hash
stringlengths
64
64
content
stringlengths
0
1.51M
0ecee53f7ed1dfa8ffe6209bd85bb36b94fd238d0c13245c7e264d84486991d4
import itertools from collections.abc import Iterable from sympy import S, Tuple, diff, Basic from sympy.core.sympify import _sympify from sympy.tensor.array.ndim_array import NDimArray from sympy.tensor.array.dense_ndim_array import DenseNDimArray, ImmutableDenseNDimArray from sympy.tensor.array.sparse_ndim_array import SparseNDimArray def _arrayfy(a): from sympy.matrices import MatrixBase if isinstance(a, NDimArray): return a if isinstance(a, (MatrixBase, list, tuple, Tuple)): return ImmutableDenseNDimArray(a) return a def tensorproduct(*args): """ Tensor product among scalars or array-like objects. Examples ======== >>> from sympy.tensor.array import tensorproduct, Array >>> from sympy.abc import x, y, z, t >>> A = Array([[1, 2], [3, 4]]) >>> B = Array([x, y]) >>> tensorproduct(A, B) [[[x, y], [2*x, 2*y]], [[3*x, 3*y], [4*x, 4*y]]] >>> tensorproduct(A, x) [[x, 2*x], [3*x, 4*x]] >>> tensorproduct(A, B, B) [[[[x**2, x*y], [x*y, y**2]], [[2*x**2, 2*x*y], [2*x*y, 2*y**2]]], [[[3*x**2, 3*x*y], [3*x*y, 3*y**2]], [[4*x**2, 4*x*y], [4*x*y, 4*y**2]]]] Applying this function on two matrices will result in a rank 4 array. >>> from sympy import Matrix, eye >>> m = Matrix([[x, y], [z, t]]) >>> p = tensorproduct(eye(3), m) >>> p [[[[x, y], [z, t]], [[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[x, y], [z, t]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]], [[x, y], [z, t]]]] """ from sympy.tensor.array import SparseNDimArray, ImmutableSparseNDimArray if len(args) == 0: return S.One if len(args) == 1: return _arrayfy(args[0]) if len(args) > 2: return tensorproduct(tensorproduct(args[0], args[1]), *args[2:]) # length of args is 2: a, b = map(_arrayfy, args) if not isinstance(a, NDimArray) or not isinstance(b, NDimArray): return a*b if isinstance(a, SparseNDimArray) and isinstance(b, SparseNDimArray): lp = len(b) new_array = {k1*lp + k2: v1*v2 for k1, v1 in a._sparse_array.items() for k2, v2 in b._sparse_array.items()} return ImmutableSparseNDimArray(new_array, a.shape + b.shape) product_list = [i*j for i in Flatten(a) for j in Flatten(b)] return ImmutableDenseNDimArray(product_list, a.shape + b.shape) def _util_contraction_diagonal(array, *contraction_or_diagonal_axes): array = _arrayfy(array) # Verify contraction_axes: taken_dims = set() for axes_group in contraction_or_diagonal_axes: if not isinstance(axes_group, Iterable): raise ValueError("collections of contraction/diagonal axes expected") dim = array.shape[axes_group[0]] for d in axes_group: if d in taken_dims: raise ValueError("dimension specified more than once") if dim != array.shape[d]: raise ValueError("cannot contract or diagonalize between axes of different dimension") taken_dims.add(d) rank = array.rank() remaining_shape = [dim for i, dim in enumerate(array.shape) if i not in taken_dims] cum_shape = [0]*rank _cumul = 1 for i in range(rank): cum_shape[rank - i - 1] = _cumul _cumul *= int(array.shape[rank - i - 1]) # DEFINITION: by absolute position it is meant the position along the one # dimensional array containing all the tensor components. # Possible future work on this module: move computation of absolute # positions to a class method. # Determine absolute positions of the uncontracted indices: remaining_indices = [[cum_shape[i]*j for j in range(array.shape[i])] for i in range(rank) if i not in taken_dims] # Determine absolute positions of the contracted indices: summed_deltas = [] for axes_group in contraction_or_diagonal_axes: lidx = [] for js in range(array.shape[axes_group[0]]): lidx.append(sum([cum_shape[ig] * js for ig in axes_group])) summed_deltas.append(lidx) return array, remaining_indices, remaining_shape, summed_deltas def tensorcontraction(array, *contraction_axes): """ Contraction of an array-like object on the specified axes. Examples ======== >>> from sympy import Array, tensorcontraction >>> from sympy import Matrix, eye >>> tensorcontraction(eye(3), (0, 1)) 3 >>> A = Array(range(18), (3, 2, 3)) >>> A [[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]] >>> tensorcontraction(A, (0, 2)) [21, 30] Matrix multiplication may be emulated with a proper combination of ``tensorcontraction`` and ``tensorproduct`` >>> from sympy import tensorproduct >>> from sympy.abc import a,b,c,d,e,f,g,h >>> m1 = Matrix([[a, b], [c, d]]) >>> m2 = Matrix([[e, f], [g, h]]) >>> p = tensorproduct(m1, m2) >>> p [[[[a*e, a*f], [a*g, a*h]], [[b*e, b*f], [b*g, b*h]]], [[[c*e, c*f], [c*g, c*h]], [[d*e, d*f], [d*g, d*h]]]] >>> tensorcontraction(p, (1, 2)) [[a*e + b*g, a*f + b*h], [c*e + d*g, c*f + d*h]] >>> m1*m2 Matrix([ [a*e + b*g, a*f + b*h], [c*e + d*g, c*f + d*h]]) """ array, remaining_indices, remaining_shape, summed_deltas = _util_contraction_diagonal(array, *contraction_axes) # Compute the contracted array: # # 1. external for loops on all uncontracted indices. # Uncontracted indices are determined by the combinatorial product of # the absolute positions of the remaining indices. # 2. internal loop on all contracted indices. # It sums the values of the absolute contracted index and the absolute # uncontracted index for the external loop. contracted_array = [] for icontrib in itertools.product(*remaining_indices): index_base_position = sum(icontrib) isum = S.Zero for sum_to_index in itertools.product(*summed_deltas): idx = array._get_tuple_index(index_base_position + sum(sum_to_index)) isum += array[idx] contracted_array.append(isum) if len(remaining_indices) == 0: assert len(contracted_array) == 1 return contracted_array[0] return type(array)(contracted_array, remaining_shape) def tensordiagonal(array, *diagonal_axes): """ Diagonalization of an array-like object on the specified axes. This is equivalent to multiplying the expression by Kronecker deltas uniting the axes. The diagonal indices are put at the end of the axes. Examples ======== ``tensordiagonal`` acting on a 2-dimensional array by axes 0 and 1 is equivalent to the diagonal of the matrix: >>> from sympy import Array, tensordiagonal >>> from sympy import Matrix, eye >>> tensordiagonal(eye(3), (0, 1)) [1, 1, 1] >>> from sympy.abc import a,b,c,d >>> m1 = Matrix([[a, b], [c, d]]) >>> tensordiagonal(m1, [0, 1]) [a, d] In case of higher dimensional arrays, the diagonalized out dimensions are appended removed and appended as a single dimension at the end: >>> A = Array(range(18), (3, 2, 3)) >>> A [[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]] >>> tensordiagonal(A, (0, 2)) [[0, 7, 14], [3, 10, 17]] >>> from sympy import permutedims >>> tensordiagonal(A, (0, 2)) == permutedims(Array([A[0, :, 0], A[1, :, 1], A[2, :, 2]]), [1, 0]) True """ if any([len(i) <= 1 for i in diagonal_axes]): raise ValueError("need at least two axes to diagonalize") array, remaining_indices, remaining_shape, diagonal_deltas = _util_contraction_diagonal(array, *diagonal_axes) # Compute the diagonalized array: # # 1. external for loops on all undiagonalized indices. # Undiagonalized indices are determined by the combinatorial product of # the absolute positions of the remaining indices. # 2. internal loop on all diagonal indices. # It appends the values of the absolute diagonalized index and the absolute # undiagonalized index for the external loop. diagonalized_array = [] diagonal_shape = [len(i) for i in diagonal_deltas] for icontrib in itertools.product(*remaining_indices): index_base_position = sum(icontrib) isum = [] for sum_to_index in itertools.product(*diagonal_deltas): idx = array._get_tuple_index(index_base_position + sum(sum_to_index)) isum.append(array[idx]) isum = type(array)(isum).reshape(*diagonal_shape) diagonalized_array.append(isum) return type(array)(diagonalized_array, remaining_shape + diagonal_shape) def derive_by_array(expr, dx): r""" Derivative by arrays. Supports both arrays and scalars. Explanation =========== Given the array `A_{i_1, \ldots, i_N}` and the array `X_{j_1, \ldots, j_M}` this function will return a new array `B` defined by `B_{j_1,\ldots,j_M,i_1,\ldots,i_N} := \frac{\partial A_{i_1,\ldots,i_N}}{\partial X_{j_1,\ldots,j_M}}` Examples ======== >>> from sympy import derive_by_array >>> from sympy.abc import x, y, z, t >>> from sympy import cos >>> derive_by_array(cos(x*t), x) -t*sin(t*x) >>> derive_by_array(cos(x*t), [x, y, z, t]) [-t*sin(t*x), 0, 0, -x*sin(t*x)] >>> derive_by_array([x, y**2*z], [[x, y], [z, t]]) [[[1, 0], [0, 2*y*z]], [[0, y**2], [0, 0]]] """ from sympy.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray array_types = (Iterable, MatrixBase, NDimArray) if isinstance(dx, array_types): dx = ImmutableDenseNDimArray(dx) for i in dx: if not i._diff_wrt: raise ValueError("cannot derive by this array") if isinstance(expr, array_types): if isinstance(expr, NDimArray): expr = expr.as_immutable() else: expr = ImmutableDenseNDimArray(expr) if isinstance(dx, array_types): if isinstance(expr, SparseNDimArray): lp = len(expr) new_array = {k + i*lp: v for i, x in enumerate(Flatten(dx)) for k, v in expr.diff(x)._sparse_array.items()} else: new_array = [[y.diff(x) for y in Flatten(expr)] for x in Flatten(dx)] return type(expr)(new_array, dx.shape + expr.shape) else: return expr.diff(dx) else: expr = _sympify(expr) if isinstance(dx, array_types): return ImmutableDenseNDimArray([expr.diff(i) for i in Flatten(dx)], dx.shape) else: dx = _sympify(dx) return diff(expr, dx) def permutedims(expr, perm): """ Permutes the indices of an array. Parameter specifies the permutation of the indices. Examples ======== >>> from sympy.abc import x, y, z, t >>> from sympy import sin >>> from sympy import Array, permutedims >>> a = Array([[x, y, z], [t, sin(x), 0]]) >>> a [[x, y, z], [t, sin(x), 0]] >>> permutedims(a, (1, 0)) [[x, t], [y, sin(x)], [z, 0]] If the array is of second order, ``transpose`` can be used: >>> from sympy import transpose >>> transpose(a) [[x, t], [y, sin(x)], [z, 0]] Examples on higher dimensions: >>> b = Array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) >>> permutedims(b, (2, 1, 0)) [[[1, 5], [3, 7]], [[2, 6], [4, 8]]] >>> permutedims(b, (1, 2, 0)) [[[1, 5], [2, 6]], [[3, 7], [4, 8]]] ``Permutation`` objects are also allowed: >>> from sympy.combinatorics import Permutation >>> permutedims(b, Permutation([1, 2, 0])) [[[1, 5], [2, 6]], [[3, 7], [4, 8]]] """ from sympy.tensor.array import SparseNDimArray if not isinstance(expr, NDimArray): expr = ImmutableDenseNDimArray(expr) from sympy.combinatorics import Permutation if not isinstance(perm, Permutation): perm = Permutation(list(perm)) if perm.size != expr.rank(): raise ValueError("wrong permutation size") # Get the inverse permutation: iperm = ~perm new_shape = perm(expr.shape) if isinstance(expr, SparseNDimArray): return type(expr)({tuple(perm(expr._get_tuple_index(k))): v for k, v in expr._sparse_array.items()}, new_shape) indices_span = perm([range(i) for i in expr.shape]) new_array = [None]*len(expr) for i, idx in enumerate(itertools.product(*indices_span)): t = iperm(idx) new_array[i] = expr[t] return type(expr)(new_array, new_shape) class Flatten(Basic): ''' Flatten an iterable object to a list in a lazy-evaluation way. Notes ===== This class is an iterator with which the memory cost can be economised. Optimisation has been considered to ameliorate the performance for some specific data types like DenseNDimArray and SparseNDimArray. Examples ======== >>> from sympy.tensor.array.arrayop import Flatten >>> from sympy.tensor.array import Array >>> A = Array(range(6)).reshape(2, 3) >>> Flatten(A) Flatten([[0, 1, 2], [3, 4, 5]]) >>> [i for i in Flatten(A)] [0, 1, 2, 3, 4, 5] ''' def __init__(self, iterable): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import NDimArray if not isinstance(iterable, (Iterable, MatrixBase)): raise NotImplementedError("Data type not yet supported") if isinstance(iterable, list): iterable = NDimArray(iterable) self._iter = iterable self._idx = 0 def __iter__(self): return self def __next__(self): from sympy.matrices.matrices import MatrixBase if len(self._iter) > self._idx: if isinstance(self._iter, DenseNDimArray): result = self._iter._array[self._idx] elif isinstance(self._iter, SparseNDimArray): if self._idx in self._iter._sparse_array: result = self._iter._sparse_array[self._idx] else: result = 0 elif isinstance(self._iter, MatrixBase): result = self._iter[self._idx] elif hasattr(self._iter, '__next__'): result = next(self._iter) else: result = self._iter[self._idx] else: raise StopIteration self._idx += 1 return result def next(self): return self.__next__()
f312f872501915c1a3ead50e8c5d048c513aa7b9cc74cfc354b41d224ee8cdba
from sympy import Basic from sympy import S from sympy.core.expr import Expr from sympy.core.numbers import Integer from sympy.core.sympify import sympify from sympy.core.kind import Kind, NumberKind from sympy.core.compatibility import SYMPY_INTS from sympy.printing.defaults import Printable import itertools from collections.abc import Iterable class ArrayKind(Kind): """ Kind for N-dimensional array in SymPy. This kind represents the multidimensional array that algebraic operations are defined. Basic class for this kind is ``NDimArray``, but any expression representing the array can have this. Parameters ========== element_kind : Kind Kind of the element. Default is ``NumberKind``, which means that the array contains only numbers. Examples ======== >>> from sympy import NDimArray >>> NDimArray([1,2,3]).kind ArrayKind(NumberKind) See Also ======== sympy.matrices.MatrixKind : Kind for matrices. """ def __new__(cls, element_kind=NumberKind): obj = super().__new__(cls, element_kind) obj.element_kind = element_kind return obj def __repr__(self): return "ArrayKind(%s)" % self.element_kind class NDimArray(Printable): """ Examples ======== Create an N-dim array of zeros: >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(2, 3, 4) >>> a [[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]] Create an N-dim array from a list; >>> a = MutableDenseNDimArray([[2, 3], [4, 5]]) >>> a [[2, 3], [4, 5]] >>> b = MutableDenseNDimArray([[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]]) >>> b [[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]] Create an N-dim array from a flat list with dimension shape: >>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3)) >>> a [[1, 2, 3], [4, 5, 6]] Create an N-dim array from a matrix: >>> from sympy import Matrix >>> a = Matrix([[1,2],[3,4]]) >>> a Matrix([ [1, 2], [3, 4]]) >>> b = MutableDenseNDimArray(a) >>> b [[1, 2], [3, 4]] Arithmetic operations on N-dim arrays >>> a = MutableDenseNDimArray([1, 1, 1, 1], (2, 2)) >>> b = MutableDenseNDimArray([4, 4, 4, 4], (2, 2)) >>> c = a + b >>> c [[5, 5], [5, 5]] >>> a - b [[-3, -3], [-3, -3]] """ _diff_wrt = True is_scalar = False def __new__(cls, iterable, shape=None, **kwargs): from sympy.tensor.array import ImmutableDenseNDimArray return ImmutableDenseNDimArray(iterable, shape, **kwargs) @property def kind(self): return ArrayKind() def _parse_index(self, index): if isinstance(index, (SYMPY_INTS, Integer)): raise ValueError("Only a tuple index is accepted") if self._loop_size == 0: raise ValueError("Index not valide with an empty array") if len(index) != self._rank: raise ValueError('Wrong number of array axes') real_index = 0 # check if input index can exist in current indexing for i in range(self._rank): if (index[i] >= self.shape[i]) or (index[i] < -self.shape[i]): raise ValueError('Index ' + str(index) + ' out of border') if index[i] < 0: real_index += 1 real_index = real_index*self.shape[i] + index[i] return real_index def _get_tuple_index(self, integer_index): index = [] for i, sh in enumerate(reversed(self.shape)): index.append(integer_index % sh) integer_index //= sh index.reverse() return tuple(index) def _check_symbolic_index(self, index): # Check if any index is symbolic: tuple_index = (index if isinstance(index, tuple) else (index,)) if any([(isinstance(i, Expr) and (not i.is_number)) for i in tuple_index]): for i, nth_dim in zip(tuple_index, self.shape): if ((i < 0) == True) or ((i >= nth_dim) == True): raise ValueError("index out of range") from sympy.tensor import Indexed return Indexed(self, *tuple_index) return None def _setter_iterable_check(self, value): from sympy.matrices.matrices import MatrixBase if isinstance(value, (Iterable, MatrixBase, NDimArray)): raise NotImplementedError @classmethod def _scan_iterable_shape(cls, iterable): def f(pointer): if not isinstance(pointer, Iterable): return [pointer], () result = [] elems, shapes = zip(*[f(i) for i in pointer]) if len(set(shapes)) != 1: raise ValueError("could not determine shape unambiguously") for i in elems: result.extend(i) return result, (len(shapes),)+shapes[0] return f(iterable) @classmethod def _handle_ndarray_creation_inputs(cls, iterable=None, shape=None, **kwargs): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray from sympy import Dict, Tuple if shape is None: if iterable is None: shape = () iterable = () # Construction of a sparse array from a sparse array elif isinstance(iterable, SparseNDimArray): return iterable._shape, iterable._sparse_array # Construct N-dim array from an iterable (numpy arrays included): elif isinstance(iterable, Iterable): iterable, shape = cls._scan_iterable_shape(iterable) # Construct N-dim array from a Matrix: elif isinstance(iterable, MatrixBase): shape = iterable.shape # Construct N-dim array from another N-dim array: elif isinstance(iterable, NDimArray): shape = iterable.shape else: shape = () iterable = (iterable,) if isinstance(iterable, (Dict, dict)) and shape is not None: new_dict = iterable.copy() for k, v in new_dict.items(): if isinstance(k, (tuple, Tuple)): new_key = 0 for i, idx in enumerate(k): new_key = new_key * shape[i] + idx iterable[new_key] = iterable[k] del iterable[k] if isinstance(shape, (SYMPY_INTS, Integer)): shape = (shape,) if any([not isinstance(dim, (SYMPY_INTS, Integer)) for dim in shape]): raise TypeError("Shape should contain integers only.") return tuple(shape), iterable def __len__(self): """Overload common function len(). Returns number of elements in array. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(3, 3) >>> a [[0, 0, 0], [0, 0, 0], [0, 0, 0]] >>> len(a) 9 """ return self._loop_size @property def shape(self): """ Returns array shape (dimension). Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(3, 3) >>> a.shape (3, 3) """ return self._shape def rank(self): """ Returns rank of array. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(3,4,5,6,3) >>> a.rank() 5 """ return self._rank def diff(self, *args, **kwargs): """ Calculate the derivative of each element in the array. Examples ======== >>> from sympy import ImmutableDenseNDimArray >>> from sympy.abc import x, y >>> M = ImmutableDenseNDimArray([[x, y], [1, x*y]]) >>> M.diff(x) [[1, 0], [0, y]] """ from sympy.tensor.array.array_derivatives import ArrayDerivative kwargs.setdefault('evaluate', True) return ArrayDerivative(self.as_immutable(), *args, **kwargs) def _eval_derivative(self, base): # Types are (base: scalar, self: array) return self.applyfunc(lambda x: base.diff(x)) def _eval_derivative_n_times(self, s, n): return Basic._eval_derivative_n_times(self, s, n) def applyfunc(self, f): """Apply a function to each element of the N-dim array. Examples ======== >>> from sympy import ImmutableDenseNDimArray >>> m = ImmutableDenseNDimArray([i*2+j for i in range(2) for j in range(2)], (2, 2)) >>> m [[0, 1], [2, 3]] >>> m.applyfunc(lambda i: 2*i) [[0, 2], [4, 6]] """ from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(self, SparseNDimArray) and f(S.Zero) == 0: return type(self)({k: f(v) for k, v in self._sparse_array.items() if f(v) != 0}, self.shape) return type(self)(map(f, Flatten(self)), self.shape) def _sympystr(self, printer): def f(sh, shape_left, i, j): if len(shape_left) == 1: return "["+", ".join([printer._print(self[self._get_tuple_index(e)]) for e in range(i, j)])+"]" sh //= shape_left[0] return "[" + ", ".join([f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh) for e in range(shape_left[0])]) + "]" # + "\n"*len(shape_left) if self.rank() == 0: return printer._print(self[()]) return f(self._loop_size, self.shape, 0, self._loop_size) def tolist(self): """ Converting MutableDenseNDimArray to one-dim list Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray([1, 2, 3, 4], (2, 2)) >>> a [[1, 2], [3, 4]] >>> b = a.tolist() >>> b [[1, 2], [3, 4]] """ def f(sh, shape_left, i, j): if len(shape_left) == 1: return [self[self._get_tuple_index(e)] for e in range(i, j)] result = [] sh //= shape_left[0] for e in range(shape_left[0]): result.append(f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh)) return result return f(self._loop_size, self.shape, 0, self._loop_size) def __add__(self, other): from sympy.tensor.array.arrayop import Flatten if not isinstance(other, NDimArray): return NotImplemented if self.shape != other.shape: raise ValueError("array shape mismatch") result_list = [i+j for i,j in zip(Flatten(self), Flatten(other))] return type(self)(result_list, self.shape) def __sub__(self, other): from sympy.tensor.array.arrayop import Flatten if not isinstance(other, NDimArray): return NotImplemented if self.shape != other.shape: raise ValueError("array shape mismatch") result_list = [i-j for i,j in zip(Flatten(self), Flatten(other))] return type(self)(result_list, self.shape) def __mul__(self, other): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(other, (Iterable, NDimArray, MatrixBase)): raise ValueError("scalar expected, use tensorproduct(...) for tensorial product") other = sympify(other) if isinstance(self, SparseNDimArray): if other.is_zero: return type(self)({}, self.shape) return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape) result_list = [i*other for i in Flatten(self)] return type(self)(result_list, self.shape) def __rmul__(self, other): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(other, (Iterable, NDimArray, MatrixBase)): raise ValueError("scalar expected, use tensorproduct(...) for tensorial product") other = sympify(other) if isinstance(self, SparseNDimArray): if other.is_zero: return type(self)({}, self.shape) return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape) result_list = [other*i for i in Flatten(self)] return type(self)(result_list, self.shape) def __truediv__(self, other): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(other, (Iterable, NDimArray, MatrixBase)): raise ValueError("scalar expected") other = sympify(other) if isinstance(self, SparseNDimArray) and other != S.Zero: return type(self)({k: v/other for (k, v) in self._sparse_array.items()}, self.shape) result_list = [i/other for i in Flatten(self)] return type(self)(result_list, self.shape) def __rtruediv__(self, other): raise NotImplementedError('unsupported operation on NDimArray') def __neg__(self): from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(self, SparseNDimArray): return type(self)({k: -v for (k, v) in self._sparse_array.items()}, self.shape) result_list = [-i for i in Flatten(self)] return type(self)(result_list, self.shape) def __iter__(self): def iterator(): if self._shape: for i in range(self._shape[0]): yield self[i] else: yield self[()] return iterator() def __eq__(self, other): """ NDimArray instances can be compared to each other. Instances equal if they have same shape and data. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(2, 3) >>> b = MutableDenseNDimArray.zeros(2, 3) >>> a == b True >>> c = a.reshape(3, 2) >>> c == b False >>> a[0,0] = 1 >>> b[0,0] = 2 >>> a == b False """ from sympy.tensor.array import SparseNDimArray if not isinstance(other, NDimArray): return False if not self.shape == other.shape: return False if isinstance(self, SparseNDimArray) and isinstance(other, SparseNDimArray): return dict(self._sparse_array) == dict(other._sparse_array) return list(self) == list(other) def __ne__(self, other): return not self == other def _eval_transpose(self): if self.rank() != 2: raise ValueError("array rank not 2") from .arrayop import permutedims return permutedims(self, (1, 0)) def transpose(self): return self._eval_transpose() def _eval_conjugate(self): from sympy.tensor.array.arrayop import Flatten return self.func([i.conjugate() for i in Flatten(self)], self.shape) def conjugate(self): return self._eval_conjugate() def _eval_adjoint(self): return self.transpose().conjugate() def adjoint(self): return self._eval_adjoint() def _slice_expand(self, s, dim): if not isinstance(s, slice): return (s,) start, stop, step = s.indices(dim) return [start + i*step for i in range((stop-start)//step)] def _get_slice_data_for_array_access(self, index): sl_factors = [self._slice_expand(i, dim) for (i, dim) in zip(index, self.shape)] eindices = itertools.product(*sl_factors) return sl_factors, eindices def _get_slice_data_for_array_assignment(self, index, value): if not isinstance(value, NDimArray): value = type(self)(value) sl_factors, eindices = self._get_slice_data_for_array_access(index) slice_offsets = [min(i) if isinstance(i, list) else None for i in sl_factors] # TODO: add checks for dimensions for `value`? return value, eindices, slice_offsets @classmethod def _check_special_bounds(cls, flat_list, shape): if shape == () and len(flat_list) != 1: raise ValueError("arrays without shape need one scalar value") if shape == (0,) and len(flat_list) > 0: raise ValueError("if array shape is (0,) there cannot be elements") def _check_index_for_getitem(self, index): if isinstance(index, (SYMPY_INTS, Integer, slice)): index = (index, ) if len(index) < self.rank(): index = tuple([i for i in index] + \ [slice(None) for i in range(len(index), self.rank())]) if len(index) > self.rank(): raise ValueError('Dimension of index greater than rank of array') return index class ImmutableNDimArray(NDimArray, Basic): _op_priority = 11.0 def __hash__(self): return Basic.__hash__(self) def as_immutable(self): return self def as_mutable(self): raise NotImplementedError("abstract method")
3e5ad560fd9d934ee4ff1961b9778427c79cc58a8d86aa7dc0757609c592de05
import random from sympy.combinatorics import Permutation from sympy.combinatorics.permutations import _af_invert from sympy.testing.pytest import raises from sympy import symbols, sin, exp, log, cos, transpose, adjoint, conjugate, diff from sympy.tensor.array import Array, ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableSparseNDimArray from sympy.tensor.array.arrayop import tensorproduct, tensorcontraction, derive_by_array, permutedims, Flatten, \ tensordiagonal def test_import_NDimArray(): from sympy.tensor.array import NDimArray del NDimArray def test_tensorproduct(): x,y,z,t = symbols('x y z t') from sympy.abc import a,b,c,d assert tensorproduct() == 1 assert tensorproduct([x]) == Array([x]) assert tensorproduct([x], [y]) == Array([[x*y]]) assert tensorproduct([x], [y], [z]) == Array([[[x*y*z]]]) assert tensorproduct([x], [y], [z], [t]) == Array([[[[x*y*z*t]]]]) assert tensorproduct(x) == x assert tensorproduct(x, y) == x*y assert tensorproduct(x, y, z) == x*y*z assert tensorproduct(x, y, z, t) == x*y*z*t for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]: A = ArrayType([x, y]) B = ArrayType([1, 2, 3]) C = ArrayType([a, b, c, d]) assert tensorproduct(A, B, C) == ArrayType([[[a*x, b*x, c*x, d*x], [2*a*x, 2*b*x, 2*c*x, 2*d*x], [3*a*x, 3*b*x, 3*c*x, 3*d*x]], [[a*y, b*y, c*y, d*y], [2*a*y, 2*b*y, 2*c*y, 2*d*y], [3*a*y, 3*b*y, 3*c*y, 3*d*y]]]) assert tensorproduct([x, y], [1, 2, 3]) == tensorproduct(A, B) assert tensorproduct(A, 2) == ArrayType([2*x, 2*y]) assert tensorproduct(A, [2]) == ArrayType([[2*x], [2*y]]) assert tensorproduct([2], A) == ArrayType([[2*x, 2*y]]) assert tensorproduct(a, A) == ArrayType([a*x, a*y]) assert tensorproduct(a, A, B) == ArrayType([[a*x, 2*a*x, 3*a*x], [a*y, 2*a*y, 3*a*y]]) assert tensorproduct(A, B, a) == ArrayType([[a*x, 2*a*x, 3*a*x], [a*y, 2*a*y, 3*a*y]]) assert tensorproduct(B, a, A) == ArrayType([[a*x, a*y], [2*a*x, 2*a*y], [3*a*x, 3*a*y]]) # tests for large scale sparse array for SparseArrayType in [ImmutableSparseNDimArray, MutableSparseNDimArray]: a = SparseArrayType({1:2, 3:4},(1000, 2000)) b = SparseArrayType({1:2, 3:4},(1000, 2000)) assert tensorproduct(a, b) == ImmutableSparseNDimArray({2000001: 4, 2000003: 8, 6000001: 8, 6000003: 16}, (1000, 2000, 1000, 2000)) def test_tensorcontraction(): from sympy.abc import a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x B = Array(range(18), (2, 3, 3)) assert tensorcontraction(B, (1, 2)) == Array([12, 39]) C1 = Array([a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x], (2, 3, 2, 2)) assert tensorcontraction(C1, (0, 2)) == Array([[a + o, b + p], [e + s, f + t], [i + w, j + x]]) assert tensorcontraction(C1, (0, 2, 3)) == Array([a + p, e + t, i + x]) assert tensorcontraction(C1, (2, 3)) == Array([[a + d, e + h, i + l], [m + p, q + t, u + x]]) def test_derivative_by_array(): from sympy.abc import i, j, t, x, y, z bexpr = x*y**2*exp(z)*log(t) sexpr = sin(bexpr) cexpr = cos(bexpr) a = Array([sexpr]) assert derive_by_array(sexpr, t) == x*y**2*exp(z)*cos(x*y**2*exp(z)*log(t))/t assert derive_by_array(sexpr, [x, y, z]) == Array([bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr, bexpr*cexpr]) assert derive_by_array(a, [x, y, z]) == Array([[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr], [bexpr*cexpr]]) assert derive_by_array(sexpr, [[x, y], [z, t]]) == Array([[bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr], [bexpr*cexpr, bexpr/log(t)/t*cexpr]]) assert derive_by_array(a, [[x, y], [z, t]]) == Array([[[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr]], [[bexpr*cexpr], [bexpr/log(t)/t*cexpr]]]) assert derive_by_array([[x, y], [z, t]], [x, y]) == Array([[[1, 0], [0, 0]], [[0, 1], [0, 0]]]) assert derive_by_array([[x, y], [z, t]], [[x, y], [z, t]]) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) assert diff(sexpr, t) == x*y**2*exp(z)*cos(x*y**2*exp(z)*log(t))/t assert diff(sexpr, Array([x, y, z])) == Array([bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr, bexpr*cexpr]) assert diff(a, Array([x, y, z])) == Array([[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr], [bexpr*cexpr]]) assert diff(sexpr, Array([[x, y], [z, t]])) == Array([[bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr], [bexpr*cexpr, bexpr/log(t)/t*cexpr]]) assert diff(a, Array([[x, y], [z, t]])) == Array([[[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr]], [[bexpr*cexpr], [bexpr/log(t)/t*cexpr]]]) assert diff(Array([[x, y], [z, t]]), Array([x, y])) == Array([[[1, 0], [0, 0]], [[0, 1], [0, 0]]]) assert diff(Array([[x, y], [z, t]]), Array([[x, y], [z, t]])) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) # test for large scale sparse array for SparseArrayType in [ImmutableSparseNDimArray, MutableSparseNDimArray]: b = MutableSparseNDimArray({0:i, 1:j}, (10000, 20000)) assert derive_by_array(b, i) == ImmutableSparseNDimArray({0: 1}, (10000, 20000)) assert derive_by_array(b, (i, j)) == ImmutableSparseNDimArray({0: 1, 200000001: 1}, (2, 10000, 20000)) #https://github.com/sympy/sympy/issues/20655 U = Array([x, y, z]) E = 2 assert derive_by_array(E, U) == ImmutableDenseNDimArray([0, 0, 0]) def test_issue_emerged_while_discussing_10972(): ua = Array([-1,0]) Fa = Array([[0, 1], [-1, 0]]) po = tensorproduct(Fa, ua, Fa, ua) assert tensorcontraction(po, (1, 2), (4, 5)) == Array([[0, 0], [0, 1]]) sa = symbols('a0:144') po = Array(sa, [2, 2, 3, 3, 2, 2]) assert tensorcontraction(po, (0, 1), (2, 3), (4, 5)) == sa[0] + sa[108] + sa[111] + sa[124] + sa[127] + sa[140] + sa[143] + sa[16] + sa[19] + sa[3] + sa[32] + sa[35] assert tensorcontraction(po, (0, 1, 4, 5), (2, 3)) == sa[0] + sa[111] + sa[127] + sa[143] + sa[16] + sa[32] assert tensorcontraction(po, (0, 1), (4, 5)) == Array([[sa[0] + sa[108] + sa[111] + sa[3], sa[112] + sa[115] + sa[4] + sa[7], sa[11] + sa[116] + sa[119] + sa[8]], [sa[12] + sa[120] + sa[123] + sa[15], sa[124] + sa[127] + sa[16] + sa[19], sa[128] + sa[131] + sa[20] + sa[23]], [sa[132] + sa[135] + sa[24] + sa[27], sa[136] + sa[139] + sa[28] + sa[31], sa[140] + sa[143] + sa[32] + sa[35]]]) assert tensorcontraction(po, (0, 1), (2, 3)) == Array([[sa[0] + sa[108] + sa[124] + sa[140] + sa[16] + sa[32], sa[1] + sa[109] + sa[125] + sa[141] + sa[17] + sa[33]], [sa[110] + sa[126] + sa[142] + sa[18] + sa[2] + sa[34], sa[111] + sa[127] + sa[143] + sa[19] + sa[3] + sa[35]]]) def test_array_permutedims(): sa = symbols('a0:144') for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]: m1 = ArrayType(sa[:6], (2, 3)) assert permutedims(m1, (1, 0)) == transpose(m1) assert m1.tomatrix().T == permutedims(m1, (1, 0)).tomatrix() assert m1.tomatrix().T == transpose(m1).tomatrix() assert m1.tomatrix().C == conjugate(m1).tomatrix() assert m1.tomatrix().H == adjoint(m1).tomatrix() assert m1.tomatrix().T == m1.transpose().tomatrix() assert m1.tomatrix().C == m1.conjugate().tomatrix() assert m1.tomatrix().H == m1.adjoint().tomatrix() raises(ValueError, lambda: permutedims(m1, (0,))) raises(ValueError, lambda: permutedims(m1, (0, 0))) raises(ValueError, lambda: permutedims(m1, (1, 2, 0))) # Some tests with random arrays: dims = 6 shape = [random.randint(1,5) for i in range(dims)] elems = [random.random() for i in range(tensorproduct(*shape))] ra = ArrayType(elems, shape) perm = list(range(dims)) # Randomize the permutation: random.shuffle(perm) # Test inverse permutation: assert permutedims(permutedims(ra, perm), _af_invert(perm)) == ra # Test that permuted shape corresponds to action by `Permutation`: assert permutedims(ra, perm).shape == tuple(Permutation(perm)(shape)) z = ArrayType.zeros(4,5,6,7) assert permutedims(z, (2, 3, 1, 0)).shape == (6, 7, 5, 4) assert permutedims(z, [2, 3, 1, 0]).shape == (6, 7, 5, 4) assert permutedims(z, Permutation([2, 3, 1, 0])).shape == (6, 7, 5, 4) po = ArrayType(sa, [2, 2, 3, 3, 2, 2]) raises(ValueError, lambda: permutedims(po, (1, 1))) raises(ValueError, lambda: po.transpose()) raises(ValueError, lambda: po.adjoint()) assert permutedims(po, reversed(range(po.rank()))) == ArrayType( [[[[[[sa[0], sa[72]], [sa[36], sa[108]]], [[sa[12], sa[84]], [sa[48], sa[120]]], [[sa[24], sa[96]], [sa[60], sa[132]]]], [[[sa[4], sa[76]], [sa[40], sa[112]]], [[sa[16], sa[88]], [sa[52], sa[124]]], [[sa[28], sa[100]], [sa[64], sa[136]]]], [[[sa[8], sa[80]], [sa[44], sa[116]]], [[sa[20], sa[92]], [sa[56], sa[128]]], [[sa[32], sa[104]], [sa[68], sa[140]]]]], [[[[sa[2], sa[74]], [sa[38], sa[110]]], [[sa[14], sa[86]], [sa[50], sa[122]]], [[sa[26], sa[98]], [sa[62], sa[134]]]], [[[sa[6], sa[78]], [sa[42], sa[114]]], [[sa[18], sa[90]], [sa[54], sa[126]]], [[sa[30], sa[102]], [sa[66], sa[138]]]], [[[sa[10], sa[82]], [sa[46], sa[118]]], [[sa[22], sa[94]], [sa[58], sa[130]]], [[sa[34], sa[106]], [sa[70], sa[142]]]]]], [[[[[sa[1], sa[73]], [sa[37], sa[109]]], [[sa[13], sa[85]], [sa[49], sa[121]]], [[sa[25], sa[97]], [sa[61], sa[133]]]], [[[sa[5], sa[77]], [sa[41], sa[113]]], [[sa[17], sa[89]], [sa[53], sa[125]]], [[sa[29], sa[101]], [sa[65], sa[137]]]], [[[sa[9], sa[81]], [sa[45], sa[117]]], [[sa[21], sa[93]], [sa[57], sa[129]]], [[sa[33], sa[105]], [sa[69], sa[141]]]]], [[[[sa[3], sa[75]], [sa[39], sa[111]]], [[sa[15], sa[87]], [sa[51], sa[123]]], [[sa[27], sa[99]], [sa[63], sa[135]]]], [[[sa[7], sa[79]], [sa[43], sa[115]]], [[sa[19], sa[91]], [sa[55], sa[127]]], [[sa[31], sa[103]], [sa[67], sa[139]]]], [[[sa[11], sa[83]], [sa[47], sa[119]]], [[sa[23], sa[95]], [sa[59], sa[131]]], [[sa[35], sa[107]], [sa[71], sa[143]]]]]]]) assert permutedims(po, (1, 0, 2, 3, 4, 5)) == ArrayType( [[[[[[sa[0], sa[1]], [sa[2], sa[3]]], [[sa[4], sa[5]], [sa[6], sa[7]]], [[sa[8], sa[9]], [sa[10], sa[11]]]], [[[sa[12], sa[13]], [sa[14], sa[15]]], [[sa[16], sa[17]], [sa[18], sa[19]]], [[sa[20], sa[21]], [sa[22], sa[23]]]], [[[sa[24], sa[25]], [sa[26], sa[27]]], [[sa[28], sa[29]], [sa[30], sa[31]]], [[sa[32], sa[33]], [sa[34], sa[35]]]]], [[[[sa[72], sa[73]], [sa[74], sa[75]]], [[sa[76], sa[77]], [sa[78], sa[79]]], [[sa[80], sa[81]], [sa[82], sa[83]]]], [[[sa[84], sa[85]], [sa[86], sa[87]]], [[sa[88], sa[89]], [sa[90], sa[91]]], [[sa[92], sa[93]], [sa[94], sa[95]]]], [[[sa[96], sa[97]], [sa[98], sa[99]]], [[sa[100], sa[101]], [sa[102], sa[103]]], [[sa[104], sa[105]], [sa[106], sa[107]]]]]], [[[[[sa[36], sa[37]], [sa[38], sa[39]]], [[sa[40], sa[41]], [sa[42], sa[43]]], [[sa[44], sa[45]], [sa[46], sa[47]]]], [[[sa[48], sa[49]], [sa[50], sa[51]]], [[sa[52], sa[53]], [sa[54], sa[55]]], [[sa[56], sa[57]], [sa[58], sa[59]]]], [[[sa[60], sa[61]], [sa[62], sa[63]]], [[sa[64], sa[65]], [sa[66], sa[67]]], [[sa[68], sa[69]], [sa[70], sa[71]]]]], [ [[[sa[108], sa[109]], [sa[110], sa[111]]], [[sa[112], sa[113]], [sa[114], sa[115]]], [[sa[116], sa[117]], [sa[118], sa[119]]]], [[[sa[120], sa[121]], [sa[122], sa[123]]], [[sa[124], sa[125]], [sa[126], sa[127]]], [[sa[128], sa[129]], [sa[130], sa[131]]]], [[[sa[132], sa[133]], [sa[134], sa[135]]], [[sa[136], sa[137]], [sa[138], sa[139]]], [[sa[140], sa[141]], [sa[142], sa[143]]]]]]]) assert permutedims(po, (0, 2, 1, 4, 3, 5)) == ArrayType( [[[[[[sa[0], sa[1]], [sa[4], sa[5]], [sa[8], sa[9]]], [[sa[2], sa[3]], [sa[6], sa[7]], [sa[10], sa[11]]]], [[[sa[36], sa[37]], [sa[40], sa[41]], [sa[44], sa[45]]], [[sa[38], sa[39]], [sa[42], sa[43]], [sa[46], sa[47]]]]], [[[[sa[12], sa[13]], [sa[16], sa[17]], [sa[20], sa[21]]], [[sa[14], sa[15]], [sa[18], sa[19]], [sa[22], sa[23]]]], [[[sa[48], sa[49]], [sa[52], sa[53]], [sa[56], sa[57]]], [[sa[50], sa[51]], [sa[54], sa[55]], [sa[58], sa[59]]]]], [[[[sa[24], sa[25]], [sa[28], sa[29]], [sa[32], sa[33]]], [[sa[26], sa[27]], [sa[30], sa[31]], [sa[34], sa[35]]]], [[[sa[60], sa[61]], [sa[64], sa[65]], [sa[68], sa[69]]], [[sa[62], sa[63]], [sa[66], sa[67]], [sa[70], sa[71]]]]]], [[[[[sa[72], sa[73]], [sa[76], sa[77]], [sa[80], sa[81]]], [[sa[74], sa[75]], [sa[78], sa[79]], [sa[82], sa[83]]]], [[[sa[108], sa[109]], [sa[112], sa[113]], [sa[116], sa[117]]], [[sa[110], sa[111]], [sa[114], sa[115]], [sa[118], sa[119]]]]], [[[[sa[84], sa[85]], [sa[88], sa[89]], [sa[92], sa[93]]], [[sa[86], sa[87]], [sa[90], sa[91]], [sa[94], sa[95]]]], [[[sa[120], sa[121]], [sa[124], sa[125]], [sa[128], sa[129]]], [[sa[122], sa[123]], [sa[126], sa[127]], [sa[130], sa[131]]]]], [[[[sa[96], sa[97]], [sa[100], sa[101]], [sa[104], sa[105]]], [[sa[98], sa[99]], [sa[102], sa[103]], [sa[106], sa[107]]]], [[[sa[132], sa[133]], [sa[136], sa[137]], [sa[140], sa[141]]], [[sa[134], sa[135]], [sa[138], sa[139]], [sa[142], sa[143]]]]]]]) po2 = po.reshape(4, 9, 2, 2) assert po2 == ArrayType([[[[sa[0], sa[1]], [sa[2], sa[3]]], [[sa[4], sa[5]], [sa[6], sa[7]]], [[sa[8], sa[9]], [sa[10], sa[11]]], [[sa[12], sa[13]], [sa[14], sa[15]]], [[sa[16], sa[17]], [sa[18], sa[19]]], [[sa[20], sa[21]], [sa[22], sa[23]]], [[sa[24], sa[25]], [sa[26], sa[27]]], [[sa[28], sa[29]], [sa[30], sa[31]]], [[sa[32], sa[33]], [sa[34], sa[35]]]], [[[sa[36], sa[37]], [sa[38], sa[39]]], [[sa[40], sa[41]], [sa[42], sa[43]]], [[sa[44], sa[45]], [sa[46], sa[47]]], [[sa[48], sa[49]], [sa[50], sa[51]]], [[sa[52], sa[53]], [sa[54], sa[55]]], [[sa[56], sa[57]], [sa[58], sa[59]]], [[sa[60], sa[61]], [sa[62], sa[63]]], [[sa[64], sa[65]], [sa[66], sa[67]]], [[sa[68], sa[69]], [sa[70], sa[71]]]], [[[sa[72], sa[73]], [sa[74], sa[75]]], [[sa[76], sa[77]], [sa[78], sa[79]]], [[sa[80], sa[81]], [sa[82], sa[83]]], [[sa[84], sa[85]], [sa[86], sa[87]]], [[sa[88], sa[89]], [sa[90], sa[91]]], [[sa[92], sa[93]], [sa[94], sa[95]]], [[sa[96], sa[97]], [sa[98], sa[99]]], [[sa[100], sa[101]], [sa[102], sa[103]]], [[sa[104], sa[105]], [sa[106], sa[107]]]], [[[sa[108], sa[109]], [sa[110], sa[111]]], [[sa[112], sa[113]], [sa[114], sa[115]]], [[sa[116], sa[117]], [sa[118], sa[119]]], [[sa[120], sa[121]], [sa[122], sa[123]]], [[sa[124], sa[125]], [sa[126], sa[127]]], [[sa[128], sa[129]], [sa[130], sa[131]]], [[sa[132], sa[133]], [sa[134], sa[135]]], [[sa[136], sa[137]], [sa[138], sa[139]]], [[sa[140], sa[141]], [sa[142], sa[143]]]]]) assert permutedims(po2, (3, 2, 0, 1)) == ArrayType([[[[sa[0], sa[4], sa[8], sa[12], sa[16], sa[20], sa[24], sa[28], sa[32]], [sa[36], sa[40], sa[44], sa[48], sa[52], sa[56], sa[60], sa[64], sa[68]], [sa[72], sa[76], sa[80], sa[84], sa[88], sa[92], sa[96], sa[100], sa[104]], [sa[108], sa[112], sa[116], sa[120], sa[124], sa[128], sa[132], sa[136], sa[140]]], [[sa[2], sa[6], sa[10], sa[14], sa[18], sa[22], sa[26], sa[30], sa[34]], [sa[38], sa[42], sa[46], sa[50], sa[54], sa[58], sa[62], sa[66], sa[70]], [sa[74], sa[78], sa[82], sa[86], sa[90], sa[94], sa[98], sa[102], sa[106]], [sa[110], sa[114], sa[118], sa[122], sa[126], sa[130], sa[134], sa[138], sa[142]]]], [[[sa[1], sa[5], sa[9], sa[13], sa[17], sa[21], sa[25], sa[29], sa[33]], [sa[37], sa[41], sa[45], sa[49], sa[53], sa[57], sa[61], sa[65], sa[69]], [sa[73], sa[77], sa[81], sa[85], sa[89], sa[93], sa[97], sa[101], sa[105]], [sa[109], sa[113], sa[117], sa[121], sa[125], sa[129], sa[133], sa[137], sa[141]]], [[sa[3], sa[7], sa[11], sa[15], sa[19], sa[23], sa[27], sa[31], sa[35]], [sa[39], sa[43], sa[47], sa[51], sa[55], sa[59], sa[63], sa[67], sa[71]], [sa[75], sa[79], sa[83], sa[87], sa[91], sa[95], sa[99], sa[103], sa[107]], [sa[111], sa[115], sa[119], sa[123], sa[127], sa[131], sa[135], sa[139], sa[143]]]]]) # test for large scale sparse array for SparseArrayType in [ImmutableSparseNDimArray, MutableSparseNDimArray]: A = SparseArrayType({1:1, 10000:2}, (10000, 20000, 10000)) assert permutedims(A, (0, 1, 2)) == A assert permutedims(A, (1, 0, 2)) == SparseArrayType({1: 1, 100000000: 2}, (20000, 10000, 10000)) B = SparseArrayType({1:1, 20000:2}, (10000, 20000)) assert B.transpose() == SparseArrayType({10000: 1, 1: 2}, (20000, 10000)) def test_flatten(): from sympy import Matrix for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray, Matrix]: A = ArrayType(range(24)).reshape(4, 6) assert [i for i in Flatten(A)] == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] for i, v in enumerate(Flatten(A)): i == v def test_tensordiagonal(): from sympy import eye expr = Array(range(9)).reshape(3, 3) raises(ValueError, lambda: tensordiagonal(expr, [0], [1])) assert tensordiagonal(eye(3), [0, 1]) == Array([1, 1, 1]) assert tensordiagonal(expr, [0, 1]) == Array([0, 4, 8]) x, y, z = symbols("x y z") expr2 = tensorproduct([x, y, z], expr) assert tensordiagonal(expr2, [1, 2]) == Array([[0, 4*x, 8*x], [0, 4*y, 8*y], [0, 4*z, 8*z]]) assert tensordiagonal(expr2, [0, 1]) == Array([[0, 3*y, 6*z], [x, 4*y, 7*z], [2*x, 5*y, 8*z]]) assert tensordiagonal(expr2, [0, 1, 2]) == Array([0, 4*y, 8*z]) # assert tensordiagonal(expr2, [0]) == permutedims(expr2, [1, 2, 0]) # assert tensordiagonal(expr2, [1]) == permutedims(expr2, [0, 2, 1]) # assert tensordiagonal(expr2, [2]) == expr2 # assert tensordiagonal(expr2, [1], [2]) == expr2 # assert tensordiagonal(expr2, [0], [1]) == permutedims(expr2, [2, 0, 1]) a, b, c, X, Y, Z = symbols("a b c X Y Z") expr3 = tensorproduct([x, y, z], [1, 2, 3], [a, b, c], [X, Y, Z]) assert tensordiagonal(expr3, [0, 1, 2, 3]) == Array([x*a*X, 2*y*b*Y, 3*z*c*Z]) assert tensordiagonal(expr3, [0, 1], [2, 3]) == tensorproduct([x, 2*y, 3*z], [a*X, b*Y, c*Z]) # assert tensordiagonal(expr3, [0], [1, 2], [3]) == tensorproduct([x, y, z], [a, 2*b, 3*c], [X, Y, Z]) assert tensordiagonal(tensordiagonal(expr3, [2, 3]), [0, 1]) == tensorproduct([a*X, b*Y, c*Z], [x, 2*y, 3*z]) raises(ValueError, lambda: tensordiagonal([[1, 2, 3], [4, 5, 6]], [0, 1])) raises(ValueError, lambda: tensordiagonal(expr3.reshape(3, 3, 9), [1, 2]))
dad013e9bfdff1be982340eefc1ba1f5dd64411dfacc06746c89329b6960e78d
from typing import Tuple as tTuple from sympy.core.logic import FuzzyBool from functools import wraps, reduce import collections from sympy.core import S, Symbol, Integer, Basic, Expr, Mul, Add from sympy.core.decorators import call_highest_priority from sympy.core.compatibility import SYMPY_INTS, default_sort_key from sympy.core.symbol import Str from sympy.core.sympify import SympifyError, _sympify from sympy.functions import conjugate, adjoint from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.matrices.common import NonSquareMatrixError from sympy.simplify import simplify from sympy.matrices.matrices import MatrixKind from sympy.utilities.misc import filldedent from sympy.multipledispatch import dispatch def _sympifyit(arg, retval=None): # This version of _sympifyit sympifies MutableMatrix objects def deco(func): @wraps(func) def __sympifyit_wrapper(a, b): try: b = _sympify(b) return func(a, b) except SympifyError: return retval return __sympifyit_wrapper return deco class MatrixExpr(Expr): """Superclass for Matrix Expressions MatrixExprs represent abstract matrices, linear transformations represented within a particular basis. Examples ======== >>> from sympy import MatrixSymbol >>> A = MatrixSymbol('A', 3, 3) >>> y = MatrixSymbol('y', 3, 1) >>> x = (A.T*A).I * A * y See Also ======== MatrixSymbol, MatAdd, MatMul, Transpose, Inverse """ # Should not be considered iterable by the # sympy.core.compatibility.iterable function. Subclass that actually are # iterable (i.e., explicit matrices) should set this to True. _iterable = False _op_priority = 11.0 is_Matrix = True # type: bool is_MatrixExpr = True # type: bool is_Identity = None # type: FuzzyBool is_Inverse = False is_Transpose = False is_ZeroMatrix = False is_MatAdd = False is_MatMul = False is_commutative = False is_number = False is_symbol = False is_scalar = False kind = MatrixKind() def __new__(cls, *args, **kwargs): args = map(_sympify, args) return Basic.__new__(cls, *args, **kwargs) # The following is adapted from the core Expr object @property def shape(self) -> tTuple[Expr, Expr]: raise NotImplementedError @property def _add_handler(self): return MatAdd @property def _mul_handler(self): return MatMul def __neg__(self): return MatMul(S.NegativeOne, self).doit() def __abs__(self): raise NotImplementedError @_sympifyit('other', NotImplemented) @call_highest_priority('__radd__') def __add__(self, other): return MatAdd(self, other, check=True).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__add__') def __radd__(self, other): return MatAdd(other, self, check=True).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__rsub__') def __sub__(self, other): return MatAdd(self, -other, check=True).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__sub__') def __rsub__(self, other): return MatAdd(other, -self, check=True).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__rmul__') def __mul__(self, other): return MatMul(self, other).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__rmul__') def __matmul__(self, other): return MatMul(self, other).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__mul__') def __rmul__(self, other): return MatMul(other, self).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__mul__') def __rmatmul__(self, other): return MatMul(other, self).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__rpow__') def __pow__(self, other): return MatPow(self, other).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__pow__') def __rpow__(self, other): raise NotImplementedError("Matrix Power not defined") @_sympifyit('other', NotImplemented) @call_highest_priority('__rtruediv__') def __truediv__(self, other): return self * other**S.NegativeOne @_sympifyit('other', NotImplemented) @call_highest_priority('__truediv__') def __rtruediv__(self, other): raise NotImplementedError() #return MatMul(other, Pow(self, S.NegativeOne)) @property def rows(self): return self.shape[0] @property def cols(self): return self.shape[1] @property def is_square(self): return self.rows == self.cols def _eval_conjugate(self): from sympy.matrices.expressions.adjoint import Adjoint from sympy.matrices.expressions.transpose import Transpose return Adjoint(Transpose(self)) def as_real_imag(self, deep=True, **hints): from sympy import I real = S.Half * (self + self._eval_conjugate()) im = (self - self._eval_conjugate())/(2*I) return (real, im) def _eval_inverse(self): from sympy.matrices.expressions.inverse import Inverse return Inverse(self) def _eval_transpose(self): return Transpose(self) def _eval_power(self, exp): """ Override this in sub-classes to implement simplification of powers. The cases where the exponent is -1, 0, 1 are already covered in MatPow.doit(), so implementations can exclude these cases. """ return MatPow(self, exp) def _eval_simplify(self, **kwargs): if self.is_Atom: return self else: return self.func(*[simplify(x, **kwargs) for x in self.args]) def _eval_adjoint(self): from sympy.matrices.expressions.adjoint import Adjoint return Adjoint(self) def _eval_derivative_n_times(self, x, n): return Basic._eval_derivative_n_times(self, x, n) def _eval_derivative(self, x): # `x` is a scalar: if self.has(x): # See if there are other methods using it: return super()._eval_derivative(x) else: return ZeroMatrix(*self.shape) @classmethod def _check_dim(cls, dim): """Helper function to check invalid matrix dimensions""" from sympy.core.assumptions import check_assumptions ok = check_assumptions(dim, integer=True, nonnegative=True) if ok is False: raise ValueError( "The dimension specification {} should be " "a nonnegative integer.".format(dim)) def _entry(self, i, j, **kwargs): raise NotImplementedError( "Indexing not implemented for %s" % self.__class__.__name__) def adjoint(self): return adjoint(self) def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return S.One, self def conjugate(self): return conjugate(self) def transpose(self): from sympy.matrices.expressions.transpose import transpose return transpose(self) @property def T(self): '''Matrix transposition''' return self.transpose() def inverse(self): if not self.is_square: raise NonSquareMatrixError('Inverse of non-square matrix') return self._eval_inverse() def inv(self): return self.inverse() @property def I(self): return self.inverse() def valid_index(self, i, j): def is_valid(idx): return isinstance(idx, (int, Integer, Symbol, Expr)) return (is_valid(i) and is_valid(j) and (self.rows is None or (0 <= i) != False and (i < self.rows) != False) and (0 <= j) != False and (j < self.cols) != False) def __getitem__(self, key): if not isinstance(key, tuple) and isinstance(key, slice): from sympy.matrices.expressions.slice import MatrixSlice return MatrixSlice(self, key, (0, None, 1)) if isinstance(key, tuple) and len(key) == 2: i, j = key if isinstance(i, slice) or isinstance(j, slice): from sympy.matrices.expressions.slice import MatrixSlice return MatrixSlice(self, i, j) i, j = _sympify(i), _sympify(j) if self.valid_index(i, j) != False: return self._entry(i, j) else: raise IndexError("Invalid indices (%s, %s)" % (i, j)) elif isinstance(key, (SYMPY_INTS, Integer)): # row-wise decomposition of matrix rows, cols = self.shape # allow single indexing if number of columns is known if not isinstance(cols, Integer): raise IndexError(filldedent(''' Single indexing is only supported when the number of columns is known.''')) key = _sympify(key) i = key // cols j = key % cols if self.valid_index(i, j) != False: return self._entry(i, j) else: raise IndexError("Invalid index %s" % key) elif isinstance(key, (Symbol, Expr)): raise IndexError(filldedent(''' Only integers may be used when addressing the matrix with a single index.''')) raise IndexError("Invalid index, wanted %s[i,j]" % self) def as_explicit(self): """ Returns a dense Matrix with elements represented explicitly Returns an object of type ImmutableDenseMatrix. Examples ======== >>> from sympy import Identity >>> I = Identity(3) >>> I I >>> I.as_explicit() Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) See Also ======== as_mutable: returns mutable Matrix type """ if (not isinstance(self.rows, (SYMPY_INTS, Integer)) or not isinstance(self.cols, (SYMPY_INTS, Integer))): raise ValueError( 'Matrix with symbolic shape ' 'cannot be represented explicitly.') from sympy.matrices.immutable import ImmutableDenseMatrix return ImmutableDenseMatrix([[self[i, j] for j in range(self.cols)] for i in range(self.rows)]) def as_mutable(self): """ Returns a dense, mutable matrix with elements represented explicitly Examples ======== >>> from sympy import Identity >>> I = Identity(3) >>> I I >>> I.shape (3, 3) >>> I.as_mutable() Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) See Also ======== as_explicit: returns ImmutableDenseMatrix """ return self.as_explicit().as_mutable() def __array__(self): from numpy import empty a = empty(self.shape, dtype=object) for i in range(self.rows): for j in range(self.cols): a[i, j] = self[i, j] return a def equals(self, other): """ Test elementwise equality between matrices, potentially of different types >>> from sympy import Identity, eye >>> Identity(3).equals(eye(3)) True """ return self.as_explicit().equals(other) def canonicalize(self): return self def as_coeff_mmul(self): return 1, MatMul(self) @staticmethod def from_index_summation(expr, first_index=None, last_index=None, dimensions=None): r""" Parse expression of matrices with explicitly summed indices into a matrix expression without indices, if possible. This transformation expressed in mathematical notation: `\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}` Optional parameter ``first_index``: specify which free index to use as the index starting the expression. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum >>> from sympy.abc import i, j, k, l, N >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A*B Transposition is detected: >>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A.T*B Detect the trace: >>> expr = Sum(A[i, i], (i, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) Trace(A) More complicated expressions: >>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A*B.T*A.T """ from sympy import Sum, Mul, Add, MatMul, transpose, trace from sympy.strategies.traverse import bottom_up def remove_matelement(expr, i1, i2): def repl_match(pos): def func(x): if not isinstance(x, MatrixElement): return False if x.args[pos] != i1: return False if x.args[3-pos] == 0: if x.args[0].shape[2-pos] == 1: return True else: return False return True return func expr = expr.replace(repl_match(1), lambda x: x.args[0]) expr = expr.replace(repl_match(2), lambda x: transpose(x.args[0])) # Make sure that all Mul are transformed to MatMul and that they # are flattened: rule = bottom_up(lambda x: reduce(lambda a, b: a*b, x.args) if isinstance(x, (Mul, MatMul)) else x) return rule(expr) def recurse_expr(expr, index_ranges={}): if expr.is_Mul: nonmatargs = [] pos_arg = [] pos_ind = [] dlinks = {} link_ind = [] counter = 0 args_ind = [] for arg in expr.args: retvals = recurse_expr(arg, index_ranges) assert isinstance(retvals, list) if isinstance(retvals, list): for i in retvals: args_ind.append(i) else: args_ind.append(retvals) for arg_symbol, arg_indices in args_ind: if arg_indices is None: nonmatargs.append(arg_symbol) continue if isinstance(arg_symbol, MatrixElement): arg_symbol = arg_symbol.args[0] pos_arg.append(arg_symbol) pos_ind.append(arg_indices) link_ind.append([None]*len(arg_indices)) for i, ind in enumerate(arg_indices): if ind in dlinks: other_i = dlinks[ind] link_ind[counter][i] = other_i link_ind[other_i[0]][other_i[1]] = (counter, i) dlinks[ind] = (counter, i) counter += 1 counter2 = 0 lines = {} while counter2 < len(link_ind): for i, e in enumerate(link_ind): if None in e: line_start_index = (i, e.index(None)) break cur_ind_pos = line_start_index cur_line = [] index1 = pos_ind[cur_ind_pos[0]][cur_ind_pos[1]] while True: d, r = cur_ind_pos if pos_arg[d] != 1: if r % 2 == 1: cur_line.append(transpose(pos_arg[d])) else: cur_line.append(pos_arg[d]) next_ind_pos = link_ind[d][1-r] counter2 += 1 # Mark as visited, there will be no `None` anymore: link_ind[d] = (-1, -1) if next_ind_pos is None: index2 = pos_ind[d][1-r] lines[(index1, index2)] = cur_line break cur_ind_pos = next_ind_pos lines = {k: MatMul.fromiter(v) if len(v) != 1 else v[0] for k, v in lines.items()} return [(Mul.fromiter(nonmatargs), None)] + [ (MatrixElement(a, i, j), (i, j)) for (i, j), a in lines.items() ] elif expr.is_Add: res = [recurse_expr(i) for i in expr.args] d = collections.defaultdict(list) for res_addend in res: scalar = 1 for elem, indices in res_addend: if indices is None: scalar = elem continue indices = tuple(sorted(indices, key=default_sort_key)) d[indices].append(scalar*remove_matelement(elem, *indices)) scalar = 1 return [(MatrixElement(Add.fromiter(v), *k), k) for k, v in d.items()] elif isinstance(expr, KroneckerDelta): i1, i2 = expr.args if dimensions is not None: identity = Identity(dimensions[0]) else: identity = S.One return [(MatrixElement(identity, i1, i2), (i1, i2))] elif isinstance(expr, MatrixElement): matrix_symbol, i1, i2 = expr.args if i1 in index_ranges: r1, r2 = index_ranges[i1] if r1 != 0 or matrix_symbol.shape[0] != r2+1: raise ValueError("index range mismatch: {} vs. (0, {})".format( (r1, r2), matrix_symbol.shape[0])) if i2 in index_ranges: r1, r2 = index_ranges[i2] if r1 != 0 or matrix_symbol.shape[1] != r2+1: raise ValueError("index range mismatch: {} vs. (0, {})".format( (r1, r2), matrix_symbol.shape[1])) if (i1 == i2) and (i1 in index_ranges): return [(trace(matrix_symbol), None)] return [(MatrixElement(matrix_symbol, i1, i2), (i1, i2))] elif isinstance(expr, Sum): return recurse_expr( expr.args[0], index_ranges={i[0]: i[1:] for i in expr.args[1:]} ) else: return [(expr, None)] retvals = recurse_expr(expr) factors, indices = zip(*retvals) retexpr = Mul.fromiter(factors) if len(indices) == 0 or list(set(indices)) == [None]: return retexpr if first_index is None: for i in indices: if i is not None: ind0 = i break return remove_matelement(retexpr, *ind0) else: return remove_matelement(retexpr, first_index, last_index) def applyfunc(self, func): from .applyfunc import ElementwiseApplyFunction return ElementwiseApplyFunction(func, self) @dispatch(MatrixExpr, Expr) def _eval_is_eq(lhs, rhs): # noqa:F811 return False @dispatch(MatrixExpr, MatrixExpr) # type: ignore def _eval_is_eq(lhs, rhs): # noqa:F811 if lhs.shape != rhs.shape: return False if (lhs - rhs).is_ZeroMatrix: return True def get_postprocessor(cls): def _postprocessor(expr): # To avoid circular imports, we can't have MatMul/MatAdd on the top level mat_class = {Mul: MatMul, Add: MatAdd}[cls] nonmatrices = [] matrices = [] for term in expr.args: if isinstance(term, MatrixExpr): matrices.append(term) else: nonmatrices.append(term) if not matrices: return cls._from_args(nonmatrices) if nonmatrices: if cls == Mul: for i in range(len(matrices)): if not matrices[i].is_MatrixExpr: # If one of the matrices explicit, absorb the scalar into it # (doit will combine all explicit matrices into one, so it # doesn't matter which) matrices[i] = matrices[i].__mul__(cls._from_args(nonmatrices)) nonmatrices = [] break else: # Maintain the ability to create Add(scalar, matrix) without # raising an exception. That way different algorithms can # replace matrix expressions with non-commutative symbols to # manipulate them like non-commutative scalars. return cls._from_args(nonmatrices + [mat_class(*matrices).doit(deep=False)]) if mat_class == MatAdd: return mat_class(*matrices).doit(deep=False) return mat_class(cls._from_args(nonmatrices), *matrices).doit(deep=False) return _postprocessor Basic._constructor_postprocessor_mapping[MatrixExpr] = { "Mul": [get_postprocessor(Mul)], "Add": [get_postprocessor(Add)], } def _matrix_derivative(expr, x): from sympy.tensor.array.array_derivatives import ArrayDerivative lines = expr._eval_derivative_matrix_lines(x) parts = [i.build() for i in lines] from sympy.codegen.array_utils import recognize_matrix_expression parts = [[recognize_matrix_expression(j).doit() for j in i] for i in parts] def _get_shape(elem): if isinstance(elem, MatrixExpr): return elem.shape return 1, 1 def get_rank(parts): return sum([j not in (1, None) for i in parts for j in _get_shape(i)]) ranks = [get_rank(i) for i in parts] rank = ranks[0] def contract_one_dims(parts): if len(parts) == 1: return parts[0] else: p1, p2 = parts[:2] if p2.is_Matrix: p2 = p2.T if p1 == Identity(1): pbase = p2 elif p2 == Identity(1): pbase = p1 else: pbase = p1*p2 if len(parts) == 2: return pbase else: # len(parts) > 2 if pbase.is_Matrix: raise ValueError("") return pbase*Mul.fromiter(parts[2:]) if rank <= 2: return Add.fromiter([contract_one_dims(i) for i in parts]) return ArrayDerivative(expr, x) class MatrixElement(Expr): parent = property(lambda self: self.args[0]) i = property(lambda self: self.args[1]) j = property(lambda self: self.args[2]) _diff_wrt = True is_symbol = True is_commutative = True def __new__(cls, name, n, m): n, m = map(_sympify, (n, m)) from sympy import MatrixBase if isinstance(name, (MatrixBase,)): if n.is_Integer and m.is_Integer: return name[n, m] if isinstance(name, str): name = Symbol(name) name = _sympify(name) obj = Expr.__new__(cls, name, n, m) return obj def doit(self, **kwargs): deep = kwargs.get('deep', True) if deep: args = [arg.doit(**kwargs) for arg in self.args] else: args = self.args return args[0][args[1], args[2]] @property def indices(self): return self.args[1:] def _eval_derivative(self, v): from sympy import Sum, symbols, Dummy if not isinstance(v, MatrixElement): from sympy import MatrixBase if isinstance(self.parent, MatrixBase): return self.parent.diff(v)[self.i, self.j] return S.Zero M = self.args[0] m, n = self.parent.shape if M == v.args[0]: return KroneckerDelta(self.args[1], v.args[1], (0, m-1)) * \ KroneckerDelta(self.args[2], v.args[2], (0, n-1)) if isinstance(M, Inverse): i, j = self.args[1:] i1, i2 = symbols("z1, z2", cls=Dummy) Y = M.args[0] r1, r2 = Y.shape return -Sum(M[i, i1]*Y[i1, i2].diff(v)*M[i2, j], (i1, 0, r1-1), (i2, 0, r2-1)) if self.has(v.args[0]): return None return S.Zero class MatrixSymbol(MatrixExpr): """Symbolic representation of a Matrix object Creates a SymPy Symbol to represent a Matrix. This matrix has a shape and can be included in Matrix Expressions Examples ======== >>> from sympy import MatrixSymbol, Identity >>> A = MatrixSymbol('A', 3, 4) # A 3 by 4 Matrix >>> B = MatrixSymbol('B', 4, 3) # A 4 by 3 Matrix >>> A.shape (3, 4) >>> 2*A*B + Identity(3) I + 2*A*B """ is_commutative = False is_symbol = True _diff_wrt = True def __new__(cls, name, n, m): n, m = _sympify(n), _sympify(m) cls._check_dim(m) cls._check_dim(n) if isinstance(name, str): name = Str(name) obj = Basic.__new__(cls, name, n, m) return obj @property def shape(self): return self.args[1], self.args[2] @property def name(self): return self.args[0].name def _entry(self, i, j, **kwargs): return MatrixElement(self, i, j) @property def free_symbols(self): return {self} def _eval_simplify(self, **kwargs): return self def _eval_derivative(self, x): # x is a scalar: return ZeroMatrix(self.shape[0], self.shape[1]) def _eval_derivative_matrix_lines(self, x): if self != x: first = ZeroMatrix(x.shape[0], self.shape[0]) if self.shape[0] != 1 else S.Zero second = ZeroMatrix(x.shape[1], self.shape[1]) if self.shape[1] != 1 else S.Zero return [_LeftRightArgs( [first, second], )] else: first = Identity(self.shape[0]) if self.shape[0] != 1 else S.One second = Identity(self.shape[1]) if self.shape[1] != 1 else S.One return [_LeftRightArgs( [first, second], )] def matrix_symbols(expr): return [sym for sym in expr.free_symbols if sym.is_Matrix] class _LeftRightArgs: r""" Helper class to compute matrix derivatives. The logic: when an expression is derived by a matrix `X_{mn}`, two lines of matrix multiplications are created: the one contracted to `m` (first line), and the one contracted to `n` (second line). Transposition flips the side by which new matrices are connected to the lines. The trace connects the end of the two lines. """ def __init__(self, lines, higher=S.One): self._lines = [i for i in lines] self._first_pointer_parent = self._lines self._first_pointer_index = 0 self._first_line_index = 0 self._second_pointer_parent = self._lines self._second_pointer_index = 1 self._second_line_index = 1 self.higher = higher @property def first_pointer(self): return self._first_pointer_parent[self._first_pointer_index] @first_pointer.setter def first_pointer(self, value): self._first_pointer_parent[self._first_pointer_index] = value @property def second_pointer(self): return self._second_pointer_parent[self._second_pointer_index] @second_pointer.setter def second_pointer(self, value): self._second_pointer_parent[self._second_pointer_index] = value def __repr__(self): built = [self._build(i) for i in self._lines] return "_LeftRightArgs(lines=%s, higher=%s)" % ( built, self.higher, ) def transpose(self): self._first_pointer_parent, self._second_pointer_parent = self._second_pointer_parent, self._first_pointer_parent self._first_pointer_index, self._second_pointer_index = self._second_pointer_index, self._first_pointer_index self._first_line_index, self._second_line_index = self._second_line_index, self._first_line_index return self @staticmethod def _build(expr): from sympy.core.expr import ExprBuilder if isinstance(expr, ExprBuilder): return expr.build() if isinstance(expr, list): if len(expr) == 1: return expr[0] else: return expr[0](*[_LeftRightArgs._build(i) for i in expr[1]]) else: return expr def build(self): data = [self._build(i) for i in self._lines] if self.higher != 1: data += [self._build(self.higher)] data = [i.doit() for i in data] return data def matrix_form(self): if self.first != 1 and self.higher != 1: raise ValueError("higher dimensional array cannot be represented") def _get_shape(elem): if isinstance(elem, MatrixExpr): return elem.shape return (None, None) if _get_shape(self.first)[1] != _get_shape(self.second)[1]: # Remove one-dimensional identity matrices: # (this is needed by `a.diff(a)` where `a` is a vector) if _get_shape(self.second) == (1, 1): return self.first*self.second[0, 0] if _get_shape(self.first) == (1, 1): return self.first[1, 1]*self.second.T raise ValueError("incompatible shapes") if self.first != 1: return self.first*self.second.T else: return self.higher def rank(self): """ Number of dimensions different from trivial (warning: not related to matrix rank). """ rank = 0 if self.first != 1: rank += sum([i != 1 for i in self.first.shape]) if self.second != 1: rank += sum([i != 1 for i in self.second.shape]) if self.higher != 1: rank += 2 return rank def _multiply_pointer(self, pointer, other): from sympy.core.expr import ExprBuilder from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct subexpr = ExprBuilder( CodegenArrayContraction, [ ExprBuilder( CodegenArrayTensorProduct, [ pointer, other ] ), (1, 2) ], validator=CodegenArrayContraction._validate ) return subexpr def append_first(self, other): self.first_pointer *= other def append_second(self, other): self.second_pointer *= other def _make_matrix(x): from sympy import ImmutableDenseMatrix if isinstance(x, MatrixExpr): return x return ImmutableDenseMatrix([[x]]) from .matmul import MatMul from .matadd import MatAdd from .matpow import MatPow from .transpose import Transpose from .inverse import Inverse from .special import ZeroMatrix, Identity
7d72525b34bca63d21c7c0adf3adeea4e8fc47475fcd26e8c66a72cd3f2d2ccb
from sympy.functions import adjoint, conjugate, transpose from sympy.matrices.expressions import MatrixSymbol, Adjoint, trace, Transpose from sympy.matrices import eye, Matrix from sympy import symbols, S from sympy import refine, Q n, m, l, k, p = symbols('n m l k p', integer=True) A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', m, l) C = MatrixSymbol('C', n, n) def test_transpose(): Sq = MatrixSymbol('Sq', n, n) assert transpose(A) == Transpose(A) assert Transpose(A).shape == (m, n) assert Transpose(A*B).shape == (l, n) assert transpose(Transpose(A)) == A assert isinstance(Transpose(Transpose(A)), Transpose) assert adjoint(Transpose(A)) == Adjoint(Transpose(A)) assert conjugate(Transpose(A)) == Adjoint(A) assert Transpose(eye(3)).doit() == eye(3) assert Transpose(S(5)).doit() == S(5) assert Transpose(Matrix([[1, 2], [3, 4]])).doit() == Matrix([[1, 3], [2, 4]]) assert transpose(trace(Sq)) == trace(Sq) assert trace(Transpose(Sq)) == trace(Sq) assert Transpose(Sq)[0, 1] == Sq[1, 0] assert Transpose(A*B).doit() == Transpose(B) * Transpose(A) def test_transpose_MatAdd_MatMul(): # Issue 16807 from sympy.functions.elementary.trigonometric import cos x = symbols('x') M = MatrixSymbol('M', 3, 3) N = MatrixSymbol('N', 3, 3) assert (N + (cos(x) * M)).T == cos(x)*M.T + N.T def test_refine(): assert refine(C.T, Q.symmetric(C)) == C def test_transpose1x1(): m = MatrixSymbol('m', 1, 1) assert m == refine(m.T) assert m == refine(m.T.T) def test_issue_9817(): from sympy.matrices.expressions import Identity v = MatrixSymbol('v', 3, 1) A = MatrixSymbol('A', 3, 3) x = Matrix([i + 1 for i in range(3)]) X = Identity(3) quadratic = v.T * A * v subbed = quadratic.xreplace({v:x, A:X}) assert subbed.as_explicit() == Matrix([[14]])
59f4ffbcbace92f3ea460da67fb833895b3fe9c2e0d24393105bfe35bd7322fa
from sympy.core.relational import Eq, is_eq from sympy.core.basic import Basic from sympy.core.logic import fuzzy_and, fuzzy_bool from sympy.logic.boolalg import And from sympy.multipledispatch import dispatch from sympy.sets.sets import tfn, ProductSet, Interval, FiniteSet, Set @dispatch(Interval, FiniteSet) # type:ignore def _eval_is_eq(lhs, rhs): # noqa: F811 return False @dispatch(FiniteSet, Interval) # type:ignore def _eval_is_eq(lhs, rhs): # noqa: F811 return False @dispatch(Interval, Interval) # type:ignore def _eval_is_eq(lhs, rhs): # noqa: F811 return And(Eq(lhs.left, rhs.left), Eq(lhs.right, rhs.right), lhs.left_open == rhs.left_open, lhs.right_open == rhs.right_open) @dispatch(FiniteSet, FiniteSet) # type:ignore def _eval_is_eq(lhs, rhs): # noqa: F811 def all_in_both(): s_set = set(lhs.args) o_set = set(rhs.args) yield fuzzy_and(lhs._contains(e) for e in o_set - s_set) yield fuzzy_and(rhs._contains(e) for e in s_set - o_set) return tfn[fuzzy_and(all_in_both())] @dispatch(ProductSet, ProductSet) # type:ignore def _eval_is_eq(lhs, rhs): # noqa: F811 if len(lhs.sets) != len(rhs.sets): return False eqs = (is_eq(x, y) for x, y in zip(lhs.sets, rhs.sets)) return tfn[fuzzy_and(map(fuzzy_bool, eqs))] @dispatch(Set, Basic) # type:ignore def _eval_is_eq(lhs, rhs): # noqa: F811 return False @dispatch(Set, Set) # type:ignore def _eval_is_eq(lhs, rhs): # noqa: F811 return tfn[fuzzy_and(a.is_subset(b) for a, b in [(lhs, rhs), (rhs, lhs)])]
6b2e6ccc07487cac310ae4832d6e080e05ad115c3c61478a50b2b590a4f25bda
from sympy import S, Symbol from sympy.core.logic import fuzzy_and, fuzzy_bool, fuzzy_not, fuzzy_or from sympy.core.relational import Eq from sympy.sets.sets import FiniteSet, Interval, Set, Union, ProductSet from sympy.sets.fancysets import Complexes, Reals, Range, Rationals from sympy.multipledispatch import dispatch _inf_sets = [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals, S.Complexes] @dispatch(Set, Set) # type: ignore # noqa:F811 def is_subset_sets(a, b): # noqa:F811 return None @dispatch(Interval, Interval) # type: ignore # noqa:F811 def is_subset_sets(a, b): # noqa:F811 # This is correct but can be made more comprehensive... if fuzzy_bool(a.start < b.start): return False if fuzzy_bool(a.end > b.end): return False if (b.left_open and not a.left_open and fuzzy_bool(Eq(a.start, b.start))): return False if (b.right_open and not a.right_open and fuzzy_bool(Eq(a.end, b.end))): return False @dispatch(Interval, FiniteSet) # type: ignore # noqa:F811 def is_subset_sets(a_interval, b_fs): # noqa:F811 # An Interval can only be a subset of a finite set if it is finite # which can only happen if it has zero measure. if fuzzy_not(a_interval.measure.is_zero): return False @dispatch(Interval, Union) # type: ignore # noqa:F811 def is_subset_sets(a_interval, b_u): # noqa:F811 if all(isinstance(s, (Interval, FiniteSet)) for s in b_u.args): intervals = [s for s in b_u.args if isinstance(s, Interval)] if all(fuzzy_bool(a_interval.start < s.start) for s in intervals): return False if all(fuzzy_bool(a_interval.end > s.end) for s in intervals): return False if a_interval.measure.is_nonzero: no_overlap = lambda s1, s2: fuzzy_or([ fuzzy_bool(s1.end <= s2.start), fuzzy_bool(s1.start >= s2.end), ]) if all(no_overlap(s, a_interval) for s in intervals): return False @dispatch(Range, Range) # type: ignore # noqa:F811 def is_subset_sets(a, b): # noqa:F811 if a.step == b.step == 1: return fuzzy_and([fuzzy_bool(a.start >= b.start), fuzzy_bool(a.stop <= b.stop)]) @dispatch(Range, Interval) # type: ignore # noqa:F811 def is_subset_sets(a_range, b_interval): # noqa:F811 if a_range.step.is_positive: if b_interval.left_open and a_range.inf.is_finite: cond_left = a_range.inf > b_interval.left else: cond_left = a_range.inf >= b_interval.left if b_interval.right_open and a_range.sup.is_finite: cond_right = a_range.sup < b_interval.right else: cond_right = a_range.sup <= b_interval.right return fuzzy_and([cond_left, cond_right]) @dispatch(Range, FiniteSet) # type: ignore # noqa:F811 def is_subset_sets(a_range, b_finiteset): # noqa:F811 try: a_size = a_range.size except ValueError: # symbolic Range of unknown size return None if a_size > len(b_finiteset): return False elif any(arg.has(Symbol) for arg in a_range.args): return fuzzy_and(b_finiteset.contains(x) for x in a_range) else: # Checking A \ B == EmptySet is more efficient than repeated naive # membership checks on an arbitrary FiniteSet. a_set = set(a_range) b_remaining = len(b_finiteset) # Symbolic expressions and numbers of unknown type (integer or not) are # all counted as "candidates", i.e. *potentially* matching some a in # a_range. cnt_candidate = 0 for b in b_finiteset: if b.is_Integer: a_set.discard(b) elif fuzzy_not(b.is_integer): pass else: cnt_candidate += 1 b_remaining -= 1 if len(a_set) > b_remaining + cnt_candidate: return False if len(a_set) == 0: return True return None @dispatch(Interval, Range) # type: ignore # noqa:F811 def is_subset_sets(a_interval, b_range): # noqa:F811 if a_interval.measure.is_extended_nonzero: return False @dispatch(Interval, Rationals) # type: ignore # noqa:F811 def is_subset_sets(a_interval, b_rationals): # noqa:F811 if a_interval.measure.is_extended_nonzero: return False @dispatch(Range, Complexes) # type: ignore # noqa:F811 def is_subset_sets(a, b): # noqa:F811 return True @dispatch(Complexes, Interval) # type: ignore # noqa:F811 def is_subset_sets(a, b): # noqa:F811 return False @dispatch(Complexes, Range) # type: ignore # noqa:F811 def is_subset_sets(a, b): # noqa:F811 return False @dispatch(Complexes, Rationals) # type: ignore # noqa:F811 def is_subset_sets(a, b): # noqa:F811 return False @dispatch(Rationals, Reals) # type: ignore # noqa:F811 def is_subset_sets(a, b): # noqa:F811 return True @dispatch(Rationals, Range) # type: ignore # noqa:F811 def is_subset_sets(a, b): # noqa:F811 return False @dispatch(ProductSet, FiniteSet) # type: ignore # noqa:F811 def is_subset_sets(a_ps, b_fs): # noqa:F811 return fuzzy_and(b_fs.contains(x) for x in a_ps)
1ef5e893fcdf980b4929306d42e420528a996caf3b423c2ab8bf5315863755c0
from sympy import (Symbol, Set, Union, Interval, oo, S, sympify, nan, Max, Min, Float, DisjointUnion, FiniteSet, Intersection, imageset, I, true, false, ProductSet, sqrt, Complement, EmptySet, sin, cos, Lambda, ImageSet, pi, Pow, Contains, Sum, rootof, SymmetricDifference, Piecewise, Matrix, Range, Add, symbols, zoo, Rational) from mpmath import mpi from sympy.core.expr import unchanged from sympy.core.relational import Eq, Ne, Le, Lt, LessThan from sympy.logic import And, Or, Xor from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy from sympy.abc import x, y, z, m, n def test_imageset(): ints = S.Integers assert imageset(x, x - 1, S.Naturals) is S.Naturals0 assert imageset(x, x + 1, S.Naturals0) is S.Naturals assert imageset(x, abs(x), S.Naturals0) is S.Naturals0 assert imageset(x, abs(x), S.Naturals) is S.Naturals assert imageset(x, abs(x), S.Integers) is S.Naturals0 # issue 16878a r = symbols('r', real=True) assert imageset(x, (x, x), S.Reals)._contains((1, r)) == None assert imageset(x, (x, x), S.Reals)._contains((1, 2)) == False assert (r, r) in imageset(x, (x, x), S.Reals) assert 1 + I in imageset(x, x + I, S.Reals) assert {1} not in imageset(x, (x,), S.Reals) assert (1, 1) not in imageset(x, (x,) , S.Reals) raises(TypeError, lambda: imageset(x, ints)) raises(ValueError, lambda: imageset(x, y, z, ints)) raises(ValueError, lambda: imageset(Lambda(x, cos(x)), y)) assert (1, 2) in imageset(Lambda((x, y), (x, y)), ints, ints) raises(ValueError, lambda: imageset(Lambda(x, x), ints, ints)) assert imageset(cos, ints) == ImageSet(Lambda(x, cos(x)), ints) def f(x): return cos(x) assert imageset(f, ints) == imageset(x, cos(x), ints) f = lambda x: cos(x) assert imageset(f, ints) == ImageSet(Lambda(x, cos(x)), ints) assert imageset(x, 1, ints) == FiniteSet(1) assert imageset(x, y, ints) == {y} assert imageset((x, y), (1, z), ints, S.Reals) == {(1, z)} clash = Symbol('x', integer=true) assert (str(imageset(lambda x: x + clash, Interval(-2, 1)).lamda.expr) in ('x0 + x', 'x + x0')) x1, x2 = symbols("x1, x2") assert imageset(lambda x, y: Add(x, y), Interval(1, 2), Interval(2, 3)).dummy_eq( ImageSet(Lambda((x1, x2), x1 + x2), Interval(1, 2), Interval(2, 3))) def test_is_empty(): for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals, S.UniversalSet]: assert s.is_empty is False assert S.EmptySet.is_empty is True def test_is_finiteset(): for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals, S.UniversalSet]: assert s.is_finite_set is False assert S.EmptySet.is_finite_set is True assert FiniteSet(1, 2).is_finite_set is True assert Interval(1, 2).is_finite_set is False assert Interval(x, y).is_finite_set is None assert ProductSet(FiniteSet(1), FiniteSet(2)).is_finite_set is True assert ProductSet(FiniteSet(1), Interval(1, 2)).is_finite_set is False assert ProductSet(FiniteSet(1), Interval(x, y)).is_finite_set is None assert Union(Interval(0, 1), Interval(2, 3)).is_finite_set is False assert Union(FiniteSet(1), Interval(2, 3)).is_finite_set is False assert Union(FiniteSet(1), FiniteSet(2)).is_finite_set is True assert Union(FiniteSet(1), Interval(x, y)).is_finite_set is None assert Intersection(Interval(x, y), FiniteSet(1)).is_finite_set is True assert Intersection(Interval(x, y), Interval(1, 2)).is_finite_set is None assert Intersection(FiniteSet(x), FiniteSet(y)).is_finite_set is True assert Complement(FiniteSet(1), Interval(x, y)).is_finite_set is True assert Complement(Interval(x, y), FiniteSet(1)).is_finite_set is None assert Complement(Interval(1, 2), FiniteSet(x)).is_finite_set is False assert DisjointUnion(Interval(-5, 3), FiniteSet(x, y)).is_finite_set is False assert DisjointUnion(S.EmptySet, FiniteSet(x, y), S.EmptySet).is_finite_set is True def test_deprecated_is_EmptySet(): with warns_deprecated_sympy(): S.EmptySet.is_EmptySet def test_interval_arguments(): assert Interval(0, oo) == Interval(0, oo, False, True) assert Interval(0, oo).right_open is true assert Interval(-oo, 0) == Interval(-oo, 0, True, False) assert Interval(-oo, 0).left_open is true assert Interval(oo, -oo) == S.EmptySet assert Interval(oo, oo) == S.EmptySet assert Interval(-oo, -oo) == S.EmptySet assert Interval(oo, x) == S.EmptySet assert Interval(oo, oo) == S.EmptySet assert Interval(x, -oo) == S.EmptySet assert Interval(x, x) == {x} assert isinstance(Interval(1, 1), FiniteSet) e = Sum(x, (x, 1, 3)) assert isinstance(Interval(e, e), FiniteSet) assert Interval(1, 0) == S.EmptySet assert Interval(1, 1).measure == 0 assert Interval(1, 1, False, True) == S.EmptySet assert Interval(1, 1, True, False) == S.EmptySet assert Interval(1, 1, True, True) == S.EmptySet assert isinstance(Interval(0, Symbol('a')), Interval) assert Interval(Symbol('a', real=True, positive=True), 0) == S.EmptySet raises(ValueError, lambda: Interval(0, S.ImaginaryUnit)) raises(ValueError, lambda: Interval(0, Symbol('z', extended_real=False))) raises(ValueError, lambda: Interval(x, x + S.ImaginaryUnit)) raises(NotImplementedError, lambda: Interval(0, 1, And(x, y))) raises(NotImplementedError, lambda: Interval(0, 1, False, And(x, y))) raises(NotImplementedError, lambda: Interval(0, 1, z, And(x, y))) def test_interval_symbolic_end_points(): a = Symbol('a', real=True) assert Union(Interval(0, a), Interval(0, 3)).sup == Max(a, 3) assert Union(Interval(a, 0), Interval(-3, 0)).inf == Min(-3, a) assert Interval(0, a).contains(1) == LessThan(1, a) def test_interval_is_empty(): x, y = symbols('x, y') r = Symbol('r', real=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) nn = Symbol('nn', nonnegative=True) assert Interval(1, 2).is_empty == False assert Interval(3, 3).is_empty == False # FiniteSet assert Interval(r, r).is_empty == False # FiniteSet assert Interval(r, r + nn).is_empty == False assert Interval(x, x).is_empty == False assert Interval(1, oo).is_empty == False assert Interval(-oo, oo).is_empty == False assert Interval(-oo, 1).is_empty == False assert Interval(x, y).is_empty == None assert Interval(r, oo).is_empty == False # real implies finite assert Interval(n, 0).is_empty == False assert Interval(n, 0, left_open=True).is_empty == False assert Interval(p, 0).is_empty == True # EmptySet assert Interval(nn, 0).is_empty == None assert Interval(n, p).is_empty == False assert Interval(0, p, left_open=True).is_empty == False assert Interval(0, p, right_open=True).is_empty == False assert Interval(0, nn, left_open=True).is_empty == None assert Interval(0, nn, right_open=True).is_empty == None def test_union(): assert Union(Interval(1, 2), Interval(2, 3)) == Interval(1, 3) assert Union(Interval(1, 2), Interval(2, 3, True)) == Interval(1, 3) assert Union(Interval(1, 3), Interval(2, 4)) == Interval(1, 4) assert Union(Interval(1, 2), Interval(1, 3)) == Interval(1, 3) assert Union(Interval(1, 3), Interval(1, 2)) == Interval(1, 3) assert Union(Interval(1, 3, False, True), Interval(1, 2)) == \ Interval(1, 3, False, True) assert Union(Interval(1, 3), Interval(1, 2, False, True)) == Interval(1, 3) assert Union(Interval(1, 2, True), Interval(1, 3)) == Interval(1, 3) assert Union(Interval(1, 2, True), Interval(1, 3, True)) == \ Interval(1, 3, True) assert Union(Interval(1, 2, True), Interval(1, 3, True, True)) == \ Interval(1, 3, True, True) assert Union(Interval(1, 2, True, True), Interval(1, 3, True)) == \ Interval(1, 3, True) assert Union(Interval(1, 3), Interval(2, 3)) == Interval(1, 3) assert Union(Interval(1, 3, False, True), Interval(2, 3)) == \ Interval(1, 3) assert Union(Interval(1, 2, False, True), Interval(2, 3, True)) != \ Interval(1, 3) assert Union(Interval(1, 2), S.EmptySet) == Interval(1, 2) assert Union(S.EmptySet) == S.EmptySet assert Union(Interval(0, 1), *[FiniteSet(1.0/n) for n in range(1, 10)]) == \ Interval(0, 1) # issue #18241: x = Symbol('x') assert Union(Interval(0, 1), FiniteSet(1, x)) == Union( Interval(0, 1), FiniteSet(x)) assert unchanged(Union, Interval(0, 1), FiniteSet(2, x)) assert Interval(1, 2).union(Interval(2, 3)) == \ Interval(1, 2) + Interval(2, 3) assert Interval(1, 2).union(Interval(2, 3)) == Interval(1, 3) assert Union(Set()) == Set() assert FiniteSet(1) + FiniteSet(2) + FiniteSet(3) == FiniteSet(1, 2, 3) assert FiniteSet('ham') + FiniteSet('eggs') == FiniteSet('ham', 'eggs') assert FiniteSet(1, 2, 3) + S.EmptySet == FiniteSet(1, 2, 3) assert FiniteSet(1, 2, 3) & FiniteSet(2, 3, 4) == FiniteSet(2, 3) assert FiniteSet(1, 2, 3) | FiniteSet(2, 3, 4) == FiniteSet(1, 2, 3, 4) assert FiniteSet(1, 2, 3) & S.EmptySet == S.EmptySet assert FiniteSet(1, 2, 3) | S.EmptySet == FiniteSet(1, 2, 3) x = Symbol("x") y = Symbol("y") z = Symbol("z") assert S.EmptySet | FiniteSet(x, FiniteSet(y, z)) == \ FiniteSet(x, FiniteSet(y, z)) # Test that Intervals and FiniteSets play nicely assert Interval(1, 3) + FiniteSet(2) == Interval(1, 3) assert Interval(1, 3, True, True) + FiniteSet(3) == \ Interval(1, 3, True, False) X = Interval(1, 3) + FiniteSet(5) Y = Interval(1, 2) + FiniteSet(3) XandY = X.intersect(Y) assert 2 in X and 3 in X and 3 in XandY assert XandY.is_subset(X) and XandY.is_subset(Y) raises(TypeError, lambda: Union(1, 2, 3)) assert X.is_iterable is False # issue 7843 assert Union(S.EmptySet, FiniteSet(-sqrt(-I), sqrt(-I))) == \ FiniteSet(-sqrt(-I), sqrt(-I)) assert Union(S.Reals, S.Integers) == S.Reals def test_union_iter(): # Use Range because it is ordered u = Union(Range(3), Range(5), Range(4), evaluate=False) # Round robin assert list(u) == [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4] def test_union_is_empty(): assert (Interval(x, y) + FiniteSet(1)).is_empty == False assert (Interval(x, y) + Interval(-x, y)).is_empty == None def test_difference(): assert Interval(1, 3) - Interval(1, 2) == Interval(2, 3, True) assert Interval(1, 3) - Interval(2, 3) == Interval(1, 2, False, True) assert Interval(1, 3, True) - Interval(2, 3) == Interval(1, 2, True, True) assert Interval(1, 3, True) - Interval(2, 3, True) == \ Interval(1, 2, True, False) assert Interval(0, 2) - FiniteSet(1) == \ Union(Interval(0, 1, False, True), Interval(1, 2, True, False)) # issue #18119 assert S.Reals - FiniteSet(I) == S.Reals assert S.Reals - FiniteSet(-I, I) == S.Reals assert Interval(0, 10) - FiniteSet(-I, I) == Interval(0, 10) assert Interval(0, 10) - FiniteSet(1, I) == Union( Interval.Ropen(0, 1), Interval.Lopen(1, 10)) assert S.Reals - FiniteSet(1, 2 + I, x, y**2) == Complement( Union(Interval.open(-oo, 1), Interval.open(1, oo)), FiniteSet(x, y**2), evaluate=False) assert FiniteSet(1, 2, 3) - FiniteSet(2) == FiniteSet(1, 3) assert FiniteSet('ham', 'eggs') - FiniteSet('eggs') == FiniteSet('ham') assert FiniteSet(1, 2, 3, 4) - Interval(2, 10, True, False) == \ FiniteSet(1, 2) assert FiniteSet(1, 2, 3, 4) - S.EmptySet == FiniteSet(1, 2, 3, 4) assert Union(Interval(0, 2), FiniteSet(2, 3, 4)) - Interval(1, 3) == \ Union(Interval(0, 1, False, True), FiniteSet(4)) assert -1 in S.Reals - S.Naturals def test_Complement(): A = FiniteSet(1, 3, 4) B = FiniteSet(3, 4) C = Interval(1, 3) D = Interval(1, 2) assert Complement(A, B, evaluate=False).is_iterable is True assert Complement(A, C, evaluate=False).is_iterable is True assert Complement(C, D, evaluate=False).is_iterable is None assert FiniteSet(*Complement(A, B, evaluate=False)) == FiniteSet(1) assert FiniteSet(*Complement(A, C, evaluate=False)) == FiniteSet(4) raises(TypeError, lambda: FiniteSet(*Complement(C, A, evaluate=False))) assert Complement(Interval(1, 3), Interval(1, 2)) == Interval(2, 3, True) assert Complement(FiniteSet(1, 3, 4), FiniteSet(3, 4)) == FiniteSet(1) assert Complement(Union(Interval(0, 2), FiniteSet(2, 3, 4)), Interval(1, 3)) == \ Union(Interval(0, 1, False, True), FiniteSet(4)) assert not 3 in Complement(Interval(0, 5), Interval(1, 4), evaluate=False) assert -1 in Complement(S.Reals, S.Naturals, evaluate=False) assert not 1 in Complement(S.Reals, S.Naturals, evaluate=False) assert Complement(S.Integers, S.UniversalSet) == EmptySet assert S.UniversalSet.complement(S.Integers) == EmptySet assert (not 0 in S.Reals.intersect(S.Integers - FiniteSet(0))) assert S.EmptySet - S.Integers == S.EmptySet assert (S.Integers - FiniteSet(0)) - FiniteSet(1) == S.Integers - FiniteSet(0, 1) assert S.Reals - Union(S.Naturals, FiniteSet(pi)) == \ Intersection(S.Reals - S.Naturals, S.Reals - FiniteSet(pi)) # issue 12712 assert Complement(FiniteSet(x, y, 2), Interval(-10, 10)) == \ Complement(FiniteSet(x, y), Interval(-10, 10)) A = FiniteSet(*symbols('a:c')) B = FiniteSet(*symbols('d:f')) assert unchanged(Complement, ProductSet(A, A), B) A2 = ProductSet(A, A) B3 = ProductSet(B, B, B) assert A2 - B3 == A2 assert B3 - A2 == B3 def test_set_operations_nonsets(): '''Tests that e.g. FiniteSet(1) * 2 raises TypeError''' ops = [ lambda a, b: a + b, lambda a, b: a - b, lambda a, b: a * b, lambda a, b: a / b, lambda a, b: a // b, lambda a, b: a | b, lambda a, b: a & b, lambda a, b: a ^ b, # FiniteSet(1) ** 2 gives a ProductSet #lambda a, b: a ** b, ] Sx = FiniteSet(x) Sy = FiniteSet(y) sets = [ {1}, FiniteSet(1), Interval(1, 2), Union(Sx, Interval(1, 2)), Intersection(Sx, Sy), Complement(Sx, Sy), ProductSet(Sx, Sy), S.EmptySet, ] nums = [0, 1, 2, S(0), S(1), S(2)] for si in sets: for ni in nums: for op in ops: raises(TypeError, lambda : op(si, ni)) raises(TypeError, lambda : op(ni, si)) raises(TypeError, lambda: si ** object()) raises(TypeError, lambda: si ** {1}) def test_complement(): assert Interval(0, 1).complement(S.Reals) == \ Union(Interval(-oo, 0, True, True), Interval(1, oo, True, True)) assert Interval(0, 1, True, False).complement(S.Reals) == \ Union(Interval(-oo, 0, True, False), Interval(1, oo, True, True)) assert Interval(0, 1, False, True).complement(S.Reals) == \ Union(Interval(-oo, 0, True, True), Interval(1, oo, False, True)) assert Interval(0, 1, True, True).complement(S.Reals) == \ Union(Interval(-oo, 0, True, False), Interval(1, oo, False, True)) assert S.UniversalSet.complement(S.EmptySet) == S.EmptySet assert S.UniversalSet.complement(S.Reals) == S.EmptySet assert S.UniversalSet.complement(S.UniversalSet) == S.EmptySet assert S.EmptySet.complement(S.Reals) == S.Reals assert Union(Interval(0, 1), Interval(2, 3)).complement(S.Reals) == \ Union(Interval(-oo, 0, True, True), Interval(1, 2, True, True), Interval(3, oo, True, True)) assert FiniteSet(0).complement(S.Reals) == \ Union(Interval(-oo, 0, True, True), Interval(0, oo, True, True)) assert (FiniteSet(5) + Interval(S.NegativeInfinity, 0)).complement(S.Reals) == \ Interval(0, 5, True, True) + Interval(5, S.Infinity, True, True) assert FiniteSet(1, 2, 3).complement(S.Reals) == \ Interval(S.NegativeInfinity, 1, True, True) + \ Interval(1, 2, True, True) + Interval(2, 3, True, True) +\ Interval(3, S.Infinity, True, True) assert FiniteSet(x).complement(S.Reals) == Complement(S.Reals, FiniteSet(x)) assert FiniteSet(0, x).complement(S.Reals) == Complement(Interval(-oo, 0, True, True) + Interval(0, oo, True, True) , FiniteSet(x), evaluate=False) square = Interval(0, 1) * Interval(0, 1) notsquare = square.complement(S.Reals*S.Reals) assert all(pt in square for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)]) assert not any( pt in notsquare for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)]) assert not any(pt in square for pt in [(-1, 0), (1.5, .5), (10, 10)]) assert all(pt in notsquare for pt in [(-1, 0), (1.5, .5), (10, 10)]) def test_intersect1(): assert all(S.Integers.intersection(i) is i for i in (S.Naturals, S.Naturals0)) assert all(i.intersection(S.Integers) is i for i in (S.Naturals, S.Naturals0)) s = S.Naturals0 assert S.Naturals.intersection(s) is S.Naturals assert s.intersection(S.Naturals) is S.Naturals x = Symbol('x') assert Interval(0, 2).intersect(Interval(1, 2)) == Interval(1, 2) assert Interval(0, 2).intersect(Interval(1, 2, True)) == \ Interval(1, 2, True) assert Interval(0, 2, True).intersect(Interval(1, 2)) == \ Interval(1, 2, False, False) assert Interval(0, 2, True, True).intersect(Interval(1, 2)) == \ Interval(1, 2, False, True) assert Interval(0, 2).intersect(Union(Interval(0, 1), Interval(2, 3))) == \ Union(Interval(0, 1), Interval(2, 2)) assert FiniteSet(1, 2).intersect(FiniteSet(1, 2, 3)) == FiniteSet(1, 2) assert FiniteSet(1, 2, x).intersect(FiniteSet(x)) == FiniteSet(x) assert FiniteSet('ham', 'eggs').intersect(FiniteSet('ham')) == \ FiniteSet('ham') assert FiniteSet(1, 2, 3, 4, 5).intersect(S.EmptySet) == S.EmptySet assert Interval(0, 5).intersect(FiniteSet(1, 3)) == FiniteSet(1, 3) assert Interval(0, 1, True, True).intersect(FiniteSet(1)) == S.EmptySet assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2)) == \ Union(Interval(1, 1), Interval(2, 2)) assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(0, 2)) == \ Union(Interval(0, 1), Interval(2, 2)) assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2, True, True)) == \ S.EmptySet assert Union(Interval(0, 1), Interval(2, 3)).intersect(S.EmptySet) == \ S.EmptySet assert Union(Interval(0, 5), FiniteSet('ham')).intersect(FiniteSet(2, 3, 4, 5, 6)) == \ Intersection(FiniteSet(2, 3, 4, 5, 6), Union(FiniteSet('ham'), Interval(0, 5))) assert Intersection(FiniteSet(1, 2, 3), Interval(2, x), Interval(3, y)) == \ Intersection(FiniteSet(3), Interval(2, x), Interval(3, y), evaluate=False) assert Intersection(FiniteSet(1, 2), Interval(0, 3), Interval(x, y)) == \ Intersection({1, 2}, Interval(x, y), evaluate=False) assert Intersection(FiniteSet(1, 2, 4), Interval(0, 3), Interval(x, y)) == \ Intersection({1, 2}, Interval(x, y), evaluate=False) # XXX: Is the real=True necessary here? # https://github.com/sympy/sympy/issues/17532 m, n = symbols('m, n', real=True) assert Intersection(FiniteSet(m), FiniteSet(m, n), Interval(m, m+1)) == \ FiniteSet(m) # issue 8217 assert Intersection(FiniteSet(x), FiniteSet(y)) == \ Intersection(FiniteSet(x), FiniteSet(y), evaluate=False) assert FiniteSet(x).intersect(S.Reals) == \ Intersection(S.Reals, FiniteSet(x), evaluate=False) # tests for the intersection alias assert Interval(0, 5).intersection(FiniteSet(1, 3)) == FiniteSet(1, 3) assert Interval(0, 1, True, True).intersection(FiniteSet(1)) == S.EmptySet assert Union(Interval(0, 1), Interval(2, 3)).intersection(Interval(1, 2)) == \ Union(Interval(1, 1), Interval(2, 2)) def test_intersection(): # iterable i = Intersection(FiniteSet(1, 2, 3), Interval(2, 5), evaluate=False) assert i.is_iterable assert set(i) == {S(2), S(3)} # challenging intervals x = Symbol('x', real=True) i = Intersection(Interval(0, 3), Interval(x, 6)) assert (5 in i) is False raises(TypeError, lambda: 2 in i) # Singleton special cases assert Intersection(Interval(0, 1), S.EmptySet) == S.EmptySet assert Intersection(Interval(-oo, oo), Interval(-oo, x)) == Interval(-oo, x) # Products line = Interval(0, 5) i = Intersection(line**2, line**3, evaluate=False) assert (2, 2) not in i assert (2, 2, 2) not in i raises(TypeError, lambda: list(i)) a = Intersection(Intersection(S.Integers, S.Naturals, evaluate=False), S.Reals, evaluate=False) assert a._argset == frozenset([Intersection(S.Naturals, S.Integers, evaluate=False), S.Reals]) assert Intersection(S.Complexes, FiniteSet(S.ComplexInfinity)) == S.EmptySet # issue 12178 assert Intersection() == S.UniversalSet # issue 16987 assert Intersection({1}, {1}, {x}) == Intersection({1}, {x}) def test_issue_9623(): n = Symbol('n') a = S.Reals b = Interval(0, oo) c = FiniteSet(n) assert Intersection(a, b, c) == Intersection(b, c) assert Intersection(Interval(1, 2), Interval(3, 4), FiniteSet(n)) == EmptySet def test_is_disjoint(): assert Interval(0, 2).is_disjoint(Interval(1, 2)) == False assert Interval(0, 2).is_disjoint(Interval(3, 4)) == True def test_ProductSet__len__(): A = FiniteSet(1, 2) B = FiniteSet(1, 2, 3) assert ProductSet(A).__len__() == 2 assert ProductSet(A).__len__() is not S(2) assert ProductSet(A, B).__len__() == 6 assert ProductSet(A, B).__len__() is not S(6) def test_ProductSet(): # ProductSet is always a set of Tuples assert ProductSet(S.Reals) == S.Reals ** 1 assert ProductSet(S.Reals, S.Reals) == S.Reals ** 2 assert ProductSet(S.Reals, S.Reals, S.Reals) == S.Reals ** 3 assert ProductSet(S.Reals) != S.Reals assert ProductSet(S.Reals, S.Reals) == S.Reals * S.Reals assert ProductSet(S.Reals, S.Reals, S.Reals) != S.Reals * S.Reals * S.Reals assert ProductSet(S.Reals, S.Reals, S.Reals) == (S.Reals * S.Reals * S.Reals).flatten() assert 1 not in ProductSet(S.Reals) assert (1,) in ProductSet(S.Reals) assert 1 not in ProductSet(S.Reals, S.Reals) assert (1, 2) in ProductSet(S.Reals, S.Reals) assert (1, I) not in ProductSet(S.Reals, S.Reals) assert (1, 2, 3) in ProductSet(S.Reals, S.Reals, S.Reals) assert (1, 2, 3) in S.Reals ** 3 assert (1, 2, 3) not in S.Reals * S.Reals * S.Reals assert ((1, 2), 3) in S.Reals * S.Reals * S.Reals assert (1, (2, 3)) not in S.Reals * S.Reals * S.Reals assert (1, (2, 3)) in S.Reals * (S.Reals * S.Reals) assert ProductSet() == FiniteSet(()) assert ProductSet(S.Reals, S.EmptySet) == S.EmptySet # See GH-17458 for ni in range(5): Rn = ProductSet(*(S.Reals,) * ni) assert (1,) * ni in Rn assert 1 not in Rn assert (S.Reals * S.Reals) * S.Reals != S.Reals * (S.Reals * S.Reals) S1 = S.Reals S2 = S.Integers x1 = pi x2 = 3 assert x1 in S1 assert x2 in S2 assert (x1, x2) in S1 * S2 S3 = S1 * S2 x3 = (x1, x2) assert x3 in S3 assert (x3, x3) in S3 * S3 assert x3 + x3 not in S3 * S3 raises(ValueError, lambda: S.Reals**-1) with warns_deprecated_sympy(): ProductSet(FiniteSet(s) for s in range(2)) raises(TypeError, lambda: ProductSet(None)) S1 = FiniteSet(1, 2) S2 = FiniteSet(3, 4) S3 = ProductSet(S1, S2) assert (S3.as_relational(x, y) == And(S1.as_relational(x), S2.as_relational(y)) == And(Or(Eq(x, 1), Eq(x, 2)), Or(Eq(y, 3), Eq(y, 4)))) raises(ValueError, lambda: S3.as_relational(x)) raises(ValueError, lambda: S3.as_relational(x, 1)) raises(ValueError, lambda: ProductSet(Interval(0, 1)).as_relational(x, y)) Z2 = ProductSet(S.Integers, S.Integers) assert Z2.contains((1, 2)) is S.true assert Z2.contains((1,)) is S.false assert Z2.contains(x) == Contains(x, Z2, evaluate=False) assert Z2.contains(x).subs(x, 1) is S.false assert Z2.contains((x, 1)).subs(x, 2) is S.true assert Z2.contains((x, y)) == Contains((x, y), Z2, evaluate=False) assert unchanged(Contains, (x, y), Z2) assert Contains((1, 2), Z2) is S.true def test_ProductSet_of_single_arg_is_not_arg(): assert unchanged(ProductSet, Interval(0, 1)) assert unchanged(ProductSet, ProductSet(Interval(0, 1))) def test_ProductSet_is_empty(): assert ProductSet(S.Integers, S.Reals).is_empty == False assert ProductSet(Interval(x, 1), S.Reals).is_empty == None def test_interval_subs(): a = Symbol('a', real=True) assert Interval(0, a).subs(a, 2) == Interval(0, 2) assert Interval(a, 0).subs(a, 2) == S.EmptySet def test_interval_to_mpi(): assert Interval(0, 1).to_mpi() == mpi(0, 1) assert Interval(0, 1, True, False).to_mpi() == mpi(0, 1) assert type(Interval(0, 1).to_mpi()) == type(mpi(0, 1)) def test_set_evalf(): assert Interval(S(11)/64, S.Half).evalf() == Interval( Float('0.171875'), Float('0.5')) assert Interval(x, S.Half, right_open=True).evalf() == Interval( x, Float('0.5'), right_open=True) assert Interval(-oo, S.Half).evalf() == Interval(-oo, Float('0.5')) assert FiniteSet(2, x).evalf() == FiniteSet(Float('2.0'), x) def test_measure(): a = Symbol('a', real=True) assert Interval(1, 3).measure == 2 assert Interval(0, a).measure == a assert Interval(1, a).measure == a - 1 assert Union(Interval(1, 2), Interval(3, 4)).measure == 2 assert Union(Interval(1, 2), Interval(3, 4), FiniteSet(5, 6, 7)).measure \ == 2 assert FiniteSet(1, 2, oo, a, -oo, -5).measure == 0 assert S.EmptySet.measure == 0 square = Interval(0, 10) * Interval(0, 10) offsetsquare = Interval(5, 15) * Interval(5, 15) band = Interval(-oo, oo) * Interval(2, 4) assert square.measure == offsetsquare.measure == 100 assert (square + offsetsquare).measure == 175 # there is some overlap assert (square - offsetsquare).measure == 75 assert (square * FiniteSet(1, 2, 3)).measure == 0 assert (square.intersect(band)).measure == 20 assert (square + band).measure is oo assert (band * FiniteSet(1, 2, 3)).measure is nan def test_is_subset(): assert Interval(0, 1).is_subset(Interval(0, 2)) is True assert Interval(0, 3).is_subset(Interval(0, 2)) is False assert Interval(0, 1).is_subset(FiniteSet(0, 1)) is False assert FiniteSet(1, 2).is_subset(FiniteSet(1, 2, 3, 4)) assert FiniteSet(4, 5).is_subset(FiniteSet(1, 2, 3, 4)) is False assert FiniteSet(1).is_subset(Interval(0, 2)) assert FiniteSet(1, 2).is_subset(Interval(0, 2, True, True)) is False assert (Interval(1, 2) + FiniteSet(3)).is_subset( Interval(0, 2, False, True) + FiniteSet(2, 3)) assert Interval(3, 4).is_subset(Union(Interval(0, 1), Interval(2, 5))) is True assert Interval(3, 6).is_subset(Union(Interval(0, 1), Interval(2, 5))) is False assert FiniteSet(1, 2, 3, 4).is_subset(Interval(0, 5)) is True assert S.EmptySet.is_subset(FiniteSet(1, 2, 3)) is True assert Interval(0, 1).is_subset(S.EmptySet) is False assert S.EmptySet.is_subset(S.EmptySet) is True raises(ValueError, lambda: S.EmptySet.is_subset(1)) # tests for the issubset alias assert FiniteSet(1, 2, 3, 4).issubset(Interval(0, 5)) is True assert S.EmptySet.issubset(FiniteSet(1, 2, 3)) is True assert S.Naturals.is_subset(S.Integers) assert S.Naturals0.is_subset(S.Integers) assert FiniteSet(x).is_subset(FiniteSet(y)) is None assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x)) is True assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x+1)) is False assert Interval(0, 1).is_subset(Interval(0, 1, left_open=True)) is False assert Interval(-2, 3).is_subset(Union(Interval(-oo, -2), Interval(3, oo))) is False n = Symbol('n', integer=True) assert Range(-3, 4, 1).is_subset(FiniteSet(-10, 10)) is False assert Range(S(10)**100).is_subset(FiniteSet(0, 1, 2)) is False assert Range(6, 0, -2).is_subset(FiniteSet(2, 4, 6)) is True assert Range(1, oo).is_subset(FiniteSet(1, 2)) is False assert Range(-oo, 1).is_subset(FiniteSet(1)) is False assert Range(3).is_subset(FiniteSet(0, 1, n)) is None assert Range(n, n + 2).is_subset(FiniteSet(n, n + 1)) is True assert Range(5).is_subset(Interval(0, 4, right_open=True)) is False def test_is_proper_subset(): assert Interval(0, 1).is_proper_subset(Interval(0, 2)) is True assert Interval(0, 3).is_proper_subset(Interval(0, 2)) is False assert S.EmptySet.is_proper_subset(FiniteSet(1, 2, 3)) is True raises(ValueError, lambda: Interval(0, 1).is_proper_subset(0)) def test_is_superset(): assert Interval(0, 1).is_superset(Interval(0, 2)) == False assert Interval(0, 3).is_superset(Interval(0, 2)) assert FiniteSet(1, 2).is_superset(FiniteSet(1, 2, 3, 4)) == False assert FiniteSet(4, 5).is_superset(FiniteSet(1, 2, 3, 4)) == False assert FiniteSet(1).is_superset(Interval(0, 2)) == False assert FiniteSet(1, 2).is_superset(Interval(0, 2, True, True)) == False assert (Interval(1, 2) + FiniteSet(3)).is_superset( Interval(0, 2, False, True) + FiniteSet(2, 3)) == False assert Interval(3, 4).is_superset(Union(Interval(0, 1), Interval(2, 5))) == False assert FiniteSet(1, 2, 3, 4).is_superset(Interval(0, 5)) == False assert S.EmptySet.is_superset(FiniteSet(1, 2, 3)) == False assert Interval(0, 1).is_superset(S.EmptySet) == True assert S.EmptySet.is_superset(S.EmptySet) == True raises(ValueError, lambda: S.EmptySet.is_superset(1)) # tests for the issuperset alias assert Interval(0, 1).issuperset(S.EmptySet) == True assert S.EmptySet.issuperset(S.EmptySet) == True def test_is_proper_superset(): assert Interval(0, 1).is_proper_superset(Interval(0, 2)) is False assert Interval(0, 3).is_proper_superset(Interval(0, 2)) is True assert FiniteSet(1, 2, 3).is_proper_superset(S.EmptySet) is True raises(ValueError, lambda: Interval(0, 1).is_proper_superset(0)) def test_contains(): assert Interval(0, 2).contains(1) is S.true assert Interval(0, 2).contains(3) is S.false assert Interval(0, 2, True, False).contains(0) is S.false assert Interval(0, 2, True, False).contains(2) is S.true assert Interval(0, 2, False, True).contains(0) is S.true assert Interval(0, 2, False, True).contains(2) is S.false assert Interval(0, 2, True, True).contains(0) is S.false assert Interval(0, 2, True, True).contains(2) is S.false assert (Interval(0, 2) in Interval(0, 2)) is False assert FiniteSet(1, 2, 3).contains(2) is S.true assert FiniteSet(1, 2, Symbol('x')).contains(Symbol('x')) is S.true assert FiniteSet(y)._contains(x) is None raises(TypeError, lambda: x in FiniteSet(y)) assert FiniteSet({x, y})._contains({x}) is None assert FiniteSet({x, y}).subs(y, x)._contains({x}) is True assert FiniteSet({x, y}).subs(y, x+1)._contains({x}) is False # issue 8197 from sympy.abc import a, b assert isinstance(FiniteSet(b).contains(-a), Contains) assert isinstance(FiniteSet(b).contains(a), Contains) assert isinstance(FiniteSet(a).contains(1), Contains) raises(TypeError, lambda: 1 in FiniteSet(a)) # issue 8209 rad1 = Pow(Pow(2, Rational(1, 3)) - 1, Rational(1, 3)) rad2 = Pow(Rational(1, 9), Rational(1, 3)) - Pow(Rational(2, 9), Rational(1, 3)) + Pow(Rational(4, 9), Rational(1, 3)) s1 = FiniteSet(rad1) s2 = FiniteSet(rad2) assert s1 - s2 == S.EmptySet items = [1, 2, S.Infinity, S('ham'), -1.1] fset = FiniteSet(*items) assert all(item in fset for item in items) assert all(fset.contains(item) is S.true for item in items) assert Union(Interval(0, 1), Interval(2, 5)).contains(3) is S.true assert Union(Interval(0, 1), Interval(2, 5)).contains(6) is S.false assert Union(Interval(0, 1), FiniteSet(2, 5)).contains(3) is S.false assert S.EmptySet.contains(1) is S.false assert FiniteSet(rootof(x**3 + x - 1, 0)).contains(S.Infinity) is S.false assert rootof(x**5 + x**3 + 1, 0) in S.Reals assert not rootof(x**5 + x**3 + 1, 1) in S.Reals # non-bool results assert Union(Interval(1, 2), Interval(3, 4)).contains(x) == \ Or(And(S.One <= x, x <= 2), And(S(3) <= x, x <= 4)) assert Intersection(Interval(1, x), Interval(2, 3)).contains(y) == \ And(y <= 3, y <= x, S.One <= y, S(2) <= y) assert (S.Complexes).contains(S.ComplexInfinity) == S.false def test_interval_symbolic(): x = Symbol('x') e = Interval(0, 1) assert e.contains(x) == And(S.Zero <= x, x <= 1) raises(TypeError, lambda: x in e) e = Interval(0, 1, True, True) assert e.contains(x) == And(S.Zero < x, x < 1) c = Symbol('c', real=False) assert Interval(x, x + 1).contains(c) == False e = Symbol('e', extended_real=True) assert Interval(-oo, oo).contains(e) == And( S.NegativeInfinity < e, e < S.Infinity) def test_union_contains(): x = Symbol('x') i1 = Interval(0, 1) i2 = Interval(2, 3) i3 = Union(i1, i2) assert i3.as_relational(x) == Or(And(S.Zero <= x, x <= 1), And(S(2) <= x, x <= 3)) raises(TypeError, lambda: x in i3) e = i3.contains(x) assert e == i3.as_relational(x) assert e.subs(x, -0.5) is false assert e.subs(x, 0.5) is true assert e.subs(x, 1.5) is false assert e.subs(x, 2.5) is true assert e.subs(x, 3.5) is false U = Interval(0, 2, True, True) + Interval(10, oo) + FiniteSet(-1, 2, 5, 6) assert all(el not in U for el in [0, 4, -oo]) assert all(el in U for el in [2, 5, 10]) def test_is_number(): assert Interval(0, 1).is_number is False assert Set().is_number is False def test_Interval_is_left_unbounded(): assert Interval(3, 4).is_left_unbounded is False assert Interval(-oo, 3).is_left_unbounded is True assert Interval(Float("-inf"), 3).is_left_unbounded is True def test_Interval_is_right_unbounded(): assert Interval(3, 4).is_right_unbounded is False assert Interval(3, oo).is_right_unbounded is True assert Interval(3, Float("+inf")).is_right_unbounded is True def test_Interval_as_relational(): x = Symbol('x') assert Interval(-1, 2, False, False).as_relational(x) == \ And(Le(-1, x), Le(x, 2)) assert Interval(-1, 2, True, False).as_relational(x) == \ And(Lt(-1, x), Le(x, 2)) assert Interval(-1, 2, False, True).as_relational(x) == \ And(Le(-1, x), Lt(x, 2)) assert Interval(-1, 2, True, True).as_relational(x) == \ And(Lt(-1, x), Lt(x, 2)) assert Interval(-oo, 2, right_open=False).as_relational(x) == And(Lt(-oo, x), Le(x, 2)) assert Interval(-oo, 2, right_open=True).as_relational(x) == And(Lt(-oo, x), Lt(x, 2)) assert Interval(-2, oo, left_open=False).as_relational(x) == And(Le(-2, x), Lt(x, oo)) assert Interval(-2, oo, left_open=True).as_relational(x) == And(Lt(-2, x), Lt(x, oo)) assert Interval(-oo, oo).as_relational(x) == And(Lt(-oo, x), Lt(x, oo)) x = Symbol('x', real=True) y = Symbol('y', real=True) assert Interval(x, y).as_relational(x) == (x <= y) assert Interval(y, x).as_relational(x) == (y <= x) def test_Finite_as_relational(): x = Symbol('x') y = Symbol('y') assert FiniteSet(1, 2).as_relational(x) == Or(Eq(x, 1), Eq(x, 2)) assert FiniteSet(y, -5).as_relational(x) == Or(Eq(x, y), Eq(x, -5)) def test_Union_as_relational(): x = Symbol('x') assert (Interval(0, 1) + FiniteSet(2)).as_relational(x) == \ Or(And(Le(0, x), Le(x, 1)), Eq(x, 2)) assert (Interval(0, 1, True, True) + FiniteSet(1)).as_relational(x) == \ And(Lt(0, x), Le(x, 1)) def test_Intersection_as_relational(): x = Symbol('x') assert (Intersection(Interval(0, 1), FiniteSet(2), evaluate=False).as_relational(x) == And(And(Le(0, x), Le(x, 1)), Eq(x, 2))) def test_Complement_as_relational(): x = Symbol('x') expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False) assert expr.as_relational(x) == \ And(Le(0, x), Le(x, 1), Ne(x, 2)) @XFAIL def test_Complement_as_relational_fail(): x = Symbol('x') expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False) # XXX This example fails because 0 <= x changes to x >= 0 # during the evaluation. assert expr.as_relational(x) == \ (0 <= x) & (x <= 1) & Ne(x, 2) def test_SymmetricDifference_as_relational(): x = Symbol('x') expr = SymmetricDifference(Interval(0, 1), FiniteSet(2), evaluate=False) assert expr.as_relational(x) == Xor(Eq(x, 2), Le(0, x) & Le(x, 1)) def test_EmptySet(): assert S.EmptySet.as_relational(Symbol('x')) is S.false assert S.EmptySet.intersect(S.UniversalSet) == S.EmptySet assert S.EmptySet.boundary == S.EmptySet def test_finite_basic(): x = Symbol('x') A = FiniteSet(1, 2, 3) B = FiniteSet(3, 4, 5) AorB = Union(A, B) AandB = A.intersect(B) assert A.is_subset(AorB) and B.is_subset(AorB) assert AandB.is_subset(A) assert AandB == FiniteSet(3) assert A.inf == 1 and A.sup == 3 assert AorB.inf == 1 and AorB.sup == 5 assert FiniteSet(x, 1, 5).sup == Max(x, 5) assert FiniteSet(x, 1, 5).inf == Min(x, 1) # issue 7335 assert FiniteSet(S.EmptySet) != S.EmptySet assert FiniteSet(FiniteSet(1, 2, 3)) != FiniteSet(1, 2, 3) assert FiniteSet((1, 2, 3)) != FiniteSet(1, 2, 3) # Ensure a variety of types can exist in a FiniteSet assert FiniteSet((1, 2), Float, A, -5, x, 'eggs', x**2, Interval) assert (A > B) is False assert (A >= B) is False assert (A < B) is False assert (A <= B) is False assert AorB > A and AorB > B assert AorB >= A and AorB >= B assert A >= A and A <= A assert A >= AandB and B >= AandB assert A > AandB and B > AandB assert FiniteSet(1.0) == FiniteSet(1) def test_product_basic(): H, T = 'H', 'T' unit_line = Interval(0, 1) d6 = FiniteSet(1, 2, 3, 4, 5, 6) d4 = FiniteSet(1, 2, 3, 4) coin = FiniteSet(H, T) square = unit_line * unit_line assert (0, 0) in square assert 0 not in square assert (H, T) in coin ** 2 assert (.5, .5, .5) in (square * unit_line).flatten() assert ((.5, .5), .5) in square * unit_line assert (H, 3, 3) in (coin * d6 * d6).flatten() assert ((H, 3), 3) in coin * d6 * d6 HH, TT = sympify(H), sympify(T) assert set(coin**2) == {(HH, HH), (HH, TT), (TT, HH), (TT, TT)} assert (d4*d4).is_subset(d6*d6) assert square.complement(Interval(-oo, oo)*Interval(-oo, oo)) == Union( (Interval(-oo, 0, True, True) + Interval(1, oo, True, True))*Interval(-oo, oo), Interval(-oo, oo)*(Interval(-oo, 0, True, True) + Interval(1, oo, True, True))) assert (Interval(-5, 5)**3).is_subset(Interval(-10, 10)**3) assert not (Interval(-10, 10)**3).is_subset(Interval(-5, 5)**3) assert not (Interval(-5, 5)**2).is_subset(Interval(-10, 10)**3) assert (Interval(.2, .5)*FiniteSet(.5)).is_subset(square) # segment in square assert len(coin*coin*coin) == 8 assert len(S.EmptySet*S.EmptySet) == 0 assert len(S.EmptySet*coin) == 0 raises(TypeError, lambda: len(coin*Interval(0, 2))) def test_real(): x = Symbol('x', real=True, finite=True) I = Interval(0, 5) J = Interval(10, 20) A = FiniteSet(1, 2, 30, x, S.Pi) B = FiniteSet(-4, 0) C = FiniteSet(100) D = FiniteSet('Ham', 'Eggs') assert all(s.is_subset(S.Reals) for s in [I, J, A, B, C]) assert not D.is_subset(S.Reals) assert all((a + b).is_subset(S.Reals) for a in [I, J, A, B, C] for b in [I, J, A, B, C]) assert not any((a + D).is_subset(S.Reals) for a in [I, J, A, B, C, D]) assert not (I + A + D).is_subset(S.Reals) def test_supinf(): x = Symbol('x', real=True) y = Symbol('y', real=True) assert (Interval(0, 1) + FiniteSet(2)).sup == 2 assert (Interval(0, 1) + FiniteSet(2)).inf == 0 assert (Interval(0, 1) + FiniteSet(x)).sup == Max(1, x) assert (Interval(0, 1) + FiniteSet(x)).inf == Min(0, x) assert FiniteSet(5, 1, x).sup == Max(5, x) assert FiniteSet(5, 1, x).inf == Min(1, x) assert FiniteSet(5, 1, x, y).sup == Max(5, x, y) assert FiniteSet(5, 1, x, y).inf == Min(1, x, y) assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).sup == \ S.Infinity assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).inf == \ S.NegativeInfinity assert FiniteSet('Ham', 'Eggs').sup == Max('Ham', 'Eggs') def test_universalset(): U = S.UniversalSet x = Symbol('x') assert U.as_relational(x) is S.true assert U.union(Interval(2, 4)) == U assert U.intersect(Interval(2, 4)) == Interval(2, 4) assert U.measure is S.Infinity assert U.boundary == S.EmptySet assert U.contains(0) is S.true def test_Union_of_ProductSets_shares(): line = Interval(0, 2) points = FiniteSet(0, 1, 2) assert Union(line * line, line * points) == line * line def test_Interval_free_symbols(): # issue 6211 assert Interval(0, 1).free_symbols == set() x = Symbol('x', real=True) assert Interval(0, x).free_symbols == {x} def test_image_interval(): from sympy.core.numbers import Rational x = Symbol('x', real=True) a = Symbol('a', real=True) assert imageset(x, 2*x, Interval(-2, 1)) == Interval(-4, 2) assert imageset(x, 2*x, Interval(-2, 1, True, False)) == \ Interval(-4, 2, True, False) assert imageset(x, x**2, Interval(-2, 1, True, False)) == \ Interval(0, 4, False, True) assert imageset(x, x**2, Interval(-2, 1)) == Interval(0, 4) assert imageset(x, x**2, Interval(-2, 1, True, False)) == \ Interval(0, 4, False, True) assert imageset(x, x**2, Interval(-2, 1, True, True)) == \ Interval(0, 4, False, True) assert imageset(x, (x - 2)**2, Interval(1, 3)) == Interval(0, 1) assert imageset(x, 3*x**4 - 26*x**3 + 78*x**2 - 90*x, Interval(0, 4)) == \ Interval(-35, 0) # Multiple Maxima assert imageset(x, x + 1/x, Interval(-oo, oo)) == Interval(-oo, -2) \ + Interval(2, oo) # Single Infinite discontinuity assert imageset(x, 1/x + 1/(x-1)**2, Interval(0, 2, True, False)) == \ Interval(Rational(3, 2), oo, False) # Multiple Infinite discontinuities # Test for Python lambda assert imageset(lambda x: 2*x, Interval(-2, 1)) == Interval(-4, 2) assert imageset(Lambda(x, a*x), Interval(0, 1)) == \ ImageSet(Lambda(x, a*x), Interval(0, 1)) assert imageset(Lambda(x, sin(cos(x))), Interval(0, 1)) == \ ImageSet(Lambda(x, sin(cos(x))), Interval(0, 1)) def test_image_piecewise(): f = Piecewise((x, x <= -1), (1/x**2, x <= 5), (x**3, True)) f1 = Piecewise((0, x <= 1), (1, x <= 2), (2, True)) assert imageset(x, f, Interval(-5, 5)) == Union(Interval(-5, -1), Interval(Rational(1, 25), oo)) assert imageset(x, f1, Interval(1, 2)) == FiniteSet(0, 1) @XFAIL # See: https://github.com/sympy/sympy/pull/2723#discussion_r8659826 def test_image_Intersection(): x = Symbol('x', real=True) y = Symbol('y', real=True) assert imageset(x, x**2, Interval(-2, 0).intersect(Interval(x, y))) == \ Interval(0, 4).intersect(Interval(Min(x**2, y**2), Max(x**2, y**2))) def test_image_FiniteSet(): x = Symbol('x', real=True) assert imageset(x, 2*x, FiniteSet(1, 2, 3)) == FiniteSet(2, 4, 6) def test_image_Union(): x = Symbol('x', real=True) assert imageset(x, x**2, Interval(-2, 0) + FiniteSet(1, 2, 3)) == \ (Interval(0, 4) + FiniteSet(9)) def test_image_EmptySet(): x = Symbol('x', real=True) assert imageset(x, 2*x, S.EmptySet) == S.EmptySet def test_issue_5724_7680(): assert I not in S.Reals # issue 7680 assert Interval(-oo, oo).contains(I) is S.false def test_boundary(): assert FiniteSet(1).boundary == FiniteSet(1) assert all(Interval(0, 1, left_open, right_open).boundary == FiniteSet(0, 1) for left_open in (true, false) for right_open in (true, false)) def test_boundary_Union(): assert (Interval(0, 1) + Interval(2, 3)).boundary == FiniteSet(0, 1, 2, 3) assert ((Interval(0, 1, False, True) + Interval(1, 2, True, False)).boundary == FiniteSet(0, 1, 2)) assert (Interval(0, 1) + FiniteSet(2)).boundary == FiniteSet(0, 1, 2) assert Union(Interval(0, 10), Interval(5, 15), evaluate=False).boundary \ == FiniteSet(0, 15) assert Union(Interval(0, 10), Interval(0, 1), evaluate=False).boundary \ == FiniteSet(0, 10) assert Union(Interval(0, 10, True, True), Interval(10, 15, True, True), evaluate=False).boundary \ == FiniteSet(0, 10, 15) @XFAIL def test_union_boundary_of_joining_sets(): """ Testing the boundary of unions is a hard problem """ assert Union(Interval(0, 10), Interval(10, 15), evaluate=False).boundary \ == FiniteSet(0, 15) def test_boundary_ProductSet(): open_square = Interval(0, 1, True, True) ** 2 assert open_square.boundary == (FiniteSet(0, 1) * Interval(0, 1) + Interval(0, 1) * FiniteSet(0, 1)) second_square = Interval(1, 2, True, True) * Interval(0, 1, True, True) assert (open_square + second_square).boundary == ( FiniteSet(0, 1) * Interval(0, 1) + FiniteSet(1, 2) * Interval(0, 1) + Interval(0, 1) * FiniteSet(0, 1) + Interval(1, 2) * FiniteSet(0, 1)) def test_boundary_ProductSet_line(): line_in_r2 = Interval(0, 1) * FiniteSet(0) assert line_in_r2.boundary == line_in_r2 def test_is_open(): assert Interval(0, 1, False, False).is_open is False assert Interval(0, 1, True, False).is_open is False assert Interval(0, 1, True, True).is_open is True assert FiniteSet(1, 2, 3).is_open is False def test_is_closed(): assert Interval(0, 1, False, False).is_closed is True assert Interval(0, 1, True, False).is_closed is False assert FiniteSet(1, 2, 3).is_closed is True def test_closure(): assert Interval(0, 1, False, True).closure == Interval(0, 1, False, False) def test_interior(): assert Interval(0, 1, False, True).interior == Interval(0, 1, True, True) def test_issue_7841(): raises(TypeError, lambda: x in S.Reals) def test_Eq(): assert Eq(Interval(0, 1), Interval(0, 1)) assert Eq(Interval(0, 1), Interval(0, 2)) == False s1 = FiniteSet(0, 1) s2 = FiniteSet(1, 2) assert Eq(s1, s1) assert Eq(s1, s2) == False assert Eq(s1*s2, s1*s2) assert Eq(s1*s2, s2*s1) == False assert unchanged(Eq, FiniteSet({x, y}), FiniteSet({x})) assert Eq(FiniteSet({x, y}).subs(y, x), FiniteSet({x})) is S.true assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x) is S.true assert Eq(FiniteSet({x, y}).subs(y, x+1), FiniteSet({x})) is S.false assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x+1) is S.false assert Eq(ProductSet({1}, {2}), Interval(1, 2)) is S.false assert Eq(ProductSet({1}), ProductSet({1}, {2})) is S.false assert Eq(FiniteSet(()), FiniteSet(1)) is S.false assert Eq(ProductSet(), FiniteSet(1)) is S.false i1 = Interval(0, 1) i2 = Interval(x, y) assert unchanged(Eq, ProductSet(i1, i1), ProductSet(i2, i2)) def test_SymmetricDifference(): A = FiniteSet(0, 1, 2, 3, 4, 5) B = FiniteSet(2, 4, 6, 8, 10) C = Interval(8, 10) assert SymmetricDifference(A, B, evaluate=False).is_iterable is True assert SymmetricDifference(A, C, evaluate=False).is_iterable is None assert FiniteSet(*SymmetricDifference(A, B, evaluate=False)) == \ FiniteSet(0, 1, 3, 5, 6, 8, 10) raises(TypeError, lambda: FiniteSet(*SymmetricDifference(A, C, evaluate=False))) assert SymmetricDifference(FiniteSet(0, 1, 2, 3, 4, 5), \ FiniteSet(2, 4, 6, 8, 10)) == FiniteSet(0, 1, 3, 5, 6, 8, 10) assert SymmetricDifference(FiniteSet(2, 3, 4), FiniteSet(2, 3 , 4 , 5)) \ == FiniteSet(5) assert FiniteSet(1, 2, 3, 4, 5) ^ FiniteSet(1, 2, 5, 6) == \ FiniteSet(3, 4, 6) assert Set(1, 2 , 3) ^ Set(2, 3, 4) == Union(Set(1, 2, 3) - Set(2, 3, 4), \ Set(2, 3, 4) - Set(1, 2, 3)) assert Interval(0, 4) ^ Interval(2, 5) == Union(Interval(0, 4) - \ Interval(2, 5), Interval(2, 5) - Interval(0, 4)) def test_issue_9536(): from sympy.functions.elementary.exponential import log a = Symbol('a', real=True) assert FiniteSet(log(a)).intersect(S.Reals) == Intersection(S.Reals, FiniteSet(log(a))) def test_issue_9637(): n = Symbol('n') a = FiniteSet(n) b = FiniteSet(2, n) assert Complement(S.Reals, a) == Complement(S.Reals, a, evaluate=False) assert Complement(Interval(1, 3), a) == Complement(Interval(1, 3), a, evaluate=False) assert Complement(Interval(1, 3), b) == \ Complement(Union(Interval(1, 2, False, True), Interval(2, 3, True, False)), a) assert Complement(a, S.Reals) == Complement(a, S.Reals, evaluate=False) assert Complement(a, Interval(1, 3)) == Complement(a, Interval(1, 3), evaluate=False) def test_issue_9808(): # See https://github.com/sympy/sympy/issues/16342 assert Complement(FiniteSet(y), FiniteSet(1)) == Complement(FiniteSet(y), FiniteSet(1), evaluate=False) assert Complement(FiniteSet(1, 2, x), FiniteSet(x, y, 2, 3)) == \ Complement(FiniteSet(1), FiniteSet(y), evaluate=False) def test_issue_9956(): assert Union(Interval(-oo, oo), FiniteSet(1)) == Interval(-oo, oo) assert Interval(-oo, oo).contains(1) is S.true def test_issue_Symbol_inter(): i = Interval(0, oo) r = S.Reals mat = Matrix([0, 0, 0]) assert Intersection(r, i, FiniteSet(m), FiniteSet(m, n)) == \ Intersection(i, FiniteSet(m)) assert Intersection(FiniteSet(1, m, n), FiniteSet(m, n, 2), i) == \ Intersection(i, FiniteSet(m, n)) assert Intersection(FiniteSet(m, n, x), FiniteSet(m, z), r) == \ Intersection(Intersection({m, z}, {m, n, x}), r) assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, x), r) == \ Intersection(FiniteSet(3, m, n), FiniteSet(m, n, x), r, evaluate=False) assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, 2, 3), r) == \ Intersection(FiniteSet(3, m, n), r) assert Intersection(r, FiniteSet(mat, 2, n), FiniteSet(0, mat, n)) == \ Intersection(r, FiniteSet(n)) assert Intersection(FiniteSet(sin(x), cos(x)), FiniteSet(sin(x), cos(x), 1), r) == \ Intersection(r, FiniteSet(sin(x), cos(x))) assert Intersection(FiniteSet(x**2, 1, sin(x)), FiniteSet(x**2, 2, sin(x)), r) == \ Intersection(r, FiniteSet(x**2, sin(x))) def test_issue_11827(): assert S.Naturals0**4 def test_issue_10113(): f = x**2/(x**2 - 4) assert imageset(x, f, S.Reals) == Union(Interval(-oo, 0), Interval(1, oo, True, True)) assert imageset(x, f, Interval(-2, 2)) == Interval(-oo, 0) assert imageset(x, f, Interval(-2, 3)) == Union(Interval(-oo, 0), Interval(Rational(9, 5), oo)) def test_issue_10248(): raises( TypeError, lambda: list(Intersection(S.Reals, FiniteSet(x))) ) A = Symbol('A', real=True) assert list(Intersection(S.Reals, FiniteSet(A))) == [A] def test_issue_9447(): a = Interval(0, 1) + Interval(2, 3) assert Complement(S.UniversalSet, a) == Complement( S.UniversalSet, Union(Interval(0, 1), Interval(2, 3)), evaluate=False) assert Complement(S.Naturals, a) == Complement( S.Naturals, Union(Interval(0, 1), Interval(2, 3)), evaluate=False) def test_issue_10337(): assert (FiniteSet(2) == 3) is False assert (FiniteSet(2) != 3) is True raises(TypeError, lambda: FiniteSet(2) < 3) raises(TypeError, lambda: FiniteSet(2) <= 3) raises(TypeError, lambda: FiniteSet(2) > 3) raises(TypeError, lambda: FiniteSet(2) >= 3) def test_issue_10326(): bad = [ EmptySet, FiniteSet(1), Interval(1, 2), S.ComplexInfinity, S.ImaginaryUnit, S.Infinity, S.NaN, S.NegativeInfinity, ] interval = Interval(0, 5) for i in bad: assert i not in interval x = Symbol('x', real=True) nr = Symbol('nr', extended_real=False) assert x + 1 in Interval(x, x + 4) assert nr not in Interval(x, x + 4) assert Interval(1, 2) in FiniteSet(Interval(0, 5), Interval(1, 2)) assert Interval(-oo, oo).contains(oo) is S.false assert Interval(-oo, oo).contains(-oo) is S.false def test_issue_2799(): U = S.UniversalSet a = Symbol('a', real=True) inf_interval = Interval(a, oo) R = S.Reals assert U + inf_interval == inf_interval + U assert U + R == R + U assert R + inf_interval == inf_interval + R def test_issue_9706(): assert Interval(-oo, 0).closure == Interval(-oo, 0, True, False) assert Interval(0, oo).closure == Interval(0, oo, False, True) assert Interval(-oo, oo).closure == Interval(-oo, oo) def test_issue_8257(): reals_plus_infinity = Union(Interval(-oo, oo), FiniteSet(oo)) reals_plus_negativeinfinity = Union(Interval(-oo, oo), FiniteSet(-oo)) assert Interval(-oo, oo) + FiniteSet(oo) == reals_plus_infinity assert FiniteSet(oo) + Interval(-oo, oo) == reals_plus_infinity assert Interval(-oo, oo) + FiniteSet(-oo) == reals_plus_negativeinfinity assert FiniteSet(-oo) + Interval(-oo, oo) == reals_plus_negativeinfinity def test_issue_10931(): assert S.Integers - S.Integers == EmptySet assert S.Integers - S.Reals == EmptySet def test_issue_11174(): soln = Intersection(Interval(-oo, oo), FiniteSet(-x), evaluate=False) assert Intersection(FiniteSet(-x), S.Reals) == soln soln = Intersection(S.Reals, FiniteSet(x), evaluate=False) assert Intersection(FiniteSet(x), S.Reals) == soln def test_issue_18505(): assert ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers).contains(0) == \ Contains(0, ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers)) def test_finite_set_intersection(): # The following should not produce recursion errors # Note: some of these are not completely correct. See # https://github.com/sympy/sympy/issues/16342. assert Intersection(FiniteSet(-oo, x), FiniteSet(x)) == FiniteSet(x) assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(0, x)]) == FiniteSet(x) assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(x)]) == FiniteSet(x) assert Intersection._handle_finite_sets([FiniteSet(2, 3, x, y), FiniteSet(1, 2, x)]) == \ Intersection._handle_finite_sets([FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)]) == \ Intersection(FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)) == \ Intersection(FiniteSet(1, 2, x), FiniteSet(2, x, y)) assert FiniteSet(1+x-y) & FiniteSet(1) == \ FiniteSet(1) & FiniteSet(1+x-y) == \ Intersection(FiniteSet(1+x-y), FiniteSet(1), evaluate=False) assert FiniteSet(1) & FiniteSet(x) == FiniteSet(x) & FiniteSet(1) == \ Intersection(FiniteSet(1), FiniteSet(x), evaluate=False) assert FiniteSet({x}) & FiniteSet({x, y}) == \ Intersection(FiniteSet({x}), FiniteSet({x, y}), evaluate=False) def test_union_intersection_constructor(): # The actual exception does not matter here, so long as these fail sets = [FiniteSet(1), FiniteSet(2)] raises(Exception, lambda: Union(sets)) raises(Exception, lambda: Intersection(sets)) raises(Exception, lambda: Union(tuple(sets))) raises(Exception, lambda: Intersection(tuple(sets))) raises(Exception, lambda: Union(i for i in sets)) raises(Exception, lambda: Intersection(i for i in sets)) # Python sets are treated the same as FiniteSet # The union of a single set (of sets) is the set (of sets) itself assert Union(set(sets)) == FiniteSet(*sets) assert Intersection(set(sets)) == FiniteSet(*sets) assert Union({1}, {2}) == FiniteSet(1, 2) assert Intersection({1, 2}, {2, 3}) == FiniteSet(2) def test_Union_contains(): assert zoo not in Union( Interval.open(-oo, 0), Interval.open(0, oo)) @XFAIL def test_issue_16878b(): # in intersection_sets for (ImageSet, Set) there is no code # that handles the base_set of S.Reals like there is # for Integers assert imageset(x, (x, x), S.Reals).is_subset(S.Reals**2) is True def test_DisjointUnion(): assert DisjointUnion(FiniteSet(1, 2, 3), FiniteSet(1, 2, 3), FiniteSet(1, 2, 3)).rewrite(Union) == (FiniteSet(1, 2, 3) * FiniteSet(0, 1, 2)) assert DisjointUnion(Interval(1, 3), Interval(2, 4)).rewrite(Union) == Union(Interval(1, 3) * FiniteSet(0), Interval(2, 4) * FiniteSet(1)) assert DisjointUnion(Interval(0, 5), Interval(0, 5)).rewrite(Union) == Union(Interval(0, 5) * FiniteSet(0), Interval(0, 5) * FiniteSet(1)) assert DisjointUnion(Interval(-1, 2), S.EmptySet, S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(0) assert DisjointUnion(Interval(-1, 2)).rewrite(Union) == Interval(-1, 2) * FiniteSet(0) assert DisjointUnion(S.EmptySet, Interval(-1, 2), S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(1) assert DisjointUnion(Interval(-oo, oo)).rewrite(Union) == Interval(-oo, oo) * FiniteSet(0) assert DisjointUnion(S.EmptySet).rewrite(Union) == S.EmptySet assert DisjointUnion().rewrite(Union) == S.EmptySet raises(TypeError, lambda: DisjointUnion(Symbol('n'))) x = Symbol("x") y = Symbol("y") z = Symbol("z") assert DisjointUnion(FiniteSet(x), FiniteSet(y, z)).rewrite(Union) == (FiniteSet(x) * FiniteSet(0)) + (FiniteSet(y, z) * FiniteSet(1)) def test_DisjointUnion_is_empty(): assert DisjointUnion(S.EmptySet).is_empty is True assert DisjointUnion(S.EmptySet, S.EmptySet).is_empty is True assert DisjointUnion(S.EmptySet, FiniteSet(1, 2, 3)).is_empty is False def test_DisjointUnion_is_iterable(): assert DisjointUnion(S.Integers, S.Naturals, S.Rationals).is_iterable is True assert DisjointUnion(S.EmptySet, S.Reals).is_iterable is False assert DisjointUnion(FiniteSet(1, 2, 3), S.EmptySet, FiniteSet(x, y)).is_iterable is True assert DisjointUnion(S.EmptySet, S.EmptySet).is_iterable is False def test_DisjointUnion_contains(): assert (0, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (0, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (0, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (1, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (1, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (1, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (2, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (2, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (2, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (0, 1, 2) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (0, 0.5) not in DisjointUnion(FiniteSet(0.5)) assert (0, 5) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (x, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y)) assert (y, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y)) assert (z, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y)) assert (y, 2) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y)) assert (0.5, 0) in DisjointUnion(Interval(0, 1), Interval(0, 2)) assert (0.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2)) assert (1.5, 0) not in DisjointUnion(Interval(0, 1), Interval(0, 2)) assert (1.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2)) def test_DisjointUnion_iter(): D = DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z)) it = iter(D) L1 = [(x, 1), (y, 1), (z, 1)] L2 = [(3, 0), (5, 0), (7, 0), (9, 0)] nxt = next(it) assert nxt in L2 L2.remove(nxt) nxt = next(it) assert nxt in L1 L1.remove(nxt) nxt = next(it) assert nxt in L2 L2.remove(nxt) nxt = next(it) assert nxt in L1 L1.remove(nxt) nxt = next(it) assert nxt in L2 L2.remove(nxt) nxt = next(it) assert nxt in L1 L1.remove(nxt) nxt = next(it) assert nxt in L2 L2.remove(nxt) raises(StopIteration, lambda: next(it)) raises(ValueError, lambda: iter(DisjointUnion(Interval(0, 1), S.EmptySet))) def test_DisjointUnion_len(): assert len(DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z))) == 7 assert len(DisjointUnion(S.EmptySet, S.EmptySet, FiniteSet(x, y, z), S.EmptySet)) == 3 raises(ValueError, lambda: len(DisjointUnion(Interval(0, 1), S.EmptySet))) def test_issue_20089(): B = FiniteSet(FiniteSet(1, 2), FiniteSet(1)) assert not 1 in B assert not 1.0 in B assert not Eq(1, FiniteSet(1, 2)) assert FiniteSet(1) in B A = FiniteSet(1, 2) assert A in B assert B.issubset(B) assert not A.issubset(B) assert 1 in A C = FiniteSet(FiniteSet(1, 2), FiniteSet(1), 1, 2) assert A.issubset(C) assert B.issubset(C) def test_issue_19378(): a = FiniteSet(1, 2) b = ProductSet(a, a) c = FiniteSet((1, 1), (1, 2), (2, 1), (2, 2)) assert b.is_subset(c) is True d = FiniteSet(1) assert b.is_subset(d) is False assert Eq(c, b).simplify() is S.true assert Eq(a, c).simplify() is S.false assert Eq({1}, {x}).simplify() == Eq({1}, {x}) def test_issue_20379(): #https://github.com/sympy/sympy/issues/20379 x = pi - 3.14159265358979 assert FiniteSet(x).evalf(2) == FiniteSet(Float('3.23108914886517e-15', 2)) def test_finiteset_simplify(): S = FiniteSet(1, cos(1)**2 + sin(1)**2) assert S.simplify() == {1}
56e11a7af4bd44130b5135e542cc8881444127c18ba178959191b48c76619e4a
#!/usr/bin/env python """Distutils based setup script for SymPy. This uses Distutils (https://python.org/sigs/distutils-sig/) the standard python mechanism for installing packages. Optionally, you can use Setuptools (https://setuptools.readthedocs.io/en/latest/) to automatically handle dependencies. For the easiest installation just type the command (you'll probably need root privileges for that): python setup.py install This will install the library in the default location. For instructions on how to customize the install procedure read the output of: python setup.py --help install In addition, there are some other commands: python setup.py clean -> will clean all trash (*.pyc and stuff) python setup.py test -> will run the complete test suite python setup.py bench -> will run the complete benchmark suite python setup.py audit -> will run pyflakes checker on source code To get a full list of available commands, read the output of: python setup.py --help-commands Or, if all else fails, feel free to write to the sympy list at [email protected] and ask for help. """ import sys import os import shutil import glob import subprocess from distutils.command.sdist import sdist min_mpmath_version = '0.19' # This directory dir_setup = os.path.dirname(os.path.realpath(__file__)) extra_kwargs = {} try: from setuptools import setup, Command extra_kwargs['zip_safe'] = False extra_kwargs['entry_points'] = { 'console_scripts': [ 'isympy = isympy:main', ] } except ImportError: from distutils.core import setup, Command extra_kwargs['scripts'] = ['bin/isympy'] # handle mpmath deps in the hard way: from distutils.version import LooseVersion try: import mpmath if mpmath.__version__ < LooseVersion(min_mpmath_version): raise ImportError except ImportError: print("Please install the mpmath package with a version >= %s" % min_mpmath_version) sys.exit(-1) if sys.version_info < (3, 6): print("SymPy requires Python 3.6 or newer. Python %d.%d detected" % sys.version_info[:2]) sys.exit(-1) # Check that this list is uptodate against the result of the command: # python bin/generate_module_list.py modules = [ 'sympy.algebras', 'sympy.assumptions', 'sympy.assumptions.handlers', 'sympy.assumptions.predicates', 'sympy.benchmarks', 'sympy.calculus', 'sympy.categories', 'sympy.codegen', 'sympy.combinatorics', 'sympy.concrete', 'sympy.core', 'sympy.core.benchmarks', 'sympy.crypto', 'sympy.deprecated', 'sympy.diffgeom', 'sympy.discrete', 'sympy.external', 'sympy.functions', 'sympy.functions.combinatorial', 'sympy.functions.elementary', 'sympy.functions.elementary.benchmarks', 'sympy.functions.special', 'sympy.functions.special.benchmarks', 'sympy.geometry', 'sympy.holonomic', 'sympy.integrals', 'sympy.integrals.benchmarks', 'sympy.integrals.rubi', 'sympy.integrals.rubi.parsetools', 'sympy.integrals.rubi.rubi_tests', 'sympy.integrals.rubi.rules', 'sympy.interactive', 'sympy.liealgebras', 'sympy.logic', 'sympy.logic.algorithms', 'sympy.logic.utilities', 'sympy.matrices', 'sympy.matrices.benchmarks', 'sympy.matrices.expressions', 'sympy.multipledispatch', 'sympy.ntheory', 'sympy.parsing', 'sympy.parsing.autolev', 'sympy.parsing.autolev._antlr', 'sympy.parsing.c', 'sympy.parsing.fortran', 'sympy.parsing.latex', 'sympy.parsing.latex._antlr', 'sympy.physics', 'sympy.physics.continuum_mechanics', 'sympy.physics.control', 'sympy.physics.hep', 'sympy.physics.mechanics', 'sympy.physics.optics', 'sympy.physics.quantum', 'sympy.physics.units', 'sympy.physics.units.definitions', 'sympy.physics.units.systems', 'sympy.physics.vector', 'sympy.plotting', 'sympy.plotting.intervalmath', 'sympy.plotting.pygletplot', 'sympy.polys', 'sympy.polys.agca', 'sympy.polys.benchmarks', 'sympy.polys.domains', 'sympy.polys.matrices', 'sympy.printing', 'sympy.printing.pretty', 'sympy.sandbox', 'sympy.series', 'sympy.series.benchmarks', 'sympy.sets', 'sympy.sets.handlers', 'sympy.simplify', 'sympy.solvers', 'sympy.solvers.benchmarks', 'sympy.solvers.diophantine', 'sympy.solvers.ode', 'sympy.stats', 'sympy.stats.sampling', 'sympy.strategies', 'sympy.strategies.branch', 'sympy.tensor', 'sympy.tensor.array', 'sympy.tensor.array.expressions', 'sympy.testing', 'sympy.unify', 'sympy.utilities', 'sympy.utilities._compilation', 'sympy.utilities.mathml', 'sympy.vector', ] class audit(Command): """Audits SymPy's source code for following issues: - Names which are used but not defined or used before they are defined. - Names which are redefined without having been used. """ description = "Audit SymPy source with PyFlakes" user_options = [] def initialize_options(self): self.all = None def finalize_options(self): pass def run(self): import os try: import pyflakes.scripts.pyflakes as flakes except ImportError: print("In order to run the audit, you need to have PyFlakes installed.") sys.exit(-1) dirs = (os.path.join(*d) for d in (m.split('.') for m in modules)) warns = 0 for dir in dirs: for filename in os.listdir(dir): if filename.endswith('.py') and filename != '__init__.py': warns += flakes.checkPath(os.path.join(dir, filename)) if warns > 0: print("Audit finished with total %d warnings" % warns) class clean(Command): """Cleans *.pyc and debian trashs, so you should get the same copy as is in the VCS. """ description = "remove build files" user_options = [("all", "a", "the same")] def initialize_options(self): self.all = None def finalize_options(self): pass def run(self): curr_dir = os.getcwd() for root, dirs, files in os.walk(dir_setup): for file in files: if file.endswith('.pyc') and os.path.isfile: os.remove(os.path.join(root, file)) os.chdir(dir_setup) names = ["python-build-stamp-2.4", "MANIFEST", "build", "dist", "doc/_build", "sample.tex"] for f in names: if os.path.isfile(f): os.remove(f) elif os.path.isdir(f): shutil.rmtree(f) for name in glob.glob(os.path.join(dir_setup, "doc", "src", "modules", "physics", "vector", "*.pdf")): if os.path.isfile(name): os.remove(name) os.chdir(curr_dir) class test_sympy(Command): """Runs all tests under the sympy/ folder """ description = "run all tests and doctests; also see bin/test and bin/doctest" user_options = [] # distutils complains if this is not here. def __init__(self, *args): self.args = args[0] # so we can pass it to other classes Command.__init__(self, *args) def initialize_options(self): # distutils wants this pass def finalize_options(self): # this too pass def run(self): from sympy.utilities import runtests runtests.run_all_tests() class run_benchmarks(Command): """Runs all SymPy benchmarks""" description = "run all benchmarks" user_options = [] # distutils complains if this is not here. def __init__(self, *args): self.args = args[0] # so we can pass it to other classes Command.__init__(self, *args) def initialize_options(self): # distutils wants this pass def finalize_options(self): # this too pass # we use py.test like architecture: # # o collector -- collects benchmarks # o runner -- executes benchmarks # o presenter -- displays benchmarks results # # this is done in sympy.utilities.benchmarking on top of py.test def run(self): from sympy.utilities import benchmarking benchmarking.main(['sympy']) class antlr(Command): """Generate code with antlr4""" description = "generate parser code from antlr grammars" user_options = [] # distutils complains if this is not here. def __init__(self, *args): self.args = args[0] # so we can pass it to other classes Command.__init__(self, *args) def initialize_options(self): # distutils wants this pass def finalize_options(self): # this too pass def run(self): from sympy.parsing.latex._build_latex_antlr import build_parser if not build_parser(): sys.exit(-1) class sdist_sympy(sdist): def run(self): # Fetch git commit hash and write down to commit_hash.txt before # shipped in tarball. commit_hash = None commit_hash_filepath = 'doc/commit_hash.txt' try: commit_hash = \ subprocess.check_output(['git', 'rev-parse', 'HEAD']) commit_hash = commit_hash.decode('ascii') commit_hash = commit_hash.rstrip() print('Commit hash found : {}.'.format(commit_hash)) print('Writing it to {}.'.format(commit_hash_filepath)) except: pass if commit_hash: with open(commit_hash_filepath, 'w') as f: f.write(commit_hash) super(sdist_sympy, self).run() try: os.remove(commit_hash_filepath) print( 'Successfully removed temporary file {}.' .format(commit_hash_filepath)) except OSError as e: print("Error deleting %s - %s." % (e.filename, e.strerror)) # Check that this list is uptodate against the result of the command: # python bin/generate_test_list.py tests = [ 'sympy.algebras.tests', 'sympy.assumptions.tests', 'sympy.calculus.tests', 'sympy.categories.tests', 'sympy.codegen.tests', 'sympy.combinatorics.tests', 'sympy.concrete.tests', 'sympy.core.tests', 'sympy.crypto.tests', 'sympy.deprecated.tests', 'sympy.diffgeom.tests', 'sympy.discrete.tests', 'sympy.external.tests', 'sympy.functions.combinatorial.tests', 'sympy.functions.elementary.tests', 'sympy.functions.special.tests', 'sympy.geometry.tests', 'sympy.holonomic.tests', 'sympy.integrals.rubi.parsetools.tests', 'sympy.integrals.rubi.rubi_tests.tests', 'sympy.integrals.rubi.tests', 'sympy.integrals.tests', 'sympy.interactive.tests', 'sympy.liealgebras.tests', 'sympy.logic.tests', 'sympy.matrices.expressions.tests', 'sympy.matrices.tests', 'sympy.multipledispatch.tests', 'sympy.ntheory.tests', 'sympy.parsing.tests', 'sympy.physics.continuum_mechanics.tests', 'sympy.physics.control.tests', 'sympy.physics.hep.tests', 'sympy.physics.mechanics.tests', 'sympy.physics.optics.tests', 'sympy.physics.quantum.tests', 'sympy.physics.tests', 'sympy.physics.units.tests', 'sympy.physics.vector.tests', 'sympy.plotting.intervalmath.tests', 'sympy.plotting.pygletplot.tests', 'sympy.plotting.tests', 'sympy.polys.agca.tests', 'sympy.polys.domains.tests', 'sympy.polys.matrices.tests', 'sympy.polys.tests', 'sympy.printing.pretty.tests', 'sympy.printing.tests', 'sympy.sandbox.tests', 'sympy.series.tests', 'sympy.sets.tests', 'sympy.simplify.tests', 'sympy.solvers.diophantine.tests', 'sympy.solvers.ode.tests', 'sympy.solvers.tests', 'sympy.stats.sampling.tests', 'sympy.stats.tests', 'sympy.strategies.branch.tests', 'sympy.strategies.tests', 'sympy.tensor.array.expressions.tests', 'sympy.tensor.array.tests', 'sympy.tensor.tests', 'sympy.testing.tests', 'sympy.unify.tests', 'sympy.utilities._compilation.tests', 'sympy.utilities.tests', 'sympy.vector.tests', ] with open(os.path.join(dir_setup, 'sympy', 'release.py')) as f: # Defines __version__ exec(f.read()) if __name__ == '__main__': setup(name='sympy', version=__version__, description='Computer algebra system (CAS) in Python', author='SymPy development team', author_email='[email protected]', license='BSD', keywords="Math CAS", url='https://sympy.org', py_modules=['isympy'], packages=['sympy'] + modules + tests, ext_modules=[], package_data={ 'sympy.utilities.mathml': ['data/*.xsl'], 'sympy.logic.benchmarks': ['input/*.cnf'], 'sympy.parsing.autolev': [ '*.g4', 'test-examples/*.al', 'test-examples/*.py', 'test-examples/pydy-example-repo/*.al', 'test-examples/pydy-example-repo/*.py', 'test-examples/README.txt', ], 'sympy.parsing.latex': ['*.txt', '*.g4'], 'sympy.integrals.rubi.parsetools': ['header.py.txt'], 'sympy.plotting.tests': ['test_region_*.png'], }, data_files=[('share/man/man1', ['doc/man/isympy.1'])], cmdclass={'test': test_sympy, 'bench': run_benchmarks, 'clean': clean, 'audit': audit, 'antlr': antlr, 'sdist': sdist_sympy, }, python_requires='>=3.6', classifiers=[ 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Scientific/Engineering :: Physics', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', ], install_requires=[ 'mpmath>=%s' % min_mpmath_version, ], **extra_kwargs )
8ed3cd2f3c5c87911b7fe90578dbd0bac14fff843c09c1456ddf589a3a32a806
""" SymPy is a Python library for symbolic mathematics. It aims to become a full-featured computer algebra system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily extensible. SymPy is written entirely in Python. It depends on mpmath, and other external libraries may be optionally for things like plotting support. See the webpage for more information and documentation: https://sympy.org """ import sys if sys.version_info < (3, 6): raise ImportError("Python version 3.6 or above is required for SymPy.") del sys try: import mpmath except ImportError: raise ImportError("SymPy now depends on mpmath as an external library. " "See https://docs.sympy.org/latest/install.html#mpmath for more information.") del mpmath from sympy.release import __version__ if 'dev' in __version__: def enable_warnings(): import warnings warnings.filterwarnings('default', '.*', DeprecationWarning, module='sympy.*') del warnings enable_warnings() del enable_warnings def __sympy_debug(): # helper function so we don't import os globally import os debug_str = os.getenv('SYMPY_DEBUG', 'False') if debug_str in ('True', 'False'): return eval(debug_str) else: raise RuntimeError("unrecognized value for SYMPY_DEBUG: %s" % debug_str) SYMPY_DEBUG = __sympy_debug() # type: bool from .core import (sympify, SympifyError, cacheit, Basic, Atom, preorder_traversal, S, Expr, AtomicExpr, UnevaluatedExpr, Symbol, Wild, Dummy, symbols, var, Number, Float, Rational, Integer, NumberSymbol, RealNumber, igcd, ilcm, seterr, E, I, nan, oo, pi, zoo, AlgebraicNumber, comp, mod_inverse, Pow, integer_nthroot, integer_log, Mul, prod, Add, Mod, Rel, Eq, Ne, Lt, Le, Gt, Ge, Equality, GreaterThan, LessThan, Unequality, StrictGreaterThan, StrictLessThan, vectorize, Lambda, WildFunction, Derivative, diff, FunctionClass, Function, Subs, expand, PoleError, count_ops, expand_mul, expand_log, expand_func, expand_trig, expand_complex, expand_multinomial, nfloat, expand_power_base, expand_power_exp, arity, PrecisionExhausted, N, evalf, Tuple, Dict, gcd_terms, factor_terms, factor_nc, evaluate, Catalan, EulerGamma, GoldenRatio, TribonacciConstant) from .logic import (to_cnf, to_dnf, to_nnf, And, Or, Not, Xor, Nand, Nor, Implies, Equivalent, ITE, POSform, SOPform, simplify_logic, bool_map, true, false, satisfiable) from .assumptions import (AppliedPredicate, Predicate, AssumptionsContext, assuming, Q, ask, register_handler, remove_handler, refine) from .polys import (Poly, PurePoly, poly_from_expr, parallel_poly_from_expr, degree, total_degree, degree_list, LC, LM, LT, pdiv, prem, pquo, pexquo, div, rem, quo, exquo, half_gcdex, gcdex, invert, subresultants, resultant, discriminant, cofactors, gcd_list, gcd, lcm_list, lcm, terms_gcd, trunc, monic, content, primitive, compose, decompose, sturm, gff_list, gff, sqf_norm, sqf_part, sqf_list, sqf, factor_list, factor, intervals, refine_root, count_roots, real_roots, nroots, ground_roots, nth_power_roots_poly, cancel, reduced, groebner, is_zero_dimensional, GroebnerBasis, poly, symmetrize, horner, interpolate, rational_interpolate, viete, together, BasePolynomialError, ExactQuotientFailed, PolynomialDivisionFailed, OperationNotSupported, HeuristicGCDFailed, HomomorphismFailed, IsomorphismFailed, ExtraneousFactors, EvaluationFailed, RefinementFailed, CoercionFailed, NotInvertible, NotReversible, NotAlgebraic, DomainError, PolynomialError, UnificationFailed, GeneratorsError, GeneratorsNeeded, ComputationFailed, UnivariatePolynomialError, MultivariatePolynomialError, PolificationFailed, OptionError, FlagError, minpoly, minimal_polynomial, primitive_element, field_isomorphism, to_number_field, isolate, itermonomials, Monomial, lex, grlex, grevlex, ilex, igrlex, igrevlex, CRootOf, rootof, RootOf, ComplexRootOf, RootSum, roots, Domain, FiniteField, IntegerRing, RationalField, RealField, ComplexField, PythonFiniteField, GMPYFiniteField, PythonIntegerRing, GMPYIntegerRing, PythonRational, GMPYRationalField, AlgebraicField, PolynomialRing, FractionField, ExpressionDomain, FF_python, FF_gmpy, ZZ_python, ZZ_gmpy, QQ_python, QQ_gmpy, GF, FF, ZZ, QQ, ZZ_I, QQ_I, RR, CC, EX, construct_domain, swinnerton_dyer_poly, cyclotomic_poly, symmetric_poly, random_poly, interpolating_poly, jacobi_poly, chebyshevt_poly, chebyshevu_poly, hermite_poly, legendre_poly, laguerre_poly, apart, apart_list, assemble_partfrac_list, Options, ring, xring, vring, sring, field, xfield, vfield, sfield) from .series import (Order, O, limit, Limit, gruntz, series, approximants, residue, EmptySequence, SeqPer, SeqFormula, sequence, SeqAdd, SeqMul, fourier_series, fps, difference_delta, limit_seq) from .functions import (factorial, factorial2, rf, ff, binomial, RisingFactorial, FallingFactorial, subfactorial, carmichael, fibonacci, lucas, motzkin, tribonacci, harmonic, bernoulli, bell, euler, catalan, genocchi, partition, sqrt, root, Min, Max, Id, real_root, cbrt, re, im, sign, Abs, conjugate, arg, polar_lift, periodic_argument, unbranched_argument, principal_branch, transpose, adjoint, polarify, unpolarify, sin, cos, tan, sec, csc, cot, sinc, asin, acos, atan, asec, acsc, acot, atan2, exp_polar, exp, ln, log, LambertW, sinh, cosh, tanh, coth, sech, csch, asinh, acosh, atanh, acoth, asech, acsch, floor, ceiling, frac, Piecewise, piecewise_fold, erf, erfc, erfi, erf2, erfinv, erfcinv, erf2inv, Ei, expint, E1, li, Li, Si, Ci, Shi, Chi, fresnels, fresnelc, gamma, lowergamma, uppergamma, polygamma, loggamma, digamma, trigamma, multigamma, dirichlet_eta, zeta, lerchphi, polylog, stieltjes, Eijk, LeviCivita, KroneckerDelta, SingularityFunction, DiracDelta, Heaviside, bspline_basis, bspline_basis_set, interpolating_spline, besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn, jn_zeros, hn1, hn2, airyai, airybi, airyaiprime, airybiprime, marcumq, hyper, meijerg, appellf1, legendre, assoc_legendre, hermite, chebyshevt, chebyshevu, chebyshevu_root, chebyshevt_root, laguerre, assoc_laguerre, gegenbauer, jacobi, jacobi_normalized, Ynm, Ynm_c, Znm, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, beta, mathieus, mathieuc, mathieusprime, mathieucprime) from .ntheory import (nextprime, prevprime, prime, primepi, primerange, randprime, Sieve, sieve, primorial, cycle_length, composite, compositepi, isprime, divisors, proper_divisors, factorint, multiplicity, perfect_power, pollard_pm1, pollard_rho, primefactors, totient, trailing, divisor_count, proper_divisor_count, divisor_sigma, factorrat, reduced_totient, primenu, primeomega, mersenne_prime_exponent, is_perfect, is_mersenne_prime, is_abundant, is_deficient, is_amicable, abundance, npartitions, is_primitive_root, is_quad_residue, legendre_symbol, jacobi_symbol, n_order, sqrt_mod, quadratic_residues, primitive_root, nthroot_mod, is_nthpow_residue, sqrt_mod_iter, mobius, discrete_log, quadratic_congruence, binomial_coefficients, binomial_coefficients_list, multinomial_coefficients, continued_fraction_periodic, continued_fraction_iterator, continued_fraction_reduce, continued_fraction_convergents, continued_fraction, egyptian_fraction) from .concrete import product, Product, summation, Sum from .discrete import (fft, ifft, ntt, intt, fwht, ifwht, mobius_transform, inverse_mobius_transform, convolution, covering_product, intersecting_product) from .simplify import (simplify, hypersimp, hypersimilar, logcombine, separatevars, posify, besselsimp, kroneckersimp, signsimp, bottom_up, nsimplify, FU, fu, sqrtdenest, cse, use, epath, EPath, hyperexpand, collect, rcollect, radsimp, collect_const, fraction, numer, denom, trigsimp, exptrigsimp, powsimp, powdenest, combsimp, gammasimp, ratsimp, ratsimpmodprime) from .sets import (Set, Interval, Union, EmptySet, FiniteSet, ProductSet, Intersection, DisjointUnion, imageset, Complement, SymmetricDifference, ImageSet, Range, ComplexRegion, Reals, Contains, ConditionSet, Ordinal, OmegaPower, ord0, PowerSet, Naturals, Naturals0, UniversalSet, Integers, Rationals) from .solvers import (solve, solve_linear_system, solve_linear_system_LU, solve_undetermined_coeffs, nsolve, solve_linear, checksol, det_quick, inv_quick, check_assumptions, failing_assumptions, diophantine, rsolve, rsolve_poly, rsolve_ratio, rsolve_hyper, checkodesol, classify_ode, dsolve, homogeneous_order, solve_poly_system, solve_triangulated, pde_separate, pde_separate_add, pde_separate_mul, pdsolve, classify_pde, checkpdesol, ode_order, reduce_inequalities, reduce_abs_inequality, reduce_abs_inequalities, solve_poly_inequality, solve_rational_inequalities, solve_univariate_inequality, decompogen, solveset, linsolve, linear_eq_to_matrix, nonlinsolve, substitution, Complexes) from .matrices import (ShapeError, NonSquareMatrixError, GramSchmidt, casoratian, diag, eye, hessian, jordan_cell, list2numpy, matrix2numpy, matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2, rot_axis3, symarray, wronskian, zeros, MutableDenseMatrix, DeferredVector, MatrixBase, Matrix, MutableMatrix, MutableSparseMatrix, banded, ImmutableDenseMatrix, ImmutableSparseMatrix, ImmutableMatrix, SparseMatrix, MatrixSlice, BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity, Inverse, MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace, Transpose, ZeroMatrix, OneMatrix, blockcut, block_collapse, matrix_symbols, Adjoint, hadamard_product, HadamardProduct, HadamardPower, Determinant, det, diagonalize_vector, DiagMatrix, DiagonalMatrix, DiagonalOf, trace, DotProduct, kronecker_product, KroneckerProduct, PermutationMatrix, MatrixPermute, Permanent, per) from .geometry import (Point, Point2D, Point3D, Line, Ray, Segment, Line2D, Segment2D, Ray2D, Line3D, Segment3D, Ray3D, Plane, Ellipse, Circle, Polygon, RegularPolygon, Triangle, rad, deg, are_similar, centroid, convex_hull, idiff, intersection, closest_points, farthest_points, GeometryError, Curve, Parabola) from .utilities import (flatten, group, take, subsets, variations, numbered_symbols, cartes, capture, dict_merge, postorder_traversal, interactive_traversal, prefixes, postfixes, sift, topological_sort, unflatten, has_dups, has_variety, reshape, default_sort_key, ordered, rotations, filldedent, lambdify, source, threaded, xthreaded, public, memoize_property, timed) from .integrals import (integrate, Integral, line_integrate, mellin_transform, inverse_mellin_transform, MellinTransform, InverseMellinTransform, laplace_transform, inverse_laplace_transform, LaplaceTransform, InverseLaplaceTransform, fourier_transform, inverse_fourier_transform, FourierTransform, InverseFourierTransform, sine_transform, inverse_sine_transform, SineTransform, InverseSineTransform, cosine_transform, inverse_cosine_transform, CosineTransform, InverseCosineTransform, hankel_transform, inverse_hankel_transform, HankelTransform, InverseHankelTransform, singularityintegrate) from .tensor import (IndexedBase, Idx, Indexed, get_contraction_structure, get_indices, shape, MutableDenseNDimArray, ImmutableDenseNDimArray, MutableSparseNDimArray, ImmutableSparseNDimArray, NDimArray, tensorproduct, tensorcontraction, tensordiagonal, derive_by_array, permutedims, Array, DenseNDimArray, SparseNDimArray) from .parsing import parse_expr from .calculus import (euler_equations, singularities, is_increasing, is_strictly_increasing, is_decreasing, is_strictly_decreasing, is_monotonic, finite_diff_weights, apply_finite_diff, as_finite_diff, differentiate_finite, periodicity, not_empty_in, AccumBounds, is_convex, stationary_points, minimum, maximum) from .algebras import Quaternion from .printing import (pager_print, pretty, pretty_print, pprint, pprint_use_unicode, pprint_try_use_unicode, latex, print_latex, multiline_latex, mathml, print_mathml, python, print_python, pycode, ccode, print_ccode, glsl_code, print_glsl, cxxcode, fcode, print_fcode, rcode, print_rcode, jscode, print_jscode, julia_code, mathematica_code, octave_code, rust_code, print_gtk, preview, srepr, print_tree, StrPrinter, sstr, sstrrepr, TableForm, dotprint, maple_code, print_maple_code) from .testing import test, doctest # This module causes conflicts with other modules: # from .stats import * # Adds about .04-.05 seconds of import time # from combinatorics import * # This module is slow to import: #from physics import units from .plotting import plot, textplot, plot_backends, plot_implicit, plot_parametric from .interactive import init_session, init_printing evalf._create_evalf_table() # This is slow to import: #import abc from .deprecated import C, ClassRegistry, class_registry __all__ = [ # sympy.core 'sympify', 'SympifyError', 'cacheit', 'Basic', 'Atom', 'preorder_traversal', 'S', 'Expr', 'AtomicExpr', 'UnevaluatedExpr', 'Symbol', 'Wild', 'Dummy', 'symbols', 'var', 'Number', 'Float', 'Rational', 'Integer', 'NumberSymbol', 'RealNumber', 'igcd', 'ilcm', 'seterr', 'E', 'I', 'nan', 'oo', 'pi', 'zoo', 'AlgebraicNumber', 'comp', 'mod_inverse', 'Pow', 'integer_nthroot', 'integer_log', 'Mul', 'prod', 'Add', 'Mod', 'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge', 'Equality', 'GreaterThan', 'LessThan', 'Unequality', 'StrictGreaterThan', 'StrictLessThan', 'vectorize', 'Lambda', 'WildFunction', 'Derivative', 'diff', 'FunctionClass', 'Function', 'Subs', 'expand', 'PoleError', 'count_ops', 'expand_mul', 'expand_log', 'expand_func', 'expand_trig', 'expand_complex', 'expand_multinomial', 'nfloat', 'expand_power_base', 'expand_power_exp', 'arity', 'PrecisionExhausted', 'N', 'evalf', 'Tuple', 'Dict', 'gcd_terms', 'factor_terms', 'factor_nc', 'evaluate', 'Catalan', 'EulerGamma', 'GoldenRatio', 'TribonacciConstant', # sympy.logic 'to_cnf', 'to_dnf', 'to_nnf', 'And', 'Or', 'Not', 'Xor', 'Nand', 'Nor', 'Implies', 'Equivalent', 'ITE', 'POSform', 'SOPform', 'simplify_logic', 'bool_map', 'true', 'false', 'satisfiable', # sympy.assumptions 'AppliedPredicate', 'Predicate', 'AssumptionsContext', 'assuming', 'Q', 'ask', 'register_handler', 'remove_handler', 'refine', # sympy.polys 'Poly', 'PurePoly', 'poly_from_expr', 'parallel_poly_from_expr', 'degree', 'total_degree', 'degree_list', 'LC', 'LM', 'LT', 'pdiv', 'prem', 'pquo', 'pexquo', 'div', 'rem', 'quo', 'exquo', 'half_gcdex', 'gcdex', 'invert', 'subresultants', 'resultant', 'discriminant', 'cofactors', 'gcd_list', 'gcd', 'lcm_list', 'lcm', 'terms_gcd', 'trunc', 'monic', 'content', 'primitive', 'compose', 'decompose', 'sturm', 'gff_list', 'gff', 'sqf_norm', 'sqf_part', 'sqf_list', 'sqf', 'factor_list', 'factor', 'intervals', 'refine_root', 'count_roots', 'real_roots', 'nroots', 'ground_roots', 'nth_power_roots_poly', 'cancel', 'reduced', 'groebner', 'is_zero_dimensional', 'GroebnerBasis', 'poly', 'symmetrize', 'horner', 'interpolate', 'rational_interpolate', 'viete', 'together', 'BasePolynomialError', 'ExactQuotientFailed', 'PolynomialDivisionFailed', 'OperationNotSupported', 'HeuristicGCDFailed', 'HomomorphismFailed', 'IsomorphismFailed', 'ExtraneousFactors', 'EvaluationFailed', 'RefinementFailed', 'CoercionFailed', 'NotInvertible', 'NotReversible', 'NotAlgebraic', 'DomainError', 'PolynomialError', 'UnificationFailed', 'GeneratorsError', 'GeneratorsNeeded', 'ComputationFailed', 'UnivariatePolynomialError', 'MultivariatePolynomialError', 'PolificationFailed', 'OptionError', 'FlagError', 'minpoly', 'minimal_polynomial', 'primitive_element', 'field_isomorphism', 'to_number_field', 'isolate', 'itermonomials', 'Monomial', 'lex', 'grlex', 'grevlex', 'ilex', 'igrlex', 'igrevlex', 'CRootOf', 'rootof', 'RootOf', 'ComplexRootOf', 'RootSum', 'roots', 'Domain', 'FiniteField', 'IntegerRing', 'RationalField', 'RealField', 'ComplexField', 'PythonFiniteField', 'GMPYFiniteField', 'PythonIntegerRing', 'GMPYIntegerRing', 'PythonRational', 'GMPYRationalField', 'AlgebraicField', 'PolynomialRing', 'FractionField', 'ExpressionDomain', 'FF_python', 'FF_gmpy', 'ZZ_python', 'ZZ_gmpy', 'QQ_python', 'QQ_gmpy', 'GF', 'FF', 'ZZ', 'QQ', 'ZZ_I', 'QQ_I', 'RR', 'CC', 'EX', 'construct_domain', 'swinnerton_dyer_poly', 'cyclotomic_poly', 'symmetric_poly', 'random_poly', 'interpolating_poly', 'jacobi_poly', 'chebyshevt_poly', 'chebyshevu_poly', 'hermite_poly', 'legendre_poly', 'laguerre_poly', 'apart', 'apart_list', 'assemble_partfrac_list', 'Options', 'ring', 'xring', 'vring', 'sring', 'field', 'xfield', 'vfield', 'sfield', # sympy.series 'Order', 'O', 'limit', 'Limit', 'gruntz', 'series', 'approximants', 'residue', 'EmptySequence', 'SeqPer', 'SeqFormula', 'sequence', 'SeqAdd', 'SeqMul', 'fourier_series', 'fps', 'difference_delta', 'limit_seq', # sympy.functions 'factorial', 'factorial2', 'rf', 'ff', 'binomial', 'RisingFactorial', 'FallingFactorial', 'subfactorial', 'carmichael', 'fibonacci', 'lucas', 'motzkin', 'tribonacci', 'harmonic', 'bernoulli', 'bell', 'euler', 'catalan', 'genocchi', 'partition', 'sqrt', 'root', 'Min', 'Max', 'Id', 'real_root', 'cbrt', 're', 'im', 'sign', 'Abs', 'conjugate', 'arg', 'polar_lift', 'periodic_argument', 'unbranched_argument', 'principal_branch', 'transpose', 'adjoint', 'polarify', 'unpolarify', 'sin', 'cos', 'tan', 'sec', 'csc', 'cot', 'sinc', 'asin', 'acos', 'atan', 'asec', 'acsc', 'acot', 'atan2', 'exp_polar', 'exp', 'ln', 'log', 'LambertW', 'sinh', 'cosh', 'tanh', 'coth', 'sech', 'csch', 'asinh', 'acosh', 'atanh', 'acoth', 'asech', 'acsch', 'floor', 'ceiling', 'frac', 'Piecewise', 'piecewise_fold', 'erf', 'erfc', 'erfi', 'erf2', 'erfinv', 'erfcinv', 'erf2inv', 'Ei', 'expint', 'E1', 'li', 'Li', 'Si', 'Ci', 'Shi', 'Chi', 'fresnels', 'fresnelc', 'gamma', 'lowergamma', 'uppergamma', 'polygamma', 'loggamma', 'digamma', 'trigamma', 'multigamma', 'dirichlet_eta', 'zeta', 'lerchphi', 'polylog', 'stieltjes', 'Eijk', 'LeviCivita', 'KroneckerDelta', 'SingularityFunction', 'DiracDelta', 'Heaviside', 'bspline_basis', 'bspline_basis_set', 'interpolating_spline', 'besselj', 'bessely', 'besseli', 'besselk', 'hankel1', 'hankel2', 'jn', 'yn', 'jn_zeros', 'hn1', 'hn2', 'airyai', 'airybi', 'airyaiprime', 'airybiprime', 'marcumq', 'hyper', 'meijerg', 'appellf1', 'legendre', 'assoc_legendre', 'hermite', 'chebyshevt', 'chebyshevu', 'chebyshevu_root', 'chebyshevt_root', 'laguerre', 'assoc_laguerre', 'gegenbauer', 'jacobi', 'jacobi_normalized', 'Ynm', 'Ynm_c', 'Znm', 'elliptic_k', 'elliptic_f', 'elliptic_e', 'elliptic_pi', 'beta', 'mathieus', 'mathieuc', 'mathieusprime', 'mathieucprime', # sympy.ntheory 'nextprime', 'prevprime', 'prime', 'primepi', 'primerange', 'randprime', 'Sieve', 'sieve', 'primorial', 'cycle_length', 'composite', 'compositepi', 'isprime', 'divisors', 'proper_divisors', 'factorint', 'multiplicity', 'perfect_power', 'pollard_pm1', 'pollard_rho', 'primefactors', 'totient', 'trailing', 'divisor_count', 'proper_divisor_count', 'divisor_sigma', 'factorrat', 'reduced_totient', 'primenu', 'primeomega', 'mersenne_prime_exponent', 'is_perfect', 'is_mersenne_prime', 'is_abundant', 'is_deficient', 'is_amicable', 'abundance', 'npartitions', 'is_primitive_root', 'is_quad_residue', 'legendre_symbol', 'jacobi_symbol', 'n_order', 'sqrt_mod', 'quadratic_residues', 'primitive_root', 'nthroot_mod', 'is_nthpow_residue', 'sqrt_mod_iter', 'mobius', 'discrete_log', 'quadratic_congruence', 'binomial_coefficients', 'binomial_coefficients_list', 'multinomial_coefficients', 'continued_fraction_periodic', 'continued_fraction_iterator', 'continued_fraction_reduce', 'continued_fraction_convergents', 'continued_fraction', 'egyptian_fraction', # sympy.concrete 'product', 'Product', 'summation', 'Sum', # sympy.discrete 'fft', 'ifft', 'ntt', 'intt', 'fwht', 'ifwht', 'mobius_transform', 'inverse_mobius_transform', 'convolution', 'covering_product', 'intersecting_product', # sympy.simplify 'simplify', 'hypersimp', 'hypersimilar', 'logcombine', 'separatevars', 'posify', 'besselsimp', 'kroneckersimp', 'signsimp', 'bottom_up', 'nsimplify', 'FU', 'fu', 'sqrtdenest', 'cse', 'use', 'epath', 'EPath', 'hyperexpand', 'collect', 'rcollect', 'radsimp', 'collect_const', 'fraction', 'numer', 'denom', 'trigsimp', 'exptrigsimp', 'powsimp', 'powdenest', 'combsimp', 'gammasimp', 'ratsimp', 'ratsimpmodprime', # sympy.sets 'Set', 'Interval', 'Union', 'EmptySet', 'FiniteSet', 'ProductSet', 'Intersection', 'imageset', 'DisjointUnion', 'Complement', 'SymmetricDifference', 'ImageSet', 'Range', 'ComplexRegion', 'Reals', 'Contains', 'ConditionSet', 'Ordinal', 'OmegaPower', 'ord0', 'PowerSet', 'Reals', 'Naturals', 'Naturals0', 'UniversalSet', 'Integers', 'Rationals', # sympy.solvers 'solve', 'solve_linear_system', 'solve_linear_system_LU', 'solve_undetermined_coeffs', 'nsolve', 'solve_linear', 'checksol', 'det_quick', 'inv_quick', 'check_assumptions', 'failing_assumptions', 'diophantine', 'rsolve', 'rsolve_poly', 'rsolve_ratio', 'rsolve_hyper', 'checkodesol', 'classify_ode', 'dsolve', 'homogeneous_order', 'solve_poly_system', 'solve_triangulated', 'pde_separate', 'pde_separate_add', 'pde_separate_mul', 'pdsolve', 'classify_pde', 'checkpdesol', 'ode_order', 'reduce_inequalities', 'reduce_abs_inequality', 'reduce_abs_inequalities', 'solve_poly_inequality', 'solve_rational_inequalities', 'solve_univariate_inequality', 'decompogen', 'solveset', 'linsolve', 'linear_eq_to_matrix', 'nonlinsolve', 'substitution', 'Complexes', # sympy.matrices 'ShapeError', 'NonSquareMatrixError', 'GramSchmidt', 'casoratian', 'diag', 'eye', 'hessian', 'jordan_cell', 'list2numpy', 'matrix2numpy', 'matrix_multiply_elementwise', 'ones', 'randMatrix', 'rot_axis1', 'rot_axis2', 'rot_axis3', 'symarray', 'wronskian', 'zeros', 'MutableDenseMatrix', 'DeferredVector', 'MatrixBase', 'Matrix', 'MutableMatrix', 'MutableSparseMatrix', 'banded', 'ImmutableDenseMatrix', 'ImmutableSparseMatrix', 'ImmutableMatrix', 'SparseMatrix', 'MatrixSlice', 'BlockDiagMatrix', 'BlockMatrix', 'FunctionMatrix', 'Identity', 'Inverse', 'MatAdd', 'MatMul', 'MatPow', 'MatrixExpr', 'MatrixSymbol', 'Trace', 'Transpose', 'ZeroMatrix', 'OneMatrix', 'blockcut', 'block_collapse', 'matrix_symbols', 'Adjoint', 'hadamard_product', 'HadamardProduct', 'HadamardPower', 'Determinant', 'det', 'diagonalize_vector', 'DiagMatrix', 'DiagonalMatrix', 'DiagonalOf', 'trace', 'DotProduct', 'kronecker_product', 'KroneckerProduct', 'PermutationMatrix', 'MatrixPermute', 'Permanent', 'per', # sympy.geometry 'Point', 'Point2D', 'Point3D', 'Line', 'Ray', 'Segment', 'Line2D', 'Segment2D', 'Ray2D', 'Line3D', 'Segment3D', 'Ray3D', 'Plane', 'Ellipse', 'Circle', 'Polygon', 'RegularPolygon', 'Triangle', 'rad', 'deg', 'are_similar', 'centroid', 'convex_hull', 'idiff', 'intersection', 'closest_points', 'farthest_points', 'GeometryError', 'Curve', 'Parabola', # sympy.utilities 'flatten', 'group', 'take', 'subsets', 'variations', 'numbered_symbols', 'cartes', 'capture', 'dict_merge', 'postorder_traversal', 'interactive_traversal', 'prefixes', 'postfixes', 'sift', 'topological_sort', 'unflatten', 'has_dups', 'has_variety', 'reshape', 'default_sort_key', 'ordered', 'rotations', 'filldedent', 'lambdify', 'source', 'threaded', 'xthreaded', 'public', 'memoize_property', 'test', 'doctest', 'timed', # sympy.integrals 'integrate', 'Integral', 'line_integrate', 'mellin_transform', 'inverse_mellin_transform', 'MellinTransform', 'InverseMellinTransform', 'laplace_transform', 'inverse_laplace_transform', 'LaplaceTransform', 'InverseLaplaceTransform', 'fourier_transform', 'inverse_fourier_transform', 'FourierTransform', 'InverseFourierTransform', 'sine_transform', 'inverse_sine_transform', 'SineTransform', 'InverseSineTransform', 'cosine_transform', 'inverse_cosine_transform', 'CosineTransform', 'InverseCosineTransform', 'hankel_transform', 'inverse_hankel_transform', 'HankelTransform', 'InverseHankelTransform', 'singularityintegrate', # sympy.tensor 'IndexedBase', 'Idx', 'Indexed', 'get_contraction_structure', 'get_indices', 'shape', 'MutableDenseNDimArray', 'ImmutableDenseNDimArray', 'MutableSparseNDimArray', 'ImmutableSparseNDimArray', 'NDimArray', 'tensorproduct', 'tensorcontraction', 'tensordiagonal', 'derive_by_array', 'permutedims', 'Array', 'DenseNDimArray', 'SparseNDimArray', # sympy.parsing 'parse_expr', # sympy.calculus 'euler_equations', 'singularities', 'is_increasing', 'is_strictly_increasing', 'is_decreasing', 'is_strictly_decreasing', 'is_monotonic', 'finite_diff_weights', 'apply_finite_diff', 'as_finite_diff', 'differentiate_finite', 'periodicity', 'not_empty_in', 'AccumBounds', 'is_convex', 'stationary_points', 'minimum', 'maximum', # sympy.algebras 'Quaternion', # sympy.printing 'pager_print', 'pretty', 'pretty_print', 'pprint', 'pprint_use_unicode', 'pprint_try_use_unicode', 'latex', 'print_latex', 'multiline_latex', 'mathml', 'print_mathml', 'python', 'print_python', 'pycode', 'ccode', 'print_ccode', 'glsl_code', 'print_glsl', 'cxxcode', 'fcode', 'print_fcode', 'rcode', 'print_rcode', 'jscode', 'print_jscode', 'julia_code', 'mathematica_code', 'octave_code', 'rust_code', 'print_gtk', 'preview', 'srepr', 'print_tree', 'StrPrinter', 'sstr', 'sstrrepr', 'TableForm', 'dotprint', 'maple_code', 'print_maple_code', # sympy.plotting 'plot', 'textplot', 'plot_backends', 'plot_implicit', 'plot_parametric', # sympy.interactive 'init_session', 'init_printing', # sympy.testing 'test', 'doctest', # sympy.deprecated: 'C', 'ClassRegistry', 'class_registry', ] #===========================================================================# # # # XXX: The names below were importable before sympy 1.6 using # # # # from sympy import * # # # # This happened implicitly because there was no __all__ defined in this # # __init__.py file. Not every package is imported. The list matches what # # would have been imported before. It is possible that these packages will # # not be imported by a star-import from sympy in future. # # # #===========================================================================# __all__.extend([ 'algebras', 'assumptions', 'calculus', 'concrete', 'deprecated', 'discrete', 'external', 'functions', 'geometry', 'interactive', 'multipledispatch', 'ntheory', 'parsing', 'plotting', 'polys', 'printing', 'release', 'strategies', 'tensor', 'utilities', ])
a3673e10a3c2d896cfa32ed64758a5bc39d4059a8ab7750d0df0f6b1b6bfe9f6
""" Continuous Random Variables - Prebuilt variables Contains ======== Arcsin Benini Beta BetaNoncentral BetaPrime BoundedPareto Cauchy Chi ChiNoncentral ChiSquared Dagum Erlang ExGaussian Exponential ExponentialPower FDistribution FisherZ Frechet Gamma GammaInverse Gumbel Gompertz Kumaraswamy Laplace Levy LogCauchy Logistic LogLogistic LogitNormal LogNormal Lomax Maxwell Moyal Nakagami Normal Pareto PowerFunction QuadraticU RaisedCosine Rayleigh Reciprocal ShiftedGompertz StudentT Trapezoidal Triangular Uniform UniformSum VonMises Wald Weibull WignerSemicircle """ from sympy import beta as beta_fn from sympy import cos, sin, tan, atan, exp, besseli, besselj, besselk from sympy import (log, sqrt, pi, S, Dummy, Interval, sympify, gamma, sign, Piecewise, And, Eq, binomial, factorial, Sum, floor, Abs, Lambda, Basic, lowergamma, erf, erfc, erfi, erfinv, I, asin, hyper, uppergamma, sinh, Ne, expint, Rational, integrate) from sympy.matrices import MatrixBase, MatrixExpr from sympy.stats.crv import SingleContinuousPSpace, SingleContinuousDistribution from sympy.stats.rv import _value_check, is_random oo = S.Infinity __all__ = ['ContinuousRV', 'Arcsin', 'Benini', 'Beta', 'BetaNoncentral', 'BetaPrime', 'BoundedPareto', 'Cauchy', 'Chi', 'ChiNoncentral', 'ChiSquared', 'Dagum', 'Erlang', 'ExGaussian', 'Exponential', 'ExponentialPower', 'FDistribution', 'FisherZ', 'Frechet', 'Gamma', 'GammaInverse', 'Gompertz', 'Gumbel', 'Kumaraswamy', 'Laplace', 'Levy', 'LogCauchy', 'Logistic', 'LogLogistic', 'LogitNormal', 'LogNormal', 'Lomax', 'Maxwell', 'Moyal', 'Nakagami', 'Normal', 'GaussianInverse', 'Pareto', 'PowerFunction', 'QuadraticU', 'RaisedCosine', 'Rayleigh', 'Reciprocal', 'StudentT', 'ShiftedGompertz', 'Trapezoidal', 'Triangular', 'Uniform', 'UniformSum', 'VonMises', 'Wald', 'Weibull', 'WignerSemicircle', ] @is_random.register(MatrixBase) def _(x): return any([is_random(i) for i in x]) def rv(symbol, cls, args, **kwargs): args = list(map(sympify, args)) dist = cls(*args) if kwargs.pop('check', True): dist.check(*args) pspace = SingleContinuousPSpace(symbol, dist) if any(is_random(arg) for arg in args): from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution pspace = CompoundPSpace(symbol, CompoundDistribution(dist)) return pspace.value class ContinuousDistributionHandmade(SingleContinuousDistribution): _argnames = ('pdf',) def __new__(cls, pdf, set=Interval(-oo, oo)): return Basic.__new__(cls, pdf, set) @property def set(self): return self.args[1] @staticmethod def check(pdf, set): x = Dummy('x') val = integrate(pdf(x), (x, set)) _value_check(Eq(val, 1) != S.false, "The pdf on the given set is incorrect.") def ContinuousRV(symbol, density, set=Interval(-oo, oo), **kwargs): """ Create a Continuous Random Variable given the following: Parameters ========== symbol : Symbol Represents name of the random variable. density : Expression containing symbol Represents probability density function. set : set/Interval Represents the region where the pdf is valid, by default is real line. check : bool If True, it will check whether the given density integrates to 1 over the given set. If False, it will not perform this check. Default is False. Returns ======= RandomSymbol Many common continuous random variable types are already implemented. This function should be necessary only very rarely. Examples ======== >>> from sympy import Symbol, sqrt, exp, pi >>> from sympy.stats import ContinuousRV, P, E >>> x = Symbol("x") >>> pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution >>> X = ContinuousRV(x, pdf) >>> E(X) 0 >>> P(X>0) 1/2 """ pdf = Piecewise((density, set.as_relational(symbol)), (0, True)) pdf = Lambda(symbol, pdf) # have a default of False while `rv` should have a default of True kwargs['check'] = kwargs.pop('check', False) return rv(symbol.name, ContinuousDistributionHandmade, (pdf, set), **kwargs) ######################################## # Continuous Probability Distributions # ######################################## #------------------------------------------------------------------------------- # Arcsin distribution ---------------------------------------------------------- class ArcsinDistribution(SingleContinuousDistribution): _argnames = ('a', 'b') @property def set(self): return Interval(self.a, self.b) def pdf(self, x): a, b = self.a, self.b return 1/(pi*sqrt((x - a)*(b - x))) def _cdf(self, x): a, b = self.a, self.b return Piecewise( (S.Zero, x < a), (2*asin(sqrt((x - a)/(b - a)))/pi, x <= b), (S.One, True)) def Arcsin(name, a=0, b=1): r""" Create a Continuous Random Variable with an arcsin distribution. The density of the arcsin distribution is given by .. math:: f(x) := \frac{1}{\pi\sqrt{(x-a)(b-x)}} with :math:`x \in (a,b)`. It must hold that :math:`-\infty < a < b < \infty`. Parameters ========== a : Real number, the left interval boundary b : Real number, the right interval boundary Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Arcsin, density, cdf >>> from sympy import Symbol >>> a = Symbol("a", real=True) >>> b = Symbol("b", real=True) >>> z = Symbol("z") >>> X = Arcsin("x", a, b) >>> density(X)(z) 1/(pi*sqrt((-a + z)*(b - z))) >>> cdf(X)(z) Piecewise((0, a > z), (2*asin(sqrt((-a + z)/(-a + b)))/pi, b >= z), (1, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Arcsine_distribution """ return rv(name, ArcsinDistribution, (a, b)) #------------------------------------------------------------------------------- # Benini distribution ---------------------------------------------------------- class BeniniDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta', 'sigma') @staticmethod def check(alpha, beta, sigma): _value_check(alpha > 0, "Shape parameter Alpha must be positive.") _value_check(beta > 0, "Shape parameter Beta must be positive.") _value_check(sigma > 0, "Scale parameter Sigma must be positive.") @property def set(self): return Interval(self.sigma, oo) def pdf(self, x): alpha, beta, sigma = self.alpha, self.beta, self.sigma return (exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2) *(alpha/x + 2*beta*log(x/sigma)/x)) def _moment_generating_function(self, t): raise NotImplementedError('The moment generating function of the ' 'Benini distribution does not exist.') def Benini(name, alpha, beta, sigma): r""" Create a Continuous Random Variable with a Benini distribution. The density of the Benini distribution is given by .. math:: f(x) := e^{-\alpha\log{\frac{x}{\sigma}} -\beta\log^2\left[{\frac{x}{\sigma}}\right]} \left(\frac{\alpha}{x}+\frac{2\beta\log{\frac{x}{\sigma}}}{x}\right) This is a heavy-tailed distribution and is also known as the log-Rayleigh distribution. Parameters ========== alpha : Real number, `\alpha > 0`, a shape beta : Real number, `\beta > 0`, a shape sigma : Real number, `\sigma > 0`, a scale Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Benini, density, cdf >>> from sympy import Symbol, pprint >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> sigma = Symbol("sigma", positive=True) >>> z = Symbol("z") >>> X = Benini("x", alpha, beta, sigma) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) / / z \\ / z \ 2/ z \ | 2*beta*log|-----|| - alpha*log|-----| - beta*log |-----| |alpha \sigma/| \sigma/ \sigma/ |----- + -----------------|*e \ z z / >>> cdf(X)(z) Piecewise((1 - exp(-alpha*log(z/sigma) - beta*log(z/sigma)**2), sigma <= z), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Benini_distribution .. [2] http://reference.wolfram.com/legacy/v8/ref/BeniniDistribution.html """ return rv(name, BeniniDistribution, (alpha, beta, sigma)) #------------------------------------------------------------------------------- # Beta distribution ------------------------------------------------------------ class BetaDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta') set = Interval(0, 1) @staticmethod def check(alpha, beta): _value_check(alpha > 0, "Shape parameter Alpha must be positive.") _value_check(beta > 0, "Shape parameter Beta must be positive.") def pdf(self, x): alpha, beta = self.alpha, self.beta return x**(alpha - 1) * (1 - x)**(beta - 1) / beta_fn(alpha, beta) def _characteristic_function(self, t): return hyper((self.alpha,), (self.alpha + self.beta,), I*t) def _moment_generating_function(self, t): return hyper((self.alpha,), (self.alpha + self.beta,), t) def Beta(name, alpha, beta): r""" Create a Continuous Random Variable with a Beta distribution. The density of the Beta distribution is given by .. math:: f(x) := \frac{x^{\alpha-1}(1-x)^{\beta-1}} {\mathrm{B}(\alpha,\beta)} with :math:`x \in [0,1]`. Parameters ========== alpha : Real number, `\alpha > 0`, a shape beta : Real number, `\beta > 0`, a shape Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Beta, density, E, variance >>> from sympy import Symbol, simplify, pprint, factor >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> z = Symbol("z") >>> X = Beta("x", alpha, beta) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) alpha - 1 beta - 1 z *(1 - z) -------------------------- B(alpha, beta) >>> simplify(E(X)) alpha/(alpha + beta) >>> factor(simplify(variance(X))) alpha*beta/((alpha + beta)**2*(alpha + beta + 1)) References ========== .. [1] https://en.wikipedia.org/wiki/Beta_distribution .. [2] http://mathworld.wolfram.com/BetaDistribution.html """ return rv(name, BetaDistribution, (alpha, beta)) #------------------------------------------------------------------------------- # Noncentral Beta distribution ------------------------------------------------------------ class BetaNoncentralDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta', 'lamda') set = Interval(0, 1) @staticmethod def check(alpha, beta, lamda): _value_check(alpha > 0, "Shape parameter Alpha must be positive.") _value_check(beta > 0, "Shape parameter Beta must be positive.") _value_check(lamda >= 0, "Noncentrality parameter Lambda must be positive") def pdf(self, x): alpha, beta, lamda = self.alpha, self.beta, self.lamda k = Dummy("k") return Sum(exp(-lamda / 2) * (lamda / 2)**k * x**(alpha + k - 1) *( 1 - x)**(beta - 1) / (factorial(k) * beta_fn(alpha + k, beta)), (k, 0, oo)) def BetaNoncentral(name, alpha, beta, lamda): r""" Create a Continuous Random Variable with a Type I Noncentral Beta distribution. The density of the Noncentral Beta distribution is given by .. math:: f(x) := \sum_{k=0}^\infty e^{-\lambda/2}\frac{(\lambda/2)^k}{k!} \frac{x^{\alpha+k-1}(1-x)^{\beta-1}}{\mathrm{B}(\alpha+k,\beta)} with :math:`x \in [0,1]`. Parameters ========== alpha : Real number, `\alpha > 0`, a shape beta : Real number, `\beta > 0`, a shape lamda: Real number, `\lambda >= 0`, noncentrality parameter Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import BetaNoncentral, density, cdf >>> from sympy import Symbol, pprint >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> lamda = Symbol("lamda", nonnegative=True) >>> z = Symbol("z") >>> X = BetaNoncentral("x", alpha, beta, lamda) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) oo _____ \ ` \ -lamda \ k ------- \ k + alpha - 1 /lamda\ beta - 1 2 ) z *|-----| *(1 - z) *e / \ 2 / / ------------------------------------------------ / B(k + alpha, beta)*k! /____, k = 0 Compute cdf with specific 'x', 'alpha', 'beta' and 'lamda' values as follows : >>> cdf(BetaNoncentral("x", 1, 1, 1), evaluate=False)(2).doit() 2*exp(1/2) The argument evaluate=False prevents an attempt at evaluation of the sum for general x, before the argument 2 is passed. References ========== .. [1] https://en.wikipedia.org/wiki/Noncentral_beta_distribution .. [2] https://reference.wolfram.com/language/ref/NoncentralBetaDistribution.html """ return rv(name, BetaNoncentralDistribution, (alpha, beta, lamda)) #------------------------------------------------------------------------------- # Beta prime distribution ------------------------------------------------------ class BetaPrimeDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta') @staticmethod def check(alpha, beta): _value_check(alpha > 0, "Shape parameter Alpha must be positive.") _value_check(beta > 0, "Shape parameter Beta must be positive.") set = Interval(0, oo) def pdf(self, x): alpha, beta = self.alpha, self.beta return x**(alpha - 1)*(1 + x)**(-alpha - beta)/beta_fn(alpha, beta) def BetaPrime(name, alpha, beta): r""" Create a continuous random variable with a Beta prime distribution. The density of the Beta prime distribution is given by .. math:: f(x) := \frac{x^{\alpha-1} (1+x)^{-\alpha -\beta}}{B(\alpha,\beta)} with :math:`x > 0`. Parameters ========== alpha : Real number, `\alpha > 0`, a shape beta : Real number, `\beta > 0`, a shape Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import BetaPrime, density >>> from sympy import Symbol, pprint >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> z = Symbol("z") >>> X = BetaPrime("x", alpha, beta) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) alpha - 1 -alpha - beta z *(z + 1) ------------------------------- B(alpha, beta) References ========== .. [1] https://en.wikipedia.org/wiki/Beta_prime_distribution .. [2] http://mathworld.wolfram.com/BetaPrimeDistribution.html """ return rv(name, BetaPrimeDistribution, (alpha, beta)) #------------------------------------------------------------------------------- # Bounded Pareto Distribution -------------------------------------------------- class BoundedParetoDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'left', 'right') @property def set(self): return Interval(self.left , self.right) @staticmethod def check(alpha, left, right): _value_check (alpha.is_positive, "Shape must be positive.") _value_check (left.is_positive, "Left value should be positive.") _value_check (right > left, "Right should be greater than left.") def pdf(self, x): alpha, left, right = self.alpha, self.left, self.right num = alpha * (left**alpha) * x**(- alpha -1) den = 1 - (left/right)**alpha return num/den def BoundedPareto(name, alpha, left, right): r""" Create a continuous random variable with a Bounded Pareto distribution. The density of the Bounded Pareto distribution is given by .. math:: f(x) := \frac{\alpha L^{\alpha}x^{-\alpha-1}}{1-(\frac{L}{H})^{\alpha}} Parameters ========== alpha : Real Number, `alpha > 0` Shape parameter left : Real Number, `left > 0` Location parameter right : Real Number, `right > left` Location parameter Examples ======== >>> from sympy.stats import BoundedPareto, density, cdf, E >>> from sympy import symbols >>> L, H = symbols('L, H', positive=True) >>> X = BoundedPareto('X', 2, L, H) >>> x = symbols('x') >>> density(X)(x) 2*L**2/(x**3*(1 - L**2/H**2)) >>> cdf(X)(x) Piecewise((-H**2*L**2/(x**2*(H**2 - L**2)) + H**2/(H**2 - L**2), L <= x), (0, True)) >>> E(X).simplify() 2*H*L/(H + L) Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Pareto_distribution#Bounded_Pareto_distribution """ return rv (name, BoundedParetoDistribution, (alpha, left, right)) # ------------------------------------------------------------------------------ # Cauchy distribution ---------------------------------------------------------- class CauchyDistribution(SingleContinuousDistribution): _argnames = ('x0', 'gamma') @staticmethod def check(x0, gamma): _value_check(gamma > 0, "Scale parameter Gamma must be positive.") _value_check(x0.is_real, "Location parameter must be real.") def pdf(self, x): return 1/(pi*self.gamma*(1 + ((x - self.x0)/self.gamma)**2)) def _cdf(self, x): x0, gamma = self.x0, self.gamma return (1/pi)*atan((x - x0)/gamma) + S.Half def _characteristic_function(self, t): return exp(self.x0 * I * t - self.gamma * Abs(t)) def _moment_generating_function(self, t): raise NotImplementedError("The moment generating function for the " "Cauchy distribution does not exist.") def _quantile(self, p): return self.x0 + self.gamma*tan(pi*(p - S.Half)) def Cauchy(name, x0, gamma): r""" Create a continuous random variable with a Cauchy distribution. The density of the Cauchy distribution is given by .. math:: f(x) := \frac{1}{\pi \gamma [1 + {(\frac{x-x_0}{\gamma})}^2]} Parameters ========== x0 : Real number, the location gamma : Real number, `\gamma > 0`, a scale Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Cauchy, density >>> from sympy import Symbol >>> x0 = Symbol("x0") >>> gamma = Symbol("gamma", positive=True) >>> z = Symbol("z") >>> X = Cauchy("x", x0, gamma) >>> density(X)(z) 1/(pi*gamma*(1 + (-x0 + z)**2/gamma**2)) References ========== .. [1] https://en.wikipedia.org/wiki/Cauchy_distribution .. [2] http://mathworld.wolfram.com/CauchyDistribution.html """ return rv(name, CauchyDistribution, (x0, gamma)) #------------------------------------------------------------------------------- # Chi distribution ------------------------------------------------------------- class ChiDistribution(SingleContinuousDistribution): _argnames = ('k',) @staticmethod def check(k): _value_check(k > 0, "Number of degrees of freedom (k) must be positive.") _value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.") set = Interval(0, oo) def pdf(self, x): return 2**(1 - self.k/2)*x**(self.k - 1)*exp(-x**2/2)/gamma(self.k/2) def _characteristic_function(self, t): k = self.k part_1 = hyper((k/2,), (S.Half,), -t**2/2) part_2 = I*t*sqrt(2)*gamma((k+1)/2)/gamma(k/2) part_3 = hyper(((k+1)/2,), (Rational(3, 2),), -t**2/2) return part_1 + part_2*part_3 def _moment_generating_function(self, t): k = self.k part_1 = hyper((k / 2,), (S.Half,), t ** 2 / 2) part_2 = t * sqrt(2) * gamma((k + 1) / 2) / gamma(k / 2) part_3 = hyper(((k + 1) / 2,), (S(3) / 2,), t ** 2 / 2) return part_1 + part_2 * part_3 def Chi(name, k): r""" Create a continuous random variable with a Chi distribution. The density of the Chi distribution is given by .. math:: f(x) := \frac{2^{1-k/2}x^{k-1}e^{-x^2/2}}{\Gamma(k/2)} with :math:`x \geq 0`. Parameters ========== k : Positive integer, The number of degrees of freedom Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Chi, density, E >>> from sympy import Symbol, simplify >>> k = Symbol("k", integer=True) >>> z = Symbol("z") >>> X = Chi("x", k) >>> density(X)(z) 2**(1 - k/2)*z**(k - 1)*exp(-z**2/2)/gamma(k/2) >>> simplify(E(X)) sqrt(2)*gamma(k/2 + 1/2)/gamma(k/2) References ========== .. [1] https://en.wikipedia.org/wiki/Chi_distribution .. [2] http://mathworld.wolfram.com/ChiDistribution.html """ return rv(name, ChiDistribution, (k,)) #------------------------------------------------------------------------------- # Non-central Chi distribution ------------------------------------------------- class ChiNoncentralDistribution(SingleContinuousDistribution): _argnames = ('k', 'l') @staticmethod def check(k, l): _value_check(k > 0, "Number of degrees of freedom (k) must be positive.") _value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.") _value_check(l > 0, "Shift parameter Lambda must be positive.") set = Interval(0, oo) def pdf(self, x): k, l = self.k, self.l return exp(-(x**2+l**2)/2)*x**k*l / (l*x)**(k/2) * besseli(k/2-1, l*x) def ChiNoncentral(name, k, l): r""" Create a continuous random variable with a non-central Chi distribution. The density of the non-central Chi distribution is given by .. math:: f(x) := \frac{e^{-(x^2+\lambda^2)/2} x^k\lambda} {(\lambda x)^{k/2}} I_{k/2-1}(\lambda x) with `x \geq 0`. Here, `I_\nu (x)` is the :ref:`modified Bessel function of the first kind <besseli>`. Parameters ========== k : A positive Integer, `k > 0`, the number of degrees of freedom lambda : Real number, `\lambda > 0`, Shift parameter Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import ChiNoncentral, density >>> from sympy import Symbol >>> k = Symbol("k", integer=True) >>> l = Symbol("l") >>> z = Symbol("z") >>> X = ChiNoncentral("x", k, l) >>> density(X)(z) l*z**k*(l*z)**(-k/2)*exp(-l**2/2 - z**2/2)*besseli(k/2 - 1, l*z) References ========== .. [1] https://en.wikipedia.org/wiki/Noncentral_chi_distribution """ return rv(name, ChiNoncentralDistribution, (k, l)) #------------------------------------------------------------------------------- # Chi squared distribution ----------------------------------------------------- class ChiSquaredDistribution(SingleContinuousDistribution): _argnames = ('k',) @staticmethod def check(k): _value_check(k > 0, "Number of degrees of freedom (k) must be positive.") _value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.") set = Interval(0, oo) def pdf(self, x): k = self.k return 1/(2**(k/2)*gamma(k/2))*x**(k/2 - 1)*exp(-x/2) def _cdf(self, x): k = self.k return Piecewise( (S.One/gamma(k/2)*lowergamma(k/2, x/2), x >= 0), (0, True) ) def _characteristic_function(self, t): return (1 - 2*I*t)**(-self.k/2) def _moment_generating_function(self, t): return (1 - 2*t)**(-self.k/2) def ChiSquared(name, k): r""" Create a continuous random variable with a Chi-squared distribution. The density of the Chi-squared distribution is given by .. math:: f(x) := \frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)} x^{\frac{k}{2}-1} e^{-\frac{x}{2}} with :math:`x \geq 0`. Parameters ========== k : Positive integer, The number of degrees of freedom Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import ChiSquared, density, E, variance, moment >>> from sympy import Symbol >>> k = Symbol("k", integer=True, positive=True) >>> z = Symbol("z") >>> X = ChiSquared("x", k) >>> density(X)(z) 2**(-k/2)*z**(k/2 - 1)*exp(-z/2)/gamma(k/2) >>> E(X) k >>> variance(X) 2*k >>> moment(X, 3) k**3 + 6*k**2 + 8*k References ========== .. [1] https://en.wikipedia.org/wiki/Chi_squared_distribution .. [2] http://mathworld.wolfram.com/Chi-SquaredDistribution.html """ return rv(name, ChiSquaredDistribution, (k, )) #------------------------------------------------------------------------------- # Dagum distribution ----------------------------------------------------------- class DagumDistribution(SingleContinuousDistribution): _argnames = ('p', 'a', 'b') set = Interval(0, oo) @staticmethod def check(p, a, b): _value_check(p > 0, "Shape parameter p must be positive.") _value_check(a > 0, "Shape parameter a must be positive.") _value_check(b > 0, "Scale parameter b must be positive.") def pdf(self, x): p, a, b = self.p, self.a, self.b return a*p/x*((x/b)**(a*p)/(((x/b)**a + 1)**(p + 1))) def _cdf(self, x): p, a, b = self.p, self.a, self.b return Piecewise(((S.One + (S(x)/b)**-a)**-p, x>=0), (S.Zero, True)) def Dagum(name, p, a, b): r""" Create a continuous random variable with a Dagum distribution. The density of the Dagum distribution is given by .. math:: f(x) := \frac{a p}{x} \left( \frac{\left(\tfrac{x}{b}\right)^{a p}} {\left(\left(\tfrac{x}{b}\right)^a + 1 \right)^{p+1}} \right) with :math:`x > 0`. Parameters ========== p : Real number, `p > 0`, a shape a : Real number, `a > 0`, a shape b : Real number, `b > 0`, a scale Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Dagum, density, cdf >>> from sympy import Symbol >>> p = Symbol("p", positive=True) >>> a = Symbol("a", positive=True) >>> b = Symbol("b", positive=True) >>> z = Symbol("z") >>> X = Dagum("x", p, a, b) >>> density(X)(z) a*p*(z/b)**(a*p)*((z/b)**a + 1)**(-p - 1)/z >>> cdf(X)(z) Piecewise(((1 + (z/b)**(-a))**(-p), z >= 0), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Dagum_distribution """ return rv(name, DagumDistribution, (p, a, b)) #------------------------------------------------------------------------------- # Erlang distribution ---------------------------------------------------------- def Erlang(name, k, l): r""" Create a continuous random variable with an Erlang distribution. The density of the Erlang distribution is given by .. math:: f(x) := \frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!} with :math:`x \in [0,\infty]`. Parameters ========== k : Positive integer l : Real number, `\lambda > 0`, the rate Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Erlang, density, cdf, E, variance >>> from sympy import Symbol, simplify, pprint >>> k = Symbol("k", integer=True, positive=True) >>> l = Symbol("l", positive=True) >>> z = Symbol("z") >>> X = Erlang("x", k, l) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) k k - 1 -l*z l *z *e --------------- Gamma(k) >>> C = cdf(X)(z) >>> pprint(C, use_unicode=False) /lowergamma(k, l*z) |------------------ for z > 0 < Gamma(k) | \ 0 otherwise >>> E(X) k/l >>> simplify(variance(X)) k/l**2 References ========== .. [1] https://en.wikipedia.org/wiki/Erlang_distribution .. [2] http://mathworld.wolfram.com/ErlangDistribution.html """ return rv(name, GammaDistribution, (k, S.One/l)) # ------------------------------------------------------------------------------- # ExGaussian distribution ----------------------------------------------------- class ExGaussianDistribution(SingleContinuousDistribution): _argnames = ('mean', 'std', 'rate') set = Interval(-oo, oo) @staticmethod def check(mean, std, rate): _value_check( std > 0, "Standard deviation of ExGaussian must be positive.") _value_check(rate > 0, "Rate of ExGaussian must be positive.") def pdf(self, x): mean, std, rate = self.mean, self.std, self.rate term1 = rate/2 term2 = exp(rate * (2 * mean + rate * std**2 - 2*x)/2) term3 = erfc((mean + rate*std**2 - x)/(sqrt(2)*std)) return term1*term2*term3 def _cdf(self, x): from sympy.stats import cdf mean, std, rate = self.mean, self.std, self.rate u = rate*(x - mean) v = rate*std GaussianCDF1 = cdf(Normal('x', 0, v))(u) GaussianCDF2 = cdf(Normal('x', v**2, v))(u) return GaussianCDF1 - exp(-u + (v**2/2) + log(GaussianCDF2)) def _characteristic_function(self, t): mean, std, rate = self.mean, self.std, self.rate term1 = (1 - I*t/rate)**(-1) term2 = exp(I*mean*t - std**2*t**2/2) return term1 * term2 def _moment_generating_function(self, t): mean, std, rate = self.mean, self.std, self.rate term1 = (1 - t/rate)**(-1) term2 = exp(mean*t + std**2*t**2/2) return term1*term2 def ExGaussian(name, mean, std, rate): r""" Create a continuous random variable with an Exponentially modified Gaussian (EMG) distribution. The density of the exponentially modified Gaussian distribution is given by .. math:: f(x) := \frac{\lambda}{2}e^{\frac{\lambda}{2}(2\mu+\lambda\sigma^2-2x)} \text{erfc}(\frac{\mu + \lambda\sigma^2 - x}{\sqrt{2}\sigma}) with `x > 0`. Note that the expected value is `1/\lambda`. Parameters ========== mu : A Real number, the mean of Gaussian component std: A positive Real number, :math: `\sigma^2 > 0` the variance of Gaussian component lambda: A positive Real number, :math: `\lambda > 0` the rate of Exponential component Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import ExGaussian, density, cdf, E >>> from sympy.stats import variance, skewness >>> from sympy import Symbol, pprint, simplify >>> mean = Symbol("mu") >>> std = Symbol("sigma", positive=True) >>> rate = Symbol("lamda", positive=True) >>> z = Symbol("z") >>> X = ExGaussian("x", mean, std, rate) >>> pprint(density(X)(z), use_unicode=False) / 2 \ lamda*\lamda*sigma + 2*mu - 2*z/ --------------------------------- / ___ / 2 \\ 2 |\/ 2 *\lamda*sigma + mu - z/| lamda*e *erfc|-----------------------------| \ 2*sigma / ---------------------------------------------------------------------------- 2 >>> cdf(X)(z) -(erf(sqrt(2)*(-lamda**2*sigma**2 + lamda*(-mu + z))/(2*lamda*sigma))/2 + 1/2)*exp(lamda**2*sigma**2/2 - lamda*(-mu + z)) + erf(sqrt(2)*(-mu + z)/(2*sigma))/2 + 1/2 >>> E(X) (lamda*mu + 1)/lamda >>> simplify(variance(X)) sigma**2 + lamda**(-2) >>> simplify(skewness(X)) 2/(lamda**2*sigma**2 + 1)**(3/2) References ========== .. [1] https://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution """ return rv(name, ExGaussianDistribution, (mean, std, rate)) #------------------------------------------------------------------------------- # Exponential distribution ----------------------------------------------------- class ExponentialDistribution(SingleContinuousDistribution): _argnames = ('rate',) set = Interval(0, oo) @staticmethod def check(rate): _value_check(rate > 0, "Rate must be positive.") def pdf(self, x): return self.rate * exp(-self.rate*x) def _cdf(self, x): return Piecewise( (S.One - exp(-self.rate*x), x >= 0), (0, True), ) def _characteristic_function(self, t): rate = self.rate return rate / (rate - I*t) def _moment_generating_function(self, t): rate = self.rate return rate / (rate - t) def _quantile(self, p): return -log(1-p)/self.rate def Exponential(name, rate): r""" Create a continuous random variable with an Exponential distribution. The density of the exponential distribution is given by .. math:: f(x) := \lambda \exp(-\lambda x) with `x > 0`. Note that the expected value is `1/\lambda`. Parameters ========== rate : A positive Real number, `\lambda > 0`, the rate (or inverse scale/inverse mean) Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Exponential, density, cdf, E >>> from sympy.stats import variance, std, skewness, quantile >>> from sympy import Symbol >>> l = Symbol("lambda", positive=True) >>> z = Symbol("z") >>> p = Symbol("p") >>> X = Exponential("x", l) >>> density(X)(z) lambda*exp(-lambda*z) >>> cdf(X)(z) Piecewise((1 - exp(-lambda*z), z >= 0), (0, True)) >>> quantile(X)(p) -log(1 - p)/lambda >>> E(X) 1/lambda >>> variance(X) lambda**(-2) >>> skewness(X) 2 >>> X = Exponential('x', 10) >>> density(X)(z) 10*exp(-10*z) >>> E(X) 1/10 >>> std(X) 1/10 References ========== .. [1] https://en.wikipedia.org/wiki/Exponential_distribution .. [2] http://mathworld.wolfram.com/ExponentialDistribution.html """ return rv(name, ExponentialDistribution, (rate, )) # ------------------------------------------------------------------------------- # Exponential Power distribution ----------------------------------------------------- class ExponentialPowerDistribution(SingleContinuousDistribution): _argnames = ('mu', 'alpha', 'beta') set = Interval(-oo, oo) @staticmethod def check(mu, alpha, beta): _value_check(alpha > 0, "Scale parameter alpha must be positive.") _value_check(beta > 0, "Shape parameter beta must be positive.") def pdf(self, x): mu, alpha, beta = self.mu, self.alpha, self.beta num = beta*exp(-(Abs(x - mu)/alpha)**beta) den = 2*alpha*gamma(1/beta) return num/den def _cdf(self, x): mu, alpha, beta = self.mu, self.alpha, self.beta num = lowergamma(1/beta, (Abs(x - mu) / alpha)**beta) den = 2*gamma(1/beta) return sign(x - mu)*num/den + S.Half def ExponentialPower(name, mu, alpha, beta): r""" Create a Continuous Random Variable with Exponential Power distribution. This distribution is known also as Generalized Normal distribution version 1 The density of the Exponential Power distribution is given by .. math:: f(x) := \frac{\beta}{2\alpha\Gamma(\frac{1}{\beta})} e^{{-(\frac{|x - \mu|}{\alpha})^{\beta}}} with :math:`x \in [ - \infty, \infty ]`. Parameters ========== mu : Real number, 'mu' is a location alpha : Real number, 'alpha > 0' is a scale beta : Real number, 'beta > 0' is a shape Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import ExponentialPower, density, cdf >>> from sympy import Symbol, pprint >>> z = Symbol("z") >>> mu = Symbol("mu") >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> X = ExponentialPower("x", mu, alpha, beta) >>> pprint(density(X)(z), use_unicode=False) beta /|mu - z|\ -|--------| \ alpha / beta*e --------------------- / 1 \ 2*alpha*Gamma|----| \beta/ >>> cdf(X)(z) 1/2 + lowergamma(1/beta, (Abs(mu - z)/alpha)**beta)*sign(-mu + z)/(2*gamma(1/beta)) References ========== .. [1] https://reference.wolfram.com/language/ref/ExponentialPowerDistribution.html .. [2] https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1 """ return rv(name, ExponentialPowerDistribution, (mu, alpha, beta)) #------------------------------------------------------------------------------- # F distribution --------------------------------------------------------------- class FDistributionDistribution(SingleContinuousDistribution): _argnames = ('d1', 'd2') set = Interval(0, oo) @staticmethod def check(d1, d2): _value_check((d1 > 0, d1.is_integer), "Degrees of freedom d1 must be positive integer.") _value_check((d2 > 0, d2.is_integer), "Degrees of freedom d2 must be positive integer.") def pdf(self, x): d1, d2 = self.d1, self.d2 return (sqrt((d1*x)**d1*d2**d2 / (d1*x+d2)**(d1+d2)) / (x * beta_fn(d1/2, d2/2))) def _moment_generating_function(self, t): raise NotImplementedError('The moment generating function for the ' 'F-distribution does not exist.') def FDistribution(name, d1, d2): r""" Create a continuous random variable with a F distribution. The density of the F distribution is given by .. math:: f(x) := \frac{\sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}} {(d_1 x + d_2)^{d_1 + d_2}}}} {x \mathrm{B} \left(\frac{d_1}{2}, \frac{d_2}{2}\right)} with :math:`x > 0`. Parameters ========== d1 : `d_1 > 0`, where d_1 is the degrees of freedom (n_1 - 1) d2 : `d_2 > 0`, where d_2 is the degrees of freedom (n_2 - 1) Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import FDistribution, density >>> from sympy import Symbol, pprint >>> d1 = Symbol("d1", positive=True) >>> d2 = Symbol("d2", positive=True) >>> z = Symbol("z") >>> X = FDistribution("x", d1, d2) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) d2 -- ______________________________ 2 / d1 -d1 - d2 d2 *\/ (d1*z) *(d1*z + d2) -------------------------------------- /d1 d2\ z*B|--, --| \2 2 / References ========== .. [1] https://en.wikipedia.org/wiki/F-distribution .. [2] http://mathworld.wolfram.com/F-Distribution.html """ return rv(name, FDistributionDistribution, (d1, d2)) #------------------------------------------------------------------------------- # Fisher Z distribution -------------------------------------------------------- class FisherZDistribution(SingleContinuousDistribution): _argnames = ('d1', 'd2') set = Interval(-oo, oo) @staticmethod def check(d1, d2): _value_check(d1 > 0, "Degree of freedom d1 must be positive.") _value_check(d2 > 0, "Degree of freedom d2 must be positive.") def pdf(self, x): d1, d2 = self.d1, self.d2 return (2*d1**(d1/2)*d2**(d2/2) / beta_fn(d1/2, d2/2) * exp(d1*x) / (d1*exp(2*x)+d2)**((d1+d2)/2)) def FisherZ(name, d1, d2): r""" Create a Continuous Random Variable with an Fisher's Z distribution. The density of the Fisher's Z distribution is given by .. math:: f(x) := \frac{2d_1^{d_1/2} d_2^{d_2/2}} {\mathrm{B}(d_1/2, d_2/2)} \frac{e^{d_1z}}{\left(d_1e^{2z}+d_2\right)^{\left(d_1+d_2\right)/2}} .. TODO - What is the difference between these degrees of freedom? Parameters ========== d1 : `d_1 > 0`, degree of freedom d2 : `d_2 > 0`, degree of freedom Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import FisherZ, density >>> from sympy import Symbol, pprint >>> d1 = Symbol("d1", positive=True) >>> d2 = Symbol("d2", positive=True) >>> z = Symbol("z") >>> X = FisherZ("x", d1, d2) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) d1 d2 d1 d2 - -- - -- -- -- 2 2 2 2 / 2*z \ d1*z 2*d1 *d2 *\d1*e + d2/ *e ----------------------------------------- /d1 d2\ B|--, --| \2 2 / References ========== .. [1] https://en.wikipedia.org/wiki/Fisher%27s_z-distribution .. [2] http://mathworld.wolfram.com/Fishersz-Distribution.html """ return rv(name, FisherZDistribution, (d1, d2)) #------------------------------------------------------------------------------- # Frechet distribution --------------------------------------------------------- class FrechetDistribution(SingleContinuousDistribution): _argnames = ('a', 's', 'm') set = Interval(0, oo) @staticmethod def check(a, s, m): _value_check(a > 0, "Shape parameter alpha must be positive.") _value_check(s > 0, "Scale parameter s must be positive.") def __new__(cls, a, s=1, m=0): a, s, m = list(map(sympify, (a, s, m))) return Basic.__new__(cls, a, s, m) def pdf(self, x): a, s, m = self.a, self.s, self.m return a/s * ((x-m)/s)**(-1-a) * exp(-((x-m)/s)**(-a)) def _cdf(self, x): a, s, m = self.a, self.s, self.m return Piecewise((exp(-((x-m)/s)**(-a)), x >= m), (S.Zero, True)) def Frechet(name, a, s=1, m=0): r""" Create a continuous random variable with a Frechet distribution. The density of the Frechet distribution is given by .. math:: f(x) := \frac{\alpha}{s} \left(\frac{x-m}{s}\right)^{-1-\alpha} e^{-(\frac{x-m}{s})^{-\alpha}} with :math:`x \geq m`. Parameters ========== a : Real number, :math:`a \in \left(0, \infty\right)` the shape s : Real number, :math:`s \in \left(0, \infty\right)` the scale m : Real number, :math:`m \in \left(-\infty, \infty\right)` the minimum Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Frechet, density, cdf >>> from sympy import Symbol >>> a = Symbol("a", positive=True) >>> s = Symbol("s", positive=True) >>> m = Symbol("m", real=True) >>> z = Symbol("z") >>> X = Frechet("x", a, s, m) >>> density(X)(z) a*((-m + z)/s)**(-a - 1)*exp(-((-m + z)/s)**(-a))/s >>> cdf(X)(z) Piecewise((exp(-((-m + z)/s)**(-a)), m <= z), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Fr%C3%A9chet_distribution """ return rv(name, FrechetDistribution, (a, s, m)) #------------------------------------------------------------------------------- # Gamma distribution ----------------------------------------------------------- class GammaDistribution(SingleContinuousDistribution): _argnames = ('k', 'theta') set = Interval(0, oo) @staticmethod def check(k, theta): _value_check(k > 0, "k must be positive") _value_check(theta > 0, "Theta must be positive") def pdf(self, x): k, theta = self.k, self.theta return x**(k - 1) * exp(-x/theta) / (gamma(k)*theta**k) def _cdf(self, x): k, theta = self.k, self.theta return Piecewise( (lowergamma(k, S(x)/theta)/gamma(k), x > 0), (S.Zero, True)) def _characteristic_function(self, t): return (1 - self.theta*I*t)**(-self.k) def _moment_generating_function(self, t): return (1- self.theta*t)**(-self.k) def Gamma(name, k, theta): r""" Create a continuous random variable with a Gamma distribution. The density of the Gamma distribution is given by .. math:: f(x) := \frac{1}{\Gamma(k) \theta^k} x^{k - 1} e^{-\frac{x}{\theta}} with :math:`x \in [0,1]`. Parameters ========== k : Real number, `k > 0`, a shape theta : Real number, `\theta > 0`, a scale Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Gamma, density, cdf, E, variance >>> from sympy import Symbol, pprint, simplify >>> k = Symbol("k", positive=True) >>> theta = Symbol("theta", positive=True) >>> z = Symbol("z") >>> X = Gamma("x", k, theta) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) -z ----- -k k - 1 theta theta *z *e --------------------- Gamma(k) >>> C = cdf(X, meijerg=True)(z) >>> pprint(C, use_unicode=False) / / z \ |k*lowergamma|k, -----| | \ theta/ <---------------------- for z >= 0 | Gamma(k + 1) | \ 0 otherwise >>> E(X) k*theta >>> V = simplify(variance(X)) >>> pprint(V, use_unicode=False) 2 k*theta References ========== .. [1] https://en.wikipedia.org/wiki/Gamma_distribution .. [2] http://mathworld.wolfram.com/GammaDistribution.html """ return rv(name, GammaDistribution, (k, theta)) #------------------------------------------------------------------------------- # Inverse Gamma distribution --------------------------------------------------- class GammaInverseDistribution(SingleContinuousDistribution): _argnames = ('a', 'b') set = Interval(0, oo) @staticmethod def check(a, b): _value_check(a > 0, "alpha must be positive") _value_check(b > 0, "beta must be positive") def pdf(self, x): a, b = self.a, self.b return b**a/gamma(a) * x**(-a-1) * exp(-b/x) def _cdf(self, x): a, b = self.a, self.b return Piecewise((uppergamma(a,b/x)/gamma(a), x > 0), (S.Zero, True)) def _characteristic_function(self, t): a, b = self.a, self.b return 2 * (-I*b*t)**(a/2) * besselk(a, sqrt(-4*I*b*t)) / gamma(a) def _moment_generating_function(self, t): raise NotImplementedError('The moment generating function for the ' 'gamma inverse distribution does not exist.') def GammaInverse(name, a, b): r""" Create a continuous random variable with an inverse Gamma distribution. The density of the inverse Gamma distribution is given by .. math:: f(x) := \frac{\beta^\alpha}{\Gamma(\alpha)} x^{-\alpha - 1} \exp\left(\frac{-\beta}{x}\right) with :math:`x > 0`. Parameters ========== a : Real number, `a > 0` a shape b : Real number, `b > 0` a scale Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import GammaInverse, density, cdf >>> from sympy import Symbol, pprint >>> a = Symbol("a", positive=True) >>> b = Symbol("b", positive=True) >>> z = Symbol("z") >>> X = GammaInverse("x", a, b) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) -b --- a -a - 1 z b *z *e --------------- Gamma(a) >>> cdf(X)(z) Piecewise((uppergamma(a, b/z)/gamma(a), z > 0), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Inverse-gamma_distribution """ return rv(name, GammaInverseDistribution, (a, b)) #------------------------------------------------------------------------------- # Gumbel distribution (Maximum and Minimum) -------------------------------------------------------- class GumbelDistribution(SingleContinuousDistribution): _argnames = ('beta', 'mu', 'minimum') set = Interval(-oo, oo) @staticmethod def check(beta, mu, minimum): _value_check(beta > 0, "Scale parameter beta must be positive.") def pdf(self, x): beta, mu = self.beta, self.mu z = (x - mu)/beta f_max = (1/beta)*exp(-z - exp(-z)) f_min = (1/beta)*exp(z - exp(z)) return Piecewise((f_min, self.minimum), (f_max, not self.minimum)) def _cdf(self, x): beta, mu = self.beta, self.mu z = (x - mu)/beta F_max = exp(-exp(-z)) F_min = 1 - exp(-exp(z)) return Piecewise((F_min, self.minimum), (F_max, not self.minimum)) def _characteristic_function(self, t): cf_max = gamma(1 - I*self.beta*t) * exp(I*self.mu*t) cf_min = gamma(1 + I*self.beta*t) * exp(I*self.mu*t) return Piecewise((cf_min, self.minimum), (cf_max, not self.minimum)) def _moment_generating_function(self, t): mgf_max = gamma(1 - self.beta*t) * exp(self.mu*t) mgf_min = gamma(1 + self.beta*t) * exp(self.mu*t) return Piecewise((mgf_min, self.minimum), (mgf_max, not self.minimum)) def Gumbel(name, beta, mu, minimum=False): r""" Create a Continuous Random Variable with Gumbel distribution. The density of the Gumbel distribution is given by For Maximum .. math:: f(x) := \dfrac{1}{\beta} \exp \left( -\dfrac{x-\mu}{\beta} - \exp \left( -\dfrac{x - \mu}{\beta} \right) \right) with :math:`x \in [ - \infty, \infty ]`. For Minimum .. math:: f(x) := \frac{e^{- e^{\frac{- \mu + x}{\beta}} + \frac{- \mu + x}{\beta}}}{\beta} with :math:`x \in [ - \infty, \infty ]`. Parameters ========== mu : Real number, 'mu' is a location beta : Real number, 'beta > 0' is a scale minimum : Boolean, by default, False, set to True for enabling minimum distribution Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Gumbel, density, cdf >>> from sympy import Symbol >>> x = Symbol("x") >>> mu = Symbol("mu") >>> beta = Symbol("beta", positive=True) >>> X = Gumbel("x", beta, mu) >>> density(X)(x) exp(-exp(-(-mu + x)/beta) - (-mu + x)/beta)/beta >>> cdf(X)(x) exp(-exp(-(-mu + x)/beta)) References ========== .. [1] http://mathworld.wolfram.com/GumbelDistribution.html .. [2] https://en.wikipedia.org/wiki/Gumbel_distribution .. [3] http://www.mathwave.com/help/easyfit/html/analyses/distributions/gumbel_max.html .. [4] http://www.mathwave.com/help/easyfit/html/analyses/distributions/gumbel_min.html """ return rv(name, GumbelDistribution, (beta, mu, minimum)) #------------------------------------------------------------------------------- # Gompertz distribution -------------------------------------------------------- class GompertzDistribution(SingleContinuousDistribution): _argnames = ('b', 'eta') set = Interval(0, oo) @staticmethod def check(b, eta): _value_check(b > 0, "b must be positive") _value_check(eta > 0, "eta must be positive") def pdf(self, x): eta, b = self.eta, self.b return b*eta*exp(b*x)*exp(eta)*exp(-eta*exp(b*x)) def _cdf(self, x): eta, b = self.eta, self.b return 1 - exp(eta)*exp(-eta*exp(b*x)) def _moment_generating_function(self, t): eta, b = self.eta, self.b return eta * exp(eta) * expint(t/b, eta) def Gompertz(name, b, eta): r""" Create a Continuous Random Variable with Gompertz distribution. The density of the Gompertz distribution is given by .. math:: f(x) := b \eta e^{b x} e^{\eta} \exp \left(-\eta e^{bx} \right) with :math: 'x \in [0, \inf)'. Parameters ========== b: Real number, 'b > 0' a scale eta: Real number, 'eta > 0' a shape Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Gompertz, density >>> from sympy import Symbol >>> b = Symbol("b", positive=True) >>> eta = Symbol("eta", positive=True) >>> z = Symbol("z") >>> X = Gompertz("x", b, eta) >>> density(X)(z) b*eta*exp(eta)*exp(b*z)*exp(-eta*exp(b*z)) References ========== .. [1] https://en.wikipedia.org/wiki/Gompertz_distribution """ return rv(name, GompertzDistribution, (b, eta)) #------------------------------------------------------------------------------- # Kumaraswamy distribution ----------------------------------------------------- class KumaraswamyDistribution(SingleContinuousDistribution): _argnames = ('a', 'b') set = Interval(0, oo) @staticmethod def check(a, b): _value_check(a > 0, "a must be positive") _value_check(b > 0, "b must be positive") def pdf(self, x): a, b = self.a, self.b return a * b * x**(a-1) * (1-x**a)**(b-1) def _cdf(self, x): a, b = self.a, self.b return Piecewise( (S.Zero, x < S.Zero), (1 - (1 - x**a)**b, x <= S.One), (S.One, True)) def Kumaraswamy(name, a, b): r""" Create a Continuous Random Variable with a Kumaraswamy distribution. The density of the Kumaraswamy distribution is given by .. math:: f(x) := a b x^{a-1} (1-x^a)^{b-1} with :math:`x \in [0,1]`. Parameters ========== a : Real number, `a > 0` a shape b : Real number, `b > 0` a shape Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Kumaraswamy, density, cdf >>> from sympy import Symbol, pprint >>> a = Symbol("a", positive=True) >>> b = Symbol("b", positive=True) >>> z = Symbol("z") >>> X = Kumaraswamy("x", a, b) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) b - 1 a - 1 / a\ a*b*z *\1 - z / >>> cdf(X)(z) Piecewise((0, z < 0), (1 - (1 - z**a)**b, z <= 1), (1, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Kumaraswamy_distribution """ return rv(name, KumaraswamyDistribution, (a, b)) #------------------------------------------------------------------------------- # Laplace distribution --------------------------------------------------------- class LaplaceDistribution(SingleContinuousDistribution): _argnames = ('mu', 'b') set = Interval(-oo, oo) @staticmethod def check(mu, b): _value_check(b > 0, "Scale parameter b must be positive.") _value_check(mu.is_real, "Location parameter mu should be real") def pdf(self, x): mu, b = self.mu, self.b return 1/(2*b)*exp(-Abs(x - mu)/b) def _cdf(self, x): mu, b = self.mu, self.b return Piecewise( (S.Half*exp((x - mu)/b), x < mu), (S.One - S.Half*exp(-(x - mu)/b), x >= mu) ) def _characteristic_function(self, t): return exp(self.mu*I*t) / (1 + self.b**2*t**2) def _moment_generating_function(self, t): return exp(self.mu*t) / (1 - self.b**2*t**2) def Laplace(name, mu, b): r""" Create a continuous random variable with a Laplace distribution. The density of the Laplace distribution is given by .. math:: f(x) := \frac{1}{2 b} \exp \left(-\frac{|x-\mu|}b \right) Parameters ========== mu : Real number or a list/matrix, the location (mean) or the location vector b : Real number or a positive definite matrix, representing a scale or the covariance matrix. Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Laplace, density, cdf >>> from sympy import Symbol, pprint >>> mu = Symbol("mu") >>> b = Symbol("b", positive=True) >>> z = Symbol("z") >>> X = Laplace("x", mu, b) >>> density(X)(z) exp(-Abs(mu - z)/b)/(2*b) >>> cdf(X)(z) Piecewise((exp((-mu + z)/b)/2, mu > z), (1 - exp((mu - z)/b)/2, True)) >>> L = Laplace('L', [1, 2], [[1, 0], [0, 1]]) >>> pprint(density(L)(1, 2), use_unicode=False) 5 / ____\ e *besselk\0, \/ 35 / --------------------- pi References ========== .. [1] https://en.wikipedia.org/wiki/Laplace_distribution .. [2] http://mathworld.wolfram.com/LaplaceDistribution.html """ if isinstance(mu, (list, MatrixBase)) and\ isinstance(b, (list, MatrixBase)): from sympy.stats.joint_rv_types import MultivariateLaplace return MultivariateLaplace(name, mu, b) return rv(name, LaplaceDistribution, (mu, b)) #------------------------------------------------------------------------------- # Levy distribution --------------------------------------------------------- class LevyDistribution(SingleContinuousDistribution): _argnames = ('mu', 'c') @property def set(self): return Interval(self.mu, oo) @staticmethod def check(mu, c): _value_check(c > 0, "c (scale parameter) must be positive") _value_check(mu.is_real, "mu (location paramater) must be real") def pdf(self, x): mu, c = self.mu, self.c return sqrt(c/(2*pi))*exp(-c/(2*(x - mu)))/((x - mu)**(S.One + S.Half)) def _cdf(self, x): mu, c = self.mu, self.c return erfc(sqrt(c/(2*(x - mu)))) def _characteristic_function(self, t): mu, c = self.mu, self.c return exp(I * mu * t - sqrt(-2 * I * c * t)) def _moment_generating_function(self, t): raise NotImplementedError('The moment generating function of Levy distribution does not exist.') def Levy(name, mu, c): r""" Create a continuous random variable with a Levy distribution. The density of the Levy distribution is given by .. math:: f(x) := \sqrt(\frac{c}{2 \pi}) \frac{\exp -\frac{c}{2 (x - \mu)}}{(x - \mu)^{3/2}} Parameters ========== mu : Real number, the location parameter c : Real number, `c > 0`, a scale parameter Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Levy, density, cdf >>> from sympy import Symbol >>> mu = Symbol("mu", real=True) >>> c = Symbol("c", positive=True) >>> z = Symbol("z") >>> X = Levy("x", mu, c) >>> density(X)(z) sqrt(2)*sqrt(c)*exp(-c/(-2*mu + 2*z))/(2*sqrt(pi)*(-mu + z)**(3/2)) >>> cdf(X)(z) erfc(sqrt(c)*sqrt(1/(-2*mu + 2*z))) References ========== .. [1] https://en.wikipedia.org/wiki/L%C3%A9vy_distribution .. [2] http://mathworld.wolfram.com/LevyDistribution.html """ return rv(name, LevyDistribution, (mu, c)) #------------------------------------------------------------------------------- # Log-Cauchy distribution -------------------------------------------------------- class LogCauchyDistribution(SingleContinuousDistribution): _argnames = ('mu', 'sigma') set = Interval.open(0, oo) @staticmethod def check(mu, sigma): _value_check((sigma > 0) != False, "Scale parameter Gamma must be positive.") _value_check(mu.is_real != False, "Location parameter must be real.") def pdf(self, x): mu, sigma = self.mu, self.sigma return 1/(x*pi)*(sigma/((log(x) - mu)**2 + sigma**2)) def _cdf(self, x): mu, sigma = self.mu, self.sigma return (1/pi)*atan((log(x) - mu)/sigma) + S.Half def _characteristic_function(self, t): raise NotImplementedError("The characteristic function for the " "Log-Cauchy distribution does not exist.") def _moment_generating_function(self, t): raise NotImplementedError("The moment generating function for the " "Log-Cauchy distribution does not exist.") def LogCauchy(name, mu, sigma): r""" Create a continuous random variable with a Log-Cauchy distribution. The density of the Log-Cauchy distribution is given by .. math:: f(x) := \frac{1}{\pi x} \frac{\sigma}{(log(x)-\mu^2) + \sigma^2} Parameters ========== mu : Real number, the location sigma : Real number, `\sigma > 0`, a scale Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import LogCauchy, density, cdf >>> from sympy import Symbol, S >>> mu = 2 >>> sigma = S.One / 5 >>> z = Symbol("z") >>> X = LogCauchy("x", mu, sigma) >>> density(X)(z) 1/(5*pi*z*((log(z) - 2)**2 + 1/25)) >>> cdf(X)(z) atan(5*log(z) - 10)/pi + 1/2 References ========== .. [1] https://en.wikipedia.org/wiki/Log-Cauchy_distribution """ return rv(name, LogCauchyDistribution, (mu, sigma)) #------------------------------------------------------------------------------- # Logistic distribution -------------------------------------------------------- class LogisticDistribution(SingleContinuousDistribution): _argnames = ('mu', 's') set = Interval(-oo, oo) @staticmethod def check(mu, s): _value_check(s > 0, "Scale parameter s must be positive.") def pdf(self, x): mu, s = self.mu, self.s return exp(-(x - mu)/s)/(s*(1 + exp(-(x - mu)/s))**2) def _cdf(self, x): mu, s = self.mu, self.s return S.One/(1 + exp(-(x - mu)/s)) def _characteristic_function(self, t): return Piecewise((exp(I*t*self.mu) * pi*self.s*t / sinh(pi*self.s*t), Ne(t, 0)), (S.One, True)) def _moment_generating_function(self, t): return exp(self.mu*t) * beta_fn(1 - self.s*t, 1 + self.s*t) def _quantile(self, p): return self.mu - self.s*log(-S.One + S.One/p) def Logistic(name, mu, s): r""" Create a continuous random variable with a logistic distribution. The density of the logistic distribution is given by .. math:: f(x) := \frac{e^{-(x-\mu)/s}} {s\left(1+e^{-(x-\mu)/s}\right)^2} Parameters ========== mu : Real number, the location (mean) s : Real number, `s > 0` a scale Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Logistic, density, cdf >>> from sympy import Symbol >>> mu = Symbol("mu", real=True) >>> s = Symbol("s", positive=True) >>> z = Symbol("z") >>> X = Logistic("x", mu, s) >>> density(X)(z) exp((mu - z)/s)/(s*(exp((mu - z)/s) + 1)**2) >>> cdf(X)(z) 1/(exp((mu - z)/s) + 1) References ========== .. [1] https://en.wikipedia.org/wiki/Logistic_distribution .. [2] http://mathworld.wolfram.com/LogisticDistribution.html """ return rv(name, LogisticDistribution, (mu, s)) #------------------------------------------------------------------------------- # Log-logistic distribution -------------------------------------------------------- class LogLogisticDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta') set = Interval(0, oo) @staticmethod def check(alpha, beta): _value_check(alpha > 0, "Scale parameter Alpha must be positive.") _value_check(beta > 0, "Shape parameter Beta must be positive.") def pdf(self, x): a, b = self.alpha, self.beta return ((b/a)*(x/a)**(b - 1))/(1 + (x/a)**b)**2 def _cdf(self, x): a, b = self.alpha, self.beta return 1/(1 + (x/a)**(-b)) def _quantile(self, p): a, b = self.alpha, self.beta return a*((p/(1 - p))**(1/b)) def expectation(self, expr, var, **kwargs): a, b = self.args return Piecewise((S.NaN, b <= 1), (pi*a/(b*sin(pi/b)), True)) def LogLogistic(name, alpha, beta): r""" Create a continuous random variable with a log-logistic distribution. The distribution is unimodal when `beta > 1`. The density of the log-logistic distribution is given by .. math:: f(x) := \frac{(\frac{\beta}{\alpha})(\frac{x}{\alpha})^{\beta - 1}} {(1 + (\frac{x}{\alpha})^{\beta})^2} Parameters ========== alpha : Real number, `\alpha > 0`, scale parameter and median of distribution beta : Real number, `\beta > 0` a shape parameter Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import LogLogistic, density, cdf, quantile >>> from sympy import Symbol, pprint >>> alpha = Symbol("alpha", real=True, positive=True) >>> beta = Symbol("beta", real=True, positive=True) >>> p = Symbol("p") >>> z = Symbol("z", positive=True) >>> X = LogLogistic("x", alpha, beta) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) beta - 1 / z \ beta*|-----| \alpha/ ------------------------ 2 / beta \ |/ z \ | alpha*||-----| + 1| \\alpha/ / >>> cdf(X)(z) 1/(1 + (z/alpha)**(-beta)) >>> quantile(X)(p) alpha*(p/(1 - p))**(1/beta) References ========== .. [1] https://en.wikipedia.org/wiki/Log-logistic_distribution """ return rv(name, LogLogisticDistribution, (alpha, beta)) #------------------------------------------------------------------------------- #Logit-Normal distribution------------------------------------------------------ class LogitNormalDistribution(SingleContinuousDistribution): _argnames = ('mu', 's') set = Interval.open(0, 1) @staticmethod def check(mu, s): _value_check((s ** 2).is_real is not False and s ** 2 > 0, "Squared scale parameter s must be positive.") _value_check(mu.is_real is not False, "Location parameter must be real") def _logit(self, x): return log(x / (1 - x)) def pdf(self, x): mu, s = self.mu, self.s return exp(-(self._logit(x) - mu)**2/(2*s**2))*(S.One/sqrt(2*pi*(s**2)))*(1/(x*(1 - x))) def _cdf(self, x): mu, s = self.mu, self.s return (S.One/2)*(1 + erf((self._logit(x) - mu)/(sqrt(2*s**2)))) def LogitNormal(name, mu, s): r""" Create a continuous random variable with a Logit-Normal distribution. The density of the logistic distribution is given by .. math:: f(x) := \frac{1}{s \sqrt{2 \pi}} \frac{1}{x(1 - x)} e^{- \frac{(logit(x) - \mu)^2}{s^2}} where logit(x) = \log(\frac{x}{1 - x}) Parameters ========== mu : Real number, the location (mean) s : Real number, `s > 0` a scale Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import LogitNormal, density, cdf >>> from sympy import Symbol,pprint >>> mu = Symbol("mu", real=True) >>> s = Symbol("s", positive=True) >>> z = Symbol("z") >>> X = LogitNormal("x",mu,s) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) 2 / / z \\ -|-mu + log|-----|| \ \1 - z// --------------------- 2 ___ 2*s \/ 2 *e ---------------------------- ____ 2*\/ pi *s*z*(1 - z) >>> density(X)(z) sqrt(2)*exp(-(-mu + log(z/(1 - z)))**2/(2*s**2))/(2*sqrt(pi)*s*z*(1 - z)) >>> cdf(X)(z) erf(sqrt(2)*(-mu + log(z/(1 - z)))/(2*s))/2 + 1/2 References ========== .. [1] https://en.wikipedia.org/wiki/Logit-normal_distribution """ return rv(name, LogitNormalDistribution, (mu, s)) #------------------------------------------------------------------------------- # Log Normal distribution ------------------------------------------------------ class LogNormalDistribution(SingleContinuousDistribution): _argnames = ('mean', 'std') set = Interval(0, oo) @staticmethod def check(mean, std): _value_check(std > 0, "Parameter std must be positive.") def pdf(self, x): mean, std = self.mean, self.std return exp(-(log(x) - mean)**2 / (2*std**2)) / (x*sqrt(2*pi)*std) def _cdf(self, x): mean, std = self.mean, self.std return Piecewise( (S.Half + S.Half*erf((log(x) - mean)/sqrt(2)/std), x > 0), (S.Zero, True) ) def _moment_generating_function(self, t): raise NotImplementedError('Moment generating function of the log-normal distribution is not defined.') def LogNormal(name, mean, std): r""" Create a continuous random variable with a log-normal distribution. The density of the log-normal distribution is given by .. math:: f(x) := \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-\frac{\left(\ln x-\mu\right)^2}{2\sigma^2}} with :math:`x \geq 0`. Parameters ========== mu : Real number, the log-scale sigma : Real number, :math:`\sigma^2 > 0` a shape Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import LogNormal, density >>> from sympy import Symbol, pprint >>> mu = Symbol("mu", real=True) >>> sigma = Symbol("sigma", positive=True) >>> z = Symbol("z") >>> X = LogNormal("x", mu, sigma) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) 2 -(-mu + log(z)) ----------------- 2 ___ 2*sigma \/ 2 *e ------------------------ ____ 2*\/ pi *sigma*z >>> X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1 >>> density(X)(z) sqrt(2)*exp(-log(z)**2/2)/(2*sqrt(pi)*z) References ========== .. [1] https://en.wikipedia.org/wiki/Lognormal .. [2] http://mathworld.wolfram.com/LogNormalDistribution.html """ return rv(name, LogNormalDistribution, (mean, std)) #------------------------------------------------------------------------------- # Lomax Distribution ----------------------------------------------------------- class LomaxDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'lamda',) set = Interval(0, oo) @staticmethod def check(alpha, lamda): _value_check(alpha.is_real, "Shape parameter should be real.") _value_check(lamda.is_real, "Scale parameter should be real.") _value_check(alpha.is_positive, "Shape parameter should be positive.") _value_check(lamda.is_positive, "Scale parameter should be positive.") def pdf(self, x): lamba, alpha = self.lamda, self.alpha return (alpha/lamba) * (S.One + x/lamba)**(-alpha-1) def Lomax(name, alpha, lamda): r""" Create a continuous random variable with a Lomax distribution. The density of the Lomax distribution is given by .. math:: f(x) := \frac{\alpha}{\lambda}\left[1+\frac{x}{\lambda}\right]^{-(\alpha+1)} Parameters ========== alpha : Real Number, `alpha > 0` Shape parameter lamda : Real Number, `lamda > 0` Scale parameter Examples ======== >>> from sympy.stats import Lomax, density, cdf, E >>> from sympy import symbols >>> a, l = symbols('a, l', positive=True) >>> X = Lomax('X', a, l) >>> x = symbols('x') >>> density(X)(x) a*(1 + x/l)**(-a - 1)/l >>> cdf(X)(x) Piecewise((1 - (1 + x/l)**(-a), x >= 0), (0, True)) >>> a = 2 >>> X = Lomax('X', a, l) >>> E(X) l Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Lomax_distribution """ return rv(name, LomaxDistribution, (alpha, lamda)) #------------------------------------------------------------------------------- # Maxwell distribution --------------------------------------------------------- class MaxwellDistribution(SingleContinuousDistribution): _argnames = ('a',) set = Interval(0, oo) @staticmethod def check(a): _value_check(a > 0, "Parameter a must be positive.") def pdf(self, x): a = self.a return sqrt(2/pi)*x**2*exp(-x**2/(2*a**2))/a**3 def _cdf(self, x): a = self.a return erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a) def Maxwell(name, a): r""" Create a continuous random variable with a Maxwell distribution. The density of the Maxwell distribution is given by .. math:: f(x) := \sqrt{\frac{2}{\pi}} \frac{x^2 e^{-x^2/(2a^2)}}{a^3} with :math:`x \geq 0`. .. TODO - what does the parameter mean? Parameters ========== a : Real number, `a > 0` Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Maxwell, density, E, variance >>> from sympy import Symbol, simplify >>> a = Symbol("a", positive=True) >>> z = Symbol("z") >>> X = Maxwell("x", a) >>> density(X)(z) sqrt(2)*z**2*exp(-z**2/(2*a**2))/(sqrt(pi)*a**3) >>> E(X) 2*sqrt(2)*a/sqrt(pi) >>> simplify(variance(X)) a**2*(-8 + 3*pi)/pi References ========== .. [1] https://en.wikipedia.org/wiki/Maxwell_distribution .. [2] http://mathworld.wolfram.com/MaxwellDistribution.html """ return rv(name, MaxwellDistribution, (a, )) #------------------------------------------------------------------------------- # Moyal Distribution ----------------------------------------------------------- class MoyalDistribution(SingleContinuousDistribution): _argnames = ('mu', 'sigma') @staticmethod def check(mu, sigma): _value_check(mu.is_real, "Location parameter must be real.") _value_check(sigma.is_real and sigma > 0, "Scale parameter must be real\ and positive.") def pdf(self, x): mu, sigma = self.mu, self.sigma num = exp(-(exp(-(x - mu)/sigma) + (x - mu)/(sigma))/2) den = (sqrt(2*pi) * sigma) return num/den def _characteristic_function(self, t): mu, sigma = self.mu, self.sigma term1 = exp(I*t*mu) term2 = (2**(-I*sigma*t) * gamma(Rational(1, 2) - I*t*sigma)) return (term1 * term2)/sqrt(pi) def _moment_generating_function(self, t): mu, sigma = self.mu, self.sigma term1 = exp(t*mu) term2 = (2**(-1*sigma*t) * gamma(Rational(1, 2) - t*sigma)) return (term1 * term2)/sqrt(pi) def Moyal(name, mu, sigma): r""" Create a continuous random variable with a Moyal distribution. The density of the Moyal distribution is given by .. math:: f(x) := \frac{\exp-\frac{1}{2}\exp-\frac{x-\mu}{\sigma}-\frac{x-\mu}{2\sigma}}{\sqrt{2\pi}\sigma} with :math:`x \in \mathbb{R}`. Parameters ========== mu : Real number Location parameter sigma : Real positive number Scale parameter Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Moyal, density, cdf >>> from sympy import Symbol, simplify >>> mu = Symbol("mu", real=True) >>> sigma = Symbol("sigma", positive=True, real=True) >>> z = Symbol("z") >>> X = Moyal("x", mu, sigma) >>> density(X)(z) sqrt(2)*exp(-exp((mu - z)/sigma)/2 - (-mu + z)/(2*sigma))/(2*sqrt(pi)*sigma) >>> simplify(cdf(X)(z)) 1 - erf(sqrt(2)*exp((mu - z)/(2*sigma))/2) References ========== .. [1] https://reference.wolfram.com/language/ref/MoyalDistribution.html .. [2] http://www.stat.rice.edu/~dobelman/textfiles/DistributionsHandbook.pdf """ return rv(name, MoyalDistribution, (mu, sigma)) #------------------------------------------------------------------------------- # Nakagami distribution -------------------------------------------------------- class NakagamiDistribution(SingleContinuousDistribution): _argnames = ('mu', 'omega') set = Interval(0, oo) @staticmethod def check(mu, omega): _value_check(mu >= S.Half, "Shape parameter mu must be greater than equal to 1/2.") _value_check(omega > 0, "Spread parameter omega must be positive.") def pdf(self, x): mu, omega = self.mu, self.omega return 2*mu**mu/(gamma(mu)*omega**mu)*x**(2*mu - 1)*exp(-mu/omega*x**2) def _cdf(self, x): mu, omega = self.mu, self.omega return Piecewise( (lowergamma(mu, (mu/omega)*x**2)/gamma(mu), x > 0), (S.Zero, True)) def Nakagami(name, mu, omega): r""" Create a continuous random variable with a Nakagami distribution. The density of the Nakagami distribution is given by .. math:: f(x) := \frac{2\mu^\mu}{\Gamma(\mu)\omega^\mu} x^{2\mu-1} \exp\left(-\frac{\mu}{\omega}x^2 \right) with :math:`x > 0`. Parameters ========== mu : Real number, `\mu \geq \frac{1}{2}` a shape omega : Real number, `\omega > 0`, the spread Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Nakagami, density, E, variance, cdf >>> from sympy import Symbol, simplify, pprint >>> mu = Symbol("mu", positive=True) >>> omega = Symbol("omega", positive=True) >>> z = Symbol("z") >>> X = Nakagami("x", mu, omega) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) 2 -mu*z ------- mu -mu 2*mu - 1 omega 2*mu *omega *z *e ---------------------------------- Gamma(mu) >>> simplify(E(X)) sqrt(mu)*sqrt(omega)*gamma(mu + 1/2)/gamma(mu + 1) >>> V = simplify(variance(X)) >>> pprint(V, use_unicode=False) 2 omega*Gamma (mu + 1/2) omega - ----------------------- Gamma(mu)*Gamma(mu + 1) >>> cdf(X)(z) Piecewise((lowergamma(mu, mu*z**2/omega)/gamma(mu), z > 0), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Nakagami_distribution """ return rv(name, NakagamiDistribution, (mu, omega)) #------------------------------------------------------------------------------- # Normal distribution ---------------------------------------------------------- class NormalDistribution(SingleContinuousDistribution): _argnames = ('mean', 'std') @staticmethod def check(mean, std): _value_check(std > 0, "Standard deviation must be positive") def pdf(self, x): return exp(-(x - self.mean)**2 / (2*self.std**2)) / (sqrt(2*pi)*self.std) def _cdf(self, x): mean, std = self.mean, self.std return erf(sqrt(2)*(-mean + x)/(2*std))/2 + S.Half def _characteristic_function(self, t): mean, std = self.mean, self.std return exp(I*mean*t - std**2*t**2/2) def _moment_generating_function(self, t): mean, std = self.mean, self.std return exp(mean*t + std**2*t**2/2) def _quantile(self, p): mean, std = self.mean, self.std return mean + std*sqrt(2)*erfinv(2*p - 1) def Normal(name, mean, std): r""" Create a continuous random variable with a Normal distribution. The density of the Normal distribution is given by .. math:: f(x) := \frac{1}{\sigma\sqrt{2\pi}} e^{ -\frac{(x-\mu)^2}{2\sigma^2} } Parameters ========== mu : Real number or a list representing the mean or the mean vector sigma : Real number or a positive definite square matrix, :math:`\sigma^2 > 0` the variance Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Normal, density, E, std, cdf, skewness, quantile, marginal_distribution >>> from sympy import Symbol, simplify, pprint >>> mu = Symbol("mu") >>> sigma = Symbol("sigma", positive=True) >>> z = Symbol("z") >>> y = Symbol("y") >>> p = Symbol("p") >>> X = Normal("x", mu, sigma) >>> density(X)(z) sqrt(2)*exp(-(-mu + z)**2/(2*sigma**2))/(2*sqrt(pi)*sigma) >>> C = simplify(cdf(X))(z) # it needs a little more help... >>> pprint(C, use_unicode=False) / ___ \ |\/ 2 *(-mu + z)| erf|---------------| \ 2*sigma / 1 -------------------- + - 2 2 >>> quantile(X)(p) mu + sqrt(2)*sigma*erfinv(2*p - 1) >>> simplify(skewness(X)) 0 >>> X = Normal("x", 0, 1) # Mean 0, standard deviation 1 >>> density(X)(z) sqrt(2)*exp(-z**2/2)/(2*sqrt(pi)) >>> E(2*X + 1) 1 >>> simplify(std(2*X + 1)) 2 >>> m = Normal('X', [1, 2], [[2, 1], [1, 2]]) >>> pprint(density(m)(y, z), use_unicode=False) /1 y\ /2*y z\ / z\ / y 2*z \ |- - -|*|--- - -| + |1 - -|*|- - + --- - 1| ___ \2 2/ \ 3 3/ \ 2/ \ 3 3 / \/ 3 *e -------------------------------------------------- 6*pi >>> marginal_distribution(m, m[0])(1) 1/(2*sqrt(pi)) References ========== .. [1] https://en.wikipedia.org/wiki/Normal_distribution .. [2] http://mathworld.wolfram.com/NormalDistributionFunction.html """ if isinstance(mean, (list, MatrixBase, MatrixExpr)) and\ isinstance(std, (list, MatrixBase, MatrixExpr)): from sympy.stats.joint_rv_types import MultivariateNormal return MultivariateNormal(name, mean, std) return rv(name, NormalDistribution, (mean, std)) #------------------------------------------------------------------------------- # Inverse Gaussian distribution ---------------------------------------------------------- class GaussianInverseDistribution(SingleContinuousDistribution): _argnames = ('mean', 'shape') @property def set(self): return Interval(0, oo) @staticmethod def check(mean, shape): _value_check(shape > 0, "Shape parameter must be positive") _value_check(mean > 0, "Mean must be positive") def pdf(self, x): mu, s = self.mean, self.shape return exp(-s*(x - mu)**2 / (2*x*mu**2)) * sqrt(s/(2*pi*x**3)) def _cdf(self, x): from sympy.stats import cdf mu, s = self.mean, self.shape stdNormalcdf = cdf(Normal('x', 0, 1)) first_term = stdNormalcdf(sqrt(s/x) * ((x/mu) - S.One)) second_term = exp(2*s/mu) * stdNormalcdf(-sqrt(s/x)*(x/mu + S.One)) return first_term + second_term def _characteristic_function(self, t): mu, s = self.mean, self.shape return exp((s/mu)*(1 - sqrt(1 - (2*mu**2*I*t)/s))) def _moment_generating_function(self, t): mu, s = self.mean, self.shape return exp((s/mu)*(1 - sqrt(1 - (2*mu**2*t)/s))) def GaussianInverse(name, mean, shape): r""" Create a continuous random variable with an Inverse Gaussian distribution. Inverse Gaussian distribution is also known as Wald distribution. The density of the Inverse Gaussian distribution is given by .. math:: f(x) := \sqrt{\frac{\lambda}{2\pi x^3}} e^{-\frac{\lambda(x-\mu)^2}{2x\mu^2}} Parameters ========== mu : Positive number representing the mean lambda : Positive number representing the shape parameter Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import GaussianInverse, density, E, std, skewness >>> from sympy import Symbol, pprint >>> mu = Symbol("mu", positive=True) >>> lamda = Symbol("lambda", positive=True) >>> z = Symbol("z", positive=True) >>> X = GaussianInverse("x", mu, lamda) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) 2 -lambda*(-mu + z) ------------------- 2 ___ ________ 2*mu *z \/ 2 *\/ lambda *e ------------------------------------- ____ 3/2 2*\/ pi *z >>> E(X) mu >>> std(X).expand() mu**(3/2)/sqrt(lambda) >>> skewness(X).expand() 3*sqrt(mu)/sqrt(lambda) References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution .. [2] http://mathworld.wolfram.com/InverseGaussianDistribution.html """ return rv(name, GaussianInverseDistribution, (mean, shape)) Wald = GaussianInverse #------------------------------------------------------------------------------- # Pareto distribution ---------------------------------------------------------- class ParetoDistribution(SingleContinuousDistribution): _argnames = ('xm', 'alpha') @property def set(self): return Interval(self.xm, oo) @staticmethod def check(xm, alpha): _value_check(xm > 0, "Xm must be positive") _value_check(alpha > 0, "Alpha must be positive") def pdf(self, x): xm, alpha = self.xm, self.alpha return alpha * xm**alpha / x**(alpha + 1) def _cdf(self, x): xm, alpha = self.xm, self.alpha return Piecewise( (S.One - xm**alpha/x**alpha, x>=xm), (0, True), ) def _moment_generating_function(self, t): xm, alpha = self.xm, self.alpha return alpha * (-xm*t)**alpha * uppergamma(-alpha, -xm*t) def _characteristic_function(self, t): xm, alpha = self.xm, self.alpha return alpha * (-I * xm * t) ** alpha * uppergamma(-alpha, -I * xm * t) def Pareto(name, xm, alpha): r""" Create a continuous random variable with the Pareto distribution. The density of the Pareto distribution is given by .. math:: f(x) := \frac{\alpha\,x_m^\alpha}{x^{\alpha+1}} with :math:`x \in [x_m,\infty]`. Parameters ========== xm : Real number, `x_m > 0`, a scale alpha : Real number, `\alpha > 0`, a shape Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Pareto, density >>> from sympy import Symbol >>> xm = Symbol("xm", positive=True) >>> beta = Symbol("beta", positive=True) >>> z = Symbol("z") >>> X = Pareto("x", xm, beta) >>> density(X)(z) beta*xm**beta*z**(-beta - 1) References ========== .. [1] https://en.wikipedia.org/wiki/Pareto_distribution .. [2] http://mathworld.wolfram.com/ParetoDistribution.html """ return rv(name, ParetoDistribution, (xm, alpha)) #------------------------------------------------------------------------------- # PowerFunction distribution --------------------------------------------------- class PowerFunctionDistribution(SingleContinuousDistribution): _argnames=('alpha','a','b') @property def set(self): return Interval(self.a, self.b) @staticmethod def check(alpha, a, b): _value_check(a.is_real, "Continuous Boundary parameter should be real.") _value_check(b.is_real, "Continuous Boundary parameter should be real.") _value_check(a < b, " 'a' the left Boundary must be smaller than 'b' the right Boundary." ) _value_check(alpha.is_positive, "Continuous Shape parameter should be positive.") def pdf(self, x): alpha, a, b = self.alpha, self.a, self.b num = alpha*(x - a)**(alpha - 1) den = (b - a)**alpha return num/den def PowerFunction(name, alpha, a, b): r""" Creates a continuous random variable with a Power Function Distribution The density of PowerFunction distribution is given by .. math:: f(x) := \frac{{\alpha}(x - a)^{\alpha - 1}}{(b - a)^{\alpha}} with :math:`x \in [a,b]`. Parameters ========== alpha: Positive number, `0 < alpha` the shape paramater a : Real number, :math:`-\infty < a` the left boundary b : Real number, :math:`a < b < \infty` the right boundary Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import PowerFunction, density, cdf, E, variance >>> from sympy import Symbol >>> alpha = Symbol("alpha", positive=True) >>> a = Symbol("a", real=True) >>> b = Symbol("b", real=True) >>> z = Symbol("z") >>> X = PowerFunction("X", 2, a, b) >>> density(X)(z) (-2*a + 2*z)/(-a + b)**2 >>> cdf(X)(z) Piecewise((a**2/(a**2 - 2*a*b + b**2) - 2*a*z/(a**2 - 2*a*b + b**2) + z**2/(a**2 - 2*a*b + b**2), a <= z), (0, True)) >>> alpha = 2 >>> a = 0 >>> b = 1 >>> Y = PowerFunction("Y", alpha, a, b) >>> E(Y) 2/3 >>> variance(Y) 1/18 References ========== .. [1] http://www.mathwave.com/help/easyfit/html/analyses/distributions/power_func.html """ return rv(name, PowerFunctionDistribution, (alpha, a, b)) #------------------------------------------------------------------------------- # QuadraticU distribution ------------------------------------------------------ class QuadraticUDistribution(SingleContinuousDistribution): _argnames = ('a', 'b') @property def set(self): return Interval(self.a, self.b) @staticmethod def check(a, b): _value_check(b > a, "Parameter b must be in range (%s, oo)."%(a)) def pdf(self, x): a, b = self.a, self.b alpha = 12 / (b-a)**3 beta = (a+b) / 2 return Piecewise( (alpha * (x-beta)**2, And(a<=x, x<=b)), (S.Zero, True)) def _moment_generating_function(self, t): a, b = self.a, self.b return -3 * (exp(a*t) * (4 + (a**2 + 2*a*(-2 + b) + b**2) * t) \ - exp(b*t) * (4 + (-4*b + (a + b)**2) * t)) / ((a-b)**3 * t**2) def _characteristic_function(self, t): a, b = self.a, self.b return -3*I*(exp(I*a*t*exp(I*b*t)) * (4*I - (-4*b + (a+b)**2)*t)) \ / ((a-b)**3 * t**2) def QuadraticU(name, a, b): r""" Create a Continuous Random Variable with a U-quadratic distribution. The density of the U-quadratic distribution is given by .. math:: f(x) := \alpha (x-\beta)^2 with :math:`x \in [a,b]`. Parameters ========== a : Real number b : Real number, :math:`a < b` Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import QuadraticU, density >>> from sympy import Symbol, pprint >>> a = Symbol("a", real=True) >>> b = Symbol("b", real=True) >>> z = Symbol("z") >>> X = QuadraticU("x", a, b) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) / 2 | / a b \ |12*|- - - - + z| | \ 2 2 / <----------------- for And(b >= z, a <= z) | 3 | (-a + b) | \ 0 otherwise References ========== .. [1] https://en.wikipedia.org/wiki/U-quadratic_distribution """ return rv(name, QuadraticUDistribution, (a, b)) #------------------------------------------------------------------------------- # RaisedCosine distribution ---------------------------------------------------- class RaisedCosineDistribution(SingleContinuousDistribution): _argnames = ('mu', 's') @property def set(self): return Interval(self.mu - self.s, self.mu + self.s) @staticmethod def check(mu, s): _value_check(s > 0, "s must be positive") def pdf(self, x): mu, s = self.mu, self.s return Piecewise( ((1+cos(pi*(x-mu)/s)) / (2*s), And(mu-s<=x, x<=mu+s)), (S.Zero, True)) def _characteristic_function(self, t): mu, s = self.mu, self.s return Piecewise((exp(-I*pi*mu/s)/2, Eq(t, -pi/s)), (exp(I*pi*mu/s)/2, Eq(t, pi/s)), (pi**2*sin(s*t)*exp(I*mu*t) / (s*t*(pi**2 - s**2*t**2)), True)) def _moment_generating_function(self, t): mu, s = self.mu, self.s return pi**2 * sinh(s*t) * exp(mu*t) / (s*t*(pi**2 + s**2*t**2)) def RaisedCosine(name, mu, s): r""" Create a Continuous Random Variable with a raised cosine distribution. The density of the raised cosine distribution is given by .. math:: f(x) := \frac{1}{2s}\left(1+\cos\left(\frac{x-\mu}{s}\pi\right)\right) with :math:`x \in [\mu-s,\mu+s]`. Parameters ========== mu : Real number s : Real number, `s > 0` Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import RaisedCosine, density >>> from sympy import Symbol, pprint >>> mu = Symbol("mu", real=True) >>> s = Symbol("s", positive=True) >>> z = Symbol("z") >>> X = RaisedCosine("x", mu, s) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) / /pi*(-mu + z)\ |cos|------------| + 1 | \ s / <--------------------- for And(z >= mu - s, z <= mu + s) | 2*s | \ 0 otherwise References ========== .. [1] https://en.wikipedia.org/wiki/Raised_cosine_distribution """ return rv(name, RaisedCosineDistribution, (mu, s)) #------------------------------------------------------------------------------- # Rayleigh distribution -------------------------------------------------------- class RayleighDistribution(SingleContinuousDistribution): _argnames = ('sigma',) set = Interval(0, oo) @staticmethod def check(sigma): _value_check(sigma > 0, "Scale parameter sigma must be positive.") def pdf(self, x): sigma = self.sigma return x/sigma**2*exp(-x**2/(2*sigma**2)) def _cdf(self, x): sigma = self.sigma return 1 - exp(-(x**2/(2*sigma**2))) def _characteristic_function(self, t): sigma = self.sigma return 1 - sigma*t*exp(-sigma**2*t**2/2) * sqrt(pi/2) * (erfi(sigma*t/sqrt(2)) - I) def _moment_generating_function(self, t): sigma = self.sigma return 1 + sigma*t*exp(sigma**2*t**2/2) * sqrt(pi/2) * (erf(sigma*t/sqrt(2)) + 1) def Rayleigh(name, sigma): r""" Create a continuous random variable with a Rayleigh distribution. The density of the Rayleigh distribution is given by .. math :: f(x) := \frac{x}{\sigma^2} e^{-x^2/2\sigma^2} with :math:`x > 0`. Parameters ========== sigma : Real number, `\sigma > 0` Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Rayleigh, density, E, variance >>> from sympy import Symbol >>> sigma = Symbol("sigma", positive=True) >>> z = Symbol("z") >>> X = Rayleigh("x", sigma) >>> density(X)(z) z*exp(-z**2/(2*sigma**2))/sigma**2 >>> E(X) sqrt(2)*sqrt(pi)*sigma/2 >>> variance(X) -pi*sigma**2/2 + 2*sigma**2 References ========== .. [1] https://en.wikipedia.org/wiki/Rayleigh_distribution .. [2] http://mathworld.wolfram.com/RayleighDistribution.html """ return rv(name, RayleighDistribution, (sigma, )) #------------------------------------------------------------------------------- # Reciprocal distribution -------------------------------------------------------- class ReciprocalDistribution(SingleContinuousDistribution): _argnames = ('a', 'b') @property def set(self): return Interval(self.a, self.b) @staticmethod def check(a, b): _value_check(a > 0, "Parameter > 0. a = %s"%a) _value_check((a < b), "Parameter b must be in range (%s, +oo]. b = %s"%(a, b)) def pdf(self, x): a, b = self.a, self.b return 1/(x*(log(b) - log(a))) def Reciprocal(name, a, b): r"""Creates a continuous random variable with a reciprocal distribution. Parameters ========== a : Real number, :math:`0 < a` b : Real number, :math:`a < b` Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Reciprocal, density, cdf >>> from sympy import symbols >>> a, b, x = symbols('a, b, x', positive=True) >>> R = Reciprocal('R', a, b) >>> density(R)(x) 1/(x*(-log(a) + log(b))) >>> cdf(R)(x) Piecewise((log(a)/(log(a) - log(b)) - log(x)/(log(a) - log(b)), a <= x), (0, True)) Reference ========= .. [1] https://en.wikipedia.org/wiki/Reciprocal_distribution """ return rv(name, ReciprocalDistribution, (a, b)) #------------------------------------------------------------------------------- # Shifted Gompertz distribution ------------------------------------------------ class ShiftedGompertzDistribution(SingleContinuousDistribution): _argnames = ('b', 'eta') set = Interval(0, oo) @staticmethod def check(b, eta): _value_check(b > 0, "b must be positive") _value_check(eta > 0, "eta must be positive") def pdf(self, x): b, eta = self.b, self.eta return b*exp(-b*x)*exp(-eta*exp(-b*x))*(1+eta*(1-exp(-b*x))) def ShiftedGompertz(name, b, eta): r""" Create a continuous random variable with a Shifted Gompertz distribution. The density of the Shifted Gompertz distribution is given by .. math:: f(x) := b e^{-b x} e^{-\eta \exp(-b x)} \left[1 + \eta(1 - e^(-bx)) \right] with :math: 'x \in [0, \inf)'. Parameters ========== b: Real number, 'b > 0' a scale eta: Real number, 'eta > 0' a shape Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import ShiftedGompertz, density >>> from sympy import Symbol >>> b = Symbol("b", positive=True) >>> eta = Symbol("eta", positive=True) >>> x = Symbol("x") >>> X = ShiftedGompertz("x", b, eta) >>> density(X)(x) b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x)) References ========== .. [1] https://en.wikipedia.org/wiki/Shifted_Gompertz_distribution """ return rv(name, ShiftedGompertzDistribution, (b, eta)) #------------------------------------------------------------------------------- # StudentT distribution -------------------------------------------------------- class StudentTDistribution(SingleContinuousDistribution): _argnames = ('nu',) set = Interval(-oo, oo) @staticmethod def check(nu): _value_check(nu > 0, "Degrees of freedom nu must be positive.") def pdf(self, x): nu = self.nu return 1/(sqrt(nu)*beta_fn(S.Half, nu/2))*(1 + x**2/nu)**(-(nu + 1)/2) def _cdf(self, x): nu = self.nu return S.Half + x*gamma((nu+1)/2)*hyper((S.Half, (nu+1)/2), (Rational(3, 2),), -x**2/nu)/(sqrt(pi*nu)*gamma(nu/2)) def _moment_generating_function(self, t): raise NotImplementedError('The moment generating function for the Student-T distribution is undefined.') def StudentT(name, nu): r""" Create a continuous random variable with a student's t distribution. The density of the student's t distribution is given by .. math:: f(x) := \frac{\Gamma \left(\frac{\nu+1}{2} \right)} {\sqrt{\nu\pi}\Gamma \left(\frac{\nu}{2} \right)} \left(1+\frac{x^2}{\nu} \right)^{-\frac{\nu+1}{2}} Parameters ========== nu : Real number, `\nu > 0`, the degrees of freedom Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import StudentT, density, cdf >>> from sympy import Symbol, pprint >>> nu = Symbol("nu", positive=True) >>> z = Symbol("z") >>> X = StudentT("x", nu) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) nu 1 - -- - - 2 2 / 2\ | z | |1 + --| \ nu/ ----------------- ____ / nu\ \/ nu *B|1/2, --| \ 2 / >>> cdf(X)(z) 1/2 + z*gamma(nu/2 + 1/2)*hyper((1/2, nu/2 + 1/2), (3/2,), -z**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2)) References ========== .. [1] https://en.wikipedia.org/wiki/Student_t-distribution .. [2] http://mathworld.wolfram.com/Studentst-Distribution.html """ return rv(name, StudentTDistribution, (nu, )) #------------------------------------------------------------------------------- # Trapezoidal distribution ------------------------------------------------------ class TrapezoidalDistribution(SingleContinuousDistribution): _argnames = ('a', 'b', 'c', 'd') @property def set(self): return Interval(self.a, self.d) @staticmethod def check(a, b, c, d): _value_check(a < d, "Lower bound parameter a < %s. a = %s"%(d, a)) _value_check((a <= b, b < c), "Level start parameter b must be in range [%s, %s). b = %s"%(a, c, b)) _value_check((b < c, c <= d), "Level end parameter c must be in range (%s, %s]. c = %s"%(b, d, c)) _value_check(d >= c, "Upper bound parameter d > %s. d = %s"%(c, d)) def pdf(self, x): a, b, c, d = self.a, self.b, self.c, self.d return Piecewise( (2*(x-a) / ((b-a)*(d+c-a-b)), And(a <= x, x < b)), (2 / (d+c-a-b), And(b <= x, x < c)), (2*(d-x) / ((d-c)*(d+c-a-b)), And(c <= x, x <= d)), (S.Zero, True)) def Trapezoidal(name, a, b, c, d): r""" Create a continuous random variable with a trapezoidal distribution. The density of the trapezoidal distribution is given by .. math:: f(x) := \begin{cases} 0 & \mathrm{for\ } x < a, \\ \frac{2(x-a)}{(b-a)(d+c-a-b)} & \mathrm{for\ } a \le x < b, \\ \frac{2}{d+c-a-b} & \mathrm{for\ } b \le x < c, \\ \frac{2(d-x)}{(d-c)(d+c-a-b)} & \mathrm{for\ } c \le x < d, \\ 0 & \mathrm{for\ } d < x. \end{cases} Parameters ========== a : Real number, :math:`a < d` b : Real number, :math:`a <= b < c` c : Real number, :math:`b < c <= d` d : Real number Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Trapezoidal, density >>> from sympy import Symbol, pprint >>> a = Symbol("a") >>> b = Symbol("b") >>> c = Symbol("c") >>> d = Symbol("d") >>> z = Symbol("z") >>> X = Trapezoidal("x", a,b,c,d) >>> pprint(density(X)(z), use_unicode=False) / -2*a + 2*z |------------------------- for And(a <= z, b > z) |(-a + b)*(-a - b + c + d) | | 2 | -------------- for And(b <= z, c > z) < -a - b + c + d | | 2*d - 2*z |------------------------- for And(d >= z, c <= z) |(-c + d)*(-a - b + c + d) | \ 0 otherwise References ========== .. [1] https://en.wikipedia.org/wiki/Trapezoidal_distribution """ return rv(name, TrapezoidalDistribution, (a, b, c, d)) #------------------------------------------------------------------------------- # Triangular distribution ------------------------------------------------------ class TriangularDistribution(SingleContinuousDistribution): _argnames = ('a', 'b', 'c') @property def set(self): return Interval(self.a, self.b) @staticmethod def check(a, b, c): _value_check(b > a, "Parameter b > %s. b = %s"%(a, b)) _value_check((a <= c, c <= b), "Parameter c must be in range [%s, %s]. c = %s"%(a, b, c)) def pdf(self, x): a, b, c = self.a, self.b, self.c return Piecewise( (2*(x - a)/((b - a)*(c - a)), And(a <= x, x < c)), (2/(b - a), Eq(x, c)), (2*(b - x)/((b - a)*(b - c)), And(c < x, x <= b)), (S.Zero, True)) def _characteristic_function(self, t): a, b, c = self.a, self.b, self.c return -2 *((b-c) * exp(I*a*t) - (b-a) * exp(I*c*t) + (c-a) * exp(I*b*t)) / ((b-a)*(c-a)*(b-c)*t**2) def _moment_generating_function(self, t): a, b, c = self.a, self.b, self.c return 2 * ((b - c) * exp(a * t) - (b - a) * exp(c * t) + (c - a) * exp(b * t)) / ( (b - a) * (c - a) * (b - c) * t ** 2) def Triangular(name, a, b, c): r""" Create a continuous random variable with a triangular distribution. The density of the triangular distribution is given by .. math:: f(x) := \begin{cases} 0 & \mathrm{for\ } x < a, \\ \frac{2(x-a)}{(b-a)(c-a)} & \mathrm{for\ } a \le x < c, \\ \frac{2}{b-a} & \mathrm{for\ } x = c, \\ \frac{2(b-x)}{(b-a)(b-c)} & \mathrm{for\ } c < x \le b, \\ 0 & \mathrm{for\ } b < x. \end{cases} Parameters ========== a : Real number, :math:`a \in \left(-\infty, \infty\right)` b : Real number, :math:`a < b` c : Real number, :math:`a \leq c \leq b` Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Triangular, density >>> from sympy import Symbol, pprint >>> a = Symbol("a") >>> b = Symbol("b") >>> c = Symbol("c") >>> z = Symbol("z") >>> X = Triangular("x", a,b,c) >>> pprint(density(X)(z), use_unicode=False) / -2*a + 2*z |----------------- for And(a <= z, c > z) |(-a + b)*(-a + c) | | 2 | ------ for c = z < -a + b | | 2*b - 2*z |---------------- for And(b >= z, c < z) |(-a + b)*(b - c) | \ 0 otherwise References ========== .. [1] https://en.wikipedia.org/wiki/Triangular_distribution .. [2] http://mathworld.wolfram.com/TriangularDistribution.html """ return rv(name, TriangularDistribution, (a, b, c)) #------------------------------------------------------------------------------- # Uniform distribution --------------------------------------------------------- class UniformDistribution(SingleContinuousDistribution): _argnames = ('left', 'right') @property def set(self): return Interval(self.left, self.right) @staticmethod def check(left, right): _value_check(left < right, "Lower limit should be less than Upper limit.") def pdf(self, x): left, right = self.left, self.right return Piecewise( (S.One/(right - left), And(left <= x, x <= right)), (S.Zero, True) ) def _cdf(self, x): left, right = self.left, self.right return Piecewise( (S.Zero, x < left), ((x - left)/(right - left), x <= right), (S.One, True) ) def _characteristic_function(self, t): left, right = self.left, self.right return Piecewise(((exp(I*t*right) - exp(I*t*left)) / (I*t*(right - left)), Ne(t, 0)), (S.One, True)) def _moment_generating_function(self, t): left, right = self.left, self.right return Piecewise(((exp(t*right) - exp(t*left)) / (t * (right - left)), Ne(t, 0)), (S.One, True)) def expectation(self, expr, var, **kwargs): from sympy import Max, Min kwargs['evaluate'] = True result = SingleContinuousDistribution.expectation(self, expr, var, **kwargs) result = result.subs({Max(self.left, self.right): self.right, Min(self.left, self.right): self.left}) return result def Uniform(name, left, right): r""" Create a continuous random variable with a uniform distribution. The density of the uniform distribution is given by .. math:: f(x) := \begin{cases} \frac{1}{b - a} & \text{for } x \in [a,b] \\ 0 & \text{otherwise} \end{cases} with :math:`x \in [a,b]`. Parameters ========== a : Real number, :math:`-\infty < a` the left boundary b : Real number, :math:`a < b < \infty` the right boundary Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Uniform, density, cdf, E, variance >>> from sympy import Symbol, simplify >>> a = Symbol("a", negative=True) >>> b = Symbol("b", positive=True) >>> z = Symbol("z") >>> X = Uniform("x", a, b) >>> density(X)(z) Piecewise((1/(-a + b), (b >= z) & (a <= z)), (0, True)) >>> cdf(X)(z) Piecewise((0, a > z), ((-a + z)/(-a + b), b >= z), (1, True)) >>> E(X) a/2 + b/2 >>> simplify(variance(X)) a**2/12 - a*b/6 + b**2/12 References ========== .. [1] https://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29 .. [2] http://mathworld.wolfram.com/UniformDistribution.html """ return rv(name, UniformDistribution, (left, right)) #------------------------------------------------------------------------------- # UniformSum distribution ------------------------------------------------------ class UniformSumDistribution(SingleContinuousDistribution): _argnames = ('n',) @property def set(self): return Interval(0, self.n) @staticmethod def check(n): _value_check((n > 0, n.is_integer), "Parameter n must be positive integer.") def pdf(self, x): n = self.n k = Dummy("k") return 1/factorial( n - 1)*Sum((-1)**k*binomial(n, k)*(x - k)**(n - 1), (k, 0, floor(x))) def _cdf(self, x): n = self.n k = Dummy("k") return Piecewise((S.Zero, x < 0), (1/factorial(n)*Sum((-1)**k*binomial(n, k)*(x - k)**(n), (k, 0, floor(x))), x <= n), (S.One, True)) def _characteristic_function(self, t): return ((exp(I*t) - 1) / (I*t))**self.n def _moment_generating_function(self, t): return ((exp(t) - 1) / t)**self.n def UniformSum(name, n): r""" Create a continuous random variable with an Irwin-Hall distribution. The probability distribution function depends on a single parameter `n` which is an integer. The density of the Irwin-Hall distribution is given by .. math :: f(x) := \frac{1}{(n-1)!}\sum_{k=0}^{\left\lfloor x\right\rfloor}(-1)^k \binom{n}{k}(x-k)^{n-1} Parameters ========== n : A positive Integer, `n > 0` Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import UniformSum, density, cdf >>> from sympy import Symbol, pprint >>> n = Symbol("n", integer=True) >>> z = Symbol("z") >>> X = UniformSum("x", n) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) floor(z) ___ \ ` \ k n - 1 /n\ ) (-1) *(-k + z) *| | / \k/ /__, k = 0 -------------------------------- (n - 1)! >>> cdf(X)(z) Piecewise((0, z < 0), (Sum((-1)**_k*(-_k + z)**n*binomial(n, _k), (_k, 0, floor(z)))/factorial(n), n >= z), (1, True)) Compute cdf with specific 'x' and 'n' values as follows : >>> cdf(UniformSum("x", 5), evaluate=False)(2).doit() 9/40 The argument evaluate=False prevents an attempt at evaluation of the sum for general n, before the argument 2 is passed. References ========== .. [1] https://en.wikipedia.org/wiki/Uniform_sum_distribution .. [2] http://mathworld.wolfram.com/UniformSumDistribution.html """ return rv(name, UniformSumDistribution, (n, )) #------------------------------------------------------------------------------- # VonMises distribution -------------------------------------------------------- class VonMisesDistribution(SingleContinuousDistribution): _argnames = ('mu', 'k') set = Interval(0, 2*pi) @staticmethod def check(mu, k): _value_check(k > 0, "k must be positive") def pdf(self, x): mu, k = self.mu, self.k return exp(k*cos(x-mu)) / (2*pi*besseli(0, k)) def VonMises(name, mu, k): r""" Create a Continuous Random Variable with a von Mises distribution. The density of the von Mises distribution is given by .. math:: f(x) := \frac{e^{\kappa\cos(x-\mu)}}{2\pi I_0(\kappa)} with :math:`x \in [0,2\pi]`. Parameters ========== mu : Real number, measure of location k : Real number, measure of concentration Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import VonMises, density >>> from sympy import Symbol, pprint >>> mu = Symbol("mu") >>> k = Symbol("k", positive=True) >>> z = Symbol("z") >>> X = VonMises("x", mu, k) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) k*cos(mu - z) e ------------------ 2*pi*besseli(0, k) References ========== .. [1] https://en.wikipedia.org/wiki/Von_Mises_distribution .. [2] http://mathworld.wolfram.com/vonMisesDistribution.html """ return rv(name, VonMisesDistribution, (mu, k)) #------------------------------------------------------------------------------- # Weibull distribution --------------------------------------------------------- class WeibullDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta') set = Interval(0, oo) @staticmethod def check(alpha, beta): _value_check(alpha > 0, "Alpha must be positive") _value_check(beta > 0, "Beta must be positive") def pdf(self, x): alpha, beta = self.alpha, self.beta return beta * (x/alpha)**(beta - 1) * exp(-(x/alpha)**beta) / alpha def Weibull(name, alpha, beta): r""" Create a continuous random variable with a Weibull distribution. The density of the Weibull distribution is given by .. math:: f(x) := \begin{cases} \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^{k}} & x\geq0\\ 0 & x<0 \end{cases} Parameters ========== lambda : Real number, :math:`\lambda > 0` a scale k : Real number, `k > 0` a shape Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Weibull, density, E, variance >>> from sympy import Symbol, simplify >>> l = Symbol("lambda", positive=True) >>> k = Symbol("k", positive=True) >>> z = Symbol("z") >>> X = Weibull("x", l, k) >>> density(X)(z) k*(z/lambda)**(k - 1)*exp(-(z/lambda)**k)/lambda >>> simplify(E(X)) lambda*gamma(1 + 1/k) >>> simplify(variance(X)) lambda**2*(-gamma(1 + 1/k)**2 + gamma(1 + 2/k)) References ========== .. [1] https://en.wikipedia.org/wiki/Weibull_distribution .. [2] http://mathworld.wolfram.com/WeibullDistribution.html """ return rv(name, WeibullDistribution, (alpha, beta)) #------------------------------------------------------------------------------- # Wigner semicircle distribution ----------------------------------------------- class WignerSemicircleDistribution(SingleContinuousDistribution): _argnames = ('R',) @property def set(self): return Interval(-self.R, self.R) @staticmethod def check(R): _value_check(R > 0, "Radius R must be positive.") def pdf(self, x): R = self.R return 2/(pi*R**2)*sqrt(R**2 - x**2) def _characteristic_function(self, t): return Piecewise((2 * besselj(1, self.R*t) / (self.R*t), Ne(t, 0)), (S.One, True)) def _moment_generating_function(self, t): return Piecewise((2 * besseli(1, self.R*t) / (self.R*t), Ne(t, 0)), (S.One, True)) def WignerSemicircle(name, R): r""" Create a continuous random variable with a Wigner semicircle distribution. The density of the Wigner semicircle distribution is given by .. math:: f(x) := \frac2{\pi R^2}\,\sqrt{R^2-x^2} with :math:`x \in [-R,R]`. Parameters ========== R : Real number, `R > 0`, the radius Returns ======= A `RandomSymbol`. Examples ======== >>> from sympy.stats import WignerSemicircle, density, E >>> from sympy import Symbol >>> R = Symbol("R", positive=True) >>> z = Symbol("z") >>> X = WignerSemicircle("x", R) >>> density(X)(z) 2*sqrt(R**2 - z**2)/(pi*R**2) >>> E(X) 0 References ========== .. [1] https://en.wikipedia.org/wiki/Wigner_semicircle_distribution .. [2] http://mathworld.wolfram.com/WignersSemicircleLaw.html """ return rv(name, WignerSemicircleDistribution, (R,))
