'divisor_count', 'proper_divisor_count', 'divisor_sigma',
'factorrat', 'reduced_totient', 'primenu', 'primeomega',
'mersenne_prime_exponent', 'is_perfect', 'is_mersenne_prime',
'is_abundant', 'is_deficient', 'is_amicable', 'abundance', 'npartitions',
'is_primitive_root', 'is_quad_residue', 'legendre_symbol',
'jacobi_symbol', 'n_order', 'sqrt_mod', 'quadratic_residues',
'primitive_root', 'nthroot_mod', 'is_nthpow_residue', 'sqrt_mod_iter',
'mobius', 'discrete_log', 'quadratic_congruence', 'binomial_coefficients',
'binomial_coefficients_list', 'multinomial_coefficients',
'continued_fraction_periodic', 'continued_fraction_iterator',
'continued_fraction_reduce', 'continued_fraction_convergents',
'continued_fraction', 'egyptian_fraction',
# sympy.concrete
'product', 'Product', 'summation', 'Sum',
# sympy.discrete
'fft', 'ifft', 'ntt', 'intt', 'fwht', 'ifwht', 'mobius_transform',
'inverse_mobius_transform', 'convolution', 'covering_product',
'intersecting_product',
# sympy.simplify
'simplify', 'hypersimp', 'hypersimilar', 'logcombine', 'separatevars',
'posify', 'besselsimp', 'kroneckersimp', 'signsimp', 'bottom_up',
'nsimplify', 'FU', 'fu', 'sqrtdenest', 'cse', 'use', 'epath', 'EPath',
'hyperexpand', 'collect', 'rcollect', 'radsimp', 'collect_const',
'fraction', 'numer', 'denom', 'trigsimp', 'exptrigsimp', 'powsimp',
'powdenest', 'combsimp', 'gammasimp', 'ratsimp', 'ratsimpmodprime',
# sympy.sets
'Set', 'Interval', 'Union', 'EmptySet', 'FiniteSet', 'ProductSet',
'Intersection', 'imageset', 'DisjointUnion', 'Complement', 'SymmetricDifference',
'ImageSet', 'Range', 'ComplexRegion', 'Reals', 'Contains', 'ConditionSet',
'Ordinal', 'OmegaPower', 'ord0', 'PowerSet', 'Reals', 'Naturals',
'Naturals0', 'UniversalSet', 'Integers', 'Rationals',
# sympy.solvers
'solve', 'solve_linear_system', 'solve_linear_system_LU',
'solve_undetermined_coeffs', 'nsolve', 'solve_linear', 'checksol',
'det_quick', 'inv_quick', 'check_assumptions', 'failing_assumptions',
'diophantine', 'rsolve', 'rsolve_poly', 'rsolve_ratio', 'rsolve_hyper',
'checkodesol', 'classify_ode', 'dsolve', 'homogeneous_order',
'solve_poly_system', 'solve_triangulated', 'pde_separate',
'pde_separate_add', 'pde_separate_mul', 'pdsolve', 'classify_pde',
'checkpdesol', 'ode_order', 'reduce_inequalities',
'reduce_abs_inequality', 'reduce_abs_inequalities',
'solve_poly_inequality', 'solve_rational_inequalities',
'solve_univariate_inequality', 'decompogen', 'solveset', 'linsolve',
'linear_eq_to_matrix', 'nonlinsolve', 'substitution', 'Complexes',
# sympy.matrices
'ShapeError', 'NonSquareMatrixError', 'GramSchmidt', 'casoratian', 'diag',
'eye', 'hessian', 'jordan_cell', 'list2numpy', 'matrix2numpy',
'matrix_multiply_elementwise', 'ones', 'randMatrix', 'rot_axis1',
'rot_axis2', 'rot_axis3', 'symarray', 'wronskian', 'zeros',
'MutableDenseMatrix', 'DeferredVector', 'MatrixBase', 'Matrix',
'MutableMatrix', 'MutableSparseMatrix', 'banded', 'ImmutableDenseMatrix',
'ImmutableSparseMatrix', 'ImmutableMatrix', 'SparseMatrix', 'MatrixSlice',
'BlockDiagMatrix', 'BlockMatrix', 'FunctionMatrix', 'Identity', 'Inverse',
'MatAdd', 'MatMul', 'MatPow', 'MatrixExpr', 'MatrixSymbol', 'Trace',
'Transpose', 'ZeroMatrix', 'OneMatrix', 'blockcut', 'block_collapse',
'matrix_symbols', 'Adjoint', 'hadamard_product', 'HadamardProduct',
'HadamardPower', 'Determinant', 'det', 'diagonalize_vector', 'DiagMatrix',
'DiagonalMatrix', 'DiagonalOf', 'trace', 'DotProduct',
'kronecker_product', 'KroneckerProduct', 'PermutationMatrix',
'MatrixPermute', 'Permanent', 'per',
# sympy.geometry
'Point', 'Point2D', 'Point3D', 'Line', 'Ray', 'Segment', 'Line2D',
'Segment2D', 'Ray2D', 'Line3D', 'Segment3D', 'Ray3D', 'Plane', 'Ellipse',
'Circle', 'Polygon', 'RegularPolygon', 'Triangle', 'rad', 'deg',
'are_similar', 'centroid', 'convex_hull', 'idiff', 'intersection',
'closest_points', 'farthest_points', 'GeometryError', 'Curve', 'Parabola',
# sympy.utilities
'flatten', 'group', 'take', 'subsets', 'variations', 'numbered_symbols',
'cartes', 'capture', 'dict_merge', 'postorder_traversal',
'interactive_traversal', 'prefixes', 'postfixes', 'sift',
'topological_sort', 'unflatten', 'has_dups', 'has_variety', 'reshape',
'default_sort_key', 'ordered', 'rotations', 'filldedent', 'lambdify',
'source', 'threaded', 'xthreaded', 'public', 'memoize_property', 'test',
'doctest', 'timed',
# sympy.integrals
'integrate', 'Integral', 'line_integrate', 'mellin_transform',
'inverse_mellin_transform', 'MellinTransform', 'InverseMellinTransform',
'laplace_transform', 'inverse_laplace_transform', 'LaplaceTransform',
'InverseLaplaceTransform', 'fourier_transform',
'inverse_fourier_transform', 'FourierTransform',
'InverseFourierTransform', 'sine_transform', 'inverse_sine_transform',
'SineTransform', 'InverseSineTransform', 'cosine_transform',
'inverse_cosine_transform', 'CosineTransform', 'InverseCosineTransform',
'hankel_transform', 'inverse_hankel_transform', 'HankelTransform',
'InverseHankelTransform', 'singularityintegrate',
# sympy.tensor
'IndexedBase', 'Idx', 'Indexed', 'get_contraction_structure',
'get_indices', 'shape', 'MutableDenseNDimArray', 'ImmutableDenseNDimArray',
'MutableSparseNDimArray', 'ImmutableSparseNDimArray', 'NDimArray',
'tensorproduct', 'tensorcontraction', 'tensordiagonal', 'derive_by_array',
'permutedims', 'Array', 'DenseNDimArray', 'SparseNDimArray',
# sympy.parsing
'parse_expr',
# sympy.calculus
'euler_equations', 'singularities', 'is_increasing',
'is_strictly_increasing', 'is_decreasing', 'is_strictly_decreasing',
'is_monotonic', 'finite_diff_weights', 'apply_finite_diff',
'as_finite_diff', 'differentiate_finite', 'periodicity', 'not_empty_in',
'AccumBounds', 'is_convex', 'stationary_points', 'minimum', 'maximum',
# sympy.algebras
'Quaternion',
# sympy.printing
'pager_print', 'pretty', 'pretty_print', 'pprint', 'pprint_use_unicode',
'pprint_try_use_unicode', 'latex', 'print_latex', 'multiline_latex',
'mathml', 'print_mathml', 'python', 'print_python', 'pycode', 'ccode',
'print_ccode', 'glsl_code', 'print_glsl', 'cxxcode', 'fcode',
'print_fcode', 'rcode', 'print_rcode', 'jscode', 'print_jscode',
'julia_code', 'mathematica_code', 'octave_code', 'rust_code', 'print_gtk',
'preview', 'srepr', 'print_tree', 'StrPrinter', 'sstr', 'sstrrepr',
'TableForm', 'dotprint', 'maple_code', 'print_maple_code',
# sympy.plotting
'plot', 'textplot', 'plot_backends', 'plot_implicit', 'plot_parametric',
# sympy.interactive
'init_session', 'init_printing',
# sympy.testing
'test', 'doctest',
]
#===========================================================================#
# #
# XXX: The names below were importable before sympy 1.6 using #
# #
# from sympy import * #
# #
# This happened implicitly because there was no __all__ defined in this #
# __init__.py file. Not every package is imported. The list matches what #
# would have been imported before. It is possible that these packages will #
# not be imported by a star-import from sympy in future. #
# #
#===========================================================================#
__all__.extend((
'algebras',
'assumptions',
'calculus',
'concrete',
'discrete',
'external',
'functions',
'geometry',
'interactive',
'multipledispatch',
'ntheory',
'parsing',
'plotting',
'polys',
'printing',
'release',
'strategies',
'tensor',
'utilities',
))
|
d577a35adf785a149dbfde37eefc88e8c11094bcbfec5d4a1cb8a75c4d302a6f | import sys
sys._running_pytest = True # type: ignore
from sympy.external.importtools import version_tuple
import pytest
from sympy.core.cache import clear_cache
import re
sp = re.compile(r'([0-9]+)/([1-9][0-9]*)')
def process_split(config, items):
split = config.getoption("--split")
if not split:
return
m = sp.match(split)
if not m:
raise ValueError("split must be a string of the form a/b "
"where a and b are ints.")
i, t = map(int, m.groups())
start, end = (i-1)*len(items)//t, i*len(items)//t
if i < t:
# remove elements from end of list first
del items[end:]
del items[:start]
def pytest_report_header(config):
from sympy.utilities.misc import ARCH
s = "architecture: %s\n" % ARCH
from sympy.core.cache import USE_CACHE
s += "cache: %s\n" % USE_CACHE
from sympy.external.gmpy import GROUND_TYPES, HAS_GMPY
version = ''
if GROUND_TYPES =='gmpy':
if HAS_GMPY == 1:
import gmpy
elif HAS_GMPY == 2:
import gmpy2 as gmpy
version = gmpy.version()
s += "ground types: %s %s\n" % (GROUND_TYPES, version)
return s
def pytest_terminal_summary(terminalreporter):
if (terminalreporter.stats.get('error', None) or
terminalreporter.stats.get('failed', None)):
terminalreporter.write_sep(
' ', 'DO *NOT* COMMIT!', red=True, bold=True)
def pytest_addoption(parser):
parser.addoption("--split", action="store", default="",
help="split tests")
def pytest_collection_modifyitems(config, items):
""" pytest hook. """
# handle splits
process_split(config, items)
@pytest.fixture(autouse=True, scope='module')
def file_clear_cache():
clear_cache()
@pytest.fixture(autouse=True, scope='module')
def check_disabled(request):
if getattr(request.module, 'disabled', False):
pytest.skip("test requirements not met.")
elif getattr(request.module, 'ipython', False):
# need to check version and options for ipython tests
if (version_tuple(pytest.__version__) < version_tuple('2.6.3') and
pytest.config.getvalue('-s') != 'no'):
pytest.skip("run py.test with -s or upgrade to newer version.")
|
6973c034a8d0d4de705591614fd1fe49bd64637650b39155e346c9f83f91a9f3 | __version__ = "1.10.dev"
|
18a32de1284052e5b27d52384ceeba803327e0951fa63265b91255ccd3d8962b | #
# SymPy documentation build configuration file, created by
# sphinx-quickstart.py on Sat Mar 22 19:34:32 2008.
#
# This file is execfile()d with the current directory set to its containing dir.
#
# The contents of this file are pickled, so don't put values in the namespace
# that aren't pickleable (module imports are okay, they're removed automatically).
#
# All configuration values have a default value; values that are commented out
# serve to show the default value.
import sys
import inspect
import os
import subprocess
from datetime import datetime
import sympy
# If your extensions are in another directory, add it here.
sys.path = ['ext'] + sys.path
# General configuration
# ---------------------
# Add any Sphinx extension module names here, as strings. They can be extensions
# coming with Sphinx (named 'sphinx.addons.*') or your custom ones.
extensions = ['sphinx.ext.autodoc', 'sphinx.ext.linkcode', 'sphinx_math_dollar',
'sphinx.ext.mathjax', 'numpydoc', 'sympylive', 'sphinx_reredirects',
'sphinx.ext.graphviz', 'matplotlib.sphinxext.plot_directive']
redirects = {
"install.rst": "getting_started/install.html",
"documentation-style-guide.rst": "contributing/documentation-style-guide.html",
}
# Use this to use pngmath instead
#extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.pngmath', ]
# Enable warnings for all bad cross references. These are turned into errors
# with the -W flag in the Makefile.
nitpicky = True
nitpick_ignore = [
('py:class', 'sympy.logic.boolalg.Boolean')
]
# To stop docstrings inheritance.
autodoc_inherit_docstrings = False
# MathJax file, which is free to use. See https://www.mathjax.org/#gettingstarted
# As explained in the link using latest.js will get the latest version even
# though it says 2.7.5.
mathjax_path = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS_HTML-full'
# See https://www.sympy.org/sphinx-math-dollar/
mathjax_config = {
'tex2jax': {
'inlineMath': [ ["\\(","\\)"] ],
'displayMath': [["\\[","\\]"] ],
},
}
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# The suffix of source filenames.
source_suffix = '.rst'
# The master toctree document.
master_doc = 'index'
suppress_warnings = ['ref.citation', 'ref.footnote']
# General substitutions.
project = 'SymPy'
copyright = '{} SymPy Development Team'.format(datetime.utcnow().year)
# The default replacements for |version| and |release|, also used in various
# other places throughout the built documents.
#
# The short X.Y version.
version = sympy.__version__
# The full version, including alpha/beta/rc tags.
release = version
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:
#today = ''
# Else, today_fmt is used as the format for a strftime call.
today_fmt = '%B %d, %Y'
# List of documents that shouldn't be included in the build.
#unused_docs = []
# If true, '()' will be appended to :func: etc. cross-reference text.
#add_function_parentheses = True
# If true, the current module name will be prepended to all description
# unit titles (such as .. function::).
#add_module_names = True
# If true, sectionauthor and moduleauthor directives will be shown in the
# output. They are ignored by default.
#show_authors = False
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'
# Don't show the source code hyperlinks when using matplotlib plot directive.
plot_html_show_source_link = False
# Options for HTML output
# -----------------------
# The style sheet to use for HTML and HTML Help pages. A file of that name
# must exist either in Sphinx' static/ path, or in one of the custom paths
# given in html_static_path.
html_style = 'default.css'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
# using the given strftime format.
html_last_updated_fmt = '%b %d, %Y'
# was classic
html_theme = "classic"
html_logo = '_static/sympylogo.png'
html_favicon = '../_build/logo/sympy-notailtext-favicon.ico'
# See http://www.sphinx-doc.org/en/master/theming.html#builtin-themes
# If true, SmartyPants will be used to convert quotes and dashes to
# typographically correct entities.
#html_use_smartypants = True
# Content template for the index page.
#html_index = ''
# Custom sidebar templates, maps document names to template names.
#html_sidebars = {}
# Additional templates that should be rendered to pages, maps page names to
# template names.
#html_additional_pages = {}
# If false, no module index is generated.
#html_use_modindex = True
html_domain_indices = ['py-modindex']
# If true, the reST sources are included in the HTML build as _sources/<name>.
#html_copy_source = True
# Output file base name for HTML help builder.
htmlhelp_basename = 'SymPydoc'
# Options for LaTeX output
# ------------------------
# The paper size ('letter' or 'a4').
#latex_paper_size = 'letter'
# The font size ('10pt', '11pt' or '12pt').
#latex_font_size = '10pt'
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title, author, document class [howto/manual], toctree_only).
# toctree_only is set to True so that the start file document itself is not included in the
# output, only the documents referenced by it via TOC trees. The extra stuff in the master
# document is intended to show up in the HTML, but doesn't really belong in the LaTeX output.
latex_documents = [('index', 'sympy-%s.tex' % release, 'SymPy Documentation',
'SymPy Development Team', 'manual', True)]
# Additional stuff for the LaTeX preamble.
# Tweaked to work with XeTeX.
latex_elements = {
'babel': '',
'fontenc': r'''
% Define version of \LaTeX that is usable in math mode
\let\OldLaTeX\LaTeX
\renewcommand{\LaTeX}{\text{\OldLaTeX}}
\usepackage{bm}
\usepackage{amssymb}
\usepackage{fontspec}
\usepackage[english]{babel}
\defaultfontfeatures{Mapping=tex-text}
\setmainfont{DejaVu Serif}
\setsansfont{DejaVu Sans}
\setmonofont{DejaVu Sans Mono}
''',
'fontpkg': '',
'inputenc': '',
'utf8extra': '',
'preamble': r'''
'''
}
# SymPy logo on title page
html_logo = '_static/sympylogo.png'
latex_logo = '_static/sympylogo_big.png'
# Documents to append as an appendix to all manuals.
#latex_appendices = []
# Show page numbers next to internal references
latex_show_pagerefs = True
# We use False otherwise the module index gets generated twice.
latex_use_modindex = False
default_role = 'math'
pngmath_divpng_args = ['-gamma 1.5', '-D 110']
# Note, this is ignored by the mathjax extension
# Any \newcommand should be defined in the file
pngmath_latex_preamble = '\\usepackage{amsmath}\n' \
'\\usepackage{bm}\n' \
'\\usepackage{amsfonts}\n' \
'\\usepackage{amssymb}\n' \
'\\setlength{\\parindent}{0pt}\n'
texinfo_documents = [
(master_doc, 'sympy', 'SymPy Documentation', 'SymPy Development Team',
'SymPy', 'Computer algebra system (CAS) in Python', 'Programming', 1),
]
# Use svg for graphviz
graphviz_output_format = 'svg'
# Requried for linkcode extension.
# Get commit hash from the external file.
commit_hash_filepath = '../commit_hash.txt'
commit_hash = None
if os.path.isfile(commit_hash_filepath):
with open(commit_hash_filepath) as f:
commit_hash = f.readline()
# Get commit hash from the external file.
if not commit_hash:
try:
commit_hash = subprocess.check_output(['git', 'rev-parse', 'HEAD'])
commit_hash = commit_hash.decode('ascii')
commit_hash = commit_hash.rstrip()
except:
import warnings
warnings.warn(
"Failed to get the git commit hash as the command " \
"'git rev-parse HEAD' is not working. The commit hash will be " \
"assumed as the SymPy master, but the lines may be misleading " \
"or nonexistent as it is not the correct branch the doc is " \
"built with. Check your installation of 'git' if you want to " \
"resolve this warning.")
commit_hash = 'master'
fork = 'sympy'
blobpath = \
"https://github.com/{}/sympy/blob/{}/sympy/".format(fork, commit_hash)
def linkcode_resolve(domain, info):
"""Determine the URL corresponding to Python object."""
if domain != 'py':
return
modname = info['module']
fullname = info['fullname']
submod = sys.modules.get(modname)
if submod is None:
return
obj = submod
for part in fullname.split('.'):
try:
obj = getattr(obj, part)
except Exception:
return
# strip decorators, which would resolve to the source of the decorator
# possibly an upstream bug in getsourcefile, bpo-1764286
try:
unwrap = inspect.unwrap
except AttributeError:
pass
else:
obj = unwrap(obj)
try:
fn = inspect.getsourcefile(obj)
except Exception:
fn = None
if not fn:
return
try:
source, lineno = inspect.getsourcelines(obj)
except Exception:
lineno = None
if lineno:
linespec = "#L%d-L%d" % (lineno, lineno + len(source) - 1)
else:
linespec = ""
fn = os.path.relpath(fn, start=os.path.dirname(sympy.__file__))
return blobpath + fn + linespec
|
0b3d5fb85ee3bd9eb6ce00f8a2998c30e9c093ad8d113e593a0a11b65fa5c8df | """
Continuous Random Variables - Prebuilt variables
Contains
========
Arcsin
Benini
Beta
BetaNoncentral
BetaPrime
BoundedPareto
Cauchy
Chi
ChiNoncentral
ChiSquared
Dagum
Erlang
ExGaussian
Exponential
ExponentialPower
FDistribution
FisherZ
Frechet
Gamma
GammaInverse
Gumbel
Gompertz
Kumaraswamy
Laplace
Levy
LogCauchy
Logistic
LogLogistic
LogitNormal
LogNormal
Lomax
Maxwell
Moyal
Nakagami
Normal
Pareto
PowerFunction
QuadraticU
RaisedCosine
Rayleigh
Reciprocal
ShiftedGompertz
StudentT
Trapezoidal
Triangular
Uniform
UniformSum
VonMises
Wald
Weibull
WignerSemicircle
"""
from sympy import beta as beta_fn
from sympy import cos, sin, tan, atan, exp, besseli, besselj, besselk
from sympy import (log, sqrt, pi, S, Dummy, Interval, sympify, gamma, sign,
Piecewise, And, Eq, binomial, factorial, Sum, floor, Abs,
Lambda, Basic, lowergamma, erf, erfc, erfi, erfinv, I, asin,
hyper, uppergamma, sinh, Ne, expint, Rational, integrate)
from sympy.matrices import MatrixBase
from sympy.stats.crv import SingleContinuousPSpace, SingleContinuousDistribution
from sympy.stats.rv import _value_check, is_random
oo = S.Infinity
__all__ = ['ContinuousRV',
'Arcsin',
'Benini',
'Beta',
'BetaNoncentral',
'BetaPrime',
'BoundedPareto',
'Cauchy',
'Chi',
'ChiNoncentral',
'ChiSquared',
'Dagum',
'Erlang',
'ExGaussian',
'Exponential',
'ExponentialPower',
'FDistribution',
'FisherZ',
'Frechet',
'Gamma',
'GammaInverse',
'Gompertz',
'Gumbel',
'Kumaraswamy',
'Laplace',
'Levy',
'LogCauchy',
'Logistic',
'LogLogistic',
'LogitNormal',
'LogNormal',
'Lomax',
'Maxwell',
'Moyal',
'Nakagami',
'Normal',
'GaussianInverse',
'Pareto',
'PowerFunction',
'QuadraticU',
'RaisedCosine',
'Rayleigh',
'Reciprocal',
'StudentT',
'ShiftedGompertz',
'Trapezoidal',
'Triangular',
'Uniform',
'UniformSum',
'VonMises',
'Wald',
'Weibull',
'WignerSemicircle',
]
@is_random.register(MatrixBase)
def _(x):
return any(is_random(i) for i in x)
def rv(symbol, cls, args, **kwargs):
args = list(map(sympify, args))
dist = cls(*args)
if kwargs.pop('check', True):
dist.check(*args)
pspace = SingleContinuousPSpace(symbol, dist)
if any(is_random(arg) for arg in args):
from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution
pspace = CompoundPSpace(symbol, CompoundDistribution(dist))
return pspace.value
class ContinuousDistributionHandmade(SingleContinuousDistribution):
_argnames = ('pdf',)
def __new__(cls, pdf, set=Interval(-oo, oo)):
return Basic.__new__(cls, pdf, set)
@property
def set(self):
return self.args[1]
@staticmethod
def check(pdf, set):
x = Dummy('x')
val = integrate(pdf(x), (x, set))
_value_check(Eq(val, 1) != S.false, "The pdf on the given set is incorrect.")
def ContinuousRV(symbol, density, set=Interval(-oo, oo), **kwargs):
"""
Create a Continuous Random Variable given the following:
Parameters
==========
symbol : Symbol
Represents name of the random variable.
density : Expression containing symbol
Represents probability density function.
set : set/Interval
Represents the region where the pdf is valid, by default is real line.
check : bool
If True, it will check whether the given density
integrates to 1 over the given set. If False, it
will not perform this check. Default is False.
Returns
=======
RandomSymbol
Many common continuous random variable types are already implemented.
This function should be necessary only very rarely.
Examples
========
>>> from sympy import Symbol, sqrt, exp, pi
>>> from sympy.stats import ContinuousRV, P, E
>>> x = Symbol("x")
>>> pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution
>>> X = ContinuousRV(x, pdf)
>>> E(X)
0
>>> P(X>0)
1/2
"""
pdf = Piecewise((density, set.as_relational(symbol)), (0, True))
pdf = Lambda(symbol, pdf)
# have a default of False while `rv` should have a default of True
kwargs['check'] = kwargs.pop('check', False)
return rv(symbol.name, ContinuousDistributionHandmade, (pdf, set), **kwargs)
########################################
# Continuous Probability Distributions #
########################################
#-------------------------------------------------------------------------------
# Arcsin distribution ----------------------------------------------------------
class ArcsinDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
@property
def set(self):
return Interval(self.a, self.b)
def pdf(self, x):
a, b = self.a, self.b
return 1/(pi*sqrt((x - a)*(b - x)))
def _cdf(self, x):
a, b = self.a, self.b
return Piecewise(
(S.Zero, x < a),
(2*asin(sqrt((x - a)/(b - a)))/pi, x <= b),
(S.One, True))
def Arcsin(name, a=0, b=1):
r"""
Create a Continuous Random Variable with an arcsin distribution.
The density of the arcsin distribution is given by
.. math::
f(x) := \frac{1}{\pi\sqrt{(x-a)(b-x)}}
with :math:`x \in (a,b)`. It must hold that :math:`-\infty < a < b < \infty`.
Parameters
==========
a : Real number, the left interval boundary
b : Real number, the right interval boundary
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Arcsin, density, cdf
>>> from sympy import Symbol
>>> a = Symbol("a", real=True)
>>> b = Symbol("b", real=True)
>>> z = Symbol("z")
>>> X = Arcsin("x", a, b)
>>> density(X)(z)
1/(pi*sqrt((-a + z)*(b - z)))
>>> cdf(X)(z)
Piecewise((0, a > z),
(2*asin(sqrt((-a + z)/(-a + b)))/pi, b >= z),
(1, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Arcsine_distribution
"""
return rv(name, ArcsinDistribution, (a, b))
#-------------------------------------------------------------------------------
# Benini distribution ----------------------------------------------------------
class BeniniDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta', 'sigma')
@staticmethod
def check(alpha, beta, sigma):
_value_check(alpha > 0, "Shape parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
_value_check(sigma > 0, "Scale parameter Sigma must be positive.")
@property
def set(self):
return Interval(self.sigma, oo)
def pdf(self, x):
alpha, beta, sigma = self.alpha, self.beta, self.sigma
return (exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2)
*(alpha/x + 2*beta*log(x/sigma)/x))
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function of the '
'Benini distribution does not exist.')
def Benini(name, alpha, beta, sigma):
r"""
Create a Continuous Random Variable with a Benini distribution.
The density of the Benini distribution is given by
.. math::
f(x) := e^{-\alpha\log{\frac{x}{\sigma}}
-\beta\log^2\left[{\frac{x}{\sigma}}\right]}
\left(\frac{\alpha}{x}+\frac{2\beta\log{\frac{x}{\sigma}}}{x}\right)
This is a heavy-tailed distribution and is also known as the log-Rayleigh
distribution.
Parameters
==========
alpha : Real number, `\alpha > 0`, a shape
beta : Real number, `\beta > 0`, a shape
sigma : Real number, `\sigma > 0`, a scale
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Benini, density, cdf
>>> from sympy import Symbol, pprint
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
>>> X = Benini("x", alpha, beta, sigma)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
/ / z \\ / z \ 2/ z \
| 2*beta*log|-----|| - alpha*log|-----| - beta*log |-----|
|alpha \sigma/| \sigma/ \sigma/
|----- + -----------------|*e
\ z z /
>>> cdf(X)(z)
Piecewise((1 - exp(-alpha*log(z/sigma) - beta*log(z/sigma)**2), sigma <= z),
(0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Benini_distribution
.. [2] http://reference.wolfram.com/legacy/v8/ref/BeniniDistribution.html
"""
return rv(name, BeniniDistribution, (alpha, beta, sigma))
#-------------------------------------------------------------------------------
# Beta distribution ------------------------------------------------------------
class BetaDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta')
set = Interval(0, 1)
@staticmethod
def check(alpha, beta):
_value_check(alpha > 0, "Shape parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
def pdf(self, x):
alpha, beta = self.alpha, self.beta
return x**(alpha - 1) * (1 - x)**(beta - 1) / beta_fn(alpha, beta)
def _characteristic_function(self, t):
return hyper((self.alpha,), (self.alpha + self.beta,), I*t)
def _moment_generating_function(self, t):
return hyper((self.alpha,), (self.alpha + self.beta,), t)
def Beta(name, alpha, beta):
r"""
Create a Continuous Random Variable with a Beta distribution.
The density of the Beta distribution is given by
.. math::
f(x) := \frac{x^{\alpha-1}(1-x)^{\beta-1}} {\mathrm{B}(\alpha,\beta)}
with :math:`x \in [0,1]`.
Parameters
==========
alpha : Real number, `\alpha > 0`, a shape
beta : Real number, `\beta > 0`, a shape
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Beta, density, E, variance
>>> from sympy import Symbol, simplify, pprint, factor
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> z = Symbol("z")
>>> X = Beta("x", alpha, beta)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
alpha - 1 beta - 1
z *(1 - z)
--------------------------
B(alpha, beta)
>>> simplify(E(X))
alpha/(alpha + beta)
>>> factor(simplify(variance(X)))
alpha*beta/((alpha + beta)**2*(alpha + beta + 1))
References
==========
.. [1] https://en.wikipedia.org/wiki/Beta_distribution
.. [2] http://mathworld.wolfram.com/BetaDistribution.html
"""
return rv(name, BetaDistribution, (alpha, beta))
#-------------------------------------------------------------------------------
# Noncentral Beta distribution ------------------------------------------------------------
class BetaNoncentralDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta', 'lamda')
set = Interval(0, 1)
@staticmethod
def check(alpha, beta, lamda):
_value_check(alpha > 0, "Shape parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
_value_check(lamda >= 0, "Noncentrality parameter Lambda must be positive")
def pdf(self, x):
alpha, beta, lamda = self.alpha, self.beta, self.lamda
k = Dummy("k")
return Sum(exp(-lamda / 2) * (lamda / 2)**k * x**(alpha + k - 1) *(
1 - x)**(beta - 1) / (factorial(k) * beta_fn(alpha + k, beta)), (k, 0, oo))
def BetaNoncentral(name, alpha, beta, lamda):
r"""
Create a Continuous Random Variable with a Type I Noncentral Beta distribution.
The density of the Noncentral Beta distribution is given by
.. math::
f(x) := \sum_{k=0}^\infty e^{-\lambda/2}\frac{(\lambda/2)^k}{k!}
\frac{x^{\alpha+k-1}(1-x)^{\beta-1}}{\mathrm{B}(\alpha+k,\beta)}
with :math:`x \in [0,1]`.
Parameters
==========
alpha : Real number, `\alpha > 0`, a shape
beta : Real number, `\beta > 0`, a shape
lamda: Real number, `\lambda >= 0`, noncentrality parameter
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import BetaNoncentral, density, cdf
>>> from sympy import Symbol, pprint
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> lamda = Symbol("lamda", nonnegative=True)
>>> z = Symbol("z")
>>> X = BetaNoncentral("x", alpha, beta, lamda)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
oo
_____
\ `
\ -lamda
\ k -------
\ k + alpha - 1 /lamda\ beta - 1 2
) z *|-----| *(1 - z) *e
/ \ 2 /
/ ------------------------------------------------
/ B(k + alpha, beta)*k!
/____,
k = 0
Compute cdf with specific 'x', 'alpha', 'beta' and 'lamda' values as follows :
>>> cdf(BetaNoncentral("x", 1, 1, 1), evaluate=False)(2).doit()
2*exp(1/2)
The argument evaluate=False prevents an attempt at evaluation
of the sum for general x, before the argument 2 is passed.
References
==========
.. [1] https://en.wikipedia.org/wiki/Noncentral_beta_distribution
.. [2] https://reference.wolfram.com/language/ref/NoncentralBetaDistribution.html
"""
return rv(name, BetaNoncentralDistribution, (alpha, beta, lamda))
#-------------------------------------------------------------------------------
# Beta prime distribution ------------------------------------------------------
class BetaPrimeDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta')
@staticmethod
def check(alpha, beta):
_value_check(alpha > 0, "Shape parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
set = Interval(0, oo)
def pdf(self, x):
alpha, beta = self.alpha, self.beta
return x**(alpha - 1)*(1 + x)**(-alpha - beta)/beta_fn(alpha, beta)
def BetaPrime(name, alpha, beta):
r"""
Create a continuous random variable with a Beta prime distribution.
The density of the Beta prime distribution is given by
.. math::
f(x) := \frac{x^{\alpha-1} (1+x)^{-\alpha -\beta}}{B(\alpha,\beta)}
with :math:`x > 0`.
Parameters
==========
alpha : Real number, `\alpha > 0`, a shape
beta : Real number, `\beta > 0`, a shape
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import BetaPrime, density
>>> from sympy import Symbol, pprint
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> z = Symbol("z")
>>> X = BetaPrime("x", alpha, beta)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
alpha - 1 -alpha - beta
z *(z + 1)
-------------------------------
B(alpha, beta)
References
==========
.. [1] https://en.wikipedia.org/wiki/Beta_prime_distribution
.. [2] http://mathworld.wolfram.com/BetaPrimeDistribution.html
"""
return rv(name, BetaPrimeDistribution, (alpha, beta))
#-------------------------------------------------------------------------------
# Bounded Pareto Distribution --------------------------------------------------
class BoundedParetoDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'left', 'right')
@property
def set(self):
return Interval(self.left , self.right)
@staticmethod
def check(alpha, left, right):
_value_check (alpha.is_positive, "Shape must be positive.")
_value_check (left.is_positive, "Left value should be positive.")
_value_check (right > left, "Right should be greater than left.")
def pdf(self, x):
alpha, left, right = self.alpha, self.left, self.right
num = alpha * (left**alpha) * x**(- alpha -1)
den = 1 - (left/right)**alpha
return num/den
def BoundedPareto(name, alpha, left, right):
r"""
Create a continuous random variable with a Bounded Pareto distribution.
The density of the Bounded Pareto distribution is given by
.. math::
f(x) := \frac{\alpha L^{\alpha}x^{-\alpha-1}}{1-(\frac{L}{H})^{\alpha}}
Parameters
==========
alpha : Real Number, `alpha > 0`
Shape parameter
left : Real Number, `left > 0`
Location parameter
right : Real Number, `right > left`
Location parameter
Examples
========
>>> from sympy.stats import BoundedPareto, density, cdf, E
>>> from sympy import symbols
>>> L, H = symbols('L, H', positive=True)
>>> X = BoundedPareto('X', 2, L, H)
>>> x = symbols('x')
>>> density(X)(x)
2*L**2/(x**3*(1 - L**2/H**2))
>>> cdf(X)(x)
Piecewise((-H**2*L**2/(x**2*(H**2 - L**2)) + H**2/(H**2 - L**2), L <= x), (0, True))
>>> E(X).simplify()
2*H*L/(H + L)
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Pareto_distribution#Bounded_Pareto_distribution
"""
return rv (name, BoundedParetoDistribution, (alpha, left, right))
# ------------------------------------------------------------------------------
# Cauchy distribution ----------------------------------------------------------
class CauchyDistribution(SingleContinuousDistribution):
_argnames = ('x0', 'gamma')
@staticmethod
def check(x0, gamma):
_value_check(gamma > 0, "Scale parameter Gamma must be positive.")
_value_check(x0.is_real, "Location parameter must be real.")
def pdf(self, x):
return 1/(pi*self.gamma*(1 + ((x - self.x0)/self.gamma)**2))
def _cdf(self, x):
x0, gamma = self.x0, self.gamma
return (1/pi)*atan((x - x0)/gamma) + S.Half
def _characteristic_function(self, t):
return exp(self.x0 * I * t - self.gamma * Abs(t))
def _moment_generating_function(self, t):
raise NotImplementedError("The moment generating function for the "
"Cauchy distribution does not exist.")
def _quantile(self, p):
return self.x0 + self.gamma*tan(pi*(p - S.Half))
def Cauchy(name, x0, gamma):
r"""
Create a continuous random variable with a Cauchy distribution.
The density of the Cauchy distribution is given by
.. math::
f(x) := \frac{1}{\pi \gamma [1 + {(\frac{x-x_0}{\gamma})}^2]}
Parameters
==========
x0 : Real number, the location
gamma : Real number, `\gamma > 0`, a scale
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Cauchy, density
>>> from sympy import Symbol
>>> x0 = Symbol("x0")
>>> gamma = Symbol("gamma", positive=True)
>>> z = Symbol("z")
>>> X = Cauchy("x", x0, gamma)
>>> density(X)(z)
1/(pi*gamma*(1 + (-x0 + z)**2/gamma**2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Cauchy_distribution
.. [2] http://mathworld.wolfram.com/CauchyDistribution.html
"""
return rv(name, CauchyDistribution, (x0, gamma))
#-------------------------------------------------------------------------------
# Chi distribution -------------------------------------------------------------
class ChiDistribution(SingleContinuousDistribution):
_argnames = ('k',)
@staticmethod
def check(k):
_value_check(k > 0, "Number of degrees of freedom (k) must be positive.")
_value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.")
set = Interval(0, oo)
def pdf(self, x):
return 2**(1 - self.k/2)*x**(self.k - 1)*exp(-x**2/2)/gamma(self.k/2)
def _characteristic_function(self, t):
k = self.k
part_1 = hyper((k/2,), (S.Half,), -t**2/2)
part_2 = I*t*sqrt(2)*gamma((k+1)/2)/gamma(k/2)
part_3 = hyper(((k+1)/2,), (Rational(3, 2),), -t**2/2)
return part_1 + part_2*part_3
def _moment_generating_function(self, t):
k = self.k
part_1 = hyper((k / 2,), (S.Half,), t ** 2 / 2)
part_2 = t * sqrt(2) * gamma((k + 1) / 2) / gamma(k / 2)
part_3 = hyper(((k + 1) / 2,), (S(3) / 2,), t ** 2 / 2)
return part_1 + part_2 * part_3
def Chi(name, k):
r"""
Create a continuous random variable with a Chi distribution.
The density of the Chi distribution is given by
.. math::
f(x) := \frac{2^{1-k/2}x^{k-1}e^{-x^2/2}}{\Gamma(k/2)}
with :math:`x \geq 0`.
Parameters
==========
k : Positive integer, The number of degrees of freedom
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Chi, density, E
>>> from sympy import Symbol, simplify
>>> k = Symbol("k", integer=True)
>>> z = Symbol("z")
>>> X = Chi("x", k)
>>> density(X)(z)
2**(1 - k/2)*z**(k - 1)*exp(-z**2/2)/gamma(k/2)
>>> simplify(E(X))
sqrt(2)*gamma(k/2 + 1/2)/gamma(k/2)
References
==========
.. [1] https://en.wikipedia.org/wiki/Chi_distribution
.. [2] http://mathworld.wolfram.com/ChiDistribution.html
"""
return rv(name, ChiDistribution, (k,))
#-------------------------------------------------------------------------------
# Non-central Chi distribution -------------------------------------------------
class ChiNoncentralDistribution(SingleContinuousDistribution):
_argnames = ('k', 'l')
@staticmethod
def check(k, l):
_value_check(k > 0, "Number of degrees of freedom (k) must be positive.")
_value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.")
_value_check(l > 0, "Shift parameter Lambda must be positive.")
set = Interval(0, oo)
def pdf(self, x):
k, l = self.k, self.l
return exp(-(x**2+l**2)/2)*x**k*l / (l*x)**(k/2) * besseli(k/2-1, l*x)
def ChiNoncentral(name, k, l):
r"""
Create a continuous random variable with a non-central Chi distribution.
Explanation
===========
The density of the non-central Chi distribution is given by
.. math::
f(x) := \frac{e^{-(x^2+\lambda^2)/2} x^k\lambda}
{(\lambda x)^{k/2}} I_{k/2-1}(\lambda x)
with `x \geq 0`. Here, `I_\nu (x)` is the
:ref:`modified Bessel function of the first kind <besseli>`.
Parameters
==========
k : A positive Integer, $k > 0$
The number of degrees of freedom.
lambda : Real number, `\lambda > 0`
Shift parameter.
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import ChiNoncentral, density
>>> from sympy import Symbol
>>> k = Symbol("k", integer=True)
>>> l = Symbol("l")
>>> z = Symbol("z")
>>> X = ChiNoncentral("x", k, l)
>>> density(X)(z)
l*z**k*exp(-l**2/2 - z**2/2)*besseli(k/2 - 1, l*z)/(l*z)**(k/2)
References
==========
.. [1] https://en.wikipedia.org/wiki/Noncentral_chi_distribution
"""
return rv(name, ChiNoncentralDistribution, (k, l))
#-------------------------------------------------------------------------------
# Chi squared distribution -----------------------------------------------------
class ChiSquaredDistribution(SingleContinuousDistribution):
_argnames = ('k',)
@staticmethod
def check(k):
_value_check(k > 0, "Number of degrees of freedom (k) must be positive.")
_value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.")
set = Interval(0, oo)
def pdf(self, x):
k = self.k
return 1/(2**(k/2)*gamma(k/2))*x**(k/2 - 1)*exp(-x/2)
def _cdf(self, x):
k = self.k
return Piecewise(
(S.One/gamma(k/2)*lowergamma(k/2, x/2), x >= 0),
(0, True)
)
def _characteristic_function(self, t):
return (1 - 2*I*t)**(-self.k/2)
def _moment_generating_function(self, t):
return (1 - 2*t)**(-self.k/2)
def ChiSquared(name, k):
r"""
Create a continuous random variable with a Chi-squared distribution.
Explanation
===========
The density of the Chi-squared distribution is given by
.. math::
f(x) := \frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)}
x^{\frac{k}{2}-1} e^{-\frac{x}{2}}
with :math:`x \geq 0`.
Parameters
==========
k : Positive integer
The number of degrees of freedom.
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import ChiSquared, density, E, variance, moment
>>> from sympy import Symbol
>>> k = Symbol("k", integer=True, positive=True)
>>> z = Symbol("z")
>>> X = ChiSquared("x", k)
>>> density(X)(z)
z**(k/2 - 1)*exp(-z/2)/(2**(k/2)*gamma(k/2))
>>> E(X)
k
>>> variance(X)
2*k
>>> moment(X, 3)
k**3 + 6*k**2 + 8*k
References
==========
.. [1] https://en.wikipedia.org/wiki/Chi_squared_distribution
.. [2] http://mathworld.wolfram.com/Chi-SquaredDistribution.html
"""
return rv(name, ChiSquaredDistribution, (k, ))
#-------------------------------------------------------------------------------
# Dagum distribution -----------------------------------------------------------
class DagumDistribution(SingleContinuousDistribution):
_argnames = ('p', 'a', 'b')
set = Interval(0, oo)
@staticmethod
def check(p, a, b):
_value_check(p > 0, "Shape parameter p must be positive.")
_value_check(a > 0, "Shape parameter a must be positive.")
_value_check(b > 0, "Scale parameter b must be positive.")
def pdf(self, x):
p, a, b = self.p, self.a, self.b
return a*p/x*((x/b)**(a*p)/(((x/b)**a + 1)**(p + 1)))
def _cdf(self, x):
p, a, b = self.p, self.a, self.b
return Piecewise(((S.One + (S(x)/b)**-a)**-p, x>=0),
(S.Zero, True))
def Dagum(name, p, a, b):
r"""
Create a continuous random variable with a Dagum distribution.
Explanation
===========
The density of the Dagum distribution is given by
.. math::
f(x) := \frac{a p}{x} \left( \frac{\left(\tfrac{x}{b}\right)^{a p}}
{\left(\left(\tfrac{x}{b}\right)^a + 1 \right)^{p+1}} \right)
with :math:`x > 0`.
Parameters
==========
p : Real number
``p > 0``, a shape.
a : Real number
``a > 0``, a shape.
b : Real number
``b > 0``, a scale.
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Dagum, density, cdf
>>> from sympy import Symbol
>>> p = Symbol("p", positive=True)
>>> a = Symbol("a", positive=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = Dagum("x", p, a, b)
>>> density(X)(z)
a*p*(z/b)**(a*p)*((z/b)**a + 1)**(-p - 1)/z
>>> cdf(X)(z)
Piecewise(((1 + (z/b)**(-a))**(-p), z >= 0), (0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Dagum_distribution
"""
return rv(name, DagumDistribution, (p, a, b))
#-------------------------------------------------------------------------------
# Erlang distribution ----------------------------------------------------------
def Erlang(name, k, l):
r"""
Create a continuous random variable with an Erlang distribution.
Explanation
===========
The density of the Erlang distribution is given by
.. math::
f(x) := \frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!}
with :math:`x \in [0,\infty]`.
Parameters
==========
k : Positive integer
l : Real number, `\lambda > 0`, the rate
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Erlang, density, cdf, E, variance
>>> from sympy import Symbol, simplify, pprint
>>> k = Symbol("k", integer=True, positive=True)
>>> l = Symbol("l", positive=True)
>>> z = Symbol("z")
>>> X = Erlang("x", k, l)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
k k - 1 -l*z
l *z *e
---------------
Gamma(k)
>>> C = cdf(X)(z)
>>> pprint(C, use_unicode=False)
/lowergamma(k, l*z)
|------------------ for z > 0
< Gamma(k)
|
\ 0 otherwise
>>> E(X)
k/l
>>> simplify(variance(X))
k/l**2
References
==========
.. [1] https://en.wikipedia.org/wiki/Erlang_distribution
.. [2] http://mathworld.wolfram.com/ErlangDistribution.html
"""
return rv(name, GammaDistribution, (k, S.One/l))
# -------------------------------------------------------------------------------
# ExGaussian distribution -----------------------------------------------------
class ExGaussianDistribution(SingleContinuousDistribution):
_argnames = ('mean', 'std', 'rate')
set = Interval(-oo, oo)
@staticmethod
def check(mean, std, rate):
_value_check(
std > 0, "Standard deviation of ExGaussian must be positive.")
_value_check(rate > 0, "Rate of ExGaussian must be positive.")
def pdf(self, x):
mean, std, rate = self.mean, self.std, self.rate
term1 = rate/2
term2 = exp(rate * (2 * mean + rate * std**2 - 2*x)/2)
term3 = erfc((mean + rate*std**2 - x)/(sqrt(2)*std))
return term1*term2*term3
def _cdf(self, x):
from sympy.stats import cdf
mean, std, rate = self.mean, self.std, self.rate
u = rate*(x - mean)
v = rate*std
GaussianCDF1 = cdf(Normal('x', 0, v))(u)
GaussianCDF2 = cdf(Normal('x', v**2, v))(u)
return GaussianCDF1 - exp(-u + (v**2/2) + log(GaussianCDF2))
def _characteristic_function(self, t):
mean, std, rate = self.mean, self.std, self.rate
term1 = (1 - I*t/rate)**(-1)
term2 = exp(I*mean*t - std**2*t**2/2)
return term1 * term2
def _moment_generating_function(self, t):
mean, std, rate = self.mean, self.std, self.rate
term1 = (1 - t/rate)**(-1)
term2 = exp(mean*t + std**2*t**2/2)
return term1*term2
def ExGaussian(name, mean, std, rate):
r"""
Create a continuous random variable with an Exponentially modified
Gaussian (EMG) distribution.
Explanation
===========
The density of the exponentially modified Gaussian distribution is given by
.. math::
f(x) := \frac{\lambda}{2}e^{\frac{\lambda}{2}(2\mu+\lambda\sigma^2-2x)}
\text{erfc}(\frac{\mu + \lambda\sigma^2 - x}{\sqrt{2}\sigma})
with $x > 0$. Note that the expected value is `1/\lambda`.
Parameters
==========
mu : A Real number, the mean of Gaussian component
std: A positive Real number,
:math: `\sigma^2 > 0` the variance of Gaussian component
lambda: A positive Real number,
:math: `\lambda > 0` the rate of Exponential component
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import ExGaussian, density, cdf, E
>>> from sympy.stats import variance, skewness
>>> from sympy import Symbol, pprint, simplify
>>> mean = Symbol("mu")
>>> std = Symbol("sigma", positive=True)
>>> rate = Symbol("lamda", positive=True)
>>> z = Symbol("z")
>>> X = ExGaussian("x", mean, std, rate)
>>> pprint(density(X)(z), use_unicode=False)
/ 2 \
lamda*\lamda*sigma + 2*mu - 2*z/
--------------------------------- / ___ / 2 \\
2 |\/ 2 *\lamda*sigma + mu - z/|
lamda*e *erfc|-----------------------------|
\ 2*sigma /
----------------------------------------------------------------------------
2
>>> cdf(X)(z)
-(erf(sqrt(2)*(-lamda**2*sigma**2 + lamda*(-mu + z))/(2*lamda*sigma))/2 + 1/2)*exp(lamda**2*sigma**2/2 - lamda*(-mu + z)) + erf(sqrt(2)*(-mu + z)/(2*sigma))/2 + 1/2
>>> E(X)
(lamda*mu + 1)/lamda
>>> simplify(variance(X))
sigma**2 + lamda**(-2)
>>> simplify(skewness(X))
2/(lamda**2*sigma**2 + 1)**(3/2)
References
==========
.. [1] https://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution
"""
return rv(name, ExGaussianDistribution, (mean, std, rate))
#-------------------------------------------------------------------------------
# Exponential distribution -----------------------------------------------------
class ExponentialDistribution(SingleContinuousDistribution):
_argnames = ('rate',)
set = Interval(0, oo)
@staticmethod
def check(rate):
_value_check(rate > 0, "Rate must be positive.")
def pdf(self, x):
return self.rate * exp(-self.rate*x)
def _cdf(self, x):
return Piecewise(
(S.One - exp(-self.rate*x), x >= 0),
(0, True),
)
def _characteristic_function(self, t):
rate = self.rate
return rate / (rate - I*t)
def _moment_generating_function(self, t):
rate = self.rate
return rate / (rate - t)
def _quantile(self, p):
return -log(1-p)/self.rate
def Exponential(name, rate):
r"""
Create a continuous random variable with an Exponential distribution.
Explanation
===========
The density of the exponential distribution is given by
.. math::
f(x) := \lambda \exp(-\lambda x)
with $x > 0$. Note that the expected value is `1/\lambda`.
Parameters
==========
rate : A positive Real number, `\lambda > 0`, the rate (or inverse scale/inverse mean)
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Exponential, density, cdf, E
>>> from sympy.stats import variance, std, skewness, quantile
>>> from sympy import Symbol
>>> l = Symbol("lambda", positive=True)
>>> z = Symbol("z")
>>> p = Symbol("p")
>>> X = Exponential("x", l)
>>> density(X)(z)
lambda*exp(-lambda*z)
>>> cdf(X)(z)
Piecewise((1 - exp(-lambda*z), z >= 0), (0, True))
>>> quantile(X)(p)
-log(1 - p)/lambda
>>> E(X)
1/lambda
>>> variance(X)
lambda**(-2)
>>> skewness(X)
2
>>> X = Exponential('x', 10)
>>> density(X)(z)
10*exp(-10*z)
>>> E(X)
1/10
>>> std(X)
1/10
References
==========
.. [1] https://en.wikipedia.org/wiki/Exponential_distribution
.. [2] http://mathworld.wolfram.com/ExponentialDistribution.html
"""
return rv(name, ExponentialDistribution, (rate, ))
# -------------------------------------------------------------------------------
# Exponential Power distribution -----------------------------------------------------
class ExponentialPowerDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'alpha', 'beta')
set = Interval(-oo, oo)
@staticmethod
def check(mu, alpha, beta):
_value_check(alpha > 0, "Scale parameter alpha must be positive.")
_value_check(beta > 0, "Shape parameter beta must be positive.")
def pdf(self, x):
mu, alpha, beta = self.mu, self.alpha, self.beta
num = beta*exp(-(Abs(x - mu)/alpha)**beta)
den = 2*alpha*gamma(1/beta)
return num/den
def _cdf(self, x):
mu, alpha, beta = self.mu, self.alpha, self.beta
num = lowergamma(1/beta, (Abs(x - mu) / alpha)**beta)
den = 2*gamma(1/beta)
return sign(x - mu)*num/den + S.Half
def ExponentialPower(name, mu, alpha, beta):
r"""
Create a Continuous Random Variable with Exponential Power distribution.
This distribution is known also as Generalized Normal
distribution version 1.
Explanation
===========
The density of the Exponential Power distribution is given by
.. math::
f(x) := \frac{\beta}{2\alpha\Gamma(\frac{1}{\beta})}
e^{{-(\frac{|x - \mu|}{\alpha})^{\beta}}}
with :math:`x \in [ - \infty, \infty ]`.
Parameters
==========
mu : Real number
A location.
alpha : Real number,``alpha > 0``
A scale.
beta : Real number, ``beta > 0``
A shape.
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import ExponentialPower, density, cdf
>>> from sympy import Symbol, pprint
>>> z = Symbol("z")
>>> mu = Symbol("mu")
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> X = ExponentialPower("x", mu, alpha, beta)
>>> pprint(density(X)(z), use_unicode=False)
beta
/|mu - z|\
-|--------|
\ alpha /
beta*e
---------------------
/ 1 \
2*alpha*Gamma|----|
\beta/
>>> cdf(X)(z)
1/2 + lowergamma(1/beta, (Abs(mu - z)/alpha)**beta)*sign(-mu + z)/(2*gamma(1/beta))
References
==========
.. [1] https://reference.wolfram.com/language/ref/ExponentialPowerDistribution.html
.. [2] https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
"""
return rv(name, ExponentialPowerDistribution, (mu, alpha, beta))
#-------------------------------------------------------------------------------
# F distribution ---------------------------------------------------------------
class FDistributionDistribution(SingleContinuousDistribution):
_argnames = ('d1', 'd2')
set = Interval(0, oo)
@staticmethod
def check(d1, d2):
_value_check((d1 > 0, d1.is_integer),
"Degrees of freedom d1 must be positive integer.")
_value_check((d2 > 0, d2.is_integer),
"Degrees of freedom d2 must be positive integer.")
def pdf(self, x):
d1, d2 = self.d1, self.d2
return (sqrt((d1*x)**d1*d2**d2 / (d1*x+d2)**(d1+d2))
/ (x * beta_fn(d1/2, d2/2)))
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function for the '
'F-distribution does not exist.')
def FDistribution(name, d1, d2):
r"""
Create a continuous random variable with a F distribution.
Explanation
===========
The density of the F distribution is given by
.. math::
f(x) := \frac{\sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}}
{(d_1 x + d_2)^{d_1 + d_2}}}}
{x \mathrm{B} \left(\frac{d_1}{2}, \frac{d_2}{2}\right)}
with :math:`x > 0`.
Parameters
==========
d1 : `d_1 > 0`, where d_1 is the degrees of freedom (n_1 - 1)
d2 : `d_2 > 0`, where d_2 is the degrees of freedom (n_2 - 1)
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import FDistribution, density
>>> from sympy import Symbol, pprint
>>> d1 = Symbol("d1", positive=True)
>>> d2 = Symbol("d2", positive=True)
>>> z = Symbol("z")
>>> X = FDistribution("x", d1, d2)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
d2
-- ______________________________
2 / d1 -d1 - d2
d2 *\/ (d1*z) *(d1*z + d2)
--------------------------------------
/d1 d2\
z*B|--, --|
\2 2 /
References
==========
.. [1] https://en.wikipedia.org/wiki/F-distribution
.. [2] http://mathworld.wolfram.com/F-Distribution.html
"""
return rv(name, FDistributionDistribution, (d1, d2))
#-------------------------------------------------------------------------------
# Fisher Z distribution --------------------------------------------------------
class FisherZDistribution(SingleContinuousDistribution):
_argnames = ('d1', 'd2')
set = Interval(-oo, oo)
@staticmethod
def check(d1, d2):
_value_check(d1 > 0, "Degree of freedom d1 must be positive.")
_value_check(d2 > 0, "Degree of freedom d2 must be positive.")
def pdf(self, x):
d1, d2 = self.d1, self.d2
return (2*d1**(d1/2)*d2**(d2/2) / beta_fn(d1/2, d2/2) *
exp(d1*x) / (d1*exp(2*x)+d2)**((d1+d2)/2))
def FisherZ(name, d1, d2):
r"""
Create a Continuous Random Variable with an Fisher's Z distribution.
Explanation
===========
The density of the Fisher's Z distribution is given by
.. math::
f(x) := \frac{2d_1^{d_1/2} d_2^{d_2/2}} {\mathrm{B}(d_1/2, d_2/2)}
\frac{e^{d_1z}}{\left(d_1e^{2z}+d_2\right)^{\left(d_1+d_2\right)/2}}
.. TODO - What is the difference between these degrees of freedom?
Parameters
==========
d1 : ``d_1 > 0``
Degree of freedom.
d2 : ``d_2 > 0``
Degree of freedom.
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import FisherZ, density
>>> from sympy import Symbol, pprint
>>> d1 = Symbol("d1", positive=True)
>>> d2 = Symbol("d2", positive=True)
>>> z = Symbol("z")
>>> X = FisherZ("x", d1, d2)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
d1 d2
d1 d2 - -- - --
-- -- 2 2
2 2 / 2*z \ d1*z
2*d1 *d2 *\d1*e + d2/ *e
-----------------------------------------
/d1 d2\
B|--, --|
\2 2 /
References
==========
.. [1] https://en.wikipedia.org/wiki/Fisher%27s_z-distribution
.. [2] http://mathworld.wolfram.com/Fishersz-Distribution.html
"""
return rv(name, FisherZDistribution, (d1, d2))
#-------------------------------------------------------------------------------
# Frechet distribution ---------------------------------------------------------
class FrechetDistribution(SingleContinuousDistribution):
_argnames = ('a', 's', 'm')
set = Interval(0, oo)
@staticmethod
def check(a, s, m):
_value_check(a > 0, "Shape parameter alpha must be positive.")
_value_check(s > 0, "Scale parameter s must be positive.")
def __new__(cls, a, s=1, m=0):
a, s, m = list(map(sympify, (a, s, m)))
return Basic.__new__(cls, a, s, m)
def pdf(self, x):
a, s, m = self.a, self.s, self.m
return a/s * ((x-m)/s)**(-1-a) * exp(-((x-m)/s)**(-a))
def _cdf(self, x):
a, s, m = self.a, self.s, self.m
return Piecewise((exp(-((x-m)/s)**(-a)), x >= m),
(S.Zero, True))
def Frechet(name, a, s=1, m=0):
r"""
Create a continuous random variable with a Frechet distribution.
Explanation
===========
The density of the Frechet distribution is given by
.. math::
f(x) := \frac{\alpha}{s} \left(\frac{x-m}{s}\right)^{-1-\alpha}
e^{-(\frac{x-m}{s})^{-\alpha}}
with :math:`x \geq m`.
Parameters
==========
a : Real number, :math:`a \in \left(0, \infty\right)` the shape
s : Real number, :math:`s \in \left(0, \infty\right)` the scale
m : Real number, :math:`m \in \left(-\infty, \infty\right)` the minimum
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Frechet, density, cdf
>>> from sympy import Symbol
>>> a = Symbol("a", positive=True)
>>> s = Symbol("s", positive=True)
>>> m = Symbol("m", real=True)
>>> z = Symbol("z")
>>> X = Frechet("x", a, s, m)
>>> density(X)(z)
a*((-m + z)/s)**(-a - 1)*exp(-1/((-m + z)/s)**a)/s
>>> cdf(X)(z)
Piecewise((exp(-1/((-m + z)/s)**a), m <= z), (0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Fr%C3%A9chet_distribution
"""
return rv(name, FrechetDistribution, (a, s, m))
#-------------------------------------------------------------------------------
# Gamma distribution -----------------------------------------------------------
class GammaDistribution(SingleContinuousDistribution):
_argnames = ('k', 'theta')
set = Interval(0, oo)
@staticmethod
def check(k, theta):
_value_check(k > 0, "k must be positive")
_value_check(theta > 0, "Theta must be positive")
def pdf(self, x):
k, theta = self.k, self.theta
return x**(k - 1) * exp(-x/theta) / (gamma(k)*theta**k)
def _cdf(self, x):
k, theta = self.k, self.theta
return Piecewise(
(lowergamma(k, S(x)/theta)/gamma(k), x > 0),
(S.Zero, True))
def _characteristic_function(self, t):
return (1 - self.theta*I*t)**(-self.k)
def _moment_generating_function(self, t):
return (1- self.theta*t)**(-self.k)
def Gamma(name, k, theta):
r"""
Create a continuous random variable with a Gamma distribution.
Explanation
===========
The density of the Gamma distribution is given by
.. math::
f(x) := \frac{1}{\Gamma(k) \theta^k} x^{k - 1} e^{-\frac{x}{\theta}}
with :math:`x \in [0,1]`.
Parameters
==========
k : Real number, ``k > 0``, a shape
theta : Real number, `\theta > 0`, a scale
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Gamma, density, cdf, E, variance
>>> from sympy import Symbol, pprint, simplify
>>> k = Symbol("k", positive=True)
>>> theta = Symbol("theta", positive=True)
>>> z = Symbol("z")
>>> X = Gamma("x", k, theta)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
-z
-----
-k k - 1 theta
theta *z *e
---------------------
Gamma(k)
>>> C = cdf(X, meijerg=True)(z)
>>> pprint(C, use_unicode=False)
/ / z \
|k*lowergamma|k, -----|
| \ theta/
<---------------------- for z >= 0
| Gamma(k + 1)
|
\ 0 otherwise
>>> E(X)
k*theta
>>> V = simplify(variance(X))
>>> pprint(V, use_unicode=False)
2
k*theta
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_distribution
.. [2] http://mathworld.wolfram.com/GammaDistribution.html
"""
return rv(name, GammaDistribution, (k, theta))
#-------------------------------------------------------------------------------
# Inverse Gamma distribution ---------------------------------------------------
class GammaInverseDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
set = Interval(0, oo)
@staticmethod
def check(a, b):
_value_check(a > 0, "alpha must be positive")
_value_check(b > 0, "beta must be positive")
def pdf(self, x):
a, b = self.a, self.b
return b**a/gamma(a) * x**(-a-1) * exp(-b/x)
def _cdf(self, x):
a, b = self.a, self.b
return Piecewise((uppergamma(a,b/x)/gamma(a), x > 0),
(S.Zero, True))
def _characteristic_function(self, t):
a, b = self.a, self.b
return 2 * (-I*b*t)**(a/2) * besselk(a, sqrt(-4*I*b*t)) / gamma(a)
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function for the '
'gamma inverse distribution does not exist.')
def GammaInverse(name, a, b):
r"""
Create a continuous random variable with an inverse Gamma distribution.
Explanation
===========
The density of the inverse Gamma distribution is given by
.. math::
f(x) := \frac{\beta^\alpha}{\Gamma(\alpha)} x^{-\alpha - 1}
\exp\left(\frac{-\beta}{x}\right)
with :math:`x > 0`.
Parameters
==========
a : Real number, `a > 0` a shape
b : Real number, `b > 0` a scale
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import GammaInverse, density, cdf
>>> from sympy import Symbol, pprint
>>> a = Symbol("a", positive=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = GammaInverse("x", a, b)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
-b
---
a -a - 1 z
b *z *e
---------------
Gamma(a)
>>> cdf(X)(z)
Piecewise((uppergamma(a, b/z)/gamma(a), z > 0), (0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse-gamma_distribution
"""
return rv(name, GammaInverseDistribution, (a, b))
#-------------------------------------------------------------------------------
# Gumbel distribution (Maximum and Minimum) --------------------------------------------------------
class GumbelDistribution(SingleContinuousDistribution):
_argnames = ('beta', 'mu', 'minimum')
set = Interval(-oo, oo)
@staticmethod
def check(beta, mu, minimum):
_value_check(beta > 0, "Scale parameter beta must be positive.")
def pdf(self, x):
beta, mu = self.beta, self.mu
z = (x - mu)/beta
f_max = (1/beta)*exp(-z - exp(-z))
f_min = (1/beta)*exp(z - exp(z))
return Piecewise((f_min, self.minimum), (f_max, not self.minimum))
def _cdf(self, x):
beta, mu = self.beta, self.mu
z = (x - mu)/beta
F_max = exp(-exp(-z))
F_min = 1 - exp(-exp(z))
return Piecewise((F_min, self.minimum), (F_max, not self.minimum))
def _characteristic_function(self, t):
cf_max = gamma(1 - I*self.beta*t) * exp(I*self.mu*t)
cf_min = gamma(1 + I*self.beta*t) * exp(I*self.mu*t)
return Piecewise((cf_min, self.minimum), (cf_max, not self.minimum))
def _moment_generating_function(self, t):
mgf_max = gamma(1 - self.beta*t) * exp(self.mu*t)
mgf_min = gamma(1 + self.beta*t) * exp(self.mu*t)
return Piecewise((mgf_min, self.minimum), (mgf_max, not self.minimum))
def Gumbel(name, beta, mu, minimum=False):
r"""
Create a Continuous Random Variable with Gumbel distribution.
Explanation
===========
The density of the Gumbel distribution is given by
For Maximum
.. math::
f(x) := \dfrac{1}{\beta} \exp \left( -\dfrac{x-\mu}{\beta}
- \exp \left( -\dfrac{x - \mu}{\beta} \right) \right)
with :math:`x \in [ - \infty, \infty ]`.
For Minimum
.. math::
f(x) := \frac{e^{- e^{\frac{- \mu + x}{\beta}} + \frac{- \mu + x}{\beta}}}{\beta}
with :math:`x \in [ - \infty, \infty ]`.
Parameters
==========
mu : Real number, 'mu' is a location
beta : Real number, 'beta > 0' is a scale
minimum : Boolean, by default, False, set to True for enabling minimum distribution
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Gumbel, density, cdf
>>> from sympy import Symbol
>>> x = Symbol("x")
>>> mu = Symbol("mu")
>>> beta = Symbol("beta", positive=True)
>>> X = Gumbel("x", beta, mu)
>>> density(X)(x)
exp(-exp(-(-mu + x)/beta) - (-mu + x)/beta)/beta
>>> cdf(X)(x)
exp(-exp(-(-mu + x)/beta))
References
==========
.. [1] http://mathworld.wolfram.com/GumbelDistribution.html
.. [2] https://en.wikipedia.org/wiki/Gumbel_distribution
.. [3] http://www.mathwave.com/help/easyfit/html/analyses/distributions/gumbel_max.html
.. [4] http://www.mathwave.com/help/easyfit/html/analyses/distributions/gumbel_min.html
"""
return rv(name, GumbelDistribution, (beta, mu, minimum))
#-------------------------------------------------------------------------------
# Gompertz distribution --------------------------------------------------------
class GompertzDistribution(SingleContinuousDistribution):
_argnames = ('b', 'eta')
set = Interval(0, oo)
@staticmethod
def check(b, eta):
_value_check(b > 0, "b must be positive")
_value_check(eta > 0, "eta must be positive")
def pdf(self, x):
eta, b = self.eta, self.b
return b*eta*exp(b*x)*exp(eta)*exp(-eta*exp(b*x))
def _cdf(self, x):
eta, b = self.eta, self.b
return 1 - exp(eta)*exp(-eta*exp(b*x))
def _moment_generating_function(self, t):
eta, b = self.eta, self.b
return eta * exp(eta) * expint(t/b, eta)
def Gompertz(name, b, eta):
r"""
Create a Continuous Random Variable with Gompertz distribution.
Explanation
===========
The density of the Gompertz distribution is given by
.. math::
f(x) := b \eta e^{b x} e^{\eta} \exp \left(-\eta e^{bx} \right)
with :math: 'x \in [0, \inf)'.
Parameters
==========
b: Real number, 'b > 0' a scale
eta: Real number, 'eta > 0' a shape
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Gompertz, density
>>> from sympy import Symbol
>>> b = Symbol("b", positive=True)
>>> eta = Symbol("eta", positive=True)
>>> z = Symbol("z")
>>> X = Gompertz("x", b, eta)
>>> density(X)(z)
b*eta*exp(eta)*exp(b*z)*exp(-eta*exp(b*z))
References
==========
.. [1] https://en.wikipedia.org/wiki/Gompertz_distribution
"""
return rv(name, GompertzDistribution, (b, eta))
#-------------------------------------------------------------------------------
# Kumaraswamy distribution -----------------------------------------------------
class KumaraswamyDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
set = Interval(0, oo)
@staticmethod
def check(a, b):
_value_check(a > 0, "a must be positive")
_value_check(b > 0, "b must be positive")
def pdf(self, x):
a, b = self.a, self.b
return a * b * x**(a-1) * (1-x**a)**(b-1)
def _cdf(self, x):
a, b = self.a, self.b
return Piecewise(
(S.Zero, x < S.Zero),
(1 - (1 - x**a)**b, x <= S.One),
(S.One, True))
def Kumaraswamy(name, a, b):
r"""
Create a Continuous Random Variable with a Kumaraswamy distribution.
Explanation
===========
The density of the Kumaraswamy distribution is given by
.. math::
f(x) := a b x^{a-1} (1-x^a)^{b-1}
with :math:`x \in [0,1]`.
Parameters
==========
a : Real number, ``a > 0`` a shape
b : Real number, ``b > 0`` a shape
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Kumaraswamy, density, cdf
>>> from sympy import Symbol, pprint
>>> a = Symbol("a", positive=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = Kumaraswamy("x", a, b)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
b - 1
a - 1 / a\
a*b*z *\1 - z /
>>> cdf(X)(z)
Piecewise((0, z < 0), (1 - (1 - z**a)**b, z <= 1), (1, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Kumaraswamy_distribution
"""
return rv(name, KumaraswamyDistribution, (a, b))
#-------------------------------------------------------------------------------
# Laplace distribution ---------------------------------------------------------
class LaplaceDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'b')
set = Interval(-oo, oo)
@staticmethod
def check(mu, b):
_value_check(b > 0, "Scale parameter b must be positive.")
_value_check(mu.is_real, "Location parameter mu should be real")
def pdf(self, x):
mu, b = self.mu, self.b
return 1/(2*b)*exp(-Abs(x - mu)/b)
def _cdf(self, x):
mu, b = self.mu, self.b
return Piecewise(
(S.Half*exp((x - mu)/b), x < mu),
(S.One - S.Half*exp(-(x - mu)/b), x >= mu)
)
def _characteristic_function(self, t):
return exp(self.mu*I*t) / (1 + self.b**2*t**2)
def _moment_generating_function(self, t):
return exp(self.mu*t) / (1 - self.b**2*t**2)
def Laplace(name, mu, b):
r"""
Create a continuous random variable with a Laplace distribution.
Explanation
===========
The density of the Laplace distribution is given by
.. math::
f(x) := \frac{1}{2 b} \exp \left(-\frac{|x-\mu|}b \right)
Parameters
==========
mu : Real number or a list/matrix, the location (mean) or the
location vector
b : Real number or a positive definite matrix, representing a scale
or the covariance matrix.
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Laplace, density, cdf
>>> from sympy import Symbol, pprint
>>> mu = Symbol("mu")
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = Laplace("x", mu, b)
>>> density(X)(z)
exp(-Abs(mu - z)/b)/(2*b)
>>> cdf(X)(z)
Piecewise((exp((-mu + z)/b)/2, mu > z), (1 - exp((mu - z)/b)/2, True))
>>> L = Laplace('L', [1, 2], [[1, 0], [0, 1]])
>>> pprint(density(L)(1, 2), use_unicode=False)
5 / ____\
e *besselk\0, \/ 35 /
---------------------
pi
References
==========
.. [1] https://en.wikipedia.org/wiki/Laplace_distribution
.. [2] http://mathworld.wolfram.com/LaplaceDistribution.html
"""
if isinstance(mu, (list, MatrixBase)) and\
isinstance(b, (list, MatrixBase)):
from sympy.stats.joint_rv_types import MultivariateLaplace
return MultivariateLaplace(name, mu, b)
return rv(name, LaplaceDistribution, (mu, b))
#-------------------------------------------------------------------------------
# Levy distribution ---------------------------------------------------------
class LevyDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'c')
@property
def set(self):
return Interval(self.mu, oo)
@staticmethod
def check(mu, c):
_value_check(c > 0, "c (scale parameter) must be positive")
_value_check(mu.is_real, "mu (location paramater) must be real")
def pdf(self, x):
mu, c = self.mu, self.c
return sqrt(c/(2*pi))*exp(-c/(2*(x - mu)))/((x - mu)**(S.One + S.Half))
def _cdf(self, x):
mu, c = self.mu, self.c
return erfc(sqrt(c/(2*(x - mu))))
def _characteristic_function(self, t):
mu, c = self.mu, self.c
return exp(I * mu * t - sqrt(-2 * I * c * t))
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function of Levy distribution does not exist.')
def Levy(name, mu, c):
r"""
Create a continuous random variable with a Levy distribution.
The density of the Levy distribution is given by
.. math::
f(x) := \sqrt(\frac{c}{2 \pi}) \frac{\exp -\frac{c}{2 (x - \mu)}}{(x - \mu)^{3/2}}
Parameters
==========
mu : Real number
The location parameter.
c : Real number, ``c > 0``
A scale parameter.
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Levy, density, cdf
>>> from sympy import Symbol
>>> mu = Symbol("mu", real=True)
>>> c = Symbol("c", positive=True)
>>> z = Symbol("z")
>>> X = Levy("x", mu, c)
>>> density(X)(z)
sqrt(2)*sqrt(c)*exp(-c/(-2*mu + 2*z))/(2*sqrt(pi)*(-mu + z)**(3/2))
>>> cdf(X)(z)
erfc(sqrt(c)*sqrt(1/(-2*mu + 2*z)))
References
==========
.. [1] https://en.wikipedia.org/wiki/L%C3%A9vy_distribution
.. [2] http://mathworld.wolfram.com/LevyDistribution.html
"""
return rv(name, LevyDistribution, (mu, c))
#-------------------------------------------------------------------------------
# Log-Cauchy distribution --------------------------------------------------------
class LogCauchyDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'sigma')
set = Interval.open(0, oo)
@staticmethod
def check(mu, sigma):
_value_check((sigma > 0) != False, "Scale parameter Gamma must be positive.")
_value_check(mu.is_real != False, "Location parameter must be real.")
def pdf(self, x):
mu, sigma = self.mu, self.sigma
return 1/(x*pi)*(sigma/((log(x) - mu)**2 + sigma**2))
def _cdf(self, x):
mu, sigma = self.mu, self.sigma
return (1/pi)*atan((log(x) - mu)/sigma) + S.Half
def _characteristic_function(self, t):
raise NotImplementedError("The characteristic function for the "
"Log-Cauchy distribution does not exist.")
def _moment_generating_function(self, t):
raise NotImplementedError("The moment generating function for the "
"Log-Cauchy distribution does not exist.")
def LogCauchy(name, mu, sigma):
r"""
Create a continuous random variable with a Log-Cauchy distribution.
The density of the Log-Cauchy distribution is given by
.. math::
f(x) := \frac{1}{\pi x} \frac{\sigma}{(log(x)-\mu^2) + \sigma^2}
Parameters
==========
mu : Real number, the location
sigma : Real number, `\sigma > 0`, a scale
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import LogCauchy, density, cdf
>>> from sympy import Symbol, S
>>> mu = 2
>>> sigma = S.One / 5
>>> z = Symbol("z")
>>> X = LogCauchy("x", mu, sigma)
>>> density(X)(z)
1/(5*pi*z*((log(z) - 2)**2 + 1/25))
>>> cdf(X)(z)
atan(5*log(z) - 10)/pi + 1/2
References
==========
.. [1] https://en.wikipedia.org/wiki/Log-Cauchy_distribution
"""
return rv(name, LogCauchyDistribution, (mu, sigma))
#-------------------------------------------------------------------------------
# Logistic distribution --------------------------------------------------------
class LogisticDistribution(SingleContinuousDistribution):
_argnames = ('mu', 's')
set = Interval(-oo, oo)
@staticmethod
def check(mu, s):
_value_check(s > 0, "Scale parameter s must be positive.")
def pdf(self, x):
mu, s = self.mu, self.s
return exp(-(x - mu)/s)/(s*(1 + exp(-(x - mu)/s))**2)
def _cdf(self, x):
mu, s = self.mu, self.s
return S.One/(1 + exp(-(x - mu)/s))
def _characteristic_function(self, t):
return Piecewise((exp(I*t*self.mu) * pi*self.s*t / sinh(pi*self.s*t), Ne(t, 0)), (S.One, True))
def _moment_generating_function(self, t):
return exp(self.mu*t) * beta_fn(1 - self.s*t, 1 + self.s*t)
def _quantile(self, p):
return self.mu - self.s*log(-S.One + S.One/p)
def Logistic(name, mu, s):
r"""
Create a continuous random variable with a logistic distribution.
Explanation
===========
The density of the logistic distribution is given by
.. math::
f(x) := \frac{e^{-(x-\mu)/s}} {s\left(1+e^{-(x-\mu)/s}\right)^2}
Parameters
==========
mu : Real number, the location (mean)
s : Real number, `s > 0` a scale
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Logistic, density, cdf
>>> from sympy import Symbol
>>> mu = Symbol("mu", real=True)
>>> s = Symbol("s", positive=True)
>>> z = Symbol("z")
>>> X = Logistic("x", mu, s)
>>> density(X)(z)
exp((mu - z)/s)/(s*(exp((mu - z)/s) + 1)**2)
>>> cdf(X)(z)
1/(exp((mu - z)/s) + 1)
References
==========
.. [1] https://en.wikipedia.org/wiki/Logistic_distribution
.. [2] http://mathworld.wolfram.com/LogisticDistribution.html
"""
return rv(name, LogisticDistribution, (mu, s))
#-------------------------------------------------------------------------------
# Log-logistic distribution --------------------------------------------------------
class LogLogisticDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta')
set = Interval(0, oo)
@staticmethod
def check(alpha, beta):
_value_check(alpha > 0, "Scale parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
def pdf(self, x):
a, b = self.alpha, self.beta
return ((b/a)*(x/a)**(b - 1))/(1 + (x/a)**b)**2
def _cdf(self, x):
a, b = self.alpha, self.beta
return 1/(1 + (x/a)**(-b))
def _quantile(self, p):
a, b = self.alpha, self.beta
return a*((p/(1 - p))**(1/b))
def expectation(self, expr, var, **kwargs):
a, b = self.args
return Piecewise((S.NaN, b <= 1), (pi*a/(b*sin(pi/b)), True))
def LogLogistic(name, alpha, beta):
r"""
Create a continuous random variable with a log-logistic distribution.
The distribution is unimodal when ``beta > 1``.
Explanation
===========
The density of the log-logistic distribution is given by
.. math::
f(x) := \frac{(\frac{\beta}{\alpha})(\frac{x}{\alpha})^{\beta - 1}}
{(1 + (\frac{x}{\alpha})^{\beta})^2}
Parameters
==========
alpha : Real number, `\alpha > 0`, scale parameter and median of distribution
beta : Real number, `\beta > 0` a shape parameter
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import LogLogistic, density, cdf, quantile
>>> from sympy import Symbol, pprint
>>> alpha = Symbol("alpha", real=True, positive=True)
>>> beta = Symbol("beta", real=True, positive=True)
>>> p = Symbol("p")
>>> z = Symbol("z", positive=True)
>>> X = LogLogistic("x", alpha, beta)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
beta - 1
/ z \
beta*|-----|
\alpha/
------------------------
2
/ beta \
|/ z \ |
alpha*||-----| + 1|
\\alpha/ /
>>> cdf(X)(z)
1/(1 + (z/alpha)**(-beta))
>>> quantile(X)(p)
alpha*(p/(1 - p))**(1/beta)
References
==========
.. [1] https://en.wikipedia.org/wiki/Log-logistic_distribution
"""
return rv(name, LogLogisticDistribution, (alpha, beta))
#-------------------------------------------------------------------------------
#Logit-Normal distribution------------------------------------------------------
class LogitNormalDistribution(SingleContinuousDistribution):
_argnames = ('mu', 's')
set = Interval.open(0, 1)
@staticmethod
def check(mu, s):
_value_check((s ** 2).is_real is not False and s ** 2 > 0, "Squared scale parameter s must be positive.")
_value_check(mu.is_real is not False, "Location parameter must be real")
def _logit(self, x):
return log(x / (1 - x))
def pdf(self, x):
mu, s = self.mu, self.s
return exp(-(self._logit(x) - mu)**2/(2*s**2))*(S.One/sqrt(2*pi*(s**2)))*(1/(x*(1 - x)))
def _cdf(self, x):
mu, s = self.mu, self.s
return (S.One/2)*(1 + erf((self._logit(x) - mu)/(sqrt(2*s**2))))
def LogitNormal(name, mu, s):
r"""
Create a continuous random variable with a Logit-Normal distribution.
The density of the logistic distribution is given by
.. math::
f(x) := \frac{1}{s \sqrt{2 \pi}} \frac{1}{x(1 - x)} e^{- \frac{(logit(x) - \mu)^2}{s^2}}
where logit(x) = \log(\frac{x}{1 - x})
Parameters
==========
mu : Real number, the location (mean)
s : Real number, `s > 0` a scale
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import LogitNormal, density, cdf
>>> from sympy import Symbol,pprint
>>> mu = Symbol("mu", real=True)
>>> s = Symbol("s", positive=True)
>>> z = Symbol("z")
>>> X = LogitNormal("x",mu,s)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
2
/ / z \\
-|-mu + log|-----||
\ \1 - z//
---------------------
2
___ 2*s
\/ 2 *e
----------------------------
____
2*\/ pi *s*z*(1 - z)
>>> density(X)(z)
sqrt(2)*exp(-(-mu + log(z/(1 - z)))**2/(2*s**2))/(2*sqrt(pi)*s*z*(1 - z))
>>> cdf(X)(z)
erf(sqrt(2)*(-mu + log(z/(1 - z)))/(2*s))/2 + 1/2
References
==========
.. [1] https://en.wikipedia.org/wiki/Logit-normal_distribution
"""
return rv(name, LogitNormalDistribution, (mu, s))
#-------------------------------------------------------------------------------
# Log Normal distribution ------------------------------------------------------
class LogNormalDistribution(SingleContinuousDistribution):
_argnames = ('mean', 'std')
set = Interval(0, oo)
@staticmethod
def check(mean, std):
_value_check(std > 0, "Parameter std must be positive.")
def pdf(self, x):
mean, std = self.mean, self.std
return exp(-(log(x) - mean)**2 / (2*std**2)) / (x*sqrt(2*pi)*std)
def _cdf(self, x):
mean, std = self.mean, self.std
return Piecewise(
(S.Half + S.Half*erf((log(x) - mean)/sqrt(2)/std), x > 0),
(S.Zero, True)
)
def _moment_generating_function(self, t):
raise NotImplementedError('Moment generating function of the log-normal distribution is not defined.')
def LogNormal(name, mean, std):
r"""
Create a continuous random variable with a log-normal distribution.
Explanation
===========
The density of the log-normal distribution is given by
.. math::
f(x) := \frac{1}{x\sqrt{2\pi\sigma^2}}
e^{-\frac{\left(\ln x-\mu\right)^2}{2\sigma^2}}
with :math:`x \geq 0`.
Parameters
==========
mu : Real number
The log-scale.
sigma : Real number
A shape. ($\sigma^2 > 0$)
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import LogNormal, density
>>> from sympy import Symbol, pprint
>>> mu = Symbol("mu", real=True)
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
>>> X = LogNormal("x", mu, sigma)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
2
-(-mu + log(z))
-----------------
2
___ 2*sigma
\/ 2 *e
------------------------
____
2*\/ pi *sigma*z
>>> X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1
>>> density(X)(z)
sqrt(2)*exp(-log(z)**2/2)/(2*sqrt(pi)*z)
References
==========
.. [1] https://en.wikipedia.org/wiki/Lognormal
.. [2] http://mathworld.wolfram.com/LogNormalDistribution.html
"""
return rv(name, LogNormalDistribution, (mean, std))
#-------------------------------------------------------------------------------
# Lomax Distribution -----------------------------------------------------------
class LomaxDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'lamda',)
set = Interval(0, oo)
@staticmethod
def check(alpha, lamda):
_value_check(alpha.is_real, "Shape parameter should be real.")
_value_check(lamda.is_real, "Scale parameter should be real.")
_value_check(alpha.is_positive, "Shape parameter should be positive.")
_value_check(lamda.is_positive, "Scale parameter should be positive.")
def pdf(self, x):
lamba, alpha = self.lamda, self.alpha
return (alpha/lamba) * (S.One + x/lamba)**(-alpha-1)
def Lomax(name, alpha, lamda):
r"""
Create a continuous random variable with a Lomax distribution.
Explanation
===========
The density of the Lomax distribution is given by
.. math::
f(x) := \frac{\alpha}{\lambda}\left[1+\frac{x}{\lambda}\right]^{-(\alpha+1)}
Parameters
==========
alpha : Real Number, `alpha > 0`
Shape parameter
lamda : Real Number, `lamda > 0`
Scale parameter
Examples
========
>>> from sympy.stats import Lomax, density, cdf, E
>>> from sympy import symbols
>>> a, l = symbols('a, l', positive=True)
>>> X = Lomax('X', a, l)
>>> x = symbols('x')
>>> density(X)(x)
a*(1 + x/l)**(-a - 1)/l
>>> cdf(X)(x)
Piecewise((1 - 1/(1 + x/l)**a, x >= 0), (0, True))
>>> a = 2
>>> X = Lomax('X', a, l)
>>> E(X)
l
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Lomax_distribution
"""
return rv(name, LomaxDistribution, (alpha, lamda))
#-------------------------------------------------------------------------------
# Maxwell distribution ---------------------------------------------------------
class MaxwellDistribution(SingleContinuousDistribution):
_argnames = ('a',)
set = Interval(0, oo)
@staticmethod
def check(a):
_value_check(a > 0, "Parameter a must be positive.")
def pdf(self, x):
a = self.a
return sqrt(2/pi)*x**2*exp(-x**2/(2*a**2))/a**3
def _cdf(self, x):
a = self.a
return erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a)
def Maxwell(name, a):
r"""
Create a continuous random variable with a Maxwell distribution.
Explanation
===========
The density of the Maxwell distribution is given by
.. math::
f(x) := \sqrt{\frac{2}{\pi}} \frac{x^2 e^{-x^2/(2a^2)}}{a^3}
with :math:`x \geq 0`.
.. TODO - what does the parameter mean?
Parameters
==========
a : Real number, `a > 0`
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Maxwell, density, E, variance
>>> from sympy import Symbol, simplify
>>> a = Symbol("a", positive=True)
>>> z = Symbol("z")
>>> X = Maxwell("x", a)
>>> density(X)(z)
sqrt(2)*z**2*exp(-z**2/(2*a**2))/(sqrt(pi)*a**3)
>>> E(X)
2*sqrt(2)*a/sqrt(pi)
>>> simplify(variance(X))
a**2*(-8 + 3*pi)/pi
References
==========
.. [1] https://en.wikipedia.org/wiki/Maxwell_distribution
.. [2] http://mathworld.wolfram.com/MaxwellDistribution.html
"""
return rv(name, MaxwellDistribution, (a, ))
#-------------------------------------------------------------------------------
# Moyal Distribution -----------------------------------------------------------
class MoyalDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'sigma')
@staticmethod
def check(mu, sigma):
_value_check(mu.is_real, "Location parameter must be real.")
_value_check(sigma.is_real and sigma > 0, "Scale parameter must be real\
and positive.")
def pdf(self, x):
mu, sigma = self.mu, self.sigma
num = exp(-(exp(-(x - mu)/sigma) + (x - mu)/(sigma))/2)
den = (sqrt(2*pi) * sigma)
return num/den
def _characteristic_function(self, t):
mu, sigma = self.mu, self.sigma
term1 = exp(I*t*mu)
term2 = (2**(-I*sigma*t) * gamma(Rational(1, 2) - I*t*sigma))
return (term1 * term2)/sqrt(pi)
def _moment_generating_function(self, t):
mu, sigma = self.mu, self.sigma
term1 = exp(t*mu)
term2 = (2**(-1*sigma*t) * gamma(Rational(1, 2) - t*sigma))
return (term1 * term2)/sqrt(pi)
def Moyal(name, mu, sigma):
r"""
Create a continuous random variable with a Moyal distribution.
Explanation
===========
The density of the Moyal distribution is given by
.. math::
f(x) := \frac{\exp-\frac{1}{2}\exp-\frac{x-\mu}{\sigma}-\frac{x-\mu}{2\sigma}}{\sqrt{2\pi}\sigma}
with :math:`x \in \mathbb{R}`.
Parameters
==========
mu : Real number
Location parameter
sigma : Real positive number
Scale parameter
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Moyal, density, cdf
>>> from sympy import Symbol, simplify
>>> mu = Symbol("mu", real=True)
>>> sigma = Symbol("sigma", positive=True, real=True)
>>> z = Symbol("z")
>>> X = Moyal("x", mu, sigma)
>>> density(X)(z)
sqrt(2)*exp(-exp((mu - z)/sigma)/2 - (-mu + z)/(2*sigma))/(2*sqrt(pi)*sigma)
>>> simplify(cdf(X)(z))
1 - erf(sqrt(2)*exp((mu - z)/(2*sigma))/2)
References
==========
.. [1] https://reference.wolfram.com/language/ref/MoyalDistribution.html
.. [2] http://www.stat.rice.edu/~dobelman/textfiles/DistributionsHandbook.pdf
"""
return rv(name, MoyalDistribution, (mu, sigma))
#-------------------------------------------------------------------------------
# Nakagami distribution --------------------------------------------------------
class NakagamiDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'omega')
set = Interval(0, oo)
@staticmethod
def check(mu, omega):
_value_check(mu >= S.Half, "Shape parameter mu must be greater than equal to 1/2.")
_value_check(omega > 0, "Spread parameter omega must be positive.")
def pdf(self, x):
mu, omega = self.mu, self.omega
return 2*mu**mu/(gamma(mu)*omega**mu)*x**(2*mu - 1)*exp(-mu/omega*x**2)
def _cdf(self, x):
mu, omega = self.mu, self.omega
return Piecewise(
(lowergamma(mu, (mu/omega)*x**2)/gamma(mu), x > 0),
(S.Zero, True))
def Nakagami(name, mu, omega):
r"""
Create a continuous random variable with a Nakagami distribution.
Explanation
===========
The density of the Nakagami distribution is given by
.. math::
f(x) := \frac{2\mu^\mu}{\Gamma(\mu)\omega^\mu} x^{2\mu-1}
\exp\left(-\frac{\mu}{\omega}x^2 \right)
with :math:`x > 0`.
Parameters
==========
mu : Real number, `\mu \geq \frac{1}{2}` a shape
omega : Real number, `\omega > 0`, the spread
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Nakagami, density, E, variance, cdf
>>> from sympy import Symbol, simplify, pprint
>>> mu = Symbol("mu", positive=True)
>>> omega = Symbol("omega", positive=True)
>>> z = Symbol("z")
>>> X = Nakagami("x", mu, omega)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
2
-mu*z
-------
mu -mu 2*mu - 1 omega
2*mu *omega *z *e
----------------------------------
Gamma(mu)
>>> simplify(E(X))
sqrt(mu)*sqrt(omega)*gamma(mu + 1/2)/gamma(mu + 1)
>>> V = simplify(variance(X))
>>> pprint(V, use_unicode=False)
2
omega*Gamma (mu + 1/2)
omega - -----------------------
Gamma(mu)*Gamma(mu + 1)
>>> cdf(X)(z)
Piecewise((lowergamma(mu, mu*z**2/omega)/gamma(mu), z > 0),
(0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Nakagami_distribution
"""
return rv(name, NakagamiDistribution, (mu, omega))
#-------------------------------------------------------------------------------
# Normal distribution ----------------------------------------------------------
class NormalDistribution(SingleContinuousDistribution):
_argnames = ('mean', 'std')
@staticmethod
def check(mean, std):
_value_check(std > 0, "Standard deviation must be positive")
def pdf(self, x):
return exp(-(x - self.mean)**2 / (2*self.std**2)) / (sqrt(2*pi)*self.std)
def _cdf(self, x):
mean, std = self.mean, self.std
return erf(sqrt(2)*(-mean + x)/(2*std))/2 + S.Half
def _characteristic_function(self, t):
mean, std = self.mean, self.std
return exp(I*mean*t - std**2*t**2/2)
def _moment_generating_function(self, t):
mean, std = self.mean, self.std
return exp(mean*t + std**2*t**2/2)
def _quantile(self, p):
mean, std = self.mean, self.std
return mean + std*sqrt(2)*erfinv(2*p - 1)
def Normal(name, mean, std):
r"""
Create a continuous random variable with a Normal distribution.
Explanation
===========
The density of the Normal distribution is given by
.. math::
f(x) := \frac{1}{\sigma\sqrt{2\pi}} e^{ -\frac{(x-\mu)^2}{2\sigma^2} }
Parameters
==========
mu : Real number or a list representing the mean or the mean vector
sigma : Real number or a positive definite square matrix,
:math:`\sigma^2 > 0` the variance
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Normal, density, E, std, cdf, skewness, quantile, marginal_distribution
>>> from sympy import Symbol, simplify, pprint
>>> mu = Symbol("mu")
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
>>> y = Symbol("y")
>>> p = Symbol("p")
>>> X = Normal("x", mu, sigma)
>>> density(X)(z)
sqrt(2)*exp(-(-mu + z)**2/(2*sigma**2))/(2*sqrt(pi)*sigma)
>>> C = simplify(cdf(X))(z) # it needs a little more help...
>>> pprint(C, use_unicode=False)
/ ___ \
|\/ 2 *(-mu + z)|
erf|---------------|
\ 2*sigma / 1
-------------------- + -
2 2
>>> quantile(X)(p)
mu + sqrt(2)*sigma*erfinv(2*p - 1)
>>> simplify(skewness(X))
0
>>> X = Normal("x", 0, 1) # Mean 0, standard deviation 1
>>> density(X)(z)
sqrt(2)*exp(-z**2/2)/(2*sqrt(pi))
>>> E(2*X + 1)
1
>>> simplify(std(2*X + 1))
2
>>> m = Normal('X', [1, 2], [[2, 1], [1, 2]])
>>> pprint(density(m)(y, z), use_unicode=False)
2 2
y y*z z
- -- + --- - -- + z - 1
___ 3 3 3
\/ 3 *e
------------------------------
6*pi
>>> marginal_distribution(m, m[0])(1)
1/(2*sqrt(pi))
References
==========
.. [1] https://en.wikipedia.org/wiki/Normal_distribution
.. [2] http://mathworld.wolfram.com/NormalDistributionFunction.html
"""
if isinstance(mean, list) or getattr(mean, 'is_Matrix', False) and\
isinstance(std, list) or getattr(std, 'is_Matrix', False):
from sympy.stats.joint_rv_types import MultivariateNormal
return MultivariateNormal(name, mean, std)
return rv(name, NormalDistribution, (mean, std))
#-------------------------------------------------------------------------------
# Inverse Gaussian distribution ----------------------------------------------------------
class GaussianInverseDistribution(SingleContinuousDistribution):
_argnames = ('mean', 'shape')
@property
def set(self):
return Interval(0, oo)
@staticmethod
def check(mean, shape):
_value_check(shape > 0, "Shape parameter must be positive")
_value_check(mean > 0, "Mean must be positive")
def pdf(self, x):
mu, s = self.mean, self.shape
return exp(-s*(x - mu)**2 / (2*x*mu**2)) * sqrt(s/(2*pi*x**3))
def _cdf(self, x):
from sympy.stats import cdf
mu, s = self.mean, self.shape
stdNormalcdf = cdf(Normal('x', 0, 1))
first_term = stdNormalcdf(sqrt(s/x) * ((x/mu) - S.One))
second_term = exp(2*s/mu) * stdNormalcdf(-sqrt(s/x)*(x/mu + S.One))
return first_term + second_term
def _characteristic_function(self, t):
mu, s = self.mean, self.shape
return exp((s/mu)*(1 - sqrt(1 - (2*mu**2*I*t)/s)))
def _moment_generating_function(self, t):
mu, s = self.mean, self.shape
return exp((s/mu)*(1 - sqrt(1 - (2*mu**2*t)/s)))
def GaussianInverse(name, mean, shape):
r"""
Create a continuous random variable with an Inverse Gaussian distribution.
Inverse Gaussian distribution is also known as Wald distribution.
Explanation
===========
The density of the Inverse Gaussian distribution is given by
.. math::
f(x) := \sqrt{\frac{\lambda}{2\pi x^3}} e^{-\frac{\lambda(x-\mu)^2}{2x\mu^2}}
Parameters
==========
mu :
Positive number representing the mean.
lambda :
Positive number representing the shape parameter.
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import GaussianInverse, density, E, std, skewness
>>> from sympy import Symbol, pprint
>>> mu = Symbol("mu", positive=True)
>>> lamda = Symbol("lambda", positive=True)
>>> z = Symbol("z", positive=True)
>>> X = GaussianInverse("x", mu, lamda)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
2
-lambda*(-mu + z)
-------------------
2
___ ________ 2*mu *z
\/ 2 *\/ lambda *e
-------------------------------------
____ 3/2
2*\/ pi *z
>>> E(X)
mu
>>> std(X).expand()
mu**(3/2)/sqrt(lambda)
>>> skewness(X).expand()
3*sqrt(mu)/sqrt(lambda)
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
.. [2] http://mathworld.wolfram.com/InverseGaussianDistribution.html
"""
return rv(name, GaussianInverseDistribution, (mean, shape))
Wald = GaussianInverse
#-------------------------------------------------------------------------------
# Pareto distribution ----------------------------------------------------------
class ParetoDistribution(SingleContinuousDistribution):
_argnames = ('xm', 'alpha')
@property
def set(self):
return Interval(self.xm, oo)
@staticmethod
def check(xm, alpha):
_value_check(xm > 0, "Xm must be positive")
_value_check(alpha > 0, "Alpha must be positive")
def pdf(self, x):
xm, alpha = self.xm, self.alpha
return alpha * xm**alpha / x**(alpha + 1)
def _cdf(self, x):
xm, alpha = self.xm, self.alpha
return Piecewise(
(S.One - xm**alpha/x**alpha, x>=xm),
(0, True),
)
def _moment_generating_function(self, t):
xm, alpha = self.xm, self.alpha
return alpha * (-xm*t)**alpha * uppergamma(-alpha, -xm*t)
def _characteristic_function(self, t):
xm, alpha = self.xm, self.alpha
return alpha * (-I * xm * t) ** alpha * uppergamma(-alpha, -I * xm * t)
def Pareto(name, xm, alpha):
r"""
Create a continuous random variable with the Pareto distribution.
Explanation
===========
The density of the Pareto distribution is given by
.. math::
f(x) := \frac{\alpha\,x_m^\alpha}{x^{\alpha+1}}
with :math:`x \in [x_m,\infty]`.
Parameters
==========
xm : Real number, `x_m > 0`, a scale
alpha : Real number, `\alpha > 0`, a shape
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Pareto, density
>>> from sympy import Symbol
>>> xm = Symbol("xm", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> z = Symbol("z")
>>> X = Pareto("x", xm, beta)
>>> density(X)(z)
beta*xm**beta*z**(-beta - 1)
References
==========
.. [1] https://en.wikipedia.org/wiki/Pareto_distribution
.. [2] http://mathworld.wolfram.com/ParetoDistribution.html
"""
return rv(name, ParetoDistribution, (xm, alpha))
#-------------------------------------------------------------------------------
# PowerFunction distribution ---------------------------------------------------
class PowerFunctionDistribution(SingleContinuousDistribution):
_argnames=('alpha','a','b')
@property
def set(self):
return Interval(self.a, self.b)
@staticmethod
def check(alpha, a, b):
_value_check(a.is_real, "Continuous Boundary parameter should be real.")
_value_check(b.is_real, "Continuous Boundary parameter should be real.")
_value_check(a < b, " 'a' the left Boundary must be smaller than 'b' the right Boundary." )
_value_check(alpha.is_positive, "Continuous Shape parameter should be positive.")
def pdf(self, x):
alpha, a, b = self.alpha, self.a, self.b
num = alpha*(x - a)**(alpha - 1)
den = (b - a)**alpha
return num/den
def PowerFunction(name, alpha, a, b):
r"""
Creates a continuous random variable with a Power Function Distribution.
Explanation
===========
The density of PowerFunction distribution is given by
.. math::
f(x) := \frac{{\alpha}(x - a)^{\alpha - 1}}{(b - a)^{\alpha}}
with :math:`x \in [a,b]`.
Parameters
==========
alpha: Positive number, `0 < alpha` the shape paramater
a : Real number, :math:`-\infty < a` the left boundary
b : Real number, :math:`a < b < \infty` the right boundary
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import PowerFunction, density, cdf, E, variance
>>> from sympy import Symbol
>>> alpha = Symbol("alpha", positive=True)
>>> a = Symbol("a", real=True)
>>> b = Symbol("b", real=True)
>>> z = Symbol("z")
>>> X = PowerFunction("X", 2, a, b)
>>> density(X)(z)
(-2*a + 2*z)/(-a + b)**2
>>> cdf(X)(z)
Piecewise((a**2/(a**2 - 2*a*b + b**2) - 2*a*z/(a**2 - 2*a*b + b**2) +
z**2/(a**2 - 2*a*b + b**2), a <= z), (0, True))
>>> alpha = 2
>>> a = 0
>>> b = 1
>>> Y = PowerFunction("Y", alpha, a, b)
>>> E(Y)
2/3
>>> variance(Y)
1/18
References
==========
.. [1] http://www.mathwave.com/help/easyfit/html/analyses/distributions/power_func.html
"""
return rv(name, PowerFunctionDistribution, (alpha, a, b))
#-------------------------------------------------------------------------------
# QuadraticU distribution ------------------------------------------------------
class QuadraticUDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
@property
def set(self):
return Interval(self.a, self.b)
@staticmethod
def check(a, b):
_value_check(b > a, "Parameter b must be in range (%s, oo)."%(a))
def pdf(self, x):
a, b = self.a, self.b
alpha = 12 / (b-a)**3
beta = (a+b) / 2
return Piecewise(
(alpha * (x-beta)**2, And(a<=x, x<=b)),
(S.Zero, True))
def _moment_generating_function(self, t):
a, b = self.a, self.b
return -3 * (exp(a*t) * (4 + (a**2 + 2*a*(-2 + b) + b**2) * t) \
- exp(b*t) * (4 + (-4*b + (a + b)**2) * t)) / ((a-b)**3 * t**2)
def _characteristic_function(self, t):
a, b = self.a, self.b
return -3*I*(exp(I*a*t*exp(I*b*t)) * (4*I - (-4*b + (a+b)**2)*t)) \
/ ((a-b)**3 * t**2)
def QuadraticU(name, a, b):
r"""
Create a Continuous Random Variable with a U-quadratic distribution.
Explanation
===========
The density of the U-quadratic distribution is given by
.. math::
f(x) := \alpha (x-\beta)^2
with :math:`x \in [a,b]`.
Parameters
==========
a : Real number
b : Real number, :math:`a < b`
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import QuadraticU, density
>>> from sympy import Symbol, pprint
>>> a = Symbol("a", real=True)
>>> b = Symbol("b", real=True)
>>> z = Symbol("z")
>>> X = QuadraticU("x", a, b)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
/ 2
| / a b \
|12*|- - - - + z|
| \ 2 2 /
<----------------- for And(b >= z, a <= z)
| 3
| (-a + b)
|
\ 0 otherwise
References
==========
.. [1] https://en.wikipedia.org/wiki/U-quadratic_distribution
"""
return rv(name, QuadraticUDistribution, (a, b))
#-------------------------------------------------------------------------------
# RaisedCosine distribution ----------------------------------------------------
class RaisedCosineDistribution(SingleContinuousDistribution):
_argnames = ('mu', 's')
@property
def set(self):
return Interval(self.mu - self.s, self.mu + self.s)
@staticmethod
def check(mu, s):
_value_check(s > 0, "s must be positive")
def pdf(self, x):
mu, s = self.mu, self.s
return Piecewise(
((1+cos(pi*(x-mu)/s)) / (2*s), And(mu-s<=x, x<=mu+s)),
(S.Zero, True))
def _characteristic_function(self, t):
mu, s = self.mu, self.s
return Piecewise((exp(-I*pi*mu/s)/2, Eq(t, -pi/s)),
(exp(I*pi*mu/s)/2, Eq(t, pi/s)),
(pi**2*sin(s*t)*exp(I*mu*t) / (s*t*(pi**2 - s**2*t**2)), True))
def _moment_generating_function(self, t):
mu, s = self.mu, self.s
return pi**2 * sinh(s*t) * exp(mu*t) / (s*t*(pi**2 + s**2*t**2))
def RaisedCosine(name, mu, s):
r"""
Create a Continuous Random Variable with a raised cosine distribution.
Explanation
===========
The density of the raised cosine distribution is given by
.. math::
f(x) := \frac{1}{2s}\left(1+\cos\left(\frac{x-\mu}{s}\pi\right)\right)
with :math:`x \in [\mu-s,\mu+s]`.
Parameters
==========
mu : Real number
s : Real number, `s > 0`
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import RaisedCosine, density
>>> from sympy import Symbol, pprint
>>> mu = Symbol("mu", real=True)
>>> s = Symbol("s", positive=True)
>>> z = Symbol("z")
>>> X = RaisedCosine("x", mu, s)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
/ /pi*(-mu + z)\
|cos|------------| + 1
| \ s /
<--------------------- for And(z >= mu - s, z <= mu + s)
| 2*s
|
\ 0 otherwise
References
==========
.. [1] https://en.wikipedia.org/wiki/Raised_cosine_distribution
"""
return rv(name, RaisedCosineDistribution, (mu, s))
#-------------------------------------------------------------------------------
# Rayleigh distribution --------------------------------------------------------
class RayleighDistribution(SingleContinuousDistribution):
_argnames = ('sigma',)
set = Interval(0, oo)
@staticmethod
def check(sigma):
_value_check(sigma > 0, "Scale parameter sigma must be positive.")
def pdf(self, x):
sigma = self.sigma
return x/sigma**2*exp(-x**2/(2*sigma**2))
def _cdf(self, x):
sigma = self.sigma
return 1 - exp(-(x**2/(2*sigma**2)))
def _characteristic_function(self, t):
sigma = self.sigma
return 1 - sigma*t*exp(-sigma**2*t**2/2) * sqrt(pi/2) * (erfi(sigma*t/sqrt(2)) - I)
def _moment_generating_function(self, t):
sigma = self.sigma
return 1 + sigma*t*exp(sigma**2*t**2/2) * sqrt(pi/2) * (erf(sigma*t/sqrt(2)) + 1)
def Rayleigh(name, sigma):
r"""
Create a continuous random variable with a Rayleigh distribution.
Explanation
===========
The density of the Rayleigh distribution is given by
.. math ::
f(x) := \frac{x}{\sigma^2} e^{-x^2/2\sigma^2}
with :math:`x > 0`.
Parameters
==========
sigma : Real number, `\sigma > 0`
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Rayleigh, density, E, variance
>>> from sympy import Symbol
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
>>> X = Rayleigh("x", sigma)
>>> density(X)(z)
z*exp(-z**2/(2*sigma**2))/sigma**2
>>> E(X)
sqrt(2)*sqrt(pi)*sigma/2
>>> variance(X)
-pi*sigma**2/2 + 2*sigma**2
References
==========
.. [1] https://en.wikipedia.org/wiki/Rayleigh_distribution
.. [2] http://mathworld.wolfram.com/RayleighDistribution.html
"""
return rv(name, RayleighDistribution, (sigma, ))
#-------------------------------------------------------------------------------
# Reciprocal distribution --------------------------------------------------------
class ReciprocalDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
@property
def set(self):
return Interval(self.a, self.b)
@staticmethod
def check(a, b):
_value_check(a > 0, "Parameter > 0. a = %s"%a)
_value_check((a < b),
"Parameter b must be in range (%s, +oo]. b = %s"%(a, b))
def pdf(self, x):
a, b = self.a, self.b
return 1/(x*(log(b) - log(a)))
def Reciprocal(name, a, b):
r"""Creates a continuous random variable with a reciprocal distribution.
Parameters
==========
a : Real number, :math:`0 < a`
b : Real number, :math:`a < b`
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Reciprocal, density, cdf
>>> from sympy import symbols
>>> a, b, x = symbols('a, b, x', positive=True)
>>> R = Reciprocal('R', a, b)
>>> density(R)(x)
1/(x*(-log(a) + log(b)))
>>> cdf(R)(x)
Piecewise((log(a)/(log(a) - log(b)) - log(x)/(log(a) - log(b)), a <= x), (0, True))
Reference
=========
.. [1] https://en.wikipedia.org/wiki/Reciprocal_distribution
"""
return rv(name, ReciprocalDistribution, (a, b))
#-------------------------------------------------------------------------------
# Shifted Gompertz distribution ------------------------------------------------
class ShiftedGompertzDistribution(SingleContinuousDistribution):
_argnames = ('b', 'eta')
set = Interval(0, oo)
@staticmethod
def check(b, eta):
_value_check(b > 0, "b must be positive")
_value_check(eta > 0, "eta must be positive")
def pdf(self, x):
b, eta = self.b, self.eta
return b*exp(-b*x)*exp(-eta*exp(-b*x))*(1+eta*(1-exp(-b*x)))
def ShiftedGompertz(name, b, eta):
r"""
Create a continuous random variable with a Shifted Gompertz distribution.
Explanation
===========
The density of the Shifted Gompertz distribution is given by
.. math::
f(x) := b e^{-b x} e^{-\eta \exp(-b x)} \left[1 + \eta(1 - e^(-bx)) \right]
with :math: 'x \in [0, \inf)'.
Parameters
==========
b: Real number, 'b > 0' a scale
eta: Real number, 'eta > 0' a shape
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import ShiftedGompertz, density
>>> from sympy import Symbol
>>> b = Symbol("b", positive=True)
>>> eta = Symbol("eta", positive=True)
>>> x = Symbol("x")
>>> X = ShiftedGompertz("x", b, eta)
>>> density(X)(x)
b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x))
References
==========
.. [1] https://en.wikipedia.org/wiki/Shifted_Gompertz_distribution
"""
return rv(name, ShiftedGompertzDistribution, (b, eta))
#-------------------------------------------------------------------------------
# StudentT distribution --------------------------------------------------------
class StudentTDistribution(SingleContinuousDistribution):
_argnames = ('nu',)
set = Interval(-oo, oo)
@staticmethod
def check(nu):
_value_check(nu > 0, "Degrees of freedom nu must be positive.")
def pdf(self, x):
nu = self.nu
return 1/(sqrt(nu)*beta_fn(S.Half, nu/2))*(1 + x**2/nu)**(-(nu + 1)/2)
def _cdf(self, x):
nu = self.nu
return S.Half + x*gamma((nu+1)/2)*hyper((S.Half, (nu+1)/2),
(Rational(3, 2),), -x**2/nu)/(sqrt(pi*nu)*gamma(nu/2))
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function for the Student-T distribution is undefined.')
def StudentT(name, nu):
r"""
Create a continuous random variable with a student's t distribution.
Explanation
===========
The density of the student's t distribution is given by
.. math::
f(x) := \frac{\Gamma \left(\frac{\nu+1}{2} \right)}
{\sqrt{\nu\pi}\Gamma \left(\frac{\nu}{2} \right)}
\left(1+\frac{x^2}{\nu} \right)^{-\frac{\nu+1}{2}}
Parameters
==========
nu : Real number, `\nu > 0`, the degrees of freedom
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import StudentT, density, cdf
>>> from sympy import Symbol, pprint
>>> nu = Symbol("nu", positive=True)
>>> z = Symbol("z")
>>> X = StudentT("x", nu)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
nu 1
- -- - -
2 2
/ 2\
| z |
|1 + --|
\ nu/
-----------------
____ / nu\
\/ nu *B|1/2, --|
\ 2 /
>>> cdf(X)(z)
1/2 + z*gamma(nu/2 + 1/2)*hyper((1/2, nu/2 + 1/2), (3/2,),
-z**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Student_t-distribution
.. [2] http://mathworld.wolfram.com/Studentst-Distribution.html
"""
return rv(name, StudentTDistribution, (nu, ))
#-------------------------------------------------------------------------------
# Trapezoidal distribution ------------------------------------------------------
class TrapezoidalDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b', 'c', 'd')
@property
def set(self):
return Interval(self.a, self.d)
@staticmethod
def check(a, b, c, d):
_value_check(a < d, "Lower bound parameter a < %s. a = %s"%(d, a))
_value_check((a <= b, b < c),
"Level start parameter b must be in range [%s, %s). b = %s"%(a, c, b))
_value_check((b < c, c <= d),
"Level end parameter c must be in range (%s, %s]. c = %s"%(b, d, c))
_value_check(d >= c, "Upper bound parameter d > %s. d = %s"%(c, d))
def pdf(self, x):
a, b, c, d = self.a, self.b, self.c, self.d
return Piecewise(
(2*(x-a) / ((b-a)*(d+c-a-b)), And(a <= x, x < b)),
(2 / (d+c-a-b), And(b <= x, x < c)),
(2*(d-x) / ((d-c)*(d+c-a-b)), And(c <= x, x <= d)),
(S.Zero, True))
def Trapezoidal(name, a, b, c, d):
r"""
Create a continuous random variable with a trapezoidal distribution.
Explanation
===========
The density of the trapezoidal distribution is given by
.. math::
f(x) := \begin{cases}
0 & \mathrm{for\ } x < a, \\
\frac{2(x-a)}{(b-a)(d+c-a-b)} & \mathrm{for\ } a \le x < b, \\
\frac{2}{d+c-a-b} & \mathrm{for\ } b \le x < c, \\
\frac{2(d-x)}{(d-c)(d+c-a-b)} & \mathrm{for\ } c \le x < d, \\
0 & \mathrm{for\ } d < x.
\end{cases}
Parameters
==========
a : Real number, :math:`a < d`
b : Real number, :math:`a <= b < c`
c : Real number, :math:`b < c <= d`
d : Real number
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Trapezoidal, density
>>> from sympy import Symbol, pprint
>>> a = Symbol("a")
>>> b = Symbol("b")
>>> c = Symbol("c")
>>> d = Symbol("d")
>>> z = Symbol("z")
>>> X = Trapezoidal("x", a,b,c,d)
>>> pprint(density(X)(z), use_unicode=False)
/ -2*a + 2*z
|------------------------- for And(a <= z, b > z)
|(-a + b)*(-a - b + c + d)
|
| 2
| -------------- for And(b <= z, c > z)
< -a - b + c + d
|
| 2*d - 2*z
|------------------------- for And(d >= z, c <= z)
|(-c + d)*(-a - b + c + d)
|
\ 0 otherwise
References
==========
.. [1] https://en.wikipedia.org/wiki/Trapezoidal_distribution
"""
return rv(name, TrapezoidalDistribution, (a, b, c, d))
#-------------------------------------------------------------------------------
# Triangular distribution ------------------------------------------------------
class TriangularDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b', 'c')
@property
def set(self):
return Interval(self.a, self.b)
@staticmethod
def check(a, b, c):
_value_check(b > a, "Parameter b > %s. b = %s"%(a, b))
_value_check((a <= c, c <= b),
"Parameter c must be in range [%s, %s]. c = %s"%(a, b, c))
def pdf(self, x):
a, b, c = self.a, self.b, self.c
return Piecewise(
(2*(x - a)/((b - a)*(c - a)), And(a <= x, x < c)),
(2/(b - a), Eq(x, c)),
(2*(b - x)/((b - a)*(b - c)), And(c < x, x <= b)),
(S.Zero, True))
def _characteristic_function(self, t):
a, b, c = self.a, self.b, self.c
return -2 *((b-c) * exp(I*a*t) - (b-a) * exp(I*c*t) + (c-a) * exp(I*b*t)) / ((b-a)*(c-a)*(b-c)*t**2)
def _moment_generating_function(self, t):
a, b, c = self.a, self.b, self.c
return 2 * ((b - c) * exp(a * t) - (b - a) * exp(c * t) + (c - a) * exp(b * t)) / (
(b - a) * (c - a) * (b - c) * t ** 2)
def Triangular(name, a, b, c):
r"""
Create a continuous random variable with a triangular distribution.
Explanation
===========
The density of the triangular distribution is given by
.. math::
f(x) := \begin{cases}
0 & \mathrm{for\ } x < a, \\
\frac{2(x-a)}{(b-a)(c-a)} & \mathrm{for\ } a \le x < c, \\
\frac{2}{b-a} & \mathrm{for\ } x = c, \\
\frac{2(b-x)}{(b-a)(b-c)} & \mathrm{for\ } c < x \le b, \\
0 & \mathrm{for\ } b < x.
\end{cases}
Parameters
==========
a : Real number, :math:`a \in \left(-\infty, \infty\right)`
b : Real number, :math:`a < b`
c : Real number, :math:`a \leq c \leq b`
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Triangular, density
>>> from sympy import Symbol, pprint
>>> a = Symbol("a")
>>> b = Symbol("b")
>>> c = Symbol("c")
>>> z = Symbol("z")
>>> X = Triangular("x", a,b,c)
>>> pprint(density(X)(z), use_unicode=False)
/ -2*a + 2*z
|----------------- for And(a <= z, c > z)
|(-a + b)*(-a + c)
|
| 2
| ------ for c = z
< -a + b
|
| 2*b - 2*z
|---------------- for And(b >= z, c < z)
|(-a + b)*(b - c)
|
\ 0 otherwise
References
==========
.. [1] https://en.wikipedia.org/wiki/Triangular_distribution
.. [2] http://mathworld.wolfram.com/TriangularDistribution.html
"""
return rv(name, TriangularDistribution, (a, b, c))
#-------------------------------------------------------------------------------
# Uniform distribution ---------------------------------------------------------
class UniformDistribution(SingleContinuousDistribution):
_argnames = ('left', 'right')
@property
def set(self):
return Interval(self.left, self.right)
@staticmethod
def check(left, right):
_value_check(left < right, "Lower limit should be less than Upper limit.")
def pdf(self, x):
left, right = self.left, self.right
return Piecewise(
(S.One/(right - left), And(left <= x, x <= right)),
(S.Zero, True)
)
def _cdf(self, x):
left, right = self.left, self.right
return Piecewise(
(S.Zero, x < left),
((x - left)/(right - left), x <= right),
(S.One, True)
)
def _characteristic_function(self, t):
left, right = self.left, self.right
return Piecewise(((exp(I*t*right) - exp(I*t*left)) / (I*t*(right - left)), Ne(t, 0)),
(S.One, True))
def _moment_generating_function(self, t):
left, right = self.left, self.right
return Piecewise(((exp(t*right) - exp(t*left)) / (t * (right - left)), Ne(t, 0)),
(S.One, True))
def expectation(self, expr, var, **kwargs):
from sympy import Max, Min
kwargs['evaluate'] = True
result = SingleContinuousDistribution.expectation(self, expr, var, **kwargs)
result = result.subs({Max(self.left, self.right): self.right,
Min(self.left, self.right): self.left})
return result
def Uniform(name, left, right):
r"""
Create a continuous random variable with a uniform distribution.
Explanation
===========
The density of the uniform distribution is given by
.. math::
f(x) := \begin{cases}
\frac{1}{b - a} & \text{for } x \in [a,b] \\
0 & \text{otherwise}
\end{cases}
with :math:`x \in [a,b]`.
Parameters
==========
a : Real number, :math:`-\infty < a` the left boundary
b : Real number, :math:`a < b < \infty` the right boundary
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Uniform, density, cdf, E, variance
>>> from sympy import Symbol, simplify
>>> a = Symbol("a", negative=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = Uniform("x", a, b)
>>> density(X)(z)
Piecewise((1/(-a + b), (b >= z) & (a <= z)), (0, True))
>>> cdf(X)(z)
Piecewise((0, a > z), ((-a + z)/(-a + b), b >= z), (1, True))
>>> E(X)
a/2 + b/2
>>> simplify(variance(X))
a**2/12 - a*b/6 + b**2/12
References
==========
.. [1] https://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29
.. [2] http://mathworld.wolfram.com/UniformDistribution.html
"""
return rv(name, UniformDistribution, (left, right))
#-------------------------------------------------------------------------------
# UniformSum distribution ------------------------------------------------------
class UniformSumDistribution(SingleContinuousDistribution):
_argnames = ('n',)
@property
def set(self):
return Interval(0, self.n)
@staticmethod
def check(n):
_value_check((n > 0, n.is_integer),
"Parameter n must be positive integer.")
def pdf(self, x):
n = self.n
k = Dummy("k")
return 1/factorial(
n - 1)*Sum((-1)**k*binomial(n, k)*(x - k)**(n - 1), (k, 0, floor(x)))
def _cdf(self, x):
n = self.n
k = Dummy("k")
return Piecewise((S.Zero, x < 0),
(1/factorial(n)*Sum((-1)**k*binomial(n, k)*(x - k)**(n),
(k, 0, floor(x))), x <= n),
(S.One, True))
def _characteristic_function(self, t):
return ((exp(I*t) - 1) / (I*t))**self.n
def _moment_generating_function(self, t):
return ((exp(t) - 1) / t)**self.n
def UniformSum(name, n):
r"""
Create a continuous random variable with an Irwin-Hall distribution.
Explanation
===========
The probability distribution function depends on a single parameter
$n$ which is an integer.
The density of the Irwin-Hall distribution is given by
.. math ::
f(x) := \frac{1}{(n-1)!}\sum_{k=0}^{\left\lfloor x\right\rfloor}(-1)^k
\binom{n}{k}(x-k)^{n-1}
Parameters
==========
n : A positive Integer, `n > 0`
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import UniformSum, density, cdf
>>> from sympy import Symbol, pprint
>>> n = Symbol("n", integer=True)
>>> z = Symbol("z")
>>> X = UniformSum("x", n)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
floor(z)
___
\ `
\ k n - 1 /n\
) (-1) *(-k + z) *| |
/ \k/
/__,
k = 0
--------------------------------
(n - 1)!
>>> cdf(X)(z)
Piecewise((0, z < 0), (Sum((-1)**_k*(-_k + z)**n*binomial(n, _k),
(_k, 0, floor(z)))/factorial(n), n >= z), (1, True))
Compute cdf with specific 'x' and 'n' values as follows :
>>> cdf(UniformSum("x", 5), evaluate=False)(2).doit()
9/40
The argument evaluate=False prevents an attempt at evaluation
of the sum for general n, before the argument 2 is passed.
References
==========
.. [1] https://en.wikipedia.org/wiki/Uniform_sum_distribution
.. [2] http://mathworld.wolfram.com/UniformSumDistribution.html
"""
return rv(name, UniformSumDistribution, (n, ))
#-------------------------------------------------------------------------------
# VonMises distribution --------------------------------------------------------
class VonMisesDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'k')
set = Interval(0, 2*pi)
@staticmethod
def check(mu, k):
_value_check(k > 0, "k must be positive")
def pdf(self, x):
mu, k = self.mu, self.k
return exp(k*cos(x-mu)) / (2*pi*besseli(0, k))
def VonMises(name, mu, k):
r"""
Create a Continuous Random Variable with a von Mises distribution.
Explanation
===========
The density of the von Mises distribution is given by
.. math::
f(x) := \frac{e^{\kappa\cos(x-\mu)}}{2\pi I_0(\kappa)}
with :math:`x \in [0,2\pi]`.
Parameters
==========
mu : Real number
Measure of location.
k : Real number
Measure of concentration.
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import VonMises, density
>>> from sympy import Symbol, pprint
>>> mu = Symbol("mu")
>>> k = Symbol("k", positive=True)
>>> z = Symbol("z")
>>> X = VonMises("x", mu, k)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
k*cos(mu - z)
e
------------------
2*pi*besseli(0, k)
References
==========
.. [1] https://en.wikipedia.org/wiki/Von_Mises_distribution
.. [2] http://mathworld.wolfram.com/vonMisesDistribution.html
"""
return rv(name, VonMisesDistribution, (mu, k))
#-------------------------------------------------------------------------------
# Weibull distribution ---------------------------------------------------------
class WeibullDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta')
set = Interval(0, oo)
@staticmethod
def check(alpha, beta):
_value_check(alpha > 0, "Alpha must be positive")
_value_check(beta > 0, "Beta must be positive")
def pdf(self, x):
alpha, beta = self.alpha, self.beta
return beta * (x/alpha)**(beta - 1) * exp(-(x/alpha)**beta) / alpha
def Weibull(name, alpha, beta):
r"""
Create a continuous random variable with a Weibull distribution.
Explanation
===========
The density of the Weibull distribution is given by
.. math::
f(x) := \begin{cases}
\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}
e^{-(x/\lambda)^{k}} & x\geq0\\
0 & x<0
\end{cases}
Parameters
==========
lambda : Real number, :math:`\lambda > 0` a scale
k : Real number, ``k > 0`` a shape
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Weibull, density, E, variance
>>> from sympy import Symbol, simplify
>>> l = Symbol("lambda", positive=True)
>>> k = Symbol("k", positive=True)
>>> z = Symbol("z")
>>> X = Weibull("x", l, k)
>>> density(X)(z)
k*(z/lambda)**(k - 1)*exp(-(z/lambda)**k)/lambda
>>> simplify(E(X))
lambda*gamma(1 + 1/k)
>>> simplify(variance(X))
lambda**2*(-gamma(1 + 1/k)**2 + gamma(1 + 2/k))
References
==========
.. [1] https://en.wikipedia.org/wiki/Weibull_distribution
.. [2] http://mathworld.wolfram.com/WeibullDistribution.html
"""
return rv(name, WeibullDistribution, (alpha, beta))
#-------------------------------------------------------------------------------
# Wigner semicircle distribution -----------------------------------------------
class WignerSemicircleDistribution(SingleContinuousDistribution):
_argnames = ('R',)
@property
def set(self):
return Interval(-self.R, self.R)
@staticmethod
def check(R):
_value_check(R > 0, "Radius R must be positive.")
def pdf(self, x):
R = self.R
return 2/(pi*R**2)*sqrt(R**2 - x**2)
def _characteristic_function(self, t):
return Piecewise((2 * besselj(1, self.R*t) / (self.R*t), Ne(t, 0)),
(S.One, True))
def _moment_generating_function(self, t):
return Piecewise((2 * besseli(1, self.R*t) / (self.R*t), Ne(t, 0)),
(S.One, True))
def WignerSemicircle(name, R):
r"""
Create a continuous random variable with a Wigner semicircle distribution.
Explanation
===========
The density of the Wigner semicircle distribution is given by
.. math::
f(x) := \frac2{\pi R^2}\,\sqrt{R^2-x^2}
with :math:`x \in [-R,R]`.
Parameters
==========
R : Real number, `R > 0`, the radius
Returns
=======
A `RandomSymbol`.
Examples
========
>>> from sympy.stats import WignerSemicircle, density, E
>>> from sympy import Symbol
>>> R = Symbol("R", positive=True)
>>> z = Symbol("z")
>>> X = WignerSemicircle("x", R)
>>> density(X)(z)
2*sqrt(R**2 - z**2)/(pi*R**2)
>>> E(X)
0
References
==========
.. [1] https://en.wikipedia.org/wiki/Wigner_semicircle_distribution
.. [2] http://mathworld.wolfram.com/WignersSemicircleLaw.html
"""
return rv(name, WignerSemicircleDistribution, (R,))
|
245a004b765c9f2ccf0eff35f716ef9d2dbc7b6bb821e76b6f4329106e0b4953 | """
Finite Discrete Random Variables - Prebuilt variable types
Contains
========
FiniteRV
DiscreteUniform
Die
Bernoulli
Coin
Binomial
BetaBinomial
Hypergeometric
Rademacher
IdealSoliton
RobustSoliton
"""
from sympy import (S, sympify, Rational, binomial, cacheit, Integer,
Dummy, Eq, Intersection, Interval, log, Range,
Symbol, Lambda, Piecewise, Or, Gt, Lt, Ge, Le, Contains)
from sympy import beta as beta_fn
from sympy.stats.frv import (SingleFiniteDistribution,
SingleFinitePSpace)
from sympy.stats.rv import _value_check, Density, is_random
__all__ = ['FiniteRV',
'DiscreteUniform',
'Die',
'Bernoulli',
'Coin',
'Binomial',
'BetaBinomial',
'Hypergeometric',
'Rademacher',
'IdealSoliton',
'RobustSoliton',
]
def rv(name, cls, *args, **kwargs):
args = list(map(sympify, args))
dist = cls(*args)
if kwargs.pop('check', True):
dist.check(*args)
pspace = SingleFinitePSpace(name, dist)
if any(is_random(arg) for arg in args):
from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution
pspace = CompoundPSpace(name, CompoundDistribution(dist))
return pspace.value
class FiniteDistributionHandmade(SingleFiniteDistribution):
@property
def dict(self):
return self.args[0]
def pmf(self, x):
x = Symbol('x')
return Lambda(x, Piecewise(*(
[(v, Eq(k, x)) for k, v in self.dict.items()] + [(S.Zero, True)])))
@property
def set(self):
return set(self.dict.keys())
@staticmethod
def check(density):
for p in density.values():
_value_check((p >= 0, p <= 1),
"Probability at a point must be between 0 and 1.")
val = sum(density.values())
_value_check(Eq(val, 1) != S.false, "Total Probability must be 1.")
def FiniteRV(name, density, **kwargs):
r"""
Create a Finite Random Variable given a dict representing the density.
Parameters
==========
name : Symbol
Represents name of the random variable.
density: A dict
Dictionary conatining the pdf of finite distribution
check : bool
If True, it will check whether the given density
integrates to 1 over the given set. If False, it
will not perform this check. Default is False.
Examples
========
>>> from sympy.stats import FiniteRV, P, E
>>> density = {0: .1, 1: .2, 2: .3, 3: .4}
>>> X = FiniteRV('X', density)
>>> E(X)
2.00000000000000
>>> P(X >= 2)
0.700000000000000
Returns
=======
RandomSymbol
"""
# have a default of False while `rv` should have a default of True
kwargs['check'] = kwargs.pop('check', False)
return rv(name, FiniteDistributionHandmade, density, **kwargs)
class DiscreteUniformDistribution(SingleFiniteDistribution):
@staticmethod
def check(*args):
# not using _value_check since there is a
# suggestion for the user
if len(set(args)) != len(args):
from sympy.utilities.iterables import multiset
from sympy.utilities.misc import filldedent
weights = multiset(args)
n = Integer(len(args))
for k in weights:
weights[k] /= n
raise ValueError(filldedent("""
Repeated args detected but set expected. For a
distribution having different weights for each
item use the following:""") + (
'\nS("FiniteRV(%s, %s)")' % ("'X'", weights)))
@property
def p(self):
return Rational(1, len(self.args))
@property # type: ignore
@cacheit
def dict(self):
return {k: self.p for k in self.set}
@property
def set(self):
return set(self.args)
def pmf(self, x):
if x in self.args:
return self.p
else:
return S.Zero
def DiscreteUniform(name, items):
r"""
Create a Finite Random Variable representing a uniform distribution over
the input set.
Parameters
==========
items: list/tuple
Items over which Uniform distribution is to be made
Examples
========
>>> from sympy.stats import DiscreteUniform, density
>>> from sympy import symbols
>>> X = DiscreteUniform('X', symbols('a b c')) # equally likely over a, b, c
>>> density(X).dict
{a: 1/3, b: 1/3, c: 1/3}
>>> Y = DiscreteUniform('Y', list(range(5))) # distribution over a range
>>> density(Y).dict
{0: 1/5, 1: 1/5, 2: 1/5, 3: 1/5, 4: 1/5}
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Discrete_uniform_distribution
.. [2] http://mathworld.wolfram.com/DiscreteUniformDistribution.html
"""
return rv(name, DiscreteUniformDistribution, *items)
class DieDistribution(SingleFiniteDistribution):
_argnames = ('sides',)
@staticmethod
def check(sides):
_value_check((sides.is_positive, sides.is_integer),
"number of sides must be a positive integer.")
@property
def is_symbolic(self):
return not self.sides.is_number
@property
def high(self):
return self.sides
@property
def low(self):
return S.One
@property
def set(self):
if self.is_symbolic:
return Intersection(S.Naturals0, Interval(0, self.sides))
return set(map(Integer, list(range(1, self.sides + 1))))
def pmf(self, x):
x = sympify(x)
if not (x.is_number or x.is_Symbol or is_random(x)):
raise ValueError("'x' expected as an argument of type 'number' or 'Symbol' or , "
"'RandomSymbol' not %s" % (type(x)))
cond = Ge(x, 1) & Le(x, self.sides) & Contains(x, S.Integers)
return Piecewise((S.One/self.sides, cond), (S.Zero, True))
def Die(name, sides=6):
r"""
Create a Finite Random Variable representing a fair die.
Parameters
==========
sides: Integer
Represents the number of sides of the Die, by default is 6
Examples
========
>>> from sympy.stats import Die, density
>>> from sympy import Symbol
>>> D6 = Die('D6', 6) # Six sided Die
>>> density(D6).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
>>> D4 = Die('D4', 4) # Four sided Die
>>> density(D4).dict
{1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4}
>>> n = Symbol('n', positive=True, integer=True)
>>> Dn = Die('Dn', n) # n sided Die
>>> density(Dn).dict
Density(DieDistribution(n))
>>> density(Dn).dict.subs(n, 4).doit()
{1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4}
Returns
=======
RandomSymbol
"""
return rv(name, DieDistribution, sides)
class BernoulliDistribution(SingleFiniteDistribution):
_argnames = ('p', 'succ', 'fail')
@staticmethod
def check(p, succ, fail):
_value_check((p >= 0, p <= 1),
"p should be in range [0, 1].")
@property
def set(self):
return {self.succ, self.fail}
def pmf(self, x):
if isinstance(self.succ, Symbol) and isinstance(self.fail, Symbol):
return Piecewise((self.p, x == self.succ),
(1 - self.p, x == self.fail),
(S.Zero, True))
return Piecewise((self.p, Eq(x, self.succ)),
(1 - self.p, Eq(x, self.fail)),
(S.Zero, True))
def Bernoulli(name, p, succ=1, fail=0):
r"""
Create a Finite Random Variable representing a Bernoulli process.
Parameters
==========
p : Rational number between 0 and 1
Represents probability of success
succ : Integer/symbol/string
Represents event of success
fail : Integer/symbol/string
Represents event of failure
Examples
========
>>> from sympy.stats import Bernoulli, density
>>> from sympy import S
>>> X = Bernoulli('X', S(3)/4) # 1-0 Bernoulli variable, probability = 3/4
>>> density(X).dict
{0: 1/4, 1: 3/4}
>>> X = Bernoulli('X', S.Half, 'Heads', 'Tails') # A fair coin toss
>>> density(X).dict
{Heads: 1/2, Tails: 1/2}
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Bernoulli_distribution
.. [2] http://mathworld.wolfram.com/BernoulliDistribution.html
"""
return rv(name, BernoulliDistribution, p, succ, fail)
def Coin(name, p=S.Half):
r"""
Create a Finite Random Variable representing a Coin toss.
Parameters
==========
p : Rational Numeber between 0 and 1
Represents probability of getting "Heads", by default is Half
Examples
========
>>> from sympy.stats import Coin, density
>>> from sympy import Rational
>>> C = Coin('C') # A fair coin toss
>>> density(C).dict
{H: 1/2, T: 1/2}
>>> C2 = Coin('C2', Rational(3, 5)) # An unfair coin
>>> density(C2).dict
{H: 3/5, T: 2/5}
Returns
=======
RandomSymbol
See Also
========
sympy.stats.Binomial
References
==========
.. [1] https://en.wikipedia.org/wiki/Coin_flipping
"""
return rv(name, BernoulliDistribution, p, 'H', 'T')
class BinomialDistribution(SingleFiniteDistribution):
_argnames = ('n', 'p', 'succ', 'fail')
@staticmethod
def check(n, p, succ, fail):
_value_check((n.is_integer, n.is_nonnegative),
"'n' must be nonnegative integer.")
_value_check((p <= 1, p >= 0),
"p should be in range [0, 1].")
@property
def high(self):
return self.n
@property
def low(self):
return S.Zero
@property
def is_symbolic(self):
return not self.n.is_number
@property
def set(self):
if self.is_symbolic:
return Intersection(S.Naturals0, Interval(0, self.n))
return set(self.dict.keys())
def pmf(self, x):
n, p = self.n, self.p
x = sympify(x)
if not (x.is_number or x.is_Symbol or is_random(x)):
raise ValueError("'x' expected as an argument of type 'number' or 'Symbol' or , "
"'RandomSymbol' not %s" % (type(x)))
cond = Ge(x, 0) & Le(x, n) & Contains(x, S.Integers)
return Piecewise((binomial(n, x) * p**x * (1 - p)**(n - x), cond), (S.Zero, True))
@property # type: ignore
@cacheit
def dict(self):
if self.is_symbolic:
return Density(self)
return {k*self.succ + (self.n-k)*self.fail: self.pmf(k)
for k in range(0, self.n + 1)}
def Binomial(name, n, p, succ=1, fail=0):
r"""
Create a Finite Random Variable representing a binomial distribution.
Parameters
==========
n : Positive Integer
Represents number of trials
p : Rational Number between 0 and 1
Represents probability of success
succ : Integer/symbol/string
Represents event of success, by default is 1
fail : Integer/symbol/string
Represents event of failure, by default is 0
Examples
========
>>> from sympy.stats import Binomial, density
>>> from sympy import S, Symbol
>>> X = Binomial('X', 4, S.Half) # Four "coin flips"
>>> density(X).dict
{0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16}
>>> n = Symbol('n', positive=True, integer=True)
>>> p = Symbol('p', positive=True)
>>> X = Binomial('X', n, S.Half) # n "coin flips"
>>> density(X).dict
Density(BinomialDistribution(n, 1/2, 1, 0))
>>> density(X).dict.subs(n, 4).doit()
{0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16}
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Binomial_distribution
.. [2] http://mathworld.wolfram.com/BinomialDistribution.html
"""
return rv(name, BinomialDistribution, n, p, succ, fail)
#-------------------------------------------------------------------------------
# Beta-binomial distribution ----------------------------------------------------------
class BetaBinomialDistribution(SingleFiniteDistribution):
_argnames = ('n', 'alpha', 'beta')
@staticmethod
def check(n, alpha, beta):
_value_check((n.is_integer, n.is_nonnegative),
"'n' must be nonnegative integer. n = %s." % str(n))
_value_check((alpha > 0),
"'alpha' must be: alpha > 0 . alpha = %s" % str(alpha))
_value_check((beta > 0),
"'beta' must be: beta > 0 . beta = %s" % str(beta))
@property
def high(self):
return self.n
@property
def low(self):
return S.Zero
@property
def is_symbolic(self):
return not self.n.is_number
@property
def set(self):
if self.is_symbolic:
return Intersection(S.Naturals0, Interval(0, self.n))
return set(map(Integer, list(range(0, self.n + 1))))
def pmf(self, k):
n, a, b = self.n, self.alpha, self.beta
return binomial(n, k) * beta_fn(k + a, n - k + b) / beta_fn(a, b)
def BetaBinomial(name, n, alpha, beta):
r"""
Create a Finite Random Variable representing a Beta-binomial distribution.
Parameters
==========
n : Positive Integer
Represents number of trials
alpha : Real positive number
beta : Real positive number
Examples
========
>>> from sympy.stats import BetaBinomial, density
>>> X = BetaBinomial('X', 2, 1, 1)
>>> density(X).dict
{0: 1/3, 1: 2*beta(2, 2), 2: 1/3}
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Beta-binomial_distribution
.. [2] http://mathworld.wolfram.com/BetaBinomialDistribution.html
"""
return rv(name, BetaBinomialDistribution, n, alpha, beta)
class HypergeometricDistribution(SingleFiniteDistribution):
_argnames = ('N', 'm', 'n')
@staticmethod
def check(n, N, m):
_value_check((N.is_integer, N.is_nonnegative),
"'N' must be nonnegative integer. N = %s." % str(n))
_value_check((n.is_integer, n.is_nonnegative),
"'n' must be nonnegative integer. n = %s." % str(n))
_value_check((m.is_integer, m.is_nonnegative),
"'m' must be nonnegative integer. m = %s." % str(n))
@property
def is_symbolic(self):
return not all(x.is_number for x in (self.N, self.m, self.n))
@property
def high(self):
return Piecewise((self.n, Lt(self.n, self.m) != False), (self.m, True))
@property
def low(self):
return Piecewise((0, Gt(0, self.n + self.m - self.N) != False), (self.n + self.m - self.N, True))
@property
def set(self):
N, m, n = self.N, self.m, self.n
if self.is_symbolic:
return Intersection(S.Naturals0, Interval(self.low, self.high))
return {i for i in range(max(0, n + m - N), min(n, m) + 1)}
def pmf(self, k):
N, m, n = self.N, self.m, self.n
return S(binomial(m, k) * binomial(N - m, n - k))/binomial(N, n)
def Hypergeometric(name, N, m, n):
r"""
Create a Finite Random Variable representing a hypergeometric distribution.
Parameters
==========
N : Positive Integer
Represents finite population of size N.
m : Positive Integer
Represents number of trials with required feature.
n : Positive Integer
Represents numbers of draws.
Examples
========
>>> from sympy.stats import Hypergeometric, density
>>> X = Hypergeometric('X', 10, 5, 3) # 10 marbles, 5 white (success), 3 draws
>>> density(X).dict
{0: 1/12, 1: 5/12, 2: 5/12, 3: 1/12}
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Hypergeometric_distribution
.. [2] http://mathworld.wolfram.com/HypergeometricDistribution.html
"""
return rv(name, HypergeometricDistribution, N, m, n)
class RademacherDistribution(SingleFiniteDistribution):
@property
def set(self):
return {-1, 1}
@property
def pmf(self):
k = Dummy('k')
return Lambda(k, Piecewise((S.Half, Or(Eq(k, -1), Eq(k, 1))), (S.Zero, True)))
def Rademacher(name):
r"""
Create a Finite Random Variable representing a Rademacher distribution.
Examples
========
>>> from sympy.stats import Rademacher, density
>>> X = Rademacher('X')
>>> density(X).dict
{-1: 1/2, 1: 1/2}
Returns
=======
RandomSymbol
See Also
========
sympy.stats.Bernoulli
References
==========
.. [1] https://en.wikipedia.org/wiki/Rademacher_distribution
"""
return rv(name, RademacherDistribution)
class IdealSolitonDistribution(SingleFiniteDistribution):
_argnames = ('k',)
@staticmethod
def check(k):
_value_check(k.is_integer and k.is_positive,
"'k' must be a positive integer.")
@property
def low(self):
return S.One
@property
def high(self):
return self.k
@property
def set(self):
return set(list(Range(1, self.k+1)))
@property
@cacheit
def dict(self):
if self.k.is_Symbol:
return Density(self)
d = {1: Rational(1, self.k)}
d.update(dict((i, Rational(1, i*(i - 1))) for i in range(2, self.k + 1)))
return d
def pmf(self, x):
x = sympify(x)
if not (x.is_number or x.is_Symbol or is_random(x)):
raise ValueError("'x' expected as an argument of type 'number' or 'Symbol' or , "
"'RandomSymbol' not %s" % (type(x)))
cond1 = Eq(x, 1) & x.is_integer
cond2 = Ge(x, 1) & Le(x, self.k) & x.is_integer
return Piecewise((1/self.k, cond1), (1/(x*(x - 1)), cond2), (S.Zero, True))
def IdealSoliton(name, k):
r"""
Create a Finite Random Variable of Ideal Soliton Distribution
Parameters
==========
k : Positive Integer
Represents the number of input symbols in an LT (Luby Transform) code.
Examples
========
>>> from sympy.stats import IdealSoliton, density, P, E
>>> sol = IdealSoliton('sol', 5)
>>> density(sol).dict
{1: 1/5, 2: 1/2, 3: 1/6, 4: 1/12, 5: 1/20}
>>> density(sol).set
{1, 2, 3, 4, 5}
>>> from sympy import Symbol
>>> k = Symbol('k', positive=True, integer=True)
>>> sol = IdealSoliton('sol', k)
>>> density(sol).dict
Density(IdealSolitonDistribution(k))
>>> density(sol).dict.subs(k, 10).doit()
{1: 1/10, 2: 1/2, 3: 1/6, 4: 1/12, 5: 1/20, 6: 1/30, 7: 1/42, 8: 1/56, 9: 1/72, 10: 1/90}
>>> E(sol.subs(k, 10))
7381/2520
>>> P(sol.subs(k, 4) > 2)
1/4
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Soliton_distribution#Ideal_distribution
.. [2] http://pages.cs.wisc.edu/~suman/courses/740/papers/luby02lt.pdf
"""
return rv(name, IdealSolitonDistribution, k)
class RobustSolitonDistribution(SingleFiniteDistribution):
_argnames= ('k', 'delta', 'c')
@staticmethod
def check(k, delta, c):
_value_check(k.is_integer and k.is_positive,
"'k' must be a positive integer")
_value_check(Gt(delta, 0) and Le(delta, 1),
"'delta' must be a real number in the interval (0,1)")
_value_check(c.is_positive,
"'c' must be a positive real number.")
@property
def R(self):
return self.c * log(self.k/self.delta) * self.k**0.5
@property
def Z(self):
z = 0
for i in Range(1, round(self.k/self.R)):
z += (1/i)
z += log(self.R/self.delta)
return 1 + z * self.R/self.k
@property
def low(self):
return S.One
@property
def high(self):
return self.k
@property
def set(self):
return set(list(Range(1, self.k+1)))
@property
def is_symbolic(self):
return not (self.k.is_number and self.c.is_number and self.delta.is_number)
def pmf(self, x):
x = sympify(x)
if not (x.is_number or x.is_Symbol or is_random(x)):
raise ValueError("'x' expected as an argument of type 'number' or 'Symbol' or , "
"'RandomSymbol' not %s" % (type(x)))
cond1 = Eq(x, 1) & x.is_integer
cond2 = Ge(x, 1) & Le(x, self.k) & x.is_integer
rho = Piecewise((Rational(1, self.k), cond1), (Rational(1, x*(x-1)), cond2), (S.Zero, True))
cond1 = Ge(x, 1) & Le(x, round(self.k/self.R)-1)
cond2 = Eq(x, round(self.k/self.R))
tau = Piecewise((self.R/(self.k * x), cond1), (self.R * log(self.R/self.delta)/self.k, cond2), (S.Zero, True))
return (rho + tau)/self.Z
def RobustSoliton(name, k, delta, c):
r'''
Create a Finite Random Variable of Robust Soliton Distribution
Parameters
==========
k : Positive Integer
Represents the number of input symbols in an LT (Luby Transform) code.
delta : Positive Rational Number
Represents the failure probability. Must be in the interval (0,1).
c : Positive Rational Number
Constant of proportionality. Values close to 1 are recommended
Examples
========
>>> from sympy.stats import RobustSoliton, density, P, E
>>> robSol = RobustSoliton('robSol', 5, 0.5, 0.01)
>>> density(robSol).dict
{1: 0.204253668152708, 2: 0.490631107897393, 3: 0.165210624506162, 4: 0.0834387731899302, 5: 0.0505633404760675}
>>> density(robSol).set
{1, 2, 3, 4, 5}
>>> from sympy import Symbol
>>> k = Symbol('k', positive=True, integer=True)
>>> c = Symbol('c', positive=True)
>>> robSol = RobustSoliton('robSol', k, 0.5, c)
>>> density(robSol).dict
Density(RobustSolitonDistribution(k, 0.5, c))
>>> density(robSol).dict.subs(k, 10).subs(c, 0.03).doit()
{1: 0.116641095387194, 2: 0.467045731687165, 3: 0.159984123349381, 4: 0.0821431680681869, 5: 0.0505765646770100,
6: 0.0345781523420719, 7: 0.0253132820710503, 8: 0.0194459129233227, 9: 0.0154831166726115, 10: 0.0126733075238887}
>>> E(robSol.subs(k, 10).subs(c, 0.05))
2.91358846104106
>>> P(robSol.subs(k, 4).subs(c, 0.1) > 2)
0.243650614389834
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Soliton_distribution#Robust_distribution
.. [2] http://www.inference.org.uk/mackay/itprnn/ps/588.596.pdf
.. [3] http://pages.cs.wisc.edu/~suman/courses/740/papers/luby02lt.pdf
'''
return rv(name, RobustSolitonDistribution, k, delta, c)
|
059ec38b45f5c7496305284fd025283c77987eb357e81db784d8db7cb51ba9da | from __future__ import print_function, division
import random
import itertools
from typing import Sequence as tSequence, Union as tUnion, List as tList, Tuple as tTuple
from sympy import (Matrix, MatrixSymbol, S, Indexed, Basic, Tuple, Range,
Set, And, Eq, FiniteSet, ImmutableMatrix, Integer, igcd,
Lambda, Mul, Dummy, IndexedBase, Add, Interval, oo,
linsolve, eye, Or, Not, Intersection, factorial, Contains,
Union, Expr, Function, exp, cacheit, sqrt, pi, gamma,
Ge, Piecewise, Symbol, NonSquareMatrixError, EmptySet,
ceiling, MatrixBase, ConditionSet, ones, zeros, Identity,
Rational, Lt, Gt, Le, Ne, BlockMatrix, Sum)
from sympy.core.relational import Relational
from sympy.logic.boolalg import Boolean
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.iterables import strongly_connected_components
from sympy.stats.joint_rv import JointDistribution
from sympy.stats.joint_rv_types import JointDistributionHandmade
from sympy.stats.rv import (RandomIndexedSymbol, random_symbols, RandomSymbol,
_symbol_converter, _value_check, pspace, given,
dependent, is_random, sample_iter, Distribution,
Density)
from sympy.stats.stochastic_process import StochasticPSpace
from sympy.stats.symbolic_probability import Probability, Expectation
from sympy.stats.frv_types import Bernoulli, BernoulliDistribution, FiniteRV
from sympy.stats.drv_types import Poisson, PoissonDistribution
from sympy.stats.crv_types import Normal, NormalDistribution, Gamma, GammaDistribution
from sympy.core.sympify import _sympify, sympify
__all__ = [
'StochasticProcess',
'DiscreteTimeStochasticProcess',
'DiscreteMarkovChain',
'TransitionMatrixOf',
'StochasticStateSpaceOf',
'GeneratorMatrixOf',
'ContinuousMarkovChain',
'BernoulliProcess',
'PoissonProcess',
'WienerProcess',
'GammaProcess'
]
@is_random.register(Indexed)
def _(x):
return is_random(x.base)
@is_random.register(RandomIndexedSymbol) # type: ignore
def _(x):
return True
def _set_converter(itr):
"""
Helper function for converting list/tuple/set to Set.
If parameter is not an instance of list/tuple/set then
no operation is performed.
Returns
=======
Set
The argument converted to Set.
Raises
======
TypeError
If the argument is not an instance of list/tuple/set.
"""
if isinstance(itr, (list, tuple, set)):
itr = FiniteSet(*itr)
if not isinstance(itr, Set):
raise TypeError("%s is not an instance of list/tuple/set."%(itr))
return itr
def _state_converter(itr: tSequence) -> tUnion[Tuple, Range]:
"""
Helper function for converting list/tuple/set/Range/Tuple/FiniteSet
to tuple/Range.
"""
if isinstance(itr, (Tuple, set, FiniteSet)):
itr = Tuple(*(sympify(i) if isinstance(i, str) else i for i in itr))
elif isinstance(itr, (list, tuple)):
# check if states are unique
if len(set(itr)) != len(itr):
raise ValueError('The state space must have unique elements.')
itr = Tuple(*(sympify(i) if isinstance(i, str) else i for i in itr))
elif isinstance(itr, Range):
# the only ordered set in sympy I know of
# try to convert to tuple
try:
itr = Tuple(*(sympify(i) if isinstance(i, str) else i for i in itr))
except (TypeError, ValueError):
pass
else:
raise TypeError("%s is not an instance of list/tuple/set/Range/Tuple/FiniteSet." % (itr))
return itr
def _sym_sympify(arg):
"""
Converts an arbitrary expression to a type that can be used inside SymPy.
As generally strings are unwise to use in the expressions,
it returns the Symbol of argument if the string type argument is passed.
Parameters
=========
arg: The parameter to be converted to be used in Sympy.
Returns
=======
The converted parameter.
"""
if isinstance(arg, str):
return Symbol(arg)
else:
return _sympify(arg)
def _matrix_checks(matrix):
if not isinstance(matrix, (Matrix, MatrixSymbol, ImmutableMatrix)):
raise TypeError("Transition probabilities either should "
"be a Matrix or a MatrixSymbol.")
if matrix.shape[0] != matrix.shape[1]:
raise NonSquareMatrixError("%s is not a square matrix"%(matrix))
if isinstance(matrix, Matrix):
matrix = ImmutableMatrix(matrix.tolist())
return matrix
class StochasticProcess(Basic):
"""
Base class for all the stochastic processes whether
discrete or continuous.
Parameters
==========
sym: Symbol or str
state_space: Set
The state space of the stochastic process, by default S.Reals.
For discrete sets it is zero indexed.
See Also
========
DiscreteTimeStochasticProcess
"""
index_set = S.Reals
def __new__(cls, sym, state_space=S.Reals, **kwargs):
sym = _symbol_converter(sym)
state_space = _set_converter(state_space)
return Basic.__new__(cls, sym, state_space)
@property
def symbol(self):
return self.args[0]
@property
def state_space(self) -> tUnion[FiniteSet, Range]:
if not isinstance(self.args[1], (FiniteSet, Range)):
return FiniteSet(*self.args[1])
return self.args[1]
def _deprecation_warn_distribution(self):
SymPyDeprecationWarning(
feature="Calling distribution with RandomIndexedSymbol",
useinstead="distribution with just timestamp as argument",
issue=20078,
deprecated_since_version="1.7.1"
).warn()
def distribution(self, key=None):
if key is None:
self._deprecation_warn_distribution()
return Distribution()
def density(self, x):
return Density()
def __call__(self, time):
"""
Overridden in ContinuousTimeStochasticProcess.
"""
raise NotImplementedError("Use [] for indexing discrete time stochastic process.")
def __getitem__(self, time):
"""
Overridden in DiscreteTimeStochasticProcess.
"""
raise NotImplementedError("Use () for indexing continuous time stochastic process.")
def probability(self, condition):
raise NotImplementedError()
def joint_distribution(self, *args):
"""
Computes the joint distribution of the random indexed variables.
Parameters
==========
args: iterable
The finite list of random indexed variables/the key of a stochastic
process whose joint distribution has to be computed.
Returns
=======
JointDistribution
The joint distribution of the list of random indexed variables.
An unevaluated object is returned if it is not possible to
compute the joint distribution.
Raises
======
ValueError: When the arguments passed are not of type RandomIndexSymbol
or Number.
"""
args = list(args)
for i, arg in enumerate(args):
if S(arg).is_Number:
if self.index_set.is_subset(S.Integers):
args[i] = self.__getitem__(arg)
else:
args[i] = self.__call__(arg)
elif not isinstance(arg, RandomIndexedSymbol):
raise ValueError("Expected a RandomIndexedSymbol or "
"key not %s"%(type(arg)))
if args[0].pspace.distribution == Distribution():
return JointDistribution(*args)
density = Lambda(tuple(args),
expr=Mul.fromiter(arg.pspace.process.density(arg) for arg in args))
return JointDistributionHandmade(density)
def expectation(self, condition, given_condition):
raise NotImplementedError("Abstract method for expectation queries.")
def sample(self):
raise NotImplementedError("Abstract method for sampling queries.")
class DiscreteTimeStochasticProcess(StochasticProcess):
"""
Base class for all discrete stochastic processes.
"""
def __getitem__(self, time):
"""
For indexing discrete time stochastic processes.
Returns
=======
RandomIndexedSymbol
"""
time = sympify(time)
if not time.is_symbol and time not in self.index_set:
raise IndexError("%s is not in the index set of %s"%(time, self.symbol))
idx_obj = Indexed(self.symbol, time)
pspace_obj = StochasticPSpace(self.symbol, self, self.distribution(time))
return RandomIndexedSymbol(idx_obj, pspace_obj)
class ContinuousTimeStochasticProcess(StochasticProcess):
"""
Base class for all continuous time stochastic process.
"""
def __call__(self, time):
"""
For indexing continuous time stochastic processes.
Returns
=======
RandomIndexedSymbol
"""
time = sympify(time)
if not time.is_symbol and time not in self.index_set:
raise IndexError("%s is not in the index set of %s"%(time, self.symbol))
func_obj = Function(self.symbol)(time)
pspace_obj = StochasticPSpace(self.symbol, self, self.distribution(time))
return RandomIndexedSymbol(func_obj, pspace_obj)
class TransitionMatrixOf(Boolean):
"""
Assumes that the matrix is the transition matrix
of the process.
"""
def __new__(cls, process, matrix):
if not isinstance(process, DiscreteMarkovChain):
raise ValueError("Currently only DiscreteMarkovChain "
"support TransitionMatrixOf.")
matrix = _matrix_checks(matrix)
return Basic.__new__(cls, process, matrix)
process = property(lambda self: self.args[0])
matrix = property(lambda self: self.args[1])
class GeneratorMatrixOf(TransitionMatrixOf):
"""
Assumes that the matrix is the generator matrix
of the process.
"""
def __new__(cls, process, matrix):
if not isinstance(process, ContinuousMarkovChain):
raise ValueError("Currently only ContinuousMarkovChain "
"support GeneratorMatrixOf.")
matrix = _matrix_checks(matrix)
return Basic.__new__(cls, process, matrix)
class StochasticStateSpaceOf(Boolean):
def __new__(cls, process, state_space):
if not isinstance(process, (DiscreteMarkovChain, ContinuousMarkovChain)):
raise ValueError("Currently only DiscreteMarkovChain and ContinuousMarkovChain "
"support StochasticStateSpaceOf.")
state_space = _state_converter(state_space)
if isinstance(state_space, Range):
ss_size = ceiling((state_space.stop - state_space.start) / state_space.step)
else:
ss_size = len(state_space)
state_index = Range(ss_size)
return Basic.__new__(cls, process, state_index)
process = property(lambda self: self.args[0])
state_index = property(lambda self: self.args[1])
class MarkovProcess(StochasticProcess):
"""
Contains methods that handle queries
common to Markov processes.
"""
@property
def number_of_states(self) -> tUnion[Integer, Symbol]:
"""
The number of states in the Markov Chain.
"""
return _sympify(self.args[2].shape[0])
@property
def _state_index(self) -> Range:
"""
Returns state index as Range.
"""
return self.args[1]
@classmethod
def _sanity_checks(cls, state_space, trans_probs):
# Try to never have None as state_space or trans_probs.
# This helps a lot if we get it done at the start.
if (state_space is None) and (trans_probs is None):
_n = Dummy('n', integer=True, nonnegative=True)
state_space = _state_converter(Range(_n))
trans_probs = _matrix_checks(MatrixSymbol('_T', _n, _n))
elif state_space is None:
trans_probs = _matrix_checks(trans_probs)
state_space = _state_converter(Range(trans_probs.shape[0]))
elif trans_probs is None:
state_space = _state_converter(state_space)
if isinstance(state_space, Range):
_n = ceiling((state_space.stop - state_space.start) / state_space.step)
else:
_n = len(state_space)
trans_probs = MatrixSymbol('_T', _n, _n)
else:
state_space = _state_converter(state_space)
trans_probs = _matrix_checks(trans_probs)
# Range object doesn't want to give a symbolic size
# so we do it ourselves.
if isinstance(state_space, Range):
ss_size = ceiling((state_space.stop - state_space.start) / state_space.step)
else:
ss_size = len(state_space)
if ss_size != trans_probs.shape[0]:
raise ValueError('The size of the state space and the number of '
'rows of the transition matrix must be the same.')
return state_space, trans_probs
def _extract_information(self, given_condition):
"""
Helper function to extract information, like,
transition matrix/generator matrix, state space, etc.
"""
if isinstance(self, DiscreteMarkovChain):
trans_probs = self.transition_probabilities
state_index = self._state_index
elif isinstance(self, ContinuousMarkovChain):
trans_probs = self.generator_matrix
state_index = self._state_index
if isinstance(given_condition, And):
gcs = given_condition.args
given_condition = S.true
for gc in gcs:
if isinstance(gc, TransitionMatrixOf):
trans_probs = gc.matrix
if isinstance(gc, StochasticStateSpaceOf):
state_index = gc.state_index
if isinstance(gc, Relational):
given_condition = given_condition & gc
if isinstance(given_condition, TransitionMatrixOf):
trans_probs = given_condition.matrix
given_condition = S.true
if isinstance(given_condition, StochasticStateSpaceOf):
state_index = given_condition.state_index
given_condition = S.true
return trans_probs, state_index, given_condition
def _check_trans_probs(self, trans_probs, row_sum=1):
"""
Helper function for checking the validity of transition
probabilities.
"""
if not isinstance(trans_probs, MatrixSymbol):
rows = trans_probs.tolist()
for row in rows:
if (sum(row) - row_sum) != 0:
raise ValueError("Values in a row must sum to %s. "
"If you are using Float or floats then please use Rational."%(row_sum))
def _work_out_state_index(self, state_index, given_condition, trans_probs):
"""
Helper function to extract state space if there
is a random symbol in the given condition.
"""
# if given condition is None, then there is no need to work out
# state_space from random variables
if given_condition != None:
rand_var = list(given_condition.atoms(RandomSymbol) -
given_condition.atoms(RandomIndexedSymbol))
if len(rand_var) == 1:
state_index = rand_var[0].pspace.set
# `not None` is `True`. So the old test fails for symbolic sizes.
# Need to build the statement differently.
sym_cond = not self.number_of_states.is_Integer
cond1 = not sym_cond and len(state_index) != trans_probs.shape[0]
if cond1:
raise ValueError("state space is not compatible with the transition probabilities.")
if not isinstance(trans_probs.shape[0], Symbol):
state_index = FiniteSet(*[i for i in range(trans_probs.shape[0])])
return state_index
@cacheit
def _preprocess(self, given_condition, evaluate):
"""
Helper function for pre-processing the information.
"""
is_insufficient = False
if not evaluate: # avoid pre-processing if the result is not to be evaluated
return (True, None, None, None)
# extracting transition matrix and state space
trans_probs, state_index, given_condition = self._extract_information(given_condition)
# given_condition does not have sufficient information
# for computations
if trans_probs is None or \
given_condition is None:
is_insufficient = True
else:
# checking transition probabilities
if isinstance(self, DiscreteMarkovChain):
self._check_trans_probs(trans_probs, row_sum=1)
elif isinstance(self, ContinuousMarkovChain):
self._check_trans_probs(trans_probs, row_sum=0)
# working out state space
state_index = self._work_out_state_index(state_index, given_condition, trans_probs)
return is_insufficient, trans_probs, state_index, given_condition
def replace_with_index(self, condition):
if isinstance(condition, Relational):
lhs, rhs = condition.lhs, condition.rhs
if not isinstance(lhs, RandomIndexedSymbol):
lhs, rhs = rhs, lhs
condition = type(condition)(self.index_of.get(lhs, lhs),
self.index_of.get(rhs, rhs))
return condition
def probability(self, condition, given_condition=None, evaluate=True, **kwargs):
"""
Handles probability queries for Markov process.
Parameters
==========
condition: Relational
given_condition: Relational/And
Returns
=======
Probability
If the information is not sufficient.
Expr
In all other cases.
Note
====
Any information passed at the time of query overrides
any information passed at the time of object creation like
transition probabilities, state space.
Pass the transition matrix using TransitionMatrixOf,
generator matrix using GeneratorMatrixOf and state space
using StochasticStateSpaceOf in given_condition using & or And.
"""
check, mat, state_index, new_given_condition = \
self._preprocess(given_condition, evaluate)
rv = list(condition.atoms(RandomIndexedSymbol))
symbolic = False
for sym in rv:
if sym.key.is_symbol:
symbolic = True
break
if check:
return Probability(condition, new_given_condition)
if isinstance(self, ContinuousMarkovChain):
trans_probs = self.transition_probabilities(mat)
elif isinstance(self, DiscreteMarkovChain):
trans_probs = mat
condition = self.replace_with_index(condition)
given_condition = self.replace_with_index(given_condition)
new_given_condition = self.replace_with_index(new_given_condition)
if isinstance(condition, Relational):
if isinstance(new_given_condition, And):
gcs = new_given_condition.args
else:
gcs = (new_given_condition, )
min_key_rv = list(new_given_condition.atoms(RandomIndexedSymbol))
if len(min_key_rv):
min_key_rv = min_key_rv[0]
for r in rv:
if min_key_rv.key.is_symbol or r.key.is_symbol:
continue
if min_key_rv.key > r.key:
return Probability(condition)
else:
min_key_rv = None
return Probability(condition)
if symbolic:
return self._symbolic_probability(condition, new_given_condition, rv, min_key_rv)
if len(rv) > 1:
rv[0] = condition.lhs
rv[1] = condition.rhs
if rv[0].key < rv[1].key:
rv[0], rv[1] = rv[1], rv[0]
if isinstance(condition, Gt):
condition = Lt(condition.lhs, condition.rhs)
elif isinstance(condition, Lt):
condition = Gt(condition.lhs, condition.rhs)
elif isinstance(condition, Ge):
condition = Le(condition.lhs, condition.rhs)
elif isinstance(condition, Le):
condition = Ge(condition.lhs, condition.rhs)
s = Rational(0, 1)
n = len(self.state_space)
if isinstance(condition, Eq) or isinstance(condition, Ne):
for i in range(0, n):
s += self.probability(Eq(rv[0], i), Eq(rv[1], i)) * self.probability(Eq(rv[1], i), new_given_condition)
return s if isinstance(condition, Eq) else 1 - s
else:
upper = 0
greater = False
if isinstance(condition, Ge) or isinstance(condition, Lt):
upper = 1
if isinstance(condition, Gt) or isinstance(condition, Ge):
greater = True
for i in range(0, n):
if i <= n//2:
for j in range(0, i + upper):
s += self.probability(Eq(rv[0], i), Eq(rv[1], j)) * self.probability(Eq(rv[1], j), new_given_condition)
else:
s += self.probability(Eq(rv[0], i), new_given_condition)
for j in range(i + upper, n):
s -= self.probability(Eq(rv[0], i), Eq(rv[1], j)) * self.probability(Eq(rv[1], j), new_given_condition)
return s if greater else 1 - s
rv = rv[0]
states = condition.as_set()
prob, gstate = dict(), None
for gc in gcs:
if gc.has(min_key_rv):
if gc.has(Probability):
p, gp = (gc.rhs, gc.lhs) if isinstance(gc.lhs, Probability) \
else (gc.lhs, gc.rhs)
gr = gp.args[0]
gset = Intersection(gr.as_set(), state_index)
gstate = list(gset)[0]
prob[gset] = p
else:
_, gstate = (gc.lhs.key, gc.rhs) if isinstance(gc.lhs, RandomIndexedSymbol) \
else (gc.rhs.key, gc.lhs)
if not all(k in self.index_set for k in (rv.key, min_key_rv.key)):
raise IndexError("The timestamps of the process are not in it's index set.")
states = Intersection(states, state_index) if not isinstance(self.number_of_states, Symbol) else states
for state in Union(states, FiniteSet(gstate)):
if not state.is_Integer or Ge(state, mat.shape[0]) is True:
raise IndexError("No information is available for (%s, %s) in "
"transition probabilities of shape, (%s, %s). "
"State space is zero indexed."
%(gstate, state, mat.shape[0], mat.shape[1]))
if prob:
gstates = Union(*prob.keys())
if len(gstates) == 1:
gstate = list(gstates)[0]
gprob = list(prob.values())[0]
prob[gstates] = gprob
elif len(gstates) == len(state_index) - 1:
gstate = list(state_index - gstates)[0]
gprob = S.One - sum(prob.values())
prob[state_index - gstates] = gprob
else:
raise ValueError("Conflicting information.")
else:
gprob = S.One
if min_key_rv == rv:
return sum([prob[FiniteSet(state)] for state in states])
if isinstance(self, ContinuousMarkovChain):
return gprob * sum([trans_probs(rv.key - min_key_rv.key).__getitem__((gstate, state))
for state in states])
if isinstance(self, DiscreteMarkovChain):
return gprob * sum([(trans_probs**(rv.key - min_key_rv.key)).__getitem__((gstate, state))
for state in states])
if isinstance(condition, Not):
expr = condition.args[0]
return S.One - self.probability(expr, given_condition, evaluate, **kwargs)
if isinstance(condition, And):
compute_later, state2cond, conds = [], dict(), condition.args
for expr in conds:
if isinstance(expr, Relational):
ris = list(expr.atoms(RandomIndexedSymbol))[0]
if state2cond.get(ris, None) is None:
state2cond[ris] = S.true
state2cond[ris] &= expr
else:
compute_later.append(expr)
ris = []
for ri in state2cond:
ris.append(ri)
cset = Intersection(state2cond[ri].as_set(), state_index)
if len(cset) == 0:
return S.Zero
state2cond[ri] = cset.as_relational(ri)
sorted_ris = sorted(ris, key=lambda ri: ri.key)
prod = self.probability(state2cond[sorted_ris[0]], given_condition, evaluate, **kwargs)
for i in range(1, len(sorted_ris)):
ri, prev_ri = sorted_ris[i], sorted_ris[i-1]
if not isinstance(state2cond[ri], Eq):
raise ValueError("The process is in multiple states at %s, unable to determine the probability."%(ri))
mat_of = TransitionMatrixOf(self, mat) if isinstance(self, DiscreteMarkovChain) else GeneratorMatrixOf(self, mat)
prod *= self.probability(state2cond[ri], state2cond[prev_ri]
& mat_of
& StochasticStateSpaceOf(self, state_index),
evaluate, **kwargs)
for expr in compute_later:
prod *= self.probability(expr, given_condition, evaluate, **kwargs)
return prod
if isinstance(condition, Or):
return sum([self.probability(expr, given_condition, evaluate, **kwargs)
for expr in condition.args])
raise NotImplementedError("Mechanism for handling (%s, %s) queries hasn't been "
"implemented yet."%(condition, given_condition))
def _symbolic_probability(self, condition, new_given_condition, rv, min_key_rv):
#Function to calculate probability for queries with symbols
if isinstance(condition, Relational):
curr_state = new_given_condition.rhs if isinstance(new_given_condition.lhs, RandomIndexedSymbol) \
else new_given_condition.lhs
next_state = condition.rhs if isinstance(condition.lhs, RandomIndexedSymbol) \
else condition.lhs
if isinstance(condition, Eq) or isinstance(condition, Ne):
if isinstance(self, DiscreteMarkovChain):
P = self.transition_probabilities**(rv[0].key - min_key_rv.key)
else:
P = exp(self.generator_matrix*(rv[0].key - min_key_rv.key))
prob = P[curr_state, next_state] if isinstance(condition, Eq) else 1 - P[curr_state, next_state]
return Piecewise((prob, rv[0].key > min_key_rv.key), (Probability(condition), True))
else:
upper = 1
greater = False
if isinstance(condition, Ge) or isinstance(condition, Lt):
upper = 0
if isinstance(condition, Gt) or isinstance(condition, Ge):
greater = True
k = Dummy('k')
condition = Eq(condition.lhs, k) if isinstance(condition.lhs, RandomIndexedSymbol)\
else Eq(condition.rhs, k)
total = Sum(self.probability(condition, new_given_condition), (k, next_state + upper, self.state_space._sup))
return Piecewise((total, rv[0].key > min_key_rv.key), (Probability(condition), True)) if greater\
else Piecewise((1 - total, rv[0].key > min_key_rv.key), (Probability(condition), True))
else:
return Probability(condition, new_given_condition)
def expectation(self, expr, condition=None, evaluate=True, **kwargs):
"""
Handles expectation queries for markov process.
Parameters
==========
expr: RandomIndexedSymbol, Relational, Logic
Condition for which expectation has to be computed. Must
contain a RandomIndexedSymbol of the process.
condition: Relational, Logic
The given conditions under which computations should be done.
Returns
=======
Expectation
Unevaluated object if computations cannot be done due to
insufficient information.
Expr
In all other cases when the computations are successful.
Note
====
Any information passed at the time of query overrides
any information passed at the time of object creation like
transition probabilities, state space.
Pass the transition matrix using TransitionMatrixOf,
generator matrix using GeneratorMatrixOf and state space
using StochasticStateSpaceOf in given_condition using & or And.
"""
check, mat, state_index, condition = \
self._preprocess(condition, evaluate)
if check:
return Expectation(expr, condition)
rvs = random_symbols(expr)
if isinstance(expr, Expr) and isinstance(condition, Eq) \
and len(rvs) == 1:
# handle queries similar to E(f(X[i]), Eq(X[i-m], <some-state>))
condition=self.replace_with_index(condition)
state_index=self.replace_with_index(state_index)
rv = list(rvs)[0]
lhsg, rhsg = condition.lhs, condition.rhs
if not isinstance(lhsg, RandomIndexedSymbol):
lhsg, rhsg = (rhsg, lhsg)
if rhsg not in state_index:
raise ValueError("%s state is not in the state space."%(rhsg))
if rv.key < lhsg.key:
raise ValueError("Incorrect given condition is given, expectation "
"time %s < time %s"%(rv.key, rv.key))
mat_of = TransitionMatrixOf(self, mat) if isinstance(self, DiscreteMarkovChain) else GeneratorMatrixOf(self, mat)
cond = condition & mat_of & \
StochasticStateSpaceOf(self, state_index)
func = lambda s: self.probability(Eq(rv, s), cond) * expr.subs(rv, self._state_index[s])
return sum([func(s) for s in state_index])
raise NotImplementedError("Mechanism for handling (%s, %s) queries hasn't been "
"implemented yet."%(expr, condition))
class DiscreteMarkovChain(DiscreteTimeStochasticProcess, MarkovProcess):
"""
Represents a finite discrete time-homogeneous Markov chain.
This type of Markov Chain can be uniquely characterised by
its (ordered) state space and its one-step transition probability
matrix.
Parameters
==========
sym:
The name given to the Markov Chain
state_space:
Optional, by default, Range(n)
trans_probs:
Optional, by default, MatrixSymbol('_T', n, n)
Examples
========
>>> from sympy.stats import DiscreteMarkovChain, TransitionMatrixOf, P, E
>>> from sympy import Matrix, MatrixSymbol, Eq, symbols
>>> T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]])
>>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
>>> YS = DiscreteMarkovChain("Y")
>>> Y.state_space
{0, 1, 2}
>>> Y.transition_probabilities
Matrix([
[0.5, 0.2, 0.3],
[0.2, 0.5, 0.3],
[0.2, 0.3, 0.5]])
>>> TS = MatrixSymbol('T', 3, 3)
>>> P(Eq(YS[3], 2), Eq(YS[1], 1) & TransitionMatrixOf(YS, TS))
T[0, 2]*T[1, 0] + T[1, 1]*T[1, 2] + T[1, 2]*T[2, 2]
>>> P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2)
0.36
Probabilities will be calculated based on indexes rather
than state names. For example, with the Sunny-Cloudy-Rainy
model with string state names:
>>> from sympy.core.symbol import Str
>>> Y = DiscreteMarkovChain("Y", [Str('Sunny'), Str('Cloudy'), Str('Rainy')], T)
>>> P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2)
0.36
This gives the same answer as the ``[0, 1, 2]`` state space.
Currently, there is no support for state names within probability
and expectation statements. Here is a work-around using ``Str``:
>>> P(Eq(Str('Rainy'), Y[3]), Eq(Y[1], Str('Cloudy'))).round(2)
0.36
Symbol state names can also be used:
>>> sunny, cloudy, rainy = symbols('Sunny, Cloudy, Rainy')
>>> Y = DiscreteMarkovChain("Y", [sunny, cloudy, rainy], T)
>>> P(Eq(Y[3], rainy), Eq(Y[1], cloudy)).round(2)
0.36
Expectations will be calculated as follows:
>>> E(Y[3], Eq(Y[1], cloudy))
0.38*Cloudy + 0.36*Rainy + 0.26*Sunny
Probability of expressions with multiple RandomIndexedSymbols
can also be calculated provided there is only 1 RandomIndexedSymbol
in the given condition. It is always better to use Rational instead
of floating point numbers for the probabilities in the
transition matrix to avoid errors.
>>> from sympy import Gt, Le, Rational
>>> T = Matrix([[Rational(5, 10), Rational(3, 10), Rational(2, 10)], [Rational(2, 10), Rational(7, 10), Rational(1, 10)], [Rational(3, 10), Rational(3, 10), Rational(4, 10)]])
>>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
>>> P(Eq(Y[3], Y[1]), Eq(Y[0], 0)).round(3)
0.409
>>> P(Gt(Y[3], Y[1]), Eq(Y[0], 0)).round(2)
0.36
>>> P(Le(Y[15], Y[10]), Eq(Y[8], 2)).round(7)
0.6963328
Symbolic probability queries are also supported
>>> from sympy import symbols, Matrix, Rational, Eq, Gt
>>> from sympy.stats import P, DiscreteMarkovChain
>>> a, b, c, d = symbols('a b c d')
>>> T = Matrix([[Rational(1, 10), Rational(4, 10), Rational(5, 10)], [Rational(3, 10), Rational(4, 10), Rational(3, 10)], [Rational(7, 10), Rational(2, 10), Rational(1, 10)]])
>>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
>>> query = P(Eq(Y[a], b), Eq(Y[c], d))
>>> query.subs({a:10 ,b:2, c:5, d:1}).round(4)
0.3096
>>> P(Eq(Y[10], 2), Eq(Y[5], 1)).evalf().round(4)
0.3096
>>> query_gt = P(Gt(Y[a], b), Eq(Y[c], d))
>>> query_gt.subs({a:21, b:0, c:5, d:0}).evalf().round(5)
0.64705
>>> P(Gt(Y[21], 0), Eq(Y[5], 0)).round(5)
0.64705
There is limited support for arbitrarily sized states:
>>> n = symbols('n', nonnegative=True, integer=True)
>>> T = MatrixSymbol('T', n, n)
>>> Y = DiscreteMarkovChain("Y", trans_probs=T)
>>> Y.state_space
Range(0, n, 1)
>>> query = P(Eq(Y[a], b), Eq(Y[c], d))
>>> query.subs({a:10, b:2, c:5, d:1})
(T**5)[1, 2]
References
==========
.. [1] https://en.wikipedia.org/wiki/Markov_chain#Discrete-time_Markov_chain
.. [2] https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
"""
index_set = S.Naturals0
def __new__(cls, sym, state_space=None, trans_probs=None):
# type: (Basic, tUnion[str, Symbol], tSequence, tUnion[MatrixBase, MatrixSymbol]) -> DiscreteMarkovChain
sym = _symbol_converter(sym)
state_space, trans_probs = MarkovProcess._sanity_checks(state_space, trans_probs)
obj = Basic.__new__(cls, sym, state_space, trans_probs)
indices = dict()
if isinstance(obj.number_of_states, Integer):
for index, state in enumerate(obj._state_index):
indices[state] = index
obj.index_of = indices
return obj
@property
def transition_probabilities(self) -> tUnion[MatrixBase, MatrixSymbol]:
"""
Transition probabilities of discrete Markov chain,
either an instance of Matrix or MatrixSymbol.
"""
return self.args[2]
def communication_classes(self) -> tList[tTuple[tList[Basic], Boolean, Integer]]:
"""
Returns the list of communication classes that partition
the states of the markov chain.
A communication class is defined to be a set of states
such that every state in that set is reachable from
every other state in that set. Due to its properties
this forms a class in the mathematical sense.
Communication classes are also known as recurrence
classes.
Returns
=======
classes
The ``classes`` are a list of tuples. Each
tuple represents a single communication class
with its properties. The first element in the
tuple is the list of states in the class, the
second element is whether the class is recurrent
and the third element is the period of the
communication class.
Examples
========
>>> from sympy.stats import DiscreteMarkovChain
>>> from sympy import Matrix
>>> T = Matrix([[0, 1, 0],
... [1, 0, 0],
... [1, 0, 0]])
>>> X = DiscreteMarkovChain('X', [1, 2, 3], T)
>>> classes = X.communication_classes()
>>> for states, is_recurrent, period in classes:
... states, is_recurrent, period
([1, 2], True, 2)
([3], False, 1)
From this we can see that states ``1`` and ``2``
communicate, are recurrent and have a period
of 2. We can also see state ``3`` is transient
with a period of 1.
Notes
=====
The algorithm used is of order ``O(n**2)`` where
``n`` is the number of states in the markov chain.
It uses Tarjan's algorithm to find the classes
themselves and then it uses a breadth-first search
algorithm to find each class's periodicity.
Most of the algorithm's components approach ``O(n)``
as the matrix becomes more and more sparse.
References
==========
.. [1] http://www.columbia.edu/~ww2040/4701Sum07/4701-06-Notes-MCII.pdf
.. [2] http://cecas.clemson.edu/~shierd/Shier/markov.pdf
.. [3] https://ujcontent.uj.ac.za/vital/access/services/Download/uj:7506/CONTENT1
.. [4] https://www.mathworks.com/help/econ/dtmc.classify.html
"""
n = self.number_of_states
T = self.transition_probabilities
if isinstance(T, MatrixSymbol):
raise NotImplementedError("Cannot perform the operation with a symbolic matrix.")
# begin Tarjan's algorithm
V = Range(n)
# don't use state names. Rather use state
# indexes since we use them for matrix
# indexing here and later onward
E = [(i, j) for i in V for j in V if T[i, j] != 0]
classes = strongly_connected_components((V, E))
# end Tarjan's algorithm
recurrence = []
periods = []
for class_ in classes:
# begin recurrent check (similar to self._check_trans_probs())
submatrix = T[class_, class_] # get the submatrix with those states
is_recurrent = S.true
rows = submatrix.tolist()
for row in rows:
if (sum(row) - 1) != 0:
is_recurrent = S.false
break
recurrence.append(is_recurrent)
# end recurrent check
# begin breadth-first search
non_tree_edge_values = set()
visited = {class_[0]}
newly_visited = {class_[0]}
level = {class_[0]: 0}
current_level = 0
done = False # imitate a do-while loop
while not done: # runs at most len(class_) times
done = len(visited) == len(class_)
current_level += 1
# this loop and the while loop above run a combined len(class_) number of times.
# so this triple nested loop runs through each of the n states once.
for i in newly_visited:
# the loop below runs len(class_) number of times
# complexity is around about O(n * avg(len(class_)))
newly_visited = {j for j in class_ if T[i, j] != 0}
new_tree_edges = newly_visited.difference(visited)
for j in new_tree_edges:
level[j] = current_level
new_non_tree_edges = newly_visited.intersection(visited)
new_non_tree_edge_values = {level[i]-level[j]+1 for j in new_non_tree_edges}
non_tree_edge_values = non_tree_edge_values.union(new_non_tree_edge_values)
visited = visited.union(new_tree_edges)
# igcd needs at least 2 arguments
positive_ntev = {val_e for val_e in non_tree_edge_values if val_e > 0}
if len(positive_ntev) == 0:
periods.append(len(class_))
elif len(positive_ntev) == 1:
periods.append(positive_ntev.pop())
else:
periods.append(igcd(*positive_ntev))
# end breadth-first search
# convert back to the user's state names
classes = [[self._state_index[i] for i in class_] for class_ in classes]
return sympify(list(zip(classes, recurrence, periods)))
def fundamental_matrix(self):
"""
Each entry fundamental matrix can be interpreted as
the expected number of times the chains is in state j
if it started in state i.
References
==========
.. [1] https://lips.cs.princeton.edu/the-fundamental-matrix-of-a-finite-markov-chain/
"""
_, _, _, Q = self.decompose()
if Q.shape[0] > 0: # if non-ergodic
I = eye(Q.shape[0])
if (I - Q).det() == 0:
raise ValueError("The fundamental matrix doesn't exist.")
return (I - Q).inv().as_immutable()
else: # if ergodic
P = self.transition_probabilities
I = eye(P.shape[0])
w = self.fixed_row_vector()
W = Matrix([list(w) for i in range(0, P.shape[0])])
if (I - P + W).det() == 0:
raise ValueError("The fundamental matrix doesn't exist.")
return (I - P + W).inv().as_immutable()
def absorbing_probabilities(self):
"""
Computes the absorbing probabilities, i.e.,
the ij-th entry of the matrix denotes the
probability of Markov chain being absorbed
in state j starting from state i.
"""
_, _, R, _ = self.decompose()
N = self.fundamental_matrix()
if R is None or N is None:
return None
return N*R
def absorbing_probabilites(self):
SymPyDeprecationWarning(
feature="absorbing_probabilites",
useinstead="absorbing_probabilities",
issue=20042,
deprecated_since_version="1.7"
).warn()
return self.absorbing_probabilities()
def is_regular(self):
tuples = self.communication_classes()
if len(tuples) == 0:
return S.false # not defined for a 0x0 matrix
classes, _, periods = list(zip(*tuples))
return And(len(classes) == 1, periods[0] == 1)
def is_ergodic(self):
tuples = self.communication_classes()
if len(tuples) == 0:
return S.false # not defined for a 0x0 matrix
classes, _, _ = list(zip(*tuples))
return S(len(classes) == 1)
def is_absorbing_state(self, state):
trans_probs = self.transition_probabilities
if isinstance(trans_probs, ImmutableMatrix) and \
state < trans_probs.shape[0]:
return S(trans_probs[state, state]) is S.One
def is_absorbing_chain(self):
states, A, B, C = self.decompose()
r = A.shape[0]
return And(r > 0, A == Identity(r).as_explicit())
def stationary_distribution(self, condition_set=False) -> tUnion[ImmutableMatrix, ConditionSet, Lambda]:
"""
The stationary distribution is any row vector, p, that solves p = pP,
is row stochastic and each element in p must be nonnegative.
That means in matrix form: :math:`(P-I)^T p^T = 0` and
:math:`(1, ..., 1) p = 1`
where ``P`` is the one-step transition matrix.
All time-homogeneous Markov Chains with a finite state space
have at least one stationary distribution. In addition, if
a finite time-homogeneous Markov Chain is irreducible, the
stationary distribution is unique.
Parameters
==========
condition_set : bool
If the chain has a symbolic size or transition matrix,
it will return a ``Lambda`` if ``False`` and return a
``ConditionSet`` if ``True``.
Examples
========
>>> from sympy.stats import DiscreteMarkovChain
>>> from sympy import Matrix, S
An irreducible Markov Chain
>>> T = Matrix([[S(1)/2, S(1)/2, 0],
... [S(4)/5, S(1)/5, 0],
... [1, 0, 0]])
>>> X = DiscreteMarkovChain('X', trans_probs=T)
>>> X.stationary_distribution()
Matrix([[8/13, 5/13, 0]])
A reducible Markov Chain
>>> T = Matrix([[S(1)/2, S(1)/2, 0],
... [S(4)/5, S(1)/5, 0],
... [0, 0, 1]])
>>> X = DiscreteMarkovChain('X', trans_probs=T)
>>> X.stationary_distribution()
Matrix([[8/13 - 8*tau0/13, 5/13 - 5*tau0/13, tau0]])
>>> Y = DiscreteMarkovChain('Y')
>>> Y.stationary_distribution()
Lambda((wm, _T), Eq(wm*_T, wm))
>>> Y.stationary_distribution(condition_set=True)
ConditionSet(wm, Eq(wm*_T, wm))
References
==========
.. [1] https://www.probabilitycourse.com/chapter11/11_2_6_stationary_and_limiting_distributions.php
.. [2] https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf
See Also
========
sympy.stats.DiscreteMarkovChain.limiting_distribution
"""
trans_probs = self.transition_probabilities
n = self.number_of_states
if n == 0:
return ImmutableMatrix(Matrix([[]]))
# symbolic matrix version
if isinstance(trans_probs, MatrixSymbol):
wm = MatrixSymbol('wm', 1, n)
if condition_set:
return ConditionSet(wm, Eq(wm * trans_probs, wm))
else:
return Lambda((wm, trans_probs), Eq(wm * trans_probs, wm))
# numeric matrix version
a = Matrix(trans_probs - Identity(n)).T
a[0, 0:n] = ones(1, n)
b = zeros(n, 1)
b[0, 0] = 1
soln = list(linsolve((a, b)))[0]
return ImmutableMatrix([[sol for sol in soln]])
def fixed_row_vector(self):
"""
A wrapper for ``stationary_distribution()``.
"""
return self.stationary_distribution()
@property
def limiting_distribution(self):
"""
The fixed row vector is the limiting
distribution of a discrete Markov chain.
"""
return self.fixed_row_vector()
def decompose(self) -> tTuple[tList[Basic], ImmutableMatrix, ImmutableMatrix, ImmutableMatrix]:
"""
Decomposes the transition matrix into submatrices with
special properties.
The transition matrix can be decomposed into 4 submatrices:
- A - the submatrix from recurrent states to recurrent states.
- B - the submatrix from transient to recurrent states.
- C - the submatrix from transient to transient states.
- O - the submatrix of zeros for recurrent to transient states.
Returns
=======
states, A, B, C
``states`` - a list of state names with the first being
the recurrent states and the last being
the transient states in the order
of the row names of A and then the row names of C.
``A`` - the submatrix from recurrent states to recurrent states.
``B`` - the submatrix from transient to recurrent states.
``C`` - the submatrix from transient to transient states.
Examples
========
>>> from sympy.stats import DiscreteMarkovChain
>>> from sympy import Matrix, S
One can decompose this chain for example:
>>> T = Matrix([[S(1)/2, S(1)/2, 0, 0, 0],
... [S(2)/5, S(1)/5, S(2)/5, 0, 0],
... [0, 0, 1, 0, 0],
... [0, 0, S(1)/2, S(1)/2, 0],
... [S(1)/2, 0, 0, 0, S(1)/2]])
>>> X = DiscreteMarkovChain('X', trans_probs=T)
>>> states, A, B, C = X.decompose()
>>> states
[2, 0, 1, 3, 4]
>>> A # recurrent to recurrent
Matrix([[1]])
>>> B # transient to recurrent
Matrix([
[ 0],
[2/5],
[1/2],
[ 0]])
>>> C # transient to transient
Matrix([
[1/2, 1/2, 0, 0],
[2/5, 1/5, 0, 0],
[ 0, 0, 1/2, 0],
[1/2, 0, 0, 1/2]])
This means that state 2 is the only absorbing state
(since A is a 1x1 matrix). B is a 4x1 matrix since
the 4 remaining transient states all merge into reccurent
state 2. And C is the 4x4 matrix that shows how the
transient states 0, 1, 3, 4 all interact.
See Also
========
sympy.stats.DiscreteMarkovChain.communication_classes
sympy.stats.DiscreteMarkovChain.canonical_form
References
==========
.. [1] https://en.wikipedia.org/wiki/Absorbing_Markov_chain
.. [2] http://people.brandeis.edu/~igusa/Math56aS08/Math56a_S08_notes015.pdf
"""
trans_probs = self.transition_probabilities
classes = self.communication_classes()
r_states = []
t_states = []
for states, recurrent, period in classes:
if recurrent:
r_states += states
else:
t_states += states
states = r_states + t_states
indexes = [self.index_of[state] for state in states]
A = Matrix(len(r_states), len(r_states),
lambda i, j: trans_probs[indexes[i], indexes[j]])
B = Matrix(len(t_states), len(r_states),
lambda i, j: trans_probs[indexes[len(r_states) + i], indexes[j]])
C = Matrix(len(t_states), len(t_states),
lambda i, j: trans_probs[indexes[len(r_states) + i], indexes[len(r_states) + j]])
return states, A.as_immutable(), B.as_immutable(), C.as_immutable()
def canonical_form(self) -> tTuple[tList[Basic], ImmutableMatrix]:
"""
Reorders the one-step transition matrix
so that recurrent states appear first and transient
states appear last. Other representations include inserting
transient states first and recurrent states last.
Returns
=======
states, P_new
``states`` is the list that describes the order of the
new states in the matrix
so that the ith element in ``states`` is the state of the
ith row of A.
``P_new`` is the new transition matrix in canonical form.
Examples
========
>>> from sympy.stats import DiscreteMarkovChain
>>> from sympy import Matrix, S
You can convert your chain into canonical form:
>>> T = Matrix([[S(1)/2, S(1)/2, 0, 0, 0],
... [S(2)/5, S(1)/5, S(2)/5, 0, 0],
... [0, 0, 1, 0, 0],
... [0, 0, S(1)/2, S(1)/2, 0],
... [S(1)/2, 0, 0, 0, S(1)/2]])
>>> X = DiscreteMarkovChain('X', list(range(1, 6)), trans_probs=T)
>>> states, new_matrix = X.canonical_form()
>>> states
[3, 1, 2, 4, 5]
>>> new_matrix
Matrix([
[ 1, 0, 0, 0, 0],
[ 0, 1/2, 1/2, 0, 0],
[2/5, 2/5, 1/5, 0, 0],
[1/2, 0, 0, 1/2, 0],
[ 0, 1/2, 0, 0, 1/2]])
The new states are [3, 1, 2, 4, 5] and you can
create a new chain with this and its canonical
form will remain the same (since it is already
in canonical form).
>>> X = DiscreteMarkovChain('X', states, new_matrix)
>>> states, new_matrix = X.canonical_form()
>>> states
[3, 1, 2, 4, 5]
>>> new_matrix
Matrix([
[ 1, 0, 0, 0, 0],
[ 0, 1/2, 1/2, 0, 0],
[2/5, 2/5, 1/5, 0, 0],
[1/2, 0, 0, 1/2, 0],
[ 0, 1/2, 0, 0, 1/2]])
This is not limited to absorbing chains:
>>> T = Matrix([[0, 5, 5, 0, 0],
... [0, 0, 0, 10, 0],
... [5, 0, 5, 0, 0],
... [0, 10, 0, 0, 0],
... [0, 3, 0, 3, 4]])/10
>>> X = DiscreteMarkovChain('X', trans_probs=T)
>>> states, new_matrix = X.canonical_form()
>>> states
[1, 3, 0, 2, 4]
>>> new_matrix
Matrix([
[ 0, 1, 0, 0, 0],
[ 1, 0, 0, 0, 0],
[ 1/2, 0, 0, 1/2, 0],
[ 0, 0, 1/2, 1/2, 0],
[3/10, 3/10, 0, 0, 2/5]])
See Also
========
sympy.stats.DiscreteMarkovChain.communication_classes
sympy.stats.DiscreteMarkovChain.decompose
References
==========
.. [1] https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470316887.app1
.. [2] http://www.columbia.edu/~ww2040/6711F12/lect1023big.pdf
"""
states, A, B, C = self.decompose()
O = zeros(A.shape[0], C.shape[1])
return states, BlockMatrix([[A, O], [B, C]]).as_explicit()
def sample(self):
"""
Returns
=======
sample: iterator object
iterator object containing the sample
"""
if not isinstance(self.transition_probabilities, (Matrix, ImmutableMatrix)):
raise ValueError("Transition Matrix must be provided for sampling")
Tlist = self.transition_probabilities.tolist()
samps = [random.choice(list(self.state_space))]
yield samps[0]
time = 1
densities = {}
for state in self.state_space:
states = list(self.state_space)
densities[state] = {states[i]: Tlist[state][i]
for i in range(len(states))}
while time < S.Infinity:
samps.append((next(sample_iter(FiniteRV("_", densities[samps[time - 1]])))))
yield samps[time]
time += 1
class ContinuousMarkovChain(ContinuousTimeStochasticProcess, MarkovProcess):
"""
Represents continuous time Markov chain.
Parameters
==========
sym: Symbol/str
state_space: Set
Optional, by default, S.Reals
gen_mat: Matrix/ImmutableMatrix/MatrixSymbol
Optional, by default, None
Examples
========
>>> from sympy.stats import ContinuousMarkovChain, P
>>> from sympy import Matrix, S, Eq, Gt
>>> G = Matrix([[-S(1), S(1)], [S(1), -S(1)]])
>>> C = ContinuousMarkovChain('C', state_space=[0, 1], gen_mat=G)
>>> C.limiting_distribution()
Matrix([[1/2, 1/2]])
>>> C.state_space
{0, 1}
>>> C.generator_matrix
Matrix([
[-1, 1],
[ 1, -1]])
Probability queries are supported
>>> P(Eq(C(1.96), 0), Eq(C(0.78), 1)).round(5)
0.45279
>>> P(Gt(C(1.7), 0), Eq(C(0.82), 1)).round(5)
0.58602
Probability of expressions with multiple RandomIndexedSymbols
can also be calculated provided there is only 1 RandomIndexedSymbol
in the given condition. It is always better to use Rational instead
of floating point numbers for the probabilities in the
generator matrix to avoid errors.
>>> from sympy import Gt, Le, Rational
>>> G = Matrix([[-S(1), Rational(1, 10), Rational(9, 10)], [Rational(2, 5), -S(1), Rational(3, 5)], [Rational(1, 2), Rational(1, 2), -S(1)]])
>>> C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G)
>>> P(Eq(C(3.92), C(1.75)), Eq(C(0.46), 0)).round(5)
0.37933
>>> P(Gt(C(3.92), C(1.75)), Eq(C(0.46), 0)).round(5)
0.34211
>>> P(Le(C(1.57), C(3.14)), Eq(C(1.22), 1)).round(4)
0.7143
Symbolic probability queries are also supported
>>> from sympy import S, symbols, Matrix, Rational, Eq, Gt
>>> from sympy.stats import P, ContinuousMarkovChain
>>> a,b,c,d = symbols('a b c d')
>>> G = Matrix([[-S(1), Rational(1, 10), Rational(9, 10)], [Rational(2, 5), -S(1), Rational(3, 5)], [Rational(1, 2), Rational(1, 2), -S(1)]])
>>> C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G)
>>> query = P(Eq(C(a), b), Eq(C(c), d))
>>> query.subs({a:3.65 ,b:2, c:1.78, d:1}).evalf().round(10)
0.4002723175
>>> P(Eq(C(3.65), 2), Eq(C(1.78), 1)).round(10)
0.4002723175
>>> query_gt = P(Gt(C(a), b), Eq(C(c), d))
>>> query_gt.subs({a:43.2 ,b:0, c:3.29, d:2}).evalf().round(10)
0.6832579186
>>> P(Gt(C(43.2), 0), Eq(C(3.29), 2)).round(10)
0.6832579186
References
==========
.. [1] https://en.wikipedia.org/wiki/Markov_chain#Continuous-time_Markov_chain
.. [2] http://u.math.biu.ac.il/~amirgi/CTMCnotes.pdf
"""
index_set = S.Reals
def __new__(cls, sym, state_space=None, gen_mat=None):
sym = _symbol_converter(sym)
state_space, gen_mat = MarkovProcess._sanity_checks(state_space, gen_mat)
obj = Basic.__new__(cls, sym, state_space, gen_mat)
indices = dict()
if isinstance(obj.number_of_states, Integer):
for index, state in enumerate(obj.state_space):
indices[state] = index
obj.index_of = indices
return obj
@property
def generator_matrix(self):
return self.args[2]
@cacheit
def transition_probabilities(self, gen_mat=None):
t = Dummy('t')
if isinstance(gen_mat, (Matrix, ImmutableMatrix)) and \
gen_mat.is_diagonalizable():
# for faster computation use diagonalized generator matrix
Q, D = gen_mat.diagonalize()
return Lambda(t, Q*exp(t*D)*Q.inv())
if gen_mat != None:
return Lambda(t, exp(t*gen_mat))
def limiting_distribution(self):
gen_mat = self.generator_matrix
if gen_mat is None:
return None
if isinstance(gen_mat, MatrixSymbol):
wm = MatrixSymbol('wm', 1, gen_mat.shape[0])
return Lambda((wm, gen_mat), Eq(wm*gen_mat, wm))
w = IndexedBase('w')
wi = [w[i] for i in range(gen_mat.shape[0])]
wm = Matrix([wi])
eqs = (wm*gen_mat).tolist()[0]
eqs.append(sum(wi) - 1)
soln = list(linsolve(eqs, wi))[0]
return ImmutableMatrix([[sol for sol in soln]])
class BernoulliProcess(DiscreteTimeStochasticProcess):
"""
The Bernoulli process consists of repeated
independent Bernoulli process trials with the same parameter `p`.
It's assumed that the probability `p` applies to every
trial and that the outcomes of each trial
are independent of all the rest. Therefore Bernoulli Processs
is Discrete State and Discrete Time Stochastic Process.
Parameters
==========
sym: Symbol/str
success: Integer/str
The event which is considered to be success, by default is 1.
failure: Integer/str
The event which is considered to be failure, by default is 0.
p: Real Number between 0 and 1
Represents the probability of getting success.
Examples
========
>>> from sympy.stats import BernoulliProcess, P, E
>>> from sympy import Eq, Gt
>>> B = BernoulliProcess("B", p=0.7, success=1, failure=0)
>>> B.state_space
{0, 1}
>>> (B.p).round(2)
0.70
>>> B.success
1
>>> B.failure
0
>>> X = B[1] + B[2] + B[3]
>>> P(Eq(X, 0)).round(2)
0.03
>>> P(Eq(X, 2)).round(2)
0.44
>>> P(Eq(X, 4)).round(2)
0
>>> P(Gt(X, 1)).round(2)
0.78
>>> P(Eq(B[1], 0) & Eq(B[2], 1) & Eq(B[3], 0) & Eq(B[4], 1)).round(2)
0.04
>>> B.joint_distribution(B[1], B[2])
JointDistributionHandmade(Lambda((B[1], B[2]), Piecewise((0.7, Eq(B[1], 1)),
(0.3, Eq(B[1], 0)), (0, True))*Piecewise((0.7, Eq(B[2], 1)), (0.3, Eq(B[2], 0)),
(0, True))))
>>> E(2*B[1] + B[2]).round(2)
2.10
>>> P(B[1] < 1).round(2)
0.30
References
==========
.. [1] https://en.wikipedia.org/wiki/Bernoulli_process
.. [2] https://mathcs.clarku.edu/~djoyce/ma217/bernoulli.pdf
"""
index_set = S.Naturals0
def __new__(cls, sym, p, success=1, failure=0):
_value_check(p >= 0 and p <= 1, 'Value of p must be between 0 and 1.')
sym = _symbol_converter(sym)
p = _sympify(p)
success = _sym_sympify(success)
failure = _sym_sympify(failure)
return Basic.__new__(cls, sym, p, success, failure)
@property
def symbol(self):
return self.args[0]
@property
def p(self):
return self.args[1]
@property
def success(self):
return self.args[2]
@property
def failure(self):
return self.args[3]
@property
def state_space(self):
return _set_converter([self.success, self.failure])
def distribution(self, key=None):
if key is None:
self._deprecation_warn_distribution()
return BernoulliDistribution(self.p)
return BernoulliDistribution(self.p, self.success, self.failure)
def simple_rv(self, rv):
return Bernoulli(rv.name, p=self.p,
succ=self.success, fail=self.failure)
def expectation(self, expr, condition=None, evaluate=True, **kwargs):
"""
Computes expectation.
Parameters
==========
expr: RandomIndexedSymbol, Relational, Logic
Condition for which expectation has to be computed. Must
contain a RandomIndexedSymbol of the process.
condition: Relational, Logic
The given conditions under which computations should be done.
Returns
=======
Expectation of the RandomIndexedSymbol.
"""
return _SubstituteRV._expectation(expr, condition, evaluate, **kwargs)
def probability(self, condition, given_condition=None, evaluate=True, **kwargs):
"""
Computes probability.
Parameters
==========
condition: Relational
Condition for which probability has to be computed. Must
contain a RandomIndexedSymbol of the process.
given_condition: Relational/And
The given conditions under which computations should be done.
Returns
=======
Probability of the condition.
"""
return _SubstituteRV._probability(condition, given_condition, evaluate, **kwargs)
def density(self, x):
return Piecewise((self.p, Eq(x, self.success)),
(1 - self.p, Eq(x, self.failure)),
(S.Zero, True))
class _SubstituteRV:
"""
Internal class to handle the queries of expectation and probability
by substitution.
"""
@staticmethod
def _rvindexed_subs(expr, condition=None):
"""
Substitutes the RandomIndexedSymbol with the RandomSymbol with
same name, distribution and probability as RandomIndexedSymbol.
Parameters
==========
expr: RandomIndexedSymbol, Relational, Logic
Condition for which expectation has to be computed. Must
contain a RandomIndexedSymbol of the process.
condition: Relational, Logic
The given conditions under which computations should be done.
"""
rvs_expr = random_symbols(expr)
if len(rvs_expr) != 0:
swapdict_expr = {}
for rv in rvs_expr:
if isinstance(rv, RandomIndexedSymbol):
newrv = rv.pspace.process.simple_rv(rv) # substitute with equivalent simple rv
swapdict_expr[rv] = newrv
expr = expr.subs(swapdict_expr)
rvs_cond = random_symbols(condition)
if len(rvs_cond)!=0:
swapdict_cond = {}
for rv in rvs_cond:
if isinstance(rv, RandomIndexedSymbol):
newrv = rv.pspace.process.simple_rv(rv)
swapdict_cond[rv] = newrv
condition = condition.subs(swapdict_cond)
return expr, condition
@classmethod
def _expectation(self, expr, condition=None, evaluate=True, **kwargs):
"""
Internal method for computing expectation of indexed RV.
Parameters
==========
expr: RandomIndexedSymbol, Relational, Logic
Condition for which expectation has to be computed. Must
contain a RandomIndexedSymbol of the process.
condition: Relational, Logic
The given conditions under which computations should be done.
Returns
=======
Expectation of the RandomIndexedSymbol.
"""
new_expr, new_condition = self._rvindexed_subs(expr, condition)
if not is_random(new_expr):
return new_expr
new_pspace = pspace(new_expr)
if new_condition is not None:
new_expr = given(new_expr, new_condition)
if new_expr.is_Add: # As E is Linear
return Add(*[new_pspace.compute_expectation(
expr=arg, evaluate=evaluate, **kwargs)
for arg in new_expr.args])
return new_pspace.compute_expectation(
new_expr, evaluate=evaluate, **kwargs)
@classmethod
def _probability(self, condition, given_condition=None, evaluate=True, **kwargs):
"""
Internal method for computing probability of indexed RV
Parameters
==========
condition: Relational
Condition for which probability has to be computed. Must
contain a RandomIndexedSymbol of the process.
given_condition: Relational/And
The given conditions under which computations should be done.
Returns
=======
Probability of the condition.
"""
new_condition, new_givencondition = self._rvindexed_subs(condition, given_condition)
if isinstance(new_givencondition, RandomSymbol):
condrv = random_symbols(new_condition)
if len(condrv) == 1 and condrv[0] == new_givencondition:
return BernoulliDistribution(self._probability(new_condition), 0, 1)
if any(dependent(rv, new_givencondition) for rv in condrv):
return Probability(new_condition, new_givencondition)
else:
return self._probability(new_condition)
if new_givencondition is not None and \
not isinstance(new_givencondition, (Relational, Boolean)):
raise ValueError("%s is not a relational or combination of relationals"
% (new_givencondition))
if new_givencondition == False or new_condition == False:
return S.Zero
if new_condition == True:
return S.One
if not isinstance(new_condition, (Relational, Boolean)):
raise ValueError("%s is not a relational or combination of relationals"
% (new_condition))
if new_givencondition is not None: # If there is a condition
# Recompute on new conditional expr
return self._probability(given(new_condition, new_givencondition, **kwargs), **kwargs)
result = pspace(new_condition).probability(new_condition, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def get_timerv_swaps(expr, condition):
"""
Finds the appropriate interval for each time stamp in expr by parsing
the given condition and returns intervals for each timestamp and
dictionary that maps variable time-stamped Random Indexed Symbol to its
corresponding Random Indexed variable with fixed time stamp.
Parameters
==========
expr: Sympy Expression
Expression containing Random Indexed Symbols with variable time stamps
condition: Relational/Boolean Expression
Expression containing time bounds of variable time stamps in expr
Examples
========
>>> from sympy.stats.stochastic_process_types import get_timerv_swaps, PoissonProcess
>>> from sympy import symbols, Contains, Interval
>>> x, t, d = symbols('x t d', positive=True)
>>> X = PoissonProcess("X", 3)
>>> get_timerv_swaps(x*X(t), Contains(t, Interval.Lopen(0, 1)))
([Interval.Lopen(0, 1)], {X(t): X(1)})
>>> get_timerv_swaps((X(t)**2 + X(d)**2), Contains(t, Interval.Lopen(0, 1))
... & Contains(d, Interval.Ropen(1, 4))) # doctest: +SKIP
([Interval.Ropen(1, 4), Interval.Lopen(0, 1)], {X(d): X(3), X(t): X(1)})
Returns
=======
intervals: list
List of Intervals/FiniteSet on which each time stamp is defined
rv_swap: dict
Dictionary mapping variable time Random Indexed Symbol to constant time
Random Indexed Variable
"""
if not isinstance(condition, (Relational, Boolean)):
raise ValueError("%s is not a relational or combination of relationals"
% (condition))
expr_syms = list(expr.atoms(RandomIndexedSymbol))
if isinstance(condition, (And, Or)):
given_cond_args = condition.args
else: # single condition
given_cond_args = (condition, )
rv_swap = {}
intervals = []
for expr_sym in expr_syms:
for arg in given_cond_args:
if arg.has(expr_sym.key) and isinstance(expr_sym.key, Symbol):
intv = _set_converter(arg.args[1])
diff_key = intv._sup - intv._inf
if diff_key == oo:
raise ValueError("%s should have finite bounds" % str(expr_sym.name))
elif diff_key == S.Zero: # has singleton set
diff_key = intv._sup
rv_swap[expr_sym] = expr_sym.subs({expr_sym.key: diff_key})
intervals.append(intv)
return intervals, rv_swap
class CountingProcess(ContinuousTimeStochasticProcess):
"""
This class handles the common methods of the Counting Processes
such as Poisson, Wiener and Gamma Processes
"""
index_set = _set_converter(Interval(0, oo))
@property
def symbol(self):
return self.args[0]
def expectation(self, expr, condition=None, evaluate=True, **kwargs):
"""
Computes expectation
Parameters
==========
expr: RandomIndexedSymbol, Relational, Logic
Condition for which expectation has to be computed. Must
contain a RandomIndexedSymbol of the process.
condition: Relational, Boolean
The given conditions under which computations should be done, i.e,
the intervals on which each variable time stamp in expr is defined
Returns
=======
Expectation of the given expr
"""
if condition is not None:
intervals, rv_swap = get_timerv_swaps(expr, condition)
# they are independent when they have non-overlapping intervals
if len(intervals) == 1 or all(Intersection(*intv_comb) == EmptySet
for intv_comb in itertools.combinations(intervals, 2)):
if expr.is_Add:
return Add.fromiter(self.expectation(arg, condition)
for arg in expr.args)
expr = expr.subs(rv_swap)
else:
return Expectation(expr, condition)
return _SubstituteRV._expectation(expr, evaluate=evaluate, **kwargs)
def _solve_argwith_tworvs(self, arg):
if arg.args[0].key >= arg.args[1].key or isinstance(arg, Eq):
diff_key = abs(arg.args[0].key - arg.args[1].key)
rv = arg.args[0]
arg = arg.__class__(rv.pspace.process(diff_key), 0)
else:
diff_key = arg.args[1].key - arg.args[0].key
rv = arg.args[1]
arg = arg.__class__(rv.pspace.process(diff_key), 0)
return arg
def _solve_numerical(self, condition, given_condition=None):
if isinstance(condition, And):
args_list = list(condition.args)
else:
args_list = [condition]
if given_condition is not None:
if isinstance(given_condition, And):
args_list.extend(list(given_condition.args))
else:
args_list.extend([given_condition])
# sort the args based on timestamp to get the independent increments in
# each segment using all the condition args as well as given_condition args
args_list = sorted(args_list, key=lambda x: x.args[0].key)
result = []
cond_args = list(condition.args) if isinstance(condition, And) else [condition]
if args_list[0] in cond_args and not (is_random(args_list[0].args[0])
and is_random(args_list[0].args[1])):
result.append(_SubstituteRV._probability(args_list[0]))
if is_random(args_list[0].args[0]) and is_random(args_list[0].args[1]):
arg = self._solve_argwith_tworvs(args_list[0])
result.append(_SubstituteRV._probability(arg))
for i in range(len(args_list) - 1):
curr, nex = args_list[i], args_list[i + 1]
diff_key = nex.args[0].key - curr.args[0].key
working_set = curr.args[0].pspace.process.state_space
if curr.args[1] > nex.args[1]: #impossible condition so return 0
result.append(0)
break
if isinstance(curr, Eq):
working_set = Intersection(working_set, Interval.Lopen(curr.args[1], oo))
else:
working_set = Intersection(working_set, curr.as_set())
if isinstance(nex, Eq):
working_set = Intersection(working_set, Interval(-oo, nex.args[1]))
else:
working_set = Intersection(working_set, nex.as_set())
if working_set == EmptySet:
rv = Eq(curr.args[0].pspace.process(diff_key), 0)
result.append(_SubstituteRV._probability(rv))
else:
if working_set.is_finite_set:
if isinstance(curr, Eq) and isinstance(nex, Eq):
rv = Eq(curr.args[0].pspace.process(diff_key), len(working_set))
result.append(_SubstituteRV._probability(rv))
elif isinstance(curr, Eq) ^ isinstance(nex, Eq):
result.append(Add.fromiter(_SubstituteRV._probability(Eq(
curr.args[0].pspace.process(diff_key), x))
for x in range(len(working_set))))
else:
n = len(working_set)
result.append(Add.fromiter((n - x)*_SubstituteRV._probability(Eq(
curr.args[0].pspace.process(diff_key), x)) for x in range(n)))
else:
result.append(_SubstituteRV._probability(
curr.args[0].pspace.process(diff_key) <= working_set._sup - working_set._inf))
return Mul.fromiter(result)
def probability(self, condition, given_condition=None, evaluate=True, **kwargs):
"""
Computes probability.
Parameters
==========
condition: Relational
Condition for which probability has to be computed. Must
contain a RandomIndexedSymbol of the process.
given_condition: Relational, Boolean
The given conditions under which computations should be done, i.e,
the intervals on which each variable time stamp in expr is defined
Returns
=======
Probability of the condition
"""
check_numeric = True
if isinstance(condition, (And, Or)):
cond_args = condition.args
else:
cond_args = (condition, )
# check that condition args are numeric or not
if not all(arg.args[0].key.is_number for arg in cond_args):
check_numeric = False
if given_condition is not None:
check_given_numeric = True
if isinstance(given_condition, (And, Or)):
given_cond_args = given_condition.args
else:
given_cond_args = (given_condition, )
# check that given condition args are numeric or not
if given_condition.has(Contains):
check_given_numeric = False
# Handle numerical queries
if check_numeric and check_given_numeric:
res = []
if isinstance(condition, Or):
res.append(Add.fromiter(self._solve_numerical(arg, given_condition)
for arg in condition.args))
if isinstance(given_condition, Or):
res.append(Add.fromiter(self._solve_numerical(condition, arg)
for arg in given_condition.args))
if res:
return Add.fromiter(res)
return self._solve_numerical(condition, given_condition)
# No numeric queries, go by Contains?... then check that all the
# given condition are in form of `Contains`
if not all(arg.has(Contains) for arg in given_cond_args):
raise ValueError("If given condition is passed with `Contains`, then "
"please pass the evaluated condition with its corresponding information "
"in terms of intervals of each time stamp to be passed in given condition.")
intervals, rv_swap = get_timerv_swaps(condition, given_condition)
# they are independent when they have non-overlapping intervals
if len(intervals) == 1 or all(Intersection(*intv_comb) == EmptySet
for intv_comb in itertools.combinations(intervals, 2)):
if isinstance(condition, And):
return Mul.fromiter(self.probability(arg, given_condition)
for arg in condition.args)
elif isinstance(condition, Or):
return Add.fromiter(self.probability(arg, given_condition)
for arg in condition.args)
condition = condition.subs(rv_swap)
else:
return Probability(condition, given_condition)
if check_numeric:
return self._solve_numerical(condition)
return _SubstituteRV._probability(condition, evaluate=evaluate, **kwargs)
class PoissonProcess(CountingProcess):
"""
The Poisson process is a counting process. It is usually used in scenarios
where we are counting the occurrences of certain events that appear
to happen at a certain rate, but completely at random.
Parameters
==========
sym: Symbol/str
lamda: Positive number
Rate of the process, ``lamda > 0``
Examples
========
>>> from sympy.stats import PoissonProcess, P, E
>>> from sympy import symbols, Eq, Ne, Contains, Interval
>>> X = PoissonProcess("X", lamda=3)
>>> X.state_space
Naturals0
>>> X.lamda
3
>>> t1, t2 = symbols('t1 t2', positive=True)
>>> P(X(t1) < 4)
(9*t1**3/2 + 9*t1**2/2 + 3*t1 + 1)*exp(-3*t1)
>>> P(Eq(X(t1), 2) | Ne(X(t1), 4), Contains(t1, Interval.Ropen(2, 4)))
1 - 36*exp(-6)
>>> P(Eq(X(t1), 2) & Eq(X(t2), 3), Contains(t1, Interval.Lopen(0, 2))
... & Contains(t2, Interval.Lopen(2, 4)))
648*exp(-12)
>>> E(X(t1))
3*t1
>>> E(X(t1)**2 + 2*X(t2), Contains(t1, Interval.Lopen(0, 1))
... & Contains(t2, Interval.Lopen(1, 2)))
18
>>> P(X(3) < 1, Eq(X(1), 0))
exp(-6)
>>> P(Eq(X(4), 3), Eq(X(2), 3))
exp(-6)
>>> P(X(2) <= 3, X(1) > 1)
5*exp(-3)
Merging two Poisson Processes
>>> Y = PoissonProcess("Y", lamda=4)
>>> Z = X + Y
>>> Z.lamda
7
Splitting a Poisson Process into two independent Poisson Processes
>>> N, M = Z.split(l1=2, l2=5)
>>> N.lamda, M.lamda
(2, 5)
References
==========
.. [1] https://www.probabilitycourse.com/chapter11/11_0_0_intro.php
.. [2] https://en.wikipedia.org/wiki/Poisson_point_process
"""
def __new__(cls, sym, lamda):
_value_check(lamda > 0, 'lamda should be a positive number.')
sym = _symbol_converter(sym)
lamda = _sympify(lamda)
return Basic.__new__(cls, sym, lamda)
@property
def lamda(self):
return self.args[1]
@property
def state_space(self):
return S.Naturals0
def distribution(self, key):
if isinstance(key, RandomIndexedSymbol):
self._deprecation_warn_distribution()
return PoissonDistribution(self.lamda*key.key)
return PoissonDistribution(self.lamda*key)
def density(self, x):
return (self.lamda*x.key)**x / factorial(x) * exp(-(self.lamda*x.key))
def simple_rv(self, rv):
return Poisson(rv.name, lamda=self.lamda*rv.key)
def __add__(self, other):
if not isinstance(other, PoissonProcess):
raise ValueError("Only instances of Poisson Process can be merged")
return PoissonProcess(Dummy(self.symbol.name + other.symbol.name),
self.lamda + other.lamda)
def split(self, l1, l2):
if _sympify(l1 + l2) != self.lamda:
raise ValueError("Sum of l1 and l2 should be %s" % str(self.lamda))
return PoissonProcess(Dummy("l1"), l1), PoissonProcess(Dummy("l2"), l2)
class WienerProcess(CountingProcess):
"""
The Wiener process is a real valued continuous-time stochastic process.
In physics it is used to study Brownian motion and therefore also known as
Brownian Motion.
Parameters
==========
sym: Symbol/str
Examples
========
>>> from sympy.stats import WienerProcess, P, E
>>> from sympy import symbols, Contains, Interval
>>> X = WienerProcess("X")
>>> X.state_space
Reals
>>> t1, t2 = symbols('t1 t2', positive=True)
>>> P(X(t1) < 7).simplify()
erf(7*sqrt(2)/(2*sqrt(t1)))/2 + 1/2
>>> P((X(t1) > 2) | (X(t1) < 4), Contains(t1, Interval.Ropen(2, 4))).simplify()
-erf(1)/2 + erf(2)/2 + 1
>>> E(X(t1))
0
>>> E(X(t1) + 2*X(t2), Contains(t1, Interval.Lopen(0, 1))
... & Contains(t2, Interval.Lopen(1, 2)))
0
References
==========
.. [1] https://www.probabilitycourse.com/chapter11/11_4_0_brownian_motion_wiener_process.php
.. [2] https://en.wikipedia.org/wiki/Wiener_process
"""
def __new__(cls, sym):
sym = _symbol_converter(sym)
return Basic.__new__(cls, sym)
@property
def state_space(self):
return S.Reals
def distribution(self, key):
if isinstance(key, RandomIndexedSymbol):
self._deprecation_warn_distribution()
return NormalDistribution(0, sqrt(key.key))
return NormalDistribution(0, sqrt(key))
def density(self, x):
return exp(-x**2/(2*x.key)) / (sqrt(2*pi)*sqrt(x.key))
def simple_rv(self, rv):
return Normal(rv.name, 0, sqrt(rv.key))
class GammaProcess(CountingProcess):
"""
A Gamma process is a random process with independent gamma distributed
increments. It is a pure-jump increasing Levy process.
Parameters
==========
sym: Symbol/str
lamda: Positive number
Jump size of the process, ``lamda > 0``
gamma: Positive number
Rate of jump arrivals, ``gamma > 0``
Examples
========
>>> from sympy.stats import GammaProcess, E, P, variance
>>> from sympy import symbols, Contains, Interval, Not
>>> t, d, x, l, g = symbols('t d x l g', positive=True)
>>> X = GammaProcess("X", l, g)
>>> E(X(t))
g*t/l
>>> variance(X(t)).simplify()
g*t/l**2
>>> X = GammaProcess('X', 1, 2)
>>> P(X(t) < 1).simplify()
lowergamma(2*t, 1)/gamma(2*t)
>>> P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) &
... Contains(d, Interval.Lopen(7, 8))).simplify()
-4*exp(-3) + 472*exp(-8)/3 + 1
>>> E(X(2) + x*E(X(5)))
10*x + 4
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_process
"""
def __new__(cls, sym, lamda, gamma):
_value_check(lamda > 0, 'lamda should be a positive number')
_value_check(gamma > 0, 'gamma should be a positive number')
sym = _symbol_converter(sym)
gamma = _sympify(gamma)
lamda = _sympify(lamda)
return Basic.__new__(cls, sym, lamda, gamma)
@property
def lamda(self):
return self.args[1]
@property
def gamma(self):
return self.args[2]
@property
def state_space(self):
return _set_converter(Interval(0, oo))
def distribution(self, key):
if isinstance(key, RandomIndexedSymbol):
self._deprecation_warn_distribution()
return GammaDistribution(self.gamma*key.key, 1/self.lamda)
return GammaDistribution(self.gamma*key, 1/self.lamda)
def density(self, x):
k = self.gamma*x.key
theta = 1/self.lamda
return x**(k - 1) * exp(-x/theta) / (gamma(k)*theta**k)
def simple_rv(self, rv):
return Gamma(rv.name, self.gamma*rv.key, 1/self.lamda)
|
d646022f432d467f0938dd794d31583328382206bbf02cc8b514b8f3f4fa389c | from sympy.sets import FiniteSet
from sympy import (sqrt, log, exp, FallingFactorial, Rational, Eq, Dummy,
piecewise_fold, solveset, Integral)
from .rv import (probability, expectation, density, where, given, pspace, cdf, PSpace,
characteristic_function, sample, sample_iter, random_symbols, independent, dependent,
sampling_density, moment_generating_function, quantile, is_random,
sample_stochastic_process)
__all__ = ['P', 'E', 'H', 'density', 'where', 'given', 'sample', 'cdf',
'characteristic_function', 'pspace', 'sample_iter', 'variance', 'std',
'skewness', 'kurtosis', 'covariance', 'dependent', 'entropy', 'median',
'independent', 'random_symbols', 'correlation', 'factorial_moment',
'moment', 'cmoment', 'sampling_density', 'moment_generating_function',
'smoment', 'quantile', 'sample_stochastic_process']
def moment(X, n, c=0, condition=None, *, evaluate=True, **kwargs):
"""
Return the nth moment of a random expression about c.
.. math::
moment(X, c, n) = E((X-c)^{n})
Default value of c is 0.
Examples
========
>>> from sympy.stats import Die, moment, E
>>> X = Die('X', 6)
>>> moment(X, 1, 6)
-5/2
>>> moment(X, 2)
91/6
>>> moment(X, 1) == E(X)
True
"""
from sympy.stats.symbolic_probability import Moment
if evaluate:
return Moment(X, n, c, condition).doit()
return Moment(X, n, c, condition).rewrite(Integral)
def variance(X, condition=None, **kwargs):
"""
Variance of a random expression.
.. math::
variance(X) = E((X-E(X))^{2})
Examples
========
>>> from sympy.stats import Die, Bernoulli, variance
>>> from sympy import simplify, Symbol
>>> X = Die('X', 6)
>>> p = Symbol('p')
>>> B = Bernoulli('B', p, 1, 0)
>>> variance(2*X)
35/3
>>> simplify(variance(B))
p*(1 - p)
"""
if is_random(X) and pspace(X) == PSpace():
from sympy.stats.symbolic_probability import Variance
return Variance(X, condition)
return cmoment(X, 2, condition, **kwargs)
def standard_deviation(X, condition=None, **kwargs):
r"""
Standard Deviation of a random expression
.. math::
std(X) = \sqrt(E((X-E(X))^{2}))
Examples
========
>>> from sympy.stats import Bernoulli, std
>>> from sympy import Symbol, simplify
>>> p = Symbol('p')
>>> B = Bernoulli('B', p, 1, 0)
>>> simplify(std(B))
sqrt(p*(1 - p))
"""
return sqrt(variance(X, condition, **kwargs))
std = standard_deviation
def entropy(expr, condition=None, **kwargs):
"""
Calculuates entropy of a probability distribution.
Parameters
==========
expression : the random expression whose entropy is to be calculated
condition : optional, to specify conditions on random expression
b: base of the logarithm, optional
By default, it is taken as Euler's number
Returns
=======
result : Entropy of the expression, a constant
Examples
========
>>> from sympy.stats import Normal, Die, entropy
>>> X = Normal('X', 0, 1)
>>> entropy(X)
log(2)/2 + 1/2 + log(pi)/2
>>> D = Die('D', 4)
>>> entropy(D)
log(4)
References
==========
.. [1] https://en.wikipedia.org/wiki/Entropy_(information_theory)
.. [2] https://www.crmarsh.com/static/pdf/Charles_Marsh_Continuous_Entropy.pdf
.. [3] http://www.math.uconn.edu/~kconrad/blurbs/analysis/entropypost.pdf
"""
pdf = density(expr, condition, **kwargs)
base = kwargs.get('b', exp(1))
if isinstance(pdf, dict):
return sum([-prob*log(prob, base) for prob in pdf.values()])
return expectation(-log(pdf(expr), base))
def covariance(X, Y, condition=None, **kwargs):
"""
Covariance of two random expressions.
Explanation
===========
The expectation that the two variables will rise and fall together
.. math::
covariance(X,Y) = E((X-E(X)) (Y-E(Y)))
Examples
========
>>> from sympy.stats import Exponential, covariance
>>> from sympy import Symbol
>>> rate = Symbol('lambda', positive=True, real=True, finite=True)
>>> X = Exponential('X', rate)
>>> Y = Exponential('Y', rate)
>>> covariance(X, X)
lambda**(-2)
>>> covariance(X, Y)
0
>>> covariance(X, Y + rate*X)
1/lambda
"""
if (is_random(X) and pspace(X) == PSpace()) or (is_random(Y) and pspace(Y) == PSpace()):
from sympy.stats.symbolic_probability import Covariance
return Covariance(X, Y, condition)
return expectation(
(X - expectation(X, condition, **kwargs)) *
(Y - expectation(Y, condition, **kwargs)),
condition, **kwargs)
def correlation(X, Y, condition=None, **kwargs):
r"""
Correlation of two random expressions, also known as correlation
coefficient or Pearson's correlation.
Explanation
===========
The normalized expectation that the two variables will rise
and fall together
.. math::
correlation(X,Y) = E((X-E(X))(Y-E(Y)) / (\sigma_x \sigma_y))
Examples
========
>>> from sympy.stats import Exponential, correlation
>>> from sympy import Symbol
>>> rate = Symbol('lambda', positive=True, real=True, finite=True)
>>> X = Exponential('X', rate)
>>> Y = Exponential('Y', rate)
>>> correlation(X, X)
1
>>> correlation(X, Y)
0
>>> correlation(X, Y + rate*X)
1/sqrt(1 + lambda**(-2))
"""
return covariance(X, Y, condition, **kwargs)/(std(X, condition, **kwargs)
* std(Y, condition, **kwargs))
def cmoment(X, n, condition=None, *, evaluate=True, **kwargs):
"""
Return the nth central moment of a random expression about its mean.
.. math::
cmoment(X, n) = E((X - E(X))^{n})
Examples
========
>>> from sympy.stats import Die, cmoment, variance
>>> X = Die('X', 6)
>>> cmoment(X, 3)
0
>>> cmoment(X, 2)
35/12
>>> cmoment(X, 2) == variance(X)
True
"""
from sympy.stats.symbolic_probability import CentralMoment
if evaluate:
return CentralMoment(X, n, condition).doit()
return CentralMoment(X, n, condition).rewrite(Integral)
def smoment(X, n, condition=None, **kwargs):
r"""
Return the nth Standardized moment of a random expression.
.. math::
smoment(X, n) = E(((X - \mu)/\sigma_X)^{n})
Examples
========
>>> from sympy.stats import skewness, Exponential, smoment
>>> from sympy import Symbol
>>> rate = Symbol('lambda', positive=True, real=True, finite=True)
>>> Y = Exponential('Y', rate)
>>> smoment(Y, 4)
9
>>> smoment(Y, 4) == smoment(3*Y, 4)
True
>>> smoment(Y, 3) == skewness(Y)
True
"""
sigma = std(X, condition, **kwargs)
return (1/sigma)**n*cmoment(X, n, condition, **kwargs)
def skewness(X, condition=None, **kwargs):
r"""
Measure of the asymmetry of the probability distribution.
Explanation
===========
Positive skew indicates that most of the values lie to the right of
the mean.
.. math::
skewness(X) = E(((X - E(X))/\sigma_X)^{3})
Parameters
==========
condition : Expr containing RandomSymbols
A conditional expression. skewness(X, X>0) is skewness of X given X > 0
Examples
========
>>> from sympy.stats import skewness, Exponential, Normal
>>> from sympy import Symbol
>>> X = Normal('X', 0, 1)
>>> skewness(X)
0
>>> skewness(X, X > 0) # find skewness given X > 0
(-sqrt(2)/sqrt(pi) + 4*sqrt(2)/pi**(3/2))/(1 - 2/pi)**(3/2)
>>> rate = Symbol('lambda', positive=True, real=True, finite=True)
>>> Y = Exponential('Y', rate)
>>> skewness(Y)
2
"""
return smoment(X, 3, condition=condition, **kwargs)
def kurtosis(X, condition=None, **kwargs):
r"""
Characterizes the tails/outliers of a probability distribution.
Explanation
===========
Kurtosis of any univariate normal distribution is 3. Kurtosis less than
3 means that the distribution produces fewer and less extreme outliers
than the normal distribution.
.. math::
kurtosis(X) = E(((X - E(X))/\sigma_X)^{4})
Parameters
==========
condition : Expr containing RandomSymbols
A conditional expression. kurtosis(X, X>0) is kurtosis of X given X > 0
Examples
========
>>> from sympy.stats import kurtosis, Exponential, Normal
>>> from sympy import Symbol
>>> X = Normal('X', 0, 1)
>>> kurtosis(X)
3
>>> kurtosis(X, X > 0) # find kurtosis given X > 0
(-4/pi - 12/pi**2 + 3)/(1 - 2/pi)**2
>>> rate = Symbol('lamda', positive=True, real=True, finite=True)
>>> Y = Exponential('Y', rate)
>>> kurtosis(Y)
9
References
==========
.. [1] https://en.wikipedia.org/wiki/Kurtosis
.. [2] http://mathworld.wolfram.com/Kurtosis.html
"""
return smoment(X, 4, condition=condition, **kwargs)
def factorial_moment(X, n, condition=None, **kwargs):
"""
The factorial moment is a mathematical quantity defined as the expectation
or average of the falling factorial of a random variable.
.. math::
factorial-moment(X, n) = E(X(X - 1)(X - 2)...(X - n + 1))
Parameters
==========
n: A natural number, n-th factorial moment.
condition : Expr containing RandomSymbols
A conditional expression.
Examples
========
>>> from sympy.stats import factorial_moment, Poisson, Binomial
>>> from sympy import Symbol, S
>>> lamda = Symbol('lamda')
>>> X = Poisson('X', lamda)
>>> factorial_moment(X, 2)
lamda**2
>>> Y = Binomial('Y', 2, S.Half)
>>> factorial_moment(Y, 2)
1/2
>>> factorial_moment(Y, 2, Y > 1) # find factorial moment for Y > 1
2
References
==========
.. [1] https://en.wikipedia.org/wiki/Factorial_moment
.. [2] http://mathworld.wolfram.com/FactorialMoment.html
"""
return expectation(FallingFactorial(X, n), condition=condition, **kwargs)
def median(X, evaluate=True, **kwargs):
r"""
Calculuates the median of the probability distribution.
Explanation
===========
Mathematically, median of Probability distribution is defined as all those
values of `m` for which the following condition is satisfied
.. math::
P(X\leq m) \geq \frac{1}{2} \text{ and} \text{ } P(X\geq m)\geq \frac{1}{2}
Parameters
==========
X: The random expression whose median is to be calculated.
Returns
=======
The FiniteSet or an Interval which contains the median of the
random expression.
Examples
========
>>> from sympy.stats import Normal, Die, median
>>> N = Normal('N', 3, 1)
>>> median(N)
{3}
>>> D = Die('D')
>>> median(D)
{3, 4}
References
==========
.. [1] https://en.wikipedia.org/wiki/Median#Probability_distributions
"""
if not is_random(X):
return X
from sympy.stats.crv import ContinuousPSpace
from sympy.stats.drv import DiscretePSpace
from sympy.stats.frv import FinitePSpace
if isinstance(pspace(X), FinitePSpace):
cdf = pspace(X).compute_cdf(X)
result = []
for key, value in cdf.items():
if value>= Rational(1, 2) and (1 - value) + \
pspace(X).probability(Eq(X, key)) >= Rational(1, 2):
result.append(key)
return FiniteSet(*result)
if isinstance(pspace(X), ContinuousPSpace) or isinstance(pspace(X), DiscretePSpace):
cdf = pspace(X).compute_cdf(X)
x = Dummy('x')
result = solveset(piecewise_fold(cdf(x) - Rational(1, 2)), x, pspace(X).set)
return result
raise NotImplementedError("The median of %s is not implemeted."%str(pspace(X)))
def coskewness(X, Y, Z, condition=None, **kwargs):
r"""
Calculates the co-skewness of three random variables.
Explanation
===========
Mathematically Coskewness is defined as
.. math::
coskewness(X,Y,Z)=\frac{E[(X-E[X]) * (Y-E[Y]) * (Z-E[Z])]} {\sigma_{X}\sigma_{Y}\sigma_{Z}}
Parameters
==========
X : RandomSymbol
Random Variable used to calculate coskewness
Y : RandomSymbol
Random Variable used to calculate coskewness
Z : RandomSymbol
Random Variable used to calculate coskewness
condition : Expr containing RandomSymbols
A conditional expression
Examples
========
>>> from sympy.stats import coskewness, Exponential, skewness
>>> from sympy import symbols
>>> p = symbols('p', positive=True)
>>> X = Exponential('X', p)
>>> Y = Exponential('Y', 2*p)
>>> coskewness(X, Y, Y)
0
>>> coskewness(X, Y + X, Y + 2*X)
16*sqrt(85)/85
>>> coskewness(X + 2*Y, Y + X, Y + 2*X, X > 3)
9*sqrt(170)/85
>>> coskewness(Y, Y, Y) == skewness(Y)
True
>>> coskewness(X, Y + p*X, Y + 2*p*X)
4/(sqrt(1 + 1/(4*p**2))*sqrt(4 + 1/(4*p**2)))
Returns
=======
coskewness : The coskewness of the three random variables
References
==========
.. [1] https://en.wikipedia.org/wiki/Coskewness
"""
num = expectation((X - expectation(X, condition, **kwargs)) \
* (Y - expectation(Y, condition, **kwargs)) \
* (Z - expectation(Z, condition, **kwargs)), condition, **kwargs)
den = std(X, condition, **kwargs) * std(Y, condition, **kwargs) \
* std(Z, condition, **kwargs)
return num/den
P = probability
E = expectation
H = entropy
|
553dbe80c5e0a90a3ec46e23dbc0676ac43d38d967d510c9adbbca4e6db3c801 | """
Main Random Variables Module
Defines abstract random variable type.
Contains interfaces for probability space object (PSpace) as well as standard
operators, P, E, sample, density, where, quantile
See Also
========
sympy.stats.crv
sympy.stats.frv
sympy.stats.rv_interface
"""
from functools import singledispatch
from typing import Tuple as tTuple
from sympy import (Basic, S, Expr, Symbol, Tuple, And, Add, Eq, lambdify, Or,
Equality, Lambda, sympify, Dummy, Ne, KroneckerDelta,
DiracDelta, Mul, Indexed, MatrixSymbol, Function, prod)
from sympy.core.relational import Relational
from sympy.core.sympify import _sympify
from sympy.sets.sets import FiniteSet, ProductSet, Intersection
from sympy.solvers.solveset import solveset
from sympy.external import import_module
from sympy.utilities.misc import filldedent
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.exceptions import SymPyDeprecationWarning
import warnings
x = Symbol('x')
@singledispatch
def is_random(x):
return False
@is_random.register(Basic)
def _(x):
atoms = x.free_symbols
return any(is_random(i) for i in atoms)
class RandomDomain(Basic):
"""
Represents a set of variables and the values which they can take.
See Also
========
sympy.stats.crv.ContinuousDomain
sympy.stats.frv.FiniteDomain
"""
is_ProductDomain = False
is_Finite = False
is_Continuous = False
is_Discrete = False
def __new__(cls, symbols, *args):
symbols = FiniteSet(*symbols)
return Basic.__new__(cls, symbols, *args)
@property
def symbols(self):
return self.args[0]
@property
def set(self):
return self.args[1]
def __contains__(self, other):
raise NotImplementedError()
def compute_expectation(self, expr):
raise NotImplementedError()
class SingleDomain(RandomDomain):
"""
A single variable and its domain.
See Also
========
sympy.stats.crv.SingleContinuousDomain
sympy.stats.frv.SingleFiniteDomain
"""
def __new__(cls, symbol, set):
assert symbol.is_Symbol
return Basic.__new__(cls, symbol, set)
@property
def symbol(self):
return self.args[0]
@property
def symbols(self):
return FiniteSet(self.symbol)
def __contains__(self, other):
if len(other) != 1:
return False
sym, val = tuple(other)[0]
return self.symbol == sym and val in self.set
class MatrixDomain(RandomDomain):
"""
A Random Matrix variable and its domain.
"""
def __new__(cls, symbol, set):
symbol, set = _symbol_converter(symbol), _sympify(set)
return Basic.__new__(cls, symbol, set)
@property
def symbol(self):
return self.args[0]
@property
def symbols(self):
return FiniteSet(self.symbol)
class ConditionalDomain(RandomDomain):
"""
A RandomDomain with an attached condition.
See Also
========
sympy.stats.crv.ConditionalContinuousDomain
sympy.stats.frv.ConditionalFiniteDomain
"""
def __new__(cls, fulldomain, condition):
condition = condition.xreplace({rs: rs.symbol
for rs in random_symbols(condition)})
return Basic.__new__(cls, fulldomain, condition)
@property
def symbols(self):
return self.fulldomain.symbols
@property
def fulldomain(self):
return self.args[0]
@property
def condition(self):
return self.args[1]
@property
def set(self):
raise NotImplementedError("Set of Conditional Domain not Implemented")
def as_boolean(self):
return And(self.fulldomain.as_boolean(), self.condition)
class PSpace(Basic):
"""
A Probability Space.
Explanation
===========
Probability Spaces encode processes that equal different values
probabilistically. These underly Random Symbols which occur in SymPy
expressions and contain the mechanics to evaluate statistical statements.
See Also
========
sympy.stats.crv.ContinuousPSpace
sympy.stats.frv.FinitePSpace
"""
is_Finite = None # type: bool
is_Continuous = None # type: bool
is_Discrete = None # type: bool
is_real = None # type: bool
@property
def domain(self):
return self.args[0]
@property
def density(self):
return self.args[1]
@property
def values(self):
return frozenset(RandomSymbol(sym, self) for sym in self.symbols)
@property
def symbols(self):
return self.domain.symbols
def where(self, condition):
raise NotImplementedError()
def compute_density(self, expr):
raise NotImplementedError()
def sample(self, size=(), library='scipy', seed=None):
raise NotImplementedError()
def probability(self, condition):
raise NotImplementedError()
def compute_expectation(self, expr):
raise NotImplementedError()
class SinglePSpace(PSpace):
"""
Represents the probabilities of a set of random events that can be
attributed to a single variable/symbol.
"""
def __new__(cls, s, distribution):
s = _symbol_converter(s)
return Basic.__new__(cls, s, distribution)
@property
def value(self):
return RandomSymbol(self.symbol, self)
@property
def symbol(self):
return self.args[0]
@property
def distribution(self):
return self.args[1]
@property
def pdf(self):
return self.distribution.pdf(self.symbol)
class RandomSymbol(Expr):
"""
Random Symbols represent ProbabilitySpaces in SymPy Expressions.
In principle they can take on any value that their symbol can take on
within the associated PSpace with probability determined by the PSpace
Density.
Explanation
===========
Random Symbols contain pspace and symbol properties.
The pspace property points to the represented Probability Space
The symbol is a standard SymPy Symbol that is used in that probability space
for example in defining a density.
You can form normal SymPy expressions using RandomSymbols and operate on
those expressions with the Functions
E - Expectation of a random expression
P - Probability of a condition
density - Probability Density of an expression
given - A new random expression (with new random symbols) given a condition
An object of the RandomSymbol type should almost never be created by the
user. They tend to be created instead by the PSpace class's value method.
Traditionally a user doesn't even do this but instead calls one of the
convenience functions Normal, Exponential, Coin, Die, FiniteRV, etc....
"""
def __new__(cls, symbol, pspace=None):
from sympy.stats.joint_rv import JointRandomSymbol
if pspace is None:
# Allow single arg, representing pspace == PSpace()
pspace = PSpace()
symbol = _symbol_converter(symbol)
if not isinstance(pspace, PSpace):
raise TypeError("pspace variable should be of type PSpace")
if cls == JointRandomSymbol and isinstance(pspace, SinglePSpace):
cls = RandomSymbol
return Basic.__new__(cls, symbol, pspace)
is_finite = True
is_symbol = True
is_Atom = True
_diff_wrt = True
pspace = property(lambda self: self.args[1])
symbol = property(lambda self: self.args[0])
name = property(lambda self: self.symbol.name)
def _eval_is_positive(self):
return self.symbol.is_positive
def _eval_is_integer(self):
return self.symbol.is_integer
def _eval_is_real(self):
return self.symbol.is_real or self.pspace.is_real
@property
def is_commutative(self):
return self.symbol.is_commutative
@property
def free_symbols(self):
return {self}
class RandomIndexedSymbol(RandomSymbol):
def __new__(cls, idx_obj, pspace=None):
if pspace is None:
# Allow single arg, representing pspace == PSpace()
pspace = PSpace()
if not isinstance(idx_obj, (Indexed, Function)):
raise TypeError("An Function or Indexed object is expected not %s"%(idx_obj))
return Basic.__new__(cls, idx_obj, pspace)
symbol = property(lambda self: self.args[0])
name = property(lambda self: str(self.args[0]))
@property
def key(self):
if isinstance(self.symbol, Indexed):
return self.symbol.args[1]
elif isinstance(self.symbol, Function):
return self.symbol.args[0]
@property
def free_symbols(self):
if self.key.free_symbols:
free_syms = self.key.free_symbols
free_syms.add(self)
return free_syms
return {self}
@property
def pspace(self):
return self.args[1]
class RandomMatrixSymbol(RandomSymbol, MatrixSymbol): # type: ignore
def __new__(cls, symbol, n, m, pspace=None):
n, m = _sympify(n), _sympify(m)
symbol = _symbol_converter(symbol)
if pspace is None:
# Allow single arg, representing pspace == PSpace()
pspace = PSpace()
return Basic.__new__(cls, symbol, n, m, pspace)
symbol = property(lambda self: self.args[0])
pspace = property(lambda self: self.args[3])
class ProductPSpace(PSpace):
"""
Abstract class for representing probability spaces with multiple random
variables.
See Also
========
sympy.stats.rv.IndependentProductPSpace
sympy.stats.joint_rv.JointPSpace
"""
pass
class IndependentProductPSpace(ProductPSpace):
"""
A probability space resulting from the merger of two independent probability
spaces.
Often created using the function, pspace.
"""
def __new__(cls, *spaces):
rs_space_dict = {}
for space in spaces:
for value in space.values:
rs_space_dict[value] = space
symbols = FiniteSet(*[val.symbol for val in rs_space_dict.keys()])
# Overlapping symbols
from sympy.stats.joint_rv import MarginalDistribution
from sympy.stats.compound_rv import CompoundDistribution
if len(symbols) < sum(len(space.symbols) for space in spaces if not
isinstance(space.distribution, (
CompoundDistribution, MarginalDistribution))):
raise ValueError("Overlapping Random Variables")
if all(space.is_Finite for space in spaces):
from sympy.stats.frv import ProductFinitePSpace
cls = ProductFinitePSpace
obj = Basic.__new__(cls, *FiniteSet(*spaces))
return obj
@property
def pdf(self):
p = Mul(*[space.pdf for space in self.spaces])
return p.subs({rv: rv.symbol for rv in self.values})
@property
def rs_space_dict(self):
d = {}
for space in self.spaces:
for value in space.values:
d[value] = space
return d
@property
def symbols(self):
return FiniteSet(*[val.symbol for val in self.rs_space_dict.keys()])
@property
def spaces(self):
return FiniteSet(*self.args)
@property
def values(self):
return sumsets(space.values for space in self.spaces)
def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs):
rvs = rvs or self.values
rvs = frozenset(rvs)
for space in self.spaces:
expr = space.compute_expectation(expr, rvs & space.values, evaluate=False, **kwargs)
if evaluate and hasattr(expr, 'doit'):
return expr.doit(**kwargs)
return expr
@property
def domain(self):
return ProductDomain(*[space.domain for space in self.spaces])
@property
def density(self):
raise NotImplementedError("Density not available for ProductSpaces")
def sample(self, size=(), library='scipy', seed=None):
return {k: v for space in self.spaces
for k, v in space.sample(size=size, library=library, seed=seed).items()}
def probability(self, condition, **kwargs):
cond_inv = False
if isinstance(condition, Ne):
condition = Eq(condition.args[0], condition.args[1])
cond_inv = True
elif isinstance(condition, And): # they are independent
return Mul(*[self.probability(arg) for arg in condition.args])
elif isinstance(condition, Or): # they are independent
return Add(*[self.probability(arg) for arg in condition.args])
expr = condition.lhs - condition.rhs
rvs = random_symbols(expr)
dens = self.compute_density(expr)
if any(pspace(rv).is_Continuous for rv in rvs):
from sympy.stats.crv import SingleContinuousPSpace
from sympy.stats.crv_types import ContinuousDistributionHandmade
if expr in self.values:
# Marginalize all other random symbols out of the density
randomsymbols = tuple(set(self.values) - frozenset([expr]))
symbols = tuple(rs.symbol for rs in randomsymbols)
pdf = self.domain.integrate(self.pdf, symbols, **kwargs)
return Lambda(expr.symbol, pdf)
dens = ContinuousDistributionHandmade(dens)
z = Dummy('z', real=True)
space = SingleContinuousPSpace(z, dens)
result = space.probability(condition.__class__(space.value, 0))
else:
from sympy.stats.drv import SingleDiscretePSpace
from sympy.stats.drv_types import DiscreteDistributionHandmade
dens = DiscreteDistributionHandmade(dens)
z = Dummy('z', integer=True)
space = SingleDiscretePSpace(z, dens)
result = space.probability(condition.__class__(space.value, 0))
return result if not cond_inv else S.One - result
def compute_density(self, expr, **kwargs):
rvs = random_symbols(expr)
if any(pspace(rv).is_Continuous for rv in rvs):
z = Dummy('z', real=True)
expr = self.compute_expectation(DiracDelta(expr - z),
**kwargs)
else:
z = Dummy('z', integer=True)
expr = self.compute_expectation(KroneckerDelta(expr, z),
**kwargs)
return Lambda(z, expr)
def compute_cdf(self, expr, **kwargs):
raise ValueError("CDF not well defined on multivariate expressions")
def conditional_space(self, condition, normalize=True, **kwargs):
rvs = random_symbols(condition)
condition = condition.xreplace({rv: rv.symbol for rv in self.values})
pspaces = [pspace(rv) for rv in rvs]
if any(ps.is_Continuous for ps in pspaces):
from sympy.stats.crv import (ConditionalContinuousDomain,
ContinuousPSpace)
space = ContinuousPSpace
domain = ConditionalContinuousDomain(self.domain, condition)
elif any(ps.is_Discrete for ps in pspaces):
from sympy.stats.drv import (ConditionalDiscreteDomain,
DiscretePSpace)
space = DiscretePSpace
domain = ConditionalDiscreteDomain(self.domain, condition)
elif all(ps.is_Finite for ps in pspaces):
from sympy.stats.frv import FinitePSpace
return FinitePSpace.conditional_space(self, condition)
if normalize:
replacement = {rv: Dummy(str(rv)) for rv in self.symbols}
norm = domain.compute_expectation(self.pdf, **kwargs)
pdf = self.pdf / norm.xreplace(replacement)
# XXX: Converting symbols from set to tuple. The order matters to
# Lambda though so we shouldn't be starting with a set here...
density = Lambda(tuple(domain.symbols), pdf)
return space(domain, density)
class ProductDomain(RandomDomain):
"""
A domain resulting from the merger of two independent domains.
See Also
========
sympy.stats.crv.ProductContinuousDomain
sympy.stats.frv.ProductFiniteDomain
"""
is_ProductDomain = True
def __new__(cls, *domains):
# Flatten any product of products
domains2 = []
for domain in domains:
if not domain.is_ProductDomain:
domains2.append(domain)
else:
domains2.extend(domain.domains)
domains2 = FiniteSet(*domains2)
if all(domain.is_Finite for domain in domains2):
from sympy.stats.frv import ProductFiniteDomain
cls = ProductFiniteDomain
if all(domain.is_Continuous for domain in domains2):
from sympy.stats.crv import ProductContinuousDomain
cls = ProductContinuousDomain
if all(domain.is_Discrete for domain in domains2):
from sympy.stats.drv import ProductDiscreteDomain
cls = ProductDiscreteDomain
return Basic.__new__(cls, *domains2)
@property
def sym_domain_dict(self):
return {symbol: domain for domain in self.domains
for symbol in domain.symbols}
@property
def symbols(self):
return FiniteSet(*[sym for domain in self.domains
for sym in domain.symbols])
@property
def domains(self):
return self.args
@property
def set(self):
return ProductSet(*(domain.set for domain in self.domains))
def __contains__(self, other):
# Split event into each subdomain
for domain in self.domains:
# Collect the parts of this event which associate to this domain
elem = frozenset([item for item in other
if sympify(domain.symbols.contains(item[0]))
is S.true])
# Test this sub-event
if elem not in domain:
return False
# All subevents passed
return True
def as_boolean(self):
return And(*[domain.as_boolean() for domain in self.domains])
def random_symbols(expr):
"""
Returns all RandomSymbols within a SymPy Expression.
"""
atoms = getattr(expr, 'atoms', None)
if atoms is not None:
comp = lambda rv: rv.symbol.name
l = list(atoms(RandomSymbol))
return sorted(l, key=comp)
else:
return []
def pspace(expr):
"""
Returns the underlying Probability Space of a random expression.
For internal use.
Examples
========
>>> from sympy.stats import pspace, Normal
>>> X = Normal('X', 0, 1)
>>> pspace(2*X + 1) == X.pspace
True
"""
expr = sympify(expr)
if isinstance(expr, RandomSymbol) and expr.pspace is not None:
return expr.pspace
if expr.has(RandomMatrixSymbol):
rm = list(expr.atoms(RandomMatrixSymbol))[0]
return rm.pspace
rvs = random_symbols(expr)
if not rvs:
raise ValueError("Expression containing Random Variable expected, not %s" % (expr))
# If only one space present
if all(rv.pspace == rvs[0].pspace for rv in rvs):
return rvs[0].pspace
from sympy.stats.compound_rv import CompoundPSpace
from sympy.stats.stochastic_process import StochasticPSpace
for rv in rvs:
if isinstance(rv.pspace, (CompoundPSpace, StochasticPSpace)):
return rv.pspace
# Otherwise make a product space
return IndependentProductPSpace(*[rv.pspace for rv in rvs])
def sumsets(sets):
"""
Union of sets
"""
return frozenset().union(*sets)
def rs_swap(a, b):
"""
Build a dictionary to swap RandomSymbols based on their underlying symbol.
i.e.
if ``X = ('x', pspace1)``
and ``Y = ('x', pspace2)``
then ``X`` and ``Y`` match and the key, value pair
``{X:Y}`` will appear in the result
Inputs: collections a and b of random variables which share common symbols
Output: dict mapping RVs in a to RVs in b
"""
d = {}
for rsa in a:
d[rsa] = [rsb for rsb in b if rsa.symbol == rsb.symbol][0]
return d
def given(expr, condition=None, **kwargs):
r""" Conditional Random Expression.
Explanation
===========
From a random expression and a condition on that expression creates a new
probability space from the condition and returns the same expression on that
conditional probability space.
Examples
========
>>> from sympy.stats import given, density, Die
>>> X = Die('X', 6)
>>> Y = given(X, X > 3)
>>> density(Y).dict
{4: 1/3, 5: 1/3, 6: 1/3}
Following convention, if the condition is a random symbol then that symbol
is considered fixed.
>>> from sympy.stats import Normal
>>> from sympy import pprint
>>> from sympy.abc import z
>>> X = Normal('X', 0, 1)
>>> Y = Normal('Y', 0, 1)
>>> pprint(density(X + Y, Y)(z), use_unicode=False)
2
-(-Y + z)
-----------
___ 2
\/ 2 *e
------------------
____
2*\/ pi
"""
if not is_random(condition) or pspace_independent(expr, condition):
return expr
if isinstance(condition, RandomSymbol):
condition = Eq(condition, condition.symbol)
condsymbols = random_symbols(condition)
if (isinstance(condition, Equality) and len(condsymbols) == 1 and
not isinstance(pspace(expr).domain, ConditionalDomain)):
rv = tuple(condsymbols)[0]
results = solveset(condition, rv)
if isinstance(results, Intersection) and S.Reals in results.args:
results = list(results.args[1])
sums = 0
for res in results:
temp = expr.subs(rv, res)
if temp == True:
return True
if temp != False:
# XXX: This seems nonsensical but preserves existing behaviour
# after the change that Relational is no longer a subclass of
# Expr. Here expr is sometimes Relational and sometimes Expr
# but we are trying to add them with +=. This needs to be
# fixed somehow.
if sums == 0 and isinstance(expr, Relational):
sums = expr.subs(rv, res)
else:
sums += expr.subs(rv, res)
if sums == 0:
return False
return sums
# Get full probability space of both the expression and the condition
fullspace = pspace(Tuple(expr, condition))
# Build new space given the condition
space = fullspace.conditional_space(condition, **kwargs)
# Dictionary to swap out RandomSymbols in expr with new RandomSymbols
# That point to the new conditional space
swapdict = rs_swap(fullspace.values, space.values)
# Swap random variables in the expression
expr = expr.xreplace(swapdict)
return expr
def expectation(expr, condition=None, numsamples=None, evaluate=True, **kwargs):
"""
Returns the expected value of a random expression.
Parameters
==========
expr : Expr containing RandomSymbols
The expression of which you want to compute the expectation value
given : Expr containing RandomSymbols
A conditional expression. E(X, X>0) is expectation of X given X > 0
numsamples : int
Enables sampling and approximates the expectation with this many samples
evalf : Bool (defaults to True)
If sampling return a number rather than a complex expression
evaluate : Bool (defaults to True)
In case of continuous systems return unevaluated integral
Examples
========
>>> from sympy.stats import E, Die
>>> X = Die('X', 6)
>>> E(X)
7/2
>>> E(2*X + 1)
8
>>> E(X, X > 3) # Expectation of X given that it is above 3
5
"""
if not is_random(expr): # expr isn't random?
return expr
kwargs['numsamples'] = numsamples
from sympy.stats.symbolic_probability import Expectation
if evaluate:
return Expectation(expr, condition).doit(**kwargs)
return Expectation(expr, condition)
def probability(condition, given_condition=None, numsamples=None,
evaluate=True, **kwargs):
"""
Probability that a condition is true, optionally given a second condition.
Parameters
==========
condition : Combination of Relationals containing RandomSymbols
The condition of which you want to compute the probability
given_condition : Combination of Relationals containing RandomSymbols
A conditional expression. P(X > 1, X > 0) is expectation of X > 1
given X > 0
numsamples : int
Enables sampling and approximates the probability with this many samples
evaluate : Bool (defaults to True)
In case of continuous systems return unevaluated integral
Examples
========
>>> from sympy.stats import P, Die
>>> from sympy import Eq
>>> X, Y = Die('X', 6), Die('Y', 6)
>>> P(X > 3)
1/2
>>> P(Eq(X, 5), X > 2) # Probability that X == 5 given that X > 2
1/4
>>> P(X > Y)
5/12
"""
kwargs['numsamples'] = numsamples
from sympy.stats.symbolic_probability import Probability
if evaluate:
return Probability(condition, given_condition).doit(**kwargs)
### TODO: Remove the user warnings in the future releases
message = ("Since version 1.7, using `evaluate=False` returns `Probability` "
"object. If you want unevaluated Integral/Sum use "
"`P(condition, given_condition, evaluate=False).rewrite(Integral)`")
warnings.warn(filldedent(message))
return Probability(condition, given_condition)
class Density(Basic):
expr = property(lambda self: self.args[0])
@property
def condition(self):
if len(self.args) > 1:
return self.args[1]
else:
return None
def doit(self, evaluate=True, **kwargs):
from sympy.stats.random_matrix import RandomMatrixPSpace
from sympy.stats.joint_rv import JointPSpace
from sympy.stats.matrix_distributions import MatrixPSpace
from sympy.stats.compound_rv import CompoundPSpace
from sympy.stats.frv import SingleFiniteDistribution
expr, condition = self.expr, self.condition
if isinstance(expr, SingleFiniteDistribution):
return expr.dict
if condition is not None:
# Recompute on new conditional expr
expr = given(expr, condition, **kwargs)
if not random_symbols(expr):
return Lambda(x, DiracDelta(x - expr))
if isinstance(expr, RandomSymbol):
if isinstance(expr.pspace, (SinglePSpace, JointPSpace, MatrixPSpace)) and \
hasattr(expr.pspace, 'distribution'):
return expr.pspace.distribution
elif isinstance(expr.pspace, RandomMatrixPSpace):
return expr.pspace.model
if isinstance(pspace(expr), CompoundPSpace):
kwargs['compound_evaluate'] = evaluate
result = pspace(expr).compute_density(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def density(expr, condition=None, evaluate=True, numsamples=None, **kwargs):
"""
Probability density of a random expression, optionally given a second
condition.
Explanation
===========
This density will take on different forms for different types of
probability spaces. Discrete variables produce Dicts. Continuous
variables produce Lambdas.
Parameters
==========
expr : Expr containing RandomSymbols
The expression of which you want to compute the density value
condition : Relational containing RandomSymbols
A conditional expression. density(X > 1, X > 0) is density of X > 1
given X > 0
numsamples : int
Enables sampling and approximates the density with this many samples
Examples
========
>>> from sympy.stats import density, Die, Normal
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> D = Die('D', 6)
>>> X = Normal(x, 0, 1)
>>> density(D).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
>>> density(2*D).dict
{2: 1/6, 4: 1/6, 6: 1/6, 8: 1/6, 10: 1/6, 12: 1/6}
>>> density(X)(x)
sqrt(2)*exp(-x**2/2)/(2*sqrt(pi))
"""
if numsamples:
return sampling_density(expr, condition, numsamples=numsamples,
**kwargs)
return Density(expr, condition).doit(evaluate=evaluate, **kwargs)
def cdf(expr, condition=None, evaluate=True, **kwargs):
"""
Cumulative Distribution Function of a random expression.
optionally given a second condition.
Explanation
===========
This density will take on different forms for different types of
probability spaces.
Discrete variables produce Dicts.
Continuous variables produce Lambdas.
Examples
========
>>> from sympy.stats import density, Die, Normal, cdf
>>> D = Die('D', 6)
>>> X = Normal('X', 0, 1)
>>> density(D).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
>>> cdf(D)
{1: 1/6, 2: 1/3, 3: 1/2, 4: 2/3, 5: 5/6, 6: 1}
>>> cdf(3*D, D > 2)
{9: 1/4, 12: 1/2, 15: 3/4, 18: 1}
>>> cdf(X)
Lambda(_z, erf(sqrt(2)*_z/2)/2 + 1/2)
"""
if condition is not None: # If there is a condition
# Recompute on new conditional expr
return cdf(given(expr, condition, **kwargs), **kwargs)
# Otherwise pass work off to the ProbabilitySpace
result = pspace(expr).compute_cdf(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def characteristic_function(expr, condition=None, evaluate=True, **kwargs):
"""
Characteristic function of a random expression, optionally given a second condition.
Returns a Lambda.
Examples
========
>>> from sympy.stats import Normal, DiscreteUniform, Poisson, characteristic_function
>>> X = Normal('X', 0, 1)
>>> characteristic_function(X)
Lambda(_t, exp(-_t**2/2))
>>> Y = DiscreteUniform('Y', [1, 2, 7])
>>> characteristic_function(Y)
Lambda(_t, exp(7*_t*I)/3 + exp(2*_t*I)/3 + exp(_t*I)/3)
>>> Z = Poisson('Z', 2)
>>> characteristic_function(Z)
Lambda(_t, exp(2*exp(_t*I) - 2))
"""
if condition is not None:
return characteristic_function(given(expr, condition, **kwargs), **kwargs)
result = pspace(expr).compute_characteristic_function(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def moment_generating_function(expr, condition=None, evaluate=True, **kwargs):
if condition is not None:
return moment_generating_function(given(expr, condition, **kwargs), **kwargs)
result = pspace(expr).compute_moment_generating_function(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def where(condition, given_condition=None, **kwargs):
"""
Returns the domain where a condition is True.
Examples
========
>>> from sympy.stats import where, Die, Normal
>>> from sympy import And
>>> D1, D2 = Die('a', 6), Die('b', 6)
>>> a, b = D1.symbol, D2.symbol
>>> X = Normal('x', 0, 1)
>>> where(X**2<1)
Domain: (-1 < x) & (x < 1)
>>> where(X**2<1).set
Interval.open(-1, 1)
>>> where(And(D1<=D2 , D2<3))
Domain: (Eq(a, 1) & Eq(b, 1)) | (Eq(a, 1) & Eq(b, 2)) | (Eq(a, 2) & Eq(b, 2))
"""
if given_condition is not None: # If there is a condition
# Recompute on new conditional expr
return where(given(condition, given_condition, **kwargs), **kwargs)
# Otherwise pass work off to the ProbabilitySpace
return pspace(condition).where(condition, **kwargs)
@doctest_depends_on(modules=('scipy',))
def sample(expr, condition=None, size=(), library='scipy',
numsamples=1, seed=None, **kwargs):
"""
A realization of the random expression.
Parameters
==========
expr : Expression of random variables
Expression from which sample is extracted
condition : Expr containing RandomSymbols
A conditional expression
size : int, tuple
Represents size of each sample in numsamples
library : str
- 'scipy' : Sample using scipy
- 'numpy' : Sample using numpy
- 'pymc3' : Sample using PyMC3
Choose any of the available options to sample from as string,
by default is 'scipy'
numsamples : int
Number of samples, each with size as ``size``. The ``numsamples`` parameter is
deprecated and is only provided for compatibility with v1.8. Use a list comprehension
or an additional dimension in ``size`` instead.
seed :
An object to be used as seed by the given external library for sampling `expr`.
Following is the list of possible types of object for the supported libraries,
- 'scipy': int, numpy.random.RandomState, numpy.random.Generator
- 'numpy': int, numpy.random.RandomState, numpy.random.Generator
- 'pymc3': int
Optional, by default None, in which case seed settings
related to the given library will be used.
No modifications to environment's global seed settings
are done by this argument.
Returns
=======
sample: float/list/numpy.ndarray
one sample or a collection of samples of the random expression.
- sample(X) returns float/numpy.float64/numpy.int64 object.
- sample(X, size=int/tuple) returns numpy.ndarray object.
Examples
========
>>> from sympy.stats import Die, sample, Normal, Geometric
>>> X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6) # Finite Random Variable
>>> die_roll = sample(X + Y + Z)
>>> die_roll # doctest: +SKIP
3
>>> N = Normal('N', 3, 4) # Continuous Random Variable
>>> samp = sample(N)
>>> samp in N.pspace.domain.set
True
>>> samp = sample(N, N>0)
>>> samp > 0
True
>>> samp_list = sample(N, size=4)
>>> [sam in N.pspace.domain.set for sam in samp_list]
[True, True, True, True]
>>> sample(N, size = (2,3)) # doctest: +SKIP
array([[5.42519758, 6.40207856, 4.94991743],
[1.85819627, 6.83403519, 1.9412172 ]])
>>> G = Geometric('G', 0.5) # Discrete Random Variable
>>> samp_list = sample(G, size=3)
>>> samp_list # doctest: +SKIP
[1, 3, 2]
>>> [sam in G.pspace.domain.set for sam in samp_list]
[True, True, True]
>>> MN = Normal("MN", [3, 4], [[2, 1], [1, 2]]) # Joint Random Variable
>>> samp_list = sample(MN, size=4)
>>> samp_list # doctest: +SKIP
[array([2.85768055, 3.38954165]),
array([4.11163337, 4.3176591 ]),
array([0.79115232, 1.63232916]),
array([4.01747268, 3.96716083])]
>>> [tuple(sam) in MN.pspace.domain.set for sam in samp_list]
[True, True, True, True]
.. versionchanged:: 1.7.0
sample used to return an iterator containing the samples instead of value.
.. versionchanged:: 1.9.0
sample returns values or array of values instead of an iterator and numsamples is deprecated.
"""
iterator = sample_iter(expr, condition, size=size, library=library,
numsamples=numsamples, seed=seed)
if numsamples != 1:
SymPyDeprecationWarning(
feature="numsamples parameter",
issue=21723,
deprecated_since_version="1.9",
useinstead="a list comprehension or an additional dimension in ``size``").warn()
return [next(iterator) for i in range(numsamples)]
return next(iterator)
def quantile(expr, evaluate=True, **kwargs):
r"""
Return the :math:`p^{th}` order quantile of a probability distribution.
Explanation
===========
Quantile is defined as the value at which the probability of the random
variable is less than or equal to the given probability.
..math::
Q(p) = inf{x \in (-\infty, \infty) such that p <= F(x)}
Examples
========
>>> from sympy.stats import quantile, Die, Exponential
>>> from sympy import Symbol, pprint
>>> p = Symbol("p")
>>> l = Symbol("lambda", positive=True)
>>> X = Exponential("x", l)
>>> quantile(X)(p)
-log(1 - p)/lambda
>>> D = Die("d", 6)
>>> pprint(quantile(D)(p), use_unicode=False)
/nan for Or(p > 1, p < 0)
|
| 1 for p <= 1/6
|
| 2 for p <= 1/3
|
< 3 for p <= 1/2
|
| 4 for p <= 2/3
|
| 5 for p <= 5/6
|
\ 6 for p <= 1
"""
result = pspace(expr).compute_quantile(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def sample_iter(expr, condition=None, size=(), library='scipy',
numsamples=S.Infinity, seed=None, **kwargs):
"""
Returns an iterator of realizations from the expression given a condition.
Parameters
==========
expr: Expr
Random expression to be realized
condition: Expr, optional
A conditional expression
size : int, tuple
Represents size of each sample in numsamples
numsamples: integer, optional
Length of the iterator (defaults to infinity)
seed :
An object to be used as seed by the given external library for sampling `expr`.
Following is the list of possible types of object for the supported libraries,
- 'scipy': int, numpy.random.RandomState, numpy.random.Generator
- 'numpy': int, numpy.random.RandomState, numpy.random.Generator
- 'pymc3': int
Optional, by default None, in which case seed settings
related to the given library will be used.
No modifications to environment's global seed settings
are done by this argument.
Examples
========
>>> from sympy.stats import Normal, sample_iter
>>> X = Normal('X', 0, 1)
>>> expr = X*X + 3
>>> iterator = sample_iter(expr, numsamples=3) # doctest: +SKIP
>>> list(iterator) # doctest: +SKIP
[12, 4, 7]
Returns
=======
sample_iter: iterator object
iterator object containing the sample/samples of given expr
See Also
========
sample
sampling_P
sampling_E
"""
from sympy.stats.joint_rv import JointRandomSymbol
if not import_module(library):
raise ValueError("Failed to import %s" % library)
if condition is not None:
ps = pspace(Tuple(expr, condition))
else:
ps = pspace(expr)
rvs = list(ps.values)
if isinstance(expr, JointRandomSymbol):
expr = expr.subs({expr: RandomSymbol(expr.symbol, expr.pspace)})
else:
sub = {}
for arg in expr.args:
if isinstance(arg, JointRandomSymbol):
sub[arg] = RandomSymbol(arg.symbol, arg.pspace)
expr = expr.subs(sub)
def fn_subs(*args):
return expr.subs({rv: arg for rv, arg in zip(rvs, args)})
def given_fn_subs(*args):
if condition is not None:
return condition.subs({rv: arg for rv, arg in zip(rvs, args)})
return False
if library == 'pymc3':
# Currently unable to lambdify in pymc3
# TODO : Remove 'pymc3' when lambdify accepts 'pymc3' as module
fn = lambdify(rvs, expr, **kwargs)
else:
fn = lambdify(rvs, expr, modules=library, **kwargs)
if condition is not None:
given_fn = lambdify(rvs, condition, **kwargs)
def return_generator_infinite():
count = 0
_size = (1,)+((size,) if isinstance(size, int) else size)
while count < numsamples:
d = ps.sample(size=_size, library=library, seed=seed) # a dictionary that maps RVs to values
args = [d[rv][0] for rv in rvs]
if condition is not None: # Check that these values satisfy the condition
# TODO: Replace the try-except block with only given_fn(*args)
# once lambdify works with unevaluated SymPy objects.
try:
gd = given_fn(*args)
except (NameError, TypeError):
gd = given_fn_subs(*args)
if gd != True and gd != False:
raise ValueError(
"Conditions must not contain free symbols")
if not gd: # If the values don't satisfy then try again
continue
yield fn(*args)
count += 1
def return_generator_finite():
faulty = True
while faulty:
d = ps.sample(size=(numsamples,) + ((size,) if isinstance(size, int) else size),
library=library, seed=seed) # a dictionary that maps RVs to values
faulty = False
count = 0
while count < numsamples and not faulty:
args = [d[rv][count] for rv in rvs]
if condition is not None: # Check that these values satisfy the condition
# TODO: Replace the try-except block with only given_fn(*args)
# once lambdify works with unevaluated SymPy objects.
try:
gd = given_fn(*args)
except (NameError, TypeError):
gd = given_fn_subs(*args)
if gd != True and gd != False:
raise ValueError(
"Conditions must not contain free symbols")
if not gd: # If the values don't satisfy then try again
faulty = True
count += 1
count = 0
while count < numsamples:
args = [d[rv][count] for rv in rvs]
# TODO: Replace the try-except block with only fn(*args)
# once lambdify works with unevaluated SymPy objects.
try:
yield fn(*args)
except (NameError, TypeError):
yield fn_subs(*args)
count += 1
if numsamples is S.Infinity:
return return_generator_infinite()
return return_generator_finite()
def sample_iter_lambdify(expr, condition=None, size=(),
numsamples=S.Infinity, seed=None, **kwargs):
return sample_iter(expr, condition=condition, size=size,
numsamples=numsamples, seed=seed, **kwargs)
def sample_iter_subs(expr, condition=None, size=(),
numsamples=S.Infinity, seed=None, **kwargs):
return sample_iter(expr, condition=condition, size=size,
numsamples=numsamples, seed=seed, **kwargs)
def sampling_P(condition, given_condition=None, library='scipy', numsamples=1,
evalf=True, seed=None, **kwargs):
"""
Sampling version of P.
See Also
========
P
sampling_E
sampling_density
"""
count_true = 0
count_false = 0
samples = sample_iter(condition, given_condition, library=library,
numsamples=numsamples, seed=seed, **kwargs)
for sample in samples:
if sample:
count_true += 1
else:
count_false += 1
result = S(count_true) / numsamples
if evalf:
return result.evalf()
else:
return result
def sampling_E(expr, given_condition=None, library='scipy', numsamples=1,
evalf=True, seed=None, **kwargs):
"""
Sampling version of E.
See Also
========
P
sampling_P
sampling_density
"""
samples = list(sample_iter(expr, given_condition, library=library,
numsamples=numsamples, seed=seed, **kwargs))
result = Add(*[samp for samp in samples]) / numsamples
if evalf:
return result.evalf()
else:
return result
def sampling_density(expr, given_condition=None, library='scipy',
numsamples=1, seed=None, **kwargs):
"""
Sampling version of density.
See Also
========
density
sampling_P
sampling_E
"""
results = {}
for result in sample_iter(expr, given_condition, library=library,
numsamples=numsamples, seed=seed, **kwargs):
results[result] = results.get(result, 0) + 1
return results
def dependent(a, b):
"""
Dependence of two random expressions.
Two expressions are independent if knowledge of one does not change
computations on the other.
Examples
========
>>> from sympy.stats import Normal, dependent, given
>>> from sympy import Tuple, Eq
>>> X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
>>> dependent(X, Y)
False
>>> dependent(2*X + Y, -Y)
True
>>> X, Y = given(Tuple(X, Y), Eq(X + Y, 3))
>>> dependent(X, Y)
True
See Also
========
independent
"""
if pspace_independent(a, b):
return False
z = Symbol('z', real=True)
# Dependent if density is unchanged when one is given information about
# the other
return (density(a, Eq(b, z)) != density(a) or
density(b, Eq(a, z)) != density(b))
def independent(a, b):
"""
Independence of two random expressions.
Two expressions are independent if knowledge of one does not change
computations on the other.
Examples
========
>>> from sympy.stats import Normal, independent, given
>>> from sympy import Tuple, Eq
>>> X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
>>> independent(X, Y)
True
>>> independent(2*X + Y, -Y)
False
>>> X, Y = given(Tuple(X, Y), Eq(X + Y, 3))
>>> independent(X, Y)
False
See Also
========
dependent
"""
return not dependent(a, b)
def pspace_independent(a, b):
"""
Tests for independence between a and b by checking if their PSpaces have
overlapping symbols. This is a sufficient but not necessary condition for
independence and is intended to be used internally.
Notes
=====
pspace_independent(a, b) implies independent(a, b)
independent(a, b) does not imply pspace_independent(a, b)
"""
a_symbols = set(pspace(b).symbols)
b_symbols = set(pspace(a).symbols)
if len(set(random_symbols(a)).intersection(random_symbols(b))) != 0:
return False
if len(a_symbols.intersection(b_symbols)) == 0:
return True
return None
def rv_subs(expr, symbols=None):
"""
Given a random expression replace all random variables with their symbols.
If symbols keyword is given restrict the swap to only the symbols listed.
"""
if symbols is None:
symbols = random_symbols(expr)
if not symbols:
return expr
swapdict = {rv: rv.symbol for rv in symbols}
return expr.subs(swapdict)
class NamedArgsMixin:
_argnames = () # type: tTuple[str, ...]
def __getattr__(self, attr):
try:
return self.args[self._argnames.index(attr)]
except ValueError:
raise AttributeError("'%s' object has no attribute '%s'" % (
type(self).__name__, attr))
class Distribution(Basic):
def sample(self, size=(), library='scipy', seed=None):
""" A random realization from the distribution """
module = import_module(library)
if library in {'scipy', 'numpy', 'pymc3'} and module is None:
raise ValueError("Failed to import %s" % library)
if library == 'scipy':
# scipy does not require map as it can handle using custom distributions.
# However, we will still use a map where we can.
# TODO: do this for drv.py and frv.py if necessary.
# TODO: add more distributions here if there are more
# See links below referring to sections beginning with "A common parametrization..."
# I will remove all these comments if everything is ok.
from sympy.stats.sampling.sample_scipy import do_sample_scipy
import numpy
if seed is None or isinstance(seed, int):
rand_state = numpy.random.default_rng(seed=seed)
else:
rand_state = seed
samps = do_sample_scipy(self, size, rand_state)
elif library == 'numpy':
from sympy.stats.sampling.sample_numpy import do_sample_numpy
import numpy
if seed is None or isinstance(seed, int):
rand_state = numpy.random.default_rng(seed=seed)
else:
rand_state = seed
_size = None if size == () else size
samps = do_sample_numpy(self, _size, rand_state)
elif library == 'pymc3':
from sympy.stats.sampling.sample_pymc3 import do_sample_pymc3
import logging
logging.getLogger("pymc3").setLevel(logging.ERROR)
import pymc3
with pymc3.Model():
if do_sample_pymc3(self):
samps = pymc3.sample(draws=prod(size), chains=1, compute_convergence_checks=False,
progressbar=False, random_seed=seed, return_inferencedata=False)[:]['X']
samps = samps.reshape(size)
else:
samps = None
else:
raise NotImplementedError("Sampling from %s is not supported yet."
% str(library))
if samps is not None:
return samps
raise NotImplementedError(
"Sampling for %s is not currently implemented from %s"
% (self, library))
def _value_check(condition, message):
"""
Raise a ValueError with message if condition is False, else
return True if all conditions were True, else False.
Examples
========
>>> from sympy.stats.rv import _value_check
>>> from sympy.abc import a, b, c
>>> from sympy import And, Dummy
>>> _value_check(2 < 3, '')
True
Here, the condition is not False, but it doesn't evaluate to True
so False is returned (but no error is raised). So checking if the
return value is True or False will tell you if all conditions were
evaluated.
>>> _value_check(a < b, '')
False
In this case the condition is False so an error is raised:
>>> r = Dummy(real=True)
>>> _value_check(r < r - 1, 'condition is not true')
Traceback (most recent call last):
...
ValueError: condition is not true
If no condition of many conditions must be False, they can be
checked by passing them as an iterable:
>>> _value_check((a < 0, b < 0, c < 0), '')
False
The iterable can be a generator, too:
>>> _value_check((i < 0 for i in (a, b, c)), '')
False
The following are equivalent to the above but do not pass
an iterable:
>>> all(_value_check(i < 0, '') for i in (a, b, c))
False
>>> _value_check(And(a < 0, b < 0, c < 0), '')
False
"""
from sympy.core.compatibility import iterable
from sympy.core.logic import fuzzy_and
if not iterable(condition):
condition = [condition]
truth = fuzzy_and(condition)
if truth == False:
raise ValueError(message)
return truth == True
def _symbol_converter(sym):
"""
Casts the parameter to Symbol if it is 'str'
otherwise no operation is performed on it.
Parameters
==========
sym
The parameter to be converted.
Returns
=======
Symbol
the parameter converted to Symbol.
Raises
======
TypeError
If the parameter is not an instance of both str and
Symbol.
Examples
========
>>> from sympy import Symbol
>>> from sympy.stats.rv import _symbol_converter
>>> s = _symbol_converter('s')
>>> isinstance(s, Symbol)
True
>>> _symbol_converter(1)
Traceback (most recent call last):
...
TypeError: 1 is neither a Symbol nor a string
>>> r = Symbol('r')
>>> isinstance(r, Symbol)
True
"""
if isinstance(sym, str):
sym = Symbol(sym)
if not isinstance(sym, Symbol):
raise TypeError("%s is neither a Symbol nor a string"%(sym))
return sym
def sample_stochastic_process(process):
"""
This function is used to sample from stochastic process.
Parameters
==========
process: StochasticProcess
Process used to extract the samples. It must be an instance of
StochasticProcess
Examples
========
>>> from sympy.stats import sample_stochastic_process, DiscreteMarkovChain
>>> from sympy import Matrix
>>> T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]])
>>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
>>> next(sample_stochastic_process(Y)) in Y.state_space # doctest: +SKIP
True
>>> next(sample_stochastic_process(Y)) # doctest: +SKIP
0
>>> next(sample_stochastic_process(Y)) # doctest: +SKIP
2
Returns
=======
sample: iterator object
iterator object containing the sample of given process
"""
from sympy.stats.stochastic_process_types import StochasticProcess
if not isinstance(process, StochasticProcess):
raise ValueError("Process must be an instance of Stochastic Process")
return process.sample()
|
5ecc58d3f9d459c05675d3e046bac9a1d0139fc43d893deb3e2a20ddfda3ac96 | """
Joint Random Variables Module
See Also
========
sympy.stats.rv
sympy.stats.frv
sympy.stats.crv
sympy.stats.drv
"""
from sympy import (Basic, Lambda, sympify, Indexed, Symbol, ProductSet, S,
Dummy, prod)
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum, summation
from sympy.core.compatibility import iterable
from sympy.core.containers import Tuple
from sympy.integrals.integrals import Integral, integrate
from sympy.matrices import ImmutableMatrix, matrix2numpy, list2numpy
from sympy.stats.crv import SingleContinuousDistribution, SingleContinuousPSpace
from sympy.stats.drv import SingleDiscreteDistribution, SingleDiscretePSpace
from sympy.stats.rv import (ProductPSpace, NamedArgsMixin, Distribution,
ProductDomain, RandomSymbol, random_symbols,
SingleDomain, _symbol_converter)
from sympy.utilities.misc import filldedent
from sympy.external import import_module
# __all__ = ['marginal_distribution']
class JointPSpace(ProductPSpace):
"""
Represents a joint probability space. Represented using symbols for
each component and a distribution.
"""
def __new__(cls, sym, dist):
if isinstance(dist, SingleContinuousDistribution):
return SingleContinuousPSpace(sym, dist)
if isinstance(dist, SingleDiscreteDistribution):
return SingleDiscretePSpace(sym, dist)
sym = _symbol_converter(sym)
return Basic.__new__(cls, sym, dist)
@property
def set(self):
return self.domain.set
@property
def symbol(self):
return self.args[0]
@property
def distribution(self):
return self.args[1]
@property
def value(self):
return JointRandomSymbol(self.symbol, self)
@property
def component_count(self):
_set = self.distribution.set
if isinstance(_set, ProductSet):
return S(len(_set.args))
elif isinstance(_set, Product):
return _set.limits[0][-1]
return S.One
@property
def pdf(self):
sym = [Indexed(self.symbol, i) for i in range(self.component_count)]
return self.distribution(*sym)
@property
def domain(self):
rvs = random_symbols(self.distribution)
if not rvs:
return SingleDomain(self.symbol, self.distribution.set)
return ProductDomain(*[rv.pspace.domain for rv in rvs])
def component_domain(self, index):
return self.set.args[index]
def marginal_distribution(self, *indices):
count = self.component_count
if count.atoms(Symbol):
raise ValueError("Marginal distributions cannot be computed "
"for symbolic dimensions. It is a work under progress.")
orig = [Indexed(self.symbol, i) for i in range(count)]
all_syms = [Symbol(str(i)) for i in orig]
replace_dict = dict(zip(all_syms, orig))
sym = tuple(Symbol(str(Indexed(self.symbol, i))) for i in indices)
limits = list([i,] for i in all_syms if i not in sym)
index = 0
for i in range(count):
if i not in indices:
limits[index].append(self.distribution.set.args[i])
limits[index] = tuple(limits[index])
index += 1
if self.distribution.is_Continuous:
f = Lambda(sym, integrate(self.distribution(*all_syms), *limits))
elif self.distribution.is_Discrete:
f = Lambda(sym, summation(self.distribution(*all_syms), *limits))
return f.xreplace(replace_dict)
def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs):
syms = tuple(self.value[i] for i in range(self.component_count))
rvs = rvs or syms
if not any(i in rvs for i in syms):
return expr
expr = expr*self.pdf
for rv in rvs:
if isinstance(rv, Indexed):
expr = expr.xreplace({rv: Indexed(str(rv.base), rv.args[1])})
elif isinstance(rv, RandomSymbol):
expr = expr.xreplace({rv: rv.symbol})
if self.value in random_symbols(expr):
raise NotImplementedError(filldedent('''
Expectations of expression with unindexed joint random symbols
cannot be calculated yet.'''))
limits = tuple((Indexed(str(rv.base),rv.args[1]),
self.distribution.set.args[rv.args[1]]) for rv in syms)
return Integral(expr, *limits)
def where(self, condition):
raise NotImplementedError()
def compute_density(self, expr):
raise NotImplementedError()
def sample(self, size=(), library='scipy', seed=None):
"""
Internal sample method
Returns dictionary mapping RandomSymbol to realization value.
"""
return {RandomSymbol(self.symbol, self): self.distribution.sample(size,
library=library, seed=seed)}
def probability(self, condition):
raise NotImplementedError()
class SampleJointScipy:
"""Returns the sample from scipy of the given distribution"""
def __new__(cls, dist, size, seed=None):
return cls._sample_scipy(dist, size, seed)
@classmethod
def _sample_scipy(cls, dist, size, seed):
"""Sample from SciPy."""
import numpy
if seed is None or isinstance(seed, int):
rand_state = numpy.random.default_rng(seed=seed)
else:
rand_state = seed
from scipy import stats as scipy_stats
scipy_rv_map = {
'MultivariateNormalDistribution': lambda dist, size: scipy_stats.multivariate_normal.rvs(
mean=matrix2numpy(dist.mu).flatten(),
cov=matrix2numpy(dist.sigma), size=size, random_state=rand_state),
'MultivariateBetaDistribution': lambda dist, size: scipy_stats.dirichlet.rvs(
alpha=list2numpy(dist.alpha, float).flatten(), size=size, random_state=rand_state),
'MultinomialDistribution': lambda dist, size: scipy_stats.multinomial.rvs(
n=int(dist.n), p=list2numpy(dist.p, float).flatten(), size=size, random_state=rand_state)
}
sample_shape = {
'MultivariateNormalDistribution': lambda dist: matrix2numpy(dist.mu).flatten().shape,
'MultivariateBetaDistribution': lambda dist: list2numpy(dist.alpha).flatten().shape,
'MultinomialDistribution': lambda dist: list2numpy(dist.p).flatten().shape
}
dist_list = scipy_rv_map.keys()
if dist.__class__.__name__ not in dist_list:
return None
samples = scipy_rv_map[dist.__class__.__name__](dist, size)
return samples.reshape(size + sample_shape[dist.__class__.__name__](dist))
class SampleJointNumpy:
"""Returns the sample from numpy of the given distribution"""
def __new__(cls, dist, size, seed=None):
return cls._sample_numpy(dist, size, seed)
@classmethod
def _sample_numpy(cls, dist, size, seed):
"""Sample from NumPy."""
import numpy
if seed is None or isinstance(seed, int):
rand_state = numpy.random.default_rng(seed=seed)
else:
rand_state = seed
numpy_rv_map = {
'MultivariateNormalDistribution': lambda dist, size: rand_state.multivariate_normal(
mean=matrix2numpy(dist.mu, float).flatten(),
cov=matrix2numpy(dist.sigma, float), size=size),
'MultivariateBetaDistribution': lambda dist, size: rand_state.dirichlet(
alpha=list2numpy(dist.alpha, float).flatten(), size=size),
'MultinomialDistribution': lambda dist, size: rand_state.multinomial(
n=int(dist.n), pvals=list2numpy(dist.p, float).flatten(), size=size)
}
sample_shape = {
'MultivariateNormalDistribution': lambda dist: matrix2numpy(dist.mu).flatten().shape,
'MultivariateBetaDistribution': lambda dist: list2numpy(dist.alpha).flatten().shape,
'MultinomialDistribution': lambda dist: list2numpy(dist.p).flatten().shape
}
dist_list = numpy_rv_map.keys()
if dist.__class__.__name__ not in dist_list:
return None
samples = numpy_rv_map[dist.__class__.__name__](dist, prod(size))
return samples.reshape(size + sample_shape[dist.__class__.__name__](dist))
class SampleJointPymc:
"""Returns the sample from pymc3 of the given distribution"""
def __new__(cls, dist, size, seed=None):
return cls._sample_pymc3(dist, size, seed)
@classmethod
def _sample_pymc3(cls, dist, size, seed):
"""Sample from PyMC3."""
import pymc3
pymc3_rv_map = {
'MultivariateNormalDistribution': lambda dist:
pymc3.MvNormal('X', mu=matrix2numpy(dist.mu, float).flatten(),
cov=matrix2numpy(dist.sigma, float), shape=(1, dist.mu.shape[0])),
'MultivariateBetaDistribution': lambda dist:
pymc3.Dirichlet('X', a=list2numpy(dist.alpha, float).flatten()),
'MultinomialDistribution': lambda dist:
pymc3.Multinomial('X', n=int(dist.n),
p=list2numpy(dist.p, float).flatten(), shape=(1, len(dist.p)))
}
sample_shape = {
'MultivariateNormalDistribution': lambda dist: matrix2numpy(dist.mu).flatten().shape,
'MultivariateBetaDistribution': lambda dist: list2numpy(dist.alpha).flatten().shape,
'MultinomialDistribution': lambda dist: list2numpy(dist.p).flatten().shape
}
dist_list = pymc3_rv_map.keys()
if dist.__class__.__name__ not in dist_list:
return None
import logging
logging.getLogger("pymc3").setLevel(logging.ERROR)
with pymc3.Model():
pymc3_rv_map[dist.__class__.__name__](dist)
samples = pymc3.sample(draws=prod(size), chains=1, progressbar=False, random_seed=seed, return_inferencedata=False, compute_convergence_checks=False)[:]['X']
return samples.reshape(size + sample_shape[dist.__class__.__name__](dist))
_get_sample_class_jrv = {
'scipy': SampleJointScipy,
'pymc3': SampleJointPymc,
'numpy': SampleJointNumpy
}
class JointDistribution(Distribution, NamedArgsMixin):
"""
Represented by the random variables part of the joint distribution.
Contains methods for PDF, CDF, sampling, marginal densities, etc.
"""
_argnames = ('pdf', )
def __new__(cls, *args):
args = list(map(sympify, args))
for i in range(len(args)):
if isinstance(args[i], list):
args[i] = ImmutableMatrix(args[i])
return Basic.__new__(cls, *args)
@property
def domain(self):
return ProductDomain(self.symbols)
@property
def pdf(self):
return self.density.args[1]
def cdf(self, other):
if not isinstance(other, dict):
raise ValueError("%s should be of type dict, got %s"%(other, type(other)))
rvs = other.keys()
_set = self.domain.set.sets
expr = self.pdf(tuple(i.args[0] for i in self.symbols))
for i in range(len(other)):
if rvs[i].is_Continuous:
density = Integral(expr, (rvs[i], _set[i].inf,
other[rvs[i]]))
elif rvs[i].is_Discrete:
density = Sum(expr, (rvs[i], _set[i].inf,
other[rvs[i]]))
return density
def sample(self, size=(), library='scipy', seed=None):
""" A random realization from the distribution """
libraries = ['scipy', 'numpy', 'pymc3']
if library not in libraries:
raise NotImplementedError("Sampling from %s is not supported yet."
% str(library))
if not import_module(library):
raise ValueError("Failed to import %s" % library)
samps = _get_sample_class_jrv[library](self, size, seed=seed)
if samps is not None:
return samps
raise NotImplementedError(
"Sampling for %s is not currently implemented from %s"
% (self.__class__.__name__, library)
)
def __call__(self, *args):
return self.pdf(*args)
class JointRandomSymbol(RandomSymbol):
"""
Representation of random symbols with joint probability distributions
to allow indexing."
"""
def __getitem__(self, key):
if isinstance(self.pspace, JointPSpace):
if (self.pspace.component_count <= key) == True:
raise ValueError("Index keys for %s can only up to %s." %
(self.name, self.pspace.component_count - 1))
return Indexed(self, key)
class MarginalDistribution(Distribution):
"""
Represents the marginal distribution of a joint probability space.
Initialised using a probability distribution and random variables(or
their indexed components) which should be a part of the resultant
distribution.
"""
def __new__(cls, dist, *rvs):
if len(rvs) == 1 and iterable(rvs[0]):
rvs = tuple(rvs[0])
if not all(isinstance(rv, (Indexed, RandomSymbol)) for rv in rvs):
raise ValueError(filldedent('''Marginal distribution can be
intitialised only in terms of random variables or indexed random
variables'''))
rvs = Tuple.fromiter(rv for rv in rvs)
if not isinstance(dist, JointDistribution) and len(random_symbols(dist)) == 0:
return dist
return Basic.__new__(cls, dist, rvs)
def check(self):
pass
@property
def set(self):
rvs = [i for i in self.args[1] if isinstance(i, RandomSymbol)]
return ProductSet(*[rv.pspace.set for rv in rvs])
@property
def symbols(self):
rvs = self.args[1]
return {rv.pspace.symbol for rv in rvs}
def pdf(self, *x):
expr, rvs = self.args[0], self.args[1]
marginalise_out = [i for i in random_symbols(expr) if i not in rvs]
if isinstance(expr, JointDistribution):
count = len(expr.domain.args)
x = Dummy('x', real=True, finite=True)
syms = tuple(Indexed(x, i) for i in count)
expr = expr.pdf(syms)
else:
syms = tuple(rv.pspace.symbol if isinstance(rv, RandomSymbol) else rv.args[0] for rv in rvs)
return Lambda(syms, self.compute_pdf(expr, marginalise_out))(*x)
def compute_pdf(self, expr, rvs):
for rv in rvs:
lpdf = 1
if isinstance(rv, RandomSymbol):
lpdf = rv.pspace.pdf
expr = self.marginalise_out(expr*lpdf, rv)
return expr
def marginalise_out(self, expr, rv):
from sympy.concrete.summations import Sum
if isinstance(rv, RandomSymbol):
dom = rv.pspace.set
elif isinstance(rv, Indexed):
dom = rv.base.component_domain(
rv.pspace.component_domain(rv.args[1]))
expr = expr.xreplace({rv: rv.pspace.symbol})
if rv.pspace.is_Continuous:
#TODO: Modify to support integration
#for all kinds of sets.
expr = Integral(expr, (rv.pspace.symbol, dom))
elif rv.pspace.is_Discrete:
#incorporate this into `Sum`/`summation`
if dom in (S.Integers, S.Naturals, S.Naturals0):
dom = (dom.inf, dom.sup)
expr = Sum(expr, (rv.pspace.symbol, dom))
return expr
def __call__(self, *args):
return self.pdf(*args)
|
37e375d591e1f8233332be843d5e709ae944ad584c3e2dd3f28cd4691c9f47c3 | import itertools
from sympy import (Expr, Add, Mul, S, Integral, Eq, Sum, Symbol,
expand as _expand, Not)
from sympy.core.compatibility import default_sort_key
from sympy.core.parameters import global_parameters
from sympy.core.sympify import _sympify
from sympy.core.relational import Relational
from sympy.logic.boolalg import Boolean
from sympy.stats import variance, covariance
from sympy.stats.rv import (RandomSymbol, pspace, dependent,
given, sampling_E, RandomIndexedSymbol, is_random,
PSpace, sampling_P, random_symbols)
__all__ = ['Probability', 'Expectation', 'Variance', 'Covariance']
@is_random.register(Expr)
def _(x):
atoms = x.free_symbols
if len(atoms) == 1 and next(iter(atoms)) == x:
return False
return any(is_random(i) for i in atoms)
@is_random.register(RandomSymbol) # type: ignore
def _(x):
return True
class Probability(Expr):
"""
Symbolic expression for the probability.
Examples
========
>>> from sympy.stats import Probability, Normal
>>> from sympy import Integral
>>> X = Normal("X", 0, 1)
>>> prob = Probability(X > 1)
>>> prob
Probability(X > 1)
Integral representation:
>>> prob.rewrite(Integral)
Integral(sqrt(2)*exp(-_z**2/2)/(2*sqrt(pi)), (_z, 1, oo))
Evaluation of the integral:
>>> prob.evaluate_integral()
sqrt(2)*(-sqrt(2)*sqrt(pi)*erf(sqrt(2)/2) + sqrt(2)*sqrt(pi))/(4*sqrt(pi))
"""
def __new__(cls, prob, condition=None, **kwargs):
prob = _sympify(prob)
if condition is None:
obj = Expr.__new__(cls, prob)
else:
condition = _sympify(condition)
obj = Expr.__new__(cls, prob, condition)
obj._condition = condition
return obj
def doit(self, **hints):
condition = self.args[0]
given_condition = self._condition
numsamples = hints.get('numsamples', False)
for_rewrite = not hints.get('for_rewrite', False)
if isinstance(condition, Not):
return S.One - self.func(condition.args[0], given_condition,
evaluate=for_rewrite).doit(**hints)
if condition.has(RandomIndexedSymbol):
return pspace(condition).probability(condition, given_condition,
evaluate=for_rewrite)
if isinstance(given_condition, RandomSymbol):
condrv = random_symbols(condition)
if len(condrv) == 1 and condrv[0] == given_condition:
from sympy.stats.frv_types import BernoulliDistribution
return BernoulliDistribution(self.func(condition).doit(**hints), 0, 1)
if any(dependent(rv, given_condition) for rv in condrv):
return Probability(condition, given_condition)
else:
return Probability(condition).doit()
if given_condition is not None and \
not isinstance(given_condition, (Relational, Boolean)):
raise ValueError("%s is not a relational or combination of relationals"
% (given_condition))
if given_condition == False or condition is S.false:
return S.Zero
if not isinstance(condition, (Relational, Boolean)):
raise ValueError("%s is not a relational or combination of relationals"
% (condition))
if condition is S.true:
return S.One
if numsamples:
return sampling_P(condition, given_condition, numsamples=numsamples)
if given_condition is not None: # If there is a condition
# Recompute on new conditional expr
return Probability(given(condition, given_condition)).doit()
# Otherwise pass work off to the ProbabilitySpace
if pspace(condition) == PSpace():
return Probability(condition, given_condition)
result = pspace(condition).probability(condition)
if hasattr(result, 'doit') and for_rewrite:
return result.doit()
else:
return result
def _eval_rewrite_as_Integral(self, arg, condition=None, **kwargs):
return self.func(arg, condition=condition).doit(for_rewrite=True)
_eval_rewrite_as_Sum = _eval_rewrite_as_Integral
def evaluate_integral(self):
return self.rewrite(Integral).doit()
class Expectation(Expr):
"""
Symbolic expression for the expectation.
Examples
========
>>> from sympy.stats import Expectation, Normal, Probability, Poisson
>>> from sympy import symbols, Integral, Sum
>>> mu = symbols("mu")
>>> sigma = symbols("sigma", positive=True)
>>> X = Normal("X", mu, sigma)
>>> Expectation(X)
Expectation(X)
>>> Expectation(X).evaluate_integral().simplify()
mu
To get the integral expression of the expectation:
>>> Expectation(X).rewrite(Integral)
Integral(sqrt(2)*X*exp(-(X - mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (X, -oo, oo))
The same integral expression, in more abstract terms:
>>> Expectation(X).rewrite(Probability)
Integral(x*Probability(Eq(X, x)), (x, -oo, oo))
To get the Summation expression of the expectation for discrete random variables:
>>> lamda = symbols('lamda', positive=True)
>>> Z = Poisson('Z', lamda)
>>> Expectation(Z).rewrite(Sum)
Sum(Z*lamda**Z*exp(-lamda)/factorial(Z), (Z, 0, oo))
This class is aware of some properties of the expectation:
>>> from sympy.abc import a
>>> Expectation(a*X)
Expectation(a*X)
>>> Y = Normal("Y", 1, 2)
>>> Expectation(X + Y)
Expectation(X + Y)
To expand the ``Expectation`` into its expression, use ``expand()``:
>>> Expectation(X + Y).expand()
Expectation(X) + Expectation(Y)
>>> Expectation(a*X + Y).expand()
a*Expectation(X) + Expectation(Y)
>>> Expectation(a*X + Y)
Expectation(a*X + Y)
>>> Expectation((X + Y)*(X - Y)).expand()
Expectation(X**2) - Expectation(Y**2)
To evaluate the ``Expectation``, use ``doit()``:
>>> Expectation(X + Y).doit()
mu + 1
>>> Expectation(X + Expectation(Y + Expectation(2*X))).doit()
3*mu + 1
To prevent evaluating nested ``Expectation``, use ``doit(deep=False)``
>>> Expectation(X + Expectation(Y)).doit(deep=False)
mu + Expectation(Expectation(Y))
>>> Expectation(X + Expectation(Y + Expectation(2*X))).doit(deep=False)
mu + Expectation(Expectation(Y + Expectation(2*X)))
"""
def __new__(cls, expr, condition=None, **kwargs):
expr = _sympify(expr)
if expr.is_Matrix:
from sympy.stats.symbolic_multivariate_probability import ExpectationMatrix
return ExpectationMatrix(expr, condition)
if condition is None:
if not is_random(expr):
return expr
obj = Expr.__new__(cls, expr)
else:
condition = _sympify(condition)
obj = Expr.__new__(cls, expr, condition)
obj._condition = condition
return obj
def expand(self, **hints):
expr = self.args[0]
condition = self._condition
if not is_random(expr):
return expr
if isinstance(expr, Add):
return Add.fromiter(Expectation(a, condition=condition).expand()
for a in expr.args)
expand_expr = _expand(expr)
if isinstance(expand_expr, Add):
return Add.fromiter(Expectation(a, condition=condition).expand()
for a in expand_expr.args)
elif isinstance(expr, Mul):
rv = []
nonrv = []
for a in expr.args:
if is_random(a):
rv.append(a)
else:
nonrv.append(a)
return Mul.fromiter(nonrv)*Expectation(Mul.fromiter(rv), condition=condition)
return self
def doit(self, **hints):
deep = hints.get('deep', True)
condition = self._condition
expr = self.args[0]
numsamples = hints.get('numsamples', False)
for_rewrite = not hints.get('for_rewrite', False)
if deep:
expr = expr.doit(**hints)
if not is_random(expr) or isinstance(expr, Expectation): # expr isn't random?
return expr
if numsamples: # Computing by monte carlo sampling?
evalf = hints.get('evalf', True)
return sampling_E(expr, condition, numsamples=numsamples, evalf=evalf)
if expr.has(RandomIndexedSymbol):
return pspace(expr).compute_expectation(expr, condition)
# Create new expr and recompute E
if condition is not None: # If there is a condition
return self.func(given(expr, condition)).doit(**hints)
# A few known statements for efficiency
if expr.is_Add: # We know that E is Linear
return Add(*[self.func(arg, condition).doit(**hints)
if not isinstance(arg, Expectation) else self.func(arg, condition)
for arg in expr.args])
if expr.is_Mul:
if expr.atoms(Expectation):
return expr
if pspace(expr) == PSpace():
return self.func(expr)
# Otherwise case is simple, pass work off to the ProbabilitySpace
result = pspace(expr).compute_expectation(expr, evaluate=for_rewrite)
if hasattr(result, 'doit') and for_rewrite:
return result.doit(**hints)
else:
return result
def _eval_rewrite_as_Probability(self, arg, condition=None, **kwargs):
rvs = arg.atoms(RandomSymbol)
if len(rvs) > 1:
raise NotImplementedError()
if len(rvs) == 0:
return arg
rv = rvs.pop()
if rv.pspace is None:
raise ValueError("Probability space not known")
symbol = rv.symbol
if symbol.name[0].isupper():
symbol = Symbol(symbol.name.lower())
else :
symbol = Symbol(symbol.name + "_1")
if rv.pspace.is_Continuous:
return Integral(arg.replace(rv, symbol)*Probability(Eq(rv, symbol), condition), (symbol, rv.pspace.domain.set.inf, rv.pspace.domain.set.sup))
else:
if rv.pspace.is_Finite:
raise NotImplementedError
else:
return Sum(arg.replace(rv, symbol)*Probability(Eq(rv, symbol), condition), (symbol, rv.pspace.domain.set.inf, rv.pspace.set.sup))
def _eval_rewrite_as_Integral(self, arg, condition=None, **kwargs):
return self.func(arg, condition=condition).doit(deep=False, for_rewrite=True)
_eval_rewrite_as_Sum = _eval_rewrite_as_Integral # For discrete this will be Sum
def evaluate_integral(self):
return self.rewrite(Integral).doit()
evaluate_sum = evaluate_integral
class Variance(Expr):
"""
Symbolic expression for the variance.
Examples
========
>>> from sympy import symbols, Integral
>>> from sympy.stats import Normal, Expectation, Variance, Probability
>>> mu = symbols("mu", positive=True)
>>> sigma = symbols("sigma", positive=True)
>>> X = Normal("X", mu, sigma)
>>> Variance(X)
Variance(X)
>>> Variance(X).evaluate_integral()
sigma**2
Integral representation of the underlying calculations:
>>> Variance(X).rewrite(Integral)
Integral(sqrt(2)*(X - Integral(sqrt(2)*X*exp(-(X - mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (X, -oo, oo)))**2*exp(-(X - mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (X, -oo, oo))
Integral representation, without expanding the PDF:
>>> Variance(X).rewrite(Probability)
-Integral(x*Probability(Eq(X, x)), (x, -oo, oo))**2 + Integral(x**2*Probability(Eq(X, x)), (x, -oo, oo))
Rewrite the variance in terms of the expectation
>>> Variance(X).rewrite(Expectation)
-Expectation(X)**2 + Expectation(X**2)
Some transformations based on the properties of the variance may happen:
>>> from sympy.abc import a
>>> Y = Normal("Y", 0, 1)
>>> Variance(a*X)
Variance(a*X)
To expand the variance in its expression, use ``expand()``:
>>> Variance(a*X).expand()
a**2*Variance(X)
>>> Variance(X + Y)
Variance(X + Y)
>>> Variance(X + Y).expand()
2*Covariance(X, Y) + Variance(X) + Variance(Y)
"""
def __new__(cls, arg, condition=None, **kwargs):
arg = _sympify(arg)
if arg.is_Matrix:
from sympy.stats.symbolic_multivariate_probability import VarianceMatrix
return VarianceMatrix(arg, condition)
if condition is None:
obj = Expr.__new__(cls, arg)
else:
condition = _sympify(condition)
obj = Expr.__new__(cls, arg, condition)
obj._condition = condition
return obj
def expand(self, **hints):
arg = self.args[0]
condition = self._condition
if not is_random(arg):
return S.Zero
if isinstance(arg, RandomSymbol):
return self
elif isinstance(arg, Add):
rv = []
for a in arg.args:
if is_random(a):
rv.append(a)
variances = Add(*map(lambda xv: Variance(xv, condition).expand(), rv))
map_to_covar = lambda x: 2*Covariance(*x, condition=condition).expand()
covariances = Add(*map(map_to_covar, itertools.combinations(rv, 2)))
return variances + covariances
elif isinstance(arg, Mul):
nonrv = []
rv = []
for a in arg.args:
if is_random(a):
rv.append(a)
else:
nonrv.append(a**2)
if len(rv) == 0:
return S.Zero
return Mul.fromiter(nonrv)*Variance(Mul.fromiter(rv), condition)
# this expression contains a RandomSymbol somehow:
return self
def _eval_rewrite_as_Expectation(self, arg, condition=None, **kwargs):
e1 = Expectation(arg**2, condition)
e2 = Expectation(arg, condition)**2
return e1 - e2
def _eval_rewrite_as_Probability(self, arg, condition=None, **kwargs):
return self.rewrite(Expectation).rewrite(Probability)
def _eval_rewrite_as_Integral(self, arg, condition=None, **kwargs):
return variance(self.args[0], self._condition, evaluate=False)
_eval_rewrite_as_Sum = _eval_rewrite_as_Integral
def evaluate_integral(self):
return self.rewrite(Integral).doit()
class Covariance(Expr):
"""
Symbolic expression for the covariance.
Examples
========
>>> from sympy.stats import Covariance
>>> from sympy.stats import Normal
>>> X = Normal("X", 3, 2)
>>> Y = Normal("Y", 0, 1)
>>> Z = Normal("Z", 0, 1)
>>> W = Normal("W", 0, 1)
>>> cexpr = Covariance(X, Y)
>>> cexpr
Covariance(X, Y)
Evaluate the covariance, `X` and `Y` are independent,
therefore zero is the result:
>>> cexpr.evaluate_integral()
0
Rewrite the covariance expression in terms of expectations:
>>> from sympy.stats import Expectation
>>> cexpr.rewrite(Expectation)
Expectation(X*Y) - Expectation(X)*Expectation(Y)
In order to expand the argument, use ``expand()``:
>>> from sympy.abc import a, b, c, d
>>> Covariance(a*X + b*Y, c*Z + d*W)
Covariance(a*X + b*Y, c*Z + d*W)
>>> Covariance(a*X + b*Y, c*Z + d*W).expand()
a*c*Covariance(X, Z) + a*d*Covariance(W, X) + b*c*Covariance(Y, Z) + b*d*Covariance(W, Y)
This class is aware of some properties of the covariance:
>>> Covariance(X, X).expand()
Variance(X)
>>> Covariance(a*X, b*Y).expand()
a*b*Covariance(X, Y)
"""
def __new__(cls, arg1, arg2, condition=None, **kwargs):
arg1 = _sympify(arg1)
arg2 = _sympify(arg2)
if arg1.is_Matrix or arg2.is_Matrix:
from sympy.stats.symbolic_multivariate_probability import CrossCovarianceMatrix
return CrossCovarianceMatrix(arg1, arg2, condition)
if kwargs.pop('evaluate', global_parameters.evaluate):
arg1, arg2 = sorted([arg1, arg2], key=default_sort_key)
if condition is None:
obj = Expr.__new__(cls, arg1, arg2)
else:
condition = _sympify(condition)
obj = Expr.__new__(cls, arg1, arg2, condition)
obj._condition = condition
return obj
def expand(self, **hints):
arg1 = self.args[0]
arg2 = self.args[1]
condition = self._condition
if arg1 == arg2:
return Variance(arg1, condition).expand()
if not is_random(arg1):
return S.Zero
if not is_random(arg2):
return S.Zero
arg1, arg2 = sorted([arg1, arg2], key=default_sort_key)
if isinstance(arg1, RandomSymbol) and isinstance(arg2, RandomSymbol):
return Covariance(arg1, arg2, condition)
coeff_rv_list1 = self._expand_single_argument(arg1.expand())
coeff_rv_list2 = self._expand_single_argument(arg2.expand())
addends = [a*b*Covariance(*sorted([r1, r2], key=default_sort_key), condition=condition)
for (a, r1) in coeff_rv_list1 for (b, r2) in coeff_rv_list2]
return Add.fromiter(addends)
@classmethod
def _expand_single_argument(cls, expr):
# return (coefficient, random_symbol) pairs:
if isinstance(expr, RandomSymbol):
return [(S.One, expr)]
elif isinstance(expr, Add):
outval = []
for a in expr.args:
if isinstance(a, Mul):
outval.append(cls._get_mul_nonrv_rv_tuple(a))
elif is_random(a):
outval.append((S.One, a))
return outval
elif isinstance(expr, Mul):
return [cls._get_mul_nonrv_rv_tuple(expr)]
elif is_random(expr):
return [(S.One, expr)]
@classmethod
def _get_mul_nonrv_rv_tuple(cls, m):
rv = []
nonrv = []
for a in m.args:
if is_random(a):
rv.append(a)
else:
nonrv.append(a)
return (Mul.fromiter(nonrv), Mul.fromiter(rv))
def _eval_rewrite_as_Expectation(self, arg1, arg2, condition=None, **kwargs):
e1 = Expectation(arg1*arg2, condition)
e2 = Expectation(arg1, condition)*Expectation(arg2, condition)
return e1 - e2
def _eval_rewrite_as_Probability(self, arg1, arg2, condition=None, **kwargs):
return self.rewrite(Expectation).rewrite(Probability)
def _eval_rewrite_as_Integral(self, arg1, arg2, condition=None, **kwargs):
return covariance(self.args[0], self.args[1], self._condition, evaluate=False)
_eval_rewrite_as_Sum = _eval_rewrite_as_Integral
def evaluate_integral(self):
return self.rewrite(Integral).doit()
class Moment(Expr):
"""
Symbolic class for Moment
Examples
========
>>> from sympy import Symbol, Integral
>>> from sympy.stats import Normal, Expectation, Probability, Moment
>>> mu = Symbol('mu', real=True)
>>> sigma = Symbol('sigma', real=True, positive=True)
>>> X = Normal('X', mu, sigma)
>>> M = Moment(X, 3, 1)
To evaluate the result of Moment use `doit`:
>>> M.doit()
mu**3 - 3*mu**2 + 3*mu*sigma**2 + 3*mu - 3*sigma**2 - 1
Rewrite the Moment expression in terms of Expectation:
>>> M.rewrite(Expectation)
Expectation((X - 1)**3)
Rewrite the Moment expression in terms of Probability:
>>> M.rewrite(Probability)
Integral((x - 1)**3*Probability(Eq(X, x)), (x, -oo, oo))
Rewrite the Moment expression in terms of Integral:
>>> M.rewrite(Integral)
Integral(sqrt(2)*(X - 1)**3*exp(-(X - mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (X, -oo, oo))
"""
def __new__(cls, X, n, c=0, condition=None, **kwargs):
X = _sympify(X)
n = _sympify(n)
c = _sympify(c)
if condition is not None:
condition = _sympify(condition)
return super().__new__(cls, X, n, c, condition)
else:
return super().__new__(cls, X, n, c)
def doit(self, **hints):
return self.rewrite(Expectation).doit(**hints)
def _eval_rewrite_as_Expectation(self, X, n, c=0, condition=None, **kwargs):
return Expectation((X - c)**n, condition)
def _eval_rewrite_as_Probability(self, X, n, c=0, condition=None, **kwargs):
return self.rewrite(Expectation).rewrite(Probability)
def _eval_rewrite_as_Integral(self, X, n, c=0, condition=None, **kwargs):
return self.rewrite(Expectation).rewrite(Integral)
class CentralMoment(Expr):
"""
Symbolic class Central Moment
Examples
========
>>> from sympy import Symbol, Integral
>>> from sympy.stats import Normal, Expectation, Probability, CentralMoment
>>> mu = Symbol('mu', real=True)
>>> sigma = Symbol('sigma', real=True, positive=True)
>>> X = Normal('X', mu, sigma)
>>> CM = CentralMoment(X, 4)
To evaluate the result of CentralMoment use `doit`:
>>> CM.doit().simplify()
3*sigma**4
Rewrite the CentralMoment expression in terms of Expectation:
>>> CM.rewrite(Expectation)
Expectation((X - Expectation(X))**4)
Rewrite the CentralMoment expression in terms of Probability:
>>> CM.rewrite(Probability)
Integral((x - Integral(x*Probability(True), (x, -oo, oo)))**4*Probability(Eq(X, x)), (x, -oo, oo))
Rewrite the CentralMoment expression in terms of Integral:
>>> CM.rewrite(Integral)
Integral(sqrt(2)*(X - Integral(sqrt(2)*X*exp(-(X - mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (X, -oo, oo)))**4*exp(-(X - mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (X, -oo, oo))
"""
def __new__(cls, X, n, condition=None, **kwargs):
X = _sympify(X)
n = _sympify(n)
if condition is not None:
condition = _sympify(condition)
return super().__new__(cls, X, n, condition)
else:
return super().__new__(cls, X, n)
def doit(self, **hints):
return self.rewrite(Expectation).doit(**hints)
def _eval_rewrite_as_Expectation(self, X, n, condition=None, **kwargs):
mu = Expectation(X, condition, **kwargs)
return Moment(X, n, mu, condition, **kwargs).rewrite(Expectation)
def _eval_rewrite_as_Probability(self, X, n, condition=None, **kwargs):
return self.rewrite(Expectation).rewrite(Probability)
def _eval_rewrite_as_Integral(self, X, n, condition=None, **kwargs):
return self.rewrite(Expectation).rewrite(Integral)
|
515f25204e68748e37bf2ab830cbe0534714ea0dfb05c72b079c6cb6f73c2e9d | from sympy import (Basic, exp, pi, Lambda, Trace, S, MatrixSymbol, Integral,
gamma, Product, Dummy, Sum, Abs, IndexedBase, I)
from sympy.core.sympify import _sympify
from sympy.stats.rv import _symbol_converter, Density, RandomMatrixSymbol, is_random
from sympy.stats.joint_rv_types import JointDistributionHandmade
from sympy.stats.random_matrix import RandomMatrixPSpace
from sympy.tensor.array import ArrayComprehension
__all__ = [
'CircularEnsemble',
'CircularUnitaryEnsemble',
'CircularOrthogonalEnsemble',
'CircularSymplecticEnsemble',
'GaussianEnsemble',
'GaussianUnitaryEnsemble',
'GaussianOrthogonalEnsemble',
'GaussianSymplecticEnsemble',
'joint_eigen_distribution',
'JointEigenDistribution',
'level_spacing_distribution'
]
@is_random.register(RandomMatrixSymbol)
def _(x):
return True
class RandomMatrixEnsembleModel(Basic):
"""
Base class for random matrix ensembles.
It acts as an umbrella and contains
the methods common to all the ensembles
defined in sympy.stats.random_matrix_models.
"""
def __new__(cls, sym, dim=None):
sym, dim = _symbol_converter(sym), _sympify(dim)
if dim.is_integer == False:
raise ValueError("Dimension of the random matrices must be "
"integers, received %s instead."%(dim))
return Basic.__new__(cls, sym, dim)
symbol = property(lambda self: self.args[0])
dimension = property(lambda self: self.args[1])
def density(self, expr):
return Density(expr)
def __call__(self, expr):
return self.density(expr)
class GaussianEnsembleModel(RandomMatrixEnsembleModel):
"""
Abstract class for Gaussian ensembles.
Contains the properties common to all the
gaussian ensembles.
References
==========
.. [1] https://en.wikipedia.org/wiki/Random_matrix#Gaussian_ensembles
.. [2] https://arxiv.org/pdf/1712.07903.pdf
"""
def _compute_normalization_constant(self, beta, n):
"""
Helper function for computing normalization
constant for joint probability density of eigen
values of Gaussian ensembles.
References
==========
.. [1] https://en.wikipedia.org/wiki/Selberg_integral#Mehta's_integral
"""
n = S(n)
prod_term = lambda j: gamma(1 + beta*S(j)/2)/gamma(S.One + beta/S(2))
j = Dummy('j', integer=True, positive=True)
term1 = Product(prod_term(j), (j, 1, n)).doit()
term2 = (2/(beta*n))**(beta*n*(n - 1)/4 + n/2)
term3 = (2*pi)**(n/2)
return term1 * term2 * term3
def _compute_joint_eigen_distribution(self, beta):
"""
Helper function for computing the joint
probability distribution of eigen values
of the random matrix.
"""
n = self.dimension
Zbn = self._compute_normalization_constant(beta, n)
l = IndexedBase('l')
i = Dummy('i', integer=True, positive=True)
j = Dummy('j', integer=True, positive=True)
k = Dummy('k', integer=True, positive=True)
term1 = exp((-S(n)/2) * Sum(l[k]**2, (k, 1, n)).doit())
sub_term = Lambda(i, Product(Abs(l[j] - l[i])**beta, (j, i + 1, n)))
term2 = Product(sub_term(i).doit(), (i, 1, n - 1)).doit()
syms = ArrayComprehension(l[k], (k, 1, n)).doit()
return Lambda(tuple(syms), (term1 * term2)/Zbn)
class GaussianUnitaryEnsembleModel(GaussianEnsembleModel):
@property
def normalization_constant(self):
n = self.dimension
return 2**(S(n)/2) * pi**(S(n**2)/2)
def density(self, expr):
n, ZGUE = self.dimension, self.normalization_constant
h_pspace = RandomMatrixPSpace('P', model=self)
H = RandomMatrixSymbol('H', n, n, pspace=h_pspace)
return Lambda(H, exp(-S(n)/2 * Trace(H**2))/ZGUE)(expr)
def joint_eigen_distribution(self):
return self._compute_joint_eigen_distribution(S(2))
def level_spacing_distribution(self):
s = Dummy('s')
f = (32/pi**2)*(s**2)*exp((-4/pi)*s**2)
return Lambda(s, f)
class GaussianOrthogonalEnsembleModel(GaussianEnsembleModel):
@property
def normalization_constant(self):
n = self.dimension
_H = MatrixSymbol('_H', n, n)
return Integral(exp(-S(n)/4 * Trace(_H**2)))
def density(self, expr):
n, ZGOE = self.dimension, self.normalization_constant
h_pspace = RandomMatrixPSpace('P', model=self)
H = RandomMatrixSymbol('H', n, n, pspace=h_pspace)
return Lambda(H, exp(-S(n)/4 * Trace(H**2))/ZGOE)(expr)
def joint_eigen_distribution(self):
return self._compute_joint_eigen_distribution(S.One)
def level_spacing_distribution(self):
s = Dummy('s')
f = (pi/2)*s*exp((-pi/4)*s**2)
return Lambda(s, f)
class GaussianSymplecticEnsembleModel(GaussianEnsembleModel):
@property
def normalization_constant(self):
n = self.dimension
_H = MatrixSymbol('_H', n, n)
return Integral(exp(-S(n) * Trace(_H**2)))
def density(self, expr):
n, ZGSE = self.dimension, self.normalization_constant
h_pspace = RandomMatrixPSpace('P', model=self)
H = RandomMatrixSymbol('H', n, n, pspace=h_pspace)
return Lambda(H, exp(-S(n) * Trace(H**2))/ZGSE)(expr)
def joint_eigen_distribution(self):
return self._compute_joint_eigen_distribution(S(4))
def level_spacing_distribution(self):
s = Dummy('s')
f = ((S(2)**18)/((S(3)**6)*(pi**3)))*(s**4)*exp((-64/(9*pi))*s**2)
return Lambda(s, f)
def GaussianEnsemble(sym, dim):
sym, dim = _symbol_converter(sym), _sympify(dim)
model = GaussianEnsembleModel(sym, dim)
rmp = RandomMatrixPSpace(sym, model=model)
return RandomMatrixSymbol(sym, dim, dim, pspace=rmp)
def GaussianUnitaryEnsemble(sym, dim):
"""
Represents Gaussian Unitary Ensembles.
Examples
========
>>> from sympy.stats import GaussianUnitaryEnsemble as GUE, density
>>> from sympy import MatrixSymbol
>>> G = GUE('U', 2)
>>> X = MatrixSymbol('X', 2, 2)
>>> density(G)(X)
exp(-Trace(X**2))/(2*pi**2)
"""
sym, dim = _symbol_converter(sym), _sympify(dim)
model = GaussianUnitaryEnsembleModel(sym, dim)
rmp = RandomMatrixPSpace(sym, model=model)
return RandomMatrixSymbol(sym, dim, dim, pspace=rmp)
def GaussianOrthogonalEnsemble(sym, dim):
"""
Represents Gaussian Orthogonal Ensembles.
Examples
========
>>> from sympy.stats import GaussianOrthogonalEnsemble as GOE, density
>>> from sympy import MatrixSymbol
>>> G = GOE('U', 2)
>>> X = MatrixSymbol('X', 2, 2)
>>> density(G)(X)
exp(-Trace(X**2)/2)/Integral(exp(-Trace(_H**2)/2), _H)
"""
sym, dim = _symbol_converter(sym), _sympify(dim)
model = GaussianOrthogonalEnsembleModel(sym, dim)
rmp = RandomMatrixPSpace(sym, model=model)
return RandomMatrixSymbol(sym, dim, dim, pspace=rmp)
def GaussianSymplecticEnsemble(sym, dim):
"""
Represents Gaussian Symplectic Ensembles.
Examples
========
>>> from sympy.stats import GaussianSymplecticEnsemble as GSE, density
>>> from sympy import MatrixSymbol
>>> G = GSE('U', 2)
>>> X = MatrixSymbol('X', 2, 2)
>>> density(G)(X)
exp(-2*Trace(X**2))/Integral(exp(-2*Trace(_H**2)), _H)
"""
sym, dim = _symbol_converter(sym), _sympify(dim)
model = GaussianSymplecticEnsembleModel(sym, dim)
rmp = RandomMatrixPSpace(sym, model=model)
return RandomMatrixSymbol(sym, dim, dim, pspace=rmp)
class CircularEnsembleModel(RandomMatrixEnsembleModel):
"""
Abstract class for Circular ensembles.
Contains the properties and methods
common to all the circular ensembles.
References
==========
.. [1] https://en.wikipedia.org/wiki/Circular_ensemble
"""
def density(self, expr):
# TODO : Add support for Lie groups(as extensions of sympy.diffgeom)
# and define measures on them
raise NotImplementedError("Support for Haar measure hasn't been "
"implemented yet, therefore the density of "
"%s cannot be computed."%(self))
def _compute_joint_eigen_distribution(self, beta):
"""
Helper function to compute the joint distribution of phases
of the complex eigen values of matrices belonging to any
circular ensembles.
"""
n = self.dimension
Zbn = ((2*pi)**n)*(gamma(beta*n/2 + 1)/S(gamma(beta/2 + 1))**n)
t = IndexedBase('t')
i, j, k = (Dummy('i', integer=True), Dummy('j', integer=True),
Dummy('k', integer=True))
syms = ArrayComprehension(t[i], (i, 1, n)).doit()
f = Product(Product(Abs(exp(I*t[k]) - exp(I*t[j]))**beta, (j, k + 1, n)).doit(),
(k, 1, n - 1)).doit()
return Lambda(tuple(syms), f/Zbn)
class CircularUnitaryEnsembleModel(CircularEnsembleModel):
def joint_eigen_distribution(self):
return self._compute_joint_eigen_distribution(S(2))
class CircularOrthogonalEnsembleModel(CircularEnsembleModel):
def joint_eigen_distribution(self):
return self._compute_joint_eigen_distribution(S.One)
class CircularSymplecticEnsembleModel(CircularEnsembleModel):
def joint_eigen_distribution(self):
return self._compute_joint_eigen_distribution(S(4))
def CircularEnsemble(sym, dim):
sym, dim = _symbol_converter(sym), _sympify(dim)
model = CircularEnsembleModel(sym, dim)
rmp = RandomMatrixPSpace(sym, model=model)
return RandomMatrixSymbol(sym, dim, dim, pspace=rmp)
def CircularUnitaryEnsemble(sym, dim):
"""
Represents Cicular Unitary Ensembles.
Examples
========
>>> from sympy.stats import CircularUnitaryEnsemble as CUE
>>> from sympy.stats import joint_eigen_distribution
>>> C = CUE('U', 1)
>>> joint_eigen_distribution(C)
Lambda(t[1], Product(Abs(exp(I*t[_j]) - exp(I*t[_k]))**2, (_j, _k + 1, 1), (_k, 1, 0))/(2*pi))
Note
====
As can be seen above in the example, density of CiruclarUnitaryEnsemble
is not evaluated becuase the exact definition is based on haar measure of
unitary group which is not unique.
"""
sym, dim = _symbol_converter(sym), _sympify(dim)
model = CircularUnitaryEnsembleModel(sym, dim)
rmp = RandomMatrixPSpace(sym, model=model)
return RandomMatrixSymbol(sym, dim, dim, pspace=rmp)
def CircularOrthogonalEnsemble(sym, dim):
"""
Represents Cicular Orthogonal Ensembles.
Examples
========
>>> from sympy.stats import CircularOrthogonalEnsemble as COE
>>> from sympy.stats import joint_eigen_distribution
>>> C = COE('O', 1)
>>> joint_eigen_distribution(C)
Lambda(t[1], Product(Abs(exp(I*t[_j]) - exp(I*t[_k])), (_j, _k + 1, 1), (_k, 1, 0))/(2*pi))
Note
====
As can be seen above in the example, density of CiruclarOrthogonalEnsemble
is not evaluated becuase the exact definition is based on haar measure of
unitary group which is not unique.
"""
sym, dim = _symbol_converter(sym), _sympify(dim)
model = CircularOrthogonalEnsembleModel(sym, dim)
rmp = RandomMatrixPSpace(sym, model=model)
return RandomMatrixSymbol(sym, dim, dim, pspace=rmp)
def CircularSymplecticEnsemble(sym, dim):
"""
Represents Cicular Symplectic Ensembles.
Examples
========
>>> from sympy.stats import CircularSymplecticEnsemble as CSE
>>> from sympy.stats import joint_eigen_distribution
>>> C = CSE('S', 1)
>>> joint_eigen_distribution(C)
Lambda(t[1], Product(Abs(exp(I*t[_j]) - exp(I*t[_k]))**4, (_j, _k + 1, 1), (_k, 1, 0))/(2*pi))
Note
====
As can be seen above in the example, density of CiruclarSymplecticEnsemble
is not evaluated becuase the exact definition is based on haar measure of
unitary group which is not unique.
"""
sym, dim = _symbol_converter(sym), _sympify(dim)
model = CircularSymplecticEnsembleModel(sym, dim)
rmp = RandomMatrixPSpace(sym, model=model)
return RandomMatrixSymbol(sym, dim, dim, pspace=rmp)
def joint_eigen_distribution(mat):
"""
For obtaining joint probability distribution
of eigen values of random matrix.
Parameters
==========
mat: RandomMatrixSymbol
The matrix symbol whose eigen values are to be considered.
Returns
=======
Lambda
Examples
========
>>> from sympy.stats import GaussianUnitaryEnsemble as GUE
>>> from sympy.stats import joint_eigen_distribution
>>> U = GUE('U', 2)
>>> joint_eigen_distribution(U)
Lambda((l[1], l[2]), exp(-l[1]**2 - l[2]**2)*Product(Abs(l[_i] - l[_j])**2, (_j, _i + 1, 2), (_i, 1, 1))/pi)
"""
if not isinstance(mat, RandomMatrixSymbol):
raise ValueError("%s is not of type, RandomMatrixSymbol."%(mat))
return mat.pspace.model.joint_eigen_distribution()
def JointEigenDistribution(mat):
"""
Creates joint distribution of eigen values of matrices with random
expressions.
Parameters
==========
mat: Matrix
The matrix under consideration.
Returns
=======
JointDistributionHandmade
Examples
========
>>> from sympy.stats import Normal, JointEigenDistribution
>>> from sympy import Matrix
>>> A = [[Normal('A00', 0, 1), Normal('A01', 0, 1)],
... [Normal('A10', 0, 1), Normal('A11', 0, 1)]]
>>> JointEigenDistribution(Matrix(A))
JointDistributionHandmade(-sqrt(A00**2 - 2*A00*A11 + 4*A01*A10 + A11**2)/2
+ A00/2 + A11/2, sqrt(A00**2 - 2*A00*A11 + 4*A01*A10 + A11**2)/2 + A00/2 + A11/2)
"""
eigenvals = mat.eigenvals(multiple=True)
if not all(is_random(eigenval) for eigenval in set(eigenvals)):
raise ValueError("Eigen values don't have any random expression, "
"joint distribution cannot be generated.")
return JointDistributionHandmade(*eigenvals)
def level_spacing_distribution(mat):
"""
For obtaining distribution of level spacings.
Parameters
==========
mat: RandomMatrixSymbol
The random matrix symbol whose eigen values are
to be considered for finding the level spacings.
Returns
=======
Lambda
Examples
========
>>> from sympy.stats import GaussianUnitaryEnsemble as GUE
>>> from sympy.stats import level_spacing_distribution
>>> U = GUE('U', 2)
>>> level_spacing_distribution(U)
Lambda(_s, 32*_s**2*exp(-4*_s**2/pi)/pi**2)
References
==========
.. [1] https://en.wikipedia.org/wiki/Random_matrix#Distribution_of_level_spacings
"""
return mat.pspace.model.level_spacing_distribution()
|
73258ec0c2083c67c0c3f39662dd883c92ad70b70fa1c88a6b336a9923656676 | from sympy.core.compatibility import as_int
from sympy.core.function import Function
from sympy.core.numbers import igcd, igcdex, mod_inverse
from sympy.core.power import isqrt
from sympy.core.singleton import S
from .primetest import isprime
from .factor_ import factorint, trailing, totient, multiplicity
from random import randint, Random
from itertools import product
def n_order(a, n):
"""Returns the order of ``a`` modulo ``n``.
The order of ``a`` modulo ``n`` is the smallest integer
``k`` such that ``a**k`` leaves a remainder of 1 with ``n``.
Examples
========
>>> from sympy.ntheory import n_order
>>> n_order(3, 7)
6
>>> n_order(4, 7)
3
"""
from collections import defaultdict
a, n = as_int(a), as_int(n)
if igcd(a, n) != 1:
raise ValueError("The two numbers should be relatively prime")
factors = defaultdict(int)
f = factorint(n)
for px, kx in f.items():
if kx > 1:
factors[px] += kx - 1
fpx = factorint(px - 1)
for py, ky in fpx.items():
factors[py] += ky
group_order = 1
for px, kx in factors.items():
group_order *= px**kx
order = 1
if a > n:
a = a % n
for p, e in factors.items():
exponent = group_order
for f in range(e + 1):
if pow(a, exponent, n) != 1:
order *= p ** (e - f + 1)
break
exponent = exponent // p
return order
def _primitive_root_prime_iter(p):
"""
Generates the primitive roots for a prime ``p``
Examples
========
>>> from sympy.ntheory.residue_ntheory import _primitive_root_prime_iter
>>> list(_primitive_root_prime_iter(19))
[2, 3, 10, 13, 14, 15]
References
==========
.. [1] W. Stein "Elementary Number Theory" (2011), page 44
"""
# it is assumed that p is an int
v = [(p - 1) // i for i in factorint(p - 1).keys()]
a = 2
while a < p:
for pw in v:
# a TypeError below may indicate that p was not an int
if pow(a, pw, p) == 1:
break
else:
yield a
a += 1
def primitive_root(p):
"""
Returns the smallest primitive root or None
Parameters
==========
p : positive integer
Examples
========
>>> from sympy.ntheory.residue_ntheory import primitive_root
>>> primitive_root(19)
2
References
==========
.. [1] W. Stein "Elementary Number Theory" (2011), page 44
.. [2] P. Hackman "Elementary Number Theory" (2009), Chapter C
"""
p = as_int(p)
if p < 1:
raise ValueError('p is required to be positive')
if p <= 2:
return 1
f = factorint(p)
if len(f) > 2:
return None
if len(f) == 2:
if 2 not in f or f[2] > 1:
return None
# case p = 2*p1**k, p1 prime
for p1, e1 in f.items():
if p1 != 2:
break
i = 1
while i < p:
i += 2
if i % p1 == 0:
continue
if is_primitive_root(i, p):
return i
else:
if 2 in f:
if p == 4:
return 3
return None
p1, n = list(f.items())[0]
if n > 1:
# see Ref [2], page 81
g = primitive_root(p1)
if is_primitive_root(g, p1**2):
return g
else:
for i in range(2, g + p1 + 1):
if igcd(i, p) == 1 and is_primitive_root(i, p):
return i
return next(_primitive_root_prime_iter(p))
def is_primitive_root(a, p):
"""
Returns True if ``a`` is a primitive root of ``p``
``a`` is said to be the primitive root of ``p`` if gcd(a, p) == 1 and
totient(p) is the smallest positive number s.t.
a**totient(p) cong 1 mod(p)
Examples
========
>>> from sympy.ntheory import is_primitive_root, n_order, totient
>>> is_primitive_root(3, 10)
True
>>> is_primitive_root(9, 10)
False
>>> n_order(3, 10) == totient(10)
True
>>> n_order(9, 10) == totient(10)
False
"""
a, p = as_int(a), as_int(p)
if igcd(a, p) != 1:
raise ValueError("The two numbers should be relatively prime")
if a > p:
a = a % p
return n_order(a, p) == totient(p)
def _sqrt_mod_tonelli_shanks(a, p):
"""
Returns the square root in the case of ``p`` prime with ``p == 1 (mod 8)``
References
==========
.. [1] R. Crandall and C. Pomerance "Prime Numbers", 2nt Ed., page 101
"""
s = trailing(p - 1)
t = p >> s
# find a non-quadratic residue
while 1:
d = randint(2, p - 1)
r = legendre_symbol(d, p)
if r == -1:
break
#assert legendre_symbol(d, p) == -1
A = pow(a, t, p)
D = pow(d, t, p)
m = 0
for i in range(s):
adm = A*pow(D, m, p) % p
adm = pow(adm, 2**(s - 1 - i), p)
if adm % p == p - 1:
m += 2**i
#assert A*pow(D, m, p) % p == 1
x = pow(a, (t + 1)//2, p)*pow(D, m//2, p) % p
return x
def sqrt_mod(a, p, all_roots=False):
"""
Find a root of ``x**2 = a mod p``
Parameters
==========
a : integer
p : positive integer
all_roots : if True the list of roots is returned or None
Notes
=====
If there is no root it is returned None; else the returned root
is less or equal to ``p // 2``; in general is not the smallest one.
It is returned ``p // 2`` only if it is the only root.
Use ``all_roots`` only when it is expected that all the roots fit
in memory; otherwise use ``sqrt_mod_iter``.
Examples
========
>>> from sympy.ntheory import sqrt_mod
>>> sqrt_mod(11, 43)
21
>>> sqrt_mod(17, 32, True)
[7, 9, 23, 25]
"""
if all_roots:
return sorted(list(sqrt_mod_iter(a, p)))
try:
p = abs(as_int(p))
it = sqrt_mod_iter(a, p)
r = next(it)
if r > p // 2:
return p - r
elif r < p // 2:
return r
else:
try:
r = next(it)
if r > p // 2:
return p - r
except StopIteration:
pass
return r
except StopIteration:
return None
def _product(*iters):
"""
Cartesian product generator
Notes
=====
Unlike itertools.product, it works also with iterables which do not fit
in memory. See http://bugs.python.org/issue10109
Author: Fernando Sumudu
with small changes
"""
import itertools
inf_iters = tuple(itertools.cycle(enumerate(it)) for it in iters)
num_iters = len(inf_iters)
cur_val = [None]*num_iters
first_v = True
while True:
i, p = 0, num_iters
while p and not i:
p -= 1
i, cur_val[p] = next(inf_iters[p])
if not p and not i:
if first_v:
first_v = False
else:
break
yield cur_val
def sqrt_mod_iter(a, p, domain=int):
"""
Iterate over solutions to ``x**2 = a mod p``
Parameters
==========
a : integer
p : positive integer
domain : integer domain, ``int``, ``ZZ`` or ``Integer``
Examples
========
>>> from sympy.ntheory.residue_ntheory import sqrt_mod_iter
>>> list(sqrt_mod_iter(11, 43))
[21, 22]
"""
from sympy.polys.galoistools import gf_crt1, gf_crt2
from sympy.polys.domains import ZZ
a, p = as_int(a), abs(as_int(p))
if isprime(p):
a = a % p
if a == 0:
res = _sqrt_mod1(a, p, 1)
else:
res = _sqrt_mod_prime_power(a, p, 1)
if res:
if domain is ZZ:
yield from res
else:
for x in res:
yield domain(x)
else:
f = factorint(p)
v = []
pv = []
for px, ex in f.items():
if a % px == 0:
rx = _sqrt_mod1(a, px, ex)
if not rx:
return
else:
rx = _sqrt_mod_prime_power(a, px, ex)
if not rx:
return
v.append(rx)
pv.append(px**ex)
mm, e, s = gf_crt1(pv, ZZ)
if domain is ZZ:
for vx in _product(*v):
r = gf_crt2(vx, pv, mm, e, s, ZZ)
yield r
else:
for vx in _product(*v):
r = gf_crt2(vx, pv, mm, e, s, ZZ)
yield domain(r)
def _sqrt_mod_prime_power(a, p, k):
"""
Find the solutions to ``x**2 = a mod p**k`` when ``a % p != 0``
Parameters
==========
a : integer
p : prime number
k : positive integer
Examples
========
>>> from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power
>>> _sqrt_mod_prime_power(11, 43, 1)
[21, 22]
References
==========
.. [1] P. Hackman "Elementary Number Theory" (2009), page 160
.. [2] http://www.numbertheory.org/php/squareroot.html
.. [3] [Gathen99]_
"""
from sympy.core.numbers import igcdex
from sympy.polys.domains import ZZ
pk = p**k
a = a % pk
if k == 1:
if p == 2:
return [ZZ(a)]
if not (a % p < 2 or pow(a, (p - 1) // 2, p) == 1):
return None
if p % 4 == 3:
res = pow(a, (p + 1) // 4, p)
elif p % 8 == 5:
sign = pow(a, (p - 1) // 4, p)
if sign == 1:
res = pow(a, (p + 3) // 8, p)
else:
b = pow(4*a, (p - 5) // 8, p)
x = (2*a*b) % p
if pow(x, 2, p) == a:
res = x
else:
res = _sqrt_mod_tonelli_shanks(a, p)
# ``_sqrt_mod_tonelli_shanks(a, p)`` is not deterministic;
# sort to get always the same result
return sorted([ZZ(res), ZZ(p - res)])
if k > 1:
# see Ref.[2]
if p == 2:
if a % 8 != 1:
return None
if k <= 3:
s = set()
for i in range(0, pk, 4):
s.add(1 + i)
s.add(-1 + i)
return list(s)
# according to Ref.[2] for k > 2 there are two solutions
# (mod 2**k-1), that is four solutions (mod 2**k), which can be
# obtained from the roots of x**2 = 0 (mod 8)
rv = [ZZ(1), ZZ(3), ZZ(5), ZZ(7)]
# hensel lift them to solutions of x**2 = 0 (mod 2**k)
# if r**2 - a = 0 mod 2**nx but not mod 2**(nx+1)
# then r + 2**(nx - 1) is a root mod 2**(nx+1)
n = 3
res = []
for r in rv:
nx = n
while nx < k:
r1 = (r**2 - a) >> nx
if r1 % 2:
r = r + (1 << (nx - 1))
#assert (r**2 - a)% (1 << (nx + 1)) == 0
nx += 1
if r not in res:
res.append(r)
x = r + (1 << (k - 1))
#assert (x**2 - a) % pk == 0
if x < (1 << nx) and x not in res:
if (x**2 - a) % pk == 0:
res.append(x)
return res
rv = _sqrt_mod_prime_power(a, p, 1)
if not rv:
return None
r = rv[0]
fr = r**2 - a
# hensel lifting with Newton iteration, see Ref.[3] chapter 9
# with f(x) = x**2 - a; one has f'(a) != 0 (mod p) for p != 2
n = 1
px = p
while 1:
n1 = n
n1 *= 2
if n1 > k:
break
n = n1
px = px**2
frinv = igcdex(2*r, px)[0]
r = (r - fr*frinv) % px
fr = r**2 - a
if n < k:
px = p**k
frinv = igcdex(2*r, px)[0]
r = (r - fr*frinv) % px
return [r, px - r]
def _sqrt_mod1(a, p, n):
"""
Find solution to ``x**2 == a mod p**n`` when ``a % p == 0``
see http://www.numbertheory.org/php/squareroot.html
"""
pn = p**n
a = a % pn
if a == 0:
# case gcd(a, p**k) = p**n
m = n // 2
if n % 2 == 1:
pm1 = p**(m + 1)
def _iter0a():
i = 0
while i < pn:
yield i
i += pm1
return _iter0a()
else:
pm = p**m
def _iter0b():
i = 0
while i < pn:
yield i
i += pm
return _iter0b()
# case gcd(a, p**k) = p**r, r < n
f = factorint(a)
r = f[p]
if r % 2 == 1:
return None
m = r // 2
a1 = a >> r
if p == 2:
if n - r == 1:
pnm1 = 1 << (n - m + 1)
pm1 = 1 << (m + 1)
def _iter1():
k = 1 << (m + 2)
i = 1 << m
while i < pnm1:
j = i
while j < pn:
yield j
j += k
i += pm1
return _iter1()
if n - r == 2:
res = _sqrt_mod_prime_power(a1, p, n - r)
if res is None:
return None
pnm = 1 << (n - m)
def _iter2():
s = set()
for r in res:
i = 0
while i < pn:
x = (r << m) + i
if x not in s:
s.add(x)
yield x
i += pnm
return _iter2()
if n - r > 2:
res = _sqrt_mod_prime_power(a1, p, n - r)
if res is None:
return None
pnm1 = 1 << (n - m - 1)
def _iter3():
s = set()
for r in res:
i = 0
while i < pn:
x = ((r << m) + i) % pn
if x not in s:
s.add(x)
yield x
i += pnm1
return _iter3()
else:
m = r // 2
a1 = a // p**r
res1 = _sqrt_mod_prime_power(a1, p, n - r)
if res1 is None:
return None
pm = p**m
pnr = p**(n-r)
pnm = p**(n-m)
def _iter4():
s = set()
pm = p**m
for rx in res1:
i = 0
while i < pnm:
x = ((rx + i) % pn)
if x not in s:
s.add(x)
yield x*pm
i += pnr
return _iter4()
def is_quad_residue(a, p):
"""
Returns True if ``a`` (mod ``p``) is in the set of squares mod ``p``,
i.e a % p in set([i**2 % p for i in range(p)]). If ``p`` is an odd
prime, an iterative method is used to make the determination:
>>> from sympy.ntheory import is_quad_residue
>>> sorted(set([i**2 % 7 for i in range(7)]))
[0, 1, 2, 4]
>>> [j for j in range(7) if is_quad_residue(j, 7)]
[0, 1, 2, 4]
See Also
========
legendre_symbol, jacobi_symbol
"""
a, p = as_int(a), as_int(p)
if p < 1:
raise ValueError('p must be > 0')
if a >= p or a < 0:
a = a % p
if a < 2 or p < 3:
return True
if not isprime(p):
if p % 2 and jacobi_symbol(a, p) == -1:
return False
r = sqrt_mod(a, p)
if r is None:
return False
else:
return True
return pow(a, (p - 1) // 2, p) == 1
def is_nthpow_residue(a, n, m):
"""
Returns True if ``x**n == a (mod m)`` has solutions.
References
==========
.. [1] P. Hackman "Elementary Number Theory" (2009), page 76
"""
a = a % m
a, n, m = as_int(a), as_int(n), as_int(m)
if m <= 0:
raise ValueError('m must be > 0')
if n < 0:
raise ValueError('n must be >= 0')
if n == 0:
if m == 1:
return False
return a == 1
if a == 0:
return True
if n == 1:
return True
if n == 2:
return is_quad_residue(a, m)
return _is_nthpow_residue_bign(a, n, m)
def _is_nthpow_residue_bign(a, n, m):
"""Returns True if ``x**n == a (mod m)`` has solutions for n > 2."""
# assert n > 2
# assert a > 0 and m > 0
if primitive_root(m) is None or igcd(a, m) != 1:
# assert m >= 8
for prime, power in factorint(m).items():
if not _is_nthpow_residue_bign_prime_power(a, n, prime, power):
return False
return True
f = totient(m)
k = f // igcd(f, n)
return pow(a, k, m) == 1
def _is_nthpow_residue_bign_prime_power(a, n, p, k):
"""Returns True/False if a solution for ``x**n == a (mod(p**k))``
does/doesn't exist."""
# assert a > 0
# assert n > 2
# assert p is prime
# assert k > 0
if a % p:
if p != 2:
return _is_nthpow_residue_bign(a, n, pow(p, k))
if n & 1:
return True
c = trailing(n)
return a % pow(2, min(c + 2, k)) == 1
else:
a %= pow(p, k)
if not a:
return True
mu = multiplicity(p, a)
if mu % n:
return False
pm = pow(p, mu)
return _is_nthpow_residue_bign_prime_power(a//pm, n, p, k - mu)
def _nthroot_mod2(s, q, p):
f = factorint(q)
v = []
for b, e in f.items():
v.extend([b]*e)
for qx in v:
s = _nthroot_mod1(s, qx, p, False)
return s
def _nthroot_mod1(s, q, p, all_roots):
"""
Root of ``x**q = s mod p``, ``p`` prime and ``q`` divides ``p - 1``
References
==========
.. [1] A. M. Johnston "A Generalized qth Root Algorithm"
"""
g = primitive_root(p)
if not isprime(q):
r = _nthroot_mod2(s, q, p)
else:
f = p - 1
assert (p - 1) % q == 0
# determine k
k = 0
while f % q == 0:
k += 1
f = f // q
# find z, x, r1
f1 = igcdex(-f, q)[0] % q
z = f*f1
x = (1 + z) // q
r1 = pow(s, x, p)
s1 = pow(s, f, p)
h = pow(g, f*q, p)
t = discrete_log(p, s1, h)
g2 = pow(g, z*t, p)
g3 = igcdex(g2, p)[0]
r = r1*g3 % p
#assert pow(r, q, p) == s
res = [r]
h = pow(g, (p - 1) // q, p)
#assert pow(h, q, p) == 1
hx = r
for i in range(q - 1):
hx = (hx*h) % p
res.append(hx)
if all_roots:
res.sort()
return res
return min(res)
def _help(m, prime_modulo_method, diff_method, expr_val):
"""
Helper function for _nthroot_mod_composite and polynomial_congruence.
Parameters
==========
m : positive integer
prime_modulo_method : function to calculate the root of the congruence
equation for the prime divisors of m
diff_method : function to calculate derivative of expression at any
given point
expr_val : function to calculate value of the expression at any
given point
"""
from sympy.ntheory.modular import crt
f = factorint(m)
dd = {}
for p, e in f.items():
tot_roots = set()
if e == 1:
tot_roots.update(prime_modulo_method(p))
else:
for root in prime_modulo_method(p):
diff = diff_method(root, p)
if diff != 0:
ppow = p
m_inv = mod_inverse(diff, p)
for j in range(1, e):
ppow *= p
root = (root - expr_val(root, ppow) * m_inv) % ppow
tot_roots.add(root)
else:
new_base = p
roots_in_base = {root}
while new_base < pow(p, e):
new_base *= p
new_roots = set()
for k in roots_in_base:
if expr_val(k, new_base)!= 0:
continue
while k not in new_roots:
new_roots.add(k)
k = (k + (new_base // p)) % new_base
roots_in_base = new_roots
tot_roots = tot_roots | roots_in_base
if tot_roots == set():
return []
dd[pow(p, e)] = tot_roots
a = []
m = []
for x, y in dd.items():
m.append(x)
a.append(list(y))
return sorted({crt(m, list(i))[0] for i in product(*a)})
def _nthroot_mod_composite(a, n, m):
"""
Find the solutions to ``x**n = a mod m`` when m is not prime.
"""
return _help(m,
lambda p: nthroot_mod(a, n, p, True),
lambda root, p: (pow(root, n - 1, p) * (n % p)) % p,
lambda root, p: (pow(root, n, p) - a) % p)
def nthroot_mod(a, n, p, all_roots=False):
"""
Find the solutions to ``x**n = a mod p``
Parameters
==========
a : integer
n : positive integer
p : positive integer
all_roots : if False returns the smallest root, else the list of roots
Examples
========
>>> from sympy.ntheory.residue_ntheory import nthroot_mod
>>> nthroot_mod(11, 4, 19)
8
>>> nthroot_mod(11, 4, 19, True)
[8, 11]
>>> nthroot_mod(68, 3, 109)
23
"""
from sympy.core.numbers import igcdex
a = a % p
a, n, p = as_int(a), as_int(n), as_int(p)
if n == 2:
return sqrt_mod(a, p, all_roots)
# see Hackman "Elementary Number Theory" (2009), page 76
if not isprime(p):
return _nthroot_mod_composite(a, n, p)
if a % p == 0:
return [0]
if not is_nthpow_residue(a, n, p):
return [] if all_roots else None
if (p - 1) % n == 0:
return _nthroot_mod1(a, n, p, all_roots)
# The roots of ``x**n - a = 0 (mod p)`` are roots of
# ``gcd(x**n - a, x**(p - 1) - 1) = 0 (mod p)``
pa = n
pb = p - 1
b = 1
if pa < pb:
a, pa, b, pb = b, pb, a, pa
while pb:
# x**pa - a = 0; x**pb - b = 0
# x**pa - a = x**(q*pb + r) - a = (x**pb)**q * x**r - a =
# b**q * x**r - a; x**r - c = 0; c = b**-q * a mod p
q, r = divmod(pa, pb)
c = pow(b, q, p)
c = igcdex(c, p)[0]
c = (c * a) % p
pa, pb = pb, r
a, b = b, c
if pa == 1:
if all_roots:
res = [a]
else:
res = a
elif pa == 2:
return sqrt_mod(a, p , all_roots)
else:
res = _nthroot_mod1(a, pa, p, all_roots)
return res
def quadratic_residues(p):
"""
Returns the list of quadratic residues.
Examples
========
>>> from sympy.ntheory.residue_ntheory import quadratic_residues
>>> quadratic_residues(7)
[0, 1, 2, 4]
"""
p = as_int(p)
r = set()
for i in range(p // 2 + 1):
r.add(pow(i, 2, p))
return sorted(list(r))
def legendre_symbol(a, p):
r"""
Returns the Legendre symbol `(a / p)`.
For an integer ``a`` and an odd prime ``p``, the Legendre symbol is
defined as
.. math ::
\genfrac(){}{}{a}{p} = \begin{cases}
0 & \text{if } p \text{ divides } a\\
1 & \text{if } a \text{ is a quadratic residue modulo } p\\
-1 & \text{if } a \text{ is a quadratic nonresidue modulo } p
\end{cases}
Parameters
==========
a : integer
p : odd prime
Examples
========
>>> from sympy.ntheory import legendre_symbol
>>> [legendre_symbol(i, 7) for i in range(7)]
[0, 1, 1, -1, 1, -1, -1]
>>> sorted(set([i**2 % 7 for i in range(7)]))
[0, 1, 2, 4]
See Also
========
is_quad_residue, jacobi_symbol
"""
a, p = as_int(a), as_int(p)
if not isprime(p) or p == 2:
raise ValueError("p should be an odd prime")
a = a % p
if not a:
return 0
if pow(a, (p - 1) // 2, p) == 1:
return 1
return -1
def jacobi_symbol(m, n):
r"""
Returns the Jacobi symbol `(m / n)`.
For any integer ``m`` and any positive odd integer ``n`` the Jacobi symbol
is defined as the product of the Legendre symbols corresponding to the
prime factors of ``n``:
.. math ::
\genfrac(){}{}{m}{n} =
\genfrac(){}{}{m}{p^{1}}^{\alpha_1}
\genfrac(){}{}{m}{p^{2}}^{\alpha_2}
...
\genfrac(){}{}{m}{p^{k}}^{\alpha_k}
\text{ where } n =
p_1^{\alpha_1}
p_2^{\alpha_2}
...
p_k^{\alpha_k}
Like the Legendre symbol, if the Jacobi symbol `\genfrac(){}{}{m}{n} = -1`
then ``m`` is a quadratic nonresidue modulo ``n``.
But, unlike the Legendre symbol, if the Jacobi symbol
`\genfrac(){}{}{m}{n} = 1` then ``m`` may or may not be a quadratic residue
modulo ``n``.
Parameters
==========
m : integer
n : odd positive integer
Examples
========
>>> from sympy.ntheory import jacobi_symbol, legendre_symbol
>>> from sympy import S
>>> jacobi_symbol(45, 77)
-1
>>> jacobi_symbol(60, 121)
1
The relationship between the ``jacobi_symbol`` and ``legendre_symbol`` can
be demonstrated as follows:
>>> L = legendre_symbol
>>> S(45).factors()
{3: 2, 5: 1}
>>> jacobi_symbol(7, 45) == L(7, 3)**2 * L(7, 5)**1
True
See Also
========
is_quad_residue, legendre_symbol
"""
m, n = as_int(m), as_int(n)
if n < 0 or not n % 2:
raise ValueError("n should be an odd positive integer")
if m < 0 or m > n:
m %= n
if not m:
return int(n == 1)
if n == 1 or m == 1:
return 1
if igcd(m, n) != 1:
return 0
j = 1
if m < 0:
m = -m
if n % 4 == 3:
j = -j
while m != 0:
while m % 2 == 0 and m > 0:
m >>= 1
if n % 8 in [3, 5]:
j = -j
m, n = n, m
if m % 4 == n % 4 == 3:
j = -j
m %= n
if n != 1:
j = 0
return j
class mobius(Function):
"""
Mobius function maps natural number to {-1, 0, 1}
It is defined as follows:
1) `1` if `n = 1`.
2) `0` if `n` has a squared prime factor.
3) `(-1)^k` if `n` is a square-free positive integer with `k`
number of prime factors.
It is an important multiplicative function in number theory
and combinatorics. It has applications in mathematical series,
algebraic number theory and also physics (Fermion operator has very
concrete realization with Mobius Function model).
Parameters
==========
n : positive integer
Examples
========
>>> from sympy.ntheory import mobius
>>> mobius(13*7)
1
>>> mobius(1)
1
>>> mobius(13*7*5)
-1
>>> mobius(13**2)
0
References
==========
.. [1] https://en.wikipedia.org/wiki/M%C3%B6bius_function
.. [2] Thomas Koshy "Elementary Number Theory with Applications"
"""
@classmethod
def eval(cls, n):
if n.is_integer:
if n.is_positive is not True:
raise ValueError("n should be a positive integer")
else:
raise TypeError("n should be an integer")
if n.is_prime:
return S.NegativeOne
elif n is S.One:
return S.One
elif n.is_Integer:
a = factorint(n)
if any(i > 1 for i in a.values()):
return S.Zero
return S.NegativeOne**len(a)
def _discrete_log_trial_mul(n, a, b, order=None):
"""
Trial multiplication algorithm for computing the discrete logarithm of
``a`` to the base ``b`` modulo ``n``.
The algorithm finds the discrete logarithm using exhaustive search. This
naive method is used as fallback algorithm of ``discrete_log`` when the
group order is very small.
Examples
========
>>> from sympy.ntheory.residue_ntheory import _discrete_log_trial_mul
>>> _discrete_log_trial_mul(41, 15, 7)
3
See Also
========
discrete_log
References
==========
.. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
Vanstone, S. A. (1997).
"""
a %= n
b %= n
if order is None:
order = n
x = 1
for i in range(order):
if x == a:
return i
x = x * b % n
raise ValueError("Log does not exist")
def _discrete_log_shanks_steps(n, a, b, order=None):
"""
Baby-step giant-step algorithm for computing the discrete logarithm of
``a`` to the base ``b`` modulo ``n``.
The algorithm is a time-memory trade-off of the method of exhaustive
search. It uses `O(sqrt(m))` memory, where `m` is the group order.
Examples
========
>>> from sympy.ntheory.residue_ntheory import _discrete_log_shanks_steps
>>> _discrete_log_shanks_steps(41, 15, 7)
3
See Also
========
discrete_log
References
==========
.. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
Vanstone, S. A. (1997).
"""
a %= n
b %= n
if order is None:
order = n_order(b, n)
m = isqrt(order) + 1
T = dict()
x = 1
for i in range(m):
T[x] = i
x = x * b % n
z = mod_inverse(b, n)
z = pow(z, m, n)
x = a
for i in range(m):
if x in T:
return i * m + T[x]
x = x * z % n
raise ValueError("Log does not exist")
def _discrete_log_pollard_rho(n, a, b, order=None, retries=10, rseed=None):
"""
Pollard's Rho algorithm for computing the discrete logarithm of ``a`` to
the base ``b`` modulo ``n``.
It is a randomized algorithm with the same expected running time as
``_discrete_log_shanks_steps``, but requires a negligible amount of memory.
Examples
========
>>> from sympy.ntheory.residue_ntheory import _discrete_log_pollard_rho
>>> _discrete_log_pollard_rho(227, 3**7, 3)
7
See Also
========
discrete_log
References
==========
.. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
Vanstone, S. A. (1997).
"""
a %= n
b %= n
if order is None:
order = n_order(b, n)
prng = Random()
if rseed is not None:
prng.seed(rseed)
for i in range(retries):
aa = prng.randint(1, order - 1)
ba = prng.randint(1, order - 1)
xa = pow(b, aa, n) * pow(a, ba, n) % n
c = xa % 3
if c == 0:
xb = a * xa % n
ab = aa
bb = (ba + 1) % order
elif c == 1:
xb = xa * xa % n
ab = (aa + aa) % order
bb = (ba + ba) % order
else:
xb = b * xa % n
ab = (aa + 1) % order
bb = ba
for j in range(order):
c = xa % 3
if c == 0:
xa = a * xa % n
ba = (ba + 1) % order
elif c == 1:
xa = xa * xa % n
aa = (aa + aa) % order
ba = (ba + ba) % order
else:
xa = b * xa % n
aa = (aa + 1) % order
c = xb % 3
if c == 0:
xb = a * xb % n
bb = (bb + 1) % order
elif c == 1:
xb = xb * xb % n
ab = (ab + ab) % order
bb = (bb + bb) % order
else:
xb = b * xb % n
ab = (ab + 1) % order
c = xb % 3
if c == 0:
xb = a * xb % n
bb = (bb + 1) % order
elif c == 1:
xb = xb * xb % n
ab = (ab + ab) % order
bb = (bb + bb) % order
else:
xb = b * xb % n
ab = (ab + 1) % order
if xa == xb:
r = (ba - bb) % order
try:
e = mod_inverse(r, order) * (ab - aa) % order
if (pow(b, e, n) - a) % n == 0:
return e
except ValueError:
pass
break
raise ValueError("Pollard's Rho failed to find logarithm")
def _discrete_log_pohlig_hellman(n, a, b, order=None):
"""
Pohlig-Hellman algorithm for computing the discrete logarithm of ``a`` to
the base ``b`` modulo ``n``.
In order to compute the discrete logarithm, the algorithm takes advantage
of the factorization of the group order. It is more efficient when the
group order factors into many small primes.
Examples
========
>>> from sympy.ntheory.residue_ntheory import _discrete_log_pohlig_hellman
>>> _discrete_log_pohlig_hellman(251, 210, 71)
197
See Also
========
discrete_log
References
==========
.. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
Vanstone, S. A. (1997).
"""
from .modular import crt
a %= n
b %= n
if order is None:
order = n_order(b, n)
f = factorint(order)
l = [0] * len(f)
for i, (pi, ri) in enumerate(f.items()):
for j in range(ri):
gj = pow(b, l[i], n)
aj = pow(a * mod_inverse(gj, n), order // pi**(j + 1), n)
bj = pow(b, order // pi, n)
cj = discrete_log(n, aj, bj, pi, True)
l[i] += cj * pi**j
d, _ = crt([pi**ri for pi, ri in f.items()], l)
return d
def discrete_log(n, a, b, order=None, prime_order=None):
"""
Compute the discrete logarithm of ``a`` to the base ``b`` modulo ``n``.
This is a recursive function to reduce the discrete logarithm problem in
cyclic groups of composite order to the problem in cyclic groups of prime
order.
It employs different algorithms depending on the problem (subgroup order
size, prime order or not):
* Trial multiplication
* Baby-step giant-step
* Pollard's Rho
* Pohlig-Hellman
Examples
========
>>> from sympy.ntheory import discrete_log
>>> discrete_log(41, 15, 7)
3
References
==========
.. [1] http://mathworld.wolfram.com/DiscreteLogarithm.html
.. [2] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
Vanstone, S. A. (1997).
"""
n, a, b = as_int(n), as_int(a), as_int(b)
if order is None:
order = n_order(b, n)
if prime_order is None:
prime_order = isprime(order)
if order < 1000:
return _discrete_log_trial_mul(n, a, b, order)
elif prime_order:
if order < 1000000000000:
return _discrete_log_shanks_steps(n, a, b, order)
return _discrete_log_pollard_rho(n, a, b, order)
return _discrete_log_pohlig_hellman(n, a, b, order)
def quadratic_congruence(a, b, c, p):
"""
Find the solutions to ``a x**2 + b x + c = 0 mod p
a : integer
b : integer
c : integer
p : positive integer
"""
from sympy.polys.galoistools import linear_congruence
a = as_int(a)
b = as_int(b)
c = as_int(c)
p = as_int(p)
a = a % p
b = b % p
c = c % p
if a == 0:
return linear_congruence(b, -c, p)
if p == 2:
roots = []
if c % 2 == 0:
roots.append(0)
if (a + b + c) % 2 == 0:
roots.append(1)
return roots
if isprime(p):
inv_a = mod_inverse(a, p)
b *= inv_a
c *= inv_a
if b % 2 == 1:
b = b + p
d = ((b * b) // 4 - c) % p
y = sqrt_mod(d, p, all_roots=True)
res = set()
for i in y:
res.add((i - b // 2) % p)
return sorted(res)
y = sqrt_mod(b * b - 4 * a * c , 4 * a * p, all_roots=True)
res = set()
for i in y:
root = linear_congruence(2 * a, i - b, 4 * a * p)
for j in root:
res.add(j % p)
return sorted(res)
def _polynomial_congruence_prime(coefficients, p):
"""A helper function used by polynomial_congruence.
It returns the root of a polynomial modulo prime number
by naive search from [0, p).
Parameters
==========
coefficients : list of integers
p : prime number
"""
roots = []
rank = len(coefficients)
for i in range(0, p):
f_val = 0
for coeff in range(0,rank - 1):
f_val = (f_val + pow(i, int(rank - coeff - 1), p) * coefficients[coeff]) % p
f_val = f_val + coefficients[-1]
if f_val % p == 0:
roots.append(i)
return roots
def _diff_poly(root, coefficients, p):
"""A helper function used by polynomial_congruence.
It returns the derivative of the polynomial evaluated at the
root (mod p).
Parameters
==========
coefficients : list of integers
p : prime number
root : integer
"""
diff = 0
rank = len(coefficients)
for coeff in range(0, rank - 1):
if not coefficients[coeff]:
continue
diff = (diff + pow(root, rank - coeff - 2, p)*(rank - coeff - 1)*
coefficients[coeff]) % p
return diff % p
def _val_poly(root, coefficients, p):
"""A helper function used by polynomial_congruence.
It returns value of the polynomial at root (mod p).
Parameters
==========
coefficients : list of integers
p : prime number
root : integer
"""
rank = len(coefficients)
f_val = 0
for coeff in range(0, rank - 1):
f_val = (f_val + pow(root, rank - coeff - 1, p)*
coefficients[coeff]) % p
f_val = f_val + coefficients[-1]
return f_val % p
def _valid_expr(expr):
"""
return coefficients of expr if it is a univariate polynomial
with integer coefficients else raise a ValueError.
"""
from sympy import Poly
from sympy.polys.domains import ZZ
if not expr.is_polynomial():
raise ValueError("The expression should be a polynomial")
polynomial = Poly(expr)
if not polynomial.is_univariate:
raise ValueError("The expression should be univariate")
if not polynomial.domain == ZZ:
raise ValueError("The expression should should have integer coefficients")
return polynomial.all_coeffs()
def polynomial_congruence(expr, m):
"""
Find the solutions to a polynomial congruence equation modulo m.
Parameters
==========
coefficients : Coefficients of the Polynomial
m : positive integer
Examples
========
>>> from sympy.ntheory import polynomial_congruence
>>> from sympy.abc import x
>>> expr = x**6 - 2*x**5 -35
>>> polynomial_congruence(expr, 6125)
[3257]
"""
coefficients = _valid_expr(expr)
coefficients = [num % m for num in coefficients]
rank = len(coefficients)
if rank == 3:
return quadratic_congruence(*coefficients, m)
if rank == 2:
return quadratic_congruence(0, *coefficients, m)
if coefficients[0] == 1 and 1 + coefficients[-1] == sum(coefficients):
return nthroot_mod(-coefficients[-1], rank - 1, m, True)
if isprime(m):
return _polynomial_congruence_prime(coefficients, m)
return _help(m,
lambda p: _polynomial_congruence_prime(coefficients, p),
lambda root, p: _diff_poly(root, coefficients, p),
lambda root, p: _val_poly(root, coefficients, p))
|
c3fbba312ca4f04da66e32779af2b0fa907bdc313dee8eee2cd95529db464a4b | """
Primality testing
"""
from sympy.core.compatibility import as_int
from mpmath.libmp import bitcount as _bitlength
def _int_tuple(*i):
return tuple(int(_) for _ in i)
def is_euler_pseudoprime(n, b):
"""Returns True if n is prime or an Euler pseudoprime to base b, else False.
Euler Pseudoprime : In arithmetic, an odd composite integer n is called an
euler pseudoprime to base a, if a and n are coprime and satisfy the modular
arithmetic congruence relation :
a ^ (n-1)/2 = + 1(mod n) or
a ^ (n-1)/2 = - 1(mod n)
(where mod refers to the modulo operation).
Examples
========
>>> from sympy.ntheory.primetest import is_euler_pseudoprime
>>> is_euler_pseudoprime(2, 5)
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler_pseudoprime
"""
from sympy.ntheory.factor_ import trailing
if not mr(n, [b]):
return False
n = as_int(n)
r = n - 1
c = pow(b, r >> trailing(r), n)
if c == 1:
return True
while True:
if c == n - 1:
return True
c = pow(c, 2, n)
if c == 1:
return False
def is_square(n, prep=True):
"""Return True if n == a * a for some integer a, else False.
If n is suspected of *not* being a square then this is a
quick method of confirming that it is not.
Examples
========
>>> from sympy.ntheory.primetest import is_square
>>> is_square(25)
True
>>> is_square(2)
False
References
==========
[1] http://mersenneforum.org/showpost.php?p=110896
See Also
========
sympy.core.power.integer_nthroot
"""
if prep:
n = as_int(n)
if n < 0:
return False
if n in (0, 1):
return True
m = n & 127
if not ((m*0x8bc40d7d) & (m*0xa1e2f5d1) & 0x14020a):
m = n % 63
if not ((m*0x3d491df7) & (m*0xc824a9f9) & 0x10f14008):
from sympy.core.power import integer_nthroot
return integer_nthroot(n, 2)[1]
return False
def _test(n, base, s, t):
"""Miller-Rabin strong pseudoprime test for one base.
Return False if n is definitely composite, True if n is
probably prime, with a probability greater than 3/4.
"""
# do the Fermat test
b = pow(base, t, n)
if b == 1 or b == n - 1:
return True
else:
for j in range(1, s):
b = pow(b, 2, n)
if b == n - 1:
return True
# see I. Niven et al. "An Introduction to Theory of Numbers", page 78
if b == 1:
return False
return False
def mr(n, bases):
"""Perform a Miller-Rabin strong pseudoprime test on n using a
given list of bases/witnesses.
References
==========
- Richard Crandall & Carl Pomerance (2005), "Prime Numbers:
A Computational Perspective", Springer, 2nd edition, 135-138
A list of thresholds and the bases they require are here:
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants
Examples
========
>>> from sympy.ntheory.primetest import mr
>>> mr(1373651, [2, 3])
False
>>> mr(479001599, [31, 73])
True
"""
from sympy.ntheory.factor_ import trailing
from sympy.polys.domains import ZZ
n = as_int(n)
if n < 2:
return False
# remove powers of 2 from n-1 (= t * 2**s)
s = trailing(n - 1)
t = n >> s
for base in bases:
# Bases >= n are wrapped, bases < 2 are invalid
if base >= n:
base %= n
if base >= 2:
base = ZZ(base)
if not _test(n, base, s, t):
return False
return True
def _lucas_sequence(n, P, Q, k):
"""Return the modular Lucas sequence (U_k, V_k, Q_k).
Given a Lucas sequence defined by P, Q, returns the kth values for
U and V, along with Q^k, all modulo n. This is intended for use with
possibly very large values of n and k, where the combinatorial functions
would be completely unusable.
The modular Lucas sequences are used in numerous places in number theory,
especially in the Lucas compositeness tests and the various n + 1 proofs.
Examples
========
>>> from sympy.ntheory.primetest import _lucas_sequence
>>> N = 10**2000 + 4561
>>> sol = U, V, Qk = _lucas_sequence(N, 3, 1, N//2); sol
(0, 2, 1)
"""
D = P*P - 4*Q
if n < 2:
raise ValueError("n must be >= 2")
if k < 0:
raise ValueError("k must be >= 0")
if D == 0:
raise ValueError("D must not be zero")
if k == 0:
return _int_tuple(0, 2, Q)
U = 1
V = P
Qk = Q
b = _bitlength(k)
if Q == 1:
# Optimization for extra strong tests.
while b > 1:
U = (U*V) % n
V = (V*V - 2) % n
b -= 1
if (k >> (b - 1)) & 1:
U, V = U*P + V, V*P + U*D
if U & 1:
U += n
if V & 1:
V += n
U, V = U >> 1, V >> 1
elif P == 1 and Q == -1:
# Small optimization for 50% of Selfridge parameters.
while b > 1:
U = (U*V) % n
if Qk == 1:
V = (V*V - 2) % n
else:
V = (V*V + 2) % n
Qk = 1
b -= 1
if (k >> (b-1)) & 1:
U, V = U + V, V + U*D
if U & 1:
U += n
if V & 1:
V += n
U, V = U >> 1, V >> 1
Qk = -1
else:
# The general case with any P and Q.
while b > 1:
U = (U*V) % n
V = (V*V - 2*Qk) % n
Qk *= Qk
b -= 1
if (k >> (b - 1)) & 1:
U, V = U*P + V, V*P + U*D
if U & 1:
U += n
if V & 1:
V += n
U, V = U >> 1, V >> 1
Qk *= Q
Qk %= n
return _int_tuple(U % n, V % n, Qk)
def _lucas_selfridge_params(n):
"""Calculates the Selfridge parameters (D, P, Q) for n. This is
method A from page 1401 of Baillie and Wagstaff.
References
==========
- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980.
http://mpqs.free.fr/LucasPseudoprimes.pdf
"""
from sympy.core import igcd
from sympy.ntheory.residue_ntheory import jacobi_symbol
D = 5
while True:
g = igcd(abs(D), n)
if g > 1 and g != n:
return (0, 0, 0)
if jacobi_symbol(D, n) == -1:
break
if D > 0:
D = -D - 2
else:
D = -D + 2
return _int_tuple(D, 1, (1 - D)/4)
def _lucas_extrastrong_params(n):
"""Calculates the "extra strong" parameters (D, P, Q) for n.
References
==========
- OEIS A217719: Extra Strong Lucas Pseudoprimes
https://oeis.org/A217719
- https://en.wikipedia.org/wiki/Lucas_pseudoprime
"""
from sympy.core import igcd
from sympy.ntheory.residue_ntheory import jacobi_symbol
P, Q, D = 3, 1, 5
while True:
g = igcd(D, n)
if g > 1 and g != n:
return (0, 0, 0)
if jacobi_symbol(D, n) == -1:
break
P += 1
D = P*P - 4
return _int_tuple(D, P, Q)
def is_lucas_prp(n):
"""Standard Lucas compositeness test with Selfridge parameters. Returns
False if n is definitely composite, and True if n is a Lucas probable
prime.
This is typically used in combination with the Miller-Rabin test.
References
==========
- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980.
http://mpqs.free.fr/LucasPseudoprimes.pdf
- OEIS A217120: Lucas Pseudoprimes
https://oeis.org/A217120
- https://en.wikipedia.org/wiki/Lucas_pseudoprime
Examples
========
>>> from sympy.ntheory.primetest import isprime, is_lucas_prp
>>> for i in range(10000):
... if is_lucas_prp(i) and not isprime(i):
... print(i)
323
377
1159
1829
3827
5459
5777
9071
9179
"""
n = as_int(n)
if n == 2:
return True
if n < 2 or (n % 2) == 0:
return False
if is_square(n, False):
return False
D, P, Q = _lucas_selfridge_params(n)
if D == 0:
return False
U, V, Qk = _lucas_sequence(n, P, Q, n+1)
return U == 0
def is_strong_lucas_prp(n):
"""Strong Lucas compositeness test with Selfridge parameters. Returns
False if n is definitely composite, and True if n is a strong Lucas
probable prime.
This is often used in combination with the Miller-Rabin test, and
in particular, when combined with M-R base 2 creates the strong BPSW test.
References
==========
- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980.
http://mpqs.free.fr/LucasPseudoprimes.pdf
- OEIS A217255: Strong Lucas Pseudoprimes
https://oeis.org/A217255
- https://en.wikipedia.org/wiki/Lucas_pseudoprime
- https://en.wikipedia.org/wiki/Baillie-PSW_primality_test
Examples
========
>>> from sympy.ntheory.primetest import isprime, is_strong_lucas_prp
>>> for i in range(20000):
... if is_strong_lucas_prp(i) and not isprime(i):
... print(i)
5459
5777
10877
16109
18971
"""
from sympy.ntheory.factor_ import trailing
n = as_int(n)
if n == 2:
return True
if n < 2 or (n % 2) == 0:
return False
if is_square(n, False):
return False
D, P, Q = _lucas_selfridge_params(n)
if D == 0:
return False
# remove powers of 2 from n+1 (= k * 2**s)
s = trailing(n + 1)
k = (n+1) >> s
U, V, Qk = _lucas_sequence(n, P, Q, k)
if U == 0 or V == 0:
return True
for r in range(1, s):
V = (V*V - 2*Qk) % n
if V == 0:
return True
Qk = pow(Qk, 2, n)
return False
def is_extra_strong_lucas_prp(n):
"""Extra Strong Lucas compositeness test. Returns False if n is
definitely composite, and True if n is a "extra strong" Lucas probable
prime.
The parameters are selected using P = 3, Q = 1, then incrementing P until
(D|n) == -1. The test itself is as defined in Grantham 2000, from the
Mo and Jones preprint. The parameter selection and test are the same as
used in OEIS A217719, Perl's Math::Prime::Util, and the Lucas pseudoprime
page on Wikipedia.
With these parameters, there are no counterexamples below 2^64 nor any
known above that range. It is 20-50% faster than the strong test.
Because of the different parameters selected, there is no relationship
between the strong Lucas pseudoprimes and extra strong Lucas pseudoprimes.
In particular, one is not a subset of the other.
References
==========
- "Frobenius Pseudoprimes", Jon Grantham, 2000.
http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01197-2/
- OEIS A217719: Extra Strong Lucas Pseudoprimes
https://oeis.org/A217719
- https://en.wikipedia.org/wiki/Lucas_pseudoprime
Examples
========
>>> from sympy.ntheory.primetest import isprime, is_extra_strong_lucas_prp
>>> for i in range(20000):
... if is_extra_strong_lucas_prp(i) and not isprime(i):
... print(i)
989
3239
5777
10877
"""
# Implementation notes:
# 1) the parameters differ from Thomas R. Nicely's. His parameter
# selection leads to pseudoprimes that overlap M-R tests, and
# contradict Baillie and Wagstaff's suggestion of (D|n) = -1.
# 2) The MathWorld page as of June 2013 specifies Q=-1. The Lucas
# sequence must have Q=1. See Grantham theorem 2.3, any of the
# references on the MathWorld page, or run it and see Q=-1 is wrong.
from sympy.ntheory.factor_ import trailing
n = as_int(n)
if n == 2:
return True
if n < 2 or (n % 2) == 0:
return False
if is_square(n, False):
return False
D, P, Q = _lucas_extrastrong_params(n)
if D == 0:
return False
# remove powers of 2 from n+1 (= k * 2**s)
s = trailing(n + 1)
k = (n+1) >> s
U, V, Qk = _lucas_sequence(n, P, Q, k)
if U == 0 and (V == 2 or V == n - 2):
return True
for r in range(1, s):
if V == 0:
return True
V = (V*V - 2) % n
return False
def isprime(n):
"""
Test if n is a prime number (True) or not (False). For n < 2^64 the
answer is definitive; larger n values have a small probability of actually
being pseudoprimes.
Negative numbers (e.g. -2) are not considered prime.
The first step is looking for trivial factors, which if found enables
a quick return. Next, if the sieve is large enough, use bisection search
on the sieve. For small numbers, a set of deterministic Miller-Rabin
tests are performed with bases that are known to have no counterexamples
in their range. Finally if the number is larger than 2^64, a strong
BPSW test is performed. While this is a probable prime test and we
believe counterexamples exist, there are no known counterexamples.
Examples
========
>>> from sympy.ntheory import isprime
>>> isprime(13)
True
>>> isprime(13.0) # limited precision
False
>>> isprime(15)
False
Notes
=====
This routine is intended only for integer input, not numerical
expressions which may represent numbers. Floats are also
rejected as input because they represent numbers of limited
precision. While it is tempting to permit 7.0 to represent an
integer there are errors that may "pass silently" if this is
allowed:
>>> from sympy import Float, S
>>> int(1e3) == 1e3 == 10**3
True
>>> int(1e23) == 1e23
True
>>> int(1e23) == 10**23
False
>>> near_int = 1 + S(1)/10**19
>>> near_int == int(near_int)
False
>>> n = Float(near_int, 10) # truncated by precision
>>> n == int(n)
True
>>> n = Float(near_int, 20)
>>> n == int(n)
False
See Also
========
sympy.ntheory.generate.primerange : Generates all primes in a given range
sympy.ntheory.generate.primepi : Return the number of primes less than or equal to n
sympy.ntheory.generate.prime : Return the nth prime
References
==========
- https://en.wikipedia.org/wiki/Strong_pseudoprime
- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980.
http://mpqs.free.fr/LucasPseudoprimes.pdf
- https://en.wikipedia.org/wiki/Baillie-PSW_primality_test
"""
try:
n = as_int(n)
except ValueError:
return False
# Step 1, do quick composite testing via trial division. The individual
# modulo tests benchmark faster than one or two primorial igcds for me.
# The point here is just to speedily handle small numbers and many
# composites. Step 2 only requires that n <= 2 get handled here.
if n in [2, 3, 5]:
return True
if n < 2 or (n % 2) == 0 or (n % 3) == 0 or (n % 5) == 0:
return False
if n < 49:
return True
if (n % 7) == 0 or (n % 11) == 0 or (n % 13) == 0 or (n % 17) == 0 or \
(n % 19) == 0 or (n % 23) == 0 or (n % 29) == 0 or (n % 31) == 0 or \
(n % 37) == 0 or (n % 41) == 0 or (n % 43) == 0 or (n % 47) == 0:
return False
if n < 2809:
return True
if n <= 23001:
return pow(2, n, n) == 2 and n not in [7957, 8321, 13747, 18721, 19951]
# bisection search on the sieve if the sieve is large enough
from sympy.ntheory.generate import sieve as s
if n <= s._list[-1]:
l, u = s.search(n)
return l == u
# If we have GMPY2, skip straight to step 3 and do a strong BPSW test.
# This should be a bit faster than our step 2, and for large values will
# be a lot faster than our step 3 (C+GMP vs. Python).
from sympy.core.compatibility import HAS_GMPY
if HAS_GMPY == 2:
from gmpy2 import is_strong_prp, is_strong_selfridge_prp
return is_strong_prp(n, 2) and is_strong_selfridge_prp(n)
# Step 2: deterministic Miller-Rabin testing for numbers < 2^64. See:
# https://miller-rabin.appspot.com/
# for lists. We have made sure the M-R routine will successfully handle
# bases larger than n, so we can use the minimal set.
if n < 341531:
return mr(n, [9345883071009581737])
if n < 885594169:
return mr(n, [725270293939359937, 3569819667048198375])
if n < 350269456337:
return mr(n, [4230279247111683200, 14694767155120705706, 16641139526367750375])
if n < 55245642489451:
return mr(n, [2, 141889084524735, 1199124725622454117, 11096072698276303650])
if n < 7999252175582851:
return mr(n, [2, 4130806001517, 149795463772692060, 186635894390467037, 3967304179347715805])
if n < 585226005592931977:
return mr(n, [2, 123635709730000, 9233062284813009, 43835965440333360, 761179012939631437, 1263739024124850375])
if n < 18446744073709551616:
return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022])
# We could do this instead at any point:
#if n < 18446744073709551616:
# return mr(n, [2]) and is_extra_strong_lucas_prp(n)
# Here are tests that are safe for MR routines that don't understand
# large bases.
#if n < 9080191:
# return mr(n, [31, 73])
#if n < 19471033:
# return mr(n, [2, 299417])
#if n < 38010307:
# return mr(n, [2, 9332593])
#if n < 316349281:
# return mr(n, [11000544, 31481107])
#if n < 4759123141:
# return mr(n, [2, 7, 61])
#if n < 105936894253:
# return mr(n, [2, 1005905886, 1340600841])
#if n < 31858317218647:
# return mr(n, [2, 642735, 553174392, 3046413974])
#if n < 3071837692357849:
# return mr(n, [2, 75088, 642735, 203659041, 3613982119])
#if n < 18446744073709551616:
# return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022])
# Step 3: BPSW.
#
# Time for isprime(10**2000 + 4561), no gmpy or gmpy2 installed
# 44.0s old isprime using 46 bases
# 5.3s strong BPSW + one random base
# 4.3s extra strong BPSW + one random base
# 4.1s strong BPSW
# 3.2s extra strong BPSW
# Classic BPSW from page 1401 of the paper. See alternate ideas below.
return mr(n, [2]) and is_strong_lucas_prp(n)
# Using extra strong test, which is somewhat faster
#return mr(n, [2]) and is_extra_strong_lucas_prp(n)
# Add a random M-R base
#import random
#return mr(n, [2, random.randint(3, n-1)]) and is_strong_lucas_prp(n)
def is_gaussian_prime(num):
r"""Test if num is a Gaussian prime number.
References
==========
.. [1] https://oeis.org/wiki/Gaussian_primes
"""
from sympy import sympify
num = sympify(num)
a, b = num.as_real_imag()
a = as_int(a, strict=False)
b = as_int(b, strict=False)
if a == 0:
b = abs(b)
return isprime(b) and b % 4 == 3
elif b == 0:
a = abs(a)
return isprime(a) and a % 4 == 3
return isprime(a**2 + b**2)
|
847fd80eed87b6c34d89a93707a4598439dff63b2e6472e696ec528423810ecb | from sympy.core.numbers import igcd, mod_inverse
from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power
from sympy.ntheory import isprime
from math import log, sqrt
import random
rgen = random.Random()
class SievePolynomial:
def __init__(self, modified_coeff=(), a=None, b=None):
"""This class denotes the seive polynomial.
If ``g(x) = (a*x + b)**2 - N``. `g(x)` can be expanded
to ``a*x**2 + 2*a*b*x + b**2 - N``, so the coefficient
is stored in the form `[a**2, 2*a*b, b**2 - N]`. This
ensures faster `eval` method because we dont have to
perform `a**2, 2*a*b, b**2` every time we call the
`eval` method. As multiplication is more expensive
than addition, by using modified_coefficient we get
a faster seiving process.
Parameters
==========
modified_coeff : modified_coefficient of sieve polynomial
a : parameter of the sieve polynomial
b : parameter of the sieve polynomial
"""
self.modified_coeff = modified_coeff
self.a = a
self.b = b
def eval(self, x):
"""
Compute the value of the sieve polynomial at point x.
Parameters
==========
x : Integer parameter for sieve polynomial
"""
ans = 0
for coeff in self.modified_coeff:
ans *= x
ans += coeff
return ans
class FactorBaseElem:
"""This class stores an element of the `factor_base`.
"""
def __init__(self, prime, tmem_p, log_p):
"""
Initialization of factor_base_elem.
Parameters
==========
prime : prime number of the factor_base
tmem_p : Integer square root of x**2 = n mod prime
log_p : Compute Natural Logarithm of the prime
"""
self.prime = prime
self.tmem_p = tmem_p
self.log_p = log_p
self.soln1 = None
self.soln2 = None
self.a_inv = None
self.b_ainv = None
def _generate_factor_base(prime_bound, n):
"""Generate `factor_base` for Quadratic Sieve. The `factor_base`
consists of all the the points whose ``legendre_symbol(n, p) == 1``
and ``p < num_primes``. Along with the prime `factor_base` also stores
natural logarithm of prime and the residue n modulo p.
It also returns the of primes numbers in the `factor_base` which are
close to 1000 and 5000.
Parameters
==========
prime_bound : upper prime bound of the factor_base
n : integer to be factored
"""
from sympy import sieve
factor_base = []
idx_1000, idx_5000 = None, None
for prime in sieve.primerange(1, prime_bound):
if pow(n, (prime - 1) // 2, prime) == 1:
if prime > 1000 and idx_1000 is None:
idx_1000 = len(factor_base) - 1
if prime > 5000 and idx_5000 is None:
idx_5000 = len(factor_base) - 1
residue = _sqrt_mod_prime_power(n, prime, 1)[0]
log_p = round(log(prime)*2**10)
factor_base.append(FactorBaseElem(prime, residue, log_p))
return idx_1000, idx_5000, factor_base
def _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000, seed=None):
"""This step is the initialization of the 1st sieve polynomial.
Here `a` is selected as a product of several primes of the factor_base
such that `a` is about to ``sqrt(2*N) / M``. Other initial values of
factor_base elem are also intialized which includes a_inv, b_ainv, soln1,
soln2 which are used when the sieve polynomial is changed. The b_ainv
is required for fast polynomial change as we don't have to calculate
`2*b*mod_inverse(a, prime)` every time.
We also ensure that the `factor_base` primes which make `a` are between
1000 and 5000.
Parameters
==========
N : Number to be factored
M : sieve interval
factor_base : factor_base primes
idx_1000 : index of prime numbe in the factor_base near 1000
idx_5000 : index of primenumber in the factor_base near to 5000
seed : Generate pseudoprime numbers
"""
if seed is not None:
rgen.seed(seed)
approx_val = sqrt(2*N) / M
# `a` is a parameter of the sieve polynomial and `q` is the prime factors of `a`
# randomly search for a combination of primes whose multiplication is close to approx_val
# This multiplication of primes will be `a` and the primes will be `q`
# `best_a` denotes that `a` is close to approx_val in the random search of combination
best_a, best_q, best_ratio = None, None, None
start = 0 if idx_1000 is None else idx_1000
end = len(factor_base) - 1 if idx_5000 is None else idx_5000
for _ in range(50):
a = 1
q = []
while(a < approx_val):
rand_p = 0
while(rand_p == 0 or rand_p in q):
rand_p = rgen.randint(start, end)
p = factor_base[rand_p].prime
a *= p
q.append(rand_p)
ratio = a / approx_val
if best_ratio is None or abs(ratio - 1) < abs(best_ratio - 1):
best_q = q
best_a = a
best_ratio = ratio
a = best_a
q = best_q
B = []
for idx, val in enumerate(q):
q_l = factor_base[val].prime
gamma = factor_base[val].tmem_p * mod_inverse(a // q_l, q_l) % q_l
if gamma > q_l / 2:
gamma = q_l - gamma
B.append(a//q_l*gamma)
b = sum(B)
g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b)
for fb in factor_base:
if a % fb.prime == 0:
continue
fb.a_inv = mod_inverse(a, fb.prime)
fb.b_ainv = [2*b_elem*fb.a_inv % fb.prime for b_elem in B]
fb.soln1 = (fb.a_inv*(fb.tmem_p - b)) % fb.prime
fb.soln2 = (fb.a_inv*(-fb.tmem_p - b)) % fb.prime
return g, B
def _initialize_ith_poly(N, factor_base, i, g, B):
"""Initialization stage of ith poly. After we finish sieving 1`st polynomial
here we quickly change to the next polynomial from which we will again
start sieving. Suppose we generated ith sieve polynomial and now we
want to generate (i + 1)th polynomial, where ``1 <= i <= 2**(j - 1) - 1``
where `j` is the number of prime factors of the coefficient `a`
then this function can be used to go to the next polynomial. If
``i = 2**(j - 1) - 1`` then go to _initialize_first_polynomial stage.
Parameters
==========
N : number to be factored
factor_base : factor_base primes
i : integer denoting ith polynomial
g : (i - 1)th polynomial
B : array that stores a//q_l*gamma
"""
from sympy import ceiling
v = 1
j = i
while(j % 2 == 0):
v += 1
j //= 2
if ceiling(i / (2**v)) % 2 == 1:
neg_pow = -1
else:
neg_pow = 1
b = g.b + 2*neg_pow*B[v - 1]
a = g.a
g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b)
for fb in factor_base:
if a % fb.prime == 0:
continue
fb.soln1 = (fb.soln1 - neg_pow*fb.b_ainv[v - 1]) % fb.prime
fb.soln2 = (fb.soln2 - neg_pow*fb.b_ainv[v - 1]) % fb.prime
return g
def _gen_sieve_array(M, factor_base):
"""Sieve Stage of the Quadratic Sieve. For every prime in the factor_base
that doesn't divide the coefficient `a` we add log_p over the sieve_array
such that ``-M <= soln1 + i*p <= M`` and ``-M <= soln2 + i*p <= M`` where `i`
is an integer. When p = 2 then log_p is only added using
``-M <= soln1 + i*p <= M``.
Parameters
==========
M : sieve interval
factor_base : factor_base primes
"""
sieve_array = [0]*(2*M + 1)
for factor in factor_base:
if factor.soln1 is None: #The prime does not divides a
continue
for idx in range((M + factor.soln1) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
if factor.prime == 2:
continue
#if prime is 2 then sieve only with soln_1_p
for idx in range((M + factor.soln2) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
return sieve_array
def _check_smoothness(num, factor_base):
"""Here we check that if `num` is a smooth number or not. If `a` is a smooth
number then it returns a vector of prime exponents modulo 2. For example
if a = 2 * 5**2 * 7**3 and the factor base contains {2, 3, 5, 7} then
`a` is a smooth number and this function returns ([1, 0, 0, 1], True). If
`a` is a partial relation which means that `a` a has one prime factor
greater than the `factor_base` then it returns `(a, False)` which denotes `a`
is a partial relation.
Parameters
==========
a : integer whose smootheness is to be checked
factor_base : factor_base primes
"""
vec = []
if num < 0:
vec.append(1)
num *= -1
else:
vec.append(0)
#-1 is not included in factor_base add -1 in vector
for factor in factor_base:
if num % factor.prime != 0:
vec.append(0)
continue
factor_exp = 0
while num % factor.prime == 0:
factor_exp += 1
num //= factor.prime
vec.append(factor_exp % 2)
if num == 1:
return vec, True
if isprime(num):
return num, False
return None, None
def _trial_division_stage(N, M, factor_base, sieve_array, sieve_poly, partial_relations, ERROR_TERM):
"""Trial division stage. Here we trial divide the values generetated
by sieve_poly in the sieve interval and if it is a smooth number then
it is stored in `smooth_relations`. Moreover, if we find two partial relations
with same large prime then they are combined to form a smooth relation.
First we iterate over sieve array and look for values which are greater
than accumulated_val, as these values have a high chance of being smooth
number. Then using these values we find smooth relations.
In general, let ``t**2 = u*p modN`` and ``r**2 = v*p modN`` be two partial relations
with the same large prime p. Then they can be combined ``(t*r/p)**2 = u*v modN``
to form a smooth relation.
Parameters
==========
N : Number to be factored
M : sieve interval
factor_base : factor_base primes
sieve_array : stores log_p values
sieve_poly : polynomial from which we find smooth relations
partial_relations : stores partial relations with one large prime
ERROR_TERM : error term for accumulated_val
"""
sqrt_n = sqrt(float(N))
accumulated_val = log(M * sqrt_n)*2**10 - ERROR_TERM
smooth_relations = []
proper_factor = set()
partial_relation_upper_bound = 128*factor_base[-1].prime
for idx, val in enumerate(sieve_array):
if val < accumulated_val:
continue
x = idx - M
v = sieve_poly.eval(x)
vec, is_smooth = _check_smoothness(v, factor_base)
if is_smooth is None:#Neither smooth nor partial
continue
u = sieve_poly.a*x + sieve_poly.b
# Update the partial relation
# If 2 partial relation with same large prime is found then generate smooth relation
if is_smooth is False:#partial relation found
large_prime = vec
#Consider the large_primes under 128*F
if large_prime > partial_relation_upper_bound:
continue
if large_prime not in partial_relations:
partial_relations[large_prime] = (u, v)
continue
else:
u_prev, v_prev = partial_relations[large_prime]
partial_relations.pop(large_prime)
try:
large_prime_inv = mod_inverse(large_prime, N)
except ValueError:#if large_prine divides N
proper_factor.add(large_prime)
continue
u = u*u_prev*large_prime_inv
v = v*v_prev // (large_prime*large_prime)
vec, is_smooth = _check_smoothness(v, factor_base)
#assert u*u % N == v % N
smooth_relations.append((u, v, vec))
return smooth_relations, proper_factor
#LINEAR ALGEBRA STAGE
def _build_matrix(smooth_relations):
"""Build a 2D matrix from smooth relations.
Parameters
==========
smooth_relations : Stores smooth relations
"""
matrix = []
for s_relation in smooth_relations:
matrix.append(s_relation[2])
return matrix
def _gauss_mod_2(A):
"""Fast gaussian reduction for modulo 2 matrix.
Parameters
==========
A : Matrix
Examples
========
>>> from sympy.ntheory.qs import _gauss_mod_2
>>> _gauss_mod_2([[0, 1, 1], [1, 0, 1], [0, 1, 0], [1, 1, 1]])
([[[1, 0, 1], 3]],
[True, True, True, False],
[[0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 1]])
Reference
==========
.. [1] A fast algorithm for gaussian elimination over GF(2) and
its implementation on the GAPP. Cetin K.Koc, Sarath N.Arachchige"""
import copy
matrix = copy.deepcopy(A)
row = len(matrix)
col = len(matrix[0])
mark = [False]*row
for c in range(col):
for r in range(row):
if matrix[r][c] == 1:
break
mark[r] = True
for c1 in range(col):
if c1 == c:
continue
if matrix[r][c1] == 1:
for r2 in range(row):
matrix[r2][c1] = (matrix[r2][c1] + matrix[r2][c]) % 2
dependent_row = []
for idx, val in enumerate(mark):
if val == False:
dependent_row.append([matrix[idx], idx])
return dependent_row, mark, matrix
def _find_factor(dependent_rows, mark, gauss_matrix, index, smooth_relations, N):
"""Finds proper factor of N. Here, transform the dependent rows as a
combination of independent rows of the gauss_matrix to form the desired
relation of the form ``X**2 = Y**2 modN``. After obtaining the desired relation
we obtain a proper factor of N by `gcd(X - Y, N)`.
Parameters
==========
dependent_rows : denoted dependent rows in the reduced matrix form
mark : boolean array to denoted dependent and independent rows
gauss_matrix : Reduced form of the smooth relations matrix
index : denoted the index of the dependent_rows
smooth_relations : Smooth relations vectors matrix
N : Number to be factored
"""
from sympy import integer_nthroot
idx_in_smooth = dependent_rows[index][1]
independent_u = [smooth_relations[idx_in_smooth][0]]
independent_v = [smooth_relations[idx_in_smooth][1]]
dept_row = dependent_rows[index][0]
for idx, val in enumerate(dept_row):
if val == 1:
for row in range(len(gauss_matrix)):
if gauss_matrix[row][idx] == 1 and mark[row] == True:
independent_u.append(smooth_relations[row][0])
independent_v.append(smooth_relations[row][1])
break
u = 1
v = 1
for i in independent_u:
u *= i
for i in independent_v:
v *= i
#assert u**2 % N == v % N
v = integer_nthroot(v, 2)[0]
return igcd(u - v, N)
def qs(N, prime_bound, M, ERROR_TERM=25, seed=1234):
"""Performs factorization using Self-Initializing Quadratic Sieve.
In SIQS, let N be a number to be factored, and this N should not be a
perfect power. If we find two integers such that ``X**2 = Y**2 modN`` and
``X != +-Y modN``, then `gcd(X + Y, N)` will reveal a proper factor of N.
In order to find these integers X and Y we try to find relations of form
t**2 = u modN where u is a product of small primes. If we have enough of
these relations then we can form ``(t1*t2...ti)**2 = u1*u2...ui modN`` such that
the right hand side is a square, thus we found a relation of ``X**2 = Y**2 modN``.
Here, several optimizations are done like using muliple polynomials for
sieving, fast changing between polynomials and using partial relations.
The use of partial relations can speeds up the factoring by 2 times.
Parameters
==========
N : Number to be Factored
prime_bound : upper bound for primes in the factor base
M : Sieve Interval
ERROR_TERM : Error term for checking smoothness
threshold : Extra smooth relations for factorization
seed : generate pseudo prime numbers
Examples
========
>>> from sympy.ntheory import qs
>>> qs(25645121643901801, 2000, 10000)
{5394769, 4753701529}
>>> qs(9804659461513846513, 2000, 10000)
{4641991, 2112166839943}
References
==========
.. [1] https://pdfs.semanticscholar.org/5c52/8a975c1405bd35c65993abf5a4edb667c1db.pdf
.. [2] https://www.rieselprime.de/ziki/Self-initializing_quadratic_sieve
"""
ERROR_TERM*=2**10
rgen.seed(seed)
idx_1000, idx_5000, factor_base = _generate_factor_base(prime_bound, N)
smooth_relations = []
ith_poly = 0
partial_relations = {}
proper_factor = set()
threshold = 5*len(factor_base) // 100
while True:
if ith_poly == 0:
ith_sieve_poly, B_array = _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000)
else:
ith_sieve_poly = _initialize_ith_poly(N, factor_base, ith_poly, ith_sieve_poly, B_array)
ith_poly += 1
if ith_poly >= 2**(len(B_array) - 1): # time to start with a new sieve polynomial
ith_poly = 0
sieve_array = _gen_sieve_array(M, factor_base)
s_rel, p_f = _trial_division_stage(N, M, factor_base, sieve_array, ith_sieve_poly, partial_relations, ERROR_TERM)
smooth_relations += s_rel
proper_factor |= p_f
if len(smooth_relations) >= len(factor_base) + threshold:
break
matrix = _build_matrix(smooth_relations)
dependent_row, mark, gauss_matrix = _gauss_mod_2(matrix)
N_copy = N
for index in range(len(dependent_row)):
factor = _find_factor(dependent_row, mark, gauss_matrix, index, smooth_relations, N)
if factor > 1 and factor < N:
proper_factor.add(factor)
while(N_copy % factor == 0):
N_copy //= factor
if isprime(N_copy):
proper_factor.add(N_copy)
break
if(N_copy == 1):
break
return proper_factor
|
8063127e3cdbbdcd0c8a31dcf37c332f40874ad4488c2680f977f6942ea0aa26 | from random import randrange, choice
from math import log
from sympy.ntheory import primefactors
from sympy import multiplicity, factorint, Symbol
from sympy.combinatorics import Permutation
from sympy.combinatorics.permutations import (_af_commutes_with, _af_invert,
_af_rmul, _af_rmuln, _af_pow, Cycle)
from sympy.combinatorics.util import (_check_cycles_alt_sym,
_distribute_gens_by_base, _orbits_transversals_from_bsgs,
_handle_precomputed_bsgs, _base_ordering, _strong_gens_from_distr,
_strip, _strip_af)
from sympy.core import Basic
from sympy.functions.combinatorial.factorials import factorial
from sympy.ntheory import sieve
from sympy.utilities.iterables import has_variety, is_sequence, uniq
from sympy.testing.randtest import _randrange
from itertools import islice
from sympy.core.sympify import _sympify
rmul = Permutation.rmul_with_af
_af_new = Permutation._af_new
class PermutationGroup(Basic):
"""The class defining a Permutation group.
Explanation
===========
PermutationGroup([p1, p2, ..., pn]) returns the permutation group
generated by the list of permutations. This group can be supplied
to Polyhedron if one desires to decorate the elements to which the
indices of the permutation refer.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.polyhedron import Polyhedron
>>> from sympy.combinatorics.perm_groups import PermutationGroup
The permutations corresponding to motion of the front, right and
bottom face of a 2x2 Rubik's cube are defined:
>>> F = Permutation(2, 19, 21, 8)(3, 17, 20, 10)(4, 6, 7, 5)
>>> R = Permutation(1, 5, 21, 14)(3, 7, 23, 12)(8, 10, 11, 9)
>>> D = Permutation(6, 18, 14, 10)(7, 19, 15, 11)(20, 22, 23, 21)
These are passed as permutations to PermutationGroup:
>>> G = PermutationGroup(F, R, D)
>>> G.order()
3674160
The group can be supplied to a Polyhedron in order to track the
objects being moved. An example involving the 2x2 Rubik's cube is
given there, but here is a simple demonstration:
>>> a = Permutation(2, 1)
>>> b = Permutation(1, 0)
>>> G = PermutationGroup(a, b)
>>> P = Polyhedron(list('ABC'), pgroup=G)
>>> P.corners
(A, B, C)
>>> P.rotate(0) # apply permutation 0
>>> P.corners
(A, C, B)
>>> P.reset()
>>> P.corners
(A, B, C)
Or one can make a permutation as a product of selected permutations
and apply them to an iterable directly:
>>> P10 = G.make_perm([0, 1])
>>> P10('ABC')
['C', 'A', 'B']
See Also
========
sympy.combinatorics.polyhedron.Polyhedron,
sympy.combinatorics.permutations.Permutation
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of Computational Group Theory"
.. [2] Seress, A.
"Permutation Group Algorithms"
.. [3] https://en.wikipedia.org/wiki/Schreier_vector
.. [4] https://en.wikipedia.org/wiki/Nielsen_transformation#Product_replacement_algorithm
.. [5] Frank Celler, Charles R.Leedham-Green, Scott H.Murray,
Alice C.Niemeyer, and E.A.O'Brien. "Generating Random
Elements of a Finite Group"
.. [6] https://en.wikipedia.org/wiki/Block_%28permutation_group_theory%29
.. [7] http://www.algorithmist.com/index.php/Union_Find
.. [8] https://en.wikipedia.org/wiki/Multiply_transitive_group#Multiply_transitive_groups
.. [9] https://en.wikipedia.org/wiki/Center_%28group_theory%29
.. [10] https://en.wikipedia.org/wiki/Centralizer_and_normalizer
.. [11] http://groupprops.subwiki.org/wiki/Derived_subgroup
.. [12] https://en.wikipedia.org/wiki/Nilpotent_group
.. [13] http://www.math.colostate.edu/~hulpke/CGT/cgtnotes.pdf
.. [14] https://www.gap-system.org/Manuals/doc/ref/manual.pdf
"""
is_group = True
def __new__(cls, *args, dups=True, **kwargs):
"""The default constructor. Accepts Cycle and Permutation forms.
Removes duplicates unless ``dups`` keyword is ``False``.
"""
if not args:
args = [Permutation()]
else:
args = list(args[0] if is_sequence(args[0]) else args)
if not args:
args = [Permutation()]
if any(isinstance(a, Cycle) for a in args):
args = [Permutation(a) for a in args]
if has_variety(a.size for a in args):
degree = kwargs.pop('degree', None)
if degree is None:
degree = max(a.size for a in args)
for i in range(len(args)):
if args[i].size != degree:
args[i] = Permutation(args[i], size=degree)
if dups:
args = list(uniq([_af_new(list(a)) for a in args]))
if len(args) > 1:
args = [g for g in args if not g.is_identity]
obj = Basic.__new__(cls, *args, **kwargs)
obj._generators = args
obj._order = None
obj._center = []
obj._is_abelian = None
obj._is_transitive = None
obj._is_sym = None
obj._is_alt = None
obj._is_primitive = None
obj._is_nilpotent = None
obj._is_solvable = None
obj._is_trivial = None
obj._transitivity_degree = None
obj._max_div = None
obj._is_perfect = None
obj._is_cyclic = None
obj._r = len(obj._generators)
obj._degree = obj._generators[0].size
# these attributes are assigned after running schreier_sims
obj._base = []
obj._strong_gens = []
obj._strong_gens_slp = []
obj._basic_orbits = []
obj._transversals = []
obj._transversal_slp = []
# these attributes are assigned after running _random_pr_init
obj._random_gens = []
# finite presentation of the group as an instance of `FpGroup`
obj._fp_presentation = None
return obj
def __getitem__(self, i):
return self._generators[i]
def __contains__(self, i):
"""Return ``True`` if *i* is contained in PermutationGroup.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = Permutation(1, 2, 3)
>>> Permutation(3) in PermutationGroup(p)
True
"""
if not isinstance(i, Permutation):
raise TypeError("A PermutationGroup contains only Permutations as "
"elements, not elements of type %s" % type(i))
return self.contains(i)
def __len__(self):
return len(self._generators)
def __eq__(self, other):
"""Return ``True`` if PermutationGroup generated by elements in the
group are same i.e they represent the same PermutationGroup.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> p = Permutation(0, 1, 2, 3, 4, 5)
>>> G = PermutationGroup([p, p**2])
>>> H = PermutationGroup([p**2, p])
>>> G.generators == H.generators
False
>>> G == H
True
"""
if not isinstance(other, PermutationGroup):
return False
set_self_gens = set(self.generators)
set_other_gens = set(other.generators)
# before reaching the general case there are also certain
# optimisation and obvious cases requiring less or no actual
# computation.
if set_self_gens == set_other_gens:
return True
# in the most general case it will check that each generator of
# one group belongs to the other PermutationGroup and vice-versa
for gen1 in set_self_gens:
if not other.contains(gen1):
return False
for gen2 in set_other_gens:
if not self.contains(gen2):
return False
return True
def __hash__(self):
return super().__hash__()
def __mul__(self, other):
"""
Return the direct product of two permutation groups as a permutation
group.
Explanation
===========
This implementation realizes the direct product by shifting the index
set for the generators of the second group: so if we have ``G`` acting
on ``n1`` points and ``H`` acting on ``n2`` points, ``G*H`` acts on
``n1 + n2`` points.
Examples
========
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> G = CyclicGroup(5)
>>> H = G*G
>>> H
PermutationGroup([
(9)(0 1 2 3 4),
(5 6 7 8 9)])
>>> H.order()
25
"""
if isinstance(other, Permutation):
return Coset(other, self, dir='+')
gens1 = [perm._array_form for perm in self.generators]
gens2 = [perm._array_form for perm in other.generators]
n1 = self._degree
n2 = other._degree
start = list(range(n1))
end = list(range(n1, n1 + n2))
for i in range(len(gens2)):
gens2[i] = [x + n1 for x in gens2[i]]
gens2 = [start + gen for gen in gens2]
gens1 = [gen + end for gen in gens1]
together = gens1 + gens2
gens = [_af_new(x) for x in together]
return PermutationGroup(gens)
def _random_pr_init(self, r, n, _random_prec_n=None):
r"""Initialize random generators for the product replacement algorithm.
Explanation
===========
The implementation uses a modification of the original product
replacement algorithm due to Leedham-Green, as described in [1],
pp. 69-71; also, see [2], pp. 27-29 for a detailed theoretical
analysis of the original product replacement algorithm, and [4].
The product replacement algorithm is used for producing random,
uniformly distributed elements of a group `G` with a set of generators
`S`. For the initialization ``_random_pr_init``, a list ``R`` of
`\max\{r, |S|\}` group generators is created as the attribute
``G._random_gens``, repeating elements of `S` if necessary, and the
identity element of `G` is appended to ``R`` - we shall refer to this
last element as the accumulator. Then the function ``random_pr()``
is called ``n`` times, randomizing the list ``R`` while preserving
the generation of `G` by ``R``. The function ``random_pr()`` itself
takes two random elements ``g, h`` among all elements of ``R`` but
the accumulator and replaces ``g`` with a randomly chosen element
from `\{gh, g(~h), hg, (~h)g\}`. Then the accumulator is multiplied
by whatever ``g`` was replaced by. The new value of the accumulator is
then returned by ``random_pr()``.
The elements returned will eventually (for ``n`` large enough) become
uniformly distributed across `G` ([5]). For practical purposes however,
the values ``n = 50, r = 11`` are suggested in [1].
Notes
=====
THIS FUNCTION HAS SIDE EFFECTS: it changes the attribute
self._random_gens
See Also
========
random_pr
"""
deg = self.degree
random_gens = [x._array_form for x in self.generators]
k = len(random_gens)
if k < r:
for i in range(k, r):
random_gens.append(random_gens[i - k])
acc = list(range(deg))
random_gens.append(acc)
self._random_gens = random_gens
# handle randomized input for testing purposes
if _random_prec_n is None:
for i in range(n):
self.random_pr()
else:
for i in range(n):
self.random_pr(_random_prec=_random_prec_n[i])
def _union_find_merge(self, first, second, ranks, parents, not_rep):
"""Merges two classes in a union-find data structure.
Explanation
===========
Used in the implementation of Atkinson's algorithm as suggested in [1],
pp. 83-87. The class merging process uses union by rank as an
optimization. ([7])
Notes
=====
THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives,
``parents``, the list of class sizes, ``ranks``, and the list of
elements that are not representatives, ``not_rep``, are changed due to
class merging.
See Also
========
minimal_block, _union_find_rep
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
.. [7] http://www.algorithmist.com/index.php/Union_Find
"""
rep_first = self._union_find_rep(first, parents)
rep_second = self._union_find_rep(second, parents)
if rep_first != rep_second:
# union by rank
if ranks[rep_first] >= ranks[rep_second]:
new_1, new_2 = rep_first, rep_second
else:
new_1, new_2 = rep_second, rep_first
total_rank = ranks[new_1] + ranks[new_2]
if total_rank > self.max_div:
return -1
parents[new_2] = new_1
ranks[new_1] = total_rank
not_rep.append(new_2)
return 1
return 0
def _union_find_rep(self, num, parents):
"""Find representative of a class in a union-find data structure.
Explanation
===========
Used in the implementation of Atkinson's algorithm as suggested in [1],
pp. 83-87. After the representative of the class to which ``num``
belongs is found, path compression is performed as an optimization
([7]).
Notes
=====
THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives,
``parents``, is altered due to path compression.
See Also
========
minimal_block, _union_find_merge
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
.. [7] http://www.algorithmist.com/index.php/Union_Find
"""
rep, parent = num, parents[num]
while parent != rep:
rep = parent
parent = parents[rep]
# path compression
temp, parent = num, parents[num]
while parent != rep:
parents[temp] = rep
temp = parent
parent = parents[temp]
return rep
@property
def base(self):
"""Return a base from the Schreier-Sims algorithm.
Explanation
===========
For a permutation group `G`, a base is a sequence of points
`B = (b_1, b_2, ..., b_k)` such that no element of `G` apart
from the identity fixes all the points in `B`. The concepts of
a base and strong generating set and their applications are
discussed in depth in [1], pp. 87-89 and [2], pp. 55-57.
An alternative way to think of `B` is that it gives the
indices of the stabilizer cosets that contain more than the
identity permutation.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> G = PermutationGroup([Permutation(0, 1, 3)(2, 4)])
>>> G.base
[0, 2]
See Also
========
strong_gens, basic_transversals, basic_orbits, basic_stabilizers
"""
if self._base == []:
self.schreier_sims()
return self._base
def baseswap(self, base, strong_gens, pos, randomized=False,
transversals=None, basic_orbits=None, strong_gens_distr=None):
r"""Swap two consecutive base points in base and strong generating set.
Explanation
===========
If a base for a group `G` is given by `(b_1, b_2, ..., b_k)`, this
function returns a base `(b_1, b_2, ..., b_{i+1}, b_i, ..., b_k)`,
where `i` is given by ``pos``, and a strong generating set relative
to that base. The original base and strong generating set are not
modified.
The randomized version (default) is of Las Vegas type.
Parameters
==========
base, strong_gens
The base and strong generating set.
pos
The position at which swapping is performed.
randomized
A switch between randomized and deterministic version.
transversals
The transversals for the basic orbits, if known.
basic_orbits
The basic orbits, if known.
strong_gens_distr
The strong generators distributed by basic stabilizers, if known.
Returns
=======
(base, strong_gens)
``base`` is the new base, and ``strong_gens`` is a generating set
relative to it.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> S = SymmetricGroup(4)
>>> S.schreier_sims()
>>> S.base
[0, 1, 2]
>>> base, gens = S.baseswap(S.base, S.strong_gens, 1, randomized=False)
>>> base, gens
([0, 2, 1],
[(0 1 2 3), (3)(0 1), (1 3 2),
(2 3), (1 3)])
check that base, gens is a BSGS
>>> S1 = PermutationGroup(gens)
>>> _verify_bsgs(S1, base, gens)
True
See Also
========
schreier_sims
Notes
=====
The deterministic version of the algorithm is discussed in
[1], pp. 102-103; the randomized version is discussed in [1], p.103, and
[2], p.98. It is of Las Vegas type.
Notice that [1] contains a mistake in the pseudocode and
discussion of BASESWAP: on line 3 of the pseudocode,
`|\beta_{i+1}^{\left\langle T\right\rangle}|` should be replaced by
`|\beta_{i}^{\left\langle T\right\rangle}|`, and the same for the
discussion of the algorithm.
"""
# construct the basic orbits, generators for the stabilizer chain
# and transversal elements from whatever was provided
transversals, basic_orbits, strong_gens_distr = \
_handle_precomputed_bsgs(base, strong_gens, transversals,
basic_orbits, strong_gens_distr)
base_len = len(base)
degree = self.degree
# size of orbit of base[pos] under the stabilizer we seek to insert
# in the stabilizer chain at position pos + 1
size = len(basic_orbits[pos])*len(basic_orbits[pos + 1]) \
//len(_orbit(degree, strong_gens_distr[pos], base[pos + 1]))
# initialize the wanted stabilizer by a subgroup
if pos + 2 > base_len - 1:
T = []
else:
T = strong_gens_distr[pos + 2][:]
# randomized version
if randomized is True:
stab_pos = PermutationGroup(strong_gens_distr[pos])
schreier_vector = stab_pos.schreier_vector(base[pos + 1])
# add random elements of the stabilizer until they generate it
while len(_orbit(degree, T, base[pos])) != size:
new = stab_pos.random_stab(base[pos + 1],
schreier_vector=schreier_vector)
T.append(new)
# deterministic version
else:
Gamma = set(basic_orbits[pos])
Gamma.remove(base[pos])
if base[pos + 1] in Gamma:
Gamma.remove(base[pos + 1])
# add elements of the stabilizer until they generate it by
# ruling out member of the basic orbit of base[pos] along the way
while len(_orbit(degree, T, base[pos])) != size:
gamma = next(iter(Gamma))
x = transversals[pos][gamma]
temp = x._array_form.index(base[pos + 1]) # (~x)(base[pos + 1])
if temp not in basic_orbits[pos + 1]:
Gamma = Gamma - _orbit(degree, T, gamma)
else:
y = transversals[pos + 1][temp]
el = rmul(x, y)
if el(base[pos]) not in _orbit(degree, T, base[pos]):
T.append(el)
Gamma = Gamma - _orbit(degree, T, base[pos])
# build the new base and strong generating set
strong_gens_new_distr = strong_gens_distr[:]
strong_gens_new_distr[pos + 1] = T
base_new = base[:]
base_new[pos], base_new[pos + 1] = base_new[pos + 1], base_new[pos]
strong_gens_new = _strong_gens_from_distr(strong_gens_new_distr)
for gen in T:
if gen not in strong_gens_new:
strong_gens_new.append(gen)
return base_new, strong_gens_new
@property
def basic_orbits(self):
"""
Return the basic orbits relative to a base and strong generating set.
Explanation
===========
If `(b_1, b_2, ..., b_k)` is a base for a group `G`, and
`G^{(i)} = G_{b_1, b_2, ..., b_{i-1}}` is the ``i``-th basic stabilizer
(so that `G^{(1)} = G`), the ``i``-th basic orbit relative to this base
is the orbit of `b_i` under `G^{(i)}`. See [1], pp. 87-89 for more
information.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(4)
>>> S.basic_orbits
[[0, 1, 2, 3], [1, 2, 3], [2, 3]]
See Also
========
base, strong_gens, basic_transversals, basic_stabilizers
"""
if self._basic_orbits == []:
self.schreier_sims()
return self._basic_orbits
@property
def basic_stabilizers(self):
"""
Return a chain of stabilizers relative to a base and strong generating
set.
Explanation
===========
The ``i``-th basic stabilizer `G^{(i)}` relative to a base
`(b_1, b_2, ..., b_k)` is `G_{b_1, b_2, ..., b_{i-1}}`. For more
information, see [1], pp. 87-89.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> A = AlternatingGroup(4)
>>> A.schreier_sims()
>>> A.base
[0, 1]
>>> for g in A.basic_stabilizers:
... print(g)
...
PermutationGroup([
(3)(0 1 2),
(1 2 3)])
PermutationGroup([
(1 2 3)])
See Also
========
base, strong_gens, basic_orbits, basic_transversals
"""
if self._transversals == []:
self.schreier_sims()
strong_gens = self._strong_gens
base = self._base
if not base: # e.g. if self is trivial
return []
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_stabilizers = []
for gens in strong_gens_distr:
basic_stabilizers.append(PermutationGroup(gens))
return basic_stabilizers
@property
def basic_transversals(self):
"""
Return basic transversals relative to a base and strong generating set.
Explanation
===========
The basic transversals are transversals of the basic orbits. They
are provided as a list of dictionaries, each dictionary having
keys - the elements of one of the basic orbits, and values - the
corresponding transversal elements. See [1], pp. 87-89 for more
information.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> A = AlternatingGroup(4)
>>> A.basic_transversals
[{0: (3), 1: (3)(0 1 2), 2: (3)(0 2 1), 3: (0 3 1)}, {1: (3), 2: (1 2 3), 3: (1 3 2)}]
See Also
========
strong_gens, base, basic_orbits, basic_stabilizers
"""
if self._transversals == []:
self.schreier_sims()
return self._transversals
def composition_series(self):
r"""
Return the composition series for a group as a list
of permutation groups.
Explanation
===========
The composition series for a group `G` is defined as a
subnormal series `G = H_0 > H_1 > H_2 \ldots` A composition
series is a subnormal series such that each factor group
`H(i+1) / H(i)` is simple.
A subnormal series is a composition series only if it is of
maximum length.
The algorithm works as follows:
Starting with the derived series the idea is to fill
the gap between `G = der[i]` and `H = der[i+1]` for each
`i` independently. Since, all subgroups of the abelian group
`G/H` are normal so, first step is to take the generators
`g` of `G` and add them to generators of `H` one by one.
The factor groups formed are not simple in general. Each
group is obtained from the previous one by adding one
generator `g`, if the previous group is denoted by `H`
then the next group `K` is generated by `g` and `H`.
The factor group `K/H` is cyclic and it's order is
`K.order()//G.order()`. The series is then extended between
`K` and `H` by groups generated by powers of `g` and `H`.
The series formed is then prepended to the already existing
series.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> S = SymmetricGroup(12)
>>> G = S.sylow_subgroup(2)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1]
>>> G = S.sylow_subgroup(3)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[243, 81, 27, 9, 3, 1]
>>> G = CyclicGroup(12)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[12, 6, 3, 1]
"""
der = self.derived_series()
if not all(g.is_identity for g in der[-1].generators):
raise NotImplementedError('Group should be solvable')
series = []
for i in range(len(der)-1):
H = der[i+1]
up_seg = []
for g in der[i].generators:
K = PermutationGroup([g] + H.generators)
order = K.order() // H.order()
down_seg = []
for p, e in factorint(order).items():
for j in range(e):
down_seg.append(PermutationGroup([g] + H.generators))
g = g**p
up_seg = down_seg + up_seg
H = K
up_seg[0] = der[i]
series.extend(up_seg)
series.append(der[-1])
return series
def coset_transversal(self, H):
"""Return a transversal of the right cosets of self by its subgroup H
using the second method described in [1], Subsection 4.6.7
"""
if not H.is_subgroup(self):
raise ValueError("The argument must be a subgroup")
if H.order() == 1:
return self._elements
self._schreier_sims(base=H.base) # make G.base an extension of H.base
base = self.base
base_ordering = _base_ordering(base, self.degree)
identity = Permutation(self.degree - 1)
transversals = self.basic_transversals[:]
# transversals is a list of dictionaries. Get rid of the keys
# so that it is a list of lists and sort each list in
# the increasing order of base[l]^x
for l, t in enumerate(transversals):
transversals[l] = sorted(t.values(),
key = lambda x: base_ordering[base[l]^x])
orbits = H.basic_orbits
h_stabs = H.basic_stabilizers
g_stabs = self.basic_stabilizers
indices = [x.order()//y.order() for x, y in zip(g_stabs, h_stabs)]
# T^(l) should be a right transversal of H^(l) in G^(l) for
# 1<=l<=len(base). While H^(l) is the trivial group, T^(l)
# contains all the elements of G^(l) so we might just as well
# start with l = len(h_stabs)-1
if len(g_stabs) > len(h_stabs):
T = g_stabs[len(h_stabs)]._elements
else:
T = [identity]
l = len(h_stabs)-1
t_len = len(T)
while l > -1:
T_next = []
for u in transversals[l]:
if u == identity:
continue
b = base_ordering[base[l]^u]
for t in T:
p = t*u
if all(base_ordering[h^p] >= b for h in orbits[l]):
T_next.append(p)
if t_len + len(T_next) == indices[l]:
break
if t_len + len(T_next) == indices[l]:
break
T += T_next
t_len += len(T_next)
l -= 1
T.remove(identity)
T = [identity] + T
return T
def _coset_representative(self, g, H):
"""Return the representative of Hg from the transversal that
would be computed by ``self.coset_transversal(H)``.
"""
if H.order() == 1:
return g
# The base of self must be an extension of H.base.
if not(self.base[:len(H.base)] == H.base):
self._schreier_sims(base=H.base)
orbits = H.basic_orbits[:]
h_transversals = [list(_.values()) for _ in H.basic_transversals]
transversals = [list(_.values()) for _ in self.basic_transversals]
base = self.base
base_ordering = _base_ordering(base, self.degree)
def step(l, x):
gamma = sorted(orbits[l], key = lambda y: base_ordering[y^x])[0]
i = [base[l]^h for h in h_transversals[l]].index(gamma)
x = h_transversals[l][i]*x
if l < len(orbits)-1:
for u in transversals[l]:
if base[l]^u == base[l]^x:
break
x = step(l+1, x*u**-1)*u
return x
return step(0, g)
def coset_table(self, H):
"""Return the standardised (right) coset table of self in H as
a list of lists.
"""
# Maybe this should be made to return an instance of CosetTable
# from fp_groups.py but the class would need to be changed first
# to be compatible with PermutationGroups
from itertools import chain, product
if not H.is_subgroup(self):
raise ValueError("The argument must be a subgroup")
T = self.coset_transversal(H)
n = len(T)
A = list(chain.from_iterable((gen, gen**-1)
for gen in self.generators))
table = []
for i in range(n):
row = [self._coset_representative(T[i]*x, H) for x in A]
row = [T.index(r) for r in row]
table.append(row)
# standardize (this is the same as the algorithm used in coset_table)
# If CosetTable is made compatible with PermutationGroups, this
# should be replaced by table.standardize()
A = range(len(A))
gamma = 1
for alpha, a in product(range(n), A):
beta = table[alpha][a]
if beta >= gamma:
if beta > gamma:
for x in A:
z = table[gamma][x]
table[gamma][x] = table[beta][x]
table[beta][x] = z
for i in range(n):
if table[i][x] == beta:
table[i][x] = gamma
elif table[i][x] == gamma:
table[i][x] = beta
gamma += 1
if gamma >= n-1:
return table
def center(self):
r"""
Return the center of a permutation group.
Explanation
===========
The center for a group `G` is defined as
`Z(G) = \{z\in G | \forall g\in G, zg = gz \}`,
the set of elements of `G` that commute with all elements of `G`.
It is equal to the centralizer of `G` inside `G`, and is naturally a
subgroup of `G` ([9]).
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(4)
>>> G = D.center()
>>> G.order()
2
See Also
========
centralizer
Notes
=====
This is a naive implementation that is a straightforward application
of ``.centralizer()``
"""
return self.centralizer(self)
def centralizer(self, other):
r"""
Return the centralizer of a group/set/element.
Explanation
===========
The centralizer of a set of permutations ``S`` inside
a group ``G`` is the set of elements of ``G`` that commute with all
elements of ``S``::
`C_G(S) = \{ g \in G | gs = sg \forall s \in S\}` ([10])
Usually, ``S`` is a subset of ``G``, but if ``G`` is a proper subgroup of
the full symmetric group, we allow for ``S`` to have elements outside
``G``.
It is naturally a subgroup of ``G``; the centralizer of a permutation
group is equal to the centralizer of any set of generators for that
group, since any element commuting with the generators commutes with
any product of the generators.
Parameters
==========
other
a permutation group/list of permutations/single permutation
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup)
>>> S = SymmetricGroup(6)
>>> C = CyclicGroup(6)
>>> H = S.centralizer(C)
>>> H.is_subgroup(C)
True
See Also
========
subgroup_search
Notes
=====
The implementation is an application of ``.subgroup_search()`` with
tests using a specific base for the group ``G``.
"""
if hasattr(other, 'generators'):
if other.is_trivial or self.is_trivial:
return self
degree = self.degree
identity = _af_new(list(range(degree)))
orbits = other.orbits()
num_orbits = len(orbits)
orbits.sort(key=lambda x: -len(x))
long_base = []
orbit_reps = [None]*num_orbits
orbit_reps_indices = [None]*num_orbits
orbit_descr = [None]*degree
for i in range(num_orbits):
orbit = list(orbits[i])
orbit_reps[i] = orbit[0]
orbit_reps_indices[i] = len(long_base)
for point in orbit:
orbit_descr[point] = i
long_base = long_base + orbit
base, strong_gens = self.schreier_sims_incremental(base=long_base)
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
i = 0
for i in range(len(base)):
if strong_gens_distr[i] == [identity]:
break
base = base[:i]
base_len = i
for j in range(num_orbits):
if base[base_len - 1] in orbits[j]:
break
rel_orbits = orbits[: j + 1]
num_rel_orbits = len(rel_orbits)
transversals = [None]*num_rel_orbits
for j in range(num_rel_orbits):
rep = orbit_reps[j]
transversals[j] = dict(
other.orbit_transversal(rep, pairs=True))
trivial_test = lambda x: True
tests = [None]*base_len
for l in range(base_len):
if base[l] in orbit_reps:
tests[l] = trivial_test
else:
def test(computed_words, l=l):
g = computed_words[l]
rep_orb_index = orbit_descr[base[l]]
rep = orbit_reps[rep_orb_index]
im = g._array_form[base[l]]
im_rep = g._array_form[rep]
tr_el = transversals[rep_orb_index][base[l]]
# using the definition of transversal,
# base[l]^g = rep^(tr_el*g);
# if g belongs to the centralizer, then
# base[l]^g = (rep^g)^tr_el
return im == tr_el._array_form[im_rep]
tests[l] = test
def prop(g):
return [rmul(g, gen) for gen in other.generators] == \
[rmul(gen, g) for gen in other.generators]
return self.subgroup_search(prop, base=base,
strong_gens=strong_gens, tests=tests)
elif hasattr(other, '__getitem__'):
gens = list(other)
return self.centralizer(PermutationGroup(gens))
elif hasattr(other, 'array_form'):
return self.centralizer(PermutationGroup([other]))
def commutator(self, G, H):
"""
Return the commutator of two subgroups.
Explanation
===========
For a permutation group ``K`` and subgroups ``G``, ``H``, the
commutator of ``G`` and ``H`` is defined as the group generated
by all the commutators `[g, h] = hgh^{-1}g^{-1}` for ``g`` in ``G`` and
``h`` in ``H``. It is naturally a subgroup of ``K`` ([1], p.27).
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup)
>>> S = SymmetricGroup(5)
>>> A = AlternatingGroup(5)
>>> G = S.commutator(S, A)
>>> G.is_subgroup(A)
True
See Also
========
derived_subgroup
Notes
=====
The commutator of two subgroups `H, G` is equal to the normal closure
of the commutators of all the generators, i.e. `hgh^{-1}g^{-1}` for `h`
a generator of `H` and `g` a generator of `G` ([1], p.28)
"""
ggens = G.generators
hgens = H.generators
commutators = []
for ggen in ggens:
for hgen in hgens:
commutator = rmul(hgen, ggen, ~hgen, ~ggen)
if commutator not in commutators:
commutators.append(commutator)
res = self.normal_closure(commutators)
return res
def coset_factor(self, g, factor_index=False):
"""Return ``G``'s (self's) coset factorization of ``g``
Explanation
===========
If ``g`` is an element of ``G`` then it can be written as the product
of permutations drawn from the Schreier-Sims coset decomposition,
The permutations returned in ``f`` are those for which
the product gives ``g``: ``g = f[n]*...f[1]*f[0]`` where ``n = len(B)``
and ``B = G.base``. f[i] is one of the permutations in
``self._basic_orbits[i]``.