f5dcfa7fb088eee67c0dd8d32b494d90476237a9c5927741f3725c09117322e1
""" Finite Discrete Random Variables - Prebuilt variable types Contains ======== FiniteRV DiscreteUniform Die Bernoulli Coin Binomial BetaBinomial Hypergeometric Rademacher IdealSoliton RobustSoliton """ from sympy import (S, sympify, Rational, binomial, cacheit, Integer, Dummy, Eq, Intersection, Interval, log, Range, Symbol, Lambda, Piecewise, Or, Gt, Lt, Ge, Le, Contains) from sympy import beta as beta_fn from sympy.stats.frv import (SingleFiniteDistribution, SingleFinitePSpace) from sympy.stats.rv import _value_check, Density, is_random __all__ = ['FiniteRV', 'DiscreteUniform', 'Die', 'Bernoulli', 'Coin', 'Binomial', 'BetaBinomial', 'Hypergeometric', 'Rademacher', 'IdealSoliton', 'RobustSoliton', ] def rv(name, cls, *args, **kwargs): args = list(map(sympify, args)) dist = cls(*args) if kwargs.pop('check', True): dist.check(*args) pspace = SingleFinitePSpace(name, dist) if any(is_random(arg) for arg in args): from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution pspace = CompoundPSpace(name, CompoundDistribution(dist)) return pspace.value class FiniteDistributionHandmade(SingleFiniteDistribution): @property def dict(self): return self.args[0] def pmf(self, x): x = Symbol('x') return Lambda(x, Piecewise(*( [(v, Eq(k, x)) for k, v in self.dict.items()] + [(S.Zero, True)]))) @property def set(self): return set(self.dict.keys()) @staticmethod def check(density): for p in density.values(): _value_check((p >= 0, p <= 1), "Probability at a point must be between 0 and 1.") val = sum(density.values()) _value_check(Eq(val, 1) != S.false, "Total Probability must be 1.") def FiniteRV(name, density, **kwargs): r""" Create a Finite Random Variable given a dict representing the density. Parameters ========== name : Symbol Represents name of the random variable. density: A dict Dictionary conatining the pdf of finite distribution check : bool If True, it will check whether the given density integrates to 1 over the given set. If False, it will not perform this check. Default is False. Examples ======== >>> from sympy.stats import FiniteRV, P, E >>> density = {0: .1, 1: .2, 2: .3, 3: .4} >>> X = FiniteRV('X', density) >>> E(X) 2.00000000000000 >>> P(X >= 2) 0.700000000000000 Returns ======= RandomSymbol """ # have a default of False while `rv` should have a default of True kwargs['check'] = kwargs.pop('check', False) return rv(name, FiniteDistributionHandmade, density, **kwargs) class DiscreteUniformDistribution(SingleFiniteDistribution): @staticmethod def check(*args): # not using _value_check since there is a # suggestion for the user if len(set(args)) != len(args): from sympy.utilities.iterables import multiset from sympy.utilities.misc import filldedent weights = multiset(args) n = Integer(len(args)) for k in weights: weights[k] /= n raise ValueError(filldedent(""" Repeated args detected but set expected. For a distribution having different weights for each item use the following:""") + ( '\nS("FiniteRV(%s, %s)")' % ("'X'", weights))) @property def p(self): return Rational(1, len(self.args)) @property # type: ignore @cacheit def dict(self): return {k: self.p for k in self.set} @property def set(self): return set(self.args) def pmf(self, x): if x in self.args: return self.p else: return S.Zero def DiscreteUniform(name, items): r""" Create a Finite Random Variable representing a uniform distribution over the input set. Parameters ========== items: list/tuple Items over which Uniform distribution is to be made Examples ======== >>> from sympy.stats import DiscreteUniform, density >>> from sympy import symbols >>> X = DiscreteUniform('X', symbols('a b c')) # equally likely over a, b, c >>> density(X).dict {a: 1/3, b: 1/3, c: 1/3} >>> Y = DiscreteUniform('Y', list(range(5))) # distribution over a range >>> density(Y).dict {0: 1/5, 1: 1/5, 2: 1/5, 3: 1/5, 4: 1/5} Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Discrete_uniform_distribution .. [2] http://mathworld.wolfram.com/DiscreteUniformDistribution.html """ return rv(name, DiscreteUniformDistribution, *items) class DieDistribution(SingleFiniteDistribution): _argnames = ('sides',) @staticmethod def check(sides): _value_check((sides.is_positive, sides.is_integer), "number of sides must be a positive integer.") @property def is_symbolic(self): return not self.sides.is_number @property def high(self): return self.sides @property def low(self): return S.One @property def set(self): if self.is_symbolic: return Intersection(S.Naturals0, Interval(0, self.sides)) return set(map(Integer, list(range(1, self.sides + 1)))) def pmf(self, x): x = sympify(x) if not (x.is_number or x.is_Symbol or is_random(x)): raise ValueError("'x' expected as an argument of type 'number' or 'Symbol' or , " "'RandomSymbol' not %s" % (type(x))) cond = Ge(x, 1) & Le(x, self.sides) & Contains(x, S.Integers) return Piecewise((S.One/self.sides, cond), (S.Zero, True)) def Die(name, sides=6): r""" Create a Finite Random Variable representing a fair die. Parameters ========== sides: Integer Represents the number of sides of the Die, by default is 6 Examples ======== >>> from sympy.stats import Die, density >>> from sympy import Symbol >>> D6 = Die('D6', 6) # Six sided Die >>> density(D6).dict {1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6} >>> D4 = Die('D4', 4) # Four sided Die >>> density(D4).dict {1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4} >>> n = Symbol('n', positive=True, integer=True) >>> Dn = Die('Dn', n) # n sided Die >>> density(Dn).dict Density(DieDistribution(n)) >>> density(Dn).dict.subs(n, 4).doit() {1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4} Returns ======= RandomSymbol """ return rv(name, DieDistribution, sides) class BernoulliDistribution(SingleFiniteDistribution): _argnames = ('p', 'succ', 'fail') @staticmethod def check(p, succ, fail): _value_check((p >= 0, p <= 1), "p should be in range [0, 1].") @property def set(self): return {self.succ, self.fail} def pmf(self, x): if isinstance(self.succ, Symbol) and isinstance(self.fail, Symbol): return Piecewise((self.p, x == self.succ), (1 - self.p, x == self.fail), (S.Zero, True)) return Piecewise((self.p, Eq(x, self.succ)), (1 - self.p, Eq(x, self.fail)), (S.Zero, True)) def Bernoulli(name, p, succ=1, fail=0): r""" Create a Finite Random Variable representing a Bernoulli process. Parameters ========== p : Rational number between 0 and 1 Represents probability of success succ : Integer/symbol/string Represents event of success fail : Integer/symbol/string Represents event of failure Examples ======== >>> from sympy.stats import Bernoulli, density >>> from sympy import S >>> X = Bernoulli('X', S(3)/4) # 1-0 Bernoulli variable, probability = 3/4 >>> density(X).dict {0: 1/4, 1: 3/4} >>> X = Bernoulli('X', S.Half, 'Heads', 'Tails') # A fair coin toss >>> density(X).dict {Heads: 1/2, Tails: 1/2} Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Bernoulli_distribution .. [2] http://mathworld.wolfram.com/BernoulliDistribution.html """ return rv(name, BernoulliDistribution, p, succ, fail) def Coin(name, p=S.Half): r""" Create a Finite Random Variable representing a Coin toss. Parameters ========== p : Rational Numeber between 0 and 1 Represents probability of getting "Heads", by default is Half Examples ======== >>> from sympy.stats import Coin, density >>> from sympy import Rational >>> C = Coin('C') # A fair coin toss >>> density(C).dict {H: 1/2, T: 1/2} >>> C2 = Coin('C2', Rational(3, 5)) # An unfair coin >>> density(C2).dict {H: 3/5, T: 2/5} Returns ======= RandomSymbol See Also ======== sympy.stats.Binomial References ========== .. [1] https://en.wikipedia.org/wiki/Coin_flipping """ return rv(name, BernoulliDistribution, p, 'H', 'T') class BinomialDistribution(SingleFiniteDistribution): _argnames = ('n', 'p', 'succ', 'fail') @staticmethod def check(n, p, succ, fail): _value_check((n.is_integer, n.is_nonnegative), "'n' must be nonnegative integer.") _value_check((p <= 1, p >= 0), "p should be in range [0, 1].") @property def high(self): return self.n @property def low(self): return S.Zero @property def is_symbolic(self): return not self.n.is_number @property def set(self): if self.is_symbolic: return Intersection(S.Naturals0, Interval(0, self.n)) return set(self.dict.keys()) def pmf(self, x): n, p = self.n, self.p x = sympify(x) if not (x.is_number or x.is_Symbol or is_random(x)): raise ValueError("'x' expected as an argument of type 'number' or 'Symbol' or , " "'RandomSymbol' not %s" % (type(x))) cond = Ge(x, 0) & Le(x, n) & Contains(x, S.Integers) return Piecewise((binomial(n, x) * p**x * (1 - p)**(n - x), cond), (S.Zero, True)) @property # type: ignore @cacheit def dict(self): if self.is_symbolic: return Density(self) return {k*self.succ + (self.n-k)*self.fail: self.pmf(k) for k in range(0, self.n + 1)} def Binomial(name, n, p, succ=1, fail=0): r""" Create a Finite Random Variable representing a binomial distribution. Parameters ========== n : Positive Integer Represents number of trials p : Rational Number between 0 and 1 Represents probability of success succ : Integer/symbol/string Represents event of success, by default is 1 fail : Integer/symbol/string Represents event of failure, by default is 0 Examples ======== >>> from sympy.stats import Binomial, density >>> from sympy import S, Symbol >>> X = Binomial('X', 4, S.Half) # Four "coin flips" >>> density(X).dict {0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16} >>> n = Symbol('n', positive=True, integer=True) >>> p = Symbol('p', positive=True) >>> X = Binomial('X', n, S.Half) # n "coin flips" >>> density(X).dict Density(BinomialDistribution(n, 1/2, 1, 0)) >>> density(X).dict.subs(n, 4).doit() {0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16} Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Binomial_distribution .. [2] http://mathworld.wolfram.com/BinomialDistribution.html """ return rv(name, BinomialDistribution, n, p, succ, fail) #------------------------------------------------------------------------------- # Beta-binomial distribution ---------------------------------------------------------- class BetaBinomialDistribution(SingleFiniteDistribution): _argnames = ('n', 'alpha', 'beta') @staticmethod def check(n, alpha, beta): _value_check((n.is_integer, n.is_nonnegative), "'n' must be nonnegative integer. n = %s." % str(n)) _value_check((alpha > 0), "'alpha' must be: alpha > 0 . alpha = %s" % str(alpha)) _value_check((beta > 0), "'beta' must be: beta > 0 . beta = %s" % str(beta)) @property def high(self): return self.n @property def low(self): return S.Zero @property def is_symbolic(self): return not self.n.is_number @property def set(self): if self.is_symbolic: return Intersection(S.Naturals0, Interval(0, self.n)) return set(map(Integer, list(range(0, self.n + 1)))) def pmf(self, k): n, a, b = self.n, self.alpha, self.beta return binomial(n, k) * beta_fn(k + a, n - k + b) / beta_fn(a, b) def BetaBinomial(name, n, alpha, beta): r""" Create a Finite Random Variable representing a Beta-binomial distribution. Parameters ========== n : Positive Integer Represents number of trials alpha : Real positive number beta : Real positive number Examples ======== >>> from sympy.stats import BetaBinomial, density >>> X = BetaBinomial('X', 2, 1, 1) >>> density(X).dict {0: 1/3, 1: 2*beta(2, 2), 2: 1/3} Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Beta-binomial_distribution .. [2] http://mathworld.wolfram.com/BetaBinomialDistribution.html """ return rv(name, BetaBinomialDistribution, n, alpha, beta) class HypergeometricDistribution(SingleFiniteDistribution): _argnames = ('N', 'm', 'n') @staticmethod def check(n, N, m): _value_check((N.is_integer, N.is_nonnegative), "'N' must be nonnegative integer. N = %s." % str(n)) _value_check((n.is_integer, n.is_nonnegative), "'n' must be nonnegative integer. n = %s." % str(n)) _value_check((m.is_integer, m.is_nonnegative), "'m' must be nonnegative integer. m = %s." % str(n)) @property def is_symbolic(self): return any(not x.is_number for x in (self.N, self.m, self.n)) @property def high(self): return Piecewise((self.n, Lt(self.n, self.m) != False), (self.m, True)) @property def low(self): return Piecewise((0, Gt(0, self.n + self.m - self.N) != False), (self.n + self.m - self.N, True)) @property def set(self): N, m, n = self.N, self.m, self.n if self.is_symbolic: return Intersection(S.Naturals0, Interval(self.low, self.high)) return {i for i in range(max(0, n + m - N), min(n, m) + 1)} def pmf(self, k): N, m, n = self.N, self.m, self.n return S(binomial(m, k) * binomial(N - m, n - k))/binomial(N, n) def Hypergeometric(name, N, m, n): r""" Create a Finite Random Variable representing a hypergeometric distribution. Parameters ========== N : Positive Integer Represents finite population of size N. m : Positive Integer Represents number of trials with required feature. n : Positive Integer Represents numbers of draws. Examples ======== >>> from sympy.stats import Hypergeometric, density >>> X = Hypergeometric('X', 10, 5, 3) # 10 marbles, 5 white (success), 3 draws >>> density(X).dict {0: 1/12, 1: 5/12, 2: 5/12, 3: 1/12} Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Hypergeometric_distribution .. [2] http://mathworld.wolfram.com/HypergeometricDistribution.html """ return rv(name, HypergeometricDistribution, N, m, n) class RademacherDistribution(SingleFiniteDistribution): @property def set(self): return {-1, 1} @property def pmf(self): k = Dummy('k') return Lambda(k, Piecewise((S.Half, Or(Eq(k, -1), Eq(k, 1))), (S.Zero, True))) def Rademacher(name): r""" Create a Finite Random Variable representing a Rademacher distribution. Examples ======== >>> from sympy.stats import Rademacher, density >>> X = Rademacher('X') >>> density(X).dict {-1: 1/2, 1: 1/2} Returns ======= RandomSymbol See Also ======== sympy.stats.Bernoulli References ========== .. [1] https://en.wikipedia.org/wiki/Rademacher_distribution """ return rv(name, RademacherDistribution) class IdealSolitonDistribution(SingleFiniteDistribution): _argnames = ('k',) @staticmethod def check(k): _value_check(k.is_integer and k.is_positive, "'k' must be a positive integer.") @property def low(self): return S.One @property def high(self): return self.k @property def set(self): return set(list(Range(1, self.k+1))) @property @cacheit def dict(self): if self.k.is_Symbol: return Density(self) d = {1: Rational(1, self.k)} d.update(dict((i, Rational(1, i*(i - 1))) for i in range(2, self.k + 1))) return d def pmf(self, x): x = sympify(x) if not (x.is_number or x.is_Symbol or is_random(x)): raise ValueError("'x' expected as an argument of type 'number' or 'Symbol' or , " "'RandomSymbol' not %s" % (type(x))) cond1 = Eq(x, 1) & x.is_integer cond2 = Ge(x, 1) & Le(x, self.k) & x.is_integer return Piecewise((1/self.k, cond1), (1/(x*(x - 1)), cond2), (S.Zero, True)) def IdealSoliton(name, k): r""" Create a Finite Random Variable of Ideal Soliton Distribution Parameters ========== k : Positive Integer Represents the number of input symbols in an LT (Luby Transform) code. Examples ======== >>> from sympy.stats import IdealSoliton, density, P, E >>> sol = IdealSoliton('sol', 5) >>> density(sol).dict {1: 1/5, 2: 1/2, 3: 1/6, 4: 1/12, 5: 1/20} >>> density(sol).set {1, 2, 3, 4, 5} >>> from sympy import Symbol >>> k = Symbol('k', positive=True, integer=True) >>> sol = IdealSoliton('sol', k) >>> density(sol).dict Density(IdealSolitonDistribution(k)) >>> density(sol).dict.subs(k, 10).doit() {1: 1/10, 2: 1/2, 3: 1/6, 4: 1/12, 5: 1/20, 6: 1/30, 7: 1/42, 8: 1/56, 9: 1/72, 10: 1/90} >>> E(sol.subs(k, 10)) 7381/2520 >>> P(sol.subs(k, 4) > 2) 1/4 Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Soliton_distribution#Ideal_distribution .. [2] http://pages.cs.wisc.edu/~suman/courses/740/papers/luby02lt.pdf """ return rv(name, IdealSolitonDistribution, k) class RobustSolitonDistribution(SingleFiniteDistribution): _argnames= ('k', 'delta', 'c') @staticmethod def check(k, delta, c): _value_check(k.is_integer and k.is_positive, "'k' must be a positive integer") _value_check(Gt(delta, 0) and Le(delta, 1), "'delta' must be a real number in the interval (0,1)") _value_check(c.is_positive, "'c' must be a positive real number.") @property def R(self): return self.c * log(self.k/self.delta) * self.k**0.5 @property def Z(self): z = 0 for i in Range(1, round(self.k/self.R)): z += (1/i) z += log(self.R/self.delta) return 1 + z * self.R/self.k @property def low(self): return S.One @property def high(self): return self.k @property def set(self): return set(list(Range(1, self.k+1))) @property def is_symbolic(self): return not all([self.k.is_number, self.c.is_number, self.delta.is_number]) def pmf(self, x): x = sympify(x) if not (x.is_number or x.is_Symbol or is_random(x)): raise ValueError("'x' expected as an argument of type 'number' or 'Symbol' or , " "'RandomSymbol' not %s" % (type(x))) cond1 = Eq(x, 1) & x.is_integer cond2 = Ge(x, 1) & Le(x, self.k) & x.is_integer rho = Piecewise((Rational(1, self.k), cond1), (Rational(1, x*(x-1)), cond2), (S.Zero, True)) cond1 = Ge(x, 1) & Le(x, round(self.k/self.R)-1) cond2 = Eq(x, round(self.k/self.R)) tau = Piecewise((self.R/(self.k * x), cond1), (self.R * log(self.R/self.delta)/self.k, cond2), (S.Zero, True)) return (rho + tau)/self.Z def RobustSoliton(name, k, delta, c): r''' Create a Finite Random Variable of Robust Soliton Distribution Parameters ========== k : Positive Integer Represents the number of input symbols in an LT (Luby Transform) code. delta : Positive Rational Number Represents the failure probability. Must be in the interval (0,1). c : Positive Rational Number Constant of proportionality. Values close to 1 are recommended Examples ======== >>> from sympy.stats import RobustSoliton, density, P, E >>> robSol = RobustSoliton('robSol', 5, 0.5, 0.01) >>> density(robSol).dict {1: 0.204253668152708, 2: 0.490631107897393, 3: 0.165210624506162, 4: 0.0834387731899302, 5: 0.0505633404760675} >>> density(robSol).set {1, 2, 3, 4, 5} >>> from sympy import Symbol >>> k = Symbol('k', positive=True, integer=True) >>> c = Symbol('c', positive=True) >>> robSol = RobustSoliton('robSol', k, 0.5, c) >>> density(robSol).dict Density(RobustSolitonDistribution(k, 0.5, c)) >>> density(robSol).dict.subs(k, 10).subs(c, 0.03).doit() {1: 0.116641095387194, 2: 0.467045731687165, 3: 0.159984123349381, 4: 0.0821431680681869, 5: 0.0505765646770100, 6: 0.0345781523420719, 7: 0.0253132820710503, 8: 0.0194459129233227, 9: 0.0154831166726115, 10: 0.0126733075238887} >>> E(robSol.subs(k, 10).subs(c, 0.05)) 2.91358846104106 >>> P(robSol.subs(k, 4).subs(c, 0.1) > 2) 0.243650614389834 Returns ======= RandomSymbol References ========== .. [1] https://en.wikipedia.org/wiki/Soliton_distribution#Robust_distribution .. [2] http://www.inference.org.uk/mackay/itprnn/ps/588.596.pdf .. [3] http://pages.cs.wisc.edu/~suman/courses/740/papers/luby02lt.pdf ''' return rv(name, RobustSolitonDistribution, k, delta, c)
39ab2b5166c173176902019daf27b06ea6090fe41e8f8a85271edaea618aa89b
""" Contains ======== FlorySchulz Geometric Hermite Logarithmic NegativeBinomial Poisson Skellam YuleSimon Zeta """ from sympy import (Basic, factorial, exp, S, sympify, I, zeta, polylog, log, beta, hyper, binomial, Piecewise, floor, besseli, sqrt, Sum, Dummy, Lambda, Eq) from sympy.stats.drv import SingleDiscreteDistribution, SingleDiscretePSpace from sympy.stats.rv import _value_check, is_random __all__ = ['FlorySchulz', 'Geometric', 'Hermite', 'Logarithmic', 'NegativeBinomial', 'Poisson', 'Skellam', 'YuleSimon', 'Zeta' ] def rv(symbol, cls, *args, **kwargs): args = list(map(sympify, args)) dist = cls(*args) if kwargs.pop('check', True): dist.check(*args) pspace = SingleDiscretePSpace(symbol, dist) if any(is_random(arg) for arg in args): from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution pspace = CompoundPSpace(symbol, CompoundDistribution(dist)) return pspace.value class DiscreteDistributionHandmade(SingleDiscreteDistribution): _argnames = ('pdf',) def __new__(cls, pdf, set=S.Integers): return Basic.__new__(cls, pdf, set) @property def set(self): return self.args[1] @staticmethod def check(pdf, set): x = Dummy('x') val = Sum(pdf(x), (x, set._inf, set._sup)).doit() _value_check(Eq(val, 1) != S.false, "The pdf is incorrect on the given set.") def DiscreteRV(symbol, density, set=S.Integers, **kwargs): """ Create a Discrete Random Variable given the following: Parameters ========== symbol : Symbol Represents name of the random variable. density : Expression containing symbol Represents probability density function. set : set Represents the region where the pdf is valid, by default is real line. check : bool If True, it will check whether the given density integrates to 1 over the given set. If False, it will not perform this check. Default is False. Examples ======== >>> from sympy.stats import DiscreteRV, P, E >>> from sympy import Rational, Symbol >>> x = Symbol('x') >>> n = 10 >>> density = Rational(1, 10) >>> X = DiscreteRV(x, density, set=set(range(n))) >>> E(X) 9/2 >>> P(X>3) 3/5 Returns ======= RandomSymbol """ set = sympify(set) pdf = Piecewise((density, set.as_relational(symbol)), (0, True)) pdf = Lambda(symbol, pdf) # have a default of False while `rv` should have a default of True kwargs['check'] = kwargs.pop('check', False) return rv(symbol.name, DiscreteDistributionHandmade, pdf, set, **kwargs) #------------------------------------------------------------------------------- # Flory-Schulz distribution ------------------------------------------------------------ class FlorySchulzDistribution(SingleDiscreteDistribution): _argnames = ('a',) set = S.Naturals @staticmethod def check(a): _value_check((0 < a, a < 1), "a must be between 0 and 1") def pdf(self, k): a = self.a return (a**2 * k * (1 - a)**(k - 1)) def _characteristic_function(self, t): a = self.a return a**2*exp(I*t)/((1 + (a - 1)*exp(I*t))**2) def _moment_generating_function(self, t): a = self.a return a**2*exp(t)/((1 + (a - 1)*exp(t))**2) def FlorySchulz(name, a): r""" Create a discrete random variable with a FlorySchulz distribution. The density of the FlorySchulz distribution is given by .. math:: f(k) := (a^2) k (1 - a)^{k-1} Parameters ========== a A real number between 0 and 1 Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, E, variance, FlorySchulz >>> from sympy import Symbol, S >>> a = S.One / 5 >>> z = Symbol("z") >>> X = FlorySchulz("x", a) >>> density(X)(z) (4/5)**(z - 1)*z/25 >>> E(X) 9 >>> variance(X) 40 References ========== https://en.wikipedia.org/wiki/Flory%E2%80%93Schulz_distribution """ return rv(name, FlorySchulzDistribution, a) #------------------------------------------------------------------------------- # Geometric distribution ------------------------------------------------------------ class GeometricDistribution(SingleDiscreteDistribution): _argnames = ('p',) set = S.Naturals @staticmethod def check(p): _value_check((0 < p, p <= 1), "p must be between 0 and 1") def pdf(self, k): return (1 - self.p)**(k - 1) * self.p def _characteristic_function(self, t): p = self.p return p * exp(I*t) / (1 - (1 - p)*exp(I*t)) def _moment_generating_function(self, t): p = self.p return p * exp(t) / (1 - (1 - p) * exp(t)) def Geometric(name, p): r""" Create a discrete random variable with a Geometric distribution. The density of the Geometric distribution is given by .. math:: f(k) := p (1 - p)^{k - 1} Parameters ========== p: A probability between 0 and 1 Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Geometric, density, E, variance >>> from sympy import Symbol, S >>> p = S.One / 5 >>> z = Symbol("z") >>> X = Geometric("x", p) >>> density(X)(z) (4/5)**(z - 1)/5 >>> E(X) 5 >>> variance(X) 20 References ========== .. [1] https://en.wikipedia.org/wiki/Geometric_distribution .. [2] http://mathworld.wolfram.com/GeometricDistribution.html """ return rv(name, GeometricDistribution, p) #------------------------------------------------------------------------------- # Hermite distribution --------------------------------------------------------- class HermiteDistribution(SingleDiscreteDistribution): _argnames = ('a1', 'a2') set = S.Naturals0 @staticmethod def check(a1, a2): _value_check(a1.is_nonnegative, 'Parameter a1 must be >= 0.') _value_check(a2.is_nonnegative, 'Parameter a2 must be >= 0.') def pdf(self, k): a1, a2 = self.a1, self.a2 term1 = exp(-(a1 + a2)) j = Dummy("j", integer=True) num = a1**(k - 2*j) * a2**j den = factorial(k - 2*j) * factorial(j) return term1 * Sum(num/den, (j, 0, k//2)).doit() def _moment_generating_function(self, t): a1, a2 = self.a1, self.a2 term1 = a1 * (exp(t) - 1) term2 = a2 * (exp(2*t) - 1) return exp(term1 + term2) def _characteristic_function(self, t): a1, a2 = self.a1, self.a2 term1 = a1 * (exp(I*t) - 1) term2 = a2 * (exp(2*I*t) - 1) return exp(term1 + term2) def Hermite(name, a1, a2): r""" Create a discrete random variable with a Hermite distribution. The density of the Hermite distribution is given by .. math:: f(x):= e^{-a_1 -a_2}\sum_{j=0}^{\left \lfloor x/2 \right \rfloor} \frac{a_{1}^{x-2j}a_{2}^{j}}{(x-2j)!j!} Parameters ========== a1: A Positive number greater than equal to 0. a2: A Positive number greater than equal to 0. Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Hermite, density, E, variance >>> from sympy import Symbol >>> a1 = Symbol("a1", positive=True) >>> a2 = Symbol("a2", positive=True) >>> x = Symbol("x") >>> H = Hermite("H", a1=5, a2=4) >>> density(H)(2) 33*exp(-9)/2 >>> E(H) 13 >>> variance(H) 21 References ========== .. [1] https://en.wikipedia.org/wiki/Hermite_distribution """ return rv(name, HermiteDistribution, a1, a2) #------------------------------------------------------------------------------- # Logarithmic distribution ------------------------------------------------------------ class LogarithmicDistribution(SingleDiscreteDistribution): _argnames = ('p',) set = S.Naturals @staticmethod def check(p): _value_check((p > 0, p < 1), "p should be between 0 and 1") def pdf(self, k): p = self.p return (-1) * p**k / (k * log(1 - p)) def _characteristic_function(self, t): p = self.p return log(1 - p * exp(I*t)) / log(1 - p) def _moment_generating_function(self, t): p = self.p return log(1 - p * exp(t)) / log(1 - p) def Logarithmic(name, p): r""" Create a discrete random variable with a Logarithmic distribution. The density of the Logarithmic distribution is given by .. math:: f(k) := \frac{-p^k}{k \ln{(1 - p)}} Parameters ========== p: A value between 0 and 1 Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Logarithmic, density, E, variance >>> from sympy import Symbol, S >>> p = S.One / 5 >>> z = Symbol("z") >>> X = Logarithmic("x", p) >>> density(X)(z) -5**(-z)/(z*log(4/5)) >>> E(X) -1/(-4*log(5) + 8*log(2)) >>> variance(X) -1/((-4*log(5) + 8*log(2))*(-2*log(5) + 4*log(2))) + 1/(-64*log(2)*log(5) + 64*log(2)**2 + 16*log(5)**2) - 10/(-32*log(5) + 64*log(2)) References ========== .. [1] https://en.wikipedia.org/wiki/Logarithmic_distribution .. [2] http://mathworld.wolfram.com/LogarithmicDistribution.html """ return rv(name, LogarithmicDistribution, p) #------------------------------------------------------------------------------- # Negative binomial distribution ------------------------------------------------------------ class NegativeBinomialDistribution(SingleDiscreteDistribution): _argnames = ('r', 'p') set = S.Naturals0 @staticmethod def check(r, p): _value_check(r > 0, 'r should be positive') _value_check((p > 0, p < 1), 'p should be between 0 and 1') def pdf(self, k): r = self.r p = self.p return binomial(k + r - 1, k) * (1 - p)**r * p**k def _characteristic_function(self, t): r = self.r p = self.p return ((1 - p) / (1 - p * exp(I*t)))**r def _moment_generating_function(self, t): r = self.r p = self.p return ((1 - p) / (1 - p * exp(t)))**r def NegativeBinomial(name, r, p): r""" Create a discrete random variable with a Negative Binomial distribution. The density of the Negative Binomial distribution is given by .. math:: f(k) := \binom{k + r - 1}{k} (1 - p)^r p^k Parameters ========== r: A positive value p: A value between 0 and 1 Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import NegativeBinomial, density, E, variance >>> from sympy import Symbol, S >>> r = 5 >>> p = S.One / 5 >>> z = Symbol("z") >>> X = NegativeBinomial("x", r, p) >>> density(X)(z) 1024*5**(-z)*binomial(z + 4, z)/3125 >>> E(X) 5/4 >>> variance(X) 25/16 References ========== .. [1] https://en.wikipedia.org/wiki/Negative_binomial_distribution .. [2] http://mathworld.wolfram.com/NegativeBinomialDistribution.html """ return rv(name, NegativeBinomialDistribution, r, p) #------------------------------------------------------------------------------- # Poisson distribution ------------------------------------------------------------ class PoissonDistribution(SingleDiscreteDistribution): _argnames = ('lamda',) set = S.Naturals0 @staticmethod def check(lamda): _value_check(lamda > 0, "Lambda must be positive") def pdf(self, k): return self.lamda**k / factorial(k) * exp(-self.lamda) def _characteristic_function(self, t): return exp(self.lamda * (exp(I*t) - 1)) def _moment_generating_function(self, t): return exp(self.lamda * (exp(t) - 1)) def Poisson(name, lamda): r""" Create a discrete random variable with a Poisson distribution. The density of the Poisson distribution is given by .. math:: f(k) := \frac{\lambda^{k} e^{- \lambda}}{k!} Parameters ========== lamda: Positive number, a rate Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Poisson, density, E, variance >>> from sympy import Symbol, simplify >>> rate = Symbol("lambda", positive=True) >>> z = Symbol("z") >>> X = Poisson("x", rate) >>> density(X)(z) lambda**z*exp(-lambda)/factorial(z) >>> E(X) lambda >>> simplify(variance(X)) lambda References ========== .. [1] https://en.wikipedia.org/wiki/Poisson_distribution .. [2] http://mathworld.wolfram.com/PoissonDistribution.html """ return rv(name, PoissonDistribution, lamda) # ----------------------------------------------------------------------------- # Skellam distribution -------------------------------------------------------- class SkellamDistribution(SingleDiscreteDistribution): _argnames = ('mu1', 'mu2') set = S.Integers @staticmethod def check(mu1, mu2): _value_check(mu1 >= 0, 'Parameter mu1 must be >= 0') _value_check(mu2 >= 0, 'Parameter mu2 must be >= 0') def pdf(self, k): (mu1, mu2) = (self.mu1, self.mu2) term1 = exp(-(mu1 + mu2)) * (mu1 / mu2) ** (k / 2) term2 = besseli(k, 2 * sqrt(mu1 * mu2)) return term1 * term2 def _cdf(self, x): raise NotImplementedError( "Skellam doesn't have closed form for the CDF.") def _characteristic_function(self, t): (mu1, mu2) = (self.mu1, self.mu2) return exp(-(mu1 + mu2) + mu1 * exp(I * t) + mu2 * exp(-I * t)) def _moment_generating_function(self, t): (mu1, mu2) = (self.mu1, self.mu2) return exp(-(mu1 + mu2) + mu1 * exp(t) + mu2 * exp(-t)) def Skellam(name, mu1, mu2): r""" Create a discrete random variable with a Skellam distribution. The Skellam is the distribution of the difference N1 - N2 of two statistically independent random variables N1 and N2 each Poisson-distributed with respective expected values mu1 and mu2. The density of the Skellam distribution is given by .. math:: f(k) := e^{-(\mu_1+\mu_2)}(\frac{\mu_1}{\mu_2})^{k/2}I_k(2\sqrt{\mu_1\mu_2}) Parameters ========== mu1: A non-negative value mu2: A non-negative value Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Skellam, density, E, variance >>> from sympy import Symbol, pprint >>> z = Symbol("z", integer=True) >>> mu1 = Symbol("mu1", positive=True) >>> mu2 = Symbol("mu2", positive=True) >>> X = Skellam("x", mu1, mu2) >>> pprint(density(X)(z), use_unicode=False) z - 2 /mu1\ -mu1 - mu2 / _____ _____\ |---| *e *besseli\z, 2*\/ mu1 *\/ mu2 / \mu2/ >>> E(X) mu1 - mu2 >>> variance(X).expand() mu1 + mu2 References ========== .. [1] https://en.wikipedia.org/wiki/Skellam_distribution """ return rv(name, SkellamDistribution, mu1, mu2) #------------------------------------------------------------------------------- # Yule-Simon distribution ------------------------------------------------------------ class YuleSimonDistribution(SingleDiscreteDistribution): _argnames = ('rho',) set = S.Naturals @staticmethod def check(rho): _value_check(rho > 0, 'rho should be positive') def pdf(self, k): rho = self.rho return rho * beta(k, rho + 1) def _cdf(self, x): return Piecewise((1 - floor(x) * beta(floor(x), self.rho + 1), x >= 1), (0, True)) def _characteristic_function(self, t): rho = self.rho return rho * hyper((1, 1), (rho + 2,), exp(I*t)) * exp(I*t) / (rho + 1) def _moment_generating_function(self, t): rho = self.rho return rho * hyper((1, 1), (rho + 2,), exp(t)) * exp(t) / (rho + 1) def YuleSimon(name, rho): r""" Create a discrete random variable with a Yule-Simon distribution. The density of the Yule-Simon distribution is given by .. math:: f(k) := \rho B(k, \rho + 1) Parameters ========== rho: A positive value Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import YuleSimon, density, E, variance >>> from sympy import Symbol, simplify >>> p = 5 >>> z = Symbol("z") >>> X = YuleSimon("x", p) >>> density(X)(z) 5*beta(z, 6) >>> simplify(E(X)) 5/4 >>> simplify(variance(X)) 25/48 References ========== .. [1] https://en.wikipedia.org/wiki/Yule%E2%80%93Simon_distribution """ return rv(name, YuleSimonDistribution, rho) #------------------------------------------------------------------------------- # Zeta distribution ------------------------------------------------------------ class ZetaDistribution(SingleDiscreteDistribution): _argnames = ('s',) set = S.Naturals @staticmethod def check(s): _value_check(s > 1, 's should be greater than 1') def pdf(self, k): s = self.s return 1 / (k**s * zeta(s)) def _characteristic_function(self, t): return polylog(self.s, exp(I*t)) / zeta(self.s) def _moment_generating_function(self, t): return polylog(self.s, exp(t)) / zeta(self.s) def Zeta(name, s): r""" Create a discrete random variable with a Zeta distribution. The density of the Zeta distribution is given by .. math:: f(k) := \frac{1}{k^s \zeta{(s)}} Parameters ========== s: A value greater than 1 Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Zeta, density, E, variance >>> from sympy import Symbol >>> s = 5 >>> z = Symbol("z") >>> X = Zeta("x", s) >>> density(X)(z) 1/(z**5*zeta(5)) >>> E(X) pi**4/(90*zeta(5)) >>> variance(X) -pi**8/(8100*zeta(5)**2) + zeta(3)/zeta(5) References ========== .. [1] https://en.wikipedia.org/wiki/Zeta_distribution """ return rv(name, ZetaDistribution, s)
41971eb174a0f92def43019a568ced895dbe2ad81a352efbf02011d3422574ee
""" Main Random Variables Module Defines abstract random variable type. Contains interfaces for probability space object (PSpace) as well as standard operators, P, E, sample, density, where, quantile See Also ======== sympy.stats.crv sympy.stats.frv sympy.stats.rv_interface """ from functools import singledispatch from typing import Tuple as tTuple from sympy import (Basic, S, Expr, Symbol, Tuple, And, Add, Eq, lambdify, Or, Equality, Lambda, sympify, Dummy, Ne, KroneckerDelta, DiracDelta, Mul, Indexed, MatrixSymbol, Function) from sympy.core.relational import Relational from sympy.core.sympify import _sympify from sympy.sets.sets import FiniteSet, ProductSet, Intersection from sympy.solvers.solveset import solveset from sympy.external import import_module from sympy.utilities.misc import filldedent import warnings x = Symbol('x') @singledispatch def is_random(x): return False @is_random.register(Basic) def _(x): atoms = x.free_symbols return any([is_random(i) for i in atoms]) class RandomDomain(Basic): """ Represents a set of variables and the values which they can take See Also ======== sympy.stats.crv.ContinuousDomain sympy.stats.frv.FiniteDomain """ is_ProductDomain = False is_Finite = False is_Continuous = False is_Discrete = False def __new__(cls, symbols, *args): symbols = FiniteSet(*symbols) return Basic.__new__(cls, symbols, *args) @property def symbols(self): return self.args[0] @property def set(self): return self.args[1] def __contains__(self, other): raise NotImplementedError() def compute_expectation(self, expr): raise NotImplementedError() class SingleDomain(RandomDomain): """ A single variable and its domain See Also ======== sympy.stats.crv.SingleContinuousDomain sympy.stats.frv.SingleFiniteDomain """ def __new__(cls, symbol, set): assert symbol.is_Symbol return Basic.__new__(cls, symbol, set) @property def symbol(self): return self.args[0] @property def symbols(self): return FiniteSet(self.symbol) def __contains__(self, other): if len(other) != 1: return False sym, val = tuple(other)[0] return self.symbol == sym and val in self.set class MatrixDomain(RandomDomain): """ A Random Matrix variable and its domain """ def __new__(cls, symbol, set): symbol, set = _symbol_converter(symbol), _sympify(set) return Basic.__new__(cls, symbol, set) @property def symbol(self): return self.args[0] @property def symbols(self): return FiniteSet(self.symbol) class ConditionalDomain(RandomDomain): """ A RandomDomain with an attached condition See Also ======== sympy.stats.crv.ConditionalContinuousDomain sympy.stats.frv.ConditionalFiniteDomain """ def __new__(cls, fulldomain, condition): condition = condition.xreplace({rs: rs.symbol for rs in random_symbols(condition)}) return Basic.__new__(cls, fulldomain, condition) @property def symbols(self): return self.fulldomain.symbols @property def fulldomain(self): return self.args[0] @property def condition(self): return self.args[1] @property def set(self): raise NotImplementedError("Set of Conditional Domain not Implemented") def as_boolean(self): return And(self.fulldomain.as_boolean(), self.condition) class PSpace(Basic): """ A Probability Space Probability Spaces encode processes that equal different values probabilistically. These underly Random Symbols which occur in SymPy expressions and contain the mechanics to evaluate statistical statements. See Also ======== sympy.stats.crv.ContinuousPSpace sympy.stats.frv.FinitePSpace """ is_Finite = None # type: bool is_Continuous = None # type: bool is_Discrete = None # type: bool is_real = None # type: bool @property def domain(self): return self.args[0] @property def density(self): return self.args[1] @property def values(self): return frozenset(RandomSymbol(sym, self) for sym in self.symbols) @property def symbols(self): return self.domain.symbols def where(self, condition): raise NotImplementedError() def compute_density(self, expr): raise NotImplementedError() def sample(self): raise NotImplementedError() def probability(self, condition): raise NotImplementedError() def compute_expectation(self, expr): raise NotImplementedError() class SinglePSpace(PSpace): """ Represents the probabilities of a set of random events that can be attributed to a single variable/symbol. """ def __new__(cls, s, distribution): s = _symbol_converter(s) return Basic.__new__(cls, s, distribution) @property def value(self): return RandomSymbol(self.symbol, self) @property def symbol(self): return self.args[0] @property def distribution(self): return self.args[1] @property def pdf(self): return self.distribution.pdf(self.symbol) class RandomSymbol(Expr): """ Random Symbols represent ProbabilitySpaces in SymPy Expressions In principle they can take on any value that their symbol can take on within the associated PSpace with probability determined by the PSpace Density. Random Symbols contain pspace and symbol properties. The pspace property points to the represented Probability Space The symbol is a standard SymPy Symbol that is used in that probability space for example in defining a density. You can form normal SymPy expressions using RandomSymbols and operate on those expressions with the Functions E - Expectation of a random expression P - Probability of a condition density - Probability Density of an expression given - A new random expression (with new random symbols) given a condition An object of the RandomSymbol type should almost never be created by the user. They tend to be created instead by the PSpace class's value method. Traditionally a user doesn't even do this but instead calls one of the convenience functions Normal, Exponential, Coin, Die, FiniteRV, etc.... """ def __new__(cls, symbol, pspace=None): from sympy.stats.joint_rv import JointRandomSymbol if pspace is None: # Allow single arg, representing pspace == PSpace() pspace = PSpace() symbol = _symbol_converter(symbol) if not isinstance(pspace, PSpace): raise TypeError("pspace variable should be of type PSpace") if cls == JointRandomSymbol and isinstance(pspace, SinglePSpace): cls = RandomSymbol return Basic.__new__(cls, symbol, pspace) is_finite = True is_symbol = True is_Atom = True _diff_wrt = True pspace = property(lambda self: self.args[1]) symbol = property(lambda self: self.args[0]) name = property(lambda self: self.symbol.name) def _eval_is_positive(self): return self.symbol.is_positive def _eval_is_integer(self): return self.symbol.is_integer def _eval_is_real(self): return self.symbol.is_real or self.pspace.is_real @property def is_commutative(self): return self.symbol.is_commutative @property def free_symbols(self): return {self} class RandomIndexedSymbol(RandomSymbol): def __new__(cls, idx_obj, pspace=None): if pspace is None: # Allow single arg, representing pspace == PSpace() pspace = PSpace() if not isinstance(idx_obj, (Indexed, Function)): raise TypeError("An Function or Indexed object is expected not %s"%(idx_obj)) return Basic.__new__(cls, idx_obj, pspace) symbol = property(lambda self: self.args[0]) name = property(lambda self: str(self.args[0])) @property def key(self): if isinstance(self.symbol, Indexed): return self.symbol.args[1] elif isinstance(self.symbol, Function): return self.symbol.args[0] @property def free_symbols(self): if self.key.free_symbols: free_syms = self.key.free_symbols free_syms.add(self) return free_syms return {self} @property def pspace(self): return self.args[1] class RandomMatrixSymbol(RandomSymbol, MatrixSymbol): # type: ignore def __new__(cls, symbol, n, m, pspace=None): n, m = _sympify(n), _sympify(m) symbol = _symbol_converter(symbol) if pspace is None: # Allow single arg, representing pspace == PSpace() pspace = PSpace() return Basic.__new__(cls, symbol, n, m, pspace) symbol = property(lambda self: self.args[0]) pspace = property(lambda self: self.args[3]) class ProductPSpace(PSpace): """ Abstract class for representing probability spaces with multiple random variables. See Also ======== sympy.stats.rv.IndependentProductPSpace sympy.stats.joint_rv.JointPSpace """ pass class IndependentProductPSpace(ProductPSpace): """ A probability space resulting from the merger of two independent probability spaces. Often created using the function, pspace """ def __new__(cls, *spaces): rs_space_dict = {} for space in spaces: for value in space.values: rs_space_dict[value] = space symbols = FiniteSet(*[val.symbol for val in rs_space_dict.keys()]) # Overlapping symbols from sympy.stats.joint_rv import MarginalDistribution from sympy.stats.compound_rv import CompoundDistribution if len(symbols) < sum(len(space.symbols) for space in spaces if not isinstance(space.distribution, ( CompoundDistribution, MarginalDistribution))): raise ValueError("Overlapping Random Variables") if all(space.is_Finite for space in spaces): from sympy.stats.frv import ProductFinitePSpace cls = ProductFinitePSpace obj = Basic.__new__(cls, *FiniteSet(*spaces)) return obj @property def pdf(self): p = Mul(*[space.pdf for space in self.spaces]) return p.subs({rv: rv.symbol for rv in self.values}) @property def rs_space_dict(self): d = {} for space in self.spaces: for value in space.values: d[value] = space return d @property def symbols(self): return FiniteSet(*[val.symbol for val in self.rs_space_dict.keys()]) @property def spaces(self): return FiniteSet(*self.args) @property def values(self): return sumsets(space.values for space in self.spaces) def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs): rvs = rvs or self.values rvs = frozenset(rvs) for space in self.spaces: expr = space.compute_expectation(expr, rvs & space.values, evaluate=False, **kwargs) if evaluate and hasattr(expr, 'doit'): return expr.doit(**kwargs) return expr @property def domain(self): return ProductDomain(*[space.domain for space in self.spaces]) @property def density(self): raise NotImplementedError("Density not available for ProductSpaces") def sample(self, size=(), library='scipy', seed=None): return {k: v for space in self.spaces for k, v in space.sample(size=size, library=library, seed=seed).items()} def probability(self, condition, **kwargs): cond_inv = False if isinstance(condition, Ne): condition = Eq(condition.args[0], condition.args[1]) cond_inv = True elif isinstance(condition, And): # they are independent return Mul(*[self.probability(arg) for arg in condition.args]) elif isinstance(condition, Or): # they are independent return Add(*[self.probability(arg) for arg in condition.args]) expr = condition.lhs - condition.rhs rvs = random_symbols(expr) dens = self.compute_density(expr) if any([pspace(rv).is_Continuous for rv in rvs]): from sympy.stats.crv import SingleContinuousPSpace from sympy.stats.crv_types import ContinuousDistributionHandmade if expr in self.values: # Marginalize all other random symbols out of the density randomsymbols = tuple(set(self.values) - frozenset([expr])) symbols = tuple(rs.symbol for rs in randomsymbols) pdf = self.domain.integrate(self.pdf, symbols, **kwargs) return Lambda(expr.symbol, pdf) dens = ContinuousDistributionHandmade(dens) z = Dummy('z', real=True) space = SingleContinuousPSpace(z, dens) result = space.probability(condition.__class__(space.value, 0)) else: from sympy.stats.drv import SingleDiscretePSpace from sympy.stats.drv_types import DiscreteDistributionHandmade dens = DiscreteDistributionHandmade(dens) z = Dummy('z', integer=True) space = SingleDiscretePSpace(z, dens) result = space.probability(condition.__class__(space.value, 0)) return result if not cond_inv else S.One - result def compute_density(self, expr, **kwargs): rvs = random_symbols(expr) if any(pspace(rv).is_Continuous for rv in rvs): z = Dummy('z', real=True) expr = self.compute_expectation(DiracDelta(expr - z), **kwargs) else: z = Dummy('z', integer=True) expr = self.compute_expectation(KroneckerDelta(expr, z), **kwargs) return Lambda(z, expr) def compute_cdf(self, expr, **kwargs): raise ValueError("CDF not well defined on multivariate expressions") def conditional_space(self, condition, normalize=True, **kwargs): rvs = random_symbols(condition) condition = condition.xreplace({rv: rv.symbol for rv in self.values}) if any([pspace(rv).is_Continuous for rv in rvs]): from sympy.stats.crv import (ConditionalContinuousDomain, ContinuousPSpace) space = ContinuousPSpace domain = ConditionalContinuousDomain(self.domain, condition) elif any([pspace(rv).is_Discrete for rv in rvs]): from sympy.stats.drv import (ConditionalDiscreteDomain, DiscretePSpace) space = DiscretePSpace domain = ConditionalDiscreteDomain(self.domain, condition) elif all([pspace(rv).is_Finite for rv in rvs]): from sympy.stats.frv import FinitePSpace return FinitePSpace.conditional_space(self, condition) if normalize: replacement = {rv: Dummy(str(rv)) for rv in self.symbols} norm = domain.compute_expectation(self.pdf, **kwargs) pdf = self.pdf / norm.xreplace(replacement) # XXX: Converting symbols from set to tuple. The order matters to # Lambda though so we shouldn't be starting with a set here... density = Lambda(tuple(domain.symbols), pdf) return space(domain, density) class ProductDomain(RandomDomain): """ A domain resulting from the merger of two independent domains See Also ======== sympy.stats.crv.ProductContinuousDomain sympy.stats.frv.ProductFiniteDomain """ is_ProductDomain = True def __new__(cls, *domains): # Flatten any product of products domains2 = [] for domain in domains: if not domain.is_ProductDomain: domains2.append(domain) else: domains2.extend(domain.domains) domains2 = FiniteSet(*domains2) if all(domain.is_Finite for domain in domains2): from sympy.stats.frv import ProductFiniteDomain cls = ProductFiniteDomain if all(domain.is_Continuous for domain in domains2): from sympy.stats.crv import ProductContinuousDomain cls = ProductContinuousDomain if all(domain.is_Discrete for domain in domains2): from sympy.stats.drv import ProductDiscreteDomain cls = ProductDiscreteDomain return Basic.__new__(cls, *domains2) @property def sym_domain_dict(self): return {symbol: domain for domain in self.domains for symbol in domain.symbols} @property def symbols(self): return FiniteSet(*[sym for domain in self.domains for sym in domain.symbols]) @property def domains(self): return self.args @property def set(self): return ProductSet(*(domain.set for domain in self.domains)) def __contains__(self, other): # Split event into each subdomain for domain in self.domains: # Collect the parts of this event which associate to this domain elem = frozenset([item for item in other if sympify(domain.symbols.contains(item[0])) is S.true]) # Test this sub-event if elem not in domain: return False # All subevents passed return True def as_boolean(self): return And(*[domain.as_boolean() for domain in self.domains]) def random_symbols(expr): """ Returns all RandomSymbols within a SymPy Expression. """ atoms = getattr(expr, 'atoms', None) if atoms is not None: comp = lambda rv: rv.symbol.name l = list(atoms(RandomSymbol)) return sorted(l, key=comp) else: return [] def pspace(expr): """ Returns the underlying Probability Space of a random expression. For internal use. Examples ======== >>> from sympy.stats import pspace, Normal >>> X = Normal('X', 0, 1) >>> pspace(2*X + 1) == X.pspace True """ expr = sympify(expr) if isinstance(expr, RandomSymbol) and expr.pspace is not None: return expr.pspace if expr.has(RandomMatrixSymbol): rm = list(expr.atoms(RandomMatrixSymbol))[0] return rm.pspace rvs = random_symbols(expr) if not rvs: raise ValueError("Expression containing Random Variable expected, not %s" % (expr)) # If only one space present if all(rv.pspace == rvs[0].pspace for rv in rvs): return rvs[0].pspace from sympy.stats.compound_rv import CompoundPSpace from sympy.stats.stochastic_process import StochasticPSpace for rv in rvs: if isinstance(rv.pspace, (CompoundPSpace, StochasticPSpace)): return rv.pspace # Otherwise make a product space return IndependentProductPSpace(*[rv.pspace for rv in rvs]) def sumsets(sets): """ Union of sets """ return frozenset().union(*sets) def rs_swap(a, b): """ Build a dictionary to swap RandomSymbols based on their underlying symbol. i.e. if ``X = ('x', pspace1)`` and ``Y = ('x', pspace2)`` then ``X`` and ``Y`` match and the key, value pair ``{X:Y}`` will appear in the result Inputs: collections a and b of random variables which share common symbols Output: dict mapping RVs in a to RVs in b """ d = {} for rsa in a: d[rsa] = [rsb for rsb in b if rsa.symbol == rsb.symbol][0] return d def given(expr, condition=None, **kwargs): r""" Conditional Random Expression From a random expression and a condition on that expression creates a new probability space from the condition and returns the same expression on that conditional probability space. Examples ======== >>> from sympy.stats import given, density, Die >>> X = Die('X', 6) >>> Y = given(X, X > 3) >>> density(Y).dict {4: 1/3, 5: 1/3, 6: 1/3} Following convention, if the condition is a random symbol then that symbol is considered fixed. >>> from sympy.stats import Normal >>> from sympy import pprint >>> from sympy.abc import z >>> X = Normal('X', 0, 1) >>> Y = Normal('Y', 0, 1) >>> pprint(density(X + Y, Y)(z), use_unicode=False) 2 -(-Y + z) ----------- ___ 2 \/ 2 *e ------------------ ____ 2*\/ pi """ if not is_random(condition) or pspace_independent(expr, condition): return expr if isinstance(condition, RandomSymbol): condition = Eq(condition, condition.symbol) condsymbols = random_symbols(condition) if (isinstance(condition, Equality) and len(condsymbols) == 1 and not isinstance(pspace(expr).domain, ConditionalDomain)): rv = tuple(condsymbols)[0] results = solveset(condition, rv) if isinstance(results, Intersection) and S.Reals in results.args: results = list(results.args[1]) sums = 0 for res in results: temp = expr.subs(rv, res) if temp == True: return True if temp != False: # XXX: This seems nonsensical but preserves existing behaviour # after the change that Relational is no longer a subclass of # Expr. Here expr is sometimes Relational and sometimes Expr # but we are trying to add them with +=. This needs to be # fixed somehow. if sums == 0 and isinstance(expr, Relational): sums = expr.subs(rv, res) else: sums += expr.subs(rv, res) if sums == 0: return False return sums # Get full probability space of both the expression and the condition fullspace = pspace(Tuple(expr, condition)) # Build new space given the condition space = fullspace.conditional_space(condition, **kwargs) # Dictionary to swap out RandomSymbols in expr with new RandomSymbols # That point to the new conditional space swapdict = rs_swap(fullspace.values, space.values) # Swap random variables in the expression expr = expr.xreplace(swapdict) return expr def expectation(expr, condition=None, numsamples=None, evaluate=True, **kwargs): """ Returns the expected value of a random expression Parameters ========== expr : Expr containing RandomSymbols The expression of which you want to compute the expectation value given : Expr containing RandomSymbols A conditional expression. E(X, X>0) is expectation of X given X > 0 numsamples : int Enables sampling and approximates the expectation with this many samples evalf : Bool (defaults to True) If sampling return a number rather than a complex expression evaluate : Bool (defaults to True) In case of continuous systems return unevaluated integral Examples ======== >>> from sympy.stats import E, Die >>> X = Die('X', 6) >>> E(X) 7/2 >>> E(2*X + 1) 8 >>> E(X, X > 3) # Expectation of X given that it is above 3 5 """ if not is_random(expr): # expr isn't random? return expr kwargs['numsamples'] = numsamples from sympy.stats.symbolic_probability import Expectation if evaluate: return Expectation(expr, condition).doit(**kwargs) return Expectation(expr, condition) def probability(condition, given_condition=None, numsamples=None, evaluate=True, **kwargs): """ Probability that a condition is true, optionally given a second condition Parameters ========== condition : Combination of Relationals containing RandomSymbols The condition of which you want to compute the probability given_condition : Combination of Relationals containing RandomSymbols A conditional expression. P(X > 1, X > 0) is expectation of X > 1 given X > 0 numsamples : int Enables sampling and approximates the probability with this many samples evaluate : Bool (defaults to True) In case of continuous systems return unevaluated integral Examples ======== >>> from sympy.stats import P, Die >>> from sympy import Eq >>> X, Y = Die('X', 6), Die('Y', 6) >>> P(X > 3) 1/2 >>> P(Eq(X, 5), X > 2) # Probability that X == 5 given that X > 2 1/4 >>> P(X > Y) 5/12 """ kwargs['numsamples'] = numsamples from sympy.stats.symbolic_probability import Probability if evaluate: return Probability(condition, given_condition).doit(**kwargs) ### TODO: Remove the user warnings in the future releases message = ("Since version 1.7, using `evaluate=False` returns `Probability` " "object. If you want unevaluated Integral/Sum use " "`P(condition, given_condition, evaluate=False).rewrite(Integral)`") warnings.warn(filldedent(message)) return Probability(condition, given_condition) class Density(Basic): expr = property(lambda self: self.args[0]) @property def condition(self): if len(self.args) > 1: return self.args[1] else: return None def doit(self, evaluate=True, **kwargs): from sympy.stats.random_matrix import RandomMatrixPSpace from sympy.stats.joint_rv import JointPSpace from sympy.stats.matrix_distributions import MatrixPSpace from sympy.stats.compound_rv import CompoundPSpace from sympy.stats.frv import SingleFiniteDistribution expr, condition = self.expr, self.condition if isinstance(expr, SingleFiniteDistribution): return expr.dict if condition is not None: # Recompute on new conditional expr expr = given(expr, condition, **kwargs) if not random_symbols(expr): return Lambda(x, DiracDelta(x - expr)) if isinstance(expr, RandomSymbol): if isinstance(expr.pspace, (SinglePSpace, JointPSpace, MatrixPSpace)) and \ hasattr(expr.pspace, 'distribution'): return expr.pspace.distribution elif isinstance(expr.pspace, RandomMatrixPSpace): return expr.pspace.model if isinstance(pspace(expr), CompoundPSpace): kwargs['compound_evaluate'] = evaluate result = pspace(expr).compute_density(expr, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def density(expr, condition=None, evaluate=True, numsamples=None, **kwargs): """ Probability density of a random expression, optionally given a second condition. This density will take on different forms for different types of probability spaces. Discrete variables produce Dicts. Continuous variables produce Lambdas. Parameters ========== expr : Expr containing RandomSymbols The expression of which you want to compute the density value condition : Relational containing RandomSymbols A conditional expression. density(X > 1, X > 0) is density of X > 1 given X > 0 numsamples : int Enables sampling and approximates the density with this many samples Examples ======== >>> from sympy.stats import density, Die, Normal >>> from sympy import Symbol >>> x = Symbol('x') >>> D = Die('D', 6) >>> X = Normal(x, 0, 1) >>> density(D).dict {1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6} >>> density(2*D).dict {2: 1/6, 4: 1/6, 6: 1/6, 8: 1/6, 10: 1/6, 12: 1/6} >>> density(X)(x) sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) """ if numsamples: return sampling_density(expr, condition, numsamples=numsamples, **kwargs) return Density(expr, condition).doit(evaluate=evaluate, **kwargs) def cdf(expr, condition=None, evaluate=True, **kwargs): """ Cumulative Distribution Function of a random expression. optionally given a second condition This density will take on different forms for different types of probability spaces. Discrete variables produce Dicts. Continuous variables produce Lambdas. Examples ======== >>> from sympy.stats import density, Die, Normal, cdf >>> D = Die('D', 6) >>> X = Normal('X', 0, 1) >>> density(D).dict {1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6} >>> cdf(D) {1: 1/6, 2: 1/3, 3: 1/2, 4: 2/3, 5: 5/6, 6: 1} >>> cdf(3*D, D > 2) {9: 1/4, 12: 1/2, 15: 3/4, 18: 1} >>> cdf(X) Lambda(_z, erf(sqrt(2)*_z/2)/2 + 1/2) """ if condition is not None: # If there is a condition # Recompute on new conditional expr return cdf(given(expr, condition, **kwargs), **kwargs) # Otherwise pass work off to the ProbabilitySpace result = pspace(expr).compute_cdf(expr, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def characteristic_function(expr, condition=None, evaluate=True, **kwargs): """ Characteristic function of a random expression, optionally given a second condition Returns a Lambda Examples ======== >>> from sympy.stats import Normal, DiscreteUniform, Poisson, characteristic_function >>> X = Normal('X', 0, 1) >>> characteristic_function(X) Lambda(_t, exp(-_t**2/2)) >>> Y = DiscreteUniform('Y', [1, 2, 7]) >>> characteristic_function(Y) Lambda(_t, exp(7*_t*I)/3 + exp(2*_t*I)/3 + exp(_t*I)/3) >>> Z = Poisson('Z', 2) >>> characteristic_function(Z) Lambda(_t, exp(2*exp(_t*I) - 2)) """ if condition is not None: return characteristic_function(given(expr, condition, **kwargs), **kwargs) result = pspace(expr).compute_characteristic_function(expr, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def moment_generating_function(expr, condition=None, evaluate=True, **kwargs): if condition is not None: return moment_generating_function(given(expr, condition, **kwargs), **kwargs) result = pspace(expr).compute_moment_generating_function(expr, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def where(condition, given_condition=None, **kwargs): """ Returns the domain where a condition is True. Examples ======== >>> from sympy.stats import where, Die, Normal >>> from sympy import And >>> D1, D2 = Die('a', 6), Die('b', 6) >>> a, b = D1.symbol, D2.symbol >>> X = Normal('x', 0, 1) >>> where(X**2<1) Domain: (-1 < x) & (x < 1) >>> where(X**2<1).set Interval.open(-1, 1) >>> where(And(D1<=D2 , D2<3)) Domain: (Eq(a, 1) & Eq(b, 1)) | (Eq(a, 1) & Eq(b, 2)) | (Eq(a, 2) & Eq(b, 2)) """ if given_condition is not None: # If there is a condition # Recompute on new conditional expr return where(given(condition, given_condition, **kwargs), **kwargs) # Otherwise pass work off to the ProbabilitySpace return pspace(condition).where(condition, **kwargs) def sample(expr, condition=None, size=(), library='scipy', numsamples=1, seed=None, **kwargs): """ A realization of the random expression Parameters ========== expr : Expression of random variables Expression from which sample is extracted condition : Expr containing RandomSymbols A conditional expression size : int, tuple Represents size of each sample in numsamples library : str - 'scipy' : Sample using scipy - 'numpy' : Sample using numpy - 'pymc3' : Sample using PyMC3 Choose any of the available options to sample from as string, by default is 'scipy' numsamples : int Number of samples, each with size as ``size`` seed : An object to be used as seed by the given external library for sampling `expr`. Following is the list of possible types of object for the supported libraries, - 'scipy': int, numpy.random.RandomState, numpy.random.Generator - 'numpy': int, numpy.random.RandomState, numpy.random.Generator - 'pymc3': int Optional, by default None, in which case seed settings related to the given library will be used. No modifications to environment's global seed settings are done by this argument. Examples ======== >>> from sympy.stats import Die, sample, Normal, Geometric >>> X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6) # Finite Random Variable >>> die_roll = sample(X + Y + Z) # doctest: +SKIP >>> next(die_roll) # doctest: +SKIP 6 >>> N = Normal('N', 3, 4) # Continuous Random Variable >>> samp = next(sample(N)) # doctest: +SKIP >>> samp in N.pspace.domain.set # doctest: +SKIP True >>> samp = next(sample(N, N>0)) # doctest: +SKIP >>> samp > 0 # doctest: +SKIP True >>> samp_list = next(sample(N, size=4)) # doctest: +SKIP >>> [sam in N.pspace.domain.set for sam in samp_list] # doctest: +SKIP [True, True, True, True] >>> G = Geometric('G', 0.5) # Discrete Random Variable >>> samp_list = next(sample(G, size=3)) # doctest: +SKIP >>> samp_list # doctest: +SKIP array([10, 4, 1]) >>> [sam in G.pspace.domain.set for sam in samp_list] # doctest: +SKIP [True, True, True] >>> MN = Normal("MN", [3, 4], [[2, 1], [1, 2]]) # Joint Random Variable >>> samp_list = next(sample(MN, size=4)) # doctest: +SKIP >>> samp_list # doctest: +SKIP array([[4.22564264, 3.23364418], [3.41002011, 4.60090908], [3.76151866, 4.77617143], [4.71440865, 2.65714157]]) >>> [tuple(sam) in MN.pspace.domain.set for sam in samp_list] # doctest: +SKIP [True, True, True, True] Returns ======= sample: iterator object iterator object containing the sample/samples of given expr """ ### TODO: Remove the user warnings in the future releases message = ("The return type of sample has been changed to return an " "iterator object since version 1.7. For more information see " "https://github.com/sympy/sympy/issues/19061") warnings.warn(filldedent(message)) return sample_iter(expr, condition, size=size, library=library, numsamples=numsamples, seed=seed) def quantile(expr, evaluate=True, **kwargs): r""" Return the :math:`p^{th}` order quantile of a probability distribution. Quantile is defined as the value at which the probability of the random variable is less than or equal to the given probability. ..math:: Q(p) = inf{x \in (-\infty, \infty) such that p <= F(x)} Examples ======== >>> from sympy.stats import quantile, Die, Exponential >>> from sympy import Symbol, pprint >>> p = Symbol("p") >>> l = Symbol("lambda", positive=True) >>> X = Exponential("x", l) >>> quantile(X)(p) -log(1 - p)/lambda >>> D = Die("d", 6) >>> pprint(quantile(D)(p), use_unicode=False) /nan for Or(p > 1, p < 0) | | 1 for p <= 1/6 | | 2 for p <= 1/3 | < 3 for p <= 1/2 | | 4 for p <= 2/3 | | 5 for p <= 5/6 | \ 6 for p <= 1 """ result = pspace(expr).compute_quantile(expr, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def sample_iter(expr, condition=None, size=(), library='scipy', numsamples=S.Infinity, seed=None, **kwargs): """ Returns an iterator of realizations from the expression given a condition Parameters ========== expr: Expr Random expression to be realized condition: Expr, optional A conditional expression size : int, tuple Represents size of each sample in numsamples numsamples: integer, optional Length of the iterator (defaults to infinity) seed : An object to be used as seed by the given external library for sampling `expr`. Following is the list of possible types of object for the supported libraries, - 'scipy': int, numpy.random.RandomState, numpy.random.Generator - 'numpy': int, numpy.random.RandomState, numpy.random.Generator - 'pymc3': int Optional, by default None, in which case seed settings related to the given library will be used. No modifications to environment's global seed settings are done by this argument. Examples ======== >>> from sympy.stats import Normal, sample_iter >>> X = Normal('X', 0, 1) >>> expr = X*X + 3 >>> iterator = sample_iter(expr, numsamples=3) # doctest: +SKIP >>> list(iterator) # doctest: +SKIP [12, 4, 7] Returns ======= sample_iter: iterator object iterator object containing the sample/samples of given expr See Also ======== sample sampling_P sampling_E """ from sympy.stats.joint_rv import JointRandomSymbol if not import_module(library): raise ValueError("Failed to import %s" % library) if condition is not None: ps = pspace(Tuple(expr, condition)) else: ps = pspace(expr) rvs = list(ps.values) if isinstance(expr, JointRandomSymbol): expr = expr.subs({expr: RandomSymbol(expr.symbol, expr.pspace)}) else: sub = {} for arg in expr.args: if isinstance(arg, JointRandomSymbol): sub[arg] = RandomSymbol(arg.symbol, arg.pspace) expr = expr.subs(sub) def fn_subs(*args): return expr.subs({rv: arg for rv, arg in zip(rvs, args)}) def given_fn_subs(*args): if condition is not None: return condition.subs({rv: arg for rv, arg in zip(rvs, args)}) return False if library == 'pymc3': # Currently unable to lambdify in pymc3 # TODO : Remove 'pymc3' when lambdify accepts 'pymc3' as module fn = lambdify(rvs, expr, **kwargs) else: fn = lambdify(rvs, expr, modules=library, **kwargs) if condition is not None: given_fn = lambdify(rvs, condition, **kwargs) def return_generator_infinite(): count = 0 np = import_module('numpy') if np: rand_state = np.random.default_rng(seed=seed) else: rand_state = None while count < numsamples: d = ps.sample(size=size, library=library, seed=rand_state) # a dictionary that maps RVs to values args = [d[rv] for rv in rvs] if condition is not None: # Check that these values satisfy the condition # TODO: Replace the try-except block with only given_fn(*args) # once lambdify works with unevaluated SymPy objects. try: gd = given_fn(*args) except (NameError, TypeError): gd = given_fn_subs(*args) if gd != True and gd != False: raise ValueError( "Conditions must not contain free symbols") if not gd: # If the values don't satisfy then try again continue yield fn(*args) count += 1 def return_generator_finite(): faulty = True while faulty: d = ps.sample(size=(numsamples,) + ((size,) if isinstance(size, int) else size), library=library, seed=seed) # a dictionary that maps RVs to values faulty = False count = 0 while count < numsamples and not faulty: args = [d[rv][count] for rv in rvs] if condition is not None: # Check that these values satisfy the condition # TODO: Replace the try-except block with only given_fn(*args) # once lambdify works with unevaluated SymPy objects. try: gd = given_fn(*args) except (NameError, TypeError): gd = given_fn_subs(*args) if gd != True and gd != False: raise ValueError( "Conditions must not contain free symbols") if not gd: # If the values don't satisfy then try again faulty = True count += 1 count = 0 while count < numsamples: args = [d[rv][count] for rv in rvs] # TODO: Replace the try-except block with only fn(*args) # once lambdify works with unevaluated SymPy objects. try: yield fn(*args) except (NameError, TypeError): yield fn_subs(*args) count += 1 if numsamples is S.Infinity: return return_generator_infinite() return return_generator_finite() def sample_iter_lambdify(expr, condition=None, size=(), numsamples=S.Infinity, seed=None, **kwargs): return sample_iter(expr, condition=condition, size=size, numsamples=numsamples, seed=seed, **kwargs) def sample_iter_subs(expr, condition=None, size=(), numsamples=S.Infinity, seed=None, **kwargs): return sample_iter(expr, condition=condition, size=size, numsamples=numsamples, seed=seed, **kwargs) def sampling_P(condition, given_condition=None, library='scipy', numsamples=1, evalf=True, seed=None, **kwargs): """ Sampling version of P See Also ======== P sampling_E sampling_density """ count_true = 0 count_false = 0 samples = sample_iter(condition, given_condition, library=library, numsamples=numsamples, seed=seed, **kwargs) for sample in samples: if sample: count_true += 1 else: count_false += 1 result = S(count_true) / numsamples if evalf: return result.evalf() else: return result def sampling_E(expr, given_condition=None, library='scipy', numsamples=1, evalf=True, seed=None, **kwargs): """ Sampling version of E See Also ======== P sampling_P sampling_density """ samples = list(sample_iter(expr, given_condition, library=library, numsamples=numsamples, seed=seed, **kwargs)) result = Add(*[samp for samp in samples]) / numsamples if evalf: return result.evalf() else: return result def sampling_density(expr, given_condition=None, library='scipy', numsamples=1, seed=None, **kwargs): """ Sampling version of density See Also ======== density sampling_P sampling_E """ results = {} for result in sample_iter(expr, given_condition, library=library, numsamples=numsamples, seed=seed, **kwargs): results[result] = results.get(result, 0) + 1 return results def dependent(a, b): """ Dependence of two random expressions Two expressions are independent if knowledge of one does not change computations on the other. Examples ======== >>> from sympy.stats import Normal, dependent, given >>> from sympy import Tuple, Eq >>> X, Y = Normal('X', 0, 1), Normal('Y', 0, 1) >>> dependent(X, Y) False >>> dependent(2*X + Y, -Y) True >>> X, Y = given(Tuple(X, Y), Eq(X + Y, 3)) >>> dependent(X, Y) True See Also ======== independent """ if pspace_independent(a, b): return False z = Symbol('z', real=True) # Dependent if density is unchanged when one is given information about # the other return (density(a, Eq(b, z)) != density(a) or density(b, Eq(a, z)) != density(b)) def independent(a, b): """ Independence of two random expressions Two expressions are independent if knowledge of one does not change computations on the other. Examples ======== >>> from sympy.stats import Normal, independent, given >>> from sympy import Tuple, Eq >>> X, Y = Normal('X', 0, 1), Normal('Y', 0, 1) >>> independent(X, Y) True >>> independent(2*X + Y, -Y) False >>> X, Y = given(Tuple(X, Y), Eq(X + Y, 3)) >>> independent(X, Y) False See Also ======== dependent """ return not dependent(a, b) def pspace_independent(a, b): """ Tests for independence between a and b by checking if their PSpaces have overlapping symbols. This is a sufficient but not necessary condition for independence and is intended to be used internally. Notes ===== pspace_independent(a, b) implies independent(a, b) independent(a, b) does not imply pspace_independent(a, b) """ a_symbols = set(pspace(b).symbols) b_symbols = set(pspace(a).symbols) if len(set(random_symbols(a)).intersection(random_symbols(b))) != 0: return False if len(a_symbols.intersection(b_symbols)) == 0: return True return None def rv_subs(expr, symbols=None): """ Given a random expression replace all random variables with their symbols. If symbols keyword is given restrict the swap to only the symbols listed. """ if symbols is None: symbols = random_symbols(expr) if not symbols: return expr swapdict = {rv: rv.symbol for rv in symbols} return expr.subs(swapdict) class NamedArgsMixin: _argnames = () # type: tTuple[str, ...] def __getattr__(self, attr): try: return self.args[self._argnames.index(attr)] except ValueError: raise AttributeError("'%s' object has no attribute '%s'" % ( type(self).__name__, attr)) class Distribution(Basic): def sample(self, size=(), library='scipy', seed=None): """ A random realization from the distribution """ module = import_module(library) if library in {'scipy', 'numpy', 'pymc3'} and module is None: raise ValueError("Failed to import %s" % library) if library == 'scipy': # scipy does not require map as it can handle using custom distributions. # However, we will still use a map where we can. # TODO: do this for drv.py and frv.py if necessary. # TODO: add more distributions here if there are more # See links below referring to sections beginning with "A common parametrization..." # I will remove all these comments if everything is ok. from sympy.stats.sampling.sample_scipy import do_sample_scipy samps = do_sample_scipy(self, size, seed) elif library == 'numpy': from sympy.stats.sampling.sample_numpy import do_sample_numpy import numpy if seed is None or isinstance(seed, int): rand_state = numpy.random.default_rng(seed=seed) else: rand_state = seed samps = do_sample_numpy(self, size, rand_state) elif library == 'pymc3': from sympy.stats.sampling.sample_pymc3 import do_sample_pymc3 import pymc3 with pymc3.Model(): if do_sample_pymc3(self): samps = pymc3.sample(size, chains=1, progressbar=False, random_seed=seed)[:]['X'] else: samps = None else: raise NotImplementedError("Sampling from %s is not supported yet." % str(library)) if samps is not None: return samps raise NotImplementedError( "Sampling for %s is not currently implemented from %s" % (self, library)) def _value_check(condition, message): """ Raise a ValueError with message if condition is False, else return True if all conditions were True, else False. Examples ======== >>> from sympy.stats.rv import _value_check >>> from sympy.abc import a, b, c >>> from sympy import And, Dummy >>> _value_check(2 < 3, '') True Here, the condition is not False, but it doesn't evaluate to True so False is returned (but no error is raised). So checking if the return value is True or False will tell you if all conditions were evaluated. >>> _value_check(a < b, '') False In this case the condition is False so an error is raised: >>> r = Dummy(real=True) >>> _value_check(r < r - 1, 'condition is not true') Traceback (most recent call last): ... ValueError: condition is not true If no condition of many conditions must be False, they can be checked by passing them as an iterable: >>> _value_check((a < 0, b < 0, c < 0), '') False The iterable can be a generator, too: >>> _value_check((i < 0 for i in (a, b, c)), '') False The following are equivalent to the above but do not pass an iterable: >>> all(_value_check(i < 0, '') for i in (a, b, c)) False >>> _value_check(And(a < 0, b < 0, c < 0), '') False """ from sympy.core.compatibility import iterable from sympy.core.logic import fuzzy_and if not iterable(condition): condition = [condition] truth = fuzzy_and(condition) if truth == False: raise ValueError(message) return truth == True def _symbol_converter(sym): """ Casts the parameter to Symbol if it is 'str' otherwise no operation is performed on it. Parameters ========== sym The parameter to be converted. Returns ======= Symbol the parameter converted to Symbol. Raises ====== TypeError If the parameter is not an instance of both str and Symbol. Examples ======== >>> from sympy import Symbol >>> from sympy.stats.rv import _symbol_converter >>> s = _symbol_converter('s') >>> isinstance(s, Symbol) True >>> _symbol_converter(1) Traceback (most recent call last): ... TypeError: 1 is neither a Symbol nor a string >>> r = Symbol('r') >>> isinstance(r, Symbol) True """ if isinstance(sym, str): sym = Symbol(sym) if not isinstance(sym, Symbol): raise TypeError("%s is neither a Symbol nor a string"%(sym)) return sym def sample_stochastic_process(process): """ This function is used to sample from stochastic process. Parameters ========== process: StochasticProcess Process used to extract the samples. It must be an instance of StochasticProcess Examples ======== >>> from sympy.stats import sample_stochastic_process, DiscreteMarkovChain >>> from sympy import Matrix >>> T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]]) >>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T) >>> next(sample_stochastic_process(Y)) in Y.state_space # doctest: +SKIP True >>> next(sample_stochastic_process(Y)) # doctest: +SKIP 0 >>> next(sample_stochastic_process(Y)) # doctest: +SKIP 2 Returns ======= sample: iterator object iterator object containing the sample of given process """ from sympy.stats.stochastic_process_types import StochasticProcess if not isinstance(process, StochasticProcess): raise ValueError("Process must be an instance of Stochastic Process") return process.sample()
d6f132bfd5ed86f4aa5e69bd8e00f867a4d6ebf0001d486fbfddae0b609cc12a
from sympy import (Basic, sympify, symbols, Dummy, Lambda, summation, Piecewise, S, cacheit, Sum, exp, I, Ne, Eq, poly, series, factorial, And, floor) from sympy.polys.polyerrors import PolynomialError from sympy.stats.crv import reduce_rational_inequalities_wrap from sympy.stats.rv import (NamedArgsMixin, SinglePSpace, SingleDomain, random_symbols, PSpace, ConditionalDomain, RandomDomain, ProductDomain, Distribution) from sympy.stats.symbolic_probability import Probability from sympy.sets.fancysets import Range, FiniteSet from sympy.sets.sets import Union from sympy.sets.contains import Contains from sympy.utilities import filldedent from sympy.core.sympify import _sympify class DiscreteDistribution(Distribution): def __call__(self, *args): return self.pdf(*args) class SingleDiscreteDistribution(DiscreteDistribution, NamedArgsMixin): """ Discrete distribution of a single variable Serves as superclass for PoissonDistribution etc.... Provides methods for pdf, cdf, and sampling See Also: sympy.stats.crv_types.* """ set = S.Integers def __new__(cls, *args): args = list(map(sympify, args)) return Basic.__new__(cls, *args) @staticmethod def check(*args): pass @cacheit def compute_cdf(self, **kwargs): """ Compute the CDF from the PDF Returns a Lambda """ x = symbols('x', integer=True, cls=Dummy) z = symbols('z', real=True, cls=Dummy) left_bound = self.set.inf # CDF is integral of PDF from left bound to z pdf = self.pdf(x) cdf = summation(pdf, (x, left_bound, floor(z)), **kwargs) # CDF Ensure that CDF left of left_bound is zero cdf = Piecewise((cdf, z >= left_bound), (0, True)) return Lambda(z, cdf) def _cdf(self, x): return None def cdf(self, x, **kwargs): """ Cumulative density function """ if not kwargs: cdf = self._cdf(x) if cdf is not None: return cdf return self.compute_cdf(**kwargs)(x) @cacheit def compute_characteristic_function(self, **kwargs): """ Compute the characteristic function from the PDF Returns a Lambda """ x, t = symbols('x, t', real=True, cls=Dummy) pdf = self.pdf(x) cf = summation(exp(I*t*x)*pdf, (x, self.set.inf, self.set.sup)) return Lambda(t, cf) def _characteristic_function(self, t): return None def characteristic_function(self, t, **kwargs): """ Characteristic function """ if not kwargs: cf = self._characteristic_function(t) if cf is not None: return cf return self.compute_characteristic_function(**kwargs)(t) @cacheit def compute_moment_generating_function(self, **kwargs): t = Dummy('t', real=True) x = Dummy('x', integer=True) pdf = self.pdf(x) mgf = summation(exp(t*x)*pdf, (x, self.set.inf, self.set.sup)) return Lambda(t, mgf) def _moment_generating_function(self, t): return None def moment_generating_function(self, t, **kwargs): if not kwargs: mgf = self._moment_generating_function(t) if mgf is not None: return mgf return self.compute_moment_generating_function(**kwargs)(t) @cacheit def compute_quantile(self, **kwargs): """ Compute the Quantile from the PDF Returns a Lambda """ x = Dummy('x', integer=True) p = Dummy('p', real=True) left_bound = self.set.inf pdf = self.pdf(x) cdf = summation(pdf, (x, left_bound, x), **kwargs) set = ((x, p <= cdf), ) return Lambda(p, Piecewise(*set)) def _quantile(self, x): return None def quantile(self, x, **kwargs): """ Cumulative density function """ if not kwargs: quantile = self._quantile(x) if quantile is not None: return quantile return self.compute_quantile(**kwargs)(x) def expectation(self, expr, var, evaluate=True, **kwargs): """ Expectation of expression over distribution """ # TODO: support discrete sets with non integer stepsizes if evaluate: try: p = poly(expr, var) t = Dummy('t', real=True) mgf = self.moment_generating_function(t) deg = p.degree() taylor = poly(series(mgf, t, 0, deg + 1).removeO(), t) result = 0 for k in range(deg+1): result += p.coeff_monomial(var ** k) * taylor.coeff_monomial(t ** k) * factorial(k) return result except PolynomialError: return summation(expr * self.pdf(var), (var, self.set.inf, self.set.sup), **kwargs) else: return Sum(expr * self.pdf(var), (var, self.set.inf, self.set.sup), **kwargs) def __call__(self, *args): return self.pdf(*args) class DiscreteDomain(RandomDomain): """ A domain with discrete support with step size one. Represented using symbols and Range. """ is_Discrete = True class SingleDiscreteDomain(DiscreteDomain, SingleDomain): def as_boolean(self): return Contains(self.symbol, self.set) class ConditionalDiscreteDomain(DiscreteDomain, ConditionalDomain): """ Domain with discrete support of step size one, that is restricted by some condition. """ @property def set(self): rv = self.symbols if len(self.symbols) > 1: raise NotImplementedError(filldedent(''' Multivariate conditional domains are not yet implemented.''')) rv = list(rv)[0] return reduce_rational_inequalities_wrap(self.condition, rv).intersect(self.fulldomain.set) class DiscretePSpace(PSpace): is_real = True is_Discrete = True @property def pdf(self): return self.density(*self.symbols) def where(self, condition): rvs = random_symbols(condition) assert all(r.symbol in self.symbols for r in rvs) if len(rvs) > 1: raise NotImplementedError(filldedent('''Multivariate discrete random variables are not yet supported.''')) conditional_domain = reduce_rational_inequalities_wrap(condition, rvs[0]) conditional_domain = conditional_domain.intersect(self.domain.set) return SingleDiscreteDomain(rvs[0].symbol, conditional_domain) def probability(self, condition): complement = isinstance(condition, Ne) if complement: condition = Eq(condition.args[0], condition.args[1]) try: _domain = self.where(condition).set if condition == False or _domain is S.EmptySet: return S.Zero if condition == True or _domain == self.domain.set: return S.One prob = self.eval_prob(_domain) except NotImplementedError: from sympy.stats.rv import density expr = condition.lhs - condition.rhs dens = density(expr) if not isinstance(dens, DiscreteDistribution): from sympy.stats.drv_types import DiscreteDistributionHandmade dens = DiscreteDistributionHandmade(dens) z = Dummy('z', real=True) space = SingleDiscretePSpace(z, dens) prob = space.probability(condition.__class__(space.value, 0)) if prob is None: prob = Probability(condition) return prob if not complement else S.One - prob def eval_prob(self, _domain): sym = list(self.symbols)[0] if isinstance(_domain, Range): n = symbols('n', integer=True) inf, sup, step = (r for r in _domain.args) summand = ((self.pdf).replace( sym, n*step)) rv = summation(summand, (n, inf/step, (sup)/step - 1)).doit() return rv elif isinstance(_domain, FiniteSet): pdf = Lambda(sym, self.pdf) rv = sum(pdf(x) for x in _domain) return rv elif isinstance(_domain, Union): rv = sum(self.eval_prob(x) for x in _domain.args) return rv def conditional_space(self, condition): # XXX: Converting from set to tuple. The order matters to Lambda # though so we should be starting with a set... density = Lambda(tuple(self.symbols), self.pdf/self.probability(condition)) condition = condition.xreplace({rv: rv.symbol for rv in self.values}) domain = ConditionalDiscreteDomain(self.domain, condition) return DiscretePSpace(domain, density) class ProductDiscreteDomain(ProductDomain, DiscreteDomain): def as_boolean(self): return And(*[domain.as_boolean for domain in self.domains]) class SingleDiscretePSpace(DiscretePSpace, SinglePSpace): """ Discrete probability space over a single univariate variable """ is_real = True @property def set(self): return self.distribution.set @property def domain(self): return SingleDiscreteDomain(self.symbol, self.set) def sample(self, size=(), library='scipy', seed=None): """ Internal sample method Returns dictionary mapping RandomSymbol to realization value. """ return {self.value: self.distribution.sample(size, library=library, seed=seed)} def compute_expectation(self, expr, rvs=None, evaluate=True, **kwargs): rvs = rvs or (self.value,) if self.value not in rvs: return expr expr = _sympify(expr) expr = expr.xreplace({rv: rv.symbol for rv in rvs}) x = self.value.symbol try: return self.distribution.expectation(expr, x, evaluate=evaluate, **kwargs) except NotImplementedError: return Sum(expr * self.pdf, (x, self.set.inf, self.set.sup), **kwargs) def compute_cdf(self, expr, **kwargs): if expr == self.value: x = Dummy("x", real=True) return Lambda(x, self.distribution.cdf(x, **kwargs)) else: raise NotImplementedError() def compute_density(self, expr, **kwargs): if expr == self.value: return self.distribution raise NotImplementedError() def compute_characteristic_function(self, expr, **kwargs): if expr == self.value: t = Dummy("t", real=True) return Lambda(t, self.distribution.characteristic_function(t, **kwargs)) else: raise NotImplementedError() def compute_moment_generating_function(self, expr, **kwargs): if expr == self.value: t = Dummy("t", real=True) return Lambda(t, self.distribution.moment_generating_function(t, **kwargs)) else: raise NotImplementedError() def compute_quantile(self, expr, **kwargs): if expr == self.value: p = Dummy("p", real=True) return Lambda(p, self.distribution.quantile(p, **kwargs)) else: raise NotImplementedError()
499b6c67d9ed542abddbc28769e0f71dbdbf59dbab5a3b377c3f5414be4b16d9
""" Continuous Random Variables Module See Also ======== sympy.stats.crv_types sympy.stats.rv sympy.stats.frv """ from sympy import (Interval, Intersection, symbols, sympify, Dummy, nan, Integral, And, Or, Piecewise, cacheit, integrate, oo, Lambda, Basic, S, exp, I, FiniteSet, Ne, Eq, Union, poly, series, factorial) from sympy.core.function import PoleError from sympy.functions.special.delta_functions import DiracDelta from sympy.polys.polyerrors import PolynomialError from sympy.solvers.solveset import solveset from sympy.solvers.inequalities import reduce_rational_inequalities from sympy.core.sympify import _sympify from sympy.stats.rv import (RandomDomain, SingleDomain, ConditionalDomain, is_random, ProductDomain, PSpace, SinglePSpace, random_symbols, NamedArgsMixin, Distribution) class ContinuousDomain(RandomDomain): """ A domain with continuous support Represented using symbols and Intervals. """ is_Continuous = True def as_boolean(self): raise NotImplementedError("Not Implemented for generic Domains") class SingleContinuousDomain(ContinuousDomain, SingleDomain): """ A univariate domain with continuous support Represented using a single symbol and interval. """ def compute_expectation(self, expr, variables=None, **kwargs): if variables is None: variables = self.symbols if not variables: return expr if frozenset(variables) != frozenset(self.symbols): raise ValueError("Values should be equal") # assumes only intervals return Integral(expr, (self.symbol, self.set), **kwargs) def as_boolean(self): return self.set.as_relational(self.symbol) class ProductContinuousDomain(ProductDomain, ContinuousDomain): """ A collection of independent domains with continuous support """ def compute_expectation(self, expr, variables=None, **kwargs): if variables is None: variables = self.symbols for domain in self.domains: domain_vars = frozenset(variables) & frozenset(domain.symbols) if domain_vars: expr = domain.compute_expectation(expr, domain_vars, **kwargs) return expr def as_boolean(self): return And(*[domain.as_boolean() for domain in self.domains]) class ConditionalContinuousDomain(ContinuousDomain, ConditionalDomain): """ A domain with continuous support that has been further restricted by a condition such as x > 3 """ def compute_expectation(self, expr, variables=None, **kwargs): if variables is None: variables = self.symbols if not variables: return expr # Extract the full integral fullintgrl = self.fulldomain.compute_expectation(expr, variables) # separate into integrand and limits integrand, limits = fullintgrl.function, list(fullintgrl.limits) conditions = [self.condition] while conditions: cond = conditions.pop() if cond.is_Boolean: if isinstance(cond, And): conditions.extend(cond.args) elif isinstance(cond, Or): raise NotImplementedError("Or not implemented here") elif cond.is_Relational: if cond.is_Equality: # Add the appropriate Delta to the integrand integrand *= DiracDelta(cond.lhs - cond.rhs) else: symbols = cond.free_symbols & set(self.symbols) if len(symbols) != 1: # Can't handle x > y raise NotImplementedError( "Multivariate Inequalities not yet implemented") # Can handle x > 0 symbol = symbols.pop() # Find the limit with x, such as (x, -oo, oo) for i, limit in enumerate(limits): if limit[0] == symbol: # Make condition into an Interval like [0, oo] cintvl = reduce_rational_inequalities_wrap( cond, symbol) # Make limit into an Interval like [-oo, oo] lintvl = Interval(limit[1], limit[2]) # Intersect them to get [0, oo] intvl = cintvl.intersect(lintvl) # Put back into limits list limits[i] = (symbol, intvl.left, intvl.right) else: raise TypeError( "Condition %s is not a relational or Boolean" % cond) return Integral(integrand, *limits, **kwargs) def as_boolean(self): return And(self.fulldomain.as_boolean(), self.condition) @property def set(self): if len(self.symbols) == 1: return (self.fulldomain.set & reduce_rational_inequalities_wrap( self.condition, tuple(self.symbols)[0])) else: raise NotImplementedError( "Set of Conditional Domain not Implemented") class ContinuousDistribution(Distribution): def __call__(self, *args): return self.pdf(*args) class SingleContinuousDistribution(ContinuousDistribution, NamedArgsMixin): """ Continuous distribution of a single variable Serves as superclass for Normal/Exponential/UniformDistribution etc.... Represented by parameters for each of the specific classes. E.g NormalDistribution is represented by a mean and standard deviation. Provides methods for pdf, cdf, and sampling See Also ======== sympy.stats.crv_types.* """ set = Interval(-oo, oo) def __new__(cls, *args): args = list(map(sympify, args)) return Basic.__new__(cls, *args) @staticmethod def check(*args): pass @cacheit def compute_cdf(self, **kwargs): """ Compute the CDF from the PDF Returns a Lambda """ x, z = symbols('x, z', real=True, cls=Dummy) left_bound = self.set.start # CDF is integral of PDF from left bound to z pdf = self.pdf(x) cdf = integrate(pdf.doit(), (x, left_bound, z), **kwargs) # CDF Ensure that CDF left of left_bound is zero cdf = Piecewise((cdf, z >= left_bound), (0, True)) return Lambda(z, cdf) def _cdf(self, x): return None def cdf(self, x, **kwargs): """ Cumulative density function """ if len(kwargs) == 0: cdf = self._cdf(x) if cdf is not None: return cdf return self.compute_cdf(**kwargs)(x) @cacheit def compute_characteristic_function(self, **kwargs): """ Compute the characteristic function from the PDF Returns a Lambda """ x, t = symbols('x, t', real=True, cls=Dummy) pdf = self.pdf(x) cf = integrate(exp(I*t*x)*pdf, (x, self.set)) return Lambda(t, cf) def _characteristic_function(self, t): return None def characteristic_function(self, t, **kwargs): """ Characteristic function """ if len(kwargs) == 0: cf = self._characteristic_function(t) if cf is not None: return cf return self.compute_characteristic_function(**kwargs)(t) @cacheit def compute_moment_generating_function(self, **kwargs): """ Compute the moment generating function from the PDF Returns a Lambda """ x, t = symbols('x, t', real=True, cls=Dummy) pdf = self.pdf(x) mgf = integrate(exp(t * x) * pdf, (x, self.set)) return Lambda(t, mgf) def _moment_generating_function(self, t): return None def moment_generating_function(self, t, **kwargs): """ Moment generating function """ if not kwargs: mgf = self._moment_generating_function(t) if mgf is not None: return mgf return self.compute_moment_generating_function(**kwargs)(t) def expectation(self, expr, var, evaluate=True, **kwargs): """ Expectation of expression over distribution """ if evaluate: try: p = poly(expr, var) if p.is_zero: return S.Zero t = Dummy('t', real=True) mgf = self._moment_generating_function(t) if mgf is None: return integrate(expr * self.pdf(var), (var, self.set), **kwargs) deg = p.degree() taylor = poly(series(mgf, t, 0, deg + 1).removeO(), t) result = 0 for k in range(deg+1): result += p.coeff_monomial(var ** k) * taylor.coeff_monomial(t ** k) * factorial(k) return result except PolynomialError: return integrate(expr * self.pdf(var), (var, self.set), **kwargs) else: return Integral(expr * self.pdf(var), (var, self.set), **kwargs) @cacheit def compute_quantile(self, **kwargs): """ Compute the Quantile from the PDF Returns a Lambda """ x, p = symbols('x, p', real=True, cls=Dummy) left_bound = self.set.start pdf = self.pdf(x) cdf = integrate(pdf, (x, left_bound, x), **kwargs) quantile = solveset(cdf - p, x, self.set) return Lambda(p, Piecewise((quantile, (p >= 0) & (p <= 1) ), (nan, True))) def _quantile(self, x): return None def quantile(self, x, **kwargs): """ Cumulative density function """ if len(kwargs) == 0: quantile = self._quantile(x) if quantile is not None: return quantile return self.compute_quantile(**kwargs)(x) class ContinuousPSpace(PSpace): """ Continuous Probability Space Represents the likelihood of an event space defined over a continuum. Represented with a ContinuousDomain and a PDF (Lambda-Like) """ is_Continuous = True is_real = True @property def pdf(self): return self.density(*self.domain.symbols) def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs): if rvs is None: rvs = self.values else: rvs = frozenset(rvs) expr = expr.xreplace({rv: rv.symbol for rv in rvs}) domain_symbols = frozenset(rv.symbol for rv in rvs) return self.domain.compute_expectation(self.pdf * expr, domain_symbols, **kwargs) def compute_density(self, expr, **kwargs): # Common case Density(X) where X in self.values if expr in self.values: # Marginalize all other random symbols out of the density randomsymbols = tuple(set(self.values) - frozenset([expr])) symbols = tuple(rs.symbol for rs in randomsymbols) pdf = self.domain.compute_expectation(self.pdf, symbols, **kwargs) return Lambda(expr.symbol, pdf) z = Dummy('z', real=True) return Lambda(z, self.compute_expectation(DiracDelta(expr - z), **kwargs)) @cacheit def compute_cdf(self, expr, **kwargs): if not self.domain.set.is_Interval: raise ValueError( "CDF not well defined on multivariate expressions") d = self.compute_density(expr, **kwargs) x, z = symbols('x, z', real=True, cls=Dummy) left_bound = self.domain.set.start # CDF is integral of PDF from left bound to z cdf = integrate(d(x), (x, left_bound, z), **kwargs) # CDF Ensure that CDF left of left_bound is zero cdf = Piecewise((cdf, z >= left_bound), (0, True)) return Lambda(z, cdf) @cacheit def compute_characteristic_function(self, expr, **kwargs): if not self.domain.set.is_Interval: raise NotImplementedError("Characteristic function of multivariate expressions not implemented") d = self.compute_density(expr, **kwargs) x, t = symbols('x, t', real=True, cls=Dummy) cf = integrate(exp(I*t*x)*d(x), (x, -oo, oo), **kwargs) return Lambda(t, cf) @cacheit def compute_moment_generating_function(self, expr, **kwargs): if not self.domain.set.is_Interval: raise NotImplementedError("Moment generating function of multivariate expressions not implemented") d = self.compute_density(expr, **kwargs) x, t = symbols('x, t', real=True, cls=Dummy) mgf = integrate(exp(t * x) * d(x), (x, -oo, oo), **kwargs) return Lambda(t, mgf) @cacheit def compute_quantile(self, expr, **kwargs): if not self.domain.set.is_Interval: raise ValueError( "Quantile not well defined on multivariate expressions") d = self.compute_cdf(expr, **kwargs) x = Dummy('x', real=True) p = Dummy('p', positive=True) quantile = solveset(d(x) - p, x, self.set) return Lambda(p, quantile) def probability(self, condition, **kwargs): z = Dummy('z', real=True) cond_inv = False if isinstance(condition, Ne): condition = Eq(condition.args[0], condition.args[1]) cond_inv = True # Univariate case can be handled by where try: domain = self.where(condition) rv = [rv for rv in self.values if rv.symbol == domain.symbol][0] # Integrate out all other random variables pdf = self.compute_density(rv, **kwargs) # return S.Zero if `domain` is empty set if domain.set is S.EmptySet or isinstance(domain.set, FiniteSet): return S.Zero if not cond_inv else S.One if isinstance(domain.set, Union): return sum( Integral(pdf(z), (z, subset), **kwargs) for subset in domain.set.args if isinstance(subset, Interval)) # Integrate out the last variable over the special domain return Integral(pdf(z), (z, domain.set), **kwargs) # Other cases can be turned into univariate case # by computing a density handled by density computation except NotImplementedError: from sympy.stats.rv import density expr = condition.lhs - condition.rhs if not is_random(expr): dens = self.density comp = condition.rhs else: dens = density(expr, **kwargs) comp = 0 if not isinstance(dens, ContinuousDistribution): from sympy.stats.crv_types import ContinuousDistributionHandmade dens = ContinuousDistributionHandmade(dens, set=self.domain.set) # Turn problem into univariate case space = SingleContinuousPSpace(z, dens) result = space.probability(condition.__class__(space.value, comp)) return result if not cond_inv else S.One - result def where(self, condition): rvs = frozenset(random_symbols(condition)) if not (len(rvs) == 1 and rvs.issubset(self.values)): raise NotImplementedError( "Multiple continuous random variables not supported") rv = tuple(rvs)[0] interval = reduce_rational_inequalities_wrap(condition, rv) interval = interval.intersect(self.domain.set) return SingleContinuousDomain(rv.symbol, interval) def conditional_space(self, condition, normalize=True, **kwargs): condition = condition.xreplace({rv: rv.symbol for rv in self.values}) domain = ConditionalContinuousDomain(self.domain, condition) if normalize: # create a clone of the variable to # make sure that variables in nested integrals are different # from the variables outside the integral # this makes sure that they are evaluated separately # and in the correct order replacement = {rv: Dummy(str(rv)) for rv in self.symbols} norm = domain.compute_expectation(self.pdf, **kwargs) pdf = self.pdf / norm.xreplace(replacement) # XXX: Converting set to tuple. The order matters to Lambda though # so we shouldn't be starting with a set here... density = Lambda(tuple(domain.symbols), pdf) return ContinuousPSpace(domain, density) class SingleContinuousPSpace(ContinuousPSpace, SinglePSpace): """ A continuous probability space over a single univariate variable These consist of a Symbol and a SingleContinuousDistribution This class is normally accessed through the various random variable functions, Normal, Exponential, Uniform, etc.... """ @property def set(self): return self.distribution.set @property def domain(self): return SingleContinuousDomain(sympify(self.symbol), self.set) def sample(self, size=(), library='scipy', seed=None): """ Internal sample method Returns dictionary mapping RandomSymbol to realization value. """ return {self.value: self.distribution.sample(size, library=library, seed=seed)} def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs): rvs = rvs or (self.value,) if self.value not in rvs: return expr expr = _sympify(expr) expr = expr.xreplace({rv: rv.symbol for rv in rvs}) x = self.value.symbol try: return self.distribution.expectation(expr, x, evaluate=evaluate, **kwargs) except PoleError: return Integral(expr * self.pdf, (x, self.set), **kwargs) def compute_cdf(self, expr, **kwargs): if expr == self.value: z = Dummy("z", real=True) return Lambda(z, self.distribution.cdf(z, **kwargs)) else: return ContinuousPSpace.compute_cdf(self, expr, **kwargs) def compute_characteristic_function(self, expr, **kwargs): if expr == self.value: t = Dummy("t", real=True) return Lambda(t, self.distribution.characteristic_function(t, **kwargs)) else: return ContinuousPSpace.compute_characteristic_function(self, expr, **kwargs) def compute_moment_generating_function(self, expr, **kwargs): if expr == self.value: t = Dummy("t", real=True) return Lambda(t, self.distribution.moment_generating_function(t, **kwargs)) else: return ContinuousPSpace.compute_moment_generating_function(self, expr, **kwargs) def compute_density(self, expr, **kwargs): # https://en.wikipedia.org/wiki/Random_variable#Functions_of_random_variables if expr == self.value: return self.density y = Dummy('y', real=True) gs = solveset(expr - y, self.value, S.Reals) if isinstance(gs, Intersection) and S.Reals in gs.args: gs = list(gs.args[1]) if not gs: raise ValueError("Can not solve %s for %s"%(expr, self.value)) fx = self.compute_density(self.value) fy = sum(fx(g) * abs(g.diff(y)) for g in gs) return Lambda(y, fy) def compute_quantile(self, expr, **kwargs): if expr == self.value: p = Dummy("p", real=True) return Lambda(p, self.distribution.quantile(p, **kwargs)) else: return ContinuousPSpace.compute_quantile(self, expr, **kwargs) def _reduce_inequalities(conditions, var, **kwargs): try: return reduce_rational_inequalities(conditions, var, **kwargs) except PolynomialError: raise ValueError("Reduction of condition failed %s\n" % conditions[0]) def reduce_rational_inequalities_wrap(condition, var): if condition.is_Relational: return _reduce_inequalities([[condition]], var, relational=False) if isinstance(condition, Or): return Union(*[_reduce_inequalities([[arg]], var, relational=False) for arg in condition.args]) if isinstance(condition, And): intervals = [_reduce_inequalities([[arg]], var, relational=False) for arg in condition.args] I = intervals[0] for i in intervals: I = I.intersect(i) return I
09b92427a32e4c5cc5b3697c188a92f2f7bcf29e02308fe33d2fa5ec0d831fed
""" Finite Discrete Random Variables Module See Also ======== sympy.stats.frv_types sympy.stats.rv sympy.stats.crv """ from itertools import product from sympy import (Basic, Symbol, cacheit, sympify, Mul, And, Or, Piecewise, Eq, Lambda, exp, I, Dummy, nan, Sum, Intersection, S) from sympy.core.containers import Dict from sympy.core.logic import Logic from sympy.core.relational import Relational from sympy.core.sympify import _sympify from sympy.sets.sets import FiniteSet from sympy.stats.rv import (RandomDomain, ProductDomain, ConditionalDomain, PSpace, IndependentProductPSpace, SinglePSpace, random_symbols, sumsets, rv_subs, NamedArgsMixin, Density, Distribution) class FiniteDensity(dict): """ A domain with Finite Density. """ def __call__(self, item): """ Make instance of a class callable. If item belongs to current instance of a class, return it. Otherwise, return 0. """ item = sympify(item) if item in self: return self[item] else: return 0 @property def dict(self): """ Return item as dictionary. """ return dict(self) class FiniteDomain(RandomDomain): """ A domain with discrete finite support Represented using a FiniteSet. """ is_Finite = True @property def symbols(self): return FiniteSet(sym for sym, val in self.elements) @property def elements(self): return self.args[0] @property def dict(self): return FiniteSet(*[Dict(dict(el)) for el in self.elements]) def __contains__(self, other): return other in self.elements def __iter__(self): return self.elements.__iter__() def as_boolean(self): return Or(*[And(*[Eq(sym, val) for sym, val in item]) for item in self]) class SingleFiniteDomain(FiniteDomain): """ A FiniteDomain over a single symbol/set Example: The possibilities of a *single* die roll. """ def __new__(cls, symbol, set): if not isinstance(set, FiniteSet) and \ not isinstance(set, Intersection): set = FiniteSet(*set) return Basic.__new__(cls, symbol, set) @property def symbol(self): return self.args[0] @property def symbols(self): return FiniteSet(self.symbol) @property def set(self): return self.args[1] @property def elements(self): return FiniteSet(*[frozenset(((self.symbol, elem), )) for elem in self.set]) def __iter__(self): return (frozenset(((self.symbol, elem),)) for elem in self.set) def __contains__(self, other): sym, val = tuple(other)[0] return sym == self.symbol and val in self.set class ProductFiniteDomain(ProductDomain, FiniteDomain): """ A Finite domain consisting of several other FiniteDomains Example: The possibilities of the rolls of three independent dice """ def __iter__(self): proditer = product(*self.domains) return (sumsets(items) for items in proditer) @property def elements(self): return FiniteSet(*self) class ConditionalFiniteDomain(ConditionalDomain, ProductFiniteDomain): """ A FiniteDomain that has been restricted by a condition Example: The possibilities of a die roll under the condition that the roll is even. """ def __new__(cls, domain, condition): """ Create a new instance of ConditionalFiniteDomain class """ if condition is True: return domain cond = rv_subs(condition) return Basic.__new__(cls, domain, cond) def _test(self, elem): """ Test the value. If value is boolean, return it. If value is equality relational (two objects are equal), return it with left-hand side being equal to right-hand side. Otherwise, raise ValueError exception. """ val = self.condition.xreplace(dict(elem)) if val in [True, False]: return val elif val.is_Equality: return val.lhs == val.rhs raise ValueError("Undecidable if %s" % str(val)) def __contains__(self, other): return other in self.fulldomain and self._test(other) def __iter__(self): return (elem for elem in self.fulldomain if self._test(elem)) @property def set(self): if isinstance(self.fulldomain, SingleFiniteDomain): return FiniteSet(*[elem for elem in self.fulldomain.set if frozenset(((self.fulldomain.symbol, elem),)) in self]) else: raise NotImplementedError( "Not implemented on multi-dimensional conditional domain") def as_boolean(self): return FiniteDomain.as_boolean(self) class SingleFiniteDistribution(Distribution, NamedArgsMixin): def __new__(cls, *args): args = list(map(sympify, args)) return Basic.__new__(cls, *args) @staticmethod def check(*args): pass @property # type: ignore @cacheit def dict(self): if self.is_symbolic: return Density(self) return {k: self.pmf(k) for k in self.set} def pmf(self, *args): # to be overridden by specific distribution raise NotImplementedError() @property def set(self): # to be overridden by specific distribution raise NotImplementedError() values = property(lambda self: self.dict.values) items = property(lambda self: self.dict.items) is_symbolic = property(lambda self: False) __iter__ = property(lambda self: self.dict.__iter__) __getitem__ = property(lambda self: self.dict.__getitem__) def __call__(self, *args): return self.pmf(*args) def __contains__(self, other): return other in self.set #============================================= #========= Probability Space =============== #============================================= class FinitePSpace(PSpace): """ A Finite Probability Space Represents the probabilities of a finite number of events. """ is_Finite = True def __new__(cls, domain, density): density = {sympify(key): sympify(val) for key, val in density.items()} public_density = Dict(density) obj = PSpace.__new__(cls, domain, public_density) obj._density = density return obj def prob_of(self, elem): elem = sympify(elem) density = self._density if isinstance(list(density.keys())[0], FiniteSet): return density.get(elem, S.Zero) return density.get(tuple(elem)[0][1], S.Zero) def where(self, condition): assert all(r.symbol in self.symbols for r in random_symbols(condition)) return ConditionalFiniteDomain(self.domain, condition) def compute_density(self, expr): expr = rv_subs(expr, self.values) d = FiniteDensity() for elem in self.domain: val = expr.xreplace(dict(elem)) prob = self.prob_of(elem) d[val] = d.get(val, S.Zero) + prob return d @cacheit def compute_cdf(self, expr): d = self.compute_density(expr) cum_prob = S.Zero cdf = [] for key in sorted(d): prob = d[key] cum_prob += prob cdf.append((key, cum_prob)) return dict(cdf) @cacheit def sorted_cdf(self, expr, python_float=False): cdf = self.compute_cdf(expr) items = list(cdf.items()) sorted_items = sorted(items, key=lambda val_cumprob: val_cumprob[1]) if python_float: sorted_items = [(v, float(cum_prob)) for v, cum_prob in sorted_items] return sorted_items @cacheit def compute_characteristic_function(self, expr): d = self.compute_density(expr) t = Dummy('t', real=True) return Lambda(t, sum(exp(I*k*t)*v for k,v in d.items())) @cacheit def compute_moment_generating_function(self, expr): d = self.compute_density(expr) t = Dummy('t', real=True) return Lambda(t, sum(exp(k*t)*v for k,v in d.items())) def compute_expectation(self, expr, rvs=None, **kwargs): rvs = rvs or self.values expr = rv_subs(expr, rvs) probs = [self.prob_of(elem) for elem in self.domain] if isinstance(expr, (Logic, Relational)): parse_domain = [tuple(elem)[0][1] for elem in self.domain] bools = [expr.xreplace(dict(elem)) for elem in self.domain] else: parse_domain = [expr.xreplace(dict(elem)) for elem in self.domain] bools = [True for elem in self.domain] return sum([Piecewise((prob * elem, blv), (S.Zero, True)) for prob, elem, blv in zip(probs, parse_domain, bools)]) def compute_quantile(self, expr): cdf = self.compute_cdf(expr) p = Dummy('p', real=True) set = ((nan, (p < 0) | (p > 1)),) for key, value in cdf.items(): set = set + ((key, p <= value), ) return Lambda(p, Piecewise(*set)) def probability(self, condition): cond_symbols = frozenset(rs.symbol for rs in random_symbols(condition)) cond = rv_subs(condition) if not cond_symbols.issubset(self.symbols): raise ValueError("Cannot compare foreign random symbols, %s" %(str(cond_symbols - self.symbols))) if isinstance(condition, Relational) and \ (not cond.free_symbols.issubset(self.domain.free_symbols)): rv = condition.lhs if isinstance(condition.rhs, Symbol) else condition.rhs return sum(Piecewise( (self.prob_of(elem), condition.subs(rv, list(elem)[0][1])), (S.Zero, True)) for elem in self.domain) return sympify(sum(self.prob_of(elem) for elem in self.where(condition))) def conditional_space(self, condition): domain = self.where(condition) prob = self.probability(condition) density = {key: val / prob for key, val in self._density.items() if domain._test(key)} return FinitePSpace(domain, density) def sample(self, size=(), library='scipy', seed=None): """ Internal sample method Returns dictionary mapping RandomSymbol to realization value. """ return {self.value: self.distribution.sample(size, library, seed)} class SingleFinitePSpace(SinglePSpace, FinitePSpace): """ A single finite probability space Represents the probabilities of a set of random events that can be attributed to a single variable/symbol. This class is implemented by many of the standard FiniteRV types such as Die, Bernoulli, Coin, etc.... """ @property def domain(self): return SingleFiniteDomain(self.symbol, self.distribution.set) @property def _is_symbolic(self): """ Helper property to check if the distribution of the random variable is having symbolic dimension. """ return self.distribution.is_symbolic @property def distribution(self): return self.args[1] def pmf(self, expr): return self.distribution.pmf(expr) @property # type: ignore @cacheit def _density(self): return {FiniteSet((self.symbol, val)): prob for val, prob in self.distribution.dict.items()} @cacheit def compute_characteristic_function(self, expr): if self._is_symbolic: d = self.compute_density(expr) t = Dummy('t', real=True) ki = Dummy('ki') return Lambda(t, Sum(d(ki)*exp(I*ki*t), (ki, self.args[1].low, self.args[1].high))) expr = rv_subs(expr, self.values) return FinitePSpace(self.domain, self.distribution).compute_characteristic_function(expr) @cacheit def compute_moment_generating_function(self, expr): if self._is_symbolic: d = self.compute_density(expr) t = Dummy('t', real=True) ki = Dummy('ki') return Lambda(t, Sum(d(ki)*exp(ki*t), (ki, self.args[1].low, self.args[1].high))) expr = rv_subs(expr, self.values) return FinitePSpace(self.domain, self.distribution).compute_moment_generating_function(expr) def compute_quantile(self, expr): if self._is_symbolic: raise NotImplementedError("Computing quantile for random variables " "with symbolic dimension because the bounds of searching the required " "value is undetermined.") expr = rv_subs(expr, self.values) return FinitePSpace(self.domain, self.distribution).compute_quantile(expr) def compute_density(self, expr): if self._is_symbolic: rv = list(random_symbols(expr))[0] k = Dummy('k', integer=True) cond = True if not isinstance(expr, (Relational, Logic)) \ else expr.subs(rv, k) return Lambda(k, Piecewise((self.pmf(k), And(k >= self.args[1].low, k <= self.args[1].high, cond)), (S.Zero, True))) expr = rv_subs(expr, self.values) return FinitePSpace(self.domain, self.distribution).compute_density(expr) def compute_cdf(self, expr): if self._is_symbolic: d = self.compute_density(expr) k = Dummy('k') ki = Dummy('ki') return Lambda(k, Sum(d(ki), (ki, self.args[1].low, k))) expr = rv_subs(expr, self.values) return FinitePSpace(self.domain, self.distribution).compute_cdf(expr) def compute_expectation(self, expr, rvs=None, **kwargs): if self._is_symbolic: rv = random_symbols(expr)[0] k = Dummy('k', integer=True) expr = expr.subs(rv, k) cond = True if not isinstance(expr, (Relational, Logic)) \ else expr func = self.pmf(k) * k if cond != True else self.pmf(k) * expr return Sum(Piecewise((func, cond), (S.Zero, True)), (k, self.distribution.low, self.distribution.high)).doit() expr = _sympify(expr) expr = rv_subs(expr, rvs) return FinitePSpace(self.domain, self.distribution).compute_expectation(expr, rvs, **kwargs) def probability(self, condition): if self._is_symbolic: #TODO: Implement the mechanism for handling queries for symbolic sized distributions. raise NotImplementedError("Currently, probability queries are not " "supported for random variables with symbolic sized distributions.") condition = rv_subs(condition) return FinitePSpace(self.domain, self.distribution).probability(condition) def conditional_space(self, condition): """ This method is used for transferring the computation to probability method because conditional space of random variables with symbolic dimensions is currently not possible. """ if self._is_symbolic: self domain = self.where(condition) prob = self.probability(condition) density = {key: val / prob for key, val in self._density.items() if domain._test(key)} return FinitePSpace(domain, density) class ProductFinitePSpace(IndependentProductPSpace, FinitePSpace): """ A collection of several independent finite probability spaces """ @property def domain(self): return ProductFiniteDomain(*[space.domain for space in self.spaces]) @property # type: ignore @cacheit def _density(self): proditer = product(*[iter(space._density.items()) for space in self.spaces]) d = {} for items in proditer: elems, probs = list(zip(*items)) elem = sumsets(elems) prob = Mul(*probs) d[elem] = d.get(elem, S.Zero) + prob return Dict(d) @property # type: ignore @cacheit def density(self): return Dict(self._density) def probability(self, condition): return FinitePSpace.probability(self, condition) def compute_density(self, expr): return FinitePSpace.compute_density(self, expr)
7b50529062c0e2064cce79a317e7d9be8730aa25180c3f129ef0f655ec124baa
""" Generating and counting primes. """ import random from bisect import bisect from itertools import count # Using arrays for sieving instead of lists greatly reduces # memory consumption from array import array as _array from sympy import Function, S from sympy.core.compatibility import as_int from .primetest import isprime def _azeros(n): return _array('l', [0]*n) def _aset(*v): return _array('l', v) def _arange(a, b): return _array('l', range(a, b)) class Sieve: """An infinite list of prime numbers, implemented as a dynamically growing sieve of Eratosthenes. When a lookup is requested involving an odd number that has not been sieved, the sieve is automatically extended up to that number. Examples ======== >>> from sympy import sieve >>> sieve._reset() # this line for doctest only >>> 25 in sieve False >>> sieve._list array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23]) """ # data shared (and updated) by all Sieve instances def __init__(self): self._n = 6 self._list = _aset(2, 3, 5, 7, 11, 13) # primes self._tlist = _aset(0, 1, 1, 2, 2, 4) # totient self._mlist = _aset(0, 1, -1, -1, 0, -1) # mobius assert all(len(i) == self._n for i in (self._list, self._tlist, self._mlist)) def __repr__(self): return ("<%s sieve (%i): %i, %i, %i, ... %i, %i\n" "%s sieve (%i): %i, %i, %i, ... %i, %i\n" "%s sieve (%i): %i, %i, %i, ... %i, %i>") % ( 'prime', len(self._list), self._list[0], self._list[1], self._list[2], self._list[-2], self._list[-1], 'totient', len(self._tlist), self._tlist[0], self._tlist[1], self._tlist[2], self._tlist[-2], self._tlist[-1], 'mobius', len(self._mlist), self._mlist[0], self._mlist[1], self._mlist[2], self._mlist[-2], self._mlist[-1]) def _reset(self, prime=None, totient=None, mobius=None): """Reset all caches (default). To reset one or more set the desired keyword to True.""" if all(i is None for i in (prime, totient, mobius)): prime = totient = mobius = True if prime: self._list = self._list[:self._n] if totient: self._tlist = self._tlist[:self._n] if mobius: self._mlist = self._mlist[:self._n] def extend(self, n): """Grow the sieve to cover all primes <= n (a real number). Examples ======== >>> from sympy import sieve >>> sieve._reset() # this line for doctest only >>> sieve.extend(30) >>> sieve[10] == 29 True """ n = int(n) if n <= self._list[-1]: return # We need to sieve against all bases up to sqrt(n). # This is a recursive call that will do nothing if there are enough # known bases already. maxbase = int(n**0.5) + 1 self.extend(maxbase) # Create a new sieve starting from sqrt(n) begin = self._list[-1] + 1 newsieve = _arange(begin, n + 1) # Now eliminate all multiples of primes in [2, sqrt(n)] for p in self.primerange(2, maxbase): # Start counting at a multiple of p, offsetting # the index to account for the new sieve's base index startindex = (-begin) % p for i in range(startindex, len(newsieve), p): newsieve[i] = 0 # Merge the sieves self._list += _array('l', [x for x in newsieve if x]) def extend_to_no(self, i): """Extend to include the ith prime number. Parameters ========== i : integer Examples ======== >>> from sympy import sieve >>> sieve._reset() # this line for doctest only >>> sieve.extend_to_no(9) >>> sieve._list array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23]) Notes ===== The list is extended by 50% if it is too short, so it is likely that it will be longer than requested. """ i = as_int(i) while len(self._list) < i: self.extend(int(self._list[-1] * 1.5)) def primerange(self, a, b=None): """Generate all prime numbers in the range [a, b) when both a and b are provided and generates all prime numbers till a when only a is provided. Examples ======== >>> from sympy import sieve >>> print([i for i in sieve.primerange(7, 19)]) [7, 11, 13, 17] >>> print([i for i in sieve.primerange(19)]) [2, 3, 5, 7, 11, 13, 17] """ from sympy.functions.elementary.integers import ceiling # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not if b is None: b = as_int(ceiling(a)) a = 2 else: a = max(2, as_int(ceiling(a))) b = as_int(ceiling(b)) if a >= b: return self.extend(b) i = self.search(a)[1] maxi = len(self._list) + 1 while i < maxi: p = self._list[i - 1] if p < b: yield p i += 1 else: return def totientrange(self, a, b): """Generate all totient numbers for the range [a, b). Examples ======== >>> from sympy import sieve >>> print([i for i in sieve.totientrange(7, 18)]) [6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16] """ from sympy.functions.elementary.integers import ceiling # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not a = max(1, as_int(ceiling(a))) b = as_int(ceiling(b)) n = len(self._tlist) if a >= b: return elif b <= n: for i in range(a, b): yield self._tlist[i] else: self._tlist += _arange(n, b) for i in range(1, n): ti = self._tlist[i] startindex = (n + i - 1) // i * i for j in range(startindex, b, i): self._tlist[j] -= ti if i >= a: yield ti for i in range(n, b): ti = self._tlist[i] for j in range(2 * i, b, i): self._tlist[j] -= ti if i >= a: yield ti def mobiusrange(self, a, b): """Generate all mobius numbers for the range [a, b). Parameters ========== a : integer First number in range b : integer First number outside of range Examples ======== >>> from sympy import sieve >>> print([i for i in sieve.mobiusrange(7, 18)]) [-1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1] """ from sympy.functions.elementary.integers import ceiling # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not a = max(1, as_int(ceiling(a))) b = as_int(ceiling(b)) n = len(self._mlist) if a >= b: return elif b <= n: for i in range(a, b): yield self._mlist[i] else: self._mlist += _azeros(b - n) for i in range(1, n): mi = self._mlist[i] startindex = (n + i - 1) // i * i for j in range(startindex, b, i): self._mlist[j] -= mi if i >= a: yield mi for i in range(n, b): mi = self._mlist[i] for j in range(2 * i, b, i): self._mlist[j] -= mi if i >= a: yield mi def search(self, n): """Return the indices i, j of the primes that bound n. If n is prime then i == j. Although n can be an expression, if ceiling cannot convert it to an integer then an n error will be raised. Examples ======== >>> from sympy import sieve >>> sieve.search(25) (9, 10) >>> sieve.search(23) (9, 9) """ from sympy.functions.elementary.integers import ceiling # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not test = as_int(ceiling(n)) n = as_int(n) if n < 2: raise ValueError("n should be >= 2 but got: %s" % n) if n > self._list[-1]: self.extend(n) b = bisect(self._list, n) if self._list[b - 1] == test: return b, b else: return b, b + 1 def __contains__(self, n): try: n = as_int(n) assert n >= 2 except (ValueError, AssertionError): return False if n % 2 == 0: return n == 2 a, b = self.search(n) return a == b def __iter__(self): for n in count(1): yield self[n] def __getitem__(self, n): """Return the nth prime number""" if isinstance(n, slice): self.extend_to_no(n.stop) # Python 2.7 slices have 0 instead of None for start, so # we can't default to 1. start = n.start if n.start is not None else 0 if start < 1: # sieve[:5] would be empty (starting at -1), let's # just be explicit and raise. raise IndexError("Sieve indices start at 1.") return self._list[start - 1:n.stop - 1:n.step] else: if n < 1: # offset is one, so forbid explicit access to sieve[0] # (would surprisingly return the last one). raise IndexError("Sieve indices start at 1.") n = as_int(n) self.extend_to_no(n) return self._list[n - 1] # Generate a global object for repeated use in trial division etc sieve = Sieve() def prime(nth): """ Return the nth prime, with the primes indexed as prime(1) = 2, prime(2) = 3, etc.... The nth prime is approximately n*log(n). Logarithmic integral of x is a pretty nice approximation for number of primes <= x, i.e. li(x) ~ pi(x) In fact, for the numbers we are concerned about( x<1e11 ), li(x) - pi(x) < 50000 Also, li(x) > pi(x) can be safely assumed for the numbers which can be evaluated by this function. Here, we find the least integer m such that li(m) > n using binary search. Now pi(m-1) < li(m-1) <= n, We find pi(m - 1) using primepi function. Starting from m, we have to find n - pi(m-1) more primes. For the inputs this implementation can handle, we will have to test primality for at max about 10**5 numbers, to get our answer. Examples ======== >>> from sympy import prime >>> prime(10) 29 >>> prime(1) 2 >>> prime(100000) 1299709 See Also ======== sympy.ntheory.primetest.isprime : Test if n is prime primerange : Generate all primes in a given range primepi : Return the number of primes less than or equal to n References ========== .. [1] https://en.wikipedia.org/wiki/Prime_number_theorem#Table_of_.CF.80.28x.29.2C_x_.2F_log_x.2C_and_li.28x.29 .. [2] https://en.wikipedia.org/wiki/Prime_number_theorem#Approximations_for_the_nth_prime_number .. [3] https://en.wikipedia.org/wiki/Skewes%27_number """ n = as_int(nth) if n < 1: raise ValueError("nth must be a positive integer; prime(1) == 2") if n <= len(sieve._list): return sieve[n] from sympy.functions.special.error_functions import li from sympy.functions.elementary.exponential import log a = 2 # Lower bound for binary search b = int(n*(log(n) + log(log(n)))) # Upper bound for the search. while a < b: mid = (a + b) >> 1 if li(mid) > n: b = mid else: a = mid + 1 n_primes = primepi(a - 1) while n_primes < n: if isprime(a): n_primes += 1 a += 1 return a - 1 class primepi(Function): """ Represents the prime counting function pi(n) = the number of prime numbers less than or equal to n. Algorithm Description: In sieve method, we remove all multiples of prime p except p itself. Let phi(i,j) be the number of integers 2 <= k <= i which remain after sieving from primes less than or equal to j. Clearly, pi(n) = phi(n, sqrt(n)) If j is not a prime, phi(i,j) = phi(i, j - 1) if j is a prime, We remove all numbers(except j) whose smallest prime factor is j. Let x= j*a be such a number, where 2 <= a<= i / j Now, after sieving from primes <= j - 1, a must remain (because x, and hence a has no prime factor <= j - 1) Clearly, there are phi(i / j, j - 1) such a which remain on sieving from primes <= j - 1 Now, if a is a prime less than equal to j - 1, x= j*a has smallest prime factor = a, and has already been removed(by sieving from a). So, we don't need to remove it again. (Note: there will be pi(j - 1) such x) Thus, number of x, that will be removed are: phi(i / j, j - 1) - phi(j - 1, j - 1) (Note that pi(j - 1) = phi(j - 1, j - 1)) => phi(i,j) = phi(i, j - 1) - phi(i / j, j - 1) + phi(j - 1, j - 1) So,following recursion is used and implemented as dp: phi(a, b) = phi(a, b - 1), if b is not a prime phi(a, b) = phi(a, b-1)-phi(a / b, b-1) + phi(b-1, b-1), if b is prime Clearly a is always of the form floor(n / k), which can take at most 2*sqrt(n) values. Two arrays arr1,arr2 are maintained arr1[i] = phi(i, j), arr2[i] = phi(n // i, j) Finally the answer is arr2[1] Examples ======== >>> from sympy import primepi >>> primepi(25) 9 See Also ======== sympy.ntheory.primetest.isprime : Test if n is prime primerange : Generate all primes in a given range prime : Return the nth prime """ @classmethod def eval(cls, n): if n is S.Infinity: return S.Infinity if n is S.NegativeInfinity: return S.Zero try: n = int(n) except TypeError: if n.is_real == False or n is S.NaN: raise ValueError("n must be real") return if n < 2: return S.Zero if n <= sieve._list[-1]: return S(sieve.search(n)[0]) lim = int(n ** 0.5) lim -= 1 lim = max(lim, 0) while lim * lim <= n: lim += 1 lim -= 1 arr1 = [0] * (lim + 1) arr2 = [0] * (lim + 1) for i in range(1, lim + 1): arr1[i] = i - 1 arr2[i] = n // i - 1 for i in range(2, lim + 1): # Presently, arr1[k]=phi(k,i - 1), # arr2[k] = phi(n // k,i - 1) if arr1[i] == arr1[i - 1]: continue p = arr1[i - 1] for j in range(1, min(n // (i * i), lim) + 1): st = i * j if st <= lim: arr2[j] -= arr2[st] - p else: arr2[j] -= arr1[n // st] - p lim2 = min(lim, i * i - 1) for j in range(lim, lim2, -1): arr1[j] -= arr1[j // i] - p return S(arr2[1]) def nextprime(n, ith=1): """ Return the ith prime greater than n. i must be an integer. Notes ===== Potential primes are located at 6*j +/- 1. This property is used during searching. >>> from sympy import nextprime >>> [(i, nextprime(i)) for i in range(10, 15)] [(10, 11), (11, 13), (12, 13), (13, 17), (14, 17)] >>> nextprime(2, ith=2) # the 2nd prime after 2 5 See Also ======== prevprime : Return the largest prime smaller than n primerange : Generate all primes in a given range """ n = int(n) i = as_int(ith) if i > 1: pr = n j = 1 while 1: pr = nextprime(pr) j += 1 if j > i: break return pr if n < 2: return 2 if n < 7: return {2: 3, 3: 5, 4: 5, 5: 7, 6: 7}[n] if n <= sieve._list[-2]: l, u = sieve.search(n) if l == u: return sieve[u + 1] else: return sieve[u] nn = 6*(n//6) if nn == n: n += 1 if isprime(n): return n n += 4 elif n - nn == 5: n += 2 if isprime(n): return n n += 4 else: n = nn + 5 while 1: if isprime(n): return n n += 2 if isprime(n): return n n += 4 def prevprime(n): """ Return the largest prime smaller than n. Notes ===== Potential primes are located at 6*j +/- 1. This property is used during searching. >>> from sympy import prevprime >>> [(i, prevprime(i)) for i in range(10, 15)] [(10, 7), (11, 7), (12, 11), (13, 11), (14, 13)] See Also ======== nextprime : Return the ith prime greater than n primerange : Generates all primes in a given range """ from sympy.functions.elementary.integers import ceiling # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not n = as_int(ceiling(n)) if n < 3: raise ValueError("no preceding primes") if n < 8: return {3: 2, 4: 3, 5: 3, 6: 5, 7: 5}[n] if n <= sieve._list[-1]: l, u = sieve.search(n) if l == u: return sieve[l-1] else: return sieve[l] nn = 6*(n//6) if n - nn <= 1: n = nn - 1 if isprime(n): return n n -= 4 else: n = nn + 1 while 1: if isprime(n): return n n -= 2 if isprime(n): return n n -= 4 def primerange(a, b): """ Generate a list of all prime numbers in the range [a, b). If the range exists in the default sieve, the values will be returned from there; otherwise values will be returned but will not modify the sieve. Examples ======== >>> from sympy import primerange, sieve >>> print([i for i in primerange(1, 30)]) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] The Sieve method, primerange, is generally faster but it will occupy more memory as the sieve stores values. The default instance of Sieve, named sieve, can be used: >>> list(sieve.primerange(1, 30)) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] Notes ===== Some famous conjectures about the occurrence of primes in a given range are [1]: - Twin primes: though often not, the following will give 2 primes an infinite number of times: primerange(6*n - 1, 6*n + 2) - Legendre's: the following always yields at least one prime primerange(n**2, (n+1)**2+1) - Bertrand's (proven): there is always a prime in the range primerange(n, 2*n) - Brocard's: there are at least four primes in the range primerange(prime(n)**2, prime(n+1)**2) The average gap between primes is log(n) [2]; the gap between primes can be arbitrarily large since sequences of composite numbers are arbitrarily large, e.g. the numbers in the sequence n! + 2, n! + 3 ... n! + n are all composite. See Also ======== nextprime : Return the ith prime greater than n prevprime : Return the largest prime smaller than n randprime : Returns a random prime in a given range primorial : Returns the product of primes based on condition Sieve.primerange : return range from already computed primes or extend the sieve to contain the requested range. References ========== .. [1] https://en.wikipedia.org/wiki/Prime_number .. [2] http://primes.utm.edu/notes/gaps.html """ from sympy.functions.elementary.integers import ceiling if a >= b: return # if we already have the range, return it if b <= sieve._list[-1]: yield from sieve.primerange(a, b) return # otherwise compute, without storing, the desired range. # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not a = as_int(ceiling(a)) - 1 b = as_int(ceiling(b)) while 1: a = nextprime(a) if a < b: yield a else: return def randprime(a, b): """ Return a random prime number in the range [a, b). Bertrand's postulate assures that randprime(a, 2*a) will always succeed for a > 1. Examples ======== >>> from sympy import randprime, isprime >>> randprime(1, 30) #doctest: +SKIP 13 >>> isprime(randprime(1, 30)) True See Also ======== primerange : Generate all primes in a given range References ========== .. [1] https://en.wikipedia.org/wiki/Bertrand's_postulate """ if a >= b: return a, b = map(int, (a, b)) n = random.randint(a - 1, b) p = nextprime(n) if p >= b: p = prevprime(b) if p < a: raise ValueError("no primes exist in the specified range") return p def primorial(n, nth=True): """ Returns the product of the first n primes (default) or the primes less than or equal to n (when ``nth=False``). Examples ======== >>> from sympy.ntheory.generate import primorial, primerange >>> from sympy import factorint, Mul, primefactors, sqrt >>> primorial(4) # the first 4 primes are 2, 3, 5, 7 210 >>> primorial(4, nth=False) # primes <= 4 are 2 and 3 6 >>> primorial(1) 2 >>> primorial(1, nth=False) 1 >>> primorial(sqrt(101), nth=False) 210 One can argue that the primes are infinite since if you take a set of primes and multiply them together (e.g. the primorial) and then add or subtract 1, the result cannot be divided by any of the original factors, hence either 1 or more new primes must divide this product of primes. In this case, the number itself is a new prime: >>> factorint(primorial(4) + 1) {211: 1} In this case two new primes are the factors: >>> factorint(primorial(4) - 1) {11: 1, 19: 1} Here, some primes smaller and larger than the primes multiplied together are obtained: >>> p = list(primerange(10, 20)) >>> sorted(set(primefactors(Mul(*p) + 1)).difference(set(p))) [2, 5, 31, 149] See Also ======== primerange : Generate all primes in a given range """ if nth: n = as_int(n) else: n = int(n) if n < 1: raise ValueError("primorial argument must be >= 1") p = 1 if nth: for i in range(1, n + 1): p *= prime(i) else: for i in primerange(2, n + 1): p *= i return p def cycle_length(f, x0, nmax=None, values=False): """For a given iterated sequence, return a generator that gives the length of the iterated cycle (lambda) and the length of terms before the cycle begins (mu); if ``values`` is True then the terms of the sequence will be returned instead. The sequence is started with value ``x0``. Note: more than the first lambda + mu terms may be returned and this is the cost of cycle detection with Brent's method; there are, however, generally less terms calculated than would have been calculated if the proper ending point were determined, e.g. by using Floyd's method. >>> from sympy.ntheory.generate import cycle_length This will yield successive values of i <-- func(i): >>> def iter(func, i): ... while 1: ... ii = func(i) ... yield ii ... i = ii ... A function is defined: >>> func = lambda i: (i**2 + 1) % 51 and given a seed of 4 and the mu and lambda terms calculated: >>> next(cycle_length(func, 4)) (6, 2) We can see what is meant by looking at the output: >>> n = cycle_length(func, 4, values=True) >>> list(ni for ni in n) [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14] There are 6 repeating values after the first 2. If a sequence is suspected of being longer than you might wish, ``nmax`` can be used to exit early (and mu will be returned as None): >>> next(cycle_length(func, 4, nmax = 4)) (4, None) >>> [ni for ni in cycle_length(func, 4, nmax = 4, values=True)] [17, 35, 2, 5] Code modified from: https://en.wikipedia.org/wiki/Cycle_detection. """ nmax = int(nmax or 0) # main phase: search successive powers of two power = lam = 1 tortoise, hare = x0, f(x0) # f(x0) is the element/node next to x0. i = 0 while tortoise != hare and (not nmax or i < nmax): i += 1 if power == lam: # time to start a new power of two? tortoise = hare power *= 2 lam = 0 if values: yield hare hare = f(hare) lam += 1 if nmax and i == nmax: if values: return else: yield nmax, None return if not values: # Find the position of the first repetition of length lambda mu = 0 tortoise = hare = x0 for i in range(lam): hare = f(hare) while tortoise != hare: tortoise = f(tortoise) hare = f(hare) mu += 1 if mu: mu -= 1 yield lam, mu def composite(nth): """ Return the nth composite number, with the composite numbers indexed as composite(1) = 4, composite(2) = 6, etc.... Examples ======== >>> from sympy import composite >>> composite(36) 52 >>> composite(1) 4 >>> composite(17737) 20000 See Also ======== sympy.ntheory.primetest.isprime : Test if n is prime primerange : Generate all primes in a given range primepi : Return the number of primes less than or equal to n prime : Return the nth prime compositepi : Return the number of positive composite numbers less than or equal to n """ n = as_int(nth) if n < 1: raise ValueError("nth must be a positive integer; composite(1) == 4") composite_arr = [4, 6, 8, 9, 10, 12, 14, 15, 16, 18] if n <= 10: return composite_arr[n - 1] a, b = 4, sieve._list[-1] if n <= b - primepi(b) - 1: while a < b - 1: mid = (a + b) >> 1 if mid - primepi(mid) - 1 > n: b = mid else: a = mid if isprime(a): a -= 1 return a from sympy.functions.special.error_functions import li from sympy.functions.elementary.exponential import log a = 4 # Lower bound for binary search b = int(n*(log(n) + log(log(n)))) # Upper bound for the search. while a < b: mid = (a + b) >> 1 if mid - li(mid) - 1 > n: b = mid else: a = mid + 1 n_composites = a - primepi(a) - 1 while n_composites > n: if not isprime(a): n_composites -= 1 a -= 1 if isprime(a): a -= 1 return a def compositepi(n): """ Return the number of positive composite numbers less than or equal to n. The first positive composite is 4, i.e. compositepi(4) = 1. Examples ======== >>> from sympy import compositepi >>> compositepi(25) 15 >>> compositepi(1000) 831 See Also ======== sympy.ntheory.primetest.isprime : Test if n is prime primerange : Generate all primes in a given range prime : Return the nth prime primepi : Return the number of primes less than or equal to n composite : Return the nth composite number """ n = int(n) if n < 4: return 0 return n - primepi(n) - 1
9466ae7c51446422a9265a86f6224d765fb12daecd19848a0bc972f40917705e
from sympy.ntheory import sieve, isprime from sympy.core.power import integer_log from sympy.core.compatibility import as_int import random rgen = random.Random() #----------------------------------------------------------------------------# # # # Lenstra's Elliptic Curve Factorization # # # #----------------------------------------------------------------------------# class Point: """Montgomery form of Points in an elliptic curve. In this form, the addition and doubling of points does not need any y-coordinate information thus decreasing the number of operations. Using Montgomery form we try to perform point addition and doubling in least amount of multiplications. The elliptic curve used here is of the form (E : b*y**2*z = x**3 + a*x**2*z + x*z**2). The a_24 parameter is equal to (a + 2)/4. References ========== .. [1] http://www.hyperelliptic.org/tanja/SHARCS/talks06/Gaj.pdf """ def __init__(self, x_cord, z_cord, a_24, mod): """ Initial parameters for the Point class. Parameters ========== x_cord : X coordinate of the Point z_cord : Z coordinate of the Point a_24 : Parameter of the elliptic curve in Montgomery form mod : modulus """ self.x_cord = x_cord self.z_cord = z_cord self.a_24 = a_24 self.mod = mod def __eq__(self, other): """Two points are equal if X/Z of both points are equal """ from sympy import mod_inverse if self.a_24 != other.a_24 or self.mod != other.mod: return False return self.x_cord * mod_inverse(self.z_cord, self.mod) % self.mod ==\ other.x_cord * mod_inverse(other.z_cord, self.mod) % self.mod def add(self, Q, diff): """ Add two points self and Q where diff = self - Q. Moreover the assumption is self.x_cord*Q.x_cord*(self.x_cord - Q.x_cord) != 0. This algorithm requires 6 multiplications. Here the difference between the points is already known and using this algorihtm speeds up the addition by reducing the number of multiplication required. Also in the mont_ladder algorithm is constructed in a way so that the difference between intermediate points is always equal to the initial point. So, we always know what the difference between the point is. Parameters ========== Q : point on the curve in Montgomery form diff : self - Q Examples ======== >>> from sympy.ntheory.ecm import Point >>> p1 = Point(11, 16, 7, 29) >>> p2 = Point(13, 10, 7, 29) >>> p3 = p2.add(p1, p1) >>> p3.x_cord 23 >>> p3.z_cord 17 """ u = (self.x_cord - self.z_cord)*(Q.x_cord + Q.z_cord) v = (self.x_cord + self.z_cord)*(Q.x_cord - Q.z_cord) add, subt = u + v, u - v x_cord = diff.z_cord * add * add % self.mod z_cord = diff.x_cord * subt * subt % self.mod return Point(x_cord, z_cord, self.a_24, self.mod) def double(self): """ Doubles a point in an elliptic curve in Montgomery form. This algorithm requires 5 multiplications. Examples ======== >>> from sympy.ntheory.ecm import Point >>> p1 = Point(11, 16, 7, 29) >>> p2 = p1.double() >>> p2.x_cord 13 >>> p2.z_cord 10 """ u, v = self.x_cord + self.z_cord, self.x_cord - self.z_cord u, v = u*u, v*v diff = u - v x_cord = u*v % self.mod z_cord = diff*(v + self.a_24*diff) % self.mod return Point(x_cord, z_cord, self.a_24, self.mod) def mont_ladder(self, k): """ Scalar multiplication of a point in Montgomery form using Montgomery Ladder Algorithm. A total of 11 multiplications are required in each step of this algorithm. Parameters ========== k : The positive integer multiplier Examples ======== >>> from sympy.ntheory.ecm import Point >>> p1 = Point(11, 16, 7, 29) >>> p3 = p1.mont_ladder(3) >>> p3.x_cord 23 >>> p3.z_cord 17 """ Q = self R = self.double() for i in bin(k)[3:]: if i == '1': Q = R.add(Q, self) R = R.double() else: R = Q.add(R, self) Q = Q.double() return Q def _ecm_one_factor(n, B1=10000, B2=100000, max_curve=200): """Returns one factor of n using Lenstra's 2 Stage Elliptic curve Factorization with Suyama's Parameterization. Here Montgomery arithmetic is used for fast computation of addition and doubling of points in elliptic curve. This ECM method considers elliptic curves in Montgomery form (E : b*y**2*z = x**3 + a*x**2*z + x*z**2) and involves elliptic curve operations (mod N), where the elements in Z are reduced (mod N). Since N is not a prime, E over FF(N) is not really an elliptic curve but we can still do point additions and doubling as if FF(N) was a field. Stage 1 : The basic algorithm involves taking a random point (P) on an elliptic curve in FF(N). The compute k*P using Montgomery ladder algorithm. Let q be an unknown factor of N. Then the order of the curve E, |E(FF(q))|, might be a smooth number that divides k. Then we have k = l * |E(FF(q))| for some l. For any point belonging to the curve E, |E(FF(q))|*P = O, hence k*P = l*|E(FF(q))|*P. Thus kP.z_cord = 0 (mod q), and the unknownn factor of N (q) can be recovered by taking gcd(kP.z_cord, N). Stage 2 : This is a continuation of Stage 1 if k*P != O. The idea utilize the fact that even if kP != 0, the value of k might miss just one large prime divisor of |E(FF(q))|. In this case we only need to compute the scalar multiplication by p to get p*k*P = O. Here a second bound B2 restrict the size of possible values of p. Parameters ========== n : Number to be Factored B1 : Stage 1 Bound B2 : Stage 2 Bound max_curve : Maximum number of curves generated References ========== .. [1] Carl Pomerance and Richard Crandall "Prime Numbers: A Computational Perspective" (2nd Ed.), page 344 """ from sympy import gcd, mod_inverse, sqrt n = as_int(n) if B1 % 2 != 0 or B2 % 2 != 0: raise ValueError("The Bounds should be an even integer") sieve.extend(B2) if isprime(n): return n curve = 0 D = int(sqrt(B2)) beta = [0]*(D + 1) S = [0]*(D + 1) k = 1 for p in sieve.primerange(1, B1 + 1): k *= pow(p, integer_log(B1, p)[0]) g = 1 while(curve <= max_curve): curve += 1 #Suyama's Paramatrization sigma = rgen.randint(6, n - 1) u = (sigma*sigma - 5) % n v = (4*sigma) % n diff = v - u u_3 = pow(u, 3, n) try: C = (pow(diff, 3, n)*(3*u + v)*mod_inverse(4*u_3*v, n) - 2) % n except ValueError: #If the mod_inverse(4*u_3*v, n) doesn't exist return gcd(4*u_3*v, n) a24 = (C + 2)*mod_inverse(4, n) % n Q = Point(u_3 , pow(v, 3, n), a24, n) Q = Q.mont_ladder(k) g = gcd(Q.z_cord, n) #Stage 1 factor if g != 1 and g != n: return g #Stage 1 failure. Q.z = 0, Try another curve elif g == n: continue #Stage 2 - Improved Standard Continuation S[1] = Q.double() S[2] = S[1].double() beta[1] = (S[1].x_cord*S[1].z_cord) % n beta[2] = (S[2].x_cord*S[2].z_cord) % n for d in range(3, D + 1): S[d] = S[d - 1].add(S[1], S[d - 2]) beta[d] = (S[d].x_cord*S[d].z_cord) % n g = 1 B = B1 - 1 T = Q.mont_ladder(B - 2*D) R = Q.mont_ladder(B) for r in range(B, B2, 2*D): alpha = (R.x_cord*R.z_cord) % n for q in sieve.primerange(r + 2, r + 2*D + 1): delta = (q - r) // 2 f = (R.x_cord - S[d].x_cord)*(R.z_cord + S[d].z_cord) -\ alpha + beta[delta] g = (g*f) % n #Swap T, R = R, R.add(S[D], T) g = gcd(n, g) #Stage 2 Factor found if g != 1 and g != n: return g #ECM failed, Increase the bounds raise ValueError("Increase the bounds") def ecm(n, B1=10000, B2=100000, max_curve=200, seed=1234): """Performs factorization using Lenstra's Elliptic curve method. This function repeatedly calls `ecm_one_factor` to compute the factors of n. First all the small factors are taken out using trial division. Then `ecm_one_factor` is used to compute one factor at a time. Parameters ========== n : Number to be Factored B1 : Stage 1 Bound B2 : Stage 2 Bound max_curve : Maximum number of curves generated seed : Initialize pseudorandom generator Examples ======== >>> from sympy.ntheory import ecm >>> ecm(25645121643901801) {5394769, 4753701529} >>> ecm(9804659461513846513) {4641991, 2112166839943} """ _factors = set() for prime in sieve.primerange(1, 100000): if n % prime == 0: _factors.add(prime) while(n % prime == 0): n //= prime rgen.seed(seed) while(n > 1): try: factor = _ecm_one_factor(n, B1, B2, max_curve) except ValueError: raise ValueError("Increase the bounds") _factors.add(factor) n //= factor factors = set() for factor in _factors: if isprime(factor): factors.add(factor) continue factors |= ecm(factor) return factors
bb229becf9dd9dcb131efb7ad653081fb98394f0945fdf245402ad0288fb2f25
""" Primality testing """ from sympy.core.compatibility import as_int from mpmath.libmp import bitcount as _bitlength def _int_tuple(*i): return tuple(int(_) for _ in i) def is_euler_pseudoprime(n, b): """Returns True if n is prime or an Euler pseudoprime to base b, else False. Euler Pseudoprime : In arithmetic, an odd composite integer n is called an euler pseudoprime to base a, if a and n are coprime and satisfy the modular arithmetic congruence relation : a ^ (n-1)/2 = + 1(mod n) or a ^ (n-1)/2 = - 1(mod n) (where mod refers to the modulo operation). Examples ======== >>> from sympy.ntheory.primetest import is_euler_pseudoprime >>> is_euler_pseudoprime(2, 5) True References ========== .. [1] https://en.wikipedia.org/wiki/Euler_pseudoprime """ from sympy.ntheory.factor_ import trailing if not mr(n, [b]): return False n = as_int(n) r = n - 1 c = pow(b, r >> trailing(r), n) if c == 1: return True while True: if c == n - 1: return True c = pow(c, 2, n) if c == 1: return False def is_square(n, prep=True): """Return True if n == a * a for some integer a, else False. If n is suspected of *not* being a square then this is a quick method of confirming that it is not. Examples ======== >>> from sympy.ntheory.primetest import is_square >>> is_square(25) True >>> is_square(2) False References ========== [1] http://mersenneforum.org/showpost.php?p=110896 See Also ======== sympy.core.power.integer_nthroot """ if prep: n = as_int(n) if n < 0: return False if n in [0, 1]: return True m = n & 127 if not ((m*0x8bc40d7d) & (m*0xa1e2f5d1) & 0x14020a): m = n % 63 if not ((m*0x3d491df7) & (m*0xc824a9f9) & 0x10f14008): from sympy.core.power import integer_nthroot return integer_nthroot(n, 2)[1] return False def _test(n, base, s, t): """Miller-Rabin strong pseudoprime test for one base. Return False if n is definitely composite, True if n is probably prime, with a probability greater than 3/4. """ # do the Fermat test b = pow(base, t, n) if b == 1 or b == n - 1: return True else: for j in range(1, s): b = pow(b, 2, n) if b == n - 1: return True # see I. Niven et al. "An Introduction to Theory of Numbers", page 78 if b == 1: return False return False def mr(n, bases): """Perform a Miller-Rabin strong pseudoprime test on n using a given list of bases/witnesses. References ========== - Richard Crandall & Carl Pomerance (2005), "Prime Numbers: A Computational Perspective", Springer, 2nd edition, 135-138 A list of thresholds and the bases they require are here: https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants_of_the_test Examples ======== >>> from sympy.ntheory.primetest import mr >>> mr(1373651, [2, 3]) False >>> mr(479001599, [31, 73]) True """ from sympy.ntheory.factor_ import trailing from sympy.polys.domains import ZZ n = as_int(n) if n < 2: return False # remove powers of 2 from n-1 (= t * 2**s) s = trailing(n - 1) t = n >> s for base in bases: # Bases >= n are wrapped, bases < 2 are invalid if base >= n: base %= n if base >= 2: base = ZZ(base) if not _test(n, base, s, t): return False return True def _lucas_sequence(n, P, Q, k): """Return the modular Lucas sequence (U_k, V_k, Q_k). Given a Lucas sequence defined by P, Q, returns the kth values for U and V, along with Q^k, all modulo n. This is intended for use with possibly very large values of n and k, where the combinatorial functions would be completely unusable. The modular Lucas sequences are used in numerous places in number theory, especially in the Lucas compositeness tests and the various n + 1 proofs. Examples ======== >>> from sympy.ntheory.primetest import _lucas_sequence >>> N = 10**2000 + 4561 >>> sol = U, V, Qk = _lucas_sequence(N, 3, 1, N//2); sol (0, 2, 1) """ D = P*P - 4*Q if n < 2: raise ValueError("n must be >= 2") if k < 0: raise ValueError("k must be >= 0") if D == 0: raise ValueError("D must not be zero") if k == 0: return _int_tuple(0, 2, Q) U = 1 V = P Qk = Q b = _bitlength(k) if Q == 1: # Optimization for extra strong tests. while b > 1: U = (U*V) % n V = (V*V - 2) % n b -= 1 if (k >> (b - 1)) & 1: U, V = U*P + V, V*P + U*D if U & 1: U += n if V & 1: V += n U, V = U >> 1, V >> 1 elif P == 1 and Q == -1: # Small optimization for 50% of Selfridge parameters. while b > 1: U = (U*V) % n if Qk == 1: V = (V*V - 2) % n else: V = (V*V + 2) % n Qk = 1 b -= 1 if (k >> (b-1)) & 1: U, V = U + V, V + U*D if U & 1: U += n if V & 1: V += n U, V = U >> 1, V >> 1 Qk = -1 else: # The general case with any P and Q. while b > 1: U = (U*V) % n V = (V*V - 2*Qk) % n Qk *= Qk b -= 1 if (k >> (b - 1)) & 1: U, V = U*P + V, V*P + U*D if U & 1: U += n if V & 1: V += n U, V = U >> 1, V >> 1 Qk *= Q Qk %= n return _int_tuple(U % n, V % n, Qk) def _lucas_selfridge_params(n): """Calculates the Selfridge parameters (D, P, Q) for n. This is method A from page 1401 of Baillie and Wagstaff. References ========== - "Lucas Pseudoprimes", Baillie and Wagstaff, 1980. http://mpqs.free.fr/LucasPseudoprimes.pdf """ from sympy.core import igcd from sympy.ntheory.residue_ntheory import jacobi_symbol D = 5 while True: g = igcd(abs(D), n) if g > 1 and g != n: return (0, 0, 0) if jacobi_symbol(D, n) == -1: break if D > 0: D = -D - 2 else: D = -D + 2 return _int_tuple(D, 1, (1 - D)/4) def _lucas_extrastrong_params(n): """Calculates the "extra strong" parameters (D, P, Q) for n. References ========== - OEIS A217719: Extra Strong Lucas Pseudoprimes https://oeis.org/A217719 - https://en.wikipedia.org/wiki/Lucas_pseudoprime """ from sympy.core import igcd from sympy.ntheory.residue_ntheory import jacobi_symbol P, Q, D = 3, 1, 5 while True: g = igcd(D, n) if g > 1 and g != n: return (0, 0, 0) if jacobi_symbol(D, n) == -1: break P += 1 D = P*P - 4 return _int_tuple(D, P, Q) def is_lucas_prp(n): """Standard Lucas compositeness test with Selfridge parameters. Returns False if n is definitely composite, and True if n is a Lucas probable prime. This is typically used in combination with the Miller-Rabin test. References ========== - "Lucas Pseudoprimes", Baillie and Wagstaff, 1980. http://mpqs.free.fr/LucasPseudoprimes.pdf - OEIS A217120: Lucas Pseudoprimes https://oeis.org/A217120 - https://en.wikipedia.org/wiki/Lucas_pseudoprime Examples ======== >>> from sympy.ntheory.primetest import isprime, is_lucas_prp >>> for i in range(10000): ... if is_lucas_prp(i) and not isprime(i): ... print(i) 323 377 1159 1829 3827 5459 5777 9071 9179 """ n = as_int(n) if n == 2: return True if n < 2 or (n % 2) == 0: return False if is_square(n, False): return False D, P, Q = _lucas_selfridge_params(n) if D == 0: return False U, V, Qk = _lucas_sequence(n, P, Q, n+1) return U == 0 def is_strong_lucas_prp(n): """Strong Lucas compositeness test with Selfridge parameters. Returns False if n is definitely composite, and True if n is a strong Lucas probable prime. This is often used in combination with the Miller-Rabin test, and in particular, when combined with M-R base 2 creates the strong BPSW test. References ========== - "Lucas Pseudoprimes", Baillie and Wagstaff, 1980. http://mpqs.free.fr/LucasPseudoprimes.pdf - OEIS A217255: Strong Lucas Pseudoprimes https://oeis.org/A217255 - https://en.wikipedia.org/wiki/Lucas_pseudoprime - https://en.wikipedia.org/wiki/Baillie-PSW_primality_test Examples ======== >>> from sympy.ntheory.primetest import isprime, is_strong_lucas_prp >>> for i in range(20000): ... if is_strong_lucas_prp(i) and not isprime(i): ... print(i) 5459 5777 10877 16109 18971 """ from sympy.ntheory.factor_ import trailing n = as_int(n) if n == 2: return True if n < 2 or (n % 2) == 0: return False if is_square(n, False): return False D, P, Q = _lucas_selfridge_params(n) if D == 0: return False # remove powers of 2 from n+1 (= k * 2**s) s = trailing(n + 1) k = (n+1) >> s U, V, Qk = _lucas_sequence(n, P, Q, k) if U == 0 or V == 0: return True for r in range(1, s): V = (V*V - 2*Qk) % n if V == 0: return True Qk = pow(Qk, 2, n) return False def is_extra_strong_lucas_prp(n): """Extra Strong Lucas compositeness test. Returns False if n is definitely composite, and True if n is a "extra strong" Lucas probable prime. The parameters are selected using P = 3, Q = 1, then incrementing P until (D|n) == -1. The test itself is as defined in Grantham 2000, from the Mo and Jones preprint. The parameter selection and test are the same as used in OEIS A217719, Perl's Math::Prime::Util, and the Lucas pseudoprime page on Wikipedia. With these parameters, there are no counterexamples below 2^64 nor any known above that range. It is 20-50% faster than the strong test. Because of the different parameters selected, there is no relationship between the strong Lucas pseudoprimes and extra strong Lucas pseudoprimes. In particular, one is not a subset of the other. References ========== - "Frobenius Pseudoprimes", Jon Grantham, 2000. http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01197-2/ - OEIS A217719: Extra Strong Lucas Pseudoprimes https://oeis.org/A217719 - https://en.wikipedia.org/wiki/Lucas_pseudoprime Examples ======== >>> from sympy.ntheory.primetest import isprime, is_extra_strong_lucas_prp >>> for i in range(20000): ... if is_extra_strong_lucas_prp(i) and not isprime(i): ... print(i) 989 3239 5777 10877 """ # Implementation notes: # 1) the parameters differ from Thomas R. Nicely's. His parameter # selection leads to pseudoprimes that overlap M-R tests, and # contradict Baillie and Wagstaff's suggestion of (D|n) = -1. # 2) The MathWorld page as of June 2013 specifies Q=-1. The Lucas # sequence must have Q=1. See Grantham theorem 2.3, any of the # references on the MathWorld page, or run it and see Q=-1 is wrong. from sympy.ntheory.factor_ import trailing n = as_int(n) if n == 2: return True if n < 2 or (n % 2) == 0: return False if is_square(n, False): return False D, P, Q = _lucas_extrastrong_params(n) if D == 0: return False # remove powers of 2 from n+1 (= k * 2**s) s = trailing(n + 1) k = (n+1) >> s U, V, Qk = _lucas_sequence(n, P, Q, k) if U == 0 and (V == 2 or V == n - 2): return True for r in range(1, s): if V == 0: return True V = (V*V - 2) % n return False def isprime(n): """ Test if n is a prime number (True) or not (False). For n < 2^64 the answer is definitive; larger n values have a small probability of actually being pseudoprimes. Negative numbers (e.g. -2) are not considered prime. The first step is looking for trivial factors, which if found enables a quick return. Next, if the sieve is large enough, use bisection search on the sieve. For small numbers, a set of deterministic Miller-Rabin tests are performed with bases that are known to have no counterexamples in their range. Finally if the number is larger than 2^64, a strong BPSW test is performed. While this is a probable prime test and we believe counterexamples exist, there are no known counterexamples. Examples ======== >>> from sympy.ntheory import isprime >>> isprime(13) True >>> isprime(13.0) # limited precision False >>> isprime(15) False Notes ===== This routine is intended only for integer input, not numerical expressions which may represent numbers. Floats are also rejected as input because they represent numbers of limited precision. While it is tempting to permit 7.0 to represent an integer there are errors that may "pass silently" if this is allowed: >>> from sympy import Float, S >>> int(1e3) == 1e3 == 10**3 True >>> int(1e23) == 1e23 True >>> int(1e23) == 10**23 False >>> near_int = 1 + S(1)/10**19 >>> near_int == int(near_int) False >>> n = Float(near_int, 10) # truncated by precision >>> n == int(n) True >>> n = Float(near_int, 20) >>> n == int(n) False See Also ======== sympy.ntheory.generate.primerange : Generates all primes in a given range sympy.ntheory.generate.primepi : Return the number of primes less than or equal to n sympy.ntheory.generate.prime : Return the nth prime References ========== - https://en.wikipedia.org/wiki/Strong_pseudoprime - "Lucas Pseudoprimes", Baillie and Wagstaff, 1980. http://mpqs.free.fr/LucasPseudoprimes.pdf - https://en.wikipedia.org/wiki/Baillie-PSW_primality_test """ try: n = as_int(n) except ValueError: return False # Step 1, do quick composite testing via trial division. The individual # modulo tests benchmark faster than one or two primorial igcds for me. # The point here is just to speedily handle small numbers and many # composites. Step 2 only requires that n <= 2 get handled here. if n in [2, 3, 5]: return True if n < 2 or (n % 2) == 0 or (n % 3) == 0 or (n % 5) == 0: return False if n < 49: return True if (n % 7) == 0 or (n % 11) == 0 or (n % 13) == 0 or (n % 17) == 0 or \ (n % 19) == 0 or (n % 23) == 0 or (n % 29) == 0 or (n % 31) == 0 or \ (n % 37) == 0 or (n % 41) == 0 or (n % 43) == 0 or (n % 47) == 0: return False if n < 2809: return True if n <= 23001: return pow(2, n, n) == 2 and n not in [7957, 8321, 13747, 18721, 19951] # bisection search on the sieve if the sieve is large enough from sympy.ntheory.generate import sieve as s if n <= s._list[-1]: l, u = s.search(n) return l == u # If we have GMPY2, skip straight to step 3 and do a strong BPSW test. # This should be a bit faster than our step 2, and for large values will # be a lot faster than our step 3 (C+GMP vs. Python). from sympy.core.compatibility import HAS_GMPY if HAS_GMPY == 2: from gmpy2 import is_strong_prp, is_strong_selfridge_prp return is_strong_prp(n, 2) and is_strong_selfridge_prp(n) # Step 2: deterministic Miller-Rabin testing for numbers < 2^64. See: # https://miller-rabin.appspot.com/ # for lists. We have made sure the M-R routine will successfully handle # bases larger than n, so we can use the minimal set. if n < 341531: return mr(n, [9345883071009581737]) if n < 885594169: return mr(n, [725270293939359937, 3569819667048198375]) if n < 350269456337: return mr(n, [4230279247111683200, 14694767155120705706, 16641139526367750375]) if n < 55245642489451: return mr(n, [2, 141889084524735, 1199124725622454117, 11096072698276303650]) if n < 7999252175582851: return mr(n, [2, 4130806001517, 149795463772692060, 186635894390467037, 3967304179347715805]) if n < 585226005592931977: return mr(n, [2, 123635709730000, 9233062284813009, 43835965440333360, 761179012939631437, 1263739024124850375]) if n < 18446744073709551616: return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022]) # We could do this instead at any point: #if n < 18446744073709551616: # return mr(n, [2]) and is_extra_strong_lucas_prp(n) # Here are tests that are safe for MR routines that don't understand # large bases. #if n < 9080191: # return mr(n, [31, 73]) #if n < 19471033: # return mr(n, [2, 299417]) #if n < 38010307: # return mr(n, [2, 9332593]) #if n < 316349281: # return mr(n, [11000544, 31481107]) #if n < 4759123141: # return mr(n, [2, 7, 61]) #if n < 105936894253: # return mr(n, [2, 1005905886, 1340600841]) #if n < 31858317218647: # return mr(n, [2, 642735, 553174392, 3046413974]) #if n < 3071837692357849: # return mr(n, [2, 75088, 642735, 203659041, 3613982119]) #if n < 18446744073709551616: # return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022]) # Step 3: BPSW. # # Time for isprime(10**2000 + 4561), no gmpy or gmpy2 installed # 44.0s old isprime using 46 bases # 5.3s strong BPSW + one random base # 4.3s extra strong BPSW + one random base # 4.1s strong BPSW # 3.2s extra strong BPSW # Classic BPSW from page 1401 of the paper. See alternate ideas below. return mr(n, [2]) and is_strong_lucas_prp(n) # Using extra strong test, which is somewhat faster #return mr(n, [2]) and is_extra_strong_lucas_prp(n) # Add a random M-R base #import random #return mr(n, [2, random.randint(3, n-1)]) and is_strong_lucas_prp(n) def is_gaussian_prime(num): r"""Test if num is a Gaussian prime number. References ========== .. [1] https://oeis.org/wiki/Gaussian_primes """ from sympy import sympify num = sympify(num) a, b = num.as_real_imag() a = as_int(a, strict=False) b = as_int(b, strict=False) if a == 0: b = abs(b) return isprime(b) and b % 4 == 3 elif b == 0: a = abs(a) return isprime(a) and a % 4 == 3 return isprime(a**2 + b**2)
a98d56046b193285dec29f711f1e5a3f98bf00f2e70dddfd8b9b775b701f06e7
from sympy.core.numbers import igcd, mod_inverse from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power from sympy.ntheory import isprime from math import log, sqrt import random rgen = random.Random() class SievePolynomial: def __init__(self, modified_coeff=[], a=None, b=None): """This class denotes the seive polynomial. If ``g(x) = (a*x + b)**2 - N``. `g(x)` can be expanded to ``a*x**2 + 2*a*b*x + b**2 - N``, so the coefficient is stored in the form `[a**2, 2*a*b, b**2 - N]`. This ensures faster `eval` method because we dont have to perform `a**2, 2*a*b, b**2` every time we call the `eval` method. As multiplication is more expensive than addition, by using modified_coefficient we get a faster seiving process. Parameters ========== modified_coeff : modified_coefficient of sieve polynomial a : parameter of the sieve polynomial b : parameter of the sieve polynomial """ self.modified_coeff = modified_coeff self.a = a self.b = b def eval(self, x): """ Compute the value of the sieve polynomial at point x. Parameters ========== x : Integer parameter for sieve polynomial """ ans = 0 for coeff in self.modified_coeff: ans *= x ans += coeff return ans class FactorBaseElem: """This class stores an element of the `factor_base`. """ def __init__(self, prime, tmem_p, log_p): """ Initialization of factor_base_elem. Parameters ========== prime : prime number of the factor_base tmem_p : Integer square root of x**2 = n mod prime log_p : Compute Natural Logarithm of the prime """ self.prime = prime self.tmem_p = tmem_p self.log_p = log_p self.soln1 = None self.soln2 = None self.a_inv = None self.b_ainv = None def _generate_factor_base(prime_bound, n): """Generate `factor_base` for Quadratic Sieve. The `factor_base` consists of all the the points whose ``legendre_symbol(n, p) == 1`` and ``p < num_primes``. Along with the prime `factor_base` also stores natural logarithm of prime and the residue n modulo p. It also returns the of primes numbers in the `factor_base` which are close to 1000 and 5000. Parameters ========== prime_bound : upper prime bound of the factor_base n : integer to be factored """ from sympy import sieve factor_base = [] idx_1000, idx_5000 = None, None for prime in sieve.primerange(1, prime_bound): if pow(n, (prime - 1) // 2, prime) == 1: if prime > 1000 and idx_1000 is None: idx_1000 = len(factor_base) - 1 if prime > 5000 and idx_5000 is None: idx_5000 = len(factor_base) - 1 residue = _sqrt_mod_prime_power(n, prime, 1)[0] log_p = round(log(prime)*2**10) factor_base.append(FactorBaseElem(prime, residue, log_p)) return idx_1000, idx_5000, factor_base def _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000, seed=None): """This step is the initialization of the 1st sieve polynomial. Here `a` is selected as a product of several primes of the factor_base such that `a` is about to ``sqrt(2*N) / M``. Other initial values of factor_base elem are also intialized which includes a_inv, b_ainv, soln1, soln2 which are used when the sieve polynomial is changed. The b_ainv is required for fast polynomial change as we don't have to calculate `2*b*mod_inverse(a, prime)` every time. We also ensure that the `factor_base` primes which make `a` are between 1000 and 5000. Parameters ========== N : Number to be factored M : sieve interval factor_base : factor_base primes idx_1000 : index of prime numbe in the factor_base near 1000 idx_5000 : index of primenumber in the factor_base near to 5000 seed : Generate pseudoprime numbers """ if seed is not None: rgen.seed(seed) approx_val = sqrt(2*N) / M # `a` is a parameter of the sieve polynomial and `q` is the prime factors of `a` # randomly search for a combination of primes whose multiplication is close to approx_val # This multiplication of primes will be `a` and the primes will be `q` # `best_a` denotes that `a` is close to approx_val in the random search of combination best_a, best_q, best_ratio = None, None, None start = 0 if idx_1000 is None else idx_1000 end = len(factor_base) - 1 if idx_5000 is None else idx_5000 for _ in range(50): a = 1 q = [] while(a < approx_val): rand_p = 0 while(rand_p == 0 or rand_p in q): rand_p = rgen.randint(start, end) p = factor_base[rand_p].prime a *= p q.append(rand_p) ratio = a / approx_val if best_ratio is None or abs(ratio - 1) < abs(best_ratio - 1): best_q = q best_a = a best_ratio = ratio a = best_a q = best_q B = [] for idx, val in enumerate(q): q_l = factor_base[val].prime gamma = factor_base[val].tmem_p * mod_inverse(a // q_l, q_l) % q_l if gamma > q_l / 2: gamma = q_l - gamma B.append(a//q_l*gamma) b = sum(B) g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b) for fb in factor_base: if a % fb.prime == 0: continue fb.a_inv = mod_inverse(a, fb.prime) fb.b_ainv = [2*b_elem*fb.a_inv % fb.prime for b_elem in B] fb.soln1 = (fb.a_inv*(fb.tmem_p - b)) % fb.prime fb.soln2 = (fb.a_inv*(-fb.tmem_p - b)) % fb.prime return g, B def _initialize_ith_poly(N, factor_base, i, g, B): """Initialization stage of ith poly. After we finish sieving 1`st polynomial here we quickly change to the next polynomial from which we will again start sieving. Suppose we generated ith sieve polynomial and now we want to generate (i + 1)th polynomial, where ``1 <= i <= 2**(j - 1) - 1`` where `j` is the number of prime factors of the coefficient `a` then this function can be used to go to the next polynomial. If ``i = 2**(j - 1) - 1`` then go to _initialize_first_polynomial stage. Parameters ========== N : number to be factored factor_base : factor_base primes i : integer denoting ith polynomial g : (i - 1)th polynomial B : array that stores a//q_l*gamma """ from sympy import ceiling v = 1 j = i while(j % 2 == 0): v += 1 j //= 2 if ceiling(i / (2**v)) % 2 == 1: neg_pow = -1 else: neg_pow = 1 b = g.b + 2*neg_pow*B[v - 1] a = g.a g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b) for fb in factor_base: if a % fb.prime == 0: continue fb.soln1 = (fb.soln1 - neg_pow*fb.b_ainv[v - 1]) % fb.prime fb.soln2 = (fb.soln2 - neg_pow*fb.b_ainv[v - 1]) % fb.prime return g def _gen_sieve_array(M, factor_base): """Sieve Stage of the Quadratic Sieve. For every prime in the factor_base that doesn't divide the coefficient `a` we add log_p over the sieve_array such that ``-M <= soln1 + i*p <= M`` and ``-M <= soln2 + i*p <= M`` where `i` is an integer. When p = 2 then log_p is only added using ``-M <= soln1 + i*p <= M``. Parameters ========== M : sieve interval factor_base : factor_base primes """ sieve_array = [0]*(2*M + 1) for factor in factor_base: if factor.soln1 is None: #The prime does not divides a continue for idx in range((M + factor.soln1) % factor.prime, 2*M, factor.prime): sieve_array[idx] += factor.log_p if factor.prime == 2: continue #if prime is 2 then sieve only with soln_1_p for idx in range((M + factor.soln2) % factor.prime, 2*M, factor.prime): sieve_array[idx] += factor.log_p return sieve_array def _check_smoothness(num, factor_base): """Here we check that if `num` is a smooth number or not. If `a` is a smooth number then it returns a vector of prime exponents modulo 2. For example if a = 2 * 5**2 * 7**3 and the factor base contains {2, 3, 5, 7} then `a` is a smooth number and this function returns ([1, 0, 0, 1], True). If `a` is a partial relation which means that `a` a has one prime factor greater than the `factor_base` then it returns `(a, False)` which denotes `a` is a partial relation. Parameters ========== a : integer whose smootheness is to be checked factor_base : factor_base primes """ vec = [] if num < 0: vec.append(1) num *= -1 else: vec.append(0) #-1 is not included in factor_base add -1 in vector for factor in factor_base: if num % factor.prime != 0: vec.append(0) continue factor_exp = 0 while num % factor.prime == 0: factor_exp += 1 num //= factor.prime vec.append(factor_exp % 2) if num == 1: return vec, True if isprime(num): return num, False return None, None def _trial_division_stage(N, M, factor_base, sieve_array, sieve_poly, partial_relations, ERROR_TERM): """Trial division stage. Here we trial divide the values generetated by sieve_poly in the sieve interval and if it is a smooth number then it is stored in `smooth_relations`. Moreover, if we find two partial relations with same large prime then they are combined to form a smooth relation. First we iterate over sieve array and look for values which are greater than accumulated_val, as these values have a high chance of being smooth number. Then using these values we find smooth relations. In general, let ``t**2 = u*p modN`` and ``r**2 = v*p modN`` be two partial relations with the same large prime p. Then they can be combined ``(t*r/p)**2 = u*v modN`` to form a smooth relation. Parameters ========== N : Number to be factored M : sieve interval factor_base : factor_base primes sieve_array : stores log_p values sieve_poly : polynomial from which we find smooth relations partial_relations : stores partial relations with one large prime ERROR_TERM : error term for accumulated_val """ sqrt_n = sqrt(float(N)) accumulated_val = log(M * sqrt_n)*2**10 - ERROR_TERM smooth_relations = [] proper_factor = set() partial_relation_upper_bound = 128*factor_base[-1].prime for idx, val in enumerate(sieve_array): if val < accumulated_val: continue x = idx - M v = sieve_poly.eval(x) vec, is_smooth = _check_smoothness(v, factor_base) if is_smooth is None:#Neither smooth nor partial continue u = sieve_poly.a*x + sieve_poly.b # Update the partial relation # If 2 partial relation with same large prime is found then generate smooth relation if is_smooth is False:#partial relation found large_prime = vec #Consider the large_primes under 128*F if large_prime > partial_relation_upper_bound: continue if large_prime not in partial_relations: partial_relations[large_prime] = (u, v) continue else: u_prev, v_prev = partial_relations[large_prime] partial_relations.pop(large_prime) try: large_prime_inv = mod_inverse(large_prime, N) except ValueError:#if large_prine divides N proper_factor.add(large_prime) continue u = u*u_prev*large_prime_inv v = v*v_prev // (large_prime*large_prime) vec, is_smooth = _check_smoothness(v, factor_base) #assert u*u % N == v % N smooth_relations.append((u, v, vec)) return smooth_relations, proper_factor #LINEAR ALGEBRA STAGE def _build_matrix(smooth_relations): """Build a 2D matrix from smooth relations. Parameters ========== smooth_relations : Stores smooth relations """ matrix = [] for s_relation in smooth_relations: matrix.append(s_relation[2]) return matrix def _gauss_mod_2(A): """Fast gaussian reduction for modulo 2 matrix. Parameters ========== A : Matrix Examples ======== >>> from sympy.ntheory.qs import _gauss_mod_2 >>> _gauss_mod_2([[0, 1, 1], [1, 0, 1], [0, 1, 0], [1, 1, 1]]) ([[[1, 0, 1], 3]], [True, True, True, False], [[0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 1]]) Reference ========== .. [1] A fast algorithm for gaussian elimination over GF(2) and its implementation on the GAPP. Cetin K.Koc, Sarath N.Arachchige""" import copy matrix = copy.deepcopy(A) row = len(matrix) col = len(matrix[0]) mark = [False]*row for c in range(col): for r in range(row): if matrix[r][c] == 1: break mark[r] = True for c1 in range(col): if c1 == c: continue if matrix[r][c1] == 1: for r2 in range(row): matrix[r2][c1] = (matrix[r2][c1] + matrix[r2][c]) % 2 dependent_row = [] for idx, val in enumerate(mark): if val == False: dependent_row.append([matrix[idx], idx]) return dependent_row, mark, matrix def _find_factor(dependent_rows, mark, gauss_matrix, index, smooth_relations, N): """Finds proper factor of N. Here, transform the dependent rows as a combination of independent rows of the gauss_matrix to form the desired relation of the form ``X**2 = Y**2 modN``. After obtaining the desired relation we obtain a proper factor of N by `gcd(X - Y, N)`. Parameters ========== dependent_rows : denoted dependent rows in the reduced matrix form mark : boolean array to denoted dependent and independent rows gauss_matrix : Reduced form of the smooth relations matrix index : denoted the index of the dependent_rows smooth_relations : Smooth relations vectors matrix N : Number to be factored """ from sympy import integer_nthroot idx_in_smooth = dependent_rows[index][1] independent_u = [smooth_relations[idx_in_smooth][0]] independent_v = [smooth_relations[idx_in_smooth][1]] dept_row = dependent_rows[index][0] for idx, val in enumerate(dept_row): if val == 1: for row in range(len(gauss_matrix)): if gauss_matrix[row][idx] == 1 and mark[row] == True: independent_u.append(smooth_relations[row][0]) independent_v.append(smooth_relations[row][1]) break u = 1 v = 1 for i in independent_u: u *= i for i in independent_v: v *= i #assert u**2 % N == v % N v = integer_nthroot(v, 2)[0] return igcd(u - v, N) def qs(N, prime_bound, M, ERROR_TERM=25, seed=1234): """Performs factorization using Self-Initializing Quadratic Sieve. In SIQS, let N be a number to be factored, and this N should not be a perfect power. If we find two integers such that ``X**2 = Y**2 modN`` and ``X != +-Y modN``, then `gcd(X + Y, N)` will reveal a proper factor of N. In order to find these integers X and Y we try to find relations of form t**2 = u modN where u is a product of small primes. If we have enough of these relations then we can form ``(t1*t2...ti)**2 = u1*u2...ui modN`` such that the right hand side is a square, thus we found a relation of ``X**2 = Y**2 modN``. Here, several optimizations are done like using muliple polynomials for sieving, fast changing between polynomials and using partial relations. The use of partial relations can speeds up the factoring by 2 times. Parameters ========== N : Number to be Factored prime_bound : upper bound for primes in the factor base M : Sieve Interval ERROR_TERM : Error term for checking smoothness threshold : Extra smooth relations for factorization seed : generate pseudo prime numbers Examples ======== >>> from sympy.ntheory import qs >>> qs(25645121643901801, 2000, 10000) {5394769, 4753701529} >>> qs(9804659461513846513, 2000, 10000) {4641991, 2112166839943} References ========== .. [1] https://pdfs.semanticscholar.org/5c52/8a975c1405bd35c65993abf5a4edb667c1db.pdf .. [2] https://www.rieselprime.de/ziki/Self-initializing_quadratic_sieve """ ERROR_TERM*=2**10 rgen.seed(seed) idx_1000, idx_5000, factor_base = _generate_factor_base(prime_bound, N) smooth_relations = [] ith_poly = 0 partial_relations = {} proper_factor = set() threshold = 5*len(factor_base) // 100 while True: if ith_poly == 0: ith_sieve_poly, B_array = _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000) else: ith_sieve_poly = _initialize_ith_poly(N, factor_base, ith_poly, ith_sieve_poly, B_array) ith_poly += 1 if ith_poly >= 2**(len(B_array) - 1): # time to start with a new sieve polynomial ith_poly = 0 sieve_array = _gen_sieve_array(M, factor_base) s_rel, p_f = _trial_division_stage(N, M, factor_base, sieve_array, ith_sieve_poly, partial_relations, ERROR_TERM) smooth_relations += s_rel proper_factor |= p_f if len(smooth_relations) >= len(factor_base) + threshold: break matrix = _build_matrix(smooth_relations) dependent_row, mark, gauss_matrix = _gauss_mod_2(matrix) N_copy = N for index in range(len(dependent_row)): factor = _find_factor(dependent_row, mark, gauss_matrix, index, smooth_relations, N) if factor > 1 and factor < N: proper_factor.add(factor) while(N_copy % factor == 0): N_copy //= factor if isprime(N_copy): proper_factor.add(N_copy) break if(N_copy == 1): break return proper_factor
49c1ac5fc98dcf6a98f9b965c963ccf1f848397806831f3d61cb09ecbea77e74
from collections import defaultdict from sympy.core import (Basic, S, Add, Mul, Pow, Symbol, sympify, expand_func, Function, Dummy, Expr, factor_terms, expand_power_exp, Eq) from sympy.core.compatibility import iterable, ordered, as_int from sympy.core.parameters import global_parameters from sympy.core.function import (expand_log, count_ops, _mexpand, _coeff_isneg, nfloat, expand_mul) from sympy.core.numbers import Float, I, pi, Rational, Integer from sympy.core.relational import Relational from sympy.core.rules import Transform from sympy.core.sympify import _sympify from sympy.functions import gamma, exp, sqrt, log, exp_polar, re from sympy.functions.combinatorial.factorials import CombinatorialFunction from sympy.functions.elementary.complexes import unpolarify, Abs from sympy.functions.elementary.exponential import ExpBase from sympy.functions.elementary.hyperbolic import HyperbolicFunction from sympy.functions.elementary.integers import ceiling from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold from sympy.functions.elementary.trigonometric import TrigonometricFunction from sympy.functions.special.bessel import besselj, besseli, besselk, jn, bessely from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.polys import together, cancel, factor from sympy.simplify.combsimp import combsimp from sympy.simplify.cse_opts import sub_pre, sub_post from sympy.simplify.powsimp import powsimp from sympy.simplify.radsimp import radsimp, fraction, collect_abs from sympy.simplify.sqrtdenest import sqrtdenest from sympy.simplify.trigsimp import trigsimp, exptrigsimp from sympy.utilities.iterables import has_variety, sift import mpmath def separatevars(expr, symbols=[], dict=False, force=False): """ Separates variables in an expression, if possible. By default, it separates with respect to all symbols in an expression and collects constant coefficients that are independent of symbols. Explanation =========== If ``dict=True`` then the separated terms will be returned in a dictionary keyed to their corresponding symbols. By default, all symbols in the expression will appear as keys; if symbols are provided, then all those symbols will be used as keys, and any terms in the expression containing other symbols or non-symbols will be returned keyed to the string 'coeff'. (Passing None for symbols will return the expression in a dictionary keyed to 'coeff'.) If ``force=True``, then bases of powers will be separated regardless of assumptions on the symbols involved. Notes ===== The order of the factors is determined by Mul, so that the separated expressions may not necessarily be grouped together. Although factoring is necessary to separate variables in some expressions, it is not necessary in all cases, so one should not count on the returned factors being factored. Examples ======== >>> from sympy.abc import x, y, z, alpha >>> from sympy import separatevars, sin >>> separatevars((x*y)**y) (x*y)**y >>> separatevars((x*y)**y, force=True) x**y*y**y >>> e = 2*x**2*z*sin(y)+2*z*x**2 >>> separatevars(e) 2*x**2*z*(sin(y) + 1) >>> separatevars(e, symbols=(x, y), dict=True) {'coeff': 2*z, x: x**2, y: sin(y) + 1} >>> separatevars(e, [x, y, alpha], dict=True) {'coeff': 2*z, alpha: 1, x: x**2, y: sin(y) + 1} If the expression is not really separable, or is only partially separable, separatevars will do the best it can to separate it by using factoring. >>> separatevars(x + x*y - 3*x**2) -x*(3*x - y - 1) If the expression is not separable then expr is returned unchanged or (if dict=True) then None is returned. >>> eq = 2*x + y*sin(x) >>> separatevars(eq) == eq True >>> separatevars(2*x + y*sin(x), symbols=(x, y), dict=True) is None True """ expr = sympify(expr) if dict: return _separatevars_dict(_separatevars(expr, force), symbols) else: return _separatevars(expr, force) def _separatevars(expr, force): if isinstance(expr, Abs): arg = expr.args[0] if arg.is_Mul and not arg.is_number: s = separatevars(arg, dict=True, force=force) if s is not None: return Mul(*map(expr.func, s.values())) else: return expr if len(expr.free_symbols) < 2: return expr # don't destroy a Mul since much of the work may already be done if expr.is_Mul: args = list(expr.args) changed = False for i, a in enumerate(args): args[i] = separatevars(a, force) changed = changed or args[i] != a if changed: expr = expr.func(*args) return expr # get a Pow ready for expansion if expr.is_Pow: expr = Pow(separatevars(expr.base, force=force), expr.exp) # First try other expansion methods expr = expr.expand(mul=False, multinomial=False, force=force) _expr, reps = posify(expr) if force else (expr, {}) expr = factor(_expr).subs(reps) if not expr.is_Add: return expr # Find any common coefficients to pull out args = list(expr.args) commonc = args[0].args_cnc(cset=True, warn=False)[0] for i in args[1:]: commonc &= i.args_cnc(cset=True, warn=False)[0] commonc = Mul(*commonc) commonc = commonc.as_coeff_Mul()[1] # ignore constants commonc_set = commonc.args_cnc(cset=True, warn=False)[0] # remove them for i, a in enumerate(args): c, nc = a.args_cnc(cset=True, warn=False) c = c - commonc_set args[i] = Mul(*c)*Mul(*nc) nonsepar = Add(*args) if len(nonsepar.free_symbols) > 1: _expr = nonsepar _expr, reps = posify(_expr) if force else (_expr, {}) _expr = (factor(_expr)).subs(reps) if not _expr.is_Add: nonsepar = _expr return commonc*nonsepar def _separatevars_dict(expr, symbols): if symbols: if not all(t.is_Atom for t in symbols): raise ValueError("symbols must be Atoms.") symbols = list(symbols) elif symbols is None: return {'coeff': expr} else: symbols = list(expr.free_symbols) if not symbols: return None ret = {i: [] for i in symbols + ['coeff']} for i in Mul.make_args(expr): expsym = i.free_symbols intersection = set(symbols).intersection(expsym) if len(intersection) > 1: return None if len(intersection) == 0: # There are no symbols, so it is part of the coefficient ret['coeff'].append(i) else: ret[intersection.pop()].append(i) # rebuild for k, v in ret.items(): ret[k] = Mul(*v) return ret def _is_sum_surds(p): args = p.args if p.is_Add else [p] for y in args: if not ((y**2).is_Rational and y.is_extended_real): return False return True def posify(eq): """Return ``eq`` (with generic symbols made positive) and a dictionary containing the mapping between the old and new symbols. Explanation =========== Any symbol that has positive=None will be replaced with a positive dummy symbol having the same name. This replacement will allow more symbolic processing of expressions, especially those involving powers and logarithms. A dictionary that can be sent to subs to restore ``eq`` to its original symbols is also returned. >>> from sympy import posify, Symbol, log, solve >>> from sympy.abc import x >>> posify(x + Symbol('p', positive=True) + Symbol('n', negative=True)) (_x + n + p, {_x: x}) >>> eq = 1/x >>> log(eq).expand() log(1/x) >>> log(posify(eq)[0]).expand() -log(_x) >>> p, rep = posify(eq) >>> log(p).expand().subs(rep) -log(x) It is possible to apply the same transformations to an iterable of expressions: >>> eq = x**2 - 4 >>> solve(eq, x) [-2, 2] >>> eq_x, reps = posify([eq, x]); eq_x [_x**2 - 4, _x] >>> solve(*eq_x) [2] """ eq = sympify(eq) if iterable(eq): f = type(eq) eq = list(eq) syms = set() for e in eq: syms = syms.union(e.atoms(Symbol)) reps = {} for s in syms: reps.update({v: k for k, v in posify(s)[1].items()}) for i, e in enumerate(eq): eq[i] = e.subs(reps) return f(eq), {r: s for s, r in reps.items()} reps = {s: Dummy(s.name, positive=True, **s.assumptions0) for s in eq.free_symbols if s.is_positive is None} eq = eq.subs(reps) return eq, {r: s for s, r in reps.items()} def hypersimp(f, k): """Given combinatorial term f(k) simplify its consecutive term ratio i.e. f(k+1)/f(k). The input term can be composed of functions and integer sequences which have equivalent representation in terms of gamma special function. Explanation =========== The algorithm performs three basic steps: 1. Rewrite all functions in terms of gamma, if possible. 2. Rewrite all occurrences of gamma in terms of products of gamma and rising factorial with integer, absolute constant exponent. 3. Perform simplification of nested fractions, powers and if the resulting expression is a quotient of polynomials, reduce their total degree. If f(k) is hypergeometric then as result we arrive with a quotient of polynomials of minimal degree. Otherwise None is returned. For more information on the implemented algorithm refer to: 1. W. Koepf, Algorithms for m-fold Hypergeometric Summation, Journal of Symbolic Computation (1995) 20, 399-417 """ f = sympify(f) g = f.subs(k, k + 1) / f g = g.rewrite(gamma) if g.has(Piecewise): g = piecewise_fold(g) g = g.args[-1][0] g = expand_func(g) g = powsimp(g, deep=True, combine='exp') if g.is_rational_function(k): return simplify(g, ratio=S.Infinity) else: return None def hypersimilar(f, g, k): """ Returns True if ``f`` and ``g`` are hyper-similar. Explanation =========== Similarity in hypergeometric sense means that a quotient of f(k) and g(k) is a rational function in ``k``. This procedure is useful in solving recurrence relations. For more information see hypersimp(). """ f, g = list(map(sympify, (f, g))) h = (f/g).rewrite(gamma) h = h.expand(func=True, basic=False) return h.is_rational_function(k) def signsimp(expr, evaluate=None): """Make all Add sub-expressions canonical wrt sign. Explanation =========== If an Add subexpression, ``a``, can have a sign extracted, as determined by could_extract_minus_sign, it is replaced with Mul(-1, a, evaluate=False). This allows signs to be extracted from powers and products. Examples ======== >>> from sympy import signsimp, exp, symbols >>> from sympy.abc import x, y >>> i = symbols('i', odd=True) >>> n = -1 + 1/x >>> n/x/(-n)**2 - 1/n/x (-1 + 1/x)/(x*(1 - 1/x)**2) - 1/(x*(-1 + 1/x)) >>> signsimp(_) 0 >>> x*n + x*-n x*(-1 + 1/x) + x*(1 - 1/x) >>> signsimp(_) 0 Since powers automatically handle leading signs >>> (-2)**i -2**i signsimp can be used to put the base of a power with an integer exponent into canonical form: >>> n**i (-1 + 1/x)**i By default, signsimp doesn't leave behind any hollow simplification: if making an Add canonical wrt sign didn't change the expression, the original Add is restored. If this is not desired then the keyword ``evaluate`` can be set to False: >>> e = exp(y - x) >>> signsimp(e) == e True >>> signsimp(e, evaluate=False) exp(-(x - y)) """ if evaluate is None: evaluate = global_parameters.evaluate expr = sympify(expr) if not isinstance(expr, (Expr, Relational)) or expr.is_Atom: return expr e = sub_post(sub_pre(expr)) if not isinstance(e, (Expr, Relational)) or e.is_Atom: return e if e.is_Add: return e.func(*[signsimp(a, evaluate) for a in e.args]) if evaluate: e = e.xreplace({m: -(-m) for m in e.atoms(Mul) if -(-m) != m}) return e def simplify(expr, ratio=1.7, measure=count_ops, rational=False, inverse=False, doit=True, **kwargs): """Simplifies the given expression. Explanation =========== Simplification is not a well defined term and the exact strategies this function tries can change in the future versions of SymPy. If your algorithm relies on "simplification" (whatever it is), try to determine what you need exactly - is it powsimp()?, radsimp()?, together()?, logcombine()?, or something else? And use this particular function directly, because those are well defined and thus your algorithm will be robust. Nonetheless, especially for interactive use, or when you don't know anything about the structure of the expression, simplify() tries to apply intelligent heuristics to make the input expression "simpler". For example: >>> from sympy import simplify, cos, sin >>> from sympy.abc import x, y >>> a = (x + x**2)/(x*sin(y)**2 + x*cos(y)**2) >>> a (x**2 + x)/(x*sin(y)**2 + x*cos(y)**2) >>> simplify(a) x + 1 Note that we could have obtained the same result by using specific simplification functions: >>> from sympy import trigsimp, cancel >>> trigsimp(a) (x**2 + x)/x >>> cancel(_) x + 1 In some cases, applying :func:`simplify` may actually result in some more complicated expression. The default ``ratio=1.7`` prevents more extreme cases: if (result length)/(input length) > ratio, then input is returned unmodified. The ``measure`` parameter lets you specify the function used to determine how complex an expression is. The function should take a single argument as an expression and return a number such that if expression ``a`` is more complex than expression ``b``, then ``measure(a) > measure(b)``. The default measure function is :func:`~.count_ops`, which returns the total number of operations in the expression. For example, if ``ratio=1``, ``simplify`` output can't be longer than input. :: >>> from sympy import sqrt, simplify, count_ops, oo >>> root = 1/(sqrt(2)+3) Since ``simplify(root)`` would result in a slightly longer expression, root is returned unchanged instead:: >>> simplify(root, ratio=1) == root True If ``ratio=oo``, simplify will be applied anyway:: >>> count_ops(simplify(root, ratio=oo)) > count_ops(root) True Note that the shortest expression is not necessary the simplest, so setting ``ratio`` to 1 may not be a good idea. Heuristically, the default value ``ratio=1.7`` seems like a reasonable choice. You can easily define your own measure function based on what you feel should represent the "size" or "complexity" of the input expression. Note that some choices, such as ``lambda expr: len(str(expr))`` may appear to be good metrics, but have other problems (in this case, the measure function may slow down simplify too much for very large expressions). If you don't know what a good metric would be, the default, ``count_ops``, is a good one. For example: >>> from sympy import symbols, log >>> a, b = symbols('a b', positive=True) >>> g = log(a) + log(b) + log(a)*log(1/b) >>> h = simplify(g) >>> h log(a*b**(1 - log(a))) >>> count_ops(g) 8 >>> count_ops(h) 5 So you can see that ``h`` is simpler than ``g`` using the count_ops metric. However, we may not like how ``simplify`` (in this case, using ``logcombine``) has created the ``b**(log(1/a) + 1)`` term. A simple way to reduce this would be to give more weight to powers as operations in ``count_ops``. We can do this by using the ``visual=True`` option: >>> print(count_ops(g, visual=True)) 2*ADD + DIV + 4*LOG + MUL >>> print(count_ops(h, visual=True)) 2*LOG + MUL + POW + SUB >>> from sympy import Symbol, S >>> def my_measure(expr): ... POW = Symbol('POW') ... # Discourage powers by giving POW a weight of 10 ... count = count_ops(expr, visual=True).subs(POW, 10) ... # Every other operation gets a weight of 1 (the default) ... count = count.replace(Symbol, type(S.One)) ... return count >>> my_measure(g) 8 >>> my_measure(h) 14 >>> 15./8 > 1.7 # 1.7 is the default ratio True >>> simplify(g, measure=my_measure) -log(a)*log(b) + log(a) + log(b) Note that because ``simplify()`` internally tries many different simplification strategies and then compares them using the measure function, we get a completely different result that is still different from the input expression by doing this. If ``rational=True``, Floats will be recast as Rationals before simplification. If ``rational=None``, Floats will be recast as Rationals but the result will be recast as Floats. If rational=False(default) then nothing will be done to the Floats. If ``inverse=True``, it will be assumed that a composition of inverse functions, such as sin and asin, can be cancelled in any order. For example, ``asin(sin(x))`` will yield ``x`` without checking whether x belongs to the set where this relation is true. The default is False. Note that ``simplify()`` automatically calls ``doit()`` on the final expression. You can avoid this behavior by passing ``doit=False`` as an argument. Also, it should be noted that simplifying the boolian expression is not well defined. If the expression prefers automatic evaluation (such as :obj:`~.Eq()` or :obj:`~.Or()`), simplification will return ``True`` or ``False`` if truth value can be determined. If the expression is not evaluated by default (such as :obj:`~.Predicate()`), simplification will not reduce it and you should use :func:`~.refine()` or :func:`~.ask()` function. This inconsistency will be resolved in future version. See Also ======== sympy.assumptions.refine.refine : Simplification using assumptions. sympy.assumptions.ask.ask : Query for boolean expressions using assumptions. """ def shorter(*choices): """ Return the choice that has the fewest ops. In case of a tie, the expression listed first is selected. """ if not has_variety(choices): return choices[0] return min(choices, key=measure) def done(e): rv = e.doit() if doit else e return shorter(rv, collect_abs(rv)) expr = sympify(expr) kwargs = dict( ratio=kwargs.get('ratio', ratio), measure=kwargs.get('measure', measure), rational=kwargs.get('rational', rational), inverse=kwargs.get('inverse', inverse), doit=kwargs.get('doit', doit)) # no routine for Expr needs to check for is_zero if isinstance(expr, Expr) and expr.is_zero: return S.Zero _eval_simplify = getattr(expr, '_eval_simplify', None) if _eval_simplify is not None: return _eval_simplify(**kwargs) original_expr = expr = collect_abs(signsimp(expr)) if not isinstance(expr, Basic) or not expr.args: # XXX: temporary hack return expr if inverse and expr.has(Function): expr = inversecombine(expr) if not expr.args: # simplified to atomic return expr # do deep simplification handled = Add, Mul, Pow, ExpBase expr = expr.replace( # here, checking for x.args is not enough because Basic has # args but Basic does not always play well with replace, e.g. # when simultaneous is True found expressions will be masked # off with a Dummy but not all Basic objects in an expression # can be replaced with a Dummy lambda x: isinstance(x, Expr) and x.args and not isinstance( x, handled), lambda x: x.func(*[simplify(i, **kwargs) for i in x.args]), simultaneous=False) if not isinstance(expr, handled): return done(expr) if not expr.is_commutative: expr = nc_simplify(expr) # TODO: Apply different strategies, considering expression pattern: # is it a purely rational function? Is there any trigonometric function?... # See also https://github.com/sympy/sympy/pull/185. # rationalize Floats floats = False if rational is not False and expr.has(Float): floats = True expr = nsimplify(expr, rational=True) expr = bottom_up(expr, lambda w: getattr(w, 'normal', lambda: w)()) expr = Mul(*powsimp(expr).as_content_primitive()) _e = cancel(expr) expr1 = shorter(_e, _mexpand(_e).cancel()) # issue 6829 expr2 = shorter(together(expr, deep=True), together(expr1, deep=True)) if ratio is S.Infinity: expr = expr2 else: expr = shorter(expr2, expr1, expr) if not isinstance(expr, Basic): # XXX: temporary hack return expr expr = factor_terms(expr, sign=False) from sympy.simplify.hyperexpand import hyperexpand from sympy.functions.special.bessel import BesselBase from sympy import Sum, Product, Integral from sympy.functions.elementary.complexes import sign # must come before `Piecewise` since this introduces more `Piecewise` terms if expr.has(sign): expr = expr.rewrite(Abs) # Deal with Piecewise separately to avoid recursive growth of expressions if expr.has(Piecewise): # Fold into a single Piecewise expr = piecewise_fold(expr) # Apply doit, if doit=True expr = done(expr) # Still a Piecewise? if expr.has(Piecewise): # Fold into a single Piecewise, in case doit lead to some # expressions being Piecewise expr = piecewise_fold(expr) # kroneckersimp also affects Piecewise if expr.has(KroneckerDelta): expr = kroneckersimp(expr) # Still a Piecewise? if expr.has(Piecewise): from sympy.functions.elementary.piecewise import piecewise_simplify # Do not apply doit on the segments as it has already # been done above, but simplify expr = piecewise_simplify(expr, deep=True, doit=False) # Still a Piecewise? if expr.has(Piecewise): # Try factor common terms expr = shorter(expr, factor_terms(expr)) # As all expressions have been simplified above with the # complete simplify, nothing more needs to be done here return expr # hyperexpand automatically only works on hypergeometric terms # Do this after the Piecewise part to avoid recursive expansion expr = hyperexpand(expr) if expr.has(KroneckerDelta): expr = kroneckersimp(expr) if expr.has(BesselBase): expr = besselsimp(expr) if expr.has(TrigonometricFunction, HyperbolicFunction): expr = trigsimp(expr, deep=True) if expr.has(log): expr = shorter(expand_log(expr, deep=True), logcombine(expr)) if expr.has(CombinatorialFunction, gamma): # expression with gamma functions or non-integer arguments is # automatically passed to gammasimp expr = combsimp(expr) if expr.has(Sum): expr = sum_simplify(expr, **kwargs) if expr.has(Integral): expr = expr.xreplace({ i: factor_terms(i) for i in expr.atoms(Integral)}) if expr.has(Product): expr = product_simplify(expr) from sympy.physics.units import Quantity from sympy.physics.units.util import quantity_simplify if expr.has(Quantity): expr = quantity_simplify(expr) short = shorter(powsimp(expr, combine='exp', deep=True), powsimp(expr), expr) short = shorter(short, cancel(short)) short = shorter(short, factor_terms(short), expand_power_exp(expand_mul(short))) if short.has(TrigonometricFunction, HyperbolicFunction, ExpBase): short = exptrigsimp(short) # get rid of hollow 2-arg Mul factorization hollow_mul = Transform( lambda x: Mul(*x.args), lambda x: x.is_Mul and len(x.args) == 2 and x.args[0].is_Number and x.args[1].is_Add and x.is_commutative) expr = short.xreplace(hollow_mul) numer, denom = expr.as_numer_denom() if denom.is_Add: n, d = fraction(radsimp(1/denom, symbolic=False, max_terms=1)) if n is not S.One: expr = (numer*n).expand()/d if expr.could_extract_minus_sign(): n, d = fraction(expr) if d != 0: expr = signsimp(-n/(-d)) if measure(expr) > ratio*measure(original_expr): expr = original_expr # restore floats if floats and rational is None: expr = nfloat(expr, exponent=False) return done(expr) def sum_simplify(s, **kwargs): """Main function for Sum simplification""" from sympy.concrete.summations import Sum from sympy.core.function import expand if not isinstance(s, Add): s = s.xreplace({a: sum_simplify(a, **kwargs) for a in s.atoms(Add) if a.has(Sum)}) s = expand(s) if not isinstance(s, Add): return s terms = s.args s_t = [] # Sum Terms o_t = [] # Other Terms for term in terms: sum_terms, other = sift(Mul.make_args(term), lambda i: isinstance(i, Sum), binary=True) if not sum_terms: o_t.append(term) continue other = [Mul(*other)] s_t.append(Mul(*(other + [s._eval_simplify(**kwargs) for s in sum_terms]))) result = Add(sum_combine(s_t), *o_t) return result def sum_combine(s_t): """Helper function for Sum simplification Attempts to simplify a list of sums, by combining limits / sum function's returns the simplified sum """ from sympy.concrete.summations import Sum used = [False] * len(s_t) for method in range(2): for i, s_term1 in enumerate(s_t): if not used[i]: for j, s_term2 in enumerate(s_t): if not used[j] and i != j: temp = sum_add(s_term1, s_term2, method) if isinstance(temp, Sum) or isinstance(temp, Mul): s_t[i] = temp s_term1 = s_t[i] used[j] = True result = S.Zero for i, s_term in enumerate(s_t): if not used[i]: result = Add(result, s_term) return result def factor_sum(self, limits=None, radical=False, clear=False, fraction=False, sign=True): """Return Sum with constant factors extracted. If ``limits`` is specified then ``self`` is the summand; the other keywords are passed to ``factor_terms``. Examples ======== >>> from sympy import Sum >>> from sympy.abc import x, y >>> from sympy.simplify.simplify import factor_sum >>> s = Sum(x*y, (x, 1, 3)) >>> factor_sum(s) y*Sum(x, (x, 1, 3)) >>> factor_sum(s.function, s.limits) y*Sum(x, (x, 1, 3)) """ # XXX deprecate in favor of direct call to factor_terms from sympy.concrete.summations import Sum kwargs = dict(radical=radical, clear=clear, fraction=fraction, sign=sign) expr = Sum(self, *limits) if limits else self return factor_terms(expr, **kwargs) def sum_add(self, other, method=0): """Helper function for Sum simplification""" from sympy.concrete.summations import Sum from sympy import Mul #we know this is something in terms of a constant * a sum #so we temporarily put the constants inside for simplification #then simplify the result def __refactor(val): args = Mul.make_args(val) sumv = next(x for x in args if isinstance(x, Sum)) constant = Mul(*[x for x in args if x != sumv]) return Sum(constant * sumv.function, *sumv.limits) if isinstance(self, Mul): rself = __refactor(self) else: rself = self if isinstance(other, Mul): rother = __refactor(other) else: rother = other if type(rself) == type(rother): if method == 0: if rself.limits == rother.limits: return factor_sum(Sum(rself.function + rother.function, *rself.limits)) elif method == 1: if simplify(rself.function - rother.function) == 0: if len(rself.limits) == len(rother.limits) == 1: i = rself.limits[0][0] x1 = rself.limits[0][1] y1 = rself.limits[0][2] j = rother.limits[0][0] x2 = rother.limits[0][1] y2 = rother.limits[0][2] if i == j: if x2 == y1 + 1: return factor_sum(Sum(rself.function, (i, x1, y2))) elif x1 == y2 + 1: return factor_sum(Sum(rself.function, (i, x2, y1))) return Add(self, other) def product_simplify(s): """Main function for Product simplification""" from sympy.concrete.products import Product terms = Mul.make_args(s) p_t = [] # Product Terms o_t = [] # Other Terms for term in terms: if isinstance(term, Product): p_t.append(term) else: o_t.append(term) used = [False] * len(p_t) for method in range(2): for i, p_term1 in enumerate(p_t): if not used[i]: for j, p_term2 in enumerate(p_t): if not used[j] and i != j: if isinstance(product_mul(p_term1, p_term2, method), Product): p_t[i] = product_mul(p_term1, p_term2, method) used[j] = True result = Mul(*o_t) for i, p_term in enumerate(p_t): if not used[i]: result = Mul(result, p_term) return result def product_mul(self, other, method=0): """Helper function for Product simplification""" from sympy.concrete.products import Product if type(self) == type(other): if method == 0: if self.limits == other.limits: return Product(self.function * other.function, *self.limits) elif method == 1: if simplify(self.function - other.function) == 0: if len(self.limits) == len(other.limits) == 1: i = self.limits[0][0] x1 = self.limits[0][1] y1 = self.limits[0][2] j = other.limits[0][0] x2 = other.limits[0][1] y2 = other.limits[0][2] if i == j: if x2 == y1 + 1: return Product(self.function, (i, x1, y2)) elif x1 == y2 + 1: return Product(self.function, (i, x2, y1)) return Mul(self, other) def _nthroot_solve(p, n, prec): """ helper function for ``nthroot`` It denests ``p**Rational(1, n)`` using its minimal polynomial """ from sympy.polys.numberfields import _minimal_polynomial_sq from sympy.solvers import solve while n % 2 == 0: p = sqrtdenest(sqrt(p)) n = n // 2 if n == 1: return p pn = p**Rational(1, n) x = Symbol('x') f = _minimal_polynomial_sq(p, n, x) if f is None: return None sols = solve(f, x) for sol in sols: if abs(sol - pn).n() < 1./10**prec: sol = sqrtdenest(sol) if _mexpand(sol**n) == p: return sol def logcombine(expr, force=False): """ Takes logarithms and combines them using the following rules: - log(x) + log(y) == log(x*y) if both are positive - a*log(x) == log(x**a) if x is positive and a is real If ``force`` is ``True`` then the assumptions above will be assumed to hold if there is no assumption already in place on a quantity. For example, if ``a`` is imaginary or the argument negative, force will not perform a combination but if ``a`` is a symbol with no assumptions the change will take place. Examples ======== >>> from sympy import Symbol, symbols, log, logcombine, I >>> from sympy.abc import a, x, y, z >>> logcombine(a*log(x) + log(y) - log(z)) a*log(x) + log(y) - log(z) >>> logcombine(a*log(x) + log(y) - log(z), force=True) log(x**a*y/z) >>> x,y,z = symbols('x,y,z', positive=True) >>> a = Symbol('a', real=True) >>> logcombine(a*log(x) + log(y) - log(z)) log(x**a*y/z) The transformation is limited to factors and/or terms that contain logs, so the result depends on the initial state of expansion: >>> eq = (2 + 3*I)*log(x) >>> logcombine(eq, force=True) == eq True >>> logcombine(eq.expand(), force=True) log(x**2) + I*log(x**3) See Also ======== posify: replace all symbols with symbols having positive assumptions sympy.core.function.expand_log: expand the logarithms of products and powers; the opposite of logcombine """ def f(rv): if not (rv.is_Add or rv.is_Mul): return rv def gooda(a): # bool to tell whether the leading ``a`` in ``a*log(x)`` # could appear as log(x**a) return (a is not S.NegativeOne and # -1 *could* go, but we disallow (a.is_extended_real or force and a.is_extended_real is not False)) def goodlog(l): # bool to tell whether log ``l``'s argument can combine with others a = l.args[0] return a.is_positive or force and a.is_nonpositive is not False other = [] logs = [] log1 = defaultdict(list) for a in Add.make_args(rv): if isinstance(a, log) and goodlog(a): log1[()].append(([], a)) elif not a.is_Mul: other.append(a) else: ot = [] co = [] lo = [] for ai in a.args: if ai.is_Rational and ai < 0: ot.append(S.NegativeOne) co.append(-ai) elif isinstance(ai, log) and goodlog(ai): lo.append(ai) elif gooda(ai): co.append(ai) else: ot.append(ai) if len(lo) > 1: logs.append((ot, co, lo)) elif lo: log1[tuple(ot)].append((co, lo[0])) else: other.append(a) # if there is only one log in other, put it with the # good logs if len(other) == 1 and isinstance(other[0], log): log1[()].append(([], other.pop())) # if there is only one log at each coefficient and none have # an exponent to place inside the log then there is nothing to do if not logs and all(len(log1[k]) == 1 and log1[k][0] == [] for k in log1): return rv # collapse multi-logs as far as possible in a canonical way # TODO: see if x*log(a)+x*log(a)*log(b) -> x*log(a)*(1+log(b))? # -- in this case, it's unambiguous, but if it were were a log(c) in # each term then it's arbitrary whether they are grouped by log(a) or # by log(c). So for now, just leave this alone; it's probably better to # let the user decide for o, e, l in logs: l = list(ordered(l)) e = log(l.pop(0).args[0]**Mul(*e)) while l: li = l.pop(0) e = log(li.args[0]**e) c, l = Mul(*o), e if isinstance(l, log): # it should be, but check to be sure log1[(c,)].append(([], l)) else: other.append(c*l) # logs that have the same coefficient can multiply for k in list(log1.keys()): log1[Mul(*k)] = log(logcombine(Mul(*[ l.args[0]**Mul(*c) for c, l in log1.pop(k)]), force=force), evaluate=False) # logs that have oppositely signed coefficients can divide for k in ordered(list(log1.keys())): if not k in log1: # already popped as -k continue if -k in log1: # figure out which has the minus sign; the one with # more op counts should be the one num, den = k, -k if num.count_ops() > den.count_ops(): num, den = den, num other.append( num*log(log1.pop(num).args[0]/log1.pop(den).args[0], evaluate=False)) else: other.append(k*log1.pop(k)) return Add(*other) return bottom_up(expr, f) def inversecombine(expr): """Simplify the composition of a function and its inverse. Explanation =========== No attention is paid to whether the inverse is a left inverse or a right inverse; thus, the result will in general not be equivalent to the original expression. Examples ======== >>> from sympy.simplify.simplify import inversecombine >>> from sympy import asin, sin, log, exp >>> from sympy.abc import x >>> inversecombine(asin(sin(x))) x >>> inversecombine(2*log(exp(3*x))) 6*x """ def f(rv): if rv.is_Function and hasattr(rv, "inverse"): if (len(rv.args) == 1 and len(rv.args[0].args) == 1 and isinstance(rv.args[0], rv.inverse(argindex=1))): rv = rv.args[0].args[0] return rv return bottom_up(expr, f) def walk(e, *target): """Iterate through the args that are the given types (target) and return a list of the args that were traversed; arguments that are not of the specified types are not traversed. Examples ======== >>> from sympy.simplify.simplify import walk >>> from sympy import Min, Max >>> from sympy.abc import x, y, z >>> list(walk(Min(x, Max(y, Min(1, z))), Min)) [Min(x, Max(y, Min(1, z)))] >>> list(walk(Min(x, Max(y, Min(1, z))), Min, Max)) [Min(x, Max(y, Min(1, z))), Max(y, Min(1, z)), Min(1, z)] See Also ======== bottom_up """ if isinstance(e, target): yield e for i in e.args: yield from walk(i, *target) def bottom_up(rv, F, atoms=False, nonbasic=False): """Apply ``F`` to all expressions in an expression tree from the bottom up. If ``atoms`` is True, apply ``F`` even if there are no args; if ``nonbasic`` is True, try to apply ``F`` to non-Basic objects. """ args = getattr(rv, 'args', None) if args is not None: if args: args = tuple([bottom_up(a, F, atoms, nonbasic) for a in args]) if args != rv.args: rv = rv.func(*args) rv = F(rv) elif atoms: rv = F(rv) else: if nonbasic: try: rv = F(rv) except TypeError: pass return rv def kroneckersimp(expr): """ Simplify expressions with KroneckerDelta. The only simplification currently attempted is to identify multiplicative cancellation: Examples ======== >>> from sympy import KroneckerDelta, kroneckersimp >>> from sympy.abc import i >>> kroneckersimp(1 + KroneckerDelta(0, i) * KroneckerDelta(1, i)) 1 """ def args_cancel(args1, args2): for i1 in range(2): for i2 in range(2): a1 = args1[i1] a2 = args2[i2] a3 = args1[(i1 + 1) % 2] a4 = args2[(i2 + 1) % 2] if Eq(a1, a2) is S.true and Eq(a3, a4) is S.false: return True return False def cancel_kronecker_mul(m): from sympy.utilities.iterables import subsets args = m.args deltas = [a for a in args if isinstance(a, KroneckerDelta)] for delta1, delta2 in subsets(deltas, 2): args1 = delta1.args args2 = delta2.args if args_cancel(args1, args2): return 0*m return m if not expr.has(KroneckerDelta): return expr if expr.has(Piecewise): expr = expr.rewrite(KroneckerDelta) newexpr = expr expr = None while newexpr != expr: expr = newexpr newexpr = expr.replace(lambda e: isinstance(e, Mul), cancel_kronecker_mul) return expr def besselsimp(expr): """ Simplify bessel-type functions. Explanation =========== This routine tries to simplify bessel-type functions. Currently it only works on the Bessel J and I functions, however. It works by looking at all such functions in turn, and eliminating factors of "I" and "-1" (actually their polar equivalents) in front of the argument. Then, functions of half-integer order are rewritten using strigonometric functions and functions of integer order (> 1) are rewritten using functions of low order. Finally, if the expression was changed, compute factorization of the result with factor(). >>> from sympy import besselj, besseli, besselsimp, polar_lift, I, S >>> from sympy.abc import z, nu >>> besselsimp(besselj(nu, z*polar_lift(-1))) exp(I*pi*nu)*besselj(nu, z) >>> besselsimp(besseli(nu, z*polar_lift(-I))) exp(-I*pi*nu/2)*besselj(nu, z) >>> besselsimp(besseli(S(-1)/2, z)) sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z)) >>> besselsimp(z*besseli(0, z) + z*(besseli(2, z))/2 + besseli(1, z)) 3*z*besseli(0, z)/2 """ # TODO # - better algorithm? # - simplify (cos(pi*b)*besselj(b,z) - besselj(-b,z))/sin(pi*b) ... # - use contiguity relations? def replacer(fro, to, factors): factors = set(factors) def repl(nu, z): if factors.intersection(Mul.make_args(z)): return to(nu, z) return fro(nu, z) return repl def torewrite(fro, to): def tofunc(nu, z): return fro(nu, z).rewrite(to) return tofunc def tominus(fro): def tofunc(nu, z): return exp(I*pi*nu)*fro(nu, exp_polar(-I*pi)*z) return tofunc orig_expr = expr ifactors = [I, exp_polar(I*pi/2), exp_polar(-I*pi/2)] expr = expr.replace( besselj, replacer(besselj, torewrite(besselj, besseli), ifactors)) expr = expr.replace( besseli, replacer(besseli, torewrite(besseli, besselj), ifactors)) minusfactors = [-1, exp_polar(I*pi)] expr = expr.replace( besselj, replacer(besselj, tominus(besselj), minusfactors)) expr = expr.replace( besseli, replacer(besseli, tominus(besseli), minusfactors)) z0 = Dummy('z') def expander(fro): def repl(nu, z): if (nu % 1) == S.Half: return simplify(trigsimp(unpolarify( fro(nu, z0).rewrite(besselj).rewrite(jn).expand( func=True)).subs(z0, z))) elif nu.is_Integer and nu > 1: return fro(nu, z).expand(func=True) return fro(nu, z) return repl expr = expr.replace(besselj, expander(besselj)) expr = expr.replace(bessely, expander(bessely)) expr = expr.replace(besseli, expander(besseli)) expr = expr.replace(besselk, expander(besselk)) def _bessel_simp_recursion(expr): def _use_recursion(bessel, expr): while True: bessels = expr.find(lambda x: isinstance(x, bessel)) try: for ba in sorted(bessels, key=lambda x: re(x.args[0])): a, x = ba.args bap1 = bessel(a+1, x) bap2 = bessel(a+2, x) if expr.has(bap1) and expr.has(bap2): expr = expr.subs(ba, 2*(a+1)/x*bap1 - bap2) break else: return expr except (ValueError, TypeError): return expr if expr.has(besselj): expr = _use_recursion(besselj, expr) if expr.has(bessely): expr = _use_recursion(bessely, expr) return expr expr = _bessel_simp_recursion(expr) if expr != orig_expr: expr = expr.factor() return expr def nthroot(expr, n, max_len=4, prec=15): """ Compute a real nth-root of a sum of surds. Parameters ========== expr : sum of surds n : integer max_len : maximum number of surds passed as constants to ``nsimplify`` Algorithm ========= First ``nsimplify`` is used to get a candidate root; if it is not a root the minimal polynomial is computed; the answer is one of its roots. Examples ======== >>> from sympy.simplify.simplify import nthroot >>> from sympy import sqrt >>> nthroot(90 + 34*sqrt(7), 3) sqrt(7) + 3 """ expr = sympify(expr) n = sympify(n) p = expr**Rational(1, n) if not n.is_integer: return p if not _is_sum_surds(expr): return p surds = [] coeff_muls = [x.as_coeff_Mul() for x in expr.args] for x, y in coeff_muls: if not x.is_rational: return p if y is S.One: continue if not (y.is_Pow and y.exp == S.Half and y.base.is_integer): return p surds.append(y) surds.sort() surds = surds[:max_len] if expr < 0 and n % 2 == 1: p = (-expr)**Rational(1, n) a = nsimplify(p, constants=surds) res = a if _mexpand(a**n) == _mexpand(-expr) else p return -res a = nsimplify(p, constants=surds) if _mexpand(a) is not _mexpand(p) and _mexpand(a**n) == _mexpand(expr): return _mexpand(a) expr = _nthroot_solve(expr, n, prec) if expr is None: return p return expr def nsimplify(expr, constants=(), tolerance=None, full=False, rational=None, rational_conversion='base10'): """ Find a simple representation for a number or, if there are free symbols or if ``rational=True``, then replace Floats with their Rational equivalents. If no change is made and rational is not False then Floats will at least be converted to Rationals. Explanation =========== For numerical expressions, a simple formula that numerically matches the given numerical expression is sought (and the input should be possible to evalf to a precision of at least 30 digits). Optionally, a list of (rationally independent) constants to include in the formula may be given. A lower tolerance may be set to find less exact matches. If no tolerance is given then the least precise value will set the tolerance (e.g. Floats default to 15 digits of precision, so would be tolerance=10**-15). With ``full=True``, a more extensive search is performed (this is useful to find simpler numbers when the tolerance is set low). When converting to rational, if rational_conversion='base10' (the default), then convert floats to rationals using their base-10 (string) representation. When rational_conversion='exact' it uses the exact, base-2 representation. Examples ======== >>> from sympy import nsimplify, sqrt, GoldenRatio, exp, I, pi >>> nsimplify(4/(1+sqrt(5)), [GoldenRatio]) -2 + 2*GoldenRatio >>> nsimplify((1/(exp(3*pi*I/5)+1))) 1/2 - I*sqrt(sqrt(5)/10 + 1/4) >>> nsimplify(I**I, [pi]) exp(-pi/2) >>> nsimplify(pi, tolerance=0.01) 22/7 >>> nsimplify(0.333333333333333, rational=True, rational_conversion='exact') 6004799503160655/18014398509481984 >>> nsimplify(0.333333333333333, rational=True) 1/3 See Also ======== sympy.core.function.nfloat """ try: return sympify(as_int(expr)) except (TypeError, ValueError): pass expr = sympify(expr).xreplace({ Float('inf'): S.Infinity, Float('-inf'): S.NegativeInfinity, }) if expr is S.Infinity or expr is S.NegativeInfinity: return expr if rational or expr.free_symbols: return _real_to_rational(expr, tolerance, rational_conversion) # SymPy's default tolerance for Rationals is 15; other numbers may have # lower tolerances set, so use them to pick the largest tolerance if None # was given if tolerance is None: tolerance = 10**-min([15] + [mpmath.libmp.libmpf.prec_to_dps(n._prec) for n in expr.atoms(Float)]) # XXX should prec be set independent of tolerance or should it be computed # from tolerance? prec = 30 bprec = int(prec*3.33) constants_dict = {} for constant in constants: constant = sympify(constant) v = constant.evalf(prec) if not v.is_Float: raise ValueError("constants must be real-valued") constants_dict[str(constant)] = v._to_mpmath(bprec) exprval = expr.evalf(prec, chop=True) re, im = exprval.as_real_imag() # safety check to make sure that this evaluated to a number if not (re.is_Number and im.is_Number): return expr def nsimplify_real(x): orig = mpmath.mp.dps xv = x._to_mpmath(bprec) try: # We'll be happy with low precision if a simple fraction if not (tolerance or full): mpmath.mp.dps = 15 rat = mpmath.pslq([xv, 1]) if rat is not None: return Rational(-int(rat[1]), int(rat[0])) mpmath.mp.dps = prec newexpr = mpmath.identify(xv, constants=constants_dict, tol=tolerance, full=full) if not newexpr: raise ValueError if full: newexpr = newexpr[0] expr = sympify(newexpr) if x and not expr: # don't let x become 0 raise ValueError if expr.is_finite is False and not xv in [mpmath.inf, mpmath.ninf]: raise ValueError return expr finally: # even though there are returns above, this is executed # before leaving mpmath.mp.dps = orig try: if re: re = nsimplify_real(re) if im: im = nsimplify_real(im) except ValueError: if rational is None: return _real_to_rational(expr, rational_conversion=rational_conversion) return expr rv = re + im*S.ImaginaryUnit # if there was a change or rational is explicitly not wanted # return the value, else return the Rational representation if rv != expr or rational is False: return rv return _real_to_rational(expr, rational_conversion=rational_conversion) def _real_to_rational(expr, tolerance=None, rational_conversion='base10'): """ Replace all reals in expr with rationals. Examples ======== >>> from sympy.simplify.simplify import _real_to_rational >>> from sympy.abc import x >>> _real_to_rational(.76 + .1*x**.5) sqrt(x)/10 + 19/25 If rational_conversion='base10', this uses the base-10 string. If rational_conversion='exact', the exact, base-2 representation is used. >>> _real_to_rational(0.333333333333333, rational_conversion='exact') 6004799503160655/18014398509481984 >>> _real_to_rational(0.333333333333333) 1/3 """ expr = _sympify(expr) inf = Float('inf') p = expr reps = {} reduce_num = None if tolerance is not None and tolerance < 1: reduce_num = ceiling(1/tolerance) for fl in p.atoms(Float): key = fl if reduce_num is not None: r = Rational(fl).limit_denominator(reduce_num) elif (tolerance is not None and tolerance >= 1 and fl.is_Integer is False): r = Rational(tolerance*round(fl/tolerance) ).limit_denominator(int(tolerance)) else: if rational_conversion == 'exact': r = Rational(fl) reps[key] = r continue elif rational_conversion != 'base10': raise ValueError("rational_conversion must be 'base10' or 'exact'") r = nsimplify(fl, rational=False) # e.g. log(3).n() -> log(3) instead of a Rational if fl and not r: r = Rational(fl) elif not r.is_Rational: if fl == inf or fl == -inf: r = S.ComplexInfinity elif fl < 0: fl = -fl d = Pow(10, int(mpmath.log(fl)/mpmath.log(10))) r = -Rational(str(fl/d))*d elif fl > 0: d = Pow(10, int(mpmath.log(fl)/mpmath.log(10))) r = Rational(str(fl/d))*d else: r = Integer(0) reps[key] = r return p.subs(reps, simultaneous=True) def clear_coefficients(expr, rhs=S.Zero): """Return `p, r` where `p` is the expression obtained when Rational additive and multiplicative coefficients of `expr` have been stripped away in a naive fashion (i.e. without simplification). The operations needed to remove the coefficients will be applied to `rhs` and returned as `r`. Examples ======== >>> from sympy.simplify.simplify import clear_coefficients >>> from sympy.abc import x, y >>> from sympy import Dummy >>> expr = 4*y*(6*x + 3) >>> clear_coefficients(expr - 2) (y*(2*x + 1), 1/6) When solving 2 or more expressions like `expr = a`, `expr = b`, etc..., it is advantageous to provide a Dummy symbol for `rhs` and simply replace it with `a`, `b`, etc... in `r`. >>> rhs = Dummy('rhs') >>> clear_coefficients(expr, rhs) (y*(2*x + 1), _rhs/12) >>> _[1].subs(rhs, 2) 1/6 """ was = None free = expr.free_symbols if expr.is_Rational: return (S.Zero, rhs - expr) while expr and was != expr: was = expr m, expr = ( expr.as_content_primitive() if free else factor_terms(expr).as_coeff_Mul(rational=True)) rhs /= m c, expr = expr.as_coeff_Add(rational=True) rhs -= c expr = signsimp(expr, evaluate = False) if _coeff_isneg(expr): expr = -expr rhs = -rhs return expr, rhs def nc_simplify(expr, deep=True): ''' Simplify a non-commutative expression composed of multiplication and raising to a power by grouping repeated subterms into one power. Priority is given to simplifications that give the fewest number of arguments in the end (for example, in a*b*a*b*c*a*b*c simplifying to (a*b)**2*c*a*b*c gives 5 arguments while a*b*(a*b*c)**2 has 3). If ``expr`` is a sum of such terms, the sum of the simplified terms is returned. Keyword argument ``deep`` controls whether or not subexpressions nested deeper inside the main expression are simplified. See examples below. Setting `deep` to `False` can save time on nested expressions that don't need simplifying on all levels. Examples ======== >>> from sympy import symbols >>> from sympy.simplify.simplify import nc_simplify >>> a, b, c = symbols("a b c", commutative=False) >>> nc_simplify(a*b*a*b*c*a*b*c) a*b*(a*b*c)**2 >>> expr = a**2*b*a**4*b*a**4 >>> nc_simplify(expr) a**2*(b*a**4)**2 >>> nc_simplify(a*b*a*b*c**2*(a*b)**2*c**2) ((a*b)**2*c**2)**2 >>> nc_simplify(a*b*a*b + 2*a*c*a**2*c*a**2*c*a) (a*b)**2 + 2*(a*c*a)**3 >>> nc_simplify(b**-1*a**-1*(a*b)**2) a*b >>> nc_simplify(a**-1*b**-1*c*a) (b*a)**(-1)*c*a >>> expr = (a*b*a*b)**2*a*c*a*c >>> nc_simplify(expr) (a*b)**4*(a*c)**2 >>> nc_simplify(expr, deep=False) (a*b*a*b)**2*(a*c)**2 ''' from sympy.matrices.expressions import (MatrixExpr, MatAdd, MatMul, MatPow, MatrixSymbol) from sympy.core.exprtools import factor_nc if isinstance(expr, MatrixExpr): expr = expr.doit(inv_expand=False) _Add, _Mul, _Pow, _Symbol = MatAdd, MatMul, MatPow, MatrixSymbol else: _Add, _Mul, _Pow, _Symbol = Add, Mul, Pow, Symbol # =========== Auxiliary functions ======================== def _overlaps(args): # Calculate a list of lists m such that m[i][j] contains the lengths # of all possible overlaps between args[:i+1] and args[i+1+j:]. # An overlap is a suffix of the prefix that matches a prefix # of the suffix. # For example, let expr=c*a*b*a*b*a*b*a*b. Then m[3][0] contains # the lengths of overlaps of c*a*b*a*b with a*b*a*b. The overlaps # are a*b*a*b, a*b and the empty word so that m[3][0]=[4,2,0]. # All overlaps rather than only the longest one are recorded # because this information helps calculate other overlap lengths. m = [[([1, 0] if a == args[0] else [0]) for a in args[1:]]] for i in range(1, len(args)): overlaps = [] j = 0 for j in range(len(args) - i - 1): overlap = [] for v in m[i-1][j+1]: if j + i + 1 + v < len(args) and args[i] == args[j+i+1+v]: overlap.append(v + 1) overlap += [0] overlaps.append(overlap) m.append(overlaps) return m def _reduce_inverses(_args): # replace consecutive negative powers by an inverse # of a product of positive powers, e.g. a**-1*b**-1*c # will simplify to (a*b)**-1*c; # return that new args list and the number of negative # powers in it (inv_tot) inv_tot = 0 # total number of inverses inverses = [] args = [] for arg in _args: if isinstance(arg, _Pow) and arg.args[1] < 0: inverses = [arg**-1] + inverses inv_tot += 1 else: if len(inverses) == 1: args.append(inverses[0]**-1) elif len(inverses) > 1: args.append(_Pow(_Mul(*inverses), -1)) inv_tot -= len(inverses) - 1 inverses = [] args.append(arg) if inverses: args.append(_Pow(_Mul(*inverses), -1)) inv_tot -= len(inverses) - 1 return inv_tot, tuple(args) def get_score(s): # compute the number of arguments of s # (including in nested expressions) overall # but ignore exponents if isinstance(s, _Pow): return get_score(s.args[0]) elif isinstance(s, (_Add, _Mul)): return sum([get_score(a) for a in s.args]) return 1 def compare(s, alt_s): # compare two possible simplifications and return a # "better" one if s != alt_s and get_score(alt_s) < get_score(s): return alt_s return s # ======================================================== if not isinstance(expr, (_Add, _Mul, _Pow)) or expr.is_commutative: return expr args = expr.args[:] if isinstance(expr, _Pow): if deep: return _Pow(nc_simplify(args[0]), args[1]).doit() else: return expr elif isinstance(expr, _Add): return _Add(*[nc_simplify(a, deep=deep) for a in args]).doit() else: # get the non-commutative part c_args, args = expr.args_cnc() com_coeff = Mul(*c_args) if com_coeff != 1: return com_coeff*nc_simplify(expr/com_coeff, deep=deep) inv_tot, args = _reduce_inverses(args) # if most arguments are negative, work with the inverse # of the expression, e.g. a**-1*b*a**-1*c**-1 will become # (c*a*b**-1*a)**-1 at the end so can work with c*a*b**-1*a invert = False if inv_tot > len(args)/2: invert = True args = [a**-1 for a in args[::-1]] if deep: args = tuple(nc_simplify(a) for a in args) m = _overlaps(args) # simps will be {subterm: end} where `end` is the ending # index of a sequence of repetitions of subterm; # this is for not wasting time with subterms that are part # of longer, already considered sequences simps = {} post = 1 pre = 1 # the simplification coefficient is the number of # arguments by which contracting a given sequence # would reduce the word; e.g. in a*b*a*b*c*a*b*c, # contracting a*b*a*b to (a*b)**2 removes 3 arguments # while a*b*c*a*b*c to (a*b*c)**2 removes 6. It's # better to contract the latter so simplification # with a maximum simplification coefficient will be chosen max_simp_coeff = 0 simp = None # information about future simplification for i in range(1, len(args)): simp_coeff = 0 l = 0 # length of a subterm p = 0 # the power of a subterm if i < len(args) - 1: rep = m[i][0] start = i # starting index of the repeated sequence end = i+1 # ending index of the repeated sequence if i == len(args)-1 or rep == [0]: # no subterm is repeated at this stage, at least as # far as the arguments are concerned - there may be # a repetition if powers are taken into account if (isinstance(args[i], _Pow) and not isinstance(args[i].args[0], _Symbol)): subterm = args[i].args[0].args l = len(subterm) if args[i-l:i] == subterm: # e.g. a*b in a*b*(a*b)**2 is not repeated # in args (= [a, b, (a*b)**2]) but it # can be matched here p += 1 start -= l if args[i+1:i+1+l] == subterm: # e.g. a*b in (a*b)**2*a*b p += 1 end += l if p: p += args[i].args[1] else: continue else: l = rep[0] # length of the longest repeated subterm at this point start -= l - 1 subterm = args[start:end] p = 2 end += l if subterm in simps and simps[subterm] >= start: # the subterm is part of a sequence that # has already been considered continue # count how many times it's repeated while end < len(args): if l in m[end-1][0]: p += 1 end += l elif isinstance(args[end], _Pow) and args[end].args[0].args == subterm: # for cases like a*b*a*b*(a*b)**2*a*b p += args[end].args[1] end += 1 else: break # see if another match can be made, e.g. # for b*a**2 in b*a**2*b*a**3 or a*b in # a**2*b*a*b pre_exp = 0 pre_arg = 1 if start - l >= 0 and args[start-l+1:start] == subterm[1:]: if isinstance(subterm[0], _Pow): pre_arg = subterm[0].args[0] exp = subterm[0].args[1] else: pre_arg = subterm[0] exp = 1 if isinstance(args[start-l], _Pow) and args[start-l].args[0] == pre_arg: pre_exp = args[start-l].args[1] - exp start -= l p += 1 elif args[start-l] == pre_arg: pre_exp = 1 - exp start -= l p += 1 post_exp = 0 post_arg = 1 if end + l - 1 < len(args) and args[end:end+l-1] == subterm[:-1]: if isinstance(subterm[-1], _Pow): post_arg = subterm[-1].args[0] exp = subterm[-1].args[1] else: post_arg = subterm[-1] exp = 1 if isinstance(args[end+l-1], _Pow) and args[end+l-1].args[0] == post_arg: post_exp = args[end+l-1].args[1] - exp end += l p += 1 elif args[end+l-1] == post_arg: post_exp = 1 - exp end += l p += 1 # Consider a*b*a**2*b*a**2*b*a: # b*a**2 is explicitly repeated, but note # that in this case a*b*a is also repeated # so there are two possible simplifications: # a*(b*a**2)**3*a**-1 or (a*b*a)**3 # The latter is obviously simpler. # But in a*b*a**2*b**2*a**2 the simplifications are # a*(b*a**2)**2 and (a*b*a)**3*a in which case # it's better to stick with the shorter subterm if post_exp and exp % 2 == 0 and start > 0: exp = exp/2 _pre_exp = 1 _post_exp = 1 if isinstance(args[start-1], _Pow) and args[start-1].args[0] == post_arg: _post_exp = post_exp + exp _pre_exp = args[start-1].args[1] - exp elif args[start-1] == post_arg: _post_exp = post_exp + exp _pre_exp = 1 - exp if _pre_exp == 0 or _post_exp == 0: if not pre_exp: start -= 1 post_exp = _post_exp pre_exp = _pre_exp pre_arg = post_arg subterm = (post_arg**exp,) + subterm[:-1] + (post_arg**exp,) simp_coeff += end-start if post_exp: simp_coeff -= 1 if pre_exp: simp_coeff -= 1 simps[subterm] = end if simp_coeff > max_simp_coeff: max_simp_coeff = simp_coeff simp = (start, _Mul(*subterm), p, end, l) pre = pre_arg**pre_exp post = post_arg**post_exp if simp: subterm = _Pow(nc_simplify(simp[1], deep=deep), simp[2]) pre = nc_simplify(_Mul(*args[:simp[0]])*pre, deep=deep) post = post*nc_simplify(_Mul(*args[simp[3]:]), deep=deep) simp = pre*subterm*post if pre != 1 or post != 1: # new simplifications may be possible but no need # to recurse over arguments simp = nc_simplify(simp, deep=False) else: simp = _Mul(*args) if invert: simp = _Pow(simp, -1) # see if factor_nc(expr) is simplified better if not isinstance(expr, MatrixExpr): f_expr = factor_nc(expr) if f_expr != expr: alt_simp = nc_simplify(f_expr, deep=deep) simp = compare(simp, alt_simp) else: simp = simp.doit(inv_expand=False) return simp def dotprodsimp(expr, withsimp=False): """Simplification for a sum of products targeted at the kind of blowup that occurs during summation of products. Intended to reduce expression blowup during matrix multiplication or other similar operations. Only works with algebraic expressions and does not recurse into non. Parameters ========== withsimp : bool, optional Specifies whether a flag should be returned along with the expression to indicate roughly whether simplification was successful. It is used in ``MatrixArithmetic._eval_pow_by_recursion`` to avoid attempting to simplify an expression repetitively which does not simplify. """ def count_ops_alg(expr): """Optimized count algebraic operations with no recursion into non-algebraic args that ``core.function.count_ops`` does. Also returns whether rational functions may be present according to negative exponents of powers or non-number fractions. Returns ======= ops, ratfunc : int, bool ``ops`` is the number of algebraic operations starting at the top level expression (not recursing into non-alg children). ``ratfunc`` specifies whether the expression MAY contain rational functions which ``cancel`` MIGHT optimize. """ ops = 0 args = [expr] ratfunc = False while args: a = args.pop() if not isinstance(a, Basic): continue if a.is_Rational: if a is not S.One: # -1/3 = NEG + DIV ops += bool (a.p < 0) + bool (a.q != 1) elif a.is_Mul: if _coeff_isneg(a): ops += 1 if a.args[0] is S.NegativeOne: a = a.as_two_terms()[1] else: a = -a n, d = fraction(a) if n.is_Integer: ops += 1 + bool (n < 0) args.append(d) # won't be -Mul but could be Add elif d is not S.One: if not d.is_Integer: args.append(d) ratfunc=True ops += 1 args.append(n) # could be -Mul else: ops += len(a.args) - 1 args.extend(a.args) elif a.is_Add: laargs = len(a.args) negs = 0 for ai in a.args: if _coeff_isneg(ai): negs += 1 ai = -ai args.append(ai) ops += laargs - (negs != laargs) # -x - y = NEG + SUB elif a.is_Pow: ops += 1 args.append(a.base) if not ratfunc: ratfunc = a.exp.is_negative is not False return ops, ratfunc def nonalg_subs_dummies(expr, dummies): """Substitute dummy variables for non-algebraic expressions to avoid evaluation of non-algebraic terms that ``polys.polytools.cancel`` does. """ if not expr.args: return expr if expr.is_Add or expr.is_Mul or expr.is_Pow: args = None for i, a in enumerate(expr.args): c = nonalg_subs_dummies(a, dummies) if c is a: continue if args is None: args = list(expr.args) args[i] = c if args is None: return expr return expr.func(*args) return dummies.setdefault(expr, Dummy()) simplified = False # doesn't really mean simplified, rather "can simplify again" if isinstance(expr, Basic) and (expr.is_Add or expr.is_Mul or expr.is_Pow): expr2 = expr.expand(deep=True, modulus=None, power_base=False, power_exp=False, mul=True, log=False, multinomial=True, basic=False) if expr2 != expr: expr = expr2 simplified = True exprops, ratfunc = count_ops_alg(expr) if exprops >= 6: # empirically tested cutoff for expensive simplification if ratfunc: dummies = {} expr2 = nonalg_subs_dummies(expr, dummies) if expr2 is expr or count_ops_alg(expr2)[0] >= 6: # check again after substitution expr3 = cancel(expr2) if expr3 != expr2: expr = expr3.subs([(d, e) for e, d in dummies.items()]) simplified = True # very special case: x/(x-1) - 1/(x-1) -> 1 elif (exprops == 5 and expr.is_Add and expr.args [0].is_Mul and expr.args [1].is_Mul and expr.args [0].args [-1].is_Pow and expr.args [1].args [-1].is_Pow and expr.args [0].args [-1].exp is S.NegativeOne and expr.args [1].args [-1].exp is S.NegativeOne): expr2 = together (expr) expr2ops = count_ops_alg(expr2)[0] if expr2ops < exprops: expr = expr2 simplified = True else: simplified = True return (expr, simplified) if withsimp else expr
f35a171bae990aabaa7ea7a036cbc8d759f4dd00fbe9cef9d12988900e508062
import bisect import itertools import operator from functools import reduce, singledispatch from itertools import accumulate from collections import defaultdict from sympy import Indexed, IndexedBase, Tuple, Sum, Add, S, Integer, diagonalize_vector, DiagMatrix, ZeroMatrix from sympy.combinatorics import Permutation from sympy.combinatorics.permutations import _af_invert from sympy.core.basic import Basic from sympy.core.compatibility import default_sort_key from sympy.core.mul import Mul from sympy.core.sympify import _sympify from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.matrices.expressions import (MatAdd, MatMul, Trace, Transpose) from sympy.matrices.expressions.matexpr import MatrixExpr, MatrixElement from sympy.tensor.array import NDimArray from sympy.tensor.array.expressions.array_expressions import ZeroArray class _CodegenArrayAbstract(Basic): @property def subranks(self): """ Returns the ranks of the objects in the uppermost tensor product inside the current object. In case no tensor products are contained, return the atomic ranks. Examples ======== >>> from sympy.codegen.array_utils import CodegenArrayTensorProduct, CodegenArrayContraction >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> N = MatrixSymbol("N", 3, 3) >>> P = MatrixSymbol("P", 3, 3) Important: do not confuse the rank of the matrix with the rank of an array. >>> tp = CodegenArrayTensorProduct(M, N, P) >>> tp.subranks [2, 2, 2] >>> co = CodegenArrayContraction(tp, (1, 2), (3, 4)) >>> co.subranks [2, 2, 2] """ return self._subranks[:] def subrank(self): """ The sum of ``subranks``. """ return sum(self.subranks) @property def shape(self): return self._shape class CodegenArrayContraction(_CodegenArrayAbstract): r""" This class is meant to represent contractions of arrays in a form easily processable by the code printers. """ def __new__(cls, expr, *contraction_indices, **kwargs): contraction_indices = _sort_contraction_indices(contraction_indices) expr = _sympify(expr) if len(contraction_indices) == 0: return expr if isinstance(expr, CodegenArrayContraction): return cls._flatten(expr, *contraction_indices) if isinstance(expr, (ZeroArray, ZeroMatrix)): contraction_indices_flat = [j for i in contraction_indices for j in i] shape = [e for i, e in enumerate(expr.shape) if i not in contraction_indices_flat] return ZeroArray(*shape) if isinstance(expr, CodegenArrayPermuteDims): return cls._handle_nested_permute_dims(expr, *contraction_indices) if isinstance(expr, CodegenArrayTensorProduct): expr, contraction_indices = cls._sort_fully_contracted_args(expr, contraction_indices) expr, contraction_indices = cls._lower_contraction_to_addends(expr, contraction_indices) if len(contraction_indices) == 0: return expr if isinstance(expr, CodegenArrayDiagonal): return cls._handle_nested_diagonal(expr, *contraction_indices) if isinstance(expr, CodegenArrayElementwiseAdd): return CodegenArrayElementwiseAdd(*[CodegenArrayContraction(i, *contraction_indices) for i in expr.args]) obj = Basic.__new__(cls, expr, *contraction_indices) obj._subranks = _get_subranks(expr) obj._mapping = _get_mapping_from_subranks(obj._subranks) free_indices_to_position = {i: i for i in range(sum(obj._subranks)) if all([i not in cind for cind in contraction_indices])} obj._free_indices_to_position = free_indices_to_position shape = expr.shape cls._validate(expr, *contraction_indices) if shape: shape = tuple(shp for i, shp in enumerate(shape) if not any(i in j for j in contraction_indices)) obj._shape = shape return obj def __mul__(self, other): if other == 1: return self else: raise NotImplementedError("Product of N-dim arrays is not uniquely defined. Use another method.") def __rmul__(self, other): if other == 1: return self else: raise NotImplementedError("Product of N-dim arrays is not uniquely defined. Use another method.") @staticmethod def _validate(expr, *contraction_indices): shape = expr.shape if shape is None: return # Check that no contraction happens when the shape is mismatched: for i in contraction_indices: if len({shape[j] for j in i if shape[j] != -1}) != 1: raise ValueError("contracting indices of different dimensions") @classmethod def _push_indices_down(cls, contraction_indices, indices): flattened_contraction_indices = [j for i in contraction_indices for j in i] flattened_contraction_indices.sort() transform = _build_push_indices_down_func_transformation(flattened_contraction_indices) return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _push_indices_up(cls, contraction_indices, indices): flattened_contraction_indices = [j for i in contraction_indices for j in i] flattened_contraction_indices.sort() transform = _build_push_indices_up_func_transformation(flattened_contraction_indices) return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _lower_contraction_to_addends(cls, expr, contraction_indices): if isinstance(expr, CodegenArrayElementwiseAdd): raise NotImplementedError() if not isinstance(expr, CodegenArrayTensorProduct): return expr, contraction_indices subranks = expr.subranks cumranks = list(accumulate([0] + subranks)) contraction_indices_remaining = [] contraction_indices_args = [[] for i in expr.args] backshift = set([]) for i, contraction_group in enumerate(contraction_indices): for j in range(len(expr.args)): if not isinstance(expr.args[j], CodegenArrayElementwiseAdd): continue if all(cumranks[j] <= k < cumranks[j+1] for k in contraction_group): contraction_indices_args[j].append([k - cumranks[j] for k in contraction_group]) backshift.update(contraction_group) break else: contraction_indices_remaining.append(contraction_group) if len(contraction_indices_remaining) == len(contraction_indices): return expr, contraction_indices total_rank = get_rank(expr) shifts = list(accumulate([1 if i in backshift else 0 for i in range(total_rank)])) contraction_indices_remaining = [Tuple.fromiter(j - shifts[j] for j in i) for i in contraction_indices_remaining] ret = CodegenArrayTensorProduct(*[ CodegenArrayContraction(arg, *contr) for arg, contr in zip(expr.args, contraction_indices_args) ]) return ret, contraction_indices_remaining def split_multiple_contractions(self): """ Recognize multiple contractions and attempt at rewriting them as paired-contractions. """ from sympy import ask, Q contraction_indices = self.contraction_indices if isinstance(self.expr, CodegenArrayTensorProduct): args = list(self.expr.args) else: args = [self.expr] # TODO: unify API, best location in CodegenArrayTensorProduct subranks = [get_rank(i) for i in args] # TODO: unify API mapping = _get_mapping_from_subranks(subranks) reverse_mapping = {v:k for k, v in mapping.items()} new_contraction_indices = [] for indl, links in enumerate(contraction_indices): if len(links) <= 2: new_contraction_indices.append(links) continue # Check multiple contractions: # # Examples: # # * `A_ij b_j0 C_jk` ===> `A*DiagMatrix(b)*C` # # Care for: # - matrix being diagonalized (i.e. `A_ii`) # - vectors being diagonalized (i.e. `a_i0`) # Also consider the case of diagonal matrices being contracted: current_dimension = self.expr.shape[links[0]] tuple_links = [mapping[i] for i in links] arg_indices, arg_positions = zip(*tuple_links) args_updates = {} if len(arg_indices) != len(set(arg_indices)): # Maybe trace should be supported? raise NotImplementedError not_vectors = [] vectors = [] for arg_ind, arg_pos in tuple_links: mat = args[arg_ind] other_arg_pos = 1-arg_pos other_arg_abs = reverse_mapping[arg_ind, other_arg_pos] if (((1 not in mat.shape) and (not ask(Q.diagonal(mat)))) or ((current_dimension == 1) is True and mat.shape != (1, 1)) or any([other_arg_abs in l for li, l in enumerate(contraction_indices) if li != indl]) ): not_vectors.append((arg_ind, arg_pos)) continue args_updates[arg_ind] = diagonalize_vector(mat) vectors.append((arg_ind, arg_pos)) vectors.append((arg_ind, 1-arg_pos)) if len(not_vectors) > 2: new_contraction_indices.append(links) continue if len(not_vectors) == 0: new_sequence = vectors[:1] + vectors[2:] elif len(not_vectors) == 1: new_sequence = not_vectors[:1] + vectors[:-1] else: new_sequence = not_vectors[:1] + vectors + not_vectors[1:] for i in range(0, len(new_sequence) - 1, 2): arg1, pos1 = new_sequence[i] arg2, pos2 = new_sequence[i+1] if arg1 == arg2: raise NotImplementedError continue abspos1 = reverse_mapping[arg1, pos1] abspos2 = reverse_mapping[arg2, pos2] new_contraction_indices.append((abspos1, abspos2)) for ind, newarg in args_updates.items(): args[ind] = newarg return CodegenArrayContraction( CodegenArrayTensorProduct(*args), *new_contraction_indices ) def flatten_contraction_of_diagonal(self): if not isinstance(self.expr, CodegenArrayDiagonal): return self contraction_down = self.expr._push_indices_down(self.expr.diagonal_indices, self.contraction_indices) new_contraction_indices = [] diagonal_indices = self.expr.diagonal_indices[:] for i in contraction_down: contraction_group = list(i) for j in i: diagonal_with = [k for k in diagonal_indices if j in k] contraction_group.extend([l for k in diagonal_with for l in k]) diagonal_indices = [k for k in diagonal_indices if k not in diagonal_with] new_contraction_indices.append(sorted(set(contraction_group))) new_contraction_indices = CodegenArrayDiagonal._push_indices_up(diagonal_indices, new_contraction_indices) return CodegenArrayContraction( CodegenArrayDiagonal( self.expr.expr, *diagonal_indices ), *new_contraction_indices ) @staticmethod def _get_free_indices_to_position_map(free_indices, contraction_indices): free_indices_to_position = {} flattened_contraction_indices = [j for i in contraction_indices for j in i] counter = 0 for ind in free_indices: while counter in flattened_contraction_indices: counter += 1 free_indices_to_position[ind] = counter counter += 1 return free_indices_to_position @staticmethod def _get_index_shifts(expr): """ Get the mapping of indices at the positions before the contraction occurs. Examples ======== >>> from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> N = MatrixSymbol("N", 3, 3) >>> cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), [1, 2]) >>> cg._get_index_shifts(cg) [0, 2] Indeed, ``cg`` after the contraction has two dimensions, 0 and 1. They need to be shifted by 0 and 2 to get the corresponding positions before the contraction (that is, 0 and 3). """ inner_contraction_indices = expr.contraction_indices all_inner = [j for i in inner_contraction_indices for j in i] all_inner.sort() # TODO: add API for total rank and cumulative rank: total_rank = _get_subrank(expr) inner_rank = len(all_inner) outer_rank = total_rank - inner_rank shifts = [0 for i in range(outer_rank)] counter = 0 pointer = 0 for i in range(outer_rank): while pointer < inner_rank and counter >= all_inner[pointer]: counter += 1 pointer += 1 shifts[i] += pointer counter += 1 return shifts @staticmethod def _convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices): shifts = CodegenArrayContraction._get_index_shifts(expr) outer_contraction_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_contraction_indices) return outer_contraction_indices @staticmethod def _flatten(expr, *outer_contraction_indices): inner_contraction_indices = expr.contraction_indices outer_contraction_indices = CodegenArrayContraction._convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices) contraction_indices = inner_contraction_indices + outer_contraction_indices return CodegenArrayContraction(expr.expr, *contraction_indices) @classmethod def _handle_nested_permute_dims(cls, expr, *contraction_indices): permutation = expr.permutation plist = permutation.array_form new_contraction_indices = [tuple(permutation(j) for j in i) for i in contraction_indices] new_plist = [i for i in plist if all(i not in j for j in new_contraction_indices)] new_plist = cls._push_indices_up(new_contraction_indices, new_plist) return CodegenArrayPermuteDims( CodegenArrayContraction(expr.expr, *new_contraction_indices), Permutation(new_plist) ) @classmethod def _handle_nested_diagonal(cls, expr: 'CodegenArrayDiagonal', *contraction_indices): diagonal_indices = list(expr.diagonal_indices) down_contraction_indices = expr._push_indices_down(expr.diagonal_indices, contraction_indices, get_rank(expr.expr)) # Flatten diagonally contracted indices: down_contraction_indices = [[k for j in i for k in (j if isinstance(j, (tuple, Tuple)) else [j])] for i in down_contraction_indices] new_contraction_indices = [] for contr_indgrp in down_contraction_indices: ind = contr_indgrp[:] for j, diag_indgrp in enumerate(diagonal_indices): if diag_indgrp is None: continue if any(i in diag_indgrp for i in contr_indgrp): ind.extend(diag_indgrp) diagonal_indices[j] = None new_contraction_indices.append(sorted(set(ind))) new_diagonal_indices_down = [i for i in diagonal_indices if i is not None] new_diagonal_indices = CodegenArrayContraction._push_indices_up(new_contraction_indices, new_diagonal_indices_down) return CodegenArrayDiagonal( CodegenArrayContraction(expr.expr, *new_contraction_indices), *new_diagonal_indices ) @classmethod def _sort_fully_contracted_args(cls, expr, contraction_indices): if expr.shape is None: return expr, contraction_indices cumul = list(accumulate([0] + expr.subranks)) index_blocks = [list(range(cumul[i], cumul[i+1])) for i in range(len(expr.args))] contraction_indices_flat = {j for i in contraction_indices for j in i} fully_contracted = [all(j in contraction_indices_flat for j in range(cumul[i], cumul[i+1])) for i, arg in enumerate(expr.args)] new_pos = sorted(range(len(expr.args)), key=lambda x: (0, default_sort_key(expr.args[x])) if fully_contracted[x] else (1,)) new_args = [expr.args[i] for i in new_pos] new_index_blocks_flat = [j for i in new_pos for j in index_blocks[i]] index_permutation_array_form = _af_invert(new_index_blocks_flat) new_contraction_indices = [tuple(index_permutation_array_form[j] for j in i) for i in contraction_indices] new_contraction_indices = _sort_contraction_indices(new_contraction_indices) return CodegenArrayTensorProduct(*new_args), new_contraction_indices def _get_contraction_tuples(self): r""" Return tuples containing the argument index and position within the argument of the index position. Examples ======== >>> from sympy import MatrixSymbol >>> from sympy.abc import N >>> from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (1, 2)) >>> cg._get_contraction_tuples() [[(0, 1), (1, 0)]] Notes ===== Here the contraction pair `(1, 2)` meaning that the 2nd and 3rd indices of the tensor product `A\otimes B` are contracted, has been transformed into `(0, 1)` and `(1, 0)`, identifying the same indices in a different notation. `(0, 1)` is the second index (1) of the first argument (i.e. 0 or `A`). `(1, 0)` is the first index (i.e. 0) of the second argument (i.e. 1 or `B`). """ mapping = self._mapping return [[mapping[j] for j in i] for i in self.contraction_indices] @staticmethod def _contraction_tuples_to_contraction_indices(expr, contraction_tuples): # TODO: check that `expr` has `.subranks`: ranks = expr.subranks cumulative_ranks = [0] + list(accumulate(ranks)) return [tuple(cumulative_ranks[j]+k for j, k in i) for i in contraction_tuples] @property def free_indices(self): return self._free_indices[:] @property def free_indices_to_position(self): return dict(self._free_indices_to_position) @property def expr(self): return self.args[0] @property def contraction_indices(self): return self.args[1:] def _contraction_indices_to_components(self): expr = self.expr if not isinstance(expr, CodegenArrayTensorProduct): raise NotImplementedError("only for contractions of tensor products") ranks = expr.subranks mapping = {} counter = 0 for i, rank in enumerate(ranks): for j in range(rank): mapping[counter] = (i, j) counter += 1 return mapping def sort_args_by_name(self): """ Sort arguments in the tensor product so that their order is lexicographical. Examples ======== >>> from sympy import MatrixSymbol >>> from sympy.abc import N >>> from sympy.codegen.array_utils import parse_matrix_expression >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) >>> cg = parse_matrix_expression(C*D*A*B) >>> cg CodegenArrayContraction(CodegenArrayTensorProduct(A, D, C, B), (0, 3), (1, 6), (2, 5)) >>> cg.sort_args_by_name() CodegenArrayContraction(CodegenArrayTensorProduct(A, D, B, C), (0, 3), (1, 4), (2, 7)) """ expr = self.expr if not isinstance(expr, CodegenArrayTensorProduct): return self args = expr.args sorted_data = sorted(enumerate(args), key=lambda x: default_sort_key(x[1])) pos_sorted, args_sorted = zip(*sorted_data) reordering_map = {i: pos_sorted.index(i) for i, arg in enumerate(args)} contraction_tuples = self._get_contraction_tuples() contraction_tuples = [[(reordering_map[j], k) for j, k in i] for i in contraction_tuples] c_tp = CodegenArrayTensorProduct(*args_sorted) new_contr_indices = self._contraction_tuples_to_contraction_indices( c_tp, contraction_tuples ) return CodegenArrayContraction(c_tp, *new_contr_indices) def _get_contraction_links(self): r""" Returns a dictionary of links between arguments in the tensor product being contracted. See the example for an explanation of the values. Examples ======== >>> from sympy import MatrixSymbol >>> from sympy.abc import N >>> from sympy.codegen.array_utils import parse_matrix_expression >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) Matrix multiplications are pairwise contractions between neighboring matrices: `A_{ij} B_{jk} C_{kl} D_{lm}` >>> cg = parse_matrix_expression(A*B*C*D) >>> cg CodegenArrayContraction(CodegenArrayTensorProduct(B, C, A, D), (0, 5), (1, 2), (3, 6)) >>> cg._get_contraction_links() {0: {0: (2, 1), 1: (1, 0)}, 1: {0: (0, 1), 1: (3, 0)}, 2: {1: (0, 0)}, 3: {0: (1, 1)}} This dictionary is interpreted as follows: argument in position 0 (i.e. matrix `A`) has its second index (i.e. 1) contracted to `(1, 0)`, that is argument in position 1 (matrix `B`) on the first index slot of `B`, this is the contraction provided by the index `j` from `A`. The argument in position 1 (that is, matrix `B`) has two contractions, the ones provided by the indices `j` and `k`, respectively the first and second indices (0 and 1 in the sub-dict). The link `(0, 1)` and `(2, 0)` respectively. `(0, 1)` is the index slot 1 (the 2nd) of argument in position 0 (that is, `A_{\ldot j}`), and so on. """ args, dlinks = _get_contraction_links([self], self.subranks, *self.contraction_indices) return dlinks def get_shape(expr): if hasattr(expr, "shape"): return expr.shape return () class CodegenArrayTensorProduct(_CodegenArrayAbstract): r""" Class to represent the tensor product of array-like objects. """ def __new__(cls, *args): args = [_sympify(arg) for arg in args] args = cls._flatten(args) ranks = [_get_subrank(arg) for arg in args] # Check if there are nested permutation and lift them up: permutation_cycles = [] for i, arg in enumerate(args): if not isinstance(arg, CodegenArrayPermuteDims): continue permutation_cycles.extend([[k + sum(ranks[:i]) for k in j] for j in arg.permutation.cyclic_form]) args[i] = arg.expr if permutation_cycles: return CodegenArrayPermuteDims(CodegenArrayTensorProduct(*args), Permutation(sum(ranks)-1)*Permutation(permutation_cycles)) if len(args) == 1: return args[0] # If any object is a ZeroArray, return a ZeroArray: if any(isinstance(arg, (ZeroArray, ZeroMatrix)) for arg in args): shapes = reduce(operator.add, [get_shape(i) for i in args], ()) return ZeroArray(*shapes) # If there are contraction objects inside, transform the whole # expression into `CodegenArrayContraction`: contractions = {i: arg for i, arg in enumerate(args) if isinstance(arg, CodegenArrayContraction)} if contractions: cumulative_ranks = list(accumulate([0] + ranks))[:-1] tp = cls(*[arg.expr if isinstance(arg, CodegenArrayContraction) else arg for arg in args]) contraction_indices = [tuple(cumulative_ranks[i] + k for k in j) for i, arg in contractions.items() for j in arg.contraction_indices] return CodegenArrayContraction(tp, *contraction_indices) #newargs = [i for i in args if hasattr(i, "shape")] #coeff = reduce(lambda x, y: x*y, [i for i in args if not hasattr(i, "shape")], S.One) #newargs[0] *= coeff obj = Basic.__new__(cls, *args) obj._subranks = ranks shapes = [get_shape(i) for i in args] if any(i is None for i in shapes): obj._shape = None else: obj._shape = tuple(j for i in shapes for j in i) return obj @classmethod def _flatten(cls, args): args = [i for arg in args for i in (arg.args if isinstance(arg, cls) else [arg])] return args class CodegenArrayElementwiseAdd(_CodegenArrayAbstract): r""" Class for elementwise array additions. """ def __new__(cls, *args): args = [_sympify(arg) for arg in args] ranks = [get_rank(arg) for arg in args] ranks = list(set(ranks)) if len(ranks) != 1: raise ValueError("summing arrays of different ranks") shapes = [arg.shape for arg in args] if len({i for i in shapes if i is not None}) > 1: raise ValueError("mismatching shapes in addition") # Flatten: args = cls._flatten_args(args) args = [arg for arg in args if not isinstance(arg, (ZeroArray, ZeroMatrix))] if len(args) == 0: if any(i for i in shapes if i is None): raise NotImplementedError("cannot handle addition of ZeroMatrix/ZeroArray and undefined shape object") return ZeroArray(*shapes[0]) elif len(args) == 1: return args[0] obj = Basic.__new__(cls, *args) obj._subranks = ranks if any(i is None for i in shapes): obj._shape = None else: obj._shape = shapes[0] return obj @classmethod def _flatten_args(cls, args): new_args = [] for arg in args: if isinstance(arg, CodegenArrayElementwiseAdd): new_args.extend(arg.args) else: new_args.append(arg) return new_args class CodegenArrayPermuteDims(_CodegenArrayAbstract): r""" Class to represent permutation of axes of arrays. Examples ======== >>> from sympy.codegen.array_utils import CodegenArrayPermuteDims >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> cg = CodegenArrayPermuteDims(M, [1, 0]) The object ``cg`` represents the transposition of ``M``, as the permutation ``[1, 0]`` will act on its indices by switching them: `M_{ij} \Rightarrow M_{ji}` This is evident when transforming back to matrix form: >>> from sympy.codegen.array_utils import recognize_matrix_expression >>> recognize_matrix_expression(cg) M.T >>> N = MatrixSymbol("N", 3, 2) >>> cg = CodegenArrayPermuteDims(N, [1, 0]) >>> cg.shape (2, 3) Permutations of tensor products are simplified in order to achieve a standard form: >>> from sympy.codegen.array_utils import CodegenArrayTensorProduct >>> M = MatrixSymbol("M", 4, 5) >>> tp = CodegenArrayTensorProduct(M, N) >>> tp.shape (4, 5, 3, 2) >>> perm1 = CodegenArrayPermuteDims(tp, [2, 3, 1, 0]) The args ``(M, N)`` have been sorted and the permutation has been simplified, the expression is equivalent: >>> perm1.expr.args (N, M) >>> perm1.shape (3, 2, 5, 4) >>> perm1.permutation (2 3) The permutation in its array form has been simplified from ``[2, 3, 1, 0]`` to ``[0, 1, 3, 2]``, as the arguments of the tensor product `M` and `N` have been switched: >>> perm1.permutation.array_form [0, 1, 3, 2] We can nest a second permutation: >>> perm2 = CodegenArrayPermuteDims(perm1, [1, 0, 2, 3]) >>> perm2.shape (2, 3, 5, 4) >>> perm2.permutation.array_form [1, 0, 3, 2] """ def __new__(cls, expr, permutation, nest_permutation=True): from sympy.combinatorics import Permutation expr = _sympify(expr) permutation = Permutation(permutation) permutation_size = permutation.size expr_rank = get_rank(expr) if permutation_size != expr_rank: raise ValueError("Permutation size must be the length of the shape of expr") if isinstance(expr, CodegenArrayPermuteDims): subexpr = expr.expr subperm = expr.permutation permutation = permutation * subperm expr = subexpr if isinstance(expr, CodegenArrayContraction): expr, permutation = cls._handle_nested_contraction(expr, permutation) if isinstance(expr, CodegenArrayTensorProduct): expr, permutation = cls._sort_components(expr, permutation) if isinstance(expr, (ZeroArray, ZeroMatrix)): return ZeroArray(*[expr.shape[i] for i in permutation.array_form]) plist = permutation.array_form if plist == sorted(plist): return expr obj = Basic.__new__(cls, expr, permutation) obj._subranks = [get_rank(expr)] shape = expr.shape if shape is None: obj._shape = None else: obj._shape = tuple(shape[permutation(i)] for i in range(len(shape))) return obj @property def expr(self): return self.args[0] @property def permutation(self): return self.args[1] @classmethod def _sort_components(cls, expr, permutation): # Get the permutation in its image-form: perm_image_form = _af_invert(permutation.array_form) args = list(expr.args) # Starting index global position for every arg: cumul = list(accumulate([0] + expr.subranks)) # Split `perm_image_form` into a list of list corresponding to the indices # of every argument: perm_image_form_in_components = [perm_image_form[cumul[i]:cumul[i+1]] for i in range(len(args))] # Create an index, target-position-key array: ps = [(i, sorted(comp)) for i, comp in enumerate(perm_image_form_in_components)] # Sort the array according to the target-position-key: # In this way, we define a canonical way to sort the arguments according # to the permutation. ps.sort(key=lambda x: x[1]) # Read the inverse-permutation (i.e. image-form) of the args: perm_args_image_form = [i[0] for i in ps] # Apply the args-permutation to the `args`: args_sorted = [args[i] for i in perm_args_image_form] # Apply the args-permutation to the array-form of the permutation of the axes (of `expr`): perm_image_form_sorted_args = [perm_image_form_in_components[i] for i in perm_args_image_form] new_permutation = Permutation(_af_invert([j for i in perm_image_form_sorted_args for j in i])) return CodegenArrayTensorProduct(*args_sorted), new_permutation @classmethod def _handle_nested_contraction(cls, expr, permutation): if not isinstance(expr, CodegenArrayContraction): return expr, permutation if not isinstance(expr.expr, CodegenArrayTensorProduct): return expr, permutation args = expr.expr.args contraction_indices = expr.contraction_indices contraction_indices_flat = [j for i in contraction_indices for j in i] cumul = list(accumulate([0] + expr.subranks)) # Spread the permutation in its array form across the args in the corresponding # tensor-product arguments with free indices: permutation_array_blocks_up = [] image_form = _af_invert(permutation.array_form) counter = 0 for i, e in enumerate(expr.subranks): current = [] for j in range(cumul[i], cumul[i+1]): if j in contraction_indices_flat: continue current.append(image_form[counter]) counter += 1 permutation_array_blocks_up.append(current) # Get the map of axis repositioning for every argument of tensor-product: index_blocks = [[j for j in range(cumul[i], cumul[i+1])] for i, e in enumerate(expr.subranks)] index_blocks_up = expr._push_indices_up(expr.contraction_indices, index_blocks) inverse_permutation = permutation**(-1) index_blocks_up_permuted = [[inverse_permutation(j) for j in i if j is not None] for i in index_blocks_up] # Sorting key is a list of tuple, first element is the index of `args`, second element of # the tuple is the sorting key to sort `args` of the tensor product: sorting_keys = list(enumerate(index_blocks_up_permuted)) sorting_keys.sort(key=lambda x: x[1]) # Now we can get the permutation acting on the args in its image-form: new_perm_image_form = [i[0] for i in sorting_keys] # Apply the args-level permutation to various elements: new_index_blocks = [index_blocks[i] for i in new_perm_image_form] new_index_perm_array_form = _af_invert([j for i in new_index_blocks for j in i]) new_args = [args[i] for i in new_perm_image_form] new_contraction_indices = [tuple(new_index_perm_array_form[j] for j in i) for i in contraction_indices] new_expr = CodegenArrayContraction(CodegenArrayTensorProduct(*new_args), *new_contraction_indices) new_permutation = Permutation(_af_invert([j for i in [permutation_array_blocks_up[k] for k in new_perm_image_form] for j in i])) return new_expr, new_permutation @classmethod def _check_permutation_mapping(cls, expr, permutation): subranks = expr.subranks index2arg = [i for i, arg in enumerate(expr.args) for j in range(expr.subranks[i])] permuted_indices = [permutation(i) for i in range(expr.subrank())] new_args = list(expr.args) arg_candidate_index = index2arg[permuted_indices[0]] current_indices = [] new_permutation = [] inserted_arg_cand_indices = set([]) for i, idx in enumerate(permuted_indices): if index2arg[idx] != arg_candidate_index: new_permutation.extend(current_indices) current_indices = [] arg_candidate_index = index2arg[idx] current_indices.append(idx) arg_candidate_rank = subranks[arg_candidate_index] if len(current_indices) == arg_candidate_rank: new_permutation.extend(sorted(current_indices)) local_current_indices = [j - min(current_indices) for j in current_indices] i1 = index2arg[i] new_args[i1] = CodegenArrayPermuteDims(new_args[i1], Permutation(local_current_indices)) inserted_arg_cand_indices.add(arg_candidate_index) current_indices = [] new_permutation.extend(current_indices) # TODO: swap args positions in order to simplify the expression: # TODO: this should be in a function args_positions = list(range(len(new_args))) # Get possible shifts: maps = {} cumulative_subranks = [0] + list(accumulate(subranks)) for i in range(0, len(subranks)): s = set([index2arg[new_permutation[j]] for j in range(cumulative_subranks[i], cumulative_subranks[i+1])]) if len(s) != 1: continue elem = next(iter(s)) if i != elem: maps[i] = elem # Find cycles in the map: lines = [] current_line = [] while maps: if len(current_line) == 0: k, v = maps.popitem() current_line.append(k) else: k = current_line[-1] if k not in maps: current_line = [] continue v = maps.pop(k) if v in current_line: lines.append(current_line) current_line = [] continue current_line.append(v) for line in lines: for i, e in enumerate(line): args_positions[line[(i + 1) % len(line)]] = e # TODO: function in order to permute the args: permutation_blocks = [[new_permutation[cumulative_subranks[i] + j] for j in range(e)] for i, e in enumerate(subranks)] new_args = [new_args[i] for i in args_positions] new_permutation_blocks = [permutation_blocks[i] for i in args_positions] new_permutation2 = [j for i in new_permutation_blocks for j in i] return CodegenArrayTensorProduct(*new_args), Permutation(new_permutation2) # **(-1) @classmethod def _check_if_there_are_closed_cycles(cls, expr, permutation): args = list(expr.args) subranks = expr.subranks cyclic_form = permutation.cyclic_form cumulative_subranks = [0] + list(accumulate(subranks)) cyclic_min = [min(i) for i in cyclic_form] cyclic_max = [max(i) for i in cyclic_form] cyclic_keep = [] for i, cycle in enumerate(cyclic_form): flag = True for j in range(0, len(cumulative_subranks) - 1): if cyclic_min[i] >= cumulative_subranks[j] and cyclic_max[i] < cumulative_subranks[j+1]: # Found a sinkable cycle. args[j] = CodegenArrayPermuteDims(args[j], Permutation([[k - cumulative_subranks[j] for k in cyclic_form[i]]])) flag = False break if flag: cyclic_keep.append(cyclic_form[i]) return CodegenArrayTensorProduct(*args), Permutation(cyclic_keep, size=permutation.size) def nest_permutation(self): r""" DEPRECATED. """ ret = self._nest_permutation(self.expr, self.permutation) if ret is None: return self return ret @classmethod def _nest_permutation(cls, expr, permutation): if isinstance(expr, CodegenArrayTensorProduct): return CodegenArrayPermuteDims(*cls._check_if_there_are_closed_cycles(expr, permutation)) elif isinstance(expr, CodegenArrayContraction): # Invert tree hierarchy: put the contraction above. cycles = permutation.cyclic_form newcycles = CodegenArrayContraction._convert_outer_indices_to_inner_indices(expr, *cycles) newpermutation = Permutation(newcycles) new_contr_indices = [tuple(newpermutation(j) for j in i) for i in expr.contraction_indices] return CodegenArrayContraction(CodegenArrayPermuteDims(expr.expr, newpermutation), *new_contr_indices) elif isinstance(expr, CodegenArrayElementwiseAdd): return CodegenArrayElementwiseAdd(*[CodegenArrayPermuteDims(arg, permutation) for arg in expr.args]) return None def nest_permutation(expr): if isinstance(expr, CodegenArrayPermuteDims): return expr.nest_permutation() else: return expr class CodegenArrayDiagonal(_CodegenArrayAbstract): r""" Class to represent the diagonal operator. Explanation =========== In a 2-dimensional array it returns the diagonal, this looks like the operation: `A_{ij} \rightarrow A_{ii}` The diagonal over axes 1 and 2 (the second and third) of the tensor product of two 2-dimensional arrays `A \otimes B` is `\Big[ A_{ab} B_{cd} \Big]_{abcd} \rightarrow \Big[ A_{ai} B_{id} \Big]_{adi}` In this last example the array expression has been reduced from 4-dimensional to 3-dimensional. Notice that no contraction has occurred, rather there is a new index `i` for the diagonal, contraction would have reduced the array to 2 dimensions. Notice that the diagonalized out dimensions are added as new dimensions at the end of the indices. """ def __new__(cls, expr, *diagonal_indices): expr = _sympify(expr) diagonal_indices = [Tuple(*sorted(i)) for i in diagonal_indices] if isinstance(expr, CodegenArrayElementwiseAdd): return CodegenArrayElementwiseAdd(*[CodegenArrayDiagonal(arg, *diagonal_indices) for arg in expr.args]) if isinstance(expr, CodegenArrayDiagonal): return cls._flatten(expr, *diagonal_indices) if isinstance(expr, CodegenArrayPermuteDims): return cls._handle_nested_permutedims_in_diag(expr, *diagonal_indices) shape = expr.shape if shape is not None: cls._validate(expr, *diagonal_indices) # Get new shape: positions, shape = cls._get_positions_shape(shape, diagonal_indices) else: positions = None if len(diagonal_indices) == 0: return expr if isinstance(expr, (ZeroArray, ZeroMatrix)): return ZeroArray(*shape) obj = Basic.__new__(cls, expr, *diagonal_indices) obj._positions = positions obj._subranks = _get_subranks(expr) obj._shape = shape return obj @staticmethod def _validate(expr, *diagonal_indices): # Check that no diagonalization happens on indices with mismatched # dimensions: shape = expr.shape for i in diagonal_indices: if len({shape[j] for j in i}) != 1: raise ValueError("diagonalizing indices of different dimensions") if len(i) <= 1: raise ValueError("need at least two axes to diagonalize") @staticmethod def _remove_trivial_dimensions(shape, *diagonal_indices): return [tuple(j for j in i) for i in diagonal_indices if shape[i[0]] != 1] @property def expr(self): return self.args[0] @property def diagonal_indices(self): return self.args[1:] @staticmethod def _flatten(expr, *outer_diagonal_indices): inner_diagonal_indices = expr.diagonal_indices all_inner = [j for i in inner_diagonal_indices for j in i] all_inner.sort() # TODO: add API for total rank and cumulative rank: total_rank = _get_subrank(expr) inner_rank = len(all_inner) outer_rank = total_rank - inner_rank shifts = [0 for i in range(outer_rank)] counter = 0 pointer = 0 for i in range(outer_rank): while pointer < inner_rank and counter >= all_inner[pointer]: counter += 1 pointer += 1 shifts[i] += pointer counter += 1 outer_diagonal_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_diagonal_indices) diagonal_indices = inner_diagonal_indices + outer_diagonal_indices return CodegenArrayDiagonal(expr.expr, *diagonal_indices) @classmethod def _handle_nested_permutedims_in_diag(cls, expr: CodegenArrayPermuteDims, *diagonal_indices): back_diagonal_indices = [[expr.permutation(j) for j in i] for i in diagonal_indices] nondiag = [i for i in range(get_rank(expr)) if not any(i in j for j in diagonal_indices)] back_nondiag = [expr.permutation(i) for i in nondiag] remap = {e: i for i, e in enumerate(sorted(back_nondiag))} new_permutation1 = [remap[i] for i in back_nondiag] shift = len(new_permutation1) diag_block_perm = [i + shift for i in range(len(back_diagonal_indices))] new_permutation = new_permutation1 + diag_block_perm return CodegenArrayPermuteDims( CodegenArrayDiagonal( expr.expr, *back_diagonal_indices ), new_permutation ) def _push_indices_down_nonstatic(self, indices): transform = lambda x: self._positions[x] if x < len(self._positions) else None return _apply_recursively_over_nested_lists(transform, indices) def _push_indices_up_nonstatic(self, indices): def transform(x): for i, e in enumerate(self._positions): if (isinstance(e, int) and x == e) or (isinstance(e, tuple) and x in e): return i return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _push_indices_down(cls, diagonal_indices, indices, rank): positions, shape = cls._get_positions_shape(range(rank), diagonal_indices) transform = lambda x: positions[x] if x < len(positions) else None return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _push_indices_up(cls, diagonal_indices, indices, rank): positions, shape = cls._get_positions_shape(range(rank), diagonal_indices) def transform(x): for i, e in enumerate(positions): if (isinstance(e, int) and x == e) or (isinstance(e, tuple) and x in e): return i return _apply_recursively_over_nested_lists(transform, indices) def transform_to_product(self): from sympy import ask, Q diagonal_indices = self.diagonal_indices if isinstance(self.expr, CodegenArrayContraction): # invert Diagonal and Contraction: diagonal_down = CodegenArrayContraction._push_indices_down( self.expr.contraction_indices, diagonal_indices ) newexpr = CodegenArrayDiagonal( self.expr.expr, *diagonal_down ).transform_to_product() contraction_up = newexpr._push_indices_up( diagonal_down, self.expr.contraction_indices ) return CodegenArrayContraction( newexpr, *contraction_up ) if not isinstance(self.expr, CodegenArrayTensorProduct): return self args = list(self.expr.args) # TODO: unify API subranks = [get_rank(i) for i in args] # TODO: unify API mapping = _get_mapping_from_subranks(subranks) new_contraction_indices = [] drop_diagonal_indices = [] for indl, links in enumerate(diagonal_indices): if len(links) > 2: continue # Also consider the case of diagonal matrices being contracted: current_dimension = self.expr.shape[links[0]] if current_dimension == 1: drop_diagonal_indices.append(indl) continue tuple_links = [mapping[i] for i in links] arg_indices, arg_positions = zip(*tuple_links) if len(arg_indices) != len(set(arg_indices)): # Maybe trace should be supported? raise NotImplementedError args_updates = {} count_nondiagonal = 0 last = None expression_is_square = False # Check that all args are vectors: for arg_ind, arg_pos in tuple_links: mat = args[arg_ind] if 1 in mat.shape and mat.shape != (1, 1): args_updates[arg_ind] = DiagMatrix(mat) last = arg_ind else: expression_is_square = True if not ask(Q.diagonal(mat)): count_nondiagonal += 1 if count_nondiagonal > 1: break if count_nondiagonal > 1: continue # TODO: if count_nondiagonal == 0 then the sub-expression can be recognized as HadamardProduct. for arg_ind, newmat in args_updates.items(): if not expression_is_square and arg_ind == last: continue args[arg_ind] = newmat drop_diagonal_indices.append(indl) new_contraction_indices.append(links) new_diagonal_indices = CodegenArrayContraction._push_indices_up( new_contraction_indices, [e for i, e in enumerate(diagonal_indices) if i not in drop_diagonal_indices] ) return CodegenArrayDiagonal( CodegenArrayContraction( CodegenArrayTensorProduct(*args), *new_contraction_indices ), *new_diagonal_indices ) @classmethod def _get_positions_shape(cls, shape, diagonal_indices): data1 = tuple((i, shp) for i, shp in enumerate(shape) if not any(i in j for j in diagonal_indices)) pos1, shp1 = zip(*data1) if data1 else ((), ()) data2 = tuple((i, shape[i[0]]) for i in diagonal_indices) pos2, shp2 = zip(*data2) if data2 else ((), ()) positions = pos1 + pos2 shape = shp1 + shp2 return positions, shape def get_rank(expr): if isinstance(expr, (MatrixExpr, MatrixElement)): return 2 if isinstance(expr, _CodegenArrayAbstract): return len(expr.shape) if isinstance(expr, NDimArray): return expr.rank() if isinstance(expr, Indexed): return expr.rank if isinstance(expr, IndexedBase): shape = expr.shape if shape is None: return -1 else: return len(shape) if hasattr(expr, "shape"): return len(expr.shape) return 0 def _get_subrank(expr): if isinstance(expr, _CodegenArrayAbstract): return expr.subrank() return get_rank(expr) def _get_subranks(expr): if isinstance(expr, _CodegenArrayAbstract): return expr.subranks else: return [get_rank(expr)] def _get_mapping_from_subranks(subranks): mapping = {} counter = 0 for i, rank in enumerate(subranks): for j in range(rank): mapping[counter] = (i, j) counter += 1 return mapping def _get_contraction_links(args, subranks, *contraction_indices): mapping = _get_mapping_from_subranks(subranks) contraction_tuples = [[mapping[j] for j in i] for i in contraction_indices] dlinks = defaultdict(dict) for links in contraction_tuples: if len(links) == 2: (arg1, pos1), (arg2, pos2) = links dlinks[arg1][pos1] = (arg2, pos2) dlinks[arg2][pos2] = (arg1, pos1) continue return args, dict(dlinks) def _sort_contraction_indices(pairing_indices): pairing_indices = [Tuple(*sorted(i)) for i in pairing_indices] pairing_indices.sort(key=lambda x: min(x)) return pairing_indices def _get_diagonal_indices(flattened_indices): axes_contraction = defaultdict(list) for i, ind in enumerate(flattened_indices): if isinstance(ind, (int, Integer)): # If the indices is a number, there can be no diagonal operation: continue axes_contraction[ind].append(i) axes_contraction = {k: v for k, v in axes_contraction.items() if len(v) > 1} # Put the diagonalized indices at the end: ret_indices = [i for i in flattened_indices if i not in axes_contraction] diag_indices = list(axes_contraction) diag_indices.sort(key=lambda x: flattened_indices.index(x)) diagonal_indices = [tuple(axes_contraction[i]) for i in diag_indices] ret_indices += diag_indices ret_indices = tuple(ret_indices) return diagonal_indices, ret_indices def _get_argindex(subindices, ind): for i, sind in enumerate(subindices): if ind == sind: return i if isinstance(sind, (set, frozenset)) and ind in sind: return i raise IndexError("%s not found in %s" % (ind, subindices)) def _codegen_array_parse(expr): if isinstance(expr, Sum): function = expr.function summation_indices = expr.variables subexpr, subindices = _codegen_array_parse(function) # Check dimensional consistency: shape = subexpr.shape if shape: for ind, istart, iend in expr.limits: i = _get_argindex(subindices, ind) if istart != 0 or iend+1 != shape[i]: raise ValueError("summation index and array dimension mismatch: %s" % ind) contraction_indices = [] subindices = list(subindices) if isinstance(subexpr, CodegenArrayDiagonal): diagonal_indices = list(subexpr.diagonal_indices) dindices = subindices[-len(diagonal_indices):] subindices = subindices[:-len(diagonal_indices)] for index in summation_indices: if index in dindices: position = dindices.index(index) contraction_indices.append(diagonal_indices[position]) diagonal_indices[position] = None diagonal_indices = [i for i in diagonal_indices if i is not None] for i, ind in enumerate(subindices): if ind in summation_indices: pass if diagonal_indices: subexpr = CodegenArrayDiagonal(subexpr.expr, *diagonal_indices) else: subexpr = subexpr.expr axes_contraction = defaultdict(list) for i, ind in enumerate(subindices): if ind in summation_indices: axes_contraction[ind].append(i) subindices[i] = None for k, v in axes_contraction.items(): contraction_indices.append(tuple(v)) free_indices = [i for i in subindices if i is not None] indices_ret = list(free_indices) indices_ret.sort(key=lambda x: free_indices.index(x)) return CodegenArrayContraction( subexpr, *contraction_indices, free_indices=free_indices ), tuple(indices_ret) if isinstance(expr, Mul): args, indices = zip(*[_codegen_array_parse(arg) for arg in expr.args]) # Check if there are KroneckerDelta objects: kronecker_delta_repl = {} for arg in args: if not isinstance(arg, KroneckerDelta): continue # Diagonalize two indices: i, j = arg.indices kindices = set(arg.indices) if i in kronecker_delta_repl: kindices.update(kronecker_delta_repl[i]) if j in kronecker_delta_repl: kindices.update(kronecker_delta_repl[j]) kindices = frozenset(kindices) for index in kindices: kronecker_delta_repl[index] = kindices # Remove KroneckerDelta objects, their relations should be handled by # CodegenArrayDiagonal: newargs = [] newindices = [] for arg, loc_indices in zip(args, indices): if isinstance(arg, KroneckerDelta): continue newargs.append(arg) newindices.append(loc_indices) flattened_indices = [kronecker_delta_repl.get(j, j) for i in newindices for j in i] diagonal_indices, ret_indices = _get_diagonal_indices(flattened_indices) tp = CodegenArrayTensorProduct(*newargs) if diagonal_indices: return (CodegenArrayDiagonal(tp, *diagonal_indices), ret_indices) else: return tp, ret_indices if isinstance(expr, MatrixElement): indices = expr.args[1:] diagonal_indices, ret_indices = _get_diagonal_indices(indices) if diagonal_indices: return (CodegenArrayDiagonal(expr.args[0], *diagonal_indices), ret_indices) else: return expr.args[0], ret_indices if isinstance(expr, Indexed): indices = expr.indices diagonal_indices, ret_indices = _get_diagonal_indices(indices) if diagonal_indices: return (CodegenArrayDiagonal(expr.base, *diagonal_indices), ret_indices) else: return expr.args[0], ret_indices if isinstance(expr, IndexedBase): raise NotImplementedError if isinstance(expr, KroneckerDelta): return expr, expr.indices if isinstance(expr, Add): args, indices = zip(*[_codegen_array_parse(arg) for arg in expr.args]) args = list(args) # Check if all indices are compatible. Otherwise expand the dimensions: index0set = set(indices[0]) index0 = indices[0] for i in range(1, len(args)): if set(indices[i]) != index0set: raise NotImplementedError("indices must be the same") permutation = Permutation([index0.index(j) for j in indices[i]]) # Perform index permutations: args[i] = CodegenArrayPermuteDims(args[i], permutation) return CodegenArrayElementwiseAdd(*args), index0 return expr, () def parse_matrix_expression(expr: MatrixExpr) -> Basic: if isinstance(expr, MatMul): args_nonmat = [] args = [] for arg in expr.args: if isinstance(arg, MatrixExpr): args.append(arg) else: args_nonmat.append(arg) contractions = [(2*i+1, 2*i+2) for i in range(len(args)-1)] scalar = Mul.fromiter(args_nonmat) if scalar == 1: tprod = CodegenArrayTensorProduct( *[parse_matrix_expression(arg) for arg in args]) else: tprod = CodegenArrayTensorProduct( scalar, *[parse_matrix_expression(arg) for arg in args]) return CodegenArrayContraction( tprod, *contractions ) elif isinstance(expr, MatAdd): return CodegenArrayElementwiseAdd( *[parse_matrix_expression(arg) for arg in expr.args] ) elif isinstance(expr, Transpose): return CodegenArrayPermuteDims( parse_matrix_expression(expr.args[0]), [1, 0] ) elif isinstance(expr, Trace): inner_expr = parse_matrix_expression(expr.arg) return CodegenArrayContraction(inner_expr, (0, len(inner_expr.shape) - 1)) else: return expr def parse_indexed_expression(expr, first_indices=None): r""" Parse indexed expression into a form useful for code generation. Examples ======== >>> from sympy.codegen.array_utils import parse_indexed_expression >>> from sympy import MatrixSymbol, Sum, symbols >>> i, j, k, d = symbols("i j k d") >>> M = MatrixSymbol("M", d, d) >>> N = MatrixSymbol("N", d, d) Recognize the trace in summation form: >>> expr = Sum(M[i, i], (i, 0, d-1)) >>> parse_indexed_expression(expr) CodegenArrayContraction(M, (0, 1)) Recognize the extraction of the diagonal by using the same index `i` on both axes of the matrix: >>> expr = M[i, i] >>> parse_indexed_expression(expr) CodegenArrayDiagonal(M, (0, 1)) This function can help perform the transformation expressed in two different mathematical notations as: `\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}` Recognize the matrix multiplication in summation form: >>> expr = Sum(M[i, j]*N[j, k], (j, 0, d-1)) >>> parse_indexed_expression(expr) CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) Specify that ``k`` has to be the starting index: >>> parse_indexed_expression(expr, first_indices=[k]) CodegenArrayContraction(CodegenArrayTensorProduct(N, M), (0, 3)) """ result, indices = _codegen_array_parse(expr) if not first_indices: return result for i in first_indices: if i not in indices: first_indices.remove(i) first_indices.extend([i for i in indices if i not in first_indices]) permutation = [first_indices.index(i) for i in indices] return CodegenArrayPermuteDims(result, permutation) def _a2m_mul(*args): if all(not isinstance(i, _CodegenArrayAbstract) for i in args): return MatMul(*args).doit() else: return CodegenArrayContraction( CodegenArrayTensorProduct(*args), *[(2*i-1, 2*i) for i in range(1, len(args))] ) def _a2m_tensor_product(*args): scalars = [] arrays = [] for arg in args: if isinstance(arg, (MatrixExpr, _CodegenArrayAbstract)): arrays.append(arg) else: scalars.append(arg) scalar = Mul.fromiter(scalars) if len(arrays) == 0: return scalar if scalar != 1: if isinstance(arrays[0], _CodegenArrayAbstract): arrays = [scalar] + arrays else: arrays[0] *= scalar return CodegenArrayTensorProduct(*arrays) def _a2m_add(*args): if all(not isinstance(i, _CodegenArrayAbstract) for i in args): return MatAdd(*args).doit() else: return CodegenArrayElementwiseAdd(*args) def _a2m_trace(arg): if isinstance(arg, _CodegenArrayAbstract): return CodegenArrayContraction(arg, (0, 1)) else: return Trace(arg) def _a2m_transpose(arg): if isinstance(arg, _CodegenArrayAbstract): return CodegenArrayPermuteDims(arg, [1, 0]) else: return Transpose(arg) def _support_function_tp1_recognize(contraction_indices, args): if not isinstance(args, list): args = [args] subranks = [get_rank(i) for i in args] coeff = reduce(lambda x, y: x*y, [arg for arg, srank in zip(args, subranks) if srank == 0], S.One) mapping = _get_mapping_from_subranks(subranks) reverse_mapping = {v: k for k, v in mapping.items()} args, dlinks = _get_contraction_links(args, subranks, *contraction_indices) flatten_contractions = [j for i in contraction_indices for j in i] total_rank = sum(subranks) # TODO: turn `free_indices` into a list? free_indices = {i: i for i in range(total_rank) if i not in flatten_contractions} return_list = [] while free_indices or dlinks: if free_indices: first_index, starting_argind = min(free_indices.items(), key=lambda x: x[1]) free_indices.pop(first_index) starting_argind, starting_pos = mapping[starting_argind] else: # Maybe a Trace starting_argind = min(dlinks) starting_pos = 0 current_argind, current_pos = starting_argind, starting_pos matmul_args = [] last_index = None while True: elem = array2matrix(args[current_argind]) if current_pos == 1: elem = _a2m_transpose(elem) matmul_args.append(elem) other_pos = 1 - current_pos if current_argind not in dlinks: other_absolute = reverse_mapping[current_argind, other_pos] free_indices.pop(other_absolute, None) break link_dict = dlinks.pop(current_argind) if other_pos not in link_dict: if free_indices: last_index = [i for i, j in free_indices.items() if mapping[j] == (current_argind, other_pos)][0] else: last_index = None break if len(link_dict) > 2: raise NotImplementedError("not a matrix multiplication line") # Get the last element of `link_dict` as the next link. The last # element is the correct start for trace expressions: current_argind, current_pos = link_dict[other_pos] if current_argind == starting_argind: # This is a trace: if len(matmul_args) > 1: matmul_args = [_a2m_trace(_a2m_mul(*matmul_args))] elif args[current_argind].shape != (1, 1): matmul_args = [_a2m_trace(*matmul_args)] break dlinks.pop(starting_argind, None) free_indices.pop(last_index, None) return_list.append(_a2m_mul(*matmul_args)) if coeff != 1: # Let's inject the coefficient: return_list[0] = coeff*return_list[0] return _a2m_tensor_product(*return_list) @singledispatch def array2matrix(expr): return expr @array2matrix.register(ZeroArray) def _(expr: ZeroArray): if get_rank(expr) == 2: return ZeroMatrix(*expr.shape) else: return expr @array2matrix.register(CodegenArrayTensorProduct) def _(expr: CodegenArrayTensorProduct): return _a2m_tensor_product(*[array2matrix(arg) for arg in expr.args]) @array2matrix.register(CodegenArrayContraction) def _(expr: CodegenArrayContraction): expr = expr.flatten_contraction_of_diagonal() expr = expr.split_multiple_contractions() subexpr = expr.expr contraction_indices: Tuple[Tuple[int]] = expr.contraction_indices if isinstance(subexpr, CodegenArrayTensorProduct): newexpr = CodegenArrayContraction(array2matrix(subexpr), *contraction_indices) contraction_indices = newexpr.contraction_indices if any(i > 2 for i in newexpr.subranks): addends = CodegenArrayElementwiseAdd(*[_a2m_tensor_product(*j) for j in itertools.product(*[i.args if isinstance(i, CodegenArrayElementwiseAdd) else [i] for i in expr.expr.args])]) newexpr = CodegenArrayContraction(addends, *contraction_indices) if isinstance(newexpr, CodegenArrayElementwiseAdd): ret = array2matrix(newexpr) return ret assert isinstance(newexpr, CodegenArrayContraction) ret = _support_function_tp1_recognize(contraction_indices, list(newexpr.expr.args)) return ret elif not isinstance(subexpr, _CodegenArrayAbstract): ret = array2matrix(subexpr) if isinstance(ret, MatrixExpr): assert expr.contraction_indices == ((0, 1),) return _a2m_trace(ret) else: return CodegenArrayContraction(ret, *expr.contraction_indices) @array2matrix.register(CodegenArrayDiagonal) def _(expr: CodegenArrayDiagonal): pexpr = expr.transform_to_product() if expr == pexpr: return expr return array2matrix(pexpr) @array2matrix.register(CodegenArrayPermuteDims) def _(expr: CodegenArrayPermuteDims): if expr.permutation.array_form == [1, 0]: return _a2m_transpose(array2matrix(expr.expr)) elif isinstance(expr.expr, CodegenArrayTensorProduct): ranks = expr.expr.subranks newrange = [expr.permutation(i) for i in range(sum(ranks))] newpos = [] counter = 0 for rank in ranks: newpos.append(newrange[counter:counter+rank]) counter += rank newargs = [] newperm = [] for pos, arg in zip(newpos, expr.expr.args): if pos == sorted(pos): newargs.append((array2matrix(arg), pos[0])) newperm.extend(pos) elif len(pos) == 2: newargs.append((_a2m_transpose(array2matrix(arg)), pos[0])) newperm.extend(reversed(pos)) else: raise NotImplementedError() newargs = [i[0] for i in newargs] return CodegenArrayPermuteDims(_a2m_tensor_product(*newargs), newperm) elif isinstance(expr.expr, CodegenArrayContraction): mat_mul_lines = array2matrix(expr.expr) if not isinstance(mat_mul_lines, CodegenArrayTensorProduct): flat_cyclic_form = [j for i in expr.permutation.cyclic_form for j in i] expr_shape = get_shape(expr) if all(expr_shape[i] == 1 for i in flat_cyclic_form): return mat_mul_lines raise NotImplementedError() permutation = Permutation(2*len(mat_mul_lines.args)-1)*expr.permutation permuted = [permutation(i) for i in range(2*len(mat_mul_lines.args))] args_array = [None for i in mat_mul_lines.args] for i in range(len(mat_mul_lines.args)): p1 = permuted[2*i] p2 = permuted[2*i+1] if p1 // 2 != p2 // 2: return CodegenArrayPermuteDims(mat_mul_lines, permutation) pos = p1 // 2 if p1 > p2: args_array[i] = _a2m_transpose(mat_mul_lines.args[pos]) else: args_array[i] = mat_mul_lines.args[pos] return _a2m_tensor_product(*args_array) else: raise NotImplementedError() @array2matrix.register(CodegenArrayElementwiseAdd) def _(expr: CodegenArrayElementwiseAdd): addends = [array2matrix(arg) for arg in expr.args] return _a2m_add(*addends) def _squash_trivial_dims_in_tensorproduct(expr): if isinstance(expr, CodegenArrayTensorProduct): return _a2m_tensor_product(*_suppress_trivial_dims_in_tensor_product(expr.args)) if isinstance(expr, CodegenArrayElementwiseAdd): return _a2m_add(*[_squash_trivial_dims_in_tensorproduct(a) for a in expr.args]) return expr def recognize_matrix_expression(expr): r""" Recognize matrix expressions in codegen objects. If more than one matrix multiplication line have been detected, return a list with the matrix expressions. Examples ======== >>> from sympy import MatrixSymbol, Sum >>> from sympy.abc import i, j, k, l, N >>> from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct >>> from sympy.codegen.array_utils import recognize_matrix_expression, parse_indexed_expression, parse_matrix_expression >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) >>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) A*B >>> cg = parse_indexed_expression(expr, first_indices=[k]) >>> recognize_matrix_expression(cg) B.T*A.T Transposition is detected: >>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) A.T*B >>> cg = parse_indexed_expression(expr, first_indices=[k]) >>> recognize_matrix_expression(cg) B.T*A Detect the trace: >>> expr = Sum(A[i, i], (i, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) Trace(A) Recognize some more complex traces: >>> expr = Sum(A[i, j]*B[j, i], (i, 0, N-1), (j, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) Trace(A*B) More complicated expressions: >>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) A*B.T*A.T Expressions constructed from matrix expressions do not contain literal indices, the positions of free indices are returned instead: >>> expr = A*B >>> cg = parse_matrix_expression(expr) >>> recognize_matrix_expression(cg) A*B If more than one line of matrix multiplications is detected, return separate matrix multiplication factors embedded in a tensor product object: >>> cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C, D), (1, 2), (5, 6)) >>> recognize_matrix_expression(cg) CodegenArrayTensorProduct(A*B, C*D) The two lines have free indices at axes 0, 3 and 4, 7, respectively. """ rec = array2matrix(expr) rec = _squash_trivial_dims_in_tensorproduct(rec) return rec def _suppress_trivial_dims_in_tensor_product(mat_list): # Recognize expressions like [x, y] with shape (k, 1, k, 1) as `x*y.T`. # The matrix expression has to be equivalent to the tensor product of the # matrices, with trivial dimensions (i.e. dim=1) dropped. # That is, add contractions over trivial dimensions: mat_11 = [] mat_k1 = [] mat_list = [i for i in mat_list if i != 1 and not getattr(i, "is_Identity", False)] for mat in mat_list: if mat.shape == (1, 1): mat_11.append(mat) elif 1 in mat.shape: if mat.shape[0] == 1: mat_k1.append(mat.T) else: mat_k1.append(mat) else: return mat_list if len(mat_k1) > 2: return mat_list a = MatMul.fromiter(mat_k1[:1]) b = MatMul.fromiter(mat_k1[1:]) x = MatMul.fromiter(mat_11) return [a*x*b.T] def _apply_recursively_over_nested_lists(func, arr): if isinstance(arr, (tuple, list, Tuple)): return tuple(_apply_recursively_over_nested_lists(func, i) for i in arr) elif isinstance(arr, Tuple): return Tuple.fromiter(_apply_recursively_over_nested_lists(func, i) for i in arr) else: return func(arr) def _build_push_indices_up_func_transformation(flattened_contraction_indices): shifts = {0: 0} i = 0 cumulative = 0 while i < len(flattened_contraction_indices): j = 1 while i+j < len(flattened_contraction_indices): if flattened_contraction_indices[i] + j != flattened_contraction_indices[i+j]: break j += 1 cumulative += j shifts[flattened_contraction_indices[i]] = cumulative i += j shift_keys = sorted(shifts.keys()) def func(idx): return shifts[shift_keys[bisect.bisect_right(shift_keys, idx)-1]] def transform(j): if j in flattened_contraction_indices: return None else: return j - func(j) return transform def _build_push_indices_down_func_transformation(flattened_contraction_indices): N = flattened_contraction_indices[-1]+2 shifts = [i for i in range(N) if i not in flattened_contraction_indices] def transform(j): if j < len(shifts): return shifts[j] else: return j + shifts[-1] - len(shifts) + 1 return transform
4c8ad04b137abcc9098ce1238bbcea83c7f936d52cdd9b9de02a2e61d64dc85c
""" Classes and functions useful for rewriting expressions for optimized code generation. Some languages (or standards thereof), e.g. C99, offer specialized math functions for better performance and/or precision. Using the ``optimize`` function in this module, together with a collection of rules (represented as instances of ``Optimization``), one can rewrite the expressions for this purpose:: >>> from sympy import Symbol, exp, log >>> from sympy.codegen.rewriting import optimize, optims_c99 >>> x = Symbol('x') >>> optimize(3*exp(2*x) - 3, optims_c99) 3*expm1(2*x) >>> optimize(exp(2*x) - 3, optims_c99) exp(2*x) - 3 >>> optimize(log(3*x + 3), optims_c99) log1p(x) + log(3) >>> optimize(log(2*x + 3), optims_c99) log(2*x + 3) The ``optims_c99`` imported above is tuple containing the following instances (which may be imported from ``sympy.codegen.rewriting``): - ``expm1_opt`` - ``log1p_opt`` - ``exp2_opt`` - ``log2_opt`` - ``log2const_opt`` """ from itertools import chain from sympy import cos, exp, log, Max, Min, Wild, expand_log, Dummy, sin, sinc from sympy.assumptions import Q, ask from sympy.codegen.cfunctions import log1p, log2, exp2, expm1 from sympy.codegen.matrix_nodes import MatrixSolve from sympy.core.expr import UnevaluatedExpr from sympy.core.power import Pow from sympy.codegen.numpy_nodes import logaddexp, logaddexp2 from sympy.codegen.scipy_nodes import cosm1 from sympy.core.mul import Mul from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.utilities.iterables import sift class Optimization: """ Abstract base class for rewriting optimization. Subclasses should implement ``__call__`` taking an expression as argument. Parameters ========== cost_function : callable returning number priority : number """ def __init__(self, cost_function=None, priority=1): self.cost_function = cost_function self.priority=priority class ReplaceOptim(Optimization): """ Rewriting optimization calling replace on expressions. Explanation =========== The instance can be used as a function on expressions for which it will apply the ``replace`` method (see :meth:`sympy.core.basic.Basic.replace`). Parameters ========== query : First argument passed to replace. value : Second argument passed to replace. Examples ======== >>> from sympy import Symbol >>> from sympy.codegen.rewriting import ReplaceOptim >>> from sympy.codegen.cfunctions import exp2 >>> x = Symbol('x') >>> exp2_opt = ReplaceOptim(lambda p: p.is_Pow and p.base == 2, ... lambda p: exp2(p.exp)) >>> exp2_opt(2**x) exp2(x) """ def __init__(self, query, value, **kwargs): super().__init__(**kwargs) self.query = query self.value = value def __call__(self, expr): return expr.replace(self.query, self.value) def optimize(expr, optimizations): """ Apply optimizations to an expression. Parameters ========== expr : expression optimizations : iterable of ``Optimization`` instances The optimizations will be sorted with respect to ``priority`` (highest first). Examples ======== >>> from sympy import log, Symbol >>> from sympy.codegen.rewriting import optims_c99, optimize >>> x = Symbol('x') >>> optimize(log(x+3)/log(2) + log(x**2 + 1), optims_c99) log1p(x**2) + log2(x + 3) """ for optim in sorted(optimizations, key=lambda opt: opt.priority, reverse=True): new_expr = optim(expr) if optim.cost_function is None: expr = new_expr else: before, after = map(lambda x: optim.cost_function(x), (expr, new_expr)) if before > after: expr = new_expr return expr exp2_opt = ReplaceOptim( lambda p: p.is_Pow and p.base == 2, lambda p: exp2(p.exp) ) _d = Wild('d', properties=[lambda x: x.is_Dummy]) _u = Wild('u', properties=[lambda x: not x.is_number and not x.is_Add]) _v = Wild('v') _w = Wild('w') _n = Wild('n', properties=[lambda x: x.is_number]) sinc_opt1 = ReplaceOptim( sin(_w)/_w, sinc(_w) ) sinc_opt2 = ReplaceOptim( sin(_n*_w)/_w, _n*sinc(_n*_w) ) sinc_opts = (sinc_opt1, sinc_opt2) log2_opt = ReplaceOptim(_v*log(_w)/log(2), _v*log2(_w), cost_function=lambda expr: expr.count( lambda e: ( # division & eval of transcendentals are expensive floating point operations... e.is_Pow and e.exp.is_negative # division or (isinstance(e, (log, log2)) and not e.args[0].is_number)) # transcendental ) ) log2const_opt = ReplaceOptim(log(2)*log2(_w), log(_w)) logsumexp_2terms_opt = ReplaceOptim( lambda l: (isinstance(l, log) and l.args[0].is_Add and len(l.args[0].args) == 2 and all(isinstance(t, exp) for t in l.args[0].args)), lambda l: ( Max(*[e.args[0] for e in l.args[0].args]) + log1p(exp(Min(*[e.args[0] for e in l.args[0].args]))) ) ) class _FuncMinusOne: def __init__(self, func, func_m_1): self.func = func self.func_m_1 = func_m_1 def _try_func_m_1(self, expr): protected, old_new = expr.replace(self.func, lambda arg: Dummy(), map=True) factored = protected.factor() new_old = {v: k for k, v in old_new.items()} return factored.replace(_d - 1, lambda d: self.func_m_1(new_old[d].args[0])).xreplace(new_old) def __call__(self, e): numbers, non_num = sift(e.args, lambda arg: arg.is_number, binary=True) non_num_func, non_num_other = sift(non_num, lambda arg: arg.has(self.func), binary=True) numsum = sum(numbers) new_func_terms, done = [], False for func_term in non_num_func: if done: new_func_terms.append(func_term) else: looking_at = func_term + numsum attempt = self._try_func_m_1(looking_at) if looking_at == attempt: new_func_terms.append(func_term) else: done = True new_func_terms.append(attempt) if not done: new_func_terms.append(numsum) return e.func(*chain(new_func_terms, non_num_other)) expm1_opt = ReplaceOptim(lambda e: e.is_Add, _FuncMinusOne(exp, expm1)) cosm1_opt = ReplaceOptim(lambda e: e.is_Add, _FuncMinusOne(cos, cosm1)) log1p_opt = ReplaceOptim( lambda e: isinstance(e, log), lambda l: expand_log(l.replace( log, lambda arg: log(arg.factor()) )).replace(log(_u+1), log1p(_u)) ) def create_expand_pow_optimization(limit, *, base_req=lambda b: b.is_symbol): """ Creates an instance of :class:`ReplaceOptim` for expanding ``Pow``. Explanation =========== The requirements for expansions are that the base needs to be a symbol and the exponent needs to be an Integer (and be less than or equal to ``limit``). Parameters ========== limit : int The highest power which is expanded into multiplication. base_req : function returning bool Requirement on base for expansion to happen, default is to return the ``is_symbol`` attribute of the base. Examples ======== >>> from sympy import Symbol, sin >>> from sympy.codegen.rewriting import create_expand_pow_optimization >>> x = Symbol('x') >>> expand_opt = create_expand_pow_optimization(3) >>> expand_opt(x**5 + x**3) x**5 + x*x*x >>> expand_opt(x**5 + x**3 + sin(x)**3) x**5 + sin(x)**3 + x*x*x >>> opt2 = create_expand_pow_optimization(3 , base_req=lambda b: not b.is_Function) >>> opt2((x+1)**2 + sin(x)**2) sin(x)**2 + (x + 1)*(x + 1) """ return ReplaceOptim( lambda e: e.is_Pow and base_req(e.base) and e.exp.is_Integer and abs(e.exp) <= limit, lambda p: ( UnevaluatedExpr(Mul(*([p.base]*+p.exp), evaluate=False)) if p.exp > 0 else 1/UnevaluatedExpr(Mul(*([p.base]*-p.exp), evaluate=False)) )) # Optimization procedures for turning A**(-1) * x into MatrixSolve(A, x) def _matinv_predicate(expr): # TODO: We should be able to support more than 2 elements if expr.is_MatMul and len(expr.args) == 2: left, right = expr.args if left.is_Inverse and right.shape[1] == 1: inv_arg = left.arg if isinstance(inv_arg, MatrixSymbol): return bool(ask(Q.fullrank(left.arg))) return False def _matinv_transform(expr): left, right = expr.args inv_arg = left.arg return MatrixSolve(inv_arg, right) matinv_opt = ReplaceOptim(_matinv_predicate, _matinv_transform) logaddexp_opt = ReplaceOptim(log(exp(_v)+exp(_w)), logaddexp(_v, _w)) logaddexp2_opt = ReplaceOptim(log(Pow(2, _v)+Pow(2, _w)), logaddexp2(_v, _w)*log(2)) # Collections of optimizations: optims_c99 = (expm1_opt, log1p_opt, exp2_opt, log2_opt, log2const_opt) optims_numpy = optims_c99 + (logaddexp_opt, logaddexp2_opt,) + sinc_opts optims_scipy = (cosm1_opt,)
0fc52f7fd5e8a687c3503b915da983fded00080c19f88bf560c86d1ba4842528
""" The contents of this file are the return value of ``sympy.assumptions.ask.compute_known_facts``. Do NOT manually edit this file. Instead, run ./bin/ask_update.py. """ from sympy.core.cache import cacheit from sympy.logic.boolalg import And from sympy.assumptions.cnf import Literal from sympy.assumptions.ask import Q # -{ Known facts as a set }- @cacheit def get_all_known_facts(): return { frozenset((Literal(Q.algebraic, False), Literal(Q.complex, True), Literal(Q.finite, True), Literal(Q.transcendental, False))), frozenset((Literal(Q.algebraic, False), Literal(Q.rational, True))), frozenset((Literal(Q.algebraic, True), Literal(Q.complex, False))), frozenset((Literal(Q.algebraic, True), Literal(Q.finite, False))), frozenset((Literal(Q.algebraic, True), Literal(Q.transcendental, True))), frozenset((Literal(Q.antihermitian, False), Literal(Q.imaginary, True))), frozenset((Literal(Q.antihermitian, True), Literal(Q.hermitian, True))), frozenset((Literal(Q.complex, False), Literal(Q.imaginary, True))), frozenset((Literal(Q.complex, False), Literal(Q.real, True))), frozenset((Literal(Q.complex, False), Literal(Q.transcendental, True))), frozenset((Literal(Q.complex_elements, False), Literal(Q.real_elements, True))), frozenset((Literal(Q.composite, True), Literal(Q.prime, True))), frozenset((Literal(Q.diagonal, False), Literal(Q.lower_triangular, True), Literal(Q.upper_triangular, True))), frozenset((Literal(Q.diagonal, True), Literal(Q.lower_triangular, False))), frozenset((Literal(Q.diagonal, True), Literal(Q.normal, False))), frozenset((Literal(Q.diagonal, True), Literal(Q.symmetric, False))), frozenset((Literal(Q.diagonal, True), Literal(Q.upper_triangular, False))), frozenset((Literal(Q.even, False), Literal(Q.integer, True), Literal(Q.odd, False))), frozenset((Literal(Q.even, False), Literal(Q.zero, True))), frozenset((Literal(Q.even, True), Literal(Q.integer, False))), frozenset((Literal(Q.even, True), Literal(Q.odd, True))), frozenset((Literal(Q.extended_real, False), Literal(Q.infinite, True))), frozenset((Literal(Q.extended_real, False), Literal(Q.real, True))), frozenset((Literal(Q.extended_real, True), Literal(Q.infinite, False), Literal(Q.real, False))), frozenset((Literal(Q.finite, False), Literal(Q.irrational, True))), frozenset((Literal(Q.finite, False), Literal(Q.rational, True))), frozenset((Literal(Q.finite, False), Literal(Q.transcendental, True))), frozenset((Literal(Q.finite, True), Literal(Q.infinite, True))), frozenset((Literal(Q.finite, True), Literal(Q.irrational, False), Literal(Q.rational, False), Literal(Q.real, True))), frozenset((Literal(Q.fullrank, False), Literal(Q.invertible, True))), frozenset((Literal(Q.fullrank, True), Literal(Q.invertible, False), Literal(Q.square, True))), frozenset((Literal(Q.hermitian, False), Literal(Q.real, True))), frozenset((Literal(Q.imaginary, True), Literal(Q.real, True))), frozenset((Literal(Q.integer, False), Literal(Q.odd, True))), frozenset((Literal(Q.integer, False), Literal(Q.prime, True))), frozenset((Literal(Q.integer, True), Literal(Q.rational, False))), frozenset((Literal(Q.integer_elements, True), Literal(Q.real_elements, False))), frozenset((Literal(Q.invertible, False), Literal(Q.positive_definite, True))), frozenset((Literal(Q.invertible, False), Literal(Q.singular, False))), frozenset((Literal(Q.invertible, False), Literal(Q.unitary, True))), frozenset((Literal(Q.invertible, True), Literal(Q.singular, True))), frozenset((Literal(Q.invertible, True), Literal(Q.square, False))), frozenset((Literal(Q.irrational, True), Literal(Q.rational, True))), frozenset((Literal(Q.irrational, True), Literal(Q.real, False))), frozenset((Literal(Q.lower_triangular, False), Literal(Q.triangular, True), Literal(Q.upper_triangular, False))), frozenset((Literal(Q.lower_triangular, True), Literal(Q.triangular, False))), frozenset((Literal(Q.negative, False), Literal(Q.nonpositive, True), Literal(Q.zero, False))), frozenset((Literal(Q.negative, False), Literal(Q.nonzero, True), Literal(Q.positive, False))), frozenset((Literal(Q.negative, False), Literal(Q.positive, False), Literal(Q.real, True), Literal(Q.zero, False))), frozenset((Literal(Q.negative, True), Literal(Q.nonpositive, False))), frozenset((Literal(Q.negative, True), Literal(Q.nonzero, False))), frozenset((Literal(Q.negative, True), Literal(Q.positive, True))), frozenset((Literal(Q.negative, True), Literal(Q.real, False))), frozenset((Literal(Q.negative, True), Literal(Q.zero, True))), frozenset((Literal(Q.nonnegative, False), Literal(Q.positive, True))), frozenset((Literal(Q.nonnegative, False), Literal(Q.zero, True))), frozenset((Literal(Q.nonnegative, True), Literal(Q.positive, False), Literal(Q.zero, False))), frozenset((Literal(Q.nonpositive, False), Literal(Q.zero, True))), frozenset((Literal(Q.nonzero, False), Literal(Q.positive, True))), frozenset((Literal(Q.normal, False), Literal(Q.unitary, True))), frozenset((Literal(Q.normal, True), Literal(Q.square, False))), frozenset((Literal(Q.orthogonal, False), Literal(Q.real, True), Literal(Q.unitary, True))), frozenset((Literal(Q.orthogonal, True), Literal(Q.positive_definite, False))), frozenset((Literal(Q.orthogonal, True), Literal(Q.unitary, False))), frozenset((Literal(Q.positive, False), Literal(Q.prime, True))), frozenset((Literal(Q.positive, True), Literal(Q.real, False))), frozenset((Literal(Q.positive, True), Literal(Q.zero, True))), frozenset((Literal(Q.rational, True), Literal(Q.real, False))), frozenset((Literal(Q.real, False), Literal(Q.zero, True))), frozenset((Literal(Q.square, False), Literal(Q.symmetric, True))), frozenset((Literal(Q.triangular, False), Literal(Q.unit_triangular, True))), frozenset((Literal(Q.triangular, False), Literal(Q.upper_triangular, True))) } # -{ Known facts in Conjunctive Normal Form }- @cacheit def get_known_facts_cnf(): return And( Q.invertible | Q.singular, Q.algebraic | ~Q.rational, Q.antihermitian | ~Q.imaginary, Q.complex_elements | ~Q.real_elements, Q.complex | ~Q.algebraic, Q.complex | ~Q.imaginary, Q.complex | ~Q.real, Q.complex | ~Q.transcendental, Q.even | ~Q.zero, Q.extended_real | ~Q.infinite, Q.extended_real | ~Q.real, Q.finite | ~Q.algebraic, Q.finite | ~Q.irrational, Q.finite | ~Q.rational, Q.finite | ~Q.transcendental, Q.fullrank | ~Q.invertible, Q.hermitian | ~Q.real, Q.integer | ~Q.even, Q.integer | ~Q.odd, Q.integer | ~Q.prime, Q.invertible | ~Q.positive_definite, Q.invertible | ~Q.unitary, Q.lower_triangular | ~Q.diagonal, Q.nonnegative | ~Q.positive, Q.nonnegative | ~Q.zero, Q.nonpositive | ~Q.negative, Q.nonpositive | ~Q.zero, Q.nonzero | ~Q.negative, Q.nonzero | ~Q.positive, Q.normal | ~Q.diagonal, Q.normal | ~Q.unitary, Q.positive_definite | ~Q.orthogonal, Q.positive | ~Q.prime, Q.rational | ~Q.integer, Q.real_elements | ~Q.integer_elements, Q.real | ~Q.irrational, Q.real | ~Q.negative, Q.real | ~Q.positive, Q.real | ~Q.rational, Q.real | ~Q.zero, Q.square | ~Q.invertible, Q.square | ~Q.normal, Q.square | ~Q.symmetric, Q.symmetric | ~Q.diagonal, Q.triangular | ~Q.lower_triangular, Q.triangular | ~Q.unit_triangular, Q.triangular | ~Q.upper_triangular, Q.unitary | ~Q.orthogonal, Q.upper_triangular | ~Q.diagonal, ~Q.algebraic | ~Q.transcendental, ~Q.antihermitian | ~Q.hermitian, ~Q.composite | ~Q.prime, ~Q.even | ~Q.odd, ~Q.finite | ~Q.infinite, ~Q.imaginary | ~Q.real, ~Q.invertible | ~Q.singular, ~Q.irrational | ~Q.rational, ~Q.negative | ~Q.positive, ~Q.negative | ~Q.zero, ~Q.positive | ~Q.zero, Q.even | Q.odd | ~Q.integer, Q.infinite | Q.real | ~Q.extended_real, Q.lower_triangular | Q.upper_triangular | ~Q.triangular, Q.negative | Q.positive | ~Q.nonzero, Q.negative | Q.zero | ~Q.nonpositive, Q.positive | Q.zero | ~Q.nonnegative, Q.diagonal | ~Q.lower_triangular | ~Q.upper_triangular, Q.invertible | ~Q.fullrank | ~Q.square, Q.orthogonal | ~Q.real | ~Q.unitary, Q.negative | Q.positive | Q.zero | ~Q.real, Q.algebraic | Q.transcendental | ~Q.complex | ~Q.finite, Q.irrational | Q.rational | ~Q.finite | ~Q.real ) # -{ Known facts in compressed sets }- @cacheit def get_known_facts_dict(): return { Q.algebraic: set([Q.algebraic, Q.complex, Q.finite]), Q.antihermitian: set([Q.antihermitian]), Q.commutative: set([Q.commutative]), Q.complex: set([Q.complex]), Q.complex_elements: set([Q.complex_elements]), Q.composite: set([Q.composite]), Q.diagonal: set([Q.diagonal, Q.lower_triangular, Q.normal, Q.square, Q.symmetric, Q.triangular, Q.upper_triangular]), Q.even: set([Q.algebraic, Q.complex, Q.even, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.rational, Q.real]), Q.extended_real: set([Q.extended_real]), Q.finite: set([Q.finite]), Q.fullrank: set([Q.fullrank]), Q.hermitian: set([Q.hermitian]), Q.imaginary: set([Q.antihermitian, Q.complex, Q.imaginary]), Q.infinite: set([Q.extended_real, Q.infinite]), Q.integer: set([Q.algebraic, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.rational, Q.real]), Q.integer_elements: set([Q.complex_elements, Q.integer_elements, Q.real_elements]), Q.invertible: set([Q.fullrank, Q.invertible, Q.square]), Q.irrational: set([Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.irrational, Q.nonzero, Q.real]), Q.is_true: set([Q.is_true]), Q.lower_triangular: set([Q.lower_triangular, Q.triangular]), Q.negative: set([Q.complex, Q.extended_real, Q.hermitian, Q.negative, Q.nonpositive, Q.nonzero, Q.real]), Q.nonnegative: set([Q.complex, Q.extended_real, Q.hermitian, Q.nonnegative, Q.real]), Q.nonpositive: set([Q.complex, Q.extended_real, Q.hermitian, Q.nonpositive, Q.real]), Q.nonzero: set([Q.complex, Q.extended_real, Q.hermitian, Q.nonzero, Q.real]), Q.normal: set([Q.normal, Q.square]), Q.odd: set([Q.algebraic, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonzero, Q.odd, Q.rational, Q.real]), Q.orthogonal: set([Q.fullrank, Q.invertible, Q.normal, Q.orthogonal, Q.positive_definite, Q.square, Q.unitary]), Q.positive: set([Q.complex, Q.extended_real, Q.hermitian, Q.nonnegative, Q.nonzero, Q.positive, Q.real]), Q.positive_definite: set([Q.fullrank, Q.invertible, Q.positive_definite, Q.square]), Q.prime: set([Q.algebraic, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonnegative, Q.nonzero, Q.positive, Q.prime, Q.rational, Q.real]), Q.rational: set([Q.algebraic, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.rational, Q.real]), Q.real: set([Q.complex, Q.extended_real, Q.hermitian, Q.real]), Q.real_elements: set([Q.complex_elements, Q.real_elements]), Q.singular: set([Q.singular]), Q.square: set([Q.square]), Q.symmetric: set([Q.square, Q.symmetric]), Q.transcendental: set([Q.complex, Q.finite, Q.transcendental]), Q.triangular: set([Q.triangular]), Q.unit_triangular: set([Q.triangular, Q.unit_triangular]), Q.unitary: set([Q.fullrank, Q.invertible, Q.normal, Q.square, Q.unitary]), Q.upper_triangular: set([Q.triangular, Q.upper_triangular]), Q.zero: set([Q.algebraic, Q.complex, Q.even, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonnegative, Q.nonpositive, Q.rational, Q.real, Q.zero]), }
a563257e0e2ce6848c4d9fda3a0a6b2d3f198e821b4f31c4f7f5ccec7e03ebeb
from typing import Dict, Callable from sympy.core import S, Add, Expr, Basic, Mul from sympy.logic.boolalg import Boolean from sympy.assumptions import Q, ask # type: ignore def refine(expr, assumptions=True): """ Simplify an expression using assumptions. Explanation =========== Unlike :func:`~.simplify()` which performs structural simplification without any assumption, this function transforms the expression into the form which is only valid under certain assumptions. Note that ``simplify()`` is generally not done in refining process. Refining boolean expression involves reducing it to ``True`` or ``False``. Unlike :func:~.`ask()`, the expression will not be reduced if the truth value cannot be determined. Examples ======== >>> from sympy import refine, sqrt, Q >>> from sympy.abc import x >>> refine(sqrt(x**2), Q.real(x)) Abs(x) >>> refine(sqrt(x**2), Q.positive(x)) x >>> refine(Q.real(x), Q.positive(x)) True >>> refine(Q.positive(x), Q.real(x)) Q.positive(x) See Also ======== sympy.simplify.simplify.simplify : Structural simplification without assumptions. sympy.assumptions.ask.ask : Query for boolean expressions using assumptions. """ if not isinstance(expr, Basic): return expr if not expr.is_Atom: args = [refine(arg, assumptions) for arg in expr.args] # TODO: this will probably not work with Integral or Polynomial expr = expr.func(*args) if hasattr(expr, '_eval_refine'): ref_expr = expr._eval_refine(assumptions) if ref_expr is not None: return ref_expr name = expr.__class__.__name__ handler = handlers_dict.get(name, None) if handler is None: return expr new_expr = handler(expr, assumptions) if (new_expr is None) or (expr == new_expr): return expr if not isinstance(new_expr, Expr): return new_expr return refine(new_expr, assumptions) def refine_abs(expr, assumptions): """ Handler for the absolute value. Examples ======== >>> from sympy import Q, Abs >>> from sympy.assumptions.refine import refine_abs >>> from sympy.abc import x >>> refine_abs(Abs(x), Q.real(x)) >>> refine_abs(Abs(x), Q.positive(x)) x >>> refine_abs(Abs(x), Q.negative(x)) -x """ from sympy.core.logic import fuzzy_not from sympy import Abs arg = expr.args[0] if ask(Q.real(arg), assumptions) and \ fuzzy_not(ask(Q.negative(arg), assumptions)): # if it's nonnegative return arg if ask(Q.negative(arg), assumptions): return -arg # arg is Mul if isinstance(arg, Mul): r = [refine(abs(a), assumptions) for a in arg.args] non_abs = [] in_abs = [] for i in r: if isinstance(i, Abs): in_abs.append(i.args[0]) else: non_abs.append(i) return Mul(*non_abs) * Abs(Mul(*in_abs)) def refine_Pow(expr, assumptions): """ Handler for instances of Pow. Examples ======== >>> from sympy import Q >>> from sympy.assumptions.refine import refine_Pow >>> from sympy.abc import x,y,z >>> refine_Pow((-1)**x, Q.real(x)) >>> refine_Pow((-1)**x, Q.even(x)) 1 >>> refine_Pow((-1)**x, Q.odd(x)) -1 For powers of -1, even parts of the exponent can be simplified: >>> refine_Pow((-1)**(x+y), Q.even(x)) (-1)**y >>> refine_Pow((-1)**(x+y+z), Q.odd(x) & Q.odd(z)) (-1)**y >>> refine_Pow((-1)**(x+y+2), Q.odd(x)) (-1)**(y + 1) >>> refine_Pow((-1)**(x+3), True) (-1)**(x + 1) """ from sympy.core import Pow, Rational from sympy.functions.elementary.complexes import Abs from sympy.functions import sign if isinstance(expr.base, Abs): if ask(Q.real(expr.base.args[0]), assumptions) and \ ask(Q.even(expr.exp), assumptions): return expr.base.args[0] ** expr.exp if ask(Q.real(expr.base), assumptions): if expr.base.is_number: if ask(Q.even(expr.exp), assumptions): return abs(expr.base) ** expr.exp if ask(Q.odd(expr.exp), assumptions): return sign(expr.base) * abs(expr.base) ** expr.exp if isinstance(expr.exp, Rational): if type(expr.base) is Pow: return abs(expr.base.base) ** (expr.base.exp * expr.exp) if expr.base is S.NegativeOne: if expr.exp.is_Add: old = expr # For powers of (-1) we can remove # - even terms # - pairs of odd terms # - a single odd term + 1 # - A numerical constant N can be replaced with mod(N,2) coeff, terms = expr.exp.as_coeff_add() terms = set(terms) even_terms = set() odd_terms = set() initial_number_of_terms = len(terms) for t in terms: if ask(Q.even(t), assumptions): even_terms.add(t) elif ask(Q.odd(t), assumptions): odd_terms.add(t) terms -= even_terms if len(odd_terms) % 2: terms -= odd_terms new_coeff = (coeff + S.One) % 2 else: terms -= odd_terms new_coeff = coeff % 2 if new_coeff != coeff or len(terms) < initial_number_of_terms: terms.add(new_coeff) expr = expr.base**(Add(*terms)) # Handle (-1)**((-1)**n/2 + m/2) e2 = 2*expr.exp if ask(Q.even(e2), assumptions): if e2.could_extract_minus_sign(): e2 *= expr.base if e2.is_Add: i, p = e2.as_two_terms() if p.is_Pow and p.base is S.NegativeOne: if ask(Q.integer(p.exp), assumptions): i = (i + 1)/2 if ask(Q.even(i), assumptions): return expr.base**p.exp elif ask(Q.odd(i), assumptions): return expr.base**(p.exp + 1) else: return expr.base**(p.exp + i) if old != expr: return expr def refine_atan2(expr, assumptions): """ Handler for the atan2 function. Examples ======== >>> from sympy import Q, atan2 >>> from sympy.assumptions.refine import refine_atan2 >>> from sympy.abc import x, y >>> refine_atan2(atan2(y,x), Q.real(y) & Q.positive(x)) atan(y/x) >>> refine_atan2(atan2(y,x), Q.negative(y) & Q.negative(x)) atan(y/x) - pi >>> refine_atan2(atan2(y,x), Q.positive(y) & Q.negative(x)) atan(y/x) + pi >>> refine_atan2(atan2(y,x), Q.zero(y) & Q.negative(x)) pi >>> refine_atan2(atan2(y,x), Q.positive(y) & Q.zero(x)) pi/2 >>> refine_atan2(atan2(y,x), Q.negative(y) & Q.zero(x)) -pi/2 >>> refine_atan2(atan2(y,x), Q.zero(y) & Q.zero(x)) nan """ from sympy.functions.elementary.trigonometric import atan from sympy.core import S y, x = expr.args if ask(Q.real(y) & Q.positive(x), assumptions): return atan(y / x) elif ask(Q.negative(y) & Q.negative(x), assumptions): return atan(y / x) - S.Pi elif ask(Q.positive(y) & Q.negative(x), assumptions): return atan(y / x) + S.Pi elif ask(Q.zero(y) & Q.negative(x), assumptions): return S.Pi elif ask(Q.positive(y) & Q.zero(x), assumptions): return S.Pi/2 elif ask(Q.negative(y) & Q.zero(x), assumptions): return -S.Pi/2 elif ask(Q.zero(y) & Q.zero(x), assumptions): return S.NaN else: return expr def refine_re(expr, assumptions): """ Handler for real part. Examples ======== >>> from sympy.assumptions.refine import refine_re >>> from sympy import Q, re >>> from sympy.abc import x >>> refine_re(re(x), Q.real(x)) x >>> refine_re(re(x), Q.imaginary(x)) 0 """ arg = expr.args[0] if ask(Q.real(arg), assumptions): return arg if ask(Q.imaginary(arg), assumptions): return S.Zero return _refine_reim(expr, assumptions) def refine_im(expr, assumptions): """ Handler for imaginary part. Explanation =========== >>> from sympy.assumptions.refine import refine_im >>> from sympy import Q, im >>> from sympy.abc import x >>> refine_im(im(x), Q.real(x)) 0 >>> refine_im(im(x), Q.imaginary(x)) -I*x """ arg = expr.args[0] if ask(Q.real(arg), assumptions): return S.Zero if ask(Q.imaginary(arg), assumptions): return - S.ImaginaryUnit * arg return _refine_reim(expr, assumptions) def _refine_reim(expr, assumptions): # Helper function for refine_re & refine_im expanded = expr.expand(complex = True) if expanded != expr: refined = refine(expanded, assumptions) if refined != expanded: return refined # Best to leave the expression as is return None def refine_sign(expr, assumptions): """ Handler for sign. Examples ======== >>> from sympy.assumptions.refine import refine_sign >>> from sympy import Symbol, Q, sign, im >>> x = Symbol('x', real = True) >>> expr = sign(x) >>> refine_sign(expr, Q.positive(x) & Q.nonzero(x)) 1 >>> refine_sign(expr, Q.negative(x) & Q.nonzero(x)) -1 >>> refine_sign(expr, Q.zero(x)) 0 >>> y = Symbol('y', imaginary = True) >>> expr = sign(y) >>> refine_sign(expr, Q.positive(im(y))) I >>> refine_sign(expr, Q.negative(im(y))) -I """ arg = expr.args[0] if ask(Q.zero(arg), assumptions): return S.Zero if ask(Q.real(arg)): if ask(Q.positive(arg), assumptions): return S.One if ask(Q.negative(arg), assumptions): return S.NegativeOne if ask(Q.imaginary(arg)): arg_re, arg_im = arg.as_real_imag() if ask(Q.positive(arg_im), assumptions): return S.ImaginaryUnit if ask(Q.negative(arg_im), assumptions): return -S.ImaginaryUnit return expr def refine_matrixelement(expr, assumptions): """ Handler for symmetric part. Examples ======== >>> from sympy.assumptions.refine import refine_matrixelement >>> from sympy import Q >>> from sympy.matrices.expressions.matexpr import MatrixSymbol >>> X = MatrixSymbol('X', 3, 3) >>> refine_matrixelement(X[0, 1], Q.symmetric(X)) X[0, 1] >>> refine_matrixelement(X[1, 0], Q.symmetric(X)) X[0, 1] """ from sympy.matrices.expressions.matexpr import MatrixElement matrix, i, j = expr.args if ask(Q.symmetric(matrix), assumptions): if (i - j).could_extract_minus_sign(): return expr return MatrixElement(matrix, j, i) handlers_dict = { 'Abs': refine_abs, 'Pow': refine_Pow, 'atan2': refine_atan2, 're': refine_re, 'im': refine_im, 'sign': refine_sign, 'MatrixElement': refine_matrixelement } # type: Dict[str, Callable[[Expr, Boolean], Expr]]
fa8cb3cc55bcd556b992cc93870f83b708185056b05ee26bd6277c6f47619267
"""Module for querying SymPy objects about assumptions.""" from sympy.assumptions.assume import (global_assumptions, Predicate, AppliedPredicate) from sympy.core import sympify from sympy.core.cache import cacheit from sympy.core.relational import Relational from sympy.core.kind import BooleanKind from sympy.logic.boolalg import (to_cnf, And, Not, Or, Implies, Equivalent) from sympy.logic.inference import satisfiable from sympy.utilities.decorator import memoize_property from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.assumptions.cnf import CNF, EncodedCNF, Literal # Memoization is necessary for the properties of AssumptionKeys to # ensure that only one object of Predicate objects are created. # This is because assumption handlers are registered on those objects. class AssumptionKeys: """ This class contains all the supported keys by ``ask``. It should be accessed via the instance ``sympy.Q``. """ # DO NOT add methods or properties other than predicate keys. # SAT solver checks the properties of Q and use them to compute the # fact system. Non-predicate attributes will break this. @memoize_property def hermitian(self): from .handlers.sets import HermitianPredicate return HermitianPredicate() @memoize_property def antihermitian(self): from .handlers.sets import AntihermitianPredicate return AntihermitianPredicate() @memoize_property def real(self): from .handlers.sets import RealPredicate return RealPredicate() @memoize_property def extended_real(self): from .handlers.sets import ExtendedRealPredicate return ExtendedRealPredicate() @memoize_property def imaginary(self): from .handlers.sets import ImaginaryPredicate return ImaginaryPredicate() @memoize_property def complex(self): from .handlers.sets import ComplexPredicate return ComplexPredicate() @memoize_property def algebraic(self): from .handlers.sets import AlgebraicPredicate return AlgebraicPredicate() @memoize_property def transcendental(self): from .predicates.sets import TranscendentalPredicate return TranscendentalPredicate() @memoize_property def integer(self): from .handlers.sets import IntegerPredicate return IntegerPredicate() @memoize_property def rational(self): from .handlers.sets import RationalPredicate return RationalPredicate() @memoize_property def irrational(self): from .handlers.sets import IrrationalPredicate return IrrationalPredicate() @memoize_property def finite(self): from .handlers.calculus import FinitePredicate return FinitePredicate() @memoize_property def infinite(self): from .predicates.calculus import InfinitePredicate return InfinitePredicate() @memoize_property def positive(self): from .handlers.order import PositivePredicate return PositivePredicate() @memoize_property def negative(self): from .handlers.order import NegativePredicate return NegativePredicate() @memoize_property def zero(self): from .handlers.order import ZeroPredicate return ZeroPredicate() @memoize_property def nonzero(self): from .handlers.order import NonZeroPredicate return NonZeroPredicate() @memoize_property def nonpositive(self): from .handlers.order import NonPositivePredicate return NonPositivePredicate() @memoize_property def nonnegative(self): from .handlers.order import NonNegativePredicate return NonNegativePredicate() @memoize_property def even(self): from .handlers.ntheory import EvenPredicate return EvenPredicate() @memoize_property def odd(self): from .handlers.ntheory import OddPredicate return OddPredicate() @memoize_property def prime(self): from .handlers.ntheory import PrimePredicate return PrimePredicate() @memoize_property def composite(self): from .handlers.ntheory import CompositePredicate return CompositePredicate() @memoize_property def commutative(self): from .handlers.common import CommutativePredicate return CommutativePredicate() @memoize_property def is_true(self): from .handlers.common import IsTruePredicate return IsTruePredicate() @memoize_property def symmetric(self): from .handlers.matrices import SymmetricPredicate return SymmetricPredicate() @memoize_property def invertible(self): from .handlers.matrices import InvertiblePredicate return InvertiblePredicate() @memoize_property def orthogonal(self): from .handlers.matrices import OrthogonalPredicate return OrthogonalPredicate() @memoize_property def unitary(self): from .handlers.matrices import UnitaryPredicate return UnitaryPredicate() @memoize_property def positive_definite(self): from .handlers.matrices import PositiveDefinitePredicate return PositiveDefinitePredicate() @memoize_property def upper_triangular(self): from .handlers.matrices import UpperTriangularPredicate return UpperTriangularPredicate() @memoize_property def lower_triangular(self): from .handlers.matrices import LowerTriangularPredicate return LowerTriangularPredicate() @memoize_property def diagonal(self): from .handlers.matrices import DiagonalPredicate return DiagonalPredicate() @memoize_property def fullrank(self): from .handlers.matrices import FullRankPredicate return FullRankPredicate() @memoize_property def square(self): from .handlers.matrices import SquarePredicate return SquarePredicate() @memoize_property def integer_elements(self): from .handlers.matrices import IntegerElementsPredicate return IntegerElementsPredicate() @memoize_property def real_elements(self): from .handlers.matrices import RealElementsPredicate return RealElementsPredicate() @memoize_property def complex_elements(self): from .handlers.matrices import ComplexElementsPredicate return ComplexElementsPredicate() @memoize_property def singular(self): from .predicates.matrices import SingularPredicate return SingularPredicate() @memoize_property def normal(self): from .predicates.matrices import NormalPredicate return NormalPredicate() @memoize_property def triangular(self): from .predicates.matrices import TriangularPredicate return TriangularPredicate() @memoize_property def unit_triangular(self): from .predicates.matrices import UnitTriangularPredicate return UnitTriangularPredicate() Q = AssumptionKeys() def _extract_facts(expr, symbol, check_reversed_rel=True): """ Helper for ask(). Explanation =========== Extracts the facts relevant to the symbol from an assumption. Returns None if there is nothing to extract. """ if isinstance(symbol, Relational): if check_reversed_rel: rev = _extract_facts(expr, symbol.reversed, False) if rev is not None: return rev if isinstance(expr, bool): return if not expr.has(symbol): return if isinstance(expr, AppliedPredicate): if expr.arg == symbol: return expr.func else: return if isinstance(expr, Not) and expr.args[0].func in (And, Or): cls = Or if expr.args[0] == And else And expr = cls(*[~arg for arg in expr.args[0].args]) args = [_extract_facts(arg, symbol) for arg in expr.args] if isinstance(expr, And): args = [x for x in args if x is not None] if args: return expr.func(*args) if args and all(x is not None for x in args): return expr.func(*args) def _extract_all_facts(expr, symbols): facts = set() if len(symbols) == 1 and isinstance(symbols[0], Relational): rel = symbols[0] symbols = (rel, rel.reversed) for clause in expr.clauses: args = [] for literal in clause: if isinstance(literal.lit, AppliedPredicate): if literal.lit.arg in symbols: # Add literal if it has 'symbol' in it args.append(Literal(literal.lit.func, literal.is_Not)) else: # If any of the literals doesn't have 'symbol' don't add the whole clause. break else: if args: facts.add(frozenset(args)) return CNF(facts) def ask(proposition, assumptions=True, context=global_assumptions): """ Function to evaluate the proposition with assumptions. **Syntax** * ask(proposition) Evaluate the *proposition* in global assumption context. * ask(proposition, assumptions) Evaluate the *proposition* with respect to *assumptions* in global assumption context. This function evaluates the proposition to ``True`` or ``False`` if the truth value can be determined. If not, it returns ``None``. It should be discerned from :func:`~.refine()` which does not reduce the expression to ``None``. Parameters ========== proposition : any boolean expression Proposition which will be evaluated to boolean value. If this is not ``AppliedPredicate``, it will be wrapped by ``Q.is_true``. assumptions : any boolean expression, optional Local assumptions to evaluate the *proposition*. context : AssumptionsContext, optional Default assumptions to evaluate the *proposition*. By default, this is ``sympy.assumptions.global_assumptions`` variable. Examples ======== >>> from sympy import ask, Q, pi >>> from sympy.abc import x, y >>> ask(Q.rational(pi)) False >>> ask(Q.even(x*y), Q.even(x) & Q.integer(y)) True >>> ask(Q.prime(4*x), Q.integer(x)) False If the truth value cannot be determined, ``None`` will be returned. >>> print(ask(Q.odd(3*x))) # cannot determine unless we know x None **Remarks** Relations in assumptions are not implemented (yet), so the following will not give a meaningful result. >>> ask(Q.positive(x), Q.is_true(x > 0)) It is however a work in progress. See Also ======== sympy.assumptions.refine.refine : Simplification using assumptions. Proposition is not reduced to ``None`` if the truth value cannot be determined. """ from sympy.assumptions.satask import satask proposition = sympify(proposition) assumptions = sympify(assumptions) if isinstance(proposition, Predicate) or proposition.kind is not BooleanKind: raise TypeError("proposition must be a valid logical expression") if isinstance(assumptions, Predicate) or assumptions.kind is not BooleanKind: raise TypeError("assumptions must be a valid logical expression") if isinstance(proposition, AppliedPredicate): key, args = proposition.function, proposition.arguments else: key, args = Q.is_true, (proposition,) assump = CNF.from_prop(assumptions) assump.extend(context) local_facts = _extract_all_facts(assump, args) known_facts_cnf = get_all_known_facts() known_facts_dict = get_known_facts_dict() enc_cnf = EncodedCNF() enc_cnf.from_cnf(CNF(known_facts_cnf)) enc_cnf.add_from_cnf(local_facts) if local_facts.clauses and satisfiable(enc_cnf) is False: raise ValueError("inconsistent assumptions %s" % assumptions) if local_facts.clauses: if len(local_facts.clauses) == 1: cl, = local_facts.clauses f, = cl if len(cl)==1 else [None] if f and f.is_Not and f.arg in known_facts_dict.get(key, []): return False for clause in local_facts.clauses: if len(clause) == 1: f, = clause fdict = known_facts_dict.get(f.arg, None) if not f.is_Not else None if fdict and key in fdict: return True if fdict and Not(key) in known_facts_dict[f.arg]: return False # direct resolution method, no logic res = key(*args)._eval_ask(assumptions) if res is not None: return bool(res) # using satask (still costly) res = satask(proposition, assumptions=assumptions, context=context) return res def ask_full_inference(proposition, assumptions, known_facts_cnf): """ Method for inferring properties about objects. """ if not satisfiable(And(known_facts_cnf, assumptions, proposition)): return False if not satisfiable(And(known_facts_cnf, assumptions, Not(proposition))): return True return None def register_handler(key, handler): """ Register a handler in the ask system. key must be a string and handler a class inheriting from AskHandler. .. deprecated:: 1.8. Use multipledispatch handler instead. See :obj:`~.Predicate`. """ SymPyDeprecationWarning( feature="register_handler() function", useinstead="multipledispatch handler of Predicate", issue=20873, deprecated_since_version="1.8" ).warn() if isinstance(key, Predicate): key = key.name.name Qkey = getattr(Q, key, None) if Qkey is not None: Qkey.add_handler(handler) else: setattr(Q, key, Predicate(key, handlers=[handler])) def remove_handler(key, handler): """ Removes a handler from the ask system. Same syntax as register_handler .. deprecated:: 1.8. Use multipledispatch handler instead. See :obj:`~.Predicate`. """ SymPyDeprecationWarning( feature="remove_handler() function", useinstead="multipledispatch handler of Predicate", issue=20873, deprecated_since_version="1.8" ).warn() if isinstance(key, Predicate): key = key.name.name getattr(Q, key).remove_handler(handler) def single_fact_lookup(known_facts_keys, known_facts_cnf): # Compute the quick lookup for single facts mapping = {} for key in known_facts_keys: mapping[key] = {key} for other_key in known_facts_keys: if other_key != key: if ask_full_inference(other_key, key, known_facts_cnf): mapping[key].add(other_key) return mapping def compute_known_facts(known_facts, known_facts_keys): """Compute the various forms of knowledge compilation used by the assumptions system. Explanation =========== This function is typically applied to the results of the ``get_known_facts`` and ``get_known_facts_keys`` functions defined at the bottom of this file. """ from textwrap import dedent, wrap fact_string = dedent('''\ """ The contents of this file are the return value of ``sympy.assumptions.ask.compute_known_facts``. Do NOT manually edit this file. Instead, run ./bin/ask_update.py. """ from sympy.core.cache import cacheit from sympy.logic.boolalg import And from sympy.assumptions.cnf import Literal from sympy.assumptions.ask import Q # -{ Known facts as a set }- @cacheit def get_all_known_facts(): return { %s } # -{ Known facts in Conjunctive Normal Form }- @cacheit def get_known_facts_cnf(): return And( %s ) # -{ Known facts in compressed sets }- @cacheit def get_known_facts_dict(): return { %s } ''') # Compute the known facts in CNF form for logical inference LINE = ",\n " HANG = ' '*8 cnf = to_cnf(known_facts) cnf_ = CNF.to_CNF(known_facts) c = LINE.join([str(a) for a in cnf.args]) p = LINE.join(sorted(['frozenset((' + ', '.join(str(lit) for lit in sorted(clause, key=str)) +'))' for clause in cnf_.clauses])) mapping = single_fact_lookup(known_facts_keys, cnf) items = sorted(mapping.items(), key=str) keys = [str(i[0]) for i in items] values = ['set(%s)' % sorted(i[1], key=str) for i in items] m = LINE.join(['\n'.join( wrap("{}: {}".format(k, v), subsequent_indent=HANG, break_long_words=False)) for k, v in zip(keys, values)]) + ',' return fact_string % (p, c, m) @cacheit def get_known_facts_keys(): return [ getattr(Q, attr) for attr in Q.__class__.__dict__ if not attr.startswith('__')] @cacheit def get_known_facts(): return And( Implies(Q.infinite, ~Q.finite), Implies(Q.real, Q.complex), Implies(Q.real, Q.hermitian), Equivalent(Q.extended_real, Q.real | Q.infinite), Equivalent(Q.even | Q.odd, Q.integer), Implies(Q.even, ~Q.odd), Implies(Q.prime, Q.integer & Q.positive & ~Q.composite), Implies(Q.integer, Q.rational), Implies(Q.rational, Q.algebraic), Implies(Q.algebraic, Q.complex), Implies(Q.algebraic, Q.finite), Equivalent(Q.transcendental | Q.algebraic, Q.complex & Q.finite), Implies(Q.transcendental, ~Q.algebraic), Implies(Q.transcendental, Q.finite), Implies(Q.imaginary, Q.complex & ~Q.real), Implies(Q.imaginary, Q.antihermitian), Implies(Q.antihermitian, ~Q.hermitian), Equivalent(Q.irrational | Q.rational, Q.real & Q.finite), Implies(Q.irrational, ~Q.rational), Implies(Q.zero, Q.even), Equivalent(Q.real, Q.negative | Q.zero | Q.positive), Implies(Q.zero, ~Q.negative & ~Q.positive), Implies(Q.negative, ~Q.positive), Equivalent(Q.nonnegative, Q.zero | Q.positive), Equivalent(Q.nonpositive, Q.zero | Q.negative), Equivalent(Q.nonzero, Q.negative | Q.positive), Implies(Q.orthogonal, Q.positive_definite), Implies(Q.orthogonal, Q.unitary), Implies(Q.unitary & Q.real, Q.orthogonal), Implies(Q.unitary, Q.normal), Implies(Q.unitary, Q.invertible), Implies(Q.normal, Q.square), Implies(Q.diagonal, Q.normal), Implies(Q.positive_definite, Q.invertible), Implies(Q.diagonal, Q.upper_triangular), Implies(Q.diagonal, Q.lower_triangular), Implies(Q.lower_triangular, Q.triangular), Implies(Q.upper_triangular, Q.triangular), Implies(Q.triangular, Q.upper_triangular | Q.lower_triangular), Implies(Q.upper_triangular & Q.lower_triangular, Q.diagonal), Implies(Q.diagonal, Q.symmetric), Implies(Q.unit_triangular, Q.triangular), Implies(Q.invertible, Q.fullrank), Implies(Q.invertible, Q.square), Implies(Q.symmetric, Q.square), Implies(Q.fullrank & Q.square, Q.invertible), Equivalent(Q.invertible, ~Q.singular), Implies(Q.integer_elements, Q.real_elements), Implies(Q.real_elements, Q.complex_elements), ) from sympy.assumptions.ask_generated import ( get_known_facts_dict, get_all_known_facts)
aee01dbc603d1e9f02a0bc30d72ebe6ffd8276db626892c71c1cfaba86094a75
"""A module which implements predicates and assumption context.""" from contextlib import contextmanager import inspect from sympy.core.assumptions import ManagedProperties from sympy.core.symbol import Str from sympy.core.sympify import _sympify from sympy.logic.boolalg import Boolean from sympy.multipledispatch.dispatcher import ( Dispatcher, MDNotImplementedError, str_signature ) from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import is_sequence from sympy.utilities.source import get_class class AssumptionsContext(set): """ Set containing default assumptions which are applied to the ``ask()`` function. Explanation =========== This is used to represent global assumptions, but you can also use this class to create your own local assumptions contexts. It is basically a thin wrapper to Python's set, so see its documentation for advanced usage. Examples ======== The default assumption context is ``global_assumptions``, which is initially empty: >>> from sympy import ask, Q >>> from sympy.assumptions import global_assumptions >>> global_assumptions AssumptionsContext() You can add default assumptions: >>> from sympy.abc import x >>> global_assumptions.add(Q.real(x)) >>> global_assumptions AssumptionsContext({Q.real(x)}) >>> ask(Q.real(x)) True And remove them: >>> global_assumptions.remove(Q.real(x)) >>> print(ask(Q.real(x))) None The ``clear()`` method removes every assumption: >>> global_assumptions.add(Q.positive(x)) >>> global_assumptions AssumptionsContext({Q.positive(x)}) >>> global_assumptions.clear() >>> global_assumptions AssumptionsContext() See Also ======== assuming """ def add(self, *assumptions): """Add an assumption.""" for a in assumptions: super().add(a) def _sympystr(self, printer): if not self: return "%s()" % self.__class__.__name__ return "{}({})".format(self.__class__.__name__, printer._print_set(self)) global_assumptions = AssumptionsContext() class AppliedPredicate(Boolean): """ The class of expressions resulting from applying ``Predicate`` to the arguments. ``AppliedPredicate`` merely wraps its argument and remain unevaluated. To evaluate it, use the ``ask()`` function. Examples ======== >>> from sympy import Q, ask >>> Q.integer(1) Q.integer(1) The ``function`` attribute returns the predicate, and the ``arguments`` attribute returns the tuple of arguments. >>> type(Q.integer(1)) <class 'sympy.assumptions.assume.AppliedPredicate'> >>> Q.integer(1).function Q.integer >>> Q.integer(1).arguments (1,) Applied predicates can be evaluated to a boolean value with ``ask``: >>> ask(Q.integer(1)) True """ __slots__ = () is_Atom = True # do not attempt to decompose this def __new__(cls, predicate, *args): if not isinstance(predicate, Predicate): raise TypeError("%s is not a Predicate." % predicate) args = map(_sympify, args) return super().__new__(cls, predicate, *args) @property def arg(self): """ Return the expression used by this assumption. Examples ======== >>> from sympy import Q, Symbol >>> x = Symbol('x') >>> a = Q.integer(x + 1) >>> a.arg x + 1 """ # Will be deprecated args = self._args if len(args) == 2: # backwards compatibility return args[1] raise TypeError("'arg' property is allowed only for unary predicates.") @property def args(self): # Will be deprecated and return normal Basic.func return self._args[1:] @property def func(self): # Will be deprecated and return normal Basic.func return self._args[0] @property def function(self): """ Return the predicate. """ # Will be changed to self.args[0] after args overridding is removed return self._args[0] @property def arguments(self): """ Return the arguments which are applied to the predicate. """ # Will be changed to self.args[1:] after args overridding is removed return self._args[1:] def _eval_ask(self, assumptions): return self.function.eval(self.arguments, assumptions) @property def binary_symbols(self): from sympy.core.relational import Eq, Ne from .ask import Q if self.function == Q.is_true: i = self.arguments[0] if i.is_Boolean or i.is_Symbol or isinstance(i, (Eq, Ne)): return i.binary_symbols return set() class PredicateMeta(ManagedProperties): def __new__(cls, clsname, bases, dct): # If handler is not defined, assign empty dispatcher. if "handler" not in dct: name = f"Ask{clsname.capitalize()}Handler" handler = Dispatcher(name, doc="Handler for key %s" % name) dct["handler"] = handler dct["_orig_doc"] = dct.get("__doc__", "") return super().__new__(cls, clsname, bases, dct) @property def __doc__(cls): handler = cls.handler doc = cls._orig_doc if cls is not Predicate and handler is not None: doc += "Handler\n" doc += " =======\n\n" # Append the handler's doc without breaking sphinx documentation. docs = [" Multiply dispatched method: %s" % handler.name] if handler.doc: for line in handler.doc.splitlines(): if not line: continue docs.append(" %s" % line) other = [] for sig in handler.ordering[::-1]: func = handler.funcs[sig] if func.__doc__: s = ' Inputs: <%s>' % str_signature(sig) lines = [] for line in func.__doc__.splitlines(): lines.append(" %s" % line) s += "\n".join(lines) docs.append(s) else: other.append(str_signature(sig)) if other: othersig = " Other signatures:" for line in other: othersig += "\n * %s" % line docs.append(othersig) doc += '\n\n'.join(docs) return doc class Predicate(Boolean, metaclass=PredicateMeta): """ Base class for mathematical predicates. It also serves as a constructor for undefined predicate objects. Explanation =========== Predicate is a function that returns a boolean value [1]. Predicate function is object, and it is instance of predicate class. When a predicate is applied to arguments, ``AppliedPredicate`` instance is returned. This merely wraps the argument and remain unevaluated. To obtain the truth value of applied predicate, use the function ``ask``. Evaluation of predicate is done by multiple dispatching. You can register new handler to the predicate to support new types. Every predicate in SymPy can be accessed via the property of ``Q``. For example, ``Q.even`` returns the predicate which checks if the argument is even number. To define a predicate which can be evaluated, you must subclass this class, make an instance of it, and register it to ``Q``. After then, dispatch the handler by argument types. If you directly construct predicate using this class, you will get ``UndefinedPredicate`` which cannot be dispatched. This is useful when you are building boolean expressions which do not need to be evaluated. Examples ======== Applying and evaluating to boolean value: >>> from sympy import Q, ask >>> from sympy.abc import x >>> ask(Q.prime(7)) True You can define a new predicate by subclassing and dispatching. Here, we define a predicate for sexy primes [2] as an example. >>> from sympy import Predicate, Integer >>> class SexyPrimePredicate(Predicate): ... name = "sexyprime" >>> Q.sexyprime = SexyPrimePredicate() >>> @Q.sexyprime.register(Integer, Integer) ... def _(int1, int2, assumptions): ... args = sorted([int1, int2]) ... if not all(ask(Q.prime(a), assumptions) for a in args): ... return False ... return args[1] - args[0] == 6 >>> ask(Q.sexyprime(5, 11)) True Direct constructing returns ``UndefinedPredicate``, which can be applied but cannot be dispatched. >>> from sympy import Predicate, Integer >>> Q.P = Predicate("P") >>> type(Q.P) <class 'sympy.assumptions.assume.UndefinedPredicate'> >>> Q.P(1) Q.P(1) >>> Q.P.register(Integer)(lambda expr, assump: True) Traceback (most recent call last): ... TypeError: <class 'sympy.assumptions.assume.UndefinedPredicate'> cannot be dispatched. The tautological predicate ``Q.is_true`` can be used to wrap other objects: >>> Q.is_true(x > 1) Q.is_true(x > 1) References ========== .. [1] https://en.wikipedia.org/wiki/Predicate_(mathematical_logic) .. [2] https://en.wikipedia.org/wiki/Sexy_prime """ is_Atom = True def __new__(cls, *args, **kwargs): if cls is Predicate: return UndefinedPredicate(*args, **kwargs) obj = super().__new__(cls, *args) return obj @property def name(self): # May be overridden return type(self).__name__ @classmethod def register(cls, *types, **kwargs): """ Register the signature to the handler. """ if cls.handler is None: raise TypeError("%s cannot be dispatched." % type(cls)) return cls.handler.register(*types, **kwargs) @classmethod def register_many(cls, *types, **kwargs): """ Register multiple signatures to same handler. """ def _(func): for t in types: if not is_sequence(t): t = (t,) # for convenience, allow passing `type` to mean `(type,)` cls.register(*t, **kwargs)(func) return _ def __call__(self, *args): return AppliedPredicate(self, *args) def eval(self, args, assumptions=True): """ Evaluate ``self(*args)`` under the given assumptions. This uses only direct resolution methods, not logical inference. """ types = tuple(type(a) for a in args) result = None for func in self.handler.dispatch_iter(*types): try: result = func(*args, assumptions) except MDNotImplementedError: continue else: if result is not None: return result return result class UndefinedPredicate(Predicate): """ Predicate without handler. Explanation =========== This predicate is generated by using ``Predicate`` directly for construction. It does not have a handler, and evaluating this with arguments is done by SAT solver. Examples ======== >>> from sympy import Predicate, Q >>> Q.P = Predicate('P') >>> Q.P.func <class 'sympy.assumptions.assume.UndefinedPredicate'> >>> Q.P.name Str('P') """ handler = None def __new__(cls, name, handlers=None): # "handlers" parameter supports old design if not isinstance(name, Str): name = Str(name) obj = super(Boolean, cls).__new__(cls, name) obj.handlers = handlers or [] return obj @property def name(self): return self.args[0] def _hashable_content(self): return (self.name,) def __getnewargs__(self): return (self.name,) def __call__(self, expr): return AppliedPredicate(self, expr) def add_handler(self, handler): SymPyDeprecationWarning( feature="Predicate.add_handler() method", useinstead="multipledispatch handler of Predicate", issue=20873, deprecated_since_version="1.8" ).warn() self.handlers.append(handler) def remove_handler(self, handler): SymPyDeprecationWarning( feature="Predicate.remove_handler() method", useinstead="multipledispatch handler of Predicate", issue=20873, deprecated_since_version="1.8" ).warn() self.handlers.remove(handler) def eval(self, args, assumptions=True): # Support for deprecated design # When old design is removed, this will always return None SymPyDeprecationWarning( feature="Evaluating UndefinedPredicate", useinstead="multipledispatch handler of Predicate", issue=20873, deprecated_since_version="1.8" ).warn() expr, = args res, _res = None, None mro = inspect.getmro(type(expr)) for handler in self.handlers: cls = get_class(handler) for subclass in mro: eval_ = getattr(cls, subclass.__name__, None) if eval_ is None: continue res = eval_(expr, assumptions) # Do not stop if value returned is None # Try to check for higher classes if res is None: continue if _res is None: _res = res elif res is None: # since first resolutor was conclusive, we keep that value res = _res else: # only check consistency if both resolutors have concluded if _res != res: raise ValueError('incompatible resolutors') break return res @contextmanager def assuming(*assumptions): """ Context manager for assumptions. Examples ======== >>> from sympy.assumptions import assuming, Q, ask >>> from sympy.abc import x, y >>> print(ask(Q.integer(x + y))) None >>> with assuming(Q.integer(x), Q.integer(y)): ... print(ask(Q.integer(x + y))) True """ old_global_assumptions = global_assumptions.copy() global_assumptions.update(assumptions) try: yield finally: global_assumptions.clear() global_assumptions.update(old_global_assumptions)
d15ee8b643558531b072ca25f4f877d6ebb069d2d990e9d82065105295a699e3
"""A functions module, includes all the standard functions. Combinatorial - factorial, fibonacci, harmonic, bernoulli... Elementary - hyperbolic, trigonometric, exponential, floor and ceiling, sqrt... Special - gamma, zeta,spherical harmonics... """ from sympy.functions.combinatorial.factorials import (factorial, factorial2, rf, ff, binomial, RisingFactorial, FallingFactorial, subfactorial) from sympy.functions.combinatorial.numbers import (carmichael, fibonacci, lucas, tribonacci, harmonic, bernoulli, bell, euler, catalan, genocchi, partition, motzkin) from sympy.functions.elementary.miscellaneous import (sqrt, root, Min, Max, Id, real_root, cbrt) from sympy.functions.elementary.complexes import (re, im, sign, Abs, conjugate, arg, polar_lift, periodic_argument, unbranched_argument, principal_branch, transpose, adjoint, polarify, unpolarify) from sympy.functions.elementary.trigonometric import (sin, cos, tan, sec, csc, cot, sinc, asin, acos, atan, asec, acsc, acot, atan2) from sympy.functions.elementary.exponential import (exp_polar, exp, log, LambertW) from sympy.functions.elementary.hyperbolic import (sinh, cosh, tanh, coth, sech, csch, asinh, acosh, atanh, acoth, asech, acsch) from sympy.functions.elementary.integers import floor, ceiling, frac from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold from sympy.functions.special.error_functions import (erf, erfc, erfi, erf2, erfinv, erfcinv, erf2inv, Ei, expint, E1, li, Li, Si, Ci, Shi, Chi, fresnels, fresnelc) from sympy.functions.special.gamma_functions import (gamma, lowergamma, uppergamma, polygamma, loggamma, digamma, trigamma, multigamma) from sympy.functions.special.zeta_functions import (dirichlet_eta, zeta, lerchphi, polylog, stieltjes) from sympy.functions.special.tensor_functions import (Eijk, LeviCivita, KroneckerDelta) from sympy.functions.special.singularity_functions import SingularityFunction from sympy.functions.special.delta_functions import DiracDelta, Heaviside from sympy.functions.special.bsplines import bspline_basis, bspline_basis_set, interpolating_spline from sympy.functions.special.bessel import (besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn, jn_zeros, hn1, hn2, airyai, airybi, airyaiprime, airybiprime, marcumq) from sympy.functions.special.hyper import hyper, meijerg, appellf1 from sympy.functions.special.polynomials import (legendre, assoc_legendre, hermite, chebyshevt, chebyshevu, chebyshevu_root, chebyshevt_root, laguerre, assoc_laguerre, gegenbauer, jacobi, jacobi_normalized) from sympy.functions.special.spherical_harmonics import Ynm, Ynm_c, Znm from sympy.functions.special.elliptic_integrals import (elliptic_k, elliptic_f, elliptic_e, elliptic_pi) from sympy.functions.special.beta_functions import beta from sympy.functions.special.mathieu_functions import (mathieus, mathieuc, mathieusprime, mathieucprime) ln = log __all__ = [ 'factorial', 'factorial2', 'rf', 'ff', 'binomial', 'RisingFactorial', 'FallingFactorial', 'subfactorial', 'carmichael', 'fibonacci', 'lucas', 'motzkin', 'tribonacci', 'harmonic', 'bernoulli', 'bell', 'euler', 'catalan', 'genocchi', 'partition', 'sqrt', 'root', 'Min', 'Max', 'Id', 'real_root', 'cbrt', 're', 'im', 'sign', 'Abs', 'conjugate', 'arg', 'polar_lift', 'periodic_argument', 'unbranched_argument', 'principal_branch', 'transpose', 'adjoint', 'polarify', 'unpolarify', 'sin', 'cos', 'tan', 'sec', 'csc', 'cot', 'sinc', 'asin', 'acos', 'atan', 'asec', 'acsc', 'acot', 'atan2', 'exp_polar', 'exp', 'ln', 'log', 'LambertW', 'sinh', 'cosh', 'tanh', 'coth', 'sech', 'csch', 'asinh', 'acosh', 'atanh', 'acoth', 'asech', 'acsch', 'floor', 'ceiling', 'frac', 'Piecewise', 'piecewise_fold', 'erf', 'erfc', 'erfi', 'erf2', 'erfinv', 'erfcinv', 'erf2inv', 'Ei', 'expint', 'E1', 'li', 'Li', 'Si', 'Ci', 'Shi', 'Chi', 'fresnels', 'fresnelc', 'gamma', 'lowergamma', 'uppergamma', 'polygamma', 'loggamma', 'digamma', 'trigamma', 'multigamma', 'dirichlet_eta', 'zeta', 'lerchphi', 'polylog', 'stieltjes', 'Eijk', 'LeviCivita', 'KroneckerDelta', 'SingularityFunction', 'DiracDelta', 'Heaviside', 'bspline_basis', 'bspline_basis_set', 'interpolating_spline', 'besselj', 'bessely', 'besseli', 'besselk', 'hankel1', 'hankel2', 'jn', 'yn', 'jn_zeros', 'hn1', 'hn2', 'airyai', 'airybi', 'airyaiprime', 'airybiprime', 'marcumq', 'hyper', 'meijerg', 'appellf1', 'legendre', 'assoc_legendre', 'hermite', 'chebyshevt', 'chebyshevu', 'chebyshevu_root', 'chebyshevt_root', 'laguerre', 'assoc_laguerre', 'gegenbauer', 'jacobi', 'jacobi_normalized', 'Ynm', 'Ynm_c', 'Znm', 'elliptic_k', 'elliptic_f', 'elliptic_e', 'elliptic_pi', 'beta', 'mathieus', 'mathieuc', 'mathieusprime', 'mathieucprime', ]
eb331532fbd81a8a630baa35f59032e6333ffb5add7d24e20916b601d132a02f
""" A Printer which converts an expression into its LaTeX equivalent. """ from typing import Any, Dict import itertools from sympy.core import Add, Float, Mod, Mul, Number, S, Symbol from sympy.core.alphabets import greeks from sympy.core.containers import Tuple from sympy.core.function import _coeff_isneg, AppliedUndef, Derivative from sympy.core.operations import AssocOp from sympy.core.sympify import SympifyError from sympy.logic.boolalg import true # sympy.printing imports from sympy.printing.precedence import precedence_traditional from sympy.printing.printer import Printer, print_function from sympy.printing.conventions import split_super_sub, requires_partial from sympy.printing.precedence import precedence, PRECEDENCE import mpmath.libmp as mlib from mpmath.libmp import prec_to_dps from sympy.core.compatibility import default_sort_key from sympy.utilities.iterables import has_variety import re # Hand-picked functions which can be used directly in both LaTeX and MathJax # Complete list at # https://docs.mathjax.org/en/latest/tex.html#supported-latex-commands # This variable only contains those functions which sympy uses. accepted_latex_functions = ['arcsin', 'arccos', 'arctan', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'sqrt', 'ln', 'log', 'sec', 'csc', 'cot', 'coth', 're', 'im', 'frac', 'root', 'arg', ] tex_greek_dictionary = { 'Alpha': 'A', 'Beta': 'B', 'Gamma': r'\Gamma', 'Delta': r'\Delta', 'Epsilon': 'E', 'Zeta': 'Z', 'Eta': 'H', 'Theta': r'\Theta', 'Iota': 'I', 'Kappa': 'K', 'Lambda': r'\Lambda', 'Mu': 'M', 'Nu': 'N', 'Xi': r'\Xi', 'omicron': 'o', 'Omicron': 'O', 'Pi': r'\Pi', 'Rho': 'P', 'Sigma': r'\Sigma', 'Tau': 'T', 'Upsilon': r'\Upsilon', 'Phi': r'\Phi', 'Chi': 'X', 'Psi': r'\Psi', 'Omega': r'\Omega', 'lamda': r'\lambda', 'Lamda': r'\Lambda', 'khi': r'\chi', 'Khi': r'X', 'varepsilon': r'\varepsilon', 'varkappa': r'\varkappa', 'varphi': r'\varphi', 'varpi': r'\varpi', 'varrho': r'\varrho', 'varsigma': r'\varsigma', 'vartheta': r'\vartheta', } other_symbols = {'aleph', 'beth', 'daleth', 'gimel', 'ell', 'eth', 'hbar', 'hslash', 'mho', 'wp'} # Variable name modifiers modifier_dict = { # Accents 'mathring': lambda s: r'\mathring{'+s+r'}', 'ddddot': lambda s: r'\ddddot{'+s+r'}', 'dddot': lambda s: r'\dddot{'+s+r'}', 'ddot': lambda s: r'\ddot{'+s+r'}', 'dot': lambda s: r'\dot{'+s+r'}', 'check': lambda s: r'\check{'+s+r'}', 'breve': lambda s: r'\breve{'+s+r'}', 'acute': lambda s: r'\acute{'+s+r'}', 'grave': lambda s: r'\grave{'+s+r'}', 'tilde': lambda s: r'\tilde{'+s+r'}', 'hat': lambda s: r'\hat{'+s+r'}', 'bar': lambda s: r'\bar{'+s+r'}', 'vec': lambda s: r'\vec{'+s+r'}', 'prime': lambda s: "{"+s+"}'", 'prm': lambda s: "{"+s+"}'", # Faces 'bold': lambda s: r'\boldsymbol{'+s+r'}', 'bm': lambda s: r'\boldsymbol{'+s+r'}', 'cal': lambda s: r'\mathcal{'+s+r'}', 'scr': lambda s: r'\mathscr{'+s+r'}', 'frak': lambda s: r'\mathfrak{'+s+r'}', # Brackets 'norm': lambda s: r'\left\|{'+s+r'}\right\|', 'avg': lambda s: r'\left\langle{'+s+r'}\right\rangle', 'abs': lambda s: r'\left|{'+s+r'}\right|', 'mag': lambda s: r'\left|{'+s+r'}\right|', } greek_letters_set = frozenset(greeks) _between_two_numbers_p = ( re.compile(r'[0-9][} ]*$'), # search re.compile(r'[{ ]*[-+0-9]'), # match ) def latex_escape(s): """ Escape a string such that latex interprets it as plaintext. We can't use verbatim easily with mathjax, so escaping is easier. Rules from https://tex.stackexchange.com/a/34586/41112. """ s = s.replace('\\', r'\textbackslash') for c in '&%$#_{}': s = s.replace(c, '\\' + c) s = s.replace('~', r'\textasciitilde') s = s.replace('^', r'\textasciicircum') return s class LatexPrinter(Printer): printmethod = "_latex" _default_settings = { "full_prec": False, "fold_frac_powers": False, "fold_func_brackets": False, "fold_short_frac": None, "inv_trig_style": "abbreviated", "itex": False, "ln_notation": False, "long_frac_ratio": None, "mat_delim": "[", "mat_str": None, "mode": "plain", "mul_symbol": None, "order": None, "symbol_names": {}, "root_notation": True, "mat_symbol_style": "plain", "imaginary_unit": "i", "gothic_re_im": False, "decimal_separator": "period", "perm_cyclic": True, "parenthesize_super": True, "min": None, "max": None, } # type: Dict[str, Any] def __init__(self, settings=None): Printer.__init__(self, settings) if 'mode' in self._settings: valid_modes = ['inline', 'plain', 'equation', 'equation*'] if self._settings['mode'] not in valid_modes: raise ValueError("'mode' must be one of 'inline', 'plain', " "'equation' or 'equation*'") if self._settings['fold_short_frac'] is None and \ self._settings['mode'] == 'inline': self._settings['fold_short_frac'] = True mul_symbol_table = { None: r" ", "ldot": r" \,.\, ", "dot": r" \cdot ", "times": r" \times " } try: self._settings['mul_symbol_latex'] = \ mul_symbol_table[self._settings['mul_symbol']] except KeyError: self._settings['mul_symbol_latex'] = \ self._settings['mul_symbol'] try: self._settings['mul_symbol_latex_numbers'] = \ mul_symbol_table[self._settings['mul_symbol'] or 'dot'] except KeyError: if (self._settings['mul_symbol'].strip() in ['', ' ', '\\', '\\,', '\\:', '\\;', '\\quad']): self._settings['mul_symbol_latex_numbers'] = \ mul_symbol_table['dot'] else: self._settings['mul_symbol_latex_numbers'] = \ self._settings['mul_symbol'] self._delim_dict = {'(': ')', '[': ']'} imaginary_unit_table = { None: r"i", "i": r"i", "ri": r"\mathrm{i}", "ti": r"\text{i}", "j": r"j", "rj": r"\mathrm{j}", "tj": r"\text{j}", } try: self._settings['imaginary_unit_latex'] = \ imaginary_unit_table[self._settings['imaginary_unit']] except KeyError: self._settings['imaginary_unit_latex'] = \ self._settings['imaginary_unit'] def _add_parens(self, s): return r"\left({}\right)".format(s) # TODO: merge this with the above, which requires a lot of test changes def _add_parens_lspace(self, s): return r"\left( {}\right)".format(s) def parenthesize(self, item, level, is_neg=False, strict=False): prec_val = precedence_traditional(item) if is_neg and strict: return self._add_parens(self._print(item)) if (prec_val < level) or ((not strict) and prec_val <= level): return self._add_parens(self._print(item)) else: return self._print(item) def parenthesize_super(self, s): """ Protect superscripts in s If the parenthesize_super option is set, protect with parentheses, else wrap in braces. """ if "^" in s: if self._settings['parenthesize_super']: return self._add_parens(s) else: return "{{{}}}".format(s) return s def doprint(self, expr): tex = Printer.doprint(self, expr) if self._settings['mode'] == 'plain': return tex elif self._settings['mode'] == 'inline': return r"$%s$" % tex elif self._settings['itex']: return r"$$%s$$" % tex else: env_str = self._settings['mode'] return r"\begin{%s}%s\end{%s}" % (env_str, tex, env_str) def _needs_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when printed, False otherwise. For example: a + b => True; a => False; 10 => False; -10 => True. """ return not ((expr.is_Integer and expr.is_nonnegative) or (expr.is_Atom and (expr is not S.NegativeOne and expr.is_Rational is False))) def _needs_function_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when passed as an argument to a function, False otherwise. This is a more liberal version of _needs_brackets, in that many expressions which need to be wrapped in brackets when added/subtracted/raised to a power do not need them when passed to a function. Such an example is a*b. """ if not self._needs_brackets(expr): return False else: # Muls of the form a*b*c... can be folded if expr.is_Mul and not self._mul_is_clean(expr): return True # Pows which don't need brackets can be folded elif expr.is_Pow and not self._pow_is_clean(expr): return True # Add and Function always need brackets elif expr.is_Add or expr.is_Function: return True else: return False def _needs_mul_brackets(self, expr, first=False, last=False): """ Returns True if the expression needs to be wrapped in brackets when printed as part of a Mul, False otherwise. This is True for Add, but also for some container objects that would not need brackets when appearing last in a Mul, e.g. an Integral. ``last=True`` specifies that this expr is the last to appear in a Mul. ``first=True`` specifies that this expr is the first to appear in a Mul. """ from sympy import Integral, Product, Sum if expr.is_Mul: if not first and _coeff_isneg(expr): return True elif precedence_traditional(expr) < PRECEDENCE["Mul"]: return True elif expr.is_Relational: return True if expr.is_Piecewise: return True if any([expr.has(x) for x in (Mod,)]): return True if (not last and any([expr.has(x) for x in (Integral, Product, Sum)])): return True return False def _needs_add_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when printed as part of an Add, False otherwise. This is False for most things. """ if expr.is_Relational: return True if any([expr.has(x) for x in (Mod,)]): return True if expr.is_Add: return True return False def _mul_is_clean(self, expr): for arg in expr.args: if arg.is_Function: return False return True def _pow_is_clean(self, expr): return not self._needs_brackets(expr.base) def _do_exponent(self, expr, exp): if exp is not None: return r"\left(%s\right)^{%s}" % (expr, exp) else: return expr def _print_Basic(self, expr): ls = [self._print(o) for o in expr.args] return self._deal_with_super_sub(expr.__class__.__name__) + \ r"\left(%s\right)" % ", ".join(ls) def _print_bool(self, e): return r"\text{%s}" % e _print_BooleanTrue = _print_bool _print_BooleanFalse = _print_bool def _print_NoneType(self, e): return r"\text{%s}" % e def _print_Add(self, expr, order=None): terms = self._as_ordered_terms(expr, order=order) tex = "" for i, term in enumerate(terms): if i == 0: pass elif _coeff_isneg(term): tex += " - " term = -term else: tex += " + " term_tex = self._print(term) if self._needs_add_brackets(term): term_tex = r"\left(%s\right)" % term_tex tex += term_tex return tex def _print_Cycle(self, expr): from sympy.combinatorics.permutations import Permutation if expr.size == 0: return r"\left( \right)" expr = Permutation(expr) expr_perm = expr.cyclic_form siz = expr.size if expr.array_form[-1] == siz - 1: expr_perm = expr_perm + [[siz - 1]] term_tex = '' for i in expr_perm: term_tex += str(i).replace(',', r"\;") term_tex = term_tex.replace('[', r"\left( ") term_tex = term_tex.replace(']', r"\right)") return term_tex def _print_Permutation(self, expr): from sympy.combinatorics.permutations import Permutation from sympy.utilities.exceptions import SymPyDeprecationWarning perm_cyclic = Permutation.print_cyclic if perm_cyclic is not None: SymPyDeprecationWarning( feature="Permutation.print_cyclic = {}".format(perm_cyclic), useinstead="init_printing(perm_cyclic={})" .format(perm_cyclic), issue=15201, deprecated_since_version="1.6").warn() else: perm_cyclic = self._settings.get("perm_cyclic", True) if perm_cyclic: return self._print_Cycle(expr) if expr.size == 0: return r"\left( \right)" lower = [self._print(arg) for arg in expr.array_form] upper = [self._print(arg) for arg in range(len(lower))] row1 = " & ".join(upper) row2 = " & ".join(lower) mat = r" \\ ".join((row1, row2)) return r"\begin{pmatrix} %s \end{pmatrix}" % mat def _print_AppliedPermutation(self, expr): perm, var = expr.args return r"\sigma_{%s}(%s)" % (self._print(perm), self._print(var)) def _print_Float(self, expr): # Based off of that in StrPrinter dps = prec_to_dps(expr._prec) strip = False if self._settings['full_prec'] else True low = self._settings["min"] if "min" in self._settings else None high = self._settings["max"] if "max" in self._settings else None str_real = mlib.to_str(expr._mpf_, dps, strip_zeros=strip, min_fixed=low, max_fixed=high) # Must always have a mul symbol (as 2.5 10^{20} just looks odd) # thus we use the number separator separator = self._settings['mul_symbol_latex_numbers'] if 'e' in str_real: (mant, exp) = str_real.split('e') if exp[0] == '+': exp = exp[1:] if self._settings['decimal_separator'] == 'comma': mant = mant.replace('.','{,}') return r"%s%s10^{%s}" % (mant, separator, exp) elif str_real == "+inf": return r"\infty" elif str_real == "-inf": return r"- \infty" else: if self._settings['decimal_separator'] == 'comma': str_real = str_real.replace('.','{,}') return str_real def _print_Cross(self, expr): vec1 = expr._expr1 vec2 = expr._expr2 return r"%s \times %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']), self.parenthesize(vec2, PRECEDENCE['Mul'])) def _print_Curl(self, expr): vec = expr._expr return r"\nabla\times %s" % self.parenthesize(vec, PRECEDENCE['Mul']) def _print_Divergence(self, expr): vec = expr._expr return r"\nabla\cdot %s" % self.parenthesize(vec, PRECEDENCE['Mul']) def _print_Dot(self, expr): vec1 = expr._expr1 vec2 = expr._expr2 return r"%s \cdot %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']), self.parenthesize(vec2, PRECEDENCE['Mul'])) def _print_Gradient(self, expr): func = expr._expr return r"\nabla %s" % self.parenthesize(func, PRECEDENCE['Mul']) def _print_Laplacian(self, expr): func = expr._expr return r"\triangle %s" % self.parenthesize(func, PRECEDENCE['Mul']) def _print_Mul(self, expr): from sympy.core.power import Pow from sympy.physics.units import Quantity from sympy.simplify import fraction separator = self._settings['mul_symbol_latex'] numbersep = self._settings['mul_symbol_latex_numbers'] def convert(expr): if not expr.is_Mul: return str(self._print(expr)) else: if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: args = list(expr.args) # If quantities are present append them at the back args = sorted(args, key=lambda x: isinstance(x, Quantity) or (isinstance(x, Pow) and isinstance(x.base, Quantity))) return convert_args(args) def convert_args(args): _tex = last_term_tex = "" for i, term in enumerate(args): term_tex = self._print(term) if self._needs_mul_brackets(term, first=(i == 0), last=(i == len(args) - 1)): term_tex = r"\left(%s\right)" % term_tex if _between_two_numbers_p[0].search(last_term_tex) and \ _between_two_numbers_p[1].match(term_tex): # between two numbers _tex += numbersep elif _tex: _tex += separator _tex += term_tex last_term_tex = term_tex return _tex # Check for unevaluated Mul. In this case we need to make sure the # identities are visible, multiple Rational factors are not combined # etc so we display in a straight-forward form that fully preserves all # args and their order. # XXX: _print_Pow calls this routine with instances of Pow... if isinstance(expr, Mul): args = expr.args if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]): return convert_args(args) include_parens = False if _coeff_isneg(expr): expr = -expr tex = "- " if expr.is_Add: tex += "(" include_parens = True else: tex = "" numer, denom = fraction(expr, exact=True) if denom is S.One and Pow(1, -1, evaluate=False) not in expr.args: # use the original expression here, since fraction() may have # altered it when producing numer and denom tex += convert(expr) else: snumer = convert(numer) sdenom = convert(denom) ldenom = len(sdenom.split()) ratio = self._settings['long_frac_ratio'] if self._settings['fold_short_frac'] and ldenom <= 2 and \ "^" not in sdenom: # handle short fractions if self._needs_mul_brackets(numer, last=False): tex += r"\left(%s\right) / %s" % (snumer, sdenom) else: tex += r"%s / %s" % (snumer, sdenom) elif ratio is not None and \ len(snumer.split()) > ratio*ldenom: # handle long fractions if self._needs_mul_brackets(numer, last=True): tex += r"\frac{1}{%s}%s\left(%s\right)" \ % (sdenom, separator, snumer) elif numer.is_Mul: # split a long numerator a = S.One b = S.One for x in numer.args: if self._needs_mul_brackets(x, last=False) or \ len(convert(a*x).split()) > ratio*ldenom or \ (b.is_commutative is x.is_commutative is False): b *= x else: a *= x if self._needs_mul_brackets(b, last=True): tex += r"\frac{%s}{%s}%s\left(%s\right)" \ % (convert(a), sdenom, separator, convert(b)) else: tex += r"\frac{%s}{%s}%s%s" \ % (convert(a), sdenom, separator, convert(b)) else: tex += r"\frac{1}{%s}%s%s" % (sdenom, separator, snumer) else: tex += r"\frac{%s}{%s}" % (snumer, sdenom) if include_parens: tex += ")" return tex def _print_Pow(self, expr): # Treat x**Rational(1,n) as special case if expr.exp.is_Rational and abs(expr.exp.p) == 1 and expr.exp.q != 1 \ and self._settings['root_notation']: base = self._print(expr.base) expq = expr.exp.q if expq == 2: tex = r"\sqrt{%s}" % base elif self._settings['itex']: tex = r"\root{%d}{%s}" % (expq, base) else: tex = r"\sqrt[%d]{%s}" % (expq, base) if expr.exp.is_negative: return r"\frac{1}{%s}" % tex else: return tex elif self._settings['fold_frac_powers'] \ and expr.exp.is_Rational \ and expr.exp.q != 1: base = self.parenthesize(expr.base, PRECEDENCE['Pow']) p, q = expr.exp.p, expr.exp.q # issue #12886: add parentheses for superscripts raised to powers if expr.base.is_Symbol: base = self.parenthesize_super(base) if expr.base.is_Function: return self._print(expr.base, exp="%s/%s" % (p, q)) return r"%s^{%s/%s}" % (base, p, q) elif expr.exp.is_Rational and expr.exp.is_negative and \ expr.base.is_commutative: # special case for 1^(-x), issue 9216 if expr.base == 1: return r"%s^{%s}" % (expr.base, expr.exp) # things like 1/x return self._print_Mul(expr) else: if expr.base.is_Function: return self._print(expr.base, exp=self._print(expr.exp)) else: tex = r"%s^{%s}" return self._helper_print_standard_power(expr, tex) def _helper_print_standard_power(self, expr, template): exp = self._print(expr.exp) # issue #12886: add parentheses around superscripts raised # to powers base = self.parenthesize(expr.base, PRECEDENCE['Pow']) if expr.base.is_Symbol: base = self.parenthesize_super(base) elif (isinstance(expr.base, Derivative) and base.startswith(r'\left(') and re.match(r'\\left\(\\d?d?dot', base) and base.endswith(r'\right)')): # don't use parentheses around dotted derivative base = base[6: -7] # remove outermost added parens return template % (base, exp) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def _print_Sum(self, expr): if len(expr.limits) == 1: tex = r"\sum_{%s=%s}^{%s} " % \ tuple([self._print(i) for i in expr.limits[0]]) else: def _format_ineq(l): return r"%s \leq %s \leq %s" % \ tuple([self._print(s) for s in (l[1], l[0], l[2])]) tex = r"\sum_{\substack{%s}} " % \ str.join('\\\\', [_format_ineq(l) for l in expr.limits]) if isinstance(expr.function, Add): tex += r"\left(%s\right)" % self._print(expr.function) else: tex += self._print(expr.function) return tex def _print_Product(self, expr): if len(expr.limits) == 1: tex = r"\prod_{%s=%s}^{%s} " % \ tuple([self._print(i) for i in expr.limits[0]]) else: def _format_ineq(l): return r"%s \leq %s \leq %s" % \ tuple([self._print(s) for s in (l[1], l[0], l[2])]) tex = r"\prod_{\substack{%s}} " % \ str.join('\\\\', [_format_ineq(l) for l in expr.limits]) if isinstance(expr.function, Add): tex += r"\left(%s\right)" % self._print(expr.function) else: tex += self._print(expr.function) return tex def _print_BasisDependent(self, expr): from sympy.vector import Vector o1 = [] if expr == expr.zero: return expr.zero._latex_form if isinstance(expr, Vector): items = expr.separate().items() else: items = [(0, expr)] for system, vect in items: inneritems = list(vect.components.items()) inneritems.sort(key=lambda x: x[0].__str__()) for k, v in inneritems: if v == 1: o1.append(' + ' + k._latex_form) elif v == -1: o1.append(' - ' + k._latex_form) else: arg_str = '(' + self._print(v) + ')' o1.append(' + ' + arg_str + k._latex_form) outstr = (''.join(o1)) if outstr[1] != '-': outstr = outstr[3:] else: outstr = outstr[1:] return outstr def _print_Indexed(self, expr): tex_base = self._print(expr.base) tex = '{'+tex_base+'}'+'_{%s}' % ','.join( map(self._print, expr.indices)) return tex def _print_IndexedBase(self, expr): return self._print(expr.label) def _print_Derivative(self, expr): if requires_partial(expr.expr): diff_symbol = r'\partial' else: diff_symbol = r'd' tex = "" dim = 0 for x, num in reversed(expr.variable_count): dim += num if num == 1: tex += r"%s %s" % (diff_symbol, self._print(x)) else: tex += r"%s %s^{%s}" % (diff_symbol, self.parenthesize_super(self._print(x)), self._print(num)) if dim == 1: tex = r"\frac{%s}{%s}" % (diff_symbol, tex) else: tex = r"\frac{%s^{%s}}{%s}" % (diff_symbol, self._print(dim), tex) if any(_coeff_isneg(i) for i in expr.args): return r"%s %s" % (tex, self.parenthesize(expr.expr, PRECEDENCE["Mul"], is_neg=True, strict=True)) return r"%s %s" % (tex, self.parenthesize(expr.expr, PRECEDENCE["Mul"], is_neg=False, strict=True)) def _print_Subs(self, subs): expr, old, new = subs.args latex_expr = self._print(expr) latex_old = (self._print(e) for e in old) latex_new = (self._print(e) for e in new) latex_subs = r'\\ '.join( e[0] + '=' + e[1] for e in zip(latex_old, latex_new)) return r'\left. %s \right|_{\substack{ %s }}' % (latex_expr, latex_subs) def _print_Integral(self, expr): tex, symbols = "", [] # Only up to \iiiint exists if len(expr.limits) <= 4 and all(len(lim) == 1 for lim in expr.limits): # Use len(expr.limits)-1 so that syntax highlighters don't think # \" is an escaped quote tex = r"\i" + "i"*(len(expr.limits) - 1) + "nt" symbols = [r"\, d%s" % self._print(symbol[0]) for symbol in expr.limits] else: for lim in reversed(expr.limits): symbol = lim[0] tex += r"\int" if len(lim) > 1: if self._settings['mode'] != 'inline' \ and not self._settings['itex']: tex += r"\limits" if len(lim) == 3: tex += "_{%s}^{%s}" % (self._print(lim[1]), self._print(lim[2])) if len(lim) == 2: tex += "^{%s}" % (self._print(lim[1])) symbols.insert(0, r"\, d%s" % self._print(symbol)) return r"%s %s%s" % (tex, self.parenthesize(expr.function, PRECEDENCE["Mul"], is_neg=any(_coeff_isneg(i) for i in expr.args), strict=True), "".join(symbols)) def _print_Limit(self, expr): e, z, z0, dir = expr.args tex = r"\lim_{%s \to " % self._print(z) if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity): tex += r"%s}" % self._print(z0) else: tex += r"%s^%s}" % (self._print(z0), self._print(dir)) if isinstance(e, AssocOp): return r"%s\left(%s\right)" % (tex, self._print(e)) else: return r"%s %s" % (tex, self._print(e)) def _hprint_Function(self, func): r''' Logic to decide how to render a function to latex - if it is a recognized latex name, use the appropriate latex command - if it is a single letter, just use that letter - if it is a longer name, then put \operatorname{} around it and be mindful of undercores in the name ''' func = self._deal_with_super_sub(func) if func in accepted_latex_functions: name = r"\%s" % func elif len(func) == 1 or func.startswith('\\'): name = func else: name = r"\operatorname{%s}" % func return name def _print_Function(self, expr, exp=None): r''' Render functions to LaTeX, handling functions that LaTeX knows about e.g., sin, cos, ... by using the proper LaTeX command (\sin, \cos, ...). For single-letter function names, render them as regular LaTeX math symbols. For multi-letter function names that LaTeX does not know about, (e.g., Li, sech) use \operatorname{} so that the function name is rendered in Roman font and LaTeX handles spacing properly. expr is the expression involving the function exp is an exponent ''' func = expr.func.__name__ if hasattr(self, '_print_' + func) and \ not isinstance(expr, AppliedUndef): return getattr(self, '_print_' + func)(expr, exp) else: args = [str(self._print(arg)) for arg in expr.args] # How inverse trig functions should be displayed, formats are: # abbreviated: asin, full: arcsin, power: sin^-1 inv_trig_style = self._settings['inv_trig_style'] # If we are dealing with a power-style inverse trig function inv_trig_power_case = False # If it is applicable to fold the argument brackets can_fold_brackets = self._settings['fold_func_brackets'] and \ len(args) == 1 and \ not self._needs_function_brackets(expr.args[0]) inv_trig_table = [ "asin", "acos", "atan", "acsc", "asec", "acot", "asinh", "acosh", "atanh", "acsch", "asech", "acoth", ] # If the function is an inverse trig function, handle the style if func in inv_trig_table: if inv_trig_style == "abbreviated": pass elif inv_trig_style == "full": func = "arc" + func[1:] elif inv_trig_style == "power": func = func[1:] inv_trig_power_case = True # Can never fold brackets if we're raised to a power if exp is not None: can_fold_brackets = False if inv_trig_power_case: if func in accepted_latex_functions: name = r"\%s^{-1}" % func else: name = r"\operatorname{%s}^{-1}" % func elif exp is not None: func_tex = self._hprint_Function(func) func_tex = self.parenthesize_super(func_tex) name = r'%s^{%s}' % (func_tex, exp) else: name = self._hprint_Function(func) if can_fold_brackets: if func in accepted_latex_functions: # Wrap argument safely to avoid parse-time conflicts # with the function name itself name += r" {%s}" else: name += r"%s" else: name += r"{\left(%s \right)}" if inv_trig_power_case and exp is not None: name += r"^{%s}" % exp return name % ",".join(args) def _print_UndefinedFunction(self, expr): return self._hprint_Function(str(expr)) def _print_ElementwiseApplyFunction(self, expr): return r"{%s}_{\circ}\left({%s}\right)" % ( self._print(expr.function), self._print(expr.expr), ) @property def _special_function_classes(self): from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.functions.special.gamma_functions import gamma, lowergamma from sympy.functions.special.beta_functions import beta from sympy.functions.special.delta_functions import DiracDelta from sympy.functions.special.error_functions import Chi return {KroneckerDelta: r'\delta', gamma: r'\Gamma', lowergamma: r'\gamma', beta: r'\operatorname{B}', DiracDelta: r'\delta', Chi: r'\operatorname{Chi}'} def _print_FunctionClass(self, expr): for cls in self._special_function_classes: if issubclass(expr, cls) and expr.__name__ == cls.__name__: return self._special_function_classes[cls] return self._hprint_Function(str(expr)) def _print_Lambda(self, expr): symbols, expr = expr.args if len(symbols) == 1: symbols = self._print(symbols[0]) else: symbols = self._print(tuple(symbols)) tex = r"\left( %s \mapsto %s \right)" % (symbols, self._print(expr)) return tex def _print_IdentityFunction(self, expr): return r"\left( x \mapsto x \right)" def _hprint_variadic_function(self, expr, exp=None): args = sorted(expr.args, key=default_sort_key) texargs = [r"%s" % self._print(symbol) for symbol in args] tex = r"\%s\left(%s\right)" % (str(expr.func).lower(), ", ".join(texargs)) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex _print_Min = _print_Max = _hprint_variadic_function def _print_floor(self, expr, exp=None): tex = r"\left\lfloor{%s}\right\rfloor" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_ceiling(self, expr, exp=None): tex = r"\left\lceil{%s}\right\rceil" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_log(self, expr, exp=None): if not self._settings["ln_notation"]: tex = r"\log{\left(%s \right)}" % self._print(expr.args[0]) else: tex = r"\ln{\left(%s \right)}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_Abs(self, expr, exp=None): tex = r"\left|{%s}\right|" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex _print_Determinant = _print_Abs def _print_re(self, expr, exp=None): if self._settings['gothic_re_im']: tex = r"\Re{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom']) else: tex = r"\operatorname{{re}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom'])) return self._do_exponent(tex, exp) def _print_im(self, expr, exp=None): if self._settings['gothic_re_im']: tex = r"\Im{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom']) else: tex = r"\operatorname{{im}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom'])) return self._do_exponent(tex, exp) def _print_Not(self, e): from sympy import Equivalent, Implies if isinstance(e.args[0], Equivalent): return self._print_Equivalent(e.args[0], r"\not\Leftrightarrow") if isinstance(e.args[0], Implies): return self._print_Implies(e.args[0], r"\not\Rightarrow") if (e.args[0].is_Boolean): return r"\neg \left(%s\right)" % self._print(e.args[0]) else: return r"\neg %s" % self._print(e.args[0]) def _print_LogOp(self, args, char): arg = args[0] if arg.is_Boolean and not arg.is_Not: tex = r"\left(%s\right)" % self._print(arg) else: tex = r"%s" % self._print(arg) for arg in args[1:]: if arg.is_Boolean and not arg.is_Not: tex += r" %s \left(%s\right)" % (char, self._print(arg)) else: tex += r" %s %s" % (char, self._print(arg)) return tex def _print_And(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\wedge") def _print_Or(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\vee") def _print_Xor(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\veebar") def _print_Implies(self, e, altchar=None): return self._print_LogOp(e.args, altchar or r"\Rightarrow") def _print_Equivalent(self, e, altchar=None): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, altchar or r"\Leftrightarrow") def _print_conjugate(self, expr, exp=None): tex = r"\overline{%s}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_polar_lift(self, expr, exp=None): func = r"\operatorname{polar\_lift}" arg = r"{\left(%s \right)}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (func, exp, arg) else: return r"%s%s" % (func, arg) def _print_ExpBase(self, expr, exp=None): # TODO should exp_polar be printed differently? # what about exp_polar(0), exp_polar(1)? tex = r"e^{%s}" % self._print(expr.args[0]) return self._do_exponent(tex, exp) def _print_Exp1(self, expr, exp=None): return "e" def _print_elliptic_k(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"K^{%s}%s" % (exp, tex) else: return r"K%s" % tex def _print_elliptic_f(self, expr, exp=None): tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"F^{%s}%s" % (exp, tex) else: return r"F%s" % tex def _print_elliptic_e(self, expr, exp=None): if len(expr.args) == 2: tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"E^{%s}%s" % (exp, tex) else: return r"E%s" % tex def _print_elliptic_pi(self, expr, exp=None): if len(expr.args) == 3: tex = r"\left(%s; %s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1]), self._print(expr.args[2])) else: tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\Pi^{%s}%s" % (exp, tex) else: return r"\Pi%s" % tex def _print_beta(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\operatorname{B}^{%s}%s" % (exp, tex) else: return r"\operatorname{B}%s" % tex def _print_uppergamma(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\Gamma^{%s}%s" % (exp, tex) else: return r"\Gamma%s" % tex def _print_lowergamma(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\gamma^{%s}%s" % (exp, tex) else: return r"\gamma%s" % tex def _hprint_one_arg_func(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (self._print(expr.func), exp, tex) else: return r"%s%s" % (self._print(expr.func), tex) _print_gamma = _hprint_one_arg_func def _print_Chi(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\operatorname{Chi}^{%s}%s" % (exp, tex) else: return r"\operatorname{Chi}%s" % tex def _print_expint(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[1]) nu = self._print(expr.args[0]) if exp is not None: return r"\operatorname{E}_{%s}^{%s}%s" % (nu, exp, tex) else: return r"\operatorname{E}_{%s}%s" % (nu, tex) def _print_fresnels(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"S^{%s}%s" % (exp, tex) else: return r"S%s" % tex def _print_fresnelc(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"C^{%s}%s" % (exp, tex) else: return r"C%s" % tex def _print_subfactorial(self, expr, exp=None): tex = r"!%s" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"\left(%s\right)^{%s}" % (tex, exp) else: return tex def _print_factorial(self, expr, exp=None): tex = r"%s!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_factorial2(self, expr, exp=None): tex = r"%s!!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_binomial(self, expr, exp=None): tex = r"{\binom{%s}{%s}}" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_RisingFactorial(self, expr, exp=None): n, k = expr.args base = r"%s" % self.parenthesize(n, PRECEDENCE['Func']) tex = r"{%s}^{\left(%s\right)}" % (base, self._print(k)) return self._do_exponent(tex, exp) def _print_FallingFactorial(self, expr, exp=None): n, k = expr.args sub = r"%s" % self.parenthesize(k, PRECEDENCE['Func']) tex = r"{\left(%s\right)}_{%s}" % (self._print(n), sub) return self._do_exponent(tex, exp) def _hprint_BesselBase(self, expr, exp, sym): tex = r"%s" % (sym) need_exp = False if exp is not None: if tex.find('^') == -1: tex = r"%s^{%s}" % (tex, exp) else: need_exp = True tex = r"%s_{%s}\left(%s\right)" % (tex, self._print(expr.order), self._print(expr.argument)) if need_exp: tex = self._do_exponent(tex, exp) return tex def _hprint_vec(self, vec): if not vec: return "" s = "" for i in vec[:-1]: s += "%s, " % self._print(i) s += self._print(vec[-1]) return s def _print_besselj(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'J') def _print_besseli(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'I') def _print_besselk(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'K') def _print_bessely(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'Y') def _print_yn(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'y') def _print_jn(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'j') def _print_hankel1(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'H^{(1)}') def _print_hankel2(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'H^{(2)}') def _print_hn1(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'h^{(1)}') def _print_hn2(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'h^{(2)}') def _hprint_airy(self, expr, exp=None, notation=""): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (notation, exp, tex) else: return r"%s%s" % (notation, tex) def _hprint_airy_prime(self, expr, exp=None, notation=""): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"{%s^\prime}^{%s}%s" % (notation, exp, tex) else: return r"%s^\prime%s" % (notation, tex) def _print_airyai(self, expr, exp=None): return self._hprint_airy(expr, exp, 'Ai') def _print_airybi(self, expr, exp=None): return self._hprint_airy(expr, exp, 'Bi') def _print_airyaiprime(self, expr, exp=None): return self._hprint_airy_prime(expr, exp, 'Ai') def _print_airybiprime(self, expr, exp=None): return self._hprint_airy_prime(expr, exp, 'Bi') def _print_hyper(self, expr, exp=None): tex = r"{{}_{%s}F_{%s}\left(\begin{matrix} %s \\ %s \end{matrix}" \ r"\middle| {%s} \right)}" % \ (self._print(len(expr.ap)), self._print(len(expr.bq)), self._hprint_vec(expr.ap), self._hprint_vec(expr.bq), self._print(expr.argument)) if exp is not None: tex = r"{%s}^{%s}" % (tex, exp) return tex def _print_meijerg(self, expr, exp=None): tex = r"{G_{%s, %s}^{%s, %s}\left(\begin{matrix} %s & %s \\" \ r"%s & %s \end{matrix} \middle| {%s} \right)}" % \ (self._print(len(expr.ap)), self._print(len(expr.bq)), self._print(len(expr.bm)), self._print(len(expr.an)), self._hprint_vec(expr.an), self._hprint_vec(expr.aother), self._hprint_vec(expr.bm), self._hprint_vec(expr.bother), self._print(expr.argument)) if exp is not None: tex = r"{%s}^{%s}" % (tex, exp) return tex def _print_dirichlet_eta(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\eta^{%s}%s" % (exp, tex) return r"\eta%s" % tex def _print_zeta(self, expr, exp=None): if len(expr.args) == 2: tex = r"\left(%s, %s\right)" % tuple(map(self._print, expr.args)) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\zeta^{%s}%s" % (exp, tex) return r"\zeta%s" % tex def _print_stieltjes(self, expr, exp=None): if len(expr.args) == 2: tex = r"_{%s}\left(%s\right)" % tuple(map(self._print, expr.args)) else: tex = r"_{%s}" % self._print(expr.args[0]) if exp is not None: return r"\gamma%s^{%s}" % (tex, exp) return r"\gamma%s" % tex def _print_lerchphi(self, expr, exp=None): tex = r"\left(%s, %s, %s\right)" % tuple(map(self._print, expr.args)) if exp is None: return r"\Phi%s" % tex return r"\Phi^{%s}%s" % (exp, tex) def _print_polylog(self, expr, exp=None): s, z = map(self._print, expr.args) tex = r"\left(%s\right)" % z if exp is None: return r"\operatorname{Li}_{%s}%s" % (s, tex) return r"\operatorname{Li}_{%s}^{%s}%s" % (s, exp, tex) def _print_jacobi(self, expr, exp=None): n, a, b, x = map(self._print, expr.args) tex = r"P_{%s}^{\left(%s,%s\right)}\left(%s\right)" % (n, a, b, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_gegenbauer(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"C_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_chebyshevt(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"T_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_chebyshevu(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"U_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_legendre(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"P_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_assoc_legendre(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"P_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_hermite(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"H_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_laguerre(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"L_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_assoc_laguerre(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"L_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_Ynm(self, expr, exp=None): n, m, theta, phi = map(self._print, expr.args) tex = r"Y_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_Znm(self, expr, exp=None): n, m, theta, phi = map(self._print, expr.args) tex = r"Z_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def __print_mathieu_functions(self, character, args, prime=False, exp=None): a, q, z = map(self._print, args) sup = r"^{\prime}" if prime else "" exp = "" if not exp else "^{%s}" % exp return r"%s%s\left(%s, %s, %s\right)%s" % (character, sup, a, q, z, exp) def _print_mathieuc(self, expr, exp=None): return self.__print_mathieu_functions("C", expr.args, exp=exp) def _print_mathieus(self, expr, exp=None): return self.__print_mathieu_functions("S", expr.args, exp=exp) def _print_mathieucprime(self, expr, exp=None): return self.__print_mathieu_functions("C", expr.args, prime=True, exp=exp) def _print_mathieusprime(self, expr, exp=None): return self.__print_mathieu_functions("S", expr.args, prime=True, exp=exp) def _print_Rational(self, expr): if expr.q != 1: sign = "" p = expr.p if expr.p < 0: sign = "- " p = -p if self._settings['fold_short_frac']: return r"%s%d / %d" % (sign, p, expr.q) return r"%s\frac{%d}{%d}" % (sign, p, expr.q) else: return self._print(expr.p) def _print_Order(self, expr): s = self._print(expr.expr) if expr.point and any(p != S.Zero for p in expr.point) or \ len(expr.variables) > 1: s += '; ' if len(expr.variables) > 1: s += self._print(expr.variables) elif expr.variables: s += self._print(expr.variables[0]) s += r'\rightarrow ' if len(expr.point) > 1: s += self._print(expr.point) else: s += self._print(expr.point[0]) return r"O\left(%s\right)" % s def _print_Symbol(self, expr, style='plain'): if expr in self._settings['symbol_names']: return self._settings['symbol_names'][expr] return self._deal_with_super_sub(expr.name, style=style) _print_RandomSymbol = _print_Symbol def _deal_with_super_sub(self, string, style='plain'): if '{' in string: name, supers, subs = string, [], [] else: name, supers, subs = split_super_sub(string) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] # apply the style only to the name if style == 'bold': name = "\\mathbf{{{}}}".format(name) # glue all items together: if supers: name += "^{%s}" % " ".join(supers) if subs: name += "_{%s}" % " ".join(subs) return name def _print_Relational(self, expr): if self._settings['itex']: gt = r"\gt" lt = r"\lt" else: gt = ">" lt = "<" charmap = { "==": "=", ">": gt, "<": lt, ">=": r"\geq", "<=": r"\leq", "!=": r"\neq", } return "%s %s %s" % (self._print(expr.lhs), charmap[expr.rel_op], self._print(expr.rhs)) def _print_Piecewise(self, expr): ecpairs = [r"%s & \text{for}\: %s" % (self._print(e), self._print(c)) for e, c in expr.args[:-1]] if expr.args[-1].cond == true: ecpairs.append(r"%s & \text{otherwise}" % self._print(expr.args[-1].expr)) else: ecpairs.append(r"%s & \text{for}\: %s" % (self._print(expr.args[-1].expr), self._print(expr.args[-1].cond))) tex = r"\begin{cases} %s \end{cases}" return tex % r" \\".join(ecpairs) def _print_MatrixBase(self, expr): lines = [] for line in range(expr.rows): # horrible, should be 'rows' lines.append(" & ".join([self._print(i) for i in expr[line, :]])) mat_str = self._settings['mat_str'] if mat_str is None: if self._settings['mode'] == 'inline': mat_str = 'smallmatrix' else: if (expr.cols <= 10) is True: mat_str = 'matrix' else: mat_str = 'array' out_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}' out_str = out_str.replace('%MATSTR%', mat_str) if mat_str == 'array': out_str = out_str.replace('%s', '{' + 'c'*expr.cols + '}%s') if self._settings['mat_delim']: left_delim = self._settings['mat_delim'] right_delim = self._delim_dict[left_delim] out_str = r'\left' + left_delim + out_str + \ r'\right' + right_delim return out_str % r"\\".join(lines) def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True)\ + '_{%s, %s}' % (self._print(expr.i), self._print(expr.j)) def _print_MatrixSlice(self, expr): def latexslice(x, dim): x = list(x) if x[2] == 1: del x[2] if x[0] == 0: x[0] = None if x[1] == dim: x[1] = None return ':'.join(self._print(xi) if xi is not None else '' for xi in x) return (self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) + r'\left[' + latexslice(expr.rowslice, expr.parent.rows) + ', ' + latexslice(expr.colslice, expr.parent.cols) + r'\right]') def _print_BlockMatrix(self, expr): return self._print(expr.blocks) def _print_Transpose(self, expr): mat = expr.arg from sympy.matrices import MatrixSymbol if not isinstance(mat, MatrixSymbol): return r"\left(%s\right)^{T}" % self._print(mat) else: return "%s^{T}" % self.parenthesize(mat, precedence_traditional(expr), True) def _print_Trace(self, expr): mat = expr.arg return r"\operatorname{tr}\left(%s \right)" % self._print(mat) def _print_Adjoint(self, expr): mat = expr.arg from sympy.matrices import MatrixSymbol if not isinstance(mat, MatrixSymbol): return r"\left(%s\right)^{\dagger}" % self._print(mat) else: return r"%s^{\dagger}" % self._print(mat) def _print_MatMul(self, expr): from sympy import MatMul, Mul parens = lambda x: self.parenthesize(x, precedence_traditional(expr), False) args = expr.args if isinstance(args[0], Mul): args = args[0].as_ordered_factors() + list(args[1:]) else: args = list(args) if isinstance(expr, MatMul) and _coeff_isneg(expr): if args[0] == -1: args = args[1:] else: args[0] = -args[0] return '- ' + ' '.join(map(parens, args)) else: return ' '.join(map(parens, args)) def _print_Mod(self, expr, exp=None): if exp is not None: return r'\left(%s\bmod{%s}\right)^{%s}' % \ (self.parenthesize(expr.args[0], PRECEDENCE['Mul'], strict=True), self._print(expr.args[1]), exp) return r'%s\bmod{%s}' % (self.parenthesize(expr.args[0], PRECEDENCE['Mul'], strict=True), self._print(expr.args[1])) def _print_HadamardProduct(self, expr): args = expr.args prec = PRECEDENCE['Pow'] parens = self.parenthesize return r' \circ '.join( map(lambda arg: parens(arg, prec, strict=True), args)) def _print_HadamardPower(self, expr): if precedence_traditional(expr.exp) < PRECEDENCE["Mul"]: template = r"%s^{\circ \left({%s}\right)}" else: template = r"%s^{\circ {%s}}" return self._helper_print_standard_power(expr, template) def _print_KroneckerProduct(self, expr): args = expr.args prec = PRECEDENCE['Pow'] parens = self.parenthesize return r' \otimes '.join( map(lambda arg: parens(arg, prec, strict=True), args)) def _print_MatPow(self, expr): base, exp = expr.base, expr.exp from sympy.matrices import MatrixSymbol if not isinstance(base, MatrixSymbol): return "\\left(%s\\right)^{%s}" % (self._print(base), self._print(exp)) else: return "%s^{%s}" % (self._print(base), self._print(exp)) def _print_MatrixSymbol(self, expr): return self._print_Symbol(expr, style=self._settings[ 'mat_symbol_style']) def _print_ZeroMatrix(self, Z): return r"\mathbb{0}" if self._settings[ 'mat_symbol_style'] == 'plain' else r"\mathbf{0}" def _print_OneMatrix(self, O): return r"\mathbb{1}" if self._settings[ 'mat_symbol_style'] == 'plain' else r"\mathbf{1}" def _print_Identity(self, I): return r"\mathbb{I}" if self._settings[ 'mat_symbol_style'] == 'plain' else r"\mathbf{I}" def _print_PermutationMatrix(self, P): perm_str = self._print(P.args[0]) return "P_{%s}" % perm_str def _print_NDimArray(self, expr): if expr.rank() == 0: return self._print(expr[()]) mat_str = self._settings['mat_str'] if mat_str is None: if self._settings['mode'] == 'inline': mat_str = 'smallmatrix' else: if (expr.rank() == 0) or (expr.shape[-1] <= 10): mat_str = 'matrix' else: mat_str = 'array' block_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}' block_str = block_str.replace('%MATSTR%', mat_str) if self._settings['mat_delim']: left_delim = self._settings['mat_delim'] right_delim = self._delim_dict[left_delim] block_str = r'\left' + left_delim + block_str + \ r'\right' + right_delim if expr.rank() == 0: return block_str % "" level_str = [[]] + [[] for i in range(expr.rank())] shape_ranges = [list(range(i)) for i in expr.shape] for outer_i in itertools.product(*shape_ranges): level_str[-1].append(self._print(expr[outer_i])) even = True for back_outer_i in range(expr.rank()-1, -1, -1): if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]: break if even: level_str[back_outer_i].append( r" & ".join(level_str[back_outer_i+1])) else: level_str[back_outer_i].append( block_str % (r"\\".join(level_str[back_outer_i+1]))) if len(level_str[back_outer_i+1]) == 1: level_str[back_outer_i][-1] = r"\left[" + \ level_str[back_outer_i][-1] + r"\right]" even = not even level_str[back_outer_i+1] = [] out_str = level_str[0][0] if expr.rank() % 2 == 1: out_str = block_str % out_str return out_str def _printer_tensor_indices(self, name, indices, index_map={}): out_str = self._print(name) last_valence = None prev_map = None for index in indices: new_valence = index.is_up if ((index in index_map) or prev_map) and \ last_valence == new_valence: out_str += "," if last_valence != new_valence: if last_valence is not None: out_str += "}" if index.is_up: out_str += "{}^{" else: out_str += "{}_{" out_str += self._print(index.args[0]) if index in index_map: out_str += "=" out_str += self._print(index_map[index]) prev_map = True else: prev_map = False last_valence = new_valence if last_valence is not None: out_str += "}" return out_str def _print_Tensor(self, expr): name = expr.args[0].args[0] indices = expr.get_indices() return self._printer_tensor_indices(name, indices) def _print_TensorElement(self, expr): name = expr.expr.args[0].args[0] indices = expr.expr.get_indices() index_map = expr.index_map return self._printer_tensor_indices(name, indices, index_map) def _print_TensMul(self, expr): # prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)" sign, args = expr._get_args_for_traditional_printer() return sign + "".join( [self.parenthesize(arg, precedence(expr)) for arg in args] ) def _print_TensAdd(self, expr): a = [] args = expr.args for x in args: a.append(self.parenthesize(x, precedence(expr))) a.sort() s = ' + '.join(a) s = s.replace('+ -', '- ') return s def _print_TensorIndex(self, expr): return "{}%s{%s}" % ( "^" if expr.is_up else "_", self._print(expr.args[0]) ) def _print_PartialDerivative(self, expr): if len(expr.variables) == 1: return r"\frac{\partial}{\partial {%s}}{%s}" % ( self._print(expr.variables[0]), self.parenthesize(expr.expr, PRECEDENCE["Mul"], False) ) else: return r"\frac{\partial^{%s}}{%s}{%s}" % ( len(expr.variables), " ".join([r"\partial {%s}" % self._print(i) for i in expr.variables]), self.parenthesize(expr.expr, PRECEDENCE["Mul"], False) ) def _print_UniversalSet(self, expr): return r"\mathbb{U}" def _print_frac(self, expr, exp=None): if exp is None: return r"\operatorname{frac}{\left(%s\right)}" % self._print(expr.args[0]) else: return r"\operatorname{frac}{\left(%s\right)}^{%s}" % ( self._print(expr.args[0]), exp) def _print_tuple(self, expr): if self._settings['decimal_separator'] == 'comma': sep = ";" elif self._settings['decimal_separator'] == 'period': sep = "," else: raise ValueError('Unknown Decimal Separator') if len(expr) == 1: # 1-tuple needs a trailing separator return self._add_parens_lspace(self._print(expr[0]) + sep) else: return self._add_parens_lspace( (sep + r" \ ").join([self._print(i) for i in expr])) def _print_TensorProduct(self, expr): elements = [self._print(a) for a in expr.args] return r' \otimes '.join(elements) def _print_WedgeProduct(self, expr): elements = [self._print(a) for a in expr.args] return r' \wedge '.join(elements) def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_list(self, expr): if self._settings['decimal_separator'] == 'comma': return r"\left[ %s\right]" % \ r"; \ ".join([self._print(i) for i in expr]) elif self._settings['decimal_separator'] == 'period': return r"\left[ %s\right]" % \ r", \ ".join([self._print(i) for i in expr]) else: raise ValueError('Unknown Decimal Separator') def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for key in keys: val = d[key] items.append("%s : %s" % (self._print(key), self._print(val))) return r"\left\{ %s\right\}" % r", \ ".join(items) def _print_Dict(self, expr): return self._print_dict(expr) def _print_DiracDelta(self, expr, exp=None): if len(expr.args) == 1 or expr.args[1] == 0: tex = r"\delta\left(%s\right)" % self._print(expr.args[0]) else: tex = r"\delta^{\left( %s \right)}\left( %s \right)" % ( self._print(expr.args[1]), self._print(expr.args[0])) if exp: tex = r"\left(%s\right)^{%s}" % (tex, exp) return tex def _print_SingularityFunction(self, expr): shift = self._print(expr.args[0] - expr.args[1]) power = self._print(expr.args[2]) tex = r"{\left\langle %s \right\rangle}^{%s}" % (shift, power) return tex def _print_Heaviside(self, expr, exp=None): tex = r"\theta\left(%s\right)" % self._print(expr.args[0]) if exp: tex = r"\left(%s\right)^{%s}" % (tex, exp) return tex def _print_KroneckerDelta(self, expr, exp=None): i = self._print(expr.args[0]) j = self._print(expr.args[1]) if expr.args[0].is_Atom and expr.args[1].is_Atom: tex = r'\delta_{%s %s}' % (i, j) else: tex = r'\delta_{%s, %s}' % (i, j) if exp is not None: tex = r'\left(%s\right)^{%s}' % (tex, exp) return tex def _print_LeviCivita(self, expr, exp=None): indices = map(self._print, expr.args) if all(x.is_Atom for x in expr.args): tex = r'\varepsilon_{%s}' % " ".join(indices) else: tex = r'\varepsilon_{%s}' % ", ".join(indices) if exp: tex = r'\left(%s\right)^{%s}' % (tex, exp) return tex def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): return '\\text{Domain: }' + self._print(d.as_boolean()) elif hasattr(d, 'set'): return ('\\text{Domain: }' + self._print(d.symbols) + '\\text{ in }' + self._print(d.set)) elif hasattr(d, 'symbols'): return '\\text{Domain on }' + self._print(d.symbols) else: return self._print(None) def _print_FiniteSet(self, s): items = sorted(s.args, key=default_sort_key) return self._print_set(items) def _print_set(self, s): items = sorted(s, key=default_sort_key) if self._settings['decimal_separator'] == 'comma': items = "; ".join(map(self._print, items)) elif self._settings['decimal_separator'] == 'period': items = ", ".join(map(self._print, items)) else: raise ValueError('Unknown Decimal Separator') return r"\left\{%s\right\}" % items _print_frozenset = _print_set def _print_Range(self, s): dots = object() if s.has(Symbol): return self._print_Basic(s) if s.start.is_infinite and s.stop.is_infinite: if s.step.is_positive: printset = dots, -1, 0, 1, dots else: printset = dots, 1, 0, -1, dots elif s.start.is_infinite: printset = dots, s[-1] - s.step, s[-1] elif s.stop.is_infinite: it = iter(s) printset = next(it), next(it), dots elif len(s) > 4: it = iter(s) printset = next(it), next(it), dots, s[-1] else: printset = tuple(s) return (r"\left\{" + r", ".join(self._print(el) if el is not dots else r'\ldots' for el in printset) + r"\right\}") def __print_number_polynomial(self, expr, letter, exp=None): if len(expr.args) == 2: if exp is not None: return r"%s_{%s}^{%s}\left(%s\right)" % (letter, self._print(expr.args[0]), exp, self._print(expr.args[1])) return r"%s_{%s}\left(%s\right)" % (letter, self._print(expr.args[0]), self._print(expr.args[1])) tex = r"%s_{%s}" % (letter, self._print(expr.args[0])) if exp is not None: tex = r"%s^{%s}" % (tex, exp) return tex def _print_bernoulli(self, expr, exp=None): return self.__print_number_polynomial(expr, "B", exp) def _print_bell(self, expr, exp=None): if len(expr.args) == 3: tex1 = r"B_{%s, %s}" % (self._print(expr.args[0]), self._print(expr.args[1])) tex2 = r"\left(%s\right)" % r", ".join(self._print(el) for el in expr.args[2]) if exp is not None: tex = r"%s^{%s}%s" % (tex1, exp, tex2) else: tex = tex1 + tex2 return tex return self.__print_number_polynomial(expr, "B", exp) def _print_fibonacci(self, expr, exp=None): return self.__print_number_polynomial(expr, "F", exp) def _print_lucas(self, expr, exp=None): tex = r"L_{%s}" % self._print(expr.args[0]) if exp is not None: tex = r"%s^{%s}" % (tex, exp) return tex def _print_tribonacci(self, expr, exp=None): return self.__print_number_polynomial(expr, "T", exp) def _print_SeqFormula(self, s): dots = object() if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0: return r"\left\{%s\right\}_{%s=%s}^{%s}" % ( self._print(s.formula), self._print(s.variables[0]), self._print(s.start), self._print(s.stop) ) if s.start is S.NegativeInfinity: stop = s.stop printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2), s.coeff(stop - 1), s.coeff(stop)) elif s.stop is S.Infinity or s.length > 4: printset = s[:4] printset.append(dots) else: printset = tuple(s) return (r"\left[" + r", ".join(self._print(el) if el is not dots else r'\ldots' for el in printset) + r"\right]") _print_SeqPer = _print_SeqFormula _print_SeqAdd = _print_SeqFormula _print_SeqMul = _print_SeqFormula def _print_Interval(self, i): if i.start == i.end: return r"\left\{%s\right\}" % self._print(i.start) else: if i.left_open: left = '(' else: left = '[' if i.right_open: right = ')' else: right = ']' return r"\left%s%s, %s\right%s" % \ (left, self._print(i.start), self._print(i.end), right) def _print_AccumulationBounds(self, i): return r"\left\langle %s, %s\right\rangle" % \ (self._print(i.min), self._print(i.max)) def _print_Union(self, u): prec = precedence_traditional(u) args_str = [self.parenthesize(i, prec) for i in u.args] return r" \cup ".join(args_str) def _print_Complement(self, u): prec = precedence_traditional(u) args_str = [self.parenthesize(i, prec) for i in u.args] return r" \setminus ".join(args_str) def _print_Intersection(self, u): prec = precedence_traditional(u) args_str = [self.parenthesize(i, prec) for i in u.args] return r" \cap ".join(args_str) def _print_SymmetricDifference(self, u): prec = precedence_traditional(u) args_str = [self.parenthesize(i, prec) for i in u.args] return r" \triangle ".join(args_str) def _print_ProductSet(self, p): prec = precedence_traditional(p) if len(p.sets) >= 1 and not has_variety(p.sets): return self.parenthesize(p.sets[0], prec) + "^{%d}" % len(p.sets) return r" \times ".join( self.parenthesize(set, prec) for set in p.sets) def _print_EmptySet(self, e): return r"\emptyset" def _print_Naturals(self, n): return r"\mathbb{N}" def _print_Naturals0(self, n): return r"\mathbb{N}_0" def _print_Integers(self, i): return r"\mathbb{Z}" def _print_Rationals(self, i): return r"\mathbb{Q}" def _print_Reals(self, i): return r"\mathbb{R}" def _print_Complexes(self, i): return r"\mathbb{C}" def _print_ImageSet(self, s): expr = s.lamda.expr sig = s.lamda.signature xys = ((self._print(x), self._print(y)) for x, y in zip(sig, s.base_sets)) xinys = r" , ".join(r"%s \in %s" % xy for xy in xys) return r"\left\{%s\; \middle|\; %s\right\}" % (self._print(expr), xinys) def _print_ConditionSet(self, s): vars_print = ', '.join([self._print(var) for var in Tuple(s.sym)]) if s.base_set is S.UniversalSet: return r"\left\{%s\; \middle|\; %s \right\}" % \ (vars_print, self._print(s.condition)) return r"\left\{%s\; \middle|\; %s \in %s \wedge %s \right\}" % ( vars_print, vars_print, self._print(s.base_set), self._print(s.condition)) def _print_ComplexRegion(self, s): vars_print = ', '.join([self._print(var) for var in s.variables]) return r"\left\{%s\; \middle|\; %s \in %s \right\}" % ( self._print(s.expr), vars_print, self._print(s.sets)) def _print_Contains(self, e): return r"%s \in %s" % tuple(self._print(a) for a in e.args) def _print_FourierSeries(self, s): return self._print_Add(s.truncate()) + r' + \ldots' def _print_FormalPowerSeries(self, s): return self._print_Add(s.infinite) def _print_FiniteField(self, expr): return r"\mathbb{F}_{%s}" % expr.mod def _print_IntegerRing(self, expr): return r"\mathbb{Z}" def _print_RationalField(self, expr): return r"\mathbb{Q}" def _print_RealField(self, expr): return r"\mathbb{R}" def _print_ComplexField(self, expr): return r"\mathbb{C}" def _print_PolynomialRing(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) return r"%s\left[%s\right]" % (domain, symbols) def _print_FractionField(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) return r"%s\left(%s\right)" % (domain, symbols) def _print_PolynomialRingBase(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) inv = "" if not expr.is_Poly: inv = r"S_<^{-1}" return r"%s%s\left[%s\right]" % (inv, domain, symbols) def _print_Poly(self, poly): cls = poly.__class__.__name__ terms = [] for monom, coeff in poly.terms(): s_monom = '' for i, exp in enumerate(monom): if exp > 0: if exp == 1: s_monom += self._print(poly.gens[i]) else: s_monom += self._print(pow(poly.gens[i], exp)) if coeff.is_Add: if s_monom: s_coeff = r"\left(%s\right)" % self._print(coeff) else: s_coeff = self._print(coeff) else: if s_monom: if coeff is S.One: terms.extend(['+', s_monom]) continue if coeff is S.NegativeOne: terms.extend(['-', s_monom]) continue s_coeff = self._print(coeff) if not s_monom: s_term = s_coeff else: s_term = s_coeff + " " + s_monom if s_term.startswith('-'): terms.extend(['-', s_term[1:]]) else: terms.extend(['+', s_term]) if terms[0] in ['-', '+']: modifier = terms.pop(0) if modifier == '-': terms[0] = '-' + terms[0] expr = ' '.join(terms) gens = list(map(self._print, poly.gens)) domain = "domain=%s" % self._print(poly.get_domain()) args = ", ".join([expr] + gens + [domain]) if cls in accepted_latex_functions: tex = r"\%s {\left(%s \right)}" % (cls, args) else: tex = r"\operatorname{%s}{\left( %s \right)}" % (cls, args) return tex def _print_ComplexRootOf(self, root): cls = root.__class__.__name__ if cls == "ComplexRootOf": cls = "CRootOf" expr = self._print(root.expr) index = root.index if cls in accepted_latex_functions: return r"\%s {\left(%s, %d\right)}" % (cls, expr, index) else: return r"\operatorname{%s} {\left(%s, %d\right)}" % (cls, expr, index) def _print_RootSum(self, expr): cls = expr.__class__.__name__ args = [self._print(expr.expr)] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) if cls in accepted_latex_functions: return r"\%s {\left(%s\right)}" % (cls, ", ".join(args)) else: return r"\operatorname{%s} {\left(%s\right)}" % (cls, ", ".join(args)) def _print_PolyElement(self, poly): mul_symbol = self._settings['mul_symbol_latex'] return poly.str(self, PRECEDENCE, "{%s}^{%d}", mul_symbol) def _print_FracElement(self, frac): if frac.denom == 1: return self._print(frac.numer) else: numer = self._print(frac.numer) denom = self._print(frac.denom) return r"\frac{%s}{%s}" % (numer, denom) def _print_euler(self, expr, exp=None): m, x = (expr.args[0], None) if len(expr.args) == 1 else expr.args tex = r"E_{%s}" % self._print(m) if exp is not None: tex = r"%s^{%s}" % (tex, exp) if x is not None: tex = r"%s\left(%s\right)" % (tex, self._print(x)) return tex def _print_catalan(self, expr, exp=None): tex = r"C_{%s}" % self._print(expr.args[0]) if exp is not None: tex = r"%s^{%s}" % (tex, exp) return tex def _print_UnifiedTransform(self, expr, s, inverse=False): return r"\mathcal{{{}}}{}_{{{}}}\left[{}\right]\left({}\right)".format(s, '^{-1}' if inverse else '', self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) def _print_MellinTransform(self, expr): return self._print_UnifiedTransform(expr, 'M') def _print_InverseMellinTransform(self, expr): return self._print_UnifiedTransform(expr, 'M', True) def _print_LaplaceTransform(self, expr): return self._print_UnifiedTransform(expr, 'L') def _print_InverseLaplaceTransform(self, expr): return self._print_UnifiedTransform(expr, 'L', True) def _print_FourierTransform(self, expr): return self._print_UnifiedTransform(expr, 'F') def _print_InverseFourierTransform(self, expr): return self._print_UnifiedTransform(expr, 'F', True) def _print_SineTransform(self, expr): return self._print_UnifiedTransform(expr, 'SIN') def _print_InverseSineTransform(self, expr): return self._print_UnifiedTransform(expr, 'SIN', True) def _print_CosineTransform(self, expr): return self._print_UnifiedTransform(expr, 'COS') def _print_InverseCosineTransform(self, expr): return self._print_UnifiedTransform(expr, 'COS', True) def _print_DMP(self, p): try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass return self._print(repr(p)) def _print_DMF(self, p): return self._print_DMP(p) def _print_Object(self, object): return self._print(Symbol(object.name)) def _print_LambertW(self, expr): if len(expr.args) == 1: return r"W\left(%s\right)" % self._print(expr.args[0]) return r"W_{%s}\left(%s\right)" % \ (self._print(expr.args[1]), self._print(expr.args[0])) def _print_Morphism(self, morphism): domain = self._print(morphism.domain) codomain = self._print(morphism.codomain) return "%s\\rightarrow %s" % (domain, codomain) def _print_TransferFunction(self, expr): from sympy.core import Mul, Pow num, den = expr.num, expr.den res = Mul(num, Pow(den, -1, evaluate=False), evaluate=False) return self._print_Mul(res) def _print_Series(self, expr): args = list(expr.args) parens = lambda x: self.parenthesize(x, precedence_traditional(expr), False) return ' '.join(map(parens, args)) def _print_Parallel(self, expr): args = list(expr.args) parens = lambda x: self.parenthesize(x, precedence_traditional(expr), False) return ' '.join(map(parens, args)) def _print_Feedback(self, expr): from sympy.physics.control import TransferFunction, Parallel, Series num, tf = expr.num, TransferFunction(1, 1, expr.num.var) num_arg_list = list(num.args) if isinstance(num, Series) else [num] den_arg_list = list(expr.den.args) if isinstance(expr.den, Series) else [expr.den] if isinstance(num, Series) and isinstance(expr.den, Series): den = Parallel(tf, Series(*num_arg_list, *den_arg_list)) elif isinstance(num, Series) and isinstance(expr.den, TransferFunction): if expr.den == tf: den = Parallel(tf, Series(*num_arg_list)) else: den = Parallel(tf, Series(*num_arg_list, expr.den)) elif isinstance(num, TransferFunction) and isinstance(expr.den, Series): if num == tf: den = Parallel(tf, Series(*den_arg_list)) else: den = Parallel(tf, Series(num, *den_arg_list)) else: if num == tf: den = Parallel(tf, *den_arg_list) elif expr.den == tf: den = Parallel(tf, *num_arg_list) else: den = Parallel(tf, Series(*num_arg_list, *den_arg_list)) numer = self._print(num) denom = self._print(den) return r"\frac{%s}{%s}" % (numer, denom) def _print_NamedMorphism(self, morphism): pretty_name = self._print(Symbol(morphism.name)) pretty_morphism = self._print_Morphism(morphism) return "%s:%s" % (pretty_name, pretty_morphism) def _print_IdentityMorphism(self, morphism): from sympy.categories import NamedMorphism return self._print_NamedMorphism(NamedMorphism( morphism.domain, morphism.codomain, "id")) def _print_CompositeMorphism(self, morphism): # All components of the morphism have names and it is thus # possible to build the name of the composite. component_names_list = [self._print(Symbol(component.name)) for component in morphism.components] component_names_list.reverse() component_names = "\\circ ".join(component_names_list) + ":" pretty_morphism = self._print_Morphism(morphism) return component_names + pretty_morphism def _print_Category(self, morphism): return r"\mathbf{{{}}}".format(self._print(Symbol(morphism.name))) def _print_Diagram(self, diagram): if not diagram.premises: # This is an empty diagram. return self._print(S.EmptySet) latex_result = self._print(diagram.premises) if diagram.conclusions: latex_result += "\\Longrightarrow %s" % \ self._print(diagram.conclusions) return latex_result def _print_DiagramGrid(self, grid): latex_result = "\\begin{array}{%s}\n" % ("c" * grid.width) for i in range(grid.height): for j in range(grid.width): if grid[i, j]: latex_result += latex(grid[i, j]) latex_result += " " if j != grid.width - 1: latex_result += "& " if i != grid.height - 1: latex_result += "\\\\" latex_result += "\n" latex_result += "\\end{array}\n" return latex_result def _print_FreeModule(self, M): return '{{{}}}^{{{}}}'.format(self._print(M.ring), self._print(M.rank)) def _print_FreeModuleElement(self, m): # Print as row vector for convenience, for now. return r"\left[ {} \right]".format(",".join( '{' + self._print(x) + '}' for x in m)) def _print_SubModule(self, m): return r"\left\langle {} \right\rangle".format(",".join( '{' + self._print(x) + '}' for x in m.gens)) def _print_ModuleImplementedIdeal(self, m): return r"\left\langle {} \right\rangle".format(",".join( '{' + self._print(x) + '}' for [x] in m._module.gens)) def _print_Quaternion(self, expr): # TODO: This expression is potentially confusing, # shall we print it as `Quaternion( ... )`? s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args] a = [s[0]] + [i+" "+j for i, j in zip(s[1:], "ijk")] return " + ".join(a) def _print_QuotientRing(self, R): # TODO nicer fractions for few generators... return r"\frac{{{}}}{{{}}}".format(self._print(R.ring), self._print(R.base_ideal)) def _print_QuotientRingElement(self, x): return r"{{{}}} + {{{}}}".format(self._print(x.data), self._print(x.ring.base_ideal)) def _print_QuotientModuleElement(self, m): return r"{{{}}} + {{{}}}".format(self._print(m.data), self._print(m.module.killed_module)) def _print_QuotientModule(self, M): # TODO nicer fractions for few generators... return r"\frac{{{}}}{{{}}}".format(self._print(M.base), self._print(M.killed_module)) def _print_MatrixHomomorphism(self, h): return r"{{{}}} : {{{}}} \to {{{}}}".format(self._print(h._sympy_matrix()), self._print(h.domain), self._print(h.codomain)) def _print_Manifold(self, manifold): string = manifold.name.name if '{' in string: name, supers, subs = string, [], [] else: name, supers, subs = split_super_sub(string) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] name = r'\text{%s}' % name if supers: name += "^{%s}" % " ".join(supers) if subs: name += "_{%s}" % " ".join(subs) return name def _print_Patch(self, patch): return r'\text{%s}_{%s}' % (self._print(patch.name), self._print(patch.manifold)) def _print_CoordSystem(self, coordsys): return r'\text{%s}^{\text{%s}}_{%s}' % ( self._print(coordsys.name), self._print(coordsys.patch.name), self._print(coordsys.manifold) ) def _print_CovarDerivativeOp(self, cvd): return r'\mathbb{\nabla}_{%s}' % self._print(cvd._wrt) def _print_BaseScalarField(self, field): string = field._coord_sys.symbols[field._index].name return r'\mathbf{{{}}}'.format(self._print(Symbol(string))) def _print_BaseVectorField(self, field): string = field._coord_sys.symbols[field._index].name return r'\partial_{{{}}}'.format(self._print(Symbol(string))) def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): string = field._coord_sys.symbols[field._index].name return r'\operatorname{{d}}{}'.format(self._print(Symbol(string))) else: string = self._print(field) return r'\operatorname{{d}}\left({}\right)'.format(string) def _print_Tr(self, p): # TODO: Handle indices contents = self._print(p.args[0]) return r'\operatorname{{tr}}\left({}\right)'.format(contents) def _print_totient(self, expr, exp=None): if exp is not None: return r'\left(\phi\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), exp) return r'\phi\left(%s\right)' % self._print(expr.args[0]) def _print_reduced_totient(self, expr, exp=None): if exp is not None: return r'\left(\lambda\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), exp) return r'\lambda\left(%s\right)' % self._print(expr.args[0]) def _print_divisor_sigma(self, expr, exp=None): if len(expr.args) == 2: tex = r"_%s\left(%s\right)" % tuple(map(self._print, (expr.args[1], expr.args[0]))) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\sigma^{%s}%s" % (exp, tex) return r"\sigma%s" % tex def _print_udivisor_sigma(self, expr, exp=None): if len(expr.args) == 2: tex = r"_%s\left(%s\right)" % tuple(map(self._print, (expr.args[1], expr.args[0]))) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\sigma^*^{%s}%s" % (exp, tex) return r"\sigma^*%s" % tex def _print_primenu(self, expr, exp=None): if exp is not None: return r'\left(\nu\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), exp) return r'\nu\left(%s\right)' % self._print(expr.args[0]) def _print_primeomega(self, expr, exp=None): if exp is not None: return r'\left(\Omega\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), exp) return r'\Omega\left(%s\right)' % self._print(expr.args[0]) def _print_Str(self, s): return str(s.name) def _print_float(self, expr): return self._print(Float(expr)) def _print_int(self, expr): return str(expr) def _print_mpz(self, expr): return str(expr) def _print_mpq(self, expr): return str(expr) def emptyPrinter(self, expr): # default to just printing as monospace, like would normally be shown s = super().emptyPrinter(expr) return r"\mathtt{\text{%s}}" % latex_escape(s) def translate(s): r''' Check for a modifier ending the string. If present, convert the modifier to latex and translate the rest recursively. Given a description of a Greek letter or other special character, return the appropriate latex. Let everything else pass as given. >>> from sympy.printing.latex import translate >>> translate('alphahatdotprime') "{\\dot{\\hat{\\alpha}}}'" ''' # Process the rest tex = tex_greek_dictionary.get(s) if tex: return tex elif s.lower() in greek_letters_set: return "\\" + s.lower() elif s in other_symbols: return "\\" + s else: # Process modifiers, if any, and recurse for key in sorted(modifier_dict.keys(), key=lambda k:len(k), reverse=True): if s.lower().endswith(key) and len(s) > len(key): return modifier_dict[key](translate(s[:-len(key)])) return s @print_function(LatexPrinter) def latex(expr, **settings): r"""Convert the given expression to LaTeX string representation. Parameters ========== full_prec: boolean, optional If set to True, a floating point number is printed with full precision. fold_frac_powers : boolean, optional Emit ``^{p/q}`` instead of ``^{\frac{p}{q}}`` for fractional powers. fold_func_brackets : boolean, optional Fold function brackets where applicable. fold_short_frac : boolean, optional Emit ``p / q`` instead of ``\frac{p}{q}`` when the denominator is simple enough (at most two terms and no powers). The default value is ``True`` for inline mode, ``False`` otherwise. inv_trig_style : string, optional How inverse trig functions should be displayed. Can be one of ``abbreviated``, ``full``, or ``power``. Defaults to ``abbreviated``. itex : boolean, optional Specifies if itex-specific syntax is used, including emitting ``$$...$$``. ln_notation : boolean, optional If set to ``True``, ``\ln`` is used instead of default ``\log``. long_frac_ratio : float or None, optional The allowed ratio of the width of the numerator to the width of the denominator before the printer breaks off long fractions. If ``None`` (the default value), long fractions are not broken up. mat_delim : string, optional The delimiter to wrap around matrices. Can be one of ``[``, ``(``, or the empty string. Defaults to ``[``. mat_str : string, optional Which matrix environment string to emit. ``smallmatrix``, ``matrix``, ``array``, etc. Defaults to ``smallmatrix`` for inline mode, ``matrix`` for matrices of no more than 10 columns, and ``array`` otherwise. mode: string, optional Specifies how the generated code will be delimited. ``mode`` can be one of ``plain``, ``inline``, ``equation`` or ``equation*``. If ``mode`` is set to ``plain``, then the resulting code will not be delimited at all (this is the default). If ``mode`` is set to ``inline`` then inline LaTeX ``$...$`` will be used. If ``mode`` is set to ``equation`` or ``equation*``, the resulting code will be enclosed in the ``equation`` or ``equation*`` environment (remember to import ``amsmath`` for ``equation*``), unless the ``itex`` option is set. In the latter case, the ``$$...$$`` syntax is used. mul_symbol : string or None, optional The symbol to use for multiplication. Can be one of ``None``, ``ldot``, ``dot``, or ``times``. order: string, optional Any of the supported monomial orderings (currently ``lex``, ``grlex``, or ``grevlex``), ``old``, and ``none``. This parameter does nothing for Mul objects. Setting order to ``old`` uses the compatibility ordering for Add defined in Printer. For very large expressions, set the ``order`` keyword to ``none`` if speed is a concern. symbol_names : dictionary of strings mapped to symbols, optional Dictionary of symbols and the custom strings they should be emitted as. root_notation : boolean, optional If set to ``False``, exponents of the form 1/n are printed in fractonal form. Default is ``True``, to print exponent in root form. mat_symbol_style : string, optional Can be either ``plain`` (default) or ``bold``. If set to ``bold``, a MatrixSymbol A will be printed as ``\mathbf{A}``, otherwise as ``A``. imaginary_unit : string, optional String to use for the imaginary unit. Defined options are "i" (default) and "j". Adding "r" or "t" in front gives ``\mathrm`` or ``\text``, so "ri" leads to ``\mathrm{i}`` which gives `\mathrm{i}`. gothic_re_im : boolean, optional If set to ``True``, `\Re` and `\Im` is used for ``re`` and ``im``, respectively. The default is ``False`` leading to `\operatorname{re}` and `\operatorname{im}`. decimal_separator : string, optional Specifies what separator to use to separate the whole and fractional parts of a floating point number as in `2.5` for the default, ``period`` or `2{,}5` when ``comma`` is specified. Lists, sets, and tuple are printed with semicolon separating the elements when ``comma`` is chosen. For example, [1; 2; 3] when ``comma`` is chosen and [1,2,3] for when ``period`` is chosen. parenthesize_super : boolean, optional If set to ``False``, superscripted expressions will not be parenthesized when powered. Default is ``True``, which parenthesizes the expression when powered. min: Integer or None, optional Sets the lower bound for the exponent to print floating point numbers in fixed-point format. max: Integer or None, optional Sets the upper bound for the exponent to print floating point numbers in fixed-point format. Notes ===== Not using a print statement for printing, results in double backslashes for latex commands since that's the way Python escapes backslashes in strings. >>> from sympy import latex, Rational >>> from sympy.abc import tau >>> latex((2*tau)**Rational(7,2)) '8 \\sqrt{2} \\tau^{\\frac{7}{2}}' >>> print(latex((2*tau)**Rational(7,2))) 8 \sqrt{2} \tau^{\frac{7}{2}} Examples ======== >>> from sympy import latex, pi, sin, asin, Integral, Matrix, Rational, log >>> from sympy.abc import x, y, mu, r, tau Basic usage: >>> print(latex((2*tau)**Rational(7,2))) 8 \sqrt{2} \tau^{\frac{7}{2}} ``mode`` and ``itex`` options: >>> print(latex((2*mu)**Rational(7,2), mode='plain')) 8 \sqrt{2} \mu^{\frac{7}{2}} >>> print(latex((2*tau)**Rational(7,2), mode='inline')) $8 \sqrt{2} \tau^{7 / 2}$ >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} >>> print(latex((2*mu)**Rational(7,2), mode='equation')) \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ >>> print(latex((2*mu)**Rational(7,2), mode='plain')) 8 \sqrt{2} \mu^{\frac{7}{2}} >>> print(latex((2*tau)**Rational(7,2), mode='inline')) $8 \sqrt{2} \tau^{7 / 2}$ >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} >>> print(latex((2*mu)**Rational(7,2), mode='equation')) \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ Fraction options: >>> print(latex((2*tau)**Rational(7,2), fold_frac_powers=True)) 8 \sqrt{2} \tau^{7/2} >>> print(latex((2*tau)**sin(Rational(7,2)))) \left(2 \tau\right)^{\sin{\left(\frac{7}{2} \right)}} >>> print(latex((2*tau)**sin(Rational(7,2)), fold_func_brackets=True)) \left(2 \tau\right)^{\sin {\frac{7}{2}}} >>> print(latex(3*x**2/y)) \frac{3 x^{2}}{y} >>> print(latex(3*x**2/y, fold_short_frac=True)) 3 x^{2} / y >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=2)) \frac{\int r\, dr}{2 \pi} >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=0)) \frac{1}{2 \pi} \int r\, dr Multiplication options: >>> print(latex((2*tau)**sin(Rational(7,2)), mul_symbol="times")) \left(2 \times \tau\right)^{\sin{\left(\frac{7}{2} \right)}} Trig options: >>> print(latex(asin(Rational(7,2)))) \operatorname{asin}{\left(\frac{7}{2} \right)} >>> print(latex(asin(Rational(7,2)), inv_trig_style="full")) \arcsin{\left(\frac{7}{2} \right)} >>> print(latex(asin(Rational(7,2)), inv_trig_style="power")) \sin^{-1}{\left(\frac{7}{2} \right)} Matrix options: >>> print(latex(Matrix(2, 1, [x, y]))) \left[\begin{matrix}x\\y\end{matrix}\right] >>> print(latex(Matrix(2, 1, [x, y]), mat_str = "array")) \left[\begin{array}{c}x\\y\end{array}\right] >>> print(latex(Matrix(2, 1, [x, y]), mat_delim="(")) \left(\begin{matrix}x\\y\end{matrix}\right) Custom printing of symbols: >>> print(latex(x**2, symbol_names={x: 'x_i'})) x_i^{2} Logarithms: >>> print(latex(log(10))) \log{\left(10 \right)} >>> print(latex(log(10), ln_notation=True)) \ln{\left(10 \right)} ``latex()`` also supports the builtin container types :class:`list`, :class:`tuple`, and :class:`dict`: >>> print(latex([2/x, y], mode='inline')) $\left[ 2 / x, \ y\right]$ Unsupported types are rendered as monospaced plaintext: >>> print(latex(int)) \mathtt{\text{<class 'int'>}} >>> print(latex("plain % text")) \mathtt{\text{plain \% text}} See :ref:`printer_method_example` for an example of how to override this behavior for your own types by implementing ``_latex``. .. versionchanged:: 1.7.0 Unsupported types no longer have their ``str`` representation treated as valid latex. """ return LatexPrinter(settings).doprint(expr) def print_latex(expr, **settings): """Prints LaTeX representation of the given expression. Takes the same settings as ``latex()``.""" print(latex(expr, **settings)) def multiline_latex(lhs, rhs, terms_per_line=1, environment="align*", use_dots=False, **settings): r""" This function generates a LaTeX equation with a multiline right-hand side in an ``align*``, ``eqnarray`` or ``IEEEeqnarray`` environment. Parameters ========== lhs : Expr Left-hand side of equation rhs : Expr Right-hand side of equation terms_per_line : integer, optional Number of terms per line to print. Default is 1. environment : "string", optional Which LaTeX wnvironment to use for the output. Options are "align*" (default), "eqnarray", and "IEEEeqnarray". use_dots : boolean, optional If ``True``, ``\\dots`` is added to the end of each line. Default is ``False``. Examples ======== >>> from sympy import multiline_latex, symbols, sin, cos, exp, log, I >>> x, y, alpha = symbols('x y alpha') >>> expr = sin(alpha*y) + exp(I*alpha) - cos(log(y)) >>> print(multiline_latex(x, expr)) \begin{align*} x = & e^{i \alpha} \\ & + \sin{\left(\alpha y \right)} \\ & - \cos{\left(\log{\left(y \right)} \right)} \end{align*} Using at most two terms per line: >>> print(multiline_latex(x, expr, 2)) \begin{align*} x = & e^{i \alpha} + \sin{\left(\alpha y \right)} \\ & - \cos{\left(\log{\left(y \right)} \right)} \end{align*} Using ``eqnarray`` and dots: >>> print(multiline_latex(x, expr, terms_per_line=2, environment="eqnarray", use_dots=True)) \begin{eqnarray} x & = & e^{i \alpha} + \sin{\left(\alpha y \right)} \dots\nonumber\\ & & - \cos{\left(\log{\left(y \right)} \right)} \end{eqnarray} Using ``IEEEeqnarray``: >>> print(multiline_latex(x, expr, environment="IEEEeqnarray")) \begin{IEEEeqnarray}{rCl} x & = & e^{i \alpha} \nonumber\\ & & + \sin{\left(\alpha y \right)} \nonumber\\ & & - \cos{\left(\log{\left(y \right)} \right)} \end{IEEEeqnarray} Notes ===== All optional parameters from ``latex`` can also be used. """ # Based on code from https://github.com/sympy/sympy/issues/3001 l = LatexPrinter(**settings) if environment == "eqnarray": result = r'\begin{eqnarray}' + '\n' first_term = '& = &' nonumber = r'\nonumber' end_term = '\n\\end{eqnarray}' doubleet = True elif environment == "IEEEeqnarray": result = r'\begin{IEEEeqnarray}{rCl}' + '\n' first_term = '& = &' nonumber = r'\nonumber' end_term = '\n\\end{IEEEeqnarray}' doubleet = True elif environment == "align*": result = r'\begin{align*}' + '\n' first_term = '= &' nonumber = '' end_term = '\n\\end{align*}' doubleet = False else: raise ValueError("Unknown environment: {}".format(environment)) dots = '' if use_dots: dots=r'\dots' terms = rhs.as_ordered_terms() n_terms = len(terms) term_count = 1 for i in range(n_terms): term = terms[i] term_start = '' term_end = '' sign = '+' if term_count > terms_per_line: if doubleet: term_start = '& & ' else: term_start = '& ' term_count = 1 if term_count == terms_per_line: # End of line if i < n_terms-1: # There are terms remaining term_end = dots + nonumber + r'\\' + '\n' else: term_end = '' if term.as_ordered_factors()[0] == -1: term = -1*term sign = r'-' if i == 0: # beginning if sign == '+': sign = '' result += r'{:s} {:s}{:s} {:s} {:s}'.format(l.doprint(lhs), first_term, sign, l.doprint(term), term_end) else: result += r'{:s}{:s} {:s} {:s}'.format(term_start, sign, l.doprint(term), term_end) term_count += 1 result += end_term return result