If factor_index==True,
returns a tuple ``[b[0],..,b[n]]``, where ``b[i]``
belongs to ``self._basic_orbits[i]``
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5)
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6)
>>> G = PermutationGroup([a, b])
Define g:
>>> g = Permutation(7)(1, 2, 4)(3, 6, 5)
Confirm that it is an element of G:
>>> G.contains(g)
True
Thus, it can be written as a product of factors (up to
3) drawn from u. See below that a factor from u1 and u2
and the Identity permutation have been used:
>>> f = G.coset_factor(g)
>>> f[2]*f[1]*f[0] == g
True
>>> f1 = G.coset_factor(g, True); f1
[0, 4, 4]
>>> tr = G.basic_transversals
>>> f[0] == tr[0][f1[0]]
True
If g is not an element of G then [] is returned:
>>> c = Permutation(5, 6, 7)
>>> G.coset_factor(c)
[]
See Also
========
sympy.combinatorics.util._strip
"""
if isinstance(g, (Cycle, Permutation)):
g = g.list()
if len(g) != self._degree:
# this could either adjust the size or return [] immediately
# but we don't choose between the two and just signal a possible
# error
raise ValueError('g should be the same size as permutations of G')
I = list(range(self._degree))
basic_orbits = self.basic_orbits
transversals = self._transversals
factors = []
base = self.base
h = g
for i in range(len(base)):
beta = h[base[i]]
if beta == base[i]:
factors.append(beta)
continue
if beta not in basic_orbits[i]:
return []
u = transversals[i][beta]._array_form
h = _af_rmul(_af_invert(u), h)
factors.append(beta)
if h != I:
return []
if factor_index:
return factors
tr = self.basic_transversals
factors = [tr[i][factors[i]] for i in range(len(base))]
return factors
def generator_product(self, g, original=False):
'''
Return a list of strong generators `[s1, ..., sn]`
s.t `g = sn*...*s1`. If `original=True`, make the list
contain only the original group generators
'''
product = []
if g.is_identity:
return []
if g in self.strong_gens:
if not original or g in self.generators:
return [g]
else:
slp = self._strong_gens_slp[g]
for s in slp:
product.extend(self.generator_product(s, original=True))
return product
elif g**-1 in self.strong_gens:
g = g**-1
if not original or g in self.generators:
return [g**-1]
else:
slp = self._strong_gens_slp[g]
for s in slp:
product.extend(self.generator_product(s, original=True))
l = len(product)
product = [product[l-i-1]**-1 for i in range(l)]
return product
f = self.coset_factor(g, True)
for i, j in enumerate(f):
slp = self._transversal_slp[i][j]
for s in slp:
if not original:
product.append(self.strong_gens[s])
else:
s = self.strong_gens[s]
product.extend(self.generator_product(s, original=True))
return product
def coset_rank(self, g):
"""rank using Schreier-Sims representation.
Explanation
===========
The coset rank of ``g`` is the ordering number in which
it appears in the lexicographic listing according to the
coset decomposition
The ordering is the same as in G.generate(method='coset').
If ``g`` does not belong to the group it returns None.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5)
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6)
>>> G = PermutationGroup([a, b])
>>> c = Permutation(7)(2, 4)(3, 5)
>>> G.coset_rank(c)
16
>>> G.coset_unrank(16)
(7)(2 4)(3 5)
See Also
========
coset_factor
"""
factors = self.coset_factor(g, True)
if not factors:
return None
rank = 0
b = 1
transversals = self._transversals
base = self._base
basic_orbits = self._basic_orbits
for i in range(len(base)):
k = factors[i]
j = basic_orbits[i].index(k)
rank += b*j
b = b*len(transversals[i])
return rank
def coset_unrank(self, rank, af=False):
"""unrank using Schreier-Sims representation
coset_unrank is the inverse operation of coset_rank
if 0 <= rank < order; otherwise it returns None.
"""
if rank < 0 or rank >= self.order():
return None
base = self.base
transversals = self.basic_transversals
basic_orbits = self.basic_orbits
m = len(base)
v = [0]*m
for i in range(m):
rank, c = divmod(rank, len(transversals[i]))
v[i] = basic_orbits[i][c]
a = [transversals[i][v[i]]._array_form for i in range(m)]
h = _af_rmuln(*a)
if af:
return h
else:
return _af_new(h)
@property
def degree(self):
"""Returns the size of the permutations in the group.
Explanation
===========
The number of permutations comprising the group is given by
``len(group)``; the number of permutations that can be generated
by the group is given by ``group.order()``.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([1, 0, 2])
>>> G = PermutationGroup([a])
>>> G.degree
3
>>> len(G)
1
>>> G.order()
2
>>> list(G.generate())
[(2), (2)(0 1)]
See Also
========
order
"""
return self._degree
@property
def identity(self):
'''
Return the identity element of the permutation group.
'''
return _af_new(list(range(self.degree)))
@property
def elements(self):
"""Returns all the elements of the permutation group as a set
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2))
>>> p.elements
{(1 2 3), (1 3 2), (1 3), (2 3), (3), (3)(1 2)}
"""
return set(self._elements)
@property
def _elements(self):
"""Returns all the elements of the permutation group as a list
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2))
>>> p._elements
[(3), (3)(1 2), (1 3), (2 3), (1 2 3), (1 3 2)]
"""
return list(islice(self.generate(), None))
def derived_series(self):
r"""Return the derived series for the group.
Explanation
===========
The derived series for a group `G` is defined as
`G = G_0 > G_1 > G_2 > \ldots` where `G_i = [G_{i-1}, G_{i-1}]`,
i.e. `G_i` is the derived subgroup of `G_{i-1}`, for
`i\in\mathbb{N}`. When we have `G_k = G_{k-1}` for some
`k\in\mathbb{N}`, the series terminates.
Returns
=======
A list of permutation groups containing the members of the derived
series in the order `G = G_0, G_1, G_2, \ldots`.
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup, DihedralGroup)
>>> A = AlternatingGroup(5)
>>> len(A.derived_series())
1
>>> S = SymmetricGroup(4)
>>> len(S.derived_series())
4
>>> S.derived_series()[1].is_subgroup(AlternatingGroup(4))
True
>>> S.derived_series()[2].is_subgroup(DihedralGroup(2))
True
See Also
========
derived_subgroup
"""
res = [self]
current = self
next = self.derived_subgroup()
while not current.is_subgroup(next):
res.append(next)
current = next
next = next.derived_subgroup()
return res
def derived_subgroup(self):
r"""Compute the derived subgroup.
Explanation
===========
The derived subgroup, or commutator subgroup is the subgroup generated
by all commutators `[g, h] = hgh^{-1}g^{-1}` for `g, h\in G` ; it is
equal to the normal closure of the set of commutators of the generators
([1], p.28, [11]).
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([1, 0, 2, 4, 3])
>>> b = Permutation([0, 1, 3, 2, 4])
>>> G = PermutationGroup([a, b])
>>> C = G.derived_subgroup()
>>> list(C.generate(af=True))
[[0, 1, 2, 3, 4], [0, 1, 3, 4, 2], [0, 1, 4, 2, 3]]
See Also
========
derived_series
"""
r = self._r
gens = [p._array_form for p in self.generators]
set_commutators = set()
degree = self._degree
rng = list(range(degree))
for i in range(r):
for j in range(r):
p1 = gens[i]
p2 = gens[j]
c = list(range(degree))
for k in rng:
c[p2[p1[k]]] = p1[p2[k]]
ct = tuple(c)
if not ct in set_commutators:
set_commutators.add(ct)
cms = [_af_new(p) for p in set_commutators]
G2 = self.normal_closure(cms)
return G2
def generate(self, method="coset", af=False):
"""Return iterator to generate the elements of the group.
Explanation
===========
Iteration is done with one of these methods::
method='coset' using the Schreier-Sims coset representation
method='dimino' using the Dimino method
If ``af = True`` it yields the array form of the permutations
Examples
========
>>> from sympy.combinatorics import PermutationGroup
>>> from sympy.combinatorics.polyhedron import tetrahedron
The permutation group given in the tetrahedron object is also
true groups:
>>> G = tetrahedron.pgroup
>>> G.is_group
True
Also the group generated by the permutations in the tetrahedron
pgroup -- even the first two -- is a proper group:
>>> H = PermutationGroup(G[0], G[1])
>>> J = PermutationGroup(list(H.generate())); J
PermutationGroup([
(0 1)(2 3),
(1 2 3),
(1 3 2),
(0 3 1),
(0 2 3),
(0 3)(1 2),
(0 1 3),
(3)(0 2 1),
(0 3 2),
(3)(0 1 2),
(0 2)(1 3)])
>>> _.is_group
True
"""
if method == "coset":
return self.generate_schreier_sims(af)
elif method == "dimino":
return self.generate_dimino(af)
else:
raise NotImplementedError('No generation defined for %s' % method)
def generate_dimino(self, af=False):
"""Yield group elements using Dimino's algorithm.
If ``af == True`` it yields the array form of the permutations.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([0, 2, 3, 1])
>>> g = PermutationGroup([a, b])
>>> list(g.generate_dimino(af=True))
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 2, 3, 1],
[0, 1, 3, 2], [0, 3, 2, 1], [0, 3, 1, 2]]
References
==========
.. [1] The Implementation of Various Algorithms for Permutation Groups in
the Computer Algebra System: AXIOM, N.J. Doye, M.Sc. Thesis
"""
idn = list(range(self.degree))
order = 0
element_list = [idn]
set_element_list = {tuple(idn)}
if af:
yield idn
else:
yield _af_new(idn)
gens = [p._array_form for p in self.generators]
for i in range(len(gens)):
# D elements of the subgroup G_i generated by gens[:i]
D = element_list[:]
N = [idn]
while N:
A = N
N = []
for a in A:
for g in gens[:i + 1]:
ag = _af_rmul(a, g)
if tuple(ag) not in set_element_list:
# produce G_i*g
for d in D:
order += 1
ap = _af_rmul(d, ag)
if af:
yield ap
else:
p = _af_new(ap)
yield p
element_list.append(ap)
set_element_list.add(tuple(ap))
N.append(ap)
self._order = len(element_list)
def generate_schreier_sims(self, af=False):
"""Yield group elements using the Schreier-Sims representation
in coset_rank order
If ``af = True`` it yields the array form of the permutations
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([0, 2, 3, 1])
>>> g = PermutationGroup([a, b])
>>> list(g.generate_schreier_sims(af=True))
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 3, 2, 1],
[0, 1, 3, 2], [0, 2, 3, 1], [0, 3, 1, 2]]
"""
n = self._degree
u = self.basic_transversals
basic_orbits = self._basic_orbits
if len(u) == 0:
for x in self.generators:
if af:
yield x._array_form
else:
yield x
return
if len(u) == 1:
for i in basic_orbits[0]:
if af:
yield u[0][i]._array_form
else:
yield u[0][i]
return
u = list(reversed(u))
basic_orbits = basic_orbits[::-1]
# stg stack of group elements
stg = [list(range(n))]
posmax = [len(x) for x in u]
n1 = len(posmax) - 1
pos = [0]*n1
h = 0
while 1:
# backtrack when finished iterating over coset
if pos[h] >= posmax[h]:
if h == 0:
return
pos[h] = 0
h -= 1
stg.pop()
continue
p = _af_rmul(u[h][basic_orbits[h][pos[h]]]._array_form, stg[-1])
pos[h] += 1
stg.append(p)
h += 1
if h == n1:
if af:
for i in basic_orbits[-1]:
p = _af_rmul(u[-1][i]._array_form, stg[-1])
yield p
else:
for i in basic_orbits[-1]:
p = _af_rmul(u[-1][i]._array_form, stg[-1])
p1 = _af_new(p)
yield p1
stg.pop()
h -= 1
@property
def generators(self):
"""Returns the generators of the group.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.generators
[(1 2), (2)(0 1)]
"""
return self._generators
def contains(self, g, strict=True):
"""Test if permutation ``g`` belong to self, ``G``.
Explanation
===========
If ``g`` is an element of ``G`` it can be written as a product
of factors drawn from the cosets of ``G``'s stabilizers. To see
if ``g`` is one of the actual generators defining the group use
``G.has(g)``.
If ``strict`` is not ``True``, ``g`` will be resized, if necessary,
to match the size of permutations in ``self``.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation(1, 2)
>>> b = Permutation(2, 3, 1)
>>> G = PermutationGroup(a, b, degree=5)
>>> G.contains(G[0]) # trivial check
True
>>> elem = Permutation([[2, 3]], size=5)
>>> G.contains(elem)
True
>>> G.contains(Permutation(4)(0, 1, 2, 3))
False
If strict is False, a permutation will be resized, if
necessary:
>>> H = PermutationGroup(Permutation(5))
>>> H.contains(Permutation(3))
False
>>> H.contains(Permutation(3), strict=False)
True
To test if a given permutation is present in the group:
>>> elem in G.generators
False
>>> G.has(elem)
False
See Also
========
coset_factor, sympy.core.basic.Basic.has, __contains__
"""
if not isinstance(g, Permutation):
return False
if g.size != self.degree:
if strict:
return False
g = Permutation(g, size=self.degree)
if g in self.generators:
return True
return bool(self.coset_factor(g.array_form, True))
@property
def is_perfect(self):
"""Return ``True`` if the group is perfect.
A group is perfect if it equals to its derived subgroup.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation(1,2,3)(4,5)
>>> b = Permutation(1,2,3,4,5)
>>> G = PermutationGroup([a, b])
>>> G.is_perfect
False
"""
if self._is_perfect is None:
self._is_perfect = self == self.derived_subgroup()
return self._is_perfect
@property
def is_abelian(self):
"""Test if the group is Abelian.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.is_abelian
False
>>> a = Permutation([0, 2, 1])
>>> G = PermutationGroup([a])
>>> G.is_abelian
True
"""
if self._is_abelian is not None:
return self._is_abelian
self._is_abelian = True
gens = [p._array_form for p in self.generators]
for x in gens:
for y in gens:
if y <= x:
continue
if not _af_commutes_with(x, y):
self._is_abelian = False
return False
return True
def abelian_invariants(self):
"""
Returns the abelian invariants for the given group.
Let ``G`` be a nontrivial finite abelian group. Then G is isomorphic to
the direct product of finitely many nontrivial cyclic groups of
prime-power order.
Explanation
===========
The prime-powers that occur as the orders of the factors are uniquely
determined by G. More precisely, the primes that occur in the orders of the
factors in any such decomposition of ``G`` are exactly the primes that divide
``|G|`` and for any such prime ``p``, if the orders of the factors that are
p-groups in one such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``,
then the orders of the factors that are p-groups in any such decomposition of ``G``
are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``.
The uniquely determined integers ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, taken
for all primes that divide ``|G|`` are called the invariants of the nontrivial
group ``G`` as suggested in ([14], p. 542).
Notes
=====
We adopt the convention that the invariants of a trivial group are [].
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.abelian_invariants()
[2]
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> G = CyclicGroup(7)
>>> G.abelian_invariants()
[7]
"""
if self.is_trivial:
return []
gns = self.generators
inv = []
G = self
H = G.derived_subgroup()
Hgens = H.generators
for p in primefactors(G.order()):
ranks = []
while True:
pows = []
for g in gns:
elm = g**p
if not H.contains(elm):
pows.append(elm)
K = PermutationGroup(Hgens + pows) if pows else H
r = G.order()//K.order()
G = K
gns = pows
if r == 1:
break;
ranks.append(multiplicity(p, r))
if ranks:
pows = [1]*ranks[0]
for i in ranks:
for j in range(0, i):
pows[j] = pows[j]*p
inv.extend(pows)
inv.sort()
return inv
def is_elementary(self, p):
"""Return ``True`` if the group is elementary abelian. An elementary
abelian group is a finite abelian group, where every nontrivial
element has order `p`, where `p` is a prime.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> G = PermutationGroup([a])
>>> G.is_elementary(2)
True
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([3, 1, 2, 0])
>>> G = PermutationGroup([a, b])
>>> G.is_elementary(2)
True
>>> G.is_elementary(3)
False
"""
return self.is_abelian and all(g.order() == p for g in self.generators)
def _eval_is_alt_sym_naive(self, only_sym=False, only_alt=False):
"""A naive test using the group order."""
if only_sym and only_alt:
raise ValueError(
"Both {} and {} cannot be set to True"
.format(only_sym, only_alt))
n = self.degree
sym_order = 1
for i in range(2, n+1):
sym_order *= i
order = self.order()
if order == sym_order:
self._is_sym = True
self._is_alt = False
if only_alt:
return False
return True
elif 2*order == sym_order:
self._is_sym = False
self._is_alt = True
if only_sym:
return False
return True
return False
def _eval_is_alt_sym_monte_carlo(self, eps=0.05, perms=None):
"""A test using monte-carlo algorithm.
Parameters
==========
eps : float, optional
The criterion for the incorrect ``False`` return.
perms : list[Permutation], optional
If explicitly given, it tests over the given candidats
for testing.
If ``None``, it randomly computes ``N_eps`` and chooses
``N_eps`` sample of the permutation from the group.
See Also
========
_check_cycles_alt_sym
"""
if perms is None:
n = self.degree
if n < 17:
c_n = 0.34
else:
c_n = 0.57
d_n = (c_n*log(2))/log(n)
N_eps = int(-log(eps)/d_n)
perms = (self.random_pr() for i in range(N_eps))
return self._eval_is_alt_sym_monte_carlo(perms=perms)
for perm in perms:
if _check_cycles_alt_sym(perm):
return True
return False
def is_alt_sym(self, eps=0.05, _random_prec=None):
r"""Monte Carlo test for the symmetric/alternating group for degrees
>= 8.
Explanation
===========
More specifically, it is one-sided Monte Carlo with the
answer True (i.e., G is symmetric/alternating) guaranteed to be
correct, and the answer False being incorrect with probability eps.
For degree < 8, the order of the group is checked so the test
is deterministic.
Notes
=====
The algorithm itself uses some nontrivial results from group theory and
number theory:
1) If a transitive group ``G`` of degree ``n`` contains an element
with a cycle of length ``n/2 < p < n-2`` for ``p`` a prime, ``G`` is the
symmetric or alternating group ([1], pp. 81-82)
2) The proportion of elements in the symmetric/alternating group having
the property described in 1) is approximately `\log(2)/\log(n)`
([1], p.82; [2], pp. 226-227).
The helper function ``_check_cycles_alt_sym`` is used to
go over the cycles in a permutation and look for ones satisfying 1).
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.is_alt_sym()
False
See Also
========
_check_cycles_alt_sym
"""
if _random_prec is not None:
N_eps = _random_prec['N_eps']
perms= (_random_prec[i] for i in range(N_eps))
return self._eval_is_alt_sym_monte_carlo(perms=perms)
if self._is_sym or self._is_alt:
return True
if self._is_sym is False and self._is_alt is False:
return False
n = self.degree
if n < 8:
return self._eval_is_alt_sym_naive()
elif self.is_transitive():
return self._eval_is_alt_sym_monte_carlo(eps=eps)
self._is_sym, self._is_alt = False, False
return False
@property
def is_nilpotent(self):
"""Test if the group is nilpotent.
Explanation
===========
A group `G` is nilpotent if it has a central series of finite length.
Alternatively, `G` is nilpotent if its lower central series terminates
with the trivial group. Every nilpotent group is also solvable
([1], p.29, [12]).
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup)
>>> C = CyclicGroup(6)
>>> C.is_nilpotent
True
>>> S = SymmetricGroup(5)
>>> S.is_nilpotent
False
See Also
========
lower_central_series, is_solvable
"""
if self._is_nilpotent is None:
lcs = self.lower_central_series()
terminator = lcs[len(lcs) - 1]
gens = terminator.generators
degree = self.degree
identity = _af_new(list(range(degree)))
if all(g == identity for g in gens):
self._is_solvable = True
self._is_nilpotent = True
return True
else:
self._is_nilpotent = False
return False
else:
return self._is_nilpotent
def is_normal(self, gr, strict=True):
"""Test if ``G=self`` is a normal subgroup of ``gr``.
Explanation
===========
G is normal in gr if
for each g2 in G, g1 in gr, ``g = g1*g2*g1**-1`` belongs to G
It is sufficient to check this for each g1 in gr.generators and
g2 in G.generators.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([1, 2, 0])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G1 = PermutationGroup([a, Permutation([2, 0, 1])])
>>> G1.is_normal(G)
True
"""
if not self.is_subgroup(gr, strict=strict):
return False
d_self = self.degree
d_gr = gr.degree
if self.is_trivial and (d_self == d_gr or not strict):
return True
if self._is_abelian:
return True
new_self = self.copy()
if not strict and d_self != d_gr:
if d_self < d_gr:
new_self = PermGroup(new_self.generators + [Permutation(d_gr - 1)])
else:
gr = PermGroup(gr.generators + [Permutation(d_self - 1)])
gens2 = [p._array_form for p in new_self.generators]
gens1 = [p._array_form for p in gr.generators]
for g1 in gens1:
for g2 in gens2:
p = _af_rmuln(g1, g2, _af_invert(g1))
if not new_self.coset_factor(p, True):
return False
return True
def is_primitive(self, randomized=True):
r"""Test if a group is primitive.
Explanation
===========
A permutation group ``G`` acting on a set ``S`` is called primitive if
``S`` contains no nontrivial block under the action of ``G``
(a block is nontrivial if its cardinality is more than ``1``).
Notes
=====
The algorithm is described in [1], p.83, and uses the function
minimal_block to search for blocks of the form `\{0, k\}` for ``k``
ranging over representatives for the orbits of `G_0`, the stabilizer of
``0``. This algorithm has complexity `O(n^2)` where ``n`` is the degree
of the group, and will perform badly if `G_0` is small.
There are two implementations offered: one finds `G_0`
deterministically using the function ``stabilizer``, and the other
(default) produces random elements of `G_0` using ``random_stab``,
hoping that they generate a subgroup of `G_0` with not too many more
orbits than `G_0` (this is suggested in [1], p.83). Behavior is changed
by the ``randomized`` flag.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.is_primitive()
False
See Also
========
minimal_block, random_stab
"""
if self._is_primitive is not None:
return self._is_primitive
if self.is_transitive() is False:
return False
if randomized:
random_stab_gens = []
v = self.schreier_vector(0)
for i in range(len(self)):
random_stab_gens.append(self.random_stab(0, v))
stab = PermutationGroup(random_stab_gens)
else:
stab = self.stabilizer(0)
orbits = stab.orbits()
for orb in orbits:
x = orb.pop()
if x != 0 and any(e != 0 for e in self.minimal_block([0, x])):
self._is_primitive = False
return False
self._is_primitive = True
return True
def minimal_blocks(self, randomized=True):
'''
For a transitive group, return the list of all minimal
block systems. If a group is intransitive, return `False`.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> DihedralGroup(6).minimal_blocks()
[[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]]
>>> G = PermutationGroup(Permutation(1,2,5))
>>> G.minimal_blocks()
False
See Also
========
minimal_block, is_transitive, is_primitive
'''
def _number_blocks(blocks):
# number the blocks of a block system
# in order and return the number of
# blocks and the tuple with the
# reordering
n = len(blocks)
appeared = {}
m = 0
b = [None]*n
for i in range(n):
if blocks[i] not in appeared:
appeared[blocks[i]] = m
b[i] = m
m += 1
else:
b[i] = appeared[blocks[i]]
return tuple(b), m
if not self.is_transitive():
return False
blocks = []
num_blocks = []
rep_blocks = []
if randomized:
random_stab_gens = []
v = self.schreier_vector(0)
for i in range(len(self)):
random_stab_gens.append(self.random_stab(0, v))
stab = PermutationGroup(random_stab_gens)
else:
stab = self.stabilizer(0)
orbits = stab.orbits()
for orb in orbits:
x = orb.pop()
if x != 0:
block = self.minimal_block([0, x])
num_block, m = _number_blocks(block)
# a representative block (containing 0)
rep = {j for j in range(self.degree) if num_block[j] == 0}
# check if the system is minimal with
# respect to the already discovere ones
minimal = True
blocks_remove_mask = [False] * len(blocks)
for i, r in enumerate(rep_blocks):
if len(r) > len(rep) and rep.issubset(r):
# i-th block system is not minimal
blocks_remove_mask[i] = True
elif len(r) < len(rep) and r.issubset(rep):
# the system being checked is not minimal
minimal = False
break
# remove non-minimal representative blocks
blocks = [b for i, b in enumerate(blocks) if not blocks_remove_mask[i]]
num_blocks = [n for i, n in enumerate(num_blocks) if not blocks_remove_mask[i]]
rep_blocks = [r for i, r in enumerate(rep_blocks) if not blocks_remove_mask[i]]
if minimal and num_block not in num_blocks:
blocks.append(block)
num_blocks.append(num_block)
rep_blocks.append(rep)
return blocks
@property
def is_solvable(self):
"""Test if the group is solvable.
``G`` is solvable if its derived series terminates with the trivial
group ([1], p.29).
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(3)
>>> S.is_solvable
True
See Also
========
is_nilpotent, derived_series
"""
if self._is_solvable is None:
if self.order() % 2 != 0:
return True
ds = self.derived_series()
terminator = ds[len(ds) - 1]
gens = terminator.generators
degree = self.degree
identity = _af_new(list(range(degree)))
if all(g == identity for g in gens):
self._is_solvable = True
return True
else:
self._is_solvable = False
return False
else:
return self._is_solvable
def is_subgroup(self, G, strict=True):
"""Return ``True`` if all elements of ``self`` belong to ``G``.
If ``strict`` is ``False`` then if ``self``'s degree is smaller
than ``G``'s, the elements will be resized to have the same degree.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup)
Testing is strict by default: the degree of each group must be the
same:
>>> p = Permutation(0, 1, 2, 3, 4, 5)
>>> G1 = PermutationGroup([Permutation(0, 1, 2), Permutation(0, 1)])
>>> G2 = PermutationGroup([Permutation(0, 2), Permutation(0, 1, 2)])
>>> G3 = PermutationGroup([p, p**2])
>>> assert G1.order() == G2.order() == G3.order() == 6
>>> G1.is_subgroup(G2)
True
>>> G1.is_subgroup(G3)
False
>>> G3.is_subgroup(PermutationGroup(G3[1]))
False
>>> G3.is_subgroup(PermutationGroup(G3[0]))
True
To ignore the size, set ``strict`` to ``False``:
>>> S3 = SymmetricGroup(3)
>>> S5 = SymmetricGroup(5)
>>> S3.is_subgroup(S5, strict=False)
True
>>> C7 = CyclicGroup(7)
>>> G = S5*C7
>>> S5.is_subgroup(G, False)
True
>>> C7.is_subgroup(G, 0)
False
"""
if isinstance(G, SymmetricPermutationGroup):
if self.degree != G.degree:
return False
return True
if not isinstance(G, PermutationGroup):
return False
if self == G or self.generators[0]==Permutation():
return True
if G.order() % self.order() != 0:
return False
if self.degree == G.degree or \
(self.degree < G.degree and not strict):
gens = self.generators
else:
return False
return all(G.contains(g, strict=strict) for g in gens)
@property
def is_polycyclic(self):
"""Return ``True`` if a group is polycyclic. A group is polycyclic if
it has a subnormal series with cyclic factors. For finite groups,
this is the same as if the group is solvable.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([2, 0, 1, 3])
>>> G = PermutationGroup([a, b])
>>> G.is_polycyclic
True
"""
return self.is_solvable
def is_transitive(self, strict=True):
"""Test if the group is transitive.
Explanation
===========
A group is transitive if it has a single orbit.
If ``strict`` is ``False`` the group is transitive if it has
a single orbit of length different from 1.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([2, 0, 1, 3])
>>> G1 = PermutationGroup([a, b])
>>> G1.is_transitive()
False
>>> G1.is_transitive(strict=False)
True
>>> c = Permutation([2, 3, 0, 1])
>>> G2 = PermutationGroup([a, c])
>>> G2.is_transitive()
True
>>> d = Permutation([1, 0, 2, 3])
>>> e = Permutation([0, 1, 3, 2])
>>> G3 = PermutationGroup([d, e])
>>> G3.is_transitive() or G3.is_transitive(strict=False)
False
"""
if self._is_transitive: # strict or not, if True then True
return self._is_transitive
if strict:
if self._is_transitive is not None: # we only store strict=True
return self._is_transitive
ans = len(self.orbit(0)) == self.degree
self._is_transitive = ans
return ans
got_orb = False
for x in self.orbits():
if len(x) > 1:
if got_orb:
return False
got_orb = True
return got_orb
@property
def is_trivial(self):
"""Test if the group is the trivial group.
This is true if the group contains only the identity permutation.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> G = PermutationGroup([Permutation([0, 1, 2])])
>>> G.is_trivial
True
"""
if self._is_trivial is None:
self._is_trivial = len(self) == 1 and self[0].is_Identity
return self._is_trivial
def lower_central_series(self):
r"""Return the lower central series for the group.
The lower central series for a group `G` is the series
`G = G_0 > G_1 > G_2 > \ldots` where
`G_k = [G, G_{k-1}]`, i.e. every term after the first is equal to the
commutator of `G` and the previous term in `G1` ([1], p.29).
Returns
=======
A list of permutation groups in the order `G = G_0, G_1, G_2, \ldots`
Examples
========
>>> from sympy.combinatorics.named_groups import (AlternatingGroup,
... DihedralGroup)
>>> A = AlternatingGroup(4)
>>> len(A.lower_central_series())
2
>>> A.lower_central_series()[1].is_subgroup(DihedralGroup(2))
True
See Also
========
commutator, derived_series
"""
res = [self]
current = self
next = self.commutator(self, current)
while not current.is_subgroup(next):
res.append(next)
current = next
next = self.commutator(self, current)
return res
@property
def max_div(self):
"""Maximum proper divisor of the degree of a permutation group.
Explanation
===========
Obviously, this is the degree divided by its minimal proper divisor
(larger than ``1``, if one exists). As it is guaranteed to be prime,
the ``sieve`` from ``sympy.ntheory`` is used.
This function is also used as an optimization tool for the functions
``minimal_block`` and ``_union_find_merge``.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> G = PermutationGroup([Permutation([0, 2, 1, 3])])
>>> G.max_div
2
See Also
========
minimal_block, _union_find_merge
"""
if self._max_div is not None:
return self._max_div
n = self.degree
if n == 1:
return 1
for x in sieve:
if n % x == 0:
d = n//x
self._max_div = d
return d
def minimal_block(self, points):
r"""For a transitive group, finds the block system generated by
``points``.
Explanation
===========
If a group ``G`` acts on a set ``S``, a nonempty subset ``B`` of ``S``
is called a block under the action of ``G`` if for all ``g`` in ``G``
we have ``gB = B`` (``g`` fixes ``B``) or ``gB`` and ``B`` have no
common points (``g`` moves ``B`` entirely). ([1], p.23; [6]).
The distinct translates ``gB`` of a block ``B`` for ``g`` in ``G``
partition the set ``S`` and this set of translates is known as a block
system. Moreover, we obviously have that all blocks in the partition
have the same size, hence the block size divides ``|S|`` ([1], p.23).
A ``G``-congruence is an equivalence relation ``~`` on the set ``S``
such that ``a ~ b`` implies ``g(a) ~ g(b)`` for all ``g`` in ``G``.
For a transitive group, the equivalence classes of a ``G``-congruence
and the blocks of a block system are the same thing ([1], p.23).
The algorithm below checks the group for transitivity, and then finds
the ``G``-congruence generated by the pairs ``(p_0, p_1), (p_0, p_2),
..., (p_0,p_{k-1})`` which is the same as finding the maximal block
system (i.e., the one with minimum block size) such that
``p_0, ..., p_{k-1}`` are in the same block ([1], p.83).
It is an implementation of Atkinson's algorithm, as suggested in [1],
and manipulates an equivalence relation on the set ``S`` using a
union-find data structure. The running time is just above
`O(|points||S|)`. ([1], pp. 83-87; [7]).
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.minimal_block([0, 5])
[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]
>>> D.minimal_block([0, 1])
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
See Also
========
_union_find_rep, _union_find_merge, is_transitive, is_primitive
"""
if not self.is_transitive():
return False
n = self.degree
gens = self.generators
# initialize the list of equivalence class representatives
parents = list(range(n))
ranks = [1]*n
not_rep = []
k = len(points)
# the block size must divide the degree of the group
if k > self.max_div:
return [0]*n
for i in range(k - 1):
parents[points[i + 1]] = points[0]
not_rep.append(points[i + 1])
ranks[points[0]] = k
i = 0
len_not_rep = k - 1
while i < len_not_rep:
gamma = not_rep[i]
i += 1
for gen in gens:
# find has side effects: performs path compression on the list
# of representatives
delta = self._union_find_rep(gamma, parents)
# union has side effects: performs union by rank on the list
# of representatives
temp = self._union_find_merge(gen(gamma), gen(delta), ranks,
parents, not_rep)
if temp == -1:
return [0]*n
len_not_rep += temp
for i in range(n):
# force path compression to get the final state of the equivalence
# relation
self._union_find_rep(i, parents)
# rewrite result so that block representatives are minimal
new_reps = {}
return [new_reps.setdefault(r, i) for i, r in enumerate(parents)]
def conjugacy_class(self, x):
r"""Return the conjugacy class of an element in the group.
Explanation
===========
The conjugacy class of an element ``g`` in a group ``G`` is the set of
elements ``x`` in ``G`` that are conjugate with ``g``, i.e. for which
``g = xax^{-1}``
for some ``a`` in ``G``.
Note that conjugacy is an equivalence relation, and therefore that
conjugacy classes are partitions of ``G``. For a list of all the
conjugacy classes of the group, use the conjugacy_classes() method.
In a permutation group, each conjugacy class corresponds to a particular
`cycle structure': for example, in ``S_3``, the conjugacy classes are:
* the identity class, ``{()}``
* all transpositions, ``{(1 2), (1 3), (2 3)}``
* all 3-cycles, ``{(1 2 3), (1 3 2)}``
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S3 = SymmetricGroup(3)
>>> S3.conjugacy_class(Permutation(0, 1, 2))
{(0 1 2), (0 2 1)}
Notes
=====
This procedure computes the conjugacy class directly by finding the
orbit of the element under conjugation in G. This algorithm is only
feasible for permutation groups of relatively small order, but is like
the orbit() function itself in that respect.
"""
# Ref: "Computing the conjugacy classes of finite groups"; Butler, G.
# Groups '93 Galway/St Andrews; edited by Campbell, C. M.
new_class = {x}
last_iteration = new_class
while len(last_iteration) > 0:
this_iteration = set()
for y in last_iteration:
for s in self.generators:
conjugated = s * y * (~s)
if conjugated not in new_class:
this_iteration.add(conjugated)
new_class.update(last_iteration)
last_iteration = this_iteration
return new_class
def conjugacy_classes(self):
r"""Return the conjugacy classes of the group.
Explanation
===========
As described in the documentation for the .conjugacy_class() function,
conjugacy is an equivalence relation on a group G which partitions the
set of elements. This method returns a list of all these conjugacy
classes of G.
Examples
========
>>> from sympy.combinatorics import SymmetricGroup
>>> SymmetricGroup(3).conjugacy_classes()
[{(2)}, {(0 1 2), (0 2 1)}, {(0 2), (1 2), (2)(0 1)}]
"""
identity = _af_new(list(range(self.degree)))
known_elements = {identity}
classes = [known_elements.copy()]
for x in self.generate():
if x not in known_elements:
new_class = self.conjugacy_class(x)
classes.append(new_class)
known_elements.update(new_class)
return classes
def normal_closure(self, other, k=10):
r"""Return the normal closure of a subgroup/set of permutations.
Explanation
===========
If ``S`` is a subset of a group ``G``, the normal closure of ``A`` in ``G``
is defined as the intersection of all normal subgroups of ``G`` that
contain ``A`` ([1], p.14). Alternatively, it is the group generated by
the conjugates ``x^{-1}yx`` for ``x`` a generator of ``G`` and ``y`` a
generator of the subgroup ``\left\langle S\right\rangle`` generated by
``S`` (for some chosen generating set for ``\left\langle S\right\rangle``)
([1], p.73).
Parameters
==========
other
a subgroup/list of permutations/single permutation
k
an implementation-specific parameter that determines the number
of conjugates that are adjoined to ``other`` at once
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup, AlternatingGroup)
>>> S = SymmetricGroup(5)
>>> C = CyclicGroup(5)
>>> G = S.normal_closure(C)
>>> G.order()
60
>>> G.is_subgroup(AlternatingGroup(5))
True
See Also
========
commutator, derived_subgroup, random_pr
Notes
=====
The algorithm is described in [1], pp. 73-74; it makes use of the
generation of random elements for permutation groups by the product
replacement algorithm.
"""
if hasattr(other, 'generators'):
degree = self.degree
identity = _af_new(list(range(degree)))
if all(g == identity for g in other.generators):
return other
Z = PermutationGroup(other.generators[:])
base, strong_gens = Z.schreier_sims_incremental()
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_orbits, basic_transversals = \
_orbits_transversals_from_bsgs(base, strong_gens_distr)
self._random_pr_init(r=10, n=20)
_loop = True
while _loop:
Z._random_pr_init(r=10, n=10)
for i in range(k):
g = self.random_pr()
h = Z.random_pr()
conj = h^g
res = _strip(conj, base, basic_orbits, basic_transversals)
if res[0] != identity or res[1] != len(base) + 1:
gens = Z.generators
gens.append(conj)
Z = PermutationGroup(gens)
strong_gens.append(conj)
temp_base, temp_strong_gens = \
Z.schreier_sims_incremental(base, strong_gens)
base, strong_gens = temp_base, temp_strong_gens
strong_gens_distr = \
_distribute_gens_by_base(base, strong_gens)
basic_orbits, basic_transversals = \
_orbits_transversals_from_bsgs(base,
strong_gens_distr)
_loop = False
for g in self.generators:
for h in Z.generators:
conj = h^g
res = _strip(conj, base, basic_orbits,
basic_transversals)
if res[0] != identity or res[1] != len(base) + 1:
_loop = True
break
if _loop:
break
return Z
elif hasattr(other, '__getitem__'):
return self.normal_closure(PermutationGroup(other))
elif hasattr(other, 'array_form'):
return self.normal_closure(PermutationGroup([other]))
def orbit(self, alpha, action='tuples'):
r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set.
Explanation
===========
The time complexity of the algorithm used here is `O(|Orb|*r)` where
`|Orb|` is the size of the orbit and ``r`` is the number of generators of
the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21.
Here alpha can be a single point, or a list of points.
If alpha is a single point, the ordinary orbit is computed.
if alpha is a list of points, there are three available options:
'union' - computes the union of the orbits of the points in the list
'tuples' - computes the orbit of the list interpreted as an ordered
tuple under the group action ( i.e., g((1,2,3)) = (g(1), g(2), g(3)) )
'sets' - computes the orbit of the list interpreted as a sets
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3])
>>> G = PermutationGroup([a])
>>> G.orbit(0)
{0, 1, 2}
>>> G.orbit([0, 4], 'union')
{0, 1, 2, 3, 4, 5, 6}
See Also
========
orbit_transversal
"""
return _orbit(self.degree, self.generators, alpha, action)
def orbit_rep(self, alpha, beta, schreier_vector=None):
"""Return a group element which sends ``alpha`` to ``beta``.
Explanation
===========
If ``beta`` is not in the orbit of ``alpha``, the function returns
``False``. This implementation makes use of the schreier vector.
For a proof of correctness, see [1], p.80
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> G = AlternatingGroup(5)
>>> G.orbit_rep(0, 4)
(0 4 1 2 3)
See Also
========
schreier_vector
"""
if schreier_vector is None:
schreier_vector = self.schreier_vector(alpha)
if schreier_vector[beta] is None:
return False
k = schreier_vector[beta]
gens = [x._array_form for x in self.generators]
a = []
while k != -1:
a.append(gens[k])
beta = gens[k].index(beta) # beta = (~gens[k])(beta)
k = schreier_vector[beta]
if a:
return _af_new(_af_rmuln(*a))
else:
return _af_new(list(range(self._degree)))
def orbit_transversal(self, alpha, pairs=False):
r"""Computes a transversal for the orbit of ``alpha`` as a set.
Explanation
===========
For a permutation group `G`, a transversal for the orbit
`Orb = \{g(\alpha) | g \in G\}` is a set
`\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`.
Note that there may be more than one possible transversal.
If ``pairs`` is set to ``True``, it returns the list of pairs
`(\beta, g_\beta)`. For a proof of correctness, see [1], p.79
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> G.orbit_transversal(0)
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)]
See Also
========
orbit
"""
return _orbit_transversal(self._degree, self.generators, alpha, pairs)
def orbits(self, rep=False):
"""Return the orbits of ``self``, ordered according to lowest element
in each orbit.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation(1, 5)(2, 3)(4, 0, 6)
>>> b = Permutation(1, 5)(3, 4)(2, 6, 0)
>>> G = PermutationGroup([a, b])
>>> G.orbits()
[{0, 2, 3, 4, 6}, {1, 5}]
"""
return _orbits(self._degree, self._generators)
def order(self):
"""Return the order of the group: the number of permutations that
can be generated from elements of the group.
The number of permutations comprising the group is given by
``len(group)``; the length of each permutation in the group is
given by ``group.size``.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([1, 0, 2])
>>> G = PermutationGroup([a])
>>> G.degree
3
>>> len(G)
1
>>> G.order()
2
>>> list(G.generate())
[(2), (2)(0 1)]
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.order()
6
See Also
========
degree
"""
if self._order is not None:
return self._order
if self._is_sym:
n = self._degree
self._order = factorial(n)
return self._order
if self._is_alt:
n = self._degree
self._order = factorial(n)/2
return self._order
basic_transversals = self.basic_transversals
m = 1
for x in basic_transversals:
m *= len(x)
self._order = m
return m
def index(self, H):
"""
Returns the index of a permutation group.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation(1,2,3)
>>> b =Permutation(3)
>>> G = PermutationGroup([a])
>>> H = PermutationGroup([b])
>>> G.index(H)
3
"""
if H.is_subgroup(self):
return self.order()//H.order()
@property
def is_symmetric(self):
"""Return ``True`` if the group is symmetric.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> g = SymmetricGroup(5)
>>> g.is_symmetric
True
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> g = PermutationGroup(
... Permutation(0, 1, 2, 3, 4),
... Permutation(2, 3))
>>> g.is_symmetric
True
Notes
=====
This uses a naive test involving the computation of the full
group order.
If you need more quicker taxonomy for large groups, you can use
:meth:`PermutationGroup.is_alt_sym`.
However, :meth:`PermutationGroup.is_alt_sym` may not be accurate
and is not able to distinguish between an alternating group and
a symmetric group.
See Also
========
is_alt_sym
"""
_is_sym = self._is_sym
if _is_sym is not None:
return _is_sym
n = self.degree
if n >= 8:
if self.is_transitive():
_is_alt_sym = self._eval_is_alt_sym_monte_carlo()
if _is_alt_sym:
if any(g.is_odd for g in self.generators):
self._is_sym, self._is_alt = True, False
return True
self._is_sym, self._is_alt = False, True
return False
return self._eval_is_alt_sym_naive(only_sym=True)
self._is_sym, self._is_alt = False, False
return False
return self._eval_is_alt_sym_naive(only_sym=True)
@property
def is_alternating(self):
"""Return ``True`` if the group is alternating.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> g = AlternatingGroup(5)
>>> g.is_alternating
True
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> g = PermutationGroup(
... Permutation(0, 1, 2, 3, 4),
... Permutation(2, 3, 4))
>>> g.is_alternating
True
Notes
=====
This uses a naive test involving the computation of the full
group order.
If you need more quicker taxonomy for large groups, you can use
:meth:`PermutationGroup.is_alt_sym`.
However, :meth:`PermutationGroup.is_alt_sym` may not be accurate
and is not able to distinguish between an alternating group and
a symmetric group.
See Also
========
is_alt_sym
"""
_is_alt = self._is_alt
if _is_alt is not None:
return _is_alt
n = self.degree
if n >= 8:
if self.is_transitive():
_is_alt_sym = self._eval_is_alt_sym_monte_carlo()
if _is_alt_sym:
if all(g.is_even for g in self.generators):
self._is_sym, self._is_alt = False, True
return True
self._is_sym, self._is_alt = True, False
return False
return self._eval_is_alt_sym_naive(only_alt=True)
self._is_sym, self._is_alt = False, False
return False
return self._eval_is_alt_sym_naive(only_alt=True)
@classmethod
def _distinct_primes_lemma(cls, primes):
"""Subroutine to test if there is only one cyclic group for the
order."""
primes = sorted(primes)
l = len(primes)
for i in range(l):
for j in range(i+1, l):
if primes[j] % primes[i] == 1:
return None
return True
@property
def is_cyclic(self):
r"""
Return ``True`` if the group is Cyclic.
Examples
========
>>> from sympy.combinatorics.named_groups import AbelianGroup
>>> G = AbelianGroup(3, 4)
>>> G.is_cyclic
True
>>> G = AbelianGroup(4, 4)
>>> G.is_cyclic
False
Notes
=====
If the order of a group $n$ can be factored into the distinct
primes $p_1, p_2, ... , p_s$ and if
.. math::
\forall i, j \in \{1, 2, \ldots, s \}:
p_i \not \equiv 1 \pmod {p_j}
holds true, there is only one group of the order $n$ which
is a cyclic group. [1]_ This is a generalization of the lemma
that the group of order $15, 35, ...$ are cyclic.
And also, these additional lemmas can be used to test if a
group is cyclic if the order of the group is already found.
- If the group is abelian and the order of the group is
square-free, the group is cyclic.
- If the order of the group is less than $6$ and is not $4$, the
group is cyclic.
- If the order of the group is prime, the group is cyclic.
References
==========
.. [1] 1978: John S. Rose: A Course on Group Theory,
Introduction to Finite Group Theory: 1.4
"""
if self._is_cyclic is not None:
return self._is_cyclic
if len(self.generators) == 1:
self._is_cyclic = True
self._is_abelian = True
return True
if self._is_abelian is False:
self._is_cyclic = False
return False
order = self.order()
if order < 6:
self._is_abelian == True
if order != 4:
self._is_cyclic == True
return True
factors = factorint(order)
if all(v == 1 for v in factors.values()):
if self._is_abelian:
self._is_cyclic = True
return True
primes = list(factors.keys())
if PermutationGroup._distinct_primes_lemma(primes) is True:
self._is_cyclic = True
self._is_abelian = True
return True
for p in factors:
pgens = []
for g in self.generators:
pgens.append(g**p)
if self.index(self.subgroup(pgens)) != p:
self._is_cyclic = False
return False
self._is_cyclic = True
self._is_abelian = True
return True
def pointwise_stabilizer(self, points, incremental=True):
r"""Return the pointwise stabilizer for a set of points.
Explanation
===========
For a permutation group `G` and a set of points
`\{p_1, p_2,\ldots, p_k\}`, the pointwise stabilizer of
`p_1, p_2, \ldots, p_k` is defined as
`G_{p_1,\ldots, p_k} =
\{g\in G | g(p_i) = p_i \forall i\in\{1, 2,\ldots,k\}\}` ([1],p20).
It is a subgroup of `G`.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(7)
>>> Stab = S.pointwise_stabilizer([2, 3, 5])
>>> Stab.is_subgroup(S.stabilizer(2).stabilizer(3).stabilizer(5))
True
See Also
========
stabilizer, schreier_sims_incremental
Notes
=====
When incremental == True,
rather than the obvious implementation using successive calls to
``.stabilizer()``, this uses the incremental Schreier-Sims algorithm
to obtain a base with starting segment - the given points.
"""
if incremental:
base, strong_gens = self.schreier_sims_incremental(base=points)
stab_gens = []
degree = self.degree
for gen in strong_gens:
if [gen(point) for point in points] == points:
stab_gens.append(gen)
if not stab_gens:
stab_gens = _af_new(list(range(degree)))
return PermutationGroup(stab_gens)
else:
gens = self._generators
degree = self.degree
for x in points:
gens = _stabilizer(degree, gens, x)
return PermutationGroup(gens)
def make_perm(self, n, seed=None):
"""
Multiply ``n`` randomly selected permutations from
pgroup together, starting with the identity
permutation. If ``n`` is a list of integers, those
integers will be used to select the permutations and they
will be applied in L to R order: make_perm((A, B, C)) will
give CBA(I) where I is the identity permutation.
``seed`` is used to set the seed for the random selection
of permutations from pgroup. If this is a list of integers,
the corresponding permutations from pgroup will be selected
in the order give. This is mainly used for testing purposes.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a, b = [Permutation([1, 0, 3, 2]), Permutation([1, 3, 0, 2])]
>>> G = PermutationGroup([a, b])
>>> G.make_perm(1, [0])
(0 1)(2 3)
>>> G.make_perm(3, [0, 1, 0])
(0 2 3 1)
>>> G.make_perm([0, 1, 0])
(0 2 3 1)
See Also
========
random
"""
if is_sequence(n):
if seed is not None:
raise ValueError('If n is a sequence, seed should be None')
n, seed = len(n), n
else:
try:
n = int(n)
except TypeError:
raise ValueError('n must be an integer or a sequence.')
randrange = _randrange(seed)
# start with the identity permutation
result = Permutation(list(range(self.degree)))
m = len(self)
for i in range(n):
p = self[randrange(m)]
result = rmul(result, p)
return result
def random(self, af=False):
"""Return a random group element
"""
rank = randrange(self.order())
return self.coset_unrank(rank, af)
def random_pr(self, gen_count=11, iterations=50, _random_prec=None):
"""Return a random group element using product replacement.
Explanation
===========
For the details of the product replacement algorithm, see
``_random_pr_init`` In ``random_pr`` the actual 'product replacement'
is performed. Notice that if the attribute ``_random_gens``
is empty, it needs to be initialized by ``_random_pr_init``.
See Also
========
_random_pr_init
"""
if self._random_gens == []:
self._random_pr_init(gen_count, iterations)
random_gens = self._random_gens
r = len(random_gens) - 1
# handle randomized input for testing purposes
if _random_prec is None:
s = randrange(r)
t = randrange(r - 1)
if t == s:
t = r - 1
x = choice([1, 2])
e = choice([-1, 1])
else:
s = _random_prec['s']
t = _random_prec['t']
if t == s:
t = r - 1
x = _random_prec['x']
e = _random_prec['e']
if x == 1:
random_gens[s] = _af_rmul(random_gens[s], _af_pow(random_gens[t], e))
random_gens[r] = _af_rmul(random_gens[r], random_gens[s])
else:
random_gens[s] = _af_rmul(_af_pow(random_gens[t], e), random_gens[s])
random_gens[r] = _af_rmul(random_gens[s], random_gens[r])
return _af_new(random_gens[r])
def random_stab(self, alpha, schreier_vector=None, _random_prec=None):
"""Random element from the stabilizer of ``alpha``.
The schreier vector for ``alpha`` is an optional argument used
for speeding up repeated calls. The algorithm is described in [1], p.81
See Also
========
random_pr, orbit_rep
"""
if schreier_vector is None:
schreier_vector = self.schreier_vector(alpha)
if _random_prec is None:
rand = self.random_pr()
else:
rand = _random_prec['rand']
beta = rand(alpha)
h = self.orbit_rep(alpha, beta, schreier_vector)
return rmul(~h, rand)
def schreier_sims(self):
"""Schreier-Sims algorithm.
Explanation
===========
It computes the generators of the chain of stabilizers
`G > G_{b_1} > .. > G_{b1,..,b_r} > 1`
in which `G_{b_1,..,b_i}` stabilizes `b_1,..,b_i`,
and the corresponding ``s`` cosets.
An element of the group can be written as the product
`h_1*..*h_s`.
We use the incremental Schreier-Sims algorithm.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.schreier_sims()
>>> G.basic_transversals
[{0: (2)(0 1), 1: (2), 2: (1 2)},
{0: (2), 2: (0 2)}]
"""
if self._transversals:
return
self._schreier_sims()
return
def _schreier_sims(self, base=None):
schreier = self.schreier_sims_incremental(base=base, slp_dict=True)
base, strong_gens = schreier[:2]
self._base = base
self._strong_gens = strong_gens
self._strong_gens_slp = schreier[2]
if not base:
self._transversals = []
self._basic_orbits = []
return
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_orbits, transversals, slps = _orbits_transversals_from_bsgs(base,\
strong_gens_distr, slp=True)
# rewrite the indices stored in slps in terms of strong_gens
for i, slp in enumerate(slps):
gens = strong_gens_distr[i]
for k in slp:
slp[k] = [strong_gens.index(gens[s]) for s in slp[k]]
self._transversals = transversals
self._basic_orbits = [sorted(x) for x in basic_orbits]
self._transversal_slp = slps
def schreier_sims_incremental(self, base=None, gens=None, slp_dict=False):
"""Extend a sequence of points and generating set to a base and strong
generating set.
Parameters
==========
base
The sequence of points to be extended to a base. Optional
parameter with default value ``[]``.
gens
The generating set to be extended to a strong generating set
relative to the base obtained. Optional parameter with default
value ``self.generators``.
slp_dict
If `True`, return a dictionary `{g: gens}` for each strong
generator `g` where `gens` is a list of strong generators
coming before `g` in `strong_gens`, such that the product
of the elements of `gens` is equal to `g`.
Returns
=======
(base, strong_gens)
``base`` is the base obtained, and ``strong_gens`` is the strong
generating set relative to it. The original parameters ``base``,
``gens`` remain unchanged.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> A = AlternatingGroup(7)
>>> base = [2, 3]
>>> seq = [2, 3]
>>> base, strong_gens = A.schreier_sims_incremental(base=seq)
>>> _verify_bsgs(A, base, strong_gens)
True
>>> base[:2]
[2, 3]
Notes
=====
This version of the Schreier-Sims algorithm runs in polynomial time.
There are certain assumptions in the implementation - if the trivial
group is provided, ``base`` and ``gens`` are returned immediately,
as any sequence of points is a base for the trivial group. If the
identity is present in the generators ``gens``, it is removed as
it is a redundant generator.
The implementation is described in [1], pp. 90-93.
See Also
========
schreier_sims, schreier_sims_random
"""
if base is None:
base = []
if gens is None:
gens = self.generators[:]
degree = self.degree
id_af = list(range(degree))
# handle the trivial group
if len(gens) == 1 and gens[0].is_Identity:
if slp_dict:
return base, gens, {gens[0]: [gens[0]]}
return base, gens
# prevent side effects
_base, _gens = base[:], gens[:]
# remove the identity as a generator
_gens = [x for x in _gens if not x.is_Identity]
# make sure no generator fixes all base points
for gen in _gens:
if all(x == gen._array_form[x] for x in _base):
for new in id_af:
if gen._array_form[new] != new:
break
else:
assert None # can this ever happen?
_base.append(new)
# distribute generators according to basic stabilizers
strong_gens_distr = _distribute_gens_by_base(_base, _gens)
strong_gens_slp = []
# initialize the basic stabilizers, basic orbits and basic transversals
orbs = {}
transversals = {}
slps = {}
base_len = len(_base)
for i in range(base_len):
transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i],
_base[i], pairs=True, af=True, slp=True)
transversals[i] = dict(transversals[i])
orbs[i] = list(transversals[i].keys())
# main loop: amend the stabilizer chain until we have generators
# for all stabilizers
i = base_len - 1
while i >= 0:
# this flag is used to continue with the main loop from inside
# a nested loop
continue_i = False
# test the generators for being a strong generating set
db = {}
for beta, u_beta in list(transversals[i].items()):
for j, gen in enumerate(strong_gens_distr[i]):
gb = gen._array_form[beta]
u1 = transversals[i][gb]
g1 = _af_rmul(gen._array_form, u_beta)
slp = [(i, g) for g in slps[i][beta]]
slp = [(i, j)] + slp
if g1 != u1:
# test if the schreier generator is in the i+1-th
# would-be basic stabilizer
y = True
try:
u1_inv = db[gb]
except KeyError:
u1_inv = db[gb] = _af_invert(u1)
schreier_gen = _af_rmul(u1_inv, g1)
u1_inv_slp = slps[i][gb][:]
u1_inv_slp.reverse()
u1_inv_slp = [(i, (g,)) for g in u1_inv_slp]
slp = u1_inv_slp + slp
h, j, slp = _strip_af(schreier_gen, _base, orbs, transversals, i, slp=slp, slps=slps)
if j <= base_len:
# new strong generator h at level j
y = False
elif h:
# h fixes all base points
y = False
moved = 0
while h[moved] == moved:
moved += 1
_base.append(moved)
base_len += 1
strong_gens_distr.append([])
if y is False:
# if a new strong generator is found, update the
# data structures and start over
h = _af_new(h)
strong_gens_slp.append((h, slp))
for l in range(i + 1, j):
strong_gens_distr[l].append(h)
transversals[l], slps[l] =\
_orbit_transversal(degree, strong_gens_distr[l],
_base[l], pairs=True, af=True, slp=True)
transversals[l] = dict(transversals[l])
orbs[l] = list(transversals[l].keys())
i = j - 1
# continue main loop using the flag
continue_i = True
if continue_i is True:
break
if continue_i is True:
break
if continue_i is True:
continue
i -= 1
strong_gens = _gens[:]
if slp_dict:
# create the list of the strong generators strong_gens and
# rewrite the indices of strong_gens_slp in terms of the
# elements of strong_gens
for k, slp in strong_gens_slp:
strong_gens.append(k)
for i in range(len(slp)):
s = slp[i]
if isinstance(s[1], tuple):
slp[i] = strong_gens_distr[s[0]][s[1][0]]**-1
else:
slp[i] = strong_gens_distr[s[0]][s[1]]
strong_gens_slp = dict(strong_gens_slp)
# add the original generators
for g in _gens:
strong_gens_slp[g] = [g]
return (_base, strong_gens, strong_gens_slp)
strong_gens.extend([k for k, _ in strong_gens_slp])
return _base, strong_gens
def schreier_sims_random(self, base=None, gens=None, consec_succ=10,
_random_prec=None):
r"""Randomized Schreier-Sims algorithm.
Explanation
===========
The randomized Schreier-Sims algorithm takes the sequence ``base``
and the generating set ``gens``, and extends ``base`` to a base, and
``gens`` to a strong generating set relative to that base with
probability of a wrong answer at most `2^{-consec\_succ}`,
provided the random generators are sufficiently random.
Parameters
==========
base
The sequence to be extended to a base.
gens
The generating set to be extended to a strong generating set.
consec_succ
The parameter defining the probability of a wrong answer.
_random_prec
An internal parameter used for testing purposes.
Returns
=======
(base, strong_gens)
``base`` is the base and ``strong_gens`` is the strong generating
set relative to it.
Examples
========
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(5)
>>> base, strong_gens = S.schreier_sims_random(consec_succ=5)
>>> _verify_bsgs(S, base, strong_gens) #doctest: +SKIP
True
Notes
=====
The algorithm is described in detail in [1], pp. 97-98. It extends
the orbits ``orbs`` and the permutation groups ``stabs`` to
basic orbits and basic stabilizers for the base and strong generating
set produced in the end.
The idea of the extension process
is to "sift" random group elements through the stabilizer chain
and amend the stabilizers/orbits along the way when a sift
is not successful.
The helper function ``_strip`` is used to attempt
to decompose a random group element according to the current
state of the stabilizer chain and report whether the element was
fully decomposed (successful sift) or not (unsuccessful sift). In
the latter case, the level at which the sift failed is reported and
used to amend ``stabs``, ``base``, ``gens`` and ``orbs`` accordingly.
The halting condition is for ``consec_succ`` consecutive successful
sifts to pass. This makes sure that the current ``base`` and ``gens``
form a BSGS with probability at least `1 - 1/\text{consec\_succ}`.
See Also
========
schreier_sims
"""
if base is None:
base = []
if gens is None:
gens = self.generators
base_len = len(base)
n = self.degree
# make sure no generator fixes all base points
for gen in gens:
if all(gen(x) == x for x in base):
new = 0
while gen._array_form[new] == new:
new += 1
base.append(new)
base_len += 1
# distribute generators according to basic stabilizers
strong_gens_distr = _distribute_gens_by_base(base, gens)
# initialize the basic stabilizers, basic transversals and basic orbits
transversals = {}
orbs = {}
for i in range(base_len):
transversals[i] = dict(_orbit_transversal(n, strong_gens_distr[i],
base[i], pairs=True))
orbs[i] = list(transversals[i].keys())
# initialize the number of consecutive elements sifted
c = 0
# start sifting random elements while the number of consecutive sifts
# is less than consec_succ
while c < consec_succ:
if _random_prec is None:
g = self.random_pr()
else:
g = _random_prec['g'].pop()
h, j = _strip(g, base, orbs, transversals)
y = True
# determine whether a new base point is needed
if j <= base_len:
y = False
elif not h.is_Identity:
y = False
moved = 0
while h(moved) == moved:
moved += 1
base.append(moved)
base_len += 1
strong_gens_distr.append([])
# if the element doesn't sift, amend the strong generators and
# associated stabilizers and orbits
if y is False:
for l in range(1, j):
strong_gens_distr[l].append(h)
transversals[l] = dict(_orbit_transversal(n,
strong_gens_distr[l], base[l], pairs=True))
orbs[l] = list(transversals[l].keys())
c = 0
else:
c += 1
# build the strong generating set
strong_gens = strong_gens_distr[0][:]
for gen in strong_gens_distr[1]:
if gen not in strong_gens:
strong_gens.append(gen)
return base, strong_gens
def schreier_vector(self, alpha):
"""Computes the schreier vector for ``alpha``.
Explanation
===========
The Schreier vector efficiently stores information
about the orbit of ``alpha``. It can later be used to quickly obtain
elements of the group that send ``alpha`` to a particular element
in the orbit. Notice that the Schreier vector depends on the order
in which the group generators are listed. For a definition, see [3].
Since list indices start from zero, we adopt the convention to use
"None" instead of 0 to signify that an element doesn't belong
to the orbit.
For the algorithm and its correctness, see [2], pp.78-80.
Examples
========
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.permutations import Permutation
>>> a = Permutation([2, 4, 6, 3, 1, 5, 0])
>>> b = Permutation([0, 1, 3, 5, 4, 6, 2])
>>> G = PermutationGroup([a, b])
>>> G.schreier_vector(0)
[-1, None, 0, 1, None, 1, 0]
See Also
========
orbit
"""
n = self.degree
v = [None]*n
v[alpha] = -1
orb = [alpha]
used = [False]*n
used[alpha] = True
gens = self.generators
r = len(gens)
for b in orb:
for i in range(r):
temp = gens[i]._array_form[b]
if used[temp] is False:
orb.append(temp)
used[temp] = True
v[temp] = i
return v
def stabilizer(self, alpha):
r"""Return the stabilizer subgroup of ``alpha``.
Explanation
===========
The stabilizer of `\alpha` is the group `G_\alpha =
\{g \in G | g(\alpha) = \alpha\}`.
For a proof of correctness, see [1], p.79.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> G.stabilizer(5)
PermutationGroup([
(5)(0 4)(1 3)])
See Also
========
orbit
"""
return PermGroup(_stabilizer(self._degree, self._generators, alpha))
@property
def strong_gens(self):
r"""Return a strong generating set from the Schreier-Sims algorithm.
Explanation
===========
A generating set `S = \{g_1, g_2, ..., g_t\}` for a permutation group
`G` is a strong generating set relative to the sequence of points
(referred to as a "base") `(b_1, b_2, ..., b_k)` if, for
`1 \leq i \leq k` we have that the intersection of the pointwise
stabilizer `G^{(i+1)} := G_{b_1, b_2, ..., b_i}` with `S` generates
the pointwise stabilizer `G^{(i+1)}`. The concepts of a base and
strong generating set and their applications are discussed in depth
in [1], pp. 87-89 and [2], pp. 55-57.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(4)
>>> D.strong_gens
[(0 1 2 3), (0 3)(1 2), (1 3)]
>>> D.base
[0, 1]
See Also
========
base, basic_transversals, basic_orbits, basic_stabilizers
"""
if self._strong_gens == []:
self.schreier_sims()
return self._strong_gens
def subgroup(self, gens):
"""
Return the subgroup generated by `gens` which is a list of
elements of the group
"""
if not all(g in self for g in gens):
raise ValueError("The group doesn't contain the supplied generators")
G = PermutationGroup(gens)
return G
def subgroup_search(self, prop, base=None, strong_gens=None, tests=None,
init_subgroup=None):
"""Find the subgroup of all elements satisfying the property ``prop``.
Explanation
===========
This is done by a depth-first search with respect to base images that
uses several tests to prune the search tree.
Parameters
==========
prop
The property to be used. Has to be callable on group elements
and always return ``True`` or ``False``. It is assumed that
all group elements satisfying ``prop`` indeed form a subgroup.
base
A base for the supergroup.
strong_gens
A strong generating set for the supergroup.
tests
A list of callables of length equal to the length of ``base``.
These are used to rule out group elements by partial base images,
so that ``tests[l](g)`` returns False if the element ``g`` is known
not to satisfy prop base on where g sends the first ``l + 1`` base
points.
init_subgroup
if a subgroup of the sought group is
known in advance, it can be passed to the function as this
parameter.
Returns
=======
res
The subgroup of all elements satisfying ``prop``. The generating
set for this group is guaranteed to be a strong generating set
relative to the base ``base``.
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup)
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> S = SymmetricGroup(7)
>>> prop_even = lambda x: x.is_even
>>> base, strong_gens = S.schreier_sims_incremental()
>>> G = S.subgroup_search(prop_even, base=base, strong_gens=strong_gens)
>>> G.is_subgroup(AlternatingGroup(7))
True
>>> _verify_bsgs(G, base, G.generators)
True
Notes
=====
This function is extremely lengthy and complicated and will require
some careful attention. The implementation is described in
[1], pp. 114-117, and the comments for the code here follow the lines
of the pseudocode in the book for clarity.
The complexity is exponential in general, since the search process by
itself visits all members of the supergroup. However, there are a lot
of tests which are used to prune the search tree, and users can define
their own tests via the ``tests`` parameter, so in practice, and for
some computations, it's not terrible.
A crucial part in the procedure is the frequent base change performed
(this is line 11 in the pseudocode) in order to obtain a new basic
stabilizer. The book mentiones that this can be done by using
``.baseswap(...)``, however the current implementation uses a more
straightforward way to find the next basic stabilizer - calling the
function ``.stabilizer(...)`` on the previous basic stabilizer.
"""
# initialize BSGS and basic group properties
def get_reps(orbits):
# get the minimal element in the base ordering
return [min(orbit, key = lambda x: base_ordering[x]) \
for orbit in orbits]
def update_nu(l):
temp_index = len(basic_orbits[l]) + 1 -\
len(res_basic_orbits_init_base[l])
# this corresponds to the element larger than all points
if temp_index >= len(sorted_orbits[l]):
nu[l] = base_ordering[degree]
else:
nu[l] = sorted_orbits[l][temp_index]
if base is None:
base, strong_gens = self.schreier_sims_incremental()
base_len = len(base)
degree = self.degree
identity = _af_new(list(range(degree)))
base_ordering = _base_ordering(base, degree)
# add an element larger than all points
base_ordering.append(degree)
# add an element smaller than all points
base_ordering.append(-1)
# compute BSGS-related structures
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_orbits, transversals = _orbits_transversals_from_bsgs(base,
strong_gens_distr)
# handle subgroup initialization and tests
if init_subgroup is None:
init_subgroup = PermutationGroup([identity])
if tests is None:
trivial_test = lambda x: True
tests = []
for i in range(base_len):
tests.append(trivial_test)
# line 1: more initializations.
res = init_subgroup
f = base_len - 1
l = base_len - 1
# line 2: set the base for K to the base for G
res_base = base[:]
# line 3: compute BSGS and related structures for K
res_base, res_strong_gens = res.schreier_sims_incremental(
base=res_base)
res_strong_gens_distr = _distribute_gens_by_base(res_base,
res_strong_gens)
res_generators = res.generators
res_basic_orbits_init_base = \
[_orbit(degree, res_strong_gens_distr[i], res_base[i])\
for i in range(base_len)]
# initialize orbit representatives
orbit_reps = [None]*base_len
# line 4: orbit representatives for f-th basic stabilizer of K
orbits = _orbits(degree, res_strong_gens_distr[f])
orbit_reps[f] = get_reps(orbits)
# line 5: remove the base point from the representatives to avoid
# getting the identity element as a generator for K
orbit_reps[f].remove(base[f])
# line 6: more initializations
c = [0]*base_len
u = [identity]*base_len
sorted_orbits = [None]*base_len
for i in range(base_len):
sorted_orbits[i] = basic_orbits[i][:]
sorted_orbits[i].sort(key=lambda point: base_ordering[point])
# line 7: initializations
mu = [None]*base_len
nu = [None]*base_len
# this corresponds to the element smaller than all points
mu[l] = degree + 1
update_nu(l)
# initialize computed words
computed_words = [identity]*base_len
# line 8: main loop
while True:
# apply all the tests
while l < base_len - 1 and \
computed_words[l](base[l]) in orbit_reps[l] and \
base_ordering[mu[l]] < \
base_ordering[computed_words[l](base[l])] < \
base_ordering[nu[l]] and \
tests[l](computed_words):
# line 11: change the (partial) base of K
new_point = computed_words[l](base[l])
res_base[l] = new_point
new_stab_gens = _stabilizer(degree, res_strong_gens_distr[l],
new_point)
res_strong_gens_distr[l + 1] = new_stab_gens
# line 12: calculate minimal orbit representatives for the
# l+1-th basic stabilizer
orbits = _orbits(degree, new_stab_gens)
orbit_reps[l + 1] = get_reps(orbits)
# line 13: amend sorted orbits
l += 1
temp_orbit = [computed_words[l - 1](point) for point
in basic_orbits[l]]
temp_orbit.sort(key=lambda point: base_ordering[point])
sorted_orbits[l] = temp_orbit
# lines 14 and 15: update variables used minimality tests
new_mu = degree + 1
for i in range(l):
if base[l] in res_basic_orbits_init_base[i]:
candidate = computed_words[i](base[i])
if base_ordering[candidate] > base_ordering[new_mu]:
new_mu = candidate
mu[l] = new_mu
update_nu(l)
# line 16: determine the new transversal element
c[l] = 0
temp_point = sorted_orbits[l][c[l]]
gamma = computed_words[l - 1]._array_form.index(temp_point)
u[l] = transversals[l][gamma]
# update computed words
computed_words[l] = rmul(computed_words[l - 1], u[l])
# lines 17 & 18: apply the tests to the group element found
g = computed_words[l]
temp_point = g(base[l])
if l == base_len - 1 and \
base_ordering[mu[l]] < \
base_ordering[temp_point] < base_ordering[nu[l]] and \
temp_point in orbit_reps[l] and \
tests[l](computed_words) and \
prop(g):
# line 19: reset the base of K
res_generators.append(g)
res_base = base[:]
# line 20: recalculate basic orbits (and transversals)
res_strong_gens.append(g)
res_strong_gens_distr = _distribute_gens_by_base(res_base,
res_strong_gens)
res_basic_orbits_init_base = \
[_orbit(degree, res_strong_gens_distr[i], res_base[i]) \
for i in range(base_len)]
# line 21: recalculate orbit representatives
# line 22: reset the search depth
orbit_reps[f] = get_reps(orbits)
l = f
# line 23: go up the tree until in the first branch not fully
# searched
while l >= 0 and c[l] == len(basic_orbits[l]) - 1:
l = l - 1
# line 24: if the entire tree is traversed, return K
if l == -1:
return PermutationGroup(res_generators)
# lines 25-27: update orbit representatives
if l < f:
# line 26
f = l
c[l] = 0
# line 27
temp_orbits = _orbits(degree, res_strong_gens_distr[f])
orbit_reps[f] = get_reps(temp_orbits)
# line 28: update variables used for minimality testing
mu[l] = degree + 1
temp_index = len(basic_orbits[l]) + 1 - \
len(res_basic_orbits_init_base[l])
if temp_index >= len(sorted_orbits[l]):
nu[l] = base_ordering[degree]
else:
nu[l] = sorted_orbits[l][temp_index]
# line 29: set the next element from the current branch and update
# accordingly
c[l] += 1
if l == 0:
gamma = sorted_orbits[l][c[l]]
else:
gamma = computed_words[l - 1]._array_form.index(sorted_orbits[l][c[l]])
u[l] = transversals[l][gamma]
if l == 0:
computed_words[l] = u[l]
else:
computed_words[l] = rmul(computed_words[l - 1], u[l])
@property
def transitivity_degree(self):
r"""Compute the degree of transitivity of the group.
Explanation
===========
A permutation group `G` acting on `\Omega = \{0, 1, ..., n-1\}` is
``k``-fold transitive, if, for any k points
`(a_1, a_2, ..., a_k)\in\Omega` and any k points
`(b_1, b_2, ..., b_k)\in\Omega` there exists `g\in G` such that
`g(a_1)=b_1, g(a_2)=b_2, ..., g(a_k)=b_k`
The degree of transitivity of `G` is the maximum ``k`` such that
`G` is ``k``-fold transitive. ([8])
Examples
========
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.permutations import Permutation
>>> a = Permutation([1, 2, 0])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.transitivity_degree
3
See Also
========
is_transitive, orbit
"""
if self._transitivity_degree is None:
n = self.degree
G = self
# if G is k-transitive, a tuple (a_0,..,a_k)
# can be brought to (b_0,...,b_(k-1), b_k)
# where b_0,...,b_(k-1) are fixed points;
# consider the group G_k which stabilizes b_0,...,b_(k-1)
# if G_k is transitive on the subset excluding b_0,...,b_(k-1)
# then G is (k+1)-transitive
for i in range(n):
orb = G.orbit(i)
if len(orb) != n - i:
self._transitivity_degree = i
return i
G = G.stabilizer(i)
self._transitivity_degree = n
return n
else:
return self._transitivity_degree
def _p_elements_group(G, p):
'''
For an abelian p-group G return the subgroup consisting of
all elements of order p (and the identity)
'''
gens = G.generators[:]
gens = sorted(gens, key=lambda x: x.order(), reverse=True)
gens_p = [g**(g.order()/p) for g in gens]
gens_r = []
for i in range(len(gens)):
x = gens[i]
x_order = x.order()
# x_p has order p
x_p = x**(x_order/p)
if i > 0:
P = PermutationGroup(gens_p[:i])
else:
P = PermutationGroup(G.identity)
if x**(x_order/p) not in P:
gens_r.append(x**(x_order/p))
else:
# replace x by an element of order (x.order()/p)
# so that gens still generates G
g = P.generator_product(x_p, original=True)
for s in g:
x = x*s**-1
x_order = x_order/p
# insert x to gens so that the sorting is preserved
del gens[i]
del gens_p[i]
j = i - 1
while j < len(gens) and gens[j].order() >= x_order:
j += 1
gens = gens[:j] + [x] + gens[j:]
gens_p = gens_p[:j] + [x] + gens_p[j:]
return PermutationGroup(gens_r)
def _sylow_alt_sym(self, p):
'''
Return a p-Sylow subgroup of a symmetric or an
alternating group.
Explanation
===========
The algorithm for this is hinted at in [1], Chapter 4,
Exercise 4.
For Sym(n) with n = p^i, the idea is as follows. Partition
the interval [0..n-1] into p equal parts, each of length p^(i-1):
[0..p^(i-1)-1], [p^(i-1)..2*p^(i-1)-1]...[(p-1)*p^(i-1)..p^i-1].
Find a p-Sylow subgroup of Sym(p^(i-1)) (treated as a subgroup
of ``self``) acting on each of the parts. Call the subgroups
P_1, P_2...P_p. The generators for the subgroups P_2...P_p
can be obtained from those of P_1 by applying a "shifting"
permutation to them, that is, a permutation mapping [0..p^(i-1)-1]
to the second part (the other parts are obtained by using the shift
multiple times). The union of this permutation and the generators
of P_1 is a p-Sylow subgroup of ``self``.
For n not equal to a power of p, partition
[0..n-1] in accordance with how n would be written in base p.
E.g. for p=2 and n=11, 11 = 2^3 + 2^2 + 1 so the partition
is [[0..7], [8..9], {10}]. To generate a p-Sylow subgroup,
take the union of the generators for each of the parts.
For the above example, {(0 1), (0 2)(1 3), (0 4), (1 5)(2 7)}
from the first part, {(8 9)} from the second part and
nothing from the third. This gives 4 generators in total, and
the subgroup they generate is p-Sylow.
Alternating groups are treated the same except when p=2. In this
case, (0 1)(s s+1) should be added for an appropriate s (the start
of a part) for each part in the partitions.
See Also
========
sylow_subgroup, is_alt_sym
'''
n = self.degree
gens = []
identity = Permutation(n-1)
# the case of 2-sylow subgroups of alternating groups
# needs special treatment
alt = p == 2 and all(g.is_even for g in self.generators)
# find the presentation of n in base p
coeffs = []
m = n
while m > 0:
coeffs.append(m % p)
m = m // p
power = len(coeffs)-1
# for a symmetric group, gens[:i] is the generating
# set for a p-Sylow subgroup on [0..p**(i-1)-1]. For
# alternating groups, the same is given by gens[:2*(i-1)]
for i in range(1, power+1):
if i == 1 and alt:
# (0 1) shouldn't be added for alternating groups
continue
gen = Permutation([(j + p**(i-1)) % p**i for j in range(p**i)])
gens.append(identity*gen)
if alt:
gen = Permutation(0, 1)*gen*Permutation(0, 1)*gen
gens.append(gen)
# the first point in the current part (see the algorithm
# description in the docstring)
start = 0
while power > 0:
a = coeffs[power]
# make the permutation shifting the start of the first
# part ([0..p^i-1] for some i) to the current one
for s in range(a):
shift = Permutation()
if start > 0:
for i in range(p**power):
shift = shift(i, start + i)
if alt:
gen = Permutation(0, 1)*shift*Permutation(0, 1)*shift
gens.append(gen)
j = 2*(power - 1)
else:
j = power
for i, gen in enumerate(gens[:j]):
if alt and i % 2 == 1:
continue
# shift the generator to the start of the
# partition part
gen = shift*gen*shift
gens.append(gen)
start += p**power
power = power-1
return gens
def sylow_subgroup(self, p):
'''
Return a p-Sylow subgroup of the group.
The algorithm is described in [1], Chapter 4, Section 7
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> D = DihedralGroup(6)
>>> S = D.sylow_subgroup(2)
>>> S.order()
4
>>> G = SymmetricGroup(6)
>>> S = G.sylow_subgroup(5)
>>> S.order()
5
>>> G1 = AlternatingGroup(3)
>>> G2 = AlternatingGroup(5)
>>> G3 = AlternatingGroup(9)
>>> S1 = G1.sylow_subgroup(3)
>>> S2 = G2.sylow_subgroup(3)
>>> S3 = G3.sylow_subgroup(3)
>>> len1 = len(S1.lower_central_series())
>>> len2 = len(S2.lower_central_series())
>>> len3 = len(S3.lower_central_series())
>>> len1 == len2
True
>>> len1 < len3
True
'''
from sympy.combinatorics.homomorphisms import (
orbit_homomorphism, block_homomorphism)
from sympy.ntheory.primetest import isprime
if not isprime(p):
raise ValueError("p must be a prime")
def is_p_group(G):
# check if the order of G is a power of p
# and return the power
m = G.order()
n = 0
while m % p == 0:
m = m/p
n += 1
if m == 1:
return True, n
return False, n
def _sylow_reduce(mu, nu):
# reduction based on two homomorphisms
# mu and nu with trivially intersecting
# kernels
Q = mu.image().sylow_subgroup(p)
Q = mu.invert_subgroup(Q)
nu = nu.restrict_to(Q)
R = nu.image().sylow_subgroup(p)
return nu.invert_subgroup(R)
order = self.order()
if order % p != 0:
return PermutationGroup([self.identity])
p_group, n = is_p_group(self)
if p_group:
return self
if self.is_alt_sym():
return PermutationGroup(self._sylow_alt_sym(p))
# if there is a non-trivial orbit with size not divisible
# by p, the sylow subgroup is contained in its stabilizer
# (by orbit-stabilizer theorem)
orbits = self.orbits()
non_p_orbits = [o for o in orbits if len(o) % p != 0 and len(o) != 1]
if non_p_orbits:
G = self.stabilizer(list(non_p_orbits[0]).pop())
return G.sylow_subgroup(p)
if not self.is_transitive():
# apply _sylow_reduce to orbit actions
orbits = sorted(orbits, key = lambda x: len(x))
omega1 = orbits.pop()
omega2 = orbits[0].union(*orbits)
mu = orbit_homomorphism(self, omega1)
nu = orbit_homomorphism(self, omega2)
return _sylow_reduce(mu, nu)
blocks = self.minimal_blocks()
if len(blocks) > 1:
# apply _sylow_reduce to block system actions
mu = block_homomorphism(self, blocks[0])
nu = block_homomorphism(self, blocks[1])
return _sylow_reduce(mu, nu)
elif len(blocks) == 1:
block = list(blocks)[0]
if any(e != 0 for e in block):
# self is imprimitive
mu = block_homomorphism(self, block)
if not is_p_group(mu.image())[0]:
S = mu.image().sylow_subgroup(p)
return mu.invert_subgroup(S).sylow_subgroup(p)
# find an element of order p
g = self.random()
g_order = g.order()
while g_order % p != 0 or g_order == 0:
g = self.random()
g_order = g.order()
g = g**(g_order // p)
if order % p**2 != 0:
return PermutationGroup(g)
C = self.centralizer(g)
while C.order() % p**n != 0:
S = C.sylow_subgroup(p)
s_order = S.order()
Z = S.center()
P = Z._p_elements_group(p)
h = P.random()
C_h = self.centralizer(h)
while C_h.order() % p*s_order != 0:
h = P.random()
C_h = self.centralizer(h)
C = C_h
return C.sylow_subgroup(p)
def _block_verify(H, L, alpha):
delta = sorted(list(H.orbit(alpha)))
H_gens = H.generators
# p[i] will be the number of the block
# delta[i] belongs to
p = [-1]*len(delta)
blocks = [-1]*len(delta)
B = [[]] # future list of blocks
u = [0]*len(delta) # u[i] in L s.t. alpha^u[i] = B[0][i]
t = L.orbit_transversal(alpha, pairs=True)
for a, beta in t:
B[0].append(a)
i_a = delta.index(a)
p[i_a] = 0
blocks[i_a] = alpha
u[i_a] = beta
rho = 0
m = 0 # number of blocks - 1
while rho <= m:
beta = B[rho][0]
for g in H_gens:
d = beta^g
i_d = delta.index(d)
sigma = p[i_d]
if sigma < 0:
# define a new block
m += 1
sigma = m
u[i_d] = u[delta.index(beta)]*g
p[i_d] = sigma
rep = d
blocks[i_d] = rep
newb = [rep]
for gamma in B[rho][1:]:
i_gamma = delta.index(gamma)
d = gamma^g
i_d = delta.index(d)
if p[i_d] < 0:
u[i_d] = u[i_gamma]*g
p[i_d] = sigma
blocks[i_d] = rep
newb.append(d)
else:
# B[rho] is not a block
s = u[i_gamma]*g*u[i_d]**(-1)
return False, s
B.append(newb)
else:
for h in B[rho][1:]:
if not h^g in B[sigma]:
# B[rho] is not a block
s = u[delta.index(beta)]*g*u[i_d]**(-1)
return False, s
rho += 1
return True, blocks
def _verify(H, K, phi, z, alpha):
'''
Return a list of relators ``rels`` in generators ``gens`_h` that
are mapped to ``H.generators`` by ``phi`` so that given a finite
presentation <gens_k | rels_k> of ``K`` on a subset of ``gens_h``
<gens_h | rels_k + rels> is a finite presentation of ``H``.
Explanation
===========
``H`` should be generated by the union of ``K.generators`` and ``z``
(a single generator), and ``H.stabilizer(alpha) == K``; ``phi`` is a
canonical injection from a free group into a permutation group
containing ``H``.
The algorithm is described in [1], Chapter 6.
Examples
========
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.homomorphisms import homomorphism
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup
>>> H = PermutationGroup(Permutation(0, 2), Permutation (1, 5))
>>> K = PermutationGroup(Permutation(5)(0, 2))
>>> F = free_group("x_0 x_1")[0]
>>> gens = F.generators
>>> phi = homomorphism(F, H, F.generators, H.generators)
>>> rels_k = [gens[0]**2] # relators for presentation of K
>>> z= Permutation(1, 5)
>>> check, rels_h = H._verify(K, phi, z, 1)
>>> check
True
>>> rels = rels_k + rels_h
>>> G = FpGroup(F, rels) # presentation of H
>>> G.order() == H.order()
True
See also
========
strong_presentation, presentation, stabilizer
'''
orbit = H.orbit(alpha)
beta = alpha^(z**-1)
K_beta = K.stabilizer(beta)
# orbit representatives of K_beta
gammas = [alpha, beta]
orbits = list({tuple(K_beta.orbit(o)) for o in orbit})
orbit_reps = [orb[0] for orb in orbits]
for rep in orbit_reps:
if rep not in gammas:
gammas.append(rep)
# orbit transversal of K
betas = [alpha, beta]
transversal = {alpha: phi.invert(H.identity), beta: phi.invert(z**-1)}
for s, g in K.orbit_transversal(beta, pairs=True):
if not s in transversal:
transversal[s] = transversal[beta]*phi.invert(g)
union = K.orbit(alpha).union(K.orbit(beta))
while (len(union) < len(orbit)):
for gamma in gammas:
if gamma in union:
r = gamma^z
if r not in union:
betas.append(r)
transversal[r] = transversal[gamma]*phi.invert(z)
for s, g in K.orbit_transversal(r, pairs=True):
if not s in transversal:
transversal[s] = transversal[r]*phi.invert(g)
union = union.union(K.orbit(r))
break
# compute relators
rels = []
for b in betas:
k_gens = K.stabilizer(b).generators
for y in k_gens:
new_rel = transversal[b]
gens = K.generator_product(y, original=True)
for g in gens[::-1]:
new_rel = new_rel*phi.invert(g)
new_rel = new_rel*transversal[b]**-1
perm = phi(new_rel)
try:
gens = K.generator_product(perm, original=True)
except ValueError:
return False, perm
for g in gens:
new_rel = new_rel*phi.invert(g)**-1
if new_rel not in rels:
rels.append(new_rel)
for gamma in gammas:
new_rel = transversal[gamma]*phi.invert(z)*transversal[gamma^z]**-1
perm = phi(new_rel)
try:
gens = K.generator_product(perm, original=True)
except ValueError:
return False, perm
for g in gens:
new_rel = new_rel*phi.invert(g)**-1
if new_rel not in rels:
rels.append(new_rel)
return True, rels
def strong_presentation(G):
'''
Return a strong finite presentation of `G`. The generators
of the returned group are in the same order as the strong
generators of `G`.
The algorithm is based on Sims' Verify algorithm described
in [1], Chapter 6.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> P = DihedralGroup(4)
>>> G = P.strong_presentation()
>>> P.order() == G.order()
True
See Also
========
presentation, _verify
'''
from sympy.combinatorics.fp_groups import (FpGroup,
simplify_presentation)
from sympy.combinatorics.free_groups import free_group
from sympy.combinatorics.homomorphisms import (block_homomorphism,
homomorphism, GroupHomomorphism)
strong_gens = G.strong_gens[:]
stabs = G.basic_stabilizers[:]
base = G.base[:]
# injection from a free group on len(strong_gens)
# generators into G
gen_syms = [('x_%d'%i) for i in range(len(strong_gens))]
F = free_group(', '.join(gen_syms))[0]
phi = homomorphism(F, G, F.generators, strong_gens)
H = PermutationGroup(G.identity)
while stabs:
alpha = base.pop()
K = H
H = stabs.pop()
new_gens = [g for g in H.generators if g not in K]
if K.order() == 1:
z = new_gens.pop()
rels = [F.generators[-1]**z.order()]
intermediate_gens = [z]
K = PermutationGroup(intermediate_gens)
# add generators one at a time building up from K to H
while new_gens:
z = new_gens.pop()
intermediate_gens = [z] + intermediate_gens
K_s = PermutationGroup(intermediate_gens)
orbit = K_s.orbit(alpha)
orbit_k = K.orbit(alpha)
# split into cases based on the orbit of K_s
if orbit_k == orbit:
if z in K:
rel = phi.invert(z)
perm = z
else:
t = K.orbit_rep(alpha, alpha^z)
rel = phi.invert(z)*phi.invert(t)**-1
perm = z*t**-1
for g in K.generator_product(perm, original=True):
rel = rel*phi.invert(g)**-1
new_rels = [rel]
elif len(orbit_k) == 1:
# `success` is always true because `strong_gens`
# and `base` are already a verified BSGS. Later
# this could be changed to start with a randomly
# generated (potential) BSGS, and then new elements
# would have to be appended to it when `success`
# is false.
success, new_rels = K_s._verify(K, phi, z, alpha)
else:
# K.orbit(alpha) should be a block
# under the action of K_s on K_s.orbit(alpha)
check, block = K_s._block_verify(K, alpha)
if check:
# apply _verify to the action of K_s
# on the block system; for convenience,
# add the blocks as additional points
# that K_s should act on
t = block_homomorphism(K_s, block)
m = t.codomain.degree # number of blocks
d = K_s.degree
# conjugating with p will shift
# permutations in t.image() to
# higher numbers, e.g.
# p*(0 1)*p = (m m+1)
p = Permutation()
for i in range(m):
p *= Permutation(i, i+d)
t_img = t.images
# combine generators of K_s with their
# action on the block system
images = {g: g*p*t_img[g]*p for g in t_img}
for g in G.strong_gens[:-len(K_s.generators)]:
images[g] = g
K_s_act = PermutationGroup(list(images.values()))
f = GroupHomomorphism(G, K_s_act, images)
K_act = PermutationGroup([f(g) for g in K.generators])
success, new_rels = K_s_act._verify(K_act, f.compose(phi), f(z), d)
for n in new_rels:
if not n in rels:
rels.append(n)
K = K_s
group = FpGroup(F, rels)
return simplify_presentation(group)
def presentation(G, eliminate_gens=True):
'''
Return an `FpGroup` presentation of the group.
The algorithm is described in [1], Chapter 6.1.
'''
from sympy.combinatorics.fp_groups import (FpGroup,
simplify_presentation)
from sympy.combinatorics.coset_table import CosetTable
from sympy.combinatorics.free_groups import free_group
from sympy.combinatorics.homomorphisms import homomorphism
from itertools import product
if G._fp_presentation:
return G._fp_presentation
if G._fp_presentation:
return G._fp_presentation
def _factor_group_by_rels(G, rels):
if isinstance(G, FpGroup):
rels.extend(G.relators)
return FpGroup(G.free_group, list(set(rels)))
return FpGroup(G, rels)
gens = G.generators
len_g = len(gens)
if len_g == 1:
order = gens[0].order()
# handle the trivial group
if order == 1:
return free_group([])[0]
F, x = free_group('x')
return FpGroup(F, [x**order])
if G.order() > 20:
half_gens = G.generators[0:(len_g+1)//2]
else:
half_gens = []
H = PermutationGroup(half_gens)
H_p = H.presentation()
len_h = len(H_p.generators)
C = G.coset_table(H)
n = len(C) # subgroup index
gen_syms = [('x_%d'%i) for i in range(len(gens))]
F = free_group(', '.join(gen_syms))[0]
# mapping generators of H_p to those of F
images = [F.generators[i] for i in range(len_h)]
R = homomorphism(H_p, F, H_p.generators, images, check=False)
# rewrite relators
rels = R(H_p.relators)
G_p = FpGroup(F, rels)
# injective homomorphism from G_p into G
T = homomorphism(G_p, G, G_p.generators, gens)
C_p = CosetTable(G_p, [])
C_p.table = [[None]*(2*len_g) for i in range(n)]
# initiate the coset transversal
transversal = [None]*n
transversal[0] = G_p.identity
# fill in the coset table as much as possible
for i in range(2*len_h):
C_p.table[0][i] = 0
gamma = 1
for alpha, x in product(range(0, n), range(2*len_g)):
beta = C[alpha][x]
if beta == gamma:
gen = G_p.generators[x//2]**((-1)**(x % 2))
transversal[beta] = transversal[alpha]*gen
C_p.table[alpha][x] = beta
C_p.table[beta][x + (-1)**(x % 2)] = alpha
gamma += 1
if gamma == n:
break
C_p.p = list(range(n))
beta = x = 0
while not C_p.is_complete():
# find the first undefined entry
while C_p.table[beta][x] == C[beta][x]:
x = (x + 1) % (2*len_g)
if x == 0:
beta = (beta + 1) % n
# define a new relator
gen = G_p.generators[x//2]**((-1)**(x % 2))
new_rel = transversal[beta]*gen*transversal[C[beta][x]]**-1
perm = T(new_rel)
next = G_p.identity
for s in H.generator_product(perm, original=True):
next = next*T.invert(s)**-1
new_rel = new_rel*next
# continue coset enumeration
G_p = _factor_group_by_rels(G_p, [new_rel])
C_p.scan_and_fill(0, new_rel)
C_p = G_p.coset_enumeration([], strategy="coset_table",
draft=C_p, max_cosets=n, incomplete=True)
G._fp_presentation = simplify_presentation(G_p)
return G._fp_presentation
def polycyclic_group(self):
"""
Return the PolycyclicGroup instance with below parameters:
Explanation
===========
* ``pc_sequence`` : Polycyclic sequence is formed by collecting all
the missing generators between the adjacent groups in the
derived series of given permutation group.
* ``pc_series`` : Polycyclic series is formed by adding all the missing
generators of ``der[i+1]`` in ``der[i]``, where ``der`` represents
the derived series.
* ``relative_order`` : A list, computed by the ratio of adjacent groups in
pc_series.
"""
from sympy.combinatorics.pc_groups import PolycyclicGroup
if not self.is_polycyclic:
raise ValueError("The group must be solvable")
der = self.derived_series()
pc_series = []
pc_sequence = []
relative_order = []
pc_series.append(der[-1])
der.reverse()
for i in range(len(der)-1):
H = der[i]
for g in der[i+1].generators:
if g not in H:
H = PermutationGroup([g] + H.generators)
pc_series.insert(0, H)
pc_sequence.insert(0, g)
G1 = pc_series[0].order()
G2 = pc_series[1].order()
relative_order.insert(0, G1 // G2)
return PolycyclicGroup(pc_sequence, pc_series, relative_order, collector=None)
def _orbit(degree, generators, alpha, action='tuples'):
r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set.
Explanation
===========
The time complexity of the algorithm used here is `O(|Orb|*r)` where
`|Orb|` is the size of the orbit and ``r`` is the number of generators of
the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21.
Here alpha can be a single point, or a list of points.
If alpha is a single point, the ordinary orbit is computed.
if alpha is a list of points, there are three available options:
'union' - computes the union of the orbits of the points in the list
'tuples' - computes the orbit of the list interpreted as an ordered
tuple under the group action ( i.e., g((1, 2, 3)) = (g(1), g(2), g(3)) )
'sets' - computes the orbit of the list interpreted as a sets
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup, _orbit
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3])
>>> G = PermutationGroup([a])
>>> _orbit(G.degree, G.generators, 0)
{0, 1, 2}
>>> _orbit(G.degree, G.generators, [0, 4], 'union')
{0, 1, 2, 3, 4, 5, 6}
See Also
========
orbit, orbit_transversal
"""
if not hasattr(alpha, '__getitem__'):
alpha = [alpha]
gens = [x._array_form for x in generators]
if len(alpha) == 1 or action == 'union':
orb = alpha
used = [False]*degree
for el in alpha:
used[el] = True
for b in orb:
for gen in gens:
temp = gen[b]
if used[temp] == False:
orb.append(temp)
used[temp] = True
return set(orb)
elif action == 'tuples':
alpha = tuple(alpha)
orb = [alpha]
used = {alpha}
for b in orb:
for gen in gens:
temp = tuple([gen[x] for x in b])
if temp not in used:
orb.append(temp)
used.add(temp)
return set(orb)
elif action == 'sets':
alpha = frozenset(alpha)
orb = [alpha]
used = {alpha}
for b in orb:
for gen in gens:
temp = frozenset([gen[x] for x in b])
if temp not in used:
orb.append(temp)
used.add(temp)
return {tuple(x) for x in orb}
def _orbits(degree, generators):
"""Compute the orbits of G.
If ``rep=False`` it returns a list of sets else it returns a list of
representatives of the orbits
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.perm_groups import _orbits
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> _orbits(a.size, [a, b])
[{0, 1, 2}]
"""
orbs = []
sorted_I = list(range(degree))
I = set(sorted_I)
while I:
i = sorted_I[0]
orb = _orbit(degree, generators, i)
orbs.append(orb)
# remove all indices that are in this orbit
I -= orb
sorted_I = [i for i in sorted_I if i not in orb]
return orbs
def _orbit_transversal(degree, generators, alpha, pairs, af=False, slp=False):
r"""Computes a transversal for the orbit of ``alpha`` as a set.
Explanation
===========
generators generators of the group ``G``
For a permutation group ``G``, a transversal for the orbit
`Orb = \{g(\alpha) | g \in G\}` is a set
`\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`.
Note that there may be more than one possible transversal.
If ``pairs`` is set to ``True``, it returns the list of pairs
`(\beta, g_\beta)`. For a proof of correctness, see [1], p.79
if ``af`` is ``True``, the transversal elements are given in
array form.
If `slp` is `True`, a dictionary `{beta: slp_beta}` is returned
for `\beta \in Orb` where `slp_beta` is a list of indices of the
generators in `generators` s.t. if `slp_beta = [i_1 ... i_n]`
`g_\beta = generators[i_n]*...*generators[i_1]`.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.perm_groups import _orbit_transversal
>>> G = DihedralGroup(6)
>>> _orbit_transversal(G.degree, G.generators, 0, False)
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)]
"""
tr = [(alpha, list(range(degree)))]
slp_dict = {alpha: []}
used = [False]*degree
used[alpha] = True
gens = [x._array_form for x in generators]
for x, px in tr:
px_slp = slp_dict[x]
for gen in gens:
temp = gen[x]
if used[temp] == False:
slp_dict[temp] = [gens.index(gen)] + px_slp
tr.append((temp, _af_rmul(gen, px)))
used[temp] = True
if pairs:
if not af:
tr = [(x, _af_new(y)) for x, y in tr]
if not slp:
return tr
return tr, slp_dict
if af:
tr = [y for _, y in tr]
if not slp:
return tr
return tr, slp_dict
tr = [_af_new(y) for _, y in tr]
if not slp:
return tr
return tr, slp_dict
def _stabilizer(degree, generators, alpha):
r"""Return the stabilizer subgroup of ``alpha``.
Explanation
===========
The stabilizer of `\alpha` is the group `G_\alpha =
\{g \in G | g(\alpha) = \alpha\}`.
For a proof of correctness, see [1], p.79.
degree : degree of G
generators : generators of G
Examples
========
>>> from sympy.combinatorics.perm_groups import _stabilizer
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> _stabilizer(G.degree, G.generators, 5)
[(5)(0 4)(1 3), (5)]
See Also
========
orbit
"""
orb = [alpha]
table = {alpha: list(range(degree))}
table_inv = {alpha: list(range(degree))}
used = [False]*degree
used[alpha] = True
gens = [x._array_form for x in generators]
stab_gens = []
for b in orb:
for gen in gens:
temp = gen[b]
if used[temp] is False:
gen_temp = _af_rmul(gen, table[b])
orb.append(temp)
table[temp] = gen_temp
table_inv[temp] = _af_invert(gen_temp)
used[temp] = True
else:
schreier_gen = _af_rmuln(table_inv[temp], gen, table[b])
if schreier_gen not in stab_gens:
stab_gens.append(schreier_gen)
return [_af_new(x) for x in stab_gens]
PermGroup = PermutationGroup
class SymmetricPermutationGroup(Basic):
"""
The class defining the lazy form of SymmetricGroup.
deg : int
"""
def __new__(cls, deg):
deg = _sympify(deg)
obj = Basic.__new__(cls, deg)
obj._deg = deg
obj._order = None
return obj
def __contains__(self, i):
"""Return ``True`` if *i* is contained in SymmetricPermutationGroup.
Examples
========
>>> from sympy.combinatorics import Permutation, SymmetricPermutationGroup
>>> G = SymmetricPermutationGroup(4)
>>> Permutation(1, 2, 3) in G
True
"""
if not isinstance(i, Permutation):
raise TypeError("A SymmetricPermutationGroup contains only Permutations as "
"elements, not elements of type %s" % type(i))
return i.size == self.degree
def order(self):
"""
Return the order of the SymmetricPermutationGroup.
Examples
========
>>> from sympy.combinatorics import SymmetricPermutationGroup
>>> G = SymmetricPermutationGroup(4)
>>> G.order()
24
"""
if self._order is not None:
return self._order
n = self._deg
self._order = factorial(n)
return self._order
@property
def degree(self):
"""
Return the degree of the SymmetricPermutationGroup.
Examples
========
>>> from sympy.combinatorics import SymmetricPermutationGroup
>>> G = SymmetricPermutationGroup(4)
>>> G.degree
4
"""
return self._deg
@property
def identity(self):
'''
Return the identity element of the SymmetricPermutationGroup.
Examples
========
>>> from sympy.combinatorics import SymmetricPermutationGroup
>>> G = SymmetricPermutationGroup(4)
>>> G.identity()
(3)
'''
return _af_new(list(range(self._deg)))
class Coset(Basic):
"""A left coset of a permutation group with respect to an element.
Parameters
==========
g : Permutation
H : PermutationGroup
dir : "+" or "-", If not specified by default it will be "+"
here ``dir`` specified the type of coset "+" represent the
right coset and "-" represent the left coset.
G : PermutationGroup, optional
The group which contains *H* as its subgroup and *g* as its
element.
If not specified, it would automatically become a symmetric
group ``SymmetricPermutationGroup(g.size)`` and
``SymmetricPermutationGroup(H.degree)`` if ``g.size`` and ``H.degree``
are matching.``SymmetricPermutationGroup`` is a lazy form of SymmetricGroup
used for representation purpose.
"""
def __new__(cls, g, H, G=None, dir="+"):
g = _sympify(g)
if not isinstance(g, Permutation):
raise NotImplementedError
H = _sympify(H)
if not isinstance(H, PermutationGroup):
raise NotImplementedError
if G is not None:
G = _sympify(G)
if not isinstance(G, PermutationGroup) and not isinstance(G, SymmetricPermutationGroup):
raise NotImplementedError
if not H.is_subgroup(G):
raise ValueError("{} must be a subgroup of {}.".format(H, G))
if g not in G:
raise ValueError("{} must be an element of {}.".format(g, G))
else:
g_size = g.size
h_degree = H.degree
if g_size != h_degree:
raise ValueError(
"The size of the permutation {} and the degree of "
"the permutation group {} should be matching "
.format(g, H))
G = SymmetricPermutationGroup(g.size)
if isinstance(dir, str):
dir = Symbol(dir)
elif not isinstance(dir, Symbol):
raise TypeError("dir must be of type basestring or "
"Symbol, not %s" % type(dir))
if str(dir) not in ('+', '-'):
raise ValueError("dir must be one of '+' or '-' not %s" % dir)
obj = Basic.__new__(cls, g, H, G, dir)
obj._dir = dir
return obj
@property
def is_left_coset(self):
"""
Check if the coset is left coset that is ``gH``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup, Coset
>>> a = Permutation(1, 2)
>>> b = Permutation(0, 1)
>>> G = PermutationGroup([a, b])
>>> cst = Coset(a, G, dir="-")
>>> cst.is_left_coset
True
"""
return str(self._dir) == '-'
@property
def is_right_coset(self):
"""
Check if the coset is right coset that is ``Hg``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup, Coset
>>> a = Permutation(1, 2)
>>> b = Permutation(0, 1)
>>> G = PermutationGroup([a, b])
>>> cst = Coset(a, G, dir="+")
>>> cst.is_right_coset
True
"""
return str(self._dir) == '+'
def as_list(self):
"""
Return all the elements of coset in the form of list.
"""
g = self.args[0]
H = self.args[1]
cst = []
if str(self._dir) == '+':
for h in H.elements:
cst.append(h*g)
else:
for h in H.elements:
cst.append(g*h)
return cst
|
2728f15c50a401081edaee5c08abd83a9480b7ab4a174d4589329465e5fd4833 | import random
from collections import defaultdict
from collections.abc import Iterable
from functools import reduce
from sympy.core.parameters import global_parameters
from sympy.core.basic import Atom
from sympy.core.expr import Expr
from sympy.core.compatibility import \
is_sequence, as_int
from sympy.core.numbers import Integer
from sympy.core.sympify import _sympify
from sympy.matrices import zeros
from sympy.polys.polytools import lcm
from sympy.utilities.iterables import (flatten, has_variety, minlex,
has_dups, runs)
from mpmath.libmp.libintmath import ifac
from sympy.multipledispatch import dispatch
def _af_rmul(a, b):
"""
Return the product b*a; input and output are array forms. The ith value
is a[b[i]].
Examples
========
>>> from sympy.combinatorics.permutations import _af_rmul, Permutation
>>> a, b = [1, 0, 2], [0, 2, 1]
>>> _af_rmul(a, b)
[1, 2, 0]
>>> [a[b[i]] for i in range(3)]
[1, 2, 0]
This handles the operands in reverse order compared to the ``*`` operator:
>>> a = Permutation(a)
>>> b = Permutation(b)
>>> list(a*b)
[2, 0, 1]
>>> [b(a(i)) for i in range(3)]
[2, 0, 1]
See Also
========
rmul, _af_rmuln
"""
return [a[i] for i in b]
def _af_rmuln(*abc):
"""
Given [a, b, c, ...] return the product of ...*c*b*a using array forms.
The ith value is a[b[c[i]]].
Examples
========
>>> from sympy.combinatorics.permutations import _af_rmul, Permutation
>>> a, b = [1, 0, 2], [0, 2, 1]
>>> _af_rmul(a, b)
[1, 2, 0]
>>> [a[b[i]] for i in range(3)]
[1, 2, 0]
This handles the operands in reverse order compared to the ``*`` operator:
>>> a = Permutation(a); b = Permutation(b)
>>> list(a*b)
[2, 0, 1]
>>> [b(a(i)) for i in range(3)]
[2, 0, 1]
See Also
========
rmul, _af_rmul
"""
a = abc
m = len(a)
if m == 3:
p0, p1, p2 = a
return [p0[p1[i]] for i in p2]
if m == 4:
p0, p1, p2, p3 = a
return [p0[p1[p2[i]]] for i in p3]
if m == 5:
p0, p1, p2, p3, p4 = a
return [p0[p1[p2[p3[i]]]] for i in p4]
if m == 6:
p0, p1, p2, p3, p4, p5 = a
return [p0[p1[p2[p3[p4[i]]]]] for i in p5]
if m == 7:
p0, p1, p2, p3, p4, p5, p6 = a
return [p0[p1[p2[p3[p4[p5[i]]]]]] for i in p6]
if m == 8:
p0, p1, p2, p3, p4, p5, p6, p7 = a
return [p0[p1[p2[p3[p4[p5[p6[i]]]]]]] for i in p7]
if m == 1:
return a[0][:]
if m == 2:
a, b = a
return [a[i] for i in b]
if m == 0:
raise ValueError("String must not be empty")
p0 = _af_rmuln(*a[:m//2])
p1 = _af_rmuln(*a[m//2:])
return [p0[i] for i in p1]
def _af_parity(pi):
"""
Computes the parity of a permutation in array form.
Explanation
===========
The parity of a permutation reflects the parity of the
number of inversions in the permutation, i.e., the
number of pairs of x and y such that x > y but p[x] < p[y].
Examples
========
>>> from sympy.combinatorics.permutations import _af_parity
>>> _af_parity([0, 1, 2, 3])
0
>>> _af_parity([3, 2, 0, 1])
1
See Also
========
Permutation
"""
n = len(pi)
a = [0] * n
c = 0
for j in range(n):
if a[j] == 0:
c += 1
a[j] = 1
i = j
while pi[i] != j:
i = pi[i]
a[i] = 1
return (n - c) % 2
def _af_invert(a):
"""
Finds the inverse, ~A, of a permutation, A, given in array form.
Examples
========
>>> from sympy.combinatorics.permutations import _af_invert, _af_rmul
>>> A = [1, 2, 0, 3]
>>> _af_invert(A)
[2, 0, 1, 3]
>>> _af_rmul(_, A)
[0, 1, 2, 3]
See Also
========
Permutation, __invert__
"""
inv_form = [0] * len(a)
for i, ai in enumerate(a):
inv_form[ai] = i
return inv_form
def _af_pow(a, n):
"""
Routine for finding powers of a permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation, _af_pow
>>> p = Permutation([2, 0, 3, 1])
>>> p.order()
4
>>> _af_pow(p._array_form, 4)
[0, 1, 2, 3]
"""
if n == 0:
return list(range(len(a)))
if n < 0:
return _af_pow(_af_invert(a), -n)
if n == 1:
return a[:]
elif n == 2:
b = [a[i] for i in a]
elif n == 3:
b = [a[a[i]] for i in a]
elif n == 4:
b = [a[a[a[i]]] for i in a]
else:
# use binary multiplication
b = list(range(len(a)))
while 1:
if n & 1:
b = [b[i] for i in a]
n -= 1
if not n:
break
if n % 4 == 0:
a = [a[a[a[i]]] for i in a]
n = n // 4
elif n % 2 == 0:
a = [a[i] for i in a]
n = n // 2
return b
def _af_commutes_with(a, b):
"""
Checks if the two permutations with array forms
given by ``a`` and ``b`` commute.
Examples
========
>>> from sympy.combinatorics.permutations import _af_commutes_with
>>> _af_commutes_with([1, 2, 0], [0, 2, 1])
False
See Also
========
Permutation, commutes_with
"""
return not any(a[b[i]] != b[a[i]] for i in range(len(a) - 1))
class Cycle(dict):
"""
Wrapper around dict which provides the functionality of a disjoint cycle.
Explanation
===========
A cycle shows the rule to use to move subsets of elements to obtain
a permutation. The Cycle class is more flexible than Permutation in
that 1) all elements need not be present in order to investigate how
multiple cycles act in sequence and 2) it can contain singletons:
>>> from sympy.combinatorics.permutations import Perm, Cycle
A Cycle will automatically parse a cycle given as a tuple on the rhs:
>>> Cycle(1, 2)(2, 3)
(1 3 2)
The identity cycle, Cycle(), can be used to start a product:
>>> Cycle()(1, 2)(2, 3)
(1 3 2)
The array form of a Cycle can be obtained by calling the list
method (or passing it to the list function) and all elements from
0 will be shown:
>>> a = Cycle(1, 2)
>>> a.list()
[0, 2, 1]
>>> list(a)
[0, 2, 1]
If a larger (or smaller) range is desired use the list method and
provide the desired size -- but the Cycle cannot be truncated to
a size smaller than the largest element that is out of place:
>>> b = Cycle(2, 4)(1, 2)(3, 1, 4)(1, 3)
>>> b.list()
[0, 2, 1, 3, 4]
>>> b.list(b.size + 1)
[0, 2, 1, 3, 4, 5]
>>> b.list(-1)
[0, 2, 1]
Singletons are not shown when printing with one exception: the largest
element is always shown -- as a singleton if necessary:
>>> Cycle(1, 4, 10)(4, 5)
(1 5 4 10)
>>> Cycle(1, 2)(4)(5)(10)
(1 2)(10)
The array form can be used to instantiate a Permutation so other
properties of the permutation can be investigated:
>>> Perm(Cycle(1, 2)(3, 4).list()).transpositions()
[(1, 2), (3, 4)]
Notes
=====
The underlying structure of the Cycle is a dictionary and although
the __iter__ method has been redefined to give the array form of the
cycle, the underlying dictionary items are still available with the
such methods as items():
>>> list(Cycle(1, 2).items())
[(1, 2), (2, 1)]
See Also
========
Permutation
"""
def __missing__(self, arg):
"""Enter arg into dictionary and return arg."""
return as_int(arg)
def __iter__(self):
yield from self.list()
def __call__(self, *other):
"""Return product of cycles processed from R to L.
Examples
========
>>> from sympy.combinatorics.permutations import Cycle as C
>>> C(1, 2)(2, 3)
(1 3 2)
An instance of a Cycle will automatically parse list-like
objects and Permutations that are on the right. It is more
flexible than the Permutation in that all elements need not
be present:
>>> a = C(1, 2)
>>> a(2, 3)
(1 3 2)
>>> a(2, 3)(4, 5)
(1 3 2)(4 5)
"""
rv = Cycle(*other)
for k, v in zip(list(self.keys()), [rv[self[k]] for k in self.keys()]):
rv[k] = v
return rv
def list(self, size=None):
"""Return the cycles as an explicit list starting from 0 up
to the greater of the largest value in the cycles and size.
Truncation of trailing unmoved items will occur when size
is less than the maximum element in the cycle; if this is
desired, setting ``size=-1`` will guarantee such trimming.
Examples
========
>>> from sympy.combinatorics.permutations import Cycle
>>> p = Cycle(2, 3)(4, 5)
>>> p.list()
[0, 1, 3, 2, 5, 4]
>>> p.list(10)
[0, 1, 3, 2, 5, 4, 6, 7, 8, 9]
Passing a length too small will trim trailing, unchanged elements
in the permutation:
>>> Cycle(2, 4)(1, 2, 4).list(-1)
[0, 2, 1]
"""
if not self and size is None:
raise ValueError('must give size for empty Cycle')
if size is not None:
big = max([i for i in self.keys() if self[i] != i] + [0])
size = max(size, big + 1)
else:
size = self.size
return [self[i] for i in range(size)]
def __repr__(self):
"""We want it to print as a Cycle, not as a dict.
Examples
========
>>> from sympy.combinatorics import Cycle
>>> Cycle(1, 2)
(1 2)
>>> print(_)
(1 2)
>>> list(Cycle(1, 2).items())
[(1, 2), (2, 1)]
"""
if not self:
return 'Cycle()'
cycles = Permutation(self).cyclic_form
s = ''.join(str(tuple(c)) for c in cycles)
big = self.size - 1
if not any(i == big for c in cycles for i in c):
s += '(%s)' % big
return 'Cycle%s' % s
def __str__(self):
"""We want it to be printed in a Cycle notation with no
comma in-between.
Examples
========
>>> from sympy.combinatorics import Cycle
>>> Cycle(1, 2)
(1 2)
>>> Cycle(1, 2, 4)(5, 6)
(1 2 4)(5 6)
"""
if not self:
return '()'
cycles = Permutation(self).cyclic_form
s = ''.join(str(tuple(c)) for c in cycles)
big = self.size - 1
if not any(i == big for c in cycles for i in c):
s += '(%s)' % big
s = s.replace(',', '')
return s
def __init__(self, *args):
"""Load up a Cycle instance with the values for the cycle.
Examples
========
>>> from sympy.combinatorics.permutations import Cycle
>>> Cycle(1, 2, 6)
(1 2 6)
"""
if not args:
return
if len(args) == 1:
if isinstance(args[0], Permutation):
for c in args[0].cyclic_form:
self.update(self(*c))
return
elif isinstance(args[0], Cycle):
for k, v in args[0].items():
self[k] = v
return
args = [as_int(a) for a in args]
if any(i < 0 for i in args):
raise ValueError('negative integers are not allowed in a cycle.')
if has_dups(args):
raise ValueError('All elements must be unique in a cycle.')
for i in range(-len(args), 0):
self[args[i]] = args[i + 1]
@property
def size(self):
if not self:
return 0
return max(self.keys()) + 1
def copy(self):
return Cycle(self)
class Permutation(Atom):
"""
A permutation, alternatively known as an 'arrangement number' or 'ordering'
is an arrangement of the elements of an ordered list into a one-to-one
mapping with itself. The permutation of a given arrangement is given by
indicating the positions of the elements after re-arrangement [2]_. For
example, if one started with elements [x, y, a, b] (in that order) and
they were reordered as [x, y, b, a] then the permutation would be
[0, 1, 3, 2]. Notice that (in SymPy) the first element is always referred
to as 0 and the permutation uses the indices of the elements in the
original ordering, not the elements (a, b, etc...) themselves.
>>> from sympy.combinatorics import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
Permutations Notation
=====================
Permutations are commonly represented in disjoint cycle or array forms.
Array Notation and 2-line Form
------------------------------------
In the 2-line form, the elements and their final positions are shown
as a matrix with 2 rows:
[0 1 2 ... n-1]
[p(0) p(1) p(2) ... p(n-1)]
Since the first line is always range(n), where n is the size of p,
it is sufficient to represent the permutation by the second line,
referred to as the "array form" of the permutation. This is entered
in brackets as the argument to the Permutation class:
>>> p = Permutation([0, 2, 1]); p
Permutation([0, 2, 1])
Given i in range(p.size), the permutation maps i to i^p
>>> [i^p for i in range(p.size)]
[0, 2, 1]
The composite of two permutations p*q means first apply p, then q, so
i^(p*q) = (i^p)^q which is i^p^q according to Python precedence rules:
>>> q = Permutation([2, 1, 0])
>>> [i^p^q for i in range(3)]
[2, 0, 1]
>>> [i^(p*q) for i in range(3)]
[2, 0, 1]
One can use also the notation p(i) = i^p, but then the composition
rule is (p*q)(i) = q(p(i)), not p(q(i)):
>>> [(p*q)(i) for i in range(p.size)]
[2, 0, 1]
>>> [q(p(i)) for i in range(p.size)]
[2, 0, 1]
>>> [p(q(i)) for i in range(p.size)]
[1, 2, 0]
Disjoint Cycle Notation
-----------------------
In disjoint cycle notation, only the elements that have shifted are
indicated. In the above case, the 2 and 1 switched places. This can
be entered in two ways:
>>> Permutation(1, 2) == Permutation([[1, 2]]) == p
True
Only the relative ordering of elements in a cycle matter:
>>> Permutation(1,2,3) == Permutation(2,3,1) == Permutation(3,1,2)
True
The disjoint cycle notation is convenient when representing
permutations that have several cycles in them:
>>> Permutation(1, 2)(3, 5) == Permutation([[1, 2], [3, 5]])
True
It also provides some economy in entry when computing products of
permutations that are written in disjoint cycle notation:
>>> Permutation(1, 2)(1, 3)(2, 3)
Permutation([0, 3, 2, 1])
>>> _ == Permutation([[1, 2]])*Permutation([[1, 3]])*Permutation([[2, 3]])
True
Caution: when the cycles have common elements
between them then the order in which the
permutations are applied matters. The
convention is that the permutations are
applied from *right to left*. In the following, the
transposition of elements 2 and 3 is followed
by the transposition of elements 1 and 2:
>>> Permutation(1, 2)(2, 3) == Permutation([(1, 2), (2, 3)])
True
>>> Permutation(1, 2)(2, 3).list()
[0, 3, 1, 2]
If the first and second elements had been
swapped first, followed by the swapping of the second
and third, the result would have been [0, 2, 3, 1].
If, for some reason, you want to apply the cycles
in the order they are entered, you can simply reverse
the order of cycles:
>>> Permutation([(1, 2), (2, 3)][::-1]).list()
[0, 2, 3, 1]
Entering a singleton in a permutation is a way to indicate the size of the
permutation. The ``size`` keyword can also be used.
Array-form entry:
>>> Permutation([[1, 2], [9]])
Permutation([0, 2, 1], size=10)
>>> Permutation([[1, 2]], size=10)
Permutation([0, 2, 1], size=10)
Cyclic-form entry:
>>> Permutation(1, 2, size=10)
Permutation([0, 2, 1], size=10)
>>> Permutation(9)(1, 2)
Permutation([0, 2, 1], size=10)
Caution: no singleton containing an element larger than the largest
in any previous cycle can be entered. This is an important difference
in how Permutation and Cycle handle the __call__ syntax. A singleton
argument at the start of a Permutation performs instantiation of the
Permutation and is permitted:
>>> Permutation(5)
Permutation([], size=6)
A singleton entered after instantiation is a call to the permutation
-- a function call -- and if the argument is out of range it will
trigger an error. For this reason, it is better to start the cycle
with the singleton:
The following fails because there is no element 3:
>>> Permutation(1, 2)(3)
Traceback (most recent call last):
...
IndexError: list index out of range
This is ok: only the call to an out of range singleton is prohibited;
otherwise the permutation autosizes:
>>> Permutation(3)(1, 2)
Permutation([0, 2, 1, 3])
>>> Permutation(1, 2)(3, 4) == Permutation(3, 4)(1, 2)
True
Equality testing
----------------
The array forms must be the same in order for permutations to be equal:
>>> Permutation([1, 0, 2, 3]) == Permutation([1, 0])
False
Identity Permutation
--------------------
The identity permutation is a permutation in which no element is out of
place. It can be entered in a variety of ways. All the following create
an identity permutation of size 4:
>>> I = Permutation([0, 1, 2, 3])
>>> all(p == I for p in [
... Permutation(3),
... Permutation(range(4)),
... Permutation([], size=4),
... Permutation(size=4)])
True
Watch out for entering the range *inside* a set of brackets (which is
cycle notation):
>>> I == Permutation([range(4)])
False
Permutation Printing
====================
There are a few things to note about how Permutations are printed.
1) If you prefer one form (array or cycle) over another, you can set
``init_printing`` with the ``perm_cyclic`` flag.
>>> from sympy import init_printing
>>> p = Permutation(1, 2)(4, 5)(3, 4)
>>> p
Permutation([0, 2, 1, 4, 5, 3])
>>> init_printing(perm_cyclic=True, pretty_print=False)
>>> p
(1 2)(3 4 5)
2) Regardless of the setting, a list of elements in the array for cyclic
form can be obtained and either of those can be copied and supplied as
the argument to Permutation:
>>> p.array_form
[0, 2, 1, 4, 5, 3]
>>> p.cyclic_form
[[1, 2], [3, 4, 5]]
>>> Permutation(_) == p
True
3) Printing is economical in that as little as possible is printed while
retaining all information about the size of the permutation:
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> Permutation([1, 0, 2, 3])
Permutation([1, 0, 2, 3])
>>> Permutation([1, 0, 2, 3], size=20)
Permutation([1, 0], size=20)
>>> Permutation([1, 0, 2, 4, 3, 5, 6], size=20)
Permutation([1, 0, 2, 4, 3], size=20)
>>> p = Permutation([1, 0, 2, 3])
>>> init_printing(perm_cyclic=True, pretty_print=False)
>>> p
(3)(0 1)
>>> init_printing(perm_cyclic=False, pretty_print=False)
The 2 was not printed but it is still there as can be seen with the
array_form and size methods:
>>> p.array_form
[1, 0, 2, 3]
>>> p.size
4
Short introduction to other methods
===================================
The permutation can act as a bijective function, telling what element is
located at a given position
>>> q = Permutation([5, 2, 3, 4, 1, 0])
>>> q.array_form[1] # the hard way
2
>>> q(1) # the easy way
2
>>> {i: q(i) for i in range(q.size)} # showing the bijection
{0: 5, 1: 2, 2: 3, 3: 4, 4: 1, 5: 0}
The full cyclic form (including singletons) can be obtained:
>>> p.full_cyclic_form
[[0, 1], [2], [3]]
Any permutation can be factored into transpositions of pairs of elements:
>>> Permutation([[1, 2], [3, 4, 5]]).transpositions()
[(1, 2), (3, 5), (3, 4)]
>>> Permutation.rmul(*[Permutation([ti], size=6) for ti in _]).cyclic_form
[[1, 2], [3, 4, 5]]
The number of permutations on a set of n elements is given by n! and is
called the cardinality.
>>> p.size
4
>>> p.cardinality
24
A given permutation has a rank among all the possible permutations of the
same elements, but what that rank is depends on how the permutations are
enumerated. (There are a number of different methods of doing so.) The
lexicographic rank is given by the rank method and this rank is used to
increment a permutation with addition/subtraction:
>>> p.rank()
6
>>> p + 1
Permutation([1, 0, 3, 2])
>>> p.next_lex()
Permutation([1, 0, 3, 2])
>>> _.rank()
7
>>> p.unrank_lex(p.size, rank=7)
Permutation([1, 0, 3, 2])
The product of two permutations p and q is defined as their composition as
functions, (p*q)(i) = q(p(i)) [6]_.
>>> p = Permutation([1, 0, 2, 3])
>>> q = Permutation([2, 3, 1, 0])
>>> list(q*p)
[2, 3, 0, 1]
>>> list(p*q)
[3, 2, 1, 0]
>>> [q(p(i)) for i in range(p.size)]
[3, 2, 1, 0]
The permutation can be 'applied' to any list-like object, not only
Permutations:
>>> p(['zero', 'one', 'four', 'two'])
['one', 'zero', 'four', 'two']
>>> p('zo42')
['o', 'z', '4', '2']
If you have a list of arbitrary elements, the corresponding permutation
can be found with the from_sequence method:
>>> Permutation.from_sequence('SymPy')
Permutation([1, 3, 2, 0, 4])
Checking if a Permutation is contained in a Group
=================================================
Generally if you have a group of permutations G on n symbols, and
you're checking if a permutation on less than n symbols is part
of that group, the check will fail.
Here is an example for n=5 and we check if the cycle
(1,2,3) is in G:
>>> from sympy import init_printing
>>> init_printing(perm_cyclic=True, pretty_print=False)
>>> from sympy.combinatorics import Cycle, Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> G = PermutationGroup(Cycle(2, 3)(4, 5), Cycle(1, 2, 3, 4, 5))
>>> p1 = Permutation(Cycle(2, 5, 3))
>>> p2 = Permutation(Cycle(1, 2, 3))
>>> a1 = Permutation(Cycle(1, 2, 3).list(6))
>>> a2 = Permutation(Cycle(1, 2, 3)(5))
>>> a3 = Permutation(Cycle(1, 2, 3),size=6)
>>> for p in [p1,p2,a1,a2,a3]: p, G.contains(p)
((2 5 3), True)
((1 2 3), False)
((5)(1 2 3), True)
((5)(1 2 3), True)
((5)(1 2 3), True)
The check for p2 above will fail.
Checking if p1 is in G works because SymPy knows
G is a group on 5 symbols, and p1 is also on 5 symbols
(its largest element is 5).
For ``a1``, the ``.list(6)`` call will extend the permutation to 5
symbols, so the test will work as well. In the case of ``a2`` the
permutation is being extended to 5 symbols by using a singleton,
and in the case of ``a3`` it's extended through the constructor
argument ``size=6``.
There is another way to do this, which is to tell the ``contains``
method that the number of symbols the group is on doesn't need to
match perfectly the number of symbols for the permutation:
>>> G.contains(p2,strict=False)
True
This can be via the ``strict`` argument to the ``contains`` method,
and SymPy will try to extend the permutation on its own and then
perform the containment check.
See Also
========
Cycle
References
==========
.. [1] Skiena, S. 'Permutations.' 1.1 in Implementing Discrete Mathematics
Combinatorics and Graph Theory with Mathematica. Reading, MA:
Addison-Wesley, pp. 3-16, 1990.
.. [2] Knuth, D. E. The Art of Computer Programming, Vol. 4: Combinatorial
Algorithms, 1st ed. Reading, MA: Addison-Wesley, 2011.
.. [3] Wendy Myrvold and Frank Ruskey. 2001. Ranking and unranking
permutations in linear time. Inf. Process. Lett. 79, 6 (September 2001),
281-284. DOI=10.1016/S0020-0190(01)00141-7
.. [4] D. L. Kreher, D. R. Stinson 'Combinatorial Algorithms'
CRC Press, 1999
.. [5] Graham, R. L.; Knuth, D. E.; and Patashnik, O.
Concrete Mathematics: A Foundation for Computer Science, 2nd ed.
Reading, MA: Addison-Wesley, 1994.
.. [6] https://en.wikipedia.org/wiki/Permutation#Product_and_inverse
.. [7] https://en.wikipedia.org/wiki/Lehmer_code
"""
is_Permutation = True
_array_form = None
_cyclic_form = None
_cycle_structure = None
_size = None
_rank = None
def __new__(cls, *args, size=None, **kwargs):
"""
Constructor for the Permutation object from a list or a
list of lists in which all elements of the permutation may
appear only once.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
Permutations entered in array-form are left unaltered:
>>> Permutation([0, 2, 1])
Permutation([0, 2, 1])
Permutations entered in cyclic form are converted to array form;
singletons need not be entered, but can be entered to indicate the
largest element:
>>> Permutation([[4, 5, 6], [0, 1]])
Permutation([1, 0, 2, 3, 5, 6, 4])
>>> Permutation([[4, 5, 6], [0, 1], [19]])
Permutation([1, 0, 2, 3, 5, 6, 4], size=20)
All manipulation of permutations assumes that the smallest element
is 0 (in keeping with 0-based indexing in Python) so if the 0 is
missing when entering a permutation in array form, an error will be
raised:
>>> Permutation([2, 1])
Traceback (most recent call last):
...
ValueError: Integers 0 through 2 must be present.
If a permutation is entered in cyclic form, it can be entered without
singletons and the ``size`` specified so those values can be filled
in, otherwise the array form will only extend to the maximum value
in the cycles:
>>> Permutation([[1, 4], [3, 5, 2]], size=10)
Permutation([0, 4, 3, 5, 1, 2], size=10)
>>> _.array_form
[0, 4, 3, 5, 1, 2, 6, 7, 8, 9]
"""
if size is not None:
size = int(size)
#a) ()
#b) (1) = identity
#c) (1, 2) = cycle
#d) ([1, 2, 3]) = array form
#e) ([[1, 2]]) = cyclic form
#f) (Cycle) = conversion to permutation
#g) (Permutation) = adjust size or return copy
ok = True
if not args: # a
return cls._af_new(list(range(size or 0)))
elif len(args) > 1: # c
return cls._af_new(Cycle(*args).list(size))
if len(args) == 1:
a = args[0]
if isinstance(a, cls): # g
if size is None or size == a.size:
return a
return cls(a.array_form, size=size)
if isinstance(a, Cycle): # f
return cls._af_new(a.list(size))
if not is_sequence(a): # b
if size is not None and a + 1 > size:
raise ValueError('size is too small when max is %s' % a)
return cls._af_new(list(range(a + 1)))
if has_variety(is_sequence(ai) for ai in a):
ok = False
else:
ok = False
if not ok:
raise ValueError("Permutation argument must be a list of ints, "
"a list of lists, Permutation or Cycle.")
# safe to assume args are valid; this also makes a copy
# of the args
args = list(args[0])
is_cycle = args and is_sequence(args[0])
if is_cycle: # e
args = [[int(i) for i in c] for c in args]
else: # d
args = [int(i) for i in args]
# if there are n elements present, 0, 1, ..., n-1 should be present
# unless a cycle notation has been provided. A 0 will be added
# for convenience in case one wants to enter permutations where
# counting starts from 1.
temp = flatten(args)
if has_dups(temp) and not is_cycle:
raise ValueError('there were repeated elements.')
temp = set(temp)
if not is_cycle:
if temp != set(range(len(temp))):
raise ValueError('Integers 0 through %s must be present.' %
max(temp))
if size is not None and temp and max(temp) + 1 > size:
raise ValueError('max element should not exceed %s' % (size - 1))
if is_cycle:
# it's not necessarily canonical so we won't store
# it -- use the array form instead
c = Cycle()
for ci in args:
c = c(*ci)
aform = c.list()
else:
aform = list(args)
if size and size > len(aform):
# don't allow for truncation of permutation which
# might split a cycle and lead to an invalid aform
# but do allow the permutation size to be increased
aform.extend(list(range(len(aform), size)))
return cls._af_new(aform)
@classmethod
def _af_new(cls, perm):
"""A method to produce a Permutation object from a list;
the list is bound to the _array_form attribute, so it must
not be modified; this method is meant for internal use only;
the list ``a`` is supposed to be generated as a temporary value
in a method, so p = Perm._af_new(a) is the only object
to hold a reference to ``a``::
Examples
========
>>> from sympy.combinatorics.permutations import Perm
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> a = [2, 1, 3, 0]
>>> p = Perm._af_new(a)
>>> p
Permutation([2, 1, 3, 0])
"""
p = super().__new__(cls)
p._array_form = perm
p._size = len(perm)
return p
def _hashable_content(self):
# the array_form (a list) is the Permutation arg, so we need to
# return a tuple, instead
return tuple(self.array_form)
@property
def array_form(self):
"""
Return a copy of the attribute _array_form
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([[2, 0], [3, 1]])
>>> p.array_form
[2, 3, 0, 1]
>>> Permutation([[2, 0, 3, 1]]).array_form
[3, 2, 0, 1]
>>> Permutation([2, 0, 3, 1]).array_form
[2, 0, 3, 1]
>>> Permutation([[1, 2], [4, 5]]).array_form
[0, 2, 1, 3, 5, 4]
"""
return self._array_form[:]
def list(self, size=None):
"""Return the permutation as an explicit list, possibly
trimming unmoved elements if size is less than the maximum
element in the permutation; if this is desired, setting
``size=-1`` will guarantee such trimming.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation(2, 3)(4, 5)
>>> p.list()
[0, 1, 3, 2, 5, 4]
>>> p.list(10)
[0, 1, 3, 2, 5, 4, 6, 7, 8, 9]
Passing a length too small will trim trailing, unchanged elements
in the permutation:
>>> Permutation(2, 4)(1, 2, 4).list(-1)
[0, 2, 1]
>>> Permutation(3).list(-1)
[]
"""
if not self and size is None:
raise ValueError('must give size for empty Cycle')
rv = self.array_form
if size is not None:
if size > self.size:
rv.extend(list(range(self.size, size)))
else:
# find first value from rhs where rv[i] != i
i = self.size - 1
while rv:
if rv[-1] != i:
break
rv.pop()
i -= 1
return rv
@property
def cyclic_form(self):
"""
This is used to convert to the cyclic notation
from the canonical notation. Singletons are omitted.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 3, 1, 2])
>>> p.cyclic_form
[[1, 3, 2]]
>>> Permutation([1, 0, 2, 4, 3, 5]).cyclic_form
[[0, 1], [3, 4]]
See Also
========
array_form, full_cyclic_form
"""
if self._cyclic_form is not None:
return list(self._cyclic_form)
array_form = self.array_form
unchecked = [True] * len(array_form)
cyclic_form = []
for i in range(len(array_form)):
if unchecked[i]:
cycle = []
cycle.append(i)
unchecked[i] = False
j = i
while unchecked[array_form[j]]:
j = array_form[j]
cycle.append(j)
unchecked[j] = False
if len(cycle) > 1:
cyclic_form.append(cycle)
assert cycle == list(minlex(cycle))
cyclic_form.sort()
self._cyclic_form = cyclic_form[:]
return cyclic_form
@property
def full_cyclic_form(self):
"""Return permutation in cyclic form including singletons.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> Permutation([0, 2, 1]).full_cyclic_form
[[0], [1, 2]]
"""
need = set(range(self.size)) - set(flatten(self.cyclic_form))
rv = self.cyclic_form + [[i] for i in need]
rv.sort()
return rv
@property
def size(self):
"""
Returns the number of elements in the permutation.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([[3, 2], [0, 1]]).size
4
See Also
========
cardinality, length, order, rank
"""
return self._size
def support(self):
"""Return the elements in permutation, P, for which P[i] != i.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([[3, 2], [0, 1], [4]])
>>> p.array_form
[1, 0, 3, 2, 4]
>>> p.support()
[0, 1, 2, 3]
"""
a = self.array_form
return [i for i, e in enumerate(a) if a[i] != i]
def __add__(self, other):
"""Return permutation that is other higher in rank than self.
The rank is the lexicographical rank, with the identity permutation
having rank of 0.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> I = Permutation([0, 1, 2, 3])
>>> a = Permutation([2, 1, 3, 0])
>>> I + a.rank() == a
True
See Also
========
__sub__, inversion_vector
"""
rank = (self.rank() + other) % self.cardinality
rv = self.unrank_lex(self.size, rank)
rv._rank = rank
return rv
def __sub__(self, other):
"""Return the permutation that is other lower in rank than self.
See Also
========
__add__
"""
return self.__add__(-other)
@staticmethod
def rmul(*args):
"""
Return product of Permutations [a, b, c, ...] as the Permutation whose
ith value is a(b(c(i))).
a, b, c, ... can be Permutation objects or tuples.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> a, b = [1, 0, 2], [0, 2, 1]
>>> a = Permutation(a); b = Permutation(b)
>>> list(Permutation.rmul(a, b))
[1, 2, 0]
>>> [a(b(i)) for i in range(3)]
[1, 2, 0]
This handles the operands in reverse order compared to the ``*`` operator:
>>> a = Permutation(a); b = Permutation(b)
>>> list(a*b)
[2, 0, 1]
>>> [b(a(i)) for i in range(3)]
[2, 0, 1]
Notes
=====
All items in the sequence will be parsed by Permutation as
necessary as long as the first item is a Permutation:
>>> Permutation.rmul(a, [0, 2, 1]) == Permutation.rmul(a, b)
True
The reverse order of arguments will raise a TypeError.
"""
rv = args[0]
for i in range(1, len(args)):
rv = args[i]*rv
return rv
@classmethod
def rmul_with_af(cls, *args):
"""
same as rmul, but the elements of args are Permutation objects
which have _array_form
"""
a = [x._array_form for x in args]
rv = cls._af_new(_af_rmuln(*a))
return rv
def mul_inv(self, other):
"""
other*~self, self and other have _array_form
"""
a = _af_invert(self._array_form)
b = other._array_form
return self._af_new(_af_rmul(a, b))
def __rmul__(self, other):
"""This is needed to coerce other to Permutation in rmul."""
cls = type(self)
return cls(other)*self
def __mul__(self, other):
"""
Return the product a*b as a Permutation; the ith value is b(a(i)).
Examples
========
>>> from sympy.combinatorics.permutations import _af_rmul, Permutation
>>> a, b = [1, 0, 2], [0, 2, 1]
>>> a = Permutation(a); b = Permutation(b)
>>> list(a*b)
[2, 0, 1]
>>> [b(a(i)) for i in range(3)]
[2, 0, 1]
This handles operands in reverse order compared to _af_rmul and rmul:
>>> al = list(a); bl = list(b)
>>> _af_rmul(al, bl)
[1, 2, 0]
>>> [al[bl[i]] for i in range(3)]
[1, 2, 0]
It is acceptable for the arrays to have different lengths; the shorter
one will be padded to match the longer one:
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> b*Permutation([1, 0])
Permutation([1, 2, 0])
>>> Permutation([1, 0])*b
Permutation([2, 0, 1])
It is also acceptable to allow coercion to handle conversion of a
single list to the left of a Permutation:
>>> [0, 1]*a # no change: 2-element identity
Permutation([1, 0, 2])
>>> [[0, 1]]*a # exchange first two elements
Permutation([0, 1, 2])
You cannot use more than 1 cycle notation in a product of cycles
since coercion can only handle one argument to the left. To handle
multiple cycles it is convenient to use Cycle instead of Permutation:
>>> [[1, 2]]*[[2, 3]]*Permutation([]) # doctest: +SKIP
>>> from sympy.combinatorics.permutations import Cycle
>>> Cycle(1, 2)(2, 3)
(1 3 2)
"""
from sympy.combinatorics.perm_groups import PermutationGroup, Coset
if isinstance(other, PermutationGroup):
return Coset(self, other, dir='-')
a = self.array_form
# __rmul__ makes sure the other is a Permutation
b = other.array_form
if not b:
perm = a
else:
b.extend(list(range(len(b), len(a))))
perm = [b[i] for i in a] + b[len(a):]
return self._af_new(perm)
def commutes_with(self, other):
"""
Checks if the elements are commuting.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> a = Permutation([1, 4, 3, 0, 2, 5])
>>> b = Permutation([0, 1, 2, 3, 4, 5])
>>> a.commutes_with(b)
True
>>> b = Permutation([2, 3, 5, 4, 1, 0])
>>> a.commutes_with(b)
False
"""
a = self.array_form
b = other.array_form
return _af_commutes_with(a, b)
def __pow__(self, n):
"""
Routine for finding powers of a permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([2, 0, 3, 1])
>>> p.order()
4
>>> p**4
Permutation([0, 1, 2, 3])
"""
if isinstance(n, Permutation):
raise NotImplementedError(
'p**p is not defined; do you mean p^p (conjugate)?')
n = int(n)
return self._af_new(_af_pow(self.array_form, n))
def __rxor__(self, i):
"""Return self(i) when ``i`` is an int.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> p = Permutation(1, 2, 9)
>>> 2^p == p(2) == 9
True
"""
if int(i) == i:
return self(i)
else:
raise NotImplementedError(
"i^p = p(i) when i is an integer, not %s." % i)
def __xor__(self, h):
"""Return the conjugate permutation ``~h*self*h` `.
Explanation
===========
If ``a`` and ``b`` are conjugates, ``a = h*b*~h`` and
``b = ~h*a*h`` and both have the same cycle structure.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation(1, 2, 9)
>>> q = Permutation(6, 9, 8)
>>> p*q != q*p
True
Calculate and check properties of the conjugate:
>>> c = p^q
>>> c == ~q*p*q and p == q*c*~q
True
The expression q^p^r is equivalent to q^(p*r):
>>> r = Permutation(9)(4, 6, 8)
>>> q^p^r == q^(p*r)
True
If the term to the left of the conjugate operator, i, is an integer
then this is interpreted as selecting the ith element from the
permutation to the right:
>>> all(i^p == p(i) for i in range(p.size))
True
Note that the * operator as higher precedence than the ^ operator:
>>> q^r*p^r == q^(r*p)^r == Permutation(9)(1, 6, 4)
True
Notes
=====
In Python the precedence rule is p^q^r = (p^q)^r which differs
in general from p^(q^r)
>>> q^p^r
(9)(1 4 8)
>>> q^(p^r)
(9)(1 8 6)
For a given r and p, both of the following are conjugates of p:
~r*p*r and r*p*~r. But these are not necessarily the same:
>>> ~r*p*r == r*p*~r
True
>>> p = Permutation(1, 2, 9)(5, 6)
>>> ~r*p*r == r*p*~r
False
The conjugate ~r*p*r was chosen so that ``p^q^r`` would be equivalent
to ``p^(q*r)`` rather than ``p^(r*q)``. To obtain r*p*~r, pass ~r to
this method:
>>> p^~r == r*p*~r
True
"""
if self.size != h.size:
raise ValueError("The permutations must be of equal size.")
a = [None]*self.size
h = h._array_form
p = self._array_form
for i in range(self.size):
a[h[i]] = h[p[i]]
return self._af_new(a)
def transpositions(self):
"""
Return the permutation decomposed into a list of transpositions.
Explanation
===========
It is always possible to express a permutation as the product of
transpositions, see [1]
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([[1, 2, 3], [0, 4, 5, 6, 7]])
>>> t = p.transpositions()
>>> t
[(0, 7), (0, 6), (0, 5), (0, 4), (1, 3), (1, 2)]
>>> print(''.join(str(c) for c in t))
(0, 7)(0, 6)(0, 5)(0, 4)(1, 3)(1, 2)
>>> Permutation.rmul(*[Permutation([ti], size=p.size) for ti in t]) == p
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Transposition_%28mathematics%29#Properties
"""
a = self.cyclic_form
res = []
for x in a:
nx = len(x)
if nx == 2:
res.append(tuple(x))
elif nx > 2:
first = x[0]
for y in x[nx - 1:0:-1]:
res.append((first, y))
return res
@classmethod
def from_sequence(self, i, key=None):
"""Return the permutation needed to obtain ``i`` from the sorted
elements of ``i``. If custom sorting is desired, a key can be given.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation.from_sequence('SymPy')
(4)(0 1 3)
>>> _(sorted("SymPy"))
['S', 'y', 'm', 'P', 'y']
>>> Permutation.from_sequence('SymPy', key=lambda x: x.lower())
(4)(0 2)(1 3)
"""
ic = list(zip(i, list(range(len(i)))))
if key:
ic.sort(key=lambda x: key(x[0]))
else:
ic.sort()
return ~Permutation([i[1] for i in ic])
def __invert__(self):
"""
Return the inverse of the permutation.
A permutation multiplied by its inverse is the identity permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([[2, 0], [3, 1]])
>>> ~p
Permutation([2, 3, 0, 1])
>>> _ == p**-1
True
>>> p*~p == ~p*p == Permutation([0, 1, 2, 3])
True
"""
return self._af_new(_af_invert(self._array_form))
def __iter__(self):
"""Yield elements from array form.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> list(Permutation(range(3)))
[0, 1, 2]
"""
yield from self.array_form
def __repr__(self):
from sympy.printing.repr import srepr
return srepr(self)
def __call__(self, *i):
"""
Allows applying a permutation instance as a bijective function.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([[2, 0], [3, 1]])
>>> p.array_form
[2, 3, 0, 1]
>>> [p(i) for i in range(4)]
[2, 3, 0, 1]
If an array is given then the permutation selects the items
from the array (i.e. the permutation is applied to the array):
>>> from sympy.abc import x
>>> p([x, 1, 0, x**2])
[0, x**2, x, 1]
"""
# list indices can be Integer or int; leave this
# as it is (don't test or convert it) because this
# gets called a lot and should be fast
if len(i) == 1:
i = i[0]
if not isinstance(i, Iterable):
i = as_int(i)
if i < 0 or i > self.size:
raise TypeError(
"{} should be an integer between 0 and {}"
.format(i, self.size-1))
return self._array_form[i]
# P([a, b, c])
if len(i) != self.size:
raise TypeError(
"{} should have the length {}.".format(i, self.size))
return [i[j] for j in self._array_form]
# P(1, 2, 3)
return self*Permutation(Cycle(*i), size=self.size)
def atoms(self):
"""
Returns all the elements of a permutation
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([0, 1, 2, 3, 4, 5]).atoms()
{0, 1, 2, 3, 4, 5}
>>> Permutation([[0, 1], [2, 3], [4, 5]]).atoms()
{0, 1, 2, 3, 4, 5}
"""
return set(self.array_form)
def apply(self, i):
r"""Apply the permutation to an expression.
Parameters
==========
i : Expr
It should be an integer between $0$ and $n-1$ where $n$
is the size of the permutation.
If it is a symbol or a symbolic expression that can
have integer values, an ``AppliedPermutation`` object
will be returned which can represent an unevaluated
function.
Notes
=====
Any permutation can be defined as a bijective function
$\sigma : \{ 0, 1, ..., n-1 \} \rightarrow \{ 0, 1, ..., n-1 \}$
where $n$ denotes the size of the permutation.
The definition may even be extended for any set with distinctive
elements, such that the permutation can even be applied for
real numbers or such, however, it is not implemented for now for
computational reasons and the integrity with the group theory
module.
This function is similar to the ``__call__`` magic, however,
``__call__`` magic already has some other applications like
permuting an array or attatching new cycles, which would
not always be mathematically consistent.
This also guarantees that the return type is a SymPy integer,
which guarantees the safety to use assumptions.
"""
i = _sympify(i)
if i.is_integer is False:
raise NotImplementedError("{} should be an integer.".format(i))
n = self.size
if (i < 0) == True or (i >= n) == True:
raise NotImplementedError(
"{} should be an integer between 0 and {}".format(i, n-1))
if i.is_Integer:
return Integer(self._array_form[i])
return AppliedPermutation(self, i)
def next_lex(self):
"""
Returns the next permutation in lexicographical order.
If self is the last permutation in lexicographical order
it returns None.
See [4] section 2.4.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([2, 3, 1, 0])
>>> p = Permutation([2, 3, 1, 0]); p.rank()
17
>>> p = p.next_lex(); p.rank()
18
See Also
========
rank, unrank_lex
"""
perm = self.array_form[:]
n = len(perm)
i = n - 2
while perm[i + 1] < perm[i]:
i -= 1
if i == -1:
return None
else:
j = n - 1
while perm[j] < perm[i]:
j -= 1
perm[j], perm[i] = perm[i], perm[j]
i += 1
j = n - 1
while i < j:
perm[j], perm[i] = perm[i], perm[j]
i += 1
j -= 1
return self._af_new(perm)
@classmethod
def unrank_nonlex(self, n, r):
"""
This is a linear time unranking algorithm that does not
respect lexicographic order [3].
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> Permutation.unrank_nonlex(4, 5)
Permutation([2, 0, 3, 1])
>>> Permutation.unrank_nonlex(4, -1)
Permutation([0, 1, 2, 3])
See Also
========
next_nonlex, rank_nonlex
"""
def _unrank1(n, r, a):
if n > 0:
a[n - 1], a[r % n] = a[r % n], a[n - 1]
_unrank1(n - 1, r//n, a)
id_perm = list(range(n))
n = int(n)
r = r % ifac(n)
_unrank1(n, r, id_perm)
return self._af_new(id_perm)
def rank_nonlex(self, inv_perm=None):
"""
This is a linear time ranking algorithm that does not
enforce lexicographic order [3].
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.rank_nonlex()
23
See Also
========
next_nonlex, unrank_nonlex
"""
def _rank1(n, perm, inv_perm):
if n == 1:
return 0
s = perm[n - 1]
t = inv_perm[n - 1]
perm[n - 1], perm[t] = perm[t], s
inv_perm[n - 1], inv_perm[s] = inv_perm[s], t
return s + n*_rank1(n - 1, perm, inv_perm)
if inv_perm is None:
inv_perm = (~self).array_form
if not inv_perm:
return 0
perm = self.array_form[:]
r = _rank1(len(perm), perm, inv_perm)
return r
def next_nonlex(self):
"""
Returns the next permutation in nonlex order [3].
If self is the last permutation in this order it returns None.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([2, 0, 3, 1]); p.rank_nonlex()
5
>>> p = p.next_nonlex(); p
Permutation([3, 0, 1, 2])
>>> p.rank_nonlex()
6
See Also
========
rank_nonlex, unrank_nonlex
"""
r = self.rank_nonlex()
if r == ifac(self.size) - 1:
return None
return self.unrank_nonlex(self.size, r + 1)
def rank(self):
"""
Returns the lexicographic rank of the permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.rank()
0
>>> p = Permutation([3, 2, 1, 0])
>>> p.rank()
23
See Also
========
next_lex, unrank_lex, cardinality, length, order, size
"""
if not self._rank is None:
return self._rank
rank = 0
rho = self.array_form[:]
n = self.size - 1
size = n + 1
psize = int(ifac(n))
for j in range(size - 1):
rank += rho[j]*psize
for i in range(j + 1, size):
if rho[i] > rho[j]:
rho[i] -= 1
psize //= n
n -= 1
self._rank = rank
return rank
@property
def cardinality(self):
"""
Returns the number of all possible permutations.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.cardinality
24
See Also
========
length, order, rank, size
"""
return int(ifac(self.size))
def parity(self):
"""
Computes the parity of a permutation.
Explanation
===========
The parity of a permutation reflects the parity of the
number of inversions in the permutation, i.e., the
number of pairs of x and y such that ``x > y`` but ``p[x] < p[y]``.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.parity()
0
>>> p = Permutation([3, 2, 0, 1])
>>> p.parity()
1
See Also
========
_af_parity
"""
if self._cyclic_form is not None:
return (self.size - self.cycles) % 2
return _af_parity(self.array_form)
@property
def is_even(self):
"""
Checks if a permutation is even.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.is_even
True
>>> p = Permutation([3, 2, 1, 0])
>>> p.is_even
True
See Also
========
is_odd
"""
return not self.is_odd
@property
def is_odd(self):
"""
Checks if a permutation is odd.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.is_odd
False
>>> p = Permutation([3, 2, 0, 1])
>>> p.is_odd
True
See Also
========
is_even
"""
return bool(self.parity() % 2)
@property
def is_Singleton(self):
"""
Checks to see if the permutation contains only one number and is
thus the only possible permutation of this set of numbers
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([0]).is_Singleton
True
>>> Permutation([0, 1]).is_Singleton
False
See Also
========
is_Empty
"""
return self.size == 1
@property
def is_Empty(self):
"""
Checks to see if the permutation is a set with zero elements
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([]).is_Empty
True
>>> Permutation([0]).is_Empty
False
See Also
========
is_Singleton
"""
return self.size == 0
@property
def is_identity(self):
return self.is_Identity
@property
def is_Identity(self):
"""
Returns True if the Permutation is an identity permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([])
>>> p.is_Identity
True
>>> p = Permutation([[0], [1], [2]])
>>> p.is_Identity
True
>>> p = Permutation([0, 1, 2])
>>> p.is_Identity
True
>>> p = Permutation([0, 2, 1])
>>> p.is_Identity
False
See Also
========
order
"""
af = self.array_form
return not af or all(i == af[i] for i in range(self.size))
def ascents(self):
"""
Returns the positions of ascents in a permutation, ie, the location
where p[i] < p[i+1]
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([4, 0, 1, 3, 2])
>>> p.ascents()
[1, 2]
See Also
========
descents, inversions, min, max
"""
a = self.array_form
pos = [i for i in range(len(a) - 1) if a[i] < a[i + 1]]
return pos
def descents(self):
"""
Returns the positions of descents in a permutation, ie, the location
where p[i] > p[i+1]
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([4, 0, 1, 3, 2])
>>> p.descents()
[0, 3]
See Also
========
ascents, inversions, min, max
"""
a = self.array_form
pos = [i for i in range(len(a) - 1) if a[i] > a[i + 1]]
return pos
def max(self):
"""
The maximum element moved by the permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([1, 0, 2, 3, 4])
>>> p.max()
1
See Also
========
min, descents, ascents, inversions
"""
max = 0
a = self.array_form
for i in range(len(a)):
if a[i] != i and a[i] > max:
max = a[i]
return max
def min(self):
"""
The minimum element moved by the permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 4, 3, 2])
>>> p.min()
2
See Also
========
max, descents, ascents, inversions
"""
a = self.array_form
min = len(a)
for i in range(len(a)):
if a[i] != i and a[i] < min:
min = a[i]
return min
def inversions(self):
"""
Computes the number of inversions of a permutation.
Explanation
===========
An inversion is where i > j but p[i] < p[j].
For small length of p, it iterates over all i and j
values and calculates the number of inversions.
For large length of p, it uses a variation of merge
sort to calculate the number of inversions.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3, 4, 5])
>>> p.inversions()
0
>>> Permutation([3, 2, 1, 0]).inversions()
6
See Also
========
descents, ascents, min, max
References
==========
.. [1] http://www.cp.eng.chula.ac.th/~piak/teaching/algo/algo2008/count-inv.htm
"""
inversions = 0
a = self.array_form
n = len(a)
if n < 130:
for i in range(n - 1):
b = a[i]
for c in a[i + 1:]:
if b > c:
inversions += 1
else:
k = 1
right = 0
arr = a[:]
temp = a[:]
while k < n:
i = 0
while i + k < n:
right = i + k * 2 - 1
if right >= n:
right = n - 1
inversions += _merge(arr, temp, i, i + k, right)
i = i + k * 2
k = k * 2
return inversions
def commutator(self, x):
"""Return the commutator of ``self`` and ``x``: ``~x*~self*x*self``
If f and g are part of a group, G, then the commutator of f and g
is the group identity iff f and g commute, i.e. fg == gf.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([0, 2, 3, 1])
>>> x = Permutation([2, 0, 3, 1])
>>> c = p.commutator(x); c
Permutation([2, 1, 3, 0])
>>> c == ~x*~p*x*p
True
>>> I = Permutation(3)
>>> p = [I + i for i in range(6)]
>>> for i in range(len(p)):
... for j in range(len(p)):
... c = p[i].commutator(p[j])
... if p[i]*p[j] == p[j]*p[i]:
... assert c == I
... else:
... assert c != I
...
References
==========
https://en.wikipedia.org/wiki/Commutator
"""
a = self.array_form
b = x.array_form
n = len(a)
if len(b) != n:
raise ValueError("The permutations must be of equal size.")
inva = [None]*n
for i in range(n):
inva[a[i]] = i
invb = [None]*n
for i in range(n):
invb[b[i]] = i
return self._af_new([a[b[inva[i]]] for i in invb])
def signature(self):
"""
Gives the signature of the permutation needed to place the
elements of the permutation in canonical order.
The signature is calculated as (-1)^<number of inversions>
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2])
>>> p.inversions()
0
>>> p.signature()
1
>>> q = Permutation([0,2,1])
>>> q.inversions()
1
>>> q.signature()
-1
See Also
========
inversions
"""
if self.is_even:
return 1
return -1
def order(self):
"""
Computes the order of a permutation.
When the permutation is raised to the power of its
order it equals the identity permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([3, 1, 5, 2, 4, 0])
>>> p.order()
4
>>> (p**(p.order()))
Permutation([], size=6)
See Also
========
identity, cardinality, length, rank, size
"""
return reduce(lcm, [len(cycle) for cycle in self.cyclic_form], 1)
def length(self):
"""
Returns the number of integers moved by a permutation.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([0, 3, 2, 1]).length()
2
>>> Permutation([[0, 1], [2, 3]]).length()
4
See Also
========
min, max, support, cardinality, order, rank, size
"""
return len(self.support())
@property
def cycle_structure(self):
"""Return the cycle structure of the permutation as a dictionary
indicating the multiplicity of each cycle length.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation(3).cycle_structure
{1: 4}
>>> Permutation(0, 4, 3)(1, 2)(5, 6).cycle_structure
{2: 2, 3: 1}
"""
if self._cycle_structure:
rv = self._cycle_structure
else:
rv = defaultdict(int)
singletons = self.size
for c in self.cyclic_form:
rv[len(c)] += 1
singletons -= len(c)
if singletons:
rv[1] = singletons
self._cycle_structure = rv
return dict(rv) # make a copy
@property
def cycles(self):
"""
Returns the number of cycles contained in the permutation
(including singletons).
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([0, 1, 2]).cycles
3
>>> Permutation([0, 1, 2]).full_cyclic_form
[[0], [1], [2]]
>>> Permutation(0, 1)(2, 3).cycles
2
See Also
========
sympy.functions.combinatorial.numbers.stirling
"""
return len(self.full_cyclic_form)
def index(self):
"""
Returns the index of a permutation.
The index of a permutation is the sum of all subscripts j such
that p[j] is greater than p[j+1].
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([3, 0, 2, 1, 4])
>>> p.index()
2
"""
a = self.array_form
return sum([j for j in range(len(a) - 1) if a[j] > a[j + 1]])
def runs(self):
"""
Returns the runs of a permutation.
An ascending sequence in a permutation is called a run [5].
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([2, 5, 7, 3, 6, 0, 1, 4, 8])
>>> p.runs()
[[2, 5, 7], [3, 6], [0, 1, 4, 8]]
>>> q = Permutation([1,3,2,0])
>>> q.runs()
[[1, 3], [2], [0]]
"""
return runs(self.array_form)
def inversion_vector(self):
"""Return the inversion vector of the permutation.
The inversion vector consists of elements whose value
indicates the number of elements in the permutation
that are lesser than it and lie on its right hand side.
The inversion vector is the same as the Lehmer encoding of a
permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([4, 8, 0, 7, 1, 5, 3, 6, 2])
>>> p.inversion_vector()
[4, 7, 0, 5, 0, 2, 1, 1]
>>> p = Permutation([3, 2, 1, 0])
>>> p.inversion_vector()
[3, 2, 1]
The inversion vector increases lexicographically with the rank
of the permutation, the -ith element cycling through 0..i.
>>> p = Permutation(2)
>>> while p:
... print('%s %s %s' % (p, p.inversion_vector(), p.rank()))
... p = p.next_lex()
(2) [0, 0] 0
(1 2) [0, 1] 1
(2)(0 1) [1, 0] 2
(0 1 2) [1, 1] 3
(0 2 1) [2, 0] 4
(0 2) [2, 1] 5
See Also
========
from_inversion_vector
"""
self_array_form = self.array_form
n = len(self_array_form)
inversion_vector = [0] * (n - 1)
for i in range(n - 1):
val = 0
for j in range(i + 1, n):
if self_array_form[j] < self_array_form[i]:
val += 1
inversion_vector[i] = val
return inversion_vector
def rank_trotterjohnson(self):
"""
Returns the Trotter Johnson rank, which we get from the minimal
change algorithm. See [4] section 2.4.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.rank_trotterjohnson()
0
>>> p = Permutation([0, 2, 1, 3])
>>> p.rank_trotterjohnson()
7
See Also
========
unrank_trotterjohnson, next_trotterjohnson
"""
if self.array_form == [] or self.is_Identity:
return 0
if self.array_form == [1, 0]:
return 1
perm = self.array_form
n = self.size
rank = 0
for j in range(1, n):
k = 1
i = 0
while perm[i] != j:
if perm[i] < j:
k += 1
i += 1
j1 = j + 1
if rank % 2 == 0:
rank = j1*rank + j1 - k
else:
rank = j1*rank + k - 1
return rank
@classmethod
def unrank_trotterjohnson(cls, size, rank):
"""
Trotter Johnson permutation unranking. See [4] section 2.4.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> Permutation.unrank_trotterjohnson(5, 10)
Permutation([0, 3, 1, 2, 4])
See Also
========
rank_trotterjohnson, next_trotterjohnson
"""
perm = [0]*size
r2 = 0
n = ifac(size)
pj = 1
for j in range(2, size + 1):
pj *= j
r1 = (rank * pj) // n
k = r1 - j*r2
if r2 % 2 == 0:
for i in range(j - 1, j - k - 1, -1):
perm[i] = perm[i - 1]
perm[j - k - 1] = j - 1
else:
for i in range(j - 1, k, -1):
perm[i] = perm[i - 1]
perm[k] = j - 1
r2 = r1
return cls._af_new(perm)
def next_trotterjohnson(self):
"""
Returns the next permutation in Trotter-Johnson order.
If self is the last permutation it returns None.
See [4] section 2.4. If it is desired to generate all such
permutations, they can be generated in order more quickly
with the ``generate_bell`` function.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([3, 0, 2, 1])
>>> p.rank_trotterjohnson()
4
>>> p = p.next_trotterjohnson(); p
Permutation([0, 3, 2, 1])
>>> p.rank_trotterjohnson()
5
See Also
========
rank_trotterjohnson, unrank_trotterjohnson, sympy.utilities.iterables.generate_bell
"""
pi = self.array_form[:]
n = len(pi)
st = 0
rho = pi[:]
done = False
m = n-1
while m > 0 and not done:
d = rho.index(m)
for i in range(d, m):
rho[i] = rho[i + 1]
par = _af_parity(rho[:m])
if par == 1:
if d == m:
m -= 1
else:
pi[st + d], pi[st + d + 1] = pi[st + d + 1], pi[st + d]
done = True
else:
if d == 0:
m -= 1
st += 1
else:
pi[st + d], pi[st + d - 1] = pi[st + d - 1], pi[st + d]
done = True
if m == 0:
return None
return self._af_new(pi)
def get_precedence_matrix(self):
"""
Gets the precedence matrix. This is used for computing the
distance between two permutations.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation.josephus(3, 6, 1)
>>> p
Permutation([2, 5, 3, 1, 4, 0])
>>> p.get_precedence_matrix()
Matrix([
[0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 0],
[1, 1, 0, 1, 1, 1],
[1, 1, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 0],
[1, 1, 0, 1, 1, 0]])
See Also
========
get_precedence_distance, get_adjacency_matrix, get_adjacency_distance
"""
m = zeros(self.size)
perm = self.array_form
for i in range(m.rows):
for j in range(i + 1, m.cols):
m[perm[i], perm[j]] = 1
return m
def get_precedence_distance(self, other):
"""
Computes the precedence distance between two permutations.
Explanation
===========
Suppose p and p' represent n jobs. The precedence metric
counts the number of times a job j is preceded by job i
in both p and p'. This metric is commutative.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([2, 0, 4, 3, 1])
>>> q = Permutation([3, 1, 2, 4, 0])
>>> p.get_precedence_distance(q)
7
>>> q.get_precedence_distance(p)
7
See Also
========
get_precedence_matrix, get_adjacency_matrix, get_adjacency_distance
"""
if self.size != other.size:
raise ValueError("The permutations must be of equal size.")
self_prec_mat = self.get_precedence_matrix()
other_prec_mat = other.get_precedence_matrix()
n_prec = 0
for i in range(self.size):
for j in range(self.size):
if i == j:
continue
if self_prec_mat[i, j] * other_prec_mat[i, j] == 1:
n_prec += 1
d = self.size * (self.size - 1)//2 - n_prec
return d
def get_adjacency_matrix(self):
"""
Computes the adjacency matrix of a permutation.
Explanation
===========
If job i is adjacent to job j in a permutation p
then we set m[i, j] = 1 where m is the adjacency
matrix of p.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation.josephus(3, 6, 1)
>>> p.get_adjacency_matrix()
Matrix([
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0]])
>>> q = Permutation([0, 1, 2, 3])
>>> q.get_adjacency_matrix()
Matrix([
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
[0, 0, 0, 0]])
See Also
========
get_precedence_matrix, get_precedence_distance, get_adjacency_distance
"""
m = zeros(self.size)
perm = self.array_form
for i in range(self.size - 1):
m[perm[i], perm[i + 1]] = 1
return m
def get_adjacency_distance(self, other):
"""
Computes the adjacency distance between two permutations.
Explanation
===========
This metric counts the number of times a pair i,j of jobs is
adjacent in both p and p'. If n_adj is this quantity then
the adjacency distance is n - n_adj - 1 [1]
[1] Reeves, Colin R. Landscapes, Operators and Heuristic search, Annals
of Operational Research, 86, pp 473-490. (1999)
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 3, 1, 2, 4])
>>> q = Permutation.josephus(4, 5, 2)
>>> p.get_adjacency_distance(q)
3
>>> r = Permutation([0, 2, 1, 4, 3])
>>> p.get_adjacency_distance(r)
4
See Also
========
get_precedence_matrix, get_precedence_distance, get_adjacency_matrix
"""
if self.size != other.size:
raise ValueError("The permutations must be of the same size.")
self_adj_mat = self.get_adjacency_matrix()
other_adj_mat = other.get_adjacency_matrix()
n_adj = 0
for i in range(self.size):
for j in range(self.size):
if i == j:
continue
if self_adj_mat[i, j] * other_adj_mat[i, j] == 1:
n_adj += 1
d = self.size - n_adj - 1
return d
def get_positional_distance(self, other):
"""
Computes the positional distance between two permutations.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 3, 1, 2, 4])
>>> q = Permutation.josephus(4, 5, 2)
>>> r = Permutation([3, 1, 4, 0, 2])
>>> p.get_positional_distance(q)
12
>>> p.get_positional_distance(r)
12
See Also
========
get_precedence_distance, get_adjacency_distance
"""
a = self.array_form
b = other.array_form
if len(a) != len(b):
raise ValueError("The permutations must be of the same size.")
return sum([abs(a[i] - b[i]) for i in range(len(a))])
@classmethod
def josephus(cls, m, n, s=1):
"""Return as a permutation the shuffling of range(n) using the Josephus
scheme in which every m-th item is selected until all have been chosen.
The returned permutation has elements listed by the order in which they
were selected.
The parameter ``s`` stops the selection process when there are ``s``
items remaining and these are selected by continuing the selection,
counting by 1 rather than by ``m``.
Consider selecting every 3rd item from 6 until only 2 remain::
choices chosen
======== ======
012345
01 345 2
01 34 25
01 4 253
0 4 2531
0 25314
253140
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation.josephus(3, 6, 2).array_form
[2, 5, 3, 1, 4, 0]
References
==========
.. [1] https://en.wikipedia.org/wiki/Flavius_Josephus
.. [2] https://en.wikipedia.org/wiki/Josephus_problem
.. [3] http://www.wou.edu/~burtonl/josephus.html
"""
from collections import deque
m -= 1
Q = deque(list(range(n)))
perm = []
while len(Q) > max(s, 1):
for dp in range(m):
Q.append(Q.popleft())
perm.append(Q.popleft())
perm.extend(list(Q))
return cls(perm)
@classmethod
def from_inversion_vector(cls, inversion):
"""
Calculates the permutation from the inversion vector.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> Permutation.from_inversion_vector([3, 2, 1, 0, 0])
Permutation([3, 2, 1, 0, 4, 5])
"""
size = len(inversion)
N = list(range(size + 1))
perm = []
try:
for k in range(size):
val = N[inversion[k]]
perm.append(val)
N.remove(val)
except IndexError:
raise ValueError("The inversion vector is not valid.")
perm.extend(N)
return cls._af_new(perm)
@classmethod
def random(cls, n):
"""
Generates a random permutation of length ``n``.
Uses the underlying Python pseudo-random number generator.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1]))
True
"""
perm_array = list(range(n))
random.shuffle(perm_array)
return cls._af_new(perm_array)
@classmethod
def unrank_lex(cls, size, rank):
"""
Lexicographic permutation unranking.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> a = Permutation.unrank_lex(5, 10)
>>> a.rank()
10
>>> a
Permutation([0, 2, 4, 1, 3])
See Also
========
rank, next_lex
"""
perm_array = [0] * size
psize = 1
for i in range(size):
new_psize = psize*(i + 1)
d = (rank % new_psize) // psize
rank -= d*psize
perm_array[size - i - 1] = d
for j in range(size - i, size):
if perm_array[j] > d - 1:
perm_array[j] += 1
psize = new_psize
return cls._af_new(perm_array)
def resize(self, n):
"""Resize the permutation to the new size ``n``.
Parameters
==========
n : int
The new size of the permutation.
Raises
======
ValueError
If the permutation cannot be resized to the given size.
This may only happen when resized to a smaller size than
the original.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
Increasing the size of a permutation:
>>> p = Permutation(0, 1, 2)
>>> p = p.resize(5)
>>> p
(4)(0 1 2)
Decreasing the size of the permutation:
>>> p = p.resize(4)
>>> p
(3)(0 1 2)
If resizing to the specific size breaks the cycles:
>>> p.resize(2)
Traceback (most recent call last):
...
ValueError: The permutation can not be resized to 2 because the
cycle (0, 1, 2) may break.
"""
aform = self.array_form
l = len(aform)
if n > l:
aform += list(range(l, n))
return Permutation._af_new(aform)
elif n < l:
cyclic_form = self.full_cyclic_form
new_cyclic_form = []
for cycle in cyclic_form:
cycle_min = min(cycle)
cycle_max = max(cycle)
if cycle_min <= n-1:
if cycle_max > n-1:
raise ValueError(
"The permutation can not be resized to {} "
"because the cycle {} may break."
.format(n, tuple(cycle)))
new_cyclic_form.append(cycle)
return Permutation(new_cyclic_form)
return self
# XXX Deprecated flag
print_cyclic = None
def _merge(arr, temp, left, mid, right):
"""
Merges two sorted arrays and calculates the inversion count.
Helper function for calculating inversions. This method is
for internal use only.
"""
i = k = left
j = mid
inv_count = 0
while i < mid and j <= right:
if arr[i] < arr[j]:
temp[k] = arr[i]
k += 1
i += 1
else:
temp[k] = arr[j]
k += 1
j += 1
inv_count += (mid -i)
while i < mid:
temp[k] = arr[i]
k += 1
i += 1
if j <= right:
k += right - j + 1
j += right - j + 1
arr[left:k + 1] = temp[left:k + 1]
else:
arr[left:right + 1] = temp[left:right + 1]
return inv_count
Perm = Permutation
_af_new = Perm._af_new
class AppliedPermutation(Expr):
"""A permutation applied to a symbolic variable.
Parameters
==========
perm : Permutation
x : Expr
Examples
========
>>> from sympy import Symbol
>>> from sympy.combinatorics import Permutation
Creating a symbolic permutation function application:
>>> x = Symbol('x')
>>> p = Permutation(0, 1, 2)
>>> p.apply(x)
AppliedPermutation((0 1 2), x)
>>> _.subs(x, 1)
2
"""
def __new__(cls, perm, x, evaluate=None):
if evaluate is None:
evaluate = global_parameters.evaluate
perm = _sympify(perm)
x = _sympify(x)
if not isinstance(perm, Permutation):
raise ValueError("{} must be a Permutation instance."
.format(perm))
if evaluate:
if x.is_Integer:
return perm.apply(x)
obj = super().__new__(cls, perm, x)
return obj
@dispatch(Permutation, Permutation)
def _eval_is_eq(lhs, rhs):
if lhs._size != rhs._size:
return None
return lhs._array_form == rhs._array_form
|
ebbced9caa7ecdbdeef9f55bd99aad4061ae1d57eea3e223408000aea5849f02 | from itertools import combinations
from sympy.combinatorics.graycode import GrayCode
from sympy.core import Basic
class Subset(Basic):
"""
Represents a basic subset object.
Explanation
===========
We generate subsets using essentially two techniques,
binary enumeration and lexicographic enumeration.
The Subset class takes two arguments, the first one
describes the initial subset to consider and the second
describes the superset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.next_binary().subset
['b']
>>> a.prev_binary().subset
['c']
"""
_rank_binary = None
_rank_lex = None
_rank_graycode = None
_subset = None
_superset = None
def __new__(cls, subset, superset):
"""
Default constructor.
It takes the ``subset`` and its ``superset`` as its parameters.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.subset
['c', 'd']
>>> a.superset
['a', 'b', 'c', 'd']
>>> a.size
2
"""
if len(subset) > len(superset):
raise ValueError('Invalid arguments have been provided. The '
'superset must be larger than the subset.')
for elem in subset:
if elem not in superset:
raise ValueError('The superset provided is invalid as it does '
'not contain the element {}'.format(elem))
obj = Basic.__new__(cls)
obj._subset = subset
obj._superset = superset
return obj
def iterate_binary(self, k):
"""
This is a helper function. It iterates over the
binary subsets by ``k`` steps. This variable can be
both positive or negative.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.iterate_binary(-2).subset
['d']
>>> a = Subset(['a', 'b', 'c'], ['a', 'b', 'c', 'd'])
>>> a.iterate_binary(2).subset
[]
See Also
========
next_binary, prev_binary
"""
bin_list = Subset.bitlist_from_subset(self.subset, self.superset)
n = (int(''.join(bin_list), 2) + k) % 2**self.superset_size
bits = bin(n)[2:].rjust(self.superset_size, '0')
return Subset.subset_from_bitlist(self.superset, bits)
def next_binary(self):
"""
Generates the next binary ordered subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.next_binary().subset
['b']
>>> a = Subset(['a', 'b', 'c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.next_binary().subset
[]
See Also
========
prev_binary, iterate_binary
"""
return self.iterate_binary(1)
def prev_binary(self):
"""
Generates the previous binary ordered subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset([], ['a', 'b', 'c', 'd'])
>>> a.prev_binary().subset
['a', 'b', 'c', 'd']
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.prev_binary().subset
['c']
See Also
========
next_binary, iterate_binary
"""
return self.iterate_binary(-1)
def next_lexicographic(self):
"""
Generates the next lexicographically ordered subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.next_lexicographic().subset
['d']
>>> a = Subset(['d'], ['a', 'b', 'c', 'd'])
>>> a.next_lexicographic().subset
[]
See Also
========
prev_lexicographic
"""
i = self.superset_size - 1
indices = Subset.subset_indices(self.subset, self.superset)
if i in indices:
if i - 1 in indices:
indices.remove(i - 1)
else:
indices.remove(i)
i = i - 1
while not i in indices and i >= 0:
i = i - 1
if i >= 0:
indices.remove(i)
indices.append(i+1)
else:
while i not in indices and i >= 0:
i = i - 1
indices.append(i + 1)
ret_set = []
super_set = self.superset
for i in indices:
ret_set.append(super_set[i])
return Subset(ret_set, super_set)
def prev_lexicographic(self):
"""
Generates the previous lexicographically ordered subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset([], ['a', 'b', 'c', 'd'])
>>> a.prev_lexicographic().subset
['d']
>>> a = Subset(['c','d'], ['a', 'b', 'c', 'd'])
>>> a.prev_lexicographic().subset
['c']
See Also
========
next_lexicographic
"""
i = self.superset_size - 1
indices = Subset.subset_indices(self.subset, self.superset)
while i >= 0 and i not in indices:
i = i - 1
if i == 0 or i - 1 in indices:
indices.remove(i)
else:
if i >= 0:
indices.remove(i)
indices.append(i - 1)
indices.append(self.superset_size - 1)
ret_set = []
super_set = self.superset
for i in indices:
ret_set.append(super_set[i])
return Subset(ret_set, super_set)
def iterate_graycode(self, k):
"""
Helper function used for prev_gray and next_gray.
It performs ``k`` step overs to get the respective Gray codes.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset([1, 2, 3], [1, 2, 3, 4])
>>> a.iterate_graycode(3).subset
[1, 4]
>>> a.iterate_graycode(-2).subset
[1, 2, 4]
See Also
========
next_gray, prev_gray
"""
unranked_code = GrayCode.unrank(self.superset_size,
(self.rank_gray + k) % self.cardinality)
return Subset.subset_from_bitlist(self.superset,
unranked_code)
def next_gray(self):
"""
Generates the next Gray code ordered subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset([1, 2, 3], [1, 2, 3, 4])
>>> a.next_gray().subset
[1, 3]
See Also
========
iterate_graycode, prev_gray
"""
return self.iterate_graycode(1)
def prev_gray(self):
"""
Generates the previous Gray code ordered subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset([2, 3, 4], [1, 2, 3, 4, 5])
>>> a.prev_gray().subset
[2, 3, 4, 5]
See Also
========
iterate_graycode, next_gray
"""
return self.iterate_graycode(-1)
@property
def rank_binary(self):
"""
Computes the binary ordered rank.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset([], ['a','b','c','d'])
>>> a.rank_binary
0
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.rank_binary
3
See Also
========
iterate_binary, unrank_binary
"""
if self._rank_binary is None:
self._rank_binary = int("".join(
Subset.bitlist_from_subset(self.subset,
self.superset)), 2)
return self._rank_binary
@property
def rank_lexicographic(self):
"""
Computes the lexicographic ranking of the subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.rank_lexicographic
14
>>> a = Subset([2, 4, 5], [1, 2, 3, 4, 5, 6])
>>> a.rank_lexicographic
43
"""
if self._rank_lex is None:
def _ranklex(self, subset_index, i, n):
if subset_index == [] or i > n:
return 0
if i in subset_index:
subset_index.remove(i)
return 1 + _ranklex(self, subset_index, i + 1, n)
return 2**(n - i - 1) + _ranklex(self, subset_index, i + 1, n)
indices = Subset.subset_indices(self.subset, self.superset)
self._rank_lex = _ranklex(self, indices, 0, self.superset_size)
return self._rank_lex
@property
def rank_gray(self):
"""
Computes the Gray code ranking of the subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c','d'], ['a','b','c','d'])
>>> a.rank_gray
2
>>> a = Subset([2, 4, 5], [1, 2, 3, 4, 5, 6])
>>> a.rank_gray
27
See Also
========
iterate_graycode, unrank_gray
"""
if self._rank_graycode is None:
bits = Subset.bitlist_from_subset(self.subset, self.superset)
self._rank_graycode = GrayCode(len(bits), start=bits).rank
return self._rank_graycode
@property
def subset(self):
"""
Gets the subset represented by the current instance.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.subset
['c', 'd']
See Also
========
superset, size, superset_size, cardinality
"""
return self._subset
@property
def size(self):
"""
Gets the size of the subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.size
2
See Also
========
subset, superset, superset_size, cardinality
"""
return len(self.subset)
@property
def superset(self):
"""
Gets the superset of the subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.superset
['a', 'b', 'c', 'd']
See Also
========
subset, size, superset_size, cardinality
"""
return self._superset
@property
def superset_size(self):
"""
Returns the size of the superset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.superset_size
4
See Also
========
subset, superset, size, cardinality
"""
return len(self.superset)
@property
def cardinality(self):
"""
Returns the number of all possible subsets.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.cardinality
16
See Also
========
subset, superset, size, superset_size
"""
return 2**(self.superset_size)
@classmethod
def subset_from_bitlist(self, super_set, bitlist):
"""
Gets the subset defined by the bitlist.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> Subset.subset_from_bitlist(['a', 'b', 'c', 'd'], '0011').subset
['c', 'd']
See Also
========
bitlist_from_subset
"""
if len(super_set) != len(bitlist):
raise ValueError("The sizes of the lists are not equal")
ret_set = []
for i in range(len(bitlist)):
if bitlist[i] == '1':
ret_set.append(super_set[i])
return Subset(ret_set, super_set)
@classmethod
def bitlist_from_subset(self, subset, superset):
"""
Gets the bitlist corresponding to a subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> Subset.bitlist_from_subset(['c', 'd'], ['a', 'b', 'c', 'd'])
'0011'
See Also
========
subset_from_bitlist
"""
bitlist = ['0'] * len(superset)
if type(subset) is Subset:
subset = subset.subset
for i in Subset.subset_indices(subset, superset):
bitlist[i] = '1'
return ''.join(bitlist)
@classmethod
def unrank_binary(self, rank, superset):
"""
Gets the binary ordered subset of the specified rank.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> Subset.unrank_binary(4, ['a', 'b', 'c', 'd']).subset
['b']
See Also
========
iterate_binary, rank_binary
"""
bits = bin(rank)[2:].rjust(len(superset), '0')
return Subset.subset_from_bitlist(superset, bits)
@classmethod
def unrank_gray(self, rank, superset):
"""
Gets the Gray code ordered subset of the specified rank.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> Subset.unrank_gray(4, ['a', 'b', 'c']).subset
['a', 'b']
>>> Subset.unrank_gray(0, ['a', 'b', 'c']).subset
[]
See Also
========
iterate_graycode, rank_gray
"""
graycode_bitlist = GrayCode.unrank(len(superset), rank)
return Subset.subset_from_bitlist(superset, graycode_bitlist)
@classmethod
def subset_indices(self, subset, superset):
"""Return indices of subset in superset in a list; the list is empty
if all elements of ``subset`` are not in ``superset``.
Examples
========
>>> from sympy.combinatorics import Subset
>>> superset = [1, 3, 2, 5, 4]
>>> Subset.subset_indices([3, 2, 1], superset)
[1, 2, 0]
>>> Subset.subset_indices([1, 6], superset)
[]
>>> Subset.subset_indices([], superset)
[]
"""
a, b = superset, subset
sb = set(b)
d = {}
for i, ai in enumerate(a):
if ai in sb:
d[ai] = i
sb.remove(ai)
if not sb:
break
else:
return list()
return [d[bi] for bi in b]
def ksubsets(superset, k):
"""
Finds the subsets of size ``k`` in lexicographic order.
This uses the itertools generator.
Examples
========
>>> from sympy.combinatorics.subsets import ksubsets
>>> list(ksubsets([1, 2, 3], 2))
[(1, 2), (1, 3), (2, 3)]
>>> list(ksubsets([1, 2, 3, 4, 5], 2))
[(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), \
(2, 5), (3, 4), (3, 5), (4, 5)]
See Also
========
Subset
"""
return combinations(superset, k)
|
71743e287c2f0331b2f7fb055dd1aa68d75dad38eaf80ac6530c409e77bcf8e5 | from sympy.combinatorics.permutations import Permutation, _af_rmul, \
_af_invert, _af_new
from sympy.combinatorics.perm_groups import PermutationGroup, _orbit, \
_orbit_transversal
from sympy.combinatorics.util import _distribute_gens_by_base, \
_orbits_transversals_from_bsgs
"""
References for tensor canonicalization:
[1] R. Portugal "Algorithmic simplification of tensor expressions",
J. Phys. A 32 (1999) 7779-7789
[2] R. Portugal, B.F. Svaiter "Group-theoretic Approach for Symbolic
Tensor Manipulation: I. Free Indices"
arXiv:math-ph/0107031v1
[3] L.R.U. Manssur, R. Portugal "Group-theoretic Approach for Symbolic
Tensor Manipulation: II. Dummy Indices"
arXiv:math-ph/0107032v1
[4] xperm.c part of XPerm written by J. M. Martin-Garcia
http://www.xact.es/index.html
"""
def dummy_sgs(dummies, sym, n):
"""
Return the strong generators for dummy indices.
Parameters
==========
dummies : List of dummy indices.
`dummies[2k], dummies[2k+1]` are paired indices.
In base form, the dummy indices are always in
consecutive positions.
sym : symmetry under interchange of contracted dummies::
* None no symmetry
* 0 commuting
* 1 anticommuting
n : number of indices
Examples
========
>>> from sympy.combinatorics.tensor_can import dummy_sgs
>>> dummy_sgs(list(range(2, 8)), 0, 8)
[[0, 1, 3, 2, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 5, 4, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 7, 6, 8, 9], [0, 1, 4, 5, 2, 3, 6, 7, 8, 9],
[0, 1, 2, 3, 6, 7, 4, 5, 8, 9]]
"""
if len(dummies) > n:
raise ValueError("List too large")
res = []
# exchange of contravariant and covariant indices
if sym is not None:
for j in dummies[::2]:
a = list(range(n + 2))
if sym == 1:
a[n] = n + 1
a[n + 1] = n
a[j], a[j + 1] = a[j + 1], a[j]
res.append(a)
# rename dummy indices
for j in dummies[:-3:2]:
a = list(range(n + 2))
a[j:j + 4] = a[j + 2], a[j + 3], a[j], a[j + 1]
res.append(a)
return res
def _min_dummies(dummies, sym, indices):
"""
Return list of minima of the orbits of indices in group of dummies.
See ``double_coset_can_rep`` for the description of ``dummies`` and ``sym``.
``indices`` is the initial list of dummy indices.
Examples
========
>>> from sympy.combinatorics.tensor_can import _min_dummies
>>> _min_dummies([list(range(2, 8))], [0], list(range(10)))
[0, 1, 2, 2, 2, 2, 2, 2, 8, 9]
"""
num_types = len(sym)
m = []
for dx in dummies:
if dx:
m.append(min(dx))
else:
m.append(None)
res = indices[:]
for i in range(num_types):
for c, i in enumerate(indices):
for j in range(num_types):
if i in dummies[j]:
res[c] = m[j]
break
return res
def _trace_S(s, j, b, S_cosets):
"""
Return the representative h satisfying s[h[b]] == j
If there is not such a representative return None
"""
for h in S_cosets[b]:
if s[h[b]] == j:
return h
return None
def _trace_D(gj, p_i, Dxtrav):
"""
Return the representative h satisfying h[gj] == p_i
If there is not such a representative return None
"""
for h in Dxtrav:
if h[gj] == p_i:
return h
return None
def _dumx_remove(dumx, dumx_flat, p0):
"""
remove p0 from dumx
"""
res = []
for dx in dumx:
if p0 not in dx:
res.append(dx)
continue
k = dx.index(p0)
if k % 2 == 0:
p0_paired = dx[k + 1]
else:
p0_paired = dx[k - 1]
dx.remove(p0)
dx.remove(p0_paired)
dumx_flat.remove(p0)
dumx_flat.remove(p0_paired)
res.append(dx)
def transversal2coset(size, base, transversal):
a = []
j = 0
for i in range(size):
if i in base:
a.append(sorted(transversal[j].values()))
j += 1
else:
a.append([list(range(size))])
j = len(a) - 1
while a[j] == [list(range(size))]:
j -= 1
return a[:j + 1]
def double_coset_can_rep(dummies, sym, b_S, sgens, S_transversals, g):
"""
Butler-Portugal algorithm for tensor canonicalization with dummy indices.
Parameters
==========
dummies
list of lists of dummy indices,
one list for each type of index;
the dummy indices are put in order contravariant, covariant
[d0, -d0, d1, -d1, ...].
sym
list of the symmetries of the index metric for each type.
possible symmetries of the metrics
* 0 symmetric
* 1 antisymmetric
* None no symmetry
b_S
base of a minimal slot symmetry BSGS.
sgens
generators of the slot symmetry BSGS.
S_transversals
transversals for the slot BSGS.
g
permutation representing the tensor.
Returns
=======
Return 0 if the tensor is zero, else return the array form of
the permutation representing the canonical form of the tensor.
Notes
=====
A tensor with dummy indices can be represented in a number
of equivalent ways which typically grows exponentially with
the number of indices. To be able to establish if two tensors
with many indices are equal becomes computationally very slow
in absence of an efficient algorithm.
The Butler-Portugal algorithm [3] is an efficient algorithm to
put tensors in canonical form, solving the above problem.
Portugal observed that a tensor can be represented by a permutation,
and that the class of tensors equivalent to it under slot and dummy
symmetries is equivalent to the double coset `D*g*S`
(Note: in this documentation we use the conventions for multiplication
of permutations p, q with (p*q)(i) = p[q[i]] which is opposite
to the one used in the Permutation class)
Using the algorithm by Butler to find a representative of the
double coset one can find a canonical form for the tensor.
To see this correspondence,
let `g` be a permutation in array form; a tensor with indices `ind`
(the indices including both the contravariant and the covariant ones)
can be written as
`t = T(ind[g[0]],..., ind[g[n-1]])`,
where `n= len(ind)`;
`g` has size `n + 2`, the last two indices for the sign of the tensor
(trick introduced in [4]).
A slot symmetry transformation `s` is a permutation acting on the slots
`t -> T(ind[(g*s)[0]],..., ind[(g*s)[n-1]])`
A dummy symmetry transformation acts on `ind`
`t -> T(ind[(d*g)[0]],..., ind[(d*g)[n-1]])`
Being interested only in the transformations of the tensor under
these symmetries, one can represent the tensor by `g`, which transforms
as
`g -> d*g*s`, so it belongs to the coset `D*g*S`, or in other words
to the set of all permutations allowed by the slot and dummy symmetries.
Let us explain the conventions by an example.
Given a tensor `T^{d3 d2 d1}{}_{d1 d2 d3}` with the slot symmetries
`T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`
`T^{a0 a1 a2 a3 a4 a5} = -T^{a4 a1 a2 a3 a0 a5}`
and symmetric metric, find the tensor equivalent to it which
is the lowest under the ordering of indices:
lexicographic ordering `d1, d2, d3` and then contravariant
before covariant index; that is the canonical form of the tensor.
The canonical form is `-T^{d1 d2 d3}{}_{d1 d2 d3}`
obtained using `T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`.
To convert this problem in the input for this function,
use the following ordering of the index names
(- for covariant for short) `d1, -d1, d2, -d2, d3, -d3`
`T^{d3 d2 d1}{}_{d1 d2 d3}` corresponds to `g = [4, 2, 0, 1, 3, 5, 6, 7]`
where the last two indices are for the sign
`sgens = [Permutation(0, 2)(6, 7), Permutation(0, 4)(6, 7)]`
sgens[0] is the slot symmetry `-(0, 2)`
`T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`
sgens[1] is the slot symmetry `-(0, 4)`
`T^{a0 a1 a2 a3 a4 a5} = -T^{a4 a1 a2 a3 a0 a5}`
The dummy symmetry group D is generated by the strong base generators
`[(0, 1), (2, 3), (4, 5), (0, 2)(1, 3), (0, 4)(1, 5)]`
where the first three interchange covariant and contravariant
positions of the same index (d1 <-> -d1) and the last two interchange
the dummy indices themselves (d1 <-> d2).
The dummy symmetry acts from the left
`d = [1, 0, 2, 3, 4, 5, 6, 7]` exchange `d1 <-> -d1`
`T^{d3 d2 d1}{}_{d1 d2 d3} == T^{d3 d2}{}_{d1}{}^{d1}{}_{d2 d3}`
`g=[4, 2, 0, 1, 3, 5, 6, 7] -> [4, 2, 1, 0, 3, 5, 6, 7] = _af_rmul(d, g)`
which differs from `_af_rmul(g, d)`.
The slot symmetry acts from the right
`s = [2, 1, 0, 3, 4, 5, 7, 6]` exchanges slots 0 and 2 and changes sign
`T^{d3 d2 d1}{}_{d1 d2 d3} == -T^{d1 d2 d3}{}_{d1 d2 d3}`
`g=[4,2,0,1,3,5,6,7] -> [0, 2, 4, 1, 3, 5, 7, 6] = _af_rmul(g, s)`
Example in which the tensor is zero, same slot symmetries as above:
`T^{d2}{}_{d1 d3}{}^{d1 d3}{}_{d2}`
`= -T^{d3}{}_{d1 d3}{}^{d1 d2}{}_{d2}` under slot symmetry `-(0,4)`;
`= T_{d3 d1}{}^{d3}{}^{d1 d2}{}_{d2}` under slot symmetry `-(0,2)`;
`= T^{d3}{}_{d1 d3}{}^{d1 d2}{}_{d2}` symmetric metric;
`= 0` since two of these lines have tensors differ only for the sign.
The double coset D*g*S consists of permutations `h = d*g*s` corresponding
to equivalent tensors; if there are two `h` which are the same apart
from the sign, return zero; otherwise
choose as representative the tensor with indices
ordered lexicographically according to `[d1, -d1, d2, -d2, d3, -d3]`
that is `rep = min(D*g*S) = min([d*g*s for d in D for s in S])`
The indices are fixed one by one; first choose the lowest index
for slot 0, then the lowest remaining index for slot 1, etc.
Doing this one obtains a chain of stabilizers
`S -> S_{b0} -> S_{b0,b1} -> ...` and
`D -> D_{p0} -> D_{p0,p1} -> ...`
where `[b0, b1, ...] = range(b)` is a base of the symmetric group;
the strong base `b_S` of S is an ordered sublist of it;
therefore it is sufficient to compute once the
strong base generators of S using the Schreier-Sims algorithm;
the stabilizers of the strong base generators are the
strong base generators of the stabilizer subgroup.
`dbase = [p0, p1, ...]` is not in general in lexicographic order,
so that one must recompute the strong base generators each time;
however this is trivial, there is no need to use the Schreier-Sims
algorithm for D.
The algorithm keeps a TAB of elements `(s_i, d_i, h_i)`
where `h_i = d_i*g*s_i` satisfying `h_i[j] = p_j` for `0 <= j < i`
starting from `s_0 = id, d_0 = id, h_0 = g`.
The equations `h_0[0] = p_0, h_1[1] = p_1,...` are solved in this order,
choosing each time the lowest possible value of p_i
For `j < i`
`d_i*g*s_i*S_{b_0,...,b_{i-1}}*b_j = D_{p_0,...,p_{i-1}}*p_j`
so that for dx in `D_{p_0,...,p_{i-1}}` and sx in
`S_{base[0],...,base[i-1]}` one has `dx*d_i*g*s_i*sx*b_j = p_j`
Search for dx, sx such that this equation holds for `j = i`;
it can be written as `s_i*sx*b_j = J, dx*d_i*g*J = p_j`
`sx*b_j = s_i**-1*J; sx = trace(s_i**-1, S_{b_0,...,b_{i-1}})`
`dx**-1*p_j = d_i*g*J; dx = trace(d_i*g*J, D_{p_0,...,p_{i-1}})`
`s_{i+1} = s_i*trace(s_i**-1*J, S_{b_0,...,b_{i-1}})`
`d_{i+1} = trace(d_i*g*J, D_{p_0,...,p_{i-1}})**-1*d_i`
`h_{i+1}*b_i = d_{i+1}*g*s_{i+1}*b_i = p_i`
`h_n*b_j = p_j` for all j, so that `h_n` is the solution.
Add the found `(s, d, h)` to TAB1.
At the end of the iteration sort TAB1 with respect to the `h`;
if there are two consecutive `h` in TAB1 which differ only for the
sign, the tensor is zero, so return 0;
if there are two consecutive `h` which are equal, keep only one.
Then stabilize the slot generators under `i` and the dummy generators
under `p_i`.
Assign `TAB = TAB1` at the end of the iteration step.
At the end `TAB` contains a unique `(s, d, h)`, since all the slots
of the tensor `h` have been fixed to have the minimum value according
to the symmetries. The algorithm returns `h`.
It is important that the slot BSGS has lexicographic minimal base,
otherwise there is an `i` which does not belong to the slot base
for which `p_i` is fixed by the dummy symmetry only, while `i`
is not invariant from the slot stabilizer, so `p_i` is not in
general the minimal value.
This algorithm differs slightly from the original algorithm [3]:
the canonical form is minimal lexicographically, and
the BSGS has minimal base under lexicographic order.
Equal tensors `h` are eliminated from TAB.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.tensor_can import double_coset_can_rep, get_transversals
>>> gens = [Permutation(x) for x in [[2, 1, 0, 3, 4, 5, 7, 6], [4, 1, 2, 3, 0, 5, 7, 6]]]
>>> base = [0, 2]
>>> g = Permutation([4, 2, 0, 1, 3, 5, 6, 7])
>>> transversals = get_transversals(base, gens)
>>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g)
[0, 1, 2, 3, 4, 5, 7, 6]
>>> g = Permutation([4, 1, 3, 0, 5, 2, 6, 7])
>>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g)
0
"""
size = g.size
g = g.array_form
num_dummies = size - 2
indices = list(range(num_dummies))
all_metrics_with_sym = not any(_ is None for _ in sym)
num_types = len(sym)
dumx = dummies[:]
dumx_flat = []
for dx in dumx:
dumx_flat.extend(dx)
b_S = b_S[:]
sgensx = [h._array_form for h in sgens]
if b_S:
S_transversals = transversal2coset(size, b_S, S_transversals)
# strong generating set for D
dsgsx = []
for i in range(num_types):
dsgsx.extend(dummy_sgs(dumx[i], sym[i], num_dummies))
idn = list(range(size))
# TAB = list of entries (s, d, h) where h = _af_rmuln(d,g,s)
# for short, in the following d*g*s means _af_rmuln(d,g,s)
TAB = [(idn, idn, g)]
for i in range(size - 2):
b = i
testb = b in b_S and sgensx
if testb:
sgensx1 = [_af_new(_) for _ in sgensx]
deltab = _orbit(size, sgensx1, b)
else:
deltab = {b}
# p1 = min(IMAGES) = min(Union D_p*h*deltab for h in TAB)
if all_metrics_with_sym:
md = _min_dummies(dumx, sym, indices)
else:
md = [min(_orbit(size, [_af_new(
ddx) for ddx in dsgsx], ii)) for ii in range(size - 2)]
p_i = min([min([md[h[x]] for x in deltab]) for s, d, h in TAB])
dsgsx1 = [_af_new(_) for _ in dsgsx]
Dxtrav = _orbit_transversal(size, dsgsx1, p_i, False, af=True) \
if dsgsx else None
if Dxtrav:
Dxtrav = [_af_invert(x) for x in Dxtrav]
# compute the orbit of p_i
for ii in range(num_types):
if p_i in dumx[ii]:
# the orbit is made by all the indices in dum[ii]
if sym[ii] is not None:
deltap = dumx[ii]
else:
# the orbit is made by all the even indices if p_i
# is even, by all the odd indices if p_i is odd
p_i_index = dumx[ii].index(p_i) % 2
deltap = dumx[ii][p_i_index::2]
break
else:
deltap = [p_i]
TAB1 = []
while TAB:
s, d, h = TAB.pop()
if min([md[h[x]] for x in deltab]) != p_i:
continue
deltab1 = [x for x in deltab if md[h[x]] == p_i]
# NEXT = s*deltab1 intersection (d*g)**-1*deltap
dg = _af_rmul(d, g)
dginv = _af_invert(dg)
sdeltab = [s[x] for x in deltab1]
gdeltap = [dginv[x] for x in deltap]
NEXT = [x for x in sdeltab if x in gdeltap]
# d, s satisfy
# d*g*s*base[i-1] = p_{i-1}; using the stabilizers
# d*g*s*S_{base[0],...,base[i-1]}*base[i-1] =
# D_{p_0,...,p_{i-1}}*p_{i-1}
# so that to find d1, s1 satisfying d1*g*s1*b = p_i
# one can look for dx in D_{p_0,...,p_{i-1}} and
# sx in S_{base[0],...,base[i-1]}
# d1 = dx*d; s1 = s*sx
# d1*g*s1*b = dx*d*g*s*sx*b = p_i
for j in NEXT:
if testb:
# solve s1*b = j with s1 = s*sx for some element sx
# of the stabilizer of ..., base[i-1]
# sx*b = s**-1*j; sx = _trace_S(s, j,...)
# s1 = s*trace_S(s**-1*j,...)
s1 = _trace_S(s, j, b, S_transversals)
if not s1:
continue
else:
s1 = [s[ix] for ix in s1]
else:
s1 = s
# assert s1[b] == j # invariant
# solve d1*g*j = p_i with d1 = dx*d for some element dg
# of the stabilizer of ..., p_{i-1}
# dx**-1*p_i = d*g*j; dx**-1 = trace_D(d*g*j,...)
# d1 = trace_D(d*g*j,...)**-1*d
# to save an inversion in the inner loop; notice we did
# Dxtrav = [perm_af_invert(x) for x in Dxtrav] out of the loop
if Dxtrav:
d1 = _trace_D(dg[j], p_i, Dxtrav)
if not d1:
continue
else:
if p_i != dg[j]:
continue
d1 = idn
assert d1[dg[j]] == p_i # invariant
d1 = [d1[ix] for ix in d]
h1 = [d1[g[ix]] for ix in s1]
# assert h1[b] == p_i # invariant
TAB1.append((s1, d1, h1))
# if TAB contains equal permutations, keep only one of them;
# if TAB contains equal permutations up to the sign, return 0
TAB1.sort(key=lambda x: x[-1])
prev = [0] * size
while TAB1:
s, d, h = TAB1.pop()
if h[:-2] == prev[:-2]:
if h[-1] != prev[-1]:
return 0
else:
TAB.append((s, d, h))
prev = h
# stabilize the SGS
sgensx = [h for h in sgensx if h[b] == b]
if b in b_S:
b_S.remove(b)
_dumx_remove(dumx, dumx_flat, p_i)
dsgsx = []
for i in range(num_types):
dsgsx.extend(dummy_sgs(dumx[i], sym[i], num_dummies))
return TAB[0][-1]
def canonical_free(base, gens, g, num_free):
"""
Canonicalization of a tensor with respect to free indices
choosing the minimum with respect to lexicographical ordering
in the free indices.
Explanation
===========
``base``, ``gens`` BSGS for slot permutation group
``g`` permutation representing the tensor
``num_free`` number of free indices
The indices must be ordered with first the free indices
See explanation in double_coset_can_rep
The algorithm is a variation of the one given in [2].
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.tensor_can import canonical_free
>>> gens = [[1, 0, 2, 3, 5, 4], [2, 3, 0, 1, 4, 5],[0, 1, 3, 2, 5, 4]]
>>> gens = [Permutation(h) for h in gens]
>>> base = [0, 2]
>>> g = Permutation([2, 1, 0, 3, 4, 5])
>>> canonical_free(base, gens, g, 4)
[0, 3, 1, 2, 5, 4]
Consider the product of Riemann tensors
``T = R^{a}_{d0}^{d1,d2}*R_{d2,d1}^{d0,b}``
The order of the indices is ``[a, b, d0, -d0, d1, -d1, d2, -d2]``
The permutation corresponding to the tensor is
``g = [0, 3, 4, 6, 7, 5, 2, 1, 8, 9]``
In particular ``a`` is position ``0``, ``b`` is in position ``9``.
Use the slot symmetries to get `T` is a form which is the minimal
in lexicographic order in the free indices ``a`` and ``b``, e.g.
``-R^{a}_{d0}^{d1,d2}*R^{b,d0}_{d2,d1}`` corresponding to
``[0, 3, 4, 6, 1, 2, 7, 5, 9, 8]``
>>> from sympy.combinatorics.tensor_can import riemann_bsgs, tensor_gens
>>> base, gens = riemann_bsgs
>>> size, sbase, sgens = tensor_gens(base, gens, [[], []], 0)
>>> g = Permutation([0, 3, 4, 6, 7, 5, 2, 1, 8, 9])
>>> canonical_free(sbase, [Permutation(h) for h in sgens], g, 2)
[0, 3, 4, 6, 1, 2, 7, 5, 9, 8]
"""
g = g.array_form
size = len(g)
if not base:
return g[:]
transversals = get_transversals(base, gens)
for x in sorted(g[:-2]):
if x not in base:
base.append(x)
h = g
for i, transv in enumerate(transversals):
h_i = [size]*num_free
# find the element s in transversals[i] such that
# _af_rmul(h, s) has its free elements with the lowest position in h
s = None
for sk in transv.values():
h1 = _af_rmul(h, sk)
hi = [h1.index(ix) for ix in range(num_free)]
if hi < h_i:
h_i = hi
s = sk
if s:
h = _af_rmul(h, s)
return h
def _get_map_slots(size, fixed_slots):
res = list(range(size))
pos = 0
for i in range(size):
if i in fixed_slots:
continue
res[i] = pos
pos += 1
return res
def _lift_sgens(size, fixed_slots, free, s):
a = []
j = k = 0
fd = list(zip(fixed_slots, free))
fd = [y for x, y in sorted(fd)]
num_free = len(free)
for i in range(size):
if i in fixed_slots:
a.append(fd[k])
k += 1
else:
a.append(s[j] + num_free)
j += 1
return a
def canonicalize(g, dummies, msym, *v):
"""
canonicalize tensor formed by tensors
Parameters
==========
g : permutation representing the tensor
dummies : list representing the dummy indices
it can be a list of dummy indices of the same type
or a list of lists of dummy indices, one list for each
type of index;
the dummy indices must come after the free indices,
and put in order contravariant, covariant
[d0, -d0, d1,-d1,...]
msym : symmetry of the metric(s)
it can be an integer or a list;
in the first case it is the symmetry of the dummy index metric;
in the second case it is the list of the symmetries of the
index metric for each type
v : list, (base_i, gens_i, n_i, sym_i) for tensors of type `i`
base_i, gens_i : BSGS for tensors of this type.
The BSGS should have minimal base under lexicographic ordering;
if not, an attempt is made do get the minimal BSGS;
in case of failure,
canonicalize_naive is used, which is much slower.
n_i : number of tensors of type `i`.
sym_i : symmetry under exchange of component tensors of type `i`.
Both for msym and sym_i the cases are
* None no symmetry
* 0 commuting
* 1 anticommuting
Returns
=======
0 if the tensor is zero, else return the array form of
the permutation representing the canonical form of the tensor.
Algorithm
=========
First one uses canonical_free to get the minimum tensor under
lexicographic order, using only the slot symmetries.
If the component tensors have not minimal BSGS, it is attempted
to find it; if the attempt fails canonicalize_naive
is used instead.
Compute the residual slot symmetry keeping fixed the free indices
using tensor_gens(base, gens, list_free_indices, sym).
Reduce the problem eliminating the free indices.
Then use double_coset_can_rep and lift back the result reintroducing
the free indices.
Examples
========
one type of index with commuting metric;
`A_{a b}` and `B_{a b}` antisymmetric and commuting
`T = A_{d0 d1} * B^{d0}{}_{d2} * B^{d2 d1}`
`ord = [d0,-d0,d1,-d1,d2,-d2]` order of the indices
g = [1, 3, 0, 5, 4, 2, 6, 7]
`T_c = 0`
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize, bsgs_direct_product
>>> from sympy.combinatorics import Permutation
>>> base2a, gens2a = get_symmetric_group_sgs(2, 1)
>>> t0 = (base2a, gens2a, 1, 0)
>>> t1 = (base2a, gens2a, 2, 0)
>>> g = Permutation([1, 3, 0, 5, 4, 2, 6, 7])
>>> canonicalize(g, range(6), 0, t0, t1)
0
same as above, but with `B_{a b}` anticommuting
`T_c = -A^{d0 d1} * B_{d0}{}^{d2} * B_{d1 d2}`
can = [0,2,1,4,3,5,7,6]
>>> t1 = (base2a, gens2a, 2, 1)
>>> canonicalize(g, range(6), 0, t0, t1)
[0, 2, 1, 4, 3, 5, 7, 6]
two types of indices `[a,b,c,d,e,f]` and `[m,n]`, in this order,
both with commuting metric
`f^{a b c}` antisymmetric, commuting
`A_{m a}` no symmetry, commuting
`T = f^c{}_{d a} * f^f{}_{e b} * A_m{}^d * A^{m b} * A_n{}^a * A^{n e}`
ord = [c,f,a,-a,b,-b,d,-d,e,-e,m,-m,n,-n]
g = [0,7,3, 1,9,5, 11,6, 10,4, 13,2, 12,8, 14,15]
The canonical tensor is
`T_c = -f^{c a b} * f^{f d e} * A^m{}_a * A_{m d} * A^n{}_b * A_{n e}`
can = [0,2,4, 1,6,8, 10,3, 11,7, 12,5, 13,9, 15,14]
>>> base_f, gens_f = get_symmetric_group_sgs(3, 1)
>>> base1, gens1 = get_symmetric_group_sgs(1)
>>> base_A, gens_A = bsgs_direct_product(base1, gens1, base1, gens1)
>>> t0 = (base_f, gens_f, 2, 0)
>>> t1 = (base_A, gens_A, 4, 0)
>>> dummies = [range(2, 10), range(10, 14)]
>>> g = Permutation([0, 7, 3, 1, 9, 5, 11, 6, 10, 4, 13, 2, 12, 8, 14, 15])
>>> canonicalize(g, dummies, [0, 0], t0, t1)
[0, 2, 4, 1, 6, 8, 10, 3, 11, 7, 12, 5, 13, 9, 15, 14]
"""
from sympy.combinatorics.testutil import canonicalize_naive
if not isinstance(msym, list):
if not msym in (0, 1, None):
raise ValueError('msym must be 0, 1 or None')
num_types = 1
else:
num_types = len(msym)
if not all(msymx in (0, 1, None) for msymx in msym):
raise ValueError('msym entries must be 0, 1 or None')
if len(dummies) != num_types:
raise ValueError(
'dummies and msym must have the same number of elements')
size = g.size
num_tensors = 0
v1 = []
for i in range(len(v)):
base_i, gens_i, n_i, sym_i = v[i]
# check that the BSGS is minimal;
# this property is used in double_coset_can_rep;
# if it is not minimal use canonicalize_naive
if not _is_minimal_bsgs(base_i, gens_i):
mbsgs = get_minimal_bsgs(base_i, gens_i)
if not mbsgs:
can = canonicalize_naive(g, dummies, msym, *v)
return can
base_i, gens_i = mbsgs
v1.append((base_i, gens_i, [[]] * n_i, sym_i))
num_tensors += n_i
if num_types == 1 and not isinstance(msym, list):
dummies = [dummies]
msym = [msym]
flat_dummies = []
for dumx in dummies:
flat_dummies.extend(dumx)
if flat_dummies and flat_dummies != list(range(flat_dummies[0], flat_dummies[-1] + 1)):
raise ValueError('dummies is not valid')
# slot symmetry of the tensor
size1, sbase, sgens = gens_products(*v1)
if size != size1:
raise ValueError(
'g has size %d, generators have size %d' % (size, size1))
free = [i for i in range(size - 2) if i not in flat_dummies]
num_free = len(free)
# g1 minimal tensor under slot symmetry
g1 = canonical_free(sbase, sgens, g, num_free)
if not flat_dummies:
return g1
# save the sign of g1
sign = 0 if g1[-1] == size - 1 else 1
# the free indices are kept fixed.
# Determine free_i, the list of slots of tensors which are fixed
# since they are occupied by free indices, which are fixed.
start = 0
for i in range(len(v)):
free_i = []
base_i, gens_i, n_i, sym_i = v[i]
len_tens = gens_i[0].size - 2
# for each component tensor get a list od fixed islots
for j in range(n_i):
# get the elements corresponding to the component tensor
h = g1[start:(start + len_tens)]
fr = []
# get the positions of the fixed elements in h
for k in free:
if k in h:
fr.append(h.index(k))
free_i.append(fr)
start += len_tens
v1[i] = (base_i, gens_i, free_i, sym_i)
# BSGS of the tensor with fixed free indices
# if tensor_gens fails in gens_product, use canonicalize_naive
size, sbase, sgens = gens_products(*v1)
# reduce the permutations getting rid of the free indices
pos_free = [g1.index(x) for x in range(num_free)]
size_red = size - num_free
g1_red = [x - num_free for x in g1 if x in flat_dummies]
if sign:
g1_red.extend([size_red - 1, size_red - 2])
else:
g1_red.extend([size_red - 2, size_red - 1])
map_slots = _get_map_slots(size, pos_free)
sbase_red = [map_slots[i] for i in sbase if i not in pos_free]
sgens_red = [_af_new([map_slots[i] for i in y._array_form if i not in pos_free]) for y in sgens]
dummies_red = [[x - num_free for x in y] for y in dummies]
transv_red = get_transversals(sbase_red, sgens_red)
g1_red = _af_new(g1_red)
g2 = double_coset_can_rep(
dummies_red, msym, sbase_red, sgens_red, transv_red, g1_red)
if g2 == 0:
return 0
# lift to the case with the free indices
g3 = _lift_sgens(size, pos_free, free, g2)
return g3
def perm_af_direct_product(gens1, gens2, signed=True):
"""
Direct products of the generators gens1 and gens2.
Examples
========
>>> from sympy.combinatorics.tensor_can import perm_af_direct_product
>>> gens1 = [[1, 0, 2, 3], [0, 1, 3, 2]]
>>> gens2 = [[1, 0]]
>>> perm_af_direct_product(gens1, gens2, False)
[[1, 0, 2, 3, 4, 5], [0, 1, 3, 2, 4, 5], [0, 1, 2, 3, 5, 4]]
>>> gens1 = [[1, 0, 2, 3, 5, 4], [0, 1, 3, 2, 4, 5]]
>>> gens2 = [[1, 0, 2, 3]]
>>> perm_af_direct_product(gens1, gens2, True)
[[1, 0, 2, 3, 4, 5, 7, 6], [0, 1, 3, 2, 4, 5, 6, 7], [0, 1, 2, 3, 5, 4, 6, 7]]
"""
gens1 = [list(x) for x in gens1]
gens2 = [list(x) for x in gens2]
s = 2 if signed else 0
n1 = len(gens1[0]) - s
n2 = len(gens2[0]) - s
start = list(range(n1))
end = list(range(n1, n1 + n2))
if signed:
gens1 = [gen[:-2] + end + [gen[-2] + n2, gen[-1] + n2]
for gen in gens1]
gens2 = [start + [x + n1 for x in gen] for gen in gens2]
else:
gens1 = [gen + end for gen in gens1]
gens2 = [start + [x + n1 for x in gen] for gen in gens2]
res = gens1 + gens2
return res
def bsgs_direct_product(base1, gens1, base2, gens2, signed=True):
"""
Direct product of two BSGS.
Parameters
==========
base1 : base of the first BSGS.
gens1 : strong generating sequence of the first BSGS.
base2, gens2 : similarly for the second BSGS.
signed : flag for signed permutations.
Examples
========
>>> from sympy.combinatorics.tensor_can import (get_symmetric_group_sgs, bsgs_direct_product)
>>> base1, gens1 = get_symmetric_group_sgs(1)
>>> base2, gens2 = get_symmetric_group_sgs(2)
>>> bsgs_direct_product(base1, gens1, base2, gens2)
([1], [(4)(1 2)])
"""
s = 2 if signed else 0
n1 = gens1[0].size - s
base = list(base1)
base += [x + n1 for x in base2]
gens1 = [h._array_form for h in gens1]
gens2 = [h._array_form for h in gens2]
gens = perm_af_direct_product(gens1, gens2, signed)
size = len(gens[0])
id_af = list(range(size))
gens = [h for h in gens if h != id_af]
if not gens:
gens = [id_af]
return base, [_af_new(h) for h in gens]
def get_symmetric_group_sgs(n, antisym=False):
"""
Return base, gens of the minimal BSGS for (anti)symmetric tensor
Parameters
==========
``n``: rank of the tensor
``antisym`` : bool
``antisym = False`` symmetric tensor
``antisym = True`` antisymmetric tensor
Examples
========
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs
>>> get_symmetric_group_sgs(3)
([0, 1], [(4)(0 1), (4)(1 2)])
"""
if n == 1:
return [], [_af_new(list(range(3)))]
gens = [Permutation(n - 1)(i, i + 1)._array_form for i in range(n - 1)]
if antisym == 0:
gens = [x + [n, n + 1] for x in gens]
else:
gens = [x + [n + 1, n] for x in gens]
base = list(range(n - 1))
return base, [_af_new(h) for h in gens]
riemann_bsgs = [0, 2], [Permutation(0, 1)(4, 5), Permutation(2, 3)(4, 5),
Permutation(5)(0, 2)(1, 3)]
def get_transversals(base, gens):
"""
Return transversals for the group with BSGS base, gens
"""
if not base:
return []
stabs = _distribute_gens_by_base(base, gens)
orbits, transversals = _orbits_transversals_from_bsgs(base, stabs)
transversals = [{x: h._array_form for x, h in y.items()} for y in
transversals]
return transversals
def _is_minimal_bsgs(base, gens):
"""
Check if the BSGS has minimal base under lexigographic order.
base, gens BSGS
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.tensor_can import riemann_bsgs, _is_minimal_bsgs
>>> _is_minimal_bsgs(*riemann_bsgs)
True
>>> riemann_bsgs1 = ([2, 0], ([Permutation(5)(0, 1)(4, 5), Permutation(5)(0, 2)(1, 3)]))
>>> _is_minimal_bsgs(*riemann_bsgs1)
False
"""
base1 = []
sgs1 = gens[:]
size = gens[0].size
for i in range(size):
if not all(h._array_form[i] == i for h in sgs1):
base1.append(i)
sgs1 = [h for h in sgs1 if h._array_form[i] == i]
return base1 == base
def get_minimal_bsgs(base, gens):
"""
Compute a minimal GSGS
base, gens BSGS
If base, gens is a minimal BSGS return it; else return a minimal BSGS
if it fails in finding one, it returns None
TODO: use baseswap in the case in which if it fails in finding a
minimal BSGS
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.tensor_can import get_minimal_bsgs
>>> riemann_bsgs1 = ([2, 0], ([Permutation(5)(0, 1)(4, 5), Permutation(5)(0, 2)(1, 3)]))
>>> get_minimal_bsgs(*riemann_bsgs1)
([0, 2], [(0 1)(4 5), (5)(0 2)(1 3), (2 3)(4 5)])
"""
G = PermutationGroup(gens)
base, gens = G.schreier_sims_incremental()
if not _is_minimal_bsgs(base, gens):
return None
return base, gens
def tensor_gens(base, gens, list_free_indices, sym=0):
"""
Returns size, res_base, res_gens BSGS for n tensors of the
same type.
Explanation
===========
base, gens BSGS for tensors of this type
list_free_indices list of the slots occupied by fixed indices
for each of the tensors
sym symmetry under commutation of two tensors
sym None no symmetry
sym 0 commuting
sym 1 anticommuting
Examples
========
>>> from sympy.combinatorics.tensor_can import tensor_gens, get_symmetric_group_sgs
two symmetric tensors with 3 indices without free indices
>>> base, gens = get_symmetric_group_sgs(3)
>>> tensor_gens(base, gens, [[], []])
(8, [0, 1, 3, 4], [(7)(0 1), (7)(1 2), (7)(3 4), (7)(4 5), (7)(0 3)(1 4)(2 5)])
two symmetric tensors with 3 indices with free indices in slot 1 and 0
>>> tensor_gens(base, gens, [[1], [0]])
(8, [0, 4], [(7)(0 2), (7)(4 5)])
four symmetric tensors with 3 indices, two of which with free indices
"""
def _get_bsgs(G, base, gens, free_indices):
"""
return the BSGS for G.pointwise_stabilizer(free_indices)
"""
if not free_indices:
return base[:], gens[:]
else:
H = G.pointwise_stabilizer(free_indices)
base, sgs = H.schreier_sims_incremental()
return base, sgs
# if not base there is no slot symmetry for the component tensors
# if list_free_indices.count([]) < 2 there is no commutation symmetry
# so there is no resulting slot symmetry
if not base and list_free_indices.count([]) < 2:
n = len(list_free_indices)
size = gens[0].size
size = n * (size - 2) + 2
return size, [], [_af_new(list(range(size)))]
# if any(list_free_indices) one needs to compute the pointwise
# stabilizer, so G is needed
if any(list_free_indices):
G = PermutationGroup(gens)
else:
G = None
# no_free list of lists of indices for component tensors without fixed
# indices
no_free = []
size = gens[0].size
id_af = list(range(size))
num_indices = size - 2
if not list_free_indices[0]:
no_free.append(list(range(num_indices)))
res_base, res_gens = _get_bsgs(G, base, gens, list_free_indices[0])
for i in range(1, len(list_free_indices)):
base1, gens1 = _get_bsgs(G, base, gens, list_free_indices[i])
res_base, res_gens = bsgs_direct_product(res_base, res_gens,
base1, gens1, 1)
if not list_free_indices[i]:
no_free.append(list(range(size - 2, size - 2 + num_indices)))
size += num_indices
nr = size - 2
res_gens = [h for h in res_gens if h._array_form != id_af]
# if sym there are no commuting tensors stop here
if sym is None or not no_free:
if not res_gens:
res_gens = [_af_new(id_af)]
return size, res_base, res_gens
# if the component tensors have moinimal BSGS, so is their direct
# product P; the slot symmetry group is S = P*C, where C is the group
# to (anti)commute the component tensors with no free indices
# a stabilizer has the property S_i = P_i*C_i;
# the BSGS of P*C has SGS_P + SGS_C and the base is
# the ordered union of the bases of P and C.
# If P has minimal BSGS, so has S with this base.
base_comm = []
for i in range(len(no_free) - 1):
ind1 = no_free[i]
ind2 = no_free[i + 1]
a = list(range(ind1[0]))
a.extend(ind2)
a.extend(ind1)
base_comm.append(ind1[0])
a.extend(list(range(ind2[-1] + 1, nr)))
if sym == 0:
a.extend([nr, nr + 1])
else:
a.extend([nr + 1, nr])
res_gens.append(_af_new(a))
res_base = list(res_base)
# each base is ordered; order the union of the two bases
for i in base_comm:
if i not in res_base:
res_base.append(i)
res_base.sort()
if not res_gens:
res_gens = [_af_new(id_af)]
return size, res_base, res_gens
def gens_products(*v):
"""
Returns size, res_base, res_gens BSGS for n tensors of different types.
Explanation
===========
v is a sequence of (base_i, gens_i, free_i, sym_i)
where
base_i, gens_i BSGS of tensor of type `i`
free_i list of the fixed slots for each of the tensors
of type `i`; if there are `n_i` tensors of type `i`
and none of them have fixed slots, `free = [[]]*n_i`
sym 0 (1) if the tensors of type `i` (anti)commute among themselves
Examples
========
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, gens_products
>>> base, gens = get_symmetric_group_sgs(2)
>>> gens_products((base, gens, [[], []], 0))
(6, [0, 2], [(5)(0 1), (5)(2 3), (5)(0 2)(1 3)])
>>> gens_products((base, gens, [[1], []], 0))
(6, [2], [(5)(2 3)])
"""
res_size, res_base, res_gens = tensor_gens(*v[0])
for i in range(1, len(v)):
size, base, gens = tensor_gens(*v[i])
res_base, res_gens = bsgs_direct_product(res_base, res_gens, base,
gens, 1)
res_size = res_gens[0].size
id_af = list(range(res_size))
res_gens = [h for h in res_gens if h != id_af]
if not res_gens:
res_gens = [id_af]
return res_size, res_base, res_gens
|
bf205b360d705c971f9310693dd3d0e01ac34251c8cbd1d1ce52c53a3cf73a52 | from sympy.combinatorics import Permutation as Perm
from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.core import Basic, Tuple
from sympy.core.compatibility import as_int
from sympy.sets import FiniteSet
from sympy.utilities.iterables import (minlex, unflatten, flatten, default_sort_key)
rmul = Perm.rmul
class Polyhedron(Basic):
"""
Represents the polyhedral symmetry group (PSG).
Explanation
===========
The PSG is one of the symmetry groups of the Platonic solids.
There are three polyhedral groups: the tetrahedral group
of order 12, the octahedral group of order 24, and the
icosahedral group of order 60.
All doctests have been given in the docstring of the
constructor of the object.
References
==========
.. [1] http://mathworld.wolfram.com/PolyhedralGroup.html
"""
_edges = None
def __new__(cls, corners, faces=(), pgroup=()):
"""
The constructor of the Polyhedron group object.
Explanation
===========
It takes up to three parameters: the corners, faces, and
allowed transformations.
The corners/vertices are entered as a list of arbitrary
expressions that are used to identify each vertex.
The faces are entered as a list of tuples of indices; a tuple
of indices identifies the vertices which define the face. They
should be entered in a cw or ccw order; they will be standardized
by reversal and rotation to be give the lowest lexical ordering.
If no faces are given then no edges will be computed.
>>> from sympy.combinatorics.polyhedron import Polyhedron
>>> Polyhedron(list('abc'), [(1, 2, 0)]).faces
{(0, 1, 2)}
>>> Polyhedron(list('abc'), [(1, 0, 2)]).faces
{(0, 1, 2)}
The allowed transformations are entered as allowable permutations
of the vertices for the polyhedron. Instance of Permutations
(as with faces) should refer to the supplied vertices by index.
These permutation are stored as a PermutationGroup.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> from sympy.abc import w, x, y, z
>>> init_printing(pretty_print=False, perm_cyclic=False)
Here we construct the Polyhedron object for a tetrahedron.
>>> corners = [w, x, y, z]
>>> faces = [(0, 1, 2), (0, 2, 3), (0, 3, 1), (1, 2, 3)]
Next, allowed transformations of the polyhedron must be given. This
is given as permutations of vertices.
Although the vertices of a tetrahedron can be numbered in 24 (4!)
different ways, there are only 12 different orientations for a
physical tetrahedron. The following permutations, applied once or
twice, will generate all 12 of the orientations. (The identity
permutation, Permutation(range(4)), is not included since it does
not change the orientation of the vertices.)
>>> pgroup = [Permutation([[0, 1, 2], [3]]), \
Permutation([[0, 1, 3], [2]]), \
Permutation([[0, 2, 3], [1]]), \
Permutation([[1, 2, 3], [0]]), \
Permutation([[0, 1], [2, 3]]), \
Permutation([[0, 2], [1, 3]]), \
Permutation([[0, 3], [1, 2]])]
The Polyhedron is now constructed and demonstrated:
>>> tetra = Polyhedron(corners, faces, pgroup)
>>> tetra.size
4
>>> tetra.edges
{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}
>>> tetra.corners
(w, x, y, z)
It can be rotated with an arbitrary permutation of vertices, e.g.
the following permutation is not in the pgroup:
>>> tetra.rotate(Permutation([0, 1, 3, 2]))
>>> tetra.corners
(w, x, z, y)
An allowed permutation of the vertices can be constructed by
repeatedly applying permutations from the pgroup to the vertices.
Here is a demonstration that applying p and p**2 for every p in
pgroup generates all the orientations of a tetrahedron and no others:
>>> all = ( (w, x, y, z), \
(x, y, w, z), \
(y, w, x, z), \
(w, z, x, y), \
(z, w, y, x), \
(w, y, z, x), \
(y, z, w, x), \
(x, z, y, w), \
(z, y, x, w), \
(y, x, z, w), \
(x, w, z, y), \
(z, x, w, y) )
>>> got = []
>>> for p in (pgroup + [p**2 for p in pgroup]):
... h = Polyhedron(corners)
... h.rotate(p)
... got.append(h.corners)
...
>>> set(got) == set(all)
True
The make_perm method of a PermutationGroup will randomly pick
permutations, multiply them together, and return the permutation that
can be applied to the polyhedron to give the orientation produced
by those individual permutations.
Here, 3 permutations are used:
>>> tetra.pgroup.make_perm(3) # doctest: +SKIP
Permutation([0, 3, 1, 2])
To select the permutations that should be used, supply a list
of indices to the permutations in pgroup in the order they should
be applied:
>>> use = [0, 0, 2]
>>> p002 = tetra.pgroup.make_perm(3, use)
>>> p002
Permutation([1, 0, 3, 2])
Apply them one at a time:
>>> tetra.reset()
>>> for i in use:
... tetra.rotate(pgroup[i])
...
>>> tetra.vertices
(x, w, z, y)
>>> sequentially = tetra.vertices
Apply the composite permutation:
>>> tetra.reset()
>>> tetra.rotate(p002)
>>> tetra.corners
(x, w, z, y)
>>> tetra.corners in all and tetra.corners == sequentially
True
Notes
=====
Defining permutation groups
---------------------------
It is not necessary to enter any permutations, nor is necessary to
enter a complete set of transformations. In fact, for a polyhedron,
all configurations can be constructed from just two permutations.
For example, the orientations of a tetrahedron can be generated from
an axis passing through a vertex and face and another axis passing
through a different vertex or from an axis passing through the
midpoints of two edges opposite of each other.
For simplicity of presentation, consider a square --
not a cube -- with vertices 1, 2, 3, and 4:
1-----2 We could think of axes of rotation being:
| | 1) through the face
| | 2) from midpoint 1-2 to 3-4 or 1-3 to 2-4
3-----4 3) lines 1-4 or 2-3
To determine how to write the permutations, imagine 4 cameras,
one at each corner, labeled A-D:
A B A B
1-----2 1-----3 vertex index:
| | | | 1 0
| | | | 2 1
3-----4 2-----4 3 2
C D C D 4 3
original after rotation
along 1-4
A diagonal and a face axis will be chosen for the "permutation group"
from which any orientation can be constructed.
>>> pgroup = []
Imagine a clockwise rotation when viewing 1-4 from camera A. The new
orientation is (in camera-order): 1, 3, 2, 4 so the permutation is
given using the *indices* of the vertices as:
>>> pgroup.append(Permutation((0, 2, 1, 3)))
Now imagine rotating clockwise when looking down an axis entering the
center of the square as viewed. The new camera-order would be
3, 1, 4, 2 so the permutation is (using indices):
>>> pgroup.append(Permutation((2, 0, 3, 1)))
The square can now be constructed:
** use real-world labels for the vertices, entering them in
camera order
** for the faces we use zero-based indices of the vertices
in *edge-order* as the face is traversed; neither the
direction nor the starting point matter -- the faces are
only used to define edges (if so desired).
>>> square = Polyhedron((1, 2, 3, 4), [(0, 1, 3, 2)], pgroup)
To rotate the square with a single permutation we can do:
>>> square.rotate(square.pgroup[0])
>>> square.corners
(1, 3, 2, 4)
To use more than one permutation (or to use one permutation more
than once) it is more convenient to use the make_perm method:
>>> p011 = square.pgroup.make_perm([0, 1, 1]) # diag flip + 2 rotations
>>> square.reset() # return to initial orientation
>>> square.rotate(p011)
>>> square.corners
(4, 2, 3, 1)
Thinking outside the box
------------------------
Although the Polyhedron object has a direct physical meaning, it
actually has broader application. In the most general sense it is
just a decorated PermutationGroup, allowing one to connect the
permutations to something physical. For example, a Rubik's cube is
not a proper polyhedron, but the Polyhedron class can be used to
represent it in a way that helps to visualize the Rubik's cube.
>>> from sympy.utilities.iterables import flatten, unflatten
>>> from sympy import symbols
>>> from sympy.combinatorics import RubikGroup
>>> facelets = flatten([symbols(s+'1:5') for s in 'UFRBLD'])
>>> def show():
... pairs = unflatten(r2.corners, 2)
... print(pairs[::2])
... print(pairs[1::2])
...
>>> r2 = Polyhedron(facelets, pgroup=RubikGroup(2))
>>> show()
[(U1, U2), (F1, F2), (R1, R2), (B1, B2), (L1, L2), (D1, D2)]
[(U3, U4), (F3, F4), (R3, R4), (B3, B4), (L3, L4), (D3, D4)]
>>> r2.rotate(0) # cw rotation of F
>>> show()
[(U1, U2), (F3, F1), (U3, R2), (B1, B2), (L1, D1), (R3, R1)]
[(L4, L2), (F4, F2), (U4, R4), (B3, B4), (L3, D2), (D3, D4)]
Predefined Polyhedra
====================
For convenience, the vertices and faces are defined for the following
standard solids along with a permutation group for transformations.
When the polyhedron is oriented as indicated below, the vertices in
a given horizontal plane are numbered in ccw direction, starting from
the vertex that will give the lowest indices in a given face. (In the
net of the vertices, indices preceded by "-" indicate replication of
the lhs index in the net.)
tetrahedron, tetrahedron_faces
------------------------------
4 vertices (vertex up) net:
0 0-0
1 2 3-1
4 faces:
(0, 1, 2) (0, 2, 3) (0, 3, 1) (1, 2, 3)
cube, cube_faces
----------------
8 vertices (face up) net:
0 1 2 3-0
4 5 6 7-4
6 faces:
(0, 1, 2, 3)
(0, 1, 5, 4) (1, 2, 6, 5) (2, 3, 7, 6) (0, 3, 7, 4)
(4, 5, 6, 7)
octahedron, octahedron_faces
----------------------------
6 vertices (vertex up) net:
0 0 0-0
1 2 3 4-1
5 5 5-5
8 faces:
(0, 1, 2) (0, 2, 3) (0, 3, 4) (0, 1, 4)
(1, 2, 5) (2, 3, 5) (3, 4, 5) (1, 4, 5)
dodecahedron, dodecahedron_faces
--------------------------------
20 vertices (vertex up) net:
0 1 2 3 4 -0
5 6 7 8 9 -5
14 10 11 12 13-14
15 16 17 18 19-15
12 faces:
(0, 1, 2, 3, 4) (0, 1, 6, 10, 5) (1, 2, 7, 11, 6)
(2, 3, 8, 12, 7) (3, 4, 9, 13, 8) (0, 4, 9, 14, 5)
(5, 10, 16, 15, 14) (6, 10, 16, 17, 11) (7, 11, 17, 18, 12)
(8, 12, 18, 19, 13) (9, 13, 19, 15, 14)(15, 16, 17, 18, 19)
icosahedron, icosahedron_faces
------------------------------
12 vertices (face up) net:
0 0 0 0 -0
1 2 3 4 5 -1
6 7 8 9 10 -6
11 11 11 11 -11
20 faces:
(0, 1, 2) (0, 2, 3) (0, 3, 4)
(0, 4, 5) (0, 1, 5) (1, 2, 6)
(2, 3, 7) (3, 4, 8) (4, 5, 9)
(1, 5, 10) (2, 6, 7) (3, 7, 8)
(4, 8, 9) (5, 9, 10) (1, 6, 10)
(6, 7, 11) (7, 8, 11) (8, 9, 11)
(9, 10, 11) (6, 10, 11)
>>> from sympy.combinatorics.polyhedron import cube
>>> cube.edges
{(0, 1), (0, 3), (0, 4), (1, 2), (1, 5), (2, 3), (2, 6), (3, 7), (4, 5), (4, 7), (5, 6), (6, 7)}
If you want to use letters or other names for the corners you
can still use the pre-calculated faces:
>>> corners = list('abcdefgh')
>>> Polyhedron(corners, cube.faces).corners
(a, b, c, d, e, f, g, h)
References
==========
.. [1] www.ocf.berkeley.edu/~wwu/articles/platonicsolids.pdf
"""
faces = [minlex(f, directed=False, key=default_sort_key) for f in faces]
corners, faces, pgroup = args = \
[Tuple(*a) for a in (corners, faces, pgroup)]
obj = Basic.__new__(cls, *args)
obj._corners = tuple(corners) # in order given
obj._faces = FiniteSet(*faces)
if pgroup and pgroup[0].size != len(corners):
raise ValueError("Permutation size unequal to number of corners.")
# use the identity permutation if none are given
obj._pgroup = PermutationGroup(
pgroup or [Perm(range(len(corners)))] )
return obj
@property
def corners(self):
"""
Get the corners of the Polyhedron.
The method ``vertices`` is an alias for ``corners``.
Examples
========
>>> from sympy.combinatorics import Polyhedron
>>> from sympy.abc import a, b, c, d
>>> p = Polyhedron(list('abcd'))
>>> p.corners == p.vertices == (a, b, c, d)
True
See Also
========
array_form, cyclic_form
"""
return self._corners
vertices = corners
@property
def array_form(self):
"""Return the indices of the corners.
The indices are given relative to the original position of corners.
Examples
========
>>> from sympy.combinatorics.polyhedron import tetrahedron
>>> tetrahedron = tetrahedron.copy()
>>> tetrahedron.array_form
[0, 1, 2, 3]
>>> tetrahedron.rotate(0)
>>> tetrahedron.array_form
[0, 2, 3, 1]
>>> tetrahedron.pgroup[0].array_form
[0, 2, 3, 1]
See Also
========
corners, cyclic_form
"""
corners = list(self.args[0])
return [corners.index(c) for c in self.corners]
@property
def cyclic_form(self):
"""Return the indices of the corners in cyclic notation.
The indices are given relative to the original position of corners.
See Also
========
corners, array_form
"""
return Perm._af_new(self.array_form).cyclic_form
@property
def size(self):
"""
Get the number of corners of the Polyhedron.
"""
return len(self._corners)
@property
def faces(self):
"""
Get the faces of the Polyhedron.
"""
return self._faces
@property
def pgroup(self):
"""
Get the permutations of the Polyhedron.
"""
return self._pgroup
@property
def edges(self):
"""
Given the faces of the polyhedra we can get the edges.
Examples
========
>>> from sympy.combinatorics import Polyhedron
>>> from sympy.abc import a, b, c
>>> corners = (a, b, c)
>>> faces = [(0, 1, 2)]
>>> Polyhedron(corners, faces).edges
{(0, 1), (0, 2), (1, 2)}
"""
if self._edges is None:
output = set()
for face in self.faces:
for i in range(len(face)):
edge = tuple(sorted([face[i], face[i - 1]]))
output.add(edge)
self._edges = FiniteSet(*output)
return self._edges
def rotate(self, perm):
"""
Apply a permutation to the polyhedron *in place*. The permutation
may be given as a Permutation instance or an integer indicating
which permutation from pgroup of the Polyhedron should be
applied.
This is an operation that is analogous to rotation about
an axis by a fixed increment.
Notes
=====
When a Permutation is applied, no check is done to see if that
is a valid permutation for the Polyhedron. For example, a cube
could be given a permutation which effectively swaps only 2
vertices. A valid permutation (that rotates the object in a
physical way) will be obtained if one only uses
permutations from the ``pgroup`` of the Polyhedron. On the other
hand, allowing arbitrary rotations (applications of permutations)
gives a way to follow named elements rather than indices since
Polyhedron allows vertices to be named while Permutation works
only with indices.
Examples
========
>>> from sympy.combinatorics import Polyhedron, Permutation
>>> from sympy.combinatorics.polyhedron import cube
>>> cube = cube.copy()
>>> cube.corners
(0, 1, 2, 3, 4, 5, 6, 7)
>>> cube.rotate(0)
>>> cube.corners
(1, 2, 3, 0, 5, 6, 7, 4)
A non-physical "rotation" that is not prohibited by this method:
>>> cube.reset()
>>> cube.rotate(Permutation([[1, 2]], size=8))
>>> cube.corners
(0, 2, 1, 3, 4, 5, 6, 7)
Polyhedron can be used to follow elements of set that are
identified by letters instead of integers:
>>> shadow = h5 = Polyhedron(list('abcde'))
>>> p = Permutation([3, 0, 1, 2, 4])
>>> h5.rotate(p)
>>> h5.corners
(d, a, b, c, e)
>>> _ == shadow.corners
True
>>> copy = h5.copy()
>>> h5.rotate(p)
>>> h5.corners == copy.corners
False
"""
if not isinstance(perm, Perm):
perm = self.pgroup[perm]
# and we know it's valid
else:
if perm.size != self.size:
raise ValueError('Polyhedron and Permutation sizes differ.')
a = perm.array_form
corners = [self.corners[a[i]] for i in range(len(self.corners))]
self._corners = tuple(corners)
def reset(self):
"""Return corners to their original positions.
Examples
========
>>> from sympy.combinatorics.polyhedron import tetrahedron as T
>>> T = T.copy()
>>> T.corners
(0, 1, 2, 3)
>>> T.rotate(0)
>>> T.corners
(0, 2, 3, 1)
>>> T.reset()
>>> T.corners
(0, 1, 2, 3)
"""
self._corners = self.args[0]
def _pgroup_calcs():
"""Return the permutation groups for each of the polyhedra and the face
definitions: tetrahedron, cube, octahedron, dodecahedron, icosahedron,
tetrahedron_faces, cube_faces, octahedron_faces, dodecahedron_faces,
icosahedron_faces
Explanation
===========
(This author didn't find and didn't know of a better way to do it though
there likely is such a way.)
Although only 2 permutations are needed for a polyhedron in order to
generate all the possible orientations, a group of permutations is
provided instead. A set of permutations is called a "group" if::
a*b = c (for any pair of permutations in the group, a and b, their
product, c, is in the group)
a*(b*c) = (a*b)*c (for any 3 permutations in the group associativity holds)
there is an identity permutation, I, such that I*a = a*I for all elements
in the group
a*b = I (the inverse of each permutation is also in the group)
None of the polyhedron groups defined follow these definitions of a group.
Instead, they are selected to contain those permutations whose powers
alone will construct all orientations of the polyhedron, i.e. for
permutations ``a``, ``b``, etc... in the group, ``a, a**2, ..., a**o_a``,
``b, b**2, ..., b**o_b``, etc... (where ``o_i`` is the order of
permutation ``i``) generate all permutations of the polyhedron instead of
mixed products like ``a*b``, ``a*b**2``, etc....
Note that for a polyhedron with n vertices, the valid permutations of the
vertices exclude those that do not maintain its faces. e.g. the
permutation BCDE of a square's four corners, ABCD, is a valid
permutation while CBDE is not (because this would twist the square).
Examples
========
The is_group checks for: closure, the presence of the Identity permutation,
and the presence of the inverse for each of the elements in the group. This
confirms that none of the polyhedra are true groups:
>>> from sympy.combinatorics.polyhedron import (
... tetrahedron, cube, octahedron, dodecahedron, icosahedron)
...
>>> polyhedra = (tetrahedron, cube, octahedron, dodecahedron, icosahedron)
>>> [h.pgroup.is_group for h in polyhedra]
...
[True, True, True, True, True]
Although tests in polyhedron's test suite check that powers of the
permutations in the groups generate all permutations of the vertices
of the polyhedron, here we also demonstrate the powers of the given
permutations create a complete group for the tetrahedron:
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> for h in polyhedra[:1]:
... G = h.pgroup
... perms = set()
... for g in G:
... for e in range(g.order()):
... p = tuple((g**e).array_form)
... perms.add(p)
...
... perms = [Permutation(p) for p in perms]
... assert PermutationGroup(perms).is_group
In addition to doing the above, the tests in the suite confirm that the
faces are all present after the application of each permutation.
References
==========
.. [1] http://dogschool.tripod.com/trianglegroup.html
"""
def _pgroup_of_double(polyh, ordered_faces, pgroup):
n = len(ordered_faces[0])
# the vertices of the double which sits inside a give polyhedron
# can be found by tracking the faces of the outer polyhedron.
# A map between face and the vertex of the double is made so that
# after rotation the position of the vertices can be located
fmap = dict(zip(ordered_faces,
range(len(ordered_faces))))
flat_faces = flatten(ordered_faces)
new_pgroup = []
for i, p in enumerate(pgroup):
h = polyh.copy()
h.rotate(p)
c = h.corners
# reorder corners in the order they should appear when
# enumerating the faces
reorder = unflatten([c[j] for j in flat_faces], n)
# make them canonical
reorder = [tuple(map(as_int,
minlex(f, directed=False)))
for f in reorder]
# map face to vertex: the resulting list of vertices are the
# permutation that we seek for the double
new_pgroup.append(Perm([fmap[f] for f in reorder]))
return new_pgroup
tetrahedron_faces = [
(0, 1, 2), (0, 2, 3), (0, 3, 1), # upper 3
(1, 2, 3), # bottom
]
# cw from top
#
_t_pgroup = [
Perm([[1, 2, 3], [0]]), # cw from top
Perm([[0, 1, 2], [3]]), # cw from front face
Perm([[0, 3, 2], [1]]), # cw from back right face
Perm([[0, 3, 1], [2]]), # cw from back left face
Perm([[0, 1], [2, 3]]), # through front left edge
Perm([[0, 2], [1, 3]]), # through front right edge
Perm([[0, 3], [1, 2]]), # through back edge
]
tetrahedron = Polyhedron(
range(4),
tetrahedron_faces,
_t_pgroup)
cube_faces = [
(0, 1, 2, 3), # upper
(0, 1, 5, 4), (1, 2, 6, 5), (2, 3, 7, 6), (0, 3, 7, 4), # middle 4
(4, 5, 6, 7), # lower
]
# U, D, F, B, L, R = up, down, front, back, left, right
_c_pgroup = [Perm(p) for p in
[
[1, 2, 3, 0, 5, 6, 7, 4], # cw from top, U
[4, 0, 3, 7, 5, 1, 2, 6], # cw from F face
[4, 5, 1, 0, 7, 6, 2, 3], # cw from R face
[1, 0, 4, 5, 2, 3, 7, 6], # cw through UF edge
[6, 2, 1, 5, 7, 3, 0, 4], # cw through UR edge
[6, 7, 3, 2, 5, 4, 0, 1], # cw through UB edge
[3, 7, 4, 0, 2, 6, 5, 1], # cw through UL edge
[4, 7, 6, 5, 0, 3, 2, 1], # cw through FL edge
[6, 5, 4, 7, 2, 1, 0, 3], # cw through FR edge
[0, 3, 7, 4, 1, 2, 6, 5], # cw through UFL vertex
[5, 1, 0, 4, 6, 2, 3, 7], # cw through UFR vertex
[5, 6, 2, 1, 4, 7, 3, 0], # cw through UBR vertex
[7, 4, 0, 3, 6, 5, 1, 2], # cw through UBL
]]
cube = Polyhedron(
range(8),
cube_faces,
_c_pgroup)
octahedron_faces = [
(0, 1, 2), (0, 2, 3), (0, 3, 4), (0, 1, 4), # top 4
(1, 2, 5), (2, 3, 5), (3, 4, 5), (1, 4, 5), # bottom 4
]
octahedron = Polyhedron(
range(6),
octahedron_faces,
_pgroup_of_double(cube, cube_faces, _c_pgroup))
dodecahedron_faces = [
(0, 1, 2, 3, 4), # top
(0, 1, 6, 10, 5), (1, 2, 7, 11, 6), (2, 3, 8, 12, 7), # upper 5
(3, 4, 9, 13, 8), (0, 4, 9, 14, 5),
(5, 10, 16, 15, 14), (6, 10, 16, 17, 11), (7, 11, 17, 18,
12), # lower 5
(8, 12, 18, 19, 13), (9, 13, 19, 15, 14),
(15, 16, 17, 18, 19) # bottom
]
def _string_to_perm(s):
rv = [Perm(range(20))]
p = None
for si in s:
if si not in '01':
count = int(si) - 1
else:
count = 1
if si == '0':
p = _f0
elif si == '1':
p = _f1
rv.extend([p]*count)
return Perm.rmul(*rv)
# top face cw
_f0 = Perm([
1, 2, 3, 4, 0, 6, 7, 8, 9, 5, 11,
12, 13, 14, 10, 16, 17, 18, 19, 15])
# front face cw
_f1 = Perm([
5, 0, 4, 9, 14, 10, 1, 3, 13, 15,
6, 2, 8, 19, 16, 17, 11, 7, 12, 18])
# the strings below, like 0104 are shorthand for F0*F1*F0**4 and are
# the remaining 4 face rotations, 15 edge permutations, and the
# 10 vertex rotations.
_dodeca_pgroup = [_f0, _f1] + [_string_to_perm(s) for s in '''
0104 140 014 0410
010 1403 03104 04103 102
120 1304 01303 021302 03130
0412041 041204103 04120410 041204104 041204102
10 01 1402 0140 04102 0412 1204 1302 0130 03120'''.strip().split()]
dodecahedron = Polyhedron(
range(20),
dodecahedron_faces,
_dodeca_pgroup)
icosahedron_faces = [
(0, 1, 2), (0, 2, 3), (0, 3, 4), (0, 4, 5), (0, 1, 5),
(1, 6, 7), (1, 2, 7), (2, 7, 8), (2, 3, 8), (3, 8, 9),
(3, 4, 9), (4, 9, 10), (4, 5, 10), (5, 6, 10), (1, 5, 6),
(6, 7, 11), (7, 8, 11), (8, 9, 11), (9, 10, 11), (6, 10, 11)]
icosahedron = Polyhedron(
range(12),
icosahedron_faces,
_pgroup_of_double(
dodecahedron, dodecahedron_faces, _dodeca_pgroup))
return (tetrahedron, cube, octahedron, dodecahedron, icosahedron,
tetrahedron_faces, cube_faces, octahedron_faces,
dodecahedron_faces, icosahedron_faces)
# -----------------------------------------------------------------------
# Standard Polyhedron groups
#
# These are generated using _pgroup_calcs() above. However to save
# import time we encode them explicitly here.
# -----------------------------------------------------------------------
tetrahedron = Polyhedron(
Tuple(0, 1, 2, 3),
Tuple(
Tuple(0, 1, 2),
Tuple(0, 2, 3),
Tuple(0, 1, 3),
Tuple(1, 2, 3)),
Tuple(
Perm(1, 2, 3),
Perm(3)(0, 1, 2),
Perm(0, 3, 2),
Perm(0, 3, 1),
Perm(0, 1)(2, 3),
Perm(0, 2)(1, 3),
Perm(0, 3)(1, 2)
))
cube = Polyhedron(
Tuple(0, 1, 2, 3, 4, 5, 6, 7),
Tuple(
Tuple(0, 1, 2, 3),
Tuple(0, 1, 5, 4),
Tuple(1, 2, 6, 5),
Tuple(2, 3, 7, 6),
Tuple(0, 3, 7, 4),
Tuple(4, 5, 6, 7)),
Tuple(
Perm(0, 1, 2, 3)(4, 5, 6, 7),
Perm(0, 4, 5, 1)(2, 3, 7, 6),
Perm(0, 4, 7, 3)(1, 5, 6, 2),
Perm(0, 1)(2, 4)(3, 5)(6, 7),
Perm(0, 6)(1, 2)(3, 5)(4, 7),
Perm(0, 6)(1, 7)(2, 3)(4, 5),
Perm(0, 3)(1, 7)(2, 4)(5, 6),
Perm(0, 4)(1, 7)(2, 6)(3, 5),
Perm(0, 6)(1, 5)(2, 4)(3, 7),
Perm(1, 3, 4)(2, 7, 5),
Perm(7)(0, 5, 2)(3, 4, 6),
Perm(0, 5, 7)(1, 6, 3),
Perm(0, 7, 2)(1, 4, 6)))
octahedron = Polyhedron(
Tuple(0, 1, 2, 3, 4, 5),
Tuple(
Tuple(0, 1, 2),
Tuple(0, 2, 3),
Tuple(0, 3, 4),
Tuple(0, 1, 4),
Tuple(1, 2, 5),
Tuple(2, 3, 5),
Tuple(3, 4, 5),
Tuple(1, 4, 5)),
Tuple(
Perm(5)(1, 2, 3, 4),
Perm(0, 4, 5, 2),
Perm(0, 1, 5, 3),
Perm(0, 1)(2, 4)(3, 5),
Perm(0, 2)(1, 3)(4, 5),
Perm(0, 3)(1, 5)(2, 4),
Perm(0, 4)(1, 3)(2, 5),
Perm(0, 5)(1, 4)(2, 3),
Perm(0, 5)(1, 2)(3, 4),
Perm(0, 4, 1)(2, 3, 5),
Perm(0, 1, 2)(3, 4, 5),
Perm(0, 2, 3)(1, 5, 4),
Perm(0, 4, 3)(1, 5, 2)))
dodecahedron = Polyhedron(
Tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19),
Tuple(
Tuple(0, 1, 2, 3, 4),
Tuple(0, 1, 6, 10, 5),
Tuple(1, 2, 7, 11, 6),
Tuple(2, 3, 8, 12, 7),
Tuple(3, 4, 9, 13, 8),
Tuple(0, 4, 9, 14, 5),
Tuple(5, 10, 16, 15, 14),
Tuple(6, 10, 16, 17, 11),
Tuple(7, 11, 17, 18, 12),
Tuple(8, 12, 18, 19, 13),
Tuple(9, 13, 19, 15, 14),
Tuple(15, 16, 17, 18, 19)),
Tuple(
Perm(0, 1, 2, 3, 4)(5, 6, 7, 8, 9)(10, 11, 12, 13, 14)(15, 16, 17, 18, 19),
Perm(0, 5, 10, 6, 1)(2, 4, 14, 16, 11)(3, 9, 15, 17, 7)(8, 13, 19, 18, 12),
Perm(0, 10, 17, 12, 3)(1, 6, 11, 7, 2)(4, 5, 16, 18, 8)(9, 14, 15, 19, 13),
Perm(0, 6, 17, 19, 9)(1, 11, 18, 13, 4)(2, 7, 12, 8, 3)(5, 10, 16, 15, 14),
Perm(0, 2, 12, 19, 14)(1, 7, 18, 15, 5)(3, 8, 13, 9, 4)(6, 11, 17, 16, 10),
Perm(0, 4, 9, 14, 5)(1, 3, 13, 15, 10)(2, 8, 19, 16, 6)(7, 12, 18, 17, 11),
Perm(0, 1)(2, 5)(3, 10)(4, 6)(7, 14)(8, 16)(9, 11)(12, 15)(13, 17)(18, 19),
Perm(0, 7)(1, 2)(3, 6)(4, 11)(5, 12)(8, 10)(9, 17)(13, 16)(14, 18)(15, 19),
Perm(0, 12)(1, 8)(2, 3)(4, 7)(5, 18)(6, 13)(9, 11)(10, 19)(14, 17)(15, 16),
Perm(0, 8)(1, 13)(2, 9)(3, 4)(5, 12)(6, 19)(7, 14)(10, 18)(11, 15)(16, 17),
Perm(0, 4)(1, 9)(2, 14)(3, 5)(6, 13)(7, 15)(8, 10)(11, 19)(12, 16)(17, 18),
Perm(0, 5)(1, 14)(2, 15)(3, 16)(4, 10)(6, 9)(7, 19)(8, 17)(11, 13)(12, 18),
Perm(0, 11)(1, 6)(2, 10)(3, 16)(4, 17)(5, 7)(8, 15)(9, 18)(12, 14)(13, 19),
Perm(0, 18)(1, 12)(2, 7)(3, 11)(4, 17)(5, 19)(6, 8)(9, 16)(10, 13)(14, 15),
Perm(0, 18)(1, 19)(2, 13)(3, 8)(4, 12)(5, 17)(6, 15)(7, 9)(10, 16)(11, 14),
Perm(0, 13)(1, 19)(2, 15)(3, 14)(4, 9)(5, 8)(6, 18)(7, 16)(10, 12)(11, 17),
Perm(0, 16)(1, 15)(2, 19)(3, 18)(4, 17)(5, 10)(6, 14)(7, 13)(8, 12)(9, 11),
Perm(0, 18)(1, 17)(2, 16)(3, 15)(4, 19)(5, 12)(6, 11)(7, 10)(8, 14)(9, 13),
Perm(0, 15)(1, 19)(2, 18)(3, 17)(4, 16)(5, 14)(6, 13)(7, 12)(8, 11)(9, 10),
Perm(0, 17)(1, 16)(2, 15)(3, 19)(4, 18)(5, 11)(6, 10)(7, 14)(8, 13)(9, 12),
Perm(0, 19)(1, 18)(2, 17)(3, 16)(4, 15)(5, 13)(6, 12)(7, 11)(8, 10)(9, 14),
Perm(1, 4, 5)(2, 9, 10)(3, 14, 6)(7, 13, 16)(8, 15, 11)(12, 19, 17),
Perm(19)(0, 6, 2)(3, 5, 11)(4, 10, 7)(8, 14, 17)(9, 16, 12)(13, 15, 18),
Perm(0, 11, 8)(1, 7, 3)(4, 6, 12)(5, 17, 13)(9, 10, 18)(14, 16, 19),
Perm(0, 7, 13)(1, 12, 9)(2, 8, 4)(5, 11, 19)(6, 18, 14)(10, 17, 15),
Perm(0, 3, 9)(1, 8, 14)(2, 13, 5)(6, 12, 15)(7, 19, 10)(11, 18, 16),
Perm(0, 14, 10)(1, 9, 16)(2, 13, 17)(3, 19, 11)(4, 15, 6)(7, 8, 18),
Perm(0, 16, 7)(1, 10, 11)(2, 5, 17)(3, 14, 18)(4, 15, 12)(8, 9, 19),
Perm(0, 16, 13)(1, 17, 8)(2, 11, 12)(3, 6, 18)(4, 10, 19)(5, 15, 9),
Perm(0, 11, 15)(1, 17, 14)(2, 18, 9)(3, 12, 13)(4, 7, 19)(5, 6, 16),
Perm(0, 8, 15)(1, 12, 16)(2, 18, 10)(3, 19, 5)(4, 13, 14)(6, 7, 17)))
icosahedron = Polyhedron(
Tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
Tuple(
Tuple(0, 1, 2),
Tuple(0, 2, 3),
Tuple(0, 3, 4),
Tuple(0, 4, 5),
Tuple(0, 1, 5),
Tuple(1, 6, 7),
Tuple(1, 2, 7),
Tuple(2, 7, 8),
Tuple(2, 3, 8),
Tuple(3, 8, 9),
Tuple(3, 4, 9),
Tuple(4, 9, 10),
Tuple(4, 5, 10),
Tuple(5, 6, 10),
Tuple(1, 5, 6),
Tuple(6, 7, 11),
Tuple(7, 8, 11),
Tuple(8, 9, 11),
Tuple(9, 10, 11),
Tuple(6, 10, 11)),
Tuple(
Perm(11)(1, 2, 3, 4, 5)(6, 7, 8, 9, 10),
Perm(0, 5, 6, 7, 2)(3, 4, 10, 11, 8),
Perm(0, 1, 7, 8, 3)(4, 5, 6, 11, 9),
Perm(0, 2, 8, 9, 4)(1, 7, 11, 10, 5),
Perm(0, 3, 9, 10, 5)(1, 2, 8, 11, 6),
Perm(0, 4, 10, 6, 1)(2, 3, 9, 11, 7),
Perm(0, 1)(2, 5)(3, 6)(4, 7)(8, 10)(9, 11),
Perm(0, 2)(1, 3)(4, 7)(5, 8)(6, 9)(10, 11),
Perm(0, 3)(1, 9)(2, 4)(5, 8)(6, 11)(7, 10),
Perm(0, 4)(1, 9)(2, 10)(3, 5)(6, 8)(7, 11),
Perm(0, 5)(1, 4)(2, 10)(3, 6)(7, 9)(8, 11),
Perm(0, 6)(1, 5)(2, 10)(3, 11)(4, 7)(8, 9),
Perm(0, 7)(1, 2)(3, 6)(4, 11)(5, 8)(9, 10),
Perm(0, 8)(1, 9)(2, 3)(4, 7)(5, 11)(6, 10),
Perm(0, 9)(1, 11)(2, 10)(3, 4)(5, 8)(6, 7),
Perm(0, 10)(1, 9)(2, 11)(3, 6)(4, 5)(7, 8),
Perm(0, 11)(1, 6)(2, 10)(3, 9)(4, 8)(5, 7),
Perm(0, 11)(1, 8)(2, 7)(3, 6)(4, 10)(5, 9),
Perm(0, 11)(1, 10)(2, 9)(3, 8)(4, 7)(5, 6),
Perm(0, 11)(1, 7)(2, 6)(3, 10)(4, 9)(5, 8),
Perm(0, 11)(1, 9)(2, 8)(3, 7)(4, 6)(5, 10),
Perm(0, 5, 1)(2, 4, 6)(3, 10, 7)(8, 9, 11),
Perm(0, 1, 2)(3, 5, 7)(4, 6, 8)(9, 10, 11),
Perm(0, 2, 3)(1, 8, 4)(5, 7, 9)(6, 11, 10),
Perm(0, 3, 4)(1, 8, 10)(2, 9, 5)(6, 7, 11),
Perm(0, 4, 5)(1, 3, 10)(2, 9, 6)(7, 8, 11),
Perm(0, 10, 7)(1, 5, 6)(2, 4, 11)(3, 9, 8),
Perm(0, 6, 8)(1, 7, 2)(3, 5, 11)(4, 10, 9),
Perm(0, 7, 9)(1, 11, 4)(2, 8, 3)(5, 6, 10),
Perm(0, 8, 10)(1, 7, 6)(2, 11, 5)(3, 9, 4),
Perm(0, 9, 6)(1, 3, 11)(2, 8, 7)(4, 10, 5)))
tetrahedron_faces = list(tuple(arg) for arg in tetrahedron.faces)
cube_faces = list(tuple(arg) for arg in cube.faces)
octahedron_faces = list(tuple(arg) for arg in octahedron.faces)
dodecahedron_faces = list(tuple(arg) for arg in dodecahedron.faces)
icosahedron_faces = list(tuple(arg) for arg in icosahedron.faces)
|
51d56c9c44aea26b222073bb875b8b63b4d922b50ccb69b553894e6bddb7eaeb | import itertools
from sympy.combinatorics.fp_groups import FpGroup, FpSubgroup, simplify_presentation
from sympy.combinatorics.free_groups import FreeGroup
from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.core.numbers import igcd
from sympy.ntheory.factor_ import totient
from sympy import S
class GroupHomomorphism:
'''
A class representing group homomorphisms. Instantiate using `homomorphism()`.
References
==========
.. [1] Holt, D., Eick, B. and O'Brien, E. (2005). Handbook of computational group theory.
'''
def __init__(self, domain, codomain, images):
self.domain = domain
self.codomain = codomain
self.images = images
self._inverses = None
self._kernel = None
self._image = None
def _invs(self):
'''
Return a dictionary with `{gen: inverse}` where `gen` is a rewriting
generator of `codomain` (e.g. strong generator for permutation groups)
and `inverse` is an element of its preimage
'''
image = self.image()
inverses = {}
for k in list(self.images.keys()):
v = self.images[k]
if not (v in inverses
or v.is_identity):
inverses[v] = k
if isinstance(self.codomain, PermutationGroup):
gens = image.strong_gens
else:
gens = image.generators
for g in gens:
if g in inverses or g.is_identity:
continue
w = self.domain.identity
if isinstance(self.codomain, PermutationGroup):
parts = image._strong_gens_slp[g][::-1]
else:
parts = g
for s in parts:
if s in inverses:
w = w*inverses[s]
else:
w = w*inverses[s**-1]**-1
inverses[g] = w
return inverses
def invert(self, g):
'''
Return an element of the preimage of ``g`` or of each element
of ``g`` if ``g`` is a list.
Explanation
===========
If the codomain is an FpGroup, the inverse for equal
elements might not always be the same unless the FpGroup's
rewriting system is confluent. However, making a system
confluent can be time-consuming. If it's important, try
`self.codomain.make_confluent()` first.
'''
from sympy.combinatorics import Permutation
from sympy.combinatorics.free_groups import FreeGroupElement
if isinstance(g, (Permutation, FreeGroupElement)):
if isinstance(self.codomain, FpGroup):
g = self.codomain.reduce(g)
if self._inverses is None:
self._inverses = self._invs()
image = self.image()
w = self.domain.identity
if isinstance(self.codomain, PermutationGroup):
gens = image.generator_product(g)[::-1]
else:
gens = g
# the following can't be "for s in gens:"
# because that would be equivalent to
# "for s in gens.array_form:" when g is
# a FreeGroupElement. On the other hand,
# when you call gens by index, the generator
# (or inverse) at position i is returned.
for i in range(len(gens)):
s = gens[i]
if s.is_identity:
continue
if s in self._inverses:
w = w*self._inverses[s]
else:
w = w*self._inverses[s**-1]**-1
return w
elif isinstance(g, list):
return [self.invert(e) for e in g]
def kernel(self):
'''
Compute the kernel of `self`.
'''
if self._kernel is None:
self._kernel = self._compute_kernel()
return self._kernel
def _compute_kernel(self):
from sympy import S
G = self.domain
G_order = G.order()
if G_order is S.Infinity:
raise NotImplementedError(
"Kernel computation is not implemented for infinite groups")
gens = []
if isinstance(G, PermutationGroup):
K = PermutationGroup(G.identity)
else:
K = FpSubgroup(G, gens, normal=True)
i = self.image().order()
while K.order()*i != G_order:
r = G.random()
k = r*self.invert(self(r))**-1
if not k in K:
gens.append(k)
if isinstance(G, PermutationGroup):
K = PermutationGroup(gens)
else:
K = FpSubgroup(G, gens, normal=True)
return K
def image(self):
'''
Compute the image of `self`.
'''
if self._image is None:
values = list(set(self.images.values()))
if isinstance(self.codomain, PermutationGroup):
self._image = self.codomain.subgroup(values)
else:
self._image = FpSubgroup(self.codomain, values)
return self._image
def _apply(self, elem):
'''
Apply `self` to `elem`.
'''
if not elem in self.domain:
if isinstance(elem, (list, tuple)):
return [self._apply(e) for e in elem]
raise ValueError("The supplied element doesn't belong to the domain")
if elem.is_identity:
return self.codomain.identity
else:
images = self.images
value = self.codomain.identity
if isinstance(self.domain, PermutationGroup):
gens = self.domain.generator_product(elem, original=True)
for g in gens:
if g in self.images:
value = images[g]*value
else:
value = images[g**-1]**-1*value
else:
i = 0
for _, p in elem.array_form:
if p < 0:
g = elem[i]**-1
else:
g = elem[i]
value = value*images[g]**p
i += abs(p)
return value
def __call__(self, elem):
return self._apply(elem)
def is_injective(self):
'''
Check if the homomorphism is injective
'''
return self.kernel().order() == 1
def is_surjective(self):
'''
Check if the homomorphism is surjective
'''
from sympy import S
im = self.image().order()
oth = self.codomain.order()
if im is S.Infinity and oth is S.Infinity:
return None
else:
return im == oth
def is_isomorphism(self):
'''
Check if `self` is an isomorphism.
'''
return self.is_injective() and self.is_surjective()
def is_trivial(self):
'''
Check is `self` is a trivial homomorphism, i.e. all elements
are mapped to the identity.
'''
return self.image().order() == 1
def compose(self, other):
'''
Return the composition of `self` and `other`, i.e.
the homomorphism phi such that for all g in the domain
of `other`, phi(g) = self(other(g))
'''
if not other.image().is_subgroup(self.domain):
raise ValueError("The image of `other` must be a subgroup of "
"the domain of `self`")
images = {g: self(other(g)) for g in other.images}
return GroupHomomorphism(other.domain, self.codomain, images)
def restrict_to(self, H):
'''
Return the restriction of the homomorphism to the subgroup `H`
of the domain.
'''
if not isinstance(H, PermutationGroup) or not H.is_subgroup(self.domain):
raise ValueError("Given H is not a subgroup of the domain")
domain = H
images = {g: self(g) for g in H.generators}
return GroupHomomorphism(domain, self.codomain, images)
def invert_subgroup(self, H):
'''
Return the subgroup of the domain that is the inverse image
of the subgroup ``H`` of the homomorphism image
'''
if not H.is_subgroup(self.image()):
raise ValueError("Given H is not a subgroup of the image")
gens = []
P = PermutationGroup(self.image().identity)
for h in H.generators:
h_i = self.invert(h)
if h_i not in P:
gens.append(h_i)
P = PermutationGroup(gens)
for k in self.kernel().generators:
if k*h_i not in P:
gens.append(k*h_i)
P = PermutationGroup(gens)
return P
def homomorphism(domain, codomain, gens, images=(), check=True):
'''
Create (if possible) a group homomorphism from the group ``domain``
to the group ``codomain`` defined by the images of the domain's
generators ``gens``. ``gens`` and ``images`` can be either lists or tuples
of equal sizes. If ``gens`` is a proper subset of the group's generators,
the unspecified generators will be mapped to the identity. If the
images are not specified, a trivial homomorphism will be created.
If the given images of the generators do not define a homomorphism,
an exception is raised.
If ``check`` is ``False``, don't check whether the given images actually
define a homomorphism.
'''
if not isinstance(domain, (PermutationGroup, FpGroup, FreeGroup)):
raise TypeError("The domain must be a group")
if not isinstance(codomain, (PermutationGroup, FpGroup, FreeGroup)):
raise TypeError("The codomain must be a group")
generators = domain.generators
if not all(g in generators for g in gens):
raise ValueError("The supplied generators must be a subset of the domain's generators")
if not all(g in codomain for g in images):
raise ValueError("The images must be elements of the codomain")
if images and len(images) != len(gens):
raise ValueError("The number of images must be equal to the number of generators")
gens = list(gens)
images = list(images)
images.extend([codomain.identity]*(len(generators)-len(images)))
gens.extend([g for g in generators if g not in gens])
images = dict(zip(gens,images))
if check and not _check_homomorphism(domain, codomain, images):
raise ValueError("The given images do not define a homomorphism")
return GroupHomomorphism(domain, codomain, images)
def _check_homomorphism(domain, codomain, images):
if hasattr(domain, 'relators'):
rels = domain.relators
else:
gens = domain.presentation().generators
rels = domain.presentation().relators
identity = codomain.identity
def _image(r):
if r.is_identity:
return identity
else:
w = identity
r_arr = r.array_form
i = 0
j = 0
# i is the index for r and j is for
# r_arr. r_arr[j] is the tuple (sym, p)
# where sym is the generator symbol
# and p is the power to which it is
# raised while r[i] is a generator
# (not just its symbol) or the inverse of
# a generator - hence the need for
# both indices
while i < len(r):
power = r_arr[j][1]
if isinstance(domain, PermutationGroup) and r[i] in gens:
s = domain.generators[gens.index(r[i])]
else:
s = r[i]
if s in images:
w = w*images[s]**power
elif s**-1 in images:
w = w*images[s**-1]**power
i += abs(power)
j += 1
return w
for r in rels:
if isinstance(codomain, FpGroup):
s = codomain.equals(_image(r), identity)
if s is None:
# only try to make the rewriting system
# confluent when it can't determine the
# truth of equality otherwise
success = codomain.make_confluent()
s = codomain.equals(_image(r), identity)
if s is None and not success:
raise RuntimeError("Can't determine if the images "
"define a homomorphism. Try increasing "
"the maximum number of rewriting rules "
"(group._rewriting_system.set_max(new_value); "
"the current value is stored in group._rewriting"
"_system.maxeqns)")
else:
s = _image(r).is_identity
if not s:
return False
return True
def orbit_homomorphism(group, omega):
'''
Return the homomorphism induced by the action of the permutation
group ``group`` on the set ``omega`` that is closed under the action.
'''
from sympy.combinatorics import Permutation
from sympy.combinatorics.named_groups import SymmetricGroup
codomain = SymmetricGroup(len(omega))
identity = codomain.identity
omega = list(omega)
images = {g: identity*Permutation([omega.index(o^g) for o in omega]) for g in group.generators}
group._schreier_sims(base=omega)
H = GroupHomomorphism(group, codomain, images)
if len(group.basic_stabilizers) > len(omega):
H._kernel = group.basic_stabilizers[len(omega)]
else:
H._kernel = PermutationGroup([group.identity])
return H
def block_homomorphism(group, blocks):
'''
Return the homomorphism induced by the action of the permutation
group ``group`` on the block system ``blocks``. The latter should be
of the same form as returned by the ``minimal_block`` method for
permutation groups, namely a list of length ``group.degree`` where
the i-th entry is a representative of the block i belongs to.
'''
from sympy.combinatorics import Permutation
from sympy.combinatorics.named_groups import SymmetricGroup
n = len(blocks)
# number the blocks; m is the total number,
# b is such that b[i] is the number of the block i belongs to,
# p is the list of length m such that p[i] is the representative
# of the i-th block
m = 0
p = []
b = [None]*n
for i in range(n):
if blocks[i] == i:
p.append(i)
b[i] = m
m += 1
for i in range(n):
b[i] = b[blocks[i]]
codomain = SymmetricGroup(m)
# the list corresponding to the identity permutation in codomain
identity = range(m)
images = {g: Permutation([b[p[i]^g] for i in identity]) for g in group.generators}
H = GroupHomomorphism(group, codomain, images)
return H
def group_isomorphism(G, H, isomorphism=True):
'''
Compute an isomorphism between 2 given groups.
Parameters
==========
G : A finite ``FpGroup`` or a ``PermutationGroup``.
First group.
H : A finite ``FpGroup`` or a ``PermutationGroup``
Second group.
isomorphism : bool
This is used to avoid the computation of homomorphism
when the user only wants to check if there exists
an isomorphism between the groups.
Returns
=======
If isomorphism = False -- Returns a boolean.
If isomorphism = True -- Returns a boolean and an isomorphism between `G` and `H`.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup
>>> from sympy.combinatorics.homomorphisms import group_isomorphism
>>> from sympy.combinatorics.named_groups import DihedralGroup, AlternatingGroup
>>> D = DihedralGroup(8)
>>> p = Permutation(0, 1, 2, 3, 4, 5, 6, 7)
>>> P = PermutationGroup(p)
>>> group_isomorphism(D, P)
(False, None)
>>> F, a, b = free_group("a, b")
>>> G = FpGroup(F, [a**3, b**3, (a*b)**2])
>>> H = AlternatingGroup(4)
>>> (check, T) = group_isomorphism(G, H)
>>> check
True
>>> T(b*a*b**-1*a**-1*b**-1)
(0 2 3)
Notes
=====
Uses the approach suggested by Robert Tarjan to compute the isomorphism between two groups.
First, the generators of ``G`` are mapped to the elements of ``H`` and
we check if the mapping induces an isomorphism.
'''
if not isinstance(G, (PermutationGroup, FpGroup)):
raise TypeError("The group must be a PermutationGroup or an FpGroup")
if not isinstance(H, (PermutationGroup, FpGroup)):
raise TypeError("The group must be a PermutationGroup or an FpGroup")
if isinstance(G, FpGroup) and isinstance(H, FpGroup):
G = simplify_presentation(G)
H = simplify_presentation(H)
# Two infinite FpGroups with the same generators are isomorphic
# when the relators are same but are ordered differently.
if G.generators == H.generators and (G.relators).sort() == (H.relators).sort():
if not isomorphism:
return True
return (True, homomorphism(G, H, G.generators, H.generators))
# `_H` is the permutation group isomorphic to `H`.
_H = H
g_order = G.order()
h_order = H.order()
if g_order is S.Infinity:
raise NotImplementedError("Isomorphism methods are not implemented for infinite groups.")
if isinstance(H, FpGroup):
if h_order is S.Infinity:
raise NotImplementedError("Isomorphism methods are not implemented for infinite groups.")
_H, h_isomorphism = H._to_perm_group()
if (g_order != h_order) or (G.is_abelian != H.is_abelian):
if not isomorphism:
return False
return (False, None)
if not isomorphism:
# Two groups of the same cyclic numbered order
# are isomorphic to each other.
n = g_order
if (igcd(n, totient(n))) == 1:
return True
# Match the generators of `G` with subsets of `_H`
gens = list(G.generators)
for subset in itertools.permutations(_H, len(gens)):
images = list(subset)
images.extend([_H.identity]*(len(G.generators)-len(images)))
_images = dict(zip(gens,images))
if _check_homomorphism(G, _H, _images):
if isinstance(H, FpGroup):
images = h_isomorphism.invert(images)
T = homomorphism(G, H, G.generators, images, check=False)
if T.is_isomorphism():
# It is a valid isomorphism
if not isomorphism:
return True
return (True, T)
if not isomorphism:
return False
return (False, None)
def is_isomorphic(G, H):
'''
Check if the groups are isomorphic to each other
Parameters
==========
G : A finite ``FpGroup`` or a ``PermutationGroup``
First group.
H : A finite ``FpGroup`` or a ``PermutationGroup``
Second group.
Returns
=======
boolean
'''
return group_isomorphism(G, H, isomorphism=False)
|
0ae4d1af01592d647e88bc2d8a04bfe985cbaecfc8d7811bfad925e097d2f26d | from sympy.core import Basic, Dict, sympify
from sympy.core.compatibility import as_int, default_sort_key
from sympy.core.sympify import _sympify
from sympy.functions.combinatorial.numbers import bell
from sympy.matrices import zeros
from sympy.sets.sets import FiniteSet, Union
from sympy.utilities.iterables import flatten, group
from collections import defaultdict
class Partition(FiniteSet):
"""
This class represents an abstract partition.
A partition is a set of disjoint sets whose union equals a given set.
See Also
========
sympy.utilities.iterables.partitions,
sympy.utilities.iterables.multiset_partitions
"""
_rank = None
_partition = None
def __new__(cls, *partition):
"""
Generates a new partition object.
This method also verifies if the arguments passed are
valid and raises a ValueError if they are not.
Examples
========
Creating Partition from Python lists:
>>> from sympy.combinatorics.partitions import Partition
>>> a = Partition([1, 2], [3])
>>> a
Partition({3}, {1, 2})
>>> a.partition
[[1, 2], [3]]
>>> len(a)
2
>>> a.members
(1, 2, 3)
Creating Partition from Python sets:
>>> Partition({1, 2, 3}, {4, 5})
Partition({4, 5}, {1, 2, 3})
Creating Partition from SymPy finite sets:
>>> from sympy.sets.sets import FiniteSet
>>> a = FiniteSet(1, 2, 3)
>>> b = FiniteSet(4, 5)
>>> Partition(a, b)
Partition({4, 5}, {1, 2, 3})
"""
args = []
dups = False
for arg in partition:
if isinstance(arg, list):
as_set = set(arg)
if len(as_set) < len(arg):
dups = True
break # error below
arg = as_set
args.append(_sympify(arg))
if not all(isinstance(part, FiniteSet) for part in args):
raise ValueError(
"Each argument to Partition should be " \
"a list, set, or a FiniteSet")
# sort so we have a canonical reference for RGS
U = Union(*args)
if dups or len(U) < sum(len(arg) for arg in args):
raise ValueError("Partition contained duplicate elements.")
obj = FiniteSet.__new__(cls, *args)
obj.members = tuple(U)
obj.size = len(U)
return obj
def sort_key(self, order=None):
"""Return a canonical key that can be used for sorting.
Ordering is based on the size and sorted elements of the partition
and ties are broken with the rank.
Examples
========
>>> from sympy.utilities.iterables import default_sort_key
>>> from sympy.combinatorics.partitions import Partition
>>> from sympy.abc import x
>>> a = Partition([1, 2])
>>> b = Partition([3, 4])
>>> c = Partition([1, x])
>>> d = Partition(list(range(4)))
>>> l = [d, b, a + 1, a, c]
>>> l.sort(key=default_sort_key); l
[Partition({1, 2}), Partition({1}, {2}), Partition({1, x}), Partition({3, 4}), Partition({0, 1, 2, 3})]
"""
if order is None:
members = self.members
else:
members = tuple(sorted(self.members,
key=lambda w: default_sort_key(w, order)))
return tuple(map(default_sort_key, (self.size, members, self.rank)))
@property
def partition(self):
"""Return partition as a sorted list of lists.
Examples
========
>>> from sympy.combinatorics.partitions import Partition
>>> Partition([1], [2, 3]).partition
[[1], [2, 3]]
"""
if self._partition is None:
self._partition = sorted([sorted(p, key=default_sort_key)
for p in self.args])
return self._partition
def __add__(self, other):
"""
Return permutation whose rank is ``other`` greater than current rank,
(mod the maximum rank for the set).
Examples
========
>>> from sympy.combinatorics.partitions import Partition
>>> a = Partition([1, 2], [3])
>>> a.rank
1
>>> (a + 1).rank
2
>>> (a + 100).rank
1
"""
other = as_int(other)
offset = self.rank + other
result = RGS_unrank((offset) %
RGS_enum(self.size),
self.size)
return Partition.from_rgs(result, self.members)
def __sub__(self, other):
"""
Return permutation whose rank is ``other`` less than current rank,
(mod the maximum rank for the set).
Examples
========
>>> from sympy.combinatorics.partitions import Partition
>>> a = Partition([1, 2], [3])
>>> a.rank
1
>>> (a - 1).rank
0
>>> (a - 100).rank
1
"""
return self.__add__(-other)
def __le__(self, other):
"""
Checks if a partition is less than or equal to
the other based on rank.
Examples
========
>>> from sympy.combinatorics.partitions import Partition
>>> a = Partition([1, 2], [3, 4, 5])
>>> b = Partition([1], [2, 3], [4], [5])
>>> a.rank, b.rank
(9, 34)
>>> a <= a
True
>>> a <= b
True
"""
return self.sort_key() <= sympify(other).sort_key()
def __lt__(self, other):
"""
Checks if a partition is less than the other.
Examples
========
>>> from sympy.combinatorics.partitions import Partition
>>> a = Partition([1, 2], [3, 4, 5])
>>> b = Partition([1], [2, 3], [4], [5])
>>> a.rank, b.rank
(9, 34)
>>> a < b
True
"""
return self.sort_key() < sympify(other).sort_key()
@property
def rank(self):
"""
Gets the rank of a partition.
Examples
========
>>> from sympy.combinatorics.partitions import Partition
>>> a = Partition([1, 2], [3], [4, 5])
>>> a.rank
13
"""
if self._rank is not None:
return self._rank
self._rank = RGS_rank(self.RGS)
return self._rank
@property
def RGS(self):
"""
Returns the "restricted growth string" of the partition.
Explanation
===========
The RGS is returned as a list of indices, L, where L[i] indicates
the block in which element i appears. For example, in a partition
of 3 elements (a, b, c) into 2 blocks ([c], [a, b]) the RGS is
[1, 1, 0]: "a" is in block 1, "b" is in block 1 and "c" is in block 0.
Examples
========
>>> from sympy.combinatorics.partitions import Partition
>>> a = Partition([1, 2], [3], [4, 5])
>>> a.members
(1, 2, 3, 4, 5)
>>> a.RGS
(0, 0, 1, 2, 2)
>>> a + 1
Partition({3}, {4}, {5}, {1, 2})
>>> _.RGS
(0, 0, 1, 2, 3)
"""
rgs = {}
partition = self.partition
for i, part in enumerate(partition):
for j in part:
rgs[j] = i
return tuple([rgs[i] for i in sorted(
[i for p in partition for i in p], key=default_sort_key)])
@classmethod
def from_rgs(self, rgs, elements):
"""
Creates a set partition from a restricted growth string.
Explanation
===========
The indices given in rgs are assumed to be the index
of the element as given in elements *as provided* (the
elements are not sorted by this routine). Block numbering
starts from 0. If any block was not referenced in ``rgs``
an error will be raised.
Examples
========
>>> from sympy.combinatorics.partitions import Partition
>>> Partition.from_rgs([0, 1, 2, 0, 1], list('abcde'))
Partition({c}, {a, d}, {b, e})
>>> Partition.from_rgs([0, 1, 2, 0, 1], list('cbead'))
Partition({e}, {a, c}, {b, d})
>>> a = Partition([1, 4], [2], [3, 5])
>>> Partition.from_rgs(a.RGS, a.members)
Partition({2}, {1, 4}, {3, 5})
"""
if len(rgs) != len(elements):
raise ValueError('mismatch in rgs and element lengths')
max_elem = max(rgs) + 1
partition = [[] for i in range(max_elem)]
j = 0
for i in rgs:
partition[i].append(elements[j])
j += 1
if not all(p for p in partition):
raise ValueError('some blocks of the partition were empty.')
return Partition(*partition)
class IntegerPartition(Basic):
"""
This class represents an integer partition.
Explanation
===========
In number theory and combinatorics, a partition of a positive integer,
``n``, also called an integer partition, is a way of writing ``n`` as a
list of positive integers that sum to n. Two partitions that differ only
in the order of summands are considered to be the same partition; if order
matters then the partitions are referred to as compositions. For example,
4 has five partitions: [4], [3, 1], [2, 2], [2, 1, 1], and [1, 1, 1, 1];
the compositions [1, 2, 1] and [1, 1, 2] are the same as partition
[2, 1, 1].
See Also
========
sympy.utilities.iterables.partitions,
sympy.utilities.iterables.multiset_partitions
References
==========
https://en.wikipedia.org/wiki/Partition_%28number_theory%29
"""
_dict = None
_keys = None
def __new__(cls, partition, integer=None):
"""
Generates a new IntegerPartition object from a list or dictionary.
Explantion
==========
The partition can be given as a list of positive integers or a
dictionary of (integer, multiplicity) items. If the partition is
preceded by an integer an error will be raised if the partition
does not sum to that given integer.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> a = IntegerPartition([5, 4, 3, 1, 1])
>>> a
IntegerPartition(14, (5, 4, 3, 1, 1))
>>> print(a)
[5, 4, 3, 1, 1]
>>> IntegerPartition({1:3, 2:1})
IntegerPartition(5, (2, 1, 1, 1))
If the value that the partition should sum to is given first, a check
will be made to see n error will be raised if there is a discrepancy:
>>> IntegerPartition(10, [5, 4, 3, 1])
Traceback (most recent call last):
...
ValueError: The partition is not valid
"""
if integer is not None:
integer, partition = partition, integer
if isinstance(partition, (dict, Dict)):
_ = []
for k, v in sorted(list(partition.items()), reverse=True):
if not v:
continue
k, v = as_int(k), as_int(v)
_.extend([k]*v)
partition = tuple(_)
else:
partition = tuple(sorted(map(as_int, partition), reverse=True))
sum_ok = False
if integer is None:
integer = sum(partition)
sum_ok = True
else:
integer = as_int(integer)
if not sum_ok and sum(partition) != integer:
raise ValueError("Partition did not add to %s" % integer)
if any(i < 1 for i in partition):
raise ValueError("All integer summands must be greater than one")
obj = Basic.__new__(cls, integer, partition)
obj.partition = list(partition)
obj.integer = integer
return obj
def prev_lex(self):
"""Return the previous partition of the integer, n, in lexical order,
wrapping around to [1, ..., 1] if the partition is [n].
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> p = IntegerPartition([4])
>>> print(p.prev_lex())
[3, 1]
>>> p.partition > p.prev_lex().partition
True
"""
d = defaultdict(int)
d.update(self.as_dict())
keys = self._keys
if keys == [1]:
return IntegerPartition({self.integer: 1})
if keys[-1] != 1:
d[keys[-1]] -= 1
if keys[-1] == 2:
d[1] = 2
else:
d[keys[-1] - 1] = d[1] = 1
else:
d[keys[-2]] -= 1
left = d[1] + keys[-2]
new = keys[-2]
d[1] = 0
while left:
new -= 1
if left - new >= 0:
d[new] += left//new
left -= d[new]*new
return IntegerPartition(self.integer, d)
def next_lex(self):
"""Return the next partition of the integer, n, in lexical order,
wrapping around to [n] if the partition is [1, ..., 1].
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> p = IntegerPartition([3, 1])
>>> print(p.next_lex())
[4]
>>> p.partition < p.next_lex().partition
True
"""
d = defaultdict(int)
d.update(self.as_dict())
key = self._keys
a = key[-1]
if a == self.integer:
d.clear()
d[1] = self.integer
elif a == 1:
if d[a] > 1:
d[a + 1] += 1
d[a] -= 2
else:
b = key[-2]
d[b + 1] += 1
d[1] = (d[b] - 1)*b
d[b] = 0
else:
if d[a] > 1:
if len(key) == 1:
d.clear()
d[a + 1] = 1
d[1] = self.integer - a - 1
else:
a1 = a + 1
d[a1] += 1
d[1] = d[a]*a - a1
d[a] = 0
else:
b = key[-2]
b1 = b + 1
d[b1] += 1
need = d[b]*b + d[a]*a - b1
d[a] = d[b] = 0
d[1] = need
return IntegerPartition(self.integer, d)
def as_dict(self):
"""Return the partition as a dictionary whose keys are the
partition integers and the values are the multiplicity of that
integer.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> IntegerPartition([1]*3 + [2] + [3]*4).as_dict()
{1: 3, 2: 1, 3: 4}
"""
if self._dict is None:
groups = group(self.partition, multiple=False)
self._keys = [g[0] for g in groups]
self._dict = dict(groups)
return self._dict
@property
def conjugate(self):
"""
Computes the conjugate partition of itself.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> a = IntegerPartition([6, 3, 3, 2, 1])
>>> a.conjugate
[5, 4, 3, 1, 1, 1]
"""
j = 1
temp_arr = list(self.partition) + [0]
k = temp_arr[0]
b = [0]*k
while k > 0:
while k > temp_arr[j]:
b[k - 1] = j
k -= 1
j += 1
return b
def __lt__(self, other):
"""Return True if self is less than other when the partition
is listed from smallest to biggest.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> a = IntegerPartition([3, 1])
>>> a < a
False
>>> b = a.next_lex()
>>> a < b
True
>>> a == b
False
"""
return list(reversed(self.partition)) < list(reversed(other.partition))
def __le__(self, other):
"""Return True if self is less than other when the partition
is listed from smallest to biggest.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> a = IntegerPartition([4])
>>> a <= a
True
"""
return list(reversed(self.partition)) <= list(reversed(other.partition))
def as_ferrers(self, char='#'):
"""
Prints the ferrer diagram of a partition.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> print(IntegerPartition([1, 1, 5]).as_ferrers())
#####
#
#
"""
return "\n".join([char*i for i in self.partition])
def __str__(self):
return str(list(self.partition))
def random_integer_partition(n, seed=None):
"""
Generates a random integer partition summing to ``n`` as a list
of reverse-sorted integers.
Examples
========
>>> from sympy.combinatorics.partitions import random_integer_partition
For the following, a seed is given so a known value can be shown; in
practice, the seed would not be given.
>>> random_integer_partition(100, seed=[1, 1, 12, 1, 2, 1, 85, 1])
[85, 12, 2, 1]
>>> random_integer_partition(10, seed=[1, 2, 3, 1, 5, 1])
[5, 3, 1, 1]
>>> random_integer_partition(1)
[1]
"""
from sympy.testing.randtest import _randint
n = as_int(n)
if n < 1:
raise ValueError('n must be a positive integer')
randint = _randint(seed)
partition = []
while (n > 0):
k = randint(1, n)
mult = randint(1, n//k)
partition.append((k, mult))
n -= k*mult
partition.sort(reverse=True)
partition = flatten([[k]*m for k, m in partition])
return partition
def RGS_generalized(m):
"""
Computes the m + 1 generalized unrestricted growth strings
and returns them as rows in matrix.
Examples
========
>>> from sympy.combinatorics.partitions import RGS_generalized
>>> RGS_generalized(6)
Matrix([
[ 1, 1, 1, 1, 1, 1, 1],
[ 1, 2, 3, 4, 5, 6, 0],
[ 2, 5, 10, 17, 26, 0, 0],
[ 5, 15, 37, 77, 0, 0, 0],
[ 15, 52, 151, 0, 0, 0, 0],
[ 52, 203, 0, 0, 0, 0, 0],
[203, 0, 0, 0, 0, 0, 0]])
"""
d = zeros(m + 1)
for i in range(0, m + 1):
d[0, i] = 1
for i in range(1, m + 1):
for j in range(m):
if j <= m - i:
d[i, j] = j * d[i - 1, j] + d[i - 1, j + 1]
else:
d[i, j] = 0
return d
def RGS_enum(m):
"""
RGS_enum computes the total number of restricted growth strings
possible for a superset of size m.
Examples
========
>>> from sympy.combinatorics.partitions import RGS_enum
>>> from sympy.combinatorics.partitions import Partition
>>> RGS_enum(4)
15
>>> RGS_enum(5)
52
>>> RGS_enum(6)
203
We can check that the enumeration is correct by actually generating
the partitions. Here, the 15 partitions of 4 items are generated:
>>> a = Partition(list(range(4)))
>>> s = set()
>>> for i in range(20):
... s.add(a)
... a += 1
...
>>> assert len(s) == 15
"""
if (m < 1):
return 0
elif (m == 1):
return 1
else:
return bell(m)
def RGS_unrank(rank, m):
"""
Gives the unranked restricted growth string for a given
superset size.
Examples
========
>>> from sympy.combinatorics.partitions import RGS_unrank
>>> RGS_unrank(14, 4)
[0, 1, 2, 3]
>>> RGS_unrank(0, 4)
[0, 0, 0, 0]
"""
if m < 1:
raise ValueError("The superset size must be >= 1")
if rank < 0 or RGS_enum(m) <= rank:
raise ValueError("Invalid arguments")
L = [1] * (m + 1)
j = 1
D = RGS_generalized(m)
for i in range(2, m + 1):
v = D[m - i, j]
cr = j*v
if cr <= rank:
L[i] = j + 1
rank -= cr
j += 1
else:
L[i] = int(rank / v + 1)
rank %= v
return [x - 1 for x in L[1:]]
def RGS_rank(rgs):
"""
Computes the rank of a restricted growth string.
Examples
========
>>> from sympy.combinatorics.partitions import RGS_rank, RGS_unrank
>>> RGS_rank([0, 1, 2, 1, 3])
42
>>> RGS_rank(RGS_unrank(4, 7))
4
"""
rgs_size = len(rgs)
rank = 0
D = RGS_generalized(rgs_size)
for i in range(1, rgs_size):
n = len(rgs[(i + 1):])
m = max(rgs[0:i])
rank += D[n, m + 1] * rgs[i]
return rank
|
1a89e810e6a5a530516a767db1cc79dd6094c0728ae2dfef90112512781cb0ce | """Finitely Presented Groups and its algorithms. """
from sympy import S
from sympy.combinatorics.free_groups import (FreeGroup, FreeGroupElement,
free_group)
from sympy.combinatorics.rewritingsystem import RewritingSystem
from sympy.combinatorics.coset_table import (CosetTable,
coset_enumeration_r,
coset_enumeration_c)
from sympy.combinatorics import PermutationGroup
from sympy.printing.defaults import DefaultPrinting
from sympy.utilities import public
from sympy.utilities.magic import pollute
from sympy import symbols
from itertools import product
@public
def fp_group(fr_grp, relators=()):
_fp_group = FpGroup(fr_grp, relators)
return (_fp_group,) + tuple(_fp_group._generators)
@public
def xfp_group(fr_grp, relators=()):
_fp_group = FpGroup(fr_grp, relators)
return (_fp_group, _fp_group._generators)
# Does not work. Both symbols and pollute are undefined. Never tested.
@public
def vfp_group(fr_grpm, relators):
_fp_group = FpGroup(symbols, relators)
pollute([sym.name for sym in _fp_group.symbols], _fp_group.generators)
return _fp_group
def _parse_relators(rels):
"""Parse the passed relators."""
return rels
###############################################################################
# FINITELY PRESENTED GROUPS #
###############################################################################
class FpGroup(DefaultPrinting):
"""
The FpGroup would take a FreeGroup and a list/tuple of relators, the
relators would be specified in such a way that each of them be equal to the
identity of the provided free group.
"""
is_group = True
is_FpGroup = True
is_PermutationGroup = False
def __init__(self, fr_grp, relators):
relators = _parse_relators(relators)
self.free_group = fr_grp
self.relators = relators
self.generators = self._generators()
self.dtype = type("FpGroupElement", (FpGroupElement,), {"group": self})
# CosetTable instance on identity subgroup
self._coset_table = None
# returns whether coset table on identity subgroup
# has been standardized
self._is_standardized = False
self._order = None
self._center = None
self._rewriting_system = RewritingSystem(self)
self._perm_isomorphism = None
return
def _generators(self):
return self.free_group.generators
def make_confluent(self):
'''
Try to make the group's rewriting system confluent
'''
self._rewriting_system.make_confluent()
return
def reduce(self, word):
'''
Return the reduced form of `word` in `self` according to the group's
rewriting system. If it's confluent, the reduced form is the unique normal
form of the word in the group.
'''
return self._rewriting_system.reduce(word)
def equals(self, word1, word2):
'''
Compare `word1` and `word2` for equality in the group
using the group's rewriting system. If the system is
confluent, the returned answer is necessarily correct.
(If it isn't, `False` could be returned in some cases
where in fact `word1 == word2`)
'''
if self.reduce(word1*word2**-1) == self.identity:
return True
elif self._rewriting_system.is_confluent:
return False
return None
@property
def identity(self):
return self.free_group.identity
def __contains__(self, g):
return g in self.free_group
def subgroup(self, gens, C=None, homomorphism=False):
'''
Return the subgroup generated by `gens` using the
Reidemeister-Schreier algorithm
homomorphism -- When set to True, return a dictionary containing the images
of the presentation generators in the original group.
Examples
========
>>> from sympy.combinatorics.fp_groups import FpGroup
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**3, y**5, (x*y)**2])
>>> H = [x*y, x**-1*y**-1*x*y*x]
>>> K, T = f.subgroup(H, homomorphism=True)
>>> T(K.generators)
[x*y, x**-1*y**2*x**-1]
'''
if not all(isinstance(g, FreeGroupElement) for g in gens):
raise ValueError("Generators must be `FreeGroupElement`s")
if not all(g.group == self.free_group for g in gens):
raise ValueError("Given generators are not members of the group")
if homomorphism:
g, rels, _gens = reidemeister_presentation(self, gens, C=C, homomorphism=True)
else:
g, rels = reidemeister_presentation(self, gens, C=C)
if g:
g = FpGroup(g[0].group, rels)
else:
g = FpGroup(free_group('')[0], [])
if homomorphism:
from sympy.combinatorics.homomorphisms import homomorphism
return g, homomorphism(g, self, g.generators, _gens, check=False)
return g
def coset_enumeration(self, H, strategy="relator_based", max_cosets=None,
draft=None, incomplete=False):
"""
Return an instance of ``coset table``, when Todd-Coxeter algorithm is
run over the ``self`` with ``H`` as subgroup, using ``strategy``
argument as strategy. The returned coset table is compressed but not
standardized.
An instance of `CosetTable` for `fp_grp` can be passed as the keyword
argument `draft` in which case the coset enumeration will start with
that instance and attempt to complete it.
When `incomplete` is `True` and the function is unable to complete for
some reason, the partially complete table will be returned.
"""
if not max_cosets:
max_cosets = CosetTable.coset_table_max_limit
if strategy == 'relator_based':
C = coset_enumeration_r(self, H, max_cosets=max_cosets,
draft=draft, incomplete=incomplete)
else:
C = coset_enumeration_c(self, H, max_cosets=max_cosets,
draft=draft, incomplete=incomplete)
if C.is_complete():
C.compress()
return C
def standardize_coset_table(self):
"""
Standardized the coset table ``self`` and makes the internal variable
``_is_standardized`` equal to ``True``.
"""
self._coset_table.standardize()
self._is_standardized = True
def coset_table(self, H, strategy="relator_based", max_cosets=None,
draft=None, incomplete=False):
"""
Return the mathematical coset table of ``self`` in ``H``.
"""
if not H:
if self._coset_table is not None:
if not self._is_standardized:
self.standardize_coset_table()
else:
C = self.coset_enumeration([], strategy, max_cosets=max_cosets,
draft=draft, incomplete=incomplete)
self._coset_table = C
self.standardize_coset_table()
return self._coset_table.table
else:
C = self.coset_enumeration(H, strategy, max_cosets=max_cosets,
draft=draft, incomplete=incomplete)
C.standardize()
return C.table
def order(self, strategy="relator_based"):
"""
Returns the order of the finitely presented group ``self``. It uses
the coset enumeration with identity group as subgroup, i.e ``H=[]``.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x, y**2])
>>> f.order(strategy="coset_table_based")
2
"""
from sympy import S, gcd
if self._order is not None:
return self._order
if self._coset_table is not None:
self._order = len(self._coset_table.table)
elif len(self.relators) == 0:
self._order = self.free_group.order()
elif len(self.generators) == 1:
self._order = abs(gcd([r.array_form[0][1] for r in self.relators]))
elif self._is_infinite():
self._order = S.Infinity
else:
gens, C = self._finite_index_subgroup()
if C:
ind = len(C.table)
self._order = ind*self.subgroup(gens, C=C).order()
else:
self._order = self.index([])
return self._order
def _is_infinite(self):
'''
Test if the group is infinite. Return `True` if the test succeeds
and `None` otherwise
'''
used_gens = set()
for r in self.relators:
used_gens.update(r.contains_generators())
if not set(self.generators) <= used_gens:
return True
# Abelianisation test: check is the abelianisation is infinite
abelian_rels = []
from sympy.matrices.normalforms import invariant_factors
from sympy.matrices import Matrix
for rel in self.relators:
abelian_rels.append([rel.exponent_sum(g) for g in self.generators])
m = Matrix(Matrix(abelian_rels))
if 0 in invariant_factors(m):
return True
else:
return None
def _finite_index_subgroup(self, s=None):
'''
Find the elements of `self` that generate a finite index subgroup
and, if found, return the list of elements and the coset table of `self` by
the subgroup, otherwise return `(None, None)`
'''
gen = self.most_frequent_generator()
rels = list(self.generators)
rels.extend(self.relators)
if not s:
if len(self.generators) == 2:
s = [gen] + [g for g in self.generators if g != gen]
else:
rand = self.free_group.identity
i = 0
while ((rand in rels or rand**-1 in rels or rand.is_identity)
and i<10):
rand = self.random()
i += 1
s = [gen, rand] + [g for g in self.generators if g != gen]
mid = (len(s)+1)//2
half1 = s[:mid]
half2 = s[mid:]
draft1 = None
draft2 = None
m = 200
C = None
while not C and (m/2 < CosetTable.coset_table_max_limit):
m = min(m, CosetTable.coset_table_max_limit)
draft1 = self.coset_enumeration(half1, max_cosets=m,
draft=draft1, incomplete=True)
if draft1.is_complete():
C = draft1
half = half1
else:
draft2 = self.coset_enumeration(half2, max_cosets=m,
draft=draft2, incomplete=True)
if draft2.is_complete():
C = draft2
half = half2
if not C:
m *= 2
if not C:
return None, None
C.compress()
return half, C
def most_frequent_generator(self):
gens = self.generators
rels = self.relators
freqs = [sum([r.generator_count(g) for r in rels]) for g in gens]
return gens[freqs.index(max(freqs))]
def random(self):
import random
r = self.free_group.identity
for i in range(random.randint(2,3)):
r = r*random.choice(self.generators)**random.choice([1,-1])
return r
def index(self, H, strategy="relator_based"):
"""
Return the index of subgroup ``H`` in group ``self``.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**5, y**4, y*x*y**3*x**3])
>>> f.index([x])
4
"""
# TODO: use |G:H| = |G|/|H| (currently H can't be made into a group)
# when we know |G| and |H|
if H == []:
return self.order()
else:
C = self.coset_enumeration(H, strategy)
return len(C.table)
def __str__(self):
if self.free_group.rank > 30:
str_form = "<fp group with %s generators>" % self.free_group.rank
else:
str_form = "<fp group on the generators %s>" % str(self.generators)
return str_form
__repr__ = __str__
#==============================================================================
# PERMUTATION GROUP METHODS
#==============================================================================
def _to_perm_group(self):
'''
Return an isomorphic permutation group and the isomorphism.
The implementation is dependent on coset enumeration so
will only terminate for finite groups.
'''
from sympy.combinatorics import Permutation, PermutationGroup
from sympy.combinatorics.homomorphisms import homomorphism
if self.order() is S.Infinity:
raise NotImplementedError("Permutation presentation of infinite "
"groups is not implemented")
if self._perm_isomorphism:
T = self._perm_isomorphism
P = T.image()
else:
C = self.coset_table([])
gens = self.generators
images = [[C[i][2*gens.index(g)] for i in range(len(C))] for g in gens]
images = [Permutation(i) for i in images]
P = PermutationGroup(images)
T = homomorphism(self, P, gens, images, check=False)
self._perm_isomorphism = T
return P, T
def _perm_group_list(self, method_name, *args):
'''
Given the name of a `PermutationGroup` method (returning a subgroup
or a list of subgroups) and (optionally) additional arguments it takes,
return a list or a list of lists containing the generators of this (or
these) subgroups in terms of the generators of `self`.
'''
P, T = self._to_perm_group()
perm_result = getattr(P, method_name)(*args)
single = False
if isinstance(perm_result, PermutationGroup):
perm_result, single = [perm_result], True
result = []
for group in perm_result:
gens = group.generators
result.append(T.invert(gens))
return result[0] if single else result
def derived_series(self):
'''
Return the list of lists containing the generators
of the subgroups in the derived series of `self`.
'''
return self._perm_group_list('derived_series')
def lower_central_series(self):
'''
Return the list of lists containing the generators
of the subgroups in the lower central series of `self`.
'''
return self._perm_group_list('lower_central_series')
def center(self):
'''
Return the list of generators of the center of `self`.
'''
return self._perm_group_list('center')
def derived_subgroup(self):
'''
Return the list of generators of the derived subgroup of `self`.
'''
return self._perm_group_list('derived_subgroup')
def centralizer(self, other):
'''
Return the list of generators of the centralizer of `other`
(a list of elements of `self`) in `self`.
'''
T = self._to_perm_group()[1]
other = T(other)
return self._perm_group_list('centralizer', other)
def normal_closure(self, other):
'''
Return the list of generators of the normal closure of `other`
(a list of elements of `self`) in `self`.
'''
T = self._to_perm_group()[1]
other = T(other)
return self._perm_group_list('normal_closure', other)
def _perm_property(self, attr):
'''
Given an attribute of a `PermutationGroup`, return
its value for a permutation group isomorphic to `self`.
'''
P = self._to_perm_group()[0]
return getattr(P, attr)
@property
def is_abelian(self):
'''
Check if `self` is abelian.
'''
return self._perm_property("is_abelian")
@property
def is_nilpotent(self):
'''
Check if `self` is nilpotent.
'''
return self._perm_property("is_nilpotent")
@property
def is_solvable(self):
'''
Check if `self` is solvable.
'''
return self._perm_property("is_solvable")
@property
def elements(self):
'''
List the elements of `self`.
'''
P, T = self._to_perm_group()
return T.invert(P._elements)
@property
def is_cyclic(self):
"""
Return ``True`` if group is Cyclic.
"""
if len(self.generators) <= 1:
return True
try:
P, T = self._to_perm_group()
except NotImplementedError:
raise NotImplementedError("Check for infinite Cyclic group "
"is not implemented")
return P.is_cyclic
def abelian_invariants(self):
"""
Return Abelian Invariants of a group.
"""
try:
P, T = self._to_perm_group()
except NotImplementedError:
raise NotImplementedError("abelian invariants is not implemented"
"for infinite group")
return P.abelian_invariants()
def composition_series(self):
"""
Return subnormal series of maximum length for a group.
"""
try:
P, T = self._to_perm_group()
except NotImplementedError:
raise NotImplementedError("composition series is not implemented"
"for infinite group")
return P.composition_series()
class FpSubgroup(DefaultPrinting):
'''
The class implementing a subgroup of an FpGroup or a FreeGroup
(only finite index subgroups are supported at this point). This
is to be used if one wishes to check if an element of the original
group belongs to the subgroup
'''
def __init__(self, G, gens, normal=False):
super().__init__()
self.parent = G
self.generators = list({g for g in gens if g != G.identity})
self._min_words = None #for use in __contains__
self.C = None
self.normal = normal
def __contains__(self, g):
if isinstance(self.parent, FreeGroup):
if self._min_words is None:
# make _min_words - a list of subwords such that
# g is in the subgroup if and only if it can be
# partitioned into these subwords. Infinite families of
# subwords are presented by tuples, e.g. (r, w)
# stands for the family of subwords r*w**n*r**-1
def _process(w):
# this is to be used before adding new words
# into _min_words; if the word w is not cyclically
# reduced, it will generate an infinite family of
# subwords so should be written as a tuple;
# if it is, w**-1 should be added to the list
# as well
p, r = w.cyclic_reduction(removed=True)
if not r.is_identity:
return [(r, p)]
else:
return [w, w**-1]
# make the initial list
gens = []
for w in self.generators:
if self.normal:
w = w.cyclic_reduction()
gens.extend(_process(w))
for w1 in gens:
for w2 in gens:
# if w1 and w2 are equal or are inverses, continue
if w1 == w2 or (not isinstance(w1, tuple)
and w1**-1 == w2):
continue
# if the start of one word is the inverse of the
# end of the other, their multiple should be added
# to _min_words because of cancellation
if isinstance(w1, tuple):
# start, end
s1, s2 = w1[0][0], w1[0][0]**-1
else:
s1, s2 = w1[0], w1[len(w1)-1]
if isinstance(w2, tuple):
# start, end
r1, r2 = w2[0][0], w2[0][0]**-1
else:
r1, r2 = w2[0], w2[len(w1)-1]
# p1 and p2 are w1 and w2 or, in case when
# w1 or w2 is an infinite family, a representative
p1, p2 = w1, w2
if isinstance(w1, tuple):
p1 = w1[0]*w1[1]*w1[0]**-1
if isinstance(w2, tuple):
p2 = w2[0]*w2[1]*w2[0]**-1
# add the product of the words to the list is necessary
if r1**-1 == s2 and not (p1*p2).is_identity:
new = _process(p1*p2)
if not new in gens:
gens.extend(new)
if r2**-1 == s1 and not (p2*p1).is_identity:
new = _process(p2*p1)
if not new in gens:
gens.extend(new)
self._min_words = gens
min_words = self._min_words
def _is_subword(w):
# check if w is a word in _min_words or one of
# the infinite families in it
w, r = w.cyclic_reduction(removed=True)
if r.is_identity or self.normal:
return w in min_words
else:
t = [s[1] for s in min_words if isinstance(s, tuple)
and s[0] == r]
return [s for s in t if w.power_of(s)] != []
# store the solution of words for which the result of
# _word_break (below) is known
known = {}
def _word_break(w):
# check if w can be written as a product of words
# in min_words
if len(w) == 0:
return True
i = 0
while i < len(w):
i += 1
prefix = w.subword(0, i)
if not _is_subword(prefix):
continue
rest = w.subword(i, len(w))
if rest not in known:
known[rest] = _word_break(rest)
if known[rest]:
return True
return False
if self.normal:
g = g.cyclic_reduction()
return _word_break(g)
else:
if self.C is None:
C = self.parent.coset_enumeration(self.generators)
self.C = C
i = 0
C = self.C
for j in range(len(g)):
i = C.table[i][C.A_dict[g[j]]]
return i == 0
def order(self):
from sympy import S
if not self.generators:
return 1
if isinstance(self.parent, FreeGroup):
return S.Infinity
if self.C is None:
C = self.parent.coset_enumeration(self.generators)
self.C = C
# This is valid because `len(self.C.table)` (the index of the subgroup)
# will always be finite - otherwise coset enumeration doesn't terminate
return self.parent.order()/len(self.C.table)
def to_FpGroup(self):
if isinstance(self.parent, FreeGroup):
gen_syms = [('x_%d'%i) for i in range(len(self.generators))]
return free_group(', '.join(gen_syms))[0]
return self.parent.subgroup(C=self.C)
def __str__(self):
if len(self.generators) > 30:
str_form = "<fp subgroup with %s generators>" % len(self.generators)
else:
str_form = "<fp subgroup on the generators %s>" % str(self.generators)
return str_form
__repr__ = __str__
###############################################################################
# LOW INDEX SUBGROUPS #
###############################################################################
def low_index_subgroups(G, N, Y=()):
"""
Implements the Low Index Subgroups algorithm, i.e find all subgroups of
``G`` upto a given index ``N``. This implements the method described in
[Sim94]. This procedure involves a backtrack search over incomplete Coset
Tables, rather than over forced coincidences.
Parameters
==========
G: An FpGroup < X|R >
N: positive integer, representing the maximum index value for subgroups
Y: (an optional argument) specifying a list of subgroup generators, such
that each of the resulting subgroup contains the subgroup generated by Y.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, low_index_subgroups
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**2, y**3, (x*y)**4])
>>> L = low_index_subgroups(f, 4)
>>> for coset_table in L:
... print(coset_table.table)
[[0, 0, 0, 0]]
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 3, 3]]
[[0, 0, 1, 2], [2, 2, 2, 0], [1, 1, 0, 1]]
[[1, 1, 0, 0], [0, 0, 1, 1]]
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of Computational Group Theory"
Section 5.4
.. [2] Marston Conder and Peter Dobcsanyi
"Applications and Adaptions of the Low Index Subgroups Procedure"
"""
C = CosetTable(G, [])
R = G.relators
# length chosen for the length of the short relators
len_short_rel = 5
# elements of R2 only checked at the last step for complete
# coset tables
R2 = {rel for rel in R if len(rel) > len_short_rel}
# elements of R1 are used in inner parts of the process to prune
# branches of the search tree,
R1 = {rel.identity_cyclic_reduction() for rel in set(R) - R2}
R1_c_list = C.conjugates(R1)
S = []
descendant_subgroups(S, C, R1_c_list, C.A[0], R2, N, Y)
return S
def descendant_subgroups(S, C, R1_c_list, x, R2, N, Y):
A_dict = C.A_dict
A_dict_inv = C.A_dict_inv
if C.is_complete():
# if C is complete then it only needs to test
# whether the relators in R2 are satisfied
for w, alpha in product(R2, C.omega):
if not C.scan_check(alpha, w):
return
# relators in R2 are satisfied, append the table to list
S.append(C)
else:
# find the first undefined entry in Coset Table
for alpha, x in product(range(len(C.table)), C.A):
if C.table[alpha][A_dict[x]] is None:
# this is "x" in pseudo-code (using "y" makes it clear)
undefined_coset, undefined_gen = alpha, x
break
# for filling up the undefine entry we try all possible values
# of beta in Omega or beta = n where beta^(undefined_gen^-1) is undefined
reach = C.omega + [C.n]
for beta in reach:
if beta < N:
if beta == C.n or C.table[beta][A_dict_inv[undefined_gen]] is None:
try_descendant(S, C, R1_c_list, R2, N, undefined_coset, \
undefined_gen, beta, Y)
def try_descendant(S, C, R1_c_list, R2, N, alpha, x, beta, Y):
r"""
Solves the problem of trying out each individual possibility
for `\alpha^x.
"""
D = C.copy()
if beta == D.n and beta < N:
D.table.append([None]*len(D.A))
D.p.append(beta)
D.table[alpha][D.A_dict[x]] = beta
D.table[beta][D.A_dict_inv[x]] = alpha
D.deduction_stack.append((alpha, x))
if not D.process_deductions_check(R1_c_list[D.A_dict[x]], \
R1_c_list[D.A_dict_inv[x]]):
return
for w in Y:
if not D.scan_check(0, w):
return
if first_in_class(D, Y):
descendant_subgroups(S, D, R1_c_list, x, R2, N, Y)
def first_in_class(C, Y=()):
"""
Checks whether the subgroup ``H=G1`` corresponding to the Coset Table
could possibly be the canonical representative of its conjugacy class.
Parameters
==========
C: CosetTable
Returns
=======
bool: True/False
If this returns False, then no descendant of C can have that property, and
so we can abandon C. If it returns True, then we need to process further
the node of the search tree corresponding to C, and so we call
``descendant_subgroups`` recursively on C.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, first_in_class
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**2, y**3, (x*y)**4])
>>> C = CosetTable(f, [])
>>> C.table = [[0, 0, None, None]]
>>> first_in_class(C)
True
>>> C.table = [[1, 1, 1, None], [0, 0, None, 1]]; C.p = [0, 1]
>>> first_in_class(C)
True
>>> C.table = [[1, 1, 2, 1], [0, 0, 0, None], [None, None, None, 0]]
>>> C.p = [0, 1, 2]
>>> first_in_class(C)
False
>>> C.table = [[1, 1, 1, 2], [0, 0, 2, 0], [2, None, 0, 1]]
>>> first_in_class(C)
False
# TODO:: Sims points out in [Sim94] that performance can be improved by
# remembering some of the information computed by ``first_in_class``. If
# the ``continue alpha`` statement is executed at line 14, then the same thing
# will happen for that value of alpha in any descendant of the table C, and so
# the values the values of alpha for which this occurs could profitably be
# stored and passed through to the descendants of C. Of course this would
# make the code more complicated.
# The code below is taken directly from the function on page 208 of [Sim94]
# nu[alpha]
"""
n = C.n
# lamda is the largest numbered point in Omega_c_alpha which is currently defined
lamda = -1
# for alpha in Omega_c, nu[alpha] is the point in Omega_c_alpha corresponding to alpha
nu = [None]*n
# for alpha in Omega_c_alpha, mu[alpha] is the point in Omega_c corresponding to alpha
mu = [None]*n
# mutually nu and mu are the mutually-inverse equivalence maps between
# Omega_c_alpha and Omega_c
next_alpha = False
# For each 0!=alpha in [0 .. nc-1], we start by constructing the equivalent
# standardized coset table C_alpha corresponding to H_alpha
for alpha in range(1, n):
# reset nu to "None" after previous value of alpha
for beta in range(lamda+1):
nu[mu[beta]] = None
# we only want to reject our current table in favour of a preceding
# table in the ordering in which 1 is replaced by alpha, if the subgroup
# G_alpha corresponding to this preceding table definitely contains the
# given subgroup
for w in Y:
# TODO: this should support input of a list of general words
# not just the words which are in "A" (i.e gen and gen^-1)
if C.table[alpha][C.A_dict[w]] != alpha:
# continue with alpha
next_alpha = True
break
if next_alpha:
next_alpha = False
continue
# try alpha as the new point 0 in Omega_C_alpha
mu[0] = alpha
nu[alpha] = 0
# compare corresponding entries in C and C_alpha
lamda = 0
for beta in range(n):
for x in C.A:
gamma = C.table[beta][C.A_dict[x]]
delta = C.table[mu[beta]][C.A_dict[x]]
# if either of the entries is undefined,
# we move with next alpha
if gamma is None or delta is None:
# continue with alpha
next_alpha = True
break
if nu[delta] is None:
# delta becomes the next point in Omega_C_alpha
lamda += 1
nu[delta] = lamda
mu[lamda] = delta
if nu[delta] < gamma:
return False
if nu[delta] > gamma:
# continue with alpha
next_alpha = True
break
if next_alpha:
next_alpha = False
break
return True
#========================================================================
# Simplifying Presentation
#========================================================================
def simplify_presentation(*args, change_gens=False):
'''
For an instance of `FpGroup`, return a simplified isomorphic copy of
the group (e.g. remove redundant generators or relators). Alternatively,
a list of generators and relators can be passed in which case the
simplified lists will be returned.
By default, the generators of the group are unchanged. If you would
like to remove redundant generators, set the keyword argument
`change_gens = True`.
'''
if len(args) == 1:
if not isinstance(args[0], FpGroup):
raise TypeError("The argument must be an instance of FpGroup")
G = args[0]
gens, rels = simplify_presentation(G.generators, G.relators,
change_gens=change_gens)
if gens:
return FpGroup(gens[0].group, rels)
return FpGroup(FreeGroup([]), [])
elif len(args) == 2:
gens, rels = args[0][:], args[1][:]
if not gens:
return gens, rels
identity = gens[0].group.identity
else:
if len(args) == 0:
m = "Not enough arguments"
else:
m = "Too many arguments"
raise RuntimeError(m)
prev_gens = []
prev_rels = []
while not set(prev_rels) == set(rels):
prev_rels = rels
while change_gens and not set(prev_gens) == set(gens):
prev_gens = gens
gens, rels = elimination_technique_1(gens, rels, identity)
rels = _simplify_relators(rels, identity)
if change_gens:
syms = [g.array_form[0][0] for g in gens]
F = free_group(syms)[0]
identity = F.identity
gens = F.generators
subs = dict(zip(syms, gens))
for j, r in enumerate(rels):
a = r.array_form
rel = identity
for sym, p in a:
rel = rel*subs[sym]**p
rels[j] = rel
return gens, rels
def _simplify_relators(rels, identity):
"""Relies upon ``_simplification_technique_1`` for its functioning. """
rels = rels[:]
rels = list(set(_simplification_technique_1(rels)))
rels.sort()
rels = [r.identity_cyclic_reduction() for r in rels]
try:
rels.remove(identity)
except ValueError:
pass
return rels
# Pg 350, section 2.5.1 from [2]
def elimination_technique_1(gens, rels, identity):
rels = rels[:]
# the shorter relators are examined first so that generators selected for
# elimination will have shorter strings as equivalent
rels.sort()
gens = gens[:]
redundant_gens = {}
redundant_rels = []
used_gens = set()
# examine each relator in relator list for any generator occurring exactly
# once
for rel in rels:
# don't look for a redundant generator in a relator which
# depends on previously found ones
contained_gens = rel.contains_generators()
if any(g in contained_gens for g in redundant_gens):
continue
contained_gens = list(contained_gens)
contained_gens.sort(reverse = True)
for gen in contained_gens:
if rel.generator_count(gen) == 1 and gen not in used_gens:
k = rel.exponent_sum(gen)
gen_index = rel.index(gen**k)
bk = rel.subword(gen_index + 1, len(rel))
fw = rel.subword(0, gen_index)
chi = bk*fw
redundant_gens[gen] = chi**(-1*k)
used_gens.update(chi.contains_generators())
redundant_rels.append(rel)
break
rels = [r for r in rels if r not in redundant_rels]
# eliminate the redundant generators from remaining relators
rels = [r.eliminate_words(redundant_gens, _all = True).identity_cyclic_reduction() for r in rels]
rels = list(set(rels))
try:
rels.remove(identity)
except ValueError:
pass
gens = [g for g in gens if g not in redundant_gens]
return gens, rels
def _simplification_technique_1(rels):
"""
All relators are checked to see if they are of the form `gen^n`. If any
such relators are found then all other relators are processed for strings
in the `gen` known order.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import _simplification_technique_1
>>> F, x, y = free_group("x, y")
>>> w1 = [x**2*y**4, x**3]
>>> _simplification_technique_1(w1)
[x**-1*y**4, x**3]
>>> w2 = [x**2*y**-4*x**5, x**3, x**2*y**8, y**5]
>>> _simplification_technique_1(w2)
[x**-1*y*x**-1, x**3, x**-1*y**-2, y**5]
>>> w3 = [x**6*y**4, x**4]
>>> _simplification_technique_1(w3)
[x**2*y**4, x**4]
"""
from sympy import gcd
rels = rels[:]
# dictionary with "gen: n" where gen^n is one of the relators
exps = {}
for i in range(len(rels)):
rel = rels[i]
if rel.number_syllables() == 1:
g = rel[0]
exp = abs(rel.array_form[0][1])
if rel.array_form[0][1] < 0:
rels[i] = rels[i]**-1
g = g**-1
if g in exps:
exp = gcd(exp, exps[g].array_form[0][1])
exps[g] = g**exp
one_syllables_words = exps.values()
# decrease some of the exponents in relators, making use of the single
# syllable relators
for i in range(len(rels)):
rel = rels[i]
if rel in one_syllables_words:
continue
rel = rel.eliminate_words(one_syllables_words, _all = True)
# if rels[i] contains g**n where abs(n) is greater than half of the power p
# of g in exps, g**n can be replaced by g**(n-p) (or g**(p-n) if n<0)
for g in rel.contains_generators():
if g in exps:
exp = exps[g].array_form[0][1]
max_exp = (exp + 1)//2
rel = rel.eliminate_word(g**(max_exp), g**(max_exp-exp), _all = True)
rel = rel.eliminate_word(g**(-max_exp), g**(-(max_exp-exp)), _all = True)
rels[i] = rel
rels = [r.identity_cyclic_reduction() for r in rels]
return rels
###############################################################################
# SUBGROUP PRESENTATIONS #
###############################################################################
# Pg 175 [1]
def define_schreier_generators(C, homomorphism=False):
'''
Parameters
==========
C -- Coset table.
homomorphism -- When set to True, return a dictionary containing the images
of the presentation generators in the original group.
'''
y = []
gamma = 1
f = C.fp_group
X = f.generators
if homomorphism:
# `_gens` stores the elements of the parent group to
# to which the schreier generators correspond to.
_gens = {}
# compute the schreier Traversal
tau = {}
tau[0] = f.identity
C.P = [[None]*len(C.A) for i in range(C.n)]
for alpha, x in product(C.omega, C.A):
beta = C.table[alpha][C.A_dict[x]]
if beta == gamma:
C.P[alpha][C.A_dict[x]] = "<identity>"
C.P[beta][C.A_dict_inv[x]] = "<identity>"
gamma += 1
if homomorphism:
tau[beta] = tau[alpha]*x
elif x in X and C.P[alpha][C.A_dict[x]] is None:
y_alpha_x = '%s_%s' % (x, alpha)
y.append(y_alpha_x)
C.P[alpha][C.A_dict[x]] = y_alpha_x
if homomorphism:
_gens[y_alpha_x] = tau[alpha]*x*tau[beta]**-1
grp_gens = list(free_group(', '.join(y)))
C._schreier_free_group = grp_gens.pop(0)
C._schreier_generators = grp_gens
if homomorphism:
C._schreier_gen_elem = _gens
# replace all elements of P by, free group elements
for i, j in product(range(len(C.P)), range(len(C.A))):
# if equals "<identity>", replace by identity element
if C.P[i][j] == "<identity>":
C.P[i][j] = C._schreier_free_group.identity
elif isinstance(C.P[i][j], str):
r = C._schreier_generators[y.index(C.P[i][j])]
C.P[i][j] = r
beta = C.table[i][j]
C.P[beta][j + 1] = r**-1
def reidemeister_relators(C):
R = C.fp_group.relators
rels = [rewrite(C, coset, word) for word in R for coset in range(C.n)]
order_1_gens = {i for i in rels if len(i) == 1}
# remove all the order 1 generators from relators
rels = list(filter(lambda rel: rel not in order_1_gens, rels))
# replace order 1 generators by identity element in reidemeister relators
for i in range(len(rels)):
w = rels[i]
w = w.eliminate_words(order_1_gens, _all=True)
rels[i] = w
C._schreier_generators = [i for i in C._schreier_generators
if not (i in order_1_gens or i**-1 in order_1_gens)]
# Tietze transformation 1 i.e TT_1
# remove cyclic conjugate elements from relators
i = 0
while i < len(rels):
w = rels[i]
j = i + 1
while j < len(rels):
if w.is_cyclic_conjugate(rels[j]):
del rels[j]
else:
j += 1
i += 1
C._reidemeister_relators = rels
def rewrite(C, alpha, w):
"""
Parameters
==========
C: CosetTable
alpha: A live coset
w: A word in `A*`
Returns
=======
rho(tau(alpha), w)
Examples
========
>>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, define_schreier_generators, rewrite
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y = free_group("x ,y")
>>> f = FpGroup(F, [x**2, y**3, (x*y)**6])
>>> C = CosetTable(f, [])
>>> C.table = [[1, 1, 2, 3], [0, 0, 4, 5], [4, 4, 3, 0], [5, 5, 0, 2], [2, 2, 5, 1], [3, 3, 1, 4]]
>>> C.p = [0, 1, 2, 3, 4, 5]
>>> define_schreier_generators(C)
>>> rewrite(C, 0, (x*y)**6)
x_4*y_2*x_3*x_1*x_2*y_4*x_5
"""
v = C._schreier_free_group.identity
for i in range(len(w)):
x_i = w[i]
v = v*C.P[alpha][C.A_dict[x_i]]
alpha = C.table[alpha][C.A_dict[x_i]]
return v
# Pg 350, section 2.5.2 from [2]
def elimination_technique_2(C):
"""
This technique eliminates one generator at a time. Heuristically this
seems superior in that we may select for elimination the generator with
shortest equivalent string at each stage.
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r, \
reidemeister_relators, define_schreier_generators, elimination_technique_2
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**3, y**5, (x*y)**2]); H = [x*y, x**-1*y**-1*x*y*x]
>>> C = coset_enumeration_r(f, H)
>>> C.compress(); C.standardize()
>>> define_schreier_generators(C)
>>> reidemeister_relators(C)
>>> elimination_technique_2(C)
([y_1, y_2], [y_2**-3, y_2*y_1*y_2*y_1*y_2*y_1, y_1**2])
"""
rels = C._reidemeister_relators
rels.sort(reverse=True)
gens = C._schreier_generators
for i in range(len(gens) - 1, -1, -1):
rel = rels[i]
for j in range(len(gens) - 1, -1, -1):
gen = gens[j]
if rel.generator_count(gen) == 1:
k = rel.exponent_sum(gen)
gen_index = rel.index(gen**k)
bk = rel.subword(gen_index + 1, len(rel))
fw = rel.subword(0, gen_index)
rep_by = (bk*fw)**(-1*k)
del rels[i]; del gens[j]
for l in range(len(rels)):
rels[l] = rels[l].eliminate_word(gen, rep_by)
break
C._reidemeister_relators = rels
C._schreier_generators = gens
return C._schreier_generators, C._reidemeister_relators
def reidemeister_presentation(fp_grp, H, C=None, homomorphism=False):
"""
Parameters
==========
fp_group: A finitely presented group, an instance of FpGroup
H: A subgroup whose presentation is to be found, given as a list
of words in generators of `fp_grp`
homomorphism: When set to True, return a homomorphism from the subgroup
to the parent group
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, reidemeister_presentation
>>> F, x, y = free_group("x, y")
Example 5.6 Pg. 177 from [1]
>>> f = FpGroup(F, [x**3, y**5, (x*y)**2])
>>> H = [x*y, x**-1*y**-1*x*y*x]
>>> reidemeister_presentation(f, H)
((y_1, y_2), (y_1**2, y_2**3, y_2*y_1*y_2*y_1*y_2*y_1))
Example 5.8 Pg. 183 from [1]
>>> f = FpGroup(F, [x**3, y**3, (x*y)**3])
>>> H = [x*y, x*y**-1]
>>> reidemeister_presentation(f, H)
((x_0, y_0), (x_0**3, y_0**3, x_0*y_0*x_0*y_0*x_0*y_0))
Exercises Q2. Pg 187 from [1]
>>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
>>> H = [x]
>>> reidemeister_presentation(f, H)
((x_0,), (x_0**4,))
Example 5.9 Pg. 183 from [1]
>>> f = FpGroup(F, [x**3*y**-3, (x*y)**3, (x*y**-1)**2])
>>> H = [x]
>>> reidemeister_presentation(f, H)
((x_0,), (x_0**6,))
"""
if not C:
C = coset_enumeration_r(fp_grp, H)
C.compress(); C.standardize()
define_schreier_generators(C, homomorphism=homomorphism)
reidemeister_relators(C)
gens, rels = C._schreier_generators, C._reidemeister_relators
gens, rels = simplify_presentation(gens, rels, change_gens=True)
C.schreier_generators = tuple(gens)
C.reidemeister_relators = tuple(rels)
if homomorphism:
_gens = []
for gen in gens:
_gens.append(C._schreier_gen_elem[str(gen)])
return C.schreier_generators, C.reidemeister_relators, _gens
return C.schreier_generators, C.reidemeister_relators
FpGroupElement = FreeGroupElement
|
5b8abe78c01aeb537f5bdb6ebd61a12c958878e8cf969da1eb6d74078fe5c7a5 | from sympy.core.add import Add
from sympy.core.compatibility import is_sequence
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.mul import Mul
from sympy.core.relational import Equality, Relational
from sympy.core.singleton import S
from sympy.core.symbol import Symbol, Dummy
from sympy.core.sympify import sympify
from sympy.functions.elementary.piecewise import (piecewise_fold,
Piecewise)
from sympy.logic.boolalg import BooleanFunction
from sympy.tensor.indexed import Idx
from sympy.sets.sets import Interval
from sympy.sets.fancysets import Range
from sympy.utilities import flatten
from sympy.utilities.iterables import sift
from sympy.utilities.exceptions import SymPyDeprecationWarning
def _common_new(cls, function, *symbols, **assumptions):
"""Return either a special return value or the tuple,
(function, limits, orientation). This code is common to
both ExprWithLimits and AddWithLimits."""
function = sympify(function)
if isinstance(function, Equality):
# This transforms e.g. Integral(Eq(x, y)) to Eq(Integral(x), Integral(y))
# but that is only valid for definite integrals.
limits, orientation = _process_limits(*symbols)
if not (limits and all(len(limit) == 3 for limit in limits)):
SymPyDeprecationWarning(
feature='Integral(Eq(x, y))',
useinstead='Eq(Integral(x, z), Integral(y, z))',
issue=18053,
deprecated_since_version=1.6,
).warn()
lhs = function.lhs
rhs = function.rhs
return Equality(cls(lhs, *symbols, **assumptions), \
cls(rhs, *symbols, **assumptions))
if function is S.NaN:
return S.NaN
if symbols:
limits, orientation = _process_limits(*symbols)
for i, li in enumerate(limits):
if len(li) == 4:
function = function.subs(li[0], li[-1])
limits[i] = Tuple(*li[:-1])
else:
# symbol not provided -- we can still try to compute a general form
free = function.free_symbols
if len(free) != 1:
raise ValueError(
"specify dummy variables for %s" % function)
limits, orientation = [Tuple(s) for s in free], 1
# denest any nested calls
while cls == type(function):
limits = list(function.limits) + limits
function = function.function
# Any embedded piecewise functions need to be brought out to the
# top level. We only fold Piecewise that contain the integration
# variable.
reps = {}
symbols_of_integration = {i[0] for i in limits}
for p in function.atoms(Piecewise):
if not p.has(*symbols_of_integration):
reps[p] = Dummy()
# mask off those that don't
function = function.xreplace(reps)
# do the fold
function = piecewise_fold(function)
# remove the masking
function = function.xreplace({v: k for k, v in reps.items()})
return function, limits, orientation
def _process_limits(*symbols):
"""Process the list of symbols and convert them to canonical limits,
storing them as Tuple(symbol, lower, upper). The orientation of
the function is also returned when the upper limit is missing
so (x, 1, None) becomes (x, None, 1) and the orientation is changed.
"""
limits = []
orientation = 1
for V in symbols:
if isinstance(V, (Relational, BooleanFunction)):
variable = V.atoms(Symbol).pop()
V = (variable, V.as_set())
if isinstance(V, Symbol) or getattr(V, '_diff_wrt', False):
if isinstance(V, Idx):
if V.lower is None or V.upper is None:
limits.append(Tuple(V))
else:
limits.append(Tuple(V, V.lower, V.upper))
else:
limits.append(Tuple(V))
continue
elif is_sequence(V, Tuple):
if len(V) == 2 and isinstance(V[1], Range):
lo = V[1].inf
hi = V[1].sup
dx = abs(V[1].step)
V = [V[0]] + [0, (hi - lo)//dx, dx*V[0] + lo]
V = sympify(flatten(V)) # a list of sympified elements
if isinstance(V[0], (Symbol, Idx)) or getattr(V[0], '_diff_wrt', False):
newsymbol = V[0]
if len(V) == 2 and isinstance(V[1], Interval): # 2 -> 3
# Interval
V[1:] = [V[1].start, V[1].end]
elif len(V) == 3:
# general case
if V[2] is None and not V[1] is None:
orientation *= -1
V = [newsymbol] + [i for i in V[1:] if i is not None]
lenV = len(V)
if not isinstance(newsymbol, Idx) or lenV == 3:
if lenV == 4:
limits.append(Tuple(*V))
continue
if lenV == 3:
if isinstance(newsymbol, Idx):
# Idx represents an integer which may have
# specified values it can take on; if it is
# given such a value, an error is raised here
# if the summation would try to give it a larger
# or smaller value than permitted. None and Symbolic
# values will not raise an error.
lo, hi = newsymbol.lower, newsymbol.upper
try:
if lo is not None and not bool(V[1] >= lo):
raise ValueError("Summation will set Idx value too low.")
except TypeError:
pass
try:
if hi is not None and not bool(V[2] <= hi):
raise ValueError("Summation will set Idx value too high.")
except TypeError:
pass
limits.append(Tuple(*V))
continue
if lenV == 1 or (lenV == 2 and V[1] is None):
limits.append(Tuple(newsymbol))
continue
elif lenV == 2:
limits.append(Tuple(newsymbol, V[1]))
continue
raise ValueError('Invalid limits given: %s' % str(symbols))
return limits, orientation
class ExprWithLimits(Expr):
__slots__ = ('is_commutative',)
def __new__(cls, function, *symbols, **assumptions):
pre = _common_new(cls, function, *symbols, **assumptions)
if type(pre) is tuple:
function, limits, _ = pre
else:
return pre
# limits must have upper and lower bounds; the indefinite form
# is not supported. This restriction does not apply to AddWithLimits
if any(len(l) != 3 or None in l for l in limits):
raise ValueError('ExprWithLimits requires values for lower and upper bounds.')
obj = Expr.__new__(cls, **assumptions)
arglist = [function]
arglist.extend(limits)
obj._args = tuple(arglist)
obj.is_commutative = function.is_commutative # limits already checked
return obj
@property
def function(self):
"""Return the function applied across limits.
Examples
========
>>> from sympy import Integral
>>> from sympy.abc import x
>>> Integral(x**2, (x,)).function
x**2
See Also
========
limits, variables, free_symbols
"""
return self._args[0]
@property
def kind(self):
return self.function.kind
@property
def limits(self):
"""Return the limits of expression.
Examples
========
>>> from sympy import Integral
>>> from sympy.abc import x, i
>>> Integral(x**i, (i, 1, 3)).limits
((i, 1, 3),)
See Also
========
function, variables, free_symbols
"""
return self._args[1:]
@property
def variables(self):
"""Return a list of the limit variables.
>>> from sympy import Sum
>>> from sympy.abc import x, i
>>> Sum(x**i, (i, 1, 3)).variables
[i]
See Also
========
function, limits, free_symbols
as_dummy : Rename dummy variables
sympy.integrals.integrals.Integral.transform : Perform mapping on the dummy variable
"""
return [l[0] for l in self.limits]
@property
def bound_symbols(self):
"""Return only variables that are dummy variables.
Examples
========
>>> from sympy import Integral
>>> from sympy.abc import x, i, j, k
>>> Integral(x**i, (i, 1, 3), (j, 2), k).bound_symbols
[i, j]
See Also
========
function, limits, free_symbols
as_dummy : Rename dummy variables
sympy.integrals.integrals.Integral.transform : Perform mapping on the dummy variable
"""
return [l[0] for l in self.limits if len(l) != 1]
@property
def free_symbols(self):
"""
This method returns the symbols in the object, excluding those
that take on a specific value (i.e. the dummy symbols).
Examples
========
>>> from sympy import Sum
>>> from sympy.abc import x, y
>>> Sum(x, (x, y, 1)).free_symbols
{y}
"""
# don't test for any special values -- nominal free symbols
# should be returned, e.g. don't return set() if the
# function is zero -- treat it like an unevaluated expression.
function, limits = self.function, self.limits
isyms = function.free_symbols
for xab in limits:
if len(xab) == 1:
isyms.add(xab[0])
continue
# take out the target symbol
if xab[0] in isyms:
isyms.remove(xab[0])
# add in the new symbols
for i in xab[1:]:
isyms.update(i.free_symbols)
return isyms
@property
def is_number(self):
"""Return True if the Sum has no free symbols, else False."""
return not self.free_symbols
def _eval_interval(self, x, a, b):
limits = [(i if i[0] != x else (x, a, b)) for i in self.limits]
integrand = self.function
return self.func(integrand, *limits)
def _eval_subs(self, old, new):
"""
Perform substitutions over non-dummy variables
of an expression with limits. Also, can be used
to specify point-evaluation of an abstract antiderivative.
Examples
========
>>> from sympy import Sum, oo
>>> from sympy.abc import s, n
>>> Sum(1/n**s, (n, 1, oo)).subs(s, 2)
Sum(n**(-2), (n, 1, oo))
>>> from sympy import Integral
>>> from sympy.abc import x, a
>>> Integral(a*x**2, x).subs(x, 4)
Integral(a*x**2, (x, 4))
See Also
========
variables : Lists the integration variables
transform : Perform mapping on the dummy variable for integrals
change_index : Perform mapping on the sum and product dummy variables
"""
from sympy.core.function import AppliedUndef, UndefinedFunction
func, limits = self.function, list(self.limits)
# If one of the expressions we are replacing is used as a func index
# one of two things happens.
# - the old variable first appears as a free variable
# so we perform all free substitutions before it becomes
# a func index.
# - the old variable first appears as a func index, in
# which case we ignore. See change_index.
# Reorder limits to match standard mathematical practice for scoping
limits.reverse()
if not isinstance(old, Symbol) or \
old.free_symbols.intersection(self.free_symbols):
sub_into_func = True
for i, xab in enumerate(limits):
if 1 == len(xab) and old == xab[0]:
if new._diff_wrt:
xab = (new,)
else:
xab = (old, old)
limits[i] = Tuple(xab[0], *[l._subs(old, new) for l in xab[1:]])
if len(xab[0].free_symbols.intersection(old.free_symbols)) != 0:
sub_into_func = False
break
if isinstance(old, AppliedUndef) or isinstance(old, UndefinedFunction):
sy2 = set(self.variables).intersection(set(new.atoms(Symbol)))
sy1 = set(self.variables).intersection(set(old.args))
if not sy2.issubset(sy1):
raise ValueError(
"substitution can not create dummy dependencies")
sub_into_func = True
if sub_into_func:
func = func.subs(old, new)
else:
# old is a Symbol and a dummy variable of some limit
for i, xab in enumerate(limits):
if len(xab) == 3:
limits[i] = Tuple(xab[0], *[l._subs(old, new) for l in xab[1:]])
if old == xab[0]:
break
# simplify redundant limits (x, x) to (x, )
for i, xab in enumerate(limits):
if len(xab) == 2 and (xab[0] - xab[1]).is_zero:
limits[i] = Tuple(xab[0], )
# Reorder limits back to representation-form
limits.reverse()
return self.func(func, *limits)
@property
def has_finite_limits(self):
"""
Returns True if the limits are known to be finite, either by the
explicit bounds, assumptions on the bounds, or assumptions on the
variables. False if known to be infinite, based on the bounds.
None if not enough information is available to determine.
Examples
========
>>> from sympy import Sum, Integral, Product, oo, Symbol
>>> x = Symbol('x')
>>> Sum(x, (x, 1, 8)).has_finite_limits
True
>>> Integral(x, (x, 1, oo)).has_finite_limits
False
>>> M = Symbol('M')
>>> Sum(x, (x, 1, M)).has_finite_limits
>>> N = Symbol('N', integer=True)
>>> Product(x, (x, 1, N)).has_finite_limits
True
See Also
========
has_reversed_limits
"""
ret_None = False
for lim in self.limits:
if len(lim) == 3:
if any(l.is_infinite for l in lim[1:]):
# Any of the bounds are +/-oo
return False
elif any(l.is_infinite is None for l in lim[1:]):
# Maybe there are assumptions on the variable?
if lim[0].is_infinite is None:
ret_None = True
else:
if lim[0].is_infinite is None:
ret_None = True
if ret_None:
return None
return True
@property
def has_reversed_limits(self):
"""
Returns True if the limits are known to be in reversed order, either
by the explicit bounds, assumptions on the bounds, or assumptions on the
variables. False if known to be in normal order, based on the bounds.
None if not enough information is available to determine.
Examples
========
>>> from sympy import Sum, Integral, Product, oo, Symbol
>>> x = Symbol('x')
>>> Sum(x, (x, 8, 1)).has_reversed_limits
True
>>> Sum(x, (x, 1, oo)).has_reversed_limits
False
>>> M = Symbol('M')
>>> Integral(x, (x, 1, M)).has_reversed_limits
>>> N = Symbol('N', integer=True, positive=True)
>>> Sum(x, (x, 1, N)).has_reversed_limits
False
>>> Product(x, (x, 2, N)).has_reversed_limits
>>> Product(x, (x, 2, N)).subs(N, N + 2).has_reversed_limits
False
See Also
========
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.has_empty_sequence
"""
ret_None = False
for lim in self.limits:
if len(lim) == 3:
var, a, b = lim
dif = b - a
if dif.is_extended_negative:
return True
elif dif.is_extended_nonnegative:
continue
else:
ret_None = True
else:
return None
if ret_None:
return None
return False
class AddWithLimits(ExprWithLimits):
r"""Represents unevaluated oriented additions.
Parent class for Integral and Sum.
"""
def __new__(cls, function, *symbols, **assumptions):
pre = _common_new(cls, function, *symbols, **assumptions)
if type(pre) is tuple:
function, limits, orientation = pre
else:
return pre
obj = Expr.__new__(cls, **assumptions)
arglist = [orientation*function] # orientation not used in ExprWithLimits
arglist.extend(limits)
obj._args = tuple(arglist)
obj.is_commutative = function.is_commutative # limits already checked
return obj
def _eval_adjoint(self):
if all(x.is_real for x in flatten(self.limits)):
return self.func(self.function.adjoint(), *self.limits)
return None
def _eval_conjugate(self):
if all(x.is_real for x in flatten(self.limits)):
return self.func(self.function.conjugate(), *self.limits)
return None
def _eval_transpose(self):
if all(x.is_real for x in flatten(self.limits)):
return self.func(self.function.transpose(), *self.limits)
return None
def _eval_factor(self, **hints):
if 1 == len(self.limits):
summand = self.function.factor(**hints)
if summand.is_Mul:
out = sift(summand.args, lambda w: w.is_commutative \
and not set(self.variables) & w.free_symbols)
return Mul(*out[True])*self.func(Mul(*out[False]), \
*self.limits)
else:
summand = self.func(self.function, *self.limits[0:-1]).factor()
if not summand.has(self.variables[-1]):
return self.func(1, [self.limits[-1]]).doit()*summand
elif isinstance(summand, Mul):
return self.func(summand, self.limits[-1]).factor()
return self
def _eval_expand_basic(self, **hints):
from sympy.matrices.matrices import MatrixBase
summand = self.function.expand(**hints)
if summand.is_Add and summand.is_commutative:
return Add(*[self.func(i, *self.limits) for i in summand.args])
elif isinstance(summand, MatrixBase):
return summand.applyfunc(lambda x: self.func(x, *self.limits))
elif summand != self.function:
return self.func(summand, *self.limits)
return self
|
082291307ed02332a30257787858ec406e03817b61975592678979f7c79d51b2 | from sympy.calculus.singularities import is_decreasing
from sympy.calculus.util import AccumulationBounds
from sympy.concrete.expr_with_limits import AddWithLimits
from sympy.concrete.expr_with_intlimits import ExprWithIntLimits
from sympy.concrete.gosper import gosper_sum
from sympy.core.add import Add
from sympy.core.function import Derivative
from sympy.core.mul import Mul
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import Dummy, Wild, Symbol
from sympy.functions.special.zeta_functions import zeta
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import cot, csc
from sympy.logic.boolalg import And
from sympy.polys import apart, together
from sympy.polys.polyerrors import PolynomialError, PolificationFailed
from sympy.polys.polytools import parallel_poly_from_expr
from sympy.series.limitseq import limit_seq
from sympy.series.order import O
from sympy.series.residues import residue
from sympy.sets.sets import FiniteSet
from sympy.simplify import denom
from sympy.simplify.combsimp import combsimp
from sympy.simplify.powsimp import powsimp
from sympy.solvers import solve
from sympy.solvers.solveset import solveset
from sympy.utilities.iterables import sift
import itertools
class Sum(AddWithLimits, ExprWithIntLimits):
r"""
Represents unevaluated summation.
Explanation
===========
``Sum`` represents a finite or infinite series, with the first argument
being the general form of terms in the series, and the second argument
being ``(dummy_variable, start, end)``, with ``dummy_variable`` taking
all integer values from ``start`` through ``end``. In accordance with
long-standing mathematical convention, the end term is included in the
summation.
Finite sums
===========
For finite sums (and sums with symbolic limits assumed to be finite) we
follow the summation convention described by Karr [1], especially
definition 3 of section 1.4. The sum:
.. math::
\sum_{m \leq i < n} f(i)
has *the obvious meaning* for `m < n`, namely:
.. math::
\sum_{m \leq i < n} f(i) = f(m) + f(m+1) + \ldots + f(n-2) + f(n-1)
with the upper limit value `f(n)` excluded. The sum over an empty set is
zero if and only if `m = n`:
.. math::
\sum_{m \leq i < n} f(i) = 0 \quad \mathrm{for} \quad m = n
Finally, for all other sums over empty sets we assume the following
definition:
.. math::
\sum_{m \leq i < n} f(i) = - \sum_{n \leq i < m} f(i) \quad \mathrm{for} \quad m > n
It is important to note that Karr defines all sums with the upper
limit being exclusive. This is in contrast to the usual mathematical notation,
but does not affect the summation convention. Indeed we have:
.. math::
\sum_{m \leq i < n} f(i) = \sum_{i = m}^{n - 1} f(i)
where the difference in notation is intentional to emphasize the meaning,
with limits typeset on the top being inclusive.
Examples
========
>>> from sympy.abc import i, k, m, n, x
>>> from sympy import Sum, factorial, oo, IndexedBase, Function
>>> Sum(k, (k, 1, m))
Sum(k, (k, 1, m))
>>> Sum(k, (k, 1, m)).doit()
m**2/2 + m/2
>>> Sum(k**2, (k, 1, m))
Sum(k**2, (k, 1, m))
>>> Sum(k**2, (k, 1, m)).doit()
m**3/3 + m**2/2 + m/6
>>> Sum(x**k, (k, 0, oo))
Sum(x**k, (k, 0, oo))
>>> Sum(x**k, (k, 0, oo)).doit()
Piecewise((1/(1 - x), Abs(x) < 1), (Sum(x**k, (k, 0, oo)), True))
>>> Sum(x**k/factorial(k), (k, 0, oo)).doit()
exp(x)
Here are examples to do summation with symbolic indices. You
can use either Function of IndexedBase classes:
>>> f = Function('f')
>>> Sum(f(n), (n, 0, 3)).doit()
f(0) + f(1) + f(2) + f(3)
>>> Sum(f(n), (n, 0, oo)).doit()
Sum(f(n), (n, 0, oo))
>>> f = IndexedBase('f')
>>> Sum(f[n]**2, (n, 0, 3)).doit()
f[0]**2 + f[1]**2 + f[2]**2 + f[3]**2
An example showing that the symbolic result of a summation is still
valid for seemingly nonsensical values of the limits. Then the Karr
convention allows us to give a perfectly valid interpretation to
those sums by interchanging the limits according to the above rules:
>>> S = Sum(i, (i, 1, n)).doit()
>>> S
n**2/2 + n/2
>>> S.subs(n, -4)
6
>>> Sum(i, (i, 1, -4)).doit()
6
>>> Sum(-i, (i, -3, 0)).doit()
6
An explicit example of the Karr summation convention:
>>> S1 = Sum(i**2, (i, m, m+n-1)).doit()
>>> S1
m**2*n + m*n**2 - m*n + n**3/3 - n**2/2 + n/6
>>> S2 = Sum(i**2, (i, m+n, m-1)).doit()
>>> S2
-m**2*n - m*n**2 + m*n - n**3/3 + n**2/2 - n/6
>>> S1 + S2
0
>>> S3 = Sum(i, (i, m, m-1)).doit()
>>> S3
0
See Also
========
summation
Product, sympy.concrete.products.product
References
==========
.. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
Volume 28 Issue 2, April 1981, Pages 305-350
http://dl.acm.org/citation.cfm?doid=322248.322255
.. [2] https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation
.. [3] https://en.wikipedia.org/wiki/Empty_sum
"""
__slots__ = ('is_commutative',)
def __new__(cls, function, *symbols, **assumptions):
obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions)
if not hasattr(obj, 'limits'):
return obj
if any(len(l) != 3 or None in l for l in obj.limits):
raise ValueError('Sum requires values for lower and upper bounds.')
return obj
def _eval_is_zero(self):
# a Sum is only zero if its function is zero or if all terms
# cancel out. This only answers whether the summand is zero; if
# not then None is returned since we don't analyze whether all
# terms cancel out.
if self.function.is_zero or self.has_empty_sequence:
return True
def _eval_is_extended_real(self):
if self.has_empty_sequence:
return True
return self.function.is_extended_real
def _eval_is_positive(self):
if self.has_finite_limits and self.has_reversed_limits is False:
return self.function.is_positive
def _eval_is_negative(self):
if self.has_finite_limits and self.has_reversed_limits is False:
return self.function.is_negative
def _eval_is_finite(self):
if self.has_finite_limits and self.function.is_finite:
return True
def doit(self, **hints):
if hints.get('deep', True):
f = self.function.doit(**hints)
else:
f = self.function
# first make sure any definite limits have summation
# variables with matching assumptions
reps = {}
for xab in self.limits:
d = _dummy_with_inherited_properties_concrete(xab)
if d:
reps[xab[0]] = d
if reps:
undo = {v: k for k, v in reps.items()}
did = self.xreplace(reps).doit(**hints)
if type(did) is tuple: # when separate=True
did = tuple([i.xreplace(undo) for i in did])
elif did is not None:
did = did.xreplace(undo)
else:
did = self
return did
if self.function.is_Matrix:
expanded = self.expand()
if self != expanded:
return expanded.doit()
return _eval_matrix_sum(self)
for n, limit in enumerate(self.limits):
i, a, b = limit
dif = b - a
if dif == -1:
# Any summation over an empty set is zero
return S.Zero
if dif.is_integer and dif.is_negative:
a, b = b + 1, a - 1
f = -f
newf = eval_sum(f, (i, a, b))
if newf is None:
if f == self.function:
zeta_function = self.eval_zeta_function(f, (i, a, b))
if zeta_function is not None:
return zeta_function
return self
else:
return self.func(f, *self.limits[n:])
f = newf
if hints.get('deep', True):
# eval_sum could return partially unevaluated
# result with Piecewise. In this case we won't
# doit() recursively.
if not isinstance(f, Piecewise):
return f.doit(**hints)
return f
def eval_zeta_function(self, f, limits):
"""
Check whether the function matches with the zeta function.
If it matches, then return a `Piecewise` expression because
zeta function does not converge unless `s > 1` and `q > 0`
"""
i, a, b = limits
w, y, z = Wild('w', exclude=[i]), Wild('y', exclude=[i]), Wild('z', exclude=[i])
result = f.match((w * i + y) ** (-z))
if result is not None and b is S.Infinity:
coeff = 1 / result[w] ** result[z]
s = result[z]
q = result[y] / result[w] + a
return Piecewise((coeff * zeta(s, q), And(q > 0, s > 1)), (self, True))
def _eval_derivative(self, x):
"""
Differentiate wrt x as long as x is not in the free symbols of any of
the upper or lower limits.
Explanation
===========
Sum(a*b*x, (x, 1, a)) can be differentiated wrt x or b but not `a`
since the value of the sum is discontinuous in `a`. In a case
involving a limit variable, the unevaluated derivative is returned.
"""
# diff already confirmed that x is in the free symbols of self, but we
# don't want to differentiate wrt any free symbol in the upper or lower
# limits
# XXX remove this test for free_symbols when the default _eval_derivative is in
if isinstance(x, Symbol) and x not in self.free_symbols:
return S.Zero
# get limits and the function
f, limits = self.function, list(self.limits)
limit = limits.pop(-1)
if limits: # f is the argument to a Sum
f = self.func(f, *limits)
_, a, b = limit
if x in a.free_symbols or x in b.free_symbols:
return None
df = Derivative(f, x, evaluate=True)
rv = self.func(df, limit)
return rv
def _eval_difference_delta(self, n, step):
k, _, upper = self.args[-1]
new_upper = upper.subs(n, n + step)
if len(self.args) == 2:
f = self.args[0]
else:
f = self.func(*self.args[:-1])
return Sum(f, (k, upper + 1, new_upper)).doit()
def _eval_simplify(self, **kwargs):
from sympy.simplify.simplify import factor_sum, sum_combine
from sympy.core.function import expand
from sympy.core.mul import Mul
# split the function into adds
terms = Add.make_args(expand(self.function))
s_t = [] # Sum Terms
o_t = [] # Other Terms
for term in terms:
if term.has(Sum):
# if there is an embedded sum here
# it is of the form x * (Sum(whatever))
# hence we make a Mul out of it, and simplify all interior sum terms
subterms = Mul.make_args(expand(term))
out_terms = []
for subterm in subterms:
# go through each term
if isinstance(subterm, Sum):
# if it's a sum, simplify it
out_terms.append(subterm._eval_simplify())
else:
# otherwise, add it as is
out_terms.append(subterm)
# turn it back into a Mul
s_t.append(Mul(*out_terms))
else:
o_t.append(term)
# next try to combine any interior sums for further simplification
result = Add(sum_combine(s_t), *o_t)
return factor_sum(result, limits=self.limits)
def is_convergent(self):
r"""
Checks for the convergence of a Sum.
Explanation
===========
We divide the study of convergence of infinite sums and products in
two parts.
First Part:
One part is the question whether all the terms are well defined, i.e.,
they are finite in a sum and also non-zero in a product. Zero
is the analogy of (minus) infinity in products as
:math:`e^{-\infty} = 0`.
Second Part:
The second part is the question of convergence after infinities,
and zeros in products, have been omitted assuming that their number
is finite. This means that we only consider the tail of the sum or
product, starting from some point after which all terms are well
defined.
For example, in a sum of the form:
.. math::
\sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b}
where a and b are numbers. The routine will return true, even if there
are infinities in the term sequence (at most two). An analogous
product would be:
.. math::
\prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + an + b}}
This is how convergence is interpreted. It is concerned with what
happens at the limit. Finding the bad terms is another independent
matter.
Note: It is responsibility of user to see that the sum or product
is well defined.
There are various tests employed to check the convergence like
divergence test, root test, integral test, alternating series test,
comparison tests, Dirichlet tests. It returns true if Sum is convergent
and false if divergent and NotImplementedError if it can not be checked.
References
==========
.. [1] https://en.wikipedia.org/wiki/Convergence_tests
Examples
========
>>> from sympy import factorial, S, Sum, Symbol, oo
>>> n = Symbol('n', integer=True)
>>> Sum(n/(n - 1), (n, 4, 7)).is_convergent()
True
>>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent()
False
>>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent()
False
>>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent()
True
See Also
========
Sum.is_absolutely_convergent()
sympy.concrete.products.Product.is_convergent()
"""
from sympy import Interval, Integral, log, symbols, simplify
p, q, r = symbols('p q r', cls=Wild)
sym = self.limits[0][0]
lower_limit = self.limits[0][1]
upper_limit = self.limits[0][2]
sequence_term = self.function.simplify()
if len(sequence_term.free_symbols) > 1:
raise NotImplementedError("convergence checking for more than one symbol "
"containing series is not handled")
if lower_limit.is_finite and upper_limit.is_finite:
return S.true
# transform sym -> -sym and swap the upper_limit = S.Infinity
# and lower_limit = - upper_limit
if lower_limit is S.NegativeInfinity:
if upper_limit is S.Infinity:
return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \
Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent()
sequence_term = simplify(sequence_term.xreplace({sym: -sym}))
lower_limit = -upper_limit
upper_limit = S.Infinity
sym_ = Dummy(sym.name, integer=True, positive=True)
sequence_term = sequence_term.xreplace({sym: sym_})
sym = sym_
interval = Interval(lower_limit, upper_limit)
# Piecewise function handle
if sequence_term.is_Piecewise:
for func, cond in sequence_term.args:
# see if it represents something going to oo
if cond == True or cond.as_set().sup is S.Infinity:
s = Sum(func, (sym, lower_limit, upper_limit))
return s.is_convergent()
return S.true
### -------- Divergence test ----------- ###
try:
lim_val = limit_seq(sequence_term, sym)
if lim_val is not None and lim_val.is_zero is False:
return S.false
except NotImplementedError:
pass
try:
lim_val_abs = limit_seq(abs(sequence_term), sym)
if lim_val_abs is not None and lim_val_abs.is_zero is False:
return S.false
except NotImplementedError:
pass
order = O(sequence_term, (sym, S.Infinity))
### --------- p-series test (1/n**p) ---------- ###
p_series_test = order.expr.match(sym**p)
if p_series_test is not None:
if p_series_test[p] < -1:
return S.true
if p_series_test[p] >= -1:
return S.false
### ------------- comparison test ------------- ###
# 1/(n**p*log(n)**q*log(log(n))**r) comparison
n_log_test = order.expr.match(1/(sym**p*log(sym)**q*log(log(sym))**r))
if n_log_test is not None:
if (n_log_test[p] > 1 or
(n_log_test[p] == 1 and n_log_test[q] > 1) or
(n_log_test[p] == n_log_test[q] == 1 and n_log_test[r] > 1)):
return S.true
return S.false
### ------------- Limit comparison test -----------###
# (1/n) comparison
try:
lim_comp = limit_seq(sym*sequence_term, sym)
if lim_comp is not None and lim_comp.is_number and lim_comp > 0:
return S.false
except NotImplementedError:
pass
### ----------- ratio test ---------------- ###
next_sequence_term = sequence_term.xreplace({sym: sym + 1})
ratio = combsimp(powsimp(next_sequence_term/sequence_term))
try:
lim_ratio = limit_seq(ratio, sym)
if lim_ratio is not None and lim_ratio.is_number:
if abs(lim_ratio) > 1:
return S.false
if abs(lim_ratio) < 1:
return S.true
except NotImplementedError:
lim_ratio = None
### ---------- Raabe's test -------------- ###
if lim_ratio == 1: # ratio test inconclusive
test_val = sym*(sequence_term/
sequence_term.subs(sym, sym + 1) - 1)
test_val = test_val.gammasimp()
try:
lim_val = limit_seq(test_val, sym)
if lim_val is not None and lim_val.is_number:
if lim_val > 1:
return S.true
if lim_val < 1:
return S.false
except NotImplementedError:
pass
### ----------- root test ---------------- ###
# lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity)
try:
lim_evaluated = limit_seq(abs(sequence_term)**(1/sym), sym)
if lim_evaluated is not None and lim_evaluated.is_number:
if lim_evaluated < 1:
return S.true
if lim_evaluated > 1:
return S.false
except NotImplementedError:
pass
### ------------- alternating series test ----------- ###
dict_val = sequence_term.match((-1)**(sym + p)*q)
if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval):
return S.true
### ------------- integral test -------------- ###
check_interval = None
maxima = solveset(sequence_term.diff(sym), sym, interval)
if not maxima:
check_interval = interval
elif isinstance(maxima, FiniteSet) and maxima.sup.is_number:
check_interval = Interval(maxima.sup, interval.sup)
if (check_interval is not None and
(is_decreasing(sequence_term, check_interval) or
is_decreasing(-sequence_term, check_interval))):
integral_val = Integral(
sequence_term, (sym, lower_limit, upper_limit))
try:
integral_val_evaluated = integral_val.doit()
if integral_val_evaluated.is_number:
return S(integral_val_evaluated.is_finite)
except NotImplementedError:
pass
### ----- Dirichlet and bounded times convergent tests ----- ###
# TODO
#
# Dirichlet_test
# https://en.wikipedia.org/wiki/Dirichlet%27s_test
#
# Bounded times convergent test
# It is based on comparison theorems for series.
# In particular, if the general term of a series can
# be written as a product of two terms a_n and b_n
# and if a_n is bounded and if Sum(b_n) is absolutely
# convergent, then the original series Sum(a_n * b_n)
# is absolutely convergent and so convergent.
#
# The following code can grows like 2**n where n is the
# number of args in order.expr
# Possibly combined with the potentially slow checks
# inside the loop, could make this test extremely slow
# for larger summation expressions.
if order.expr.is_Mul:
args = order.expr.args
argset = set(args)
### -------------- Dirichlet tests -------------- ###
m = Dummy('m', integer=True)
def _dirichlet_test(g_n):
try:
ing_val = limit_seq(Sum(g_n, (sym, interval.inf, m)).doit(), m)
if ing_val is not None and ing_val.is_finite:
return S.true
except NotImplementedError:
pass
### -------- bounded times convergent test ---------###
def _bounded_convergent_test(g1_n, g2_n):
try:
lim_val = limit_seq(g1_n, sym)
if lim_val is not None and (lim_val.is_finite or (
isinstance(lim_val, AccumulationBounds)
and (lim_val.max - lim_val.min).is_finite)):
if Sum(g2_n, (sym, lower_limit, upper_limit)).is_absolutely_convergent():
return S.true
except NotImplementedError:
pass
for n in range(1, len(argset)):
for a_tuple in itertools.combinations(args, n):
b_set = argset - set(a_tuple)
a_n = Mul(*a_tuple)
b_n = Mul(*b_set)
if is_decreasing(a_n, interval):
dirich = _dirichlet_test(b_n)
if dirich is not None:
return dirich
bc_test = _bounded_convergent_test(a_n, b_n)
if bc_test is not None:
return bc_test
_sym = self.limits[0][0]
sequence_term = sequence_term.xreplace({sym: _sym})
raise NotImplementedError("The algorithm to find the Sum convergence of %s "
"is not yet implemented" % (sequence_term))
def is_absolutely_convergent(self):
"""
Checks for the absolute convergence of an infinite series.
Same as checking convergence of absolute value of sequence_term of
an infinite series.
References
==========
.. [1] https://en.wikipedia.org/wiki/Absolute_convergence
Examples
========
>>> from sympy import Sum, Symbol, oo
>>> n = Symbol('n', integer=True)
>>> Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent()
False
>>> Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent()
True
See Also
========
Sum.is_convergent()
"""
return Sum(abs(self.function), self.limits).is_convergent()
def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True):
"""
Return an Euler-Maclaurin approximation of self, where m is the
number of leading terms to sum directly and n is the number of
terms in the tail.
With m = n = 0, this is simply the corresponding integral
plus a first-order endpoint correction.
Returns (s, e) where s is the Euler-Maclaurin approximation
and e is the estimated error (taken to be the magnitude of
the first omitted term in the tail):
>>> from sympy.abc import k, a, b
>>> from sympy import Sum
>>> Sum(1/k, (k, 2, 5)).doit().evalf()
1.28333333333333
>>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin()
>>> s
-log(2) + 7/20 + log(5)
>>> from sympy import sstr
>>> print(sstr((s.evalf(), e.evalf()), full_prec=True))
(1.26629073187415, 0.0175000000000000)
The endpoints may be symbolic:
>>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin()
>>> s
-log(a) + log(b) + 1/(2*b) + 1/(2*a)
>>> e
Abs(1/(12*b**2) - 1/(12*a**2))
If the function is a polynomial of degree at most 2n+1, the
Euler-Maclaurin formula becomes exact (and e = 0 is returned):
>>> Sum(k, (k, 2, b)).euler_maclaurin()
(b**2/2 + b/2 - 1, 0)
>>> Sum(k, (k, 2, b)).doit()
b**2/2 + b/2 - 1
With a nonzero eps specified, the summation is ended
as soon as the remainder term is less than the epsilon.
"""
from sympy.functions import bernoulli, factorial
from sympy.integrals import Integral
m = int(m)
n = int(n)
f = self.function
if len(self.limits) != 1:
raise ValueError("More than 1 limit")
i, a, b = self.limits[0]
if (a > b) == True:
if a - b == 1:
return S.Zero, S.Zero
a, b = b + 1, a - 1
f = -f
s = S.Zero
if m:
if b.is_Integer and a.is_Integer:
m = min(m, b - a + 1)
if not eps or f.is_polynomial(i):
for k in range(m):
s += f.subs(i, a + k)
else:
term = f.subs(i, a)
if term:
test = abs(term.evalf(3)) < eps
if test == True:
return s, abs(term)
elif not (test == False):
# a symbolic Relational class, can't go further
return term, S.Zero
s += term
for k in range(1, m):
term = f.subs(i, a + k)
if abs(term.evalf(3)) < eps and term != 0:
return s, abs(term)
s += term
if b - a + 1 == m:
return s, S.Zero
a += m
x = Dummy('x')
I = Integral(f.subs(i, x), (x, a, b))
if eval_integral:
I = I.doit()
s += I
def fpoint(expr):
if b is S.Infinity:
return expr.subs(i, a), 0
return expr.subs(i, a), expr.subs(i, b)
fa, fb = fpoint(f)
iterm = (fa + fb)/2
g = f.diff(i)
for k in range(1, n + 2):
ga, gb = fpoint(g)
term = bernoulli(2*k)/factorial(2*k)*(gb - ga)
if (eps and term and abs(term.evalf(3)) < eps) or (k > n):
break
s += term
g = g.diff(i, 2, simplify=False)
return s + iterm, abs(term)
def reverse_order(self, *indices):
"""
Reverse the order of a limit in a Sum.
Explanation
===========
``reverse_order(self, *indices)`` reverses some limits in the expression
``self`` which can be either a ``Sum`` or a ``Product``. The selectors in
the argument ``indices`` specify some indices whose limits get reversed.
These selectors are either variable names or numerical indices counted
starting from the inner-most limit tuple.
Examples
========
>>> from sympy import Sum
>>> from sympy.abc import x, y, a, b, c, d
>>> Sum(x, (x, 0, 3)).reverse_order(x)
Sum(-x, (x, 4, -1))
>>> Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(x, y)
Sum(x*y, (x, 6, 0), (y, 7, -1))
>>> Sum(x, (x, a, b)).reverse_order(x)
Sum(-x, (x, b + 1, a - 1))
>>> Sum(x, (x, a, b)).reverse_order(0)
Sum(-x, (x, b + 1, a - 1))
While one should prefer variable names when specifying which limits
to reverse, the index counting notation comes in handy in case there
are several symbols with the same name.
>>> S = Sum(x**2, (x, a, b), (x, c, d))
>>> S
Sum(x**2, (x, a, b), (x, c, d))
>>> S0 = S.reverse_order(0)
>>> S0
Sum(-x**2, (x, b + 1, a - 1), (x, c, d))
>>> S1 = S0.reverse_order(1)
>>> S1
Sum(x**2, (x, b + 1, a - 1), (x, d + 1, c - 1))
Of course we can mix both notations:
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1)
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x)
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
See Also
========
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index, reorder_limit,
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder
References
==========
.. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
Volume 28 Issue 2, April 1981, Pages 305-350
http://dl.acm.org/citation.cfm?doid=322248.322255
"""
l_indices = list(indices)
for i, indx in enumerate(l_indices):
if not isinstance(indx, int):
l_indices[i] = self.index(indx)
e = 1
limits = []
for i, limit in enumerate(self.limits):
l = limit
if i in l_indices:
e = -e
l = (limit[0], limit[2] + 1, limit[1] - 1)
limits.append(l)
return Sum(e * self.function, *limits)
def summation(f, *symbols, **kwargs):
r"""
Compute the summation of f with respect to symbols.
Explanation
===========
The notation for symbols is similar to the notation used in Integral.
summation(f, (i, a, b)) computes the sum of f with respect to i from a to b,
i.e.,
::
b
____
\ `
summation(f, (i, a, b)) = ) f
/___,
i = a
If it cannot compute the sum, it returns an unevaluated Sum object.
Repeated sums can be computed by introducing additional symbols tuples::
Examples
========
>>> from sympy import summation, oo, symbols, log
>>> i, n, m = symbols('i n m', integer=True)
>>> summation(2*i - 1, (i, 1, n))
n**2
>>> summation(1/2**i, (i, 0, oo))
2
>>> summation(1/log(n)**n, (n, 2, oo))
Sum(log(n)**(-n), (n, 2, oo))
>>> summation(i, (i, 0, n), (n, 0, m))
m**3/6 + m**2/2 + m/3
>>> from sympy.abc import x
>>> from sympy import factorial
>>> summation(x**n/factorial(n), (n, 0, oo))
exp(x)
See Also
========
Sum
Product, sympy.concrete.products.product
"""
return Sum(f, *symbols, **kwargs).doit(deep=False)
def telescopic_direct(L, R, n, limits):
"""
Returns the direct summation of the terms of a telescopic sum
Explanation
===========
L is the term with lower index
R is the term with higher index
n difference between the indexes of L and R
Examples
========
>>> from sympy.concrete.summations import telescopic_direct
>>> from sympy.abc import k, a, b
>>> telescopic_direct(1/k, -1/(k+2), 2, (k, a, b))
-1/(b + 2) - 1/(b + 1) + 1/(a + 1) + 1/a
"""
(i, a, b) = limits
s = 0
for m in range(n):
s += L.subs(i, a + m) + R.subs(i, b - m)
return s
def telescopic(L, R, limits):
'''
Tries to perform the summation using the telescopic property.
Return None if not possible.
'''
(i, a, b) = limits
if L.is_Add or R.is_Add:
return None
# We want to solve(L.subs(i, i + m) + R, m)
# First we try a simple match since this does things that
# solve doesn't do, e.g. solve(f(k+m)-f(k), m) fails
k = Wild("k")
sol = (-R).match(L.subs(i, i + k))
s = None
if sol and k in sol:
s = sol[k]
if not (s.is_Integer and L.subs(i, i + s) == -R):
# sometimes match fail(f(x+2).match(-f(x+k))->{k: -2 - 2x}))
s = None
# But there are things that match doesn't do that solve
# can do, e.g. determine that 1/(x + m) = 1/(1 - x) when m = 1
if s is None:
m = Dummy('m')
try:
sol = solve(L.subs(i, i + m) + R, m) or []
except NotImplementedError:
return None
sol = [si for si in sol if si.is_Integer and
(L.subs(i, i + si) + R).expand().is_zero]
if len(sol) != 1:
return None
s = sol[0]
if s < 0:
return telescopic_direct(R, L, abs(s), (i, a, b))
elif s > 0:
return telescopic_direct(L, R, s, (i, a, b))
def eval_sum(f, limits):
from sympy.concrete.delta import deltasummation, _has_simple_delta
from sympy.functions import KroneckerDelta
(i, a, b) = limits
if f.is_zero:
return S.Zero
if i not in f.free_symbols:
return f*(b - a + 1)
if a == b:
return f.subs(i, a)
if isinstance(f, Piecewise):
if not any(i in arg.args[1].free_symbols for arg in f.args):
# Piecewise conditions do not depend on the dummy summation variable,
# therefore we can fold: Sum(Piecewise((e, c), ...), limits)
# --> Piecewise((Sum(e, limits), c), ...)
newargs = []
for arg in f.args:
newexpr = eval_sum(arg.expr, limits)
if newexpr is None:
return None
newargs.append((newexpr, arg.cond))
return f.func(*newargs)
if f.has(KroneckerDelta):
f = f.replace(
lambda x: isinstance(x, Sum),
lambda x: x.factor()
)
if _has_simple_delta(f, limits[0]):
return deltasummation(f, limits)
dif = b - a
definite = dif.is_Integer
# Doing it directly may be faster if there are very few terms.
if definite and (dif < 100):
return eval_sum_direct(f, (i, a, b))
if isinstance(f, Piecewise):
return None
# Try to do it symbolically. Even when the number of terms is known,
# this can save time when b-a is big.
# We should try to transform to partial fractions
value = eval_sum_symbolic(f.expand(), (i, a, b))
if value is not None:
return value
# Do it directly
if definite:
return eval_sum_direct(f, (i, a, b))
def eval_sum_direct(expr, limits):
"""
Evaluate expression directly, but perform some simple checks first
to possibly result in a smaller expression and faster execution.
"""
from sympy.core import Add
(i, a, b) = limits
dif = b - a
# Linearity
if expr.is_Mul:
# Try factor out everything not including i
without_i, with_i = expr.as_independent(i)
if without_i != 1:
s = eval_sum_direct(with_i, (i, a, b))
if s:
r = without_i*s
if r is not S.NaN:
return r
else:
# Try term by term
L, R = expr.as_two_terms()
if not L.has(i):
sR = eval_sum_direct(R, (i, a, b))
if sR:
return L*sR
if not R.has(i):
sL = eval_sum_direct(L, (i, a, b))
if sL:
return sL*R
try:
expr = apart(expr, i) # see if it becomes an Add
except PolynomialError:
pass
if expr.is_Add:
# Try factor out everything not including i
without_i, with_i = expr.as_independent(i)
if without_i != 0:
s = eval_sum_direct(with_i, (i, a, b))
if s:
r = without_i*(dif + 1) + s
if r is not S.NaN:
return r
else:
# Try term by term
L, R = expr.as_two_terms()
lsum = eval_sum_direct(L, (i, a, b))
rsum = eval_sum_direct(R, (i, a, b))
if None not in (lsum, rsum):
r = lsum + rsum
if r is not S.NaN:
return r
return Add(*[expr.subs(i, a + j) for j in range(dif + 1)])
def eval_sum_symbolic(f, limits):
from sympy.functions import harmonic, bernoulli
f_orig = f
(i, a, b) = limits
if not f.has(i):
return f*(b - a + 1)
# Linearity
if f.is_Mul:
# Try factor out everything not including i
without_i, with_i = f.as_independent(i)
if without_i != 1:
s = eval_sum_symbolic(with_i, (i, a, b))
if s:
r = without_i*s
if r is not S.NaN:
return r
else:
# Try term by term
L, R = f.as_two_terms()
if not L.has(i):
sR = eval_sum_symbolic(R, (i, a, b))
if sR:
return L*sR
if not R.has(i):
sL = eval_sum_symbolic(L, (i, a, b))
if sL:
return sL*R
try:
f = apart(f, i) # see if it becomes an Add
except PolynomialError:
pass
if f.is_Add:
L, R = f.as_two_terms()
lrsum = telescopic(L, R, (i, a, b))
if lrsum:
return lrsum
# Try factor out everything not including i
without_i, with_i = f.as_independent(i)
if without_i != 0:
s = eval_sum_symbolic(with_i, (i, a, b))
if s:
r = without_i*(b - a + 1) + s
if r is not S.NaN:
return r
else:
# Try term by term
lsum = eval_sum_symbolic(L, (i, a, b))
rsum = eval_sum_symbolic(R, (i, a, b))
if None not in (lsum, rsum):
r = lsum + rsum
if r is not S.NaN:
return r
# Polynomial terms with Faulhaber's formula
n = Wild('n')
result = f.match(i**n)
if result is not None:
n = result[n]
if n.is_Integer:
if n >= 0:
if (b is S.Infinity and not a is S.NegativeInfinity) or \
(a is S.NegativeInfinity and not b is S.Infinity):
return S.Infinity
return ((bernoulli(n + 1, b + 1) - bernoulli(n + 1, a))/(n + 1)).expand()
elif a.is_Integer and a >= 1:
if n == -1:
return harmonic(b) - harmonic(a - 1)
else:
return harmonic(b, abs(n)) - harmonic(a - 1, abs(n))
if not (a.has(S.Infinity, S.NegativeInfinity) or
b.has(S.Infinity, S.NegativeInfinity)):
# Geometric terms
c1 = Wild('c1', exclude=[i])
c2 = Wild('c2', exclude=[i])
c3 = Wild('c3', exclude=[i])
wexp = Wild('wexp')
# Here we first attempt powsimp on f for easier matching with the
# exponential pattern, and attempt expansion on the exponent for easier
# matching with the linear pattern.
e = f.powsimp().match(c1 ** wexp)
if e is not None:
e_exp = e.pop(wexp).expand().match(c2*i + c3)
if e_exp is not None:
e.update(e_exp)
p = (c1**c3).subs(e)
q = (c1**c2).subs(e)
r = p*(q**a - q**(b + 1))/(1 - q)
l = p*(b - a + 1)
return Piecewise((l, Eq(q, S.One)), (r, True))
r = gosper_sum(f, (i, a, b))
if isinstance(r, (Mul,Add)):
from sympy import ordered, Tuple
non_limit = r.free_symbols - Tuple(*limits[1:]).free_symbols
den = denom(together(r))
den_sym = non_limit & den.free_symbols
args = []
for v in ordered(den_sym):
try:
s = solve(den, v)
m = Eq(v, s[0]) if s else S.false
if m != False:
args.append((Sum(f_orig.subs(*m.args), limits).doit(), m))
break
except NotImplementedError:
continue
args.append((r, True))
return Piecewise(*args)
if not r in (None, S.NaN):
return r
h = eval_sum_hyper(f_orig, (i, a, b))
if h is not None:
return h
r = eval_sum_residue(f_orig, (i, a, b))
if r is not None:
return r
factored = f_orig.factor()
if factored != f_orig:
return eval_sum_symbolic(factored, (i, a, b))
def _eval_sum_hyper(f, i, a):
""" Returns (res, cond). Sums from a to oo. """
from sympy.functions import hyper
from sympy.simplify import hyperexpand, hypersimp, fraction, simplify
from sympy.polys.polytools import Poly, factor
from sympy.core.numbers import Float
if a != 0:
return _eval_sum_hyper(f.subs(i, i + a), i, 0)
if f.subs(i, 0) == 0:
if simplify(f.subs(i, Dummy('i', integer=True, positive=True))) == 0:
return S.Zero, True
return _eval_sum_hyper(f.subs(i, i + 1), i, 0)
hs = hypersimp(f, i)
if hs is None:
return None
if isinstance(hs, Float):
from sympy.simplify.simplify import nsimplify
hs = nsimplify(hs)
numer, denom = fraction(factor(hs))
top, topl = numer.as_coeff_mul(i)
bot, botl = denom.as_coeff_mul(i)
ab = [top, bot]
factors = [topl, botl]
params = [[], []]
for k in range(2):
for fac in factors[k]:
mul = 1
if fac.is_Pow:
mul = fac.exp
fac = fac.base
if not mul.is_Integer:
return None
p = Poly(fac, i)
if p.degree() != 1:
return None
m, n = p.all_coeffs()
ab[k] *= m**mul
params[k] += [n/m]*mul
# Add "1" to numerator parameters, to account for implicit n! in
# hypergeometric series.
ap = params[0] + [1]
bq = params[1]
x = ab[0]/ab[1]
h = hyper(ap, bq, x)
f = combsimp(f)
return f.subs(i, 0)*hyperexpand(h), h.convergence_statement
def eval_sum_hyper(f, i_a_b):
from sympy.logic.boolalg import And
i, a, b = i_a_b
if (b - a).is_Integer:
# We are never going to do better than doing the sum in the obvious way
return None
old_sum = Sum(f, (i, a, b))
if b != S.Infinity:
if a is S.NegativeInfinity:
res = _eval_sum_hyper(f.subs(i, -i), i, -b)
if res is not None:
return Piecewise(res, (old_sum, True))
else:
res1 = _eval_sum_hyper(f, i, a)
res2 = _eval_sum_hyper(f, i, b + 1)
if res1 is None or res2 is None:
return None
(res1, cond1), (res2, cond2) = res1, res2
cond = And(cond1, cond2)
if cond == False:
return None
return Piecewise((res1 - res2, cond), (old_sum, True))
if a is S.NegativeInfinity:
res1 = _eval_sum_hyper(f.subs(i, -i), i, 1)
res2 = _eval_sum_hyper(f, i, 0)
if res1 is None or res2 is None:
return None
res1, cond1 = res1
res2, cond2 = res2
cond = And(cond1, cond2)
if cond == False or cond.as_set() == S.EmptySet:
return None
return Piecewise((res1 + res2, cond), (old_sum, True))
# Now b == oo, a != -oo
res = _eval_sum_hyper(f, i, a)
if res is not None:
r, c = res
if c == False:
if r.is_number:
f = f.subs(i, Dummy('i', integer=True, positive=True) + a)
if f.is_positive or f.is_zero:
return S.Infinity
elif f.is_negative:
return S.NegativeInfinity
return None
return Piecewise(res, (old_sum, True))
def eval_sum_residue(f, i_a_b):
r"""Compute the infinite summation with residues
Notes
=====
If $f(n), g(n)$ are polynomials with $\deg(g(n)) - \deg(f(n)) >= 2$,
some infinite summations can be computed by the following residue
evaluations.
.. math::
\sum_{n=-\infty, g(n) \ne 0}^{\infty} \frac{f(n)}{g(n)} =
-\pi \sum_{\alpha|g(\alpha)=0}
\text{Res}(\cot(\pi x) \frac{f(x)}{g(x)}, \alpha)
.. math::
\sum_{n=-\infty, g(n) \ne 0}^{\infty} (-1)^n \frac{f(n)}{g(n)} =
-\pi \sum_{\alpha|g(\alpha)=0}
\text{Res}(\csc(\pi x) \frac{f(x)}{g(x)}, \alpha)
Examples
========
>>> from sympy import Sum, oo, Symbol
>>> x = Symbol('x')
Doubly infinite series of rational functions.
>>> Sum(1 / (x**2 + 1), (x, -oo, oo)).doit()
pi/tanh(pi)
Doubly infinite alternating series of rational functions.
>>> Sum((-1)**x / (x**2 + 1), (x, -oo, oo)).doit()
pi/sinh(pi)
Infinite series of even rational functions.
>>> Sum(1 / (x**2 + 1), (x, 0, oo)).doit()
1/2 + pi/(2*tanh(pi))
Infinite series of alternating even rational functions.
>>> Sum((-1)**x / (x**2 + 1), (x, 0, oo)).doit()
pi/(2*sinh(pi)) + 1/2
This also have heuristics to transform arbitrarily shifted summand or
arbitrarily shifted summation range to the canonical problem the
formula can handle.
>>> Sum(1 / (x**2 + 2*x + 2), (x, -1, oo)).doit()
1/2 + pi/(2*tanh(pi))
>>> Sum(1 / (x**2 + 4*x + 5), (x, -2, oo)).doit()
1/2 + pi/(2*tanh(pi))
>>> Sum(1 / (x**2 + 1), (x, 1, oo)).doit()
-1/2 + pi/(2*tanh(pi))
>>> Sum(1 / (x**2 + 1), (x, 2, oo)).doit()
-1 + pi/(2*tanh(pi))
References
==========
.. [#] http://www.supermath.info/InfiniteSeriesandtheResidueTheorem.pdf
.. [#] Asmar N.H., Grafakos L. (2018) Residue Theory.
In: Complex Analysis with Applications.
Undergraduate Texts in Mathematics. Springer, Cham.
https://doi.org/10.1007/978-3-319-94063-2_5
"""
i, a, b = i_a_b
def is_even_function(numer, denom):
"""Test if the rational function is an even function"""
numer_even = all(i % 2 == 0 for (i,) in numer.monoms())
denom_even = all(i % 2 == 0 for (i,) in denom.monoms())
numer_odd = all(i % 2 == 1 for (i,) in numer.monoms())
denom_odd = all(i % 2 == 1 for (i,) in denom.monoms())
return (numer_even and denom_even) or (numer_odd and denom_odd)
def match_rational(f, i):
numer, denom = f.as_numer_denom()
try:
(numer, denom), opt = parallel_poly_from_expr((numer, denom), i)
except (PolificationFailed, PolynomialError):
return None
return numer, denom
def get_poles(denom):
roots = denom.sqf_part().all_roots()
roots = sift(roots, lambda x: x.is_integer)
if None in roots:
return None
int_roots, nonint_roots = roots[True], roots[False]
return int_roots, nonint_roots
def get_shift(denom):
n = denom.degree(i)
a = denom.coeff_monomial(i**n)
b = denom.coeff_monomial(i**(n-1))
shift = - b / a / n
return shift
def get_residue_factor(numer, denom, alternating):
if not alternating:
residue_factor = (numer.as_expr() / denom.as_expr()) * cot(S.Pi * i)
else:
residue_factor = (numer.as_expr() / denom.as_expr()) * csc(S.Pi * i)
return residue_factor
# We don't know how to deal with symbolic constants in summand
if f.free_symbols - set([i]):
return None
if not (a.is_Integer or a in (S.Infinity, S.NegativeInfinity)):
return None
if not (b.is_Integer or b in (S.Infinity, S.NegativeInfinity)):
return None
# Quick exit heuristic for the sums which doesn't have infinite range
if a != S.NegativeInfinity and b != S.Infinity:
return None
match = match_rational(f, i)
if match:
alternating = False
numer, denom = match
else:
match = match_rational(f / (-1)**i, i)
if match:
alternating = True
numer, denom = match
else:
return None
if denom.degree(i) - numer.degree(i) < 2:
return None
if (a, b) == (S.NegativeInfinity, S.Infinity):
poles = get_poles(denom)
if poles is None:
return None
int_roots, nonint_roots = poles
if int_roots:
return None
residue_factor = get_residue_factor(numer, denom, alternating)
residues = [residue(residue_factor, i, root) for root in nonint_roots]
return -S.Pi * sum(residues)
if not (a.is_finite and b is S.Infinity):
return None
if not is_even_function(numer, denom):
# Try shifting summation and check if the summand can be made
# and even function from the origin.
# Sum(f(n), (n, a, b)) => Sum(f(n + s), (n, a - s, b - s))
shift = get_shift(denom)
if not shift.is_Integer:
return None
if shift == 0:
return None
numer = numer.shift(shift)
denom = denom.shift(shift)
if not is_even_function(numer, denom):
return None
if alternating:
f = (-1)**i * ((-1)**shift * numer.as_expr() / denom.as_expr())
else:
f = numer.as_expr() / denom.as_expr()
return eval_sum_residue(f, (i, a-shift, b-shift))
poles = get_poles(denom)
if poles is None:
return None
int_roots, nonint_roots = poles
if int_roots:
int_roots = [int(root) for root in int_roots]
int_roots_max = max(int_roots)
int_roots_min = min(int_roots)
# Integer valued poles must be next to each other
# and also symmetric from origin (Because the function is even)
if not len(int_roots) == int_roots_max - int_roots_min + 1:
return None
# Check whether the summation indices contain poles
if a <= max(int_roots):
return None
residue_factor = get_residue_factor(numer, denom, alternating)
residues = [residue(residue_factor, i, root) for root in int_roots + nonint_roots]
full_sum = -S.Pi * sum(residues)
if not int_roots:
# Compute Sum(f, (i, 0, oo)) by adding a extraneous evaluation
# at the origin.
half_sum = (full_sum + f.xreplace({i: 0})) / 2
# Add and subtract extraneous evaluations
extraneous_neg = [f.xreplace({i: i0}) for i0 in range(int(a), 0)]
extraneous_pos = [f.xreplace({i: i0}) for i0 in range(0, int(a))]
result = half_sum + sum(extraneous_neg) - sum(extraneous_pos)
return result
# Compute Sum(f, (i, min(poles) + 1, oo))
half_sum = full_sum / 2
# Subtract extraneous evaluations
extraneous = [f.xreplace({i: i0}) for i0 in range(max(int_roots) + 1, int(a))]
result = half_sum - sum(extraneous)
return result
def _eval_matrix_sum(expression):
f = expression.function
for n, limit in enumerate(expression.limits):
i, a, b = limit
dif = b - a
if dif.is_Integer:
if (dif < 0) == True:
a, b = b + 1, a - 1
f = -f
newf = eval_sum_direct(f, (i, a, b))
if newf is not None:
return newf.doit()
def _dummy_with_inherited_properties_concrete(limits):
"""
Return a Dummy symbol that inherits as many assumptions as possible
from the provided symbol and limits.
If the symbol already has all True assumption shared by the limits
then return None.
"""
x, a, b = limits
l = [a, b]
assumptions_to_consider = ['extended_nonnegative', 'nonnegative',
'extended_nonpositive', 'nonpositive',
'extended_positive', 'positive',
'extended_negative', 'negative',
'integer', 'rational', 'finite',
'zero', 'real', 'extended_real']
assumptions_to_keep = {}
assumptions_to_add = {}
for assum in assumptions_to_consider:
assum_true = x._assumptions.get(assum, None)
if assum_true:
assumptions_to_keep[assum] = True
elif all(getattr(i, 'is_' + assum) for i in l):
assumptions_to_add[assum] = True
if assumptions_to_add:
assumptions_to_keep.update(assumptions_to_add)
return Dummy('d', **assumptions_to_keep)
|
a8ae6081d6780702315ab2db45d1974e0ef2fd6230441d4f23501e2fe7d5feb8 | """Tools to assist importing optional external modules."""
import sys
import re
# Override these in the module to change the default warning behavior.
# For example, you might set both to False before running the tests so that
# warnings are not printed to the console, or set both to True for debugging.
WARN_NOT_INSTALLED = None # Default is False
WARN_OLD_VERSION = None # Default is True
def __sympy_debug():
# helper function from sympy/__init__.py
# We don't just import SYMPY_DEBUG from that file because we don't want to
# import all of sympy just to use this module.
import os
debug_str = os.getenv('SYMPY_DEBUG', 'False')
if debug_str in ('True', 'False'):
return eval(debug_str)
else:
raise RuntimeError("unrecognized value for SYMPY_DEBUG: %s" %
debug_str)
if __sympy_debug():
WARN_OLD_VERSION = True
WARN_NOT_INSTALLED = True
_component_re = re.compile(r'(\d+ | [a-z]+ | \.)', re.VERBOSE)
def version_tuple(vstring):
# Parse a version string to a tuple e.g. '1.2' -> (1, 2)
# Simplified from distutils.version.LooseVersion which was deprecated in
# Python 3.10.
components = []
for x in _component_re.split(vstring):
if x and x != '.':
try:
x = int(x)
except ValueError:
pass
components.append(x)
return tuple(components)
def import_module(module, min_module_version=None, min_python_version=None,
warn_not_installed=None, warn_old_version=None,
module_version_attr='__version__', module_version_attr_call_args=None,
import_kwargs={}, catch=()):
"""
Import and return a module if it is installed.
If the module is not installed, it returns None.
A minimum version for the module can be given as the keyword argument
min_module_version. This should be comparable against the module version.
By default, module.__version__ is used to get the module version. To
override this, set the module_version_attr keyword argument. If the
attribute of the module to get the version should be called (e.g.,
module.version()), then set module_version_attr_call_args to the args such
that module.module_version_attr(*module_version_attr_call_args) returns the
module's version.
If the module version is less than min_module_version using the Python <
comparison, None will be returned, even if the module is installed. You can
use this to keep from importing an incompatible older version of a module.
You can also specify a minimum Python version by using the
min_python_version keyword argument. This should be comparable against
sys.version_info.
If the keyword argument warn_not_installed is set to True, the function will
emit a UserWarning when the module is not installed.
If the keyword argument warn_old_version is set to True, the function will
emit a UserWarning when the library is installed, but cannot be imported
because of the min_module_version or min_python_version options.
Note that because of the way warnings are handled, a warning will be
emitted for each module only once. You can change the default warning
behavior by overriding the values of WARN_NOT_INSTALLED and WARN_OLD_VERSION
in sympy.external.importtools. By default, WARN_NOT_INSTALLED is False and
WARN_OLD_VERSION is True.
This function uses __import__() to import the module. To pass additional
options to __import__(), use the import_kwargs keyword argument. For
example, to import a submodule A.B, you must pass a nonempty fromlist option
to __import__. See the docstring of __import__().
This catches ImportError to determine if the module is not installed. To
catch additional errors, pass them as a tuple to the catch keyword
argument.
Examples
========
>>> from sympy.external import import_module
>>> numpy = import_module('numpy')
>>> numpy = import_module('numpy', min_python_version=(2, 7),
... warn_old_version=False)
>>> numpy = import_module('numpy', min_module_version='1.5',
... warn_old_version=False) # numpy.__version__ is a string
>>> # gmpy does not have __version__, but it does have gmpy.version()
>>> gmpy = import_module('gmpy', min_module_version='1.14',
... module_version_attr='version', module_version_attr_call_args=(),
... warn_old_version=False)
>>> # To import a submodule, you must pass a nonempty fromlist to
>>> # __import__(). The values do not matter.
>>> p3 = import_module('mpl_toolkits.mplot3d',
... import_kwargs={'fromlist':['something']})
>>> # matplotlib.pyplot can raise RuntimeError when the display cannot be opened
>>> matplotlib = import_module('matplotlib',
... import_kwargs={'fromlist':['pyplot']}, catch=(RuntimeError,))
"""
# keyword argument overrides default, and global variable overrides
# keyword argument.
warn_old_version = (WARN_OLD_VERSION if WARN_OLD_VERSION is not None
else warn_old_version or True)
warn_not_installed = (WARN_NOT_INSTALLED if WARN_NOT_INSTALLED is not None
else warn_not_installed or False)
import warnings
# Check Python first so we don't waste time importing a module we can't use
if min_python_version:
if sys.version_info < min_python_version:
if warn_old_version:
warnings.warn("Python version is too old to use %s "
"(%s or newer required)" % (
module, '.'.join(map(str, min_python_version))),
UserWarning, stacklevel=2)
return
# PyPy 1.6 has rudimentary NumPy support and importing it produces errors, so skip it
if module == 'numpy' and '__pypy__' in sys.builtin_module_names:
return
try:
mod = __import__(module, **import_kwargs)
## there's something funny about imports with matplotlib and py3k. doing
## from matplotlib import collections
## gives python's stdlib collections module. explicitly re-importing
## the module fixes this.
from_list = import_kwargs.get('fromlist', tuple())
for submod in from_list:
if submod == 'collections' and mod.__name__ == 'matplotlib':
__import__(module + '.' + submod)
except ImportError:
if warn_not_installed:
warnings.warn("%s module is not installed" % module, UserWarning,
stacklevel=2)
return
except catch as e:
if warn_not_installed:
warnings.warn(
"%s module could not be used (%s)" % (module, repr(e)),
stacklevel=2)
return
if min_module_version:
modversion = getattr(mod, module_version_attr)
if module_version_attr_call_args is not None:
modversion = modversion(*module_version_attr_call_args)
if version_tuple(modversion) < version_tuple(min_module_version):
if warn_old_version:
# Attempt to create a pretty string version of the version
if isinstance(min_module_version, str):
verstr = min_module_version
elif isinstance(min_module_version, (tuple, list)):
verstr = '.'.join(map(str, min_module_version))
else:
# Either don't know what this is. Hopefully
# it's something that has a nice str version, like an int.
verstr = str(min_module_version)
warnings.warn("%s version is too old to use "
"(%s or newer required)" % (module, verstr),
UserWarning, stacklevel=2)
return
return mod
|
6052b33909834221f1c9d00d059b18983fc7b7977a48d34236e296b25f4c7a9f | """
This module implements the Residue function and related tools for working
with residues.
"""
from sympy import sympify
from sympy.utilities.timeutils import timethis
@timethis('residue')
def residue(expr, x, x0):
"""
Finds the residue of ``expr`` at the point x=x0.
The residue is defined as the coefficient of ``1/(x-x0)`` in the power series
expansion about ``x=x0``.
Examples
========
>>> from sympy import Symbol, residue, sin
>>> x = Symbol("x")
>>> residue(1/x, x, 0)
1
>>> residue(1/x**2, x, 0)
0
>>> residue(2/sin(x), x, 0)
2
This function is essential for the Residue Theorem [1].
References
==========
.. [1] https://en.wikipedia.org/wiki/Residue_theorem
"""
# The current implementation uses series expansion to
# calculate it. A more general implementation is explained in
# the section 5.6 of the Bronstein's book {M. Bronstein:
# Symbolic Integration I, Springer Verlag (2005)}. For purely
# rational functions, the algorithm is much easier. See
# sections 2.4, 2.5, and 2.7 (this section actually gives an
# algorithm for computing any Laurent series coefficient for
# a rational function). The theory in section 2.4 will help to
# understand why the resultant works in the general algorithm.
# For the definition of a resultant, see section 1.4 (and any
# previous sections for more review).
from sympy import collect, Mul, Order, S
expr = sympify(expr)
if x0 != 0:
expr = expr.subs(x, x + x0)
for n in (0, 1, 2, 4, 8, 16, 32):
s = expr.nseries(x, n=n)
if not s.has(Order) or s.getn() >= 0:
break
s = collect(s.removeO(), x)
if s.is_Add:
args = s.args
else:
args = [s]
res = S.Zero
for arg in args:
c, m = arg.as_coeff_mul(x)
m = Mul(*m)
if not (m == 1 or m == x or (m.is_Pow and m.exp.is_Integer)):
raise NotImplementedError('term of unexpected form: %s' % m)
if m == 1/x:
res += c
return res
|
53483098a1f9c82b47ec3e2e86d7bd4c3d6aa081269889282730fbd0adcb6310 | from sympy.core import S, sympify, Expr, Dummy
from sympy.core import Add, Mul, expand_power_base, expand_log
from sympy.core.cache import cacheit
from sympy.core.compatibility import default_sort_key, is_sequence
from sympy.core.containers import Tuple
from sympy.sets.sets import Complement
from sympy.utilities.iterables import uniq
class Order(Expr):
r""" Represents the limiting behavior of some function.
Explanation
===========
The order of a function characterizes the function based on the limiting
behavior of the function as it goes to some limit. Only taking the limit
point to be a number is currently supported. This is expressed in
big O notation [1]_.
The formal definition for the order of a function `g(x)` about a point `a`
is such that `g(x) = O(f(x))` as `x \rightarrow a` if and only if for any
`\delta > 0` there exists a `M > 0` such that `|g(x)| \leq M|f(x)|` for
`|x-a| < \delta`. This is equivalent to `\lim_{x \rightarrow a}
\sup |g(x)/f(x)| < \infty`.
Let's illustrate it on the following example by taking the expansion of
`\sin(x)` about 0:
.. math ::
\sin(x) = x - x^3/3! + O(x^5)
where in this case `O(x^5) = x^5/5! - x^7/7! + \cdots`. By the definition
of `O`, for any `\delta > 0` there is an `M` such that:
.. math ::
|x^5/5! - x^7/7! + ....| <= M|x^5| \text{ for } |x| < \delta
or by the alternate definition:
.. math ::
\lim_{x \rightarrow 0} | (x^5/5! - x^7/7! + ....) / x^5| < \infty
which surely is true, because
.. math ::
\lim_{x \rightarrow 0} | (x^5/5! - x^7/7! + ....) / x^5| = 1/5!
As it is usually used, the order of a function can be intuitively thought
of representing all terms of powers greater than the one specified. For
example, `O(x^3)` corresponds to any terms proportional to `x^3,
x^4,\ldots` and any higher power. For a polynomial, this leaves terms
proportional to `x^2`, `x` and constants.
Examples
========
>>> from sympy import O, oo, cos, pi
>>> from sympy.abc import x, y
>>> O(x + x**2)
O(x)
>>> O(x + x**2, (x, 0))
O(x)
>>> O(x + x**2, (x, oo))
O(x**2, (x, oo))
>>> O(1 + x*y)
O(1, x, y)
>>> O(1 + x*y, (x, 0), (y, 0))
O(1, x, y)
>>> O(1 + x*y, (x, oo), (y, oo))
O(x*y, (x, oo), (y, oo))
>>> O(1) in O(1, x)
True
>>> O(1, x) in O(1)
False
>>> O(x) in O(1, x)
True
>>> O(x**2) in O(x)
True
>>> O(x)*x
O(x**2)
>>> O(x) - O(x)
O(x)
>>> O(cos(x))
O(1)
>>> O(cos(x), (x, pi/2))
O(x - pi/2, (x, pi/2))
References
==========
.. [1] `Big O notation <https://en.wikipedia.org/wiki/Big_O_notation>`_
Notes
=====
In ``O(f(x), x)`` the expression ``f(x)`` is assumed to have a leading
term. ``O(f(x), x)`` is automatically transformed to
``O(f(x).as_leading_term(x),x)``.
``O(expr*f(x), x)`` is ``O(f(x), x)``
``O(expr, x)`` is ``O(1)``
``O(0, x)`` is 0.
Multivariate O is also supported:
``O(f(x, y), x, y)`` is transformed to
``O(f(x, y).as_leading_term(x,y).as_leading_term(y), x, y)``
In the multivariate case, it is assumed the limits w.r.t. the various
symbols commute.
If no symbols are passed then all symbols in the expression are used
and the limit point is assumed to be zero.
"""
is_Order = True
__slots__ = ()
@cacheit
def __new__(cls, expr, *args, **kwargs):
expr = sympify(expr)
if not args:
if expr.is_Order:
variables = expr.variables
point = expr.point
else:
variables = list(expr.free_symbols)
point = [S.Zero]*len(variables)
else:
args = list(args if is_sequence(args) else [args])
variables, point = [], []
if is_sequence(args[0]):
for a in args:
v, p = list(map(sympify, a))
variables.append(v)
point.append(p)
else:
variables = list(map(sympify, args))
point = [S.Zero]*len(variables)
if not all(v.is_symbol for v in variables):
raise TypeError('Variables are not symbols, got %s' % variables)
if len(list(uniq(variables))) != len(variables):
raise ValueError('Variables are supposed to be unique symbols, got %s' % variables)
if expr.is_Order:
expr_vp = dict(expr.args[1:])
new_vp = dict(expr_vp)
vp = dict(zip(variables, point))
for v, p in vp.items():
if v in new_vp.keys():
if p != new_vp[v]:
raise NotImplementedError(
"Mixing Order at different points is not supported.")
else:
new_vp[v] = p
if set(expr_vp.keys()) == set(new_vp.keys()):
return expr
else:
variables = list(new_vp.keys())
point = [new_vp[v] for v in variables]
if expr is S.NaN:
return S.NaN
if any(x in p.free_symbols for x in variables for p in point):
raise ValueError('Got %s as a point.' % point)
if variables:
if any(p != point[0] for p in point):
raise NotImplementedError(
"Multivariable orders at different points are not supported.")
if point[0] is S.Infinity:
s = {k: 1/Dummy() for k in variables}
rs = {1/v: 1/k for k, v in s.items()}
ps = [S.Zero for p in point]
elif point[0] is S.NegativeInfinity:
s = {k: -1/Dummy() for k in variables}
rs = {-1/v: -1/k for k, v in s.items()}
ps = [S.Zero for p in point]
elif point[0] is not S.Zero:
s = {k: Dummy() + point[0] for k in variables}
rs = {(v - point[0]).together(): k - point[0] for k, v in s.items()}
ps = [S.Zero for p in point]
else:
s = ()
rs = ()
ps = list(point)
expr = expr.subs(s)
if expr.is_Add:
expr = expr.factor()
if s:
args = tuple([r[0] for r in rs.items()])
else:
args = tuple(variables)
if len(variables) > 1:
# XXX: better way? We need this expand() to
# workaround e.g: expr = x*(x + y).
# (x*(x + y)).as_leading_term(x, y) currently returns
# x*y (wrong order term!). That's why we want to deal with
# expand()'ed expr (handled in "if expr.is_Add" branch below).
expr = expr.expand()
old_expr = None
while old_expr != expr:
old_expr = expr
if expr.is_Add:
lst = expr.extract_leading_order(args)
expr = Add(*[f.expr for (e, f) in lst])
elif expr:
from sympy import PoleError, Function
try:
expr = expr.as_leading_term(*args)
except PoleError:
if isinstance(expr, Function) or\
all(isinstance(arg, Function) for arg in expr.args):
# It is not possible to simplify an expression
# containing only functions (which raise error on
# call to leading term) further
pass
else:
orders = []
pts = tuple(zip(args, ps))
for arg in expr.args:
try:
lt = arg.as_leading_term(*args)
except PoleError:
lt = arg
if lt not in args:
order = Order(lt)
else:
order = Order(lt, *pts)
orders.append(order)
if expr.is_Add:
new_expr = Order(Add(*orders), *pts)
if new_expr.is_Add:
new_expr = Order(Add(*[a.expr for a in new_expr.args]), *pts)
expr = new_expr.expr
elif expr.is_Mul:
expr = Mul(*[a.expr for a in orders])
elif expr.is_Pow:
expr = orders[0].expr**orders[1].expr
expr = expr.as_independent(*args, as_Add=False)[1]
expr = expand_power_base(expr)
expr = expand_log(expr)
if len(args) == 1:
# The definition of O(f(x)) symbol explicitly stated that
# the argument of f(x) is irrelevant. That's why we can
# combine some power exponents (only "on top" of the
# expression tree for f(x)), e.g.:
# x**p * (-x)**q -> x**(p+q) for real p, q.
x = args[0]
margs = list(Mul.make_args(
expr.as_independent(x, as_Add=False)[1]))
for i, t in enumerate(margs):
if t.is_Pow:
b, q = t.args
if b in (x, -x) and q.is_real and not q.has(x):
margs[i] = x**q
elif b.is_Pow and not b.exp.has(x):
b, r = b.args
if b in (x, -x) and r.is_real:
margs[i] = x**(r*q)
elif b.is_Mul and b.args[0] is S.NegativeOne:
b = -b
if b.is_Pow and not b.exp.has(x):
b, r = b.args
if b in (x, -x) and r.is_real:
margs[i] = x**(r*q)
expr = Mul(*margs)
expr = expr.subs(rs)
if expr.is_Order:
expr = expr.expr
if not expr.has(*variables) and not expr.is_zero:
expr = S.One
# create Order instance:
vp = dict(zip(variables, point))
variables.sort(key=default_sort_key)
point = [vp[v] for v in variables]
args = (expr,) + Tuple(*zip(variables, point))
obj = Expr.__new__(cls, *args)
return obj
def _eval_nseries(self, x, n, logx, cdir=0):
return self
@property
def expr(self):
return self.args[0]
@property
def variables(self):
if self.args[1:]:
return tuple(x[0] for x in self.args[1:])
else:
return ()
@property
def point(self):
if self.args[1:]:
return tuple(x[1] for x in self.args[1:])
else:
return ()
@property
def free_symbols(self):
return self.expr.free_symbols | set(self.variables)
def _eval_power(b, e):
if e.is_Number and e.is_nonnegative:
return b.func(b.expr ** e, *b.args[1:])
if e == O(1):
return b
return
def as_expr_variables(self, order_symbols):
if order_symbols is None:
order_symbols = self.args[1:]
else:
if (not all(o[1] == order_symbols[0][1] for o in order_symbols) and
not all(p == self.point[0] for p in self.point)): # pragma: no cover
raise NotImplementedError('Order at points other than 0 '
'or oo not supported, got %s as a point.' % self.point)
if order_symbols and order_symbols[0][1] != self.point[0]:
raise NotImplementedError(
"Multiplying Order at different points is not supported.")
order_symbols = dict(order_symbols)
for s, p in dict(self.args[1:]).items():
if s not in order_symbols.keys():
order_symbols[s] = p
order_symbols = sorted(order_symbols.items(), key=lambda x: default_sort_key(x[0]))
return self.expr, tuple(order_symbols)
def removeO(self):
return S.Zero
def getO(self):
return self
@cacheit
def contains(self, expr):
r"""
Return True if expr belongs to Order(self.expr, \*self.variables).
Return False if self belongs to expr.
Return None if the inclusion relation cannot be determined
(e.g. when self and expr have different symbols).
"""
from sympy import powsimp
if expr.is_zero:
return True
if expr is S.NaN:
return False
point = self.point[0] if self.point else S.Zero
if expr.is_Order:
if (any(p != point for p in expr.point) or
any(p != point for p in self.point)):
return None
if expr.expr == self.expr:
# O(1) + O(1), O(1) + O(1, x), etc.
return all(x in self.args[1:] for x in expr.args[1:])
if expr.expr.is_Add:
return all(self.contains(x) for x in expr.expr.args)
if self.expr.is_Add and point.is_zero:
return any(self.func(x, *self.args[1:]).contains(expr)
for x in self.expr.args)
if self.variables and expr.variables:
common_symbols = tuple(
[s for s in self.variables if s in expr.variables])
elif self.variables:
common_symbols = self.variables
else:
common_symbols = expr.variables
if not common_symbols:
return None
if (self.expr.is_Pow and len(self.variables) == 1
and self.variables == expr.variables):
symbol = self.variables[0]
other = expr.expr.as_independent(symbol, as_Add=False)[1]
if (other.is_Pow and other.base == symbol and
self.expr.base == symbol):
if point.is_zero:
rv = (self.expr.exp - other.exp).is_nonpositive
if point.is_infinite:
rv = (self.expr.exp - other.exp).is_nonnegative
if rv is not None:
return rv
r = None
ratio = self.expr/expr.expr
ratio = powsimp(ratio, deep=True, combine='exp')
for s in common_symbols:
from sympy.series.limits import Limit
l = Limit(ratio, s, point).doit(heuristics=False)
if not isinstance(l, Limit):
l = l != 0
else:
l = None
if r is None:
r = l
else:
if r != l:
return
return r
if self.expr.is_Pow and len(self.variables) == 1:
symbol = self.variables[0]
other = expr.as_independent(symbol, as_Add=False)[1]
if (other.is_Pow and other.base == symbol and
self.expr.base == symbol):
if point.is_zero:
rv = (self.expr.exp - other.exp).is_nonpositive
if point.is_infinite:
rv = (self.expr.exp - other.exp).is_nonnegative
if rv is not None:
return rv
obj = self.func(expr, *self.args[1:])
return self.contains(obj)
def __contains__(self, other):
result = self.contains(other)
if result is None:
raise TypeError('contains did not evaluate to a bool')
return result
def _eval_subs(self, old, new):
if old in self.variables:
newexpr = self.expr.subs(old, new)
i = self.variables.index(old)
newvars = list(self.variables)
newpt = list(self.point)
if new.is_symbol:
newvars[i] = new
else:
syms = new.free_symbols
if len(syms) == 1 or old in syms:
if old in syms:
var = self.variables[i]
else:
var = syms.pop()
# First, try to substitute self.point in the "new"
# expr to see if this is a fixed point.
# E.g. O(y).subs(y, sin(x))
point = new.subs(var, self.point[i])
if point != self.point[i]:
from sympy.solvers.solveset import solveset
d = Dummy()
sol = solveset(old - new.subs(var, d), d)
if isinstance(sol, Complement):
e1 = sol.args[0]
e2 = sol.args[1]
sol = set(e1) - set(e2)
res = [dict(zip((d, ), sol))]
point = d.subs(res[0]).limit(old, self.point[i])
newvars[i] = var
newpt[i] = point
elif old not in syms:
del newvars[i], newpt[i]
if not syms and new == self.point[i]:
newvars.extend(syms)
newpt.extend([S.Zero]*len(syms))
else:
return
return Order(newexpr, *zip(newvars, newpt))
def _eval_conjugate(self):
expr = self.expr._eval_conjugate()
if expr is not None:
return self.func(expr, *self.args[1:])
def _eval_derivative(self, x):
return self.func(self.expr.diff(x), *self.args[1:]) or self
def _eval_transpose(self):
expr = self.expr._eval_transpose()
if expr is not None:
return self.func(expr, *self.args[1:])
def __neg__(self):
return self
O = Order
|
820822e4376be0970bd338e0c81d1c2333e62c72a7616e385a02bd767c99ce3a | from collections import defaultdict
from sympy import SYMPY_DEBUG
from sympy.core import expand_power_base, sympify, Add, S, Mul, Derivative, Pow, symbols, expand_mul
from sympy.core.add import _unevaluated_Add
from sympy.core.compatibility import iterable, ordered, default_sort_key
from sympy.core.parameters import global_parameters
from sympy.core.exprtools import Factors, gcd_terms
from sympy.core.function import _mexpand
from sympy.core.mul import _keep_coeff, _unevaluated_Mul
from sympy.core.numbers import Rational, zoo, nan
from sympy.functions import exp, sqrt, log
from sympy.functions.elementary.complexes import Abs
from sympy.polys import gcd
from sympy.simplify.sqrtdenest import sqrtdenest
def collect(expr, syms, func=None, evaluate=None, exact=False, distribute_order_term=True):
"""
Collect additive terms of an expression.
Explanation
===========
This function collects additive terms of an expression with respect
to a list of expression up to powers with rational exponents. By the
term symbol here are meant arbitrary expressions, which can contain
powers, products, sums etc. In other words symbol is a pattern which
will be searched for in the expression's terms.
The input expression is not expanded by :func:`collect`, so user is
expected to provide an expression in an appropriate form. This makes
:func:`collect` more predictable as there is no magic happening behind the
scenes. However, it is important to note, that powers of products are
converted to products of powers using the :func:`~.expand_power_base`
function.
There are two possible types of output. First, if ``evaluate`` flag is
set, this function will return an expression with collected terms or
else it will return a dictionary with expressions up to rational powers
as keys and collected coefficients as values.
Examples
========
>>> from sympy import S, collect, expand, factor, Wild
>>> from sympy.abc import a, b, c, x, y
This function can collect symbolic coefficients in polynomials or
rational expressions. It will manage to find all integer or rational
powers of collection variable::
>>> collect(a*x**2 + b*x**2 + a*x - b*x + c, x)
c + x**2*(a + b) + x*(a - b)
The same result can be achieved in dictionary form::
>>> d = collect(a*x**2 + b*x**2 + a*x - b*x + c, x, evaluate=False)
>>> d[x**2]
a + b
>>> d[x]
a - b
>>> d[S.One]
c
You can also work with multivariate polynomials. However, remember that
this function is greedy so it will care only about a single symbol at time,
in specification order::
>>> collect(x**2 + y*x**2 + x*y + y + a*y, [x, y])
x**2*(y + 1) + x*y + y*(a + 1)
Also more complicated expressions can be used as patterns::
>>> from sympy import sin, log
>>> collect(a*sin(2*x) + b*sin(2*x), sin(2*x))
(a + b)*sin(2*x)
>>> collect(a*x*log(x) + b*(x*log(x)), x*log(x))
x*(a + b)*log(x)
You can use wildcards in the pattern::
>>> w = Wild('w1')
>>> collect(a*x**y - b*x**y, w**y)
x**y*(a - b)
It is also possible to work with symbolic powers, although it has more
complicated behavior, because in this case power's base and symbolic part
of the exponent are treated as a single symbol::
>>> collect(a*x**c + b*x**c, x)
a*x**c + b*x**c
>>> collect(a*x**c + b*x**c, x**c)
x**c*(a + b)
However if you incorporate rationals to the exponents, then you will get
well known behavior::
>>> collect(a*x**(2*c) + b*x**(2*c), x**c)
x**(2*c)*(a + b)
Note also that all previously stated facts about :func:`collect` function
apply to the exponential function, so you can get::
>>> from sympy import exp
>>> collect(a*exp(2*x) + b*exp(2*x), exp(x))
(a + b)*exp(2*x)
If you are interested only in collecting specific powers of some symbols
then set ``exact`` flag in arguments::
>>> collect(a*x**7 + b*x**7, x, exact=True)
a*x**7 + b*x**7
>>> collect(a*x**7 + b*x**7, x**7, exact=True)
x**7*(a + b)
You can also apply this function to differential equations, where
derivatives of arbitrary order can be collected. Note that if you
collect with respect to a function or a derivative of a function, all
derivatives of that function will also be collected. Use
``exact=True`` to prevent this from happening::
>>> from sympy import Derivative as D, collect, Function
>>> f = Function('f') (x)
>>> collect(a*D(f,x) + b*D(f,x), D(f,x))
(a + b)*Derivative(f(x), x)
>>> collect(a*D(D(f,x),x) + b*D(D(f,x),x), f)
(a + b)*Derivative(f(x), (x, 2))
>>> collect(a*D(D(f,x),x) + b*D(D(f,x),x), D(f,x), exact=True)
a*Derivative(f(x), (x, 2)) + b*Derivative(f(x), (x, 2))
>>> collect(a*D(f,x) + b*D(f,x) + a*f + b*f, f)
(a + b)*f(x) + (a + b)*Derivative(f(x), x)
Or you can even match both derivative order and exponent at the same time::
>>> collect(a*D(D(f,x),x)**2 + b*D(D(f,x),x)**2, D(f,x))
(a + b)*Derivative(f(x), (x, 2))**2
Finally, you can apply a function to each of the collected coefficients.
For example you can factorize symbolic coefficients of polynomial::
>>> f = expand((x + a + 1)**3)
>>> collect(f, x, factor)
x**3 + 3*x**2*(a + 1) + 3*x*(a + 1)**2 + (a + 1)**3
.. note:: Arguments are expected to be in expanded form, so you might have
to call :func:`~.expand` prior to calling this function.
See Also
========
collect_const, collect_sqrt, rcollect
"""
from sympy.core.assumptions import assumptions
from sympy.utilities.iterables import sift
from sympy.core.symbol import Dummy, Wild
expr = sympify(expr)
syms = [sympify(i) for i in (syms if iterable(syms) else [syms])]
# replace syms[i] if it is not x, -x or has Wild symbols
cond = lambda x: x.is_Symbol or (-x).is_Symbol or bool(
x.atoms(Wild))
_, nonsyms = sift(syms, cond, binary=True)
if nonsyms:
reps = dict(zip(nonsyms, [Dummy(**assumptions(i)) for i in nonsyms]))
syms = [reps.get(s, s) for s in syms]
rv = collect(expr.subs(reps), syms,
func=func, evaluate=evaluate, exact=exact,
distribute_order_term=distribute_order_term)
urep = {v: k for k, v in reps.items()}
if not isinstance(rv, dict):
return rv.xreplace(urep)
else:
return {urep.get(k, k).xreplace(urep): v.xreplace(urep)
for k, v in rv.items()}
if evaluate is None:
evaluate = global_parameters.evaluate
def make_expression(terms):
product = []
for term, rat, sym, deriv in terms:
if deriv is not None:
var, order = deriv
while order > 0:
term, order = Derivative(term, var), order - 1
if sym is None:
if rat is S.One:
product.append(term)
else:
product.append(Pow(term, rat))
else:
product.append(Pow(term, rat*sym))
return Mul(*product)
def parse_derivative(deriv):
# scan derivatives tower in the input expression and return
# underlying function and maximal differentiation order
expr, sym, order = deriv.expr, deriv.variables[0], 1
for s in deriv.variables[1:]:
if s == sym:
order += 1
else:
raise NotImplementedError(
'Improve MV Derivative support in collect')
while isinstance(expr, Derivative):
s0 = expr.variables[0]
for s in expr.variables:
if s != s0:
raise NotImplementedError(
'Improve MV Derivative support in collect')
if s0 == sym:
expr, order = expr.expr, order + len(expr.variables)
else:
break
return expr, (sym, Rational(order))
def parse_term(expr):
"""Parses expression expr and outputs tuple (sexpr, rat_expo,
sym_expo, deriv)
where:
- sexpr is the base expression
- rat_expo is the rational exponent that sexpr is raised to
- sym_expo is the symbolic exponent that sexpr is raised to
- deriv contains the derivatives the the expression
For example, the output of x would be (x, 1, None, None)
the output of 2**x would be (2, 1, x, None).
"""
rat_expo, sym_expo = S.One, None
sexpr, deriv = expr, None
if expr.is_Pow:
if isinstance(expr.base, Derivative):
sexpr, deriv = parse_derivative(expr.base)
else:
sexpr = expr.base
if expr.base == S.Exp1:
arg = expr.exp
if arg.is_Rational:
sexpr, rat_expo = S.Exp1, arg
elif arg.is_Mul:
coeff, tail = arg.as_coeff_Mul(rational=True)
sexpr, rat_expo = exp(tail), coeff
elif expr.exp.is_Number:
rat_expo = expr.exp
else:
coeff, tail = expr.exp.as_coeff_Mul()
if coeff.is_Number:
rat_expo, sym_expo = coeff, tail
else:
sym_expo = expr.exp
elif isinstance(expr, exp):
arg = expr.exp
if arg.is_Rational:
sexpr, rat_expo = S.Exp1, arg
elif arg.is_Mul:
coeff, tail = arg.as_coeff_Mul(rational=True)
sexpr, rat_expo = exp(tail), coeff
elif isinstance(expr, Derivative):
sexpr, deriv = parse_derivative(expr)
return sexpr, rat_expo, sym_expo, deriv
def parse_expression(terms, pattern):
"""Parse terms searching for a pattern.
Terms is a list of tuples as returned by parse_terms;
Pattern is an expression treated as a product of factors.
"""
pattern = Mul.make_args(pattern)
if len(terms) < len(pattern):
# pattern is longer than matched product
# so no chance for positive parsing result
return None
else:
pattern = [parse_term(elem) for elem in pattern]
terms = terms[:] # need a copy
elems, common_expo, has_deriv = [], None, False
for elem, e_rat, e_sym, e_ord in pattern:
if elem.is_Number and e_rat == 1 and e_sym is None:
# a constant is a match for everything
continue
for j in range(len(terms)):
if terms[j] is None:
continue
term, t_rat, t_sym, t_ord = terms[j]
# keeping track of whether one of the terms had
# a derivative or not as this will require rebuilding
# the expression later
if t_ord is not None:
has_deriv = True
if (term.match(elem) is not None and
(t_sym == e_sym or t_sym is not None and
e_sym is not None and
t_sym.match(e_sym) is not None)):
if exact is False:
# we don't have to be exact so find common exponent
# for both expression's term and pattern's element
expo = t_rat / e_rat
if common_expo is None:
# first time
common_expo = expo
else:
# common exponent was negotiated before so
# there is no chance for a pattern match unless
# common and current exponents are equal
if common_expo != expo:
common_expo = 1
else:
# we ought to be exact so all fields of
# interest must match in every details
if e_rat != t_rat or e_ord != t_ord:
continue
# found common term so remove it from the expression
# and try to match next element in the pattern
elems.append(terms[j])
terms[j] = None
break
else:
# pattern element not found
return None
return [_f for _f in terms if _f], elems, common_expo, has_deriv
if evaluate:
if expr.is_Add:
o = expr.getO() or 0
expr = expr.func(*[
collect(a, syms, func, True, exact, distribute_order_term)
for a in expr.args if a != o]) + o
elif expr.is_Mul:
return expr.func(*[
collect(term, syms, func, True, exact, distribute_order_term)
for term in expr.args])
elif expr.is_Pow:
b = collect(
expr.base, syms, func, True, exact, distribute_order_term)
return Pow(b, expr.exp)
syms = [expand_power_base(i, deep=False) for i in syms]
order_term = None
if distribute_order_term:
order_term = expr.getO()
if order_term is not None:
if order_term.has(*syms):
order_term = None
else:
expr = expr.removeO()
summa = [expand_power_base(i, deep=False) for i in Add.make_args(expr)]
collected, disliked = defaultdict(list), S.Zero
for product in summa:
c, nc = product.args_cnc(split_1=False)
args = list(ordered(c)) + nc
terms = [parse_term(i) for i in args]
small_first = True
for symbol in syms:
if SYMPY_DEBUG:
print("DEBUG: parsing of expression %s with symbol %s " % (
str(terms), str(symbol))
)
if isinstance(symbol, Derivative) and small_first:
terms = list(reversed(terms))
small_first = not small_first
result = parse_expression(terms, symbol)
if SYMPY_DEBUG:
print("DEBUG: returned %s" % str(result))
if result is not None:
if not symbol.is_commutative:
raise AttributeError("Can not collect noncommutative symbol")
terms, elems, common_expo, has_deriv = result
# when there was derivative in current pattern we
# will need to rebuild its expression from scratch
if not has_deriv:
margs = []
for elem in elems:
if elem[2] is None:
e = elem[1]
else:
e = elem[1]*elem[2]
margs.append(Pow(elem[0], e))
index = Mul(*margs)
else:
index = make_expression(elems)
terms = expand_power_base(make_expression(terms), deep=False)
index = expand_power_base(index, deep=False)
collected[index].append(terms)
break
else:
# none of the patterns matched
disliked += product
# add terms now for each key
collected = {k: Add(*v) for k, v in collected.items()}
if disliked is not S.Zero:
collected[S.One] = disliked
if order_term is not None:
for key, val in collected.items():
collected[key] = val + order_term
if func is not None:
collected = {
key: func(val) for key, val in collected.items()}
if evaluate:
return Add(*[key*val for key, val in collected.items()])
else:
return collected
def rcollect(expr, *vars):
"""
Recursively collect sums in an expression.
Examples
========
>>> from sympy.simplify import rcollect
>>> from sympy.abc import x, y
>>> expr = (x**2*y + x*y + x + y)/(x + y)
>>> rcollect(expr, y)
(x + y*(x**2 + x + 1))/(x + y)
See Also
========
collect, collect_const, collect_sqrt
"""
if expr.is_Atom or not expr.has(*vars):
return expr
else:
expr = expr.__class__(*[rcollect(arg, *vars) for arg in expr.args])
if expr.is_Add:
return collect(expr, vars)
else:
return expr
def collect_sqrt(expr, evaluate=None):
"""Return expr with terms having common square roots collected together.
If ``evaluate`` is False a count indicating the number of sqrt-containing
terms will be returned and, if non-zero, the terms of the Add will be
returned, else the expression itself will be returned as a single term.
If ``evaluate`` is True, the expression with any collected terms will be
returned.
Note: since I = sqrt(-1), it is collected, too.
Examples
========
>>> from sympy import sqrt
>>> from sympy.simplify.radsimp import collect_sqrt
>>> from sympy.abc import a, b
>>> r2, r3, r5 = [sqrt(i) for i in [2, 3, 5]]
>>> collect_sqrt(a*r2 + b*r2)
sqrt(2)*(a + b)
>>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r3)
sqrt(2)*(a + b) + sqrt(3)*(a + b)
>>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r5)
sqrt(3)*a + sqrt(5)*b + sqrt(2)*(a + b)
If evaluate is False then the arguments will be sorted and
returned as a list and a count of the number of sqrt-containing
terms will be returned:
>>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r5, evaluate=False)
((sqrt(3)*a, sqrt(5)*b, sqrt(2)*(a + b)), 3)
>>> collect_sqrt(a*sqrt(2) + b, evaluate=False)
((b, sqrt(2)*a), 1)
>>> collect_sqrt(a + b, evaluate=False)
((a + b,), 0)
See Also
========
collect, collect_const, rcollect
"""
if evaluate is None:
evaluate = global_parameters.evaluate
# this step will help to standardize any complex arguments
# of sqrts
coeff, expr = expr.as_content_primitive()
vars = set()
for a in Add.make_args(expr):
for m in a.args_cnc()[0]:
if m.is_number and (
m.is_Pow and m.exp.is_Rational and m.exp.q == 2 or
m is S.ImaginaryUnit):
vars.add(m)
# we only want radicals, so exclude Number handling; in this case
# d will be evaluated
d = collect_const(expr, *vars, Numbers=False)
hit = expr != d
if not evaluate:
nrad = 0
# make the evaluated args canonical
args = list(ordered(Add.make_args(d)))
for i, m in enumerate(args):
c, nc = m.args_cnc()
for ci in c:
# XXX should this be restricted to ci.is_number as above?
if ci.is_Pow and ci.exp.is_Rational and ci.exp.q == 2 or \
ci is S.ImaginaryUnit:
nrad += 1
break
args[i] *= coeff
if not (hit or nrad):
args = [Add(*args)]
return tuple(args), nrad
return coeff*d
def collect_abs(expr):
"""Return ``expr`` with arguments of multiple Abs in a term collected
under a single instance.
Examples
========
>>> from sympy.simplify.radsimp import collect_abs
>>> from sympy.abc import x
>>> collect_abs(abs(x + 1)/abs(x**2 - 1))
Abs((x + 1)/(x**2 - 1))
>>> collect_abs(abs(1/x))
Abs(1/x)
"""
def _abs(mul):
from sympy.core.mul import _mulsort
c, nc = mul.args_cnc()
a = []
o = []
for i in c:
if isinstance(i, Abs):
a.append(i.args[0])
elif isinstance(i, Pow) and isinstance(i.base, Abs) and i.exp.is_real:
a.append(i.base.args[0]**i.exp)
else:
o.append(i)
if len(a) < 2 and not any(i.exp.is_negative for i in a if isinstance(i, Pow)):
return mul
absarg = Mul(*a)
A = Abs(absarg)
args = [A]
args.extend(o)
if not A.has(Abs):
args.extend(nc)
return Mul(*args)
if not isinstance(A, Abs):
# reevaluate and make it unevaluated
A = Abs(absarg, evaluate=False)
args[0] = A
_mulsort(args)
args.extend(nc) # nc always go last
return Mul._from_args(args, is_commutative=not nc)
return expr.replace(
lambda x: isinstance(x, Mul),
lambda x: _abs(x)).replace(
lambda x: isinstance(x, Pow),
lambda x: _abs(x))
def collect_const(expr, *vars, Numbers=True):
"""A non-greedy collection of terms with similar number coefficients in
an Add expr. If ``vars`` is given then only those constants will be
targeted. Although any Number can also be targeted, if this is not
desired set ``Numbers=False`` and no Float or Rational will be collected.
Parameters
==========
expr : sympy expression
This parameter defines the expression the expression from which
terms with similar coefficients are to be collected. A non-Add
expression is returned as it is.
vars : variable length collection of Numbers, optional
Specifies the constants to target for collection. Can be multiple in
number.
Numbers : bool
Specifies to target all instance of
:class:`sympy.core.numbers.Number` class. If ``Numbers=False``, then
no Float or Rational will be collected.
Returns
=======
expr : Expr
Returns an expression with similar coefficient terms collected.
Examples
========
>>> from sympy import sqrt
>>> from sympy.abc import s, x, y, z
>>> from sympy.simplify.radsimp import collect_const
>>> collect_const(sqrt(3) + sqrt(3)*(1 + sqrt(2)))
sqrt(3)*(sqrt(2) + 2)
>>> collect_const(sqrt(3)*s + sqrt(7)*s + sqrt(3) + sqrt(7))
(sqrt(3) + sqrt(7))*(s + 1)
>>> s = sqrt(2) + 2
>>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7))
(sqrt(2) + 3)*(sqrt(3) + sqrt(7))
>>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7), sqrt(3))
sqrt(7) + sqrt(3)*(sqrt(2) + 3) + sqrt(7)*(sqrt(2) + 2)
The collection is sign-sensitive, giving higher precedence to the
unsigned values:
>>> collect_const(x - y - z)
x - (y + z)
>>> collect_const(-y - z)
-(y + z)
>>> collect_const(2*x - 2*y - 2*z, 2)
2*(x - y - z)
>>> collect_const(2*x - 2*y - 2*z, -2)
2*x - 2*(y + z)
See Also
========
collect, collect_sqrt, rcollect
"""
if not expr.is_Add:
return expr
recurse = False
if not vars:
recurse = True
vars = set()
for a in expr.args:
for m in Mul.make_args(a):
if m.is_number:
vars.add(m)
else:
vars = sympify(vars)
if not Numbers:
vars = [v for v in vars if not v.is_Number]
vars = list(ordered(vars))
for v in vars:
terms = defaultdict(list)
Fv = Factors(v)
for m in Add.make_args(expr):
f = Factors(m)
q, r = f.div(Fv)
if r.is_one:
# only accept this as a true factor if
# it didn't change an exponent from an Integer
# to a non-Integer, e.g. 2/sqrt(2) -> sqrt(2)
# -- we aren't looking for this sort of change
fwas = f.factors.copy()
fnow = q.factors
if not any(k in fwas and fwas[k].is_Integer and not
fnow[k].is_Integer for k in fnow):
terms[v].append(q.as_expr())
continue
terms[S.One].append(m)
args = []
hit = False
uneval = False
for k in ordered(terms):
v = terms[k]
if k is S.One:
args.extend(v)
continue
if len(v) > 1:
v = Add(*v)
hit = True
if recurse and v != expr:
vars.append(v)
else:
v = v[0]
# be careful not to let uneval become True unless
# it must be because it's going to be more expensive
# to rebuild the expression as an unevaluated one
if Numbers and k.is_Number and v.is_Add:
args.append(_keep_coeff(k, v, sign=True))
uneval = True
else:
args.append(k*v)
if hit:
if uneval:
expr = _unevaluated_Add(*args)
else:
expr = Add(*args)
if not expr.is_Add:
break
return expr
def radsimp(expr, symbolic=True, max_terms=4):
r"""
Rationalize the denominator by removing square roots.