f5c9956ed260557a4fcd14caca31b3d8e79fd1456732d5f33725df81a50b054d
from sympy.concrete.expr_with_limits import AddWithLimits from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.compatibility import is_sequence from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import diff from sympy.core.logic import fuzzy_bool from sympy.core.mul import Mul from sympy.core.numbers import oo, pi from sympy.core.relational import Ne from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, Wild) from sympy.core.sympify import sympify from sympy.functions import Piecewise, sqrt, piecewise_fold, tan, cot, atan from sympy.functions.elementary.exponential import log from sympy.functions.elementary.integers import floor from sympy.functions.elementary.complexes import Abs, sign from sympy.functions.elementary.miscellaneous import Min, Max from sympy.integrals.manualintegrate import manualintegrate from sympy.integrals.trigonometry import trigintegrate from sympy.integrals.meijerint import meijerint_definite, meijerint_indefinite from sympy.matrices import MatrixBase from sympy.polys import Poly, PolynomialError from sympy.series import limit from sympy.series.order import Order from sympy.series.formal import FormalPowerSeries from sympy.simplify.fu import sincos_to_sum from sympy.tensor.functions import shape from sympy.utilities.misc import filldedent from sympy.utilities.exceptions import SymPyDeprecationWarning class Integral(AddWithLimits): """Represents unevaluated integral.""" __slots__ = ('is_commutative',) def __new__(cls, function, *symbols, **assumptions): """Create an unevaluated integral. Explanation =========== Arguments are an integrand followed by one or more limits. If no limits are given and there is only one free symbol in the expression, that symbol will be used, otherwise an error will be raised. >>> from sympy import Integral >>> from sympy.abc import x, y >>> Integral(x) Integral(x, x) >>> Integral(y) Integral(y, y) When limits are provided, they are interpreted as follows (using ``x`` as though it were the variable of integration): (x,) or x - indefinite integral (x, a) - "evaluate at" integral is an abstract antiderivative (x, a, b) - definite integral The ``as_dummy`` method can be used to see which symbols cannot be targeted by subs: those with a prepended underscore cannot be changed with ``subs``. (Also, the integration variables themselves -- the first element of a limit -- can never be changed by subs.) >>> i = Integral(x, x) >>> at = Integral(x, (x, x)) >>> i.as_dummy() Integral(x, x) >>> at.as_dummy() Integral(_0, (_0, x)) """ #This will help other classes define their own definitions #of behaviour with Integral. if hasattr(function, '_eval_Integral'): return function._eval_Integral(*symbols, **assumptions) if isinstance(function, Poly): SymPyDeprecationWarning( feature="Using integrate/Integral with Poly", issue=18613, deprecated_since_version="1.6", useinstead="the as_expr or integrate methods of Poly").warn() obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions) return obj def __getnewargs__(self): return (self.function,) + tuple([tuple(xab) for xab in self.limits]) @property def free_symbols(self): """ This method returns the symbols that will exist when the integral is evaluated. This is useful if one is trying to determine whether an integral depends on a certain symbol or not. Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, y >>> Integral(x, (x, y, 1)).free_symbols {y} See Also ======== sympy.concrete.expr_with_limits.ExprWithLimits.function sympy.concrete.expr_with_limits.ExprWithLimits.limits sympy.concrete.expr_with_limits.ExprWithLimits.variables """ return AddWithLimits.free_symbols.fget(self) def _eval_is_zero(self): # This is a very naive and quick test, not intended to do the integral to # answer whether it is zero or not, e.g. Integral(sin(x), (x, 0, 2*pi)) # is zero but this routine should return None for that case. But, like # Mul, there are trivial situations for which the integral will be # zero so we check for those. if self.function.is_zero: return True got_none = False for l in self.limits: if len(l) == 3: z = (l[1] == l[2]) or (l[1] - l[2]).is_zero if z: return True elif z is None: got_none = True free = self.function.free_symbols for xab in self.limits: if len(xab) == 1: free.add(xab[0]) continue if len(xab) == 2 and xab[0] not in free: if xab[1].is_zero: return True elif xab[1].is_zero is None: got_none = True # take integration symbol out of free since it will be replaced # with the free symbols in the limits free.discard(xab[0]) # add in the new symbols for i in xab[1:]: free.update(i.free_symbols) if self.function.is_zero is False and got_none is False: return False def transform(self, x, u): r""" Performs a change of variables from `x` to `u` using the relationship given by `x` and `u` which will define the transformations `f` and `F` (which are inverses of each other) as follows: 1) If `x` is a Symbol (which is a variable of integration) then `u` will be interpreted as some function, f(u), with inverse F(u). This, in effect, just makes the substitution of x with f(x). 2) If `u` is a Symbol then `x` will be interpreted as some function, F(x), with inverse f(u). This is commonly referred to as u-substitution. Once f and F have been identified, the transformation is made as follows: .. math:: \int_a^b x \mathrm{d}x \rightarrow \int_{F(a)}^{F(b)} f(x) \frac{\mathrm{d}}{\mathrm{d}x} where `F(x)` is the inverse of `f(x)` and the limits and integrand have been corrected so as to retain the same value after integration. Notes ===== The mappings, F(x) or f(u), must lead to a unique integral. Linear or rational linear expression, ``2*x``, ``1/x`` and ``sqrt(x)``, will always work; quadratic expressions like ``x**2 - 1`` are acceptable as long as the resulting integrand does not depend on the sign of the solutions (see examples). The integral will be returned unchanged if ``x`` is not a variable of integration. ``x`` must be (or contain) only one of of the integration variables. If ``u`` has more than one free symbol then it should be sent as a tuple (``u``, ``uvar``) where ``uvar`` identifies which variable is replacing the integration variable. XXX can it contain another integration variable? Examples ======== >>> from sympy.abc import a, x, u >>> from sympy import Integral, cos, sqrt >>> i = Integral(x*cos(x**2 - 1), (x, 0, 1)) transform can change the variable of integration >>> i.transform(x, u) Integral(u*cos(u**2 - 1), (u, 0, 1)) transform can perform u-substitution as long as a unique integrand is obtained: >>> i.transform(x**2 - 1, u) Integral(cos(u)/2, (u, -1, 0)) This attempt fails because x = +/-sqrt(u + 1) and the sign does not cancel out of the integrand: >>> Integral(cos(x**2 - 1), (x, 0, 1)).transform(x**2 - 1, u) Traceback (most recent call last): ... ValueError: The mapping between F(x) and f(u) did not give a unique integrand. transform can do a substitution. Here, the previous result is transformed back into the original expression using "u-substitution": >>> ui = _ >>> _.transform(sqrt(u + 1), x) == i True We can accomplish the same with a regular substitution: >>> ui.transform(u, x**2 - 1) == i True If the `x` does not contain a symbol of integration then the integral will be returned unchanged. Integral `i` does not have an integration variable `a` so no change is made: >>> i.transform(a, x) == i True When `u` has more than one free symbol the symbol that is replacing `x` must be identified by passing `u` as a tuple: >>> Integral(x, (x, 0, 1)).transform(x, (u + a, u)) Integral(a + u, (u, -a, 1 - a)) >>> Integral(x, (x, 0, 1)).transform(x, (u + a, a)) Integral(a + u, (a, -u, 1 - u)) See Also ======== sympy.concrete.expr_with_limits.ExprWithLimits.variables : Lists the integration variables as_dummy : Replace integration variables with dummy ones """ from sympy.solvers.solvers import solve, posify d = Dummy('d') xfree = x.free_symbols.intersection(self.variables) if len(xfree) > 1: raise ValueError( 'F(x) can only contain one of: %s' % self.variables) xvar = xfree.pop() if xfree else d if xvar not in self.variables: return self u = sympify(u) if isinstance(u, Expr): ufree = u.free_symbols if len(ufree) == 0: raise ValueError(filldedent(''' f(u) cannot be a constant''')) if len(ufree) > 1: raise ValueError(filldedent(''' When f(u) has more than one free symbol, the one replacing x must be identified: pass f(u) as (f(u), u)''')) uvar = ufree.pop() else: u, uvar = u if uvar not in u.free_symbols: raise ValueError(filldedent(''' Expecting a tuple (expr, symbol) where symbol identified a free symbol in expr, but symbol is not in expr's free symbols.''')) if not isinstance(uvar, Symbol): # This probably never evaluates to True raise ValueError(filldedent(''' Expecting a tuple (expr, symbol) but didn't get a symbol; got %s''' % uvar)) if x.is_Symbol and u.is_Symbol: return self.xreplace({x: u}) if not x.is_Symbol and not u.is_Symbol: raise ValueError('either x or u must be a symbol') if uvar == xvar: return self.transform(x, (u.subs(uvar, d), d)).xreplace({d: uvar}) if uvar in self.limits: raise ValueError(filldedent(''' u must contain the same variable as in x or a variable that is not already an integration variable''')) if not x.is_Symbol: F = [x.subs(xvar, d)] soln = solve(u - x, xvar, check=False) if not soln: raise ValueError('no solution for solve(F(x) - f(u), x)') f = [fi.subs(uvar, d) for fi in soln] else: f = [u.subs(uvar, d)] pdiff, reps = posify(u - x) puvar = uvar.subs([(v, k) for k, v in reps.items()]) soln = [s.subs(reps) for s in solve(pdiff, puvar)] if not soln: raise ValueError('no solution for solve(F(x) - f(u), u)') F = [fi.subs(xvar, d) for fi in soln] newfuncs = {(self.function.subs(xvar, fi)*fi.diff(d) ).subs(d, uvar) for fi in f} if len(newfuncs) > 1: raise ValueError(filldedent(''' The mapping between F(x) and f(u) did not give a unique integrand.''')) newfunc = newfuncs.pop() def _calc_limit_1(F, a, b): """ replace d with a, using subs if possible, otherwise limit where sign of b is considered """ wok = F.subs(d, a) if wok is S.NaN or wok.is_finite is False and a.is_finite: return limit(sign(b)*F, d, a) return wok def _calc_limit(a, b): """ replace d with a, using subs if possible, otherwise limit where sign of b is considered """ avals = list({_calc_limit_1(Fi, a, b) for Fi in F}) if len(avals) > 1: raise ValueError(filldedent(''' The mapping between F(x) and f(u) did not give a unique limit.''')) return avals[0] newlimits = [] for xab in self.limits: sym = xab[0] if sym == xvar: if len(xab) == 3: a, b = xab[1:] a, b = _calc_limit(a, b), _calc_limit(b, a) if fuzzy_bool(a - b > 0): a, b = b, a newfunc = -newfunc newlimits.append((uvar, a, b)) elif len(xab) == 2: a = _calc_limit(xab[1], 1) newlimits.append((uvar, a)) else: newlimits.append(uvar) else: newlimits.append(xab) return self.func(newfunc, *newlimits) def doit(self, **hints): """ Perform the integration using any hints given. Examples ======== >>> from sympy import Piecewise, S >>> from sympy.abc import x, t >>> p = x**2 + Piecewise((0, x/t < 0), (1, True)) >>> p.integrate((t, S(4)/5, 1), (x, -1, 1)) 1/3 See Also ======== sympy.integrals.trigonometry.trigintegrate sympy.integrals.heurisch.heurisch sympy.integrals.rationaltools.ratint as_sum : Approximate the integral using a sum """ from sympy.concrete.summations import Sum if not hints.get('integrals', True): return self deep = hints.get('deep', True) meijerg = hints.get('meijerg', None) conds = hints.get('conds', 'piecewise') risch = hints.get('risch', None) heurisch = hints.get('heurisch', None) manual = hints.get('manual', None) if len(list(filter(None, (manual, meijerg, risch, heurisch)))) > 1: raise ValueError("At most one of manual, meijerg, risch, heurisch can be True") elif manual: meijerg = risch = heurisch = False elif meijerg: manual = risch = heurisch = False elif risch: manual = meijerg = heurisch = False elif heurisch: manual = meijerg = risch = False eval_kwargs = dict(meijerg=meijerg, risch=risch, manual=manual, heurisch=heurisch, conds=conds) if conds not in ['separate', 'piecewise', 'none']: raise ValueError('conds must be one of "separate", "piecewise", ' '"none", got: %s' % conds) if risch and any(len(xab) > 1 for xab in self.limits): raise ValueError('risch=True is only allowed for indefinite integrals.') # check for the trivial zero if self.is_zero: return S.Zero # hacks to handle integrals of # nested summations if isinstance(self.function, Sum): if any(v in self.function.limits[0] for v in self.variables): raise ValueError('Limit of the sum cannot be an integration variable.') if any(l.is_infinite for l in self.function.limits[0][1:]): return self _i = self _sum = self.function return _sum.func(_i.func(_sum.function, *_i.limits).doit(), *_sum.limits).doit() # now compute and check the function function = self.function if deep: function = function.doit(**hints) if function.is_zero: return S.Zero # hacks to handle special cases if isinstance(function, MatrixBase): return function.applyfunc( lambda f: self.func(f, self.limits).doit(**hints)) if isinstance(function, FormalPowerSeries): if len(self.limits) > 1: raise NotImplementedError xab = self.limits[0] if len(xab) > 1: return function.integrate(xab, **eval_kwargs) else: return function.integrate(xab[0], **eval_kwargs) # There is no trivial answer and special handling # is done so continue # first make sure any definite limits have integration # variables with matching assumptions reps = {} for xab in self.limits: if len(xab) != 3: continue x, a, b = xab l = (a, b) if all(i.is_nonnegative for i in l) and not x.is_nonnegative: d = Dummy(positive=True) elif all(i.is_nonpositive for i in l) and not x.is_nonpositive: d = Dummy(negative=True) elif all(i.is_real for i in l) and not x.is_real: d = Dummy(real=True) else: d = None if d: reps[x] = d if reps: undo = {v: k for k, v in reps.items()} did = self.xreplace(reps).doit(**hints) if type(did) is tuple: # when separate=True did = tuple([i.xreplace(undo) for i in did]) else: did = did.xreplace(undo) return did # continue with existing assumptions undone_limits = [] # ulj = free symbols of any undone limits' upper and lower limits ulj = set() for xab in self.limits: # compute uli, the free symbols in the # Upper and Lower limits of limit I if len(xab) == 1: uli = set(xab[:1]) elif len(xab) == 2: uli = xab[1].free_symbols elif len(xab) == 3: uli = xab[1].free_symbols.union(xab[2].free_symbols) # this integral can be done as long as there is no blocking # limit that has been undone. An undone limit is blocking if # it contains an integration variable that is in this limit's # upper or lower free symbols or vice versa if xab[0] in ulj or any(v[0] in uli for v in undone_limits): undone_limits.append(xab) ulj.update(uli) function = self.func(*([function] + [xab])) factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function continue if function.has(Abs, sign) and ( (len(xab) < 3 and all(x.is_extended_real for x in xab)) or (len(xab) == 3 and all(x.is_extended_real and not x.is_infinite for x in xab[1:]))): # some improper integrals are better off with Abs xr = Dummy("xr", real=True) function = (function.xreplace({xab[0]: xr}) .rewrite(Piecewise).xreplace({xr: xab[0]})) elif function.has(Min, Max): function = function.rewrite(Piecewise) if (function.has(Piecewise) and not isinstance(function, Piecewise)): function = piecewise_fold(function) if isinstance(function, Piecewise): if len(xab) == 1: antideriv = function._eval_integral(xab[0], **eval_kwargs) else: antideriv = self._eval_integral( function, xab[0], **eval_kwargs) else: # There are a number of tradeoffs in using the # Meijer G method. It can sometimes be a lot faster # than other methods, and sometimes slower. And # there are certain types of integrals for which it # is more likely to work than others. These # heuristics are incorporated in deciding what # integration methods to try, in what order. See the # integrate() docstring for details. def try_meijerg(function, xab): ret = None if len(xab) == 3 and meijerg is not False: x, a, b = xab try: res = meijerint_definite(function, x, a, b) except NotImplementedError: from sympy.integrals.meijerint import _debug _debug('NotImplementedError ' 'from meijerint_definite') res = None if res is not None: f, cond = res if conds == 'piecewise': ret = Piecewise( (f, cond), (self.func( function, (x, a, b)), True)) elif conds == 'separate': if len(self.limits) != 1: raise ValueError(filldedent(''' conds=separate not supported in multiple integrals''')) ret = f, cond else: ret = f return ret meijerg1 = meijerg if (meijerg is not False and len(xab) == 3 and xab[1].is_extended_real and xab[2].is_extended_real and not function.is_Poly and (xab[1].has(oo, -oo) or xab[2].has(oo, -oo))): ret = try_meijerg(function, xab) if ret is not None: function = ret continue meijerg1 = False # If the special meijerg code did not succeed in # finding a definite integral, then the code using # meijerint_indefinite will not either (it might # find an antiderivative, but the answer is likely # to be nonsensical). Thus if we are requested to # only use Meijer G-function methods, we give up at # this stage. Otherwise we just disable G-function # methods. if meijerg1 is False and meijerg is True: antideriv = None else: antideriv = self._eval_integral( function, xab[0], **eval_kwargs) if antideriv is None and meijerg is True: ret = try_meijerg(function, xab) if ret is not None: function = ret continue if not isinstance(antideriv, Integral) and antideriv is not None: for atan_term in antideriv.atoms(atan): atan_arg = atan_term.args[0] # Checking `atan_arg` to be linear combination of `tan` or `cot` for tan_part in atan_arg.atoms(tan): x1 = Dummy('x1') tan_exp1 = atan_arg.subs(tan_part, x1) # The coefficient of `tan` should be constant coeff = tan_exp1.diff(x1) if x1 not in coeff.free_symbols: a = tan_part.args[0] antideriv = antideriv.subs(atan_term, Add(atan_term, sign(coeff)*pi*floor((a-pi/2)/pi))) for cot_part in atan_arg.atoms(cot): x1 = Dummy('x1') cot_exp1 = atan_arg.subs(cot_part, x1) # The coefficient of `cot` should be constant coeff = cot_exp1.diff(x1) if x1 not in coeff.free_symbols: a = cot_part.args[0] antideriv = antideriv.subs(atan_term, Add(atan_term, sign(coeff)*pi*floor((a)/pi))) if antideriv is None: undone_limits.append(xab) function = self.func(*([function] + [xab])).factor() factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function continue else: if len(xab) == 1: function = antideriv else: if len(xab) == 3: x, a, b = xab elif len(xab) == 2: x, b = xab a = None else: raise NotImplementedError if deep: if isinstance(a, Basic): a = a.doit(**hints) if isinstance(b, Basic): b = b.doit(**hints) if antideriv.is_Poly: gens = list(antideriv.gens) gens.remove(x) antideriv = antideriv.as_expr() function = antideriv._eval_interval(x, a, b) function = Poly(function, *gens) else: def is_indef_int(g, x): return (isinstance(g, Integral) and any(i == (x,) for i in g.limits)) def eval_factored(f, x, a, b): # _eval_interval for integrals with # (constant) factors # a single indefinite integral is assumed args = [] for g in Mul.make_args(f): if is_indef_int(g, x): args.append(g._eval_interval(x, a, b)) else: args.append(g) return Mul(*args) integrals, others, piecewises = [], [], [] for f in Add.make_args(antideriv): if any(is_indef_int(g, x) for g in Mul.make_args(f)): integrals.append(f) elif any(isinstance(g, Piecewise) for g in Mul.make_args(f)): piecewises.append(piecewise_fold(f)) else: others.append(f) uneval = Add(*[eval_factored(f, x, a, b) for f in integrals]) try: evalued = Add(*others)._eval_interval(x, a, b) evalued_pw = piecewise_fold(Add(*piecewises))._eval_interval(x, a, b) function = uneval + evalued + evalued_pw except NotImplementedError: # This can happen if _eval_interval depends in a # complicated way on limits that cannot be computed undone_limits.append(xab) function = self.func(*([function] + [xab])) factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function return function def _eval_derivative(self, sym): """Evaluate the derivative of the current Integral object by differentiating under the integral sign [1], using the Fundamental Theorem of Calculus [2] when possible. Explanation =========== Whenever an Integral is encountered that is equivalent to zero or has an integrand that is independent of the variable of integration those integrals are performed. All others are returned as Integral instances which can be resolved with doit() (provided they are integrable). References ========== .. [1] https://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign .. [2] https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, y >>> i = Integral(x + y, y, (y, 1, x)) >>> i.diff(x) Integral(x + y, (y, x)) + Integral(1, y, (y, 1, x)) >>> i.doit().diff(x) == i.diff(x).doit() True >>> i.diff(y) 0 The previous must be true since there is no y in the evaluated integral: >>> i.free_symbols {x} >>> i.doit() 2*x**3/3 - x/2 - 1/6 """ # differentiate under the integral sign; we do not # check for regularity conditions (TODO), see issue 4215 # get limits and the function f, limits = self.function, list(self.limits) # the order matters if variables of integration appear in the limits # so work our way in from the outside to the inside. limit = limits.pop(-1) if len(limit) == 3: x, a, b = limit elif len(limit) == 2: x, b = limit a = None else: a = b = None x = limit[0] if limits: # f is the argument to an integral f = self.func(f, *tuple(limits)) # assemble the pieces def _do(f, ab): dab_dsym = diff(ab, sym) if not dab_dsym: return S.Zero if isinstance(f, Integral): limits = [(x, x) if (len(l) == 1 and l[0] == x) else l for l in f.limits] f = self.func(f.function, *limits) return f.subs(x, ab)*dab_dsym rv = S.Zero if b is not None: rv += _do(f, b) if a is not None: rv -= _do(f, a) if len(limit) == 1 and sym == x: # the dummy variable *is* also the real-world variable arg = f rv += arg else: # the dummy variable might match sym but it's # only a dummy and the actual variable is determined # by the limits, so mask off the variable of integration # while differentiating u = Dummy('u') arg = f.subs(x, u).diff(sym).subs(u, x) if arg: rv += self.func(arg, Tuple(x, a, b)) return rv def _eval_integral(self, f, x, meijerg=None, risch=None, manual=None, heurisch=None, conds='piecewise'): """ Calculate the anti-derivative to the function f(x). Explanation =========== The following algorithms are applied (roughly in this order): 1. Simple heuristics (based on pattern matching and integral table): - most frequently used functions (e.g. polynomials, products of trig functions) 2. Integration of rational functions: - A complete algorithm for integrating rational functions is implemented (the Lazard-Rioboo-Trager algorithm). The algorithm also uses the partial fraction decomposition algorithm implemented in apart() as a preprocessor to make this process faster. Note that the integral of a rational function is always elementary, but in general, it may include a RootSum. 3. Full Risch algorithm: - The Risch algorithm is a complete decision procedure for integrating elementary functions, which means that given any elementary function, it will either compute an elementary antiderivative, or else prove that none exists. Currently, part of transcendental case is implemented, meaning elementary integrals containing exponentials, logarithms, and (soon!) trigonometric functions can be computed. The algebraic case, e.g., functions containing roots, is much more difficult and is not implemented yet. - If the routine fails (because the integrand is not elementary, or because a case is not implemented yet), it continues on to the next algorithms below. If the routine proves that the integrals is nonelementary, it still moves on to the algorithms below, because we might be able to find a closed-form solution in terms of special functions. If risch=True, however, it will stop here. 4. The Meijer G-Function algorithm: - This algorithm works by first rewriting the integrand in terms of very general Meijer G-Function (meijerg in SymPy), integrating it, and then rewriting the result back, if possible. This algorithm is particularly powerful for definite integrals (which is actually part of a different method of Integral), since it can compute closed-form solutions of definite integrals even when no closed-form indefinite integral exists. But it also is capable of computing many indefinite integrals as well. - Another advantage of this method is that it can use some results about the Meijer G-Function to give a result in terms of a Piecewise expression, which allows to express conditionally convergent integrals. - Setting meijerg=True will cause integrate() to use only this method. 5. The "manual integration" algorithm: - This algorithm tries to mimic how a person would find an antiderivative by hand, for example by looking for a substitution or applying integration by parts. This algorithm does not handle as many integrands but can return results in a more familiar form. - Sometimes this algorithm can evaluate parts of an integral; in this case integrate() will try to evaluate the rest of the integrand using the other methods here. - Setting manual=True will cause integrate() to use only this method. 6. The Heuristic Risch algorithm: - This is a heuristic version of the Risch algorithm, meaning that it is not deterministic. This is tried as a last resort because it can be very slow. It is still used because not enough of the full Risch algorithm is implemented, so that there are still some integrals that can only be computed using this method. The goal is to implement enough of the Risch and Meijer G-function methods so that this can be deleted. Setting heurisch=True will cause integrate() to use only this method. Set heurisch=False to not use it. """ from sympy.integrals.deltafunctions import deltaintegrate from sympy.integrals.singularityfunctions import singularityintegrate from sympy.integrals.heurisch import heurisch as heurisch_, heurisch_wrapper from sympy.integrals.rationaltools import ratint from sympy.integrals.risch import risch_integrate if risch: try: return risch_integrate(f, x, conds=conds) except NotImplementedError: return None if manual: try: result = manualintegrate(f, x) if result is not None and result.func != Integral: return result except (ValueError, PolynomialError): pass eval_kwargs = dict(meijerg=meijerg, risch=risch, manual=manual, heurisch=heurisch, conds=conds) # if it is a poly(x) then let the polynomial integrate itself (fast) # # It is important to make this check first, otherwise the other code # will return a sympy expression instead of a Polynomial. # # see Polynomial for details. if isinstance(f, Poly) and not (manual or meijerg or risch): SymPyDeprecationWarning( feature="Using integrate/Integral with Poly", issue=18613, deprecated_since_version="1.6", useinstead="the as_expr or integrate methods of Poly").warn() return f.integrate(x) # Piecewise antiderivatives need to call special integrate. if isinstance(f, Piecewise): return f.piecewise_integrate(x, **eval_kwargs) # let's cut it short if `f` does not depend on `x`; if # x is only a dummy, that will be handled below if not f.has(x): return f*x # try to convert to poly(x) and then integrate if successful (fast) poly = f.as_poly(x) if poly is not None and not (manual or meijerg or risch): return poly.integrate().as_expr() if risch is not False: try: result, i = risch_integrate(f, x, separate_integral=True, conds=conds) except NotImplementedError: pass else: if i: # There was a nonelementary integral. Try integrating it. # if no part of the NonElementaryIntegral is integrated by # the Risch algorithm, then use the original function to # integrate, instead of re-written one if result == 0: from sympy.integrals.risch import NonElementaryIntegral return NonElementaryIntegral(f, x).doit(risch=False) else: return result + i.doit(risch=False) else: return result # since Integral(f=g1+g2+...) == Integral(g1) + Integral(g2) + ... # we are going to handle Add terms separately, # if `f` is not Add -- we only have one term # Note that in general, this is a bad idea, because Integral(g1) + # Integral(g2) might not be computable, even if Integral(g1 + g2) is. # For example, Integral(x**x + x**x*log(x)). But many heuristics only # work term-wise. So we compute this step last, after trying # risch_integrate. We also try risch_integrate again in this loop, # because maybe the integral is a sum of an elementary part and a # nonelementary part (like erf(x) + exp(x)). risch_integrate() is # quite fast, so this is acceptable. parts = [] args = Add.make_args(f) for g in args: coeff, g = g.as_independent(x) # g(x) = const if g is S.One and not meijerg: parts.append(coeff*x) continue # g(x) = expr + O(x**n) order_term = g.getO() if order_term is not None: h = self._eval_integral(g.removeO(), x, **eval_kwargs) if h is not None: h_order_expr = self._eval_integral(order_term.expr, x, **eval_kwargs) if h_order_expr is not None: h_order_term = order_term.func( h_order_expr, *order_term.variables) parts.append(coeff*(h + h_order_term)) continue # NOTE: if there is O(x**n) and we fail to integrate then # there is no point in trying other methods because they # will fail, too. return None # c # g(x) = (a*x+b) if g.is_Pow and not g.exp.has(x) and not meijerg: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) M = g.base.match(a*x + b) if M is not None: if g.exp == -1: h = log(g.base) elif conds != 'piecewise': h = g.base**(g.exp + 1) / (g.exp + 1) else: h1 = log(g.base) h2 = g.base**(g.exp + 1) / (g.exp + 1) h = Piecewise((h2, Ne(g.exp, -1)), (h1, True)) parts.append(coeff * h / M[a]) continue # poly(x) # g(x) = ------- # poly(x) if g.is_rational_function(x) and not (manual or meijerg or risch): parts.append(coeff * ratint(g, x)) continue if not (manual or meijerg or risch): # g(x) = Mul(trig) h = trigintegrate(g, x, conds=conds) if h is not None: parts.append(coeff * h) continue # g(x) has at least a DiracDelta term h = deltaintegrate(g, x) if h is not None: parts.append(coeff * h) continue # g(x) has at least a Singularity Function term h = singularityintegrate(g, x) if h is not None: parts.append(coeff * h) continue # Try risch again. if risch is not False: try: h, i = risch_integrate(g, x, separate_integral=True, conds=conds) except NotImplementedError: h = None else: if i: h = h + i.doit(risch=False) parts.append(coeff*h) continue # fall back to heurisch if heurisch is not False: try: if conds == 'piecewise': h = heurisch_wrapper(g, x, hints=[]) else: h = heurisch_(g, x, hints=[]) except PolynomialError: # XXX: this exception means there is a bug in the # implementation of heuristic Risch integration # algorithm. h = None else: h = None if meijerg is not False and h is None: # rewrite using G functions try: h = meijerint_indefinite(g, x) except NotImplementedError: from sympy.integrals.meijerint import _debug _debug('NotImplementedError from meijerint_definite') if h is not None: parts.append(coeff * h) continue if h is None and manual is not False: try: result = manualintegrate(g, x) if result is not None and not isinstance(result, Integral): if result.has(Integral) and not manual: # Try to have other algorithms do the integrals # manualintegrate can't handle, # unless we were asked to use manual only. # Keep the rest of eval_kwargs in case another # method was set to False already new_eval_kwargs = eval_kwargs new_eval_kwargs["manual"] = False result = result.func(*[ arg.doit(**new_eval_kwargs) if arg.has(Integral) else arg for arg in result.args ]).expand(multinomial=False, log=False, power_exp=False, power_base=False) if not result.has(Integral): parts.append(coeff * result) continue except (ValueError, PolynomialError): # can't handle some SymPy expressions pass # if we failed maybe it was because we had # a product that could have been expanded, # so let's try an expansion of the whole # thing before giving up; we don't try this # at the outset because there are things # that cannot be solved unless they are # NOT expanded e.g., x**x*(1+log(x)). There # should probably be a checker somewhere in this # routine to look for such cases and try to do # collection on the expressions if they are already # in an expanded form if not h and len(args) == 1: f = sincos_to_sum(f).expand(mul=True, deep=False) if f.is_Add: # Note: risch will be identical on the expanded # expression, but maybe it will be able to pick out parts, # like x*(exp(x) + erf(x)). return self._eval_integral(f, x, **eval_kwargs) if h is not None: parts.append(coeff * h) else: return None return Add(*parts) def _eval_lseries(self, x, logx, cdir=0): expr = self.as_dummy() symb = x for l in expr.limits: if x in l[1:]: symb = l[0] break for term in expr.function.lseries(symb, logx): yield integrate(term, *expr.limits) def _eval_nseries(self, x, n, logx, cdir=0): expr = self.as_dummy() symb = x for l in expr.limits: if x in l[1:]: symb = l[0] break terms, order = expr.function.nseries( x=symb, n=n, logx=logx).as_coeff_add(Order) order = [o.subs(symb, x) for o in order] return integrate(terms, *expr.limits) + Add(*order)*x def _eval_as_leading_term(self, x, cdir=0): series_gen = self.args[0].lseries(x) for leading_term in series_gen: if leading_term != 0: break return integrate(leading_term, *self.args[1:]) def _eval_simplify(self, **kwargs): from sympy.core.exprtools import factor_terms from sympy.simplify.simplify import simplify expr = factor_terms(self) if isinstance(expr, Integral): return expr.func(*[simplify(i, **kwargs) for i in expr.args]) return expr.simplify(**kwargs) def as_sum(self, n=None, method="midpoint", evaluate=True): """ Approximates a definite integral by a sum. Parameters ========== n : The number of subintervals to use, optional. method : One of: 'left', 'right', 'midpoint', 'trapezoid'. evaluate : bool If False, returns an unevaluated Sum expression. The default is True, evaluate the sum. Notes ===== These methods of approximate integration are described in [1]. Examples ======== >>> from sympy import sin, sqrt >>> from sympy.abc import x, n >>> from sympy.integrals import Integral >>> e = Integral(sin(x), (x, 3, 7)) >>> e Integral(sin(x), (x, 3, 7)) For demonstration purposes, this interval will only be split into 2 regions, bounded by [3, 5] and [5, 7]. The left-hand rule uses function evaluations at the left of each interval: >>> e.as_sum(2, 'left') 2*sin(5) + 2*sin(3) The midpoint rule uses evaluations at the center of each interval: >>> e.as_sum(2, 'midpoint') 2*sin(4) + 2*sin(6) The right-hand rule uses function evaluations at the right of each interval: >>> e.as_sum(2, 'right') 2*sin(5) + 2*sin(7) The trapezoid rule uses function evaluations on both sides of the intervals. This is equivalent to taking the average of the left and right hand rule results: >>> e.as_sum(2, 'trapezoid') 2*sin(5) + sin(3) + sin(7) >>> (e.as_sum(2, 'left') + e.as_sum(2, 'right'))/2 == _ True Here, the discontinuity at x = 0 can be avoided by using the midpoint or right-hand method: >>> e = Integral(1/sqrt(x), (x, 0, 1)) >>> e.as_sum(5).n(4) 1.730 >>> e.as_sum(10).n(4) 1.809 >>> e.doit().n(4) # the actual value is 2 2.000 The left- or trapezoid method will encounter the discontinuity and return infinity: >>> e.as_sum(5, 'left') zoo The number of intervals can be symbolic. If omitted, a dummy symbol will be used for it. >>> e = Integral(x**2, (x, 0, 2)) >>> e.as_sum(n, 'right').expand() 8/3 + 4/n + 4/(3*n**2) This shows that the midpoint rule is more accurate, as its error term decays as the square of n: >>> e.as_sum(method='midpoint').expand() 8/3 - 2/(3*_n**2) A symbolic sum is returned with evaluate=False: >>> e.as_sum(n, 'midpoint', evaluate=False) 2*Sum((2*_k/n - 1/n)**2, (_k, 1, n))/n See Also ======== Integral.doit : Perform the integration using any hints References ========== .. [1] https://en.wikipedia.org/wiki/Riemann_sum#Methods """ from sympy.concrete.summations import Sum limits = self.limits if len(limits) > 1: raise NotImplementedError( "Multidimensional midpoint rule not implemented yet") else: limit = limits[0] if (len(limit) != 3 or limit[1].is_finite is False or limit[2].is_finite is False): raise ValueError("Expecting a definite integral over " "a finite interval.") if n is None: n = Dummy('n', integer=True, positive=True) else: n = sympify(n) if (n.is_positive is False or n.is_integer is False or n.is_finite is False): raise ValueError("n must be a positive integer, got %s" % n) x, a, b = limit dx = (b - a)/n k = Dummy('k', integer=True, positive=True) f = self.function if method == "left": result = dx*Sum(f.subs(x, a + (k-1)*dx), (k, 1, n)) elif method == "right": result = dx*Sum(f.subs(x, a + k*dx), (k, 1, n)) elif method == "midpoint": result = dx*Sum(f.subs(x, a + k*dx - dx/2), (k, 1, n)) elif method == "trapezoid": result = dx*((f.subs(x, a) + f.subs(x, b))/2 + Sum(f.subs(x, a + k*dx), (k, 1, n - 1))) else: raise ValueError("Unknown method %s" % method) return result.doit() if evaluate else result def _sage_(self): import sage.all as sage f, limits = self.function._sage_(), list(self.limits) for limit_ in limits: if len(limit_) == 1: x = limit_[0] f = sage.integral(f, x._sage_(), hold=True) elif len(limit_) == 2: x, b = limit_ f = sage.integral(f, x._sage_(), b._sage_(), hold=True) else: x, a, b = limit_ f = sage.integral(f, (x._sage_(), a._sage_(), b._sage_()), hold=True) return f def principal_value(self, **kwargs): """ Compute the Cauchy Principal Value of the definite integral of a real function in the given interval on the real axis. Explanation =========== In mathematics, the Cauchy principal value, is a method for assigning values to certain improper integrals which would otherwise be undefined. Examples ======== >>> from sympy import oo >>> from sympy.integrals.integrals import Integral >>> from sympy.abc import x >>> Integral(x+1, (x, -oo, oo)).principal_value() oo >>> f = 1 / (x**3) >>> Integral(f, (x, -oo, oo)).principal_value() 0 >>> Integral(f, (x, -10, 10)).principal_value() 0 >>> Integral(f, (x, -10, oo)).principal_value() + Integral(f, (x, -oo, 10)).principal_value() 0 References ========== .. [1] https://en.wikipedia.org/wiki/Cauchy_principal_value .. [2] http://mathworld.wolfram.com/CauchyPrincipalValue.html """ from sympy.calculus import singularities if len(self.limits) != 1 or len(list(self.limits[0])) != 3: raise ValueError("You need to insert a variable, lower_limit, and upper_limit correctly to calculate " "cauchy's principal value") x, a, b = self.limits[0] if not (a.is_comparable and b.is_comparable and a <= b): raise ValueError("The lower_limit must be smaller than or equal to the upper_limit to calculate " "cauchy's principal value. Also, a and b need to be comparable.") if a == b: return 0 r = Dummy('r') f = self.function singularities_list = [s for s in singularities(f, x) if s.is_comparable and a <= s <= b] for i in singularities_list: if (i == b) or (i == a): raise ValueError( 'The principal value is not defined in the given interval due to singularity at %d.' % (i)) F = integrate(f, x, **kwargs) if F.has(Integral): return self if a is -oo and b is oo: I = limit(F - F.subs(x, -x), x, oo) else: I = limit(F, x, b, '-') - limit(F, x, a, '+') for s in singularities_list: I += limit(((F.subs(x, s - r)) - F.subs(x, s + r)), r, 0, '+') return I def integrate(*args, meijerg=None, conds='piecewise', risch=None, heurisch=None, manual=None, **kwargs): """integrate(f, var, ...) Explanation =========== Compute definite or indefinite integral of one or more variables using Risch-Norman algorithm and table lookup. This procedure is able to handle elementary algebraic and transcendental functions and also a huge class of special functions, including Airy, Bessel, Whittaker and Lambert. var can be: - a symbol -- indefinite integration - a tuple (symbol, a) -- indefinite integration with result given with `a` replacing `symbol` - a tuple (symbol, a, b) -- definite integration Several variables can be specified, in which case the result is multiple integration. (If var is omitted and the integrand is univariate, the indefinite integral in that variable will be performed.) Indefinite integrals are returned without terms that are independent of the integration variables. (see examples) Definite improper integrals often entail delicate convergence conditions. Pass conds='piecewise', 'separate' or 'none' to have these returned, respectively, as a Piecewise function, as a separate result (i.e. result will be a tuple), or not at all (default is 'piecewise'). **Strategy** SymPy uses various approaches to definite integration. One method is to find an antiderivative for the integrand, and then use the fundamental theorem of calculus. Various functions are implemented to integrate polynomial, rational and trigonometric functions, and integrands containing DiracDelta terms. SymPy also implements the part of the Risch algorithm, which is a decision procedure for integrating elementary functions, i.e., the algorithm can either find an elementary antiderivative, or prove that one does not exist. There is also a (very successful, albeit somewhat slow) general implementation of the heuristic Risch algorithm. This algorithm will eventually be phased out as more of the full Risch algorithm is implemented. See the docstring of Integral._eval_integral() for more details on computing the antiderivative using algebraic methods. The option risch=True can be used to use only the (full) Risch algorithm. This is useful if you want to know if an elementary function has an elementary antiderivative. If the indefinite Integral returned by this function is an instance of NonElementaryIntegral, that means that the Risch algorithm has proven that integral to be non-elementary. Note that by default, additional methods (such as the Meijer G method outlined below) are tried on these integrals, as they may be expressible in terms of special functions, so if you only care about elementary answers, use risch=True. Also note that an unevaluated Integral returned by this function is not necessarily a NonElementaryIntegral, even with risch=True, as it may just be an indication that the particular part of the Risch algorithm needed to integrate that function is not yet implemented. Another family of strategies comes from re-writing the integrand in terms of so-called Meijer G-functions. Indefinite integrals of a single G-function can always be computed, and the definite integral of a product of two G-functions can be computed from zero to infinity. Various strategies are implemented to rewrite integrands as G-functions, and use this information to compute integrals (see the ``meijerint`` module). The option manual=True can be used to use only an algorithm that tries to mimic integration by hand. This algorithm does not handle as many integrands as the other algorithms implemented but may return results in a more familiar form. The ``manualintegrate`` module has functions that return the steps used (see the module docstring for more information). In general, the algebraic methods work best for computing antiderivatives of (possibly complicated) combinations of elementary functions. The G-function methods work best for computing definite integrals from zero to infinity of moderately complicated combinations of special functions, or indefinite integrals of very simple combinations of special functions. The strategy employed by the integration code is as follows: - If computing a definite integral, and both limits are real, and at least one limit is +- oo, try the G-function method of definite integration first. - Try to find an antiderivative, using all available methods, ordered by performance (that is try fastest method first, slowest last; in particular polynomial integration is tried first, Meijer G-functions second to last, and heuristic Risch last). - If still not successful, try G-functions irrespective of the limits. The option meijerg=True, False, None can be used to, respectively: always use G-function methods and no others, never use G-function methods, or use all available methods (in order as described above). It defaults to None. Examples ======== >>> from sympy import integrate, log, exp, oo >>> from sympy.abc import a, x, y >>> integrate(x*y, x) x**2*y/2 >>> integrate(log(x), x) x*log(x) - x >>> integrate(log(x), (x, 1, a)) a*log(a) - a + 1 >>> integrate(x) x**2/2 Terms that are independent of x are dropped by indefinite integration: >>> from sympy import sqrt >>> integrate(sqrt(1 + x), (x, 0, x)) 2*(x + 1)**(3/2)/3 - 2/3 >>> integrate(sqrt(1 + x), x) 2*(x + 1)**(3/2)/3 >>> integrate(x*y) Traceback (most recent call last): ... ValueError: specify integration variables to integrate x*y Note that ``integrate(x)`` syntax is meant only for convenience in interactive sessions and should be avoided in library code. >>> integrate(x**a*exp(-x), (x, 0, oo)) # same as conds='piecewise' Piecewise((gamma(a + 1), re(a) > -1), (Integral(x**a*exp(-x), (x, 0, oo)), True)) >>> integrate(x**a*exp(-x), (x, 0, oo), conds='none') gamma(a + 1) >>> integrate(x**a*exp(-x), (x, 0, oo), conds='separate') (gamma(a + 1), -re(a) < 1) See Also ======== Integral, Integral.doit """ doit_flags = { 'deep': False, 'meijerg': meijerg, 'conds': conds, 'risch': risch, 'heurisch': heurisch, 'manual': manual } integral = Integral(*args, **kwargs) if isinstance(integral, Integral): return integral.doit(**doit_flags) else: new_args = [a.doit(**doit_flags) if isinstance(a, Integral) else a for a in integral.args] return integral.func(*new_args) def line_integrate(field, curve, vars): """line_integrate(field, Curve, variables) Compute the line integral. Examples ======== >>> from sympy import Curve, line_integrate, E, ln >>> from sympy.abc import x, y, t >>> C = Curve([E**t + 1, E**t - 1], (t, 0, ln(2))) >>> line_integrate(x + y, C, [x, y]) 3*sqrt(2) See Also ======== sympy.integrals.integrals.integrate, Integral """ from sympy.geometry import Curve F = sympify(field) if not F: raise ValueError( "Expecting function specifying field as first argument.") if not isinstance(curve, Curve): raise ValueError("Expecting Curve entity as second argument.") if not is_sequence(vars): raise ValueError("Expecting ordered iterable for variables.") if len(curve.functions) != len(vars): raise ValueError("Field variable size does not match curve dimension.") if curve.parameter in vars: raise ValueError("Curve parameter clashes with field parameters.") # Calculate derivatives for line parameter functions # F(r) -> F(r(t)) and finally F(r(t)*r'(t)) Ft = F dldt = 0 for i, var in enumerate(vars): _f = curve.functions[i] _dn = diff(_f, curve.parameter) # ...arc length dldt = dldt + (_dn * _dn) Ft = Ft.subs(var, _f) Ft = Ft * sqrt(dldt) integral = Integral(Ft, curve.limits).doit(deep=False) return integral ### Property function dispatching ### @shape.register(Integral) def _(expr): return shape(expr.function)
866153a25bc3e2a2bd7eb56cc8684a3a6111b74fe26fe0c0f9b0198c82d74d02
"""Base class for all the objects in SymPy""" from collections import defaultdict from collections.abc import Mapping from itertools import chain, zip_longest from .assumptions import BasicMeta, ManagedProperties from .cache import cacheit from .sympify import _sympify, sympify, SympifyError from .compatibility import iterable, ordered from .singleton import S from .kind import UndefinedKind from ._print_helpers import Printable from inspect import getmro def as_Basic(expr): """Return expr as a Basic instance using strict sympify or raise a TypeError; this is just a wrapper to _sympify, raising a TypeError instead of a SympifyError.""" from sympy.utilities.misc import func_name try: return _sympify(expr) except SympifyError: raise TypeError( 'Argument must be a Basic object, not `%s`' % func_name( expr)) class Basic(Printable, metaclass=ManagedProperties): """ Base class for all SymPy objects. Notes and conventions ===================== 1) Always use ``.args``, when accessing parameters of some instance: >>> from sympy import cot >>> from sympy.abc import x, y >>> cot(x).args (x,) >>> cot(x).args[0] x >>> (x*y).args (x, y) >>> (x*y).args[1] y 2) Never use internal methods or variables (the ones prefixed with ``_``): >>> cot(x)._args # do not use this, use cot(x).args instead (x,) 3) By "SymPy object" we mean something that can be returned by ``sympify``. But not all objects one encounters using SymPy are subclasses of Basic. For example, mutable objects are not: >>> from sympy import Basic, Matrix, sympify >>> A = Matrix([[1, 2], [3, 4]]).as_mutable() >>> isinstance(A, Basic) False >>> B = sympify(A) >>> isinstance(B, Basic) True """ __slots__ = ('_mhash', # hash value '_args', # arguments '_assumptions' ) # To be overridden with True in the appropriate subclasses is_number = False is_Atom = False is_Symbol = False is_symbol = False is_Indexed = False is_Dummy = False is_Wild = False is_Function = False is_Add = False is_Mul = False is_Pow = False is_Number = False is_Float = False is_Rational = False is_Integer = False is_NumberSymbol = False is_Order = False is_Derivative = False is_Piecewise = False is_Poly = False is_AlgebraicNumber = False is_Relational = False is_Equality = False is_Boolean = False is_Not = False is_Matrix = False is_Vector = False is_Point = False is_MatAdd = False is_MatMul = False kind = UndefinedKind def __new__(cls, *args): obj = object.__new__(cls) obj._assumptions = cls.default_assumptions obj._mhash = None # will be set by __hash__ method. obj._args = args # all items in args must be Basic objects return obj def copy(self): return self.func(*self.args) def __reduce_ex__(self, proto): """ Pickling support.""" return type(self), self.__getnewargs__(), self.__getstate__() def __getnewargs__(self): return self.args def __getstate__(self): return {} def __setstate__(self, state): for k, v in state.items(): setattr(self, k, v) def __hash__(self): # hash cannot be cached using cache_it because infinite recurrence # occurs as hash is needed for setting cache dictionary keys h = self._mhash if h is None: h = hash((type(self).__name__,) + self._hashable_content()) self._mhash = h return h def _hashable_content(self): """Return a tuple of information about self that can be used to compute the hash. If a class defines additional attributes, like ``name`` in Symbol, then this method should be updated accordingly to return such relevant attributes. Defining more than _hashable_content is necessary if __eq__ has been defined by a class. See note about this in Basic.__eq__.""" return self._args @property def assumptions0(self): """ Return object `type` assumptions. For example: Symbol('x', real=True) Symbol('x', integer=True) are different objects. In other words, besides Python type (Symbol in this case), the initial assumptions are also forming their typeinfo. Examples ======== >>> from sympy import Symbol >>> from sympy.abc import x >>> x.assumptions0 {'commutative': True} >>> x = Symbol("x", positive=True) >>> x.assumptions0 {'commutative': True, 'complex': True, 'extended_negative': False, 'extended_nonnegative': True, 'extended_nonpositive': False, 'extended_nonzero': True, 'extended_positive': True, 'extended_real': True, 'finite': True, 'hermitian': True, 'imaginary': False, 'infinite': False, 'negative': False, 'nonnegative': True, 'nonpositive': False, 'nonzero': True, 'positive': True, 'real': True, 'zero': False} """ return {} def compare(self, other): """ Return -1, 0, 1 if the object is smaller, equal, or greater than other. Not in the mathematical sense. If the object is of a different type from the "other" then their classes are ordered according to the sorted_classes list. Examples ======== >>> from sympy.abc import x, y >>> x.compare(y) -1 >>> x.compare(x) 0 >>> y.compare(x) 1 """ # all redefinitions of __cmp__ method should start with the # following lines: if self is other: return 0 n1 = self.__class__ n2 = other.__class__ c = (n1 > n2) - (n1 < n2) if c: return c # st = self._hashable_content() ot = other._hashable_content() c = (len(st) > len(ot)) - (len(st) < len(ot)) if c: return c for l, r in zip(st, ot): l = Basic(*l) if isinstance(l, frozenset) else l r = Basic(*r) if isinstance(r, frozenset) else r if isinstance(l, Basic): c = l.compare(r) else: c = (l > r) - (l < r) if c: return c return 0 @staticmethod def _compare_pretty(a, b): from sympy.series.order import Order if isinstance(a, Order) and not isinstance(b, Order): return 1 if not isinstance(a, Order) and isinstance(b, Order): return -1 if a.is_Rational and b.is_Rational: l = a.p * b.q r = b.p * a.q return (l > r) - (l < r) else: from sympy.core.symbol import Wild p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3") r_a = a.match(p1 * p2**p3) if r_a and p3 in r_a: a3 = r_a[p3] r_b = b.match(p1 * p2**p3) if r_b and p3 in r_b: b3 = r_b[p3] c = Basic.compare(a3, b3) if c != 0: return c return Basic.compare(a, b) @classmethod def fromiter(cls, args, **assumptions): """ Create a new object from an iterable. This is a convenience function that allows one to create objects from any iterable, without having to convert to a list or tuple first. Examples ======== >>> from sympy import Tuple >>> Tuple.fromiter(i for i in range(5)) (0, 1, 2, 3, 4) """ return cls(*tuple(args), **assumptions) @classmethod def class_key(cls): """Nice order of classes. """ return 5, 0, cls.__name__ @cacheit def sort_key(self, order=None): """ Return a sort key. Examples ======== >>> from sympy.core import S, I >>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key()) [1/2, -I, I] >>> S("[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]") [x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)] >>> sorted(_, key=lambda x: x.sort_key()) [x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2] """ # XXX: remove this when issue 5169 is fixed def inner_key(arg): if isinstance(arg, Basic): return arg.sort_key(order) else: return arg args = self._sorted_args args = len(args), tuple([inner_key(arg) for arg in args]) return self.class_key(), args, S.One.sort_key(), S.One def __eq__(self, other): """Return a boolean indicating whether a == b on the basis of their symbolic trees. This is the same as a.compare(b) == 0 but faster. Notes ===== If a class that overrides __eq__() needs to retain the implementation of __hash__() from a parent class, the interpreter must be told this explicitly by setting __hash__ = <ParentClass>.__hash__. Otherwise the inheritance of __hash__() will be blocked, just as if __hash__ had been explicitly set to None. References ========== from http://docs.python.org/dev/reference/datamodel.html#object.__hash__ """ if self is other: return True tself = type(self) tother = type(other) if tself is not tother: try: other = _sympify(other) tother = type(other) except SympifyError: return NotImplemented # As long as we have the ordering of classes (sympy.core), # comparing types will be slow in Python 2, because it uses # __cmp__. Until we can remove it # (https://github.com/sympy/sympy/issues/4269), we only compare # types in Python 2 directly if they actually have __ne__. if type(tself).__ne__ is not type.__ne__: if tself != tother: return False elif tself is not tother: return False return self._hashable_content() == other._hashable_content() def __ne__(self, other): """``a != b`` -> Compare two symbolic trees and see whether they are different this is the same as: ``a.compare(b) != 0`` but faster """ return not self == other def dummy_eq(self, other, symbol=None): """ Compare two expressions and handle dummy symbols. Examples ======== >>> from sympy import Dummy >>> from sympy.abc import x, y >>> u = Dummy('u') >>> (u**2 + 1).dummy_eq(x**2 + 1) True >>> (u**2 + 1) == (x**2 + 1) False >>> (u**2 + y).dummy_eq(x**2 + y, x) True >>> (u**2 + y).dummy_eq(x**2 + y, y) False """ s = self.as_dummy() o = _sympify(other) o = o.as_dummy() dummy_symbols = [i for i in s.free_symbols if i.is_Dummy] if len(dummy_symbols) == 1: dummy = dummy_symbols.pop() else: return s == o if symbol is None: symbols = o.free_symbols if len(symbols) == 1: symbol = symbols.pop() else: return s == o tmp = dummy.__class__() return s.xreplace({dummy: tmp}) == o.xreplace({symbol: tmp}) def atoms(self, *types): """Returns the atoms that form the current object. By default, only objects that are truly atomic and can't be divided into smaller pieces are returned: symbols, numbers, and number symbols like I and pi. It is possible to request atoms of any type, however, as demonstrated below. Examples ======== >>> from sympy import I, pi, sin >>> from sympy.abc import x, y >>> (1 + x + 2*sin(y + I*pi)).atoms() {1, 2, I, pi, x, y} If one or more types are given, the results will contain only those types of atoms. >>> from sympy import Number, NumberSymbol, Symbol >>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol) {x, y} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number) {1, 2} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol) {1, 2, pi} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol, I) {1, 2, I, pi} Note that I (imaginary unit) and zoo (complex infinity) are special types of number symbols and are not part of the NumberSymbol class. The type can be given implicitly, too: >>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol {x, y} Be careful to check your assumptions when using the implicit option since ``S(1).is_Integer = True`` but ``type(S(1))`` is ``One``, a special type of sympy atom, while ``type(S(2))`` is type ``Integer`` and will find all integers in an expression: >>> from sympy import S >>> (1 + x + 2*sin(y + I*pi)).atoms(S(1)) {1} >>> (1 + x + 2*sin(y + I*pi)).atoms(S(2)) {1, 2} Finally, arguments to atoms() can select more than atomic atoms: any sympy type (loaded in core/__init__.py) can be listed as an argument and those types of "atoms" as found in scanning the arguments of the expression recursively: >>> from sympy import Function, Mul >>> from sympy.core.function import AppliedUndef >>> f = Function('f') >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function) {f(x), sin(y + I*pi)} >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef) {f(x)} >>> (1 + x + 2*sin(y + I*pi)).atoms(Mul) {I*pi, 2*sin(y + I*pi)} """ if types: types = tuple( [t if isinstance(t, type) else type(t) for t in types]) nodes = preorder_traversal(self) if types: result = {node for node in nodes if isinstance(node, types)} else: result = {node for node in nodes if not node.args} return result @property def free_symbols(self): """Return from the atoms of self those which are free symbols. For most expressions, all symbols are free symbols. For some classes this is not true. e.g. Integrals use Symbols for the dummy variables which are bound variables, so Integral has a method to return all symbols except those. Derivative keeps track of symbols with respect to which it will perform a derivative; those are bound variables, too, so it has its own free_symbols method. Any other method that uses bound variables should implement a free_symbols method.""" return set().union(*[a.free_symbols for a in self.args]) @property def expr_free_symbols(self): return set() def as_dummy(self): """Return the expression with any objects having structurally bound symbols replaced with unique, canonical symbols within the object in which they appear and having only the default assumption for commutativity being True. When applied to a symbol a new symbol having only the same commutativity will be returned. Examples ======== >>> from sympy import Integral, Symbol >>> from sympy.abc import x >>> r = Symbol('r', real=True) >>> Integral(r, (r, x)).as_dummy() Integral(_0, (_0, x)) >>> _.variables[0].is_real is None True >>> r.as_dummy() _r Notes ===== Any object that has structurally bound variables should have a property, `bound_symbols` that returns those symbols appearing in the object. """ from sympy.core.symbol import Dummy, Symbol def can(x): # mask free that shadow bound free = x.free_symbols bound = set(x.bound_symbols) d = {i: Dummy() for i in bound & free} x = x.subs(d) # replace bound with canonical names x = x.xreplace(x.canonical_variables) # return after undoing masking return x.xreplace({v: k for k, v in d.items()}) if not self.has(Symbol): return self return self.replace( lambda x: hasattr(x, 'bound_symbols'), lambda x: can(x), simultaneous=False) @property def canonical_variables(self): """Return a dictionary mapping any variable defined in ``self.bound_symbols`` to Symbols that do not clash with any free symbols in the expression. Examples ======== >>> from sympy import Lambda >>> from sympy.abc import x >>> Lambda(x, 2*x).canonical_variables {x: _0} """ from sympy.utilities.iterables import numbered_symbols if not hasattr(self, 'bound_symbols'): return {} dums = numbered_symbols('_') reps = {} # watch out for free symbol that are not in bound symbols; # those that are in bound symbols are about to get changed bound = self.bound_symbols names = {i.name for i in self.free_symbols - set(bound)} for b in bound: d = next(dums) if b.is_Symbol: while d.name in names: d = next(dums) reps[b] = d return reps def rcall(self, *args): """Apply on the argument recursively through the expression tree. This method is used to simulate a common abuse of notation for operators. For instance in SymPy the the following will not work: ``(x+Lambda(y, 2*y))(z) == x+2*z``, however you can use >>> from sympy import Lambda >>> from sympy.abc import x, y, z >>> (x + Lambda(y, 2*y)).rcall(z) x + 2*z """ return Basic._recursive_call(self, args) @staticmethod def _recursive_call(expr_to_call, on_args): """Helper for rcall method.""" from sympy import Symbol def the_call_method_is_overridden(expr): for cls in getmro(type(expr)): if '__call__' in cls.__dict__: return cls != Basic if callable(expr_to_call) and the_call_method_is_overridden(expr_to_call): if isinstance(expr_to_call, Symbol): # XXX When you call a Symbol it is return expr_to_call # transformed into an UndefFunction else: return expr_to_call(*on_args) elif expr_to_call.args: args = [Basic._recursive_call( sub, on_args) for sub in expr_to_call.args] return type(expr_to_call)(*args) else: return expr_to_call def is_hypergeometric(self, k): from sympy.simplify import hypersimp from sympy.functions import Piecewise if self.has(Piecewise): return None return hypersimp(self, k) is not None @property def is_comparable(self): """Return True if self can be computed to a real number (or already is a real number) with precision, else False. Examples ======== >>> from sympy import exp_polar, pi, I >>> (I*exp_polar(I*pi/2)).is_comparable True >>> (I*exp_polar(I*pi*2)).is_comparable False A False result does not mean that `self` cannot be rewritten into a form that would be comparable. For example, the difference computed below is zero but without simplification it does not evaluate to a zero with precision: >>> e = 2**pi*(1 + 2**pi) >>> dif = e - e.expand() >>> dif.is_comparable False >>> dif.n(2)._prec 1 """ is_extended_real = self.is_extended_real if is_extended_real is False: return False if not self.is_number: return False # don't re-eval numbers that are already evaluated since # this will create spurious precision n, i = [p.evalf(2) if not p.is_Number else p for p in self.as_real_imag()] if not (i.is_Number and n.is_Number): return False if i: # if _prec = 1 we can't decide and if not, # the answer is False because numbers with # imaginary parts can't be compared # so return False return False else: return n._prec != 1 @property def func(self): """ The top-level function in an expression. The following should hold for all objects:: >> x == x.func(*x.args) Examples ======== >>> from sympy.abc import x >>> a = 2*x >>> a.func <class 'sympy.core.mul.Mul'> >>> a.args (2, x) >>> a.func(*a.args) 2*x >>> a == a.func(*a.args) True """ return self.__class__ @property def args(self): """Returns a tuple of arguments of 'self'. Examples ======== >>> from sympy import cot >>> from sympy.abc import x, y >>> cot(x).args (x,) >>> cot(x).args[0] x >>> (x*y).args (x, y) >>> (x*y).args[1] y Notes ===== Never use self._args, always use self.args. Only use _args in __new__ when creating a new function. Don't override .args() from Basic (so that it's easy to change the interface in the future if needed). """ return self._args @property def _sorted_args(self): """ The same as ``args``. Derived classes which don't fix an order on their arguments should override this method to produce the sorted representation. """ return self.args def as_content_primitive(self, radical=False, clear=True): """A stub to allow Basic args (like Tuple) to be skipped when computing the content and primitive components of an expression. See Also ======== sympy.core.expr.Expr.as_content_primitive """ return S.One, self def subs(self, *args, **kwargs): """ Substitutes old for new in an expression after sympifying args. `args` is either: - two arguments, e.g. foo.subs(old, new) - one iterable argument, e.g. foo.subs(iterable). The iterable may be o an iterable container with (old, new) pairs. In this case the replacements are processed in the order given with successive patterns possibly affecting replacements already made. o a dict or set whose key/value items correspond to old/new pairs. In this case the old/new pairs will be sorted by op count and in case of a tie, by number of args and the default_sort_key. The resulting sorted list is then processed as an iterable container (see previous). If the keyword ``simultaneous`` is True, the subexpressions will not be evaluated until all the substitutions have been made. Examples ======== >>> from sympy import pi, exp, limit, oo >>> from sympy.abc import x, y >>> (1 + x*y).subs(x, pi) pi*y + 1 >>> (1 + x*y).subs({x:pi, y:2}) 1 + 2*pi >>> (1 + x*y).subs([(x, pi), (y, 2)]) 1 + 2*pi >>> reps = [(y, x**2), (x, 2)] >>> (x + y).subs(reps) 6 >>> (x + y).subs(reversed(reps)) x**2 + 2 >>> (x**2 + x**4).subs(x**2, y) y**2 + y To replace only the x**2 but not the x**4, use xreplace: >>> (x**2 + x**4).xreplace({x**2: y}) x**4 + y To delay evaluation until all substitutions have been made, set the keyword ``simultaneous`` to True: >>> (x/y).subs([(x, 0), (y, 0)]) 0 >>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True) nan This has the added feature of not allowing subsequent substitutions to affect those already made: >>> ((x + y)/y).subs({x + y: y, y: x + y}) 1 >>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True) y/(x + y) In order to obtain a canonical result, unordered iterables are sorted by count_op length, number of arguments and by the default_sort_key to break any ties. All other iterables are left unsorted. >>> from sympy import sqrt, sin, cos >>> from sympy.abc import a, b, c, d, e >>> A = (sqrt(sin(2*x)), a) >>> B = (sin(2*x), b) >>> C = (cos(2*x), c) >>> D = (x, d) >>> E = (exp(x), e) >>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x) >>> expr.subs(dict([A, B, C, D, E])) a*c*sin(d*e) + b The resulting expression represents a literal replacement of the old arguments with the new arguments. This may not reflect the limiting behavior of the expression: >>> (x**3 - 3*x).subs({x: oo}) nan >>> limit(x**3 - 3*x, x, oo) oo If the substitution will be followed by numerical evaluation, it is better to pass the substitution to evalf as >>> (1/x).evalf(subs={x: 3.0}, n=21) 0.333333333333333333333 rather than >>> (1/x).subs({x: 3.0}).evalf(21) 0.333333333333333314830 as the former will ensure that the desired level of precision is obtained. See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements xreplace: exact node replacement in expr tree; also capable of using matching rules sympy.core.evalf.EvalfMixin.evalf: calculates the given formula to a desired level of precision """ from sympy.core.compatibility import _nodes, default_sort_key from sympy.core.containers import Dict from sympy.core.symbol import Dummy, Symbol from sympy.utilities.misc import filldedent unordered = False if len(args) == 1: sequence = args[0] if isinstance(sequence, set): unordered = True elif isinstance(sequence, (Dict, Mapping)): unordered = True sequence = sequence.items() elif not iterable(sequence): raise ValueError(filldedent(""" When a single argument is passed to subs it should be a dictionary of old: new pairs or an iterable of (old, new) tuples.""")) elif len(args) == 2: sequence = [args] else: raise ValueError("subs accepts either 1 or 2 arguments") sequence = list(sequence) for i, s in enumerate(sequence): if isinstance(s[0], str): # when old is a string we prefer Symbol s = Symbol(s[0]), s[1] try: s = [sympify(_, strict=not isinstance(_, (str, type))) for _ in s] except SympifyError: # if it can't be sympified, skip it sequence[i] = None continue # skip if there is no change sequence[i] = None if _aresame(*s) else tuple(s) sequence = list(filter(None, sequence)) if unordered: sequence = dict(sequence) # order so more complex items are first and items # of identical complexity are ordered so # f(x) < f(y) < x < y # \___ 2 __/ \_1_/ <- number of nodes # # For more complex ordering use an unordered sequence. k = list(ordered(sequence, default=False, keys=( lambda x: -_nodes(x), lambda x: default_sort_key(x), ))) sequence = [(k, sequence[k]) for k in k] if kwargs.pop('simultaneous', False): # XXX should this be the default for dict subs? reps = {} rv = self kwargs['hack2'] = True m = Dummy('subs_m') for old, new in sequence: com = new.is_commutative if com is None: com = True d = Dummy('subs_d', commutative=com) # using d*m so Subs will be used on dummy variables # in things like Derivative(f(x, y), x) in which x # is both free and bound rv = rv._subs(old, d*m, **kwargs) if not isinstance(rv, Basic): break reps[d] = new reps[m] = S.One # get rid of m return rv.xreplace(reps) else: rv = self for old, new in sequence: rv = rv._subs(old, new, **kwargs) if not isinstance(rv, Basic): break return rv @cacheit def _subs(self, old, new, **hints): """Substitutes an expression old -> new. If self is not equal to old then _eval_subs is called. If _eval_subs doesn't want to make any special replacement then a None is received which indicates that the fallback should be applied wherein a search for replacements is made amongst the arguments of self. >>> from sympy import Add >>> from sympy.abc import x, y, z Examples ======== Add's _eval_subs knows how to target x + y in the following so it makes the change: >>> (x + y + z).subs(x + y, 1) z + 1 Add's _eval_subs doesn't need to know how to find x + y in the following: >>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None True The returned None will cause the fallback routine to traverse the args and pass the z*(x + y) arg to Mul where the change will take place and the substitution will succeed: >>> (z*(x + y) + 3).subs(x + y, 1) z + 3 ** Developers Notes ** An _eval_subs routine for a class should be written if: 1) any arguments are not instances of Basic (e.g. bool, tuple); 2) some arguments should not be targeted (as in integration variables); 3) if there is something other than a literal replacement that should be attempted (as in Piecewise where the condition may be updated without doing a replacement). If it is overridden, here are some special cases that might arise: 1) If it turns out that no special change was made and all the original sub-arguments should be checked for replacements then None should be returned. 2) If it is necessary to do substitutions on a portion of the expression then _subs should be called. _subs will handle the case of any sub-expression being equal to old (which usually would not be the case) while its fallback will handle the recursion into the sub-arguments. For example, after Add's _eval_subs removes some matching terms it must process the remaining terms so it calls _subs on each of the un-matched terms and then adds them onto the terms previously obtained. 3) If the initial expression should remain unchanged then the original expression should be returned. (Whenever an expression is returned, modified or not, no further substitution of old -> new is attempted.) Sum's _eval_subs routine uses this strategy when a substitution is attempted on any of its summation variables. """ def fallback(self, old, new): """ Try to replace old with new in any of self's arguments. """ hit = False args = list(self.args) for i, arg in enumerate(args): if not hasattr(arg, '_eval_subs'): continue arg = arg._subs(old, new, **hints) if not _aresame(arg, args[i]): hit = True args[i] = arg if hit: rv = self.func(*args) hack2 = hints.get('hack2', False) if hack2 and self.is_Mul and not rv.is_Mul: # 2-arg hack coeff = S.One nonnumber = [] for i in args: if i.is_Number: coeff *= i else: nonnumber.append(i) nonnumber = self.func(*nonnumber) if coeff is S.One: return nonnumber else: return self.func(coeff, nonnumber, evaluate=False) return rv return self if _aresame(self, old): return new rv = self._eval_subs(old, new) if rv is None: rv = fallback(self, old, new) return rv def _eval_subs(self, old, new): """Override this stub if you want to do anything more than attempt a replacement of old with new in the arguments of self. See also ======== _subs """ return None def xreplace(self, rule): """ Replace occurrences of objects within the expression. Parameters ========== rule : dict-like Expresses a replacement rule Returns ======= xreplace : the result of the replacement Examples ======== >>> from sympy import symbols, pi, exp >>> x, y, z = symbols('x y z') >>> (1 + x*y).xreplace({x: pi}) pi*y + 1 >>> (1 + x*y).xreplace({x: pi, y: 2}) 1 + 2*pi Replacements occur only if an entire node in the expression tree is matched: >>> (x*y + z).xreplace({x*y: pi}) z + pi >>> (x*y*z).xreplace({x*y: pi}) x*y*z >>> (2*x).xreplace({2*x: y, x: z}) y >>> (2*2*x).xreplace({2*x: y, x: z}) 4*z >>> (x + y + 2).xreplace({x + y: 2}) x + y + 2 >>> (x + 2 + exp(x + 2)).xreplace({x + 2: y}) x + exp(y) + 2 xreplace doesn't differentiate between free and bound symbols. In the following, subs(x, y) would not change x since it is a bound symbol, but xreplace does: >>> from sympy import Integral >>> Integral(x, (x, 1, 2*x)).xreplace({x: y}) Integral(y, (y, 1, 2*y)) Trying to replace x with an expression raises an error: >>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) # doctest: +SKIP ValueError: Invalid limits given: ((2*y, 1, 4*y),) See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements subs: substitution of subexpressions as defined by the objects themselves. """ value, _ = self._xreplace(rule) return value def _xreplace(self, rule): """ Helper for xreplace. Tracks whether a replacement actually occurred. """ if self in rule: return rule[self], True elif rule: args = [] changed = False for a in self.args: _xreplace = getattr(a, '_xreplace', None) if _xreplace is not None: a_xr = _xreplace(rule) args.append(a_xr[0]) changed |= a_xr[1] else: args.append(a) args = tuple(args) if changed: return self.func(*args), True return self, False @cacheit def has(self, *patterns): """ Test whether any subexpression matches any of the patterns. Examples ======== >>> from sympy import sin >>> from sympy.abc import x, y, z >>> (x**2 + sin(x*y)).has(z) False >>> (x**2 + sin(x*y)).has(x, y, z) True >>> x.has(x) True Note ``has`` is a structural algorithm with no knowledge of mathematics. Consider the following half-open interval: >>> from sympy.sets import Interval >>> i = Interval.Lopen(0, 5); i Interval.Lopen(0, 5) >>> i.args (0, 5, True, False) >>> i.has(4) # there is no "4" in the arguments False >>> i.has(0) # there *is* a "0" in the arguments True Instead, use ``contains`` to determine whether a number is in the interval or not: >>> i.contains(4) True >>> i.contains(0) False Note that ``expr.has(*patterns)`` is exactly equivalent to ``any(expr.has(p) for p in patterns)``. In particular, ``False`` is returned when the list of patterns is empty. >>> x.has() False """ return any(self._has(pattern) for pattern in patterns) def _has(self, pattern): """Helper for .has()""" from sympy.core.function import UndefinedFunction, Function if isinstance(pattern, UndefinedFunction): return any(f.func == pattern or f == pattern for f in self.atoms(Function, UndefinedFunction)) if isinstance(pattern, BasicMeta): subtrees = preorder_traversal(self) return any(isinstance(arg, pattern) for arg in subtrees) pattern = _sympify(pattern) _has_matcher = getattr(pattern, '_has_matcher', None) if _has_matcher is not None: match = _has_matcher() return any(match(arg) for arg in preorder_traversal(self)) else: return any(arg == pattern for arg in preorder_traversal(self)) def _has_matcher(self): """Helper for .has()""" return lambda other: self == other def replace(self, query, value, map=False, simultaneous=True, exact=None): """ Replace matching subexpressions of ``self`` with ``value``. If ``map = True`` then also return the mapping {old: new} where ``old`` was a sub-expression found with query and ``new`` is the replacement value for it. If the expression itself doesn't match the query, then the returned value will be ``self.xreplace(map)`` otherwise it should be ``self.subs(ordered(map.items()))``. Traverses an expression tree and performs replacement of matching subexpressions from the bottom to the top of the tree. The default approach is to do the replacement in a simultaneous fashion so changes made are targeted only once. If this is not desired or causes problems, ``simultaneous`` can be set to False. In addition, if an expression containing more than one Wild symbol is being used to match subexpressions and the ``exact`` flag is None it will be set to True so the match will only succeed if all non-zero values are received for each Wild that appears in the match pattern. Setting this to False accepts a match of 0; while setting it True accepts all matches that have a 0 in them. See example below for cautions. The list of possible combinations of queries and replacement values is listed below: Examples ======== Initial setup >>> from sympy import log, sin, cos, tan, Wild, Mul, Add >>> from sympy.abc import x, y >>> f = log(sin(x)) + tan(sin(x**2)) 1.1. type -> type obj.replace(type, newtype) When object of type ``type`` is found, replace it with the result of passing its argument(s) to ``newtype``. >>> f.replace(sin, cos) log(cos(x)) + tan(cos(x**2)) >>> sin(x).replace(sin, cos, map=True) (cos(x), {sin(x): cos(x)}) >>> (x*y).replace(Mul, Add) x + y 1.2. type -> func obj.replace(type, func) When object of type ``type`` is found, apply ``func`` to its argument(s). ``func`` must be written to handle the number of arguments of ``type``. >>> f.replace(sin, lambda arg: sin(2*arg)) log(sin(2*x)) + tan(sin(2*x**2)) >>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args))) sin(2*x*y) 2.1. pattern -> expr obj.replace(pattern(wild), expr(wild)) Replace subexpressions matching ``pattern`` with the expression written in terms of the Wild symbols in ``pattern``. >>> a, b = map(Wild, 'ab') >>> f.replace(sin(a), tan(a)) log(tan(x)) + tan(tan(x**2)) >>> f.replace(sin(a), tan(a/2)) log(tan(x/2)) + tan(tan(x**2/2)) >>> f.replace(sin(a), a) log(x) + tan(x**2) >>> (x*y).replace(a*x, a) y Matching is exact by default when more than one Wild symbol is used: matching fails unless the match gives non-zero values for all Wild symbols: >>> (2*x + y).replace(a*x + b, b - a) y - 2 >>> (2*x).replace(a*x + b, b - a) 2*x When set to False, the results may be non-intuitive: >>> (2*x).replace(a*x + b, b - a, exact=False) 2/x 2.2. pattern -> func obj.replace(pattern(wild), lambda wild: expr(wild)) All behavior is the same as in 2.1 but now a function in terms of pattern variables is used rather than an expression: >>> f.replace(sin(a), lambda a: sin(2*a)) log(sin(2*x)) + tan(sin(2*x**2)) 3.1. func -> func obj.replace(filter, func) Replace subexpression ``e`` with ``func(e)`` if ``filter(e)`` is True. >>> g = 2*sin(x**3) >>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2) 4*sin(x**9) The expression itself is also targeted by the query but is done in such a fashion that changes are not made twice. >>> e = x*(x*y + 1) >>> e.replace(lambda x: x.is_Mul, lambda x: 2*x) 2*x*(2*x*y + 1) When matching a single symbol, `exact` will default to True, but this may or may not be the behavior that is desired: Here, we want `exact=False`: >>> from sympy import Function >>> f = Function('f') >>> e = f(1) + f(0) >>> q = f(a), lambda a: f(a + 1) >>> e.replace(*q, exact=False) f(1) + f(2) >>> e.replace(*q, exact=True) f(0) + f(2) But here, the nature of matching makes selecting the right setting tricky: >>> e = x**(1 + y) >>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=False) x >>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=True) x**(-x - y + 1) >>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=False) x >>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=True) x**(1 - y) It is probably better to use a different form of the query that describes the target expression more precisely: >>> (1 + x**(1 + y)).replace( ... lambda x: x.is_Pow and x.exp.is_Add and x.exp.args[0] == 1, ... lambda x: x.base**(1 - (x.exp - 1))) ... x**(1 - y) + 1 See Also ======== subs: substitution of subexpressions as defined by the objects themselves. xreplace: exact node replacement in expr tree; also capable of using matching rules """ from sympy.core.symbol import Wild try: query = _sympify(query) except SympifyError: pass try: value = _sympify(value) except SympifyError: pass if isinstance(query, type): _query = lambda expr: isinstance(expr, query) if isinstance(value, type): _value = lambda expr, result: value(*expr.args) elif callable(value): _value = lambda expr, result: value(*expr.args) else: raise TypeError( "given a type, replace() expects another " "type or a callable") elif isinstance(query, Basic): _query = lambda expr: expr.match(query) if exact is None: exact = (len(query.atoms(Wild)) > 1) if isinstance(value, Basic): if exact: _value = lambda expr, result: (value.subs(result) if all(result.values()) else expr) else: _value = lambda expr, result: value.subs(result) elif callable(value): # match dictionary keys get the trailing underscore stripped # from them and are then passed as keywords to the callable; # if ``exact`` is True, only accept match if there are no null # values amongst those matched. if exact: _value = lambda expr, result: (value(** {str(k)[:-1]: v for k, v in result.items()}) if all(val for val in result.values()) else expr) else: _value = lambda expr, result: value(** {str(k)[:-1]: v for k, v in result.items()}) else: raise TypeError( "given an expression, replace() expects " "another expression or a callable") elif callable(query): _query = query if callable(value): _value = lambda expr, result: value(expr) else: raise TypeError( "given a callable, replace() expects " "another callable") else: raise TypeError( "first argument to replace() must be a " "type, an expression or a callable") def walk(rv, F): """Apply ``F`` to args and then to result. """ args = getattr(rv, 'args', None) if args is not None: if args: newargs = tuple([walk(a, F) for a in args]) if args != newargs: rv = rv.func(*newargs) if simultaneous: # if rv is something that was already # matched (that was changed) then skip # applying F again for i, e in enumerate(args): if rv == e and e != newargs[i]: return rv rv = F(rv) return rv mapping = {} # changes that took place def rec_replace(expr): result = _query(expr) if result or result == {}: v = _value(expr, result) if v is not None and v != expr: if map: mapping[expr] = v expr = v return expr rv = walk(self, rec_replace) return (rv, mapping) if map else rv def find(self, query, group=False): """Find all subexpressions matching a query. """ query = _make_find_query(query) results = list(filter(query, preorder_traversal(self))) if not group: return set(results) else: groups = {} for result in results: if result in groups: groups[result] += 1 else: groups[result] = 1 return groups def count(self, query): """Count the number of matching subexpressions. """ query = _make_find_query(query) return sum(bool(query(sub)) for sub in preorder_traversal(self)) def matches(self, expr, repl_dict={}, old=False): """ Helper method for match() that looks for a match between Wild symbols in self and expressions in expr. Examples ======== >>> from sympy import symbols, Wild, Basic >>> a, b, c = symbols('a b c') >>> x = Wild('x') >>> Basic(a + x, x).matches(Basic(a + b, c)) is None True >>> Basic(a + x, x).matches(Basic(a + b + c, b + c)) {x_: b + c} """ repl_dict = repl_dict.copy() expr = sympify(expr) if not isinstance(expr, self.__class__): return None if self == expr: return repl_dict if len(self.args) != len(expr.args): return None d = repl_dict.copy() for arg, other_arg in zip(self.args, expr.args): if arg == other_arg: continue d = arg.xreplace(d).matches(other_arg, d, old=old) if d is None: return None return d def match(self, pattern, old=False): """ Pattern matching. Wild symbols match all. Return ``None`` when expression (self) does not match with pattern. Otherwise return a dictionary such that:: pattern.xreplace(self.match(pattern)) == self Examples ======== >>> from sympy import Wild, Sum >>> from sympy.abc import x, y >>> p = Wild("p") >>> q = Wild("q") >>> r = Wild("r") >>> e = (x+y)**(x+y) >>> e.match(p**p) {p_: x + y} >>> e.match(p**q) {p_: x + y, q_: x + y} >>> e = (2*x)**2 >>> e.match(p*q**r) {p_: 4, q_: x, r_: 2} >>> (p*q**r).xreplace(e.match(p*q**r)) 4*x**2 Structurally bound symbols are ignored during matching: >>> Sum(x, (x, 1, 2)).match(Sum(y, (y, 1, p))) {p_: 2} But they can be identified if desired: >>> Sum(x, (x, 1, 2)).match(Sum(q, (q, 1, p))) {p_: 2, q_: x} The ``old`` flag will give the old-style pattern matching where expressions and patterns are essentially solved to give the match. Both of the following give None unless ``old=True``: >>> (x - 2).match(p - x, old=True) {p_: 2*x - 2} >>> (2/x).match(p*x, old=True) {p_: 2/x**2} """ from sympy.core.symbol import Wild from sympy.core.function import WildFunction from sympy.utilities.misc import filldedent pattern = sympify(pattern) # match non-bound symbols canonical = lambda x: x if x.is_Symbol else x.as_dummy() m = canonical(pattern).matches(canonical(self), old=old) if m is None: return m wild = pattern.atoms(Wild, WildFunction) # sanity check if set(m) - wild: raise ValueError(filldedent(''' Some `matches` routine did not use a copy of repl_dict and injected unexpected symbols. Report this as an error at https://github.com/sympy/sympy/issues''')) # now see if bound symbols were requested bwild = wild - set(m) if not bwild: return m # replace free-Wild symbols in pattern with match result # so they will match but not be in the next match wpat = pattern.xreplace(m) # identify remaining bound wild w = wpat.matches(self, old=old) # add them to m if w: m.update(w) # done return m def count_ops(self, visual=None): """wrapper for count_ops that returns the operation count.""" from sympy import count_ops return count_ops(self, visual) def doit(self, **hints): """Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via 'hints' or unless the 'deep' hint was set to 'False'. >>> from sympy import Integral >>> from sympy.abc import x >>> 2*Integral(x, x) 2*Integral(x, x) >>> (2*Integral(x, x)).doit() x**2 >>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x) """ if hints.get('deep', True): terms = [term.doit(**hints) if isinstance(term, Basic) else term for term in self.args] return self.func(*terms) else: return self def simplify(self, **kwargs): """See the simplify function in sympy.simplify""" from sympy.simplify import simplify return simplify(self, **kwargs) def refine(self, assumption=True): """See the refine function in sympy.assumptions""" from sympy.assumptions import refine return refine(self, assumption) def _eval_rewrite(self, pattern, rule, **hints): if self.is_Atom: if hasattr(self, rule): return getattr(self, rule)() return self if hints.get('deep', True): args = [a._eval_rewrite(pattern, rule, **hints) if isinstance(a, Basic) else a for a in self.args] else: args = self.args if pattern is None or isinstance(self, pattern): if hasattr(self, rule): rewritten = getattr(self, rule)(*args, **hints) if rewritten is not None: return rewritten return self.func(*args) if hints.get('evaluate', True) else self def _eval_derivative_n_times(self, s, n): # This is the default evaluator for derivatives (as called by `diff` # and `Derivative`), it will attempt a loop to derive the expression # `n` times by calling the corresponding `_eval_derivative` method, # while leaving the derivative unevaluated if `n` is symbolic. This # method should be overridden if the object has a closed form for its # symbolic n-th derivative. from sympy import Integer if isinstance(n, (int, Integer)): obj = self for i in range(n): obj2 = obj._eval_derivative(s) if obj == obj2 or obj2 is None: break obj = obj2 return obj2 else: return None def rewrite(self, *args, **hints): """ Rewrite functions in terms of other functions. Rewrites expression containing applications of functions of one kind in terms of functions of different kind. For example you can rewrite trigonometric functions as complex exponentials or combinatorial functions as gamma function. As a pattern this function accepts a list of functions to to rewrite (instances of DefinedFunction class). As rule you can use string or a destination function instance (in this case rewrite() will use the str() function). There is also the possibility to pass hints on how to rewrite the given expressions. For now there is only one such hint defined called 'deep'. When 'deep' is set to False it will forbid functions to rewrite their contents. Examples ======== >>> from sympy import sin, exp >>> from sympy.abc import x Unspecified pattern: >>> sin(x).rewrite(exp) -I*(exp(I*x) - exp(-I*x))/2 Pattern as a single function: >>> sin(x).rewrite(sin, exp) -I*(exp(I*x) - exp(-I*x))/2 Pattern as a list of functions: >>> sin(x).rewrite([sin, ], exp) -I*(exp(I*x) - exp(-I*x))/2 """ if not args: return self else: pattern = args[:-1] if isinstance(args[-1], str): rule = '_eval_rewrite_as_' + args[-1] else: # rewrite arg is usually a class but can also be a # singleton (e.g. GoldenRatio) so we check # __name__ or __class__.__name__ clsname = getattr(args[-1], "__name__", None) if clsname is None: clsname = args[-1].__class__.__name__ rule = '_eval_rewrite_as_' + clsname if not pattern: return self._eval_rewrite(None, rule, **hints) else: if iterable(pattern[0]): pattern = pattern[0] pattern = [p for p in pattern if self.has(p)] if pattern: return self._eval_rewrite(tuple(pattern), rule, **hints) else: return self _constructor_postprocessor_mapping = {} # type: ignore @classmethod def _exec_constructor_postprocessors(cls, obj): # WARNING: This API is experimental. # This is an experimental API that introduces constructor # postprosessors for SymPy Core elements. If an argument of a SymPy # expression has a `_constructor_postprocessor_mapping` attribute, it will # be interpreted as a dictionary containing lists of postprocessing # functions for matching expression node names. clsname = obj.__class__.__name__ postprocessors = defaultdict(list) for i in obj.args: try: postprocessor_mappings = ( Basic._constructor_postprocessor_mapping[cls].items() for cls in type(i).mro() if cls in Basic._constructor_postprocessor_mapping ) for k, v in chain.from_iterable(postprocessor_mappings): postprocessors[k].extend([j for j in v if j not in postprocessors[k]]) except TypeError: pass for f in postprocessors.get(clsname, []): obj = f(obj) return obj class Atom(Basic): """ A parent class for atomic things. An atom is an expression with no subexpressions. Examples ======== Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ... """ is_Atom = True __slots__ = () def matches(self, expr, repl_dict={}, old=False): if self == expr: return repl_dict.copy() def xreplace(self, rule, hack2=False): return rule.get(self, self) def doit(self, **hints): return self @classmethod def class_key(cls): return 2, 0, cls.__name__ @cacheit def sort_key(self, order=None): return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One def _eval_simplify(self, **kwargs): return self @property def _sorted_args(self): # this is here as a safeguard against accidentally using _sorted_args # on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args) # since there are no args. So the calling routine should be checking # to see that this property is not called for Atoms. raise AttributeError('Atoms have no args. It might be necessary' ' to make a check for Atoms in the calling code.') def _aresame(a, b): """Return True if a and b are structurally the same, else False. Examples ======== In SymPy (as in Python) two numbers compare the same if they have the same underlying base-2 representation even though they may not be the same type: >>> from sympy import S >>> 2.0 == S(2) True >>> 0.5 == S.Half True This routine was written to provide a query for such cases that would give false when the types do not match: >>> from sympy.core.basic import _aresame >>> _aresame(S(2.0), S(2)) False """ from .numbers import Number from .function import AppliedUndef, UndefinedFunction as UndefFunc if isinstance(a, Number) and isinstance(b, Number): return a == b and a.__class__ == b.__class__ for i, j in zip_longest(preorder_traversal(a), preorder_traversal(b)): if i != j or type(i) != type(j): if ((isinstance(i, UndefFunc) and isinstance(j, UndefFunc)) or (isinstance(i, AppliedUndef) and isinstance(j, AppliedUndef))): if i.class_key() != j.class_key(): return False else: return False return True def _atomic(e, recursive=False): """Return atom-like quantities as far as substitution is concerned: Derivatives, Functions and Symbols. Don't return any 'atoms' that are inside such quantities unless they also appear outside, too, unless `recursive` is True. Examples ======== >>> from sympy import Derivative, Function, cos >>> from sympy.abc import x, y >>> from sympy.core.basic import _atomic >>> f = Function('f') >>> _atomic(x + y) {x, y} >>> _atomic(x + f(y)) {x, f(y)} >>> _atomic(Derivative(f(x), x) + cos(x) + y) {y, cos(x), Derivative(f(x), x)} """ from sympy import Derivative, Function, Symbol pot = preorder_traversal(e) seen = set() if isinstance(e, Basic): free = getattr(e, "free_symbols", None) if free is None: return {e} else: return set() atoms = set() for p in pot: if p in seen: pot.skip() continue seen.add(p) if isinstance(p, Symbol) and p in free: atoms.add(p) elif isinstance(p, (Derivative, Function)): if not recursive: pot.skip() atoms.add(p) return atoms class preorder_traversal: """ Do a pre-order traversal of a tree. This iterator recursively yields nodes that it has visited in a pre-order fashion. That is, it yields the current node then descends through the tree breadth-first to yield all of a node's children's pre-order traversal. For an expression, the order of the traversal depends on the order of .args, which in many cases can be arbitrary. Parameters ========== node : sympy expression The expression to traverse. keys : (default None) sort key(s) The key(s) used to sort args of Basic objects. When None, args of Basic objects are processed in arbitrary order. If key is defined, it will be passed along to ordered() as the only key(s) to use to sort the arguments; if ``key`` is simply True then the default keys of ordered will be used. Yields ====== subtree : sympy expression All of the subtrees in the tree. Examples ======== >>> from sympy import symbols >>> from sympy.core.basic import preorder_traversal >>> x, y, z = symbols('x y z') The nodes are returned in the order that they are encountered unless key is given; simply passing key=True will guarantee that the traversal is unique. >>> list(preorder_traversal((x + y)*z, keys=None)) # doctest: +SKIP [z*(x + y), z, x + y, y, x] >>> list(preorder_traversal((x + y)*z, keys=True)) [z*(x + y), z, x + y, x, y] """ def __init__(self, node, keys=None): self._skip_flag = False self._pt = self._preorder_traversal(node, keys) def _preorder_traversal(self, node, keys): yield node if self._skip_flag: self._skip_flag = False return if isinstance(node, Basic): if not keys and hasattr(node, '_argset'): # LatticeOp keeps args as a set. We should use this if we # don't care about the order, to prevent unnecessary sorting. args = node._argset else: args = node.args if keys: if keys != True: args = ordered(args, keys, default=False) else: args = ordered(args) for arg in args: yield from self._preorder_traversal(arg, keys) elif iterable(node): for item in node: yield from self._preorder_traversal(item, keys) def skip(self): """ Skip yielding current node's (last yielded node's) subtrees. Examples ======== >>> from sympy.core import symbols >>> from sympy.core.basic import preorder_traversal >>> x, y, z = symbols('x y z') >>> pt = preorder_traversal((x+y*z)*z) >>> for i in pt: ... print(i) ... if i == x+y*z: ... pt.skip() z*(x + y*z) z x + y*z """ self._skip_flag = True def __next__(self): return next(self._pt) def __iter__(self): return self def _make_find_query(query): """Convert the argument of Basic.find() into a callable""" try: query = _sympify(query) except SympifyError: pass if isinstance(query, type): return lambda expr: isinstance(expr, query) elif isinstance(query, Basic): return lambda expr: expr.match(query) is not None return query
84a0a40f245e5e359092663d2e43e932085ba595a561f18f91e38041ed6824de
from math import log as _log from .sympify import _sympify from .cache import cacheit from .singleton import S from .expr import Expr from .evalf import PrecisionExhausted from .function import (_coeff_isneg, expand_complex, expand_multinomial, expand_mul) from .logic import fuzzy_bool, fuzzy_not, fuzzy_and from .compatibility import as_int, HAS_GMPY, gmpy from .parameters import global_parameters from sympy.utilities.iterables import sift from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.multipledispatch import Dispatcher from mpmath.libmp import sqrtrem as mpmath_sqrtrem from math import sqrt as _sqrt def isqrt(n): """Return the largest integer less than or equal to sqrt(n).""" if n < 0: raise ValueError("n must be nonnegative") n = int(n) # Fast path: with IEEE 754 binary64 floats and a correctly-rounded # math.sqrt, int(math.sqrt(n)) works for any integer n satisfying 0 <= n < # 4503599761588224 = 2**52 + 2**27. But Python doesn't guarantee either # IEEE 754 format floats *or* correct rounding of math.sqrt, so check the # answer and fall back to the slow method if necessary. if n < 4503599761588224: s = int(_sqrt(n)) if 0 <= n - s*s <= 2*s: return s return integer_nthroot(n, 2)[0] def integer_nthroot(y, n): """ Return a tuple containing x = floor(y**(1/n)) and a boolean indicating whether the result is exact (that is, whether x**n == y). Examples ======== >>> from sympy import integer_nthroot >>> integer_nthroot(16, 2) (4, True) >>> integer_nthroot(26, 2) (5, False) To simply determine if a number is a perfect square, the is_square function should be used: >>> from sympy.ntheory.primetest import is_square >>> is_square(26) False See Also ======== sympy.ntheory.primetest.is_square integer_log """ y, n = as_int(y), as_int(n) if y < 0: raise ValueError("y must be nonnegative") if n < 1: raise ValueError("n must be positive") if HAS_GMPY and n < 2**63: # Currently it works only for n < 2**63, else it produces TypeError # sympy issue: https://github.com/sympy/sympy/issues/18374 # gmpy2 issue: https://github.com/aleaxit/gmpy/issues/257 if HAS_GMPY >= 2: x, t = gmpy.iroot(y, n) else: x, t = gmpy.root(y, n) return as_int(x), bool(t) return _integer_nthroot_python(y, n) def _integer_nthroot_python(y, n): if y in (0, 1): return y, True if n == 1: return y, True if n == 2: x, rem = mpmath_sqrtrem(y) return int(x), not rem if n > y: return 1, False # Get initial estimate for Newton's method. Care must be taken to # avoid overflow try: guess = int(y**(1./n) + 0.5) except OverflowError: exp = _log(y, 2)/n if exp > 53: shift = int(exp - 53) guess = int(2.0**(exp - shift) + 1) << shift else: guess = int(2.0**exp) if guess > 2**50: # Newton iteration xprev, x = -1, guess while 1: t = x**(n - 1) xprev, x = x, ((n - 1)*x + y//t)//n if abs(x - xprev) < 2: break else: x = guess # Compensate t = x**n while t < y: x += 1 t = x**n while t > y: x -= 1 t = x**n return int(x), t == y # int converts long to int if possible def integer_log(y, x): r""" Returns ``(e, bool)`` where e is the largest nonnegative integer such that :math:`|y| \geq |x^e|` and ``bool`` is True if $y = x^e$. Examples ======== >>> from sympy import integer_log >>> integer_log(125, 5) (3, True) >>> integer_log(17, 9) (1, False) >>> integer_log(4, -2) (2, True) >>> integer_log(-125,-5) (3, True) See Also ======== integer_nthroot sympy.ntheory.primetest.is_square sympy.ntheory.factor_.multiplicity sympy.ntheory.factor_.perfect_power """ if x == 1: raise ValueError('x cannot take value as 1') if y == 0: raise ValueError('y cannot take value as 0') if x in (-2, 2): x = int(x) y = as_int(y) e = y.bit_length() - 1 return e, x**e == y if x < 0: n, b = integer_log(y if y > 0 else -y, -x) return n, b and bool(n % 2 if y < 0 else not n % 2) x = as_int(x) y = as_int(y) r = e = 0 while y >= x: d = x m = 1 while y >= d: y, rem = divmod(y, d) r = r or rem e += m if y > d: d *= d m *= 2 return e, r == 0 and y == 1 class Pow(Expr): """ Defines the expression x**y as "x raised to a power y" Singleton definitions involving (0, 1, -1, oo, -oo, I, -I): +--------------+---------+-----------------------------------------------+ | expr | value | reason | +==============+=========+===============================================+ | z**0 | 1 | Although arguments over 0**0 exist, see [2]. | +--------------+---------+-----------------------------------------------+ | z**1 | z | | +--------------+---------+-----------------------------------------------+ | (-oo)**(-1) | 0 | | +--------------+---------+-----------------------------------------------+ | (-1)**-1 | -1 | | +--------------+---------+-----------------------------------------------+ | S.Zero**-1 | zoo | This is not strictly true, as 0**-1 may be | | | | undefined, but is convenient in some contexts | | | | where the base is assumed to be positive. | +--------------+---------+-----------------------------------------------+ | 1**-1 | 1 | | +--------------+---------+-----------------------------------------------+ | oo**-1 | 0 | | +--------------+---------+-----------------------------------------------+ | 0**oo | 0 | Because for all complex numbers z near | | | | 0, z**oo -> 0. | +--------------+---------+-----------------------------------------------+ | 0**-oo | zoo | This is not strictly true, as 0**oo may be | | | | oscillating between positive and negative | | | | values or rotating in the complex plane. | | | | It is convenient, however, when the base | | | | is positive. | +--------------+---------+-----------------------------------------------+ | 1**oo | nan | Because there are various cases where | | 1**-oo | | lim(x(t),t)=1, lim(y(t),t)=oo (or -oo), | | | | but lim( x(t)**y(t), t) != 1. See [3]. | +--------------+---------+-----------------------------------------------+ | b**zoo | nan | Because b**z has no limit as z -> zoo | +--------------+---------+-----------------------------------------------+ | (-1)**oo | nan | Because of oscillations in the limit. | | (-1)**(-oo) | | | +--------------+---------+-----------------------------------------------+ | oo**oo | oo | | +--------------+---------+-----------------------------------------------+ | oo**-oo | 0 | | +--------------+---------+-----------------------------------------------+ | (-oo)**oo | nan | | | (-oo)**-oo | | | +--------------+---------+-----------------------------------------------+ | oo**I | nan | oo**e could probably be best thought of as | | (-oo)**I | | the limit of x**e for real x as x tends to | | | | oo. If e is I, then the limit does not exist | | | | and nan is used to indicate that. | +--------------+---------+-----------------------------------------------+ | oo**(1+I) | zoo | If the real part of e is positive, then the | | (-oo)**(1+I) | | limit of abs(x**e) is oo. So the limit value | | | | is zoo. | +--------------+---------+-----------------------------------------------+ | oo**(-1+I) | 0 | If the real part of e is negative, then the | | -oo**(-1+I) | | limit is 0. | +--------------+---------+-----------------------------------------------+ Because symbolic computations are more flexible that floating point calculations and we prefer to never return an incorrect answer, we choose not to conform to all IEEE 754 conventions. This helps us avoid extra test-case code in the calculation of limits. See Also ======== sympy.core.numbers.Infinity sympy.core.numbers.NegativeInfinity sympy.core.numbers.NaN References ========== .. [1] https://en.wikipedia.org/wiki/Exponentiation .. [2] https://en.wikipedia.org/wiki/Exponentiation#Zero_to_the_power_of_zero .. [3] https://en.wikipedia.org/wiki/Indeterminate_forms """ is_Pow = True __slots__ = ('is_commutative',) @cacheit def __new__(cls, b, e, evaluate=None): if evaluate is None: evaluate = global_parameters.evaluate from sympy.functions.elementary.exponential import exp_polar b = _sympify(b) e = _sympify(e) # XXX: This can be removed when non-Expr args are disallowed rather # than deprecated. from sympy.core.relational import Relational if isinstance(b, Relational) or isinstance(e, Relational): raise TypeError('Relational can not be used in Pow') # XXX: This should raise TypeError once deprecation period is over: if not (isinstance(b, Expr) and isinstance(e, Expr)): SymPyDeprecationWarning( feature="Pow with non-Expr args", useinstead="Expr args", issue=19445, deprecated_since_version="1.7" ).warn() if evaluate: if b is S.Zero and e is S.NegativeInfinity: return S.ComplexInfinity if e is S.ComplexInfinity: return S.NaN if e is S.Zero: return S.One elif e is S.One: return b elif e == -1 and not b: return S.ComplexInfinity # Only perform autosimplification if exponent or base is a Symbol or number elif (b.is_Symbol or b.is_number) and (e.is_Symbol or e.is_number) and\ e.is_integer and _coeff_isneg(b): if e.is_even: b = -b elif e.is_odd: return -Pow(-b, e) if S.NaN in (b, e): # XXX S.NaN**x -> S.NaN under assumption that x != 0 return S.NaN elif b is S.One: if abs(e).is_infinite: return S.NaN return S.One else: # recognize base as E if not e.is_Atom and b is not S.Exp1 and not isinstance(b, exp_polar): from sympy import numer, denom, log, sign, im, factor_terms c, ex = factor_terms(e, sign=False).as_coeff_Mul() den = denom(ex) if isinstance(den, log) and den.args[0] == b: return S.Exp1**(c*numer(ex)) elif den.is_Add: s = sign(im(b)) if s.is_Number and s and den == \ log(-factor_terms(b, sign=False)) + s*S.ImaginaryUnit*S.Pi: return S.Exp1**(c*numer(ex)) obj = b._eval_power(e) if obj is not None: return obj obj = Expr.__new__(cls, b, e) obj = cls._exec_constructor_postprocessors(obj) if not isinstance(obj, Pow): return obj obj.is_commutative = (b.is_commutative and e.is_commutative) return obj @property def base(self): return self._args[0] @property def exp(self): return self._args[1] @classmethod def class_key(cls): return 3, 2, cls.__name__ def _eval_refine(self, assumptions): from sympy.assumptions.ask import ask, Q b, e = self.as_base_exp() if ask(Q.integer(e), assumptions) and _coeff_isneg(b): if ask(Q.even(e), assumptions): return Pow(-b, e) elif ask(Q.odd(e), assumptions): return -Pow(-b, e) def _eval_power(self, other): from sympy import arg, exp, floor, im, log, re, sign b, e = self.as_base_exp() if b is S.NaN: return (b**e)**other # let __new__ handle it s = None if other.is_integer: s = 1 elif b.is_polar: # e.g. exp_polar, besselj, var('p', polar=True)... s = 1 elif e.is_extended_real is not None: # helper functions =========================== def _half(e): """Return True if the exponent has a literal 2 as the denominator, else None.""" if getattr(e, 'q', None) == 2: return True n, d = e.as_numer_denom() if n.is_integer and d == 2: return True def _n2(e): """Return ``e`` evaluated to a Number with 2 significant digits, else None.""" try: rv = e.evalf(2, strict=True) if rv.is_Number: return rv except PrecisionExhausted: pass # =================================================== if e.is_extended_real: # we need _half(other) with constant floor or # floor(S.Half - e*arg(b)/2/pi) == 0 # handle -1 as special case if e == -1: # floor arg. is 1/2 + arg(b)/2/pi if _half(other): if b.is_negative is True: return S.NegativeOne**other*Pow(-b, e*other) elif b.is_negative is False: return Pow(b, -other) elif e.is_even: if b.is_extended_real: b = abs(b) if b.is_imaginary: b = abs(im(b))*S.ImaginaryUnit if (abs(e) < 1) == True or e == 1: s = 1 # floor = 0 elif b.is_extended_nonnegative: s = 1 # floor = 0 elif re(b).is_extended_nonnegative and (abs(e) < 2) == True: s = 1 # floor = 0 elif fuzzy_not(im(b).is_zero) and abs(e) == 2: s = 1 # floor = 0 elif _half(other): s = exp(2*S.Pi*S.ImaginaryUnit*other*floor( S.Half - e*arg(b)/(2*S.Pi))) if s.is_extended_real and _n2(sign(s) - s) == 0: s = sign(s) else: s = None else: # e.is_extended_real is False requires: # _half(other) with constant floor or # floor(S.Half - im(e*log(b))/2/pi) == 0 try: s = exp(2*S.ImaginaryUnit*S.Pi*other* floor(S.Half - im(e*log(b))/2/S.Pi)) # be careful to test that s is -1 or 1 b/c sign(I) == I: # so check that s is real if s.is_extended_real and _n2(sign(s) - s) == 0: s = sign(s) else: s = None except PrecisionExhausted: s = None if s is not None: return s*Pow(b, e*other) def _eval_Mod(self, q): r"""A dispatched function to compute `b^e \bmod q`, dispatched by ``Mod``. Notes ===== Algorithms: 1. For unevaluated integer power, use built-in ``pow`` function with 3 arguments, if powers are not too large wrt base. 2. For very large powers, use totient reduction if e >= lg(m). Bound on m, is for safe factorization memory wise ie m^(1/4). For pollard-rho to be faster than built-in pow lg(e) > m^(1/4) check is added. 3. For any unevaluated power found in `b` or `e`, the step 2 will be recursed down to the base and the exponent such that the `b \bmod q` becomes the new base and ``\phi(q) + e \bmod \phi(q)`` becomes the new exponent, and then the computation for the reduced expression can be done. """ from sympy.ntheory import totient from .mod import Mod base, exp = self.base, self.exp if exp.is_integer and exp.is_positive: if q.is_integer and base % q == 0: return S.Zero if base.is_Integer and exp.is_Integer and q.is_Integer: b, e, m = int(base), int(exp), int(q) mb = m.bit_length() if mb <= 80 and e >= mb and e.bit_length()**4 >= m: phi = totient(m) return Integer(pow(b, phi + e%phi, m)) return Integer(pow(b, e, m)) if isinstance(base, Pow) and base.is_integer and base.is_number: base = Mod(base, q) return Mod(Pow(base, exp, evaluate=False), q) if isinstance(exp, Pow) and exp.is_integer and exp.is_number: bit_length = int(q).bit_length() # XXX Mod-Pow actually attempts to do a hanging evaluation # if this dispatched function returns None. # May need some fixes in the dispatcher itself. if bit_length <= 80: phi = totient(q) exp = phi + Mod(exp, phi) return Mod(Pow(base, exp, evaluate=False), q) def _eval_is_even(self): if self.exp.is_integer and self.exp.is_positive: return self.base.is_even def _eval_is_negative(self): ext_neg = Pow._eval_is_extended_negative(self) if ext_neg is True: return self.is_finite return ext_neg def _eval_is_positive(self): ext_pos = Pow._eval_is_extended_positive(self) if ext_pos is True: return self.is_finite return ext_pos def _eval_is_extended_positive(self): from sympy import log if self.base == self.exp: if self.base.is_extended_nonnegative: return True elif self.base.is_positive: if self.exp.is_real: return True elif self.base.is_extended_negative: if self.exp.is_even: return True if self.exp.is_odd: return False elif self.base.is_zero: if self.exp.is_extended_real: return self.exp.is_zero elif self.base.is_extended_nonpositive: if self.exp.is_odd: return False elif self.base.is_imaginary: if self.exp.is_integer: m = self.exp % 4 if m.is_zero: return True if m.is_integer and m.is_zero is False: return False if self.exp.is_imaginary: return log(self.base).is_imaginary def _eval_is_extended_negative(self): if self.exp is S(1)/2: if self.base.is_complex or self.base.is_extended_real: return False if self.base.is_extended_negative: if self.exp.is_odd and self.base.is_finite: return True if self.exp.is_even: return False elif self.base.is_extended_positive: if self.exp.is_extended_real: return False elif self.base.is_zero: if self.exp.is_extended_real: return False elif self.base.is_extended_nonnegative: if self.exp.is_extended_nonnegative: return False elif self.base.is_extended_nonpositive: if self.exp.is_even: return False elif self.base.is_extended_real: if self.exp.is_even: return False def _eval_is_zero(self): if self.base.is_zero: if self.exp.is_extended_positive: return True elif self.exp.is_extended_nonpositive: return False elif self.base.is_zero is False: if self.base.is_finite and self.exp.is_finite: return False elif self.exp.is_negative: return self.base.is_infinite elif self.exp.is_nonnegative: return False elif self.exp.is_infinite and self.exp.is_extended_real: if (1 - abs(self.base)).is_extended_positive: return self.exp.is_extended_positive elif (1 - abs(self.base)).is_extended_negative: return self.exp.is_extended_negative else: # when self.base.is_zero is None if self.base.is_finite and self.exp.is_negative: return False def _eval_is_integer(self): b, e = self.args if b.is_rational: if b.is_integer is False and e.is_positive: return False # rat**nonneg if b.is_integer and e.is_integer: if b is S.NegativeOne: return True if e.is_nonnegative or e.is_positive: return True if b.is_integer and e.is_negative and (e.is_finite or e.is_integer): if fuzzy_not((b - 1).is_zero) and fuzzy_not((b + 1).is_zero): return False if b.is_Number and e.is_Number: check = self.func(*self.args) return check.is_Integer if e.is_negative and b.is_positive and (b - 1).is_positive: return False if e.is_negative and b.is_negative and (b + 1).is_negative: return False def _eval_is_extended_real(self): from ..functions import arg, log, exp from .mul import Mul if self.base is S.Exp1: if self.exp.is_extended_real: return True elif self.exp.is_imaginary: return (2*S.ImaginaryUnit*self.exp/S.Pi).is_even real_b = self.base.is_extended_real if real_b is None: if self.base.func == exp and self.base.args[0].is_imaginary: return self.exp.is_imaginary if self.base.func == Pow and self.base.base is S.Exp1 and self.base.exp.is_imaginary: return self.exp.is_imaginary return real_e = self.exp.is_extended_real if real_e is None: return if real_b and real_e: if self.base.is_extended_positive: return True elif self.base.is_extended_nonnegative and self.exp.is_extended_nonnegative: return True elif self.exp.is_integer and self.base.is_extended_nonzero: return True elif self.exp.is_integer and self.exp.is_nonnegative: return True elif self.base.is_extended_negative: if self.exp.is_Rational: return False if real_e and self.exp.is_extended_negative and self.base.is_zero is False: return Pow(self.base, -self.exp).is_extended_real im_b = self.base.is_imaginary im_e = self.exp.is_imaginary if im_b: if self.exp.is_integer: if self.exp.is_even: return True elif self.exp.is_odd: return False elif im_e and log(self.base).is_imaginary: return True elif self.exp.is_Add: c, a = self.exp.as_coeff_Add() if c and c.is_Integer: return Mul( self.base**c, self.base**a, evaluate=False).is_extended_real elif self.base in (-S.ImaginaryUnit, S.ImaginaryUnit): if (self.exp/2).is_integer is False: return False if real_b and im_e: if self.base is S.NegativeOne: return True c = self.exp.coeff(S.ImaginaryUnit) if c: if self.base.is_rational and c.is_rational: if self.base.is_nonzero and (self.base - 1).is_nonzero and c.is_nonzero: return False ok = (c*log(self.base)/S.Pi).is_integer if ok is not None: return ok if real_b is False: # we already know it's not imag i = arg(self.base)*self.exp/S.Pi if i.is_complex: # finite return i.is_integer def _eval_is_complex(self): if all(a.is_complex for a in self.args) and self._eval_is_finite(): return True def _eval_is_imaginary(self): from sympy import arg, log if self.base.is_imaginary: if self.exp.is_integer: odd = self.exp.is_odd if odd is not None: return odd return if self.exp.is_imaginary: imlog = log(self.base).is_imaginary if imlog is not None: return False # I**i -> real; (2*I)**i -> complex ==> not imaginary if self.base.is_extended_real and self.exp.is_extended_real: if self.base.is_positive: return False else: rat = self.exp.is_rational if not rat: return rat if self.exp.is_integer: return False else: half = (2*self.exp).is_integer if half: return self.base.is_negative return half if self.base.is_extended_real is False: # we already know it's not imag i = arg(self.base)*self.exp/S.Pi isodd = (2*i).is_odd if isodd is not None: return isodd def _eval_is_odd(self): if self.exp.is_integer: if self.exp.is_positive: return self.base.is_odd elif self.exp.is_nonnegative and self.base.is_odd: return True elif self.base is S.NegativeOne: return True def _eval_is_finite(self): if self.exp.is_negative: if self.base.is_zero: return False if self.base.is_infinite or self.base.is_nonzero: return True c1 = self.base.is_finite if c1 is None: return c2 = self.exp.is_finite if c2 is None: return if c1 and c2: if self.exp.is_nonnegative or fuzzy_not(self.base.is_zero): return True def _eval_is_prime(self): ''' An integer raised to the n(>=2)-th power cannot be a prime. ''' if self.base.is_integer and self.exp.is_integer and (self.exp - 1).is_positive: return False def _eval_is_composite(self): """ A power is composite if both base and exponent are greater than 1 """ if (self.base.is_integer and self.exp.is_integer and ((self.base - 1).is_positive and (self.exp - 1).is_positive or (self.base + 1).is_negative and self.exp.is_positive and self.exp.is_even)): return True def _eval_is_polar(self): return self.base.is_polar def _eval_subs(self, old, new): from sympy import exp, log, Symbol def _check(ct1, ct2, old): """Return (bool, pow, remainder_pow) where, if bool is True, then the exponent of Pow `old` will combine with `pow` so the substitution is valid, otherwise bool will be False. For noncommutative objects, `pow` will be an integer, and a factor `Pow(old.base, remainder_pow)` needs to be included. If there is no such factor, None is returned. For commutative objects, remainder_pow is always None. cti are the coefficient and terms of an exponent of self or old In this _eval_subs routine a change like (b**(2*x)).subs(b**x, y) will give y**2 since (b**x)**2 == b**(2*x); if that equality does not hold then the substitution should not occur so `bool` will be False. """ coeff1, terms1 = ct1 coeff2, terms2 = ct2 if terms1 == terms2: if old.is_commutative: # Allow fractional powers for commutative objects pow = coeff1/coeff2 try: as_int(pow, strict=False) combines = True except ValueError: combines = isinstance(Pow._eval_power( Pow(*old.as_base_exp(), evaluate=False), pow), (Pow, exp, Symbol)) return combines, pow, None else: # With noncommutative symbols, substitute only integer powers if not isinstance(terms1, tuple): terms1 = (terms1,) if not all(term.is_integer for term in terms1): return False, None, None try: # Round pow toward zero pow, remainder = divmod(as_int(coeff1), as_int(coeff2)) if pow < 0 and remainder != 0: pow += 1 remainder -= as_int(coeff2) if remainder == 0: remainder_pow = None else: remainder_pow = Mul(remainder, *terms1) return True, pow, remainder_pow except ValueError: # Can't substitute pass return False, None, None if old == self.base: return new**self.exp._subs(old, new) # issue 10829: (4**x - 3*y + 2).subs(2**x, y) -> y**2 - 3*y + 2 if isinstance(old, self.func) and self.exp == old.exp: l = log(self.base, old.base) if l.is_Number: return Pow(new, l) if isinstance(old, self.func) and self.base == old.base: if self.exp.is_Add is False: ct1 = self.exp.as_independent(Symbol, as_Add=False) ct2 = old.exp.as_independent(Symbol, as_Add=False) ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: # issue 5180: (x**(6*y)).subs(x**(3*y),z)->z**2 result = self.func(new, pow) if remainder_pow is not None: result = Mul(result, Pow(old.base, remainder_pow)) return result else: # b**(6*x + a).subs(b**(3*x), y) -> y**2 * b**a # exp(exp(x) + exp(x**2)).subs(exp(exp(x)), w) -> w * exp(exp(x**2)) oarg = old.exp new_l = [] o_al = [] ct2 = oarg.as_coeff_mul() for a in self.exp.args: newa = a._subs(old, new) ct1 = newa.as_coeff_mul() ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: new_l.append(new**pow) if remainder_pow is not None: o_al.append(remainder_pow) continue elif not old.is_commutative and not newa.is_integer: # If any term in the exponent is non-integer, # we do not do any substitutions in the noncommutative case return o_al.append(newa) if new_l: expo = Add(*o_al) new_l.append(Pow(self.base, expo, evaluate=False) if expo != 1 else self.base) return Mul(*new_l) if (isinstance(old, exp) or (old.is_Pow and old.base is S.Exp1)) and self.exp.is_extended_real and self.base.is_positive: ct1 = old.args[0].as_independent(Symbol, as_Add=False) ct2 = (self.exp*log(self.base)).as_independent( Symbol, as_Add=False) ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: result = self.func(new, pow) # (2**x).subs(exp(x*log(2)), z) -> z if remainder_pow is not None: result = Mul(result, Pow(old.base, remainder_pow)) return result def as_base_exp(self): """Return base and exp of self. Explnation ========== If base is 1/Integer, then return Integer, -exp. If this extra processing is not needed, the base and exp properties will give the raw arguments Examples ======== >>> from sympy import Pow, S >>> p = Pow(S.Half, 2, evaluate=False) >>> p.as_base_exp() (2, -2) >>> p.args (1/2, 2) """ b, e = self.args if b.is_Rational and b.p == 1 and b.q != 1: return Integer(b.q), -e return b, e def _eval_adjoint(self): from sympy.functions.elementary.complexes import adjoint i, p = self.exp.is_integer, self.base.is_positive if i: return adjoint(self.base)**self.exp if p: return self.base**adjoint(self.exp) if i is False and p is False: expanded = expand_complex(self) if expanded != self: return adjoint(expanded) def _eval_conjugate(self): from sympy.functions.elementary.complexes import conjugate as c i, p = self.exp.is_integer, self.base.is_positive if i: return c(self.base)**self.exp if p: return self.base**c(self.exp) if i is False and p is False: expanded = expand_complex(self) if expanded != self: return c(expanded) if self.is_extended_real: return self def _eval_transpose(self): from sympy.functions.elementary.complexes import transpose i, p = self.exp.is_integer, (self.base.is_complex or self.base.is_infinite) if p: return self.base**self.exp if i: return transpose(self.base)**self.exp if i is False and p is False: expanded = expand_complex(self) if expanded != self: return transpose(expanded) def _eval_expand_power_exp(self, **hints): """a**(n + m) -> a**n*a**m""" b = self.base e = self.exp if e.is_Add and e.is_commutative: expr = [] for x in e.args: expr.append(self.func(self.base, x)) return Mul(*expr) return self.func(b, e) def _eval_expand_power_base(self, **hints): """(a*b)**n -> a**n * b**n""" force = hints.get('force', False) b = self.base e = self.exp if not b.is_Mul: return self cargs, nc = b.args_cnc(split_1=False) # expand each term - this is top-level-only # expansion but we have to watch out for things # that don't have an _eval_expand method if nc: nc = [i._eval_expand_power_base(**hints) if hasattr(i, '_eval_expand_power_base') else i for i in nc] if e.is_Integer: if e.is_positive: rv = Mul(*nc*e) else: rv = Mul(*[i**-1 for i in nc[::-1]]*-e) if cargs: rv *= Mul(*cargs)**e return rv if not cargs: return self.func(Mul(*nc), e, evaluate=False) nc = [Mul(*nc)] # sift the commutative bases other, maybe_real = sift(cargs, lambda x: x.is_extended_real is False, binary=True) def pred(x): if x is S.ImaginaryUnit: return S.ImaginaryUnit polar = x.is_polar if polar: return True if polar is None: return fuzzy_bool(x.is_extended_nonnegative) sifted = sift(maybe_real, pred) nonneg = sifted[True] other += sifted[None] neg = sifted[False] imag = sifted[S.ImaginaryUnit] if imag: I = S.ImaginaryUnit i = len(imag) % 4 if i == 0: pass elif i == 1: other.append(I) elif i == 2: if neg: nonn = -neg.pop() if nonn is not S.One: nonneg.append(nonn) else: neg.append(S.NegativeOne) else: if neg: nonn = -neg.pop() if nonn is not S.One: nonneg.append(nonn) else: neg.append(S.NegativeOne) other.append(I) del imag # bring out the bases that can be separated from the base if force or e.is_integer: # treat all commutatives the same and put nc in other cargs = nonneg + neg + other other = nc else: # this is just like what is happening automatically, except # that now we are doing it for an arbitrary exponent for which # no automatic expansion is done assert not e.is_Integer # handle negatives by making them all positive and putting # the residual -1 in other if len(neg) > 1: o = S.One if not other and neg[0].is_Number: o *= neg.pop(0) if len(neg) % 2: o = -o for n in neg: nonneg.append(-n) if o is not S.One: other.append(o) elif neg and other: if neg[0].is_Number and neg[0] is not S.NegativeOne: other.append(S.NegativeOne) nonneg.append(-neg[0]) else: other.extend(neg) else: other.extend(neg) del neg cargs = nonneg other += nc rv = S.One if cargs: if e.is_Rational: npow, cargs = sift(cargs, lambda x: x.is_Pow and x.exp.is_Rational and x.base.is_number, binary=True) rv = Mul(*[self.func(b.func(*b.args), e) for b in npow]) rv *= Mul(*[self.func(b, e, evaluate=False) for b in cargs]) if other: rv *= self.func(Mul(*other), e, evaluate=False) return rv def _eval_expand_multinomial(self, **hints): """(a + b + ..)**n -> a**n + n*a**(n-1)*b + .., n is nonzero integer""" base, exp = self.args result = self if exp.is_Rational and exp.p > 0 and base.is_Add: if not exp.is_Integer: n = Integer(exp.p // exp.q) if not n: return result else: radical, result = self.func(base, exp - n), [] expanded_base_n = self.func(base, n) if expanded_base_n.is_Pow: expanded_base_n = \ expanded_base_n._eval_expand_multinomial() for term in Add.make_args(expanded_base_n): result.append(term*radical) return Add(*result) n = int(exp) if base.is_commutative: order_terms, other_terms = [], [] for b in base.args: if b.is_Order: order_terms.append(b) else: other_terms.append(b) if order_terms: # (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n) f = Add(*other_terms) o = Add(*order_terms) if n == 2: return expand_multinomial(f**n, deep=False) + n*f*o else: g = expand_multinomial(f**(n - 1), deep=False) return expand_mul(f*g, deep=False) + n*g*o if base.is_number: # Efficiently expand expressions of the form (a + b*I)**n # where 'a' and 'b' are real numbers and 'n' is integer. a, b = base.as_real_imag() if a.is_Rational and b.is_Rational: if not a.is_Integer: if not b.is_Integer: k = self.func(a.q * b.q, n) a, b = a.p*b.q, a.q*b.p else: k = self.func(a.q, n) a, b = a.p, a.q*b elif not b.is_Integer: k = self.func(b.q, n) a, b = a*b.q, b.p else: k = 1 a, b, c, d = int(a), int(b), 1, 0 while n: if n & 1: c, d = a*c - b*d, b*c + a*d n -= 1 a, b = a*a - b*b, 2*a*b n //= 2 I = S.ImaginaryUnit if k == 1: return c + I*d else: return Integer(c)/k + I*d/k p = other_terms # (x + y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3 # in this particular example: # p = [x,y]; n = 3 # so now it's easy to get the correct result -- we get the # coefficients first: from sympy import multinomial_coefficients from sympy.polys.polyutils import basic_from_dict expansion_dict = multinomial_coefficients(len(p), n) # in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3} # and now construct the expression. return basic_from_dict(expansion_dict, *p) else: if n == 2: return Add(*[f*g for f in base.args for g in base.args]) else: multi = (base**(n - 1))._eval_expand_multinomial() if multi.is_Add: return Add(*[f*g for f in base.args for g in multi.args]) else: # XXX can this ever happen if base was an Add? return Add(*[f*multi for f in base.args]) elif (exp.is_Rational and exp.p < 0 and base.is_Add and abs(exp.p) > exp.q): return 1 / self.func(base, -exp)._eval_expand_multinomial() elif exp.is_Add and base.is_Number: # a + b a b # n --> n n , where n, a, b are Numbers coeff, tail = S.One, S.Zero for term in exp.args: if term.is_Number: coeff *= self.func(base, term) else: tail += term return coeff * self.func(base, tail) else: return result def as_real_imag(self, deep=True, **hints): from sympy import atan2, cos, im, re, sin from sympy.polys.polytools import poly if self.exp.is_Integer: exp = self.exp re_e, im_e = self.base.as_real_imag(deep=deep) if not im_e: return self, S.Zero a, b = symbols('a b', cls=Dummy) if exp >= 0: if re_e.is_Number and im_e.is_Number: # We can be more efficient in this case expr = expand_multinomial(self.base**exp) if expr != self: return expr.as_real_imag() expr = poly( (a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp else: mag = re_e**2 + im_e**2 re_e, im_e = re_e/mag, -im_e/mag if re_e.is_Number and im_e.is_Number: # We can be more efficient in this case expr = expand_multinomial((re_e + im_e*S.ImaginaryUnit)**-exp) if expr != self: return expr.as_real_imag() expr = poly((a + b)**-exp) # Terms with even b powers will be real r = [i for i in expr.terms() if not i[0][1] % 2] re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) # Terms with odd b powers will be imaginary r = [i for i in expr.terms() if i[0][1] % 4 == 1] im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) r = [i for i in expr.terms() if i[0][1] % 4 == 3] im_part3 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) return (re_part.subs({a: re_e, b: S.ImaginaryUnit*im_e}), im_part1.subs({a: re_e, b: im_e}) + im_part3.subs({a: re_e, b: -im_e})) elif self.exp.is_Rational: re_e, im_e = self.base.as_real_imag(deep=deep) if im_e.is_zero and self.exp is S.Half: if re_e.is_extended_nonnegative: return self, S.Zero if re_e.is_extended_nonpositive: return S.Zero, (-self.base)**self.exp # XXX: This is not totally correct since for x**(p/q) with # x being imaginary there are actually q roots, but # only a single one is returned from here. r = self.func(self.func(re_e, 2) + self.func(im_e, 2), S.Half) t = atan2(im_e, re_e) rp, tp = self.func(r, self.exp), t*self.exp return rp*cos(tp), rp*sin(tp) elif self.base is S.Exp1: from ..functions import exp re_e, im_e = self.exp.as_real_imag() if deep: re_e = re_e.expand(deep, **hints) im_e = im_e.expand(deep, **hints) c, s = cos(im_e), sin(im_e) return exp(re_e)*c, exp(re_e)*s else: if deep: hints['complex'] = False expanded = self.expand(deep, **hints) if hints.get('ignore') == expanded: return None else: return (re(expanded), im(expanded)) else: return re(self), im(self) def _eval_derivative(self, s): from sympy import log dbase = self.base.diff(s) dexp = self.exp.diff(s) return self * (dexp * log(self.base) + dbase * self.exp/self.base) def _eval_evalf(self, prec): base, exp = self.as_base_exp() base = base._evalf(prec) if not exp.is_Integer: exp = exp._evalf(prec) if exp.is_negative and base.is_number and base.is_extended_real is False: base = base.conjugate() / (base * base.conjugate())._evalf(prec) exp = -exp return self.func(base, exp).expand() return self.func(base, exp) def _eval_is_polynomial(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return bool(self.base._eval_is_polynomial(syms) and self.exp.is_Integer and (self.exp >= 0)) else: return True def _eval_is_rational(self): # The evaluation of self.func below can be very expensive in the case # of integer**integer if the exponent is large. We should try to exit # before that if possible: if (self.exp.is_integer and self.base.is_rational and fuzzy_not(fuzzy_and([self.exp.is_negative, self.base.is_zero]))): return True p = self.func(*self.as_base_exp()) # in case it's unevaluated if not p.is_Pow: return p.is_rational b, e = p.as_base_exp() if e.is_Rational and b.is_Rational: # we didn't check that e is not an Integer # because Rational**Integer autosimplifies return False if e.is_integer: if b.is_rational: if fuzzy_not(b.is_zero) or e.is_nonnegative: return True if b == e: # always rational, even for 0**0 return True elif b.is_irrational: return e.is_zero if b is S.Exp1: if e.is_rational and e.is_nonzero: return False def _eval_is_algebraic(self): def _is_one(expr): try: return (expr - 1).is_zero except ValueError: # when the operation is not allowed return False if self.base.is_zero or _is_one(self.base): return True elif self.base is S.Exp1: s = self.func(*self.args) if s.func == self.func: if self.exp.is_nonzero: if self.exp.is_algebraic: return False elif (self.exp/S.Pi).is_rational: return False elif (self.exp/(S.ImaginaryUnit*S.Pi)).is_rational: return True else: return s.is_algebraic elif self.exp.is_rational: if self.base.is_algebraic is False: return self.exp.is_zero if self.base.is_zero is False: if self.exp.is_nonzero: return self.base.is_algebraic elif self.base.is_algebraic: return True if self.exp.is_positive: return self.base.is_algebraic elif self.base.is_algebraic and self.exp.is_algebraic: if ((fuzzy_not(self.base.is_zero) and fuzzy_not(_is_one(self.base))) or self.base.is_integer is False or self.base.is_irrational): return self.exp.is_rational def _eval_is_rational_function(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return self.base._eval_is_rational_function(syms) and \ self.exp.is_Integer else: return True def _eval_is_meromorphic(self, x, a): # f**g is meromorphic if g is an integer and f is meromorphic. # E**(log(f)*g) is meromorphic if log(f)*g is meromorphic # and finite. base_merom = self.base._eval_is_meromorphic(x, a) exp_integer = self.exp.is_Integer if exp_integer: return base_merom exp_merom = self.exp._eval_is_meromorphic(x, a) if base_merom is False: # f**g = E**(log(f)*g) may be meromorphic if the # singularities of log(f) and g cancel each other, # for example, if g = 1/log(f). Hence, return False if exp_merom else None elif base_merom is None: return None b = self.base.subs(x, a) # b is extended complex as base is meromorphic. # log(base) is finite and meromorphic when b != 0, zoo. b_zero = b.is_zero if b_zero: log_defined = False else: log_defined = fuzzy_and((b.is_finite, fuzzy_not(b_zero))) if log_defined is False: # zero or pole of base return exp_integer # False or None elif log_defined is None: return None if not exp_merom: return exp_merom # False or None return self.exp.subs(x, a).is_finite def _eval_is_algebraic_expr(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return self.base._eval_is_algebraic_expr(syms) and \ self.exp.is_Rational else: return True def _eval_rewrite_as_exp(self, base, expo, **kwargs): from sympy import exp, log, I, arg if base.is_zero or base.has(exp) or expo.has(exp): return base**expo if base.has(Symbol): # delay evaluation if expo is non symbolic # (as exp(x*log(5)) automatically reduces to x**5) return exp(log(base)*expo, evaluate=expo.has(Symbol)) else: return exp((log(abs(base)) + I*arg(base))*expo) def as_numer_denom(self): if not self.is_commutative: return self, S.One base, exp = self.as_base_exp() n, d = base.as_numer_denom() # this should be the same as ExpBase.as_numer_denom wrt # exponent handling neg_exp = exp.is_negative if not neg_exp and not (-exp).is_negative: neg_exp = _coeff_isneg(exp) int_exp = exp.is_integer # the denominator cannot be separated from the numerator if # its sign is unknown unless the exponent is an integer, e.g. # sqrt(a/b) != sqrt(a)/sqrt(b) when a=1 and b=-1. But if the # denominator is negative the numerator and denominator can # be negated and the denominator (now positive) separated. if not (d.is_extended_real or int_exp): n = base d = S.One dnonpos = d.is_nonpositive if dnonpos: n, d = -n, -d elif dnonpos is None and not int_exp: n = base d = S.One if neg_exp: n, d = d, n exp = -exp if exp.is_infinite: if n is S.One and d is not S.One: return n, self.func(d, exp) if n is not S.One and d is S.One: return self.func(n, exp), d return self.func(n, exp), self.func(d, exp) def matches(self, expr, repl_dict={}, old=False): expr = _sympify(expr) repl_dict = repl_dict.copy() # special case, pattern = 1 and expr.exp can match to 0 if expr is S.One: d = self.exp.matches(S.Zero, repl_dict) if d is not None: return d # make sure the expression to be matched is an Expr if not isinstance(expr, Expr): return None b, e = expr.as_base_exp() # special case number sb, se = self.as_base_exp() if sb.is_Symbol and se.is_Integer and expr: if e.is_rational: return sb.matches(b**(e/se), repl_dict) return sb.matches(expr**(1/se), repl_dict) d = repl_dict.copy() d = self.base.matches(b, d) if d is None: return None d = self.exp.xreplace(d).matches(e, d) if d is None: return Expr.matches(self, expr, repl_dict) return d def _eval_nseries(self, x, n, logx, cdir=0): # NOTE! This function is an important part of the gruntz algorithm # for computing limits. It has to return a generalized power # series with coefficients in C(log, log(x)). In more detail: # It has to return an expression # c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms) # where e_i are numbers (not necessarily integers) and c_i are # expressions involving only numbers, the log function, and log(x). # The series expansion of b**e is computed as follows: # 1) We express b as f*(1 + g) where f is the leading term of b. # g has order O(x**d) where d is strictly positive. # 2) Then b**e = (f**e)*((1 + g)**e). # (1 + g)**e is computed using binomial series. from sympy import im, I, ceiling, polygamma, logcombine, EulerGamma, nan, zoo, factorial, ff, PoleError, O, powdenest, Wild from itertools import product from ..functions import exp, log from ..series import Order, limit from ..simplify import powsimp if self.base is S.Exp1: e_series = self.exp.nseries(x, n=n, logx=logx) if e_series.is_Order: return 1 + e_series e0 = limit(e_series.removeO(), x, 0) if e0 in (-S.NegativeInfinity, S.Infinity): return self t = e_series - e0 exp_series = term = exp(e0) # series of exp(e0 + t) in t for i in range(1, n): term *= t/i term = term.nseries(x, n=n, logx=logx) exp_series += term exp_series += Order(t**n, x) return powsimp(exp_series, deep=True, combine='exp') self = powdenest(self, force=True).trigsimp() b, e = self.as_base_exp() if e.has(S.Infinity, S.NegativeInfinity, S.ComplexInfinity, S.NaN): raise PoleError() if e.has(x): return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir) if logx is not None and b.has(log): c, ex = symbols('c, ex', cls=Wild, exclude=[x]) b = b.replace(log(c*x**ex), log(c) + ex*logx) self = b**e b = b.removeO() try: if b.has(polygamma, EulerGamma) and logx is not None: raise ValueError() _, m = b.leadterm(x) except (ValueError, NotImplementedError): b = b._eval_nseries(x, n=max(2, n), logx=logx, cdir=cdir).removeO() if b.has(nan, zoo): raise NotImplementedError() _, m = b.leadterm(x) if e.has(log): e = logcombine(e).cancel() if not (m.is_zero or e.is_number and e.is_real): return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir) f = b.as_leading_term(x) g = (b/f - S.One).cancel() maxpow = n - m*e if maxpow < S.Zero: return O(x**(m*e), x) if g.is_zero: return f**e def coeff_exp(term, x): coeff, exp = S.One, S.Zero for factor in Mul.make_args(term): if factor.has(x): base, exp = factor.as_base_exp() if base != x: try: return term.leadterm(x) except ValueError: return term, S.Zero else: coeff *= factor return coeff, exp def mul(d1, d2): res = {} for e1, e2 in product(d1, d2): ex = e1 + e2 if ex < maxpow: res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2] return res try: _, d = g.leadterm(x) except (ValueError, NotImplementedError): if limit(g/x**maxpow, x, 0) == 0: # g has higher order zero return f**e + e*f**e*g # first term of binomial series else: raise NotImplementedError() if not d.is_positive: g = (b - f).simplify()/f _, d = g.leadterm(x) if not d.is_positive: raise NotImplementedError() gpoly = g._eval_nseries(x, n=ceiling(maxpow), logx=logx, cdir=cdir).removeO() gterms = {} for term in Add.make_args(gpoly): co1, e1 = coeff_exp(term, x) gterms[e1] = gterms.get(e1, S.Zero) + co1 k = S.One terms = {S.Zero: S.One} tk = gterms while k*d < maxpow: coeff = ff(e, k)/factorial(k) for ex in tk: terms[ex] = terms.get(ex, S.Zero) + coeff*tk[ex] tk = mul(tk, gterms) k += S.One if (not e.is_integer and m.is_zero and f.is_real and f.is_negative and im((b - f).dir(x, cdir)) < 0): inco, inex = coeff_exp(f**e*exp(-2*e*S.Pi*I), x) else: inco, inex = coeff_exp(f**e, x) res = S.Zero for e1 in terms: ex = e1 + inex res += terms[e1]*inco*x**(ex) for i in (1, 2, 3): if (res - self).subs(x, i) is not S.Zero: res += O(x**n, x) break return res def _eval_as_leading_term(self, x, cdir=0): from ..series import Order from sympy import exp, I, im, log e = self.exp b = self.base if self.base is S.Exp1: arg = self.exp if arg.is_Add: return Mul(*[(S.Exp1**f).as_leading_term(x) for f in arg.args]) arg_1 = arg.as_leading_term(x) if Order(x, x).contains(arg_1): return S.One if Order(1, x).contains(arg_1): return S.Exp1**arg_1 #################################################### # The correct result here should be 'None'. # # Indeed arg in not bounded as x tends to 0. # # Consequently the series expansion does not admit # # the leading term. # # For compatibility reasons, the return value here # # is the original function, i.e. exp(arg), # # instead of None. # #################################################### return S.Exp1**arg elif e.has(x): return exp(e * log(b)).as_leading_term(x, cdir=cdir) else: f = b.as_leading_term(x, cdir=cdir) if (not e.is_integer and f.is_constant() and f.is_real and f.is_negative and im((b - f).dir(x, cdir)) < 0): return self.func(f, e) * exp(-2 * e * S.Pi * I) return self.func(f, e) @cacheit def _taylor_term(self, n, x, *previous_terms): # of (1 + x)**e from sympy import binomial return binomial(self.exp, n) * self.func(x, n) def taylor_term(self, n, x, *previous_terms): if self.base is not S.Exp1: return super().taylor_term(n, x, *previous_terms) from sympy import sympify, factorial if n < 0: return S.Zero if n == 0: return S.One x = sympify(x) if previous_terms: p = previous_terms[-1] if p is not None: return p * x / n return x**n/factorial(n) def _sage_(self): return self.args[0]._sage_()**self.args[1]._sage_() def _eval_rewrite_as_sin(self, base, exp): from ..functions import sin if self.base is S.Exp1: return sin(S.ImaginaryUnit*self.exp + S.Pi/2) - S.ImaginaryUnit*sin(S.ImaginaryUnit*self.exp) def _eval_rewrite_as_cos(self, base, exp): from ..functions import cos if self.base is S.Exp1: return cos(S.ImaginaryUnit*self.exp) + S.ImaginaryUnit*cos(S.ImaginaryUnit*self.exp + S.Pi/2) def _eval_rewrite_as_tanh(self, base, exp): from ..functions import tanh if self.base is S.Exp1: return (1 + tanh(self.exp/2))/(1 - tanh(self.exp/2)) def _eval_rewrite_as_sqrt(self, base, exp, **kwargs): from sympy.functions.elementary.trigonometric import sin, cos if base is not S.Exp1: return None if exp.is_Mul: coeff = exp.coeff(S.Pi * S.ImaginaryUnit) if coeff and coeff.is_number: cosine, sine = cos(S.Pi*coeff), sin(S.Pi*coeff) if not isinstance(cosine, cos) and not isinstance (sine, sin): return cosine + S.ImaginaryUnit*sine def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import sqrt >>> sqrt(4 + 4*sqrt(2)).as_content_primitive() (2, sqrt(1 + sqrt(2))) >>> sqrt(3 + 3*sqrt(2)).as_content_primitive() (1, sqrt(3)*sqrt(1 + sqrt(2))) >>> from sympy import expand_power_base, powsimp, Mul >>> from sympy.abc import x, y >>> ((2*x + 2)**2).as_content_primitive() (4, (x + 1)**2) >>> (4**((1 + y)/2)).as_content_primitive() (2, 4**(y/2)) >>> (3**((1 + y)/2)).as_content_primitive() (1, 3**((y + 1)/2)) >>> (3**((5 + y)/2)).as_content_primitive() (9, 3**((y + 1)/2)) >>> eq = 3**(2 + 2*x) >>> powsimp(eq) == eq True >>> eq.as_content_primitive() (9, 3**(2*x)) >>> powsimp(Mul(*_)) 3**(2*x + 2) >>> eq = (2 + 2*x)**y >>> s = expand_power_base(eq); s.is_Mul, s (False, (2*x + 2)**y) >>> eq.as_content_primitive() (1, (2*(x + 1))**y) >>> s = expand_power_base(_[1]); s.is_Mul, s (True, 2**y*(x + 1)**y) See docstring of Expr.as_content_primitive for more examples. """ b, e = self.as_base_exp() b = _keep_coeff(*b.as_content_primitive(radical=radical, clear=clear)) ce, pe = e.as_content_primitive(radical=radical, clear=clear) if b.is_Rational: #e #= ce*pe #= ce*(h + t) #= ce*h + ce*t #=> self #= b**(ce*h)*b**(ce*t) #= b**(cehp/cehq)*b**(ce*t) #= b**(iceh + r/cehq)*b**(ce*t) #= b**(iceh)*b**(r/cehq)*b**(ce*t) #= b**(iceh)*b**(ce*t + r/cehq) h, t = pe.as_coeff_Add() if h.is_Rational: ceh = ce*h c = self.func(b, ceh) r = S.Zero if not c.is_Rational: iceh, r = divmod(ceh.p, ceh.q) c = self.func(b, iceh) return c, self.func(b, _keep_coeff(ce, t + r/ce/ceh.q)) e = _keep_coeff(ce, pe) # b**e = (h*t)**e = h**e*t**e = c*m*t**e if e.is_Rational and b.is_Mul: h, t = b.as_content_primitive(radical=radical, clear=clear) # h is positive c, m = self.func(h, e).as_coeff_Mul() # so c is positive m, me = m.as_base_exp() if m is S.One or me == e: # probably always true # return the following, not return c, m*Pow(t, e) # which would change Pow into Mul; we let sympy # decide what to do by using the unevaluated Mul, e.g # should it stay as sqrt(2 + 2*sqrt(5)) or become # sqrt(2)*sqrt(1 + sqrt(5)) return c, self.func(_keep_coeff(m, t), e) return S.One, self.func(b, e) def is_constant(self, *wrt, **flags): expr = self if flags.get('simplify', True): expr = expr.simplify() b, e = expr.as_base_exp() bz = b.equals(0) if bz: # recalculate with assumptions in case it's unevaluated new = b**e if new != expr: return new.is_constant() econ = e.is_constant(*wrt) bcon = b.is_constant(*wrt) if bcon: if econ: return True bz = b.equals(0) if bz is False: return False elif bcon is None: return None return e.equals(0) def _eval_difference_delta(self, n, step): b, e = self.args if e.has(n) and not b.has(n): new_e = e.subs(n, n + step) return (b**(new_e - e) - 1) * self power = Dispatcher('power') power.add((object, object), Pow) from .add import Add from .numbers import Integer from .mul import Mul, _keep_coeff from .symbol import Symbol, Dummy, symbols
774cc14802957d625a454b3b83edb8d35343a7ed6afb9546739040103c9092d0
"""Thread-safe global parameters""" from .cache import clear_cache from contextlib import contextmanager from threading import local class _global_parameters(local): """ Thread-local global parameters. Explanation =========== This class generates thread-local container for SymPy's global parameters. Every global parameters must be passed as keyword argument when generating its instance. A variable, `global_parameters` is provided as default instance for this class. WARNING! Although the global parameters are thread-local, SymPy's cache is not by now. This may lead to undesired result in multi-threading operations. Examples ======== >>> from sympy.abc import x >>> from sympy.core.cache import clear_cache >>> from sympy.core.parameters import global_parameters as gp >>> gp.evaluate True >>> x+x 2*x >>> log = [] >>> def f(): ... clear_cache() ... gp.evaluate = False ... log.append(x+x) ... clear_cache() >>> import threading >>> thread = threading.Thread(target=f) >>> thread.start() >>> thread.join() >>> print(log) [x + x] >>> gp.evaluate True >>> x+x 2*x References ========== .. [1] https://docs.python.org/3/library/threading.html """ def __init__(self, **kwargs): self.__dict__.update(kwargs) def __setattr__(self, name, value): if getattr(self, name) != value: clear_cache() return super().__setattr__(name, value) global_parameters = _global_parameters(evaluate=True, distribute=True, exp_is_pow=False) @contextmanager def evaluate(x): """ Control automatic evaluation Explanation =========== This context manager controls whether or not all SymPy functions evaluate by default. Note that much of SymPy expects evaluated expressions. This functionality is experimental and is unlikely to function as intended on large expressions. Examples ======== >>> from sympy.abc import x >>> from sympy.core.parameters import evaluate >>> print(x + x) 2*x >>> with evaluate(False): ... print(x + x) x + x """ old = global_parameters.evaluate try: global_parameters.evaluate = x yield finally: global_parameters.evaluate = old @contextmanager def distribute(x): """ Control automatic distribution of Number over Add Explanation =========== This context manager controls whether or not Mul distribute Number over Add. Plan is to avoid distributing Number over Add in all of sympy. Once that is done, this contextmanager will be removed. Examples ======== >>> from sympy.abc import x >>> from sympy.core.parameters import distribute >>> print(2*(x + 1)) 2*x + 2 >>> with distribute(False): ... print(2*(x + 1)) 2*(x + 1) """ old = global_parameters.distribute try: global_parameters.distribute = x yield finally: global_parameters.distribute = old @contextmanager def _exp_is_pow(x): """ Control whether `e^x` should be represented as ``exp(x)`` or a ``Pow(E, x)``. Examples ======== >>> from sympy import exp >>> from sympy.abc import x >>> from sympy.core.parameters import _exp_is_pow >>> with _exp_is_pow(True): print(type(exp(x))) <class 'sympy.core.power.Pow'> >>> with _exp_is_pow(False): print(type(exp(x))) exp """ old = global_parameters.exp_is_pow clear_cache() try: global_parameters.exp_is_pow = x yield finally: clear_cache() global_parameters.exp_is_pow = old
42ccd65a8ddc259ea8e6f1d0ae1f5af9ab1caa6991b61200b82130e3098e0dcb
from typing import Tuple as tTuple from collections.abc import Iterable from functools import reduce from .sympify import sympify, _sympify, SympifyError from .basic import Basic, Atom from .singleton import S from .evalf import EvalfMixin, pure_complex from .decorators import call_highest_priority, sympify_method_args, sympify_return from .cache import cacheit from .compatibility import as_int, default_sort_key from sympy.utilities.misc import func_name from mpmath.libmp import mpf_log, prec_to_dps from collections import defaultdict @sympify_method_args class Expr(Basic, EvalfMixin): """ Base class for algebraic expressions. Explanation =========== Everything that requires arithmetic operations to be defined should subclass this class, instead of Basic (which should be used only for argument storage and expression manipulation, i.e. pattern matching, substitutions, etc). If you want to override the comparisons of expressions: Should use _eval_is_ge for inequality, or _eval_is_eq, with multiple dispatch. _eval_is_ge return true if x >= y, false if x < y, and None if the two types are not comparable or the comparison is indeterminate See Also ======== sympy.core.basic.Basic """ __slots__ = () # type: tTuple[str, ...] is_scalar = True # self derivative is 1 @property def _diff_wrt(self): """Return True if one can differentiate with respect to this object, else False. Explanation =========== Subclasses such as Symbol, Function and Derivative return True to enable derivatives wrt them. The implementation in Derivative separates the Symbol and non-Symbol (_diff_wrt=True) variables and temporarily converts the non-Symbols into Symbols when performing the differentiation. By default, any object deriving from Expr will behave like a scalar with self.diff(self) == 1. If this is not desired then the object must also set `is_scalar = False` or else define an _eval_derivative routine. Note, see the docstring of Derivative for how this should work mathematically. In particular, note that expr.subs(yourclass, Symbol) should be well-defined on a structural level, or this will lead to inconsistent results. Examples ======== >>> from sympy import Expr >>> e = Expr() >>> e._diff_wrt False >>> class MyScalar(Expr): ... _diff_wrt = True ... >>> MyScalar().diff(MyScalar()) 1 >>> class MySymbol(Expr): ... _diff_wrt = True ... is_scalar = False ... >>> MySymbol().diff(MySymbol()) Derivative(MySymbol(), MySymbol()) """ return False @cacheit def sort_key(self, order=None): coeff, expr = self.as_coeff_Mul() if expr.is_Pow: expr, exp = expr.args else: expr, exp = expr, S.One if expr.is_Dummy: args = (expr.sort_key(),) elif expr.is_Atom: args = (str(expr),) else: if expr.is_Add: args = expr.as_ordered_terms(order=order) elif expr.is_Mul: args = expr.as_ordered_factors(order=order) else: args = expr.args args = tuple( [ default_sort_key(arg, order=order) for arg in args ]) args = (len(args), tuple(args)) exp = exp.sort_key(order=order) return expr.class_key(), args, exp, coeff def __hash__(self) -> int: # hash cannot be cached using cache_it because infinite recurrence # occurs as hash is needed for setting cache dictionary keys h = self._mhash if h is None: h = hash((type(self).__name__,) + self._hashable_content()) self._mhash = h return h def _hashable_content(self): """Return a tuple of information about self that can be used to compute the hash. If a class defines additional attributes, like ``name`` in Symbol, then this method should be updated accordingly to return such relevant attributes. Defining more than _hashable_content is necessary if __eq__ has been defined by a class. See note about this in Basic.__eq__.""" return self._args def __eq__(self, other): try: other = _sympify(other) if not isinstance(other, Expr): return False except (SympifyError, SyntaxError): return False # check for pure number expr if not (self.is_Number and other.is_Number) and ( type(self) != type(other)): return False a, b = self._hashable_content(), other._hashable_content() if a != b: return False # check number *in* an expression for a, b in zip(a, b): if not isinstance(a, Expr): continue if a.is_Number and type(a) != type(b): return False return True # *************** # * Arithmetics * # *************** # Expr and its sublcasses use _op_priority to determine which object # passed to a binary special method (__mul__, etc.) will handle the # operation. In general, the 'call_highest_priority' decorator will choose # the object with the highest _op_priority to handle the call. # Custom subclasses that want to define their own binary special methods # should set an _op_priority value that is higher than the default. # # **NOTE**: # This is a temporary fix, and will eventually be replaced with # something better and more powerful. See issue 5510. _op_priority = 10.0 @property def _add_handler(self): return Add @property def _mul_handler(self): return Mul def __pos__(self): return self def __neg__(self): # Mul has its own __neg__ routine, so we just # create a 2-args Mul with the -1 in the canonical # slot 0. c = self.is_commutative return Mul._from_args((S.NegativeOne, self), c) def __abs__(self): from sympy import Abs return Abs(self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__radd__') def __add__(self, other): return Add(self, other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__add__') def __radd__(self, other): return Add(other, self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rsub__') def __sub__(self, other): return Add(self, -other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__sub__') def __rsub__(self, other): return Add(other, -self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rmul__') def __mul__(self, other): return Mul(self, other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__mul__') def __rmul__(self, other): return Mul(other, self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rpow__') def _pow(self, other): return Pow(self, other) def __pow__(self, other, mod=None): if mod is None: return self._pow(other) try: _self, other, mod = as_int(self), as_int(other), as_int(mod) if other >= 0: return pow(_self, other, mod) else: from sympy.core.numbers import mod_inverse return mod_inverse(pow(_self, -other, mod), mod) except ValueError: power = self._pow(other) try: return power%mod except TypeError: return NotImplemented @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__pow__') def __rpow__(self, other): return Pow(other, self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rtruediv__') def __truediv__(self, other): denom = Pow(other, S.NegativeOne) if self is S.One: return denom else: return Mul(self, denom) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__truediv__') def __rtruediv__(self, other): denom = Pow(self, S.NegativeOne) if other is S.One: return denom else: return Mul(other, denom) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rmod__') def __mod__(self, other): return Mod(self, other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__mod__') def __rmod__(self, other): return Mod(other, self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rfloordiv__') def __floordiv__(self, other): from sympy.functions.elementary.integers import floor return floor(self / other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__floordiv__') def __rfloordiv__(self, other): from sympy.functions.elementary.integers import floor return floor(other / self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rdivmod__') def __divmod__(self, other): from sympy.functions.elementary.integers import floor return floor(self / other), Mod(self, other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__divmod__') def __rdivmod__(self, other): from sympy.functions.elementary.integers import floor return floor(other / self), Mod(other, self) def __int__(self): # Although we only need to round to the units position, we'll # get one more digit so the extra testing below can be avoided # unless the rounded value rounded to an integer, e.g. if an # expression were equal to 1.9 and we rounded to the unit position # we would get a 2 and would not know if this rounded up or not # without doing a test (as done below). But if we keep an extra # digit we know that 1.9 is not the same as 1 and there is no # need for further testing: our int value is correct. If the value # were 1.99, however, this would round to 2.0 and our int value is # off by one. So...if our round value is the same as the int value # (regardless of how much extra work we do to calculate extra decimal # places) we need to test whether we are off by one. from sympy import Dummy if not self.is_number: raise TypeError("can't convert symbols to int") r = self.round(2) if not r.is_Number: raise TypeError("can't convert complex to int") if r in (S.NaN, S.Infinity, S.NegativeInfinity): raise TypeError("can't convert %s to int" % r) i = int(r) if not i: return 0 # off-by-one check if i == r and not (self - i).equals(0): isign = 1 if i > 0 else -1 x = Dummy() # in the following (self - i).evalf(2) will not always work while # (self - r).evalf(2) and the use of subs does; if the test that # was added when this comment was added passes, it might be safe # to simply use sign to compute this rather than doing this by hand: diff_sign = 1 if (self - x).evalf(2, subs={x: i}) > 0 else -1 if diff_sign != isign: i -= isign return i def __float__(self): # Don't bother testing if it's a number; if it's not this is going # to fail, and if it is we still need to check that it evalf'ed to # a number. result = self.evalf() if result.is_Number: return float(result) if result.is_number and result.as_real_imag()[1]: raise TypeError("can't convert complex to float") raise TypeError("can't convert expression to float") def __complex__(self): result = self.evalf() re, im = result.as_real_imag() return complex(float(re), float(im)) @sympify_return([('other', 'Expr')], NotImplemented) def __ge__(self, other): from .relational import GreaterThan return GreaterThan(self, other) @sympify_return([('other', 'Expr')], NotImplemented) def __le__(self, other): from .relational import LessThan return LessThan(self, other) @sympify_return([('other', 'Expr')], NotImplemented) def __gt__(self, other): from .relational import StrictGreaterThan return StrictGreaterThan(self, other) @sympify_return([('other', 'Expr')], NotImplemented) def __lt__(self, other): from .relational import StrictLessThan return StrictLessThan(self, other) def __trunc__(self): if not self.is_number: raise TypeError("can't truncate symbols and expressions") else: return Integer(self) @staticmethod def _from_mpmath(x, prec): from sympy import Float if hasattr(x, "_mpf_"): return Float._new(x._mpf_, prec) elif hasattr(x, "_mpc_"): re, im = x._mpc_ re = Float._new(re, prec) im = Float._new(im, prec)*S.ImaginaryUnit return re + im else: raise TypeError("expected mpmath number (mpf or mpc)") @property def is_number(self): """Returns True if ``self`` has no free symbols and no undefined functions (AppliedUndef, to be precise). It will be faster than ``if not self.free_symbols``, however, since ``is_number`` will fail as soon as it hits a free symbol or undefined function. Examples ======== >>> from sympy import Integral, cos, sin, pi >>> from sympy.core.function import Function >>> from sympy.abc import x >>> f = Function('f') >>> x.is_number False >>> f(1).is_number False >>> (2*x).is_number False >>> (2 + Integral(2, x)).is_number False >>> (2 + Integral(2, (x, 1, 2))).is_number True Not all numbers are Numbers in the SymPy sense: >>> pi.is_number, pi.is_Number (True, False) If something is a number it should evaluate to a number with real and imaginary parts that are Numbers; the result may not be comparable, however, since the real and/or imaginary part of the result may not have precision. >>> cos(1).is_number and cos(1).is_comparable True >>> z = cos(1)**2 + sin(1)**2 - 1 >>> z.is_number True >>> z.is_comparable False See Also ======== sympy.core.basic.Basic.is_comparable """ return all(obj.is_number for obj in self.args) def _random(self, n=None, re_min=-1, im_min=-1, re_max=1, im_max=1): """Return self evaluated, if possible, replacing free symbols with random complex values, if necessary. Explanation =========== The random complex value for each free symbol is generated by the random_complex_number routine giving real and imaginary parts in the range given by the re_min, re_max, im_min, and im_max values. The returned value is evaluated to a precision of n (if given) else the maximum of 15 and the precision needed to get more than 1 digit of precision. If the expression could not be evaluated to a number, or could not be evaluated to more than 1 digit of precision, then None is returned. Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x, y >>> x._random() # doctest: +SKIP 0.0392918155679172 + 0.916050214307199*I >>> x._random(2) # doctest: +SKIP -0.77 - 0.87*I >>> (x + y/2)._random(2) # doctest: +SKIP -0.57 + 0.16*I >>> sqrt(2)._random(2) 1.4 See Also ======== sympy.testing.randtest.random_complex_number """ free = self.free_symbols prec = 1 if free: from sympy.testing.randtest import random_complex_number a, c, b, d = re_min, re_max, im_min, im_max reps = dict(list(zip(free, [random_complex_number(a, b, c, d, rational=True) for zi in free]))) try: nmag = abs(self.evalf(2, subs=reps)) except (ValueError, TypeError): # if an out of range value resulted in evalf problems # then return None -- XXX is there a way to know how to # select a good random number for a given expression? # e.g. when calculating n! negative values for n should not # be used return None else: reps = {} nmag = abs(self.evalf(2)) if not hasattr(nmag, '_prec'): # e.g. exp_polar(2*I*pi) doesn't evaluate but is_number is True return None if nmag._prec == 1: # increase the precision up to the default maximum # precision to see if we can get any significance from mpmath.libmp.libintmath import giant_steps from sympy.core.evalf import DEFAULT_MAXPREC as target # evaluate for prec in giant_steps(2, target): nmag = abs(self.evalf(prec, subs=reps)) if nmag._prec != 1: break if nmag._prec != 1: if n is None: n = max(prec, 15) return self.evalf(n, subs=reps) # never got any significance return None def is_constant(self, *wrt, **flags): """Return True if self is constant, False if not, or None if the constancy could not be determined conclusively. Explanation =========== If an expression has no free symbols then it is a constant. If there are free symbols it is possible that the expression is a constant, perhaps (but not necessarily) zero. To test such expressions, a few strategies are tried: 1) numerical evaluation at two random points. If two such evaluations give two different values and the values have a precision greater than 1 then self is not constant. If the evaluations agree or could not be obtained with any precision, no decision is made. The numerical testing is done only if ``wrt`` is different than the free symbols. 2) differentiation with respect to variables in 'wrt' (or all free symbols if omitted) to see if the expression is constant or not. This will not always lead to an expression that is zero even though an expression is constant (see added test in test_expr.py). If all derivatives are zero then self is constant with respect to the given symbols. 3) finding out zeros of denominator expression with free_symbols. It won't be constant if there are zeros. It gives more negative answers for expression that are not constant. If neither evaluation nor differentiation can prove the expression is constant, None is returned unless two numerical values happened to be the same and the flag ``failing_number`` is True -- in that case the numerical value will be returned. If flag simplify=False is passed, self will not be simplified; the default is True since self should be simplified before testing. Examples ======== >>> from sympy import cos, sin, Sum, S, pi >>> from sympy.abc import a, n, x, y >>> x.is_constant() False >>> S(2).is_constant() True >>> Sum(x, (x, 1, 10)).is_constant() True >>> Sum(x, (x, 1, n)).is_constant() False >>> Sum(x, (x, 1, n)).is_constant(y) True >>> Sum(x, (x, 1, n)).is_constant(n) False >>> Sum(x, (x, 1, n)).is_constant(x) True >>> eq = a*cos(x)**2 + a*sin(x)**2 - a >>> eq.is_constant() True >>> eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0 True >>> (0**x).is_constant() False >>> x.is_constant() False >>> (x**x).is_constant() False >>> one = cos(x)**2 + sin(x)**2 >>> one.is_constant() True >>> ((one - 1)**(x + 1)).is_constant() in (True, False) # could be 0 or 1 True """ def check_denominator_zeros(expression): from sympy.solvers.solvers import denoms retNone = False for den in denoms(expression): z = den.is_zero if z is True: return True if z is None: retNone = True if retNone: return None return False simplify = flags.get('simplify', True) if self.is_number: return True free = self.free_symbols if not free: return True # assume f(1) is some constant # if we are only interested in some symbols and they are not in the # free symbols then this expression is constant wrt those symbols wrt = set(wrt) if wrt and not wrt & free: return True wrt = wrt or free # simplify unless this has already been done expr = self if simplify: expr = expr.simplify() # is_zero should be a quick assumptions check; it can be wrong for # numbers (see test_is_not_constant test), giving False when it # shouldn't, but hopefully it will never give True unless it is sure. if expr.is_zero: return True # try numerical evaluation to see if we get two different values failing_number = None if wrt == free: # try 0 (for a) and 1 (for b) try: a = expr.subs(list(zip(free, [0]*len(free))), simultaneous=True) if a is S.NaN: # evaluation may succeed when substitution fails a = expr._random(None, 0, 0, 0, 0) except ZeroDivisionError: a = None if a is not None and a is not S.NaN: try: b = expr.subs(list(zip(free, [1]*len(free))), simultaneous=True) if b is S.NaN: # evaluation may succeed when substitution fails b = expr._random(None, 1, 0, 1, 0) except ZeroDivisionError: b = None if b is not None and b is not S.NaN and b.equals(a) is False: return False # try random real b = expr._random(None, -1, 0, 1, 0) if b is not None and b is not S.NaN and b.equals(a) is False: return False # try random complex b = expr._random() if b is not None and b is not S.NaN: if b.equals(a) is False: return False failing_number = a if a.is_number else b # now we will test each wrt symbol (or all free symbols) to see if the # expression depends on them or not using differentiation. This is # not sufficient for all expressions, however, so we don't return # False if we get a derivative other than 0 with free symbols. for w in wrt: deriv = expr.diff(w) if simplify: deriv = deriv.simplify() if deriv != 0: if not (pure_complex(deriv, or_real=True)): if flags.get('failing_number', False): return failing_number elif deriv.free_symbols: # dead line provided _random returns None in such cases return None return False cd = check_denominator_zeros(self) if cd is True: return False elif cd is None: return None return True def equals(self, other, failing_expression=False): """Return True if self == other, False if it doesn't, or None. If failing_expression is True then the expression which did not simplify to a 0 will be returned instead of None. Explanation =========== If ``self`` is a Number (or complex number) that is not zero, then the result is False. If ``self`` is a number and has not evaluated to zero, evalf will be used to test whether the expression evaluates to zero. If it does so and the result has significance (i.e. the precision is either -1, for a Rational result, or is greater than 1) then the evalf value will be used to return True or False. """ from sympy.simplify.simplify import nsimplify, simplify from sympy.solvers.solvers import solve from sympy.polys.polyerrors import NotAlgebraic from sympy.polys.numberfields import minimal_polynomial other = sympify(other) if self == other: return True # they aren't the same so see if we can make the difference 0; # don't worry about doing simplification steps one at a time # because if the expression ever goes to 0 then the subsequent # simplification steps that are done will be very fast. diff = factor_terms(simplify(self - other), radical=True) if not diff: return True if not diff.has(Add, Mod): # if there is no expanding to be done after simplifying # then this can't be a zero return False constant = diff.is_constant(simplify=False, failing_number=True) if constant is False: return False if not diff.is_number: if constant is None: # e.g. unless the right simplification is done, a symbolic # zero is possible (see expression of issue 6829: without # simplification constant will be None). return if constant is True: # this gives a number whether there are free symbols or not ndiff = diff._random() # is_comparable will work whether the result is real # or complex; it could be None, however. if ndiff and ndiff.is_comparable: return False # sometimes we can use a simplified result to give a clue as to # what the expression should be; if the expression is *not* zero # then we should have been able to compute that and so now # we can just consider the cases where the approximation appears # to be zero -- we try to prove it via minimal_polynomial. # # removed # ns = nsimplify(diff) # if diff.is_number and (not ns or ns == diff): # # The thought was that if it nsimplifies to 0 that's a sure sign # to try the following to prove it; or if it changed but wasn't # zero that might be a sign that it's not going to be easy to # prove. But tests seem to be working without that logic. # if diff.is_number: # try to prove via self-consistency surds = [s for s in diff.atoms(Pow) if s.args[0].is_Integer] # it seems to work better to try big ones first surds.sort(key=lambda x: -x.args[0]) for s in surds: try: # simplify is False here -- this expression has already # been identified as being hard to identify as zero; # we will handle the checking ourselves using nsimplify # to see if we are in the right ballpark or not and if so # *then* the simplification will be attempted. sol = solve(diff, s, simplify=False) if sol: if s in sol: # the self-consistent result is present return True if all(si.is_Integer for si in sol): # perfect powers are removed at instantiation # so surd s cannot be an integer return False if all(i.is_algebraic is False for i in sol): # a surd is algebraic return False if any(si in surds for si in sol): # it wasn't equal to s but it is in surds # and different surds are not equal return False if any(nsimplify(s - si) == 0 and simplify(s - si) == 0 for si in sol): return True if s.is_real: if any(nsimplify(si, [s]) == s and simplify(si) == s for si in sol): return True except NotImplementedError: pass # try to prove with minimal_polynomial but know when # *not* to use this or else it can take a long time. e.g. issue 8354 if True: # change True to condition that assures non-hang try: mp = minimal_polynomial(diff) if mp.is_Symbol: return True return False except (NotAlgebraic, NotImplementedError): pass # diff has not simplified to zero; constant is either None, True # or the number with significance (is_comparable) that was randomly # calculated twice as the same value. if constant not in (True, None) and constant != 0: return False if failing_expression: return diff return None def _eval_is_positive(self): finite = self.is_finite if finite is False: return False extended_positive = self.is_extended_positive if finite is True: return extended_positive if extended_positive is False: return False def _eval_is_negative(self): finite = self.is_finite if finite is False: return False extended_negative = self.is_extended_negative if finite is True: return extended_negative if extended_negative is False: return False def _eval_is_extended_positive_negative(self, positive): from sympy.core.numbers import pure_complex from sympy.polys.numberfields import minimal_polynomial from sympy.polys.polyerrors import NotAlgebraic if self.is_number: if self.is_extended_real is False: return False # check to see that we can get a value try: n2 = self._eval_evalf(2) # XXX: This shouldn't be caught here # Catches ValueError: hypsum() failed to converge to the requested # 34 bits of accuracy except ValueError: return None if n2 is None: return None if getattr(n2, '_prec', 1) == 1: # no significance return None if n2 is S.NaN: return None f = self.evalf(2) if f.is_Float: match = f, S.Zero else: match = pure_complex(f) if match is None: return False r, i = match if not (i.is_Number and r.is_Number): return False if r._prec != 1 and i._prec != 1: return bool(not i and ((r > 0) if positive else (r < 0))) elif r._prec == 1 and (not i or i._prec == 1) and \ self.is_algebraic and not self.has(Function): try: if minimal_polynomial(self).is_Symbol: return False except (NotAlgebraic, NotImplementedError): pass def _eval_is_extended_positive(self): return self._eval_is_extended_positive_negative(positive=True) def _eval_is_extended_negative(self): return self._eval_is_extended_positive_negative(positive=False) def _eval_interval(self, x, a, b): """ Returns evaluation over an interval. For most functions this is: self.subs(x, b) - self.subs(x, a), possibly using limit() if NaN is returned from subs, or if singularities are found between a and b. If b or a is None, it only evaluates -self.subs(x, a) or self.subs(b, x), respectively. """ from sympy.series import limit, Limit from sympy.solvers.solveset import solveset from sympy.sets.sets import Interval from sympy.functions.elementary.exponential import log from sympy.calculus.util import AccumBounds if (a is None and b is None): raise ValueError('Both interval ends cannot be None.') def _eval_endpoint(left): c = a if left else b if c is None: return 0 else: C = self.subs(x, c) if C.has(S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity, AccumBounds): if (a < b) != False: C = limit(self, x, c, "+" if left else "-") else: C = limit(self, x, c, "-" if left else "+") if isinstance(C, Limit): raise NotImplementedError("Could not compute limit") return C if a == b: return 0 A = _eval_endpoint(left=True) if A is S.NaN: return A B = _eval_endpoint(left=False) if (a and b) is None: return B - A value = B - A if a.is_comparable and b.is_comparable: if a < b: domain = Interval(a, b) else: domain = Interval(b, a) # check the singularities of self within the interval # if singularities is a ConditionSet (not iterable), catch the exception and pass singularities = solveset(self.cancel().as_numer_denom()[1], x, domain=domain) for logterm in self.atoms(log): singularities = singularities | solveset(logterm.args[0], x, domain=domain) try: for s in singularities: if value is S.NaN: # no need to keep adding, it will stay NaN break if not s.is_comparable: continue if (a < s) == (s < b) == True: value += -limit(self, x, s, "+") + limit(self, x, s, "-") elif (b < s) == (s < a) == True: value += limit(self, x, s, "+") - limit(self, x, s, "-") except TypeError: pass return value def _eval_power(self, other): # subclass to compute self**other for cases when # other is not NaN, 0, or 1 return None def _eval_conjugate(self): if self.is_extended_real: return self elif self.is_imaginary: return -self def conjugate(self): """Returns the complex conjugate of 'self'.""" from sympy.functions.elementary.complexes import conjugate as c return c(self) def dir(self, x, cdir): from sympy import log minexp = S.Zero if self.is_zero: return S.Zero arg = self while arg: minexp += S.One arg = arg.diff(x) coeff = arg.subs(x, 0) if coeff in (S.NaN, S.ComplexInfinity): try: coeff, _ = arg.leadterm(x) if coeff.has(log(x)): raise ValueError() except ValueError: coeff = arg.limit(x, 0) if coeff != S.Zero: break return coeff*cdir**minexp def _eval_transpose(self): from sympy.functions.elementary.complexes import conjugate if (self.is_complex or self.is_infinite): return self elif self.is_hermitian: return conjugate(self) elif self.is_antihermitian: return -conjugate(self) def transpose(self): from sympy.functions.elementary.complexes import transpose return transpose(self) def _eval_adjoint(self): from sympy.functions.elementary.complexes import conjugate, transpose if self.is_hermitian: return self elif self.is_antihermitian: return -self obj = self._eval_conjugate() if obj is not None: return transpose(obj) obj = self._eval_transpose() if obj is not None: return conjugate(obj) def adjoint(self): from sympy.functions.elementary.complexes import adjoint return adjoint(self) @classmethod def _parse_order(cls, order): """Parse and configure the ordering of terms. """ from sympy.polys.orderings import monomial_key startswith = getattr(order, "startswith", None) if startswith is None: reverse = False else: reverse = startswith('rev-') if reverse: order = order[4:] monom_key = monomial_key(order) def neg(monom): result = [] for m in monom: if isinstance(m, tuple): result.append(neg(m)) else: result.append(-m) return tuple(result) def key(term): _, ((re, im), monom, ncpart) = term monom = neg(monom_key(monom)) ncpart = tuple([e.sort_key(order=order) for e in ncpart]) coeff = ((bool(im), im), (re, im)) return monom, ncpart, coeff return key, reverse def as_ordered_factors(self, order=None): """Return list of ordered factors (if Mul) else [self].""" return [self] def as_poly(self, *gens, **args): """Converts ``self`` to a polynomial or returns ``None``. Explanation =========== >>> from sympy import sin >>> from sympy.abc import x, y >>> print((x**2 + x*y).as_poly()) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + x*y).as_poly(x, y)) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + sin(y)).as_poly(x, y)) None """ from sympy.polys import Poly, PolynomialError try: poly = Poly(self, *gens, **args) if not poly.is_Poly: return None else: return poly except PolynomialError: return None def as_ordered_terms(self, order=None, data=False): """ Transform an expression to an ordered list of terms. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x >>> (sin(x)**2*cos(x) + sin(x)**2 + 1).as_ordered_terms() [sin(x)**2*cos(x), sin(x)**2, 1] """ from .numbers import Number, NumberSymbol if order is None and self.is_Add: # Spot the special case of Add(Number, Mul(Number, expr)) with the # first number positive and thhe second number nagative key = lambda x:not isinstance(x, (Number, NumberSymbol)) add_args = sorted(Add.make_args(self), key=key) if (len(add_args) == 2 and isinstance(add_args[0], (Number, NumberSymbol)) and isinstance(add_args[1], Mul)): mul_args = sorted(Mul.make_args(add_args[1]), key=key) if (len(mul_args) == 2 and isinstance(mul_args[0], Number) and add_args[0].is_positive and mul_args[0].is_negative): return add_args key, reverse = self._parse_order(order) terms, gens = self.as_terms() if not any(term.is_Order for term, _ in terms): ordered = sorted(terms, key=key, reverse=reverse) else: _terms, _order = [], [] for term, repr in terms: if not term.is_Order: _terms.append((term, repr)) else: _order.append((term, repr)) ordered = sorted(_terms, key=key, reverse=True) \ + sorted(_order, key=key, reverse=True) if data: return ordered, gens else: return [term for term, _ in ordered] def as_terms(self): """Transform an expression to a list of terms. """ from .add import Add from .mul import Mul from .exprtools import decompose_power gens, terms = set(), [] for term in Add.make_args(self): coeff, _term = term.as_coeff_Mul() coeff = complex(coeff) cpart, ncpart = {}, [] if _term is not S.One: for factor in Mul.make_args(_term): if factor.is_number: try: coeff *= complex(factor) except (TypeError, ValueError): pass else: continue if factor.is_commutative: base, exp = decompose_power(factor) cpart[base] = exp gens.add(base) else: ncpart.append(factor) coeff = coeff.real, coeff.imag ncpart = tuple(ncpart) terms.append((term, (coeff, cpart, ncpart))) gens = sorted(gens, key=default_sort_key) k, indices = len(gens), {} for i, g in enumerate(gens): indices[g] = i result = [] for term, (coeff, cpart, ncpart) in terms: monom = [0]*k for base, exp in cpart.items(): monom[indices[base]] = exp result.append((term, (coeff, tuple(monom), ncpart))) return result, gens def removeO(self): """Removes the additive O(..) symbol if there is one""" return self def getO(self): """Returns the additive O(..) symbol if there is one, else None.""" return None def getn(self): """ Returns the order of the expression. Explanation =========== The order is determined either from the O(...) term. If there is no O(...) term, it returns None. Examples ======== >>> from sympy import O >>> from sympy.abc import x >>> (1 + x + O(x**2)).getn() 2 >>> (1 + x).getn() """ from sympy import Dummy, Symbol o = self.getO() if o is None: return None elif o.is_Order: o = o.expr if o is S.One: return S.Zero if o.is_Symbol: return S.One if o.is_Pow: return o.args[1] if o.is_Mul: # x**n*log(x)**n or x**n/log(x)**n for oi in o.args: if oi.is_Symbol: return S.One if oi.is_Pow: syms = oi.atoms(Symbol) if len(syms) == 1: x = syms.pop() oi = oi.subs(x, Dummy('x', positive=True)) if oi.base.is_Symbol and oi.exp.is_Rational: return abs(oi.exp) raise NotImplementedError('not sure of order of %s' % o) def count_ops(self, visual=None): """wrapper for count_ops that returns the operation count.""" from .function import count_ops return count_ops(self, visual) def args_cnc(self, cset=False, warn=True, split_1=True): """Return [commutative factors, non-commutative factors] of self. Explanation =========== self is treated as a Mul and the ordering of the factors is maintained. If ``cset`` is True the commutative factors will be returned in a set. If there were repeated factors (as may happen with an unevaluated Mul) then an error will be raised unless it is explicitly suppressed by setting ``warn`` to False. Note: -1 is always separated from a Number unless split_1 is False. Examples ======== >>> from sympy import symbols, oo >>> A, B = symbols('A B', commutative=0) >>> x, y = symbols('x y') >>> (-2*x*y).args_cnc() [[-1, 2, x, y], []] >>> (-2.5*x).args_cnc() [[-1, 2.5, x], []] >>> (-2*x*A*B*y).args_cnc() [[-1, 2, x, y], [A, B]] >>> (-2*x*A*B*y).args_cnc(split_1=False) [[-2, x, y], [A, B]] >>> (-2*x*y).args_cnc(cset=True) [{-1, 2, x, y}, []] The arg is always treated as a Mul: >>> (-2 + x + A).args_cnc() [[], [x - 2 + A]] >>> (-oo).args_cnc() # -oo is a singleton [[-1, oo], []] """ if self.is_Mul: args = list(self.args) else: args = [self] for i, mi in enumerate(args): if not mi.is_commutative: c = args[:i] nc = args[i:] break else: c = args nc = [] if c and split_1 and ( c[0].is_Number and c[0].is_extended_negative and c[0] is not S.NegativeOne): c[:1] = [S.NegativeOne, -c[0]] if cset: clen = len(c) c = set(c) if clen and warn and len(c) != clen: raise ValueError('repeated commutative arguments: %s' % [ci for ci in c if list(self.args).count(ci) > 1]) return [c, nc] def coeff(self, x, n=1, right=False): """ Returns the coefficient from the term(s) containing ``x**n``. If ``n`` is zero then all terms independent of ``x`` will be returned. Explanation =========== When ``x`` is noncommutative, the coefficient to the left (default) or right of ``x`` can be returned. The keyword 'right' is ignored when ``x`` is commutative. Examples ======== >>> from sympy import symbols >>> from sympy.abc import x, y, z You can select terms that have an explicit negative in front of them: >>> (-x + 2*y).coeff(-1) x >>> (x - 2*y).coeff(-1) 2*y You can select terms with no Rational coefficient: >>> (x + 2*y).coeff(1) x >>> (3 + 2*x + 4*x**2).coeff(1) 0 You can select terms independent of x by making n=0; in this case expr.as_independent(x)[0] is returned (and 0 will be returned instead of None): >>> (3 + 2*x + 4*x**2).coeff(x, 0) 3 >>> eq = ((x + 1)**3).expand() + 1 >>> eq x**3 + 3*x**2 + 3*x + 2 >>> [eq.coeff(x, i) for i in reversed(range(4))] [1, 3, 3, 2] >>> eq -= 2 >>> [eq.coeff(x, i) for i in reversed(range(4))] [1, 3, 3, 0] You can select terms that have a numerical term in front of them: >>> (-x - 2*y).coeff(2) -y >>> from sympy import sqrt >>> (x + sqrt(2)*x).coeff(sqrt(2)) x The matching is exact: >>> (3 + 2*x + 4*x**2).coeff(x) 2 >>> (3 + 2*x + 4*x**2).coeff(x**2) 4 >>> (3 + 2*x + 4*x**2).coeff(x**3) 0 >>> (z*(x + y)**2).coeff((x + y)**2) z >>> (z*(x + y)**2).coeff(x + y) 0 In addition, no factoring is done, so 1 + z*(1 + y) is not obtained from the following: >>> (x + z*(x + x*y)).coeff(x) 1 If such factoring is desired, factor_terms can be used first: >>> from sympy import factor_terms >>> factor_terms(x + z*(x + x*y)).coeff(x) z*(y + 1) + 1 >>> n, m, o = symbols('n m o', commutative=False) >>> n.coeff(n) 1 >>> (3*n).coeff(n) 3 >>> (n*m + m*n*m).coeff(n) # = (1 + m)*n*m 1 + m >>> (n*m + m*n*m).coeff(n, right=True) # = (1 + m)*n*m m If there is more than one possible coefficient 0 is returned: >>> (n*m + m*n).coeff(n) 0 If there is only one possible coefficient, it is returned: >>> (n*m + x*m*n).coeff(m*n) x >>> (n*m + x*m*n).coeff(m*n, right=1) 1 See Also ======== as_coefficient: separate the expression into a coefficient and factor as_coeff_Add: separate the additive constant from an expression as_coeff_Mul: separate the multiplicative constant from an expression as_independent: separate x-dependent terms/factors from others sympy.polys.polytools.Poly.coeff_monomial: efficiently find the single coefficient of a monomial in Poly sympy.polys.polytools.Poly.nth: like coeff_monomial but powers of monomial terms are used """ x = sympify(x) if not isinstance(x, Basic): return S.Zero n = as_int(n) if not x: return S.Zero if x == self: if n == 1: return S.One return S.Zero if x is S.One: co = [a for a in Add.make_args(self) if a.as_coeff_Mul()[0] is S.One] if not co: return S.Zero return Add(*co) if n == 0: if x.is_Add and self.is_Add: c = self.coeff(x, right=right) if not c: return S.Zero if not right: return self - Add(*[a*x for a in Add.make_args(c)]) return self - Add(*[x*a for a in Add.make_args(c)]) return self.as_independent(x, as_Add=True)[0] # continue with the full method, looking for this power of x: x = x**n def incommon(l1, l2): if not l1 or not l2: return [] n = min(len(l1), len(l2)) for i in range(n): if l1[i] != l2[i]: return l1[:i] return l1[:] def find(l, sub, first=True): """ Find where list sub appears in list l. When ``first`` is True the first occurrence from the left is returned, else the last occurrence is returned. Return None if sub is not in l. Examples ======== >> l = range(5)*2 >> find(l, [2, 3]) 2 >> find(l, [2, 3], first=0) 7 >> find(l, [2, 4]) None """ if not sub or not l or len(sub) > len(l): return None n = len(sub) if not first: l.reverse() sub.reverse() for i in range(0, len(l) - n + 1): if all(l[i + j] == sub[j] for j in range(n)): break else: i = None if not first: l.reverse() sub.reverse() if i is not None and not first: i = len(l) - (i + n) return i co = [] args = Add.make_args(self) self_c = self.is_commutative x_c = x.is_commutative if self_c and not x_c: return S.Zero one_c = self_c or x_c xargs, nx = x.args_cnc(cset=True, warn=bool(not x_c)) # find the parts that pass the commutative terms for a in args: margs, nc = a.args_cnc(cset=True, warn=bool(not self_c)) if nc is None: nc = [] if len(xargs) > len(margs): continue resid = margs.difference(xargs) if len(resid) + len(xargs) == len(margs): if one_c: co.append(Mul(*(list(resid) + nc))) else: co.append((resid, nc)) if one_c: if co == []: return S.Zero elif co: return Add(*co) else: # both nc # now check the non-comm parts if not co: return S.Zero if all(n == co[0][1] for r, n in co): ii = find(co[0][1], nx, right) if ii is not None: if not right: return Mul(Add(*[Mul(*r) for r, c in co]), Mul(*co[0][1][:ii])) else: return Mul(*co[0][1][ii + len(nx):]) beg = reduce(incommon, (n[1] for n in co)) if beg: ii = find(beg, nx, right) if ii is not None: if not right: gcdc = co[0][0] for i in range(1, len(co)): gcdc = gcdc.intersection(co[i][0]) if not gcdc: break return Mul(*(list(gcdc) + beg[:ii])) else: m = ii + len(nx) return Add(*[Mul(*(list(r) + n[m:])) for r, n in co]) end = list(reversed( reduce(incommon, (list(reversed(n[1])) for n in co)))) if end: ii = find(end, nx, right) if ii is not None: if not right: return Add(*[Mul(*(list(r) + n[:-len(end) + ii])) for r, n in co]) else: return Mul(*end[ii + len(nx):]) # look for single match hit = None for i, (r, n) in enumerate(co): ii = find(n, nx, right) if ii is not None: if not hit: hit = ii, r, n else: break else: if hit: ii, r, n = hit if not right: return Mul(*(list(r) + n[:ii])) else: return Mul(*n[ii + len(nx):]) return S.Zero def as_expr(self, *gens): """ Convert a polynomial to a SymPy expression. Examples ======== >>> from sympy import sin >>> from sympy.abc import x, y >>> f = (x**2 + x*y).as_poly(x, y) >>> f.as_expr() x**2 + x*y >>> sin(x).as_expr() sin(x) """ return self def as_coefficient(self, expr): """ Extracts symbolic coefficient at the given expression. In other words, this functions separates 'self' into the product of 'expr' and 'expr'-free coefficient. If such separation is not possible it will return None. Examples ======== >>> from sympy import E, pi, sin, I, Poly >>> from sympy.abc import x >>> E.as_coefficient(E) 1 >>> (2*E).as_coefficient(E) 2 >>> (2*sin(E)*E).as_coefficient(E) Two terms have E in them so a sum is returned. (If one were desiring the coefficient of the term exactly matching E then the constant from the returned expression could be selected. Or, for greater precision, a method of Poly can be used to indicate the desired term from which the coefficient is desired.) >>> (2*E + x*E).as_coefficient(E) x + 2 >>> _.args[0] # just want the exact match 2 >>> p = Poly(2*E + x*E); p Poly(x*E + 2*E, x, E, domain='ZZ') >>> p.coeff_monomial(E) 2 >>> p.nth(0, 1) 2 Since the following cannot be written as a product containing E as a factor, None is returned. (If the coefficient ``2*x`` is desired then the ``coeff`` method should be used.) >>> (2*E*x + x).as_coefficient(E) >>> (2*E*x + x).coeff(E) 2*x >>> (E*(x + 1) + x).as_coefficient(E) >>> (2*pi*I).as_coefficient(pi*I) 2 >>> (2*I).as_coefficient(pi*I) See Also ======== coeff: return sum of terms have a given factor as_coeff_Add: separate the additive constant from an expression as_coeff_Mul: separate the multiplicative constant from an expression as_independent: separate x-dependent terms/factors from others sympy.polys.polytools.Poly.coeff_monomial: efficiently find the single coefficient of a monomial in Poly sympy.polys.polytools.Poly.nth: like coeff_monomial but powers of monomial terms are used """ r = self.extract_multiplicatively(expr) if r and not r.has(expr): return r def as_independent(self, *deps, **hint): """ A mostly naive separation of a Mul or Add into arguments that are not are dependent on deps. To obtain as complete a separation of variables as possible, use a separation method first, e.g.: * separatevars() to change Mul, Add and Pow (including exp) into Mul * .expand(mul=True) to change Add or Mul into Add * .expand(log=True) to change log expr into an Add The only non-naive thing that is done here is to respect noncommutative ordering of variables and to always return (0, 0) for `self` of zero regardless of hints. For nonzero `self`, the returned tuple (i, d) has the following interpretation: * i will has no variable that appears in deps * d will either have terms that contain variables that are in deps, or be equal to 0 (when self is an Add) or 1 (when self is a Mul) * if self is an Add then self = i + d * if self is a Mul then self = i*d * otherwise (self, S.One) or (S.One, self) is returned. To force the expression to be treated as an Add, use the hint as_Add=True Examples ======== -- self is an Add >>> from sympy import sin, cos, exp >>> from sympy.abc import x, y, z >>> (x + x*y).as_independent(x) (0, x*y + x) >>> (x + x*y).as_independent(y) (x, x*y) >>> (2*x*sin(x) + y + x + z).as_independent(x) (y + z, 2*x*sin(x) + x) >>> (2*x*sin(x) + y + x + z).as_independent(x, y) (z, 2*x*sin(x) + x + y) -- self is a Mul >>> (x*sin(x)*cos(y)).as_independent(x) (cos(y), x*sin(x)) non-commutative terms cannot always be separated out when self is a Mul >>> from sympy import symbols >>> n1, n2, n3 = symbols('n1 n2 n3', commutative=False) >>> (n1 + n1*n2).as_independent(n2) (n1, n1*n2) >>> (n2*n1 + n1*n2).as_independent(n2) (0, n1*n2 + n2*n1) >>> (n1*n2*n3).as_independent(n1) (1, n1*n2*n3) >>> (n1*n2*n3).as_independent(n2) (n1, n2*n3) >>> ((x-n1)*(x-y)).as_independent(x) (1, (x - y)*(x - n1)) -- self is anything else: >>> (sin(x)).as_independent(x) (1, sin(x)) >>> (sin(x)).as_independent(y) (sin(x), 1) >>> exp(x+y).as_independent(x) (1, exp(x + y)) -- force self to be treated as an Add: >>> (3*x).as_independent(x, as_Add=True) (0, 3*x) -- force self to be treated as a Mul: >>> (3+x).as_independent(x, as_Add=False) (1, x + 3) >>> (-3+x).as_independent(x, as_Add=False) (1, x - 3) Note how the below differs from the above in making the constant on the dep term positive. >>> (y*(-3+x)).as_independent(x) (y, x - 3) -- use .as_independent() for true independence testing instead of .has(). The former considers only symbols in the free symbols while the latter considers all symbols >>> from sympy import Integral >>> I = Integral(x, (x, 1, 2)) >>> I.has(x) True >>> x in I.free_symbols False >>> I.as_independent(x) == (I, 1) True >>> (I + x).as_independent(x) == (I, x) True Note: when trying to get independent terms, a separation method might need to be used first. In this case, it is important to keep track of what you send to this routine so you know how to interpret the returned values >>> from sympy import separatevars, log >>> separatevars(exp(x+y)).as_independent(x) (exp(y), exp(x)) >>> (x + x*y).as_independent(y) (x, x*y) >>> separatevars(x + x*y).as_independent(y) (x, y + 1) >>> (x*(1 + y)).as_independent(y) (x, y + 1) >>> (x*(1 + y)).expand(mul=True).as_independent(y) (x, x*y) >>> a, b=symbols('a b', positive=True) >>> (log(a*b).expand(log=True)).as_independent(b) (log(a), log(b)) See Also ======== .separatevars(), .expand(log=True), sympy.core.add.Add.as_two_terms(), sympy.core.mul.Mul.as_two_terms(), .as_coeff_add(), .as_coeff_mul() """ from .symbol import Symbol from .add import _unevaluated_Add from .mul import _unevaluated_Mul from sympy.utilities.iterables import sift if self.is_zero: return S.Zero, S.Zero func = self.func if hint.get('as_Add', isinstance(self, Add) ): want = Add else: want = Mul # sift out deps into symbolic and other and ignore # all symbols but those that are in the free symbols sym = set() other = [] for d in deps: if isinstance(d, Symbol): # Symbol.is_Symbol is True sym.add(d) else: other.append(d) def has(e): """return the standard has() if there are no literal symbols, else check to see that symbol-deps are in the free symbols.""" has_other = e.has(*other) if not sym: return has_other return has_other or e.has(*(e.free_symbols & sym)) if (want is not func or func is not Add and func is not Mul): if has(self): return (want.identity, self) else: return (self, want.identity) else: if func is Add: args = list(self.args) else: args, nc = self.args_cnc() d = sift(args, lambda x: has(x)) depend = d[True] indep = d[False] if func is Add: # all terms were treated as commutative return (Add(*indep), _unevaluated_Add(*depend)) else: # handle noncommutative by stopping at first dependent term for i, n in enumerate(nc): if has(n): depend.extend(nc[i:]) break indep.append(n) return Mul(*indep), ( Mul(*depend, evaluate=False) if nc else _unevaluated_Mul(*depend)) def as_real_imag(self, deep=True, **hints): """Performs complex expansion on 'self' and returns a tuple containing collected both real and imaginary parts. This method can't be confused with re() and im() functions, which does not perform complex expansion at evaluation. However it is possible to expand both re() and im() functions and get exactly the same results as with a single call to this function. >>> from sympy import symbols, I >>> x, y = symbols('x,y', real=True) >>> (x + y*I).as_real_imag() (x, y) >>> from sympy.abc import z, w >>> (z + w*I).as_real_imag() (re(z) - im(w), re(w) + im(z)) """ from sympy import im, re if hints.get('ignore') == self: return None else: return (re(self), im(self)) def as_powers_dict(self): """Return self as a dictionary of factors with each factor being treated as a power. The keys are the bases of the factors and the values, the corresponding exponents. The resulting dictionary should be used with caution if the expression is a Mul and contains non- commutative factors since the order that they appeared will be lost in the dictionary. See Also ======== as_ordered_factors: An alternative for noncommutative applications, returning an ordered list of factors. args_cnc: Similar to as_ordered_factors, but guarantees separation of commutative and noncommutative factors. """ d = defaultdict(int) d.update(dict([self.as_base_exp()])) return d def as_coefficients_dict(self): """Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. If an expression is not an Add it is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*x + a*x + 4).as_coefficients_dict() {1: 4, x: 3, a*x: 1} >>> _[a] 0 >>> (3*a*x).as_coefficients_dict() {a*x: 3} """ c, m = self.as_coeff_Mul() if not c.is_Rational: c = S.One m = self d = defaultdict(int) d.update({m: c}) return d def as_base_exp(self): # a -> b ** e return self, S.One def as_coeff_mul(self, *deps, **kwargs): """Return the tuple (c, args) where self is written as a Mul, ``m``. c should be a Rational multiplied by any factors of the Mul that are independent of deps. args should be a tuple of all other factors of m; args is empty if self is a Number or if self is independent of deps (when given). This should be used when you don't know if self is a Mul or not but you want to treat self as a Mul or if you want to process the individual arguments of the tail of self as a Mul. - if you know self is a Mul and want only the head, use self.args[0]; - if you don't want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail; - if you want to split self into an independent and dependent parts use ``self.as_independent(*deps)`` >>> from sympy import S >>> from sympy.abc import x, y >>> (S(3)).as_coeff_mul() (3, ()) >>> (3*x*y).as_coeff_mul() (3, (x, y)) >>> (3*x*y).as_coeff_mul(x) (3*y, (x,)) >>> (3*y).as_coeff_mul(x) (3*y, ()) """ if deps: if not self.has(*deps): return self, tuple() return S.One, (self,) def as_coeff_add(self, *deps): """Return the tuple (c, args) where self is written as an Add, ``a``. c should be a Rational added to any terms of the Add that are independent of deps. args should be a tuple of all other terms of ``a``; args is empty if self is a Number or if self is independent of deps (when given). This should be used when you don't know if self is an Add or not but you want to treat self as an Add or if you want to process the individual arguments of the tail of self as an Add. - if you know self is an Add and want only the head, use self.args[0]; - if you don't want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail. - if you want to split self into an independent and dependent parts use ``self.as_independent(*deps)`` >>> from sympy import S >>> from sympy.abc import x, y >>> (S(3)).as_coeff_add() (3, ()) >>> (3 + x).as_coeff_add() (3, (x,)) >>> (3 + x + y).as_coeff_add(x) (y + 3, (x,)) >>> (3 + y).as_coeff_add(x) (y + 3, ()) """ if deps: if not self.has(*deps): return self, tuple() return S.Zero, (self,) def primitive(self): """Return the positive Rational that can be extracted non-recursively from every term of self (i.e., self is treated like an Add). This is like the as_coeff_Mul() method but primitive always extracts a positive Rational (never a negative or a Float). Examples ======== >>> from sympy.abc import x >>> (3*(x + 1)**2).primitive() (3, (x + 1)**2) >>> a = (6*x + 2); a.primitive() (2, 3*x + 1) >>> b = (x/2 + 3); b.primitive() (1/2, x + 6) >>> (a*b).primitive() == (1, a*b) True """ if not self: return S.One, S.Zero c, r = self.as_coeff_Mul(rational=True) if c.is_negative: c, r = -c, -r return c, r def as_content_primitive(self, radical=False, clear=True): """This method should recursively remove a Rational from all arguments and return that (content) and the new self (primitive). The content should always be positive and ``Mul(*foo.as_content_primitive()) == foo``. The primitive need not be in canonical form and should try to preserve the underlying structure if possible (i.e. expand_mul should not be applied to self). Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x, y, z >>> eq = 2 + 2*x + 2*y*(3 + 3*y) The as_content_primitive function is recursive and retains structure: >>> eq.as_content_primitive() (2, x + 3*y*(y + 1) + 1) Integer powers will have Rationals extracted from the base: >>> ((2 + 6*x)**2).as_content_primitive() (4, (3*x + 1)**2) >>> ((2 + 6*x)**(2*y)).as_content_primitive() (1, (2*(3*x + 1))**(2*y)) Terms may end up joining once their as_content_primitives are added: >>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() (11, x*(y + 1)) >>> ((3*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() (9, x*(y + 1)) >>> ((3*(z*(1 + y)) + 2.0*x*(3 + 3*y))).as_content_primitive() (1, 6.0*x*(y + 1) + 3*z*(y + 1)) >>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive() (121, x**2*(y + 1)**2) >>> ((x*(1 + y) + 0.4*x*(3 + 3*y))**2).as_content_primitive() (1, 4.84*x**2*(y + 1)**2) Radical content can also be factored out of the primitive: >>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True) (2, sqrt(2)*(1 + 2*sqrt(5))) If clear=False (default is True) then content will not be removed from an Add if it can be distributed to leave one or more terms with integer coefficients. >>> (x/2 + y).as_content_primitive() (1/2, x + 2*y) >>> (x/2 + y).as_content_primitive(clear=False) (1, x/2 + y) """ return S.One, self def as_numer_denom(self): """ expression -> a/b -> a, b This is just a stub that should be defined by an object's class methods to get anything else. See Also ======== normal: return ``a/b`` instead of ``(a, b)`` """ return self, S.One def normal(self): """ expression -> a/b See Also ======== as_numer_denom: return ``(a, b)`` instead of ``a/b`` """ from .mul import _unevaluated_Mul n, d = self.as_numer_denom() if d is S.One: return n if d.is_Number: return _unevaluated_Mul(n, 1/d) else: return n/d def extract_multiplicatively(self, c): """Return None if it's not possible to make self in the form c * something in a nice way, i.e. preserving the properties of arguments of self. Examples ======== >>> from sympy import symbols, Rational >>> x, y = symbols('x,y', real=True) >>> ((x*y)**3).extract_multiplicatively(x**2 * y) x*y**2 >>> ((x*y)**3).extract_multiplicatively(x**4 * y) >>> (2*x).extract_multiplicatively(2) x >>> (2*x).extract_multiplicatively(3) >>> (Rational(1, 2)*x).extract_multiplicatively(3) x/6 """ from .add import _unevaluated_Add c = sympify(c) if self is S.NaN: return None if c is S.One: return self elif c == self: return S.One if c.is_Add: cc, pc = c.primitive() if cc is not S.One: c = Mul(cc, pc, evaluate=False) if c.is_Mul: a, b = c.as_two_terms() x = self.extract_multiplicatively(a) if x is not None: return x.extract_multiplicatively(b) else: return x quotient = self / c if self.is_Number: if self is S.Infinity: if c.is_positive: return S.Infinity elif self is S.NegativeInfinity: if c.is_negative: return S.Infinity elif c.is_positive: return S.NegativeInfinity elif self is S.ComplexInfinity: if not c.is_zero: return S.ComplexInfinity elif self.is_Integer: if not quotient.is_Integer: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_Rational: if not quotient.is_Rational: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_Float: if not quotient.is_Float: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_NumberSymbol or self.is_Symbol or self is S.ImaginaryUnit: if quotient.is_Mul and len(quotient.args) == 2: if quotient.args[0].is_Integer and quotient.args[0].is_positive and quotient.args[1] == self: return quotient elif quotient.is_Integer and c.is_Number: return quotient elif self.is_Add: cs, ps = self.primitive() # assert cs >= 1 if c.is_Number and c is not S.NegativeOne: # assert c != 1 (handled at top) if cs is not S.One: if c.is_negative: xc = -(cs.extract_multiplicatively(-c)) else: xc = cs.extract_multiplicatively(c) if xc is not None: return xc*ps # rely on 2-arg Mul to restore Add return # |c| != 1 can only be extracted from cs if c == ps: return cs # check args of ps newargs = [] for arg in ps.args: newarg = arg.extract_multiplicatively(c) if newarg is None: return # all or nothing newargs.append(newarg) if cs is not S.One: args = [cs*t for t in newargs] # args may be in different order return _unevaluated_Add(*args) else: return Add._from_args(newargs) elif self.is_Mul: args = list(self.args) for i, arg in enumerate(args): newarg = arg.extract_multiplicatively(c) if newarg is not None: args[i] = newarg return Mul(*args) elif self.is_Pow: if c.is_Pow and c.base == self.base: new_exp = self.exp.extract_additively(c.exp) if new_exp is not None: return self.base ** (new_exp) elif c == self.base: new_exp = self.exp.extract_additively(1) if new_exp is not None: return self.base ** (new_exp) def extract_additively(self, c): """Return self - c if it's possible to subtract c from self and make all matching coefficients move towards zero, else return None. Examples ======== >>> from sympy.abc import x, y >>> e = 2*x + 3 >>> e.extract_additively(x + 1) x + 2 >>> e.extract_additively(3*x) >>> e.extract_additively(4) >>> (y*(x + 1)).extract_additively(x + 1) >>> ((x + 1)*(x + 2*y + 1) + 3).extract_additively(x + 1) (x + 1)*(x + 2*y) + 3 Sometimes auto-expansion will return a less simplified result than desired; gcd_terms might be used in such cases: >>> from sympy import gcd_terms >>> (4*x*(y + 1) + y).extract_additively(x) 4*x*(y + 1) + x*(4*y + 3) - x*(4*y + 4) + y >>> gcd_terms(_) x*(4*y + 3) + y See Also ======== extract_multiplicatively coeff as_coefficient """ c = sympify(c) if self is S.NaN: return None if c.is_zero: return self elif c == self: return S.Zero elif self == S.Zero: return None if self.is_Number: if not c.is_Number: return None co = self diff = co - c # XXX should we match types? i.e should 3 - .1 succeed? if (co > 0 and diff > 0 and diff < co or co < 0 and diff < 0 and diff > co): return diff return None if c.is_Number: co, t = self.as_coeff_Add() xa = co.extract_additively(c) if xa is None: return None return xa + t # handle the args[0].is_Number case separately # since we will have trouble looking for the coeff of # a number. if c.is_Add and c.args[0].is_Number: # whole term as a term factor co = self.coeff(c) xa0 = (co.extract_additively(1) or 0)*c if xa0: diff = self - co*c return (xa0 + (diff.extract_additively(c) or diff)) or None # term-wise h, t = c.as_coeff_Add() sh, st = self.as_coeff_Add() xa = sh.extract_additively(h) if xa is None: return None xa2 = st.extract_additively(t) if xa2 is None: return None return xa + xa2 # whole term as a term factor co = self.coeff(c) xa0 = (co.extract_additively(1) or 0)*c if xa0: diff = self - co*c return (xa0 + (diff.extract_additively(c) or diff)) or None # term-wise coeffs = [] for a in Add.make_args(c): ac, at = a.as_coeff_Mul() co = self.coeff(at) if not co: return None coc, cot = co.as_coeff_Add() xa = coc.extract_additively(ac) if xa is None: return None self -= co*at coeffs.append((cot + xa)*at) coeffs.append(self) return Add(*coeffs) @property def expr_free_symbols(self): """ Like ``free_symbols``, but returns the free symbols only if they are contained in an expression node. Examples ======== >>> from sympy.abc import x, y >>> (x + y).expr_free_symbols {x, y} If the expression is contained in a non-expression object, don't return the free symbols. Compare: >>> from sympy import Tuple >>> t = Tuple(x + y) >>> t.expr_free_symbols set() >>> t.free_symbols {x, y} """ return {j for i in self.args for j in i.expr_free_symbols} def could_extract_minus_sign(self): """Return True if self is not in a canonical form with respect to its sign. For most expressions, e, there will be a difference in e and -e. When there is, True will be returned for one and False for the other; False will be returned if there is no difference. Examples ======== >>> from sympy.abc import x, y >>> e = x - y >>> {i.could_extract_minus_sign() for i in (e, -e)} {False, True} """ negative_self = -self if self == negative_self: return False # e.g. zoo*x == -zoo*x self_has_minus = (self.extract_multiplicatively(-1) is not None) negative_self_has_minus = ( (negative_self).extract_multiplicatively(-1) is not None) if self_has_minus != negative_self_has_minus: return self_has_minus else: if self.is_Add: # We choose the one with less arguments with minus signs all_args = len(self.args) negative_args = len([False for arg in self.args if arg.could_extract_minus_sign()]) positive_args = all_args - negative_args if positive_args > negative_args: return False elif positive_args < negative_args: return True elif self.is_Mul: # We choose the one with an odd number of minus signs num, den = self.as_numer_denom() args = Mul.make_args(num) + Mul.make_args(den) arg_signs = [arg.could_extract_minus_sign() for arg in args] negative_args = list(filter(None, arg_signs)) return len(negative_args) % 2 == 1 # As a last resort, we choose the one with greater value of .sort_key() return bool(self.sort_key() < negative_self.sort_key()) def extract_branch_factor(self, allow_half=False): """ Try to write self as ``exp_polar(2*pi*I*n)*z`` in a nice way. Return (z, n). >>> from sympy import exp_polar, I, pi >>> from sympy.abc import x, y >>> exp_polar(I*pi).extract_branch_factor() (exp_polar(I*pi), 0) >>> exp_polar(2*I*pi).extract_branch_factor() (1, 1) >>> exp_polar(-pi*I).extract_branch_factor() (exp_polar(I*pi), -1) >>> exp_polar(3*pi*I + x).extract_branch_factor() (exp_polar(x + I*pi), 1) >>> (y*exp_polar(-5*pi*I)*exp_polar(3*pi*I + 2*pi*x)).extract_branch_factor() (y*exp_polar(2*pi*x), -1) >>> exp_polar(-I*pi/2).extract_branch_factor() (exp_polar(-I*pi/2), 0) If allow_half is True, also extract exp_polar(I*pi): >>> exp_polar(I*pi).extract_branch_factor(allow_half=True) (1, 1/2) >>> exp_polar(2*I*pi).extract_branch_factor(allow_half=True) (1, 1) >>> exp_polar(3*I*pi).extract_branch_factor(allow_half=True) (1, 3/2) >>> exp_polar(-I*pi).extract_branch_factor(allow_half=True) (1, -1/2) """ from sympy import exp_polar, pi, I, ceiling, Add n = S.Zero res = S.One args = Mul.make_args(self) exps = [] for arg in args: if isinstance(arg, exp_polar): exps += [arg.exp] else: res *= arg piimult = S.Zero extras = [] while exps: exp = exps.pop() if exp.is_Add: exps += exp.args continue if exp.is_Mul: coeff = exp.as_coefficient(pi*I) if coeff is not None: piimult += coeff continue extras += [exp] if piimult.is_number: coeff = piimult tail = () else: coeff, tail = piimult.as_coeff_add(*piimult.free_symbols) # round down to nearest multiple of 2 branchfact = ceiling(coeff/2 - S.Half)*2 n += branchfact/2 c = coeff - branchfact if allow_half: nc = c.extract_additively(1) if nc is not None: n += S.Half c = nc newexp = pi*I*Add(*((c, ) + tail)) + Add(*extras) if newexp != 0: res *= exp_polar(newexp) return res, n def _eval_is_polynomial(self, syms): if self.free_symbols.intersection(syms) == set(): return True return False def is_polynomial(self, *syms): r""" Return True if self is a polynomial in syms and False otherwise. This checks if self is an exact polynomial in syms. This function returns False for expressions that are "polynomials" with symbolic exponents. Thus, you should be able to apply polynomial algorithms to expressions for which this returns True, and Poly(expr, \*syms) should work if and only if expr.is_polynomial(\*syms) returns True. The polynomial does not have to be in expanded form. If no symbols are given, all free symbols in the expression will be used. This is not part of the assumptions system. You cannot do Symbol('z', polynomial=True). Examples ======== >>> from sympy import Symbol >>> x = Symbol('x') >>> ((x**2 + 1)**4).is_polynomial(x) True >>> ((x**2 + 1)**4).is_polynomial() True >>> (2**x + 1).is_polynomial(x) False >>> n = Symbol('n', nonnegative=True, integer=True) >>> (x**n + 1).is_polynomial(x) False This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a polynomial to become one. >>> from sympy import sqrt, factor, cancel >>> y = Symbol('y', positive=True) >>> a = sqrt(y**2 + 2*y + 1) >>> a.is_polynomial(y) False >>> factor(a) y + 1 >>> factor(a).is_polynomial(y) True >>> b = (y**2 + 2*y + 1)/(y + 1) >>> b.is_polynomial(y) False >>> cancel(b) y + 1 >>> cancel(b).is_polynomial(y) True See also .is_rational_function() """ if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set(): # constant polynomial return True else: return self._eval_is_polynomial(syms) def _eval_is_rational_function(self, syms): if self.free_symbols.intersection(syms) == set(): return True return False def is_rational_function(self, *syms): """ Test whether function is a ratio of two polynomials in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form. This function returns False for expressions that are "rational functions" with symbolic exponents. Thus, you should be able to call .as_numer_denom() and apply polynomial algorithms to the result for expressions for which this returns True. This is not part of the assumptions system. You cannot do Symbol('z', rational_function=True). Examples ======== >>> from sympy import Symbol, sin >>> from sympy.abc import x, y >>> (x/y).is_rational_function() True >>> (x**2).is_rational_function() True >>> (x/sin(y)).is_rational_function(y) False >>> n = Symbol('n', integer=True) >>> (x**n + 1).is_rational_function(x) False This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a rational function to become one. >>> from sympy import sqrt, factor >>> y = Symbol('y', positive=True) >>> a = sqrt(y**2 + 2*y + 1)/y >>> a.is_rational_function(y) False >>> factor(a) (y + 1)/y >>> factor(a).is_rational_function(y) True See also is_algebraic_expr(). """ if self in [S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: return False if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set(): # constant rational function return True else: return self._eval_is_rational_function(syms) def _eval_is_meromorphic(self, x, a): # Default implementation, return True for constants. return None if self.has(x) else True def is_meromorphic(self, x, a): """ This tests whether an expression is meromorphic as a function of the given symbol ``x`` at the point ``a``. This method is intended as a quick test that will return None if no decision can be made without simplification or more detailed analysis. Examples ======== >>> from sympy import zoo, log, sin, sqrt >>> from sympy.abc import x >>> f = 1/x**2 + 1 - 2*x**3 >>> f.is_meromorphic(x, 0) True >>> f.is_meromorphic(x, 1) True >>> f.is_meromorphic(x, zoo) True >>> g = x**log(3) >>> g.is_meromorphic(x, 0) False >>> g.is_meromorphic(x, 1) True >>> g.is_meromorphic(x, zoo) False >>> h = sin(1/x)*x**2 >>> h.is_meromorphic(x, 0) False >>> h.is_meromorphic(x, 1) True >>> h.is_meromorphic(x, zoo) True Multivalued functions are considered meromorphic when their branches are meromorphic. Thus most functions are meromorphic everywhere except at essential singularities and branch points. In particular, they will be meromorphic also on branch cuts except at their endpoints. >>> log(x).is_meromorphic(x, -1) True >>> log(x).is_meromorphic(x, 0) False >>> sqrt(x).is_meromorphic(x, -1) True >>> sqrt(x).is_meromorphic(x, 0) False """ if not x.is_symbol: raise TypeError("{} should be of symbol type".format(x)) a = sympify(a) return self._eval_is_meromorphic(x, a) def _eval_is_algebraic_expr(self, syms): if self.free_symbols.intersection(syms) == set(): return True return False def is_algebraic_expr(self, *syms): """ This tests whether a given expression is algebraic or not, in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form. This function returns False for expressions that are "algebraic expressions" with symbolic exponents. This is a simple extension to the is_rational_function, including rational exponentiation. Examples ======== >>> from sympy import Symbol, sqrt >>> x = Symbol('x', real=True) >>> sqrt(1 + x).is_rational_function() False >>> sqrt(1 + x).is_algebraic_expr() True This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be an algebraic expression to become one. >>> from sympy import exp, factor >>> a = sqrt(exp(x)**2 + 2*exp(x) + 1)/(exp(x) + 1) >>> a.is_algebraic_expr(x) False >>> factor(a).is_algebraic_expr() True See Also ======== is_rational_function() References ========== - https://en.wikipedia.org/wiki/Algebraic_expression """ if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set(): # constant algebraic expression return True else: return self._eval_is_algebraic_expr(syms) ################################################################################### ##################### SERIES, LEADING TERM, LIMIT, ORDER METHODS ################## ################################################################################### def series(self, x=None, x0=0, n=6, dir="+", logx=None, cdir=0): """ Series expansion of "self" around ``x = x0`` yielding either terms of the series one by one (the lazy series given when n=None), else all the terms at once when n != None. Returns the series expansion of "self" around the point ``x = x0`` with respect to ``x`` up to ``O((x - x0)**n, x, x0)`` (default n is 6). If ``x=None`` and ``self`` is univariate, the univariate symbol will be supplied, otherwise an error will be raised. Parameters ========== expr : Expression The expression whose series is to be expanded. x : Symbol It is the variable of the expression to be calculated. x0 : Value The value around which ``x`` is calculated. Can be any value from ``-oo`` to ``oo``. n : Value The number of terms upto which the series is to be expanded. dir : String, optional The series-expansion can be bi-directional. If ``dir="+"``, then (x->x0+). If ``dir="-", then (x->x0-). For infinite ``x0`` (``oo`` or ``-oo``), the ``dir`` argument is determined from the direction of the infinity (i.e., ``dir="-"`` for ``oo``). logx : optional It is used to replace any log(x) in the returned series with a symbolic value rather than evaluating the actual value. cdir : optional It stands for complex direction, and indicates the direction from which the expansion needs to be evaluated. Examples ======== >>> from sympy import cos, exp, tan >>> from sympy.abc import x, y >>> cos(x).series() 1 - x**2/2 + x**4/24 + O(x**6) >>> cos(x).series(n=4) 1 - x**2/2 + O(x**4) >>> cos(x).series(x, x0=1, n=2) cos(1) - (x - 1)*sin(1) + O((x - 1)**2, (x, 1)) >>> e = cos(x + exp(y)) >>> e.series(y, n=2) cos(x + 1) - y*sin(x + 1) + O(y**2) >>> e.series(x, n=2) cos(exp(y)) - x*sin(exp(y)) + O(x**2) If ``n=None`` then a generator of the series terms will be returned. >>> term=cos(x).series(n=None) >>> [next(term) for i in range(2)] [1, -x**2/2] For ``dir=+`` (default) the series is calculated from the right and for ``dir=-`` the series from the left. For smooth functions this flag will not alter the results. >>> abs(x).series(dir="+") x >>> abs(x).series(dir="-") -x >>> f = tan(x) >>> f.series(x, 2, 6, "+") tan(2) + (1 + tan(2)**2)*(x - 2) + (x - 2)**2*(tan(2)**3 + tan(2)) + (x - 2)**3*(1/3 + 4*tan(2)**2/3 + tan(2)**4) + (x - 2)**4*(tan(2)**5 + 5*tan(2)**3/3 + 2*tan(2)/3) + (x - 2)**5*(2/15 + 17*tan(2)**2/15 + 2*tan(2)**4 + tan(2)**6) + O((x - 2)**6, (x, 2)) >>> f.series(x, 2, 3, "-") tan(2) + (2 - x)*(-tan(2)**2 - 1) + (2 - x)**2*(tan(2)**3 + tan(2)) + O((x - 2)**3, (x, 2)) Returns ======= Expr : Expression Series expansion of the expression about x0 Raises ====== TypeError If "n" and "x0" are infinity objects PoleError If "x0" is an infinity object """ from sympy import collect, Dummy, Order, Rational, Symbol, ceiling if x is None: syms = self.free_symbols if not syms: return self elif len(syms) > 1: raise ValueError('x must be given for multivariate functions.') x = syms.pop() if isinstance(x, Symbol): dep = x in self.free_symbols else: d = Dummy() dep = d in self.xreplace({x: d}).free_symbols if not dep: if n is None: return (s for s in [self]) else: return self if len(dir) != 1 or dir not in '+-': raise ValueError("Dir must be '+' or '-'") if x0 in [S.Infinity, S.NegativeInfinity]: sgn = 1 if x0 is S.Infinity else -1 s = self.subs(x, sgn/x).series(x, n=n, dir='+', cdir=cdir) if n is None: return (si.subs(x, sgn/x) for si in s) return s.subs(x, sgn/x) # use rep to shift origin to x0 and change sign (if dir is negative) # and undo the process with rep2 if x0 or dir == '-': if dir == '-': rep = -x + x0 rep2 = -x rep2b = x0 else: rep = x + x0 rep2 = x rep2b = -x0 s = self.subs(x, rep).series(x, x0=0, n=n, dir='+', logx=logx, cdir=cdir) if n is None: # lseries... return (si.subs(x, rep2 + rep2b) for si in s) return s.subs(x, rep2 + rep2b) # from here on it's x0=0 and dir='+' handling if x.is_positive is x.is_negative is None or x.is_Symbol is not True: # replace x with an x that has a positive assumption xpos = Dummy('x', positive=True, finite=True) rv = self.subs(x, xpos).series(xpos, x0, n, dir, logx=logx, cdir=cdir) if n is None: return (s.subs(xpos, x) for s in rv) else: return rv.subs(xpos, x) if n is not None: # nseries handling s1 = self._eval_nseries(x, n=n, logx=logx, cdir=cdir) o = s1.getO() or S.Zero if o: # make sure the requested order is returned ngot = o.getn() if ngot > n: # leave o in its current form (e.g. with x*log(x)) so # it eats terms properly, then replace it below if n != 0: s1 += o.subs(x, x**Rational(n, ngot)) else: s1 += Order(1, x) elif ngot < n: # increase the requested number of terms to get the desired # number keep increasing (up to 9) until the received order # is different than the original order and then predict how # many additional terms are needed for more in range(1, 9): s1 = self._eval_nseries(x, n=n + more, logx=logx, cdir=cdir) newn = s1.getn() if newn != ngot: ndo = n + ceiling((n - ngot)*more/(newn - ngot)) s1 = self._eval_nseries(x, n=ndo, logx=logx, cdir=cdir) while s1.getn() < n: s1 = self._eval_nseries(x, n=ndo, logx=logx, cdir=cdir) ndo += 1 break else: raise ValueError('Could not calculate %s terms for %s' % (str(n), self)) s1 += Order(x**n, x) o = s1.getO() s1 = s1.removeO() else: o = Order(x**n, x) s1done = s1.doit() if (s1done + o).removeO() == s1done: o = S.Zero try: return collect(s1, x) + o except NotImplementedError: return s1 + o else: # lseries handling def yield_lseries(s): """Return terms of lseries one at a time.""" for si in s: if not si.is_Add: yield si continue # yield terms 1 at a time if possible # by increasing order until all the # terms have been returned yielded = 0 o = Order(si, x)*x ndid = 0 ndo = len(si.args) while 1: do = (si - yielded + o).removeO() o *= x if not do or do.is_Order: continue if do.is_Add: ndid += len(do.args) else: ndid += 1 yield do if ndid == ndo: break yielded += do return yield_lseries(self.removeO()._eval_lseries(x, logx=logx, cdir=cdir)) def aseries(self, x=None, n=6, bound=0, hir=False): """Asymptotic Series expansion of self. This is equivalent to ``self.series(x, oo, n)``. Parameters ========== self : Expression The expression whose series is to be expanded. x : Symbol It is the variable of the expression to be calculated. n : Value The number of terms upto which the series is to be expanded. hir : Boolean Set this parameter to be True to produce hierarchical series. It stops the recursion at an early level and may provide nicer and more useful results. bound : Value, Integer Use the ``bound`` parameter to give limit on rewriting coefficients in its normalised form. Examples ======== >>> from sympy import sin, exp >>> from sympy.abc import x >>> e = sin(1/x + exp(-x)) - sin(1/x) >>> e.aseries(x) (1/(24*x**4) - 1/(2*x**2) + 1 + O(x**(-6), (x, oo)))*exp(-x) >>> e.aseries(x, n=3, hir=True) -exp(-2*x)*sin(1/x)/2 + exp(-x)*cos(1/x) + O(exp(-3*x), (x, oo)) >>> e = exp(exp(x)/(1 - 1/x)) >>> e.aseries(x) exp(exp(x)/(1 - 1/x)) >>> e.aseries(x, bound=3) exp(exp(x)/x**2)*exp(exp(x)/x)*exp(-exp(x) + exp(x)/(1 - 1/x) - exp(x)/x - exp(x)/x**2)*exp(exp(x)) Returns ======= Expr Asymptotic series expansion of the expression. Notes ===== This algorithm is directly induced from the limit computational algorithm provided by Gruntz. It majorly uses the mrv and rewrite sub-routines. The overall idea of this algorithm is first to look for the most rapidly varying subexpression w of a given expression f and then expands f in a series in w. Then same thing is recursively done on the leading coefficient till we get constant coefficients. If the most rapidly varying subexpression of a given expression f is f itself, the algorithm tries to find a normalised representation of the mrv set and rewrites f using this normalised representation. If the expansion contains an order term, it will be either ``O(x ** (-n))`` or ``O(w ** (-n))`` where ``w`` belongs to the most rapidly varying expression of ``self``. References ========== .. [1] A New Algorithm for Computing Asymptotic Series - Dominik Gruntz .. [2] Gruntz thesis - p90 .. [3] http://en.wikipedia.org/wiki/Asymptotic_expansion See Also ======== Expr.aseries: See the docstring of this function for complete details of this wrapper. """ from sympy import Order, Dummy from sympy.functions import exp, log from sympy.series.gruntz import mrv, rewrite if x.is_positive is x.is_negative is None: xpos = Dummy('x', positive=True) return self.subs(x, xpos).aseries(xpos, n, bound, hir).subs(xpos, x) om, exps = mrv(self, x) # We move one level up by replacing `x` by `exp(x)`, and then # computing the asymptotic series for f(exp(x)). Then asymptotic series # can be obtained by moving one-step back, by replacing x by ln(x). if x in om: s = self.subs(x, exp(x)).aseries(x, n, bound, hir).subs(x, log(x)) if s.getO(): return s + Order(1/x**n, (x, S.Infinity)) return s k = Dummy('k', positive=True) # f is rewritten in terms of omega func, logw = rewrite(exps, om, x, k) if self in om: if bound <= 0: return self s = (self.exp).aseries(x, n, bound=bound) s = s.func(*[t.removeO() for t in s.args]) res = exp(s.subs(x, 1/x).as_leading_term(x).subs(x, 1/x)) func = exp(self.args[0] - res.args[0]) / k logw = log(1/res) s = func.series(k, 0, n) # Hierarchical series if hir: return s.subs(k, exp(logw)) o = s.getO() terms = sorted(Add.make_args(s.removeO()), key=lambda i: int(i.as_coeff_exponent(k)[1])) s = S.Zero has_ord = False # Then we recursively expand these coefficients one by one into # their asymptotic series in terms of their most rapidly varying subexpressions. for t in terms: coeff, expo = t.as_coeff_exponent(k) if coeff.has(x): # Recursive step snew = coeff.aseries(x, n, bound=bound-1) if has_ord and snew.getO(): break elif snew.getO(): has_ord = True s += (snew * k**expo) else: s += t if not o or has_ord: return s.subs(k, exp(logw)) return (s + o).subs(k, exp(logw)) def taylor_term(self, n, x, *previous_terms): """General method for the taylor term. This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the "previous_terms". """ from sympy import Dummy, factorial x = sympify(x) _x = Dummy('x') return self.subs(x, _x).diff(_x, n).subs(_x, x).subs(x, 0) * x**n / factorial(n) def lseries(self, x=None, x0=0, dir='+', logx=None, cdir=0): """ Wrapper for series yielding an iterator of the terms of the series. Note: an infinite series will yield an infinite iterator. The following, for exaxmple, will never terminate. It will just keep printing terms of the sin(x) series:: for term in sin(x).lseries(x): print term The advantage of lseries() over nseries() is that many times you are just interested in the next term in the series (i.e. the first term for example), but you don't know how many you should ask for in nseries() using the "n" parameter. See also nseries(). """ return self.series(x, x0, n=None, dir=dir, logx=logx, cdir=cdir) def _eval_lseries(self, x, logx=None, cdir=0): # default implementation of lseries is using nseries(), and adaptively # increasing the "n". As you can see, it is not very efficient, because # we are calculating the series over and over again. Subclasses should # override this method and implement much more efficient yielding of # terms. n = 0 series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir) while series.is_Order: n += 1 series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir) e = series.removeO() yield e if e is S.Zero: return while 1: while 1: n += 1 series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir).removeO() if e != series: break if (series - self).cancel() is S.Zero: return yield series - e e = series def nseries(self, x=None, x0=0, n=6, dir='+', logx=None, cdir=0): """ Wrapper to _eval_nseries if assumptions allow, else to series. If x is given, x0 is 0, dir='+', and self has x, then _eval_nseries is called. This calculates "n" terms in the innermost expressions and then builds up the final series just by "cross-multiplying" everything out. The optional ``logx`` parameter can be used to replace any log(x) in the returned series with a symbolic value to avoid evaluating log(x) at 0. A symbol to use in place of log(x) should be provided. Advantage -- it's fast, because we don't have to determine how many terms we need to calculate in advance. Disadvantage -- you may end up with less terms than you may have expected, but the O(x**n) term appended will always be correct and so the result, though perhaps shorter, will also be correct. If any of those assumptions is not met, this is treated like a wrapper to series which will try harder to return the correct number of terms. See also lseries(). Examples ======== >>> from sympy import sin, log, Symbol >>> from sympy.abc import x, y >>> sin(x).nseries(x, 0, 6) x - x**3/6 + x**5/120 + O(x**6) >>> log(x+1).nseries(x, 0, 5) x - x**2/2 + x**3/3 - x**4/4 + O(x**5) Handling of the ``logx`` parameter --- in the following example the expansion fails since ``sin`` does not have an asymptotic expansion at -oo (the limit of log(x) as x approaches 0): >>> e = sin(log(x)) >>> e.nseries(x, 0, 6) Traceback (most recent call last): ... PoleError: ... ... >>> logx = Symbol('logx') >>> e.nseries(x, 0, 6, logx=logx) sin(logx) In the following example, the expansion works but gives only an Order term unless the ``logx`` parameter is used: >>> e = x**y >>> e.nseries(x, 0, 2) O(log(x)**2) >>> e.nseries(x, 0, 2, logx=logx) exp(logx*y) """ if x and not x in self.free_symbols: return self if x is None or x0 or dir != '+': # {see XPOS above} or (x.is_positive == x.is_negative == None): return self.series(x, x0, n, dir, cdir=cdir) else: return self._eval_nseries(x, n=n, logx=logx, cdir=cdir) def _eval_nseries(self, x, n, logx, cdir): """ Return terms of series for self up to O(x**n) at x=0 from the positive direction. This is a method that should be overridden in subclasses. Users should never call this method directly (use .nseries() instead), so you don't have to write docstrings for _eval_nseries(). """ from sympy.utilities.misc import filldedent raise NotImplementedError(filldedent(""" The _eval_nseries method should be added to %s to give terms up to O(x**n) at x=0 from the positive direction so it is available when nseries calls it.""" % self.func) ) def limit(self, x, xlim, dir='+'): """ Compute limit x->xlim. """ from sympy.series.limits import limit return limit(self, x, xlim, dir) def compute_leading_term(self, x, logx=None): """ as_leading_term is only allowed for results of .series() This is a wrapper to compute a series first. """ from sympy import Dummy, log, Piecewise, piecewise_fold from sympy.series.gruntz import calculate_series if self.has(Piecewise): expr = piecewise_fold(self) else: expr = self if self.removeO() == 0: return self if logx is None: d = Dummy('logx') s = calculate_series(expr, x, d).subs(d, log(x)) else: s = calculate_series(expr, x, logx) return s.as_leading_term(x) @cacheit def as_leading_term(self, *symbols, cdir=0): """ Returns the leading (nonzero) term of the series expansion of self. The _eval_as_leading_term routines are used to do this, and they must always return a non-zero value. Examples ======== >>> from sympy.abc import x >>> (1 + x + x**2).as_leading_term(x) 1 >>> (1/x**2 + x + x**2).as_leading_term(x) x**(-2) """ from sympy import powsimp if len(symbols) > 1: c = self for x in symbols: c = c.as_leading_term(x, cdir=cdir) return c elif not symbols: return self x = sympify(symbols[0]) if not x.is_symbol: raise ValueError('expecting a Symbol but got %s' % x) if x not in self.free_symbols: return self obj = self._eval_as_leading_term(x, cdir=cdir) if obj is not None: return powsimp(obj, deep=True, combine='exp') raise NotImplementedError('as_leading_term(%s, %s)' % (self, x)) def _eval_as_leading_term(self, x, cdir=0): return self def as_coeff_exponent(self, x): """ ``c*x**e -> c,e`` where x can be any symbolic expression. """ from sympy import collect s = collect(self, x) c, p = s.as_coeff_mul(x) if len(p) == 1: b, e = p[0].as_base_exp() if b == x: return c, e return s, S.Zero def leadterm(self, x, cdir=0): """ Returns the leading term a*x**b as a tuple (a, b). Examples ======== >>> from sympy.abc import x >>> (1+x+x**2).leadterm(x) (1, 0) >>> (1/x**2+x+x**2).leadterm(x) (1, -2) """ from sympy import Dummy, log l = self.as_leading_term(x, cdir=cdir) d = Dummy('logx') if l.has(log(x)): l = l.subs(log(x), d) c, e = l.as_coeff_exponent(x) if x in c.free_symbols: from sympy.utilities.misc import filldedent raise ValueError(filldedent(""" cannot compute leadterm(%s, %s). The coefficient should have been free of %s but got %s""" % (self, x, x, c))) c = c.subs(d, log(x)) return c, e def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return S.One, self def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ return S.Zero, self def fps(self, x=None, x0=0, dir=1, hyper=True, order=4, rational=True, full=False): """ Compute formal power power series of self. See the docstring of the :func:`fps` function in sympy.series.formal for more information. """ from sympy.series.formal import fps return fps(self, x, x0, dir, hyper, order, rational, full) def fourier_series(self, limits=None): """Compute fourier sine/cosine series of self. See the docstring of the :func:`fourier_series` in sympy.series.fourier for more information. """ from sympy.series.fourier import fourier_series return fourier_series(self, limits) ################################################################################### ##################### DERIVATIVE, INTEGRAL, FUNCTIONAL METHODS #################### ################################################################################### def diff(self, *symbols, **assumptions): assumptions.setdefault("evaluate", True) return _derivative_dispatch(self, *symbols, **assumptions) ########################################################################### ###################### EXPRESSION EXPANSION METHODS ####################### ########################################################################### # Relevant subclasses should override _eval_expand_hint() methods. See # the docstring of expand() for more info. def _eval_expand_complex(self, **hints): real, imag = self.as_real_imag(**hints) return real + S.ImaginaryUnit*imag @staticmethod def _expand_hint(expr, hint, deep=True, **hints): """ Helper for ``expand()``. Recursively calls ``expr._eval_expand_hint()``. Returns ``(expr, hit)``, where expr is the (possibly) expanded ``expr`` and ``hit`` is ``True`` if ``expr`` was truly expanded and ``False`` otherwise. """ hit = False # XXX: Hack to support non-Basic args # | # V if deep and getattr(expr, 'args', ()) and not expr.is_Atom: sargs = [] for arg in expr.args: arg, arghit = Expr._expand_hint(arg, hint, **hints) hit |= arghit sargs.append(arg) if hit: expr = expr.func(*sargs) if hasattr(expr, hint): newexpr = getattr(expr, hint)(**hints) if newexpr != expr: return (newexpr, True) return (expr, hit) @cacheit def expand(self, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): """ Expand an expression using hints. See the docstring of the expand() function in sympy.core.function for more information. """ from sympy.simplify.radsimp import fraction hints.update(power_base=power_base, power_exp=power_exp, mul=mul, log=log, multinomial=multinomial, basic=basic) expr = self if hints.pop('frac', False): n, d = [a.expand(deep=deep, modulus=modulus, **hints) for a in fraction(self)] return n/d elif hints.pop('denom', False): n, d = fraction(self) return n/d.expand(deep=deep, modulus=modulus, **hints) elif hints.pop('numer', False): n, d = fraction(self) return n.expand(deep=deep, modulus=modulus, **hints)/d # Although the hints are sorted here, an earlier hint may get applied # at a given node in the expression tree before another because of how # the hints are applied. e.g. expand(log(x*(y + z))) -> log(x*y + # x*z) because while applying log at the top level, log and mul are # applied at the deeper level in the tree so that when the log at the # upper level gets applied, the mul has already been applied at the # lower level. # Additionally, because hints are only applied once, the expression # may not be expanded all the way. For example, if mul is applied # before multinomial, x*(x + 1)**2 won't be expanded all the way. For # now, we just use a special case to make multinomial run before mul, # so that at least polynomials will be expanded all the way. In the # future, smarter heuristics should be applied. # TODO: Smarter heuristics def _expand_hint_key(hint): """Make multinomial come before mul""" if hint == 'mul': return 'mulz' return hint for hint in sorted(hints.keys(), key=_expand_hint_key): use_hint = hints[hint] if use_hint: hint = '_eval_expand_' + hint expr, hit = Expr._expand_hint(expr, hint, deep=deep, **hints) while True: was = expr if hints.get('multinomial', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_multinomial', deep=deep, **hints) if hints.get('mul', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_mul', deep=deep, **hints) if hints.get('log', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_log', deep=deep, **hints) if expr == was: break if modulus is not None: modulus = sympify(modulus) if not modulus.is_Integer or modulus <= 0: raise ValueError( "modulus must be a positive integer, got %s" % modulus) terms = [] for term in Add.make_args(expr): coeff, tail = term.as_coeff_Mul(rational=True) coeff %= modulus if coeff: terms.append(coeff*tail) expr = Add(*terms) return expr ########################################################################### ################### GLOBAL ACTION VERB WRAPPER METHODS #################### ########################################################################### def integrate(self, *args, **kwargs): """See the integrate function in sympy.integrals""" from sympy.integrals import integrate return integrate(self, *args, **kwargs) def nsimplify(self, constants=[], tolerance=None, full=False): """See the nsimplify function in sympy.simplify""" from sympy.simplify import nsimplify return nsimplify(self, constants, tolerance, full) def separate(self, deep=False, force=False): """See the separate function in sympy.simplify""" from sympy.core.function import expand_power_base return expand_power_base(self, deep=deep, force=force) def collect(self, syms, func=None, evaluate=True, exact=False, distribute_order_term=True): """See the collect function in sympy.simplify""" from sympy.simplify import collect return collect(self, syms, func, evaluate, exact, distribute_order_term) def together(self, *args, **kwargs): """See the together function in sympy.polys""" from sympy.polys import together return together(self, *args, **kwargs) def apart(self, x=None, **args): """See the apart function in sympy.polys""" from sympy.polys import apart return apart(self, x, **args) def ratsimp(self): """See the ratsimp function in sympy.simplify""" from sympy.simplify import ratsimp return ratsimp(self) def trigsimp(self, **args): """See the trigsimp function in sympy.simplify""" from sympy.simplify import trigsimp return trigsimp(self, **args) def radsimp(self, **kwargs): """See the radsimp function in sympy.simplify""" from sympy.simplify import radsimp return radsimp(self, **kwargs) def powsimp(self, *args, **kwargs): """See the powsimp function in sympy.simplify""" from sympy.simplify import powsimp return powsimp(self, *args, **kwargs) def combsimp(self): """See the combsimp function in sympy.simplify""" from sympy.simplify import combsimp return combsimp(self) def gammasimp(self): """See the gammasimp function in sympy.simplify""" from sympy.simplify import gammasimp return gammasimp(self) def factor(self, *gens, **args): """See the factor() function in sympy.polys.polytools""" from sympy.polys import factor return factor(self, *gens, **args) def cancel(self, *gens, **args): """See the cancel function in sympy.polys""" from sympy.polys import cancel return cancel(self, *gens, **args) def invert(self, g, *gens, **args): """Return the multiplicative inverse of ``self`` mod ``g`` where ``self`` (and ``g``) may be symbolic expressions). See Also ======== sympy.core.numbers.mod_inverse, sympy.polys.polytools.invert """ from sympy.polys.polytools import invert from sympy.core.numbers import mod_inverse if self.is_number and getattr(g, 'is_number', True): return mod_inverse(self, g) return invert(self, g, *gens, **args) def round(self, n=None): """Return x rounded to the given decimal place. If a complex number would results, apply round to the real and imaginary components of the number. Examples ======== >>> from sympy import pi, E, I, S, Number >>> pi.round() 3 >>> pi.round(2) 3.14 >>> (2*pi + E*I).round() 6 + 3*I The round method has a chopping effect: >>> (2*pi + I/10).round() 6 >>> (pi/10 + 2*I).round() 2*I >>> (pi/10 + E*I).round(2) 0.31 + 2.72*I Notes ===== The Python ``round`` function uses the SymPy ``round`` method so it will always return a SymPy number (not a Python float or int): >>> isinstance(round(S(123), -2), Number) True """ from sympy.core.numbers import Float x = self if not x.is_number: raise TypeError("can't round symbolic expression") if not x.is_Atom: if not pure_complex(x.n(2), or_real=True): raise TypeError( 'Expected a number but got %s:' % func_name(x)) elif x in (S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity): return x if not x.is_extended_real: r, i = x.as_real_imag() return r.round(n) + S.ImaginaryUnit*i.round(n) if not x: return S.Zero if n is None else x p = as_int(n or 0) if x.is_Integer: return Integer(round(int(x), p)) digits_to_decimal = _mag(x) # _mag(12) = 2, _mag(.012) = -1 allow = digits_to_decimal + p precs = [f._prec for f in x.atoms(Float)] dps = prec_to_dps(max(precs)) if precs else None if dps is None: # assume everything is exact so use the Python # float default or whatever was requested dps = max(15, allow) else: allow = min(allow, dps) # this will shift all digits to right of decimal # and give us dps to work with as an int shift = -digits_to_decimal + dps extra = 1 # how far we look past known digits # NOTE # mpmath will calculate the binary representation to # an arbitrary number of digits but we must base our # answer on a finite number of those digits, e.g. # .575 2589569785738035/2**52 in binary. # mpmath shows us that the first 18 digits are # >>> Float(.575).n(18) # 0.574999999999999956 # The default precision is 15 digits and if we ask # for 15 we get # >>> Float(.575).n(15) # 0.575000000000000 # mpmath handles rounding at the 15th digit. But we # need to be careful since the user might be asking # for rounding at the last digit and our semantics # are to round toward the even final digit when there # is a tie. So the extra digit will be used to make # that decision. In this case, the value is the same # to 15 digits: # >>> Float(.575).n(16) # 0.5750000000000000 # Now converting this to the 15 known digits gives # 575000000000000.0 # which rounds to integer # 5750000000000000 # And now we can round to the desired digt, e.g. at # the second from the left and we get # 5800000000000000 # and rescaling that gives # 0.58 # as the final result. # If the value is made slightly less than 0.575 we might # still obtain the same value: # >>> Float(.575-1e-16).n(16)*10**15 # 574999999999999.8 # What 15 digits best represents the known digits (which are # to the left of the decimal? 5750000000000000, the same as # before. The only way we will round down (in this case) is # if we declared that we had more than 15 digits of precision. # For example, if we use 16 digits of precision, the integer # we deal with is # >>> Float(.575-1e-16).n(17)*10**16 # 5749999999999998.4 # and this now rounds to 5749999999999998 and (if we round to # the 2nd digit from the left) we get 5700000000000000. # xf = x.n(dps + extra)*Pow(10, shift) xi = Integer(xf) # use the last digit to select the value of xi # nearest to x before rounding at the desired digit sign = 1 if x > 0 else -1 dif2 = sign*(xf - xi).n(extra) if dif2 < 0: raise NotImplementedError( 'not expecting int(x) to round away from 0') if dif2 > .5: xi += sign # round away from 0 elif dif2 == .5: xi += sign if xi%2 else -sign # round toward even # shift p to the new position ip = p - shift # let Python handle the int rounding then rescale xr = round(xi.p, ip) # restore scale rv = Rational(xr, Pow(10, shift)) # return Float or Integer if rv.is_Integer: if n is None: # the single-arg case return rv # use str or else it won't be a float return Float(str(rv), dps) # keep same precision else: if not allow and rv > self: allow += 1 return Float(rv, allow) __round__ = round def _eval_derivative_matrix_lines(self, x): from sympy.matrices.expressions.matexpr import _LeftRightArgs return [_LeftRightArgs([S.One, S.One], higher=self._eval_derivative(x))] class AtomicExpr(Atom, Expr): """ A parent class for object which are both atoms and Exprs. For example: Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ... """ is_number = False is_Atom = True __slots__ = () def _eval_derivative(self, s): if self == s: return S.One return S.Zero def _eval_derivative_n_times(self, s, n): from sympy import Piecewise, Eq from sympy import Tuple, MatrixExpr from sympy.matrices.common import MatrixCommon if isinstance(s, (MatrixCommon, Tuple, Iterable, MatrixExpr)): return super()._eval_derivative_n_times(s, n) if self == s: return Piecewise((self, Eq(n, 0)), (1, Eq(n, 1)), (0, True)) else: return Piecewise((self, Eq(n, 0)), (0, True)) def _eval_is_polynomial(self, syms): return True def _eval_is_rational_function(self, syms): return True def _eval_is_meromorphic(self, x, a): from sympy.calculus.util import AccumBounds return (not self.is_Number or self.is_finite) and not isinstance(self, AccumBounds) def _eval_is_algebraic_expr(self, syms): return True def _eval_nseries(self, x, n, logx, cdir=0): return self @property def expr_free_symbols(self): return {self} def _mag(x): """Return integer ``i`` such that .1 <= x/10**i < 1 Examples ======== >>> from sympy.core.expr import _mag >>> from sympy import Float >>> _mag(Float(.1)) 0 >>> _mag(Float(.01)) -1 >>> _mag(Float(1234)) 4 """ from math import log10, ceil, log from sympy import Float xpos = abs(x.n()) if not xpos: return S.Zero try: mag_first_dig = int(ceil(log10(xpos))) except (ValueError, OverflowError): mag_first_dig = int(ceil(Float(mpf_log(xpos._mpf_, 53))/log(10))) # check that we aren't off by 1 if (xpos/10**mag_first_dig) >= 1: assert 1 <= (xpos/10**mag_first_dig) < 10 mag_first_dig += 1 return mag_first_dig class UnevaluatedExpr(Expr): """ Expression that is not evaluated unless released. Examples ======== >>> from sympy import UnevaluatedExpr >>> from sympy.abc import x >>> x*(1/x) 1 >>> x*UnevaluatedExpr(1/x) x*1/x """ def __new__(cls, arg, **kwargs): arg = _sympify(arg) obj = Expr.__new__(cls, arg, **kwargs) return obj def doit(self, **kwargs): if kwargs.get("deep", True): return self.args[0].doit(**kwargs) else: return self.args[0] def unchanged(func, *args): """Return True if `func` applied to the `args` is unchanged. Can be used instead of `assert foo == foo`. Examples ======== >>> from sympy import Piecewise, cos, pi >>> from sympy.core.expr import unchanged >>> from sympy.abc import x >>> unchanged(cos, 1) # instead of assert cos(1) == cos(1) True >>> unchanged(cos, pi) False Comparison of args uses the builtin capabilities of the object's arguments to test for equality so args can be defined loosely. Here, the ExprCondPair arguments of Piecewise compare as equal to the tuples that can be used to create the Piecewise: >>> unchanged(Piecewise, (x, x > 1), (0, True)) True """ f = func(*args) return f.func == func and f.args == args class ExprBuilder: def __init__(self, op, args=[], validator=None, check=True): if not hasattr(op, "__call__"): raise TypeError("op {} needs to be callable".format(op)) self.op = op self.args = args self.validator = validator if (validator is not None) and check: self.validate() @staticmethod def _build_args(args): return [i.build() if isinstance(i, ExprBuilder) else i for i in args] def validate(self): if self.validator is None: return args = self._build_args(self.args) self.validator(*args) def build(self, check=True): args = self._build_args(self.args) if self.validator and check: self.validator(*args) return self.op(*args) def append_argument(self, arg, check=True): self.args.append(arg) if self.validator and check: self.validate(*self.args) def __getitem__(self, item): if item == 0: return self.op else: return self.args[item-1] def __repr__(self): return str(self.build()) def search_element(self, elem): for i, arg in enumerate(self.args): if isinstance(arg, ExprBuilder): ret = arg.search_index(elem) if ret is not None: return (i,) + ret elif id(arg) == id(elem): return (i,) return None from .mul import Mul from .add import Add from .power import Pow from .function import Function, _derivative_dispatch from .mod import Mod from .exprtools import factor_terms from .numbers import Integer, Rational