Explanation
===========
The expression returned from radsimp must be used with caution
since if the denominator contains symbols, it will be possible to make
substitutions that violate the assumptions of the simplification process:
that for a denominator matching a + b*sqrt(c), a != +/-b*sqrt(c). (If
there are no symbols, this assumptions is made valid by collecting terms
of sqrt(c) so the match variable ``a`` does not contain ``sqrt(c)``.) If
you do not want the simplification to occur for symbolic denominators, set
``symbolic`` to False.
If there are more than ``max_terms`` radical terms then the expression is
returned unchanged.
Examples
========
>>> from sympy import radsimp, sqrt, Symbol, pprint
>>> from sympy import factor_terms, fraction, signsimp
>>> from sympy.simplify.radsimp import collect_sqrt
>>> from sympy.abc import a, b, c
>>> radsimp(1/(2 + sqrt(2)))
(2 - sqrt(2))/2
>>> x,y = map(Symbol, 'xy')
>>> e = ((2 + 2*sqrt(2))*x + (2 + sqrt(8))*y)/(2 + sqrt(2))
>>> radsimp(e)
sqrt(2)*(x + y)
No simplification beyond removal of the gcd is done. One might
want to polish the result a little, however, by collecting
square root terms:
>>> r2 = sqrt(2)
>>> r5 = sqrt(5)
>>> ans = radsimp(1/(y*r2 + x*r2 + a*r5 + b*r5)); pprint(ans)
___ ___ ___ ___
\/ 5 *a + \/ 5 *b - \/ 2 *x - \/ 2 *y
------------------------------------------
2 2 2 2
5*a + 10*a*b + 5*b - 2*x - 4*x*y - 2*y
>>> n, d = fraction(ans)
>>> pprint(factor_terms(signsimp(collect_sqrt(n))/d, radical=True))
___ ___
\/ 5 *(a + b) - \/ 2 *(x + y)
------------------------------------------
2 2 2 2
5*a + 10*a*b + 5*b - 2*x - 4*x*y - 2*y
If radicals in the denominator cannot be removed or there is no denominator,
the original expression will be returned.
>>> radsimp(sqrt(2)*x + sqrt(2))
sqrt(2)*x + sqrt(2)
Results with symbols will not always be valid for all substitutions:
>>> eq = 1/(a + b*sqrt(c))
>>> eq.subs(a, b*sqrt(c))
1/(2*b*sqrt(c))
>>> radsimp(eq).subs(a, b*sqrt(c))
nan
If ``symbolic=False``, symbolic denominators will not be transformed (but
numeric denominators will still be processed):
>>> radsimp(eq, symbolic=False)
1/(a + b*sqrt(c))
"""
from sympy.simplify.simplify import signsimp
syms = symbols("a:d A:D")
def _num(rterms):
# return the multiplier that will simplify the expression described
# by rterms [(sqrt arg, coeff), ... ]
a, b, c, d, A, B, C, D = syms
if len(rterms) == 2:
reps = dict(list(zip([A, a, B, b], [j for i in rterms for j in i])))
return (
sqrt(A)*a - sqrt(B)*b).xreplace(reps)
if len(rterms) == 3:
reps = dict(list(zip([A, a, B, b, C, c], [j for i in rterms for j in i])))
return (
(sqrt(A)*a + sqrt(B)*b - sqrt(C)*c)*(2*sqrt(A)*sqrt(B)*a*b - A*a**2 -
B*b**2 + C*c**2)).xreplace(reps)
elif len(rterms) == 4:
reps = dict(list(zip([A, a, B, b, C, c, D, d], [j for i in rterms for j in i])))
return ((sqrt(A)*a + sqrt(B)*b - sqrt(C)*c - sqrt(D)*d)*(2*sqrt(A)*sqrt(B)*a*b
- A*a**2 - B*b**2 - 2*sqrt(C)*sqrt(D)*c*d + C*c**2 +
D*d**2)*(-8*sqrt(A)*sqrt(B)*sqrt(C)*sqrt(D)*a*b*c*d + A**2*a**4 -
2*A*B*a**2*b**2 - 2*A*C*a**2*c**2 - 2*A*D*a**2*d**2 + B**2*b**4 -
2*B*C*b**2*c**2 - 2*B*D*b**2*d**2 + C**2*c**4 - 2*C*D*c**2*d**2 +
D**2*d**4)).xreplace(reps)
elif len(rterms) == 1:
return sqrt(rterms[0][0])
else:
raise NotImplementedError
def ispow2(d, log2=False):
if not d.is_Pow:
return False
e = d.exp
if e.is_Rational and e.q == 2 or symbolic and denom(e) == 2:
return True
if log2:
q = 1
if e.is_Rational:
q = e.q
elif symbolic:
d = denom(e)
if d.is_Integer:
q = d
if q != 1 and log(q, 2).is_Integer:
return True
return False
def handle(expr):
# Handle first reduces to the case
# expr = 1/d, where d is an add, or d is base**p/2.
# We do this by recursively calling handle on each piece.
from sympy.simplify.simplify import nsimplify
n, d = fraction(expr)
if expr.is_Atom or (d.is_Atom and n.is_Atom):
return expr
elif not n.is_Atom:
n = n.func(*[handle(a) for a in n.args])
return _unevaluated_Mul(n, handle(1/d))
elif n is not S.One:
return _unevaluated_Mul(n, handle(1/d))
elif d.is_Mul:
return _unevaluated_Mul(*[handle(1/d) for d in d.args])
# By this step, expr is 1/d, and d is not a mul.
if not symbolic and d.free_symbols:
return expr
if ispow2(d):
d2 = sqrtdenest(sqrt(d.base))**numer(d.exp)
if d2 != d:
return handle(1/d2)
elif d.is_Pow and (d.exp.is_integer or d.base.is_positive):
# (1/d**i) = (1/d)**i
return handle(1/d.base)**d.exp
if not (d.is_Add or ispow2(d)):
return 1/d.func(*[handle(a) for a in d.args])
# handle 1/d treating d as an Add (though it may not be)
keep = True # keep changes that are made
# flatten it and collect radicals after checking for special
# conditions
d = _mexpand(d)
# did it change?
if d.is_Atom:
return 1/d
# is it a number that might be handled easily?
if d.is_number:
_d = nsimplify(d)
if _d.is_Number and _d.equals(d):
return 1/_d
while True:
# collect similar terms
collected = defaultdict(list)
for m in Add.make_args(d): # d might have become non-Add
p2 = []
other = []
for i in Mul.make_args(m):
if ispow2(i, log2=True):
p2.append(i.base if i.exp is S.Half else i.base**(2*i.exp))
elif i is S.ImaginaryUnit:
p2.append(S.NegativeOne)
else:
other.append(i)
collected[tuple(ordered(p2))].append(Mul(*other))
rterms = list(ordered(list(collected.items())))
rterms = [(Mul(*i), Add(*j)) for i, j in rterms]
nrad = len(rterms) - (1 if rterms[0][0] is S.One else 0)
if nrad < 1:
break
elif nrad > max_terms:
# there may have been invalid operations leading to this point
# so don't keep changes, e.g. this expression is troublesome
# in collecting terms so as not to raise the issue of 2834:
# r = sqrt(sqrt(5) + 5)
# eq = 1/(sqrt(5)*r + 2*sqrt(5)*sqrt(-sqrt(5) + 5) + 5*r)
keep = False
break
if len(rterms) > 4:
# in general, only 4 terms can be removed with repeated squaring
# but other considerations can guide selection of radical terms
# so that radicals are removed
if all(x.is_Integer and (y**2).is_Rational for x, y in rterms):
nd, d = rad_rationalize(S.One, Add._from_args(
[sqrt(x)*y for x, y in rterms]))
n *= nd
else:
# is there anything else that might be attempted?
keep = False
break
from sympy.simplify.powsimp import powsimp, powdenest
num = powsimp(_num(rterms))
n *= num
d *= num
d = powdenest(_mexpand(d), force=symbolic)
if d.has(S.Zero, nan, zoo):
return expr
if d.is_Atom:
break
if not keep:
return expr
return _unevaluated_Mul(n, 1/d)
coeff, expr = expr.as_coeff_Add()
expr = expr.normal()
old = fraction(expr)
n, d = fraction(handle(expr))
if old != (n, d):
if not d.is_Atom:
was = (n, d)
n = signsimp(n, evaluate=False)
d = signsimp(d, evaluate=False)
u = Factors(_unevaluated_Mul(n, 1/d))
u = _unevaluated_Mul(*[k**v for k, v in u.factors.items()])
n, d = fraction(u)
if old == (n, d):
n, d = was
n = expand_mul(n)
if d.is_Number or d.is_Add:
n2, d2 = fraction(gcd_terms(_unevaluated_Mul(n, 1/d)))
if d2.is_Number or (d2.count_ops() <= d.count_ops()):
n, d = [signsimp(i) for i in (n2, d2)]
if n.is_Mul and n.args[0].is_Number:
n = n.func(*n.args)
return coeff + _unevaluated_Mul(n, 1/d)
def rad_rationalize(num, den):
"""
Rationalize ``num/den`` by removing square roots in the denominator;
num and den are sum of terms whose squares are positive rationals.
Examples
========
>>> from sympy import sqrt
>>> from sympy.simplify.radsimp import rad_rationalize
>>> rad_rationalize(sqrt(3), 1 + sqrt(2)/3)
(-sqrt(3) + sqrt(6)/3, -7/9)
"""
if not den.is_Add:
return num, den
g, a, b = split_surds(den)
a = a*sqrt(g)
num = _mexpand((a - b)*num)
den = _mexpand(a**2 - b**2)
return rad_rationalize(num, den)
def fraction(expr, exact=False):
"""Returns a pair with expression's numerator and denominator.
If the given expression is not a fraction then this function
will return the tuple (expr, 1).
This function will not make any attempt to simplify nested
fractions or to do any term rewriting at all.
If only one of the numerator/denominator pair is needed then
use numer(expr) or denom(expr) functions respectively.
>>> from sympy import fraction, Rational, Symbol
>>> from sympy.abc import x, y
>>> fraction(x/y)
(x, y)
>>> fraction(x)
(x, 1)
>>> fraction(1/y**2)
(1, y**2)
>>> fraction(x*y/2)
(x*y, 2)
>>> fraction(Rational(1, 2))
(1, 2)
This function will also work fine with assumptions:
>>> k = Symbol('k', negative=True)
>>> fraction(x * y**k)
(x, y**(-k))
If we know nothing about sign of some exponent and ``exact``
flag is unset, then structure this exponent's structure will
be analyzed and pretty fraction will be returned:
>>> from sympy import exp, Mul
>>> fraction(2*x**(-y))
(2, x**y)
>>> fraction(exp(-x))
(1, exp(x))
>>> fraction(exp(-x), exact=True)
(exp(-x), 1)
The ``exact`` flag will also keep any unevaluated Muls from
being evaluated:
>>> u = Mul(2, x + 1, evaluate=False)
>>> fraction(u)
(2*x + 2, 1)
>>> fraction(u, exact=True)
(2*(x + 1), 1)
"""
expr = sympify(expr)
numer, denom = [], []
for term in Mul.make_args(expr):
if term.is_commutative and (term.is_Pow or isinstance(term, exp)):
b, ex = term.as_base_exp()
if ex.is_negative:
if ex is S.NegativeOne:
denom.append(b)
elif exact:
if ex.is_constant():
denom.append(Pow(b, -ex))
else:
numer.append(term)
else:
denom.append(Pow(b, -ex))
elif ex.is_positive:
numer.append(term)
elif not exact and ex.is_Mul:
n, d = term.as_numer_denom()
if n != 1:
numer.append(n)
denom.append(d)
else:
numer.append(term)
elif term.is_Rational and not term.is_Integer:
if term.p != 1:
numer.append(term.p)
denom.append(term.q)
else:
numer.append(term)
return Mul(*numer, evaluate=not exact), Mul(*denom, evaluate=not exact)
def numer(expr):
return fraction(expr)[0]
def denom(expr):
return fraction(expr)[1]
def fraction_expand(expr, **hints):
return expr.expand(frac=True, **hints)
def numer_expand(expr, **hints):
a, b = fraction(expr)
return a.expand(numer=True, **hints) / b
def denom_expand(expr, **hints):
a, b = fraction(expr)
return a / b.expand(denom=True, **hints)
expand_numer = numer_expand
expand_denom = denom_expand
expand_fraction = fraction_expand
def split_surds(expr):
"""
Split an expression with terms whose squares are positive rationals
into a sum of terms whose surds squared have gcd equal to g
and a sum of terms with surds squared prime with g.
Examples
========
>>> from sympy import sqrt
>>> from sympy.simplify.radsimp import split_surds
>>> split_surds(3*sqrt(3) + sqrt(5)/7 + sqrt(6) + sqrt(10) + sqrt(15))
(3, sqrt(2) + sqrt(5) + 3, sqrt(5)/7 + sqrt(10))
"""
args = sorted(expr.args, key=default_sort_key)
coeff_muls = [x.as_coeff_Mul() for x in args]
surds = [x[1]**2 for x in coeff_muls if x[1].is_Pow]
surds.sort(key=default_sort_key)
g, b1, b2 = _split_gcd(*surds)
g2 = g
if not b2 and len(b1) >= 2:
b1n = [x/g for x in b1]
b1n = [x for x in b1n if x != 1]
# only a common factor has been factored; split again
g1, b1n, b2 = _split_gcd(*b1n)
g2 = g*g1
a1v, a2v = [], []
for c, s in coeff_muls:
if s.is_Pow and s.exp == S.Half:
s1 = s.base
if s1 in b1:
a1v.append(c*sqrt(s1/g2))
else:
a2v.append(c*s)
else:
a2v.append(c*s)
a = Add(*a1v)
b = Add(*a2v)
return g2, a, b
def _split_gcd(*a):
"""
Split the list of integers ``a`` into a list of integers, ``a1`` having
``g = gcd(a1)``, and a list ``a2`` whose elements are not divisible by
``g``. Returns ``g, a1, a2``.
Examples
========
>>> from sympy.simplify.radsimp import _split_gcd
>>> _split_gcd(55, 35, 22, 14, 77, 10)
(5, [55, 35, 10], [22, 14, 77])
"""
g = a[0]
b1 = [g]
b2 = []
for x in a[1:]:
g1 = gcd(g, x)
if g1 == 1:
b2.append(x)
else:
g = g1
b1.append(x)
return g, b1, b2
|
4bb6c27bb69d22b53d0144593b5ce7f89cf9fcc368908957fea281efa1a85073 | from itertools import combinations_with_replacement
from sympy.core import symbols, Add, Dummy
from sympy.core.numbers import Rational
from sympy.polys import cancel, ComputationFailed, parallel_poly_from_expr, reduced, Poly
from sympy.polys.monomials import Monomial, monomial_div
from sympy.polys.polyerrors import DomainError, PolificationFailed
from sympy.utilities.misc import debug
def ratsimp(expr):
"""
Put an expression over a common denominator, cancel and reduce.
Examples
========
>>> from sympy import ratsimp
>>> from sympy.abc import x, y
>>> ratsimp(1/x + 1/y)
(x + y)/(x*y)
"""
f, g = cancel(expr).as_numer_denom()
try:
Q, r = reduced(f, [g], field=True, expand=False)
except ComputationFailed:
return f/g
return Add(*Q) + cancel(r/g)
def ratsimpmodprime(expr, G, *gens, quick=True, polynomial=False, **args):
"""
Simplifies a rational expression ``expr`` modulo the prime ideal
generated by ``G``. ``G`` should be a Groebner basis of the
ideal.
Examples
========
>>> from sympy.simplify.ratsimp import ratsimpmodprime
>>> from sympy.abc import x, y
>>> eq = (x + y**5 + y)/(x - y)
>>> ratsimpmodprime(eq, [x*y**5 - x - y], x, y, order='lex')
(-x**2 - x*y - x - y)/(-x**2 + x*y)
If ``polynomial`` is ``False``, the algorithm computes a rational
simplification which minimizes the sum of the total degrees of
the numerator and the denominator.
If ``polynomial`` is ``True``, this function just brings numerator and
denominator into a canonical form. This is much faster, but has
potentially worse results.
References
==========
.. [1] M. Monagan, R. Pearce, Rational Simplification Modulo a Polynomial
Ideal, http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.6984
(specifically, the second algorithm)
"""
from sympy import solve
debug('ratsimpmodprime', expr)
# usual preparation of polynomials:
num, denom = cancel(expr).as_numer_denom()
try:
polys, opt = parallel_poly_from_expr([num, denom] + G, *gens, **args)
except PolificationFailed:
return expr
domain = opt.domain
if domain.has_assoc_Field:
opt.domain = domain.get_field()
else:
raise DomainError(
"can't compute rational simplification over %s" % domain)
# compute only once
leading_monomials = [g.LM(opt.order) for g in polys[2:]]
tested = set()
def staircase(n):
"""
Compute all monomials with degree less than ``n`` that are
not divisible by any element of ``leading_monomials``.
"""
if n == 0:
return [1]
S = []
for mi in combinations_with_replacement(range(len(opt.gens)), n):
m = [0]*len(opt.gens)
for i in mi:
m[i] += 1
if all(monomial_div(m, lmg) is None for lmg in
leading_monomials):
S.append(m)
return [Monomial(s).as_expr(*opt.gens) for s in S] + staircase(n - 1)
def _ratsimpmodprime(a, b, allsol, N=0, D=0):
r"""
Computes a rational simplification of ``a/b`` which minimizes
the sum of the total degrees of the numerator and the denominator.
Explanation
===========
The algorithm proceeds by looking at ``a * d - b * c`` modulo
the ideal generated by ``G`` for some ``c`` and ``d`` with degree
less than ``a`` and ``b`` respectively.
The coefficients of ``c`` and ``d`` are indeterminates and thus
the coefficients of the normalform of ``a * d - b * c`` are
linear polynomials in these indeterminates.
If these linear polynomials, considered as system of
equations, have a nontrivial solution, then `\frac{a}{b}
\equiv \frac{c}{d}` modulo the ideal generated by ``G``. So,
by construction, the degree of ``c`` and ``d`` is less than
the degree of ``a`` and ``b``, so a simpler representation
has been found.
After a simpler representation has been found, the algorithm
tries to reduce the degree of the numerator and denominator
and returns the result afterwards.
As an extension, if quick=False, we look at all possible degrees such
that the total degree is less than *or equal to* the best current
solution. We retain a list of all solutions of minimal degree, and try
to find the best one at the end.
"""
c, d = a, b
steps = 0
maxdeg = a.total_degree() + b.total_degree()
if quick:
bound = maxdeg - 1
else:
bound = maxdeg
while N + D <= bound:
if (N, D) in tested:
break
tested.add((N, D))
M1 = staircase(N)
M2 = staircase(D)
debug('%s / %s: %s, %s' % (N, D, M1, M2))
Cs = symbols("c:%d" % len(M1), cls=Dummy)
Ds = symbols("d:%d" % len(M2), cls=Dummy)
ng = Cs + Ds
c_hat = Poly(
sum([Cs[i] * M1[i] for i in range(len(M1))]), opt.gens + ng)
d_hat = Poly(
sum([Ds[i] * M2[i] for i in range(len(M2))]), opt.gens + ng)
r = reduced(a * d_hat - b * c_hat, G, opt.gens + ng,
order=opt.order, polys=True)[1]
S = Poly(r, gens=opt.gens).coeffs()
sol = solve(S, Cs + Ds, particular=True, quick=True)
if sol and not all(s == 0 for s in sol.values()):
c = c_hat.subs(sol)
d = d_hat.subs(sol)
# The "free" variables occurring before as parameters
# might still be in the substituted c, d, so set them
# to the value chosen before:
c = c.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))
d = d.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))
c = Poly(c, opt.gens)
d = Poly(d, opt.gens)
if d == 0:
raise ValueError('Ideal not prime?')
allsol.append((c_hat, d_hat, S, Cs + Ds))
if N + D != maxdeg:
allsol = [allsol[-1]]
break
steps += 1
N += 1
D += 1
if steps > 0:
c, d, allsol = _ratsimpmodprime(c, d, allsol, N, D - steps)
c, d, allsol = _ratsimpmodprime(c, d, allsol, N - steps, D)
return c, d, allsol
# preprocessing. this improves performance a bit when deg(num)
# and deg(denom) are large:
num = reduced(num, G, opt.gens, order=opt.order)[1]
denom = reduced(denom, G, opt.gens, order=opt.order)[1]
if polynomial:
return (num/denom).cancel()
c, d, allsol = _ratsimpmodprime(
Poly(num, opt.gens, domain=opt.domain), Poly(denom, opt.gens, domain=opt.domain), [])
if not quick and allsol:
debug('Looking for best minimal solution. Got: %s' % len(allsol))
newsol = []
for c_hat, d_hat, S, ng in allsol:
sol = solve(S, ng, particular=True, quick=False)
newsol.append((c_hat.subs(sol), d_hat.subs(sol)))
c, d = min(newsol, key=lambda x: len(x[0].terms()) + len(x[1].terms()))
if not domain.is_Field:
cn, c = c.clear_denoms(convert=True)
dn, d = d.clear_denoms(convert=True)
r = Rational(cn, dn)
else:
r = Rational(1)
return (c*r.q)/(d*r.p)
|
032a5198a23ce8977bb85d70dbe1a18c92569ed6b6a28bfccc67e2a07f1ea19b | r"""
This module contains the functionality to arrange the nodes of a
diagram on an abstract grid, and then to produce a graphical
representation of the grid.
The currently supported back-ends are Xy-pic [Xypic].
Layout Algorithm
================
This section provides an overview of the algorithms implemented in
:class:`DiagramGrid` to lay out diagrams.
The first step of the algorithm is the removal composite and identity
morphisms which do not have properties in the supplied diagram. The
premises and conclusions of the diagram are then merged.
The generic layout algorithm begins with the construction of the
"skeleton" of the diagram. The skeleton is an undirected graph which
has the objects of the diagram as vertices and has an (undirected)
edge between each pair of objects between which there exist morphisms.
The direction of the morphisms does not matter at this stage. The
skeleton also includes an edge between each pair of vertices `A` and
`C` such that there exists an object `B` which is connected via
a morphism to `A`, and via a morphism to `C`.
The skeleton constructed in this way has the property that every
object is a vertex of a triangle formed by three edges of the
skeleton. This property lies at the base of the generic layout
algorithm.
After the skeleton has been constructed, the algorithm lists all
triangles which can be formed. Note that some triangles will not have
all edges corresponding to morphisms which will actually be drawn.
Triangles which have only one edge or less which will actually be
drawn are immediately discarded.
The list of triangles is sorted according to the number of edges which
correspond to morphisms, then the triangle with the least number of such
edges is selected. One of such edges is picked and the corresponding
objects are placed horizontally, on a grid. This edge is recorded to
be in the fringe. The algorithm then finds a "welding" of a triangle
to the fringe. A welding is an edge in the fringe where a triangle
could be attached. If the algorithm succeeds in finding such a
welding, it adds to the grid that vertex of the triangle which was not
yet included in any edge in the fringe and records the two new edges in
the fringe. This process continues iteratively until all objects of
the diagram has been placed or until no more weldings can be found.
An edge is only removed from the fringe when a welding to this edge
has been found, and there is no room around this edge to place
another vertex.
When no more weldings can be found, but there are still triangles
left, the algorithm searches for a possibility of attaching one of the
remaining triangles to the existing structure by a vertex. If such a
possibility is found, the corresponding edge of the found triangle is
placed in the found space and the iterative process of welding
triangles restarts.
When logical groups are supplied, each of these groups is laid out
independently. Then a diagram is constructed in which groups are
objects and any two logical groups between which there exist morphisms
are connected via a morphism. This diagram is laid out. Finally,
the grid which includes all objects of the initial diagram is
constructed by replacing the cells which contain logical groups with
the corresponding laid out grids, and by correspondingly expanding the
rows and columns.
The sequential layout algorithm begins by constructing the
underlying undirected graph defined by the morphisms obtained after
simplifying premises and conclusions and merging them (see above).
The vertex with the minimal degree is then picked up and depth-first
search is started from it. All objects which are located at distance
`n` from the root in the depth-first search tree, are positioned in
the `n`-th column of the resulting grid. The sequential layout will
therefore attempt to lay the objects out along a line.
References
==========
[Xypic] http://xy-pic.sourceforge.net/
"""
from sympy.categories import (CompositeMorphism, IdentityMorphism,
NamedMorphism, Diagram)
from sympy.core import Dict, Symbol
from sympy.core.compatibility import iterable
from sympy.printing import latex
from sympy.sets import FiniteSet
from sympy.utilities import default_sort_key
from sympy.utilities.decorator import doctest_depends_on
from itertools import chain
__doctest_requires__ = {('preview_diagram',): 'pyglet'}
class _GrowableGrid:
"""
Holds a growable grid of objects.
Explanation
===========
It is possible to append or prepend a row or a column to the grid
using the corresponding methods. Prepending rows or columns has
the effect of changing the coordinates of the already existing
elements.
This class currently represents a naive implementation of the
functionality with little attempt at optimisation.
"""
def __init__(self, width, height):
self._width = width
self._height = height
self._array = [[None for j in range(width)] for i in range(height)]
@property
def width(self):
return self._width
@property
def height(self):
return self._height
def __getitem__(self, i_j):
"""
Returns the element located at in the i-th line and j-th
column.
"""
i, j = i_j
return self._array[i][j]
def __setitem__(self, i_j, newvalue):
"""
Sets the element located at in the i-th line and j-th
column.
"""
i, j = i_j
self._array[i][j] = newvalue
def append_row(self):
"""
Appends an empty row to the grid.
"""
self._height += 1
self._array.append([None for j in range(self._width)])
def append_column(self):
"""
Appends an empty column to the grid.
"""
self._width += 1
for i in range(self._height):
self._array[i].append(None)
def prepend_row(self):
"""
Prepends the grid with an empty row.
"""
self._height += 1
self._array.insert(0, [None for j in range(self._width)])
def prepend_column(self):
"""
Prepends the grid with an empty column.
"""
self._width += 1
for i in range(self._height):
self._array[i].insert(0, None)
class DiagramGrid:
r"""
Constructs and holds the fitting of the diagram into a grid.
Explanation
===========
The mission of this class is to analyse the structure of the
supplied diagram and to place its objects on a grid such that,
when the objects and the morphisms are actually drawn, the diagram
would be "readable", in the sense that there will not be many
intersections of moprhisms. This class does not perform any
actual drawing. It does strive nevertheless to offer sufficient
metadata to draw a diagram.
Consider the following simple diagram.
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import Diagram, DiagramGrid
>>> from sympy import pprint
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g])
The simplest way to have a diagram laid out is the following:
>>> grid = DiagramGrid(diagram)
>>> (grid.width, grid.height)
(2, 2)
>>> pprint(grid)
A B
<BLANKLINE>
C
Sometimes one sees the diagram as consisting of logical groups.
One can advise ``DiagramGrid`` as to such groups by employing the
``groups`` keyword argument.
Consider the following diagram:
>>> D = Object("D")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> h = NamedMorphism(D, A, "h")
>>> k = NamedMorphism(D, B, "k")
>>> diagram = Diagram([f, g, h, k])
Lay it out with generic layout:
>>> grid = DiagramGrid(diagram)
>>> pprint(grid)
A B D
<BLANKLINE>
C
Now, we can group the objects `A` and `D` to have them near one
another:
>>> grid = DiagramGrid(diagram, groups=[[A, D], B, C])
>>> pprint(grid)
B C
<BLANKLINE>
A D
Note how the positioning of the other objects changes.
Further indications can be supplied to the constructor of
:class:`DiagramGrid` using keyword arguments. The currently
supported hints are explained in the following paragraphs.
:class:`DiagramGrid` does not automatically guess which layout
would suit the supplied diagram better. Consider, for example,
the following linear diagram:
>>> E = Object("E")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> h = NamedMorphism(C, D, "h")
>>> i = NamedMorphism(D, E, "i")
>>> diagram = Diagram([f, g, h, i])
When laid out with the generic layout, it does not get to look
linear:
>>> grid = DiagramGrid(diagram)
>>> pprint(grid)
A B
<BLANKLINE>
C D
<BLANKLINE>
E
To get it laid out in a line, use ``layout="sequential"``:
>>> grid = DiagramGrid(diagram, layout="sequential")
>>> pprint(grid)
A B C D E
One may sometimes need to transpose the resulting layout. While
this can always be done by hand, :class:`DiagramGrid` provides a
hint for that purpose:
>>> grid = DiagramGrid(diagram, layout="sequential", transpose=True)
>>> pprint(grid)
A
<BLANKLINE>
B
<BLANKLINE>
C
<BLANKLINE>
D
<BLANKLINE>
E
Separate hints can also be provided for each group. For an
example, refer to ``tests/test_drawing.py``, and see the different
ways in which the five lemma [FiveLemma] can be laid out.
See Also
========
Diagram
References
==========
.. [FiveLemma] https://en.wikipedia.org/wiki/Five_lemma
"""
@staticmethod
def _simplify_morphisms(morphisms):
"""
Given a dictionary mapping morphisms to their properties,
returns a new dictionary in which there are no morphisms which
do not have properties, and which are compositions of other
morphisms included in the dictionary. Identities are dropped
as well.
"""
newmorphisms = {}
for morphism, props in morphisms.items():
if isinstance(morphism, CompositeMorphism) and not props:
continue
elif isinstance(morphism, IdentityMorphism):
continue
else:
newmorphisms[morphism] = props
return newmorphisms
@staticmethod
def _merge_premises_conclusions(premises, conclusions):
"""
Given two dictionaries of morphisms and their properties,
produces a single dictionary which includes elements from both
dictionaries. If a morphism has some properties in premises
and also in conclusions, the properties in conclusions take
priority.
"""
return dict(chain(premises.items(), conclusions.items()))
@staticmethod
def _juxtapose_edges(edge1, edge2):
"""
If ``edge1`` and ``edge2`` have precisely one common endpoint,
returns an edge which would form a triangle with ``edge1`` and
``edge2``.
If ``edge1`` and ``edge2`` don't have a common endpoint,
returns ``None``.
If ``edge1`` and ``edge`` are the same edge, returns ``None``.
"""
intersection = edge1 & edge2
if len(intersection) != 1:
# The edges either have no common points or are equal.
return None
# The edges have a common endpoint. Extract the different
# endpoints and set up the new edge.
return (edge1 - intersection) | (edge2 - intersection)
@staticmethod
def _add_edge_append(dictionary, edge, elem):
"""
If ``edge`` is not in ``dictionary``, adds ``edge`` to the
dictionary and sets its value to ``[elem]``. Otherwise
appends ``elem`` to the value of existing entry.
Note that edges are undirected, thus `(A, B) = (B, A)`.
"""
if edge in dictionary:
dictionary[edge].append(elem)
else:
dictionary[edge] = [elem]
@staticmethod
def _build_skeleton(morphisms):
"""
Creates a dictionary which maps edges to corresponding
morphisms. Thus for a morphism `f:A\rightarrow B`, the edge
`(A, B)` will be associated with `f`. This function also adds
to the list those edges which are formed by juxtaposition of
two edges already in the list. These new edges are not
associated with any morphism and are only added to assure that
the diagram can be decomposed into triangles.
"""
edges = {}
# Create edges for morphisms.
for morphism in morphisms:
DiagramGrid._add_edge_append(
edges, frozenset([morphism.domain, morphism.codomain]), morphism)
# Create new edges by juxtaposing existing edges.
edges1 = dict(edges)
for w in edges1:
for v in edges1:
wv = DiagramGrid._juxtapose_edges(w, v)
if wv and wv not in edges:
edges[wv] = []
return edges
@staticmethod
def _list_triangles(edges):
"""
Builds the set of triangles formed by the supplied edges. The
triangles are arbitrary and need not be commutative. A
triangle is a set that contains all three of its sides.
"""
triangles = set()
for w in edges:
for v in edges:
wv = DiagramGrid._juxtapose_edges(w, v)
if wv and wv in edges:
triangles.add(frozenset([w, v, wv]))
return triangles
@staticmethod
def _drop_redundant_triangles(triangles, skeleton):
"""
Returns a list which contains only those triangles who have
morphisms associated with at least two edges.
"""
return [tri for tri in triangles
if len([e for e in tri if skeleton[e]]) >= 2]
@staticmethod
def _morphism_length(morphism):
"""
Returns the length of a morphism. The length of a morphism is
the number of components it consists of. A non-composite
morphism is of length 1.
"""
if isinstance(morphism, CompositeMorphism):
return len(morphism.components)
else:
return 1
@staticmethod
def _compute_triangle_min_sizes(triangles, edges):
r"""
Returns a dictionary mapping triangles to their minimal sizes.
The minimal size of a triangle is the sum of maximal lengths
of morphisms associated to the sides of the triangle. The
length of a morphism is the number of components it consists
of. A non-composite morphism is of length 1.
Sorting triangles by this metric attempts to address two
aspects of layout. For triangles with only simple morphisms
in the edge, this assures that triangles with all three edges
visible will get typeset after triangles with less visible
edges, which sometimes minimizes the necessity in diagonal
arrows. For triangles with composite morphisms in the edges,
this assures that objects connected with shorter morphisms
will be laid out first, resulting the visual proximity of
those objects which are connected by shorter morphisms.
"""
triangle_sizes = {}
for triangle in triangles:
size = 0
for e in triangle:
morphisms = edges[e]
if morphisms:
size += max(DiagramGrid._morphism_length(m)
for m in morphisms)
triangle_sizes[triangle] = size
return triangle_sizes
@staticmethod
def _triangle_objects(triangle):
"""
Given a triangle, returns the objects included in it.
"""
# A triangle is a frozenset of three two-element frozensets
# (the edges). This chains the three edges together and
# creates a frozenset from the iterator, thus producing a
# frozenset of objects of the triangle.
return frozenset(chain(*tuple(triangle)))
@staticmethod
def _other_vertex(triangle, edge):
"""
Given a triangle and an edge of it, returns the vertex which
opposes the edge.
"""
# This gets the set of objects of the triangle and then
# subtracts the set of objects employed in ``edge`` to get the
# vertex opposite to ``edge``.
return list(DiagramGrid._triangle_objects(triangle) - set(edge))[0]
@staticmethod
def _empty_point(pt, grid):
"""
Checks if the cell at coordinates ``pt`` is either empty or
out of the bounds of the grid.
"""
if (pt[0] < 0) or (pt[1] < 0) or \
(pt[0] >= grid.height) or (pt[1] >= grid.width):
return True
return grid[pt] is None
@staticmethod
def _put_object(coords, obj, grid, fringe):
"""
Places an object at the coordinate ``cords`` in ``grid``,
growing the grid and updating ``fringe``, if necessary.
Returns (0, 0) if no row or column has been prepended, (1, 0)
if a row was prepended, (0, 1) if a column was prepended and
(1, 1) if both a column and a row were prepended.
"""
(i, j) = coords
offset = (0, 0)
if i == -1:
grid.prepend_row()
i = 0
offset = (1, 0)
for k in range(len(fringe)):
((i1, j1), (i2, j2)) = fringe[k]
fringe[k] = ((i1 + 1, j1), (i2 + 1, j2))
elif i == grid.height:
grid.append_row()
if j == -1:
j = 0
offset = (offset[0], 1)
grid.prepend_column()
for k in range(len(fringe)):
((i1, j1), (i2, j2)) = fringe[k]
fringe[k] = ((i1, j1 + 1), (i2, j2 + 1))
elif j == grid.width:
grid.append_column()
grid[i, j] = obj
return offset
@staticmethod
def _choose_target_cell(pt1, pt2, edge, obj, skeleton, grid):
"""
Given two points, ``pt1`` and ``pt2``, and the welding edge
``edge``, chooses one of the two points to place the opposing
vertex ``obj`` of the triangle. If neither of this points
fits, returns ``None``.
"""
pt1_empty = DiagramGrid._empty_point(pt1, grid)
pt2_empty = DiagramGrid._empty_point(pt2, grid)
if pt1_empty and pt2_empty:
# Both cells are empty. Of these two, choose that cell
# which will assure that a visible edge of the triangle
# will be drawn perpendicularly to the current welding
# edge.
A = grid[edge[0]]
if skeleton.get(frozenset([A, obj])):
return pt1
else:
return pt2
if pt1_empty:
return pt1
elif pt2_empty:
return pt2
else:
return None
@staticmethod
def _find_triangle_to_weld(triangles, fringe, grid):
"""
Finds, if possible, a triangle and an edge in the ``fringe`` to
which the triangle could be attached. Returns the tuple
containing the triangle and the index of the corresponding
edge in the ``fringe``.
This function relies on the fact that objects are unique in
the diagram.
"""
for triangle in triangles:
for (a, b) in fringe:
if frozenset([grid[a], grid[b]]) in triangle:
return (triangle, (a, b))
return None
@staticmethod
def _weld_triangle(tri, welding_edge, fringe, grid, skeleton):
"""
If possible, welds the triangle ``tri`` to ``fringe`` and
returns ``False``. If this method encounters a degenerate
situation in the fringe and corrects it such that a restart of
the search is required, it returns ``True`` (which means that
a restart in finding triangle weldings is required).
A degenerate situation is a situation when an edge listed in
the fringe does not belong to the visual boundary of the
diagram.
"""
a, b = welding_edge
target_cell = None
obj = DiagramGrid._other_vertex(tri, (grid[a], grid[b]))
# We now have a triangle and an edge where it can be welded to
# the fringe. Decide where to place the other vertex of the
# triangle and check for degenerate situations en route.
if (abs(a[0] - b[0]) == 1) and (abs(a[1] - b[1]) == 1):
# A diagonal edge.
target_cell = (a[0], b[1])
if grid[target_cell]:
# That cell is already occupied.
target_cell = (b[0], a[1])
if grid[target_cell]:
# Degenerate situation, this edge is not
# on the actual fringe. Correct the
# fringe and go on.
fringe.remove((a, b))
return True
elif a[0] == b[0]:
# A horizontal edge. We first attempt to build the
# triangle in the downward direction.
down_left = a[0] + 1, a[1]
down_right = a[0] + 1, b[1]
target_cell = DiagramGrid._choose_target_cell(
down_left, down_right, (a, b), obj, skeleton, grid)
if not target_cell:
# No room below this edge. Check above.
up_left = a[0] - 1, a[1]
up_right = a[0] - 1, b[1]
target_cell = DiagramGrid._choose_target_cell(
up_left, up_right, (a, b), obj, skeleton, grid)
if not target_cell:
# This edge is not in the fringe, remove it
# and restart.
fringe.remove((a, b))
return True
elif a[1] == b[1]:
# A vertical edge. We will attempt to place the other
# vertex of the triangle to the right of this edge.
right_up = a[0], a[1] + 1
right_down = b[0], a[1] + 1
target_cell = DiagramGrid._choose_target_cell(
right_up, right_down, (a, b), obj, skeleton, grid)
if not target_cell:
# No room to the left. See what's to the right.
left_up = a[0], a[1] - 1
left_down = b[0], a[1] - 1
target_cell = DiagramGrid._choose_target_cell(
left_up, left_down, (a, b), obj, skeleton, grid)
if not target_cell:
# This edge is not in the fringe, remove it
# and restart.
fringe.remove((a, b))
return True
# We now know where to place the other vertex of the
# triangle.
offset = DiagramGrid._put_object(target_cell, obj, grid, fringe)
# Take care of the displacement of coordinates if a row or
# a column was prepended.
target_cell = (target_cell[0] + offset[0],
target_cell[1] + offset[1])
a = (a[0] + offset[0], a[1] + offset[1])
b = (b[0] + offset[0], b[1] + offset[1])
fringe.extend([(a, target_cell), (b, target_cell)])
# No restart is required.
return False
@staticmethod
def _triangle_key(tri, triangle_sizes):
"""
Returns a key for the supplied triangle. It should be the
same independently of the hash randomisation.
"""
objects = sorted(
DiagramGrid._triangle_objects(tri), key=default_sort_key)
return (triangle_sizes[tri], default_sort_key(objects))
@staticmethod
def _pick_root_edge(tri, skeleton):
"""
For a given triangle always picks the same root edge. The
root edge is the edge that will be placed first on the grid.
"""
candidates = [sorted(e, key=default_sort_key)
for e in tri if skeleton[e]]
sorted_candidates = sorted(candidates, key=default_sort_key)
# Don't forget to assure the proper ordering of the vertices
# in this edge.
return tuple(sorted(sorted_candidates[0], key=default_sort_key))
@staticmethod
def _drop_irrelevant_triangles(triangles, placed_objects):
"""
Returns only those triangles whose set of objects is not
completely included in ``placed_objects``.
"""
return [tri for tri in triangles if not placed_objects.issuperset(
DiagramGrid._triangle_objects(tri))]
@staticmethod
def _grow_pseudopod(triangles, fringe, grid, skeleton, placed_objects):
"""
Starting from an object in the existing structure on the ``grid``,
adds an edge to which a triangle from ``triangles`` could be
welded. If this method has found a way to do so, it returns
the object it has just added.
This method should be applied when ``_weld_triangle`` cannot
find weldings any more.
"""
for i in range(grid.height):
for j in range(grid.width):
obj = grid[i, j]
if not obj:
continue
# Here we need to choose a triangle which has only
# ``obj`` in common with the existing structure. The
# situations when this is not possible should be
# handled elsewhere.
def good_triangle(tri):
objs = DiagramGrid._triangle_objects(tri)
return obj in objs and \
placed_objects & (objs - {obj}) == set()
tris = [tri for tri in triangles if good_triangle(tri)]
if not tris:
# This object is not interesting.
continue
# Pick the "simplest" of the triangles which could be
# attached. Remember that the list of triangles is
# sorted according to their "simplicity" (see
# _compute_triangle_min_sizes for the metric).
#
# Note that ``tris`` are sequentially built from
# ``triangles``, so we don't have to worry about hash
# randomisation.
tri = tris[0]
# We have found a triangle which could be attached to
# the existing structure by a vertex.
candidates = sorted([e for e in tri if skeleton[e]],
key=lambda e: FiniteSet(*e).sort_key())
edges = [e for e in candidates if obj in e]
# Note that a meaningful edge (i.e., and edge that is
# associated with a morphism) containing ``obj``
# always exists. That's because all triangles are
# guaranteed to have at least two meaningful edges.
# See _drop_redundant_triangles.
# Get the object at the other end of the edge.
edge = edges[0]
other_obj = tuple(edge - frozenset([obj]))[0]
# Now check for free directions. When checking for
# free directions, prefer the horizontal and vertical
# directions.
neighbours = [(i - 1, j), (i, j + 1), (i + 1, j), (i, j - 1),
(i - 1, j - 1), (i - 1, j + 1), (i + 1, j - 1), (i + 1, j + 1)]
for pt in neighbours:
if DiagramGrid._empty_point(pt, grid):
# We have a found a place to grow the
# pseudopod into.
offset = DiagramGrid._put_object(
pt, other_obj, grid, fringe)
i += offset[0]
j += offset[1]
pt = (pt[0] + offset[0], pt[1] + offset[1])
fringe.append(((i, j), pt))
return other_obj
# This diagram is actually cooler that I can handle. Fail cowardly.
return None
@staticmethod
def _handle_groups(diagram, groups, merged_morphisms, hints):
"""
Given the slightly preprocessed morphisms of the diagram,
produces a grid laid out according to ``groups``.
If a group has hints, it is laid out with those hints only,
without any influence from ``hints``. Otherwise, it is laid
out with ``hints``.
"""
def lay_out_group(group, local_hints):
"""
If ``group`` is a set of objects, uses a ``DiagramGrid``
to lay it out and returns the grid. Otherwise returns the
object (i.e., ``group``). If ``local_hints`` is not
empty, it is supplied to ``DiagramGrid`` as the dictionary
of hints. Otherwise, the ``hints`` argument of
``_handle_groups`` is used.
"""
if isinstance(group, FiniteSet):
# Set up the corresponding object-to-group
# mappings.
for obj in group:
obj_groups[obj] = group
# Lay out the current group.
if local_hints:
groups_grids[group] = DiagramGrid(
diagram.subdiagram_from_objects(group), **local_hints)
else:
groups_grids[group] = DiagramGrid(
diagram.subdiagram_from_objects(group), **hints)
else:
obj_groups[group] = group
def group_to_finiteset(group):
"""
Converts ``group`` to a :class:``FiniteSet`` if it is an
iterable.
"""
if iterable(group):
return FiniteSet(*group)
else:
return group
obj_groups = {}
groups_grids = {}
# We would like to support various containers to represent
# groups. To achieve that, before laying each group out, it
# should be converted to a FiniteSet, because that is what the
# following code expects.
if isinstance(groups, dict) or isinstance(groups, Dict):
finiteset_groups = {}
for group, local_hints in groups.items():
finiteset_group = group_to_finiteset(group)
finiteset_groups[finiteset_group] = local_hints
lay_out_group(group, local_hints)
groups = finiteset_groups
else:
finiteset_groups = []
for group in groups:
finiteset_group = group_to_finiteset(group)
finiteset_groups.append(finiteset_group)
lay_out_group(finiteset_group, None)
groups = finiteset_groups
new_morphisms = []
for morphism in merged_morphisms:
dom = obj_groups[morphism.domain]
cod = obj_groups[morphism.codomain]
# Note that we are not really interested in morphisms
# which do not employ two different groups, because
# these do not influence the layout.
if dom != cod:
# These are essentially unnamed morphisms; they are
# not going to mess in the final layout. By giving
# them the same names, we avoid unnecessary
# duplicates.
new_morphisms.append(NamedMorphism(dom, cod, "dummy"))
# Lay out the new diagram. Since these are dummy morphisms,
# properties and conclusions are irrelevant.
top_grid = DiagramGrid(Diagram(new_morphisms))
# We now have to substitute the groups with the corresponding
# grids, laid out at the beginning of this function. Compute
# the size of each row and column in the grid, so that all
# nested grids fit.
def group_size(group):
"""
For the supplied group (or object, eventually), returns
the size of the cell that will hold this group (object).
"""
if group in groups_grids:
grid = groups_grids[group]
return (grid.height, grid.width)
else:
return (1, 1)
row_heights = [max(group_size(top_grid[i, j])[0]
for j in range(top_grid.width))
for i in range(top_grid.height)]
column_widths = [max(group_size(top_grid[i, j])[1]
for i in range(top_grid.height))
for j in range(top_grid.width)]
grid = _GrowableGrid(sum(column_widths), sum(row_heights))
real_row = 0
real_column = 0
for logical_row in range(top_grid.height):
for logical_column in range(top_grid.width):
obj = top_grid[logical_row, logical_column]
if obj in groups_grids:
# This is a group. Copy the corresponding grid in
# place.
local_grid = groups_grids[obj]
for i in range(local_grid.height):
for j in range(local_grid.width):
grid[real_row + i,
real_column + j] = local_grid[i, j]
else:
# This is an object. Just put it there.
grid[real_row, real_column] = obj
real_column += column_widths[logical_column]
real_column = 0
real_row += row_heights[logical_row]
return grid
@staticmethod
def _generic_layout(diagram, merged_morphisms):
"""
Produces the generic layout for the supplied diagram.
"""
all_objects = set(diagram.objects)
if len(all_objects) == 1:
# There only one object in the diagram, just put in on 1x1
# grid.
grid = _GrowableGrid(1, 1)
grid[0, 0] = tuple(all_objects)[0]
return grid
skeleton = DiagramGrid._build_skeleton(merged_morphisms)
grid = _GrowableGrid(2, 1)
if len(skeleton) == 1:
# This diagram contains only one morphism. Draw it
# horizontally.
objects = sorted(all_objects, key=default_sort_key)
grid[0, 0] = objects[0]
grid[0, 1] = objects[1]
return grid
triangles = DiagramGrid._list_triangles(skeleton)
triangles = DiagramGrid._drop_redundant_triangles(triangles, skeleton)
triangle_sizes = DiagramGrid._compute_triangle_min_sizes(
triangles, skeleton)
triangles = sorted(triangles, key=lambda tri:
DiagramGrid._triangle_key(tri, triangle_sizes))
# Place the first edge on the grid.
root_edge = DiagramGrid._pick_root_edge(triangles[0], skeleton)
grid[0, 0], grid[0, 1] = root_edge
fringe = [((0, 0), (0, 1))]
# Record which objects we now have on the grid.
placed_objects = set(root_edge)
while placed_objects != all_objects:
welding = DiagramGrid._find_triangle_to_weld(
triangles, fringe, grid)
if welding:
(triangle, welding_edge) = welding
restart_required = DiagramGrid._weld_triangle(
triangle, welding_edge, fringe, grid, skeleton)
if restart_required:
continue
placed_objects.update(
DiagramGrid._triangle_objects(triangle))
else:
# No more weldings found. Try to attach triangles by
# vertices.
new_obj = DiagramGrid._grow_pseudopod(
triangles, fringe, grid, skeleton, placed_objects)
if not new_obj:
# No more triangles can be attached, not even by
# the edge. We will set up a new diagram out of
# what has been left, laid it out independently,
# and then attach it to this one.
remaining_objects = all_objects - placed_objects
remaining_diagram = diagram.subdiagram_from_objects(
FiniteSet(*remaining_objects))
remaining_grid = DiagramGrid(remaining_diagram)
# Now, let's glue ``remaining_grid`` to ``grid``.
final_width = grid.width + remaining_grid.width
final_height = max(grid.height, remaining_grid.height)
final_grid = _GrowableGrid(final_width, final_height)
for i in range(grid.width):
for j in range(grid.height):
final_grid[i, j] = grid[i, j]
start_j = grid.width
for i in range(remaining_grid.height):
for j in range(remaining_grid.width):
final_grid[i, start_j + j] = remaining_grid[i, j]
return final_grid
placed_objects.add(new_obj)
triangles = DiagramGrid._drop_irrelevant_triangles(
triangles, placed_objects)
return grid
@staticmethod
def _get_undirected_graph(objects, merged_morphisms):
"""
Given the objects and the relevant morphisms of a diagram,
returns the adjacency lists of the underlying undirected
graph.
"""
adjlists = {}
for obj in objects:
adjlists[obj] = []
for morphism in merged_morphisms:
adjlists[morphism.domain].append(morphism.codomain)
adjlists[morphism.codomain].append(morphism.domain)
# Assure that the objects in the adjacency list are always in
# the same order.
for obj in adjlists.keys():
adjlists[obj].sort(key=default_sort_key)
return adjlists
@staticmethod
def _sequential_layout(diagram, merged_morphisms):
r"""
Lays out the diagram in "sequential" layout. This method
will attempt to produce a result as close to a line as
possible. For linear diagrams, the result will actually be a
line.
"""
objects = diagram.objects
sorted_objects = sorted(objects, key=default_sort_key)
# Set up the adjacency lists of the underlying undirected
# graph of ``merged_morphisms``.
adjlists = DiagramGrid._get_undirected_graph(objects, merged_morphisms)
# Find an object with the minimal degree. This is going to be
# the root.
root = sorted_objects[0]
mindegree = len(adjlists[root])
for obj in sorted_objects:
current_degree = len(adjlists[obj])
if current_degree < mindegree:
root = obj
mindegree = current_degree
grid = _GrowableGrid(1, 1)
grid[0, 0] = root
placed_objects = {root}
def place_objects(pt, placed_objects):
"""
Does depth-first search in the underlying graph of the
diagram and places the objects en route.
"""
# We will start placing new objects from here.
new_pt = (pt[0], pt[1] + 1)
for adjacent_obj in adjlists[grid[pt]]:
if adjacent_obj in placed_objects:
# This object has already been placed.
continue
DiagramGrid._put_object(new_pt, adjacent_obj, grid, [])
placed_objects.add(adjacent_obj)
placed_objects.update(place_objects(new_pt, placed_objects))
new_pt = (new_pt[0] + 1, new_pt[1])
return placed_objects
place_objects((0, 0), placed_objects)
return grid
@staticmethod
def _drop_inessential_morphisms(merged_morphisms):
r"""
Removes those morphisms which should appear in the diagram,
but which have no relevance to object layout.
Currently this removes "loop" morphisms: the non-identity
morphisms with the same domains and codomains.
"""
morphisms = [m for m in merged_morphisms if m.domain != m.codomain]
return morphisms
@staticmethod
def _get_connected_components(objects, merged_morphisms):
"""
Given a container of morphisms, returns a list of connected
components formed by these morphisms. A connected component
is represented by a diagram consisting of the corresponding
morphisms.
"""
component_index = {}
for o in objects:
component_index[o] = None
# Get the underlying undirected graph of the diagram.
adjlist = DiagramGrid._get_undirected_graph(objects, merged_morphisms)
def traverse_component(object, current_index):
"""
Does a depth-first search traversal of the component
containing ``object``.
"""
component_index[object] = current_index
for o in adjlist[object]:
if component_index[o] is None:
traverse_component(o, current_index)
# Traverse all components.
current_index = 0
for o in adjlist:
if component_index[o] is None:
traverse_component(o, current_index)
current_index += 1
# List the objects of the components.
component_objects = [[] for i in range(current_index)]
for o, idx in component_index.items():
component_objects[idx].append(o)
# Finally, list the morphisms belonging to each component.
#
# Note: If some objects are isolated, they will not get any
# morphisms at this stage, and since the layout algorithm
# relies, we are essentially going to lose this object.
# Therefore, check if there are isolated objects and, for each
# of them, provide the trivial identity morphism. It will get
# discarded later, but the object will be there.
component_morphisms = []
for component in component_objects:
current_morphisms = {}
for m in merged_morphisms:
if (m.domain in component) and (m.codomain in component):
current_morphisms[m] = merged_morphisms[m]
if len(component) == 1:
# Let's add an identity morphism, for the sake of
# surely having morphisms in this component.
current_morphisms[IdentityMorphism(component[0])] = FiniteSet()
component_morphisms.append(Diagram(current_morphisms))
return component_morphisms
def __init__(self, diagram, groups=None, **hints):
premises = DiagramGrid._simplify_morphisms(diagram.premises)
conclusions = DiagramGrid._simplify_morphisms(diagram.conclusions)
all_merged_morphisms = DiagramGrid._merge_premises_conclusions(
premises, conclusions)
merged_morphisms = DiagramGrid._drop_inessential_morphisms(
all_merged_morphisms)
# Store the merged morphisms for later use.
self._morphisms = all_merged_morphisms
components = DiagramGrid._get_connected_components(
diagram.objects, all_merged_morphisms)
if groups and (groups != diagram.objects):
# Lay out the diagram according to the groups.
self._grid = DiagramGrid._handle_groups(
diagram, groups, merged_morphisms, hints)
elif len(components) > 1:
# Note that we check for connectedness _before_ checking
# the layout hints because the layout strategies don't
# know how to deal with disconnected diagrams.
# The diagram is disconnected. Lay out the components
# independently.
grids = []
# Sort the components to eventually get the grids arranged
# in a fixed, hash-independent order.
components = sorted(components, key=default_sort_key)
for component in components:
grid = DiagramGrid(component, **hints)
grids.append(grid)
# Throw the grids together, in a line.
total_width = sum(g.width for g in grids)
total_height = max(g.height for g in grids)
grid = _GrowableGrid(total_width, total_height)
start_j = 0
for g in grids:
for i in range(g.height):
for j in range(g.width):
grid[i, start_j + j] = g[i, j]
start_j += g.width
self._grid = grid
elif "layout" in hints:
if hints["layout"] == "sequential":
self._grid = DiagramGrid._sequential_layout(
diagram, merged_morphisms)
else:
self._grid = DiagramGrid._generic_layout(diagram, merged_morphisms)
if hints.get("transpose"):
# Transpose the resulting grid.
grid = _GrowableGrid(self._grid.height, self._grid.width)
for i in range(self._grid.height):
for j in range(self._grid.width):
grid[j, i] = self._grid[i, j]
self._grid = grid
@property
def width(self):
"""
Returns the number of columns in this diagram layout.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import Diagram, DiagramGrid
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g])
>>> grid = DiagramGrid(diagram)
>>> grid.width
2
"""
return self._grid.width
@property
def height(self):
"""
Returns the number of rows in this diagram layout.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import Diagram, DiagramGrid
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g])
>>> grid = DiagramGrid(diagram)
>>> grid.height
2
"""
return self._grid.height
def __getitem__(self, i_j):
"""
Returns the object placed in the row ``i`` and column ``j``.
The indices are 0-based.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import Diagram, DiagramGrid
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g])
>>> grid = DiagramGrid(diagram)
>>> (grid[0, 0], grid[0, 1])
(Object("A"), Object("B"))
>>> (grid[1, 0], grid[1, 1])
(None, Object("C"))
"""
i, j = i_j
return self._grid[i, j]
@property
def morphisms(self):
"""
Returns those morphisms (and their properties) which are
sufficiently meaningful to be drawn.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import Diagram, DiagramGrid
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g])
>>> grid = DiagramGrid(diagram)
>>> grid.morphisms
{NamedMorphism(Object("A"), Object("B"), "f"): EmptySet,
NamedMorphism(Object("B"), Object("C"), "g"): EmptySet}
"""
return self._morphisms
def __str__(self):
"""
Produces a string representation of this class.
This method returns a string representation of the underlying
list of lists of objects.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import Diagram, DiagramGrid
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g])
>>> grid = DiagramGrid(diagram)
>>> print(grid)
[[Object("A"), Object("B")],
[None, Object("C")]]
"""
return repr(self._grid._array)
class ArrowStringDescription:
r"""
Stores the information necessary for producing an Xy-pic
description of an arrow.
The principal goal of this class is to abstract away the string
representation of an arrow and to also provide the functionality
to produce the actual Xy-pic string.
``unit`` sets the unit which will be used to specify the amount of
curving and other distances. ``horizontal_direction`` should be a
string of ``"r"`` or ``"l"`` specifying the horizontal offset of the
target cell of the arrow relatively to the current one.
``vertical_direction`` should specify the vertical offset using a
series of either ``"d"`` or ``"u"``. ``label_position`` should be
either ``"^"``, ``"_"``, or ``"|"`` to specify that the label should
be positioned above the arrow, below the arrow or just over the arrow,
in a break. Note that the notions "above" and "below" are relative
to arrow direction. ``label`` stores the morphism label.
This works as follows (disregard the yet unexplained arguments):
>>> from sympy.categories.diagram_drawing import ArrowStringDescription
>>> astr = ArrowStringDescription(
... unit="mm", curving=None, curving_amount=None,
... looping_start=None, looping_end=None, horizontal_direction="d",
... vertical_direction="r", label_position="_", label="f")
>>> print(str(astr))
\ar[dr]_{f}
``curving`` should be one of ``"^"``, ``"_"`` to specify in which
direction the arrow is going to curve. ``curving_amount`` is a number
describing how many ``unit``'s the morphism is going to curve:
>>> astr = ArrowStringDescription(
... unit="mm", curving="^", curving_amount=12,
... looping_start=None, looping_end=None, horizontal_direction="d",
... vertical_direction="r", label_position="_", label="f")
>>> print(str(astr))
\ar@/^12mm/[dr]_{f}
``looping_start`` and ``looping_end`` are currently only used for
loop morphisms, those which have the same domain and codomain.
These two attributes should store a valid Xy-pic direction and
specify, correspondingly, the direction the arrow gets out into
and the direction the arrow gets back from:
>>> astr = ArrowStringDescription(
... unit="mm", curving=None, curving_amount=None,
... looping_start="u", looping_end="l", horizontal_direction="",
... vertical_direction="", label_position="_", label="f")
>>> print(str(astr))
\ar@(u,l)[]_{f}
``label_displacement`` controls how far the arrow label is from
the ends of the arrow. For example, to position the arrow label
near the arrow head, use ">":
>>> astr = ArrowStringDescription(
... unit="mm", curving="^", curving_amount=12,
... looping_start=None, looping_end=None, horizontal_direction="d",
... vertical_direction="r", label_position="_", label="f")
>>> astr.label_displacement = ">"
>>> print(str(astr))
\ar@/^12mm/[dr]_>{f}
Finally, ``arrow_style`` is used to specify the arrow style. To
get a dashed arrow, for example, use "{-->}" as arrow style:
>>> astr = ArrowStringDescription(
... unit="mm", curving="^", curving_amount=12,
... looping_start=None, looping_end=None, horizontal_direction="d",
... vertical_direction="r", label_position="_", label="f")
>>> astr.arrow_style = "{-->}"
>>> print(str(astr))
\ar@/^12mm/@{-->}[dr]_{f}
Notes
=====
Instances of :class:`ArrowStringDescription` will be constructed
by :class:`XypicDiagramDrawer` and provided for further use in
formatters. The user is not expected to construct instances of
:class:`ArrowStringDescription` themselves.
To be able to properly utilise this class, the reader is encouraged
to checkout the Xy-pic user guide, available at [Xypic].
See Also
========
XypicDiagramDrawer
References
==========
[Xypic] http://xy-pic.sourceforge.net/
"""
def __init__(self, unit, curving, curving_amount, looping_start,
looping_end, horizontal_direction, vertical_direction,
label_position, label):
self.unit = unit
self.curving = curving
self.curving_amount = curving_amount
self.looping_start = looping_start
self.looping_end = looping_end
self.horizontal_direction = horizontal_direction
self.vertical_direction = vertical_direction
self.label_position = label_position
self.label = label
self.label_displacement = ""
self.arrow_style = ""
# This flag shows that the position of the label of this
# morphism was set while typesetting a curved morphism and
# should not be modified later.
self.forced_label_position = False
def __str__(self):
if self.curving:
curving_str = "@/%s%d%s/" % (self.curving, self.curving_amount,
self.unit)
else:
curving_str = ""
if self.looping_start and self.looping_end:
looping_str = "@(%s,%s)" % (self.looping_start, self.looping_end)
else:
looping_str = ""
if self.arrow_style:
style_str = "@" + self.arrow_style
else:
style_str = ""
return "\\ar%s%s%s[%s%s]%s%s{%s}" % \
(curving_str, looping_str, style_str, self.horizontal_direction,
self.vertical_direction, self.label_position,
self.label_displacement, self.label)
class XypicDiagramDrawer:
r"""
Given a :class:`~.Diagram` and the corresponding
:class:`DiagramGrid`, produces the Xy-pic representation of the
diagram.
The most important method in this class is ``draw``. Consider the
following triangle diagram:
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy.categories import DiagramGrid, XypicDiagramDrawer
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g], {g * f: "unique"})
To draw this diagram, its objects need to be laid out with a
:class:`DiagramGrid`::
>>> grid = DiagramGrid(diagram)
Finally, the drawing:
>>> drawer = XypicDiagramDrawer()
>>> print(drawer.draw(diagram, grid))
\xymatrix{
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
C &
}
For further details see the docstring of this method.
To control the appearance of the arrows, formatters are used. The
dictionary ``arrow_formatters`` maps morphisms to formatter
functions. A formatter is accepts an
:class:`ArrowStringDescription` and is allowed to modify any of
the arrow properties exposed thereby. For example, to have all
morphisms with the property ``unique`` appear as dashed arrows,
and to have their names prepended with `\exists !`, the following
should be done:
>>> def formatter(astr):
... astr.label = r"\exists !" + astr.label
... astr.arrow_style = "{-->}"
>>> drawer.arrow_formatters["unique"] = formatter
>>> print(drawer.draw(diagram, grid))
\xymatrix{
A \ar@{-->}[d]_{\exists !g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
C &
}
To modify the appearance of all arrows in the diagram, set
``default_arrow_formatter``. For example, to place all morphism
labels a little bit farther from the arrow head so that they look
more centred, do as follows:
>>> def default_formatter(astr):
... astr.label_displacement = "(0.45)"
>>> drawer.default_arrow_formatter = default_formatter
>>> print(drawer.draw(diagram, grid))
\xymatrix{
A \ar@{-->}[d]_(0.45){\exists !g\circ f} \ar[r]^(0.45){f} & B \ar[ld]^(0.45){g} \\
C &
}
In some diagrams some morphisms are drawn as curved arrows.
Consider the following diagram:
>>> D = Object("D")
>>> E = Object("E")
>>> h = NamedMorphism(D, A, "h")
>>> k = NamedMorphism(D, B, "k")
>>> diagram = Diagram([f, g, h, k])
>>> grid = DiagramGrid(diagram)
>>> drawer = XypicDiagramDrawer()
>>> print(drawer.draw(diagram, grid))
\xymatrix{
A \ar[r]_{f} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_3mm/[ll]_{h} \\
& C &
}
To control how far the morphisms are curved by default, one can
use the ``unit`` and ``default_curving_amount`` attributes:
>>> drawer.unit = "cm"
>>> drawer.default_curving_amount = 1
>>> print(drawer.draw(diagram, grid))
\xymatrix{
A \ar[r]_{f} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_1cm/[ll]_{h} \\
& C &
}
In some diagrams, there are multiple curved morphisms between the
same two objects. To control by how much the curving changes
between two such successive morphisms, use
``default_curving_step``:
>>> drawer.default_curving_step = 1
>>> h1 = NamedMorphism(A, D, "h1")
>>> diagram = Diagram([f, g, h, k, h1])
>>> grid = DiagramGrid(diagram)
>>> print(drawer.draw(diagram, grid))
\xymatrix{
A \ar[r]_{f} \ar@/^1cm/[rr]^{h_{1}} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_2cm/[ll]_{h} \\
& C &
}
The default value of ``default_curving_step`` is 4 units.
See Also
========
draw, ArrowStringDescription
"""
def __init__(self):
self.unit = "mm"
self.default_curving_amount = 3
self.default_curving_step = 4
# This dictionary maps properties to the corresponding arrow
# formatters.
self.arrow_formatters = {}
# This is the default arrow formatter which will be applied to
# each arrow independently of its properties.
self.default_arrow_formatter = None
@staticmethod
def _process_loop_morphism(i, j, grid, morphisms_str_info, object_coords):
"""
Produces the information required for constructing the string
representation of a loop morphism. This function is invoked
from ``_process_morphism``.
See Also
========
_process_morphism
"""
curving = ""
label_pos = "^"
looping_start = ""
looping_end = ""
# This is a loop morphism. Count how many morphisms stick
# in each of the four quadrants. Note that straight
# vertical and horizontal morphisms count in two quadrants
# at the same time (i.e., a morphism going up counts both
# in the first and the second quadrants).
# The usual numbering (counterclockwise) of quadrants
# applies.
quadrant = [0, 0, 0, 0]
obj = grid[i, j]
for m, m_str_info in morphisms_str_info.items():
if (m.domain == obj) and (m.codomain == obj):
# That's another loop morphism. Check how it
# loops and mark the corresponding quadrants as
# busy.
(l_s, l_e) = (m_str_info.looping_start, m_str_info.looping_end)
if (l_s, l_e) == ("r", "u"):
quadrant[0] += 1
elif (l_s, l_e) == ("u", "l"):
quadrant[1] += 1
elif (l_s, l_e) == ("l", "d"):
quadrant[2] += 1
elif (l_s, l_e) == ("d", "r"):
quadrant[3] += 1
continue
if m.domain == obj:
(end_i, end_j) = object_coords[m.codomain]
goes_out = True
elif m.codomain == obj:
(end_i, end_j) = object_coords[m.domain]
goes_out = False
else:
continue
d_i = end_i - i
d_j = end_j - j
m_curving = m_str_info.curving
if (d_i != 0) and (d_j != 0):
# This is really a diagonal morphism. Detect the
# quadrant.
if (d_i > 0) and (d_j > 0):
quadrant[0] += 1
elif (d_i > 0) and (d_j < 0):
quadrant[1] += 1
elif (d_i < 0) and (d_j < 0):
quadrant[2] += 1
elif (d_i < 0) and (d_j > 0):
quadrant[3] += 1
elif d_i == 0:
# Knowing where the other end of the morphism is
# and which way it goes, we now have to decide
# which quadrant is now the upper one and which is
# the lower one.
if d_j > 0:
if goes_out:
upper_quadrant = 0
lower_quadrant = 3
else:
upper_quadrant = 3
lower_quadrant = 0
else:
if goes_out:
upper_quadrant = 2
lower_quadrant = 1
else:
upper_quadrant = 1
lower_quadrant = 2
if m_curving:
if m_curving == "^":
quadrant[upper_quadrant] += 1
elif m_curving == "_":
quadrant[lower_quadrant] += 1
else:
# This morphism counts in both upper and lower
# quadrants.
quadrant[upper_quadrant] += 1
quadrant[lower_quadrant] += 1
elif d_j == 0:
# Knowing where the other end of the morphism is
# and which way it goes, we now have to decide
# which quadrant is now the left one and which is
# the right one.
if d_i < 0:
if goes_out:
left_quadrant = 1
right_quadrant = 0
else:
left_quadrant = 0
right_quadrant = 1
else:
if goes_out:
left_quadrant = 3
right_quadrant = 2
else:
left_quadrant = 2
right_quadrant = 3
if m_curving:
if m_curving == "^":
quadrant[left_quadrant] += 1
elif m_curving == "_":
quadrant[right_quadrant] += 1
else:
# This morphism counts in both upper and lower
# quadrants.
quadrant[left_quadrant] += 1
quadrant[right_quadrant] += 1
# Pick the freest quadrant to curve our morphism into.
freest_quadrant = 0
for i in range(4):
if quadrant[i] < quadrant[freest_quadrant]:
freest_quadrant = i
# Now set up proper looping.
(looping_start, looping_end) = [("r", "u"), ("u", "l"), ("l", "d"),
("d", "r")][freest_quadrant]
return (curving, label_pos, looping_start, looping_end)
@staticmethod
def _process_horizontal_morphism(i, j, target_j, grid, morphisms_str_info,
object_coords):
"""
Produces the information required for constructing the string
representation of a horizontal morphism. This function is
invoked from ``_process_morphism``.
See Also
========
_process_morphism
"""
# The arrow is horizontal. Check if it goes from left to
# right (``backwards == False``) or from right to left
# (``backwards == True``).
backwards = False
start = j
end = target_j
if end < start:
(start, end) = (end, start)
backwards = True
# Let's see which objects are there between ``start`` and
# ``end``, and then count how many morphisms stick out
# upwards, and how many stick out downwards.
#
# For example, consider the situation:
#
# B1 C1
# | |
# A--B--C--D
# |
# B2
#
# Between the objects `A` and `D` there are two objects:
# `B` and `C`. Further, there are two morphisms which
# stick out upward (the ones between `B1` and `B` and
# between `C` and `C1`) and one morphism which sticks out
# downward (the one between `B and `B2`).
#
# We need this information to decide how to curve the
# arrow between `A` and `D`. First of all, since there
# are two objects between `A` and `D``, we must curve the
# arrow. Then, we will have it curve downward, because
# there is more space (less morphisms stick out downward
# than upward).
up = []
down = []
straight_horizontal = []
for k in range(start + 1, end):
obj = grid[i, k]
if not obj:
continue
for m in morphisms_str_info:
if m.domain == obj:
(end_i, end_j) = object_coords[m.codomain]
elif m.codomain == obj:
(end_i, end_j) = object_coords[m.domain]
else:
continue
if end_i > i:
down.append(m)
elif end_i < i:
up.append(m)
elif not morphisms_str_info[m].curving:
# This is a straight horizontal morphism,
# because it has no curving.
straight_horizontal.append(m)
if len(up) < len(down):
# More morphisms stick out downward than upward, let's
# curve the morphism up.
if backwards:
curving = "_"
label_pos = "_"
else:
curving = "^"
label_pos = "^"
# Assure that the straight horizontal morphisms have
# their labels on the lower side of the arrow.
for m in straight_horizontal:
(i1, j1) = object_coords[m.domain]
(i2, j2) = object_coords[m.codomain]
m_str_info = morphisms_str_info[m]
if j1 < j2:
m_str_info.label_position = "_"
else:
m_str_info.label_position = "^"
# Don't allow any further modifications of the
# position of this label.
m_str_info.forced_label_position = True
else:
# More morphisms stick out downward than upward, let's
# curve the morphism up.
if backwards:
curving = "^"
label_pos = "^"
else:
curving = "_"
label_pos = "_"
# Assure that the straight horizontal morphisms have
# their labels on the upper side of the arrow.
for m in straight_horizontal:
(i1, j1) = object_coords[m.domain]
(i2, j2) = object_coords[m.codomain]
m_str_info = morphisms_str_info[m]
if j1 < j2:
m_str_info.label_position = "^"
else:
m_str_info.label_position = "_"
# Don't allow any further modifications of the
# position of this label.
m_str_info.forced_label_position = True
return (curving, label_pos)
@staticmethod
def _process_vertical_morphism(i, j, target_i, grid, morphisms_str_info,
object_coords):
"""
Produces the information required for constructing the string
representation of a vertical morphism. This function is
invoked from ``_process_morphism``.
See Also
========
_process_morphism
"""
# This arrow is vertical. Check if it goes from top to
# bottom (``backwards == False``) or from bottom to top
# (``backwards == True``).
backwards = False
start = i
end = target_i
if end < start:
(start, end) = (end, start)
backwards = True
# Let's see which objects are there between ``start`` and
# ``end``, and then count how many morphisms stick out to
# the left, and how many stick out to the right.
#
# See the corresponding comment in the previous branch of
# this if-statement for more details.
left = []
right = []
straight_vertical = []
for k in range(start + 1, end):
obj = grid[k, j]
if not obj:
continue
for m in morphisms_str_info:
if m.domain == obj:
(end_i, end_j) = object_coords[m.codomain]
elif m.codomain == obj:
(end_i, end_j) = object_coords[m.domain]
else:
continue
if end_j > j:
right.append(m)
elif end_j < j:
left.append(m)
elif not morphisms_str_info[m].curving:
# This is a straight vertical morphism,
# because it has no curving.
straight_vertical.append(m)
if len(left) < len(right):
# More morphisms stick out to the left than to the
# right, let's curve the morphism to the right.
if backwards:
curving = "^"
label_pos = "^"
else:
curving = "_"
label_pos = "_"
# Assure that the straight vertical morphisms have
# their labels on the left side of the arrow.
for m in straight_vertical:
(i1, j1) = object_coords[m.domain]
(i2, j2) = object_coords[m.codomain]
m_str_info = morphisms_str_info[m]
if i1 < i2:
m_str_info.label_position = "^"
else:
m_str_info.label_position = "_"
# Don't allow any further modifications of the
# position of this label.
m_str_info.forced_label_position = True
else:
# More morphisms stick out to the right than to the
# left, let's curve the morphism to the left.
if backwards:
curving = "_"
label_pos = "_"
else:
curving = "^"
label_pos = "^"
# Assure that the straight vertical morphisms have
# their labels on the right side of the arrow.
for m in straight_vertical:
(i1, j1) = object_coords[m.domain]
(i2, j2) = object_coords[m.codomain]
m_str_info = morphisms_str_info[m]
if i1 < i2:
m_str_info.label_position = "_"
else:
m_str_info.label_position = "^"
# Don't allow any further modifications of the
# position of this label.
m_str_info.forced_label_position = True
return (curving, label_pos)
def _process_morphism(self, diagram, grid, morphism, object_coords,
morphisms, morphisms_str_info):
"""
Given the required information, produces the string
representation of ``morphism``.
"""
def repeat_string_cond(times, str_gt, str_lt):
"""
If ``times > 0``, repeats ``str_gt`` ``times`` times.
Otherwise, repeats ``str_lt`` ``-times`` times.
"""
if times > 0:
return str_gt * times
else:
return str_lt * (-times)
def count_morphisms_undirected(A, B):
"""
Counts how many processed morphisms there are between the
two supplied objects.
"""
return len([m for m in morphisms_str_info
if {m.domain, m.codomain} == {A, B}])
def count_morphisms_filtered(dom, cod, curving):
"""
Counts the processed morphisms which go out of ``dom``
into ``cod`` with curving ``curving``.
"""
return len([m for m, m_str_info in morphisms_str_info.items()
if (m.domain, m.codomain) == (dom, cod) and
(m_str_info.curving == curving)])
(i, j) = object_coords[morphism.domain]
(target_i, target_j) = object_coords[morphism.codomain]
# We now need to determine the direction of
# the arrow.
delta_i = target_i - i
delta_j = target_j - j
vertical_direction = repeat_string_cond(delta_i,
"d", "u")
horizontal_direction = repeat_string_cond(delta_j,
"r", "l")
curving = ""
label_pos = "^"
looping_start = ""
looping_end = ""
if (delta_i == 0) and (delta_j == 0):
# This is a loop morphism.
(curving, label_pos, looping_start,
looping_end) = XypicDiagramDrawer._process_loop_morphism(
i, j, grid, morphisms_str_info, object_coords)
elif (delta_i == 0) and (abs(j - target_j) > 1):
# This is a horizontal morphism.
(curving, label_pos) = XypicDiagramDrawer._process_horizontal_morphism(
i, j, target_j, grid, morphisms_str_info, object_coords)
elif (delta_j == 0) and (abs(i - target_i) > 1):
# This is a vertical morphism.
(curving, label_pos) = XypicDiagramDrawer._process_vertical_morphism(
i, j, target_i, grid, morphisms_str_info, object_coords)
count = count_morphisms_undirected(morphism.domain, morphism.codomain)
curving_amount = ""
if curving:
# This morphisms should be curved anyway.
curving_amount = self.default_curving_amount + count * \
self.default_curving_step
elif count:
# There are no objects between the domain and codomain of
# the current morphism, but this is not there already are
# some morphisms with the same domain and codomain, so we
# have to curve this one.
curving = "^"
filtered_morphisms = count_morphisms_filtered(
morphism.domain, morphism.codomain, curving)
curving_amount = self.default_curving_amount + \
filtered_morphisms * \
self.default_curving_step
# Let's now get the name of the morphism.
morphism_name = ""
if isinstance(morphism, IdentityMorphism):
morphism_name = "id_{%s}" + latex(grid[i, j])
elif isinstance(morphism, CompositeMorphism):
component_names = [latex(Symbol(component.name)) for
component in morphism.components]
component_names.reverse()
morphism_name = "\\circ ".join(component_names)
elif isinstance(morphism, NamedMorphism):
morphism_name = latex(Symbol(morphism.name))
return ArrowStringDescription(
self.unit, curving, curving_amount, looping_start,
looping_end, horizontal_direction, vertical_direction,
label_pos, morphism_name)
@staticmethod
def _check_free_space_horizontal(dom_i, dom_j, cod_j, grid):
"""
For a horizontal morphism, checks whether there is free space
(i.e., space not occupied by any objects) above the morphism
or below it.
"""
if dom_j < cod_j:
(start, end) = (dom_j, cod_j)
backwards = False
else:
(start, end) = (cod_j, dom_j)
backwards = True
# Check for free space above.
if dom_i == 0:
free_up = True
else:
free_up = all(grid[dom_i - 1, j] for j in
range(start, end + 1))
# Check for free space below.
if dom_i == grid.height - 1:
free_down = True
else:
free_down = not any(grid[dom_i + 1, j] for j in
range(start, end + 1))
return (free_up, free_down, backwards)
@staticmethod
def _check_free_space_vertical(dom_i, cod_i, dom_j, grid):
"""
For a vertical morphism, checks whether there is free space
(i.e., space not occupied by any objects) to the left of the
morphism or to the right of it.
"""
if dom_i < cod_i:
(start, end) = (dom_i, cod_i)
backwards = False
else:
(start, end) = (cod_i, dom_i)
backwards = True
# Check if there's space to the left.
if dom_j == 0:
free_left = True
else:
free_left = not any(grid[i, dom_j - 1] for i in
range(start, end + 1))
if dom_j == grid.width - 1:
free_right = True
else:
free_right = not any(grid[i, dom_j + 1] for i in
range(start, end + 1))
return (free_left, free_right, backwards)
@staticmethod
def _check_free_space_diagonal(dom_i, cod_i, dom_j, cod_j, grid):
"""
For a diagonal morphism, checks whether there is free space
(i.e., space not occupied by any objects) above the morphism
or below it.
"""
def abs_xrange(start, end):
if start < end:
return range(start, end + 1)
else:
return range(end, start + 1)
if dom_i < cod_i and dom_j < cod_j:
# This morphism goes from top-left to
# bottom-right.
(start_i, start_j) = (dom_i, dom_j)
(end_i, end_j) = (cod_i, cod_j)
backwards = False
elif dom_i > cod_i and dom_j > cod_j:
# This morphism goes from bottom-right to
# top-left.
(start_i, start_j) = (cod_i, cod_j)
(end_i, end_j) = (dom_i, dom_j)
backwards = True
if dom_i < cod_i and dom_j > cod_j:
# This morphism goes from top-right to
# bottom-left.
(start_i, start_j) = (dom_i, dom_j)
(end_i, end_j) = (cod_i, cod_j)
backwards = True
elif dom_i > cod_i and dom_j < cod_j:
# This morphism goes from bottom-left to
# top-right.
(start_i, start_j) = (cod_i, cod_j)
(end_i, end_j) = (dom_i, dom_j)
backwards = False
# This is an attempt at a fast and furious strategy to
# decide where there is free space on the two sides of
# a diagonal morphism. For a diagonal morphism
# starting at ``(start_i, start_j)`` and ending at
# ``(end_i, end_j)`` the rectangle defined by these
# two points is considered. The slope of the diagonal
# ``alpha`` is then computed. Then, for every cell
# ``(i, j)`` within the rectangle, the slope
# ``alpha1`` of the line through ``(start_i,
# start_j)`` and ``(i, j)`` is considered. If
# ``alpha1`` is between 0 and ``alpha``, the point
# ``(i, j)`` is above the diagonal, if ``alpha1`` is
# between ``alpha`` and infinity, the point is below
# the diagonal. Also note that, with some beforehand
# precautions, this trick works for both the main and
# the secondary diagonals of the rectangle.
# I have considered the possibility to only follow the
# shorter diagonals immediately above and below the
# main (or secondary) diagonal. This, however,
# wouldn't have resulted in much performance gain or
# better detection of outer edges, because of
# relatively small sizes of diagram grids, while the
# code would have become harder to understand.
alpha = float(end_i - start_i)/(end_j - start_j)
free_up = True
free_down = True
for i in abs_xrange(start_i, end_i):
if not free_up and not free_down:
break
for j in abs_xrange(start_j, end_j):
if not free_up and not free_down:
break
if (i, j) == (start_i, start_j):
continue
if j == start_j:
alpha1 = "inf"
else:
alpha1 = float(i - start_i)/(j - start_j)
if grid[i, j]:
if (alpha1 == "inf") or (abs(alpha1) > abs(alpha)):
free_down = False
elif abs(alpha1) < abs(alpha):
free_up = False
return (free_up, free_down, backwards)
def _push_labels_out(self, morphisms_str_info, grid, object_coords):
"""
For all straight morphisms which form the visual boundary of
the laid out diagram, puts their labels on their outer sides.
"""
def set_label_position(free1, free2, pos1, pos2, backwards, m_str_info):
"""
Given the information about room available to one side and
to the other side of a morphism (``free1`` and ``free2``),
sets the position of the morphism label in such a way that
it is on the freer side. This latter operations involves
choice between ``pos1`` and ``pos2``, taking ``backwards``
in consideration.
Thus this function will do nothing if either both ``free1
== True`` and ``free2 == True`` or both ``free1 == False``
and ``free2 == False``. In either case, choosing one side
over the other presents no advantage.
"""
if backwards:
(pos1, pos2) = (pos2, pos1)
if free1 and not free2:
m_str_info.label_position = pos1
elif free2 and not free1:
m_str_info.label_position = pos2
for m, m_str_info in morphisms_str_info.items():
if m_str_info.curving or m_str_info.forced_label_position:
# This is either a curved morphism, and curved
# morphisms have other magic, or the position of this
# label has already been fixed.
continue
if m.domain == m.codomain:
# This is a loop morphism, their labels, again have a
# different magic.
continue
(dom_i, dom_j) = object_coords[m.domain]
(cod_i, cod_j) = object_coords[m.codomain]
if dom_i == cod_i:
# Horizontal morphism.
(free_up, free_down,
backwards) = XypicDiagramDrawer._check_free_space_horizontal(
dom_i, dom_j, cod_j, grid)
set_label_position(free_up, free_down, "^", "_",
backwards, m_str_info)
elif dom_j == cod_j:
# Vertical morphism.
(free_left, free_right,
backwards) = XypicDiagramDrawer._check_free_space_vertical(
dom_i, cod_i, dom_j, grid)
set_label_position(free_left, free_right, "_", "^",
backwards, m_str_info)
else:
# A diagonal morphism.
(free_up, free_down,
backwards) = XypicDiagramDrawer._check_free_space_diagonal(
dom_i, cod_i, dom_j, cod_j, grid)
set_label_position(free_up, free_down, "^", "_",
backwards, m_str_info)
@staticmethod
def _morphism_sort_key(morphism, object_coords):
"""
Provides a morphism sorting key such that horizontal or
vertical morphisms between neighbouring objects come
first, then horizontal or vertical morphisms between more
far away objects, and finally, all other morphisms.
"""
(i, j) = object_coords[morphism.domain]
(target_i, target_j) = object_coords[morphism.codomain]
if morphism.domain == morphism.codomain:
# Loop morphisms should get after diagonal morphisms
# so that the proper direction in which to curve the
# loop can be determined.
return (3, 0, default_sort_key(morphism))
if target_i == i:
return (1, abs(target_j - j), default_sort_key(morphism))
if target_j == j:
return (1, abs(target_i - i), default_sort_key(morphism))
# Diagonal morphism.
return (2, 0, default_sort_key(morphism))
@staticmethod
def _build_xypic_string(diagram, grid, morphisms,
morphisms_str_info, diagram_format):
"""
Given a collection of :class:`ArrowStringDescription`
describing the morphisms of a diagram and the object layout
information of a diagram, produces the final Xy-pic picture.
"""
# Build the mapping between objects and morphisms which have
# them as domains.
object_morphisms = {}
for obj in diagram.objects:
object_morphisms[obj] = []
for morphism in morphisms:
object_morphisms[morphism.domain].append(morphism)
result = "\\xymatrix%s{\n" % diagram_format
for i in range(grid.height):
for j in range(grid.width):
obj = grid[i, j]
if obj:
result += latex(obj) + " "
morphisms_to_draw = object_morphisms[obj]
for morphism in morphisms_to_draw:
result += str(morphisms_str_info[morphism]) + " "
# Don't put the & after the last column.
if j < grid.width - 1:
result += "& "
# Don't put the line break after the last row.
if i < grid.height - 1:
result += "\\\\"
result += "\n"
result += "}\n"
return result
def draw(self, diagram, grid, masked=None, diagram_format=""):
r"""
Returns the Xy-pic representation of ``diagram`` laid out in
``grid``.
Consider the following simple triangle diagram.
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy.categories import DiagramGrid, XypicDiagramDrawer
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g], {g * f: "unique"})
To draw this diagram, its objects need to be laid out with a
:class:`DiagramGrid`::
>>> grid = DiagramGrid(diagram)
Finally, the drawing:
>>> drawer = XypicDiagramDrawer()
>>> print(drawer.draw(diagram, grid))
\xymatrix{
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
C &
}
The argument ``masked`` can be used to skip morphisms in the
presentation of the diagram:
>>> print(drawer.draw(diagram, grid, masked=[g * f]))
\xymatrix{
A \ar[r]^{f} & B \ar[ld]^{g} \\
C &
}
Finally, the ``diagram_format`` argument can be used to
specify the format string of the diagram. For example, to
increase the spacing by 1 cm, proceeding as follows:
>>> print(drawer.draw(diagram, grid, diagram_format="@+1cm"))
\xymatrix@+1cm{
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
C &
}
"""
# This method works in several steps. It starts by removing
# the masked morphisms, if necessary, and then maps objects to
# their positions in the grid (coordinate tuples). Remember
# that objects are unique in ``Diagram`` and in the layout
# produced by ``DiagramGrid``, so every object is mapped to a
# single coordinate pair.
#
# The next step is the central step and is concerned with
# analysing the morphisms of the diagram and deciding how to
# draw them. For example, how to curve the arrows is decided
# at this step. The bulk of the analysis is implemented in
# ``_process_morphism``, to the result of which the
# appropriate formatters are applied.
#
# The result of the previous step is a list of
# ``ArrowStringDescription``. After the analysis and
# application of formatters, some extra logic tries to assure
# better positioning of morphism labels (for example, an
# attempt is made to avoid the situations when arrows cross
# labels). This functionality constitutes the next step and
# is implemented in ``_push_labels_out``. Note that label
# positions which have been set via a formatter are not
# affected in this step.
#
# Finally, at the closing step, the array of
# ``ArrowStringDescription`` and the layout information
# incorporated in ``DiagramGrid`` are combined to produce the
# resulting Xy-pic picture. This part of code lies in
# ``_build_xypic_string``.
if not masked:
morphisms_props = grid.morphisms
else:
morphisms_props = {}
for m, props in grid.morphisms.items():
if m in masked:
continue
morphisms_props[m] = props
# Build the mapping between objects and their position in the
# grid.
object_coords = {}
for i in range(grid.height):
for j in range(grid.width):
if grid[i, j]:
object_coords[grid[i, j]] = (i, j)
morphisms = sorted(morphisms_props,
key=lambda m: XypicDiagramDrawer._morphism_sort_key(
m, object_coords))
# Build the tuples defining the string representations of
# morphisms.
morphisms_str_info = {}
for morphism in morphisms:
string_description = self._process_morphism(
diagram, grid, morphism, object_coords, morphisms,
morphisms_str_info)
if self.default_arrow_formatter:
self.default_arrow_formatter(string_description)
for prop in morphisms_props[morphism]:
# prop is a Symbol. TODO: Find out why.
if prop.name in self.arrow_formatters:
formatter = self.arrow_formatters[prop.name]
formatter(string_description)
morphisms_str_info[morphism] = string_description
# Reposition the labels a bit.
self._push_labels_out(morphisms_str_info, grid, object_coords)
return XypicDiagramDrawer._build_xypic_string(
diagram, grid, morphisms, morphisms_str_info, diagram_format)
def xypic_draw_diagram(diagram, masked=None, diagram_format="",
groups=None, **hints):
r"""
Provides a shortcut combining :class:`DiagramGrid` and
:class:`XypicDiagramDrawer`. Returns an Xy-pic presentation of
``diagram``. The argument ``masked`` is a list of morphisms which
will be not be drawn. The argument ``diagram_format`` is the
format string inserted after "\xymatrix". ``groups`` should be a
set of logical groups. The ``hints`` will be passed directly to
the constructor of :class:`DiagramGrid`.
For more information about the arguments, see the docstrings of
:class:`DiagramGrid` and ``XypicDiagramDrawer.draw``.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy.categories import xypic_draw_diagram
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g], {g * f: "unique"})
>>> print(xypic_draw_diagram(diagram))
\xymatrix{
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
C &
}
See Also
========
XypicDiagramDrawer, DiagramGrid
"""
grid = DiagramGrid(diagram, groups, **hints)
drawer = XypicDiagramDrawer()
return drawer.draw(diagram, grid, masked, diagram_format)
@doctest_depends_on(exe=('latex', 'dvipng'), modules=('pyglet',))
def preview_diagram(diagram, masked=None, diagram_format="", groups=None,
output='png', viewer=None, euler=True, **hints):
"""
Combines the functionality of ``xypic_draw_diagram`` and
``sympy.printing.preview``. The arguments ``masked``,
``diagram_format``, ``groups``, and ``hints`` are passed to
``xypic_draw_diagram``, while ``output``, ``viewer, and ``euler``
are passed to ``preview``.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy.categories import preview_diagram
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g], {g * f: "unique"})
>>> preview_diagram(d)
See Also
========
XypicDiagramDrawer
"""
from sympy.printing import preview
latex_output = xypic_draw_diagram(diagram, masked, diagram_format,
groups, **hints)
preview(latex_output, output, viewer, euler, ("xypic",))
|
d6d0c60004c02ff1fd79dc08ab8bf4def16b85da3eccadd3606fcf4063df7413 | from sympy.core import S, Basic, Dict, Symbol, Tuple, sympify
from sympy.core.compatibility import iterable
from sympy.core.symbol import Str
from sympy.sets import Set, FiniteSet, EmptySet
class Class(Set):
r"""
The base class for any kind of class in the set-theoretic sense.
Explanation
===========
In axiomatic set theories, everything is a class. A class which
can be a member of another class is a set. A class which is not a
member of another class is a proper class. The class `\{1, 2\}`
is a set; the class of all sets is a proper class.
This class is essentially a synonym for :class:`sympy.core.Set`.
The goal of this class is to assure easier migration to the
eventual proper implementation of set theory.
"""
is_proper = False
class Object(Symbol):
"""
The base class for any kind of object in an abstract category.
Explanation
===========
While technically any instance of :class:`~.Basic` will do, this
class is the recommended way to create abstract objects in
abstract categories.
"""
class Morphism(Basic):
"""
The base class for any morphism in an abstract category.
Explanation
===========
In abstract categories, a morphism is an arrow between two
category objects. The object where the arrow starts is called the
domain, while the object where the arrow ends is called the
codomain.
Two morphisms between the same pair of objects are considered to
be the same morphisms. To distinguish between morphisms between
the same objects use :class:`NamedMorphism`.
It is prohibited to instantiate this class. Use one of the
derived classes instead.
See Also
========
IdentityMorphism, NamedMorphism, CompositeMorphism
"""
def __new__(cls, domain, codomain):
raise(NotImplementedError(
"Cannot instantiate Morphism. Use derived classes instead."))
@property
def domain(self):
"""
Returns the domain of the morphism.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> f = NamedMorphism(A, B, "f")
>>> f.domain
Object("A")
"""
return self.args[0]
@property
def codomain(self):
"""
Returns the codomain of the morphism.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> f = NamedMorphism(A, B, "f")
>>> f.codomain
Object("B")
"""
return self.args[1]
def compose(self, other):
r"""
Composes self with the supplied morphism.
The order of elements in the composition is the usual order,
i.e., to construct `g\circ f` use ``g.compose(f)``.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> g * f
CompositeMorphism((NamedMorphism(Object("A"), Object("B"), "f"),
NamedMorphism(Object("B"), Object("C"), "g")))
>>> (g * f).domain
Object("A")
>>> (g * f).codomain
Object("C")
"""
return CompositeMorphism(other, self)
def __mul__(self, other):
r"""
Composes self with the supplied morphism.
The semantics of this operation is given by the following
equation: ``g * f == g.compose(f)`` for composable morphisms
``g`` and ``f``.
See Also
========
compose
"""
return self.compose(other)
class IdentityMorphism(Morphism):
"""
Represents an identity morphism.
Explanation
===========
An identity morphism is a morphism with equal domain and codomain,
which acts as an identity with respect to composition.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, IdentityMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> f = NamedMorphism(A, B, "f")
>>> id_A = IdentityMorphism(A)
>>> id_B = IdentityMorphism(B)
>>> f * id_A == f
True
>>> id_B * f == f
True
See Also
========
Morphism
"""
def __new__(cls, domain):
return Basic.__new__(cls, domain)
@property
def codomain(self):
return self.domain
class NamedMorphism(Morphism):
"""
Represents a morphism which has a name.
Explanation
===========
Names are used to distinguish between morphisms which have the
same domain and codomain: two named morphisms are equal if they
have the same domains, codomains, and names.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> f = NamedMorphism(A, B, "f")
>>> f
NamedMorphism(Object("A"), Object("B"), "f")
>>> f.name
'f'
See Also
========
Morphism
"""
def __new__(cls, domain, codomain, name):
if not name:
raise ValueError("Empty morphism names not allowed.")
if not isinstance(name, Str):
name = Str(name)
return Basic.__new__(cls, domain, codomain, name)
@property
def name(self):
"""
Returns the name of the morphism.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> f = NamedMorphism(A, B, "f")
>>> f.name
'f'
"""
return self.args[2].name
class CompositeMorphism(Morphism):
r"""
Represents a morphism which is a composition of other morphisms.
Explanation
===========
Two composite morphisms are equal if the morphisms they were
obtained from (components) are the same and were listed in the
same order.
The arguments to the constructor for this class should be listed
in diagram order: to obtain the composition `g\circ f` from the
instances of :class:`Morphism` ``g`` and ``f`` use
``CompositeMorphism(f, g)``.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, CompositeMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> g * f
CompositeMorphism((NamedMorphism(Object("A"), Object("B"), "f"),
NamedMorphism(Object("B"), Object("C"), "g")))
>>> CompositeMorphism(f, g) == g * f
True
"""
@staticmethod
def _add_morphism(t, morphism):
"""
Intelligently adds ``morphism`` to tuple ``t``.
Explanation
===========
If ``morphism`` is a composite morphism, its components are
added to the tuple. If ``morphism`` is an identity, nothing
is added to the tuple.
No composability checks are performed.
"""
if isinstance(morphism, CompositeMorphism):
# ``morphism`` is a composite morphism; we have to
# denest its components.
return t + morphism.components
elif isinstance(morphism, IdentityMorphism):
# ``morphism`` is an identity. Nothing happens.
return t
else:
return t + Tuple(morphism)
def __new__(cls, *components):
if components and not isinstance(components[0], Morphism):
# Maybe the user has explicitly supplied a list of
# morphisms.
return CompositeMorphism.__new__(cls, *components[0])
normalised_components = Tuple()
for current, following in zip(components, components[1:]):
if not isinstance(current, Morphism) or \
not isinstance(following, Morphism):
raise TypeError("All components must be morphisms.")
if current.codomain != following.domain:
raise ValueError("Uncomposable morphisms.")
normalised_components = CompositeMorphism._add_morphism(
normalised_components, current)
# We haven't added the last morphism to the list of normalised
# components. Add it now.
normalised_components = CompositeMorphism._add_morphism(
normalised_components, components[-1])
if not normalised_components:
# If ``normalised_components`` is empty, only identities
# were supplied. Since they all were composable, they are
# all the same identities.
return components[0]
elif len(normalised_components) == 1:
# No sense to construct a whole CompositeMorphism.
return normalised_components[0]
return Basic.__new__(cls, normalised_components)
@property
def components(self):
"""
Returns the components of this composite morphism.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> (g * f).components
(NamedMorphism(Object("A"), Object("B"), "f"),
NamedMorphism(Object("B"), Object("C"), "g"))
"""
return self.args[0]
@property
def domain(self):
"""
Returns the domain of this composite morphism.
The domain of the composite morphism is the domain of its
first component.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> (g * f).domain
Object("A")
"""
return self.components[0].domain
@property
def codomain(self):
"""
Returns the codomain of this composite morphism.
The codomain of the composite morphism is the codomain of its
last component.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> (g * f).codomain
Object("C")
"""
return self.components[-1].codomain
def flatten(self, new_name):
"""
Forgets the composite structure of this morphism.
Explanation
===========
If ``new_name`` is not empty, returns a :class:`NamedMorphism`
with the supplied name, otherwise returns a :class:`Morphism`.
In both cases the domain of the new morphism is the domain of
this composite morphism and the codomain of the new morphism
is the codomain of this composite morphism.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> (g * f).flatten("h")
NamedMorphism(Object("A"), Object("C"), "h")
"""
return NamedMorphism(self.domain, self.codomain, new_name)
class Category(Basic):
r"""
An (abstract) category.
Explanation
===========
A category [JoyOfCats] is a quadruple `\mbox{K} = (O, \hom, id,
\circ)` consisting of
* a (set-theoretical) class `O`, whose members are called
`K`-objects,
* for each pair `(A, B)` of `K`-objects, a set `\hom(A, B)` whose
members are called `K`-morphisms from `A` to `B`,
* for a each `K`-object `A`, a morphism `id:A\rightarrow A`,
called the `K`-identity of `A`,
* a composition law `\circ` associating with every `K`-morphisms
`f:A\rightarrow B` and `g:B\rightarrow C` a `K`-morphism `g\circ
f:A\rightarrow C`, called the composite of `f` and `g`.
Composition is associative, `K`-identities are identities with
respect to composition, and the sets `\hom(A, B)` are pairwise
disjoint.
This class knows nothing about its objects and morphisms.
Concrete cases of (abstract) categories should be implemented as
classes derived from this one.
Certain instances of :class:`Diagram` can be asserted to be
commutative in a :class:`Category` by supplying the argument
``commutative_diagrams`` in the constructor.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram, Category
>>> from sympy import FiniteSet
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> K = Category("K", commutative_diagrams=[d])
>>> K.commutative_diagrams == FiniteSet(d)
True
See Also
========
Diagram
"""
def __new__(cls, name, objects=EmptySet, commutative_diagrams=EmptySet):
if not name:
raise ValueError("A Category cannot have an empty name.")
if not isinstance(name, Str):
name = Str(name)
if not isinstance(objects, Class):
objects = Class(objects)
new_category = Basic.__new__(cls, name, objects,
FiniteSet(*commutative_diagrams))
return new_category
@property
def name(self):
"""
Returns the name of this category.
Examples
========
>>> from sympy.categories import Category
>>> K = Category("K")
>>> K.name
'K'
"""
return self.args[0].name
@property
def objects(self):
"""
Returns the class of objects of this category.
Examples
========
>>> from sympy.categories import Object, Category
>>> from sympy import FiniteSet
>>> A = Object("A")
>>> B = Object("B")
>>> K = Category("K", FiniteSet(A, B))
>>> K.objects
Class({Object("A"), Object("B")})
"""
return self.args[1]
@property
def commutative_diagrams(self):
"""
Returns the :class:`~.FiniteSet` of diagrams which are known to
be commutative in this category.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram, Category
>>> from sympy import FiniteSet
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> K = Category("K", commutative_diagrams=[d])
>>> K.commutative_diagrams == FiniteSet(d)
True
"""
return self.args[2]
def hom(self, A, B):
raise NotImplementedError(
"hom-sets are not implemented in Category.")
def all_morphisms(self):
raise NotImplementedError(
"Obtaining the class of morphisms is not implemented in Category.")
class Diagram(Basic):
r"""
Represents a diagram in a certain category.
Explanation
===========
Informally, a diagram is a collection of objects of a category and
certain morphisms between them. A diagram is still a monoid with
respect to morphism composition; i.e., identity morphisms, as well
as all composites of morphisms included in the diagram belong to
the diagram. For a more formal approach to this notion see
[Pare1970].
The components of composite morphisms are also added to the
diagram. No properties are assigned to such morphisms by default.
A commutative diagram is often accompanied by a statement of the
following kind: "if such morphisms with such properties exist,
then such morphisms which such properties exist and the diagram is
commutative". To represent this, an instance of :class:`Diagram`
includes a collection of morphisms which are the premises and
another collection of conclusions. ``premises`` and
``conclusions`` associate morphisms belonging to the corresponding
categories with the :class:`~.FiniteSet`'s of their properties.
The set of properties of a composite morphism is the intersection
of the sets of properties of its components. The domain and
codomain of a conclusion morphism should be among the domains and
codomains of the morphisms listed as the premises of a diagram.
No checks are carried out of whether the supplied object and
morphisms do belong to one and the same category.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy import pprint, default_sort_key
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> premises_keys = sorted(d.premises.keys(), key=default_sort_key)
>>> pprint(premises_keys, use_unicode=False)
[g*f:A-->C, id:A-->A, id:B-->B, id:C-->C, f:A-->B, g:B-->C]
>>> pprint(d.premises, use_unicode=False)
{g*f:A-->C: EmptySet, id:A-->A: EmptySet, id:B-->B: EmptySet, id:C-->C: EmptyS
et, f:A-->B: EmptySet, g:B-->C: EmptySet}
>>> d = Diagram([f, g], {g * f: "unique"})
>>> pprint(d.conclusions,use_unicode=False)
{g*f:A-->C: {unique}}
References
==========
[Pare1970] B. Pareigis: Categories and functors. Academic Press,
1970.
"""
@staticmethod
def _set_dict_union(dictionary, key, value):
"""
If ``key`` is in ``dictionary``, set the new value of ``key``
to be the union between the old value and ``value``.
Otherwise, set the value of ``key`` to ``value.
Returns ``True`` if the key already was in the dictionary and
``False`` otherwise.
"""
if key in dictionary:
dictionary[key] = dictionary[key] | value
return True
else:
dictionary[key] = value
return False
@staticmethod
def _add_morphism_closure(morphisms, morphism, props, add_identities=True,
recurse_composites=True):
"""
Adds a morphism and its attributes to the supplied dictionary
``morphisms``. If ``add_identities`` is True, also adds the
identity morphisms for the domain and the codomain of
``morphism``.
"""
if not Diagram._set_dict_union(morphisms, morphism, props):
# We have just added a new morphism.
if isinstance(morphism, IdentityMorphism):
if props:
# Properties for identity morphisms don't really
# make sense, because very much is known about
# identity morphisms already, so much that they
# are trivial. Having properties for identity
# morphisms would only be confusing.
raise ValueError(
"Instances of IdentityMorphism cannot have properties.")
return
if add_identities:
empty = EmptySet
id_dom = IdentityMorphism(morphism.domain)
id_cod = IdentityMorphism(morphism.codomain)
Diagram._set_dict_union(morphisms, id_dom, empty)
Diagram._set_dict_union(morphisms, id_cod, empty)
for existing_morphism, existing_props in list(morphisms.items()):
new_props = existing_props & props
if morphism.domain == existing_morphism.codomain:
left = morphism * existing_morphism
Diagram._set_dict_union(morphisms, left, new_props)
if morphism.codomain == existing_morphism.domain:
right = existing_morphism * morphism
Diagram._set_dict_union(morphisms, right, new_props)
if isinstance(morphism, CompositeMorphism) and recurse_composites:
# This is a composite morphism, add its components as
# well.
empty = EmptySet
for component in morphism.components:
Diagram._add_morphism_closure(morphisms, component, empty,
add_identities)
def __new__(cls, *args):
"""
Construct a new instance of Diagram.
Explanation
===========
If no arguments are supplied, an empty diagram is created.
If at least an argument is supplied, ``args[0]`` is
interpreted as the premises of the diagram. If ``args[0]`` is
a list, it is interpreted as a list of :class:`Morphism`'s, in
which each :class:`Morphism` has an empty set of properties.
If ``args[0]`` is a Python dictionary or a :class:`Dict`, it
is interpreted as a dictionary associating to some
:class:`Morphism`'s some properties.
If at least two arguments are supplied ``args[1]`` is
interpreted as the conclusions of the diagram. The type of
``args[1]`` is interpreted in exactly the same way as the type
of ``args[0]``. If only one argument is supplied, the diagram
has no conclusions.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import IdentityMorphism, Diagram
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> IdentityMorphism(A) in d.premises.keys()
True
>>> g * f in d.premises.keys()
True
>>> d = Diagram([f, g], {g * f: "unique"})
>>> d.conclusions[g * f]
{unique}
"""
premises = {}
conclusions = {}
# Here we will keep track of the objects which appear in the
# premises.
objects = EmptySet
if len(args) >= 1:
# We've got some premises in the arguments.
premises_arg = args[0]
if isinstance(premises_arg, list):
# The user has supplied a list of morphisms, none of
# which have any attributes.
empty = EmptySet
for morphism in premises_arg:
objects |= FiniteSet(morphism.domain, morphism.codomain)
Diagram._add_morphism_closure(premises, morphism, empty)
elif isinstance(premises_arg, dict) or isinstance(premises_arg, Dict):
# The user has supplied a dictionary of morphisms and
# their properties.
for morphism, props in premises_arg.items():
objects |= FiniteSet(morphism.domain, morphism.codomain)
Diagram._add_morphism_closure(
premises, morphism, FiniteSet(*props) if iterable(props) else FiniteSet(props))
if len(args) >= 2:
# We also have some conclusions.
conclusions_arg = args[1]
if isinstance(conclusions_arg, list):
# The user has supplied a list of morphisms, none of
# which have any attributes.
empty = EmptySet
for morphism in conclusions_arg:
# Check that no new objects appear in conclusions.
if ((sympify(objects.contains(morphism.domain)) is S.true) and
(sympify(objects.contains(morphism.codomain)) is S.true)):
# No need to add identities and recurse
# composites this time.
Diagram._add_morphism_closure(
conclusions, morphism, empty, add_identities=False,
recurse_composites=False)
elif isinstance(conclusions_arg, dict) or \
isinstance(conclusions_arg, Dict):
# The user has supplied a dictionary of morphisms and
# their properties.
for morphism, props in conclusions_arg.items():
# Check that no new objects appear in conclusions.
if (morphism.domain in objects) and \
(morphism.codomain in objects):
# No need to add identities and recurse
# composites this time.
Diagram._add_morphism_closure(
conclusions, morphism, FiniteSet(*props) if iterable(props) else FiniteSet(props),
add_identities=False, recurse_composites=False)
return Basic.__new__(cls, Dict(premises), Dict(conclusions), objects)
@property
def premises(self):
"""
Returns the premises of this diagram.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import IdentityMorphism, Diagram
>>> from sympy import pretty
>>> A = Object("A")
>>> B = Object("B")
>>> f = NamedMorphism(A, B, "f")
>>> id_A = IdentityMorphism(A)
>>> id_B = IdentityMorphism(B)
>>> d = Diagram([f])
>>> print(pretty(d.premises, use_unicode=False))
{id:A-->A: EmptySet, id:B-->B: EmptySet, f:A-->B: EmptySet}
"""
return self.args[0]
@property
def conclusions(self):
"""
Returns the conclusions of this diagram.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import IdentityMorphism, Diagram
>>> from sympy import FiniteSet
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> IdentityMorphism(A) in d.premises.keys()
True
>>> g * f in d.premises.keys()
True
>>> d = Diagram([f, g], {g * f: "unique"})
>>> d.conclusions[g * f] == FiniteSet("unique")
True
"""
return self.args[1]
@property
def objects(self):
"""
Returns the :class:`~.FiniteSet` of objects that appear in this
diagram.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> d.objects
{Object("A"), Object("B"), Object("C")}
"""
return self.args[2]
def hom(self, A, B):
"""
Returns a 2-tuple of sets of morphisms between objects ``A`` and
``B``: one set of morphisms listed as premises, and the other set
of morphisms listed as conclusions.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy import pretty
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g], {g * f: "unique"})
>>> print(pretty(d.hom(A, C), use_unicode=False))
({g*f:A-->C}, {g*f:A-->C})
See Also
========
Object, Morphism
"""
premises = EmptySet
conclusions = EmptySet
for morphism in self.premises.keys():
if (morphism.domain == A) and (morphism.codomain == B):
premises |= FiniteSet(morphism)
for morphism in self.conclusions.keys():
if (morphism.domain == A) and (morphism.codomain == B):
conclusions |= FiniteSet(morphism)
return (premises, conclusions)
def is_subdiagram(self, diagram):
"""
Checks whether ``diagram`` is a subdiagram of ``self``.
Diagram `D'` is a subdiagram of `D` if all premises
(conclusions) of `D'` are contained in the premises
(conclusions) of `D`. The morphisms contained
both in `D'` and `D` should have the same properties for `D'`
to be a subdiagram of `D`.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g], {g * f: "unique"})
>>> d1 = Diagram([f])
>>> d.is_subdiagram(d1)
True
>>> d1.is_subdiagram(d)
False
"""
premises = all((m in self.premises) and
(diagram.premises[m] == self.premises[m])
for m in diagram.premises)
if not premises:
return False
conclusions = all((m in self.conclusions) and
(diagram.conclusions[m] == self.conclusions[m])
for m in diagram.conclusions)
# Premises is surely ``True`` here.
return conclusions
def subdiagram_from_objects(self, objects):
"""
If ``objects`` is a subset of the objects of ``self``, returns
a diagram which has as premises all those premises of ``self``
which have a domains and codomains in ``objects``, likewise
for conclusions. Properties are preserved.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy import FiniteSet
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g], {f: "unique", g*f: "veryunique"})
>>> d1 = d.subdiagram_from_objects(FiniteSet(A, B))
>>> d1 == Diagram([f], {f: "unique"})
True
"""
if not objects.is_subset(self.objects):
raise ValueError(
"Supplied objects should all belong to the diagram.")
new_premises = {}
for morphism, props in self.premises.items():
if ((sympify(objects.contains(morphism.domain)) is S.true) and
(sympify(objects.contains(morphism.codomain)) is S.true)):
new_premises[morphism] = props
new_conclusions = {}
for morphism, props in self.conclusions.items():
if ((sympify(objects.contains(morphism.domain)) is S.true) and
(sympify(objects.contains(morphism.codomain)) is S.true)):
new_conclusions[morphism] = props
return Diagram(new_premises, new_conclusions)
|
a9c320b44c3e58cd7b8fb2b4963764b03893a35821e20a6ba4b4d7f11f9695c9 | # References :
# http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/
# https://en.wikipedia.org/wiki/Quaternion
from sympy import S, Rational
from sympy import re, im, conjugate, sign
from sympy import sqrt, sin, cos, acos, exp, ln
from sympy import trigsimp
from sympy import integrate
from sympy import Matrix
from sympy import sympify
from sympy.core.evalf import prec_to_dps
from sympy.core.expr import Expr
class Quaternion(Expr):
"""Provides basic quaternion operations.
Quaternion objects can be instantiated as Quaternion(a, b, c, d)
as in (a + b*i + c*j + d*k).
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q
1 + 2*i + 3*j + 4*k
Quaternions over complex fields can be defined as :
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols, I
>>> x = symbols('x')
>>> q1 = Quaternion(x, x**3, x, x**2, real_field = False)
>>> q2 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q1
x + x**3*i + x*j + x**2*k
>>> q2
(3 + 4*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k
"""
_op_priority = 11.0
is_commutative = False
def __new__(cls, a=0, b=0, c=0, d=0, real_field=True):
a = sympify(a)
b = sympify(b)
c = sympify(c)
d = sympify(d)
if any(i.is_commutative is False for i in [a, b, c, d]):
raise ValueError("arguments have to be commutative")
else:
obj = Expr.__new__(cls, a, b, c, d)
obj._a = a
obj._b = b
obj._c = c
obj._d = d
obj._real_field = real_field
return obj
@property
def a(self):
return self._a
@property
def b(self):
return self._b
@property
def c(self):
return self._c
@property
def d(self):
return self._d
@property
def real_field(self):
return self._real_field
@classmethod
def from_axis_angle(cls, vector, angle):
"""Returns a rotation quaternion given the axis and the angle of rotation.
Parameters
==========
vector : tuple of three numbers
The vector representation of the given axis.
angle : number
The angle by which axis is rotated (in radians).
Returns
=======
Quaternion
The normalized rotation quaternion calculated from the given axis and the angle of rotation.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import pi, sqrt
>>> q = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), 2*pi/3)
>>> q
1/2 + 1/2*i + 1/2*j + 1/2*k
"""
(x, y, z) = vector
norm = sqrt(x**2 + y**2 + z**2)
(x, y, z) = (x / norm, y / norm, z / norm)
s = sin(angle * S.Half)
a = cos(angle * S.Half)
b = x * s
c = y * s
d = z * s
# note that this quaternion is already normalized by construction:
# c^2 + (s*x)^2 + (s*y)^2 + (s*z)^2 = c^2 + s^2*(x^2 + y^2 + z^2) = c^2 + s^2 * 1 = c^2 + s^2 = 1
# so, what we return is a normalized quaternion
return cls(a, b, c, d)
@classmethod
def from_rotation_matrix(cls, M):
"""Returns the equivalent quaternion of a matrix. The quaternion will be normalized
only if the matrix is special orthogonal (orthogonal and det(M) = 1).
Parameters
==========
M : Matrix
Input matrix to be converted to equivalent quaternion. M must be special
orthogonal (orthogonal and det(M) = 1) for the quaternion to be normalized.
Returns
=======
Quaternion
The quaternion equivalent to given matrix.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import Matrix, symbols, cos, sin, trigsimp
>>> x = symbols('x')
>>> M = Matrix([[cos(x), -sin(x), 0], [sin(x), cos(x), 0], [0, 0, 1]])
>>> q = trigsimp(Quaternion.from_rotation_matrix(M))
>>> q
sqrt(2)*sqrt(cos(x) + 1)/2 + 0*i + 0*j + sqrt(2 - 2*cos(x))*sign(sin(x))/2*k
"""
absQ = M.det()**Rational(1, 3)
a = sqrt(absQ + M[0, 0] + M[1, 1] + M[2, 2]) / 2
b = sqrt(absQ + M[0, 0] - M[1, 1] - M[2, 2]) / 2
c = sqrt(absQ - M[0, 0] + M[1, 1] - M[2, 2]) / 2
d = sqrt(absQ - M[0, 0] - M[1, 1] + M[2, 2]) / 2
b = b * sign(M[2, 1] - M[1, 2])
c = c * sign(M[0, 2] - M[2, 0])
d = d * sign(M[1, 0] - M[0, 1])
return Quaternion(a, b, c, d)
def __add__(self, other):
return self.add(other)
def __radd__(self, other):
return self.add(other)
def __sub__(self, other):
return self.add(other*-1)
def __mul__(self, other):
return self._generic_mul(self, other)
def __rmul__(self, other):
return self._generic_mul(other, self)
def __pow__(self, p):
return self.pow(p)
def __neg__(self):
return Quaternion(-self._a, -self._b, -self._c, -self.d)
def __truediv__(self, other):
return self * sympify(other)**-1
def __rtruediv__(self, other):
return sympify(other) * self**-1
def _eval_Integral(self, *args):
return self.integrate(*args)
def diff(self, *symbols, **kwargs):
kwargs.setdefault('evaluate', True)
return self.func(*[a.diff(*symbols, **kwargs) for a in self.args])
def add(self, other):
"""Adds quaternions.
Parameters
==========
other : Quaternion
The quaternion to add to current (self) quaternion.
Returns
=======
Quaternion
The resultant quaternion after adding self to other
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> q1.add(q2)
6 + 8*i + 10*j + 12*k
>>> q1 + 5
6 + 2*i + 3*j + 4*k
>>> x = symbols('x', real = True)
>>> q1.add(x)
(x + 1) + 2*i + 3*j + 4*k
Quaternions over complex fields :
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q3.add(2 + 3*I)
(5 + 7*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k
"""
q1 = self
q2 = sympify(other)
# If q2 is a number or a sympy expression instead of a quaternion
if not isinstance(q2, Quaternion):
if q1.real_field and q2.is_complex:
return Quaternion(re(q2) + q1.a, im(q2) + q1.b, q1.c, q1.d)
elif q2.is_commutative:
return Quaternion(q1.a + q2, q1.b, q1.c, q1.d)
else:
raise ValueError("Only commutative expressions can be added with a Quaternion.")
return Quaternion(q1.a + q2.a, q1.b + q2.b, q1.c + q2.c, q1.d
+ q2.d)
def mul(self, other):
"""Multiplies quaternions.
Parameters
==========
other : Quaternion or symbol
The quaternion to multiply to current (self) quaternion.
Returns
=======
Quaternion
The resultant quaternion after multiplying self with other
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> q1.mul(q2)
(-60) + 12*i + 30*j + 24*k
>>> q1.mul(2)
2 + 4*i + 6*j + 8*k
>>> x = symbols('x', real = True)
>>> q1.mul(x)
x + 2*x*i + 3*x*j + 4*x*k
Quaternions over complex fields :
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q3.mul(2 + 3*I)
(2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k
"""
return self._generic_mul(self, other)
@staticmethod
def _generic_mul(q1, q2):
"""Generic multiplication.
Parameters
==========
q1 : Quaternion or symbol
q2 : Quaternion or symbol
It's important to note that if neither q1 nor q2 is a Quaternion,
this function simply returns q1 * q2.
Returns
=======
Quaternion
The resultant quaternion after multiplying q1 and q2
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import Symbol
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> Quaternion._generic_mul(q1, q2)
(-60) + 12*i + 30*j + 24*k
>>> Quaternion._generic_mul(q1, 2)
2 + 4*i + 6*j + 8*k
>>> x = Symbol('x', real = True)
>>> Quaternion._generic_mul(q1, x)
x + 2*x*i + 3*x*j + 4*x*k
Quaternions over complex fields :
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> Quaternion._generic_mul(q3, 2 + 3*I)
(2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k
"""
q1 = sympify(q1)
q2 = sympify(q2)
# None is a Quaternion:
if not isinstance(q1, Quaternion) and not isinstance(q2, Quaternion):
return q1 * q2
# If q1 is a number or a sympy expression instead of a quaternion
if not isinstance(q1, Quaternion):
if q2.real_field and q1.is_complex:
return Quaternion(re(q1), im(q1), 0, 0) * q2
elif q1.is_commutative:
return Quaternion(q1 * q2.a, q1 * q2.b, q1 * q2.c, q1 * q2.d)
else:
raise ValueError("Only commutative expressions can be multiplied with a Quaternion.")
# If q2 is a number or a sympy expression instead of a quaternion
if not isinstance(q2, Quaternion):
if q1.real_field and q2.is_complex:
return q1 * Quaternion(re(q2), im(q2), 0, 0)
elif q2.is_commutative:
return Quaternion(q2 * q1.a, q2 * q1.b, q2 * q1.c, q2 * q1.d)
else:
raise ValueError("Only commutative expressions can be multiplied with a Quaternion.")
return Quaternion(-q1.b*q2.b - q1.c*q2.c - q1.d*q2.d + q1.a*q2.a,
q1.b*q2.a + q1.c*q2.d - q1.d*q2.c + q1.a*q2.b,
-q1.b*q2.d + q1.c*q2.a + q1.d*q2.b + q1.a*q2.c,
q1.b*q2.c - q1.c*q2.b + q1.d*q2.a + q1.a * q2.d)
def _eval_conjugate(self):
"""Returns the conjugate of the quaternion."""
q = self
return Quaternion(q.a, -q.b, -q.c, -q.d)
def norm(self):
"""Returns the norm of the quaternion."""
q = self
# trigsimp is used to simplify sin(x)^2 + cos(x)^2 (these terms
# arise when from_axis_angle is used).
return sqrt(trigsimp(q.a**2 + q.b**2 + q.c**2 + q.d**2))
def normalize(self):
"""Returns the normalized form of the quaternion."""
q = self
return q * (1/q.norm())
def inverse(self):
"""Returns the inverse of the quaternion."""
q = self
if not q.norm():
raise ValueError("Cannot compute inverse for a quaternion with zero norm")
return conjugate(q) * (1/q.norm()**2)
def pow(self, p):
"""Finds the pth power of the quaternion.
Parameters
==========
p : int
Power to be applied on quaternion.
Returns
=======
Quaternion
Returns the p-th power of the current quaternion.
Returns the inverse if p = -1.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.pow(4)
668 + (-224)*i + (-336)*j + (-448)*k
"""
p = sympify(p)
q = self
if p == -1:
return q.inverse()
res = 1
if not p.is_Integer:
return NotImplemented
if p < 0:
q, p = q.inverse(), -p
while p > 0:
if p % 2 == 1:
res = q * res
p = p//2
q = q * q
return res
def exp(self):
"""Returns the exponential of q (e^q).
Returns
=======
Quaternion
Exponential of q (e^q).
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.exp()
E*cos(sqrt(29))
+ 2*sqrt(29)*E*sin(sqrt(29))/29*i
+ 3*sqrt(29)*E*sin(sqrt(29))/29*j
+ 4*sqrt(29)*E*sin(sqrt(29))/29*k
"""
# exp(q) = e^a(cos||v|| + v/||v||*sin||v||)
q = self
vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2)
a = exp(q.a) * cos(vector_norm)
b = exp(q.a) * sin(vector_norm) * q.b / vector_norm
c = exp(q.a) * sin(vector_norm) * q.c / vector_norm
d = exp(q.a) * sin(vector_norm) * q.d / vector_norm
return Quaternion(a, b, c, d)
def _ln(self):
"""Returns the natural logarithm of the quaternion (_ln(q)).
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q._ln()
log(sqrt(30))
+ 2*sqrt(29)*acos(sqrt(30)/30)/29*i
+ 3*sqrt(29)*acos(sqrt(30)/30)/29*j
+ 4*sqrt(29)*acos(sqrt(30)/30)/29*k
"""
# _ln(q) = _ln||q|| + v/||v||*arccos(a/||q||)
q = self
vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2)
q_norm = q.norm()
a = ln(q_norm)
b = q.b * acos(q.a / q_norm) / vector_norm
c = q.c * acos(q.a / q_norm) / vector_norm
d = q.d * acos(q.a / q_norm) / vector_norm
return Quaternion(a, b, c, d)
def _eval_evalf(self, prec):
"""Returns the floating point approximations (decimal numbers) of the quaternion.
Returns
=======
Quaternion
Floating point approximations of quaternion(self)
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import sqrt
>>> q = Quaternion(1/sqrt(1), 1/sqrt(2), 1/sqrt(3), 1/sqrt(4))
>>> q.evalf()
1.00000000000000
+ 0.707106781186547*i
+ 0.577350269189626*j
+ 0.500000000000000*k
"""
return Quaternion(*[arg.evalf(n=prec_to_dps(prec)) for arg in self.args])
def pow_cos_sin(self, p):
"""Computes the pth power in the cos-sin form.
Parameters
==========
p : int
Power to be applied on quaternion.
Returns
=======
Quaternion
The p-th power in the cos-sin form.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.pow_cos_sin(4)
900*cos(4*acos(sqrt(30)/30))
+ 1800*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*i
+ 2700*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*j
+ 3600*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*k
"""
# q = ||q||*(cos(a) + u*sin(a))
# q^p = ||q||^p * (cos(p*a) + u*sin(p*a))
q = self
(v, angle) = q.to_axis_angle()
q2 = Quaternion.from_axis_angle(v, p * angle)
return q2 * (q.norm()**p)
def integrate(self, *args):
"""Computes integration of quaternion.
Returns
=======
Quaternion
Integration of the quaternion(self) with the given variable.
Examples
========
Indefinite Integral of quaternion :
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy.abc import x
>>> q = Quaternion(1, 2, 3, 4)
>>> q.integrate(x)
x + 2*x*i + 3*x*j + 4*x*k
Definite integral of quaternion :
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy.abc import x
>>> q = Quaternion(1, 2, 3, 4)
>>> q.integrate((x, 1, 5))
4 + 8*i + 12*j + 16*k
"""
# TODO: is this expression correct?
return Quaternion(integrate(self.a, *args), integrate(self.b, *args),
integrate(self.c, *args), integrate(self.d, *args))
@staticmethod
def rotate_point(pin, r):
"""Returns the coordinates of the point pin(a 3 tuple) after rotation.
Parameters
==========
pin : tuple
A 3-element tuple of coordinates of a point which needs to be
rotated.
r : Quaternion or tuple
Axis and angle of rotation.
It's important to note that when r is a tuple, it must be of the form
(axis, angle)
Returns
=======
tuple
The coordinates of the point after rotation.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(Quaternion.rotate_point((1, 1, 1), q))
(sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
>>> (axis, angle) = q.to_axis_angle()
>>> trigsimp(Quaternion.rotate_point((1, 1, 1), (axis, angle)))
(sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
"""
if isinstance(r, tuple):
# if r is of the form (vector, angle)
q = Quaternion.from_axis_angle(r[0], r[1])
else:
# if r is a quaternion
q = r.normalize()
pout = q * Quaternion(0, pin[0], pin[1], pin[2]) * conjugate(q)
return (pout.b, pout.c, pout.d)
def to_axis_angle(self):
"""Returns the axis and angle of rotation of a quaternion
Returns
=======
tuple
Tuple of (axis, angle)
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 1, 1, 1)
>>> (axis, angle) = q.to_axis_angle()
>>> axis
(sqrt(3)/3, sqrt(3)/3, sqrt(3)/3)
>>> angle
2*pi/3
"""
q = self
if q.a.is_negative:
q = q * -1
q = q.normalize()
angle = trigsimp(2 * acos(q.a))
# Since quaternion is normalised, q.a is less than 1.
s = sqrt(1 - q.a*q.a)
x = trigsimp(q.b / s)
y = trigsimp(q.c / s)
z = trigsimp(q.d / s)
v = (x, y, z)
t = (v, angle)
return t
def to_rotation_matrix(self, v=None):
"""Returns the equivalent rotation transformation matrix of the quaternion
which represents rotation about the origin if v is not passed.
Parameters
==========
v : tuple or None
Default value: None
Returns
=======
tuple
Returns the equivalent rotation transformation matrix of the quaternion
which represents rotation about the origin if v is not passed.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(q.to_rotation_matrix())
Matrix([
[cos(x), -sin(x), 0],
[sin(x), cos(x), 0],
[ 0, 0, 1]])
Generates a 4x4 transformation matrix (used for rotation about a point
other than the origin) if the point(v) is passed as an argument.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(q.to_rotation_matrix((1, 1, 1)))
Matrix([
[cos(x), -sin(x), 0, sin(x) - cos(x) + 1],
[sin(x), cos(x), 0, -sin(x) - cos(x) + 1],
[ 0, 0, 1, 0],
[ 0, 0, 0, 1]])
"""
q = self
s = q.norm()**-2
m00 = 1 - 2*s*(q.c**2 + q.d**2)
m01 = 2*s*(q.b*q.c - q.d*q.a)
m02 = 2*s*(q.b*q.d + q.c*q.a)
m10 = 2*s*(q.b*q.c + q.d*q.a)
m11 = 1 - 2*s*(q.b**2 + q.d**2)
m12 = 2*s*(q.c*q.d - q.b*q.a)
m20 = 2*s*(q.b*q.d - q.c*q.a)
m21 = 2*s*(q.c*q.d + q.b*q.a)
m22 = 1 - 2*s*(q.b**2 + q.c**2)
if not v:
return Matrix([[m00, m01, m02], [m10, m11, m12], [m20, m21, m22]])
else:
(x, y, z) = v
m03 = x - x*m00 - y*m01 - z*m02
m13 = y - x*m10 - y*m11 - z*m12
m23 = z - x*m20 - y*m21 - z*m22
m30 = m31 = m32 = 0
m33 = 1
return Matrix([[m00, m01, m02, m03], [m10, m11, m12, m13],
[m20, m21, m22, m23], [m30, m31, m32, m33]])
|
4de0aaf2dff1894f3368d1b5751aa9a6e12386574dae309b16500e31abbaa3b0 | """
This file contains some classical ciphers and routines
implementing a linear-feedback shift register (LFSR)
and the Diffie-Hellman key exchange.
.. warning::
This module is intended for educational purposes only. Do not use the
functions in this module for real cryptographic applications. If you wish
to encrypt real data, we recommend using something like the `cryptography
<https://cryptography.io/en/latest/>`_ module.
"""
from string import whitespace, ascii_uppercase as uppercase, printable
from functools import reduce
import warnings
from itertools import cycle
from sympy import nextprime
from sympy.core import Rational, Symbol
from sympy.core.numbers import igcdex, mod_inverse, igcd
from sympy.core.compatibility import as_int
from sympy.matrices import Matrix
from sympy.ntheory import isprime, primitive_root, factorint
from sympy.polys.domains import FF
from sympy.polys.polytools import gcd, Poly
from sympy.utilities.misc import filldedent, translate
from sympy.utilities.iterables import uniq, multiset
from sympy.testing.randtest import _randrange, _randint
class NonInvertibleCipherWarning(RuntimeWarning):
"""A warning raised if the cipher is not invertible."""
def __init__(self, msg):
self.fullMessage = msg
def __str__(self):
return '\n\t' + self.fullMessage
def warn(self, stacklevel=2):
warnings.warn(self, stacklevel=stacklevel)
def AZ(s=None):
"""Return the letters of ``s`` in uppercase. In case more than
one string is passed, each of them will be processed and a list
of upper case strings will be returned.
Examples
========
>>> from sympy.crypto.crypto import AZ
>>> AZ('Hello, world!')
'HELLOWORLD'
>>> AZ('Hello, world!'.split())
['HELLO', 'WORLD']
See Also
========
check_and_join
"""
if not s:
return uppercase
t = type(s) is str
if t:
s = [s]
rv = [check_and_join(i.upper().split(), uppercase, filter=True)
for i in s]
if t:
return rv[0]
return rv
bifid5 = AZ().replace('J', '')
bifid6 = AZ() + '0123456789'
bifid10 = printable
def padded_key(key, symbols):
"""Return a string of the distinct characters of ``symbols`` with
those of ``key`` appearing first. A ValueError is raised if
a) there are duplicate characters in ``symbols`` or
b) there are characters in ``key`` that are not in ``symbols``.
Examples
========
>>> from sympy.crypto.crypto import padded_key
>>> padded_key('PUPPY', 'OPQRSTUVWXY')
'PUYOQRSTVWX'
>>> padded_key('RSA', 'ARTIST')
Traceback (most recent call last):
...
ValueError: duplicate characters in symbols: T
"""
syms = list(uniq(symbols))
if len(syms) != len(symbols):
extra = ''.join(sorted({
i for i in symbols if symbols.count(i) > 1}))
raise ValueError('duplicate characters in symbols: %s' % extra)
extra = set(key) - set(syms)
if extra:
raise ValueError(
'characters in key but not symbols: %s' % ''.join(
sorted(extra)))
key0 = ''.join(list(uniq(key)))
# remove from syms characters in key0
return key0 + translate(''.join(syms), None, key0)
def check_and_join(phrase, symbols=None, filter=None):
"""
Joins characters of ``phrase`` and if ``symbols`` is given, raises
an error if any character in ``phrase`` is not in ``symbols``.
Parameters
==========
phrase
String or list of strings to be returned as a string.
symbols
Iterable of characters allowed in ``phrase``.
If ``symbols`` is ``None``, no checking is performed.
Examples
========
>>> from sympy.crypto.crypto import check_and_join
>>> check_and_join('a phrase')
'a phrase'
>>> check_and_join('a phrase'.upper().split())
'APHRASE'
>>> check_and_join('a phrase!'.upper().split(), 'ARE', filter=True)
'ARAE'
>>> check_and_join('a phrase!'.upper().split(), 'ARE')
Traceback (most recent call last):
...
ValueError: characters in phrase but not symbols: "!HPS"
"""
rv = ''.join(''.join(phrase))
if symbols is not None:
symbols = check_and_join(symbols)
missing = ''.join(list(sorted(set(rv) - set(symbols))))
if missing:
if not filter:
raise ValueError(
'characters in phrase but not symbols: "%s"' % missing)
rv = translate(rv, None, missing)
return rv
def _prep(msg, key, alp, default=None):
if not alp:
if not default:
alp = AZ()
msg = AZ(msg)
key = AZ(key)
else:
alp = default
else:
alp = ''.join(alp)
key = check_and_join(key, alp, filter=True)
msg = check_and_join(msg, alp, filter=True)
return msg, key, alp
def cycle_list(k, n):
"""
Returns the elements of the list ``range(n)`` shifted to the
left by ``k`` (so the list starts with ``k`` (mod ``n``)).
Examples
========
>>> from sympy.crypto.crypto import cycle_list
>>> cycle_list(3, 10)
[3, 4, 5, 6, 7, 8, 9, 0, 1, 2]
"""
k = k % n
return list(range(k, n)) + list(range(k))
######## shift cipher examples ############
def encipher_shift(msg, key, symbols=None):
"""
Performs shift cipher encryption on plaintext msg, and returns the
ciphertext.
Parameters
==========
key : int
The secret key.
msg : str
Plaintext of upper-case letters.
Returns
=======
str
Ciphertext of upper-case letters.
Examples
========
>>> from sympy.crypto.crypto import encipher_shift, decipher_shift
>>> msg = "GONAVYBEATARMY"
>>> ct = encipher_shift(msg, 1); ct
'HPOBWZCFBUBSNZ'
To decipher the shifted text, change the sign of the key:
>>> encipher_shift(ct, -1)
'GONAVYBEATARMY'
There is also a convenience function that does this with the
original key:
>>> decipher_shift(ct, 1)
'GONAVYBEATARMY'
Notes
=====
ALGORITHM:
STEPS:
0. Number the letters of the alphabet from 0, ..., N
1. Compute from the string ``msg`` a list ``L1`` of
corresponding integers.
2. Compute from the list ``L1`` a new list ``L2``, given by
adding ``(k mod 26)`` to each element in ``L1``.
3. Compute from the list ``L2`` a string ``ct`` of
corresponding letters.
The shift cipher is also called the Caesar cipher, after
Julius Caesar, who, according to Suetonius, used it with a
shift of three to protect messages of military significance.
Caesar's nephew Augustus reportedly used a similar cipher, but
with a right shift of 1.
References
==========
.. [1] https://en.wikipedia.org/wiki/Caesar_cipher
.. [2] http://mathworld.wolfram.com/CaesarsMethod.html
See Also
========
decipher_shift
"""
msg, _, A = _prep(msg, '', symbols)
shift = len(A) - key % len(A)
key = A[shift:] + A[:shift]
return translate(msg, key, A)
def decipher_shift(msg, key, symbols=None):
"""
Return the text by shifting the characters of ``msg`` to the
left by the amount given by ``key``.
Examples
========
>>> from sympy.crypto.crypto import encipher_shift, decipher_shift
>>> msg = "GONAVYBEATARMY"
>>> ct = encipher_shift(msg, 1); ct
'HPOBWZCFBUBSNZ'
To decipher the shifted text, change the sign of the key:
>>> encipher_shift(ct, -1)
'GONAVYBEATARMY'
Or use this function with the original key:
>>> decipher_shift(ct, 1)
'GONAVYBEATARMY'
"""
return encipher_shift(msg, -key, symbols)
def encipher_rot13(msg, symbols=None):
"""
Performs the ROT13 encryption on a given plaintext ``msg``.
Explanation
===========
ROT13 is a substitution cipher which substitutes each letter
in the plaintext message for the letter furthest away from it
in the English alphabet.
Equivalently, it is just a Caeser (shift) cipher with a shift
key of 13 (midway point of the alphabet).
References
==========
.. [1] https://en.wikipedia.org/wiki/ROT13
See Also
========
decipher_rot13
encipher_shift
"""
return encipher_shift(msg, 13, symbols)
def decipher_rot13(msg, symbols=None):
"""
Performs the ROT13 decryption on a given plaintext ``msg``.
Explanation
============
``decipher_rot13`` is equivalent to ``encipher_rot13`` as both
``decipher_shift`` with a key of 13 and ``encipher_shift`` key with a
key of 13 will return the same results. Nonetheless,
``decipher_rot13`` has nonetheless been explicitly defined here for
consistency.
Examples
========
>>> from sympy.crypto.crypto import encipher_rot13, decipher_rot13
>>> msg = 'GONAVYBEATARMY'
>>> ciphertext = encipher_rot13(msg);ciphertext
'TBANILORNGNEZL'
>>> decipher_rot13(ciphertext)
'GONAVYBEATARMY'
>>> encipher_rot13(msg) == decipher_rot13(msg)
True
>>> msg == decipher_rot13(ciphertext)
True
"""
return decipher_shift(msg, 13, symbols)
######## affine cipher examples ############
def encipher_affine(msg, key, symbols=None, _inverse=False):
r"""
Performs the affine cipher encryption on plaintext ``msg``, and
returns the ciphertext.
Explanation
===========
Encryption is based on the map `x \rightarrow ax+b` (mod `N`)
where ``N`` is the number of characters in the alphabet.
Decryption is based on the map `x \rightarrow cx+d` (mod `N`),
where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`).
In particular, for the map to be invertible, we need
`\mathrm{gcd}(a, N) = 1` and an error will be raised if this is
not true.
Parameters
==========
msg : str
Characters that appear in ``symbols``.
a, b : int, int
A pair integers, with ``gcd(a, N) = 1`` (the secret key).
symbols
String of characters (default = uppercase letters).
When no symbols are given, ``msg`` is converted to upper case
letters and all other characters are ignored.
Returns
=======
ct
String of characters (the ciphertext message)
Notes
=====
ALGORITHM:
STEPS:
0. Number the letters of the alphabet from 0, ..., N
1. Compute from the string ``msg`` a list ``L1`` of
corresponding integers.
2. Compute from the list ``L1`` a new list ``L2``, given by
replacing ``x`` by ``a*x + b (mod N)``, for each element
``x`` in ``L1``.
3. Compute from the list ``L2`` a string ``ct`` of
corresponding letters.
This is a straightforward generalization of the shift cipher with
the added complexity of requiring 2 characters to be deciphered in
order to recover the key.
References
==========
.. [1] https://en.wikipedia.org/wiki/Affine_cipher
See Also
========
decipher_affine
"""
msg, _, A = _prep(msg, '', symbols)
N = len(A)
a, b = key
assert gcd(a, N) == 1
if _inverse:
c = mod_inverse(a, N)
d = -b*c
a, b = c, d
B = ''.join([A[(a*i + b) % N] for i in range(N)])
return translate(msg, A, B)
def decipher_affine(msg, key, symbols=None):
r"""
Return the deciphered text that was made from the mapping,
`x \rightarrow ax+b` (mod `N`), where ``N`` is the
number of characters in the alphabet. Deciphering is done by
reciphering with a new key: `x \rightarrow cx+d` (mod `N`),
where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`).
Examples
========
>>> from sympy.crypto.crypto import encipher_affine, decipher_affine
>>> msg = "GO NAVY BEAT ARMY"
>>> key = (3, 1)
>>> encipher_affine(msg, key)
'TROBMVENBGBALV'
>>> decipher_affine(_, key)
'GONAVYBEATARMY'
See Also
========
encipher_affine
"""
return encipher_affine(msg, key, symbols, _inverse=True)
def encipher_atbash(msg, symbols=None):
r"""
Enciphers a given ``msg`` into its Atbash ciphertext and returns it.
Explanation
===========
Atbash is a substitution cipher originally used to encrypt the Hebrew
alphabet. Atbash works on the principle of mapping each alphabet to its
reverse / counterpart (i.e. a would map to z, b to y etc.)
Atbash is functionally equivalent to the affine cipher with ``a = 25``
and ``b = 25``
See Also
========
decipher_atbash
"""
return encipher_affine(msg, (25, 25), symbols)
def decipher_atbash(msg, symbols=None):
r"""
Deciphers a given ``msg`` using Atbash cipher and returns it.
Explanation
===========
``decipher_atbash`` is functionally equivalent to ``encipher_atbash``.
However, it has still been added as a separate function to maintain
consistency.
Examples
========
>>> from sympy.crypto.crypto import encipher_atbash, decipher_atbash
>>> msg = 'GONAVYBEATARMY'
>>> encipher_atbash(msg)
'TLMZEBYVZGZINB'
>>> decipher_atbash(msg)
'TLMZEBYVZGZINB'
>>> encipher_atbash(msg) == decipher_atbash(msg)
True
>>> msg == encipher_atbash(encipher_atbash(msg))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Atbash
See Also
========
encipher_atbash
"""
return decipher_affine(msg, (25, 25), symbols)
#################### substitution cipher ###########################
def encipher_substitution(msg, old, new=None):
r"""
Returns the ciphertext obtained by replacing each character that
appears in ``old`` with the corresponding character in ``new``.
If ``old`` is a mapping, then new is ignored and the replacements
defined by ``old`` are used.
Explanation
===========
This is a more general than the affine cipher in that the key can
only be recovered by determining the mapping for each symbol.
Though in practice, once a few symbols are recognized the mappings
for other characters can be quickly guessed.
Examples
========
>>> from sympy.crypto.crypto import encipher_substitution, AZ
>>> old = 'OEYAG'
>>> new = '034^6'
>>> msg = AZ("go navy! beat army!")
>>> ct = encipher_substitution(msg, old, new); ct
'60N^V4B3^T^RM4'
To decrypt a substitution, reverse the last two arguments:
>>> encipher_substitution(ct, new, old)
'GONAVYBEATARMY'
In the special case where ``old`` and ``new`` are a permutation of
order 2 (representing a transposition of characters) their order
is immaterial:
>>> old = 'NAVY'
>>> new = 'ANYV'
>>> encipher = lambda x: encipher_substitution(x, old, new)
>>> encipher('NAVY')
'ANYV'
>>> encipher(_)
'NAVY'
The substitution cipher, in general, is a method
whereby "units" (not necessarily single characters) of plaintext
are replaced with ciphertext according to a regular system.
>>> ords = dict(zip('abc', ['\\%i' % ord(i) for i in 'abc']))
>>> print(encipher_substitution('abc', ords))
\97\98\99
References
==========
.. [1] https://en.wikipedia.org/wiki/Substitution_cipher
"""
return translate(msg, old, new)
######################################################################
#################### Vigenere cipher examples ########################
######################################################################
def encipher_vigenere(msg, key, symbols=None):
"""
Performs the Vigenere cipher encryption on plaintext ``msg``, and
returns the ciphertext.
Examples
========
>>> from sympy.crypto.crypto import encipher_vigenere, AZ
>>> key = "encrypt"
>>> msg = "meet me on monday"
>>> encipher_vigenere(msg, key)
'QRGKKTHRZQEBPR'
Section 1 of the Kryptos sculpture at the CIA headquarters
uses this cipher and also changes the order of the the
alphabet [2]_. Here is the first line of that section of
the sculpture:
>>> from sympy.crypto.crypto import decipher_vigenere, padded_key
>>> alp = padded_key('KRYPTOS', AZ())
>>> key = 'PALIMPSEST'
>>> msg = 'EMUFPHZLRFAXYUSDJKZLDKRNSHGNFIVJ'
>>> decipher_vigenere(msg, key, alp)
'BETWEENSUBTLESHADINGANDTHEABSENC'
Explanation
===========
The Vigenere cipher is named after Blaise de Vigenere, a sixteenth
century diplomat and cryptographer, by a historical accident.
Vigenere actually invented a different and more complicated cipher.
The so-called *Vigenere cipher* was actually invented
by Giovan Batista Belaso in 1553.
This cipher was used in the 1800's, for example, during the American
Civil War. The Confederacy used a brass cipher disk to implement the
Vigenere cipher (now on display in the NSA Museum in Fort
Meade) [1]_.
The Vigenere cipher is a generalization of the shift cipher.
Whereas the shift cipher shifts each letter by the same amount
(that amount being the key of the shift cipher) the Vigenere
cipher shifts a letter by an amount determined by the key (which is
a word or phrase known only to the sender and receiver).
For example, if the key was a single letter, such as "C", then the
so-called Vigenere cipher is actually a shift cipher with a
shift of `2` (since "C" is the 2nd letter of the alphabet, if
you start counting at `0`). If the key was a word with two
letters, such as "CA", then the so-called Vigenere cipher will
shift letters in even positions by `2` and letters in odd positions
are left alone (shifted by `0`, since "A" is the 0th letter, if
you start counting at `0`).
ALGORITHM:
INPUT:
``msg``: string of characters that appear in ``symbols``
(the plaintext)
``key``: a string of characters that appear in ``symbols``
(the secret key)
``symbols``: a string of letters defining the alphabet
OUTPUT:
``ct``: string of characters (the ciphertext message)
STEPS:
0. Number the letters of the alphabet from 0, ..., N
1. Compute from the string ``key`` a list ``L1`` of
corresponding integers. Let ``n1 = len(L1)``.
2. Compute from the string ``msg`` a list ``L2`` of
corresponding integers. Let ``n2 = len(L2)``.
3. Break ``L2`` up sequentially into sublists of size
``n1``; the last sublist may be smaller than ``n1``
4. For each of these sublists ``L`` of ``L2``, compute a
new list ``C`` given by ``C[i] = L[i] + L1[i] (mod N)``
to the ``i``-th element in the sublist, for each ``i``.
5. Assemble these lists ``C`` by concatenation into a new
list of length ``n2``.
6. Compute from the new list a string ``ct`` of
corresponding letters.
Once it is known that the key is, say, `n` characters long,
frequency analysis can be applied to every `n`-th letter of
the ciphertext to determine the plaintext. This method is
called *Kasiski examination* (although it was first discovered
by Babbage). If they key is as long as the message and is
comprised of randomly selected characters -- a one-time pad -- the
message is theoretically unbreakable.
The cipher Vigenere actually discovered is an "auto-key" cipher
described as follows.
ALGORITHM:
INPUT:
``key``: a string of letters (the secret key)
``msg``: string of letters (the plaintext message)
OUTPUT:
``ct``: string of upper-case letters (the ciphertext message)
STEPS:
0. Number the letters of the alphabet from 0, ..., N
1. Compute from the string ``msg`` a list ``L2`` of
corresponding integers. Let ``n2 = len(L2)``.
2. Let ``n1`` be the length of the key. Append to the
string ``key`` the first ``n2 - n1`` characters of
the plaintext message. Compute from this string (also of
length ``n2``) a list ``L1`` of integers corresponding
to the letter numbers in the first step.
3. Compute a new list ``C`` given by
``C[i] = L1[i] + L2[i] (mod N)``.
4. Compute from the new list a string ``ct`` of letters
corresponding to the new integers.
To decipher the auto-key ciphertext, the key is used to decipher
the first ``n1`` characters and then those characters become the
key to decipher the next ``n1`` characters, etc...:
>>> m = AZ('go navy, beat army! yes you can'); m
'GONAVYBEATARMYYESYOUCAN'
>>> key = AZ('gold bug'); n1 = len(key); n2 = len(m)
>>> auto_key = key + m[:n2 - n1]; auto_key
'GOLDBUGGONAVYBEATARMYYE'
>>> ct = encipher_vigenere(m, auto_key); ct
'MCYDWSHKOGAMKZCELYFGAYR'
>>> n1 = len(key)
>>> pt = []
>>> while ct:
... part, ct = ct[:n1], ct[n1:]
... pt.append(decipher_vigenere(part, key))
... key = pt[-1]
...
>>> ''.join(pt) == m
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Vigenere_cipher
.. [2] http://web.archive.org/web/20071116100808/
.. [3] http://filebox.vt.edu/users/batman/kryptos.html
(short URL: https://goo.gl/ijr22d)
"""
msg, key, A = _prep(msg, key, symbols)
map = {c: i for i, c in enumerate(A)}
key = [map[c] for c in key]
N = len(map)
k = len(key)
rv = []
for i, m in enumerate(msg):
rv.append(A[(map[m] + key[i % k]) % N])
rv = ''.join(rv)
return rv
def decipher_vigenere(msg, key, symbols=None):
"""
Decode using the Vigenere cipher.
Examples
========
>>> from sympy.crypto.crypto import decipher_vigenere
>>> key = "encrypt"
>>> ct = "QRGK kt HRZQE BPR"
>>> decipher_vigenere(ct, key)
'MEETMEONMONDAY'
"""
msg, key, A = _prep(msg, key, symbols)
map = {c: i for i, c in enumerate(A)}
N = len(A) # normally, 26
K = [map[c] for c in key]
n = len(K)
C = [map[c] for c in msg]
rv = ''.join([A[(-K[i % n] + c) % N] for i, c in enumerate(C)])
return rv
#################### Hill cipher ########################
def encipher_hill(msg, key, symbols=None, pad="Q"):
r"""
Return the Hill cipher encryption of ``msg``.
Explanation
===========
The Hill cipher [1]_, invented by Lester S. Hill in the 1920's [2]_,
was the first polygraphic cipher in which it was practical
(though barely) to operate on more than three symbols at once.
The following discussion assumes an elementary knowledge of
matrices.
First, each letter is first encoded as a number starting with 0.
Suppose your message `msg` consists of `n` capital letters, with no
spaces. This may be regarded an `n`-tuple M of elements of
`Z_{26}` (if the letters are those of the English alphabet). A key
in the Hill cipher is a `k x k` matrix `K`, all of whose entries
are in `Z_{26}`, such that the matrix `K` is invertible (i.e., the
linear transformation `K: Z_{N}^k \rightarrow Z_{N}^k`
is one-to-one).
Parameters
==========
msg
Plaintext message of `n` upper-case letters.
key
A `k \times k` invertible matrix `K`, all of whose entries are
in `Z_{26}` (or whatever number of symbols are being used).
pad
Character (default "Q") to use to make length of text be a
multiple of ``k``.
Returns
=======
ct
Ciphertext of upper-case letters.
Notes
=====
ALGORITHM:
STEPS:
0. Number the letters of the alphabet from 0, ..., N
1. Compute from the string ``msg`` a list ``L`` of
corresponding integers. Let ``n = len(L)``.
2. Break the list ``L`` up into ``t = ceiling(n/k)``
sublists ``L_1``, ..., ``L_t`` of size ``k`` (with
the last list "padded" to ensure its size is
``k``).
3. Compute new list ``C_1``, ..., ``C_t`` given by
``C[i] = K*L_i`` (arithmetic is done mod N), for each
``i``.
4. Concatenate these into a list ``C = C_1 + ... + C_t``.
5. Compute from ``C`` a string ``ct`` of corresponding
letters. This has length ``k*t``.
References
==========
.. [1] https://en.wikipedia.org/wiki/Hill_cipher
.. [2] Lester S. Hill, Cryptography in an Algebraic Alphabet,
The American Mathematical Monthly Vol.36, June-July 1929,
pp.306-312.
See Also
========
decipher_hill
"""
assert key.is_square
assert len(pad) == 1
msg, pad, A = _prep(msg, pad, symbols)
map = {c: i for i, c in enumerate(A)}
P = [map[c] for c in msg]
N = len(A)
k = key.cols
n = len(P)
m, r = divmod(n, k)
if r:
P = P + [map[pad]]*(k - r)
m += 1
rv = ''.join([A[c % N] for j in range(m) for c in
list(key*Matrix(k, 1, [P[i]
for i in range(k*j, k*(j + 1))]))])
return rv
def decipher_hill(msg, key, symbols=None):
"""
Deciphering is the same as enciphering but using the inverse of the
key matrix.
Examples
========
>>> from sympy.crypto.crypto import encipher_hill, decipher_hill
>>> from sympy import Matrix
>>> key = Matrix([[1, 2], [3, 5]])
>>> encipher_hill("meet me on monday", key)
'UEQDUEODOCTCWQ'
>>> decipher_hill(_, key)
'MEETMEONMONDAY'
When the length of the plaintext (stripped of invalid characters)
is not a multiple of the key dimension, extra characters will
appear at the end of the enciphered and deciphered text. In order to
decipher the text, those characters must be included in the text to
be deciphered. In the following, the key has a dimension of 4 but
the text is 2 short of being a multiple of 4 so two characters will
be added.
>>> key = Matrix([[1, 1, 1, 2], [0, 1, 1, 0],
... [2, 2, 3, 4], [1, 1, 0, 1]])
>>> msg = "ST"
>>> encipher_hill(msg, key)
'HJEB'
>>> decipher_hill(_, key)
'STQQ'
>>> encipher_hill(msg, key, pad="Z")
'ISPK'
>>> decipher_hill(_, key)
'STZZ'
If the last two characters of the ciphertext were ignored in
either case, the wrong plaintext would be recovered:
>>> decipher_hill("HD", key)
'ORMV'
>>> decipher_hill("IS", key)
'UIKY'
See Also
========
encipher_hill
"""
assert key.is_square
msg, _, A = _prep(msg, '', symbols)
map = {c: i for i, c in enumerate(A)}
C = [map[c] for c in msg]
N = len(A)
k = key.cols
n = len(C)
m, r = divmod(n, k)
if r:
C = C + [0]*(k - r)
m += 1
key_inv = key.inv_mod(N)
rv = ''.join([A[p % N] for j in range(m) for p in
list(key_inv*Matrix(
k, 1, [C[i] for i in range(k*j, k*(j + 1))]))])
return rv
#################### Bifid cipher ########################
def encipher_bifid(msg, key, symbols=None):
r"""
Performs the Bifid cipher encryption on plaintext ``msg``, and
returns the ciphertext.
This is the version of the Bifid cipher that uses an `n \times n`
Polybius square.
Parameters
==========
msg
Plaintext string.
key
Short string for key.
Duplicate characters are ignored and then it is padded with the
characters in ``symbols`` that were not in the short key.
symbols
`n \times n` characters defining the alphabet.
(default is string.printable)
Returns
=======
ciphertext
Ciphertext using Bifid5 cipher without spaces.
See Also
========
decipher_bifid, encipher_bifid5, encipher_bifid6
References
==========
.. [1] https://en.wikipedia.org/wiki/Bifid_cipher
"""
msg, key, A = _prep(msg, key, symbols, bifid10)
long_key = ''.join(uniq(key)) or A
n = len(A)**.5
if n != int(n):
raise ValueError(
'Length of alphabet (%s) is not a square number.' % len(A))
N = int(n)
if len(long_key) < N**2:
long_key = list(long_key) + [x for x in A if x not in long_key]
# the fractionalization
row_col = {ch: divmod(i, N) for i, ch in enumerate(long_key)}
r, c = zip(*[row_col[x] for x in msg])
rc = r + c
ch = {i: ch for ch, i in row_col.items()}
rv = ''.join(ch[i] for i in zip(rc[::2], rc[1::2]))
return rv
def decipher_bifid(msg, key, symbols=None):
r"""
Performs the Bifid cipher decryption on ciphertext ``msg``, and
returns the plaintext.
This is the version of the Bifid cipher that uses the `n \times n`
Polybius square.
Parameters
==========
msg
Ciphertext string.
key
Short string for key.
Duplicate characters are ignored and then it is padded with the
characters in symbols that were not in the short key.
symbols
`n \times n` characters defining the alphabet.
(default=string.printable, a `10 \times 10` matrix)
Returns
=======
deciphered
Deciphered text.
Examples
========
>>> from sympy.crypto.crypto import (
... encipher_bifid, decipher_bifid, AZ)
Do an encryption using the bifid5 alphabet:
>>> alp = AZ().replace('J', '')
>>> ct = AZ("meet me on monday!")
>>> key = AZ("gold bug")
>>> encipher_bifid(ct, key, alp)
'IEILHHFSTSFQYE'
When entering the text or ciphertext, spaces are ignored so it
can be formatted as desired. Re-entering the ciphertext from the
preceding, putting 4 characters per line and padding with an extra
J, does not cause problems for the deciphering:
>>> decipher_bifid('''
... IEILH
... HFSTS
... FQYEJ''', key, alp)
'MEETMEONMONDAY'
When no alphabet is given, all 100 printable characters will be
used:
>>> key = ''
>>> encipher_bifid('hello world!', key)
'bmtwmg-bIo*w'
>>> decipher_bifid(_, key)
'hello world!'
If the key is changed, a different encryption is obtained:
>>> key = 'gold bug'
>>> encipher_bifid('hello world!', 'gold_bug')
'hg2sfuei7t}w'
And if the key used to decrypt the message is not exact, the
original text will not be perfectly obtained:
>>> decipher_bifid(_, 'gold pug')
'heldo~wor6d!'
"""
msg, _, A = _prep(msg, '', symbols, bifid10)
long_key = ''.join(uniq(key)) or A
n = len(A)**.5
if n != int(n):
raise ValueError(
'Length of alphabet (%s) is not a square number.' % len(A))
N = int(n)
if len(long_key) < N**2:
long_key = list(long_key) + [x for x in A if x not in long_key]
# the reverse fractionalization
row_col = {
ch: divmod(i, N) for i, ch in enumerate(long_key)}
rc = [i for c in msg for i in row_col[c]]
n = len(msg)
rc = zip(*(rc[:n], rc[n:]))
ch = {i: ch for ch, i in row_col.items()}
rv = ''.join(ch[i] for i in rc)
return rv
def bifid_square(key):
"""Return characters of ``key`` arranged in a square.
Examples
========
>>> from sympy.crypto.crypto import (
... bifid_square, AZ, padded_key, bifid5)
>>> bifid_square(AZ().replace('J', ''))
Matrix([
[A, B, C, D, E],
[F, G, H, I, K],
[L, M, N, O, P],
[Q, R, S, T, U],
[V, W, X, Y, Z]])
>>> bifid_square(padded_key(AZ('gold bug!'), bifid5))
Matrix([
[G, O, L, D, B],
[U, A, C, E, F],
[H, I, K, M, N],
[P, Q, R, S, T],
[V, W, X, Y, Z]])
See Also
========
padded_key
"""
A = ''.join(uniq(''.join(key)))
n = len(A)**.5
if n != int(n):
raise ValueError(
'Length of alphabet (%s) is not a square number.' % len(A))
n = int(n)
f = lambda i, j: Symbol(A[n*i + j])
rv = Matrix(n, n, f)
return rv
def encipher_bifid5(msg, key):
r"""
Performs the Bifid cipher encryption on plaintext ``msg``, and
returns the ciphertext.
Explanation
===========
This is the version of the Bifid cipher that uses the `5 \times 5`
Polybius square. The letter "J" is ignored so it must be replaced
with something else (traditionally an "I") before encryption.
ALGORITHM: (5x5 case)
STEPS:
0. Create the `5 \times 5` Polybius square ``S`` associated
to ``key`` as follows:
a) moving from left-to-right, top-to-bottom,
place the letters of the key into a `5 \times 5`
matrix,
b) if the key has less than 25 letters, add the
letters of the alphabet not in the key until the
`5 \times 5` square is filled.
1. Create a list ``P`` of pairs of numbers which are the
coordinates in the Polybius square of the letters in
``msg``.
2. Let ``L1`` be the list of all first coordinates of ``P``
(length of ``L1 = n``), let ``L2`` be the list of all
second coordinates of ``P`` (so the length of ``L2``
is also ``n``).
3. Let ``L`` be the concatenation of ``L1`` and ``L2``
(length ``L = 2*n``), except that consecutive numbers
are paired ``(L[2*i], L[2*i + 1])``. You can regard
``L`` as a list of pairs of length ``n``.
4. Let ``C`` be the list of all letters which are of the
form ``S[i, j]``, for all ``(i, j)`` in ``L``. As a
string, this is the ciphertext of ``msg``.
Parameters
==========
msg : str
Plaintext string.
Converted to upper case and filtered of anything but all letters
except J.
key
Short string for key; non-alphabetic letters, J and duplicated
characters are ignored and then, if the length is less than 25
characters, it is padded with other letters of the alphabet
(in alphabetical order).
Returns
=======
ct
Ciphertext (all caps, no spaces).
Examples
========
>>> from sympy.crypto.crypto import (
... encipher_bifid5, decipher_bifid5)
"J" will be omitted unless it is replaced with something else:
>>> round_trip = lambda m, k: \
... decipher_bifid5(encipher_bifid5(m, k), k)
>>> key = 'a'
>>> msg = "JOSIE"
>>> round_trip(msg, key)
'OSIE'
>>> round_trip(msg.replace("J", "I"), key)
'IOSIE'
>>> j = "QIQ"
>>> round_trip(msg.replace("J", j), key).replace(j, "J")
'JOSIE'
Notes
=====
The Bifid cipher was invented around 1901 by Felix Delastelle.
It is a *fractional substitution* cipher, where letters are
replaced by pairs of symbols from a smaller alphabet. The
cipher uses a `5 \times 5` square filled with some ordering of the
alphabet, except that "J" is replaced with "I" (this is a so-called
Polybius square; there is a `6 \times 6` analog if you add back in
"J" and also append onto the usual 26 letter alphabet, the digits
0, 1, ..., 9).
According to Helen Gaines' book *Cryptanalysis*, this type of cipher
was used in the field by the German Army during World War I.
See Also
========
decipher_bifid5, encipher_bifid
"""
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5)
key = padded_key(key, bifid5)
return encipher_bifid(msg, '', key)
def decipher_bifid5(msg, key):
r"""
Return the Bifid cipher decryption of ``msg``.
Explanation
===========
This is the version of the Bifid cipher that uses the `5 \times 5`
Polybius square; the letter "J" is ignored unless a ``key`` of
length 25 is used.
Parameters
==========
msg
Ciphertext string.
key
Short string for key; duplicated characters are ignored and if
the length is less then 25 characters, it will be padded with
other letters from the alphabet omitting "J".
Non-alphabetic characters are ignored.
Returns
=======
plaintext
Plaintext from Bifid5 cipher (all caps, no spaces).
Examples
========
>>> from sympy.crypto.crypto import encipher_bifid5, decipher_bifid5
>>> key = "gold bug"
>>> encipher_bifid5('meet me on friday', key)
'IEILEHFSTSFXEE'
>>> encipher_bifid5('meet me on monday', key)
'IEILHHFSTSFQYE'
>>> decipher_bifid5(_, key)
'MEETMEONMONDAY'
"""
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5)
key = padded_key(key, bifid5)
return decipher_bifid(msg, '', key)
def bifid5_square(key=None):
r"""
5x5 Polybius square.
Produce the Polybius square for the `5 \times 5` Bifid cipher.
Examples
========
>>> from sympy.crypto.crypto import bifid5_square
>>> bifid5_square("gold bug")
Matrix([
[G, O, L, D, B],
[U, A, C, E, F],
[H, I, K, M, N],
[P, Q, R, S, T],
[V, W, X, Y, Z]])
"""
if not key:
key = bifid5
else:
_, key, _ = _prep('', key.upper(), None, bifid5)
key = padded_key(key, bifid5)
return bifid_square(key)
def encipher_bifid6(msg, key):
r"""
Performs the Bifid cipher encryption on plaintext ``msg``, and
returns the ciphertext.
This is the version of the Bifid cipher that uses the `6 \times 6`
Polybius square.
Parameters
==========
msg
Plaintext string (digits okay).
key
Short string for key (digits okay).
If ``key`` is less than 36 characters long, the square will be
filled with letters A through Z and digits 0 through 9.
Returns
=======
ciphertext
Ciphertext from Bifid cipher (all caps, no spaces).
See Also
========
decipher_bifid6, encipher_bifid
"""
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6)
key = padded_key(key, bifid6)
return encipher_bifid(msg, '', key)
def decipher_bifid6(msg, key):
r"""
Performs the Bifid cipher decryption on ciphertext ``msg``, and
returns the plaintext.
This is the version of the Bifid cipher that uses the `6 \times 6`
Polybius square.
Parameters
==========
msg
Ciphertext string (digits okay); converted to upper case
key
Short string for key (digits okay).
If ``key`` is less than 36 characters long, the square will be
filled with letters A through Z and digits 0 through 9.
All letters are converted to uppercase.
Returns
=======
plaintext
Plaintext from Bifid cipher (all caps, no spaces).
Examples
========
>>> from sympy.crypto.crypto import encipher_bifid6, decipher_bifid6
>>> key = "gold bug"
>>> encipher_bifid6('meet me on monday at 8am', key)
'KFKLJJHF5MMMKTFRGPL'
>>> decipher_bifid6(_, key)
'MEETMEONMONDAYAT8AM'
"""
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6)
key = padded_key(key, bifid6)
return decipher_bifid(msg, '', key)
def bifid6_square(key=None):
r"""
6x6 Polybius square.
Produces the Polybius square for the `6 \times 6` Bifid cipher.
Assumes alphabet of symbols is "A", ..., "Z", "0", ..., "9".
Examples
========
>>> from sympy.crypto.crypto import bifid6_square
>>> key = "gold bug"
>>> bifid6_square(key)
Matrix([
[G, O, L, D, B, U],
[A, C, E, F, H, I],
[J, K, M, N, P, Q],
[R, S, T, V, W, X],
[Y, Z, 0, 1, 2, 3],
[4, 5, 6, 7, 8, 9]])
"""
if not key:
key = bifid6
else:
_, key, _ = _prep('', key.upper(), None, bifid6)
key = padded_key(key, bifid6)
return bifid_square(key)
#################### RSA #############################
def _decipher_rsa_crt(i, d, factors):
"""Decipher RSA using chinese remainder theorem from the information
of the relatively-prime factors of the modulus.
Parameters
==========
i : integer
Ciphertext
d : integer
The exponent component.
factors : list of relatively-prime integers
The integers given must be coprime and the product must equal
the modulus component of the original RSA key.
Examples
========
How to decrypt RSA with CRT:
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
>>> primes = [61, 53]
>>> e = 17
>>> args = primes + [e]
>>> puk = rsa_public_key(*args)
>>> prk = rsa_private_key(*args)
>>> from sympy.crypto.crypto import encipher_rsa, _decipher_rsa_crt
>>> msg = 65
>>> crt_primes = primes
>>> encrypted = encipher_rsa(msg, puk)
>>> decrypted = _decipher_rsa_crt(encrypted, prk[1], primes)
>>> decrypted
65
"""
from sympy.ntheory.modular import crt
moduluses = [pow(i, d, p) for p in factors]
result = crt(factors, moduluses)
if not result:
raise ValueError("CRT failed")
return result[0]
def _rsa_key(*args, public=True, private=True, totient='Euler', index=None, multipower=None):
r"""A private subroutine to generate RSA key
Parameters
==========
public, private : bool, optional
Flag to generate either a public key, a private key.
totient : 'Euler' or 'Carmichael'
Different notation used for totient.
multipower : bool, optional
Flag to bypass warning for multipower RSA.
"""
from sympy.ntheory import totient as _euler
from sympy.ntheory import reduced_totient as _carmichael
if len(args) < 2:
return False
if totient not in ('Euler', 'Carmichael'):
raise ValueError(
"The argument totient={} should either be " \
"'Euler', 'Carmichalel'." \
.format(totient))
if totient == 'Euler':
_totient = _euler
else:
_totient = _carmichael
if index is not None:
index = as_int(index)
if totient != 'Carmichael':
raise ValueError(
"Setting the 'index' keyword argument requires totient"
"notation to be specified as 'Carmichael'.")
primes, e = args[:-1], args[-1]
if not all(isprime(p) for p in primes):
new_primes = []
for i in primes:
new_primes.extend(factorint(i, multiple=True))
primes = new_primes
n = reduce(lambda i, j: i*j, primes)
tally = multiset(primes)
if all(v == 1 for v in tally.values()):
multiple = list(tally.keys())
phi = _totient._from_distinct_primes(*multiple)
else:
if not multipower:
NonInvertibleCipherWarning(
'Non-distinctive primes found in the factors {}. '
'The cipher may not be decryptable for some numbers '
'in the complete residue system Z[{}], but the cipher '
'can still be valid if you restrict the domain to be '
'the reduced residue system Z*[{}]. You can pass '
'the flag multipower=True if you want to suppress this '
'warning.'
.format(primes, n, n)
).warn()
phi = _totient._from_factors(tally)
if igcd(e, phi) == 1:
if public and not private:
if isinstance(index, int):
e = e % phi
e += index * phi
return n, e
if private and not public:
d = mod_inverse(e, phi)
if isinstance(index, int):
d += index * phi
return n, d
return False
def rsa_public_key(*args, **kwargs):
r"""Return the RSA *public key* pair, `(n, e)`
Parameters
==========
args : naturals
If specified as `p, q, e` where `p` and `q` are distinct primes
and `e` is a desired public exponent of the RSA, `n = p q` and
`e` will be verified against the totient
`\phi(n)` (Euler totient) or `\lambda(n)` (Carmichael totient)
to be `\gcd(e, \phi(n)) = 1` or `\gcd(e, \lambda(n)) = 1`.
If specified as `p_1, p_2, ..., p_n, e` where
`p_1, p_2, ..., p_n` are specified as primes,
and `e` is specified as a desired public exponent of the RSA,
it will be able to form a multi-prime RSA, which is a more
generalized form of the popular 2-prime RSA.
It can also be possible to form a single-prime RSA by specifying
the argument as `p, e`, which can be considered a trivial case
of a multiprime RSA.
Furthermore, it can be possible to form a multi-power RSA by
specifying two or more pairs of the primes to be same.
However, unlike the two-distinct prime RSA or multi-prime
RSA, not every numbers in the complete residue system
(`\mathbb{Z}_n`) will be decryptable since the mapping
`\mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}`
will not be bijective.
(Only except for the trivial case when
`e = 1`
or more generally,
.. math::
e \in \left \{ 1 + k \lambda(n)
\mid k \in \mathbb{Z} \land k \geq 0 \right \}
when RSA reduces to the identity.)
However, the RSA can still be decryptable for the numbers in the
reduced residue system (`\mathbb{Z}_n^{\times}`), since the
mapping
`\mathbb{Z}_{n}^{\times} \rightarrow \mathbb{Z}_{n}^{\times}`
can still be bijective.
If you pass a non-prime integer to the arguments
`p_1, p_2, ..., p_n`, the particular number will be
prime-factored and it will become either a multi-prime RSA or a
multi-power RSA in its canonical form, depending on whether the
product equals its radical or not.
`p_1 p_2 ... p_n = \text{rad}(p_1 p_2 ... p_n)`
totient : bool, optional
If ``'Euler'``, it uses Euler's totient `\phi(n)` which is
:meth:`sympy.ntheory.factor_.totient` in SymPy.
If ``'Carmichael'``, it uses Carmichael's totient `\lambda(n)`
which is :meth:`sympy.ntheory.factor_.reduced_totient` in SymPy.
Unlike private key generation, this is a trivial keyword for
public key generation because
`\gcd(e, \phi(n)) = 1 \iff \gcd(e, \lambda(n)) = 1`.
index : nonnegative integer, optional
Returns an arbitrary solution of a RSA public key at the index
specified at `0, 1, 2, ...`. This parameter needs to be
specified along with ``totient='Carmichael'``.
Similarly to the non-uniquenss of a RSA private key as described
in the ``index`` parameter documentation in
:meth:`rsa_private_key`, RSA public key is also not unique and
there is an infinite number of RSA public exponents which
can behave in the same manner.
From any given RSA public exponent `e`, there are can be an
another RSA public exponent `e + k \lambda(n)` where `k` is an
integer, `\lambda` is a Carmichael's totient function.
However, considering only the positive cases, there can be
a principal solution of a RSA public exponent `e_0` in
`0 < e_0 < \lambda(n)`, and all the other solutions
can be canonicalzed in a form of `e_0 + k \lambda(n)`.
``index`` specifies the `k` notation to yield any possible value
an RSA public key can have.
An example of computing any arbitrary RSA public key:
>>> from sympy.crypto.crypto import rsa_public_key
>>> rsa_public_key(61, 53, 17, totient='Carmichael', index=0)
(3233, 17)
>>> rsa_public_key(61, 53, 17, totient='Carmichael', index=1)
(3233, 797)
>>> rsa_public_key(61, 53, 17, totient='Carmichael', index=2)
(3233, 1577)
multipower : bool, optional
Any pair of non-distinct primes found in the RSA specification
will restrict the domain of the cryptosystem, as noted in the
explaination of the parameter ``args``.
SymPy RSA key generator may give a warning before dispatching it
as a multi-power RSA, however, you can disable the warning if
you pass ``True`` to this keyword.
Returns
=======
(n, e) : int, int
`n` is a product of any arbitrary number of primes given as
the argument.
`e` is relatively prime (coprime) to the Euler totient
`\phi(n)`.
False
Returned if less than two arguments are given, or `e` is
not relatively prime to the modulus.
Examples
========
>>> from sympy.crypto.crypto import rsa_public_key
A public key of a two-prime RSA:
>>> p, q, e = 3, 5, 7
>>> rsa_public_key(p, q, e)
(15, 7)
>>> rsa_public_key(p, q, 30)
False
A public key of a multiprime RSA:
>>> primes = [2, 3, 5, 7, 11, 13]
>>> e = 7
>>> args = primes + [e]
>>> rsa_public_key(*args)
(30030, 7)
Notes
=====
Although the RSA can be generalized over any modulus `n`, using
two large primes had became the most popular specification because a
product of two large primes is usually the hardest to factor
relatively to the digits of `n` can have.
However, it may need further understanding of the time complexities
of each prime-factoring algorithms to verify the claim.
See Also
========
rsa_private_key
encipher_rsa
decipher_rsa
References
==========
.. [1] https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
.. [2] http://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
.. [3] https://link.springer.com/content/pdf/10.1007%2FBFb0055738.pdf
.. [4] http://www.itiis.org/digital-library/manuscript/1381
"""
return _rsa_key(*args, public=True, private=False, **kwargs)
def rsa_private_key(*args, **kwargs):
r"""Return the RSA *private key* pair, `(n, d)`
Parameters
==========
args : naturals
The keyword is identical to the ``args`` in
:meth:`rsa_public_key`.
totient : bool, optional
If ``'Euler'``, it uses Euler's totient convention `\phi(n)`
which is :meth:`sympy.ntheory.factor_.totient` in SymPy.
If ``'Carmichael'``, it uses Carmichael's totient convention
`\lambda(n)` which is
:meth:`sympy.ntheory.factor_.reduced_totient` in SymPy.
There can be some output differences for private key generation
as examples below.
Example using Euler's totient:
>>> from sympy.crypto.crypto import rsa_private_key
>>> rsa_private_key(61, 53, 17, totient='Euler')
(3233, 2753)
Example using Carmichael's totient:
>>> from sympy.crypto.crypto import rsa_private_key
>>> rsa_private_key(61, 53, 17, totient='Carmichael')
(3233, 413)
index : nonnegative integer, optional
Returns an arbitrary solution of a RSA private key at the index
specified at `0, 1, 2, ...`. This parameter needs to be
specified along with ``totient='Carmichael'``.
RSA private exponent is a non-unique solution of
`e d \mod \lambda(n) = 1` and it is possible in any form of
`d + k \lambda(n)`, where `d` is an another
already-computed private exponent, and `\lambda` is a
Carmichael's totient function, and `k` is any integer.
However, considering only the positive cases, there can be
a principal solution of a RSA private exponent `d_0` in
`0 < d_0 < \lambda(n)`, and all the other solutions
can be canonicalzed in a form of `d_0 + k \lambda(n)`.
``index`` specifies the `k` notation to yield any possible value
an RSA private key can have.
An example of computing any arbitrary RSA private key:
>>> from sympy.crypto.crypto import rsa_private_key
>>> rsa_private_key(61, 53, 17, totient='Carmichael', index=0)
(3233, 413)
>>> rsa_private_key(61, 53, 17, totient='Carmichael', index=1)
(3233, 1193)
>>> rsa_private_key(61, 53, 17, totient='Carmichael', index=2)
(3233, 1973)
multipower : bool, optional
The keyword is identical to the ``multipower`` in
:meth:`rsa_public_key`.
Returns
=======
(n, d) : int, int
`n` is a product of any arbitrary number of primes given as
the argument.
`d` is the inverse of `e` (mod `\phi(n)`) where `e` is the
exponent given, and `\phi` is a Euler totient.
False
Returned if less than two arguments are given, or `e` is
not relatively prime to the totient of the modulus.
Examples
========
>>> from sympy.crypto.crypto import rsa_private_key
A private key of a two-prime RSA:
>>> p, q, e = 3, 5, 7
>>> rsa_private_key(p, q, e)
(15, 7)
>>> rsa_private_key(p, q, 30)
False
A private key of a multiprime RSA:
>>> primes = [2, 3, 5, 7, 11, 13]
>>> e = 7
>>> args = primes + [e]
>>> rsa_private_key(*args)
(30030, 823)
See Also
========
rsa_public_key
encipher_rsa
decipher_rsa
References
==========
.. [1] https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
.. [2] http://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
.. [3] https://link.springer.com/content/pdf/10.1007%2FBFb0055738.pdf
.. [4] http://www.itiis.org/digital-library/manuscript/1381
"""
return _rsa_key(*args, public=False, private=True, **kwargs)
def _encipher_decipher_rsa(i, key, factors=None):
n, d = key
if not factors:
return pow(i, d, n)
def _is_coprime_set(l):
is_coprime_set = True
for i in range(len(l)):
for j in range(i+1, len(l)):
if igcd(l[i], l[j]) != 1:
is_coprime_set = False
break
return is_coprime_set
prod = reduce(lambda i, j: i*j, factors)
if prod == n and _is_coprime_set(factors):
return _decipher_rsa_crt(i, d, factors)
return _encipher_decipher_rsa(i, key, factors=None)
def encipher_rsa(i, key, factors=None):
r"""Encrypt the plaintext with RSA.
Parameters
==========
i : integer
The plaintext to be encrypted for.
key : (n, e) where n, e are integers
`n` is the modulus of the key and `e` is the exponent of the
key. The encryption is computed by `i^e \bmod n`.
The key can either be a public key or a private key, however,
the message encrypted by a public key can only be decrypted by
a private key, and vice versa, as RSA is an asymmetric
cryptography system.
factors : list of coprime integers
This is identical to the keyword ``factors`` in
:meth:`decipher_rsa`.
Notes
=====
Some specifications may make the RSA not cryptographically
meaningful.
For example, `0`, `1` will remain always same after taking any
number of exponentiation, thus, should be avoided.
Furthermore, if `i^e < n`, `i` may easily be figured out by taking
`e` th root.
And also, specifying the exponent as `1` or in more generalized form
as `1 + k \lambda(n)` where `k` is an nonnegative integer,
`\lambda` is a carmichael totient, the RSA becomes an identity
mapping.
Examples
========
>>> from sympy.crypto.crypto import encipher_rsa
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
Public Key Encryption:
>>> p, q, e = 3, 5, 7
>>> puk = rsa_public_key(p, q, e)
>>> msg = 12
>>> encipher_rsa(msg, puk)
3
Private Key Encryption:
>>> p, q, e = 3, 5, 7
>>> prk = rsa_private_key(p, q, e)
>>> msg = 12
>>> encipher_rsa(msg, prk)
3
Encryption using chinese remainder theorem:
>>> encipher_rsa(msg, prk, factors=[p, q])
3
"""
return _encipher_decipher_rsa(i, key, factors=factors)
def decipher_rsa(i, key, factors=None):
r"""Decrypt the ciphertext with RSA.
Parameters
==========
i : integer
The ciphertext to be decrypted for.
key : (n, d) where n, d are integers
`n` is the modulus of the key and `d` is the exponent of the
key. The decryption is computed by `i^d \bmod n`.
The key can either be a public key or a private key, however,
the message encrypted by a public key can only be decrypted by
a private key, and vice versa, as RSA is an asymmetric
cryptography system.
factors : list of coprime integers
As the modulus `n` created from RSA key generation is composed
of arbitrary prime factors
`n = {p_1}^{k_1}{p_2}^{k_2}...{p_n}^{k_n}` where
`p_1, p_2, ..., p_n` are distinct primes and
`k_1, k_2, ..., k_n` are positive integers, chinese remainder
theorem can be used to compute `i^d \bmod n` from the
fragmented modulo operations like
.. math::
i^d \bmod {p_1}^{k_1}, i^d \bmod {p_2}^{k_2}, ... ,
i^d \bmod {p_n}^{k_n}
or like
.. math::
i^d \bmod {p_1}^{k_1}{p_2}^{k_2},
i^d \bmod {p_3}^{k_3}, ... ,
i^d \bmod {p_n}^{k_n}
as long as every moduli does not share any common divisor each
other.
The raw primes used in generating the RSA key pair can be a good
option.
Note that the speed advantage of using this is only viable for
very large cases (Like 2048-bit RSA keys) since the
overhead of using pure python implementation of
:meth:`sympy.ntheory.modular.crt` may overcompensate the
theoritical speed advantage.
Notes
=====
See the ``Notes`` section in the documentation of
:meth:`encipher_rsa`
Examples
========
>>> from sympy.crypto.crypto import decipher_rsa, encipher_rsa
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
Public Key Encryption and Decryption:
>>> p, q, e = 3, 5, 7
>>> prk = rsa_private_key(p, q, e)
>>> puk = rsa_public_key(p, q, e)
>>> msg = 12
>>> new_msg = encipher_rsa(msg, prk)
>>> new_msg
3
>>> decipher_rsa(new_msg, puk)
12
Private Key Encryption and Decryption:
>>> p, q, e = 3, 5, 7
>>> prk = rsa_private_key(p, q, e)
>>> puk = rsa_public_key(p, q, e)
>>> msg = 12
>>> new_msg = encipher_rsa(msg, puk)
>>> new_msg
3
>>> decipher_rsa(new_msg, prk)
12
Decryption using chinese remainder theorem:
>>> decipher_rsa(new_msg, prk, factors=[p, q])
12
See Also
========
encipher_rsa
"""
return _encipher_decipher_rsa(i, key, factors=factors)
#################### kid krypto (kid RSA) #############################
def kid_rsa_public_key(a, b, A, B):
r"""
Kid RSA is a version of RSA useful to teach grade school children
since it does not involve exponentiation.
Explanation
===========
Alice wants to talk to Bob. Bob generates keys as follows.
Key generation:
* Select positive integers `a, b, A, B` at random.
* Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`,
`n = (e d - 1)//M`.
* The *public key* is `(n, e)`. Bob sends these to Alice.
* The *private key* is `(n, d)`, which Bob keeps secret.
Encryption: If `p` is the plaintext message then the
ciphertext is `c = p e \pmod n`.
Decryption: If `c` is the ciphertext message then the
plaintext is `p = c d \pmod n`.
Examples
========
>>> from sympy.crypto.crypto import kid_rsa_public_key
>>> a, b, A, B = 3, 4, 5, 6
>>> kid_rsa_public_key(a, b, A, B)
(369, 58)
"""
M = a*b - 1
e = A*M + a
d = B*M + b
n = (e*d - 1)//M
return n, e
def kid_rsa_private_key(a, b, A, B):
"""
Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`,
`n = (e d - 1) / M`. The *private key* is `d`, which Bob
keeps secret.
Examples
========
>>> from sympy.crypto.crypto import kid_rsa_private_key
>>> a, b, A, B = 3, 4, 5, 6
>>> kid_rsa_private_key(a, b, A, B)
(369, 70)
"""
M = a*b - 1
e = A*M + a
d = B*M + b
n = (e*d - 1)//M
return n, d
def encipher_kid_rsa(msg, key):
"""
Here ``msg`` is the plaintext and ``key`` is the public key.
Examples
========
>>> from sympy.crypto.crypto import (
... encipher_kid_rsa, kid_rsa_public_key)
>>> msg = 200
>>> a, b, A, B = 3, 4, 5, 6
>>> key = kid_rsa_public_key(a, b, A, B)
>>> encipher_kid_rsa(msg, key)
161
"""
n, e = key
return (msg*e) % n
def decipher_kid_rsa(msg, key):
"""
Here ``msg`` is the plaintext and ``key`` is the private key.
Examples
========
>>> from sympy.crypto.crypto import (
... kid_rsa_public_key, kid_rsa_private_key,
... decipher_kid_rsa, encipher_kid_rsa)
>>> a, b, A, B = 3, 4, 5, 6
>>> d = kid_rsa_private_key(a, b, A, B)
>>> msg = 200
>>> pub = kid_rsa_public_key(a, b, A, B)
>>> pri = kid_rsa_private_key(a, b, A, B)
>>> ct = encipher_kid_rsa(msg, pub)
>>> decipher_kid_rsa(ct, pri)
200
"""
n, d = key
return (msg*d) % n
#################### Morse Code ######################################
morse_char = {
".-": "A", "-...": "B",
"-.-.": "C", "-..": "D",
".": "E", "..-.": "F",
"--.": "G", "....": "H",
"..": "I", ".---": "J",
"-.-": "K", ".-..": "L",
"--": "M", "-.": "N",
"---": "O", ".--.": "P",
"--.-": "Q", ".-.": "R",
"...": "S", "-": "T",
"..-": "U", "...-": "V",
".--": "W", "-..-": "X",
"-.--": "Y", "--..": "Z",
"-----": "0", ".----": "1",
"..---": "2", "...--": "3",
"....-": "4", ".....": "5",
"-....": "6", "--...": "7",
"---..": "8", "----.": "9",
".-.-.-": ".", "--..--": ",",
"---...": ":", "-.-.-.": ";",
"..--..": "?", "-....-": "-",
"..--.-": "_", "-.--.": "(",
"-.--.-": ")", ".----.": "'",
"-...-": "=", ".-.-.": "+",
"-..-.": "/", ".--.-.": "@",
"...-..-": "$", "-.-.--": "!"}
char_morse = {v: k for k, v in morse_char.items()}
def encode_morse(msg, sep='|', mapping=None):
"""
Encodes a plaintext into popular Morse Code with letters
separated by ``sep`` and words by a double ``sep``.
Examples
========
>>> from sympy.crypto.crypto import encode_morse
>>> msg = 'ATTACK RIGHT FLANK'
>>> encode_morse(msg)
'.-|-|-|.-|-.-.|-.-||.-.|..|--.|....|-||..-.|.-..|.-|-.|-.-'
References
==========
.. [1] https://en.wikipedia.org/wiki/Morse_code
"""
mapping = mapping or char_morse
assert sep not in mapping
word_sep = 2*sep
mapping[" "] = word_sep
suffix = msg and msg[-1] in whitespace
# normalize whitespace
msg = (' ' if word_sep else '').join(msg.split())
# omit unmapped chars
chars = set(''.join(msg.split()))
ok = set(mapping.keys())
msg = translate(msg, None, ''.join(chars - ok))
morsestring = []
words = msg.split()
for word in words:
morseword = []
for letter in word:
morseletter = mapping[letter]
morseword.append(morseletter)
word = sep.join(morseword)
morsestring.append(word)
return word_sep.join(morsestring) + (word_sep if suffix else '')
def decode_morse(msg, sep='|', mapping=None):
"""
Decodes a Morse Code with letters separated by ``sep``
(default is '|') and words by `word_sep` (default is '||)
into plaintext.
Examples
========
>>> from sympy.crypto.crypto import decode_morse
>>> mc = '--|---|...-|.||.|.-|...|-'
>>> decode_morse(mc)
'MOVE EAST'
References
==========
.. [1] https://en.wikipedia.org/wiki/Morse_code
"""
mapping = mapping or morse_char
word_sep = 2*sep
characterstring = []
words = msg.strip(word_sep).split(word_sep)
for word in words:
letters = word.split(sep)
chars = [mapping[c] for c in letters]
word = ''.join(chars)
characterstring.append(word)
rv = " ".join(characterstring)
return rv
#################### LFSRs ##########################################
def lfsr_sequence(key, fill, n):
r"""
This function creates an LFSR sequence.
Parameters
==========
key : list
A list of finite field elements, `[c_0, c_1, \ldots, c_k].`
fill : list
The list of the initial terms of the LFSR sequence,
`[x_0, x_1, \ldots, x_k].`
n
Number of terms of the sequence that the function returns.
Returns
=======
L
The LFSR sequence defined by
`x_{n+1} = c_k x_n + \ldots + c_0 x_{n-k}`, for
`n \leq k`.
Notes
=====
S. Golomb [G]_ gives a list of three statistical properties a
sequence of numbers `a = \{a_n\}_{n=1}^\infty`,
`a_n \in \{0,1\}`, should display to be considered
"random". Define the autocorrelation of `a` to be
.. math::
C(k) = C(k,a) = \lim_{N\rightarrow \infty} {1\over N}\sum_{n=1}^N (-1)^{a_n + a_{n+k}}.
In the case where `a` is periodic with period
`P` then this reduces to
.. math::
C(k) = {1\over P}\sum_{n=1}^P (-1)^{a_n + a_{n+k}}.
Assume `a` is periodic with period `P`.
- balance:
.. math::
\left|\sum_{n=1}^P(-1)^{a_n}\right| \leq 1.
- low autocorrelation:
.. math::
C(k) = \left\{ \begin{array}{cc} 1,& k = 0,\\ \epsilon, & k \ne 0. \end{array} \right.
(For sequences satisfying these first two properties, it is known
that `\epsilon = -1/P` must hold.)
- proportional runs property: In each period, half the runs have
length `1`, one-fourth have length `2`, etc.
Moreover, there are as many runs of `1`'s as there are of
`0`'s.
Examples
========
>>> from sympy.crypto.crypto import lfsr_sequence
>>> from sympy.polys.domains import FF
>>> F = FF(2)
>>> fill = [F(1), F(1), F(0), F(1)]
>>> key = [F(1), F(0), F(0), F(1)]
>>> lfsr_sequence(key, fill, 10)
[1 mod 2, 1 mod 2, 0 mod 2, 1 mod 2, 0 mod 2,
1 mod 2, 1 mod 2, 0 mod 2, 0 mod 2, 1 mod 2]
References
==========
.. [G] Solomon Golomb, Shift register sequences, Aegean Park Press,
Laguna Hills, Ca, 1967
"""
if not isinstance(key, list):
raise TypeError("key must be a list")
if not isinstance(fill, list):
raise TypeError("fill must be a list")
p = key[0].mod
F = FF(p)
s = fill
k = len(fill)
L = []
for i in range(n):
s0 = s[:]
L.append(s[0])
s = s[1:k]
x = sum([int(key[i]*s0[i]) for i in range(k)])
s.append(F(x))
return L # use [x.to_int() for x in L] for int version
def lfsr_autocorrelation(L, P, k):
"""
This function computes the LFSR autocorrelation function.
Parameters
==========
L
A periodic sequence of elements of `GF(2)`.
L must have length larger than P.
P
The period of L.
k : int
An integer `k` (`0 < k < P`).
Returns
=======
autocorrelation
The k-th value of the autocorrelation of the LFSR L.
Examples
========
>>> from sympy.crypto.crypto import (
... lfsr_sequence, lfsr_autocorrelation)
>>> from sympy.polys.domains import FF
>>> F = FF(2)
>>> fill = [F(1), F(1), F(0), F(1)]
>>> key = [F(1), F(0), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_autocorrelation(s, 15, 7)
-1/15
>>> lfsr_autocorrelation(s, 15, 0)
1
"""
if not isinstance(L, list):
raise TypeError("L (=%s) must be a list" % L)
P = int(P)
k = int(k)
L0 = L[:P] # slices makes a copy
L1 = L0 + L0[:k]
L2 = [(-1)**(L1[i].to_int() + L1[i + k].to_int()) for i in range(P)]
tot = sum(L2)
return Rational(tot, P)
def lfsr_connection_polynomial(s):
"""
This function computes the LFSR connection polynomial.
Parameters
==========
s
A sequence of elements of even length, with entries in a finite
field.
Returns
=======
C(x)
The connection polynomial of a minimal LFSR yielding s.
This implements the algorithm in section 3 of J. L. Massey's
article [M]_.
Examples
========
>>> from sympy.crypto.crypto import (
... lfsr_sequence, lfsr_connection_polynomial)
>>> from sympy.polys.domains import FF
>>> F = FF(2)
>>> fill = [F(1), F(1), F(0), F(1)]
>>> key = [F(1), F(0), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
x**4 + x + 1
>>> fill = [F(1), F(0), F(0), F(1)]
>>> key = [F(1), F(1), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
x**3 + 1
>>> fill = [F(1), F(0), F(1)]
>>> key = [F(1), F(1), F(0)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
x**3 + x**2 + 1
>>> fill = [F(1), F(0), F(1)]
>>> key = [F(1), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
x**3 + x + 1
References
==========
.. [M] James L. Massey, "Shift-Register Synthesis and BCH Decoding."
IEEE Trans. on Information Theory, vol. 15(1), pp. 122-127,
Jan 1969.
"""
# Initialization:
p = s[0].mod
x = Symbol("x")
C = 1*x**0
B = 1*x**0
m = 1
b = 1*x**0
L = 0
N = 0
while N < len(s):
if L > 0:
dC = Poly(C).degree()
r = min(L + 1, dC + 1)
coeffsC = [C.subs(x, 0)] + [C.coeff(x**i)
for i in range(1, dC + 1)]
d = (s[N].to_int() + sum([coeffsC[i]*s[N - i].to_int()
for i in range(1, r)])) % p
if L == 0:
d = s[N].to_int()*x**0
if d == 0:
m += 1
N += 1
if d > 0:
if 2*L > N:
C = (C - d*((b**(p - 2)) % p)*x**m*B).expand()
m += 1
N += 1
else:
T = C
C = (C - d*((b**(p - 2)) % p)*x**m*B).expand()
L = N + 1 - L
m = 1
b = d
B = T
N += 1
dC = Poly(C).degree()
coeffsC = [C.subs(x, 0)] + [C.coeff(x**i) for i in range(1, dC + 1)]
return sum([coeffsC[i] % p*x**i for i in range(dC + 1)
if coeffsC[i] is not None])
#################### ElGamal #############################
def elgamal_private_key(digit=10, seed=None):
r"""
Return three number tuple as private key.
Explanation
===========
Elgamal encryption is based on the mathmatical problem
called the Discrete Logarithm Problem (DLP). For example,
`a^{b} \equiv c \pmod p`
In general, if ``a`` and ``b`` are known, ``ct`` is easily
calculated. If ``b`` is unknown, it is hard to use
``a`` and ``ct`` to get ``b``.
Parameters
==========
digit : int
Minimum number of binary digits for key.
Returns
=======
tuple : (p, r, d)
p = prime number.
r = primitive root.
d = random number.
Notes
=====
For testing purposes, the ``seed`` parameter may be set to control
the output of this routine. See sympy.testing.randtest._randrange.
Examples
========
>>> from sympy.crypto.crypto import elgamal_private_key
>>> from sympy.ntheory import is_primitive_root, isprime
>>> a, b, _ = elgamal_private_key()
>>> isprime(a)
True
>>> is_primitive_root(b, a)
True
"""
randrange = _randrange(seed)
p = nextprime(2**digit)
return p, primitive_root(p), randrange(2, p)
def elgamal_public_key(key):
r"""
Return three number tuple as public key.
Parameters
==========
key : (p, r, e)
Tuple generated by ``elgamal_private_key``.
Returns
=======
tuple : (p, r, e)
`e = r**d \bmod p`
`d` is a random number in private key.
Examples
========
>>> from sympy.crypto.crypto import elgamal_public_key
>>> elgamal_public_key((1031, 14, 636))
(1031, 14, 212)
"""
p, r, e = key
return p, r, pow(r, e, p)
def encipher_elgamal(i, key, seed=None):
r"""
Encrypt message with public key.
Explanation
===========
``i`` is a plaintext message expressed as an integer.
``key`` is public key (p, r, e). In order to encrypt
a message, a random number ``a`` in ``range(2, p)``
is generated and the encryped message is returned as
`c_{1}` and `c_{2}` where:
`c_{1} \equiv r^{a} \pmod p`
`c_{2} \equiv m e^{a} \pmod p`
Parameters
==========
msg
int of encoded message.
key
Public key.
Returns
=======
tuple : (c1, c2)
Encipher into two number.
Notes
=====
For testing purposes, the ``seed`` parameter may be set to control
the output of this routine. See sympy.testing.randtest._randrange.
Examples
========
>>> from sympy.crypto.crypto import encipher_elgamal, elgamal_private_key, elgamal_public_key
>>> pri = elgamal_private_key(5, seed=[3]); pri
(37, 2, 3)
>>> pub = elgamal_public_key(pri); pub
(37, 2, 8)
>>> msg = 36
>>> encipher_elgamal(msg, pub, seed=[3])
(8, 6)
"""
p, r, e = key
if i < 0 or i >= p:
raise ValueError(
'Message (%s) should be in range(%s)' % (i, p))
randrange = _randrange(seed)
a = randrange(2, p)
return pow(r, a, p), i*pow(e, a, p) % p
def decipher_elgamal(msg, key):
r"""
Decrypt message with private key.
`msg = (c_{1}, c_{2})`
`key = (p, r, d)`
According to extended Eucliden theorem,
`u c_{1}^{d} + p n = 1`
`u \equiv 1/{{c_{1}}^d} \pmod p`
`u c_{2} \equiv \frac{1}{c_{1}^d} c_{2} \equiv \frac{1}{r^{ad}} c_{2} \pmod p`
`\frac{1}{r^{ad}} m e^a \equiv \frac{1}{r^{ad}} m {r^{d a}} \equiv m \pmod p`
Examples
========
>>> from sympy.crypto.crypto import decipher_elgamal
>>> from sympy.crypto.crypto import encipher_elgamal
>>> from sympy.crypto.crypto import elgamal_private_key
>>> from sympy.crypto.crypto import elgamal_public_key
>>> pri = elgamal_private_key(5, seed=[3])
>>> pub = elgamal_public_key(pri); pub
(37, 2, 8)
>>> msg = 17
>>> decipher_elgamal(encipher_elgamal(msg, pub), pri) == msg
True
"""
p, _, d = key
c1, c2 = msg
u = igcdex(c1**d, p)[0]
return u * c2 % p
################ Diffie-Hellman Key Exchange #########################
def dh_private_key(digit=10, seed=None):
r"""
Return three integer tuple as private key.
Explanation
===========
Diffie-Hellman key exchange is based on the mathematical problem
called the Discrete Logarithm Problem (see ElGamal).
Diffie-Hellman key exchange is divided into the following steps:
* Alice and Bob agree on a base that consist of a prime ``p``
and a primitive root of ``p`` called ``g``
* Alice choses a number ``a`` and Bob choses a number ``b`` where
``a`` and ``b`` are random numbers in range `[2, p)`. These are
their private keys.
* Alice then publicly sends Bob `g^{a} \pmod p` while Bob sends
Alice `g^{b} \pmod p`
* They both raise the received value to their secretly chosen
number (``a`` or ``b``) and now have both as their shared key
`g^{ab} \pmod p`
Parameters
==========
digit
Minimum number of binary digits required in key.
Returns
=======
tuple : (p, g, a)
p = prime number.
g = primitive root of p.
a = random number from 2 through p - 1.
Notes
=====
For testing purposes, the ``seed`` parameter may be set to control
the output of this routine. See sympy.testing.randtest._randrange.
Examples
========
>>> from sympy.crypto.crypto import dh_private_key
>>> from sympy.ntheory import isprime, is_primitive_root
>>> p, g, _ = dh_private_key()
>>> isprime(p)
True
>>> is_primitive_root(g, p)
True
>>> p, g, _ = dh_private_key(5)
>>> isprime(p)
True
>>> is_primitive_root(g, p)
True
"""
p = nextprime(2**digit)
g = primitive_root(p)
randrange = _randrange(seed)
a = randrange(2, p)
return p, g, a
def dh_public_key(key):
r"""
Return three number tuple as public key.
This is the tuple that Alice sends to Bob.
Parameters
==========
key : (p, g, a)
A tuple generated by ``dh_private_key``.
Returns
=======
tuple : int, int, int
A tuple of `(p, g, g^a \mod p)` with `p`, `g` and `a` given as
parameters.s
Examples
========
>>> from sympy.crypto.crypto import dh_private_key, dh_public_key
>>> p, g, a = dh_private_key();
>>> _p, _g, x = dh_public_key((p, g, a))
>>> p == _p and g == _g
True
>>> x == pow(g, a, p)
True
"""
p, g, a = key
return p, g, pow(g, a, p)
def dh_shared_key(key, b):
"""
Return an integer that is the shared key.
This is what Bob and Alice can both calculate using the public
keys they received from each other and their private keys.
Parameters
==========
key : (p, g, x)
Tuple `(p, g, x)` generated by ``dh_public_key``.
b
Random number in the range of `2` to `p - 1`
(Chosen by second key exchange member (Bob)).
Returns
=======
int
A shared key.
Examples
========
>>> from sympy.crypto.crypto import (
... dh_private_key, dh_public_key, dh_shared_key)
>>> prk = dh_private_key();
>>> p, g, x = dh_public_key(prk);
>>> sk = dh_shared_key((p, g, x), 1000)
>>> sk == pow(x, 1000, p)
True
"""
p, _, x = key
if 1 >= b or b >= p:
raise ValueError(filldedent('''
Value of b should be greater 1 and less
than prime %s.''' % p))
return pow(x, b, p)
################ Goldwasser-Micali Encryption #########################
def _legendre(a, p):
"""
Returns the legendre symbol of a and p
assuming that p is a prime.
i.e. 1 if a is a quadratic residue mod p
-1 if a is not a quadratic residue mod p
0 if a is divisible by p
Parameters
==========
a : int
The number to test.
p : prime
The prime to test ``a`` against.
Returns
=======
int
Legendre symbol (a / p).
"""
sig = pow(a, (p - 1)//2, p)
if sig == 1:
return 1
elif sig == 0:
return 0
else:
return -1
def _random_coprime_stream(n, seed=None):
randrange = _randrange(seed)
while True:
y = randrange(n)
if gcd(y, n) == 1:
yield y
def gm_private_key(p, q, a=None):
"""
Check if ``p`` and ``q`` can be used as private keys for
the Goldwasser-Micali encryption. The method works
roughly as follows.
Explanation
===========
$\\cdot$ Pick two large primes $p$ and $q$.
$\\cdot$ Call their product $N$.
$\\cdot$ Given a message as an integer $i$, write $i$ in its
bit representation $b_0$ , $\\dotsc$ , $b_n$ .
$\\cdot$ For each $k$ ,
if $b_k$ = 0:
let $a_k$ be a random square
(quadratic residue) modulo $p q$
such that $jacobi \\_symbol(a, p q) = 1$
if $b_k$ = 1:
let $a_k$ be a random non-square
(non-quadratic residue) modulo $p q$
such that $jacobi \\_ symbol(a, p q) = 1$
returns [$a_1$ , $a_2$ , $\\dotsc$ ]
$b_k$ can be recovered by checking whether or not
$a_k$ is a residue. And from the $b_k$ 's, the message
can be reconstructed.
The idea is that, while $jacobi \\_ symbol(a, p q)$
can be easily computed (and when it is equal to $-1$ will
tell you that $a$ is not a square mod $p q$ ), quadratic
residuosity modulo a composite number is hard to compute
without knowing its factorization.
Moreover, approximately half the numbers coprime to $p q$ have
$jacobi \\_ symbol$ equal to $1$ . And among those, approximately half
are residues and approximately half are not. This maximizes the
entropy of the code.
Parameters
==========
p, q, a
Initialization variables.
Returns
=======
tuple : (p, q)
The input value ``p`` and ``q``.
Raises
======
ValueError
If ``p`` and ``q`` are not distinct odd primes.
"""
if p == q:
raise ValueError("expected distinct primes, "
"got two copies of %i" % p)
elif not isprime(p) or not isprime(q):
raise ValueError("first two arguments must be prime, "
"got %i of %i" % (p, q))
elif p == 2 or q == 2:
raise ValueError("first two arguments must not be even, "
"got %i of %i" % (p, q))
return p, q
def gm_public_key(p, q, a=None, seed=None):
"""
Compute public keys for ``p`` and ``q``.
Note that in Goldwasser-Micali Encryption,
public keys are randomly selected.
Parameters
==========
p, q, a : int, int, int
Initialization variables.
Returns
=======
tuple : (a, N)
``a`` is the input ``a`` if it is not ``None`` otherwise
some random integer coprime to ``p`` and ``q``.
``N`` is the product of ``p`` and ``q``.
"""
p, q = gm_private_key(p, q)
N = p * q
if a is None:
randrange = _randrange(seed)
while True:
a = randrange(N)
if _legendre(a, p) == _legendre(a, q) == -1:
break
else:
if _legendre(a, p) != -1 or _legendre(a, q) != -1:
return False
return (a, N)
def encipher_gm(i, key, seed=None):
"""
Encrypt integer 'i' using public_key 'key'
Note that gm uses random encryption.
Parameters
==========
i : int
The message to encrypt.
key : (a, N)
The public key.
Returns
=======
list : list of int
The randomized encrypted message.
"""
if i < 0:
raise ValueError(
"message must be a non-negative "
"integer: got %d instead" % i)
a, N = key
bits = []
while i > 0:
bits.append(i % 2)
i //= 2
gen = _random_coprime_stream(N, seed)
rev = reversed(bits)
encode = lambda b: next(gen)**2*pow(a, b) % N
return [ encode(b) for b in rev ]
def decipher_gm(message, key):
"""
Decrypt message 'message' using public_key 'key'.
Parameters
==========
message : list of int
The randomized encrypted message.
key : (p, q)
The private key.
Returns
=======
int
The encrypted message.
"""
p, q = key
res = lambda m, p: _legendre(m, p) > 0
bits = [res(m, p) * res(m, q) for m in message]
m = 0
for b in bits:
m <<= 1
m += not b
return m
########### RailFence Cipher #############
def encipher_railfence(message,rails):
"""
Performs Railfence Encryption on plaintext and returns ciphertext
Examples
========
>>> from sympy.crypto.crypto import encipher_railfence
>>> message = "hello world"
>>> encipher_railfence(message,3)
'horel ollwd'
Parameters
==========
message : string, the message to encrypt.
rails : int, the number of rails.
Returns
=======
The Encrypted string message.
References
==========
.. [1] https://en.wikipedia.org/wiki/Rail_fence_cipher
"""
r = list(range(rails))
p = cycle(r + r[-2:0:-1])
return ''.join(sorted(message, key=lambda i: next(p)))
def decipher_railfence(ciphertext,rails):
"""
Decrypt the message using the given rails
Examples
========
>>> from sympy.crypto.crypto import decipher_railfence
>>> decipher_railfence("horel ollwd",3)
'hello world'
Parameters
==========
message : string, the message to encrypt.
rails : int, the number of rails.
Returns
=======
The Decrypted string message.
"""
r = list(range(rails))
p = cycle(r + r[-2:0:-1])
idx = sorted(range(len(ciphertext)), key=lambda i: next(p))
res = [''] * len(ciphertext)
for i, c in zip(idx, ciphertext):
res[i] = c
return ''.join(res)
################ Blum-Goldwasser cryptosystem #########################
def bg_private_key(p, q):
"""
Check if p and q can be used as private keys for
the Blum-Goldwasser cryptosystem.
Explanation
===========
The three necessary checks for p and q to pass
so that they can be used as private keys:
1. p and q must both be prime
2. p and q must be distinct
3. p and q must be congruent to 3 mod 4
Parameters
==========
p, q
The keys to be checked.
Returns
=======
p, q
Input values.
Raises
======
ValueError
If p and q do not pass the above conditions.
"""
if not isprime(p) or not isprime(q):
raise ValueError("the two arguments must be prime, "
"got %i and %i" %(p, q))
elif p == q:
raise ValueError("the two arguments must be distinct, "
"got two copies of %i. " %p)
elif (p - 3) % 4 != 0 or (q - 3) % 4 != 0:
raise ValueError("the two arguments must be congruent to 3 mod 4, "
"got %i and %i" %(p, q))
return p, q
def bg_public_key(p, q):
"""
Calculates public keys from private keys.
Explanation
===========
The function first checks the validity of
private keys passed as arguments and
then returns their product.
Parameters
==========
p, q
The private keys.
Returns
=======
N
The public key.
"""
p, q = bg_private_key(p, q)
N = p * q
return N
def encipher_bg(i, key, seed=None):
"""
Encrypts the message using public key and seed.
Explanation
===========
ALGORITHM:
1. Encodes i as a string of L bits, m.
2. Select a random element r, where 1 < r < key, and computes
x = r^2 mod key.
3. Use BBS pseudo-random number generator to generate L random bits, b,
using the initial seed as x.
4. Encrypted message, c_i = m_i XOR b_i, 1 <= i <= L.
5. x_L = x^(2^L) mod key.
6. Return (c, x_L)
Parameters
==========
i
Message, a non-negative integer
key
The public key
Returns
=======
Tuple
(encrypted_message, x_L)
Raises
======
ValueError
If i is negative.
"""
if i < 0:
raise ValueError(
"message must be a non-negative "
"integer: got %d instead" % i)
enc_msg = []
while i > 0:
enc_msg.append(i % 2)
i //= 2
enc_msg.reverse()
L = len(enc_msg)
r = _randint(seed)(2, key - 1)
x = r**2 % key
x_L = pow(int(x), int(2**L), int(key))
rand_bits = []
for _ in range(L):
rand_bits.append(x % 2)
x = x**2 % key
encrypt_msg = [m ^ b for (m, b) in zip(enc_msg, rand_bits)]
return (encrypt_msg, x_L)
def decipher_bg(message, key):
"""
Decrypts the message using private keys.
Explanation
===========
ALGORITHM:
1. Let, c be the encrypted message, y the second number received,
and p and q be the private keys.
2. Compute, r_p = y^((p+1)/4 ^ L) mod p and
r_q = y^((q+1)/4 ^ L) mod q.
3. Compute x_0 = (q(q^-1 mod p)r_p + p(p^-1 mod q)r_q) mod N.
4. From, recompute the bits using the BBS generator, as in the
encryption algorithm.
5. Compute original message by XORing c and b.
Parameters
==========
message
Tuple of encrypted message and a non-negative integer.
key
Tuple of private keys.
Returns
=======
orig_msg
The original message
"""
p, q = key
encrypt_msg, y = message
public_key = p * q
L = len(encrypt_msg)
p_t = ((p + 1)/4)**L
q_t = ((q + 1)/4)**L
r_p = pow(int(y), int(p_t), int(p))
r_q = pow(int(y), int(q_t), int(q))
x = (q * mod_inverse(q, p) * r_p + p * mod_inverse(p, q) * r_q) % public_key
orig_bits = []
for _ in range(L):
orig_bits.append(x % 2)
x = x**2 % public_key
orig_msg = 0
for (m, b) in zip(encrypt_msg, orig_bits):
orig_msg = orig_msg * 2
orig_msg += (m ^ b)
return orig_msg
|
876bcaf9f64db85d403d72f00b778785051c020595bfb9b90656df1c1fe75bdc | """
The classes used here are for the internal use of assumptions system
only and should not be used anywhere else as these don't possess the
signatures common to SymPy objects. For general use of logic constructs
please refer to sympy.logic classes And, Or, Not, etc.
"""
from itertools import combinations, product
from sympy import S, Nor, Nand, Xor, Implies, Equivalent, ITE
from sympy.core.relational import Eq, Ne, Gt, Lt, Ge, Le
from sympy.logic.boolalg import Or, And, Not, Xnor
from itertools import zip_longest
class Literal:
"""
The smallest element of a CNF object.
Parameters
==========
lit : Boolean expression
is_Not : bool
Examples
========
>>> from sympy import Q
>>> from sympy.assumptions.cnf import Literal
>>> from sympy.abc import x
>>> Literal(Q.even(x))
Literal(Q.even(x), False)
>>> Literal(~Q.even(x))
Literal(Q.even(x), True)
"""
def __new__(cls, lit, is_Not=False):
if isinstance(lit, Not):
lit = lit.args[0]
is_Not = True
elif isinstance(lit, (AND, OR, Literal)):
return ~lit if is_Not else lit
obj = super().__new__(cls)
obj.lit = lit
obj.is_Not = is_Not
return obj
@property
def arg(self):
return self.lit
def rcall(self, expr):
if callable(self.lit):
lit = self.lit(expr)
else:
try:
lit = self.lit.apply(expr)
except AttributeError:
lit = self.lit.rcall(expr)
return type(self)(lit, self.is_Not)
def __invert__(self):
is_Not = not self.is_Not
return Literal(self.lit, is_Not)
def __str__(self):
return '{}({}, {})'.format(type(self).__name__, self.lit, self.is_Not)
__repr__ = __str__
def __eq__(self, other):
return self.arg == other.arg and self.is_Not == other.is_Not
def __hash__(self):
h = hash((type(self).__name__, self.arg, self.is_Not))
return h
class OR:
"""
A low-level implementation for Or
"""
def __init__(self, *args):
self._args = args
@property
def args(self):
return sorted(self._args, key=str)
def rcall(self, expr):
return type(self)(*[arg.rcall(expr)
for arg in self._args
])
def __invert__(self):
return AND(*[~arg for arg in self._args])
def __hash__(self):
return hash((type(self).__name__,) + tuple(self.args))
def __eq__(self, other):
return self.args == other.args
def __str__(self):
s = '(' + ' | '.join([str(arg) for arg in self.args]) + ')'
return s
__repr__ = __str__
class AND:
"""
A low-level implementation for And
"""
def __init__(self, *args):
self._args = args
def __invert__(self):
return OR(*[~arg for arg in self._args])
@property
def args(self):
return sorted(self._args, key=str)
def rcall(self, expr):
return type(self)(*[arg.rcall(expr)
for arg in self._args
])
def __hash__(self):
return hash((type(self).__name__,) + tuple(self.args))
def __eq__(self, other):
return self.args == other.args
def __str__(self):
s = '('+' & '.join([str(arg) for arg in self.args])+')'
return s
__repr__ = __str__
def to_NNF(expr, composite_map=None):
"""
Generates the Negation Normal Form of any boolean expression in terms
of AND, OR, and Literal objects.
Examples
========
>>> from sympy import Q, Eq
>>> from sympy.assumptions.cnf import to_NNF
>>> from sympy.abc import x, y
>>> expr = Q.even(x) & ~Q.positive(x)
>>> to_NNF(expr)
(Literal(Q.even(x), False) & Literal(Q.positive(x), True))
Supported boolean objects are converted to corresponding predicates.
>>> to_NNF(Eq(x, y))
Literal(Q.eq(x, y), False)
If ``composite_map`` argument is given, ``to_NNF`` decomposes the
specified predicate into a combination of primitive predicates.