a29ec5fd4fec553a3031832b471dd4261fa282b526d6107e5888995ff426ec19
import numbers import decimal import fractions import math import re as regex import sys from .containers import Tuple from .sympify import (SympifyError, converter, sympify, _convert_numpy_types, _sympify, _is_numpy_instance) from .singleton import S, Singleton from .expr import Expr, AtomicExpr from .evalf import pure_complex from .decorators import _sympifyit from .cache import cacheit, clear_cache from .logic import fuzzy_not from sympy.core.compatibility import (as_int, HAS_GMPY, SYMPY_INTS, gmpy) from sympy.core.cache import lru_cache from .kind import NumberKind from sympy.multipledispatch import dispatch import mpmath import mpmath.libmp as mlib from mpmath.libmp import bitcount from mpmath.libmp.backend import MPZ from mpmath.libmp import mpf_pow, mpf_pi, mpf_e, phi_fixed from mpmath.ctx_mp import mpnumeric from mpmath.libmp.libmpf import ( finf as _mpf_inf, fninf as _mpf_ninf, fnan as _mpf_nan, fzero, _normalize as mpf_normalize, prec_to_dps) from sympy.utilities.misc import debug, filldedent from .parameters import global_parameters from sympy.utilities.exceptions import SymPyDeprecationWarning rnd = mlib.round_nearest _LOG2 = math.log(2) def comp(z1, z2, tol=None): """Return a bool indicating whether the error between z1 and z2 is <= tol. Examples ======== If ``tol`` is None then True will be returned if ``abs(z1 - z2)*10**p <= 5`` where ``p`` is minimum value of the decimal precision of each value. >>> from sympy.core.numbers import comp, pi >>> pi4 = pi.n(4); pi4 3.142 >>> comp(_, 3.142) True >>> comp(pi4, 3.141) False >>> comp(pi4, 3.143) False A comparison of strings will be made if ``z1`` is a Number and ``z2`` is a string or ``tol`` is ''. >>> comp(pi4, 3.1415) True >>> comp(pi4, 3.1415, '') False When ``tol`` is provided and ``z2`` is non-zero and ``|z1| > 1`` the error is normalized by ``|z1|``: >>> abs(pi4 - 3.14)/pi4 0.000509791731426756 >>> comp(pi4, 3.14, .001) # difference less than 0.1% True >>> comp(pi4, 3.14, .0005) # difference less than 0.1% False When ``|z1| <= 1`` the absolute error is used: >>> 1/pi4 0.3183 >>> abs(1/pi4 - 0.3183)/(1/pi4) 3.07371499106316e-5 >>> abs(1/pi4 - 0.3183) 9.78393554684764e-6 >>> comp(1/pi4, 0.3183, 1e-5) True To see if the absolute error between ``z1`` and ``z2`` is less than or equal to ``tol``, call this as ``comp(z1 - z2, 0, tol)`` or ``comp(z1 - z2, tol=tol)``: >>> abs(pi4 - 3.14) 0.00160156249999988 >>> comp(pi4 - 3.14, 0, .002) True >>> comp(pi4 - 3.14, 0, .001) False """ if type(z2) is str: if not pure_complex(z1, or_real=True): raise ValueError('when z2 is a str z1 must be a Number') return str(z1) == z2 if not z1: z1, z2 = z2, z1 if not z1: return True if not tol: a, b = z1, z2 if tol == '': return str(a) == str(b) if tol is None: a, b = sympify(a), sympify(b) if not all(i.is_number for i in (a, b)): raise ValueError('expecting 2 numbers') fa = a.atoms(Float) fb = b.atoms(Float) if not fa and not fb: # no floats -- compare exactly return a == b # get a to be pure_complex for do in range(2): ca = pure_complex(a, or_real=True) if not ca: if fa: a = a.n(prec_to_dps(min([i._prec for i in fa]))) ca = pure_complex(a, or_real=True) break else: fa, fb = fb, fa a, b = b, a cb = pure_complex(b) if not cb and fb: b = b.n(prec_to_dps(min([i._prec for i in fb]))) cb = pure_complex(b, or_real=True) if ca and cb and (ca[1] or cb[1]): return all(comp(i, j) for i, j in zip(ca, cb)) tol = 10**prec_to_dps(min(a._prec, getattr(b, '_prec', a._prec))) return int(abs(a - b)*tol) <= 5 diff = abs(z1 - z2) az1 = abs(z1) if z2 and az1 > 1: return diff/az1 <= tol else: return diff <= tol def mpf_norm(mpf, prec): """Return the mpf tuple normalized appropriately for the indicated precision after doing a check to see if zero should be returned or not when the mantissa is 0. ``mpf_normlize`` always assumes that this is zero, but it may not be since the mantissa for mpf's values "+inf", "-inf" and "nan" have a mantissa of zero, too. Note: this is not intended to validate a given mpf tuple, so sending mpf tuples that were not created by mpmath may produce bad results. This is only a wrapper to ``mpf_normalize`` which provides the check for non- zero mpfs that have a 0 for the mantissa. """ sign, man, expt, bc = mpf if not man: # hack for mpf_normalize which does not do this; # it assumes that if man is zero the result is 0 # (see issue 6639) if not bc: return fzero else: # don't change anything; this should already # be a well formed mpf tuple return mpf # Necessary if mpmath is using the gmpy backend from mpmath.libmp.backend import MPZ rv = mpf_normalize(sign, MPZ(man), expt, bc, prec, rnd) return rv # TODO: we should use the warnings module _errdict = {"divide": False} def seterr(divide=False): """ Should sympy raise an exception on 0/0 or return a nan? divide == True .... raise an exception divide == False ... return nan """ if _errdict["divide"] != divide: clear_cache() _errdict["divide"] = divide def _as_integer_ratio(p): neg_pow, man, expt, bc = getattr(p, '_mpf_', mpmath.mpf(p)._mpf_) p = [1, -1][neg_pow % 2]*man if expt < 0: q = 2**-expt else: q = 1 p *= 2**expt return int(p), int(q) def _decimal_to_Rational_prec(dec): """Convert an ordinary decimal instance to a Rational.""" if not dec.is_finite(): raise TypeError("dec must be finite, got %s." % dec) s, d, e = dec.as_tuple() prec = len(d) if e >= 0: # it's an integer rv = Integer(int(dec)) else: s = (-1)**s d = sum([di*10**i for i, di in enumerate(reversed(d))]) rv = Rational(s*d, 10**-e) return rv, prec _floatpat = regex.compile(r"[-+]?((\d*\.\d+)|(\d+\.?))") def _literal_float(f): """Return True if n starts like a floating point number.""" return bool(_floatpat.match(f)) # (a,b) -> gcd(a,b) # TODO caching with decorator, but not to degrade performance @lru_cache(1024) def igcd(*args): """Computes nonnegative integer greatest common divisor. Explanation =========== The algorithm is based on the well known Euclid's algorithm. To improve speed, igcd() has its own caching mechanism implemented. Examples ======== >>> from sympy.core.numbers import igcd >>> igcd(2, 4) 2 >>> igcd(5, 10, 15) 5 """ if len(args) < 2: raise TypeError( 'igcd() takes at least 2 arguments (%s given)' % len(args)) args_temp = [abs(as_int(i)) for i in args] if 1 in args_temp: return 1 a = args_temp.pop() if HAS_GMPY: # Using gmpy if present to speed up. for b in args_temp: a = gmpy.gcd(a, b) if b else a return as_int(a) for b in args_temp: a = math.gcd(a, b) return a igcd2 = math.gcd def igcd_lehmer(a, b): """Computes greatest common divisor of two integers. Explanation =========== Euclid's algorithm for the computation of the greatest common divisor gcd(a, b) of two (positive) integers a and b is based on the division identity a = q*b + r, where the quotient q and the remainder r are integers and 0 <= r < b. Then each common divisor of a and b divides r, and it follows that gcd(a, b) == gcd(b, r). The algorithm works by constructing the sequence r0, r1, r2, ..., where r0 = a, r1 = b, and each rn is the remainder from the division of the two preceding elements. In Python, q = a // b and r = a % b are obtained by the floor division and the remainder operations, respectively. These are the most expensive arithmetic operations, especially for large a and b. Lehmer's algorithm is based on the observation that the quotients qn = r(n-1) // rn are in general small integers even when a and b are very large. Hence the quotients can be usually determined from a relatively small number of most significant bits. The efficiency of the algorithm is further enhanced by not computing each long remainder in Euclid's sequence. The remainders are linear combinations of a and b with integer coefficients derived from the quotients. The coefficients can be computed as far as the quotients can be determined from the chosen most significant parts of a and b. Only then a new pair of consecutive remainders is computed and the algorithm starts anew with this pair. References ========== .. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm """ a, b = abs(as_int(a)), abs(as_int(b)) if a < b: a, b = b, a # The algorithm works by using one or two digit division # whenever possible. The outer loop will replace the # pair (a, b) with a pair of shorter consecutive elements # of the Euclidean gcd sequence until a and b # fit into two Python (long) int digits. nbits = 2*sys.int_info.bits_per_digit while a.bit_length() > nbits and b != 0: # Quotients are mostly small integers that can # be determined from most significant bits. n = a.bit_length() - nbits x, y = int(a >> n), int(b >> n) # most significant bits # Elements of the Euclidean gcd sequence are linear # combinations of a and b with integer coefficients. # Compute the coefficients of consecutive pairs # a' = A*a + B*b, b' = C*a + D*b # using small integer arithmetic as far as possible. A, B, C, D = 1, 0, 0, 1 # initial values while True: # The coefficients alternate in sign while looping. # The inner loop combines two steps to keep track # of the signs. # At this point we have # A > 0, B <= 0, C <= 0, D > 0, # x' = x + B <= x < x" = x + A, # y' = y + C <= y < y" = y + D, # and # x'*N <= a' < x"*N, y'*N <= b' < y"*N, # where N = 2**n. # Now, if y' > 0, and x"//y' and x'//y" agree, # then their common value is equal to q = a'//b'. # In addition, # x'%y" = x' - q*y" < x" - q*y' = x"%y', # and # (x'%y")*N < a'%b' < (x"%y')*N. # On the other hand, we also have x//y == q, # and therefore # x'%y" = x + B - q*(y + D) = x%y + B', # x"%y' = x + A - q*(y + C) = x%y + A', # where # B' = B - q*D < 0, A' = A - q*C > 0. if y + C <= 0: break q = (x + A) // (y + C) # Now x'//y" <= q, and equality holds if # x' - q*y" = (x - q*y) + (B - q*D) >= 0. # This is a minor optimization to avoid division. x_qy, B_qD = x - q*y, B - q*D if x_qy + B_qD < 0: break # Next step in the Euclidean sequence. x, y = y, x_qy A, B, C, D = C, D, A - q*C, B_qD # At this point the signs of the coefficients # change and their roles are interchanged. # A <= 0, B > 0, C > 0, D < 0, # x' = x + A <= x < x" = x + B, # y' = y + D < y < y" = y + C. if y + D <= 0: break q = (x + B) // (y + D) x_qy, A_qC = x - q*y, A - q*C if x_qy + A_qC < 0: break x, y = y, x_qy A, B, C, D = C, D, A_qC, B - q*D # Now the conditions on top of the loop # are again satisfied. # A > 0, B < 0, C < 0, D > 0. if B == 0: # This can only happen when y == 0 in the beginning # and the inner loop does nothing. # Long division is forced. a, b = b, a % b continue # Compute new long arguments using the coefficients. a, b = A*a + B*b, C*a + D*b # Small divisors. Finish with the standard algorithm. while b: a, b = b, a % b return a def ilcm(*args): """Computes integer least common multiple. Examples ======== >>> from sympy.core.numbers import ilcm >>> ilcm(5, 10) 10 >>> ilcm(7, 3) 21 >>> ilcm(5, 10, 15) 30 """ if len(args) < 2: raise TypeError( 'ilcm() takes at least 2 arguments (%s given)' % len(args)) if 0 in args: return 0 a = args[0] for b in args[1:]: a = a // igcd(a, b) * b # since gcd(a,b) | a return a def igcdex(a, b): """Returns x, y, g such that g = x*a + y*b = gcd(a, b). Examples ======== >>> from sympy.core.numbers import igcdex >>> igcdex(2, 3) (-1, 1, 1) >>> igcdex(10, 12) (-1, 1, 2) >>> x, y, g = igcdex(100, 2004) >>> x, y, g (-20, 1, 4) >>> x*100 + y*2004 4 """ if (not a) and (not b): return (0, 1, 0) if not a: return (0, b//abs(b), abs(b)) if not b: return (a//abs(a), 0, abs(a)) if a < 0: a, x_sign = -a, -1 else: x_sign = 1 if b < 0: b, y_sign = -b, -1 else: y_sign = 1 x, y, r, s = 1, 0, 0, 1 while b: (c, q) = (a % b, a // b) (a, b, r, s, x, y) = (b, c, x - q*r, y - q*s, r, s) return (x*x_sign, y*y_sign, a) def mod_inverse(a, m): """ Return the number c such that, (a * c) = 1 (mod m) where c has the same sign as m. If no such value exists, a ValueError is raised. Examples ======== >>> from sympy import S >>> from sympy.core.numbers import mod_inverse Suppose we wish to find multiplicative inverse x of 3 modulo 11. This is the same as finding x such that 3 * x = 1 (mod 11). One value of x that satisfies this congruence is 4. Because 3 * 4 = 12 and 12 = 1 (mod 11). This is the value returned by mod_inverse: >>> mod_inverse(3, 11) 4 >>> mod_inverse(-3, 11) 7 When there is a common factor between the numerators of ``a`` and ``m`` the inverse does not exist: >>> mod_inverse(2, 4) Traceback (most recent call last): ... ValueError: inverse of 2 mod 4 does not exist >>> mod_inverse(S(2)/7, S(5)/2) 7/2 References ========== .. [1] https://en.wikipedia.org/wiki/Modular_multiplicative_inverse .. [2] https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm """ c = None try: a, m = as_int(a), as_int(m) if m != 1 and m != -1: x, y, g = igcdex(a, m) if g == 1: c = x % m except ValueError: a, m = sympify(a), sympify(m) if not (a.is_number and m.is_number): raise TypeError(filldedent(''' Expected numbers for arguments; symbolic `mod_inverse` is not implemented but symbolic expressions can be handled with the similar function, sympy.polys.polytools.invert''')) big = (m > 1) if not (big is S.true or big is S.false): raise ValueError('m > 1 did not evaluate; try to simplify %s' % m) elif big: c = 1/a if c is None: raise ValueError('inverse of %s (mod %s) does not exist' % (a, m)) return c class Number(AtomicExpr): """Represents atomic numbers in SymPy. Explanation =========== Floating point numbers are represented by the Float class. Rational numbers (of any size) are represented by the Rational class. Integer numbers (of any size) are represented by the Integer class. Float and Rational are subclasses of Number; Integer is a subclass of Rational. For example, ``2/3`` is represented as ``Rational(2, 3)`` which is a different object from the floating point number obtained with Python division ``2/3``. Even for numbers that are exactly represented in binary, there is a difference between how two forms, such as ``Rational(1, 2)`` and ``Float(0.5)``, are used in SymPy. The rational form is to be preferred in symbolic computations. Other kinds of numbers, such as algebraic numbers ``sqrt(2)`` or complex numbers ``3 + 4*I``, are not instances of Number class as they are not atomic. See Also ======== Float, Integer, Rational """ is_commutative = True is_number = True is_Number = True __slots__ = () # Used to make max(x._prec, y._prec) return x._prec when only x is a float _prec = -1 kind = NumberKind def __new__(cls, *obj): if len(obj) == 1: obj = obj[0] if isinstance(obj, Number): return obj if isinstance(obj, SYMPY_INTS): return Integer(obj) if isinstance(obj, tuple) and len(obj) == 2: return Rational(*obj) if isinstance(obj, (float, mpmath.mpf, decimal.Decimal)): return Float(obj) if isinstance(obj, str): _obj = obj.lower() # float('INF') == float('inf') if _obj == 'nan': return S.NaN elif _obj == 'inf': return S.Infinity elif _obj == '+inf': return S.Infinity elif _obj == '-inf': return S.NegativeInfinity val = sympify(obj) if isinstance(val, Number): return val else: raise ValueError('String "%s" does not denote a Number' % obj) msg = "expected str|int|long|float|Decimal|Number object but got %r" raise TypeError(msg % type(obj).__name__) def invert(self, other, *gens, **args): from sympy.polys.polytools import invert if getattr(other, 'is_number', True): return mod_inverse(self, other) return invert(self, other, *gens, **args) def __divmod__(self, other): from .containers import Tuple from sympy.functions.elementary.complexes import sign try: other = Number(other) if self.is_infinite or S.NaN in (self, other): return (S.NaN, S.NaN) except TypeError: return NotImplemented if not other: raise ZeroDivisionError('modulo by zero') if self.is_Integer and other.is_Integer: return Tuple(*divmod(self.p, other.p)) elif isinstance(other, Float): rat = self/Rational(other) else: rat = self/other if other.is_finite: w = int(rat) if rat >= 0 else int(rat) - 1 r = self - other*w else: w = 0 if not self or (sign(self) == sign(other)) else -1 r = other if w else self return Tuple(w, r) def __rdivmod__(self, other): try: other = Number(other) except TypeError: return NotImplemented return divmod(other, self) def _as_mpf_val(self, prec): """Evaluation of mpf tuple accurate to at least prec bits.""" raise NotImplementedError('%s needs ._as_mpf_val() method' % (self.__class__.__name__)) def _eval_evalf(self, prec): return Float._new(self._as_mpf_val(prec), prec) def _as_mpf_op(self, prec): prec = max(prec, self._prec) return self._as_mpf_val(prec), prec def __float__(self): return mlib.to_float(self._as_mpf_val(53)) def floor(self): raise NotImplementedError('%s needs .floor() method' % (self.__class__.__name__)) def ceiling(self): raise NotImplementedError('%s needs .ceiling() method' % (self.__class__.__name__)) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() def _eval_conjugate(self): return self def _eval_order(self, *symbols): from sympy import Order # Order(5, x, y) -> Order(1,x,y) return Order(S.One, *symbols) def _eval_subs(self, old, new): if old == -self: return -new return self # there is no other possibility def _eval_is_finite(self): return True @classmethod def class_key(cls): return 1, 0, 'Number' @cacheit def sort_key(self, order=None): return self.class_key(), (0, ()), (), self @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NaN: return S.NaN elif other is S.Infinity: return S.Infinity elif other is S.NegativeInfinity: return S.NegativeInfinity return AtomicExpr.__add__(self, other) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NaN: return S.NaN elif other is S.Infinity: return S.NegativeInfinity elif other is S.NegativeInfinity: return S.Infinity return AtomicExpr.__sub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NaN: return S.NaN elif other is S.Infinity: if self.is_zero: return S.NaN elif self.is_positive: return S.Infinity else: return S.NegativeInfinity elif other is S.NegativeInfinity: if self.is_zero: return S.NaN elif self.is_positive: return S.NegativeInfinity else: return S.Infinity elif isinstance(other, Tuple): return NotImplemented return AtomicExpr.__mul__(self, other) @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NaN: return S.NaN elif other is S.Infinity or other is S.NegativeInfinity: return S.Zero return AtomicExpr.__truediv__(self, other) def __eq__(self, other): raise NotImplementedError('%s needs .__eq__() method' % (self.__class__.__name__)) def __ne__(self, other): raise NotImplementedError('%s needs .__ne__() method' % (self.__class__.__name__)) def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) raise NotImplementedError('%s needs .__lt__() method' % (self.__class__.__name__)) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) raise NotImplementedError('%s needs .__le__() method' % (self.__class__.__name__)) def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) return _sympify(other).__lt__(self) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) return _sympify(other).__le__(self) def __hash__(self): return super().__hash__() def is_constant(self, *wrt, **flags): return True def as_coeff_mul(self, *deps, rational=True, **kwargs): # a -> c*t if self.is_Rational or not rational: return self, tuple() elif self.is_negative: return S.NegativeOne, (-self,) return S.One, (self,) def as_coeff_add(self, *deps): # a -> c + t if self.is_Rational: return self, tuple() return S.Zero, (self,) def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ if rational and not self.is_Rational: return S.One, self return (self, S.One) if self else (S.One, self) def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ if not rational: return self, S.Zero return S.Zero, self def gcd(self, other): """Compute GCD of `self` and `other`. """ from sympy.polys import gcd return gcd(self, other) def lcm(self, other): """Compute LCM of `self` and `other`. """ from sympy.polys import lcm return lcm(self, other) def cofactors(self, other): """Compute GCD and cofactors of `self` and `other`. """ from sympy.polys import cofactors return cofactors(self, other) class Float(Number): """Represent a floating-point number of arbitrary precision. Examples ======== >>> from sympy import Float >>> Float(3.5) 3.50000000000000 >>> Float(3) 3.00000000000000 Creating Floats from strings (and Python ``int`` and ``long`` types) will give a minimum precision of 15 digits, but the precision will automatically increase to capture all digits entered. >>> Float(1) 1.00000000000000 >>> Float(10**20) 100000000000000000000. >>> Float('1e20') 100000000000000000000. However, *floating-point* numbers (Python ``float`` types) retain only 15 digits of precision: >>> Float(1e20) 1.00000000000000e+20 >>> Float(1.23456789123456789) 1.23456789123457 It may be preferable to enter high-precision decimal numbers as strings: >>> Float('1.23456789123456789') 1.23456789123456789 The desired number of digits can also be specified: >>> Float('1e-3', 3) 0.00100 >>> Float(100, 4) 100.0 Float can automatically count significant figures if a null string is sent for the precision; spaces or underscores are also allowed. (Auto- counting is only allowed for strings, ints and longs). >>> Float('123 456 789.123_456', '') 123456789.123456 >>> Float('12e-3', '') 0.012 >>> Float(3, '') 3. If a number is written in scientific notation, only the digits before the exponent are considered significant if a decimal appears, otherwise the "e" signifies only how to move the decimal: >>> Float('60.e2', '') # 2 digits significant 6.0e+3 >>> Float('60e2', '') # 4 digits significant 6000. >>> Float('600e-2', '') # 3 digits significant 6.00 Notes ===== Floats are inexact by their nature unless their value is a binary-exact value. >>> approx, exact = Float(.1, 1), Float(.125, 1) For calculation purposes, evalf needs to be able to change the precision but this will not increase the accuracy of the inexact value. The following is the most accurate 5-digit approximation of a value of 0.1 that had only 1 digit of precision: >>> approx.evalf(5) 0.099609 By contrast, 0.125 is exact in binary (as it is in base 10) and so it can be passed to Float or evalf to obtain an arbitrary precision with matching accuracy: >>> Float(exact, 5) 0.12500 >>> exact.evalf(20) 0.12500000000000000000 Trying to make a high-precision Float from a float is not disallowed, but one must keep in mind that the *underlying float* (not the apparent decimal value) is being obtained with high precision. For example, 0.3 does not have a finite binary representation. The closest rational is the fraction 5404319552844595/2**54. So if you try to obtain a Float of 0.3 to 20 digits of precision you will not see the same thing as 0.3 followed by 19 zeros: >>> Float(0.3, 20) 0.29999999999999998890 If you want a 20-digit value of the decimal 0.3 (not the floating point approximation of 0.3) you should send the 0.3 as a string. The underlying representation is still binary but a higher precision than Python's float is used: >>> Float('0.3', 20) 0.30000000000000000000 Although you can increase the precision of an existing Float using Float it will not increase the accuracy -- the underlying value is not changed: >>> def show(f): # binary rep of Float ... from sympy import Mul, Pow ... s, m, e, b = f._mpf_ ... v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False) ... print('%s at prec=%s' % (v, f._prec)) ... >>> t = Float('0.3', 3) >>> show(t) 4915/2**14 at prec=13 >>> show(Float(t, 20)) # higher prec, not higher accuracy 4915/2**14 at prec=70 >>> show(Float(t, 2)) # lower prec 307/2**10 at prec=10 The same thing happens when evalf is used on a Float: >>> show(t.evalf(20)) 4915/2**14 at prec=70 >>> show(t.evalf(2)) 307/2**10 at prec=10 Finally, Floats can be instantiated with an mpf tuple (n, c, p) to produce the number (-1)**n*c*2**p: >>> n, c, p = 1, 5, 0 >>> (-1)**n*c*2**p -5 >>> Float((1, 5, 0)) -5.00000000000000 An actual mpf tuple also contains the number of bits in c as the last element of the tuple: >>> _._mpf_ (1, 5, 0, 3) This is not needed for instantiation and is not the same thing as the precision. The mpf tuple and the precision are two separate quantities that Float tracks. In SymPy, a Float is a number that can be computed with arbitrary precision. Although floating point 'inf' and 'nan' are not such numbers, Float can create these numbers: >>> Float('-inf') -oo >>> _.is_Float False """ __slots__ = ('_mpf_', '_prec') # A Float represents many real numbers, # both rational and irrational. is_rational = None is_irrational = None is_number = True is_real = True is_extended_real = True is_Float = True def __new__(cls, num, dps=None, prec=None, precision=None): if prec is not None: SymPyDeprecationWarning( feature="Using 'prec=XX' to denote decimal precision", useinstead="'dps=XX' for decimal precision and 'precision=XX' "\ "for binary precision", issue=12820, deprecated_since_version="1.1").warn() dps = prec del prec # avoid using this deprecated kwarg if dps is not None and precision is not None: raise ValueError('Both decimal and binary precision supplied. ' 'Supply only one. ') if isinstance(num, str): # Float accepts spaces as digit separators num = num.replace(' ', '').lower() # in Py 3.6 # underscores are allowed. In anticipation of that, we ignore # legally placed underscores if '_' in num: parts = num.split('_') if not (all(parts) and all(parts[i][-1].isdigit() for i in range(0, len(parts), 2)) and all(parts[i][0].isdigit() for i in range(1, len(parts), 2))): # copy Py 3.6 error raise ValueError("could not convert string to float: '%s'" % num) num = ''.join(parts) if num.startswith('.') and len(num) > 1: num = '0' + num elif num.startswith('-.') and len(num) > 2: num = '-0.' + num[2:] elif num in ('inf', '+inf'): return S.Infinity elif num == '-inf': return S.NegativeInfinity elif isinstance(num, float) and num == 0: num = '0' elif isinstance(num, float) and num == float('inf'): return S.Infinity elif isinstance(num, float) and num == float('-inf'): return S.NegativeInfinity elif isinstance(num, float) and num == float('nan'): return S.NaN elif isinstance(num, (SYMPY_INTS, Integer)): num = str(num) elif num is S.Infinity: return num elif num is S.NegativeInfinity: return num elif num is S.NaN: return num elif _is_numpy_instance(num): # support for numpy datatypes num = _convert_numpy_types(num) elif isinstance(num, mpmath.mpf): if precision is None: if dps is None: precision = num.context.prec num = num._mpf_ if dps is None and precision is None: dps = 15 if isinstance(num, Float): return num if isinstance(num, str) and _literal_float(num): try: Num = decimal.Decimal(num) except decimal.InvalidOperation: pass else: isint = '.' not in num num, dps = _decimal_to_Rational_prec(Num) if num.is_Integer and isint: dps = max(dps, len(str(num).lstrip('-'))) dps = max(15, dps) precision = mlib.libmpf.dps_to_prec(dps) elif precision == '' and dps is None or precision is None and dps == '': if not isinstance(num, str): raise ValueError('The null string can only be used when ' 'the number to Float is passed as a string or an integer.') ok = None if _literal_float(num): try: Num = decimal.Decimal(num) except decimal.InvalidOperation: pass else: isint = '.' not in num num, dps = _decimal_to_Rational_prec(Num) if num.is_Integer and isint: dps = max(dps, len(str(num).lstrip('-'))) precision = mlib.libmpf.dps_to_prec(dps) ok = True if ok is None: raise ValueError('string-float not recognized: %s' % num) # decimal precision(dps) is set and maybe binary precision(precision) # as well.From here on binary precision is used to compute the Float. # Hence, if supplied use binary precision else translate from decimal # precision. if precision is None or precision == '': precision = mlib.libmpf.dps_to_prec(dps) precision = int(precision) if isinstance(num, float): _mpf_ = mlib.from_float(num, precision, rnd) elif isinstance(num, str): _mpf_ = mlib.from_str(num, precision, rnd) elif isinstance(num, decimal.Decimal): if num.is_finite(): _mpf_ = mlib.from_str(str(num), precision, rnd) elif num.is_nan(): return S.NaN elif num.is_infinite(): if num > 0: return S.Infinity return S.NegativeInfinity else: raise ValueError("unexpected decimal value %s" % str(num)) elif isinstance(num, tuple) and len(num) in (3, 4): if type(num[1]) is str: # it's a hexadecimal (coming from a pickled object) # assume that it is in standard form num = list(num) # If we're loading an object pickled in Python 2 into # Python 3, we may need to strip a tailing 'L' because # of a shim for int on Python 3, see issue #13470. if num[1].endswith('L'): num[1] = num[1][:-1] num[1] = MPZ(num[1], 16) _mpf_ = tuple(num) else: if len(num) == 4: # handle normalization hack return Float._new(num, precision) else: if not all(( num[0] in (0, 1), num[1] >= 0, all(type(i) in (int, int) for i in num) )): raise ValueError('malformed mpf: %s' % (num,)) # don't compute number or else it may # over/underflow return Float._new( (num[0], num[1], num[2], bitcount(num[1])), precision) else: try: _mpf_ = num._as_mpf_val(precision) except (NotImplementedError, AttributeError): _mpf_ = mpmath.mpf(num, prec=precision)._mpf_ return cls._new(_mpf_, precision, zero=False) @classmethod def _new(cls, _mpf_, _prec, zero=True): # special cases if zero and _mpf_ == fzero: return S.Zero # Float(0) -> 0.0; Float._new((0,0,0,0)) -> 0 elif _mpf_ == _mpf_nan: return S.NaN elif _mpf_ == _mpf_inf: return S.Infinity elif _mpf_ == _mpf_ninf: return S.NegativeInfinity obj = Expr.__new__(cls) obj._mpf_ = mpf_norm(_mpf_, _prec) obj._prec = _prec return obj # mpz can't be pickled def __getnewargs__(self): return (mlib.to_pickable(self._mpf_),) def __getstate__(self): return {'_prec': self._prec} def _hashable_content(self): return (self._mpf_, self._prec) def floor(self): return Integer(int(mlib.to_int( mlib.mpf_floor(self._mpf_, self._prec)))) def ceiling(self): return Integer(int(mlib.to_int( mlib.mpf_ceil(self._mpf_, self._prec)))) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() @property def num(self): return mpmath.mpf(self._mpf_) def _as_mpf_val(self, prec): rv = mpf_norm(self._mpf_, prec) if rv != self._mpf_ and self._prec == prec: debug(self._mpf_, rv) return rv def _as_mpf_op(self, prec): return self._mpf_, max(prec, self._prec) def _eval_is_finite(self): if self._mpf_ in (_mpf_inf, _mpf_ninf): return False return True def _eval_is_infinite(self): if self._mpf_ in (_mpf_inf, _mpf_ninf): return True return False def _eval_is_integer(self): return self._mpf_ == fzero def _eval_is_negative(self): if self._mpf_ == _mpf_ninf or self._mpf_ == _mpf_inf: return False return self.num < 0 def _eval_is_positive(self): if self._mpf_ == _mpf_ninf or self._mpf_ == _mpf_inf: return False return self.num > 0 def _eval_is_extended_negative(self): if self._mpf_ == _mpf_ninf: return True if self._mpf_ == _mpf_inf: return False return self.num < 0 def _eval_is_extended_positive(self): if self._mpf_ == _mpf_inf: return True if self._mpf_ == _mpf_ninf: return False return self.num > 0 def _eval_is_zero(self): return self._mpf_ == fzero def __bool__(self): return self._mpf_ != fzero def __neg__(self): return Float._new(mlib.mpf_neg(self._mpf_), self._prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec) return Number.__add__(self, other) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_sub(self._mpf_, rhs, prec, rnd), prec) return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec) return Number.__mul__(self, other) @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Number) and other != 0 and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_div(self._mpf_, rhs, prec, rnd), prec) return Number.__truediv__(self, other) @_sympifyit('other', NotImplemented) def __mod__(self, other): if isinstance(other, Rational) and other.q != 1 and global_parameters.evaluate: # calculate mod with Rationals, *then* round the result return Float(Rational.__mod__(Rational(self), other), precision=self._prec) if isinstance(other, Float) and global_parameters.evaluate: r = self/other if r == int(r): return Float(0, precision=max(self._prec, other._prec)) if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mod(self._mpf_, rhs, prec, rnd), prec) return Number.__mod__(self, other) @_sympifyit('other', NotImplemented) def __rmod__(self, other): if isinstance(other, Float) and global_parameters.evaluate: return other.__mod__(self) if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mod(rhs, self._mpf_, prec, rnd), prec) return Number.__rmod__(self, other) def _eval_power(self, expt): """ expt is symbolic object but not equal to 0, 1 (-p)**r -> exp(r*log(-p)) -> exp(r*(log(p) + I*Pi)) -> -> p**r*(sin(Pi*r) + cos(Pi*r)*I) """ if self == 0: if expt.is_positive: return S.Zero if expt.is_negative: return S.Infinity if isinstance(expt, Number): if isinstance(expt, Integer): prec = self._prec return Float._new( mlib.mpf_pow_int(self._mpf_, expt.p, prec, rnd), prec) elif isinstance(expt, Rational) and \ expt.p == 1 and expt.q % 2 and self.is_negative: return Pow(S.NegativeOne, expt, evaluate=False)*( -self)._eval_power(expt) expt, prec = expt._as_mpf_op(self._prec) mpfself = self._mpf_ try: y = mpf_pow(mpfself, expt, prec, rnd) return Float._new(y, prec) except mlib.ComplexResult: re, im = mlib.mpc_pow( (mpfself, fzero), (expt, fzero), prec, rnd) return Float._new(re, prec) + \ Float._new(im, prec)*S.ImaginaryUnit def __abs__(self): return Float._new(mlib.mpf_abs(self._mpf_), self._prec) def __int__(self): if self._mpf_ == fzero: return 0 return int(mlib.to_int(self._mpf_)) # uses round_fast = round_down def __eq__(self, other): from sympy.logic.boolalg import Boolean try: other = _sympify(other) except SympifyError: return NotImplemented if isinstance(other, Boolean): return False if other.is_NumberSymbol: if other.is_irrational: return False return other.__eq__(self) if other.is_Float: # comparison is exact # so Float(.1, 3) != Float(.1, 33) return self._mpf_ == other._mpf_ if other.is_Rational: return other.__eq__(self) if other.is_Number: # numbers should compare at the same precision; # all _as_mpf_val routines should be sure to abide # by the request to change the prec if necessary; if # they don't, the equality test will fail since it compares # the mpf tuples ompf = other._as_mpf_val(self._prec) return bool(mlib.mpf_eq(self._mpf_, ompf)) if not self: return not other return False # Float != non-Number def __ne__(self, other): return not self == other def _Frel(self, other, op): from sympy.core.numbers import prec_to_dps try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Rational: # test self*other.q <?> other.p without losing precision ''' >>> f = Float(.1,2) >>> i = 1234567890 >>> (f*i)._mpf_ (0, 471, 18, 9) >>> mlib.mpf_mul(f._mpf_, mlib.from_int(i)) (0, 505555550955, -12, 39) ''' smpf = mlib.mpf_mul(self._mpf_, mlib.from_int(other.q)) ompf = mlib.from_int(other.p) return _sympify(bool(op(smpf, ompf))) elif other.is_Float: return _sympify(bool( op(self._mpf_, other._mpf_))) elif other.is_comparable and other not in ( S.Infinity, S.NegativeInfinity): other = other.evalf(prec_to_dps(self._prec)) if other._prec > 1: if other.is_Number: return _sympify(bool( op(self._mpf_, other._as_mpf_val(self._prec)))) def __gt__(self, other): if isinstance(other, NumberSymbol): return other.__lt__(self) rv = self._Frel(other, mlib.mpf_gt) if rv is None: return Expr.__gt__(self, other) return rv def __ge__(self, other): if isinstance(other, NumberSymbol): return other.__le__(self) rv = self._Frel(other, mlib.mpf_ge) if rv is None: return Expr.__ge__(self, other) return rv def __lt__(self, other): if isinstance(other, NumberSymbol): return other.__gt__(self) rv = self._Frel(other, mlib.mpf_lt) if rv is None: return Expr.__lt__(self, other) return rv def __le__(self, other): if isinstance(other, NumberSymbol): return other.__ge__(self) rv = self._Frel(other, mlib.mpf_le) if rv is None: return Expr.__le__(self, other) return rv def __hash__(self): return super().__hash__() def epsilon_eq(self, other, epsilon="1e-15"): return abs(self - other) < Float(epsilon) def _sage_(self): import sage.all as sage return sage.RealNumber(str(self)) def __format__(self, format_spec): return format(decimal.Decimal(str(self)), format_spec) # Add sympify converters converter[float] = converter[decimal.Decimal] = Float # this is here to work nicely in Sage RealNumber = Float class Rational(Number): """Represents rational numbers (p/q) of any size. Examples ======== >>> from sympy import Rational, nsimplify, S, pi >>> Rational(1, 2) 1/2 Rational is unprejudiced in accepting input. If a float is passed, the underlying value of the binary representation will be returned: >>> Rational(.5) 1/2 >>> Rational(.2) 3602879701896397/18014398509481984 If the simpler representation of the float is desired then consider limiting the denominator to the desired value or convert the float to a string (which is roughly equivalent to limiting the denominator to 10**12): >>> Rational(str(.2)) 1/5 >>> Rational(.2).limit_denominator(10**12) 1/5 An arbitrarily precise Rational is obtained when a string literal is passed: >>> Rational("1.23") 123/100 >>> Rational('1e-2') 1/100 >>> Rational(".1") 1/10 >>> Rational('1e-2/3.2') 1/320 The conversion of other types of strings can be handled by the sympify() function, and conversion of floats to expressions or simple fractions can be handled with nsimplify: >>> S('.[3]') # repeating digits in brackets 1/3 >>> S('3**2/10') # general expressions 9/10 >>> nsimplify(.3) # numbers that have a simple form 3/10 But if the input does not reduce to a literal Rational, an error will be raised: >>> Rational(pi) Traceback (most recent call last): ... TypeError: invalid input: pi Low-level --------- Access numerator and denominator as .p and .q: >>> r = Rational(3, 4) >>> r 3/4 >>> r.p 3 >>> r.q 4 Note that p and q return integers (not SymPy Integers) so some care is needed when using them in expressions: >>> r.p/r.q 0.75 See Also ======== sympy.core.sympify.sympify, sympy.simplify.simplify.nsimplify """ is_real = True is_integer = False is_rational = True is_number = True __slots__ = ('p', 'q') is_Rational = True @cacheit def __new__(cls, p, q=None, gcd=None): if q is None: if isinstance(p, Rational): return p if isinstance(p, SYMPY_INTS): pass else: if isinstance(p, (float, Float)): return Rational(*_as_integer_ratio(p)) if not isinstance(p, str): try: p = sympify(p) except (SympifyError, SyntaxError): pass # error will raise below else: if p.count('/') > 1: raise TypeError('invalid input: %s' % p) p = p.replace(' ', '') pq = p.rsplit('/', 1) if len(pq) == 2: p, q = pq fp = fractions.Fraction(p) fq = fractions.Fraction(q) p = fp/fq try: p = fractions.Fraction(p) except ValueError: pass # error will raise below else: return Rational(p.numerator, p.denominator, 1) if not isinstance(p, Rational): raise TypeError('invalid input: %s' % p) q = 1 gcd = 1 else: p = Rational(p) q = Rational(q) if isinstance(q, Rational): p *= q.q q = q.p if isinstance(p, Rational): q *= p.q p = p.p # p and q are now integers if q == 0: if p == 0: if _errdict["divide"]: raise ValueError("Indeterminate 0/0") else: return S.NaN return S.ComplexInfinity if q < 0: q = -q p = -p if not gcd: gcd = igcd(abs(p), q) if gcd > 1: p //= gcd q //= gcd if q == 1: return Integer(p) if p == 1 and q == 2: return S.Half obj = Expr.__new__(cls) obj.p = p obj.q = q return obj def limit_denominator(self, max_denominator=1000000): """Closest Rational to self with denominator at most max_denominator. Examples ======== >>> from sympy import Rational >>> Rational('3.141592653589793').limit_denominator(10) 22/7 >>> Rational('3.141592653589793').limit_denominator(100) 311/99 """ f = fractions.Fraction(self.p, self.q) return Rational(f.limit_denominator(fractions.Fraction(int(max_denominator)))) def __getnewargs__(self): return (self.p, self.q) def _hashable_content(self): return (self.p, self.q) def _eval_is_positive(self): return self.p > 0 def _eval_is_zero(self): return self.p == 0 def __neg__(self): return Rational(-self.p, self.q) @_sympifyit('other', NotImplemented) def __add__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(self.p + self.q*other.p, self.q, 1) elif isinstance(other, Rational): #TODO: this can probably be optimized more return Rational(self.p*other.q + self.q*other.p, self.q*other.q) elif isinstance(other, Float): return other + self else: return Number.__add__(self, other) return Number.__add__(self, other) __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(self.p - self.q*other.p, self.q, 1) elif isinstance(other, Rational): return Rational(self.p*other.q - self.q*other.p, self.q*other.q) elif isinstance(other, Float): return -other + self else: return Number.__sub__(self, other) return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __rsub__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(self.q*other.p - self.p, self.q, 1) elif isinstance(other, Rational): return Rational(self.q*other.p - self.p*other.q, self.q*other.q) elif isinstance(other, Float): return -self + other else: return Number.__rsub__(self, other) return Number.__rsub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(self.p*other.p, self.q, igcd(other.p, self.q)) elif isinstance(other, Rational): return Rational(self.p*other.p, self.q*other.q, igcd(self.p, other.q)*igcd(self.q, other.p)) elif isinstance(other, Float): return other*self else: return Number.__mul__(self, other) return Number.__mul__(self, other) __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __truediv__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): if self.p and other.p == S.Zero: return S.ComplexInfinity else: return Rational(self.p, self.q*other.p, igcd(self.p, other.p)) elif isinstance(other, Rational): return Rational(self.p*other.q, self.q*other.p, igcd(self.p, other.p)*igcd(self.q, other.q)) elif isinstance(other, Float): return self*(1/other) else: return Number.__truediv__(self, other) return Number.__truediv__(self, other) @_sympifyit('other', NotImplemented) def __rtruediv__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(other.p*self.q, self.p, igcd(self.p, other.p)) elif isinstance(other, Rational): return Rational(other.p*self.q, other.q*self.p, igcd(self.p, other.p)*igcd(self.q, other.q)) elif isinstance(other, Float): return other*(1/self) else: return Number.__rtruediv__(self, other) return Number.__rtruediv__(self, other) @_sympifyit('other', NotImplemented) def __mod__(self, other): if global_parameters.evaluate: if isinstance(other, Rational): n = (self.p*other.q) // (other.p*self.q) return Rational(self.p*other.q - n*other.p*self.q, self.q*other.q) if isinstance(other, Float): # calculate mod with Rationals, *then* round the answer return Float(self.__mod__(Rational(other)), precision=other._prec) return Number.__mod__(self, other) return Number.__mod__(self, other) @_sympifyit('other', NotImplemented) def __rmod__(self, other): if isinstance(other, Rational): return Rational.__mod__(other, self) return Number.__rmod__(self, other) def _eval_power(self, expt): if isinstance(expt, Number): if isinstance(expt, Float): return self._eval_evalf(expt._prec)**expt if expt.is_extended_negative: # (3/4)**-2 -> (4/3)**2 ne = -expt if (ne is S.One): return Rational(self.q, self.p) if self.is_negative: return S.NegativeOne**expt*Rational(self.q, -self.p)**ne else: return Rational(self.q, self.p)**ne if expt is S.Infinity: # -oo already caught by test for negative if self.p > self.q: # (3/2)**oo -> oo return S.Infinity if self.p < -self.q: # (-3/2)**oo -> oo + I*oo return S.Infinity + S.Infinity*S.ImaginaryUnit return S.Zero if isinstance(expt, Integer): # (4/3)**2 -> 4**2 / 3**2 return Rational(self.p**expt.p, self.q**expt.p, 1) if isinstance(expt, Rational): if self.p != 1: # (4/3)**(5/6) -> 4**(5/6)*3**(-5/6) return Integer(self.p)**expt*Integer(self.q)**(-expt) # as the above caught negative self.p, now self is positive return Integer(self.q)**Rational( expt.p*(expt.q - 1), expt.q) / \ Integer(self.q)**Integer(expt.p) if self.is_extended_negative and expt.is_even: return (-self)**expt return def _as_mpf_val(self, prec): return mlib.from_rational(self.p, self.q, prec, rnd) def _mpmath_(self, prec, rnd): return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd)) def __abs__(self): return Rational(abs(self.p), self.q) def __int__(self): p, q = self.p, self.q if p < 0: return -int(-p//q) return int(p//q) def floor(self): return Integer(self.p // self.q) def ceiling(self): return -Integer(-self.p // self.q) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() def __eq__(self, other): from sympy.core.power import integer_log try: other = _sympify(other) except SympifyError: return NotImplemented if not isinstance(other, Number): # S(0) == S.false is False # S(0) == False is True return False if not self: return not other if other.is_NumberSymbol: if other.is_irrational: return False return other.__eq__(self) if other.is_Rational: # a Rational is always in reduced form so will never be 2/4 # so we can just check equivalence of args return self.p == other.p and self.q == other.q if other.is_Float: # all Floats have a denominator that is a power of 2 # so if self doesn't, it can't be equal to other if self.q & (self.q - 1): return False s, m, t = other._mpf_[:3] if s: m = -m if not t: # other is an odd integer if not self.is_Integer or self.is_even: return False return m == self.p if t > 0: # other is an even integer if not self.is_Integer: return False # does m*2**t == self.p return self.p and not self.p % m and \ integer_log(self.p//m, 2) == (t, True) # does non-integer s*m/2**-t = p/q? if self.is_Integer: return False return m == self.p and integer_log(self.q, 2) == (-t, True) return False def __ne__(self, other): return not self == other def _Rrel(self, other, attr): # if you want self < other, pass self, other, __gt__ try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Number: op = None s, o = self, other if other.is_NumberSymbol: op = getattr(o, attr) elif other.is_Float: op = getattr(o, attr) elif other.is_Rational: s, o = Integer(s.p*o.q), Integer(s.q*o.p) op = getattr(o, attr) if op: return op(s) if o.is_number and o.is_extended_real: return Integer(s.p), s.q*o def __gt__(self, other): rv = self._Rrel(other, '__lt__') if rv is None: rv = self, other elif not type(rv) is tuple: return rv return Expr.__gt__(*rv) def __ge__(self, other): rv = self._Rrel(other, '__le__') if rv is None: rv = self, other elif not type(rv) is tuple: return rv return Expr.__ge__(*rv) def __lt__(self, other): rv = self._Rrel(other, '__gt__') if rv is None: rv = self, other elif not type(rv) is tuple: return rv return Expr.__lt__(*rv) def __le__(self, other): rv = self._Rrel(other, '__ge__') if rv is None: rv = self, other elif not type(rv) is tuple: return rv return Expr.__le__(*rv) def __hash__(self): return super().__hash__() def factors(self, limit=None, use_trial=True, use_rho=False, use_pm1=False, verbose=False, visual=False): """A wrapper to factorint which return factors of self that are smaller than limit (or cheap to compute). Special methods of factoring are disabled by default so that only trial division is used. """ from sympy.ntheory import factorrat return factorrat(self, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose).copy() def numerator(self): return self.p def denominator(self): return self.q @_sympifyit('other', NotImplemented) def gcd(self, other): if isinstance(other, Rational): if other == S.Zero: return other return Rational( Integer(igcd(self.p, other.p)), Integer(ilcm(self.q, other.q))) return Number.gcd(self, other) @_sympifyit('other', NotImplemented) def lcm(self, other): if isinstance(other, Rational): return Rational( self.p // igcd(self.p, other.p) * other.p, igcd(self.q, other.q)) return Number.lcm(self, other) def as_numer_denom(self): return Integer(self.p), Integer(self.q) def _sage_(self): import sage.all as sage return sage.Integer(self.p)/sage.Integer(self.q) def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import S >>> (S(-3)/2).as_content_primitive() (3/2, -1) See docstring of Expr.as_content_primitive for more examples. """ if self: if self.is_positive: return self, S.One return -self, S.NegativeOne return S.One, self def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return self, S.One def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ return self, S.Zero class Integer(Rational): """Represents integer numbers of any size. Examples ======== >>> from sympy import Integer >>> Integer(3) 3 If a float or a rational is passed to Integer, the fractional part will be discarded; the effect is of rounding toward zero. >>> Integer(3.8) 3 >>> Integer(-3.8) -3 A string is acceptable input if it can be parsed as an integer: >>> Integer("9" * 20) 99999999999999999999 It is rarely needed to explicitly instantiate an Integer, because Python integers are automatically converted to Integer when they are used in SymPy expressions. """ q = 1 is_integer = True is_number = True is_Integer = True __slots__ = ('p',) def _as_mpf_val(self, prec): return mlib.from_int(self.p, prec, rnd) def _mpmath_(self, prec, rnd): return mpmath.make_mpf(self._as_mpf_val(prec)) @cacheit def __new__(cls, i): if isinstance(i, str): i = i.replace(' ', '') # whereas we cannot, in general, make a Rational from an # arbitrary expression, we can make an Integer unambiguously # (except when a non-integer expression happens to round to # an integer). So we proceed by taking int() of the input and # let the int routines determine whether the expression can # be made into an int or whether an error should be raised. try: ival = int(i) except TypeError: raise TypeError( "Argument of Integer should be of numeric type, got %s." % i) # We only work with well-behaved integer types. This converts, for # example, numpy.int32 instances. if ival == 1: return S.One if ival == -1: return S.NegativeOne if ival == 0: return S.Zero obj = Expr.__new__(cls) obj.p = ival return obj def __getnewargs__(self): return (self.p,) # Arithmetic operations are here for efficiency def __int__(self): return self.p def floor(self): return Integer(self.p) def ceiling(self): return Integer(self.p) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() def __neg__(self): return Integer(-self.p) def __abs__(self): if self.p >= 0: return self else: return Integer(-self.p) def __divmod__(self, other): from .containers import Tuple if isinstance(other, Integer) and global_parameters.evaluate: return Tuple(*(divmod(self.p, other.p))) else: return Number.__divmod__(self, other) def __rdivmod__(self, other): from .containers import Tuple if isinstance(other, int) and global_parameters.evaluate: return Tuple(*(divmod(other, self.p))) else: try: other = Number(other) except TypeError: msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" oname = type(other).__name__ sname = type(self).__name__ raise TypeError(msg % (oname, sname)) return Number.__divmod__(other, self) # TODO make it decorator + bytecodehacks? def __add__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(self.p + other) elif isinstance(other, Integer): return Integer(self.p + other.p) elif isinstance(other, Rational): return Rational(self.p*other.q + other.p, other.q, 1) return Rational.__add__(self, other) else: return Add(self, other) def __radd__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(other + self.p) elif isinstance(other, Rational): return Rational(other.p + self.p*other.q, other.q, 1) return Rational.__radd__(self, other) return Rational.__radd__(self, other) def __sub__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(self.p - other) elif isinstance(other, Integer): return Integer(self.p - other.p) elif isinstance(other, Rational): return Rational(self.p*other.q - other.p, other.q, 1) return Rational.__sub__(self, other) return Rational.__sub__(self, other) def __rsub__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(other - self.p) elif isinstance(other, Rational): return Rational(other.p - self.p*other.q, other.q, 1) return Rational.__rsub__(self, other) return Rational.__rsub__(self, other) def __mul__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(self.p*other) elif isinstance(other, Integer): return Integer(self.p*other.p) elif isinstance(other, Rational): return Rational(self.p*other.p, other.q, igcd(self.p, other.q)) return Rational.__mul__(self, other) return Rational.__mul__(self, other) def __rmul__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(other*self.p) elif isinstance(other, Rational): return Rational(other.p*self.p, other.q, igcd(self.p, other.q)) return Rational.__rmul__(self, other) return Rational.__rmul__(self, other) def __mod__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(self.p % other) elif isinstance(other, Integer): return Integer(self.p % other.p) return Rational.__mod__(self, other) return Rational.__mod__(self, other) def __rmod__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(other % self.p) elif isinstance(other, Integer): return Integer(other.p % self.p) return Rational.__rmod__(self, other) return Rational.__rmod__(self, other) def __eq__(self, other): if isinstance(other, int): return (self.p == other) elif isinstance(other, Integer): return (self.p == other.p) return Rational.__eq__(self, other) def __ne__(self, other): return not self == other def __gt__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Integer: return _sympify(self.p > other.p) return Rational.__gt__(self, other) def __lt__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Integer: return _sympify(self.p < other.p) return Rational.__lt__(self, other) def __ge__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Integer: return _sympify(self.p >= other.p) return Rational.__ge__(self, other) def __le__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Integer: return _sympify(self.p <= other.p) return Rational.__le__(self, other) def __hash__(self): return hash(self.p) def __index__(self): return self.p ######################################## def _eval_is_odd(self): return bool(self.p % 2) def _eval_power(self, expt): """ Tries to do some simplifications on self**expt Returns None if no further simplifications can be done. Explanation =========== When exponent is a fraction (so we have for example a square root), we try to find a simpler representation by factoring the argument up to factors of 2**15, e.g. - sqrt(4) becomes 2 - sqrt(-4) becomes 2*I - (2**(3+7)*3**(6+7))**Rational(1,7) becomes 6*18**(3/7) Further simplification would require a special call to factorint on the argument which is not done here for sake of speed. """ from sympy.ntheory.factor_ import perfect_power if expt is S.Infinity: if self.p > S.One: return S.Infinity # cases -1, 0, 1 are done in their respective classes return S.Infinity + S.ImaginaryUnit*S.Infinity if expt is S.NegativeInfinity: return Rational(1, self)**S.Infinity if not isinstance(expt, Number): # simplify when expt is even # (-2)**k --> 2**k if self.is_negative and expt.is_even: return (-self)**expt if isinstance(expt, Float): # Rational knows how to exponentiate by a Float return super()._eval_power(expt) if not isinstance(expt, Rational): return if expt is S.Half and self.is_negative: # we extract I for this special case since everyone is doing so return S.ImaginaryUnit*Pow(-self, expt) if expt.is_negative: # invert base and change sign on exponent ne = -expt if self.is_negative: return S.NegativeOne**expt*Rational(1, -self)**ne else: return Rational(1, self.p)**ne # see if base is a perfect root, sqrt(4) --> 2 x, xexact = integer_nthroot(abs(self.p), expt.q) if xexact: # if it's a perfect root we've finished result = Integer(x**abs(expt.p)) if self.is_negative: result *= S.NegativeOne**expt return result # The following is an algorithm where we collect perfect roots # from the factors of base. # if it's not an nth root, it still might be a perfect power b_pos = int(abs(self.p)) p = perfect_power(b_pos) if p is not False: dict = {p[0]: p[1]} else: dict = Integer(b_pos).factors(limit=2**15) # now process the dict of factors out_int = 1 # integer part out_rad = 1 # extracted radicals sqr_int = 1 sqr_gcd = 0 sqr_dict = {} for prime, exponent in dict.items(): exponent *= expt.p # remove multiples of expt.q: (2**12)**(1/10) -> 2*(2**2)**(1/10) div_e, div_m = divmod(exponent, expt.q) if div_e > 0: out_int *= prime**div_e if div_m > 0: # see if the reduced exponent shares a gcd with e.q # (2**2)**(1/10) -> 2**(1/5) g = igcd(div_m, expt.q) if g != 1: out_rad *= Pow(prime, Rational(div_m//g, expt.q//g)) else: sqr_dict[prime] = div_m # identify gcd of remaining powers for p, ex in sqr_dict.items(): if sqr_gcd == 0: sqr_gcd = ex else: sqr_gcd = igcd(sqr_gcd, ex) if sqr_gcd == 1: break for k, v in sqr_dict.items(): sqr_int *= k**(v//sqr_gcd) if sqr_int == b_pos and out_int == 1 and out_rad == 1: result = None else: result = out_int*out_rad*Pow(sqr_int, Rational(sqr_gcd, expt.q)) if self.is_negative: result *= Pow(S.NegativeOne, expt) return result def _eval_is_prime(self): from sympy.ntheory import isprime return isprime(self) def _eval_is_composite(self): if self > 1: return fuzzy_not(self.is_prime) else: return False def as_numer_denom(self): return self, S.One @_sympifyit('other', NotImplemented) def __floordiv__(self, other): if not isinstance(other, Expr): return NotImplemented if isinstance(other, Integer): return Integer(self.p // other) return Integer(divmod(self, other)[0]) def __rfloordiv__(self, other): return Integer(Integer(other).p // self.p) # Add sympify converters converter[int] = Integer class AlgebraicNumber(Expr): """Class for representing algebraic numbers in SymPy. """ __slots__ = ('rep', 'root', 'alias', 'minpoly') is_AlgebraicNumber = True is_algebraic = True is_number = True kind = NumberKind # Optional alias symbol is not free. # Actually, alias should be a Str, but some methods # expect that it be an instance of Expr. free_symbols = set() def __new__(cls, expr, coeffs=None, alias=None, **args): """Construct a new algebraic number. """ from sympy import Poly from sympy.polys.polyclasses import ANP, DMP from sympy.polys.numberfields import minimal_polynomial from sympy.core.symbol import Symbol expr = sympify(expr) if isinstance(expr, (tuple, Tuple)): minpoly, root = expr if not minpoly.is_Poly: minpoly = Poly(minpoly) elif expr.is_AlgebraicNumber: minpoly, root = expr.minpoly, expr.root else: minpoly, root = minimal_polynomial( expr, args.get('gen'), polys=True), expr dom = minpoly.get_domain() if coeffs is not None: if not isinstance(coeffs, ANP): rep = DMP.from_sympy_list(sympify(coeffs), 0, dom) scoeffs = Tuple(*coeffs) else: rep = DMP.from_list(coeffs.to_list(), 0, dom) scoeffs = Tuple(*coeffs.to_list()) if rep.degree() >= minpoly.degree(): rep = rep.rem(minpoly.rep) else: rep = DMP.from_list([1, 0], 0, dom) scoeffs = Tuple(1, 0) sargs = (root, scoeffs) if alias is not None: if not isinstance(alias, Symbol): alias = Symbol(alias) sargs = sargs + (alias,) obj = Expr.__new__(cls, *sargs) obj.rep = rep obj.root = root obj.alias = alias obj.minpoly = minpoly return obj def __hash__(self): return super().__hash__() def _eval_evalf(self, prec): return self.as_expr()._evalf(prec) @property def is_aliased(self): """Returns ``True`` if ``alias`` was set. """ return self.alias is not None def as_poly(self, x=None): """Create a Poly instance from ``self``. """ from sympy import Dummy, Poly, PurePoly if x is not None: return Poly.new(self.rep, x) else: if self.alias is not None: return Poly.new(self.rep, self.alias) else: return PurePoly.new(self.rep, Dummy('x')) def as_expr(self, x=None): """Create a Basic expression from ``self``. """ return self.as_poly(x or self.root).as_expr().expand() def coeffs(self): """Returns all SymPy coefficients of an algebraic number. """ return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ] def native_coeffs(self): """Returns all native coefficients of an algebraic number. """ return self.rep.all_coeffs() def to_algebraic_integer(self): """Convert ``self`` to an algebraic integer. """ from sympy import Poly f = self.minpoly if f.LC() == 1: return self coeff = f.LC()**(f.degree() - 1) poly = f.compose(Poly(f.gen/f.LC())) minpoly = poly*coeff root = f.LC()*self.root return AlgebraicNumber((minpoly, root), self.coeffs()) def _eval_simplify(self, **kwargs): from sympy.polys import CRootOf, minpoly measure, ratio = kwargs['measure'], kwargs['ratio'] for r in [r for r in self.minpoly.all_roots() if r.func != CRootOf]: if minpoly(self.root - r).is_Symbol: # use the matching root if it's simpler if measure(r) < ratio*measure(self.root): return AlgebraicNumber(r) return self class RationalConstant(Rational): """ Abstract base class for rationals with specific behaviors Derived classes must define class attributes p and q and should probably all be singletons. """ __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) class IntegerConstant(Integer): __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) class Zero(IntegerConstant, metaclass=Singleton): """The number zero. Zero is a singleton, and can be accessed by ``S.Zero`` Examples ======== >>> from sympy import S, Integer >>> Integer(0) is S.Zero True >>> 1/S.Zero zoo References ========== .. [1] https://en.wikipedia.org/wiki/Zero """ p = 0 q = 1 is_positive = False is_negative = False is_zero = True is_number = True is_comparable = True __slots__ = () def __getnewargs__(self): return () @staticmethod def __abs__(): return S.Zero @staticmethod def __neg__(): return S.Zero def _eval_power(self, expt): if expt.is_positive: return self if expt.is_negative: return S.ComplexInfinity if expt.is_extended_real is False: return S.NaN # infinities are already handled with pos and neg # tests above; now throw away leading numbers on Mul # exponent coeff, terms = expt.as_coeff_Mul() if coeff.is_negative: return S.ComplexInfinity**terms if coeff is not S.One: # there is a Number to discard return self**terms def _eval_order(self, *symbols): # Order(0,x) -> 0 return self def __bool__(self): return False def as_coeff_Mul(self, rational=False): # XXX this routine should be deleted """Efficiently extract the coefficient of a summation. """ return S.One, self class One(IntegerConstant, metaclass=Singleton): """The number one. One is a singleton, and can be accessed by ``S.One``. Examples ======== >>> from sympy import S, Integer >>> Integer(1) is S.One True References ========== .. [1] https://en.wikipedia.org/wiki/1_%28number%29 """ is_number = True p = 1 q = 1 __slots__ = () def __getnewargs__(self): return () @staticmethod def __abs__(): return S.One @staticmethod def __neg__(): return S.NegativeOne def _eval_power(self, expt): return self def _eval_order(self, *symbols): return @staticmethod def factors(limit=None, use_trial=True, use_rho=False, use_pm1=False, verbose=False, visual=False): if visual: return S.One else: return {} class NegativeOne(IntegerConstant, metaclass=Singleton): """The number negative one. NegativeOne is a singleton, and can be accessed by ``S.NegativeOne``. Examples ======== >>> from sympy import S, Integer >>> Integer(-1) is S.NegativeOne True See Also ======== One References ========== .. [1] https://en.wikipedia.org/wiki/%E2%88%921_%28number%29 """ is_number = True p = -1 q = 1 __slots__ = () def __getnewargs__(self): return () @staticmethod def __abs__(): return S.One @staticmethod def __neg__(): return S.One def _eval_power(self, expt): if expt.is_odd: return S.NegativeOne if expt.is_even: return S.One if isinstance(expt, Number): if isinstance(expt, Float): return Float(-1.0)**expt if expt is S.NaN: return S.NaN if expt is S.Infinity or expt is S.NegativeInfinity: return S.NaN if expt is S.Half: return S.ImaginaryUnit if isinstance(expt, Rational): if expt.q == 2: return S.ImaginaryUnit**Integer(expt.p) i, r = divmod(expt.p, expt.q) if i: return self**i*self**Rational(r, expt.q) return class Half(RationalConstant, metaclass=Singleton): """The rational number 1/2. Half is a singleton, and can be accessed by ``S.Half``. Examples ======== >>> from sympy import S, Rational >>> Rational(1, 2) is S.Half True References ========== .. [1] https://en.wikipedia.org/wiki/One_half """ is_number = True p = 1 q = 2 __slots__ = () def __getnewargs__(self): return () @staticmethod def __abs__(): return S.Half class Infinity(Number, metaclass=Singleton): r"""Positive infinite quantity. Explanation =========== In real analysis the symbol `\infty` denotes an unbounded limit: `x\to\infty` means that `x` grows without bound. Infinity is often used not only to define a limit but as a value in the affinely extended real number system. Points labeled `+\infty` and `-\infty` can be added to the topological space of the real numbers, producing the two-point compactification of the real numbers. Adding algebraic properties to this gives us the extended real numbers. Infinity is a singleton, and can be accessed by ``S.Infinity``, or can be imported as ``oo``. Examples ======== >>> from sympy import oo, exp, limit, Symbol >>> 1 + oo oo >>> 42/oo 0 >>> x = Symbol('x') >>> limit(exp(x), x, oo) oo See Also ======== NegativeInfinity, NaN References ========== .. [1] https://en.wikipedia.org/wiki/Infinity """ is_commutative = True is_number = True is_complex = False is_extended_real = True is_infinite = True is_comparable = True is_extended_positive = True is_prime = False __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\infty" def _eval_subs(self, old, new): if self == old: return new def _eval_evalf(self, prec=None): return Float('inf') def evalf(self, prec=None, **options): return self._eval_evalf(prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NegativeInfinity or other is S.NaN: return S.NaN return self return Number.__add__(self, other) __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.Infinity or other is S.NaN: return S.NaN return self return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __rsub__(self, other): return (-self).__add__(other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other.is_zero or other is S.NaN: return S.NaN if other.is_extended_positive: return self return S.NegativeInfinity return Number.__mul__(self, other) __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.Infinity or \ other is S.NegativeInfinity or \ other is S.NaN: return S.NaN if other.is_extended_nonnegative: return self return S.NegativeInfinity return Number.__truediv__(self, other) def __abs__(self): return S.Infinity def __neg__(self): return S.NegativeInfinity def _eval_power(self, expt): """ ``expt`` is symbolic object but not equal to 0 or 1. ================ ======= ============================== Expression Result Notes ================ ======= ============================== ``oo ** nan`` ``nan`` ``oo ** -p`` ``0`` ``p`` is number, ``oo`` ================ ======= ============================== See Also ======== Pow NaN NegativeInfinity """ from sympy.functions import re if expt.is_extended_positive: return S.Infinity if expt.is_extended_negative: return S.Zero if expt is S.NaN: return S.NaN if expt is S.ComplexInfinity: return S.NaN if expt.is_extended_real is False and expt.is_number: expt_real = re(expt) if expt_real.is_positive: return S.ComplexInfinity if expt_real.is_negative: return S.Zero if expt_real.is_zero: return S.NaN return self**expt.evalf() def _as_mpf_val(self, prec): return mlib.finf def _sage_(self): import sage.all as sage return sage.oo def __hash__(self): return super().__hash__() def __eq__(self, other): return other is S.Infinity or other == float('inf') def __ne__(self, other): return other is not S.Infinity and other != float('inf') __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ @_sympifyit('other', NotImplemented) def __mod__(self, other): if not isinstance(other, Expr): return NotImplemented return S.NaN __rmod__ = __mod__ def floor(self): return self def ceiling(self): return self oo = S.Infinity class NegativeInfinity(Number, metaclass=Singleton): """Negative infinite quantity. NegativeInfinity is a singleton, and can be accessed by ``S.NegativeInfinity``. See Also ======== Infinity """ is_extended_real = True is_complex = False is_commutative = True is_infinite = True is_comparable = True is_extended_negative = True is_number = True is_prime = False __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"-\infty" def _eval_subs(self, old, new): if self == old: return new def _eval_evalf(self, prec=None): return Float('-inf') def evalf(self, prec=None, **options): return self._eval_evalf(prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.Infinity or other is S.NaN: return S.NaN return self return Number.__add__(self, other) __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NegativeInfinity or other is S.NaN: return S.NaN return self return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __rsub__(self, other): return (-self).__add__(other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other.is_zero or other is S.NaN: return S.NaN if other.is_extended_positive: return self return S.Infinity return Number.__mul__(self, other) __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.Infinity or \ other is S.NegativeInfinity or \ other is S.NaN: return S.NaN if other.is_extended_nonnegative: return self return S.Infinity return Number.__truediv__(self, other) def __abs__(self): return S.Infinity def __neg__(self): return S.Infinity def _eval_power(self, expt): """ ``expt`` is symbolic object but not equal to 0 or 1. ================ ======= ============================== Expression Result Notes ================ ======= ============================== ``(-oo) ** nan`` ``nan`` ``(-oo) ** oo`` ``nan`` ``(-oo) ** -oo`` ``nan`` ``(-oo) ** e`` ``oo`` ``e`` is positive even integer ``(-oo) ** o`` ``-oo`` ``o`` is positive odd integer ================ ======= ============================== See Also ======== Infinity Pow NaN """ if expt.is_number: if expt is S.NaN or \ expt is S.Infinity or \ expt is S.NegativeInfinity: return S.NaN if isinstance(expt, Integer) and expt.is_extended_positive: if expt.is_odd: return S.NegativeInfinity else: return S.Infinity return S.NegativeOne**expt*S.Infinity**expt def _as_mpf_val(self, prec): return mlib.fninf def _sage_(self): import sage.all as sage return -(sage.oo) def __hash__(self): return super().__hash__() def __eq__(self, other): return other is S.NegativeInfinity or other == float('-inf') def __ne__(self, other): return other is not S.NegativeInfinity and other != float('-inf') __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ @_sympifyit('other', NotImplemented) def __mod__(self, other): if not isinstance(other, Expr): return NotImplemented return S.NaN __rmod__ = __mod__ def floor(self): return self def ceiling(self): return self def as_powers_dict(self): return {S.NegativeOne: 1, S.Infinity: 1} class NaN(Number, metaclass=Singleton): """ Not a Number. Explanation =========== This serves as a place holder for numeric values that are indeterminate. Most operations on NaN, produce another NaN. Most indeterminate forms, such as ``0/0`` or ``oo - oo` produce NaN. Two exceptions are ``0**0`` and ``oo**0``, which all produce ``1`` (this is consistent with Python's float). NaN is loosely related to floating point nan, which is defined in the IEEE 754 floating point standard, and corresponds to the Python ``float('nan')``. Differences are noted below. NaN is mathematically not equal to anything else, even NaN itself. This explains the initially counter-intuitive results with ``Eq`` and ``==`` in the examples below. NaN is not comparable so inequalities raise a TypeError. This is in contrast with floating point nan where all inequalities are false. NaN is a singleton, and can be accessed by ``S.NaN``, or can be imported as ``nan``. Examples ======== >>> from sympy import nan, S, oo, Eq >>> nan is S.NaN True >>> oo - oo nan >>> nan + 1 nan >>> Eq(nan, nan) # mathematical equality False >>> nan == nan # structural equality True References ========== .. [1] https://en.wikipedia.org/wiki/NaN """ is_commutative = True is_extended_real = None is_real = None is_rational = None is_algebraic = None is_transcendental = None is_integer = None is_comparable = False is_finite = None is_zero = None is_prime = None is_positive = None is_negative = None is_number = True __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\text{NaN}" def __neg__(self): return self @_sympifyit('other', NotImplemented) def __add__(self, other): return self @_sympifyit('other', NotImplemented) def __sub__(self, other): return self @_sympifyit('other', NotImplemented) def __mul__(self, other): return self @_sympifyit('other', NotImplemented) def __truediv__(self, other): return self def floor(self): return self def ceiling(self): return self def _as_mpf_val(self, prec): return _mpf_nan def _sage_(self): import sage.all as sage return sage.NaN def __hash__(self): return super().__hash__() def __eq__(self, other): # NaN is structurally equal to another NaN return other is S.NaN def __ne__(self, other): return other is not S.NaN # Expr will _sympify and raise TypeError __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ nan = S.NaN @dispatch(NaN, Expr) # type:ignore def _eval_is_eq(a, b): # noqa:F811 return False class ComplexInfinity(AtomicExpr, metaclass=Singleton): r"""Complex infinity. Explanation =========== In complex analysis the symbol `\tilde\infty`, called "complex infinity", represents a quantity with infinite magnitude, but undetermined complex phase. ComplexInfinity is a singleton, and can be accessed by ``S.ComplexInfinity``, or can be imported as ``zoo``. Examples ======== >>> from sympy import zoo >>> zoo + 42 zoo >>> 42/zoo 0 >>> zoo + zoo nan >>> zoo*zoo zoo See Also ======== Infinity """ is_commutative = True is_infinite = True is_number = True is_prime = False is_complex = False is_extended_real = False kind = NumberKind __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\tilde{\infty}" @staticmethod def __abs__(): return S.Infinity def floor(self): return self def ceiling(self): return self @staticmethod def __neg__(): return S.ComplexInfinity def _eval_power(self, expt): if expt is S.ComplexInfinity: return S.NaN if isinstance(expt, Number): if expt.is_zero: return S.NaN else: if expt.is_positive: return S.ComplexInfinity else: return S.Zero def _sage_(self): import sage.all as sage return sage.UnsignedInfinityRing.gen() zoo = S.ComplexInfinity class NumberSymbol(AtomicExpr): is_commutative = True is_finite = True is_number = True __slots__ = () is_NumberSymbol = True kind = NumberKind def __new__(cls): return AtomicExpr.__new__(cls) def approximation(self, number_cls): """ Return an interval with number_cls endpoints that contains the value of NumberSymbol. If not implemented, then return None. """ def _eval_evalf(self, prec): return Float._new(self._as_mpf_val(prec), prec) def __eq__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if self is other: return True if other.is_Number and self.is_irrational: return False return False # NumberSymbol != non-(Number|self) def __ne__(self, other): return not self == other def __le__(self, other): if self is other: return S.true return Expr.__le__(self, other) def __ge__(self, other): if self is other: return S.true return Expr.__ge__(self, other) def __int__(self): # subclass with appropriate return value raise NotImplementedError def __hash__(self): return super().__hash__() class Exp1(NumberSymbol, metaclass=Singleton): r"""The `e` constant. Explanation =========== The transcendental number `e = 2.718281828\ldots` is the base of the natural logarithm and of the exponential function, `e = \exp(1)`. Sometimes called Euler's number or Napier's constant. Exp1 is a singleton, and can be accessed by ``S.Exp1``, or can be imported as ``E``. Examples ======== >>> from sympy import exp, log, E >>> E is exp(1) True >>> log(E) 1 References ========== .. [1] https://en.wikipedia.org/wiki/E_%28mathematical_constant%29 """ is_real = True is_positive = True is_negative = False # XXX Forces is_negative/is_nonnegative is_irrational = True is_number = True is_algebraic = False is_transcendental = True __slots__ = () def _latex(self, printer): return r"e" @staticmethod def __abs__(): return S.Exp1 def __int__(self): return 2 def _as_mpf_val(self, prec): return mpf_e(prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (Integer(2), Integer(3)) elif issubclass(number_cls, Rational): pass def _eval_power(self, expt): from sympy import exp if global_parameters.exp_is_pow: return self._eval_power_exp_is_pow(expt) else: return exp(expt) def _eval_power_exp_is_pow(self, arg): from ..functions.elementary.exponential import log from . import Add, Mul, Pow if arg.is_Number: if arg is oo: return oo elif arg == -oo: return S.Zero elif isinstance(arg, log): return arg.args[0] # don't autoexpand Pow or Mul (see the issue 3351): elif not arg.is_Add: Ioo = I*oo if arg in [Ioo, -Ioo]: return nan coeff = arg.coeff(pi*I) if coeff: if (2*coeff).is_integer: if coeff.is_even: return S.One elif coeff.is_odd: return S.NegativeOne elif (coeff + S.Half).is_even: return -I elif (coeff + S.Half).is_odd: return I elif coeff.is_Rational: ncoeff = coeff % 2 # restrict to [0, 2pi) if ncoeff > 1: # restrict to (-pi, pi] ncoeff -= 2 if ncoeff != coeff: return S.Exp1**(ncoeff*S.Pi*S.ImaginaryUnit) # Warning: code in risch.py will be very sensitive to changes # in this (see DifferentialExtension). # look for a single log factor coeff, terms = arg.as_coeff_Mul() # but it can't be multiplied by oo if coeff in (oo, -oo): return coeffs, log_term = [coeff], None for term in Mul.make_args(terms): if isinstance(term, log): if log_term is None: log_term = term.args[0] else: return elif term.is_comparable: coeffs.append(term) else: return return log_term**Mul(*coeffs) if log_term else None elif arg.is_Add: out = [] add = [] argchanged = False for a in arg.args: if a is S.One: add.append(a) continue newa = self**a if isinstance(newa, Pow) and newa.base is self: if newa.exp != a: add.append(newa.exp) argchanged = True else: add.append(a) else: out.append(newa) if out or argchanged: return Mul(*out)*Pow(self, Add(*add), evaluate=False) elif arg.is_Matrix: return arg.exp() def _eval_rewrite_as_sin(self, **kwargs): from sympy import sin I = S.ImaginaryUnit return sin(I + S.Pi/2) - I*sin(I) def _eval_rewrite_as_cos(self, **kwargs): from sympy import cos I = S.ImaginaryUnit return cos(I) + I*cos(I + S.Pi/2) def _sage_(self): import sage.all as sage return sage.e E = S.Exp1 class Pi(NumberSymbol, metaclass=Singleton): r"""The `\pi` constant. Explanation =========== The transcendental number `\pi = 3.141592654\ldots` represents the ratio of a circle's circumference to its diameter, the area of the unit circle, the half-period of trigonometric functions, and many other things in mathematics. Pi is a singleton, and can be accessed by ``S.Pi``, or can be imported as ``pi``. Examples ======== >>> from sympy import S, pi, oo, sin, exp, integrate, Symbol >>> S.Pi pi >>> pi > 3 True >>> pi.is_irrational True >>> x = Symbol('x') >>> sin(x + 2*pi) sin(x) >>> integrate(exp(-x**2), (x, -oo, oo)) sqrt(pi) References ========== .. [1] https://en.wikipedia.org/wiki/Pi """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = False is_transcendental = True __slots__ = () def _latex(self, printer): return r"\pi" @staticmethod def __abs__(): return S.Pi def __int__(self): return 3 def _as_mpf_val(self, prec): return mpf_pi(prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (Integer(3), Integer(4)) elif issubclass(number_cls, Rational): return (Rational(223, 71), Rational(22, 7)) def _sage_(self): import sage.all as sage return sage.pi pi = S.Pi class GoldenRatio(NumberSymbol, metaclass=Singleton): r"""The golden ratio, `\phi`. Explanation =========== `\phi = \frac{1 + \sqrt{5}}{2}` is algebraic number. Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities, i.e. their maximum. GoldenRatio is a singleton, and can be accessed by ``S.GoldenRatio``. Examples ======== >>> from sympy import S >>> S.GoldenRatio > 1 True >>> S.GoldenRatio.expand(func=True) 1/2 + sqrt(5)/2 >>> S.GoldenRatio.is_irrational True References ========== .. [1] https://en.wikipedia.org/wiki/Golden_ratio """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = True is_transcendental = False __slots__ = () def _latex(self, printer): return r"\phi" def __int__(self): return 1 def _as_mpf_val(self, prec): # XXX track down why this has to be increased rv = mlib.from_man_exp(phi_fixed(prec + 10), -prec - 10) return mpf_norm(rv, prec) def _eval_expand_func(self, **hints): from sympy import sqrt return S.Half + S.Half*sqrt(5) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.One, Rational(2)) elif issubclass(number_cls, Rational): pass def _sage_(self): import sage.all as sage return sage.golden_ratio _eval_rewrite_as_sqrt = _eval_expand_func class TribonacciConstant(NumberSymbol, metaclass=Singleton): r"""The tribonacci constant. Explanation =========== The tribonacci numbers are like the Fibonacci numbers, but instead of starting with two predetermined terms, the sequence starts with three predetermined terms and each term afterwards is the sum of the preceding three terms. The tribonacci constant is the ratio toward which adjacent tribonacci numbers tend. It is a root of the polynomial `x^3 - x^2 - x - 1 = 0`, and also satisfies the equation `x + x^{-3} = 2`. TribonacciConstant is a singleton, and can be accessed by ``S.TribonacciConstant``. Examples ======== >>> from sympy import S >>> S.TribonacciConstant > 1 True >>> S.TribonacciConstant.expand(func=True) 1/3 + (19 - 3*sqrt(33))**(1/3)/3 + (3*sqrt(33) + 19)**(1/3)/3 >>> S.TribonacciConstant.is_irrational True >>> S.TribonacciConstant.n(20) 1.8392867552141611326 References ========== .. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = True is_transcendental = False __slots__ = () def _latex(self, printer): return r"\text{TribonacciConstant}" def __int__(self): return 2 def _eval_evalf(self, prec): rv = self._eval_expand_func(function=True)._eval_evalf(prec + 4) return Float(rv, precision=prec) def _eval_expand_func(self, **hints): from sympy import sqrt, cbrt return (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.One, Rational(2)) elif issubclass(number_cls, Rational): pass _eval_rewrite_as_sqrt = _eval_expand_func class EulerGamma(NumberSymbol, metaclass=Singleton): r"""The Euler-Mascheroni constant. Explanation =========== `\gamma = 0.5772157\ldots` (also called Euler's constant) is a mathematical constant recurring in analysis and number theory. It is defined as the limiting difference between the harmonic series and the natural logarithm: .. math:: \gamma = \lim\limits_{n\to\infty} \left(\sum\limits_{k=1}^n\frac{1}{k} - \ln n\right) EulerGamma is a singleton, and can be accessed by ``S.EulerGamma``. Examples ======== >>> from sympy import S >>> S.EulerGamma.is_irrational >>> S.EulerGamma > 0 True >>> S.EulerGamma > 1 False References ========== .. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant """ is_real = True is_positive = True is_negative = False is_irrational = None is_number = True __slots__ = () def _latex(self, printer): return r"\gamma" def __int__(self): return 0 def _as_mpf_val(self, prec): # XXX track down why this has to be increased v = mlib.libhyper.euler_fixed(prec + 10) rv = mlib.from_man_exp(v, -prec - 10) return mpf_norm(rv, prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.Zero, S.One) elif issubclass(number_cls, Rational): return (S.Half, Rational(3, 5)) def _sage_(self): import sage.all as sage return sage.euler_gamma class Catalan(NumberSymbol, metaclass=Singleton): r"""Catalan's constant. Explanation =========== `K = 0.91596559\ldots` is given by the infinite series .. math:: K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2} Catalan is a singleton, and can be accessed by ``S.Catalan``. Examples ======== >>> from sympy import S >>> S.Catalan.is_irrational >>> S.Catalan > 0 True >>> S.Catalan > 1 False References ========== .. [1] https://en.wikipedia.org/wiki/Catalan%27s_constant """ is_real = True is_positive = True is_negative = False is_irrational = None is_number = True __slots__ = () def __int__(self): return 0 def _as_mpf_val(self, prec): # XXX track down why this has to be increased v = mlib.catalan_fixed(prec + 10) rv = mlib.from_man_exp(v, -prec - 10) return mpf_norm(rv, prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.Zero, S.One) elif issubclass(number_cls, Rational): return (Rational(9, 10), S.One) def _eval_rewrite_as_Sum(self, k_sym=None, symbols=None): from sympy import Sum, Dummy if (k_sym is not None) or (symbols is not None): return self k = Dummy('k', integer=True, nonnegative=True) return Sum((-1)**k / (2*k+1)**2, (k, 0, S.Infinity)) def _sage_(self): import sage.all as sage return sage.catalan class ImaginaryUnit(AtomicExpr, metaclass=Singleton): r"""The imaginary unit, `i = \sqrt{-1}`. I is a singleton, and can be accessed by ``S.I``, or can be imported as ``I``. Examples ======== >>> from sympy import I, sqrt >>> sqrt(-1) I >>> I*I -1 >>> 1/I -I References ========== .. [1] https://en.wikipedia.org/wiki/Imaginary_unit """ is_commutative = True is_imaginary = True is_finite = True is_number = True is_algebraic = True is_transcendental = False kind = NumberKind __slots__ = () def _latex(self, printer): return printer._settings['imaginary_unit_latex'] @staticmethod def __abs__(): return S.One def _eval_evalf(self, prec): return self def _eval_conjugate(self): return -S.ImaginaryUnit def _eval_power(self, expt): """ b is I = sqrt(-1) e is symbolic object but not equal to 0, 1 I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal I**0 mod 4 -> 1 I**1 mod 4 -> I I**2 mod 4 -> -1 I**3 mod 4 -> -I """ if isinstance(expt, Number): if isinstance(expt, Integer): expt = expt.p % 4 if expt == 0: return S.One if expt == 1: return S.ImaginaryUnit if expt == 2: return -S.One return -S.ImaginaryUnit return def as_base_exp(self): return S.NegativeOne, S.Half def _sage_(self): import sage.all as sage return sage.I @property def _mpc_(self): return (Float(0)._mpf_, Float(1)._mpf_) I = S.ImaginaryUnit @dispatch(Tuple, Number) # type:ignore def _eval_is_eq(self, other): # noqa: F811 return False def sympify_fractions(f): return Rational(f.numerator, f.denominator, 1) converter[fractions.Fraction] = sympify_fractions if HAS_GMPY: def sympify_mpz(x): return Integer(int(x)) # XXX: The sympify_mpq function here was never used because it is # overridden by the other sympify_mpq function below. Maybe it should just # be removed or maybe it should be used for something... def sympify_mpq(x): return Rational(int(x.numerator), int(x.denominator)) converter[type(gmpy.mpz(1))] = sympify_mpz converter[type(gmpy.mpq(1, 2))] = sympify_mpq def sympify_mpmath_mpq(x): p, q = x._mpq_ return Rational(p, q, 1) converter[type(mpmath.rational.mpq(1, 2))] = sympify_mpmath_mpq def sympify_mpmath(x): return Expr._from_mpmath(x, x.context.prec) converter[mpnumeric] = sympify_mpmath def sympify_complex(a): real, imag = list(map(sympify, (a.real, a.imag))) return real + S.ImaginaryUnit*imag converter[complex] = sympify_complex from .power import Pow, integer_nthroot from .mul import Mul Mul.identity = One() from .add import Add Add.identity = Zero() def _register_classes(): numbers.Number.register(Number) numbers.Real.register(Float) numbers.Rational.register(Rational) numbers.Rational.register(Integer) _register_classes()
b0e0321af376ded04b200a0689e5047b6b2e2cbf88a81a88ae0283db19f0f2b6
from sympy.core.assumptions import StdFactKB, _assume_defined from sympy.core.compatibility import is_sequence, ordered from .basic import Basic, Atom from .sympify import sympify from .singleton import S from .expr import Expr, AtomicExpr from .cache import cacheit from .function import FunctionClass from .kind import NumberKind, UndefinedKind from sympy.core.logic import fuzzy_bool from sympy.logic.boolalg import Boolean from sympy.utilities.iterables import cartes, sift from sympy.core.containers import Tuple import string import re as _re import random class Str(Atom): """ Represents string in SymPy. Explanation =========== Previously, ``Symbol`` was used where string is needed in ``args`` of SymPy objects, e.g. denoting the name of the instance. However, since ``Symbol`` represents mathematical scalar, this class should be used instead. """ __slots__ = ('name',) def __new__(cls, name, **kwargs): if not isinstance(name, str): raise TypeError("name should be a string, not %s" % repr(type(name))) obj = Expr.__new__(cls, **kwargs) obj.name = name return obj def __getnewargs__(self): return (self.name,) def _hashable_content(self): return (self.name,) def _filter_assumptions(kwargs): """Split the given dict into assumptions and non-assumptions. Keys are taken as assumptions if they correspond to an entry in ``_assume_defined``. """ assumptions, nonassumptions = map(dict, sift(kwargs.items(), lambda i: i[0] in _assume_defined, binary=True)) Symbol._sanitize(assumptions) return assumptions, nonassumptions def _symbol(s, matching_symbol=None, **assumptions): """Return s if s is a Symbol, else if s is a string, return either the matching_symbol if the names are the same or else a new symbol with the same assumptions as the matching symbol (or the assumptions as provided). Examples ======== >>> from sympy import Symbol >>> from sympy.core.symbol import _symbol >>> _symbol('y') y >>> _.is_real is None True >>> _symbol('y', real=True).is_real True >>> x = Symbol('x') >>> _symbol(x, real=True) x >>> _.is_real is None # ignore attribute if s is a Symbol True Below, the variable sym has the name 'foo': >>> sym = Symbol('foo', real=True) Since 'x' is not the same as sym's name, a new symbol is created: >>> _symbol('x', sym).name 'x' It will acquire any assumptions give: >>> _symbol('x', sym, real=False).is_real False Since 'foo' is the same as sym's name, sym is returned >>> _symbol('foo', sym) foo Any assumptions given are ignored: >>> _symbol('foo', sym, real=False).is_real True NB: the symbol here may not be the same as a symbol with the same name defined elsewhere as a result of different assumptions. See Also ======== sympy.core.symbol.Symbol """ if isinstance(s, str): if matching_symbol and matching_symbol.name == s: return matching_symbol return Symbol(s, **assumptions) elif isinstance(s, Symbol): return s else: raise ValueError('symbol must be string for symbol name or Symbol') def uniquely_named_symbol(xname, exprs=(), compare=str, modify=None, **assumptions): """Return a symbol which, when printed, will have a name unique from any other already in the expressions given. The name is made unique by appending numbers (default) but this can be customized with the keyword 'modify'. Parameters ========== xname : a string or a Symbol (when symbol xname <- str(xname)) compare : a single arg function that takes a symbol and returns a string to be compared with xname (the default is the str function which indicates how the name will look when it is printed, e.g. this includes underscores that appear on Dummy symbols) modify : a single arg function that changes its string argument in some way (the default is to append numbers) Examples ======== >>> from sympy.core.symbol import uniquely_named_symbol >>> from sympy.abc import x >>> uniquely_named_symbol('x', x) x0 """ from sympy.core.function import AppliedUndef def numbered_string_incr(s, start=0): if not s: return str(start) i = len(s) - 1 while i != -1: if not s[i].isdigit(): break i -= 1 n = str(int(s[i + 1:] or start - 1) + 1) return s[:i + 1] + n default = None if is_sequence(xname): xname, default = xname x = str(xname) if not exprs: return _symbol(x, default, **assumptions) if not is_sequence(exprs): exprs = [exprs] names = set().union( [i.name for e in exprs for i in e.atoms(Symbol)] + [i.func.name for e in exprs for i in e.atoms(AppliedUndef)]) if modify is None: modify = numbered_string_incr while any(x == compare(s) for s in names): x = modify(x) return _symbol(x, default, **assumptions) _uniquely_named_symbol = uniquely_named_symbol class Symbol(AtomicExpr, Boolean): """ Assumptions: commutative = True You can override the default assumptions in the constructor. Examples ======== >>> from sympy import symbols >>> A,B = symbols('A,B', commutative = False) >>> bool(A*B != B*A) True >>> bool(A*B*2 == 2*A*B) == True # multiplication by scalars is commutative True """ is_comparable = False __slots__ = ('name',) is_Symbol = True is_symbol = True @property def kind(self): if self.is_commutative: return NumberKind return UndefinedKind @property def _diff_wrt(self): """Allow derivatives wrt Symbols. Examples ======== >>> from sympy import Symbol >>> x = Symbol('x') >>> x._diff_wrt True """ return True @staticmethod def _sanitize(assumptions, obj=None): """Remove None, covert values to bool, check commutativity *in place*. """ # be strict about commutativity: cannot be None is_commutative = fuzzy_bool(assumptions.get('commutative', True)) if is_commutative is None: whose = '%s ' % obj.__name__ if obj else '' raise ValueError( '%scommutativity must be True or False.' % whose) # sanitize other assumptions so 1 -> True and 0 -> False for key in list(assumptions.keys()): v = assumptions[key] if v is None: assumptions.pop(key) continue assumptions[key] = bool(v) def _merge(self, assumptions): base = self.assumptions0 for k in set(assumptions) & set(base): if assumptions[k] != base[k]: from sympy.utilities.misc import filldedent raise ValueError(filldedent(''' non-matching assumptions for %s: existing value is %s and new value is %s''' % ( k, base[k], assumptions[k]))) base.update(assumptions) return base def __new__(cls, name, **assumptions): """Symbols are identified by name and assumptions:: >>> from sympy import Symbol >>> Symbol("x") == Symbol("x") True >>> Symbol("x", real=True) == Symbol("x", real=False) False """ cls._sanitize(assumptions, cls) return Symbol.__xnew_cached_(cls, name, **assumptions) def __new_stage2__(cls, name, **assumptions): if not isinstance(name, str): raise TypeError("name should be a string, not %s" % repr(type(name))) obj = Expr.__new__(cls) obj.name = name # TODO: Issue #8873: Forcing the commutative assumption here means # later code such as ``srepr()`` cannot tell whether the user # specified ``commutative=True`` or omitted it. To workaround this, # we keep a copy of the assumptions dict, then create the StdFactKB, # and finally overwrite its ``._generator`` with the dict copy. This # is a bit of a hack because we assume StdFactKB merely copies the # given dict as ``._generator``, but future modification might, e.g., # compute a minimal equivalent assumption set. tmp_asm_copy = assumptions.copy() # be strict about commutativity is_commutative = fuzzy_bool(assumptions.get('commutative', True)) assumptions['commutative'] = is_commutative obj._assumptions = StdFactKB(assumptions) obj._assumptions._generator = tmp_asm_copy # Issue #8873 return obj __xnew__ = staticmethod( __new_stage2__) # never cached (e.g. dummy) __xnew_cached_ = staticmethod( cacheit(__new_stage2__)) # symbols are always cached def __getnewargs__(self): return (self.name,) def __getstate__(self): return {'_assumptions': self._assumptions} def _hashable_content(self): # Note: user-specified assumptions not hashed, just derived ones return (self.name,) + tuple(sorted(self.assumptions0.items())) def _eval_subs(self, old, new): from sympy.core.power import Pow if old.is_Pow: return Pow(self, S.One, evaluate=False)._eval_subs(old, new) def _eval_refine(self, assumptions): return self @property def assumptions0(self): return {key: value for key, value in self._assumptions.items() if value is not None} @cacheit def sort_key(self, order=None): return self.class_key(), (1, (self.name,)), S.One.sort_key(), S.One def as_dummy(self): # only put commutativity in explicitly if it is False return Dummy(self.name) if self.is_commutative is not False \ else Dummy(self.name, commutative=self.is_commutative) def as_real_imag(self, deep=True, **hints): from sympy import im, re if hints.get('ignore') == self: return None else: return (re(self), im(self)) def _sage_(self): import sage.all as sage return sage.var(self.name) def is_constant(self, *wrt, **flags): if not wrt: return False return not self in wrt @property def free_symbols(self): return {self} binary_symbols = free_symbols # in this case, not always def as_set(self): return S.UniversalSet class Dummy(Symbol): """Dummy symbols are each unique, even if they have the same name: Examples ======== >>> from sympy import Dummy >>> Dummy("x") == Dummy("x") False If a name is not supplied then a string value of an internal count will be used. This is useful when a temporary variable is needed and the name of the variable used in the expression is not important. >>> Dummy() #doctest: +SKIP _Dummy_10 """ # In the rare event that a Dummy object needs to be recreated, both the # `name` and `dummy_index` should be passed. This is used by `srepr` for # example: # >>> d1 = Dummy() # >>> d2 = eval(srepr(d1)) # >>> d2 == d1 # True # # If a new session is started between `srepr` and `eval`, there is a very # small chance that `d2` will be equal to a previously-created Dummy. _count = 0 _prng = random.Random() _base_dummy_index = _prng.randint(10**6, 9*10**6) __slots__ = ('dummy_index',) is_Dummy = True def __new__(cls, name=None, dummy_index=None, **assumptions): if dummy_index is not None: assert name is not None, "If you specify a dummy_index, you must also provide a name" if name is None: name = "Dummy_" + str(Dummy._count) if dummy_index is None: dummy_index = Dummy._base_dummy_index + Dummy._count Dummy._count += 1 cls._sanitize(assumptions, cls) obj = Symbol.__xnew__(cls, name, **assumptions) obj.dummy_index = dummy_index return obj def __getstate__(self): return {'_assumptions': self._assumptions, 'dummy_index': self.dummy_index} @cacheit def sort_key(self, order=None): return self.class_key(), ( 2, (self.name, self.dummy_index)), S.One.sort_key(), S.One def _hashable_content(self): return Symbol._hashable_content(self) + (self.dummy_index,) class Wild(Symbol): """ A Wild symbol matches anything, or anything without whatever is explicitly excluded. Parameters ========== name : str Name of the Wild instance. exclude : iterable, optional Instances in ``exclude`` will not be matched. properties : iterable of functions, optional Functions, each taking an expressions as input and returns a ``bool``. All functions in ``properties`` need to return ``True`` in order for the Wild instance to match the expression. Examples ======== >>> from sympy import Wild, WildFunction, cos, pi >>> from sympy.abc import x, y, z >>> a = Wild('a') >>> x.match(a) {a_: x} >>> pi.match(a) {a_: pi} >>> (3*x**2).match(a*x) {a_: 3*x} >>> cos(x).match(a) {a_: cos(x)} >>> b = Wild('b', exclude=[x]) >>> (3*x**2).match(b*x) >>> b.match(a) {a_: b_} >>> A = WildFunction('A') >>> A.match(a) {a_: A_} Tips ==== When using Wild, be sure to use the exclude keyword to make the pattern more precise. Without the exclude pattern, you may get matches that are technically correct, but not what you wanted. For example, using the above without exclude: >>> from sympy import symbols >>> a, b = symbols('a b', cls=Wild) >>> (2 + 3*y).match(a*x + b*y) {a_: 2/x, b_: 3} This is technically correct, because (2/x)*x + 3*y == 2 + 3*y, but you probably wanted it to not match at all. The issue is that you really didn't want a and b to include x and y, and the exclude parameter lets you specify exactly this. With the exclude parameter, the pattern will not match. >>> a = Wild('a', exclude=[x, y]) >>> b = Wild('b', exclude=[x, y]) >>> (2 + 3*y).match(a*x + b*y) Exclude also helps remove ambiguity from matches. >>> E = 2*x**3*y*z >>> a, b = symbols('a b', cls=Wild) >>> E.match(a*b) {a_: 2*y*z, b_: x**3} >>> a = Wild('a', exclude=[x, y]) >>> E.match(a*b) {a_: z, b_: 2*x**3*y} >>> a = Wild('a', exclude=[x, y, z]) >>> E.match(a*b) {a_: 2, b_: x**3*y*z} Wild also accepts a ``properties`` parameter: >>> a = Wild('a', properties=[lambda k: k.is_Integer]) >>> E.match(a*b) {a_: 2, b_: x**3*y*z} """ is_Wild = True __slots__ = ('exclude', 'properties') def __new__(cls, name, exclude=(), properties=(), **assumptions): exclude = tuple([sympify(x) for x in exclude]) properties = tuple(properties) cls._sanitize(assumptions, cls) return Wild.__xnew__(cls, name, exclude, properties, **assumptions) def __getnewargs__(self): return (self.name, self.exclude, self.properties) @staticmethod @cacheit def __xnew__(cls, name, exclude, properties, **assumptions): obj = Symbol.__xnew__(cls, name, **assumptions) obj.exclude = exclude obj.properties = properties return obj def _hashable_content(self): return super()._hashable_content() + (self.exclude, self.properties) # TODO add check against another Wild def matches(self, expr, repl_dict={}, old=False): if any(expr.has(x) for x in self.exclude): return None if any(not f(expr) for f in self.properties): return None repl_dict = repl_dict.copy() repl_dict[self] = expr return repl_dict _range = _re.compile('([0-9]*:[0-9]+|[a-zA-Z]?:[a-zA-Z])') def symbols(names, *, cls=Symbol, **args): r""" Transform strings into instances of :class:`Symbol` class. :func:`symbols` function returns a sequence of symbols with names taken from ``names`` argument, which can be a comma or whitespace delimited string, or a sequence of strings:: >>> from sympy import symbols, Function >>> x, y, z = symbols('x,y,z') >>> a, b, c = symbols('a b c') The type of output is dependent on the properties of input arguments:: >>> symbols('x') x >>> symbols('x,') (x,) >>> symbols('x,y') (x, y) >>> symbols(('a', 'b', 'c')) (a, b, c) >>> symbols(['a', 'b', 'c']) [a, b, c] >>> symbols({'a', 'b', 'c'}) {a, b, c} If an iterable container is needed for a single symbol, set the ``seq`` argument to ``True`` or terminate the symbol name with a comma:: >>> symbols('x', seq=True) (x,) To reduce typing, range syntax is supported to create indexed symbols. Ranges are indicated by a colon and the type of range is determined by the character to the right of the colon. If the character is a digit then all contiguous digits to the left are taken as the nonnegative starting value (or 0 if there is no digit left of the colon) and all contiguous digits to the right are taken as 1 greater than the ending value:: >>> symbols('x:10') (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) >>> symbols('x5:10') (x5, x6, x7, x8, x9) >>> symbols('x5(:2)') (x50, x51) >>> symbols('x5:10,y:5') (x5, x6, x7, x8, x9, y0, y1, y2, y3, y4) >>> symbols(('x5:10', 'y:5')) ((x5, x6, x7, x8, x9), (y0, y1, y2, y3, y4)) If the character to the right of the colon is a letter, then the single letter to the left (or 'a' if there is none) is taken as the start and all characters in the lexicographic range *through* the letter to the right are used as the range:: >>> symbols('x:z') (x, y, z) >>> symbols('x:c') # null range () >>> symbols('x(:c)') (xa, xb, xc) >>> symbols(':c') (a, b, c) >>> symbols('a:d, x:z') (a, b, c, d, x, y, z) >>> symbols(('a:d', 'x:z')) ((a, b, c, d), (x, y, z)) Multiple ranges are supported; contiguous numerical ranges should be separated by parentheses to disambiguate the ending number of one range from the starting number of the next:: >>> symbols('x:2(1:3)') (x01, x02, x11, x12) >>> symbols(':3:2') # parsing is from left to right (00, 01, 10, 11, 20, 21) Only one pair of parentheses surrounding ranges are removed, so to include parentheses around ranges, double them. And to include spaces, commas, or colons, escape them with a backslash:: >>> symbols('x((a:b))') (x(a), x(b)) >>> symbols(r'x(:1\,:2)') # or r'x((:1)\,(:2))' (x(0,0), x(0,1)) All newly created symbols have assumptions set according to ``args``:: >>> a = symbols('a', integer=True) >>> a.is_integer True >>> x, y, z = symbols('x,y,z', real=True) >>> x.is_real and y.is_real and z.is_real True Despite its name, :func:`symbols` can create symbol-like objects like instances of Function or Wild classes. To achieve this, set ``cls`` keyword argument to the desired type:: >>> symbols('f,g,h', cls=Function) (f, g, h) >>> type(_[0]) <class 'sympy.core.function.UndefinedFunction'> """ result = [] if isinstance(names, str): marker = 0 literals = [r'\,', r'\:', r'\ '] for i in range(len(literals)): lit = literals.pop(0) if lit in names: while chr(marker) in names: marker += 1 lit_char = chr(marker) marker += 1 names = names.replace(lit, lit_char) literals.append((lit_char, lit[1:])) def literal(s): if literals: for c, l in literals: s = s.replace(c, l) return s names = names.strip() as_seq = names.endswith(',') if as_seq: names = names[:-1].rstrip() if not names: raise ValueError('no symbols given') # split on commas names = [n.strip() for n in names.split(',')] if not all(n for n in names): raise ValueError('missing symbol between commas') # split on spaces for i in range(len(names) - 1, -1, -1): names[i: i + 1] = names[i].split() seq = args.pop('seq', as_seq) for name in names: if not name: raise ValueError('missing symbol') if ':' not in name: symbol = cls(literal(name), **args) result.append(symbol) continue split = _range.split(name) # remove 1 layer of bounding parentheses around ranges for i in range(len(split) - 1): if i and ':' in split[i] and split[i] != ':' and \ split[i - 1].endswith('(') and \ split[i + 1].startswith(')'): split[i - 1] = split[i - 1][:-1] split[i + 1] = split[i + 1][1:] for i, s in enumerate(split): if ':' in s: if s[-1].endswith(':'): raise ValueError('missing end range') a, b = s.split(':') if b[-1] in string.digits: a = 0 if not a else int(a) b = int(b) split[i] = [str(c) for c in range(a, b)] else: a = a or 'a' split[i] = [string.ascii_letters[c] for c in range( string.ascii_letters.index(a), string.ascii_letters.index(b) + 1)] # inclusive if not split[i]: break else: split[i] = [s] else: seq = True if len(split) == 1: names = split[0] else: names = [''.join(s) for s in cartes(*split)] if literals: result.extend([cls(literal(s), **args) for s in names]) else: result.extend([cls(s, **args) for s in names]) if not seq and len(result) <= 1: if not result: return () return result[0] return tuple(result) else: for name in names: result.append(symbols(name, **args)) return type(names)(result) def var(names, **args): """ Create symbols and inject them into the global namespace. Explanation =========== This calls :func:`symbols` with the same arguments and puts the results into the *global* namespace. It's recommended not to use :func:`var` in library code, where :func:`symbols` has to be used:: Examples ======== >>> from sympy import var >>> var('x') x >>> x # noqa: F821 x >>> var('a,ab,abc') (a, ab, abc) >>> abc # noqa: F821 abc >>> var('x,y', real=True) (x, y) >>> x.is_real and y.is_real # noqa: F821 True See :func:`symbols` documentation for more details on what kinds of arguments can be passed to :func:`var`. """ def traverse(symbols, frame): """Recursively inject symbols to the global namespace. """ for symbol in symbols: if isinstance(symbol, Basic): frame.f_globals[symbol.name] = symbol elif isinstance(symbol, FunctionClass): frame.f_globals[symbol.__name__] = symbol else: traverse(symbol, frame) from inspect import currentframe frame = currentframe().f_back try: syms = symbols(names, **args) if syms is not None: if isinstance(syms, Basic): frame.f_globals[syms.name] = syms elif isinstance(syms, FunctionClass): frame.f_globals[syms.__name__] = syms else: traverse(syms, frame) finally: del frame # break cyclic dependencies as stated in inspect docs return syms def disambiguate(*iter): """ Return a Tuple containing the passed expressions with symbols that appear the same when printed replaced with numerically subscripted symbols, and all Dummy symbols replaced with Symbols. Parameters ========== iter: list of symbols or expressions. Examples ======== >>> from sympy.core.symbol import disambiguate >>> from sympy import Dummy, Symbol, Tuple >>> from sympy.abc import y >>> tup = Symbol('_x'), Dummy('x'), Dummy('x') >>> disambiguate(*tup) (x_2, x, x_1) >>> eqs = Tuple(Symbol('x')/y, Dummy('x')/y) >>> disambiguate(*eqs) (x_1/y, x/y) >>> ix = Symbol('x', integer=True) >>> vx = Symbol('x') >>> disambiguate(vx + ix) (x + x_1,) To make your own mapping of symbols to use, pass only the free symbols of the expressions and create a dictionary: >>> free = eqs.free_symbols >>> mapping = dict(zip(free, disambiguate(*free))) >>> eqs.xreplace(mapping) (x_1/y, x/y) """ new_iter = Tuple(*iter) key = lambda x:tuple(sorted(x.assumptions0.items())) syms = ordered(new_iter.free_symbols, keys=key) mapping = {} for s in syms: mapping.setdefault(str(s).lstrip('_'), []).append(s) reps = {} for k in mapping: # the first or only symbol doesn't get subscripted but make # sure that it's a Symbol, not a Dummy mapk0 = Symbol("%s" % (k), **mapping[k][0].assumptions0) if mapping[k][0] != mapk0: reps[mapping[k][0]] = mapk0 # the others get subscripts (and are made into Symbols) skip = 0 for i in range(1, len(mapping[k])): while True: name = "%s_%i" % (k, i + skip) if name not in mapping: break skip += 1 ki = mapping[k][i] reps[ki] = Symbol(name, **ki.assumptions0) return new_iter.xreplace(reps)
9032a1538c4b94b0e0371a168f21fff68b07cc868be1825fe9d232fb11f49a08
""" Adaptive numerical evaluation of SymPy expressions, using mpmath for mathematical functions. """ from typing import Tuple import math import mpmath.libmp as libmp from mpmath import ( make_mpc, make_mpf, mp, mpc, mpf, nsum, quadts, quadosc, workprec) from mpmath import inf as mpmath_inf from mpmath.libmp import (from_int, from_man_exp, from_rational, fhalf, fnan, fnone, fone, fzero, mpf_abs, mpf_add, mpf_atan, mpf_atan2, mpf_cmp, mpf_cos, mpf_e, mpf_exp, mpf_log, mpf_lt, mpf_mul, mpf_neg, mpf_pi, mpf_pow, mpf_pow_int, mpf_shift, mpf_sin, mpf_sqrt, normalize, round_nearest, to_int, to_str) from mpmath.libmp import bitcount as mpmath_bitcount from mpmath.libmp.backend import MPZ from mpmath.libmp.libmpc import _infs_nan from mpmath.libmp.libmpf import dps_to_prec, prec_to_dps from mpmath.libmp.gammazeta import mpf_bernoulli from .compatibility import SYMPY_INTS from .sympify import sympify from .singleton import S from sympy.utilities.iterables import is_sequence LG10 = math.log(10, 2) rnd = round_nearest def bitcount(n): """Return smallest integer, b, such that |n|/2**b < 1. """ return mpmath_bitcount(abs(int(n))) # Used in a few places as placeholder values to denote exponents and # precision levels, e.g. of exact numbers. Must be careful to avoid # passing these to mpmath functions or returning them in final results. INF = float(mpmath_inf) MINUS_INF = float(-mpmath_inf) # ~= 100 digits. Real men set this to INF. DEFAULT_MAXPREC = 333 class PrecisionExhausted(ArithmeticError): pass #----------------------------------------------------------------------------# # # # Helper functions for arithmetic and complex parts # # # #----------------------------------------------------------------------------# """ An mpf value tuple is a tuple of integers (sign, man, exp, bc) representing a floating-point number: [1, -1][sign]*man*2**exp where sign is 0 or 1 and bc should correspond to the number of bits used to represent the mantissa (man) in binary notation, e.g. Explanation =========== >>> from sympy.core.evalf import bitcount >>> sign, man, exp, bc = 0, 5, 1, 3 >>> n = [1, -1][sign]*man*2**exp >>> n, bitcount(man) (10, 3) A temporary result is a tuple (re, im, re_acc, im_acc) where re and im are nonzero mpf value tuples representing approximate numbers, or None to denote exact zeros. re_acc, im_acc are integers denoting log2(e) where e is the estimated relative accuracy of the respective complex part, but may be anything if the corresponding complex part is None. """ def fastlog(x): """Fast approximation of log2(x) for an mpf value tuple x. Explanation =========== Calculated as exponent + width of mantissa. This is an approximation for two reasons: 1) it gives the ceil(log2(abs(x))) value and 2) it is too high by 1 in the case that x is an exact power of 2. Although this is easy to remedy by testing to see if the odd mpf mantissa is 1 (indicating that one was dealing with an exact power of 2) that would decrease the speed and is not necessary as this is only being used as an approximation for the number of bits in x. The correct return value could be written as "x[2] + (x[3] if x[1] != 1 else 0)". Since mpf tuples always have an odd mantissa, no check is done to see if the mantissa is a multiple of 2 (in which case the result would be too large by 1). Examples ======== >>> from sympy import log >>> from sympy.core.evalf import fastlog, bitcount >>> s, m, e = 0, 5, 1 >>> bc = bitcount(m) >>> n = [1, -1][s]*m*2**e >>> n, (log(n)/log(2)).evalf(2), fastlog((s, m, e, bc)) (10, 3.3, 4) """ if not x or x == fzero: return MINUS_INF return x[2] + x[3] def pure_complex(v, or_real=False): """Return a and b if v matches a + I*b where b is not zero and a and b are Numbers, else None. If `or_real` is True then 0 will be returned for `b` if `v` is a real number. Examples ======== >>> from sympy.core.evalf import pure_complex >>> from sympy import sqrt, I, S >>> a, b, surd = S(2), S(3), sqrt(2) >>> pure_complex(a) >>> pure_complex(a, or_real=True) (2, 0) >>> pure_complex(surd) >>> pure_complex(a + b*I) (2, 3) >>> pure_complex(I) (0, 1) """ h, t = v.as_coeff_Add() if not t: if or_real: return h, t return c, i = t.as_coeff_Mul() if i is S.ImaginaryUnit: return h, c def scaled_zero(mag, sign=1): """Return an mpf representing a power of two with magnitude ``mag`` and -1 for precision. Or, if ``mag`` is a scaled_zero tuple, then just remove the sign from within the list that it was initially wrapped in. Examples ======== >>> from sympy.core.evalf import scaled_zero >>> from sympy import Float >>> z, p = scaled_zero(100) >>> z, p (([0], 1, 100, 1), -1) >>> ok = scaled_zero(z) >>> ok (0, 1, 100, 1) >>> Float(ok) 1.26765060022823e+30 >>> Float(ok, p) 0.e+30 >>> ok, p = scaled_zero(100, -1) >>> Float(scaled_zero(ok), p) -0.e+30 """ if type(mag) is tuple and len(mag) == 4 and iszero(mag, scaled=True): return (mag[0][0],) + mag[1:] elif isinstance(mag, SYMPY_INTS): if sign not in [-1, 1]: raise ValueError('sign must be +/-1') rv, p = mpf_shift(fone, mag), -1 s = 0 if sign == 1 else 1 rv = ([s],) + rv[1:] return rv, p else: raise ValueError('scaled zero expects int or scaled_zero tuple.') def iszero(mpf, scaled=False): if not scaled: return not mpf or not mpf[1] and not mpf[-1] return mpf and type(mpf[0]) is list and mpf[1] == mpf[-1] == 1 def complex_accuracy(result): """ Returns relative accuracy of a complex number with given accuracies for the real and imaginary parts. The relative accuracy is defined in the complex norm sense as ||z|+|error|| / |z| where error is equal to (real absolute error) + (imag absolute error)*i. The full expression for the (logarithmic) error can be approximated easily by using the max norm to approximate the complex norm. In the worst case (re and im equal), this is wrong by a factor sqrt(2), or by log2(sqrt(2)) = 0.5 bit. """ re, im, re_acc, im_acc = result if not im: if not re: return INF return re_acc if not re: return im_acc re_size = fastlog(re) im_size = fastlog(im) absolute_error = max(re_size - re_acc, im_size - im_acc) relative_error = absolute_error - max(re_size, im_size) return -relative_error def get_abs(expr, prec, options): re, im, re_acc, im_acc = evalf(expr, prec + 2, options) if not re: re, re_acc, im, im_acc = im, im_acc, re, re_acc if im: if expr.is_number: abs_expr, _, acc, _ = evalf(abs(N(expr, prec + 2)), prec + 2, options) return abs_expr, None, acc, None else: if 'subs' in options: return libmp.mpc_abs((re, im), prec), None, re_acc, None return abs(expr), None, prec, None elif re: return mpf_abs(re), None, re_acc, None else: return None, None, None, None def get_complex_part(expr, no, prec, options): """no = 0 for real part, no = 1 for imaginary part""" workprec = prec i = 0 while 1: res = evalf(expr, workprec, options) value, accuracy = res[no::2] # XXX is the last one correct? Consider re((1+I)**2).n() if (not value) or accuracy >= prec or -value[2] > prec: return value, None, accuracy, None workprec += max(30, 2**i) i += 1 def evalf_abs(expr, prec, options): return get_abs(expr.args[0], prec, options) def evalf_re(expr, prec, options): return get_complex_part(expr.args[0], 0, prec, options) def evalf_im(expr, prec, options): return get_complex_part(expr.args[0], 1, prec, options) def finalize_complex(re, im, prec): if re == fzero and im == fzero: raise ValueError("got complex zero with unknown accuracy") elif re == fzero: return None, im, None, prec elif im == fzero: return re, None, prec, None size_re = fastlog(re) size_im = fastlog(im) if size_re > size_im: re_acc = prec im_acc = prec + min(-(size_re - size_im), 0) else: im_acc = prec re_acc = prec + min(-(size_im - size_re), 0) return re, im, re_acc, im_acc def chop_parts(value, prec): """ Chop off tiny real or complex parts. """ re, im, re_acc, im_acc = value # Method 1: chop based on absolute value if re and re not in _infs_nan and (fastlog(re) < -prec + 4): re, re_acc = None, None if im and im not in _infs_nan and (fastlog(im) < -prec + 4): im, im_acc = None, None # Method 2: chop if inaccurate and relatively small if re and im: delta = fastlog(re) - fastlog(im) if re_acc < 2 and (delta - re_acc <= -prec + 4): re, re_acc = None, None if im_acc < 2 and (delta - im_acc >= prec - 4): im, im_acc = None, None return re, im, re_acc, im_acc def check_target(expr, result, prec): a = complex_accuracy(result) if a < prec: raise PrecisionExhausted("Failed to distinguish the expression: \n\n%s\n\n" "from zero. Try simplifying the input, using chop=True, or providing " "a higher maxn for evalf" % (expr)) def get_integer_part(expr, no, options, return_ints=False): """ With no = 1, computes ceiling(expr) With no = -1, computes floor(expr) Note: this function either gives the exact result or signals failure. """ from sympy.functions.elementary.complexes import re, im # The expression is likely less than 2^30 or so assumed_size = 30 ire, iim, ire_acc, iim_acc = evalf(expr, assumed_size, options) # We now know the size, so we can calculate how much extra precision # (if any) is needed to get within the nearest integer if ire and iim: gap = max(fastlog(ire) - ire_acc, fastlog(iim) - iim_acc) elif ire: gap = fastlog(ire) - ire_acc elif iim: gap = fastlog(iim) - iim_acc else: # ... or maybe the expression was exactly zero if return_ints: return 0, 0 else: return None, None, None, None margin = 10 if gap >= -margin: prec = margin + assumed_size + gap ire, iim, ire_acc, iim_acc = evalf( expr, prec, options) else: prec = assumed_size # We can now easily find the nearest integer, but to find floor/ceil, we # must also calculate whether the difference to the nearest integer is # positive or negative (which may fail if very close). def calc_part(re_im, nexpr): from sympy.core.add import Add _, _, exponent, _ = nexpr is_int = exponent == 0 nint = int(to_int(nexpr, rnd)) if is_int: # make sure that we had enough precision to distinguish # between nint and the re or im part (re_im) of expr that # was passed to calc_part ire, iim, ire_acc, iim_acc = evalf( re_im - nint, 10, options) # don't need much precision assert not iim size = -fastlog(ire) + 2 # -ve b/c ire is less than 1 if size > prec: ire, iim, ire_acc, iim_acc = evalf( re_im, size, options) assert not iim nexpr = ire nint = int(to_int(nexpr, rnd)) _, _, new_exp, _ = ire is_int = new_exp == 0 if not is_int: # if there are subs and they all contain integer re/im parts # then we can (hopefully) safely substitute them into the # expression s = options.get('subs', False) if s: doit = True from sympy.core.compatibility import as_int # use strict=False with as_int because we take # 2.0 == 2 for v in s.values(): try: as_int(v, strict=False) except ValueError: try: [as_int(i, strict=False) for i in v.as_real_imag()] continue except (ValueError, AttributeError): doit = False break if doit: re_im = re_im.subs(s) re_im = Add(re_im, -nint, evaluate=False) x, _, x_acc, _ = evalf(re_im, 10, options) try: check_target(re_im, (x, None, x_acc, None), 3) except PrecisionExhausted: if not re_im.equals(0): raise PrecisionExhausted x = fzero nint += int(no*(mpf_cmp(x or fzero, fzero) == no)) nint = from_int(nint) return nint, INF re_, im_, re_acc, im_acc = None, None, None, None if ire: re_, re_acc = calc_part(re(expr, evaluate=False), ire) if iim: im_, im_acc = calc_part(im(expr, evaluate=False), iim) if return_ints: return int(to_int(re_ or fzero)), int(to_int(im_ or fzero)) return re_, im_, re_acc, im_acc def evalf_ceiling(expr, prec, options): return get_integer_part(expr.args[0], 1, options) def evalf_floor(expr, prec, options): return get_integer_part(expr.args[0], -1, options) #----------------------------------------------------------------------------# # # # Arithmetic operations # # # #----------------------------------------------------------------------------# def add_terms(terms, prec, target_prec): """ Helper for evalf_add. Adds a list of (mpfval, accuracy) terms. Returns ======= - None, None if there are no non-zero terms; - terms[0] if there is only 1 term; - scaled_zero if the sum of the terms produces a zero by cancellation e.g. mpfs representing 1 and -1 would produce a scaled zero which need special handling since they are not actually zero and they are purposely malformed to ensure that they can't be used in anything but accuracy calculations; - a tuple that is scaled to target_prec that corresponds to the sum of the terms. The returned mpf tuple will be normalized to target_prec; the input prec is used to define the working precision. XXX explain why this is needed and why one can't just loop using mpf_add """ terms = [t for t in terms if not iszero(t[0])] if not terms: return None, None elif len(terms) == 1: return terms[0] # see if any argument is NaN or oo and thus warrants a special return special = [] from sympy.core.numbers import Float for t in terms: arg = Float._new(t[0], 1) if arg is S.NaN or arg.is_infinite: special.append(arg) if special: from sympy.core.add import Add rv = evalf(Add(*special), prec + 4, {}) return rv[0], rv[2] working_prec = 2*prec sum_man, sum_exp, absolute_error = 0, 0, MINUS_INF for x, accuracy in terms: sign, man, exp, bc = x if sign: man = -man absolute_error = max(absolute_error, bc + exp - accuracy) delta = exp - sum_exp if exp >= sum_exp: # x much larger than existing sum? # first: quick test if ((delta > working_prec) and ((not sum_man) or delta - bitcount(abs(sum_man)) > working_prec)): sum_man = man sum_exp = exp else: sum_man += (man << delta) else: delta = -delta # x much smaller than existing sum? if delta - bc > working_prec: if not sum_man: sum_man, sum_exp = man, exp else: sum_man = (sum_man << delta) + man sum_exp = exp if not sum_man: return scaled_zero(absolute_error) if sum_man < 0: sum_sign = 1 sum_man = -sum_man else: sum_sign = 0 sum_bc = bitcount(sum_man) sum_accuracy = sum_exp + sum_bc - absolute_error r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec, rnd), sum_accuracy return r def evalf_add(v, prec, options): res = pure_complex(v) if res: h, c = res re, _, re_acc, _ = evalf(h, prec, options) im, _, im_acc, _ = evalf(c, prec, options) return re, im, re_acc, im_acc oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC) i = 0 target_prec = prec while 1: options['maxprec'] = min(oldmaxprec, 2*prec) terms = [evalf(arg, prec + 10, options) for arg in v.args] re, re_acc = add_terms( [a[0::2] for a in terms if a[0]], prec, target_prec) im, im_acc = add_terms( [a[1::2] for a in terms if a[1]], prec, target_prec) acc = complex_accuracy((re, im, re_acc, im_acc)) if acc >= target_prec: if options.get('verbose'): print("ADD: wanted", target_prec, "accurate bits, got", re_acc, im_acc) break else: if (prec - target_prec) > options['maxprec']: break prec = prec + max(10 + 2**i, target_prec - acc) i += 1 if options.get('verbose'): print("ADD: restarting with prec", prec) options['maxprec'] = oldmaxprec if iszero(re, scaled=True): re = scaled_zero(re) if iszero(im, scaled=True): im = scaled_zero(im) return re, im, re_acc, im_acc def evalf_mul(v, prec, options): res = pure_complex(v) if res: # the only pure complex that is a mul is h*I _, h = res im, _, im_acc, _ = evalf(h, prec, options) return None, im, None, im_acc args = list(v.args) # see if any argument is NaN or oo and thus warrants a special return special = [] from sympy.core.numbers import Float for arg in args: arg = evalf(arg, prec, options) if arg[0] is None: continue arg = Float._new(arg[0], 1) if arg is S.NaN or arg.is_infinite: special.append(arg) if special: from sympy.core.mul import Mul special = Mul(*special) return evalf(special, prec + 4, {}) # With guard digits, multiplication in the real case does not destroy # accuracy. This is also true in the complex case when considering the # total accuracy; however accuracy for the real or imaginary parts # separately may be lower. acc = prec # XXX: big overestimate working_prec = prec + len(args) + 5 # Empty product is 1 start = man, exp, bc = MPZ(1), 0, 1 # First, we multiply all pure real or pure imaginary numbers. # direction tells us that the result should be multiplied by # I**direction; all other numbers get put into complex_factors # to be multiplied out after the first phase. last = len(args) direction = 0 args.append(S.One) complex_factors = [] for i, arg in enumerate(args): if i != last and pure_complex(arg): args[-1] = (args[-1]*arg).expand() continue elif i == last and arg is S.One: continue re, im, re_acc, im_acc = evalf(arg, working_prec, options) if re and im: complex_factors.append((re, im, re_acc, im_acc)) continue elif re: (s, m, e, b), w_acc = re, re_acc elif im: (s, m, e, b), w_acc = im, im_acc direction += 1 else: return None, None, None, None direction += 2*s man *= m exp += e bc += b if bc > 3*working_prec: man >>= working_prec exp += working_prec acc = min(acc, w_acc) sign = (direction & 2) >> 1 if not complex_factors: v = normalize(sign, man, exp, bitcount(man), prec, rnd) # multiply by i if direction & 1: return None, v, None, acc else: return v, None, acc, None else: # initialize with the first term if (man, exp, bc) != start: # there was a real part; give it an imaginary part re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0) i0 = 0 else: # there is no real part to start (other than the starting 1) wre, wim, wre_acc, wim_acc = complex_factors[0] acc = min(acc, complex_accuracy((wre, wim, wre_acc, wim_acc))) re = wre im = wim i0 = 1 for wre, wim, wre_acc, wim_acc in complex_factors[i0:]: # acc is the overall accuracy of the product; we aren't # computing exact accuracies of the product. acc = min(acc, complex_accuracy((wre, wim, wre_acc, wim_acc))) use_prec = working_prec A = mpf_mul(re, wre, use_prec) B = mpf_mul(mpf_neg(im), wim, use_prec) C = mpf_mul(re, wim, use_prec) D = mpf_mul(im, wre, use_prec) re = mpf_add(A, B, use_prec) im = mpf_add(C, D, use_prec) if options.get('verbose'): print("MUL: wanted", prec, "accurate bits, got", acc) # multiply by I if direction & 1: re, im = mpf_neg(im), re return re, im, acc, acc def evalf_pow(v, prec, options): target_prec = prec base, exp = v.args # We handle x**n separately. This has two purposes: 1) it is much # faster, because we avoid calling evalf on the exponent, and 2) it # allows better handling of real/imaginary parts that are exactly zero if exp.is_Integer: p = exp.p # Exact if not p: return fone, None, prec, None # Exponentiation by p magnifies relative error by |p|, so the # base must be evaluated with increased precision if p is large prec += int(math.log(abs(p), 2)) re, im, re_acc, im_acc = evalf(base, prec + 5, options) # Real to integer power if re and not im: return mpf_pow_int(re, p, target_prec), None, target_prec, None # (x*I)**n = I**n * x**n if im and not re: z = mpf_pow_int(im, p, target_prec) case = p % 4 if case == 0: return z, None, target_prec, None if case == 1: return None, z, None, target_prec if case == 2: return mpf_neg(z), None, target_prec, None if case == 3: return None, mpf_neg(z), None, target_prec # Zero raised to an integer power if not re: return None, None, None, None # General complex number to arbitrary integer power re, im = libmp.mpc_pow_int((re, im), p, prec) # Assumes full accuracy in input return finalize_complex(re, im, target_prec) # Pure square root if exp is S.Half: xre, xim, _, _ = evalf(base, prec + 5, options) # General complex square root if xim: re, im = libmp.mpc_sqrt((xre or fzero, xim), prec) return finalize_complex(re, im, prec) if not xre: return None, None, None, None # Square root of a negative real number if mpf_lt(xre, fzero): return None, mpf_sqrt(mpf_neg(xre), prec), None, prec # Positive square root return mpf_sqrt(xre, prec), None, prec, None # We first evaluate the exponent to find its magnitude # This determines the working precision that must be used prec += 10 yre, yim, _, _ = evalf(exp, prec, options) # Special cases: x**0 if not (yre or yim): return fone, None, prec, None ysize = fastlog(yre) # Restart if too big # XXX: prec + ysize might exceed maxprec if ysize > 5: prec += ysize yre, yim, _, _ = evalf(exp, prec, options) # Pure exponential function; no need to evalf the base if base is S.Exp1: if yim: re, im = libmp.mpc_exp((yre or fzero, yim), prec) return finalize_complex(re, im, target_prec) return mpf_exp(yre, target_prec), None, target_prec, None xre, xim, _, _ = evalf(base, prec + 5, options) # 0**y if not (xre or xim): return None, None, None, None # (real ** complex) or (complex ** complex) if yim: re, im = libmp.mpc_pow( (xre or fzero, xim or fzero), (yre or fzero, yim), target_prec) return finalize_complex(re, im, target_prec) # complex ** real if xim: re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec) return finalize_complex(re, im, target_prec) # negative ** real elif mpf_lt(xre, fzero): re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec) return finalize_complex(re, im, target_prec) # positive ** real else: return mpf_pow(xre, yre, target_prec), None, target_prec, None #----------------------------------------------------------------------------# # # # Special functions # # # #----------------------------------------------------------------------------# def evalf_trig(v, prec, options): """ This function handles sin and cos of complex arguments. TODO: should also handle tan of complex arguments. """ from sympy import cos, sin if isinstance(v, cos): func = mpf_cos elif isinstance(v, sin): func = mpf_sin else: raise NotImplementedError arg = v.args[0] # 20 extra bits is possibly overkill. It does make the need # to restart very unlikely xprec = prec + 20 re, im, re_acc, im_acc = evalf(arg, xprec, options) if im: if 'subs' in options: v = v.subs(options['subs']) return evalf(v._eval_evalf(prec), prec, options) if not re: if isinstance(v, cos): return fone, None, prec, None elif isinstance(v, sin): return None, None, None, None else: raise NotImplementedError # For trigonometric functions, we are interested in the # fixed-point (absolute) accuracy of the argument. xsize = fastlog(re) # Magnitude <= 1.0. OK to compute directly, because there is no # danger of hitting the first root of cos (with sin, magnitude # <= 2.0 would actually be ok) if xsize < 1: return func(re, prec, rnd), None, prec, None # Very large if xsize >= 10: xprec = prec + xsize re, im, re_acc, im_acc = evalf(arg, xprec, options) # Need to repeat in case the argument is very close to a # multiple of pi (or pi/2), hitting close to a root while 1: y = func(re, prec, rnd) ysize = fastlog(y) gap = -ysize accuracy = (xprec - xsize) - gap if accuracy < prec: if options.get('verbose'): print("SIN/COS", accuracy, "wanted", prec, "gap", gap) print(to_str(y, 10)) if xprec > options.get('maxprec', DEFAULT_MAXPREC): return y, None, accuracy, None xprec += gap re, im, re_acc, im_acc = evalf(arg, xprec, options) continue else: return y, None, prec, None def evalf_log(expr, prec, options): from sympy import Abs, Add, log if len(expr.args)>1: expr = expr.doit() return evalf(expr, prec, options) arg = expr.args[0] workprec = prec + 10 xre, xim, xacc, _ = evalf(arg, workprec, options) if xim: # XXX: use get_abs etc instead re = evalf_log( log(Abs(arg, evaluate=False), evaluate=False), prec, options) im = mpf_atan2(xim, xre or fzero, prec) return re[0], im, re[2], prec imaginary_term = (mpf_cmp(xre, fzero) < 0) re = mpf_log(mpf_abs(xre), prec, rnd) size = fastlog(re) if prec - size > workprec and re != fzero: # We actually need to compute 1+x accurately, not x arg = Add(S.NegativeOne, arg, evaluate=False) xre, xim, _, _ = evalf_add(arg, prec, options) prec2 = workprec - fastlog(xre) # xre is now x - 1 so we add 1 back here to calculate x re = mpf_log(mpf_abs(mpf_add(xre, fone, prec2)), prec, rnd) re_acc = prec if imaginary_term: return re, mpf_pi(prec), re_acc, prec else: return re, None, re_acc, None def evalf_atan(v, prec, options): arg = v.args[0] xre, xim, reacc, imacc = evalf(arg, prec + 5, options) if xre is xim is None: return (None,)*4 if xim: raise NotImplementedError return mpf_atan(xre, prec, rnd), None, prec, None def evalf_subs(prec, subs): """ Change all Float entries in `subs` to have precision prec. """ newsubs = {} for a, b in subs.items(): b = S(b) if b.is_Float: b = b._eval_evalf(prec) newsubs[a] = b return newsubs def evalf_piecewise(expr, prec, options): from sympy import Float, Integer if 'subs' in options: expr = expr.subs(evalf_subs(prec, options['subs'])) newopts = options.copy() del newopts['subs'] if hasattr(expr, 'func'): return evalf(expr, prec, newopts) if type(expr) == float: return evalf(Float(expr), prec, newopts) if type(expr) == int: return evalf(Integer(expr), prec, newopts) # We still have undefined symbols raise NotImplementedError def evalf_bernoulli(expr, prec, options): arg = expr.args[0] if not arg.is_Integer: raise ValueError("Bernoulli number index must be an integer") n = int(arg) b = mpf_bernoulli(n, prec, rnd) if b == fzero: return None, None, None, None return b, None, prec, None #----------------------------------------------------------------------------# # # # High-level operations # # # #----------------------------------------------------------------------------# def as_mpmath(x, prec, options): from sympy.core.numbers import Infinity, NegativeInfinity, Zero x = sympify(x) if isinstance(x, Zero) or x == 0: return mpf(0) if isinstance(x, Infinity): return mpf('inf') if isinstance(x, NegativeInfinity): return mpf('-inf') # XXX re, im, _, _ = evalf(x, prec, options) if im: return mpc(re or fzero, im) return mpf(re) def do_integral(expr, prec, options): func = expr.args[0] x, xlow, xhigh = expr.args[1] if xlow == xhigh: xlow = xhigh = 0 elif x not in func.free_symbols: # only the difference in limits matters in this case # so if there is a symbol in common that will cancel # out when taking the difference, then use that # difference if xhigh.free_symbols & xlow.free_symbols: diff = xhigh - xlow if diff.is_number: xlow, xhigh = 0, diff oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC) options['maxprec'] = min(oldmaxprec, 2*prec) with workprec(prec + 5): xlow = as_mpmath(xlow, prec + 15, options) xhigh = as_mpmath(xhigh, prec + 15, options) # Integration is like summation, and we can phone home from # the integrand function to update accuracy summation style # Note that this accuracy is inaccurate, since it fails # to account for the variable quadrature weights, # but it is better than nothing from sympy import cos, sin, Wild have_part = [False, False] max_real_term = [MINUS_INF] max_imag_term = [MINUS_INF] def f(t): re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}}) have_part[0] = re or have_part[0] have_part[1] = im or have_part[1] max_real_term[0] = max(max_real_term[0], fastlog(re)) max_imag_term[0] = max(max_imag_term[0], fastlog(im)) if im: return mpc(re or fzero, im) return mpf(re or fzero) if options.get('quad') == 'osc': A = Wild('A', exclude=[x]) B = Wild('B', exclude=[x]) D = Wild('D') m = func.match(cos(A*x + B)*D) if not m: m = func.match(sin(A*x + B)*D) if not m: raise ValueError("An integrand of the form sin(A*x+B)*f(x) " "or cos(A*x+B)*f(x) is required for oscillatory quadrature") period = as_mpmath(2*S.Pi/m[A], prec + 15, options) result = quadosc(f, [xlow, xhigh], period=period) # XXX: quadosc does not do error detection yet quadrature_error = MINUS_INF else: result, quadrature_error = quadts(f, [xlow, xhigh], error=1) quadrature_error = fastlog(quadrature_error._mpf_) options['maxprec'] = oldmaxprec if have_part[0]: re = result.real._mpf_ if re == fzero: re, re_acc = scaled_zero( min(-prec, -max_real_term[0], -quadrature_error)) re = scaled_zero(re) # handled ok in evalf_integral else: re_acc = -max(max_real_term[0] - fastlog(re) - prec, quadrature_error) else: re, re_acc = None, None if have_part[1]: im = result.imag._mpf_ if im == fzero: im, im_acc = scaled_zero( min(-prec, -max_imag_term[0], -quadrature_error)) im = scaled_zero(im) # handled ok in evalf_integral else: im_acc = -max(max_imag_term[0] - fastlog(im) - prec, quadrature_error) else: im, im_acc = None, None result = re, im, re_acc, im_acc return result def evalf_integral(expr, prec, options): limits = expr.limits if len(limits) != 1 or len(limits[0]) != 3: raise NotImplementedError workprec = prec i = 0 maxprec = options.get('maxprec', INF) while 1: result = do_integral(expr, workprec, options) accuracy = complex_accuracy(result) if accuracy >= prec: # achieved desired precision break if workprec >= maxprec: # can't increase accuracy any more break if accuracy == -1: # maybe the answer really is zero and maybe we just haven't increased # the precision enough. So increase by doubling to not take too long # to get to maxprec. workprec *= 2 else: workprec += max(prec, 2**i) workprec = min(workprec, maxprec) i += 1 return result def check_convergence(numer, denom, n): """ Returns ======= (h, g, p) where -- h is: > 0 for convergence of rate 1/factorial(n)**h < 0 for divergence of rate factorial(n)**(-h) = 0 for geometric or polynomial convergence or divergence -- abs(g) is: > 1 for geometric convergence of rate 1/h**n < 1 for geometric divergence of rate h**n = 1 for polynomial convergence or divergence (g < 0 indicates an alternating series) -- p is: > 1 for polynomial convergence of rate 1/n**h <= 1 for polynomial divergence of rate n**(-h) """ from sympy import Poly npol = Poly(numer, n) dpol = Poly(denom, n) p = npol.degree() q = dpol.degree() rate = q - p if rate: return rate, None, None constant = dpol.LC() / npol.LC() if abs(constant) != 1: return rate, constant, None if npol.degree() == dpol.degree() == 0: return rate, constant, 0 pc = npol.all_coeffs()[1] qc = dpol.all_coeffs()[1] return rate, constant, (qc - pc)/dpol.LC() def hypsum(expr, n, start, prec): """ Sum a rapidly convergent infinite hypergeometric series with given general term, e.g. e = hypsum(1/factorial(n), n). The quotient between successive terms must be a quotient of integer polynomials. """ from sympy import Float, hypersimp, lambdify if prec == float('inf'): raise NotImplementedError('does not support inf prec') if start: expr = expr.subs(n, n + start) hs = hypersimp(expr, n) if hs is None: raise NotImplementedError("a hypergeometric series is required") num, den = hs.as_numer_denom() func1 = lambdify(n, num) func2 = lambdify(n, den) h, g, p = check_convergence(num, den, n) if h < 0: raise ValueError("Sum diverges like (n!)^%i" % (-h)) term = expr.subs(n, 0) if not term.is_Rational: raise NotImplementedError("Non rational term functionality is not implemented.") # Direct summation if geometric or faster if h > 0 or (h == 0 and abs(g) > 1): term = (MPZ(term.p) << prec) // term.q s = term k = 1 while abs(term) > 5: term *= MPZ(func1(k - 1)) term //= MPZ(func2(k - 1)) s += term k += 1 return from_man_exp(s, -prec) else: alt = g < 0 if abs(g) < 1: raise ValueError("Sum diverges like (%i)^n" % abs(1/g)) if p < 1 or (p == 1 and not alt): raise ValueError("Sum diverges like n^%i" % (-p)) # We have polynomial convergence: use Richardson extrapolation vold = None ndig = prec_to_dps(prec) while True: # Need to use at least quad precision because a lot of cancellation # might occur in the extrapolation process; we check the answer to # make sure that the desired precision has been reached, too. prec2 = 4*prec term0 = (MPZ(term.p) << prec2) // term.q def summand(k, _term=[term0]): if k: k = int(k) _term[0] *= MPZ(func1(k - 1)) _term[0] //= MPZ(func2(k - 1)) return make_mpf(from_man_exp(_term[0], -prec2)) with workprec(prec): v = nsum(summand, [0, mpmath_inf], method='richardson') vf = Float(v, ndig) if vold is not None and vold == vf: break prec += prec # double precision each time vold = vf return v._mpf_ def evalf_prod(expr, prec, options): from sympy import Sum if all((l[1] - l[2]).is_Integer for l in expr.limits): re, im, re_acc, im_acc = evalf(expr.doit(), prec=prec, options=options) else: re, im, re_acc, im_acc = evalf(expr.rewrite(Sum), prec=prec, options=options) return re, im, re_acc, im_acc def evalf_sum(expr, prec, options): from sympy import Float if 'subs' in options: expr = expr.subs(options['subs']) func = expr.function limits = expr.limits if len(limits) != 1 or len(limits[0]) != 3: raise NotImplementedError if func.is_zero: return None, None, prec, None prec2 = prec + 10 try: n, a, b = limits[0] if b != S.Infinity or a != int(a): raise NotImplementedError # Use fast hypergeometric summation if possible v = hypsum(func, n, int(a), prec2) delta = prec - fastlog(v) if fastlog(v) < -10: v = hypsum(func, n, int(a), delta) return v, None, min(prec, delta), None except NotImplementedError: # Euler-Maclaurin summation for general series eps = Float(2.0)**(-prec) for i in range(1, 5): m = n = 2**i * prec s, err = expr.euler_maclaurin(m=m, n=n, eps=eps, eval_integral=False) err = err.evalf() if err <= eps: break err = fastlog(evalf(abs(err), 20, options)[0]) re, im, re_acc, im_acc = evalf(s, prec2, options) if re_acc is None: re_acc = -err if im_acc is None: im_acc = -err return re, im, re_acc, im_acc #----------------------------------------------------------------------------# # # # Symbolic interface # # # #----------------------------------------------------------------------------# def evalf_symbol(x, prec, options): val = options['subs'][x] if isinstance(val, mpf): if not val: return None, None, None, None return val._mpf_, None, prec, None else: if not '_cache' in options: options['_cache'] = {} cache = options['_cache'] cached, cached_prec = cache.get(x, (None, MINUS_INF)) if cached_prec >= prec: return cached v = evalf(sympify(val), prec, options) cache[x] = (v, prec) return v evalf_table = None def _create_evalf_table(): global evalf_table from sympy.functions.combinatorial.numbers import bernoulli from sympy.concrete.products import Product from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.numbers import Exp1, Float, Half, ImaginaryUnit, Integer, NaN, NegativeOne, One, Pi, Rational, Zero from sympy.core.power import Pow from sympy.core.symbol import Dummy, Symbol from sympy.functions.elementary.complexes import Abs, im, re from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.integers import ceiling, floor from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import atan, cos, sin from sympy.integrals.integrals import Integral evalf_table = { Symbol: evalf_symbol, Dummy: evalf_symbol, Float: lambda x, prec, options: (x._mpf_, None, prec, None), Rational: lambda x, prec, options: (from_rational(x.p, x.q, prec), None, prec, None), Integer: lambda x, prec, options: (from_int(x.p, prec), None, prec, None), Zero: lambda x, prec, options: (None, None, prec, None), One: lambda x, prec, options: (fone, None, prec, None), Half: lambda x, prec, options: (fhalf, None, prec, None), Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None), Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None), ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec), NegativeOne: lambda x, prec, options: (fnone, None, prec, None), NaN: lambda x, prec, options: (fnan, None, prec, None), exp: lambda x, prec, options: evalf_pow( Pow(S.Exp1, x.args[0], evaluate=False), prec, options), cos: evalf_trig, sin: evalf_trig, Add: evalf_add, Mul: evalf_mul, Pow: evalf_pow, log: evalf_log, atan: evalf_atan, Abs: evalf_abs, re: evalf_re, im: evalf_im, floor: evalf_floor, ceiling: evalf_ceiling, Integral: evalf_integral, Sum: evalf_sum, Product: evalf_prod, Piecewise: evalf_piecewise, bernoulli: evalf_bernoulli, } def evalf(x, prec, options): from sympy import re as re_, im as im_ try: rf = evalf_table[x.func] r = rf(x, prec, options) except KeyError: # Fall back to ordinary evalf if possible if 'subs' in options: x = x.subs(evalf_subs(prec, options['subs'])) xe = x._eval_evalf(prec) if xe is None: raise NotImplementedError as_real_imag = getattr(xe, "as_real_imag", None) if as_real_imag is None: raise NotImplementedError # e.g. FiniteSet(-1.0, 1.0).evalf() re, im = as_real_imag() if re.has(re_) or im.has(im_): raise NotImplementedError if re == 0: re = None reprec = None elif re.is_number: re = re._to_mpmath(prec, allow_ints=False)._mpf_ reprec = prec else: raise NotImplementedError if im == 0: im = None imprec = None elif im.is_number: im = im._to_mpmath(prec, allow_ints=False)._mpf_ imprec = prec else: raise NotImplementedError r = re, im, reprec, imprec if options.get("verbose"): print("### input", x) print("### output", to_str(r[0] or fzero, 50)) print("### raw", r) # r[0], r[2] print() chop = options.get('chop', False) if chop: if chop is True: chop_prec = prec else: # convert (approximately) from given tolerance; # the formula here will will make 1e-i rounds to 0 for # i in the range +/-27 while 2e-i will not be chopped chop_prec = int(round(-3.321*math.log10(chop) + 2.5)) if chop_prec == 3: chop_prec -= 1 r = chop_parts(r, chop_prec) if options.get("strict"): check_target(x, r, prec) return r class EvalfMixin: """Mixin class adding evalf capabililty.""" __slots__ = () # type: Tuple[str, ...] def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False): """ Evaluate the given formula to an accuracy of *n* digits. Parameters ========== subs : dict, optional Substitute numerical values for symbols, e.g. ``subs={x:3, y:1+pi}``. The substitutions must be given as a dictionary. maxn : int, optional Allow a maximum temporary working precision of maxn digits. chop : bool or number, optional Specifies how to replace tiny real or imaginary parts in subresults by exact zeros. When ``True`` the chop value defaults to standard precision. Otherwise the chop value is used to determine the magnitude of "small" for purposes of chopping. >>> from sympy import N >>> x = 1e-4 >>> N(x, chop=True) 0.000100000000000000 >>> N(x, chop=1e-5) 0.000100000000000000 >>> N(x, chop=1e-4) 0 strict : bool, optional Raise ``PrecisionExhausted`` if any subresult fails to evaluate to full accuracy, given the available maxprec. quad : str, optional Choose algorithm for numerical quadrature. By default, tanh-sinh quadrature is used. For oscillatory integrals on an infinite interval, try ``quad='osc'``. verbose : bool, optional Print debug information. Notes ===== When Floats are naively substituted into an expression, precision errors may adversely affect the result. For example, adding 1e16 (a Float) to 1 will truncate to 1e16; if 1e16 is then subtracted, the result will be 0. That is exactly what happens in the following: >>> from sympy.abc import x, y, z >>> values = {x: 1e16, y: 1, z: 1e16} >>> (x + y - z).subs(values) 0 Using the subs argument for evalf is the accurate way to evaluate such an expression: >>> (x + y - z).evalf(subs=values) 1.00000000000000 """ from sympy import Float, Number n = n if n is not None else 15 if subs and is_sequence(subs): raise TypeError('subs must be given as a dictionary') # for sake of sage that doesn't like evalf(1) if n == 1 and isinstance(self, Number): from sympy.core.expr import _mag rv = self.evalf(2, subs, maxn, chop, strict, quad, verbose) m = _mag(rv) rv = rv.round(1 - m) return rv if not evalf_table: _create_evalf_table() prec = dps_to_prec(n) options = {'maxprec': max(prec, int(maxn*LG10)), 'chop': chop, 'strict': strict, 'verbose': verbose} if subs is not None: options['subs'] = subs if quad is not None: options['quad'] = quad try: result = evalf(self, prec + 4, options) except NotImplementedError: # Fall back to the ordinary evalf if hasattr(self, 'subs') and subs is not None: # issue 20291 v = self.subs(subs)._eval_evalf(prec) else: v = self._eval_evalf(prec) if v is None: return self elif not v.is_number: return v try: # If the result is numerical, normalize it result = evalf(v, prec, options) except NotImplementedError: # Probably contains symbols or unknown functions return v re, im, re_acc, im_acc = result if re: p = max(min(prec, re_acc), 1) re = Float._new(re, p) else: re = S.Zero if im: p = max(min(prec, im_acc), 1) im = Float._new(im, p) return re + im*S.ImaginaryUnit else: return re n = evalf def _evalf(self, prec): """Helper for evalf. Does the same thing but takes binary precision""" r = self._eval_evalf(prec) if r is None: r = self return r def _eval_evalf(self, prec): return def _to_mpmath(self, prec, allow_ints=True): # mpmath functions accept ints as input errmsg = "cannot convert to mpmath number" if allow_ints and self.is_Integer: return self.p if hasattr(self, '_as_mpf_val'): return make_mpf(self._as_mpf_val(prec)) try: re, im, _, _ = evalf(self, prec, {}) if im: if not re: re = fzero return make_mpc((re, im)) elif re: return make_mpf(re) else: return make_mpf(fzero) except NotImplementedError: v = self._eval_evalf(prec) if v is None: raise ValueError(errmsg) if v.is_Float: return make_mpf(v._mpf_) # Number + Number*I is also fine re, im = v.as_real_imag() if allow_ints and re.is_Integer: re = from_int(re.p) elif re.is_Float: re = re._mpf_ else: raise ValueError(errmsg) if allow_ints and im.is_Integer: im = from_int(im.p) elif im.is_Float: im = im._mpf_ else: raise ValueError(errmsg) return make_mpc((re, im)) def N(x, n=15, **options): r""" Calls x.evalf(n, \*\*options). Explanations ============ Both .n() and N() are equivalent to .evalf(); use the one that you like better. See also the docstring of .evalf() for information on the options. Examples ======== >>> from sympy import Sum, oo, N >>> from sympy.abc import k >>> Sum(1/k**k, (k, 1, oo)) Sum(k**(-k), (k, 1, oo)) >>> N(_, 4) 1.291 """ # by using rational=True, any evaluation of a string # will be done using exact values for the Floats return sympify(x, rational=True).evalf(n, **options)
99524209bb9c5e930871b11693af3bb11060f1482c7446c156658ce6383da614
from collections import defaultdict from functools import cmp_to_key, reduce import operator from .sympify import sympify from .basic import Basic from .singleton import S from .operations import AssocOp, AssocOpDispatcher from .cache import cacheit from .logic import fuzzy_not, _fuzzy_group from .expr import Expr from .parameters import global_parameters from .kind import KindDispatcher # internal marker to indicate: # "there are still non-commutative objects -- don't forget to process them" class NC_Marker: is_Order = False is_Mul = False is_Number = False is_Poly = False is_commutative = False # Key for sorting commutative args in canonical order _args_sortkey = cmp_to_key(Basic.compare) def _mulsort(args): # in-place sorting of args args.sort(key=_args_sortkey) def _unevaluated_Mul(*args): """Return a well-formed unevaluated Mul: Numbers are collected and put in slot 0, any arguments that are Muls will be flattened, and args are sorted. Use this when args have changed but you still want to return an unevaluated Mul. Examples ======== >>> from sympy.core.mul import _unevaluated_Mul as uMul >>> from sympy import S, sqrt, Mul >>> from sympy.abc import x >>> a = uMul(*[S(3.0), x, S(2)]) >>> a.args[0] 6.00000000000000 >>> a.args[1] x Two unevaluated Muls with the same arguments will always compare as equal during testing: >>> m = uMul(sqrt(2), sqrt(3)) >>> m == uMul(sqrt(3), sqrt(2)) True >>> u = Mul(sqrt(3), sqrt(2), evaluate=False) >>> m == uMul(u) True >>> m == Mul(*m.args) False """ args = list(args) newargs = [] ncargs = [] co = S.One while args: a = args.pop() if a.is_Mul: c, nc = a.args_cnc() args.extend(c) if nc: ncargs.append(Mul._from_args(nc)) elif a.is_Number: co *= a else: newargs.append(a) _mulsort(newargs) if co is not S.One: newargs.insert(0, co) if ncargs: newargs.append(Mul._from_args(ncargs)) return Mul._from_args(newargs) class Mul(Expr, AssocOp): """ Expression representing multiplication operation for algebraic field. Every argument of ``Mul()`` must be ``Expr``. Infix operator ``*`` on most scalar objects in SymPy calls this class. Another use of ``Mul()`` is to represent the structure of abstract multiplication so that its arguments can be substituted to return different class. Refer to examples section for this. ``Mul()`` evaluates the argument unless ``evaluate=False`` is passed. The evaluation logic includes: 1. Flattening ``Mul(x, Mul(y, z))`` -> ``Mul(x, y, z)`` 2. Identity removing ``Mul(x, 1, y)`` -> ``Mul(x, y)`` 3. Exponent collecting by ``.as_base_exp()`` ``Mul(x, x**2)`` -> ``Pow(x, 3)`` 4. Term sorting ``Mul(y, x, 2)`` -> ``Mul(2, x, y)`` Since multiplication can be vector space operation, arguments may have the different :obj:`sympy.core.kind.Kind()`. Kind of the resulting object is automatically inferred. Examples ======== >>> from sympy import Mul >>> from sympy.abc import x, y >>> Mul(x, 1) x >>> Mul(x, x) x**2 If ``evaluate=False`` is passed, result is not evaluated. >>> Mul(1, 2, evaluate=False) 1*2 >>> Mul(x, x, evaluate=False) x*x ``Mul()`` also represents the general structure of multiplication operation. >>> from sympy import MatrixSymbol >>> A = MatrixSymbol('A', 2,2) >>> expr = Mul(x,y).subs({y:A}) >>> expr x*A >>> type(expr) <class 'sympy.matrices.expressions.matmul.MatMul'> See Also ======== MatMul """ __slots__ = () is_Mul = True _args_type = Expr _kind_dispatcher = KindDispatcher("Mul_kind_dispatcher", commutative=True) @property def kind(self): arg_kinds = (a.kind for a in self.args) return self._kind_dispatcher(*arg_kinds) def __neg__(self): c, args = self.as_coeff_mul() c = -c if c is not S.One: if args[0].is_Number: args = list(args) if c is S.NegativeOne: args[0] = -args[0] else: args[0] *= c else: args = (c,) + args return self._from_args(args, self.is_commutative) @classmethod def flatten(cls, seq): """Return commutative, noncommutative and order arguments by combining related terms. Notes ===== * In an expression like ``a*b*c``, python process this through sympy as ``Mul(Mul(a, b), c)``. This can have undesirable consequences. - Sometimes terms are not combined as one would like: {c.f. https://github.com/sympy/sympy/issues/4596} >>> from sympy import Mul, sqrt >>> from sympy.abc import x, y, z >>> 2*(x + 1) # this is the 2-arg Mul behavior 2*x + 2 >>> y*(x + 1)*2 2*y*(x + 1) >>> 2*(x + 1)*y # 2-arg result will be obtained first y*(2*x + 2) >>> Mul(2, x + 1, y) # all 3 args simultaneously processed 2*y*(x + 1) >>> 2*((x + 1)*y) # parentheses can control this behavior 2*y*(x + 1) Powers with compound bases may not find a single base to combine with unless all arguments are processed at once. Post-processing may be necessary in such cases. {c.f. https://github.com/sympy/sympy/issues/5728} >>> a = sqrt(x*sqrt(y)) >>> a**3 (x*sqrt(y))**(3/2) >>> Mul(a,a,a) (x*sqrt(y))**(3/2) >>> a*a*a x*sqrt(y)*sqrt(x*sqrt(y)) >>> _.subs(a.base, z).subs(z, a.base) (x*sqrt(y))**(3/2) - If more than two terms are being multiplied then all the previous terms will be re-processed for each new argument. So if each of ``a``, ``b`` and ``c`` were :class:`Mul` expression, then ``a*b*c`` (or building up the product with ``*=``) will process all the arguments of ``a`` and ``b`` twice: once when ``a*b`` is computed and again when ``c`` is multiplied. Using ``Mul(a, b, c)`` will process all arguments once. * The results of Mul are cached according to arguments, so flatten will only be called once for ``Mul(a, b, c)``. If you can structure a calculation so the arguments are most likely to be repeats then this can save time in computing the answer. For example, say you had a Mul, M, that you wished to divide by ``d[i]`` and multiply by ``n[i]`` and you suspect there are many repeats in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the product, ``M*n[i]`` will be returned without flattening -- the cached value will be returned. If you divide by the ``d[i]`` first (and those are more unique than the ``n[i]``) then that will create a new Mul, ``M/d[i]`` the args of which will be traversed again when it is multiplied by ``n[i]``. {c.f. https://github.com/sympy/sympy/issues/5706} This consideration is moot if the cache is turned off. NB -- The validity of the above notes depends on the implementation details of Mul and flatten which may change at any time. Therefore, you should only consider them when your code is highly performance sensitive. Removal of 1 from the sequence is already handled by AssocOp.__new__. """ from sympy.calculus.util import AccumBounds from sympy.matrices.expressions import MatrixExpr rv = None if len(seq) == 2: a, b = seq if b.is_Rational: a, b = b, a seq = [a, b] assert not a is S.One if not a.is_zero and a.is_Rational: r, b = b.as_coeff_Mul() if b.is_Add: if r is not S.One: # 2-arg hack # leave the Mul as a Mul? ar = a*r if ar is S.One: arb = b else: arb = cls(a*r, b, evaluate=False) rv = [arb], [], None elif global_parameters.distribute and b.is_commutative: r, b = b.as_coeff_Add() bargs = [_keep_coeff(a, bi) for bi in Add.make_args(b)] _addsort(bargs) ar = a*r if ar: bargs.insert(0, ar) bargs = [Add._from_args(bargs)] rv = bargs, [], None if rv: return rv # apply associativity, separate commutative part of seq c_part = [] # out: commutative factors nc_part = [] # out: non-commutative factors nc_seq = [] coeff = S.One # standalone term # e.g. 3 * ... c_powers = [] # (base,exp) n # e.g. (x,n) for x num_exp = [] # (num-base, exp) y # e.g. (3, y) for ... * 3 * ... neg1e = S.Zero # exponent on -1 extracted from Number-based Pow and I pnum_rat = {} # (num-base, Rat-exp) 1/2 # e.g. (3, 1/2) for ... * 3 * ... order_symbols = None # --- PART 1 --- # # "collect powers and coeff": # # o coeff # o c_powers # o num_exp # o neg1e # o pnum_rat # # NOTE: this is optimized for all-objects-are-commutative case for o in seq: # O(x) if o.is_Order: o, order_symbols = o.as_expr_variables(order_symbols) # Mul([...]) if o.is_Mul: if o.is_commutative: seq.extend(o.args) # XXX zerocopy? else: # NCMul can have commutative parts as well for q in o.args: if q.is_commutative: seq.append(q) else: nc_seq.append(q) # append non-commutative marker, so we don't forget to # process scheduled non-commutative objects seq.append(NC_Marker) continue # 3 elif o.is_Number: if o is S.NaN or coeff is S.ComplexInfinity and o.is_zero: # we know for sure the result will be nan return [S.NaN], [], None elif coeff.is_Number or isinstance(coeff, AccumBounds): # it could be zoo coeff *= o if coeff is S.NaN: # we know for sure the result will be nan return [S.NaN], [], None continue elif isinstance(o, AccumBounds): coeff = o.__mul__(coeff) continue elif o is S.ComplexInfinity: if not coeff: # 0 * zoo = NaN return [S.NaN], [], None coeff = S.ComplexInfinity continue elif o is S.ImaginaryUnit: neg1e += S.Half continue elif o.is_commutative: # e # o = b b, e = o.as_base_exp() # y # 3 if o.is_Pow: if b.is_Number: # get all the factors with numeric base so they can be # combined below, but don't combine negatives unless # the exponent is an integer if e.is_Rational: if e.is_Integer: coeff *= Pow(b, e) # it is an unevaluated power continue elif e.is_negative: # also a sign of an unevaluated power seq.append(Pow(b, e)) continue elif b.is_negative: neg1e += e b = -b if b is not S.One: pnum_rat.setdefault(b, []).append(e) continue elif b.is_positive or e.is_integer: num_exp.append((b, e)) continue c_powers.append((b, e)) # NON-COMMUTATIVE # TODO: Make non-commutative exponents not combine automatically else: if o is not NC_Marker: nc_seq.append(o) # process nc_seq (if any) while nc_seq: o = nc_seq.pop(0) if not nc_part: nc_part.append(o) continue # b c b+c # try to combine last terms: a * a -> a o1 = nc_part.pop() b1, e1 = o1.as_base_exp() b2, e2 = o.as_base_exp() new_exp = e1 + e2 # Only allow powers to combine if the new exponent is # not an Add. This allow things like a**2*b**3 == a**5 # if a.is_commutative == False, but prohibits # a**x*a**y and x**a*x**b from combining (x,y commute). if b1 == b2 and (not new_exp.is_Add): o12 = b1 ** new_exp # now o12 could be a commutative object if o12.is_commutative: seq.append(o12) continue else: nc_seq.insert(0, o12) else: nc_part.append(o1) nc_part.append(o) # We do want a combined exponent if it would not be an Add, such as # y 2y 3y # x * x -> x # We determine if two exponents have the same term by using # as_coeff_Mul. # # Unfortunately, this isn't smart enough to consider combining into # exponents that might already be adds, so things like: # z - y y # x * x will be left alone. This is because checking every possible # combination can slow things down. # gather exponents of common bases... def _gather(c_powers): common_b = {} # b:e for b, e in c_powers: co = e.as_coeff_Mul() common_b.setdefault(b, {}).setdefault( co[1], []).append(co[0]) for b, d in common_b.items(): for di, li in d.items(): d[di] = Add(*li) new_c_powers = [] for b, e in common_b.items(): new_c_powers.extend([(b, c*t) for t, c in e.items()]) return new_c_powers # in c_powers c_powers = _gather(c_powers) # and in num_exp num_exp = _gather(num_exp) # --- PART 2 --- # # o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow) # o combine collected powers (2**x * 3**x -> 6**x) # with numeric base # ................................ # now we have: # - coeff: # - c_powers: (b, e) # - num_exp: (2, e) # - pnum_rat: {(1/3, [1/3, 2/3, 1/4])} # 0 1 # x -> 1 x -> x # this should only need to run twice; if it fails because # it needs to be run more times, perhaps this should be # changed to a "while True" loop -- the only reason it # isn't such now is to allow a less-than-perfect result to # be obtained rather than raising an error or entering an # infinite loop for i in range(2): new_c_powers = [] changed = False for b, e in c_powers: if e.is_zero: # canceling out infinities yields NaN if (b.is_Add or b.is_Mul) and any(infty in b.args for infty in (S.ComplexInfinity, S.Infinity, S.NegativeInfinity)): return [S.NaN], [], None continue if e is S.One: if b.is_Number: coeff *= b continue p = b if e is not S.One: p = Pow(b, e) # check to make sure that the base doesn't change # after exponentiation; to allow for unevaluated # Pow, we only do so if b is not already a Pow if p.is_Pow and not b.is_Pow: bi = b b, e = p.as_base_exp() if b != bi: changed = True c_part.append(p) new_c_powers.append((b, e)) # there might have been a change, but unless the base # matches some other base, there is nothing to do if changed and len({ b for b, e in new_c_powers}) != len(new_c_powers): # start over again c_part = [] c_powers = _gather(new_c_powers) else: break # x x x # 2 * 3 -> 6 inv_exp_dict = {} # exp:Mul(num-bases) x x # e.g. x:6 for ... * 2 * 3 * ... for b, e in num_exp: inv_exp_dict.setdefault(e, []).append(b) for e, b in inv_exp_dict.items(): inv_exp_dict[e] = cls(*b) c_part.extend([Pow(b, e) for e, b in inv_exp_dict.items() if e]) # b, e -> e' = sum(e), b # {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])} comb_e = {} for b, e in pnum_rat.items(): comb_e.setdefault(Add(*e), []).append(b) del pnum_rat # process them, reducing exponents to values less than 1 # and updating coeff if necessary else adding them to # num_rat for further processing num_rat = [] for e, b in comb_e.items(): b = cls(*b) if e.q == 1: coeff *= Pow(b, e) continue if e.p > e.q: e_i, ep = divmod(e.p, e.q) coeff *= Pow(b, e_i) e = Rational(ep, e.q) num_rat.append((b, e)) del comb_e # extract gcd of bases in num_rat # 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4) pnew = defaultdict(list) i = 0 # steps through num_rat which may grow while i < len(num_rat): bi, ei = num_rat[i] grow = [] for j in range(i + 1, len(num_rat)): bj, ej = num_rat[j] g = bi.gcd(bj) if g is not S.One: # 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2 # this might have a gcd with something else e = ei + ej if e.q == 1: coeff *= Pow(g, e) else: if e.p > e.q: e_i, ep = divmod(e.p, e.q) # change e in place coeff *= Pow(g, e_i) e = Rational(ep, e.q) grow.append((g, e)) # update the jth item num_rat[j] = (bj/g, ej) # update bi that we are checking with bi = bi/g if bi is S.One: break if bi is not S.One: obj = Pow(bi, ei) if obj.is_Number: coeff *= obj else: # changes like sqrt(12) -> 2*sqrt(3) for obj in Mul.make_args(obj): if obj.is_Number: coeff *= obj else: assert obj.is_Pow bi, ei = obj.args pnew[ei].append(bi) num_rat.extend(grow) i += 1 # combine bases of the new powers for e, b in pnew.items(): pnew[e] = cls(*b) # handle -1 and I if neg1e: # treat I as (-1)**(1/2) and compute -1's total exponent p, q = neg1e.as_numer_denom() # if the integer part is odd, extract -1 n, p = divmod(p, q) if n % 2: coeff = -coeff # if it's a multiple of 1/2 extract I if q == 2: c_part.append(S.ImaginaryUnit) elif p: # see if there is any positive base this power of # -1 can join neg1e = Rational(p, q) for e, b in pnew.items(): if e == neg1e and b.is_positive: pnew[e] = -b break else: # keep it separate; we've already evaluated it as # much as possible so evaluate=False c_part.append(Pow(S.NegativeOne, neg1e, evaluate=False)) # add all the pnew powers c_part.extend([Pow(b, e) for e, b in pnew.items()]) # oo, -oo if (coeff is S.Infinity) or (coeff is S.NegativeInfinity): def _handle_for_oo(c_part, coeff_sign): new_c_part = [] for t in c_part: if t.is_extended_positive: continue if t.is_extended_negative: coeff_sign *= -1 continue new_c_part.append(t) return new_c_part, coeff_sign c_part, coeff_sign = _handle_for_oo(c_part, 1) nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign) coeff *= coeff_sign # zoo if coeff is S.ComplexInfinity: # zoo might be # infinite_real + bounded_im # bounded_real + infinite_im # infinite_real + infinite_im # and non-zero real or imaginary will not change that status. c_part = [c for c in c_part if not (fuzzy_not(c.is_zero) and c.is_extended_real is not None)] nc_part = [c for c in nc_part if not (fuzzy_not(c.is_zero) and c.is_extended_real is not None)] # 0 elif coeff.is_zero: # we know for sure the result will be 0 except the multiplicand # is infinity or a matrix if any(isinstance(c, MatrixExpr) for c in nc_part): return [coeff], nc_part, order_symbols if any(c.is_finite == False for c in c_part): return [S.NaN], [], order_symbols return [coeff], [], order_symbols # check for straggling Numbers that were produced _new = [] for i in c_part: if i.is_Number: coeff *= i else: _new.append(i) c_part = _new # order commutative part canonically _mulsort(c_part) # current code expects coeff to be always in slot-0 if coeff is not S.One: c_part.insert(0, coeff) # we are done if (global_parameters.distribute and not nc_part and len(c_part) == 2 and c_part[0].is_Number and c_part[0].is_finite and c_part[1].is_Add): # 2*(1+a) -> 2 + 2 * a coeff = c_part[0] c_part = [Add(*[coeff*f for f in c_part[1].args])] return c_part, nc_part, order_symbols def _eval_power(self, e): # don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B cargs, nc = self.args_cnc(split_1=False) if e.is_Integer: return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \ Pow(Mul._from_args(nc), e, evaluate=False) if e.is_Rational and e.q == 2: from sympy.core.power import integer_nthroot from sympy.functions.elementary.complexes import sign if self.is_imaginary: a = self.as_real_imag()[1] if a.is_Rational: n, d = abs(a/2).as_numer_denom() n, t = integer_nthroot(n, 2) if t: d, t = integer_nthroot(d, 2) if t: r = sympify(n)/d return _unevaluated_Mul(r**e.p, (1 + sign(a)*S.ImaginaryUnit)**e.p) p = Pow(self, e, evaluate=False) if e.is_Rational or e.is_Float: return p._eval_expand_power_base() return p @classmethod def class_key(cls): return 3, 0, cls.__name__ def _eval_evalf(self, prec): c, m = self.as_coeff_Mul() if c is S.NegativeOne: if m.is_Mul: rv = -AssocOp._eval_evalf(m, prec) else: mnew = m._eval_evalf(prec) if mnew is not None: m = mnew rv = -m else: rv = AssocOp._eval_evalf(self, prec) if rv.is_number: return rv.expand() return rv @property def _mpc_(self): """ Convert self to an mpmath mpc if possible """ from sympy.core.numbers import I, Float im_part, imag_unit = self.as_coeff_Mul() if not imag_unit == I: # ValueError may seem more reasonable but since it's a @property, # we need to use AttributeError to keep from confusing things like # hasattr. raise AttributeError("Cannot convert Mul to mpc. Must be of the form Number*I") return (Float(0)._mpf_, Float(im_part)._mpf_) @cacheit def as_two_terms(self): """Return head and tail of self. This is the most efficient way to get the head and tail of an expression. - if you want only the head, use self.args[0]; - if you want to process the arguments of the tail then use self.as_coef_mul() which gives the head and a tuple containing the arguments of the tail when treated as a Mul. - if you want the coefficient when self is treated as an Add then use self.as_coeff_add()[0] Examples ======== >>> from sympy.abc import x, y >>> (3*x*y).as_two_terms() (3, x*y) """ args = self.args if len(args) == 1: return S.One, self elif len(args) == 2: return args else: return args[0], self._new_rawargs(*args[1:]) @cacheit def as_coefficients_dict(self): """Return a dictionary mapping terms to their coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. The dictionary is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*a*x).as_coefficients_dict() {a*x: 3} >>> _[a] 0 """ d = defaultdict(int) args = self.args if len(args) == 1 or not args[0].is_Number: d[self] = S.One else: d[self._new_rawargs(*args[1:])] = args[0] return d @cacheit def as_coeff_mul(self, *deps, rational=True, **kwargs): if deps: from sympy.utilities.iterables import sift l1, l2 = sift(self.args, lambda x: x.has(*deps), binary=True) return self._new_rawargs(*l2), tuple(l1) args = self.args if args[0].is_Number: if not rational or args[0].is_Rational: return args[0], args[1:] elif args[0].is_extended_negative: return S.NegativeOne, (-args[0],) + args[1:] return S.One, args def as_coeff_Mul(self, rational=False): """ Efficiently extract the coefficient of a product. """ coeff, args = self.args[0], self.args[1:] if coeff.is_Number: if not rational or coeff.is_Rational: if len(args) == 1: return coeff, args[0] else: return coeff, self._new_rawargs(*args) elif coeff.is_extended_negative: return S.NegativeOne, self._new_rawargs(*((-coeff,) + args)) return S.One, self def as_real_imag(self, deep=True, **hints): from sympy import Abs, expand_mul, im, re other = [] coeffr = [] coeffi = [] addterms = S.One for a in self.args: r, i = a.as_real_imag() if i.is_zero: coeffr.append(r) elif r.is_zero: coeffi.append(i*S.ImaginaryUnit) elif a.is_commutative: # search for complex conjugate pairs: for i, x in enumerate(other): if x == a.conjugate(): coeffr.append(Abs(x)**2) del other[i] break else: if a.is_Add: addterms *= a else: other.append(a) else: other.append(a) m = self.func(*other) if hints.get('ignore') == m: return if len(coeffi) % 2: imco = im(coeffi.pop(0)) # all other pairs make a real factor; they will be # put into reco below else: imco = S.Zero reco = self.func(*(coeffr + coeffi)) r, i = (reco*re(m), reco*im(m)) if addterms == 1: if m == 1: if imco.is_zero: return (reco, S.Zero) else: return (S.Zero, reco*imco) if imco is S.Zero: return (r, i) return (-imco*i, imco*r) addre, addim = expand_mul(addterms, deep=False).as_real_imag() if imco is S.Zero: return (r*addre - i*addim, i*addre + r*addim) else: r, i = -imco*i, imco*r return (r*addre - i*addim, r*addim + i*addre) @staticmethod def _expandsums(sums): """ Helper function for _eval_expand_mul. sums must be a list of instances of Basic. """ L = len(sums) if L == 1: return sums[0].args terms = [] left = Mul._expandsums(sums[:L//2]) right = Mul._expandsums(sums[L//2:]) terms = [Mul(a, b) for a in left for b in right] added = Add(*terms) return Add.make_args(added) # it may have collapsed down to one term def _eval_expand_mul(self, **hints): from sympy import fraction # Handle things like 1/(x*(x + 1)), which are automatically converted # to 1/x*1/(x + 1) expr = self n, d = fraction(expr) if d.is_Mul: n, d = [i._eval_expand_mul(**hints) if i.is_Mul else i for i in (n, d)] expr = n/d if not expr.is_Mul: return expr plain, sums, rewrite = [], [], False for factor in expr.args: if factor.is_Add: sums.append(factor) rewrite = True else: if factor.is_commutative: plain.append(factor) else: sums.append(Basic(factor)) # Wrapper if not rewrite: return expr else: plain = self.func(*plain) if sums: deep = hints.get("deep", False) terms = self.func._expandsums(sums) args = [] for term in terms: t = self.func(plain, term) if t.is_Mul and any(a.is_Add for a in t.args) and deep: t = t._eval_expand_mul() args.append(t) return Add(*args) else: return plain @cacheit def _eval_derivative(self, s): args = list(self.args) terms = [] for i in range(len(args)): d = args[i].diff(s) if d: # Note: reduce is used in step of Mul as Mul is unable to # handle subtypes and operation priority: terms.append(reduce(lambda x, y: x*y, (args[:i] + [d] + args[i + 1:]), S.One)) return Add.fromiter(terms) @cacheit def _eval_derivative_n_times(self, s, n): from sympy import Integer, factorial, prod, Sum, Max from sympy.ntheory.multinomial import multinomial_coefficients_iterator from .function import AppliedUndef from .symbol import Symbol, symbols, Dummy if not isinstance(s, AppliedUndef) and not isinstance(s, Symbol): # other types of s may not be well behaved, e.g. # (cos(x)*sin(y)).diff([[x, y, z]]) return super()._eval_derivative_n_times(s, n) args = self.args m = len(args) if isinstance(n, (int, Integer)): # https://en.wikipedia.org/wiki/General_Leibniz_rule#More_than_two_factors terms = [] for kvals, c in multinomial_coefficients_iterator(m, n): p = prod([arg.diff((s, k)) for k, arg in zip(kvals, args)]) terms.append(c * p) return Add(*terms) kvals = symbols("k1:%i" % m, cls=Dummy) klast = n - sum(kvals) nfact = factorial(n) e, l = (# better to use the multinomial? nfact/prod(map(factorial, kvals))/factorial(klast)*\ prod([args[t].diff((s, kvals[t])) for t in range(m-1)])*\ args[-1].diff((s, Max(0, klast))), [(k, 0, n) for k in kvals]) return Sum(e, *l) def _eval_difference_delta(self, n, step): from sympy.series.limitseq import difference_delta as dd arg0 = self.args[0] rest = Mul(*self.args[1:]) return (arg0.subs(n, n + step) * dd(rest, n, step) + dd(arg0, n, step) * rest) def _matches_simple(self, expr, repl_dict): # handle (w*3).matches('x*5') -> {w: x*5/3} coeff, terms = self.as_coeff_Mul() terms = Mul.make_args(terms) if len(terms) == 1: newexpr = self.__class__._combine_inverse(expr, coeff) return terms[0].matches(newexpr, repl_dict) return def matches(self, expr, repl_dict={}, old=False): expr = sympify(expr) repl_dict = repl_dict.copy() if self.is_commutative and expr.is_commutative: return self._matches_commutative(expr, repl_dict, old) elif self.is_commutative is not expr.is_commutative: return None # Proceed only if both both expressions are non-commutative c1, nc1 = self.args_cnc() c2, nc2 = expr.args_cnc() c1, c2 = [c or [1] for c in [c1, c2]] # TODO: Should these be self.func? comm_mul_self = Mul(*c1) comm_mul_expr = Mul(*c2) repl_dict = comm_mul_self.matches(comm_mul_expr, repl_dict, old) # If the commutative arguments didn't match and aren't equal, then # then the expression as a whole doesn't match if repl_dict is None and c1 != c2: return None # Now match the non-commutative arguments, expanding powers to # multiplications nc1 = Mul._matches_expand_pows(nc1) nc2 = Mul._matches_expand_pows(nc2) repl_dict = Mul._matches_noncomm(nc1, nc2, repl_dict) return repl_dict or None @staticmethod def _matches_expand_pows(arg_list): new_args = [] for arg in arg_list: if arg.is_Pow and arg.exp > 0: new_args.extend([arg.base] * arg.exp) else: new_args.append(arg) return new_args @staticmethod def _matches_noncomm(nodes, targets, repl_dict={}): """Non-commutative multiplication matcher. `nodes` is a list of symbols within the matcher multiplication expression, while `targets` is a list of arguments in the multiplication expression being matched against. """ repl_dict = repl_dict.copy() # List of possible future states to be considered agenda = [] # The current matching state, storing index in nodes and targets state = (0, 0) node_ind, target_ind = state # Mapping between wildcard indices and the index ranges they match wildcard_dict = {} repl_dict = repl_dict.copy() while target_ind < len(targets) and node_ind < len(nodes): node = nodes[node_ind] if node.is_Wild: Mul._matches_add_wildcard(wildcard_dict, state) states_matches = Mul._matches_new_states(wildcard_dict, state, nodes, targets) if states_matches: new_states, new_matches = states_matches agenda.extend(new_states) if new_matches: for match in new_matches: repl_dict[match] = new_matches[match] if not agenda: return None else: state = agenda.pop() node_ind, target_ind = state return repl_dict @staticmethod def _matches_add_wildcard(dictionary, state): node_ind, target_ind = state if node_ind in dictionary: begin, end = dictionary[node_ind] dictionary[node_ind] = (begin, target_ind) else: dictionary[node_ind] = (target_ind, target_ind) @staticmethod def _matches_new_states(dictionary, state, nodes, targets): node_ind, target_ind = state node = nodes[node_ind] target = targets[target_ind] # Don't advance at all if we've exhausted the targets but not the nodes if target_ind >= len(targets) - 1 and node_ind < len(nodes) - 1: return None if node.is_Wild: match_attempt = Mul._matches_match_wilds(dictionary, node_ind, nodes, targets) if match_attempt: # If the same node has been matched before, don't return # anything if the current match is diverging from the previous # match other_node_inds = Mul._matches_get_other_nodes(dictionary, nodes, node_ind) for ind in other_node_inds: other_begin, other_end = dictionary[ind] curr_begin, curr_end = dictionary[node_ind] other_targets = targets[other_begin:other_end + 1] current_targets = targets[curr_begin:curr_end + 1] for curr, other in zip(current_targets, other_targets): if curr != other: return None # A wildcard node can match more than one target, so only the # target index is advanced new_state = [(node_ind, target_ind + 1)] # Only move on to the next node if there is one if node_ind < len(nodes) - 1: new_state.append((node_ind + 1, target_ind + 1)) return new_state, match_attempt else: # If we're not at a wildcard, then make sure we haven't exhausted # nodes but not targets, since in this case one node can only match # one target if node_ind >= len(nodes) - 1 and target_ind < len(targets) - 1: return None match_attempt = node.matches(target) if match_attempt: return [(node_ind + 1, target_ind + 1)], match_attempt elif node == target: return [(node_ind + 1, target_ind + 1)], None else: return None @staticmethod def _matches_match_wilds(dictionary, wildcard_ind, nodes, targets): """Determine matches of a wildcard with sub-expression in `target`.""" wildcard = nodes[wildcard_ind] begin, end = dictionary[wildcard_ind] terms = targets[begin:end + 1] # TODO: Should this be self.func? mul = Mul(*terms) if len(terms) > 1 else terms[0] return wildcard.matches(mul) @staticmethod def _matches_get_other_nodes(dictionary, nodes, node_ind): """Find other wildcards that may have already been matched.""" other_node_inds = [] for ind in dictionary: if nodes[ind] == nodes[node_ind]: other_node_inds.append(ind) return other_node_inds @staticmethod def _combine_inverse(lhs, rhs): """ Returns lhs/rhs, but treats arguments like symbols, so things like oo/oo return 1 (instead of a nan) and ``I`` behaves like a symbol instead of sqrt(-1). """ from sympy.simplify.simplify import signsimp from .symbol import Dummy if lhs == rhs: return S.One def check(l, r): if l.is_Float and r.is_comparable: # if both objects are added to 0 they will share the same "normalization" # and are more likely to compare the same. Since Add(foo, 0) will not allow # the 0 to pass, we use __add__ directly. return l.__add__(0) == r.evalf().__add__(0) return False if check(lhs, rhs) or check(rhs, lhs): return S.One if any(i.is_Pow or i.is_Mul for i in (lhs, rhs)): # gruntz and limit wants a literal I to not combine # with a power of -1 d = Dummy('I') _i = {S.ImaginaryUnit: d} i_ = {d: S.ImaginaryUnit} a = lhs.xreplace(_i).as_powers_dict() b = rhs.xreplace(_i).as_powers_dict() blen = len(b) for bi in tuple(b.keys()): if bi in a: a[bi] -= b.pop(bi) if not a[bi]: a.pop(bi) if len(b) != blen: lhs = Mul(*[k**v for k, v in a.items()]).xreplace(i_) rhs = Mul(*[k**v for k, v in b.items()]).xreplace(i_) return signsimp(lhs/rhs) def as_powers_dict(self): d = defaultdict(int) for term in self.args: for b, e in term.as_powers_dict().items(): d[b] += e return d def as_numer_denom(self): # don't use _from_args to rebuild the numerators and denominators # as the order is not guaranteed to be the same once they have # been separated from each other numers, denoms = list(zip(*[f.as_numer_denom() for f in self.args])) return self.func(*numers), self.func(*denoms) def as_base_exp(self): e1 = None bases = [] nc = 0 for m in self.args: b, e = m.as_base_exp() if not b.is_commutative: nc += 1 if e1 is None: e1 = e elif e != e1 or nc > 1: return self, S.One bases.append(b) return self.func(*bases), e1 def _eval_is_polynomial(self, syms): return all(term._eval_is_polynomial(syms) for term in self.args) def _eval_is_rational_function(self, syms): return all(term._eval_is_rational_function(syms) for term in self.args) def _eval_is_meromorphic(self, x, a): return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args), quick_exit=True) def _eval_is_algebraic_expr(self, syms): return all(term._eval_is_algebraic_expr(syms) for term in self.args) _eval_is_commutative = lambda self: _fuzzy_group( a.is_commutative for a in self.args) def _eval_is_complex(self): comp = _fuzzy_group(a.is_complex for a in self.args) if comp is False: if any(a.is_infinite for a in self.args): if any(a.is_zero is not False for a in self.args): return None return False return comp def _eval_is_finite(self): if all(a.is_finite for a in self.args): return True if any(a.is_infinite for a in self.args): if all(a.is_zero is False for a in self.args): return False def _eval_is_infinite(self): if any(a.is_infinite for a in self.args): if any(a.is_zero for a in self.args): return S.NaN.is_infinite if any(a.is_zero is None for a in self.args): return None return True def _eval_is_rational(self): r = _fuzzy_group((a.is_rational for a in self.args), quick_exit=True) if r: return r elif r is False: return self.is_zero def _eval_is_algebraic(self): r = _fuzzy_group((a.is_algebraic for a in self.args), quick_exit=True) if r: return r elif r is False: return self.is_zero def _eval_is_zero(self): zero = infinite = False for a in self.args: z = a.is_zero if z: if infinite: return # 0*oo is nan and nan.is_zero is None zero = True else: if not a.is_finite: if zero: return # 0*oo is nan and nan.is_zero is None infinite = True if zero is False and z is None: # trap None zero = None return zero # without involving odd/even checks this code would suffice: #_eval_is_integer = lambda self: _fuzzy_group( # (a.is_integer for a in self.args), quick_exit=True) def _eval_is_integer(self): is_rational = self._eval_is_rational() if is_rational is False: return False numerators = [] denominators = [] for a in self.args: if a.is_integer: numerators.append(a) elif a.is_Rational: n, d = a.as_numer_denom() numerators.append(n) denominators.append(d) elif a.is_Pow: b, e = a.as_base_exp() if not b.is_integer or not e.is_integer: return if e.is_negative: denominators.append(b) else: # for integer b and positive integer e: a = b**e would be integer assert not e.is_positive # for self being rational and e equal to zero: a = b**e would be 1 assert not e.is_zero return # sign of e unknown -> self.is_integer cannot be decided else: return if not denominators: return True odd = lambda ints: all(i.is_odd for i in ints) even = lambda ints: any(i.is_even for i in ints) if odd(numerators) and even(denominators): return False elif even(numerators) and denominators == [2]: return True def _eval_is_polar(self): has_polar = any(arg.is_polar for arg in self.args) return has_polar and \ all(arg.is_polar or arg.is_positive for arg in self.args) def _eval_is_extended_real(self): return self._eval_real_imag(True) def _eval_real_imag(self, real): zero = False t_not_re_im = None for t in self.args: if (t.is_complex or t.is_infinite) is False and t.is_extended_real is False: return False elif t.is_imaginary: # I real = not real elif t.is_extended_real: # 2 if not zero: z = t.is_zero if not z and zero is False: zero = z elif z: if all(a.is_finite for a in self.args): return True return elif t.is_extended_real is False: # symbolic or literal like `2 + I` or symbolic imaginary if t_not_re_im: return # complex terms might cancel t_not_re_im = t elif t.is_imaginary is False: # symbolic like `2` or `2 + I` if t_not_re_im: return # complex terms might cancel t_not_re_im = t else: return if t_not_re_im: if t_not_re_im.is_extended_real is False: if real: # like 3 return zero # 3*(smthng like 2 + I or i) is not real if t_not_re_im.is_imaginary is False: # symbolic 2 or 2 + I if not real: # like I return zero # I*(smthng like 2 or 2 + I) is not real elif zero is False: return real # can't be trumped by 0 elif real: return real # doesn't matter what zero is def _eval_is_imaginary(self): z = self.is_zero if z: return False if self.is_finite is False: return False elif z is False and self.is_finite is True: return self._eval_real_imag(False) def _eval_is_hermitian(self): return self._eval_herm_antiherm(True) def _eval_herm_antiherm(self, real): one_nc = zero = one_neither = False for t in self.args: if not t.is_commutative: if one_nc: return one_nc = True if t.is_antihermitian: real = not real elif t.is_hermitian: if not zero: z = t.is_zero if not z and zero is False: zero = z elif z: if all(a.is_finite for a in self.args): return True return elif t.is_hermitian is False: if one_neither: return one_neither = True else: return if one_neither: if real: return zero elif zero is False or real: return real def _eval_is_antihermitian(self): z = self.is_zero if z: return False elif z is False: return self._eval_herm_antiherm(False) def _eval_is_irrational(self): for t in self.args: a = t.is_irrational if a: others = list(self.args) others.remove(t) if all((x.is_rational and fuzzy_not(x.is_zero)) is True for x in others): return True return if a is None: return if all(x.is_real for x in self.args): return False def _eval_is_extended_positive(self): """Return True if self is positive, False if not, and None if it cannot be determined. Explanation =========== This algorithm is non-recursive and works by keeping track of the sign which changes when a negative or nonpositive is encountered. Whether a nonpositive or nonnegative is seen is also tracked since the presence of these makes it impossible to return True, but possible to return False if the end result is nonpositive. e.g. pos * neg * nonpositive -> pos or zero -> None is returned pos * neg * nonnegative -> neg or zero -> False is returned """ return self._eval_pos_neg(1) def _eval_pos_neg(self, sign): saw_NON = saw_NOT = False for t in self.args: if t.is_extended_positive: continue elif t.is_extended_negative: sign = -sign elif t.is_zero: if all(a.is_finite for a in self.args): return False return elif t.is_extended_nonpositive: sign = -sign saw_NON = True elif t.is_extended_nonnegative: saw_NON = True # FIXME: is_positive/is_negative is False doesn't take account of # Symbol('x', infinite=True, extended_real=True) which has # e.g. is_positive is False but has uncertain sign. elif t.is_positive is False: sign = -sign if saw_NOT: return saw_NOT = True elif t.is_negative is False: if saw_NOT: return saw_NOT = True else: return if sign == 1 and saw_NON is False and saw_NOT is False: return True if sign < 0: return False def _eval_is_extended_negative(self): return self._eval_pos_neg(-1) def _eval_is_odd(self): is_integer = self.is_integer if is_integer: r, acc = True, 1 for t in self.args: if not t.is_integer: return None elif t.is_even: r = False elif t.is_integer: if r is False: pass elif acc != 1 and (acc + t).is_odd: r = False elif t.is_odd is None: r = None acc = t return r # !integer -> !odd elif is_integer is False: return False def _eval_is_even(self): is_integer = self.is_integer if is_integer: return fuzzy_not(self.is_odd) elif is_integer is False: return False def _eval_is_composite(self): """ Here we count the number of arguments that have a minimum value greater than two. If there are more than one of such a symbol then the result is composite. Else, the result cannot be determined. """ number_of_args = 0 # count of symbols with minimum value greater than one for arg in self.args: if not (arg.is_integer and arg.is_positive): return None if (arg-1).is_positive: number_of_args += 1 if number_of_args > 1: return True def _eval_subs(self, old, new): from sympy.functions.elementary.complexes import sign from sympy.ntheory.factor_ import multiplicity from sympy.simplify.powsimp import powdenest from sympy.simplify.radsimp import fraction if not old.is_Mul: return None # try keep replacement literal so -2*x doesn't replace 4*x if old.args[0].is_Number and old.args[0] < 0: if self.args[0].is_Number: if self.args[0] < 0: return self._subs(-old, -new) return None def base_exp(a): # if I and -1 are in a Mul, they get both end up with # a -1 base (see issue 6421); all we want here are the # true Pow or exp separated into base and exponent from sympy import exp if a.is_Pow or isinstance(a, exp): return a.as_base_exp() return a, S.One def breakup(eq): """break up powers of eq when treated as a Mul: b**(Rational*e) -> b**e, Rational commutatives come back as a dictionary {b**e: Rational} noncommutatives come back as a list [(b**e, Rational)] """ (c, nc) = (defaultdict(int), list()) for a in Mul.make_args(eq): a = powdenest(a) (b, e) = base_exp(a) if e is not S.One: (co, _) = e.as_coeff_mul() b = Pow(b, e/co) e = co if a.is_commutative: c[b] += e else: nc.append([b, e]) return (c, nc) def rejoin(b, co): """ Put rational back with exponent; in general this is not ok, but since we took it from the exponent for analysis, it's ok to put it back. """ (b, e) = base_exp(b) return Pow(b, e*co) def ndiv(a, b): """if b divides a in an extractive way (like 1/4 divides 1/2 but not vice versa, and 2/5 does not divide 1/3) then return the integer number of times it divides, else return 0. """ if not b.q % a.q or not a.q % b.q: return int(a/b) return 0 # give Muls in the denominator a chance to be changed (see issue 5651) # rv will be the default return value rv = None n, d = fraction(self) self2 = self if d is not S.One: self2 = n._subs(old, new)/d._subs(old, new) if not self2.is_Mul: return self2._subs(old, new) if self2 != self: rv = self2 # Now continue with regular substitution. # handle the leading coefficient and use it to decide if anything # should even be started; we always know where to find the Rational # so it's a quick test co_self = self2.args[0] co_old = old.args[0] co_xmul = None if co_old.is_Rational and co_self.is_Rational: # if coeffs are the same there will be no updating to do # below after breakup() step; so skip (and keep co_xmul=None) if co_old != co_self: co_xmul = co_self.extract_multiplicatively(co_old) elif co_old.is_Rational: return rv # break self and old into factors (c, nc) = breakup(self2) (old_c, old_nc) = breakup(old) # update the coefficients if we had an extraction # e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5 # then co_self in c is replaced by (3/5)**2 and co_residual # is 2*(1/7)**2 if co_xmul and co_xmul.is_Rational and abs(co_old) != 1: mult = S(multiplicity(abs(co_old), co_self)) c.pop(co_self) if co_old in c: c[co_old] += mult else: c[co_old] = mult co_residual = co_self/co_old**mult else: co_residual = 1 # do quick tests to see if we can't succeed ok = True if len(old_nc) > len(nc): # more non-commutative terms ok = False elif len(old_c) > len(c): # more commutative terms ok = False elif {i[0] for i in old_nc}.difference({i[0] for i in nc}): # unmatched non-commutative bases ok = False elif set(old_c).difference(set(c)): # unmatched commutative terms ok = False elif any(sign(c[b]) != sign(old_c[b]) for b in old_c): # differences in sign ok = False if not ok: return rv if not old_c: cdid = None else: rat = [] for (b, old_e) in old_c.items(): c_e = c[b] rat.append(ndiv(c_e, old_e)) if not rat[-1]: return rv cdid = min(rat) if not old_nc: ncdid = None for i in range(len(nc)): nc[i] = rejoin(*nc[i]) else: ncdid = 0 # number of nc replacements we did take = len(old_nc) # how much to look at each time limit = cdid or S.Infinity # max number that we can take failed = [] # failed terms will need subs if other terms pass i = 0 while limit and i + take <= len(nc): hit = False # the bases must be equivalent in succession, and # the powers must be extractively compatible on the # first and last factor but equal in between. rat = [] for j in range(take): if nc[i + j][0] != old_nc[j][0]: break elif j == 0: rat.append(ndiv(nc[i + j][1], old_nc[j][1])) elif j == take - 1: rat.append(ndiv(nc[i + j][1], old_nc[j][1])) elif nc[i + j][1] != old_nc[j][1]: break else: rat.append(1) j += 1 else: ndo = min(rat) if ndo: if take == 1: if cdid: ndo = min(cdid, ndo) nc[i] = Pow(new, ndo)*rejoin(nc[i][0], nc[i][1] - ndo*old_nc[0][1]) else: ndo = 1 # the left residual l = rejoin(nc[i][0], nc[i][1] - ndo* old_nc[0][1]) # eliminate all middle terms mid = new # the right residual (which may be the same as the middle if take == 2) ir = i + take - 1 r = (nc[ir][0], nc[ir][1] - ndo* old_nc[-1][1]) if r[1]: if i + take < len(nc): nc[i:i + take] = [l*mid, r] else: r = rejoin(*r) nc[i:i + take] = [l*mid*r] else: # there was nothing left on the right nc[i:i + take] = [l*mid] limit -= ndo ncdid += ndo hit = True if not hit: # do the subs on this failing factor failed.append(i) i += 1 else: if not ncdid: return rv # although we didn't fail, certain nc terms may have # failed so we rebuild them after attempting a partial # subs on them failed.extend(range(i, len(nc))) for i in failed: nc[i] = rejoin(*nc[i]).subs(old, new) # rebuild the expression if cdid is None: do = ncdid elif ncdid is None: do = cdid else: do = min(ncdid, cdid) margs = [] for b in c: if b in old_c: # calculate the new exponent e = c[b] - old_c[b]*do margs.append(rejoin(b, e)) else: margs.append(rejoin(b.subs(old, new), c[b])) if cdid and not ncdid: # in case we are replacing commutative with non-commutative, # we want the new term to come at the front just like the # rest of this routine margs = [Pow(new, cdid)] + margs return co_residual*self2.func(*margs)*self2.func(*nc) def _eval_nseries(self, x, n, logx, cdir=0): from sympy import degree, Mul, Order, ceiling, powsimp, PolynomialError from itertools import product def coeff_exp(term, x): coeff, exp = S.One, S.Zero for factor in Mul.make_args(term): if factor.has(x): base, exp = factor.as_base_exp() if base != x: try: return term.leadterm(x) except ValueError: return term, S.Zero else: coeff *= factor return coeff, exp ords = [] try: for t in self.args: coeff, exp = t.leadterm(x) if not coeff.has(x): ords.append((t, exp)) else: raise ValueError n0 = sum(t[1] for t in ords) facs = [] for t, m in ords: n1 = ceiling(n - n0 + m) s = t.nseries(x, n=n1, logx=logx, cdir=cdir) ns = s.getn() if ns is not None: if ns < n1: # less than expected n -= n1 - ns # reduce n facs.append(s.removeO()) except (ValueError, NotImplementedError, TypeError, AttributeError): facs = [t.nseries(x, n=n, logx=logx, cdir=cdir) for t in self.args] res = powsimp(self.func(*facs).expand(), combine='exp', deep=True) if res.has(Order): res += Order(x**n, x) return res res = 0 ords2 = [Add.make_args(factor) for factor in facs] for fac in product(*ords2): ords3 = [coeff_exp(term, x) for term in fac] coeffs, powers = zip(*ords3) power = sum(powers) if power < n: res += Mul(*coeffs)*(x**power) if self.is_polynomial(x): try: if degree(self, x) != degree(res, x): res += Order(x**n, x) except PolynomialError: pass else: return res for i in (1, 2, 3): if (res - self).subs(x, i) is not S.Zero: res += Order(x**n, x) break return res def _eval_as_leading_term(self, x, cdir=0): return self.func(*[t.as_leading_term(x, cdir=cdir) for t in self.args]) def _eval_conjugate(self): return self.func(*[t.conjugate() for t in self.args]) def _eval_transpose(self): return self.func(*[t.transpose() for t in self.args[::-1]]) def _eval_adjoint(self): return self.func(*[t.adjoint() for t in self.args[::-1]]) def _sage_(self): s = 1 for x in self.args: s *= x._sage_() return s def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import sqrt >>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive() (6, -sqrt(2)*(1 - sqrt(2))) See docstring of Expr.as_content_primitive for more examples. """ coef = S.One args = [] for i, a in enumerate(self.args): c, p = a.as_content_primitive(radical=radical, clear=clear) coef *= c if p is not S.One: args.append(p) # don't use self._from_args here to reconstruct args # since there may be identical args now that should be combined # e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x)) return coef, self.func(*args) def as_ordered_factors(self, order=None): """Transform an expression into an ordered list of factors. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x, y >>> (2*x*y*sin(x)*cos(x)).as_ordered_factors() [2, x, y, sin(x), cos(x)] """ cpart, ncpart = self.args_cnc() cpart.sort(key=lambda expr: expr.sort_key(order=order)) return cpart + ncpart @property def _sorted_args(self): return tuple(self.as_ordered_factors()) mul = AssocOpDispatcher('mul') def prod(a, start=1): """Return product of elements of a. Start with int 1 so if only ints are included then an int result is returned. Examples ======== >>> from sympy import prod, S >>> prod(range(3)) 0 >>> type(_) is int True >>> prod([S(2), 3]) 6 >>> _.is_Integer True You can start the product at something other than 1: >>> prod([1, 2], 3) 6 """ return reduce(operator.mul, a, start) def _keep_coeff(coeff, factors, clear=True, sign=False): """Return ``coeff*factors`` unevaluated if necessary. If ``clear`` is False, do not keep the coefficient as a factor if it can be distributed on a single factor such that one or more terms will still have integer coefficients. If ``sign`` is True, allow a coefficient of -1 to remain factored out. Examples ======== >>> from sympy.core.mul import _keep_coeff >>> from sympy.abc import x, y >>> from sympy import S >>> _keep_coeff(S.Half, x + 2) (x + 2)/2 >>> _keep_coeff(S.Half, x + 2, clear=False) x/2 + 1 >>> _keep_coeff(S.Half, (x + 2)*y, clear=False) y*(x + 2)/2 >>> _keep_coeff(S(-1), x + y) -x - y >>> _keep_coeff(S(-1), x + y, sign=True) -(x + y) """ if not coeff.is_Number: if factors.is_Number: factors, coeff = coeff, factors else: return coeff*factors if coeff is S.One: return factors elif coeff is S.NegativeOne and not sign: return -factors elif factors.is_Add: if not clear and coeff.is_Rational and coeff.q != 1: q = S(coeff.q) for i in factors.args: c, t = i.as_coeff_Mul() r = c/q if r == int(r): return coeff*factors return Mul(coeff, factors, evaluate=False) elif factors.is_Mul: margs = list(factors.args) if margs[0].is_Number: margs[0] *= coeff if margs[0] == 1: margs.pop(0) else: margs.insert(0, coeff) return Mul._from_args(margs) else: return coeff*factors def expand_2arg(e): from sympy.simplify.simplify import bottom_up def do(e): if e.is_Mul: c, r = e.as_coeff_Mul() if c.is_Number and r.is_Add: return _unevaluated_Add(*[c*ri for ri in r.args]) return e return bottom_up(e, do) from .numbers import Rational from .power import Pow from .add import Add, _addsort, _unevaluated_Add
23c05785f1bb626f7fefe669f35d98d1d026dc7c03ee2268019067c093051529
"""py.test hacks to support XFAIL/XPASS""" import sys import functools import os import contextlib import warnings from sympy.utilities.exceptions import SymPyDeprecationWarning ON_TRAVIS = os.getenv('TRAVIS_BUILD_NUMBER', None) try: import pytest USE_PYTEST = getattr(sys, '_running_pytest', False) except ImportError: USE_PYTEST = False if USE_PYTEST: raises = pytest.raises warns = pytest.warns skip = pytest.skip XFAIL = pytest.mark.xfail SKIP = pytest.mark.skip slow = pytest.mark.slow nocache_fail = pytest.mark.nocache_fail from _pytest.outcomes import Failed else: # Not using pytest so define the things that would have been imported from # there. # _pytest._code.code.ExceptionInfo class ExceptionInfo: def __init__(self, value): self.value = value def __repr__(self): return "<ExceptionInfo {!r}>".format(self.value) def raises(expectedException, code=None): """ Tests that ``code`` raises the exception ``expectedException``. ``code`` may be a callable, such as a lambda expression or function name. If ``code`` is not given or None, ``raises`` will return a context manager for use in ``with`` statements; the code to execute then comes from the scope of the ``with``. ``raises()`` does nothing if the callable raises the expected exception, otherwise it raises an AssertionError. Examples ======== >>> from sympy.testing.pytest import raises >>> raises(ZeroDivisionError, lambda: 1/0) <ExceptionInfo ZeroDivisionError(...)> >>> raises(ZeroDivisionError, lambda: 1/2) Traceback (most recent call last): ... Failed: DID NOT RAISE >>> with raises(ZeroDivisionError): ... n = 1/0 >>> with raises(ZeroDivisionError): ... n = 1/2 Traceback (most recent call last): ... Failed: DID NOT RAISE Note that you cannot test multiple statements via ``with raises``: >>> with raises(ZeroDivisionError): ... n = 1/0 # will execute and raise, aborting the ``with`` ... n = 9999/0 # never executed This is just what ``with`` is supposed to do: abort the contained statement sequence at the first exception and let the context manager deal with the exception. To test multiple statements, you'll need a separate ``with`` for each: >>> with raises(ZeroDivisionError): ... n = 1/0 # will execute and raise >>> with raises(ZeroDivisionError): ... n = 9999/0 # will also execute and raise """ if code is None: return RaisesContext(expectedException) elif callable(code): try: code() except expectedException as e: return ExceptionInfo(e) raise Failed("DID NOT RAISE") elif isinstance(code, str): raise TypeError( '\'raises(xxx, "code")\' has been phased out; ' 'change \'raises(xxx, "expression")\' ' 'to \'raises(xxx, lambda: expression)\', ' '\'raises(xxx, "statement")\' ' 'to \'with raises(xxx): statement\'') else: raise TypeError( 'raises() expects a callable for the 2nd argument.') class RaisesContext: def __init__(self, expectedException): self.expectedException = expectedException def __enter__(self): return None def __exit__(self, exc_type, exc_value, traceback): if exc_type is None: raise Failed("DID NOT RAISE") return issubclass(exc_type, self.expectedException) class XFail(Exception): pass class XPass(Exception): pass class Skipped(Exception): pass class Failed(Exception): # type: ignore pass def XFAIL(func): def wrapper(): try: func() except Exception as e: message = str(e) if message != "Timeout": raise XFail(func.__name__) else: raise Skipped("Timeout") raise XPass(func.__name__) wrapper = functools.update_wrapper(wrapper, func) return wrapper def skip(str): raise Skipped(str) def SKIP(reason): """Similar to ``skip()``, but this is a decorator. """ def wrapper(func): def func_wrapper(): raise Skipped(reason) func_wrapper = functools.update_wrapper(func_wrapper, func) return func_wrapper return wrapper def slow(func): func._slow = True def func_wrapper(): func() func_wrapper = functools.update_wrapper(func_wrapper, func) func_wrapper.__wrapped__ = func return func_wrapper def nocache_fail(func): "Dummy decorator for marking tests that fail when cache is disabled" return func @contextlib.contextmanager def warns(warningcls, *, match=''): '''Like raises but tests that warnings are emitted. >>> from sympy.testing.pytest import warns >>> import warnings >>> with warns(UserWarning): ... warnings.warn('deprecated', UserWarning) >>> with warns(UserWarning): ... pass Traceback (most recent call last): ... Failed: DID NOT WARN. No warnings of type UserWarning\ was emitted. The list of emitted warnings is: []. ''' # Absorbs all warnings in warnrec with warnings.catch_warnings(record=True) as warnrec: # Hide all warnings but make sure that our warning is emitted warnings.simplefilter("ignore") warnings.filterwarnings("always", match, warningcls) # Now run the test yield # Raise if expected warning not found if not any(issubclass(w.category, warningcls) for w in warnrec): msg = ('Failed: DID NOT WARN.' ' No warnings of type %s was emitted.' ' The list of emitted warnings is: %s.' ) % (warningcls, [w.message for w in warnrec]) raise Failed(msg) def _both_exp_pow(func): """ Decorator used to run the test twice: the first time `e^x` is represented as ``Pow(E, x)``, the second time as ``exp(x)`` (exponential object is not a power). This is a temporary trick helping to manage the elimination of the class ``exp`` in favor of a replacement by ``Pow(E, ...)``. """ from sympy.core.parameters import _exp_is_pow def func_wrap(): with _exp_is_pow(True): func() with _exp_is_pow(False): func() wrapper = functools.update_wrapper(func_wrap, func) return wrapper @contextlib.contextmanager def warns_deprecated_sympy(): '''Shorthand for ``warns(SymPyDeprecationWarning)`` This is the recommended way to test that ``SymPyDeprecationWarning`` is emitted for deprecated features in SymPy. To test for other warnings use ``warns``. To suppress warnings without asserting that they are emitted use ``ignore_warnings``. >>> from sympy.testing.pytest import warns_deprecated_sympy >>> from sympy.utilities.exceptions import SymPyDeprecationWarning >>> with warns_deprecated_sympy(): ... SymPyDeprecationWarning("Don't use", feature="old thing", ... deprecated_since_version="1.0", issue=123).warn() >>> with warns_deprecated_sympy(): ... pass Traceback (most recent call last): ... Failed: DID NOT WARN. No warnings of type \ SymPyDeprecationWarning was emitted. The list of emitted warnings is: []. ''' with warns(SymPyDeprecationWarning): yield @contextlib.contextmanager def ignore_warnings(warningcls): '''Context manager to suppress warnings during tests. This function is useful for suppressing warnings during tests. The warns function should be used to assert that a warning is raised. The ignore_warnings function is useful in situation when the warning is not guaranteed to be raised (e.g. on importing a module) or if the warning comes from third-party code. When the warning is coming (reliably) from SymPy the warns function should be preferred to ignore_warnings. >>> from sympy.testing.pytest import ignore_warnings >>> import warnings Here's a warning: >>> with warnings.catch_warnings(): # reset warnings in doctest ... warnings.simplefilter('error') ... warnings.warn('deprecated', UserWarning) Traceback (most recent call last): ... UserWarning: deprecated Let's suppress it with ignore_warnings: >>> with warnings.catch_warnings(): # reset warnings in doctest ... warnings.simplefilter('error') ... with ignore_warnings(UserWarning): ... warnings.warn('deprecated', UserWarning) (No warning emitted) ''' # Absorbs all warnings in warnrec with warnings.catch_warnings(record=True) as warnrec: # Make sure our warning doesn't get filtered warnings.simplefilter("always", warningcls) # Now run the test yield # Reissue any warnings that we aren't testing for for w in warnrec: if not issubclass(w.category, warningcls): warnings.warn_explicit(w.message, w.category, w.filename, w.lineno)
54c35709149aca28104fa6b772f7f933f33ec1d57e2928a5fc96c098772e5107
"""A module to manipulate symbolic objects with indices including tensors """ from .indexed import IndexedBase, Idx, Indexed from .index_methods import get_contraction_structure, get_indices from .functions import shape from .array import (MutableDenseNDimArray, ImmutableDenseNDimArray, MutableSparseNDimArray, ImmutableSparseNDimArray, NDimArray, tensorproduct, tensorcontraction, tensordiagonal, derive_by_array, permutedims, Array, DenseNDimArray, SparseNDimArray,) __all__ = [ 'IndexedBase', 'Idx', 'Indexed', 'get_contraction_structure', 'get_indices', 'shape', 'MutableDenseNDimArray', 'ImmutableDenseNDimArray', 'MutableSparseNDimArray', 'ImmutableSparseNDimArray', 'NDimArray', 'tensorproduct', 'tensorcontraction', 'tensordiagonal', 'derive_by_array', 'permutedims', 'Array', 'DenseNDimArray', 'SparseNDimArray', ]
114d63d29c42aa84f2cf9881eaa11f4e688cc56eb17ca028ba9649e08c7a4c8b
from collections.abc import Iterable from functools import singledispatch from sympy import Expr, S, Mul, sympify from sympy.core.parameters import global_parameters class TensorProduct(Expr): """ Generic class for tensor products. """ is_number = False def __new__(cls, *args, **kwargs): from sympy.tensor.array import NDimArray, tensorproduct, Array from sympy import MatrixBase, MatrixExpr from sympy.strategies import flatten args = [sympify(arg) for arg in args] evaluate = kwargs.get("evaluate", global_parameters.evaluate) if not evaluate: obj = Expr.__new__(cls, *args) return obj arrays = [] other = [] scalar = S.One for arg in args: if isinstance(arg, (Iterable, MatrixBase, NDimArray)): arrays.append(Array(arg)) elif isinstance(arg, (MatrixExpr,)): other.append(arg) else: scalar *= arg coeff = scalar*tensorproduct(*arrays) if len(other) == 0: return coeff if coeff != 1: newargs = [coeff] + other else: newargs = other obj = Expr.__new__(cls, *newargs, **kwargs) return flatten(obj) def rank(self): return len(self.shape) def _get_args_shapes(self): from sympy import Array return [i.shape if hasattr(i, "shape") else Array(i).shape for i in self.args] @property def shape(self): shape_list = self._get_args_shapes() return sum(shape_list, ()) def __getitem__(self, index): index = iter(index) return Mul.fromiter( arg.__getitem__(tuple(next(index) for i in shp)) for arg, shp in zip(self.args, self._get_args_shapes()) ) @singledispatch def shape(expr): """ Return the shape of the *expr* as a tuple. *expr* should represent suitable object such as matrix or array. Parameters ========== expr : SymPy object having ``MatrixKind`` or ``ArrayKind``. Raises ====== NoShapeError : Raised when object with wrong kind is passed. Examples ======== This function returns the shape of any object representing matrix or array. >>> from sympy import shape, Array, Matrix, Integral >>> from sympy.abc import x >>> A = Array([1, 2]) >>> shape(A) (2,) >>> shape(Integral(A, x)) (2,) >>> M = Matrix([1, 2]) >>> shape(M) (2, 1) >>> shape(Integral(M, x)) (2, 1) You can support new type by dispatching. >>> from sympy import Expr >>> class NewExpr(Expr): ... pass >>> @shape.register(NewExpr) ... def _(expr): ... return shape(expr.args[0]) >>> shape(NewExpr(M)) (2, 1) If unsuitable expression is passed, ``NoShapeError()`` will be raised. >>> shape(Integral(x, x)) Traceback (most recent call last): ... sympy.tensor.functions.NoShapeError: shape() called on non-array object: Integral(x, x) Notes ===== Array-like classes (such as ``Matrix`` or ``NDimArray``) has ``shape`` property which returns its shape, but it cannot be used for non-array classes containing array. This function returns the shape of any registered object representing array. """ if hasattr(expr, "shape"): return expr.shape raise NoShapeError( "%s does not have shape, or its type is not registered to shape()." % expr) class NoShapeError(Exception): """ Raised when ``shape()`` is called on non-array object. This error can be imported from ``sympy.tensor.functions``. Examples ======== >>> from sympy import shape >>> from sympy.abc import x >>> shape(x) Traceback (most recent call last): ... sympy.tensor.functions.NoShapeError: shape() called on non-array object: x """ pass
58a9771e3bb6a906aae1fdbca40bfba85277c25d7a3dd5f1c02d0de8888ce5e6
""" Boolean algebra module for SymPy """ from collections import defaultdict from itertools import chain, combinations, product from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.cache import cacheit from sympy.core.compatibility import ordered, as_int from sympy.core.decorators import sympify_method_args, sympify_return from sympy.core.function import Application, Derivative from sympy.core.numbers import Number from sympy.core.operations import LatticeOp from sympy.core.singleton import Singleton, S from sympy.core.sympify import converter, _sympify, sympify from sympy.core.kind import BooleanKind from sympy.utilities.iterables import sift, ibin from sympy.utilities.misc import filldedent def as_Boolean(e): """Like bool, return the Boolean value of an expression, e, which can be any instance of Boolean or bool. Examples ======== >>> from sympy import true, false, nan >>> from sympy.logic.boolalg import as_Boolean >>> from sympy.abc import x >>> as_Boolean(0) is false True >>> as_Boolean(1) is true True >>> as_Boolean(x) x >>> as_Boolean(2) Traceback (most recent call last): ... TypeError: expecting bool or Boolean, not `2`. >>> as_Boolean(nan) Traceback (most recent call last): ... TypeError: expecting bool or Boolean, not `nan`. """ from sympy.core.symbol import Symbol if e == True: return S.true if e == False: return S.false if isinstance(e, Symbol): z = e.is_zero if z is None: return e return S.false if z else S.true if isinstance(e, Boolean): return e raise TypeError('expecting bool or Boolean, not `%s`.' % e) @sympify_method_args class Boolean(Basic): """A boolean object is an object for which logic operations make sense.""" __slots__ = () kind = BooleanKind @sympify_return([('other', 'Boolean')], NotImplemented) def __and__(self, other): return And(self, other) __rand__ = __and__ @sympify_return([('other', 'Boolean')], NotImplemented) def __or__(self, other): return Or(self, other) __ror__ = __or__ def __invert__(self): """Overloading for ~""" return Not(self) @sympify_return([('other', 'Boolean')], NotImplemented) def __rshift__(self, other): return Implies(self, other) @sympify_return([('other', 'Boolean')], NotImplemented) def __lshift__(self, other): return Implies(other, self) __rrshift__ = __lshift__ __rlshift__ = __rshift__ @sympify_return([('other', 'Boolean')], NotImplemented) def __xor__(self, other): return Xor(self, other) __rxor__ = __xor__ def equals(self, other): """ Returns True if the given formulas have the same truth table. For two formulas to be equal they must have the same literals. Examples ======== >>> from sympy.abc import A, B, C >>> from sympy.logic.boolalg import And, Or, Not >>> (A >> B).equals(~B >> ~A) True >>> Not(And(A, B, C)).equals(And(Not(A), Not(B), Not(C))) False >>> Not(And(A, Not(A))).equals(Or(B, Not(B))) False """ from sympy.logic.inference import satisfiable from sympy.core.relational import Relational if self.has(Relational) or other.has(Relational): raise NotImplementedError('handling of relationals') return self.atoms() == other.atoms() and \ not satisfiable(Not(Equivalent(self, other))) def to_nnf(self, simplify=True): # override where necessary return self def as_set(self): """ Rewrites Boolean expression in terms of real sets. Examples ======== >>> from sympy import Symbol, Eq, Or, And >>> x = Symbol('x', real=True) >>> Eq(x, 0).as_set() FiniteSet(0) >>> (x > 0).as_set() Interval.open(0, oo) >>> And(-2 < x, x < 2).as_set() Interval.open(-2, 2) >>> Or(x < -2, 2 < x).as_set() Union(Interval.open(-oo, -2), Interval.open(2, oo)) """ from sympy.calculus.util import periodicity from sympy.core.relational import Relational free = self.free_symbols if len(free) == 1: x = free.pop() reps = {} for r in self.atoms(Relational): if periodicity(r, x) not in (0, None): s = r._eval_as_set() if s in (S.EmptySet, S.UniversalSet, S.Reals): reps[r] = s.as_relational(x) continue raise NotImplementedError(filldedent(''' as_set is not implemented for relationals with periodic solutions ''')) return self.subs(reps)._eval_as_set() else: raise NotImplementedError("Sorry, as_set has not yet been" " implemented for multivariate" " expressions") @property def binary_symbols(self): from sympy.core.relational import Eq, Ne return set().union(*[i.binary_symbols for i in self.args if i.is_Boolean or i.is_Symbol or isinstance(i, (Eq, Ne))]) def _eval_refine(self, assumptions): from sympy.assumptions import ask return ask(self, assumptions) class BooleanAtom(Boolean): """ Base class of BooleanTrue and BooleanFalse. """ is_Boolean = True is_Atom = True _op_priority = 11 # higher than Expr def simplify(self, *a, **kw): return self def expand(self, *a, **kw): return self @property def canonical(self): return self def _noop(self, other=None): raise TypeError('BooleanAtom not allowed in this context.') __add__ = _noop __radd__ = _noop __sub__ = _noop __rsub__ = _noop __mul__ = _noop __rmul__ = _noop __pow__ = _noop __rpow__ = _noop __truediv__ = _noop __rtruediv__ = _noop __mod__ = _noop __rmod__ = _noop _eval_power = _noop # /// drop when Py2 is no longer supported def __lt__(self, other): from sympy.utilities.misc import filldedent raise TypeError(filldedent(''' A Boolean argument can only be used in Eq and Ne; all other relationals expect real expressions. ''')) __le__ = __lt__ __gt__ = __lt__ __ge__ = __lt__ # \\\ class BooleanTrue(BooleanAtom, metaclass=Singleton): """ SymPy version of True, a singleton that can be accessed via S.true. This is the SymPy version of True, for use in the logic module. The primary advantage of using true instead of True is that shorthand boolean operations like ~ and >> will work as expected on this class, whereas with True they act bitwise on 1. Functions in the logic module will return this class when they evaluate to true. Notes ===== There is liable to be some confusion as to when ``True`` should be used and when ``S.true`` should be used in various contexts throughout SymPy. An important thing to remember is that ``sympify(True)`` returns ``S.true``. This means that for the most part, you can just use ``True`` and it will automatically be converted to ``S.true`` when necessary, similar to how you can generally use 1 instead of ``S.One``. The rule of thumb is: "If the boolean in question can be replaced by an arbitrary symbolic ``Boolean``, like ``Or(x, y)`` or ``x > 1``, use ``S.true``. Otherwise, use ``True``" In other words, use ``S.true`` only on those contexts where the boolean is being used as a symbolic representation of truth. For example, if the object ends up in the ``.args`` of any expression, then it must necessarily be ``S.true`` instead of ``True``, as elements of ``.args`` must be ``Basic``. On the other hand, ``==`` is not a symbolic operation in SymPy, since it always returns ``True`` or ``False``, and does so in terms of structural equality rather than mathematical, so it should return ``True``. The assumptions system should use ``True`` and ``False``. Aside from not satisfying the above rule of thumb, the assumptions system uses a three-valued logic (``True``, ``False``, ``None``), whereas ``S.true`` and ``S.false`` represent a two-valued logic. When in doubt, use ``True``. "``S.true == True is True``." While "``S.true is True``" is ``False``, "``S.true == True``" is ``True``, so if there is any doubt over whether a function or expression will return ``S.true`` or ``True``, just use ``==`` instead of ``is`` to do the comparison, and it will work in either case. Finally, for boolean flags, it's better to just use ``if x`` instead of ``if x is True``. To quote PEP 8: Don't compare boolean values to ``True`` or ``False`` using ``==``. * Yes: ``if greeting:`` * No: ``if greeting == True:`` * Worse: ``if greeting is True:`` Examples ======== >>> from sympy import sympify, true, false, Or >>> sympify(True) True >>> _ is True, _ is true (False, True) >>> Or(true, false) True >>> _ is true True Python operators give a boolean result for true but a bitwise result for True >>> ~true, ~True (False, -2) >>> true >> true, True >> True (True, 0) Python operators give a boolean result for true but a bitwise result for True >>> ~true, ~True (False, -2) >>> true >> true, True >> True (True, 0) See Also ======== sympy.logic.boolalg.BooleanFalse """ def __bool__(self): return True def __hash__(self): return hash(True) @property def negated(self): return S.false def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import true >>> true.as_set() UniversalSet """ return S.UniversalSet class BooleanFalse(BooleanAtom, metaclass=Singleton): """ SymPy version of False, a singleton that can be accessed via S.false. This is the SymPy version of False, for use in the logic module. The primary advantage of using false instead of False is that shorthand boolean operations like ~ and >> will work as expected on this class, whereas with False they act bitwise on 0. Functions in the logic module will return this class when they evaluate to false. Notes ====== See note in :py:class`sympy.logic.boolalg.BooleanTrue` Examples ======== >>> from sympy import sympify, true, false, Or >>> sympify(False) False >>> _ is False, _ is false (False, True) >>> Or(true, false) True >>> _ is true True Python operators give a boolean result for false but a bitwise result for False >>> ~false, ~False (True, -1) >>> false >> false, False >> False (True, 0) See Also ======== sympy.logic.boolalg.BooleanTrue """ def __bool__(self): return False def __hash__(self): return hash(False) @property def negated(self): return S.true def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import false >>> false.as_set() EmptySet """ return S.EmptySet true = BooleanTrue() false = BooleanFalse() # We want S.true and S.false to work, rather than S.BooleanTrue and # S.BooleanFalse, but making the class and instance names the same causes some # major issues (like the inability to import the class directly from this # file). S.true = true S.false = false converter[bool] = lambda x: S.true if x else S.false class BooleanFunction(Application, Boolean): """Boolean function is a function that lives in a boolean space It is used as base class for And, Or, Not, etc. """ is_Boolean = True def _eval_simplify(self, **kwargs): rv = self.func(*[ a._eval_simplify(**kwargs) for a in self.args]) return simplify_logic(rv) def simplify(self, **kwargs): from sympy.simplify.simplify import simplify return simplify(self, **kwargs) def __lt__(self, other): from sympy.utilities.misc import filldedent raise TypeError(filldedent(''' A Boolean argument can only be used in Eq and Ne; all other relationals expect real expressions. ''')) __le__ = __lt__ __ge__ = __lt__ __gt__ = __lt__ @classmethod def binary_check_and_simplify(self, *args): from sympy.core.relational import Relational, Eq, Ne args = [as_Boolean(i) for i in args] bin = set().union(*[i.binary_symbols for i in args]) rel = set().union(*[i.atoms(Relational) for i in args]) reps = {} for x in bin: for r in rel: if x in bin and x in r.free_symbols: if isinstance(r, (Eq, Ne)): if not ( S.true in r.args or S.false in r.args): reps[r] = S.false else: raise TypeError(filldedent(''' Incompatible use of binary symbol `%s` as a real variable in `%s` ''' % (x, r))) return [i.subs(reps) for i in args] def to_nnf(self, simplify=True): return self._to_nnf(*self.args, simplify=simplify) def to_anf(self, deep=True): return self._to_anf(*self.args, deep=deep) @classmethod def _to_nnf(cls, *args, **kwargs): simplify = kwargs.get('simplify', True) argset = set() for arg in args: if not is_literal(arg): arg = arg.to_nnf(simplify) if simplify: if isinstance(arg, cls): arg = arg.args else: arg = (arg,) for a in arg: if Not(a) in argset: return cls.zero argset.add(a) else: argset.add(arg) return cls(*argset) @classmethod def _to_anf(cls, *args, **kwargs): deep = kwargs.get('deep', True) argset = set() for arg in args: if deep: if not is_literal(arg) or isinstance(arg, Not): arg = arg.to_anf(deep=deep) argset.add(arg) else: argset.add(arg) return cls(*argset, remove_true=False) # the diff method below is copied from Expr class def diff(self, *symbols, **assumptions): assumptions.setdefault("evaluate", True) return Derivative(self, *symbols, **assumptions) def _eval_derivative(self, x): from sympy.core.relational import Eq from sympy.functions.elementary.piecewise import Piecewise if x in self.binary_symbols: return Piecewise( (0, Eq(self.subs(x, 0), self.subs(x, 1))), (1, True)) elif x in self.free_symbols: # not implemented, see https://www.encyclopediaofmath.org/ # index.php/Boolean_differential_calculus pass else: return S.Zero def _apply_patternbased_simplification(self, rv, patterns, measure, dominatingvalue, replacementvalue=None): """ Replace patterns of Relational Parameters ========== rv : Expr Boolean expression patterns : tuple Tuple of tuples, with (pattern to simplify, simplified pattern) measure : function Simplification measure dominatingvalue : boolean or None The dominating value for the function of consideration. For example, for And S.false is dominating. As soon as one expression is S.false in And, the whole expression is S.false. replacementvalue : boolean or None, optional The resulting value for the whole expression if one argument evaluates to dominatingvalue. For example, for Nand S.false is dominating, but in this case the resulting value is S.true. Default is None. If replacementvalue is None and dominatingvalue is not None, replacementvalue = dominatingvalue """ from sympy.core.relational import Relational, _canonical if replacementvalue is None and dominatingvalue is not None: replacementvalue = dominatingvalue # Use replacement patterns for Relationals changed = True Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational), binary=True) if len(Rel) <= 1: return rv Rel, nonRealRel = sift(Rel, lambda i: all(s.is_real is not False for s in i.free_symbols), binary=True) Rel = [i.canonical for i in Rel] while changed and len(Rel) >= 2: changed = False # Sort based on ordered Rel = list(ordered(Rel)) # Create a list of possible replacements results = [] # Try all combinations for ((i, pi), (j, pj)) in combinations(enumerate(Rel), 2): for k, (pattern, simp) in enumerate(patterns): res = [] # use SymPy matching oldexpr = rv.func(pi, pj) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) # Try reversing first relational # This and the rest should not be required with a better # canonical oldexpr = rv.func(pi.reversed, pj) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) # Try reversing second relational oldexpr = rv.func(pi, pj.reversed) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) # Try reversing both relationals oldexpr = rv.func(pi.reversed, pj.reversed) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) if res: for tmpres, oldexpr in res: # we have a matching, compute replacement np = simp.subs(tmpres) if np == dominatingvalue: # if dominatingvalue, the whole expression # will be replacementvalue return replacementvalue # add replacement if not isinstance(np, ITE): # We only want to use ITE replacements if # they simplify to a relational costsaving = measure(oldexpr) - measure(np) if costsaving > 0: results.append((costsaving, (i, j, np))) if results: # Sort results based on complexity results = list(reversed(sorted(results, key=lambda pair: pair[0]))) # Replace the one providing most simplification cost, replacement = results[0] i, j, newrel = replacement # Remove the old relationals del Rel[j] del Rel[i] if dominatingvalue is None or newrel != ~dominatingvalue: # Insert the new one (no need to insert a value that will # not affect the result) Rel.append(newrel) # We did change something so try again changed = True rv = rv.func(*([_canonical(i) for i in ordered(Rel)] + nonRel + nonRealRel)) return rv class And(LatticeOp, BooleanFunction): """ Logical AND function. It evaluates its arguments in order, giving False immediately if any of them are False, and True if they are all True. Examples ======== >>> from sympy.abc import x, y >>> from sympy.logic.boolalg import And >>> x & y x & y Notes ===== The ``&`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise and. Hence, ``And(a, b)`` and ``a & b`` will return different things if ``a`` and ``b`` are integers. >>> And(x, y).subs(x, 1) y """ zero = false identity = true nargs = None @classmethod def _new_args_filter(cls, args): args = BooleanFunction.binary_check_and_simplify(*args) args = LatticeOp._new_args_filter(args, And) newargs = [] rel = set() for x in ordered(args): if x.is_Relational: c = x.canonical if c in rel: continue elif c.negated.canonical in rel: return [S.false] else: rel.add(c) newargs.append(x) return newargs def _eval_subs(self, old, new): args = [] bad = None for i in self.args: try: i = i.subs(old, new) except TypeError: # store TypeError if bad is None: bad = i continue if i == False: return S.false elif i != True: args.append(i) if bad is not None: # let it raise bad.subs(old, new) return self.func(*args) def _eval_simplify(self, **kwargs): from sympy.core.relational import Equality, Relational from sympy.solvers.solveset import linear_coeffs # standard simplify rv = super()._eval_simplify(**kwargs) if not isinstance(rv, And): return rv # simplify args that are equalities involving # symbols so x == 0 & x == y -> x==0 & y == 0 Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational), binary=True) if not Rel: return rv eqs, other = sift(Rel, lambda i: isinstance(i, Equality), binary=True) if not eqs: return rv measure, ratio = kwargs['measure'], kwargs['ratio'] reps = {} sifted = {} if eqs: # group by length of free symbols sifted = sift(ordered([ (i.free_symbols, i) for i in eqs]), lambda x: len(x[0])) eqs = [] while 1 in sifted: for free, e in sifted.pop(1): x = free.pop() if e.lhs != x or x in e.rhs.free_symbols: try: m, b = linear_coeffs( e.rewrite(Add, evaluate=False), x) enew = e.func(x, -b/m) if measure(enew) <= ratio*measure(e): e = enew else: eqs.append(e) continue except ValueError: pass if x in reps: eqs.append(e.func(e.rhs, reps[x])) else: reps[x] = e.rhs eqs.append(e) resifted = defaultdict(list) for k in sifted: for f, e in sifted[k]: e = e.subs(reps) f = e.free_symbols resifted[len(f)].append((f, e)) sifted = resifted for k in sifted: eqs.extend([e for f, e in sifted[k]]) other = [ei.subs(reps) for ei in other] rv = rv.func(*([i.canonical for i in (eqs + other)] + nonRel)) patterns = simplify_patterns_and() return self._apply_patternbased_simplification(rv, patterns, measure, False) def _eval_as_set(self): from sympy.sets.sets import Intersection return Intersection(*[arg.as_set() for arg in self.args]) def _eval_rewrite_as_Nor(self, *args, **kwargs): return Nor(*[Not(arg) for arg in self.args]) def to_anf(self, deep=True): if deep: result = And._to_anf(*self.args, deep=deep) return distribute_xor_over_and(result) return self class Or(LatticeOp, BooleanFunction): """ Logical OR function It evaluates its arguments in order, giving True immediately if any of them are True, and False if they are all False. Examples ======== >>> from sympy.abc import x, y >>> from sympy.logic.boolalg import Or >>> x | y x | y Notes ===== The ``|`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise or. Hence, ``Or(a, b)`` and ``a | b`` will return different things if ``a`` and ``b`` are integers. >>> Or(x, y).subs(x, 0) y """ zero = true identity = false @classmethod def _new_args_filter(cls, args): newargs = [] rel = [] args = BooleanFunction.binary_check_and_simplify(*args) for x in args: if x.is_Relational: c = x.canonical if c in rel: continue nc = c.negated.canonical if any(r == nc for r in rel): return [S.true] rel.append(c) newargs.append(x) return LatticeOp._new_args_filter(newargs, Or) def _eval_subs(self, old, new): args = [] bad = None for i in self.args: try: i = i.subs(old, new) except TypeError: # store TypeError if bad is None: bad = i continue if i == True: return S.true elif i != False: args.append(i) if bad is not None: # let it raise bad.subs(old, new) return self.func(*args) def _eval_as_set(self): from sympy.sets.sets import Union return Union(*[arg.as_set() for arg in self.args]) def _eval_rewrite_as_Nand(self, *args, **kwargs): return Nand(*[Not(arg) for arg in self.args]) def _eval_simplify(self, **kwargs): # standard simplify rv = super()._eval_simplify(**kwargs) if not isinstance(rv, Or): return rv patterns = simplify_patterns_or() return self._apply_patternbased_simplification(rv, patterns, kwargs['measure'], S.true) def to_anf(self, deep=True): args = range(1, len(self.args) + 1) args = (combinations(self.args, j) for j in args) args = chain.from_iterable(args) # powerset args = (And(*arg) for arg in args) args = map(lambda x: to_anf(x, deep=deep) if deep else x, args) return Xor(*list(args), remove_true=False) class Not(BooleanFunction): """ Logical Not function (negation) Returns True if the statement is False Returns False if the statement is True Examples ======== >>> from sympy.logic.boolalg import Not, And, Or >>> from sympy.abc import x, A, B >>> Not(True) False >>> Not(False) True >>> Not(And(True, False)) True >>> Not(Or(True, False)) False >>> Not(And(And(True, x), Or(x, False))) ~x >>> ~x ~x >>> Not(And(Or(A, B), Or(~A, ~B))) ~((A | B) & (~A | ~B)) Notes ===== - The ``~`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise not. In particular, ``~a`` and ``Not(a)`` will be different if ``a`` is an integer. Furthermore, since bools in Python subclass from ``int``, ``~True`` is the same as ``~1`` which is ``-2``, which has a boolean value of True. To avoid this issue, use the SymPy boolean types ``true`` and ``false``. >>> from sympy import true >>> ~True -2 >>> ~true False """ is_Not = True @classmethod def eval(cls, arg): from sympy import ( Equality, GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Unequality) if isinstance(arg, Number) or arg in (True, False): return false if arg else true if arg.is_Not: return arg.args[0] # Simplify Relational objects. if isinstance(arg, Equality): return Unequality(*arg.args) if isinstance(arg, Unequality): return Equality(*arg.args) if isinstance(arg, StrictLessThan): return GreaterThan(*arg.args) if isinstance(arg, StrictGreaterThan): return LessThan(*arg.args) if isinstance(arg, LessThan): return StrictGreaterThan(*arg.args) if isinstance(arg, GreaterThan): return StrictLessThan(*arg.args) def _eval_as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import Not, Symbol >>> x = Symbol('x') >>> Not(x > 0).as_set() Interval(-oo, 0) """ return self.args[0].as_set().complement(S.Reals) def to_nnf(self, simplify=True): if is_literal(self): return self expr = self.args[0] func, args = expr.func, expr.args if func == And: return Or._to_nnf(*[~arg for arg in args], simplify=simplify) if func == Or: return And._to_nnf(*[~arg for arg in args], simplify=simplify) if func == Implies: a, b = args return And._to_nnf(a, ~b, simplify=simplify) if func == Equivalent: return And._to_nnf(Or(*args), Or(*[~arg for arg in args]), simplify=simplify) if func == Xor: result = [] for i in range(1, len(args)+1, 2): for neg in combinations(args, i): clause = [~s if s in neg else s for s in args] result.append(Or(*clause)) return And._to_nnf(*result, simplify=simplify) if func == ITE: a, b, c = args return And._to_nnf(Or(a, ~c), Or(~a, ~b), simplify=simplify) raise ValueError("Illegal operator %s in expression" % func) def to_anf(self, deep=True): return Xor._to_anf(true, self.args[0], deep=deep) class Xor(BooleanFunction): """ Logical XOR (exclusive OR) function. Returns True if an odd number of the arguments are True and the rest are False. Returns False if an even number of the arguments are True and the rest are False. Examples ======== >>> from sympy.logic.boolalg import Xor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Xor(True, False) True >>> Xor(True, True) False >>> Xor(True, False, True, True, False) True >>> Xor(True, False, True, False) False >>> x ^ y x ^ y Notes ===== The ``^`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise xor. In particular, ``a ^ b`` and ``Xor(a, b)`` will be different if ``a`` and ``b`` are integers. >>> Xor(x, y).subs(y, 0) x """ def __new__(cls, *args, remove_true=True, **kwargs): argset = set() obj = super().__new__(cls, *args, **kwargs) for arg in obj._args: if isinstance(arg, Number) or arg in (True, False): if arg: arg = true else: continue if isinstance(arg, Xor): for a in arg.args: argset.remove(a) if a in argset else argset.add(a) elif arg in argset: argset.remove(arg) else: argset.add(arg) rel = [(r, r.canonical, r.negated.canonical) for r in argset if r.is_Relational] odd = False # is number of complimentary pairs odd? start 0 -> False remove = [] for i, (r, c, nc) in enumerate(rel): for j in range(i + 1, len(rel)): rj, cj = rel[j][:2] if cj == nc: odd = ~odd break elif cj == c: break else: continue remove.append((r, rj)) if odd: argset.remove(true) if true in argset else argset.add(true) for a, b in remove: argset.remove(a) argset.remove(b) if len(argset) == 0: return false elif len(argset) == 1: return argset.pop() elif True in argset and remove_true: argset.remove(True) return Not(Xor(*argset)) else: obj._args = tuple(ordered(argset)) obj._argset = frozenset(argset) return obj # XXX: This should be cached on the object rather than using cacheit # Maybe it can be computed in __new__? @property # type: ignore @cacheit def args(self): return tuple(ordered(self._argset)) def to_nnf(self, simplify=True): args = [] for i in range(0, len(self.args)+1, 2): for neg in combinations(self.args, i): clause = [~s if s in neg else s for s in self.args] args.append(Or(*clause)) return And._to_nnf(*args, simplify=simplify) def _eval_rewrite_as_Or(self, *args, **kwargs): a = self.args return Or(*[_convert_to_varsSOP(x, self.args) for x in _get_odd_parity_terms(len(a))]) def _eval_rewrite_as_And(self, *args, **kwargs): a = self.args return And(*[_convert_to_varsPOS(x, self.args) for x in _get_even_parity_terms(len(a))]) def _eval_simplify(self, **kwargs): # as standard simplify uses simplify_logic which writes things as # And and Or, we only simplify the partial expressions before using # patterns rv = self.func(*[a._eval_simplify(**kwargs) for a in self.args]) if not isinstance(rv, Xor): # This shouldn't really happen here return rv patterns = simplify_patterns_xor() return self._apply_patternbased_simplification(rv, patterns, kwargs['measure'], None) class Nand(BooleanFunction): """ Logical NAND function. It evaluates its arguments in order, giving True immediately if any of them are False, and False if they are all True. Returns True if any of the arguments are False Returns False if all arguments are True Examples ======== >>> from sympy.logic.boolalg import Nand >>> from sympy import symbols >>> x, y = symbols('x y') >>> Nand(False, True) True >>> Nand(True, True) False >>> Nand(x, y) ~(x & y) """ @classmethod def eval(cls, *args): return Not(And(*args)) class Nor(BooleanFunction): """ Logical NOR function. It evaluates its arguments in order, giving False immediately if any of them are True, and True if they are all False. Returns False if any argument is True Returns True if all arguments are False Examples ======== >>> from sympy.logic.boolalg import Nor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Nor(True, False) False >>> Nor(True, True) False >>> Nor(False, True) False >>> Nor(False, False) True >>> Nor(x, y) ~(x | y) """ @classmethod def eval(cls, *args): return Not(Or(*args)) class Xnor(BooleanFunction): """ Logical XNOR function. Returns False if an odd number of the arguments are True and the rest are False. Returns True if an even number of the arguments are True and the rest are False. Examples ======== >>> from sympy.logic.boolalg import Xnor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Xnor(True, False) False >>> Xnor(True, True) True >>> Xnor(True, False, True, True, False) False >>> Xnor(True, False, True, False) True """ @classmethod def eval(cls, *args): return Not(Xor(*args)) class Implies(BooleanFunction): """ Logical implication. A implies B is equivalent to !A v B Accepts two Boolean arguments; A and B. Returns False if A is True and B is False Returns True otherwise. Examples ======== >>> from sympy.logic.boolalg import Implies >>> from sympy import symbols >>> x, y = symbols('x y') >>> Implies(True, False) False >>> Implies(False, False) True >>> Implies(True, True) True >>> Implies(False, True) True >>> x >> y Implies(x, y) >>> y << x Implies(x, y) Notes ===== The ``>>`` and ``<<`` operators are provided as a convenience, but note that their use here is different from their normal use in Python, which is bit shifts. Hence, ``Implies(a, b)`` and ``a >> b`` will return different things if ``a`` and ``b`` are integers. In particular, since Python considers ``True`` and ``False`` to be integers, ``True >> True`` will be the same as ``1 >> 1``, i.e., 0, which has a truth value of False. To avoid this issue, use the SymPy objects ``true`` and ``false``. >>> from sympy import true, false >>> True >> False 1 >>> true >> false False """ @classmethod def eval(cls, *args): try: newargs = [] for x in args: if isinstance(x, Number) or x in (0, 1): newargs.append(True if x else False) else: newargs.append(x) A, B = newargs except ValueError: raise ValueError( "%d operand(s) used for an Implies " "(pairs are required): %s" % (len(args), str(args))) if A == True or A == False or B == True or B == False: return Or(Not(A), B) elif A == B: return S.true elif A.is_Relational and B.is_Relational: if A.canonical == B.canonical: return S.true if A.negated.canonical == B.canonical: return B else: return Basic.__new__(cls, *args) def to_nnf(self, simplify=True): a, b = self.args return Or._to_nnf(~a, b, simplify=simplify) def to_anf(self, deep=True): a, b = self.args return Xor._to_anf(true, a, And(a, b), deep=deep) class Equivalent(BooleanFunction): """ Equivalence relation. Equivalent(A, B) is True iff A and B are both True or both False Returns True if all of the arguments are logically equivalent. Returns False otherwise. Examples ======== >>> from sympy.logic.boolalg import Equivalent, And >>> from sympy.abc import x >>> Equivalent(False, False, False) True >>> Equivalent(True, False, False) False >>> Equivalent(x, And(x, True)) True """ def __new__(cls, *args, **options): from sympy.core.relational import Relational args = [_sympify(arg) for arg in args] argset = set(args) for x in args: if isinstance(x, Number) or x in [True, False]: # Includes 0, 1 argset.discard(x) argset.add(True if x else False) rel = [] for r in argset: if isinstance(r, Relational): rel.append((r, r.canonical, r.negated.canonical)) remove = [] for i, (r, c, nc) in enumerate(rel): for j in range(i + 1, len(rel)): rj, cj = rel[j][:2] if cj == nc: return false elif cj == c: remove.append((r, rj)) break for a, b in remove: argset.remove(a) argset.remove(b) argset.add(True) if len(argset) <= 1: return true if True in argset: argset.discard(True) return And(*argset) if False in argset: argset.discard(False) return And(*[~arg for arg in argset]) _args = frozenset(argset) obj = super().__new__(cls, _args) obj._argset = _args return obj # XXX: This should be cached on the object rather than using cacheit # Maybe it can be computed in __new__? @property # type: ignore @cacheit def args(self): return tuple(ordered(self._argset)) def to_nnf(self, simplify=True): args = [] for a, b in zip(self.args, self.args[1:]): args.append(Or(~a, b)) args.append(Or(~self.args[-1], self.args[0])) return And._to_nnf(*args, simplify=simplify) def to_anf(self, deep=True): a = And(*self.args) b = And(*[to_anf(Not(arg), deep=False) for arg in self.args]) b = distribute_xor_over_and(b) return Xor._to_anf(a, b, deep=deep) class ITE(BooleanFunction): """ If then else clause. ITE(A, B, C) evaluates and returns the result of B if A is true else it returns the result of C. All args must be Booleans. Examples ======== >>> from sympy.logic.boolalg import ITE, And, Xor, Or >>> from sympy.abc import x, y, z >>> ITE(True, False, True) False >>> ITE(Or(True, False), And(True, True), Xor(True, True)) True >>> ITE(x, y, z) ITE(x, y, z) >>> ITE(True, x, y) x >>> ITE(False, x, y) y >>> ITE(x, y, y) y Trying to use non-Boolean args will generate a TypeError: >>> ITE(True, [], ()) Traceback (most recent call last): ... TypeError: expecting bool, Boolean or ITE, not `[]` """ def __new__(cls, *args, **kwargs): from sympy.core.relational import Eq, Ne if len(args) != 3: raise ValueError('expecting exactly 3 args') a, b, c = args # check use of binary symbols if isinstance(a, (Eq, Ne)): # in this context, we can evaluate the Eq/Ne # if one arg is a binary symbol and the other # is true/false b, c = map(as_Boolean, (b, c)) bin = set().union(*[i.binary_symbols for i in (b, c)]) if len(set(a.args) - bin) == 1: # one arg is a binary_symbols _a = a if a.lhs is S.true: a = a.rhs elif a.rhs is S.true: a = a.lhs elif a.lhs is S.false: a = ~a.rhs elif a.rhs is S.false: a = ~a.lhs else: # binary can only equal True or False a = S.false if isinstance(_a, Ne): a = ~a else: a, b, c = BooleanFunction.binary_check_and_simplify( a, b, c) rv = None if kwargs.get('evaluate', True): rv = cls.eval(a, b, c) if rv is None: rv = BooleanFunction.__new__(cls, a, b, c, evaluate=False) return rv @classmethod def eval(cls, *args): from sympy.core.relational import Eq, Ne # do the args give a singular result? a, b, c = args if isinstance(a, (Ne, Eq)): _a = a if S.true in a.args: a = a.lhs if a.rhs is S.true else a.rhs elif S.false in a.args: a = ~a.lhs if a.rhs is S.false else ~a.rhs else: _a = None if _a is not None and isinstance(_a, Ne): a = ~a if a is S.true: return b if a is S.false: return c if b == c: return b else: # or maybe the results allow the answer to be expressed # in terms of the condition if b is S.true and c is S.false: return a if b is S.false and c is S.true: return Not(a) if [a, b, c] != args: return cls(a, b, c, evaluate=False) def to_nnf(self, simplify=True): a, b, c = self.args return And._to_nnf(Or(~a, b), Or(a, c), simplify=simplify) def _eval_as_set(self): return self.to_nnf().as_set() def _eval_rewrite_as_Piecewise(self, *args, **kwargs): from sympy.functions import Piecewise return Piecewise((args[1], args[0]), (args[2], True)) # end class definitions. Some useful methods def conjuncts(expr): """Return a list of the conjuncts in the expr s. Examples ======== >>> from sympy.logic.boolalg import conjuncts >>> from sympy.abc import A, B >>> conjuncts(A & B) frozenset({A, B}) >>> conjuncts(A | B) frozenset({A | B}) """ return And.make_args(expr) def disjuncts(expr): """Return a list of the disjuncts in the sentence s. Examples ======== >>> from sympy.logic.boolalg import disjuncts >>> from sympy.abc import A, B >>> disjuncts(A | B) frozenset({A, B}) >>> disjuncts(A & B) frozenset({A & B}) """ return Or.make_args(expr) def distribute_and_over_or(expr): """ Given a sentence s consisting of conjunctions and disjunctions of literals, return an equivalent sentence in CNF. Examples ======== >>> from sympy.logic.boolalg import distribute_and_over_or, And, Or, Not >>> from sympy.abc import A, B, C >>> distribute_and_over_or(Or(A, And(Not(B), Not(C)))) (A | ~B) & (A | ~C) """ return _distribute((expr, And, Or)) def distribute_or_over_and(expr): """ Given a sentence s consisting of conjunctions and disjunctions of literals, return an equivalent sentence in DNF. Note that the output is NOT simplified. Examples ======== >>> from sympy.logic.boolalg import distribute_or_over_and, And, Or, Not >>> from sympy.abc import A, B, C >>> distribute_or_over_and(And(Or(Not(A), B), C)) (B & C) | (C & ~A) """ return _distribute((expr, Or, And)) def distribute_xor_over_and(expr): """ Given a sentence s consisting of conjunction and exclusive disjunctions of literals, return an equivalent exclusive disjunction. Note that the output is NOT simplified. Examples ======== >>> from sympy.logic.boolalg import distribute_xor_over_and, And, Xor, Not >>> from sympy.abc import A, B, C >>> distribute_xor_over_and(And(Xor(Not(A), B), C)) (B & C) ^ (C & ~A) """ return _distribute((expr, Xor, And)) def _distribute(info): """ Distributes info[1] over info[2] with respect to info[0]. """ if isinstance(info[0], info[2]): for arg in info[0].args: if isinstance(arg, info[1]): conj = arg break else: return info[0] rest = info[2](*[a for a in info[0].args if a is not conj]) return info[1](*list(map(_distribute, [(info[2](c, rest), info[1], info[2]) for c in conj.args])), remove_true=False) elif isinstance(info[0], info[1]): return info[1](*list(map(_distribute, [(x, info[1], info[2]) for x in info[0].args])), remove_true=False) else: return info[0] def to_anf(expr, deep=True): r""" Converts expr to Algebraic Normal Form (ANF). ANF is a canonical normal form, which means that two equivalent formulas will convert to the same ANF. A logical expression is in ANF if it has the form .. math:: 1 \oplus a \oplus b \oplus ab \oplus abc i.e. it can be: - purely true, - purely false, - conjunction of variables, - exclusive disjunction. The exclusive disjunction can only contain true, variables or conjunction of variables. No negations are permitted. If ``deep`` is ``False``, arguments of the boolean expression are considered variables, i.e. only the top-level expression is converted to ANF. Examples ======== >>> from sympy.logic.boolalg import And, Or, Not, Implies, Equivalent >>> from sympy.logic.boolalg import to_anf >>> from sympy.abc import A, B, C >>> to_anf(Not(A)) A ^ True >>> to_anf(And(Or(A, B), Not(C))) A ^ B ^ (A & B) ^ (A & C) ^ (B & C) ^ (A & B & C) >>> to_anf(Implies(Not(A), Equivalent(B, C)), deep=False) True ^ ~A ^ (~A & (Equivalent(B, C))) """ expr = sympify(expr) if is_anf(expr): return expr return expr.to_anf(deep=deep) def to_nnf(expr, simplify=True): """ Converts expr to Negation Normal Form. A logical expression is in Negation Normal Form (NNF) if it contains only And, Or and Not, and Not is applied only to literals. If simplify is True, the result contains no redundant clauses. Examples ======== >>> from sympy.abc import A, B, C, D >>> from sympy.logic.boolalg import Not, Equivalent, to_nnf >>> to_nnf(Not((~A & ~B) | (C & D))) (A | B) & (~C | ~D) >>> to_nnf(Equivalent(A >> B, B >> A)) (A | ~B | (A & ~B)) & (B | ~A | (B & ~A)) """ if is_nnf(expr, simplify): return expr return expr.to_nnf(simplify) def to_cnf(expr, simplify=False, force=False): """ Convert a propositional logical sentence s to conjunctive normal form: ((A | ~B | ...) & (B | C | ...) & ...). If simplify is True, the expr is evaluated to its simplest CNF form using the Quine-McCluskey algorithm; this may take a long time if there are more than 8 variables and requires that the ``force`` flag be set to True (default is False). Examples ======== >>> from sympy.logic.boolalg import to_cnf >>> from sympy.abc import A, B, D >>> to_cnf(~(A | B) | D) (D | ~A) & (D | ~B) >>> to_cnf((A | B) & (A | ~A), True) A | B """ expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr if simplify: if not force and len(_find_predicates(expr)) > 8: raise ValueError(filldedent(''' To simplify a logical expression with more than 8 variables may take a long time and requires the use of `force=True`.''')) return simplify_logic(expr, 'cnf', True, force=force) # Don't convert unless we have to if is_cnf(expr): return expr expr = eliminate_implications(expr) res = distribute_and_over_or(expr) return res def to_dnf(expr, simplify=False, force=False): """ Convert a propositional logical sentence s to disjunctive normal form: ((A & ~B & ...) | (B & C & ...) | ...). If simplify is True, the expr is evaluated to its simplest DNF form using the Quine-McCluskey algorithm; this may take a long time if there are more than 8 variables and requires that the ``force`` flag be set to True (default is False). Examples ======== >>> from sympy.logic.boolalg import to_dnf >>> from sympy.abc import A, B, C >>> to_dnf(B & (A | C)) (A & B) | (B & C) >>> to_dnf((A & B) | (A & ~B) | (B & C) | (~B & C), True) A | C """ expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr if simplify: if not force and len(_find_predicates(expr)) > 8: raise ValueError(filldedent(''' To simplify a logical expression with more than 8 variables may take a long time and requires the use of `force=True`.''')) return simplify_logic(expr, 'dnf', True, force=force) # Don't convert unless we have to if is_dnf(expr): return expr expr = eliminate_implications(expr) return distribute_or_over_and(expr) def is_anf(expr): r""" Checks if expr is in Algebraic Normal Form (ANF). A logical expression is in ANF if it has the form .. math:: 1 \oplus a \oplus b \oplus ab \oplus abc i.e. it is purely true, purely false, conjunction of variables or exclusive disjunction. The exclusive disjunction can only contain true, variables or conjunction of variables. No negations are permitted. Examples ======== >>> from sympy.logic.boolalg import And, Not, Xor, true, is_anf >>> from sympy.abc import A, B, C >>> is_anf(true) True >>> is_anf(A) True >>> is_anf(And(A, B, C)) True >>> is_anf(Xor(A, Not(B))) False """ expr = sympify(expr) if is_literal(expr) and not isinstance(expr, Not): return True if isinstance(expr, And): for arg in expr.args: if not arg.is_Symbol: return False return True elif isinstance(expr, Xor): for arg in expr.args: if isinstance(arg, And): for a in arg.args: if not a.is_Symbol: return False elif is_literal(arg): if isinstance(arg, Not): return False else: return False return True else: return False def is_nnf(expr, simplified=True): """ Checks if expr is in Negation Normal Form. A logical expression is in Negation Normal Form (NNF) if it contains only And, Or and Not, and Not is applied only to literals. If simplified is True, checks if result contains no redundant clauses. Examples ======== >>> from sympy.abc import A, B, C >>> from sympy.logic.boolalg import Not, is_nnf >>> is_nnf(A & B | ~C) True >>> is_nnf((A | ~A) & (B | C)) False >>> is_nnf((A | ~A) & (B | C), False) True >>> is_nnf(Not(A & B) | C) False >>> is_nnf((A >> B) & (B >> A)) False """ expr = sympify(expr) if is_literal(expr): return True stack = [expr] while stack: expr = stack.pop() if expr.func in (And, Or): if simplified: args = expr.args for arg in args: if Not(arg) in args: return False stack.extend(expr.args) elif not is_literal(expr): return False return True def is_cnf(expr): """ Test whether or not an expression is in conjunctive normal form. Examples ======== >>> from sympy.logic.boolalg import is_cnf >>> from sympy.abc import A, B, C >>> is_cnf(A | B | C) True >>> is_cnf(A & B & C) True >>> is_cnf((A & B) | C) False """ return _is_form(expr, And, Or) def is_dnf(expr): """ Test whether or not an expression is in disjunctive normal form. Examples ======== >>> from sympy.logic.boolalg import is_dnf >>> from sympy.abc import A, B, C >>> is_dnf(A | B | C) True >>> is_dnf(A & B & C) True >>> is_dnf((A & B) | C) True >>> is_dnf(A & (B | C)) False """ return _is_form(expr, Or, And) def _is_form(expr, function1, function2): """ Test whether or not an expression is of the required form. """ expr = sympify(expr) vals = function1.make_args(expr) if isinstance(expr, function1) else [expr] for lit in vals: if isinstance(lit, function2): vals2 = function2.make_args(lit) if isinstance(lit, function2) else [lit] for l in vals2: if is_literal(l) is False: return False elif is_literal(lit) is False: return False return True def eliminate_implications(expr): """ Change >>, <<, and Equivalent into &, |, and ~. That is, return an expression that is equivalent to s, but has only &, |, and ~ as logical operators. Examples ======== >>> from sympy.logic.boolalg import Implies, Equivalent, \ eliminate_implications >>> from sympy.abc import A, B, C >>> eliminate_implications(Implies(A, B)) B | ~A >>> eliminate_implications(Equivalent(A, B)) (A | ~B) & (B | ~A) >>> eliminate_implications(Equivalent(A, B, C)) (A | ~C) & (B | ~A) & (C | ~B) """ return to_nnf(expr, simplify=False) def is_literal(expr): """ Returns True if expr is a literal, else False. Examples ======== >>> from sympy import Or, Q >>> from sympy.abc import A, B >>> from sympy.logic.boolalg import is_literal >>> is_literal(A) True >>> is_literal(~A) True >>> is_literal(Q.zero(A)) True >>> is_literal(A + B) True >>> is_literal(Or(A, B)) False """ if isinstance(expr, Not): return is_literal(expr.args[0]) elif expr in (True, False) or expr.is_Atom: return True elif not isinstance(expr, BooleanFunction) and all( a.is_Atom for a in expr.args): return True return False def to_int_repr(clauses, symbols): """ Takes clauses in CNF format and puts them into an integer representation. Examples ======== >>> from sympy.logic.boolalg import to_int_repr >>> from sympy.abc import x, y >>> to_int_repr([x | y, y], [x, y]) == [{1, 2}, {2}] True """ # Convert the symbol list into a dict symbols = dict(list(zip(symbols, list(range(1, len(symbols) + 1))))) def append_symbol(arg, symbols): if isinstance(arg, Not): return -symbols[arg.args[0]] else: return symbols[arg] return [{append_symbol(arg, symbols) for arg in Or.make_args(c)} for c in clauses] def term_to_integer(term): """ Return an integer corresponding to the base-2 digits given by ``term``. Parameters ========== term : a string or list of ones and zeros Examples ======== >>> from sympy.logic.boolalg import term_to_integer >>> term_to_integer([1, 0, 0]) 4 >>> term_to_integer('100') 4 """ return int(''.join(list(map(str, list(term)))), 2) def integer_to_term(k, n_bits=None): """ Return a list of the base-2 digits in the integer, ``k``. Parameters ========== k : int n_bits : int If ``n_bits`` is given and the number of digits in the binary representation of ``k`` is smaller than ``n_bits`` then left-pad the list with 0s. Examples ======== >>> from sympy.logic.boolalg import integer_to_term >>> integer_to_term(4) [1, 0, 0] >>> integer_to_term(4, 6) [0, 0, 0, 1, 0, 0] """ s = '{0:0{1}b}'.format(abs(as_int(k)), as_int(abs(n_bits or 0))) return list(map(int, s)) def truth_table(expr, variables, input=True): """ Return a generator of all possible configurations of the input variables, and the result of the boolean expression for those values. Parameters ========== expr : string or boolean expression variables : list of variables input : boolean (default True) indicates whether to return the input combinations. Examples ======== >>> from sympy.logic.boolalg import truth_table >>> from sympy.abc import x,y >>> table = truth_table(x >> y, [x, y]) >>> for t in table: ... print('{0} -> {1}'.format(*t)) [0, 0] -> True [0, 1] -> True [1, 0] -> False [1, 1] -> True >>> table = truth_table(x | y, [x, y]) >>> list(table) [([0, 0], False), ([0, 1], True), ([1, 0], True), ([1, 1], True)] If input is false, truth_table returns only a list of truth values. In this case, the corresponding input values of variables can be deduced from the index of a given output. >>> from sympy.logic.boolalg import integer_to_term >>> vars = [y, x] >>> values = truth_table(x >> y, vars, input=False) >>> values = list(values) >>> values [True, False, True, True] >>> for i, value in enumerate(values): ... print('{0} -> {1}'.format(list(zip( ... vars, integer_to_term(i, len(vars)))), value)) [(y, 0), (x, 0)] -> True [(y, 0), (x, 1)] -> False [(y, 1), (x, 0)] -> True [(y, 1), (x, 1)] -> True """ variables = [sympify(v) for v in variables] expr = sympify(expr) if not isinstance(expr, BooleanFunction) and not is_literal(expr): return table = product([0, 1], repeat=len(variables)) for term in table: term = list(term) value = expr.xreplace(dict(zip(variables, term))) if input: yield term, value else: yield value def _check_pair(minterm1, minterm2): """ Checks if a pair of minterms differs by only one bit. If yes, returns index, else returns -1. """ # Early termination seems to be faster than list comprehension, # at least for large examples. index = -1 for x, i in enumerate(minterm1): # zip(minterm1, minterm2) is slower if i != minterm2[x]: if index == -1: index = x else: return -1 return index def _convert_to_varsSOP(minterm, variables): """ Converts a term in the expansion of a function from binary to its variable form (for SOP). """ temp = [variables[n] if val == 1 else Not(variables[n]) for n, val in enumerate(minterm) if val != 3] return And(*temp) def _convert_to_varsPOS(maxterm, variables): """ Converts a term in the expansion of a function from binary to its variable form (for POS). """ temp = [variables[n] if val == 0 else Not(variables[n]) for n, val in enumerate(maxterm) if val != 3] return Or(*temp) def _convert_to_varsANF(term, variables): """ Converts a term in the expansion of a function from binary to it's variable form (for ANF). Parameters ========== term : list of 1's and 0's (complementation patter) variables : list of variables """ temp = [variables[n] for n, t in enumerate(term) if t == 1] if not temp: return true return And(*temp) def _get_odd_parity_terms(n): """ Returns a list of lists, with all possible combinations of n zeros and ones with an odd number of ones. """ return [e for e in [ibin(i, n) for i in range(2**n)] if sum(e) % 2 == 1] def _get_even_parity_terms(n): """ Returns a list of lists, with all possible combinations of n zeros and ones with an even number of ones. """ return [e for e in [ibin(i, n) for i in range(2**n)] if sum(e) % 2 == 0] def _simplified_pairs(terms): """ Reduces a set of minterms, if possible, to a simplified set of minterms with one less variable in the terms using QM method. """ if not terms: return [] simplified_terms = [] todo = list(range(len(terms))) # Count number of ones as _check_pair can only potentially match if there # is at most a difference of a single one def ones_count(term): return sum([1 for t in term if t == 1]) termdict = defaultdict(list) for n, term in enumerate(terms): ones = ones_count(term) termdict[ones].append(n) variables = len(terms[0]) for k in range(variables): for i in termdict[k]: for j in termdict[k+1]: index = _check_pair(terms[i], terms[j]) if index != -1: # Mark terms handled todo[i] = todo[j] = None # Copy old term newterm = terms[i][:] # Set differing position to don't care newterm[index] = 3 # Add if not already there if newterm not in simplified_terms: simplified_terms.append(newterm) if simplified_terms: # Further simplifications only among the new terms simplified_terms = _simplified_pairs(simplified_terms) # Add remaining, non-simplified, terms simplified_terms.extend( [terms[i] for i in [_ for _ in todo if _ is not None]]) return simplified_terms def _compare_term(minterm, term): """ Return True if a binary term is satisfied by the given term. Used for recognizing prime implicants. """ for m, t in zip(minterm, term): if t != 3 and m != t: return False return True def _rem_redundancy(l1, terms): """ After the truth table has been sufficiently simplified, use the prime implicant table method to recognize and eliminate redundant pairs, and return the essential arguments. """ if not terms: return [] nterms = len(terms) nl1 = len(l1) # Create dominating matrix dommatrix = [[0]*nl1 for n in range(nterms)] for primei, prime in enumerate(l1): for termi, term in enumerate(terms): if _compare_term(term, prime): dommatrix[termi][primei] = 1 # Non-dominated prime implicants, dominated to be removed ndprimeimplicants = set(range(nl1)) # Non-dominated terms, dominated to be removed ndterms = set(range(nterms)) # Keep track if anything changed anythingchanged = True # Then, go again while anythingchanged: anythingchanged = False # Make copy for iteration oldndterms = ndterms.copy() # Filter matrix to only get non-dominated items filteredrows = [[dommatrix[rowi][i] for i in list(ndprimeimplicants)] for rowi in oldndterms] for n, rowi in enumerate(oldndterms): # Still non-dominated? if rowi in ndterms: row = filteredrows[n] for n2, row2i in enumerate(oldndterms): # Still non-dominated? if n != n2 and row2i in ndterms: if all(a >= b for (a, b) in zip(filteredrows[n2], row)): # row2 dominating row, remove row2 ndterms.remove(row2i) anythingchanged = True # Make copy for iteration oldndprimeimplicants = ndprimeimplicants.copy() # Filter matrix to only get non-dominated items filteredcols = [[dommatrix[i][coli] for i in list(ndterms)] for coli in oldndprimeimplicants] for n, coli in enumerate(oldndprimeimplicants): # Still non-dominated? if coli in ndprimeimplicants: col = filteredcols[n] for n2, col2i in enumerate(oldndprimeimplicants): # Still non-dominated? if coli != col2i and col2i in ndprimeimplicants: if all(a >= b for (a, b) in zip(col, filteredcols[n2])): # col dominating col2, remove col2 ndprimeimplicants.remove(col2i) anythingchanged = True return [l1[i] for i in ndprimeimplicants] def _input_to_binlist(inputlist, variables): binlist = [] bits = len(variables) for val in inputlist: if isinstance(val, int): binlist.append(ibin(val, bits)) elif isinstance(val, dict): nonspecvars = list(variables) for key in val.keys(): nonspecvars.remove(key) for t in product([0, 1], repeat=len(nonspecvars)): d = dict(zip(nonspecvars, t)) d.update(val) binlist.append([d[v] for v in variables]) elif isinstance(val, (list, tuple)): if len(val) != bits: raise ValueError("Each term must contain {} bits as there are" "\n{} variables (or be an integer)." "".format(bits, bits)) binlist.append(list(val)) else: raise TypeError("A term list can only contain lists," " ints or dicts.") return binlist def SOPform(variables, minterms, dontcares=None): """ The SOPform function uses simplified_pairs and a redundant group- eliminating algorithm to convert the list of all input combos that generate '1' (the minterms) into the smallest Sum of Products form. The variables must be given as the first argument. Return a logical Or function (i.e., the "sum of products" or "SOP" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too. The result will be one of the (perhaps many) functions that satisfy the conditions. Examples ======== >>> from sympy.logic import SOPform >>> from sympy import symbols >>> w, x, y, z = symbols('w x y z') >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], ... [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] >>> SOPform([w, x, y, z], minterms, dontcares) (y & z) | (~w & ~x) The terms can also be represented as integers: >>> minterms = [1, 3, 7, 11, 15] >>> dontcares = [0, 2, 5] >>> SOPform([w, x, y, z], minterms, dontcares) (y & z) | (~w & ~x) They can also be specified using dicts, which does not have to be fully specified: >>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}] >>> SOPform([w, x, y, z], minterms) (x & ~w) | (y & z & ~x) Or a combination: >>> minterms = [4, 7, 11, [1, 1, 1, 1]] >>> dontcares = [{w : 0, x : 0, y: 0}, 5] >>> SOPform([w, x, y, z], minterms, dontcares) (w & y & z) | (~w & ~y) | (x & z & ~w) References ========== .. [1] https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm """ variables = [sympify(v) for v in variables] if minterms == []: return false minterms = _input_to_binlist(minterms, variables) dontcares = _input_to_binlist((dontcares or []), variables) for d in dontcares: if d in minterms: raise ValueError('%s in minterms is also in dontcares' % d) new = _simplified_pairs(minterms + dontcares) essential = _rem_redundancy(new, minterms) return Or(*[_convert_to_varsSOP(x, variables) for x in essential]) def POSform(variables, minterms, dontcares=None): """ The POSform function uses simplified_pairs and a redundant-group eliminating algorithm to convert the list of all input combinations that generate '1' (the minterms) into the smallest Product of Sums form. The variables must be given as the first argument. Return a logical And function (i.e., the "product of sums" or "POS" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too. The result will be one of the (perhaps many) functions that satisfy the conditions. Examples ======== >>> from sympy.logic import POSform >>> from sympy import symbols >>> w, x, y, z = symbols('w x y z') >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], ... [1, 0, 1, 1], [1, 1, 1, 1]] >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] >>> POSform([w, x, y, z], minterms, dontcares) z & (y | ~w) The terms can also be represented as integers: >>> minterms = [1, 3, 7, 11, 15] >>> dontcares = [0, 2, 5] >>> POSform([w, x, y, z], minterms, dontcares) z & (y | ~w) They can also be specified using dicts, which does not have to be fully specified: >>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}] >>> POSform([w, x, y, z], minterms) (x | y) & (x | z) & (~w | ~x) Or a combination: >>> minterms = [4, 7, 11, [1, 1, 1, 1]] >>> dontcares = [{w : 0, x : 0, y: 0}, 5] >>> POSform([w, x, y, z], minterms, dontcares) (w | x) & (y | ~w) & (z | ~y) References ========== .. [1] https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm """ variables = [sympify(v) for v in variables] if minterms == []: return false minterms = _input_to_binlist(minterms, variables) dontcares = _input_to_binlist((dontcares or []), variables) for d in dontcares: if d in minterms: raise ValueError('%s in minterms is also in dontcares' % d) maxterms = [] for t in product([0, 1], repeat=len(variables)): t = list(t) if (t not in minterms) and (t not in dontcares): maxterms.append(t) new = _simplified_pairs(maxterms + dontcares) essential = _rem_redundancy(new, maxterms) return And(*[_convert_to_varsPOS(x, variables) for x in essential]) def ANFform(variables, truthvalues): """ The ANFform function converts the list of truth values to Algebraic Normal Form (ANF). The variables must be given as the first argument. Return True, False, logical And funciton (i.e., the "Zhegalkin monomial") or logical Xor function (i.e., the "Zhegalkin polynomial"). When True and False are represented by 1 and 0, respectively, then And is multiplication and Xor is addition. Formally a "Zhegalkin monomial" is the product (logical And) of a finite set of distinct variables, including the empty set whose product is denoted 1 (True). A "Zhegalkin polynomial" is the sum (logical Xor) of a set of Zhegalkin monomials, with the empty set denoted by 0 (False). Parameters ========== variables : list of variables truthvalues : list of 1's and 0's (result column of truth table) Examples ======== >>> from sympy.logic.boolalg import ANFform >>> from sympy.abc import x, y >>> ANFform([x], [1, 0]) x ^ True >>> ANFform([x, y], [0, 1, 1, 1]) x ^ y ^ (x & y) References ========== .. [2] https://en.wikipedia.org/wiki/Zhegalkin_polynomial """ n_vars = len(variables) n_values = len(truthvalues) if n_values != 2 ** n_vars: raise ValueError("The number of truth values must be equal to 2^%d, " "got %d" % (n_vars, n_values)) variables = [sympify(v) for v in variables] coeffs = anf_coeffs(truthvalues) terms = [] for i, t in enumerate(product([0, 1], repeat=n_vars)): if coeffs[i] == 1: terms.append(t) return Xor(*[_convert_to_varsANF(x, variables) for x in terms], remove_true=False) def anf_coeffs(truthvalues): """ Convert a list of truth values of some boolean expression to the list of coefficients of the polynomial mod 2 (exclusive disjunction) representing the boolean expression in ANF (i.e., the "Zhegalkin polynomial"). There are 2^n possible Zhegalkin monomials in n variables, since each monomial is fully specified by the presence or absence of each variable. We can enumerate all the monomials. For example, boolean function with four variables (a, b, c, d) can contain up to 2^4 = 16 monomials. The 13-th monomial is the product a & b & d, because 13 in binary is 1, 1, 0, 1. A given monomial's presence or absence in a polynomial corresponds to that monomial's coefficient being 1 or 0 respectively. Examples ======== >>> from sympy.logic.boolalg import anf_coeffs, bool_monomial, Xor >>> from sympy.abc import a, b, c >>> truthvalues = [0, 1, 1, 0, 0, 1, 0, 1] >>> coeffs = anf_coeffs(truthvalues) >>> coeffs [0, 1, 1, 0, 0, 0, 1, 0] >>> polynomial = Xor(*[ ... bool_monomial(k, [a, b, c]) ... for k, coeff in enumerate(coeffs) if coeff == 1 ... ]) >>> polynomial b ^ c ^ (a & b) """ s = '{:b}'.format(len(truthvalues)) n = len(s) - 1 if len(truthvalues) != 2**n: raise ValueError("The number of truth values must be a power of two, " "got %d" % len(truthvalues)) coeffs = [[v] for v in truthvalues] for i in range(n): tmp = [] for j in range(2 ** (n-i-1)): tmp.append(coeffs[2*j] + list(map(lambda x, y: x^y, coeffs[2*j], coeffs[2*j+1]))) coeffs = tmp return coeffs[0] def bool_minterm(k, variables): """ Return the k-th minterm. Minterms are numbered by a binary encoding of the complementation pattern of the variables. This convention assigns the value 1 to the direct form and 0 to the complemented form. Parameters ========== k : int or list of 1's and 0's (complementation patter) variables : list of variables Examples ======== >>> from sympy.logic.boolalg import bool_minterm >>> from sympy.abc import x, y, z >>> bool_minterm([1, 0, 1], [x, y, z]) x & z & ~y >>> bool_minterm(6, [x, y, z]) x & y & ~z References ========== .. [3] https://en.wikipedia.org/wiki/Canonical_normal_form#Indexing_minterms """ if isinstance(k, int): k = integer_to_term(k, len(variables)) variables = list(map(sympify, variables)) return _convert_to_varsSOP(k, variables) def bool_maxterm(k, variables): """ Return the k-th maxterm. Each maxterm is assigned an index based on the opposite conventional binary encoding used for minterms. The maxterm convention assigns the value 0 to the direct form and 1 to the complemented form. Parameters ========== k : int or list of 1's and 0's (complementation pattern) variables : list of variables Examples ======== >>> from sympy.logic.boolalg import bool_maxterm >>> from sympy.abc import x, y, z >>> bool_maxterm([1, 0, 1], [x, y, z]) y | ~x | ~z >>> bool_maxterm(6, [x, y, z]) z | ~x | ~y References ========== .. [4] https://en.wikipedia.org/wiki/Canonical_normal_form#Indexing_maxterms """ if isinstance(k, int): k = integer_to_term(k, len(variables)) variables = list(map(sympify, variables)) return _convert_to_varsPOS(k, variables) def bool_monomial(k, variables): """ Return the k-th monomial. Monomials are numbered by a binary encoding of the presence and absences of the variables. This convention assigns the value 1 to the presence of variable and 0 to the absence of variable. Each boolean function can be uniquely represented by a Zhegalkin Polynomial (Algebraic Normal Form). The Zhegalkin Polynomial of the boolean function with n variables can contain up to 2^n monomials. We can enumarate all the monomials. Each monomial is fully specified by the presence or absence of each variable. For example, boolean function with four variables (a, b, c, d) can contain up to 2^4 = 16 monomials. The 13-th monomial is the product a & b & d, because 13 in binary is 1, 1, 0, 1. Parameters ========== k : int or list of 1's and 0's variables : list of variables Examples ======== >>> from sympy.logic.boolalg import bool_monomial >>> from sympy.abc import x, y, z >>> bool_monomial([1, 0, 1], [x, y, z]) x & z >>> bool_monomial(6, [x, y, z]) x & y """ if isinstance(k, int): k = integer_to_term(k, len(variables)) variables = list(map(sympify, variables)) return _convert_to_varsANF(k, variables) def _find_predicates(expr): """Helper to find logical predicates in BooleanFunctions. A logical predicate is defined here as anything within a BooleanFunction that is not a BooleanFunction itself. """ if not isinstance(expr, BooleanFunction): return {expr} return set().union(*(_find_predicates(i) for i in expr.args)) def simplify_logic(expr, form=None, deep=True, force=False): """ This function simplifies a boolean function to its simplified version in SOP or POS form. The return type is an Or or And object in SymPy. Parameters ========== expr : string or boolean expression form : string ('cnf' or 'dnf') or None (default). If 'cnf' or 'dnf', the simplest expression in the corresponding normal form is returned; if None, the answer is returned according to the form with fewest args (in CNF by default). deep : boolean (default True) Indicates whether to recursively simplify any non-boolean functions contained within the input. force : boolean (default False) As the simplifications require exponential time in the number of variables, there is by default a limit on expressions with 8 variables. When the expression has more than 8 variables only symbolical simplification (controlled by ``deep``) is made. By setting force to ``True``, this limit is removed. Be aware that this can lead to very long simplification times. Examples ======== >>> from sympy.logic import simplify_logic >>> from sympy.abc import x, y, z >>> from sympy import S >>> b = (~x & ~y & ~z) | ( ~x & ~y & z) >>> simplify_logic(b) ~x & ~y >>> S(b) (z & ~x & ~y) | (~x & ~y & ~z) >>> simplify_logic(_) ~x & ~y """ if form not in (None, 'cnf', 'dnf'): raise ValueError("form can be cnf or dnf only") expr = sympify(expr) # check for quick exit: right form and all args are # literal and do not involve Not isc = is_cnf(expr) isd = is_dnf(expr) form_ok = ( isc and form == 'cnf' or isd and form == 'dnf') if form_ok and all(is_literal(a) for a in expr.args): return expr if deep: variables = _find_predicates(expr) from sympy.simplify.simplify import simplify s = [simplify(v) for v in variables] expr = expr.xreplace(dict(zip(variables, s))) if not isinstance(expr, BooleanFunction): return expr # get variables in case not deep or after doing # deep simplification since they may have changed variables = _find_predicates(expr) if not force and len(variables) > 8: return expr # group into constants and variable values c, v = sift(variables, lambda x: x in (True, False), binary=True) variables = c + v truthtable = [] # standardize constants to be 1 or 0 in keeping with truthtable c = [1 if i == True else 0 for i in c] for t in product([0, 1], repeat=len(v)): if expr.xreplace(dict(zip(v, t))) == True: truthtable.append(c + list(t)) big = len(truthtable) >= (2 ** (len(variables) - 1)) if form == 'dnf' or form is None and big: return SOPform(variables, truthtable) return POSform(variables, truthtable) def _finger(eq): """ Assign a 5-item fingerprint to each symbol in the equation: [ # of times it appeared as a Symbol; # of times it appeared as a Not(symbol); # of times it appeared as a Symbol in an And or Or; # of times it appeared as a Not(Symbol) in an And or Or; a sorted tuple of tuples, (i, j, k), where i is the number of arguments in an And or Or with which it appeared as a Symbol, and j is the number of arguments that were Not(Symbol); k is the number of times that (i, j) was seen. ] Examples ======== >>> from sympy.logic.boolalg import _finger as finger >>> from sympy import And, Or, Not, Xor, to_cnf, symbols >>> from sympy.abc import a, b, x, y >>> eq = Or(And(Not(y), a), And(Not(y), b), And(x, y)) >>> dict(finger(eq)) {(0, 0, 1, 0, ((2, 0, 1),)): [x], (0, 0, 1, 0, ((2, 1, 1),)): [a, b], (0, 0, 1, 2, ((2, 0, 1),)): [y]} >>> dict(finger(x & ~y)) {(0, 1, 0, 0, ()): [y], (1, 0, 0, 0, ()): [x]} In the following, the (5, 2, 6) means that there were 6 Or functions in which a symbol appeared as itself amongst 5 arguments in which there were also 2 negated symbols, e.g. ``(a0 | a1 | a2 | ~a3 | ~a4)`` is counted once for a0, a1 and a2. >>> dict(finger(to_cnf(Xor(*symbols('a:5'))))) {(0, 0, 8, 8, ((5, 0, 1), (5, 2, 6), (5, 4, 1))): [a0, a1, a2, a3, a4]} The equation must not have more than one level of nesting: >>> dict(finger(And(Or(x, y), y))) {(0, 0, 1, 0, ((2, 0, 1),)): [x], (1, 0, 1, 0, ((2, 0, 1),)): [y]} >>> dict(finger(And(Or(x, And(a, x)), y))) Traceback (most recent call last): ... NotImplementedError: unexpected level of nesting So y and x have unique fingerprints, but a and b do not. """ f = eq.free_symbols d = dict(list(zip(f, [[0]*4 + [defaultdict(int)] for fi in f]))) for a in eq.args: if a.is_Symbol: d[a][0] += 1 elif a.is_Not: d[a.args[0]][1] += 1 else: o = len(a.args), sum(isinstance(ai, Not) for ai in a.args) for ai in a.args: if ai.is_Symbol: d[ai][2] += 1 d[ai][-1][o] += 1 elif ai.is_Not: d[ai.args[0]][3] += 1 else: raise NotImplementedError('unexpected level of nesting') inv = defaultdict(list) for k, v in ordered(iter(d.items())): v[-1] = tuple(sorted([i + (j,) for i, j in v[-1].items()])) inv[tuple(v)].append(k) return inv def bool_map(bool1, bool2): """ Return the simplified version of bool1, and the mapping of variables that makes the two expressions bool1 and bool2 represent the same logical behaviour for some correspondence between the variables of each. If more than one mappings of this sort exist, one of them is returned. For example, And(x, y) is logically equivalent to And(a, b) for the mapping {x: a, y:b} or {x: b, y:a}. If no such mapping exists, return False. Examples ======== >>> from sympy import SOPform, bool_map, Or, And, Not, Xor >>> from sympy.abc import w, x, y, z, a, b, c, d >>> function1 = SOPform([x, z, y],[[1, 0, 1], [0, 0, 1]]) >>> function2 = SOPform([a, b, c],[[1, 0, 1], [1, 0, 0]]) >>> bool_map(function1, function2) (y & ~z, {y: a, z: b}) The results are not necessarily unique, but they are canonical. Here, ``(w, z)`` could be ``(a, d)`` or ``(d, a)``: >>> eq = Or(And(Not(y), w), And(Not(y), z), And(x, y)) >>> eq2 = Or(And(Not(c), a), And(Not(c), d), And(b, c)) >>> bool_map(eq, eq2) ((x & y) | (w & ~y) | (z & ~y), {w: a, x: b, y: c, z: d}) >>> eq = And(Xor(a, b), c, And(c,d)) >>> bool_map(eq, eq.subs(c, x)) (c & d & (a | b) & (~a | ~b), {a: a, b: b, c: d, d: x}) """ def match(function1, function2): """Return the mapping that equates variables between two simplified boolean expressions if possible. By "simplified" we mean that a function has been denested and is either an And (or an Or) whose arguments are either symbols (x), negated symbols (Not(x)), or Or (or an And) whose arguments are only symbols or negated symbols. For example, And(x, Not(y), Or(w, Not(z))). Basic.match is not robust enough (see issue 4835) so this is a workaround that is valid for simplified boolean expressions """ # do some quick checks if function1.__class__ != function2.__class__: return None # maybe simplification makes them the same? if len(function1.args) != len(function2.args): return None # maybe simplification makes them the same? if function1.is_Symbol: return {function1: function2} # get the fingerprint dictionaries f1 = _finger(function1) f2 = _finger(function2) # more quick checks if len(f1) != len(f2): return False # assemble the match dictionary if possible matchdict = {} for k in f1.keys(): if k not in f2: return False if len(f1[k]) != len(f2[k]): return False for i, x in enumerate(f1[k]): matchdict[x] = f2[k][i] return matchdict a = simplify_logic(bool1) b = simplify_logic(bool2) m = match(a, b) if m: return a, m return m def simplify_patterns_and(): from sympy.functions.elementary.miscellaneous import Min, Max from sympy.core import Wild from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt a = Wild('a') b = Wild('b') c = Wild('c') # With a better canonical fewer results are required _matchers_and = ((And(Eq(a, b), Ge(a, b)), Eq(a, b)), (And(Eq(a, b), Gt(a, b)), S.false), (And(Eq(a, b), Le(a, b)), Eq(a, b)), (And(Eq(a, b), Lt(a, b)), S.false), (And(Ge(a, b), Gt(a, b)), Gt(a, b)), (And(Ge(a, b), Le(a, b)), Eq(a, b)), (And(Ge(a, b), Lt(a, b)), S.false), (And(Ge(a, b), Ne(a, b)), Gt(a, b)), (And(Gt(a, b), Le(a, b)), S.false), (And(Gt(a, b), Lt(a, b)), S.false), (And(Gt(a, b), Ne(a, b)), Gt(a, b)), (And(Le(a, b), Lt(a, b)), Lt(a, b)), (And(Le(a, b), Ne(a, b)), Lt(a, b)), (And(Lt(a, b), Ne(a, b)), Lt(a, b)), # Min/max (And(Ge(a, b), Ge(a, c)), Ge(a, Max(b, c))), (And(Ge(a, b), Gt(a, c)), ITE(b > c, Ge(a, b), Gt(a, c))), (And(Gt(a, b), Gt(a, c)), Gt(a, Max(b, c))), (And(Le(a, b), Le(a, c)), Le(a, Min(b, c))), (And(Le(a, b), Lt(a, c)), ITE(b < c, Le(a, b), Lt(a, c))), (And(Lt(a, b), Lt(a, c)), Lt(a, Min(b, c))), # Sign (And(Eq(a, b), Eq(a, -b)), And(Eq(a, S.Zero), Eq(b, S.Zero))), ) return _matchers_and def simplify_patterns_or(): from sympy.functions.elementary.miscellaneous import Min, Max from sympy.core import Wild from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt a = Wild('a') b = Wild('b') c = Wild('c') _matchers_or = ((Or(Eq(a, b), Ge(a, b)), Ge(a, b)), (Or(Eq(a, b), Gt(a, b)), Ge(a, b)), (Or(Eq(a, b), Le(a, b)), Le(a, b)), (Or(Eq(a, b), Lt(a, b)), Le(a, b)), (Or(Ge(a, b), Gt(a, b)), Ge(a, b)), (Or(Ge(a, b), Le(a, b)), S.true), (Or(Ge(a, b), Lt(a, b)), S.true), (Or(Ge(a, b), Ne(a, b)), S.true), (Or(Gt(a, b), Le(a, b)), S.true), (Or(Gt(a, b), Lt(a, b)), Ne(a, b)), (Or(Gt(a, b), Ne(a, b)), Ne(a, b)), (Or(Le(a, b), Lt(a, b)), Le(a, b)), (Or(Le(a, b), Ne(a, b)), S.true), (Or(Lt(a, b), Ne(a, b)), Ne(a, b)), # Min/max (Or(Ge(a, b), Ge(a, c)), Ge(a, Min(b, c))), (Or(Ge(a, b), Gt(a, c)), ITE(b > c, Gt(a, c), Ge(a, b))), (Or(Gt(a, b), Gt(a, c)), Gt(a, Min(b, c))), (Or(Le(a, b), Le(a, c)), Le(a, Max(b, c))), (Or(Le(a, b), Lt(a, c)), ITE(b >= c, Le(a, b), Lt(a, c))), (Or(Lt(a, b), Lt(a, c)), Lt(a, Max(b, c))), ) return _matchers_or def simplify_patterns_xor(): from sympy.functions.elementary.miscellaneous import Min, Max from sympy.core import Wild from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt a = Wild('a') b = Wild('b') c = Wild('c') _matchers_xor = ((Xor(Eq(a, b), Ge(a, b)), Gt(a, b)), (Xor(Eq(a, b), Gt(a, b)), Ge(a, b)), (Xor(Eq(a, b), Le(a, b)), Lt(a, b)), (Xor(Eq(a, b), Lt(a, b)), Le(a, b)), (Xor(Ge(a, b), Gt(a, b)), Eq(a, b)), (Xor(Ge(a, b), Le(a, b)), Ne(a, b)), (Xor(Ge(a, b), Lt(a, b)), S.true), (Xor(Ge(a, b), Ne(a, b)), Le(a, b)), (Xor(Gt(a, b), Le(a, b)), S.true), (Xor(Gt(a, b), Lt(a, b)), Ne(a, b)), (Xor(Gt(a, b), Ne(a, b)), Lt(a, b)), (Xor(Le(a, b), Lt(a, b)), Eq(a, b)), (Xor(Le(a, b), Ne(a, b)), Ge(a, b)), (Xor(Lt(a, b), Ne(a, b)), Gt(a, b)), # Min/max (Xor(Ge(a, b), Ge(a, c)), And(Ge(a, Min(b, c)), Lt(a, Max(b, c)))), (Xor(Ge(a, b), Gt(a, c)), ITE(b > c, And(Gt(a, c), Lt(a, b)), And(Ge(a, b), Le(a, c)))), (Xor(Gt(a, b), Gt(a, c)), And(Gt(a, Min(b, c)), Le(a, Max(b, c)))), (Xor(Le(a, b), Le(a, c)), And(Le(a, Max(b, c)), Gt(a, Min(b, c)))), (Xor(Le(a, b), Lt(a, c)), ITE(b < c, And(Lt(a, c), Gt(a, b)), And(Le(a, b), Ge(a, c)))), (Xor(Lt(a, b), Lt(a, c)), And(Lt(a, Max(b, c)), Ge(a, Min(b, c)))), ) return _matchers_xor
ebf93e020d83fd710e7e35c6f5e8405f67fa23392873dbbd9e36b70e1bad8dba
import copy from sympy.core.function import expand_mul from sympy.functions.elementary.miscellaneous import Min, sqrt from sympy.functions.elementary.complexes import sign from .common import NonSquareMatrixError, NonPositiveDefiniteMatrixError from .utilities import _get_intermediate_simp, _iszero from .determinant import _find_reasonable_pivot_naive def _rank_decomposition(M, iszerofunc=_iszero, simplify=False): r"""Returns a pair of matrices (`C`, `F`) with matching rank such that `A = C F`. Parameters ========== iszerofunc : Function, optional A function used for detecting whether an element can act as a pivot. ``lambda x: x.is_zero`` is used by default. simplify : Bool or Function, optional A function used to simplify elements when looking for a pivot. By default SymPy's ``simplify`` is used. Returns ======= (C, F) : Matrices `C` and `F` are full-rank matrices with rank as same as `A`, whose product gives `A`. See Notes for additional mathematical details. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([ ... [1, 3, 1, 4], ... [2, 7, 3, 9], ... [1, 5, 3, 1], ... [1, 2, 0, 8] ... ]) >>> C, F = A.rank_decomposition() >>> C Matrix([ [1, 3, 4], [2, 7, 9], [1, 5, 1], [1, 2, 8]]) >>> F Matrix([ [1, 0, -2, 0], [0, 1, 1, 0], [0, 0, 0, 1]]) >>> C * F == A True Notes ===== Obtaining `F`, an RREF of `A`, is equivalent to creating a product .. math:: E_n E_{n-1} ... E_1 A = F where `E_n, E_{n-1}, ... , E_1` are the elimination matrices or permutation matrices equivalent to each row-reduction step. The inverse of the same product of elimination matrices gives `C`: .. math:: C = (E_n E_{n-1} ... E_1)^{-1} It is not necessary, however, to actually compute the inverse: the columns of `C` are those from the original matrix with the same column indices as the indices of the pivot columns of `F`. References ========== .. [1] https://en.wikipedia.org/wiki/Rank_factorization .. [2] Piziak, R.; Odell, P. L. (1 June 1999). "Full Rank Factorization of Matrices". Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882 See Also ======== rref """ F, pivot_cols = M.rref(simplify=simplify, iszerofunc=iszerofunc, pivots=True) rank = len(pivot_cols) C = M.extract(range(M.rows), pivot_cols) F = F[:rank, :] return C, F def _liupc(M): """Liu's algorithm, for pre-determination of the Elimination Tree of the given matrix, used in row-based symbolic Cholesky factorization. Examples ======== >>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix([ ... [1, 0, 3, 2], ... [0, 0, 1, 0], ... [4, 0, 0, 5], ... [0, 6, 7, 0]]) >>> S.liupc() ([[0], [], [0], [1, 2]], [4, 3, 4, 4]) References ========== Symbolic Sparse Cholesky Factorization using Elimination Trees, Jeroen Van Grondelle (1999) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582 """ # Algorithm 2.4, p 17 of reference # get the indices of the elements that are non-zero on or below diag R = [[] for r in range(M.rows)] for r, c, _ in M.row_list(): if c <= r: R[r].append(c) inf = len(R) # nothing will be this large parent = [inf]*M.rows virtual = [inf]*M.rows for r in range(M.rows): for c in R[r][:-1]: while virtual[c] < r: t = virtual[c] virtual[c] = r c = t if virtual[c] == inf: parent[c] = virtual[c] = r return R, parent def _row_structure_symbolic_cholesky(M): """Symbolic cholesky factorization, for pre-determination of the non-zero structure of the Cholesky factororization. Examples ======== >>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix([ ... [1, 0, 3, 2], ... [0, 0, 1, 0], ... [4, 0, 0, 5], ... [0, 6, 7, 0]]) >>> S.row_structure_symbolic_cholesky() [[0], [], [0], [1, 2]] References ========== Symbolic Sparse Cholesky Factorization using Elimination Trees, Jeroen Van Grondelle (1999) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582 """ R, parent = M.liupc() inf = len(R) # this acts as infinity Lrow = copy.deepcopy(R) for k in range(M.rows): for j in R[k]: while j != inf and j != k: Lrow[k].append(j) j = parent[j] Lrow[k] = list(sorted(set(Lrow[k]))) return Lrow def _cholesky(M, hermitian=True): """Returns the Cholesky-type decomposition L of a matrix A such that L * L.H == A if hermitian flag is True, or L * L.T == A if hermitian is False. A must be a Hermitian positive-definite matrix if hermitian is True, or a symmetric matrix if it is False. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> A.cholesky() Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) >>> A.cholesky() * A.cholesky().T Matrix([ [25, 15, -5], [15, 18, 0], [-5, 0, 11]]) The matrix can have complex entries: >>> from sympy import I >>> A = Matrix(((9, 3*I), (-3*I, 5))) >>> A.cholesky() Matrix([ [ 3, 0], [-I, 2]]) >>> A.cholesky() * A.cholesky().H Matrix([ [ 9, 3*I], [-3*I, 5]]) Non-hermitian Cholesky-type decomposition may be useful when the matrix is not positive-definite. >>> A = Matrix([[1, 2], [2, 1]]) >>> L = A.cholesky(hermitian=False) >>> L Matrix([ [1, 0], [2, sqrt(3)*I]]) >>> L*L.T == A True See Also ======== sympy.matrices.dense.DenseMatrix.LDLdecomposition sympy.matrices.matrices.MatrixBase.LUdecomposition QRdecomposition """ from .dense import MutableDenseMatrix if not M.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not M.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not M.is_symmetric(): raise ValueError("Matrix must be symmetric.") L = MutableDenseMatrix.zeros(M.rows, M.rows) if hermitian: for i in range(M.rows): for j in range(i): L[i, j] = ((1 / L[j, j])*(M[i, j] - sum(L[i, k]*L[j, k].conjugate() for k in range(j)))) Lii2 = (M[i, i] - sum(L[i, k]*L[i, k].conjugate() for k in range(i))) if Lii2.is_positive is False: raise NonPositiveDefiniteMatrixError( "Matrix must be positive-definite") L[i, i] = sqrt(Lii2) else: for i in range(M.rows): for j in range(i): L[i, j] = ((1 / L[j, j])*(M[i, j] - sum(L[i, k]*L[j, k] for k in range(j)))) L[i, i] = sqrt(M[i, i] - sum(L[i, k]**2 for k in range(i))) return M._new(L) def _cholesky_sparse(M, hermitian=True): """ Returns the Cholesky decomposition L of a matrix A such that L * L.T = A A must be a square, symmetric, positive-definite and non-singular matrix Examples ======== >>> from sympy.matrices import SparseMatrix >>> A = SparseMatrix(((25,15,-5),(15,18,0),(-5,0,11))) >>> A.cholesky() Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) >>> A.cholesky() * A.cholesky().T == A True The matrix can have complex entries: >>> from sympy import I >>> A = SparseMatrix(((9, 3*I), (-3*I, 5))) >>> A.cholesky() Matrix([ [ 3, 0], [-I, 2]]) >>> A.cholesky() * A.cholesky().H Matrix([ [ 9, 3*I], [-3*I, 5]]) Non-hermitian Cholesky-type decomposition may be useful when the matrix is not positive-definite. >>> A = SparseMatrix([[1, 2], [2, 1]]) >>> L = A.cholesky(hermitian=False) >>> L Matrix([ [1, 0], [2, sqrt(3)*I]]) >>> L*L.T == A True See Also ======== sympy.matrices.sparse.SparseMatrix.LDLdecomposition sympy.matrices.matrices.MatrixBase.LUdecomposition QRdecomposition """ from .dense import MutableDenseMatrix if not M.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not M.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not M.is_symmetric(): raise ValueError("Matrix must be symmetric.") dps = _get_intermediate_simp(expand_mul, expand_mul) Crowstruc = M.row_structure_symbolic_cholesky() C = MutableDenseMatrix.zeros(M.rows) for i in range(len(Crowstruc)): for j in Crowstruc[i]: if i != j: C[i, j] = M[i, j] summ = 0 for p1 in Crowstruc[i]: if p1 < j: for p2 in Crowstruc[j]: if p2 < j: if p1 == p2: if hermitian: summ += C[i, p1]*C[j, p1].conjugate() else: summ += C[i, p1]*C[j, p1] else: break else: break C[i, j] = dps((C[i, j] - summ) / C[j, j]) else: # i == j C[j, j] = M[j, j] summ = 0 for k in Crowstruc[j]: if k < j: if hermitian: summ += C[j, k]*C[j, k].conjugate() else: summ += C[j, k]**2 else: break Cjj2 = dps(C[j, j] - summ) if hermitian and Cjj2.is_positive is False: raise NonPositiveDefiniteMatrixError( "Matrix must be positive-definite") C[j, j] = sqrt(Cjj2) return M._new(C) def _LDLdecomposition(M, hermitian=True): """Returns the LDL Decomposition (L, D) of matrix A, such that L * D * L.H == A if hermitian flag is True, or L * D * L.T == A if hermitian is False. This method eliminates the use of square root. Further this ensures that all the diagonal entries of L are 1. A must be a Hermitian positive-definite matrix if hermitian is True, or a symmetric matrix otherwise. Examples ======== >>> from sympy.matrices import Matrix, eye >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0, 0], [ 3/5, 1, 0], [-1/5, 1/3, 1]]) >>> D Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) >>> L * D * L.T * A.inv() == eye(A.rows) True The matrix can have complex entries: >>> from sympy import I >>> A = Matrix(((9, 3*I), (-3*I, 5))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0], [-I/3, 1]]) >>> D Matrix([ [9, 0], [0, 4]]) >>> L*D*L.H == A True See Also ======== sympy.matrices.dense.DenseMatrix.cholesky sympy.matrices.matrices.MatrixBase.LUdecomposition QRdecomposition """ from .dense import MutableDenseMatrix if not M.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not M.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not M.is_symmetric(): raise ValueError("Matrix must be symmetric.") D = MutableDenseMatrix.zeros(M.rows, M.rows) L = MutableDenseMatrix.eye(M.rows) if hermitian: for i in range(M.rows): for j in range(i): L[i, j] = (1 / D[j, j])*(M[i, j] - sum( L[i, k]*L[j, k].conjugate()*D[k, k] for k in range(j))) D[i, i] = (M[i, i] - sum(L[i, k]*L[i, k].conjugate()*D[k, k] for k in range(i))) if D[i, i].is_positive is False: raise NonPositiveDefiniteMatrixError( "Matrix must be positive-definite") else: for i in range(M.rows): for j in range(i): L[i, j] = (1 / D[j, j])*(M[i, j] - sum( L[i, k]*L[j, k]*D[k, k] for k in range(j))) D[i, i] = M[i, i] - sum(L[i, k]**2*D[k, k] for k in range(i)) return M._new(L), M._new(D) def _LDLdecomposition_sparse(M, hermitian=True): """ Returns the LDL Decomposition (matrices ``L`` and ``D``) of matrix ``A``, such that ``L * D * L.T == A``. ``A`` must be a square, symmetric, positive-definite and non-singular. This method eliminates the use of square root and ensures that all the diagonal entries of L are 1. Examples ======== >>> from sympy.matrices import SparseMatrix >>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0, 0], [ 3/5, 1, 0], [-1/5, 1/3, 1]]) >>> D Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) >>> L * D * L.T == A True """ from .dense import MutableDenseMatrix if not M.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not M.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not M.is_symmetric(): raise ValueError("Matrix must be symmetric.") dps = _get_intermediate_simp(expand_mul, expand_mul) Lrowstruc = M.row_structure_symbolic_cholesky() L = MutableDenseMatrix.eye(M.rows) D = MutableDenseMatrix.zeros(M.rows, M.cols) for i in range(len(Lrowstruc)): for j in Lrowstruc[i]: if i != j: L[i, j] = M[i, j] summ = 0 for p1 in Lrowstruc[i]: if p1 < j: for p2 in Lrowstruc[j]: if p2 < j: if p1 == p2: if hermitian: summ += L[i, p1]*L[j, p1].conjugate()*D[p1, p1] else: summ += L[i, p1]*L[j, p1]*D[p1, p1] else: break else: break L[i, j] = dps((L[i, j] - summ) / D[j, j]) else: # i == j D[i, i] = M[i, i] summ = 0 for k in Lrowstruc[i]: if k < i: if hermitian: summ += L[i, k]*L[i, k].conjugate()*D[k, k] else: summ += L[i, k]**2*D[k, k] else: break D[i, i] = dps(D[i, i] - summ) if hermitian and D[i, i].is_positive is False: raise NonPositiveDefiniteMatrixError( "Matrix must be positive-definite") return M._new(L), M._new(D) def _LUdecomposition(M, iszerofunc=_iszero, simpfunc=None, rankcheck=False): """Returns (L, U, perm) where L is a lower triangular matrix with unit diagonal, U is an upper triangular matrix, and perm is a list of row swap index pairs. If A is the original matrix, then ``A = (L*U).permuteBkwd(perm)``, and the row permutation matrix P such that $P A = L U$ can be computed by ``P = eye(A.rows).permuteFwd(perm)``. See documentation for LUCombined for details about the keyword argument rankcheck, iszerofunc, and simpfunc. Parameters ========== rankcheck : bool, optional Determines if this function should detect the rank deficiency of the matrixis and should raise a ``ValueError``. iszerofunc : function, optional A function which determines if a given expression is zero. The function should be a callable that takes a single sympy expression and returns a 3-valued boolean value ``True``, ``False``, or ``None``. It is internally used by the pivot searching algorithm. See the notes section for a more information about the pivot searching algorithm. simpfunc : function or None, optional A function that simplifies the input. If this is specified as a function, this function should be a callable that takes a single sympy expression and returns an another sympy expression that is algebraically equivalent. If ``None``, it indicates that the pivot search algorithm should not attempt to simplify any candidate pivots. It is internally used by the pivot searching algorithm. See the notes section for a more information about the pivot searching algorithm. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[4, 3], [6, 3]]) >>> L, U, _ = a.LUdecomposition() >>> L Matrix([ [ 1, 0], [3/2, 1]]) >>> U Matrix([ [4, 3], [0, -3/2]]) See Also ======== sympy.matrices.dense.DenseMatrix.cholesky sympy.matrices.dense.DenseMatrix.LDLdecomposition QRdecomposition LUdecomposition_Simple LUdecompositionFF LUsolve """ combined, p = M.LUdecomposition_Simple(iszerofunc=iszerofunc, simpfunc=simpfunc, rankcheck=rankcheck) # L is lower triangular ``M.rows x M.rows`` # U is upper triangular ``M.rows x M.cols`` # L has unit diagonal. For each column in combined, the subcolumn # below the diagonal of combined is shared by L. # If L has more columns than combined, then the remaining subcolumns # below the diagonal of L are zero. # The upper triangular portion of L and combined are equal. def entry_L(i, j): if i < j: # Super diagonal entry return M.zero elif i == j: return M.one elif j < combined.cols: return combined[i, j] # Subdiagonal entry of L with no corresponding # entry in combined return M.zero def entry_U(i, j): return M.zero if i > j else combined[i, j] L = M._new(combined.rows, combined.rows, entry_L) U = M._new(combined.rows, combined.cols, entry_U) return L, U, p def _LUdecomposition_Simple(M, iszerofunc=_iszero, simpfunc=None, rankcheck=False): r"""Compute the PLU decomposition of the matrix. Parameters ========== rankcheck : bool, optional Determines if this function should detect the rank deficiency of the matrixis and should raise a ``ValueError``. iszerofunc : function, optional A function which determines if a given expression is zero. The function should be a callable that takes a single sympy expression and returns a 3-valued boolean value ``True``, ``False``, or ``None``. It is internally used by the pivot searching algorithm. See the notes section for a more information about the pivot searching algorithm. simpfunc : function or None, optional A function that simplifies the input. If this is specified as a function, this function should be a callable that takes a single sympy expression and returns an another sympy expression that is algebraically equivalent. If ``None``, it indicates that the pivot search algorithm should not attempt to simplify any candidate pivots. It is internally used by the pivot searching algorithm. See the notes section for a more information about the pivot searching algorithm. Returns ======= (lu, row_swaps) : (Matrix, list) If the original matrix is a $m, n$ matrix: *lu* is a $m, n$ matrix, which contains result of the decomposition in a compresed form. See the notes section to see how the matrix is compressed. *row_swaps* is a $m$-element list where each element is a pair of row exchange indices. ``A = (L*U).permute_backward(perm)``, and the row permutation matrix $P$ from the formula $P A = L U$ can be computed by ``P=eye(A.row).permute_forward(perm)``. Raises ====== ValueError Raised if ``rankcheck=True`` and the matrix is found to be rank deficient during the computation. Notes ===== About the PLU decomposition: PLU decomposition is a generalization of a LU decomposition which can be extended for rank-deficient matrices. It can further be generalized for non-square matrices, and this is the notation that SymPy is using. PLU decomposition is a decomposition of a $m, n$ matrix $A$ in the form of $P A = L U$ where * $L$ is a $m, m$ lower triangular matrix with unit diagonal entries. * $U$ is a $m, n$ upper triangular matrix. * $P$ is a $m, m$ permutation matrix. So, for a square matrix, the decomposition would look like: .. math:: L = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ L_{1, 0} & 1 & 0 & \cdots & 0 \\ L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & 1 \end{bmatrix} .. math:: U = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\ 0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\ 0 & 0 & U_{2, 2} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & U_{n-1, n-1} \end{bmatrix} And for a matrix with more rows than the columns, the decomposition would look like: .. math:: L = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ L_{1, 0} & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & 1 & 0 & \cdots & 0 \\ L_{n, 0} & L_{n, 1} & L_{n, 2} & \cdots & L_{n, n-1} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & L_{m-1, n-1} & 0 & \cdots & 1 \\ \end{bmatrix} .. math:: U = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\ 0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\ 0 & 0 & U_{2, 2} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & U_{n-1, n-1} \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} Finally, for a matrix with more columns than the rows, the decomposition would look like: .. math:: L = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ L_{1, 0} & 1 & 0 & \cdots & 0 \\ L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & 1 \end{bmatrix} .. math:: U = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, m-1} & \cdots & U_{0, n-1} \\ 0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, m-1} & \cdots & U_{1, n-1} \\ 0 & 0 & U_{2, 2} & \cdots & U_{2, m-1} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & U_{m-1, m-1} & \cdots & U_{m-1, n-1} \\ \end{bmatrix} About the compressed LU storage: The results of the decomposition are often stored in compressed forms rather than returning $L$ and $U$ matrices individually. It may be less intiuitive, but it is commonly used for a lot of numeric libraries because of the efficiency. The storage matrix is defined as following for this specific method: * The subdiagonal elements of $L$ are stored in the subdiagonal portion of $LU$, that is $LU_{i, j} = L_{i, j}$ whenever $i > j$. * The elements on the diagonal of $L$ are all 1, and are not explicitly stored. * $U$ is stored in the upper triangular portion of $LU$, that is $LU_{i, j} = U_{i, j}$ whenever $i <= j$. * For a case of $m > n$, the right side of the $L$ matrix is trivial to store. * For a case of $m < n$, the below side of the $U$ matrix is trivial to store. So, for a square matrix, the compressed output matrix would be: .. math:: LU = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\ L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\ L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & U_{n-1, n-1} \end{bmatrix} For a matrix with more rows than the columns, the compressed output matrix would be: .. math:: LU = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\ L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\ L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & U_{n-1, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & L_{m-1, n-1} \\ \end{bmatrix} For a matrix with more columns than the rows, the compressed output matrix would be: .. math:: LU = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, m-1} & \cdots & U_{0, n-1} \\ L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, m-1} & \cdots & U_{1, n-1} \\ L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, m-1} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \cdots & \vdots \\ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & U_{m-1, m-1} & \cdots & U_{m-1, n-1} \\ \end{bmatrix} About the pivot searching algorithm: When a matrix contains symbolic entries, the pivot search algorithm differs from the case where every entry can be categorized as zero or nonzero. The algorithm searches column by column through the submatrix whose top left entry coincides with the pivot position. If it exists, the pivot is the first entry in the current search column that iszerofunc guarantees is nonzero. If no such candidate exists, then each candidate pivot is simplified if simpfunc is not None. The search is repeated, with the difference that a candidate may be the pivot if ``iszerofunc()`` cannot guarantee that it is nonzero. In the second search the pivot is the first candidate that iszerofunc can guarantee is nonzero. If no such candidate exists, then the pivot is the first candidate for which iszerofunc returns None. If no such candidate exists, then the search is repeated in the next column to the right. The pivot search algorithm differs from the one in ``rref()``, which relies on ``_find_reasonable_pivot()``. Future versions of ``LUdecomposition_simple()`` may use ``_find_reasonable_pivot()``. See Also ======== sympy.matrices.matrices.MatrixBase.LUdecomposition LUdecompositionFF LUsolve """ if rankcheck: # https://github.com/sympy/sympy/issues/9796 pass if M.rows == 0 or M.cols == 0: # Define LU decomposition of a matrix with no entries as a matrix # of the same dimensions with all zero entries. return M.zeros(M.rows, M.cols), [] dps = _get_intermediate_simp() lu = M.as_mutable() row_swaps = [] pivot_col = 0 for pivot_row in range(0, lu.rows - 1): # Search for pivot. Prefer entry that iszeropivot determines # is nonzero, over entry that iszeropivot cannot guarantee # is zero. # XXX ``_find_reasonable_pivot`` uses slow zero testing. Blocked by bug #10279 # Future versions of LUdecomposition_simple can pass iszerofunc and simpfunc # to _find_reasonable_pivot(). # In pass 3 of _find_reasonable_pivot(), the predicate in ``if x.equals(S.Zero):`` # calls sympy.simplify(), and not the simplification function passed in via # the keyword argument simpfunc. iszeropivot = True while pivot_col != M.cols and iszeropivot: sub_col = (lu[r, pivot_col] for r in range(pivot_row, M.rows)) pivot_row_offset, pivot_value, is_assumed_non_zero, ind_simplified_pairs =\ _find_reasonable_pivot_naive(sub_col, iszerofunc, simpfunc) iszeropivot = pivot_value is None if iszeropivot: # All candidate pivots in this column are zero. # Proceed to next column. pivot_col += 1 if rankcheck and pivot_col != pivot_row: # All entries including and below the pivot position are # zero, which indicates that the rank of the matrix is # strictly less than min(num rows, num cols) # Mimic behavior of previous implementation, by throwing a # ValueError. raise ValueError("Rank of matrix is strictly less than" " number of rows or columns." " Pass keyword argument" " rankcheck=False to compute" " the LU decomposition of this matrix.") candidate_pivot_row = None if pivot_row_offset is None else pivot_row + pivot_row_offset if candidate_pivot_row is None and iszeropivot: # If candidate_pivot_row is None and iszeropivot is True # after pivot search has completed, then the submatrix # below and to the right of (pivot_row, pivot_col) is # all zeros, indicating that Gaussian elimination is # complete. return lu, row_swaps # Update entries simplified during pivot search. for offset, val in ind_simplified_pairs: lu[pivot_row + offset, pivot_col] = val if pivot_row != candidate_pivot_row: # Row swap book keeping: # Record which rows were swapped. # Update stored portion of L factor by multiplying L on the # left and right with the current permutation. # Swap rows of U. row_swaps.append([pivot_row, candidate_pivot_row]) # Update L. lu[pivot_row, 0:pivot_row], lu[candidate_pivot_row, 0:pivot_row] = \ lu[candidate_pivot_row, 0:pivot_row], lu[pivot_row, 0:pivot_row] # Swap pivot row of U with candidate pivot row. lu[pivot_row, pivot_col:lu.cols], lu[candidate_pivot_row, pivot_col:lu.cols] = \ lu[candidate_pivot_row, pivot_col:lu.cols], lu[pivot_row, pivot_col:lu.cols] # Introduce zeros below the pivot by adding a multiple of the # pivot row to a row under it, and store the result in the # row under it. # Only entries in the target row whose index is greater than # start_col may be nonzero. start_col = pivot_col + 1 for row in range(pivot_row + 1, lu.rows): # Store factors of L in the subcolumn below # (pivot_row, pivot_row). lu[row, pivot_row] = \ dps(lu[row, pivot_col]/lu[pivot_row, pivot_col]) # Form the linear combination of the pivot row and the current # row below the pivot row that zeros the entries below the pivot. # Employing slicing instead of a loop here raises # NotImplementedError: Cannot add Zero to MutableSparseMatrix # in sympy/matrices/tests/test_sparse.py. # c = pivot_row + 1 if pivot_row == pivot_col else pivot_col for c in range(start_col, lu.cols): lu[row, c] = dps(lu[row, c] - lu[row, pivot_row]*lu[pivot_row, c]) if pivot_row != pivot_col: # matrix rank < min(num rows, num cols), # so factors of L are not stored directly below the pivot. # These entries are zero by construction, so don't bother # computing them. for row in range(pivot_row + 1, lu.rows): lu[row, pivot_col] = M.zero pivot_col += 1 if pivot_col == lu.cols: # All candidate pivots are zero implies that Gaussian # elimination is complete. return lu, row_swaps if rankcheck: if iszerofunc( lu[Min(lu.rows, lu.cols) - 1, Min(lu.rows, lu.cols) - 1]): raise ValueError("Rank of matrix is strictly less than" " number of rows or columns." " Pass keyword argument" " rankcheck=False to compute" " the LU decomposition of this matrix.") return lu, row_swaps def _LUdecompositionFF(M): """Compute a fraction-free LU decomposition. Returns 4 matrices P, L, D, U such that PA = L D**-1 U. If the elements of the matrix belong to some integral domain I, then all elements of L, D and U are guaranteed to belong to I. See Also ======== sympy.matrices.matrices.MatrixBase.LUdecomposition LUdecomposition_Simple LUsolve References ========== .. [1] W. Zhou & D.J. Jeffrey, "Fraction-free matrix factors: new forms for LU and QR factors". Frontiers in Computer Science in China, Vol 2, no. 1, pp. 67-80, 2008. """ from sympy.matrices import SparseMatrix zeros = SparseMatrix.zeros eye = SparseMatrix.eye n, m = M.rows, M.cols U, L, P = M.as_mutable(), eye(n), eye(n) DD = zeros(n, n) oldpivot = 1 for k in range(n - 1): if U[k, k] == 0: for kpivot in range(k + 1, n): if U[kpivot, k]: break else: raise ValueError("Matrix is not full rank") U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:] L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k] P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :] L [k, k] = Ukk = U[k, k] DD[k, k] = oldpivot * Ukk for i in range(k + 1, n): L[i, k] = Uik = U[i, k] for j in range(k + 1, m): U[i, j] = (Ukk * U[i, j] - U[k, j] * Uik) / oldpivot U[i, k] = 0 oldpivot = Ukk DD[n - 1, n - 1] = oldpivot return P, L, DD, U def _singular_value_decomposition(A): r"""Returns a Condensed Singular Value decomposition. Explanation =========== A Singular Value decomposition is a decomposition in the form $A = U \Sigma V$ where - $U, V$ are column orthogonal matrix. - $\Sigma$ is a diagonal matrix, where the main diagonal contains singular values of matrix A. A column orthogonal matrix satisfies $\mathbb{I} = U^H U$ while a full orthogonal matrix satisfies relation $\mathbb{I} = U U^H = U^H U$ where $\mathbb{I}$ is an identity matrix with matching dimensions. For matrices which are not square or are rank-deficient, it is sufficient to return a column orthogonal matrix because augmenting them may introduce redundant computations. In condensed Singular Value Decomposition we only return column orthognal matrices because of this reason If you want to augment the results to return a full orthogonal decomposition, you should use the following procedures. - Augment the $U , V$ matrices with columns that are orthogonal to every other columns and make it square. - Augument the $\Sigma$ matrix with zero rows to make it have the same shape as the original matrix. The procedure will be illustrated in the examples section. Examples ======== we take a full rank matrix first: >>> from sympy import Matrix >>> A = Matrix([[1, 2],[2,1]]) >>> U, S, V = A.singular_value_decomposition() >>> U Matrix([ [ sqrt(2)/2, sqrt(2)/2], [-sqrt(2)/2, sqrt(2)/2]]) >>> S Matrix([ [1, 0], [0, 3]]) >>> V Matrix([ [-sqrt(2)/2, sqrt(2)/2], [ sqrt(2)/2, sqrt(2)/2]]) If a matrix if square and full rank both U, V are orthogonal in both directions >>> U * U.H Matrix([ [1, 0], [0, 1]]) >>> U.H * U Matrix([ [1, 0], [0, 1]]) >>> V * V.H Matrix([ [1, 0], [0, 1]]) >>> V.H * V Matrix([ [1, 0], [0, 1]]) >>> A == U * S * V.H True >>> C = Matrix([ ... [1, 0, 0, 0, 2], ... [0, 0, 3, 0, 0], ... [0, 0, 0, 0, 0], ... [0, 2, 0, 0, 0], ... ]) >>> U, S, V = C.singular_value_decomposition() >>> V.H * V Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> V * V.H Matrix([ [1/5, 0, 0, 0, 2/5], [ 0, 1, 0, 0, 0], [ 0, 0, 1, 0, 0], [ 0, 0, 0, 0, 0], [2/5, 0, 0, 0, 4/5]]) If you want to augment the results to be a full orthogonal decomposition, you should augment $V$ with an another orthogonal column. You are able to append an arbitrary standard basis that are linearly independent to every other columns and you can run the Gram-Schmidt process to make them augmented as orthogonal basis. >>> V_aug = V.row_join(Matrix([[0,0,0,0,1], ... [0,0,0,1,0]]).H) >>> V_aug = V_aug.QRdecomposition()[0] >>> V_aug Matrix([ [0, sqrt(5)/5, 0, -2*sqrt(5)/5, 0], [1, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 1], [0, 2*sqrt(5)/5, 0, sqrt(5)/5, 0]]) >>> V_aug.H * V_aug Matrix([ [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]]) >>> V_aug * V_aug.H Matrix([ [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]]) Similarly we augment U >>> U_aug = U.row_join(Matrix([0,0,1,0])) >>> U_aug = U_aug.QRdecomposition()[0] >>> U_aug Matrix([ [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [1, 0, 0, 0]]) >>> U_aug.H * U_aug Matrix([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) >>> U_aug * U_aug.H Matrix([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) We add 2 zero columns and one row to S >>> S_aug = S.col_join(Matrix([[0,0,0]])) >>> S_aug = S_aug.row_join(Matrix([[0,0,0,0], ... [0,0,0,0]]).H) >>> S_aug Matrix([ [2, 0, 0, 0, 0], [0, sqrt(5), 0, 0, 0], [0, 0, 3, 0, 0], [0, 0, 0, 0, 0]]) >>> U_aug * S_aug * V_aug.H == C True """ AH = A.H m, n = A.shape if m >= n: V, S = (AH * A).diagonalize() ranked = [] for i, x in enumerate(S.diagonal()): if not x.is_zero: ranked.append(i) V = V[:, ranked] Singular_vals = [sqrt(S[i, i]) for i in range(S.rows) if i in ranked] S = S.zeros(len(Singular_vals)) for i in range(len(Singular_vals)): S[i, i] = Singular_vals[i] V, _ = V.QRdecomposition() U = A * V * S.inv() else: U, S = (A * AH).diagonalize() ranked = [] for i, x in enumerate(S.diagonal()): if not x.is_zero: ranked.append(i) U = U[:, ranked] Singular_vals = [sqrt(S[i, i]) for i in range(S.rows) if i in ranked] S = S.zeros(len(Singular_vals)) for i in range(len(Singular_vals)): S[i, i] = Singular_vals[i] U, _ = U.QRdecomposition() V = AH * U * S.inv() return U, S, V def _QRdecomposition_optional(M, normalize=True): def dot(u, v): return u.dot(v, hermitian=True) dps = _get_intermediate_simp(expand_mul, expand_mul) A = M.as_mutable() ranked = list() Q = A R = A.zeros(A.cols) for j in range(A.cols): for i in range(j): if Q[:, i].is_zero_matrix: continue R[i, j] = dot(Q[:, i], Q[:, j]) / dot(Q[:, i], Q[:, i]) R[i, j] = dps(R[i, j]) Q[:, j] -= Q[:, i] * R[i, j] Q[:, j] = dps(Q[:, j]) if Q[:, j].is_zero_matrix is False: ranked.append(j) R[j, j] = M.one Q = Q.extract(range(Q.rows), ranked) R = R.extract(ranked, range(R.cols)) if normalize: # Normalization for i in range(Q.cols): norm = Q[:, i].norm() Q[:, i] /= norm R[i, :] *= norm return M.__class__(Q), M.__class__(R) def _QRdecomposition(M): r"""Returns a QR decomposition. Explanation =========== A QR decomposition is a decomposition in the form $A = Q R$ where - $Q$ is a column orthogonal matrix. - $R$ is a upper triangular (trapezoidal) matrix. A column orthogonal matrix satisfies $\mathbb{I} = Q^H Q$ while a full orthogonal matrix satisfies relation $\mathbb{I} = Q Q^H = Q^H Q$ where $I$ is an identity matrix with matching dimensions. For matrices which are not square or are rank-deficient, it is sufficient to return a column orthogonal matrix because augmenting them may introduce redundant computations. And an another advantage of this is that you can easily inspect the matrix rank by counting the number of columns of $Q$. If you want to augment the results to return a full orthogonal decomposition, you should use the following procedures. - Augment the $Q$ matrix with columns that are orthogonal to every other columns and make it square. - Augument the $R$ matrix with zero rows to make it have the same shape as the original matrix. The procedure will be illustrated in the examples section. Examples ======== A full rank matrix example: >>> from sympy import Matrix >>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]]) >>> Q, R = A.QRdecomposition() >>> Q Matrix([ [ 6/7, -69/175, -58/175], [ 3/7, 158/175, 6/175], [-2/7, 6/35, -33/35]]) >>> R Matrix([ [14, 21, -14], [ 0, 175, -70], [ 0, 0, 35]]) If the matrix is square and full rank, the $Q$ matrix becomes orthogonal in both directions, and needs no augmentation. >>> Q * Q.H Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> Q.H * Q Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> A == Q*R True A rank deficient matrix example: >>> A = Matrix([[12, -51, 0], [6, 167, 0], [-4, 24, 0]]) >>> Q, R = A.QRdecomposition() >>> Q Matrix([ [ 6/7, -69/175], [ 3/7, 158/175], [-2/7, 6/35]]) >>> R Matrix([ [14, 21, 0], [ 0, 175, 0]]) QRdecomposition might return a matrix Q that is rectangular. In this case the orthogonality condition might be satisfied as $\mathbb{I} = Q.H*Q$ but not in the reversed product $\mathbb{I} = Q * Q.H$. >>> Q.H * Q Matrix([ [1, 0], [0, 1]]) >>> Q * Q.H Matrix([ [27261/30625, 348/30625, -1914/6125], [ 348/30625, 30589/30625, 198/6125], [ -1914/6125, 198/6125, 136/1225]]) If you want to augment the results to be a full orthogonal decomposition, you should augment $Q$ with an another orthogonal column. You are able to append an arbitrary standard basis that are linearly independent to every other columns and you can run the Gram-Schmidt process to make them augmented as orthogonal basis. >>> Q_aug = Q.row_join(Matrix([0, 0, 1])) >>> Q_aug = Q_aug.QRdecomposition()[0] >>> Q_aug Matrix([ [ 6/7, -69/175, 58/175], [ 3/7, 158/175, -6/175], [-2/7, 6/35, 33/35]]) >>> Q_aug.H * Q_aug Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> Q_aug * Q_aug.H Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) Augmenting the $R$ matrix with zero row is straightforward. >>> R_aug = R.col_join(Matrix([[0, 0, 0]])) >>> R_aug Matrix([ [14, 21, 0], [ 0, 175, 0], [ 0, 0, 0]]) >>> Q_aug * R_aug == A True A zero matrix example: >>> from sympy import Matrix >>> A = Matrix.zeros(3, 4) >>> Q, R = A.QRdecomposition() They may return matrices with zero rows and columns. >>> Q Matrix(3, 0, []) >>> R Matrix(0, 4, []) >>> Q*R Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) As the same augmentation rule described above, $Q$ can be augmented with columns of an identity matrix and $R$ can be augmented with rows of a zero matrix. >>> Q_aug = Q.row_join(Matrix.eye(3)) >>> R_aug = R.col_join(Matrix.zeros(3, 4)) >>> Q_aug * Q_aug.T Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> R_aug Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) >>> Q_aug * R_aug == A True See Also ======== sympy.matrices.dense.DenseMatrix.cholesky sympy.matrices.dense.DenseMatrix.LDLdecomposition sympy.matrices.matrices.MatrixBase.LUdecomposition QRsolve """ return _QRdecomposition_optional(M, normalize=True) def _upper_hessenberg_decomposition(A): """Converts a matrix into Hessenberg matrix H Returns 2 matrices H, P s.t. $P H P^{T} = A$, where H is an upper hessenberg matrix and P is an orthogonal matrix Examples ======== >>> from sympy import Matrix >>> A = Matrix([ ... [1,2,3], ... [-3,5,6], ... [4,-8,9], ... ]) >>> H, P = A.upper_hessenberg_decomposition() >>> H Matrix([ [1, 6/5, 17/5], [5, 213/25, -134/25], [0, 216/25, 137/25]]) >>> P Matrix([ [1, 0, 0], [0, -3/5, 4/5], [0, 4/5, 3/5]]) >>> P * H * P.H == A True References ========== .. [#] https://mathworld.wolfram.com/HessenbergDecomposition.html """ M = A.as_mutable() if not M.is_square: raise NonSquareMatrixError("Matrix must be square.") n = M.cols P = M.eye(n) H = M for j in range(n - 2): u = H[j + 1:, j] if u[1:, :].is_zero_matrix: continue if sign(u[0]) != 0: u[0] = u[0] + sign(u[0]) * u.norm() else: u[0] = u[0] + u.norm() v = u / u.norm() H[j + 1:, :] = H[j + 1:, :] - 2 * v * (v.H * H[j + 1:, :]) H[:, j + 1:] = H[:, j + 1:] - (H[:, j + 1:] * (2 * v)) * v.H P[:, j + 1:] = P[:, j + 1:] - (P[:, j + 1:] * (2 * v)) * v.H return H, P
7a8e5c60045bf64333a8217e05d7628d937b171aa946199ef21d544b4f9354bb
"""A module that handles matrices. Includes functions for fast creating matrices like zero, one/eye, random matrix, etc. """ from .common import ShapeError, NonSquareMatrixError, MatrixKind from .dense import ( GramSchmidt, casoratian, diag, eye, hessian, jordan_cell, list2numpy, matrix2numpy, matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2, rot_axis3, symarray, wronskian, zeros) from .dense import MutableDenseMatrix from .matrices import DeferredVector, MatrixBase Matrix = MutableMatrix = MutableDenseMatrix from .sparse import MutableSparseMatrix from .sparsetools import banded from .immutable import ImmutableDenseMatrix, ImmutableSparseMatrix ImmutableMatrix = ImmutableDenseMatrix SparseMatrix = MutableSparseMatrix from .expressions import ( MatrixSlice, BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity, Inverse, MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace, Transpose, ZeroMatrix, OneMatrix, blockcut, block_collapse, matrix_symbols, Adjoint, hadamard_product, HadamardProduct, HadamardPower, Determinant, det, diagonalize_vector, DiagMatrix, DiagonalMatrix, DiagonalOf, trace, DotProduct, kronecker_product, KroneckerProduct, PermutationMatrix, MatrixPermute, MatrixSet, Permanent, per) from .utilities import dotprodsimp __all__ = [ 'ShapeError', 'NonSquareMatrixError', 'MatrixKind', 'GramSchmidt', 'casoratian', 'diag', 'eye', 'hessian', 'jordan_cell', 'list2numpy', 'matrix2numpy', 'matrix_multiply_elementwise', 'ones', 'randMatrix', 'rot_axis1', 'rot_axis2', 'rot_axis3', 'symarray', 'wronskian', 'zeros', 'MutableDenseMatrix', 'DeferredVector', 'MatrixBase', 'Matrix', 'MutableMatrix', 'MutableSparseMatrix', 'banded', 'ImmutableDenseMatrix', 'ImmutableSparseMatrix', 'ImmutableMatrix', 'SparseMatrix', 'MatrixSlice', 'BlockDiagMatrix', 'BlockMatrix', 'FunctionMatrix', 'Identity', 'Inverse', 'MatAdd', 'MatMul', 'MatPow', 'MatrixExpr', 'MatrixSymbol', 'Trace', 'Transpose', 'ZeroMatrix', 'OneMatrix', 'blockcut', 'block_collapse', 'matrix_symbols', 'Adjoint', 'hadamard_product', 'HadamardProduct', 'HadamardPower', 'Determinant', 'det', 'diagonalize_vector', 'DiagMatrix', 'DiagonalMatrix', 'DiagonalOf', 'trace', 'DotProduct', 'kronecker_product', 'KroneckerProduct', 'PermutationMatrix', 'MatrixPermute', 'MatrixSet', 'Permanent', 'per', 'dotprodsimp', ]
1b3ccf5277f86de3e4334fd5c2461d13e27e3d3ea82cde9454ae09f66e0e6347
""" Basic methods common to all matrices to be used when creating more advanced matrices (e.g., matrices over rings, etc.). """ from collections import defaultdict from collections.abc import Iterable from inspect import isfunction from functools import reduce from sympy.core.logic import FuzzyBool from sympy.assumptions.refine import refine from sympy.core import SympifyError, Add from sympy.core.basic import Atom from sympy.core.compatibility import as_int, is_sequence from sympy.core.decorators import call_highest_priority from sympy.core.kind import Kind, NumberKind from sympy.core.logic import fuzzy_and from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.functions import Abs from sympy.polys.polytools import Poly from sympy.simplify import simplify as _simplify from sympy.simplify.simplify import dotprodsimp as _dotprodsimp from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import flatten from sympy.utilities.misc import filldedent from sympy.tensor.array import NDimArray from .utilities import _get_intermediate_simp_bool class MatrixError(Exception): pass class ShapeError(ValueError, MatrixError): """Wrong matrix shape""" pass class NonSquareMatrixError(ShapeError): pass class NonInvertibleMatrixError(ValueError, MatrixError): """The matrix in not invertible (division by multidimensional zero error).""" pass class NonPositiveDefiniteMatrixError(ValueError, MatrixError): """The matrix is not a positive-definite matrix.""" pass class MatrixRequired: """All subclasses of matrix objects must implement the required matrix properties listed here.""" rows = None # type: int cols = None # type: int _simplify = None @classmethod def _new(cls, *args, **kwargs): """`_new` must, at minimum, be callable as `_new(rows, cols, mat) where mat is a flat list of the elements of the matrix.""" raise NotImplementedError("Subclasses must implement this.") def __eq__(self, other): raise NotImplementedError("Subclasses must implement this.") def __getitem__(self, key): """Implementations of __getitem__ should accept ints, in which case the matrix is indexed as a flat list, tuples (i,j) in which case the (i,j) entry is returned, slices, or mixed tuples (a,b) where a and b are any combintion of slices and integers.""" raise NotImplementedError("Subclasses must implement this.") def __len__(self): """The total number of entries in the matrix.""" raise NotImplementedError("Subclasses must implement this.") @property def shape(self): raise NotImplementedError("Subclasses must implement this.") class MatrixShaping(MatrixRequired): """Provides basic matrix shaping and extracting of submatrices""" def _eval_col_del(self, col): def entry(i, j): return self[i, j] if j < col else self[i, j + 1] return self._new(self.rows, self.cols - 1, entry) def _eval_col_insert(self, pos, other): def entry(i, j): if j < pos: return self[i, j] elif pos <= j < pos + other.cols: return other[i, j - pos] return self[i, j - other.cols] return self._new(self.rows, self.cols + other.cols, lambda i, j: entry(i, j)) def _eval_col_join(self, other): rows = self.rows def entry(i, j): if i < rows: return self[i, j] return other[i - rows, j] return classof(self, other)._new(self.rows + other.rows, self.cols, lambda i, j: entry(i, j)) def _eval_extract(self, rowsList, colsList): mat = list(self) cols = self.cols indices = (i * cols + j for i in rowsList for j in colsList) return self._new(len(rowsList), len(colsList), list(mat[i] for i in indices)) def _eval_get_diag_blocks(self): sub_blocks = [] def recurse_sub_blocks(M): i = 1 while i <= M.shape[0]: if i == 1: to_the_right = M[0, i:] to_the_bottom = M[i:, 0] else: to_the_right = M[:i, i:] to_the_bottom = M[i:, :i] if any(to_the_right) or any(to_the_bottom): i += 1 continue else: sub_blocks.append(M[:i, :i]) if M.shape == M[:i, :i].shape: return else: recurse_sub_blocks(M[i:, i:]) return recurse_sub_blocks(self) return sub_blocks def _eval_row_del(self, row): def entry(i, j): return self[i, j] if i < row else self[i + 1, j] return self._new(self.rows - 1, self.cols, entry) def _eval_row_insert(self, pos, other): entries = list(self) insert_pos = pos * self.cols entries[insert_pos:insert_pos] = list(other) return self._new(self.rows + other.rows, self.cols, entries) def _eval_row_join(self, other): cols = self.cols def entry(i, j): if j < cols: return self[i, j] return other[i, j - cols] return classof(self, other)._new(self.rows, self.cols + other.cols, lambda i, j: entry(i, j)) def _eval_tolist(self): return [list(self[i,:]) for i in range(self.rows)] def _eval_todok(self): dok = {} rows, cols = self.shape for i in range(rows): for j in range(cols): val = self[i, j] if val != self.zero: dok[i, j] = val return dok def _eval_vec(self): rows = self.rows def entry(n, _): # we want to read off the columns first j = n // rows i = n - j * rows return self[i, j] return self._new(len(self), 1, entry) def _eval_vech(self, diagonal): c = self.cols v = [] if diagonal: for j in range(c): for i in range(j, c): v.append(self[i, j]) else: for j in range(c): for i in range(j + 1, c): v.append(self[i, j]) return self._new(len(v), 1, v) def col_del(self, col): """Delete the specified column.""" if col < 0: col += self.cols if not 0 <= col < self.cols: raise IndexError("Column {} is out of range.".format(col)) return self._eval_col_del(col) def col_insert(self, pos, other): """Insert one or more columns at the given column position. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(3, 1) >>> M.col_insert(1, V) Matrix([ [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]]) See Also ======== col row_insert """ # Allows you to build a matrix even if it is null matrix if not self: return type(self)(other) pos = as_int(pos) if pos < 0: pos = self.cols + pos if pos < 0: pos = 0 elif pos > self.cols: pos = self.cols if self.rows != other.rows: raise ShapeError( "`self` and `other` must have the same number of rows.") return self._eval_col_insert(pos, other) def col_join(self, other): """Concatenates two matrices along self's last and other's first row. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(1, 3) >>> M.col_join(V) Matrix([ [0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 1, 1]]) See Also ======== col row_join """ # A null matrix can always be stacked (see #10770) if self.rows == 0 and self.cols != other.cols: return self._new(0, other.cols, []).col_join(other) if self.cols != other.cols: raise ShapeError( "`self` and `other` must have the same number of columns.") return self._eval_col_join(other) def col(self, j): """Elementary column selector. Examples ======== >>> from sympy import eye >>> eye(2).col(0) Matrix([ [1], [0]]) See Also ======== row sympy.matrices.dense.MutableDenseMatrix.col_op sympy.matrices.dense.MutableDenseMatrix.col_swap col_del col_join col_insert """ return self[:, j] def extract(self, rowsList, colsList): """Return a submatrix by specifying a list of rows and columns. Negative indices can be given. All indices must be in the range -n <= i < n where n is the number of rows or columns. Examples ======== >>> from sympy import Matrix >>> m = Matrix(4, 3, range(12)) >>> m Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) >>> m.extract([0, 1, 3], [0, 1]) Matrix([ [0, 1], [3, 4], [9, 10]]) Rows or columns can be repeated: >>> m.extract([0, 0, 1], [-1]) Matrix([ [2], [2], [5]]) Every other row can be taken by using range to provide the indices: >>> m.extract(range(0, m.rows, 2), [-1]) Matrix([ [2], [8]]) RowsList or colsList can also be a list of booleans, in which case the rows or columns corresponding to the True values will be selected: >>> m.extract([0, 1, 2, 3], [True, False, True]) Matrix([ [0, 2], [3, 5], [6, 8], [9, 11]]) """ if not is_sequence(rowsList) or not is_sequence(colsList): raise TypeError("rowsList and colsList must be iterable") # ensure rowsList and colsList are lists of integers if rowsList and all(isinstance(i, bool) for i in rowsList): rowsList = [index for index, item in enumerate(rowsList) if item] if colsList and all(isinstance(i, bool) for i in colsList): colsList = [index for index, item in enumerate(colsList) if item] # ensure everything is in range rowsList = [a2idx(k, self.rows) for k in rowsList] colsList = [a2idx(k, self.cols) for k in colsList] return self._eval_extract(rowsList, colsList) def get_diag_blocks(self): """Obtains the square sub-matrices on the main diagonal of a square matrix. Useful for inverting symbolic matrices or solving systems of linear equations which may be decoupled by having a block diagonal structure. Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x, y, z >>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]]) >>> a1, a2, a3 = A.get_diag_blocks() >>> a1 Matrix([ [1, 3], [y, z**2]]) >>> a2 Matrix([[x]]) >>> a3 Matrix([[0]]) """ return self._eval_get_diag_blocks() @classmethod def hstack(cls, *args): """Return a matrix formed by joining args horizontally (i.e. by repeated application of row_join). Examples ======== >>> from sympy.matrices import Matrix, eye >>> Matrix.hstack(eye(2), 2*eye(2)) Matrix([ [1, 0, 2, 0], [0, 1, 0, 2]]) """ if len(args) == 0: return cls._new() kls = type(args[0]) return reduce(kls.row_join, args) def reshape(self, rows, cols): """Reshape the matrix. Total number of elements must remain the same. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 3, lambda i, j: 1) >>> m Matrix([ [1, 1, 1], [1, 1, 1]]) >>> m.reshape(1, 6) Matrix([[1, 1, 1, 1, 1, 1]]) >>> m.reshape(3, 2) Matrix([ [1, 1], [1, 1], [1, 1]]) """ if self.rows * self.cols != rows * cols: raise ValueError("Invalid reshape parameters %d %d" % (rows, cols)) return self._new(rows, cols, lambda i, j: self[i * cols + j]) def row_del(self, row): """Delete the specified row.""" if row < 0: row += self.rows if not 0 <= row < self.rows: raise IndexError("Row {} is out of range.".format(row)) return self._eval_row_del(row) def row_insert(self, pos, other): """Insert one or more rows at the given row position. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(1, 3) >>> M.row_insert(1, V) Matrix([ [0, 0, 0], [1, 1, 1], [0, 0, 0], [0, 0, 0]]) See Also ======== row col_insert """ # Allows you to build a matrix even if it is null matrix if not self: return self._new(other) pos = as_int(pos) if pos < 0: pos = self.rows + pos if pos < 0: pos = 0 elif pos > self.rows: pos = self.rows if self.cols != other.cols: raise ShapeError( "`self` and `other` must have the same number of columns.") return self._eval_row_insert(pos, other) def row_join(self, other): """Concatenates two matrices along self's last and rhs's first column Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(3, 1) >>> M.row_join(V) Matrix([ [0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 1]]) See Also ======== row col_join """ # A null matrix can always be stacked (see #10770) if self.cols == 0 and self.rows != other.rows: return self._new(other.rows, 0, []).row_join(other) if self.rows != other.rows: raise ShapeError( "`self` and `rhs` must have the same number of rows.") return self._eval_row_join(other) def diagonal(self, k=0): """Returns the kth diagonal of self. The main diagonal corresponds to `k=0`; diagonals above and below correspond to `k > 0` and `k < 0`, respectively. The values of `self[i, j]` for which `j - i = k`, are returned in order of increasing `i + j`, starting with `i + j = |k|`. Examples ======== >>> from sympy import Matrix >>> m = Matrix(3, 3, lambda i, j: j - i); m Matrix([ [ 0, 1, 2], [-1, 0, 1], [-2, -1, 0]]) >>> _.diagonal() Matrix([[0, 0, 0]]) >>> m.diagonal(1) Matrix([[1, 1]]) >>> m.diagonal(-2) Matrix([[-2]]) Even though the diagonal is returned as a Matrix, the element retrieval can be done with a single index: >>> Matrix.diag(1, 2, 3).diagonal()[1] # instead of [0, 1] 2 See Also ======== diag - to create a diagonal matrix """ rv = [] k = as_int(k) r = 0 if k > 0 else -k c = 0 if r else k while True: if r == self.rows or c == self.cols: break rv.append(self[r, c]) r += 1 c += 1 if not rv: raise ValueError(filldedent(''' The %s diagonal is out of range [%s, %s]''' % ( k, 1 - self.rows, self.cols - 1))) return self._new(1, len(rv), rv) def row(self, i): """Elementary row selector. Examples ======== >>> from sympy import eye >>> eye(2).row(0) Matrix([[1, 0]]) See Also ======== col sympy.matrices.dense.MutableDenseMatrix.row_op sympy.matrices.dense.MutableDenseMatrix.row_swap row_del row_join row_insert """ return self[i, :] @property def shape(self): """The shape (dimensions) of the matrix as the 2-tuple (rows, cols). Examples ======== >>> from sympy.matrices import zeros >>> M = zeros(2, 3) >>> M.shape (2, 3) >>> M.rows 2 >>> M.cols 3 """ return (self.rows, self.cols) def todok(self): """Return the matrix as dictionary of keys. Examples ======== >>> from sympy import Matrix >>> M = Matrix.eye(3) >>> M.todok() {(0, 0): 1, (1, 1): 1, (2, 2): 1} """ return self._eval_todok() def tolist(self): """Return the Matrix as a nested Python list. Examples ======== >>> from sympy import Matrix, ones >>> m = Matrix(3, 3, range(9)) >>> m Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> m.tolist() [[0, 1, 2], [3, 4, 5], [6, 7, 8]] >>> ones(3, 0).tolist() [[], [], []] When there are no rows then it will not be possible to tell how many columns were in the original matrix: >>> ones(0, 3).tolist() [] """ if not self.rows: return [] if not self.cols: return [[] for i in range(self.rows)] return self._eval_tolist() def vec(self): """Return the Matrix converted into a one column matrix by stacking columns Examples ======== >>> from sympy import Matrix >>> m=Matrix([[1, 3], [2, 4]]) >>> m Matrix([ [1, 3], [2, 4]]) >>> m.vec() Matrix([ [1], [2], [3], [4]]) See Also ======== vech """ return self._eval_vec() def vech(self, diagonal=True, check_symmetry=True): """Reshapes the matrix into a column vector by stacking the elements in the lower triangle. Parameters ========== diagonal : bool, optional If ``True``, it includes the diagonal elements. check_symmetry : bool, optional If ``True``, it checks whether the matrix is symmetric. Examples ======== >>> from sympy import Matrix >>> m=Matrix([[1, 2], [2, 3]]) >>> m Matrix([ [1, 2], [2, 3]]) >>> m.vech() Matrix([ [1], [2], [3]]) >>> m.vech(diagonal=False) Matrix([[2]]) Notes ===== This should work for symmetric matrices and ``vech`` can represent symmetric matrices in vector form with less size than ``vec``. See Also ======== vec """ if not self.is_square: raise NonSquareMatrixError if check_symmetry and not self.is_symmetric(): raise ValueError("The matrix is not symmetric.") return self._eval_vech(diagonal) @classmethod def vstack(cls, *args): """Return a matrix formed by joining args vertically (i.e. by repeated application of col_join). Examples ======== >>> from sympy.matrices import Matrix, eye >>> Matrix.vstack(eye(2), 2*eye(2)) Matrix([ [1, 0], [0, 1], [2, 0], [0, 2]]) """ if len(args) == 0: return cls._new() kls = type(args[0]) return reduce(kls.col_join, args) class MatrixSpecial(MatrixRequired): """Construction of special matrices""" @classmethod def _eval_diag(cls, rows, cols, diag_dict): """diag_dict is a defaultdict containing all the entries of the diagonal matrix.""" def entry(i, j): return diag_dict[(i, j)] return cls._new(rows, cols, entry) @classmethod def _eval_eye(cls, rows, cols): def entry(i, j): return cls.one if i == j else cls.zero return cls._new(rows, cols, entry) @classmethod def _eval_jordan_block(cls, rows, cols, eigenvalue, band='upper'): if band == 'lower': def entry(i, j): if i == j: return eigenvalue elif j + 1 == i: return cls.one return cls.zero else: def entry(i, j): if i == j: return eigenvalue elif i + 1 == j: return cls.one return cls.zero return cls._new(rows, cols, entry) @classmethod def _eval_ones(cls, rows, cols): def entry(i, j): return cls.one return cls._new(rows, cols, entry) @classmethod def _eval_zeros(cls, rows, cols): def entry(i, j): return cls.zero return cls._new(rows, cols, entry) @classmethod def diag(kls, *args, strict=False, unpack=True, rows=None, cols=None, **kwargs): """Returns a matrix with the specified diagonal. If matrices are passed, a block-diagonal matrix is created (i.e. the "direct sum" of the matrices). kwargs ====== rows : rows of the resulting matrix; computed if not given. cols : columns of the resulting matrix; computed if not given. cls : class for the resulting matrix unpack : bool which, when True (default), unpacks a single sequence rather than interpreting it as a Matrix. strict : bool which, when False (default), allows Matrices to have variable-length rows. Examples ======== >>> from sympy.matrices import Matrix >>> Matrix.diag(1, 2, 3) Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) The current default is to unpack a single sequence. If this is not desired, set `unpack=False` and it will be interpreted as a matrix. >>> Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3) True When more than one element is passed, each is interpreted as something to put on the diagonal. Lists are converted to matrices. Filling of the diagonal always continues from the bottom right hand corner of the previous item: this will create a block-diagonal matrix whether the matrices are square or not. >>> col = [1, 2, 3] >>> row = [[4, 5]] >>> Matrix.diag(col, row) Matrix([ [1, 0, 0], [2, 0, 0], [3, 0, 0], [0, 4, 5]]) When `unpack` is False, elements within a list need not all be of the same length. Setting `strict` to True would raise a ValueError for the following: >>> Matrix.diag([[1, 2, 3], [4, 5], [6]], unpack=False) Matrix([ [1, 2, 3], [4, 5, 0], [6, 0, 0]]) The type of the returned matrix can be set with the ``cls`` keyword. >>> from sympy.matrices import ImmutableMatrix >>> from sympy.utilities.misc import func_name >>> func_name(Matrix.diag(1, cls=ImmutableMatrix)) 'ImmutableDenseMatrix' A zero dimension matrix can be used to position the start of the filling at the start of an arbitrary row or column: >>> from sympy import ones >>> r2 = ones(0, 2) >>> Matrix.diag(r2, 1, 2) Matrix([ [0, 0, 1, 0], [0, 0, 0, 2]]) See Also ======== eye diagonal - to extract a diagonal .dense.diag .expressions.blockmatrix.BlockMatrix .sparsetools.banded - to create multi-diagonal matrices """ from sympy.matrices.matrices import MatrixBase from sympy.matrices.dense import Matrix from sympy.matrices.sparse import SparseMatrix klass = kwargs.get('cls', kls) if unpack and len(args) == 1 and is_sequence(args[0]) and \ not isinstance(args[0], MatrixBase): args = args[0] # fill a default dict with the diagonal entries diag_entries = defaultdict(int) rmax = cmax = 0 # keep track of the biggest index seen for m in args: if isinstance(m, list): if strict: # if malformed, Matrix will raise an error _ = Matrix(m) r, c = _.shape m = _.tolist() else: r, c, smat = SparseMatrix._handle_creation_inputs(m) for (i, j), _ in smat.items(): diag_entries[(i + rmax, j + cmax)] = _ m = [] # to skip process below elif hasattr(m, 'shape'): # a Matrix # convert to list of lists r, c = m.shape m = m.tolist() else: # in this case, we're a single value diag_entries[(rmax, cmax)] = m rmax += 1 cmax += 1 continue # process list of lists for i in range(len(m)): for j, _ in enumerate(m[i]): diag_entries[(i + rmax, j + cmax)] = _ rmax += r cmax += c if rows is None: rows, cols = cols, rows if rows is None: rows, cols = rmax, cmax else: cols = rows if cols is None else cols if rows < rmax or cols < cmax: raise ValueError(filldedent(''' The constructed matrix is {} x {} but a size of {} x {} was specified.'''.format(rmax, cmax, rows, cols))) return klass._eval_diag(rows, cols, diag_entries) @classmethod def eye(kls, rows, cols=None, **kwargs): """Returns an identity matrix. Args ==== rows : rows of the matrix cols : cols of the matrix (if None, cols=rows) kwargs ====== cls : class of the returned matrix """ if cols is None: cols = rows klass = kwargs.get('cls', kls) rows, cols = as_int(rows), as_int(cols) return klass._eval_eye(rows, cols) @classmethod def jordan_block(kls, size=None, eigenvalue=None, *, band='upper', **kwargs): """Returns a Jordan block Parameters ========== size : Integer, optional Specifies the shape of the Jordan block matrix. eigenvalue : Number or Symbol Specifies the value for the main diagonal of the matrix. .. note:: The keyword ``eigenval`` is also specified as an alias of this keyword, but it is not recommended to use. We may deprecate the alias in later release. band : 'upper' or 'lower', optional Specifies the position of the off-diagonal to put `1` s on. cls : Matrix, optional Specifies the matrix class of the output form. If it is not specified, the class type where the method is being executed on will be returned. rows, cols : Integer, optional Specifies the shape of the Jordan block matrix. See Notes section for the details of how these key works. .. note:: This feature will be deprecated in the future. Returns ======= Matrix A Jordan block matrix. Raises ====== ValueError If insufficient arguments are given for matrix size specification, or no eigenvalue is given. Examples ======== Creating a default Jordan block: >>> from sympy import Matrix >>> from sympy.abc import x >>> Matrix.jordan_block(4, x) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]]) Creating an alternative Jordan block matrix where `1` is on lower off-diagonal: >>> Matrix.jordan_block(4, x, band='lower') Matrix([ [x, 0, 0, 0], [1, x, 0, 0], [0, 1, x, 0], [0, 0, 1, x]]) Creating a Jordan block with keyword arguments >>> Matrix.jordan_block(size=4, eigenvalue=x) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]]) Notes ===== .. note:: This feature will be deprecated in the future. The keyword arguments ``size``, ``rows``, ``cols`` relates to the Jordan block size specifications. If you want to create a square Jordan block, specify either one of the three arguments. If you want to create a rectangular Jordan block, specify ``rows`` and ``cols`` individually. +--------------------------------+---------------------+ | Arguments Given | Matrix Shape | +----------+----------+----------+----------+----------+ | size | rows | cols | rows | cols | +==========+==========+==========+==========+==========+ | size | Any | size | size | +----------+----------+----------+----------+----------+ | | None | ValueError | | +----------+----------+----------+----------+ | None | rows | None | rows | rows | | +----------+----------+----------+----------+ | | None | cols | cols | cols | + +----------+----------+----------+----------+ | | rows | cols | rows | cols | +----------+----------+----------+----------+----------+ References ========== .. [1] https://en.wikipedia.org/wiki/Jordan_matrix """ if 'rows' in kwargs or 'cols' in kwargs: SymPyDeprecationWarning( feature="Keyword arguments 'rows' or 'cols'", issue=16102, useinstead="a more generic banded matrix constructor", deprecated_since_version="1.4" ).warn() klass = kwargs.pop('cls', kls) rows = kwargs.pop('rows', None) cols = kwargs.pop('cols', None) eigenval = kwargs.get('eigenval', None) if eigenvalue is None and eigenval is None: raise ValueError("Must supply an eigenvalue") elif eigenvalue != eigenval and None not in (eigenval, eigenvalue): raise ValueError( "Inconsistent values are given: 'eigenval'={}, " "'eigenvalue'={}".format(eigenval, eigenvalue)) else: if eigenval is not None: eigenvalue = eigenval if (size, rows, cols) == (None, None, None): raise ValueError("Must supply a matrix size") if size is not None: rows, cols = size, size elif rows is not None and cols is None: cols = rows elif cols is not None and rows is None: rows = cols rows, cols = as_int(rows), as_int(cols) return klass._eval_jordan_block(rows, cols, eigenvalue, band) @classmethod def ones(kls, rows, cols=None, **kwargs): """Returns a matrix of ones. Args ==== rows : rows of the matrix cols : cols of the matrix (if None, cols=rows) kwargs ====== cls : class of the returned matrix """ if cols is None: cols = rows klass = kwargs.get('cls', kls) rows, cols = as_int(rows), as_int(cols) return klass._eval_ones(rows, cols) @classmethod def zeros(kls, rows, cols=None, **kwargs): """Returns a matrix of zeros. Args ==== rows : rows of the matrix cols : cols of the matrix (if None, cols=rows) kwargs ====== cls : class of the returned matrix """ if cols is None: cols = rows klass = kwargs.get('cls', kls) rows, cols = as_int(rows), as_int(cols) return klass._eval_zeros(rows, cols) @classmethod def companion(kls, poly): """Returns a companion matrix of a polynomial. Examples ======== >>> from sympy import Matrix, Poly, Symbol, symbols >>> x = Symbol('x') >>> c0, c1, c2, c3, c4 = symbols('c0:5') >>> p = Poly(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + x**5, x) >>> Matrix.companion(p) Matrix([ [0, 0, 0, 0, -c0], [1, 0, 0, 0, -c1], [0, 1, 0, 0, -c2], [0, 0, 1, 0, -c3], [0, 0, 0, 1, -c4]]) """ poly = kls._sympify(poly) if not isinstance(poly, Poly): raise ValueError("{} must be a Poly instance.".format(poly)) if not poly.is_monic: raise ValueError("{} must be a monic polynomial.".format(poly)) if not poly.is_univariate: raise ValueError( "{} must be a univariate polynomial.".format(poly)) size = poly.degree() if not size >= 1: raise ValueError( "{} must have degree not less than 1.".format(poly)) coeffs = poly.all_coeffs() def entry(i, j): if j == size - 1: return -coeffs[-1 - i] elif i == j + 1: return kls.one return kls.zero return kls._new(size, size, entry) class MatrixProperties(MatrixRequired): """Provides basic properties of a matrix.""" def _eval_atoms(self, *types): result = set() for i in self: result.update(i.atoms(*types)) return result def _eval_free_symbols(self): return set().union(*(i.free_symbols for i in self if i)) def _eval_has(self, *patterns): return any(a.has(*patterns) for a in self) def _eval_is_anti_symmetric(self, simpfunc): if not all(simpfunc(self[i, j] + self[j, i]).is_zero for i in range(self.rows) for j in range(self.cols)): return False return True def _eval_is_diagonal(self): for i in range(self.rows): for j in range(self.cols): if i != j and self[i, j]: return False return True # _eval_is_hermitian is called by some general sympy # routines and has a different *args signature. Make # sure the names don't clash by adding `_matrix_` in name. def _eval_is_matrix_hermitian(self, simpfunc): mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i].conjugate())) return mat.is_zero_matrix def _eval_is_Identity(self) -> FuzzyBool: def dirac(i, j): if i == j: return 1 return 0 return all(self[i, j] == dirac(i, j) for i in range(self.rows) for j in range(self.cols)) def _eval_is_lower_hessenberg(self): return all(self[i, j].is_zero for i in range(self.rows) for j in range(i + 2, self.cols)) def _eval_is_lower(self): return all(self[i, j].is_zero for i in range(self.rows) for j in range(i + 1, self.cols)) def _eval_is_symbolic(self): return self.has(Symbol) def _eval_is_symmetric(self, simpfunc): mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i])) return mat.is_zero_matrix def _eval_is_zero_matrix(self): if any(i.is_zero == False for i in self): return False if any(i.is_zero is None for i in self): return None return True def _eval_is_upper_hessenberg(self): return all(self[i, j].is_zero for i in range(2, self.rows) for j in range(min(self.cols, (i - 1)))) def _eval_values(self): return [i for i in self if not i.is_zero] def _has_positive_diagonals(self): diagonal_entries = (self[i, i] for i in range(self.rows)) return fuzzy_and(x.is_positive for x in diagonal_entries) def _has_nonnegative_diagonals(self): diagonal_entries = (self[i, i] for i in range(self.rows)) return fuzzy_and(x.is_nonnegative for x in diagonal_entries) def atoms(self, *types): """Returns the atoms that form the current object. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import Matrix >>> Matrix([[x]]) Matrix([[x]]) >>> _.atoms() {x} >>> Matrix([[x, y], [y, x]]) Matrix([ [x, y], [y, x]]) >>> _.atoms() {x, y} """ types = tuple(t if isinstance(t, type) else type(t) for t in types) if not types: types = (Atom,) return self._eval_atoms(*types) @property def free_symbols(self): """Returns the free symbols within the matrix. Examples ======== >>> from sympy.abc import x >>> from sympy.matrices import Matrix >>> Matrix([[x], [1]]).free_symbols {x} """ return self._eval_free_symbols() def has(self, *patterns): """Test whether any subexpression matches any of the patterns. Examples ======== >>> from sympy import Matrix, SparseMatrix, Float >>> from sympy.abc import x, y >>> A = Matrix(((1, x), (0.2, 3))) >>> B = SparseMatrix(((1, x), (0.2, 3))) >>> A.has(x) True >>> A.has(y) False >>> A.has(Float) True >>> B.has(x) True >>> B.has(y) False >>> B.has(Float) True """ return self._eval_has(*patterns) def is_anti_symmetric(self, simplify=True): """Check if matrix M is an antisymmetric matrix, that is, M is a square matrix with all M[i, j] == -M[j, i]. When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is simplified before testing to see if it is zero. By default, the SymPy simplify function is used. To use a custom function set simplify to a function that accepts a single argument which returns a simplified expression. To skip simplification, set simplify to False but note that although this will be faster, it may induce false negatives. Examples ======== >>> from sympy import Matrix, symbols >>> m = Matrix(2, 2, [0, 1, -1, 0]) >>> m Matrix([ [ 0, 1], [-1, 0]]) >>> m.is_anti_symmetric() True >>> x, y = symbols('x y') >>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0]) >>> m Matrix([ [ 0, 0, x], [-y, 0, 0]]) >>> m.is_anti_symmetric() False >>> from sympy.abc import x, y >>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y, ... -(x + 1)**2 , 0, x*y, ... -y, -x*y, 0]) Simplification of matrix elements is done by default so even though two elements which should be equal and opposite wouldn't pass an equality test, the matrix is still reported as anti-symmetric: >>> m[0, 1] == -m[1, 0] False >>> m.is_anti_symmetric() True If 'simplify=False' is used for the case when a Matrix is already simplified, this will speed things up. Here, we see that without simplification the matrix does not appear anti-symmetric: >>> m.is_anti_symmetric(simplify=False) False But if the matrix were already expanded, then it would appear anti-symmetric and simplification in the is_anti_symmetric routine is not needed: >>> m = m.expand() >>> m.is_anti_symmetric(simplify=False) True """ # accept custom simplification simpfunc = simplify if not isfunction(simplify): simpfunc = _simplify if simplify else lambda x: x if not self.is_square: return False return self._eval_is_anti_symmetric(simpfunc) def is_diagonal(self): """Check if matrix is diagonal, that is matrix in which the entries outside the main diagonal are all zero. Examples ======== >>> from sympy import Matrix, diag >>> m = Matrix(2, 2, [1, 0, 0, 2]) >>> m Matrix([ [1, 0], [0, 2]]) >>> m.is_diagonal() True >>> m = Matrix(2, 2, [1, 1, 0, 2]) >>> m Matrix([ [1, 1], [0, 2]]) >>> m.is_diagonal() False >>> m = diag(1, 2, 3) >>> m Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> m.is_diagonal() True See Also ======== is_lower is_upper sympy.matrices.matrices.MatrixEigen.is_diagonalizable diagonalize """ return self._eval_is_diagonal() @property def is_weakly_diagonally_dominant(self): r"""Tests if the matrix is row weakly diagonally dominant. Explanation =========== A $n, n$ matrix $A$ is row weakly diagonally dominant if .. math:: \left|A_{i, i}\right| \ge \sum_{j = 0, j \neq i}^{n-1} \left|A_{i, j}\right| \quad {\text{for all }} i \in \{ 0, ..., n-1 \} Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]]) >>> A.is_weakly_diagonally_dominant True >>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]]) >>> A.is_weakly_diagonally_dominant False >>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]]) >>> A.is_weakly_diagonally_dominant True Notes ===== If you want to test whether a matrix is column diagonally dominant, you can apply the test after transposing the matrix. """ if not self.is_square: return False rows, cols = self.shape def test_row(i): summation = self.zero for j in range(cols): if i != j: summation += Abs(self[i, j]) return (Abs(self[i, i]) - summation).is_nonnegative return fuzzy_and(test_row(i) for i in range(rows)) @property def is_strongly_diagonally_dominant(self): r"""Tests if the matrix is row strongly diagonally dominant. Explanation =========== A $n, n$ matrix $A$ is row strongly diagonally dominant if .. math:: \left|A_{i, i}\right| > \sum_{j = 0, j \neq i}^{n-1} \left|A_{i, j}\right| \quad {\text{for all }} i \in \{ 0, ..., n-1 \} Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]]) >>> A.is_strongly_diagonally_dominant False >>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]]) >>> A.is_strongly_diagonally_dominant False >>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]]) >>> A.is_strongly_diagonally_dominant True Notes ===== If you want to test whether a matrix is column diagonally dominant, you can apply the test after transposing the matrix. """ if not self.is_square: return False rows, cols = self.shape def test_row(i): summation = self.zero for j in range(cols): if i != j: summation += Abs(self[i, j]) return (Abs(self[i, i]) - summation).is_positive return fuzzy_and(test_row(i) for i in range(rows)) @property def is_hermitian(self): """Checks if the matrix is Hermitian. In a Hermitian matrix element i,j is the complex conjugate of element j,i. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy import I >>> from sympy.abc import x >>> a = Matrix([[1, I], [-I, 1]]) >>> a Matrix([ [ 1, I], [-I, 1]]) >>> a.is_hermitian True >>> a[0, 0] = 2*I >>> a.is_hermitian False >>> a[0, 0] = x >>> a.is_hermitian >>> a[0, 1] = a[1, 0]*I >>> a.is_hermitian False """ if not self.is_square: return False return self._eval_is_matrix_hermitian(_simplify) @property def is_Identity(self) -> FuzzyBool: if not self.is_square: return False return self._eval_is_Identity() @property def is_lower_hessenberg(self): r"""Checks if the matrix is in the lower-Hessenberg form. The lower hessenberg matrix has zero entries above the first superdiagonal. Examples ======== >>> from sympy.matrices import Matrix >>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]]) >>> a Matrix([ [1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]]) >>> a.is_lower_hessenberg True See Also ======== is_upper_hessenberg is_lower """ return self._eval_is_lower_hessenberg() @property def is_lower(self): """Check if matrix is a lower triangular matrix. True can be returned even if the matrix is not square. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [1, 0, 0, 1]) >>> m Matrix([ [1, 0], [0, 1]]) >>> m.is_lower True >>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4 , 0, 6, 6, 5]) >>> m Matrix([ [0, 0, 0], [2, 0, 0], [1, 4, 0], [6, 6, 5]]) >>> m.is_lower True >>> from sympy.abc import x, y >>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y]) >>> m Matrix([ [x**2 + y, x + y**2], [ 0, x + y]]) >>> m.is_lower False See Also ======== is_upper is_diagonal is_lower_hessenberg """ return self._eval_is_lower() @property def is_square(self): """Checks if a matrix is square. A matrix is square if the number of rows equals the number of columns. The empty matrix is square by definition, since the number of rows and the number of columns are both zero. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[1, 2, 3], [4, 5, 6]]) >>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> c = Matrix([]) >>> a.is_square False >>> b.is_square True >>> c.is_square True """ return self.rows == self.cols def is_symbolic(self): """Checks if any elements contain Symbols. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.is_symbolic() True """ return self._eval_is_symbolic() def is_symmetric(self, simplify=True): """Check if matrix is symmetric matrix, that is square matrix and is equal to its transpose. By default, simplifications occur before testing symmetry. They can be skipped using 'simplify=False'; while speeding things a bit, this may however induce false negatives. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [0, 1, 1, 2]) >>> m Matrix([ [0, 1], [1, 2]]) >>> m.is_symmetric() True >>> m = Matrix(2, 2, [0, 1, 2, 0]) >>> m Matrix([ [0, 1], [2, 0]]) >>> m.is_symmetric() False >>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0]) >>> m Matrix([ [0, 0, 0], [0, 0, 0]]) >>> m.is_symmetric() False >>> from sympy.abc import x, y >>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2 , 2, 0, y, 0, 3]) >>> m Matrix([ [ 1, x**2 + 2*x + 1, y], [(x + 1)**2, 2, 0], [ y, 0, 3]]) >>> m.is_symmetric() True If the matrix is already simplified, you may speed-up is_symmetric() test by using 'simplify=False'. >>> bool(m.is_symmetric(simplify=False)) False >>> m1 = m.expand() >>> m1.is_symmetric(simplify=False) True """ simpfunc = simplify if not isfunction(simplify): simpfunc = _simplify if simplify else lambda x: x if not self.is_square: return False return self._eval_is_symmetric(simpfunc) @property def is_upper_hessenberg(self): """Checks if the matrix is the upper-Hessenberg form. The upper hessenberg matrix has zero entries below the first subdiagonal. Examples ======== >>> from sympy.matrices import Matrix >>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]]) >>> a Matrix([ [1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]]) >>> a.is_upper_hessenberg True See Also ======== is_lower_hessenberg is_upper """ return self._eval_is_upper_hessenberg() @property def is_upper(self): """Check if matrix is an upper triangular matrix. True can be returned even if the matrix is not square. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [1, 0, 0, 1]) >>> m Matrix([ [1, 0], [0, 1]]) >>> m.is_upper True >>> m = Matrix(4, 3, [5, 1, 9, 0, 4 , 6, 0, 0, 5, 0, 0, 0]) >>> m Matrix([ [5, 1, 9], [0, 4, 6], [0, 0, 5], [0, 0, 0]]) >>> m.is_upper True >>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1]) >>> m Matrix([ [4, 2, 5], [6, 1, 1]]) >>> m.is_upper False See Also ======== is_lower is_diagonal is_upper_hessenberg """ return all(self[i, j].is_zero for i in range(1, self.rows) for j in range(min(i, self.cols))) @property def is_zero_matrix(self): """Checks if a matrix is a zero matrix. A matrix is zero if every element is zero. A matrix need not be square to be considered zero. The empty matrix is zero by the principle of vacuous truth. For a matrix that may or may not be zero (e.g. contains a symbol), this will be None Examples ======== >>> from sympy import Matrix, zeros >>> from sympy.abc import x >>> a = Matrix([[0, 0], [0, 0]]) >>> b = zeros(3, 4) >>> c = Matrix([[0, 1], [0, 0]]) >>> d = Matrix([]) >>> e = Matrix([[x, 0], [0, 0]]) >>> a.is_zero_matrix True >>> b.is_zero_matrix True >>> c.is_zero_matrix False >>> d.is_zero_matrix True >>> e.is_zero_matrix """ return self._eval_is_zero_matrix() def values(self): """Return non-zero values of self.""" return self._eval_values() class MatrixOperations(MatrixRequired): """Provides basic matrix shape and elementwise operations. Should not be instantiated directly.""" def _eval_adjoint(self): return self.transpose().conjugate() def _eval_applyfunc(self, f): out = self._new(self.rows, self.cols, [f(x) for x in self]) return out def _eval_as_real_imag(self): # type: ignore from sympy.functions.elementary.complexes import re, im return (self.applyfunc(re), self.applyfunc(im)) def _eval_conjugate(self): return self.applyfunc(lambda x: x.conjugate()) def _eval_permute_cols(self, perm): # apply the permutation to a list mapping = list(perm) def entry(i, j): return self[i, mapping[j]] return self._new(self.rows, self.cols, entry) def _eval_permute_rows(self, perm): # apply the permutation to a list mapping = list(perm) def entry(i, j): return self[mapping[i], j] return self._new(self.rows, self.cols, entry) def _eval_trace(self): return sum(self[i, i] for i in range(self.rows)) def _eval_transpose(self): return self._new(self.cols, self.rows, lambda i, j: self[j, i]) def adjoint(self): """Conjugate transpose or Hermitian conjugation.""" return self._eval_adjoint() def applyfunc(self, f): """Apply a function to each element of the matrix. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, lambda i, j: i*2+j) >>> m Matrix([ [0, 1], [2, 3]]) >>> m.applyfunc(lambda i: 2*i) Matrix([ [0, 2], [4, 6]]) """ if not callable(f): raise TypeError("`f` must be callable.") return self._eval_applyfunc(f) def as_real_imag(self, deep=True, **hints): """Returns a tuple containing the (real, imaginary) part of matrix.""" # XXX: Ignoring deep and hints... return self._eval_as_real_imag() def conjugate(self): """Return the by-element conjugation. Examples ======== >>> from sympy.matrices import SparseMatrix >>> from sympy import I >>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I))) >>> a Matrix([ [1, 2 + I], [3, 4], [I, -I]]) >>> a.C Matrix([ [ 1, 2 - I], [ 3, 4], [-I, I]]) See Also ======== transpose: Matrix transposition H: Hermite conjugation sympy.matrices.matrices.MatrixBase.D: Dirac conjugation """ return self._eval_conjugate() def doit(self, **kwargs): return self.applyfunc(lambda x: x.doit()) def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False): """Apply evalf() to each element of self.""" options = {'subs':subs, 'maxn':maxn, 'chop':chop, 'strict':strict, 'quad':quad, 'verbose':verbose} return self.applyfunc(lambda i: i.evalf(n, **options)) def expand(self, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): """Apply core.function.expand to each entry of the matrix. Examples ======== >>> from sympy.abc import x >>> from sympy.matrices import Matrix >>> Matrix(1, 1, [x*(x+1)]) Matrix([[x*(x + 1)]]) >>> _.expand() Matrix([[x**2 + x]]) """ return self.applyfunc(lambda x: x.expand( deep, modulus, power_base, power_exp, mul, log, multinomial, basic, **hints)) @property def H(self): """Return Hermite conjugate. Examples ======== >>> from sympy import Matrix, I >>> m = Matrix((0, 1 + I, 2, 3)) >>> m Matrix([ [ 0], [1 + I], [ 2], [ 3]]) >>> m.H Matrix([[0, 1 - I, 2, 3]]) See Also ======== conjugate: By-element conjugation sympy.matrices.matrices.MatrixBase.D: Dirac conjugation """ return self.T.C def permute(self, perm, orientation='rows', direction='forward'): r"""Permute the rows or columns of a matrix by the given list of swaps. Parameters ========== perm : Permutation, list, or list of lists A representation for the permutation. If it is ``Permutation``, it is used directly with some resizing with respect to the matrix size. If it is specified as list of lists, (e.g., ``[[0, 1], [0, 2]]``), then the permutation is formed from applying the product of cycles. The direction how the cyclic product is applied is described in below. If it is specified as a list, the list should represent an array form of a permutation. (e.g., ``[1, 2, 0]``) which would would form the swapping function `0 \mapsto 1, 1 \mapsto 2, 2\mapsto 0`. orientation : 'rows', 'cols' A flag to control whether to permute the rows or the columns direction : 'forward', 'backward' A flag to control whether to apply the permutations from the start of the list first, or from the back of the list first. For example, if the permutation specification is ``[[0, 1], [0, 2]]``, If the flag is set to ``'forward'``, the cycle would be formed as `0 \mapsto 2, 2 \mapsto 1, 1 \mapsto 0`. If the flag is set to ``'backward'``, the cycle would be formed as `0 \mapsto 1, 1 \mapsto 2, 2 \mapsto 0`. If the argument ``perm`` is not in a form of list of lists, this flag takes no effect. Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward') Matrix([ [0, 0, 1], [1, 0, 0], [0, 1, 0]]) >>> from sympy.matrices import eye >>> M = eye(3) >>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward') Matrix([ [0, 1, 0], [0, 0, 1], [1, 0, 0]]) Notes ===== If a bijective function `\sigma : \mathbb{N}_0 \rightarrow \mathbb{N}_0` denotes the permutation. If the matrix `A` is the matrix to permute, represented as a horizontal or a vertical stack of vectors: .. math:: A = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} \alpha_0 & \alpha_1 & \cdots & \alpha_{n-1} \end{bmatrix} If the matrix `B` is the result, the permutation of matrix rows is defined as: .. math:: B := \begin{bmatrix} a_{\sigma(0)} \\ a_{\sigma(1)} \\ \vdots \\ a_{\sigma(n-1)} \end{bmatrix} And the permutation of matrix columns is defined as: .. math:: B := \begin{bmatrix} \alpha_{\sigma(0)} & \alpha_{\sigma(1)} & \cdots & \alpha_{\sigma(n-1)} \end{bmatrix} """ from sympy.combinatorics import Permutation # allow british variants and `columns` if direction == 'forwards': direction = 'forward' if direction == 'backwards': direction = 'backward' if orientation == 'columns': orientation = 'cols' if direction not in ('forward', 'backward'): raise TypeError("direction='{}' is an invalid kwarg. " "Try 'forward' or 'backward'".format(direction)) if orientation not in ('rows', 'cols'): raise TypeError("orientation='{}' is an invalid kwarg. " "Try 'rows' or 'cols'".format(orientation)) if not isinstance(perm, (Permutation, Iterable)): raise ValueError( "{} must be a list, a list of lists, " "or a SymPy permutation object.".format(perm)) # ensure all swaps are in range max_index = self.rows if orientation == 'rows' else self.cols if not all(0 <= t <= max_index for t in flatten(list(perm))): raise IndexError("`swap` indices out of range.") if perm and not isinstance(perm, Permutation) and \ isinstance(perm[0], Iterable): if direction == 'forward': perm = list(reversed(perm)) perm = Permutation(perm, size=max_index+1) else: perm = Permutation(perm, size=max_index+1) if orientation == 'rows': return self._eval_permute_rows(perm) if orientation == 'cols': return self._eval_permute_cols(perm) def permute_cols(self, swaps, direction='forward'): """Alias for ``self.permute(swaps, orientation='cols', direction=direction)`` See Also ======== permute """ return self.permute(swaps, orientation='cols', direction=direction) def permute_rows(self, swaps, direction='forward'): """Alias for ``self.permute(swaps, orientation='rows', direction=direction)`` See Also ======== permute """ return self.permute(swaps, orientation='rows', direction=direction) def refine(self, assumptions=True): """Apply refine to each element of the matrix. Examples ======== >>> from sympy import Symbol, Matrix, Abs, sqrt, Q >>> x = Symbol('x') >>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]]) Matrix([ [ Abs(x)**2, sqrt(x**2)], [sqrt(x**2), Abs(x)**2]]) >>> _.refine(Q.real(x)) Matrix([ [ x**2, Abs(x)], [Abs(x), x**2]]) """ return self.applyfunc(lambda x: refine(x, assumptions)) def replace(self, F, G, map=False, simultaneous=True, exact=None): """Replaces Function F in Matrix entries with Function G. Examples ======== >>> from sympy import symbols, Function, Matrix >>> F, G = symbols('F, G', cls=Function) >>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M Matrix([ [F(0), F(1)], [F(1), F(2)]]) >>> N = M.replace(F,G) >>> N Matrix([ [G(0), G(1)], [G(1), G(2)]]) """ return self.applyfunc( lambda x: x.replace(F, G, map=map, simultaneous=simultaneous, exact=exact)) def rot90(self, k=1): """Rotates Matrix by 90 degrees Parameters ========== k : int Specifies how many times the matrix is rotated by 90 degrees (clockwise when positive, counter-clockwise when negative). Examples ======== >>> from sympy import Matrix, symbols >>> A = Matrix(2, 2, symbols('a:d')) >>> A Matrix([ [a, b], [c, d]]) Rotating the matrix clockwise one time: >>> A.rot90(1) Matrix([ [c, a], [d, b]]) Rotating the matrix anticlockwise two times: >>> A.rot90(-2) Matrix([ [d, c], [b, a]]) """ mod = k%4 if mod == 0: return self if mod == 1: return self[::-1, ::].T if mod == 2: return self[::-1, ::-1] if mod == 3: return self[::, ::-1].T def simplify(self, **kwargs): """Apply simplify to each element of the matrix. Examples ======== >>> from sympy.abc import x, y >>> from sympy import sin, cos >>> from sympy.matrices import SparseMatrix >>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2]) Matrix([[x*sin(y)**2 + x*cos(y)**2]]) >>> _.simplify() Matrix([[x]]) """ return self.applyfunc(lambda x: x.simplify(**kwargs)) def subs(self, *args, **kwargs): # should mirror core.basic.subs """Return a new matrix with subs applied to each entry. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import SparseMatrix, Matrix >>> SparseMatrix(1, 1, [x]) Matrix([[x]]) >>> _.subs(x, y) Matrix([[y]]) >>> Matrix(_).subs(y, x) Matrix([[x]]) """ if len(args) == 1 and not isinstance(args[0], (dict, set)) and iter(args[0]) and not is_sequence(args[0]): args = (list(args[0]),) return self.applyfunc(lambda x: x.subs(*args, **kwargs)) def trace(self): """ Returns the trace of a square matrix i.e. the sum of the diagonal elements. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.trace() 5 """ if self.rows != self.cols: raise NonSquareMatrixError() return self._eval_trace() def transpose(self): """ Returns the transpose of the matrix. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.transpose() Matrix([ [1, 3], [2, 4]]) >>> from sympy import Matrix, I >>> m=Matrix(((1, 2+I), (3, 4))) >>> m Matrix([ [1, 2 + I], [3, 4]]) >>> m.transpose() Matrix([ [ 1, 3], [2 + I, 4]]) >>> m.T == m.transpose() True See Also ======== conjugate: By-element conjugation """ return self._eval_transpose() @property def T(self): '''Matrix transposition''' return self.transpose() @property def C(self): '''By-element conjugation''' return self.conjugate() def n(self, *args, **kwargs): """Apply evalf() to each element of self.""" return self.evalf(*args, **kwargs) def xreplace(self, rule): # should mirror core.basic.xreplace """Return a new matrix with xreplace applied to each entry. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import SparseMatrix, Matrix >>> SparseMatrix(1, 1, [x]) Matrix([[x]]) >>> _.xreplace({x: y}) Matrix([[y]]) >>> Matrix(_).xreplace({y: x}) Matrix([[x]]) """ return self.applyfunc(lambda x: x.xreplace(rule)) def _eval_simplify(self, **kwargs): # XXX: We can't use self.simplify here as mutable subclasses will # override simplify and have it return None return MatrixOperations.simplify(self, **kwargs) def _eval_trigsimp(self, **opts): from sympy.simplify import trigsimp return self.applyfunc(lambda x: trigsimp(x, **opts)) class MatrixArithmetic(MatrixRequired): """Provides basic matrix arithmetic operations. Should not be instantiated directly.""" _op_priority = 10.01 def _eval_Abs(self): return self._new(self.rows, self.cols, lambda i, j: Abs(self[i, j])) def _eval_add(self, other): return self._new(self.rows, self.cols, lambda i, j: self[i, j] + other[i, j]) def _eval_matrix_mul(self, other): def entry(i, j): vec = [self[i,k]*other[k,j] for k in range(self.cols)] try: return Add(*vec) except (TypeError, SympifyError): # Some matrices don't work with `sum` or `Add` # They don't work with `sum` because `sum` tries to add `0` # Fall back to a safe way to multiply if the `Add` fails. return reduce(lambda a, b: a + b, vec) return self._new(self.rows, other.cols, entry) def _eval_matrix_mul_elementwise(self, other): return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other[i,j]) def _eval_matrix_rmul(self, other): def entry(i, j): return sum(other[i,k]*self[k,j] for k in range(other.cols)) return self._new(other.rows, self.cols, entry) def _eval_pow_by_recursion(self, num): if num == 1: return self if num % 2 == 1: a, b = self, self._eval_pow_by_recursion(num - 1) else: a = b = self._eval_pow_by_recursion(num // 2) return a.multiply(b) def _eval_pow_by_cayley(self, exp): from sympy.discrete.recurrences import linrec_coeffs row = self.shape[0] p = self.charpoly() coeffs = (-p).all_coeffs()[1:] coeffs = linrec_coeffs(coeffs, exp) new_mat = self.eye(row) ans = self.zeros(row) for i in range(row): ans += coeffs[i]*new_mat new_mat *= self return ans def _eval_pow_by_recursion_dotprodsimp(self, num, prevsimp=None): if prevsimp is None: prevsimp = [True]*len(self) if num == 1: return self if num % 2 == 1: a, b = self, self._eval_pow_by_recursion_dotprodsimp(num - 1, prevsimp=prevsimp) else: a = b = self._eval_pow_by_recursion_dotprodsimp(num // 2, prevsimp=prevsimp) m = a.multiply(b, dotprodsimp=False) lenm = len(m) elems = [None]*lenm for i in range(lenm): if prevsimp[i]: elems[i], prevsimp[i] = _dotprodsimp(m[i], withsimp=True) else: elems[i] = m[i] return m._new(m.rows, m.cols, elems) def _eval_scalar_mul(self, other): return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other) def _eval_scalar_rmul(self, other): return self._new(self.rows, self.cols, lambda i, j: other*self[i,j]) def _eval_Mod(self, other): from sympy import Mod return self._new(self.rows, self.cols, lambda i, j: Mod(self[i, j], other)) # python arithmetic functions def __abs__(self): """Returns a new matrix with entry-wise absolute values.""" return self._eval_Abs() @call_highest_priority('__radd__') def __add__(self, other): """Return self + other, raising ShapeError if shapes don't match.""" if isinstance(other, NDimArray): # Matrix and array addition is currently not implemented return NotImplemented other = _matrixify(other) # matrix-like objects can have shapes. This is # our first sanity check. if hasattr(other, 'shape'): if self.shape != other.shape: raise ShapeError("Matrix size mismatch: %s + %s" % ( self.shape, other.shape)) # honest sympy matrices defer to their class's routine if getattr(other, 'is_Matrix', False): # call the highest-priority class's _eval_add a, b = self, other if a.__class__ != classof(a, b): b, a = a, b return a._eval_add(b) # Matrix-like objects can be passed to CommonMatrix routines directly. if getattr(other, 'is_MatrixLike', False): return MatrixArithmetic._eval_add(self, other) raise TypeError('cannot add %s and %s' % (type(self), type(other))) @call_highest_priority('__rtruediv__') def __truediv__(self, other): return self * (self.one / other) @call_highest_priority('__rmatmul__') def __matmul__(self, other): other = _matrixify(other) if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False): return NotImplemented return self.__mul__(other) def __mod__(self, other): return self.applyfunc(lambda x: x % other) @call_highest_priority('__rmul__') def __mul__(self, other): """Return self*other where other is either a scalar or a matrix of compatible dimensions. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([[1, 2, 3], [4, 5, 6]]) >>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]]) True >>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> A*B Matrix([ [30, 36, 42], [66, 81, 96]]) >>> B*A Traceback (most recent call last): ... ShapeError: Matrices size mismatch. >>> See Also ======== matrix_multiply_elementwise """ return self.multiply(other) def multiply(self, other, dotprodsimp=None): """Same as __mul__() but with optional simplification. Parameters ========== dotprodsimp : bool, optional Specifies whether intermediate term algebraic simplification is used during matrix multiplications to control expression blowup and thus speed up calculation. Default is off. """ isimpbool = _get_intermediate_simp_bool(False, dotprodsimp) other = _matrixify(other) # matrix-like objects can have shapes. This is # our first sanity check. Double check other is not explicitly not a Matrix. if (hasattr(other, 'shape') and len(other.shape) == 2 and (getattr(other, 'is_Matrix', True) or getattr(other, 'is_MatrixLike', True))): if self.shape[1] != other.shape[0]: raise ShapeError("Matrix size mismatch: %s * %s." % ( self.shape, other.shape)) # honest sympy matrices defer to their class's routine if getattr(other, 'is_Matrix', False): m = self._eval_matrix_mul(other) if isimpbool: return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m]) return m # Matrix-like objects can be passed to CommonMatrix routines directly. if getattr(other, 'is_MatrixLike', False): return MatrixArithmetic._eval_matrix_mul(self, other) # if 'other' is not iterable then scalar multiplication. if not isinstance(other, Iterable): try: return self._eval_scalar_mul(other) except TypeError: pass return NotImplemented def multiply_elementwise(self, other): """Return the Hadamard product (elementwise product) of A and B Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([[0, 1, 2], [3, 4, 5]]) >>> B = Matrix([[1, 10, 100], [100, 10, 1]]) >>> A.multiply_elementwise(B) Matrix([ [ 0, 10, 200], [300, 40, 5]]) See Also ======== sympy.matrices.matrices.MatrixBase.cross sympy.matrices.matrices.MatrixBase.dot multiply """ if self.shape != other.shape: raise ShapeError("Matrix shapes must agree {} != {}".format(self.shape, other.shape)) return self._eval_matrix_mul_elementwise(other) def __neg__(self): return self._eval_scalar_mul(-1) @call_highest_priority('__rpow__') def __pow__(self, exp): """Return self**exp a scalar or symbol.""" return self.pow(exp) def pow(self, exp, method=None): r"""Return self**exp a scalar or symbol. Parameters ========== method : multiply, mulsimp, jordan, cayley If multiply then it returns exponentiation using recursion. If jordan then Jordan form exponentiation will be used. If cayley then the exponentiation is done using Cayley-Hamilton theorem. If mulsimp then the exponentiation is done using recursion with dotprodsimp. This specifies whether intermediate term algebraic simplification is used during naive matrix power to control expression blowup and thus speed up calculation. If None, then it heuristically decides which method to use. """ if method is not None and method not in ['multiply', 'mulsimp', 'jordan', 'cayley']: raise TypeError('No such method') if self.rows != self.cols: raise NonSquareMatrixError() a = self jordan_pow = getattr(a, '_matrix_pow_by_jordan_blocks', None) exp = sympify(exp) if exp.is_zero: return a._new(a.rows, a.cols, lambda i, j: int(i == j)) if exp == 1: return a diagonal = getattr(a, 'is_diagonal', None) if diagonal is not None and diagonal(): return a._new(a.rows, a.cols, lambda i, j: a[i,j]**exp if i == j else 0) if exp.is_Number and exp % 1 == 0: if a.rows == 1: return a._new([[a[0]**exp]]) if exp < 0: exp = -exp a = a.inv() # When certain conditions are met, # Jordan block algorithm is faster than # computation by recursion. if method == 'jordan': try: return jordan_pow(exp) except MatrixError: if method == 'jordan': raise elif method == 'cayley': if not exp.is_Number or exp % 1 != 0: raise ValueError("cayley method is only valid for integer powers") return a._eval_pow_by_cayley(exp) elif method == "mulsimp": if not exp.is_Number or exp % 1 != 0: raise ValueError("mulsimp method is only valid for integer powers") return a._eval_pow_by_recursion_dotprodsimp(exp) elif method == "multiply": if not exp.is_Number or exp % 1 != 0: raise ValueError("multiply method is only valid for integer powers") return a._eval_pow_by_recursion(exp) elif method is None and exp.is_Number and exp % 1 == 0: # Decide heuristically which method to apply if a.rows == 2 and exp > 100000: return jordan_pow(exp) elif _get_intermediate_simp_bool(True, None): return a._eval_pow_by_recursion_dotprodsimp(exp) elif exp > 10000: return a._eval_pow_by_cayley(exp) else: return a._eval_pow_by_recursion(exp) if jordan_pow: try: return jordan_pow(exp) except NonInvertibleMatrixError: # Raised by jordan_pow on zero determinant matrix unless exp is # definitely known to be a non-negative integer. # Here we raise if n is definitely not a non-negative integer # but otherwise we can leave this as an unevaluated MatPow. if exp.is_integer is False or exp.is_nonnegative is False: raise from sympy.matrices.expressions import MatPow return MatPow(a, exp) @call_highest_priority('__add__') def __radd__(self, other): return self + other @call_highest_priority('__matmul__') def __rmatmul__(self, other): other = _matrixify(other) if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False): return NotImplemented return self.__rmul__(other) @call_highest_priority('__mul__') def __rmul__(self, other): return self.rmultiply(other) def rmultiply(self, other, dotprodsimp=None): """Same as __rmul__() but with optional simplification. Parameters ========== dotprodsimp : bool, optional Specifies whether intermediate term algebraic simplification is used during matrix multiplications to control expression blowup and thus speed up calculation. Default is off. """ isimpbool = _get_intermediate_simp_bool(False, dotprodsimp) other = _matrixify(other) # matrix-like objects can have shapes. This is # our first sanity check. Double check other is not explicitly not a Matrix. if (hasattr(other, 'shape') and len(other.shape) == 2 and (getattr(other, 'is_Matrix', True) or getattr(other, 'is_MatrixLike', True))): if self.shape[0] != other.shape[1]: raise ShapeError("Matrix size mismatch.") # honest sympy matrices defer to their class's routine if getattr(other, 'is_Matrix', False): m = self._eval_matrix_rmul(other) if isimpbool: return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m]) return m # Matrix-like objects can be passed to CommonMatrix routines directly. if getattr(other, 'is_MatrixLike', False): return MatrixArithmetic._eval_matrix_rmul(self, other) # if 'other' is not iterable then scalar multiplication. if not isinstance(other, Iterable): try: return self._eval_scalar_rmul(other) except TypeError: pass return NotImplemented @call_highest_priority('__sub__') def __rsub__(self, a): return (-self) + a @call_highest_priority('__rsub__') def __sub__(self, a): return self + (-a) class MatrixCommon(MatrixArithmetic, MatrixOperations, MatrixProperties, MatrixSpecial, MatrixShaping): """All common matrix operations including basic arithmetic, shaping, and special matrices like `zeros`, and `eye`.""" _diff_wrt = True # type: bool class _MinimalMatrix: """Class providing the minimum functionality for a matrix-like object and implementing every method required for a `MatrixRequired`. This class does not have everything needed to become a full-fledged SymPy object, but it will satisfy the requirements of anything inheriting from `MatrixRequired`. If you wish to make a specialized matrix type, make sure to implement these methods and properties with the exception of `__init__` and `__repr__` which are included for convenience.""" is_MatrixLike = True _sympify = staticmethod(sympify) _class_priority = 3 zero = S.Zero one = S.One is_Matrix = True is_MatrixExpr = False @classmethod def _new(cls, *args, **kwargs): return cls(*args, **kwargs) def __init__(self, rows, cols=None, mat=None): if isfunction(mat): # if we passed in a function, use that to populate the indices mat = list(mat(i, j) for i in range(rows) for j in range(cols)) if cols is None and mat is None: mat = rows rows, cols = getattr(mat, 'shape', (rows, cols)) try: # if we passed in a list of lists, flatten it and set the size if cols is None and mat is None: mat = rows cols = len(mat[0]) rows = len(mat) mat = [x for l in mat for x in l] except (IndexError, TypeError): pass self.mat = tuple(self._sympify(x) for x in mat) self.rows, self.cols = rows, cols if self.rows is None or self.cols is None: raise NotImplementedError("Cannot initialize matrix with given parameters") def __getitem__(self, key): def _normalize_slices(row_slice, col_slice): """Ensure that row_slice and col_slice don't have `None` in their arguments. Any integers are converted to slices of length 1""" if not isinstance(row_slice, slice): row_slice = slice(row_slice, row_slice + 1, None) row_slice = slice(*row_slice.indices(self.rows)) if not isinstance(col_slice, slice): col_slice = slice(col_slice, col_slice + 1, None) col_slice = slice(*col_slice.indices(self.cols)) return (row_slice, col_slice) def _coord_to_index(i, j): """Return the index in _mat corresponding to the (i,j) position in the matrix. """ return i * self.cols + j if isinstance(key, tuple): i, j = key if isinstance(i, slice) or isinstance(j, slice): # if the coordinates are not slices, make them so # and expand the slices so they don't contain `None` i, j = _normalize_slices(i, j) rowsList, colsList = list(range(self.rows))[i], \ list(range(self.cols))[j] indices = (i * self.cols + j for i in rowsList for j in colsList) return self._new(len(rowsList), len(colsList), list(self.mat[i] for i in indices)) # if the key is a tuple of ints, change # it to an array index key = _coord_to_index(i, j) return self.mat[key] def __eq__(self, other): try: classof(self, other) except TypeError: return False return ( self.shape == other.shape and list(self) == list(other)) def __len__(self): return self.rows*self.cols def __repr__(self): return "_MinimalMatrix({}, {}, {})".format(self.rows, self.cols, self.mat) @property def shape(self): return (self.rows, self.cols) class _CastableMatrix: # this is needed here ONLY FOR TESTS. def as_mutable(self): return self def as_immutable(self): return self class _MatrixWrapper: """Wrapper class providing the minimum functionality for a matrix-like object: .rows, .cols, .shape, indexability, and iterability. CommonMatrix math operations should work on matrix-like objects. This one is intended for matrix-like objects which use the same indexing format as SymPy with respect to returning matrix elements instead of rows for non-tuple indexes. """ is_Matrix = False # needs to be here because of __getattr__ is_MatrixLike = True def __init__(self, mat, shape): self.mat = mat self.shape = shape self.rows, self.cols = shape def __getitem__(self, key): if isinstance(key, tuple): return sympify(self.mat.__getitem__(key)) return sympify(self.mat.__getitem__((key // self.rows, key % self.cols))) def __iter__(self): # supports numpy.matrix and numpy.array mat = self.mat cols = self.cols return iter(sympify(mat[r, c]) for r in range(self.rows) for c in range(cols)) class MatrixKind(Kind): """ Kind for all matrices in SymPy. Basic class for this kind is ``MatrixBase`` and ``MatrixExpr``, but any expression representing the matrix can have this. Parameters ========== element_kind : Kind Kind of the element. Default is :obj:NumberKind `<sympy.core.kind.NumberKind>`, which means that the matrix contains only numbers. Examples ======== Any instance of matrix class has ``MatrixKind``. >>> from sympy import MatrixSymbol >>> A = MatrixSymbol('A', 2,2) >>> A.kind MatrixKind(NumberKind) Although expression representing a matrix may be not instance of matrix class, it will have ``MatrixKind`` as well. >>> from sympy import Integral >>> from sympy.matrices.expressions import MatrixExpr >>> from sympy.abc import x >>> intM = Integral(A, x) >>> isinstance(intM, MatrixExpr) False >>> intM.kind MatrixKind(NumberKind) Use ``isinstance()`` to check for ``MatrixKind` without specifying the element kind. Use ``is`` with specifying the element kind. >>> from sympy import Matrix >>> from sympy.matrices import MatrixKind >>> from sympy.core.kind import NumberKind >>> boolM = Matrix([True, False]) >>> isinstance(boolM.kind, MatrixKind) True >>> boolM.kind is MatrixKind(NumberKind) False See Also ======== shape : Function to return the shape of objects with ``MatrixKind``. """ def __new__(cls, element_kind=NumberKind): obj = super().__new__(cls, element_kind) obj.element_kind = element_kind return obj def __repr__(self): return "MatrixKind(%s)" % self.element_kind def _matrixify(mat): """If `mat` is a Matrix or is matrix-like, return a Matrix or MatrixWrapper object. Otherwise `mat` is passed through without modification.""" if getattr(mat, 'is_Matrix', False) or getattr(mat, 'is_MatrixLike', False): return mat if not(getattr(mat, 'is_Matrix', True) or getattr(mat, 'is_MatrixLike', True)): return mat shape = None if hasattr(mat, 'shape'): # numpy, scipy.sparse if len(mat.shape) == 2: shape = mat.shape elif hasattr(mat, 'rows') and hasattr(mat, 'cols'): # mpmath shape = (mat.rows, mat.cols) if shape: return _MatrixWrapper(mat, shape) return mat def a2idx(j, n=None): """Return integer after making positive and validating against n.""" if type(j) is not int: jindex = getattr(j, '__index__', None) if jindex is not None: j = jindex() else: raise IndexError("Invalid index a[%r]" % (j,)) if n is not None: if j < 0: j += n if not (j >= 0 and j < n): raise IndexError("Index out of range: a[%s]" % (j,)) return int(j) def classof(A, B): """ Get the type of the result when combining matrices of different types. Currently the strategy is that immutability is contagious. Examples ======== >>> from sympy import Matrix, ImmutableMatrix >>> from sympy.matrices.common import classof >>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix >>> IM = ImmutableMatrix([[1, 2], [3, 4]]) >>> classof(M, IM) <class 'sympy.matrices.immutable.ImmutableDenseMatrix'> """ priority_A = getattr(A, '_class_priority', None) priority_B = getattr(B, '_class_priority', None) if None not in (priority_A, priority_B): if A._class_priority > B._class_priority: return A.__class__ else: return B.__class__ try: import numpy except ImportError: pass else: if isinstance(A, numpy.ndarray): return B.__class__ if isinstance(B, numpy.ndarray): return A.__class__ raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__))
6a94ac457894496a0cc52adb9e4043d05140764ecaae5a9d569a7ea3fae12d1a
import mpmath as mp from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.compatibility import ( Callable, NotIterable, as_int, is_sequence) from sympy.core.decorators import deprecated from sympy.core.expr import Expr from sympy.core.kind import _NumberKind, NumberKind, UndefinedKind from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Dummy, Symbol, uniquely_named_symbol from sympy.core.sympify import sympify from sympy.core.sympify import _sympify from sympy.functions import exp, factorial, log from sympy.functions.elementary.miscellaneous import Max, Min, sqrt from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.polys import cancel from sympy.printing import sstr from sympy.printing.defaults import Printable from sympy.simplify import simplify as _simplify from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import flatten from sympy.utilities.misc import filldedent from .common import ( MatrixCommon, MatrixError, NonSquareMatrixError, NonInvertibleMatrixError, ShapeError, MatrixKind) from .utilities import _iszero, _is_zero_after_expand_mul from .determinant import ( _find_reasonable_pivot, _find_reasonable_pivot_naive, _adjugate, _charpoly, _cofactor, _cofactor_matrix, _per, _det, _det_bareiss, _det_berkowitz, _det_LU, _minor, _minor_submatrix) from .reductions import _is_echelon, _echelon_form, _rank, _rref from .subspaces import _columnspace, _nullspace, _rowspace, _orthogonalize from .eigen import ( _eigenvals, _eigenvects, _bidiagonalize, _bidiagonal_decomposition, _is_diagonalizable, _diagonalize, _is_positive_definite, _is_positive_semidefinite, _is_negative_definite, _is_negative_semidefinite, _is_indefinite, _jordan_form, _left_eigenvects, _singular_values) from .decompositions import ( _rank_decomposition, _cholesky, _LDLdecomposition, _LUdecomposition, _LUdecomposition_Simple, _LUdecompositionFF, _singular_value_decomposition, _QRdecomposition, _upper_hessenberg_decomposition) from .graph import _connected_components, _connected_components_decomposition from .solvers import ( _diagonal_solve, _lower_triangular_solve, _upper_triangular_solve, _cholesky_solve, _LDLsolve, _LUsolve, _QRsolve, _gauss_jordan_solve, _pinv_solve, _solve, _solve_least_squares) from .inverse import ( _pinv, _inv_mod, _inv_ADJ, _inv_GE, _inv_LU, _inv_CH, _inv_LDL, _inv_QR, _inv, _inv_block) class DeferredVector(Symbol, NotIterable): """A vector whose components are deferred (e.g. for use with lambdify) Examples ======== >>> from sympy import DeferredVector, lambdify >>> X = DeferredVector( 'X' ) >>> X X >>> expr = (X[0] + 2, X[2] + 3) >>> func = lambdify( X, expr) >>> func( [1, 2, 3] ) (3, 6) """ def __getitem__(self, i): if i == -0: i = 0 if i < 0: raise IndexError('DeferredVector index out of range') component_name = '%s[%d]' % (self.name, i) return Symbol(component_name) def __str__(self): return sstr(self) def __repr__(self): return "DeferredVector('%s')" % self.name class MatrixDeterminant(MatrixCommon): """Provides basic matrix determinant operations. Should not be instantiated directly. See ``determinant.py`` for their implementations.""" def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul): return _det_bareiss(self, iszerofunc=iszerofunc) def _eval_det_berkowitz(self): return _det_berkowitz(self) def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None): return _det_LU(self, iszerofunc=iszerofunc, simpfunc=simpfunc) def _eval_determinant(self): # for expressions.determinant.Determinant return _det(self) def adjugate(self, method="berkowitz"): return _adjugate(self, method=method) def charpoly(self, x='lambda', simplify=_simplify): return _charpoly(self, x=x, simplify=simplify) def cofactor(self, i, j, method="berkowitz"): return _cofactor(self, i, j, method=method) def cofactor_matrix(self, method="berkowitz"): return _cofactor_matrix(self, method=method) def det(self, method="bareiss", iszerofunc=None): return _det(self, method=method, iszerofunc=iszerofunc) def per(self): return _per(self) def minor(self, i, j, method="berkowitz"): return _minor(self, i, j, method=method) def minor_submatrix(self, i, j): return _minor_submatrix(self, i, j) _find_reasonable_pivot.__doc__ = _find_reasonable_pivot.__doc__ _find_reasonable_pivot_naive.__doc__ = _find_reasonable_pivot_naive.__doc__ _eval_det_bareiss.__doc__ = _det_bareiss.__doc__ _eval_det_berkowitz.__doc__ = _det_berkowitz.__doc__ _eval_det_lu.__doc__ = _det_LU.__doc__ _eval_determinant.__doc__ = _det.__doc__ adjugate.__doc__ = _adjugate.__doc__ charpoly.__doc__ = _charpoly.__doc__ cofactor.__doc__ = _cofactor.__doc__ cofactor_matrix.__doc__ = _cofactor_matrix.__doc__ det.__doc__ = _det.__doc__ per.__doc__ = _per.__doc__ minor.__doc__ = _minor.__doc__ minor_submatrix.__doc__ = _minor_submatrix.__doc__ class MatrixReductions(MatrixDeterminant): """Provides basic matrix row/column operations. Should not be instantiated directly. See ``reductions.py`` for some of their implementations.""" def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False): return _echelon_form(self, iszerofunc=iszerofunc, simplify=simplify, with_pivots=with_pivots) @property def is_echelon(self): return _is_echelon(self) def rank(self, iszerofunc=_iszero, simplify=False): return _rank(self, iszerofunc=iszerofunc, simplify=simplify) def rref(self, iszerofunc=_iszero, simplify=False, pivots=True, normalize_last=True): return _rref(self, iszerofunc=iszerofunc, simplify=simplify, pivots=pivots, normalize_last=normalize_last) echelon_form.__doc__ = _echelon_form.__doc__ is_echelon.__doc__ = _is_echelon.__doc__ rank.__doc__ = _rank.__doc__ rref.__doc__ = _rref.__doc__ def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"): """Validate the arguments for a row/column operation. ``error_str`` can be one of "row" or "col" depending on the arguments being parsed.""" if op not in ["n->kn", "n<->m", "n->n+km"]: raise ValueError("Unknown {} operation '{}'. Valid col operations " "are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op)) # define self_col according to error_str self_cols = self.cols if error_str == 'col' else self.rows # normalize and validate the arguments if op == "n->kn": col = col if col is not None else col1 if col is None or k is None: raise ValueError("For a {0} operation 'n->kn' you must provide the " "kwargs `{0}` and `k`".format(error_str)) if not 0 <= col < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col)) elif op == "n<->m": # we need two cols to swap. It doesn't matter # how they were specified, so gather them together and # remove `None` cols = {col, k, col1, col2}.difference([None]) if len(cols) > 2: # maybe the user left `k` by mistake? cols = {col, col1, col2}.difference([None]) if len(cols) != 2: raise ValueError("For a {0} operation 'n<->m' you must provide the " "kwargs `{0}1` and `{0}2`".format(error_str)) col1, col2 = cols if not 0 <= col1 < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col1)) if not 0 <= col2 < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2)) elif op == "n->n+km": col = col1 if col is None else col col2 = col1 if col2 is None else col2 if col is None or col2 is None or k is None: raise ValueError("For a {0} operation 'n->n+km' you must provide the " "kwargs `{0}`, `k`, and `{0}2`".format(error_str)) if col == col2: raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must " "be different.".format(error_str)) if not 0 <= col < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col)) if not 0 <= col2 < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2)) else: raise ValueError('invalid operation %s' % repr(op)) return op, col, k, col1, col2 def _eval_col_op_multiply_col_by_const(self, col, k): def entry(i, j): if j == col: return k * self[i, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_col_op_swap(self, col1, col2): def entry(i, j): if j == col1: return self[i, col2] elif j == col2: return self[i, col1] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_col_op_add_multiple_to_other_col(self, col, k, col2): def entry(i, j): if j == col: return self[i, j] + k * self[i, col2] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_swap(self, row1, row2): def entry(i, j): if i == row1: return self[row2, j] elif i == row2: return self[row1, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_multiply_row_by_const(self, row, k): def entry(i, j): if i == row: return k * self[i, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_add_multiple_to_other_row(self, row, k, row2): def entry(i, j): if i == row: return self[i, j] + k * self[row2, j] return self[i, j] return self._new(self.rows, self.cols, entry) def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None): """Performs the elementary column operation `op`. `op` may be one of * "n->kn" (column n goes to k*n) * "n<->m" (swap column n and column m) * "n->n+km" (column n goes to column n + k*column m) Parameters ========== op : string; the elementary row operation col : the column to apply the column operation k : the multiple to apply in the column operation col1 : one column of a column swap col2 : second column of a column swap or column "m" in the column operation "n->n+km" """ op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col") # now that we've validated, we're all good to dispatch if op == "n->kn": return self._eval_col_op_multiply_col_by_const(col, k) if op == "n<->m": return self._eval_col_op_swap(col1, col2) if op == "n->n+km": return self._eval_col_op_add_multiple_to_other_col(col, k, col2) def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None): """Performs the elementary row operation `op`. `op` may be one of * "n->kn" (row n goes to k*n) * "n<->m" (swap row n and row m) * "n->n+km" (row n goes to row n + k*row m) Parameters ========== op : string; the elementary row operation row : the row to apply the row operation k : the multiple to apply in the row operation row1 : one row of a row swap row2 : second row of a row swap or row "m" in the row operation "n->n+km" """ op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row") # now that we've validated, we're all good to dispatch if op == "n->kn": return self._eval_row_op_multiply_row_by_const(row, k) if op == "n<->m": return self._eval_row_op_swap(row1, row2) if op == "n->n+km": return self._eval_row_op_add_multiple_to_other_row(row, k, row2) class MatrixSubspaces(MatrixReductions): """Provides methods relating to the fundamental subspaces of a matrix. Should not be instantiated directly. See ``subspaces.py`` for their implementations.""" def columnspace(self, simplify=False): return _columnspace(self, simplify=simplify) def nullspace(self, simplify=False, iszerofunc=_iszero): return _nullspace(self, simplify=simplify, iszerofunc=iszerofunc) def rowspace(self, simplify=False): return _rowspace(self, simplify=simplify) # This is a classmethod but is converted to such later in order to allow # assignment of __doc__ since that does not work for already wrapped # classmethods in Python 3.6. def orthogonalize(cls, *vecs, **kwargs): return _orthogonalize(cls, *vecs, **kwargs) columnspace.__doc__ = _columnspace.__doc__ nullspace.__doc__ = _nullspace.__doc__ rowspace.__doc__ = _rowspace.__doc__ orthogonalize.__doc__ = _orthogonalize.__doc__ orthogonalize = classmethod(orthogonalize) # type:ignore class MatrixEigen(MatrixSubspaces): """Provides basic matrix eigenvalue/vector operations. Should not be instantiated directly. See ``eigen.py`` for their implementations.""" def eigenvals(self, error_when_incomplete=True, **flags): return _eigenvals(self, error_when_incomplete=error_when_incomplete, **flags) def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero, **flags): return _eigenvects(self, error_when_incomplete=error_when_incomplete, iszerofunc=iszerofunc, **flags) def is_diagonalizable(self, reals_only=False, **kwargs): return _is_diagonalizable(self, reals_only=reals_only, **kwargs) def diagonalize(self, reals_only=False, sort=False, normalize=False): return _diagonalize(self, reals_only=reals_only, sort=sort, normalize=normalize) def bidiagonalize(self, upper=True): return _bidiagonalize(self, upper=upper) def bidiagonal_decomposition(self, upper=True): return _bidiagonal_decomposition(self, upper=upper) @property def is_positive_definite(self): return _is_positive_definite(self) @property def is_positive_semidefinite(self): return _is_positive_semidefinite(self) @property def is_negative_definite(self): return _is_negative_definite(self) @property def is_negative_semidefinite(self): return _is_negative_semidefinite(self) @property def is_indefinite(self): return _is_indefinite(self) def jordan_form(self, calc_transform=True, **kwargs): return _jordan_form(self, calc_transform=calc_transform, **kwargs) def left_eigenvects(self, **flags): return _left_eigenvects(self, **flags) def singular_values(self): return _singular_values(self) eigenvals.__doc__ = _eigenvals.__doc__ eigenvects.__doc__ = _eigenvects.__doc__ is_diagonalizable.__doc__ = _is_diagonalizable.__doc__ diagonalize.__doc__ = _diagonalize.__doc__ is_positive_definite.__doc__ = _is_positive_definite.__doc__ is_positive_semidefinite.__doc__ = _is_positive_semidefinite.__doc__ is_negative_definite.__doc__ = _is_negative_definite.__doc__ is_negative_semidefinite.__doc__ = _is_negative_semidefinite.__doc__ is_indefinite.__doc__ = _is_indefinite.__doc__ jordan_form.__doc__ = _jordan_form.__doc__ left_eigenvects.__doc__ = _left_eigenvects.__doc__ singular_values.__doc__ = _singular_values.__doc__ bidiagonalize.__doc__ = _bidiagonalize.__doc__ bidiagonal_decomposition.__doc__ = _bidiagonal_decomposition.__doc__ class MatrixCalculus(MatrixCommon): """Provides calculus-related matrix operations.""" def diff(self, *args, **kwargs): """Calculate the derivative of each element in the matrix. ``args`` will be passed to the ``integrate`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.diff(x) Matrix([ [1, 0], [0, 0]]) See Also ======== integrate limit """ # XXX this should be handled here rather than in Derivative from sympy.tensor.array.array_derivatives import ArrayDerivative kwargs.setdefault('evaluate', True) deriv = ArrayDerivative(self, *args, evaluate=True) if not isinstance(self, Basic): return deriv.as_mutable() else: return deriv def _eval_derivative(self, arg): return self.applyfunc(lambda x: x.diff(arg)) def integrate(self, *args, **kwargs): """Integrate each element of the matrix. ``args`` will be passed to the ``integrate`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.integrate((x, )) Matrix([ [x**2/2, x*y], [ x, 0]]) >>> M.integrate((x, 0, 2)) Matrix([ [2, 2*y], [2, 0]]) See Also ======== limit diff """ return self.applyfunc(lambda x: x.integrate(*args, **kwargs)) def jacobian(self, X): """Calculates the Jacobian matrix (derivative of a vector-valued function). Parameters ========== ``self`` : vector of expressions representing functions f_i(x_1, ..., x_n). X : set of x_i's in order, it can be a list or a Matrix Both ``self`` and X can be a row or a column matrix in any order (i.e., jacobian() should always work). Examples ======== >>> from sympy import sin, cos, Matrix >>> from sympy.abc import rho, phi >>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2]) >>> Y = Matrix([rho, phi]) >>> X.jacobian(Y) Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)], [ 2*rho, 0]]) >>> X = Matrix([rho*cos(phi), rho*sin(phi)]) >>> X.jacobian(Y) Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)]]) See Also ======== hessian wronskian """ if not isinstance(X, MatrixBase): X = self._new(X) # Both X and ``self`` can be a row or a column matrix, so we need to make # sure all valid combinations work, but everything else fails: if self.shape[0] == 1: m = self.shape[1] elif self.shape[1] == 1: m = self.shape[0] else: raise TypeError("``self`` must be a row or a column matrix") if X.shape[0] == 1: n = X.shape[1] elif X.shape[1] == 1: n = X.shape[0] else: raise TypeError("X must be a row or a column matrix") # m is the number of functions and n is the number of variables # computing the Jacobian is now easy: return self._new(m, n, lambda j, i: self[j].diff(X[i])) def limit(self, *args): """Calculate the limit of each element in the matrix. ``args`` will be passed to the ``limit`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.limit(x, 2) Matrix([ [2, y], [1, 0]]) See Also ======== integrate diff """ return self.applyfunc(lambda x: x.limit(*args)) # https://github.com/sympy/sympy/pull/12854 class MatrixDeprecated(MatrixCommon): """A class to house deprecated matrix methods.""" def _legacy_array_dot(self, b): """Compatibility function for deprecated behavior of ``matrix.dot(vector)`` """ from .dense import Matrix if not isinstance(b, MatrixBase): if is_sequence(b): if len(b) != self.cols and len(b) != self.rows: raise ShapeError( "Dimensions incorrect for dot product: %s, %s" % ( self.shape, len(b))) return self.dot(Matrix(b)) else: raise TypeError( "`b` must be an ordered iterable or Matrix, not %s." % type(b)) mat = self if mat.cols == b.rows: if b.cols != 1: mat = mat.T b = b.T prod = flatten((mat * b).tolist()) return prod if mat.cols == b.cols: return mat.dot(b.T) elif mat.rows == b.rows: return mat.T.dot(b) else: raise ShapeError("Dimensions incorrect for dot product: %s, %s" % ( self.shape, b.shape)) def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify): return self.charpoly(x=x) def berkowitz_det(self): """Computes determinant using Berkowitz method. See Also ======== det berkowitz """ return self.det(method='berkowitz') def berkowitz_eigenvals(self, **flags): """Computes eigenvalues of a Matrix using Berkowitz method. See Also ======== berkowitz """ return self.eigenvals(**flags) def berkowitz_minors(self): """Computes principal minors using Berkowitz method. See Also ======== berkowitz """ sign, minors = self.one, [] for poly in self.berkowitz(): minors.append(sign * poly[-1]) sign = -sign return tuple(minors) def berkowitz(self): from sympy.matrices import zeros berk = ((1,),) if not self: return berk if not self.is_square: raise NonSquareMatrixError() A, N = self, self.rows transforms = [0] * (N - 1) for n in range(N, 1, -1): T, k = zeros(n + 1, n), n - 1 R, C = -A[k, :k], A[:k, k] A, a = A[:k, :k], -A[k, k] items = [C] for i in range(0, n - 2): items.append(A * items[i]) for i, B in enumerate(items): items[i] = (R * B)[0, 0] items = [self.one, a] + items for i in range(n): T[i:, i] = items[:n - i + 1] transforms[k - 1] = T polys = [self._new([self.one, -A[0, 0]])] for i, T in enumerate(transforms): polys.append(T * polys[i]) return berk + tuple(map(tuple, polys)) def cofactorMatrix(self, method="berkowitz"): return self.cofactor_matrix(method=method) def det_bareis(self): return _det_bareiss(self) def det_LU_decomposition(self): """Compute matrix determinant using LU decomposition Note that this method fails if the LU decomposition itself fails. In particular, if the matrix has no inverse this method will fail. TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. See Also ======== det det_bareiss berkowitz_det """ return self.det(method='lu') def jordan_cell(self, eigenval, n): return self.jordan_block(size=n, eigenvalue=eigenval) def jordan_cells(self, calc_transformation=True): P, J = self.jordan_form() return P, J.get_diag_blocks() def minorEntry(self, i, j, method="berkowitz"): return self.minor(i, j, method=method) def minorMatrix(self, i, j): return self.minor_submatrix(i, j) def permuteBkwd(self, perm): """Permute the rows of the matrix with the given permutation in reverse.""" return self.permute_rows(perm, direction='backward') def permuteFwd(self, perm): """Permute the rows of the matrix with the given permutation.""" return self.permute_rows(perm, direction='forward') @Mul._kind_dispatcher.register(_NumberKind, MatrixKind) def num_mat_mul(k1, k2): """ Return MatrixKind. The element kind is selected by recursive dispatching. Do not need to dispatch in reversed order because KindDispatcher searches for this automatically. """ # Deal with Mul._kind_dispatcher's commutativity elemk = Mul._kind_dispatcher(NumberKind, k2.element_kind) return MatrixKind(elemk) @Mul._kind_dispatcher.register(MatrixKind, MatrixKind) def mat_mat_mul(k1, k2): """ Return MatrixKind. The element kind is selected by recursive dispatching. """ elemk = Mul._kind_dispatcher(k1.element_kind, k2.element_kind) return MatrixKind(elemk) class MatrixBase(MatrixDeprecated, MatrixCalculus, MatrixEigen, MatrixCommon, Printable): """Base class for matrix objects.""" # Added just for numpy compatibility __array_priority__ = 11 is_Matrix = True _class_priority = 3 _sympify = staticmethod(sympify) zero = S.Zero one = S.One @property def kind(self): elem_kinds = set(e.kind for e in self._mat) if len(elem_kinds) == 1: elemkind, = elem_kinds else: elemkind = UndefinedKind return MatrixKind(elemkind) def __array__(self, dtype=object): from .dense import matrix2numpy return matrix2numpy(self, dtype=dtype) def __len__(self): """Return the number of elements of ``self``. Implemented mainly so bool(Matrix()) == False. """ return self.rows * self.cols def _matrix_pow_by_jordan_blocks(self, num): from sympy.matrices import diag, MutableMatrix from sympy import binomial def jordan_cell_power(jc, n): N = jc.shape[0] l = jc[0,0] if l.is_zero: if N == 1 and n.is_nonnegative: jc[0,0] = l**n elif not (n.is_integer and n.is_nonnegative): raise NonInvertibleMatrixError("Non-invertible matrix can only be raised to a nonnegative integer") else: for i in range(N): jc[0,i] = KroneckerDelta(i, n) else: for i in range(N): bn = binomial(n, i) if isinstance(bn, binomial): bn = bn._eval_expand_func() jc[0,i] = l**(n-i)*bn for i in range(N): for j in range(1, N-i): jc[j,i+j] = jc [j-1,i+j-1] P, J = self.jordan_form() jordan_cells = J.get_diag_blocks() # Make sure jordan_cells matrices are mutable: jordan_cells = [MutableMatrix(j) for j in jordan_cells] for j in jordan_cells: jordan_cell_power(j, num) return self._new(P.multiply(diag(*jordan_cells)) .multiply(P.inv())) def __str__(self): if self.rows == 0 or self.cols == 0: return 'Matrix(%s, %s, [])' % (self.rows, self.cols) return "Matrix(%s)" % str(self.tolist()) def _format_str(self, printer=None): if not printer: from sympy.printing.str import StrPrinter printer = StrPrinter() # Handle zero dimensions: if self.rows == 0 or self.cols == 0: return 'Matrix(%s, %s, [])' % (self.rows, self.cols) if self.rows == 1: return "Matrix([%s])" % self.table(printer, rowsep=',\n') return "Matrix([\n%s])" % self.table(printer, rowsep=',\n') @classmethod def irregular(cls, ntop, *matrices, **kwargs): """Return a matrix filled by the given matrices which are listed in order of appearance from left to right, top to bottom as they first appear in the matrix. They must fill the matrix completely. Examples ======== >>> from sympy import ones, Matrix >>> Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3, ... ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7) Matrix([ [1, 2, 2, 2, 3, 3], [1, 2, 2, 2, 3, 3], [4, 2, 2, 2, 5, 5], [6, 6, 7, 7, 5, 5]]) """ from sympy.core.compatibility import as_int ntop = as_int(ntop) # make sure we are working with explicit matrices b = [i.as_explicit() if hasattr(i, 'as_explicit') else i for i in matrices] q = list(range(len(b))) dat = [i.rows for i in b] active = [q.pop(0) for _ in range(ntop)] cols = sum([b[i].cols for i in active]) rows = [] while any(dat): r = [] for a, j in enumerate(active): r.extend(b[j][-dat[j], :]) dat[j] -= 1 if dat[j] == 0 and q: active[a] = q.pop(0) if len(r) != cols: raise ValueError(filldedent(''' Matrices provided do not appear to fill the space completely.''')) rows.append(r) return cls._new(rows) @classmethod def _handle_ndarray(cls, arg): # NumPy array or matrix or some other object that implements # __array__. So let's first use this method to get a # numpy.array() and then make a python list out of it. arr = arg.__array__() if len(arr.shape) == 2: rows, cols = arr.shape[0], arr.shape[1] flat_list = [cls._sympify(i) for i in arr.ravel()] return rows, cols, flat_list elif len(arr.shape) == 1: flat_list = [cls._sympify(i) for i in arr] return arr.shape[0], 1, flat_list else: raise NotImplementedError( "SymPy supports just 1D and 2D matrices") @classmethod def _handle_creation_inputs(cls, *args, **kwargs): """Return the number of rows, cols and flat matrix elements. Examples ======== >>> from sympy import Matrix, I Matrix can be constructed as follows: * from a nested list of iterables >>> Matrix( ((1, 2+I), (3, 4)) ) Matrix([ [1, 2 + I], [3, 4]]) * from un-nested iterable (interpreted as a column) >>> Matrix( [1, 2] ) Matrix([ [1], [2]]) * from un-nested iterable with dimensions >>> Matrix(1, 2, [1, 2] ) Matrix([[1, 2]]) * from no arguments (a 0 x 0 matrix) >>> Matrix() Matrix(0, 0, []) * from a rule >>> Matrix(2, 2, lambda i, j: i/(j + 1) ) Matrix([ [0, 0], [1, 1/2]]) See Also ======== irregular - filling a matrix with irregular blocks """ from sympy.matrices.sparse import SparseMatrix from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.blockmatrix import BlockMatrix from sympy.utilities.iterables import reshape flat_list = None if len(args) == 1: # Matrix(SparseMatrix(...)) if isinstance(args[0], SparseMatrix): return args[0].rows, args[0].cols, flatten(args[0].tolist()) # Matrix(Matrix(...)) elif isinstance(args[0], MatrixBase): return args[0].rows, args[0].cols, args[0]._mat # Matrix(MatrixSymbol('X', 2, 2)) elif isinstance(args[0], Basic) and args[0].is_Matrix: return args[0].rows, args[0].cols, args[0].as_explicit()._mat elif isinstance(args[0], mp.matrix): M = args[0] flat_list = [cls._sympify(x) for x in M] return M.rows, M.cols, flat_list # Matrix(numpy.ones((2, 2))) elif hasattr(args[0], "__array__"): return cls._handle_ndarray(args[0]) # Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]]) elif is_sequence(args[0]) \ and not isinstance(args[0], DeferredVector): dat = list(args[0]) ismat = lambda i: isinstance(i, MatrixBase) and ( evaluate or isinstance(i, BlockMatrix) or isinstance(i, MatrixSymbol)) raw = lambda i: is_sequence(i) and not ismat(i) evaluate = kwargs.get('evaluate', True) if evaluate: def do(x): # make Block and Symbol explicit if isinstance(x, (list, tuple)): return type(x)([do(i) for i in x]) if isinstance(x, BlockMatrix) or \ isinstance(x, MatrixSymbol) and \ all(_.is_Integer for _ in x.shape): return x.as_explicit() return x dat = do(dat) if dat == [] or dat == [[]]: rows = cols = 0 flat_list = [] elif not any(raw(i) or ismat(i) for i in dat): # a column as a list of values flat_list = [cls._sympify(i) for i in dat] rows = len(flat_list) cols = 1 if rows else 0 elif evaluate and all(ismat(i) for i in dat): # a column as a list of matrices ncol = {i.cols for i in dat if any(i.shape)} if ncol: if len(ncol) != 1: raise ValueError('mismatched dimensions') flat_list = [_ for i in dat for r in i.tolist() for _ in r] cols = ncol.pop() rows = len(flat_list)//cols else: rows = cols = 0 flat_list = [] elif evaluate and any(ismat(i) for i in dat): ncol = set() flat_list = [] for i in dat: if ismat(i): flat_list.extend( [k for j in i.tolist() for k in j]) if any(i.shape): ncol.add(i.cols) elif raw(i): if i: ncol.add(len(i)) flat_list.extend(i) else: ncol.add(1) flat_list.append(i) if len(ncol) > 1: raise ValueError('mismatched dimensions') cols = ncol.pop() rows = len(flat_list)//cols else: # list of lists; each sublist is a logical row # which might consist of many rows if the values in # the row are matrices flat_list = [] ncol = set() rows = cols = 0 for row in dat: if not is_sequence(row) and \ not getattr(row, 'is_Matrix', False): raise ValueError('expecting list of lists') if hasattr(row, '__array__'): if 0 in row.shape: continue elif not row: continue if evaluate and all(ismat(i) for i in row): r, c, flatT = cls._handle_creation_inputs( [i.T for i in row]) T = reshape(flatT, [c]) flat = \ [T[i][j] for j in range(c) for i in range(r)] r, c = c, r else: r = 1 if getattr(row, 'is_Matrix', False): c = 1 flat = [row] else: c = len(row) flat = [cls._sympify(i) for i in row] ncol.add(c) if len(ncol) > 1: raise ValueError('mismatched dimensions') flat_list.extend(flat) rows += r cols = ncol.pop() if ncol else 0 elif len(args) == 3: rows = as_int(args[0]) cols = as_int(args[1]) if rows < 0 or cols < 0: raise ValueError("Cannot create a {} x {} matrix. " "Both dimensions must be positive".format(rows, cols)) # Matrix(2, 2, lambda i, j: i+j) if len(args) == 3 and isinstance(args[2], Callable): op = args[2] flat_list = [] for i in range(rows): flat_list.extend( [cls._sympify(op(cls._sympify(i), cls._sympify(j))) for j in range(cols)]) # Matrix(2, 2, [1, 2, 3, 4]) elif len(args) == 3 and is_sequence(args[2]): flat_list = args[2] if len(flat_list) != rows * cols: raise ValueError( 'List length should be equal to rows*columns') flat_list = [cls._sympify(i) for i in flat_list] # Matrix() elif len(args) == 0: # Empty Matrix rows = cols = 0 flat_list = [] if flat_list is None: raise TypeError(filldedent(''' Data type not understood; expecting list of lists or lists of values.''')) return rows, cols, flat_list def _setitem(self, key, value): """Helper to set value at location given by key. Examples ======== >>> from sympy import Matrix, I, zeros, ones >>> m = Matrix(((1, 2+I), (3, 4))) >>> m Matrix([ [1, 2 + I], [3, 4]]) >>> m[1, 0] = 9 >>> m Matrix([ [1, 2 + I], [9, 4]]) >>> m[1, 0] = [[0, 1]] To replace row r you assign to position r*m where m is the number of columns: >>> M = zeros(4) >>> m = M.cols >>> M[3*m] = ones(1, m)*2; M Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 2, 2, 2]]) And to replace column c you can assign to position c: >>> M[2] = ones(m, 1)*4; M Matrix([ [0, 0, 4, 0], [0, 0, 4, 0], [0, 0, 4, 0], [2, 2, 4, 2]]) """ from .dense import Matrix is_slice = isinstance(key, slice) i, j = key = self.key2ij(key) is_mat = isinstance(value, MatrixBase) if type(i) is slice or type(j) is slice: if is_mat: self.copyin_matrix(key, value) return if not isinstance(value, Expr) and is_sequence(value): self.copyin_list(key, value) return raise ValueError('unexpected value: %s' % value) else: if (not is_mat and not isinstance(value, Basic) and is_sequence(value)): value = Matrix(value) is_mat = True if is_mat: if is_slice: key = (slice(*divmod(i, self.cols)), slice(*divmod(j, self.cols))) else: key = (slice(i, i + value.rows), slice(j, j + value.cols)) self.copyin_matrix(key, value) else: return i, j, self._sympify(value) return def add(self, b): """Return self + b """ return self + b def condition_number(self): """Returns the condition number of a matrix. This is the maximum singular value divided by the minimum singular value Examples ======== >>> from sympy import Matrix, S >>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]]) >>> A.condition_number() 100 See Also ======== singular_values """ if not self: return self.zero singularvalues = self.singular_values() return Max(*singularvalues) / Min(*singularvalues) def copy(self): """ Returns the copy of a matrix. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.copy() Matrix([ [1, 2], [3, 4]]) """ return self._new(self.rows, self.cols, self._mat) def cross(self, b): r""" Return the cross product of ``self`` and ``b`` relaxing the condition of compatible dimensions: if each has 3 elements, a matrix of the same type and shape as ``self`` will be returned. If ``b`` has the same shape as ``self`` then common identities for the cross product (like `a \times b = - b \times a`) will hold. Parameters ========== b : 3x1 or 1x3 Matrix See Also ======== dot multiply multiply_elementwise """ from sympy.matrices.expressions.matexpr import MatrixExpr if not isinstance(b, MatrixBase) and not isinstance(b, MatrixExpr): raise TypeError( "{} must be a Matrix, not {}.".format(b, type(b))) if not (self.rows * self.cols == b.rows * b.cols == 3): raise ShapeError("Dimensions incorrect for cross product: %s x %s" % ((self.rows, self.cols), (b.rows, b.cols))) else: return self._new(self.rows, self.cols, ( (self[1] * b[2] - self[2] * b[1]), (self[2] * b[0] - self[0] * b[2]), (self[0] * b[1] - self[1] * b[0]))) @property def D(self): """Return Dirac conjugate (if ``self.rows == 4``). Examples ======== >>> from sympy import Matrix, I, eye >>> m = Matrix((0, 1 + I, 2, 3)) >>> m.D Matrix([[0, 1 - I, -2, -3]]) >>> m = (eye(4) + I*eye(4)) >>> m[0, 3] = 2 >>> m.D Matrix([ [1 - I, 0, 0, 0], [ 0, 1 - I, 0, 0], [ 0, 0, -1 + I, 0], [ 2, 0, 0, -1 + I]]) If the matrix does not have 4 rows an AttributeError will be raised because this property is only defined for matrices with 4 rows. >>> Matrix(eye(2)).D Traceback (most recent call last): ... AttributeError: Matrix has no attribute D. See Also ======== sympy.matrices.common.MatrixCommon.conjugate: By-element conjugation sympy.matrices.common.MatrixCommon.H: Hermite conjugation """ from sympy.physics.matrices import mgamma if self.rows != 4: # In Python 3.2, properties can only return an AttributeError # so we can't raise a ShapeError -- see commit which added the # first line of this inline comment. Also, there is no need # for a message since MatrixBase will raise the AttributeError raise AttributeError return self.H * mgamma(0) def dot(self, b, hermitian=None, conjugate_convention=None): """Return the dot or inner product of two vectors of equal length. Here ``self`` must be a ``Matrix`` of size 1 x n or n x 1, and ``b`` must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n. A scalar is returned. By default, ``dot`` does not conjugate ``self`` or ``b``, even if there are complex entries. Set ``hermitian=True`` (and optionally a ``conjugate_convention``) to compute the hermitian inner product. Possible kwargs are ``hermitian`` and ``conjugate_convention``. If ``conjugate_convention`` is ``"left"``, ``"math"`` or ``"maths"``, the conjugate of the first vector (``self``) is used. If ``"right"`` or ``"physics"`` is specified, the conjugate of the second vector ``b`` is used. Examples ======== >>> from sympy import Matrix >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> v = Matrix([1, 1, 1]) >>> M.row(0).dot(v) 6 >>> M.col(0).dot(v) 12 >>> v = [3, 2, 1] >>> M.row(0).dot(v) 10 >>> from sympy import I >>> q = Matrix([1*I, 1*I, 1*I]) >>> q.dot(q, hermitian=False) -3 >>> q.dot(q, hermitian=True) 3 >>> q1 = Matrix([1, 1, 1*I]) >>> q.dot(q1, hermitian=True, conjugate_convention="maths") 1 - 2*I >>> q.dot(q1, hermitian=True, conjugate_convention="physics") 1 + 2*I See Also ======== cross multiply multiply_elementwise """ from .dense import Matrix if not isinstance(b, MatrixBase): if is_sequence(b): if len(b) != self.cols and len(b) != self.rows: raise ShapeError( "Dimensions incorrect for dot product: %s, %s" % ( self.shape, len(b))) return self.dot(Matrix(b)) else: raise TypeError( "`b` must be an ordered iterable or Matrix, not %s." % type(b)) mat = self if (1 not in mat.shape) or (1 not in b.shape) : SymPyDeprecationWarning( feature="Dot product of non row/column vectors", issue=13815, deprecated_since_version="1.2", useinstead="* to take matrix products").warn() return mat._legacy_array_dot(b) if len(mat) != len(b): raise ShapeError("Dimensions incorrect for dot product: %s, %s" % (self.shape, b.shape)) n = len(mat) if mat.shape != (1, n): mat = mat.reshape(1, n) if b.shape != (n, 1): b = b.reshape(n, 1) # Now ``mat`` is a row vector and ``b`` is a column vector. # If it so happens that only conjugate_convention is passed # then automatically set hermitian to True. If only hermitian # is true but no conjugate_convention is not passed then # automatically set it to ``"maths"`` if conjugate_convention is not None and hermitian is None: hermitian = True if hermitian and conjugate_convention is None: conjugate_convention = "maths" if hermitian == True: if conjugate_convention in ("maths", "left", "math"): mat = mat.conjugate() elif conjugate_convention in ("physics", "right"): b = b.conjugate() else: raise ValueError("Unknown conjugate_convention was entered." " conjugate_convention must be one of the" " following: math, maths, left, physics or right.") return (mat * b)[0] def dual(self): """Returns the dual of a matrix, which is: ``(1/2)*levicivita(i, j, k, l)*M(k, l)`` summed over indices `k` and `l` Since the levicivita method is anti_symmetric for any pairwise exchange of indices, the dual of a symmetric matrix is the zero matrix. Strictly speaking the dual defined here assumes that the 'matrix' `M` is a contravariant anti_symmetric second rank tensor, so that the dual is a covariant second rank tensor. """ from sympy import LeviCivita from sympy.matrices import zeros M, n = self[:, :], self.rows work = zeros(n) if self.is_symmetric(): return work for i in range(1, n): for j in range(1, n): acum = 0 for k in range(1, n): acum += LeviCivita(i, j, 0, k) * M[0, k] work[i, j] = acum work[j, i] = -acum for l in range(1, n): acum = 0 for a in range(1, n): for b in range(1, n): acum += LeviCivita(0, l, a, b) * M[a, b] acum /= 2 work[0, l] = -acum work[l, 0] = acum return work def _eval_matrix_exp_jblock(self): """A helper function to compute an exponential of a Jordan block matrix Examples ======== >>> from sympy import Symbol, Matrix >>> l = Symbol('lamda') A trivial example of 1*1 Jordan block: >>> m = Matrix.jordan_block(1, l) >>> m._eval_matrix_exp_jblock() Matrix([[exp(lamda)]]) An example of 3*3 Jordan block: >>> m = Matrix.jordan_block(3, l) >>> m._eval_matrix_exp_jblock() Matrix([ [exp(lamda), exp(lamda), exp(lamda)/2], [ 0, exp(lamda), exp(lamda)], [ 0, 0, exp(lamda)]]) References ========== .. [1] https://en.wikipedia.org/wiki/Matrix_function#Jordan_decomposition """ size = self.rows l = self[0, 0] exp_l = exp(l) bands = {i: exp_l / factorial(i) for i in range(size)} from .sparsetools import banded return self.__class__(banded(size, bands)) def analytic_func(self, f, x): """ Computes f(A) where A is a Square Matrix and f is an analytic function. Examples ======== >>> from sympy import Symbol, Matrix, S, log >>> x = Symbol('x') >>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]]) >>> f = log(x) >>> m.analytic_func(f, x) Matrix([ [ 0, log(2)], [log(2), 0]]) Parameters ========== f : Expr Analytic Function x : Symbol parameter of f """ from sympy import diff f, x = _sympify(f), _sympify(x) if not self.is_square: raise NonSquareMatrixError if not x.is_symbol: raise ValueError("{} must be a symbol.".format(x)) if x not in f.free_symbols: raise ValueError( "{} must be a parameter of {}.".format(x, f)) if x in self.free_symbols: raise ValueError( "{} must not be a parameter of {}.".format(x, self)) eigen = self.eigenvals() max_mul = max(eigen.values()) derivative = {} dd = f for i in range(max_mul - 1): dd = diff(dd, x) derivative[i + 1] = dd n = self.shape[0] r = self.zeros(n) f_val = self.zeros(n, 1) row = 0 for i in eigen: mul = eigen[i] f_val[row] = f.subs(x, i) if f_val[row].is_number and not f_val[row].is_complex: raise ValueError( "Cannot evaluate the function because the " "function {} is not analytic at the given " "eigenvalue {}".format(f, f_val[row])) val = 1 for a in range(n): r[row, a] = val val *= i if mul > 1: coe = [1 for ii in range(n)] deri = 1 while mul > 1: row = row + 1 mul -= 1 d_i = derivative[deri].subs(x, i) if d_i.is_number and not d_i.is_complex: raise ValueError( "Cannot evaluate the function because the " "derivative {} is not analytic at the given " "eigenvalue {}".format(derivative[deri], d_i)) f_val[row] = d_i for a in range(n): if a - deri + 1 <= 0: r[row, a] = 0 coe[a] = 0 continue coe[a] = coe[a]*(a - deri + 1) r[row, a] = coe[a]*pow(i, a - deri) deri += 1 row += 1 c = r.solve(f_val) ans = self.zeros(n) pre = self.eye(n) for i in range(n): ans = ans + c[i]*pre pre *= self return ans def exp(self): """Return the exponential of a square matrix Examples ======== >>> from sympy import Symbol, Matrix >>> t = Symbol('t') >>> m = Matrix([[0, 1], [-1, 0]]) * t >>> m.exp() Matrix([ [ exp(I*t)/2 + exp(-I*t)/2, -I*exp(I*t)/2 + I*exp(-I*t)/2], [I*exp(I*t)/2 - I*exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]]) """ if not self.is_square: raise NonSquareMatrixError( "Exponentiation is valid only for square matrices") try: P, J = self.jordan_form() cells = J.get_diag_blocks() except MatrixError: raise NotImplementedError( "Exponentiation is implemented only for matrices for which the Jordan normal form can be computed") blocks = [cell._eval_matrix_exp_jblock() for cell in cells] from sympy.matrices import diag from sympy import re eJ = diag(*blocks) # n = self.rows ret = P.multiply(eJ, dotprodsimp=None).multiply(P.inv(), dotprodsimp=None) if all(value.is_real for value in self.values()): return type(self)(re(ret)) else: return type(self)(ret) def _eval_matrix_log_jblock(self): """Helper function to compute logarithm of a jordan block. Examples ======== >>> from sympy import Symbol, Matrix >>> l = Symbol('lamda') A trivial example of 1*1 Jordan block: >>> m = Matrix.jordan_block(1, l) >>> m._eval_matrix_log_jblock() Matrix([[log(lamda)]]) An example of 3*3 Jordan block: >>> m = Matrix.jordan_block(3, l) >>> m._eval_matrix_log_jblock() Matrix([ [log(lamda), 1/lamda, -1/(2*lamda**2)], [ 0, log(lamda), 1/lamda], [ 0, 0, log(lamda)]]) """ size = self.rows l = self[0, 0] if l.is_zero: raise MatrixError( 'Could not take logarithm or reciprocal for the given ' 'eigenvalue {}'.format(l)) bands = {0: log(l)} for i in range(1, size): bands[i] = -((-l) ** -i) / i from .sparsetools import banded return self.__class__(banded(size, bands)) def log(self, simplify=cancel): """Return the logarithm of a square matrix Parameters ========== simplify : function, bool The function to simplify the result with. Default is ``cancel``, which is effective to reduce the expression growing for taking reciprocals and inverses for symbolic matrices. Examples ======== >>> from sympy import S, Matrix Examples for positive-definite matrices: >>> m = Matrix([[1, 1], [0, 1]]) >>> m.log() Matrix([ [0, 1], [0, 0]]) >>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]]) >>> m.log() Matrix([ [ 0, log(2)], [log(2), 0]]) Examples for non positive-definite matrices: >>> m = Matrix([[S(3)/4, S(5)/4], [S(5)/4, S(3)/4]]) >>> m.log() Matrix([ [ I*pi/2, log(2) - I*pi/2], [log(2) - I*pi/2, I*pi/2]]) >>> m = Matrix( ... [[0, 0, 0, 1], ... [0, 0, 1, 0], ... [0, 1, 0, 0], ... [1, 0, 0, 0]]) >>> m.log() Matrix([ [ I*pi/2, 0, 0, -I*pi/2], [ 0, I*pi/2, -I*pi/2, 0], [ 0, -I*pi/2, I*pi/2, 0], [-I*pi/2, 0, 0, I*pi/2]]) """ if not self.is_square: raise NonSquareMatrixError( "Logarithm is valid only for square matrices") try: if simplify: P, J = simplify(self).jordan_form() else: P, J = self.jordan_form() cells = J.get_diag_blocks() except MatrixError: raise NotImplementedError( "Logarithm is implemented only for matrices for which " "the Jordan normal form can be computed") blocks = [ cell._eval_matrix_log_jblock() for cell in cells] from sympy.matrices import diag eJ = diag(*blocks) if simplify: ret = simplify(P * eJ * simplify(P.inv())) ret = self.__class__(ret) else: ret = P * eJ * P.inv() return ret def is_nilpotent(self): """Checks if a matrix is nilpotent. A matrix B is nilpotent if for some integer k, B**k is a zero matrix. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]]) >>> a.is_nilpotent() True >>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]]) >>> a.is_nilpotent() False """ if not self: return True if not self.is_square: raise NonSquareMatrixError( "Nilpotency is valid only for square matrices") x = uniquely_named_symbol('x', self, modify=lambda s: '_' + s) p = self.charpoly(x) if p.args[0] == x ** self.rows: return True return False def key2bounds(self, keys): """Converts a key with potentially mixed types of keys (integer and slice) into a tuple of ranges and raises an error if any index is out of ``self``'s range. See Also ======== key2ij """ from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py islice, jslice = [isinstance(k, slice) for k in keys] if islice: if not self.rows: rlo = rhi = 0 else: rlo, rhi = keys[0].indices(self.rows)[:2] else: rlo = a2idx_(keys[0], self.rows) rhi = rlo + 1 if jslice: if not self.cols: clo = chi = 0 else: clo, chi = keys[1].indices(self.cols)[:2] else: clo = a2idx_(keys[1], self.cols) chi = clo + 1 return rlo, rhi, clo, chi def key2ij(self, key): """Converts key into canonical form, converting integers or indexable items into valid integers for ``self``'s range or returning slices unchanged. See Also ======== key2bounds """ from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py if is_sequence(key): if not len(key) == 2: raise TypeError('key must be a sequence of length 2') return [a2idx_(i, n) if not isinstance(i, slice) else i for i, n in zip(key, self.shape)] elif isinstance(key, slice): return key.indices(len(self))[:2] else: return divmod(a2idx_(key, len(self)), self.cols) def normalized(self, iszerofunc=_iszero): """Return the normalized version of ``self``. Parameters ========== iszerofunc : Function, optional A function to determine whether ``self`` is a zero vector. The default ``_iszero`` tests to see if each element is exactly zero. Returns ======= Matrix Normalized vector form of ``self``. It has the same length as a unit vector. However, a zero vector will be returned for a vector with norm 0. Raises ====== ShapeError If the matrix is not in a vector form. See Also ======== norm """ if self.rows != 1 and self.cols != 1: raise ShapeError("A Matrix must be a vector to normalize.") norm = self.norm() if iszerofunc(norm): out = self.zeros(self.rows, self.cols) else: out = self.applyfunc(lambda i: i / norm) return out def norm(self, ord=None): """Return the Norm of a Matrix or Vector. In the simplest case this is the geometric size of the vector Other norms can be specified by the ord parameter ===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm - does not exist inf maximum row sum max(abs(x)) -inf -- min(abs(x)) 1 maximum column sum as below -1 -- as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other - does not exist sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== Examples ======== >>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo >>> x = Symbol('x', real=True) >>> v = Matrix([cos(x), sin(x)]) >>> trigsimp( v.norm() ) 1 >>> v.norm(10) (sin(x)**10 + cos(x)**10)**(1/10) >>> A = Matrix([[1, 1], [1, 1]]) >>> A.norm(1) # maximum sum of absolute values of A is 2 2 >>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm) 2 >>> A.norm(-2) # Inverse spectral norm (smallest singular value) 0 >>> A.norm() # Frobenius Norm 2 >>> A.norm(oo) # Infinity Norm 2 >>> Matrix([1, -2]).norm(oo) 2 >>> Matrix([-1, 2]).norm(-oo) 1 See Also ======== normalized """ # Row or Column Vector Norms vals = list(self.values()) or [0] if self.rows == 1 or self.cols == 1: if ord == 2 or ord is None: # Common case sqrt(<x, x>) return sqrt(Add(*(abs(i) ** 2 for i in vals))) elif ord == 1: # sum(abs(x)) return Add(*(abs(i) for i in vals)) elif ord is S.Infinity: # max(abs(x)) return Max(*[abs(i) for i in vals]) elif ord is S.NegativeInfinity: # min(abs(x)) return Min(*[abs(i) for i in vals]) # Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord) # Note that while useful this is not mathematically a norm try: return Pow(Add(*(abs(i) ** ord for i in vals)), S.One / ord) except (NotImplementedError, TypeError): raise ValueError("Expected order to be Number, Symbol, oo") # Matrix Norms else: if ord == 1: # Maximum column sum m = self.applyfunc(abs) return Max(*[sum(m.col(i)) for i in range(m.cols)]) elif ord == 2: # Spectral Norm # Maximum singular value return Max(*self.singular_values()) elif ord == -2: # Minimum singular value return Min(*self.singular_values()) elif ord is S.Infinity: # Infinity Norm - Maximum row sum m = self.applyfunc(abs) return Max(*[sum(m.row(i)) for i in range(m.rows)]) elif (ord is None or isinstance(ord, str) and ord.lower() in ['f', 'fro', 'frobenius', 'vector']): # Reshape as vector and send back to norm function return self.vec().norm(ord=2) else: raise NotImplementedError("Matrix Norms under development") def print_nonzero(self, symb="X"): """Shows location of non-zero entries for fast shape lookup. Examples ======== >>> from sympy.matrices import Matrix, eye >>> m = Matrix(2, 3, lambda i, j: i*3+j) >>> m Matrix([ [0, 1, 2], [3, 4, 5]]) >>> m.print_nonzero() [ XX] [XXX] >>> m = eye(4) >>> m.print_nonzero("x") [x ] [ x ] [ x ] [ x] """ s = [] for i in range(self.rows): line = [] for j in range(self.cols): if self[i, j] == 0: line.append(" ") else: line.append(str(symb)) s.append("[%s]" % ''.join(line)) print('\n'.join(s)) def project(self, v): """Return the projection of ``self`` onto the line containing ``v``. Examples ======== >>> from sympy import Matrix, S, sqrt >>> V = Matrix([sqrt(3)/2, S.Half]) >>> x = Matrix([[1, 0]]) >>> V.project(x) Matrix([[sqrt(3)/2, 0]]) >>> V.project(-x) Matrix([[sqrt(3)/2, 0]]) """ return v * (self.dot(v) / v.dot(v)) def table(self, printer, rowstart='[', rowend=']', rowsep='\n', colsep=', ', align='right'): r""" String form of Matrix as a table. ``printer`` is the printer to use for on the elements (generally something like StrPrinter()) ``rowstart`` is the string used to start each row (by default '['). ``rowend`` is the string used to end each row (by default ']'). ``rowsep`` is the string used to separate rows (by default a newline). ``colsep`` is the string used to separate columns (by default ', '). ``align`` defines how the elements are aligned. Must be one of 'left', 'right', or 'center'. You can also use '<', '>', and '^' to mean the same thing, respectively. This is used by the string printer for Matrix. Examples ======== >>> from sympy import Matrix >>> from sympy.printing.str import StrPrinter >>> M = Matrix([[1, 2], [-33, 4]]) >>> printer = StrPrinter() >>> M.table(printer) '[ 1, 2]\n[-33, 4]' >>> print(M.table(printer)) [ 1, 2] [-33, 4] >>> print(M.table(printer, rowsep=',\n')) [ 1, 2], [-33, 4] >>> print('[%s]' % M.table(printer, rowsep=',\n')) [[ 1, 2], [-33, 4]] >>> print(M.table(printer, colsep=' ')) [ 1 2] [-33 4] >>> print(M.table(printer, align='center')) [ 1 , 2] [-33, 4] >>> print(M.table(printer, rowstart='{', rowend='}')) { 1, 2} {-33, 4} """ # Handle zero dimensions: if self.rows == 0 or self.cols == 0: return '[]' # Build table of string representations of the elements res = [] # Track per-column max lengths for pretty alignment maxlen = [0] * self.cols for i in range(self.rows): res.append([]) for j in range(self.cols): s = printer._print(self[i, j]) res[-1].append(s) maxlen[j] = max(len(s), maxlen[j]) # Patch strings together align = { 'left': 'ljust', 'right': 'rjust', 'center': 'center', '<': 'ljust', '>': 'rjust', '^': 'center', }[align] for i, row in enumerate(res): for j, elem in enumerate(row): row[j] = getattr(elem, align)(maxlen[j]) res[i] = rowstart + colsep.join(row) + rowend return rowsep.join(res) def rank_decomposition(self, iszerofunc=_iszero, simplify=False): return _rank_decomposition(self, iszerofunc=iszerofunc, simplify=simplify) def cholesky(self, hermitian=True): raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') def LDLdecomposition(self, hermitian=True): raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') def LUdecomposition(self, iszerofunc=_iszero, simpfunc=None, rankcheck=False): return _LUdecomposition(self, iszerofunc=iszerofunc, simpfunc=simpfunc, rankcheck=rankcheck) def LUdecomposition_Simple(self, iszerofunc=_iszero, simpfunc=None, rankcheck=False): return _LUdecomposition_Simple(self, iszerofunc=iszerofunc, simpfunc=simpfunc, rankcheck=rankcheck) def LUdecompositionFF(self): return _LUdecompositionFF(self) def singular_value_decomposition(self): return _singular_value_decomposition(self) def QRdecomposition(self): return _QRdecomposition(self) def upper_hessenberg_decomposition(self): return _upper_hessenberg_decomposition(self) def diagonal_solve(self, rhs): return _diagonal_solve(self, rhs) def lower_triangular_solve(self, rhs): raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') def upper_triangular_solve(self, rhs): raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') def cholesky_solve(self, rhs): return _cholesky_solve(self, rhs) def LDLsolve(self, rhs): return _LDLsolve(self, rhs) def LUsolve(self, rhs, iszerofunc=_iszero): return _LUsolve(self, rhs, iszerofunc=iszerofunc) def QRsolve(self, b): return _QRsolve(self, b) def gauss_jordan_solve(self, B, freevar=False): return _gauss_jordan_solve(self, B, freevar=freevar) def pinv_solve(self, B, arbitrary_matrix=None): return _pinv_solve(self, B, arbitrary_matrix=arbitrary_matrix) def solve(self, rhs, method='GJ'): return _solve(self, rhs, method=method) def solve_least_squares(self, rhs, method='CH'): return _solve_least_squares(self, rhs, method=method) def pinv(self, method='RD'): return _pinv(self, method=method) def inv_mod(self, m): return _inv_mod(self, m) def inverse_ADJ(self, iszerofunc=_iszero): return _inv_ADJ(self, iszerofunc=iszerofunc) def inverse_BLOCK(self, iszerofunc=_iszero): return _inv_block(self, iszerofunc=iszerofunc) def inverse_GE(self, iszerofunc=_iszero): return _inv_GE(self, iszerofunc=iszerofunc) def inverse_LU(self, iszerofunc=_iszero): return _inv_LU(self, iszerofunc=iszerofunc) def inverse_CH(self, iszerofunc=_iszero): return _inv_CH(self, iszerofunc=iszerofunc) def inverse_LDL(self, iszerofunc=_iszero): return _inv_LDL(self, iszerofunc=iszerofunc) def inverse_QR(self, iszerofunc=_iszero): return _inv_QR(self, iszerofunc=iszerofunc) def inv(self, method=None, iszerofunc=_iszero, try_block_diag=False): return _inv(self, method=method, iszerofunc=iszerofunc, try_block_diag=try_block_diag) def connected_components(self): return _connected_components(self) def connected_components_decomposition(self): return _connected_components_decomposition(self) rank_decomposition.__doc__ = _rank_decomposition.__doc__ cholesky.__doc__ = _cholesky.__doc__ LDLdecomposition.__doc__ = _LDLdecomposition.__doc__ LUdecomposition.__doc__ = _LUdecomposition.__doc__ LUdecomposition_Simple.__doc__ = _LUdecomposition_Simple.__doc__ LUdecompositionFF.__doc__ = _LUdecompositionFF.__doc__ singular_value_decomposition.__doc__ = _singular_value_decomposition.__doc__ QRdecomposition.__doc__ = _QRdecomposition.__doc__ upper_hessenberg_decomposition.__doc__ = _upper_hessenberg_decomposition.__doc__ diagonal_solve.__doc__ = _diagonal_solve.__doc__ lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__ upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__ cholesky_solve.__doc__ = _cholesky_solve.__doc__ LDLsolve.__doc__ = _LDLsolve.__doc__ LUsolve.__doc__ = _LUsolve.__doc__ QRsolve.__doc__ = _QRsolve.__doc__ gauss_jordan_solve.__doc__ = _gauss_jordan_solve.__doc__ pinv_solve.__doc__ = _pinv_solve.__doc__ solve.__doc__ = _solve.__doc__ solve_least_squares.__doc__ = _solve_least_squares.__doc__ pinv.__doc__ = _pinv.__doc__ inv_mod.__doc__ = _inv_mod.__doc__ inverse_ADJ.__doc__ = _inv_ADJ.__doc__ inverse_GE.__doc__ = _inv_GE.__doc__ inverse_LU.__doc__ = _inv_LU.__doc__ inverse_CH.__doc__ = _inv_CH.__doc__ inverse_LDL.__doc__ = _inv_LDL.__doc__ inverse_QR.__doc__ = _inv_QR.__doc__ inverse_BLOCK.__doc__ = _inv_block.__doc__ inv.__doc__ = _inv.__doc__ connected_components.__doc__ = _connected_components.__doc__ connected_components_decomposition.__doc__ = \ _connected_components_decomposition.__doc__ @deprecated( issue=15109, useinstead="from sympy.matrices.common import classof", deprecated_since_version="1.3") def classof(A, B): from sympy.matrices.common import classof as classof_ return classof_(A, B) @deprecated( issue=15109, deprecated_since_version="1.3", useinstead="from sympy.matrices.common import a2idx") def a2idx(j, n=None): from sympy.matrices.common import a2idx as a2idx_ return a2idx_(j, n)