>>> cmap = {Q.nonpositive: Q.negative | Q.zero}
>>> to_NNF(Q.nonpositive, cmap)
(Literal(Q.negative, False) | Literal(Q.zero, False))
>>> to_NNF(Q.nonpositive(x), cmap)
(Literal(Q.negative(x), False) | Literal(Q.zero(x), False))
"""
from sympy.assumptions.ask import Q
from sympy.assumptions.assume import AppliedPredicate, Predicate
if composite_map is None:
composite_map = dict()
binrelpreds = {Eq: Q.eq, Ne: Q.ne, Gt: Q.gt, Lt: Q.lt, Ge: Q.ge, Le: Q.le}
if type(expr) in binrelpreds:
pred = binrelpreds[type(expr)]
expr = pred(*expr.args)
if isinstance(expr, Not):
arg = expr.args[0]
tmp = to_NNF(arg, composite_map) # Strategy: negate the NNF of expr
return ~tmp
if isinstance(expr, Or):
return OR(*[to_NNF(x, composite_map) for x in Or.make_args(expr)])
if isinstance(expr, And):
return AND(*[to_NNF(x, composite_map) for x in And.make_args(expr)])
if isinstance(expr, Nand):
tmp = AND(*[to_NNF(x, composite_map) for x in expr.args])
return ~tmp
if isinstance(expr, Nor):
tmp = OR(*[to_NNF(x, composite_map) for x in expr.args])
return ~tmp
if isinstance(expr, Xor):
cnfs = []
for i in range(0, len(expr.args) + 1, 2):
for neg in combinations(expr.args, i):
clause = [~to_NNF(s, composite_map) if s in neg else to_NNF(s, composite_map)
for s in expr.args]
cnfs.append(OR(*clause))
return AND(*cnfs)
if isinstance(expr, Xnor):
cnfs = []
for i in range(0, len(expr.args) + 1, 2):
for neg in combinations(expr.args, i):
clause = [~to_NNF(s, composite_map) if s in neg else to_NNF(s, composite_map)
for s in expr.args]
cnfs.append(OR(*clause))
return ~AND(*cnfs)
if isinstance(expr, Implies):
L, R = to_NNF(expr.args[0], composite_map), to_NNF(expr.args[1], composite_map)
return OR(~L, R)
if isinstance(expr, Equivalent):
cnfs = []
for a, b in zip_longest(expr.args, expr.args[1:], fillvalue=expr.args[0]):
a = to_NNF(a, composite_map)
b = to_NNF(b, composite_map)
cnfs.append(OR(~a, b))
return AND(*cnfs)
if isinstance(expr, ITE):
L = to_NNF(expr.args[0], composite_map)
M = to_NNF(expr.args[1], composite_map)
R = to_NNF(expr.args[2], composite_map)
return AND(OR(~L, M), OR(L, R))
if isinstance(expr, AppliedPredicate):
pred, args = expr.function, expr.arguments
newpred = composite_map.get(pred, None)
if newpred is not None:
return to_NNF(newpred.rcall(*args), composite_map)
if isinstance(expr, Predicate):
newpred = composite_map.get(expr, None)
if newpred is not None:
return to_NNF(newpred, composite_map)
return Literal(expr)
def distribute_AND_over_OR(expr):
"""
Distributes AND over OR in the NNF expression.
Returns the result( Conjunctive Normal Form of expression)
as a CNF object.
"""
if not isinstance(expr, (AND, OR)):
tmp = set()
tmp.add(frozenset((expr,)))
return CNF(tmp)
if isinstance(expr, OR):
return CNF.all_or(*[distribute_AND_over_OR(arg)
for arg in expr._args])
if isinstance(expr, AND):
return CNF.all_and(*[distribute_AND_over_OR(arg)
for arg in expr._args])
class CNF:
"""
Class to represent CNF of a Boolean expression.
Consists of set of clauses, which themselves are stored as
frozenset of Literal objects.
Examples
========
>>> from sympy import Q
>>> from sympy.assumptions.cnf import CNF
>>> from sympy.abc import x
>>> cnf = CNF.from_prop(Q.real(x) & ~Q.zero(x))
>>> cnf.clauses
{frozenset({Literal(Q.zero(x), True)}),
frozenset({Literal(Q.negative(x), False),
Literal(Q.positive(x), False), Literal(Q.zero(x), False)})}
"""
def __init__(self, clauses=None):
if not clauses:
clauses = set()
self.clauses = clauses
def add(self, prop):
clauses = CNF.to_CNF(prop).clauses
self.add_clauses(clauses)
def __str__(self):
s = ' & '.join(
['(' + ' | '.join([str(lit) for lit in clause]) +')'
for clause in self.clauses]
)
return s
def extend(self, props):
for p in props:
self.add(p)
return self
def copy(self):
return CNF(set(self.clauses))
def add_clauses(self, clauses):
self.clauses |= clauses
@classmethod
def from_prop(cls, prop):
res = cls()
res.add(prop)
return res
def __iand__(self, other):
self.add_clauses(other.clauses)
return self
def all_predicates(self):
predicates = set()
for c in self.clauses:
predicates |= {arg.lit for arg in c}
return predicates
def _or(self, cnf):
clauses = set()
for a, b in product(self.clauses, cnf.clauses):
tmp = set(a)
for t in b:
tmp.add(t)
clauses.add(frozenset(tmp))
return CNF(clauses)
def _and(self, cnf):
clauses = self.clauses.union(cnf.clauses)
return CNF(clauses)
def _not(self):
clss = list(self.clauses)
ll = set()
for x in clss[-1]:
ll.add(frozenset((~x,)))
ll = CNF(ll)
for rest in clss[:-1]:
p = set()
for x in rest:
p.add(frozenset((~x,)))
ll = ll._or(CNF(p))
return ll
def rcall(self, expr):
clause_list = list()
for clause in self.clauses:
lits = [arg.rcall(expr) for arg in clause]
clause_list.append(OR(*lits))
expr = AND(*clause_list)
return distribute_AND_over_OR(expr)
@classmethod
def all_or(cls, *cnfs):
b = cnfs[0].copy()
for rest in cnfs[1:]:
b = b._or(rest)
return b
@classmethod
def all_and(cls, *cnfs):
b = cnfs[0].copy()
for rest in cnfs[1:]:
b = b._and(rest)
return b
@classmethod
def to_CNF(cls, expr):
from sympy.assumptions.facts import get_composite_predicates
expr = to_NNF(expr, get_composite_predicates())
expr = distribute_AND_over_OR(expr)
return expr
@classmethod
def CNF_to_cnf(cls, cnf):
"""
Converts CNF object to SymPy's boolean expression
retaining the form of expression.
"""
def remove_literal(arg):
return Not(arg.lit) if arg.is_Not else arg.lit
return And(*(Or(*(remove_literal(arg) for arg in clause)) for clause in cnf.clauses))
class EncodedCNF:
"""
Class for encoding the CNF expression.
"""
def __init__(self, data=None, encoding=None):
if not data and not encoding:
data = list()
encoding = dict()
self.data = data
self.encoding = encoding
self._symbols = list(encoding.keys())
def from_cnf(self, cnf):
self._symbols = list(cnf.all_predicates())
n = len(self._symbols)
self.encoding = dict(list(zip(self._symbols, list(range(1, n + 1)))))
self.data = [self.encode(clause) for clause in cnf.clauses]
@property
def symbols(self):
return self._symbols
@property
def variables(self):
return range(1, len(self._symbols) + 1)
def copy(self):
new_data = [set(clause) for clause in self.data]
return EncodedCNF(new_data, dict(self.encoding))
def add_prop(self, prop):
cnf = CNF.from_prop(prop)
self.add_from_cnf(cnf)
def add_from_cnf(self, cnf):
clauses = [self.encode(clause) for clause in cnf.clauses]
self.data += clauses
def encode_arg(self, arg):
literal = arg.lit
value = self.encoding.get(literal, None)
if value is None:
n = len(self._symbols)
self._symbols.append(literal)
value = self.encoding[literal] = n + 1
if arg.is_Not:
return -value
else:
return value
def encode(self, clause):
return {self.encode_arg(arg) if not arg.lit == S.false else 0 for arg in clause}
|
154341463b68cfdc658b182284aaa440f8174f7ad8e0b60b07a26d7b312d5f71 | """
This module contains functions to:
- solve a single equation for a single variable, in any domain either real or complex.
- solve a single transcendental equation for a single variable in any domain either real or complex.
(currently supports solving in real domain only)
- solve a system of linear equations with N variables and M equations.
- solve a system of Non Linear Equations with N variables and M equations
"""
from sympy.core.sympify import sympify
from sympy.core import (S, Pow, Dummy, pi, Expr, Wild, Mul, Equality,
Add)
from sympy.core.containers import Tuple
from sympy.core.numbers import I, Number, Rational, oo
from sympy.core.function import (Lambda, expand_complex, AppliedUndef,
expand_log)
from sympy.core.mod import Mod
from sympy.core.numbers import igcd
from sympy.core.relational import Eq, Ne, Relational
from sympy.core.symbol import Symbol, _uniquely_named_symbol
from sympy.core.sympify import _sympify
from sympy.simplify.simplify import simplify, fraction, trigsimp
from sympy.simplify import powdenest, logcombine
from sympy.functions import (log, Abs, tan, cot, sin, cos, sec, csc, exp,
acos, asin, acsc, asec, arg,
piecewise_fold, Piecewise)
from sympy.functions.elementary.trigonometric import (TrigonometricFunction,
HyperbolicFunction)
from sympy.functions.elementary.miscellaneous import real_root
from sympy.logic.boolalg import And
from sympy.sets import (FiniteSet, EmptySet, imageset, Interval, Intersection,
Union, ConditionSet, ImageSet, Complement, Contains)
from sympy.sets.sets import Set, ProductSet
from sympy.matrices import Matrix, MatrixBase
from sympy.ntheory import totient
from sympy.ntheory.factor_ import divisors
from sympy.ntheory.residue_ntheory import discrete_log, nthroot_mod
from sympy.polys import (roots, Poly, degree, together, PolynomialError,
RootOf, factor, lcm, gcd)
from sympy.polys.polyerrors import CoercionFailed
from sympy.polys.polytools import invert
from sympy.polys.solvers import (sympy_eqs_to_ring, solve_lin_sys,
PolyNonlinearError)
from sympy.polys.matrices.linsolve import _linsolve
from sympy.solvers.solvers import (checksol, denoms, unrad,
_simple_dens, recast_to_symbols)
from sympy.solvers.polysys import solve_poly_system
from sympy.solvers.inequalities import solve_univariate_inequality
from sympy.utilities import filldedent
from sympy.utilities.iterables import numbered_symbols, has_dups
from sympy.calculus.util import periodicity, continuous_domain
from sympy.core.compatibility import ordered, default_sort_key, is_sequence
from types import GeneratorType
from collections import defaultdict
class NonlinearError(ValueError):
"""Raised when unexpectedly encountering nonlinear equations"""
pass
_rc = Dummy("R", real=True), Dummy("C", complex=True)
def _masked(f, *atoms):
"""Return ``f``, with all objects given by ``atoms`` replaced with
Dummy symbols, ``d``, and the list of replacements, ``(d, e)``,
where ``e`` is an object of type given by ``atoms`` in which
any other instances of atoms have been recursively replaced with
Dummy symbols, too. The tuples are ordered so that if they are
applied in sequence, the origin ``f`` will be restored.
Examples
========
>>> from sympy import cos
>>> from sympy.abc import x
>>> from sympy.solvers.solveset import _masked
>>> f = cos(cos(x) + 1)
>>> f, reps = _masked(cos(1 + cos(x)), cos)
>>> f
_a1
>>> reps
[(_a1, cos(_a0 + 1)), (_a0, cos(x))]
>>> for d, e in reps:
... f = f.xreplace({d: e})
>>> f
cos(cos(x) + 1)
"""
sym = numbered_symbols('a', cls=Dummy, real=True)
mask = []
for a in ordered(f.atoms(*atoms)):
for i in mask:
a = a.replace(*i)
mask.append((a, next(sym)))
for i, (o, n) in enumerate(mask):
f = f.replace(o, n)
mask[i] = (n, o)
mask = list(reversed(mask))
return f, mask
def _invert(f_x, y, x, domain=S.Complexes):
r"""
Reduce the complex valued equation ``f(x) = y`` to a set of equations
``{g(x) = h_1(y), g(x) = h_2(y), ..., g(x) = h_n(y) }`` where ``g(x)`` is
a simpler function than ``f(x)``. The return value is a tuple ``(g(x),
set_h)``, where ``g(x)`` is a function of ``x`` and ``set_h`` is
the set of function ``{h_1(y), h_2(y), ..., h_n(y)}``.
Here, ``y`` is not necessarily a symbol.
The ``set_h`` contains the functions, along with the information
about the domain in which they are valid, through set
operations. For instance, if ``y = Abs(x) - n`` is inverted
in the real domain, then ``set_h`` is not simply
`{-n, n}` as the nature of `n` is unknown; rather, it is:
`Intersection([0, oo) {n}) U Intersection((-oo, 0], {-n})`
By default, the complex domain is used which means that inverting even
seemingly simple functions like ``exp(x)`` will give very different
results from those obtained in the real domain.
(In the case of ``exp(x)``, the inversion via ``log`` is multi-valued
in the complex domain, having infinitely many branches.)
If you are working with real values only (or you are not sure which
function to use) you should probably set the domain to
``S.Reals`` (or use `invert\_real` which does that automatically).
Examples
========
>>> from sympy.solvers.solveset import invert_complex, invert_real
>>> from sympy.abc import x, y
>>> from sympy import exp
When does exp(x) == y?
>>> invert_complex(exp(x), y, x)
(x, ImageSet(Lambda(_n, I*(2*_n*pi + arg(y)) + log(Abs(y))), Integers))
>>> invert_real(exp(x), y, x)
(x, Intersection({log(y)}, Reals))
When does exp(x) == 1?
>>> invert_complex(exp(x), 1, x)
(x, ImageSet(Lambda(_n, 2*_n*I*pi), Integers))
>>> invert_real(exp(x), 1, x)
(x, {0})
See Also
========
invert_real, invert_complex
"""
x = sympify(x)
if not x.is_Symbol:
raise ValueError("x must be a symbol")
f_x = sympify(f_x)
if x not in f_x.free_symbols:
raise ValueError("Inverse of constant function doesn't exist")
y = sympify(y)
if x in y.free_symbols:
raise ValueError("y should be independent of x ")
if domain.is_subset(S.Reals):
x1, s = _invert_real(f_x, FiniteSet(y), x)
else:
x1, s = _invert_complex(f_x, FiniteSet(y), x)
if not isinstance(s, FiniteSet) or x1 != x:
return x1, s
# Avoid adding gratuitous intersections with S.Complexes. Actual
# conditions should be handled by the respective inverters.
if domain is S.Complexes:
return x1, s
else:
return x1, s.intersection(domain)
invert_complex = _invert
def invert_real(f_x, y, x):
"""
Inverts a real-valued function. Same as ``_invert``, but sets
the domain to ``S.Reals`` before inverting.
"""
return _invert(f_x, y, x, S.Reals)
def _invert_real(f, g_ys, symbol):
"""Helper function for _invert."""
if f == symbol:
return (f, g_ys)
n = Dummy('n', real=True)
if isinstance(f, exp) or (f.is_Pow and f.base == S.Exp1):
return _invert_real(f.exp,
imageset(Lambda(n, log(n)), g_ys),
symbol)
if hasattr(f, 'inverse') and f.inverse() is not None and not isinstance(f, (
TrigonometricFunction,
HyperbolicFunction,
)):
if len(f.args) > 1:
raise ValueError("Only functions with one argument are supported.")
return _invert_real(f.args[0],
imageset(Lambda(n, f.inverse()(n)), g_ys),
symbol)
if isinstance(f, Abs):
return _invert_abs(f.args[0], g_ys, symbol)
if f.is_Add:
# f = g + h
g, h = f.as_independent(symbol)
if g is not S.Zero:
return _invert_real(h, imageset(Lambda(n, n - g), g_ys), symbol)
if f.is_Mul:
# f = g*h
g, h = f.as_independent(symbol)
if g is not S.One:
return _invert_real(h, imageset(Lambda(n, n/g), g_ys), symbol)
if f.is_Pow:
base, expo = f.args
base_has_sym = base.has(symbol)
expo_has_sym = expo.has(symbol)
if not expo_has_sym:
if expo.is_rational:
num, den = expo.as_numer_denom()
if den % 2 == 0 and num % 2 == 1 and den.is_zero is False:
root = Lambda(n, real_root(n, expo))
g_ys_pos = g_ys & Interval(0, oo)
res = imageset(root, g_ys_pos)
base_positive = solveset(base >= 0, symbol, S.Reals)
_inv, _set = _invert_real(base, res, symbol)
return (_inv, _set.intersect(base_positive))
if den % 2 == 1:
root = Lambda(n, real_root(n, expo))
res = imageset(root, g_ys)
if num % 2 == 0:
neg_res = imageset(Lambda(n, -n), res)
return _invert_real(base, res + neg_res, symbol)
if num % 2 == 1:
return _invert_real(base, res, symbol)
elif expo.is_irrational:
root = Lambda(n, real_root(n, expo))
g_ys_pos = g_ys & Interval(0, oo)
res = imageset(root, g_ys_pos)
return _invert_real(base, res, symbol)
else:
# indeterminate exponent, e.g. Float or parity of
# num, den of rational could not be determined
pass # use default return
if not base_has_sym:
rhs = g_ys.args[0]
if base.is_positive:
return _invert_real(expo,
imageset(Lambda(n, log(n, base, evaluate=False)), g_ys), symbol)
elif base.is_negative:
from sympy.core.power import integer_log
s, b = integer_log(rhs, base)
if b:
return _invert_real(expo, FiniteSet(s), symbol)
else:
return _invert_real(expo, S.EmptySet, symbol)
elif base.is_zero:
one = Eq(rhs, 1)
if one == S.true:
# special case: 0**x - 1
return _invert_real(expo, FiniteSet(0), symbol)
elif one == S.false:
return _invert_real(expo, S.EmptySet, symbol)
if isinstance(f, TrigonometricFunction):
if isinstance(g_ys, FiniteSet):
def inv(trig):
if isinstance(trig, (sin, csc)):
F = asin if isinstance(trig, sin) else acsc
return (lambda a: n*pi + (-1)**n*F(a),)
if isinstance(trig, (cos, sec)):
F = acos if isinstance(trig, cos) else asec
return (
lambda a: 2*n*pi + F(a),
lambda a: 2*n*pi - F(a),)
if isinstance(trig, (tan, cot)):
return (lambda a: n*pi + trig.inverse()(a),)
n = Dummy('n', integer=True)
invs = S.EmptySet
for L in inv(f):
invs += Union(*[imageset(Lambda(n, L(g)), S.Integers) for g in g_ys])
return _invert_real(f.args[0], invs, symbol)
return (f, g_ys)
def _invert_complex(f, g_ys, symbol):
"""Helper function for _invert."""
if f == symbol:
return (f, g_ys)
n = Dummy('n')
if f.is_Add:
# f = g + h
g, h = f.as_independent(symbol)
if g is not S.Zero:
return _invert_complex(h, imageset(Lambda(n, n - g), g_ys), symbol)
if f.is_Mul:
# f = g*h
g, h = f.as_independent(symbol)
if g is not S.One:
if g in {S.NegativeInfinity, S.ComplexInfinity, S.Infinity}:
return (h, S.EmptySet)
return _invert_complex(h, imageset(Lambda(n, n/g), g_ys), symbol)
if f.is_Pow:
base, expo = f.args
# special case: g**r = 0
# Could be improved like `_invert_real` to handle more general cases.
if expo.is_Rational and g_ys == FiniteSet(0):
if expo.is_positive:
return _invert_complex(base, g_ys, symbol)
if hasattr(f, 'inverse') and f.inverse() is not None and \
not isinstance(f, TrigonometricFunction) and \
not isinstance(f, HyperbolicFunction) and \
not isinstance(f, exp):
if len(f.args) > 1:
raise ValueError("Only functions with one argument are supported.")
return _invert_complex(f.args[0],
imageset(Lambda(n, f.inverse()(n)), g_ys), symbol)
if isinstance(f, exp) or (f.is_Pow and f.base == S.Exp1):
if isinstance(g_ys, ImageSet):
# can solve upto `(d*exp(exp(...(exp(a*x + b))...) + c)` format.
# Further can be improved to `(d*exp(exp(...(exp(a*x**n + b*x**(n-1) + ... + f))...) + c)`.
g_ys_expr = g_ys.lamda.expr
g_ys_vars = g_ys.lamda.variables
k = Dummy('k{}'.format(len(g_ys_vars)))
g_ys_vars_1 = (k,) + g_ys_vars
exp_invs = Union(*[imageset(Lambda((g_ys_vars_1,), (I*(2*k*pi + arg(g_ys_expr))
+ log(Abs(g_ys_expr)))), S.Integers**(len(g_ys_vars_1)))])
elif isinstance(g_ys, FiniteSet):
exp_invs = Union(*[imageset(Lambda(n, I*(2*n*pi + arg(g_y)) +
log(Abs(g_y))), S.Integers)
for g_y in g_ys if g_y != 0])
return _invert_complex(f.exp, exp_invs, symbol)
return (f, g_ys)
def _invert_abs(f, g_ys, symbol):
"""Helper function for inverting absolute value functions.
Returns the complete result of inverting an absolute value
function along with the conditions which must also be satisfied.
If it is certain that all these conditions are met, a `FiniteSet`
of all possible solutions is returned. If any condition cannot be
satisfied, an `EmptySet` is returned. Otherwise, a `ConditionSet`
of the solutions, with all the required conditions specified, is
returned.
"""
if not g_ys.is_FiniteSet:
# this could be used for FiniteSet, but the
# results are more compact if they aren't, e.g.
# ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n}) vs
# Union(Intersection(Interval(0, oo), {n}), Intersection(Interval(-oo, 0), {-n}))
# for the solution of abs(x) - n
pos = Intersection(g_ys, Interval(0, S.Infinity))
parg = _invert_real(f, pos, symbol)
narg = _invert_real(-f, pos, symbol)
if parg[0] != narg[0]:
raise NotImplementedError
return parg[0], Union(narg[1], parg[1])
# check conditions: all these must be true. If any are unknown
# then return them as conditions which must be satisfied
unknown = []
for a in g_ys.args:
ok = a.is_nonnegative if a.is_Number else a.is_positive
if ok is None:
unknown.append(a)
elif not ok:
return symbol, S.EmptySet
if unknown:
conditions = And(*[Contains(i, Interval(0, oo))
for i in unknown])
else:
conditions = True
n = Dummy('n', real=True)
# this is slightly different than above: instead of solving
# +/-f on positive values, here we solve for f on +/- g_ys
g_x, values = _invert_real(f, Union(
imageset(Lambda(n, n), g_ys),
imageset(Lambda(n, -n), g_ys)), symbol)
return g_x, ConditionSet(g_x, conditions, values)
def domain_check(f, symbol, p):
"""Returns False if point p is infinite or any subexpression of f
is infinite or becomes so after replacing symbol with p. If none of
these conditions is met then True will be returned.
Examples
========
>>> from sympy import Mul, oo
>>> from sympy.abc import x
>>> from sympy.solvers.solveset import domain_check
>>> g = 1/(1 + (1/(x + 1))**2)
>>> domain_check(g, x, -1)
False
>>> domain_check(x**2, x, 0)
True
>>> domain_check(1/x, x, oo)
False
* The function relies on the assumption that the original form
of the equation has not been changed by automatic simplification.
>>> domain_check(x/x, x, 0) # x/x is automatically simplified to 1
True
* To deal with automatic evaluations use evaluate=False:
>>> domain_check(Mul(x, 1/x, evaluate=False), x, 0)
False
"""
f, p = sympify(f), sympify(p)
if p.is_infinite:
return False
return _domain_check(f, symbol, p)
def _domain_check(f, symbol, p):
# helper for domain check
if f.is_Atom and f.is_finite:
return True
elif f.subs(symbol, p).is_infinite:
return False
elif isinstance(f, Piecewise):
# Check the cases of the Piecewise in turn. There might be invalid
# expressions in later cases that don't apply e.g.
# solveset(Piecewise((0, Eq(x, 0)), (1/x, True)), x)
for expr, cond in f.args:
condsubs = cond.subs(symbol, p)
if condsubs is S.false:
continue
elif condsubs is S.true:
return _domain_check(expr, symbol, p)
else:
# We don't know which case of the Piecewise holds. On this
# basis we cannot decide whether any solution is in or out of
# the domain. Ideally this function would allow returning a
# symbolic condition for the validity of the solution that
# could be handled in the calling code. In the mean time we'll
# give this particular solution the benefit of the doubt and
# let it pass.
return True
else:
# TODO : We should not blindly recurse through all args of arbitrary expressions like this
return all(_domain_check(g, symbol, p)
for g in f.args)
def _is_finite_with_finite_vars(f, domain=S.Complexes):
"""
Return True if the given expression is finite. For symbols that
don't assign a value for `complex` and/or `real`, the domain will
be used to assign a value; symbols that don't assign a value
for `finite` will be made finite. All other assumptions are
left unmodified.
"""
def assumptions(s):
A = s.assumptions0
A.setdefault('finite', A.get('finite', True))
if domain.is_subset(S.Reals):
# if this gets set it will make complex=True, too
A.setdefault('real', True)
else:
# don't change 'real' because being complex implies
# nothing about being real
A.setdefault('complex', True)
return A
reps = {s: Dummy(**assumptions(s)) for s in f.free_symbols}
return f.xreplace(reps).is_finite
def _is_function_class_equation(func_class, f, symbol):
""" Tests whether the equation is an equation of the given function class.
The given equation belongs to the given function class if it is
comprised of functions of the function class which are multiplied by
or added to expressions independent of the symbol. In addition, the
arguments of all such functions must be linear in the symbol as well.
Examples
========
>>> from sympy.solvers.solveset import _is_function_class_equation
>>> from sympy import tan, sin, tanh, sinh, exp
>>> from sympy.abc import x
>>> from sympy.functions.elementary.trigonometric import (TrigonometricFunction,
... HyperbolicFunction)
>>> _is_function_class_equation(TrigonometricFunction, exp(x) + tan(x), x)
False
>>> _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x)
True
>>> _is_function_class_equation(TrigonometricFunction, tan(x**2), x)
False
>>> _is_function_class_equation(TrigonometricFunction, tan(x + 2), x)
True
>>> _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x)
True
"""
if f.is_Mul or f.is_Add:
return all(_is_function_class_equation(func_class, arg, symbol)
for arg in f.args)
if f.is_Pow:
if not f.exp.has(symbol):
return _is_function_class_equation(func_class, f.base, symbol)
else:
return False
if not f.has(symbol):
return True
if isinstance(f, func_class):
try:
g = Poly(f.args[0], symbol)
return g.degree() <= 1
except PolynomialError:
return False
else:
return False
def _solve_as_rational(f, symbol, domain):
""" solve rational functions"""
from sympy.core.function import _mexpand
f = together(_mexpand(f, recursive=True), deep=True)
g, h = fraction(f)
if not h.has(symbol):
try:
return _solve_as_poly(g, symbol, domain)
except NotImplementedError:
# The polynomial formed from g could end up having
# coefficients in a ring over which finding roots
# isn't implemented yet, e.g. ZZ[a] for some symbol a
return ConditionSet(symbol, Eq(f, 0), domain)
except CoercionFailed:
# contained oo, zoo or nan
return S.EmptySet
else:
valid_solns = _solveset(g, symbol, domain)
invalid_solns = _solveset(h, symbol, domain)
return valid_solns - invalid_solns
class _SolveTrig1Error(Exception):
"""Raised when _solve_trig1 heuristics do not apply"""
def _solve_trig(f, symbol, domain):
"""Function to call other helpers to solve trigonometric equations """
sol = None
try:
sol = _solve_trig1(f, symbol, domain)
except _SolveTrig1Error:
try:
sol = _solve_trig2(f, symbol, domain)
except ValueError:
raise NotImplementedError(filldedent('''
Solution to this kind of trigonometric equations
is yet to be implemented'''))
return sol
def _solve_trig1(f, symbol, domain):
"""Primary solver for trigonometric and hyperbolic equations
Returns either the solution set as a ConditionSet (auto-evaluated to a
union of ImageSets if no variables besides 'symbol' are involved) or
raises _SolveTrig1Error if f == 0 can't be solved.
Notes
=====
Algorithm:
1. Do a change of variable x -> mu*x in arguments to trigonometric and
hyperbolic functions, in order to reduce them to small integers. (This
step is crucial to keep the degrees of the polynomials of step 4 low.)
2. Rewrite trigonometric/hyperbolic functions as exponentials.
3. Proceed to a 2nd change of variable, replacing exp(I*x) or exp(x) by y.
4. Solve the resulting rational equation.
5. Use invert_complex or invert_real to return to the original variable.
6. If the coefficients of 'symbol' were symbolic in nature, add the
necessary consistency conditions in a ConditionSet.
"""
# Prepare change of variable
x = Dummy('x')
if _is_function_class_equation(HyperbolicFunction, f, symbol):
cov = exp(x)
inverter = invert_real if domain.is_subset(S.Reals) else invert_complex
else:
cov = exp(I*x)
inverter = invert_complex
f = trigsimp(f)
f_original = f
trig_functions = f.atoms(TrigonometricFunction, HyperbolicFunction)
trig_arguments = [e.args[0] for e in trig_functions]
# trigsimp may have reduced the equation to an expression
# that is independent of 'symbol' (e.g. cos**2+sin**2)
if not any(a.has(symbol) for a in trig_arguments):
return solveset(f_original, symbol, domain)
denominators = []
numerators = []
for ar in trig_arguments:
try:
poly_ar = Poly(ar, symbol)
except PolynomialError:
raise _SolveTrig1Error("trig argument is not a polynomial")
if poly_ar.degree() > 1: # degree >1 still bad
raise _SolveTrig1Error("degree of variable must not exceed one")
if poly_ar.degree() == 0: # degree 0, don't care
continue
c = poly_ar.all_coeffs()[0] # got the coefficient of 'symbol'
numerators.append(fraction(c)[0])
denominators.append(fraction(c)[1])
mu = lcm(denominators)/gcd(numerators)
f = f.subs(symbol, mu*x)
f = f.rewrite(exp)
f = together(f)
g, h = fraction(f)
y = Dummy('y')
g, h = g.expand(), h.expand()
g, h = g.subs(cov, y), h.subs(cov, y)
if g.has(x) or h.has(x):
raise _SolveTrig1Error("change of variable not possible")
solns = solveset_complex(g, y) - solveset_complex(h, y)
if isinstance(solns, ConditionSet):
raise _SolveTrig1Error("polynomial has ConditionSet solution")
if isinstance(solns, FiniteSet):
if any(isinstance(s, RootOf) for s in solns):
raise _SolveTrig1Error("polynomial results in RootOf object")
# revert the change of variable
cov = cov.subs(x, symbol/mu)
result = Union(*[inverter(cov, s, symbol)[1] for s in solns])
# In case of symbolic coefficients, the solution set is only valid
# if numerator and denominator of mu are non-zero.
if mu.has(Symbol):
syms = (mu).atoms(Symbol)
munum, muden = fraction(mu)
condnum = munum.as_independent(*syms, as_Add=False)[1]
condden = muden.as_independent(*syms, as_Add=False)[1]
cond = And(Ne(condnum, 0), Ne(condden, 0))
else:
cond = True
# Actual conditions are returned as part of the ConditionSet. Adding an
# intersection with C would only complicate some solution sets due to
# current limitations of intersection code. (e.g. #19154)
if domain is S.Complexes:
# This is a slight abuse of ConditionSet. Ideally this should
# be some kind of "PiecewiseSet". (See #19507 discussion)
return ConditionSet(symbol, cond, result)
else:
return ConditionSet(symbol, cond, Intersection(result, domain))
elif solns is S.EmptySet:
return S.EmptySet
else:
raise _SolveTrig1Error("polynomial solutions must form FiniteSet")
def _solve_trig2(f, symbol, domain):
"""Secondary helper to solve trigonometric equations,
called when first helper fails """
from sympy import ilcm, expand_trig
f = trigsimp(f)
f_original = f
trig_functions = f.atoms(sin, cos, tan, sec, cot, csc)
trig_arguments = [e.args[0] for e in trig_functions]
denominators = []
numerators = []
# todo: This solver can be extended to hyperbolics if the
# analogous change of variable to tanh (instead of tan)
# is used.
if not trig_functions:
return ConditionSet(symbol, Eq(f_original, 0), domain)
# todo: The pre-processing below (extraction of numerators, denominators,
# gcd, lcm, mu, etc.) should be updated to the enhanced version in
# _solve_trig1. (See #19507)
for ar in trig_arguments:
try:
poly_ar = Poly(ar, symbol)
except PolynomialError:
raise ValueError("give up, we can't solve if this is not a polynomial in x")
if poly_ar.degree() > 1: # degree >1 still bad
raise ValueError("degree of variable inside polynomial should not exceed one")
if poly_ar.degree() == 0: # degree 0, don't care
continue
c = poly_ar.all_coeffs()[0] # got the coefficient of 'symbol'
try:
numerators.append(Rational(c).p)
denominators.append(Rational(c).q)
except TypeError:
return ConditionSet(symbol, Eq(f_original, 0), domain)
x = Dummy('x')
# ilcm() and igcd() require more than one argument
if len(numerators) > 1:
mu = Rational(2)*ilcm(*denominators)/igcd(*numerators)
else:
assert len(numerators) == 1
mu = Rational(2)*denominators[0]/numerators[0]
f = f.subs(symbol, mu*x)
f = f.rewrite(tan)
f = expand_trig(f)
f = together(f)
g, h = fraction(f)
y = Dummy('y')
g, h = g.expand(), h.expand()
g, h = g.subs(tan(x), y), h.subs(tan(x), y)
if g.has(x) or h.has(x):
return ConditionSet(symbol, Eq(f_original, 0), domain)
solns = solveset(g, y, S.Reals) - solveset(h, y, S.Reals)
if isinstance(solns, FiniteSet):
result = Union(*[invert_real(tan(symbol/mu), s, symbol)[1]
for s in solns])
dsol = invert_real(tan(symbol/mu), oo, symbol)[1]
if degree(h) > degree(g): # If degree(denom)>degree(num) then there
result = Union(result, dsol) # would be another sol at Lim(denom-->oo)
return Intersection(result, domain)
elif solns is S.EmptySet:
return S.EmptySet
else:
return ConditionSet(symbol, Eq(f_original, 0), S.Reals)
def _solve_as_poly(f, symbol, domain=S.Complexes):
"""
Solve the equation using polynomial techniques if it already is a
polynomial equation or, with a change of variables, can be made so.
"""
result = None
if f.is_polynomial(symbol):
solns = roots(f, symbol, cubics=True, quartics=True,
quintics=True, domain='EX')
num_roots = sum(solns.values())
if degree(f, symbol) <= num_roots:
result = FiniteSet(*solns.keys())
else:
poly = Poly(f, symbol)
solns = poly.all_roots()
if poly.degree() <= len(solns):
result = FiniteSet(*solns)
else:
result = ConditionSet(symbol, Eq(f, 0), domain)
else:
poly = Poly(f)
if poly is None:
result = ConditionSet(symbol, Eq(f, 0), domain)
gens = [g for g in poly.gens if g.has(symbol)]
if len(gens) == 1:
poly = Poly(poly, gens[0])
gen = poly.gen
deg = poly.degree()
poly = Poly(poly.as_expr(), poly.gen, composite=True)
poly_solns = FiniteSet(*roots(poly, cubics=True, quartics=True,
quintics=True).keys())
if len(poly_solns) < deg:
result = ConditionSet(symbol, Eq(f, 0), domain)
if gen != symbol:
y = Dummy('y')
inverter = invert_real if domain.is_subset(S.Reals) else invert_complex
lhs, rhs_s = inverter(gen, y, symbol)
if lhs == symbol:
result = Union(*[rhs_s.subs(y, s) for s in poly_solns])
else:
result = ConditionSet(symbol, Eq(f, 0), domain)
else:
result = ConditionSet(symbol, Eq(f, 0), domain)
if result is not None:
if isinstance(result, FiniteSet):
# this is to simplify solutions like -sqrt(-I) to sqrt(2)/2
# - sqrt(2)*I/2. We are not expanding for solution with symbols
# or undefined functions because that makes the solution more complicated.
# For example, expand_complex(a) returns re(a) + I*im(a)
if all(s.atoms(Symbol, AppliedUndef) == set() and not isinstance(s, RootOf)
for s in result):
s = Dummy('s')
result = imageset(Lambda(s, expand_complex(s)), result)
if isinstance(result, FiniteSet) and domain != S.Complexes:
# Avoid adding gratuitous intersections with S.Complexes. Actual
# conditions should be handled elsewhere.
result = result.intersection(domain)
return result
else:
return ConditionSet(symbol, Eq(f, 0), domain)
def _solve_radical(f, unradf, symbol, solveset_solver):
""" Helper function to solve equations with radicals """
res = unradf
eq, cov = res if res else (f, [])
if not cov:
result = solveset_solver(eq, symbol) - \
Union(*[solveset_solver(g, symbol) for g in denoms(f, symbol)])
else:
y, yeq = cov
if not solveset_solver(y - I, y):
yreal = Dummy('yreal', real=True)
yeq = yeq.xreplace({y: yreal})
eq = eq.xreplace({y: yreal})
y = yreal
g_y_s = solveset_solver(yeq, symbol)
f_y_sols = solveset_solver(eq, y)
result = Union(*[imageset(Lambda(y, g_y), f_y_sols)
for g_y in g_y_s])
if not isinstance(result, FiniteSet):
solution_set = result
else:
f_set = [] # solutions for FiniteSet
c_set = [] # solutions for ConditionSet
for s in result:
if checksol(f, symbol, s):
f_set.append(s)
else:
c_set.append(s)
solution_set = FiniteSet(*f_set) + ConditionSet(symbol, Eq(f, 0), FiniteSet(*c_set))
return solution_set
def _solve_abs(f, symbol, domain):
""" Helper function to solve equation involving absolute value function """
if not domain.is_subset(S.Reals):
raise ValueError(filldedent('''
Absolute values cannot be inverted in the
complex domain.'''))
p, q, r = Wild('p'), Wild('q'), Wild('r')
pattern_match = f.match(p*Abs(q) + r) or {}
f_p, f_q, f_r = [pattern_match.get(i, S.Zero) for i in (p, q, r)]
if not (f_p.is_zero or f_q.is_zero):
domain = continuous_domain(f_q, symbol, domain)
q_pos_cond = solve_univariate_inequality(f_q >= 0, symbol,
relational=False, domain=domain, continuous=True)
q_neg_cond = q_pos_cond.complement(domain)
sols_q_pos = solveset_real(f_p*f_q + f_r,
symbol).intersect(q_pos_cond)
sols_q_neg = solveset_real(f_p*(-f_q) + f_r,
symbol).intersect(q_neg_cond)
return Union(sols_q_pos, sols_q_neg)
else:
return ConditionSet(symbol, Eq(f, 0), domain)
def solve_decomposition(f, symbol, domain):
"""
Function to solve equations via the principle of "Decomposition
and Rewriting".
Examples
========
>>> from sympy import exp, sin, Symbol, pprint, S
>>> from sympy.solvers.solveset import solve_decomposition as sd
>>> x = Symbol('x')
>>> f1 = exp(2*x) - 3*exp(x) + 2
>>> sd(f1, x, S.Reals)
{0, log(2)}
>>> f2 = sin(x)**2 + 2*sin(x) + 1
>>> pprint(sd(f2, x, S.Reals), use_unicode=False)
3*pi
{2*n*pi + ---- | n in Integers}
2
>>> f3 = sin(x + 2)
>>> pprint(sd(f3, x, S.Reals), use_unicode=False)
{2*n*pi - 2 | n in Integers} U {2*n*pi - 2 + pi | n in Integers}
"""
from sympy.solvers.decompogen import decompogen
from sympy.calculus.util import function_range
# decompose the given function
g_s = decompogen(f, symbol)
# `y_s` represents the set of values for which the function `g` is to be
# solved.
# `solutions` represent the solutions of the equations `g = y_s` or
# `g = 0` depending on the type of `y_s`.
# As we are interested in solving the equation: f = 0
y_s = FiniteSet(0)
for g in g_s:
frange = function_range(g, symbol, domain)
y_s = Intersection(frange, y_s)
result = S.EmptySet
if isinstance(y_s, FiniteSet):
for y in y_s:
solutions = solveset(Eq(g, y), symbol, domain)
if not isinstance(solutions, ConditionSet):
result += solutions
else:
if isinstance(y_s, ImageSet):
iter_iset = (y_s,)
elif isinstance(y_s, Union):
iter_iset = y_s.args
elif y_s is EmptySet:
# y_s is not in the range of g in g_s, so no solution exists
#in the given domain
return EmptySet
for iset in iter_iset:
new_solutions = solveset(Eq(iset.lamda.expr, g), symbol, domain)
dummy_var = tuple(iset.lamda.expr.free_symbols)[0]
(base_set,) = iset.base_sets
if isinstance(new_solutions, FiniteSet):
new_exprs = new_solutions
elif isinstance(new_solutions, Intersection):
if isinstance(new_solutions.args[1], FiniteSet):
new_exprs = new_solutions.args[1]
for new_expr in new_exprs:
result += ImageSet(Lambda(dummy_var, new_expr), base_set)
if result is S.EmptySet:
return ConditionSet(symbol, Eq(f, 0), domain)
y_s = result
return y_s
def _solveset(f, symbol, domain, _check=False):
"""Helper for solveset to return a result from an expression
that has already been sympify'ed and is known to contain the
given symbol."""
# _check controls whether the answer is checked or not
from sympy.simplify.simplify import signsimp
from sympy.logic.boolalg import BooleanTrue
if isinstance(f, BooleanTrue):
return domain
orig_f = f
if f.is_Mul:
coeff, f = f.as_independent(symbol, as_Add=False)
if coeff in {S.ComplexInfinity, S.NegativeInfinity, S.Infinity}:
f = together(orig_f)
elif f.is_Add:
a, h = f.as_independent(symbol)
m, h = h.as_independent(symbol, as_Add=False)
if m not in {S.ComplexInfinity, S.Zero, S.Infinity,
S.NegativeInfinity}:
f = a/m + h # XXX condition `m != 0` should be added to soln
# assign the solvers to use
solver = lambda f, x, domain=domain: _solveset(f, x, domain)
inverter = lambda f, rhs, symbol: _invert(f, rhs, symbol, domain)
result = EmptySet
if f.expand().is_zero:
return domain
elif not f.has(symbol):
return EmptySet
elif f.is_Mul and all(_is_finite_with_finite_vars(m, domain)
for m in f.args):
# if f(x) and g(x) are both finite we can say that the solution of
# f(x)*g(x) == 0 is same as Union(f(x) == 0, g(x) == 0) is not true in
# general. g(x) can grow to infinitely large for the values where
# f(x) == 0. To be sure that we are not silently allowing any
# wrong solutions we are using this technique only if both f and g are
# finite for a finite input.
result = Union(*[solver(m, symbol) for m in f.args])
elif _is_function_class_equation(TrigonometricFunction, f, symbol) or \
_is_function_class_equation(HyperbolicFunction, f, symbol):
result = _solve_trig(f, symbol, domain)
elif isinstance(f, arg):
from sympy.functions.elementary.complexes import re, im
a = f.args[0]
result = Intersection(_solveset(re(a) > 0, symbol, domain),
_solveset(im(a), symbol, domain))
elif f.is_Piecewise:
expr_set_pairs = f.as_expr_set_pairs(domain)
for (expr, in_set) in expr_set_pairs:
if in_set.is_Relational:
in_set = in_set.as_set()
solns = solver(expr, symbol, in_set)
result += solns
elif isinstance(f, Eq):
result = solver(Add(f.lhs, - f.rhs, evaluate=False), symbol, domain)
elif f.is_Relational:
try:
result = solve_univariate_inequality(
f, symbol, domain=domain, relational=False)
except NotImplementedError:
result = ConditionSet(symbol, f, domain)
return result
elif _is_modular(f, symbol):
result = _solve_modular(f, symbol, domain)
else:
lhs, rhs_s = inverter(f, 0, symbol)
if lhs == symbol:
# do some very minimal simplification since
# repeated inversion may have left the result
# in a state that other solvers (e.g. poly)
# would have simplified; this is done here
# rather than in the inverter since here it
# is only done once whereas there it would
# be repeated for each step of the inversion
if isinstance(rhs_s, FiniteSet):
rhs_s = FiniteSet(*[Mul(*
signsimp(i).as_content_primitive())
for i in rhs_s])
result = rhs_s
elif isinstance(rhs_s, FiniteSet):
for equation in [lhs - rhs for rhs in rhs_s]:
if equation == f:
u = unrad(f, symbol)
if u:
result += _solve_radical(equation, u,
symbol,
solver)
elif equation.has(Abs):
result += _solve_abs(f, symbol, domain)
else:
result_rational = _solve_as_rational(equation, symbol, domain)
if not isinstance(result_rational, ConditionSet):
result += result_rational
else:
# may be a transcendental type equation
t_result = _transolve(equation, symbol, domain)
if isinstance(t_result, ConditionSet):
# might need factoring; this is expensive so we
# have delayed until now. To avoid recursion
# errors look for a non-trivial factoring into
# a product of symbol dependent terms; I think
# that something that factors as a Pow would
# have already been recognized by now.
factored = equation.factor()
if factored.is_Mul and equation != factored:
_, dep = factored.as_independent(symbol)
if not dep.is_Add:
# non-trivial factoring of equation
# but use form with constants
# in case they need special handling
t_result = solver(factored, symbol)
result += t_result
else:
result += solver(equation, symbol)
elif rhs_s is not S.EmptySet:
result = ConditionSet(symbol, Eq(f, 0), domain)
if isinstance(result, ConditionSet):
if isinstance(f, Expr):
num, den = f.as_numer_denom()
if den.has(symbol):
_result = _solveset(num, symbol, domain)
if not isinstance(_result, ConditionSet):
singularities = _solveset(den, symbol, domain)
result = _result - singularities
if _check:
if isinstance(result, ConditionSet):
# it wasn't solved or has enumerated all conditions
# -- leave it alone
return result
# whittle away all but the symbol-containing core
# to use this for testing
if isinstance(orig_f, Expr):
fx = orig_f.as_independent(symbol, as_Add=True)[1]
fx = fx.as_independent(symbol, as_Add=False)[1]
else:
fx = orig_f
if isinstance(result, FiniteSet):
# check the result for invalid solutions
result = FiniteSet(*[s for s in result
if isinstance(s, RootOf)
or domain_check(fx, symbol, s)])
return result
def _is_modular(f, symbol):
"""
Helper function to check below mentioned types of modular equations.
``A - Mod(B, C) = 0``
A -> This can or cannot be a function of symbol.
B -> This is surely a function of symbol.
C -> It is an integer.
Parameters
==========
f : Expr
The equation to be checked.
symbol : Symbol
The concerned variable for which the equation is to be checked.
Examples
========
>>> from sympy import symbols, exp, Mod
>>> from sympy.solvers.solveset import _is_modular as check
>>> x, y = symbols('x y')
>>> check(Mod(x, 3) - 1, x)
True
>>> check(Mod(x, 3) - 1, y)
False
>>> check(Mod(x, 3)**2 - 5, x)
False
>>> check(Mod(x, 3)**2 - y, x)
False
>>> check(exp(Mod(x, 3)) - 1, x)
False
>>> check(Mod(3, y) - 1, y)
False
"""
if not f.has(Mod):
return False
# extract modterms from f.
modterms = list(f.atoms(Mod))
return (len(modterms) == 1 and # only one Mod should be present
modterms[0].args[0].has(symbol) and # B-> function of symbol
modterms[0].args[1].is_integer and # C-> to be an integer.
any(isinstance(term, Mod)
for term in list(_term_factors(f))) # free from other funcs
)
def _invert_modular(modterm, rhs, n, symbol):
"""
Helper function to invert modular equation.
``Mod(a, m) - rhs = 0``
Generally it is inverted as (a, ImageSet(Lambda(n, m*n + rhs), S.Integers)).
More simplified form will be returned if possible.
If it is not invertible then (modterm, rhs) is returned.
The following cases arise while inverting equation ``Mod(a, m) - rhs = 0``:
1. If a is symbol then m*n + rhs is the required solution.
2. If a is an instance of ``Add`` then we try to find two symbol independent
parts of a and the symbol independent part gets tranferred to the other
side and again the ``_invert_modular`` is called on the symbol
dependent part.
3. If a is an instance of ``Mul`` then same as we done in ``Add`` we separate
out the symbol dependent and symbol independent parts and transfer the
symbol independent part to the rhs with the help of invert and again the
``_invert_modular`` is called on the symbol dependent part.
4. If a is an instance of ``Pow`` then two cases arise as following:
- If a is of type (symbol_indep)**(symbol_dep) then the remainder is
evaluated with the help of discrete_log function and then the least
period is being found out with the help of totient function.
period*n + remainder is the required solution in this case.
For reference: (https://en.wikipedia.org/wiki/Euler's_theorem)
- If a is of type (symbol_dep)**(symbol_indep) then we try to find all
primitive solutions list with the help of nthroot_mod function.
m*n + rem is the general solution where rem belongs to solutions list
from nthroot_mod function.
Parameters
==========
modterm, rhs : Expr
The modular equation to be inverted, ``modterm - rhs = 0``
symbol : Symbol
The variable in the equation to be inverted.
n : Dummy
Dummy variable for output g_n.
Returns
=======
A tuple (f_x, g_n) is being returned where f_x is modular independent function
of symbol and g_n being set of values f_x can have.
Examples
========
>>> from sympy import symbols, exp, Mod, Dummy, S
>>> from sympy.solvers.solveset import _invert_modular as invert_modular
>>> x, y = symbols('x y')
>>> n = Dummy('n')
>>> invert_modular(Mod(exp(x), 7), S(5), n, x)
(Mod(exp(x), 7), 5)
>>> invert_modular(Mod(x, 7), S(5), n, x)
(x, ImageSet(Lambda(_n, 7*_n + 5), Integers))
>>> invert_modular(Mod(3*x + 8, 7), S(5), n, x)
(x, ImageSet(Lambda(_n, 7*_n + 6), Integers))
>>> invert_modular(Mod(x**4, 7), S(5), n, x)
(x, EmptySet)
>>> invert_modular(Mod(2**(x**2 + x + 1), 7), S(2), n, x)
(x**2 + x + 1, ImageSet(Lambda(_n, 3*_n + 1), Naturals0))
"""
a, m = modterm.args
if rhs.is_real is False or any(term.is_real is False
for term in list(_term_factors(a))):
# Check for complex arguments
return modterm, rhs
if abs(rhs) >= abs(m):
# if rhs has value greater than value of m.
return symbol, EmptySet
if a == symbol:
return symbol, ImageSet(Lambda(n, m*n + rhs), S.Integers)
if a.is_Add:
# g + h = a
g, h = a.as_independent(symbol)
if g is not S.Zero:
x_indep_term = rhs - Mod(g, m)
return _invert_modular(Mod(h, m), Mod(x_indep_term, m), n, symbol)
if a.is_Mul:
# g*h = a
g, h = a.as_independent(symbol)
if g is not S.One:
x_indep_term = rhs*invert(g, m)
return _invert_modular(Mod(h, m), Mod(x_indep_term, m), n, symbol)
if a.is_Pow:
# base**expo = a
base, expo = a.args
if expo.has(symbol) and not base.has(symbol):
# remainder -> solution independent of n of equation.
# m, rhs are made coprime by dividing igcd(m, rhs)
try:
remainder = discrete_log(m / igcd(m, rhs), rhs, a.base)
except ValueError: # log does not exist
return modterm, rhs
# period -> coefficient of n in the solution and also referred as
# the least period of expo in which it is repeats itself.
# (a**(totient(m)) - 1) divides m. Here is link of theorem:
# (https://en.wikipedia.org/wiki/Euler's_theorem)
period = totient(m)
for p in divisors(period):
# there might a lesser period exist than totient(m).
if pow(a.base, p, m / igcd(m, a.base)) == 1:
period = p
break
# recursion is not applied here since _invert_modular is currently
# not smart enough to handle infinite rhs as here expo has infinite
# rhs = ImageSet(Lambda(n, period*n + remainder), S.Naturals0).
return expo, ImageSet(Lambda(n, period*n + remainder), S.Naturals0)
elif base.has(symbol) and not expo.has(symbol):
try:
remainder_list = nthroot_mod(rhs, expo, m, all_roots=True)
if remainder_list == []:
return symbol, EmptySet
except (ValueError, NotImplementedError):
return modterm, rhs
g_n = EmptySet
for rem in remainder_list:
g_n += ImageSet(Lambda(n, m*n + rem), S.Integers)
return base, g_n
return modterm, rhs
def _solve_modular(f, symbol, domain):
r"""
Helper function for solving modular equations of type ``A - Mod(B, C) = 0``,
where A can or cannot be a function of symbol, B is surely a function of
symbol and C is an integer.
Currently ``_solve_modular`` is only able to solve cases
where A is not a function of symbol.
Parameters
==========
f : Expr
The modular equation to be solved, ``f = 0``
symbol : Symbol
The variable in the equation to be solved.
domain : Set
A set over which the equation is solved. It has to be a subset of
Integers.
Returns
=======
A set of integer solutions satisfying the given modular equation.
A ``ConditionSet`` if the equation is unsolvable.
Examples
========
>>> from sympy.solvers.solveset import _solve_modular as solve_modulo
>>> from sympy import S, Symbol, sin, Intersection, Interval
>>> from sympy.core.mod import Mod
>>> x = Symbol('x')
>>> solve_modulo(Mod(5*x - 8, 7) - 3, x, S.Integers)
ImageSet(Lambda(_n, 7*_n + 5), Integers)
>>> solve_modulo(Mod(5*x - 8, 7) - 3, x, S.Reals) # domain should be subset of integers.
ConditionSet(x, Eq(Mod(5*x + 6, 7) - 3, 0), Reals)
>>> solve_modulo(-7 + Mod(x, 5), x, S.Integers)
EmptySet
>>> solve_modulo(Mod(12**x, 21) - 18, x, S.Integers)
ImageSet(Lambda(_n, 6*_n + 2), Naturals0)
>>> solve_modulo(Mod(sin(x), 7) - 3, x, S.Integers) # not solvable
ConditionSet(x, Eq(Mod(sin(x), 7) - 3, 0), Integers)
>>> solve_modulo(3 - Mod(x, 5), x, Intersection(S.Integers, Interval(0, 100)))
Intersection(ImageSet(Lambda(_n, 5*_n + 3), Integers), Range(0, 101, 1))
"""
# extract modterm and g_y from f
unsolved_result = ConditionSet(symbol, Eq(f, 0), domain)
modterm = list(f.atoms(Mod))[0]
rhs = -S.One*(f.subs(modterm, S.Zero))
if f.as_coefficients_dict()[modterm].is_negative:
# checks if coefficient of modterm is negative in main equation.
rhs *= -S.One
if not domain.is_subset(S.Integers):
return unsolved_result
if rhs.has(symbol):
# TODO Case: A-> function of symbol, can be extended here
# in future.
return unsolved_result
n = Dummy('n', integer=True)
f_x, g_n = _invert_modular(modterm, rhs, n, symbol)
if f_x == modterm and g_n == rhs:
return unsolved_result
if f_x == symbol:
if domain is not S.Integers:
return domain.intersect(g_n)
return g_n
if isinstance(g_n, ImageSet):
lamda_expr = g_n.lamda.expr
lamda_vars = g_n.lamda.variables
base_sets = g_n.base_sets
sol_set = _solveset(f_x - lamda_expr, symbol, S.Integers)
if isinstance(sol_set, FiniteSet):
tmp_sol = EmptySet
for sol in sol_set:
tmp_sol += ImageSet(Lambda(lamda_vars, sol), *base_sets)
sol_set = tmp_sol
else:
sol_set = ImageSet(Lambda(lamda_vars, sol_set), *base_sets)
return domain.intersect(sol_set)
return unsolved_result
def _term_factors(f):
"""
Iterator to get the factors of all terms present
in the given equation.
Parameters
==========
f : Expr
Equation that needs to be addressed
Returns
=======
Factors of all terms present in the equation.
Examples
========
>>> from sympy import symbols
>>> from sympy.solvers.solveset import _term_factors
>>> x = symbols('x')
>>> list(_term_factors(-2 - x**2 + x*(x + 1)))
[-2, -1, x**2, x, x + 1]
"""
for add_arg in Add.make_args(f):
yield from Mul.make_args(add_arg)
def _solve_exponential(lhs, rhs, symbol, domain):
r"""
Helper function for solving (supported) exponential equations.
Exponential equations are the sum of (currently) at most
two terms with one or both of them having a power with a
symbol-dependent exponent.
For example
.. math:: 5^{2x + 3} - 5^{3x - 1}
.. math:: 4^{5 - 9x} - e^{2 - x}
Parameters
==========
lhs, rhs : Expr
The exponential equation to be solved, `lhs = rhs`
symbol : Symbol
The variable in which the equation is solved
domain : Set
A set over which the equation is solved.
Returns
=======
A set of solutions satisfying the given equation.
A ``ConditionSet`` if the equation is unsolvable or
if the assumptions are not properly defined, in that case
a different style of ``ConditionSet`` is returned having the
solution(s) of the equation with the desired assumptions.
Examples
========
>>> from sympy.solvers.solveset import _solve_exponential as solve_expo
>>> from sympy import symbols, S
>>> x = symbols('x', real=True)
>>> a, b = symbols('a b')
>>> solve_expo(2**x + 3**x - 5**x, 0, x, S.Reals) # not solvable
ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), Reals)
>>> solve_expo(a**x - b**x, 0, x, S.Reals) # solvable but incorrect assumptions
ConditionSet(x, (a > 0) & (b > 0), {0})
>>> solve_expo(3**(2*x) - 2**(x + 3), 0, x, S.Reals)
{-3*log(2)/(-2*log(3) + log(2))}
>>> solve_expo(2**x - 4**x, 0, x, S.Reals)
{0}
* Proof of correctness of the method
The logarithm function is the inverse of the exponential function.
The defining relation between exponentiation and logarithm is:
.. math:: {\log_b x} = y \enspace if \enspace b^y = x
Therefore if we are given an equation with exponent terms, we can
convert every term to its corresponding logarithmic form. This is
achieved by taking logarithms and expanding the equation using
logarithmic identities so that it can easily be handled by ``solveset``.
For example:
.. math:: 3^{2x} = 2^{x + 3}
Taking log both sides will reduce the equation to
.. math:: (2x)\log(3) = (x + 3)\log(2)
This form can be easily handed by ``solveset``.
"""
unsolved_result = ConditionSet(symbol, Eq(lhs - rhs, 0), domain)
newlhs = powdenest(lhs)
if lhs != newlhs:
# it may also be advantageous to factor the new expr
neweq = factor(newlhs - rhs)
if neweq != (lhs - rhs):
return _solveset(neweq, symbol, domain) # try again with _solveset
if not (isinstance(lhs, Add) and len(lhs.args) == 2):
# solving for the sum of more than two powers is possible
# but not yet implemented
return unsolved_result
if rhs != 0:
return unsolved_result
a, b = list(ordered(lhs.args))
a_term = a.as_independent(symbol)[1]
b_term = b.as_independent(symbol)[1]
a_base, a_exp = a_term.as_base_exp()
b_base, b_exp = b_term.as_base_exp()
from sympy.functions.elementary.complexes import im
if domain.is_subset(S.Reals):
conditions = And(
a_base > 0,
b_base > 0,
Eq(im(a_exp), 0),
Eq(im(b_exp), 0))
else:
conditions = And(
Ne(a_base, 0),
Ne(b_base, 0))
L, R = map(lambda i: expand_log(log(i), force=True), (a, -b))
solutions = _solveset(L - R, symbol, domain)
return ConditionSet(symbol, conditions, solutions)
def _is_exponential(f, symbol):
r"""
Return ``True`` if one or more terms contain ``symbol`` only in
exponents, else ``False``.
Parameters
==========
f : Expr
The equation to be checked
symbol : Symbol
The variable in which the equation is checked
Examples
========
>>> from sympy import symbols, cos, exp
>>> from sympy.solvers.solveset import _is_exponential as check
>>> x, y = symbols('x y')
>>> check(y, y)
False
>>> check(x**y - 1, y)
True
>>> check(x**y*2**y - 1, y)
True
>>> check(exp(x + 3) + 3**x, x)
True
>>> check(cos(2**x), x)
False
* Philosophy behind the helper
The function extracts each term of the equation and checks if it is
of exponential form w.r.t ``symbol``.
"""
rv = False
for expr_arg in _term_factors(f):
if symbol not in expr_arg.free_symbols:
continue
if (isinstance(expr_arg, Pow) and
symbol not in expr_arg.base.free_symbols or
isinstance(expr_arg, exp)):
rv = True # symbol in exponent
else:
return False # dependent on symbol in non-exponential way
return rv
def _solve_logarithm(lhs, rhs, symbol, domain):
r"""
Helper to solve logarithmic equations which are reducible
to a single instance of `\log`.
Logarithmic equations are (currently) the equations that contains
`\log` terms which can be reduced to a single `\log` term or
a constant using various logarithmic identities.
For example:
.. math:: \log(x) + \log(x - 4)
can be reduced to:
.. math:: \log(x(x - 4))
Parameters
==========
lhs, rhs : Expr
The logarithmic equation to be solved, `lhs = rhs`
symbol : Symbol
The variable in which the equation is solved
domain : Set
A set over which the equation is solved.
Returns
=======
A set of solutions satisfying the given equation.
A ``ConditionSet`` if the equation is unsolvable.
Examples
========
>>> from sympy import symbols, log, S
>>> from sympy.solvers.solveset import _solve_logarithm as solve_log
>>> x = symbols('x')
>>> f = log(x - 3) + log(x + 3)
>>> solve_log(f, 0, x, S.Reals)
{-sqrt(10), sqrt(10)}
* Proof of correctness
A logarithm is another way to write exponent and is defined by
.. math:: {\log_b x} = y \enspace if \enspace b^y = x
When one side of the equation contains a single logarithm, the
equation can be solved by rewriting the equation as an equivalent
exponential equation as defined above. But if one side contains
more than one logarithm, we need to use the properties of logarithm
to condense it into a single logarithm.
Take for example
.. math:: \log(2x) - 15 = 0
contains single logarithm, therefore we can directly rewrite it to
exponential form as
.. math:: x = \frac{e^{15}}{2}
But if the equation has more than one logarithm as
.. math:: \log(x - 3) + \log(x + 3) = 0
we use logarithmic identities to convert it into a reduced form
Using,
.. math:: \log(a) + \log(b) = \log(ab)
the equation becomes,
.. math:: \log((x - 3)(x + 3))
This equation contains one logarithm and can be solved by rewriting
to exponents.
"""
new_lhs = logcombine(lhs, force=True)
new_f = new_lhs - rhs
return _solveset(new_f, symbol, domain)
def _is_logarithmic(f, symbol):
r"""
Return ``True`` if the equation is in the form
`a\log(f(x)) + b\log(g(x)) + ... + c` else ``False``.
Parameters
==========
f : Expr
The equation to be checked
symbol : Symbol
The variable in which the equation is checked
Returns
=======
``True`` if the equation is logarithmic otherwise ``False``.
Examples
========
>>> from sympy import symbols, tan, log
>>> from sympy.solvers.solveset import _is_logarithmic as check
>>> x, y = symbols('x y')
>>> check(log(x + 2) - log(x + 3), x)
True
>>> check(tan(log(2*x)), x)
False
>>> check(x*log(x), x)
False
>>> check(x + log(x), x)
False
>>> check(y + log(x), x)
True
* Philosophy behind the helper
The function extracts each term and checks whether it is
logarithmic w.r.t ``symbol``.
"""
rv = False
for term in Add.make_args(f):
saw_log = False
for term_arg in Mul.make_args(term):
if symbol not in term_arg.free_symbols:
continue
if isinstance(term_arg, log):
if saw_log:
return False # more than one log in term
saw_log = True
else:
return False # dependent on symbol in non-log way
if saw_log:
rv = True
return rv
def _is_lambert(f, symbol):
r"""
If this returns ``False`` then the Lambert solver (``_solve_lambert``) will not be called.
Explanation
===========
Quick check for cases that the Lambert solver might be able to handle.
1. Equations containing more than two operands and `symbol`s involving any of
`Pow`, `exp`, `HyperbolicFunction`,`TrigonometricFunction`, `log` terms.
2. In `Pow`, `exp` the exponent should have `symbol` whereas for
`HyperbolicFunction`,`TrigonometricFunction`, `log` should contain `symbol`.
3. For `HyperbolicFunction`,`TrigonometricFunction` the number of trigonometric functions in
equation should be less than number of symbols. (since `A*cos(x) + B*sin(x) - c`
is not the Lambert type).
Some forms of lambert equations are:
1. X**X = C
2. X*(B*log(X) + D)**A = C
3. A*log(B*X + A) + d*X = C
4. (B*X + A)*exp(d*X + g) = C
5. g*exp(B*X + h) - B*X = C
6. A*D**(E*X + g) - B*X = C
7. A*cos(X) + B*sin(X) - D*X = C
8. A*cosh(X) + B*sinh(X) - D*X = C
Where X is any variable,
A, B, C, D, E are any constants,
g, h are linear functions or log terms.
Parameters
==========
f : Expr
The equation to be checked
symbol : Symbol
The variable in which the equation is checked
Returns
=======
If this returns ``False`` then the Lambert solver (``_solve_lambert``) will not be called.
Examples
========
>>> from sympy.solvers.solveset import _is_lambert
>>> from sympy import symbols, cosh, sinh, log
>>> x = symbols('x')
>>> _is_lambert(3*log(x) - x*log(3), x)
True
>>> _is_lambert(log(log(x - 3)) + log(x-3), x)
True
>>> _is_lambert(cosh(x) - sinh(x), x)
False
>>> _is_lambert((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x)
True
See Also
========
_solve_lambert
"""
term_factors = list(_term_factors(f.expand()))
# total number of symbols in equation
no_of_symbols = len([arg for arg in term_factors if arg.has(symbol)])
# total number of trigonometric terms in equation
no_of_trig = len([arg for arg in term_factors \
if arg.has(HyperbolicFunction, TrigonometricFunction)])
if f.is_Add and no_of_symbols >= 2:
# `log`, `HyperbolicFunction`, `TrigonometricFunction` should have symbols
# and no_of_trig < no_of_symbols
lambert_funcs = (log, HyperbolicFunction, TrigonometricFunction)
if any(isinstance(arg, lambert_funcs)\
for arg in term_factors if arg.has(symbol)):
if no_of_trig < no_of_symbols:
return True
# here, `Pow`, `exp` exponent should have symbols
elif any(isinstance(arg, (Pow, exp)) \
for arg in term_factors if (arg.as_base_exp()[1]).has(symbol)):
return True
return False
def _transolve(f, symbol, domain):
r"""
Function to solve transcendental equations. It is a helper to
``solveset`` and should be used internally. ``_transolve``
currently supports the following class of equations:
- Exponential equations
- Logarithmic equations
Parameters
==========
f : Any transcendental equation that needs to be solved.
This needs to be an expression, which is assumed
to be equal to ``0``.
symbol : The variable for which the equation is solved.
This needs to be of class ``Symbol``.
domain : A set over which the equation is solved.
This needs to be of class ``Set``.
Returns
=======
Set
A set of values for ``symbol`` for which ``f`` is equal to
zero. An ``EmptySet`` is returned if ``f`` does not have solutions
in respective domain. A ``ConditionSet`` is returned as unsolved
object if algorithms to evaluate complete solution are not
yet implemented.
How to use ``_transolve``
=========================
``_transolve`` should not be used as an independent function, because
it assumes that the equation (``f``) and the ``symbol`` comes from
``solveset`` and might have undergone a few modification(s).
To use ``_transolve`` as an independent function the equation (``f``)
and the ``symbol`` should be passed as they would have been by
``solveset``.
Examples
========
>>> from sympy.solvers.solveset import _transolve as transolve
>>> from sympy.solvers.solvers import _tsolve as tsolve
>>> from sympy import symbols, S, pprint
>>> x = symbols('x', real=True) # assumption added
>>> transolve(5**(x - 3) - 3**(2*x + 1), x, S.Reals)
{-(log(3) + 3*log(5))/(-log(5) + 2*log(3))}
How ``_transolve`` works
========================
``_transolve`` uses two types of helper functions to solve equations
of a particular class:
Identifying helpers: To determine whether a given equation
belongs to a certain class of equation or not. Returns either
``True`` or ``False``.
Solving helpers: Once an equation is identified, a corresponding
helper either solves the equation or returns a form of the equation
that ``solveset`` might better be able to handle.
* Philosophy behind the module
The purpose of ``_transolve`` is to take equations which are not
already polynomial in their generator(s) and to either recast them
as such through a valid transformation or to solve them outright.
A pair of helper functions for each class of supported
transcendental functions are employed for this purpose. One
identifies the transcendental form of an equation and the other
either solves it or recasts it into a tractable form that can be
solved by ``solveset``.
For example, an equation in the form `ab^{f(x)} - cd^{g(x)} = 0`
can be transformed to
`\log(a) + f(x)\log(b) - \log(c) - g(x)\log(d) = 0`
(under certain assumptions) and this can be solved with ``solveset``
if `f(x)` and `g(x)` are in polynomial form.
How ``_transolve`` is better than ``_tsolve``
=============================================
1) Better output
``_transolve`` provides expressions in a more simplified form.
Consider a simple exponential equation
>>> f = 3**(2*x) - 2**(x + 3)
>>> pprint(transolve(f, x, S.Reals), use_unicode=False)
-3*log(2)
{------------------}
-2*log(3) + log(2)
>>> pprint(tsolve(f, x), use_unicode=False)
/ 3 \
| --------|
| log(2/9)|
[-log\2 /]
2) Extensible
The API of ``_transolve`` is designed such that it is easily
extensible, i.e. the code that solves a given class of
equations is encapsulated in a helper and not mixed in with
the code of ``_transolve`` itself.
3) Modular
``_transolve`` is designed to be modular i.e, for every class of
equation a separate helper for identification and solving is
implemented. This makes it easy to change or modify any of the
method implemented directly in the helpers without interfering
with the actual structure of the API.
4) Faster Computation
Solving equation via ``_transolve`` is much faster as compared to
``_tsolve``. In ``solve``, attempts are made computing every possibility
to get the solutions. This series of attempts makes solving a bit
slow. In ``_transolve``, computation begins only after a particular
type of equation is identified.
How to add new class of equations
=================================
Adding a new class of equation solver is a three-step procedure:
- Identify the type of the equations
Determine the type of the class of equations to which they belong:
it could be of ``Add``, ``Pow``, etc. types. Separate internal functions
are used for each type. Write identification and solving helpers
and use them from within the routine for the given type of equation
(after adding it, if necessary). Something like:
.. code-block:: python
def add_type(lhs, rhs, x):
....
if _is_exponential(lhs, x):
new_eq = _solve_exponential(lhs, rhs, x)
....
rhs, lhs = eq.as_independent(x)
if lhs.is_Add:
result = add_type(lhs, rhs, x)
- Define the identification helper.
- Define the solving helper.
Apart from this, a few other things needs to be taken care while
adding an equation solver:
- Naming conventions:
Name of the identification helper should be as
``_is_class`` where class will be the name or abbreviation
of the class of equation. The solving helper will be named as
``_solve_class``.
For example: for exponential equations it becomes
``_is_exponential`` and ``_solve_expo``.
- The identifying helpers should take two input parameters,
the equation to be checked and the variable for which a solution
is being sought, while solving helpers would require an additional
domain parameter.
- Be sure to consider corner cases.
- Add tests for each helper.
- Add a docstring to your helper that describes the method
implemented.
The documentation of the helpers should identify:
- the purpose of the helper,
- the method used to identify and solve the equation,
- a proof of correctness
- the return values of the helpers
"""
def add_type(lhs, rhs, symbol, domain):
"""
Helper for ``_transolve`` to handle equations of
``Add`` type, i.e. equations taking the form as
``a*f(x) + b*g(x) + .... = c``.
For example: 4**x + 8**x = 0
"""
result = ConditionSet(symbol, Eq(lhs - rhs, 0), domain)
# check if it is exponential type equation
if _is_exponential(lhs, symbol):
result = _solve_exponential(lhs, rhs, symbol, domain)
# check if it is logarithmic type equation
elif _is_logarithmic(lhs, symbol):
result = _solve_logarithm(lhs, rhs, symbol, domain)
return result
result = ConditionSet(symbol, Eq(f, 0), domain)
# invert_complex handles the call to the desired inverter based
# on the domain specified.
lhs, rhs_s = invert_complex(f, 0, symbol, domain)
if isinstance(rhs_s, FiniteSet):
assert (len(rhs_s.args)) == 1
rhs = rhs_s.args[0]
if lhs.is_Add:
result = add_type(lhs, rhs, symbol, domain)
else:
result = rhs_s
return result
def solveset(f, symbol=None, domain=S.Complexes):
r"""Solves a given inequality or equation with set as output
Parameters
==========
f : Expr or a relational.
The target equation or inequality
symbol : Symbol
The variable for which the equation is solved
domain : Set
The domain over which the equation is solved
Returns
=======
Set
A set of values for `symbol` for which `f` is True or is equal to
zero. An `EmptySet` is returned if `f` is False or nonzero.
A `ConditionSet` is returned as unsolved object if algorithms
to evaluate complete solution are not yet implemented.
`solveset` claims to be complete in the solution set that it returns.
Raises
======
NotImplementedError
The algorithms to solve inequalities in complex domain are
not yet implemented.
ValueError
The input is not valid.
RuntimeError
It is a bug, please report to the github issue tracker.
Notes
=====
Python interprets 0 and 1 as False and True, respectively, but
in this function they refer to solutions of an expression. So 0 and 1
return the Domain and EmptySet, respectively, while True and False
return the opposite (as they are assumed to be solutions of relational
expressions).
See Also
========
solveset_real: solver for real domain
solveset_complex: solver for complex domain
Examples
========
>>> from sympy import exp, sin, Symbol, pprint, S, Eq
>>> from sympy.solvers.solveset import solveset, solveset_real
* The default domain is complex. Not specifying a domain will lead
to the solving of the equation in the complex domain (and this
is not affected by the assumptions on the symbol):
>>> x = Symbol('x')
>>> pprint(solveset(exp(x) - 1, x), use_unicode=False)
{2*n*I*pi | n in Integers}
>>> x = Symbol('x', real=True)
>>> pprint(solveset(exp(x) - 1, x), use_unicode=False)
{2*n*I*pi | n in Integers}
* If you want to use `solveset` to solve the equation in the
real domain, provide a real domain. (Using ``solveset_real``
does this automatically.)
>>> R = S.Reals
>>> x = Symbol('x')
>>> solveset(exp(x) - 1, x, R)
{0}
>>> solveset_real(exp(x) - 1, x)
{0}
The solution is unaffected by assumptions on the symbol:
>>> p = Symbol('p', positive=True)
>>> pprint(solveset(p**2 - 4))
{-2, 2}
When a conditionSet is returned, symbols with assumptions that
would alter the set are replaced with more generic symbols:
>>> i = Symbol('i', imaginary=True)
>>> solveset(Eq(i**2 + i*sin(i), 1), i, domain=S.Reals)
ConditionSet(_R, Eq(_R**2 + _R*sin(_R) - 1, 0), Reals)
* Inequalities can be solved over the real domain only. Use of a complex
domain leads to a NotImplementedError.
>>> solveset(exp(x) > 1, x, R)
Interval.open(0, oo)
"""
f = sympify(f)
symbol = sympify(symbol)
if f is S.true:
return domain
if f is S.false:
return S.EmptySet
if not isinstance(f, (Expr, Relational, Number)):
raise ValueError("%s is not a valid SymPy expression" % f)
if not isinstance(symbol, (Expr, Relational)) and symbol is not None:
raise ValueError("%s is not a valid SymPy symbol" % (symbol,))
if not isinstance(domain, Set):
raise ValueError("%s is not a valid domain" %(domain))
free_symbols = f.free_symbols
if f.has(Piecewise):
f = piecewise_fold(f)
if symbol is None and not free_symbols:
b = Eq(f, 0)
if b is S.true:
return domain
elif b is S.false:
return S.EmptySet
else:
raise NotImplementedError(filldedent('''
relationship between value and 0 is unknown: %s''' % b))
if symbol is None:
if len(free_symbols) == 1:
symbol = free_symbols.pop()
elif free_symbols:
raise ValueError(filldedent('''
The independent variable must be specified for a
multivariate equation.'''))
elif not isinstance(symbol, Symbol):
f, s, swap = recast_to_symbols([f], [symbol])
# the xreplace will be needed if a ConditionSet is returned
return solveset(f[0], s[0], domain).xreplace(swap)
# solveset should ignore assumptions on symbols
if symbol not in _rc:
x = _rc[0] if domain.is_subset(S.Reals) else _rc[1]
rv = solveset(f.xreplace({symbol: x}), x, domain)
# try to use the original symbol if possible
try:
_rv = rv.xreplace({x: symbol})
except TypeError:
_rv = rv
if rv.dummy_eq(_rv):
rv = _rv
return rv
# Abs has its own handling method which avoids the
# rewriting property that the first piece of abs(x)
# is for x >= 0 and the 2nd piece for x < 0 -- solutions
# can look better if the 2nd condition is x <= 0. Since
# the solution is a set, duplication of results is not
# an issue, e.g. {y, -y} when y is 0 will be {0}
f, mask = _masked(f, Abs)
f = f.rewrite(Piecewise) # everything that's not an Abs
for d, e in mask:
# everything *in* an Abs
e = e.func(e.args[0].rewrite(Piecewise))
f = f.xreplace({d: e})
f = piecewise_fold(f)
return _solveset(f, symbol, domain, _check=True)
def solveset_real(f, symbol):
return solveset(f, symbol, S.Reals)
def solveset_complex(f, symbol):
return solveset(f, symbol, S.Complexes)
def _solveset_multi(eqs, syms, domains):
'''Basic implementation of a multivariate solveset.
For internal use (not ready for public consumption)'''
rep = {}
for sym, dom in zip(syms, domains):
if dom is S.Reals:
rep[sym] = Symbol(sym.name, real=True)
eqs = [eq.subs(rep) for eq in eqs]
syms = [sym.subs(rep) for sym in syms]
syms = tuple(syms)
if len(eqs) == 0:
return ProductSet(*domains)
if len(syms) == 1:
sym = syms[0]
domain = domains[0]
solsets = [solveset(eq, sym, domain) for eq in eqs]
solset = Intersection(*solsets)
return ImageSet(Lambda((sym,), (sym,)), solset).doit()
eqs = sorted(eqs, key=lambda eq: len(eq.free_symbols & set(syms)))
for n in range(len(eqs)):
sols = []
all_handled = True
for sym in syms:
if sym not in eqs[n].free_symbols:
continue
sol = solveset(eqs[n], sym, domains[syms.index(sym)])
if isinstance(sol, FiniteSet):
i = syms.index(sym)
symsp = syms[:i] + syms[i+1:]
domainsp = domains[:i] + domains[i+1:]
eqsp = eqs[:n] + eqs[n+1:]
for s in sol:
eqsp_sub = [eq.subs(sym, s) for eq in eqsp]
sol_others = _solveset_multi(eqsp_sub, symsp, domainsp)
fun = Lambda((symsp,), symsp[:i] + (s,) + symsp[i:])
sols.append(ImageSet(fun, sol_others).doit())
else:
all_handled = False
if all_handled:
return Union(*sols)
def solvify(f, symbol, domain):
"""Solves an equation using solveset and returns the solution in accordance
with the `solve` output API.
Returns
=======
We classify the output based on the type of solution returned by `solveset`.
Solution | Output
----------------------------------------
FiniteSet | list
ImageSet, | list (if `f` is periodic)
Union |
Union | list (with FiniteSet)
EmptySet | empty list
Others | None
Raises
======
NotImplementedError
A ConditionSet is the input.
Examples
========
>>> from sympy.solvers.solveset import solvify
>>> from sympy.abc import x
>>> from sympy import S, tan, sin, exp
>>> solvify(x**2 - 9, x, S.Reals)
[-3, 3]
>>> solvify(sin(x) - 1, x, S.Reals)
[pi/2]
>>> solvify(tan(x), x, S.Reals)
[0]
>>> solvify(exp(x) - 1, x, S.Complexes)
>>> solvify(exp(x) - 1, x, S.Reals)
[0]
"""
solution_set = solveset(f, symbol, domain)
result = None
if solution_set is S.EmptySet:
result = []
elif isinstance(solution_set, ConditionSet):
raise NotImplementedError('solveset is unable to solve this equation.')
elif isinstance(solution_set, FiniteSet):
result = list(solution_set)
else:
period = periodicity(f, symbol)
if period is not None:
solutions = S.EmptySet
iter_solutions = ()
if isinstance(solution_set, ImageSet):
iter_solutions = (solution_set,)
elif isinstance(solution_set, Union):
if all(isinstance(i, ImageSet) for i in solution_set.args):
iter_solutions = solution_set.args
for solution in iter_solutions:
solutions += solution.intersect(Interval(0, period, False, True))
if isinstance(solutions, FiniteSet):
result = list(solutions)
else:
solution = solution_set.intersect(domain)
if isinstance(solution, Union):
# concerned about only FiniteSet with Union but not about ImageSet
# if required could be extend
if any(isinstance(i, FiniteSet) for i in solution.args):
result = [sol for soln in solution.args \
for sol in soln.args if isinstance(soln,FiniteSet)]
else:
return None
elif isinstance(solution, FiniteSet):
result += solution
return result
###############################################################################
################################ LINSOLVE #####################################
###############################################################################
def linear_coeffs(eq, *syms, **_kw):
"""Return a list whose elements are the coefficients of the
corresponding symbols in the sum of terms in ``eq``.
The additive constant is returned as the last element of the
list.
Raises
======
NonlinearError
The equation contains a nonlinear term
Examples
========
>>> from sympy.solvers.solveset import linear_coeffs
>>> from sympy.abc import x, y, z
>>> linear_coeffs(3*x + 2*y - 1, x, y)
[3, 2, -1]
It is not necessary to expand the expression:
>>> linear_coeffs(x + y*(z*(x*3 + 2) + 3), x)
[3*y*z + 1, y*(2*z + 3)]
But if there are nonlinear or cross terms -- even if they would
cancel after simplification -- an error is raised so the situation
does not pass silently past the caller's attention:
>>> eq = 1/x*(x - 1) + 1/x
>>> linear_coeffs(eq.expand(), x)
[0, 1]
>>> linear_coeffs(eq, x)
Traceback (most recent call last):
...
NonlinearError: nonlinear term encountered: 1/x
>>> linear_coeffs(x*(y + 1) - x*y, x, y)
Traceback (most recent call last):
...
NonlinearError: nonlinear term encountered: x*(y + 1)
"""
d = defaultdict(list)
eq = _sympify(eq)
symset = set(syms)
has = eq.free_symbols & symset
if not has:
return [S.Zero]*len(syms) + [eq]
c, terms = eq.as_coeff_add(*has)
d[0].extend(Add.make_args(c))
for t in terms:
m, f = t.as_coeff_mul(*has)
if len(f) != 1:
break
f = f[0]
if f in symset:
d[f].append(m)
elif f.is_Add:
d1 = linear_coeffs(f, *has, **{'dict': True})
d[0].append(m*d1.pop(0))
for xf, vf in d1.items():
d[xf].append(m*vf)
else:
break
else:
for k, v in d.items():
d[k] = Add(*v)
if not _kw:
return [d.get(s, S.Zero) for s in syms] + [d[0]]
return d # default is still list but this won't matter
raise NonlinearError('nonlinear term encountered: %s' % t)
def linear_eq_to_matrix(equations, *symbols):
r"""
Converts a given System of Equations into Matrix form.
Here `equations` must be a linear system of equations in
`symbols`. Element M[i, j] corresponds to the coefficient
of the jth symbol in the ith equation.
The Matrix form corresponds to the augmented matrix form.
For example:
.. math:: 4x + 2y + 3z = 1
.. math:: 3x + y + z = -6
.. math:: 2x + 4y + 9z = 2
This system would return `A` & `b` as given below:
::
[ 4 2 3 ] [ 1 ]
A = [ 3 1 1 ] b = [-6 ]
[ 2 4 9 ] [ 2 ]
The only simplification performed is to convert
`Eq(a, b) -> a - b`.
Raises
======
NonlinearError
The equations contain a nonlinear term.
ValueError
The symbols are not given or are not unique.
Examples
========
>>> from sympy import linear_eq_to_matrix, symbols
>>> c, x, y, z = symbols('c, x, y, z')
The coefficients (numerical or symbolic) of the symbols will
be returned as matrices:
>>> eqns = [c*x + z - 1 - c, y + z, x - y]
>>> A, b = linear_eq_to_matrix(eqns, [x, y, z])
>>> A
Matrix([
[c, 0, 1],
[0, 1, 1],
[1, -1, 0]])
>>> b
Matrix([
[c + 1],
[ 0],
[ 0]])
This routine does not simplify expressions and will raise an error
if nonlinearity is encountered:
>>> eqns = [
... (x**2 - 3*x)/(x - 3) - 3,
... y**2 - 3*y - y*(y - 4) + x - 4]
>>> linear_eq_to_matrix(eqns, [x, y])
Traceback (most recent call last):
...
NonlinearError:
The term (x**2 - 3*x)/(x - 3) is nonlinear in {x, y}
Simplifying these equations will discard the removable singularity
in the first, reveal the linear structure of the second:
>>> [e.simplify() for e in eqns]
[x - 3, x + y - 4]
Any such simplification needed to eliminate nonlinear terms must
be done before calling this routine.
"""
if not symbols:
raise ValueError(filldedent('''
Symbols must be given, for which coefficients
are to be found.
'''))
if hasattr(symbols[0], '__iter__'):
symbols = symbols[0]
for i in symbols:
if not isinstance(i, Symbol):
raise ValueError(filldedent('''
Expecting a Symbol but got %s
''' % i))
if has_dups(symbols):
raise ValueError('Symbols must be unique')
equations = sympify(equations)
if isinstance(equations, MatrixBase):
equations = list(equations)
elif isinstance(equations, (Expr, Eq)):
equations = [equations]
elif not is_sequence(equations):
raise ValueError(filldedent('''
Equation(s) must be given as a sequence, Expr,
Eq or Matrix.
'''))
A, b = [], []
for i, f in enumerate(equations):
if isinstance(f, Equality):
f = f.rewrite(Add, evaluate=False)
coeff_list = linear_coeffs(f, *symbols)
b.append(-coeff_list.pop())
A.append(coeff_list)
A, b = map(Matrix, (A, b))
return A, b
def linsolve(system, *symbols):
r"""
Solve system of N linear equations with M variables; both
underdetermined and overdetermined systems are supported.
The possible number of solutions is zero, one or infinite.
Zero solutions throws a ValueError, whereas infinite
solutions are represented parametrically in terms of the given
symbols. For unique solution a FiniteSet of ordered tuples
is returned.
All Standard input formats are supported:
For the given set of Equations, the respective input types
are given below:
.. math:: 3x + 2y - z = 1
.. math:: 2x - 2y + 4z = -2
.. math:: 2x - y + 2z = 0
* Augmented Matrix Form, `system` given below:
::
[3 2 -1 1]
system = [2 -2 4 -2]
[2 -1 2 0]
* List Of Equations Form
`system = [3x + 2y - z - 1, 2x - 2y + 4z + 2, 2x - y + 2z]`
* Input A & b Matrix Form (from Ax = b) are given as below:
::
[3 2 -1 ] [ 1 ]
A = [2 -2 4 ] b = [ -2 ]
[2 -1 2 ] [ 0 ]
`system = (A, b)`
Symbols can always be passed but are actually only needed
when 1) a system of equations is being passed and 2) the
system is passed as an underdetermined matrix and one wants
to control the name of the free variables in the result.
An error is raised if no symbols are used for case 1, but if
no symbols are provided for case 2, internally generated symbols
will be provided. When providing symbols for case 2, there should
be at least as many symbols are there are columns in matrix A.
The algorithm used here is Gauss-Jordan elimination, which
results, after elimination, in a row echelon form matrix.
Returns
=======
A FiniteSet containing an ordered tuple of values for the
unknowns for which the `system` has a solution. (Wrapping
the tuple in FiniteSet is used to maintain a consistent
output format throughout solveset.)
Returns EmptySet, if the linear system is inconsistent.
Raises
======
ValueError
The input is not valid.
The symbols are not given.
Examples
========
>>> from sympy import Matrix, linsolve, symbols
>>> x, y, z = symbols("x, y, z")
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
>>> b = Matrix([3, 6, 9])
>>> A
Matrix([
[1, 2, 3],
[4, 5, 6],
[7, 8, 10]])
>>> b
Matrix([
[3],
[6],
[9]])
>>> linsolve((A, b), [x, y, z])
{(-1, 2, 0)}
* Parametric Solution: In case the system is underdetermined, the
function will return a parametric solution in terms of the given
symbols. Those that are free will be returned unchanged. e.g. in
the system below, `z` is returned as the solution for variable z;
it can take on any value.
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> b = Matrix([3, 6, 9])
>>> linsolve((A, b), x, y, z)
{(z - 1, 2 - 2*z, z)}
If no symbols are given, internally generated symbols will be used.
The `tau0` in the 3rd position indicates (as before) that the 3rd
variable -- whatever it's named -- can take on any value:
>>> linsolve((A, b))
{(tau0 - 1, 2 - 2*tau0, tau0)}
* List of Equations as input
>>> Eqns = [3*x + 2*y - z - 1, 2*x - 2*y + 4*z + 2, - x + y/2 - z]
>>> linsolve(Eqns, x, y, z)
{(1, -2, -2)}
* Augmented Matrix as input
>>> aug = Matrix([[2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]])
>>> aug
Matrix([
[2, 1, 3, 1],
[2, 6, 8, 3],
[6, 8, 18, 5]])
>>> linsolve(aug, x, y, z)
{(3/10, 2/5, 0)}
* Solve for symbolic coefficients
>>> a, b, c, d, e, f = symbols('a, b, c, d, e, f')
>>> eqns = [a*x + b*y - c, d*x + e*y - f]
>>> linsolve(eqns, x, y)
{((-b*f + c*e)/(a*e - b*d), (a*f - c*d)/(a*e - b*d))}
* A degenerate system returns solution as set of given
symbols.
>>> system = Matrix(([0, 0, 0], [0, 0, 0], [0, 0, 0]))
>>> linsolve(system, x, y)
{(x, y)}
* For an empty system linsolve returns empty set
>>> linsolve([], x)
EmptySet
* An error is raised if, after expansion, any nonlinearity
is detected:
>>> linsolve([x*(1/x - 1), (y - 1)**2 - y**2 + 1], x, y)
{(1, 1)}
>>> linsolve([x**2 - 1], x)
Traceback (most recent call last):
...
NonlinearError:
nonlinear term encountered: x**2
"""
if not system:
return S.EmptySet
# If second argument is an iterable
if symbols and hasattr(symbols[0], '__iter__'):
symbols = symbols[0]
sym_gen = isinstance(symbols, GeneratorType)
b = None # if we don't get b the input was bad
# unpack system
if hasattr(system, '__iter__'):
# 1). (A, b)
if len(system) == 2 and isinstance(system[0], MatrixBase):
A, b = system
# 2). (eq1, eq2, ...)
if not isinstance(system[0], MatrixBase):
if sym_gen or not symbols:
raise ValueError(filldedent('''
When passing a system of equations, the explicit
symbols for which a solution is being sought must
be given as a sequence, too.
'''))
#
# Pass to the sparse solver implemented in polys. It is important
# that we do not attempt to convert the equations to a matrix
# because that would be very inefficient for large sparse systems
# of equations.
#
eqs = system
eqs = [sympify(eq) for eq in eqs]
try:
sol = _linsolve(eqs, symbols)
except PolyNonlinearError as exc:
# e.g. cos(x) contains an element of the set of generators
raise NonlinearError(str(exc))
if sol is None:
return S.EmptySet
sol = FiniteSet(Tuple(*(sol.get(sym, sym) for sym in symbols)))
return sol
elif isinstance(system, MatrixBase) and not (
symbols and not isinstance(symbols, GeneratorType) and
isinstance(symbols[0], MatrixBase)):
# 3). A augmented with b
A, b = system[:, :-1], system[:, -1:]
if b is None:
raise ValueError("Invalid arguments")
if sym_gen:
symbols = [next(symbols) for i in range(A.cols)]
if any(set(symbols) & (A.free_symbols | b.free_symbols)):
raise ValueError(filldedent('''
At least one of the symbols provided
already appears in the system to be solved.
One way to avoid this is to use Dummy symbols in
the generator, e.g. numbered_symbols('%s', cls=Dummy)
''' % symbols[0].name.rstrip('1234567890')))
if not symbols:
symbols = [Dummy() for _ in range(A.cols)]
name = _uniquely_named_symbol('tau', (A, b),
compare=lambda i: str(i).rstrip('1234567890')).name
gen = numbered_symbols(name)
else:
gen = None
# This is just a wrapper for solve_lin_sys
eqs = []
rows = A.tolist()
for rowi, bi in zip(rows, b):
terms = [elem * sym for elem, sym in zip(rowi, symbols) if elem]
terms.append(-bi)
eqs.append(Add(*terms))
eqs, ring = sympy_eqs_to_ring(eqs, symbols)
sol = solve_lin_sys(eqs, ring, _raw=False)
if sol is None:
return S.EmptySet
#sol = {sym:val for sym, val in sol.items() if sym != val}
sol = FiniteSet(Tuple(*(sol.get(sym, sym) for sym in symbols)))
if gen is not None:
solsym = sol.free_symbols
rep = {sym: next(gen) for sym in symbols if sym in solsym}
sol = sol.subs(rep)
return sol
##############################################################################
# ------------------------------nonlinsolve ---------------------------------#
##############################################################################
def _return_conditionset(eqs, symbols):
# return conditionset
eqs = (Eq(lhs, 0) for lhs in eqs)
condition_set = ConditionSet(
Tuple(*symbols), And(*eqs), S.Complexes**len(symbols))
return condition_set
def substitution(system, symbols, result=[{}], known_symbols=[],
exclude=[], all_symbols=None):
r"""
Solves the `system` using substitution method. It is used in
`nonlinsolve`. This will be called from `nonlinsolve` when any
equation(s) is non polynomial equation.
Parameters
==========
system : list of equations
The target system of equations
symbols : list of symbols to be solved.
The variable(s) for which the system is solved
known_symbols : list of solved symbols
Values are known for these variable(s)
result : An empty list or list of dict
If No symbol values is known then empty list otherwise
symbol as keys and corresponding value in dict.
exclude : Set of expression.
Mostly denominator expression(s) of the equations of the system.
Final solution should not satisfy these expressions.
all_symbols : known_symbols + symbols(unsolved).
Returns
=======
A FiniteSet of ordered tuple of values of `all_symbols` for which the
`system` has solution. Order of values in the tuple is same as symbols
present in the parameter `all_symbols`. If parameter `all_symbols` is None
then same as symbols present in the parameter `symbols`.
Please note that general FiniteSet is unordered, the solution returned
here is not simply a FiniteSet of solutions, rather it is a FiniteSet of
ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of
solutions, which is ordered, & hence the returned solution is ordered.
Also note that solution could also have been returned as an ordered tuple,
FiniteSet is just a wrapper `{}` around the tuple. It has no other
significance except for the fact it is just used to maintain a consistent
output format throughout the solveset.
Raises
======
ValueError
The input is not valid.
The symbols are not given.
AttributeError
The input symbols are not `Symbol` type.
Examples
========
>>> from sympy.core.symbol import symbols
>>> x, y = symbols('x, y', real=True)
>>> from sympy.solvers.solveset import substitution
>>> substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y])
{(-1, 1)}
* when you want soln should not satisfy eq `x + 1 = 0`
>>> substitution([x + y], [x], [{y: 1}], [y], set([x + 1]), [y, x])
EmptySet
>>> substitution([x + y], [x], [{y: 1}], [y], set([x - 1]), [y, x])
{(1, -1)}
>>> substitution([x + y - 1, y - x**2 + 5], [x, y])
{(-3, 4), (2, -1)}
* Returns both real and complex solution
>>> x, y, z = symbols('x, y, z')
>>> from sympy import exp, sin
>>> substitution([exp(x) - sin(y), y**2 - 4], [x, y])
{(ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers), -2),
(ImageSet(Lambda(_n, 2*_n*I*pi + log(sin(2))), Integers), 2)}
>>> eqs = [z**2 + exp(2*x) - sin(y), -3 + exp(-y)]
>>> substitution(eqs, [y, z])
{(-log(3), -sqrt(-exp(2*x) - sin(log(3)))),
(-log(3), sqrt(-exp(2*x) - sin(log(3)))),
(ImageSet(Lambda(_n, 2*_n*I*pi - log(3)), Integers),
ImageSet(Lambda(_n, -sqrt(-exp(2*x) + sin(2*_n*I*pi - log(3)))), Integers)),
(ImageSet(Lambda(_n, 2*_n*I*pi - log(3)), Integers),
ImageSet(Lambda(_n, sqrt(-exp(2*x) + sin(2*_n*I*pi - log(3)))), Integers))}
"""
if not system:
return S.EmptySet
if not symbols:
msg = ('Symbols must be given, for which solution of the '
'system is to be found.')
raise ValueError(filldedent(msg))
if not is_sequence(symbols):
msg = ('symbols should be given as a sequence, e.g. a list.'
'Not type %s: %s')
raise TypeError(filldedent(msg % (type(symbols), symbols)))
if not getattr(symbols[0], 'is_Symbol', False):
msg = ('Iterable of symbols must be given as '
'second argument, not type %s: %s')
raise ValueError(filldedent(msg % (type(symbols[0]), symbols[0])))
# By default `all_symbols` will be same as `symbols`
if all_symbols is None:
all_symbols = symbols
old_result = result
# storing complements and intersection for particular symbol
complements = {}
intersections = {}
# when total_solveset_call equals total_conditionset
# it means that solveset failed to solve all eqs.
total_conditionset = -1
total_solveset_call = -1
def _unsolved_syms(eq, sort=False):
"""Returns the unsolved symbol present
in the equation `eq`.
"""
free = eq.free_symbols
unsolved = (free - set(known_symbols)) & set(all_symbols)
if sort:
unsolved = list(unsolved)
unsolved.sort(key=default_sort_key)
return unsolved
# end of _unsolved_syms()
# sort such that equation with the fewest potential symbols is first.
# means eq with less number of variable first in the list.
eqs_in_better_order = list(
ordered(system, lambda _: len(_unsolved_syms(_))))
def add_intersection_complement(result, intersection_dict, complement_dict):
# If solveset has returned some intersection/complement
# for any symbol, it will be added in the final solution.
final_result = []
for res in result:
res_copy = res
for key_res, value_res in res.items():
intersect_set, complement_set = None, None
for key_sym, value_sym in intersection_dict.items():
if key_sym == key_res:
intersect_set = value_sym
for key_sym, value_sym in complement_dict.items():
if key_sym == key_res:
complement_set = value_sym
if intersect_set or complement_set:
new_value = FiniteSet(value_res)
if intersect_set and intersect_set != S.Complexes:
new_value = Intersection(new_value, intersect_set)
if complement_set:
new_value = Complement(new_value, complement_set)
if new_value is S.EmptySet:
res_copy = None
break
elif new_value.is_FiniteSet and len(new_value) == 1:
res_copy[key_res] = set(new_value).pop()
else:
res_copy[key_res] = new_value
if res_copy is not None:
final_result.append(res_copy)
return final_result
# end of def add_intersection_complement()
def _extract_main_soln(sym, sol, soln_imageset):
"""Separate the Complements, Intersections, ImageSet lambda expr and
its base_set. This function returns the unmasks sol from different classes
of sets and also returns the appended ImageSet elements in a
soln_imageset (dict: where key as unmasked element and value as ImageSet).
"""
# if there is union, then need to check
# Complement, Intersection, Imageset.
# Order should not be changed.
if isinstance(sol, ConditionSet):
# extracts any solution in ConditionSet
sol = sol.base_set
if isinstance(sol, Complement):
# extract solution and complement
complements[sym] = sol.args[1]
sol = sol.args[0]
# complement will be added at the end
# using `add_intersection_complement` method
# if there is union of Imageset or other in soln.
# no testcase is written for this if block
if isinstance(sol, Union):
sol_args = sol.args
sol = S.EmptySet
# We need in sequence so append finteset elements
# and then imageset or other.
for sol_arg2 in sol_args:
if isinstance(sol_arg2, FiniteSet):
sol += sol_arg2
else:
# ImageSet, Intersection, complement then
# append them directly
sol += FiniteSet(sol_arg2)
if isinstance(sol, Intersection):
# Interval/Set will be at 0th index always
if sol.args[0] not in (S.Reals, S.Complexes):
# Sometimes solveset returns soln with intersection
# S.Reals or S.Complexes. We don't consider that
# intersection.
intersections[sym] = sol.args[0]
sol = sol.args[1]
# after intersection and complement Imageset should
# be checked.
if isinstance(sol, ImageSet):
soln_imagest = sol
expr2 = sol.lamda.expr
sol = FiniteSet(expr2)
soln_imageset[expr2] = soln_imagest
if not isinstance(sol, FiniteSet):
sol = FiniteSet(sol)
return sol, soln_imageset
# end of def _extract_main_soln()
# helper function for _append_new_soln
def _check_exclude(rnew, imgset_yes):
rnew_ = rnew
if imgset_yes:
# replace all dummy variables (Imageset lambda variables)
# with zero before `checksol`. Considering fundamental soln
# for `checksol`.
rnew_copy = rnew.copy()
dummy_n = imgset_yes[0]
for key_res, value_res in rnew_copy.items():
rnew_copy[key_res] = value_res.subs(dummy_n, 0)
rnew_ = rnew_copy
# satisfy_exclude == true if it satisfies the expr of `exclude` list.
try:
# something like : `Mod(-log(3), 2*I*pi)` can't be
# simplified right now, so `checksol` returns `TypeError`.
# when this issue is fixed this try block should be
# removed. Mod(-log(3), 2*I*pi) == -log(3)
satisfy_exclude = any(
checksol(d, rnew_) for d in exclude)
except TypeError:
satisfy_exclude = None
return satisfy_exclude
# end of def _check_exclude()
# helper function for _append_new_soln
def _restore_imgset(rnew, original_imageset, newresult):
restore_sym = set(rnew.keys()) & \
set(original_imageset.keys())
for key_sym in restore_sym:
img = original_imageset[key_sym]
rnew[key_sym] = img
if rnew not in newresult:
newresult.append(rnew)
# end of def _restore_imgset()
def _append_eq(eq, result, res, delete_soln, n=None):
u = Dummy('u')
if n:
eq = eq.subs(n, 0)
satisfy = eq if eq in (True, False) else checksol(u, u, eq, minimal=True)
if satisfy is False:
delete_soln = True
res = {}
else:
result.append(res)
return result, res, delete_soln
def _append_new_soln(rnew, sym, sol, imgset_yes, soln_imageset,
original_imageset, newresult, eq=None):
"""If `rnew` (A dict <symbol: soln>) contains valid soln
append it to `newresult` list.
`imgset_yes` is (base, dummy_var) if there was imageset in previously
calculated result(otherwise empty tuple). `original_imageset` is dict
of imageset expr and imageset from this result.
`soln_imageset` dict of imageset expr and imageset of new soln.
"""
satisfy_exclude = _check_exclude(rnew, imgset_yes)
delete_soln = False
# soln should not satisfy expr present in `exclude` list.
if not satisfy_exclude:
local_n = None
# if it is imageset
if imgset_yes:
local_n = imgset_yes[0]
base = imgset_yes[1]
if sym and sol:
# when `sym` and `sol` is `None` means no new
# soln. In that case we will append rnew directly after
# substituting original imagesets in rnew values if present
# (second last line of this function using _restore_imgset)
dummy_list = list(sol.atoms(Dummy))
# use one dummy `n` which is in
# previous imageset
local_n_list = [
local_n for i in range(
0, len(dummy_list))]
dummy_zip = zip(dummy_list, local_n_list)
lam = Lambda(local_n, sol.subs(dummy_zip))
rnew[sym] = ImageSet(lam, base)
if eq is not None:
newresult, rnew, delete_soln = _append_eq(
eq, newresult, rnew, delete_soln, local_n)
elif eq is not None:
newresult, rnew, delete_soln = _append_eq(
eq, newresult, rnew, delete_soln)
elif sol in soln_imageset.keys():
rnew[sym] = soln_imageset[sol]
# restore original imageset
_restore_imgset(rnew, original_imageset, newresult)
else:
newresult.append(rnew)
elif satisfy_exclude:
delete_soln = True
rnew = {}
_restore_imgset(rnew, original_imageset, newresult)
return newresult, delete_soln
# end of def _append_new_soln()
def _new_order_result(result, eq):
# separate first, second priority. `res` that makes `eq` value equals
# to zero, should be used first then other result(second priority).
# If it is not done then we may miss some soln.
first_priority = []
second_priority = []
for res in result:
if not any(isinstance(val, ImageSet) for val in res.values()):
if eq.subs(res) == 0:
first_priority.append(res)
else:
second_priority.append(res)
if first_priority or second_priority:
return first_priority + second_priority
return result
def _solve_using_known_values(result, solver):
"""Solves the system using already known solution
(result contains the dict <symbol: value>).
solver is `solveset_complex` or `solveset_real`.
"""
# stores imageset <expr: imageset(Lambda(n, expr), base)>.
soln_imageset = {}
total_solvest_call = 0
total_conditionst = 0
# sort such that equation with the fewest potential symbols is first.
# means eq with less variable first
for index, eq in enumerate(eqs_in_better_order):
newresult = []
original_imageset = {}
# if imageset expr is used to solve other symbol
imgset_yes = False
result = _new_order_result(result, eq)
for res in result:
got_symbol = set() # symbols solved in one iteration
# find the imageset and use its expr.
for key_res, value_res in res.items():
if isinstance(value_res, ImageSet):
res[key_res] = value_res.lamda.expr
original_imageset[key_res] = value_res
dummy_n = value_res.lamda.expr.atoms(Dummy).pop()
(base,) = value_res.base_sets
imgset_yes = (dummy_n, base)
# update eq with everything that is known so far
eq2 = eq.subs(res).expand()
unsolved_syms = _unsolved_syms(eq2, sort=True)
if not unsolved_syms:
if res:
newresult, delete_res = _append_new_soln(
res, None, None, imgset_yes, soln_imageset,
original_imageset, newresult, eq2)
if delete_res:
# `delete_res` is true, means substituting `res` in
# eq2 doesn't return `zero` or deleting the `res`
# (a soln) since it staisfies expr of `exclude`
# list.
result.remove(res)
continue # skip as it's independent of desired symbols
depen1, depen2 = (eq2.rewrite(Add)).as_independent(*unsolved_syms)
if (depen1.has(Abs) or depen2.has(Abs)) and solver == solveset_complex:
# Absolute values cannot be inverted in the
# complex domain
continue
soln_imageset = {}
for sym in unsolved_syms:
not_solvable = False
try:
soln = solver(eq2, sym)
total_solvest_call += 1
soln_new = S.EmptySet
if isinstance(soln, Complement):
# separate solution and complement
complements[sym] = soln.args[1]
soln = soln.args[0]
# complement will be added at the end
if isinstance(soln, Intersection):
# Interval will be at 0th index always
if soln.args[0] != Interval(-oo, oo):
# sometimes solveset returns soln
# with intersection S.Reals, to confirm that
# soln is in domain=S.Reals
intersections[sym] = soln.args[0]
soln_new += soln.args[1]
soln = soln_new if soln_new else soln
if index > 0 and solver == solveset_real:
# one symbol's real soln , another symbol may have
# corresponding complex soln.
if not isinstance(soln, (ImageSet, ConditionSet)):
soln += solveset_complex(eq2, sym)
except NotImplementedError:
# If sovleset is not able to solve equation `eq2`. Next
# time we may get soln using next equation `eq2`
continue
if isinstance(soln, ConditionSet):
if soln.base_set in (S.Reals, S.Complexes):
soln = S.EmptySet
# don't do `continue` we may get soln
# in terms of other symbol(s)
not_solvable = True
total_conditionst += 1
else:
soln = soln.base_set
if soln is not S.EmptySet:
soln, soln_imageset = _extract_main_soln(
sym, soln, soln_imageset)
for sol in soln:
# sol is not a `Union` since we checked it
# before this loop
sol, soln_imageset = _extract_main_soln(
sym, sol, soln_imageset)
sol = set(sol).pop()
free = sol.free_symbols
if got_symbol and any(
ss in free for ss in got_symbol
):
# sol depends on previously solved symbols
# then continue
continue
rnew = res.copy()
# put each solution in res and append the new result
# in the new result list (solution for symbol `s`)
# along with old results.
for k, v in res.items():
if isinstance(v, Expr) and isinstance(sol, Expr):
# if any unsolved symbol is present
# Then subs known value
rnew[k] = v.subs(sym, sol)
# and add this new solution
if sol in soln_imageset.keys():
# replace all lambda variables with 0.
imgst = soln_imageset[sol]
rnew[sym] = imgst.lamda(
*[0 for i in range(0, len(
imgst.lamda.variables))])
else:
rnew[sym] = sol
newresult, delete_res = _append_new_soln(
rnew, sym, sol, imgset_yes, soln_imageset,
original_imageset, newresult)
if delete_res:
# deleting the `res` (a soln) since it staisfies
# eq of `exclude` list
result.remove(res)
# solution got for sym
if not not_solvable:
got_symbol.add(sym)
# next time use this new soln
if newresult:
result = newresult
return result, total_solvest_call, total_conditionst
# end def _solve_using_know_values()
new_result_real, solve_call1, cnd_call1 = _solve_using_known_values(
old_result, solveset_real)
new_result_complex, solve_call2, cnd_call2 = _solve_using_known_values(
old_result, solveset_complex)
# If total_solveset_call is equal to total_conditionset
# then solveset failed to solve all of the equations.
# In this case we return a ConditionSet here.
total_conditionset += (cnd_call1 + cnd_call2)
total_solveset_call += (solve_call1 + solve_call2)
if total_conditionset == total_solveset_call and total_solveset_call != -1:
return _return_conditionset(eqs_in_better_order, all_symbols)
# don't keep duplicate solutions
filtered_complex = []
for i in list(new_result_complex):
for j in list(new_result_real):
if i.keys() != j.keys():
continue
if all(a.dummy_eq(b) for a, b in zip(i.values(), j.values()) \
if type(a) != int or type(b) != int):
break
else:
filtered_complex.append(i)
# overall result
result = new_result_real + filtered_complex
result_all_variables = []
result_infinite = []
for res in result:
if not res:
# means {None : None}
continue
# If length < len(all_symbols) means infinite soln.
# Some or all the soln is dependent on 1 symbol.
# eg. {x: y+2} then final soln {x: y+2, y: y}
if len(res) < len(all_symbols):
solved_symbols = res.keys()
unsolved = list(filter(
lambda x: x not in solved_symbols, all_symbols))
for unsolved_sym in unsolved:
res[unsolved_sym] = unsolved_sym
result_infinite.append(res)
if res not in result_all_variables:
result_all_variables.append(res)
if result_infinite:
# we have general soln
# eg : [{x: -1, y : 1}, {x : -y , y: y}] then
# return [{x : -y, y : y}]
result_all_variables = result_infinite
if intersections or complements:
result_all_variables = add_intersection_complement(
result_all_variables, intersections, complements)
# convert to ordered tuple
result = S.EmptySet
for r in result_all_variables:
temp = [r[symb] for symb in all_symbols]
result += FiniteSet(tuple(temp))
return result
# end of def substitution()
def _solveset_work(system, symbols):
soln = solveset(system[0], symbols[0])
if isinstance(soln, FiniteSet):
_soln = FiniteSet(*[tuple((s,)) for s in soln])
return _soln
else:
return FiniteSet(tuple(FiniteSet(soln)))
def _handle_positive_dimensional(polys, symbols, denominators):
from sympy.polys.polytools import groebner
# substitution method where new system is groebner basis of the system
_symbols = list(symbols)
_symbols.sort(key=default_sort_key)
basis = groebner(polys, _symbols, polys=True)
new_system = []
for poly_eq in basis:
new_system.append(poly_eq.as_expr())
result = [{}]
result = substitution(
new_system, symbols, result, [],
denominators)
return result
# end of def _handle_positive_dimensional()
def _handle_zero_dimensional(polys, symbols, system):
# solve 0 dimensional poly system using `solve_poly_system`
result = solve_poly_system(polys, *symbols)
# May be some extra soln is added because
# we used `unrad` in `_separate_poly_nonpoly`, so
# need to check and remove if it is not a soln.
result_update = S.EmptySet
for res in result:
dict_sym_value = dict(list(zip(symbols, res)))
if all(checksol(eq, dict_sym_value) for eq in system):
result_update += FiniteSet(res)
return result_update
# end of def _handle_zero_dimensional()
def _separate_poly_nonpoly(system, symbols):
polys = []
polys_expr = []
nonpolys = []
denominators = set()
poly = None
for eq in system:
# Store denom expressions that contain symbols
denominators.update(_simple_dens(eq, symbols))
# Convert equality to expression
if isinstance(eq, Equality):
eq = eq.rewrite(Add)
# try to remove sqrt and rational power
without_radicals = unrad(simplify(eq), *symbols)
if without_radicals:
eq_unrad, cov = without_radicals
if not cov:
eq = eq_unrad
if isinstance(eq, Expr):
eq = eq.as_numer_denom()[0]
poly = eq.as_poly(*symbols, extension=True)
elif simplify(eq).is_number:
continue
if poly is not None:
polys.append(poly)
polys_expr.append(poly.as_expr())
else:
nonpolys.append(eq)
return polys, polys_expr, nonpolys, denominators
# end of def _separate_poly_nonpoly()
def nonlinsolve(system, *symbols):
r"""
Solve system of N nonlinear equations with M variables, which means both
under and overdetermined systems are supported. Positive dimensional
system is also supported (A system with infinitely many solutions is said
to be positive-dimensional). In Positive dimensional system solution will
be dependent on at least one symbol. Returns both real solution
and complex solution(If system have). The possible number of solutions
is zero, one or infinite.
Parameters
==========
system : list of equations
The target system of equations
symbols : list of Symbols
symbols should be given as a sequence eg. list
Returns
=======
A FiniteSet of ordered tuple of values of `symbols` for which the `system`
has solution. Order of values in the tuple is same as symbols present in
the parameter `symbols`.
Please note that general FiniteSet is unordered, the solution returned
here is not simply a FiniteSet of solutions, rather it is a FiniteSet of
ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of
solutions, which is ordered, & hence the returned solution is ordered.
Also note that solution could also have been returned as an ordered tuple,
FiniteSet is just a wrapper `{}` around the tuple. It has no other
significance except for the fact it is just used to maintain a consistent
output format throughout the solveset.
For the given set of Equations, the respective input types
are given below:
.. math:: x*y - 1 = 0
.. math:: 4*x**2 + y**2 - 5 = 0
`system = [x*y - 1, 4*x**2 + y**2 - 5]`
`symbols = [x, y]`
Raises
======
ValueError
The input is not valid.
The symbols are not given.
AttributeError
The input symbols are not `Symbol` type.
Examples
========
>>> from sympy.core.symbol import symbols
>>> from sympy.solvers.solveset import nonlinsolve
>>> x, y, z = symbols('x, y, z', real=True)
>>> nonlinsolve([x*y - 1, 4*x**2 + y**2 - 5], [x, y])
{(-1, -1), (-1/2, -2), (1/2, 2), (1, 1)}
1. Positive dimensional system and complements:
>>> from sympy import pprint
>>> from sympy.polys.polytools import is_zero_dimensional
>>> a, b, c, d = symbols('a, b, c, d', extended_real=True)
>>> eq1 = a + b + c + d
>>> eq2 = a*b + b*c + c*d + d*a
>>> eq3 = a*b*c + b*c*d + c*d*a + d*a*b
>>> eq4 = a*b*c*d - 1
>>> system = [eq1, eq2, eq3, eq4]
>>> is_zero_dimensional(system)
False
>>> pprint(nonlinsolve(system, [a, b, c, d]), use_unicode=False)
-1 1 1 -1
{(---, -d, -, {d} \ {0}), (-, -d, ---, {d} \ {0})}
d d d d
>>> nonlinsolve([(x+y)**2 - 4, x + y - 2], [x, y])
{(2 - y, y)}
2. If some of the equations are non-polynomial then `nonlinsolve`
will call the `substitution` function and return real and complex solutions,
if present.
>>> from sympy import exp, sin
>>> nonlinsolve([exp(x) - sin(y), y**2 - 4], [x, y])
{(ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers), -2),
(ImageSet(Lambda(_n, 2*_n*I*pi + log(sin(2))), Integers), 2)}
3. If system is non-linear polynomial and zero-dimensional then it
returns both solution (real and complex solutions, if present) using
`solve_poly_system`:
>>> from sympy import sqrt
>>> nonlinsolve([x**2 - 2*y**2 -2, x*y - 2], [x, y])
{(-2, -1), (2, 1), (-sqrt(2)*I, sqrt(2)*I), (sqrt(2)*I, -sqrt(2)*I)}
4. `nonlinsolve` can solve some linear (zero or positive dimensional)
system (because it uses the `groebner` function to get the
groebner basis and then uses the `substitution` function basis as the
new `system`). But it is not recommended to solve linear system using
`nonlinsolve`, because `linsolve` is better for general linear systems.
>>> nonlinsolve([x + 2*y -z - 3, x - y - 4*z + 9 , y + z - 4], [x, y, z])
{(3*z - 5, 4 - z, z)}
5. System having polynomial equations and only real solution is
solved using `solve_poly_system`:
>>> e1 = sqrt(x**2 + y**2) - 10
>>> e2 = sqrt(y**2 + (-x + 10)**2) - 3
>>> nonlinsolve((e1, e2), (x, y))
{(191/20, -3*sqrt(391)/20), (191/20, 3*sqrt(391)/20)}
>>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [x, y])
{(1, 2), (1 - sqrt(5), 2 + sqrt(5)), (1 + sqrt(5), 2 - sqrt(5))}
>>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [y, x])
{(2, 1), (2 - sqrt(5), 1 + sqrt(5)), (2 + sqrt(5), 1 - sqrt(5))}
6. It is better to use symbols instead of Trigonometric Function or
Function (e.g. replace `sin(x)` with symbol, replace `f(x)` with symbol
and so on. Get soln from `nonlinsolve` and then using `solveset` get
the value of `x`)
How nonlinsolve is better than old solver `_solve_system` :
===========================================================
1. A positive dimensional system solver : nonlinsolve can return
solution for positive dimensional system. It finds the
Groebner Basis of the positive dimensional system(calling it as
basis) then we can start solving equation(having least number of
variable first in the basis) using solveset and substituting that
solved solutions into other equation(of basis) to get solution in
terms of minimum variables. Here the important thing is how we
are substituting the known values and in which equations.
2. Real and Complex both solutions : nonlinsolve returns both real
and complex solution. If all the equations in the system are polynomial
then using `solve_poly_system` both real and complex solution is returned.
If all the equations in the system are not polynomial equation then goes to
`substitution` method with this polynomial and non polynomial equation(s),
to solve for unsolved variables. Here to solve for particular variable
solveset_real and solveset_complex is used. For both real and complex
solution function `_solve_using_know_values` is used inside `substitution`
function.(`substitution` function will be called when there is any non
polynomial equation(s) is present). When solution is valid then add its
general solution in the final result.
3. Complement and Intersection will be added if any : nonlinsolve maintains
dict for complements and Intersections. If solveset find complements or/and
Intersection with any Interval or set during the execution of
`substitution` function ,then complement or/and Intersection for that
variable is added before returning final solution.
"""
from sympy.polys.polytools import is_zero_dimensional
if not system:
return S.EmptySet
if not symbols:
msg = ('Symbols must be given, for which solution of the '
'system is to be found.')
raise ValueError(filldedent(msg))
if hasattr(symbols[0], '__iter__'):
symbols = symbols[0]
if not is_sequence(symbols) or not symbols:
msg = ('Symbols must be given, for which solution of the '
'system is to be found.')
raise IndexError(filldedent(msg))
system, symbols, swap = recast_to_symbols(system, symbols)
if swap:
soln = nonlinsolve(system, symbols)
return FiniteSet(*[tuple(i.xreplace(swap) for i in s) for s in soln])
if len(system) == 1 and len(symbols) == 1:
return _solveset_work(system, symbols)
# main code of def nonlinsolve() starts from here
polys, polys_expr, nonpolys, denominators = _separate_poly_nonpoly(
system, symbols)
if len(symbols) == len(polys):
# If all the equations in the system are poly
if is_zero_dimensional(polys, symbols):
# finite number of soln (Zero dimensional system)
try:
return _handle_zero_dimensional(polys, symbols, system)
except NotImplementedError:
# Right now it doesn't fail for any polynomial system of
# equation. If `solve_poly_system` fails then `substitution`
# method will handle it.
result = substitution(
polys_expr, symbols, exclude=denominators)
return result
# positive dimensional system
res = _handle_positive_dimensional(polys, symbols, denominators)
if res is EmptySet and any(not p.domain.is_Exact for p in polys):
raise NotImplementedError("Equation not in exact domain. Try converting to rational")
else:
return res
else:
# If all the equations are not polynomial.
# Use `substitution` method for the system
result = substitution(
polys_expr + nonpolys, symbols, exclude=denominators)
return result
|
4abc1642855abec94d2158f43b0aedfe0a87cf919dcad46008dc8786f22fd148 | """Solvers of systems of polynomial equations. """
from sympy.core import S
from sympy.polys import Poly, groebner, roots
from sympy.polys.polytools import parallel_poly_from_expr
from sympy.polys.polyerrors import (ComputationFailed,
PolificationFailed, CoercionFailed)
from sympy.simplify import rcollect
from sympy.utilities import default_sort_key, postfixes
from sympy.utilities.misc import filldedent
class SolveFailed(Exception):
"""Raised when solver's conditions weren't met. """
def solve_poly_system(seq, *gens, **args):
"""
Solve a system of polynomial equations.
Parameters
==========
seq: a list/tuple/set
Listing all the equations that are needed to be solved
gens: generators
generators of the equations in seq for which we want the
solutions
args: Keyword arguments
Special options for solving the equations
Returns
=======
List[Tuple]
A List of tuples. Solutions for symbols that satisfy the
equations listed in seq
Examples
========
>>> from sympy import solve_poly_system
>>> from sympy.abc import x, y
>>> solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y)
[(0, 0), (2, -sqrt(2)), (2, sqrt(2))]
"""
try:
polys, opt = parallel_poly_from_expr(seq, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('solve_poly_system', len(seq), exc)
if len(polys) == len(opt.gens) == 2:
f, g = polys
if all(i <= 2 for i in f.degree_list() + g.degree_list()):
try:
return solve_biquadratic(f, g, opt)
except SolveFailed:
pass
return solve_generic(polys, opt)
def solve_biquadratic(f, g, opt):
"""Solve a system of two bivariate quadratic polynomial equations.
Parameters
==========
f: a single Expr or Poly
First equation
g: a single Expr or Poly
Second Equation
opt: an Options object
For specifying keyword arguments and generators
Returns
=======
List[Tuple]
A List of tuples. Solutions for symbols that satisfy the
equations listed in seq.
Examples
========
>>> from sympy.polys import Options, Poly
>>> from sympy.abc import x, y
>>> from sympy.solvers.polysys import solve_biquadratic
>>> NewOption = Options((x, y), {'domain': 'ZZ'})
>>> a = Poly(y**2 - 4 + x, y, x, domain='ZZ')
>>> b = Poly(y*2 + 3*x - 7, y, x, domain='ZZ')
>>> solve_biquadratic(a, b, NewOption)
[(1/3, 3), (41/27, 11/9)]
>>> a = Poly(y + x**2 - 3, y, x, domain='ZZ')
>>> b = Poly(-y + x - 4, y, x, domain='ZZ')
>>> solve_biquadratic(a, b, NewOption)
[(7/2 - sqrt(29)/2, -sqrt(29)/2 - 1/2), (sqrt(29)/2 + 7/2, -1/2 + \
sqrt(29)/2)]
"""
G = groebner([f, g])
if len(G) == 1 and G[0].is_ground:
return None
if len(G) != 2:
raise SolveFailed
x, y = opt.gens
p, q = G
if not p.gcd(q).is_ground:
# not 0-dimensional
raise SolveFailed
p = Poly(p, x, expand=False)
p_roots = [rcollect(expr, y) for expr in roots(p).keys()]
q = q.ltrim(-1)
q_roots = list(roots(q).keys())
solutions = []
for q_root in q_roots:
for p_root in p_roots:
solution = (p_root.subs(y, q_root), q_root)
solutions.append(solution)
return sorted(solutions, key=default_sort_key)
def solve_generic(polys, opt):
"""
Solve a generic system of polynomial equations.
Returns all possible solutions over C[x_1, x_2, ..., x_m] of a
set F = { f_1, f_2, ..., f_n } of polynomial equations, using
Groebner basis approach. For now only zero-dimensional systems
are supported, which means F can have at most a finite number
of solutions.
The algorithm works by the fact that, supposing G is the basis
of F with respect to an elimination order (here lexicographic
order is used), G and F generate the same ideal, they have the
same set of solutions. By the elimination property, if G is a
reduced, zero-dimensional Groebner basis, then there exists an
univariate polynomial in G (in its last variable). This can be
solved by computing its roots. Substituting all computed roots
for the last (eliminated) variable in other elements of G, new
polynomial system is generated. Applying the above procedure
recursively, a finite number of solutions can be found.
The ability of finding all solutions by this procedure depends
on the root finding algorithms. If no solutions were found, it
means only that roots() failed, but the system is solvable. To
overcome this difficulty use numerical algorithms instead.
Parameters
==========
polys: a list/tuple/set
Listing all the polynomial equations that are needed to be solved
opt: an Options object
For specifying keyword arguments and generators
Returns
=======
List[Tuple]
A List of tuples. Solutions for symbols that satisfy the
equations listed in seq
References
==========
.. [Buchberger01] B. Buchberger, Groebner Bases: A Short
Introduction for Systems Theorists, In: R. Moreno-Diaz,
B. Buchberger, J.L. Freire, Proceedings of EUROCAST'01,
February, 2001
.. [Cox97] D. Cox, J. Little, D. O'Shea, Ideals, Varieties
and Algorithms, Springer, Second Edition, 1997, pp. 112
Examples
========
>>> from sympy.polys import Poly, Options
>>> from sympy.solvers.polysys import solve_generic
>>> from sympy.abc import x, y
>>> NewOption = Options((x, y), {'domain': 'ZZ'})
>>> a = Poly(x - y + 5, x, y, domain='ZZ')
>>> b = Poly(x + y - 3, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(-1, 4)]
>>> a = Poly(x - 2*y + 5, x, y, domain='ZZ')
>>> b = Poly(2*x - y - 3, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(11/3, 13/3)]
>>> a = Poly(x**2 + y, x, y, domain='ZZ')
>>> b = Poly(x + y*4, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(0, 0), (1/4, -1/16)]
"""
def _is_univariate(f):
"""Returns True if 'f' is univariate in its last variable. """
for monom in f.monoms():
if any(monom[:-1]):
return False
return True
def _subs_root(f, gen, zero):
"""Replace generator with a root so that the result is nice. """
p = f.as_expr({gen: zero})
if f.degree(gen) >= 2:
p = p.expand(deep=False)
return p
def _solve_reduced_system(system, gens, entry=False):
"""Recursively solves reduced polynomial systems. """
if len(system) == len(gens) == 1:
zeros = list(roots(system[0], gens[-1]).keys())
return [(zero,) for zero in zeros]
basis = groebner(system, gens, polys=True)
if len(basis) == 1 and basis[0].is_ground:
if not entry:
return []
else:
return None
univariate = list(filter(_is_univariate, basis))
if len(basis) < len(gens):
raise NotImplementedError(filldedent('''
only zero-dimensional systems supported
(finite number of solutions)
'''))
if len(univariate) == 1:
f = univariate.pop()
else:
raise NotImplementedError(filldedent('''
only zero-dimensional systems supported
(finite number of solutions)
'''))
gens = f.gens
gen = gens[-1]
zeros = list(roots(f.ltrim(gen)).keys())
if not zeros:
return []
if len(basis) == 1:
return [(zero,) for zero in zeros]
solutions = []
for zero in zeros:
new_system = []
new_gens = gens[:-1]
for b in basis[:-1]:
eq = _subs_root(b, gen, zero)
if eq is not S.Zero:
new_system.append(eq)
for solution in _solve_reduced_system(new_system, new_gens):
solutions.append(solution + (zero,))
if solutions and len(solutions[0]) != len(gens):
raise NotImplementedError(filldedent('''
only zero-dimensional systems supported
(finite number of solutions)
'''))
return solutions
try:
result = _solve_reduced_system(polys, opt.gens, entry=True)
except CoercionFailed:
raise NotImplementedError
if result is not None:
return sorted(result, key=default_sort_key)
else:
return None
def solve_triangulated(polys, *gens, **args):
"""
Solve a polynomial system using Gianni-Kalkbrenner algorithm.
The algorithm proceeds by computing one Groebner basis in the ground
domain and then by iteratively computing polynomial factorizations in
appropriately constructed algebraic extensions of the ground domain.
Parameters
==========
polys: a list/tuple/set
Listing all the equations that are needed to be solved
gens: generators
generators of the equations in polys for which we want the
solutions
args: Keyword arguments
Special options for solving the equations
Returns
=======
List[Tuple]
A List of tuples. Solutions for symbols that satisfy the
equations listed in polys
Examples
========
>>> from sympy.solvers.polysys import solve_triangulated
>>> from sympy.abc import x, y, z
>>> F = [x**2 + y + z - 1, x + y**2 + z - 1, x + y + z**2 - 1]
>>> solve_triangulated(F, x, y, z)
[(0, 0, 1), (0, 1, 0), (1, 0, 0)]
References
==========
1. Patrizia Gianni, Teo Mora, Algebraic Solution of System of
Polynomial Equations using Groebner Bases, AAECC-5 on Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, LNCS 356 247--257, 1989
"""
G = groebner(polys, gens, polys=True)
G = list(reversed(G))
domain = args.get('domain')
if domain is not None:
for i, g in enumerate(G):
G[i] = g.set_domain(domain)
f, G = G[0].ltrim(-1), G[1:]
dom = f.get_domain()
zeros = f.ground_roots()
solutions = set()
for zero in zeros:
solutions.add(((zero,), dom))
var_seq = reversed(gens[:-1])
vars_seq = postfixes(gens[1:])
for var, vars in zip(var_seq, vars_seq):
_solutions = set()
for values, dom in solutions:
H, mapping = [], list(zip(vars, values))
for g in G:
_vars = (var,) + vars
if g.has_only_gens(*_vars) and g.degree(var) != 0:
h = g.ltrim(var).eval(dict(mapping))
if g.degree(var) == h.degree():
H.append(h)
p = min(H, key=lambda h: h.degree())
zeros = p.ground_roots()
for zero in zeros:
if not zero.is_Rational:
dom_zero = dom.algebraic_field(zero)
else:
dom_zero = dom
_solutions.add(((zero,) + values, dom_zero))
solutions = _solutions
solutions = list(solutions)
for i, (solution, _) in enumerate(solutions):
solutions[i] = solution
return sorted(solutions, key=default_sort_key)
|
576c36d6f44b8f72870748d6ba269711156b1a934be0d0e7a377a77eaf8af9f8 | """Tools for solving inequalities and systems of inequalities. """
from sympy.core import Symbol, Dummy, sympify
from sympy.core.compatibility import iterable
from sympy.core.exprtools import factor_terms
from sympy.core.relational import Relational, Eq, Ge, Lt
from sympy.sets import Interval
from sympy.sets.sets import FiniteSet, Union, EmptySet, Intersection
from sympy.core.singleton import S
from sympy.core.function import expand_mul
from sympy.functions import Abs
from sympy.logic import And
from sympy.polys import Poly, PolynomialError, parallel_poly_from_expr
from sympy.polys.polyutils import _nsort
from sympy.utilities.iterables import sift
from sympy.utilities.misc import filldedent
def solve_poly_inequality(poly, rel):
"""Solve a polynomial inequality with rational coefficients.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> from sympy.solvers.inequalities import solve_poly_inequality
>>> solve_poly_inequality(Poly(x, x, domain='ZZ'), '==')
[{0}]
>>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '!=')
[Interval.open(-oo, -1), Interval.open(-1, 1), Interval.open(1, oo)]
>>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '==')
[{-1}, {1}]
See Also
========
solve_poly_inequalities
"""
if not isinstance(poly, Poly):
raise ValueError(
'For efficiency reasons, `poly` should be a Poly instance')
if poly.as_expr().is_number:
t = Relational(poly.as_expr(), 0, rel)
if t is S.true:
return [S.Reals]
elif t is S.false:
return [S.EmptySet]
else:
raise NotImplementedError(
"could not determine truth value of %s" % t)
reals, intervals = poly.real_roots(multiple=False), []
if rel == '==':
for root, _ in reals:
interval = Interval(root, root)
intervals.append(interval)
elif rel == '!=':
left = S.NegativeInfinity
for right, _ in reals + [(S.Infinity, 1)]:
interval = Interval(left, right, True, True)
intervals.append(interval)
left = right
else:
if poly.LC() > 0:
sign = +1
else:
sign = -1
eq_sign, equal = None, False
if rel == '>':
eq_sign = +1
elif rel == '<':
eq_sign = -1
elif rel == '>=':
eq_sign, equal = +1, True
elif rel == '<=':
eq_sign, equal = -1, True
else:
raise ValueError("'%s' is not a valid relation" % rel)
right, right_open = S.Infinity, True
for left, multiplicity in reversed(reals):
if multiplicity % 2:
if sign == eq_sign:
intervals.insert(
0, Interval(left, right, not equal, right_open))
sign, right, right_open = -sign, left, not equal
else:
if sign == eq_sign and not equal:
intervals.insert(
0, Interval(left, right, True, right_open))
right, right_open = left, True
elif sign != eq_sign and equal:
intervals.insert(0, Interval(left, left))
if sign == eq_sign:
intervals.insert(
0, Interval(S.NegativeInfinity, right, True, right_open))
return intervals
def solve_poly_inequalities(polys):
"""Solve polynomial inequalities with rational coefficients.
Examples
========
>>> from sympy.solvers.inequalities import solve_poly_inequalities
>>> from sympy.polys import Poly
>>> from sympy.abc import x
>>> solve_poly_inequalities(((
... Poly(x**2 - 3), ">"), (
... Poly(-x**2 + 1), ">")))
Union(Interval.open(-oo, -sqrt(3)), Interval.open(-1, 1), Interval.open(sqrt(3), oo))
"""
from sympy import Union
return Union(*[s for p in polys for s in solve_poly_inequality(*p)])
def solve_rational_inequalities(eqs):
"""Solve a system of rational inequalities with rational coefficients.
Examples
========
>>> from sympy.abc import x
>>> from sympy import Poly
>>> from sympy.solvers.inequalities import solve_rational_inequalities
>>> solve_rational_inequalities([[
... ((Poly(-x + 1), Poly(1, x)), '>='),
... ((Poly(-x + 1), Poly(1, x)), '<=')]])
{1}
>>> solve_rational_inequalities([[
... ((Poly(x), Poly(1, x)), '!='),
... ((Poly(-x + 1), Poly(1, x)), '>=')]])
Union(Interval.open(-oo, 0), Interval.Lopen(0, 1))
See Also
========
solve_poly_inequality
"""
result = S.EmptySet
for _eqs in eqs:
if not _eqs:
continue
global_intervals = [Interval(S.NegativeInfinity, S.Infinity)]
for (numer, denom), rel in _eqs:
numer_intervals = solve_poly_inequality(numer*denom, rel)
denom_intervals = solve_poly_inequality(denom, '==')
intervals = []
for numer_interval in numer_intervals:
for global_interval in global_intervals:
interval = numer_interval.intersect(global_interval)
if interval is not S.EmptySet:
intervals.append(interval)
global_intervals = intervals
intervals = []
for global_interval in global_intervals:
for denom_interval in denom_intervals:
global_interval -= denom_interval
if global_interval is not S.EmptySet:
intervals.append(global_interval)
global_intervals = intervals
if not global_intervals:
break
for interval in global_intervals:
result = result.union(interval)
return result
def reduce_rational_inequalities(exprs, gen, relational=True):
"""Reduce a system of rational inequalities with rational coefficients.
Examples
========
>>> from sympy import Symbol
>>> from sympy.solvers.inequalities import reduce_rational_inequalities
>>> x = Symbol('x', real=True)
>>> reduce_rational_inequalities([[x**2 <= 0]], x)
Eq(x, 0)
>>> reduce_rational_inequalities([[x + 2 > 0]], x)
-2 < x
>>> reduce_rational_inequalities([[(x + 2, ">")]], x)
-2 < x
>>> reduce_rational_inequalities([[x + 2]], x)
Eq(x, -2)
This function find the non-infinite solution set so if the unknown symbol
is declared as extended real rather than real then the result may include
finiteness conditions:
>>> y = Symbol('y', extended_real=True)
>>> reduce_rational_inequalities([[y + 2 > 0]], y)
(-2 < y) & (y < oo)
"""
exact = True
eqs = []
solution = S.Reals if exprs else S.EmptySet
for _exprs in exprs:
_eqs = []
for expr in _exprs:
if isinstance(expr, tuple):
expr, rel = expr
else:
if expr.is_Relational:
expr, rel = expr.lhs - expr.rhs, expr.rel_op
else:
expr, rel = expr, '=='
if expr is S.true:
numer, denom, rel = S.Zero, S.One, '=='
elif expr is S.false:
numer, denom, rel = S.One, S.One, '=='
else:
numer, denom = expr.together().as_numer_denom()
try:
(numer, denom), opt = parallel_poly_from_expr(
(numer, denom), gen)
except PolynomialError:
raise PolynomialError(filldedent('''
only polynomials and rational functions are
supported in this context.
'''))
if not opt.domain.is_Exact:
numer, denom, exact = numer.to_exact(), denom.to_exact(), False
domain = opt.domain.get_exact()
if not (domain.is_ZZ or domain.is_QQ):
expr = numer/denom
expr = Relational(expr, 0, rel)
solution &= solve_univariate_inequality(expr, gen, relational=False)
else:
_eqs.append(((numer, denom), rel))
if _eqs:
eqs.append(_eqs)
if eqs:
solution &= solve_rational_inequalities(eqs)
exclude = solve_rational_inequalities([[((d, d.one), '==')
for i in eqs for ((n, d), _) in i if d.has(gen)]])
solution -= exclude
if not exact and solution:
solution = solution.evalf()
if relational:
solution = solution.as_relational(gen)
return solution
def reduce_abs_inequality(expr, rel, gen):
"""Reduce an inequality with nested absolute values.
Examples
========
>>> from sympy import Abs, Symbol
>>> from sympy.solvers.inequalities import reduce_abs_inequality
>>> x = Symbol('x', real=True)
>>> reduce_abs_inequality(Abs(x - 5) - 3, '<', x)
(2 < x) & (x < 8)
>>> reduce_abs_inequality(Abs(x + 2)*3 - 13, '<', x)
(-19/3 < x) & (x < 7/3)
See Also
========
reduce_abs_inequalities
"""
if gen.is_extended_real is False:
raise TypeError(filldedent('''
can't solve inequalities with absolute values containing
non-real variables.
'''))
def _bottom_up_scan(expr):
exprs = []
if expr.is_Add or expr.is_Mul:
op = expr.func
for arg in expr.args:
_exprs = _bottom_up_scan(arg)
if not exprs:
exprs = _exprs
else:
args = []
for expr, conds in exprs:
for _expr, _conds in _exprs:
args.append((op(expr, _expr), conds + _conds))
exprs = args
elif expr.is_Pow:
n = expr.exp
if not n.is_Integer:
raise ValueError("Only Integer Powers are allowed on Abs.")
_exprs = _bottom_up_scan(expr.base)
for expr, conds in _exprs:
exprs.append((expr**n, conds))
elif isinstance(expr, Abs):
_exprs = _bottom_up_scan(expr.args[0])
for expr, conds in _exprs:
exprs.append(( expr, conds + [Ge(expr, 0)]))
exprs.append((-expr, conds + [Lt(expr, 0)]))
else:
exprs = [(expr, [])]
return exprs
exprs = _bottom_up_scan(expr)
mapping = {'<': '>', '<=': '>='}
inequalities = []
for expr, conds in exprs:
if rel not in mapping.keys():
expr = Relational( expr, 0, rel)
else:
expr = Relational(-expr, 0, mapping[rel])
inequalities.append([expr] + conds)
return reduce_rational_inequalities(inequalities, gen)
def reduce_abs_inequalities(exprs, gen):
"""Reduce a system of inequalities with nested absolute values.
Examples
========
>>> from sympy import Abs, Symbol
>>> from sympy.solvers.inequalities import reduce_abs_inequalities
>>> x = Symbol('x', extended_real=True)
>>> reduce_abs_inequalities([(Abs(3*x - 5) - 7, '<'),
... (Abs(x + 25) - 13, '>')], x)
(-2/3 < x) & (x < 4) & (((-oo < x) & (x < -38)) | ((-12 < x) & (x < oo)))
>>> reduce_abs_inequalities([(Abs(x - 4) + Abs(3*x - 5) - 7, '<')], x)
(1/2 < x) & (x < 4)
See Also
========
reduce_abs_inequality
"""
return And(*[ reduce_abs_inequality(expr, rel, gen)
for expr, rel in exprs ])
def solve_univariate_inequality(expr, gen, relational=True, domain=S.Reals, continuous=False):
"""Solves a real univariate inequality.
Parameters
==========
expr : Relational
The target inequality
gen : Symbol
The variable for which the inequality is solved
relational : bool
A Relational type output is expected or not
domain : Set
The domain over which the equation is solved
continuous: bool
True if expr is known to be continuous over the given domain
(and so continuous_domain() doesn't need to be called on it)
Raises
======
NotImplementedError
The solution of the inequality cannot be determined due to limitation
in :func:`sympy.solvers.solveset.solvify`.
Notes
=====
Currently, we cannot solve all the inequalities due to limitations in
:func:`sympy.solvers.solveset.solvify`. Also, the solution returned for trigonometric inequalities
are restricted in its periodic interval.
See Also
========
sympy.solvers.solveset.solvify: solver returning solveset solutions with solve's output API
Examples
========
>>> from sympy.solvers.inequalities import solve_univariate_inequality
>>> from sympy import Symbol, sin, Interval, S
>>> x = Symbol('x')
>>> solve_univariate_inequality(x**2 >= 4, x)
((2 <= x) & (x < oo)) | ((x <= -2) & (-oo < x))
>>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
Union(Interval(-oo, -2), Interval(2, oo))
>>> domain = Interval(0, S.Infinity)
>>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
Interval(2, oo)
>>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
Interval.open(0, pi)
"""
from sympy import im
from sympy.calculus.util import (continuous_domain, periodicity,
function_range)
from sympy.solvers.solvers import denoms
from sympy.solvers.solveset import solvify, solveset
if domain.is_subset(S.Reals) is False:
raise NotImplementedError(filldedent('''
Inequalities in the complex domain are
not supported. Try the real domain by
setting domain=S.Reals'''))
elif domain is not S.Reals:
rv = solve_univariate_inequality(
expr, gen, relational=False, continuous=continuous).intersection(domain)
if relational:
rv = rv.as_relational(gen)
return rv
else:
pass # continue with attempt to solve in Real domain
# This keeps the function independent of the assumptions about `gen`.
# `solveset` makes sure this function is called only when the domain is
# real.
_gen = gen
_domain = domain
if gen.is_extended_real is False:
rv = S.EmptySet
return rv if not relational else rv.as_relational(_gen)
elif gen.is_extended_real is None:
gen = Dummy('gen', extended_real=True)
try:
expr = expr.xreplace({_gen: gen})
except TypeError:
raise TypeError(filldedent('''
When gen is real, the relational has a complex part
which leads to an invalid comparison like I < 0.
'''))
rv = None
if expr is S.true:
rv = domain
elif expr is S.false:
rv = S.EmptySet
else:
e = expr.lhs - expr.rhs
period = periodicity(e, gen)
if period == S.Zero:
e = expand_mul(e)
const = expr.func(e, 0)
if const is S.true:
rv = domain
elif const is S.false:
rv = S.EmptySet
elif period is not None:
frange = function_range(e, gen, domain)
rel = expr.rel_op
if rel == '<' or rel == '<=':
if expr.func(frange.sup, 0):
rv = domain
elif not expr.func(frange.inf, 0):
rv = S.EmptySet
elif rel == '>' or rel == '>=':
if expr.func(frange.inf, 0):
rv = domain
elif not expr.func(frange.sup, 0):
rv = S.EmptySet
inf, sup = domain.inf, domain.sup
if sup - inf is S.Infinity:
domain = Interval(0, period, False, True).intersect(_domain)
_domain = domain
if rv is None:
n, d = e.as_numer_denom()
try:
if gen not in n.free_symbols and len(e.free_symbols) > 1:
raise ValueError
# this might raise ValueError on its own
# or it might give None...
solns = solvify(e, gen, domain)
if solns is None:
# in which case we raise ValueError
raise ValueError
except (ValueError, NotImplementedError):
# replace gen with generic x since it's
# univariate anyway
raise NotImplementedError(filldedent('''
The inequality, %s, cannot be solved using
solve_univariate_inequality.
''' % expr.subs(gen, Symbol('x'))))
expanded_e = expand_mul(e)
def valid(x):
# this is used to see if gen=x satisfies the
# relational by substituting it into the
# expanded form and testing against 0, e.g.
# if expr = x*(x + 1) < 2 then e = x*(x + 1) - 2
# and expanded_e = x**2 + x - 2; the test is
# whether a given value of x satisfies
# x**2 + x - 2 < 0
#
# expanded_e, expr and gen used from enclosing scope
v = expanded_e.subs(gen, expand_mul(x))
try:
r = expr.func(v, 0)
except TypeError:
r = S.false
if r in (S.true, S.false):
return r
if v.is_extended_real is False:
return S.false
else:
v = v.n(2)
if v.is_comparable:
return expr.func(v, 0)
# not comparable or couldn't be evaluated
raise NotImplementedError(
'relationship did not evaluate: %s' % r)
singularities = []
for d in denoms(expr, gen):
singularities.extend(solvify(d, gen, domain))
if not continuous:
domain = continuous_domain(expanded_e, gen, domain)
include_x = '=' in expr.rel_op and expr.rel_op != '!='
try:
discontinuities = set(domain.boundary -
FiniteSet(domain.inf, domain.sup))
# remove points that are not between inf and sup of domain
critical_points = FiniteSet(*(solns + singularities + list(
discontinuities))).intersection(
Interval(domain.inf, domain.sup,
domain.inf not in domain, domain.sup not in domain))
if all(r.is_number for r in critical_points):
reals = _nsort(critical_points, separated=True)[0]
else:
sifted = sift(critical_points, lambda x: x.is_extended_real)
if sifted[None]:
# there were some roots that weren't known
# to be real
raise NotImplementedError
try:
reals = sifted[True]
if len(reals) > 1:
reals = list(sorted(reals))
except TypeError:
raise NotImplementedError
except NotImplementedError:
raise NotImplementedError('sorting of these roots is not supported')
# If expr contains imaginary coefficients, only take real
# values of x for which the imaginary part is 0
make_real = S.Reals
if im(expanded_e) != S.Zero:
check = True
im_sol = FiniteSet()
try:
a = solveset(im(expanded_e), gen, domain)
if not isinstance(a, Interval):
for z in a:
if z not in singularities and valid(z) and z.is_extended_real:
im_sol += FiniteSet(z)
else:
start, end = a.inf, a.sup
for z in _nsort(critical_points + FiniteSet(end)):
valid_start = valid(start)
if start != end:
valid_z = valid(z)
pt = _pt(start, z)
if pt not in singularities and pt.is_extended_real and valid(pt):
if valid_start and valid_z:
im_sol += Interval(start, z)
elif valid_start:
im_sol += Interval.Ropen(start, z)
elif valid_z:
im_sol += Interval.Lopen(start, z)
else:
im_sol += Interval.open(start, z)
start = z
for s in singularities:
im_sol -= FiniteSet(s)
except (TypeError):
im_sol = S.Reals
check = False
if isinstance(im_sol, EmptySet):
raise ValueError(filldedent('''
%s contains imaginary parts which cannot be
made 0 for any value of %s satisfying the
inequality, leading to relations like I < 0.
''' % (expr.subs(gen, _gen), _gen)))
make_real = make_real.intersect(im_sol)
sol_sets = [S.EmptySet]
start = domain.inf
if start in domain and valid(start) and start.is_finite:
sol_sets.append(FiniteSet(start))
for x in reals:
end = x
if valid(_pt(start, end)):
sol_sets.append(Interval(start, end, True, True))
if x in singularities:
singularities.remove(x)
else:
if x in discontinuities:
discontinuities.remove(x)
_valid = valid(x)
else: # it's a solution
_valid = include_x
if _valid:
sol_sets.append(FiniteSet(x))
start = end
end = domain.sup
if end in domain and valid(end) and end.is_finite:
sol_sets.append(FiniteSet(end))
if valid(_pt(start, end)):
sol_sets.append(Interval.open(start, end))
if im(expanded_e) != S.Zero and check:
rv = (make_real).intersect(_domain)
else:
rv = Intersection(
(Union(*sol_sets)), make_real, _domain).subs(gen, _gen)
return rv if not relational else rv.as_relational(_gen)
def _pt(start, end):
"""Return a point between start and end"""
if not start.is_infinite and not end.is_infinite:
pt = (start + end)/2
elif start.is_infinite and end.is_infinite:
pt = S.Zero
else:
if (start.is_infinite and start.is_extended_positive is None or
end.is_infinite and end.is_extended_positive is None):
raise ValueError('cannot proceed with unsigned infinite values')
if (end.is_infinite and end.is_extended_negative or
start.is_infinite and start.is_extended_positive):
start, end = end, start
# if possible, use a multiple of self which has
# better behavior when checking assumptions than
# an expression obtained by adding or subtracting 1
if end.is_infinite:
if start.is_extended_positive:
pt = start*2
elif start.is_extended_negative:
pt = start*S.Half
else:
pt = start + 1
elif start.is_infinite:
if end.is_extended_positive:
pt = end*S.Half
elif end.is_extended_negative:
pt = end*2
else:
pt = end - 1
return pt
def _solve_inequality(ie, s, linear=False):
"""Return the inequality with s isolated on the left, if possible.
If the relationship is non-linear, a solution involving And or Or
may be returned. False or True are returned if the relationship
is never True or always True, respectively.
If `linear` is True (default is False) an `s`-dependent expression
will be isolated on the left, if possible
but it will not be solved for `s` unless the expression is linear
in `s`. Furthermore, only "safe" operations which don't change the
sense of the relationship are applied: no division by an unsigned
value is attempted unless the relationship involves Eq or Ne and
no division by a value not known to be nonzero is ever attempted.
Examples
========
>>> from sympy import Eq, Symbol
>>> from sympy.solvers.inequalities import _solve_inequality as f
>>> from sympy.abc import x, y
For linear expressions, the symbol can be isolated:
>>> f(x - 2 < 0, x)
x < 2
>>> f(-x - 6 < x, x)
x > -3
Sometimes nonlinear relationships will be False
>>> f(x**2 + 4 < 0, x)
False
Or they may involve more than one region of values:
>>> f(x**2 - 4 < 0, x)
(-2 < x) & (x < 2)
To restrict the solution to a relational, set linear=True
and only the x-dependent portion will be isolated on the left:
>>> f(x**2 - 4 < 0, x, linear=True)
x**2 < 4
Division of only nonzero quantities is allowed, so x cannot
be isolated by dividing by y:
>>> y.is_nonzero is None # it is unknown whether it is 0 or not
True
>>> f(x*y < 1, x)
x*y < 1
And while an equality (or inequality) still holds after dividing by a
non-zero quantity
>>> nz = Symbol('nz', nonzero=True)
>>> f(Eq(x*nz, 1), x)
Eq(x, 1/nz)
the sign must be known for other inequalities involving > or <:
>>> f(x*nz <= 1, x)
nz*x <= 1
>>> p = Symbol('p', positive=True)
>>> f(x*p <= 1, x)
x <= 1/p
When there are denominators in the original expression that
are removed by expansion, conditions for them will be returned
as part of the result:
>>> f(x < x*(2/x - 1), x)
(x < 1) & Ne(x, 0)
"""
from sympy.solvers.solvers import denoms
if s not in ie.free_symbols:
return ie
if ie.rhs == s:
ie = ie.reversed
if ie.lhs == s and s not in ie.rhs.free_symbols:
return ie
def classify(ie, s, i):
# return True or False if ie evaluates when substituting s with
# i else None (if unevaluated) or NaN (when there is an error
# in evaluating)
try:
v = ie.subs(s, i)
if v is S.NaN:
return v
elif v not in (True, False):
return
return v
except TypeError:
return S.NaN
rv = None
oo = S.Infinity
expr = ie.lhs - ie.rhs
try:
p = Poly(expr, s)
if p.degree() == 0:
rv = ie.func(p.as_expr(), 0)
elif not linear and p.degree() > 1:
# handle in except clause
raise NotImplementedError
except (PolynomialError, NotImplementedError):
if not linear:
try:
rv = reduce_rational_inequalities([[ie]], s)
except PolynomialError:
rv = solve_univariate_inequality(ie, s)
# remove restrictions wrt +/-oo that may have been
# applied when using sets to simplify the relationship
okoo = classify(ie, s, oo)
if okoo is S.true and classify(rv, s, oo) is S.false:
rv = rv.subs(s < oo, True)
oknoo = classify(ie, s, -oo)
if (oknoo is S.true and
classify(rv, s, -oo) is S.false):
rv = rv.subs(-oo < s, True)
rv = rv.subs(s > -oo, True)
if rv is S.true:
rv = (s <= oo) if okoo is S.true else (s < oo)
if oknoo is not S.true:
rv = And(-oo < s, rv)
else:
p = Poly(expr)
conds = []
if rv is None:
e = p.as_expr() # this is in expanded form
# Do a safe inversion of e, moving non-s terms
# to the rhs and dividing by a nonzero factor if
# the relational is Eq/Ne; for other relationals
# the sign must also be positive or negative
rhs = 0
b, ax = e.as_independent(s, as_Add=True)
e -= b
rhs -= b
ef = factor_terms(e)
a, e = ef.as_independent(s, as_Add=False)
if (a.is_zero != False or # don't divide by potential 0
a.is_negative ==
a.is_positive is None and # if sign is not known then
ie.rel_op not in ('!=', '==')): # reject if not Eq/Ne
e = ef
a = S.One
rhs /= a
if a.is_positive:
rv = ie.func(e, rhs)
else:
rv = ie.reversed.func(e, rhs)
# return conditions under which the value is
# valid, too.
beginning_denoms = denoms(ie.lhs) | denoms(ie.rhs)
current_denoms = denoms(rv)
for d in beginning_denoms - current_denoms:
c = _solve_inequality(Eq(d, 0), s, linear=linear)
if isinstance(c, Eq) and c.lhs == s:
if classify(rv, s, c.rhs) is S.true:
# rv is permitting this value but it shouldn't
conds.append(~c)
for i in (-oo, oo):
if (classify(rv, s, i) is S.true and
classify(ie, s, i) is not S.true):
conds.append(s < i if i is oo else i < s)
conds.append(rv)
return And(*conds)
def _reduce_inequalities(inequalities, symbols):
# helper for reduce_inequalities
poly_part, abs_part = {}, {}
other = []
for inequality in inequalities:
expr, rel = inequality.lhs, inequality.rel_op # rhs is 0
# check for gens using atoms which is more strict than free_symbols to
# guard against EX domain which won't be handled by
# reduce_rational_inequalities
gens = expr.atoms(Symbol)
if len(gens) == 1:
gen = gens.pop()
else:
common = expr.free_symbols & symbols
if len(common) == 1:
gen = common.pop()
other.append(_solve_inequality(Relational(expr, 0, rel), gen))
continue
else:
raise NotImplementedError(filldedent('''
inequality has more than one symbol of interest.
'''))
if expr.is_polynomial(gen):
poly_part.setdefault(gen, []).append((expr, rel))
else:
components = expr.find(lambda u:
u.has(gen) and (
u.is_Function or u.is_Pow and not u.exp.is_Integer))
if components and all(isinstance(i, Abs) for i in components):
abs_part.setdefault(gen, []).append((expr, rel))
else:
other.append(_solve_inequality(Relational(expr, 0, rel), gen))
poly_reduced = []
abs_reduced = []
for gen, exprs in poly_part.items():
poly_reduced.append(reduce_rational_inequalities([exprs], gen))
for gen, exprs in abs_part.items():
abs_reduced.append(reduce_abs_inequalities(exprs, gen))
return And(*(poly_reduced + abs_reduced + other))
def reduce_inequalities(inequalities, symbols=[]):
"""Reduce a system of inequalities with rational coefficients.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.solvers.inequalities import reduce_inequalities
>>> reduce_inequalities(0 <= x + 3, [])
(-3 <= x) & (x < oo)
>>> reduce_inequalities(0 <= x + y*2 - 1, [x])
(x < oo) & (x >= 1 - 2*y)
"""
if not iterable(inequalities):
inequalities = [inequalities]
inequalities = [sympify(i) for i in inequalities]
gens = set().union(*[i.free_symbols for i in inequalities])
if not iterable(symbols):
symbols = [symbols]
symbols = (set(symbols) or gens) & gens
if any(i.is_extended_real is False for i in symbols):
raise TypeError(filldedent('''
inequalities cannot contain symbols that are not real.
'''))
# make vanilla symbol real
recast = {i: Dummy(i.name, extended_real=True)
for i in gens if i.is_extended_real is None}
inequalities = [i.xreplace(recast) for i in inequalities]
symbols = {i.xreplace(recast) for i in symbols}
# prefilter
keep = []
for i in inequalities:
if isinstance(i, Relational):
i = i.func(i.lhs.as_expr() - i.rhs.as_expr(), 0)
elif i not in (True, False):
i = Eq(i, 0)
if i == True:
continue
elif i == False:
return S.false
if i.lhs.is_number:
raise NotImplementedError(
"could not determine truth value of %s" % i)
keep.append(i)
inequalities = keep
del keep
# solve system
rv = _reduce_inequalities(inequalities, symbols)
# restore original symbols and return
return rv.xreplace({v: k for k, v in recast.items()})
|
9e99ea1c0835367203785e793c387f0a61dada210a85777d68aa44d5886cd42d | """
This module contain solvers for all kinds of equations:
- algebraic or transcendental, use solve()
- recurrence, use rsolve()
- differential, use dsolve()
- nonlinear (numerically), use nsolve()
(you will need a good starting point)
"""
from sympy import divisors, binomial, expand_func
from sympy.core.assumptions import check_assumptions
from sympy.core.compatibility import (iterable, is_sequence, ordered,
default_sort_key)
from sympy.core.sympify import sympify
from sympy.core import (S, Add, Symbol, Equality, Dummy, Expr, Mul,
Pow, Unequality, Wild)
from sympy.core.exprtools import factor_terms
from sympy.core.function import (expand_mul, expand_log,
Derivative, AppliedUndef, UndefinedFunction, nfloat,
Function, expand_power_exp, _mexpand, expand)
from sympy.integrals.integrals import Integral
from sympy.core.numbers import ilcm, Float, Rational
from sympy.core.relational import Relational
from sympy.core.logic import fuzzy_not
from sympy.core.power import integer_log
from sympy.logic.boolalg import And, Or, BooleanAtom
from sympy.core.basic import preorder_traversal
from sympy.functions import (log, exp, LambertW, cos, sin, tan, acos, asin, atan,
Abs, re, im, arg, sqrt, atan2)
from sympy.functions.elementary.trigonometric import (TrigonometricFunction,
HyperbolicFunction)
from sympy.simplify import (simplify, collect, powsimp, posify, # type: ignore
powdenest, nsimplify, denom, logcombine, sqrtdenest, fraction,
separatevars)
from sympy.simplify.sqrtdenest import sqrt_depth
from sympy.simplify.fu import TR1, TR2i
from sympy.matrices.common import NonInvertibleMatrixError
from sympy.matrices import Matrix, zeros
from sympy.polys import roots, cancel, factor, Poly
from sympy.polys.polyerrors import GeneratorsNeeded, PolynomialError
from sympy.polys.solvers import sympy_eqs_to_ring, solve_lin_sys
from sympy.functions.elementary.piecewise import piecewise_fold, Piecewise
from sympy.utilities.lambdify import lambdify
from sympy.utilities.misc import filldedent
from sympy.utilities.iterables import (connected_components,
generate_bell, uniq)
from sympy.utilities.decorator import conserve_mpmath_dps
from mpmath import findroot
from sympy.solvers.polysys import solve_poly_system
from sympy.solvers.inequalities import reduce_inequalities
from types import GeneratorType
from collections import defaultdict
from itertools import product
import warnings
def recast_to_symbols(eqs, symbols):
"""
Return (e, s, d) where e and s are versions of *eqs* and
*symbols* in which any non-Symbol objects in *symbols* have
been replaced with generic Dummy symbols and d is a dictionary
that can be used to restore the original expressions.
Examples
========
>>> from sympy.solvers.solvers import recast_to_symbols
>>> from sympy import symbols, Function
>>> x, y = symbols('x y')
>>> fx = Function('f')(x)
>>> eqs, syms = [fx + 1, x, y], [fx, y]
>>> e, s, d = recast_to_symbols(eqs, syms); (e, s, d)
([_X0 + 1, x, y], [_X0, y], {_X0: f(x)})
The original equations and symbols can be restored using d:
>>> assert [i.xreplace(d) for i in eqs] == eqs
>>> assert [d.get(i, i) for i in s] == syms
"""
if not iterable(eqs) and iterable(symbols):
raise ValueError('Both eqs and symbols must be iterable')
new_symbols = list(symbols)
swap_sym = {}
for i, s in enumerate(symbols):
if not isinstance(s, Symbol) and s not in swap_sym:
swap_sym[s] = Dummy('X%d' % i)
new_symbols[i] = swap_sym[s]
new_f = []
for i in eqs:
isubs = getattr(i, 'subs', None)
if isubs is not None:
new_f.append(isubs(swap_sym))
else:
new_f.append(i)
swap_sym = {v: k for k, v in swap_sym.items()}
return new_f, new_symbols, swap_sym
def _ispow(e):
"""Return True if e is a Pow or is exp."""
return isinstance(e, Expr) and (e.is_Pow or isinstance(e, exp))
def _simple_dens(f, symbols):
# when checking if a denominator is zero, we can just check the
# base of powers with nonzero exponents since if the base is zero
# the power will be zero, too. To keep it simple and fast, we
# limit simplification to exponents that are Numbers
dens = set()
for d in denoms(f, symbols):
if d.is_Pow and d.exp.is_Number:
if d.exp.is_zero:
continue # foo**0 is never 0
d = d.base
dens.add(d)
return dens
def denoms(eq, *symbols):
"""
Return (recursively) set of all denominators that appear in *eq*
that contain any symbol in *symbols*; if *symbols* are not
provided then all denominators will be returned.
Examples
========
>>> from sympy.solvers.solvers import denoms
>>> from sympy.abc import x, y, z
>>> denoms(x/y)
{y}
>>> denoms(x/(y*z))
{y, z}
>>> denoms(3/x + y/z)
{x, z}
>>> denoms(x/2 + y/z)
{2, z}
If *symbols* are provided then only denominators containing
those symbols will be returned:
>>> denoms(1/x + 1/y + 1/z, y, z)
{y, z}
"""
pot = preorder_traversal(eq)
dens = set()
for p in pot:
# Here p might be Tuple or Relational
# Expr subtrees (e.g. lhs and rhs) will be traversed after by pot
if not isinstance(p, Expr):
continue
den = denom(p)
if den is S.One:
continue
for d in Mul.make_args(den):
dens.add(d)
if not symbols:
return dens
elif len(symbols) == 1:
if iterable(symbols[0]):
symbols = symbols[0]
rv = []
for d in dens:
free = d.free_symbols
if any(s in free for s in symbols):
rv.append(d)
return set(rv)
def checksol(f, symbol, sol=None, **flags):
"""
Checks whether sol is a solution of equation f == 0.
Explanation
===========
Input can be either a single symbol and corresponding value
or a dictionary of symbols and values. When given as a dictionary
and flag ``simplify=True``, the values in the dictionary will be
simplified. *f* can be a single equation or an iterable of equations.
A solution must satisfy all equations in *f* to be considered valid;
if a solution does not satisfy any equation, False is returned; if one or
more checks are inconclusive (and none are False) then None is returned.
Examples
========
>>> from sympy import symbols
>>> from sympy.solvers import checksol
>>> x, y = symbols('x,y')
>>> checksol(x**4 - 1, x, 1)
True
>>> checksol(x**4 - 1, x, 0)
False
>>> checksol(x**2 + y**2 - 5**2, {x: 3, y: 4})
True
To check if an expression is zero using ``checksol()``, pass it
as *f* and send an empty dictionary for *symbol*:
>>> checksol(x**2 + x - x*(x + 1), {})
True
None is returned if ``checksol()`` could not conclude.
flags:
'numerical=True (default)'
do a fast numerical check if ``f`` has only one symbol.
'minimal=True (default is False)'
a very fast, minimal testing.
'warn=True (default is False)'
show a warning if checksol() could not conclude.
'simplify=True (default)'
simplify solution before substituting into function and
simplify the function before trying specific simplifications
'force=True (default is False)'
make positive all symbols without assumptions regarding sign.
"""
from sympy.physics.units import Unit
minimal = flags.get('minimal', False)
if sol is not None:
sol = {symbol: sol}
elif isinstance(symbol, dict):
sol = symbol
else:
msg = 'Expecting (sym, val) or ({sym: val}, None) but got (%s, %s)'
raise ValueError(msg % (symbol, sol))
if iterable(f):
if not f:
raise ValueError('no functions to check')
rv = True
for fi in f:
check = checksol(fi, sol, **flags)
if check:
continue
if check is False:
return False
rv = None # don't return, wait to see if there's a False
return rv
if isinstance(f, Poly):
f = f.as_expr()
elif isinstance(f, (Equality, Unequality)):
if f.rhs in (S.true, S.false):
f = f.reversed
B, E = f.args
if isinstance(B, BooleanAtom):
f = f.subs(sol)
if not f.is_Boolean:
return
else:
f = f.rewrite(Add, evaluate=False)
if isinstance(f, BooleanAtom):
return bool(f)
elif not f.is_Relational and not f:
return True
if sol and not f.free_symbols & set(sol.keys()):
# if f(y) == 0, x=3 does not set f(y) to zero...nor does it not
return None
illegal = {S.NaN,
S.ComplexInfinity,
S.Infinity,
S.NegativeInfinity}
if any(sympify(v).atoms() & illegal for k, v in sol.items()):
return False
was = f
attempt = -1
numerical = flags.get('numerical', True)
while 1:
attempt += 1
if attempt == 0:
val = f.subs(sol)
if isinstance(val, Mul):
val = val.as_independent(Unit)[0]
if val.atoms() & illegal:
return False
elif attempt == 1:
if not val.is_number:
if not val.is_constant(*list(sol.keys()), simplify=not minimal):
return False
# there are free symbols -- simple expansion might work
_, val = val.as_content_primitive()
val = _mexpand(val.as_numer_denom()[0], recursive=True)
elif attempt == 2:
if minimal:
return
if flags.get('simplify', True):
for k in sol:
sol[k] = simplify(sol[k])
# start over without the failed expanded form, possibly
# with a simplified solution
val = simplify(f.subs(sol))
if flags.get('force', True):
val, reps = posify(val)
# expansion may work now, so try again and check
exval = _mexpand(val, recursive=True)
if exval.is_number:
# we can decide now
val = exval
else:
# if there are no radicals and no functions then this can't be
# zero anymore -- can it?
pot = preorder_traversal(expand_mul(val))
seen = set()
saw_pow_func = False
for p in pot:
if p in seen:
continue
seen.add(p)
if p.is_Pow and not p.exp.is_Integer:
saw_pow_func = True
elif p.is_Function:
saw_pow_func = True
elif isinstance(p, UndefinedFunction):
saw_pow_func = True
if saw_pow_func:
break
if saw_pow_func is False:
return False
if flags.get('force', True):
# don't do a zero check with the positive assumptions in place
val = val.subs(reps)
nz = fuzzy_not(val.is_zero)
if nz is not None:
# issue 5673: nz may be True even when False
# so these are just hacks to keep a false positive
# from being returned
# HACK 1: LambertW (issue 5673)
if val.is_number and val.has(LambertW):
# don't eval this to verify solution since if we got here,
# numerical must be False
return None
# add other HACKs here if necessary, otherwise we assume
# the nz value is correct
return not nz
break
if val == was:
continue
elif val.is_Rational:
return val == 0
if numerical and val.is_number:
return (abs(val.n(18).n(12, chop=True)) < 1e-9) is S.true
was = val
if flags.get('warn', False):
warnings.warn("\n\tWarning: could not verify solution %s." % sol)
# returns None if it can't conclude
# TODO: improve solution testing
def solve(f, *symbols, **flags):
r"""
Algebraically solves equations and systems of equations.
Explanation
===========
Currently supported:
- polynomial
- transcendental
- piecewise combinations of the above
- systems of linear and polynomial equations
- systems containing relational expressions
Examples
========
The output varies according to the input and can be seen by example:
>>> from sympy import solve, Poly, Eq, Function, exp
>>> from sympy.abc import x, y, z, a, b
>>> f = Function('f')
Boolean or univariate Relational:
>>> solve(x < 3)
(-oo < x) & (x < 3)
To always get a list of solution mappings, use flag dict=True:
>>> solve(x - 3, dict=True)
[{x: 3}]
>>> sol = solve([x - 3, y - 1], dict=True)
>>> sol
[{x: 3, y: 1}]
>>> sol[0][x]
3
>>> sol[0][y]
1
To get a list of *symbols* and set of solution(s) use flag set=True:
>>> solve([x**2 - 3, y - 1], set=True)
([x, y], {(-sqrt(3), 1), (sqrt(3), 1)})
Single expression and single symbol that is in the expression:
>>> solve(x - y, x)
[y]
>>> solve(x - 3, x)
[3]
>>> solve(Eq(x, 3), x)
[3]
>>> solve(Poly(x - 3), x)
[3]
>>> solve(x**2 - y**2, x, set=True)
([x], {(-y,), (y,)})
>>> solve(x**4 - 1, x, set=True)
([x], {(-1,), (1,), (-I,), (I,)})
Single expression with no symbol that is in the expression:
>>> solve(3, x)
[]
>>> solve(x - 3, y)
[]
Single expression with no symbol given. In this case, all free *symbols*
will be selected as potential *symbols* to solve for. If the equation is
univariate then a list of solutions is returned; otherwise - as is the case
when *symbols* are given as an iterable of length greater than 1 - a list of
mappings will be returned:
>>> solve(x - 3)
[3]
>>> solve(x**2 - y**2)
[{x: -y}, {x: y}]
>>> solve(z**2*x**2 - z**2*y**2)
[{x: -y}, {x: y}, {z: 0}]
>>> solve(z**2*x - z**2*y**2)
[{x: y**2}, {z: 0}]
When an object other than a Symbol is given as a symbol, it is
isolated algebraically and an implicit solution may be obtained.
This is mostly provided as a convenience to save you from replacing
the object with a Symbol and solving for that Symbol. It will only
work if the specified object can be replaced with a Symbol using the
subs method:
>>> solve(f(x) - x, f(x))
[x]
>>> solve(f(x).diff(x) - f(x) - x, f(x).diff(x))
[x + f(x)]
>>> solve(f(x).diff(x) - f(x) - x, f(x))
[-x + Derivative(f(x), x)]
>>> solve(x + exp(x)**2, exp(x), set=True)
([exp(x)], {(-sqrt(-x),), (sqrt(-x),)})
>>> from sympy import Indexed, IndexedBase, Tuple, sqrt
>>> A = IndexedBase('A')
>>> eqs = Tuple(A[1] + A[2] - 3, A[1] - A[2] + 1)
>>> solve(eqs, eqs.atoms(Indexed))
{A[1]: 1, A[2]: 2}
* To solve for a symbol implicitly, use implicit=True:
>>> solve(x + exp(x), x)
[-LambertW(1)]
>>> solve(x + exp(x), x, implicit=True)
[-exp(x)]
* It is possible to solve for anything that can be targeted with
subs:
>>> solve(x + 2 + sqrt(3), x + 2)
[-sqrt(3)]
>>> solve((x + 2 + sqrt(3), x + 4 + y), y, x + 2)
{y: -2 + sqrt(3), x + 2: -sqrt(3)}
* Nothing heroic is done in this implicit solving so you may end up
with a symbol still in the solution:
>>> eqs = (x*y + 3*y + sqrt(3), x + 4 + y)
>>> solve(eqs, y, x + 2)
{y: -sqrt(3)/(x + 3), x + 2: -2*x/(x + 3) - 6/(x + 3) + sqrt(3)/(x + 3)}
>>> solve(eqs, y*x, x)
{x: -y - 4, x*y: -3*y - sqrt(3)}
* If you attempt to solve for a number remember that the number
you have obtained does not necessarily mean that the value is
equivalent to the expression obtained:
>>> solve(sqrt(2) - 1, 1)
[sqrt(2)]
>>> solve(x - y + 1, 1) # /!\ -1 is targeted, too
[x/(y - 1)]
>>> [_.subs(z, -1) for _ in solve((x - y + 1).subs(-1, z), 1)]
[-x + y]
* To solve for a function within a derivative, use ``dsolve``.
Single expression and more than one symbol:
* When there is a linear solution:
>>> solve(x - y**2, x, y)
[(y**2, y)]
>>> solve(x**2 - y, x, y)
[(x, x**2)]
>>> solve(x**2 - y, x, y, dict=True)
[{y: x**2}]
* When undetermined coefficients are identified:
* That are linear:
>>> solve((a + b)*x - b + 2, a, b)
{a: -2, b: 2}
* That are nonlinear:
>>> solve((a + b)*x - b**2 + 2, a, b, set=True)
([a, b], {(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))})
* If there is no linear solution, then the first successful
attempt for a nonlinear solution will be returned:
>>> solve(x**2 - y**2, x, y, dict=True)
[{x: -y}, {x: y}]
>>> solve(x**2 - y**2/exp(x), x, y, dict=True)
[{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}]
>>> solve(x**2 - y**2/exp(x), y, x)
[(-x*sqrt(exp(x)), x), (x*sqrt(exp(x)), x)]
Iterable of one or more of the above:
* Involving relationals or bools:
>>> solve([x < 3, x - 2])
Eq(x, 2)
>>> solve([x > 3, x - 2])
False
* When the system is linear:
* With a solution:
>>> solve([x - 3], x)
{x: 3}
>>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y)
{x: -3, y: 1}
>>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y, z)
{x: -3, y: 1}
>>> solve((x + 5*y - 2, -3*x + 6*y - z), z, x, y)
{x: 2 - 5*y, z: 21*y - 6}
* Without a solution:
>>> solve([x + 3, x - 3])
[]
* When the system is not linear:
>>> solve([x**2 + y -2, y**2 - 4], x, y, set=True)
([x, y], {(-2, -2), (0, 2), (2, -2)})
* If no *symbols* are given, all free *symbols* will be selected and a
list of mappings returned:
>>> solve([x - 2, x**2 + y])
[{x: 2, y: -4}]
>>> solve([x - 2, x**2 + f(x)], {f(x), x})
[{x: 2, f(x): -4}]
* If any equation does not depend on the symbol(s) given, it will be
eliminated from the equation set and an answer may be given
implicitly in terms of variables that were not of interest:
>>> solve([x - y, y - 3], x)
{x: y}
**Additional Examples**
``solve()`` with check=True (default) will run through the symbol tags to
elimate unwanted solutions. If no assumptions are included, all possible
solutions will be returned:
>>> from sympy import Symbol, solve
>>> x = Symbol("x")
>>> solve(x**2 - 1)
[-1, 1]
By using the positive tag, only one solution will be returned:
>>> pos = Symbol("pos", positive=True)
>>> solve(pos**2 - 1)
[1]
Assumptions are not checked when ``solve()`` input involves
relationals or bools.
When the solutions are checked, those that make any denominator zero
are automatically excluded. If you do not want to exclude such solutions,
then use the check=False option:
>>> from sympy import sin, limit
>>> solve(sin(x)/x) # 0 is excluded
[pi]
If check=False, then a solution to the numerator being zero is found: x = 0.
In this case, this is a spurious solution since $\sin(x)/x$ has the well
known limit (without dicontinuity) of 1 at x = 0:
>>> solve(sin(x)/x, check=False)
[0, pi]
In the following case, however, the limit exists and is equal to the
value of x = 0 that is excluded when check=True:
>>> eq = x**2*(1/x - z**2/x)
>>> solve(eq, x)
[]
>>> solve(eq, x, check=False)
[0]
>>> limit(eq, x, 0, '-')
0
>>> limit(eq, x, 0, '+')
0
**Disabling High-Order Explicit Solutions**
When solving polynomial expressions, you might not want explicit solutions
(which can be quite long). If the expression is univariate, ``CRootOf``
instances will be returned instead:
>>> solve(x**3 - x + 1)
[-1/((-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)) - (-1/2 -
sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3, -(-1/2 +
sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3 - 1/((-1/2 +
sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)), -(3*sqrt(69)/2 +
27/2)**(1/3)/3 - 1/(3*sqrt(69)/2 + 27/2)**(1/3)]
>>> solve(x**3 - x + 1, cubics=False)
[CRootOf(x**3 - x + 1, 0),
CRootOf(x**3 - x + 1, 1),
CRootOf(x**3 - x + 1, 2)]
If the expression is multivariate, no solution might be returned:
>>> solve(x**3 - x + a, x, cubics=False)
[]
Sometimes solutions will be obtained even when a flag is False because the
expression could be factored. In the following example, the equation can
be factored as the product of a linear and a quadratic factor so explicit
solutions (which did not require solving a cubic expression) are obtained:
>>> eq = x**3 + 3*x**2 + x - 1
>>> solve(eq, cubics=False)
[-1, -1 + sqrt(2), -sqrt(2) - 1]
**Solving Equations Involving Radicals**
Because of SymPy's use of the principle root, some solutions
to radical equations will be missed unless check=False:
>>> from sympy import root
>>> eq = root(x**3 - 3*x**2, 3) + 1 - x
>>> solve(eq)
[]
>>> solve(eq, check=False)
[1/3]
In the above example, there is only a single solution to the
equation. Other expressions will yield spurious roots which
must be checked manually; roots which give a negative argument
to odd-powered radicals will also need special checking:
>>> from sympy import real_root, S
>>> eq = root(x, 3) - root(x, 5) + S(1)/7
>>> solve(eq) # this gives 2 solutions but misses a 3rd
[CRootOf(7*x**5 - 7*x**3 + 1, 1)**15,
CRootOf(7*x**5 - 7*x**3 + 1, 2)**15]
>>> sol = solve(eq, check=False)
>>> [abs(eq.subs(x,i).n(2)) for i in sol]
[0.48, 0.e-110, 0.e-110, 0.052, 0.052]
The first solution is negative so ``real_root`` must be used to see that it
satisfies the expression:
>>> abs(real_root(eq.subs(x, sol[0])).n(2))
0.e-110
If the roots of the equation are not real then more care will be
necessary to find the roots, especially for higher order equations.
Consider the following expression:
>>> expr = root(x, 3) - root(x, 5)
We will construct a known value for this expression at x = 3 by selecting
the 1-th root for each radical:
>>> expr1 = root(x, 3, 1) - root(x, 5, 1)
>>> v = expr1.subs(x, -3)
The ``solve`` function is unable to find any exact roots to this equation:
>>> eq = Eq(expr, v); eq1 = Eq(expr1, v)
>>> solve(eq, check=False), solve(eq1, check=False)
([], [])
The function ``unrad``, however, can be used to get a form of the equation
for which numerical roots can be found:
>>> from sympy.solvers.solvers import unrad
>>> from sympy import nroots
>>> e, (p, cov) = unrad(eq)
>>> pvals = nroots(e)
>>> inversion = solve(cov, x)[0]
>>> xvals = [inversion.subs(p, i) for i in pvals]
Although ``eq`` or ``eq1`` could have been used to find ``xvals``, the
solution can only be verified with ``expr1``:
>>> z = expr - v
>>> [xi.n(chop=1e-9) for xi in xvals if abs(z.subs(x, xi).n()) < 1e-9]
[]
>>> z1 = expr1 - v
>>> [xi.n(chop=1e-9) for xi in xvals if abs(z1.subs(x, xi).n()) < 1e-9]
[-3.0]
Parameters
==========
f :
- a single Expr or Poly that must be zero
- an Equality
- a Relational expression
- a Boolean
- iterable of one or more of the above
symbols : (object(s) to solve for) specified as
- none given (other non-numeric objects will be used)
- single symbol
- denested list of symbols
(e.g., ``solve(f, x, y)``)
- ordered iterable of symbols
(e.g., ``solve(f, [x, y])``)
flags :
dict=True (default is False)
Return list (perhaps empty) of solution mappings.
set=True (default is False)
Return list of symbols and set of tuple(s) of solution(s).
exclude=[] (default)
Do not try to solve for any of the free symbols in exclude;
if expressions are given, the free symbols in them will
be extracted automatically.
check=True (default)
If False, do not do any testing of solutions. This can be
useful if you want to include solutions that make any
denominator zero.
numerical=True (default)
Do a fast numerical check if *f* has only one symbol.
minimal=True (default is False)
A very fast, minimal testing.
warn=True (default is False)
Show a warning if ``checksol()`` could not conclude.
simplify=True (default)
Simplify all but polynomials of order 3 or greater before
returning them and (if check is not False) use the
general simplify function on the solutions and the
expression obtained when they are substituted into the
function which should be zero.
force=True (default is False)
Make positive all symbols without assumptions regarding sign.
rational=True (default)
Recast Floats as Rational; if this option is not used, the
system containing Floats may fail to solve because of issues
with polys. If rational=None, Floats will be recast as
rationals but the answer will be recast as Floats. If the
flag is False then nothing will be done to the Floats.
manual=True (default is False)
Do not use the polys/matrix method to solve a system of
equations, solve them one at a time as you might "manually."
implicit=True (default is False)
Allows ``solve`` to return a solution for a pattern in terms of
other functions that contain that pattern; this is only
needed if the pattern is inside of some invertible function
like cos, exp, ect.
particular=True (default is False)
Instructs ``solve`` to try to find a particular solution to a linear
system with as many zeros as possible; this is very expensive.
quick=True (default is False)
When using particular=True, use a fast heuristic to find a
solution with many zeros (instead of using the very slow method
guaranteed to find the largest number of zeros possible).
cubics=True (default)
Return explicit solutions when cubic expressions are encountered.
quartics=True (default)
Return explicit solutions when quartic expressions are encountered.
quintics=True (default)
Return explicit solutions (if possible) when quintic expressions
are encountered.
See Also
========
rsolve: For solving recurrence relationships
dsolve: For solving differential equations
"""
# keeping track of how f was passed since if it is a list
# a dictionary of results will be returned.
###########################################################################
def _sympified_list(w):
return list(map(sympify, w if iterable(w) else [w]))
bare_f = not iterable(f)
ordered_symbols = (symbols and
symbols[0] and
(isinstance(symbols[0], Symbol) or
is_sequence(symbols[0],
include=GeneratorType)
)
)
f, symbols = (_sympified_list(w) for w in [f, symbols])
if isinstance(f, list):
f = [s for s in f if s is not S.true and s is not True]
implicit = flags.get('implicit', False)
# preprocess symbol(s)
###########################################################################
if not symbols:
# get symbols from equations
symbols = set().union(*[fi.free_symbols for fi in f])
if len(symbols) < len(f):
for fi in f:
pot = preorder_traversal(fi)
for p in pot:
if isinstance(p, AppliedUndef):
flags['dict'] = True # better show symbols
symbols.add(p)
pot.skip() # don't go any deeper
symbols = list(symbols)
ordered_symbols = False
elif len(symbols) == 1 and iterable(symbols[0]):
symbols = symbols[0]
# remove symbols the user is not interested in
exclude = flags.pop('exclude', set())
if exclude:
if isinstance(exclude, Expr):
exclude = [exclude]
exclude = set().union(*[e.free_symbols for e in sympify(exclude)])
symbols = [s for s in symbols if s not in exclude]
# preprocess equation(s)
###########################################################################
for i, fi in enumerate(f):
if isinstance(fi, (Equality, Unequality)):
if 'ImmutableDenseMatrix' in [type(a).__name__ for a in fi.args]:
fi = fi.lhs - fi.rhs
else:
L, R = fi.args
if isinstance(R, BooleanAtom):
L, R = R, L
if isinstance(L, BooleanAtom):
if isinstance(fi, Unequality):
L = ~L
if R.is_Relational:
fi = ~R if L is S.false else R
elif R.is_Symbol:
return L
elif R.is_Boolean and (~R).is_Symbol:
return ~L
else:
raise NotImplementedError(filldedent('''
Unanticipated argument of Eq when other arg
is True or False.
'''))
else:
fi = fi.rewrite(Add, evaluate=False)
f[i] = fi
if fi.is_Relational:
return reduce_inequalities(f, symbols=symbols)
if isinstance(fi, Poly):
f[i] = fi.as_expr()
# rewrite hyperbolics in terms of exp
f[i] = f[i].replace(lambda w: isinstance(w, HyperbolicFunction) and \
(len(w.free_symbols & set(symbols)) > 0), lambda w: w.rewrite(exp))
# if we have a Matrix, we need to iterate over its elements again
if f[i].is_Matrix:
bare_f = False
f.extend(list(f[i]))
f[i] = S.Zero
# if we can split it into real and imaginary parts then do so
freei = f[i].free_symbols
if freei and all(s.is_extended_real or s.is_imaginary for s in freei):
fr, fi = f[i].as_real_imag()
# accept as long as new re, im, arg or atan2 are not introduced
had = f[i].atoms(re, im, arg, atan2)
if fr and fi and fr != fi and not any(
i.atoms(re, im, arg, atan2) - had for i in (fr, fi)):
if bare_f:
bare_f = False
f[i: i + 1] = [fr, fi]
# real/imag handling -----------------------------
if any(isinstance(fi, (bool, BooleanAtom)) for fi in f):
if flags.get('set', False):
return [], set()
return []
for i, fi in enumerate(f):
# Abs
while True:
was = fi
fi = fi.replace(Abs, lambda arg:
separatevars(Abs(arg)).rewrite(Piecewise) if arg.has(*symbols)
else Abs(arg))
if was == fi:
break
for e in fi.find(Abs):
if e.has(*symbols):
raise NotImplementedError('solving %s when the argument '
'is not real or imaginary.' % e)
# arg
fi = fi.replace(arg, lambda a: arg(a).rewrite(atan2).rewrite(atan))
# save changes
f[i] = fi
# see if re(s) or im(s) appear
freim = [fi for fi in f if fi.has(re, im)]
if freim:
irf = []
for s in symbols:
if s.is_real or s.is_imaginary:
continue # neither re(x) nor im(x) will appear
# if re(s) or im(s) appear, the auxiliary equation must be present
if any(fi.has(re(s), im(s)) for fi in freim):
irf.append((s, re(s) + S.ImaginaryUnit*im(s)))
if irf:
for s, rhs in irf:
for i, fi in enumerate(f):
f[i] = fi.xreplace({s: rhs})
f.append(s - rhs)
symbols.extend([re(s), im(s)])
if bare_f:
bare_f = False
flags['dict'] = True
# end of real/imag handling -----------------------------
symbols = list(uniq(symbols))
if not ordered_symbols:
# we do this to make the results returned canonical in case f
# contains a system of nonlinear equations; all other cases should
# be unambiguous
symbols = sorted(symbols, key=default_sort_key)
# we can solve for non-symbol entities by replacing them with Dummy symbols
f, symbols, swap_sym = recast_to_symbols(f, symbols)
# this is needed in the next two events
symset = set(symbols)
# get rid of equations that have no symbols of interest; we don't
# try to solve them because the user didn't ask and they might be
# hard to solve; this means that solutions may be given in terms
# of the eliminated equations e.g. solve((x-y, y-3), x) -> {x: y}
newf = []
for fi in f:
# let the solver handle equations that..
# - have no symbols but are expressions
# - have symbols of interest
# - have no symbols of interest but are constant
# but when an expression is not constant and has no symbols of
# interest, it can't change what we obtain for a solution from
# the remaining equations so we don't include it; and if it's
# zero it can be removed and if it's not zero, there is no
# solution for the equation set as a whole
#
# The reason for doing this filtering is to allow an answer
# to be obtained to queries like solve((x - y, y), x); without
# this mod the return value is []
ok = False
if fi.free_symbols & symset:
ok = True
else:
if fi.is_number:
if fi.is_Number:
if fi.is_zero:
continue
return []
ok = True
else:
if fi.is_constant():
ok = True
if ok:
newf.append(fi)
if not newf:
return []
f = newf
del newf
# mask off any Object that we aren't going to invert: Derivative,
# Integral, etc... so that solving for anything that they contain will
# give an implicit solution
seen = set()
non_inverts = set()
for fi in f:
pot = preorder_traversal(fi)
for p in pot:
if not isinstance(p, Expr) or isinstance(p, Piecewise):
pass
elif (isinstance(p, bool) or
not p.args or
p in symset or
p.is_Add or p.is_Mul or
p.is_Pow and not implicit or
p.is_Function and not implicit) and p.func not in (re, im):
continue
elif not p in seen:
seen.add(p)
if p.free_symbols & symset:
non_inverts.add(p)
else:
continue
pot.skip()
del seen
non_inverts = dict(list(zip(non_inverts, [Dummy() for _ in non_inverts])))
f = [fi.subs(non_inverts) for fi in f]
# Both xreplace and subs are needed below: xreplace to force substitution
# inside Derivative, subs to handle non-straightforward substitutions
non_inverts = [(v, k.xreplace(swap_sym).subs(swap_sym)) for k, v in non_inverts.items()]
# rationalize Floats
floats = False
if flags.get('rational', True) is not False:
for i, fi in enumerate(f):
if fi.has(Float):
floats = True
f[i] = nsimplify(fi, rational=True)
# capture any denominators before rewriting since
# they may disappear after the rewrite, e.g. issue 14779
flags['_denominators'] = _simple_dens(f[0], symbols)
# Any embedded piecewise functions need to be brought out to the
# top level so that the appropriate strategy gets selected.
# However, this is necessary only if one of the piecewise
# functions depends on one of the symbols we are solving for.
def _has_piecewise(e):
if e.is_Piecewise:
return e.has(*symbols)
return any(_has_piecewise(a) for a in e.args)
for i, fi in enumerate(f):
if _has_piecewise(fi):
f[i] = piecewise_fold(fi)
#
# try to get a solution
###########################################################################
if bare_f:
solution = _solve(f[0], *symbols, **flags)
else:
solution = _solve_system(f, symbols, **flags)
#
# postprocessing
###########################################################################
# Restore masked-off objects
if non_inverts:
def _do_dict(solution):
return {k: v.subs(non_inverts) for k, v in
solution.items()}
for i in range(1):
if isinstance(solution, dict):
solution = _do_dict(solution)
break
elif solution and isinstance(solution, list):
if isinstance(solution[0], dict):
solution = [_do_dict(s) for s in solution]
break
elif isinstance(solution[0], tuple):
solution = [tuple([v.subs(non_inverts) for v in s]) for s
in solution]
break
else:
solution = [v.subs(non_inverts) for v in solution]
break
elif not solution:
break
else:
raise NotImplementedError(filldedent('''
no handling of %s was implemented''' % solution))
# Restore original "symbols" if a dictionary is returned.
# This is not necessary for
# - the single univariate equation case
# since the symbol will have been removed from the solution;
# - the nonlinear poly_system since that only supports zero-dimensional
# systems and those results come back as a list
#
# ** unless there were Derivatives with the symbols, but those were handled
# above.
if swap_sym:
symbols = [swap_sym.get(k, k) for k in symbols]
if isinstance(solution, dict):
solution = {swap_sym.get(k, k): v.subs(swap_sym)
for k, v in solution.items()}
elif solution and isinstance(solution, list) and isinstance(solution[0], dict):
for i, sol in enumerate(solution):
solution[i] = {swap_sym.get(k, k): v.subs(swap_sym)
for k, v in sol.items()}
# undo the dictionary solutions returned when the system was only partially
# solved with poly-system if all symbols are present
if (
not flags.get('dict', False) and
solution and
ordered_symbols and
not isinstance(solution, dict) and
all(isinstance(sol, dict) for sol in solution)
):
solution = [tuple([r.get(s, s) for s in symbols]) for r in solution]
# Get assumptions about symbols, to filter solutions.
# Note that if assumptions about a solution can't be verified, it is still
# returned.
check = flags.get('check', True)
# restore floats
if floats and solution and flags.get('rational', None) is None:
solution = nfloat(solution, exponent=False)
if check and solution: # assumption checking
warn = flags.get('warn', False)
got_None = [] # solutions for which one or more symbols gave None
no_False = [] # solutions for which no symbols gave False
if isinstance(solution, tuple):
# this has already been checked and is in as_set form
return solution
elif isinstance(solution, list):
if isinstance(solution[0], tuple):
for sol in solution:
for symb, val in zip(symbols, sol):
test = check_assumptions(val, **symb.assumptions0)
if test is False:
break
if test is None:
got_None.append(sol)
else:
no_False.append(sol)
elif isinstance(solution[0], dict):
for sol in solution:
a_None = False
for symb, val in sol.items():
test = check_assumptions(val, **symb.assumptions0)
if test:
continue
if test is False:
break
a_None = True
else:
no_False.append(sol)
if a_None:
got_None.append(sol)
else: # list of expressions
for sol in solution:
test = check_assumptions(sol, **symbols[0].assumptions0)
if test is False:
continue
no_False.append(sol)
if test is None:
got_None.append(sol)
elif isinstance(solution, dict):
a_None = False
for symb, val in solution.items():
test = check_assumptions(val, **symb.assumptions0)
if test:
continue
if test is False:
no_False = None
break
a_None = True
else:
no_False = solution
if a_None:
got_None.append(solution)
elif isinstance(solution, (Relational, And, Or)):
if len(symbols) != 1:
raise ValueError("Length should be 1")
if warn and symbols[0].assumptions0:
warnings.warn(filldedent("""
\tWarning: assumptions about variable '%s' are
not handled currently.""" % symbols[0]))
# TODO: check also variable assumptions for inequalities
else:
raise TypeError('Unrecognized solution') # improve the checker
solution = no_False
if warn and got_None:
warnings.warn(filldedent("""
\tWarning: assumptions concerning following solution(s)
can't be checked:""" + '\n\t' +
', '.join(str(s) for s in got_None)))
#
# done
###########################################################################
as_dict = flags.get('dict', False)
as_set = flags.get('set', False)
if not as_set and isinstance(solution, list):
# Make sure that a list of solutions is ordered in a canonical way.
solution.sort(key=default_sort_key)
if not as_dict and not as_set:
return solution or []
# return a list of mappings or []
if not solution:
solution = []
else:
if isinstance(solution, dict):
solution = [solution]
elif iterable(solution[0]):
solution = [dict(list(zip(symbols, s))) for s in solution]
elif isinstance(solution[0], dict):
pass
else:
if len(symbols) != 1:
raise ValueError("Length should be 1")
solution = [{symbols[0]: s} for s in solution]
if as_dict:
return solution
assert as_set
if not solution:
return [], set()
k = list(ordered(solution[0].keys()))
return k, {tuple([s[ki] for ki in k]) for s in solution}
def _solve(f, *symbols, **flags):
"""
Return a checked solution for *f* in terms of one or more of the
symbols. A list should be returned except for the case when a linear
undetermined-coefficients equation is encountered (in which case
a dictionary is returned).
If no method is implemented to solve the equation, a NotImplementedError
will be raised. In the case that conversion of an expression to a Poly
gives None a ValueError will be raised.
"""
not_impl_msg = "No algorithms are implemented to solve equation %s"
if len(symbols) != 1:
soln = None
free = f.free_symbols
ex = free - set(symbols)
if len(ex) != 1:
ind, dep = f.as_independent(*symbols)
ex = ind.free_symbols & dep.free_symbols
if len(ex) == 1:
ex = ex.pop()
try:
# soln may come back as dict, list of dicts or tuples, or
# tuple of symbol list and set of solution tuples
soln = solve_undetermined_coeffs(f, symbols, ex, **flags)
except NotImplementedError:
pass
if soln:
if flags.get('simplify', True):
if isinstance(soln, dict):
for k in soln:
soln[k] = simplify(soln[k])
elif isinstance(soln, list):
if isinstance(soln[0], dict):
for d in soln:
for k in d:
d[k] = simplify(d[k])
elif isinstance(soln[0], tuple):
soln = [tuple(simplify(i) for i in j) for j in soln]
else:
raise TypeError('unrecognized args in list')
elif isinstance(soln, tuple):
sym, sols = soln
soln = sym, {tuple(simplify(i) for i in j) for j in sols}
else:
raise TypeError('unrecognized solution type')
return soln
# find first successful solution
failed = []
got_s = set()
result = []
for s in symbols:
xi, v = solve_linear(f, symbols=[s])
if xi == s:
# no need to check but we should simplify if desired
if flags.get('simplify', True):
v = simplify(v)
vfree = v.free_symbols
if got_s and any(ss in vfree for ss in got_s):
# sol depends on previously solved symbols: discard it
continue
got_s.add(xi)
result.append({xi: v})
elif xi: # there might be a non-linear solution if xi is not 0
failed.append(s)
if not failed:
return result
for s in failed:
try:
soln = _solve(f, s, **flags)
for sol in soln:
if got_s and any(ss in sol.free_symbols for ss in got_s):
# sol depends on previously solved symbols: discard it
continue
got_s.add(s)
result.append({s: sol})
except NotImplementedError:
continue
if got_s:
return result
else:
raise NotImplementedError(not_impl_msg % f)
symbol = symbols[0]
#expand binomials only if it has the unknown symbol
f = f.replace(lambda e: isinstance(e, binomial) and e.has(symbol),
lambda e: expand_func(e))
# /!\ capture this flag then set it to False so that no checking in
# recursive calls will be done; only the final answer is checked
flags['check'] = checkdens = check = flags.pop('check', True)
# build up solutions if f is a Mul
if f.is_Mul:
result = set()
for m in f.args:
if m in {S.NegativeInfinity, S.ComplexInfinity, S.Infinity}:
result = set()
break
soln = _solve(m, symbol, **flags)
result.update(set(soln))
result = list(result)
if check:
# all solutions have been checked but now we must
# check that the solutions do not set denominators
# in any factor to zero
dens = flags.get('_denominators', _simple_dens(f, symbols))
result = [s for s in result if
not any(checksol(den, {symbol: s}, **flags) for den in
dens)]
# set flags for quick exit at end; solutions for each
# factor were already checked and simplified
check = False
flags['simplify'] = False
elif f.is_Piecewise:
result = set()
for i, (expr, cond) in enumerate(f.args):
if expr.is_zero:
raise NotImplementedError(
'solve cannot represent interval solutions')
candidates = _solve(expr, symbol, **flags)
# the explicit condition for this expr is the current cond
# and none of the previous conditions
args = [~c for _, c in f.args[:i]] + [cond]
cond = And(*args)
for candidate in candidates:
if candidate in result:
# an unconditional value was already there
continue
try:
v = cond.subs(symbol, candidate)
_eval_simplify = getattr(v, '_eval_simplify', None)
if _eval_simplify is not None:
# unconditionally take the simpification of v
v = _eval_simplify(ratio=2, measure=lambda x: 1)
except TypeError:
# incompatible type with condition(s)
continue
if v == False:
continue
if v == True:
result.add(candidate)
else:
result.add(Piecewise(
(candidate, v),
(S.NaN, True)))
# set flags for quick exit at end; solutions for each
# piece were already checked and simplified
check = False
flags['simplify'] = False
else:
# first see if it really depends on symbol and whether there
# is only a linear solution
f_num, sol = solve_linear(f, symbols=symbols)
if f_num.is_zero or sol is S.NaN:
return []
elif f_num.is_Symbol:
# no need to check but simplify if desired
if flags.get('simplify', True):
sol = simplify(sol)
return [sol]
poly = None
# check for a single non-symbol generator
dums = f_num.atoms(Dummy)
D = f_num.replace(
lambda i: isinstance(i, Add) and symbol in i.free_symbols,
lambda i: Dummy())
if not D.is_Dummy:
dgen = D.atoms(Dummy) - dums
if len(dgen) == 1:
d = dgen.pop()
w = Wild('g')
gen = f_num.match(D.xreplace({d: w}))[w]
spart = gen.as_independent(symbol)[1].as_base_exp()[0]
if spart == symbol:
try:
poly = Poly(f_num, spart)
except PolynomialError:
pass
result = False # no solution was obtained
msg = '' # there is no failure message
# Poly is generally robust enough to convert anything to
# a polynomial and tell us the different generators that it
# contains, so we will inspect the generators identified by
# polys to figure out what to do.
# try to identify a single generator that will allow us to solve this
# as a polynomial, followed (perhaps) by a change of variables if the
# generator is not a symbol
try:
if poly is None:
poly = Poly(f_num)
if poly is None:
raise ValueError('could not convert %s to Poly' % f_num)
except GeneratorsNeeded:
simplified_f = simplify(f_num)
if simplified_f != f_num:
return _solve(simplified_f, symbol, **flags)
raise ValueError('expression appears to be a constant')
gens = [g for g in poly.gens if g.has(symbol)]
def _as_base_q(x):
"""Return (b**e, q) for x = b**(p*e/q) where p/q is the leading
Rational of the exponent of x, e.g. exp(-2*x/3) -> (exp(x), 3)
"""
b, e = x.as_base_exp()
if e.is_Rational:
return b, e.q
if not e.is_Mul:
return x, 1
c, ee = e.as_coeff_Mul()
if c.is_Rational and c is not S.One: # c could be a Float
return b**ee, c.q
return x, 1
if len(gens) > 1:
# If there is more than one generator, it could be that the
# generators have the same base but different powers, e.g.
# >>> Poly(exp(x) + 1/exp(x))
# Poly(exp(-x) + exp(x), exp(-x), exp(x), domain='ZZ')
#
# If unrad was not disabled then there should be no rational
# exponents appearing as in
# >>> Poly(sqrt(x) + sqrt(sqrt(x)))
# Poly(sqrt(x) + x**(1/4), sqrt(x), x**(1/4), domain='ZZ')
bases, qs = list(zip(*[_as_base_q(g) for g in gens]))
bases = set(bases)
if len(bases) > 1 or not all(q == 1 for q in qs):
funcs = {b for b in bases if b.is_Function}
trig = {_ for _ in funcs if
isinstance(_, TrigonometricFunction)}
other = funcs - trig
if not other and len(funcs.intersection(trig)) > 1:
newf = None
if f_num.is_Add and len(f_num.args) == 2:
# check for sin(x)**p = cos(x)**p
_args = f_num.args
t = a, b = [i.atoms(Function).intersection(
trig) for i in _args]
if all(len(i) == 1 for i in t):
a, b = [i.pop() for i in t]
if isinstance(a, cos):
a, b = b, a
_args = _args[::-1]
if isinstance(a, sin) and isinstance(b, cos
) and a.args[0] == b.args[0]:
# sin(x) + cos(x) = 0 -> tan(x) + 1 = 0
newf, _d = (TR2i(_args[0]/_args[1]) + 1
).as_numer_denom()
if not _d.is_Number:
newf = None
if newf is None:
newf = TR1(f_num).rewrite(tan)
if newf != f_num:
# don't check the rewritten form --check
# solutions in the un-rewritten form below
flags['check'] = False
result = _solve(newf, symbol, **flags)
flags['check'] = check
# just a simple case - see if replacement of single function
# clears all symbol-dependent functions, e.g.
# log(x) - log(log(x) - 1) - 3 can be solved even though it has
# two generators.
if result is False and funcs:
funcs = list(ordered(funcs)) # put shallowest function first
f1 = funcs[0]
t = Dummy('t')
# perform the substitution
ftry = f_num.subs(f1, t)
# if no Functions left, we can proceed with usual solve
if not ftry.has(symbol):
cv_sols = _solve(ftry, t, **flags)
cv_inv = _solve(t - f1, symbol, **flags)[0]
sols = list()
for sol in cv_sols:
sols.append(cv_inv.subs(t, sol))
result = list(ordered(sols))
if result is False:
msg = 'multiple generators %s' % gens
else:
# e.g. case where gens are exp(x), exp(-x)
u = bases.pop()
t = Dummy('t')
inv = _solve(u - t, symbol, **flags)
if isinstance(u, (Pow, exp)):
# this will be resolved by factor in _tsolve but we might
# as well try a simple expansion here to get things in
# order so something like the following will work now without
# having to factor:
#
# >>> eq = (exp(I*(-x-2))+exp(I*(x+2)))
# >>> eq.subs(exp(x),y) # fails
# exp(I*(-x - 2)) + exp(I*(x + 2))
# >>> eq.expand().subs(exp(x),y) # works
# y**I*exp(2*I) + y**(-I)*exp(-2*I)
def _expand(p):
b, e = p.as_base_exp()
e = expand_mul(e)
return expand_power_exp(b**e)
ftry = f_num.replace(
lambda w: w.is_Pow or isinstance(w, exp),
_expand).subs(u, t)
if not ftry.has(symbol):
soln = _solve(ftry, t, **flags)
sols = list()
for sol in soln:
for i in inv:
sols.append(i.subs(t, sol))
result = list(ordered(sols))
elif len(gens) == 1:
# There is only one generator that we are interested in, but
# there may have been more than one generator identified by
# polys (e.g. for symbols other than the one we are interested
# in) so recast the poly in terms of our generator of interest.
# Also use composite=True with f_num since Poly won't update
# poly as documented in issue 8810.
poly = Poly(f_num, gens[0], composite=True)
# if we aren't on the tsolve-pass, use roots
if not flags.pop('tsolve', False):
soln = None
deg = poly.degree()
flags['tsolve'] = True
solvers = {k: flags.get(k, True) for k in
('cubics', 'quartics', 'quintics')}
soln = roots(poly, **solvers)
if sum(soln.values()) < deg:
# e.g. roots(32*x**5 + 400*x**4 + 2032*x**3 +
# 5000*x**2 + 6250*x + 3189) -> {}
# so all_roots is used and RootOf instances are
# returned *unless* the system is multivariate
# or high-order EX domain.
try:
soln = poly.all_roots()
except NotImplementedError:
if not flags.get('incomplete', True):
raise NotImplementedError(
filldedent('''
Neither high-order multivariate polynomials
nor sorting of EX-domain polynomials is supported.
If you want to see any results, pass keyword incomplete=True to
solve; to see numerical values of roots
for univariate expressions, use nroots.
'''))
else:
pass
else:
soln = list(soln.keys())
if soln is not None:
u = poly.gen
if u != symbol:
try:
t = Dummy('t')
iv = _solve(u - t, symbol, **flags)
soln = list(ordered({i.subs(t, s) for i in iv for s in soln}))
except NotImplementedError:
# perhaps _tsolve can handle f_num
soln = None
else:
check = False # only dens need to be checked
if soln is not None:
if len(soln) > 2:
# if the flag wasn't set then unset it since high-order
# results are quite long. Perhaps one could base this
# decision on a certain critical length of the
# roots. In addition, wester test M2 has an expression
# whose roots can be shown to be real with the
# unsimplified form of the solution whereas only one of
# the simplified forms appears to be real.
flags['simplify'] = flags.get('simplify', False)
result = soln
# fallback if above fails
# -----------------------
if result is False:
# try unrad
if flags.pop('_unrad', True):
try:
u = unrad(f_num, symbol)
except (ValueError, NotImplementedError):
u = False
if u:
eq, cov = u
if cov:
isym, ieq = cov
inv = _solve(ieq, symbol, **flags)[0]
rv = {inv.subs(isym, xi) for xi in _solve(eq, isym, **flags)}
else:
try:
rv = set(_solve(eq, symbol, **flags))
except NotImplementedError:
rv = None
if rv is not None:
result = list(ordered(rv))
# if the flag wasn't set then unset it since unrad results
# can be quite long or of very high order
flags['simplify'] = flags.get('simplify', False)
else:
pass # for coverage
# try _tsolve
if result is False:
flags.pop('tsolve', None) # allow tsolve to be used on next pass
try:
soln = _tsolve(f_num, symbol, **flags)
if soln is not None:
result = soln
except PolynomialError:
pass
# ----------- end of fallback ----------------------------
if result is False:
raise NotImplementedError('\n'.join([msg, not_impl_msg % f]))
if flags.get('simplify', True):
result = list(map(simplify, result))
# we just simplified the solution so we now set the flag to
# False so the simplification doesn't happen again in checksol()
flags['simplify'] = False
if checkdens:
# reject any result that makes any denom. affirmatively 0;
# if in doubt, keep it
dens = _simple_dens(f, symbols)
result = [s for s in result if
not any(checksol(d, {symbol: s}, **flags)
for d in dens)]
if check:
# keep only results if the check is not False
result = [r for r in result if
checksol(f_num, {symbol: r}, **flags) is not False]
return result
def _solve_system(exprs, symbols, **flags):
if not exprs:
return []
if flags.pop('_split', True):
# Split the system into connected components
V = exprs
symsset = set(symbols)
exprsyms = {e: e.free_symbols & symsset for e in exprs}
E = []
sym_indices = {sym: i for i, sym in enumerate(symbols)}
for n, e1 in enumerate(exprs):
for e2 in exprs[:n]:
# Equations are connected if they share a symbol
if exprsyms[e1] & exprsyms[e2]:
E.append((e1, e2))
G = V, E
subexprs = connected_components(G)
if len(subexprs) > 1:
subsols = []
for subexpr in subexprs:
subsyms = set()
for e in subexpr:
subsyms |= exprsyms[e]
subsyms = list(sorted(subsyms, key = lambda x: sym_indices[x]))
flags['_split'] = False # skip split step
subsol = _solve_system(subexpr, subsyms, **flags)
if not isinstance(subsol, list):
subsol = [subsol]
subsols.append(subsol)
# Full solution is cartesion product of subsystems
sols = []
for soldicts in product(*subsols):
sols.append(dict(item for sd in soldicts
for item in sd.items()))
# Return a list with one dict as just the dict
if len(sols) == 1:
return sols[0]
return sols
polys = []
dens = set()
failed = []
result = False
linear = False
manual = flags.get('manual', False)
checkdens = check = flags.get('check', True)
for j, g in enumerate(exprs):
dens.update(_simple_dens(g, symbols))
i, d = _invert(g, *symbols)
g = d - i
g = g.as_numer_denom()[0]
if manual:
failed.append(g)
continue
poly = g.as_poly(*symbols, extension=True)
if poly is not None:
polys.append(poly)
else:
failed.append(g)
if not polys:
solved_syms = []
else:
if all(p.is_linear for p in polys):
n, m = len(polys), len(symbols)
matrix = zeros(n, m + 1)
for i, poly in enumerate(polys):
for monom, coeff in poly.terms():
try:
j = monom.index(1)
matrix[i, j] = coeff
except ValueError:
matrix[i, m] = -coeff
# returns a dictionary ({symbols: values}) or None
if flags.pop('particular', False):
result = minsolve_linear_system(matrix, *symbols, **flags)
else:
result = solve_linear_system(matrix, *symbols, **flags)
if failed:
if result:
solved_syms = list(result.keys())
else:
solved_syms = []
else:
linear = True
else:
if len(symbols) > len(polys):
from sympy.utilities.iterables import subsets
free = set().union(*[p.free_symbols for p in polys])
free = list(ordered(free.intersection(symbols)))
got_s = set()
result = []
for syms in subsets(free, len(polys)):
try:
# returns [] or list of tuples of solutions for syms
res = solve_poly_system(polys, *syms)
if res:
for r in res:
skip = False
for r1 in r:
if got_s and any(ss in r1.free_symbols
for ss in got_s):
# sol depends on previously
# solved symbols: discard it
skip = True
if not skip:
got_s.update(syms)
result.extend([dict(list(zip(syms, r)))])
except NotImplementedError:
pass
if got_s:
solved_syms = list(got_s)
else:
raise NotImplementedError('no valid subset found')
else:
try:
result = solve_poly_system(polys, *symbols)
if result:
solved_syms = symbols
# we don't know here if the symbols provided
# were given or not, so let solve resolve that.
# A list of dictionaries is going to always be
# returned from here.
result = [dict(list(zip(solved_syms, r))) for r in result]
except NotImplementedError:
failed.extend([g.as_expr() for g in polys])
solved_syms = []
result = None
if result:
if isinstance(result, dict):
result = [result]
else:
result = [{}]
if failed:
# For each failed equation, see if we can solve for one of the
# remaining symbols from that equation. If so, we update the
# solution set and continue with the next failed equation,
# repeating until we are done or we get an equation that can't
# be solved.
def _ok_syms(e, sort=False):
rv = (e.free_symbols - solved_syms) & legal
# Solve first for symbols that have lower degree in the equation.
# Ideally we want to solve firstly for symbols that appear linearly
# with rational coefficients e.g. if e = x*y + z then we should
# solve for z first.
def key(sym):
ep = e.as_poly(sym)
if ep is None:
complexity = (S.Infinity, S.Infinity, S.Infinity)
else:
coeff_syms = ep.LC().free_symbols
complexity = (ep.degree(), len(coeff_syms & rv), len(coeff_syms))
return complexity + (default_sort_key(sym),)
if sort:
rv = sorted(rv, key=key)
return rv
solved_syms = set(solved_syms) # set of symbols we have solved for
legal = set(symbols) # what we are interested in
# sort so equation with the fewest potential symbols is first
u = Dummy() # used in solution checking
for eq in ordered(failed, lambda _: len(_ok_syms(_))):
newresult = []
bad_results = []
got_s = set()
hit = False
for r in result:
# update eq with everything that is known so far
eq2 = eq.subs(r)
# if check is True then we see if it satisfies this
# equation, otherwise we just accept it
if check and r:
b = checksol(u, u, eq2, minimal=True)
if b is not None:
# this solution is sufficient to know whether
# it is valid or not so we either accept or
# reject it, then continue
if b:
newresult.append(r)
else:
bad_results.append(r)
continue
# search for a symbol amongst those available that
# can be solved for
ok_syms = _ok_syms(eq2, sort=True)
if not ok_syms:
if r:
newresult.append(r)
break # skip as it's independent of desired symbols
for s in ok_syms:
try:
soln = _solve(eq2, s, **flags)
except NotImplementedError:
continue
# put each solution in r and append the now-expanded
# result in the new result list; use copy since the
# solution for s in being added in-place
for sol in soln:
if got_s and any(ss in sol.free_symbols for ss in got_s):
# sol depends on previously solved symbols: discard it
continue
rnew = r.copy()
for k, v in r.items():
rnew[k] = v.subs(s, sol)
# and add this new solution
rnew[s] = sol
# check that it is independent of previous solutions
iset = set(rnew.items())
for i in newresult:
if len(i) < len(iset) and not set(i.items()) - iset:
# this is a superset of a known solution that
# is smaller
break
else:
# keep it
newresult.append(rnew)
hit = True
got_s.add(s)
if not hit:
raise NotImplementedError('could not solve %s' % eq2)
else:
result = newresult
for b in bad_results:
if b in result:
result.remove(b)
default_simplify = bool(failed) # rely on system-solvers to simplify
if flags.get('simplify', default_simplify):
for r in result:
for k in r:
r[k] = simplify(r[k])
flags['simplify'] = False # don't need to do so in checksol now
if checkdens:
result = [r for r in result
if not any(checksol(d, r, **flags) for d in dens)]
if check and not linear:
result = [r for r in result
if not any(checksol(e, r, **flags) is False for e in exprs)]
result = [r for r in result if r]
if linear and result:
result = result[0]
return result
def solve_linear(lhs, rhs=0, symbols=[], exclude=[]):
r"""
Return a tuple derived from ``f = lhs - rhs`` that is one of
the following: ``(0, 1)``, ``(0, 0)``, ``(symbol, solution)``, ``(n, d)``.
Explanation
===========
``(0, 1)`` meaning that ``f`` is independent of the symbols in *symbols*
that are not in *exclude*.
``(0, 0)`` meaning that there is no solution to the equation amongst the
symbols given. If the first element of the tuple is not zero, then the
function is guaranteed to be dependent on a symbol in *symbols*.
``(symbol, solution)`` where symbol appears linearly in the numerator of
``f``, is in *symbols* (if given), and is not in *exclude* (if given). No
simplification is done to ``f`` other than a ``mul=True`` expansion, so the
solution will correspond strictly to a unique solution.