e7567a85282a912dedd8e3d6e3027cbb6d5c7e0759fcffc34234ccf591144aab
from typing import Optional from collections import defaultdict import inspect from sympy.core.basic import Basic from sympy.core.compatibility import iterable, ordered, reduce from sympy.core.containers import Tuple from sympy.core.decorators import (deprecated, sympify_method_args, sympify_return) from sympy.core.evalf import EvalfMixin, prec_to_dps from sympy.core.parameters import global_parameters from sympy.core.expr import Expr from sympy.core.logic import (FuzzyBool, fuzzy_bool, fuzzy_or, fuzzy_and, fuzzy_not) from sympy.core.numbers import Float from sympy.core.operations import LatticeOp from sympy.core.relational import Eq, Ne, is_lt from sympy.core.singleton import Singleton, S from sympy.core.symbol import Symbol, Dummy, uniquely_named_symbol from sympy.core.sympify import _sympify, sympify, converter from sympy.logic.boolalg import And, Or, Not, Xor, true, false from sympy.sets.contains import Contains from sympy.utilities import subsets from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import iproduct, sift, roundrobin from sympy.utilities.misc import func_name, filldedent from mpmath import mpi, mpf tfn = defaultdict(lambda: None, { True: S.true, S.true: S.true, False: S.false, S.false: S.false}) @sympify_method_args class Set(Basic, EvalfMixin): """ The base class for any kind of set. Explanation =========== This is not meant to be used directly as a container of items. It does not behave like the builtin ``set``; see :class:`FiniteSet` for that. Real intervals are represented by the :class:`Interval` class and unions of sets by the :class:`Union` class. The empty set is represented by the :class:`EmptySet` class and available as a singleton as ``S.EmptySet``. """ is_number = False is_iterable = False is_interval = False is_FiniteSet = False is_Interval = False is_ProductSet = False is_Union = False is_Intersection = None # type: Optional[bool] is_UniversalSet = None # type: Optional[bool] is_Complement = None # type: Optional[bool] is_ComplexRegion = False is_empty = None # type: FuzzyBool is_finite_set = None # type: FuzzyBool @property # type: ignore @deprecated(useinstead="is S.EmptySet or is_empty", issue=16946, deprecated_since_version="1.5") def is_EmptySet(self): return None @staticmethod def _infimum_key(expr): """ Return infimum (if possible) else S.Infinity. """ try: infimum = expr.inf assert infimum.is_comparable infimum = infimum.evalf() # issue #18505 except (NotImplementedError, AttributeError, AssertionError, ValueError): infimum = S.Infinity return infimum def union(self, other): """ Returns the union of ``self`` and ``other``. Examples ======== As a shortcut it is possible to use the '+' operator: >>> from sympy import Interval, FiniteSet >>> Interval(0, 1).union(Interval(2, 3)) Union(Interval(0, 1), Interval(2, 3)) >>> Interval(0, 1) + Interval(2, 3) Union(Interval(0, 1), Interval(2, 3)) >>> Interval(1, 2, True, True) + FiniteSet(2, 3) Union(FiniteSet(3), Interval.Lopen(1, 2)) Similarly it is possible to use the '-' operator for set differences: >>> Interval(0, 2) - Interval(0, 1) Interval.Lopen(1, 2) >>> Interval(1, 3) - FiniteSet(2) Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3)) """ return Union(self, other) def intersect(self, other): """ Returns the intersection of 'self' and 'other'. Examples ======== >>> from sympy import Interval >>> Interval(1, 3).intersect(Interval(1, 2)) Interval(1, 2) >>> from sympy import imageset, Lambda, symbols, S >>> n, m = symbols('n m') >>> a = imageset(Lambda(n, 2*n), S.Integers) >>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers)) EmptySet """ return Intersection(self, other) def intersection(self, other): """ Alias for :meth:`intersect()` """ return self.intersect(other) def is_disjoint(self, other): """ Returns True if ``self`` and ``other`` are disjoint. Examples ======== >>> from sympy import Interval >>> Interval(0, 2).is_disjoint(Interval(1, 2)) False >>> Interval(0, 2).is_disjoint(Interval(3, 4)) True References ========== .. [1] https://en.wikipedia.org/wiki/Disjoint_sets """ return self.intersect(other) == S.EmptySet def isdisjoint(self, other): """ Alias for :meth:`is_disjoint()` """ return self.is_disjoint(other) def complement(self, universe): r""" The complement of 'self' w.r.t the given universe. Examples ======== >>> from sympy import Interval, S >>> Interval(0, 1).complement(S.Reals) Union(Interval.open(-oo, 0), Interval.open(1, oo)) >>> Interval(0, 1).complement(S.UniversalSet) Complement(UniversalSet, Interval(0, 1)) """ return Complement(universe, self) def _complement(self, other): # this behaves as other - self if isinstance(self, ProductSet) and isinstance(other, ProductSet): # If self and other are disjoint then other - self == self if len(self.sets) != len(other.sets): return other # There can be other ways to represent this but this gives: # (A x B) - (C x D) = ((A - C) x B) U (A x (B - D)) overlaps = [] pairs = list(zip(self.sets, other.sets)) for n in range(len(pairs)): sets = (o if i != n else o-s for i, (s, o) in enumerate(pairs)) overlaps.append(ProductSet(*sets)) return Union(*overlaps) elif isinstance(other, Interval): if isinstance(self, Interval) or isinstance(self, FiniteSet): return Intersection(other, self.complement(S.Reals)) elif isinstance(other, Union): return Union(*(o - self for o in other.args)) elif isinstance(other, Complement): return Complement(other.args[0], Union(other.args[1], self), evaluate=False) elif isinstance(other, EmptySet): return S.EmptySet elif isinstance(other, FiniteSet): from sympy.utilities.iterables import sift sifted = sift(other, lambda x: fuzzy_bool(self.contains(x))) # ignore those that are contained in self return Union(FiniteSet(*(sifted[False])), Complement(FiniteSet(*(sifted[None])), self, evaluate=False) if sifted[None] else S.EmptySet) def symmetric_difference(self, other): """ Returns symmetric difference of ``self`` and ``other``. Examples ======== >>> from sympy import Interval, S >>> Interval(1, 3).symmetric_difference(S.Reals) Union(Interval.open(-oo, 1), Interval.open(3, oo)) >>> Interval(1, 10).symmetric_difference(S.Reals) Union(Interval.open(-oo, 1), Interval.open(10, oo)) >>> from sympy import S, EmptySet >>> S.Reals.symmetric_difference(EmptySet) Reals References ========== .. [1] https://en.wikipedia.org/wiki/Symmetric_difference """ return SymmetricDifference(self, other) def _symmetric_difference(self, other): return Union(Complement(self, other), Complement(other, self)) @property def inf(self): """ The infimum of ``self``. Examples ======== >>> from sympy import Interval, Union >>> Interval(0, 1).inf 0 >>> Union(Interval(0, 1), Interval(2, 3)).inf 0 """ return self._inf @property def _inf(self): raise NotImplementedError("(%s)._inf" % self) @property def sup(self): """ The supremum of ``self``. Examples ======== >>> from sympy import Interval, Union >>> Interval(0, 1).sup 1 >>> Union(Interval(0, 1), Interval(2, 3)).sup 3 """ return self._sup @property def _sup(self): raise NotImplementedError("(%s)._sup" % self) def contains(self, other): """ Returns a SymPy value indicating whether ``other`` is contained in ``self``: ``true`` if it is, ``false`` if it isn't, else an unevaluated ``Contains`` expression (or, as in the case of ConditionSet and a union of FiniteSet/Intervals, an expression indicating the conditions for containment). Examples ======== >>> from sympy import Interval, S >>> from sympy.abc import x >>> Interval(0, 1).contains(0.5) True As a shortcut it is possible to use the 'in' operator, but that will raise an error unless an affirmative true or false is not obtained. >>> Interval(0, 1).contains(x) (0 <= x) & (x <= 1) >>> x in Interval(0, 1) Traceback (most recent call last): ... TypeError: did not evaluate to a bool: None The result of 'in' is a bool, not a SymPy value >>> 1 in Interval(0, 2) True >>> _ is S.true False """ other = sympify(other, strict=True) c = self._contains(other) if isinstance(c, Contains): return c if c is None: return Contains(other, self, evaluate=False) b = tfn[c] if b is None: return c return b def _contains(self, other): raise NotImplementedError(filldedent(''' (%s)._contains(%s) is not defined. This method, when defined, will receive a sympified object. The method should return True, False, None or something that expresses what must be true for the containment of that object in self to be evaluated. If None is returned then a generic Contains object will be returned by the ``contains`` method.''' % (self, other))) def is_subset(self, other): """ Returns True if ``self`` is a subset of ``other``. Examples ======== >>> from sympy import Interval >>> Interval(0, 0.5).is_subset(Interval(0, 1)) True >>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True)) False """ if not isinstance(other, Set): raise ValueError("Unknown argument '%s'" % other) # Handle the trivial cases if self == other: return True is_empty = self.is_empty if is_empty is True: return True elif fuzzy_not(is_empty) and other.is_empty: return False if self.is_finite_set is False and other.is_finite_set: return False # Dispatch on subclass rules ret = self._eval_is_subset(other) if ret is not None: return ret ret = other._eval_is_superset(self) if ret is not None: return ret # Use pairwise rules from multiple dispatch from sympy.sets.handlers.issubset import is_subset_sets ret = is_subset_sets(self, other) if ret is not None: return ret # Fall back on computing the intersection # XXX: We shouldn't do this. A query like this should be handled # without evaluating new Set objects. It should be the other way round # so that the intersect method uses is_subset for evaluation. if self.intersect(other) == self: return True def _eval_is_subset(self, other): '''Returns a fuzzy bool for whether self is a subset of other.''' return None def _eval_is_superset(self, other): '''Returns a fuzzy bool for whether self is a subset of other.''' return None # This should be deprecated: def issubset(self, other): """ Alias for :meth:`is_subset()` """ return self.is_subset(other) def is_proper_subset(self, other): """ Returns True if ``self`` is a proper subset of ``other``. Examples ======== >>> from sympy import Interval >>> Interval(0, 0.5).is_proper_subset(Interval(0, 1)) True >>> Interval(0, 1).is_proper_subset(Interval(0, 1)) False """ if isinstance(other, Set): return self != other and self.is_subset(other) else: raise ValueError("Unknown argument '%s'" % other) def is_superset(self, other): """ Returns True if ``self`` is a superset of ``other``. Examples ======== >>> from sympy import Interval >>> Interval(0, 0.5).is_superset(Interval(0, 1)) False >>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True)) True """ if isinstance(other, Set): return other.is_subset(self) else: raise ValueError("Unknown argument '%s'" % other) # This should be deprecated: def issuperset(self, other): """ Alias for :meth:`is_superset()` """ return self.is_superset(other) def is_proper_superset(self, other): """ Returns True if ``self`` is a proper superset of ``other``. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).is_proper_superset(Interval(0, 0.5)) True >>> Interval(0, 1).is_proper_superset(Interval(0, 1)) False """ if isinstance(other, Set): return self != other and self.is_superset(other) else: raise ValueError("Unknown argument '%s'" % other) def _eval_powerset(self): from .powerset import PowerSet return PowerSet(self) def powerset(self): """ Find the Power set of ``self``. Examples ======== >>> from sympy import EmptySet, FiniteSet, Interval A power set of an empty set: >>> A = EmptySet >>> A.powerset() FiniteSet(EmptySet) A power set of a finite set: >>> A = FiniteSet(1, 2) >>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2) >>> A.powerset() == FiniteSet(a, b, c, EmptySet) True A power set of an interval: >>> Interval(1, 2).powerset() PowerSet(Interval(1, 2)) References ========== .. [1] https://en.wikipedia.org/wiki/Power_set """ return self._eval_powerset() @property def measure(self): """ The (Lebesgue) measure of ``self``. Examples ======== >>> from sympy import Interval, Union >>> Interval(0, 1).measure 1 >>> Union(Interval(0, 1), Interval(2, 3)).measure 2 """ return self._measure @property def boundary(self): """ The boundary or frontier of a set. Explanation =========== A point x is on the boundary of a set S if 1. x is in the closure of S. I.e. Every neighborhood of x contains a point in S. 2. x is not in the interior of S. I.e. There does not exist an open set centered on x contained entirely within S. There are the points on the outer rim of S. If S is open then these points need not actually be contained within S. For example, the boundary of an interval is its start and end points. This is true regardless of whether or not the interval is open. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).boundary FiniteSet(0, 1) >>> Interval(0, 1, True, False).boundary FiniteSet(0, 1) """ return self._boundary @property def is_open(self): """ Property method to check whether a set is open. Explanation =========== A set is open if and only if it has an empty intersection with its boundary. In particular, a subset A of the reals is open if and only if each one of its points is contained in an open interval that is a subset of A. Examples ======== >>> from sympy import S >>> S.Reals.is_open True >>> S.Rationals.is_open False """ return Intersection(self, self.boundary).is_empty @property def is_closed(self): """ A property method to check whether a set is closed. Explanation =========== A set is closed if its complement is an open set. The closedness of a subset of the reals is determined with respect to R and its standard topology. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).is_closed True """ return self.boundary.is_subset(self) @property def closure(self): """ Property method which returns the closure of a set. The closure is defined as the union of the set itself and its boundary. Examples ======== >>> from sympy import S, Interval >>> S.Reals.closure Reals >>> Interval(0, 1).closure Interval(0, 1) """ return self + self.boundary @property def interior(self): """ Property method which returns the interior of a set. The interior of a set S consists all points of S that do not belong to the boundary of S. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).interior Interval.open(0, 1) >>> Interval(0, 1).boundary.interior EmptySet """ return self - self.boundary @property def _boundary(self): raise NotImplementedError() @property def _measure(self): raise NotImplementedError("(%s)._measure" % self) def _eval_evalf(self, prec): return self.func(*[arg.evalf(n=prec_to_dps(prec)) for arg in self.args]) @sympify_return([('other', 'Set')], NotImplemented) def __add__(self, other): return self.union(other) @sympify_return([('other', 'Set')], NotImplemented) def __or__(self, other): return self.union(other) @sympify_return([('other', 'Set')], NotImplemented) def __and__(self, other): return self.intersect(other) @sympify_return([('other', 'Set')], NotImplemented) def __mul__(self, other): return ProductSet(self, other) @sympify_return([('other', 'Set')], NotImplemented) def __xor__(self, other): return SymmetricDifference(self, other) @sympify_return([('exp', Expr)], NotImplemented) def __pow__(self, exp): if not (exp.is_Integer and exp >= 0): raise ValueError("%s: Exponent must be a positive Integer" % exp) return ProductSet(*[self]*exp) @sympify_return([('other', 'Set')], NotImplemented) def __sub__(self, other): return Complement(self, other) def __contains__(self, other): other = _sympify(other) c = self._contains(other) b = tfn[c] if b is None: # x in y must evaluate to T or F; to entertain a None # result with Set use y.contains(x) raise TypeError('did not evaluate to a bool: %r' % c) return b class ProductSet(Set): """ Represents a Cartesian Product of Sets. Explanation =========== Returns a Cartesian product given several sets as either an iterable or individual arguments. Can use '*' operator on any sets for convenient shorthand. Examples ======== >>> from sympy import Interval, FiniteSet, ProductSet >>> I = Interval(0, 5); S = FiniteSet(1, 2, 3) >>> ProductSet(I, S) ProductSet(Interval(0, 5), FiniteSet(1, 2, 3)) >>> (2, 2) in ProductSet(I, S) True >>> Interval(0, 1) * Interval(0, 1) # The unit square ProductSet(Interval(0, 1), Interval(0, 1)) >>> coin = FiniteSet('H', 'T') >>> set(coin**2) {(H, H), (H, T), (T, H), (T, T)} The Cartesian product is not commutative or associative e.g.: >>> I*S == S*I False >>> (I*I)*I == I*(I*I) False Notes ===== - Passes most operations down to the argument sets References ========== .. [1] https://en.wikipedia.org/wiki/Cartesian_product """ is_ProductSet = True def __new__(cls, *sets, **assumptions): if len(sets) == 1 and iterable(sets[0]) and not isinstance(sets[0], (Set, set)): SymPyDeprecationWarning( feature="ProductSet(iterable)", useinstead="ProductSet(*iterable)", issue=17557, deprecated_since_version="1.5" ).warn() sets = tuple(sets[0]) sets = [sympify(s) for s in sets] if not all(isinstance(s, Set) for s in sets): raise TypeError("Arguments to ProductSet should be of type Set") # Nullary product of sets is *not* the empty set if len(sets) == 0: return FiniteSet(()) if S.EmptySet in sets: return S.EmptySet return Basic.__new__(cls, *sets, **assumptions) @property def sets(self): return self.args def flatten(self): def _flatten(sets): for s in sets: if s.is_ProductSet: yield from _flatten(s.sets) else: yield s return ProductSet(*_flatten(self.sets)) def _contains(self, element): """ 'in' operator for ProductSets. Examples ======== >>> from sympy import Interval >>> (2, 3) in Interval(0, 5) * Interval(0, 5) True >>> (10, 10) in Interval(0, 5) * Interval(0, 5) False Passes operation on to constituent sets """ if element.is_Symbol: return None if not isinstance(element, Tuple) or len(element) != len(self.sets): return False return fuzzy_and(s._contains(e) for s, e in zip(self.sets, element)) def as_relational(self, *symbols): symbols = [_sympify(s) for s in symbols] if len(symbols) != len(self.sets) or not all( i.is_Symbol for i in symbols): raise ValueError( 'number of symbols must match the number of sets') return And(*[s.as_relational(i) for s, i in zip(self.sets, symbols)]) @property def _boundary(self): return Union(*(ProductSet(*(b + b.boundary if i != j else b.boundary for j, b in enumerate(self.sets))) for i, a in enumerate(self.sets))) @property def is_iterable(self): """ A property method which tests whether a set is iterable or not. Returns True if set is iterable, otherwise returns False. Examples ======== >>> from sympy import FiniteSet, Interval >>> I = Interval(0, 1) >>> A = FiniteSet(1, 2, 3, 4, 5) >>> I.is_iterable False >>> A.is_iterable True """ return all(set.is_iterable for set in self.sets) def __iter__(self): """ A method which implements is_iterable property method. If self.is_iterable returns True (both constituent sets are iterable), then return the Cartesian Product. Otherwise, raise TypeError. """ return iproduct(*self.sets) @property def is_empty(self): return fuzzy_or(s.is_empty for s in self.sets) @property def is_finite_set(self): all_finite = fuzzy_and(s.is_finite_set for s in self.sets) return fuzzy_or([self.is_empty, all_finite]) @property def _measure(self): measure = 1 for s in self.sets: measure *= s.measure return measure def __len__(self): return reduce(lambda a, b: a*b, (len(s) for s in self.args)) def __bool__(self): return all([bool(s) for s in self.sets]) class Interval(Set): """ Represents a real interval as a Set. Usage: Returns an interval with end points "start" and "end". For left_open=True (default left_open is False) the interval will be open on the left. Similarly, for right_open=True the interval will be open on the right. Examples ======== >>> from sympy import Symbol, Interval >>> Interval(0, 1) Interval(0, 1) >>> Interval.Ropen(0, 1) Interval.Ropen(0, 1) >>> Interval.Ropen(0, 1) Interval.Ropen(0, 1) >>> Interval.Lopen(0, 1) Interval.Lopen(0, 1) >>> Interval.open(0, 1) Interval.open(0, 1) >>> a = Symbol('a', real=True) >>> Interval(0, a) Interval(0, a) Notes ===== - Only real end points are supported - Interval(a, b) with a > b will return the empty set - Use the evalf() method to turn an Interval into an mpmath 'mpi' interval instance References ========== .. [1] https://en.wikipedia.org/wiki/Interval_%28mathematics%29 """ is_Interval = True def __new__(cls, start, end, left_open=False, right_open=False): start = _sympify(start) end = _sympify(end) left_open = _sympify(left_open) right_open = _sympify(right_open) if not all(isinstance(a, (type(true), type(false))) for a in [left_open, right_open]): raise NotImplementedError( "left_open and right_open can have only true/false values, " "got %s and %s" % (left_open, right_open)) # Only allow real intervals if fuzzy_not(fuzzy_and(i.is_extended_real for i in (start, end, end-start))): raise ValueError("Non-real intervals are not supported") # evaluate if possible if is_lt(end, start): return S.EmptySet elif (end - start).is_negative: return S.EmptySet if end == start and (left_open or right_open): return S.EmptySet if end == start and not (left_open or right_open): if start is S.Infinity or start is S.NegativeInfinity: return S.EmptySet return FiniteSet(end) # Make sure infinite interval end points are open. if start is S.NegativeInfinity: left_open = true if end is S.Infinity: right_open = true if start == S.Infinity or end == S.NegativeInfinity: return S.EmptySet return Basic.__new__(cls, start, end, left_open, right_open) @property def start(self): """ The left end point of ``self``. This property takes the same value as the 'inf' property. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).start 0 """ return self._args[0] _inf = left = start @classmethod def open(cls, a, b): """Return an interval including neither boundary.""" return cls(a, b, True, True) @classmethod def Lopen(cls, a, b): """Return an interval not including the left boundary.""" return cls(a, b, True, False) @classmethod def Ropen(cls, a, b): """Return an interval not including the right boundary.""" return cls(a, b, False, True) @property def end(self): """ The right end point of 'self'. This property takes the same value as the 'sup' property. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).end 1 """ return self._args[1] _sup = right = end @property def left_open(self): """ True if ``self`` is left-open. Examples ======== >>> from sympy import Interval >>> Interval(0, 1, left_open=True).left_open True >>> Interval(0, 1, left_open=False).left_open False """ return self._args[2] @property def right_open(self): """ True if ``self`` is right-open. Examples ======== >>> from sympy import Interval >>> Interval(0, 1, right_open=True).right_open True >>> Interval(0, 1, right_open=False).right_open False """ return self._args[3] @property def is_empty(self): if self.left_open or self.right_open: cond = self.start >= self.end # One/both bounds open else: cond = self.start > self.end # Both bounds closed return fuzzy_bool(cond) @property def is_finite_set(self): return self.measure.is_zero def _complement(self, other): if other == S.Reals: a = Interval(S.NegativeInfinity, self.start, True, not self.left_open) b = Interval(self.end, S.Infinity, not self.right_open, True) return Union(a, b) if isinstance(other, FiniteSet): nums = [m for m in other.args if m.is_number] if nums == []: return None return Set._complement(self, other) @property def _boundary(self): finite_points = [p for p in (self.start, self.end) if abs(p) != S.Infinity] return FiniteSet(*finite_points) def _contains(self, other): if (not isinstance(other, Expr) or other is S.NaN or other.is_real is False): return false if self.start is S.NegativeInfinity and self.end is S.Infinity: if other.is_real is not None: return other.is_real d = Dummy() return self.as_relational(d).subs(d, other) def as_relational(self, x): """Rewrite an interval in terms of inequalities and logic operators.""" x = sympify(x) if self.right_open: right = x < self.end else: right = x <= self.end if self.left_open: left = self.start < x else: left = self.start <= x return And(left, right) @property def _measure(self): return self.end - self.start def to_mpi(self, prec=53): return mpi(mpf(self.start._eval_evalf(prec)), mpf(self.end._eval_evalf(prec))) def _eval_evalf(self, prec): return Interval(self.left._evalf(prec), self.right._evalf(prec), left_open=self.left_open, right_open=self.right_open) def _is_comparable(self, other): is_comparable = self.start.is_comparable is_comparable &= self.end.is_comparable is_comparable &= other.start.is_comparable is_comparable &= other.end.is_comparable return is_comparable @property def is_left_unbounded(self): """Return ``True`` if the left endpoint is negative infinity. """ return self.left is S.NegativeInfinity or self.left == Float("-inf") @property def is_right_unbounded(self): """Return ``True`` if the right endpoint is positive infinity. """ return self.right is S.Infinity or self.right == Float("+inf") def _eval_Eq(self, other): if not isinstance(other, Interval): if isinstance(other, FiniteSet): return false elif isinstance(other, Set): return None return false class Union(Set, LatticeOp): """ Represents a union of sets as a :class:`Set`. Examples ======== >>> from sympy import Union, Interval >>> Union(Interval(1, 2), Interval(3, 4)) Union(Interval(1, 2), Interval(3, 4)) The Union constructor will always try to merge overlapping intervals, if possible. For example: >>> Union(Interval(1, 2), Interval(2, 3)) Interval(1, 3) See Also ======== Intersection References ========== .. [1] https://en.wikipedia.org/wiki/Union_%28set_theory%29 """ is_Union = True @property def identity(self): return S.EmptySet @property def zero(self): return S.UniversalSet def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_parameters.evaluate) # flatten inputs to merge intersections and iterables args = _sympify(args) # Reduce sets using known rules if evaluate: args = list(cls._new_args_filter(args)) return simplify_union(args) args = list(ordered(args, Set._infimum_key)) obj = Basic.__new__(cls, *args) obj._argset = frozenset(args) return obj @property def args(self): return self._args def _complement(self, universe): # DeMorgan's Law return Intersection(s.complement(universe) for s in self.args) @property def _inf(self): # We use Min so that sup is meaningful in combination with symbolic # interval end points. from sympy.functions.elementary.miscellaneous import Min return Min(*[set.inf for set in self.args]) @property def _sup(self): # We use Max so that sup is meaningful in combination with symbolic # end points. from sympy.functions.elementary.miscellaneous import Max return Max(*[set.sup for set in self.args]) @property def is_empty(self): return fuzzy_and(set.is_empty for set in self.args) @property def is_finite_set(self): return fuzzy_and(set.is_finite_set for set in self.args) @property def _measure(self): # Measure of a union is the sum of the measures of the sets minus # the sum of their pairwise intersections plus the sum of their # triple-wise intersections minus ... etc... # Sets is a collection of intersections and a set of elementary # sets which made up those intersections (called "sos" for set of sets) # An example element might of this list might be: # ( {A,B,C}, A.intersect(B).intersect(C) ) # Start with just elementary sets ( ({A}, A), ({B}, B), ... ) # Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero sets = [(FiniteSet(s), s) for s in self.args] measure = 0 parity = 1 while sets: # Add up the measure of these sets and add or subtract it to total measure += parity * sum(inter.measure for sos, inter in sets) # For each intersection in sets, compute the intersection with every # other set not already part of the intersection. sets = ((sos + FiniteSet(newset), newset.intersect(intersection)) for sos, intersection in sets for newset in self.args if newset not in sos) # Clear out sets with no measure sets = [(sos, inter) for sos, inter in sets if inter.measure != 0] # Clear out duplicates sos_list = [] sets_list = [] for set in sets: if set[0] in sos_list: continue else: sos_list.append(set[0]) sets_list.append(set) sets = sets_list # Flip Parity - next time subtract/add if we added/subtracted here parity *= -1 return measure @property def _boundary(self): def boundary_of_set(i): """ The boundary of set i minus interior of all other sets """ b = self.args[i].boundary for j, a in enumerate(self.args): if j != i: b = b - a.interior return b return Union(*map(boundary_of_set, range(len(self.args)))) def _contains(self, other): return Or(*[s.contains(other) for s in self.args]) def is_subset(self, other): return fuzzy_and(s.is_subset(other) for s in self.args) def as_relational(self, symbol): """Rewrite a Union in terms of equalities and logic operators. """ if all(isinstance(i, (FiniteSet, Interval)) for i in self.args): if len(self.args) == 2: a, b = self.args if (a.sup == b.inf and a.inf is S.NegativeInfinity and b.sup is S.Infinity): return And(Ne(symbol, a.sup), symbol < b.sup, symbol > a.inf) return Or(*[set.as_relational(symbol) for set in self.args]) raise NotImplementedError('relational of Union with non-Intervals') @property def is_iterable(self): return all(arg.is_iterable for arg in self.args) def __iter__(self): return roundrobin(*(iter(arg) for arg in self.args)) class Intersection(Set, LatticeOp): """ Represents an intersection of sets as a :class:`Set`. Examples ======== >>> from sympy import Intersection, Interval >>> Intersection(Interval(1, 3), Interval(2, 4)) Interval(2, 3) We often use the .intersect method >>> Interval(1,3).intersect(Interval(2,4)) Interval(2, 3) See Also ======== Union References ========== .. [1] https://en.wikipedia.org/wiki/Intersection_%28set_theory%29 """ is_Intersection = True @property def identity(self): return S.UniversalSet @property def zero(self): return S.EmptySet def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_parameters.evaluate) # flatten inputs to merge intersections and iterables args = list(ordered(set(_sympify(args)))) # Reduce sets using known rules if evaluate: args = list(cls._new_args_filter(args)) return simplify_intersection(args) args = list(ordered(args, Set._infimum_key)) obj = Basic.__new__(cls, *args) obj._argset = frozenset(args) return obj @property def args(self): return self._args @property def is_iterable(self): return any(arg.is_iterable for arg in self.args) @property def is_finite_set(self): if fuzzy_or(arg.is_finite_set for arg in self.args): return True @property def _inf(self): raise NotImplementedError() @property def _sup(self): raise NotImplementedError() def _contains(self, other): return And(*[set.contains(other) for set in self.args]) def __iter__(self): sets_sift = sift(self.args, lambda x: x.is_iterable) completed = False candidates = sets_sift[True] + sets_sift[None] finite_candidates, others = [], [] for candidate in candidates: length = None try: length = len(candidate) except TypeError: others.append(candidate) if length is not None: finite_candidates.append(candidate) finite_candidates.sort(key=len) for s in finite_candidates + others: other_sets = set(self.args) - {s} other = Intersection(*other_sets, evaluate=False) completed = True for x in s: try: if x in other: yield x except TypeError: completed = False if completed: return if not completed: if not candidates: raise TypeError("None of the constituent sets are iterable") raise TypeError( "The computation had not completed because of the " "undecidable set membership is found in every candidates.") @staticmethod def _handle_finite_sets(args): '''Simplify intersection of one or more FiniteSets and other sets''' # First separate the FiniteSets from the others fs_args, others = sift(args, lambda x: x.is_FiniteSet, binary=True) # Let the caller handle intersection of non-FiniteSets if not fs_args: return # Convert to Python sets and build the set of all elements fs_sets = [set(fs) for fs in fs_args] all_elements = reduce(lambda a, b: a | b, fs_sets, set()) # Extract elements that are definitely in or definitely not in the # intersection. Here we check contains for all of args. definite = set() for e in all_elements: inall = fuzzy_and(s.contains(e) for s in args) if inall is True: definite.add(e) if inall is not None: for s in fs_sets: s.discard(e) # At this point all elements in all of fs_sets are possibly in the # intersection. In some cases this is because they are definitely in # the intersection of the finite sets but it's not clear if they are # members of others. We might have {m, n}, {m}, and Reals where we # don't know if m or n is real. We want to remove n here but it is # possibly in because it might be equal to m. So what we do now is # extract the elements that are definitely in the remaining finite # sets iteratively until we end up with {n}, {}. At that point if we # get any empty set all remaining elements are discarded. fs_elements = reduce(lambda a, b: a | b, fs_sets, set()) # Need fuzzy containment testing fs_symsets = [FiniteSet(*s) for s in fs_sets] while fs_elements: for e in fs_elements: infs = fuzzy_and(s.contains(e) for s in fs_symsets) if infs is True: definite.add(e) if infs is not None: for n, s in enumerate(fs_sets): # Update Python set and FiniteSet if e in s: s.remove(e) fs_symsets[n] = FiniteSet(*s) fs_elements.remove(e) break # If we completed the for loop without removing anything we are # done so quit the outer while loop else: break # If any of the sets of remainder elements is empty then we discard # all of them for the intersection. if not all(fs_sets): fs_sets = [set()] # Here we fold back the definitely included elements into each fs. # Since they are definitely included they must have been members of # each FiniteSet to begin with. We could instead fold these in with a # Union at the end to get e.g. {3}|({x}&{y}) rather than {3,x}&{3,y}. if definite: fs_sets = [fs | definite for fs in fs_sets] if fs_sets == [set()]: return S.EmptySet sets = [FiniteSet(*s) for s in fs_sets] # Any set in others is redundant if it contains all the elements that # are in the finite sets so we don't need it in the Intersection all_elements = reduce(lambda a, b: a | b, fs_sets, set()) is_redundant = lambda o: all(fuzzy_bool(o.contains(e)) for e in all_elements) others = [o for o in others if not is_redundant(o)] if others: rest = Intersection(*others) # XXX: Maybe this shortcut should be at the beginning. For large # FiniteSets it could much more efficient to process the other # sets first... if rest is S.EmptySet: return S.EmptySet # Flatten the Intersection if rest.is_Intersection: sets.extend(rest.args) else: sets.append(rest) if len(sets) == 1: return sets[0] else: return Intersection(*sets, evaluate=False) def as_relational(self, symbol): """Rewrite an Intersection in terms of equalities and logic operators""" return And(*[set.as_relational(symbol) for set in self.args]) class Complement(Set): r"""Represents the set difference or relative complement of a set with another set. `A - B = \{x \in A \mid x \notin B\}` Examples ======== >>> from sympy import Complement, FiniteSet >>> Complement(FiniteSet(0, 1, 2), FiniteSet(1)) FiniteSet(0, 2) See Also ========= Intersection, Union References ========== .. [1] http://mathworld.wolfram.com/ComplementSet.html """ is_Complement = True def __new__(cls, a, b, evaluate=True): if evaluate: return Complement.reduce(a, b) return Basic.__new__(cls, a, b) @staticmethod def reduce(A, B): """ Simplify a :class:`Complement`. """ if B == S.UniversalSet or A.is_subset(B): return S.EmptySet if isinstance(B, Union): return Intersection(*(s.complement(A) for s in B.args)) result = B._complement(A) if result is not None: return result else: return Complement(A, B, evaluate=False) def _contains(self, other): A = self.args[0] B = self.args[1] return And(A.contains(other), Not(B.contains(other))) def as_relational(self, symbol): """Rewrite a complement in terms of equalities and logic operators""" A, B = self.args A_rel = A.as_relational(symbol) B_rel = Not(B.as_relational(symbol)) return And(A_rel, B_rel) @property def is_iterable(self): if self.args[0].is_iterable: return True @property def is_finite_set(self): A, B = self.args a_finite = A.is_finite_set if a_finite is True: return True elif a_finite is False and B.is_finite_set: return False def __iter__(self): A, B = self.args for a in A: if a not in B: yield a else: continue class EmptySet(Set, metaclass=Singleton): """ Represents the empty set. The empty set is available as a singleton as S.EmptySet. Examples ======== >>> from sympy import S, Interval >>> S.EmptySet EmptySet >>> Interval(1, 2).intersect(S.EmptySet) EmptySet See Also ======== UniversalSet References ========== .. [1] https://en.wikipedia.org/wiki/Empty_set """ is_empty = True is_finite_set = True is_FiniteSet = True @property # type: ignore @deprecated(useinstead="is S.EmptySet or is_empty", issue=16946, deprecated_since_version="1.5") def is_EmptySet(self): return True @property def _measure(self): return 0 def _contains(self, other): return false def as_relational(self, symbol): return false def __len__(self): return 0 def __iter__(self): return iter([]) def _eval_powerset(self): return FiniteSet(self) @property def _boundary(self): return self def _complement(self, other): return other def _symmetric_difference(self, other): return other class UniversalSet(Set, metaclass=Singleton): """ Represents the set of all things. The universal set is available as a singleton as S.UniversalSet. Examples ======== >>> from sympy import S, Interval >>> S.UniversalSet UniversalSet >>> Interval(1, 2).intersect(S.UniversalSet) Interval(1, 2) See Also ======== EmptySet References ========== .. [1] https://en.wikipedia.org/wiki/Universal_set """ is_UniversalSet = True is_empty = False is_finite_set = False def _complement(self, other): return S.EmptySet def _symmetric_difference(self, other): return other @property def _measure(self): return S.Infinity def _contains(self, other): return true def as_relational(self, symbol): return true @property def _boundary(self): return S.EmptySet class FiniteSet(Set): """ Represents a finite set of discrete numbers. Examples ======== >>> from sympy import FiniteSet >>> FiniteSet(1, 2, 3, 4) FiniteSet(1, 2, 3, 4) >>> 3 in FiniteSet(1, 2, 3, 4) True >>> members = [1, 2, 3, 4] >>> f = FiniteSet(*members) >>> f FiniteSet(1, 2, 3, 4) >>> f - FiniteSet(2) FiniteSet(1, 3, 4) >>> f + FiniteSet(2, 5) FiniteSet(1, 2, 3, 4, 5) References ========== .. [1] https://en.wikipedia.org/wiki/Finite_set """ is_FiniteSet = True is_iterable = True is_empty = False is_finite_set = True def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_parameters.evaluate) if evaluate: args = list(map(sympify, args)) if len(args) == 0: return S.EmptySet else: args = list(map(sympify, args)) # keep the form of the first canonical arg dargs = {} for i in reversed(list(ordered(args))): if i.is_Symbol: dargs[i] = i else: try: dargs[i.as_dummy()] = i except TypeError: # e.g. i = class without args like `Interval` dargs[i] = i _args_set = set(dargs.values()) args = list(ordered(_args_set, Set._infimum_key)) obj = Basic.__new__(cls, *args) obj._args_set = _args_set return obj def __iter__(self): return iter(self.args) def _complement(self, other): if isinstance(other, Interval): # Splitting in sub-intervals is only done for S.Reals; # other cases that need splitting will first pass through # Set._complement(). nums, syms = [], [] for m in self.args: if m.is_number and m.is_real: nums.append(m) elif m.is_real == False: pass # drop non-reals else: syms.append(m) # various symbolic expressions if other == S.Reals and nums != []: nums.sort() intervals = [] # Build up a list of intervals between the elements intervals += [Interval(S.NegativeInfinity, nums[0], True, True)] for a, b in zip(nums[:-1], nums[1:]): intervals.append(Interval(a, b, True, True)) # both open intervals.append(Interval(nums[-1], S.Infinity, True, True)) if syms != []: return Complement(Union(*intervals, evaluate=False), FiniteSet(*syms), evaluate=False) else: return Union(*intervals, evaluate=False) elif nums == []: # no splitting necessary or possible: if syms: return Complement(other, FiniteSet(*syms), evaluate=False) else: return other elif isinstance(other, FiniteSet): unk = [] for i in self: c = sympify(other.contains(i)) if c is not S.true and c is not S.false: unk.append(i) unk = FiniteSet(*unk) if unk == self: return not_true = [] for i in other: c = sympify(self.contains(i)) if c is not S.true: not_true.append(i) return Complement(FiniteSet(*not_true), unk) return Set._complement(self, other) def _contains(self, other): """ Tests whether an element, other, is in the set. Explanation =========== The actual test is for mathematical equality (as opposed to syntactical equality). In the worst case all elements of the set must be checked. Examples ======== >>> from sympy import FiniteSet >>> 1 in FiniteSet(1, 2) True >>> 5 in FiniteSet(1, 2) False """ if other in self._args_set: return True else: # evaluate=True is needed to override evaluate=False context; # we need Eq to do the evaluation return fuzzy_or(fuzzy_bool(Eq(e, other, evaluate=True)) for e in self.args) def _eval_is_subset(self, other): return fuzzy_and(other._contains(e) for e in self.args) @property def _boundary(self): return self @property def _inf(self): from sympy.functions.elementary.miscellaneous import Min return Min(*self) @property def _sup(self): from sympy.functions.elementary.miscellaneous import Max return Max(*self) @property def measure(self): return 0 def __len__(self): return len(self.args) def as_relational(self, symbol): """Rewrite a FiniteSet in terms of equalities and logic operators. """ from sympy.core.relational import Eq return Or(*[Eq(symbol, elem) for elem in self]) def compare(self, other): return (hash(self) - hash(other)) def _eval_evalf(self, prec): return FiniteSet(*[elem.evalf(n=prec_to_dps(prec)) for elem in self]) def _eval_simplify(self, **kwargs): from sympy.simplify import simplify return FiniteSet(*[simplify(elem, **kwargs) for elem in self]) @property def _sorted_args(self): return self.args def _eval_powerset(self): return self.func(*[self.func(*s) for s in subsets(self.args)]) def _eval_rewrite_as_PowerSet(self, *args, **kwargs): """Rewriting method for a finite set to a power set.""" from .powerset import PowerSet is2pow = lambda n: bool(n and not n & (n - 1)) if not is2pow(len(self)): return None fs_test = lambda arg: isinstance(arg, Set) and arg.is_FiniteSet if not all(fs_test(arg) for arg in args): return None biggest = max(args, key=len) for arg in subsets(biggest.args): arg_set = FiniteSet(*arg) if arg_set not in args: return None return PowerSet(biggest) def __ge__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return other.is_subset(self) def __gt__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return self.is_proper_superset(other) def __le__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return self.is_subset(other) def __lt__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return self.is_proper_subset(other) converter[set] = lambda x: FiniteSet(*x) converter[frozenset] = lambda x: FiniteSet(*x) class SymmetricDifference(Set): """Represents the set of elements which are in either of the sets and not in their intersection. Examples ======== >>> from sympy import SymmetricDifference, FiniteSet >>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5)) FiniteSet(1, 2, 4, 5) See Also ======== Complement, Union References ========== .. [1] https://en.wikipedia.org/wiki/Symmetric_difference """ is_SymmetricDifference = True def __new__(cls, a, b, evaluate=True): if evaluate: return SymmetricDifference.reduce(a, b) return Basic.__new__(cls, a, b) @staticmethod def reduce(A, B): result = B._symmetric_difference(A) if result is not None: return result else: return SymmetricDifference(A, B, evaluate=False) def as_relational(self, symbol): """Rewrite a symmetric_difference in terms of equalities and logic operators""" A, B = self.args A_rel = A.as_relational(symbol) B_rel = B.as_relational(symbol) return Xor(A_rel, B_rel) @property def is_iterable(self): if all(arg.is_iterable for arg in self.args): return True def __iter__(self): args = self.args union = roundrobin(*(iter(arg) for arg in args)) for item in union: count = 0 for s in args: if item in s: count += 1 if count % 2 == 1: yield item class DisjointUnion(Set): """ Represents the disjoint union (also known as the external disjoint union) of a finite number of sets. Examples ======== >>> from sympy import DisjointUnion, FiniteSet, Interval, Union, Symbol >>> A = FiniteSet(1, 2, 3) >>> B = Interval(0, 5) >>> DisjointUnion(A, B) DisjointUnion(FiniteSet(1, 2, 3), Interval(0, 5)) >>> DisjointUnion(A, B).rewrite(Union) Union(ProductSet(FiniteSet(1, 2, 3), FiniteSet(0)), ProductSet(Interval(0, 5), FiniteSet(1))) >>> C = FiniteSet(Symbol('x'), Symbol('y'), Symbol('z')) >>> DisjointUnion(C, C) DisjointUnion(FiniteSet(x, y, z), FiniteSet(x, y, z)) >>> DisjointUnion(C, C).rewrite(Union) ProductSet(FiniteSet(x, y, z), FiniteSet(0, 1)) References ========== https://en.wikipedia.org/wiki/Disjoint_union """ def __new__(cls, *sets): dj_collection = [] for set_i in sets: if isinstance(set_i, Set): dj_collection.append(set_i) else: raise TypeError("Invalid input: '%s', input args \ to DisjointUnion must be Sets" % set_i) obj = Basic.__new__(cls, *dj_collection) return obj @property def sets(self): return self.args @property def is_empty(self): return fuzzy_and(s.is_empty for s in self.sets) @property def is_finite_set(self): all_finite = fuzzy_and(s.is_finite_set for s in self.sets) return fuzzy_or([self.is_empty, all_finite]) @property def is_iterable(self): if self.is_empty: return False iter_flag = True for set_i in self.sets: if not set_i.is_empty: iter_flag = iter_flag and set_i.is_iterable return iter_flag def _eval_rewrite_as_Union(self, *sets): """ Rewrites the disjoint union as the union of (``set`` x {``i``}) where ``set`` is the element in ``sets`` at index = ``i`` """ dj_union = EmptySet() index = 0 for set_i in sets: if isinstance(set_i, Set): cross = ProductSet(set_i, FiniteSet(index)) dj_union = Union(dj_union, cross) index = index + 1 return dj_union def _contains(self, element): """ 'in' operator for DisjointUnion Examples ======== >>> from sympy import Interval, DisjointUnion >>> D = DisjointUnion(Interval(0, 1), Interval(0, 2)) >>> (0.5, 0) in D True >>> (0.5, 1) in D True >>> (1.5, 0) in D False >>> (1.5, 1) in D True Passes operation on to constituent sets """ if not isinstance(element, Tuple) or len(element) != 2: return False if not element[1].is_Integer: return False if element[1] >= len(self.sets) or element[1] < 0: return False return element[0] in self.sets[element[1]] def __iter__(self): if self.is_iterable: from sympy.core.numbers import Integer iters = [] for i, s in enumerate(self.sets): iters.append(iproduct(s, {Integer(i)})) return iter(roundrobin(*iters)) else: raise ValueError("'%s' is not iterable." % self) def __len__(self): """ Returns the length of the disjoint union, i.e., the number of elements in the set. Examples ======== >>> from sympy import FiniteSet, DisjointUnion, EmptySet >>> D1 = DisjointUnion(FiniteSet(1, 2, 3, 4), EmptySet, FiniteSet(3, 4, 5)) >>> len(D1) 7 >>> D2 = DisjointUnion(FiniteSet(3, 5, 7), EmptySet, FiniteSet(3, 5, 7)) >>> len(D2) 6 >>> D3 = DisjointUnion(EmptySet, EmptySet) >>> len(D3) 0 Adds up the lengths of the constituent sets. """ if self.is_finite_set: size = 0 for set in self.sets: size += len(set) return size else: raise ValueError("'%s' is not a finite set." % self) def imageset(*args): r""" Return an image of the set under transformation ``f``. Explanation =========== If this function can't compute the image, it returns an unevaluated ImageSet object. .. math:: \{ f(x) \mid x \in \mathrm{self} \} Examples ======== >>> from sympy import S, Interval, imageset, sin, Lambda >>> from sympy.abc import x >>> imageset(x, 2*x, Interval(0, 2)) Interval(0, 4) >>> imageset(lambda x: 2*x, Interval(0, 2)) Interval(0, 4) >>> imageset(Lambda(x, sin(x)), Interval(-2, 1)) ImageSet(Lambda(x, sin(x)), Interval(-2, 1)) >>> imageset(sin, Interval(-2, 1)) ImageSet(Lambda(x, sin(x)), Interval(-2, 1)) >>> imageset(lambda y: x + y, Interval(-2, 1)) ImageSet(Lambda(y, x + y), Interval(-2, 1)) Expressions applied to the set of Integers are simplified to show as few negatives as possible and linear expressions are converted to a canonical form. If this is not desirable then the unevaluated ImageSet should be used. >>> imageset(x, -2*x + 5, S.Integers) ImageSet(Lambda(x, 2*x + 1), Integers) See Also ======== sympy.sets.fancysets.ImageSet """ from sympy.core import Lambda from sympy.sets.fancysets import ImageSet from sympy.sets.setexpr import set_function if len(args) < 2: raise ValueError('imageset expects at least 2 args, got: %s' % len(args)) if isinstance(args[0], (Symbol, tuple)) and len(args) > 2: f = Lambda(args[0], args[1]) set_list = args[2:] else: f = args[0] set_list = args[1:] if isinstance(f, Lambda): pass elif callable(f): nargs = getattr(f, 'nargs', {}) if nargs: if len(nargs) != 1: raise NotImplementedError(filldedent(''' This function can take more than 1 arg but the potentially complicated set input has not been analyzed at this point to know its dimensions. TODO ''')) N = nargs.args[0] if N == 1: s = 'x' else: s = [Symbol('x%i' % i) for i in range(1, N + 1)] else: s = inspect.signature(f).parameters dexpr = _sympify(f(*[Dummy() for i in s])) var = tuple(uniquely_named_symbol( Symbol(i), dexpr) for i in s) f = Lambda(var, f(*var)) else: raise TypeError(filldedent(''' expecting lambda, Lambda, or FunctionClass, not \'%s\'.''' % func_name(f))) if any(not isinstance(s, Set) for s in set_list): name = [func_name(s) for s in set_list] raise ValueError( 'arguments after mapping should be sets, not %s' % name) if len(set_list) == 1: set = set_list[0] try: # TypeError if arg count != set dimensions r = set_function(f, set) if r is None: raise TypeError if not r: return r except TypeError: r = ImageSet(f, set) if isinstance(r, ImageSet): f, set = r.args if f.variables[0] == f.expr: return set if isinstance(set, ImageSet): # XXX: Maybe this should just be: # f2 = set.lambda # fun = Lambda(f2.signature, f(*f2.expr)) # return imageset(fun, *set.base_sets) if len(set.lamda.variables) == 1 and len(f.variables) == 1: x = set.lamda.variables[0] y = f.variables[0] return imageset( Lambda(x, f.expr.subs(y, set.lamda.expr)), *set.base_sets) if r is not None: return r return ImageSet(f, *set_list) def is_function_invertible_in_set(func, setv): """ Checks whether function ``func`` is invertible when the domain is restricted to set ``setv``. """ from sympy import exp, log # Functions known to always be invertible: if func in (exp, log): return True u = Dummy("u") fdiff = func(u).diff(u) # monotonous functions: # TODO: check subsets (`func` in `setv`) if (fdiff > 0) == True or (fdiff < 0) == True: return True # TODO: support more return None def simplify_union(args): """ Simplify a :class:`Union` using known rules. Explanation =========== We first start with global rules like 'Merge all FiniteSets' Then we iterate through all pairs and ask the constituent sets if they can simplify themselves with any other constituent. This process depends on ``union_sets(a, b)`` functions. """ from sympy.sets.handlers.union import union_sets # ===== Global Rules ===== if not args: return S.EmptySet for arg in args: if not isinstance(arg, Set): raise TypeError("Input args to Union must be Sets") # Merge all finite sets finite_sets = [x for x in args if x.is_FiniteSet] if len(finite_sets) > 1: a = (x for set in finite_sets for x in set) finite_set = FiniteSet(*a) args = [finite_set] + [x for x in args if not x.is_FiniteSet] # ===== Pair-wise Rules ===== # Here we depend on rules built into the constituent sets args = set(args) new_args = True while new_args: for s in args: new_args = False for t in args - {s}: new_set = union_sets(s, t) # This returns None if s does not know how to intersect # with t. Returns the newly intersected set otherwise if new_set is not None: if not isinstance(new_set, set): new_set = {new_set} new_args = (args - {s, t}).union(new_set) break if new_args: args = new_args break if len(args) == 1: return args.pop() else: return Union(*args, evaluate=False) def simplify_intersection(args): """ Simplify an intersection using known rules. Explanation =========== We first start with global rules like 'if any empty sets return empty set' and 'distribute any unions' Then we iterate through all pairs and ask the constituent sets if they can simplify themselves with any other constituent """ # ===== Global Rules ===== if not args: return S.UniversalSet for arg in args: if not isinstance(arg, Set): raise TypeError("Input args to Union must be Sets") # If any EmptySets return EmptySet if S.EmptySet in args: return S.EmptySet # Handle Finite sets rv = Intersection._handle_finite_sets(args) if rv is not None: return rv # If any of the sets are unions, return a Union of Intersections for s in args: if s.is_Union: other_sets = set(args) - {s} if len(other_sets) > 0: other = Intersection(*other_sets) return Union(*(Intersection(arg, other) for arg in s.args)) else: return Union(*[arg for arg in s.args]) for s in args: if s.is_Complement: args.remove(s) other_sets = args + [s.args[0]] return Complement(Intersection(*other_sets), s.args[1]) from sympy.sets.handlers.intersection import intersection_sets # At this stage we are guaranteed not to have any # EmptySets, FiniteSets, or Unions in the intersection # ===== Pair-wise Rules ===== # Here we depend on rules built into the constituent sets args = set(args) new_args = True while new_args: for s in args: new_args = False for t in args - {s}: new_set = intersection_sets(s, t) # This returns None if s does not know how to intersect # with t. Returns the newly intersected set otherwise if new_set is not None: new_args = (args - {s, t}).union({new_set}) break if new_args: args = new_args break if len(args) == 1: return args.pop() else: return Intersection(*args, evaluate=False) def _handle_finite_sets(op, x, y, commutative): # Handle finite sets: fs_args, other = sift([x, y], lambda x: isinstance(x, FiniteSet), binary=True) if len(fs_args) == 2: return FiniteSet(*[op(i, j) for i in fs_args[0] for j in fs_args[1]]) elif len(fs_args) == 1: sets = [_apply_operation(op, other[0], i, commutative) for i in fs_args[0]] return Union(*sets) else: return None def _apply_operation(op, x, y, commutative): from sympy.sets import ImageSet from sympy import symbols,Lambda d = Dummy('d') out = _handle_finite_sets(op, x, y, commutative) if out is None: out = op(x, y) if out is None and commutative: out = op(y, x) if out is None: _x, _y = symbols("x y") if isinstance(x, Set) and not isinstance(y, Set): out = ImageSet(Lambda(d, op(d, y)), x).doit() elif not isinstance(x, Set) and isinstance(y, Set): out = ImageSet(Lambda(d, op(x, d)), y).doit() else: out = ImageSet(Lambda((_x, _y), op(_x, _y)), x, y) return out def set_add(x, y): from sympy.sets.handlers.add import _set_add return _apply_operation(_set_add, x, y, commutative=True) def set_sub(x, y): from sympy.sets.handlers.add import _set_sub return _apply_operation(_set_sub, x, y, commutative=False) def set_mul(x, y): from sympy.sets.handlers.mul import _set_mul return _apply_operation(_set_mul, x, y, commutative=True) def set_div(x, y): from sympy.sets.handlers.mul import _set_div return _apply_operation(_set_div, x, y, commutative=False) def set_pow(x, y): from sympy.sets.handlers.power import _set_pow return _apply_operation(_set_pow, x, y, commutative=False) def set_function(f, x): from sympy.sets.handlers.functions import _set_function return _set_function(f, x)
2038db17f02f34b14c74fd41066527ae77508c84e2a6cf2d8c5e574e432319d7
from sympy import S from sympy.core.basic import Basic from sympy.core.containers import Tuple from sympy.core.function import Lambda from sympy.core.logic import fuzzy_bool from sympy.core.relational import Eq from sympy.core.symbol import Dummy from sympy.core.sympify import _sympify from sympy.logic.boolalg import And, as_Boolean from sympy.utilities.iterables import sift from sympy.utilities.exceptions import SymPyDeprecationWarning from .contains import Contains from .sets import Set, EmptySet, Union, FiniteSet adummy = Dummy('conditionset') class ConditionSet(Set): """ Set of elements which satisfies a given condition. {x | condition(x) is True for x in S} Examples ======== >>> from sympy import Symbol, S, ConditionSet, pi, Eq, sin, Interval >>> from sympy.abc import x, y, z >>> sin_sols = ConditionSet(x, Eq(sin(x), 0), Interval(0, 2*pi)) >>> 2*pi in sin_sols True >>> pi/2 in sin_sols False >>> 3*pi in sin_sols False >>> 5 in ConditionSet(x, x**2 > 4, S.Reals) True If the value is not in the base set, the result is false: >>> 5 in ConditionSet(x, x**2 > 4, Interval(2, 4)) False Notes ===== Symbols with assumptions should be avoided or else the condition may evaluate without consideration of the set: >>> n = Symbol('n', negative=True) >>> cond = (n > 0); cond False >>> ConditionSet(n, cond, S.Integers) EmptySet Only free symbols can be changed by using `subs`: >>> c = ConditionSet(x, x < 1, {x, z}) >>> c.subs(x, y) ConditionSet(x, x < 1, FiniteSet(y, z)) To check if ``pi`` is in ``c`` use: >>> pi in c False If no base set is specified, the universal set is implied: >>> ConditionSet(x, x < 1).base_set UniversalSet Only symbols or symbol-like expressions can be used: >>> ConditionSet(x + 1, x + 1 < 1, S.Integers) Traceback (most recent call last): ... ValueError: non-symbol dummy not recognized in condition When the base set is a ConditionSet, the symbols will be unified if possible with preference for the outermost symbols: >>> ConditionSet(x, x < y, ConditionSet(z, z + y < 2, S.Integers)) ConditionSet(x, (x < y) & (x + y < 2), Integers) """ def __new__(cls, sym, condition, base_set=S.UniversalSet): from sympy.core.function import BadSignatureError from sympy.utilities.iterables import flatten, has_dups sym = _sympify(sym) flat = flatten([sym]) if has_dups(flat): raise BadSignatureError("Duplicate symbols detected") base_set = _sympify(base_set) if not isinstance(base_set, Set): raise TypeError( 'base set should be a Set object, not %s' % base_set) condition = _sympify(condition) if isinstance(condition, FiniteSet): condition_orig = condition temp = (Eq(lhs, 0) for lhs in condition) condition = And(*temp) SymPyDeprecationWarning( feature="Using {} for condition".format(condition_orig), issue=17651, deprecated_since_version='1.5', useinstead="{} for condition".format(condition) ).warn() condition = as_Boolean(condition) if condition is S.true: return base_set if condition is S.false: return S.EmptySet if isinstance(base_set, EmptySet): return base_set # no simple answers, so now check syms for i in flat: if not getattr(i, '_diff_wrt', False): raise ValueError('`%s` is not symbol-like' % i) if base_set.contains(sym) is S.false: raise TypeError('sym `%s` is not in base_set `%s`' % (sym, base_set)) know = None if isinstance(base_set, FiniteSet): sifted = sift( base_set, lambda _: fuzzy_bool(condition.subs(sym, _))) if sifted[None]: know = FiniteSet(*sifted[True]) base_set = FiniteSet(*sifted[None]) else: return FiniteSet(*sifted[True]) if isinstance(base_set, cls): s, c, b = base_set.args def sig(s): return cls(s, Eq(adummy, 0)).as_dummy().sym sa, sb = map(sig, (sym, s)) if sa != sb: raise BadSignatureError('sym does not match sym of base set') reps = dict(zip(flatten([sym]), flatten([s]))) if s == sym: condition = And(condition, c) base_set = b elif not c.free_symbols & sym.free_symbols: reps = {v: k for k, v in reps.items()} condition = And(condition, c.xreplace(reps)) base_set = b elif not condition.free_symbols & s.free_symbols: sym = sym.xreplace(reps) condition = And(condition.xreplace(reps), c) base_set = b # flatten ConditionSet(Contains(ConditionSet())) expressions if isinstance(condition, Contains) and (sym == condition.args[0]): if isinstance(condition.args[1], Set): return condition.args[1].intersect(base_set) rv = Basic.__new__(cls, sym, condition, base_set) return rv if know is None else Union(know, rv) sym = property(lambda self: self.args[0]) condition = property(lambda self: self.args[1]) base_set = property(lambda self: self.args[2]) @property def free_symbols(self): cond_syms = self.condition.free_symbols - self.sym.free_symbols return cond_syms | self.base_set.free_symbols @property def bound_symbols(self): from sympy.utilities.iterables import flatten return flatten([self.sym]) def _contains(self, other): def ok_sig(a, b): tuples = [isinstance(i, Tuple) for i in (a, b)] c = tuples.count(True) if c == 1: return False if c == 0: return True return len(a) == len(b) and all( ok_sig(i, j) for i, j in zip(a, b)) if not ok_sig(self.sym, other): return S.false # try doing base_cond first and return # False immediately if it is False base_cond = Contains(other, self.base_set) if base_cond is S.false: return S.false # Substitute other into condition. This could raise e.g. for # ConditionSet(x, 1/x >= 0, Reals).contains(0) lamda = Lambda((self.sym,), self.condition) try: lambda_cond = lamda(other) except TypeError: return Contains(other, self, evaluate=False) else: return And(base_cond, lambda_cond) def as_relational(self, other): f = Lambda(self.sym, self.condition) if isinstance(self.sym, Tuple): f = f(*other) else: f = f(other) return And(f, self.base_set.contains(other)) def _eval_subs(self, old, new): sym, cond, base = self.args dsym = sym.subs(old, adummy) insym = dsym.has(adummy) # prioritize changing a symbol in the base newbase = base.subs(old, new) if newbase != base: if not insym: cond = cond.subs(old, new) return self.func(sym, cond, newbase) if insym: pass # no change of bound symbols via subs elif getattr(new, '_diff_wrt', False): cond = cond.subs(old, new) else: pass # let error about the symbol raise from __new__ return self.func(sym, cond, base)
d323f9f1fccca04cf50ec1f7d5b10a664ee45fe0ede1f94b64d8c23af1d9a60a
from sympy import (FiniteSet, S, Symbol, sqrt, nan, beta, Rational, symbols, simplify, Eq, cos, And, Tuple, Or, Dict, sympify, binomial, cancel, exp, I, Piecewise, Sum, Dummy, harmonic, Function) from sympy.matrices import Matrix from sympy.stats import (DiscreteUniform, Die, Bernoulli, Coin, Binomial, BetaBinomial, Hypergeometric, Rademacher, IdealSoliton, RobustSoliton, P, E, variance, covariance, skewness, density, where, FiniteRV, pspace, cdf, correlation, moment, cmoment, smoment, characteristic_function, moment_generating_function, quantile, kurtosis, median, coskewness) from sympy.stats.frv_types import DieDistribution, BinomialDistribution, \ HypergeometricDistribution from sympy.stats.rv import Density from sympy.testing.pytest import raises def BayesTest(A, B): assert P(A, B) == P(And(A, B)) / P(B) assert P(A, B) == P(B, A) * P(A) / P(B) def test_discreteuniform(): # Symbolic a, b, c, t = symbols('a b c t') X = DiscreteUniform('X', [a, b, c]) assert E(X) == (a + b + c)/3 assert simplify(variance(X) - ((a**2 + b**2 + c**2)/3 - (a/3 + b/3 + c/3)**2)) == 0 assert P(Eq(X, a)) == P(Eq(X, b)) == P(Eq(X, c)) == S('1/3') Y = DiscreteUniform('Y', range(-5, 5)) # Numeric assert E(Y) == S('-1/2') assert variance(Y) == S('33/4') assert median(Y) == FiniteSet(-1, 0) for x in range(-5, 5): assert P(Eq(Y, x)) == S('1/10') assert P(Y <= x) == S(x + 6)/10 assert P(Y >= x) == S(5 - x)/10 assert dict(density(Die('D', 6)).items()) == \ dict(density(DiscreteUniform('U', range(1, 7))).items()) assert characteristic_function(X)(t) == exp(I*a*t)/3 + exp(I*b*t)/3 + exp(I*c*t)/3 assert moment_generating_function(X)(t) == exp(a*t)/3 + exp(b*t)/3 + exp(c*t)/3 # issue 18611 raises(ValueError, lambda: DiscreteUniform('Z', [a, a, a, b, b, c])) def test_dice(): # TODO: Make iid method! X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6) a, b, t, p = symbols('a b t p') assert E(X) == 3 + S.Half assert variance(X) == Rational(35, 12) assert E(X + Y) == 7 assert E(X + X) == 7 assert E(a*X + b) == a*E(X) + b assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2) assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2) assert cmoment(X, 0) == 1 assert cmoment(4*X, 3) == 64*cmoment(X, 3) assert covariance(X, Y) is S.Zero assert covariance(X, X + Y) == variance(X) assert density(Eq(cos(X*S.Pi), 1))[True] == S.Half assert correlation(X, Y) == 0 assert correlation(X, Y) == correlation(Y, X) assert smoment(X + Y, 3) == skewness(X + Y) assert smoment(X + Y, 4) == kurtosis(X + Y) assert smoment(X, 0) == 1 assert P(X > 3) == S.Half assert P(2*X > 6) == S.Half assert P(X > Y) == Rational(5, 12) assert P(Eq(X, Y)) == P(Eq(X, 1)) assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3) assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3) assert E(X + Y, Eq(X, Y)) == E(2*X) assert moment(X, 0) == 1 assert moment(5*X, 2) == 25*moment(X, 2) assert quantile(X)(p) == Piecewise((nan, (p > 1) | (p < 0)),\ (S.One, p <= Rational(1, 6)), (S(2), p <= Rational(1, 3)), (S(3), p <= S.Half),\ (S(4), p <= Rational(2, 3)), (S(5), p <= Rational(5, 6)), (S(6), p <= 1)) assert P(X > 3, X > 3) is S.One assert P(X > Y, Eq(Y, 6)) is S.Zero assert P(Eq(X + Y, 12)) == Rational(1, 36) assert P(Eq(X + Y, 12), Eq(X, 6)) == Rational(1, 6) assert density(X + Y) == density(Y + Z) != density(X + X) d = density(2*X + Y**Z) assert d[S(22)] == Rational(1, 108) and d[S(4100)] == Rational(1, 216) and S(3130) not in d assert pspace(X).domain.as_boolean() == Or( *[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]]) assert where(X > 3).set == FiniteSet(4, 5, 6) assert characteristic_function(X)(t) == exp(6*I*t)/6 + exp(5*I*t)/6 + exp(4*I*t)/6 + exp(3*I*t)/6 + exp(2*I*t)/6 + exp(I*t)/6 assert moment_generating_function(X)(t) == exp(6*t)/6 + exp(5*t)/6 + exp(4*t)/6 + exp(3*t)/6 + exp(2*t)/6 + exp(t)/6 assert median(X) == FiniteSet(3, 4) D = Die('D', 7) assert median(D) == FiniteSet(4) # Bayes test for die BayesTest(X > 3, X + Y < 5) BayesTest(Eq(X - Y, Z), Z > Y) BayesTest(X > 3, X > 2) # arg test for die raises(ValueError, lambda: Die('X', -1)) # issue 8105: negative sides. raises(ValueError, lambda: Die('X', 0)) raises(ValueError, lambda: Die('X', 1.5)) # issue 8103: non integer sides. # symbolic test for die n, k = symbols('n, k', positive=True) D = Die('D', n) dens = density(D).dict assert dens == Density(DieDistribution(n)) assert set(dens.subs(n, 4).doit().keys()) == {1, 2, 3, 4} assert set(dens.subs(n, 4).doit().values()) == {Rational(1, 4)} k = Dummy('k', integer=True) assert E(D).dummy_eq( Sum(Piecewise((k/n, k <= n), (0, True)), (k, 1, n))) assert variance(D).subs(n, 6).doit() == Rational(35, 12) ki = Dummy('ki') cumuf = cdf(D)(k) assert cumuf.dummy_eq( Sum(Piecewise((1/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, k))) assert cumuf.subs({n: 6, k: 2}).doit() == Rational(1, 3) t = Dummy('t') cf = characteristic_function(D)(t) assert cf.dummy_eq( Sum(Piecewise((exp(ki*I*t)/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n))) assert cf.subs(n, 3).doit() == exp(3*I*t)/3 + exp(2*I*t)/3 + exp(I*t)/3 mgf = moment_generating_function(D)(t) assert mgf.dummy_eq( Sum(Piecewise((exp(ki*t)/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n))) assert mgf.subs(n, 3).doit() == exp(3*t)/3 + exp(2*t)/3 + exp(t)/3 def test_given(): X = Die('X', 6) assert density(X, X > 5) == {S(6): S.One} assert where(X > 2, X > 5).as_boolean() == Eq(X.symbol, 6) def test_domains(): X, Y = Die('x', 6), Die('y', 6) x, y = X.symbol, Y.symbol # Domains d = where(X > Y) assert d.condition == (x > y) d = where(And(X > Y, Y > 3)) assert d.as_boolean() == Or(And(Eq(x, 5), Eq(y, 4)), And(Eq(x, 6), Eq(y, 5)), And(Eq(x, 6), Eq(y, 4))) assert len(d.elements) == 3 assert len(pspace(X + Y).domain.elements) == 36 Z = Die('x', 4) raises(ValueError, lambda: P(X > Z)) # Two domains with same internal symbol assert pspace(X + Y).domain.set == FiniteSet(1, 2, 3, 4, 5, 6)**2 assert where(X > 3).set == FiniteSet(4, 5, 6) assert X.pspace.domain.dict == FiniteSet( *[Dict({X.symbol: i}) for i in range(1, 7)]) assert where(X > Y).dict == FiniteSet(*[Dict({X.symbol: i, Y.symbol: j}) for i in range(1, 7) for j in range(1, 7) if i > j]) def test_bernoulli(): p, a, b, t = symbols('p a b t') X = Bernoulli('B', p, a, b) assert E(X) == a*p + b*(-p + 1) assert density(X)[a] == p assert density(X)[b] == 1 - p assert characteristic_function(X)(t) == p * exp(I * a * t) + (-p + 1) * exp(I * b * t) assert moment_generating_function(X)(t) == p * exp(a * t) + (-p + 1) * exp(b * t) X = Bernoulli('B', p, 1, 0) z = Symbol("z") assert E(X) == p assert simplify(variance(X)) == p*(1 - p) assert E(a*X + b) == a*E(X) + b assert simplify(variance(a*X + b)) == simplify(a**2 * variance(X)) assert quantile(X)(z) == Piecewise((nan, (z > 1) | (z < 0)), (0, z <= 1 - p), (1, z <= 1)) Y = Bernoulli('Y', Rational(1, 2)) assert median(Y) == FiniteSet(0, 1) Z = Bernoulli('Z', Rational(2, 3)) assert median(Z) == FiniteSet(1) raises(ValueError, lambda: Bernoulli('B', 1.5)) raises(ValueError, lambda: Bernoulli('B', -0.5)) #issue 8248 assert X.pspace.compute_expectation(1) == 1 p = Rational(1, 5) X = Binomial('X', 5, p) Y = Binomial('Y', 7, 2*p) Z = Binomial('Z', 9, 3*p) assert coskewness(Y + Z, X + Y, X + Z).simplify() == 0 assert coskewness(Y + 2*X + Z, X + 2*Y + Z, X + 2*Z + Y).simplify() == \ sqrt(1529)*Rational(12, 16819) assert coskewness(Y + 2*X + Z, X + 2*Y + Z, X + 2*Z + Y, X < 2).simplify() \ == -sqrt(357451121)*Rational(2812, 4646864573) def test_cdf(): D = Die('D', 6) o = S.One assert cdf( D) == sympify({1: o/6, 2: o/3, 3: o/2, 4: 2*o/3, 5: 5*o/6, 6: o}) def test_coins(): C, D = Coin('C'), Coin('D') H, T = symbols('H, T') assert P(Eq(C, D)) == S.Half assert density(Tuple(C, D)) == {(H, H): Rational(1, 4), (H, T): Rational(1, 4), (T, H): Rational(1, 4), (T, T): Rational(1, 4)} assert dict(density(C).items()) == {H: S.Half, T: S.Half} F = Coin('F', Rational(1, 10)) assert P(Eq(F, H)) == Rational(1, 10) d = pspace(C).domain assert d.as_boolean() == Or(Eq(C.symbol, H), Eq(C.symbol, T)) raises(ValueError, lambda: P(C > D)) # Can't intelligently compare H to T def test_binomial_verify_parameters(): raises(ValueError, lambda: Binomial('b', .2, .5)) raises(ValueError, lambda: Binomial('b', 3, 1.5)) def test_binomial_numeric(): nvals = range(5) pvals = [0, Rational(1, 4), S.Half, Rational(3, 4), 1] for n in nvals: for p in pvals: X = Binomial('X', n, p) assert E(X) == n*p assert variance(X) == n*p*(1 - p) if n > 0 and 0 < p < 1: assert skewness(X) == (1 - 2*p)/sqrt(n*p*(1 - p)) assert kurtosis(X) == 3 + (1 - 6*p*(1 - p))/(n*p*(1 - p)) for k in range(n + 1): assert P(Eq(X, k)) == binomial(n, k)*p**k*(1 - p)**(n - k) def test_binomial_quantile(): X = Binomial('X', 50, S.Half) assert quantile(X)(0.95) == S(31) assert median(X) == FiniteSet(25) X = Binomial('X', 5, S.Half) p = Symbol("p", positive=True) assert quantile(X)(p) == Piecewise((nan, p > S.One), (S.Zero, p <= Rational(1, 32)),\ (S.One, p <= Rational(3, 16)), (S(2), p <= S.Half), (S(3), p <= Rational(13, 16)),\ (S(4), p <= Rational(31, 32)), (S(5), p <= S.One)) assert median(X) == FiniteSet(2, 3) def test_binomial_symbolic(): n = 2 p = symbols('p', positive=True) X = Binomial('X', n, p) t = Symbol('t') assert simplify(E(X)) == n*p == simplify(moment(X, 1)) assert simplify(variance(X)) == n*p*(1 - p) == simplify(cmoment(X, 2)) assert cancel(skewness(X) - (1 - 2*p)/sqrt(n*p*(1 - p))) == 0 assert cancel((kurtosis(X)) - (3 + (1 - 6*p*(1 - p))/(n*p*(1 - p)))) == 0 assert characteristic_function(X)(t) == p ** 2 * exp(2 * I * t) + 2 * p * (-p + 1) * exp(I * t) + (-p + 1) ** 2 assert moment_generating_function(X)(t) == p ** 2 * exp(2 * t) + 2 * p * (-p + 1) * exp(t) + (-p + 1) ** 2 # Test ability to change success/failure winnings H, T = symbols('H T') Y = Binomial('Y', n, p, succ=H, fail=T) assert simplify(E(Y) - (n*(H*p + T*(1 - p)))) == 0 # test symbolic dimensions n = symbols('n') B = Binomial('B', n, p) raises(NotImplementedError, lambda: P(B > 2)) assert density(B).dict == Density(BinomialDistribution(n, p, 1, 0)) assert set(density(B).dict.subs(n, 4).doit().keys()) == \ {S.Zero, S.One, S(2), S(3), S(4)} assert set(density(B).dict.subs(n, 4).doit().values()) == \ {(1 - p)**4, 4*p*(1 - p)**3, 6*p**2*(1 - p)**2, 4*p**3*(1 - p), p**4} k = Dummy('k', integer=True) assert E(B > 2).dummy_eq( Sum(Piecewise((k*p**k*(1 - p)**(-k + n)*binomial(n, k), (k >= 0) & (k <= n) & (k > 2)), (0, True)), (k, 0, n))) def test_beta_binomial(): # verify parameters raises(ValueError, lambda: BetaBinomial('b', .2, 1, 2)) raises(ValueError, lambda: BetaBinomial('b', 2, -1, 2)) raises(ValueError, lambda: BetaBinomial('b', 2, 1, -2)) assert BetaBinomial('b', 2, 1, 1) # test numeric values nvals = range(1,5) alphavals = [Rational(1, 4), S.Half, Rational(3, 4), 1, 10] betavals = [Rational(1, 4), S.Half, Rational(3, 4), 1, 10] for n in nvals: for a in alphavals: for b in betavals: X = BetaBinomial('X', n, a, b) assert E(X) == moment(X, 1) assert variance(X) == cmoment(X, 2) # test symbolic n, a, b = symbols('a b n') assert BetaBinomial('x', n, a, b) n = 2 # Because we're using for loops, can't do symbolic n a, b = symbols('a b', positive=True) X = BetaBinomial('X', n, a, b) t = Symbol('t') assert E(X).expand() == moment(X, 1).expand() assert variance(X).expand() == cmoment(X, 2).expand() assert skewness(X) == smoment(X, 3) assert characteristic_function(X)(t) == exp(2*I*t)*beta(a + 2, b)/beta(a, b) +\ 2*exp(I*t)*beta(a + 1, b + 1)/beta(a, b) + beta(a, b + 2)/beta(a, b) assert moment_generating_function(X)(t) == exp(2*t)*beta(a + 2, b)/beta(a, b) +\ 2*exp(t)*beta(a + 1, b + 1)/beta(a, b) + beta(a, b + 2)/beta(a, b) def test_hypergeometric_numeric(): for N in range(1, 5): for m in range(0, N + 1): for n in range(1, N + 1): X = Hypergeometric('X', N, m, n) N, m, n = map(sympify, (N, m, n)) assert sum(density(X).values()) == 1 assert E(X) == n * m / N if N > 1: assert variance(X) == n*(m/N)*(N - m)/N*(N - n)/(N - 1) # Only test for skewness when defined if N > 2 and 0 < m < N and n < N: assert skewness(X) == simplify((N - 2*m)*sqrt(N - 1)*(N - 2*n) / (sqrt(n*m*(N - m)*(N - n))*(N - 2))) def test_hypergeometric_symbolic(): N, m, n = symbols('N, m, n') H = Hypergeometric('H', N, m, n) dens = density(H).dict expec = E(H > 2) assert dens == Density(HypergeometricDistribution(N, m, n)) assert dens.subs(N, 5).doit() == Density(HypergeometricDistribution(5, m, n)) assert set(dens.subs({N: 3, m: 2, n: 1}).doit().keys()) == {S.Zero, S.One} assert set(dens.subs({N: 3, m: 2, n: 1}).doit().values()) == {Rational(1, 3), Rational(2, 3)} k = Dummy('k', integer=True) assert expec.dummy_eq( Sum(Piecewise((k*binomial(m, k)*binomial(N - m, -k + n) /binomial(N, n), k > 2), (0, True)), (k, 0, n))) def test_rademacher(): X = Rademacher('X') t = Symbol('t') assert E(X) == 0 assert variance(X) == 1 assert density(X)[-1] == S.Half assert density(X)[1] == S.Half assert characteristic_function(X)(t) == exp(I*t)/2 + exp(-I*t)/2 assert moment_generating_function(X)(t) == exp(t) / 2 + exp(-t) / 2 def test_ideal_soliton(): raises(ValueError, lambda : IdealSoliton('sol', -12)) raises(ValueError, lambda : IdealSoliton('sol', 13.2)) raises(ValueError, lambda : IdealSoliton('sol', 0)) f = Function('f') raises(ValueError, lambda : density(IdealSoliton('sol', 10)).pmf(f)) k = Symbol('k', integer=True, positive=True) x = Symbol('x', integer=True, positive=True) t = Symbol('t') sol = IdealSoliton('sol', k) assert density(sol).low == S.One assert density(sol).high == k assert density(sol).dict == Density(density(sol)) assert density(sol).pmf(x) == Piecewise((1/k, Eq(x, 1)), (1/(x*(x - 1)), k >= x), (0, True)) k_vals = [5, 20, 50, 100, 1000] for i in k_vals: assert E(sol.subs(k, i)) == harmonic(i) == moment(sol.subs(k, i), 1) assert variance(sol.subs(k, i)) == (i - 1) + harmonic(i) - harmonic(i)**2 == cmoment(sol.subs(k, i),2) assert skewness(sol.subs(k, i)) == smoment(sol.subs(k, i), 3) assert kurtosis(sol.subs(k, i)) == smoment(sol.subs(k, i), 4) assert exp(I*t)/10 + Sum(exp(I*t*x)/(x*x - x), (x, 2, k)).subs(k, 10).doit() == characteristic_function(sol.subs(k, 10))(t) assert exp(t)/10 + Sum(exp(t*x)/(x*x - x), (x, 2, k)).subs(k, 10).doit() == moment_generating_function(sol.subs(k, 10))(t) def test_robust_soliton(): raises(ValueError, lambda : RobustSoliton('robSol', -12, 0.1, 0.02)) raises(ValueError, lambda : RobustSoliton('robSol', 13, 1.89, 0.1)) raises(ValueError, lambda : RobustSoliton('robSol', 15, 0.6, -2.31)) f = Function('f') raises(ValueError, lambda : density(RobustSoliton('robSol', 15, 0.6, 0.1)).pmf(f)) k = Symbol('k', integer=True, positive=True) delta = Symbol('delta', positive=True) c = Symbol('c', positive=True) robSol = RobustSoliton('robSol', k, delta, c) assert density(robSol).low == 1 assert density(robSol).high == k k_vals = [10, 20, 50] delta_vals = [0.2, 0.4, 0.6] c_vals = [0.01, 0.03, 0.05] for x in k_vals: for y in delta_vals: for z in c_vals: assert E(robSol.subs({k: x, delta: y, c: z})) == moment(robSol.subs({k: x, delta: y, c: z}), 1) assert variance(robSol.subs({k: x, delta: y, c: z})) == cmoment(robSol.subs({k: x, delta: y, c: z}), 2) assert skewness(robSol.subs({k: x, delta: y, c: z})) == smoment(robSol.subs({k: x, delta: y, c: z}), 3) assert kurtosis(robSol.subs({k: x, delta: y, c: z})) == smoment(robSol.subs({k: x, delta: y, c: z}), 4) def test_FiniteRV(): F = FiniteRV('F', {1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4)}, check=True) p = Symbol("p", positive=True) assert dict(density(F).items()) == {S.One: S.Half, S(2): Rational(1, 4), S(3): Rational(1, 4)} assert P(F >= 2) == S.Half assert quantile(F)(p) == Piecewise((nan, p > S.One), (S.One, p <= S.Half),\ (S(2), p <= Rational(3, 4)),(S(3), True)) assert pspace(F).domain.as_boolean() == Or( *[Eq(F.symbol, i) for i in [1, 2, 3]]) assert F.pspace.domain.set == FiniteSet(1, 2, 3) raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: S.Half, 3: S.Half}, check=True)) raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: Rational(-1, 2), 3: S.One}, check=True)) raises(ValueError, lambda: FiniteRV('F', {1: S.One, 2: Rational(3, 2), 3: S.Zero,\ 4: Rational(-1, 2), 5: Rational(-3, 4), 6: Rational(-1, 4)}, check=True)) # purposeful invalid pmf but it should not raise since check=False # see test_drv_types.test_ContinuousRV for explanation X = FiniteRV('X', {1: 1, 2: 2}) assert E(X) == 5 assert P(X <= 2) + P(X > 2) != 1 def test_density_call(): from sympy.abc import p x = Bernoulli('x', p) d = density(x) assert d(0) == 1 - p assert d(S.Zero) == 1 - p assert d(5) == 0 assert 0 in d assert 5 not in d assert d(S.Zero) == d[S.Zero] def test_DieDistribution(): from sympy.abc import x X = DieDistribution(6) assert X.pmf(S.Half) is S.Zero assert X.pmf(x).subs({x: 1}).doit() == Rational(1, 6) assert X.pmf(x).subs({x: 7}).doit() == 0 assert X.pmf(x).subs({x: -1}).doit() == 0 assert X.pmf(x).subs({x: Rational(1, 3)}).doit() == 0 raises(ValueError, lambda: X.pmf(Matrix([0, 0]))) raises(ValueError, lambda: X.pmf(x**2 - 1)) def test_FinitePSpace(): X = Die('X', 6) space = pspace(X) assert space.density == DieDistribution(6) def test_symbolic_conditions(): B = Bernoulli('B', Rational(1, 4)) D = Die('D', 4) b, n = symbols('b, n') Y = P(Eq(B, b)) Z = E(D > n) assert Y == \ Piecewise((Rational(1, 4), Eq(b, 1)), (0, True)) + \ Piecewise((Rational(3, 4), Eq(b, 0)), (0, True)) assert Z == \ Piecewise((Rational(1, 4), n < 1), (0, True)) + Piecewise((S.Half, n < 2), (0, True)) + \ Piecewise((Rational(3, 4), n < 3), (0, True)) + Piecewise((S.One, n < 4), (0, True))
84e33f522c75126c1fdf92bf02b37042b385a3433a097cced249ee4919127da5
from sympy import (S, Symbol, Sum, I, lambdify, re, im, log, simplify, sqrt, zeta, pi, besseli, Dummy, oo, Piecewise, Rational, beta, floor, FiniteSet) from sympy.core.relational import Eq, Ne from sympy.functions.elementary.exponential import exp from sympy.logic.boolalg import Or from sympy.sets.fancysets import Range from sympy.stats import (P, E, variance, density, characteristic_function, where, moment_generating_function, skewness, cdf, kurtosis, coskewness) from sympy.stats.drv_types import (PoissonDistribution, GeometricDistribution, FlorySchulz, Poisson, Geometric, Hermite, Logarithmic, NegativeBinomial, Skellam, YuleSimon, Zeta, DiscreteRV) from sympy.testing.pytest import slow, nocache_fail, raises, ignore_warnings from sympy.stats.symbolic_probability import Expectation x = Symbol('x') def test_PoissonDistribution(): l = 3 p = PoissonDistribution(l) assert abs(p.cdf(10).evalf() - 1) < .001 assert abs(p.cdf(10.4).evalf() - 1) < .001 assert p.expectation(x, x) == l assert p.expectation(x**2, x) - p.expectation(x, x)**2 == l def test_Poisson(): l = 3 x = Poisson('x', l) assert E(x) == l assert variance(x) == l assert density(x) == PoissonDistribution(l) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert isinstance(E(x, evaluate=False), Expectation) assert isinstance(E(2*x, evaluate=False), Expectation) # issue 8248 assert x.pspace.compute_expectation(1) == 1 def test_FlorySchulz(): a = Symbol("a") z = Symbol("z") x = FlorySchulz('x' , a) assert E(x) == (2 - a)/a assert (variance(x) - 2*(1 - a)/a**2).simplify() == S(0) assert density(x)(z) == a**2*z*(1 - a)**(z - 1) @slow def test_GeometricDistribution(): p = S.One / 5 d = GeometricDistribution(p) assert d.expectation(x, x) == 1/p assert d.expectation(x**2, x) - d.expectation(x, x)**2 == (1-p)/p**2 assert abs(d.cdf(20000).evalf() - 1) < .001 assert abs(d.cdf(20000.8).evalf() - 1) < .001 G = Geometric('G', p=S(1)/4) assert cdf(G)(S(7)/2) == P(G <= S(7)/2) X = Geometric('X', Rational(1, 5)) Y = Geometric('Y', Rational(3, 10)) assert coskewness(X, X + Y, X + 2*Y).simplify() == sqrt(230)*Rational(81, 1150) def test_Hermite(): a1 = Symbol("a1", positive=True) a2 = Symbol("a2", negative=True) raises(ValueError, lambda: Hermite("H", a1, a2)) a1 = Symbol("a1", negative=True) a2 = Symbol("a2", positive=True) raises(ValueError, lambda: Hermite("H", a1, a2)) a1 = Symbol("a1", positive=True) x = Symbol("x") H = Hermite("H", a1, a2) assert moment_generating_function(H)(x) == exp(a1*(exp(x) - 1) + a2*(exp(2*x) - 1)) assert characteristic_function(H)(x) == exp(a1*(exp(I*x) - 1) + a2*(exp(2*I*x) - 1)) assert E(H) == a1 + 2*a2 H = Hermite("H", a1=5, a2=4) assert density(H)(2) == 33*exp(-9)/2 assert E(H) == 13 assert variance(H) == 21 assert kurtosis(H) == Rational(464,147) assert skewness(H) == 37*sqrt(21)/441 def test_Logarithmic(): p = S.Half x = Logarithmic('x', p) assert E(x) == -p / ((1 - p) * log(1 - p)) assert variance(x) == -1/log(2)**2 + 2/log(2) assert E(2*x**2 + 3*x + 4) == 4 + 7 / log(2) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert isinstance(E(x, evaluate=False), Expectation) @nocache_fail def test_negative_binomial(): r = 5 p = S.One / 3 x = NegativeBinomial('x', r, p) assert E(x) == p*r / (1-p) # This hangs when run with the cache disabled: assert variance(x) == p*r / (1-p)**2 assert E(x**5 + 2*x + 3) == Rational(9207, 4) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert isinstance(E(x, evaluate=False), Expectation) def test_skellam(): mu1 = Symbol('mu1') mu2 = Symbol('mu2') z = Symbol('z') X = Skellam('x', mu1, mu2) assert density(X)(z) == (mu1/mu2)**(z/2) * \ exp(-mu1 - mu2)*besseli(z, 2*sqrt(mu1*mu2)) assert skewness(X).expand() == mu1/(mu1*sqrt(mu1 + mu2) + mu2 * sqrt(mu1 + mu2)) - mu2/(mu1*sqrt(mu1 + mu2) + mu2*sqrt(mu1 + mu2)) assert variance(X).expand() == mu1 + mu2 assert E(X) == mu1 - mu2 assert characteristic_function(X)(z) == exp( mu1*exp(I*z) - mu1 - mu2 + mu2*exp(-I*z)) assert moment_generating_function(X)(z) == exp( mu1*exp(z) - mu1 - mu2 + mu2*exp(-z)) def test_yule_simon(): from sympy import S rho = S(3) x = YuleSimon('x', rho) assert simplify(E(x)) == rho / (rho - 1) assert simplify(variance(x)) == rho**2 / ((rho - 1)**2 * (rho - 2)) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert isinstance(E(x, evaluate=False), Expectation) # To test the cdf function assert cdf(x)(x) == Piecewise((-beta(floor(x), 4)*floor(x) + 1, x >= 1), (0, True)) def test_zeta(): s = S(5) x = Zeta('x', s) assert E(x) == zeta(s-1) / zeta(s) assert simplify(variance(x)) == ( zeta(s) * zeta(s-2) - zeta(s-1)**2) / zeta(s)**2 def test_discrete_probability(): X = Geometric('X', Rational(1, 5)) Y = Poisson('Y', 4) G = Geometric('e', x) assert P(Eq(X, 3)) == Rational(16, 125) assert P(X < 3) == Rational(9, 25) assert P(X > 3) == Rational(64, 125) assert P(X >= 3) == Rational(16, 25) assert P(X <= 3) == Rational(61, 125) assert P(Ne(X, 3)) == Rational(109, 125) assert P(Eq(Y, 3)) == 32*exp(-4)/3 assert P(Y < 3) == 13*exp(-4) assert P(Y > 3).equals(32*(Rational(-71, 32) + 3*exp(4)/32)*exp(-4)/3) assert P(Y >= 3).equals(32*(Rational(-39, 32) + 3*exp(4)/32)*exp(-4)/3) assert P(Y <= 3) == 71*exp(-4)/3 assert P(Ne(Y, 3)).equals( 13*exp(-4) + 32*(Rational(-71, 32) + 3*exp(4)/32)*exp(-4)/3) assert P(X < S.Infinity) is S.One assert P(X > S.Infinity) is S.Zero assert P(G < 3) == x*(2-x) assert P(Eq(G, 3)) == x*(-x + 1)**2 def test_DiscreteRV(): p = S(1)/2 x = Symbol('x', integer=True, positive=True) pdf = p*(1 - p)**(x - 1) # pdf of Geometric Distribution D = DiscreteRV(x, pdf, set=S.Naturals, check=True) assert E(D) == E(Geometric('G', S(1)/2)) == 2 assert P(D > 3) == S(1)/8 assert D.pspace.domain.set == S.Naturals raises(ValueError, lambda: DiscreteRV(x, x, FiniteSet(*range(4)), check=True)) # purposeful invalid pmf but it should not raise since check=False # see test_drv_types.test_ContinuousRV for explanation X = DiscreteRV(x, 1/x, S.Naturals) assert P(X < 2) == 1 assert E(X) == oo def test_precomputed_characteristic_functions(): import mpmath def test_cf(dist, support_lower_limit, support_upper_limit): pdf = density(dist) t = S('t') x = S('x') # first function is the hardcoded CF of the distribution cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath') # second function is the Fourier transform of the density function f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath') cf2 = lambda t: mpmath.nsum(lambda x: f(x, t), [ support_lower_limit, support_upper_limit], maxdegree=10) # compare the two functions at various points for test_point in [2, 5, 8, 11]: n1 = cf1(test_point) n2 = cf2(test_point) assert abs(re(n1) - re(n2)) < 1e-12 assert abs(im(n1) - im(n2)) < 1e-12 test_cf(Geometric('g', Rational(1, 3)), 1, mpmath.inf) test_cf(Logarithmic('l', Rational(1, 5)), 1, mpmath.inf) test_cf(NegativeBinomial('n', 5, Rational(1, 7)), 0, mpmath.inf) test_cf(Poisson('p', 5), 0, mpmath.inf) test_cf(YuleSimon('y', 5), 1, mpmath.inf) test_cf(Zeta('z', 5), 1, mpmath.inf) def test_moment_generating_functions(): t = S('t') geometric_mgf = moment_generating_function(Geometric('g', S.Half))(t) assert geometric_mgf.diff(t).subs(t, 0) == 2 logarithmic_mgf = moment_generating_function(Logarithmic('l', S.Half))(t) assert logarithmic_mgf.diff(t).subs(t, 0) == 1/log(2) negative_binomial_mgf = moment_generating_function( NegativeBinomial('n', 5, Rational(1, 3)))(t) assert negative_binomial_mgf.diff(t).subs(t, 0) == Rational(5, 2) poisson_mgf = moment_generating_function(Poisson('p', 5))(t) assert poisson_mgf.diff(t).subs(t, 0) == 5 skellam_mgf = moment_generating_function(Skellam('s', 1, 1))(t) assert skellam_mgf.diff(t).subs( t, 2) == (-exp(-2) + exp(2))*exp(-2 + exp(-2) + exp(2)) yule_simon_mgf = moment_generating_function(YuleSimon('y', 3))(t) assert simplify(yule_simon_mgf.diff(t).subs(t, 0)) == Rational(3, 2) zeta_mgf = moment_generating_function(Zeta('z', 5))(t) assert zeta_mgf.diff(t).subs(t, 0) == pi**4/(90*zeta(5)) def test_Or(): X = Geometric('X', S.Half) P(Or(X < 3, X > 4)) == Rational(13, 16) P(Or(X > 2, X > 1)) == P(X > 1) P(Or(X >= 3, X < 3)) == 1 def test_where(): X = Geometric('X', Rational(1, 5)) Y = Poisson('Y', 4) assert where(X**2 > 4).set == Range(3, S.Infinity, 1) assert where(X**2 >= 4).set == Range(2, S.Infinity, 1) assert where(Y**2 < 9).set == Range(0, 3, 1) assert where(Y**2 <= 9).set == Range(0, 4, 1) def test_conditional(): X = Geometric('X', Rational(2, 3)) Y = Poisson('Y', 3) assert P(X > 2, X > 3) == 1 assert P(X > 3, X > 2) == Rational(1, 3) assert P(Y > 2, Y < 2) == 0 assert P(Eq(Y, 3), Y >= 0) == 9*exp(-3)/2 assert P(Eq(Y, 3), Eq(Y, 2)) == 0 assert P(X < 2, Eq(X, 2)) == 0 assert P(X > 2, Eq(X, 3)) == 1 def test_product_spaces(): X1 = Geometric('X1', S.Half) X2 = Geometric('X2', Rational(1, 3)) #assert str(P(X1 + X2 < 3, evaluate=False)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """\ # + """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, -oo, -1))""" n = Dummy('n') with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert P(X1 + X2 < 3, evaluate=False).rewrite(Sum).dummy_eq(Sum(Piecewise((2**(-n)/4, n + 2 >= 1), (0, True)), (n, -oo, -1))/3) #assert str(P(X1 + X2 > 3)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """ +\ # """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, 1, oo))""" assert P(X1 + X2 > 3).dummy_eq(Sum(Piecewise((2**(X2 - n - 2)*(Rational(2, 3))**(X2 - 1)/6, -X2 + n + 3 >= 1), (0, True)), (X2, 1, oo), (n, 1, oo))) # assert str(P(Eq(X1 + X2, 3))) == """Sum(Piecewise((2**(X2 - 2)*(2/3)**(X2 - 1)/6, """ +\ # """X2 <= 2), (0, True)), (X2, 1, oo))""" assert P(Eq(X1 + X2, 3)) == Rational(1, 12)
b060be72e7c06a824292e12e72878f4ed4c2048626f110c55596a640707fc52a
from sympy import E as e from sympy import (Symbol, Abs, exp, expint, S, pi, simplify, Interval, erf, erfc, Ne, EulerGamma, Eq, log, lowergamma, uppergamma, symbols, sqrt, And, gamma, beta, Piecewise, Integral, sin, cos, tan, atan, sinh, cosh, besseli, floor, expand_func, Rational, I, re, Lambda, asin, im, lambdify, hyper, diff, Or, Mul, sign, Dummy, Sum, factorial, binomial, erfi, besselj, besselk) from sympy.functions.special.error_functions import erfinv from sympy.functions.special.hyper import meijerg from sympy.sets.sets import Intersection, FiniteSet from sympy.stats import (P, E, where, density, variance, covariance, skewness, kurtosis, median, given, pspace, cdf, characteristic_function, moment_generating_function, ContinuousRV, Arcsin, Benini, Beta, BetaNoncentral, BetaPrime, Cauchy, Chi, ChiSquared, ChiNoncentral, Dagum, Erlang, ExGaussian, Exponential, ExponentialPower, FDistribution, FisherZ, Frechet, Gamma, GammaInverse, Gompertz, Gumbel, Kumaraswamy, Laplace, Levy, Logistic, LogCauchy, LogLogistic, LogitNormal, LogNormal, Maxwell, Moyal, Nakagami, Normal, GaussianInverse, Pareto, PowerFunction, QuadraticU, RaisedCosine, Rayleigh, Reciprocal, ShiftedGompertz, StudentT, Trapezoidal, Triangular, Uniform, UniformSum, VonMises, Weibull, coskewness, WignerSemicircle, Wald, correlation, moment, cmoment, smoment, quantile, Lomax, BoundedPareto) from sympy.stats.crv_types import NormalDistribution, ExponentialDistribution, ContinuousDistributionHandmade from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution, MultivariateNormalDistribution from sympy.stats.crv import SingleContinuousPSpace, SingleContinuousDomain from sympy.stats.compound_rv import CompoundPSpace from sympy.stats.symbolic_probability import Probability from sympy.testing.pytest import raises, XFAIL, slow, ignore_warnings from sympy.testing.randtest import verify_numerically as tn oo = S.Infinity x, y, z = map(Symbol, 'xyz') def test_single_normal(): mu = Symbol('mu', real=True) sigma = Symbol('sigma', positive=True) X = Normal('x', 0, 1) Y = X*sigma + mu assert E(Y) == mu assert variance(Y) == sigma**2 pdf = density(Y) x = Symbol('x', real=True) assert (pdf(x) == 2**S.Half*exp(-(x - mu)**2/(2*sigma**2))/(2*pi**S.Half*sigma)) assert P(X**2 < 1) == erf(2**S.Half/2) assert quantile(Y)(x) == Intersection(S.Reals, FiniteSet(sqrt(2)*sigma*(sqrt(2)*mu/(2*sigma) + erfinv(2*x - 1)))) assert E(X, Eq(X, mu)) == mu assert median(X) == FiniteSet(0) # issue 8248 assert X.pspace.compute_expectation(1).doit() == 1 def test_conditional_1d(): X = Normal('x', 0, 1) Y = given(X, X >= 0) z = Symbol('z') assert density(Y)(z) == 2 * density(X)(z) assert Y.pspace.domain.set == Interval(0, oo) assert E(Y) == sqrt(2) / sqrt(pi) assert E(X**2) == E(Y**2) def test_ContinuousDomain(): X = Normal('x', 0, 1) assert where(X**2 <= 1).set == Interval(-1, 1) assert where(X**2 <= 1).symbol == X.symbol where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1) raises(ValueError, lambda: where(sin(X) > 1)) Y = given(X, X >= 0) assert Y.pspace.domain.set == Interval(0, oo) @slow def test_multiple_normal(): X, Y = Normal('x', 0, 1), Normal('y', 0, 1) p = Symbol("p", positive=True) assert E(X + Y) == 0 assert variance(X + Y) == 2 assert variance(X + X) == 4 assert covariance(X, Y) == 0 assert covariance(2*X + Y, -X) == -2*variance(X) assert skewness(X) == 0 assert skewness(X + Y) == 0 assert kurtosis(X) == 3 assert kurtosis(X+Y) == 3 assert correlation(X, Y) == 0 assert correlation(X, X + Y) == correlation(X, X - Y) assert moment(X, 2) == 1 assert cmoment(X, 3) == 0 assert moment(X + Y, 4) == 12 assert cmoment(X, 2) == variance(X) assert smoment(X*X, 2) == 1 assert smoment(X + Y, 3) == skewness(X + Y) assert smoment(X + Y, 4) == kurtosis(X + Y) assert E(X, Eq(X + Y, 0)) == 0 assert variance(X, Eq(X + Y, 0)) == S.Half assert quantile(X)(p) == sqrt(2)*erfinv(2*p - S.One) def test_symbolic(): mu1, mu2 = symbols('mu1 mu2', real=True) s1, s2 = symbols('sigma1 sigma2', positive=True) rate = Symbol('lambda', positive=True) X = Normal('x', mu1, s1) Y = Normal('y', mu2, s2) Z = Exponential('z', rate) a, b, c = symbols('a b c', real=True) assert E(X) == mu1 assert E(X + Y) == mu1 + mu2 assert E(a*X + b) == a*E(X) + b assert variance(X) == s1**2 assert variance(X + a*Y + b) == variance(X) + a**2*variance(Y) assert E(Z) == 1/rate assert E(a*Z + b) == a*E(Z) + b assert E(X + a*Z + b) == mu1 + a/rate + b assert median(X) == FiniteSet(mu1) def test_cdf(): X = Normal('x', 0, 1) d = cdf(X) assert P(X < 1) == d(1).rewrite(erfc) assert d(0) == S.Half d = cdf(X, X > 0) # given X>0 assert d(0) == 0 Y = Exponential('y', 10) d = cdf(Y) assert d(-5) == 0 assert P(Y > 3) == 1 - d(3) raises(ValueError, lambda: cdf(X + Y)) Z = Exponential('z', 1) f = cdf(Z) assert f(z) == Piecewise((1 - exp(-z), z >= 0), (0, True)) def test_characteristic_function(): X = Uniform('x', 0, 1) cf = characteristic_function(X) assert cf(1) == -I*(-1 + exp(I)) Y = Normal('y', 1, 1) cf = characteristic_function(Y) assert cf(0) == 1 assert cf(1) == exp(I - S.Half) Z = Exponential('z', 5) cf = characteristic_function(Z) assert cf(0) == 1 assert cf(1).expand() == Rational(25, 26) + I*Rational(5, 26) X = GaussianInverse('x', 1, 1) cf = characteristic_function(X) assert cf(0) == 1 assert cf(1) == exp(1 - sqrt(1 - 2*I)) X = ExGaussian('x', 0, 1, 1) cf = characteristic_function(X) assert cf(0) == 1 assert cf(1) == (1 + I)*exp(Rational(-1, 2))/2 L = Levy('x', 0, 1) cf = characteristic_function(L) assert cf(0) == 1 assert cf(1) == exp(-sqrt(2)*sqrt(-I)) def test_moment_generating_function(): t = symbols('t', positive=True) # Symbolic tests a, b, c = symbols('a b c') mgf = moment_generating_function(Beta('x', a, b))(t) assert mgf == hyper((a,), (a + b,), t) mgf = moment_generating_function(Chi('x', a))(t) assert mgf == sqrt(2)*t*gamma(a/2 + S.Half)*\ hyper((a/2 + S.Half,), (Rational(3, 2),), t**2/2)/gamma(a/2) +\ hyper((a/2,), (S.Half,), t**2/2) mgf = moment_generating_function(ChiSquared('x', a))(t) assert mgf == (1 - 2*t)**(-a/2) mgf = moment_generating_function(Erlang('x', a, b))(t) assert mgf == (1 - t/b)**(-a) mgf = moment_generating_function(ExGaussian("x", a, b, c))(t) assert mgf == exp(a*t + b**2*t**2/2)/(1 - t/c) mgf = moment_generating_function(Exponential('x', a))(t) assert mgf == a/(a - t) mgf = moment_generating_function(Gamma('x', a, b))(t) assert mgf == (-b*t + 1)**(-a) mgf = moment_generating_function(Gumbel('x', a, b))(t) assert mgf == exp(b*t)*gamma(-a*t + 1) mgf = moment_generating_function(Gompertz('x', a, b))(t) assert mgf == b*exp(b)*expint(t/a, b) mgf = moment_generating_function(Laplace('x', a, b))(t) assert mgf == exp(a*t)/(-b**2*t**2 + 1) mgf = moment_generating_function(Logistic('x', a, b))(t) assert mgf == exp(a*t)*beta(-b*t + 1, b*t + 1) mgf = moment_generating_function(Normal('x', a, b))(t) assert mgf == exp(a*t + b**2*t**2/2) mgf = moment_generating_function(Pareto('x', a, b))(t) assert mgf == b*(-a*t)**b*uppergamma(-b, -a*t) mgf = moment_generating_function(QuadraticU('x', a, b))(t) assert str(mgf) == ("(3*(t*(-4*b + (a + b)**2) + 4)*exp(b*t) - " "3*(t*(a**2 + 2*a*(b - 2) + b**2) + 4)*exp(a*t))/(t**2*(a - b)**3)") mgf = moment_generating_function(RaisedCosine('x', a, b))(t) assert mgf == pi**2*exp(a*t)*sinh(b*t)/(b*t*(b**2*t**2 + pi**2)) mgf = moment_generating_function(Rayleigh('x', a))(t) assert mgf == sqrt(2)*sqrt(pi)*a*t*(erf(sqrt(2)*a*t/2) + 1)\ *exp(a**2*t**2/2)/2 + 1 mgf = moment_generating_function(Triangular('x', a, b, c))(t) assert str(mgf) == ("(-2*(-a + b)*exp(c*t) + 2*(-a + c)*exp(b*t) + " "2*(b - c)*exp(a*t))/(t**2*(-a + b)*(-a + c)*(b - c))") mgf = moment_generating_function(Uniform('x', a, b))(t) assert mgf == (-exp(a*t) + exp(b*t))/(t*(-a + b)) mgf = moment_generating_function(UniformSum('x', a))(t) assert mgf == ((exp(t) - 1)/t)**a mgf = moment_generating_function(WignerSemicircle('x', a))(t) assert mgf == 2*besseli(1, a*t)/(a*t) # Numeric tests mgf = moment_generating_function(Beta('x', 1, 1))(t) assert mgf.diff(t).subs(t, 1) == hyper((2,), (3,), 1)/2 mgf = moment_generating_function(Chi('x', 1))(t) assert mgf.diff(t).subs(t, 1) == sqrt(2)*hyper((1,), (Rational(3, 2),), S.Half )/sqrt(pi) + hyper((Rational(3, 2),), (Rational(3, 2),), S.Half) + 2*sqrt(2)*hyper((2,), (Rational(5, 2),), S.Half)/(3*sqrt(pi)) mgf = moment_generating_function(ChiSquared('x', 1))(t) assert mgf.diff(t).subs(t, 1) == I mgf = moment_generating_function(Erlang('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(ExGaussian("x", 0, 1, 1))(t) assert mgf.diff(t).subs(t, 2) == -exp(2) mgf = moment_generating_function(Exponential('x', 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(Gamma('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(Gumbel('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == EulerGamma + 1 mgf = moment_generating_function(Gompertz('x', 1, 1))(t) assert mgf.diff(t).subs(t, 1) == -e*meijerg(((), (1, 1)), ((0, 0, 0), ()), 1) mgf = moment_generating_function(Laplace('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(Logistic('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == beta(1, 1) mgf = moment_generating_function(Normal('x', 0, 1))(t) assert mgf.diff(t).subs(t, 1) == exp(S.Half) mgf = moment_generating_function(Pareto('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == expint(1, 0) mgf = moment_generating_function(QuadraticU('x', 1, 2))(t) assert mgf.diff(t).subs(t, 1) == -12*e - 3*exp(2) mgf = moment_generating_function(RaisedCosine('x', 1, 1))(t) assert mgf.diff(t).subs(t, 1) == -2*e*pi**2*sinh(1)/\ (1 + pi**2)**2 + e*pi**2*cosh(1)/(1 + pi**2) mgf = moment_generating_function(Rayleigh('x', 1))(t) assert mgf.diff(t).subs(t, 0) == sqrt(2)*sqrt(pi)/2 mgf = moment_generating_function(Triangular('x', 1, 3, 2))(t) assert mgf.diff(t).subs(t, 1) == -e + exp(3) mgf = moment_generating_function(Uniform('x', 0, 1))(t) assert mgf.diff(t).subs(t, 1) == 1 mgf = moment_generating_function(UniformSum('x', 1))(t) assert mgf.diff(t).subs(t, 1) == 1 mgf = moment_generating_function(WignerSemicircle('x', 1))(t) assert mgf.diff(t).subs(t, 1) == -2*besseli(1, 1) + besseli(2, 1) +\ besseli(0, 1) def test_ContinuousRV(): pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution # X and Y should be equivalent X = ContinuousRV(x, pdf, check=True) Y = Normal('y', 0, 1) assert variance(X) == variance(Y) assert P(X > 0) == P(Y > 0) Z = ContinuousRV(z, exp(-z), set=Interval(0, oo)) assert Z.pspace.domain.set == Interval(0, oo) assert E(Z) == 1 assert P(Z > 5) == exp(-5) raises(ValueError, lambda: ContinuousRV(z, exp(-z), set=Interval(0, 10), check=True)) # the correct pdf for Gamma(k, theta) but the integral in `check` # integrates to something equivalent to 1 and not to 1 exactly _x, k, theta = symbols("x k theta", positive=True) pdf = 1/(gamma(k)*theta**k)*_x**(k-1)*exp(-_x/theta) X = ContinuousRV(_x, pdf, set=Interval(0, oo)) Y = Gamma('y', k, theta) assert (E(X) - E(Y)).simplify() == 0 assert (variance(X) - variance(Y)).simplify() == 0 def test_arcsin(): a = Symbol("a", real=True) b = Symbol("b", real=True) X = Arcsin('x', a, b) assert density(X)(x) == 1/(pi*sqrt((-x + b)*(x - a))) assert cdf(X)(x) == Piecewise((0, a > x), (2*asin(sqrt((-a + x)/(-a + b)))/pi, b >= x), (1, True)) assert pspace(X).domain.set == Interval(a, b) def test_benini(): alpha = Symbol("alpha", positive=True) beta = Symbol("beta", positive=True) sigma = Symbol("sigma", positive=True) X = Benini('x', alpha, beta, sigma) assert density(X)(x) == ((alpha/x + 2*beta*log(x/sigma)/x) *exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2)) assert pspace(X).domain.set == Interval(sigma, oo) raises(NotImplementedError, lambda: moment_generating_function(X)) alpha = Symbol("alpha", nonpositive=True) raises(ValueError, lambda: Benini('x', alpha, beta, sigma)) beta = Symbol("beta", nonpositive=True) raises(ValueError, lambda: Benini('x', alpha, beta, sigma)) alpha = Symbol("alpha", positive=True) raises(ValueError, lambda: Benini('x', alpha, beta, sigma)) beta = Symbol("beta", positive=True) sigma = Symbol("sigma", nonpositive=True) raises(ValueError, lambda: Benini('x', alpha, beta, sigma)) def test_beta(): a, b = symbols('alpha beta', positive=True) B = Beta('x', a, b) assert pspace(B).domain.set == Interval(0, 1) assert characteristic_function(B)(x) == hyper((a,), (a + b,), I*x) assert density(B)(x) == x**(a - 1)*(1 - x)**(b - 1)/beta(a, b) assert simplify(E(B)) == a / (a + b) assert simplify(variance(B)) == a*b / (a**3 + 3*a**2*b + a**2 + 3*a*b**2 + 2*a*b + b**3 + b**2) # Full symbolic solution is too much, test with numeric version a, b = 1, 2 B = Beta('x', a, b) assert expand_func(E(B)) == a / S(a + b) assert expand_func(variance(B)) == (a*b) / S((a + b)**2 * (a + b + 1)) assert median(B) == FiniteSet(1 - 1/sqrt(2)) def test_beta_noncentral(): a, b = symbols('a b', positive=True) c = Symbol('c', nonnegative=True) _k = Dummy('k') X = BetaNoncentral('x', a, b, c) assert pspace(X).domain.set == Interval(0, 1) dens = density(X) z = Symbol('z') res = Sum( z**(_k + a - 1)*(c/2)**_k*(1 - z)**(b - 1)*exp(-c/2)/ (beta(_k + a, b)*factorial(_k)), (_k, 0, oo)) assert dens(z).dummy_eq(res) # BetaCentral should not raise if the assumptions # on the symbols can not be determined a, b, c = symbols('a b c') assert BetaNoncentral('x', a, b, c) a = Symbol('a', positive=False, real=True) raises(ValueError, lambda: BetaNoncentral('x', a, b, c)) a = Symbol('a', positive=True) b = Symbol('b', positive=False, real=True) raises(ValueError, lambda: BetaNoncentral('x', a, b, c)) a = Symbol('a', positive=True) b = Symbol('b', positive=True) c = Symbol('c', nonnegative=False, real=True) raises(ValueError, lambda: BetaNoncentral('x', a, b, c)) def test_betaprime(): alpha = Symbol("alpha", positive=True) betap = Symbol("beta", positive=True) X = BetaPrime('x', alpha, betap) assert density(X)(x) == x**(alpha - 1)*(x + 1)**(-alpha - betap)/beta(alpha, betap) alpha = Symbol("alpha", nonpositive=True) raises(ValueError, lambda: BetaPrime('x', alpha, betap)) alpha = Symbol("alpha", positive=True) betap = Symbol("beta", nonpositive=True) raises(ValueError, lambda: BetaPrime('x', alpha, betap)) X = BetaPrime('x', 1, 1) assert median(X) == FiniteSet(1) def test_BoundedPareto(): L, H = symbols('L, H', negative=True) raises(ValueError, lambda: BoundedPareto('X', 1, L, H)) L, H = symbols('L, H', real=False) raises(ValueError, lambda: BoundedPareto('X', 1, L, H)) L, H = symbols('L, H', positive=True) raises(ValueError, lambda: BoundedPareto('X', -1, L, H)) X = BoundedPareto('X', 2, L, H) assert X.pspace.domain.set == Interval(L, H) assert density(X)(x) == 2*L**2/(x**3*(1 - L**2/H**2)) assert cdf(X)(x) == Piecewise((-H**2*L**2/(x**2*(H**2 - L**2)) \ + H**2/(H**2 - L**2), L <= x), (0, True)) assert E(X).simplify() == 2*H*L/(H + L) X = BoundedPareto('X', 1, 2, 4) assert E(X).simplify() == log(16) assert median(X) == FiniteSet(Rational(8, 3)) assert variance(X).simplify() == 8 - 16*log(2)**2 def test_cauchy(): x0 = Symbol("x0", real=True) gamma = Symbol("gamma", positive=True) p = Symbol("p", positive=True) X = Cauchy('x', x0, gamma) # Tests the characteristic function assert characteristic_function(X)(x) == exp(-gamma*Abs(x) + I*x*x0) raises(NotImplementedError, lambda: moment_generating_function(X)) assert density(X)(x) == 1/(pi*gamma*(1 + (x - x0)**2/gamma**2)) assert diff(cdf(X)(x), x) == density(X)(x) assert quantile(X)(p) == gamma*tan(pi*(p - S.Half)) + x0 x1 = Symbol("x1", real=False) raises(ValueError, lambda: Cauchy('x', x1, gamma)) gamma = Symbol("gamma", nonpositive=True) raises(ValueError, lambda: Cauchy('x', x0, gamma)) assert median(X) == FiniteSet(x0) def test_chi(): from sympy import I k = Symbol("k", integer=True) X = Chi('x', k) assert density(X)(x) == 2**(-k/2 + 1)*x**(k - 1)*exp(-x**2/2)/gamma(k/2) # Tests the characteristic function assert characteristic_function(X)(x) == sqrt(2)*I*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,), (S(3)/2,), -x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), -x**2/2) # Tests the moment generating function assert moment_generating_function(X)(x) == sqrt(2)*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,), (S(3)/2,), x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), x**2/2) k = Symbol("k", integer=True, positive=False) raises(ValueError, lambda: Chi('x', k)) k = Symbol("k", integer=False, positive=True) raises(ValueError, lambda: Chi('x', k)) def test_chi_noncentral(): k = Symbol("k", integer=True) l = Symbol("l") X = ChiNoncentral("x", k, l) assert density(X)(x) == (x**k*l*(x*l)**(-k/2)* exp(-x**2/2 - l**2/2)*besseli(k/2 - 1, x*l)) k = Symbol("k", integer=True, positive=False) raises(ValueError, lambda: ChiNoncentral('x', k, l)) k = Symbol("k", integer=True, positive=True) l = Symbol("l", nonpositive=True) raises(ValueError, lambda: ChiNoncentral('x', k, l)) k = Symbol("k", integer=False) l = Symbol("l", positive=True) raises(ValueError, lambda: ChiNoncentral('x', k, l)) def test_chi_squared(): k = Symbol("k", integer=True) X = ChiSquared('x', k) # Tests the characteristic function assert characteristic_function(X)(x) == ((-2*I*x + 1)**(-k/2)) assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2) assert cdf(X)(x) == Piecewise((lowergamma(k/2, x/2)/gamma(k/2), x >= 0), (0, True)) assert E(X) == k assert variance(X) == 2*k X = ChiSquared('x', 15) assert cdf(X)(3) == -14873*sqrt(6)*exp(Rational(-3, 2))/(5005*sqrt(pi)) + erf(sqrt(6)/2) k = Symbol("k", integer=True, positive=False) raises(ValueError, lambda: ChiSquared('x', k)) k = Symbol("k", integer=False, positive=True) raises(ValueError, lambda: ChiSquared('x', k)) def test_dagum(): p = Symbol("p", positive=True) b = Symbol("b", positive=True) a = Symbol("a", positive=True) X = Dagum('x', p, a, b) assert density(X)(x) == a*p*(x/b)**(a*p)*((x/b)**a + 1)**(-p - 1)/x assert cdf(X)(x) == Piecewise(((1 + (x/b)**(-a))**(-p), x >= 0), (0, True)) p = Symbol("p", nonpositive=True) raises(ValueError, lambda: Dagum('x', p, a, b)) p = Symbol("p", positive=True) b = Symbol("b", nonpositive=True) raises(ValueError, lambda: Dagum('x', p, a, b)) b = Symbol("b", positive=True) a = Symbol("a", nonpositive=True) raises(ValueError, lambda: Dagum('x', p, a, b)) X = Dagum('x', 1 , 1, 1) assert median(X) == FiniteSet(1) def test_erlang(): k = Symbol("k", integer=True, positive=True) l = Symbol("l", positive=True) X = Erlang("x", k, l) assert density(X)(x) == x**(k - 1)*l**k*exp(-x*l)/gamma(k) assert cdf(X)(x) == Piecewise((lowergamma(k, l*x)/gamma(k), x > 0), (0, True)) def test_exgaussian(): m, z = symbols("m, z") s, l = symbols("s, l", positive=True) X = ExGaussian("x", m, s, l) assert density(X)(z) == l*exp(l*(l*s**2 + 2*m - 2*z)/2) *\ erfc(sqrt(2)*(l*s**2 + m - z)/(2*s))/2 # Note: actual_output simplifies to expected_output. # Ideally cdf(X)(z) would return expected_output # expected_output = (erf(sqrt(2)*(l*s**2 + m - z)/(2*s)) - 1)*exp(l*(l*s**2 + 2*m - 2*z)/2)/2 - erf(sqrt(2)*(m - z)/(2*s))/2 + S.Half u = l*(z - m) v = l*s GaussianCDF1 = cdf(Normal('x', 0, v))(u) GaussianCDF2 = cdf(Normal('x', v**2, v))(u) actual_output = GaussianCDF1 - exp(-u + (v**2/2) + log(GaussianCDF2)) assert cdf(X)(z) == actual_output # assert simplify(actual_output) == expected_output assert variance(X).expand() == s**2 + l**(-2) assert skewness(X).expand() == 2/(l**3*s**2*sqrt(s**2 + l**(-2)) + l * sqrt(s**2 + l**(-2))) def test_exponential(): rate = Symbol('lambda', positive=True) X = Exponential('x', rate) p = Symbol("p", positive=True, real=True, finite=True) assert E(X) == 1/rate assert variance(X) == 1/rate**2 assert skewness(X) == 2 assert skewness(X) == smoment(X, 3) assert kurtosis(X) == 9 assert kurtosis(X) == smoment(X, 4) assert smoment(2*X, 4) == smoment(X, 4) assert moment(X, 3) == 3*2*1/rate**3 assert P(X > 0) is S.One assert P(X > 1) == exp(-rate) assert P(X > 10) == exp(-10*rate) assert quantile(X)(p) == -log(1-p)/rate assert where(X <= 1).set == Interval(0, 1) Y = Exponential('y', 1) assert median(Y) == FiniteSet(log(2)) #Test issue 9970 z = Dummy('z') assert P(X > z) == exp(-z*rate) assert P(X < z) == 0 #Test issue 10076 (Distribution with interval(0,oo)) x = Symbol('x') _z = Dummy('_z') b = SingleContinuousPSpace(x, ExponentialDistribution(2)) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed expected1 = Integral(2*exp(-2*_z), (_z, 3, oo)) assert b.probability(x > 3, evaluate=False).rewrite(Integral).dummy_eq(expected1) expected2 = Integral(2*exp(-2*_z), (_z, 0, 4)) assert b.probability(x < 4, evaluate=False).rewrite(Integral).dummy_eq(expected2) Y = Exponential('y', 2*rate) assert coskewness(X, X, X) == skewness(X) assert coskewness(X, Y + rate*X, Y + 2*rate*X) == \ 4/(sqrt(1 + 1/(4*rate**2))*sqrt(4 + 1/(4*rate**2))) assert coskewness(X + 2*Y, Y + X, Y + 2*X, X > 3) == \ sqrt(170)*Rational(9, 85) def test_exponential_power(): mu = Symbol('mu') z = Symbol('z') alpha = Symbol('alpha', positive=True) beta = Symbol('beta', positive=True) X = ExponentialPower('x', mu, alpha, beta) assert density(X)(z) == beta*exp(-(Abs(mu - z)/alpha) ** beta)/(2*alpha*gamma(1/beta)) assert cdf(X)(z) == S.Half + lowergamma(1/beta, (Abs(mu - z)/alpha)**beta)*sign(-mu + z)/\ (2*gamma(1/beta)) def test_f_distribution(): d1 = Symbol("d1", positive=True) d2 = Symbol("d2", positive=True) X = FDistribution("x", d1, d2) assert density(X)(x) == (d2**(d2/2)*sqrt((d1*x)**d1*(d1*x + d2)**(-d1 - d2)) /(x*beta(d1/2, d2/2))) raises(NotImplementedError, lambda: moment_generating_function(X)) d1 = Symbol("d1", nonpositive=True) raises(ValueError, lambda: FDistribution('x', d1, d1)) d1 = Symbol("d1", positive=True, integer=False) raises(ValueError, lambda: FDistribution('x', d1, d1)) d1 = Symbol("d1", positive=True) d2 = Symbol("d2", nonpositive=True) raises(ValueError, lambda: FDistribution('x', d1, d2)) d2 = Symbol("d2", positive=True, integer=False) raises(ValueError, lambda: FDistribution('x', d1, d2)) def test_fisher_z(): d1 = Symbol("d1", positive=True) d2 = Symbol("d2", positive=True) X = FisherZ("x", d1, d2) assert density(X)(x) == (2*d1**(d1/2)*d2**(d2/2)*(d1*exp(2*x) + d2) **(-d1/2 - d2/2)*exp(d1*x)/beta(d1/2, d2/2)) def test_frechet(): a = Symbol("a", positive=True) s = Symbol("s", positive=True) m = Symbol("m", real=True) X = Frechet("x", a, s=s, m=m) assert density(X)(x) == a*((x - m)/s)**(-a - 1)*exp(-((x - m)/s)**(-a))/s assert cdf(X)(x) == Piecewise((exp(-((-m + x)/s)**(-a)), m <= x), (0, True)) @slow def test_gamma(): k = Symbol("k", positive=True) theta = Symbol("theta", positive=True) X = Gamma('x', k, theta) # Tests characteristic function assert characteristic_function(X)(x) == ((-I*theta*x + 1)**(-k)) assert density(X)(x) == x**(k - 1)*theta**(-k)*exp(-x/theta)/gamma(k) assert cdf(X, meijerg=True)(z) == Piecewise( (-k*lowergamma(k, 0)/gamma(k + 1) + k*lowergamma(k, z/theta)/gamma(k + 1), z >= 0), (0, True)) # assert simplify(variance(X)) == k*theta**2 # handled numerically below assert E(X) == moment(X, 1) k, theta = symbols('k theta', positive=True) X = Gamma('x', k, theta) assert E(X) == k*theta assert variance(X) == k*theta**2 assert skewness(X).expand() == 2/sqrt(k) assert kurtosis(X).expand() == 3 + 6/k Y = Gamma('y', 2*k, 3*theta) assert coskewness(X, theta*X + Y, k*X + Y).simplify() == \ 2*531441**(-k)*sqrt(k)*theta*(3*3**(12*k) - 2*531441**k) \ /(sqrt(k**2 + 18)*sqrt(theta**2 + 18)) def test_gamma_inverse(): a = Symbol("a", positive=True) b = Symbol("b", positive=True) X = GammaInverse("x", a, b) assert density(X)(x) == x**(-a - 1)*b**a*exp(-b/x)/gamma(a) assert cdf(X)(x) == Piecewise((uppergamma(a, b/x)/gamma(a), x > 0), (0, True)) assert characteristic_function(X)(x) == 2 * (-I*b*x)**(a/2) \ * besselk(a, 2*sqrt(b)*sqrt(-I*x))/gamma(a) raises(NotImplementedError, lambda: moment_generating_function(X)) def test_gompertz(): b = Symbol("b", positive=True) eta = Symbol("eta", positive=True) X = Gompertz("x", b, eta) assert density(X)(x) == b*eta*exp(eta)*exp(b*x)*exp(-eta*exp(b*x)) assert cdf(X)(x) == 1 - exp(eta)*exp(-eta*exp(b*x)) assert diff(cdf(X)(x), x) == density(X)(x) def test_gumbel(): beta = Symbol("beta", positive=True) mu = Symbol("mu") x = Symbol("x") y = Symbol("y") X = Gumbel("x", beta, mu) Y = Gumbel("y", beta, mu, minimum=True) assert density(X)(x).expand() == \ exp(mu/beta)*exp(-x/beta)*exp(-exp(mu/beta)*exp(-x/beta))/beta assert density(Y)(y).expand() == \ exp(-mu/beta)*exp(y/beta)*exp(-exp(-mu/beta)*exp(y/beta))/beta assert cdf(X)(x).expand() == \ exp(-exp(mu/beta)*exp(-x/beta)) assert characteristic_function(X)(x) == exp(I*mu*x)*gamma(-I*beta*x + 1) def test_kumaraswamy(): a = Symbol("a", positive=True) b = Symbol("b", positive=True) X = Kumaraswamy("x", a, b) assert density(X)(x) == x**(a - 1)*a*b*(-x**a + 1)**(b - 1) assert cdf(X)(x) == Piecewise((0, x < 0), (-(-x**a + 1)**b + 1, x <= 1), (1, True)) def test_laplace(): mu = Symbol("mu") b = Symbol("b", positive=True) X = Laplace('x', mu, b) #Tests characteristic_function assert characteristic_function(X)(x) == (exp(I*mu*x)/(b**2*x**2 + 1)) assert density(X)(x) == exp(-Abs(x - mu)/b)/(2*b) assert cdf(X)(x) == Piecewise((exp((-mu + x)/b)/2, mu > x), (-exp((mu - x)/b)/2 + 1, True)) X = Laplace('x', [1, 2], [[1, 0], [0, 1]]) assert isinstance(pspace(X).distribution, MultivariateLaplaceDistribution) def test_levy(): mu = Symbol("mu", real=True) c = Symbol("c", positive=True) X = Levy('x', mu, c) assert X.pspace.domain.set == Interval(mu, oo) assert density(X)(x) == sqrt(c/(2*pi))*exp(-c/(2*(x - mu)))/((x - mu)**(S.One + S.Half)) assert cdf(X)(x) == erfc(sqrt(c/(2*(x - mu)))) raises(NotImplementedError, lambda: moment_generating_function(X)) mu = Symbol("mu", real=False) raises(ValueError, lambda: Levy('x',mu,c)) c = Symbol("c", nonpositive=True) raises(ValueError, lambda: Levy('x',mu,c)) mu = Symbol("mu", real=True) raises(ValueError, lambda: Levy('x',mu,c)) def test_logcauchy(): mu = Symbol("mu" , positive=True) sigma = Symbol("sigma" , positive=True) X = LogCauchy("x", mu, sigma) assert density(X)(x) == sigma/(x*pi*(sigma**2 + (-mu + log(x))**2)) assert cdf(X)(x) == atan((log(x) - mu)/sigma)/pi + S.Half def test_logistic(): mu = Symbol("mu", real=True) s = Symbol("s", positive=True) p = Symbol("p", positive=True) X = Logistic('x', mu, s) #Tests characteristics_function assert characteristic_function(X)(x) == \ (Piecewise((pi*s*x*exp(I*mu*x)/sinh(pi*s*x), Ne(x, 0)), (1, True))) assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2) assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1) assert quantile(X)(p) == mu - s*log(-S.One + 1/p) def test_loglogistic(): a, b = symbols('a b') assert LogLogistic('x', a, b) a = Symbol('a', negative=True) b = Symbol('b', positive=True) raises(ValueError, lambda: LogLogistic('x', a, b)) a = Symbol('a', positive=True) b = Symbol('b', negative=True) raises(ValueError, lambda: LogLogistic('x', a, b)) a, b, z, p = symbols('a b z p', positive=True) X = LogLogistic('x', a, b) assert density(X)(z) == b*(z/a)**(b - 1)/(a*((z/a)**b + 1)**2) assert cdf(X)(z) == 1/(1 + (z/a)**(-b)) assert quantile(X)(p) == a*(p/(1 - p))**(1/b) # Expectation assert E(X) == Piecewise((S.NaN, b <= 1), (pi*a/(b*sin(pi/b)), True)) b = symbols('b', prime=True) # b > 1 X = LogLogistic('x', a, b) assert E(X) == pi*a/(b*sin(pi/b)) X = LogLogistic('x', 1, 2) assert median(X) == FiniteSet(1) def test_logitnormal(): mu = Symbol('mu', real=True) s = Symbol('s', positive=True) X = LogitNormal('x', mu, s) x = Symbol('x') assert density(X)(x) == sqrt(2)*exp(-(-mu + log(x/(1 - x)))**2/(2*s**2))/(2*sqrt(pi)*s*x*(1 - x)) assert cdf(X)(x) == erf(sqrt(2)*(-mu + log(x/(1 - x)))/(2*s))/2 + S(1)/2 def test_lognormal(): mean = Symbol('mu', real=True) std = Symbol('sigma', positive=True) X = LogNormal('x', mean, std) # The sympy integrator can't do this too well #assert E(X) == exp(mean+std**2/2) #assert variance(X) == (exp(std**2)-1) * exp(2*mean + std**2) # The sympy integrator can't do this too well #assert E(X) == raises(NotImplementedError, lambda: moment_generating_function(X)) mu = Symbol("mu", real=True) sigma = Symbol("sigma", positive=True) X = LogNormal('x', mu, sigma) assert density(X)(x) == (sqrt(2)*exp(-(-mu + log(x))**2 /(2*sigma**2))/(2*x*sqrt(pi)*sigma)) # Tests cdf assert cdf(X)(x) == Piecewise( (erf(sqrt(2)*(-mu + log(x))/(2*sigma))/2 + S(1)/2, x > 0), (0, True)) X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1 assert density(X)(x) == sqrt(2)*exp(-log(x)**2/2)/(2*x*sqrt(pi)) def test_Lomax(): a, l = symbols('a, l', negative=True) raises(ValueError, lambda: Lomax('X', a , l)) a, l = symbols('a, l', real=False) raises(ValueError, lambda: Lomax('X', a , l)) a, l = symbols('a, l', positive=True) X = Lomax('X', a, l) assert X.pspace.domain.set == Interval(0, oo) assert density(X)(x) == a*(1 + x/l)**(-a - 1)/l assert cdf(X)(x) == Piecewise((1 - (1 + x/l)**(-a), x >= 0), (0, True)) a = 3 X = Lomax('X', a, l) assert E(X) == l/2 assert median(X) == FiniteSet(l*(-1 + 2**Rational(1, 3))) assert variance(X) == 3*l**2/4 def test_maxwell(): a = Symbol("a", positive=True) X = Maxwell('x', a) assert density(X)(x) == (sqrt(2)*x**2*exp(-x**2/(2*a**2))/ (sqrt(pi)*a**3)) assert E(X) == 2*sqrt(2)*a/sqrt(pi) assert variance(X) == -8*a**2/pi + 3*a**2 assert cdf(X)(x) == erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a) assert diff(cdf(X)(x), x) == density(X)(x) def test_Moyal(): mu = Symbol('mu',real=False) sigma = Symbol('sigma', real=True, positive=True) raises(ValueError, lambda: Moyal('M',mu, sigma)) mu = Symbol('mu', real=True) sigma = Symbol('sigma', real=True, negative=True) raises(ValueError, lambda: Moyal('M',mu, sigma)) sigma = Symbol('sigma', real=True, positive=True) M = Moyal('M', mu, sigma) assert density(M)(z) == sqrt(2)*exp(-exp((mu - z)/sigma)/2 - (-mu + z)/(2*sigma))/(2*sqrt(pi)*sigma) assert cdf(M)(z).simplify() == 1 - erf(sqrt(2)*exp((mu - z)/(2*sigma))/2) assert characteristic_function(M)(z) == 2**(-I*sigma*z)*exp(I*mu*z) \ *gamma(-I*sigma*z + Rational(1, 2))/sqrt(pi) assert E(M) == mu + EulerGamma*sigma + sigma*log(2) assert moment_generating_function(M)(z) == 2**(-sigma*z)*exp(mu*z) \ *gamma(-sigma*z + Rational(1, 2))/sqrt(pi) def test_nakagami(): mu = Symbol("mu", positive=True) omega = Symbol("omega", positive=True) X = Nakagami('x', mu, omega) assert density(X)(x) == (2*x**(2*mu - 1)*mu**mu*omega**(-mu) *exp(-x**2*mu/omega)/gamma(mu)) assert simplify(E(X)) == (sqrt(mu)*sqrt(omega) *gamma(mu + S.Half)/gamma(mu + 1)) assert simplify(variance(X)) == ( omega - omega*gamma(mu + S.Half)**2/(gamma(mu)*gamma(mu + 1))) assert cdf(X)(x) == Piecewise( (lowergamma(mu, mu*x**2/omega)/gamma(mu), x > 0), (0, True)) X = Nakagami('x',1 ,1) assert median(X) == FiniteSet(sqrt(log(2))) def test_gaussian_inverse(): # test for symbolic parameters a, b = symbols('a b') assert GaussianInverse('x', a, b) # Inverse Gaussian distribution is also known as Wald distribution # `GaussianInverse` can also be referred by the name `Wald` a, b, z = symbols('a b z') X = Wald('x', a, b) assert density(X)(z) == sqrt(2)*sqrt(b/z**3)*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi)) a, b = symbols('a b', positive=True) z = Symbol('z', positive=True) X = GaussianInverse('x', a, b) assert density(X)(z) == sqrt(2)*sqrt(b)*sqrt(z**(-3))*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi)) assert E(X) == a assert variance(X).expand() == a**3/b assert cdf(X)(z) == (S.Half - erf(sqrt(2)*sqrt(b)*(1 + z/a)/(2*sqrt(z)))/2)*exp(2*b/a) +\ erf(sqrt(2)*sqrt(b)*(-1 + z/a)/(2*sqrt(z)))/2 + S.Half a = symbols('a', nonpositive=True) raises(ValueError, lambda: GaussianInverse('x', a, b)) a = symbols('a', positive=True) b = symbols('b', nonpositive=True) raises(ValueError, lambda: GaussianInverse('x', a, b)) def test_pareto(): xm, beta = symbols('xm beta', positive=True) alpha = beta + 5 X = Pareto('x', xm, alpha) dens = density(X) #Tests cdf function assert cdf(X)(x) == \ Piecewise((-x**(-beta - 5)*xm**(beta + 5) + 1, x >= xm), (0, True)) #Tests characteristic_function assert characteristic_function(X)(x) == \ ((-I*x*xm)**(beta + 5)*(beta + 5)*uppergamma(-beta - 5, -I*x*xm)) assert dens(x) == x**(-(alpha + 1))*xm**(alpha)*(alpha) assert simplify(E(X)) == alpha*xm/(alpha-1) # computation of taylor series for MGF still too slow #assert simplify(variance(X)) == xm**2*alpha / ((alpha-1)**2*(alpha-2)) def test_pareto_numeric(): xm, beta = 3, 2 alpha = beta + 5 X = Pareto('x', xm, alpha) assert E(X) == alpha*xm/S(alpha - 1) assert variance(X) == xm**2*alpha / S((alpha - 1)**2*(alpha - 2)) assert median(X) == FiniteSet(3*2**Rational(1, 7)) # Skewness tests too slow. Try shortcutting function? def test_PowerFunction(): alpha = Symbol("alpha", nonpositive=True) a, b = symbols('a, b', real=True) raises (ValueError, lambda: PowerFunction('x', alpha, a, b)) a, b = symbols('a, b', real=False) raises (ValueError, lambda: PowerFunction('x', alpha, a, b)) alpha = Symbol("alpha", positive=True) a, b = symbols('a, b', real=True) raises (ValueError, lambda: PowerFunction('x', alpha, 5, 2)) X = PowerFunction('X', 2, a, b) assert density(X)(z) == (-2*a + 2*z)/(-a + b)**2 assert cdf(X)(z) == Piecewise((a**2/(a**2 - 2*a*b + b**2) - 2*a*z/(a**2 - 2*a*b + b**2) + z**2/(a**2 - 2*a*b + b**2), a <= z), (0, True)) X = PowerFunction('X', 2, 0, 1) assert density(X)(z) == 2*z assert cdf(X)(z) == Piecewise((z**2, z >= 0), (0,True)) assert E(X) == Rational(2,3) assert P(X < 0) == 0 assert P(X < 1) == 1 assert median(X) == FiniteSet(1/sqrt(2)) def test_raised_cosine(): mu = Symbol("mu", real=True) s = Symbol("s", positive=True) X = RaisedCosine("x", mu, s) assert pspace(X).domain.set == Interval(mu - s, mu + s) #Tests characteristics_function assert characteristic_function(X)(x) == \ Piecewise((exp(-I*pi*mu/s)/2, Eq(x, -pi/s)), (exp(I*pi*mu/s)/2, Eq(x, pi/s)), (pi**2*exp(I*mu*x)*sin(s*x)/(s*x*(-s**2*x**2 + pi**2)), True)) assert density(X)(x) == (Piecewise(((cos(pi*(x - mu)/s) + 1)/(2*s), And(x <= mu + s, mu - s <= x)), (0, True))) def test_rayleigh(): sigma = Symbol("sigma", positive=True) X = Rayleigh('x', sigma) #Tests characteristic_function assert characteristic_function(X)(x) == (-sqrt(2)*sqrt(pi)*sigma*x*(erfi(sqrt(2)*sigma*x/2) - I)*exp(-sigma**2*x**2/2)/2 + 1) assert density(X)(x) == x*exp(-x**2/(2*sigma**2))/sigma**2 assert E(X) == sqrt(2)*sqrt(pi)*sigma/2 assert variance(X) == -pi*sigma**2/2 + 2*sigma**2 assert cdf(X)(x) == 1 - exp(-x**2/(2*sigma**2)) assert diff(cdf(X)(x), x) == density(X)(x) def test_reciprocal(): a = Symbol("a", real=True) b = Symbol("b", real=True) X = Reciprocal('x', a, b) assert density(X)(x) == 1/(x*(-log(a) + log(b))) assert cdf(X)(x) == Piecewise((log(a)/(log(a) - log(b)) - log(x)/(log(a) - log(b)), a <= x), (0, True)) X = Reciprocal('x', 5, 30) assert E(X) == 25/(log(30) - log(5)) assert P(X < 4) == S.Zero assert P(X < 20) == log(20) / (log(30) - log(5)) - log(5) / (log(30) - log(5)) assert cdf(X)(10) == log(10) / (log(30) - log(5)) - log(5) / (log(30) - log(5)) a = symbols('a', nonpositive=True) raises(ValueError, lambda: Reciprocal('x', a, b)) a = symbols('a', positive=True) b = symbols('b', positive=True) raises(ValueError, lambda: Reciprocal('x', a + b, a)) def test_shiftedgompertz(): b = Symbol("b", positive=True) eta = Symbol("eta", positive=True) X = ShiftedGompertz("x", b, eta) assert density(X)(x) == b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x)) def test_studentt(): nu = Symbol("nu", positive=True) X = StudentT('x', nu) assert density(X)(x) == (1 + x**2/nu)**(-nu/2 - S.Half)/(sqrt(nu)*beta(S.Half, nu/2)) assert cdf(X)(x) == S.Half + x*gamma(nu/2 + S.Half)*hyper((S.Half, nu/2 + S.Half), (Rational(3, 2),), -x**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2)) raises(NotImplementedError, lambda: moment_generating_function(X)) def test_trapezoidal(): a = Symbol("a", real=True) b = Symbol("b", real=True) c = Symbol("c", real=True) d = Symbol("d", real=True) X = Trapezoidal('x', a, b, c, d) assert density(X)(x) == Piecewise(((-2*a + 2*x)/((-a + b)*(-a - b + c + d)), (a <= x) & (x < b)), (2/(-a - b + c + d), (b <= x) & (x < c)), ((2*d - 2*x)/((-c + d)*(-a - b + c + d)), (c <= x) & (x <= d)), (0, True)) X = Trapezoidal('x', 0, 1, 2, 3) assert E(X) == Rational(3, 2) assert variance(X) == Rational(5, 12) assert P(X < 2) == Rational(3, 4) assert median(X) == FiniteSet(Rational(3, 2)) def test_triangular(): a = Symbol("a") b = Symbol("b") c = Symbol("c") X = Triangular('x', a, b, c) assert pspace(X).domain.set == Interval(a, b) assert str(density(X)(x)) == ("Piecewise(((-2*a + 2*x)/((-a + b)*(-a + c)), (a <= x) & (c > x)), " "(2/(-a + b), Eq(c, x)), ((2*b - 2*x)/((-a + b)*(b - c)), (b >= x) & (c < x)), (0, True))") #Tests moment_generating_function assert moment_generating_function(X)(x).expand() == \ ((-2*(-a + b)*exp(c*x) + 2*(-a + c)*exp(b*x) + 2*(b - c)*exp(a*x))/(x**2*(-a + b)*(-a + c)*(b - c))).expand() assert str(characteristic_function(X)(x)) == \ '(2*(-a + b)*exp(I*c*x) - 2*(-a + c)*exp(I*b*x) - 2*(b - c)*exp(I*a*x))/(x**2*(-a + b)*(-a + c)*(b - c))' def test_quadratic_u(): a = Symbol("a", real=True) b = Symbol("b", real=True) X = QuadraticU("x", a, b) Y = QuadraticU("x", 1, 2) assert pspace(X).domain.set == Interval(a, b) # Tests _moment_generating_function assert moment_generating_function(Y)(1) == -15*exp(2) + 27*exp(1) assert moment_generating_function(Y)(2) == -9*exp(4)/2 + 21*exp(2)/2 assert characteristic_function(Y)(1) == 3*I*(-1 + 4*I)*exp(I*exp(2*I)) assert density(X)(x) == (Piecewise((12*(x - a/2 - b/2)**2/(-a + b)**3, And(x <= b, a <= x)), (0, True))) def test_uniform(): l = Symbol('l', real=True) w = Symbol('w', positive=True) X = Uniform('x', l, l + w) assert E(X) == l + w/2 assert variance(X).expand() == w**2/12 # With numbers all is well X = Uniform('x', 3, 5) assert P(X < 3) == 0 and P(X > 5) == 0 assert P(X < 4) == P(X > 4) == S.Half assert median(X) == FiniteSet(4) z = Symbol('z') p = density(X)(z) assert p.subs(z, 3.7) == S.Half assert p.subs(z, -1) == 0 assert p.subs(z, 6) == 0 c = cdf(X) assert c(2) == 0 and c(3) == 0 assert c(Rational(7, 2)) == Rational(1, 4) assert c(5) == 1 and c(6) == 1 @XFAIL def test_uniform_P(): """ This stopped working because SingleContinuousPSpace.compute_density no longer calls integrate on a DiracDelta but rather just solves directly. integrate used to call UniformDistribution.expectation which special-cased subsed out the Min and Max terms that Uniform produces I decided to regress on this class for general cleanliness (and I suspect speed) of the algorithm. """ l = Symbol('l', real=True) w = Symbol('w', positive=True) X = Uniform('x', l, l + w) assert P(X < l) == 0 and P(X > l + w) == 0 def test_uniformsum(): n = Symbol("n", integer=True) _k = Dummy("k") x = Symbol("x") X = UniformSum('x', n) res = Sum((-1)**_k*(-_k + x)**(n - 1)*binomial(n, _k), (_k, 0, floor(x)))/factorial(n - 1) assert density(X)(x).dummy_eq(res) #Tests set functions assert X.pspace.domain.set == Interval(0, n) #Tests the characteristic_function assert characteristic_function(X)(x) == (-I*(exp(I*x) - 1)/x)**n #Tests the moment_generating_function assert moment_generating_function(X)(x) == ((exp(x) - 1)/x)**n def test_von_mises(): mu = Symbol("mu") k = Symbol("k", positive=True) X = VonMises("x", mu, k) assert density(X)(x) == exp(k*cos(x - mu))/(2*pi*besseli(0, k)) def test_weibull(): a, b = symbols('a b', positive=True) # FIXME: simplify(E(X)) seems to hang without extended_positive=True # On a Linux machine this had a rapid memory leak... # a, b = symbols('a b', positive=True) X = Weibull('x', a, b) assert E(X).expand() == a * gamma(1 + 1/b) assert variance(X).expand() == (a**2 * gamma(1 + 2/b) - E(X)**2).expand() assert simplify(skewness(X)) == (2*gamma(1 + 1/b)**3 - 3*gamma(1 + 1/b)*gamma(1 + 2/b) + gamma(1 + 3/b))/(-gamma(1 + 1/b)**2 + gamma(1 + 2/b))**Rational(3, 2) assert simplify(kurtosis(X)) == (-3*gamma(1 + 1/b)**4 +\ 6*gamma(1 + 1/b)**2*gamma(1 + 2/b) - 4*gamma(1 + 1/b)*gamma(1 + 3/b) + gamma(1 + 4/b))/(gamma(1 + 1/b)**2 - gamma(1 + 2/b))**2 def test_weibull_numeric(): # Test for integers and rationals a = 1 bvals = [S.Half, 1, Rational(3, 2), 5] for b in bvals: X = Weibull('x', a, b) assert simplify(E(X)) == expand_func(a * gamma(1 + 1/S(b))) assert simplify(variance(X)) == simplify( a**2 * gamma(1 + 2/S(b)) - E(X)**2) # Not testing Skew... it's slow with int/frac values > 3/2 def test_wignersemicircle(): R = Symbol("R", positive=True) X = WignerSemicircle('x', R) assert pspace(X).domain.set == Interval(-R, R) assert density(X)(x) == 2*sqrt(-x**2 + R**2)/(pi*R**2) assert E(X) == 0 #Tests ChiNoncentralDistribution assert characteristic_function(X)(x) == \ Piecewise((2*besselj(1, R*x)/(R*x), Ne(x, 0)), (1, True)) def test_input_value_assertions(): a, b = symbols('a b') p, q = symbols('p q', positive=True) m, n = symbols('m n', positive=False, real=True) raises(ValueError, lambda: Normal('x', 3, 0)) raises(ValueError, lambda: Normal('x', m, n)) Normal('X', a, p) # No error raised raises(ValueError, lambda: Exponential('x', m)) Exponential('Ex', p) # No error raised for fn in [Pareto, Weibull, Beta, Gamma]: raises(ValueError, lambda: fn('x', m, p)) raises(ValueError, lambda: fn('x', p, n)) fn('x', p, q) # No error raised def test_unevaluated(): X = Normal('x', 0, 1) k = Dummy('k') expr1 = Integral(sqrt(2)*k*exp(-k**2/2)/(2*sqrt(pi)), (k, -oo, oo)) expr2 = Integral(sqrt(2)*exp(-k**2/2)/(2*sqrt(pi)), (k, 0, oo)) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert E(X, evaluate=False).rewrite(Integral).dummy_eq(expr1) assert E(X + 1, evaluate=False).rewrite(Integral).dummy_eq(expr1 + 1) assert P(X > 0, evaluate=False).rewrite(Integral).dummy_eq(expr2) assert P(X > 0, X**2 < 1) == S.Half def test_probability_unevaluated(): T = Normal('T', 30, 3) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert type(P(T > 33, evaluate=False)) == Probability def test_density_unevaluated(): X = Normal('X', 0, 1) Y = Normal('Y', 0, 2) assert isinstance(density(X+Y, evaluate=False)(z), Integral) def test_NormalDistribution(): nd = NormalDistribution(0, 1) x = Symbol('x') assert nd.cdf(x) == erf(sqrt(2)*x/2)/2 + S.Half assert nd.expectation(1, x) == 1 assert nd.expectation(x, x) == 0 assert nd.expectation(x**2, x) == 1 #Test issue 10076 a = SingleContinuousPSpace(x, NormalDistribution(2, 4)) _z = Dummy('_z') expected1 = Integral(sqrt(2)*exp(-(_z - 2)**2/32)/(8*sqrt(pi)),(_z, -oo, 1)) assert a.probability(x < 1, evaluate=False).dummy_eq(expected1) is True expected2 = Integral(sqrt(2)*exp(-(_z - 2)**2/32)/(8*sqrt(pi)),(_z, 1, oo)) assert a.probability(x > 1, evaluate=False).dummy_eq(expected2) is True b = SingleContinuousPSpace(x, NormalDistribution(1, 9)) expected3 = Integral(sqrt(2)*exp(-(_z - 1)**2/162)/(18*sqrt(pi)),(_z, 6, oo)) assert b.probability(x > 6, evaluate=False).dummy_eq(expected3) is True expected4 = Integral(sqrt(2)*exp(-(_z - 1)**2/162)/(18*sqrt(pi)),(_z, -oo, 6)) assert b.probability(x < 6, evaluate=False).dummy_eq(expected4) is True def test_random_parameters(): mu = Normal('mu', 2, 3) meas = Normal('T', mu, 1) assert density(meas, evaluate=False)(z) assert isinstance(pspace(meas), CompoundPSpace) X = Normal('x', [1, 2], [[1, 0], [0, 1]]) assert isinstance(pspace(X).distribution, MultivariateNormalDistribution) assert density(meas)(z).simplify() == sqrt(5)*exp(-z**2/20 + z/5 - S(1)/5)/(10*sqrt(pi)) def test_random_parameters_given(): mu = Normal('mu', 2, 3) meas = Normal('T', mu, 1) assert given(meas, Eq(mu, 5)) == Normal('T', 5, 1) def test_conjugate_priors(): mu = Normal('mu', 2, 3) x = Normal('x', mu, 1) assert isinstance(simplify(density(mu, Eq(x, y), evaluate=False)(z)), Mul) def test_difficult_univariate(): """ Since using solve in place of deltaintegrate we're able to perform substantially more complex density computations on single continuous random variables """ x = Normal('x', 0, 1) assert density(x**3) assert density(exp(x**2)) assert density(log(x)) def test_issue_10003(): X = Exponential('x', 3) G = Gamma('g', 1, 2) assert P(X < -1) is S.Zero assert P(G < -1) is S.Zero @slow def test_precomputed_cdf(): x = symbols("x", real=True) mu = symbols("mu", real=True) sigma, xm, alpha = symbols("sigma xm alpha", positive=True) n = symbols("n", integer=True, positive=True) distribs = [ Normal("X", mu, sigma), Pareto("P", xm, alpha), ChiSquared("C", n), Exponential("E", sigma), # LogNormal("L", mu, sigma), ] for X in distribs: compdiff = cdf(X)(x) - simplify(X.pspace.density.compute_cdf()(x)) compdiff = simplify(compdiff.rewrite(erfc)) assert compdiff == 0 @slow def test_precomputed_characteristic_functions(): import mpmath def test_cf(dist, support_lower_limit, support_upper_limit): pdf = density(dist) t = Symbol('t') # first function is the hardcoded CF of the distribution cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath') # second function is the Fourier transform of the density function f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath') cf2 = lambda t: mpmath.quad(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10) # compare the two functions at various points for test_point in [2, 5, 8, 11]: n1 = cf1(test_point) n2 = cf2(test_point) assert abs(re(n1) - re(n2)) < 1e-12 assert abs(im(n1) - im(n2)) < 1e-12 test_cf(Beta('b', 1, 2), 0, 1) test_cf(Chi('c', 3), 0, mpmath.inf) test_cf(ChiSquared('c', 2), 0, mpmath.inf) test_cf(Exponential('e', 6), 0, mpmath.inf) test_cf(Logistic('l', 1, 2), -mpmath.inf, mpmath.inf) test_cf(Normal('n', -1, 5), -mpmath.inf, mpmath.inf) test_cf(RaisedCosine('r', 3, 1), 2, 4) test_cf(Rayleigh('r', 0.5), 0, mpmath.inf) test_cf(Uniform('u', -1, 1), -1, 1) test_cf(WignerSemicircle('w', 3), -3, 3) def test_long_precomputed_cdf(): x = symbols("x", real=True) distribs = [ Arcsin("A", -5, 9), Dagum("D", 4, 10, 3), Erlang("E", 14, 5), Frechet("F", 2, 6, -3), Gamma("G", 2, 7), GammaInverse("GI", 3, 5), Kumaraswamy("K", 6, 8), Laplace("LA", -5, 4), Logistic("L", -6, 7), Nakagami("N", 2, 7), StudentT("S", 4) ] for distr in distribs: for _ in range(5): assert tn(diff(cdf(distr)(x), x), density(distr)(x), x, a=0, b=0, c=1, d=0) US = UniformSum("US", 5) pdf01 = density(US)(x).subs(floor(x), 0).doit() # pdf on (0, 1) cdf01 = cdf(US, evaluate=False)(x).subs(floor(x), 0).doit() # cdf on (0, 1) assert tn(diff(cdf01, x), pdf01, x, a=0, b=0, c=1, d=0) def test_issue_13324(): X = Uniform('X', 0, 1) assert E(X, X > S.Half) == Rational(3, 4) assert E(X, X > 0) == S.Half def test_issue_20756(): X = Uniform('X', -1, +1) Y = Uniform('Y', -1, +1) assert E(X * Y) == S.Zero assert E(X * ((Y + 1) - 1)) == S.Zero assert E(Y * (X*(X + 1) - X*X)) == S.Zero def test_FiniteSet_prob(): E = Exponential('E', 3) N = Normal('N', 5, 7) assert P(Eq(E, 1)) is S.Zero assert P(Eq(N, 2)) is S.Zero assert P(Eq(N, x)) is S.Zero def test_prob_neq(): E = Exponential('E', 4) X = ChiSquared('X', 4) assert P(Ne(E, 2)) == 1 assert P(Ne(X, 4)) == 1 assert P(Ne(X, 4)) == 1 assert P(Ne(X, 5)) == 1 assert P(Ne(E, x)) == 1 def test_union(): N = Normal('N', 3, 2) assert simplify(P(N**2 - N > 2)) == \ -erf(sqrt(2))/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2) assert simplify(P(N**2 - 4 > 0)) == \ -erf(5*sqrt(2)/4)/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2) def test_Or(): N = Normal('N', 0, 1) assert simplify(P(Or(N > 2, N < 1))) == \ -erf(sqrt(2))/2 - erfc(sqrt(2)/2)/2 + Rational(3, 2) assert P(Or(N < 0, N < 1)) == P(N < 1) assert P(Or(N > 0, N < 0)) == 1 def test_conditional_eq(): E = Exponential('E', 1) assert P(Eq(E, 1), Eq(E, 1)) == 1 assert P(Eq(E, 1), Eq(E, 2)) == 0 assert P(E > 1, Eq(E, 2)) == 1 assert P(E < 1, Eq(E, 2)) == 0 def test_ContinuousDistributionHandmade(): x = Symbol('x') z = Dummy('z') dens = Lambda(x, Piecewise((S.Half, (0<=x)&(x<1)), (0, (x>=1)&(x<2)), (S.Half, (x>=2)&(x<3)), (0, True))) dens = ContinuousDistributionHandmade(dens, set=Interval(0, 3)) space = SingleContinuousPSpace(z, dens) assert dens.pdf == Lambda(x, Piecewise((1/2, (x >= 0) & (x < 1)), (0, (x >= 1) & (x < 2)), (1/2, (x >= 2) & (x < 3)), (0, True))) assert median(space.value) == Interval(1, 2) assert E(space.value) == Rational(3, 2) assert variance(space.value) == Rational(13, 12) def test_issue_16318(): # test compute_expectation function of the SingleContinuousDomain N = SingleContinuousDomain(x, Interval(0, 1)) raises(ValueError, lambda: SingleContinuousDomain.compute_expectation(N, x+1, {x, y}))
59ca10e990470bbfc29cade8838bda602b99b5bcb3f4b2814536f2bf2ad4c2f1
from functools import singledispatch from sympy.external import import_module from sympy.stats.crv_types import BetaDistribution, ChiSquaredDistribution, ExponentialDistribution, GammaDistribution, \ LogNormalDistribution, NormalDistribution, ParetoDistribution, UniformDistribution from sympy.stats.drv_types import GeometricDistribution, PoissonDistribution, ZetaDistribution from sympy.stats.frv_types import BinomialDistribution numpy = import_module('numpy') @singledispatch def do_sample_numpy(dist, size, rand_state): return None # CRV: @do_sample_numpy.register(BetaDistribution) def _(dist: BetaDistribution, size, rand_state): return rand_state.beta(a=float(dist.alpha), b=float(dist.beta), size=size) @do_sample_numpy.register(ChiSquaredDistribution) def _(dist: ChiSquaredDistribution, size, rand_state): return rand_state.chisquare(df=float(dist.k), size=size) @do_sample_numpy.register(ExponentialDistribution) def _(dist: ExponentialDistribution, size, rand_state): return rand_state.exponential(1 / float(dist.rate), size=size) @do_sample_numpy.register(GammaDistribution) def _(dist: GammaDistribution, size, rand_state): return rand_state.gamma(float(dist.k), float(dist.theta), size=size) @do_sample_numpy.register(LogNormalDistribution) def _(dist: LogNormalDistribution, size, rand_state): return rand_state.lognormal(float(dist.mean), float(dist.std), size=size) @do_sample_numpy.register(NormalDistribution) def _(dist: NormalDistribution, size, rand_state): return rand_state.normal(float(dist.mean), float(dist.std), size=size) @do_sample_numpy.register(ParetoDistribution) def _(dist: ParetoDistribution, size, rand_state): return (numpy.random.pareto(a=float(dist.alpha), size=size) + 1) * float(dist.xm) @do_sample_numpy.register(UniformDistribution) def _(dist: UniformDistribution, size, rand_state): return rand_state.uniform(low=float(dist.left), high=float(dist.right), size=size) # DRV: @do_sample_numpy.register(GeometricDistribution) def _(dist: GeometricDistribution, size, rand_state): return rand_state.geometric(p=float(dist.p), size=size) @do_sample_numpy.register(PoissonDistribution) def _(dist: PoissonDistribution, size, rand_state): return rand_state.poisson(lam=float(dist.lamda), size=size) @do_sample_numpy.register(ZetaDistribution) def _(dist: ZetaDistribution, size, rand_state): return rand_state.zipf(a=float(dist.s), size=size) # FRV: @do_sample_numpy.register(BinomialDistribution) def _(dist: BinomialDistribution, size, rand_state): return rand_state.binomial(n=int(dist.n), p=float(dist.p), size=size)
ef5a516bc14bed04a3698c5d530901d9339c877d7897c39f6e2426f8b872b23d
from functools import singledispatch from sympy import Dummy, lambdify, exp from sympy.external import import_module from sympy.stats import DiscreteDistributionHandmade from sympy.stats.crv import SingleContinuousDistribution from sympy.stats.crv_types import ChiSquaredDistribution, ExponentialDistribution, GammaDistribution, \ LogNormalDistribution, NormalDistribution, ParetoDistribution, UniformDistribution, BetaDistribution, \ StudentTDistribution, CauchyDistribution from sympy.stats.drv_types import GeometricDistribution, LogarithmicDistribution, NegativeBinomialDistribution, \ PoissonDistribution, SkellamDistribution, YuleSimonDistribution, ZetaDistribution from sympy.stats.frv import SingleFiniteDistribution scipy = import_module("scipy") if scipy is not None: import scipy.stats @singledispatch def do_sample_scipy(dist, size, seed): return None # CRV @do_sample_scipy.register(SingleContinuousDistribution) def _(dist: SingleContinuousDistribution, size, seed): # if we don't need to make a handmade pdf, we won't import scipy.stats z = Dummy('z') handmade_pdf = lambdify(z, dist.pdf(z), ['numpy', 'scipy']) class scipy_pdf(scipy.stats.rv_continuous): def _pdf(dist, x): return handmade_pdf(x) scipy_rv = scipy_pdf(a=float(dist.set._inf), b=float(dist.set._sup), name='scipy_pdf') return scipy_rv.rvs(size=size, random_state=seed) @do_sample_scipy.register(ChiSquaredDistribution) def _(dist: ChiSquaredDistribution, size, seed): # same parametrisation return scipy.stats.chi2.rvs(df=float(dist.k), size=size, random_state=seed) @do_sample_scipy.register(ExponentialDistribution) def _(dist: ExponentialDistribution, size, seed): # https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html#scipy.stats.expon return scipy.stats.expon.rvs(scale=1 / float(dist.rate), size=size, random_state=seed) @do_sample_scipy.register(GammaDistribution) def _(dist: GammaDistribution, size, seed): # https://stackoverflow.com/questions/42150965/how-to-plot-gamma-distribution-with-alpha-and-beta-parameters-in-python return scipy.stats.gamma.rvs(a=float(dist.k), scale=float(dist.theta), size=size, random_state=seed) @do_sample_scipy.register(LogNormalDistribution) def _(dist: LogNormalDistribution, size, seed): # https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html return scipy.stats.lognorm.rvs(scale=float(exp(dist.mean)), s=float(dist.std), size=size, random_state=seed) @do_sample_scipy.register(NormalDistribution) def _(dist: NormalDistribution, size, seed): return scipy.stats.norm.rvs(loc=float(dist.mean), scale=float(dist.std), size=size, random_state=seed) @do_sample_scipy.register(ParetoDistribution) def _(dist: ParetoDistribution, size, seed): # https://stackoverflow.com/questions/42260519/defining-pareto-distribution-in-python-scipy return scipy.stats.pareto.rvs(b=float(dist.alpha), scale=float(dist.xm), size=size, random_state=seed) @do_sample_scipy.register(StudentTDistribution) def _(dist: StudentTDistribution, size, seed): return scipy.stats.t.rvs(df=float(dist.nu), size=size, random_state=seed) @do_sample_scipy.register(UniformDistribution) def _(dist: UniformDistribution, size, seed): # https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.uniform.html return scipy.stats.uniform.rvs(loc=float(dist.left), scale=float(dist.right - dist.left), size=size, random_state=seed) @do_sample_scipy.register(BetaDistribution) def _(dist: BetaDistribution, size, seed): # same parametrisation return scipy.stats.beta.rvs(a=float(dist.alpha), b=float(dist.beta), size=size, random_state=seed) @do_sample_scipy.register(CauchyDistribution) def _(dist: CauchyDistribution, size, seed): return scipy.stats.cauchy.rvs(loc=float(dist.x0), scale=float(dist.gamma), size=size, random_state=seed) # DRV: @do_sample_scipy.register(DiscreteDistributionHandmade) def _(dist: DiscreteDistributionHandmade, size, seed): from scipy.stats import rv_discrete from sympy import lambdify z = Dummy('z') handmade_pmf = lambdify(z, dist.pdf(z), ['numpy', 'scipy']) class scipy_pmf(rv_discrete): def _pmf(dist, x): return handmade_pmf(x) scipy_rv = scipy_pmf(a=float(dist.set._inf), b=float(dist.set._sup), name='scipy_pmf') return scipy_rv.rvs(size=size, random_state=seed) @do_sample_scipy.register(GeometricDistribution) def _(dist: GeometricDistribution, size, seed): return scipy.stats.geom.rvs(p=float(dist.p), size=size, random_state=seed) @do_sample_scipy.register(LogarithmicDistribution) def _(dist: LogarithmicDistribution, size, seed): return scipy.stats.logser.rvs(p=float(dist.p), size=size, random_state=seed) @do_sample_scipy.register(NegativeBinomialDistribution) def _(dist: NegativeBinomialDistribution, size, seed): return scipy.stats.nbinom.rvs(n=float(dist.r), p=float(dist.p), size=size, random_state=seed) @do_sample_scipy.register(PoissonDistribution) def _(dist: PoissonDistribution, size, seed): return scipy.stats.poisson.rvs(mu=float(dist.lamda), size=size, random_state=seed) @do_sample_scipy.register(SkellamDistribution) def _(dist: SkellamDistribution, size, seed): return scipy.stats.skellam.rvs(mu1=float(dist.mu1), mu2=float(dist.mu2), size=size, random_state=seed) @do_sample_scipy.register(YuleSimonDistribution) def _(dist: YuleSimonDistribution, size, seed): return scipy.stats.yulesimon.rvs(alpha=float(dist.rho), size=size, random_state=seed) @do_sample_scipy.register(ZetaDistribution) def _(dist: ZetaDistribution, size, seed): return scipy.stats.zipf.rvs(a=float(dist.s), size=size, random_state=seed) # FRV: @do_sample_scipy.register(SingleFiniteDistribution) def _(dist: SingleFiniteDistribution, size, seed): # scipy can handle with custom distributions from scipy.stats import rv_discrete density_ = dist.dict x, y = [], [] for k, v in density_.items(): x.append(int(k)) y.append(float(v)) scipy_rv = rv_discrete(name='scipy_rv', values=(x, y)) return scipy_rv.rvs(size=size, random_state=seed)
149df35a1944c39ae5ff168948f89214ad958bf47db9810a6fc5bc43acc26bca
from functools import singledispatch from sympy.external import import_module from sympy.stats.crv_types import BetaDistribution, CauchyDistribution, ChiSquaredDistribution, ExponentialDistribution, \ GammaDistribution, LogNormalDistribution, NormalDistribution, ParetoDistribution, UniformDistribution, \ GaussianInverseDistribution from sympy.stats.drv_types import PoissonDistribution, GeometricDistribution, NegativeBinomialDistribution from sympy.stats.frv_types import BinomialDistribution, BernoulliDistribution pymc3 = import_module('pymc3') @singledispatch def do_sample_pymc3(dist): return None # CRV: @do_sample_pymc3.register(BetaDistribution) def _(dist: BetaDistribution): return pymc3.Beta('X', alpha=float(dist.alpha), beta=float(dist.beta)) @do_sample_pymc3.register(CauchyDistribution) def _(dist: CauchyDistribution): return pymc3.Cauchy('X', alpha=float(dist.x0), beta=float(dist.gamma)) @do_sample_pymc3.register(ChiSquaredDistribution) def _(dist: ChiSquaredDistribution): return pymc3.ChiSquared('X', nu=float(dist.k)) @do_sample_pymc3.register(ExponentialDistribution) def _(dist: ExponentialDistribution): return pymc3.Exponential('X', lam=float(dist.rate)) @do_sample_pymc3.register(GammaDistribution) def _(dist: GammaDistribution): return pymc3.Gamma('X', alpha=float(dist.k), beta=1 / float(dist.theta)) @do_sample_pymc3.register(LogNormalDistribution) def _(dist: LogNormalDistribution): return pymc3.Lognormal('X', mu=float(dist.mean), sigma=float(dist.std)) @do_sample_pymc3.register(NormalDistribution) def _(dist: NormalDistribution): return pymc3.Normal('X', float(dist.mean), float(dist.std)) @do_sample_pymc3.register(GaussianInverseDistribution) def _(dist: GaussianInverseDistribution): return pymc3.Wald('X', mu=float(dist.mean), lam=float(dist.shape)) @do_sample_pymc3.register(ParetoDistribution) def _(dist: ParetoDistribution): return pymc3.Pareto('X', alpha=float(dist.alpha), m=float(dist.xm)) @do_sample_pymc3.register(UniformDistribution) def _(dist: UniformDistribution): return pymc3.Uniform('X', lower=float(dist.left), upper=float(dist.right)) # DRV: @do_sample_pymc3.register(GeometricDistribution) def _(dist: GeometricDistribution): return pymc3.Geometric('X', p=float(dist.p)) @do_sample_pymc3.register(NegativeBinomialDistribution) def _(dist: NegativeBinomialDistribution): return pymc3.NegativeBinomial('X', mu=float((dist.p * dist.r) / (1 - dist.p)), alpha=float(dist.r)) @do_sample_pymc3.register(PoissonDistribution) def _(dist: PoissonDistribution): return pymc3.Poisson('X', mu=float(dist.lamda)) # FRV: @do_sample_pymc3.register(BernoulliDistribution) def _(dist: BernoulliDistribution): return pymc3.Bernoulli('X', p=float(dist.p)) @do_sample_pymc3.register(BinomialDistribution) def _(dist: BinomialDistribution): return pymc3.Binomial('X', n=int(dist.n), p=float(dist.p))
bb66e000713944dbb16a4ba33c3de4fd899bdf8dfd44fe318a0f9b52bda8acaf
from sympy import S, Rational from sympy.external import import_module from sympy.stats import Binomial, sample, Die, FiniteRV, DiscreteUniform, Bernoulli, BetaBinomial, Hypergeometric, \ Rademacher from sympy.testing.pytest import skip, ignore_warnings, raises def test_given_sample(): X = Die('X', 6) scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests') with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert next(sample(X, X > 5)) == 6 def test_sample_numpy(): distribs_numpy = [ Binomial("B", 5, 0.4), ] size = 3 numpy = import_module('numpy') if not numpy: skip('Numpy is not installed. Abort tests for _sample_numpy.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for X in distribs_numpy: samps = next(sample(X, size=size, library='numpy')) for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: next(sample(Die("D"), library='numpy'))) raises(NotImplementedError, lambda: Die("D").pspace.sample(library='tensorflow')) def test_sample_scipy(): distribs_scipy = [ FiniteRV('F', {1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4)}), DiscreteUniform("Y", list(range(5))), Die("D"), Bernoulli("Be", 0.3), Binomial("Bi", 5, 0.4), BetaBinomial("Bb", 2, 1, 1), Hypergeometric("H", 1, 1, 1), Rademacher("R") ] size = 3 numsamples = 5 scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for _sample_scipy.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed h_sample = list(sample(Hypergeometric("H", 1, 1, 1), size=size, numsamples=numsamples)) assert len(h_sample) == numsamples for X in distribs_scipy: samps = next(sample(X, size=size)) samps2 = next(sample(X, size=(2, 2))) for sam in samps: assert sam in X.pspace.domain.set for i in range(2): for j in range(2): assert samps2[i][j] in X.pspace.domain.set def test_sample_pymc3(): distribs_pymc3 = [ Bernoulli('B', 0.2), Binomial('N', 5, 0.4) ] size = 3 pymc3 = import_module('pymc3') if not pymc3: skip('PyMC3 is not installed. Abort tests for _sample_pymc3.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for X in distribs_pymc3: samps = next(sample(X, size=size, library='pymc3')) for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: next(sample(Die("D"), library='pymc3'))) def test_sample_seed(): F = FiniteRV('F', {1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4)}) libraries = ['scipy', 'numpy', 'pymc3'] for lib in libraries: try: imported_lib = import_module(lib) if imported_lib: s0 = list(sample(F, numsamples=10, library=lib, seed=0)) s1 = list(sample(F, numsamples=10, library=lib, seed=0)) s2 = list(sample(F, numsamples=10, library=lib, seed=1)) assert s0 == s1 assert s1 != s2 except NotImplementedError: continue
29d19016f76f2f5e472a76085d327b40fb77f9bae078242388baca198d0d5766
from sympy import exp, Interval, oo, Symbol from sympy.external import import_module from sympy.stats import Beta, Chi, Normal, Gamma, Exponential, LogNormal, Pareto, ChiSquared, Uniform, sample, \ BetaPrime, Cauchy, GammaInverse, GaussianInverse, StudentT, Weibull, density, ContinuousRV from sympy.testing.pytest import skip, ignore_warnings, raises def test_sample_numpy(): distribs_numpy = [ Beta("B", 1, 1), Normal("N", 0, 1), Gamma("G", 2, 7), Exponential("E", 2), LogNormal("LN", 0, 1), Pareto("P", 1, 1), ChiSquared("CS", 2), Uniform("U", 0, 1) ] size = 3 numpy = import_module('numpy') if not numpy: skip('Numpy is not installed. Abort tests for _sample_numpy.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for X in distribs_numpy: samps = next(sample(X, size=size, library='numpy')) for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: next(sample(Chi("C", 1), library='numpy'))) raises(NotImplementedError, lambda: Chi("C", 1).pspace.distribution.sample(library='tensorflow')) def test_sample_scipy(): distribs_scipy = [ Beta("B", 1, 1), BetaPrime("BP", 1, 1), Cauchy("C", 1, 1), Chi("C", 1), Normal("N", 0, 1), Gamma("G", 2, 7), GammaInverse("GI", 1, 1), GaussianInverse("GUI", 1, 1), Exponential("E", 2), LogNormal("LN", 0, 1), Pareto("P", 1, 1), StudentT("S", 2), ChiSquared("CS", 2), Uniform("U", 0, 1) ] size = 3 numsamples = 5 scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests for _sample_scipy.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed g_sample = list(sample(Gamma("G", 2, 7), size=size, numsamples=numsamples)) assert len(g_sample) == numsamples for X in distribs_scipy: samps = next(sample(X, size=size, library='scipy')) samps2 = next(sample(X, size=(2, 2), library='scipy')) for sam in samps: assert sam in X.pspace.domain.set for i in range(2): for j in range(2): assert samps2[i][j] in X.pspace.domain.set def test_sample_pymc3(): distribs_pymc3 = [ Beta("B", 1, 1), Cauchy("C", 1, 1), Normal("N", 0, 1), Gamma("G", 2, 7), GaussianInverse("GI", 1, 1), Exponential("E", 2), LogNormal("LN", 0, 1), Pareto("P", 1, 1), ChiSquared("CS", 2), Uniform("U", 0, 1) ] size = 3 pymc3 = import_module('pymc3') if not pymc3: skip('PyMC3 is not installed. Abort tests for _sample_pymc3.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for X in distribs_pymc3: samps = next(sample(X, size=size, library='pymc3')) for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: next(sample(Chi("C", 1), library='pymc3'))) def test_sampling_gamma_inverse(): scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for sampling of gamma inverse.') X = GammaInverse("x", 1, 1) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert next(sample(X)) in X.pspace.domain.set def test_lognormal_sampling(): # Right now, only density function and sampling works scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests') with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for i in range(3): X = LogNormal('x', i, 1) assert next(sample(X)) in X.pspace.domain.set size = 5 with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed samps = next(sample(X, size=size)) for samp in samps: assert samp in X.pspace.domain.set def test_sampling_gaussian_inverse(): scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for sampling of Gaussian inverse.') X = GaussianInverse("x", 1, 1) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert next(sample(X, library='scipy')) in X.pspace.domain.set def test_prefab_sampling(): scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests') N = Normal('X', 0, 1) L = LogNormal('L', 0, 1) E = Exponential('Ex', 1) P = Pareto('P', 1, 3) W = Weibull('W', 1, 1) U = Uniform('U', 0, 1) B = Beta('B', 2, 5) G = Gamma('G', 1, 3) variables = [N, L, E, P, W, U, B, G] niter = 10 size = 5 with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for var in variables: for _ in range(niter): assert next(sample(var)) in var.pspace.domain.set samps = next(sample(var, size=size)) for samp in samps: assert samp in var.pspace.domain.set def test_sample_continuous(): z = Symbol('z') Z = ContinuousRV(z, exp(-z), set=Interval(0, oo)) assert density(Z)(-1) == 0 scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests') with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert next(sample(Z)) in Z.pspace.domain.set sym, val = list(Z.pspace.sample().items())[0] assert sym == Z and val in Interval(0, oo) libraries = ['scipy', 'numpy', 'pymc3'] for lib in libraries: try: imported_lib = import_module(lib) if imported_lib: s0, s1, s2 = [], [], [] s0 = list(sample(Z, numsamples=10, library=lib, seed=0)) s1 = list(sample(Z, numsamples=10, library=lib, seed=0)) s2 = list(sample(Z, numsamples=10, library=lib, seed=1)) assert s0 == s1 assert s1 != s2 except NotImplementedError: continue
a00c8c89ffd807ee543f78f5eb6c1ff119481b57c850beada17618ab1f23bdb8
from sympy import S, Symbol from sympy.external import import_module from sympy.stats import Geometric, Poisson, Zeta, sample, Skellam, DiscreteRV, Logarithmic, NegativeBinomial, YuleSimon from sympy.testing.pytest import skip, ignore_warnings, raises, slow def test_sample_numpy(): distribs_numpy = [ Geometric('G', 0.5), Poisson('P', 1), Zeta('Z', 2) ] size = 3 numpy = import_module('numpy') if not numpy: skip('Numpy is not installed. Abort tests for _sample_numpy.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for X in distribs_numpy: samps = next(sample(X, size=size, library='numpy')) for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: next(sample(Skellam('S', 1, 1), library='numpy'))) raises(NotImplementedError, lambda: Skellam('S', 1, 1).pspace.distribution.sample(library='tensorflow')) def test_sample_scipy(): p = S(2)/3 x = Symbol('x', integer=True, positive=True) pdf = p*(1 - p)**(x - 1) # pdf of Geometric Distribution distribs_scipy = [ DiscreteRV(x, pdf, set=S.Naturals), Geometric('G', 0.5), Logarithmic('L', 0.5), NegativeBinomial('N', 5, 0.4), Poisson('P', 1), Skellam('S', 1, 1), YuleSimon('Y', 1), Zeta('Z', 2) ] size = 3 numsamples = 5 scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests for _sample_scipy.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed z_sample = list(sample(Zeta("G", 7), size=size, numsamples=numsamples)) assert len(z_sample) == numsamples for X in distribs_scipy: samps = next(sample(X, size=size, library='scipy')) samps2 = next(sample(X, size=(2, 2), library='scipy')) for sam in samps: assert sam in X.pspace.domain.set for i in range(2): for j in range(2): assert samps2[i][j] in X.pspace.domain.set def test_sample_pymc3(): distribs_pymc3 = [ Geometric('G', 0.5), Poisson('P', 1), NegativeBinomial('N', 5, 0.4) ] size = 3 pymc3 = import_module('pymc3') if not pymc3: skip('PyMC3 is not installed. Abort tests for _sample_pymc3.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for X in distribs_pymc3: samps = next(sample(X, size=size, library='pymc3')) for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: next(sample(Skellam('S', 1, 1), library='pymc3'))) @slow def test_sample_discrete(): X = Geometric('X', S.Half) scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests') with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert next(sample(X)) in X.pspace.domain.set samps = next(sample(X, size=2)) # This takes long time if ran without scipy for samp in samps: assert samp in X.pspace.domain.set libraries = ['scipy', 'numpy', 'pymc3'] for lib in libraries: try: imported_lib = import_module(lib) if imported_lib: s0, s1, s2 = [], [], [] s0 = list(sample(X, numsamples=10, library=lib, seed=0)) s1 = list(sample(X, numsamples=10, library=lib, seed=0)) s2 = list(sample(X, numsamples=10, library=lib, seed=1)) assert s0 == s1 assert s1 != s2 except NotImplementedError: continue
904ae09ce84e62f0ccf9eae27c29bccbc904c2ce2077319967bcb0edae5df717
from sympy import Sieve, sieve, Symbol, S, limit, I, zoo, nan, Rational from sympy.ntheory import isprime, totient, mobius, randprime, nextprime, prevprime, \ primerange, primepi, prime, primorial, composite, compositepi, reduced_totient from sympy.ntheory.generate import cycle_length from sympy.ntheory.primetest import mr from sympy.testing.pytest import raises def test_prime(): assert prime(1) == 2 assert prime(2) == 3 assert prime(5) == 11 assert prime(11) == 31 assert prime(57) == 269 assert prime(296) == 1949 assert prime(559) == 4051 assert prime(3000) == 27449 assert prime(4096) == 38873 assert prime(9096) == 94321 assert prime(25023) == 287341 raises(ValueError, lambda: prime(0)) sieve.extend(3000) assert prime(401) == 2749 def test_primepi(): assert primepi(-1) == 0 assert primepi(1) == 0 assert primepi(2) == 1 assert primepi(Rational(7, 2)) == 2 assert primepi(3.5) == 2 assert primepi(5) == 3 assert primepi(11) == 5 assert primepi(57) == 16 assert primepi(296) == 62 assert primepi(559) == 102 assert primepi(3000) == 430 assert primepi(4096) == 564 assert primepi(9096) == 1128 assert primepi(25023) == 2763 assert primepi(10**8) == 5761455 assert primepi(253425253) == 13856396 assert primepi(8769575643) == 401464322 sieve.extend(3000) assert primepi(2000) == 303 n = Symbol('n') assert primepi(n).subs(n, 2) == 1 r = Symbol('r', real=True) assert primepi(r).subs(r, 2) == 1 assert primepi(S.Infinity) is S.Infinity assert primepi(S.NegativeInfinity) == 0 assert limit(primepi(n), n, 100) == 25 raises(ValueError, lambda: primepi(I)) raises(ValueError, lambda: primepi(1 + I)) raises(ValueError, lambda: primepi(zoo)) raises(ValueError, lambda: primepi(nan)) def test_composite(): from sympy.ntheory.generate import sieve sieve._reset() assert composite(1) == 4 assert composite(2) == 6 assert composite(5) == 10 assert composite(11) == 20 assert composite(41) == 58 assert composite(57) == 80 assert composite(296) == 370 assert composite(559) == 684 assert composite(3000) == 3488 assert composite(4096) == 4736 assert composite(9096) == 10368 assert composite(25023) == 28088 sieve.extend(3000) assert composite(1957) == 2300 assert composite(2568) == 2998 raises(ValueError, lambda: composite(0)) def test_compositepi(): assert compositepi(1) == 0 assert compositepi(2) == 0 assert compositepi(5) == 1 assert compositepi(11) == 5 assert compositepi(57) == 40 assert compositepi(296) == 233 assert compositepi(559) == 456 assert compositepi(3000) == 2569 assert compositepi(4096) == 3531 assert compositepi(9096) == 7967 assert compositepi(25023) == 22259 assert compositepi(10**8) == 94238544 assert compositepi(253425253) == 239568856 assert compositepi(8769575643) == 8368111320 sieve.extend(3000) assert compositepi(2321) == 1976 def test_generate(): from sympy.ntheory.generate import sieve sieve._reset() assert nextprime(-4) == 2 assert nextprime(2) == 3 assert nextprime(5) == 7 assert nextprime(12) == 13 assert prevprime(3) == 2 assert prevprime(7) == 5 assert prevprime(13) == 11 assert prevprime(19) == 17 assert prevprime(20) == 19 sieve.extend_to_no(9) assert sieve._list[-1] == 23 assert sieve._list[-1] < 31 assert 31 in sieve assert nextprime(90) == 97 assert nextprime(10**40) == (10**40 + 121) assert prevprime(97) == 89 assert prevprime(10**40) == (10**40 - 17) assert list(sieve.primerange(10, 1)) == [] assert list(sieve.primerange(5, 9)) == [5, 7] sieve._reset(prime=True) assert list(sieve.primerange(2, 13)) == [2, 3, 5, 7, 11] assert list(sieve.primerange(13)) == [2, 3, 5, 7, 11] assert list(sieve.primerange(8)) == [2, 3, 5, 7] assert list(sieve.primerange(-2)) == [] assert list(sieve.primerange(29)) == [2, 3, 5, 7, 11, 13, 17, 19, 23] assert list(sieve.primerange(34)) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31] assert list(sieve.totientrange(5, 15)) == [4, 2, 6, 4, 6, 4, 10, 4, 12, 6] sieve._reset(totient=True) assert list(sieve.totientrange(3, 13)) == [2, 2, 4, 2, 6, 4, 6, 4, 10, 4] assert list(sieve.totientrange(900, 1000)) == [totient(x) for x in range(900, 1000)] assert list(sieve.totientrange(0, 1)) == [] assert list(sieve.totientrange(1, 2)) == [1] assert list(sieve.mobiusrange(5, 15)) == [-1, 1, -1, 0, 0, 1, -1, 0, -1, 1] sieve._reset(mobius=True) assert list(sieve.mobiusrange(3, 13)) == [-1, 0, -1, 1, -1, 0, 0, 1, -1, 0] assert list(sieve.mobiusrange(1050, 1100)) == [mobius(x) for x in range(1050, 1100)] assert list(sieve.mobiusrange(0, 1)) == [] assert list(sieve.mobiusrange(1, 2)) == [1] assert list(primerange(10, 1)) == [] assert list(primerange(2, 7)) == [2, 3, 5] assert list(primerange(2, 10)) == [2, 3, 5, 7] assert list(primerange(1050, 1100)) == [1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097] s = Sieve() for i in range(30, 2350, 376): for j in range(2, 5096, 1139): A = list(s.primerange(i, i + j)) B = list(primerange(i, i + j)) assert A == B s = Sieve() assert s[10] == 29 assert nextprime(2, 2) == 5 raises(ValueError, lambda: totient(0)) raises(ValueError, lambda: reduced_totient(0)) raises(ValueError, lambda: primorial(0)) assert mr(1, [2]) is False func = lambda i: (i**2 + 1) % 51 assert next(cycle_length(func, 4)) == (6, 2) assert list(cycle_length(func, 4, values=True)) == \ [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14] assert next(cycle_length(func, 4, nmax=5)) == (5, None) assert list(cycle_length(func, 4, nmax=5, values=True)) == \ [17, 35, 2, 5, 26] sieve.extend(3000) assert nextprime(2968) == 2969 assert prevprime(2930) == 2927 raises(ValueError, lambda: prevprime(1)) def test_randprime(): assert randprime(10, 1) is None assert randprime(2, 3) == 2 assert randprime(1, 3) == 2 assert randprime(3, 5) == 3 raises(ValueError, lambda: randprime(20, 22)) for a in [100, 300, 500, 250000]: for b in [100, 300, 500, 250000]: p = randprime(a, a + b) assert a <= p < (a + b) and isprime(p) def test_primorial(): assert primorial(1) == 2 assert primorial(1, nth=0) == 1 assert primorial(2) == 6 assert primorial(2, nth=0) == 2 assert primorial(4, nth=0) == 6 def test_search(): assert 2 in sieve assert 2.1 not in sieve assert 1 not in sieve assert 2**1000 not in sieve raises(ValueError, lambda: sieve.search(1)) def test_sieve_slice(): assert sieve[5] == 11 assert list(sieve[5:10]) == [sieve[x] for x in range(5, 10)] assert list(sieve[5:10:2]) == [sieve[x] for x in range(5, 10, 2)] assert list(sieve[1:5]) == [2, 3, 5, 7] raises(IndexError, lambda: sieve[:5]) raises(IndexError, lambda: sieve[0]) raises(IndexError, lambda: sieve[0:5]) def test_sieve_iter(): values = [] for value in sieve: if value > 7: break values.append(value) assert values == list(sieve[1:5]) def test_sieve_repr(): assert "sieve" in repr(sieve) assert "prime" in repr(sieve)
a07fe2f7e5b3c1a3188b021c13d5099a79faf541b160ec64b56ff0cbeea35274
from sympy import log, exp, cos, Symbol, Pow, sin, MatrixSymbol, sinc from sympy.assumptions import assuming, Q from sympy.printing import ccode from sympy.codegen.matrix_nodes import MatrixSolve from sympy.codegen.cfunctions import log2, exp2, expm1, log1p from sympy.codegen.numpy_nodes import logaddexp, logaddexp2 from sympy.codegen.scipy_nodes import cosm1 from sympy.codegen.rewriting import ( optimize, cosm1_opt, log2_opt, exp2_opt, expm1_opt, log1p_opt, optims_c99, create_expand_pow_optimization, matinv_opt, logaddexp_opt, logaddexp2_opt, optims_numpy, sinc_opts ) from sympy.testing.pytest import XFAIL def test_log2_opt(): x = Symbol('x') expr1 = 7*log(3*x + 5)/(log(2)) opt1 = optimize(expr1, [log2_opt]) assert opt1 == 7*log2(3*x + 5) assert opt1.rewrite(log) == expr1 expr2 = 3*log(5*x + 7)/(13*log(2)) opt2 = optimize(expr2, [log2_opt]) assert opt2 == 3*log2(5*x + 7)/13 assert opt2.rewrite(log) == expr2 expr3 = log(x)/log(2) opt3 = optimize(expr3, [log2_opt]) assert opt3 == log2(x) assert opt3.rewrite(log) == expr3 expr4 = log(x)/log(2) + log(x+1) opt4 = optimize(expr4, [log2_opt]) assert opt4 == log2(x) + log(2)*log2(x+1) assert opt4.rewrite(log) == expr4 expr5 = log(17) opt5 = optimize(expr5, [log2_opt]) assert opt5 == expr5 expr6 = log(x + 3)/log(2) opt6 = optimize(expr6, [log2_opt]) assert str(opt6) == 'log2(x + 3)' assert opt6.rewrite(log) == expr6 def test_exp2_opt(): x = Symbol('x') expr1 = 1 + 2**x opt1 = optimize(expr1, [exp2_opt]) assert opt1 == 1 + exp2(x) assert opt1.rewrite(Pow) == expr1 expr2 = 1 + 3**x assert expr2 == optimize(expr2, [exp2_opt]) def test_expm1_opt(): x = Symbol('x') expr1 = exp(x) - 1 opt1 = optimize(expr1, [expm1_opt]) assert expm1(x) - opt1 == 0 assert opt1.rewrite(exp) == expr1 expr2 = 3*exp(x) - 3 opt2 = optimize(expr2, [expm1_opt]) assert 3*expm1(x) == opt2 assert opt2.rewrite(exp) == expr2 expr3 = 3*exp(x) - 5 assert expr3 == optimize(expr3, [expm1_opt]) expr4 = 3*exp(x) + log(x) - 3 opt4 = optimize(expr4, [expm1_opt]) assert 3*expm1(x) + log(x) == opt4 assert opt4.rewrite(exp) == expr4 expr5 = 3*exp(2*x) - 3 opt5 = optimize(expr5, [expm1_opt]) assert 3*expm1(2*x) == opt5 assert opt5.rewrite(exp) == expr5 @XFAIL # ideally this test should pass: need to improve `expm1_opt` def test_expm1_two_exp_terms(): x, y = map(Symbol, 'x y'.split()) expr1 = exp(x) + exp(y) - 2 opt1 = optimize(expr1, [expm1_opt]) assert opt1 == expm1(x) + expm1(y) def test_cosm1_opt(): x = Symbol('x') expr1 = cos(x) - 1 opt1 = optimize(expr1, [cosm1_opt]) assert cosm1(x) - opt1 == 0 assert opt1.rewrite(cos) == expr1 expr2 = 3*cos(x) - 3 opt2 = optimize(expr2, [cosm1_opt]) assert 3*cosm1(x) == opt2 assert opt2.rewrite(cos) == expr2 expr3 = 3*cos(x) - 5 assert expr3 == optimize(expr3, [cosm1_opt]) expr4 = 3*cos(x) + log(x) - 3 opt4 = optimize(expr4, [cosm1_opt]) assert 3*cosm1(x) + log(x) == opt4 assert opt4.rewrite(cos) == expr4 expr5 = 3*cos(2*x) - 3 opt5 = optimize(expr5, [cosm1_opt]) assert 3*cosm1(2*x) == opt5 assert opt5.rewrite(cos) == expr5 @XFAIL # ideally this test should pass: need to improve `cosm1_opt` def test_cosm1_two_cos_terms(): x, y = map(Symbol, 'x y'.split()) expr1 = cos(x) + cos(y) - 2 opt1 = optimize(expr1, [cosm1_opt]) assert opt1 == cosm1(x) + cosm1(y) @XFAIL # ideally this test should pass: need to add a new combined expm1_cosm1_opt? def test_expm1_cosm1_mixed(): x = Symbol('x') expr1 = exp(x) + cos(x) - 2 opt1 = optimize(expr1, [expm1_opt, cosm1_opt]) # need a combined opt pass? assert opt1 == cosm1(x) + expm1(x) def test_log1p_opt(): x = Symbol('x') expr1 = log(x + 1) opt1 = optimize(expr1, [log1p_opt]) assert log1p(x) - opt1 == 0 assert opt1.rewrite(log) == expr1 expr2 = log(3*x + 3) opt2 = optimize(expr2, [log1p_opt]) assert log1p(x) + log(3) == opt2 assert (opt2.rewrite(log) - expr2).simplify() == 0 expr3 = log(2*x + 1) opt3 = optimize(expr3, [log1p_opt]) assert log1p(2*x) - opt3 == 0 assert opt3.rewrite(log) == expr3 expr4 = log(x+3) opt4 = optimize(expr4, [log1p_opt]) assert str(opt4) == 'log(x + 3)' def test_optims_c99(): x = Symbol('x') expr1 = 2**x + log(x)/log(2) + log(x + 1) + exp(x) - 1 opt1 = optimize(expr1, optims_c99).simplify() assert opt1 == exp2(x) + log2(x) + log1p(x) + expm1(x) assert opt1.rewrite(exp).rewrite(log).rewrite(Pow) == expr1 expr2 = log(x)/log(2) + log(x + 1) opt2 = optimize(expr2, optims_c99) assert opt2 == log2(x) + log1p(x) assert opt2.rewrite(log) == expr2 expr3 = log(x)/log(2) + log(17*x + 17) opt3 = optimize(expr3, optims_c99) delta3 = opt3 - (log2(x) + log(17) + log1p(x)) assert delta3 == 0 assert (opt3.rewrite(log) - expr3).simplify() == 0 expr4 = 2**x + 3*log(5*x + 7)/(13*log(2)) + 11*exp(x) - 11 + log(17*x + 17) opt4 = optimize(expr4, optims_c99).simplify() delta4 = opt4 - (exp2(x) + 3*log2(5*x + 7)/13 + 11*expm1(x) + log(17) + log1p(x)) assert delta4 == 0 assert (opt4.rewrite(exp).rewrite(log).rewrite(Pow) - expr4).simplify() == 0 expr5 = 3*exp(2*x) - 3 opt5 = optimize(expr5, optims_c99) delta5 = opt5 - 3*expm1(2*x) assert delta5 == 0 assert opt5.rewrite(exp) == expr5 expr6 = exp(2*x) - 3 opt6 = optimize(expr6, optims_c99) delta6 = opt6 - (exp(2*x) - 3) assert delta6 == 0 expr7 = log(3*x + 3) opt7 = optimize(expr7, optims_c99) delta7 = opt7 - (log(3) + log1p(x)) assert delta7 == 0 assert (opt7.rewrite(log) - expr7).simplify() == 0 expr8 = log(2*x + 3) opt8 = optimize(expr8, optims_c99) assert opt8 == expr8 def test_create_expand_pow_optimization(): cc = lambda x: ccode( optimize(x, [create_expand_pow_optimization(4)])) x = Symbol('x') assert cc(x**4) == 'x*x*x*x' assert cc(x**4 + x**2) == 'x*x + x*x*x*x' assert cc(x**5 + x**4) == 'pow(x, 5) + x*x*x*x' assert cc(sin(x)**4) == 'pow(sin(x), 4)' # gh issue 15335 assert cc(x**(-4)) == '1.0/(x*x*x*x)' assert cc(x**(-5)) == 'pow(x, -5)' assert cc(-x**4) == '-x*x*x*x' assert cc(x**4 - x**2) == '-x*x + x*x*x*x' i = Symbol('i', integer=True) assert cc(x**i - x**2) == 'pow(x, i) - x*x' # gh issue 20753 cc2 = lambda x: ccode(optimize(x, [create_expand_pow_optimization( 4, base_req=lambda b: b.is_Function)])) assert cc2(x**3 + sin(x)**3) == "pow(x, 3) + sin(x)*sin(x)*sin(x)" def test_matsolve(): n = Symbol('n', integer=True) A = MatrixSymbol('A', n, n) x = MatrixSymbol('x', n, 1) with assuming(Q.fullrank(A)): assert optimize(A**(-1) * x, [matinv_opt]) == MatrixSolve(A, x) assert optimize(A**(-1) * x + x, [matinv_opt]) == MatrixSolve(A, x) + x def test_logaddexp_opt(): x, y = map(Symbol, 'x y'.split()) expr1 = log(exp(x) + exp(y)) opt1 = optimize(expr1, [logaddexp_opt]) assert logaddexp(x, y) - opt1 == 0 assert logaddexp(y, x) - opt1 == 0 assert opt1.rewrite(log) == expr1 def test_logaddexp2_opt(): x, y = map(Symbol, 'x y'.split()) expr1 = log(2**x + 2**y)/log(2) opt1 = optimize(expr1, [logaddexp2_opt]) assert logaddexp2(x, y) - opt1 == 0 assert logaddexp2(y, x) - opt1 == 0 assert opt1.rewrite(log) == expr1 def test_sinc_opts(): def check(d): for k, v in d.items(): assert optimize(k, sinc_opts) == v x = Symbol('x') check({ sin(x)/x : sinc(x), sin(2*x)/(2*x) : sinc(2*x), sin(3*x)/x : 3*sinc(3*x), x*sin(x) : x*sin(x) }) y = Symbol('y') check({ sin(x*y)/(x*y) : sinc(x*y), y*sin(x/y)/x : sinc(x/y), sin(sin(x))/sin(x) : sinc(sin(x)), sin(3*sin(x))/sin(x) : 3*sinc(3*sin(x)), sin(x)/y : sin(x)/y }) def test_optims_numpy(): def check(d): for k, v in d.items(): assert optimize(k, optims_numpy) == v x = Symbol('x') check({ sin(2*x)/(2*x) + exp(2*x) - 1: sinc(2*x) + expm1(2*x), log(x+3)/log(2) + log(x**2 + 1): log1p(x**2) + log2(x+3) }) @XFAIL # room for improvement, ideally this test case should pass. def test_optims_numpy_TODO(): def check(d): for k, v in d.items(): assert optimize(k, optims_numpy) == v x, y = map(Symbol, 'x y'.split()) check({ log(x*y)*sin(x*y)*log(x*y+1)/(log(2)*x*y): log2(x*y)*sinc(x*y)*log1p(x*y), exp(x*sin(y)/y) - 1: expm1(x*sinc(y)) })
e103f58e77f398e7a2a66760cb65543f68ef05f999e22e88b8d8009641d29b53
from sympy import ( symbols, IndexedBase, Identity, cos, Inverse, tensorcontraction, permutedims, tensorproduct, ZeroMatrix) from sympy.codegen.array_utils import ( CodegenArrayContraction, CodegenArrayTensorProduct, CodegenArrayDiagonal, CodegenArrayPermuteDims, CodegenArrayElementwiseAdd, _codegen_array_parse, parse_indexed_expression, recognize_matrix_expression, parse_matrix_expression, nest_permutation) from sympy import MatrixSymbol, Sum from sympy.combinatorics import Permutation from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.matrices.expressions.diagonal import DiagMatrix from sympy.matrices import Trace, MatMul, Transpose from sympy.tensor.array.expressions.array_expressions import ZeroArray from sympy.testing.pytest import raises import random A, B = symbols("A B", cls=IndexedBase) i, j, k, l, m, n = symbols("i j k l m n") M = MatrixSymbol("M", k, k) N = MatrixSymbol("N", k, k) P = MatrixSymbol("P", k, k) Q = MatrixSymbol("Q", k, k) def test_codegen_array_contraction_construction(): cg = CodegenArrayContraction(A) assert cg == A s = Sum(A[i]*B[i], (i, 0, 3)) cg = parse_indexed_expression(s) assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (0, 1)) cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (1, 0)) assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (0, 1)) expr = M*N result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) assert parse_matrix_expression(expr) == result elem = expr[i, j] assert parse_indexed_expression(elem) == result expr = M*N*M result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, M), (1, 2), (3, 4)) assert parse_matrix_expression(expr) == result elem = expr[i, j] result = CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (1, 4), (2, 5)) cg = parse_indexed_expression(elem) cg = cg.sort_args_by_name() assert cg == result def test_codegen_array_contraction_indices_types(): cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 1)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 0), (0, 1)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 1)] cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 1), (1, 0)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(1, 2)] cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (1, 4), (2, 5)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 0), (1, 1)], [(0, 1), (2, 0)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 3), (1, 4)] def test_codegen_array_recognize_matrix_mul_lines(): cg = CodegenArrayContraction(CodegenArrayTensorProduct(M), (0, 1)) assert recognize_matrix_expression(cg) == Trace(M) cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 1), (2, 3)) assert recognize_matrix_expression(cg) == Trace(M)*Trace(N) cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 3), (1, 2)) assert recognize_matrix_expression(cg) == Trace(M*N) cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 2), (1, 3)) assert recognize_matrix_expression(cg) == Trace(M*N.T) cg = parse_indexed_expression((M*N*P)[i,j]) assert recognize_matrix_expression(cg) == M*N*P cg = parse_matrix_expression(M*N*P) assert recognize_matrix_expression(cg) == M*N*P cg = parse_indexed_expression((M*N.T*P)[i,j]) assert recognize_matrix_expression(cg) == M*N.T*P cg = parse_matrix_expression(M*N.T*P) assert recognize_matrix_expression(cg) == M*N.T*P cg = CodegenArrayContraction(CodegenArrayTensorProduct(M,N,P,Q), (1, 2), (5, 6)) assert recognize_matrix_expression(cg) == CodegenArrayTensorProduct(M*N, P*Q) expr = -2*M*N elem = expr[i, j] cg = parse_indexed_expression(elem) assert recognize_matrix_expression(cg) == -2*M*N a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) c = MatrixSymbol("c", k, 1) cg = CodegenArrayPermuteDims( CodegenArrayContraction( CodegenArrayTensorProduct( a, CodegenArrayElementwiseAdd( CodegenArrayTensorProduct(b, c), CodegenArrayTensorProduct(c, b), ) ), (2, 4)), [0, 1, 3, 2]) assert recognize_matrix_expression(cg) == a*(b.T*c + c.T*b) za = ZeroArray(m, n) assert recognize_matrix_expression(za) == ZeroMatrix(m, n) def test_codegen_array_flatten(): # Flatten nested CodegenArrayTensorProduct objects: expr1 = CodegenArrayTensorProduct(M, N) expr2 = CodegenArrayTensorProduct(P, Q) expr = CodegenArrayTensorProduct(expr1, expr2) assert expr == CodegenArrayTensorProduct(M, N, P, Q) assert expr.args == (M, N, P, Q) # Flatten mixed CodegenArrayTensorProduct and CodegenArrayContraction objects: cg1 = CodegenArrayContraction(expr1, (1, 2)) cg2 = CodegenArrayContraction(expr2, (0, 3)) expr = CodegenArrayTensorProduct(cg1, cg2) assert expr == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 2), (4, 7)) expr = CodegenArrayTensorProduct(M, cg1) assert expr == CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (3, 4)) # Flatten nested CodegenArrayContraction objects: cgnested = CodegenArrayContraction(cg1, (0, 1)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 3), (1, 2)) cgnested = CodegenArrayContraction(CodegenArrayTensorProduct(cg1, cg2), (0, 3)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 6), (1, 2), (4, 7)) cg3 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4)) cgnested = CodegenArrayContraction(cg3, (0, 1)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 5), (1, 3), (2, 4)) cgnested = CodegenArrayContraction(cg3, (0, 3), (1, 2)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 7), (1, 3), (2, 4), (5, 6)) cg4 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7)) cgnested = CodegenArrayContraction(cg4, (0, 1)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7)) cgnested = CodegenArrayContraction(cg4, (0, 1), (2, 3)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7), (4, 6)) cg = CodegenArrayDiagonal(cg4) assert cg == cg4 assert isinstance(cg, type(cg4)) # Flatten nested CodegenArrayDiagonal objects: cg1 = CodegenArrayDiagonal(expr1, (1, 2)) cg2 = CodegenArrayDiagonal(expr2, (0, 3)) cg3 = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4)) cg4 = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7)) cgnested = CodegenArrayDiagonal(cg1, (0, 1)) assert cgnested == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2), (0, 3)) cgnested = CodegenArrayDiagonal(cg3, (1, 2)) assert cgnested == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4), (5, 6)) cgnested = CodegenArrayDiagonal(cg4, (1, 2)) assert cgnested == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7), (2, 4)) cg = CodegenArrayElementwiseAdd(M, N) cg2 = CodegenArrayElementwiseAdd(cg, P) assert isinstance(cg2, CodegenArrayElementwiseAdd) assert cg2.args == (M, N, P) assert cg2.shape == (k, k) def test_codegen_array_parse(): expr = M[i, j] assert _codegen_array_parse(expr) == (M, (i, j)) expr = M[i, j]*N[k, l] assert _codegen_array_parse(expr) == (CodegenArrayTensorProduct(M, N), (i, j, k, l)) expr = M[i, j]*N[j, k] assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2)), (i, k, j)) expr = Sum(M[i, j]*N[j, k], (j, 0, k-1)) assert _codegen_array_parse(expr) == (CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), (i, k)) expr = M[i, j] + N[i, j] assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, N), (i, j)) expr = M[i, j] + N[j, i] assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(N, Permutation([1,0]))), (i, j)) expr = M[i, j] + M[j, i] assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(M, Permutation([1,0]))), (i, j)) expr = (M*N*P)[i, j] assert _codegen_array_parse(expr) == (CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)), (i, j)) expr = expr.function # Disregard summation in previous expression ret1, ret2 = _codegen_array_parse(expr) assert ret1 == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)) assert str(ret2) == "(i, j, _i_1, _i_2)" expr = KroneckerDelta(i, j)*M[i, k] assert _codegen_array_parse(expr) == (M, ({i, j}, k)) expr = KroneckerDelta(i, j)*KroneckerDelta(j, k)*M[i, l] assert _codegen_array_parse(expr) == (M, ({i, j, k}, l)) expr = KroneckerDelta(j, k)*(M[i, j]*N[k, l] + N[i, j]*M[k, l]) assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(CodegenArrayElementwiseAdd( CodegenArrayTensorProduct(M, N), CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), Permutation(0, 2)(1, 3)) ), (1, 2)), (i, l, frozenset({j, k}))) expr = KroneckerDelta(j, m)*KroneckerDelta(m, k)*(M[i, j]*N[k, l] + N[i, j]*M[k, l]) assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(CodegenArrayElementwiseAdd( CodegenArrayTensorProduct(M, N), CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), Permutation(0, 2)(1, 3)) ), (1, 2)), (i, l, frozenset({j, m, k}))) expr = KroneckerDelta(i, j)*KroneckerDelta(j, k)*KroneckerDelta(k,m)*M[i, 0]*KroneckerDelta(m, n) assert _codegen_array_parse(expr) == (M, ({i,j,k,m,n}, 0)) expr = M[i, i] assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(M, (0, 1)), (i,)) def test_codegen_array_diagonal(): cg = CodegenArrayDiagonal(M, (1, 0)) assert cg == CodegenArrayDiagonal(M, (0, 1)) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P), (4, 1), (2, 0)) assert cg == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P), (1, 4), (0, 2)) def test_codegen_recognize_matrix_expression(): expr = CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(M, [1, 0])) assert recognize_matrix_expression(expr) == M + Transpose(M) expr = M[i,j] + N[i,j] p1, p2 = _codegen_array_parse(expr) assert recognize_matrix_expression(p1) == M + N expr = M[i,j] + N[j,i] p1, p2 = _codegen_array_parse(expr) assert recognize_matrix_expression(p1) == M + N.T expr = M[i,j]*N[k,l] + N[i,j]*M[k,l] p1, p2 = _codegen_array_parse(expr) assert recognize_matrix_expression(p1) == CodegenArrayElementwiseAdd( CodegenArrayTensorProduct(M, N), CodegenArrayTensorProduct(N, M)) expr = (M*N*P)[i, j] p1, p2 = _codegen_array_parse(expr) assert recognize_matrix_expression(p1) == M*N*P expr = Sum(M[i,j]*(N*P)[j,m], (j, 0, k-1)) p1, p2 = _codegen_array_parse(expr) assert recognize_matrix_expression(p1) == M*N*P expr = Sum((P[j, m] + P[m, j])*(M[i,j]*N[m,n] + N[i,j]*M[m,n]), (j, 0, k-1), (m, 0, k-1)) p1, p2 = _codegen_array_parse(expr) assert recognize_matrix_expression(p1) == M*P*N + M*P.T*N + N*P*M + N*P.T*M def test_codegen_array_shape(): expr = CodegenArrayTensorProduct(M, N, P, Q) assert expr.shape == (k, k, k, k, k, k, k, k) Z = MatrixSymbol("Z", m, n) expr = CodegenArrayTensorProduct(M, Z) assert expr.shape == (k, k, m, n) expr2 = CodegenArrayContraction(expr, (0, 1)) assert expr2.shape == (m, n) expr2 = CodegenArrayDiagonal(expr, (0, 1)) assert expr2.shape == (m, n, k) exprp = CodegenArrayPermuteDims(expr, [2, 1, 3, 0]) assert exprp.shape == (m, k, n, k) expr3 = CodegenArrayTensorProduct(N, Z) expr2 = CodegenArrayElementwiseAdd(expr, expr3) assert expr2.shape == (k, k, m, n) # Contraction along axes with discordant dimensions: raises(ValueError, lambda: CodegenArrayContraction(expr, (1, 2))) # Also diagonal needs the same dimensions: raises(ValueError, lambda: CodegenArrayDiagonal(expr, (1, 2))) # Diagonal requires at least to axes to compute the diagonal: raises(ValueError, lambda: CodegenArrayDiagonal(expr, (1,))) def test_codegen_array_parse_out_of_bounds(): expr = Sum(M[i, i], (i, 0, 4)) raises(ValueError, lambda: parse_indexed_expression(expr)) expr = Sum(M[i, i], (i, 0, k)) raises(ValueError, lambda: parse_indexed_expression(expr)) expr = Sum(M[i, i], (i, 1, k-1)) raises(ValueError, lambda: parse_indexed_expression(expr)) expr = Sum(M[i, j]*N[j,m], (j, 0, 4)) raises(ValueError, lambda: parse_indexed_expression(expr)) expr = Sum(M[i, j]*N[j,m], (j, 0, k)) raises(ValueError, lambda: parse_indexed_expression(expr)) expr = Sum(M[i, j]*N[j,m], (j, 1, k-1)) raises(ValueError, lambda: parse_indexed_expression(expr)) def test_codegen_permutedims_sink(): cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [0, 1, 3, 2], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == CodegenArrayTensorProduct(M, CodegenArrayPermuteDims(N, [1, 0])) assert recognize_matrix_expression(sunk) == CodegenArrayTensorProduct(M, N.T) cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(N, [1, 0])) assert recognize_matrix_expression(sunk) == CodegenArrayTensorProduct(M.T, N.T) cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [3, 2, 1, 0], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(N, [1, 0]), CodegenArrayPermuteDims(M, [1, 0])) assert recognize_matrix_expression(sunk) == CodegenArrayTensorProduct(N.T, M.T) cg = CodegenArrayPermuteDims(CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), [1, 0], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == CodegenArrayContraction(CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [[0, 3]]), (1, 2)) cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(N, [1, 0])) cg = CodegenArrayPermuteDims(CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)), [1, 0], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == CodegenArrayContraction(CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P), [[0, 5]]), (1, 2), (3, 4)) def test_parsing_of_matrix_expressions(): expr = M*N assert parse_matrix_expression(expr) == CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) expr = Transpose(M) assert parse_matrix_expression(expr) == CodegenArrayPermuteDims(M, [1, 0]) expr = M*Transpose(N) assert parse_matrix_expression(expr) == CodegenArrayContraction(CodegenArrayTensorProduct(M, CodegenArrayPermuteDims(N, [1, 0])), (1, 2)) expr = 3*M*N res = parse_matrix_expression(expr) rexpr = recognize_matrix_expression(res) assert expr == rexpr expr = 3*M + N*M.T*M + 4*k*N res = parse_matrix_expression(expr) rexpr = recognize_matrix_expression(res) assert expr == rexpr expr = Inverse(M)*N rexpr = recognize_matrix_expression(parse_matrix_expression(expr)) assert expr == rexpr expr = M**2 rexpr = recognize_matrix_expression(parse_matrix_expression(expr)) assert expr == rexpr expr = M*(2*N + 3*M) res = parse_matrix_expression(expr) rexpr = recognize_matrix_expression(res) assert expr == rexpr expr = Trace(M) result = CodegenArrayContraction(M, (0, 1)) assert parse_matrix_expression(expr) == result def test_special_matrices(): a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) expr = a.T*b elem = expr[0, 0] cg = parse_indexed_expression(elem) assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(a, b), (0, 2)) assert recognize_matrix_expression(cg) == a.T*b def test_push_indices_up_and_down(): indices = list(range(12)) contr_diag_indices = [(0, 6), (2, 8)] assert CodegenArrayContraction._push_indices_down(contr_diag_indices, indices) == (1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15) assert CodegenArrayContraction._push_indices_up(contr_diag_indices, indices) == (None, 0, None, 1, 2, 3, None, 4, None, 5, 6, 7) assert CodegenArrayDiagonal._push_indices_down(contr_diag_indices, indices, 10) == (1, 3, 4, 5, 7, 9, (0, 6), (2, 8), None, None, None, None) assert CodegenArrayDiagonal._push_indices_up(contr_diag_indices, indices, 10) == (6, 0, 7, 1, 2, 3, 6, 4, 7, 5, None, None) contr_diag_indices = [(1, 2), (7, 8)] assert CodegenArrayContraction._push_indices_down(contr_diag_indices, indices) == (0, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15) assert CodegenArrayContraction._push_indices_up(contr_diag_indices, indices) == (0, None, None, 1, 2, 3, 4, None, None, 5, 6, 7) assert CodegenArrayDiagonal._push_indices_down(contr_diag_indices, indices, 10) == (0, 3, 4, 5, 6, 9, (1, 2), (7, 8), None, None, None, None) assert CodegenArrayDiagonal._push_indices_up(contr_diag_indices, indices, 10) == (0, 6, 6, 1, 2, 3, 4, 7, 7, 5, None, None) def test_recognize_diagonalized_vectors(): a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) A = MatrixSymbol("A", k, k) B = MatrixSymbol("B", k, k) C = MatrixSymbol("C", k, k) X = MatrixSymbol("X", k, k) x = MatrixSymbol("x", k, 1) I1 = Identity(1) I = Identity(k) # Check matrix recognition over trivial dimensions: cg = CodegenArrayTensorProduct(a, b) assert recognize_matrix_expression(cg) == a*b.T cg = CodegenArrayTensorProduct(I1, a, b) assert recognize_matrix_expression(cg) == a*b.T # Recognize trace inside a tensor product: cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C), (0, 3), (1, 2)) assert recognize_matrix_expression(cg) == Trace(A*B)*C # Transform diagonal operator to contraction: cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(A, a), (1, 2)) assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a)), (1, 2)) assert recognize_matrix_expression(cg) == A*DiagMatrix(a) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(a, b), (0, 2)) assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(DiagMatrix(a), b), (0, 2)) assert recognize_matrix_expression(cg).doit() == DiagMatrix(a)*b cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(A, a), (0, 2)) assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a)), (0, 2)) assert recognize_matrix_expression(cg) == A.T*DiagMatrix(a) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(I, x, I1), (0, 2), (3, 5)) assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(I, DiagMatrix(x), I1), (0, 2)) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(I, x, A, B), (1, 2), (5, 6)) assert cg.transform_to_product() == CodegenArrayDiagonal(CodegenArrayContraction(CodegenArrayTensorProduct(I, DiagMatrix(x), A, B), (1, 2)), (3, 4)) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(x, I1), (1, 2)) assert isinstance(cg, CodegenArrayDiagonal) assert cg.diagonal_indices == ((1, 2),) assert recognize_matrix_expression(cg) == x cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(x, I), (0, 2)) assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(DiagMatrix(x), I), (0, 2)) assert recognize_matrix_expression(cg).doit() == DiagMatrix(x) raises(ValueError, lambda: CodegenArrayDiagonal(x, (1,))) # Ignore identity matrices with contractions: cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, A, I, I), (0, 2), (1, 3), (5, 7)) assert cg.split_multiple_contractions() == cg assert recognize_matrix_expression(cg) == Trace(A)*I cg = CodegenArrayContraction(CodegenArrayTensorProduct(Trace(A) * I, I, I), (1, 5), (3, 4)) assert cg.split_multiple_contractions() == cg assert recognize_matrix_expression(cg).doit() == Trace(A)*I # Add DiagMatrix when required: cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a), (1, 2)) assert cg.split_multiple_contractions() == cg assert recognize_matrix_expression(cg) == A*a cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (1, 2, 4)) assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a), B), (1, 2), (3, 4)) assert recognize_matrix_expression(cg) == A*DiagMatrix(a)*B cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (0, 2, 4)) assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a), B), (0, 2), (3, 4)) assert recognize_matrix_expression(cg) == A.T*DiagMatrix(a)*B cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, b, a.T, B), (0, 2, 4, 7, 9)) assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a), DiagMatrix(b), DiagMatrix(a), B), (0, 2), (3, 4), (5, 7), (6, 9)) assert recognize_matrix_expression(cg).doit() == A.T*DiagMatrix(a)*DiagMatrix(b)*DiagMatrix(a)*B.T cg = CodegenArrayContraction(CodegenArrayTensorProduct(I1, I1, I1), (1, 2, 4)) assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(I1, I1, I1), (1, 2), (3, 4)) assert recognize_matrix_expression(cg).doit() == Identity(1) cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, I, I, I, A), (1, 2, 8), (5, 6, 9)) assert recognize_matrix_expression(cg.split_multiple_contractions()).doit() == A cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8)) expected = CodegenArrayContraction(CodegenArrayTensorProduct(DiagMatrix(a), DiagMatrix(a), C, A, B), (0, 4), (1, 7), (2, 5), (3, 8)) assert cg.split_multiple_contractions() == expected assert recognize_matrix_expression(cg).doit() == A*DiagMatrix(a)*C*DiagMatrix(a)*B cg = CodegenArrayContraction(CodegenArrayTensorProduct(a, I1, b, I1, (a.T*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9)) assert cg.split_multiple_contractions().dummy_eq(CodegenArrayContraction(CodegenArrayTensorProduct((a.T * b).applyfunc(cos), I1, I1, a, b), (0, 2), (1, 4), (3, 7), (5, 9))) assert recognize_matrix_expression(cg).doit().dummy_eq(MatMul(a, (a.T*b).applyfunc(cos), b.T)) cg = CodegenArrayContraction(CodegenArrayTensorProduct(A.T, a, b, b.T, (A*X*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9)) assert cg.split_multiple_contractions().dummy_eq(CodegenArrayContraction(CodegenArrayTensorProduct(DiagMatrix(a), (A*X*b).applyfunc(cos), A.T, b, b.T), (0, 2), (1, 5), (3, 7, 8))) # assert recognize_matrix_expression(cg) # Check no overlap of lines: cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8), (3, 7)) assert cg.split_multiple_contractions() == cg cg = CodegenArrayContraction(CodegenArrayTensorProduct(a, b, A), (0, 2, 4), (1, 3)) assert cg.split_multiple_contractions() == cg def test_nested_permutations(): cg = CodegenArrayPermuteDims(CodegenArrayPermuteDims(M, (1, 0)), (1, 0)) assert cg == M times = 3 plist1 = [list(range(6)) for i in range(times)] plist2 = [list(range(6)) for i in range(times)] for i in range(times): random.shuffle(plist1[i]) random.shuffle(plist2[i]) plist1.append([2, 5, 4, 1, 0, 3]) plist2.append([3, 5, 0, 4, 1, 2]) plist1.append([2, 5, 4, 0, 3, 1]) plist2.append([3, 0, 5, 1, 2, 4]) plist1.append([5, 4, 2, 0, 3, 1]) plist2.append([4, 5, 0, 2, 3, 1]) Me = M.subs(k, 3).as_explicit() Ne = N.subs(k, 3).as_explicit() Pe = P.subs(k, 3).as_explicit() cge = tensorproduct(Me, Ne, Pe) for permutation_array1, permutation_array2 in zip(plist1, plist2): p1 = Permutation(permutation_array1) p2 = Permutation(permutation_array2) cg = CodegenArrayPermuteDims( CodegenArrayPermuteDims( CodegenArrayTensorProduct(M, N, P), p1), p2 ) result = CodegenArrayPermuteDims( CodegenArrayTensorProduct(M, N, P), p2*p1 ) assert cg == result # Check that `permutedims` behaves the same way with explicit-component arrays: result1 = permutedims(permutedims(cge, p1), p2) result2 = permutedims(cge, p2*p1) assert result1 == result2 def test_contraction_permutation_mix(): Me = M.subs(k, 3).as_explicit() Ne = N.subs(k, 3).as_explicit() cg1 = CodegenArrayContraction(CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), Permutation([0, 2, 1, 3])), (2, 3)) cg2 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 3)) assert cg1 == cg2 assert recognize_matrix_expression(cg2) == M*N.T cge1 = tensorcontraction(permutedims(tensorproduct(Me, Ne), Permutation([0, 2, 1, 3])), (2, 3)) cge2 = tensorcontraction(tensorproduct(Me, Ne), (1, 3)) assert cge1 == cge2 cg1 = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), Permutation([0, 1, 3, 2])) cg2 = CodegenArrayTensorProduct(M, CodegenArrayPermuteDims(N, Permutation([1, 0]))) assert cg1 == cg2 assert recognize_matrix_expression(cg1) == CodegenArrayTensorProduct(M, N.T) assert recognize_matrix_expression(cg2) == CodegenArrayTensorProduct(M, N.T) cg1 = CodegenArrayContraction( CodegenArrayPermuteDims( CodegenArrayTensorProduct(M, N, P, Q), Permutation([0, 2, 3, 1, 4, 5, 7, 6])), (1, 2), (3, 5) ) cg2 = CodegenArrayContraction( CodegenArrayTensorProduct(M, N, P, CodegenArrayPermuteDims(Q, Permutation([1, 0]))), (1, 5), (2, 3) ) assert cg1 == cg2 assert recognize_matrix_expression(cg1) == CodegenArrayTensorProduct(M*P.T*Trace(N), Q.T) assert recognize_matrix_expression(cg2) == CodegenArrayTensorProduct(M*P.T*Trace(N), Q.T) cg1 = CodegenArrayContraction( CodegenArrayPermuteDims( CodegenArrayTensorProduct(M, N, P, Q), Permutation([1, 0, 4, 6, 2, 7, 5, 3])), (0, 1), (2, 6), (3, 7) ) cg2 = CodegenArrayPermuteDims( CodegenArrayContraction( CodegenArrayTensorProduct(M, P, Q, N), (0, 1), (2, 3), (4, 7)), [1, 0] ) assert cg1 == cg2 cg1 = CodegenArrayContraction( CodegenArrayPermuteDims( CodegenArrayTensorProduct(M, N, P, Q), Permutation([1, 0, 4, 6, 7, 2, 5, 3])), (0, 1), (2, 6), (3, 7) ) cg2 = CodegenArrayPermuteDims( CodegenArrayContraction( CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, [1, 0]), N, P, Q), (0, 1), (3, 6), (4, 5) ), Permutation([1, 0]) ) assert cg1 == cg2 def test_permute_tensor_product(): cg1 = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P, Q), Permutation([2, 3, 1, 0, 5, 4, 6, 7])) cg2 = CodegenArrayTensorProduct(N, CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(P, [1, 0]), Q) assert cg1 == cg2 # TODO: reverse operation starting with `CodegenArrayPermuteDims` and getting down to `bb`... cg1 = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P, Q), Permutation([2, 3, 4, 5, 0, 1, 6, 7])) cg2 = CodegenArrayTensorProduct(N, P, M, Q) assert cg1 == cg2 cg1 = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P, Q), Permutation([2, 3, 4, 6, 5, 7, 0, 1])) assert cg1.expr == CodegenArrayTensorProduct(N, P, Q, M) assert cg1.permutation == Permutation([0, 1, 2, 4, 3, 5, 6, 7]) cg1 = CodegenArrayContraction( CodegenArrayPermuteDims( CodegenArrayTensorProduct(N, Q, Q, M), [2, 1, 5, 4, 0, 3, 6, 7]), [1, 2, 6]) cg2 = CodegenArrayPermuteDims(CodegenArrayContraction(CodegenArrayTensorProduct(Q, Q, N, M), (3, 5, 6)), [0, 2, 3, 1, 4]) assert cg1 == cg2 cg1 = CodegenArrayContraction( CodegenArrayContraction( CodegenArrayContraction( CodegenArrayContraction( CodegenArrayPermuteDims( CodegenArrayTensorProduct(N, Q, Q, M), [2, 1, 5, 4, 0, 3, 6, 7]), [1, 2, 6]), [1, 3, 4]), [1]), [0]) cg2 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, Q, Q), (0, 3, 5), (1, 4, 7), (2,), (6,)) assert cg1 == cg2 def test_normalize_diagonal_permutedims(): tp = CodegenArrayTensorProduct(M, Q, N, P) expr = CodegenArrayDiagonal( CodegenArrayPermuteDims(tp, [0, 1, 2, 4, 7, 6, 3, 5]), (2, 4, 5), (6, 7), (0, 3)) result = CodegenArrayDiagonal(tp, (2, 6, 7), (3, 5), (0, 4)) assert expr == result tp = CodegenArrayTensorProduct(M, N, P, Q) expr = CodegenArrayDiagonal(CodegenArrayPermuteDims(tp, [0, 5, 2, 4, 1, 6, 3, 7]), (1, 2, 6), (3, 4)) result = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, P, N, Q), (3, 4, 5), (1, 2)) assert expr == result def test_normalize_diagonal_contraction(): tp = CodegenArrayTensorProduct(M, N, P, Q) expr = CodegenArrayContraction(CodegenArrayDiagonal(tp, (1, 3, 4)), (0, 3)) result = CodegenArrayDiagonal(CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 6)), (0, 2, 3)) assert expr == result expr = CodegenArrayContraction(CodegenArrayDiagonal(tp, (0, 1, 2, 3, 7)), (1, 2, 3)) result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 1, 2, 3, 5, 6, 7)) assert expr == result expr = CodegenArrayContraction(CodegenArrayDiagonal(tp, (0, 2, 6, 7)), (1, 2, 3)) result = CodegenArrayDiagonal(CodegenArrayContraction(tp, (3, 4, 5)), (0, 2, 3, 4)) assert expr == result td = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (0, 3)) expr = CodegenArrayContraction(td, (2, 1), (0, 4, 6, 5, 3)) result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 1, 3, 5, 6, 7), (2, 4)) assert expr == result def test_array_wrong_permutation_size(): cg = CodegenArrayTensorProduct(M, N) raises(ValueError, lambda: CodegenArrayPermuteDims(cg, [1, 0])) raises(ValueError, lambda: CodegenArrayPermuteDims(cg, [1, 0, 2, 3, 5, 4])) def test_nested_array_elementwise_add(): cg = CodegenArrayContraction(CodegenArrayElementwiseAdd( CodegenArrayTensorProduct(M, N), CodegenArrayTensorProduct(N, M) ), (1, 2)) result = CodegenArrayElementwiseAdd( CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), CodegenArrayContraction(CodegenArrayTensorProduct(N, M), (1, 2)) ) assert cg == result cg = CodegenArrayDiagonal(CodegenArrayElementwiseAdd( CodegenArrayTensorProduct(M, N), CodegenArrayTensorProduct(N, M) ), (1, 2)) result = CodegenArrayElementwiseAdd( CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2)), CodegenArrayDiagonal(CodegenArrayTensorProduct(N, M), (1, 2)) ) assert cg == result def test_array_expr_zero_array(): za1 = ZeroArray(k, l, m, n) zm1 = ZeroMatrix(m, n) za2 = ZeroArray(k, m, m, n) zm2 = ZeroMatrix(m, m) zm3 = ZeroMatrix(k, k) assert CodegenArrayTensorProduct(M, N, za1) == ZeroArray(k, k, k, k, k, l, m, n) assert CodegenArrayTensorProduct(M, N, zm1) == ZeroArray(k, k, k, k, m, n) assert CodegenArrayContraction(za1, (3,)) == ZeroArray(k, l, m) assert CodegenArrayContraction(zm1, (1,)) == ZeroArray(m) assert CodegenArrayContraction(za2, (1, 2)) == ZeroArray(k, n) assert CodegenArrayContraction(zm2, (0, 1)) == 0 assert CodegenArrayDiagonal(za2, (1, 2)) == ZeroArray(k, n, m) assert CodegenArrayDiagonal(zm2, (0, 1)) == ZeroArray(m) assert CodegenArrayPermuteDims(za1, [2, 1, 3, 0]) == ZeroArray(m, l, n, k) assert CodegenArrayPermuteDims(zm1, [1, 0]) == ZeroArray(n, m) assert CodegenArrayElementwiseAdd(za1) == za1 assert CodegenArrayElementwiseAdd(zm1) == ZeroArray(m, n) tp1 = CodegenArrayTensorProduct(MatrixSymbol("A", k, l), MatrixSymbol("B", m, n)) assert CodegenArrayElementwiseAdd(tp1, za1) == tp1 tp2 = CodegenArrayTensorProduct(MatrixSymbol("C", k, l), MatrixSymbol("D", m, n)) assert CodegenArrayElementwiseAdd(tp1, za1, tp2) == CodegenArrayElementwiseAdd(tp1, tp2) assert CodegenArrayElementwiseAdd(M, zm3) == M assert CodegenArrayElementwiseAdd(M, N, zm3) == CodegenArrayElementwiseAdd(M, N) def test_contraction_tp_additions(): a = CodegenArrayElementwiseAdd( CodegenArrayTensorProduct(M, N), CodegenArrayTensorProduct(N, M) ) tp = CodegenArrayTensorProduct(P, a, Q) expr = CodegenArrayContraction(tp, (3, 4)) expected = CodegenArrayTensorProduct( P, CodegenArrayElementwiseAdd( CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), CodegenArrayContraction(CodegenArrayTensorProduct(N, M), (1, 2)), ), Q ) assert expr == expected assert recognize_matrix_expression(expr) == CodegenArrayTensorProduct(P, M*N + N*M, Q) expr = CodegenArrayContraction(tp, (1, 2), (3, 4), (5, 6)) result = CodegenArrayContraction( CodegenArrayTensorProduct( P, CodegenArrayElementwiseAdd( CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), CodegenArrayContraction(CodegenArrayTensorProduct(N, M), (1, 2)), ), Q ), (1, 2), (3, 4)) assert expr == result assert recognize_matrix_expression(expr) == P*(M*N + N*M)*Q
c2f14d1527f44b87a06d8ed1130d15d00342d370ae89153d3cb99d8b5e957c7a
from sympy.assumptions import Predicate from sympy.multipledispatch import Dispatcher class PrimePredicate(Predicate): """ Prime number predicate. Explanation =========== ``ask(Q.prime(x))`` is true iff ``x`` is a natural number greater than 1 that has no positive divisors other than ``1`` and the number itself. Examples ======== >>> from sympy import Q, ask >>> ask(Q.prime(0)) False >>> ask(Q.prime(1)) False >>> ask(Q.prime(2)) True >>> ask(Q.prime(20)) False >>> ask(Q.prime(-3)) False """ name = 'prime' handler = Dispatcher( "PrimeHandler", doc=("Handler for key 'prime'. Test that an expression represents a prime" " number. When the expression is an exact number, the result (when True)" " is subject to the limitations of isprime() which is used to return the " "result.") ) class CompositePredicate(Predicate): """ Composite number predicate. Explanation =========== ``ask(Q.composite(x))`` is true iff ``x`` is a positive integer and has at least one positive divisor other than ``1`` and the number itself. Examples ======== >>> from sympy import Q, ask >>> ask(Q.composite(0)) False >>> ask(Q.composite(1)) False >>> ask(Q.composite(2)) False >>> ask(Q.composite(20)) True """ name = 'composite' handler = Dispatcher("CompositeHandler", doc="Handler for key 'composite'.") class EvenPredicate(Predicate): """ Even number predicate. Explanation =========== ``ask(Q.even(x))`` is true iff ``x`` belongs to the set of even integers. Examples ======== >>> from sympy import Q, ask, pi >>> ask(Q.even(0)) True >>> ask(Q.even(2)) True >>> ask(Q.even(3)) False >>> ask(Q.even(pi)) False """ name = 'even' handler = Dispatcher("EvenHandler", doc="Handler for key 'even'.") class OddPredicate(Predicate): """ Odd number predicate. Explanation =========== ``ask(Q.odd(x))`` is true iff ``x`` belongs to the set of odd numbers. Examples ======== >>> from sympy import Q, ask, pi >>> ask(Q.odd(0)) False >>> ask(Q.odd(2)) False >>> ask(Q.odd(3)) True >>> ask(Q.odd(pi)) False """ name = 'odd' handler = Dispatcher( "OddHandler", doc=("Handler for key 'odd'. Test that an expression represents an odd" " number.") )
1edce9839a8a00fe961dc584446ba2c4f42cfdbb820cfb570887baf6ca03d115
from sympy.assumptions import Predicate from sympy.multipledispatch import Dispatcher class CommutativePredicate(Predicate): """ Commutative predicate. Explanation =========== ``ask(Q.commutative(x))`` is true iff ``x`` commutes with any other object with respect to multiplication operation. """ # TODO: Add examples name = 'commutative' handler = Dispatcher("FiniteHandler", doc="Handler for key 'commutative'.") class IsTruePredicate(Predicate): """ Generic predicate. Explanation =========== ``ask(Q.is_true(x))`` is true iff ``x`` is true. This only makes sense if ``x`` is a predicate. Examples ======== >>> from sympy import ask, Q, symbols >>> x = symbols('x') >>> ask(Q.is_true(True)) True """ name = 'is_true' handler = Dispatcher( "FiniteHandler", doc="Wrapper allowing to query the truth value of a boolean expression." )
8c3c61af69dd0e369d3600c2f1009b1bf63374f6c61adf7eb57d6a859b1e67e7
from sympy.assumptions import Predicate from sympy.multipledispatch import Dispatcher class SquarePredicate(Predicate): """ Square matrix predicate. Explanation =========== ``Q.square(x)`` is true iff ``x`` is a square matrix. A square matrix is a matrix with the same number of rows and columns. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('X', 2, 3) >>> ask(Q.square(X)) True >>> ask(Q.square(Y)) False >>> ask(Q.square(ZeroMatrix(3, 3))) True >>> ask(Q.square(Identity(3))) True References ========== .. [1] https://en.wikipedia.org/wiki/Square_matrix """ name = 'square' handler = Dispatcher("SquareHandler", doc="Handler for Q.square.") class SymmetricPredicate(Predicate): """ Symmetric matrix predicate. Explanation =========== ``Q.symmetric(x)`` is true iff ``x`` is a square matrix and is equal to its transpose. Every square diagonal matrix is a symmetric matrix. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.symmetric(X*Z), Q.symmetric(X) & Q.symmetric(Z)) True >>> ask(Q.symmetric(X + Z), Q.symmetric(X) & Q.symmetric(Z)) True >>> ask(Q.symmetric(Y)) False References ========== .. [1] https://en.wikipedia.org/wiki/Symmetric_matrix """ # TODO: Add handlers to make these keys work with # actual matrices and add more examples in the docstring. name = 'symmetric' handler = Dispatcher("SymmetricHandler", doc="Handler for Q.symmetric.") class InvertiblePredicate(Predicate): """ Invertible matrix predicate. Explanation =========== ``Q.invertible(x)`` is true iff ``x`` is an invertible matrix. A square matrix is called invertible only if its determinant is 0. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.invertible(X*Y), Q.invertible(X)) False >>> ask(Q.invertible(X*Z), Q.invertible(X) & Q.invertible(Z)) True >>> ask(Q.invertible(X), Q.fullrank(X) & Q.square(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Invertible_matrix """ name = 'invertible' handler = Dispatcher("InvertibleHandler", doc="Handler for Q.invertible.") class OrthogonalPredicate(Predicate): """ Orthogonal matrix predicate. Explanation =========== ``Q.orthogonal(x)`` is true iff ``x`` is an orthogonal matrix. A square matrix ``M`` is an orthogonal matrix if it satisfies ``M^TM = MM^T = I`` where ``M^T`` is the transpose matrix of ``M`` and ``I`` is an identity matrix. Note that an orthogonal matrix is necessarily invertible. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.orthogonal(Y)) False >>> ask(Q.orthogonal(X*Z*X), Q.orthogonal(X) & Q.orthogonal(Z)) True >>> ask(Q.orthogonal(Identity(3))) True >>> ask(Q.invertible(X), Q.orthogonal(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Orthogonal_matrix """ name = 'orthogonal' handler = Dispatcher("OrthogonalHandler", doc="Handler for key 'orthogonal'.") class UnitaryPredicate(Predicate): """ Unitary matrix predicate. Explanation =========== ``Q.unitary(x)`` is true iff ``x`` is a unitary matrix. Unitary matrix is an analogue to orthogonal matrix. A square matrix ``M`` with complex elements is unitary if :math:``M^TM = MM^T= I`` where :math:``M^T`` is the conjugate transpose matrix of ``M``. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.unitary(Y)) False >>> ask(Q.unitary(X*Z*X), Q.unitary(X) & Q.unitary(Z)) True >>> ask(Q.unitary(Identity(3))) True References ========== .. [1] https://en.wikipedia.org/wiki/Unitary_matrix """ name = 'unitary' handler = Dispatcher("UnitaryHandler", doc="Handler for key 'unitary'.") class FullRankPredicate(Predicate): """ Fullrank matrix predicate. Explanation =========== ``Q.fullrank(x)`` is true iff ``x`` is a full rank matrix. A matrix is full rank if all rows and columns of the matrix are linearly independent. A square matrix is full rank iff its determinant is nonzero. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity >>> X = MatrixSymbol('X', 2, 2) >>> ask(Q.fullrank(X.T), Q.fullrank(X)) True >>> ask(Q.fullrank(ZeroMatrix(3, 3))) False >>> ask(Q.fullrank(Identity(3))) True """ name = 'fullrank' handler = Dispatcher("FullRankHandler", doc="Handler for key 'fullrank'.") class PositiveDefinitePredicate(Predicate): r""" Positive definite matrix predicate. Explanation =========== If ``M`` is a :math:``n \times n`` symmetric real matrix, it is said to be positive definite if :math:`Z^TMZ` is positive for every non-zero column vector ``Z`` of ``n`` real numbers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.positive_definite(Y)) False >>> ask(Q.positive_definite(Identity(3))) True >>> ask(Q.positive_definite(X + Z), Q.positive_definite(X) & ... Q.positive_definite(Z)) True References ========== .. [1] https://en.wikipedia.org/wiki/Positive-definite_matrix """ name = "positive_definite" handler = Dispatcher("PositiveDefiniteHandler", doc="Handler for key 'positive_definite'.") class UpperTriangularPredicate(Predicate): """ Upper triangular matrix predicate. Explanation =========== A matrix ``M`` is called upper triangular matrix if :math:`M_{ij}=0` for :math:`i<j`. Examples ======== >>> from sympy import Q, ask, ZeroMatrix, Identity >>> ask(Q.upper_triangular(Identity(3))) True >>> ask(Q.upper_triangular(ZeroMatrix(3, 3))) True References ========== .. [1] http://mathworld.wolfram.com/UpperTriangularMatrix.html """ name = "upper_triangular" handler = Dispatcher("UpperTriangularHandler", doc="Handler for key 'upper_triangular'.") class LowerTriangularPredicate(Predicate): """ Lower triangular matrix predicate. Explanation =========== A matrix ``M`` is called lower triangular matrix if :math:`a_{ij}=0` for :math:`i>j`. Examples ======== >>> from sympy import Q, ask, ZeroMatrix, Identity >>> ask(Q.lower_triangular(Identity(3))) True >>> ask(Q.lower_triangular(ZeroMatrix(3, 3))) True References ========== .. [1] http://mathworld.wolfram.com/LowerTriangularMatrix.html """ name = "lower_triangular" handler = Dispatcher("LowerTriangularHandler", doc="Handler for key 'lower_triangular'.") class DiagonalPredicate(Predicate): """ Diagonal matrix predicate. Explanation =========== ``Q.diagonal(x)`` is true iff ``x`` is a diagonal matrix. A diagonal matrix is a matrix in which the entries outside the main diagonal are all zero. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix >>> X = MatrixSymbol('X', 2, 2) >>> ask(Q.diagonal(ZeroMatrix(3, 3))) True >>> ask(Q.diagonal(X), Q.lower_triangular(X) & ... Q.upper_triangular(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Diagonal_matrix """ name = "diagonal" handler = Dispatcher("DiagonalHandler", doc="Handler for key 'diagonal'.") class IntegerElementsPredicate(Predicate): """ Integer elements matrix predicate. Explanation =========== ``Q.integer_elements(x)`` is true iff all the elements of ``x`` are integers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.integer(X[1, 2]), Q.integer_elements(X)) True """ name = "integer_elements" handler = Dispatcher("IntegerElementsHandler", doc="Handler for key 'integer_elements'.") class RealElementsPredicate(Predicate): """ Real elements matrix predicate. Explanation =========== ``Q.real_elements(x)`` is true iff all the elements of ``x`` are real numbers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.real(X[1, 2]), Q.real_elements(X)) True """ name = "real_elements" handler = Dispatcher("RealElementsHandler", doc="Handler for key 'real_elements'.") class ComplexElementsPredicate(Predicate): """ Complex elements matrix predicate. Explanation =========== ``Q.complex_elements(x)`` is true iff all the elements of ``x`` are complex numbers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.complex(X[1, 2]), Q.complex_elements(X)) True >>> ask(Q.complex_elements(X), Q.integer_elements(X)) True """ name = "complex_elements" handler = Dispatcher("ComplexElementsHandler", doc="Handler for key 'complex_elements'.") class SingularPredicate(Predicate): """ Singular matrix predicate. A matrix is singular iff the value of its determinant is 0. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.singular(X), Q.invertible(X)) False >>> ask(Q.singular(X), ~Q.invertible(X)) True References ========== .. [1] http://mathworld.wolfram.com/SingularMatrix.html """ name = "singular" handler = Dispatcher("SingularHandler", doc="Predicate fore key 'singular'.") class NormalPredicate(Predicate): """ Normal matrix predicate. A matrix is normal if it commutes with its conjugate transpose. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.normal(X), Q.unitary(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Normal_matrix """ name = "normal" handler = Dispatcher("NormalHandler", doc="Predicate fore key 'normal'.") class TriangularPredicate(Predicate): """ Triangular matrix predicate. Explanation =========== ``Q.triangular(X)`` is true if ``X`` is one that is either lower triangular or upper triangular. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.triangular(X), Q.upper_triangular(X)) True >>> ask(Q.triangular(X), Q.lower_triangular(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Triangular_matrix """ name = "triangular" handler = Dispatcher("TriangularHandler", doc="Predicate fore key 'triangular'.") class UnitTriangularPredicate(Predicate): """ Unit triangular matrix predicate. Explanation =========== A unit triangular matrix is a triangular matrix with 1s on the diagonal. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.triangular(X), Q.unit_triangular(X)) True """ name = "unit_triangular" handler = Dispatcher("UnitTriangularHandler", doc="Predicate fore key 'unit_triangular'.")