``(n, d)`` where ``n`` and ``d`` are the numerator and denominator of ``f``
when the numerator was not linear in any symbol of interest; ``n`` will
never be a symbol unless a solution for that symbol was found (in which case
the second element is the solution, not the denominator).
Examples
========
>>> from sympy.core.power import Pow
>>> from sympy.polys.polytools import cancel
``f`` is independent of the symbols in *symbols* that are not in
*exclude*:
>>> from sympy.solvers.solvers import solve_linear
>>> from sympy.abc import x, y, z
>>> from sympy import cos, sin
>>> eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0
>>> solve_linear(eq)
(0, 1)
>>> eq = cos(x)**2 + sin(x)**2 # = 1
>>> solve_linear(eq)
(0, 1)
>>> solve_linear(x, exclude=[x])
(0, 1)
The variable ``x`` appears as a linear variable in each of the
following:
>>> solve_linear(x + y**2)
(x, -y**2)
>>> solve_linear(1/x - y**2)
(x, y**(-2))
When not linear in ``x`` or ``y`` then the numerator and denominator are
returned:
>>> solve_linear(x**2/y**2 - 3)
(x**2 - 3*y**2, y**2)
If the numerator of the expression is a symbol, then ``(0, 0)`` is
returned if the solution for that symbol would have set any
denominator to 0:
>>> eq = 1/(1/x - 2)
>>> eq.as_numer_denom()
(x, 1 - 2*x)
>>> solve_linear(eq)
(0, 0)
But automatic rewriting may cause a symbol in the denominator to
appear in the numerator so a solution will be returned:
>>> (1/x)**-1
x
>>> solve_linear((1/x)**-1)
(x, 0)
Use an unevaluated expression to avoid this:
>>> solve_linear(Pow(1/x, -1, evaluate=False))
(0, 0)
If ``x`` is allowed to cancel in the following expression, then it
appears to be linear in ``x``, but this sort of cancellation is not
done by ``solve_linear`` so the solution will always satisfy the
original expression without causing a division by zero error.
>>> eq = x**2*(1/x - z**2/x)
>>> solve_linear(cancel(eq))
(x, 0)
>>> solve_linear(eq)
(x**2*(1 - z**2), x)
A list of symbols for which a solution is desired may be given:
>>> solve_linear(x + y + z, symbols=[y])
(y, -x - z)
A list of symbols to ignore may also be given:
>>> solve_linear(x + y + z, exclude=[x])
(y, -x - z)
(A solution for ``y`` is obtained because it is the first variable
from the canonically sorted list of symbols that had a linear
solution.)
"""
if isinstance(lhs, Equality):
if rhs:
raise ValueError(filldedent('''
If lhs is an Equality, rhs must be 0 but was %s''' % rhs))
rhs = lhs.rhs
lhs = lhs.lhs
dens = None
eq = lhs - rhs
n, d = eq.as_numer_denom()
if not n:
return S.Zero, S.One
free = n.free_symbols
if not symbols:
symbols = free
else:
bad = [s for s in symbols if not s.is_Symbol]
if bad:
if len(bad) == 1:
bad = bad[0]
if len(symbols) == 1:
eg = 'solve(%s, %s)' % (eq, symbols[0])
else:
eg = 'solve(%s, *%s)' % (eq, list(symbols))
raise ValueError(filldedent('''
solve_linear only handles symbols, not %s. To isolate
non-symbols use solve, e.g. >>> %s <<<.
''' % (bad, eg)))
symbols = free.intersection(symbols)
symbols = symbols.difference(exclude)
if not symbols:
return S.Zero, S.One
# derivatives are easy to do but tricky to analyze to see if they
# are going to disallow a linear solution, so for simplicity we
# just evaluate the ones that have the symbols of interest
derivs = defaultdict(list)
for der in n.atoms(Derivative):
csym = der.free_symbols & symbols
for c in csym:
derivs[c].append(der)
all_zero = True
for xi in sorted(symbols, key=default_sort_key): # canonical order
# if there are derivatives in this var, calculate them now
if isinstance(derivs[xi], list):
derivs[xi] = {der: der.doit() for der in derivs[xi]}
newn = n.subs(derivs[xi])
dnewn_dxi = newn.diff(xi)
# dnewn_dxi can be nonzero if it survives differentation by any
# of its free symbols
free = dnewn_dxi.free_symbols
if dnewn_dxi and (not free or any(dnewn_dxi.diff(s) for s in free) or free == symbols):
all_zero = False
if dnewn_dxi is S.NaN:
break
if xi not in dnewn_dxi.free_symbols:
vi = -1/dnewn_dxi*(newn.subs(xi, 0))
if dens is None:
dens = _simple_dens(eq, symbols)
if not any(checksol(di, {xi: vi}, minimal=True) is True
for di in dens):
# simplify any trivial integral
irep = [(i, i.doit()) for i in vi.atoms(Integral) if
i.function.is_number]
# do a slight bit of simplification
vi = expand_mul(vi.subs(irep))
return xi, vi
if all_zero:
return S.Zero, S.One
if n.is_Symbol: # no solution for this symbol was found
return S.Zero, S.Zero
return n, d
def minsolve_linear_system(system, *symbols, **flags):
r"""
Find a particular solution to a linear system.
Explanation
===========
In particular, try to find a solution with the minimal possible number
of non-zero variables using a naive algorithm with exponential complexity.
If ``quick=True``, a heuristic is used.
"""
quick = flags.get('quick', False)
# Check if there are any non-zero solutions at all
s0 = solve_linear_system(system, *symbols, **flags)
if not s0 or all(v == 0 for v in s0.values()):
return s0
if quick:
# We just solve the system and try to heuristically find a nice
# solution.
s = solve_linear_system(system, *symbols)
def update(determined, solution):
delete = []
for k, v in solution.items():
solution[k] = v.subs(determined)
if not solution[k].free_symbols:
delete.append(k)
determined[k] = solution[k]
for k in delete:
del solution[k]
determined = {}
update(determined, s)
while s:
# NOTE sort by default_sort_key to get deterministic result
k = max((k for k in s.values()),
key=lambda x: (len(x.free_symbols), default_sort_key(x)))
x = max(k.free_symbols, key=default_sort_key)
if len(k.free_symbols) != 1:
determined[x] = S.Zero
else:
val = solve(k)[0]
if val == 0 and all(v.subs(x, val) == 0 for v in s.values()):
determined[x] = S.One
else:
determined[x] = val
update(determined, s)
return determined
else:
# We try to select n variables which we want to be non-zero.
# All others will be assumed zero. We try to solve the modified system.
# If there is a non-trivial solution, just set the free variables to
# one. If we do this for increasing n, trying all combinations of
# variables, we will find an optimal solution.
# We speed up slightly by starting at one less than the number of
# variables the quick method manages.
from itertools import combinations
from sympy.utilities.misc import debug
N = len(symbols)
bestsol = minsolve_linear_system(system, *symbols, quick=True)
n0 = len([x for x in bestsol.values() if x != 0])
for n in range(n0 - 1, 1, -1):
debug('minsolve: %s' % n)
thissol = None
for nonzeros in combinations(list(range(N)), n):
subm = Matrix([system.col(i).T for i in nonzeros] + [system.col(-1).T]).T
s = solve_linear_system(subm, *[symbols[i] for i in nonzeros])
if s and not all(v == 0 for v in s.values()):
subs = [(symbols[v], S.One) for v in nonzeros]
for k, v in s.items():
s[k] = v.subs(subs)
for sym in symbols:
if sym not in s:
if symbols.index(sym) in nonzeros:
s[sym] = S.One
else:
s[sym] = S.Zero
thissol = s
break
if thissol is None:
break
bestsol = thissol
return bestsol
def solve_linear_system(system, *symbols, **flags):
r"""
Solve system of $N$ linear equations with $M$ variables, which means
both under- and overdetermined systems are supported.
Explanation
===========
The possible number of solutions is zero, one, or infinite. Respectively,
this procedure will return None or a dictionary with solutions. In the
case of underdetermined systems, all arbitrary parameters are skipped.
This may cause a situation in which an empty dictionary is returned.
In that case, all symbols can be assigned arbitrary values.
Input to this function is a $N\times M + 1$ matrix, which means it has
to be in augmented form. If you prefer to enter $N$ equations and $M$
unknowns then use ``solve(Neqs, *Msymbols)`` instead. Note: a local
copy of the matrix is made by this routine so the matrix that is
passed will not be modified.
The algorithm used here is fraction-free Gaussian elimination,
which results, after elimination, in an upper-triangular matrix.
Then solutions are found using back-substitution. This approach
is more efficient and compact than the Gauss-Jordan method.
Examples
========
>>> from sympy import Matrix, solve_linear_system
>>> from sympy.abc import x, y
Solve the following system::
x + 4 y == 2
-2 x + y == 14
>>> system = Matrix(( (1, 4, 2), (-2, 1, 14)))
>>> solve_linear_system(system, x, y)
{x: -6, y: 2}
A degenerate system returns an empty dictionary:
>>> system = Matrix(( (0,0,0), (0,0,0) ))
>>> solve_linear_system(system, x, y)
{}
"""
assert system.shape[1] == len(symbols) + 1
# This is just a wrapper for solve_lin_sys
eqs = list(system * Matrix(symbols + (-1,)))
eqs, ring = sympy_eqs_to_ring(eqs, symbols)
sol = solve_lin_sys(eqs, ring, _raw=False)
if sol is not None:
sol = {sym:val for sym, val in sol.items() if sym != val}
return sol
def solve_undetermined_coeffs(equ, coeffs, sym, **flags):
r"""
Solve equation of a type $p(x; a_1, \ldots, a_k) = q(x)$ where both
$p$ and $q$ are univariate polynomials that depend on $k$ parameters.
Explanation
===========
The result of this function is a dictionary with symbolic values of those
parameters with respect to coefficients in $q$.
This function accepts both equations class instances and ordinary
SymPy expressions. Specification of parameters and variables is
obligatory for efficiency and simplicity reasons.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import a, b, c, x
>>> from sympy.solvers import solve_undetermined_coeffs
>>> solve_undetermined_coeffs(Eq(2*a*x + a+b, x), [a, b], x)
{a: 1/2, b: -1/2}
>>> solve_undetermined_coeffs(Eq(a*c*x + a+b, x), [a, b], x)
{a: 1/c, b: -1/c}
"""
if isinstance(equ, Equality):
# got equation, so move all the
# terms to the left hand side
equ = equ.lhs - equ.rhs
equ = cancel(equ).as_numer_denom()[0]
system = list(collect(equ.expand(), sym, evaluate=False).values())
if not any(equ.has(sym) for equ in system):
# consecutive powers in the input expressions have
# been successfully collected, so solve remaining
# system using Gaussian elimination algorithm
return solve(system, *coeffs, **flags)
else:
return None # no solutions
def solve_linear_system_LU(matrix, syms):
"""
Solves the augmented matrix system using ``LUsolve`` and returns a
dictionary in which solutions are keyed to the symbols of *syms* as ordered.
Explanation
===========
The matrix must be invertible.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.solvers import solve_linear_system_LU
>>> solve_linear_system_LU(Matrix([
... [1, 2, 0, 1],
... [3, 2, 2, 1],
... [2, 0, 0, 1]]), [x, y, z])
{x: 1/2, y: 1/4, z: -1/2}
See Also
========
LUsolve
"""
if matrix.rows != matrix.cols - 1:
raise ValueError("Rows should be equal to columns - 1")
A = matrix[:matrix.rows, :matrix.rows]
b = matrix[:, matrix.cols - 1:]
soln = A.LUsolve(b)
solutions = {}
for i in range(soln.rows):
solutions[syms[i]] = soln[i, 0]
return solutions
def det_perm(M):
"""
Return the determinant of *M* by using permutations to select factors.
Explanation
===========
For sizes larger than 8 the number of permutations becomes prohibitively
large, or if there are no symbols in the matrix, it is better to use the
standard determinant routines (e.g., ``M.det()``.)
See Also
========
det_minor
det_quick
"""
args = []
s = True
n = M.rows
list_ = M.flat()
for perm in generate_bell(n):
fac = []
idx = 0
for j in perm:
fac.append(list_[idx + j])
idx += n
term = Mul(*fac) # disaster with unevaluated Mul -- takes forever for n=7
args.append(term if s else -term)
s = not s
return Add(*args)
def det_minor(M):
"""
Return the ``det(M)`` computed from minors without
introducing new nesting in products.
See Also
========
det_perm
det_quick
"""
n = M.rows
if n == 2:
return M[0, 0]*M[1, 1] - M[1, 0]*M[0, 1]
else:
return sum([(1, -1)[i % 2]*Add(*[M[0, i]*d for d in
Add.make_args(det_minor(M.minor_submatrix(0, i)))])
if M[0, i] else S.Zero for i in range(n)])
def det_quick(M, method=None):
"""
Return ``det(M)`` assuming that either
there are lots of zeros or the size of the matrix
is small. If this assumption is not met, then the normal
Matrix.det function will be used with method = ``method``.
See Also
========
det_minor
det_perm
"""
if any(i.has(Symbol) for i in M):
if M.rows < 8 and all(i.has(Symbol) for i in M):
return det_perm(M)
return det_minor(M)
else:
return M.det(method=method) if method else M.det()
def inv_quick(M):
"""Return the inverse of ``M``, assuming that either
there are lots of zeros or the size of the matrix
is small.
"""
from sympy.matrices import zeros
if not all(i.is_Number for i in M):
if not any(i.is_Number for i in M):
det = lambda _: det_perm(_)
else:
det = lambda _: det_minor(_)
else:
return M.inv()
n = M.rows
d = det(M)
if d == S.Zero:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible")
ret = zeros(n)
s1 = -1
for i in range(n):
s = s1 = -s1
for j in range(n):
di = det(M.minor_submatrix(i, j))
ret[j, i] = s*di/d
s = -s
return ret
# these are functions that have multiple inverse values per period
multi_inverses = {
sin: lambda x: (asin(x), S.Pi - asin(x)),
cos: lambda x: (acos(x), 2*S.Pi - acos(x)),
}
def _tsolve(eq, sym, **flags):
"""
Helper for ``_solve`` that solves a transcendental equation with respect
to the given symbol. Various equations containing powers and logarithms,
can be solved.
There is currently no guarantee that all solutions will be returned or
that a real solution will be favored over a complex one.
Either a list of potential solutions will be returned or None will be
returned (in the case that no method was known to get a solution
for the equation). All other errors (like the inability to cast an
expression as a Poly) are unhandled.
Examples
========
>>> from sympy import log
>>> from sympy.solvers.solvers import _tsolve as tsolve
>>> from sympy.abc import x
>>> tsolve(3**(2*x + 5) - 4, x)
[-5/2 + log(2)/log(3), (-5*log(3)/2 + log(2) + I*pi)/log(3)]
>>> tsolve(log(x) + 2*x, x)
[LambertW(2)/2]
"""
if 'tsolve_saw' not in flags:
flags['tsolve_saw'] = []
if eq in flags['tsolve_saw']:
return None
else:
flags['tsolve_saw'].append(eq)
rhs, lhs = _invert(eq, sym)
if lhs == sym:
return [rhs]
try:
if lhs.is_Add:
# it's time to try factoring; powdenest is used
# to try get powers in standard form for better factoring
f = factor(powdenest(lhs - rhs))
if f.is_Mul:
return _solve(f, sym, **flags)
if rhs:
f = logcombine(lhs, force=flags.get('force', True))
if f.count(log) != lhs.count(log):
if isinstance(f, log):
return _solve(f.args[0] - exp(rhs), sym, **flags)
return _tsolve(f - rhs, sym, **flags)
elif lhs.is_Pow:
if lhs.exp.is_Integer:
if lhs - rhs != eq:
return _solve(lhs - rhs, sym, **flags)
if sym not in lhs.exp.free_symbols:
return _solve(lhs.base - rhs**(1/lhs.exp), sym, **flags)
# _tsolve calls this with Dummy before passing the actual number in.
if any(t.is_Dummy for t in rhs.free_symbols):
raise NotImplementedError # _tsolve will call here again...
# a ** g(x) == 0
if not rhs:
# f(x)**g(x) only has solutions where f(x) == 0 and g(x) != 0 at
# the same place
sol_base = _solve(lhs.base, sym, **flags)
return [s for s in sol_base if lhs.exp.subs(sym, s) != 0]
# a ** g(x) == b
if not lhs.base.has(sym):
if lhs.base == 0:
return _solve(lhs.exp, sym, **flags) if rhs != 0 else []
# Gets most solutions...
if lhs.base == rhs.as_base_exp()[0]:
# handles case when bases are equal
sol = _solve(lhs.exp - rhs.as_base_exp()[1], sym, **flags)
else:
# handles cases when bases are not equal and exp
# may or may not be equal
sol = _solve(exp(log(lhs.base)*lhs.exp)-exp(log(rhs)), sym, **flags)
# Check for duplicate solutions
def equal(expr1, expr2):
_ = Dummy()
eq = checksol(expr1 - _, _, expr2)
if eq is None:
if nsimplify(expr1) != nsimplify(expr2):
return False
# they might be coincidentally the same
# so check more rigorously
eq = expr1.equals(expr2)
return eq
# Guess a rational exponent
e_rat = nsimplify(log(abs(rhs))/log(abs(lhs.base)))
e_rat = simplify(posify(e_rat)[0])
n, d = fraction(e_rat)
if expand(lhs.base**n - rhs**d) == 0:
sol = [s for s in sol if not equal(lhs.exp.subs(sym, s), e_rat)]
sol.extend(_solve(lhs.exp - e_rat, sym, **flags))
return list(ordered(set(sol)))
# f(x) ** g(x) == c
else:
sol = []
logform = lhs.exp*log(lhs.base) - log(rhs)
if logform != lhs - rhs:
try:
sol.extend(_solve(logform, sym, **flags))
except NotImplementedError:
pass
# Collect possible solutions and check with substitution later.
check = []
if rhs == 1:
# f(x) ** g(x) = 1 -- g(x)=0 or f(x)=+-1
check.extend(_solve(lhs.exp, sym, **flags))
check.extend(_solve(lhs.base - 1, sym, **flags))
check.extend(_solve(lhs.base + 1, sym, **flags))
elif rhs.is_Rational:
for d in (i for i in divisors(abs(rhs.p)) if i != 1):
e, t = integer_log(rhs.p, d)
if not t:
continue # rhs.p != d**b
for s in divisors(abs(rhs.q)):
if s**e== rhs.q:
r = Rational(d, s)
check.extend(_solve(lhs.base - r, sym, **flags))
check.extend(_solve(lhs.base + r, sym, **flags))
check.extend(_solve(lhs.exp - e, sym, **flags))
elif rhs.is_irrational:
b_l, e_l = lhs.base.as_base_exp()
n, d = (e_l*lhs.exp).as_numer_denom()
b, e = sqrtdenest(rhs).as_base_exp()
check = [sqrtdenest(i) for i in (_solve(lhs.base - b, sym, **flags))]
check.extend([sqrtdenest(i) for i in (_solve(lhs.exp - e, sym, **flags))])
if e_l*d != 1:
check.extend(_solve(b_l**n - rhs**(e_l*d), sym, **flags))
for s in check:
ok = checksol(eq, sym, s)
if ok is None:
ok = eq.subs(sym, s).equals(0)
if ok:
sol.append(s)
return list(ordered(set(sol)))
elif lhs.is_Function and len(lhs.args) == 1:
if lhs.func in multi_inverses:
# sin(x) = 1/3 -> x - asin(1/3) & x - (pi - asin(1/3))
soln = []
for i in multi_inverses[lhs.func](rhs):
soln.extend(_solve(lhs.args[0] - i, sym, **flags))
return list(ordered(soln))
elif lhs.func == LambertW:
return _solve(lhs.args[0] - rhs*exp(rhs), sym, **flags)
rewrite = lhs.rewrite(exp)
if rewrite != lhs:
return _solve(rewrite - rhs, sym, **flags)
except NotImplementedError:
pass
# maybe it is a lambert pattern
if flags.pop('bivariate', True):
# lambert forms may need some help being recognized, e.g. changing
# 2**(3*x) + x**3*log(2)**3 + 3*x**2*log(2)**2 + 3*x*log(2) + 1
# to 2**(3*x) + (x*log(2) + 1)**3
g = _filtered_gens(eq.as_poly(), sym)
up_or_log = set()
for gi in g:
if isinstance(gi, exp) or (gi.is_Pow and gi.base == S.Exp1) or isinstance(gi, log):
up_or_log.add(gi)
elif gi.is_Pow:
gisimp = powdenest(expand_power_exp(gi))
if gisimp.is_Pow and sym in gisimp.exp.free_symbols:
up_or_log.add(gi)
eq_down = expand_log(expand_power_exp(eq)).subs(
dict(list(zip(up_or_log, [0]*len(up_or_log)))))
eq = expand_power_exp(factor(eq_down, deep=True) + (eq - eq_down))
rhs, lhs = _invert(eq, sym)
if lhs.has(sym):
try:
poly = lhs.as_poly()
g = _filtered_gens(poly, sym)
_eq = lhs - rhs
sols = _solve_lambert(_eq, sym, g)
# use a simplified form if it satisfies eq
# and has fewer operations
for n, s in enumerate(sols):
ns = nsimplify(s)
if ns != s and ns.count_ops() <= s.count_ops():
ok = checksol(_eq, sym, ns)
if ok is None:
ok = _eq.subs(sym, ns).equals(0)
if ok:
sols[n] = ns
return sols
except NotImplementedError:
# maybe it's a convoluted function
if len(g) == 2:
try:
gpu = bivariate_type(lhs - rhs, *g)
if gpu is None:
raise NotImplementedError
g, p, u = gpu
flags['bivariate'] = False
inversion = _tsolve(g - u, sym, **flags)
if inversion:
sol = _solve(p, u, **flags)
return list(ordered({i.subs(u, s)
for i in inversion for s in sol}))
except NotImplementedError:
pass
else:
pass
if flags.pop('force', True):
flags['force'] = False
pos, reps = posify(lhs - rhs)
if rhs == S.ComplexInfinity:
return []
for u, s in reps.items():
if s == sym:
break
else:
u = sym
if pos.has(u):
try:
soln = _solve(pos, u, **flags)
return list(ordered([s.subs(reps) for s in soln]))
except NotImplementedError:
pass
else:
pass # here for coverage
return # here for coverage
# TODO: option for calculating J numerically
@conserve_mpmath_dps
def nsolve(*args, dict=False, **kwargs):
r"""
Solve a nonlinear equation system numerically: ``nsolve(f, [args,] x0,
modules=['mpmath'], **kwargs)``.
Explanation
===========
``f`` is a vector function of symbolic expressions representing the system.
*args* are the variables. If there is only one variable, this argument can
be omitted. ``x0`` is a starting vector close to a solution.
Use the modules keyword to specify which modules should be used to
evaluate the function and the Jacobian matrix. Make sure to use a module
that supports matrices. For more information on the syntax, please see the
docstring of ``lambdify``.
If the keyword arguments contain ``dict=True`` (default is False) ``nsolve``
will return a list (perhaps empty) of solution mappings. This might be
especially useful if you want to use ``nsolve`` as a fallback to solve since
using the dict argument for both methods produces return values of
consistent type structure. Please note: to keep this consistent with
``solve``, the solution will be returned in a list even though ``nsolve``
(currently at least) only finds one solution at a time.
Overdetermined systems are supported.
Examples
========
>>> from sympy import Symbol, nsolve
>>> import mpmath
>>> mpmath.mp.dps = 15
>>> x1 = Symbol('x1')
>>> x2 = Symbol('x2')
>>> f1 = 3 * x1**2 - 2 * x2**2 - 1
>>> f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
>>> print(nsolve((f1, f2), (x1, x2), (-1, 1)))
Matrix([[-1.19287309935246], [1.27844411169911]])
For one-dimensional functions the syntax is simplified:
>>> from sympy import sin, nsolve
>>> from sympy.abc import x
>>> nsolve(sin(x), x, 2)
3.14159265358979
>>> nsolve(sin(x), 2)
3.14159265358979
To solve with higher precision than the default, use the prec argument:
>>> from sympy import cos
>>> nsolve(cos(x) - x, 1)
0.739085133215161
>>> nsolve(cos(x) - x, 1, prec=50)
0.73908513321516064165531208767387340401341175890076
>>> cos(_)
0.73908513321516064165531208767387340401341175890076
To solve for complex roots of real functions, a nonreal initial point
must be specified:
>>> from sympy import I
>>> nsolve(x**2 + 2, I)
1.4142135623731*I
``mpmath.findroot`` is used and you can find their more extensive
documentation, especially concerning keyword parameters and
available solvers. Note, however, that functions which are very
steep near the root, the verification of the solution may fail. In
this case you should use the flag ``verify=False`` and
independently verify the solution.
>>> from sympy import cos, cosh
>>> f = cos(x)*cosh(x) - 1
>>> nsolve(f, 3.14*100)
Traceback (most recent call last):
...
ValueError: Could not find root within given tolerance. (1.39267e+230 > 2.1684e-19)
>>> ans = nsolve(f, 3.14*100, verify=False); ans
312.588469032184
>>> f.subs(x, ans).n(2)
2.1e+121
>>> (f/f.diff(x)).subs(x, ans).n(2)
7.4e-15
One might safely skip the verification if bounds of the root are known
and a bisection method is used:
>>> bounds = lambda i: (3.14*i, 3.14*(i + 1))
>>> nsolve(f, bounds(100), solver='bisect', verify=False)
315.730061685774
Alternatively, a function may be better behaved when the
denominator is ignored. Since this is not always the case, however,
the decision of what function to use is left to the discretion of
the user.
>>> eq = x**2/(1 - x)/(1 - 2*x)**2 - 100
>>> nsolve(eq, 0.46)
Traceback (most recent call last):
...
ValueError: Could not find root within given tolerance. (10000 > 2.1684e-19)
Try another starting point or tweak arguments.
>>> nsolve(eq.as_numer_denom()[0], 0.46)
0.46792545969349058
"""
# there are several other SymPy functions that use method= so
# guard against that here
if 'method' in kwargs:
raise ValueError(filldedent('''
Keyword "method" should not be used in this context. When using
some mpmath solvers directly, the keyword "method" is
used, but when using nsolve (and findroot) the keyword to use is
"solver".'''))
if 'prec' in kwargs:
prec = kwargs.pop('prec')
import mpmath
mpmath.mp.dps = prec
else:
prec = None
# keyword argument to return result as a dictionary
as_dict = dict
from builtins import dict # to unhide the builtin
# interpret arguments
if len(args) == 3:
f = args[0]
fargs = args[1]
x0 = args[2]
if iterable(fargs) and iterable(x0):
if len(x0) != len(fargs):
raise TypeError('nsolve expected exactly %i guess vectors, got %i'
% (len(fargs), len(x0)))
elif len(args) == 2:
f = args[0]
fargs = None
x0 = args[1]
if iterable(f):
raise TypeError('nsolve expected 3 arguments, got 2')
elif len(args) < 2:
raise TypeError('nsolve expected at least 2 arguments, got %i'
% len(args))
else:
raise TypeError('nsolve expected at most 3 arguments, got %i'
% len(args))
modules = kwargs.get('modules', ['mpmath'])
if iterable(f):
f = list(f)
for i, fi in enumerate(f):
if isinstance(fi, Equality):
f[i] = fi.lhs - fi.rhs
f = Matrix(f).T
if iterable(x0):
x0 = list(x0)
if not isinstance(f, Matrix):
# assume it's a sympy expression
if isinstance(f, Equality):
f = f.lhs - f.rhs
syms = f.free_symbols
if fargs is None:
fargs = syms.copy().pop()
if not (len(syms) == 1 and (fargs in syms or fargs[0] in syms)):
raise ValueError(filldedent('''
expected a one-dimensional and numerical function'''))
# the function is much better behaved if there is no denominator
# but sending the numerator is left to the user since sometimes
# the function is better behaved when the denominator is present
# e.g., issue 11768
f = lambdify(fargs, f, modules)
x = sympify(findroot(f, x0, **kwargs))
if as_dict:
return [{fargs: x}]
return x
if len(fargs) > f.cols:
raise NotImplementedError(filldedent('''
need at least as many equations as variables'''))
verbose = kwargs.get('verbose', False)
if verbose:
print('f(x):')
print(f)
# derive Jacobian
J = f.jacobian(fargs)
if verbose:
print('J(x):')
print(J)
# create functions
f = lambdify(fargs, f.T, modules)
J = lambdify(fargs, J, modules)
# solve the system numerically
x = findroot(f, x0, J=J, **kwargs)
if as_dict:
return [dict(zip(fargs, [sympify(xi) for xi in x]))]
return Matrix(x)
def _invert(eq, *symbols, **kwargs):
"""
Return tuple (i, d) where ``i`` is independent of *symbols* and ``d``
contains symbols.
Explanation
===========
``i`` and ``d`` are obtained after recursively using algebraic inversion
until an uninvertible ``d`` remains. If there are no free symbols then
``d`` will be zero. Some (but not necessarily all) solutions to the
expression ``i - d`` will be related to the solutions of the original
expression.
Examples
========
>>> from sympy.solvers.solvers import _invert as invert
>>> from sympy import sqrt, cos
>>> from sympy.abc import x, y
>>> invert(x - 3)
(3, x)
>>> invert(3)
(3, 0)
>>> invert(2*cos(x) - 1)
(1/2, cos(x))
>>> invert(sqrt(x) - 3)
(3, sqrt(x))
>>> invert(sqrt(x) + y, x)
(-y, sqrt(x))
>>> invert(sqrt(x) + y, y)
(-sqrt(x), y)
>>> invert(sqrt(x) + y, x, y)
(0, sqrt(x) + y)
If there is more than one symbol in a power's base and the exponent
is not an Integer, then the principal root will be used for the
inversion:
>>> invert(sqrt(x + y) - 2)
(4, x + y)
>>> invert(sqrt(x + y) - 2)
(4, x + y)
If the exponent is an Integer, setting ``integer_power`` to True
will force the principal root to be selected:
>>> invert(x**2 - 4, integer_power=True)
(2, x)
"""
eq = sympify(eq)
if eq.args:
# make sure we are working with flat eq
eq = eq.func(*eq.args)
free = eq.free_symbols
if not symbols:
symbols = free
if not free & set(symbols):
return eq, S.Zero
dointpow = bool(kwargs.get('integer_power', False))
lhs = eq
rhs = S.Zero
while True:
was = lhs
while True:
indep, dep = lhs.as_independent(*symbols)
# dep + indep == rhs
if lhs.is_Add:
# this indicates we have done it all
if indep.is_zero:
break
lhs = dep
rhs -= indep
# dep * indep == rhs
else:
# this indicates we have done it all
if indep is S.One:
break
lhs = dep
rhs /= indep
# collect like-terms in symbols
if lhs.is_Add:
terms = {}
for a in lhs.args:
i, d = a.as_independent(*symbols)
terms.setdefault(d, []).append(i)
if any(len(v) > 1 for v in terms.values()):
args = []
for d, i in terms.items():
if len(i) > 1:
args.append(Add(*i)*d)
else:
args.append(i[0]*d)
lhs = Add(*args)
# if it's a two-term Add with rhs = 0 and two powers we can get the
# dependent terms together, e.g. 3*f(x) + 2*g(x) -> f(x)/g(x) = -2/3
if lhs.is_Add and not rhs and len(lhs.args) == 2 and \
not lhs.is_polynomial(*symbols):
a, b = ordered(lhs.args)
ai, ad = a.as_independent(*symbols)
bi, bd = b.as_independent(*symbols)
if any(_ispow(i) for i in (ad, bd)):
a_base, a_exp = ad.as_base_exp()
b_base, b_exp = bd.as_base_exp()
if a_base == b_base:
# a = -b
lhs = powsimp(powdenest(ad/bd))
rhs = -bi/ai
else:
rat = ad/bd
_lhs = powsimp(ad/bd)
if _lhs != rat:
lhs = _lhs
rhs = -bi/ai
elif ai == -bi:
if isinstance(ad, Function) and ad.func == bd.func:
if len(ad.args) == len(bd.args) == 1:
lhs = ad.args[0] - bd.args[0]
elif len(ad.args) == len(bd.args):
# should be able to solve
# f(x, y) - f(2 - x, 0) == 0 -> x == 1
raise NotImplementedError(
'equal function with more than 1 argument')
else:
raise ValueError(
'function with different numbers of args')
elif lhs.is_Mul and any(_ispow(a) for a in lhs.args):
lhs = powsimp(powdenest(lhs))
if lhs.is_Function:
if hasattr(lhs, 'inverse') and lhs.inverse() is not None and len(lhs.args) == 1:
# -1
# f(x) = g -> x = f (g)
#
# /!\ inverse should not be defined if there are multiple values
# for the function -- these are handled in _tsolve
#
rhs = lhs.inverse()(rhs)
lhs = lhs.args[0]
elif isinstance(lhs, atan2):
y, x = lhs.args
lhs = 2*atan(y/(sqrt(x**2 + y**2) + x))
elif lhs.func == rhs.func:
if len(lhs.args) == len(rhs.args) == 1:
lhs = lhs.args[0]
rhs = rhs.args[0]
elif len(lhs.args) == len(rhs.args):
# should be able to solve
# f(x, y) == f(2, 3) -> x == 2
# f(x, x + y) == f(2, 3) -> x == 2
raise NotImplementedError(
'equal function with more than 1 argument')
else:
raise ValueError(
'function with different numbers of args')
if rhs and lhs.is_Pow and lhs.exp.is_Integer and lhs.exp < 0:
lhs = 1/lhs
rhs = 1/rhs
# base**a = b -> base = b**(1/a) if
# a is an Integer and dointpow=True (this gives real branch of root)
# a is not an Integer and the equation is multivariate and the
# base has more than 1 symbol in it
# The rationale for this is that right now the multi-system solvers
# doesn't try to resolve generators to see, for example, if the whole
# system is written in terms of sqrt(x + y) so it will just fail, so we
# do that step here.
if lhs.is_Pow and (
lhs.exp.is_Integer and dointpow or not lhs.exp.is_Integer and
len(symbols) > 1 and len(lhs.base.free_symbols & set(symbols)) > 1):
rhs = rhs**(1/lhs.exp)
lhs = lhs.base
if lhs == was:
break
return rhs, lhs
def unrad(eq, *syms, **flags):
"""
Remove radicals with symbolic arguments and return (eq, cov),
None, or raise an error.
Explanation
===========
None is returned if there are no radicals to remove.
NotImplementedError is raised if there are radicals and they cannot be
removed or if the relationship between the original symbols and the
change of variable needed to rewrite the system as a polynomial cannot
be solved.
Otherwise the tuple, ``(eq, cov)``, is returned where:
*eq*, ``cov``
*eq* is an equation without radicals (in the symbol(s) of
interest) whose solutions are a superset of the solutions to the
original expression. *eq* might be rewritten in terms of a new
variable; the relationship to the original variables is given by
``cov`` which is a list containing ``v`` and ``v**p - b`` where
``p`` is the power needed to clear the radical and ``b`` is the
radical now expressed as a polynomial in the symbols of interest.
For example, for sqrt(2 - x) the tuple would be
``(c, c**2 - 2 + x)``. The solutions of *eq* will contain
solutions to the original equation (if there are any).
*syms*
An iterable of symbols which, if provided, will limit the focus of
radical removal: only radicals with one or more of the symbols of
interest will be cleared. All free symbols are used if *syms* is not
set.
*flags* are used internally for communication during recursive calls.
Two options are also recognized:
``take``, when defined, is interpreted as a single-argument function
that returns True if a given Pow should be handled.
Radicals can be removed from an expression if:
* All bases of the radicals are the same; a change of variables is
done in this case.
* If all radicals appear in one term of the expression.
* There are only four terms with sqrt() factors or there are less than
four terms having sqrt() factors.
* There are only two terms with radicals.
Examples
========
>>> from sympy.solvers.solvers import unrad
>>> from sympy.abc import x
>>> from sympy import sqrt, Rational, root
>>> unrad(sqrt(x)*x**Rational(1, 3) + 2)
(x**5 - 64, [])
>>> unrad(sqrt(x) + root(x + 1, 3))
(-x**3 + x**2 + 2*x + 1, [])
>>> eq = sqrt(x) + root(x, 3) - 2
>>> unrad(eq)
(_p**3 + _p**2 - 2, [_p, _p**6 - x])
"""
from sympy import Equality as Eq
uflags = dict(check=False, simplify=False)
def _cov(p, e):
if cov:
# XXX - uncovered
oldp, olde = cov
if Poly(e, p).degree(p) in (1, 2):
cov[:] = [p, olde.subs(oldp, _solve(e, p, **uflags)[0])]
else:
raise NotImplementedError
else:
cov[:] = [p, e]
def _canonical(eq, cov):
if cov:
# change symbol to vanilla so no solutions are eliminated
p, e = cov
rep = {p: Dummy(p.name)}
eq = eq.xreplace(rep)
cov = [p.xreplace(rep), e.xreplace(rep)]
# remove constants and powers of factors since these don't change
# the location of the root; XXX should factor or factor_terms be used?
eq = factor_terms(_mexpand(eq.as_numer_denom()[0], recursive=True), clear=True)
if eq.is_Mul:
args = []
for f in eq.args:
if f.is_number:
continue
if f.is_Pow:
args.append(f.base)
else:
args.append(f)
eq = Mul(*args) # leave as Mul for more efficient solving
# make the sign canonical
margs = list(Mul.make_args(eq))
changed = False
for i, m in enumerate(margs):
if m.could_extract_minus_sign():
margs[i] = -m
changed = True
if changed:
eq = Mul(*margs, evaluate=False)
return eq, cov
def _Q(pow):
# return leading Rational of denominator of Pow's exponent
c = pow.as_base_exp()[1].as_coeff_Mul()[0]
if not c.is_Rational:
return S.One
return c.q
# define the _take method that will determine whether a term is of interest
def _take(d):
# return True if coefficient of any factor's exponent's den is not 1
for pow in Mul.make_args(d):
if not pow.is_Pow:
continue
if _Q(pow) == 1:
continue
if pow.free_symbols & syms:
return True
return False
_take = flags.setdefault('_take', _take)
if isinstance(eq, Eq):
eq = eq.lhs - eq.rhs # XXX legacy Eq as Eqn support
elif not isinstance(eq, Expr):
return
cov, nwas, rpt = [flags.setdefault(k, v) for k, v in
sorted(dict(cov=[], n=None, rpt=0).items())]
# preconditioning
eq = powdenest(factor_terms(eq, radical=True, clear=True))
eq = eq.as_numer_denom()[0]
eq = _mexpand(eq, recursive=True)
if eq.is_number:
return
# see if there are radicals in symbols of interest
syms = set(syms) or eq.free_symbols # _take uses this
poly = eq.as_poly()
gens = [g for g in poly.gens if _take(g)]
if not gens:
return
# recast poly in terms of eigen-gens
poly = eq.as_poly(*gens)
# - an exponent has a symbol of interest (don't handle)
if any(g.exp.has(*syms) for g in gens):
return
def _rads_bases_lcm(poly):
# if all the bases are the same or all the radicals are in one
# term, `lcm` will be the lcm of the denominators of the
# exponents of the radicals
lcm = 1
rads = set()
bases = set()
for g in poly.gens:
q = _Q(g)
if q != 1:
rads.add(g)
lcm = ilcm(lcm, q)
bases.add(g.base)
return rads, bases, lcm
rads, bases, lcm = _rads_bases_lcm(poly)
covsym = Dummy('p', nonnegative=True)
# only keep in syms symbols that actually appear in radicals;
# and update gens
newsyms = set()
for r in rads:
newsyms.update(syms & r.free_symbols)
if newsyms != syms:
syms = newsyms
# get terms together that have common generators
drad = dict(list(zip(rads, list(range(len(rads))))))
rterms = {(): []}
args = Add.make_args(poly.as_expr())
for t in args:
if _take(t):
common = set(t.as_poly().gens).intersection(rads)
key = tuple(sorted([drad[i] for i in common]))
else:
key = ()
rterms.setdefault(key, []).append(t)
others = Add(*rterms.pop(()))
rterms = [Add(*rterms[k]) for k in rterms.keys()]
# the output will depend on the order terms are processed, so
# make it canonical quickly
rterms = list(reversed(list(ordered(rterms))))
ok = False # we don't have a solution yet
depth = sqrt_depth(eq)
if len(rterms) == 1 and not (rterms[0].is_Add and lcm > 2):
eq = rterms[0]**lcm - ((-others)**lcm)
ok = True
else:
if len(rterms) == 1 and rterms[0].is_Add:
rterms = list(rterms[0].args)
if len(bases) == 1:
b = bases.pop()
if len(syms) > 1:
x = b.free_symbols
else:
x = syms
x = list(ordered(x))[0]
try:
inv = _solve(covsym**lcm - b, x, **uflags)
if not inv:
raise NotImplementedError
eq = poly.as_expr().subs(b, covsym**lcm).subs(x, inv[0])
_cov(covsym, covsym**lcm - b)
return _canonical(eq, cov)
except NotImplementedError:
pass
if len(rterms) == 2:
if not others:
eq = rterms[0]**lcm - (-rterms[1])**lcm
ok = True
elif not log(lcm, 2).is_Integer:
# the lcm-is-power-of-two case is handled below
r0, r1 = rterms
if flags.get('_reverse', False):
r1, r0 = r0, r1
i0 = _rads0, _bases0, lcm0 = _rads_bases_lcm(r0.as_poly())
i1 = _rads1, _bases1, lcm1 = _rads_bases_lcm(r1.as_poly())
for reverse in range(2):
if reverse:
i0, i1 = i1, i0
r0, r1 = r1, r0
_rads1, _, lcm1 = i1
_rads1 = Mul(*_rads1)
t1 = _rads1**lcm1
c = covsym**lcm1 - t1
for x in syms:
try:
sol = _solve(c, x, **uflags)
if not sol:
raise NotImplementedError
neweq = r0.subs(x, sol[0]) + covsym*r1/_rads1 + \
others
tmp = unrad(neweq, covsym)
if tmp:
eq, newcov = tmp
if newcov:
newp, newc = newcov
_cov(newp, c.subs(covsym,
_solve(newc, covsym, **uflags)[0]))
else:
_cov(covsym, c)
else:
eq = neweq
_cov(covsym, c)
ok = True
break
except NotImplementedError:
if reverse:
raise NotImplementedError(
'no successful change of variable found')
else:
pass
if ok:
break
elif len(rterms) == 3:
# two cube roots and another with order less than 5
# (so an analytical solution can be found) or a base
# that matches one of the cube root bases
info = [_rads_bases_lcm(i.as_poly()) for i in rterms]
RAD = 0
BASES = 1
LCM = 2
if info[0][LCM] != 3:
info.append(info.pop(0))
rterms.append(rterms.pop(0))
elif info[1][LCM] != 3:
info.append(info.pop(1))
rterms.append(rterms.pop(1))
if info[0][LCM] == info[1][LCM] == 3:
if info[1][BASES] != info[2][BASES]:
info[0], info[1] = info[1], info[0]
rterms[0], rterms[1] = rterms[1], rterms[0]
if info[1][BASES] == info[2][BASES]:
eq = rterms[0]**3 + (rterms[1] + rterms[2] + others)**3
ok = True
elif info[2][LCM] < 5:
# a*root(A, 3) + b*root(B, 3) + others = c
a, b, c, d, A, B = [Dummy(i) for i in 'abcdAB']
# zz represents the unraded expression into which the
# specifics for this case are substituted
zz = (c - d)*(A**3*a**9 + 3*A**2*B*a**6*b**3 -
3*A**2*a**6*c**3 + 9*A**2*a**6*c**2*d - 9*A**2*a**6*c*d**2 +
3*A**2*a**6*d**3 + 3*A*B**2*a**3*b**6 + 21*A*B*a**3*b**3*c**3 -
63*A*B*a**3*b**3*c**2*d + 63*A*B*a**3*b**3*c*d**2 -
21*A*B*a**3*b**3*d**3 + 3*A*a**3*c**6 - 18*A*a**3*c**5*d +
45*A*a**3*c**4*d**2 - 60*A*a**3*c**3*d**3 + 45*A*a**3*c**2*d**4 -
18*A*a**3*c*d**5 + 3*A*a**3*d**6 + B**3*b**9 - 3*B**2*b**6*c**3 +
9*B**2*b**6*c**2*d - 9*B**2*b**6*c*d**2 + 3*B**2*b**6*d**3 +
3*B*b**3*c**6 - 18*B*b**3*c**5*d + 45*B*b**3*c**4*d**2 -
60*B*b**3*c**3*d**3 + 45*B*b**3*c**2*d**4 - 18*B*b**3*c*d**5 +
3*B*b**3*d**6 - c**9 + 9*c**8*d - 36*c**7*d**2 + 84*c**6*d**3 -
126*c**5*d**4 + 126*c**4*d**5 - 84*c**3*d**6 + 36*c**2*d**7 -
9*c*d**8 + d**9)
def _t(i):
b = Mul(*info[i][RAD])
return cancel(rterms[i]/b), Mul(*info[i][BASES])
aa, AA = _t(0)
bb, BB = _t(1)
cc = -rterms[2]
dd = others
eq = zz.xreplace(dict(zip(
(a, A, b, B, c, d),
(aa, AA, bb, BB, cc, dd))))
ok = True
# handle power-of-2 cases
if not ok:
if log(lcm, 2).is_Integer and (not others and
len(rterms) == 4 or len(rterms) < 4):
def _norm2(a, b):
return a**2 + b**2 + 2*a*b
if len(rterms) == 4:
# (r0+r1)**2 - (r2+r3)**2
r0, r1, r2, r3 = rterms
eq = _norm2(r0, r1) - _norm2(r2, r3)
ok = True
elif len(rterms) == 3:
# (r1+r2)**2 - (r0+others)**2
r0, r1, r2 = rterms
eq = _norm2(r1, r2) - _norm2(r0, others)
ok = True
elif len(rterms) == 2:
# r0**2 - (r1+others)**2
r0, r1 = rterms
eq = r0**2 - _norm2(r1, others)
ok = True
new_depth = sqrt_depth(eq) if ok else depth
rpt += 1 # XXX how many repeats with others unchanging is enough?
if not ok or (
nwas is not None and len(rterms) == nwas and
new_depth is not None and new_depth == depth and
rpt > 3):
raise NotImplementedError('Cannot remove all radicals')
flags.update(dict(cov=cov, n=len(rterms), rpt=rpt))
neq = unrad(eq, *syms, **flags)
if neq:
eq, cov = neq
eq, cov = _canonical(eq, cov)
return eq, cov
from sympy.solvers.bivariate import (
bivariate_type, _solve_lambert, _filtered_gens)
|
87d9abef62f7db4c2d6d15e403b0b6e905a643778dcfa682ebdee01da76d6c17 | """
Singularities
=============
This module implements algorithms for finding singularities for a function
and identifying types of functions.
The differential calculus methods in this module include methods to identify
the following function types in the given ``Interval``:
- Increasing
- Strictly Increasing
- Decreasing
- Strictly Decreasing
- Monotonic
"""
from sympy import S, Symbol
from sympy.core.sympify import sympify
from sympy.solvers.solveset import solveset
from sympy.utilities.misc import filldedent
def singularities(expression, symbol, domain=None):
"""
Find singularities of a given function.
Parameters
==========
expression : Expr
The target function in which singularities need to be found.
symbol : Symbol
The symbol over the values of which the singularity in
expression in being searched for.
Returns
=======
Set
A set of values for ``symbol`` for which ``expression`` has a
singularity. An ``EmptySet`` is returned if ``expression`` has no
singularities for any given value of ``Symbol``.
Raises
======
NotImplementedError
Methods for determining the singularities of this function have
not been developed.
Notes
=====
This function does not find non-isolated singularities
nor does it find branch points of the expression.
Currently supported functions are:
- univariate continuous (real or complex) functions
References
==========
.. [1] https://en.wikipedia.org/wiki/Mathematical_singularity
Examples
========
>>> from sympy.calculus.singularities import singularities
>>> from sympy import Symbol, log
>>> x = Symbol('x', real=True)
>>> y = Symbol('y', real=False)
>>> singularities(x**2 + x + 1, x)
EmptySet
>>> singularities(1/(x + 1), x)
{-1}
>>> singularities(1/(y**2 + 1), y)
{-I, I}
>>> singularities(1/(y**3 + 1), y)
{-1, 1/2 - sqrt(3)*I/2, 1/2 + sqrt(3)*I/2}
>>> singularities(log(x), x)
{0}
"""
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.trigonometric import sec, csc, cot, tan, cos
from sympy.core.power import Pow
if domain is None:
domain = S.Reals if symbol.is_real else S.Complexes
try:
sings = S.EmptySet
for i in expression.rewrite([sec, csc, cot, tan], cos).atoms(Pow):
if i.exp.is_infinite:
raise NotImplementedError
if i.exp.is_negative:
sings += solveset(i.base, symbol, domain)
for i in expression.atoms(log):
sings += solveset(i.args[0], symbol, domain)
return sings
except NotImplementedError:
raise NotImplementedError(filldedent('''
Methods for determining the singularities
of this function have not been developed.'''))
###########################################################################
# DIFFERENTIAL CALCULUS METHODS #
###########################################################################
def monotonicity_helper(expression, predicate, interval=S.Reals, symbol=None):
"""
Helper function for functions checking function monotonicity.
Parameters
==========
expression : Expr
The target function which is being checked
predicate : function
The property being tested for. The function takes in an integer
and returns a boolean. The integer input is the derivative and
the boolean result should be true if the property is being held,
and false otherwise.
interval : Set, optional
The range of values in which we are testing, defaults to all reals.
symbol : Symbol, optional
The symbol present in expression which gets varied over the given range.
It returns a boolean indicating whether the interval in which
the function's derivative satisfies given predicate is a superset
of the given interval.
Returns
=======
Boolean
True if ``predicate`` is true for all the derivatives when ``symbol``
is varied in ``range``, False otherwise.
"""
expression = sympify(expression)
free = expression.free_symbols
if symbol is None:
if len(free) > 1:
raise NotImplementedError(
'The function has not yet been implemented'
' for all multivariate expressions.'
)
variable = symbol or (free.pop() if free else Symbol('x'))
derivative = expression.diff(variable)
predicate_interval = solveset(predicate(derivative), variable, S.Reals)
return interval.is_subset(predicate_interval)
def is_increasing(expression, interval=S.Reals, symbol=None):
"""
Return whether the function is increasing in the given interval.
Parameters
==========
expression : Expr
The target function which is being checked.
interval : Set, optional
The range of values in which we are testing (defaults to set of
all real numbers).
symbol : Symbol, optional
The symbol present in expression which gets varied over the given range.
Returns
=======
Boolean
True if ``expression`` is increasing (either strictly increasing or
constant) in the given ``interval``, False otherwise.
Examples
========
>>> from sympy import is_increasing
>>> from sympy.abc import x, y
>>> from sympy import S, Interval, oo
>>> is_increasing(x**3 - 3*x**2 + 4*x, S.Reals)
True
>>> is_increasing(-x**2, Interval(-oo, 0))
True
>>> is_increasing(-x**2, Interval(0, oo))
False
>>> is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3))
False
>>> is_increasing(x**2 + y, Interval(1, 2), x)
True
"""
return monotonicity_helper(expression, lambda x: x >= 0, interval, symbol)
def is_strictly_increasing(expression, interval=S.Reals, symbol=None):
"""
Return whether the function is strictly increasing in the given interval.
Parameters
==========
expression : Expr
The target function which is being checked.
interval : Set, optional
The range of values in which we are testing (defaults to set of
all real numbers).
symbol : Symbol, optional
The symbol present in expression which gets varied over the given range.
Returns
=======
Boolean
True if ``expression`` is strictly increasing in the given ``interval``,
False otherwise.
Examples
========
>>> from sympy import is_strictly_increasing
>>> from sympy.abc import x, y
>>> from sympy import Interval, oo
>>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2))
True
>>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo))
True
>>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3))
False
>>> is_strictly_increasing(-x**2, Interval(0, oo))
False
>>> is_strictly_increasing(-x**2 + y, Interval(-oo, 0), x)
False
"""
return monotonicity_helper(expression, lambda x: x > 0, interval, symbol)
def is_decreasing(expression, interval=S.Reals, symbol=None):
"""
Return whether the function is decreasing in the given interval.
Parameters
==========
expression : Expr
The target function which is being checked.
interval : Set, optional
The range of values in which we are testing (defaults to set of
all real numbers).
symbol : Symbol, optional
The symbol present in expression which gets varied over the given range.
Returns
=======
Boolean
True if ``expression`` is decreasing (either strictly decreasing or
constant) in the given ``interval``, False otherwise.
Examples
========
>>> from sympy import is_decreasing
>>> from sympy.abc import x, y
>>> from sympy import S, Interval, oo
>>> is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
True
>>> is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
True
>>> is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
False
>>> is_decreasing(-x**2, Interval(-oo, 0))
False
>>> is_decreasing(-x**2 + y, Interval(-oo, 0), x)
False
"""
return monotonicity_helper(expression, lambda x: x <= 0, interval, symbol)
def is_strictly_decreasing(expression, interval=S.Reals, symbol=None):
"""
Return whether the function is strictly decreasing in the given interval.
Parameters
==========
expression : Expr
The target function which is being checked.
interval : Set, optional
The range of values in which we are testing (defaults to set of
all real numbers).
symbol : Symbol, optional
The symbol present in expression which gets varied over the given range.
Returns
=======
Boolean
True if ``expression`` is strictly decreasing in the given ``interval``,
False otherwise.
Examples
========
>>> from sympy import is_strictly_decreasing
>>> from sympy.abc import x, y
>>> from sympy import S, Interval, oo
>>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
True
>>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
False
>>> is_strictly_decreasing(-x**2, Interval(-oo, 0))
False
>>> is_strictly_decreasing(-x**2 + y, Interval(-oo, 0), x)
False
"""
return monotonicity_helper(expression, lambda x: x < 0, interval, symbol)
def is_monotonic(expression, interval=S.Reals, symbol=None):
"""
Return whether the function is monotonic in the given interval.
Parameters
==========
expression : Expr
The target function which is being checked.
interval : Set, optional
The range of values in which we are testing (defaults to set of
all real numbers).
symbol : Symbol, optional
The symbol present in expression which gets varied over the given range.
Returns
=======
Boolean
True if ``expression`` is monotonic in the given ``interval``,
False otherwise.
Raises
======
NotImplementedError
Monotonicity check has not been implemented for the queried function.
Examples
========
>>> from sympy import is_monotonic
>>> from sympy.abc import x, y
>>> from sympy import S, Interval, oo
>>> is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3))
True
>>> is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo))
True
>>> is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals)
True
>>> is_monotonic(-x**2, S.Reals)
False
>>> is_monotonic(x**2 + y + 1, Interval(1, 2), x)
True
"""
expression = sympify(expression)
free = expression.free_symbols
if symbol is None and len(free) > 1:
raise NotImplementedError(
'is_monotonic has not yet been implemented'
' for all multivariate expressions.'
)
variable = symbol or (free.pop() if free else Symbol('x'))
turning_points = solveset(expression.diff(variable), variable, interval)
return interval.intersection(turning_points) is S.EmptySet
|
e160007c63cc7057361cf7286d5eed7c933c1c8c58ee1e41b8494279f778d5dc | from sympy import Order, S, log, limit, lcm_list, im, re, Dummy, Piecewise
from sympy.core import Add, Mul, Pow
from sympy.core.basic import Basic
from sympy.core.compatibility import iterable
from sympy.core.expr import AtomicExpr, Expr
from sympy.core.function import expand_mul
from sympy.core.numbers import _sympifyit, oo, zoo
from sympy.core.relational import is_le, is_lt, is_ge, is_gt
from sympy.core.sympify import _sympify
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.logic.boolalg import And
from sympy.sets.sets import (Interval, Intersection, FiniteSet, Union,
Complement, EmptySet)
from sympy.sets.fancysets import ImageSet
from sympy.solvers.inequalities import solve_univariate_inequality
from sympy.utilities import filldedent
from sympy.multipledispatch import dispatch
def continuous_domain(f, symbol, domain):
"""
Returns the intervals in the given domain for which the function
is continuous.
This method is limited by the ability to determine the various
singularities and discontinuities of the given function.
Parameters
==========
f : Expr
The concerned function.
symbol : Symbol
The variable for which the intervals are to be determined.
domain : Interval
The domain over which the continuity of the symbol has to be checked.
Examples
========
>>> from sympy import Symbol, S, tan, log, pi, sqrt
>>> from sympy.sets import Interval
>>> from sympy.calculus.util import continuous_domain
>>> x = Symbol('x')
>>> continuous_domain(1/x, x, S.Reals)
Union(Interval.open(-oo, 0), Interval.open(0, oo))
>>> continuous_domain(tan(x), x, Interval(0, pi))
Union(Interval.Ropen(0, pi/2), Interval.Lopen(pi/2, pi))
>>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5))
Interval(2, 5)
>>> continuous_domain(log(2*x - 1), x, S.Reals)
Interval.open(1/2, oo)
Returns
=======
Interval
Union of all intervals where the function is continuous.
Raises
======
NotImplementedError
If the method to determine continuity of such a function
has not yet been developed.
"""
from sympy.solvers.inequalities import solve_univariate_inequality
from sympy.calculus.singularities import singularities
if domain.is_subset(S.Reals):
constrained_interval = domain
for atom in f.atoms(Pow):
den = atom.exp.as_numer_denom()[1]
if den.is_even and den.is_nonzero:
constraint = solve_univariate_inequality(atom.base >= 0,
symbol).as_set()
constrained_interval = Intersection(constraint,
constrained_interval)
for atom in f.atoms(log):
constraint = solve_univariate_inequality(atom.args[0] > 0,
symbol).as_set()
constrained_interval = Intersection(constraint,
constrained_interval)
return constrained_interval - singularities(f, symbol, domain)
def function_range(f, symbol, domain):
"""
Finds the range of a function in a given domain.
This method is limited by the ability to determine the singularities and
determine limits.
Parameters
==========
f : Expr
The concerned function.
symbol : Symbol
The variable for which the range of function is to be determined.
domain : Interval
The domain under which the range of the function has to be found.
Examples
========
>>> from sympy import Symbol, S, exp, log, pi, sqrt, sin, tan
>>> from sympy.sets import Interval
>>> from sympy.calculus.util import function_range
>>> x = Symbol('x')
>>> function_range(sin(x), x, Interval(0, 2*pi))
Interval(-1, 1)
>>> function_range(tan(x), x, Interval(-pi/2, pi/2))
Interval(-oo, oo)
>>> function_range(1/x, x, S.Reals)
Union(Interval.open(-oo, 0), Interval.open(0, oo))
>>> function_range(exp(x), x, S.Reals)
Interval.open(0, oo)
>>> function_range(log(x), x, S.Reals)
Interval(-oo, oo)
>>> function_range(sqrt(x), x , Interval(-5, 9))
Interval(0, 3)
Returns
=======
Interval
Union of all ranges for all intervals under domain where function is
continuous.
Raises
======
NotImplementedError
If any of the intervals, in the given domain, for which function
is continuous are not finite or real,
OR if the critical points of the function on the domain can't be found.
"""
from sympy.solvers.solveset import solveset
if isinstance(domain, EmptySet):
return S.EmptySet
period = periodicity(f, symbol)
if period == S.Zero:
# the expression is constant wrt symbol
return FiniteSet(f.expand())
if period is not None:
if isinstance(domain, Interval):
if (domain.inf - domain.sup).is_infinite:
domain = Interval(0, period)
elif isinstance(domain, Union):
for sub_dom in domain.args:
if isinstance(sub_dom, Interval) and \
((sub_dom.inf - sub_dom.sup).is_infinite):
domain = Interval(0, period)
intervals = continuous_domain(f, symbol, domain)
range_int = S.EmptySet
if isinstance(intervals,(Interval, FiniteSet)):
interval_iter = (intervals,)
elif isinstance(intervals, Union):
interval_iter = intervals.args
else:
raise NotImplementedError(filldedent('''
Unable to find range for the given domain.
'''))
for interval in interval_iter:
if isinstance(interval, FiniteSet):
for singleton in interval:
if singleton in domain:
range_int += FiniteSet(f.subs(symbol, singleton))
elif isinstance(interval, Interval):
vals = S.EmptySet
critical_points = S.EmptySet
critical_values = S.EmptySet
bounds = ((interval.left_open, interval.inf, '+'),
(interval.right_open, interval.sup, '-'))
for is_open, limit_point, direction in bounds:
if is_open:
critical_values += FiniteSet(limit(f, symbol, limit_point, direction))
vals += critical_values
else:
vals += FiniteSet(f.subs(symbol, limit_point))
solution = solveset(f.diff(symbol), symbol, interval)
if not iterable(solution):
raise NotImplementedError(
'Unable to find critical points for {}'.format(f))
if isinstance(solution, ImageSet):
raise NotImplementedError(
'Infinite number of critical points for {}'.format(f))
critical_points += solution
for critical_point in critical_points:
vals += FiniteSet(f.subs(symbol, critical_point))
left_open, right_open = False, False
if critical_values is not S.EmptySet:
if critical_values.inf == vals.inf:
left_open = True
if critical_values.sup == vals.sup:
right_open = True
range_int += Interval(vals.inf, vals.sup, left_open, right_open)
else:
raise NotImplementedError(filldedent('''
Unable to find range for the given domain.
'''))
return range_int
def not_empty_in(finset_intersection, *syms):
"""
Finds the domain of the functions in `finite_set` in which the
`finite_set` is not-empty
Parameters
==========
finset_intersection : The unevaluated intersection of FiniteSet containing
real-valued functions with Union of Sets
syms : Tuple of symbols
Symbol for which domain is to be found
Raises
======
NotImplementedError
The algorithms to find the non-emptiness of the given FiniteSet are
not yet implemented.
ValueError
The input is not valid.
RuntimeError
It is a bug, please report it to the github issue tracker
(https://github.com/sympy/sympy/issues).
Examples
========
>>> from sympy import FiniteSet, Interval, not_empty_in, oo
>>> from sympy.abc import x
>>> not_empty_in(FiniteSet(x/2).intersect(Interval(0, 1)), x)
Interval(0, 2)
>>> not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x)
Union(Interval(1, 2), Interval(-sqrt(2), -1))
>>> not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x)
Union(Interval.Lopen(-2, -1), Interval(2, oo))
"""
# TODO: handle piecewise defined functions
# TODO: handle transcendental functions
# TODO: handle multivariate functions
if len(syms) == 0:
raise ValueError("One or more symbols must be given in syms.")
if finset_intersection is S.EmptySet:
return S.EmptySet
if isinstance(finset_intersection, Union):
elm_in_sets = finset_intersection.args[0]
return Union(not_empty_in(finset_intersection.args[1], *syms),
elm_in_sets)
if isinstance(finset_intersection, FiniteSet):
finite_set = finset_intersection
_sets = S.Reals
else:
finite_set = finset_intersection.args[1]
_sets = finset_intersection.args[0]
if not isinstance(finite_set, FiniteSet):
raise ValueError('A FiniteSet must be given, not %s: %s' %
(type(finite_set), finite_set))
if len(syms) == 1:
symb = syms[0]
else:
raise NotImplementedError('more than one variables %s not handled' %
(syms,))
def elm_domain(expr, intrvl):
""" Finds the domain of an expression in any given interval """
from sympy.solvers.solveset import solveset
_start = intrvl.start
_end = intrvl.end
_singularities = solveset(expr.as_numer_denom()[1], symb,
domain=S.Reals)
if intrvl.right_open:
if _end is S.Infinity:
_domain1 = S.Reals
else:
_domain1 = solveset(expr < _end, symb, domain=S.Reals)
else:
_domain1 = solveset(expr <= _end, symb, domain=S.Reals)
if intrvl.left_open:
if _start is S.NegativeInfinity:
_domain2 = S.Reals
else:
_domain2 = solveset(expr > _start, symb, domain=S.Reals)
else:
_domain2 = solveset(expr >= _start, symb, domain=S.Reals)
# domain in the interval
expr_with_sing = Intersection(_domain1, _domain2)
expr_domain = Complement(expr_with_sing, _singularities)
return expr_domain
if isinstance(_sets, Interval):
return Union(*[elm_domain(element, _sets) for element in finite_set])
if isinstance(_sets, Union):
_domain = S.EmptySet
for intrvl in _sets.args:
_domain_element = Union(*[elm_domain(element, intrvl)
for element in finite_set])
_domain = Union(_domain, _domain_element)
return _domain
def periodicity(f, symbol, check=False):
"""
Tests the given function for periodicity in the given symbol.
Parameters
==========
f : Expr.
The concerned function.
symbol : Symbol
The variable for which the period is to be determined.
check : Boolean, optional
The flag to verify whether the value being returned is a period or not.
Returns
=======
period
The period of the function is returned.
`None` is returned when the function is aperiodic or has a complex period.
The value of `0` is returned as the period of a constant function.
Raises
======
NotImplementedError
The value of the period computed cannot be verified.
Notes
=====
Currently, we do not support functions with a complex period.
The period of functions having complex periodic values such
as `exp`, `sinh` is evaluated to `None`.
The value returned might not be the "fundamental" period of the given
function i.e. it may not be the smallest periodic value of the function.
The verification of the period through the `check` flag is not reliable
due to internal simplification of the given expression. Hence, it is set
to `False` by default.
Examples
========
>>> from sympy import Symbol, sin, cos, tan, exp
>>> from sympy.calculus.util import periodicity
>>> x = Symbol('x')
>>> f = sin(x) + sin(2*x) + sin(3*x)
>>> periodicity(f, x)
2*pi
>>> periodicity(sin(x)*cos(x), x)
pi
>>> periodicity(exp(tan(2*x) - 1), x)
pi/2
>>> periodicity(sin(4*x)**cos(2*x), x)
pi
>>> periodicity(exp(x), x)
"""
from sympy.core.mod import Mod
from sympy.core.relational import Relational
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.trigonometric import (
TrigonometricFunction, sin, cos, csc, sec)
from sympy.simplify.simplify import simplify
from sympy.solvers.decompogen import decompogen
from sympy.polys.polytools import degree
temp = Dummy('x', real=True)
f = f.subs(symbol, temp)
symbol = temp
def _check(orig_f, period):
'''Return the checked period or raise an error.'''
new_f = orig_f.subs(symbol, symbol + period)
if new_f.equals(orig_f):
return period
else:
raise NotImplementedError(filldedent('''
The period of the given function cannot be verified.
When `%s` was replaced with `%s + %s` in `%s`, the result
was `%s` which was not recognized as being the same as
the original function.
So either the period was wrong or the two forms were
not recognized as being equal.
Set check=False to obtain the value.''' %
(symbol, symbol, period, orig_f, new_f)))
orig_f = f
period = None
if isinstance(f, Relational):
f = f.lhs - f.rhs
f = simplify(f)
if symbol not in f.free_symbols:
return S.Zero
if isinstance(f, TrigonometricFunction):
try:
period = f.period(symbol)
except NotImplementedError:
pass
if isinstance(f, Abs):
arg = f.args[0]
if isinstance(arg, (sec, csc, cos)):
# all but tan and cot might have a
# a period that is half as large
# so recast as sin
arg = sin(arg.args[0])
period = periodicity(arg, symbol)
if period is not None and isinstance(arg, sin):
# the argument of Abs was a trigonometric other than
# cot or tan; test to see if the half-period
# is valid. Abs(arg) has behaviour equivalent to
# orig_f, so use that for test:
orig_f = Abs(arg)
try:
return _check(orig_f, period/2)
except NotImplementedError as err:
if check:
raise NotImplementedError(err)
# else let new orig_f and period be
# checked below
if isinstance(f, exp) or (f.is_Pow and f.base == S.Exp1):
f = Pow(S.Exp1, expand_mul(f.exp))
if im(f) != 0:
period_real = periodicity(re(f), symbol)
period_imag = periodicity(im(f), symbol)
if period_real is not None and period_imag is not None:
period = lcim([period_real, period_imag])
if f.is_Pow and f.base != S.Exp1:
base, expo = f.args
base_has_sym = base.has(symbol)
expo_has_sym = expo.has(symbol)
if base_has_sym and not expo_has_sym:
period = periodicity(base, symbol)
elif expo_has_sym and not base_has_sym:
period = periodicity(expo, symbol)
else:
period = _periodicity(f.args, symbol)
elif f.is_Mul:
coeff, g = f.as_independent(symbol, as_Add=False)
if isinstance(g, TrigonometricFunction) or coeff is not S.One:
period = periodicity(g, symbol)
else:
period = _periodicity(g.args, symbol)
elif f.is_Add:
k, g = f.as_independent(symbol)
if k is not S.Zero:
return periodicity(g, symbol)
period = _periodicity(g.args, symbol)
elif isinstance(f, Mod):
a, n = f.args
if a == symbol:
period = n
elif isinstance(a, TrigonometricFunction):
period = periodicity(a, symbol)
#check if 'f' is linear in 'symbol'
elif (a.is_polynomial(symbol) and degree(a, symbol) == 1 and
symbol not in n.free_symbols):
period = Abs(n / a.diff(symbol))
elif isinstance(f, Piecewise):
pass # not handling Piecewise yet as the return type is not favorable
elif period is None:
from sympy.solvers.decompogen import compogen
g_s = decompogen(f, symbol)
num_of_gs = len(g_s)
if num_of_gs > 1:
for index, g in enumerate(reversed(g_s)):
start_index = num_of_gs - 1 - index
g = compogen(g_s[start_index:], symbol)
if g != orig_f and g != f: # Fix for issue 12620
period = periodicity(g, symbol)
if period is not None:
break
if period is not None:
if check:
return _check(orig_f, period)
return period
return None
def _periodicity(args, symbol):
"""
Helper for `periodicity` to find the period of a list of simpler
functions.
It uses the `lcim` method to find the least common period of
all the functions.
Parameters
==========
args : Tuple of Symbol
All the symbols present in a function.
symbol : Symbol
The symbol over which the function is to be evaluated.
Returns
=======
period
The least common period of the function for all the symbols
of the function.
None if for at least one of the symbols the function is aperiodic
"""
periods = []
for f in args:
period = periodicity(f, symbol)
if period is None:
return None
if period is not S.Zero:
periods.append(period)
if len(periods) > 1:
return lcim(periods)
if periods:
return periods[0]
def lcim(numbers):
"""Returns the least common integral multiple of a list of numbers.
The numbers can be rational or irrational or a mixture of both.
`None` is returned for incommensurable numbers.
Parameters
==========
numbers : list
Numbers (rational and/or irrational) for which lcim is to be found.
Returns
=======
number
lcim if it exists, otherwise `None` for incommensurable numbers.
Examples
========
>>> from sympy import S, pi
>>> from sympy.calculus.util import lcim
>>> lcim([S(1)/2, S(3)/4, S(5)/6])
15/2
>>> lcim([2*pi, 3*pi, pi, pi/2])
6*pi
>>> lcim([S(1), 2*pi])
"""
result = None
if all(num.is_irrational for num in numbers):
factorized_nums = list(map(lambda num: num.factor(), numbers))
factors_num = list(
map(lambda num: num.as_coeff_Mul(),
factorized_nums))
term = factors_num[0][1]
if all(factor == term for coeff, factor in factors_num):
common_term = term
coeffs = [coeff for coeff, factor in factors_num]
result = lcm_list(coeffs) * common_term
elif all(num.is_rational for num in numbers):
result = lcm_list(numbers)
else:
pass
return result
def is_convex(f, *syms, domain=S.Reals):
"""Determines the convexity of the function passed in the argument.
Parameters
==========
f : Expr
The concerned function.
syms : Tuple of symbols
The variables with respect to which the convexity is to be determined.
domain : Interval, optional
The domain over which the convexity of the function has to be checked.
If unspecified, S.Reals will be the default domain.
Returns
=======
Boolean
The method returns `True` if the function is convex otherwise it
returns `False`.
Raises
======
NotImplementedError
The check for the convexity of multivariate functions is not implemented yet.
Notes
=====
To determine concavity of a function pass `-f` as the concerned function.
To determine logarithmic convexity of a function pass log(f) as
concerned function.
To determine logartihmic concavity of a function pass -log(f) as
concerned function.
Currently, convexity check of multivariate functions is not handled.
Examples
========
>>> from sympy import symbols, exp, oo, Interval
>>> from sympy.calculus.util import is_convex
>>> x = symbols('x')
>>> is_convex(exp(x), x)
True
>>> is_convex(x**3, x, domain = Interval(-1, oo))
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Convex_function
.. [2] http://www.ifp.illinois.edu/~angelia/L3_convfunc.pdf
.. [3] https://en.wikipedia.org/wiki/Logarithmically_convex_function
.. [4] https://en.wikipedia.org/wiki/Logarithmically_concave_function
.. [5] https://en.wikipedia.org/wiki/Concave_function
"""
if len(syms) > 1:
raise NotImplementedError(
"The check for the convexity of multivariate functions is not implemented yet.")
f = _sympify(f)
var = syms[0]
condition = f.diff(var, 2) < 0
if solve_univariate_inequality(condition, var, False, domain):
return False
return True
def stationary_points(f, symbol, domain=S.Reals):
"""
Returns the stationary points of a function (where derivative of the
function is 0) in the given domain.
Parameters
==========
f : Expr
The concerned function.
symbol : Symbol
The variable for which the stationary points are to be determined.
domain : Interval
The domain over which the stationary points have to be checked.
If unspecified, S.Reals will be the default domain.
Returns
=======
Set
A set of stationary points for the function. If there are no
stationary point, an EmptySet is returned.
Examples
========
>>> from sympy import Symbol, S, sin, pi, pprint, stationary_points
>>> from sympy.sets import Interval
>>> x = Symbol('x')
>>> stationary_points(1/x, x, S.Reals)
EmptySet
>>> pprint(stationary_points(sin(x), x), use_unicode=False)
pi 3*pi
{2*n*pi + -- | n in Integers} U {2*n*pi + ---- | n in Integers}
2 2
>>> stationary_points(sin(x),x, Interval(0, 4*pi))
{pi/2, 3*pi/2, 5*pi/2, 7*pi/2}
"""
from sympy import solveset, diff
if isinstance(domain, EmptySet):
return S.EmptySet
domain = continuous_domain(f, symbol, domain)
set = solveset(diff(f, symbol), symbol, domain)
return set
def maximum(f, symbol, domain=S.Reals):
"""
Returns the maximum value of a function in the given domain.
Parameters
==========
f : Expr
The concerned function.
symbol : Symbol
The variable for maximum value needs to be determined.
domain : Interval
The domain over which the maximum have to be checked.
If unspecified, then Global maximum is returned.
Returns
=======
number
Maximum value of the function in given domain.
Examples
========
>>> from sympy import Symbol, S, sin, cos, pi, maximum
>>> from sympy.sets import Interval
>>> x = Symbol('x')
>>> f = -x**2 + 2*x + 5
>>> maximum(f, x, S.Reals)
6
>>> maximum(sin(x), x, Interval(-pi, pi/4))
sqrt(2)/2
>>> maximum(sin(x)*cos(x), x)
1/2
"""
from sympy import Symbol
if isinstance(symbol, Symbol):
if isinstance(domain, EmptySet):
raise ValueError("Maximum value not defined for empty domain.")
return function_range(f, symbol, domain).sup
else:
raise ValueError("%s is not a valid symbol." % symbol)
def minimum(f, symbol, domain=S.Reals):
"""
Returns the minimum value of a function in the given domain.
Parameters
==========
f : Expr
The concerned function.
symbol : Symbol
The variable for minimum value needs to be determined.
domain : Interval
The domain over which the minimum have to be checked.
If unspecified, then Global minimum is returned.
Returns
=======
number
Minimum value of the function in the given domain.
Examples
========
>>> from sympy import Symbol, S, sin, cos, minimum
>>> from sympy.sets import Interval
>>> x = Symbol('x')
>>> f = x**2 + 2*x + 5
>>> minimum(f, x, S.Reals)
4
>>> minimum(sin(x), x, Interval(2, 3))
sin(3)
>>> minimum(sin(x)*cos(x), x)
-1/2
"""
from sympy import Symbol
if isinstance(symbol, Symbol):
if isinstance(domain, EmptySet):
raise ValueError("Minimum value not defined for empty domain.")
return function_range(f, symbol, domain).inf
else:
raise ValueError("%s is not a valid symbol." % symbol)
class AccumulationBounds(AtomicExpr):
r"""
# Note AccumulationBounds has an alias: AccumBounds
AccumulationBounds represent an interval `[a, b]`, which is always closed
at the ends. Here `a` and `b` can be any value from extended real numbers.
The intended meaning of AccummulationBounds is to give an approximate
location of the accumulation points of a real function at a limit point.
Let `a` and `b` be reals such that a <= b.
`\left\langle a, b\right\rangle = \{x \in \mathbb{R} \mid a \le x \le b\}`
`\left\langle -\infty, b\right\rangle = \{x \in \mathbb{R} \mid x \le b\} \cup \{-\infty, \infty\}`
`\left\langle a, \infty \right\rangle = \{x \in \mathbb{R} \mid a \le x\} \cup \{-\infty, \infty\}`
`\left\langle -\infty, \infty \right\rangle = \mathbb{R} \cup \{-\infty, \infty\}`
`oo` and `-oo` are added to the second and third definition respectively,
since if either `-oo` or `oo` is an argument, then the other one should
be included (though not as an end point). This is forced, since we have,
for example, `1/AccumBounds(0, 1) = AccumBounds(1, oo)`, and the limit at
`0` is not one-sided. As x tends to `0-`, then `1/x -> -oo`, so `-oo`
should be interpreted as belonging to `AccumBounds(1, oo)` though it need
not appear explicitly.
In many cases it suffices to know that the limit set is bounded.
However, in some other cases more exact information could be useful.
For example, all accumulation values of cos(x) + 1 are non-negative.
(AccumBounds(-1, 1) + 1 = AccumBounds(0, 2))
A AccumulationBounds object is defined to be real AccumulationBounds,
if its end points are finite reals.
Let `X`, `Y` be real AccumulationBounds, then their sum, difference,
product are defined to be the following sets:
`X + Y = \{ x+y \mid x \in X \cap y \in Y\}`
`X - Y = \{ x-y \mid x \in X \cap y \in Y\}`
`X * Y = \{ x*y \mid x \in X \cap y \in Y\}`
When an AccumBounds is raised to a negative power, if 0 is contained
between the bounds then an infinite range is returned, otherwise if an
endpoint is 0 then a semi-infinite range with consistent sign will be returned.
AccumBounds in expressions behave a lot like Intervals but the
semantics are not necessarily the same. Division (or exponentiation
to a negative integer power) could be handled with *intervals* by
returning a union of the results obtained after splitting the
bounds between negatives and positives, but that is not done with
AccumBounds. In addition, bounds are assumed to be independent of
each other; if the same bound is used in more than one place in an
expression, the result may not be the supremum or infimum of the
expression (see below). Finally, when a boundary is ``1``,
exponentiation to the power of ``oo`` yields ``oo``, neither
``1`` nor ``nan``.
Examples
========
>>> from sympy import AccumBounds, sin, exp, log, pi, E, S, oo
>>> from sympy.abc import x
>>> AccumBounds(0, 1) + AccumBounds(1, 2)
AccumBounds(1, 3)
>>> AccumBounds(0, 1) - AccumBounds(0, 2)
AccumBounds(-2, 1)
>>> AccumBounds(-2, 3)*AccumBounds(-1, 1)
AccumBounds(-3, 3)
>>> AccumBounds(1, 2)*AccumBounds(3, 5)
AccumBounds(3, 10)
The exponentiation of AccumulationBounds is defined
as follows:
If 0 does not belong to `X` or `n > 0` then
`X^n = \{ x^n \mid x \in X\}`
>>> AccumBounds(1, 4)**(S(1)/2)
AccumBounds(1, 2)
otherwise, an infinite or semi-infinite result is obtained:
>>> 1/AccumBounds(-1, 1)
AccumBounds(-oo, oo)
>>> 1/AccumBounds(0, 2)
AccumBounds(1/2, oo)
>>> 1/AccumBounds(-oo, 0)
AccumBounds(-oo, 0)
A boundary of 1 will always generate all nonnegatives:
>>> AccumBounds(1, 2)**oo
AccumBounds(0, oo)
>>> AccumBounds(0, 1)**oo
AccumBounds(0, oo)
If the exponent is itself an AccumulationBounds or is not an
integer then unevaluated results will be returned unless the base
values are positive:
>>> AccumBounds(2, 3)**AccumBounds(-1, 2)
AccumBounds(1/3, 9)
>>> AccumBounds(-2, 3)**AccumBounds(-1, 2)
AccumBounds(-2, 3)**AccumBounds(-1, 2)
>>> AccumBounds(-2, -1)**(S(1)/2)
sqrt(AccumBounds(-2, -1))
Note: `<a, b>^2` is not same as `<a, b>*<a, b>`
>>> AccumBounds(-1, 1)**2
AccumBounds(0, 1)
>>> AccumBounds(1, 3) < 4
True
>>> AccumBounds(1, 3) < -1
False
Some elementary functions can also take AccumulationBounds as input.
A function `f` evaluated for some real AccumulationBounds `<a, b>`
is defined as `f(\left\langle a, b\right\rangle) = \{ f(x) \mid a \le x \le b \}`
>>> sin(AccumBounds(pi/6, pi/3))
AccumBounds(1/2, sqrt(3)/2)
>>> exp(AccumBounds(0, 1))
AccumBounds(1, E)
>>> log(AccumBounds(1, E))
AccumBounds(0, 1)
Some symbol in an expression can be substituted for a AccumulationBounds
object. But it doesn't necessarily evaluate the AccumulationBounds for
that expression.
The same expression can be evaluated to different values depending upon
the form it is used for substitution since each instance of an
AccumulationBounds is considered independent. For example:
>>> (x**2 + 2*x + 1).subs(x, AccumBounds(-1, 1))
AccumBounds(-1, 4)
>>> ((x + 1)**2).subs(x, AccumBounds(-1, 1))
AccumBounds(0, 4)
References
==========
.. [1] https://en.wikipedia.org/wiki/Interval_arithmetic
.. [2] http://fab.cba.mit.edu/classes/S62.12/docs/Hickey_interval.pdf
Notes
=====
Do not use ``AccumulationBounds`` for floating point interval arithmetic
calculations, use ``mpmath.iv`` instead.
"""
is_extended_real = True
def __new__(cls, min, max):
min = _sympify(min)
max = _sympify(max)
# Only allow real intervals (use symbols with 'is_extended_real=True').
if not min.is_extended_real or not max.is_extended_real:
raise ValueError("Only real AccumulationBounds are supported")
if max == min:
return max
# Make sure that the created AccumBounds object will be valid.
if max.is_number and min.is_number:
bad = max.is_comparable and min.is_comparable and max < min
else:
bad = (max - min).is_extended_negative
if bad:
raise ValueError(
"Lower limit should be smaller than upper limit")
return Basic.__new__(cls, min, max)
# setting the operation priority
_op_priority = 11.0
def _eval_is_real(self):
if self.min.is_real and self.max.is_real:
return True
@property
def min(self):
"""
Returns the minimum possible value attained by AccumulationBounds
object.
Examples
========
>>> from sympy import AccumBounds
>>> AccumBounds(1, 3).min
1
"""
return self.args[0]
@property
def max(self):
"""
Returns the maximum possible value attained by AccumulationBounds
object.
Examples
========
>>> from sympy import AccumBounds
>>> AccumBounds(1, 3).max
3
"""
return self.args[1]
@property
def delta(self):
"""
Returns the difference of maximum possible value attained by
AccumulationBounds object and minimum possible value attained
by AccumulationBounds object.
Examples
========
>>> from sympy import AccumBounds
>>> AccumBounds(1, 3).delta
2
"""
return self.max - self.min
@property
def mid(self):
"""
Returns the mean of maximum possible value attained by
AccumulationBounds object and minimum possible value
attained by AccumulationBounds object.
Examples
========
>>> from sympy import AccumBounds
>>> AccumBounds(1, 3).mid
2
"""
return (self.min + self.max) / 2
@_sympifyit('other', NotImplemented)
def _eval_power(self, other):
return self.__pow__(other)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Expr):
if isinstance(other, AccumBounds):
return AccumBounds(
Add(self.min, other.min),
Add(self.max, other.max))
if other is S.Infinity and self.min is S.NegativeInfinity or \
other is S.NegativeInfinity and self.max is S.Infinity:
return AccumBounds(-oo, oo)
elif other.is_extended_real:
if self.min is S.NegativeInfinity and self.max is S.Infinity:
return AccumBounds(-oo, oo)
elif self.min is S.NegativeInfinity:
return AccumBounds(-oo, self.max + other)
elif self.max is S.Infinity:
return AccumBounds(self.min + other, oo)
else:
return AccumBounds(Add(self.min, other), Add(self.max, other))
return Add(self, other, evaluate=False)
return NotImplemented
__radd__ = __add__
def __neg__(self):
return AccumBounds(-self.max, -self.min)
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Expr):
if isinstance(other, AccumBounds):
return AccumBounds(
Add(self.min, -other.max),
Add(self.max, -other.min))
if other is S.NegativeInfinity and self.min is S.NegativeInfinity or \
other is S.Infinity and self.max is S.Infinity:
return AccumBounds(-oo, oo)
elif other.is_extended_real:
if self.min is S.NegativeInfinity and self.max is S.Infinity:
return AccumBounds(-oo, oo)
elif self.min is S.NegativeInfinity:
return AccumBounds(-oo, self.max - other)
elif self.max is S.Infinity:
return AccumBounds(self.min - other, oo)
else:
return AccumBounds(
Add(self.min, -other),
Add(self.max, -other))
return Add(self, -other, evaluate=False)
return NotImplemented
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
return self.__neg__() + other
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if self.args == (-oo, oo):
return self
if isinstance(other, Expr):
if isinstance(other, AccumBounds):
if other.args == (-oo, oo):
return other
v = set()
for i in self.args:
vi = other*i
for i in vi.args or (vi,):
v.add(i)
return AccumBounds(Min(*v), Max(*v))
if other is S.Infinity:
if self.min.is_zero:
return AccumBounds(0, oo)
if self.max.is_zero:
return AccumBounds(-oo, 0)
if other is S.NegativeInfinity:
if self.min.is_zero:
return AccumBounds(-oo, 0)
if self.max.is_zero:
return AccumBounds(0, oo)
if other.is_extended_real:
if other.is_zero:
if self.max is S.Infinity:
return AccumBounds(0, oo)
if self.min is S.NegativeInfinity:
return AccumBounds(-oo, 0)
return S.Zero
if other.is_extended_positive:
return AccumBounds(
Mul(self.min, other),
Mul(self.max, other))
elif other.is_extended_negative:
return AccumBounds(
Mul(self.max, other),
Mul(self.min, other))
if isinstance(other, Order):
return other
return Mul(self, other, evaluate=False)
return NotImplemented
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __truediv__(self, other):
if isinstance(other, Expr):
if isinstance(other, AccumBounds):
if other.min.is_positive or other.max.is_negative:
return self * AccumBounds(1/other.max, 1/other.min)
if (self.min.is_extended_nonpositive and self.max.is_extended_nonnegative and
other.min.is_extended_nonpositive and other.max.is_extended_nonnegative):
if self.min.is_zero and other.min.is_zero:
return AccumBounds(0, oo)
if self.max.is_zero and other.min.is_zero:
return AccumBounds(-oo, 0)
return AccumBounds(-oo, oo)
if self.max.is_extended_negative:
if other.min.is_extended_negative:
if other.max.is_zero:
return AccumBounds(self.max / other.min, oo)
if other.max.is_extended_positive:
# if we were dealing with intervals we would return
# Union(Interval(-oo, self.max/other.max),
# Interval(self.max/other.min, oo))
return AccumBounds(-oo, oo)
if other.min.is_zero and other.max.is_extended_positive:
return AccumBounds(-oo, self.max / other.max)
if self.min.is_extended_positive:
if other.min.is_extended_negative:
if other.max.is_zero:
return AccumBounds(-oo, self.min / other.min)
if other.max.is_extended_positive:
# if we were dealing with intervals we would return
# Union(Interval(-oo, self.min/other.min),
# Interval(self.min/other.max, oo))
return AccumBounds(-oo, oo)
if other.min.is_zero and other.max.is_extended_positive:
return AccumBounds(self.min / other.max, oo)
elif other.is_extended_real:
if other is S.Infinity or other is S.NegativeInfinity:
if self == AccumBounds(-oo, oo):
return AccumBounds(-oo, oo)
if self.max is S.Infinity:
return AccumBounds(Min(0, other), Max(0, other))
if self.min is S.NegativeInfinity:
return AccumBounds(Min(0, -other), Max(0, -other))
if other.is_extended_positive:
return AccumBounds(self.min / other, self.max / other)
elif other.is_extended_negative:
return AccumBounds(self.max / other, self.min / other)
if (1 / other) is S.ComplexInfinity:
return Mul(self, 1 / other, evaluate=False)
else:
return Mul(self, 1 / other)
return NotImplemented
@_sympifyit('other', NotImplemented)
def __rtruediv__(self, other):
if isinstance(other, Expr):
if other.is_extended_real:
if other.is_zero:
return S.Zero
if (self.min.is_extended_nonpositive and self.max.is_extended_nonnegative):
if self.min.is_zero:
if other.is_extended_positive:
return AccumBounds(Mul(other, 1 / self.max), oo)
if other.is_extended_negative:
return AccumBounds(-oo, Mul(other, 1 / self.max))
if self.max.is_zero:
if other.is_extended_positive:
return AccumBounds(-oo, Mul(other, 1 / self.min))
if other.is_extended_negative:
return AccumBounds(Mul(other, 1 / self.min), oo)
return AccumBounds(-oo, oo)
else:
return AccumBounds(Min(other / self.min, other / self.max),
Max(other / self.min, other / self.max))
return Mul(other, 1 / self, evaluate=False)
else:
return NotImplemented
@_sympifyit('other', NotImplemented)
def __pow__(self, other):
if isinstance(other, Expr):
if other is S.Infinity:
if self.min.is_extended_nonnegative:
if self.max < 1:
return S.Zero
if self.min > 1:
return S.Infinity
return AccumBounds(0, oo)
elif self.max.is_extended_negative:
if self.min > -1:
return S.Zero
if self.max < -1:
return zoo
return S.NaN
else:
if self.min > -1:
if self.max < 1:
return S.Zero
return AccumBounds(0, oo)
return AccumBounds(-oo, oo)
if other is S.NegativeInfinity:
return (1/self)**oo
# generically true
if (self.max - self.min).is_nonnegative:
# well defined
if self.min.is_nonnegative:
# no 0 to worry about
if other.is_nonnegative:
# no infinity to worry about
return self.func(self.min**other, self.max**other)
if other.is_zero:
return S.One # x**0 = 1
if other.is_Integer or other.is_integer:
if self.min.is_extended_positive:
return AccumBounds(
Min(self.min**other, self.max**other),
Max(self.min**other, self.max**other))
elif self.max.is_extended_negative:
return AccumBounds(
Min(self.max**other, self.min**other),
Max(self.max**other, self.min**other))
if other % 2 == 0:
if other.is_extended_negative:
if self.min.is_zero:
return AccumBounds(self.max**other, oo)
if self.max.is_zero:
return AccumBounds(self.min**other, oo)
return AccumBounds(0, oo)
return AccumBounds(
S.Zero, Max(self.min**other, self.max**other))
elif other % 2 == 1:
if other.is_extended_negative:
if self.min.is_zero:
return AccumBounds(self.max**other, oo)
if self.max.is_zero:
return AccumBounds(-oo, self.min**other)
return AccumBounds(-oo, oo)
return AccumBounds(self.min**other, self.max**other)
# non-integer exponent
# 0**neg or neg**frac yields complex
if (other.is_number or other.is_rational) and (
self.min.is_extended_nonnegative or (
other.is_extended_nonnegative and
self.min.is_extended_nonnegative)):
num, den = other.as_numer_denom()
if num is S.One:
return AccumBounds(*[i**(1/den) for i in self.args])
elif den is not S.One: # e.g. if other is not Float
return (self**num)**(1/den) # ok for non-negative base
if isinstance(other, AccumBounds):
if (self.min.is_extended_positive or
self.min.is_extended_nonnegative and
other.min.is_extended_nonnegative):
p = [self**i for i in other.args]
if not any(i.is_Pow for i in p):
a = [j for i in p for j in i.args or (i,)]
try:
return self.func(min(a), max(a))
except TypeError: # can't sort
pass
return Pow(self, other, evaluate=False)
return NotImplemented
@_sympifyit('other', NotImplemented)
def __rpow__(self, other):
if other.is_real and other.is_extended_nonnegative and (
self.max - self.min).is_extended_positive:
if other is S.One:
return S.One
if other.is_extended_positive:
a, b = [other**i for i in self.args]
if min(a, b) != a:
a, b = b, a
return self.func(a, b)
if other.is_zero:
if self.min.is_zero:
return self.func(0, 1)
if self.min.is_extended_positive:
return S.Zero
return Pow(other, self, evaluate=False)
def __abs__(self):
if self.max.is_extended_negative:
return self.__neg__()
elif self.min.is_extended_negative:
return AccumBounds(S.Zero, Max(abs(self.min), self.max))
else:
return self
def __contains__(self, other):
"""
Returns True if other is contained in self, where other
belongs to extended real numbers, False if not contained,
otherwise TypeError is raised.
Examples
========
>>> from sympy import AccumBounds, oo
>>> 1 in AccumBounds(-1, 3)
True
-oo and oo go together as limits (in AccumulationBounds).
>>> -oo in AccumBounds(1, oo)
True
>>> oo in AccumBounds(-oo, 0)
True
"""
other = _sympify(other)
if other is S.Infinity or other is S.NegativeInfinity:
if self.min is S.NegativeInfinity or self.max is S.Infinity:
return True
return False
rv = And(self.min <= other, self.max >= other)
if rv not in (True, False):
raise TypeError("input failed to evaluate")
return rv
def intersection(self, other):
"""
Returns the intersection of 'self' and 'other'.
Here other can be an instance of FiniteSet or AccumulationBounds.
Parameters
==========
other: AccumulationBounds
Another AccumulationBounds object with which the intersection
has to be computed.
Returns
=======
AccumulationBounds
Intersection of 'self' and 'other'.
Examples
========
>>> from sympy import AccumBounds, FiniteSet
>>> AccumBounds(1, 3).intersection(AccumBounds(2, 4))
AccumBounds(2, 3)
>>> AccumBounds(1, 3).intersection(AccumBounds(4, 6))
EmptySet
>>> AccumBounds(1, 4).intersection(FiniteSet(1, 2, 5))
{1, 2}
"""
if not isinstance(other, (AccumBounds, FiniteSet)):
raise TypeError(
"Input must be AccumulationBounds or FiniteSet object")
if isinstance(other, FiniteSet):
fin_set = S.EmptySet
for i in other:
if i in self:
fin_set = fin_set + FiniteSet(i)
return fin_set
if self.max < other.min or self.min > other.max:
return S.EmptySet
if self.min <= other.min:
if self.max <= other.max:
return AccumBounds(other.min, self.max)
if self.max > other.max:
return other
if other.min <= self.min:
if other.max < self.max:
return AccumBounds(self.min, other.max)
if other.max > self.max:
return self
def union(self, other):
# TODO : Devise a better method for Union of AccumBounds
# this method is not actually correct and
# can be made better
if not isinstance(other, AccumBounds):
raise TypeError(
"Input must be AccumulationBounds or FiniteSet object")
if self.min <= other.min and self.max >= other.min:
return AccumBounds(self.min, Max(self.max, other.max))
if other.min <= self.min and other.max >= self.min:
return AccumBounds(other.min, Max(self.max, other.max))
@dispatch(AccumulationBounds, AccumulationBounds) # type: ignore # noqa:F811
def _eval_is_le(lhs, rhs): # noqa:F811
if is_le(lhs.max, rhs.min):
return True
if is_gt(lhs.min, rhs.max):
return False
@dispatch(AccumulationBounds, Basic) # type: ignore # noqa:F811
def _eval_is_le(lhs, rhs): # noqa: F811
"""
Returns True if range of values attained by `self` AccumulationBounds
object is greater than the range of values attained by `other`,
where other may be any value of type AccumulationBounds object or
extended real number value, False if `other` satisfies
the same property, else an unevaluated Relational.
Examples
========
>>> from sympy import AccumBounds, oo
>>> AccumBounds(1, 3) > AccumBounds(4, oo)
False
>>> AccumBounds(1, 4) > AccumBounds(3, 4)
AccumBounds(1, 4) > AccumBounds(3, 4)
>>> AccumBounds(1, oo) > -1
True
"""
if not rhs.is_extended_real:
raise TypeError(
"Invalid comparison of %s %s" %
(type(rhs), rhs))
elif rhs.is_comparable:
if is_le(lhs.max, rhs):
return True
if is_gt(lhs.min, rhs):
return False
@dispatch(AccumulationBounds, AccumulationBounds)
def _eval_is_ge(lhs, rhs): # noqa:F811
if is_ge(lhs.min, rhs.max):
return True
if is_lt(lhs.max, rhs.min):
return False
@dispatch(AccumulationBounds, Expr) # type:ignore
def _eval_is_ge(lhs, rhs): # noqa: F811
"""
Returns True if range of values attained by `lhs` AccumulationBounds
object is less that the range of values attained by `rhs`, where
other may be any value of type AccumulationBounds object or extended
real number value, False if `rhs` satisfies the same
property, else an unevaluated Relational.
Examples
========
>>> from sympy import AccumBounds, oo
>>> AccumBounds(1, 3) >= AccumBounds(4, oo)
False
>>> AccumBounds(1, 4) >= AccumBounds(3, 4)
AccumBounds(1, 4) >= AccumBounds(3, 4)
>>> AccumBounds(1, oo) >= 1
True
"""
if not rhs.is_extended_real:
raise TypeError(
"Invalid comparison of %s %s" %
(type(rhs), rhs))
elif rhs.is_comparable:
if is_ge(lhs.min, rhs):
return True
if is_lt(lhs.max, rhs):
return False
@dispatch(Expr, AccumulationBounds) # type:ignore
def _eval_is_ge(lhs, rhs): # noqa:F811
if not lhs.is_extended_real:
raise TypeError(
"Invalid comparison of %s %s" %
(type(lhs), lhs))
elif lhs.is_comparable:
if is_le(rhs.max, lhs):
return True
if is_gt(rhs.min, lhs):
return False
@dispatch(AccumulationBounds, AccumulationBounds) # type:ignore
def _eval_is_ge(lhs, rhs): # noqa:F811
if is_ge(lhs.min, rhs.max):
return True
if is_lt(lhs.max, rhs.min):
return False
# setting an alias for AccumulationBounds
AccumBounds = AccumulationBounds
|
7719df4c51dcc3ecef49e9bb357264cecd14aa7918ec2dc42ae06132281f615f | """
This module provides convenient functions to transform sympy expressions to
lambda functions which can be used to calculate numerical values very fast.
"""
from typing import Any, Dict, Iterable
import builtins
import inspect
import keyword
import textwrap
import linecache
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.core.compatibility import (is_sequence, iterable,
NotIterable)
from sympy.utilities.misc import filldedent
from sympy.utilities.decorator import doctest_depends_on
__doctest_requires__ = {('lambdify',): ['numpy', 'tensorflow']}
# Default namespaces, letting us define translations that can't be defined
# by simple variable maps, like I => 1j
MATH_DEFAULT = {} # type: Dict[str, Any]
MPMATH_DEFAULT = {} # type: Dict[str, Any]
NUMPY_DEFAULT = {"I": 1j} # type: Dict[str, Any]
SCIPY_DEFAULT = {"I": 1j} # type: Dict[str, Any]
CUPY_DEFAULT = {"I": 1j} # type: Dict[str, Any]
TENSORFLOW_DEFAULT = {} # type: Dict[str, Any]
SYMPY_DEFAULT = {} # type: Dict[str, Any]
NUMEXPR_DEFAULT = {} # type: Dict[str, Any]
# These are the namespaces the lambda functions will use.
# These are separate from the names above because they are modified
# throughout this file, whereas the defaults should remain unmodified.
MATH = MATH_DEFAULT.copy()
MPMATH = MPMATH_DEFAULT.copy()
NUMPY = NUMPY_DEFAULT.copy()
SCIPY = SCIPY_DEFAULT.copy()
CUPY = CUPY_DEFAULT.copy()
TENSORFLOW = TENSORFLOW_DEFAULT.copy()
SYMPY = SYMPY_DEFAULT.copy()
NUMEXPR = NUMEXPR_DEFAULT.copy()
# Mappings between sympy and other modules function names.
MATH_TRANSLATIONS = {
"ceiling": "ceil",
"E": "e",
"ln": "log",
}
# NOTE: This dictionary is reused in Function._eval_evalf to allow subclasses
# of Function to automatically evalf.
MPMATH_TRANSLATIONS = {
"Abs": "fabs",
"elliptic_k": "ellipk",
"elliptic_f": "ellipf",
"elliptic_e": "ellipe",
"elliptic_pi": "ellippi",
"ceiling": "ceil",
"chebyshevt": "chebyt",
"chebyshevu": "chebyu",
"E": "e",
"I": "j",
"ln": "log",
#"lowergamma":"lower_gamma",
"oo": "inf",
#"uppergamma":"upper_gamma",
"LambertW": "lambertw",
"MutableDenseMatrix": "matrix",
"ImmutableDenseMatrix": "matrix",
"conjugate": "conj",
"dirichlet_eta": "altzeta",
"Ei": "ei",
"Shi": "shi",
"Chi": "chi",
"Si": "si",
"Ci": "ci",
"RisingFactorial": "rf",
"FallingFactorial": "ff",
"betainc_regularized": "betainc",
}
NUMPY_TRANSLATIONS = {
"Heaviside": "heaviside",
} # type: Dict[str, str]
SCIPY_TRANSLATIONS = {} # type: Dict[str, str]
CUPY_TRANSLATIONS = {} # type: Dict[str, str]
TENSORFLOW_TRANSLATIONS = {} # type: Dict[str, str]
NUMEXPR_TRANSLATIONS = {} # type: Dict[str, str]
# Available modules:
MODULES = {
"math": (MATH, MATH_DEFAULT, MATH_TRANSLATIONS, ("from math import *",)),
"mpmath": (MPMATH, MPMATH_DEFAULT, MPMATH_TRANSLATIONS, ("from mpmath import *",)),
"numpy": (NUMPY, NUMPY_DEFAULT, NUMPY_TRANSLATIONS, ("import numpy; from numpy import *; from numpy.linalg import *",)),
"scipy": (SCIPY, SCIPY_DEFAULT, SCIPY_TRANSLATIONS, ("import numpy; import scipy; from scipy import *; from scipy.special import *",)),
"cupy": (CUPY, CUPY_DEFAULT, CUPY_TRANSLATIONS, ("import cupy",)),
"tensorflow": (TENSORFLOW, TENSORFLOW_DEFAULT, TENSORFLOW_TRANSLATIONS, ("import tensorflow",)),
"sympy": (SYMPY, SYMPY_DEFAULT, {}, (
"from sympy.functions import *",
"from sympy.matrices import *",
"from sympy import Integral, pi, oo, nan, zoo, E, I",)),
"numexpr" : (NUMEXPR, NUMEXPR_DEFAULT, NUMEXPR_TRANSLATIONS,
("import_module('numexpr')", )),
}
def _import(module, reload=False):
"""
Creates a global translation dictionary for module.
The argument module has to be one of the following strings: "math",
"mpmath", "numpy", "sympy", "tensorflow".
These dictionaries map names of python functions to their equivalent in
other modules.
"""
# Required despite static analysis claiming it is not used
from sympy.external import import_module # noqa:F401
try:
namespace, namespace_default, translations, import_commands = MODULES[
module]
except KeyError:
raise NameError(
"'%s' module can't be used for lambdification" % module)
# Clear namespace or exit
if namespace != namespace_default:
# The namespace was already generated, don't do it again if not forced.
if reload:
namespace.clear()
namespace.update(namespace_default)
else:
return
for import_command in import_commands:
if import_command.startswith('import_module'):
module = eval(import_command)
if module is not None:
namespace.update(module.__dict__)
continue
else:
try:
exec(import_command, {}, namespace)
continue
except ImportError:
pass
raise ImportError(
"can't import '%s' with '%s' command" % (module, import_command))
# Add translated names to namespace
for sympyname, translation in translations.items():
namespace[sympyname] = namespace[translation]
# For computing the modulus of a sympy expression we use the builtin abs
# function, instead of the previously used fabs function for all
# translation modules. This is because the fabs function in the math
# module does not accept complex valued arguments. (see issue 9474). The
# only exception, where we don't use the builtin abs function is the
# mpmath translation module, because mpmath.fabs returns mpf objects in
# contrast to abs().
if 'Abs' not in namespace:
namespace['Abs'] = abs
# Used for dynamically generated filenames that are inserted into the
# linecache.
_lambdify_generated_counter = 1
@doctest_depends_on(modules=('numpy', 'scipy', 'tensorflow',), python_version=(3,))
def lambdify(args: Iterable, expr, modules=None, printer=None, use_imps=True,
dummify=False, cse=False):
"""Convert a SymPy expression into a function that allows for fast
numeric evaluation.
.. warning::
This function uses ``exec``, and thus shouldn't be used on
unsanitized input.
.. versionchanged:: 1.7.0
Passing a set for the *args* parameter is deprecated as sets are
unordered. Use an ordered iterable such as a list or tuple.
Explanation
===========
For example, to convert the SymPy expression ``sin(x) + cos(x)`` to an
equivalent NumPy function that numerically evaluates it:
>>> from sympy import sin, cos, symbols, lambdify
>>> import numpy as np
>>> x = symbols('x')
>>> expr = sin(x) + cos(x)
>>> expr
sin(x) + cos(x)
>>> f = lambdify(x, expr, 'numpy')
>>> a = np.array([1, 2])
>>> f(a)
[1.38177329 0.49315059]
The primary purpose of this function is to provide a bridge from SymPy
expressions to numerical libraries such as NumPy, SciPy, NumExpr, mpmath,
and tensorflow. In general, SymPy functions do not work with objects from
other libraries, such as NumPy arrays, and functions from numeric
libraries like NumPy or mpmath do not work on SymPy expressions.
``lambdify`` bridges the two by converting a SymPy expression to an
equivalent numeric function.
The basic workflow with ``lambdify`` is to first create a SymPy expression
representing whatever mathematical function you wish to evaluate. This
should be done using only SymPy functions and expressions. Then, use
``lambdify`` to convert this to an equivalent function for numerical
evaluation. For instance, above we created ``expr`` using the SymPy symbol
``x`` and SymPy functions ``sin`` and ``cos``, then converted it to an
equivalent NumPy function ``f``, and called it on a NumPy array ``a``.
Parameters
==========
args : List[Symbol]
A variable or a list of variables whose nesting represents the
nesting of the arguments that will be passed to the function.
Variables can be symbols, undefined functions, or matrix symbols.
>>> from sympy import Eq
>>> from sympy.abc import x, y, z
The list of variables should match the structure of how the
arguments will be passed to the function. Simply enclose the
parameters as they will be passed in a list.
To call a function like ``f(x)`` then ``[x]``
should be the first argument to ``lambdify``; for this
case a single ``x`` can also be used:
>>> f = lambdify(x, x + 1)
>>> f(1)
2
>>> f = lambdify([x], x + 1)
>>> f(1)
2
To call a function like ``f(x, y)`` then ``[x, y]`` will
be the first argument of the ``lambdify``:
>>> f = lambdify([x, y], x + y)
>>> f(1, 1)
2
To call a function with a single 3-element tuple like
``f((x, y, z))`` then ``[(x, y, z)]`` will be the first
argument of the ``lambdify``:
>>> f = lambdify([(x, y, z)], Eq(z**2, x**2 + y**2))
>>> f((3, 4, 5))
True
If two args will be passed and the first is a scalar but
the second is a tuple with two arguments then the items
in the list should match that structure:
>>> f = lambdify([x, (y, z)], x + y + z)
>>> f(1, (2, 3))
6
expr : Expr
An expression, list of expressions, or matrix to be evaluated.
Lists may be nested.
If the expression is a list, the output will also be a list.
>>> f = lambdify(x, [x, [x + 1, x + 2]])
>>> f(1)
[1, [2, 3]]
If it is a matrix, an array will be returned (for the NumPy module).
>>> from sympy import Matrix
>>> f = lambdify(x, Matrix([x, x + 1]))
>>> f(1)
[[1]
[2]]
Note that the argument order here (variables then expression) is used
to emulate the Python ``lambda`` keyword. ``lambdify(x, expr)`` works
(roughly) like ``lambda x: expr``
(see :ref:`lambdify-how-it-works` below).
modules : str, optional
Specifies the numeric library to use.
If not specified, *modules* defaults to:
- ``["scipy", "numpy"]`` if SciPy is installed
- ``["numpy"]`` if only NumPy is installed
- ``["math", "mpmath", "sympy"]`` if neither is installed.
That is, SymPy functions are replaced as far as possible by
either ``scipy`` or ``numpy`` functions if available, and Python's
standard library ``math``, or ``mpmath`` functions otherwise.
*modules* can be one of the following types:
- The strings ``"math"``, ``"mpmath"``, ``"numpy"``, ``"numexpr"``,
``"scipy"``, ``"sympy"``, or ``"tensorflow"``. This uses the
corresponding printer and namespace mapping for that module.
- A module (e.g., ``math``). This uses the global namespace of the
module. If the module is one of the above known modules, it will
also use the corresponding printer and namespace mapping
(i.e., ``modules=numpy`` is equivalent to ``modules="numpy"``).
- A dictionary that maps names of SymPy functions to arbitrary
functions
(e.g., ``{'sin': custom_sin}``).
- A list that contains a mix of the arguments above, with higher
priority given to entries appearing first
(e.g., to use the NumPy module but override the ``sin`` function
with a custom version, you can use
``[{'sin': custom_sin}, 'numpy']``).
dummify : bool, optional
Whether or not the variables in the provided expression that are not
valid Python identifiers are substituted with dummy symbols.
This allows for undefined functions like ``Function('f')(t)`` to be
supplied as arguments. By default, the variables are only dummified
if they are not valid Python identifiers.
Set ``dummify=True`` to replace all arguments with dummy symbols
(if ``args`` is not a string) - for example, to ensure that the
arguments do not redefine any built-in names.
cse : bool, or callable, optional
Large expressions can be computed more efficiently when
common subexpressions are identified and precomputed before
being used multiple time. Finding the subexpressions will make
creation of the 'lambdify' function slower, however.
When ``True``, ``sympy.simplify.cse`` is used, otherwise (the default)
the user may pass a function matching the ``cse`` signature.
Examples
========
>>> from sympy.utilities.lambdify import implemented_function
>>> from sympy import sqrt, sin, Matrix
>>> from sympy import Function
>>> from sympy.abc import w, x, y, z
>>> f = lambdify(x, x**2)
>>> f(2)
4
>>> f = lambdify((x, y, z), [z, y, x])
>>> f(1,2,3)
[3, 2, 1]
>>> f = lambdify(x, sqrt(x))
>>> f(4)
2.0
>>> f = lambdify((x, y), sin(x*y)**2)
>>> f(0, 5)
0.0
>>> row = lambdify((x, y), Matrix((x, x + y)).T, modules='sympy')
>>> row(1, 2)
Matrix([[1, 3]])
``lambdify`` can be used to translate SymPy expressions into mpmath
functions. This may be preferable to using ``evalf`` (which uses mpmath on
the backend) in some cases.
>>> f = lambdify(x, sin(x), 'mpmath')
>>> f(1)
0.8414709848078965
Tuple arguments are handled and the lambdified function should
be called with the same type of arguments as were used to create
the function:
>>> f = lambdify((x, (y, z)), x + y)
>>> f(1, (2, 4))
3
The ``flatten`` function can be used to always work with flattened
arguments:
>>> from sympy.utilities.iterables import flatten
>>> args = w, (x, (y, z))
>>> vals = 1, (2, (3, 4))
>>> f = lambdify(flatten(args), w + x + y + z)
>>> f(*flatten(vals))
10
Functions present in ``expr`` can also carry their own numerical
implementations, in a callable attached to the ``_imp_`` attribute. This
can be used with undefined functions using the ``implemented_function``
factory:
>>> f = implemented_function(Function('f'), lambda x: x+1)
>>> func = lambdify(x, f(x))
>>> func(4)
5
``lambdify`` always prefers ``_imp_`` implementations to implementations
in other namespaces, unless the ``use_imps`` input parameter is False.
Usage with Tensorflow:
>>> import tensorflow as tf
>>> from sympy import Max, sin, lambdify
>>> from sympy.abc import x
>>> f = Max(x, sin(x))
>>> func = lambdify(x, f, 'tensorflow')
After tensorflow v2, eager execution is enabled by default.
If you want to get the compatible result across tensorflow v1 and v2
as same as this tutorial, run this line.
>>> tf.compat.v1.enable_eager_execution()
If you have eager execution enabled, you can get the result out
immediately as you can use numpy.
If you pass tensorflow objects, you may get an ``EagerTensor``
object instead of value.
>>> result = func(tf.constant(1.0))
>>> print(result)
tf.Tensor(1.0, shape=(), dtype=float32)
>>> print(result.__class__)
<class 'tensorflow.python.framework.ops.EagerTensor'>
You can use ``.numpy()`` to get the numpy value of the tensor.
>>> result.numpy()
1.0
>>> var = tf.Variable(2.0)
>>> result = func(var) # also works for tf.Variable and tf.Placeholder
>>> result.numpy()
2.0
And it works with any shape array.
>>> tensor = tf.constant([[1.0, 2.0], [3.0, 4.0]])
>>> result = func(tensor)
>>> result.numpy()
[[1. 2.]
[3. 4.]]
Notes
=====
- For functions involving large array calculations, numexpr can provide a
significant speedup over numpy. Please note that the available functions
for numexpr are more limited than numpy but can be expanded with
``implemented_function`` and user defined subclasses of Function. If
specified, numexpr may be the only option in modules. The official list
of numexpr functions can be found at:
https://numexpr.readthedocs.io/en/latest/user_guide.html#supported-functions
- In previous versions of SymPy, ``lambdify`` replaced ``Matrix`` with
``numpy.matrix`` by default. As of SymPy 1.0 ``numpy.array`` is the
default. To get the old default behavior you must pass in
``[{'ImmutableDenseMatrix': numpy.matrix}, 'numpy']`` to the
``modules`` kwarg.
>>> from sympy import lambdify, Matrix
>>> from sympy.abc import x, y
>>> import numpy
>>> array2mat = [{'ImmutableDenseMatrix': numpy.matrix}, 'numpy']
>>> f = lambdify((x, y), Matrix([x, y]), modules=array2mat)
>>> f(1, 2)
[[1]
[2]]
- In the above examples, the generated functions can accept scalar
values or numpy arrays as arguments. However, in some cases
the generated function relies on the input being a numpy array:
>>> from sympy import Piecewise
>>> from sympy.testing.pytest import ignore_warnings
>>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "numpy")
>>> with ignore_warnings(RuntimeWarning):
... f(numpy.array([-1, 0, 1, 2]))
[-1. 0. 1. 0.5]
>>> f(0)
Traceback (most recent call last):
...
ZeroDivisionError: division by zero
In such cases, the input should be wrapped in a numpy array:
>>> with ignore_warnings(RuntimeWarning):
... float(f(numpy.array([0])))
0.0
Or if numpy functionality is not required another module can be used:
>>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "math")
>>> f(0)
0
.. _lambdify-how-it-works:
How it works
============
When using this function, it helps a great deal to have an idea of what it
is doing. At its core, lambdify is nothing more than a namespace
translation, on top of a special printer that makes some corner cases work
properly.
To understand lambdify, first we must properly understand how Python
namespaces work. Say we had two files. One called ``sin_cos_sympy.py``,
with
.. code:: python
# sin_cos_sympy.py
from sympy import sin, cos
def sin_cos(x):
return sin(x) + cos(x)
and one called ``sin_cos_numpy.py`` with
.. code:: python
# sin_cos_numpy.py
from numpy import sin, cos
def sin_cos(x):
return sin(x) + cos(x)
The two files define an identical function ``sin_cos``. However, in the
first file, ``sin`` and ``cos`` are defined as the SymPy ``sin`` and
``cos``. In the second, they are defined as the NumPy versions.
If we were to import the first file and use the ``sin_cos`` function, we
would get something like
>>> from sin_cos_sympy import sin_cos # doctest: +SKIP
>>> sin_cos(1) # doctest: +SKIP
cos(1) + sin(1)
On the other hand, if we imported ``sin_cos`` from the second file, we
would get
>>> from sin_cos_numpy import sin_cos # doctest: +SKIP
>>> sin_cos(1) # doctest: +SKIP
1.38177329068
In the first case we got a symbolic output, because it used the symbolic
``sin`` and ``cos`` functions from SymPy. In the second, we got a numeric
result, because ``sin_cos`` used the numeric ``sin`` and ``cos`` functions
from NumPy. But notice that the versions of ``sin`` and ``cos`` that were
used was not inherent to the ``sin_cos`` function definition. Both
``sin_cos`` definitions are exactly the same. Rather, it was based on the
names defined at the module where the ``sin_cos`` function was defined.
The key point here is that when function in Python references a name that
is not defined in the function, that name is looked up in the "global"
namespace of the module where that function is defined.
Now, in Python, we can emulate this behavior without actually writing a
file to disk using the ``exec`` function. ``exec`` takes a string
containing a block of Python code, and a dictionary that should contain
the global variables of the module. It then executes the code "in" that
dictionary, as if it were the module globals. The following is equivalent
to the ``sin_cos`` defined in ``sin_cos_sympy.py``:
>>> import sympy
>>> module_dictionary = {'sin': sympy.sin, 'cos': sympy.cos}
>>> exec('''
... def sin_cos(x):
... return sin(x) + cos(x)
... ''', module_dictionary)
>>> sin_cos = module_dictionary['sin_cos']
>>> sin_cos(1)
cos(1) + sin(1)
and similarly with ``sin_cos_numpy``:
>>> import numpy
>>> module_dictionary = {'sin': numpy.sin, 'cos': numpy.cos}
>>> exec('''
... def sin_cos(x):
... return sin(x) + cos(x)
... ''', module_dictionary)
>>> sin_cos = module_dictionary['sin_cos']
>>> sin_cos(1)
1.38177329068
So now we can get an idea of how ``lambdify`` works. The name "lambdify"
comes from the fact that we can think of something like ``lambdify(x,
sin(x) + cos(x), 'numpy')`` as ``lambda x: sin(x) + cos(x)``, where
``sin`` and ``cos`` come from the ``numpy`` namespace. This is also why
the symbols argument is first in ``lambdify``, as opposed to most SymPy
functions where it comes after the expression: to better mimic the
``lambda`` keyword.
``lambdify`` takes the input expression (like ``sin(x) + cos(x)``) and
1. Converts it to a string
2. Creates a module globals dictionary based on the modules that are
passed in (by default, it uses the NumPy module)
3. Creates the string ``"def func({vars}): return {expr}"``, where ``{vars}`` is the
list of variables separated by commas, and ``{expr}`` is the string
created in step 1., then ``exec``s that string with the module globals
namespace and returns ``func``.
In fact, functions returned by ``lambdify`` support inspection. So you can
see exactly how they are defined by using ``inspect.getsource``, or ``??`` if you
are using IPython or the Jupyter notebook.
>>> f = lambdify(x, sin(x) + cos(x))
>>> import inspect
>>> print(inspect.getsource(f))
def _lambdifygenerated(x):
return sin(x) + cos(x)
This shows us the source code of the function, but not the namespace it
was defined in. We can inspect that by looking at the ``__globals__``
attribute of ``f``:
>>> f.__globals__['sin']
<ufunc 'sin'>
>>> f.__globals__['cos']
<ufunc 'cos'>
>>> f.__globals__['sin'] is numpy.sin
True
This shows us that ``sin`` and ``cos`` in the namespace of ``f`` will be
``numpy.sin`` and ``numpy.cos``.
Note that there are some convenience layers in each of these steps, but at
the core, this is how ``lambdify`` works. Step 1 is done using the
``LambdaPrinter`` printers defined in the printing module (see
:mod:`sympy.printing.lambdarepr`). This allows different SymPy expressions
to define how they should be converted to a string for different modules.
You can change which printer ``lambdify`` uses by passing a custom printer
in to the ``printer`` argument.
Step 2 is augmented by certain translations. There are default
translations for each module, but you can provide your own by passing a
list to the ``modules`` argument. For instance,
>>> def mysin(x):
... print('taking the sin of', x)
... return numpy.sin(x)
...
>>> f = lambdify(x, sin(x), [{'sin': mysin}, 'numpy'])
>>> f(1)
taking the sin of 1
0.8414709848078965
The globals dictionary is generated from the list by merging the
dictionary ``{'sin': mysin}`` and the module dictionary for NumPy. The
merging is done so that earlier items take precedence, which is why
``mysin`` is used above instead of ``numpy.sin``.
If you want to modify the way ``lambdify`` works for a given function, it
is usually easiest to do so by modifying the globals dictionary as such.
In more complicated cases, it may be necessary to create and pass in a
custom printer.
Finally, step 3 is augmented with certain convenience operations, such as
the addition of a docstring.
Understanding how ``lambdify`` works can make it easier to avoid certain
gotchas when using it. For instance, a common mistake is to create a
lambdified function for one module (say, NumPy), and pass it objects from
another (say, a SymPy expression).
For instance, say we create
>>> from sympy.abc import x
>>> f = lambdify(x, x + 1, 'numpy')
Now if we pass in a NumPy array, we get that array plus 1
>>> import numpy
>>> a = numpy.array([1, 2])
>>> f(a)
[2 3]
But what happens if you make the mistake of passing in a SymPy expression
instead of a NumPy array:
>>> f(x + 1)
x + 2
This worked, but it was only by accident. Now take a different lambdified
function:
>>> from sympy import sin
>>> g = lambdify(x, x + sin(x), 'numpy')
This works as expected on NumPy arrays:
>>> g(a)
[1.84147098 2.90929743]
But if we try to pass in a SymPy expression, it fails
>>> try:
... g(x + 1)
... # NumPy release after 1.17 raises TypeError instead of
... # AttributeError
... except (AttributeError, TypeError):
... raise AttributeError() # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
AttributeError:
Now, let's look at what happened. The reason this fails is that ``g``
calls ``numpy.sin`` on the input expression, and ``numpy.sin`` does not
know how to operate on a SymPy object. **As a general rule, NumPy
functions do not know how to operate on SymPy expressions, and SymPy
functions do not know how to operate on NumPy arrays. This is why lambdify
exists: to provide a bridge between SymPy and NumPy.**
However, why is it that ``f`` did work? That's because ``f`` doesn't call
any functions, it only adds 1. So the resulting function that is created,
``def _lambdifygenerated(x): return x + 1`` does not depend on the globals
namespace it is defined in. Thus it works, but only by accident. A future
version of ``lambdify`` may remove this behavior.
Be aware that certain implementation details described here may change in
future versions of SymPy. The API of passing in custom modules and
printers will not change, but the details of how a lambda function is
created may change. However, the basic idea will remain the same, and
understanding it will be helpful to understanding the behavior of
lambdify.
**In general: you should create lambdified functions for one module (say,
NumPy), and only pass it input types that are compatible with that module
(say, NumPy arrays).** Remember that by default, if the ``module``
argument is not provided, ``lambdify`` creates functions using the NumPy
and SciPy namespaces.
"""
from sympy.core.symbol import Symbol
# If the user hasn't specified any modules, use what is available.
if modules is None:
try:
_import("scipy")
except ImportError:
try:
_import("numpy")
except ImportError:
# Use either numpy (if available) or python.math where possible.
# XXX: This leads to different behaviour on different systems and
# might be the reason for irreproducible errors.
modules = ["math", "mpmath", "sympy"]
else:
modules = ["numpy"]
else:
modules = ["numpy", "scipy"]
# Get the needed namespaces.
namespaces = []
# First find any function implementations
if use_imps:
namespaces.append(_imp_namespace(expr))
# Check for dict before iterating
if isinstance(modules, (dict, str)) or not hasattr(modules, '__iter__'):
namespaces.append(modules)
else:
# consistency check
if _module_present('numexpr', modules) and len(modules) > 1:
raise TypeError("numexpr must be the only item in 'modules'")
namespaces += list(modules)
# fill namespace with first having highest priority
namespace = {} # type: Dict[str, Any]
for m in namespaces[::-1]:
buf = _get_namespace(m)
namespace.update(buf)
if hasattr(expr, "atoms"):
#Try if you can extract symbols from the expression.
#Move on if expr.atoms in not implemented.
syms = expr.atoms(Symbol)
for term in syms:
namespace.update({str(term): term})
if printer is None:
if _module_present('mpmath', namespaces):
from sympy.printing.pycode import MpmathPrinter as Printer # type: ignore
elif _module_present('scipy', namespaces):
from sympy.printing.numpy import SciPyPrinter as Printer # type: ignore
elif _module_present('numpy', namespaces):
from sympy.printing.numpy import NumPyPrinter as Printer # type: ignore
elif _module_present('cupy', namespaces):
from sympy.printing.numpy import CuPyPrinter as Printer # type: ignore
elif _module_present('numexpr', namespaces):
from sympy.printing.lambdarepr import NumExprPrinter as Printer # type: ignore
elif _module_present('tensorflow', namespaces):
from sympy.printing.tensorflow import TensorflowPrinter as Printer # type: ignore
elif _module_present('sympy', namespaces):
from sympy.printing.pycode import SymPyPrinter as Printer # type: ignore
else:
from sympy.printing.pycode import PythonCodePrinter as Printer # type: ignore
user_functions = {}
for m in namespaces[::-1]:
if isinstance(m, dict):
for k in m:
user_functions[k] = k
printer = Printer({'fully_qualified_modules': False, 'inline': True,
'allow_unknown_functions': True,
'user_functions': user_functions})
if isinstance(args, set):
SymPyDeprecationWarning(
feature="The list of arguments is a `set`. This leads to unpredictable results",
useinstead=": Convert set into list or tuple",
issue=20013,
deprecated_since_version="1.6.3"
).warn()
# Get the names of the args, for creating a docstring
if not iterable(args):
args = (args,)
names = []
# Grab the callers frame, for getting the names by inspection (if needed)
callers_local_vars = inspect.currentframe().f_back.f_locals.items() # type: ignore
for n, var in enumerate(args):
if hasattr(var, 'name'):
names.append(var.name)
else:
# It's an iterable. Try to get name by inspection of calling frame.
name_list = [var_name for var_name, var_val in callers_local_vars
if var_val is var]
if len(name_list) == 1:
names.append(name_list[0])
else:
# Cannot infer name with certainty. arg_# will have to do.
names.append('arg_' + str(n))
# Create the function definition code and execute it
funcname = '_lambdifygenerated'
if _module_present('tensorflow', namespaces):
funcprinter = _TensorflowEvaluatorPrinter(printer, dummify) # type: _EvaluatorPrinter
else:
funcprinter = _EvaluatorPrinter(printer, dummify)
if cse == True:
from sympy.simplify.cse_main import cse
cses, _expr = cse(expr, list=False)
elif callable(cse):
cses, _expr = cse(expr)
else:
cses, _expr = (), expr
funcstr = funcprinter.doprint(funcname, args, _expr, cses=cses)
# Collect the module imports from the code printers.
imp_mod_lines = []
for mod, keys in (getattr(printer, 'module_imports', None) or {}).items():
for k in keys:
if k not in namespace:
ln = "from %s import %s" % (mod, k)
try:
exec(ln, {}, namespace)
except ImportError:
# Tensorflow 2.0 has issues with importing a specific
# function from its submodule.
# https://github.com/tensorflow/tensorflow/issues/33022
ln = "%s = %s.%s" % (k, mod, k)
exec(ln, {}, namespace)
imp_mod_lines.append(ln)
# Provide lambda expression with builtins, and compatible implementation of range
namespace.update({'builtins':builtins, 'range':range})
funclocals = {} # type: Dict[str, Any]
global _lambdify_generated_counter
filename = '<lambdifygenerated-%s>' % _lambdify_generated_counter
_lambdify_generated_counter += 1
c = compile(funcstr, filename, 'exec')
exec(c, namespace, funclocals)
# mtime has to be None or else linecache.checkcache will remove it
linecache.cache[filename] = (len(funcstr), None, funcstr.splitlines(True), filename) # type: ignore
func = funclocals[funcname]
# Apply the docstring
sig = "func({})".format(", ".join(str(i) for i in names))
sig = textwrap.fill(sig, subsequent_indent=' '*8)
expr_str = str(expr)
if len(expr_str) > 78:
expr_str = textwrap.wrap(expr_str, 75)[0] + '...'
func.__doc__ = (
"Created with lambdify. Signature:\n\n"
"{sig}\n\n"
"Expression:\n\n"
"{expr}\n\n"
"Source code:\n\n"
"{src}\n\n"
"Imported modules:\n\n"
"{imp_mods}"
).format(sig=sig, expr=expr_str, src=funcstr, imp_mods='\n'.join(imp_mod_lines))
return func
def _module_present(modname, modlist):
if modname in modlist:
return True
for m in modlist:
if hasattr(m, '__name__') and m.__name__ == modname:
return True
return False
def _get_namespace(m):
"""
This is used by _lambdify to parse its arguments.
"""
if isinstance(m, str):
_import(m)
return MODULES[m][0]
elif isinstance(m, dict):
return m
elif hasattr(m, "__dict__"):
return m.__dict__
else:
raise TypeError("Argument must be either a string, dict or module but it is: %s" % m)
def lambdastr(args, expr, printer=None, dummify=None):
"""
Returns a string that can be evaluated to a lambda function.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.utilities.lambdify import lambdastr
>>> lambdastr(x, x**2)
'lambda x: (x**2)'
>>> lambdastr((x,y,z), [z,y,x])
'lambda x,y,z: ([z, y, x])'
Although tuples may not appear as arguments to lambda in Python 3,
lambdastr will create a lambda function that will unpack the original
arguments so that nested arguments can be handled:
>>> lambdastr((x, (y, z)), x + y)
'lambda _0,_1: (lambda x,y,z: (x + y))(_0,_1[0],_1[1])'
"""
# Transforming everything to strings.
from sympy.matrices import DeferredVector
from sympy import Dummy, sympify, Symbol, Function, flatten, Derivative, Basic
if printer is not None:
if inspect.isfunction(printer):
lambdarepr = printer
else:
if inspect.isclass(printer):
lambdarepr = lambda expr: printer().doprint(expr)
else:
lambdarepr = lambda expr: printer.doprint(expr)
else:
#XXX: This has to be done here because of circular imports
from sympy.printing.lambdarepr import lambdarepr
def sub_args(args, dummies_dict):
if isinstance(args, str):
return args
elif isinstance(args, DeferredVector):
return str(args)
elif iterable(args):
dummies = flatten([sub_args(a, dummies_dict) for a in args])
return ",".join(str(a) for a in dummies)
else:
# replace these with Dummy symbols
if isinstance(args, (Function, Symbol, Derivative)):
dummies = Dummy()
dummies_dict.update({args : dummies})
return str(dummies)
else:
return str(args)
def sub_expr(expr, dummies_dict):
expr = sympify(expr)
# dict/tuple are sympified to Basic
if isinstance(expr, Basic):
expr = expr.xreplace(dummies_dict)
# list is not sympified to Basic
elif isinstance(expr, list):
expr = [sub_expr(a, dummies_dict) for a in expr]
return expr
# Transform args
def isiter(l):
return iterable(l, exclude=(str, DeferredVector, NotIterable))
def flat_indexes(iterable):
n = 0
for el in iterable:
if isiter(el):
for ndeep in flat_indexes(el):
yield (n,) + ndeep
else:
yield (n,)
n += 1
if dummify is None:
dummify = any(isinstance(a, Basic) and
a.atoms(Function, Derivative) for a in (
args if isiter(args) else [args]))
if isiter(args) and any(isiter(i) for i in args):
dum_args = [str(Dummy(str(i))) for i in range(len(args))]
indexed_args = ','.join([
dum_args[ind[0]] + ''.join(["[%s]" % k for k in ind[1:]])
for ind in flat_indexes(args)])
lstr = lambdastr(flatten(args), expr, printer=printer, dummify=dummify)
return 'lambda %s: (%s)(%s)' % (','.join(dum_args), lstr, indexed_args)
dummies_dict = {}
if dummify:
args = sub_args(args, dummies_dict)
else:
if isinstance(args, str):
pass
elif iterable(args, exclude=DeferredVector):
args = ",".join(str(a) for a in args)
# Transform expr
if dummify:
if isinstance(expr, str):
pass
else:
expr = sub_expr(expr, dummies_dict)
expr = lambdarepr(expr)
return "lambda %s: (%s)" % (args, expr)
class _EvaluatorPrinter:
def __init__(self, printer=None, dummify=False):
self._dummify = dummify
#XXX: This has to be done here because of circular imports
from sympy.printing.lambdarepr import LambdaPrinter
if printer is None:
printer = LambdaPrinter()
if inspect.isfunction(printer):
self._exprrepr = printer
else:
if inspect.isclass(printer):
printer = printer()
self._exprrepr = printer.doprint
#if hasattr(printer, '_print_Symbol'):
# symbolrepr = printer._print_Symbol
#if hasattr(printer, '_print_Dummy'):
# dummyrepr = printer._print_Dummy
# Used to print the generated function arguments in a standard way
self._argrepr = LambdaPrinter().doprint
def doprint(self, funcname, args, expr, *, cses=()):
"""
Returns the function definition code as a string.
"""
from sympy import Dummy
funcbody = []
if not iterable(args):
args = [args]
argstrs, expr = self._preprocess(args, expr)
# Generate argument unpacking and final argument list
funcargs = []
unpackings = []
for argstr in argstrs:
if iterable(argstr):
funcargs.append(self._argrepr(Dummy()))
unpackings.extend(self._print_unpacking(argstr, funcargs[-1]))
else:
funcargs.append(argstr)
funcsig = 'def {}({}):'.format(funcname, ', '.join(funcargs))
# Wrap input arguments before unpacking
funcbody.extend(self._print_funcargwrapping(funcargs))
funcbody.extend(unpackings)
funcbody.extend(['{} = {}'.format(s, self._exprrepr(e)) for s, e in cses])
str_expr = self._exprrepr(expr)
if '\n' in str_expr:
str_expr = '({})'.format(str_expr)
funcbody.append('return {}'.format(str_expr))
funclines = [funcsig]
funclines.extend([' ' + line for line in funcbody])
return '\n'.join(funclines) + '\n'
@classmethod
def _is_safe_ident(cls, ident):
return isinstance(ident, str) and ident.isidentifier() \
and not keyword.iskeyword(ident)
def _preprocess(self, args, expr):
"""Preprocess args, expr to replace arguments that do not map
to valid Python identifiers.
Returns string form of args, and updated expr.
"""
from sympy import Dummy, Function, flatten, Derivative, ordered, Basic
from sympy.matrices import DeferredVector
from sympy.core.symbol import uniquely_named_symbol
from sympy.core.expr import Expr
# Args of type Dummy can cause name collisions with args
# of type Symbol. Force dummify of everything in this
# situation.
dummify = self._dummify or any(
isinstance(arg, Dummy) for arg in flatten(args))
argstrs = [None]*len(args)
for arg, i in reversed(list(ordered(zip(args, range(len(args)))))):
if iterable(arg):
s, expr = self._preprocess(arg, expr)
elif isinstance(arg, DeferredVector):
s = str(arg)
elif isinstance(arg, Basic) and arg.is_symbol:
s = self._argrepr(arg)
if dummify or not self._is_safe_ident(s):
dummy = Dummy()
if isinstance(expr, Expr):
dummy = uniquely_named_symbol(
dummy.name, expr, modify=lambda s: '_' + s)
s = self._argrepr(dummy)
expr = self._subexpr(expr, {arg: dummy})
elif dummify or isinstance(arg, (Function, Derivative)):
dummy = Dummy()
s = self._argrepr(dummy)
expr = self._subexpr(expr, {arg: dummy})
else:
s = str(arg)
argstrs[i] = s
return argstrs, expr
def _subexpr(self, expr, dummies_dict):
from sympy.matrices import DeferredVector
from sympy import sympify
expr = sympify(expr)
xreplace = getattr(expr, 'xreplace', None)
if xreplace is not None:
expr = xreplace(dummies_dict)
else:
if isinstance(expr, DeferredVector):
pass
elif isinstance(expr, dict):
k = [self._subexpr(sympify(a), dummies_dict) for a in expr.keys()]
v = [self._subexpr(sympify(a), dummies_dict) for a in expr.values()]
expr = dict(zip(k, v))
elif isinstance(expr, tuple):
expr = tuple(self._subexpr(sympify(a), dummies_dict) for a in expr)
elif isinstance(expr, list):
expr = [self._subexpr(sympify(a), dummies_dict) for a in expr]
return expr
def _print_funcargwrapping(self, args):
"""Generate argument wrapping code.
args is the argument list of the generated function (strings).
Return value is a list of lines of code that will be inserted at
the beginning of the function definition.
"""
return []
def _print_unpacking(self, unpackto, arg):
"""Generate argument unpacking code.
arg is the function argument to be unpacked (a string), and
unpackto is a list or nested lists of the variable names (strings) to
unpack to.
"""
def unpack_lhs(lvalues):
return '[{}]'.format(', '.join(
unpack_lhs(val) if iterable(val) else val for val in lvalues))
return ['{} = {}'.format(unpack_lhs(unpackto), arg)]
class _TensorflowEvaluatorPrinter(_EvaluatorPrinter):
def _print_unpacking(self, lvalues, rvalue):
"""Generate argument unpacking code.
This method is used when the input value is not interable,
but can be indexed (see issue #14655).
"""
from sympy import flatten
def flat_indexes(elems):
n = 0
for el in elems:
if iterable(el):
for ndeep in flat_indexes(el):
yield (n,) + ndeep
else:
yield (n,)
n += 1
indexed = ', '.join('{}[{}]'.format(rvalue, ']['.join(map(str, ind)))
for ind in flat_indexes(lvalues))
return ['[{}] = [{}]'.format(', '.join(flatten(lvalues)), indexed)]
def _imp_namespace(expr, namespace=None):
""" Return namespace dict with function implementations
We need to search for functions in anything that can be thrown at
us - that is - anything that could be passed as ``expr``. Examples
include sympy expressions, as well as tuples, lists and dicts that may
contain sympy expressions.
Parameters
----------
expr : object
Something passed to lambdify, that will generate valid code from
``str(expr)``.
namespace : None or mapping
Namespace to fill. None results in new empty dict
Returns
-------
namespace : dict
dict with keys of implemented function names within ``expr`` and
corresponding values being the numerical implementation of
function
Examples
========
>>> from sympy.abc import x
>>> from sympy.utilities.lambdify import implemented_function, _imp_namespace
>>> from sympy import Function
>>> f = implemented_function(Function('f'), lambda x: x+1)
>>> g = implemented_function(Function('g'), lambda x: x*10)
>>> namespace = _imp_namespace(f(g(x)))
>>> sorted(namespace.keys())
['f', 'g']
"""
# Delayed import to avoid circular imports
from sympy.core.function import FunctionClass
if namespace is None:
namespace = {}
# tuples, lists, dicts are valid expressions
if is_sequence(expr):
for arg in expr:
_imp_namespace(arg, namespace)
return namespace
elif isinstance(expr, dict):
for key, val in expr.items():
# functions can be in dictionary keys
_imp_namespace(key, namespace)
_imp_namespace(val, namespace)
return namespace
# sympy expressions may be Functions themselves
func = getattr(expr, 'func', None)
if isinstance(func, FunctionClass):
imp = getattr(func, '_imp_', None)
if imp is not None:
name = expr.func.__name__
if name in namespace and namespace[name] != imp:
raise ValueError('We found more than one '
'implementation with name '
'"%s"' % name)
namespace[name] = imp
# and / or they may take Functions as arguments
if hasattr(expr, 'args'):
for arg in expr.args:
_imp_namespace(arg, namespace)
return namespace
def implemented_function(symfunc, implementation):
""" Add numerical ``implementation`` to function ``symfunc``.
``symfunc`` can be an ``UndefinedFunction`` instance, or a name string.
In the latter case we create an ``UndefinedFunction`` instance with that
name.
Be aware that this is a quick workaround, not a general method to create
special symbolic functions. If you want to create a symbolic function to be
used by all the machinery of SymPy you should subclass the ``Function``
class.
Parameters
----------
symfunc : ``str`` or ``UndefinedFunction`` instance
If ``str``, then create new ``UndefinedFunction`` with this as
name. If ``symfunc`` is an Undefined function, create a new function
with the same name and the implemented function attached.
implementation : callable
numerical implementation to be called by ``evalf()`` or ``lambdify``
Returns
-------
afunc : sympy.FunctionClass instance
function with attached implementation
Examples
========
>>> from sympy.abc import x
>>> from sympy.utilities.lambdify import lambdify, implemented_function
>>> f = implemented_function('f', lambda x: x+1)
>>> lam_f = lambdify(x, f(x))
>>> lam_f(4)
5
"""
# Delayed import to avoid circular imports
from sympy.core.function import UndefinedFunction
# if name, create function to hold implementation
kwargs = {}
if isinstance(symfunc, UndefinedFunction):
kwargs = symfunc._kwargs
symfunc = symfunc.__name__
if isinstance(symfunc, str):
# Keyword arguments to UndefinedFunction are added as attributes to
# the created class.
symfunc = UndefinedFunction(
symfunc, _imp_=staticmethod(implementation), **kwargs)
elif not isinstance(symfunc, UndefinedFunction):
raise ValueError(filldedent('''
symfunc should be either a string or
an UndefinedFunction instance.'''))
return symfunc
|
c3a38c96c4b3e3f58a7b7852ad3c2489f82228807b3dde79465096559bba7506 | from collections import defaultdict, OrderedDict
from itertools import (
combinations, combinations_with_replacement, permutations,
product
)
from itertools import product as cartes # noqa: F401
import random
from operator import gt
from sympy.core import Basic
# this is the logical location of these functions
from sympy.core.compatibility import (as_int, is_sequence, iterable, ordered)
from sympy.core.compatibility import default_sort_key # noqa: F401
from sympy.utilities.enumerative import (
multiset_partitions_taocp, list_visitor, MultisetPartitionTraverser)
def is_palindromic(s, i=0, j=None):
"""return True if the sequence is the same from left to right as it
is from right to left in the whole sequence (default) or in the
Python slice ``s[i: j]``; else False.
Examples
========
>>> from sympy.utilities.iterables import is_palindromic
>>> is_palindromic([1, 0, 1])
True
>>> is_palindromic('abcbb')
False
>>> is_palindromic('abcbb', 1)
False
Normal Python slicing is performed in place so there is no need to
create a slice of the sequence for testing:
>>> is_palindromic('abcbb', 1, -1)
True
>>> is_palindromic('abcbb', -4, -1)
True
See Also
========
sympy.ntheory.digits.is_palindromic: tests integers
"""
i, j, _ = slice(i, j).indices(len(s))
m = (j - i)//2
# if length is odd, middle element will be ignored
return all(s[i + k] == s[j - 1 - k] for k in range(m))
def flatten(iterable, levels=None, cls=None):
"""
Recursively denest iterable containers.
>>> from sympy.utilities.iterables import flatten
>>> flatten([1, 2, 3])
[1, 2, 3]
>>> flatten([1, 2, [3]])
[1, 2, 3]
>>> flatten([1, [2, 3], [4, 5]])
[1, 2, 3, 4, 5]
>>> flatten([1.0, 2, (1, None)])
[1.0, 2, 1, None]
If you want to denest only a specified number of levels of
nested containers, then set ``levels`` flag to the desired
number of levels::
>>> ls = [[(-2, -1), (1, 2)], [(0, 0)]]
>>> flatten(ls, levels=1)
[(-2, -1), (1, 2), (0, 0)]
If cls argument is specified, it will only flatten instances of that
class, for example:
>>> from sympy.core import Basic
>>> class MyOp(Basic):
... pass
...
>>> flatten([MyOp(1, MyOp(2, 3))], cls=MyOp)
[1, 2, 3]
adapted from https://kogs-www.informatik.uni-hamburg.de/~meine/python_tricks
"""
from sympy.tensor.array import NDimArray
if levels is not None:
if not levels:
return iterable
elif levels > 0:
levels -= 1
else:
raise ValueError(
"expected non-negative number of levels, got %s" % levels)
if cls is None:
reducible = lambda x: is_sequence(x, set)
else:
reducible = lambda x: isinstance(x, cls)
result = []
for el in iterable:
if reducible(el):
if hasattr(el, 'args') and not isinstance(el, NDimArray):
el = el.args
result.extend(flatten(el, levels=levels, cls=cls))
else:
result.append(el)
return result
def unflatten(iter, n=2):
"""Group ``iter`` into tuples of length ``n``. Raise an error if
the length of ``iter`` is not a multiple of ``n``.
"""
if n < 1 or len(iter) % n:
raise ValueError('iter length is not a multiple of %i' % n)
return list(zip(*(iter[i::n] for i in range(n))))
def reshape(seq, how):
"""Reshape the sequence according to the template in ``how``.
Examples
========
>>> from sympy.utilities import reshape
>>> seq = list(range(1, 9))
>>> reshape(seq, [4]) # lists of 4
[[1, 2, 3, 4], [5, 6, 7, 8]]
>>> reshape(seq, (4,)) # tuples of 4
[(1, 2, 3, 4), (5, 6, 7, 8)]
>>> reshape(seq, (2, 2)) # tuples of 4
[(1, 2, 3, 4), (5, 6, 7, 8)]
>>> reshape(seq, (2, [2])) # (i, i, [i, i])
[(1, 2, [3, 4]), (5, 6, [7, 8])]
>>> reshape(seq, ((2,), [2])) # etc....
[((1, 2), [3, 4]), ((5, 6), [7, 8])]
>>> reshape(seq, (1, [2], 1))
[(1, [2, 3], 4), (5, [6, 7], 8)]
>>> reshape(tuple(seq), ([[1], 1, (2,)],))
(([[1], 2, (3, 4)],), ([[5], 6, (7, 8)],))
>>> reshape(tuple(seq), ([1], 1, (2,)))
(([1], 2, (3, 4)), ([5], 6, (7, 8)))
>>> reshape(list(range(12)), [2, [3], {2}, (1, (3,), 1)])
[[0, 1, [2, 3, 4], {5, 6}, (7, (8, 9, 10), 11)]]
"""
m = sum(flatten(how))
n, rem = divmod(len(seq), m)
if m < 0 or rem:
raise ValueError('template must sum to positive number '
'that divides the length of the sequence')
i = 0
container = type(how)
rv = [None]*n
for k in range(len(rv)):
rv[k] = []
for hi in how:
if type(hi) is int:
rv[k].extend(seq[i: i + hi])
i += hi
else:
n = sum(flatten(hi))
hi_type = type(hi)
rv[k].append(hi_type(reshape(seq[i: i + n], hi)[0]))
i += n
rv[k] = container(rv[k])
return type(seq)(rv)
def group(seq, multiple=True):
"""
Splits a sequence into a list of lists of equal, adjacent elements.
Examples
========
>>> from sympy.utilities.iterables import group
>>> group([1, 1, 1, 2, 2, 3])
[[1, 1, 1], [2, 2], [3]]
>>> group([1, 1, 1, 2, 2, 3], multiple=False)
[(1, 3), (2, 2), (3, 1)]
>>> group([1, 1, 3, 2, 2, 1], multiple=False)
[(1, 2), (3, 1), (2, 2), (1, 1)]
See Also
========
multiset
"""
if not seq:
return []
current, groups = [seq[0]], []
for elem in seq[1:]:
if elem == current[-1]:
current.append(elem)
else:
groups.append(current)
current = [elem]
groups.append(current)
if multiple:
return groups
for i, current in enumerate(groups):
groups[i] = (current[0], len(current))
return groups
def _iproduct2(iterable1, iterable2):
'''Cartesian product of two possibly infinite iterables'''
it1 = iter(iterable1)
it2 = iter(iterable2)
elems1 = []
elems2 = []
sentinel = object()
def append(it, elems):
e = next(it, sentinel)
if e is not sentinel:
elems.append(e)
n = 0
append(it1, elems1)
append(it2, elems2)
while n <= len(elems1) + len(elems2):
for m in range(n-len(elems1)+1, len(elems2)):
yield (elems1[n-m], elems2[m])
n += 1
append(it1, elems1)
append(it2, elems2)
def iproduct(*iterables):
'''
Cartesian product of iterables.
Generator of the cartesian product of iterables. This is analogous to
itertools.product except that it works with infinite iterables and will
yield any item from the infinite product eventually.
Examples
========
>>> from sympy.utilities.iterables import iproduct
>>> sorted(iproduct([1,2], [3,4]))
[(1, 3), (1, 4), (2, 3), (2, 4)]
With an infinite iterator:
>>> from sympy import S
>>> (3,) in iproduct(S.Integers)
True
>>> (3, 4) in iproduct(S.Integers, S.Integers)
True
.. seealso::
`itertools.product <https://docs.python.org/3/library/itertools.html#itertools.product>`_
'''
if len(iterables) == 0:
yield ()
return
elif len(iterables) == 1:
for e in iterables[0]:
yield (e,)
elif len(iterables) == 2:
yield from _iproduct2(*iterables)
else:
first, others = iterables[0], iterables[1:]
for ef, eo in _iproduct2(first, iproduct(*others)):
yield (ef,) + eo
def multiset(seq):
"""Return the hashable sequence in multiset form with values being the
multiplicity of the item in the sequence.
Examples
========
>>> from sympy.utilities.iterables import multiset
>>> multiset('mississippi')
{'i': 4, 'm': 1, 'p': 2, 's': 4}
See Also
========
group
"""
rv = defaultdict(int)
for s in seq:
rv[s] += 1
return dict(rv)
def postorder_traversal(node, keys=None):
"""
Do a postorder traversal of a tree.
This generator recursively yields nodes that it has visited in a postorder
fashion. That is, it descends through the tree depth-first to yield all of
a node's children's postorder traversal before yielding the node itself.
Parameters
==========
node : sympy expression
The expression to traverse.
keys : (default None) sort key(s)
The key(s) used to sort args of Basic objects. When None, args of Basic
objects are processed in arbitrary order. If key is defined, it will
be passed along to ordered() as the only key(s) to use to sort the
arguments; if ``key`` is simply True then the default keys of
``ordered`` will be used (node count and default_sort_key).
Yields
======
subtree : sympy expression
All of the subtrees in the tree.
Examples
========
>>> from sympy.utilities.iterables import postorder_traversal
>>> from sympy.abc import w, x, y, z
The nodes are returned in the order that they are encountered unless key
is given; simply passing key=True will guarantee that the traversal is
unique.
>>> list(postorder_traversal(w + (x + y)*z)) # doctest: +SKIP
[z, y, x, x + y, z*(x + y), w, w + z*(x + y)]
>>> list(postorder_traversal(w + (x + y)*z, keys=True))
[w, z, x, y, x + y, z*(x + y), w + z*(x + y)]
"""
if isinstance(node, Basic):
args = node.args
if keys:
if keys != True:
args = ordered(args, keys, default=False)
else:
args = ordered(args)
for arg in args:
yield from postorder_traversal(arg, keys)
elif iterable(node):
for item in node:
yield from postorder_traversal(item, keys)
yield node
def interactive_traversal(expr):
"""Traverse a tree asking a user which branch to choose. """
from sympy.printing import pprint
RED, BRED = '\033[0;31m', '\033[1;31m'
GREEN, BGREEN = '\033[0;32m', '\033[1;32m'
YELLOW, BYELLOW = '\033[0;33m', '\033[1;33m' # noqa
BLUE, BBLUE = '\033[0;34m', '\033[1;34m' # noqa
MAGENTA, BMAGENTA = '\033[0;35m', '\033[1;35m'# noqa
CYAN, BCYAN = '\033[0;36m', '\033[1;36m' # noqa
END = '\033[0m'
def cprint(*args):
print("".join(map(str, args)) + END)
def _interactive_traversal(expr, stage):
if stage > 0:
print()
cprint("Current expression (stage ", BYELLOW, stage, END, "):")
print(BCYAN)
pprint(expr)
print(END)
if isinstance(expr, Basic):
if expr.is_Add:
args = expr.as_ordered_terms()
elif expr.is_Mul:
args = expr.as_ordered_factors()
else:
args = expr.args
elif hasattr(expr, "__iter__"):
args = list(expr)
else:
return expr
n_args = len(args)
if not n_args:
return expr
for i, arg in enumerate(args):
cprint(GREEN, "[", BGREEN, i, GREEN, "] ", BLUE, type(arg), END)
pprint(arg)
print()
if n_args == 1:
choices = '0'
else:
choices = '0-%d' % (n_args - 1)
try:
choice = input("Your choice [%s,f,l,r,d,?]: " % choices)
except EOFError:
result = expr
print()
else:
if choice == '?':
cprint(RED, "%s - select subexpression with the given index" %
choices)
cprint(RED, "f - select the first subexpression")
cprint(RED, "l - select the last subexpression")
cprint(RED, "r - select a random subexpression")
cprint(RED, "d - done\n")
result = _interactive_traversal(expr, stage)
elif choice in ('d', ''):
result = expr
elif choice == 'f':
result = _interactive_traversal(args[0], stage + 1)
elif choice == 'l':
result = _interactive_traversal(args[-1], stage + 1)
elif choice == 'r':
result = _interactive_traversal(random.choice(args), stage + 1)
else:
try:
choice = int(choice)
except ValueError:
cprint(BRED,
"Choice must be a number in %s range\n" % choices)
result = _interactive_traversal(expr, stage)
else:
if choice < 0 or choice >= n_args:
cprint(BRED, "Choice must be in %s range\n" % choices)
result = _interactive_traversal(expr, stage)
else:
result = _interactive_traversal(args[choice], stage + 1)
return result
return _interactive_traversal(expr, 0)
def ibin(n, bits=None, str=False):
"""Return a list of length ``bits`` corresponding to the binary value
of ``n`` with small bits to the right (last). If bits is omitted, the
length will be the number required to represent ``n``. If the bits are
desired in reversed order, use the ``[::-1]`` slice of the returned list.
If a sequence of all bits-length lists starting from ``[0, 0,..., 0]``
through ``[1, 1, ..., 1]`` are desired, pass a non-integer for bits, e.g.
``'all'``.
If the bit *string* is desired pass ``str=True``.
Examples
========
>>> from sympy.utilities.iterables import ibin
>>> ibin(2)
[1, 0]
>>> ibin(2, 4)
[0, 0, 1, 0]
If all lists corresponding to 0 to 2**n - 1, pass a non-integer
for bits:
>>> bits = 2
>>> for i in ibin(2, 'all'):
... print(i)
(0, 0)
(0, 1)
(1, 0)
(1, 1)
If a bit string is desired of a given length, use str=True:
>>> n = 123
>>> bits = 10
>>> ibin(n, bits, str=True)
'0001111011'
>>> ibin(n, bits, str=True)[::-1] # small bits left
'1101111000'
>>> list(ibin(3, 'all', str=True))
['000', '001', '010', '011', '100', '101', '110', '111']
"""
if n < 0:
raise ValueError("negative numbers are not allowed")
n = as_int(n)
if bits is None:
bits = 0
else:
try:
bits = as_int(bits)
except ValueError:
bits = -1
else:
if n.bit_length() > bits:
raise ValueError(
"`bits` must be >= {}".format(n.bit_length()))
if not str:
if bits >= 0:
return [1 if i == "1" else 0 for i in bin(n)[2:].rjust(bits, "0")]
else:
return variations(list(range(2)), n, repetition=True)
else:
if bits >= 0:
return bin(n)[2:].rjust(bits, "0")
else:
return (bin(i)[2:].rjust(n, "0") for i in range(2**n))
def variations(seq, n, repetition=False):
r"""Returns a generator of the n-sized variations of ``seq`` (size N).
``repetition`` controls whether items in ``seq`` can appear more than once;
Examples
========
``variations(seq, n)`` will return `\frac{N!}{(N - n)!}` permutations without
repetition of ``seq``'s elements:
>>> from sympy.utilities.iterables import variations
>>> list(variations([1, 2], 2))
[(1, 2), (2, 1)]
``variations(seq, n, True)`` will return the `N^n` permutations obtained
by allowing repetition of elements:
>>> list(variations([1, 2], 2, repetition=True))
[(1, 1), (1, 2), (2, 1), (2, 2)]
If you ask for more items than are in the set you get the empty set unless
you allow repetitions:
>>> list(variations([0, 1], 3, repetition=False))
[]
>>> list(variations([0, 1], 3, repetition=True))[:4]
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)]
.. seealso::
`itertools.permutations <https://docs.python.org/3/library/itertools.html#itertools.permutations>`_,
`itertools.product <https://docs.python.org/3/library/itertools.html#itertools.product>`_
"""
if not repetition:
seq = tuple(seq)
if len(seq) < n:
return
yield from permutations(seq, n)
else:
if n == 0:
yield ()
else:
yield from product(seq, repeat=n)
def subsets(seq, k=None, repetition=False):
r"""Generates all `k`-subsets (combinations) from an `n`-element set, ``seq``.
A `k`-subset of an `n`-element set is any subset of length exactly `k`. The
number of `k`-subsets of an `n`-element set is given by ``binomial(n, k)``,
whereas there are `2^n` subsets all together. If `k` is ``None`` then all
`2^n` subsets will be returned from shortest to longest.
Examples
========
>>> from sympy.utilities.iterables import subsets
``subsets(seq, k)`` will return the `\frac{n!}{k!(n - k)!}` `k`-subsets (combinations)
without repetition, i.e. once an item has been removed, it can no
longer be "taken":
>>> list(subsets([1, 2], 2))
[(1, 2)]
>>> list(subsets([1, 2]))
[(), (1,), (2,), (1, 2)]
>>> list(subsets([1, 2, 3], 2))
[(1, 2), (1, 3), (2, 3)]
``subsets(seq, k, repetition=True)`` will return the `\frac{(n - 1 + k)!}{k!(n - 1)!}`
combinations *with* repetition:
>>> list(subsets([1, 2], 2, repetition=True))
[(1, 1), (1, 2), (2, 2)]
If you ask for more items than are in the set you get the empty set unless
you allow repetitions:
>>> list(subsets([0, 1], 3, repetition=False))
[]
>>> list(subsets([0, 1], 3, repetition=True))
[(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)]
"""
if k is None:
for k in range(len(seq) + 1):
yield from subsets(seq, k, repetition)
else:
if not repetition:
yield from combinations(seq, k)
else:
yield from combinations_with_replacement(seq, k)
def filter_symbols(iterator, exclude):
"""
Only yield elements from `iterator` that do not occur in `exclude`.
Parameters
==========
iterator : iterable
iterator to take elements from
exclude : iterable
elements to exclude
Returns
=======
iterator : iterator
filtered iterator
"""
exclude = set(exclude)
for s in iterator:
if s not in exclude:
yield s
def numbered_symbols(prefix='x', cls=None, start=0, exclude=(), *args, **assumptions):
"""
Generate an infinite stream of Symbols consisting of a prefix and
increasing subscripts provided that they do not occur in ``exclude``.
Parameters
==========
prefix : str, optional
The prefix to use. By default, this function will generate symbols of
the form "x0", "x1", etc.
cls : class, optional
The class to use. By default, it uses ``Symbol``, but you can also use ``Wild`` or ``Dummy``.
start : int, optional
The start number. By default, it is 0.
Returns
=======
sym : Symbol
The subscripted symbols.
"""
exclude = set(exclude or [])
if cls is None:
# We can't just make the default cls=Symbol because it isn't
# imported yet.
from sympy.core import Symbol
cls = Symbol
while True:
name = '%s%s' % (prefix, start)
s = cls(name, *args, **assumptions)
if s not in exclude:
yield s
start += 1
def capture(func):
"""Return the printed output of func().
``func`` should be a function without arguments that produces output with
print statements.
>>> from sympy.utilities.iterables import capture
>>> from sympy import pprint
>>> from sympy.abc import x
>>> def foo():
... print('hello world!')
...
>>> 'hello' in capture(foo) # foo, not foo()
True
>>> capture(lambda: pprint(2/x))
'2\\n-\\nx\\n'
"""
from io import StringIO
import sys
stdout = sys.stdout
sys.stdout = file = StringIO()
try:
func()
finally:
sys.stdout = stdout
return file.getvalue()
def sift(seq, keyfunc, binary=False):
"""
Sift the sequence, ``seq`` according to ``keyfunc``.
Returns
=======
When ``binary`` is ``False`` (default), the output is a dictionary
where elements of ``seq`` are stored in a list keyed to the value
of keyfunc for that element. If ``binary`` is True then a tuple
with lists ``T`` and ``F`` are returned where ``T`` is a list
containing elements of seq for which ``keyfunc`` was ``True`` and
``F`` containing those elements for which ``keyfunc`` was ``False``;
a ValueError is raised if the ``keyfunc`` is not binary.
Examples
========
>>> from sympy.utilities import sift
>>> from sympy.abc import x, y
>>> from sympy import sqrt, exp, pi, Tuple
>>> sift(range(5), lambda x: x % 2)
{0: [0, 2, 4], 1: [1, 3]}
sift() returns a defaultdict() object, so any key that has no matches will
give [].
>>> sift([x], lambda x: x.is_commutative)
{True: [x]}
>>> _[False]
[]
Sometimes you will not know how many keys you will get:
>>> sift([sqrt(x), exp(x), (y**x)**2],
... lambda x: x.as_base_exp()[0])
{E: [exp(x)], x: [sqrt(x)], y: [y**(2*x)]}
Sometimes you expect the results to be binary; the
results can be unpacked by setting ``binary`` to True:
>>> sift(range(4), lambda x: x % 2, binary=True)
([1, 3], [0, 2])
>>> sift(Tuple(1, pi), lambda x: x.is_rational, binary=True)
([1], [pi])
A ValueError is raised if the predicate was not actually binary
(which is a good test for the logic where sifting is used and
binary results were expected):
>>> unknown = exp(1) - pi # the rationality of this is unknown
>>> args = Tuple(1, pi, unknown)
>>> sift(args, lambda x: x.is_rational, binary=True)
Traceback (most recent call last):
...
ValueError: keyfunc gave non-binary output
The non-binary sifting shows that there were 3 keys generated:
>>> set(sift(args, lambda x: x.is_rational).keys())
{None, False, True}
If you need to sort the sifted items it might be better to use
``ordered`` which can economically apply multiple sort keys
to a sequence while sorting.
See Also
========
ordered
"""
if not binary:
m = defaultdict(list)
for i in seq:
m[keyfunc(i)].append(i)
return m
sift = F, T = [], []
for i in seq:
try:
sift[keyfunc(i)].append(i)
except (IndexError, TypeError):
raise ValueError('keyfunc gave non-binary output')
return T, F
def take(iter, n):
"""Return ``n`` items from ``iter`` iterator. """
return [ value for _, value in zip(range(n), iter) ]
def dict_merge(*dicts):
"""Merge dictionaries into a single dictionary. """
merged = {}
for dict in dicts:
merged.update(dict)
return merged
def common_prefix(*seqs):
"""Return the subsequence that is a common start of sequences in ``seqs``.
>>> from sympy.utilities.iterables import common_prefix
>>> common_prefix(list(range(3)))
[0, 1, 2]
>>> common_prefix(list(range(3)), list(range(4)))
[0, 1, 2]
>>> common_prefix([1, 2, 3], [1, 2, 5])
[1, 2]
>>> common_prefix([1, 2, 3], [1, 3, 5])
[1]
"""
if not all(seqs):
return []
elif len(seqs) == 1:
return seqs[0]
i = 0
for i in range(min(len(s) for s in seqs)):
if not all(seqs[j][i] == seqs[0][i] for j in range(len(seqs))):
break
else:
i += 1
return seqs[0][:i]
def common_suffix(*seqs):
"""Return the subsequence that is a common ending of sequences in ``seqs``.
>>> from sympy.utilities.iterables import common_suffix
>>> common_suffix(list(range(3)))
[0, 1, 2]
>>> common_suffix(list(range(3)), list(range(4)))
[]
>>> common_suffix([1, 2, 3], [9, 2, 3])
[2, 3]
>>> common_suffix([1, 2, 3], [9, 7, 3])
[3]
"""
if not all(seqs):
return []
elif len(seqs) == 1:
return seqs[0]
i = 0
for i in range(-1, -min(len(s) for s in seqs) - 1, -1):
if not all(seqs[j][i] == seqs[0][i] for j in range(len(seqs))):
break
else:
i -= 1
if i == -1:
return []
else:
return seqs[0][i + 1:]
def prefixes(seq):
"""
Generate all prefixes of a sequence.
Examples
========
>>> from sympy.utilities.iterables import prefixes
>>> list(prefixes([1,2,3,4]))
[[1], [1, 2], [1, 2, 3], [1, 2, 3, 4]]
"""
n = len(seq)
for i in range(n):
yield seq[:i + 1]
def postfixes(seq):
"""
Generate all postfixes of a sequence.
Examples
========
>>> from sympy.utilities.iterables import postfixes
>>> list(postfixes([1,2,3,4]))
[[4], [3, 4], [2, 3, 4], [1, 2, 3, 4]]
"""
n = len(seq)
for i in range(n):
yield seq[n - i - 1:]
def topological_sort(graph, key=None):
r"""
Topological sort of graph's vertices.
Parameters
==========
graph : tuple[list, list[tuple[T, T]]
A tuple consisting of a list of vertices and a list of edges of
a graph to be sorted topologically.
key : callable[T] (optional)
Ordering key for vertices on the same level. By default the natural
(e.g. lexicographic) ordering is used (in this case the base type
must implement ordering relations).
Examples
========
Consider a graph::
+---+ +---+ +---+
| 7 |\ | 5 | | 3 |
+---+ \ +---+ +---+
| _\___/ ____ _/ |
| / \___/ \ / |
V V V V |
+----+ +---+ |
| 11 | | 8 | |
+----+ +---+ |
| | \____ ___/ _ |
| \ \ / / \ |
V \ V V / V V
+---+ \ +---+ | +----+
| 2 | | | 9 | | | 10 |
+---+ | +---+ | +----+
\________/
where vertices are integers. This graph can be encoded using
elementary Python's data structures as follows::
>>> V = [2, 3, 5, 7, 8, 9, 10, 11]
>>> E = [(7, 11), (7, 8), (5, 11), (3, 8), (3, 10),
... (11, 2), (11, 9), (11, 10), (8, 9)]
To compute a topological sort for graph ``(V, E)`` issue::
>>> from sympy.utilities.iterables import topological_sort
>>> topological_sort((V, E))
[3, 5, 7, 8, 11, 2, 9, 10]
If specific tie breaking approach is needed, use ``key`` parameter::
>>> topological_sort((V, E), key=lambda v: -v)
[7, 5, 11, 3, 10, 8, 9, 2]
Only acyclic graphs can be sorted. If the input graph has a cycle,
then ``ValueError`` will be raised::
>>> topological_sort((V, E + [(10, 7)]))
Traceback (most recent call last):
...
ValueError: cycle detected
References
==========
.. [1] https://en.wikipedia.org/wiki/Topological_sorting
"""
V, E = graph
L = []
S = set(V)
E = list(E)
for v, u in E:
S.discard(u)
if key is None:
key = lambda value: value
S = sorted(S, key=key, reverse=True)
while S:
node = S.pop()
L.append(node)
for u, v in list(E):
if u == node:
E.remove((u, v))
for _u, _v in E:
if v == _v:
break
else:
kv = key(v)
for i, s in enumerate(S):
ks = key(s)
if kv > ks:
S.insert(i, v)
break
else:
S.append(v)
if E:
raise ValueError("cycle detected")
else:
return L
def strongly_connected_components(G):
r"""
Strongly connected components of a directed graph in reverse topological
order.
Parameters
==========
graph : tuple[list, list[tuple[T, T]]
A tuple consisting of a list of vertices and a list of edges of
a graph whose strongly connected components are to be found.
Examples
========
Consider a directed graph (in dot notation)::
digraph {
A -> B
A -> C
B -> C
C -> B
B -> D
}
where vertices are the letters A, B, C and D. This graph can be encoded
using Python's elementary data structures as follows::
>>> V = ['A', 'B', 'C', 'D']
>>> E = [('A', 'B'), ('A', 'C'), ('B', 'C'), ('C', 'B'), ('B', 'D')]
The strongly connected components of this graph can be computed as
>>> from sympy.utilities.iterables import strongly_connected_components
>>> strongly_connected_components((V, E))
[['D'], ['B', 'C'], ['A']]
This also gives the components in reverse topological order.
Since the subgraph containing B and C has a cycle they must be together in
a strongly connected component. A and D are connected to the rest of the
graph but not in a cyclic manner so they appear as their own strongly
connected components.
Notes
=====
The vertices of the graph must be hashable for the data structures used.
If the vertices are unhashable replace them with integer indices.
This function uses Tarjan's algorithm to compute the strongly connected
components in `O(|V|+|E|)` (linear) time.
References
==========
.. [1] https://en.wikipedia.org/wiki/Strongly_connected_component
.. [2] https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
See Also
========
sympy.utilities.iterables.connected_components
"""
# Map from a vertex to its neighbours
V, E = G
Gmap = {vi: [] for vi in V}
for v1, v2 in E:
Gmap[v1].append(v2)
return _strongly_connected_components(V, Gmap)
def _strongly_connected_components(V, Gmap):
"""More efficient internal routine for strongly_connected_components"""
#
# Here V is an iterable of vertices and Gmap is a dict mapping each vertex
# to a list of neighbours e.g.:
#
# V = [0, 1, 2, 3]
# Gmap = {0: [2, 3], 1: [0]}
#
# For a large graph these data structures can often be created more
# efficiently then those expected by strongly_connected_components() which
# in this case would be
#
# V = [0, 1, 2, 3]
# Gmap = [(0, 2), (0, 3), (1, 0)]
#
# XXX: Maybe this should be the recommended function to use instead...
#
# Non-recursive Tarjan's algorithm:
lowlink = {}
indices = {}
stack = OrderedDict()
callstack = []
components = []
nomore = object()
def start(v):
index = len(stack)
indices[v] = lowlink[v] = index
stack[v] = None
callstack.append((v, iter(Gmap[v])))
def finish(v1):
# Finished a component?
if lowlink[v1] == indices[v1]:
component = [stack.popitem()[0]]
while component[-1] is not v1:
component.append(stack.popitem()[0])
components.append(component[::-1])
v2, _ = callstack.pop()
if callstack:
v1, _ = callstack[-1]
lowlink[v1] = min(lowlink[v1], lowlink[v2])
for v in V:
if v in indices:
continue
start(v)
while callstack:
v1, it1 = callstack[-1]
v2 = next(it1, nomore)
# Finished children of v1?
if v2 is nomore:
finish(v1)
# Recurse on v2
elif v2 not in indices:
start(v2)
elif v2 in stack:
lowlink[v1] = min(lowlink[v1], indices[v2])
# Reverse topological sort order:
return components
def connected_components(G):
r"""
Connected components of an undirected graph or weakly connected components
of a directed graph.
Parameters
==========
graph : tuple[list, list[tuple[T, T]]
A tuple consisting of a list of vertices and a list of edges of
a graph whose connected components are to be found.
Examples
========
Given an undirected graph::
graph {
A -- B
C -- D
}
We can find the connected components using this function if we include
each edge in both directions::
>>> from sympy.utilities.iterables import connected_components
>>> V = ['A', 'B', 'C', 'D']
>>> E = [('A', 'B'), ('B', 'A'), ('C', 'D'), ('D', 'C')]
>>> connected_components((V, E))
[['A', 'B'], ['C', 'D']]
The weakly connected components of a directed graph can found the same
way.
Notes
=====
The vertices of the graph must be hashable for the data structures used.
If the vertices are unhashable replace them with integer indices.
This function uses Tarjan's algorithm to compute the connected components
in `O(|V|+|E|)` (linear) time.
References
==========
.. [1] https://en.wikipedia.org/wiki/Connected_component_(graph_theory)
.. [2] https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
See Also
========
sympy.utilities.iterables.strongly_connected_components
"""
# Duplicate edges both ways so that the graph is effectively undirected
# and return the strongly connected components:
V, E = G
E_undirected = []
for v1, v2 in E:
E_undirected.extend([(v1, v2), (v2, v1)])
return strongly_connected_components((V, E_undirected))
def rotate_left(x, y):
"""
Left rotates a list x by the number of steps specified
in y.
Examples
========
>>> from sympy.utilities.iterables import rotate_left
>>> a = [0, 1, 2]
>>> rotate_left(a, 1)
[1, 2, 0]
"""
if len(x) == 0:
return []
y = y % len(x)
return x[y:] + x[:y]
def rotate_right(x, y):
"""
Right rotates a list x by the number of steps specified
in y.
Examples
========
>>> from sympy.utilities.iterables import rotate_right
>>> a = [0, 1, 2]
>>> rotate_right(a, 1)
[2, 0, 1]
"""
if len(x) == 0:
return []
y = len(x) - y % len(x)
return x[y:] + x[:y]
def least_rotation(x, key=None):
'''
Returns the number of steps of left rotation required to
obtain lexicographically minimal string/list/tuple, etc.
Examples
========
>>> from sympy.utilities.iterables import least_rotation, rotate_left
>>> a = [3, 1, 5, 1, 2]
>>> least_rotation(a)
3
>>> rotate_left(a, _)
[1, 2, 3, 1, 5]
References
==========
.. [1] https://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation
'''
from sympy import Id
if key is None: key = Id
S = x + x # Concatenate string to it self to avoid modular arithmetic
f = [-1] * len(S) # Failure function
k = 0 # Least rotation of string found so far
for j in range(1,len(S)):
sj = S[j]
i = f[j-k-1]
while i != -1 and sj != S[k+i+1]:
if key(sj) < key(S[k+i+1]):
k = j-i-1
i = f[i]
if sj != S[k+i+1]:
if key(sj) < key(S[k]):
k = j
f[j-k] = -1
else:
f[j-k] = i+1
return k
def multiset_combinations(m, n, g=None):
"""
Return the unique combinations of size ``n`` from multiset ``m``.
Examples
========
>>> from sympy.utilities.iterables import multiset_combinations
>>> from itertools import combinations
>>> [''.join(i) for i in multiset_combinations('baby', 3)]
['abb', 'aby', 'bby']
>>> def count(f, s): return len(list(f(s, 3)))
The number of combinations depends on the number of letters; the
number of unique combinations depends on how the letters are
repeated.
>>> s1 = 'abracadabra'
>>> s2 = 'banana tree'
>>> count(combinations, s1), count(multiset_combinations, s1)
(165, 23)
>>> count(combinations, s2), count(multiset_combinations, s2)
(165, 54)
"""
if g is None:
if type(m) is dict:
if any(as_int(v) < 0 for v in m.values()):
raise ValueError('counts cannot be negative')
N = sum(m.values())
if n > N:
return
g = [[k, m[k]] for k in ordered(m)]
else:
m = list(m)
N = len(m)
if n > N:
return
try:
m = multiset(m)
g = [(k, m[k]) for k in ordered(m)]
except TypeError:
m = list(ordered(m))
g = [list(i) for i in group(m, multiple=False)]
del m
else:
# not checking counts since g is intended for internal use
N = sum(v for k, v in g)
if n > N or not n:
yield []
else:
for i, (k, v) in enumerate(g):
if v >= n:
yield [k]*n
v = n - 1
for v in range(min(n, v), 0, -1):
for j in multiset_combinations(None, n - v, g[i + 1:]):
rv = [k]*v + j
if len(rv) == n:
yield rv
def multiset_permutations(m, size=None, g=None):
"""
Return the unique permutations of multiset ``m``.
Examples
========
>>> from sympy.utilities.iterables import multiset_permutations
>>> from sympy import factorial
>>> [''.join(i) for i in multiset_permutations('aab')]
['aab', 'aba', 'baa']
>>> factorial(len('banana'))
720
>>> len(list(multiset_permutations('banana')))
60
"""
if g is None:
if type(m) is dict:
if any(as_int(v) < 0 for v in m.values()):
raise ValueError('counts cannot be negative')
g = [[k, m[k]] for k in ordered(m)]
else:
m = list(ordered(m))
g = [list(i) for i in group(m, multiple=False)]
del m
do = [gi for gi in g if gi[1] > 0]
SUM = sum([gi[1] for gi in do])
if not do or size is not None and (size > SUM or size < 1):
if not do and size is None or size == 0:
yield []
return
elif size == 1:
for k, v in do:
yield [k]
elif len(do) == 1:
k, v = do[0]
v = v if size is None else (size if size <= v else 0)
yield [k for i in range(v)]
elif all(v == 1 for k, v in do):
for p in permutations([k for k, v in do], size):
yield list(p)
else:
size = size if size is not None else SUM
for i, (k, v) in enumerate(do):
do[i][1] -= 1
for j in multiset_permutations(None, size - 1, do):
if j:
yield [k] + j
do[i][1] += 1
def _partition(seq, vector, m=None):
"""
Return the partition of seq as specified by the partition vector.
Examples
========
>>> from sympy.utilities.iterables import _partition
>>> _partition('abcde', [1, 0, 1, 2, 0])
[['b', 'e'], ['a', 'c'], ['d']]
Specifying the number of bins in the partition is optional:
>>> _partition('abcde', [1, 0, 1, 2, 0], 3)
[['b', 'e'], ['a', 'c'], ['d']]
The output of _set_partitions can be passed as follows:
>>> output = (3, [1, 0, 1, 2, 0])
>>> _partition('abcde', *output)
[['b', 'e'], ['a', 'c'], ['d']]
See Also
========
combinatorics.partitions.Partition.from_rgs
"""
if m is None:
m = max(vector) + 1
elif type(vector) is int: # entered as m, vector
vector, m = m, vector
p = [[] for i in range(m)]
for i, v in enumerate(vector):
p[v].append(seq[i])
return p
def _set_partitions(n):
"""Cycle through all partions of n elements, yielding the
current number of partitions, ``m``, and a mutable list, ``q``
such that element[i] is in part q[i] of the partition.
NOTE: ``q`` is modified in place and generally should not be changed
between function calls.
Examples
========
>>> from sympy.utilities.iterables import _set_partitions, _partition
>>> for m, q in _set_partitions(3):
... print('%s %s %s' % (m, q, _partition('abc', q, m)))
1 [0, 0, 0] [['a', 'b', 'c']]
2 [0, 0, 1] [['a', 'b'], ['c']]
2 [0, 1, 0] [['a', 'c'], ['b']]
2 [0, 1, 1] [['a'], ['b', 'c']]
3 [0, 1, 2] [['a'], ['b'], ['c']]
Notes
=====
This algorithm is similar to, and solves the same problem as,
Algorithm 7.2.1.5H, from volume 4A of Knuth's The Art of Computer
Programming. Knuth uses the term "restricted growth string" where
this code refers to a "partition vector". In each case, the meaning is
the same: the value in the ith element of the vector specifies to
which part the ith set element is to be assigned.
At the lowest level, this code implements an n-digit big-endian
counter (stored in the array q) which is incremented (with carries) to
get the next partition in the sequence. A special twist is that a
digit is constrained to be at most one greater than the maximum of all
the digits to the left of it. The array p maintains this maximum, so
that the code can efficiently decide when a digit can be incremented
in place or whether it needs to be reset to 0 and trigger a carry to
the next digit. The enumeration starts with all the digits 0 (which
corresponds to all the set elements being assigned to the same 0th
part), and ends with 0123...n, which corresponds to each set element
being assigned to a different, singleton, part.
This routine was rewritten to use 0-based lists while trying to
preserve the beauty and efficiency of the original algorithm.
References
==========
.. [1] Nijenhuis, Albert and Wilf, Herbert. (1978) Combinatorial Algorithms,
2nd Ed, p 91, algorithm "nexequ". Available online from
https://www.math.upenn.edu/~wilf/website/CombAlgDownld.html (viewed
November 17, 2012).
"""
p = [0]*n
q = [0]*n
nc = 1
yield nc, q
while nc != n:
m = n
while 1:
m -= 1
i = q[m]
if p[i] != 1:
break
q[m] = 0
i += 1
q[m] = i
m += 1
nc += m - n
p[0] += n - m
if i == nc:
p[nc] = 0
nc += 1
p[i - 1] -= 1
p[i] += 1
yield nc, q
def multiset_partitions(multiset, m=None):
"""
Return unique partitions of the given multiset (in list form).
If ``m`` is None, all multisets will be returned, otherwise only
partitions with ``m`` parts will be returned.
If ``multiset`` is an integer, a range [0, 1, ..., multiset - 1]
will be supplied.
Examples
========
>>> from sympy.utilities.iterables import multiset_partitions
>>> list(multiset_partitions([1, 2, 3, 4], 2))
[[[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 2], [3, 4]],
[[1, 3, 4], [2]], [[1, 3], [2, 4]], [[1, 4], [2, 3]],
[[1], [2, 3, 4]]]
>>> list(multiset_partitions([1, 2, 3, 4], 1))
[[[1, 2, 3, 4]]]
Only unique partitions are returned and these will be returned in a
canonical order regardless of the order of the input:
>>> a = [1, 2, 2, 1]
>>> ans = list(multiset_partitions(a, 2))
>>> a.sort()
>>> list(multiset_partitions(a, 2)) == ans
True
>>> a = range(3, 1, -1)
>>> (list(multiset_partitions(a)) ==
... list(multiset_partitions(sorted(a))))
True
If m is omitted then all partitions will be returned:
>>> list(multiset_partitions([1, 1, 2]))
[[[1, 1, 2]], [[1, 1], [2]], [[1, 2], [1]], [[1], [1], [2]]]
>>> list(multiset_partitions([1]*3))
[[[1, 1, 1]], [[1], [1, 1]], [[1], [1], [1]]]
Counting
========
The number of partitions of a set is given by the bell number:
>>> from sympy import bell
>>> len(list(multiset_partitions(5))) == bell(5) == 52
True
The number of partitions of length k from a set of size n is given by the
Stirling Number of the 2nd kind:
>>> from sympy.functions.combinatorial.numbers import stirling
>>> stirling(5, 2) == len(list(multiset_partitions(5, 2))) == 15
True
These comments on counting apply to *sets*, not multisets.
Notes
=====
When all the elements are the same in the multiset, the order
of the returned partitions is determined by the ``partitions``
routine. If one is counting partitions then it is better to use
the ``nT`` function.
See Also
========
partitions
sympy.combinatorics.partitions.Partition
sympy.combinatorics.partitions.IntegerPartition
sympy.functions.combinatorial.numbers.nT
"""
# This function looks at the supplied input and dispatches to
# several special-case routines as they apply.
if type(multiset) is int:
n = multiset
if m and m > n:
return
multiset = list(range(n))
if m == 1:
yield [multiset[:]]
return
# If m is not None, it can sometimes be faster to use
# MultisetPartitionTraverser.enum_range() even for inputs
# which are sets. Since the _set_partitions code is quite
# fast, this is only advantageous when the overall set
# partitions outnumber those with the desired number of parts
# by a large factor. (At least 60.) Such a switch is not
# currently implemented.
for nc, q in _set_partitions(n):
if m is None or nc == m:
rv = [[] for i in range(nc)]
for i in range(n):
rv[q[i]].append(multiset[i])
yield rv
return
if len(multiset) == 1 and isinstance(multiset, str):
multiset = [multiset]
if not has_variety(multiset):
# Only one component, repeated n times. The resulting
# partitions correspond to partitions of integer n.
n = len(multiset)
if m and m > n:
return
if m == 1:
yield [multiset[:]]
return
x = multiset[:1]
for size, p in partitions(n, m, size=True):
if m is None or size == m:
rv = []
for k in sorted(p):
rv.extend([x*k]*p[k])
yield rv
else:
multiset = list(ordered(multiset))
n = len(multiset)
if m and m > n:
return
if m == 1:
yield [multiset[:]]
return
# Split the information of the multiset into two lists -
# one of the elements themselves, and one (of the same length)
# giving the number of repeats for the corresponding element.
elements, multiplicities = zip(*group(multiset, False))
if len(elements) < len(multiset):
# General case - multiset with more than one distinct element
# and at least one element repeated more than once.
if m:
mpt = MultisetPartitionTraverser()
for state in mpt.enum_range(multiplicities, m-1, m):
yield list_visitor(state, elements)
else:
for state in multiset_partitions_taocp(multiplicities):
yield list_visitor(state, elements)
else:
# Set partitions case - no repeated elements. Pretty much
# same as int argument case above, with same possible, but
# currently unimplemented optimization for some cases when
# m is not None
for nc, q in _set_partitions(n):
if m is None or nc == m:
rv = [[] for i in range(nc)]
for i in range(n):
rv[q[i]].append(i)
yield [[multiset[j] for j in i] for i in rv]
def partitions(n, m=None, k=None, size=False):
"""Generate all partitions of positive integer, n.
Parameters
==========
m : integer (default gives partitions of all sizes)
limits number of parts in partition (mnemonic: m, maximum parts)
k : integer (default gives partitions number from 1 through n)
limits the numbers that are kept in the partition (mnemonic: k, keys)
size : bool (default False, only partition is returned)
when ``True`` then (M, P) is returned where M is the sum of the
multiplicities and P is the generated partition.
Each partition is represented as a dictionary, mapping an integer
to the number of copies of that integer in the partition. For example,
the first partition of 4 returned is {4: 1}, "4: one of them".
Examples
========
>>> from sympy.utilities.iterables import partitions
The numbers appearing in the partition (the key of the returned dict)
are limited with k:
>>> for p in partitions(6, k=2): # doctest: +SKIP
... print(p)
{2: 3}
{1: 2, 2: 2}
{1: 4, 2: 1}
{1: 6}
The maximum number of parts in the partition (the sum of the values in
the returned dict) are limited with m (default value, None, gives
partitions from 1 through n):
>>> for p in partitions(6, m=2): # doctest: +SKIP
... print(p)
...
{6: 1}
{1: 1, 5: 1}
{2: 1, 4: 1}
{3: 2}
References
==========
.. [1] modified from Tim Peter's version to allow for k and m values:
http://code.activestate.com/recipes/218332-generator-for-integer-partitions/
See Also
========
sympy.combinatorics.partitions.Partition
sympy.combinatorics.partitions.IntegerPartition
"""
if (n <= 0 or
m is not None and m < 1 or
k is not None and k < 1 or
m and k and m*k < n):
# the empty set is the only way to handle these inputs
# and returning {} to represent it is consistent with
# the counting convention, e.g. nT(0) == 1.
if size:
yield 0, {}
else:
yield {}
return
if m is None:
m = n
else:
m = min(m, n)
k = min(k or n, n)
n, m, k = as_int(n), as_int(m), as_int(k)
q, r = divmod(n, k)
ms = {k: q}
keys = [k] # ms.keys(), from largest to smallest
if r:
ms[r] = 1
keys.append(r)
room = m - q - bool(r)
if size:
yield sum(ms.values()), ms.copy()
else:
yield ms.copy()
while keys != [1]:
# Reuse any 1's.
if keys[-1] == 1:
del keys[-1]
reuse = ms.pop(1)
room += reuse
else:
reuse = 0
while 1:
# Let i be the smallest key larger than 1. Reuse one
# instance of i.
i = keys[-1]
newcount = ms[i] = ms[i] - 1
reuse += i
if newcount == 0:
del keys[-1], ms[i]
room += 1
# Break the remainder into pieces of size i-1.
i -= 1
q, r = divmod(reuse, i)
need = q + bool(r)
if need > room:
if not keys:
return
continue
ms[i] = q
keys.append(i)
if r:
ms[r] = 1
keys.append(r)
break
room -= need
if size:
yield sum(ms.values()), ms.copy()
else:
yield ms.copy()
def ordered_partitions(n, m=None, sort=True):
"""Generates ordered partitions of integer ``n``.
Parameters
==========
m : integer (default None)
The default value gives partitions of all sizes else only
those with size m. In addition, if ``m`` is not None then
partitions are generated *in place* (see examples).
sort : bool (default True)
Controls whether partitions are
returned in sorted order when ``m`` is not None; when False,
the partitions are returned as fast as possible with elements
sorted, but when m|n the partitions will not be in
ascending lexicographical order.
Examples
========
>>> from sympy.utilities.iterables import ordered_partitions
All partitions of 5 in ascending lexicographical:
>>> for p in ordered_partitions(5):
... print(p)
[1, 1, 1, 1, 1]
[1, 1, 1, 2]
[1, 1, 3]
[1, 2, 2]
[1, 4]
[2, 3]
[5]
Only partitions of 5 with two parts:
>>> for p in ordered_partitions(5, 2):
... print(p)
[1, 4]
[2, 3]
When ``m`` is given, a given list objects will be used more than
once for speed reasons so you will not see the correct partitions
unless you make a copy of each as it is generated:
>>> [p for p in ordered_partitions(7, 3)]
[[1, 1, 1], [1, 1, 1], [1, 1, 1], [2, 2, 2]]
>>> [list(p) for p in ordered_partitions(7, 3)]
[[1, 1, 5], [1, 2, 4], [1, 3, 3], [2, 2, 3]]
When ``n`` is a multiple of ``m``, the elements are still sorted
but the partitions themselves will be *unordered* if sort is False;
the default is to return them in ascending lexicographical order.
>>> for p in ordered_partitions(6, 2):
... print(p)
[1, 5]
[2, 4]
[3, 3]
But if speed is more important than ordering, sort can be set to
False:
>>> for p in ordered_partitions(6, 2, sort=False):
... print(p)
[1, 5]
[3, 3]
[2, 4]
References
==========
.. [1] Generating Integer Partitions, [online],
Available: https://jeromekelleher.net/generating-integer-partitions.html
.. [2] Jerome Kelleher and Barry O'Sullivan, "Generating All
Partitions: A Comparison Of Two Encodings", [online],
Available: https://arxiv.org/pdf/0909.2331v2.pdf
"""
if n < 1 or m is not None and m < 1:
# the empty set is the only way to handle these inputs
# and returning {} to represent it is consistent with
# the counting convention, e.g. nT(0) == 1.
yield []
return
if m is None:
# The list `a`'s leading elements contain the partition in which
# y is the biggest element and x is either the same as y or the
# 2nd largest element; v and w are adjacent element indices
# to which x and y are being assigned, respectively.
a = [1]*n
y = -1
v = n
while v > 0:
v -= 1
x = a[v] + 1
while y >= 2 * x:
a[v] = x
y -= x
v += 1
w = v + 1
while x <= y:
a[v] = x
a[w] = y
yield a[:w + 1]
x += 1
y -= 1
a[v] = x + y
y = a[v] - 1
yield a[:w]
elif m == 1:
yield [n]
elif n == m:
yield [1]*n
else:
# recursively generate partitions of size m
for b in range(1, n//m + 1):
a = [b]*m
x = n - b*m
if not x:
if sort:
yield a
elif not sort and x <= m:
for ax in ordered_partitions(x, sort=False):
mi = len(ax)
a[-mi:] = [i + b for i in ax]
yield a
a[-mi:] = [b]*mi
else:
for mi in range(1, m):
for ax in ordered_partitions(x, mi, sort=True):
a[-mi:] = [i + b for i in ax]
yield a
a[-mi:] = [b]*mi
def binary_partitions(n):
"""
Generates the binary partition of n.
A binary partition consists only of numbers that are
powers of two. Each step reduces a `2^{k+1}` to `2^k` and
`2^k`. Thus 16 is converted to 8 and 8.
Examples
========
>>> from sympy.utilities.iterables import binary_partitions
>>> for i in binary_partitions(5):
... print(i)
...
[4, 1]
[2, 2, 1]
[2, 1, 1, 1]
[1, 1, 1, 1, 1]
References
==========
.. [1] TAOCP 4, section 7.2.1.5, problem 64
"""
from math import ceil, log
power = int(2**(ceil(log(n, 2))))
acc = 0
partition = []
while power:
if acc + power <= n:
partition.append(power)
acc += power
power >>= 1
last_num = len(partition) - 1 - (n & 1)
while last_num >= 0:
yield partition
if partition[last_num] == 2:
partition[last_num] = 1
partition.append(1)
last_num -= 1
continue
partition.append(1)
partition[last_num] >>= 1
x = partition[last_num + 1] = partition[last_num]
last_num += 1
while x > 1:
if x <= len(partition) - last_num - 1:
del partition[-x + 1:]
last_num += 1
partition[last_num] = x
else:
x >>= 1
yield [1]*n
def has_dups(seq):
"""Return True if there are any duplicate elements in ``seq``.
Examples
========
>>> from sympy.utilities.iterables import has_dups
>>> from sympy import Dict, Set
>>> has_dups((1, 2, 1))
True
>>> has_dups(range(3))
False
>>> all(has_dups(c) is False for c in (set(), Set(), dict(), Dict()))
True
"""
from sympy.core.containers import Dict
from sympy.sets.sets import Set
if isinstance(seq, (dict, set, Dict, Set)):
return False
unique = set()
return any(True for s in seq if s in unique or unique.add(s))
def has_variety(seq):
"""Return True if there are any different elements in ``seq``.
Examples
========
>>> from sympy.utilities.iterables import has_variety
>>> has_variety((1, 2, 1))
True
>>> has_variety((1, 1, 1))
False
"""
for i, s in enumerate(seq):
if i == 0:
sentinel = s
else:
if s != sentinel:
return True
return False
def uniq(seq, result=None):
"""
Yield unique elements from ``seq`` as an iterator. The second
parameter ``result`` is used internally; it is not necessary
to pass anything for this.
Note: changing the sequence during iteration will raise a
RuntimeError if the size of the sequence is known; if you pass
an iterator and advance the iterator you will change the
output of this routine but there will be no warning.
Examples
========
>>> from sympy.utilities.iterables import uniq
>>> dat = [1, 4, 1, 5, 4, 2, 1, 2]
>>> type(uniq(dat)) in (list, tuple)
False
>>> list(uniq(dat))
[1, 4, 5, 2]
>>> list(uniq(x for x in dat))
[1, 4, 5, 2]
>>> list(uniq([[1], [2, 1], [1]]))
[[1], [2, 1]]
"""
try:
n = len(seq)
except TypeError:
n = None
def check():
# check that size of seq did not change during iteration;
# if n == None the object won't support size changing, e.g.
# an iterator can't be changed
if n is not None and len(seq) != n:
raise RuntimeError('sequence changed size during iteration')
try:
seen = set()
result = result or []
for i, s in enumerate(seq):
if not (s in seen or seen.add(s)):
yield s
check()
except TypeError:
if s not in result:
yield s
check()
result.append(s)
if hasattr(seq, '__getitem__'):
yield from uniq(seq[i + 1:], result)
else:
yield from uniq(seq, result)
def generate_bell(n):
"""Return permutations of [0, 1, ..., n - 1] such that each permutation
differs from the last by the exchange of a single pair of neighbors.
The ``n!`` permutations are returned as an iterator. In order to obtain
the next permutation from a random starting permutation, use the
``next_trotterjohnson`` method of the Permutation class (which generates
the same sequence in a different manner).
Examples
========
>>> from itertools import permutations
>>> from sympy.utilities.iterables import generate_bell
>>> from sympy import zeros, Matrix
This is the sort of permutation used in the ringing of physical bells,
and does not produce permutations in lexicographical order. Rather, the
permutations differ from each other by exactly one inversion, and the
position at which the swapping occurs varies periodically in a simple
fashion. Consider the first few permutations of 4 elements generated
by ``permutations`` and ``generate_bell``:
>>> list(permutations(range(4)))[:5]
[(0, 1, 2, 3), (0, 1, 3, 2), (0, 2, 1, 3), (0, 2, 3, 1), (0, 3, 1, 2)]
>>> list(generate_bell(4))[:5]
[(0, 1, 2, 3), (0, 1, 3, 2), (0, 3, 1, 2), (3, 0, 1, 2), (3, 0, 2, 1)]
Notice how the 2nd and 3rd lexicographical permutations have 3 elements
out of place whereas each "bell" permutation always has only two
elements out of place relative to the previous permutation (and so the
signature (+/-1) of a permutation is opposite of the signature of the
previous permutation).
How the position of inversion varies across the elements can be seen
by tracing out where the largest number appears in the permutations:
>>> m = zeros(4, 24)
>>> for i, p in enumerate(generate_bell(4)):
... m[:, i] = Matrix([j - 3 for j in list(p)]) # make largest zero
>>> m.print_nonzero('X')
[XXX XXXXXX XXXXXX XXX]
[XX XX XXXX XX XXXX XX XX]
[X XXXX XX XXXX XX XXXX X]
[ XXXXXX XXXXXX XXXXXX ]
See Also
========
sympy.combinatorics.permutations.Permutation.next_trotterjohnson
References
==========
.. [1] https://en.wikipedia.org/wiki/Method_ringing
.. [2] https://stackoverflow.com/questions/4856615/recursive-permutation/4857018
.. [3] http://programminggeeks.com/bell-algorithm-for-permutation/
.. [4] https://en.wikipedia.org/wiki/Steinhaus%E2%80%93Johnson%E2%80%93Trotter_algorithm
.. [5] Generating involutions, derangements, and relatives by ECO
Vincent Vajnovszki, DMTCS vol 1 issue 12, 2010
"""
n = as_int(n)
if n < 1:
raise ValueError('n must be a positive integer')
if n == 1:
yield (0,)
elif n == 2:
yield (0, 1)
yield (1, 0)
elif n == 3:
yield from [(0, 1, 2), (0, 2, 1), (2, 0, 1), (2, 1, 0), (1, 2, 0), (1, 0, 2)]
else:
m = n - 1
op = [0] + [-1]*m
l = list(range(n))
while True:
yield tuple(l)
# find biggest element with op
big = None, -1 # idx, value
for i in range(n):
if op[i] and l[i] > big[1]:
big = i, l[i]
i, _ = big
if i is None:
break # there are no ops left
# swap it with neighbor in the indicated direction
j = i + op[i]
l[i], l[j] = l[j], l[i]
op[i], op[j] = op[j], op[i]
# if it landed at the end or if the neighbor in the same
# direction is bigger then turn off op
if j == 0 or j == m or l[j + op[j]] > l[j]:
op[j] = 0
# any element bigger to the left gets +1 op
for i in range(j):
if l[i] > l[j]:
op[i] = 1
# any element bigger to the right gets -1 op
for i in range(j + 1, n):
if l[i] > l[j]:
op[i] = -1
def generate_involutions(n):
"""
Generates involutions.
An involution is a permutation that when multiplied
by itself equals the identity permutation. In this
implementation the involutions are generated using
Fixed Points.
Alternatively, an involution can be considered as
a permutation that does not contain any cycles with
a length that is greater than two.
Examples
========
>>> from sympy.utilities.iterables import generate_involutions
>>> list(generate_involutions(3))
[(0, 1, 2), (0, 2, 1), (1, 0, 2), (2, 1, 0)]
>>> len(list(generate_involutions(4)))
10
References
==========
.. [1] http://mathworld.wolfram.com/PermutationInvolution.html
"""
idx = list(range(n))
for p in permutations(idx):
for i in idx:
if p[p[i]] != i:
break
else:
yield p
def generate_derangements(perm):
"""
Routine to generate unique derangements.
TODO: This will be rewritten to use the
ECO operator approach once the permutations
branch is in master.
Examples
========
>>> from sympy.utilities.iterables import generate_derangements
>>> list(generate_derangements([0, 1, 2]))
[[1, 2, 0], [2, 0, 1]]
>>> list(generate_derangements([0, 1, 2, 3]))
[[1, 0, 3, 2], [1, 2, 3, 0], [1, 3, 0, 2], [2, 0, 3, 1], \
[2, 3, 0, 1], [2, 3, 1, 0], [3, 0, 1, 2], [3, 2, 0, 1], \
[3, 2, 1, 0]]
>>> list(generate_derangements([0, 1, 1]))
[]
See Also
========
sympy.functions.combinatorial.factorials.subfactorial
"""
for p in multiset_permutations(perm):
if not any(i == j for i, j in zip(perm, p)):
yield p
def necklaces(n, k, free=False):
"""
A routine to generate necklaces that may (free=True) or may not
(free=False) be turned over to be viewed. The "necklaces" returned
are comprised of ``n`` integers (beads) with ``k`` different
values (colors). Only unique necklaces are returned.
Examples
========
>>> from sympy.utilities.iterables import necklaces, bracelets
>>> def show(s, i):
... return ''.join(s[j] for j in i)
The "unrestricted necklace" is sometimes also referred to as a
"bracelet" (an object that can be turned over, a sequence that can
be reversed) and the term "necklace" is used to imply a sequence
that cannot be reversed. So ACB == ABC for a bracelet (rotate and
reverse) while the two are different for a necklace since rotation
alone cannot make the two sequences the same.
(mnemonic: Bracelets can be viewed Backwards, but Not Necklaces.)
>>> B = [show('ABC', i) for i in bracelets(3, 3)]
>>> N = [show('ABC', i) for i in necklaces(3, 3)]
>>> set(N) - set(B)
{'ACB'}
>>> list(necklaces(4, 2))
[(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1),
(0, 1, 0, 1), (0, 1, 1, 1), (1, 1, 1, 1)]
>>> [show('.o', i) for i in bracelets(4, 2)]
['....', '...o', '..oo', '.o.o', '.ooo', 'oooo']
References
==========
.. [1] http://mathworld.wolfram.com/Necklace.html
"""
return uniq(minlex(i, directed=not free) for i in
variations(list(range(k)), n, repetition=True))
def bracelets(n, k):
"""Wrapper to necklaces to return a free (unrestricted) necklace."""
return necklaces(n, k, free=True)
def generate_oriented_forest(n):
"""
This algorithm generates oriented forests.
An oriented graph is a directed graph having no symmetric pair of directed
edges. A forest is an acyclic graph, i.e., it has no cycles. A forest can
also be described as a disjoint union of trees, which are graphs in which
any two vertices are connected by exactly one simple path.
Examples
========
>>> from sympy.utilities.iterables import generate_oriented_forest
>>> list(generate_oriented_forest(4))
[[0, 1, 2, 3], [0, 1, 2, 2], [0, 1, 2, 1], [0, 1, 2, 0], \
[0, 1, 1, 1], [0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 0]]
References
==========
.. [1] T. Beyer and S.M. Hedetniemi: constant time generation of
rooted trees, SIAM J. Computing Vol. 9, No. 4, November 1980
.. [2] https://stackoverflow.com/questions/1633833/oriented-forest-taocp-algorithm-in-python
"""
P = list(range(-1, n))
while True:
yield P[1:]
if P[n] > 0:
P[n] = P[P[n]]
else:
for p in range(n - 1, 0, -1):
if P[p] != 0:
target = P[p] - 1
for q in range(p - 1, 0, -1):
if P[q] == target:
break
offset = p - q
for i in range(p, n + 1):
P[i] = P[i - offset]
break
else:
break
def minlex(seq, directed=True, key=None):
"""
Return the rotation of the sequence in which the lexically smallest
elements appear first, e.g. `cba ->acb`.
The sequence returned is a tuple, unless the input sequence is a string
in which case a string is returned.
If ``directed`` is False then the smaller of the sequence and the
reversed sequence is returned, e.g. `cba -> abc`.
If ``key`` is not None then it is used to extract a comparison key from each element in iterable.
Examples
========
>>> from sympy.combinatorics.polyhedron import minlex
>>> minlex((1, 2, 0))
(0, 1, 2)
>>> minlex((1, 0, 2))
(0, 2, 1)
>>> minlex((1, 0, 2), directed=False)
(0, 1, 2)
>>> minlex('11010011000', directed=True)
'00011010011'
>>> minlex('11010011000', directed=False)
'00011001011'
>>> minlex(('bb', 'aaa', 'c', 'a'))
('a', 'bb', 'aaa', 'c')
>>> minlex(('bb', 'aaa', 'c', 'a'), key=len)
('c', 'a', 'bb', 'aaa')
"""
from sympy import Id
if key is None: key = Id
best = rotate_left(seq, least_rotation(seq, key=key))
if not directed:
rseq = seq[::-1]
rbest = rotate_left(rseq, least_rotation(rseq, key=key))
best = min(best, rbest, key=key)
# Convert to tuple, unless we started with a string.
return tuple(best) if not isinstance(seq, str) else best
def runs(seq, op=gt):
"""Group the sequence into lists in which successive elements
all compare the same with the comparison operator, ``op``:
op(seq[i + 1], seq[i]) is True from all elements in a run.
Examples
========
>>> from sympy.utilities.iterables import runs
>>> from operator import ge
>>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2])
[[0, 1, 2], [2], [1, 4], [3], [2], [2]]
>>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2], op=ge)
[[0, 1, 2, 2], [1, 4], [3], [2, 2]]
"""
cycles = []
seq = iter(seq)
try:
run = [next(seq)]
except StopIteration:
return []
while True:
try:
ei = next(seq)
except StopIteration:
break
if op(ei, run[-1]):
run.append(ei)
continue
else:
cycles.append(run)
run = [ei]
if run:
cycles.append(run)
return cycles
def kbins(l, k, ordered=None):
"""
Return sequence ``l`` partitioned into ``k`` bins.
Examples
========
>>> from __future__ import print_function
The default is to give the items in the same order, but grouped
into k partitions without any reordering:
>>> from sympy.utilities.iterables import kbins
>>> for p in kbins(list(range(5)), 2):
... print(p)
...
[[0], [1, 2, 3, 4]]
[[0, 1], [2, 3, 4]]
[[0, 1, 2], [3, 4]]
[[0, 1, 2, 3], [4]]
The ``ordered`` flag is either None (to give the simple partition
of the elements) or is a 2 digit integer indicating whether the order of
the bins and the order of the items in the bins matters. Given::
A = [[0], [1, 2]]
B = [[1, 2], [0]]
C = [[2, 1], [0]]
D = [[0], [2, 1]]
the following values for ``ordered`` have the shown meanings::
00 means A == B == C == D
01 means A == B
10 means A == D
11 means A == A
>>> for ordered_flag in [None, 0, 1, 10, 11]:
... print('ordered = %s' % ordered_flag)
... for p in kbins(list(range(3)), 2, ordered=ordered_flag):
... print(' %s' % p)
...
ordered = None
[[0], [1, 2]]
[[0, 1], [2]]
ordered = 0
[[0, 1], [2]]
[[0, 2], [1]]
[[0], [1, 2]]
ordered = 1
[[0], [1, 2]]
[[0], [2, 1]]
[[1], [0, 2]]
[[1], [2, 0]]
[[2], [0, 1]]
[[2], [1, 0]]
ordered = 10
[[0, 1], [2]]
[[2], [0, 1]]
[[0, 2], [1]]
[[1], [0, 2]]
[[0], [1, 2]]
[[1, 2], [0]]
ordered = 11
[[0], [1, 2]]
[[0, 1], [2]]
[[0], [2, 1]]
[[0, 2], [1]]
[[1], [0, 2]]
[[1, 0], [2]]
[[1], [2, 0]]
[[1, 2], [0]]
[[2], [0, 1]]
[[2, 0], [1]]
[[2], [1, 0]]
[[2, 1], [0]]
See Also
========
partitions, multiset_partitions
"""
def partition(lista, bins):
# EnricoGiampieri's partition generator from
# https://stackoverflow.com/questions/13131491/
# partition-n-items-into-k-bins-in-python-lazily
if len(lista) == 1 or bins == 1:
yield [lista]
elif len(lista) > 1 and bins > 1:
for i in range(1, len(lista)):
for part in partition(lista[i:], bins - 1):
if len([lista[:i]] + part) == bins:
yield [lista[:i]] + part
if ordered is None:
yield from partition(l, k)
elif ordered == 11:
for pl in multiset_permutations(l):
pl = list(pl)
yield from partition(pl, k)
elif ordered == 00:
yield from multiset_partitions(l, k)
elif ordered == 10:
for p in multiset_partitions(l, k):
for perm in permutations(p):
yield list(perm)
elif ordered == 1:
for kgot, p in partitions(len(l), k, size=True):
if kgot != k:
continue
for li in multiset_permutations(l):
rv = []
i = j = 0
li = list(li)
for size, multiplicity in sorted(p.items()):
for m in range(multiplicity):
j = i + size
rv.append(li[i: j])
i = j
yield rv
else:
raise ValueError(
'ordered must be one of 00, 01, 10 or 11, not %s' % ordered)
def permute_signs(t):
"""Return iterator in which the signs of non-zero elements
of t are permuted.
Examples
========
>>> from sympy.utilities.iterables import permute_signs
>>> list(permute_signs((0, 1, 2)))
[(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2)]
"""
for signs in product(*[(1, -1)]*(len(t) - t.count(0))):
signs = list(signs)
yield type(t)([i*signs.pop() if i else i for i in t])
def signed_permutations(t):
"""Return iterator in which the signs of non-zero elements
of t and the order of the elements are permuted.
Examples
========
>>> from sympy.utilities.iterables import signed_permutations
>>> list(signed_permutations((0, 1, 2)))
[(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2), (0, 2, 1),
(0, -2, 1), (0, 2, -1), (0, -2, -1), (1, 0, 2), (-1, 0, 2),
(1, 0, -2), (-1, 0, -2), (1, 2, 0), (-1, 2, 0), (1, -2, 0),
(-1, -2, 0), (2, 0, 1), (-2, 0, 1), (2, 0, -1), (-2, 0, -1),
(2, 1, 0), (-2, 1, 0), (2, -1, 0), (-2, -1, 0)]
"""
return (type(t)(i) for j in permutations(t)
for i in permute_signs(j))
def rotations(s, dir=1):
"""Return a generator giving the items in s as list where
each subsequent list has the items rotated to the left (default)
or right (dir=-1) relative to the previous list.
Examples
========
>>> from sympy.utilities.iterables import rotations
>>> list(rotations([1,2,3]))
[[1, 2, 3], [2, 3, 1], [3, 1, 2]]
>>> list(rotations([1,2,3], -1))
[[1, 2, 3], [3, 1, 2], [2, 3, 1]]
"""
seq = list(s)
for i in range(len(seq)):
yield seq
seq = rotate_left(seq, dir)
def roundrobin(*iterables):
"""roundrobin recipe taken from itertools documentation:
https://docs.python.org/2/library/itertools.html#recipes
roundrobin('ABC', 'D', 'EF') --> A D E B F C
Recipe credited to George Sakkis
"""
import itertools
nexts = itertools.cycle(iter(it).__next__ for it in iterables)
pending = len(iterables)
while pending:
try:
for nxt in nexts:
yield nxt()
except StopIteration:
pending -= 1
nexts = itertools.cycle(itertools.islice(nexts, pending))
|
5cd7f9760ea406254daeafb83e029f8f3f22692e3d0fcb8749f5cf58b60481a9 | """Miscellaneous stuff that doesn't really fit anywhere else."""
from typing import List
import sys
import os
import re as _re
import struct
from textwrap import fill, dedent
from sympy.core.compatibility import as_int
from sympy.core.decorators import deprecated
class Undecidable(ValueError):
# an error to be raised when a decision cannot be made definitively
# where a definitive answer is needed
pass
def filldedent(s, w=70):
"""
Strips leading and trailing empty lines from a copy of `s`, then dedents,
fills and returns it.
Empty line stripping serves to deal with docstrings like this one that
start with a newline after the initial triple quote, inserting an empty
line at the beginning of the string.
See Also
========
strlines, rawlines
"""
return '\n' + fill(dedent(str(s)).strip('\n'), width=w)
def strlines(s, c=64, short=False):
"""Return a cut-and-pastable string that, when printed, is
equivalent to the input. The lines will be surrounded by
parentheses and no line will be longer than c (default 64)
characters. If the line contains newlines characters, the
`rawlines` result will be returned. If ``short`` is True
(default is False) then if there is one line it will be
returned without bounding parentheses.
Examples
========
>>> from sympy.utilities.misc import strlines
>>> q = 'this is a long string that should be broken into shorter lines'
>>> print(strlines(q, 40))
(
'this is a long string that should be b'
'roken into shorter lines'
)
>>> q == (
... 'this is a long string that should be b'
... 'roken into shorter lines'
... )
True
See Also
========
filldedent, rawlines
"""
if type(s) is not str:
raise ValueError('expecting string input')
if '\n' in s:
return rawlines(s)
q = '"' if repr(s).startswith('"') else "'"
q = (q,)*2
if '\\' in s: # use r-string
m = '(\nr%s%%s%s\n)' % q
j = '%s\nr%s' % q
c -= 3
else:
m = '(\n%s%%s%s\n)' % q
j = '%s\n%s' % q
c -= 2
out = []
while s:
out.append(s[:c])
s=s[c:]
if short and len(out) == 1:
return (m % out[0]).splitlines()[1] # strip bounding (\n...\n)
return m % j.join(out)
def rawlines(s):
"""Return a cut-and-pastable string that, when printed, is equivalent
to the input. Use this when there is more than one line in the
string. The string returned is formatted so it can be indented
nicely within tests; in some cases it is wrapped in the dedent
function which has to be imported from textwrap.
Examples
========
Note: because there are characters in the examples below that need
to be escaped because they are themselves within a triple quoted
docstring, expressions below look more complicated than they would
be if they were printed in an interpreter window.
>>> from sympy.utilities.misc import rawlines
>>> from sympy import TableForm
>>> s = str(TableForm([[1, 10]], headings=(None, ['a', 'bee'])))
>>> print(rawlines(s))
(
'a bee\\n'
'-----\\n'
'1 10 '
)
>>> print(rawlines('''this
... that'''))
dedent('''\\
this
that''')
>>> print(rawlines('''this
... that
... '''))
dedent('''\\
this
that
''')
>>> s = \"\"\"this
... is a triple '''
... \"\"\"
>>> print(rawlines(s))
dedent(\"\"\"\\
this
is a triple '''
\"\"\")
>>> print(rawlines('''this
... that
... '''))
(
'this\\n'
'that\\n'
' '
)
See Also
========
filldedent, strlines
"""
lines = s.split('\n')
if len(lines) == 1:
return repr(lines[0])
triple = ["'''" in s, '"""' in s]
if any(li.endswith(' ') for li in lines) or '\\' in s or all(triple):
rv = []
# add on the newlines
trailing = s.endswith('\n')
last = len(lines) - 1
for i, li in enumerate(lines):
if i != last or trailing:
rv.append(repr(li + '\n'))
else:
rv.append(repr(li))
return '(\n %s\n)' % '\n '.join(rv)
else:
rv = '\n '.join(lines)
if triple[0]:
return 'dedent("""\\\n %s""")' % rv
else:
return "dedent('''\\\n %s''')" % rv
ARCH = str(struct.calcsize('P') * 8) + "-bit"
# XXX: PyPy doesn't support hash randomization
HASH_RANDOMIZATION = getattr(sys.flags, 'hash_randomization', False)
_debug_tmp = [] # type: List[str]
_debug_iter = 0
def debug_decorator(func):
"""If SYMPY_DEBUG is True, it will print a nice execution tree with
arguments and results of all decorated functions, else do nothing.
"""
from sympy import SYMPY_DEBUG
if not SYMPY_DEBUG:
return func
def maketree(f, *args, **kw):
global _debug_tmp
global _debug_iter
oldtmp = _debug_tmp
_debug_tmp = []
_debug_iter += 1
def tree(subtrees):
def indent(s, variant=1):
x = s.split("\n")
r = "+-%s\n" % x[0]
for a in x[1:]:
if a == "":
continue
if variant == 1:
r += "| %s\n" % a
else:
r += " %s\n" % a
return r
if len(subtrees) == 0:
return ""
f = []
for a in subtrees[:-1]:
f.append(indent(a))
f.append(indent(subtrees[-1], 2))
return ''.join(f)
# If there is a bug and the algorithm enters an infinite loop, enable the
# following lines. It will print the names and parameters of all major functions
# that are called, *before* they are called
#from functools import reduce
#print("%s%s %s%s" % (_debug_iter, reduce(lambda x, y: x + y, \
# map(lambda x: '-', range(1, 2 + _debug_iter))), f.__name__, args))
r = f(*args, **kw)
_debug_iter -= 1
s = "%s%s = %s\n" % (f.__name__, args, r)
if _debug_tmp != []:
s += tree(_debug_tmp)
_debug_tmp = oldtmp
_debug_tmp.append(s)
if _debug_iter == 0:
print(_debug_tmp[0])
_debug_tmp = []
return r
def decorated(*args, **kwargs):
return maketree(func, *args, **kwargs)
return decorated
def debug(*args):
"""
Print ``*args`` if SYMPY_DEBUG is True, else do nothing.
"""
from sympy import SYMPY_DEBUG
if SYMPY_DEBUG:
print(*args, file=sys.stderr)
@deprecated(
useinstead="the builtin ``shutil.which`` function",
issue=19634,
deprecated_since_version="1.7")
def find_executable(executable, path=None):
"""Try to find 'executable' in the directories listed in 'path' (a
string listing directories separated by 'os.pathsep'; defaults to
os.environ['PATH']). Returns the complete filename or None if not
found
"""
if path is None:
path = os.environ['PATH']
paths = path.split(os.pathsep)
extlist = ['']
if os.name == 'os2':
(base, ext) = os.path.splitext(executable)
# executable files on OS/2 can have an arbitrary extension, but
# .exe is automatically appended if no dot is present in the name
if not ext:
executable = executable + ".exe"
elif sys.platform == 'win32':
pathext = os.environ['PATHEXT'].lower().split(os.pathsep)
(base, ext) = os.path.splitext(executable)
if ext.lower() not in pathext:
extlist = pathext
for ext in extlist:
execname = executable + ext
if os.path.isfile(execname):
return execname
else:
for p in paths:
f = os.path.join(p, execname)
if os.path.isfile(f):
return f
return None
def func_name(x, short=False):
"""Return function name of `x` (if defined) else the `type(x)`.
If short is True and there is a shorter alias for the result,
return the alias.
Examples
========
>>> from sympy.utilities.misc import func_name
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> func_name(Matrix.eye(3))
'MutableDenseMatrix'
>>> func_name(x < 1)
'StrictLessThan'
>>> func_name(x < 1, short=True)
'Lt'
"""
alias = {
'GreaterThan': 'Ge',
'StrictGreaterThan': 'Gt',
'LessThan': 'Le',
'StrictLessThan': 'Lt',
'Equality': 'Eq',
'Unequality': 'Ne',
}
typ = type(x)
if str(typ).startswith("<type '"):
typ = str(typ).split("'")[1].split("'")[0]
elif str(typ).startswith("<class '"):
typ = str(typ).split("'")[1].split("'")[0]
rv = getattr(getattr(x, 'func', x), '__name__', typ)
if '.' in rv:
rv = rv.split('.')[-1]
if short:
rv = alias.get(rv, rv)
return rv
def _replace(reps):
"""Return a function that can make the replacements, given in
``reps``, on a string. The replacements should be given as mapping.
Examples
========
>>> from sympy.utilities.misc import _replace
>>> f = _replace(dict(foo='bar', d='t'))
>>> f('food')
'bart'
>>> f = _replace({})
>>> f('food')
'food'
"""
if not reps:
return lambda x: x
D = lambda match: reps[match.group(0)]
pattern = _re.compile("|".join(
[_re.escape(k) for k, v in reps.items()]), _re.M)
return lambda string: pattern.sub(D, string)
def replace(string, *reps):
"""Return ``string`` with all keys in ``reps`` replaced with
their corresponding values, longer strings first, irrespective
of the order they are given. ``reps`` may be passed as tuples
or a single mapping.
Examples
========
>>> from sympy.utilities.misc import replace
>>> replace('foo', {'oo': 'ar', 'f': 'b'})
'bar'
>>> replace("spamham sha", ("spam", "eggs"), ("sha","md5"))
'eggsham md5'
There is no guarantee that a unique answer will be
obtained if keys in a mapping overlap (i.e. are the same
length and have some identical sequence at the
beginning/end):
>>> reps = [
... ('ab', 'x'),
... ('bc', 'y')]
>>> replace('abc', *reps) in ('xc', 'ay')
True
References
==========
.. [1] https://stackoverflow.com/questions/6116978/python-replace-multiple-strings
"""
if len(reps) == 1:
kv = reps[0]
if type(kv) is dict:
reps = kv
else:
return string.replace(*kv)
else:
reps = dict(reps)
return _replace(reps)(string)
def translate(s, a, b=None, c=None):
"""Return ``s`` where characters have been replaced or deleted.
SYNTAX
======
translate(s, None, deletechars):
all characters in ``deletechars`` are deleted
translate(s, map [,deletechars]):
all characters in ``deletechars`` (if provided) are deleted
then the replacements defined by map are made; if the keys
of map are strings then the longer ones are handled first.
Multicharacter deletions should have a value of ''.
translate(s, oldchars, newchars, deletechars)
all characters in ``deletechars`` are deleted
then each character in ``oldchars`` is replaced with the
corresponding character in ``newchars``
Examples
========
>>> from sympy.utilities.misc import translate
>>> abc = 'abc'
>>> translate(abc, None, 'a')
'bc'
>>> translate(abc, {'a': 'x'}, 'c')
'xb'
>>> translate(abc, {'abc': 'x', 'a': 'y'})
'x'
>>> translate('abcd', 'ac', 'AC', 'd')
'AbC'
There is no guarantee that a unique answer will be
obtained if keys in a mapping overlap are the same
length and have some identical sequences at the
beginning/end:
>>> translate(abc, {'ab': 'x', 'bc': 'y'}) in ('xc', 'ay')
True
"""
mr = {}
if a is None:
if c is not None:
raise ValueError('c should be None when a=None is passed, instead got %s' % c)
if b is None:
return s
c = b
a = b = ''
else:
if type(a) is dict:
short = {}
for k in list(a.keys()):
if len(k) == 1 and len(a[k]) == 1:
short[k] = a.pop(k)
mr = a
c = b
if short:
a, b = [''.join(i) for i in list(zip(*short.items()))]
else:
a = b = ''
elif len(a) != len(b):
raise ValueError('oldchars and newchars have different lengths')
if c:
val = str.maketrans('', '', c)
s = s.translate(val)
s = replace(s, mr)
n = str.maketrans(a, b)
return s.translate(n)
def ordinal(num):
"""Return ordinal number string of num, e.g. 1 becomes 1st.
"""
# modified from https://codereview.stackexchange.com/questions/41298/producing-ordinal-numbers
n = as_int(num)
k = abs(n) % 100
if 11 <= k <= 13:
suffix = 'th'
elif k % 10 == 1:
suffix = 'st'
elif k % 10 == 2:
suffix = 'nd'
elif k % 10 == 3:
suffix = 'rd'
else:
suffix = 'th'
return str(n) + suffix
|
d7eb41aa6b65a2820cf29f007a506ca0ce974905969fce227d484f0c5c1558ff | """A module providing information about the necessity of brackets"""
from sympy.core.function import _coeff_isneg
# Default precedence values for some basic types
PRECEDENCE = {
"Lambda": 1,
"Xor": 10,
"Or": 20,
"And": 30,
"Relational": 35,
"Add": 40,
"Mul": 50,
"Pow": 60,
"Func": 70,
"Not": 100,
"Atom": 1000,
"BitwiseOr": 36,
"BitwiseXor": 37,
"BitwiseAnd": 38
}
# A dictionary assigning precedence values to certain classes. These values are
# treated like they were inherited, so not every single class has to be named
# here.
# Do not use this with printers other than StrPrinter
PRECEDENCE_VALUES = {
"Equivalent": PRECEDENCE["Xor"],
"Xor": PRECEDENCE["Xor"],
"Implies": PRECEDENCE["Xor"],
"Or": PRECEDENCE["Or"],
"And": PRECEDENCE["And"],
"Add": PRECEDENCE["Add"],
"Pow": PRECEDENCE["Pow"],
"Relational": PRECEDENCE["Relational"],
"Sub": PRECEDENCE["Add"],
"Not": PRECEDENCE["Not"],
"Function" : PRECEDENCE["Func"],
"NegativeInfinity": PRECEDENCE["Add"],
"MatAdd": PRECEDENCE["Add"],
"MatPow": PRECEDENCE["Pow"],
"MatrixSolve": PRECEDENCE["Mul"],
"TensAdd": PRECEDENCE["Add"],
# As soon as `TensMul` is a subclass of `Mul`, remove this:
"TensMul": PRECEDENCE["Mul"],
"HadamardProduct": PRECEDENCE["Mul"],
"HadamardPower": PRECEDENCE["Pow"],
"KroneckerProduct": PRECEDENCE["Mul"],
"Equality": PRECEDENCE["Mul"],
"Unequality": PRECEDENCE["Mul"],
}
# Sometimes it's not enough to assign a fixed precedence value to a
# class. Then a function can be inserted in this dictionary that takes
# an instance of this class as argument and returns the appropriate
# precedence value.
# Precedence functions
def precedence_Mul(item):
if _coeff_isneg(item):
return PRECEDENCE["Add"]
return PRECEDENCE["Mul"]
def precedence_Rational(item):
if item.p < 0:
return PRECEDENCE["Add"]
return PRECEDENCE["Mul"]
def precedence_Integer(item):
if item.p < 0:
return PRECEDENCE["Add"]
return PRECEDENCE["Atom"]
def precedence_Float(item):
if item < 0:
return PRECEDENCE["Add"]
return PRECEDENCE["Atom"]
def precedence_PolyElement(item):
if item.is_generator:
return PRECEDENCE["Atom"]
elif item.is_ground:
return precedence(item.coeff(1))
elif item.is_term:
return PRECEDENCE["Mul"]
else:
return PRECEDENCE["Add"]
def precedence_FracElement(item):
if item.denom == 1:
return precedence_PolyElement(item.numer)
else:
return PRECEDENCE["Mul"]
def precedence_UnevaluatedExpr(item):
return precedence(item.args[0]) - 0.5
PRECEDENCE_FUNCTIONS = {
"Integer": precedence_Integer,
"Mul": precedence_Mul,
"Rational": precedence_Rational,
"Float": precedence_Float,
"PolyElement": precedence_PolyElement,
"FracElement": precedence_FracElement,
"UnevaluatedExpr": precedence_UnevaluatedExpr,
}
def precedence(item):
"""Returns the precedence of a given object.
This is the precedence for StrPrinter.
"""
if hasattr(item, "precedence"):
return item.precedence
try:
mro = item.__class__.__mro__
except AttributeError:
return PRECEDENCE["Atom"]
for i in mro:
n = i.__name__
if n in PRECEDENCE_FUNCTIONS:
return PRECEDENCE_FUNCTIONS[n](item)
elif n in PRECEDENCE_VALUES:
return PRECEDENCE_VALUES[n]
return PRECEDENCE["Atom"]
PRECEDENCE_TRADITIONAL = PRECEDENCE.copy()
PRECEDENCE_TRADITIONAL['Integral'] = PRECEDENCE["Mul"]
PRECEDENCE_TRADITIONAL['Sum'] = PRECEDENCE["Mul"]
PRECEDENCE_TRADITIONAL['Product'] = PRECEDENCE["Mul"]
PRECEDENCE_TRADITIONAL['Limit'] = PRECEDENCE["Mul"]
PRECEDENCE_TRADITIONAL['Derivative'] = PRECEDENCE["Mul"]
PRECEDENCE_TRADITIONAL['TensorProduct'] = PRECEDENCE["Mul"]
PRECEDENCE_TRADITIONAL['Transpose'] = PRECEDENCE["Pow"]
PRECEDENCE_TRADITIONAL['Adjoint'] = PRECEDENCE["Pow"]
PRECEDENCE_TRADITIONAL['Dot'] = PRECEDENCE["Mul"] - 1
PRECEDENCE_TRADITIONAL['Cross'] = PRECEDENCE["Mul"] - 1
PRECEDENCE_TRADITIONAL['Gradient'] = PRECEDENCE["Mul"] - 1
PRECEDENCE_TRADITIONAL['Divergence'] = PRECEDENCE["Mul"] - 1
PRECEDENCE_TRADITIONAL['Curl'] = PRECEDENCE["Mul"] - 1
PRECEDENCE_TRADITIONAL['Laplacian'] = PRECEDENCE["Mul"] - 1
PRECEDENCE_TRADITIONAL['Union'] = PRECEDENCE['Xor']
PRECEDENCE_TRADITIONAL['Intersection'] = PRECEDENCE['Xor']
PRECEDENCE_TRADITIONAL['Complement'] = PRECEDENCE['Xor']
PRECEDENCE_TRADITIONAL['SymmetricDifference'] = PRECEDENCE['Xor']
PRECEDENCE_TRADITIONAL['ProductSet'] = PRECEDENCE['Xor']
def precedence_traditional(item):
"""Returns the precedence of a given object according to the
traditional rules of mathematics.
This is the precedence for the LaTeX and pretty printer.
"""
# Integral, Sum, Product, Limit have the precedence of Mul in LaTeX,
# the precedence of Atom for other printers:
from sympy.core.expr import UnevaluatedExpr
if isinstance(item, UnevaluatedExpr):
return precedence_traditional(item.args[0])
n = item.__class__.__name__
if n in PRECEDENCE_TRADITIONAL:
return PRECEDENCE_TRADITIONAL[n]
return precedence(item)
|
075bbac7b0491068b4a0caf6faad5caf951d247191558a91fe5ad3e0a98f0b67 | from sympy.core import S
from .pycode import PythonCodePrinter, _known_functions_math, _print_known_const, _print_known_func, _unpack_integral_limits
from .codeprinter import CodePrinter
_not_in_numpy = 'erf erfc factorial gamma loggamma'.split()
_in_numpy = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_numpy]
_known_functions_numpy = dict(_in_numpy, **{
'acos': 'arccos',
'acosh': 'arccosh',
'asin': 'arcsin',
'asinh': 'arcsinh',
'atan': 'arctan',
'atan2': 'arctan2',
'atanh': 'arctanh',
'exp2': 'exp2',
'sign': 'sign',
'logaddexp': 'logaddexp',
'logaddexp2': 'logaddexp2',
})
_known_constants_numpy = {
'Exp1': 'e',
'Pi': 'pi',
'EulerGamma': 'euler_gamma',
'NaN': 'nan',
'Infinity': 'PINF',
'NegativeInfinity': 'NINF'
}
_numpy_known_functions = {k: 'numpy.' + v for k, v in _known_functions_numpy.items()}
_numpy_known_constants = {k: 'numpy.' + v for k, v in _known_constants_numpy.items()}
class NumPyPrinter(PythonCodePrinter):
"""
Numpy printer which handles vectorized piecewise functions,
logical operators, etc.
"""
_module = 'numpy'
_kf = _numpy_known_functions
_kc = _numpy_known_constants
def __init__(self, settings=None):
"""
`settings` is passed to CodePrinter.__init__()
`module` specifies the array module to use, currently 'NumPy' or 'CuPy'
"""
self.language = "Python with {}".format(self._module)
self.printmethod = "_{}code".format(self._module)
self._kf = {**PythonCodePrinter._kf, **self._kf}
super().__init__(settings=settings)
def _print_seq(self, seq):
"General sequence printer: converts to tuple"
# Print tuples here instead of lists because numba supports
# tuples in nopython mode.
delimiter=', '
return '({},)'.format(delimiter.join(self._print(item) for item in seq))
def _print_MatMul(self, expr):
"Matrix multiplication printer"
if expr.as_coeff_matrices()[0] is not S.One:
expr_list = expr.as_coeff_matrices()[1]+[(expr.as_coeff_matrices()[0])]
return '({})'.format(').dot('.join(self._print(i) for i in expr_list))
return '({})'.format(').dot('.join(self._print(i) for i in expr.args))
def _print_MatPow(self, expr):
"Matrix power printer"
return '{}({}, {})'.format(self._module_format(self._module + '.linalg.matrix_power'),
self._print(expr.args[0]), self._print(expr.args[1]))
def _print_Inverse(self, expr):
"Matrix inverse printer"
return '{}({})'.format(self._module_format(self._module + '.linalg.inv'),
self._print(expr.args[0]))
def _print_DotProduct(self, expr):
# DotProduct allows any shape order, but numpy.dot does matrix
# multiplication, so we have to make sure it gets 1 x n by n x 1.
arg1, arg2 = expr.args
if arg1.shape[0] != 1:
arg1 = arg1.T
if arg2.shape[1] != 1:
arg2 = arg2.T
return "%s(%s, %s)" % (self._module_format(self._module + '.dot'),
self._print(arg1),
self._print(arg2))
def _print_MatrixSolve(self, expr):
return "%s(%s, %s)" % (self._module_format(self._module + '.linalg.solve'),
self._print(expr.matrix),
self._print(expr.vector))
def _print_ZeroMatrix(self, expr):
return '{}({})'.format(self._module_format(self._module + '.zeros'),
self._print(expr.shape))
def _print_OneMatrix(self, expr):
return '{}({})'.format(self._module_format(self._module + '.ones'),
self._print(expr.shape))
def _print_FunctionMatrix(self, expr):
from sympy.core.function import Lambda
from sympy.abc import i, j
lamda = expr.lamda
if not isinstance(lamda, Lambda):
lamda = Lambda((i, j), lamda(i, j))
return '{}(lambda {}: {}, {})'.format(self._module_format(self._module + '.fromfunction'),
', '.join(self._print(arg) for arg in lamda.args[0]),
self._print(lamda.args[1]), self._print(expr.shape))
def _print_HadamardProduct(self, expr):
func = self._module_format(self._module + '.multiply')
return ''.join('{}({}, '.format(func, self._print(arg)) \
for arg in expr.args[:-1]) + "{}{}".format(self._print(expr.args[-1]),
')' * (len(expr.args) - 1))
def _print_KroneckerProduct(self, expr):
func = self._module_format(self._module + '.kron')
return ''.join('{}({}, '.format(func, self._print(arg)) \
for arg in expr.args[:-1]) + "{}{}".format(self._print(expr.args[-1]),
')' * (len(expr.args) - 1))
def _print_Adjoint(self, expr):
return '{}({}({}))'.format(
self._module_format(self._module + '.conjugate'),
self._module_format(self._module + '.transpose'),
self._print(expr.args[0]))
def _print_DiagonalOf(self, expr):
vect = '{}({})'.format(
self._module_format(self._module + '.diag'),
self._print(expr.arg))
return '{}({}, (-1, 1))'.format(
self._module_format(self._module + '.reshape'), vect)
def _print_DiagMatrix(self, expr):
return '{}({})'.format(self._module_format(self._module + '.diagflat'),
self._print(expr.args[0]))
def _print_DiagonalMatrix(self, expr):
return '{}({}, {}({}, {}))'.format(self._module_format(self._module + '.multiply'),
self._print(expr.arg), self._module_format(self._module + '.eye'),
self._print(expr.shape[0]), self._print(expr.shape[1]))
def _print_Piecewise(self, expr):
"Piecewise function printer"
exprs = '[{}]'.format(','.join(self._print(arg.expr) for arg in expr.args))
conds = '[{}]'.format(','.join(self._print(arg.cond) for arg in expr.args))
# If [default_value, True] is a (expr, cond) sequence in a Piecewise object
# it will behave the same as passing the 'default' kwarg to select()
# *as long as* it is the last element in expr.args.
# If this is not the case, it may be triggered prematurely.
return '{}({}, {}, default={})'.format(
self._module_format(self._module + '.select'), conds, exprs,
self._print(S.NaN))
def _print_Relational(self, expr):
"Relational printer for Equality and Unequality"
op = {
'==' :'equal',
'!=' :'not_equal',
'<' :'less',
'<=' :'less_equal',
'>' :'greater',
'>=' :'greater_equal',
}
if expr.rel_op in op:
lhs = self._print(expr.lhs)
rhs = self._print(expr.rhs)
return '{op}({lhs}, {rhs})'.format(op=self._module_format(self._module + '.'+op[expr.rel_op]),
lhs=lhs, rhs=rhs)
return super()._print_Relational(expr)
def _print_And(self, expr):
"Logical And printer"
# We have to override LambdaPrinter because it uses Python 'and' keyword.
# If LambdaPrinter didn't define it, we could use StrPrinter's
# version of the function and add 'logical_and' to NUMPY_TRANSLATIONS.
return '{}.reduce(({}))'.format(self._module_format(self._module + '.logical_and'), ','.join(self._print(i) for i in expr.args))
def _print_Or(self, expr):
"Logical Or printer"
# We have to override LambdaPrinter because it uses Python 'or' keyword.
# If LambdaPrinter didn't define it, we could use StrPrinter's
# version of the function and add 'logical_or' to NUMPY_TRANSLATIONS.
return '{}.reduce(({}))'.format(self._module_format(self._module + '.logical_or'), ','.join(self._print(i) for i in expr.args))
def _print_Not(self, expr):
"Logical Not printer"
# We have to override LambdaPrinter because it uses Python 'not' keyword.
# If LambdaPrinter didn't define it, we would still have to define our
# own because StrPrinter doesn't define it.
return '{}({})'.format(self._module_format(self._module + '.logical_not'), ','.join(self._print(i) for i in expr.args))
def _print_Pow(self, expr, rational=False):
# XXX Workaround for negative integer power error
from sympy.core.power import Pow
if expr.exp.is_integer and expr.exp.is_negative:
expr = Pow(expr.base, expr.exp.evalf(), evaluate=False)
return self._hprint_Pow(expr, rational=rational, sqrt=self._module + '.sqrt')
def _print_Min(self, expr):
return '{}(({}), axis=0)'.format(self._module_format(self._module + '.amin'), ','.join(self._print(i) for i in expr.args))
def _print_Max(self, expr):
return '{}(({}), axis=0)'.format(self._module_format(self._module + '.amax'), ','.join(self._print(i) for i in expr.args))
def _print_arg(self, expr):
return "%s(%s)" % (self._module_format(self._module + '.angle'), self._print(expr.args[0]))
def _print_im(self, expr):
return "%s(%s)" % (self._module_format(self._module + '.imag'), self._print(expr.args[0]))
def _print_Mod(self, expr):
return "%s(%s)" % (self._module_format(self._module + '.mod'), ', '.join(
map(lambda arg: self._print(arg), expr.args)))
def _print_re(self, expr):
return "%s(%s)" % (self._module_format(self._module + '.real'), self._print(expr.args[0]))
def _print_sinc(self, expr):
return "%s(%s)" % (self._module_format(self._module + '.sinc'), self._print(expr.args[0]/S.Pi))
def _print_MatrixBase(self, expr):
func = self.known_functions.get(expr.__class__.__name__, None)
if func is None:
func = self._module_format(self._module + '.array')
return "%s(%s)" % (func, self._print(expr.tolist()))
def _print_Identity(self, expr):
shape = expr.shape
if all(dim.is_Integer for dim in shape):
return "%s(%s)" % (self._module_format(self._module + '.eye'), self._print(expr.shape[0]))
else:
raise NotImplementedError("Symbolic matrix dimensions are not yet supported for identity matrices")
def _print_BlockMatrix(self, expr):
return '{}({})'.format(self._module_format(self._module + '.block'),
self._print(expr.args[0].tolist()))
def _print_ArrayTensorProduct(self, expr):
array_list = [j for i, arg in enumerate(expr.args) for j in
(self._print(arg), "[%i, %i]" % (2*i, 2*i+1))]
return "%s(%s)" % (self._module_format(self._module + '.einsum'), ", ".join(array_list))
def _print_ArrayContraction(self, expr):
from ..tensor.array.expressions.array_expressions import ArrayTensorProduct
base = expr.expr
contraction_indices = expr.contraction_indices
if not contraction_indices:
return self._print(base)
if isinstance(base, ArrayTensorProduct):
counter = 0
d = {j: min(i) for i in contraction_indices for j in i}
indices = []
for rank_arg in base.subranks:
lindices = []
for i in range(rank_arg):
if counter in d:
lindices.append(d[counter])
else:
lindices.append(counter)
counter += 1
indices.append(lindices)
elems = ["%s, %s" % (self._print(arg), ind) for arg, ind in zip(base.args, indices)]
return "%s(%s)" % (
self._module_format(self._module + '.einsum'),
", ".join(elems)
)
raise NotImplementedError()
def _print_ArrayDiagonal(self, expr):
diagonal_indices = list(expr.diagonal_indices)
if len(diagonal_indices) > 1:
# TODO: this should be handled in sympy.codegen.array_utils,
# possibly by creating the possibility of unfolding the
# ArrayDiagonal object into nested ones. Same reasoning for
# the array contraction.
raise NotImplementedError
if len(diagonal_indices[0]) != 2:
raise NotImplementedError
return "%s(%s, 0, axis1=%s, axis2=%s)" % (
self._module_format("numpy.diagonal"),
self._print(expr.expr),
diagonal_indices[0][0],
diagonal_indices[0][1],
)
def _print_PermuteDims(self, expr):
return "%s(%s, %s)" % (
self._module_format("numpy.transpose"),
self._print(expr.expr),
self._print(expr.permutation.array_form),
)
def _print_ArrayAdd(self, expr):
return self._expand_fold_binary_op(self._module + '.add', expr.args)
_print_lowergamma = CodePrinter._print_not_supported
_print_uppergamma = CodePrinter._print_not_supported
_print_fresnelc = CodePrinter._print_not_supported
_print_fresnels = CodePrinter._print_not_supported
for func in _numpy_known_functions:
setattr(NumPyPrinter, f'_print_{func}', _print_known_func)
for const in _numpy_known_constants:
setattr(NumPyPrinter, f'_print_{const}', _print_known_const)
_known_functions_scipy_special = {
'erf': 'erf',
'erfc': 'erfc',
'besselj': 'jv',
'bessely': 'yv',
'besseli': 'iv',
'besselk': 'kv',
'cosm1': 'cosm1',
'factorial': 'factorial',
'gamma': 'gamma',
'loggamma': 'gammaln',
'digamma': 'psi',
'RisingFactorial': 'poch',
'jacobi': 'eval_jacobi',
'gegenbauer': 'eval_gegenbauer',
'chebyshevt': 'eval_chebyt',
'chebyshevu': 'eval_chebyu',
'legendre': 'eval_legendre',
'hermite': 'eval_hermite',
'laguerre': 'eval_laguerre',
'assoc_laguerre': 'eval_genlaguerre',
'beta': 'beta',
'LambertW' : 'lambertw',
}
_known_constants_scipy_constants = {
'GoldenRatio': 'golden_ratio',
'Pi': 'pi',
}
_scipy_known_functions = {k : "scipy.special." + v for k, v in _known_functions_scipy_special.items()}
_scipy_known_constants = {k : "scipy.constants." + v for k, v in _known_constants_scipy_constants.items()}
class SciPyPrinter(NumPyPrinter):
_kf = {**NumPyPrinter._kf, **_scipy_known_functions}
_kc = {**NumPyPrinter._kc, **_scipy_known_constants}
def __init__(self, settings=None):
super().__init__(settings=settings)
self.language = "Python with SciPy and NumPy"
def _print_SparseMatrix(self, expr):
i, j, data = [], [], []
for (r, c), v in expr.todok().items():
i.append(r)
j.append(c)
data.append(v)
return "{name}(({data}, ({i}, {j})), shape={shape})".format(
name=self._module_format('scipy.sparse.coo_matrix'),
data=data, i=i, j=j, shape=expr.shape
)
_print_ImmutableSparseMatrix = _print_SparseMatrix
# SciPy's lpmv has a different order of arguments from assoc_legendre
def _print_assoc_legendre(self, expr):
return "{0}({2}, {1}, {3})".format(
self._module_format('scipy.special.lpmv'),
self._print(expr.args[0]),
self._print(expr.args[1]),
self._print(expr.args[2]))
def _print_lowergamma(self, expr):
return "{0}({2})*{1}({2}, {3})".format(
self._module_format('scipy.special.gamma'),
self._module_format('scipy.special.gammainc'),
self._print(expr.args[0]),
self._print(expr.args[1]))
def _print_uppergamma(self, expr):
return "{0}({2})*{1}({2}, {3})".format(
self._module_format('scipy.special.gamma'),
self._module_format('scipy.special.gammaincc'),
self._print(expr.args[0]),
self._print(expr.args[1]))
def _print_betainc(self, expr):
betainc = self._module_format('scipy.special.betainc')
beta = self._module_format('scipy.special.beta')
args = [self._print(arg) for arg in expr.args]
return f"({betainc}({args[0]}, {args[1]}, {args[3]}) - {betainc}({args[0]}, {args[1]}, {args[2]})) \
* {beta}({args[0]}, {args[1]})"
def _print_betainc_regularized(self, expr):
return "{0}({1}, {2}, {4}) - {0}({1}, {2}, {3})".format(
self._module_format('scipy.special.betainc'),
self._print(expr.args[0]),
self._print(expr.args[1]),
self._print(expr.args[2]),
self._print(expr.args[3]))
def _print_fresnels(self, expr):
return "{}({})[0]".format(
self._module_format("scipy.special.fresnel"),
self._print(expr.args[0]))
def _print_fresnelc(self, expr):
return "{}({})[1]".format(
self._module_format("scipy.special.fresnel"),
self._print(expr.args[0]))
def _print_airyai(self, expr):
return "{}({})[0]".format(
self._module_format("scipy.special.airy"),
self._print(expr.args[0]))
def _print_airyaiprime(self, expr):
return "{}({})[1]".format(
self._module_format("scipy.special.airy"),
self._print(expr.args[0]))
def _print_airybi(self, expr):
return "{}({})[2]".format(
self._module_format("scipy.special.airy"),
self._print(expr.args[0]))
def _print_airybiprime(self, expr):
return "{}({})[3]".format(
self._module_format("scipy.special.airy"),
self._print(expr.args[0]))
def _print_Integral(self, e):
integration_vars, limits = _unpack_integral_limits(e)
if len(limits) == 1:
# nicer (but not necessary) to prefer quad over nquad for 1D case
module_str = self._module_format("scipy.integrate.quad")
limit_str = "%s, %s" % tuple(map(self._print, limits[0]))
else:
module_str = self._module_format("scipy.integrate.nquad")
limit_str = "({})".format(", ".join(
"(%s, %s)" % tuple(map(self._print, l)) for l in limits))
return "{}(lambda {}: {}, {})[0]".format(
module_str,
", ".join(map(self._print, integration_vars)),
self._print(e.args[0]),
limit_str)
for func in _scipy_known_functions:
setattr(SciPyPrinter, f'_print_{func}', _print_known_func)
for const in _scipy_known_constants:
setattr(SciPyPrinter, f'_print_{const}', _print_known_const)
_cupy_known_functions = {k : "cupy." + v for k, v in _known_functions_numpy.items()}
_cupy_known_constants = {k : "cupy." + v for k, v in _known_constants_numpy.items()}
class CuPyPrinter(NumPyPrinter):
"""
CuPy printer which handles vectorized piecewise functions,
logical operators, etc.
"""
_module = 'cupy'
_kf = _cupy_known_functions
_kc = _cupy_known_constants
def __init__(self, settings=None):
super().__init__(settings=settings)
for func in _cupy_known_functions:
setattr(CuPyPrinter, f'_print_{func}', _print_known_func)
for const in _cupy_known_constants:
setattr(CuPyPrinter, f'_print_{const}', _print_known_const)
|
87b3b55341cfe26d214daa7a86366f71678f754f8adb75efca8243e57904aa5e | """
Python code printers
This module contains python code printers for plain python as well as NumPy & SciPy enabled code.
"""
from collections import defaultdict
from itertools import chain
from sympy.core import S
from .precedence import precedence
from .codeprinter import CodePrinter
_kw_py2and3 = {
'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif',
'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in',
'is', 'lambda', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while',
'with', 'yield', 'None' # 'None' is actually not in Python 2's keyword.kwlist
}
_kw_only_py2 = {'exec', 'print'}
_kw_only_py3 = {'False', 'nonlocal', 'True'}
_known_functions = {
'Abs': 'abs',
}
_known_functions_math = {
'acos': 'acos',
'acosh': 'acosh',
'asin': 'asin',
'asinh': 'asinh',
'atan': 'atan',
'atan2': 'atan2',
'atanh': 'atanh',
'ceiling': 'ceil',
'cos': 'cos',
'cosh': 'cosh',
'erf': 'erf',
'erfc': 'erfc',
'exp': 'exp',
'expm1': 'expm1',
'factorial': 'factorial',
'floor': 'floor',
'gamma': 'gamma',
'hypot': 'hypot',
'loggamma': 'lgamma',
'log': 'log',
'ln': 'log',
'log10': 'log10',
'log1p': 'log1p',
'log2': 'log2',
'sin': 'sin',
'sinh': 'sinh',
'Sqrt': 'sqrt',
'tan': 'tan',
'tanh': 'tanh'
} # Not used from ``math``: [copysign isclose isfinite isinf isnan ldexp frexp pow modf
# radians trunc fmod fsum gcd degrees fabs]
_known_constants_math = {
'Exp1': 'e',
'Pi': 'pi',
'E': 'e'
# Only in python >= 3.5:
# 'Infinity': 'inf',
# 'NaN': 'nan'
}
def _print_known_func(self, expr):
known = self.known_functions[expr.__class__.__name__]
return '{name}({args})'.format(name=self._module_format(known),
args=', '.join(map(lambda arg: self._print(arg), expr.args)))
def _print_known_const(self, expr):
known = self.known_constants[expr.__class__.__name__]
return self._module_format(known)
class AbstractPythonCodePrinter(CodePrinter):
printmethod = "_pythoncode"
language = "Python"
reserved_words = _kw_py2and3.union(_kw_only_py3)
modules = None # initialized to a set in __init__
tab = ' '
_kf = dict(chain(
_known_functions.items(),
[(k, 'math.' + v) for k, v in _known_functions_math.items()]
))
_kc = {k: 'math.'+v for k, v in _known_constants_math.items()}
_operators = {'and': 'and', 'or': 'or', 'not': 'not'}
_default_settings = dict(
CodePrinter._default_settings,
user_functions={},
precision=17,
inline=True,
fully_qualified_modules=True,
contract=False,
standard='python3',
)
def __init__(self, settings=None):
super().__init__(settings)
# Python standard handler
std = self._settings['standard']
if std is None:
import sys
std = 'python{}'.format(sys.version_info.major)
if std not in ('python2', 'python3'):
raise ValueError('Unrecognized python standard : {}'.format(std))
self.standard = std
self.module_imports = defaultdict(set)
# Known functions and constants handler
self.known_functions = dict(self._kf, **(settings or {}).get(
'user_functions', {}))
self.known_constants = dict(self._kc, **(settings or {}).get(
'user_constants', {}))
def _declare_number_const(self, name, value):
return "%s = %s" % (name, value)
def _module_format(self, fqn, register=True):
parts = fqn.split('.')
if register and len(parts) > 1:
self.module_imports['.'.join(parts[:-1])].add(parts[-1])
if self._settings['fully_qualified_modules']:
return fqn
else:
return fqn.split('(')[0].split('[')[0].split('.')[-1]
def _format_code(self, lines):
return lines
def _get_statement(self, codestring):
return "{}".format(codestring)
def _get_comment(self, text):
return " # {}".format(text)
def _expand_fold_binary_op(self, op, args):
"""
This method expands a fold on binary operations.
``functools.reduce`` is an example of a folded operation.
For example, the expression
`A + B + C + D`
is folded into
`((A + B) + C) + D`
"""
if len(args) == 1:
return self._print(args[0])
else:
return "%s(%s, %s)" % (
self._module_format(op),
self._expand_fold_binary_op(op, args[:-1]),
self._print(args[-1]),
)
def _expand_reduce_binary_op(self, op, args):
"""
This method expands a reductin on binary operations.
Notice: this is NOT the same as ``functools.reduce``.
For example, the expression
`A + B + C + D`
is reduced into:
`(A + B) + (C + D)`
"""
if len(args) == 1:
return self._print(args[0])
else:
N = len(args)
Nhalf = N // 2
return "%s(%s, %s)" % (
self._module_format(op),
self._expand_reduce_binary_op(args[:Nhalf]),
self._expand_reduce_binary_op(args[Nhalf:]),
)
def _get_einsum_string(self, subranks, contraction_indices):
letters = self._get_letter_generator_for_einsum()
contraction_string = ""
counter = 0
d = {j: min(i) for i in contraction_indices for j in i}
indices = []
for rank_arg in subranks:
lindices = []
for i in range(rank_arg):
if counter in d:
lindices.append(d[counter])
else:
lindices.append(counter)
counter += 1
indices.append(lindices)
mapping = {}
letters_free = []
letters_dum = []
for i in indices:
for j in i:
if j not in mapping:
l = next(letters)
mapping[j] = l
else:
l = mapping[j]
contraction_string += l
if j in d:
if l not in letters_dum:
letters_dum.append(l)
else:
letters_free.append(l)
contraction_string += ","
contraction_string = contraction_string[:-1]
return contraction_string, letters_free, letters_dum
def _print_NaN(self, expr):
return "float('nan')"
def _print_Infinity(self, expr):
return "float('inf')"
def _print_NegativeInfinity(self, expr):
return "float('-inf')"
def _print_ComplexInfinity(self, expr):
return self._print_NaN(expr)
def _print_Mod(self, expr):
PREC = precedence(expr)
return ('{} % {}'.format(*map(lambda x: self.parenthesize(x, PREC), expr.args)))
def _print_Piecewise(self, expr):
result = []
i = 0
for arg in expr.args:
e = arg.expr
c = arg.cond
if i == 0:
result.append('(')
result.append('(')
result.append(self._print(e))
result.append(')')
result.append(' if ')
result.append(self._print(c))
result.append(' else ')
i += 1
result = result[:-1]
if result[-1] == 'True':
result = result[:-2]
result.append(')')
else:
result.append(' else None)')
return ''.join(result)
def _print_Relational(self, expr):
"Relational printer for Equality and Unequality"
op = {
'==' :'equal',
'!=' :'not_equal',
'<' :'less',
'<=' :'less_equal',
'>' :'greater',
'>=' :'greater_equal',
}
if expr.rel_op in op:
lhs = self._print(expr.lhs)
rhs = self._print(expr.rhs)
return '({lhs} {op} {rhs})'.format(op=expr.rel_op, lhs=lhs, rhs=rhs)
return super()._print_Relational(expr)
def _print_ITE(self, expr):
from sympy.functions.elementary.piecewise import Piecewise
return self._print(expr.rewrite(Piecewise))
def _print_Sum(self, expr):
loops = (
'for {i} in range({a}, {b}+1)'.format(
i=self._print(i),
a=self._print(a),
b=self._print(b))
for i, a, b in expr.limits)
return '(builtins.sum({function} {loops}))'.format(
function=self._print(expr.function),
loops=' '.join(loops))
def _print_ImaginaryUnit(self, expr):
return '1j'
def _print_KroneckerDelta(self, expr):
a, b = expr.args
return '(1 if {a} == {b} else 0)'.format(
a = self._print(a),
b = self._print(b)
)
def _print_MatrixBase(self, expr):
name = expr.__class__.__name__
func = self.known_functions.get(name, name)
return "%s(%s)" % (func, self._print(expr.tolist()))
_print_SparseMatrix = \
_print_MutableSparseMatrix = \
_print_ImmutableSparseMatrix = \
_print_Matrix = \
_print_DenseMatrix = \
_print_MutableDenseMatrix = \
_print_ImmutableMatrix = \
_print_ImmutableDenseMatrix = \
lambda self, expr: self._print_MatrixBase(expr)
def _indent_codestring(self, codestring):
return '\n'.join([self.tab + line for line in codestring.split('\n')])
def _print_FunctionDefinition(self, fd):
body = '\n'.join(map(lambda arg: self._print(arg), fd.body))
return "def {name}({parameters}):\n{body}".format(
name=self._print(fd.name),
parameters=', '.join([self._print(var.symbol) for var in fd.parameters]),
body=self._indent_codestring(body)
)
def _print_While(self, whl):
body = '\n'.join(map(lambda arg: self._print(arg), whl.body))
return "while {cond}:\n{body}".format(
cond=self._print(whl.condition),
body=self._indent_codestring(body)
)
def _print_Declaration(self, decl):
return '%s = %s' % (
self._print(decl.variable.symbol),
self._print(decl.variable.value)
)
def _print_Return(self, ret):
arg, = ret.args
return 'return %s' % self._print(arg)
def _print_Print(self, prnt):
print_args = ', '.join(map(lambda arg: self._print(arg), prnt.print_args))
if prnt.format_string != None: # Must be '!= None', cannot be 'is not None'
print_args = '{} % ({})'.format(
self._print(prnt.format_string), print_args)
if prnt.file != None: # Must be '!= None', cannot be 'is not None'
print_args += ', file=%s' % self._print(prnt.file)
if self.standard == 'python2':
return 'print %s' % print_args
return 'print(%s)' % print_args
def _print_Stream(self, strm):
if str(strm.name) == 'stdout':
return self._module_format('sys.stdout')
elif str(strm.name) == 'stderr':
return self._module_format('sys.stderr')
else:
return self._print(strm.name)
def _print_NoneToken(self, arg):
return 'None'
def _hprint_Pow(self, expr, rational=False, sqrt='math.sqrt'):
"""Printing helper function for ``Pow``
Notes
=====
This only preprocesses the ``sqrt`` as math formatter
Examples
========
>>> from sympy.functions import sqrt
>>> from sympy.printing.pycode import PythonCodePrinter
>>> from sympy.abc import x
Python code printer automatically looks up ``math.sqrt``.
>>> printer = PythonCodePrinter({'standard':'python3'})
>>> printer._hprint_Pow(sqrt(x), rational=True)
'x**(1/2)'
>>> printer._hprint_Pow(sqrt(x), rational=False)
'math.sqrt(x)'
>>> printer._hprint_Pow(1/sqrt(x), rational=True)
'x**(-1/2)'
>>> printer._hprint_Pow(1/sqrt(x), rational=False)
'1/math.sqrt(x)'
Using sqrt from numpy or mpmath
>>> printer._hprint_Pow(sqrt(x), sqrt='numpy.sqrt')
'numpy.sqrt(x)'
>>> printer._hprint_Pow(sqrt(x), sqrt='mpmath.sqrt')
'mpmath.sqrt(x)'
See Also
========
sympy.printing.str.StrPrinter._print_Pow
"""
PREC = precedence(expr)
if expr.exp == S.Half and not rational:
func = self._module_format(sqrt)
arg = self._print(expr.base)
return '{func}({arg})'.format(func=func, arg=arg)
if expr.is_commutative:
if -expr.exp is S.Half and not rational:
func = self._module_format(sqrt)
num = self._print(S.One)
arg = self._print(expr.base)
return "{num}/{func}({arg})".format(
num=num, func=func, arg=arg)
base_str = self.parenthesize(expr.base, PREC, strict=False)
exp_str = self.parenthesize(expr.exp, PREC, strict=False)
return "{}**{}".format(base_str, exp_str)
class PythonCodePrinter(AbstractPythonCodePrinter):
def _print_sign(self, e):
return '(0.0 if {e} == 0 else {f}(1, {e}))'.format(
f=self._module_format('math.copysign'), e=self._print(e.args[0]))
def _print_Not(self, expr):
PREC = precedence(expr)
return self._operators['not'] + self.parenthesize(expr.args[0], PREC)
def _print_Indexed(self, expr):
base = expr.args[0]
index = expr.args[1:]
return "{}[{}]".format(str(base), ", ".join([self._print(ind) for ind in index]))
def _print_Pow(self, expr, rational=False):
return self._hprint_Pow(expr, rational=rational)
def _print_Rational(self, expr):
if self.standard == 'python2':
return '{}./{}.'.format(expr.p, expr.q)
return '{}/{}'.format(expr.p, expr.q)
def _print_Half(self, expr):
return self._print_Rational(expr)
def _print_frac(self, expr):
from sympy import Mod
return self._print_Mod(Mod(expr.args[0], 1))
def _print_Symbol(self, expr):
name = super()._print_Symbol(expr)
if name in self.reserved_words:
if self._settings['error_on_reserved']:
msg = ('This expression includes the symbol "{}" which is a '
'reserved keyword in this language.')
raise ValueError(msg.format(name))
return name + self._settings['reserved_word_suffix']
elif '{' in name: # Remove curly braces from subscripted variables
return name.replace('{', '').replace('}', '')
else:
return name
_print_lowergamma = CodePrinter._print_not_supported
_print_uppergamma = CodePrinter._print_not_supported
_print_fresnelc = CodePrinter._print_not_supported
_print_fresnels = CodePrinter._print_not_supported
for k in PythonCodePrinter._kf:
setattr(PythonCodePrinter, '_print_%s' % k, _print_known_func)
for k in _known_constants_math:
setattr(PythonCodePrinter, '_print_%s' % k, _print_known_const)
def pycode(expr, **settings):
""" Converts an expr to a string of Python code
Parameters
==========
expr : Expr
A SymPy expression.
fully_qualified_modules : bool
Whether or not to write out full module names of functions
(``math.sin`` vs. ``sin``). default: ``True``.
standard : str or None, optional
If 'python2', Python 2 sematics will be used.
If 'python3', Python 3 sematics will be used.
If None, the standard will be automatically detected.
Default is 'python3'. And this parameter may be removed in the
future.
Examples
========
>>> from sympy import tan, Symbol
>>> from sympy.printing.pycode import pycode
>>> pycode(tan(Symbol('x')) + 1)
'math.tan(x) + 1'
"""
return PythonCodePrinter(settings).doprint(expr)
_not_in_mpmath = 'log1p log2'.split()
_in_mpmath = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_mpmath]
_known_functions_mpmath = dict(_in_mpmath, **{
'beta': 'beta',
'frac': 'frac',
'fresnelc': 'fresnelc',
'fresnels': 'fresnels',
'sign': 'sign',
'loggamma': 'loggamma',
})
_known_constants_mpmath = {
'Exp1': 'e',
'Pi': 'pi',
'GoldenRatio': 'phi',
'EulerGamma': 'euler',
'Catalan': 'catalan',
'NaN': 'nan',
'Infinity': 'inf',
'NegativeInfinity': 'ninf'
}
def _unpack_integral_limits(integral_expr):
""" helper function for _print_Integral that
- accepts an Integral expression
- returns a tuple of
- a list variables of integration
- a list of tuples of the upper and lower limits of integration
"""
integration_vars = []
limits = []
for integration_range in integral_expr.limits:
if len(integration_range) == 3:
integration_var, lower_limit, upper_limit = integration_range
else:
raise NotImplementedError("Only definite integrals are supported")
integration_vars.append(integration_var)
limits.append((lower_limit, upper_limit))
return integration_vars, limits
class MpmathPrinter(PythonCodePrinter):
"""
Lambda printer for mpmath which maintains precision for floats
"""
printmethod = "_mpmathcode"
language = "Python with mpmath"
_kf = dict(chain(
_known_functions.items(),
[(k, 'mpmath.' + v) for k, v in _known_functions_mpmath.items()]
))
_kc = {k: 'mpmath.'+v for k, v in _known_constants_mpmath.items()}
def _print_Float(self, e):
# XXX: This does not handle setting mpmath.mp.dps. It is assumed that
# the caller of the lambdified function will have set it to sufficient
# precision to match the Floats in the expression.
# Remove 'mpz' if gmpy is installed.
args = str(tuple(map(int, e._mpf_)))
return '{func}({args})'.format(func=self._module_format('mpmath.mpf'), args=args)
def _print_Rational(self, e):
return "{func}({p})/{func}({q})".format(
func=self._module_format('mpmath.mpf'),
q=self._print(e.q),
p=self._print(e.p)
)
def _print_Half(self, e):
return self._print_Rational(e)
def _print_uppergamma(self, e):
return "{}({}, {}, {})".format(
self._module_format('mpmath.gammainc'),
self._print(e.args[0]),
self._print(e.args[1]),
self._module_format('mpmath.inf'))
def _print_lowergamma(self, e):
return "{}({}, 0, {})".format(
self._module_format('mpmath.gammainc'),
self._print(e.args[0]),
self._print(e.args[1]))
def _print_log2(self, e):
return '{0}({1})/{0}(2)'.format(
self._module_format('mpmath.log'), self._print(e.args[0]))
def _print_log1p(self, e):
return '{}({}+1)'.format(
self._module_format('mpmath.log'), self._print(e.args[0]))
def _print_Pow(self, expr, rational=False):
return self._hprint_Pow(expr, rational=rational, sqrt='mpmath.sqrt')
def _print_Integral(self, e):
integration_vars, limits = _unpack_integral_limits(e)
return "{}(lambda {}: {}, {})".format(
self._module_format("mpmath.quad"),
", ".join(map(self._print, integration_vars)),
self._print(e.args[0]),
", ".join("(%s, %s)" % tuple(map(self._print, l)) for l in limits))
for k in MpmathPrinter._kf:
setattr(MpmathPrinter, '_print_%s' % k, _print_known_func)
for k in _known_constants_mpmath:
setattr(MpmathPrinter, '_print_%s' % k, _print_known_const)
class SymPyPrinter(AbstractPythonCodePrinter):
language = "Python with SymPy"
def _print_Function(self, expr):
mod = expr.func.__module__ or ''
return '%s(%s)' % (self._module_format(mod + ('.' if mod else '') + expr.func.__name__),
', '.join(map(lambda arg: self._print(arg), expr.args)))
def _print_Pow(self, expr, rational=False):
return self._hprint_Pow(expr, rational=rational, sqrt='sympy.sqrt')
|
f65fc8a15054868f7c114f5190d4c7ac88cd47d1547ef984118e2de79f57feee | """
A Printer for generating readable representation of most sympy classes.
"""
from typing import Any, Dict
from sympy.core import S, Rational, Pow, Basic, Mul, Number
from sympy.core.mul import _keep_coeff
from sympy.core.function import _coeff_isneg
from sympy.sets.sets import FiniteSet
from .printer import Printer, print_function
from sympy.printing.precedence import precedence, PRECEDENCE
from mpmath.libmp import prec_to_dps, to_str as mlib_to_str
from sympy.utilities import default_sort_key, sift
class StrPrinter(Printer):
printmethod = "_sympystr"
_default_settings = {
"order": None,
"full_prec": "auto",
"sympy_integers": False,
"abbrev": False,
"perm_cyclic": True,
"min": None,
"max": None,
} # type: Dict[str, Any]
_relationals = dict() # type: Dict[str, str]
def parenthesize(self, item, level, strict=False):
if (precedence(item) < level) or ((not strict) and precedence(item) <= level):
return "(%s)" % self._print(item)
else:
return self._print(item)
def stringify(self, args, sep, level=0):
return sep.join([self.parenthesize(item, level) for item in args])
def emptyPrinter(self, expr):
if isinstance(expr, str):
return expr
elif isinstance(expr, Basic):
return repr(expr)
else:
return str(expr)
def _print_Add(self, expr, order=None):
terms = self._as_ordered_terms(expr, order=order)
PREC = precedence(expr)
l = []
for term in terms:
t = self._print(term)
if t.startswith('-'):
sign = "-"
t = t[1:]
else:
sign = "+"
if precedence(term) < PREC:
l.extend([sign, "(%s)" % t])
else:
l.extend([sign, t])
sign = l.pop(0)
if sign == '+':
sign = ""
return sign + ' '.join(l)
def _print_BooleanTrue(self, expr):
return "True"
def _print_BooleanFalse(self, expr):
return "False"
def _print_Not(self, expr):
return '~%s' %(self.parenthesize(expr.args[0],PRECEDENCE["Not"]))
def _print_And(self, expr):
return self.stringify(expr.args, " & ", PRECEDENCE["BitwiseAnd"])
def _print_Or(self, expr):
return self.stringify(expr.args, " | ", PRECEDENCE["BitwiseOr"])
def _print_Xor(self, expr):
return self.stringify(expr.args, " ^ ", PRECEDENCE["BitwiseXor"])
def _print_AppliedPredicate(self, expr):
return '%s(%s)' % (
self._print(expr.function), self.stringify(expr.arguments, ", "))
def _print_Basic(self, expr):
l = [self._print(o) for o in expr.args]
return expr.__class__.__name__ + "(%s)" % ", ".join(l)
def _print_BlockMatrix(self, B):
if B.blocks.shape == (1, 1):
self._print(B.blocks[0, 0])
return self._print(B.blocks)
def _print_Catalan(self, expr):
return 'Catalan'
def _print_ComplexInfinity(self, expr):
return 'zoo'
def _print_ConditionSet(self, s):
args = tuple([self._print(i) for i in (s.sym, s.condition)])
if s.base_set is S.UniversalSet:
return 'ConditionSet(%s, %s)' % args
args += (self._print(s.base_set),)
return 'ConditionSet(%s, %s, %s)' % args
def _print_Derivative(self, expr):
dexpr = expr.expr
dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count]
return 'Derivative(%s)' % ", ".join(map(lambda arg: self._print(arg), [dexpr] + dvars))
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for key in keys:
item = "%s: %s" % (self._print(key), self._print(d[key]))
items.append(item)
return "{%s}" % ", ".join(items)
def _print_Dict(self, expr):
return self._print_dict(expr)
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
return 'Domain: ' + self._print(d.as_boolean())
elif hasattr(d, 'set'):
return ('Domain: ' + self._print(d.symbols) + ' in ' +
self._print(d.set))
else:
return 'Domain on ' + self._print(d.symbols)
def _print_Dummy(self, expr):
return '_' + expr.name
def _print_EulerGamma(self, expr):
return 'EulerGamma'
def _print_Exp1(self, expr):
return 'E'
def _print_ExprCondPair(self, expr):
return '(%s, %s)' % (self._print(expr.expr), self._print(expr.cond))
def _print_Function(self, expr):
return expr.func.__name__ + "(%s)" % self.stringify(expr.args, ", ")
def _print_GoldenRatio(self, expr):
return 'GoldenRatio'
def _print_TribonacciConstant(self, expr):
return 'TribonacciConstant'
def _print_ImaginaryUnit(self, expr):
return 'I'
def _print_Infinity(self, expr):
return 'oo'
def _print_Integral(self, expr):
def _xab_tostr(xab):
if len(xab) == 1:
return self._print(xab[0])
else:
return self._print((xab[0],) + tuple(xab[1:]))
L = ', '.join([_xab_tostr(l) for l in expr.limits])
return 'Integral(%s, %s)' % (self._print(expr.function), L)
def _print_Interval(self, i):
fin = 'Interval{m}({a}, {b})'
a, b, l, r = i.args
if a.is_infinite and b.is_infinite:
m = ''
elif a.is_infinite and not r:
m = ''
elif b.is_infinite and not l:
m = ''
elif not l and not r:
m = ''
elif l and r:
m = '.open'
elif l:
m = '.Lopen'
else:
m = '.Ropen'
return fin.format(**{'a': a, 'b': b, 'm': m})
def _print_AccumulationBounds(self, i):
return "AccumBounds(%s, %s)" % (self._print(i.min),
self._print(i.max))
def _print_Inverse(self, I):
return "%s**(-1)" % self.parenthesize(I.arg, PRECEDENCE["Pow"])
def _print_Lambda(self, obj):
expr = obj.expr
sig = obj.signature
if len(sig) == 1 and sig[0].is_symbol:
sig = sig[0]
return "Lambda(%s, %s)" % (self._print(sig), self._print(expr))
def _print_LatticeOp(self, expr):
args = sorted(expr.args, key=default_sort_key)
return expr.func.__name__ + "(%s)" % ", ".join(self._print(arg) for arg in args)
def _print_Limit(self, expr):
e, z, z0, dir = expr.args
if str(dir) == "+":
return "Limit(%s, %s, %s)" % tuple(map(self._print, (e, z, z0)))
else:
return "Limit(%s, %s, %s, dir='%s')" % tuple(map(self._print,
(e, z, z0, dir)))
def _print_list(self, expr):
return "[%s]" % self.stringify(expr, ", ")
def _print_MatrixBase(self, expr):
return expr._format_str(self)
def _print_MatrixElement(self, expr):
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \
+ '[%s, %s]' % (self._print(expr.i), self._print(expr.j))
def _print_MatrixSlice(self, expr):
def strslice(x, dim):
x = list(x)
if x[2] == 1:
del x[2]
if x[0] == 0:
x[0] = ''
if x[1] == dim:
x[1] = ''
return ':'.join(map(lambda arg: self._print(arg), x))
return (self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) + '[' +
strslice(expr.rowslice, expr.parent.rows) + ', ' +
strslice(expr.colslice, expr.parent.cols) + ']')
def _print_DeferredVector(self, expr):
return expr.name
def _print_Mul(self, expr):
prec = precedence(expr)
# Check for unevaluated Mul. In this case we need to make sure the
# identities are visible, multiple Rational factors are not combined
# etc so we display in a straight-forward form that fully preserves all
# args and their order.
args = expr.args
if args[0] is S.One or any(
isinstance(a, Number) or
a.is_Pow and all(ai.is_Integer for ai in a.args)
for a in args[1:]):
d, n = sift(args, lambda x:
isinstance(x, Pow) and bool(x.exp.as_coeff_Mul()[0] < 0),
binary=True)
for i, di in enumerate(d):
if di.exp.is_Number:
e = -di.exp
else:
dargs = list(di.exp.args)
dargs[0] = -dargs[0]
e = Mul._from_args(dargs)
d[i] = Pow(di.base, e, evaluate=False) if e - 1 else di.base
# don't parenthesize first factor if negative
if _coeff_isneg(n[0]):
pre = [str(n.pop(0))]
else:
pre = []
nfactors = pre + [self.parenthesize(a, prec, strict=False)
for a in n]
# don't parenthesize first of denominator unless singleton
if len(d) > 1 and _coeff_isneg(d[0]):
pre = [str(d.pop(0))]
else:
pre = []
dfactors = pre + [self.parenthesize(a, prec, strict=False)
for a in d]
n = '*'.join(nfactors)
d = '*'.join(dfactors)
if len(dfactors) > 1:
return '%s/(%s)' % (n, d)
elif dfactors:
return '%s/%s' % (n, d)
return n
c, e = expr.as_coeff_Mul()
if c < 0:
expr = _keep_coeff(-c, e)
sign = "-"
else:
sign = ""
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
pow_paren = [] # Will collect all pow with more than one base element and exp = -1
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
# use make_args in case expr was something like -x -> x
args = Mul.make_args(expr)
# Gather args for numerator/denominator
def apow(i):
b, e = i.as_base_exp()
eargs = list(Mul.make_args(e))
if eargs[0] is S.NegativeOne:
eargs = eargs[1:]
else:
eargs[0] = -eargs[0]
e = Mul._from_args(eargs)
if isinstance(i, Pow):
return i.func(b, e, evaluate=False)
return i.func(e, evaluate=False)
for item in args:
if (item.is_commutative and
isinstance(item, Pow) and
bool(item.exp.as_coeff_Mul()[0] < 0)):
if item.exp is not S.NegativeOne:
b.append(apow(item))
else:
if (len(item.args[0].args) != 1 and
isinstance(item.base, (Mul, Pow))):
# To avoid situations like #14160
pow_paren.append(item)
b.append(item.base)
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append(Rational(item.p))
if item.q != 1:
b.append(Rational(item.q))
else:
a.append(item)
a = a or [S.One]
a_str = [self.parenthesize(x, prec, strict=False) for x in a]
b_str = [self.parenthesize(x, prec, strict=False) for x in b]
# To parenthesize Pow with exp = -1 and having more than one Symbol
for item in pow_paren:
if item.base in b:
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
if not b:
return sign + '*'.join(a_str)
elif len(b) == 1:
return sign + '*'.join(a_str) + "/" + b_str[0]
else:
return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str)
def _print_MatMul(self, expr):
c, m = expr.as_coeff_mmul()
sign = ""
if c.is_number:
re, im = c.as_real_imag()
if im.is_zero and re.is_negative:
expr = _keep_coeff(-c, m)
sign = "-"
elif re.is_zero and im.is_negative:
expr = _keep_coeff(-c, m)
sign = "-"
return sign + '*'.join(
[self.parenthesize(arg, precedence(expr)) for arg in expr.args]
)
def _print_ElementwiseApplyFunction(self, expr):
return "{}.({})".format(
expr.function,
self._print(expr.expr),
)
def _print_NaN(self, expr):
return 'nan'
def _print_NegativeInfinity(self, expr):
return '-oo'
def _print_Order(self, expr):
if not expr.variables or all(p is S.Zero for p in expr.point):
if len(expr.variables) <= 1:
return 'O(%s)' % self._print(expr.expr)
else:
return 'O(%s)' % self.stringify((expr.expr,) + expr.variables, ', ', 0)
else:
return 'O(%s)' % self.stringify(expr.args, ', ', 0)
def _print_Ordinal(self, expr):
return expr.__str__()
def _print_Cycle(self, expr):
return expr.__str__()
def _print_Permutation(self, expr):
from sympy.combinatorics.permutations import Permutation, Cycle
from sympy.utilities.exceptions import SymPyDeprecationWarning
perm_cyclic = Permutation.print_cyclic
if perm_cyclic is not None:
SymPyDeprecationWarning(
feature="Permutation.print_cyclic = {}".format(perm_cyclic),
useinstead="init_printing(perm_cyclic={})"
.format(perm_cyclic),
issue=15201,
deprecated_since_version="1.6").warn()
else:
perm_cyclic = self._settings.get("perm_cyclic", True)
if perm_cyclic:
if not expr.size:
return '()'
# before taking Cycle notation, see if the last element is
# a singleton and move it to the head of the string
s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):]
last = s.rfind('(')
if not last == 0 and ',' not in s[last:]:
s = s[last:] + s[:last]
s = s.replace(',', '')
return s
else:
s = expr.support()
if not s:
if expr.size < 5:
return 'Permutation(%s)' % self._print(expr.array_form)
return 'Permutation([], size=%s)' % self._print(expr.size)
trim = self._print(expr.array_form[:s[-1] + 1]) + ', size=%s' % self._print(expr.size)
use = full = self._print(expr.array_form)
if len(trim) < len(full):
use = trim
return 'Permutation(%s)' % use
def _print_Subs(self, obj):
expr, old, new = obj.args
if len(obj.point) == 1:
old = old[0]
new = new[0]
return "Subs(%s, %s, %s)" % (
self._print(expr), self._print(old), self._print(new))
def _print_TensorIndex(self, expr):
return expr._print()
def _print_TensorHead(self, expr):
return expr._print()
def _print_Tensor(self, expr):
return expr._print()
def _print_TensMul(self, expr):
# prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)"
sign, args = expr._get_args_for_traditional_printer()
return sign + "*".join(
[self.parenthesize(arg, precedence(expr)) for arg in args]
)
def _print_TensAdd(self, expr):
return expr._print()
def _print_ArraySymbol(self, expr):
return self._print(expr.name)
def _print_ArrayElement(self, expr):
return "%s[%s]" % (expr.name, ", ".join([self._print(i) for i in expr.indices]))
def _print_PermutationGroup(self, expr):
p = [' %s' % self._print(a) for a in expr.args]
return 'PermutationGroup([\n%s])' % ',\n'.join(p)
def _print_Pi(self, expr):
return 'pi'
def _print_PolyRing(self, ring):
return "Polynomial ring in %s over %s with %s order" % \
(", ".join(map(lambda rs: self._print(rs), ring.symbols)),
self._print(ring.domain), self._print(ring.order))
def _print_FracField(self, field):
return "Rational function field in %s over %s with %s order" % \
(", ".join(map(lambda fs: self._print(fs), field.symbols)),
self._print(field.domain), self._print(field.order))
def _print_FreeGroupElement(self, elm):
return elm.__str__()
def _print_GaussianElement(self, poly):
return "(%s + %s*I)" % (poly.x, poly.y)
def _print_PolyElement(self, poly):
return poly.str(self, PRECEDENCE, "%s**%s", "*")
def _print_FracElement(self, frac):
if frac.denom == 1:
return self._print(frac.numer)
else:
numer = self.parenthesize(frac.numer, PRECEDENCE["Mul"], strict=True)
denom = self.parenthesize(frac.denom, PRECEDENCE["Atom"], strict=True)
return numer + "/" + denom
def _print_Poly(self, expr):
ATOM_PREC = PRECEDENCE["Atom"] - 1
terms, gens = [], [ self.parenthesize(s, ATOM_PREC) for s in expr.gens ]
for monom, coeff in expr.terms():
s_monom = []
for i, e in enumerate(monom):
if e > 0:
if e == 1:
s_monom.append(gens[i])
else:
s_monom.append(gens[i] + "**%d" % e)
s_monom = "*".join(s_monom)
if coeff.is_Add:
if s_monom:
s_coeff = "(" + self._print(coeff) + ")"
else:
s_coeff = self._print(coeff)
else:
if s_monom:
if coeff is S.One:
terms.extend(['+', s_monom])
continue
if coeff is S.NegativeOne:
terms.extend(['-', s_monom])
continue
s_coeff = self._print(coeff)
if not s_monom:
s_term = s_coeff
else:
s_term = s_coeff + "*" + s_monom
if s_term.startswith('-'):
terms.extend(['-', s_term[1:]])
else:
terms.extend(['+', s_term])
if terms[0] in ('-', '+'):
modifier = terms.pop(0)
if modifier == '-':
terms[0] = '-' + terms[0]
format = expr.__class__.__name__ + "(%s, %s"
from sympy.polys.polyerrors import PolynomialError
try:
format += ", modulus=%s" % expr.get_modulus()
except PolynomialError:
format += ", domain='%s'" % expr.get_domain()
format += ")"
for index, item in enumerate(gens):
if len(item) > 2 and (item[:1] == "(" and item[len(item) - 1:] == ")"):
gens[index] = item[1:len(item) - 1]
return format % (' '.join(terms), ', '.join(gens))
def _print_UniversalSet(self, p):
return 'UniversalSet'
def _print_AlgebraicNumber(self, expr):
if expr.is_aliased:
return self._print(expr.as_poly().as_expr())
else:
return self._print(expr.as_expr())
def _print_Pow(self, expr, rational=False):
"""Printing helper function for ``Pow``
Parameters
==========
rational : bool, optional
If ``True``, it will not attempt printing ``sqrt(x)`` or
``x**S.Half`` as ``sqrt``, and will use ``x**(1/2)``
instead.
See examples for additional details
Examples
========
>>> from sympy.functions import sqrt
>>> from sympy.printing.str import StrPrinter
>>> from sympy.abc import x
How ``rational`` keyword works with ``sqrt``:
>>> printer = StrPrinter()
>>> printer._print_Pow(sqrt(x), rational=True)
'x**(1/2)'
>>> printer._print_Pow(sqrt(x), rational=False)
'sqrt(x)'
>>> printer._print_Pow(1/sqrt(x), rational=True)
'x**(-1/2)'
>>> printer._print_Pow(1/sqrt(x), rational=False)
'1/sqrt(x)'
Notes
=====
``sqrt(x)`` is canonicalized as ``Pow(x, S.Half)`` in SymPy,
so there is no need of defining a separate printer for ``sqrt``.
Instead, it should be handled here as well.
"""
PREC = precedence(expr)
if expr.exp is S.Half and not rational:
return "sqrt(%s)" % self._print(expr.base)
if expr.is_commutative:
if -expr.exp is S.Half and not rational:
# Note: Don't test "expr.exp == -S.Half" here, because that will
# match -0.5, which we don't want.
return "%s/sqrt(%s)" % tuple(map(lambda arg: self._print(arg), (S.One, expr.base)))
if expr.exp is -S.One:
# Similarly to the S.Half case, don't test with "==" here.
return '%s/%s' % (self._print(S.One),
self.parenthesize(expr.base, PREC, strict=False))
e = self.parenthesize(expr.exp, PREC, strict=False)
if self.printmethod == '_sympyrepr' and expr.exp.is_Rational and expr.exp.q != 1:
# the parenthesized exp should be '(Rational(a, b))' so strip parens,
# but just check to be sure.
if e.startswith('(Rational'):
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e[1:-1])
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def _print_MatPow(self, expr):
PREC = precedence(expr)
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False),
self.parenthesize(expr.exp, PREC, strict=False))
def _print_Integer(self, expr):
if self._settings.get("sympy_integers", False):
return "S(%s)" % (expr)
return str(expr.p)
def _print_Integers(self, expr):
return 'Integers'
def _print_Naturals(self, expr):
return 'Naturals'
def _print_Naturals0(self, expr):
return 'Naturals0'
def _print_Rationals(self, expr):
return 'Rationals'
def _print_Reals(self, expr):
return 'Reals'
def _print_Complexes(self, expr):
return 'Complexes'
def _print_EmptySet(self, expr):
return 'EmptySet'
def _print_EmptySequence(self, expr):
return 'EmptySequence'
def _print_int(self, expr):
return str(expr)
def _print_mpz(self, expr):
return str(expr)
def _print_Rational(self, expr):
if expr.q == 1:
return str(expr.p)
else:
if self._settings.get("sympy_integers", False):
return "S(%s)/%s" % (expr.p, expr.q)
return "%s/%s" % (expr.p, expr.q)
def _print_PythonRational(self, expr):
if expr.q == 1:
return str(expr.p)
else:
return "%d/%d" % (expr.p, expr.q)
def _print_Fraction(self, expr):
if expr.denominator == 1:
return str(expr.numerator)
else:
return "%s/%s" % (expr.numerator, expr.denominator)
def _print_mpq(self, expr):
if expr.denominator == 1:
return str(expr.numerator)
else:
return "%s/%s" % (expr.numerator, expr.denominator)
def _print_Float(self, expr):
prec = expr._prec
if prec < 5:
dps = 0
else:
dps = prec_to_dps(expr._prec)
if self._settings["full_prec"] is True:
strip = False
elif self._settings["full_prec"] is False:
strip = True
elif self._settings["full_prec"] == "auto":
strip = self._print_level > 1
low = self._settings["min"] if "min" in self._settings else None
high = self._settings["max"] if "max" in self._settings else None
rv = mlib_to_str(expr._mpf_, dps, strip_zeros=strip, min_fixed=low, max_fixed=high)
if rv.startswith('-.0'):
rv = '-0.' + rv[3:]
elif rv.startswith('.0'):
rv = '0.' + rv[2:]
if rv.startswith('+'):
# e.g., +inf -> inf
rv = rv[1:]
return rv
def _print_Relational(self, expr):
charmap = {
"==": "Eq",
"!=": "Ne",
":=": "Assignment",
'+=': "AddAugmentedAssignment",
"-=": "SubAugmentedAssignment",
"*=": "MulAugmentedAssignment",
"/=": "DivAugmentedAssignment",
"%=": "ModAugmentedAssignment",
}
if expr.rel_op in charmap:
return '%s(%s, %s)' % (charmap[expr.rel_op], self._print(expr.lhs),
self._print(expr.rhs))
return '%s %s %s' % (self.parenthesize(expr.lhs, precedence(expr)),
self._relationals.get(expr.rel_op) or expr.rel_op,
self.parenthesize(expr.rhs, precedence(expr)))
def _print_ComplexRootOf(self, expr):
return "CRootOf(%s, %d)" % (self._print_Add(expr.expr, order='lex'),
expr.index)
def _print_RootSum(self, expr):
args = [self._print_Add(expr.expr, order='lex')]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
return "RootSum(%s)" % ", ".join(args)
def _print_GroebnerBasis(self, basis):
cls = basis.__class__.__name__
exprs = [self._print_Add(arg, order=basis.order) for arg in basis.exprs]
exprs = "[%s]" % ", ".join(exprs)
gens = [ self._print(gen) for gen in basis.gens ]
domain = "domain='%s'" % self._print(basis.domain)
order = "order='%s'" % self._print(basis.order)
args = [exprs] + gens + [domain, order]
return "%s(%s)" % (cls, ", ".join(args))
def _print_set(self, s):
items = sorted(s, key=default_sort_key)
args = ', '.join(self._print(item) for item in items)
if not args:
return "set()"
return '{%s}' % args
def _print_FiniteSet(self, s):
items = sorted(s, key=default_sort_key)
args = ', '.join(self._print(item) for item in items)
if any(item.has(FiniteSet) for item in items):
return 'FiniteSet({})'.format(args)
return '{{{}}}'.format(args)
def _print_Partition(self, s):
items = sorted(s, key=default_sort_key)
args = ', '.join(self._print(arg) for arg in items)
return 'Partition({})'.format(args)
def _print_frozenset(self, s):
if not s:
return "frozenset()"
return "frozenset(%s)" % self._print_set(s)
def _print_Sum(self, expr):
def _xab_tostr(xab):
if len(xab) == 1:
return self._print(xab[0])
else:
return self._print((xab[0],) + tuple(xab[1:]))
L = ', '.join([_xab_tostr(l) for l in expr.limits])
return 'Sum(%s, %s)' % (self._print(expr.function), L)
def _print_Symbol(self, expr):
return expr.name
_print_MatrixSymbol = _print_Symbol
_print_RandomSymbol = _print_Symbol
def _print_Identity(self, expr):
return "I"
def _print_ZeroMatrix(self, expr):
return "0"
def _print_OneMatrix(self, expr):
return "1"
def _print_Predicate(self, expr):
return "Q.%s" % expr.name
def _print_str(self, expr):
return str(expr)
def _print_tuple(self, expr):
if len(expr) == 1:
return "(%s,)" % self._print(expr[0])
else:
return "(%s)" % self.stringify(expr, ", ")
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_Transpose(self, T):
return "%s.T" % self.parenthesize(T.arg, PRECEDENCE["Pow"])
def _print_Uniform(self, expr):
return "Uniform(%s, %s)" % (self._print(expr.a), self._print(expr.b))
def _print_Quantity(self, expr):
if self._settings.get("abbrev", False):
return "%s" % expr.abbrev
return "%s" % expr.name
def _print_Quaternion(self, expr):
s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args]
a = [s[0]] + [i+"*"+j for i, j in zip(s[1:], "ijk")]
return " + ".join(a)
def _print_Dimension(self, expr):
return str(expr)
def _print_Wild(self, expr):
return expr.name + '_'
def _print_WildFunction(self, expr):
return expr.name + '_'
def _print_WildDot(self, expr):
return expr.name
def _print_WildPlus(self, expr):
return expr.name
def _print_WildStar(self, expr):
return expr.name
def _print_Zero(self, expr):
if self._settings.get("sympy_integers", False):
return "S(0)"
return "0"
def _print_DMP(self, p):
from sympy.core.sympify import SympifyError
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
cls = p.__class__.__name__
rep = self._print(p.rep)
dom = self._print(p.dom)
ring = self._print(p.ring)
return "%s(%s, %s, %s)" % (cls, rep, dom, ring)
def _print_DMF(self, expr):
return self._print_DMP(expr)
def _print_Object(self, obj):
return 'Object("%s")' % obj.name
def _print_IdentityMorphism(self, morphism):
return 'IdentityMorphism(%s)' % morphism.domain
def _print_NamedMorphism(self, morphism):
return 'NamedMorphism(%s, %s, "%s")' % \
(morphism.domain, morphism.codomain, morphism.name)
def _print_Category(self, category):
return 'Category("%s")' % category.name
def _print_Manifold(self, manifold):
return manifold.name.name
def _print_Patch(self, patch):
return patch.name.name
def _print_CoordSystem(self, coords):
return coords.name.name
def _print_BaseScalarField(self, field):
return field._coord_sys.symbols[field._index].name
def _print_BaseVectorField(self, field):
return 'e_%s' % field._coord_sys.symbols[field._index].name
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
return 'd%s' % field._coord_sys.symbols[field._index].name
else:
return 'd(%s)' % self._print(field)
def _print_Tr(self, expr):
#TODO : Handle indices
return "%s(%s)" % ("Tr", self._print(expr.args[0]))
def _print_Str(self, s):
return self._print(s.name)
def _print_AppliedBinaryRelation(self, expr):
rel = expr.function
return '%s(%s, %s)' % (self._print(rel),
self._print(expr.lhs),
self._print(expr.rhs))
@print_function(StrPrinter)
def sstr(expr, **settings):
"""Returns the expression as a string.
For large expressions where speed is a concern, use the setting
order='none'. If abbrev=True setting is used then units are printed in
abbreviated form.
Examples
========
>>> from sympy import symbols, Eq, sstr
>>> a, b = symbols('a b')
>>> sstr(Eq(a + b, 0))
'Eq(a + b, 0)'
"""
p = StrPrinter(settings)
s = p.doprint(expr)
return s
class StrReprPrinter(StrPrinter):
"""(internal) -- see sstrrepr"""
def _print_str(self, s):
return repr(s)
def _print_Str(self, s):
# Str does not to be printed same as str here
return "%s(%s)" % (s.__class__.__name__, self._print(s.name))
@print_function(StrReprPrinter)
def sstrrepr(expr, **settings):
"""return expr in mixed str/repr form
i.e. strings are returned in repr form with quotes, and everything else
is returned in str form.
This function could be useful for hooking into sys.displayhook
"""
p = StrReprPrinter(settings)
s = p.doprint(expr)
return s
|
41992b7b85a98538d70273009681424ad0c1c62c22c7bb4bcf5aaa5e17b59699 | '''
Use llvmlite to create executable functions from Sympy expressions
This module requires llvmlite (https://github.com/numba/llvmlite).
'''
import ctypes
from sympy.external import import_module
from sympy.printing.printer import Printer
from sympy import S, IndexedBase
from sympy.utilities.decorator import doctest_depends_on
llvmlite = import_module('llvmlite')
if llvmlite:
ll = import_module('llvmlite.ir').ir
llvm = import_module('llvmlite.binding').binding
llvm.initialize()
llvm.initialize_native_target()
llvm.initialize_native_asmprinter()
__doctest_requires__ = {('llvm_callable'): ['llvmlite']}
class LLVMJitPrinter(Printer):
'''Convert expressions to LLVM IR'''
def __init__(self, module, builder, fn, *args, **kwargs):
self.func_arg_map = kwargs.pop("func_arg_map", {})
if not llvmlite:
raise ImportError("llvmlite is required for LLVMJITPrinter")
super().__init__(*args, **kwargs)
self.fp_type = ll.DoubleType()
self.module = module
self.builder = builder
self.fn = fn
self.ext_fn = {} # keep track of wrappers to external functions
self.tmp_var = {}
def _add_tmp_var(self, name, value):
self.tmp_var[name] = value
def _print_Number(self, n):
return ll.Constant(self.fp_type, float(n))
def _print_Integer(self, expr):
return ll.Constant(self.fp_type, float(expr.p))
def _print_Symbol(self, s):
val = self.tmp_var.get(s)
if not val:
# look up parameter with name s
val = self.func_arg_map.get(s)
if not val:
raise LookupError("Symbol not found: %s" % s)
return val
def _print_Pow(self, expr):
base0 = self._print(expr.base)
if expr.exp == S.NegativeOne:
return self.builder.fdiv(ll.Constant(self.fp_type, 1.0), base0)
if expr.exp == S.Half:
fn = self.ext_fn.get("sqrt")
if not fn:
fn_type = ll.FunctionType(self.fp_type, [self.fp_type])
fn = ll.Function(self.module, fn_type, "sqrt")
self.ext_fn["sqrt"] = fn
return self.builder.call(fn, [base0], "sqrt")
if expr.exp == 2:
return self.builder.fmul(base0, base0)
exp0 = self._print(expr.exp)
fn = self.ext_fn.get("pow")
if not fn:
fn_type = ll.FunctionType(self.fp_type, [self.fp_type, self.fp_type])
fn = ll.Function(self.module, fn_type, "pow")
self.ext_fn["pow"] = fn
return self.builder.call(fn, [base0, exp0], "pow")
def _print_Mul(self, expr):
nodes = [self._print(a) for a in expr.args]
e = nodes[0]
for node in nodes[1:]:
e = self.builder.fmul(e, node)
return e
def _print_Add(self, expr):
nodes = [self._print(a) for a in expr.args]
e = nodes[0]
for node in nodes[1:]:
e = self.builder.fadd(e, node)
return e
# TODO - assumes all called functions take one double precision argument.
# Should have a list of math library functions to validate this.
def _print_Function(self, expr):
name = expr.func.__name__
e0 = self._print(expr.args[0])
fn = self.ext_fn.get(name)
if not fn:
fn_type = ll.FunctionType(self.fp_type, [self.fp_type])
fn = ll.Function(self.module, fn_type, name)
self.ext_fn[name] = fn
return self.builder.call(fn, [e0], name)
def emptyPrinter(self, expr):
raise TypeError("Unsupported type for LLVM JIT conversion: %s"
% type(expr))
# Used when parameters are passed by array. Often used in callbacks to
# handle a variable number of parameters.
class LLVMJitCallbackPrinter(LLVMJitPrinter):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def _print_Indexed(self, expr):
array, idx = self.func_arg_map[expr.base]
offset = int(expr.indices[0].evalf())
array_ptr = self.builder.gep(array, [ll.Constant(ll.IntType(32), offset)])
fp_array_ptr = self.builder.bitcast(array_ptr, ll.PointerType(self.fp_type))
value = self.builder.load(fp_array_ptr)
return value
def _print_Symbol(self, s):
val = self.tmp_var.get(s)
if val:
return val
array, idx = self.func_arg_map.get(s, [None, 0])
if not array:
raise LookupError("Symbol not found: %s" % s)
array_ptr = self.builder.gep(array, [ll.Constant(ll.IntType(32), idx)])
fp_array_ptr = self.builder.bitcast(array_ptr,
ll.PointerType(self.fp_type))
value = self.builder.load(fp_array_ptr)
return value
# ensure lifetime of the execution engine persists (else call to compiled
# function will seg fault)
exe_engines = []
# ensure names for generated functions are unique
link_names = set()
current_link_suffix = 0
class LLVMJitCode:
def __init__(self, signature):
self.signature = signature
self.fp_type = ll.DoubleType()
self.module = ll.Module('mod1')
self.fn = None
self.llvm_arg_types = []
self.llvm_ret_type = self.fp_type
self.param_dict = {} # map symbol name to LLVM function argument
self.link_name = ''
def _from_ctype(self, ctype):
if ctype == ctypes.c_int:
return ll.IntType(32)
if ctype == ctypes.c_double:
return self.fp_type
if ctype == ctypes.POINTER(ctypes.c_double):
return ll.PointerType(self.fp_type)
if ctype == ctypes.c_void_p:
return ll.PointerType(ll.IntType(32))
if ctype == ctypes.py_object:
return ll.PointerType(ll.IntType(32))
print("Unhandled ctype = %s" % str(ctype))
def _create_args(self, func_args):
"""Create types for function arguments"""
self.llvm_ret_type = self._from_ctype(self.signature.ret_type)
self.llvm_arg_types = \
[self._from_ctype(a) for a in self.signature.arg_ctypes]
def _create_function_base(self):
"""Create function with name and type signature"""
global link_names, current_link_suffix
default_link_name = 'jit_func'
current_link_suffix += 1
self.link_name = default_link_name + str(current_link_suffix)
link_names.add(self.link_name)
fn_type = ll.FunctionType(self.llvm_ret_type, self.llvm_arg_types)
self.fn = ll.Function(self.module, fn_type, name=self.link_name)
def _create_param_dict(self, func_args):
"""Mapping of symbolic values to function arguments"""
for i, a in enumerate(func_args):
self.fn.args[i].name = str(a)
self.param_dict[a] = self.fn.args[i]
def _create_function(self, expr):
"""Create function body and return LLVM IR"""
bb_entry = self.fn.append_basic_block('entry')
builder = ll.IRBuilder(bb_entry)
lj = LLVMJitPrinter(self.module, builder, self.fn,
func_arg_map=self.param_dict)
ret = self._convert_expr(lj, expr)
lj.builder.ret(self._wrap_return(lj, ret))
strmod = str(self.module)
return strmod
def _wrap_return(self, lj, vals):
# Return a single double if there is one return value,
# else return a tuple of doubles.
# Don't wrap return value in this case
if self.signature.ret_type == ctypes.c_double:
return vals[0]
# Use this instead of a real PyObject*
void_ptr = ll.PointerType(ll.IntType(32))
# Create a wrapped double: PyObject* PyFloat_FromDouble(double v)
wrap_type = ll.FunctionType(void_ptr, [self.fp_type])
wrap_fn = ll.Function(lj.module, wrap_type, "PyFloat_FromDouble")
wrapped_vals = [lj.builder.call(wrap_fn, [v]) for v in vals]
if len(vals) == 1:
final_val = wrapped_vals[0]
else:
# Create a tuple: PyObject* PyTuple_Pack(Py_ssize_t n, ...)
# This should be Py_ssize_t
tuple_arg_types = [ll.IntType(32)]
tuple_arg_types.extend([void_ptr]*len(vals))
tuple_type = ll.FunctionType(void_ptr, tuple_arg_types)
tuple_fn = ll.Function(lj.module, tuple_type, "PyTuple_Pack")
tuple_args = [ll.Constant(ll.IntType(32), len(wrapped_vals))]
tuple_args.extend(wrapped_vals)
final_val = lj.builder.call(tuple_fn, tuple_args)
return final_val
def _convert_expr(self, lj, expr):
try:
# Match CSE return data structure.
if len(expr) == 2:
tmp_exprs = expr[0]
final_exprs = expr[1]
if len(final_exprs) != 1 and self.signature.ret_type == ctypes.c_double:
raise NotImplementedError("Return of multiple expressions not supported for this callback")
for name, e in tmp_exprs:
val = lj._print(e)
lj._add_tmp_var(name, val)
except TypeError:
final_exprs = [expr]
vals = [lj._print(e) for e in final_exprs]
return vals
def _compile_function(self, strmod):
global exe_engines
llmod = llvm.parse_assembly(strmod)
pmb = llvm.create_pass_manager_builder()
pmb.opt_level = 2
pass_manager = llvm.create_module_pass_manager()
pmb.populate(pass_manager)
pass_manager.run(llmod)
target_machine = \
llvm.Target.from_default_triple().create_target_machine()
exe_eng = llvm.create_mcjit_compiler(llmod, target_machine)
exe_eng.finalize_object()
exe_engines.append(exe_eng)
if False:
print("Assembly")
print(target_machine.emit_assembly(llmod))
fptr = exe_eng.get_function_address(self.link_name)
return fptr
class LLVMJitCodeCallback(LLVMJitCode):
def __init__(self, signature):
super().__init__(signature)
def _create_param_dict(self, func_args):
for i, a in enumerate(func_args):
if isinstance(a, IndexedBase):
self.param_dict[a] = (self.fn.args[i], i)
self.fn.args[i].name = str(a)
else:
self.param_dict[a] = (self.fn.args[self.signature.input_arg],
i)
def _create_function(self, expr):
"""Create function body and return LLVM IR"""
bb_entry = self.fn.append_basic_block('entry')
builder = ll.IRBuilder(bb_entry)
lj = LLVMJitCallbackPrinter(self.module, builder, self.fn,
func_arg_map=self.param_dict)
ret = self._convert_expr(lj, expr)
if self.signature.ret_arg:
output_fp_ptr = builder.bitcast(self.fn.args[self.signature.ret_arg],
ll.PointerType(self.fp_type))
for i, val in enumerate(ret):
index = ll.Constant(ll.IntType(32), i)
output_array_ptr = builder.gep(output_fp_ptr, [index])
builder.store(val, output_array_ptr)
builder.ret(ll.Constant(ll.IntType(32), 0)) # return success
else:
lj.builder.ret(self._wrap_return(lj, ret))
strmod = str(self.module)
return strmod
class CodeSignature:
def __init__(self, ret_type):
self.ret_type = ret_type
self.arg_ctypes = []
# Input argument array element index
self.input_arg = 0
# For the case output value is referenced through a parameter rather
# than the return value
self.ret_arg = None
def _llvm_jit_code(args, expr, signature, callback_type):
"""Create a native code function from a Sympy expression"""
if callback_type is None:
jit = LLVMJitCode(signature)
else:
jit = LLVMJitCodeCallback(signature)
jit._create_args(args)
jit._create_function_base()
jit._create_param_dict(args)
strmod = jit._create_function(expr)
if False:
print("LLVM IR")
print(strmod)
fptr = jit._compile_function(strmod)
return fptr
@doctest_depends_on(modules=('llvmlite', 'scipy'))
def llvm_callable(args, expr, callback_type=None):
'''Compile function from a Sympy expression
Expressions are evaluated using double precision arithmetic.
Some single argument math functions (exp, sin, cos, etc.) are supported
in expressions.
Parameters
==========
args : List of Symbol
Arguments to the generated function. Usually the free symbols in
the expression. Currently each one is assumed to convert to
a double precision scalar.
expr : Expr, or (Replacements, Expr) as returned from 'cse'
Expression to compile.
callback_type : string
Create function with signature appropriate to use as a callback.
Currently supported:
'scipy.integrate'
'scipy.integrate.test'
'cubature'
Returns
=======
Compiled function that can evaluate the expression.
Examples
========
>>> import sympy.printing.llvmjitcode as jit
>>> from sympy.abc import a
>>> e = a*a + a + 1
>>> e1 = jit.llvm_callable([a], e)
>>> e.subs(a, 1.1) # Evaluate via substitution
3.31000000000000
>>> e1(1.1) # Evaluate using JIT-compiled code
3.3100000000000005
Callbacks for integration functions can be JIT compiled.
>>> import sympy.printing.llvmjitcode as jit
>>> from sympy.abc import a
>>> from sympy import integrate
>>> from scipy.integrate import quad
>>> e = a*a
>>> e1 = jit.llvm_callable([a], e, callback_type='scipy.integrate')
>>> integrate(e, (a, 0.0, 2.0))
2.66666666666667
>>> quad(e1, 0.0, 2.0)[0]
2.66666666666667
The 'cubature' callback is for the Python wrapper around the
cubature package ( https://github.com/saullocastro/cubature )
and ( http://ab-initio.mit.edu/wiki/index.php/Cubature )
There are two signatures for the SciPy integration callbacks.
The first ('scipy.integrate') is the function to be passed to the
integration routine, and will pass the signature checks.
The second ('scipy.integrate.test') is only useful for directly calling
the function using ctypes variables. It will not pass the signature checks
for scipy.integrate.
The return value from the cse module can also be compiled. This
can improve the performance of the compiled function. If multiple
expressions are given to cse, the compiled function returns a tuple.
The 'cubature' callback handles multiple expressions (set `fdim`
to match in the integration call.)
>>> import sympy.printing.llvmjitcode as jit
>>> from sympy import cse
>>> from sympy.abc import x,y
>>> e1 = x*x + y*y
>>> e2 = 4*(x*x + y*y) + 8.0
>>> after_cse = cse([e1,e2])
>>> after_cse
([(x0, x**2), (x1, y**2)], [x0 + x1, 4*x0 + 4*x1 + 8.0])
>>> j1 = jit.llvm_callable([x,y], after_cse) # doctest: +SKIP
>>> j1(1.0, 2.0) # doctest: +SKIP
(5.0, 28.0)
'''
if not llvmlite:
raise ImportError("llvmlite is required for llvmjitcode")
signature = CodeSignature(ctypes.py_object)
arg_ctypes = []
if callback_type is None:
for _ in args:
arg_ctype = ctypes.c_double
arg_ctypes.append(arg_ctype)
elif callback_type == 'scipy.integrate' or callback_type == 'scipy.integrate.test':
signature.ret_type = ctypes.c_double
arg_ctypes = [ctypes.c_int, ctypes.POINTER(ctypes.c_double)]
arg_ctypes_formal = [ctypes.c_int, ctypes.c_double]
signature.input_arg = 1
elif callback_type == 'cubature':
arg_ctypes = [ctypes.c_int,
ctypes.POINTER(ctypes.c_double),
ctypes.c_void_p,
ctypes.c_int,
ctypes.POINTER(ctypes.c_double)
]
signature.ret_type = ctypes.c_int
signature.input_arg = 1
signature.ret_arg = 4
else:
raise ValueError("Unknown callback type: %s" % callback_type)
signature.arg_ctypes = arg_ctypes
fptr = _llvm_jit_code(args, expr, signature, callback_type)
if callback_type and callback_type == 'scipy.integrate':
arg_ctypes = arg_ctypes_formal
cfunc = ctypes.CFUNCTYPE(signature.ret_type, *arg_ctypes)(fptr)
return cfunc
|
5b2ec6c1d1e2bb6bb4dc6dbfc9df556b7a3326b6c5faa5cbbd3df8b7b11fe36c | """
A Printer which converts an expression into its LaTeX equivalent.
"""
from typing import Any, Dict
import itertools
from sympy.core import Add, Float, Mod, Mul, Number, S, Symbol
from sympy.core.alphabets import greeks
from sympy.core.containers import Tuple
from sympy.core.function import _coeff_isneg, AppliedUndef, Derivative
from sympy.core.operations import AssocOp
from sympy.core.sympify import SympifyError
from sympy.logic.boolalg import true
# sympy.printing imports
from sympy.printing.precedence import precedence_traditional
from sympy.printing.printer import Printer, print_function
from sympy.printing.conventions import split_super_sub, requires_partial
from sympy.printing.precedence import precedence, PRECEDENCE
import mpmath.libmp as mlib
from mpmath.libmp import prec_to_dps
from sympy.core.compatibility import default_sort_key
from sympy.utilities.iterables import has_variety
import re
# Hand-picked functions which can be used directly in both LaTeX and MathJax
# Complete list at
# https://docs.mathjax.org/en/latest/tex.html#supported-latex-commands
# This variable only contains those functions which sympy uses.
accepted_latex_functions = ['arcsin', 'arccos', 'arctan', 'sin', 'cos', 'tan',
'sinh', 'cosh', 'tanh', 'sqrt', 'ln', 'log', 'sec',
'csc', 'cot', 'coth', 're', 'im', 'frac', 'root',
'arg',
]
tex_greek_dictionary = {
'Alpha': 'A',
'Beta': 'B',
'Gamma': r'\Gamma',
'Delta': r'\Delta',
'Epsilon': 'E',
'Zeta': 'Z',
'Eta': 'H',
'Theta': r'\Theta',
'Iota': 'I',
'Kappa': 'K',
'Lambda': r'\Lambda',
'Mu': 'M',
'Nu': 'N',
'Xi': r'\Xi',
'omicron': 'o',
'Omicron': 'O',
'Pi': r'\Pi',
'Rho': 'P',
'Sigma': r'\Sigma',
'Tau': 'T',
'Upsilon': r'\Upsilon',
'Phi': r'\Phi',
'Chi': 'X',
'Psi': r'\Psi',
'Omega': r'\Omega',
'lamda': r'\lambda',
'Lamda': r'\Lambda',
'khi': r'\chi',
'Khi': r'X',
'varepsilon': r'\varepsilon',
'varkappa': r'\varkappa',
'varphi': r'\varphi',
'varpi': r'\varpi',
'varrho': r'\varrho',
'varsigma': r'\varsigma',
'vartheta': r'\vartheta',
}
other_symbols = {'aleph', 'beth', 'daleth', 'gimel', 'ell', 'eth', 'hbar',
'hslash', 'mho', 'wp'}
# Variable name modifiers
modifier_dict = {
# Accents
'mathring': lambda s: r'\mathring{'+s+r'}',
'ddddot': lambda s: r'\ddddot{'+s+r'}',
'dddot': lambda s: r'\dddot{'+s+r'}',
'ddot': lambda s: r'\ddot{'+s+r'}',
'dot': lambda s: r'\dot{'+s+r'}',
'check': lambda s: r'\check{'+s+r'}',
'breve': lambda s: r'\breve{'+s+r'}',
'acute': lambda s: r'\acute{'+s+r'}',
'grave': lambda s: r'\grave{'+s+r'}',
'tilde': lambda s: r'\tilde{'+s+r'}',
'hat': lambda s: r'\hat{'+s+r'}',
'bar': lambda s: r'\bar{'+s+r'}',
'vec': lambda s: r'\vec{'+s+r'}',
'prime': lambda s: "{"+s+"}'",
'prm': lambda s: "{"+s+"}'",
# Faces
'bold': lambda s: r'\boldsymbol{'+s+r'}',
'bm': lambda s: r'\boldsymbol{'+s+r'}',
'cal': lambda s: r'\mathcal{'+s+r'}',
'scr': lambda s: r'\mathscr{'+s+r'}',
'frak': lambda s: r'\mathfrak{'+s+r'}',
# Brackets
'norm': lambda s: r'\left\|{'+s+r'}\right\|',
'avg': lambda s: r'\left\langle{'+s+r'}\right\rangle',
'abs': lambda s: r'\left|{'+s+r'}\right|',
'mag': lambda s: r'\left|{'+s+r'}\right|',
}
greek_letters_set = frozenset(greeks)
_between_two_numbers_p = (
re.compile(r'[0-9][} ]*$'), # search
re.compile(r'[{ ]*[-+0-9]'), # match
)
def latex_escape(s):
"""
Escape a string such that latex interprets it as plaintext.
We can't use verbatim easily with mathjax, so escaping is easier.
Rules from https://tex.stackexchange.com/a/34586/41112.
"""
s = s.replace('\\', r'\textbackslash')
for c in '&%$#_{}':
s = s.replace(c, '\\' + c)
s = s.replace('~', r'\textasciitilde')
s = s.replace('^', r'\textasciicircum')
return s
class LatexPrinter(Printer):
printmethod = "_latex"
_default_settings = {
"full_prec": False,
"fold_frac_powers": False,
"fold_func_brackets": False,
"fold_short_frac": None,
"inv_trig_style": "abbreviated",
"itex": False,
"ln_notation": False,
"long_frac_ratio": None,
"mat_delim": "[",
"mat_str": None,
"mode": "plain",
"mul_symbol": None,
"order": None,
"symbol_names": {},
"root_notation": True,
"mat_symbol_style": "plain",
"imaginary_unit": "i",
"gothic_re_im": False,
"decimal_separator": "period",
"perm_cyclic": True,
"parenthesize_super": True,
"min": None,
"max": None,
} # type: Dict[str, Any]
def __init__(self, settings=None):
Printer.__init__(self, settings)
if 'mode' in self._settings:
valid_modes = ['inline', 'plain', 'equation',
'equation*']
if self._settings['mode'] not in valid_modes:
raise ValueError("'mode' must be one of 'inline', 'plain', "
"'equation' or 'equation*'")
if self._settings['fold_short_frac'] is None and \
self._settings['mode'] == 'inline':
self._settings['fold_short_frac'] = True
mul_symbol_table = {
None: r" ",
"ldot": r" \,.\, ",
"dot": r" \cdot ",
"times": r" \times "
}
try:
self._settings['mul_symbol_latex'] = \
mul_symbol_table[self._settings['mul_symbol']]
except KeyError:
self._settings['mul_symbol_latex'] = \
self._settings['mul_symbol']
try:
self._settings['mul_symbol_latex_numbers'] = \
mul_symbol_table[self._settings['mul_symbol'] or 'dot']
except KeyError:
if (self._settings['mul_symbol'].strip() in
['', ' ', '\\', '\\,', '\\:', '\\;', '\\quad']):
self._settings['mul_symbol_latex_numbers'] = \
mul_symbol_table['dot']
else:
self._settings['mul_symbol_latex_numbers'] = \
self._settings['mul_symbol']
self._delim_dict = {'(': ')', '[': ']'}
imaginary_unit_table = {
None: r"i",
"i": r"i",
"ri": r"\mathrm{i}",
"ti": r"\text{i}",
"j": r"j",
"rj": r"\mathrm{j}",
"tj": r"\text{j}",
}
try:
self._settings['imaginary_unit_latex'] = \
imaginary_unit_table[self._settings['imaginary_unit']]
except KeyError:
self._settings['imaginary_unit_latex'] = \
self._settings['imaginary_unit']
def _add_parens(self, s):
return r"\left({}\right)".format(s)
# TODO: merge this with the above, which requires a lot of test changes
def _add_parens_lspace(self, s):
return r"\left( {}\right)".format(s)
def parenthesize(self, item, level, is_neg=False, strict=False):
prec_val = precedence_traditional(item)
if is_neg and strict:
return self._add_parens(self._print(item))
if (prec_val < level) or ((not strict) and prec_val <= level):
return self._add_parens(self._print(item))
else:
return self._print(item)
def parenthesize_super(self, s):
"""
Protect superscripts in s
If the parenthesize_super option is set, protect with parentheses, else
wrap in braces.
"""
if "^" in s:
if self._settings['parenthesize_super']:
return self._add_parens(s)
else:
return "{{{}}}".format(s)
return s
def doprint(self, expr):
tex = Printer.doprint(self, expr)
if self._settings['mode'] == 'plain':
return tex
elif self._settings['mode'] == 'inline':
return r"$%s$" % tex
elif self._settings['itex']:
return r"$$%s$$" % tex
else:
env_str = self._settings['mode']
return r"\begin{%s}%s\end{%s}" % (env_str, tex, env_str)
def _needs_brackets(self, expr):
"""
Returns True if the expression needs to be wrapped in brackets when
printed, False otherwise. For example: a + b => True; a => False;
10 => False; -10 => True.
"""
return not ((expr.is_Integer and expr.is_nonnegative)
or (expr.is_Atom and (expr is not S.NegativeOne
and expr.is_Rational is False)))
def _needs_function_brackets(self, expr):
"""
Returns True if the expression needs to be wrapped in brackets when
passed as an argument to a function, False otherwise. This is a more
liberal version of _needs_brackets, in that many expressions which need
to be wrapped in brackets when added/subtracted/raised to a power do
not need them when passed to a function. Such an example is a*b.
"""
if not self._needs_brackets(expr):
return False
else:
# Muls of the form a*b*c... can be folded
if expr.is_Mul and not self._mul_is_clean(expr):
return True
# Pows which don't need brackets can be folded
elif expr.is_Pow and not self._pow_is_clean(expr):
return True
# Add and Function always need brackets
elif expr.is_Add or expr.is_Function:
return True
else:
return False
def _needs_mul_brackets(self, expr, first=False, last=False):
"""
Returns True if the expression needs to be wrapped in brackets when
printed as part of a Mul, False otherwise. This is True for Add,
but also for some container objects that would not need brackets
when appearing last in a Mul, e.g. an Integral. ``last=True``
specifies that this expr is the last to appear in a Mul.
``first=True`` specifies that this expr is the first to appear in
a Mul.
"""
from sympy import Integral, Product, Sum
if expr.is_Mul:
if not first and _coeff_isneg(expr):
return True
elif precedence_traditional(expr) < PRECEDENCE["Mul"]:
return True
elif expr.is_Relational:
return True
if expr.is_Piecewise:
return True
if any(expr.has(x) for x in (Mod,)):
return True
if (not last and
any(expr.has(x) for x in (Integral, Product, Sum))):
return True
return False
def _needs_add_brackets(self, expr):
"""
Returns True if the expression needs to be wrapped in brackets when
printed as part of an Add, False otherwise. This is False for most
things.
"""
if expr.is_Relational:
return True
if any(expr.has(x) for x in (Mod,)):
return True
if expr.is_Add:
return True
return False
def _mul_is_clean(self, expr):
for arg in expr.args:
if arg.is_Function:
return False
return True
def _pow_is_clean(self, expr):
return not self._needs_brackets(expr.base)
def _do_exponent(self, expr, exp):
if exp is not None:
return r"\left(%s\right)^{%s}" % (expr, exp)
else:
return expr
def _print_Basic(self, expr):
ls = [self._print(o) for o in expr.args]
return self._deal_with_super_sub(expr.__class__.__name__) + \
r"\left(%s\right)" % ", ".join(ls)
def _print_bool(self, e):
return r"\text{%s}" % e
_print_BooleanTrue = _print_bool
_print_BooleanFalse = _print_bool
def _print_NoneType(self, e):
return r"\text{%s}" % e
def _print_Add(self, expr, order=None):
terms = self._as_ordered_terms(expr, order=order)
tex = ""
for i, term in enumerate(terms):
if i == 0:
pass
elif _coeff_isneg(term):
tex += " - "
term = -term
else:
tex += " + "
term_tex = self._print(term)
if self._needs_add_brackets(term):
term_tex = r"\left(%s\right)" % term_tex
tex += term_tex
return tex
def _print_Cycle(self, expr):
from sympy.combinatorics.permutations import Permutation
if expr.size == 0:
return r"\left( \right)"
expr = Permutation(expr)
expr_perm = expr.cyclic_form
siz = expr.size
if expr.array_form[-1] == siz - 1:
expr_perm = expr_perm + [[siz - 1]]
term_tex = ''
for i in expr_perm:
term_tex += str(i).replace(',', r"\;")
term_tex = term_tex.replace('[', r"\left( ")
term_tex = term_tex.replace(']', r"\right)")
return term_tex
def _print_Permutation(self, expr):
from sympy.combinatorics.permutations import Permutation
from sympy.utilities.exceptions import SymPyDeprecationWarning
perm_cyclic = Permutation.print_cyclic
if perm_cyclic is not None:
SymPyDeprecationWarning(
feature="Permutation.print_cyclic = {}".format(perm_cyclic),
useinstead="init_printing(perm_cyclic={})"
.format(perm_cyclic),
issue=15201,
deprecated_since_version="1.6").warn()
else:
perm_cyclic = self._settings.get("perm_cyclic", True)
if perm_cyclic:
return self._print_Cycle(expr)
if expr.size == 0:
return r"\left( \right)"
lower = [self._print(arg) for arg in expr.array_form]
upper = [self._print(arg) for arg in range(len(lower))]
row1 = " & ".join(upper)
row2 = " & ".join(lower)
mat = r" \\ ".join((row1, row2))
return r"\begin{pmatrix} %s \end{pmatrix}" % mat
def _print_AppliedPermutation(self, expr):
perm, var = expr.args
return r"\sigma_{%s}(%s)" % (self._print(perm), self._print(var))
def _print_Float(self, expr):
# Based off of that in StrPrinter
dps = prec_to_dps(expr._prec)
strip = False if self._settings['full_prec'] else True
low = self._settings["min"] if "min" in self._settings else None
high = self._settings["max"] if "max" in self._settings else None
str_real = mlib.to_str(expr._mpf_, dps, strip_zeros=strip, min_fixed=low, max_fixed=high)
# Must always have a mul symbol (as 2.5 10^{20} just looks odd)
# thus we use the number separator
separator = self._settings['mul_symbol_latex_numbers']
if 'e' in str_real:
(mant, exp) = str_real.split('e')
if exp[0] == '+':
exp = exp[1:]
if self._settings['decimal_separator'] == 'comma':
mant = mant.replace('.','{,}')
return r"%s%s10^{%s}" % (mant, separator, exp)
elif str_real == "+inf":
return r"\infty"
elif str_real == "-inf":
return r"- \infty"
else:
if self._settings['decimal_separator'] == 'comma':
str_real = str_real.replace('.','{,}')
return str_real
def _print_Cross(self, expr):
vec1 = expr._expr1
vec2 = expr._expr2
return r"%s \times %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']),
self.parenthesize(vec2, PRECEDENCE['Mul']))
def _print_Curl(self, expr):
vec = expr._expr
return r"\nabla\times %s" % self.parenthesize(vec, PRECEDENCE['Mul'])
def _print_Divergence(self, expr):
vec = expr._expr
return r"\nabla\cdot %s" % self.parenthesize(vec, PRECEDENCE['Mul'])
def _print_Dot(self, expr):
vec1 = expr._expr1
vec2 = expr._expr2
return r"%s \cdot %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']),
self.parenthesize(vec2, PRECEDENCE['Mul']))
def _print_Gradient(self, expr):
func = expr._expr
return r"\nabla %s" % self.parenthesize(func, PRECEDENCE['Mul'])
def _print_Laplacian(self, expr):
func = expr._expr
return r"\triangle %s" % self.parenthesize(func, PRECEDENCE['Mul'])
def _print_Mul(self, expr):
from sympy.core.power import Pow
from sympy.physics.units import Quantity
from sympy.simplify import fraction
separator = self._settings['mul_symbol_latex']
numbersep = self._settings['mul_symbol_latex_numbers']
def convert(expr):
if not expr.is_Mul:
return str(self._print(expr))
else:
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
args = list(expr.args)
# If quantities are present append them at the back
args = sorted(args, key=lambda x: isinstance(x, Quantity) or
(isinstance(x, Pow) and
isinstance(x.base, Quantity)))
return convert_args(args)
def convert_args(args):
_tex = last_term_tex = ""
for i, term in enumerate(args):
term_tex = self._print(term)
if self._needs_mul_brackets(term, first=(i == 0),
last=(i == len(args) - 1)):
term_tex = r"\left(%s\right)" % term_tex
if _between_two_numbers_p[0].search(last_term_tex) and \
_between_two_numbers_p[1].match(term_tex):
# between two numbers
_tex += numbersep
elif _tex:
_tex += separator
_tex += term_tex
last_term_tex = term_tex
return _tex
# Check for unevaluated Mul. In this case we need to make sure the
# identities are visible, multiple Rational factors are not combined
# etc so we display in a straight-forward form that fully preserves all
# args and their order.
# XXX: _print_Pow calls this routine with instances of Pow...
if isinstance(expr, Mul):
args = expr.args
if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]):
return convert_args(args)
include_parens = False
if _coeff_isneg(expr):
expr = -expr
tex = "- "
if expr.is_Add:
tex += "("
include_parens = True
else:
tex = ""
numer, denom = fraction(expr, exact=True)
if denom is S.One and Pow(1, -1, evaluate=False) not in expr.args:
# use the original expression here, since fraction() may have
# altered it when producing numer and denom
tex += convert(expr)
else:
snumer = convert(numer)
sdenom = convert(denom)
ldenom = len(sdenom.split())
ratio = self._settings['long_frac_ratio']
if self._settings['fold_short_frac'] and ldenom <= 2 and \
"^" not in sdenom:
# handle short fractions
if self._needs_mul_brackets(numer, last=False):
tex += r"\left(%s\right) / %s" % (snumer, sdenom)
else:
tex += r"%s / %s" % (snumer, sdenom)
elif ratio is not None and \
len(snumer.split()) > ratio*ldenom:
# handle long fractions
if self._needs_mul_brackets(numer, last=True):
tex += r"\frac{1}{%s}%s\left(%s\right)" \
% (sdenom, separator, snumer)
elif numer.is_Mul:
# split a long numerator
a = S.One
b = S.One
for x in numer.args:
if self._needs_mul_brackets(x, last=False) or \
len(convert(a*x).split()) > ratio*ldenom or \
(b.is_commutative is x.is_commutative is False):
b *= x
else:
a *= x
if self._needs_mul_brackets(b, last=True):
tex += r"\frac{%s}{%s}%s\left(%s\right)" \
% (convert(a), sdenom, separator, convert(b))
else:
tex += r"\frac{%s}{%s}%s%s" \
% (convert(a), sdenom, separator, convert(b))
else:
tex += r"\frac{1}{%s}%s%s" % (sdenom, separator, snumer)
else:
tex += r"\frac{%s}{%s}" % (snumer, sdenom)
if include_parens:
tex += ")"
return tex
def _print_Pow(self, expr):
# Treat x**Rational(1,n) as special case
if expr.exp.is_Rational and abs(expr.exp.p) == 1 and expr.exp.q != 1 \
and self._settings['root_notation']:
base = self._print(expr.base)
expq = expr.exp.q
if expq == 2:
tex = r"\sqrt{%s}" % base
elif self._settings['itex']:
tex = r"\root{%d}{%s}" % (expq, base)
else:
tex = r"\sqrt[%d]{%s}" % (expq, base)
if expr.exp.is_negative:
return r"\frac{1}{%s}" % tex
else:
return tex
elif self._settings['fold_frac_powers'] \
and expr.exp.is_Rational \
and expr.exp.q != 1:
base = self.parenthesize(expr.base, PRECEDENCE['Pow'])
p, q = expr.exp.p, expr.exp.q
# issue #12886: add parentheses for superscripts raised to powers
if expr.base.is_Symbol:
base = self.parenthesize_super(base)
if expr.base.is_Function:
return self._print(expr.base, exp="%s/%s" % (p, q))
return r"%s^{%s/%s}" % (base, p, q)
elif expr.exp.is_Rational and expr.exp.is_negative and \
expr.base.is_commutative:
# special case for 1^(-x), issue 9216
if expr.base == 1:
return r"%s^{%s}" % (expr.base, expr.exp)
# special case for (1/x)^(-y) and (-1/-x)^(-y), issue 20252
if expr.base.is_Rational and \
expr.base.p*expr.base.q == abs(expr.base.q):
if expr.exp == -1:
return r"\frac{1}{\frac{%s}{%s}}" % (expr.base.p, expr.base.q)
else:
return r"\frac{1}{(\frac{%s}{%s})^{%s}}" % (expr.base.p, expr.base.q, abs(expr.exp))
# things like 1/x
return self._print_Mul(expr)
else:
if expr.base.is_Function:
return self._print(expr.base, exp=self._print(expr.exp))
else:
tex = r"%s^{%s}"
return self._helper_print_standard_power(expr, tex)
def _helper_print_standard_power(self, expr, template):
exp = self._print(expr.exp)
# issue #12886: add parentheses around superscripts raised
# to powers
base = self.parenthesize(expr.base, PRECEDENCE['Pow'])
if expr.base.is_Symbol:
base = self.parenthesize_super(base)
elif (isinstance(expr.base, Derivative)
and base.startswith(r'\left(')
and re.match(r'\\left\(\\d?d?dot', base)
and base.endswith(r'\right)')):
# don't use parentheses around dotted derivative
base = base[6: -7] # remove outermost added parens
return template % (base, exp)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def _print_Sum(self, expr):
if len(expr.limits) == 1:
tex = r"\sum_{%s=%s}^{%s} " % \
tuple([self._print(i) for i in expr.limits[0]])
else:
def _format_ineq(l):
return r"%s \leq %s \leq %s" % \
tuple([self._print(s) for s in (l[1], l[0], l[2])])
tex = r"\sum_{\substack{%s}} " % \
str.join('\\\\', [_format_ineq(l) for l in expr.limits])
if isinstance(expr.function, Add):
tex += r"\left(%s\right)" % self._print(expr.function)
else:
tex += self._print(expr.function)
return tex
def _print_Product(self, expr):
if len(expr.limits) == 1:
tex = r"\prod_{%s=%s}^{%s} " % \
tuple([self._print(i) for i in expr.limits[0]])
else:
def _format_ineq(l):
return r"%s \leq %s \leq %s" % \
tuple([self._print(s) for s in (l[1], l[0], l[2])])
tex = r"\prod_{\substack{%s}} " % \
str.join('\\\\', [_format_ineq(l) for l in expr.limits])
if isinstance(expr.function, Add):
tex += r"\left(%s\right)" % self._print(expr.function)
else:
tex += self._print(expr.function)
return tex
def _print_BasisDependent(self, expr):
from sympy.vector import Vector
o1 = []
if expr == expr.zero:
return expr.zero._latex_form
if isinstance(expr, Vector):
items = expr.separate().items()
else:
items = [(0, expr)]
for system, vect in items:
inneritems = list(vect.components.items())
inneritems.sort(key=lambda x: x[0].__str__())
for k, v in inneritems:
if v == 1:
o1.append(' + ' + k._latex_form)
elif v == -1:
o1.append(' - ' + k._latex_form)
else:
arg_str = '(' + self._print(v) + ')'
o1.append(' + ' + arg_str + k._latex_form)
outstr = (''.join(o1))
if outstr[1] != '-':
outstr = outstr[3:]
else:
outstr = outstr[1:]
return outstr
def _print_Indexed(self, expr):
tex_base = self._print(expr.base)
tex = '{'+tex_base+'}'+'_{%s}' % ','.join(
map(self._print, expr.indices))
return tex
def _print_IndexedBase(self, expr):
return self._print(expr.label)
def _print_Derivative(self, expr):
if requires_partial(expr.expr):
diff_symbol = r'\partial'
else:
diff_symbol = r'd'
tex = ""
dim = 0
for x, num in reversed(expr.variable_count):
dim += num
if num == 1:
tex += r"%s %s" % (diff_symbol, self._print(x))
else:
tex += r"%s %s^{%s}" % (diff_symbol,
self.parenthesize_super(self._print(x)),
self._print(num))
if dim == 1:
tex = r"\frac{%s}{%s}" % (diff_symbol, tex)
else:
tex = r"\frac{%s^{%s}}{%s}" % (diff_symbol, self._print(dim), tex)
if any(_coeff_isneg(i) for i in expr.args):
return r"%s %s" % (tex, self.parenthesize(expr.expr,
PRECEDENCE["Mul"],
is_neg=True,
strict=True))
return r"%s %s" % (tex, self.parenthesize(expr.expr,
PRECEDENCE["Mul"],
is_neg=False,
strict=True))
def _print_Subs(self, subs):
expr, old, new = subs.args
latex_expr = self._print(expr)
latex_old = (self._print(e) for e in old)
latex_new = (self._print(e) for e in new)
latex_subs = r'\\ '.join(
e[0] + '=' + e[1] for e in zip(latex_old, latex_new))
return r'\left. %s \right|_{\substack{ %s }}' % (latex_expr,
latex_subs)
def _print_Integral(self, expr):
tex, symbols = "", []
# Only up to \iiiint exists
if len(expr.limits) <= 4 and all(len(lim) == 1 for lim in expr.limits):
# Use len(expr.limits)-1 so that syntax highlighters don't think
# \" is an escaped quote
tex = r"\i" + "i"*(len(expr.limits) - 1) + "nt"
symbols = [r"\, d%s" % self._print(symbol[0])
for symbol in expr.limits]
else:
for lim in reversed(expr.limits):
symbol = lim[0]
tex += r"\int"
if len(lim) > 1:
if self._settings['mode'] != 'inline' \
and not self._settings['itex']:
tex += r"\limits"
if len(lim) == 3:
tex += "_{%s}^{%s}" % (self._print(lim[1]),
self._print(lim[2]))
if len(lim) == 2:
tex += "^{%s}" % (self._print(lim[1]))
symbols.insert(0, r"\, d%s" % self._print(symbol))
return r"%s %s%s" % (tex, self.parenthesize(expr.function,
PRECEDENCE["Mul"],
is_neg=any(_coeff_isneg(i) for i in expr.args),
strict=True),
"".join(symbols))
def _print_Limit(self, expr):
e, z, z0, dir = expr.args
tex = r"\lim_{%s \to " % self._print(z)
if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity):
tex += r"%s}" % self._print(z0)
else:
tex += r"%s^%s}" % (self._print(z0), self._print(dir))
if isinstance(e, AssocOp):
return r"%s\left(%s\right)" % (tex, self._print(e))
else:
return r"%s %s" % (tex, self._print(e))
def _hprint_Function(self, func):
r'''
Logic to decide how to render a function to latex
- if it is a recognized latex name, use the appropriate latex command
- if it is a single letter, just use that letter
- if it is a longer name, then put \operatorname{} around it and be
mindful of undercores in the name
'''
func = self._deal_with_super_sub(func)
if func in accepted_latex_functions:
name = r"\%s" % func
elif len(func) == 1 or func.startswith('\\'):
name = func
else:
name = r"\operatorname{%s}" % func
return name
def _print_Function(self, expr, exp=None):
r'''
Render functions to LaTeX, handling functions that LaTeX knows about
e.g., sin, cos, ... by using the proper LaTeX command (\sin, \cos, ...).
For single-letter function names, render them as regular LaTeX math
symbols. For multi-letter function names that LaTeX does not know
about, (e.g., Li, sech) use \operatorname{} so that the function name
is rendered in Roman font and LaTeX handles spacing properly.
expr is the expression involving the function
exp is an exponent
'''
func = expr.func.__name__
if hasattr(self, '_print_' + func) and \
not isinstance(expr, AppliedUndef):
return getattr(self, '_print_' + func)(expr, exp)
else:
args = [str(self._print(arg)) for arg in expr.args]
# How inverse trig functions should be displayed, formats are:
# abbreviated: asin, full: arcsin, power: sin^-1
inv_trig_style = self._settings['inv_trig_style']
# If we are dealing with a power-style inverse trig function
inv_trig_power_case = False
# If it is applicable to fold the argument brackets
can_fold_brackets = self._settings['fold_func_brackets'] and \
len(args) == 1 and \
not self._needs_function_brackets(expr.args[0])
inv_trig_table = [
"asin", "acos", "atan",
"acsc", "asec", "acot",
"asinh", "acosh", "atanh",
"acsch", "asech", "acoth",
]
# If the function is an inverse trig function, handle the style
if func in inv_trig_table:
if inv_trig_style == "abbreviated":
pass
elif inv_trig_style == "full":
func = "arc" + func[1:]
elif inv_trig_style == "power":
func = func[1:]
inv_trig_power_case = True
# Can never fold brackets if we're raised to a power
if exp is not None:
can_fold_brackets = False
if inv_trig_power_case:
if func in accepted_latex_functions:
name = r"\%s^{-1}" % func
else:
name = r"\operatorname{%s}^{-1}" % func
elif exp is not None:
func_tex = self._hprint_Function(func)
func_tex = self.parenthesize_super(func_tex)
name = r'%s^{%s}' % (func_tex, exp)
else:
name = self._hprint_Function(func)
if can_fold_brackets:
if func in accepted_latex_functions:
# Wrap argument safely to avoid parse-time conflicts
# with the function name itself
name += r" {%s}"
else:
name += r"%s"
else:
name += r"{\left(%s \right)}"
if inv_trig_power_case and exp is not None:
name += r"^{%s}" % exp
return name % ",".join(args)
def _print_UndefinedFunction(self, expr):
return self._hprint_Function(str(expr))
def _print_ElementwiseApplyFunction(self, expr):
return r"{%s}_{\circ}\left({%s}\right)" % (
self._print(expr.function),
self._print(expr.expr),
)
@property
def _special_function_classes(self):
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.functions.special.gamma_functions import gamma, lowergamma
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.error_functions import Chi
return {KroneckerDelta: r'\delta',
gamma: r'\Gamma',
lowergamma: r'\gamma',
beta: r'\operatorname{B}',
DiracDelta: r'\delta',
Chi: r'\operatorname{Chi}'}
def _print_FunctionClass(self, expr):
for cls in self._special_function_classes:
if issubclass(expr, cls) and expr.__name__ == cls.__name__:
return self._special_function_classes[cls]
return self._hprint_Function(str(expr))
def _print_Lambda(self, expr):
symbols, expr = expr.args
if len(symbols) == 1:
symbols = self._print(symbols[0])
else:
symbols = self._print(tuple(symbols))
tex = r"\left( %s \mapsto %s \right)" % (symbols, self._print(expr))
return tex
def _print_IdentityFunction(self, expr):
return r"\left( x \mapsto x \right)"
def _hprint_variadic_function(self, expr, exp=None):
args = sorted(expr.args, key=default_sort_key)
texargs = [r"%s" % self._print(symbol) for symbol in args]
tex = r"\%s\left(%s\right)" % (str(expr.func).lower(),
", ".join(texargs))
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
_print_Min = _print_Max = _hprint_variadic_function
def _print_floor(self, expr, exp=None):
tex = r"\left\lfloor{%s}\right\rfloor" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_ceiling(self, expr, exp=None):
tex = r"\left\lceil{%s}\right\rceil" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_log(self, expr, exp=None):
if not self._settings["ln_notation"]:
tex = r"\log{\left(%s \right)}" % self._print(expr.args[0])
else:
tex = r"\ln{\left(%s \right)}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_Abs(self, expr, exp=None):
tex = r"\left|{%s}\right|" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
_print_Determinant = _print_Abs
def _print_re(self, expr, exp=None):
if self._settings['gothic_re_im']:
tex = r"\Re{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom'])
else:
tex = r"\operatorname{{re}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom']))
return self._do_exponent(tex, exp)
def _print_im(self, expr, exp=None):
if self._settings['gothic_re_im']:
tex = r"\Im{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom'])
else:
tex = r"\operatorname{{im}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom']))
return self._do_exponent(tex, exp)
def _print_Not(self, e):
from sympy import Equivalent, Implies
if isinstance(e.args[0], Equivalent):
return self._print_Equivalent(e.args[0], r"\not\Leftrightarrow")
if isinstance(e.args[0], Implies):
return self._print_Implies(e.args[0], r"\not\Rightarrow")
if (e.args[0].is_Boolean):
return r"\neg \left(%s\right)" % self._print(e.args[0])
else:
return r"\neg %s" % self._print(e.args[0])
def _print_LogOp(self, args, char):
arg = args[0]
if arg.is_Boolean and not arg.is_Not:
tex = r"\left(%s\right)" % self._print(arg)
else:
tex = r"%s" % self._print(arg)
for arg in args[1:]:
if arg.is_Boolean and not arg.is_Not:
tex += r" %s \left(%s\right)" % (char, self._print(arg))
else:
tex += r" %s %s" % (char, self._print(arg))
return tex
def _print_And(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\wedge")
def _print_Or(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\vee")
def _print_Xor(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\veebar")
def _print_Implies(self, e, altchar=None):
return self._print_LogOp(e.args, altchar or r"\Rightarrow")
def _print_Equivalent(self, e, altchar=None):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, altchar or r"\Leftrightarrow")
def _print_conjugate(self, expr, exp=None):
tex = r"\overline{%s}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_polar_lift(self, expr, exp=None):
func = r"\operatorname{polar\_lift}"
arg = r"{\left(%s \right)}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (func, exp, arg)
else:
return r"%s%s" % (func, arg)
def _print_ExpBase(self, expr, exp=None):
# TODO should exp_polar be printed differently?
# what about exp_polar(0), exp_polar(1)?
tex = r"e^{%s}" % self._print(expr.args[0])
return self._do_exponent(tex, exp)
def _print_Exp1(self, expr, exp=None):
return "e"
def _print_elliptic_k(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"K^{%s}%s" % (exp, tex)
else:
return r"K%s" % tex
def _print_elliptic_f(self, expr, exp=None):
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
if exp is not None:
return r"F^{%s}%s" % (exp, tex)
else:
return r"F%s" % tex
def _print_elliptic_e(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"E^{%s}%s" % (exp, tex)
else:
return r"E%s" % tex
def _print_elliptic_pi(self, expr, exp=None):
if len(expr.args) == 3:
tex = r"\left(%s; %s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]),
self._print(expr.args[2]))
else:
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
if exp is not None:
return r"\Pi^{%s}%s" % (exp, tex)
else:
return r"\Pi%s" % tex
def _print_beta(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\operatorname{B}^{%s}%s" % (exp, tex)
else:
return r"\operatorname{B}%s" % tex
def _print_betainc(self, expr, exp=None, operator='B'):
largs = [self._print(arg) for arg in expr.args]
tex = r"\left(%s, %s\right)" % (largs[0], largs[1])
if exp is not None:
return r"\operatorname{%s}_{(%s, %s)}^{%s}%s" % (operator, largs[2], largs[3], exp, tex)
else:
return r"\operatorname{%s}_{(%s, %s)}%s" % (operator, largs[2], largs[3], tex)
def _print_betainc_regularized(self, expr, exp=None):
return self._print_betainc(expr, exp, operator='I')
def _print_uppergamma(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\Gamma^{%s}%s" % (exp, tex)
else:
return r"\Gamma%s" % tex
def _print_lowergamma(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\gamma^{%s}%s" % (exp, tex)
else:
return r"\gamma%s" % tex
def _hprint_one_arg_func(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (self._print(expr.func), exp, tex)
else:
return r"%s%s" % (self._print(expr.func), tex)
_print_gamma = _hprint_one_arg_func
def _print_Chi(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\operatorname{Chi}^{%s}%s" % (exp, tex)
else:
return r"\operatorname{Chi}%s" % tex
def _print_expint(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[1])
nu = self._print(expr.args[0])
if exp is not None:
return r"\operatorname{E}_{%s}^{%s}%s" % (nu, exp, tex)
else:
return r"\operatorname{E}_{%s}%s" % (nu, tex)
def _print_fresnels(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"S^{%s}%s" % (exp, tex)
else:
return r"S%s" % tex
def _print_fresnelc(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"C^{%s}%s" % (exp, tex)
else:
return r"C%s" % tex
def _print_subfactorial(self, expr, exp=None):
tex = r"!%s" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"\left(%s\right)^{%s}" % (tex, exp)
else:
return tex
def _print_factorial(self, expr, exp=None):
tex = r"%s!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_factorial2(self, expr, exp=None):
tex = r"%s!!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_binomial(self, expr, exp=None):
tex = r"{\binom{%s}{%s}}" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_RisingFactorial(self, expr, exp=None):
n, k = expr.args
base = r"%s" % self.parenthesize(n, PRECEDENCE['Func'])
tex = r"{%s}^{\left(%s\right)}" % (base, self._print(k))
return self._do_exponent(tex, exp)
def _print_FallingFactorial(self, expr, exp=None):
n, k = expr.args
sub = r"%s" % self.parenthesize(k, PRECEDENCE['Func'])
tex = r"{\left(%s\right)}_{%s}" % (self._print(n), sub)
return self._do_exponent(tex, exp)
def _hprint_BesselBase(self, expr, exp, sym):
tex = r"%s" % (sym)
need_exp = False
if exp is not None:
if tex.find('^') == -1:
tex = r"%s^{%s}" % (tex, exp)
else:
need_exp = True
tex = r"%s_{%s}\left(%s\right)" % (tex, self._print(expr.order),
self._print(expr.argument))
if need_exp:
tex = self._do_exponent(tex, exp)
return tex
def _hprint_vec(self, vec):
if not vec:
return ""
s = ""
for i in vec[:-1]:
s += "%s, " % self._print(i)
s += self._print(vec[-1])
return s
def _print_besselj(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'J')
def _print_besseli(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'I')
def _print_besselk(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'K')
def _print_bessely(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'Y')
def _print_yn(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'y')
def _print_jn(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'j')
def _print_hankel1(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'H^{(1)}')
def _print_hankel2(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'H^{(2)}')
def _print_hn1(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'h^{(1)}')
def _print_hn2(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'h^{(2)}')
def _hprint_airy(self, expr, exp=None, notation=""):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (notation, exp, tex)
else:
return r"%s%s" % (notation, tex)
def _hprint_airy_prime(self, expr, exp=None, notation=""):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"{%s^\prime}^{%s}%s" % (notation, exp, tex)
else:
return r"%s^\prime%s" % (notation, tex)
def _print_airyai(self, expr, exp=None):
return self._hprint_airy(expr, exp, 'Ai')
def _print_airybi(self, expr, exp=None):
return self._hprint_airy(expr, exp, 'Bi')
def _print_airyaiprime(self, expr, exp=None):
return self._hprint_airy_prime(expr, exp, 'Ai')
def _print_airybiprime(self, expr, exp=None):
return self._hprint_airy_prime(expr, exp, 'Bi')
def _print_hyper(self, expr, exp=None):
tex = r"{{}_{%s}F_{%s}\left(\begin{matrix} %s \\ %s \end{matrix}" \
r"\middle| {%s} \right)}" % \
(self._print(len(expr.ap)), self._print(len(expr.bq)),
self._hprint_vec(expr.ap), self._hprint_vec(expr.bq),
self._print(expr.argument))
if exp is not None:
tex = r"{%s}^{%s}" % (tex, exp)
return tex
def _print_meijerg(self, expr, exp=None):
tex = r"{G_{%s, %s}^{%s, %s}\left(\begin{matrix} %s & %s \\" \
r"%s & %s \end{matrix} \middle| {%s} \right)}" % \
(self._print(len(expr.ap)), self._print(len(expr.bq)),
self._print(len(expr.bm)), self._print(len(expr.an)),
self._hprint_vec(expr.an), self._hprint_vec(expr.aother),
self._hprint_vec(expr.bm), self._hprint_vec(expr.bother),
self._print(expr.argument))
if exp is not None:
tex = r"{%s}^{%s}" % (tex, exp)
return tex
def _print_dirichlet_eta(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\eta^{%s}%s" % (exp, tex)
return r"\eta%s" % tex
def _print_zeta(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"\left(%s, %s\right)" % tuple(map(self._print, expr.args))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\zeta^{%s}%s" % (exp, tex)
return r"\zeta%s" % tex
def _print_stieltjes(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"_{%s}\left(%s\right)" % tuple(map(self._print, expr.args))
else:
tex = r"_{%s}" % self._print(expr.args[0])
if exp is not None:
return r"\gamma%s^{%s}" % (tex, exp)
return r"\gamma%s" % tex
def _print_lerchphi(self, expr, exp=None):
tex = r"\left(%s, %s, %s\right)" % tuple(map(self._print, expr.args))
if exp is None:
return r"\Phi%s" % tex
return r"\Phi^{%s}%s" % (exp, tex)
def _print_polylog(self, expr, exp=None):
s, z = map(self._print, expr.args)
tex = r"\left(%s\right)" % z
if exp is None:
return r"\operatorname{Li}_{%s}%s" % (s, tex)
return r"\operatorname{Li}_{%s}^{%s}%s" % (s, exp, tex)
def _print_jacobi(self, expr, exp=None):
n, a, b, x = map(self._print, expr.args)
tex = r"P_{%s}^{\left(%s,%s\right)}\left(%s\right)" % (n, a, b, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_gegenbauer(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"C_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_chebyshevt(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"T_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_chebyshevu(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"U_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_legendre(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"P_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_assoc_legendre(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"P_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_hermite(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"H_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_laguerre(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"L_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_assoc_laguerre(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"L_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_Ynm(self, expr, exp=None):
n, m, theta, phi = map(self._print, expr.args)
tex = r"Y_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_Znm(self, expr, exp=None):
n, m, theta, phi = map(self._print, expr.args)
tex = r"Z_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def __print_mathieu_functions(self, character, args, prime=False, exp=None):
a, q, z = map(self._print, args)
sup = r"^{\prime}" if prime else ""
exp = "" if not exp else "^{%s}" % exp
return r"%s%s\left(%s, %s, %s\right)%s" % (character, sup, a, q, z, exp)
def _print_mathieuc(self, expr, exp=None):
return self.__print_mathieu_functions("C", expr.args, exp=exp)
def _print_mathieus(self, expr, exp=None):
return self.__print_mathieu_functions("S", expr.args, exp=exp)
def _print_mathieucprime(self, expr, exp=None):
return self.__print_mathieu_functions("C", expr.args, prime=True, exp=exp)
def _print_mathieusprime(self, expr, exp=None):
return self.__print_mathieu_functions("S", expr.args, prime=True, exp=exp)
def _print_Rational(self, expr):
if expr.q != 1:
sign = ""
p = expr.p
if expr.p < 0:
sign = "- "
p = -p
if self._settings['fold_short_frac']:
return r"%s%d / %d" % (sign, p, expr.q)
return r"%s\frac{%d}{%d}" % (sign, p, expr.q)
else:
return self._print(expr.p)
def _print_Order(self, expr):
s = self._print(expr.expr)
if expr.point and any(p != S.Zero for p in expr.point) or \
len(expr.variables) > 1:
s += '; '
if len(expr.variables) > 1:
s += self._print(expr.variables)
elif expr.variables:
s += self._print(expr.variables[0])
s += r'\rightarrow '
if len(expr.point) > 1:
s += self._print(expr.point)
else:
s += self._print(expr.point[0])
return r"O\left(%s\right)" % s
def _print_Symbol(self, expr, style='plain'):
if expr in self._settings['symbol_names']:
return self._settings['symbol_names'][expr]
return self._deal_with_super_sub(expr.name, style=style)
_print_RandomSymbol = _print_Symbol
def _deal_with_super_sub(self, string, style='plain'):
if '{' in string:
name, supers, subs = string, [], []
else:
name, supers, subs = split_super_sub(string)
name = translate(name)
supers = [translate(sup) for sup in supers]
subs = [translate(sub) for sub in subs]
# apply the style only to the name
if style == 'bold':
name = "\\mathbf{{{}}}".format(name)
# glue all items together:
if supers:
name += "^{%s}" % " ".join(supers)
if subs:
name += "_{%s}" % " ".join(subs)
return name
def _print_Relational(self, expr):
if self._settings['itex']:
gt = r"\gt"
lt = r"\lt"
else:
gt = ">"
lt = "<"
charmap = {
"==": "=",
">": gt,
"<": lt,
">=": r"\geq",
"<=": r"\leq",
"!=": r"\neq",
}
return "%s %s %s" % (self._print(expr.lhs),
charmap[expr.rel_op], self._print(expr.rhs))
def _print_Piecewise(self, expr):
ecpairs = [r"%s & \text{for}\: %s" % (self._print(e), self._print(c))
for e, c in expr.args[:-1]]
if expr.args[-1].cond == true:
ecpairs.append(r"%s & \text{otherwise}" %
self._print(expr.args[-1].expr))
else:
ecpairs.append(r"%s & \text{for}\: %s" %
(self._print(expr.args[-1].expr),
self._print(expr.args[-1].cond)))
tex = r"\begin{cases} %s \end{cases}"
return tex % r" \\".join(ecpairs)
def _print_MatrixBase(self, expr):
lines = []
for line in range(expr.rows): # horrible, should be 'rows'
lines.append(" & ".join([self._print(i) for i in expr[line, :]]))
mat_str = self._settings['mat_str']
if mat_str is None:
if self._settings['mode'] == 'inline':
mat_str = 'smallmatrix'
else:
if (expr.cols <= 10) is True:
mat_str = 'matrix'
else:
mat_str = 'array'
out_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}'
out_str = out_str.replace('%MATSTR%', mat_str)
if mat_str == 'array':
out_str = out_str.replace('%s', '{' + 'c'*expr.cols + '}%s')
if self._settings['mat_delim']:
left_delim = self._settings['mat_delim']
right_delim = self._delim_dict[left_delim]
out_str = r'\left' + left_delim + out_str + \
r'\right' + right_delim
return out_str % r"\\".join(lines)
def _print_MatrixElement(self, expr):
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True)\
+ '_{%s, %s}' % (self._print(expr.i), self._print(expr.j))
def _print_MatrixSlice(self, expr):
def latexslice(x, dim):
x = list(x)
if x[2] == 1:
del x[2]
if x[0] == 0:
x[0] = None
if x[1] == dim:
x[1] = None
return ':'.join(self._print(xi) if xi is not None else '' for xi in x)
return (self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) + r'\left[' +
latexslice(expr.rowslice, expr.parent.rows) + ', ' +
latexslice(expr.colslice, expr.parent.cols) + r'\right]')
def _print_BlockMatrix(self, expr):
return self._print(expr.blocks)
def _print_Transpose(self, expr):
mat = expr.arg
from sympy.matrices import MatrixSymbol
if not isinstance(mat, MatrixSymbol):
return r"\left(%s\right)^{T}" % self._print(mat)
else:
return "%s^{T}" % self.parenthesize(mat, precedence_traditional(expr), True)
def _print_Trace(self, expr):
mat = expr.arg
return r"\operatorname{tr}\left(%s \right)" % self._print(mat)
def _print_Adjoint(self, expr):
mat = expr.arg
from sympy.matrices import MatrixSymbol
if not isinstance(mat, MatrixSymbol):
return r"\left(%s\right)^{\dagger}" % self._print(mat)
else:
return r"%s^{\dagger}" % self._print(mat)
def _print_MatMul(self, expr):
from sympy import MatMul, Mul
parens = lambda x: self.parenthesize(x, precedence_traditional(expr),
False)
args = expr.args
if isinstance(args[0], Mul):
args = args[0].as_ordered_factors() + list(args[1:])
else:
args = list(args)
if isinstance(expr, MatMul) and _coeff_isneg(expr):
if args[0] == -1:
args = args[1:]
else:
args[0] = -args[0]
return '- ' + ' '.join(map(parens, args))
else:
return ' '.join(map(parens, args))
def _print_Mod(self, expr, exp=None):
if exp is not None:
return r'\left(%s\bmod{%s}\right)^{%s}' % \
(self.parenthesize(expr.args[0], PRECEDENCE['Mul'],
strict=True), self._print(expr.args[1]),
exp)
return r'%s\bmod{%s}' % (self.parenthesize(expr.args[0],
PRECEDENCE['Mul'], strict=True),
self._print(expr.args[1]))
def _print_HadamardProduct(self, expr):
args = expr.args
prec = PRECEDENCE['Pow']
parens = self.parenthesize
return r' \circ '.join(
map(lambda arg: parens(arg, prec, strict=True), args))
def _print_HadamardPower(self, expr):
if precedence_traditional(expr.exp) < PRECEDENCE["Mul"]:
template = r"%s^{\circ \left({%s}\right)}"
else:
template = r"%s^{\circ {%s}}"
return self._helper_print_standard_power(expr, template)
def _print_KroneckerProduct(self, expr):
args = expr.args
prec = PRECEDENCE['Pow']
parens = self.parenthesize
return r' \otimes '.join(
map(lambda arg: parens(arg, prec, strict=True), args))
def _print_MatPow(self, expr):
base, exp = expr.base, expr.exp
from sympy.matrices import MatrixSymbol
if not isinstance(base, MatrixSymbol):
return "\\left(%s\\right)^{%s}" % (self._print(base),
self._print(exp))
else:
return "%s^{%s}" % (self._print(base), self._print(exp))
def _print_MatrixSymbol(self, expr):
return self._print_Symbol(expr, style=self._settings[
'mat_symbol_style'])
def _print_ZeroMatrix(self, Z):
return r"\mathbb{0}" if self._settings[
'mat_symbol_style'] == 'plain' else r"\mathbf{0}"
def _print_OneMatrix(self, O):
return r"\mathbb{1}" if self._settings[
'mat_symbol_style'] == 'plain' else r"\mathbf{1}"
def _print_Identity(self, I):
return r"\mathbb{I}" if self._settings[
'mat_symbol_style'] == 'plain' else r"\mathbf{I}"
def _print_PermutationMatrix(self, P):
perm_str = self._print(P.args[0])
return "P_{%s}" % perm_str
def _print_NDimArray(self, expr):
if expr.rank() == 0:
return self._print(expr[()])
mat_str = self._settings['mat_str']
if mat_str is None:
if self._settings['mode'] == 'inline':
mat_str = 'smallmatrix'
else:
if (expr.rank() == 0) or (expr.shape[-1] <= 10):
mat_str = 'matrix'
else:
mat_str = 'array'
block_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}'
block_str = block_str.replace('%MATSTR%', mat_str)
if self._settings['mat_delim']:
left_delim = self._settings['mat_delim']
right_delim = self._delim_dict[left_delim]
block_str = r'\left' + left_delim + block_str + \
r'\right' + right_delim
if expr.rank() == 0:
return block_str % ""
level_str = [[]] + [[] for i in range(expr.rank())]
shape_ranges = [list(range(i)) for i in expr.shape]
for outer_i in itertools.product(*shape_ranges):
level_str[-1].append(self._print(expr[outer_i]))
even = True
for back_outer_i in range(expr.rank()-1, -1, -1):
if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]:
break
if even:
level_str[back_outer_i].append(
r" & ".join(level_str[back_outer_i+1]))
else:
level_str[back_outer_i].append(
block_str % (r"\\".join(level_str[back_outer_i+1])))
if len(level_str[back_outer_i+1]) == 1:
level_str[back_outer_i][-1] = r"\left[" + \
level_str[back_outer_i][-1] + r"\right]"
even = not even
level_str[back_outer_i+1] = []
out_str = level_str[0][0]
if expr.rank() % 2 == 1:
out_str = block_str % out_str
return out_str
def _printer_tensor_indices(self, name, indices, index_map={}):
out_str = self._print(name)
last_valence = None
prev_map = None
for index in indices:
new_valence = index.is_up
if ((index in index_map) or prev_map) and \
last_valence == new_valence:
out_str += ","
if last_valence != new_valence:
if last_valence is not None:
out_str += "}"
if index.is_up:
out_str += "{}^{"
else:
out_str += "{}_{"
out_str += self._print(index.args[0])
if index in index_map:
out_str += "="
out_str += self._print(index_map[index])
prev_map = True
else:
prev_map = False
last_valence = new_valence
if last_valence is not None:
out_str += "}"
return out_str
def _print_Tensor(self, expr):
name = expr.args[0].args[0]
indices = expr.get_indices()
return self._printer_tensor_indices(name, indices)
def _print_TensorElement(self, expr):
name = expr.expr.args[0].args[0]
indices = expr.expr.get_indices()
index_map = expr.index_map
return self._printer_tensor_indices(name, indices, index_map)
def _print_TensMul(self, expr):
# prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)"
sign, args = expr._get_args_for_traditional_printer()
return sign + "".join(
[self.parenthesize(arg, precedence(expr)) for arg in args]
)
def _print_TensAdd(self, expr):
a = []
args = expr.args
for x in args:
a.append(self.parenthesize(x, precedence(expr)))
a.sort()
s = ' + '.join(a)
s = s.replace('+ -', '- ')
return s
def _print_TensorIndex(self, expr):
return "{}%s{%s}" % (
"^" if expr.is_up else "_",
self._print(expr.args[0])
)
def _print_PartialDerivative(self, expr):
if len(expr.variables) == 1:
return r"\frac{\partial}{\partial {%s}}{%s}" % (
self._print(expr.variables[0]),
self.parenthesize(expr.expr, PRECEDENCE["Mul"], False)
)
else:
return r"\frac{\partial^{%s}}{%s}{%s}" % (
len(expr.variables),
" ".join([r"\partial {%s}" % self._print(i) for i in expr.variables]),
self.parenthesize(expr.expr, PRECEDENCE["Mul"], False)
)
def _print_ArraySymbol(self, expr):
return self._print(expr.name)
def _print_ArrayElement(self, expr):
return "{{%s}_{%s}}" % (expr.name, ", ".join([f"{self._print(i)}" for i in expr.indices]))
def _print_UniversalSet(self, expr):
return r"\mathbb{U}"
def _print_frac(self, expr, exp=None):
if exp is None:
return r"\operatorname{frac}{\left(%s\right)}" % self._print(expr.args[0])
else:
return r"\operatorname{frac}{\left(%s\right)}^{%s}" % (
self._print(expr.args[0]), exp)
def _print_tuple(self, expr):
if self._settings['decimal_separator'] == 'comma':
sep = ";"
elif self._settings['decimal_separator'] == 'period':
sep = ","
else:
raise ValueError('Unknown Decimal Separator')
if len(expr) == 1:
# 1-tuple needs a trailing separator
return self._add_parens_lspace(self._print(expr[0]) + sep)
else:
return self._add_parens_lspace(
(sep + r" \ ").join([self._print(i) for i in expr]))
def _print_TensorProduct(self, expr):
elements = [self._print(a) for a in expr.args]
return r' \otimes '.join(elements)
def _print_WedgeProduct(self, expr):
elements = [self._print(a) for a in expr.args]
return r' \wedge '.join(elements)
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_list(self, expr):
if self._settings['decimal_separator'] == 'comma':
return r"\left[ %s\right]" % \
r"; \ ".join([self._print(i) for i in expr])
elif self._settings['decimal_separator'] == 'period':
return r"\left[ %s\right]" % \
r", \ ".join([self._print(i) for i in expr])
else:
raise ValueError('Unknown Decimal Separator')
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for key in keys:
val = d[key]
items.append("%s : %s" % (self._print(key), self._print(val)))
return r"\left\{ %s\right\}" % r", \ ".join(items)
def _print_Dict(self, expr):
return self._print_dict(expr)
def _print_DiracDelta(self, expr, exp=None):
if len(expr.args) == 1 or expr.args[1] == 0:
tex = r"\delta\left(%s\right)" % self._print(expr.args[0])
else:
tex = r"\delta^{\left( %s \right)}\left( %s \right)" % (
self._print(expr.args[1]), self._print(expr.args[0]))
if exp:
tex = r"\left(%s\right)^{%s}" % (tex, exp)
return tex
def _print_SingularityFunction(self, expr, exp=None):
shift = self._print(expr.args[0] - expr.args[1])
power = self._print(expr.args[2])
tex = r"{\left\langle %s \right\rangle}^{%s}" % (shift, power)
if exp is not None:
tex = r"{\left({\langle %s \rangle}^{%s}\right)}^{%s}" % (shift, power, exp)
return tex
def _print_Heaviside(self, expr, exp=None):
tex = r"\theta\left(%s\right)" % self._print(expr.args[0])
if exp:
tex = r"\left(%s\right)^{%s}" % (tex, exp)
return tex
def _print_KroneckerDelta(self, expr, exp=None):
i = self._print(expr.args[0])
j = self._print(expr.args[1])
if expr.args[0].is_Atom and expr.args[1].is_Atom:
tex = r'\delta_{%s %s}' % (i, j)
else:
tex = r'\delta_{%s, %s}' % (i, j)
if exp is not None:
tex = r'\left(%s\right)^{%s}' % (tex, exp)
return tex
def _print_LeviCivita(self, expr, exp=None):
indices = map(self._print, expr.args)
if all(x.is_Atom for x in expr.args):
tex = r'\varepsilon_{%s}' % " ".join(indices)
else:
tex = r'\varepsilon_{%s}' % ", ".join(indices)
if exp:
tex = r'\left(%s\right)^{%s}' % (tex, exp)
return tex
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
return '\\text{Domain: }' + self._print(d.as_boolean())
elif hasattr(d, 'set'):
return ('\\text{Domain: }' + self._print(d.symbols) + '\\text{ in }' +
self._print(d.set))
elif hasattr(d, 'symbols'):
return '\\text{Domain on }' + self._print(d.symbols)
else:
return self._print(None)
def _print_FiniteSet(self, s):
items = sorted(s.args, key=default_sort_key)
return self._print_set(items)
def _print_set(self, s):
items = sorted(s, key=default_sort_key)
if self._settings['decimal_separator'] == 'comma':
items = "; ".join(map(self._print, items))
elif self._settings['decimal_separator'] == 'period':
items = ", ".join(map(self._print, items))
else:
raise ValueError('Unknown Decimal Separator')
return r"\left\{%s\right\}" % items
_print_frozenset = _print_set
def _print_Range(self, s):
dots = object()
if s.has(Symbol):
return self._print_Basic(s)
if s.start.is_infinite and s.stop.is_infinite:
if s.step.is_positive:
printset = dots, -1, 0, 1, dots
else:
printset = dots, 1, 0, -1, dots
elif s.start.is_infinite:
printset = dots, s[-1] - s.step, s[-1]
elif s.stop.is_infinite:
it = iter(s)
printset = next(it), next(it), dots
elif len(s) > 4:
it = iter(s)
printset = next(it), next(it), dots, s[-1]
else:
printset = tuple(s)
return (r"\left\{" +
r", ".join(self._print(el) if el is not dots else r'\ldots' for el in printset) +
r"\right\}")
def __print_number_polynomial(self, expr, letter, exp=None):
if len(expr.args) == 2:
if exp is not None:
return r"%s_{%s}^{%s}\left(%s\right)" % (letter,
self._print(expr.args[0]), exp,
self._print(expr.args[1]))
return r"%s_{%s}\left(%s\right)" % (letter,
self._print(expr.args[0]), self._print(expr.args[1]))
tex = r"%s_{%s}" % (letter, self._print(expr.args[0]))
if exp is not None:
tex = r"%s^{%s}" % (tex, exp)
return tex
def _print_bernoulli(self, expr, exp=None):
return self.__print_number_polynomial(expr, "B", exp)
def _print_bell(self, expr, exp=None):
if len(expr.args) == 3:
tex1 = r"B_{%s, %s}" % (self._print(expr.args[0]),
self._print(expr.args[1]))
tex2 = r"\left(%s\right)" % r", ".join(self._print(el) for
el in expr.args[2])
if exp is not None:
tex = r"%s^{%s}%s" % (tex1, exp, tex2)
else:
tex = tex1 + tex2
return tex
return self.__print_number_polynomial(expr, "B", exp)
def _print_fibonacci(self, expr, exp=None):
return self.__print_number_polynomial(expr, "F", exp)
def _print_lucas(self, expr, exp=None):
tex = r"L_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, exp)
return tex
def _print_tribonacci(self, expr, exp=None):
return self.__print_number_polynomial(expr, "T", exp)
def _print_SeqFormula(self, s):
dots = object()
if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0:
return r"\left\{%s\right\}_{%s=%s}^{%s}" % (
self._print(s.formula),
self._print(s.variables[0]),
self._print(s.start),
self._print(s.stop)
)
if s.start is S.NegativeInfinity:
stop = s.stop
printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2),
s.coeff(stop - 1), s.coeff(stop))
elif s.stop is S.Infinity or s.length > 4:
printset = s[:4]
printset.append(dots)
else:
printset = tuple(s)
return (r"\left[" +
r", ".join(self._print(el) if el is not dots else r'\ldots' for el in printset) +
r"\right]")
_print_SeqPer = _print_SeqFormula
_print_SeqAdd = _print_SeqFormula
_print_SeqMul = _print_SeqFormula
def _print_Interval(self, i):
if i.start == i.end:
return r"\left\{%s\right\}" % self._print(i.start)
else:
if i.left_open:
left = '('
else:
left = '['
if i.right_open:
right = ')'
else:
right = ']'
return r"\left%s%s, %s\right%s" % \
(left, self._print(i.start), self._print(i.end), right)
def _print_AccumulationBounds(self, i):
return r"\left\langle %s, %s\right\rangle" % \
(self._print(i.min), self._print(i.max))
def _print_Union(self, u):
prec = precedence_traditional(u)
args_str = [self.parenthesize(i, prec) for i in u.args]
return r" \cup ".join(args_str)
def _print_Complement(self, u):
prec = precedence_traditional(u)
args_str = [self.parenthesize(i, prec) for i in u.args]
return r" \setminus ".join(args_str)
def _print_Intersection(self, u):
prec = precedence_traditional(u)
args_str = [self.parenthesize(i, prec) for i in u.args]
return r" \cap ".join(args_str)
def _print_SymmetricDifference(self, u):
prec = precedence_traditional(u)
args_str = [self.parenthesize(i, prec) for i in u.args]
return r" \triangle ".join(args_str)
def _print_ProductSet(self, p):
prec = precedence_traditional(p)
if len(p.sets) >= 1 and not has_variety(p.sets):
return self.parenthesize(p.sets[0], prec) + "^{%d}" % len(p.sets)
return r" \times ".join(
self.parenthesize(set, prec) for set in p.sets)
def _print_EmptySet(self, e):
return r"\emptyset"
def _print_Naturals(self, n):
return r"\mathbb{N}"
def _print_Naturals0(self, n):
return r"\mathbb{N}_0"
def _print_Integers(self, i):
return r"\mathbb{Z}"
def _print_Rationals(self, i):
return r"\mathbb{Q}"
def _print_Reals(self, i):
return r"\mathbb{R}"
def _print_Complexes(self, i):
return r"\mathbb{C}"
def _print_ImageSet(self, s):
expr = s.lamda.expr
sig = s.lamda.signature
xys = ((self._print(x), self._print(y)) for x, y in zip(sig, s.base_sets))
xinys = r" , ".join(r"%s \in %s" % xy for xy in xys)
return r"\left\{%s\; \middle|\; %s\right\}" % (self._print(expr), xinys)
def _print_ConditionSet(self, s):
vars_print = ', '.join([self._print(var) for var in Tuple(s.sym)])
if s.base_set is S.UniversalSet:
return r"\left\{%s\; \middle|\; %s \right\}" % \
(vars_print, self._print(s.condition))
return r"\left\{%s\; \middle|\; %s \in %s \wedge %s \right\}" % (
vars_print,
vars_print,
self._print(s.base_set),
self._print(s.condition))
def _print_ComplexRegion(self, s):
vars_print = ', '.join([self._print(var) for var in s.variables])
return r"\left\{%s\; \middle|\; %s \in %s \right\}" % (
self._print(s.expr),
vars_print,
self._print(s.sets))
def _print_Contains(self, e):
return r"%s \in %s" % tuple(self._print(a) for a in e.args)
def _print_FourierSeries(self, s):
return self._print_Add(s.truncate()) + r' + \ldots'
def _print_FormalPowerSeries(self, s):
return self._print_Add(s.infinite)
def _print_FiniteField(self, expr):
return r"\mathbb{F}_{%s}" % expr.mod
def _print_IntegerRing(self, expr):
return r"\mathbb{Z}"
def _print_RationalField(self, expr):
return r"\mathbb{Q}"
def _print_RealField(self, expr):
return r"\mathbb{R}"
def _print_ComplexField(self, expr):
return r"\mathbb{C}"
def _print_PolynomialRing(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
return r"%s\left[%s\right]" % (domain, symbols)
def _print_FractionField(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
return r"%s\left(%s\right)" % (domain, symbols)
def _print_PolynomialRingBase(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
inv = ""
if not expr.is_Poly:
inv = r"S_<^{-1}"
return r"%s%s\left[%s\right]" % (inv, domain, symbols)
def _print_Poly(self, poly):
cls = poly.__class__.__name__
terms = []
for monom, coeff in poly.terms():
s_monom = ''
for i, exp in enumerate(monom):
if exp > 0:
if exp == 1:
s_monom += self._print(poly.gens[i])
else:
s_monom += self._print(pow(poly.gens[i], exp))
if coeff.is_Add:
if s_monom:
s_coeff = r"\left(%s\right)" % self._print(coeff)
else:
s_coeff = self._print(coeff)
else:
if s_monom:
if coeff is S.One:
terms.extend(['+', s_monom])
continue
if coeff is S.NegativeOne:
terms.extend(['-', s_monom])
continue
s_coeff = self._print(coeff)
if not s_monom:
s_term = s_coeff
else:
s_term = s_coeff + " " + s_monom
if s_term.startswith('-'):
terms.extend(['-', s_term[1:]])
else:
terms.extend(['+', s_term])
if terms[0] in ('-', '+'):
modifier = terms.pop(0)
if modifier == '-':
terms[0] = '-' + terms[0]
expr = ' '.join(terms)
gens = list(map(self._print, poly.gens))
domain = "domain=%s" % self._print(poly.get_domain())
args = ", ".join([expr] + gens + [domain])
if cls in accepted_latex_functions:
tex = r"\%s {\left(%s \right)}" % (cls, args)
else:
tex = r"\operatorname{%s}{\left( %s \right)}" % (cls, args)
return tex
def _print_ComplexRootOf(self, root):
cls = root.__class__.__name__
if cls == "ComplexRootOf":
cls = "CRootOf"
expr = self._print(root.expr)
index = root.index
if cls in accepted_latex_functions:
return r"\%s {\left(%s, %d\right)}" % (cls, expr, index)
else:
return r"\operatorname{%s} {\left(%s, %d\right)}" % (cls, expr,
index)
def _print_RootSum(self, expr):
cls = expr.__class__.__name__
args = [self._print(expr.expr)]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
if cls in accepted_latex_functions:
return r"\%s {\left(%s\right)}" % (cls, ", ".join(args))
else:
return r"\operatorname{%s} {\left(%s\right)}" % (cls,
", ".join(args))
def _print_PolyElement(self, poly):
mul_symbol = self._settings['mul_symbol_latex']
return poly.str(self, PRECEDENCE, "{%s}^{%d}", mul_symbol)
def _print_FracElement(self, frac):
if frac.denom == 1:
return self._print(frac.numer)
else:
numer = self._print(frac.numer)
denom = self._print(frac.denom)
return r"\frac{%s}{%s}" % (numer, denom)
def _print_euler(self, expr, exp=None):
m, x = (expr.args[0], None) if len(expr.args) == 1 else expr.args
tex = r"E_{%s}" % self._print(m)
if exp is not None:
tex = r"%s^{%s}" % (tex, exp)
if x is not None:
tex = r"%s\left(%s\right)" % (tex, self._print(x))
return tex
def _print_catalan(self, expr, exp=None):
tex = r"C_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, exp)
return tex
def _print_UnifiedTransform(self, expr, s, inverse=False):
return r"\mathcal{{{}}}{}_{{{}}}\left[{}\right]\left({}\right)".format(s, '^{-1}' if inverse else '', self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2]))
def _print_MellinTransform(self, expr):
return self._print_UnifiedTransform(expr, 'M')
def _print_InverseMellinTransform(self, expr):
return self._print_UnifiedTransform(expr, 'M', True)
def _print_LaplaceTransform(self, expr):
return self._print_UnifiedTransform(expr, 'L')
def _print_InverseLaplaceTransform(self, expr):
return self._print_UnifiedTransform(expr, 'L', True)
def _print_FourierTransform(self, expr):
return self._print_UnifiedTransform(expr, 'F')
def _print_InverseFourierTransform(self, expr):
return self._print_UnifiedTransform(expr, 'F', True)
def _print_SineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'SIN')
def _print_InverseSineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'SIN', True)
def _print_CosineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'COS')
def _print_InverseCosineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'COS', True)
def _print_DMP(self, p):
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
return self._print(repr(p))
def _print_DMF(self, p):
return self._print_DMP(p)
def _print_Object(self, object):
return self._print(Symbol(object.name))
def _print_LambertW(self, expr, exp=None):
arg0 = self._print(expr.args[0])
exp = r"^{%s}" % (exp,) if exp is not None else ""
if len(expr.args) == 1:
result = r"W%s\left(%s\right)" % (exp, arg0)
else:
arg1 = self._print(expr.args[1])
result = "W{0}_{{{1}}}\\left({2}\\right)".format(exp, arg1, arg0)
return result
def _print_Morphism(self, morphism):
domain = self._print(morphism.domain)
codomain = self._print(morphism.codomain)
return "%s\\rightarrow %s" % (domain, codomain)
def _print_TransferFunction(self, expr):
num, den = self._print(expr.num), self._print(expr.den)
return r"\frac{%s}{%s}" % (num, den)
def _print_Series(self, expr):
args = list(expr.args)
parens = lambda x: self.parenthesize(x, precedence_traditional(expr),
False)
return ' '.join(map(parens, args))
def _print_MIMOSeries(self, expr):
from sympy.physics.control.lti import MIMOParallel
args = list(expr.args)[::-1]
parens = lambda x: self.parenthesize(x, precedence_traditional(expr),
False) if isinstance(x, MIMOParallel) else self._print(x)
return r"\cdot".join(map(parens, args))
def _print_Parallel(self, expr):
args = list(expr.args)
func = lambda x: self._print(x)
return ' + '.join(map(func, args))
def _print_MIMOParallel(self, expr):
args = list(expr.args)
func = lambda x: self._print(x)
return ' + '.join(map(func, args))
def _print_Feedback(self, expr):
from sympy.physics.control import TransferFunction, Series
num, tf = expr.sys1, TransferFunction(1, 1, expr.var)
num_arg_list = list(num.args) if isinstance(num, Series) else [num]
den_arg_list = list(expr.sys2.args) if \
isinstance(expr.sys2, Series) else [expr.sys2]
den_term_1 = tf
if isinstance(num, Series) and isinstance(expr.sys2, Series):
den_term_2 = Series(*num_arg_list, *den_arg_list)
elif isinstance(num, Series) and isinstance(expr.sys2, TransferFunction):
if expr.sys2 == tf:
den_term_2 = Series(*num_arg_list)
else:
den_term_2 = tf, Series(*num_arg_list, expr.sys2)
elif isinstance(num, TransferFunction) and isinstance(expr.sys2, Series):
if num == tf:
den_term_2 = Series(*den_arg_list)
else:
den_term_2 = Series(num, *den_arg_list)
else:
if num == tf:
den_term_2 = Series(*den_arg_list)
elif expr.sys2 == tf:
den_term_2 = Series(*num_arg_list)
else:
den_term_2 = Series(*num_arg_list, *den_arg_list)
numer = self._print(num)
denom_1 = self._print(den_term_1)
denom_2 = self._print(den_term_2)
_sign = "+" if expr.sign == -1 else "-"
return r"\frac{%s}{%s %s %s}" % (numer, denom_1, _sign, denom_2)
def _print_MIMOFeedback(self, expr):
from sympy.physics.control import MIMOSeries
inv_mat = self._print(MIMOSeries(expr.sys2, expr.sys1))
sys1 = self._print(expr.sys1)
_sign = "+" if expr.sign == -1 else "-"
return r"\left(I_{\tau} %s %s\right)^{-1} \cdot %s" % (_sign, inv_mat, sys1)
def _print_TransferFunctionMatrix(self, expr):
mat = self._print(expr._expr_mat)
return r"%s_\tau" % mat
def _print_NamedMorphism(self, morphism):
pretty_name = self._print(Symbol(morphism.name))
pretty_morphism = self._print_Morphism(morphism)
return "%s:%s" % (pretty_name, pretty_morphism)
def _print_IdentityMorphism(self, morphism):
from sympy.categories import NamedMorphism
return self._print_NamedMorphism(NamedMorphism(
morphism.domain, morphism.codomain, "id"))
def _print_CompositeMorphism(self, morphism):
# All components of the morphism have names and it is thus
# possible to build the name of the composite.
component_names_list = [self._print(Symbol(component.name)) for
component in morphism.components]
component_names_list.reverse()
component_names = "\\circ ".join(component_names_list) + ":"
pretty_morphism = self._print_Morphism(morphism)
return component_names + pretty_morphism
def _print_Category(self, morphism):
return r"\mathbf{{{}}}".format(self._print(Symbol(morphism.name)))
def _print_Diagram(self, diagram):
if not diagram.premises:
# This is an empty diagram.
return self._print(S.EmptySet)
latex_result = self._print(diagram.premises)
if diagram.conclusions:
latex_result += "\\Longrightarrow %s" % \
self._print(diagram.conclusions)
return latex_result
def _print_DiagramGrid(self, grid):
latex_result = "\\begin{array}{%s}\n" % ("c" * grid.width)
for i in range(grid.height):
for j in range(grid.width):
if grid[i, j]:
latex_result += latex(grid[i, j])
latex_result += " "
if j != grid.width - 1:
latex_result += "& "
if i != grid.height - 1:
latex_result += "\\\\"
latex_result += "\n"
latex_result += "\\end{array}\n"
return latex_result
def _print_FreeModule(self, M):
return '{{{}}}^{{{}}}'.format(self._print(M.ring), self._print(M.rank))
def _print_FreeModuleElement(self, m):
# Print as row vector for convenience, for now.
return r"\left[ {} \right]".format(",".join(
'{' + self._print(x) + '}' for x in m))
def _print_SubModule(self, m):
return r"\left\langle {} \right\rangle".format(",".join(
'{' + self._print(x) + '}' for x in m.gens))
def _print_ModuleImplementedIdeal(self, m):
return r"\left\langle {} \right\rangle".format(",".join(
'{' + self._print(x) + '}' for [x] in m._module.gens))
def _print_Quaternion(self, expr):
# TODO: This expression is potentially confusing,
# shall we print it as `Quaternion( ... )`?
s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True)
for i in expr.args]
a = [s[0]] + [i+" "+j for i, j in zip(s[1:], "ijk")]
return " + ".join(a)
def _print_QuotientRing(self, R):
# TODO nicer fractions for few generators...
return r"\frac{{{}}}{{{}}}".format(self._print(R.ring),
self._print(R.base_ideal))
def _print_QuotientRingElement(self, x):
return r"{{{}}} + {{{}}}".format(self._print(x.data),
self._print(x.ring.base_ideal))
def _print_QuotientModuleElement(self, m):
return r"{{{}}} + {{{}}}".format(self._print(m.data),
self._print(m.module.killed_module))
def _print_QuotientModule(self, M):
# TODO nicer fractions for few generators...
return r"\frac{{{}}}{{{}}}".format(self._print(M.base),
self._print(M.killed_module))
def _print_MatrixHomomorphism(self, h):
return r"{{{}}} : {{{}}} \to {{{}}}".format(self._print(h._sympy_matrix()),
self._print(h.domain), self._print(h.codomain))
def _print_Manifold(self, manifold):
string = manifold.name.name
if '{' in string:
name, supers, subs = string, [], []
else:
name, supers, subs = split_super_sub(string)
name = translate(name)
supers = [translate(sup) for sup in supers]
subs = [translate(sub) for sub in subs]
name = r'\text{%s}' % name
if supers:
name += "^{%s}" % " ".join(supers)
if subs:
name += "_{%s}" % " ".join(subs)
return name
def _print_Patch(self, patch):
return r'\text{%s}_{%s}' % (self._print(patch.name), self._print(patch.manifold))
def _print_CoordSystem(self, coordsys):
return r'\text{%s}^{\text{%s}}_{%s}' % (
self._print(coordsys.name), self._print(coordsys.patch.name), self._print(coordsys.manifold)
)
def _print_CovarDerivativeOp(self, cvd):
return r'\mathbb{\nabla}_{%s}' % self._print(cvd._wrt)
def _print_BaseScalarField(self, field):
string = field._coord_sys.symbols[field._index].name
return r'\mathbf{{{}}}'.format(self._print(Symbol(string)))
def _print_BaseVectorField(self, field):
string = field._coord_sys.symbols[field._index].name
return r'\partial_{{{}}}'.format(self._print(Symbol(string)))
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
string = field._coord_sys.symbols[field._index].name
return r'\operatorname{{d}}{}'.format(self._print(Symbol(string)))
else:
string = self._print(field)
return r'\operatorname{{d}}\left({}\right)'.format(string)
def _print_Tr(self, p):
# TODO: Handle indices
contents = self._print(p.args[0])
return r'\operatorname{{tr}}\left({}\right)'.format(contents)
def _print_totient(self, expr, exp=None):
if exp is not None:
return r'\left(\phi\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), exp)
return r'\phi\left(%s\right)' % self._print(expr.args[0])
def _print_reduced_totient(self, expr, exp=None):
if exp is not None:
return r'\left(\lambda\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), exp)
return r'\lambda\left(%s\right)' % self._print(expr.args[0])
def _print_divisor_sigma(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"_%s\left(%s\right)" % tuple(map(self._print,
(expr.args[1], expr.args[0])))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\sigma^{%s}%s" % (exp, tex)
return r"\sigma%s" % tex
def _print_udivisor_sigma(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"_%s\left(%s\right)" % tuple(map(self._print,
(expr.args[1], expr.args[0])))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\sigma^*^{%s}%s" % (exp, tex)
return r"\sigma^*%s" % tex
def _print_primenu(self, expr, exp=None):
if exp is not None:
return r'\left(\nu\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), exp)
return r'\nu\left(%s\right)' % self._print(expr.args[0])
def _print_primeomega(self, expr, exp=None):
if exp is not None:
return r'\left(\Omega\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), exp)
return r'\Omega\left(%s\right)' % self._print(expr.args[0])
def _print_Str(self, s):
return str(s.name)
def _print_float(self, expr):
return self._print(Float(expr))
def _print_int(self, expr):
return str(expr)
def _print_mpz(self, expr):
return str(expr)
def _print_mpq(self, expr):
return str(expr)
def _print_Predicate(self, expr):
return str(expr)
def _print_AppliedPredicate(self, expr):
pred = expr.function
args = expr.arguments
pred_latex = self._print(pred)
args_latex = ', '.join([self._print(a) for a in args])
return '%s(%s)' % (pred_latex, args_latex)
def emptyPrinter(self, expr):
# default to just printing as monospace, like would normally be shown
s = super().emptyPrinter(expr)
return r"\mathtt{\text{%s}}" % latex_escape(s)
def translate(s):
r'''
Check for a modifier ending the string. If present, convert the
modifier to latex and translate the rest recursively.
Given a description of a Greek letter or other special character,
return the appropriate latex.
Let everything else pass as given.
>>> from sympy.printing.latex import translate
>>> translate('alphahatdotprime')
"{\\dot{\\hat{\\alpha}}}'"
'''
# Process the rest
tex = tex_greek_dictionary.get(s)
if tex:
return tex
elif s.lower() in greek_letters_set:
return "\\" + s.lower()
elif s in other_symbols:
return "\\" + s
else:
# Process modifiers, if any, and recurse
for key in sorted(modifier_dict.keys(), key=lambda k:len(k), reverse=True):
if s.lower().endswith(key) and len(s) > len(key):
return modifier_dict[key](translate(s[:-len(key)]))
return s
@print_function(LatexPrinter)
def latex(expr, **settings):
r"""Convert the given expression to LaTeX string representation.
Parameters
==========
full_prec: boolean, optional
If set to True, a floating point number is printed with full precision.
fold_frac_powers : boolean, optional
Emit ``^{p/q}`` instead of ``^{\frac{p}{q}}`` for fractional powers.
fold_func_brackets : boolean, optional
Fold function brackets where applicable.
fold_short_frac : boolean, optional
Emit ``p / q`` instead of ``\frac{p}{q}`` when the denominator is
simple enough (at most two terms and no powers). The default value is
``True`` for inline mode, ``False`` otherwise.
inv_trig_style : string, optional
How inverse trig functions should be displayed. Can be one of
``abbreviated``, ``full``, or ``power``. Defaults to ``abbreviated``.
itex : boolean, optional
Specifies if itex-specific syntax is used, including emitting
``$$...$$``.
ln_notation : boolean, optional
If set to ``True``, ``\ln`` is used instead of default ``\log``.
long_frac_ratio : float or None, optional
The allowed ratio of the width of the numerator to the width of the
denominator before the printer breaks off long fractions. If ``None``
(the default value), long fractions are not broken up.
mat_delim : string, optional
The delimiter to wrap around matrices. Can be one of ``[``, ``(``, or
the empty string. Defaults to ``[``.
mat_str : string, optional
Which matrix environment string to emit. ``smallmatrix``, ``matrix``,
``array``, etc. Defaults to ``smallmatrix`` for inline mode, ``matrix``
for matrices of no more than 10 columns, and ``array`` otherwise.
mode: string, optional
Specifies how the generated code will be delimited. ``mode`` can be one
of ``plain``, ``inline``, ``equation`` or ``equation*``. If ``mode``
is set to ``plain``, then the resulting code will not be delimited at
all (this is the default). If ``mode`` is set to ``inline`` then inline
LaTeX ``$...$`` will be used. If ``mode`` is set to ``equation`` or
``equation*``, the resulting code will be enclosed in the ``equation``
or ``equation*`` environment (remember to import ``amsmath`` for
``equation*``), unless the ``itex`` option is set. In the latter case,
the ``$$...$$`` syntax is used.
mul_symbol : string or None, optional
The symbol to use for multiplication. Can be one of ``None``, ``ldot``,
``dot``, or ``times``.
order: string, optional
Any of the supported monomial orderings (currently ``lex``, ``grlex``,
or ``grevlex``), ``old``, and ``none``. This parameter does nothing for
Mul objects. Setting order to ``old`` uses the compatibility ordering
for Add defined in Printer. For very large expressions, set the
``order`` keyword to ``none`` if speed is a concern.
symbol_names : dictionary of strings mapped to symbols, optional
Dictionary of symbols and the custom strings they should be emitted as.
root_notation : boolean, optional
If set to ``False``, exponents of the form 1/n are printed in fractonal
form. Default is ``True``, to print exponent in root form.
mat_symbol_style : string, optional
Can be either ``plain`` (default) or ``bold``. If set to ``bold``,
a MatrixSymbol A will be printed as ``\mathbf{A}``, otherwise as ``A``.
imaginary_unit : string, optional
String to use for the imaginary unit. Defined options are "i" (default)
and "j". Adding "r" or "t" in front gives ``\mathrm`` or ``\text``, so
"ri" leads to ``\mathrm{i}`` which gives `\mathrm{i}`.
gothic_re_im : boolean, optional
If set to ``True``, `\Re` and `\Im` is used for ``re`` and ``im``, respectively.
The default is ``False`` leading to `\operatorname{re}` and `\operatorname{im}`.
decimal_separator : string, optional
Specifies what separator to use to separate the whole and fractional parts of a
floating point number as in `2.5` for the default, ``period`` or `2{,}5`
when ``comma`` is specified. Lists, sets, and tuple are printed with semicolon
separating the elements when ``comma`` is chosen. For example, [1; 2; 3] when
``comma`` is chosen and [1,2,3] for when ``period`` is chosen.
parenthesize_super : boolean, optional
If set to ``False``, superscripted expressions will not be parenthesized when
powered. Default is ``True``, which parenthesizes the expression when powered.
min: Integer or None, optional
Sets the lower bound for the exponent to print floating point numbers in
fixed-point format.
max: Integer or None, optional
Sets the upper bound for the exponent to print floating point numbers in
fixed-point format.
Notes
=====
Not using a print statement for printing, results in double backslashes for
latex commands since that's the way Python escapes backslashes in strings.
>>> from sympy import latex, Rational
>>> from sympy.abc import tau
>>> latex((2*tau)**Rational(7,2))
'8 \\sqrt{2} \\tau^{\\frac{7}{2}}'
>>> print(latex((2*tau)**Rational(7,2)))
8 \sqrt{2} \tau^{\frac{7}{2}}
Examples
========
>>> from sympy import latex, pi, sin, asin, Integral, Matrix, Rational, log
>>> from sympy.abc import x, y, mu, r, tau
Basic usage:
>>> print(latex((2*tau)**Rational(7,2)))
8 \sqrt{2} \tau^{\frac{7}{2}}
``mode`` and ``itex`` options:
>>> print(latex((2*mu)**Rational(7,2), mode='plain'))
8 \sqrt{2} \mu^{\frac{7}{2}}
>>> print(latex((2*tau)**Rational(7,2), mode='inline'))
$8 \sqrt{2} \tau^{7 / 2}$
>>> print(latex((2*mu)**Rational(7,2), mode='equation*'))
\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}
>>> print(latex((2*mu)**Rational(7,2), mode='equation'))
\begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation}
>>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True))
$$8 \sqrt{2} \mu^{\frac{7}{2}}$$
>>> print(latex((2*mu)**Rational(7,2), mode='plain'))
8 \sqrt{2} \mu^{\frac{7}{2}}
>>> print(latex((2*tau)**Rational(7,2), mode='inline'))
$8 \sqrt{2} \tau^{7 / 2}$
>>> print(latex((2*mu)**Rational(7,2), mode='equation*'))
\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}
>>> print(latex((2*mu)**Rational(7,2), mode='equation'))
\begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation}
>>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True))
$$8 \sqrt{2} \mu^{\frac{7}{2}}$$
Fraction options:
>>> print(latex((2*tau)**Rational(7,2), fold_frac_powers=True))
8 \sqrt{2} \tau^{7/2}
>>> print(latex((2*tau)**sin(Rational(7,2))))
\left(2 \tau\right)^{\sin{\left(\frac{7}{2} \right)}}
>>> print(latex((2*tau)**sin(Rational(7,2)), fold_func_brackets=True))
\left(2 \tau\right)^{\sin {\frac{7}{2}}}
>>> print(latex(3*x**2/y))
\frac{3 x^{2}}{y}
>>> print(latex(3*x**2/y, fold_short_frac=True))
3 x^{2} / y
>>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=2))
\frac{\int r\, dr}{2 \pi}
>>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=0))
\frac{1}{2 \pi} \int r\, dr
Multiplication options:
>>> print(latex((2*tau)**sin(Rational(7,2)), mul_symbol="times"))
\left(2 \times \tau\right)^{\sin{\left(\frac{7}{2} \right)}}
Trig options:
>>> print(latex(asin(Rational(7,2))))
\operatorname{asin}{\left(\frac{7}{2} \right)}
>>> print(latex(asin(Rational(7,2)), inv_trig_style="full"))
\arcsin{\left(\frac{7}{2} \right)}
>>> print(latex(asin(Rational(7,2)), inv_trig_style="power"))
\sin^{-1}{\left(\frac{7}{2} \right)}
Matrix options:
>>> print(latex(Matrix(2, 1, [x, y])))
\left[\begin{matrix}x\\y\end{matrix}\right]
>>> print(latex(Matrix(2, 1, [x, y]), mat_str = "array"))
\left[\begin{array}{c}x\\y\end{array}\right]
>>> print(latex(Matrix(2, 1, [x, y]), mat_delim="("))
\left(\begin{matrix}x\\y\end{matrix}\right)
Custom printing of symbols:
>>> print(latex(x**2, symbol_names={x: 'x_i'}))
x_i^{2}
Logarithms:
>>> print(latex(log(10)))
\log{\left(10 \right)}
>>> print(latex(log(10), ln_notation=True))
\ln{\left(10 \right)}
``latex()`` also supports the builtin container types :class:`list`,
:class:`tuple`, and :class:`dict`:
>>> print(latex([2/x, y], mode='inline'))
$\left[ 2 / x, \ y\right]$
Unsupported types are rendered as monospaced plaintext:
>>> print(latex(int))
\mathtt{\text{<class 'int'>}}
>>> print(latex("plain % text"))
\mathtt{\text{plain \% text}}
See :ref:`printer_method_example` for an example of how to override
this behavior for your own types by implementing ``_latex``.
.. versionchanged:: 1.7.0
Unsupported types no longer have their ``str`` representation treated as valid latex.
"""
return LatexPrinter(settings).doprint(expr)
def print_latex(expr, **settings):
"""Prints LaTeX representation of the given expression. Takes the same
settings as ``latex()``."""
print(latex(expr, **settings))
def multiline_latex(lhs, rhs, terms_per_line=1, environment="align*", use_dots=False, **settings):
r"""
This function generates a LaTeX equation with a multiline right-hand side
in an ``align*``, ``eqnarray`` or ``IEEEeqnarray`` environment.
Parameters
==========
lhs : Expr
Left-hand side of equation
rhs : Expr
Right-hand side of equation
terms_per_line : integer, optional
Number of terms per line to print. Default is 1.
environment : "string", optional
Which LaTeX wnvironment to use for the output. Options are "align*"
(default), "eqnarray", and "IEEEeqnarray".
use_dots : boolean, optional
If ``True``, ``\\dots`` is added to the end of each line. Default is ``False``.
Examples
========
>>> from sympy import multiline_latex, symbols, sin, cos, exp, log, I
>>> x, y, alpha = symbols('x y alpha')
>>> expr = sin(alpha*y) + exp(I*alpha) - cos(log(y))
>>> print(multiline_latex(x, expr))
\begin{align*}
x = & e^{i \alpha} \\
& + \sin{\left(\alpha y \right)} \\
& - \cos{\left(\log{\left(y \right)} \right)}
\end{align*}
Using at most two terms per line:
>>> print(multiline_latex(x, expr, 2))
\begin{align*}
x = & e^{i \alpha} + \sin{\left(\alpha y \right)} \\
& - \cos{\left(\log{\left(y \right)} \right)}
\end{align*}
Using ``eqnarray`` and dots:
>>> print(multiline_latex(x, expr, terms_per_line=2, environment="eqnarray", use_dots=True))
\begin{eqnarray}
x & = & e^{i \alpha} + \sin{\left(\alpha y \right)} \dots\nonumber\\
& & - \cos{\left(\log{\left(y \right)} \right)}
\end{eqnarray}
Using ``IEEEeqnarray``:
>>> print(multiline_latex(x, expr, environment="IEEEeqnarray"))
\begin{IEEEeqnarray}{rCl}
x & = & e^{i \alpha} \nonumber\\
& & + \sin{\left(\alpha y \right)} \nonumber\\
& & - \cos{\left(\log{\left(y \right)} \right)}
\end{IEEEeqnarray}
Notes
=====
All optional parameters from ``latex`` can also be used.
"""
# Based on code from https://github.com/sympy/sympy/issues/3001
l = LatexPrinter(**settings)
if environment == "eqnarray":
result = r'\begin{eqnarray}' + '\n'
first_term = '& = &'
nonumber = r'\nonumber'
end_term = '\n\\end{eqnarray}'
doubleet = True
elif environment == "IEEEeqnarray":
result = r'\begin{IEEEeqnarray}{rCl}' + '\n'
first_term = '& = &'
nonumber = r'\nonumber'
end_term = '\n\\end{IEEEeqnarray}'
doubleet = True
elif environment == "align*":
result = r'\begin{align*}' + '\n'
first_term = '= &'
nonumber = ''
end_term = '\n\\end{align*}'
doubleet = False
else:
raise ValueError("Unknown environment: {}".format(environment))
dots = ''
if use_dots:
dots=r'\dots'
terms = rhs.as_ordered_terms()
n_terms = len(terms)
term_count = 1
for i in range(n_terms):
term = terms[i]
term_start = ''
term_end = ''
sign = '+'
if term_count > terms_per_line:
if doubleet:
term_start = '& & '
else:
term_start = '& '
term_count = 1
if term_count == terms_per_line:
# End of line
if i < n_terms-1:
# There are terms remaining
term_end = dots + nonumber + r'\\' + '\n'
else:
term_end = ''
if term.as_ordered_factors()[0] == -1:
term = -1*term
sign = r'-'
if i == 0: # beginning
if sign == '+':
sign = ''
result += r'{:s} {:s}{:s} {:s} {:s}'.format(l.doprint(lhs),
first_term, sign, l.doprint(term), term_end)
else:
result += r'{:s}{:s} {:s} {:s}'.format(term_start, sign,
l.doprint(term), term_end)
term_count += 1
result += end_term
return result
|
0251d991cae4dc526d474dcc45bd81e1fa3c932c42c28fbc0b191dd51fcf8634 | """Printing subsystem driver
SymPy's printing system works the following way: Any expression can be
passed to a designated Printer who then is responsible to return an
adequate representation of that expression.
**The basic concept is the following:**
1. Let the object print itself if it knows how.
2. Take the best fitting method defined in the printer.
3. As fall-back use the emptyPrinter method for the printer.
Which Method is Responsible for Printing?
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The whole printing process is started by calling ``.doprint(expr)`` on the printer
which you want to use. This method looks for an appropriate method which can
print the given expression in the given style that the printer defines.
While looking for the method, it follows these steps:
1. **Let the object print itself if it knows how.**
The printer looks for a specific method in every object. The name of that method
depends on the specific printer and is defined under ``Printer.printmethod``.
For example, StrPrinter calls ``_sympystr`` and LatexPrinter calls ``_latex``.
Look at the documentation of the printer that you want to use.
The name of the method is specified there.
This was the original way of doing printing in sympy. Every class had
its own latex, mathml, str and repr methods, but it turned out that it
is hard to produce a high quality printer, if all the methods are spread
out that far. Therefore all printing code was combined into the different
printers, which works great for built-in sympy objects, but not that
good for user defined classes where it is inconvenient to patch the
printers.
2. **Take the best fitting method defined in the printer.**
The printer loops through expr classes (class + its bases), and tries
to dispatch the work to ``_print_<EXPR_CLASS>``
e.g., suppose we have the following class hierarchy::
Basic
|
Atom
|
Number
|
Rational
then, for ``expr=Rational(...)``, the Printer will try
to call printer methods in the order as shown in the figure below::
p._print(expr)
|
|-- p._print_Rational(expr)
|
|-- p._print_Number(expr)
|
|-- p._print_Atom(expr)
|
`-- p._print_Basic(expr)
if ``._print_Rational`` method exists in the printer, then it is called,
and the result is returned back. Otherwise, the printer tries to call
``._print_Number`` and so on.
3. **As a fall-back use the emptyPrinter method for the printer.**
As fall-back ``self.emptyPrinter`` will be called with the expression. If
not defined in the Printer subclass this will be the same as ``str(expr)``.
.. _printer_example:
Example of Custom Printer
^^^^^^^^^^^^^^^^^^^^^^^^^
In the example below, we have a printer which prints the derivative of a function
in a shorter form.
.. code-block:: python
from sympy import Symbol
from sympy.printing.latex import LatexPrinter, print_latex
from sympy.core.function import UndefinedFunction, Function
class MyLatexPrinter(LatexPrinter):
\"\"\"Print derivative of a function of symbols in a shorter form.
\"\"\"
def _print_Derivative(self, expr):
function, *vars = expr.args
if not isinstance(type(function), UndefinedFunction) or \\
not all(isinstance(i, Symbol) for i in vars):
return super()._print_Derivative(expr)
# If you want the printer to work correctly for nested
# expressions then use self._print() instead of str() or latex().
# See the example of nested modulo below in the custom printing
# method section.
return "{}_{{{}}}".format(
self._print(Symbol(function.func.__name__)),
''.join(self._print(i) for i in vars))
def print_my_latex(expr):
\"\"\" Most of the printers define their own wrappers for print().
These wrappers usually take printer settings. Our printer does not have
any settings.
\"\"\"
print(MyLatexPrinter().doprint(expr))
y = Symbol("y")
x = Symbol("x")
f = Function("f")
expr = f(x, y).diff(x, y)
# Print the expression using the normal latex printer and our custom
# printer.
print_latex(expr)
print_my_latex(expr)
The output of the code above is::
\\frac{\\partial^{2}}{\\partial x\\partial y} f{\\left(x,y \\right)}
f_{xy}
.. _printer_method_example:
Example of Custom Printing Method
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In the example below, the latex printing of the modulo operator is modified.
This is done by overriding the method ``_latex`` of ``Mod``.
>>> from sympy import Symbol, Mod, Integer
>>> from sympy.printing.latex import print_latex
>>> # Always use printer._print()
>>> class ModOp(Mod):
... def _latex(self, printer):
... a, b = [printer._print(i) for i in self.args]
... return r"\\operatorname{Mod}{\\left( %s,%s \\right)}" % (a,b)
Comparing the output of our custom operator to the builtin one:
>>> x = Symbol('x')
>>> m = Symbol('m')
>>> print_latex(Mod(x, m))
x\\bmod{m}
>>> print_latex(ModOp(x, m))
\\operatorname{Mod}{\\left( x,m \\right)}
Common mistakes
~~~~~~~~~~~~~~~
It's important to always use ``self._print(obj)`` to print subcomponents of
an expression when customizing a printer. Mistakes include:
1. Using ``self.doprint(obj)`` instead:
>>> # This example does not work properly, as only the outermost call may use
>>> # doprint.
>>> class ModOpModeWrong(Mod):
... def _latex(self, printer):
... a, b = [printer.doprint(i) for i in self.args]
... return r"\\operatorname{Mod}{\\left( %s,%s \\right)}" % (a,b)
This fails when the `mode` argument is passed to the printer:
>>> print_latex(ModOp(x, m), mode='inline') # ok
$\\operatorname{Mod}{\\left( x,m \\right)}$
>>> print_latex(ModOpModeWrong(x, m), mode='inline') # bad
$\\operatorname{Mod}{\\left( $x$,$m$ \\right)}$
2. Using ``str(obj)`` instead:
>>> class ModOpNestedWrong(Mod):
... def _latex(self, printer):
... a, b = [str(i) for i in self.args]
... return r"\\operatorname{Mod}{\\left( %s,%s \\right)}" % (a,b)
This fails on nested objects:
>>> # Nested modulo.
>>> print_latex(ModOp(ModOp(x, m), Integer(7))) # ok
\\operatorname{Mod}{\\left( \\operatorname{Mod}{\\left( x,m \\right)},7 \\right)}
>>> print_latex(ModOpNestedWrong(ModOpNestedWrong(x, m), Integer(7))) # bad
\\operatorname{Mod}{\\left( ModOpNestedWrong(x, m),7 \\right)}
3. Using ``LatexPrinter()._print(obj)`` instead.
>>> from sympy.printing.latex import LatexPrinter
>>> class ModOpSettingsWrong(Mod):
... def _latex(self, printer):
... a, b = [LatexPrinter()._print(i) for i in self.args]
... return r"\\operatorname{Mod}{\\left( %s,%s \\right)}" % (a,b)
This causes all the settings to be discarded in the subobjects. As an
example, the ``full_prec`` setting which shows floats to full precision is
ignored:
>>> from sympy import Float
>>> print_latex(ModOp(Float(1) * x, m), full_prec=True) # ok
\\operatorname{Mod}{\\left( 1.00000000000000 x,m \\right)}
>>> print_latex(ModOpSettingsWrong(Float(1) * x, m), full_prec=True) # bad
\\operatorname{Mod}{\\left( 1.0 x,m \\right)}
"""
import sys
from typing import Any, Dict, Type
import inspect
from contextlib import contextmanager
from functools import cmp_to_key, update_wrapper
from sympy import Basic, Add
from sympy.core.core import BasicMeta
from sympy.core.function import AppliedUndef, UndefinedFunction, Function
@contextmanager
def printer_context(printer, **kwargs):
original = printer._context.copy()
try:
printer._context.update(kwargs)
yield
finally:
printer._context = original
class Printer:
""" Generic printer
Its job is to provide infrastructure for implementing new printers easily.
If you want to define your custom Printer or your custom printing method
for your custom class then see the example above: printer_example_ .
"""
_global_settings = {} # type: Dict[str, Any]
_default_settings = {} # type: Dict[str, Any]
printmethod = None # type: str
@classmethod
def _get_initial_settings(cls):
settings = cls._default_settings.copy()
for key, val in cls._global_settings.items():
if key in cls._default_settings:
settings[key] = val
return settings
def __init__(self, settings=None):
self._str = str
self._settings = self._get_initial_settings()
self._context = dict() # mutable during printing
if settings is not None:
self._settings.update(settings)
if len(self._settings) > len(self._default_settings):
for key in self._settings:
if key not in self._default_settings:
raise TypeError("Unknown setting '%s'." % key)
# _print_level is the number of times self._print() was recursively
# called. See StrPrinter._print_Float() for an example of usage
self._print_level = 0
@classmethod
def set_global_settings(cls, **settings):
"""Set system-wide printing settings. """
for key, val in settings.items():
if val is not None:
cls._global_settings[key] = val
@property
def order(self):
if 'order' in self._settings:
return self._settings['order']
else:
raise AttributeError("No order defined.")
def doprint(self, expr):
"""Returns printer's representation for expr (as a string)"""
return self._str(self._print(expr))
def _print(self, expr, **kwargs):
"""Internal dispatcher
Tries the following concepts to print an expression:
1. Let the object print itself if it knows how.
2. Take the best fitting method defined in the printer.
3. As fall-back use the emptyPrinter method for the printer.
"""
self._print_level += 1
try:
# If the printer defines a name for a printing method
# (Printer.printmethod) and the object knows for itself how it
# should be printed, use that method.
if (self.printmethod and hasattr(expr, self.printmethod)
and not isinstance(expr, BasicMeta)):
return getattr(expr, self.printmethod)(self, **kwargs)
# See if the class of expr is known, or if one of its super
# classes is known, and use that print function
# Exception: ignore the subclasses of Undefined, so that, e.g.,
# Function('gamma') does not get dispatched to _print_gamma
classes = type(expr).__mro__
if AppliedUndef in classes:
classes = classes[classes.index(AppliedUndef):]
if UndefinedFunction in classes:
classes = classes[classes.index(UndefinedFunction):]
# Another exception: if someone subclasses a known function, e.g.,
# gamma, and changes the name, then ignore _print_gamma
if Function in classes:
i = classes.index(Function)
classes = tuple(c for c in classes[:i] if \
c.__name__ == classes[0].__name__ or \
c.__name__.endswith("Base")) + classes[i:]
for cls in classes:
printmethod = '_print_' + cls.__name__
if hasattr(self, printmethod):
return getattr(self, printmethod)(expr, **kwargs)
# Unknown object, fall back to the emptyPrinter.
return self.emptyPrinter(expr)
finally:
self._print_level -= 1
def emptyPrinter(self, expr):
return str(expr)
def _as_ordered_terms(self, expr, order=None):
"""A compatibility function for ordering terms in Add. """
order = order or self.order
if order == 'old':
return sorted(Add.make_args(expr), key=cmp_to_key(Basic._compare_pretty))
elif order == 'none':
return list(expr.args)
else:
return expr.as_ordered_terms(order=order)
class _PrintFunction:
"""
Function wrapper to replace ``**settings`` in the signature with printer defaults
"""
def __init__(self, f, print_cls: Type[Printer]):
# find all the non-setting arguments
params = list(inspect.signature(f).parameters.values())
assert params.pop(-1).kind == inspect.Parameter.VAR_KEYWORD
self.__other_params = params
self.__print_cls = print_cls
update_wrapper(self, f)
def __reduce__(self):
# Since this is used as a decorator, it replaces the original function.
# The default pickling will try to pickle self.__wrapped__ and fail
# because the wrapped function can't be retrieved by name.
return self.__wrapped__.__qualname__
def __call__(self, *args, **kwargs):
return self.__wrapped__(*args, **kwargs)
@property
def __signature__(self) -> inspect.Signature:
settings = self.__print_cls._get_initial_settings()
return inspect.Signature(
parameters=self.__other_params + [
inspect.Parameter(k, inspect.Parameter.KEYWORD_ONLY, default=v)
for k, v in settings.items()
],
return_annotation=self.__wrapped__.__annotations__.get('return', inspect.Signature.empty) # type:ignore
)
def print_function(print_cls):
""" A decorator to replace kwargs with the printer settings in __signature__ """
def decorator(f):
if sys.version_info < (3, 9):
# We have to create a subclass so that `help` actually shows the docstring in older python versions.
# IPython and Sphinx do not need this, only a raw python console.
cls = type(f'{f.__qualname__}_PrintFunction', (_PrintFunction,), dict(__doc__=f.__doc__))
else:
cls = _PrintFunction
return cls(f, print_cls)
return decorator
|
65bb8970d8110a8603247ec53138755a847e6e172217517276f9ea6760e9afff | """
Octave (and Matlab) code printer
The `OctaveCodePrinter` converts SymPy expressions into Octave expressions.
It uses a subset of the Octave language for Matlab compatibility.
A complete code generator, which uses `octave_code` extensively, can be found
in `sympy.utilities.codegen`. The `codegen` module can be used to generate
complete source code files.
"""
from typing import Any, Dict
from sympy.core import Mul, Pow, S, Rational
from sympy.core.mul import _keep_coeff
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence, PRECEDENCE
from re import search
# List of known functions. First, those that have the same name in
# SymPy and Octave. This is almost certainly incomplete!
known_fcns_src1 = ["sin", "cos", "tan", "cot", "sec", "csc",
"asin", "acos", "acot", "atan", "atan2", "asec", "acsc",
"sinh", "cosh", "tanh", "coth", "csch", "sech",
"asinh", "acosh", "atanh", "acoth", "asech", "acsch",
"erfc", "erfi", "erf", "erfinv", "erfcinv",
"besseli", "besselj", "besselk", "bessely",
"bernoulli", "beta", "euler", "exp", "factorial", "floor",
"fresnelc", "fresnels", "gamma", "harmonic", "log",
"polylog", "sign", "zeta", "legendre"]
# These functions have different names ("Sympy": "Octave"), more
# generally a mapping to (argument_conditions, octave_function).
known_fcns_src2 = {
"Abs": "abs",
"arg": "angle", # arg/angle ok in Octave but only angle in Matlab
"binomial": "bincoeff",
"ceiling": "ceil",
"chebyshevu": "chebyshevU",
"chebyshevt": "chebyshevT",
"Chi": "coshint",
"Ci": "cosint",
"conjugate": "conj",
"DiracDelta": "dirac",
"Heaviside": "heaviside",
"im": "imag",
"laguerre": "laguerreL",
"LambertW": "lambertw",
"li": "logint",
"loggamma": "gammaln",
"Max": "max",
"Min": "min",
"Mod": "mod",
"polygamma": "psi",
"re": "real",
"RisingFactorial": "pochhammer",
"Shi": "sinhint",
"Si": "sinint",
}
class OctaveCodePrinter(CodePrinter):
"""
A printer to convert expressions to strings of Octave/Matlab code.
"""
printmethod = "_octave"
language = "Octave"
_operators = {
'and': '&',
'or': '|',
'not': '~',
}
_default_settings = {
'order': None,
'full_prec': 'auto',
'precision': 17,
'user_functions': {},
'human': True,
'allow_unknown_functions': False,
'contract': True,
'inline': True,
} # type: Dict[str, Any]
# Note: contract is for expressing tensors as loops (if True), or just
# assignment (if False). FIXME: this should be looked a more carefully
# for Octave.
def __init__(self, settings={}):
super().__init__(settings)
self.known_functions = dict(zip(known_fcns_src1, known_fcns_src1))
self.known_functions.update(dict(known_fcns_src2))
userfuncs = settings.get('user_functions', {})
self.known_functions.update(userfuncs)
def _rate_index_position(self, p):
return p*5
def _get_statement(self, codestring):
return "%s;" % codestring
def _get_comment(self, text):
return "% {}".format(text)
def _declare_number_const(self, name, value):
return "{} = {};".format(name, value)
def _format_code(self, lines):
return self.indent_code(lines)
def _traverse_matrix_indices(self, mat):
# Octave uses Fortran order (column-major)
rows, cols = mat.shape
return ((i, j) for j in range(cols) for i in range(rows))
def _get_loop_opening_ending(self, indices):
open_lines = []
close_lines = []
for i in indices:
# Octave arrays start at 1 and end at dimension
var, start, stop = map(self._print,
[i.label, i.lower + 1, i.upper + 1])
open_lines.append("for %s = %s:%s" % (var, start, stop))
close_lines.append("end")
return open_lines, close_lines
def _print_Mul(self, expr):
# print complex numbers nicely in Octave
if (expr.is_number and expr.is_imaginary and
(S.ImaginaryUnit*expr).is_Integer):
return "%si" % self._print(-S.ImaginaryUnit*expr)
# cribbed from str.py
prec = precedence(expr)
c, e = expr.as_coeff_Mul()
if c < 0:
expr = _keep_coeff(-c, e)
sign = "-"
else:
sign = ""
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
pow_paren = [] # Will collect all pow with more than one base element and exp = -1
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
# use make_args in case expr was something like -x -> x
args = Mul.make_args(expr)
# Gather args for numerator/denominator
for item in args:
if (item.is_commutative and item.is_Pow and item.exp.is_Rational
and item.exp.is_negative):
if item.exp != -1:
b.append(Pow(item.base, -item.exp, evaluate=False))
else:
if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160
pow_paren.append(item)
b.append(Pow(item.base, -item.exp))
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append(Rational(item.p))
if item.q != 1:
b.append(Rational(item.q))
else:
a.append(item)
a = a or [S.One]
a_str = [self.parenthesize(x, prec) for x in a]
b_str = [self.parenthesize(x, prec) for x in b]
# To parenthesize Pow with exp = -1 and having more than one Symbol
for item in pow_paren:
if item.base in b:
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
# from here it differs from str.py to deal with "*" and ".*"
def multjoin(a, a_str):
# here we probably are assuming the constants will come first
r = a_str[0]
for i in range(1, len(a)):
mulsym = '*' if a[i-1].is_number else '.*'
r = r + mulsym + a_str[i]
return r
if not b:
return sign + multjoin(a, a_str)
elif len(b) == 1:
divsym = '/' if b[0].is_number else './'
return sign + multjoin(a, a_str) + divsym + b_str[0]
else:
divsym = '/' if all(bi.is_number for bi in b) else './'
return (sign + multjoin(a, a_str) +
divsym + "(%s)" % multjoin(b, b_str))
def _print_Relational(self, expr):
lhs_code = self._print(expr.lhs)
rhs_code = self._print(expr.rhs)
op = expr.rel_op
return "{} {} {}".format(lhs_code, op, rhs_code)
def _print_Pow(self, expr):
powsymbol = '^' if all(x.is_number for x in expr.args) else '.^'
PREC = precedence(expr)
if expr.exp == S.Half:
return "sqrt(%s)" % self._print(expr.base)
if expr.is_commutative:
if expr.exp == -S.Half:
sym = '/' if expr.base.is_number else './'
return "1" + sym + "sqrt(%s)" % self._print(expr.base)
if expr.exp == -S.One:
sym = '/' if expr.base.is_number else './'
return "1" + sym + "%s" % self.parenthesize(expr.base, PREC)
return '%s%s%s' % (self.parenthesize(expr.base, PREC), powsymbol,
self.parenthesize(expr.exp, PREC))
def _print_MatPow(self, expr):
PREC = precedence(expr)
return '%s^%s' % (self.parenthesize(expr.base, PREC),
self.parenthesize(expr.exp, PREC))
def _print_MatrixSolve(self, expr):
PREC = precedence(expr)
return "%s \\ %s" % (self.parenthesize(expr.matrix, PREC),
self.parenthesize(expr.vector, PREC))
def _print_Pi(self, expr):
return 'pi'
def _print_ImaginaryUnit(self, expr):
return "1i"
def _print_Exp1(self, expr):
return "exp(1)"
def _print_GoldenRatio(self, expr):
# FIXME: how to do better, e.g., for octave_code(2*GoldenRatio)?
#return self._print((1+sqrt(S(5)))/2)
return "(1+sqrt(5))/2"
def _print_Assignment(self, expr):
from sympy.codegen.ast import Assignment
from sympy.functions.elementary.piecewise import Piecewise
from sympy.tensor.indexed import IndexedBase
# Copied from codeprinter, but remove special MatrixSymbol treatment
lhs = expr.lhs
rhs = expr.rhs
# We special case assignments that take multiple lines
if not self._settings["inline"] and isinstance(expr.rhs, Piecewise):
# Here we modify Piecewise so each expression is now
# an Assignment, and then continue on the print.
expressions = []
conditions = []
for (e, c) in rhs.args:
expressions.append(Assignment(lhs, e))
conditions.append(c)
temp = Piecewise(*zip(expressions, conditions))
return self._print(temp)
if self._settings["contract"] and (lhs.has(IndexedBase) or
rhs.has(IndexedBase)):
# Here we check if there is looping to be done, and if so
# print the required loops.
return self._doprint_loops(rhs, lhs)
else:
lhs_code = self._print(lhs)
rhs_code = self._print(rhs)
return self._get_statement("%s = %s" % (lhs_code, rhs_code))
def _print_Infinity(self, expr):
return 'inf'
def _print_NegativeInfinity(self, expr):
return '-inf'
def _print_NaN(self, expr):
return 'NaN'
def _print_list(self, expr):
return '{' + ', '.join(self._print(a) for a in expr) + '}'
_print_tuple = _print_list
_print_Tuple = _print_list
def _print_BooleanTrue(self, expr):
return "true"
def _print_BooleanFalse(self, expr):
return "false"
def _print_bool(self, expr):
return str(expr).lower()
# Could generate quadrature code for definite Integrals?
#_print_Integral = _print_not_supported
def _print_MatrixBase(self, A):
# Handle zero dimensions:
if (A.rows, A.cols) == (0, 0):
return '[]'
elif A.rows == 0 or A.cols == 0:
return 'zeros(%s, %s)' % (A.rows, A.cols)
elif (A.rows, A.cols) == (1, 1):
# Octave does not distinguish between scalars and 1x1 matrices
return self._print(A[0, 0])
return "[%s]" % "; ".join(" ".join([self._print(a) for a in A[r, :]])
for r in range(A.rows))
def _print_SparseMatrix(self, A):
from sympy.matrices import Matrix
L = A.col_list();
# make row vectors of the indices and entries
I = Matrix([[k[0] + 1 for k in L]])
J = Matrix([[k[1] + 1 for k in L]])
AIJ = Matrix([[k[2] for k in L]])
return "sparse(%s, %s, %s, %s, %s)" % (self._print(I), self._print(J),
self._print(AIJ), A.rows, A.cols)
def _print_MatrixElement(self, expr):
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \
+ '(%s, %s)' % (expr.i + 1, expr.j + 1)
def _print_MatrixSlice(self, expr):
def strslice(x, lim):
l = x[0] + 1
h = x[1]
step = x[2]
lstr = self._print(l)
hstr = 'end' if h == lim else self._print(h)
if step == 1:
if l == 1 and h == lim:
return ':'
if l == h:
return lstr
else:
return lstr + ':' + hstr
else:
return ':'.join((lstr, self._print(step), hstr))
return (self._print(expr.parent) + '(' +
strslice(expr.rowslice, expr.parent.shape[0]) + ', ' +
strslice(expr.colslice, expr.parent.shape[1]) + ')')
def _print_Indexed(self, expr):
inds = [ self._print(i) for i in expr.indices ]
return "%s(%s)" % (self._print(expr.base.label), ", ".join(inds))
def _print_Idx(self, expr):
return self._print(expr.label)
def _print_KroneckerDelta(self, expr):
prec = PRECEDENCE["Pow"]
return "double(%s == %s)" % tuple(self.parenthesize(x, prec)
for x in expr.args)
def _print_HadamardProduct(self, expr):
return '.*'.join([self.parenthesize(arg, precedence(expr))
for arg in expr.args])
def _print_HadamardPower(self, expr):
PREC = precedence(expr)
return '.**'.join([
self.parenthesize(expr.base, PREC),
self.parenthesize(expr.exp, PREC)
])
def _print_Identity(self, expr):
shape = expr.shape
if len(shape) == 2 and shape[0] == shape[1]:
shape = [shape[0]]
s = ", ".join(self._print(n) for n in shape)
return "eye(" + s + ")"
def _print_lowergamma(self, expr):
# Octave implements regularized incomplete gamma function
return "(gammainc({1}, {0}).*gamma({0}))".format(
self._print(expr.args[0]), self._print(expr.args[1]))
def _print_uppergamma(self, expr):
return "(gammainc({1}, {0}, 'upper').*gamma({0}))".format(
self._print(expr.args[0]), self._print(expr.args[1]))
def _print_sinc(self, expr):
#Note: Divide by pi because Octave implements normalized sinc function.
return "sinc(%s)" % self._print(expr.args[0]/S.Pi)
def _print_hankel1(self, expr):
return "besselh(%s, 1, %s)" % (self._print(expr.order),
self._print(expr.argument))
def _print_hankel2(self, expr):
return "besselh(%s, 2, %s)" % (self._print(expr.order),
self._print(expr.argument))
# Note: as of 2015, Octave doesn't have spherical Bessel functions
def _print_jn(self, expr):
from sympy.functions import sqrt, besselj
x = expr.argument
expr2 = sqrt(S.Pi/(2*x))*besselj(expr.order + S.Half, x)
return self._print(expr2)
def _print_yn(self, expr):
from sympy.functions import sqrt, bessely
x = expr.argument
expr2 = sqrt(S.Pi/(2*x))*bessely(expr.order + S.Half, x)
return self._print(expr2)
def _print_airyai(self, expr):
return "airy(0, %s)" % self._print(expr.args[0])
def _print_airyaiprime(self, expr):
return "airy(1, %s)" % self._print(expr.args[0])
def _print_airybi(self, expr):
return "airy(2, %s)" % self._print(expr.args[0])
def _print_airybiprime(self, expr):
return "airy(3, %s)" % self._print(expr.args[0])
def _print_expint(self, expr):
mu, x = expr.args
if mu != 1:
return self._print_not_supported(expr)
return "expint(%s)" % self._print(x)
def _one_or_two_reversed_args(self, expr):
assert len(expr.args) <= 2
return '{name}({args})'.format(
name=self.known_functions[expr.__class__.__name__],
args=", ".join([self._print(x) for x in reversed(expr.args)])
)
_print_DiracDelta = _print_LambertW = _one_or_two_reversed_args
def _nested_binary_math_func(self, expr):
return '{name}({arg1}, {arg2})'.format(
name=self.known_functions[expr.__class__.__name__],
arg1=self._print(expr.args[0]),
arg2=self._print(expr.func(*expr.args[1:]))
)
_print_Max = _print_Min = _nested_binary_math_func
def _print_Piecewise(self, expr):
if expr.args[-1].cond != True:
# We need the last conditional to be a True, otherwise the resulting
# function may not return a result.
raise ValueError("All Piecewise expressions must contain an "
"(expr, True) statement to be used as a default "
"condition. Without one, the generated "
"expression may not evaluate to anything under "
"some condition.")
lines = []
if self._settings["inline"]:
# Express each (cond, expr) pair in a nested Horner form:
# (condition) .* (expr) + (not cond) .* (<others>)
# Expressions that result in multiple statements won't work here.
ecpairs = ["({0}).*({1}) + (~({0})).*(".format
(self._print(c), self._print(e))
for e, c in expr.args[:-1]]
elast = "%s" % self._print(expr.args[-1].expr)
pw = " ...\n".join(ecpairs) + elast + ")"*len(ecpairs)
# Note: current need these outer brackets for 2*pw. Would be
# nicer to teach parenthesize() to do this for us when needed!
return "(" + pw + ")"
else:
for i, (e, c) in enumerate(expr.args):
if i == 0:
lines.append("if (%s)" % self._print(c))
elif i == len(expr.args) - 1 and c == True:
lines.append("else")
else:
lines.append("elseif (%s)" % self._print(c))
code0 = self._print(e)
lines.append(code0)
if i == len(expr.args) - 1:
lines.append("end")
return "\n".join(lines)
def _print_zeta(self, expr):
if len(expr.args) == 1:
return "zeta(%s)" % self._print(expr.args[0])
else:
# Matlab two argument zeta is not equivalent to SymPy's
return self._print_not_supported(expr)
def indent_code(self, code):
"""Accepts a string of code or a list of code lines"""
# code mostly copied from ccode
if isinstance(code, str):
code_lines = self.indent_code(code.splitlines(True))
return ''.join(code_lines)
tab = " "
inc_regex = ('^function ', '^if ', '^elseif ', '^else$', '^for ')
dec_regex = ('^end$', '^elseif ', '^else$')
# pre-strip left-space from the code
code = [ line.lstrip(' \t') for line in code ]
increase = [ int(any(search(re, line) for re in inc_regex))
for line in code ]
decrease = [ int(any(search(re, line) for re in dec_regex))
for line in code ]
pretty = []
level = 0
for n, line in enumerate(code):
if line == '' or line == '\n':
pretty.append(line)
continue
level -= decrease[n]
pretty.append("%s%s" % (tab*level, line))
level += increase[n]
return pretty
def octave_code(expr, assign_to=None, **settings):
r"""Converts `expr` to a string of Octave (or Matlab) code.
The string uses a subset of the Octave language for Matlab compatibility.
Parameters
==========
expr : Expr
A sympy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which
the expression is assigned. Can be a string, ``Symbol``,
``MatrixSymbol``, or ``Indexed`` type. This can be helpful for
expressions that generate multi-line statements.
precision : integer, optional
The precision for numbers such as pi [default=16].
user_functions : dict, optional
A dictionary where keys are ``FunctionClass`` instances and values are
their string representations. Alternatively, the dictionary value can
be a list of tuples i.e. [(argument_test, cfunction_string)]. See
below for examples.
human : bool, optional
If True, the result is a single string that may contain some constant
declarations for the number symbols. If False, the same information is
returned in a tuple of (symbols_to_declare, not_supported_functions,
code_text). [default=True].
contract: bool, optional
If True, ``Indexed`` instances are assumed to obey tensor contraction
rules and the corresponding nested loops over indices are generated.
Setting contract=False will not generate loops, instead the user is
responsible to provide values for the indices in the code.
[default=True].
inline: bool, optional
If True, we try to create single-statement code instead of multiple
statements. [default=True].
Examples
========
>>> from sympy import octave_code, symbols, sin, pi
>>> x = symbols('x')
>>> octave_code(sin(x).series(x).removeO())
'x.^5/120 - x.^3/6 + x'
>>> from sympy import Rational, ceiling
>>> x, y, tau = symbols("x, y, tau")
>>> octave_code((2*tau)**Rational(7, 2))
'8*sqrt(2)*tau.^(7/2)'
Note that element-wise (Hadamard) operations are used by default between
symbols. This is because its very common in Octave to write "vectorized"
code. It is harmless if the values are scalars.
>>> octave_code(sin(pi*x*y), assign_to="s")
's = sin(pi*x.*y);'
If you need a matrix product "*" or matrix power "^", you can specify the
symbol as a ``MatrixSymbol``.
>>> from sympy import Symbol, MatrixSymbol
>>> n = Symbol('n', integer=True, positive=True)
>>> A = MatrixSymbol('A', n, n)
>>> octave_code(3*pi*A**3)
'(3*pi)*A^3'
This class uses several rules to decide which symbol to use a product.
Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*".
A HadamardProduct can be used to specify componentwise multiplication ".*"
of two MatrixSymbols. There is currently there is no easy way to specify
scalar symbols, so sometimes the code might have some minor cosmetic
issues. For example, suppose x and y are scalars and A is a Matrix, then
while a human programmer might write "(x^2*y)*A^3", we generate:
>>> octave_code(x**2*y*A**3)
'(x.^2.*y)*A^3'
Matrices are supported using Octave inline notation. When using
``assign_to`` with matrices, the name can be specified either as a string
or as a ``MatrixSymbol``. The dimensions must align in the latter case.
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([[x**2, sin(x), ceiling(x)]])
>>> octave_code(mat, assign_to='A')
'A = [x.^2 sin(x) ceil(x)];'
``Piecewise`` expressions are implemented with logical masking by default.
Alternatively, you can pass "inline=False" to use if-else conditionals.
Note that if the ``Piecewise`` lacks a default term, represented by
``(expr, True)`` then an error will be thrown. This is to prevent
generating an expression that may not evaluate to anything.
>>> from sympy import Piecewise
>>> pw = Piecewise((x + 1, x > 0), (x, True))
>>> octave_code(pw, assign_to=tau)
'tau = ((x > 0).*(x + 1) + (~(x > 0)).*(x));'
Note that any expression that can be generated normally can also exist
inside a Matrix:
>>> mat = Matrix([[x**2, pw, sin(x)]])
>>> octave_code(mat, assign_to='A')
'A = [x.^2 ((x > 0).*(x + 1) + (~(x > 0)).*(x)) sin(x)];'
Custom printing can be defined for certain types by passing a dictionary of
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the
dictionary value can be a list of tuples i.e., [(argument_test,
cfunction_string)]. This can be used to call a custom Octave function.
>>> from sympy import Function
>>> f = Function('f')
>>> g = Function('g')
>>> custom_functions = {
... "f": "existing_octave_fcn",
... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
... (lambda x: not x.is_Matrix, "my_fcn")]
... }
>>> mat = Matrix([[1, x]])
>>> octave_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
'existing_octave_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])'
Support for loops is provided through ``Indexed`` types. With
``contract=True`` these expressions will be turned into loops, whereas
``contract=False`` will just print the assignment expression that should be
looped over:
>>> from sympy import Eq, IndexedBase, Idx
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
>>> t = IndexedBase('t', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
>>> octave_code(e.rhs, assign_to=e.lhs, contract=False)
'Dy(i) = (y(i + 1) - y(i))./(t(i + 1) - t(i));'
"""
return OctaveCodePrinter(settings).doprint(expr, assign_to)
def print_octave_code(expr, **settings):
"""Prints the Octave (or Matlab) representation of the given expression.
See `octave_code` for the meaning of the optional arguments.
"""
print(octave_code(expr, **settings))
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.