062c44b0fdad63429266bb4596e4b1ba35809a532dc3e4f8e8d2fe2692d09a6d
from sympy.assumptions import Predicate from sympy.multipledispatch import Dispatcher class NegativePredicate(Predicate): r""" Negative number predicate. Explanation =========== ``Q.negative(x)`` is true iff ``x`` is a real number and :math:`x < 0`, that is, it is in the interval :math:`(-\infty, 0)`. Note in particular that negative infinity is not negative. A few important facts about negative numbers: - Note that ``Q.nonnegative`` and ``~Q.negative`` are *not* the same thing. ``~Q.negative(x)`` simply means that ``x`` is not negative, whereas ``Q.nonnegative(x)`` means that ``x`` is real and not negative, i.e., ``Q.nonnegative(x)`` is logically equivalent to ``Q.zero(x) | Q.positive(x)``. So for example, ``~Q.negative(I)`` is true, whereas ``Q.nonnegative(I)`` is false. - See the documentation of ``Q.real`` for more information about related facts. Examples ======== >>> from sympy import Q, ask, symbols, I >>> x = symbols('x') >>> ask(Q.negative(x), Q.real(x) & ~Q.positive(x) & ~Q.zero(x)) True >>> ask(Q.negative(-1)) True >>> ask(Q.nonnegative(I)) False >>> ask(~Q.negative(I)) True """ name = 'negative' handler = Dispatcher( "NegativeHandler", doc=("Handler for Q.negative. Test that an expression is strictly less" " than zero.") ) class NonNegativePredicate(Predicate): """ Nonnegative real number predicate. Explanation =========== ``ask(Q.nonnegative(x))`` is true iff ``x`` belongs to the set of positive numbers including zero. - Note that ``Q.nonnegative`` and ``~Q.negative`` are *not* the same thing. ``~Q.negative(x)`` simply means that ``x`` is not negative, whereas ``Q.nonnegative(x)`` means that ``x`` is real and not negative, i.e., ``Q.nonnegative(x)`` is logically equivalent to ``Q.zero(x) | Q.positive(x)``. So for example, ``~Q.negative(I)`` is true, whereas ``Q.nonnegative(I)`` is false. Examples ======== >>> from sympy import Q, ask, I >>> ask(Q.nonnegative(1)) True >>> ask(Q.nonnegative(0)) True >>> ask(Q.nonnegative(-1)) False >>> ask(Q.nonnegative(I)) False >>> ask(Q.nonnegative(-I)) False """ name = 'nonnegative' handler = Dispatcher( "NonNegativeHandler", doc=("Handler for Q.nonnegative.") ) class NonZeroPredicate(Predicate): """ Nonzero real number predicate. Explanation =========== ``ask(Q.nonzero(x))`` is true iff ``x`` is real and ``x`` is not zero. Note in particular that ``Q.nonzero(x)`` is false if ``x`` is not real. Use ``~Q.zero(x)`` if you want the negation of being zero without any real assumptions. A few important facts about nonzero numbers: - ``Q.nonzero`` is logically equivalent to ``Q.positive | Q.negative``. - See the documentation of ``Q.real`` for more information about related facts. Examples ======== >>> from sympy import Q, ask, symbols, I, oo >>> x = symbols('x') >>> print(ask(Q.nonzero(x), ~Q.zero(x))) None >>> ask(Q.nonzero(x), Q.positive(x)) True >>> ask(Q.nonzero(x), Q.zero(x)) False >>> ask(Q.nonzero(0)) False >>> ask(Q.nonzero(I)) False >>> ask(~Q.zero(I)) True >>> ask(Q.nonzero(oo)) False """ name = 'nonzero' handler = Dispatcher( "NonZeroHandler", doc=("Handler for key 'zero'. Test that an expression is not identically" " zero.") ) class ZeroPredicate(Predicate): """ Zero number predicate. Explanation =========== ``ask(Q.zero(x))`` is true iff the value of ``x`` is zero. Examples ======== >>> from sympy import ask, Q, oo, symbols >>> x, y = symbols('x, y') >>> ask(Q.zero(0)) True >>> ask(Q.zero(1/oo)) True >>> ask(Q.zero(0*oo)) False >>> ask(Q.zero(1)) False >>> ask(Q.zero(x*y), Q.zero(x) | Q.zero(y)) True """ name = 'zero' handler = Dispatcher( "ZeroHandler", doc="Handler for key 'zero'." ) class NonPositivePredicate(Predicate): """ Nonpositive real number predicate. Explanation =========== ``ask(Q.nonpositive(x))`` is true iff ``x`` belongs to the set of negative numbers including zero. - Note that ``Q.nonpositive`` and ``~Q.positive`` are *not* the same thing. ``~Q.positive(x)`` simply means that ``x`` is not positive, whereas ``Q.nonpositive(x)`` means that ``x`` is real and not positive, i.e., ``Q.nonpositive(x)`` is logically equivalent to `Q.negative(x) | Q.zero(x)``. So for example, ``~Q.positive(I)`` is true, whereas ``Q.nonpositive(I)`` is false. Examples ======== >>> from sympy import Q, ask, I >>> ask(Q.nonpositive(-1)) True >>> ask(Q.nonpositive(0)) True >>> ask(Q.nonpositive(1)) False >>> ask(Q.nonpositive(I)) False >>> ask(Q.nonpositive(-I)) False """ name = 'nonpositive' handler = Dispatcher( "NonPositiveHandler", doc="Handler for key 'nonpositive'." ) class PositivePredicate(Predicate): r""" Positive real number predicate. Explanation =========== ``Q.positive(x)`` is true iff ``x`` is real and `x > 0`, that is if ``x`` is in the interval `(0, \infty)`. In particular, infinity is not positive. A few important facts about positive numbers: - Note that ``Q.nonpositive`` and ``~Q.positive`` are *not* the same thing. ``~Q.positive(x)`` simply means that ``x`` is not positive, whereas ``Q.nonpositive(x)`` means that ``x`` is real and not positive, i.e., ``Q.nonpositive(x)`` is logically equivalent to `Q.negative(x) | Q.zero(x)``. So for example, ``~Q.positive(I)`` is true, whereas ``Q.nonpositive(I)`` is false. - See the documentation of ``Q.real`` for more information about related facts. Examples ======== >>> from sympy import Q, ask, symbols, I >>> x = symbols('x') >>> ask(Q.positive(x), Q.real(x) & ~Q.negative(x) & ~Q.zero(x)) True >>> ask(Q.positive(1)) True >>> ask(Q.nonpositive(I)) False >>> ask(~Q.positive(I)) True """ name = 'positive' handler = Dispatcher( "PositiveHandler", doc=("Handler for key 'positive'. Test that an expression is strictly" " greater than zero.") )
96f8c07cf773d0c0e34f18eecdb052181728d8e9a96518868b1486d286a2662d
""" Multipledispatch handlers for ``Predicate`` are implemented here. Handlers in this module are not directly imported to other modules in order to avoid circular import problem. """ from .common import (AskHandler, CommonHandler, test_closed_group) __all__ = [ 'AskHandler', 'CommonHandler', 'test_closed_group' ]
0346dad29a6eaf38dc386583d1c478388922450510f6c0f3cb46a22fca72f769
""" Handlers for keys related to number theory: prime, even, odd, etc. """ from sympy.assumptions import Q, ask from sympy.core import Add, Basic, Expr, Float, Mul, Pow, S from sympy.core.numbers import (ImaginaryUnit, Infinity, Integer, NegativeInfinity, NumberSymbol, Rational) from sympy.functions import Abs, im, re from sympy.ntheory import isprime from ..predicates.ntheory import (PrimePredicate, CompositePredicate, EvenPredicate, OddPredicate) # PrimePredicate def _PrimePredicate_number(expr, assumptions): # helper method exact = not expr.atoms(Float) try: i = int(expr.round()) if (expr - i).equals(0) is False: raise TypeError except TypeError: return False if exact: return isprime(i) # when not exact, we won't give a True or False # since the number represents an approximate value @PrimePredicate.register(Expr) def _(expr, assumptions): return expr.is_prime @PrimePredicate.register(Basic) def _(expr, assumptions): if expr.is_number: return _PrimePredicate_number(expr, assumptions) @PrimePredicate.register(Mul) def _(expr, assumptions): if expr.is_number: return _PrimePredicate_number(expr, assumptions) for arg in expr.args: if not ask(Q.integer(arg), assumptions): return None for arg in expr.args: if arg.is_number and arg.is_composite: return False @PrimePredicate.register(Pow) def _(expr, assumptions): """ Integer**Integer -> !Prime """ if expr.is_number: return _PrimePredicate_number(expr, assumptions) if ask(Q.integer(expr.exp), assumptions) and \ ask(Q.integer(expr.base), assumptions): return False @PrimePredicate.register(Integer) def _(expr, assumptions): return isprime(expr) @PrimePredicate.register_many(Rational, Infinity, NegativeInfinity, ImaginaryUnit) def _(expr, assumptions): return False @PrimePredicate.register(Float) def _(expr, assumptions): return _PrimePredicate_number(expr, assumptions) @PrimePredicate.register(NumberSymbol) def _(expr, assumptions): return _PrimePredicate_number(expr, assumptions) # CompositePredicate @CompositePredicate.register(Expr) def _(expr, assumptions): return expr.is_composite @CompositePredicate.register(Basic) def _(expr, assumptions): _positive = ask(Q.positive(expr), assumptions) if _positive: _integer = ask(Q.integer(expr), assumptions) if _integer: _prime = ask(Q.prime(expr), assumptions) if _prime is None: return # Positive integer which is not prime is not # necessarily composite if expr.equals(1): return False return not _prime else: return _integer else: return _positive # EvenPredicate def _EvenPredicate_number(expr, assumptions): # helper method try: i = int(expr.round()) if not (expr - i).equals(0): raise TypeError except TypeError: return False if isinstance(expr, (float, Float)): return False return i % 2 == 0 @EvenPredicate.register(Expr) def _(expr, assumptions): return expr.is_even @EvenPredicate.register(Basic) def _(expr, assumptions): if expr.is_number: return _EvenPredicate_number(expr, assumptions) @EvenPredicate.register(Mul) def _(expr, assumptions): """ Even * Integer -> Even Even * Odd -> Even Integer * Odd -> ? Odd * Odd -> Odd Even * Even -> Even Integer * Integer -> Even if Integer + Integer = Odd otherwise -> ? """ if expr.is_number: return _EvenPredicate_number(expr, assumptions) even, odd, irrational, acc = False, 0, False, 1 for arg in expr.args: # check for all integers and at least one even if ask(Q.integer(arg), assumptions): if ask(Q.even(arg), assumptions): even = True elif ask(Q.odd(arg), assumptions): odd += 1 elif not even and acc != 1: if ask(Q.odd(acc + arg), assumptions): even = True elif ask(Q.irrational(arg), assumptions): # one irrational makes the result False # two makes it undefined if irrational: break irrational = True else: break acc = arg else: if irrational: return False if even: return True if odd == len(expr.args): return False @EvenPredicate.register(Add) def _(expr, assumptions): """ Even + Odd -> Odd Even + Even -> Even Odd + Odd -> Even """ if expr.is_number: return _EvenPredicate_number(expr, assumptions) _result = True for arg in expr.args: if ask(Q.even(arg), assumptions): pass elif ask(Q.odd(arg), assumptions): _result = not _result else: break else: return _result @EvenPredicate.register(Pow) def _(expr, assumptions): if expr.is_number: return _EvenPredicate_number(expr, assumptions) if ask(Q.integer(expr.exp), assumptions): if ask(Q.positive(expr.exp), assumptions): return ask(Q.even(expr.base), assumptions) elif ask(~Q.negative(expr.exp) & Q.odd(expr.base), assumptions): return False elif expr.base is S.NegativeOne: return False @EvenPredicate.register(Integer) def _(expr, assumptions): return not bool(expr.p & 1) @EvenPredicate.register_many(Rational, Infinity, NegativeInfinity, ImaginaryUnit) def _(expr, assumptions): return False @EvenPredicate.register(NumberSymbol) def _(expr, assumptions): return _EvenPredicate_number(expr, assumptions) @EvenPredicate.register(Abs) def _(expr, assumptions): if ask(Q.real(expr.args[0]), assumptions): return ask(Q.even(expr.args[0]), assumptions) @EvenPredicate.register(re) def _(expr, assumptions): if ask(Q.real(expr.args[0]), assumptions): return ask(Q.even(expr.args[0]), assumptions) @EvenPredicate.register(im) def _(expr, assumptions): if ask(Q.real(expr.args[0]), assumptions): return True # OddPredicate @OddPredicate.register(Expr) def _(expr, assumptions): return expr.is_odd @OddPredicate.register(Basic) def _(expr, assumptions): _integer = ask(Q.integer(expr), assumptions) if _integer: _even = ask(Q.even(expr), assumptions) if _even is None: return None return not _even return _integer
25b9e85bd07ec6059d15fc099d2d1c09981c8a99deb07041732757a3620d578c
""" This module defines base class for handlers and some core handlers: ``Q.commutative`` and ``Q.is_true``. """ from sympy.assumptions import Q, ask, AppliedPredicate from sympy.core import Basic, Symbol from sympy.core.logic import _fuzzy_group from sympy.core.numbers import NaN, Number from sympy.logic.boolalg import (And, BooleanTrue, BooleanFalse, conjuncts, Equivalent, Implies, Not, Or) from sympy.utilities.exceptions import SymPyDeprecationWarning from ..predicates.common import CommutativePredicate, IsTruePredicate class AskHandler: """Base class that all Ask Handlers must inherit.""" def __new__(cls, *args, **kwargs): SymPyDeprecationWarning( feature="AskHandler() class", useinstead="multipledispatch handler", issue=20873, deprecated_since_version="1.8" ).warn() return super().__new__(cls, *args, **kwargs) class CommonHandler(AskHandler): """Defines some useful methods common to most Handlers. """ @staticmethod def AlwaysTrue(expr, assumptions): return True @staticmethod def AlwaysFalse(expr, assumptions): return False @staticmethod def AlwaysNone(expr, assumptions): return None NaN = AlwaysFalse # CommutativePredicate @CommutativePredicate.register(Symbol) def _(expr, assumptions): """Objects are expected to be commutative unless otherwise stated""" assumps = conjuncts(assumptions) if expr.is_commutative is not None: return expr.is_commutative and not ~Q.commutative(expr) in assumps if Q.commutative(expr) in assumps: return True elif ~Q.commutative(expr) in assumps: return False return True @CommutativePredicate.register(Basic) def _(expr, assumptions): for arg in expr.args: if not ask(Q.commutative(arg), assumptions): return False return True @CommutativePredicate.register(Number) def _(expr, assumptions): return True @CommutativePredicate.register(NaN) def _(expr, assumptions): return True # IsTruePredicate @IsTruePredicate.register(bool) def _(expr, assumptions): return expr @IsTruePredicate.register(BooleanTrue) def _(expr, assumptions): return True @IsTruePredicate.register(BooleanFalse) def _(expr, assumptions): return False @IsTruePredicate.register(AppliedPredicate) def _(expr, assumptions): return ask(expr, assumptions) @IsTruePredicate.register(Not) def _(expr, assumptions): value = ask(expr.args[0], assumptions=assumptions) if value in (True, False): return not value else: return None @IsTruePredicate.register(Or) def _(expr, assumptions): result = False for arg in expr.args: p = ask(arg, assumptions=assumptions) if p is True: return True if p is None: result = None return result @IsTruePredicate.register(And) def _(expr, assumptions): result = True for arg in expr.args: p = ask(arg, assumptions=assumptions) if p is False: return False if p is None: result = None return result @IsTruePredicate.register(Implies) def _(expr, assumptions): p, q = expr.args return ask(~p | q, assumptions=assumptions) @IsTruePredicate.register(Equivalent) def _(expr, assumptions): p, q = expr.args pt = ask(p, assumptions=assumptions) if pt is None: return None qt = ask(q, assumptions=assumptions) if qt is None: return None return pt == qt #### Helper methods def test_closed_group(expr, assumptions, key): """ Test for membership in a group with respect to the current operation. """ return _fuzzy_group( (ask(key(a), assumptions) for a in expr.args), quick_exit=True)
56190651573ba7a6e4c35595c48b1ebde5c4ada2bb96a86e488ae86174918881
""" This module contains query handlers responsible for Matrices queries: Square, Symmetric, Invertible etc. """ from sympy.logic.boolalg import conjuncts from sympy.assumptions import Q, ask from sympy.assumptions.handlers import test_closed_group from sympy.matrices import MatrixBase from sympy.matrices.expressions import (BlockMatrix, BlockDiagMatrix, Determinant, DiagMatrix, DiagonalMatrix, HadamardProduct, Identity, Inverse, MatAdd, MatMul, MatPow, MatrixExpr, MatrixSlice, MatrixSymbol, OneMatrix, Trace, Transpose, ZeroMatrix) from sympy.matrices.expressions.factorizations import Factorization from sympy.matrices.expressions.fourier import DFT from sympy.core.logic import fuzzy_and from sympy.utilities.iterables import sift from sympy.core import Basic from ..predicates.matrices import (SquarePredicate, SymmetricPredicate, InvertiblePredicate, OrthogonalPredicate, UnitaryPredicate, FullRankPredicate, PositiveDefinitePredicate, UpperTriangularPredicate, LowerTriangularPredicate, DiagonalPredicate, IntegerElementsPredicate, RealElementsPredicate, ComplexElementsPredicate) def _Factorization(predicate, expr, assumptions): if predicate in expr.predicates: return True # SquarePredicate @SquarePredicate.register(MatrixExpr) def _(expr, assumptions): return expr.shape[0] == expr.shape[1] # SymmetricPredicate @SymmetricPredicate.register(MatMul) def _(expr, assumptions): factor, mmul = expr.as_coeff_mmul() if all(ask(Q.symmetric(arg), assumptions) for arg in mmul.args): return True # TODO: implement sathandlers system for the matrices. # Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric). if ask(Q.diagonal(expr), assumptions): return True if len(mmul.args) >= 2 and mmul.args[0] == mmul.args[-1].T: if len(mmul.args) == 2: return True return ask(Q.symmetric(MatMul(*mmul.args[1:-1])), assumptions) @SymmetricPredicate.register(MatPow) def _(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.symmetric(base), assumptions) return None @SymmetricPredicate.register(MatAdd) def _(expr, assumptions): return all(ask(Q.symmetric(arg), assumptions) for arg in expr.args) @SymmetricPredicate.register(MatrixSymbol) def _(expr, assumptions): if not expr.is_square: return False # TODO: implement sathandlers system for the matrices. # Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric). if ask(Q.diagonal(expr), assumptions): return True if Q.symmetric(expr) in conjuncts(assumptions): return True @SymmetricPredicate.register_many(OneMatrix, ZeroMatrix) def _(expr, assumptions): return ask(Q.square(expr), assumptions) @SymmetricPredicate.register_many(Inverse, Transpose) def _(expr, assumptions): return ask(Q.symmetric(expr.arg), assumptions) @SymmetricPredicate.register(MatrixSlice) def _(expr, assumptions): # TODO: implement sathandlers system for the matrices. # Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric). if ask(Q.diagonal(expr), assumptions): return True if not expr.on_diag: return None else: return ask(Q.symmetric(expr.parent), assumptions) @SymmetricPredicate.register(Identity) def _(expr, assumptions): return True # InvertiblePredicate @InvertiblePredicate.register(MatMul) def _(expr, assumptions): factor, mmul = expr.as_coeff_mmul() if all(ask(Q.invertible(arg), assumptions) for arg in mmul.args): return True if any(ask(Q.invertible(arg), assumptions) is False for arg in mmul.args): return False @InvertiblePredicate.register(MatPow) def _(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None if exp.is_negative == False: return ask(Q.invertible(base), assumptions) return None @InvertiblePredicate.register(MatAdd) def _(expr, assumptions): return None @InvertiblePredicate.register(MatrixSymbol) def _(expr, assumptions): if not expr.is_square: return False if Q.invertible(expr) in conjuncts(assumptions): return True @InvertiblePredicate.register_many(Identity, Inverse) def _(expr, assumptions): return True @InvertiblePredicate.register(ZeroMatrix) def _(expr, assumptions): return False @InvertiblePredicate.register(OneMatrix) def _(expr, assumptions): return expr.shape[0] == 1 and expr.shape[1] == 1 @InvertiblePredicate.register(Transpose) def _(expr, assumptions): return ask(Q.invertible(expr.arg), assumptions) @InvertiblePredicate.register(MatrixSlice) def _(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.invertible(expr.parent), assumptions) @InvertiblePredicate.register(MatrixBase) def _(expr, assumptions): if not expr.is_square: return False return expr.rank() == expr.rows @InvertiblePredicate.register(MatrixExpr) def _(expr, assumptions): if not expr.is_square: return False return None @InvertiblePredicate.register(BlockMatrix) def _(expr, assumptions): from sympy.matrices.expressions.blockmatrix import reblock_2x2 if not expr.is_square: return False if expr.blockshape == (1, 1): return ask(Q.invertible(expr.blocks[0, 0]), assumptions) expr = reblock_2x2(expr) if expr.blockshape == (2, 2): [[A, B], [C, D]] = expr.blocks.tolist() if ask(Q.invertible(A), assumptions) == True: invertible = ask(Q.invertible(D - C * A.I * B), assumptions) if invertible is not None: return invertible if ask(Q.invertible(B), assumptions) == True: invertible = ask(Q.invertible(C - D * B.I * A), assumptions) if invertible is not None: return invertible if ask(Q.invertible(C), assumptions) == True: invertible = ask(Q.invertible(B - A * C.I * D), assumptions) if invertible is not None: return invertible if ask(Q.invertible(D), assumptions) == True: invertible = ask(Q.invertible(A - B * D.I * C), assumptions) if invertible is not None: return invertible return None @InvertiblePredicate.register(BlockDiagMatrix) def _(expr, assumptions): if expr.rowblocksizes != expr.colblocksizes: return None return fuzzy_and([ask(Q.invertible(a), assumptions) for a in expr.diag]) # OrthogonalPredicate @OrthogonalPredicate.register(MatMul) def _(expr, assumptions): factor, mmul = expr.as_coeff_mmul() if (all(ask(Q.orthogonal(arg), assumptions) for arg in mmul.args) and factor == 1): return True if any(ask(Q.invertible(arg), assumptions) is False for arg in mmul.args): return False @OrthogonalPredicate.register(MatPow) def _(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if int_exp: return ask(Q.orthogonal(base), assumptions) return None @OrthogonalPredicate.register(MatAdd) def _(expr, assumptions): if (len(expr.args) == 1 and ask(Q.orthogonal(expr.args[0]), assumptions)): return True @OrthogonalPredicate.register(MatrixSymbol) def _(expr, assumptions): if (not expr.is_square or ask(Q.invertible(expr), assumptions) is False): return False if Q.orthogonal(expr) in conjuncts(assumptions): return True @OrthogonalPredicate.register(Identity) def _(expr, assumptions): return True @OrthogonalPredicate.register(ZeroMatrix) def _(expr, assumptions): return False @OrthogonalPredicate.register_many(Inverse, Transpose) def _(expr, assumptions): return ask(Q.orthogonal(expr.arg), assumptions) @OrthogonalPredicate.register(MatrixSlice) def _(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.orthogonal(expr.parent), assumptions) @OrthogonalPredicate.register(Factorization) def _(expr, assumptions): return _Factorization(Q.orthogonal, expr, assumptions) # UnitaryPredicate @UnitaryPredicate.register(MatMul) def _(expr, assumptions): factor, mmul = expr.as_coeff_mmul() if (all(ask(Q.unitary(arg), assumptions) for arg in mmul.args) and abs(factor) == 1): return True if any(ask(Q.invertible(arg), assumptions) is False for arg in mmul.args): return False @UnitaryPredicate.register(MatPow) def _(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if int_exp: return ask(Q.unitary(base), assumptions) return None @UnitaryPredicate.register(MatrixSymbol) def _(expr, assumptions): if (not expr.is_square or ask(Q.invertible(expr), assumptions) is False): return False if Q.unitary(expr) in conjuncts(assumptions): return True @UnitaryPredicate.register_many(Inverse, Transpose) def _(expr, assumptions): return ask(Q.unitary(expr.arg), assumptions) @UnitaryPredicate.register(MatrixSlice) def _(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.unitary(expr.parent), assumptions) @UnitaryPredicate.register_many(DFT, Identity) def _(expr, assumptions): return True @UnitaryPredicate.register(ZeroMatrix) def _(expr, assumptions): return False @UnitaryPredicate.register(Factorization) def _(expr, assumptions): return _Factorization(Q.unitary, expr, assumptions) # FullRankPredicate @FullRankPredicate.register(MatMul) def _(expr, assumptions): if all(ask(Q.fullrank(arg), assumptions) for arg in expr.args): return True @FullRankPredicate.register(MatPow) def _(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if int_exp and ask(~Q.negative(exp), assumptions): return ask(Q.fullrank(base), assumptions) return None @FullRankPredicate.register(Identity) def _(expr, assumptions): return True @FullRankPredicate.register(ZeroMatrix) def _(expr, assumptions): return False @FullRankPredicate.register(OneMatrix) def _(expr, assumptions): return expr.shape[0] == 1 and expr.shape[1] == 1 @FullRankPredicate.register_many(Inverse, Transpose) def _(expr, assumptions): return ask(Q.fullrank(expr.arg), assumptions) @FullRankPredicate.register(MatrixSlice) def _(expr, assumptions): if ask(Q.orthogonal(expr.parent), assumptions): return True # PositiveDefinitePredicate @PositiveDefinitePredicate.register(MatMul) def _(expr, assumptions): factor, mmul = expr.as_coeff_mmul() if (all(ask(Q.positive_definite(arg), assumptions) for arg in mmul.args) and factor > 0): return True if (len(mmul.args) >= 2 and mmul.args[0] == mmul.args[-1].T and ask(Q.fullrank(mmul.args[0]), assumptions)): return ask(Q.positive_definite( MatMul(*mmul.args[1:-1])), assumptions) @PositiveDefinitePredicate.register(MatPow) def _(expr, assumptions): # a power of a positive definite matrix is positive definite if ask(Q.positive_definite(expr.args[0]), assumptions): return True @PositiveDefinitePredicate.register(MatAdd) def _(expr, assumptions): if all(ask(Q.positive_definite(arg), assumptions) for arg in expr.args): return True @PositiveDefinitePredicate.register(MatrixSymbol) def _(expr, assumptions): if not expr.is_square: return False if Q.positive_definite(expr) in conjuncts(assumptions): return True @PositiveDefinitePredicate.register(Identity) def _(expr, assumptions): return True @PositiveDefinitePredicate.register(ZeroMatrix) def _(expr, assumptions): return False @PositiveDefinitePredicate.register(OneMatrix) def _(expr, assumptions): return expr.shape[0] == 1 and expr.shape[1] == 1 @PositiveDefinitePredicate.register_many(Inverse, Transpose) def _(expr, assumptions): return ask(Q.positive_definite(expr.arg), assumptions) @PositiveDefinitePredicate.register(MatrixSlice) def _(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.positive_definite(expr.parent), assumptions) # UpperTriangularPredicate @UpperTriangularPredicate.register(MatMul) def _(expr, assumptions): factor, matrices = expr.as_coeff_matrices() if all(ask(Q.upper_triangular(m), assumptions) for m in matrices): return True @UpperTriangularPredicate.register(MatAdd) def _(expr, assumptions): if all(ask(Q.upper_triangular(arg), assumptions) for arg in expr.args): return True @UpperTriangularPredicate.register(MatPow) def _(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.upper_triangular(base), assumptions) return None @UpperTriangularPredicate.register(MatrixSymbol) def _(expr, assumptions): if Q.upper_triangular(expr) in conjuncts(assumptions): return True @UpperTriangularPredicate.register_many(Identity, ZeroMatrix) def _(expr, assumptions): return True @UpperTriangularPredicate.register(OneMatrix) def _(expr, assumptions): return expr.shape[0] == 1 and expr.shape[1] == 1 @UpperTriangularPredicate.register(Transpose) def _(expr, assumptions): return ask(Q.lower_triangular(expr.arg), assumptions) @UpperTriangularPredicate.register(Inverse) def _(expr, assumptions): return ask(Q.upper_triangular(expr.arg), assumptions) @UpperTriangularPredicate.register(MatrixSlice) def _(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.upper_triangular(expr.parent), assumptions) @UpperTriangularPredicate.register(Factorization) def _(expr, assumptions): return _Factorization(Q.upper_triangular, expr, assumptions) # LowerTriangularPredicate @LowerTriangularPredicate.register(MatMul) def _(expr, assumptions): factor, matrices = expr.as_coeff_matrices() if all(ask(Q.lower_triangular(m), assumptions) for m in matrices): return True @LowerTriangularPredicate.register(MatAdd) def _(expr, assumptions): if all(ask(Q.lower_triangular(arg), assumptions) for arg in expr.args): return True @LowerTriangularPredicate.register(MatPow) def _(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.lower_triangular(base), assumptions) return None @LowerTriangularPredicate.register(MatrixSymbol) def _(expr, assumptions): if Q.lower_triangular(expr) in conjuncts(assumptions): return True @LowerTriangularPredicate.register_many(Identity, ZeroMatrix) def _(expr, assumptions): return True @LowerTriangularPredicate.register(OneMatrix) def _(expr, assumptions): return expr.shape[0] == 1 and expr.shape[1] == 1 @LowerTriangularPredicate.register(Transpose) def _(expr, assumptions): return ask(Q.upper_triangular(expr.arg), assumptions) @LowerTriangularPredicate.register(Inverse) def _(expr, assumptions): return ask(Q.lower_triangular(expr.arg), assumptions) @LowerTriangularPredicate.register(MatrixSlice) def _(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.lower_triangular(expr.parent), assumptions) @LowerTriangularPredicate.register(Factorization) def _(expr, assumptions): return _Factorization(Q.lower_triangular, expr, assumptions) # DiagonalPredicate def _is_empty_or_1x1(expr): return expr.shape == (0, 0) or expr.shape == (1, 1) @DiagonalPredicate.register(MatMul) def _(expr, assumptions): if _is_empty_or_1x1(expr): return True factor, matrices = expr.as_coeff_matrices() if all(ask(Q.diagonal(m), assumptions) for m in matrices): return True @DiagonalPredicate.register(MatPow) def _(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.diagonal(base), assumptions) return None @DiagonalPredicate.register(MatAdd) def _(expr, assumptions): if all(ask(Q.diagonal(arg), assumptions) for arg in expr.args): return True @DiagonalPredicate.register(MatrixSymbol) def _(expr, assumptions): if _is_empty_or_1x1(expr): return True if Q.diagonal(expr) in conjuncts(assumptions): return True @DiagonalPredicate.register(OneMatrix) def _(expr, assumptions): return expr.shape[0] == 1 and expr.shape[1] == 1 @DiagonalPredicate.register_many(Inverse, Transpose) def _(expr, assumptions): return ask(Q.diagonal(expr.arg), assumptions) @DiagonalPredicate.register(MatrixSlice) def _(expr, assumptions): if _is_empty_or_1x1(expr): return True if not expr.on_diag: return None else: return ask(Q.diagonal(expr.parent), assumptions) @DiagonalPredicate.register_many(DiagonalMatrix, DiagMatrix, Identity, ZeroMatrix) def _(expr, assumptions): return True @DiagonalPredicate.register(Factorization) def _(expr, assumptions): return _Factorization(Q.diagonal, expr, assumptions) # IntegerElementsPredicate def BM_elements(predicate, expr, assumptions): """ Block Matrix elements. """ return all(ask(predicate(b), assumptions) for b in expr.blocks) def MS_elements(predicate, expr, assumptions): """ Matrix Slice elements. """ return ask(predicate(expr.parent), assumptions) def MatMul_elements(matrix_predicate, scalar_predicate, expr, assumptions): d = sift(expr.args, lambda x: isinstance(x, MatrixExpr)) factors, matrices = d[False], d[True] return fuzzy_and([ test_closed_group(Basic(*factors), assumptions, scalar_predicate), test_closed_group(Basic(*matrices), assumptions, matrix_predicate)]) @IntegerElementsPredicate.register_many(Determinant, HadamardProduct, MatAdd, Trace, Transpose) def _(expr, assumptions): return test_closed_group(expr, assumptions, Q.integer_elements) @IntegerElementsPredicate.register(MatPow) def _(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None if exp.is_negative == False: return ask(Q.integer_elements(base), assumptions) return None @IntegerElementsPredicate.register_many(Identity, OneMatrix, ZeroMatrix) def _(expr, assumptions): return True @IntegerElementsPredicate.register(MatMul) def _(expr, assumptions): return MatMul_elements(Q.integer_elements, Q.integer, expr, assumptions) @IntegerElementsPredicate.register(MatrixSlice) def _(expr, assumptions): return MS_elements(Q.integer_elements, expr, assumptions) @IntegerElementsPredicate.register(BlockMatrix) def _(expr, assumptions): return BM_elements(Q.integer_elements, expr, assumptions) # RealElementsPredicate @RealElementsPredicate.register_many(Determinant, Factorization, HadamardProduct, MatAdd, Trace, Transpose) def _(expr, assumptions): return test_closed_group(expr, assumptions, Q.real_elements) @RealElementsPredicate.register(MatPow) def _(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.real_elements(base), assumptions) return None @RealElementsPredicate.register(MatMul) def _(expr, assumptions): return MatMul_elements(Q.real_elements, Q.real, expr, assumptions) @RealElementsPredicate.register(MatrixSlice) def _(expr, assumptions): return MS_elements(Q.real_elements, expr, assumptions) @RealElementsPredicate.register(BlockMatrix) def _(expr, assumptions): return BM_elements(Q.real_elements, expr, assumptions) # ComplexElementsPredicate @ComplexElementsPredicate.register_many(Determinant, Factorization, HadamardProduct, Inverse, MatAdd, Trace, Transpose) def _(expr, assumptions): return test_closed_group(expr, assumptions, Q.complex_elements) @ComplexElementsPredicate.register(MatPow) def _(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.complex_elements(base), assumptions) return None @ComplexElementsPredicate.register(MatMul) def _(expr, assumptions): return MatMul_elements(Q.complex_elements, Q.complex, expr, assumptions) @ComplexElementsPredicate.register(MatrixSlice) def _(expr, assumptions): return MS_elements(Q.complex_elements, expr, assumptions) @ComplexElementsPredicate.register(BlockMatrix) def _(expr, assumptions): return BM_elements(Q.complex_elements, expr, assumptions) @ComplexElementsPredicate.register(DFT) def _(expr, assumptions): return True
4e5a75885f566cd8648ea2b9a15d9e1ce62c1775bc1af6c8534f12428cfcef06
""" Handlers related to order relations: positive, negative, etc. """ from sympy.assumptions import Q, ask from sympy.core import Add, Basic, Expr, Mul, Pow from sympy.core.logic import fuzzy_not, fuzzy_and, fuzzy_or from sympy.core.numbers import ImaginaryUnit, NaN from sympy.functions import Abs, acos, acot, asin, atan, exp, factorial, log from sympy.matrices import Determinant, Trace from sympy.matrices.expressions.matexpr import MatrixElement from ..predicates.order import (NegativePredicate, NonNegativePredicate, NonZeroPredicate, ZeroPredicate, NonPositivePredicate, PositivePredicate) # NegativePredicate def _NegativePredicate_number(expr, assumptions): r, i = expr.as_real_imag() # If the imaginary part can symbolically be shown to be zero then # we just evaluate the real part; otherwise we evaluate the imaginary # part to see if it actually evaluates to zero and if it does then # we make the comparison between the real part and zero. if not i: r = r.evalf(2) if r._prec != 1: return r < 0 else: i = i.evalf(2) if i._prec != 1: if i != 0: return False r = r.evalf(2) if r._prec != 1: return r < 0 @NegativePredicate.register(Basic) def _(expr, assumptions): if expr.is_number: return _NegativePredicate_number(expr, assumptions) @NegativePredicate.register(Expr) def _(expr, assumptions): return expr.is_negative @NegativePredicate.register(Add) def _(expr, assumptions): """ Positive + Positive -> Positive, Negative + Negative -> Negative """ if expr.is_number: return _NegativePredicate_number(expr, assumptions) r = ask(Q.real(expr), assumptions) if r is not True: return r nonpos = 0 for arg in expr.args: if ask(Q.negative(arg), assumptions) is not True: if ask(Q.positive(arg), assumptions) is False: nonpos += 1 else: break else: if nonpos < len(expr.args): return True @NegativePredicate.register(Mul) def _(expr, assumptions): if expr.is_number: return _NegativePredicate_number(expr, assumptions) result = None for arg in expr.args: if result is None: result = False if ask(Q.negative(arg), assumptions): result = not result elif ask(Q.positive(arg), assumptions): pass else: return return result @NegativePredicate.register(Pow) def _(expr, assumptions): """ Real ** Even -> NonNegative Real ** Odd -> same_as_base NonNegative ** Positive -> NonNegative """ if expr.is_number: return _NegativePredicate_number(expr, assumptions) if ask(Q.real(expr.base), assumptions): if ask(Q.positive(expr.base), assumptions): if ask(Q.real(expr.exp), assumptions): return False if ask(Q.even(expr.exp), assumptions): return False if ask(Q.odd(expr.exp), assumptions): return ask(Q.negative(expr.base), assumptions) @NegativePredicate.register_many(Abs, ImaginaryUnit) def _(expr, assumptions): return False @NegativePredicate.register(exp) def _(expr, assumptions): if ask(Q.real(expr.args[0]), assumptions): return False # NonNegativePredicate @NonNegativePredicate.register(Basic) def _(expr, assumptions): if expr.is_number: notnegative = fuzzy_not(_NegativePredicate_number(expr, assumptions)) if notnegative: return ask(Q.real(expr), assumptions) else: return notnegative @NonNegativePredicate.register(Expr) def _(expr, assumptions): return expr.is_nonnegative # NonZeroPredicate @NonZeroPredicate.register(Expr) def _(expr, assumptions): return expr.is_nonzero @NonZeroPredicate.register(Basic) def _(expr, assumptions): if ask(Q.real(expr)) is False: return False if expr.is_number: # if there are no symbols just evalf i = expr.evalf(2) def nonz(i): if i._prec != 1: return i != 0 return fuzzy_or(nonz(i) for i in i.as_real_imag()) @NonZeroPredicate.register(Add) def _(expr, assumptions): if all(ask(Q.positive(x), assumptions) for x in expr.args) \ or all(ask(Q.negative(x), assumptions) for x in expr.args): return True @NonZeroPredicate.register(Mul) def _(expr, assumptions): for arg in expr.args: result = ask(Q.nonzero(arg), assumptions) if result: continue return result return True @NonZeroPredicate.register(Pow) def _(expr, assumptions): return ask(Q.nonzero(expr.base), assumptions) @NonZeroPredicate.register(NaN) def _(expr, assumptions): return True @NonZeroPredicate.register(Abs) def _(expr, assumptions): return ask(Q.nonzero(expr.args[0]), assumptions) # ZeroPredicate @ZeroPredicate.register(Expr) def _(expr, assumptions): return expr.is_zero @ZeroPredicate.register(Basic) def _(expr, assumptions): return fuzzy_and([fuzzy_not(ask(Q.nonzero(expr), assumptions)), ask(Q.real(expr), assumptions)]) @ZeroPredicate.register(Mul) def _(expr, assumptions): # TODO: This should be deducible from the nonzero handler return fuzzy_or(ask(Q.zero(arg), assumptions) for arg in expr.args) # NonPositivePredicate @NonPositivePredicate.register(Expr) def _(expr, assumptions): return expr.is_nonpositive @NonPositivePredicate.register(Basic) def _(expr, assumptions): if expr.is_number: notpositive = fuzzy_not(_PositivePredicate_number(expr, assumptions)) if notpositive: return ask(Q.real(expr), assumptions) else: return notpositive # PositivePredicate def _PositivePredicate_number(expr, assumptions): r, i = expr.as_real_imag() # If the imaginary part can symbolically be shown to be zero then # we just evaluate the real part; otherwise we evaluate the imaginary # part to see if it actually evaluates to zero and if it does then # we make the comparison between the real part and zero. if not i: r = r.evalf(2) if r._prec != 1: return r > 0 else: i = i.evalf(2) if i._prec != 1: if i != 0: return False r = r.evalf(2) if r._prec != 1: return r > 0 @PositivePredicate.register(Expr) def _(expr, assumptions): return expr.is_positive @PositivePredicate.register(Basic) def _(expr, assumptions): if expr.is_number: return _PositivePredicate_number(expr, assumptions) @PositivePredicate.register(Mul) def _(expr, assumptions): if expr.is_number: return _PositivePredicate_number(expr, assumptions) result = True for arg in expr.args: if ask(Q.positive(arg), assumptions): continue elif ask(Q.negative(arg), assumptions): result = result ^ True else: return return result @PositivePredicate.register(Add) def _(expr, assumptions): if expr.is_number: return _PositivePredicate_number(expr, assumptions) r = ask(Q.real(expr), assumptions) if r is not True: return r nonneg = 0 for arg in expr.args: if ask(Q.positive(arg), assumptions) is not True: if ask(Q.negative(arg), assumptions) is False: nonneg += 1 else: break else: if nonneg < len(expr.args): return True @PositivePredicate.register(Pow) def _(expr, assumptions): if expr.is_number: return _PositivePredicate_number(expr, assumptions) if ask(Q.positive(expr.base), assumptions): if ask(Q.real(expr.exp), assumptions): return True if ask(Q.negative(expr.base), assumptions): if ask(Q.even(expr.exp), assumptions): return True if ask(Q.odd(expr.exp), assumptions): return False @PositivePredicate.register(exp) def _(expr, assumptions): if ask(Q.real(expr.args[0]), assumptions): return True if ask(Q.imaginary(expr.args[0]), assumptions): from sympy import pi, I return ask(Q.even(expr.args[0]/(I*pi)), assumptions) @PositivePredicate.register(log) def _(expr, assumptions): r = ask(Q.real(expr.args[0]), assumptions) if r is not True: return r if ask(Q.positive(expr.args[0] - 1), assumptions): return True if ask(Q.negative(expr.args[0] - 1), assumptions): return False @PositivePredicate.register(factorial) def _(expr, assumptions): x = expr.args[0] if ask(Q.integer(x) & Q.positive(x), assumptions): return True @PositivePredicate.register(ImaginaryUnit) def _(expr, assumptions): return False @PositivePredicate.register(Abs) def _(expr, assumptions): return ask(Q.nonzero(expr), assumptions) @PositivePredicate.register(Trace) def _(expr, assumptions): if ask(Q.positive_definite(expr.arg), assumptions): return True @PositivePredicate.register(Determinant) def _(expr, assumptions): if ask(Q.positive_definite(expr.arg), assumptions): return True @PositivePredicate.register(MatrixElement) def _(expr, assumptions): if (expr.i == expr.j and ask(Q.positive_definite(expr.parent), assumptions)): return True @PositivePredicate.register(atan) def _(expr, assumptions): return ask(Q.positive(expr.args[0]), assumptions) @PositivePredicate.register(asin) def _(expr, assumptions): x = expr.args[0] if ask(Q.positive(x) & Q.nonpositive(x - 1), assumptions): return True if ask(Q.negative(x) & Q.nonnegative(x + 1), assumptions): return False @PositivePredicate.register(acos) def _(expr, assumptions): x = expr.args[0] if ask(Q.nonpositive(x - 1) & Q.nonnegative(x + 1), assumptions): return True @PositivePredicate.register(acot) def _(expr, assumptions): return ask(Q.real(expr.args[0]), assumptions)
4b1bb53084d0a1743c9a4c968ebf64084b37610e5ede5998467333e3b1b3dfda
""" Handlers for predicates related to set membership: integer, rational, etc. """ from sympy.assumptions import Q, ask from sympy.core import Add, Basic, Expr, Mul, Pow from sympy.core.numbers import (AlgebraicNumber, ComplexInfinity, Exp1, Float, GoldenRatio, ImaginaryUnit, Infinity, Integer, NaN, NegativeInfinity, Number, NumberSymbol, Pi, pi, Rational, TribonacciConstant) from sympy.core.logic import fuzzy_bool from sympy.functions import (Abs, acos, acot, asin, atan, cos, cot, exp, im, log, re, sin, tan) from sympy import I, Eq, conjugate from sympy.matrices import Determinant, MatrixBase, Trace from sympy.matrices.expressions.matexpr import MatrixElement from .common import test_closed_group from ..predicates.sets import (IntegerPredicate, RationalPredicate, IrrationalPredicate, RealPredicate, ExtendedRealPredicate, HermitianPredicate, ComplexPredicate, ImaginaryPredicate, AntihermitianPredicate, AlgebraicPredicate) # IntegerPredicate def _IntegerPredicate_number(expr, assumptions): # helper function try: i = int(expr.round()) if not (expr - i).equals(0): raise TypeError return True except TypeError: return False @IntegerPredicate.register_many(int, Integer) def _(expr, assumptions): return True @IntegerPredicate.register_many(Exp1, GoldenRatio, ImaginaryUnit, Infinity, NaN, NegativeInfinity, Pi, Rational, TribonacciConstant) def _(expr, assumptions): return False @IntegerPredicate.register(Expr) def _(expr, assumptions): return expr.is_integer @IntegerPredicate.register_many(Add, Pow) def _(expr, assumptions): """ * Integer + Integer -> Integer * Integer + !Integer -> !Integer * !Integer + !Integer -> ? """ if expr.is_number: return _IntegerPredicate_number(expr, assumptions) return test_closed_group(expr, assumptions, Q.integer) @IntegerPredicate.register(Mul) def _(expr, assumptions): """ * Integer*Integer -> Integer * Integer*Irrational -> !Integer * Odd/Even -> !Integer * Integer*Rational -> ? """ if expr.is_number: return _IntegerPredicate_number(expr, assumptions) _output = True for arg in expr.args: if not ask(Q.integer(arg), assumptions): if arg.is_Rational: if arg.q == 2: return ask(Q.even(2*expr), assumptions) if ~(arg.q & 1): return None elif ask(Q.irrational(arg), assumptions): if _output: _output = False else: return else: return return _output @IntegerPredicate.register(Abs) def _(expr, assumptions): return ask(Q.integer(expr.args[0]), assumptions) @IntegerPredicate.register_many(Determinant, MatrixElement, Trace) def _(expr, assumptions): return ask(Q.integer_elements(expr.args[0]), assumptions) # RationalPredicate @RationalPredicate.register(Rational) def _(expr, assumptions): return True @RationalPredicate.register(Float) def _(expr, assumptions): return None @RationalPredicate.register_many(Exp1, GoldenRatio, ImaginaryUnit, Infinity, NaN, NegativeInfinity, Pi, TribonacciConstant) def _(expr, assumptions): return False @RationalPredicate.register(Expr) def _(expr, assumptions): return expr.is_rational @RationalPredicate.register_many(Add, Mul) def _(expr, assumptions): """ * Rational + Rational -> Rational * Rational + !Rational -> !Rational * !Rational + !Rational -> ? """ if expr.is_number: if expr.as_real_imag()[1]: return False return test_closed_group(expr, assumptions, Q.rational) @RationalPredicate.register(Pow) def _(expr, assumptions): """ * Rational ** Integer -> Rational * Irrational ** Rational -> Irrational * Rational ** Irrational -> ? """ if ask(Q.integer(expr.exp), assumptions): return ask(Q.rational(expr.base), assumptions) elif ask(Q.rational(expr.exp), assumptions): if ask(Q.prime(expr.base), assumptions): return False @RationalPredicate.register_many(asin, atan, cos, exp, sin, tan) def _(expr, assumptions): x = expr.args[0] if ask(Q.rational(x), assumptions): return ask(~Q.nonzero(x), assumptions) @RationalPredicate.register_many(acot, cot) def _(expr, assumptions): x = expr.args[0] if ask(Q.rational(x), assumptions): return False @RationalPredicate.register_many(acos, log) def _(expr, assumptions): x = expr.args[0] if ask(Q.rational(x), assumptions): return ask(~Q.nonzero(x - 1), assumptions) # IrrationalPredicate @IrrationalPredicate.register(NaN) def _(expr, assumptions): return False @IrrationalPredicate.register(Expr) def _(expr, assumptions): return expr.is_irrational @IrrationalPredicate.register(Basic) def _(expr, assumptions): _real = ask(Q.real(expr), assumptions) if _real: _rational = ask(Q.rational(expr), assumptions) if _rational is None: return None return not _rational else: return _real # RealPredicate def _RealPredicate_number(expr, assumptions): # let as_real_imag() work first since the expression may # be simpler to evaluate i = expr.as_real_imag()[1].evalf(2) if i._prec != 1: return not i # allow None to be returned if we couldn't show for sure # that i was 0 @RealPredicate.register_many(Abs, Exp1, Float, GoldenRatio, im, Pi, Rational, re, TribonacciConstant) def _(expr, assumptions): return True @RealPredicate.register_many(ImaginaryUnit, Infinity, NaN, NegativeInfinity) def _(expr, assumptions): return False @RealPredicate.register(Expr) def _(expr, assumptions): return expr.is_real @RealPredicate.register(Add) def _(expr, assumptions): """ * Real + Real -> Real * Real + (Complex & !Real) -> !Real """ if expr.is_number: return _RealPredicate_number(expr, assumptions) return test_closed_group(expr, assumptions, Q.real) @RealPredicate.register(Mul) def _(expr, assumptions): """ * Real*Real -> Real * Real*Imaginary -> !Real * Imaginary*Imaginary -> Real """ if expr.is_number: return _RealPredicate_number(expr, assumptions) result = True for arg in expr.args: if ask(Q.real(arg), assumptions): pass elif ask(Q.imaginary(arg), assumptions): result = result ^ True else: break else: return result @RealPredicate.register(Pow) def _(expr, assumptions): """ * Real**Integer -> Real * Positive**Real -> Real * Real**(Integer/Even) -> Real if base is nonnegative * Real**(Integer/Odd) -> Real * Imaginary**(Integer/Even) -> Real * Imaginary**(Integer/Odd) -> not Real * Imaginary**Real -> ? since Real could be 0 (giving real) or 1 (giving imaginary) * b**Imaginary -> Real if log(b) is imaginary and b != 0 and exponent != integer multiple of I*pi/log(b) * Real**Real -> ? e.g. sqrt(-1) is imaginary and sqrt(2) is not """ if expr.is_number: return _RealPredicate_number(expr, assumptions) if expr.base.func == exp: if ask(Q.imaginary(expr.base.args[0]), assumptions): if ask(Q.imaginary(expr.exp), assumptions): return True # If the i = (exp's arg)/(I*pi) is an integer or half-integer # multiple of I*pi then 2*i will be an integer. In addition, # exp(i*I*pi) = (-1)**i so the overall realness of the expr # can be determined by replacing exp(i*I*pi) with (-1)**i. i = expr.base.args[0]/I/pi if ask(Q.integer(2*i), assumptions): return ask(Q.real(((-1)**i)**expr.exp), assumptions) return if ask(Q.imaginary(expr.base), assumptions): if ask(Q.integer(expr.exp), assumptions): odd = ask(Q.odd(expr.exp), assumptions) if odd is not None: return not odd return if ask(Q.imaginary(expr.exp), assumptions): imlog = ask(Q.imaginary(log(expr.base)), assumptions) if imlog is not None: # I**i -> real, log(I) is imag; # (2*I)**i -> complex, log(2*I) is not imag return imlog if ask(Q.real(expr.base), assumptions): if ask(Q.real(expr.exp), assumptions): if expr.exp.is_Rational and \ ask(Q.even(expr.exp.q), assumptions): return ask(Q.positive(expr.base), assumptions) elif ask(Q.integer(expr.exp), assumptions): return True elif ask(Q.positive(expr.base), assumptions): return True elif ask(Q.negative(expr.base), assumptions): return False @RealPredicate.register_many(cos, sin) def _(expr, assumptions): if ask(Q.real(expr.args[0]), assumptions): return True @RealPredicate.register(exp) def _(expr, assumptions): return ask( Q.integer(expr.args[0]/I/pi) | Q.real(expr.args[0]), assumptions ) @RealPredicate.register(log) def _(expr, assumptions): return ask(Q.positive(expr.args[0]), assumptions) @RealPredicate.register_many(Determinant, MatrixElement, Trace) def _(expr, assumptions): return ask(Q.real_elements(expr.args[0]), assumptions) # ExtendedRealPredicate @ExtendedRealPredicate.register(object) def _(expr, assumptions): return ask(Q.real(expr), assumptions) @ExtendedRealPredicate.register_many(Infinity, NegativeInfinity) def _(expr, assumptions): return True @ExtendedRealPredicate.register(NaN) def _(expr, assumptions): return False @ExtendedRealPredicate.register_many(Add, Mul, Pow) def _(expr, assumptions): return test_closed_group(expr, assumptions, Q.extended_real) # HermitianPredicate @HermitianPredicate.register(NaN) def _(expr, assumptions): return False @HermitianPredicate.register(object) def _(expr, assumptions): if isinstance(expr, MatrixBase): return None return ask(Q.real(expr), assumptions) @HermitianPredicate.register(Add) def _(expr, assumptions): """ * Hermitian + Hermitian -> Hermitian * Hermitian + !Hermitian -> !Hermitian """ if expr.is_number: return None return test_closed_group(expr, assumptions, Q.hermitian) @HermitianPredicate.register(Mul) def _(expr, assumptions): """ As long as there is at most only one noncommutative term: * Hermitian*Hermitian -> Hermitian * Hermitian*Antihermitian -> !Hermitian * Antihermitian*Antihermitian -> Hermitian """ if expr.is_number: return None nccount = 0 result = True for arg in expr.args: if ask(Q.antihermitian(arg), assumptions): result = result ^ True elif not ask(Q.hermitian(arg), assumptions): break if ask(~Q.commutative(arg), assumptions): nccount += 1 if nccount > 1: break else: return result @HermitianPredicate.register(Pow) def _(expr, assumptions): """ * Hermitian**Integer -> Hermitian """ if expr.is_number: return None if ask(Q.hermitian(expr.base), assumptions): if ask(Q.integer(expr.exp), assumptions): return True @HermitianPredicate.register_many(cos, exp, sin) def _(expr, assumptions): if ask(Q.hermitian(expr.args[0]), assumptions): return True @HermitianPredicate.register(MatrixBase) def _(mat, assumptions): rows, cols = mat.shape ret_val = True for i in range(rows): for j in range(i, cols): cond = fuzzy_bool(Eq(mat[i, j], conjugate(mat[j, i]))) if cond == None: ret_val = None if cond == False: return False return ret_val # ComplexPredicate @ComplexPredicate.register_many(Abs, cos, exp, im, ImaginaryUnit, log, Number, NumberSymbol, re, sin) def _(expr, assumptions): return True @ComplexPredicate.register_many(Infinity, NaN, NegativeInfinity) def _(expr, assumptions): return False @ComplexPredicate.register(Expr) def _(expr, assumptions): return expr.is_complex @ComplexPredicate.register_many(Add, Mul, Pow) def _(expr, assumptions): return test_closed_group(expr, assumptions, Q.complex) @ComplexPredicate.register_many(Determinant, MatrixElement, Trace) def _(expr, assumptions): return ask(Q.complex_elements(expr.args[0]), assumptions) # ImaginaryPredicate def _Imaginary_number(expr, assumptions): # let as_real_imag() work first since the expression may # be simpler to evaluate r = expr.as_real_imag()[0].evalf(2) if r._prec != 1: return not r # allow None to be returned if we couldn't show for sure # that r was 0 @ImaginaryPredicate.register(ImaginaryUnit) def _(expr, assumptions): return True @ImaginaryPredicate.register(NaN) def _(expr, assumptions): return False @ImaginaryPredicate.register(Expr) def _(expr, assumptions): return expr.is_imaginary @ImaginaryPredicate.register(Add) def _(expr, assumptions): """ * Imaginary + Imaginary -> Imaginary * Imaginary + Complex -> ? * Imaginary + Real -> !Imaginary """ if expr.is_number: return _Imaginary_number(expr, assumptions) reals = 0 for arg in expr.args: if ask(Q.imaginary(arg), assumptions): pass elif ask(Q.real(arg), assumptions): reals += 1 else: break else: if reals == 0: return True if reals == 1 or (len(expr.args) == reals): # two reals could sum 0 thus giving an imaginary return False @ImaginaryPredicate.register(Mul) def _(expr, assumptions): """ * Real*Imaginary -> Imaginary * Imaginary*Imaginary -> Real """ if expr.is_number: return _Imaginary_number(expr, assumptions) result = False reals = 0 for arg in expr.args: if ask(Q.imaginary(arg), assumptions): result = result ^ True elif not ask(Q.real(arg), assumptions): break else: if reals == len(expr.args): return False return result @ImaginaryPredicate.register(Pow) def _(expr, assumptions): """ * Imaginary**Odd -> Imaginary * Imaginary**Even -> Real * b**Imaginary -> !Imaginary if exponent is an integer multiple of I*pi/log(b) * Imaginary**Real -> ? * Positive**Real -> Real * Negative**Integer -> Real * Negative**(Integer/2) -> Imaginary * Negative**Real -> not Imaginary if exponent is not Rational """ if expr.is_number: return _Imaginary_number(expr, assumptions) if expr.base.func == exp: if ask(Q.imaginary(expr.base.args[0]), assumptions): if ask(Q.imaginary(expr.exp), assumptions): return False i = expr.base.args[0]/I/pi if ask(Q.integer(2*i), assumptions): return ask(Q.imaginary(((-1)**i)**expr.exp), assumptions) if ask(Q.imaginary(expr.base), assumptions): if ask(Q.integer(expr.exp), assumptions): odd = ask(Q.odd(expr.exp), assumptions) if odd is not None: return odd return if ask(Q.imaginary(expr.exp), assumptions): imlog = ask(Q.imaginary(log(expr.base)), assumptions) if imlog is not None: # I**i -> real; (2*I)**i -> complex ==> not imaginary return False if ask(Q.real(expr.base) & Q.real(expr.exp), assumptions): if ask(Q.positive(expr.base), assumptions): return False else: rat = ask(Q.rational(expr.exp), assumptions) if not rat: return rat if ask(Q.integer(expr.exp), assumptions): return False else: half = ask(Q.integer(2*expr.exp), assumptions) if half: return ask(Q.negative(expr.base), assumptions) return half @ImaginaryPredicate.register(log) def _(expr, assumptions): if ask(Q.real(expr.args[0]), assumptions): if ask(Q.positive(expr.args[0]), assumptions): return False return # XXX it should be enough to do # return ask(Q.nonpositive(expr.args[0]), assumptions) # but ask(Q.nonpositive(exp(x)), Q.imaginary(x)) -> None; # it should return True since exp(x) will be either 0 or complex if expr.args[0].func == exp: if expr.args[0].args[0] in [I, -I]: return True im = ask(Q.imaginary(expr.args[0]), assumptions) if im is False: return False @ImaginaryPredicate.register(exp) def _(expr, assumptions): a = expr.args[0]/I/pi return ask(Q.integer(2*a) & ~Q.integer(a), assumptions) @ImaginaryPredicate.register_many(Number, NumberSymbol) def _(expr, assumptions): return not (expr.as_real_imag()[1] == 0) # AntihermitianPredicate @AntihermitianPredicate.register(NaN) def _(expr, assumptions): return False @AntihermitianPredicate.register(object) def _(expr, assumptions): if isinstance(expr, MatrixBase): return None return ask(Q.imaginary(expr), assumptions) @AntihermitianPredicate.register(Add) def _(expr, assumptions): """ * Antihermitian + Antihermitian -> Antihermitian * Antihermitian + !Antihermitian -> !Antihermitian """ if expr.is_number: return None return test_closed_group(expr, assumptions, Q.antihermitian) @AntihermitianPredicate.register(Mul) def _(expr, assumptions): """ As long as there is at most only one noncommutative term: * Hermitian*Hermitian -> !Antihermitian * Hermitian*Antihermitian -> Antihermitian * Antihermitian*Antihermitian -> !Antihermitian """ if expr.is_number: return None nccount = 0 result = False for arg in expr.args: if ask(Q.antihermitian(arg), assumptions): result = result ^ True elif not ask(Q.hermitian(arg), assumptions): break if ask(~Q.commutative(arg), assumptions): nccount += 1 if nccount > 1: break else: return result @AntihermitianPredicate.register(Pow) def _(expr, assumptions): """ * Hermitian**Integer -> !Antihermitian * Antihermitian**Even -> !Antihermitian * Antihermitian**Odd -> Antihermitian """ if expr.is_number: return None if ask(Q.hermitian(expr.base), assumptions): if ask(Q.integer(expr.exp), assumptions): return False elif ask(Q.antihermitian(expr.base), assumptions): if ask(Q.even(expr.exp), assumptions): return False elif ask(Q.odd(expr.exp), assumptions): return True @AntihermitianPredicate.register(MatrixBase) def _(mat, assumptions): rows, cols = mat.shape ret_val = True for i in range(rows): for j in range(i, cols): cond = fuzzy_bool(Eq(mat[i, j], -conjugate(mat[j, i]))) if cond == None: ret_val = None if cond == False: return False return ret_val # AlgebraicPredicate @AlgebraicPredicate.register_many(AlgebraicNumber, Float, GoldenRatio, ImaginaryUnit, TribonacciConstant) def _(expr, assumptions): return True @AlgebraicPredicate.register_many(ComplexInfinity, Exp1, Infinity, NaN, NegativeInfinity, Pi) def _(expr, assumptions): return False @AlgebraicPredicate.register_many(Add, Mul) def _(expr, assumptions): return test_closed_group(expr, assumptions, Q.algebraic) @AlgebraicPredicate.register(Pow) def _(expr, assumptions): return expr.exp.is_Rational and ask(Q.algebraic(expr.base), assumptions) @AlgebraicPredicate.register(Rational) def _(expr, assumptions): return expr.q != 0 @AlgebraicPredicate.register_many(asin, atan, cos, exp, sin, tan) def _(expr, assumptions): x = expr.args[0] if ask(Q.algebraic(x), assumptions): return ask(~Q.nonzero(x), assumptions) @AlgebraicPredicate.register_many(acot, cot) def _(expr, assumptions): x = expr.args[0] if ask(Q.algebraic(x), assumptions): return False @AlgebraicPredicate.register_many(acos, log) def _(expr, assumptions): x = expr.args[0] if ask(Q.algebraic(x), assumptions): return ask(~Q.nonzero(x - 1), assumptions)
ffd41c2e345ca5afd7eb91091d8917d633c254b81a120e1170f159724c5f8907
from sympy import (Abs, exp, Expr, I, pi, Q, Rational, refine, S, sqrt, atan, atan2, nan, Symbol, re, im, sign) from sympy.abc import w, x, y, z from sympy.core.relational import Eq, Ne from sympy.functions.elementary.piecewise import Piecewise from sympy.matrices.expressions.matexpr import MatrixSymbol def test_Abs(): assert refine(Abs(x), Q.positive(x)) == x assert refine(1 + Abs(x), Q.positive(x)) == 1 + x assert refine(Abs(x), Q.negative(x)) == -x assert refine(1 + Abs(x), Q.negative(x)) == 1 - x assert refine(Abs(x**2)) != x**2 assert refine(Abs(x**2), Q.real(x)) == x**2 def test_pow1(): assert refine((-1)**x, Q.even(x)) == 1 assert refine((-1)**x, Q.odd(x)) == -1 assert refine((-2)**x, Q.even(x)) == 2**x # nested powers assert refine(sqrt(x**2)) != Abs(x) assert refine(sqrt(x**2), Q.complex(x)) != Abs(x) assert refine(sqrt(x**2), Q.real(x)) == Abs(x) assert refine(sqrt(x**2), Q.positive(x)) == x assert refine((x**3)**Rational(1, 3)) != x assert refine((x**3)**Rational(1, 3), Q.real(x)) != x assert refine((x**3)**Rational(1, 3), Q.positive(x)) == x assert refine(sqrt(1/x), Q.real(x)) != 1/sqrt(x) assert refine(sqrt(1/x), Q.positive(x)) == 1/sqrt(x) # powers of (-1) assert refine((-1)**(x + y), Q.even(x)) == (-1)**y assert refine((-1)**(x + y + z), Q.odd(x) & Q.odd(z)) == (-1)**y assert refine((-1)**(x + y + 1), Q.odd(x)) == (-1)**y assert refine((-1)**(x + y + 2), Q.odd(x)) == (-1)**(y + 1) assert refine((-1)**(x + 3)) == (-1)**(x + 1) # continuation assert refine((-1)**((-1)**x/2 - S.Half), Q.integer(x)) == (-1)**x assert refine((-1)**((-1)**x/2 + S.Half), Q.integer(x)) == (-1)**(x + 1) assert refine((-1)**((-1)**x/2 + 5*S.Half), Q.integer(x)) == (-1)**(x + 1) def test_pow2(): assert refine((-1)**((-1)**x/2 - 7*S.Half), Q.integer(x)) == (-1)**(x + 1) assert refine((-1)**((-1)**x/2 - 9*S.Half), Q.integer(x)) == (-1)**x # powers of Abs assert refine(Abs(x)**2, Q.real(x)) == x**2 assert refine(Abs(x)**3, Q.real(x)) == Abs(x)**3 assert refine(Abs(x)**2) == Abs(x)**2 def test_exp(): x = Symbol('x', integer=True) assert refine(exp(pi*I*2*x)) == 1 assert refine(exp(pi*I*2*(x + S.Half))) == -1 assert refine(exp(pi*I*2*(x + Rational(1, 4)))) == I assert refine(exp(pi*I*2*(x + Rational(3, 4)))) == -I def test_Piecewise(): assert refine(Piecewise((1, x < 0), (3, True)), Q.is_true(x < 0)) == 1 assert refine(Piecewise((1, x < 0), (3, True)), ~Q.is_true(x < 0)) == 3 assert refine(Piecewise((1, x < 0), (3, True)), Q.is_true(y < 0)) == \ Piecewise((1, x < 0), (3, True)) assert refine(Piecewise((1, x > 0), (3, True)), Q.is_true(x > 0)) == 1 assert refine(Piecewise((1, x > 0), (3, True)), ~Q.is_true(x > 0)) == 3 assert refine(Piecewise((1, x > 0), (3, True)), Q.is_true(y > 0)) == \ Piecewise((1, x > 0), (3, True)) assert refine(Piecewise((1, x <= 0), (3, True)), Q.is_true(x <= 0)) == 1 assert refine(Piecewise((1, x <= 0), (3, True)), ~Q.is_true(x <= 0)) == 3 assert refine(Piecewise((1, x <= 0), (3, True)), Q.is_true(y <= 0)) == \ Piecewise((1, x <= 0), (3, True)) assert refine(Piecewise((1, x >= 0), (3, True)), Q.is_true(x >= 0)) == 1 assert refine(Piecewise((1, x >= 0), (3, True)), ~Q.is_true(x >= 0)) == 3 assert refine(Piecewise((1, x >= 0), (3, True)), Q.is_true(y >= 0)) == \ Piecewise((1, x >= 0), (3, True)) assert refine(Piecewise((1, Eq(x, 0)), (3, True)), Q.is_true(Eq(x, 0)))\ == 1 assert refine(Piecewise((1, Eq(x, 0)), (3, True)), Q.is_true(Eq(0, x)))\ == 1 assert refine(Piecewise((1, Eq(x, 0)), (3, True)), ~Q.is_true(Eq(x, 0)))\ == 3 assert refine(Piecewise((1, Eq(x, 0)), (3, True)), ~Q.is_true(Eq(0, x)))\ == 3 assert refine(Piecewise((1, Eq(x, 0)), (3, True)), Q.is_true(Eq(y, 0)))\ == Piecewise((1, Eq(x, 0)), (3, True)) assert refine(Piecewise((1, Ne(x, 0)), (3, True)), Q.is_true(Ne(x, 0)))\ == 1 assert refine(Piecewise((1, Ne(x, 0)), (3, True)), ~Q.is_true(Ne(x, 0)))\ == 3 assert refine(Piecewise((1, Ne(x, 0)), (3, True)), Q.is_true(Ne(y, 0)))\ == Piecewise((1, Ne(x, 0)), (3, True)) def test_atan2(): assert refine(atan2(y, x), Q.real(y) & Q.positive(x)) == atan(y/x) assert refine(atan2(y, x), Q.negative(y) & Q.positive(x)) == atan(y/x) assert refine(atan2(y, x), Q.negative(y) & Q.negative(x)) == atan(y/x) - pi assert refine(atan2(y, x), Q.positive(y) & Q.negative(x)) == atan(y/x) + pi assert refine(atan2(y, x), Q.zero(y) & Q.negative(x)) == pi assert refine(atan2(y, x), Q.positive(y) & Q.zero(x)) == pi/2 assert refine(atan2(y, x), Q.negative(y) & Q.zero(x)) == -pi/2 assert refine(atan2(y, x), Q.zero(y) & Q.zero(x)) is nan def test_re(): assert refine(re(x), Q.real(x)) == x assert refine(re(x), Q.imaginary(x)) is S.Zero assert refine(re(x+y), Q.real(x) & Q.real(y)) == x + y assert refine(re(x+y), Q.real(x) & Q.imaginary(y)) == x assert refine(re(x*y), Q.real(x) & Q.real(y)) == x * y assert refine(re(x*y), Q.real(x) & Q.imaginary(y)) == 0 assert refine(re(x*y*z), Q.real(x) & Q.real(y) & Q.real(z)) == x * y * z def test_im(): assert refine(im(x), Q.imaginary(x)) == -I*x assert refine(im(x), Q.real(x)) is S.Zero assert refine(im(x+y), Q.imaginary(x) & Q.imaginary(y)) == -I*x - I*y assert refine(im(x+y), Q.real(x) & Q.imaginary(y)) == -I*y assert refine(im(x*y), Q.imaginary(x) & Q.real(y)) == -I*x*y assert refine(im(x*y), Q.imaginary(x) & Q.imaginary(y)) == 0 assert refine(im(1/x), Q.imaginary(x)) == -I/x assert refine(im(x*y*z), Q.imaginary(x) & Q.imaginary(y) & Q.imaginary(z)) == -I*x*y*z def test_complex(): assert refine(re(1/(x + I*y)), Q.real(x) & Q.real(y)) == \ x/(x**2 + y**2) assert refine(im(1/(x + I*y)), Q.real(x) & Q.real(y)) == \ -y/(x**2 + y**2) assert refine(re((w + I*x) * (y + I*z)), Q.real(w) & Q.real(x) & Q.real(y) & Q.real(z)) == w*y - x*z assert refine(im((w + I*x) * (y + I*z)), Q.real(w) & Q.real(x) & Q.real(y) & Q.real(z)) == w*z + x*y def test_sign(): x = Symbol('x', real = True) assert refine(sign(x), Q.positive(x)) == 1 assert refine(sign(x), Q.negative(x)) == -1 assert refine(sign(x), Q.zero(x)) == 0 assert refine(sign(x), True) == sign(x) assert refine(sign(Abs(x)), Q.nonzero(x)) == 1 x = Symbol('x', imaginary=True) assert refine(sign(x), Q.positive(im(x))) == S.ImaginaryUnit assert refine(sign(x), Q.negative(im(x))) == -S.ImaginaryUnit assert refine(sign(x), True) == sign(x) x = Symbol('x', complex=True) assert refine(sign(x), Q.zero(x)) == 0 def test_func_args(): class MyClass(Expr): # A class with nontrivial .func def __init__(self, *args): self.my_member = "" @property def func(self): def my_func(*args): obj = MyClass(*args) obj.my_member = self.my_member return obj return my_func x = MyClass() x.my_member = "A very important value" assert x.my_member == refine(x).my_member def test_eval_refine(): from sympy.core.expr import Expr class MockExpr(Expr): def _eval_refine(self, assumptions): return True mock_obj = MockExpr() assert refine(mock_obj) def test_refine_issue_12724(): expr1 = refine(Abs(x * y), Q.positive(x)) expr2 = refine(Abs(x * y * z), Q.positive(x)) assert expr1 == x * Abs(y) assert expr2 == x * Abs(y * z) y1 = Symbol('y1', real = True) expr3 = refine(Abs(x * y1**2 * z), Q.positive(x)) assert expr3 == x * y1**2 * Abs(z) def test_matrixelement(): x = MatrixSymbol('x', 3, 3) i = Symbol('i', positive = True) j = Symbol('j', positive = True) assert refine(x[0, 1], Q.symmetric(x)) == x[0, 1] assert refine(x[1, 0], Q.symmetric(x)) == x[0, 1] assert refine(x[i, j], Q.symmetric(x)) == x[j, i] assert refine(x[j, i], Q.symmetric(x)) == x[j, i]
ec2352c79fa52679b02f91e34ab0fd70c92987d7c5c7e78bde5a5055f2f807b6
from sympy.abc import t, w, x, y, z, n, k, m, p, i from sympy.assumptions import (ask, AssumptionsContext, Q, register_handler, remove_handler) from sympy.assumptions.assume import assuming, global_assumptions, Predicate from sympy.assumptions.ask import compute_known_facts, single_fact_lookup from sympy.assumptions.handlers import AskHandler from sympy.core.add import Add from sympy.core.numbers import (I, Integer, Rational, oo, pi) from sympy.core.singleton import S from sympy.core.power import Pow from sympy.core.symbol import symbols, Symbol from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.complexes import (Abs, im, re, sign) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import ( acos, acot, asin, atan, cos, cot, sin, tan) from sympy.logic.boolalg import Equivalent, Implies, Xor, And, to_cnf from sympy.matrices import Matrix, SparseMatrix from sympy.testing.pytest import XFAIL, slow, raises, warns_deprecated_sympy import math def test_int_1(): z = 1 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is True assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_int_11(): z = 11 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is True assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is True assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_int_12(): z = 12 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is True assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is True assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_float_1(): z = 1.0 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is None assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is None assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = 7.2123 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is None assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is None assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False # test for issue #12168 assert ask(Q.rational(math.pi)) is None def test_zero_0(): z = Integer(0) assert ask(Q.nonzero(z)) is False assert ask(Q.zero(z)) is True assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is True assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_negativeone(): z = Integer(-1) assert ask(Q.nonzero(z)) is True assert ask(Q.zero(z)) is False assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is True assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is True assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_infinity(): assert ask(Q.commutative(oo)) is True assert ask(Q.integer(oo)) is False assert ask(Q.rational(oo)) is False assert ask(Q.algebraic(oo)) is False assert ask(Q.real(oo)) is False assert ask(Q.extended_real(oo)) is True assert ask(Q.complex(oo)) is False assert ask(Q.irrational(oo)) is False assert ask(Q.imaginary(oo)) is False assert ask(Q.positive(oo)) is False #assert ask(Q.extended_positive(oo)) is True assert ask(Q.negative(oo)) is False assert ask(Q.even(oo)) is False assert ask(Q.odd(oo)) is False assert ask(Q.finite(oo)) is False assert ask(Q.prime(oo)) is False assert ask(Q.composite(oo)) is False assert ask(Q.hermitian(oo)) is False assert ask(Q.antihermitian(oo)) is False def test_neg_infinity(): mm = S.NegativeInfinity assert ask(Q.commutative(mm)) is True assert ask(Q.integer(mm)) is False assert ask(Q.rational(mm)) is False assert ask(Q.algebraic(mm)) is False assert ask(Q.real(mm)) is False assert ask(Q.extended_real(mm)) is True assert ask(Q.complex(mm)) is False assert ask(Q.irrational(mm)) is False assert ask(Q.imaginary(mm)) is False assert ask(Q.positive(mm)) is False assert ask(Q.negative(mm)) is False #assert ask(Q.extended_negative(mm)) is True assert ask(Q.even(mm)) is False assert ask(Q.odd(mm)) is False assert ask(Q.finite(mm)) is False assert ask(Q.prime(mm)) is False assert ask(Q.composite(mm)) is False assert ask(Q.hermitian(mm)) is False assert ask(Q.antihermitian(mm)) is False def test_nan(): nan = S.NaN assert ask(Q.commutative(nan)) is True assert ask(Q.integer(nan)) is False assert ask(Q.rational(nan)) is False assert ask(Q.algebraic(nan)) is False assert ask(Q.real(nan)) is False assert ask(Q.extended_real(nan)) is False assert ask(Q.complex(nan)) is False assert ask(Q.irrational(nan)) is False assert ask(Q.imaginary(nan)) is False assert ask(Q.positive(nan)) is False assert ask(Q.nonzero(nan)) is True assert ask(Q.zero(nan)) is False assert ask(Q.even(nan)) is False assert ask(Q.odd(nan)) is False assert ask(Q.finite(nan)) is False assert ask(Q.prime(nan)) is False assert ask(Q.composite(nan)) is False assert ask(Q.hermitian(nan)) is False assert ask(Q.antihermitian(nan)) is False def test_Rational_number(): r = Rational(3, 4) assert ask(Q.commutative(r)) is True assert ask(Q.integer(r)) is False assert ask(Q.rational(r)) is True assert ask(Q.real(r)) is True assert ask(Q.complex(r)) is True assert ask(Q.irrational(r)) is False assert ask(Q.imaginary(r)) is False assert ask(Q.positive(r)) is True assert ask(Q.negative(r)) is False assert ask(Q.even(r)) is False assert ask(Q.odd(r)) is False assert ask(Q.finite(r)) is True assert ask(Q.prime(r)) is False assert ask(Q.composite(r)) is False assert ask(Q.hermitian(r)) is True assert ask(Q.antihermitian(r)) is False r = Rational(1, 4) assert ask(Q.positive(r)) is True assert ask(Q.negative(r)) is False r = Rational(5, 4) assert ask(Q.negative(r)) is False assert ask(Q.positive(r)) is True r = Rational(5, 3) assert ask(Q.positive(r)) is True assert ask(Q.negative(r)) is False r = Rational(-3, 4) assert ask(Q.positive(r)) is False assert ask(Q.negative(r)) is True r = Rational(-1, 4) assert ask(Q.positive(r)) is False assert ask(Q.negative(r)) is True r = Rational(-5, 4) assert ask(Q.negative(r)) is True assert ask(Q.positive(r)) is False r = Rational(-5, 3) assert ask(Q.positive(r)) is False assert ask(Q.negative(r)) is True def test_sqrt_2(): z = sqrt(2) assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_pi(): z = S.Pi assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = S.Pi + 1 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = 2*S.Pi assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = S.Pi ** 2 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = (1 + S.Pi) ** 2 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_E(): z = S.Exp1 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_GoldenRatio(): z = S.GoldenRatio assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_TribonacciConstant(): z = S.TribonacciConstant assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_I(): z = I assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is False assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is True assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is False assert ask(Q.antihermitian(z)) is True z = 1 + I assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is False assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is False assert ask(Q.antihermitian(z)) is False z = I*(1 + I) assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is False assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is False assert ask(Q.antihermitian(z)) is False z = I**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (-I)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (3*I)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is False z = (1)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (-1)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (1+I)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is False z = (I)**(I+3) assert ask(Q.imaginary(z)) is True assert ask(Q.real(z)) is False z = (I)**(I+2) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (I)**(2) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (I)**(3) assert ask(Q.imaginary(z)) is True assert ask(Q.real(z)) is False z = (3)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is False z = (I)**(0) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True def test_bounded(): x, y, z = symbols('x,y,z') assert ask(Q.finite(x)) is None assert ask(Q.finite(x), Q.finite(x)) is True assert ask(Q.finite(x), Q.finite(y)) is None assert ask(Q.finite(x), Q.complex(x)) is None assert ask(Q.finite(x + 1)) is None assert ask(Q.finite(x + 1), Q.finite(x)) is True a = x + y x, y = a.args # B + B assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is True assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(x)) is True assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(y)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(x) & Q.positive(y)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(x) & ~Q.positive(y)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.positive(x) & Q.positive(y)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.positive(x) & ~Q.positive(y)) is True # B + U assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is False assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(x)) is False assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(y)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(x) & Q.positive(y)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(x) & ~Q.positive(y)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.positive(x) & Q.positive(y)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.positive(x) & ~Q.positive(y)) is False # B + ? assert ask(Q.finite(a), Q.finite(x)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(x)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y)) is None assert ask( Q.finite(a), Q.finite(x) & Q.positive(x) & Q.positive(y)) is None assert ask( Q.finite(a), Q.finite(x) & Q.positive(x) & ~Q.positive(y)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.positive(x) & Q.positive(y)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.positive(x) & ~Q.positive(y)) is None # U + U assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(x)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(x) & Q.positive(y)) is False assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(x) & ~Q.positive(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.positive(x) & Q.positive(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.positive(x) & ~Q.positive(y)) is False # U + ? assert ask(Q.finite(a), ~Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(y) & Q.positive(x)) is None assert ask(Q.finite(a), ~Q.finite(y) & Q.positive(y)) is None assert ask( Q.finite(a), ~Q.finite(y) & Q.positive(x) & Q.positive(y)) is False assert ask( Q.finite(a), ~Q.finite(y) & Q.positive(x) & ~Q.positive(y)) is None assert ask( Q.finite(a), ~Q.finite(y) & ~Q.positive(x) & Q.positive(y)) is None assert ask( Q.finite(a), ~Q.finite(y) & ~Q.positive(x) & ~Q.positive(y)) is False # ? + ? assert ask(Q.finite(a),) is None assert ask(Q.finite(a), Q.positive(x)) is None assert ask(Q.finite(a), Q.positive(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.positive(y)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.positive(y)) is None assert ask(Q.finite(a), ~Q.positive(x) & Q.positive(y)) is None assert ask(Q.finite(a), ~Q.positive(x) & ~Q.positive(y)) is None x, y, z = symbols('x,y,z') a = x + y + z x, y, z = a.args assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.negative(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.negative(x) & Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x)) is None assert ask( Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.positive(z)) is None assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.finite(z)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is None assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z)) is False assert ask( Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is False assert ask( Q.finite(a), Q.finite(x) & Q.negative(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative(y)) is None assert ask( Q.finite(a), Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.finite(x)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(z)) is None assert ask( Q.finite(a), Q.finite(x) & Q.positive(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.positive(x) & Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x)) is None assert ask( Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z)) is False assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.negative(x) & ~Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & Q.negative(z)) is False assert ask( Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x)) is None assert ask( Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(y) & Q.positive(z)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), ~Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask( Q.finite(a), ~Q.finite(x) & Q.negative(y) & Q.negative(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.negative(y)) is None assert ask( Q.finite(a), ~Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), ~Q.finite(x)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive(z)) is None assert ask( Q.finite(a), ~Q.finite(x) & Q.positive(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is False assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.negative(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.negative(y)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x)) is None assert ask( Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(y) & Q.positive(z)) is False assert ask( Q.finite(a), Q.negative(x) & Q.negative(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.negative(y)) is None assert ask( Q.finite(a), Q.negative(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x)) is None assert ask(Q.finite(a), Q.negative(x) & Q.positive(z)) is None assert ask( Q.finite(a), Q.negative(x) & Q.positive(y) & Q.positive(z)) is None assert ask(Q.finite(a)) is None assert ask(Q.finite(a), Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(y) & Q.positive(z)) is None assert ask( Q.finite(a), Q.positive(x) & Q.positive(y) & Q.positive(z)) is None assert ask(Q.finite(2*x)) is None assert ask(Q.finite(2*x), Q.finite(x)) is True x, y, z = symbols('x,y,z') a = x*y x, y = a.args assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is True assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is False assert ask(Q.finite(a), Q.finite(x)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(y)) is False assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is False assert ask(Q.finite(a), ~Q.finite(x)) is None assert ask(Q.finite(a), Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(y)) is None assert ask(Q.finite(a)) is None a = x*y*z x, y, z = a.args assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.finite(z)) is True assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.finite(z)) is False assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x)) is None assert ask( Q.finite(a), ~Q.finite(x) & Q.finite(y) & Q.finite(z)) is False assert ask( Q.finite(a), ~Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(y)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.finite(z)) is False assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(x)) is None assert ask(Q.finite(a), Q.finite(y) & Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(y) & Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(z) & Q.nonzero(x) & Q.nonzero(y) & Q.nonzero(z)) is None assert ask(Q.finite(a), ~Q.finite(y) & ~Q.finite(z) & Q.nonzero(x) & Q.nonzero(y) & Q.nonzero(z)) is False x, y, z = symbols('x,y,z') assert ask(Q.finite(x**2)) is None assert ask(Q.finite(2**x)) is None assert ask(Q.finite(2**x), Q.finite(x)) is True assert ask(Q.finite(x**x)) is None assert ask(Q.finite(S.Half ** x)) is None assert ask(Q.finite(S.Half ** x), Q.positive(x)) is True assert ask(Q.finite(S.Half ** x), Q.negative(x)) is None assert ask(Q.finite(2**x), Q.negative(x)) is True assert ask(Q.finite(sqrt(x))) is None assert ask(Q.finite(2**x), ~Q.finite(x)) is False assert ask(Q.finite(x**2), ~Q.finite(x)) is False # sign function assert ask(Q.finite(sign(x))) is True assert ask(Q.finite(sign(x)), ~Q.finite(x)) is True # exponential functions assert ask(Q.finite(log(x))) is None assert ask(Q.finite(log(x)), Q.finite(x)) is None assert ask(Q.finite(log(x)), Q.nonzero(x)) is True assert ask(Q.finite(log(x)), Q.infinite(x)) is False assert ask(Q.finite(log(x)), Q.zero(x)) is False assert ask(Q.finite(exp(x))) is None assert ask(Q.finite(exp(x)), Q.finite(x)) is True assert ask(Q.finite(exp(2))) is True # trigonometric functions assert ask(Q.finite(sin(x))) is True assert ask(Q.finite(sin(x)), ~Q.finite(x)) is True assert ask(Q.finite(cos(x))) is True assert ask(Q.finite(cos(x)), ~Q.finite(x)) is True assert ask(Q.finite(2*sin(x))) is True assert ask(Q.finite(sin(x)**2)) is True assert ask(Q.finite(cos(x)**2)) is True assert ask(Q.finite(cos(x) + sin(x))) is True @XFAIL def test_bounded_xfail(): """We need to support relations in ask for this to work""" assert ask(Q.finite(sin(x)**x)) is True assert ask(Q.finite(cos(x)**x)) is True def test_commutative(): """By default objects are Q.commutative that is why it returns True for both key=True and key=False""" assert ask(Q.commutative(x)) is True assert ask(Q.commutative(x), ~Q.commutative(x)) is False assert ask(Q.commutative(x), Q.complex(x)) is True assert ask(Q.commutative(x), Q.imaginary(x)) is True assert ask(Q.commutative(x), Q.real(x)) is True assert ask(Q.commutative(x), Q.positive(x)) is True assert ask(Q.commutative(x), ~Q.commutative(y)) is True assert ask(Q.commutative(2*x)) is True assert ask(Q.commutative(2*x), ~Q.commutative(x)) is False assert ask(Q.commutative(x + 1)) is True assert ask(Q.commutative(x + 1), ~Q.commutative(x)) is False assert ask(Q.commutative(x**2)) is True assert ask(Q.commutative(x**2), ~Q.commutative(x)) is False assert ask(Q.commutative(log(x))) is True def test_complex(): assert ask(Q.complex(x)) is None assert ask(Q.complex(x), Q.complex(x)) is True assert ask(Q.complex(x), Q.complex(y)) is None assert ask(Q.complex(x), ~Q.complex(x)) is False assert ask(Q.complex(x), Q.real(x)) is True assert ask(Q.complex(x), ~Q.real(x)) is None assert ask(Q.complex(x), Q.rational(x)) is True assert ask(Q.complex(x), Q.irrational(x)) is True assert ask(Q.complex(x), Q.positive(x)) is True assert ask(Q.complex(x), Q.imaginary(x)) is True assert ask(Q.complex(x), Q.algebraic(x)) is True # a+b assert ask(Q.complex(x + 1), Q.complex(x)) is True assert ask(Q.complex(x + 1), Q.real(x)) is True assert ask(Q.complex(x + 1), Q.rational(x)) is True assert ask(Q.complex(x + 1), Q.irrational(x)) is True assert ask(Q.complex(x + 1), Q.imaginary(x)) is True assert ask(Q.complex(x + 1), Q.integer(x)) is True assert ask(Q.complex(x + 1), Q.even(x)) is True assert ask(Q.complex(x + 1), Q.odd(x)) is True assert ask(Q.complex(x + y), Q.complex(x) & Q.complex(y)) is True assert ask(Q.complex(x + y), Q.real(x) & Q.imaginary(y)) is True # a*x +b assert ask(Q.complex(2*x + 1), Q.complex(x)) is True assert ask(Q.complex(2*x + 1), Q.real(x)) is True assert ask(Q.complex(2*x + 1), Q.positive(x)) is True assert ask(Q.complex(2*x + 1), Q.rational(x)) is True assert ask(Q.complex(2*x + 1), Q.irrational(x)) is True assert ask(Q.complex(2*x + 1), Q.imaginary(x)) is True assert ask(Q.complex(2*x + 1), Q.integer(x)) is True assert ask(Q.complex(2*x + 1), Q.even(x)) is True assert ask(Q.complex(2*x + 1), Q.odd(x)) is True # x**2 assert ask(Q.complex(x**2), Q.complex(x)) is True assert ask(Q.complex(x**2), Q.real(x)) is True assert ask(Q.complex(x**2), Q.positive(x)) is True assert ask(Q.complex(x**2), Q.rational(x)) is True assert ask(Q.complex(x**2), Q.irrational(x)) is True assert ask(Q.complex(x**2), Q.imaginary(x)) is True assert ask(Q.complex(x**2), Q.integer(x)) is True assert ask(Q.complex(x**2), Q.even(x)) is True assert ask(Q.complex(x**2), Q.odd(x)) is True # 2**x assert ask(Q.complex(2**x), Q.complex(x)) is True assert ask(Q.complex(2**x), Q.real(x)) is True assert ask(Q.complex(2**x), Q.positive(x)) is True assert ask(Q.complex(2**x), Q.rational(x)) is True assert ask(Q.complex(2**x), Q.irrational(x)) is True assert ask(Q.complex(2**x), Q.imaginary(x)) is True assert ask(Q.complex(2**x), Q.integer(x)) is True assert ask(Q.complex(2**x), Q.even(x)) is True assert ask(Q.complex(2**x), Q.odd(x)) is True assert ask(Q.complex(x**y), Q.complex(x) & Q.complex(y)) is True # trigonometric expressions assert ask(Q.complex(sin(x))) is True assert ask(Q.complex(sin(2*x + 1))) is True assert ask(Q.complex(cos(x))) is True assert ask(Q.complex(cos(2*x + 1))) is True # exponential assert ask(Q.complex(exp(x))) is True assert ask(Q.complex(exp(x))) is True # Q.complexes assert ask(Q.complex(Abs(x))) is True assert ask(Q.complex(re(x))) is True assert ask(Q.complex(im(x))) is True def test_even_query(): assert ask(Q.even(x)) is None assert ask(Q.even(x), Q.integer(x)) is None assert ask(Q.even(x), ~Q.integer(x)) is False assert ask(Q.even(x), Q.rational(x)) is None assert ask(Q.even(x), Q.positive(x)) is None assert ask(Q.even(2*x)) is None assert ask(Q.even(2*x), Q.integer(x)) is True assert ask(Q.even(2*x), Q.even(x)) is True assert ask(Q.even(2*x), Q.irrational(x)) is False assert ask(Q.even(2*x), Q.odd(x)) is True assert ask(Q.even(2*x), ~Q.integer(x)) is None assert ask(Q.even(3*x), Q.integer(x)) is None assert ask(Q.even(3*x), Q.even(x)) is True assert ask(Q.even(3*x), Q.odd(x)) is False assert ask(Q.even(x + 1), Q.odd(x)) is True assert ask(Q.even(x + 1), Q.even(x)) is False assert ask(Q.even(x + 2), Q.odd(x)) is False assert ask(Q.even(x + 2), Q.even(x)) is True assert ask(Q.even(7 - x), Q.odd(x)) is True assert ask(Q.even(7 + x), Q.odd(x)) is True assert ask(Q.even(x + y), Q.odd(x) & Q.odd(y)) is True assert ask(Q.even(x + y), Q.odd(x) & Q.even(y)) is False assert ask(Q.even(x + y), Q.even(x) & Q.even(y)) is True assert ask(Q.even(2*x + 1), Q.integer(x)) is False assert ask(Q.even(2*x*y), Q.rational(x) & Q.rational(x)) is None assert ask(Q.even(2*x*y), Q.irrational(x) & Q.irrational(x)) is None assert ask(Q.even(x + y + z), Q.odd(x) & Q.odd(y) & Q.even(z)) is True assert ask(Q.even(x + y + z + t), Q.odd(x) & Q.odd(y) & Q.even(z) & Q.integer(t)) is None assert ask(Q.even(Abs(x)), Q.even(x)) is True assert ask(Q.even(Abs(x)), ~Q.even(x)) is None assert ask(Q.even(re(x)), Q.even(x)) is True assert ask(Q.even(re(x)), ~Q.even(x)) is None assert ask(Q.even(im(x)), Q.even(x)) is True assert ask(Q.even(im(x)), Q.real(x)) is True assert ask(Q.even((-1)**n), Q.integer(n)) is False assert ask(Q.even(k**2), Q.even(k)) is True assert ask(Q.even(n**2), Q.odd(n)) is False assert ask(Q.even(2**k), Q.even(k)) is None assert ask(Q.even(x**2)) is None assert ask(Q.even(k**m), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.even(n**m), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is False assert ask(Q.even(k**p), Q.even(k) & Q.integer(p) & Q.positive(p)) is True assert ask(Q.even(n**p), Q.odd(n) & Q.integer(p) & Q.positive(p)) is False assert ask(Q.even(m**k), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.even(p**k), Q.even(k) & Q.integer(p) & Q.positive(p)) is None assert ask(Q.even(m**n), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.even(p**n), Q.odd(n) & Q.integer(p) & Q.positive(p)) is None assert ask(Q.even(k**x), Q.even(k)) is None assert ask(Q.even(n**x), Q.odd(n)) is None assert ask(Q.even(x*y), Q.integer(x) & Q.integer(y)) is None assert ask(Q.even(x*x), Q.integer(x)) is None assert ask(Q.even(x*(x + y)), Q.integer(x) & Q.odd(y)) is True assert ask(Q.even(x*(x + y)), Q.integer(x) & Q.even(y)) is None @XFAIL def test_evenness_in_ternary_integer_product_with_odd(): # Tests that oddness inference is independent of term ordering. # Term ordering at the point of testing depends on SymPy's symbol order, so # we try to force a different order by modifying symbol names. assert ask(Q.even(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is True assert ask(Q.even(y*x*(x + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is True def test_evenness_in_ternary_integer_product_with_even(): assert ask(Q.even(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.even(z)) is None def test_extended_real(): assert ask(Q.extended_real(x), Q.positive(x)) is True assert ask(Q.extended_real(-x), Q.positive(x)) is True assert ask(Q.extended_real(-x), Q.negative(x)) is True assert ask(Q.extended_real(x + S.Infinity), Q.real(x)) is True def test_rational(): assert ask(Q.rational(x), Q.integer(x)) is True assert ask(Q.rational(x), Q.irrational(x)) is False assert ask(Q.rational(x), Q.real(x)) is None assert ask(Q.rational(x), Q.positive(x)) is None assert ask(Q.rational(x), Q.negative(x)) is None assert ask(Q.rational(x), Q.nonzero(x)) is None assert ask(Q.rational(x), ~Q.algebraic(x)) is False assert ask(Q.rational(2*x), Q.rational(x)) is True assert ask(Q.rational(2*x), Q.integer(x)) is True assert ask(Q.rational(2*x), Q.even(x)) is True assert ask(Q.rational(2*x), Q.odd(x)) is True assert ask(Q.rational(2*x), Q.irrational(x)) is False assert ask(Q.rational(x/2), Q.rational(x)) is True assert ask(Q.rational(x/2), Q.integer(x)) is True assert ask(Q.rational(x/2), Q.even(x)) is True assert ask(Q.rational(x/2), Q.odd(x)) is True assert ask(Q.rational(x/2), Q.irrational(x)) is False assert ask(Q.rational(1/x), Q.rational(x)) is True assert ask(Q.rational(1/x), Q.integer(x)) is True assert ask(Q.rational(1/x), Q.even(x)) is True assert ask(Q.rational(1/x), Q.odd(x)) is True assert ask(Q.rational(1/x), Q.irrational(x)) is False assert ask(Q.rational(2/x), Q.rational(x)) is True assert ask(Q.rational(2/x), Q.integer(x)) is True assert ask(Q.rational(2/x), Q.even(x)) is True assert ask(Q.rational(2/x), Q.odd(x)) is True assert ask(Q.rational(2/x), Q.irrational(x)) is False assert ask(Q.rational(x), ~Q.algebraic(x)) is False # with multiple symbols assert ask(Q.rational(x*y), Q.irrational(x) & Q.irrational(y)) is None assert ask(Q.rational(y/x), Q.rational(x) & Q.rational(y)) is True assert ask(Q.rational(y/x), Q.integer(x) & Q.rational(y)) is True assert ask(Q.rational(y/x), Q.even(x) & Q.rational(y)) is True assert ask(Q.rational(y/x), Q.odd(x) & Q.rational(y)) is True assert ask(Q.rational(y/x), Q.irrational(x) & Q.rational(y)) is False for f in [exp, sin, tan, asin, atan, cos]: assert ask(Q.rational(f(7))) is False assert ask(Q.rational(f(7, evaluate=False))) is False assert ask(Q.rational(f(0, evaluate=False))) is True assert ask(Q.rational(f(x)), Q.rational(x)) is None assert ask(Q.rational(f(x)), Q.rational(x) & Q.nonzero(x)) is False for g in [log, acos]: assert ask(Q.rational(g(7))) is False assert ask(Q.rational(g(7, evaluate=False))) is False assert ask(Q.rational(g(1, evaluate=False))) is True assert ask(Q.rational(g(x)), Q.rational(x)) is None assert ask(Q.rational(g(x)), Q.rational(x) & Q.nonzero(x - 1)) is False for h in [cot, acot]: assert ask(Q.rational(h(7))) is False assert ask(Q.rational(h(7, evaluate=False))) is False assert ask(Q.rational(h(x)), Q.rational(x)) is False def test_hermitian(): assert ask(Q.hermitian(x)) is None assert ask(Q.hermitian(x), Q.antihermitian(x)) is False assert ask(Q.hermitian(x), Q.imaginary(x)) is False assert ask(Q.hermitian(x), Q.prime(x)) is True assert ask(Q.hermitian(x), Q.real(x)) is True assert ask(Q.hermitian(x + 1), Q.antihermitian(x)) is False assert ask(Q.hermitian(x + 1), Q.complex(x)) is None assert ask(Q.hermitian(x + 1), Q.hermitian(x)) is True assert ask(Q.hermitian(x + 1), Q.imaginary(x)) is False assert ask(Q.hermitian(x + 1), Q.real(x)) is True assert ask(Q.hermitian(x + I), Q.antihermitian(x)) is None assert ask(Q.hermitian(x + I), Q.complex(x)) is None assert ask(Q.hermitian(x + I), Q.hermitian(x)) is False assert ask(Q.hermitian(x + I), Q.imaginary(x)) is None assert ask(Q.hermitian(x + I), Q.real(x)) is False assert ask( Q.hermitian(x + y), Q.antihermitian(x) & Q.antihermitian(y)) is None assert ask(Q.hermitian(x + y), Q.antihermitian(x) & Q.complex(y)) is None assert ask( Q.hermitian(x + y), Q.antihermitian(x) & Q.hermitian(y)) is False assert ask(Q.hermitian(x + y), Q.antihermitian(x) & Q.imaginary(y)) is None assert ask(Q.hermitian(x + y), Q.antihermitian(x) & Q.real(y)) is False assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.complex(y)) is None assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.hermitian(y)) is True assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.imaginary(y)) is False assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.real(y)) is True assert ask(Q.hermitian(x + y), Q.imaginary(x) & Q.complex(y)) is None assert ask(Q.hermitian(x + y), Q.imaginary(x) & Q.imaginary(y)) is None assert ask(Q.hermitian(x + y), Q.imaginary(x) & Q.real(y)) is False assert ask(Q.hermitian(x + y), Q.real(x) & Q.complex(y)) is None assert ask(Q.hermitian(x + y), Q.real(x) & Q.real(y)) is True assert ask(Q.hermitian(I*x), Q.antihermitian(x)) is True assert ask(Q.hermitian(I*x), Q.complex(x)) is None assert ask(Q.hermitian(I*x), Q.hermitian(x)) is False assert ask(Q.hermitian(I*x), Q.imaginary(x)) is True assert ask(Q.hermitian(I*x), Q.real(x)) is False assert ask(Q.hermitian(x*y), Q.hermitian(x) & Q.real(y)) is True assert ask( Q.hermitian(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is True assert ask(Q.hermitian(x + y + z), Q.real(x) & Q.real(y) & Q.imaginary(z)) is False assert ask(Q.hermitian(x + y + z), Q.real(x) & Q.imaginary(y) & Q.imaginary(z)) is None assert ask(Q.hermitian(x + y + z), Q.imaginary(x) & Q.imaginary(y) & Q.imaginary(z)) is None assert ask(Q.antihermitian(x)) is None assert ask(Q.antihermitian(x), Q.real(x)) is False assert ask(Q.antihermitian(x), Q.prime(x)) is False assert ask(Q.antihermitian(x + 1), Q.antihermitian(x)) is False assert ask(Q.antihermitian(x + 1), Q.complex(x)) is None assert ask(Q.antihermitian(x + 1), Q.hermitian(x)) is None assert ask(Q.antihermitian(x + 1), Q.imaginary(x)) is False assert ask(Q.antihermitian(x + 1), Q.real(x)) is False assert ask(Q.antihermitian(x + I), Q.antihermitian(x)) is True assert ask(Q.antihermitian(x + I), Q.complex(x)) is None assert ask(Q.antihermitian(x + I), Q.hermitian(x)) is False assert ask(Q.antihermitian(x + I), Q.imaginary(x)) is True assert ask(Q.antihermitian(x + I), Q.real(x)) is False assert ask( Q.antihermitian(x + y), Q.antihermitian(x) & Q.antihermitian(y) ) is True assert ask( Q.antihermitian(x + y), Q.antihermitian(x) & Q.complex(y)) is None assert ask( Q.antihermitian(x + y), Q.antihermitian(x) & Q.hermitian(y)) is False assert ask( Q.antihermitian(x + y), Q.antihermitian(x) & Q.imaginary(y)) is True assert ask(Q.antihermitian(x + y), Q.antihermitian(x) & Q.real(y) ) is False assert ask(Q.antihermitian(x + y), Q.hermitian(x) & Q.complex(y)) is None assert ask(Q.antihermitian(x + y), Q.hermitian(x) & Q.hermitian(y) ) is None assert ask( Q.antihermitian(x + y), Q.hermitian(x) & Q.imaginary(y)) is False assert ask(Q.antihermitian(x + y), Q.hermitian(x) & Q.real(y)) is None assert ask(Q.antihermitian(x + y), Q.imaginary(x) & Q.complex(y)) is None assert ask(Q.antihermitian(x + y), Q.imaginary(x) & Q.imaginary(y)) is True assert ask(Q.antihermitian(x + y), Q.imaginary(x) & Q.real(y)) is False assert ask(Q.antihermitian(x + y), Q.real(x) & Q.complex(y)) is None assert ask(Q.antihermitian(x + y), Q.real(x) & Q.real(y)) is False assert ask(Q.antihermitian(I*x), Q.real(x)) is True assert ask(Q.antihermitian(I*x), Q.antihermitian(x)) is False assert ask(Q.antihermitian(I*x), Q.complex(x)) is None assert ask(Q.antihermitian(x*y), Q.antihermitian(x) & Q.real(y)) is True assert ask(Q.antihermitian(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is False assert ask(Q.antihermitian(x + y + z), Q.real(x) & Q.real(y) & Q.imaginary(z)) is None assert ask(Q.antihermitian(x + y + z), Q.real(x) & Q.imaginary(y) & Q.imaginary(z)) is False assert ask(Q.antihermitian(x + y + z), Q.imaginary(x) & Q.imaginary(y) & Q.imaginary(z)) is True def test_imaginary(): assert ask(Q.imaginary(x)) is None assert ask(Q.imaginary(x), Q.real(x)) is False assert ask(Q.imaginary(x), Q.prime(x)) is False assert ask(Q.imaginary(x + 1), Q.real(x)) is False assert ask(Q.imaginary(x + 1), Q.imaginary(x)) is False assert ask(Q.imaginary(x + I), Q.real(x)) is False assert ask(Q.imaginary(x + I), Q.imaginary(x)) is True assert ask(Q.imaginary(x + y), Q.imaginary(x) & Q.imaginary(y)) is True assert ask(Q.imaginary(x + y), Q.real(x) & Q.real(y)) is False assert ask(Q.imaginary(x + y), Q.imaginary(x) & Q.real(y)) is False assert ask(Q.imaginary(x + y), Q.complex(x) & Q.real(y)) is None assert ask( Q.imaginary(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is False assert ask(Q.imaginary(x + y + z), Q.real(x) & Q.real(y) & Q.imaginary(z)) is None assert ask(Q.imaginary(x + y + z), Q.real(x) & Q.imaginary(y) & Q.imaginary(z)) is False assert ask(Q.imaginary(I*x), Q.real(x)) is True assert ask(Q.imaginary(I*x), Q.imaginary(x)) is False assert ask(Q.imaginary(I*x), Q.complex(x)) is None assert ask(Q.imaginary(x*y), Q.imaginary(x) & Q.real(y)) is True assert ask(Q.imaginary(x*y), Q.real(x) & Q.real(y)) is False assert ask(Q.imaginary(I**x), Q.negative(x)) is None assert ask(Q.imaginary(I**x), Q.positive(x)) is None assert ask(Q.imaginary(I**x), Q.even(x)) is False assert ask(Q.imaginary(I**x), Q.odd(x)) is True assert ask(Q.imaginary(I**x), Q.imaginary(x)) is False assert ask(Q.imaginary((2*I)**x), Q.imaginary(x)) is False assert ask(Q.imaginary(x**0), Q.imaginary(x)) is False assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.imaginary(y)) is None assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.real(y)) is None assert ask(Q.imaginary(x**y), Q.real(x) & Q.imaginary(y)) is None assert ask(Q.imaginary(x**y), Q.real(x) & Q.real(y)) is None assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.integer(y)) is None assert ask(Q.imaginary(x**y), Q.imaginary(y) & Q.integer(x)) is None assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.odd(y)) is True assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.rational(y)) is None assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.even(y)) is False assert ask(Q.imaginary(x**y), Q.real(x) & Q.integer(y)) is False assert ask(Q.imaginary(x**y), Q.positive(x) & Q.real(y)) is False assert ask(Q.imaginary(x**y), Q.negative(x) & Q.real(y)) is None assert ask(Q.imaginary(x**y), Q.negative(x) & Q.real(y) & ~Q.rational(y)) is False assert ask(Q.imaginary(x**y), Q.integer(x) & Q.imaginary(y)) is None assert ask(Q.imaginary(x**y), Q.negative(x) & Q.rational(y) & Q.integer(2*y)) is True assert ask(Q.imaginary(x**y), Q.negative(x) & Q.rational(y) & ~Q.integer(2*y)) is False assert ask(Q.imaginary(x**y), Q.negative(x) & Q.rational(y)) is None assert ask(Q.imaginary(x**y), Q.real(x) & Q.rational(y) & ~Q.integer(2*y)) is False assert ask(Q.imaginary(x**y), Q.real(x) & Q.rational(y) & Q.integer(2*y)) is None # logarithm assert ask(Q.imaginary(log(I))) is True assert ask(Q.imaginary(log(2*I))) is False assert ask(Q.imaginary(log(I + 1))) is False assert ask(Q.imaginary(log(x)), Q.complex(x)) is None assert ask(Q.imaginary(log(x)), Q.imaginary(x)) is None assert ask(Q.imaginary(log(x)), Q.positive(x)) is False assert ask(Q.imaginary(log(exp(x))), Q.complex(x)) is None assert ask(Q.imaginary(log(exp(x))), Q.imaginary(x)) is None # zoo/I/a+I*b assert ask(Q.imaginary(log(exp(I)))) is True # exponential assert ask(Q.imaginary(exp(x)**x), Q.imaginary(x)) is False eq = Pow(exp(pi*I*x, evaluate=False), x, evaluate=False) assert ask(Q.imaginary(eq), Q.even(x)) is False eq = Pow(exp(pi*I*x/2, evaluate=False), x, evaluate=False) assert ask(Q.imaginary(eq), Q.odd(x)) is True assert ask(Q.imaginary(exp(3*I*pi*x)**x), Q.integer(x)) is False assert ask(Q.imaginary(exp(2*pi*I, evaluate=False))) is False assert ask(Q.imaginary(exp(pi*I/2, evaluate=False))) is True # issue 7886 assert ask(Q.imaginary(Pow(x, Rational(1, 4))), Q.real(x) & Q.negative(x)) is False def test_integer(): assert ask(Q.integer(x)) is None assert ask(Q.integer(x), Q.integer(x)) is True assert ask(Q.integer(x), ~Q.integer(x)) is False assert ask(Q.integer(x), ~Q.real(x)) is False assert ask(Q.integer(x), ~Q.positive(x)) is None assert ask(Q.integer(x), Q.even(x) | Q.odd(x)) is True assert ask(Q.integer(2*x), Q.integer(x)) is True assert ask(Q.integer(2*x), Q.even(x)) is True assert ask(Q.integer(2*x), Q.prime(x)) is True assert ask(Q.integer(2*x), Q.rational(x)) is None assert ask(Q.integer(2*x), Q.real(x)) is None assert ask(Q.integer(sqrt(2)*x), Q.integer(x)) is False assert ask(Q.integer(sqrt(2)*x), Q.irrational(x)) is None assert ask(Q.integer(x/2), Q.odd(x)) is False assert ask(Q.integer(x/2), Q.even(x)) is True assert ask(Q.integer(x/3), Q.odd(x)) is None assert ask(Q.integer(x/3), Q.even(x)) is None def test_negative(): assert ask(Q.negative(x), Q.negative(x)) is True assert ask(Q.negative(x), Q.positive(x)) is False assert ask(Q.negative(x), ~Q.real(x)) is False assert ask(Q.negative(x), Q.prime(x)) is False assert ask(Q.negative(x), ~Q.prime(x)) is None assert ask(Q.negative(-x), Q.positive(x)) is True assert ask(Q.negative(-x), ~Q.positive(x)) is None assert ask(Q.negative(-x), Q.negative(x)) is False assert ask(Q.negative(-x), Q.positive(x)) is True assert ask(Q.negative(x - 1), Q.negative(x)) is True assert ask(Q.negative(x + y)) is None assert ask(Q.negative(x + y), Q.negative(x)) is None assert ask(Q.negative(x + y), Q.negative(x) & Q.negative(y)) is True assert ask(Q.negative(x + y), Q.negative(x) & Q.nonpositive(y)) is True assert ask(Q.negative(2 + I)) is False # although this could be False, it is representative of expressions # that don't evaluate to a zero with precision assert ask(Q.negative(cos(I)**2 + sin(I)**2 - 1)) is None assert ask(Q.negative(-I + I*(cos(2)**2 + sin(2)**2))) is None assert ask(Q.negative(x**2)) is None assert ask(Q.negative(x**2), Q.real(x)) is False assert ask(Q.negative(x**1.4), Q.real(x)) is None assert ask(Q.negative(x**I), Q.positive(x)) is None assert ask(Q.negative(x*y)) is None assert ask(Q.negative(x*y), Q.positive(x) & Q.positive(y)) is False assert ask(Q.negative(x*y), Q.positive(x) & Q.negative(y)) is True assert ask(Q.negative(x*y), Q.complex(x) & Q.complex(y)) is None assert ask(Q.negative(x**y)) is None assert ask(Q.negative(x**y), Q.negative(x) & Q.even(y)) is False assert ask(Q.negative(x**y), Q.negative(x) & Q.odd(y)) is True assert ask(Q.negative(x**y), Q.positive(x) & Q.integer(y)) is False assert ask(Q.negative(Abs(x))) is False def test_nonzero(): assert ask(Q.nonzero(x)) is None assert ask(Q.nonzero(x), Q.real(x)) is None assert ask(Q.nonzero(x), Q.positive(x)) is True assert ask(Q.nonzero(x), Q.negative(x)) is True assert ask(Q.nonzero(x), Q.negative(x) | Q.positive(x)) is True assert ask(Q.nonzero(x + y)) is None assert ask(Q.nonzero(x + y), Q.positive(x) & Q.positive(y)) is True assert ask(Q.nonzero(x + y), Q.positive(x) & Q.negative(y)) is None assert ask(Q.nonzero(x + y), Q.negative(x) & Q.negative(y)) is True assert ask(Q.nonzero(2*x)) is None assert ask(Q.nonzero(2*x), Q.positive(x)) is True assert ask(Q.nonzero(2*x), Q.negative(x)) is True assert ask(Q.nonzero(x*y), Q.nonzero(x)) is None assert ask(Q.nonzero(x*y), Q.nonzero(x) & Q.nonzero(y)) is True assert ask(Q.nonzero(x**y), Q.nonzero(x)) is True assert ask(Q.nonzero(Abs(x))) is None assert ask(Q.nonzero(Abs(x)), Q.nonzero(x)) is True assert ask(Q.nonzero(log(exp(2*I)))) is False # although this could be False, it is representative of expressions # that don't evaluate to a zero with precision assert ask(Q.nonzero(cos(1)**2 + sin(1)**2 - 1)) is None def test_zero(): assert ask(Q.zero(x)) is None assert ask(Q.zero(x), Q.real(x)) is None assert ask(Q.zero(x), Q.positive(x)) is False assert ask(Q.zero(x), Q.negative(x)) is False assert ask(Q.zero(x), Q.negative(x) | Q.positive(x)) is False assert ask(Q.zero(x), Q.nonnegative(x) & Q.nonpositive(x)) is True assert ask(Q.zero(x + y)) is None assert ask(Q.zero(x + y), Q.positive(x) & Q.positive(y)) is False assert ask(Q.zero(x + y), Q.positive(x) & Q.negative(y)) is None assert ask(Q.zero(x + y), Q.negative(x) & Q.negative(y)) is False assert ask(Q.zero(2*x)) is None assert ask(Q.zero(2*x), Q.positive(x)) is False assert ask(Q.zero(2*x), Q.negative(x)) is False assert ask(Q.zero(x*y), Q.nonzero(x)) is None assert ask(Q.zero(Abs(x))) is None assert ask(Q.zero(Abs(x)), Q.zero(x)) is True assert ask(Q.integer(x), Q.zero(x)) is True assert ask(Q.even(x), Q.zero(x)) is True assert ask(Q.odd(x), Q.zero(x)) is False assert ask(Q.zero(x), Q.even(x)) is None assert ask(Q.zero(x), Q.odd(x)) is False assert ask(Q.zero(x) | Q.zero(y), Q.zero(x*y)) is True def test_odd_query(): assert ask(Q.odd(x)) is None assert ask(Q.odd(x), Q.odd(x)) is True assert ask(Q.odd(x), Q.integer(x)) is None assert ask(Q.odd(x), ~Q.integer(x)) is False assert ask(Q.odd(x), Q.rational(x)) is None assert ask(Q.odd(x), Q.positive(x)) is None assert ask(Q.odd(-x), Q.odd(x)) is True assert ask(Q.odd(2*x)) is None assert ask(Q.odd(2*x), Q.integer(x)) is False assert ask(Q.odd(2*x), Q.odd(x)) is False assert ask(Q.odd(2*x), Q.irrational(x)) is False assert ask(Q.odd(2*x), ~Q.integer(x)) is None assert ask(Q.odd(3*x), Q.integer(x)) is None assert ask(Q.odd(x/3), Q.odd(x)) is None assert ask(Q.odd(x/3), Q.even(x)) is None assert ask(Q.odd(x + 1), Q.even(x)) is True assert ask(Q.odd(x + 2), Q.even(x)) is False assert ask(Q.odd(x + 2), Q.odd(x)) is True assert ask(Q.odd(3 - x), Q.odd(x)) is False assert ask(Q.odd(3 - x), Q.even(x)) is True assert ask(Q.odd(3 + x), Q.odd(x)) is False assert ask(Q.odd(3 + x), Q.even(x)) is True assert ask(Q.odd(x + y), Q.odd(x) & Q.odd(y)) is False assert ask(Q.odd(x + y), Q.odd(x) & Q.even(y)) is True assert ask(Q.odd(x - y), Q.even(x) & Q.odd(y)) is True assert ask(Q.odd(x - y), Q.odd(x) & Q.odd(y)) is False assert ask(Q.odd(x + y + z), Q.odd(x) & Q.odd(y) & Q.even(z)) is False assert ask(Q.odd(x + y + z + t), Q.odd(x) & Q.odd(y) & Q.even(z) & Q.integer(t)) is None assert ask(Q.odd(2*x + 1), Q.integer(x)) is True assert ask(Q.odd(2*x + y), Q.integer(x) & Q.odd(y)) is True assert ask(Q.odd(2*x + y), Q.integer(x) & Q.even(y)) is False assert ask(Q.odd(2*x + y), Q.integer(x) & Q.integer(y)) is None assert ask(Q.odd(x*y), Q.odd(x) & Q.even(y)) is False assert ask(Q.odd(x*y), Q.odd(x) & Q.odd(y)) is True assert ask(Q.odd(2*x*y), Q.rational(x) & Q.rational(x)) is None assert ask(Q.odd(2*x*y), Q.irrational(x) & Q.irrational(x)) is None assert ask(Q.odd(Abs(x)), Q.odd(x)) is True assert ask(Q.odd((-1)**n), Q.integer(n)) is True assert ask(Q.odd(k**2), Q.even(k)) is False assert ask(Q.odd(n**2), Q.odd(n)) is True assert ask(Q.odd(3**k), Q.even(k)) is None assert ask(Q.odd(k**m), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.odd(n**m), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is True assert ask(Q.odd(k**p), Q.even(k) & Q.integer(p) & Q.positive(p)) is False assert ask(Q.odd(n**p), Q.odd(n) & Q.integer(p) & Q.positive(p)) is True assert ask(Q.odd(m**k), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.odd(p**k), Q.even(k) & Q.integer(p) & Q.positive(p)) is None assert ask(Q.odd(m**n), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.odd(p**n), Q.odd(n) & Q.integer(p) & Q.positive(p)) is None assert ask(Q.odd(k**x), Q.even(k)) is None assert ask(Q.odd(n**x), Q.odd(n)) is None assert ask(Q.odd(x*y), Q.integer(x) & Q.integer(y)) is None assert ask(Q.odd(x*x), Q.integer(x)) is None assert ask(Q.odd(x*(x + y)), Q.integer(x) & Q.odd(y)) is False assert ask(Q.odd(x*(x + y)), Q.integer(x) & Q.even(y)) is None @XFAIL def test_oddness_in_ternary_integer_product_with_odd(): # Tests that oddness inference is independent of term ordering. # Term ordering at the point of testing depends on SymPy's symbol order, so # we try to force a different order by modifying symbol names. assert ask(Q.odd(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is False assert ask(Q.odd(y*x*(x + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is False def test_oddness_in_ternary_integer_product_with_even(): assert ask(Q.odd(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.even(z)) is None def test_prime(): assert ask(Q.prime(x), Q.prime(x)) is True assert ask(Q.prime(x), ~Q.prime(x)) is False assert ask(Q.prime(x), Q.integer(x)) is None assert ask(Q.prime(x), ~Q.integer(x)) is False assert ask(Q.prime(2*x), Q.integer(x)) is None assert ask(Q.prime(x*y)) is None assert ask(Q.prime(x*y), Q.prime(x)) is None assert ask(Q.prime(x*y), Q.integer(x) & Q.integer(y)) is None assert ask(Q.prime(4*x), Q.integer(x)) is False assert ask(Q.prime(4*x)) is None assert ask(Q.prime(x**2), Q.integer(x)) is False assert ask(Q.prime(x**2), Q.prime(x)) is False assert ask(Q.prime(x**y), Q.integer(x) & Q.integer(y)) is False def test_positive(): assert ask(Q.positive(x), Q.positive(x)) is True assert ask(Q.positive(x), Q.negative(x)) is False assert ask(Q.positive(x), Q.nonzero(x)) is None assert ask(Q.positive(-x), Q.positive(x)) is False assert ask(Q.positive(-x), Q.negative(x)) is True assert ask(Q.positive(x + y), Q.positive(x) & Q.positive(y)) is True assert ask(Q.positive(x + y), Q.positive(x) & Q.nonnegative(y)) is True assert ask(Q.positive(x + y), Q.positive(x) & Q.negative(y)) is None assert ask(Q.positive(x + y), Q.positive(x) & Q.imaginary(y)) is False assert ask(Q.positive(2*x), Q.positive(x)) is True assumptions = Q.positive(x) & Q.negative(y) & Q.negative(z) & Q.positive(w) assert ask(Q.positive(x*y*z)) is None assert ask(Q.positive(x*y*z), assumptions) is True assert ask(Q.positive(-x*y*z), assumptions) is False assert ask(Q.positive(x**I), Q.positive(x)) is None assert ask(Q.positive(x**2), Q.positive(x)) is True assert ask(Q.positive(x**2), Q.negative(x)) is True assert ask(Q.positive(x**3), Q.negative(x)) is False assert ask(Q.positive(1/(1 + x**2)), Q.real(x)) is True assert ask(Q.positive(2**I)) is False assert ask(Q.positive(2 + I)) is False # although this could be False, it is representative of expressions # that don't evaluate to a zero with precision assert ask(Q.positive(cos(I)**2 + sin(I)**2 - 1)) is None assert ask(Q.positive(-I + I*(cos(2)**2 + sin(2)**2))) is None #exponential assert ask(Q.positive(exp(x)), Q.real(x)) is True assert ask(~Q.negative(exp(x)), Q.real(x)) is True assert ask(Q.positive(x + exp(x)), Q.real(x)) is None assert ask(Q.positive(exp(x)), Q.imaginary(x)) is None assert ask(Q.positive(exp(2*pi*I, evaluate=False)), Q.imaginary(x)) is True assert ask(Q.negative(exp(pi*I, evaluate=False)), Q.imaginary(x)) is True assert ask(Q.positive(exp(x*pi*I)), Q.even(x)) is True assert ask(Q.positive(exp(x*pi*I)), Q.odd(x)) is False assert ask(Q.positive(exp(x*pi*I)), Q.real(x)) is None # logarithm assert ask(Q.positive(log(x)), Q.imaginary(x)) is False assert ask(Q.positive(log(x)), Q.negative(x)) is False assert ask(Q.positive(log(x)), Q.positive(x)) is None assert ask(Q.positive(log(x + 2)), Q.positive(x)) is True # factorial assert ask(Q.positive(factorial(x)), Q.integer(x) & Q.positive(x)) assert ask(Q.positive(factorial(x)), Q.integer(x)) is None #absolute value assert ask(Q.positive(Abs(x))) is None # Abs(0) = 0 assert ask(Q.positive(Abs(x)), Q.positive(x)) is True def test_nonpositive(): assert ask(Q.nonpositive(-1)) assert ask(Q.nonpositive(0)) assert ask(Q.nonpositive(1)) is False assert ask(~Q.positive(x), Q.nonpositive(x)) assert ask(Q.nonpositive(x), Q.positive(x)) is False assert ask(Q.nonpositive(sqrt(-1))) is False assert ask(Q.nonpositive(x), Q.imaginary(x)) is False def test_nonnegative(): assert ask(Q.nonnegative(-1)) is False assert ask(Q.nonnegative(0)) assert ask(Q.nonnegative(1)) assert ask(~Q.negative(x), Q.nonnegative(x)) assert ask(Q.nonnegative(x), Q.negative(x)) is False assert ask(Q.nonnegative(sqrt(-1))) is False assert ask(Q.nonnegative(x), Q.imaginary(x)) is False def test_real_basic(): assert ask(Q.real(x)) is None assert ask(Q.real(x), Q.real(x)) is True assert ask(Q.real(x), Q.nonzero(x)) is True assert ask(Q.real(x), Q.positive(x)) is True assert ask(Q.real(x), Q.negative(x)) is True assert ask(Q.real(x), Q.integer(x)) is True assert ask(Q.real(x), Q.even(x)) is True assert ask(Q.real(x), Q.prime(x)) is True assert ask(Q.real(x/sqrt(2)), Q.real(x)) is True assert ask(Q.real(x/sqrt(-2)), Q.real(x)) is False assert ask(Q.real(x + 1), Q.real(x)) is True assert ask(Q.real(x + I), Q.real(x)) is False assert ask(Q.real(x + I), Q.complex(x)) is None assert ask(Q.real(2*x), Q.real(x)) is True assert ask(Q.real(I*x), Q.real(x)) is False assert ask(Q.real(I*x), Q.imaginary(x)) is True assert ask(Q.real(I*x), Q.complex(x)) is None def test_real_pow(): assert ask(Q.real(x**2), Q.real(x)) is True assert ask(Q.real(sqrt(x)), Q.negative(x)) is False assert ask(Q.real(x**y), Q.real(x) & Q.integer(y)) is True assert ask(Q.real(x**y), Q.real(x) & Q.real(y)) is None assert ask(Q.real(x**y), Q.positive(x) & Q.real(y)) is True assert ask(Q.real(x**y), Q.imaginary(x) & Q.imaginary(y)) is None # I**I or (2*I)**I assert ask(Q.real(x**y), Q.imaginary(x) & Q.real(y)) is None # I**1 or I**0 assert ask(Q.real(x**y), Q.real(x) & Q.imaginary(y)) is None # could be exp(2*pi*I) or 2**I assert ask(Q.real(x**0), Q.imaginary(x)) is True assert ask(Q.real(x**y), Q.real(x) & Q.integer(y)) is True assert ask(Q.real(x**y), Q.positive(x) & Q.real(y)) is True assert ask(Q.real(x**y), Q.real(x) & Q.rational(y)) is None assert ask(Q.real(x**y), Q.imaginary(x) & Q.integer(y)) is None assert ask(Q.real(x**y), Q.imaginary(x) & Q.odd(y)) is False assert ask(Q.real(x**y), Q.imaginary(x) & Q.even(y)) is True assert ask(Q.real(x**(y/z)), Q.real(x) & Q.real(y/z) & Q.rational(y/z) & Q.even(z) & Q.positive(x)) is True assert ask(Q.real(x**(y/z)), Q.real(x) & Q.rational(y/z) & Q.even(z) & Q.negative(x)) is False assert ask(Q.real(x**(y/z)), Q.real(x) & Q.integer(y/z)) is True assert ask(Q.real(x**(y/z)), Q.real(x) & Q.real(y/z) & Q.positive(x)) is True assert ask(Q.real(x**(y/z)), Q.real(x) & Q.real(y/z) & Q.negative(x)) is False assert ask(Q.real((-I)**i), Q.imaginary(i)) is True assert ask(Q.real(I**i), Q.imaginary(i)) is True assert ask(Q.real(i**i), Q.imaginary(i)) is None # i might be 2*I assert ask(Q.real(x**i), Q.imaginary(i)) is None # x could be 0 assert ask(Q.real(x**(I*pi/log(x))), Q.real(x)) is True def test_real_functions(): # trigonometric functions assert ask(Q.real(sin(x))) is None assert ask(Q.real(cos(x))) is None assert ask(Q.real(sin(x)), Q.real(x)) is True assert ask(Q.real(cos(x)), Q.real(x)) is True # exponential function assert ask(Q.real(exp(x))) is None assert ask(Q.real(exp(x)), Q.real(x)) is True assert ask(Q.real(x + exp(x)), Q.real(x)) is True assert ask(Q.real(exp(2*pi*I, evaluate=False))) is True assert ask(Q.real(exp(pi*I, evaluate=False))) is True assert ask(Q.real(exp(pi*I/2, evaluate=False))) is False # logarithm assert ask(Q.real(log(I))) is False assert ask(Q.real(log(2*I))) is False assert ask(Q.real(log(I + 1))) is False assert ask(Q.real(log(x)), Q.complex(x)) is None assert ask(Q.real(log(x)), Q.imaginary(x)) is False assert ask(Q.real(log(exp(x))), Q.imaginary(x)) is None # exp(2*pi*I) is 1, log(exp(pi*I)) is pi*I (disregarding periodicity) assert ask(Q.real(log(exp(x))), Q.complex(x)) is None eq = Pow(exp(2*pi*I*x, evaluate=False), x, evaluate=False) assert ask(Q.real(eq), Q.integer(x)) is True assert ask(Q.real(exp(x)**x), Q.imaginary(x)) is True assert ask(Q.real(exp(x)**x), Q.complex(x)) is None # Q.complexes assert ask(Q.real(re(x))) is True assert ask(Q.real(im(x))) is True def test_matrix(): # hermitian assert ask(Q.hermitian(Matrix([[2, 2 + I, 4], [2 - I, 3, I], [4, -I, 1]]))) == True assert ask(Q.hermitian(Matrix([[2, 2 + I, 4], [2 + I, 3, I], [4, -I, 1]]))) == False z = symbols('z', complex=True) assert ask(Q.hermitian(Matrix([[2, 2 + I, z], [2 - I, 3, I], [4, -I, 1]]))) == None assert ask(Q.hermitian(SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))))) == True assert ask(Q.hermitian(SparseMatrix(((25, 15, -5), (15, I, 0), (-5, 0, 11))))) == False assert ask(Q.hermitian(SparseMatrix(((25, 15, -5), (15, z, 0), (-5, 0, 11))))) == None # antihermitian A = Matrix([[0, -2 - I, 0], [2 - I, 0, -I], [0, -I, 0]]) B = Matrix([[-I, 2 + I, 0], [-2 + I, 0, 2 + I], [0, -2 + I, -I]]) assert ask(Q.antihermitian(A)) is True assert ask(Q.antihermitian(B)) is True assert ask(Q.antihermitian(A**2)) is False C = (B**3) C.simplify() assert ask(Q.antihermitian(C)) is True _A = Matrix([[0, -2 - I, 0], [z, 0, -I], [0, -I, 0]]) assert ask(Q.antihermitian(_A)) is None def test_algebraic(): assert ask(Q.algebraic(x)) is None assert ask(Q.algebraic(I)) is True assert ask(Q.algebraic(2*I)) is True assert ask(Q.algebraic(I/3)) is True assert ask(Q.algebraic(sqrt(7))) is True assert ask(Q.algebraic(2*sqrt(7))) is True assert ask(Q.algebraic(sqrt(7)/3)) is True assert ask(Q.algebraic(I*sqrt(3))) is True assert ask(Q.algebraic(sqrt(1 + I*sqrt(3)))) is True assert ask(Q.algebraic(1 + I*sqrt(3)**Rational(17, 31))) is True assert ask(Q.algebraic(1 + I*sqrt(3)**(17/pi))) is False for f in [exp, sin, tan, asin, atan, cos]: assert ask(Q.algebraic(f(7))) is False assert ask(Q.algebraic(f(7, evaluate=False))) is False assert ask(Q.algebraic(f(0, evaluate=False))) is True assert ask(Q.algebraic(f(x)), Q.algebraic(x)) is None assert ask(Q.algebraic(f(x)), Q.algebraic(x) & Q.nonzero(x)) is False for g in [log, acos]: assert ask(Q.algebraic(g(7))) is False assert ask(Q.algebraic(g(7, evaluate=False))) is False assert ask(Q.algebraic(g(1, evaluate=False))) is True assert ask(Q.algebraic(g(x)), Q.algebraic(x)) is None assert ask(Q.algebraic(g(x)), Q.algebraic(x) & Q.nonzero(x - 1)) is False for h in [cot, acot]: assert ask(Q.algebraic(h(7))) is False assert ask(Q.algebraic(h(7, evaluate=False))) is False assert ask(Q.algebraic(h(x)), Q.algebraic(x)) is False assert ask(Q.algebraic(sqrt(sin(7)))) is False assert ask(Q.algebraic(sqrt(y + I*sqrt(7)))) is None assert ask(Q.algebraic(2.47)) is True assert ask(Q.algebraic(x), Q.transcendental(x)) is False assert ask(Q.transcendental(x), Q.algebraic(x)) is False def test_global(): """Test ask with global assumptions""" assert ask(Q.integer(x)) is None global_assumptions.add(Q.integer(x)) assert ask(Q.integer(x)) is True global_assumptions.clear() assert ask(Q.integer(x)) is None def test_custom_context(): """Test ask with custom assumptions context""" assert ask(Q.integer(x)) is None local_context = AssumptionsContext() local_context.add(Q.integer(x)) assert ask(Q.integer(x), context=local_context) is True assert ask(Q.integer(x)) is None def test_functions_in_assumptions(): assert ask(Q.negative(x), Q.real(x) >> Q.positive(x)) is False assert ask(Q.negative(x), Equivalent(Q.real(x), Q.positive(x))) is False assert ask(Q.negative(x), Xor(Q.real(x), Q.negative(x))) is False def test_composite_ask(): assert ask(Q.negative(x) & Q.integer(x), assumptions=Q.real(x) >> Q.positive(x)) is False def test_composite_proposition(): assert ask(True) is True assert ask(False) is False assert ask(~Q.negative(x), Q.positive(x)) is True assert ask(~Q.real(x), Q.commutative(x)) is None assert ask(Q.negative(x) & Q.integer(x), Q.positive(x)) is False assert ask(Q.negative(x) & Q.integer(x)) is None assert ask(Q.real(x) | Q.integer(x), Q.positive(x)) is True assert ask(Q.real(x) | Q.integer(x)) is None assert ask(Q.real(x) >> Q.positive(x), Q.negative(x)) is False assert ask(Implies( Q.real(x), Q.positive(x), evaluate=False), Q.negative(x)) is False assert ask(Implies(Q.real(x), Q.positive(x), evaluate=False)) is None assert ask(Equivalent(Q.integer(x), Q.even(x)), Q.even(x)) is True assert ask(Equivalent(Q.integer(x), Q.even(x))) is None assert ask(Equivalent(Q.positive(x), Q.integer(x)), Q.integer(x)) is None assert ask(Q.real(x) | Q.integer(x), Q.real(x) | Q.integer(x)) is True def test_tautology(): assert ask(Q.real(x) | ~Q.real(x)) is True assert ask(Q.real(x) & ~Q.real(x)) is False def test_composite_assumptions(): assert ask(Q.real(x), Q.real(x) & Q.real(y)) is True assert ask(Q.positive(x), Q.positive(x) | Q.positive(y)) is None assert ask(Q.positive(x), Q.real(x) >> Q.positive(y)) is None assert ask(Q.real(x), ~(Q.real(x) >> Q.real(y))) is True def test_key_extensibility(): """test that you can add keys to the ask system at runtime""" # make sure the key is not defined raises(AttributeError, lambda: ask(Q.my_key(x))) # Old handler system class MyAskHandler(AskHandler): @staticmethod def Symbol(expr, assumptions): return True try: with warns_deprecated_sympy(): register_handler('my_key', MyAskHandler) with warns_deprecated_sympy(): assert ask(Q.my_key(x)) is True with warns_deprecated_sympy(): assert ask(Q.my_key(x + 1)) is None finally: with warns_deprecated_sympy(): remove_handler('my_key', MyAskHandler) del Q.my_key raises(AttributeError, lambda: ask(Q.my_key(x))) # New handler system class MyPredicate(Predicate): pass try: Q.my_key = MyPredicate() @Q.my_key.register(Symbol) def _(expr, assumptions): return True assert ask(Q.my_key(x)) is True assert ask(Q.my_key(x+1)) is None finally: del Q.my_key raises(AttributeError, lambda: ask(Q.my_key(x))) def test_type_extensibility(): """test that new types can be added to the ask system at runtime """ from sympy.core import Basic class MyType(Basic): pass @Q.prime.register(MyType) def _(expr, assumptions): return True assert ask(Q.prime(MyType())) is True def test_single_fact_lookup(): known_facts = And(Implies(Q.integer, Q.rational), Implies(Q.rational, Q.real), Implies(Q.real, Q.complex)) known_facts_keys = {Q.integer, Q.rational, Q.real, Q.complex} known_facts_cnf = to_cnf(known_facts) mapping = single_fact_lookup(known_facts_keys, known_facts_cnf) assert mapping[Q.rational] == {Q.real, Q.rational, Q.complex} def test_compute_known_facts(): known_facts = And(Implies(Q.integer, Q.rational), Implies(Q.rational, Q.real), Implies(Q.real, Q.complex)) known_facts_keys = {Q.integer, Q.rational, Q.real, Q.complex} compute_known_facts(known_facts, known_facts_keys) @slow def test_known_facts_consistent(): """"Test that ask_generated.py is up-to-date""" from sympy.assumptions.ask import get_known_facts, get_known_facts_keys from os.path import abspath, dirname, join filename = join(dirname(dirname(abspath(__file__))), 'ask_generated.py') with open(filename) as f: assert f.read() == \ compute_known_facts(get_known_facts(), get_known_facts_keys()) def test_Add_queries(): assert ask(Q.prime(12345678901234567890 + (cos(1)**2 + sin(1)**2))) is True assert ask(Q.even(Add(S(2), S(2), evaluate=0))) is True assert ask(Q.prime(Add(S(2), S(2), evaluate=0))) is False assert ask(Q.integer(Add(S(2), S(2), evaluate=0))) is True def test_positive_assuming(): with assuming(Q.positive(x + 1)): assert not ask(Q.positive(x)) def test_issue_5421(): raises(TypeError, lambda: ask(pi/log(x), Q.real)) def test_issue_3906(): raises(TypeError, lambda: ask(Q.positive)) def test_issue_5833(): assert ask(Q.positive(log(x)**2), Q.positive(x)) is None assert ask(~Q.negative(log(x)**2), Q.positive(x)) is True def test_issue_6732(): raises(ValueError, lambda: ask(Q.positive(x), Q.positive(x) & Q.negative(x))) raises(ValueError, lambda: ask(Q.negative(x), Q.positive(x) & Q.negative(x))) def test_issue_7246(): assert ask(Q.positive(atan(p)), Q.positive(p)) is True assert ask(Q.positive(atan(p)), Q.negative(p)) is False assert ask(Q.positive(atan(p)), Q.zero(p)) is False assert ask(Q.positive(atan(x))) is None assert ask(Q.positive(asin(p)), Q.positive(p)) is None assert ask(Q.positive(asin(p)), Q.zero(p)) is None assert ask(Q.positive(asin(Rational(1, 7)))) is True assert ask(Q.positive(asin(x)), Q.positive(x) & Q.nonpositive(x - 1)) is True assert ask(Q.positive(asin(x)), Q.negative(x) & Q.nonnegative(x + 1)) is False assert ask(Q.positive(acos(p)), Q.positive(p)) is None assert ask(Q.positive(acos(Rational(1, 7)))) is True assert ask(Q.positive(acos(x)), Q.nonnegative(x + 1) & Q.nonpositive(x - 1)) is True assert ask(Q.positive(acos(x)), Q.nonnegative(x - 1)) is None assert ask(Q.positive(acot(x)), Q.positive(x)) is True assert ask(Q.positive(acot(x)), Q.real(x)) is True assert ask(Q.positive(acot(x)), Q.imaginary(x)) is False assert ask(Q.positive(acot(x))) is None @XFAIL def test_issue_7246_failing(): #Move this test to test_issue_7246 once #the new assumptions module is improved. assert ask(Q.positive(acos(x)), Q.zero(x)) is True def test_check_old_assumption(): x = symbols('x', real=True) assert ask(Q.real(x)) is True assert ask(Q.imaginary(x)) is False assert ask(Q.complex(x)) is True x = symbols('x', imaginary=True) assert ask(Q.real(x)) is False assert ask(Q.imaginary(x)) is True assert ask(Q.complex(x)) is True x = symbols('x', complex=True) assert ask(Q.real(x)) is None assert ask(Q.complex(x)) is True x = symbols('x', positive=True, finite=True) assert ask(Q.positive(x)) is True assert ask(Q.negative(x)) is False assert ask(Q.real(x)) is True x = symbols('x', commutative=False) assert ask(Q.commutative(x)) is False x = symbols('x', negative=True) assert ask(Q.positive(x)) is False assert ask(Q.negative(x)) is True x = symbols('x', nonnegative=True) assert ask(Q.negative(x)) is False assert ask(Q.positive(x)) is None assert ask(Q.zero(x)) is None x = symbols('x', finite=True) assert ask(Q.finite(x)) is True x = symbols('x', prime=True) assert ask(Q.prime(x)) is True assert ask(Q.composite(x)) is False x = symbols('x', composite=True) assert ask(Q.prime(x)) is False assert ask(Q.composite(x)) is True x = symbols('x', even=True) assert ask(Q.even(x)) is True assert ask(Q.odd(x)) is False x = symbols('x', odd=True) assert ask(Q.even(x)) is False assert ask(Q.odd(x)) is True x = symbols('x', nonzero=True) assert ask(Q.nonzero(x)) is True assert ask(Q.zero(x)) is False x = symbols('x', zero=True) assert ask(Q.zero(x)) is True x = symbols('x', integer=True) assert ask(Q.integer(x)) is True x = symbols('x', rational=True) assert ask(Q.rational(x)) is True assert ask(Q.irrational(x)) is False x = symbols('x', irrational=True) assert ask(Q.irrational(x)) is True assert ask(Q.rational(x)) is False def test_issue_9636(): assert ask(Q.integer(1.0)) is False assert ask(Q.prime(3.0)) is False assert ask(Q.composite(4.0)) is False assert ask(Q.even(2.0)) is False assert ask(Q.odd(3.0)) is False def test_autosimp_used_to_fail(): # See issue #9807 assert ask(Q.imaginary(0**I)) is False assert ask(Q.imaginary(0**(-I))) is False assert ask(Q.real(0**I)) is False assert ask(Q.real(0**(-I))) is False def test_custom_AskHandler(): from sympy.logic.boolalg import conjuncts # Old handler system class MersenneHandler(AskHandler): @staticmethod def Integer(expr, assumptions): from sympy import log if ask(Q.integer(log(expr + 1, 2))): return True @staticmethod def Symbol(expr, assumptions): if expr in conjuncts(assumptions): return True try: with warns_deprecated_sympy(): register_handler('mersenne', MersenneHandler) n = Symbol('n', integer=True) with warns_deprecated_sympy(): assert ask(Q.mersenne(7)) with warns_deprecated_sympy(): assert ask(Q.mersenne(n), Q.mersenne(n)) finally: del Q.mersenne # New handler system class MersennePredicate(Predicate): pass try: Q.mersenne = MersennePredicate() @Q.mersenne.register(Integer) def _(expr, assumptions): from sympy import log if ask(Q.integer(log(expr + 1, 2))): return True @Q.mersenne.register(Symbol) def _(expr, assumptions): if expr in conjuncts(assumptions): return True assert ask(Q.mersenne(7)) assert ask(Q.mersenne(n), Q.mersenne(n)) finally: del Q.mersenne def test_polyadic_predicate(): class SexyPredicate(Predicate): pass try: Q.sexyprime = SexyPredicate() @Q.sexyprime.register(Integer, Integer) def _(int1, int2, assumptions): args = sorted([int1, int2]) if not all(ask(Q.prime(a), assumptions) for a in args): return False return args[1] - args[0] == 6 @Q.sexyprime.register(Integer, Integer, Integer) def _(int1, int2, int3, assumptions): args = sorted([int1, int2, int3]) if not all(ask(Q.prime(a), assumptions) for a in args): return False return args[2] - args[1] == 6 and args[1] - args[0] == 6 assert ask(Q.sexyprime(5, 11)) assert ask(Q.sexyprime(7, 13, 19)) finally: del Q.sexyprime def test_Predicate_handler_is_unique(): # Undefined predicate does not have a handler assert Predicate('mypredicate').handler is None # Handler of defined predicate is unique to the class class MyPredicate(Predicate): pass mp1 = MyPredicate('mp1') mp2 = MyPredicate('mp2') assert mp1.handler is mp2.handler
bfccc74308c7a6b0c90aee0b0d7934f8df8a2876ff837c33ebd55051e4cfd495
""" This module implements some special functions that commonly appear in combinatorial contexts (e.g. in power series); in particular, sequences of rational numbers such as Bernoulli and Fibonacci numbers. Factorials, binomial coefficients and related functions are located in the separate 'factorials' module. """ from typing import Callable, Dict from sympy.core import S, Symbol, Rational, Integer, Add, Dummy from sympy.core.cache import cacheit from sympy.core.compatibility import as_int, SYMPY_INTS from sympy.core.function import Function, expand_mul from sympy.core.logic import fuzzy_not from sympy.core.numbers import E, pi from sympy.core.relational import LessThan, StrictGreaterThan from sympy.functions.combinatorial.factorials import binomial, factorial from sympy.functions.elementary.exponential import log from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt, cbrt from sympy.functions.elementary.trigonometric import sin, cos, cot from sympy.ntheory import isprime from sympy.ntheory.primetest import is_square from sympy.utilities.memoization import recurrence_memo from mpmath import bernfrac, workprec from mpmath.libmp import ifib as _ifib def _product(a, b): p = 1 for k in range(a, b + 1): p *= k return p # Dummy symbol used for computing polynomial sequences _sym = Symbol('x') #----------------------------------------------------------------------------# # # # Carmichael numbers # # # #----------------------------------------------------------------------------# class carmichael(Function): """ Carmichael Numbers: Certain cryptographic algorithms make use of big prime numbers. However, checking whether a big number is prime is not so easy. Randomized prime number checking tests exist that offer a high degree of confidence of accurate determination at low cost, such as the Fermat test. Let 'a' be a random number between 2 and n - 1, where n is the number whose primality we are testing. Then, n is probably prime if it satisfies the modular arithmetic congruence relation : a^(n-1) = 1(mod n). (where mod refers to the modulo operation) If a number passes the Fermat test several times, then it is prime with a high probability. Unfortunately, certain composite numbers (non-primes) still pass the Fermat test with every number smaller than themselves. These numbers are called Carmichael numbers. A Carmichael number will pass a Fermat primality test to every base b relatively prime to the number, even though it is not actually prime. This makes tests based on Fermat's Little Theorem less effective than strong probable prime tests such as the Baillie-PSW primality test and the Miller-Rabin primality test. mr functions given in sympy/sympy/ntheory/primetest.py will produce wrong results for each and every carmichael number. Examples ======== >>> from sympy import carmichael >>> carmichael.find_first_n_carmichaels(5) [561, 1105, 1729, 2465, 2821] >>> carmichael.is_prime(2465) False >>> carmichael.is_prime(1729) False >>> carmichael.find_carmichael_numbers_in_range(0, 562) [561] >>> carmichael.find_carmichael_numbers_in_range(0,1000) [561] >>> carmichael.find_carmichael_numbers_in_range(0,2000) [561, 1105, 1729] References ========== .. [1] https://en.wikipedia.org/wiki/Carmichael_number .. [2] https://en.wikipedia.org/wiki/Fermat_primality_test .. [3] https://www.jstor.org/stable/23248683?seq=1#metadata_info_tab_contents """ @staticmethod def is_perfect_square(n): return is_square(n) @staticmethod def divides(p, n): return n % p == 0 @staticmethod def is_prime(n): return isprime(n) @staticmethod def is_carmichael(n): if n >= 0: if (n == 1) or (carmichael.is_prime(n)) or (n % 2 == 0): return False divisors = list([1, n]) # get divisors for i in range(3, n // 2 + 1, 2): if n % i == 0: divisors.append(i) for i in divisors: if carmichael.is_perfect_square(i) and i != 1: return False if carmichael.is_prime(i): if not carmichael.divides(i - 1, n - 1): return False return True else: raise ValueError('The provided number must be greater than or equal to 0') @staticmethod def find_carmichael_numbers_in_range(x, y): if 0 <= x <= y: if x % 2 == 0: return list([i for i in range(x + 1, y, 2) if carmichael.is_carmichael(i)]) else: return list([i for i in range(x, y, 2) if carmichael.is_carmichael(i)]) else: raise ValueError('The provided range is not valid. x and y must be non-negative integers and x <= y') @staticmethod def find_first_n_carmichaels(n): i = 1 carmichaels = list() while len(carmichaels) < n: if carmichael.is_carmichael(i): carmichaels.append(i) i += 2 return carmichaels #----------------------------------------------------------------------------# # # # Fibonacci numbers # # # #----------------------------------------------------------------------------# class fibonacci(Function): r""" Fibonacci numbers / Fibonacci polynomials The Fibonacci numbers are the integer sequence defined by the initial terms `F_0 = 0`, `F_1 = 1` and the two-term recurrence relation `F_n = F_{n-1} + F_{n-2}`. This definition extended to arbitrary real and complex arguments using the formula .. math :: F_z = \frac{\phi^z - \cos(\pi z) \phi^{-z}}{\sqrt 5} The Fibonacci polynomials are defined by `F_1(x) = 1`, `F_2(x) = x`, and `F_n(x) = x*F_{n-1}(x) + F_{n-2}(x)` for `n > 2`. For all positive integers `n`, `F_n(1) = F_n`. * ``fibonacci(n)`` gives the `n^{th}` Fibonacci number, `F_n` * ``fibonacci(n, x)`` gives the `n^{th}` Fibonacci polynomial in `x`, `F_n(x)` Examples ======== >>> from sympy import fibonacci, Symbol >>> [fibonacci(x) for x in range(11)] [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] >>> fibonacci(5, Symbol('t')) t**4 + 3*t**2 + 1 See Also ======== bell, bernoulli, catalan, euler, harmonic, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Fibonacci_number .. [2] http://mathworld.wolfram.com/FibonacciNumber.html """ @staticmethod def _fib(n): return _ifib(n) @staticmethod @recurrence_memo([None, S.One, _sym]) def _fibpoly(n, prev): return (prev[-2] + _sym*prev[-1]).expand() @classmethod def eval(cls, n, sym=None): if n is S.Infinity: return S.Infinity if n.is_Integer: if sym is None: n = int(n) if n < 0: return S.NegativeOne**(n + 1) * fibonacci(-n) else: return Integer(cls._fib(n)) else: if n < 1: raise ValueError("Fibonacci polynomials are defined " "only for positive integer indices.") return cls._fibpoly(n).subs(_sym, sym) def _eval_rewrite_as_sqrt(self, n, **kwargs): return 2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5 def _eval_rewrite_as_GoldenRatio(self,n, **kwargs): return (S.GoldenRatio**n - 1/(-S.GoldenRatio)**n)/(2*S.GoldenRatio-1) #----------------------------------------------------------------------------# # # # Lucas numbers # # # #----------------------------------------------------------------------------# class lucas(Function): """ Lucas numbers Lucas numbers satisfy a recurrence relation similar to that of the Fibonacci sequence, in which each term is the sum of the preceding two. They are generated by choosing the initial values `L_0 = 2` and `L_1 = 1`. * ``lucas(n)`` gives the `n^{th}` Lucas number Examples ======== >>> from sympy import lucas >>> [lucas(x) for x in range(11)] [2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123] See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Lucas_number .. [2] http://mathworld.wolfram.com/LucasNumber.html """ @classmethod def eval(cls, n): if n is S.Infinity: return S.Infinity if n.is_Integer: return fibonacci(n + 1) + fibonacci(n - 1) def _eval_rewrite_as_sqrt(self, n, **kwargs): return 2**(-n)*((1 + sqrt(5))**n + (-sqrt(5) + 1)**n) #----------------------------------------------------------------------------# # # # Tribonacci numbers # # # #----------------------------------------------------------------------------# class tribonacci(Function): r""" Tribonacci numbers / Tribonacci polynomials The Tribonacci numbers are the integer sequence defined by the initial terms `T_0 = 0`, `T_1 = 1`, `T_2 = 1` and the three-term recurrence relation `T_n = T_{n-1} + T_{n-2} + T_{n-3}`. The Tribonacci polynomials are defined by `T_0(x) = 0`, `T_1(x) = 1`, `T_2(x) = x^2`, and `T_n(x) = x^2 T_{n-1}(x) + x T_{n-2}(x) + T_{n-3}(x)` for `n > 2`. For all positive integers `n`, `T_n(1) = T_n`. * ``tribonacci(n)`` gives the `n^{th}` Tribonacci number, `T_n` * ``tribonacci(n, x)`` gives the `n^{th}` Tribonacci polynomial in `x`, `T_n(x)` Examples ======== >>> from sympy import tribonacci, Symbol >>> [tribonacci(x) for x in range(11)] [0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149] >>> tribonacci(5, Symbol('t')) t**8 + 3*t**5 + 3*t**2 See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition References ========== .. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers .. [2] http://mathworld.wolfram.com/TribonacciNumber.html .. [3] https://oeis.org/A000073 """ @staticmethod @recurrence_memo([S.Zero, S.One, S.One]) def _trib(n, prev): return (prev[-3] + prev[-2] + prev[-1]) @staticmethod @recurrence_memo([S.Zero, S.One, _sym**2]) def _tribpoly(n, prev): return (prev[-3] + _sym*prev[-2] + _sym**2*prev[-1]).expand() @classmethod def eval(cls, n, sym=None): if n is S.Infinity: return S.Infinity if n.is_Integer: n = int(n) if n < 0: raise ValueError("Tribonacci polynomials are defined " "only for non-negative integer indices.") if sym is None: return Integer(cls._trib(n)) else: return cls._tribpoly(n).subs(_sym, sym) def _eval_rewrite_as_sqrt(self, n, **kwargs): w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2 a = (1 + cbrt(19 + 3*sqrt(33)) + cbrt(19 - 3*sqrt(33))) / 3 b = (1 + w*cbrt(19 + 3*sqrt(33)) + w**2*cbrt(19 - 3*sqrt(33))) / 3 c = (1 + w**2*cbrt(19 + 3*sqrt(33)) + w*cbrt(19 - 3*sqrt(33))) / 3 Tn = (a**(n + 1)/((a - b)*(a - c)) + b**(n + 1)/((b - a)*(b - c)) + c**(n + 1)/((c - a)*(c - b))) return Tn def _eval_rewrite_as_TribonacciConstant(self, n, **kwargs): b = cbrt(586 + 102*sqrt(33)) Tn = 3 * b * S.TribonacciConstant**n / (b**2 - 2*b + 4) return floor(Tn + S.Half) #----------------------------------------------------------------------------# # # # Bernoulli numbers # # # #----------------------------------------------------------------------------# class bernoulli(Function): r""" Bernoulli numbers / Bernoulli polynomials The Bernoulli numbers are a sequence of rational numbers defined by `B_0 = 1` and the recursive relation (`n > 0`): .. math :: 0 = \sum_{k=0}^n \binom{n+1}{k} B_k They are also commonly defined by their exponential generating function, which is `\frac{x}{e^x - 1}`. For odd indices > 1, the Bernoulli numbers are zero. The Bernoulli polynomials satisfy the analogous formula: .. math :: B_n(x) = \sum_{k=0}^n \binom{n}{k} B_k x^{n-k} Bernoulli numbers and Bernoulli polynomials are related as `B_n(0) = B_n`. We compute Bernoulli numbers using Ramanujan's formula: .. math :: B_n = \frac{A(n) - S(n)}{\binom{n+3}{n}} where: .. math :: A(n) = \begin{cases} \frac{n+3}{3} & n \equiv 0\ \text{or}\ 2 \pmod{6} \\ -\frac{n+3}{6} & n \equiv 4 \pmod{6} \end{cases} and: .. math :: S(n) = \sum_{k=1}^{[n/6]} \binom{n+3}{n-6k} B_{n-6k} This formula is similar to the sum given in the definition, but cuts 2/3 of the terms. For Bernoulli polynomials, we use the formula in the definition. * ``bernoulli(n)`` gives the nth Bernoulli number, `B_n` * ``bernoulli(n, x)`` gives the nth Bernoulli polynomial in `x`, `B_n(x)` Examples ======== >>> from sympy import bernoulli >>> [bernoulli(n) for n in range(11)] [1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66] >>> bernoulli(1000001) 0 See Also ======== bell, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Bernoulli_number .. [2] https://en.wikipedia.org/wiki/Bernoulli_polynomial .. [3] http://mathworld.wolfram.com/BernoulliNumber.html .. [4] http://mathworld.wolfram.com/BernoulliPolynomial.html """ # Calculates B_n for positive even n @staticmethod def _calc_bernoulli(n): s = 0 a = int(binomial(n + 3, n - 6)) for j in range(1, n//6 + 1): s += a * bernoulli(n - 6*j) # Avoid computing each binomial coefficient from scratch a *= _product(n - 6 - 6*j + 1, n - 6*j) a //= _product(6*j + 4, 6*j + 9) if n % 6 == 4: s = -Rational(n + 3, 6) - s else: s = Rational(n + 3, 3) - s return s / binomial(n + 3, n) # We implement a specialized memoization scheme to handle each # case modulo 6 separately _cache = {0: S.One, 2: Rational(1, 6), 4: Rational(-1, 30)} _highest = {0: 0, 2: 2, 4: 4} @classmethod def eval(cls, n, sym=None): if n.is_Number: if n.is_Integer and n.is_nonnegative: if n.is_zero: return S.One elif n is S.One: if sym is None: return Rational(-1, 2) else: return sym - S.Half # Bernoulli numbers elif sym is None: if n.is_odd: return S.Zero n = int(n) # Use mpmath for enormous Bernoulli numbers if n > 500: p, q = bernfrac(n) return Rational(int(p), int(q)) case = n % 6 highest_cached = cls._highest[case] if n <= highest_cached: return cls._cache[n] # To avoid excessive recursion when, say, bernoulli(1000) is # requested, calculate and cache the entire sequence ... B_988, # B_994, B_1000 in increasing order for i in range(highest_cached + 6, n + 6, 6): b = cls._calc_bernoulli(i) cls._cache[i] = b cls._highest[case] = i return b # Bernoulli polynomials else: n, result = int(n), [] for k in range(n + 1): result.append(binomial(n, k)*cls(k)*sym**(n - k)) return Add(*result) else: raise ValueError("Bernoulli numbers are defined only" " for nonnegative integer indices.") if sym is None: if n.is_odd and (n - 1).is_positive: return S.Zero #----------------------------------------------------------------------------# # # # Bell numbers # # # #----------------------------------------------------------------------------# class bell(Function): r""" Bell numbers / Bell polynomials The Bell numbers satisfy `B_0 = 1` and .. math:: B_n = \sum_{k=0}^{n-1} \binom{n-1}{k} B_k. They are also given by: .. math:: B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}. The Bell polynomials are given by `B_0(x) = 1` and .. math:: B_n(x) = x \sum_{k=1}^{n-1} \binom{n-1}{k-1} B_{k-1}(x). The second kind of Bell polynomials (are sometimes called "partial" Bell polynomials or incomplete Bell polynomials) are defined as .. math:: B_{n,k}(x_1, x_2,\dotsc x_{n-k+1}) = \sum_{j_1+j_2+j_2+\dotsb=k \atop j_1+2j_2+3j_2+\dotsb=n} \frac{n!}{j_1!j_2!\dotsb j_{n-k+1}!} \left(\frac{x_1}{1!} \right)^{j_1} \left(\frac{x_2}{2!} \right)^{j_2} \dotsb \left(\frac{x_{n-k+1}}{(n-k+1)!} \right) ^{j_{n-k+1}}. * ``bell(n)`` gives the `n^{th}` Bell number, `B_n`. * ``bell(n, x)`` gives the `n^{th}` Bell polynomial, `B_n(x)`. * ``bell(n, k, (x1, x2, ...))`` gives Bell polynomials of the second kind, `B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})`. Notes ===== Not to be confused with Bernoulli numbers and Bernoulli polynomials, which use the same notation. Examples ======== >>> from sympy import bell, Symbol, symbols >>> [bell(n) for n in range(11)] [1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975] >>> bell(30) 846749014511809332450147 >>> bell(4, Symbol('t')) t**4 + 6*t**3 + 7*t**2 + t >>> bell(6, 2, symbols('x:6')[1:]) 6*x1*x5 + 15*x2*x4 + 10*x3**2 See Also ======== bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Bell_number .. [2] http://mathworld.wolfram.com/BellNumber.html .. [3] http://mathworld.wolfram.com/BellPolynomial.html """ @staticmethod @recurrence_memo([1, 1]) def _bell(n, prev): s = 1 a = 1 for k in range(1, n): a = a * (n - k) // k s += a * prev[k] return s @staticmethod @recurrence_memo([S.One, _sym]) def _bell_poly(n, prev): s = 1 a = 1 for k in range(2, n + 1): a = a * (n - k + 1) // (k - 1) s += a * prev[k - 1] return expand_mul(_sym * s) @staticmethod def _bell_incomplete_poly(n, k, symbols): r""" The second kind of Bell polynomials (incomplete Bell polynomials). Calculated by recurrence formula: .. math:: B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1}) = \sum_{m=1}^{n-k+1} \x_m \binom{n-1}{m-1} B_{n-m,k-1}(x_1, x_2, \dotsc, x_{n-m-k}) where `B_{0,0} = 1;` `B_{n,0} = 0; for n \ge 1` `B_{0,k} = 0; for k \ge 1` """ if (n == 0) and (k == 0): return S.One elif (n == 0) or (k == 0): return S.Zero s = S.Zero a = S.One for m in range(1, n - k + 2): s += a * bell._bell_incomplete_poly( n - m, k - 1, symbols) * symbols[m - 1] a = a * (n - m) / m return expand_mul(s) @classmethod def eval(cls, n, k_sym=None, symbols=None): if n is S.Infinity: if k_sym is None: return S.Infinity else: raise ValueError("Bell polynomial is not defined") if n.is_negative or n.is_integer is False: raise ValueError("a non-negative integer expected") if n.is_Integer and n.is_nonnegative: if k_sym is None: return Integer(cls._bell(int(n))) elif symbols is None: return cls._bell_poly(int(n)).subs(_sym, k_sym) else: r = cls._bell_incomplete_poly(int(n), int(k_sym), symbols) return r def _eval_rewrite_as_Sum(self, n, k_sym=None, symbols=None, **kwargs): from sympy import Sum if (k_sym is not None) or (symbols is not None): return self # Dobinski's formula if not n.is_nonnegative: return self k = Dummy('k', integer=True, nonnegative=True) return 1 / E * Sum(k**n / factorial(k), (k, 0, S.Infinity)) #----------------------------------------------------------------------------# # # # Harmonic numbers # # # #----------------------------------------------------------------------------# class harmonic(Function): r""" Harmonic numbers The nth harmonic number is given by `\operatorname{H}_{n} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}`. More generally: .. math:: \operatorname{H}_{n,m} = \sum_{k=1}^{n} \frac{1}{k^m} As `n \rightarrow \infty`, `\operatorname{H}_{n,m} \rightarrow \zeta(m)`, the Riemann zeta function. * ``harmonic(n)`` gives the nth harmonic number, `\operatorname{H}_n` * ``harmonic(n, m)`` gives the nth generalized harmonic number of order `m`, `\operatorname{H}_{n,m}`, where ``harmonic(n) == harmonic(n, 1)`` Examples ======== >>> from sympy import harmonic, oo >>> [harmonic(n) for n in range(6)] [0, 1, 3/2, 11/6, 25/12, 137/60] >>> [harmonic(n, 2) for n in range(6)] [0, 1, 5/4, 49/36, 205/144, 5269/3600] >>> harmonic(oo, 2) pi**2/6 >>> from sympy import Symbol, Sum >>> n = Symbol("n") >>> harmonic(n).rewrite(Sum) Sum(1/_k, (_k, 1, n)) We can evaluate harmonic numbers for all integral and positive rational arguments: >>> from sympy import S, expand_func, simplify >>> harmonic(8) 761/280 >>> harmonic(11) 83711/27720 >>> H = harmonic(1/S(3)) >>> H harmonic(1/3) >>> He = expand_func(H) >>> He -log(6) - sqrt(3)*pi/6 + 2*Sum(log(sin(_k*pi/3))*cos(2*_k*pi/3), (_k, 1, 1)) + 3*Sum(1/(3*_k + 1), (_k, 0, 0)) >>> He.doit() -log(6) - sqrt(3)*pi/6 - log(sqrt(3)/2) + 3 >>> H = harmonic(25/S(7)) >>> He = simplify(expand_func(H).doit()) >>> He log(sin(pi/7)**(-2*cos(pi/7))*sin(2*pi/7)**(2*cos(16*pi/7))*cos(pi/14)**(-2*sin(pi/14))/14) + pi*tan(pi/14)/2 + 30247/9900 >>> He.n(40) 1.983697455232980674869851942390639915940 >>> harmonic(25/S(7)).n(40) 1.983697455232980674869851942390639915940 We can rewrite harmonic numbers in terms of polygamma functions: >>> from sympy import digamma, polygamma >>> m = Symbol("m") >>> harmonic(n).rewrite(digamma) polygamma(0, n + 1) + EulerGamma >>> harmonic(n).rewrite(polygamma) polygamma(0, n + 1) + EulerGamma >>> harmonic(n,3).rewrite(polygamma) polygamma(2, n + 1)/2 - polygamma(2, 1)/2 >>> harmonic(n,m).rewrite(polygamma) (-1)**m*(polygamma(m - 1, 1) - polygamma(m - 1, n + 1))/factorial(m - 1) Integer offsets in the argument can be pulled out: >>> from sympy import expand_func >>> expand_func(harmonic(n+4)) harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1) >>> expand_func(harmonic(n-4)) harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n Some limits can be computed as well: >>> from sympy import limit, oo >>> limit(harmonic(n), n, oo) oo >>> limit(harmonic(n, 2), n, oo) pi**2/6 >>> limit(harmonic(n, 3), n, oo) -polygamma(2, 1)/2 However we can not compute the general relation yet: >>> limit(harmonic(n, m), n, oo) harmonic(oo, m) which equals ``zeta(m)`` for ``m > 1``. See Also ======== bell, bernoulli, catalan, euler, fibonacci, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Harmonic_number .. [2] http://functions.wolfram.com/GammaBetaErf/HarmonicNumber/ .. [3] http://functions.wolfram.com/GammaBetaErf/HarmonicNumber2/ """ # Generate one memoized Harmonic number-generating function for each # order and store it in a dictionary _functions = {} # type: Dict[Integer, Callable[[int], Rational]] @classmethod def eval(cls, n, m=None): from sympy import zeta if m is S.One: return cls(n) if m is None: m = S.One if m.is_zero: return n if n is S.Infinity and m.is_Number: # TODO: Fix for symbolic values of m if m.is_negative: return S.NaN elif LessThan(m, S.One): return S.Infinity elif StrictGreaterThan(m, S.One): return zeta(m) else: return cls if n == 0: return S.Zero if n.is_Integer and n.is_nonnegative and m.is_Integer: if not m in cls._functions: @recurrence_memo([0]) def f(n, prev): return prev[-1] + S.One / n**m cls._functions[m] = f return cls._functions[m](int(n)) def _eval_rewrite_as_polygamma(self, n, m=1, **kwargs): from sympy.functions.special.gamma_functions import polygamma return S.NegativeOne**m/factorial(m - 1) * (polygamma(m - 1, 1) - polygamma(m - 1, n + 1)) def _eval_rewrite_as_digamma(self, n, m=1, **kwargs): from sympy.functions.special.gamma_functions import polygamma return self.rewrite(polygamma) def _eval_rewrite_as_trigamma(self, n, m=1, **kwargs): from sympy.functions.special.gamma_functions import polygamma return self.rewrite(polygamma) def _eval_rewrite_as_Sum(self, n, m=None, **kwargs): from sympy import Sum k = Dummy("k", integer=True) if m is None: m = S.One return Sum(k**(-m), (k, 1, n)) def _eval_expand_func(self, **hints): from sympy import Sum n = self.args[0] m = self.args[1] if len(self.args) == 2 else 1 if m == S.One: if n.is_Add: off = n.args[0] nnew = n - off if off.is_Integer and off.is_positive: result = [S.One/(nnew + i) for i in range(off, 0, -1)] + [harmonic(nnew)] return Add(*result) elif off.is_Integer and off.is_negative: result = [-S.One/(nnew + i) for i in range(0, off, -1)] + [harmonic(nnew)] return Add(*result) if n.is_Rational: # Expansions for harmonic numbers at general rational arguments (u + p/q) # Split n as u + p/q with p < q p, q = n.as_numer_denom() u = p // q p = p - u * q if u.is_nonnegative and p.is_positive and q.is_positive and p < q: k = Dummy("k") t1 = q * Sum(1 / (q * k + p), (k, 0, u)) t2 = 2 * Sum(cos((2 * pi * p * k) / S(q)) * log(sin((pi * k) / S(q))), (k, 1, floor((q - 1) / S(2)))) t3 = (pi / 2) * cot((pi * p) / q) + log(2 * q) return t1 + t2 - t3 return self def _eval_rewrite_as_tractable(self, n, m=1, limitvar=None, **kwargs): from sympy import polygamma return self.rewrite(polygamma).rewrite("tractable", deep=True) def _eval_evalf(self, prec): from sympy import polygamma if all(i.is_number for i in self.args): return self.rewrite(polygamma)._eval_evalf(prec) #----------------------------------------------------------------------------# # # # Euler numbers # # # #----------------------------------------------------------------------------# class euler(Function): r""" Euler numbers / Euler polynomials The Euler numbers are given by: .. math:: E_{2n} = I \sum_{k=1}^{2n+1} \sum_{j=0}^k \binom{k}{j} \frac{(-1)^j (k-2j)^{2n+1}}{2^k I^k k} .. math:: E_{2n+1} = 0 Euler numbers and Euler polynomials are related by .. math:: E_n = 2^n E_n\left(\frac{1}{2}\right). We compute symbolic Euler polynomials using [5]_ .. math:: E_n(x) = \sum_{k=0}^n \binom{n}{k} \frac{E_k}{2^k} \left(x - \frac{1}{2}\right)^{n-k}. However, numerical evaluation of the Euler polynomial is computed more efficiently (and more accurately) using the mpmath library. * ``euler(n)`` gives the `n^{th}` Euler number, `E_n`. * ``euler(n, x)`` gives the `n^{th}` Euler polynomial, `E_n(x)`. Examples ======== >>> from sympy import Symbol, S >>> from sympy.functions import euler >>> [euler(n) for n in range(10)] [1, 0, -1, 0, 5, 0, -61, 0, 1385, 0] >>> n = Symbol("n") >>> euler(n + 2*n) euler(3*n) >>> x = Symbol("x") >>> euler(n, x) euler(n, x) >>> euler(0, x) 1 >>> euler(1, x) x - 1/2 >>> euler(2, x) x**2 - x >>> euler(3, x) x**3 - 3*x**2/2 + 1/4 >>> euler(4, x) x**4 - 2*x**3 + x >>> euler(12, S.Half) 2702765/4096 >>> euler(12) 2702765 See Also ======== bell, bernoulli, catalan, fibonacci, harmonic, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Euler_numbers .. [2] http://mathworld.wolfram.com/EulerNumber.html .. [3] https://en.wikipedia.org/wiki/Alternating_permutation .. [4] http://mathworld.wolfram.com/AlternatingPermutation.html .. [5] http://dlmf.nist.gov/24.2#ii """ @classmethod def eval(cls, m, sym=None): if m.is_Number: if m.is_Integer and m.is_nonnegative: # Euler numbers if sym is None: if m.is_odd: return S.Zero from mpmath import mp m = m._to_mpmath(mp.prec) res = mp.eulernum(m, exact=True) return Integer(res) # Euler polynomial else: from sympy.core.evalf import pure_complex reim = pure_complex(sym, or_real=True) # Evaluate polynomial numerically using mpmath if reim and all(a.is_Float or a.is_Integer for a in reim) \ and any(a.is_Float for a in reim): from mpmath import mp from sympy import Expr m = int(m) # XXX ComplexFloat (#12192) would be nice here, above prec = min([a._prec for a in reim if a.is_Float]) with workprec(prec): res = mp.eulerpoly(m, sym) return Expr._from_mpmath(res, prec) # Construct polynomial symbolically from definition m, result = int(m), [] for k in range(m + 1): result.append(binomial(m, k)*cls(k)/(2**k)*(sym - S.Half)**(m - k)) return Add(*result).expand() else: raise ValueError("Euler numbers are defined only" " for nonnegative integer indices.") if sym is None: if m.is_odd and m.is_positive: return S.Zero def _eval_rewrite_as_Sum(self, n, x=None, **kwargs): from sympy import Sum if x is None and n.is_even: k = Dummy("k", integer=True) j = Dummy("j", integer=True) n = n / 2 Em = (S.ImaginaryUnit * Sum(Sum(binomial(k, j) * ((-1)**j * (k - 2*j)**(2*n + 1)) / (2**k*S.ImaginaryUnit**k * k), (j, 0, k)), (k, 1, 2*n + 1))) return Em if x: k = Dummy("k", integer=True) return Sum(binomial(n, k)*euler(k)/2**k*(x - S.Half)**(n - k), (k, 0, n)) def _eval_evalf(self, prec): m, x = (self.args[0], None) if len(self.args) == 1 else self.args if x is None and m.is_Integer and m.is_nonnegative: from mpmath import mp from sympy import Expr m = m._to_mpmath(prec) with workprec(prec): res = mp.eulernum(m) return Expr._from_mpmath(res, prec) if x and x.is_number and m.is_Integer and m.is_nonnegative: from mpmath import mp from sympy import Expr m = int(m) x = x._to_mpmath(prec) with workprec(prec): res = mp.eulerpoly(m, x) return Expr._from_mpmath(res, prec) #----------------------------------------------------------------------------# # # # Catalan numbers # # # #----------------------------------------------------------------------------# class catalan(Function): r""" Catalan numbers The `n^{th}` catalan number is given by: .. math :: C_n = \frac{1}{n+1} \binom{2n}{n} * ``catalan(n)`` gives the `n^{th}` Catalan number, `C_n` Examples ======== >>> from sympy import (Symbol, binomial, gamma, hyper, catalan, ... diff, combsimp, Rational, I) >>> [catalan(i) for i in range(1,10)] [1, 2, 5, 14, 42, 132, 429, 1430, 4862] >>> n = Symbol("n", integer=True) >>> catalan(n) catalan(n) Catalan numbers can be transformed into several other, identical expressions involving other mathematical functions >>> catalan(n).rewrite(binomial) binomial(2*n, n)/(n + 1) >>> catalan(n).rewrite(gamma) 4**n*gamma(n + 1/2)/(sqrt(pi)*gamma(n + 2)) >>> catalan(n).rewrite(hyper) hyper((1 - n, -n), (2,), 1) For some non-integer values of n we can get closed form expressions by rewriting in terms of gamma functions: >>> catalan(Rational(1, 2)).rewrite(gamma) 8/(3*pi) We can differentiate the Catalan numbers C(n) interpreted as a continuous real function in n: >>> diff(catalan(n), n) (polygamma(0, n + 1/2) - polygamma(0, n + 2) + log(4))*catalan(n) As a more advanced example consider the following ratio between consecutive numbers: >>> combsimp((catalan(n + 1)/catalan(n)).rewrite(binomial)) 2*(2*n + 1)/(n + 2) The Catalan numbers can be generalized to complex numbers: >>> catalan(I).rewrite(gamma) 4**I*gamma(1/2 + I)/(sqrt(pi)*gamma(2 + I)) and evaluated with arbitrary precision: >>> catalan(I).evalf(20) 0.39764993382373624267 - 0.020884341620842555705*I See Also ======== bell, bernoulli, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci sympy.functions.combinatorial.factorials.binomial References ========== .. [1] https://en.wikipedia.org/wiki/Catalan_number .. [2] http://mathworld.wolfram.com/CatalanNumber.html .. [3] http://functions.wolfram.com/GammaBetaErf/CatalanNumber/ .. [4] http://geometer.org/mathcircles/catalan.pdf """ @classmethod def eval(cls, n): from sympy import gamma if (n.is_Integer and n.is_nonnegative) or \ (n.is_noninteger and n.is_negative): return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2)) if (n.is_integer and n.is_negative): if (n + 1).is_negative: return S.Zero if (n + 1).is_zero: return Rational(-1, 2) def fdiff(self, argindex=1): from sympy import polygamma, log n = self.args[0] return catalan(n)*(polygamma(0, n + S.Half) - polygamma(0, n + 2) + log(4)) def _eval_rewrite_as_binomial(self, n, **kwargs): return binomial(2*n, n)/(n + 1) def _eval_rewrite_as_factorial(self, n, **kwargs): return factorial(2*n) / (factorial(n+1) * factorial(n)) def _eval_rewrite_as_gamma(self, n, piecewise=True, **kwargs): from sympy import gamma # The gamma function allows to generalize Catalan numbers to complex n return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2)) def _eval_rewrite_as_hyper(self, n, **kwargs): from sympy import hyper return hyper([1 - n, -n], [2], 1) def _eval_rewrite_as_Product(self, n, **kwargs): from sympy import Product if not (n.is_integer and n.is_nonnegative): return self k = Dummy('k', integer=True, positive=True) return Product((n + k) / k, (k, 2, n)) def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_is_positive(self): if self.args[0].is_nonnegative: return True def _eval_is_composite(self): if self.args[0].is_integer and (self.args[0] - 3).is_positive: return True def _eval_evalf(self, prec): from sympy import gamma if self.args[0].is_number: return self.rewrite(gamma)._eval_evalf(prec) #----------------------------------------------------------------------------# # # # Genocchi numbers # # # #----------------------------------------------------------------------------# class genocchi(Function): r""" Genocchi numbers The Genocchi numbers are a sequence of integers `G_n` that satisfy the relation: .. math:: \frac{2t}{e^t + 1} = \sum_{n=1}^\infty \frac{G_n t^n}{n!} Examples ======== >>> from sympy import Symbol >>> from sympy.functions import genocchi >>> [genocchi(n) for n in range(1, 9)] [1, -1, 0, 1, 0, -3, 0, 17] >>> n = Symbol('n', integer=True, positive=True) >>> genocchi(2*n + 1) 0 See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Genocchi_number .. [2] http://mathworld.wolfram.com/GenocchiNumber.html """ @classmethod def eval(cls, n): if n.is_Number: if (not n.is_Integer) or n.is_nonpositive: raise ValueError("Genocchi numbers are defined only for " + "positive integers") return 2 * (1 - S(2) ** n) * bernoulli(n) if n.is_odd and (n - 1).is_positive: return S.Zero if (n - 1).is_zero: return S.One def _eval_rewrite_as_bernoulli(self, n, **kwargs): if n.is_integer and n.is_nonnegative: return (1 - S(2) ** n) * bernoulli(n) * 2 def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_positive: return True def _eval_is_negative(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_odd: return False return (n / 2).is_odd def _eval_is_positive(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_odd: return fuzzy_not((n - 1).is_positive) return (n / 2).is_even def _eval_is_even(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_even: return False return (n - 1).is_positive def _eval_is_odd(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_even: return True return fuzzy_not((n - 1).is_positive) def _eval_is_prime(self): n = self.args[0] # only G_6 = -3 and G_8 = 17 are prime, # but SymPy does not consider negatives as prime # so only n=8 is tested return (n - 8).is_zero #----------------------------------------------------------------------------# # # # Partition numbers # # # #----------------------------------------------------------------------------# _npartition = [1, 1] class partition(Function): r""" Partition numbers The Partition numbers are a sequence of integers `p_n` that represent the number of distinct ways of representing `n` as a sum of natural numbers (with order irrelevant). The generating function for `p_n` is given by: .. math:: \sum_{n=0}^\infty p_n x^n = \prod_{k=1}^\infty (1 - x^k)^{-1} Examples ======== >>> from sympy import Symbol >>> from sympy.functions import partition >>> [partition(n) for n in range(9)] [1, 1, 2, 3, 5, 7, 11, 15, 22] >>> n = Symbol('n', integer=True, negative=True) >>> partition(n) 0 See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Partition_(number_theory%29 .. [2] https://en.wikipedia.org/wiki/Pentagonal_number_theorem """ @staticmethod def _partition(n): L = len(_npartition) if n < L: return _npartition[n] # lengthen cache for _n in range(L, n + 1): v, p, i = 0, 0, 0 while 1: s = 0 p += 3*i + 1 # p = pentagonal number: 1, 5, 12, ... if _n >= p: s += _npartition[_n - p] i += 1 gp = p + i # gp = generalized pentagonal: 2, 7, 15, ... if _n >= gp: s += _npartition[_n - gp] if s == 0: break else: v += s if i%2 == 1 else -s _npartition.append(v) return v @classmethod def eval(cls, n): is_int = n.is_integer if is_int == False: raise ValueError("Partition numbers are defined only for " "integers") elif is_int: if n.is_negative: return S.Zero if n.is_zero or (n - 1).is_zero: return S.One if n.is_Integer: return Integer(cls._partition(n)) def _eval_is_integer(self): if self.args[0].is_integer: return True def _eval_is_negative(self): if self.args[0].is_integer: return False def _eval_is_positive(self): n = self.args[0] if n.is_nonnegative and n.is_integer: return True ####################################################################### ### ### Functions for enumerating partitions, permutations and combinations ### ####################################################################### class _MultisetHistogram(tuple): pass _N = -1 _ITEMS = -2 _M = slice(None, _ITEMS) def _multiset_histogram(n): """Return tuple used in permutation and combination counting. Input is a dictionary giving items with counts as values or a sequence of items (which need not be sorted). The data is stored in a class deriving from tuple so it is easily recognized and so it can be converted easily to a list. """ if isinstance(n, dict): # item: count if not all(isinstance(v, int) and v >= 0 for v in n.values()): raise ValueError tot = sum(n.values()) items = sum(1 for k in n if n[k] > 0) return _MultisetHistogram([n[k] for k in n if n[k] > 0] + [items, tot]) else: n = list(n) s = set(n) if len(s) == len(n): n = [1]*len(n) n.extend([len(n), len(n)]) return _MultisetHistogram(n) m = dict(zip(s, range(len(s)))) d = dict(zip(range(len(s)), [0]*len(s))) for i in n: d[m[i]] += 1 return _multiset_histogram(d) def nP(n, k=None, replacement=False): """Return the number of permutations of ``n`` items taken ``k`` at a time. Possible values for ``n``: integer - set of length ``n`` sequence - converted to a multiset internally multiset - {element: multiplicity} If ``k`` is None then the total of all permutations of length 0 through the number of items represented by ``n`` will be returned. If ``replacement`` is True then a given item can appear more than once in the ``k`` items. (For example, for 'ab' permutations of 2 would include 'aa', 'ab', 'ba' and 'bb'.) The multiplicity of elements in ``n`` is ignored when ``replacement`` is True but the total number of elements is considered since no element can appear more times than the number of elements in ``n``. Examples ======== >>> from sympy.functions.combinatorial.numbers import nP >>> from sympy.utilities.iterables import multiset_permutations, multiset >>> nP(3, 2) 6 >>> nP('abc', 2) == nP(multiset('abc'), 2) == 6 True >>> nP('aab', 2) 3 >>> nP([1, 2, 2], 2) 3 >>> [nP(3, i) for i in range(4)] [1, 3, 6, 6] >>> nP(3) == sum(_) True When ``replacement`` is True, each item can have multiplicity equal to the length represented by ``n``: >>> nP('aabc', replacement=True) 121 >>> [len(list(multiset_permutations('aaaabbbbcccc', i))) for i in range(5)] [1, 3, 9, 27, 81] >>> sum(_) 121 See Also ======== sympy.utilities.iterables.multiset_permutations References ========== .. [1] https://en.wikipedia.org/wiki/Permutation """ try: n = as_int(n) except ValueError: return Integer(_nP(_multiset_histogram(n), k, replacement)) return Integer(_nP(n, k, replacement)) @cacheit def _nP(n, k=None, replacement=False): from sympy.functions.combinatorial.factorials import factorial from sympy.core.mul import prod if k == 0: return 1 if isinstance(n, SYMPY_INTS): # n different items # assert n >= 0 if k is None: return sum(_nP(n, i, replacement) for i in range(n + 1)) elif replacement: return n**k elif k > n: return 0 elif k == n: return factorial(k) elif k == 1: return n else: # assert k >= 0 return _product(n - k + 1, n) elif isinstance(n, _MultisetHistogram): if k is None: return sum(_nP(n, i, replacement) for i in range(n[_N] + 1)) elif replacement: return n[_ITEMS]**k elif k == n[_N]: return factorial(k)/prod([factorial(i) for i in n[_M] if i > 1]) elif k > n[_N]: return 0 elif k == 1: return n[_ITEMS] else: # assert k >= 0 tot = 0 n = list(n) for i in range(len(n[_M])): if not n[i]: continue n[_N] -= 1 if n[i] == 1: n[i] = 0 n[_ITEMS] -= 1 tot += _nP(_MultisetHistogram(n), k - 1) n[_ITEMS] += 1 n[i] = 1 else: n[i] -= 1 tot += _nP(_MultisetHistogram(n), k - 1) n[i] += 1 n[_N] += 1 return tot @cacheit def _AOP_product(n): """for n = (m1, m2, .., mk) return the coefficients of the polynomial, prod(sum(x**i for i in range(nj + 1)) for nj in n); i.e. the coefficients of the product of AOPs (all-one polynomials) or order given in n. The resulting coefficient corresponding to x**r is the number of r-length combinations of sum(n) elements with multiplicities given in n. The coefficients are given as a default dictionary (so if a query is made for a key that is not present, 0 will be returned). Examples ======== >>> from sympy.functions.combinatorial.numbers import _AOP_product >>> from sympy.abc import x >>> n = (2, 2, 3) # e.g. aabbccc >>> prod = ((x**2 + x + 1)*(x**2 + x + 1)*(x**3 + x**2 + x + 1)).expand() >>> c = _AOP_product(n); dict(c) {0: 1, 1: 3, 2: 6, 3: 8, 4: 8, 5: 6, 6: 3, 7: 1} >>> [c[i] for i in range(8)] == [prod.coeff(x, i) for i in range(8)] True The generating poly used here is the same as that listed in http://tinyurl.com/cep849r, but in a refactored form. """ from collections import defaultdict n = list(n) ord = sum(n) need = (ord + 2)//2 rv = [1]*(n.pop() + 1) rv.extend([0]*(need - len(rv))) rv = rv[:need] while n: ni = n.pop() N = ni + 1 was = rv[:] for i in range(1, min(N, len(rv))): rv[i] += rv[i - 1] for i in range(N, need): rv[i] += rv[i - 1] - was[i - N] rev = list(reversed(rv)) if ord % 2: rv = rv + rev else: rv[-1:] = rev d = defaultdict(int) for i in range(len(rv)): d[i] = rv[i] return d def nC(n, k=None, replacement=False): """Return the number of combinations of ``n`` items taken ``k`` at a time. Possible values for ``n``: integer - set of length ``n`` sequence - converted to a multiset internally multiset - {element: multiplicity} If ``k`` is None then the total of all combinations of length 0 through the number of items represented in ``n`` will be returned. If ``replacement`` is True then a given item can appear more than once in the ``k`` items. (For example, for 'ab' sets of 2 would include 'aa', 'ab', and 'bb'.) The multiplicity of elements in ``n`` is ignored when ``replacement`` is True but the total number of elements is considered since no element can appear more times than the number of elements in ``n``. Examples ======== >>> from sympy.functions.combinatorial.numbers import nC >>> from sympy.utilities.iterables import multiset_combinations >>> nC(3, 2) 3 >>> nC('abc', 2) 3 >>> nC('aab', 2) 2 When ``replacement`` is True, each item can have multiplicity equal to the length represented by ``n``: >>> nC('aabc', replacement=True) 35 >>> [len(list(multiset_combinations('aaaabbbbcccc', i))) for i in range(5)] [1, 3, 6, 10, 15] >>> sum(_) 35 If there are ``k`` items with multiplicities ``m_1, m_2, ..., m_k`` then the total of all combinations of length 0 through ``k`` is the product, ``(m_1 + 1)*(m_2 + 1)*...*(m_k + 1)``. When the multiplicity of each item is 1 (i.e., k unique items) then there are 2**k combinations. For example, if there are 4 unique items, the total number of combinations is 16: >>> sum(nC(4, i) for i in range(5)) 16 See Also ======== sympy.utilities.iterables.multiset_combinations References ========== .. [1] https://en.wikipedia.org/wiki/Combination .. [2] http://tinyurl.com/cep849r """ from sympy.functions.combinatorial.factorials import binomial from sympy.core.mul import prod if isinstance(n, SYMPY_INTS): if k is None: if not replacement: return 2**n return sum(nC(n, i, replacement) for i in range(n + 1)) if k < 0: raise ValueError("k cannot be negative") if replacement: return binomial(n + k - 1, k) return binomial(n, k) if isinstance(n, _MultisetHistogram): N = n[_N] if k is None: if not replacement: return prod(m + 1 for m in n[_M]) return sum(nC(n, i, replacement) for i in range(N + 1)) elif replacement: return nC(n[_ITEMS], k, replacement) # assert k >= 0 elif k in (1, N - 1): return n[_ITEMS] elif k in (0, N): return 1 return _AOP_product(tuple(n[_M]))[k] else: return nC(_multiset_histogram(n), k, replacement) def _eval_stirling1(n, k): if n == k == 0: return S.One if 0 in (n, k): return S.Zero # some special values if n == k: return S.One elif k == n - 1: return binomial(n, 2) elif k == n - 2: return (3*n - 1)*binomial(n, 3)/4 elif k == n - 3: return binomial(n, 2)*binomial(n, 4) return _stirling1(n, k) @cacheit def _stirling1(n, k): row = [0, 1]+[0]*(k-1) # for n = 1 for i in range(2, n+1): for j in range(min(k,i), 0, -1): row[j] = (i-1) * row[j] + row[j-1] return Integer(row[k]) def _eval_stirling2(n, k): if n == k == 0: return S.One if 0 in (n, k): return S.Zero # some special values if n == k: return S.One elif k == n - 1: return binomial(n, 2) elif k == 1: return S.One elif k == 2: return Integer(2**(n - 1) - 1) return _stirling2(n, k) @cacheit def _stirling2(n, k): row = [0, 1]+[0]*(k-1) # for n = 1 for i in range(2, n+1): for j in range(min(k,i), 0, -1): row[j] = j * row[j] + row[j-1] return Integer(row[k]) def stirling(n, k, d=None, kind=2, signed=False): r"""Return Stirling number $S(n, k)$ of the first or second (default) kind. The sum of all Stirling numbers of the second kind for $k = 1$ through $n$ is ``bell(n)``. The recurrence relationship for these numbers is: .. math :: {0 \brace 0} = 1; {n \brace 0} = {0 \brace k} = 0; .. math :: {{n+1} \brace k} = j {n \brace k} + {n \brace {k-1}} where $j$ is: $n$ for Stirling numbers of the first kind, $-n$ for signed Stirling numbers of the first kind, $k$ for Stirling numbers of the second kind. The first kind of Stirling number counts the number of permutations of ``n`` distinct items that have ``k`` cycles; the second kind counts the ways in which ``n`` distinct items can be partitioned into ``k`` parts. If ``d`` is given, the "reduced Stirling number of the second kind" is returned: $S^{d}(n, k) = S(n - d + 1, k - d + 1)$ with $n \ge k \ge d$. (This counts the ways to partition $n$ consecutive integers into $k$ groups with no pairwise difference less than $d$. See example below.) To obtain the signed Stirling numbers of the first kind, use keyword ``signed=True``. Using this keyword automatically sets ``kind`` to 1. Examples ======== >>> from sympy.functions.combinatorial.numbers import stirling, bell >>> from sympy.combinatorics import Permutation >>> from sympy.utilities.iterables import multiset_partitions, permutations First kind (unsigned by default): >>> [stirling(6, i, kind=1) for i in range(7)] [0, 120, 274, 225, 85, 15, 1] >>> perms = list(permutations(range(4))) >>> [sum(Permutation(p).cycles == i for p in perms) for i in range(5)] [0, 6, 11, 6, 1] >>> [stirling(4, i, kind=1) for i in range(5)] [0, 6, 11, 6, 1] First kind (signed): >>> [stirling(4, i, signed=True) for i in range(5)] [0, -6, 11, -6, 1] Second kind: >>> [stirling(10, i) for i in range(12)] [0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1, 0] >>> sum(_) == bell(10) True >>> len(list(multiset_partitions(range(4), 2))) == stirling(4, 2) True Reduced second kind: >>> from sympy import subsets, oo >>> def delta(p): ... if len(p) == 1: ... return oo ... return min(abs(i[0] - i[1]) for i in subsets(p, 2)) >>> parts = multiset_partitions(range(5), 3) >>> d = 2 >>> sum(1 for p in parts if all(delta(i) >= d for i in p)) 7 >>> stirling(5, 3, 2) 7 See Also ======== sympy.utilities.iterables.multiset_partitions References ========== .. [1] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind .. [2] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind """ # TODO: make this a class like bell() n = as_int(n) k = as_int(k) if n < 0: raise ValueError('n must be nonnegative') if k > n: return S.Zero if d: # assert k >= d # kind is ignored -- only kind=2 is supported return _eval_stirling2(n - d + 1, k - d + 1) elif signed: # kind is ignored -- only kind=1 is supported return (-1)**(n - k)*_eval_stirling1(n, k) if kind == 1: return _eval_stirling1(n, k) elif kind == 2: return _eval_stirling2(n, k) else: raise ValueError('kind must be 1 or 2, not %s' % k) @cacheit def _nT(n, k): """Return the partitions of ``n`` items into ``k`` parts. This is used by ``nT`` for the case when ``n`` is an integer.""" # really quick exits if k > n or k < 0: return 0 if k == n or k == 1: return 1 if k == 0: return 0 # exits that could be done below but this is quicker if k == 2: return n//2 d = n - k if d <= 3: return d # quick exit if 3*k >= n: # or, equivalently, 2*k >= d # all the information needed in this case # will be in the cache needed to calculate # partition(d), so... # update cache tot = partition._partition(d) # and correct for values not needed if d - k > 0: tot -= sum(_npartition[:d - k]) return tot # regular exit # nT(n, k) = Sum(nT(n - k, m), (m, 1, k)); # calculate needed nT(i, j) values p = [1]*d for i in range(2, k + 1): for m in range(i + 1, d): p[m] += p[m - i] d -= 1 # if p[0] were appended to the end of p then the last # k values of p are the nT(n, j) values for 0 < j < k in reverse # order p[-1] = nT(n, 1), p[-2] = nT(n, 2), etc.... Instead of # putting the 1 from p[0] there, however, it is simply added to # the sum below which is valid for 1 < k <= n//2 return (1 + sum(p[1 - k:])) def nT(n, k=None): """Return the number of ``k``-sized partitions of ``n`` items. Possible values for ``n``: integer - ``n`` identical items sequence - converted to a multiset internally multiset - {element: multiplicity} Note: the convention for ``nT`` is different than that of ``nC`` and ``nP`` in that here an integer indicates ``n`` *identical* items instead of a set of length ``n``; this is in keeping with the ``partitions`` function which treats its integer-``n`` input like a list of ``n`` 1s. One can use ``range(n)`` for ``n`` to indicate ``n`` distinct items. If ``k`` is None then the total number of ways to partition the elements represented in ``n`` will be returned. Examples ======== >>> from sympy.functions.combinatorial.numbers import nT Partitions of the given multiset: >>> [nT('aabbc', i) for i in range(1, 7)] [1, 8, 11, 5, 1, 0] >>> nT('aabbc') == sum(_) True >>> [nT("mississippi", i) for i in range(1, 12)] [1, 74, 609, 1521, 1768, 1224, 579, 197, 50, 9, 1] Partitions when all items are identical: >>> [nT(5, i) for i in range(1, 6)] [1, 2, 2, 1, 1] >>> nT('1'*5) == sum(_) True When all items are different: >>> [nT(range(5), i) for i in range(1, 6)] [1, 15, 25, 10, 1] >>> nT(range(5)) == sum(_) True Partitions of an integer expressed as a sum of positive integers: >>> from sympy.functions.combinatorial.numbers import partition >>> partition(4) 5 >>> nT(4, 1) + nT(4, 2) + nT(4, 3) + nT(4, 4) 5 >>> nT('1'*4) 5 See Also ======== sympy.utilities.iterables.partitions sympy.utilities.iterables.multiset_partitions sympy.functions.combinatorial.numbers.partition References ========== .. [1] http://undergraduate.csse.uwa.edu.au/units/CITS7209/partition.pdf """ from sympy.utilities.enumerative import MultisetPartitionTraverser if isinstance(n, SYMPY_INTS): # n identical items if k is None: return partition(n) if isinstance(k, SYMPY_INTS): n = as_int(n) k = as_int(k) return Integer(_nT(n, k)) if not isinstance(n, _MultisetHistogram): try: # if n contains hashable items there is some # quick handling that can be done u = len(set(n)) if u <= 1: return nT(len(n), k) elif u == len(n): n = range(u) raise TypeError except TypeError: n = _multiset_histogram(n) N = n[_N] if k is None and N == 1: return 1 if k in (1, N): return 1 if k == 2 or N == 2 and k is None: m, r = divmod(N, 2) rv = sum(nC(n, i) for i in range(1, m + 1)) if not r: rv -= nC(n, m)//2 if k is None: rv += 1 # for k == 1 return rv if N == n[_ITEMS]: # all distinct if k is None: return bell(N) return stirling(N, k) m = MultisetPartitionTraverser() if k is None: return m.count_partitions(n[_M]) # MultisetPartitionTraverser does not have a range-limited count # method, so need to enumerate and count tot = 0 for discard in m.enum_range(n[_M], k-1, k): tot += 1 return tot #-----------------------------------------------------------------------------# # # # Motzkin numbers # # # #-----------------------------------------------------------------------------# class motzkin(Function): """ The nth Motzkin number is the number of ways of drawing non-intersecting chords between n points on a circle (not necessarily touching every point by a chord). The Motzkin numbers are named after Theodore Motzkin and have diverse applications in geometry, combinatorics and number theory. Motzkin numbers are the integer sequence defined by the initial terms `M_0 = 1`, `M_1 = 1` and the two-term recurrence relation `M_n = \frac{2*n + 1}{n + 2} * M_{n-1} + \frac{3n - 3}{n + 2} * M_{n-2}`. Examples ======== >>> from sympy import motzkin >>> motzkin.is_motzkin(5) False >>> motzkin.find_motzkin_numbers_in_range(2,300) [2, 4, 9, 21, 51, 127] >>> motzkin.find_motzkin_numbers_in_range(2,900) [2, 4, 9, 21, 51, 127, 323, 835] >>> motzkin.find_first_n_motzkins(10) [1, 1, 2, 4, 9, 21, 51, 127, 323, 835] References ========== .. [1] https://en.wikipedia.org/wiki/Motzkin_number .. [2] https://mathworld.wolfram.com/MotzkinNumber.html """ @staticmethod def is_motzkin(n): try: n = as_int(n) except ValueError: return False if n > 0: if n == 1 or n == 2: return True tn1 = 1 tn = 2 i = 3 while tn < n: a = ((2*i + 1)*tn + (3*i - 3)*tn1)/(i + 2) i += 1 tn1 = tn tn = a if tn == n: return True else: return False else: return False @staticmethod def find_motzkin_numbers_in_range(x, y): if 0 <= x <= y: motzkins = list() if x <= 1 <= y: motzkins.append(1) tn1 = 1 tn = 2 i = 3 while tn <= y: if tn >= x: motzkins.append(tn) a = ((2*i + 1)*tn + (3*i - 3)*tn1)/(i + 2) i += 1 tn1 = tn tn = int(a) return motzkins else: raise ValueError('The provided range is not valid. This condition should satisfy x <= y') @staticmethod def find_first_n_motzkins(n): try: n = as_int(n) except ValueError: raise ValueError('The provided number must be a positive integer') if n < 0: raise ValueError('The provided number must be a positive integer') motzkins = list() if n >= 0: motzkins.append(1) if n >= 1: motzkins.append(1) tn1 = 1 tn = 2 i = 3 while i <= n: motzkins.append(tn) a = ((2*i + 1)*tn + (3*i - 3)*tn1)/(i + 2) i += 1 tn1 = tn tn = int(a) return motzkins @staticmethod @recurrence_memo([S.One, S.One]) def _motzkin(n, prev): return ((2*n + 1)*prev[-1] + (3*n - 3)*prev[-2]) // (n + 2) @classmethod def eval(cls, n): try: n = as_int(n) except ValueError: raise ValueError('The provided number must be a positive integer') if n < 0: raise ValueError('The provided number must be a positive integer') return Integer(cls._motzkin(n - 1))
762a6ab7e252cf5c3bededfaa01ddde55596c99ba22d3df61097fea2bb5259aa
from sympy.core import Basic, S, Function, diff, Tuple, Dummy from sympy.core.basic import as_Basic from sympy.core.numbers import Rational, NumberSymbol from sympy.core.relational import (Equality, Unequality, Relational, _canonical) from sympy.functions.elementary.miscellaneous import Max, Min from sympy.logic.boolalg import (And, Boolean, distribute_and_over_or, true, false, Or, ITE, simplify_logic) from sympy.utilities.iterables import uniq, ordered, product, sift from sympy.utilities.misc import filldedent, func_name Undefined = S.NaN # Piecewise() class ExprCondPair(Tuple): """Represents an expression, condition pair.""" def __new__(cls, expr, cond): expr = as_Basic(expr) if cond == True: return Tuple.__new__(cls, expr, true) elif cond == False: return Tuple.__new__(cls, expr, false) elif isinstance(cond, Basic) and cond.has(Piecewise): cond = piecewise_fold(cond) if isinstance(cond, Piecewise): cond = cond.rewrite(ITE) if not isinstance(cond, Boolean): raise TypeError(filldedent(''' Second argument must be a Boolean, not `%s`''' % func_name(cond))) return Tuple.__new__(cls, expr, cond) @property def expr(self): """ Returns the expression of this pair. """ return self.args[0] @property def cond(self): """ Returns the condition of this pair. """ return self.args[1] @property def is_commutative(self): return self.expr.is_commutative def __iter__(self): yield self.expr yield self.cond def _eval_simplify(self, **kwargs): return self.func(*[a.simplify(**kwargs) for a in self.args]) class Piecewise(Function): """ Represents a piecewise function. Usage: Piecewise( (expr,cond), (expr,cond), ... ) - Each argument is a 2-tuple defining an expression and condition - The conds are evaluated in turn returning the first that is True. If any of the evaluated conds are not determined explicitly False, e.g. x < 1, the function is returned in symbolic form. - If the function is evaluated at a place where all conditions are False, nan will be returned. - Pairs where the cond is explicitly False, will be removed. Examples ======== >>> from sympy import Piecewise, log, piecewise_fold >>> from sympy.abc import x, y >>> f = x**2 >>> g = log(x) >>> p = Piecewise((0, x < -1), (f, x <= 1), (g, True)) >>> p.subs(x,1) 1 >>> p.subs(x,5) log(5) Booleans can contain Piecewise elements: >>> cond = (x < y).subs(x, Piecewise((2, x < 0), (3, True))); cond Piecewise((2, x < 0), (3, True)) < y The folded version of this results in a Piecewise whose expressions are Booleans: >>> folded_cond = piecewise_fold(cond); folded_cond Piecewise((2 < y, x < 0), (3 < y, True)) When a Boolean containing Piecewise (like cond) or a Piecewise with Boolean expressions (like folded_cond) is used as a condition, it is converted to an equivalent ITE object: >>> Piecewise((1, folded_cond)) Piecewise((1, ITE(x < 0, y > 2, y > 3))) When a condition is an ITE, it will be converted to a simplified Boolean expression: >>> piecewise_fold(_) Piecewise((1, ((x >= 0) | (y > 2)) & ((y > 3) | (x < 0)))) See Also ======== piecewise_fold, ITE """ nargs = None is_Piecewise = True def __new__(cls, *args, **options): if len(args) == 0: raise TypeError("At least one (expr, cond) pair expected.") # (Try to) sympify args first newargs = [] for ec in args: # ec could be a ExprCondPair or a tuple pair = ExprCondPair(*getattr(ec, 'args', ec)) cond = pair.cond if cond is false: continue newargs.append(pair) if cond is true: break if options.pop('evaluate', True): r = cls.eval(*newargs) else: r = None if r is None: return Basic.__new__(cls, *newargs, **options) else: return r @classmethod def eval(cls, *_args): """Either return a modified version of the args or, if no modifications were made, return None. Modifications that are made here: 1) relationals are made canonical 2) any False conditions are dropped 3) any repeat of a previous condition is ignored 3) any args past one with a true condition are dropped If there are no args left, nan will be returned. If there is a single arg with a True condition, its corresponding expression will be returned. """ from sympy.functions.elementary.complexes import im, re if not _args: return Undefined if len(_args) == 1 and _args[0][-1] == True: return _args[0][0] newargs = [] # the unevaluated conditions current_cond = set() # the conditions up to a given e, c pair # make conditions canonical args = [] for e, c in _args: if (not c.is_Atom and not isinstance(c, Relational) and not c.has(im, re)): free = c.free_symbols if len(free) == 1: funcs = [i for i in c.atoms(Function) if not isinstance(i, Boolean)] if len(funcs) == 1 and len( c.xreplace({list(funcs)[0]: Dummy()} ).free_symbols) == 1: # we can treat function like a symbol free = funcs _c = c x = free.pop() try: c = c.as_set().as_relational(x) except NotImplementedError: pass else: reps = {} for i in c.atoms(Relational): ic = i.canonical if ic.rhs in (S.Infinity, S.NegativeInfinity): if not _c.has(ic.rhs): # don't accept introduction of # new Relationals with +/-oo reps[i] = S.true elif ('=' not in ic.rel_op and c.xreplace({x: i.rhs}) != _c.xreplace({x: i.rhs})): reps[i] = Relational( i.lhs, i.rhs, i.rel_op + '=') c = c.xreplace(reps) args.append((e, _canonical(c))) for expr, cond in args: # Check here if expr is a Piecewise and collapse if one of # the conds in expr matches cond. This allows the collapsing # of Piecewise((Piecewise((x,x<0)),x<0)) to Piecewise((x,x<0)). # This is important when using piecewise_fold to simplify # multiple Piecewise instances having the same conds. # Eventually, this code should be able to collapse Piecewise's # having different intervals, but this will probably require # using the new assumptions. if isinstance(expr, Piecewise): unmatching = [] for i, (e, c) in enumerate(expr.args): if c in current_cond: # this would already have triggered continue if c == cond: if c != True: # nothing past this condition will ever # trigger and only those args before this # that didn't match a previous condition # could possibly trigger if unmatching: expr = Piecewise(*( unmatching + [(e, c)])) else: expr = e break else: unmatching.append((e, c)) # check for condition repeats got = False # -- if an And contains a condition that was # already encountered, then the And will be # False: if the previous condition was False # then the And will be False and if the previous # condition is True then then we wouldn't get to # this point. In either case, we can skip this condition. for i in ([cond] + (list(cond.args) if isinstance(cond, And) else [])): if i in current_cond: got = True break if got: continue # -- if not(c) is already in current_cond then c is # a redundant condition in an And. This does not # apply to Or, however: (e1, c), (e2, Or(~c, d)) # is not (e1, c), (e2, d) because if c and d are # both False this would give no results when the # true answer should be (e2, True) if isinstance(cond, And): nonredundant = [] for c in cond.args: if (isinstance(c, Relational) and c.negated.canonical in current_cond): continue nonredundant.append(c) cond = cond.func(*nonredundant) elif isinstance(cond, Relational): if cond.negated.canonical in current_cond: cond = S.true current_cond.add(cond) # collect successive e,c pairs when exprs or cond match if newargs: if newargs[-1].expr == expr: orcond = Or(cond, newargs[-1].cond) if isinstance(orcond, (And, Or)): orcond = distribute_and_over_or(orcond) newargs[-1] = ExprCondPair(expr, orcond) continue elif newargs[-1].cond == cond: newargs[-1] = ExprCondPair(expr, cond) continue newargs.append(ExprCondPair(expr, cond)) # some conditions may have been redundant missing = len(newargs) != len(_args) # some conditions may have changed same = all(a == b for a, b in zip(newargs, _args)) # if either change happened we return the expr with the # updated args if not newargs: raise ValueError(filldedent(''' There are no conditions (or none that are not trivially false) to define an expression.''')) if missing or not same: return cls(*newargs) def doit(self, **hints): """ Evaluate this piecewise function. """ newargs = [] for e, c in self.args: if hints.get('deep', True): if isinstance(e, Basic): newe = e.doit(**hints) if newe != self: e = newe if isinstance(c, Basic): c = c.doit(**hints) newargs.append((e, c)) return self.func(*newargs) def _eval_simplify(self, **kwargs): return piecewise_simplify(self, **kwargs) def _eval_as_leading_term(self, x, cdir=0): for e, c in self.args: if c == True or c.subs(x, 0) == True: return e.as_leading_term(x) def _eval_adjoint(self): return self.func(*[(e.adjoint(), c) for e, c in self.args]) def _eval_conjugate(self): return self.func(*[(e.conjugate(), c) for e, c in self.args]) def _eval_derivative(self, x): return self.func(*[(diff(e, x), c) for e, c in self.args]) def _eval_evalf(self, prec): return self.func(*[(e._evalf(prec), c) for e, c in self.args]) def piecewise_integrate(self, x, **kwargs): """Return the Piecewise with each expression being replaced with its antiderivative. To obtain a continuous antiderivative, use the `integrate` function or method. Examples ======== >>> from sympy import Piecewise >>> from sympy.abc import x >>> p = Piecewise((0, x < 0), (1, x < 1), (2, True)) >>> p.piecewise_integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x, True)) Note that this does not give a continuous function, e.g. at x = 1 the 3rd condition applies and the antiderivative there is 2*x so the value of the antiderivative is 2: >>> anti = _ >>> anti.subs(x, 1) 2 The continuous derivative accounts for the integral *up to* the point of interest, however: >>> p.integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True)) >>> _.subs(x, 1) 1 See Also ======== Piecewise._eval_integral """ from sympy.integrals import integrate return self.func(*[(integrate(e, x, **kwargs), c) for e, c in self.args]) def _handle_irel(self, x, handler): """Return either None (if the conditions of self depend only on x) else a Piecewise expression whose expressions (handled by the handler that was passed) are paired with the governing x-independent relationals, e.g. Piecewise((A, a(x) & b(y)), (B, c(x) | c(y)) -> Piecewise( (handler(Piecewise((A, a(x) & True), (B, c(x) | True)), b(y) & c(y)), (handler(Piecewise((A, a(x) & True), (B, c(x) | False)), b(y)), (handler(Piecewise((A, a(x) & False), (B, c(x) | True)), c(y)), (handler(Piecewise((A, a(x) & False), (B, c(x) | False)), True)) """ # identify governing relationals rel = self.atoms(Relational) irel = list(ordered([r for r in rel if x not in r.free_symbols and r not in (S.true, S.false)])) if irel: args = {} exprinorder = [] for truth in product((1, 0), repeat=len(irel)): reps = dict(zip(irel, truth)) # only store the true conditions since the false are implied # when they appear lower in the Piecewise args if 1 not in truth: cond = None # flag this one so it doesn't get combined else: andargs = Tuple(*[i for i in reps if reps[i]]) free = list(andargs.free_symbols) if len(free) == 1: from sympy.solvers.inequalities import ( reduce_inequalities, _solve_inequality) try: t = reduce_inequalities(andargs, free[0]) # ValueError when there are potentially # nonvanishing imaginary parts except (ValueError, NotImplementedError): # at least isolate free symbol on left t = And(*[_solve_inequality( a, free[0], linear=True) for a in andargs]) else: t = And(*andargs) if t is S.false: continue # an impossible combination cond = t expr = handler(self.xreplace(reps)) if isinstance(expr, self.func) and len(expr.args) == 1: expr, econd = expr.args[0] cond = And(econd, True if cond is None else cond) # the ec pairs are being collected since all possibilities # are being enumerated, but don't put the last one in since # its expr might match a previous expression and it # must appear last in the args if cond is not None: args.setdefault(expr, []).append(cond) # but since we only store the true conditions we must maintain # the order so that the expression with the most true values # comes first exprinorder.append(expr) # convert collected conditions as args of Or for k in args: args[k] = Or(*args[k]) # take them in the order obtained args = [(e, args[e]) for e in uniq(exprinorder)] # add in the last arg args.append((expr, True)) return Piecewise(*args) def _eval_integral(self, x, _first=True, **kwargs): """Return the indefinite integral of the Piecewise such that subsequent substitution of x with a value will give the value of the integral (not including the constant of integration) up to that point. To only integrate the individual parts of Piecewise, use the `piecewise_integrate` method. Examples ======== >>> from sympy import Piecewise >>> from sympy.abc import x >>> p = Piecewise((0, x < 0), (1, x < 1), (2, True)) >>> p.integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True)) >>> p.piecewise_integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x, True)) See Also ======== Piecewise.piecewise_integrate """ from sympy.integrals.integrals import integrate if _first: def handler(ipw): if isinstance(ipw, self.func): return ipw._eval_integral(x, _first=False, **kwargs) else: return ipw.integrate(x, **kwargs) irv = self._handle_irel(x, handler) if irv is not None: return irv # handle a Piecewise from -oo to oo with and no x-independent relationals # ----------------------------------------------------------------------- try: abei = self._intervals(x) except NotImplementedError: from sympy import Integral return Integral(self, x) # unevaluated pieces = [(a, b) for a, b, _, _ in abei] oo = S.Infinity done = [(-oo, oo, -1)] for k, p in enumerate(pieces): if p == (-oo, oo): # all undone intervals will get this key for j, (a, b, i) in enumerate(done): if i == -1: done[j] = a, b, k break # nothing else to consider N = len(done) - 1 for j, (a, b, i) in enumerate(reversed(done)): if i == -1: j = N - j done[j: j + 1] = _clip(p, (a, b), k) done = [(a, b, i) for a, b, i in done if a != b] # append an arg if there is a hole so a reference to # argument -1 will give Undefined if any(i == -1 for (a, b, i) in done): abei.append((-oo, oo, Undefined, -1)) # return the sum of the intervals args = [] sum = None for a, b, i in done: anti = integrate(abei[i][-2], x, **kwargs) if sum is None: sum = anti else: sum = sum.subs(x, a) if sum == Undefined: sum = 0 sum += anti._eval_interval(x, a, x) # see if we know whether b is contained in original # condition if b is S.Infinity: cond = True elif self.args[abei[i][-1]].cond.subs(x, b) == False: cond = (x < b) else: cond = (x <= b) args.append((sum, cond)) return Piecewise(*args) def _eval_interval(self, sym, a, b, _first=True): """Evaluates the function along the sym in a given interval [a, b]""" # FIXME: Currently complex intervals are not supported. A possible # replacement algorithm, discussed in issue 5227, can be found in the # following papers; # http://portal.acm.org/citation.cfm?id=281649 # http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4127&rep=rep1&type=pdf from sympy.core.symbol import Dummy if a is None or b is None: # In this case, it is just simple substitution return super()._eval_interval(sym, a, b) else: x, lo, hi = map(as_Basic, (sym, a, b)) if _first: # get only x-dependent relationals def handler(ipw): if isinstance(ipw, self.func): return ipw._eval_interval(x, lo, hi, _first=None) else: return ipw._eval_interval(x, lo, hi) irv = self._handle_irel(x, handler) if irv is not None: return irv if (lo < hi) is S.false or ( lo is S.Infinity or hi is S.NegativeInfinity): rv = self._eval_interval(x, hi, lo, _first=False) if isinstance(rv, Piecewise): rv = Piecewise(*[(-e, c) for e, c in rv.args]) else: rv = -rv return rv if (lo < hi) is S.true or ( hi is S.Infinity or lo is S.NegativeInfinity): pass else: _a = Dummy('lo') _b = Dummy('hi') a = lo if lo.is_comparable else _a b = hi if hi.is_comparable else _b pos = self._eval_interval(x, a, b, _first=False) if a == _a and b == _b: # it's purely symbolic so just swap lo and hi and # change the sign to get the value for when lo > hi neg, pos = (-pos.xreplace({_a: hi, _b: lo}), pos.xreplace({_a: lo, _b: hi})) else: # at least one of the bounds was comparable, so allow # _eval_interval to use that information when computing # the interval with lo and hi reversed neg, pos = (-self._eval_interval(x, hi, lo, _first=False), pos.xreplace({_a: lo, _b: hi})) # allow simplification based on ordering of lo and hi p = Dummy('', positive=True) if lo.is_Symbol: pos = pos.xreplace({lo: hi - p}).xreplace({p: hi - lo}) neg = neg.xreplace({lo: hi + p}).xreplace({p: lo - hi}) elif hi.is_Symbol: pos = pos.xreplace({hi: lo + p}).xreplace({p: hi - lo}) neg = neg.xreplace({hi: lo - p}).xreplace({p: lo - hi}) # assemble return expression; make the first condition be Lt # b/c then the first expression will look the same whether # the lo or hi limit is symbolic if a == _a: # the lower limit was symbolic rv = Piecewise( (pos, lo < hi), (neg, True)) else: rv = Piecewise( (neg, hi < lo), (pos, True)) if rv == Undefined: raise ValueError("Can't integrate across undefined region.") if any(isinstance(i, Piecewise) for i in (pos, neg)): rv = piecewise_fold(rv) return rv # handle a Piecewise with lo <= hi and no x-independent relationals # ----------------------------------------------------------------- try: abei = self._intervals(x) except NotImplementedError: from sympy import Integral # not being able to do the interval of f(x) can # be stated as not being able to do the integral # of f'(x) over the same range return Integral(self.diff(x), (x, lo, hi)) # unevaluated pieces = [(a, b) for a, b, _, _ in abei] done = [(lo, hi, -1)] oo = S.Infinity for k, p in enumerate(pieces): if p[:2] == (-oo, oo): # all undone intervals will get this key for j, (a, b, i) in enumerate(done): if i == -1: done[j] = a, b, k break # nothing else to consider N = len(done) - 1 for j, (a, b, i) in enumerate(reversed(done)): if i == -1: j = N - j done[j: j + 1] = _clip(p, (a, b), k) done = [(a, b, i) for a, b, i in done if a != b] # return the sum of the intervals sum = S.Zero upto = None for a, b, i in done: if i == -1: if upto is None: return Undefined # TODO simplify hi <= upto return Piecewise((sum, hi <= upto), (Undefined, True)) sum += abei[i][-2]._eval_interval(x, a, b) upto = b return sum def _intervals(self, sym): """Return a list of unique tuples, (a, b, e, i), where a and b are the lower and upper bounds in which the expression e of argument i in self is defined and a < b (when involving numbers) or a <= b when involving symbols. If there are any relationals not involving sym, or any relational cannot be solved for sym, NotImplementedError is raised. The calling routine should have removed such relationals before calling this routine. The evaluated conditions will be returned as ranges. Discontinuous ranges will be returned separately with identical expressions. The first condition that evaluates to True will be returned as the last tuple with a, b = -oo, oo. """ from sympy.solvers.inequalities import _solve_inequality from sympy.logic.boolalg import to_cnf, distribute_or_over_and assert isinstance(self, Piecewise) def _solve_relational(r): if sym not in r.free_symbols: nonsymfail(r) rv = _solve_inequality(r, sym) if isinstance(rv, Relational): free = rv.args[1].free_symbols if rv.args[0] != sym or sym in free: raise NotImplementedError(filldedent(''' Unable to solve relational %s for %s.''' % (r, sym))) if rv.rel_op == '==': # this equality has been affirmed to have the form # Eq(sym, rhs) where rhs is sym-free; it represents # a zero-width interval which will be ignored # whether it is an isolated condition or contained # within an And or an Or rv = S.false elif rv.rel_op == '!=': try: rv = Or(sym < rv.rhs, sym > rv.rhs) except TypeError: # e.g. x != I ==> all real x satisfy rv = S.true elif rv == (S.NegativeInfinity < sym) & (sym < S.Infinity): rv = S.true return rv def nonsymfail(cond): raise NotImplementedError(filldedent(''' A condition not involving %s appeared: %s''' % (sym, cond))) # make self canonical wrt Relationals reps = { r: _solve_relational(r) for r in self.atoms(Relational)} # process args individually so if any evaluate, their position # in the original Piecewise will be known args = [i.xreplace(reps) for i in self.args] # precondition args expr_cond = [] default = idefault = None for i, (expr, cond) in enumerate(args): if cond is S.false: continue elif cond is S.true: default = expr idefault = i break cond = to_cnf(cond) if isinstance(cond, And): cond = distribute_or_over_and(cond) if isinstance(cond, Or): expr_cond.extend( [(i, expr, o) for o in cond.args if not isinstance(o, Equality)]) elif cond is not S.false: expr_cond.append((i, expr, cond)) # determine intervals represented by conditions int_expr = [] for iarg, expr, cond in expr_cond: if isinstance(cond, And): lower = S.NegativeInfinity upper = S.Infinity for cond2 in cond.args: if isinstance(cond2, Equality): lower = upper # ignore break elif cond2.lts == sym: upper = Min(cond2.gts, upper) elif cond2.gts == sym: lower = Max(cond2.lts, lower) else: nonsymfail(cond2) # should never get here elif isinstance(cond, Relational): lower, upper = cond.lts, cond.gts # part 1: initialize with givens if cond.lts == sym: # part 1a: expand the side ... lower = S.NegativeInfinity # e.g. x <= 0 ---> -oo <= 0 elif cond.gts == sym: # part 1a: ... that can be expanded upper = S.Infinity # e.g. x >= 0 ---> oo >= 0 else: nonsymfail(cond) else: raise NotImplementedError( 'unrecognized condition: %s' % cond) lower, upper = lower, Max(lower, upper) if (lower >= upper) is not S.true: int_expr.append((lower, upper, expr, iarg)) if default is not None: int_expr.append( (S.NegativeInfinity, S.Infinity, default, idefault)) return list(uniq(int_expr)) def _eval_nseries(self, x, n, logx, cdir=0): args = [(ec.expr._eval_nseries(x, n, logx), ec.cond) for ec in self.args] return self.func(*args) def _eval_power(self, s): return self.func(*[(e**s, c) for e, c in self.args]) def _eval_subs(self, old, new): # this is strictly not necessary, but we can keep track # of whether True or False conditions arise and be # somewhat more efficient by avoiding other substitutions # and avoiding invalid conditions that appear after a # True condition args = list(self.args) args_exist = False for i, (e, c) in enumerate(args): c = c._subs(old, new) if c != False: args_exist = True e = e._subs(old, new) args[i] = (e, c) if c == True: break if not args_exist: args = ((Undefined, True),) return self.func(*args) def _eval_transpose(self): return self.func(*[(e.transpose(), c) for e, c in self.args]) def _eval_template_is_attr(self, is_attr): b = None for expr, _ in self.args: a = getattr(expr, is_attr) if a is None: return if b is None: b = a elif b is not a: return return b _eval_is_finite = lambda self: self._eval_template_is_attr( 'is_finite') _eval_is_complex = lambda self: self._eval_template_is_attr('is_complex') _eval_is_even = lambda self: self._eval_template_is_attr('is_even') _eval_is_imaginary = lambda self: self._eval_template_is_attr( 'is_imaginary') _eval_is_integer = lambda self: self._eval_template_is_attr('is_integer') _eval_is_irrational = lambda self: self._eval_template_is_attr( 'is_irrational') _eval_is_negative = lambda self: self._eval_template_is_attr('is_negative') _eval_is_nonnegative = lambda self: self._eval_template_is_attr( 'is_nonnegative') _eval_is_nonpositive = lambda self: self._eval_template_is_attr( 'is_nonpositive') _eval_is_nonzero = lambda self: self._eval_template_is_attr( 'is_nonzero') _eval_is_odd = lambda self: self._eval_template_is_attr('is_odd') _eval_is_polar = lambda self: self._eval_template_is_attr('is_polar') _eval_is_positive = lambda self: self._eval_template_is_attr('is_positive') _eval_is_extended_real = lambda self: self._eval_template_is_attr( 'is_extended_real') _eval_is_extended_positive = lambda self: self._eval_template_is_attr( 'is_extended_positive') _eval_is_extended_negative = lambda self: self._eval_template_is_attr( 'is_extended_negative') _eval_is_extended_nonzero = lambda self: self._eval_template_is_attr( 'is_extended_nonzero') _eval_is_extended_nonpositive = lambda self: self._eval_template_is_attr( 'is_extended_nonpositive') _eval_is_extended_nonnegative = lambda self: self._eval_template_is_attr( 'is_extended_nonnegative') _eval_is_real = lambda self: self._eval_template_is_attr('is_real') _eval_is_zero = lambda self: self._eval_template_is_attr( 'is_zero') @classmethod def __eval_cond(cls, cond): """Return the truth value of the condition.""" if cond == True: return True if isinstance(cond, Equality): try: diff = cond.lhs - cond.rhs if diff.is_commutative: return diff.is_zero except TypeError: pass def as_expr_set_pairs(self, domain=S.Reals): """Return tuples for each argument of self that give the expression and the interval in which it is valid which is contained within the given domain. If a condition cannot be converted to a set, an error will be raised. The variable of the conditions is assumed to be real; sets of real values are returned. Examples ======== >>> from sympy import Piecewise, Interval >>> from sympy.abc import x >>> p = Piecewise( ... (1, x < 2), ... (2,(x > 0) & (x < 4)), ... (3, True)) >>> p.as_expr_set_pairs() [(1, Interval.open(-oo, 2)), (2, Interval.Ropen(2, 4)), (3, Interval(4, oo))] >>> p.as_expr_set_pairs(Interval(0, 3)) [(1, Interval.Ropen(0, 2)), (2, Interval(2, 3))] """ exp_sets = [] U = domain complex = not domain.is_subset(S.Reals) cond_free = set() for expr, cond in self.args: cond_free |= cond.free_symbols if len(cond_free) > 1: raise NotImplementedError(filldedent(''' multivariate conditions are not handled.''')) if complex: for i in cond.atoms(Relational): if not isinstance(i, (Equality, Unequality)): raise ValueError(filldedent(''' Inequalities in the complex domain are not supported. Try the real domain by setting domain=S.Reals''')) cond_int = U.intersect(cond.as_set()) U = U - cond_int if cond_int != S.EmptySet: exp_sets.append((expr, cond_int)) return exp_sets def _eval_rewrite_as_ITE(self, *args, **kwargs): byfree = {} args = list(args) default = any(c == True for b, c in args) for i, (b, c) in enumerate(args): if not isinstance(b, Boolean) and b != True: raise TypeError(filldedent(''' Expecting Boolean or bool but got `%s` ''' % func_name(b))) if c == True: break # loop over independent conditions for this b for c in c.args if isinstance(c, Or) else [c]: free = c.free_symbols x = free.pop() try: byfree[x] = byfree.setdefault( x, S.EmptySet).union(c.as_set()) except NotImplementedError: if not default: raise NotImplementedError(filldedent(''' A method to determine whether a multivariate conditional is consistent with a complete coverage of all variables has not been implemented so the rewrite is being stopped after encountering `%s`. This error would not occur if a default expression like `(foo, True)` were given. ''' % c)) if byfree[x] in (S.UniversalSet, S.Reals): # collapse the ith condition to True and break args[i] = list(args[i]) c = args[i][1] = True break if c == True: break if c != True: raise ValueError(filldedent(''' Conditions must cover all reals or a final default condition `(foo, True)` must be given. ''')) last, _ = args[i] # ignore all past ith arg for a, c in reversed(args[:i]): last = ITE(c, a, last) return _canonical(last) def _eval_rewrite_as_KroneckerDelta(self, *args): from sympy import Ne, Eq, Not, KroneckerDelta rules = { And: [False, False], Or: [True, True], Not: [True, False], Eq: [None, None], Ne: [None, None] } class UnrecognizedCondition(Exception): pass def rewrite(cond): if isinstance(cond, Eq): return KroneckerDelta(*cond.args) if isinstance(cond, Ne): return 1 - KroneckerDelta(*cond.args) cls, args = type(cond), cond.args if cls not in rules: raise UnrecognizedCondition(cls) b1, b2 = rules[cls] k = 1 for c in args: if b1: k *= 1 - rewrite(c) else: k *= rewrite(c) if b2: return 1 - k return k conditions = [] true_value = None for value, cond in args: if type(cond) in rules: conditions.append((value, cond)) elif cond is S.true: if true_value is None: true_value = value else: return if true_value is not None: result = true_value for value, cond in conditions[::-1]: try: k = rewrite(cond) result = k * value + (1 - k) * result except UnrecognizedCondition: return return result def piecewise_fold(expr): """ Takes an expression containing a piecewise function and returns the expression in piecewise form. In addition, any ITE conditions are rewritten in negation normal form and simplified. Examples ======== >>> from sympy import Piecewise, piecewise_fold, sympify as S >>> from sympy.abc import x >>> p = Piecewise((x, x < 1), (1, S(1) <= x)) >>> piecewise_fold(x*p) Piecewise((x**2, x < 1), (x, True)) See Also ======== Piecewise """ if not isinstance(expr, Basic) or not expr.has(Piecewise): return expr new_args = [] if isinstance(expr, (ExprCondPair, Piecewise)): for e, c in expr.args: if not isinstance(e, Piecewise): e = piecewise_fold(e) # we don't keep Piecewise in condition because # it has to be checked to see that it's complete # and we convert it to ITE at that time assert not c.has(Piecewise) # pragma: no cover if isinstance(c, ITE): c = c.to_nnf() c = simplify_logic(c, form='cnf') if isinstance(e, Piecewise): new_args.extend([(piecewise_fold(ei), And(ci, c)) for ei, ci in e.args]) else: new_args.append((e, c)) else: from sympy.utilities.iterables import cartes, sift, common_prefix # Given # P1 = Piecewise((e11, c1), (e12, c2), A) # P2 = Piecewise((e21, c1), (e22, c2), B) # ... # the folding of f(P1, P2) is trivially # Piecewise( # (f(e11, e21), c1), # (f(e12, e22), c2), # (f(Piecewise(A), Piecewise(B)), True)) # Certain objects end up rewriting themselves as thus, so # we do that grouping before the more generic folding. # The following applies this idea when f = Add or f = Mul # (and the expression is commutative). if expr.is_Add or expr.is_Mul and expr.is_commutative: p, args = sift(expr.args, lambda x: x.is_Piecewise, binary=True) pc = sift(p, lambda x: tuple([c for e,c in x.args])) for c in list(ordered(pc)): if len(pc[c]) > 1: pargs = [list(i.args) for i in pc[c]] # the first one is the same; there may be more com = common_prefix(*[ [i.cond for i in j] for j in pargs]) n = len(com) collected = [] for i in range(n): collected.append(( expr.func(*[ai[i].expr for ai in pargs]), com[i])) remains = [] for a in pargs: if n == len(a): # no more args continue if a[n].cond == True: # no longer Piecewise remains.append(a[n].expr) else: # restore the remaining Piecewise remains.append( Piecewise(*a[n:], evaluate=False)) if remains: collected.append((expr.func(*remains), True)) args.append(Piecewise(*collected, evaluate=False)) continue args.extend(pc[c]) else: args = expr.args # fold folded = list(map(piecewise_fold, args)) for ec in cartes(*[ (i.args if isinstance(i, Piecewise) else [(i, true)]) for i in folded]): e, c = zip(*ec) new_args.append((expr.func(*e), And(*c))) return Piecewise(*new_args) def _clip(A, B, k): """Return interval B as intervals that are covered by A (keyed to k) and all other intervals of B not covered by A keyed to -1. The reference point of each interval is the rhs; if the lhs is greater than the rhs then an interval of zero width interval will result, e.g. (4, 1) is treated like (1, 1). Examples ======== >>> from sympy.functions.elementary.piecewise import _clip >>> from sympy import Tuple >>> A = Tuple(1, 3) >>> B = Tuple(2, 4) >>> _clip(A, B, 0) [(2, 3, 0), (3, 4, -1)] Interpretation: interval portion (2, 3) of interval (2, 4) is covered by interval (1, 3) and is keyed to 0 as requested; interval (3, 4) was not covered by (1, 3) and is keyed to -1. """ a, b = B c, d = A c, d = Min(Max(c, a), b), Min(Max(d, a), b) a, b = Min(a, b), b p = [] if a != c: p.append((a, c, -1)) else: pass if c != d: p.append((c, d, k)) else: pass if b != d: if d == c and p and p[-1][-1] == -1: p[-1] = p[-1][0], b, -1 else: p.append((d, b, -1)) else: pass return p def piecewise_simplify_arguments(expr, **kwargs): from sympy import simplify args = [] for e, c in expr.args: if isinstance(e, Basic): doit = kwargs.pop('doit', None) # Skip doit to avoid growth at every call for some integrals # and sums, see sympy/sympy#17165 newe = simplify(e, doit=False, **kwargs) if newe != expr: e = newe if isinstance(c, Basic): c = simplify(c, doit=doit, **kwargs) args.append((e, c)) return Piecewise(*args) def piecewise_simplify(expr, **kwargs): expr = piecewise_simplify_arguments(expr, **kwargs) if not isinstance(expr, Piecewise): return expr args = list(expr.args) _blessed = lambda e: getattr(e.lhs, '_diff_wrt', False) and ( getattr(e.rhs, '_diff_wrt', None) or isinstance(e.rhs, (Rational, NumberSymbol))) for i, (expr, cond) in enumerate(args): # try to simplify conditions and the expression for # equalities that are part of the condition, e.g. # Piecewise((n, And(Eq(n,0), Eq(n + m, 0))), (1, True)) # -> Piecewise((0, And(Eq(n, 0), Eq(m, 0))), (1, True)) if isinstance(cond, And): eqs, other = sift(cond.args, lambda i: isinstance(i, Equality), binary=True) elif isinstance(cond, Equality): eqs, other = [cond], [] else: eqs = other = [] if eqs: eqs = list(ordered(eqs)) for j, e in enumerate(eqs): # these blessed lhs objects behave like Symbols # and the rhs are simple replacements for the "symbols" if _blessed(e): expr = expr.subs(*e.args) eqs[j + 1:] = [ei.subs(*e.args) for ei in eqs[j + 1:]] other = [ei.subs(*e.args) for ei in other] cond = And(*(eqs + other)) args[i] = args[i].func(expr, cond) # See if expressions valid for an Equal expression happens to evaluate # to the same function as in the next piecewise segment, see: # https://github.com/sympy/sympy/issues/8458 prevexpr = None for i, (expr, cond) in reversed(list(enumerate(args))): if prevexpr is not None: if isinstance(cond, And): eqs, other = sift(cond.args, lambda i: isinstance(i, Equality), binary=True) elif isinstance(cond, Equality): eqs, other = [cond], [] else: eqs = other = [] _prevexpr = prevexpr _expr = expr if eqs and not other: eqs = list(ordered(eqs)) for e in eqs: # allow 2 args to collapse into 1 for any e # otherwise limit simplification to only simple-arg # Eq instances if len(args) == 2 or _blessed(e): _prevexpr = _prevexpr.subs(*e.args) _expr = _expr.subs(*e.args) # Did it evaluate to the same? if _prevexpr == _expr: # Set the expression for the Not equal section to the same # as the next. These will be merged when creating the new # Piecewise args[i] = args[i].func(args[i+1][0], cond) else: # Update the expression that we compare against prevexpr = expr else: prevexpr = expr return Piecewise(*args)
ba4775b519e0acac508258729574d4c39fb79f0902dd9550c9f1cc9adc5a39f4
from sympy import Basic, Expr from sympy.core import Add, S from sympy.core.evalf import get_integer_part, PrecisionExhausted from sympy.core.function import Function from sympy.core.logic import fuzzy_or from sympy.core.numbers import Integer from sympy.core.relational import Gt, Lt, Ge, Le, Relational, is_eq from sympy.core.symbol import Symbol from sympy.core.sympify import _sympify from sympy.multipledispatch import dispatch ############################################################################### ######################### FLOOR and CEILING FUNCTIONS ######################### ############################################################################### class RoundFunction(Function): """The base class for rounding functions.""" @classmethod def eval(cls, arg): from sympy import im v = cls._eval_number(arg) if v is not None: return v if arg.is_integer or arg.is_finite is False: return arg if arg.is_imaginary or (S.ImaginaryUnit*arg).is_real: i = im(arg) if not i.has(S.ImaginaryUnit): return cls(i)*S.ImaginaryUnit return cls(arg, evaluate=False) # Integral, numerical, symbolic part ipart = npart = spart = S.Zero # Extract integral (or complex integral) terms terms = Add.make_args(arg) for t in terms: if t.is_integer or (t.is_imaginary and im(t).is_integer): ipart += t elif t.has(Symbol): spart += t else: npart += t if not (npart or spart): return ipart # Evaluate npart numerically if independent of spart if npart and ( not spart or npart.is_real and (spart.is_imaginary or (S.ImaginaryUnit*spart).is_real) or npart.is_imaginary and spart.is_real): try: r, i = get_integer_part( npart, cls._dir, {}, return_ints=True) ipart += Integer(r) + Integer(i)*S.ImaginaryUnit npart = S.Zero except (PrecisionExhausted, NotImplementedError): pass spart += npart if not spart: return ipart elif spart.is_imaginary or (S.ImaginaryUnit*spart).is_real: return ipart + cls(im(spart), evaluate=False)*S.ImaginaryUnit elif isinstance(spart, (floor, ceiling)): return ipart + spart else: return ipart + cls(spart, evaluate=False) def _eval_is_finite(self): return self.args[0].is_finite def _eval_is_real(self): return self.args[0].is_real def _eval_is_integer(self): return self.args[0].is_real class floor(RoundFunction): """ Floor is a univariate function which returns the largest integer value not greater than its argument. This implementation generalizes floor to complex numbers by taking the floor of the real and imaginary parts separately. Examples ======== >>> from sympy import floor, E, I, S, Float, Rational >>> floor(17) 17 >>> floor(Rational(23, 10)) 2 >>> floor(2*E) 5 >>> floor(-Float(0.567)) -1 >>> floor(-I/2) -I >>> floor(S(5)/2 + 5*I/2) 2 + 2*I See Also ======== sympy.functions.elementary.integers.ceiling References ========== .. [1] "Concrete mathematics" by Graham, pp. 87 .. [2] http://mathworld.wolfram.com/FloorFunction.html """ _dir = -1 @classmethod def _eval_number(cls, arg): if arg.is_Number: return arg.floor() elif any(isinstance(i, j) for i in (arg, -arg) for j in (floor, ceiling)): return arg if arg.is_NumberSymbol: return arg.approximation_interval(Integer)[0] def _eval_nseries(self, x, n, logx, cdir=0): r = self.subs(x, 0) args = self.args[0] args0 = args.subs(x, 0) if args0 == r: direction = (args - args0).leadterm(x)[0] if direction.is_positive: return r else: return r - 1 else: return r def _eval_is_negative(self): return self.args[0].is_negative def _eval_is_nonnegative(self): return self.args[0].is_nonnegative def _eval_rewrite_as_ceiling(self, arg, **kwargs): return -ceiling(-arg) def _eval_rewrite_as_frac(self, arg, **kwargs): return arg - frac(arg) def __le__(self, other): other = S(other) if self.args[0].is_real: if other.is_integer: return self.args[0] < other + 1 if other.is_number and other.is_real: return self.args[0] < ceiling(other) if self.args[0] == other and other.is_real: return S.true if other is S.Infinity and self.is_finite: return S.true return Le(self, other, evaluate=False) def __ge__(self, other): other = S(other) if self.args[0].is_real: if other.is_integer: return self.args[0] >= other if other.is_number and other.is_real: return self.args[0] >= ceiling(other) if self.args[0] == other and other.is_real: return S.false if other is S.NegativeInfinity and self.is_finite: return S.true return Ge(self, other, evaluate=False) def __gt__(self, other): other = S(other) if self.args[0].is_real: if other.is_integer: return self.args[0] >= other + 1 if other.is_number and other.is_real: return self.args[0] >= ceiling(other) if self.args[0] == other and other.is_real: return S.false if other is S.NegativeInfinity and self.is_finite: return S.true return Gt(self, other, evaluate=False) def __lt__(self, other): other = S(other) if self.args[0].is_real: if other.is_integer: return self.args[0] < other if other.is_number and other.is_real: return self.args[0] < ceiling(other) if self.args[0] == other and other.is_real: return S.false if other is S.Infinity and self.is_finite: return S.true return Lt(self, other, evaluate=False) @dispatch(floor, Expr) def _eval_is_eq(lhs, rhs): # noqa:F811 return is_eq(lhs.rewrite(ceiling), rhs) or \ is_eq(lhs.rewrite(frac),rhs) class ceiling(RoundFunction): """ Ceiling is a univariate function which returns the smallest integer value not less than its argument. This implementation generalizes ceiling to complex numbers by taking the ceiling of the real and imaginary parts separately. Examples ======== >>> from sympy import ceiling, E, I, S, Float, Rational >>> ceiling(17) 17 >>> ceiling(Rational(23, 10)) 3 >>> ceiling(2*E) 6 >>> ceiling(-Float(0.567)) 0 >>> ceiling(I/2) I >>> ceiling(S(5)/2 + 5*I/2) 3 + 3*I See Also ======== sympy.functions.elementary.integers.floor References ========== .. [1] "Concrete mathematics" by Graham, pp. 87 .. [2] http://mathworld.wolfram.com/CeilingFunction.html """ _dir = 1 @classmethod def _eval_number(cls, arg): if arg.is_Number: return arg.ceiling() elif any(isinstance(i, j) for i in (arg, -arg) for j in (floor, ceiling)): return arg if arg.is_NumberSymbol: return arg.approximation_interval(Integer)[1] def _eval_nseries(self, x, n, logx, cdir=0): r = self.subs(x, 0) args = self.args[0] args0 = args.subs(x, 0) if args0 == r: direction = (args - args0).leadterm(x)[0] if direction.is_positive: return r + 1 else: return r else: return r def _eval_rewrite_as_floor(self, arg, **kwargs): return -floor(-arg) def _eval_rewrite_as_frac(self, arg, **kwargs): return arg + frac(-arg) def _eval_is_positive(self): return self.args[0].is_positive def _eval_is_nonpositive(self): return self.args[0].is_nonpositive def __lt__(self, other): other = S(other) if self.args[0].is_real: if other.is_integer: return self.args[0] <= other - 1 if other.is_number and other.is_real: return self.args[0] <= floor(other) if self.args[0] == other and other.is_real: return S.false if other is S.Infinity and self.is_finite: return S.true return Lt(self, other, evaluate=False) def __gt__(self, other): other = S(other) if self.args[0].is_real: if other.is_integer: return self.args[0] > other if other.is_number and other.is_real: return self.args[0] > floor(other) if self.args[0] == other and other.is_real: return S.false if other is S.NegativeInfinity and self.is_finite: return S.true return Gt(self, other, evaluate=False) def __ge__(self, other): other = S(other) if self.args[0].is_real: if other.is_integer: return self.args[0] > other - 1 if other.is_number and other.is_real: return self.args[0] > floor(other) if self.args[0] == other and other.is_real: return S.true if other is S.NegativeInfinity and self.is_finite: return S.true return Ge(self, other, evaluate=False) def __le__(self, other): other = S(other) if self.args[0].is_real: if other.is_integer: return self.args[0] <= other if other.is_number and other.is_real: return self.args[0] <= floor(other) if self.args[0] == other and other.is_real: return S.false if other is S.Infinity and self.is_finite: return S.true return Le(self, other, evaluate=False) @dispatch(ceiling, Basic) # type:ignore def _eval_is_eq(lhs, rhs): # noqa:F811 return is_eq(lhs.rewrite(floor), rhs) or is_eq(lhs.rewrite(frac),rhs) class frac(Function): r"""Represents the fractional part of x For real numbers it is defined [1]_ as .. math:: x - \left\lfloor{x}\right\rfloor Examples ======== >>> from sympy import Symbol, frac, Rational, floor, I >>> frac(Rational(4, 3)) 1/3 >>> frac(-Rational(4, 3)) 2/3 returns zero for integer arguments >>> n = Symbol('n', integer=True) >>> frac(n) 0 rewrite as floor >>> x = Symbol('x') >>> frac(x).rewrite(floor) x - floor(x) for complex arguments >>> r = Symbol('r', real=True) >>> t = Symbol('t', real=True) >>> frac(t + I*r) I*frac(r) + frac(t) See Also ======== sympy.functions.elementary.integers.floor sympy.functions.elementary.integers.ceiling References =========== .. [1] https://en.wikipedia.org/wiki/Fractional_part .. [2] http://mathworld.wolfram.com/FractionalPart.html """ @classmethod def eval(cls, arg): from sympy import AccumBounds, im def _eval(arg): if arg is S.Infinity or arg is S.NegativeInfinity: return AccumBounds(0, 1) if arg.is_integer: return S.Zero if arg.is_number: if arg is S.NaN: return S.NaN elif arg is S.ComplexInfinity: return S.NaN else: return arg - floor(arg) return cls(arg, evaluate=False) terms = Add.make_args(arg) real, imag = S.Zero, S.Zero for t in terms: # Two checks are needed for complex arguments # see issue-7649 for details if t.is_imaginary or (S.ImaginaryUnit*t).is_real: i = im(t) if not i.has(S.ImaginaryUnit): imag += i else: real += t else: real += t real = _eval(real) imag = _eval(imag) return real + S.ImaginaryUnit*imag def _eval_rewrite_as_floor(self, arg, **kwargs): return arg - floor(arg) def _eval_rewrite_as_ceiling(self, arg, **kwargs): return arg + ceiling(-arg) def _eval_is_finite(self): return True def _eval_is_real(self): return self.args[0].is_extended_real def _eval_is_imaginary(self): return self.args[0].is_imaginary def _eval_is_integer(self): return self.args[0].is_integer def _eval_is_zero(self): return fuzzy_or([self.args[0].is_zero, self.args[0].is_integer]) def _eval_is_negative(self): return False def __ge__(self, other): if self.is_extended_real: other = _sympify(other) # Check if other <= 0 if other.is_extended_nonpositive: return S.true # Check if other >= 1 res = self._value_one_or_more(other) if res is not None: return not(res) return Ge(self, other, evaluate=False) def __gt__(self, other): if self.is_extended_real: other = _sympify(other) # Check if other < 0 res = self._value_one_or_more(other) if res is not None: return not(res) # Check if other >= 1 if other.is_extended_negative: return S.true return Gt(self, other, evaluate=False) def __le__(self, other): if self.is_extended_real: other = _sympify(other) # Check if other < 0 if other.is_extended_negative: return S.false # Check if other >= 1 res = self._value_one_or_more(other) if res is not None: return res return Le(self, other, evaluate=False) def __lt__(self, other): if self.is_extended_real: other = _sympify(other) # Check if other <= 0 if other.is_extended_nonpositive: return S.false # Check if other >= 1 res = self._value_one_or_more(other) if res is not None: return res return Lt(self, other, evaluate=False) def _value_one_or_more(self, other): if other.is_extended_real: if other.is_number: res = other >= 1 if res and not isinstance(res, Relational): return S.true if other.is_integer and other.is_positive: return S.true @dispatch(frac, Basic) # type:ignore def _eval_is_eq(lhs, rhs): # noqa:F811 if (lhs.rewrite(floor) == rhs) or \ (lhs.rewrite(ceiling) == rhs): return True # Check if other < 0 if rhs.is_extended_negative: return False # Check if other >= 1 res = lhs._value_one_or_more(rhs) if res is not None: return False
6874ec09dc7ef2e0ad99708dd78024e87552959acc406b4be1a84b197da70327
from sympy.core import sympify from sympy.core.add import Add from sympy.core.cache import cacheit from sympy.core.function import (Function, ArgumentIndexError, _coeff_isneg, expand_mul) from sympy.core.logic import fuzzy_and, fuzzy_not, fuzzy_or from sympy.core.mul import Mul from sympy.core.numbers import Integer, Rational from sympy.core.parameters import global_parameters from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Wild, Dummy from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.miscellaneous import sqrt from sympy.ntheory import multiplicity, perfect_power # NOTE IMPORTANT # The series expansion code in this file is an important part of the gruntz # algorithm for determining limits. _eval_nseries has to return a generalized # power series with coefficients in C(log(x), log). # In more detail, the result of _eval_nseries(self, x, n) must be # c_0*x**e_0 + ... (finitely many terms) # where e_i are numbers (not necessarily integers) and c_i involve only # numbers, the function log, and log(x). [This also means it must not contain # log(x(1+p)), this *has* to be expanded to log(x)+log(1+p) if x.is_positive and # p.is_positive.] class ExpBase(Function): unbranched = True _singularities = (S.ComplexInfinity,) def inverse(self, argindex=1): """ Returns the inverse function of ``exp(x)``. """ return log def as_numer_denom(self): """ Returns this with a positive exponent as a 2-tuple (a fraction). Examples ======== >>> from sympy.functions import exp >>> from sympy.abc import x >>> exp(-x).as_numer_denom() (1, exp(x)) >>> exp(x).as_numer_denom() (exp(x), 1) """ # this should be the same as Pow.as_numer_denom wrt # exponent handling exp = self.exp neg_exp = exp.is_negative if not neg_exp and not (-exp).is_negative: neg_exp = _coeff_isneg(exp) if neg_exp: return S.One, self.func(-exp) return self, S.One @property def exp(self): """ Returns the exponent of the function. """ return self.args[0] def as_base_exp(self): """ Returns the 2-tuple (base, exponent). """ return self.func(1), Mul(*self.args) def _eval_adjoint(self): return self.func(self.args[0].adjoint()) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_transpose(self): return self.func(self.args[0].transpose()) def _eval_is_finite(self): arg = self.args[0] if arg.is_infinite: if arg.is_extended_negative: return True if arg.is_extended_positive: return False if arg.is_finite: return True def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: z = s.exp.is_zero if z: return True elif s.exp.is_rational and fuzzy_not(z): return False else: return s.is_rational def _eval_is_zero(self): return (self.args[0] is S.NegativeInfinity) def _eval_power(self, other): """exp(arg)**e -> exp(arg*e) if assumptions allow it. """ b, e = self.as_base_exp() return Pow._eval_power(Pow(b, e, evaluate=False), other) def _eval_expand_power_exp(self, **hints): from sympy import Sum, Product arg = self.args[0] if arg.is_Add and arg.is_commutative: return Mul.fromiter(self.func(x) for x in arg.args) elif isinstance(arg, Sum) and arg.is_commutative: return Product(self.func(arg.function), *arg.limits) return self.func(arg) class exp_polar(ExpBase): r""" Represent a 'polar number' (see g-function Sphinx documentation). Explanation =========== ``exp_polar`` represents the function `Exp: \mathbb{C} \rightarrow \mathcal{S}`, sending the complex number `z = a + bi` to the polar number `r = exp(a), \theta = b`. It is one of the main functions to construct polar numbers. Examples ======== >>> from sympy import exp_polar, pi, I, exp The main difference is that polar numbers don't "wrap around" at `2 \pi`: >>> exp(2*pi*I) 1 >>> exp_polar(2*pi*I) exp_polar(2*I*pi) apart from that they behave mostly like classical complex numbers: >>> exp_polar(2)*exp_polar(3) exp_polar(5) See Also ======== sympy.simplify.powsimp.powsimp polar_lift periodic_argument principal_branch """ is_polar = True is_comparable = False # cannot be evalf'd def _eval_Abs(self): # Abs is never a polar number from sympy.functions.elementary.complexes import re return exp(re(self.args[0])) def _eval_evalf(self, prec): """ Careful! any evalf of polar numbers is flaky """ from sympy import im, pi, re i = im(self.args[0]) try: bad = (i <= -pi or i > pi) except TypeError: bad = True if bad: return self # cannot evalf for this argument res = exp(self.args[0])._eval_evalf(prec) if i > 0 and im(res) < 0: # i ~ pi, but exp(I*i) evaluated to argument slightly bigger than pi return re(res) return res def _eval_power(self, other): return self.func(self.args[0]*other) def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def as_base_exp(self): # XXX exp_polar(0) is special! if self.args[0] == 0: return self, S.One return ExpBase.as_base_exp(self) class exp(ExpBase): """ The exponential function, :math:`e^x`. Examples ======== >>> from sympy.functions import exp >>> from sympy.abc import x >>> from sympy import I, pi >>> exp(x) exp(x) >>> exp(x).diff(x) exp(x) >>> exp(I*pi) -1 Parameters ========== arg : Expr See Also ======== log """ def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: return self else: raise ArgumentIndexError(self, argindex) def _eval_refine(self, assumptions): from sympy.assumptions import ask, Q arg = self.args[0] if arg.is_Mul: Ioo = S.ImaginaryUnit*S.Infinity if arg in [Ioo, -Ioo]: return S.NaN coeff = arg.as_coefficient(S.Pi*S.ImaginaryUnit) if coeff: if ask(Q.integer(2*coeff)): if ask(Q.even(coeff)): return S.One elif ask(Q.odd(coeff)): return S.NegativeOne elif ask(Q.even(coeff + S.Half)): return -S.ImaginaryUnit elif ask(Q.odd(coeff + S.Half)): return S.ImaginaryUnit @classmethod def eval(cls, arg): from sympy.calculus import AccumBounds from sympy.sets.setexpr import SetExpr from sympy.matrices.matrices import MatrixBase from sympy import im, logcombine, re if global_parameters.exp_is_pow: return Pow(S.Exp1, arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.One elif arg is S.One: return S.Exp1 elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Zero elif arg is S.ComplexInfinity: return S.NaN elif isinstance(arg, log): return arg.args[0] elif isinstance(arg, AccumBounds): return AccumBounds(exp(arg.min), exp(arg.max)) elif isinstance(arg, SetExpr): return arg._eval_func(cls) elif arg.is_Mul: coeff = arg.as_coefficient(S.Pi*S.ImaginaryUnit) if coeff: if (2*coeff).is_integer: if coeff.is_even: return S.One elif coeff.is_odd: return S.NegativeOne elif (coeff + S.Half).is_even: return -S.ImaginaryUnit elif (coeff + S.Half).is_odd: return S.ImaginaryUnit elif coeff.is_Rational: ncoeff = coeff % 2 # restrict to [0, 2pi) if ncoeff > 1: # restrict to (-pi, pi] ncoeff -= 2 if ncoeff != coeff: return cls(ncoeff*S.Pi*S.ImaginaryUnit) # Warning: code in risch.py will be very sensitive to changes # in this (see DifferentialExtension). # look for a single log factor coeff, terms = arg.as_coeff_Mul() # but it can't be multiplied by oo if coeff in [S.NegativeInfinity, S.Infinity]: if terms.is_number: if coeff is S.NegativeInfinity: terms = -terms if re(terms).is_zero and terms is not S.Zero: return S.NaN if re(terms).is_positive and im(terms) is not S.Zero: return S.ComplexInfinity if re(terms).is_negative: return S.Zero return None coeffs, log_term = [coeff], None for term in Mul.make_args(terms): term_ = logcombine(term) if isinstance(term_, log): if log_term is None: log_term = term_.args[0] else: return None elif term.is_comparable: coeffs.append(term) else: return None return log_term**Mul(*coeffs) if log_term else None elif arg.is_Add: out = [] add = [] argchanged = False for a in arg.args: if a is S.One: add.append(a) continue newa = cls(a) if isinstance(newa, cls): if newa.args[0] != a: add.append(newa.args[0]) argchanged = True else: add.append(a) else: out.append(newa) if out or argchanged: return Mul(*out)*cls(Add(*add), evaluate=False) elif isinstance(arg, MatrixBase): return arg.exp() if arg.is_zero: return S.One @property def base(self): """ Returns the base of the exponential function. """ return S.Exp1 @staticmethod @cacheit def taylor_term(n, x, *previous_terms): """ Calculates the next term in the Taylor series expansion. """ if n < 0: return S.Zero if n == 0: return S.One x = sympify(x) if previous_terms: p = previous_terms[-1] if p is not None: return p * x / n return x**n/factorial(n) def as_real_imag(self, deep=True, **hints): """ Returns this function as a 2-tuple representing a complex number. Examples ======== >>> from sympy import I >>> from sympy.abc import x >>> from sympy.functions import exp >>> exp(x).as_real_imag() (exp(re(x))*cos(im(x)), exp(re(x))*sin(im(x))) >>> exp(1).as_real_imag() (E, 0) >>> exp(I).as_real_imag() (cos(1), sin(1)) >>> exp(1+I).as_real_imag() (E*cos(1), E*sin(1)) See Also ======== sympy.functions.elementary.complexes.re sympy.functions.elementary.complexes.im """ import sympy re, im = self.args[0].as_real_imag() if deep: re = re.expand(deep, **hints) im = im.expand(deep, **hints) cos, sin = sympy.cos(im), sympy.sin(im) return (exp(re)*cos, exp(re)*sin) def _eval_subs(self, old, new): # keep processing of power-like args centralized in Pow if old.is_Pow: # handle (exp(3*log(x))).subs(x**2, z) -> z**(3/2) old = exp(old.exp*log(old.base)) elif old is S.Exp1 and new.is_Function: old = exp if isinstance(old, exp) or old is S.Exp1: f = lambda a: Pow(*a.as_base_exp(), evaluate=False) if ( a.is_Pow or isinstance(a, exp)) else a return Pow._eval_subs(f(self), f(old), new) if old is exp and not new.is_Function: return new**self.exp._subs(old, new) return Function._eval_subs(self, old, new) def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True elif self.args[0].is_imaginary: arg2 = -S(2) * S.ImaginaryUnit * self.args[0] / S.Pi return arg2.is_even def _eval_is_complex(self): def complex_extended_negative(arg): yield arg.is_complex yield arg.is_extended_negative return fuzzy_or(complex_extended_negative(self.args[0])) def _eval_is_algebraic(self): if (self.exp / S.Pi / S.ImaginaryUnit).is_rational: return True if fuzzy_not(self.exp.is_zero): if self.exp.is_algebraic: return False elif (self.exp / S.Pi).is_rational: return False def _eval_is_extended_positive(self): if self.args[0].is_extended_real: return not self.args[0] is S.NegativeInfinity elif self.args[0].is_imaginary: arg2 = -S.ImaginaryUnit * self.args[0] / S.Pi return arg2.is_even def _eval_nseries(self, x, n, logx, cdir=0): # NOTE Please see the comment at the beginning of this file, labelled # IMPORTANT. from sympy import ceiling, limit, oo, Order, powsimp, Wild, expand_complex arg = self.args[0] arg_series = arg._eval_nseries(x, n=n, logx=logx) if arg_series.is_Order: return 1 + arg_series arg0 = limit(arg_series.removeO(), x, 0) if arg0 in [-oo, oo]: return self t = Dummy("t") nterms = n try: cf = Order(arg.as_leading_term(x), x).getn() except NotImplementedError: cf = 0 if cf and cf > 0: nterms = ceiling(n/cf) exp_series = exp(t)._taylor(t, nterms) r = exp(arg0)*exp_series.subs(t, arg_series - arg0) if cf and cf > 1: r += Order((arg_series - arg0)**n, x)/x**((cf-1)*n) else: r += Order((arg_series - arg0)**n, x) r = r.expand() r = powsimp(r, deep=True, combine='exp') # powsimp may introduce unexpanded (-1)**Rational; see PR #17201 simplerat = lambda x: x.is_Rational and x.q in [3, 4, 6] w = Wild('w', properties=[simplerat]) r = r.replace((-1)**w, expand_complex((-1)**w)) return r def _taylor(self, x, n): l = [] g = None for i in range(n): g = self.taylor_term(i, self.args[0], g) g = g.nseries(x, n=n) l.append(g.removeO()) return Add(*l) def _eval_as_leading_term(self, x, cdir=0): from sympy import Order arg = self.args[0] if arg.is_Add: return Mul(*[exp(f).as_leading_term(x) for f in arg.args]) arg_1 = arg.as_leading_term(x) if Order(x, x).contains(arg_1): return S.One if Order(1, x).contains(arg_1): return exp(arg_1) #################################################### # The correct result here should be 'None'. # # Indeed arg in not bounded as x tends to 0. # # Consequently the series expansion does not admit # # the leading term. # # For compatibility reasons, the return value here # # is the original function, i.e. exp(arg), # # instead of None. # #################################################### return exp(arg) def _eval_rewrite_as_sin(self, arg, **kwargs): from sympy import sin I = S.ImaginaryUnit return sin(I*arg + S.Pi/2) - I*sin(I*arg) def _eval_rewrite_as_cos(self, arg, **kwargs): from sympy import cos I = S.ImaginaryUnit return cos(I*arg) + I*cos(I*arg + S.Pi/2) def _eval_rewrite_as_tanh(self, arg, **kwargs): from sympy import tanh return (1 + tanh(arg/2))/(1 - tanh(arg/2)) def _eval_rewrite_as_sqrt(self, arg, **kwargs): from sympy.functions.elementary.trigonometric import sin, cos if arg.is_Mul: coeff = arg.coeff(S.Pi*S.ImaginaryUnit) if coeff and coeff.is_number: cosine, sine = cos(S.Pi*coeff), sin(S.Pi*coeff) if not isinstance(cosine, cos) and not isinstance (sine, sin): return cosine + S.ImaginaryUnit*sine def _eval_rewrite_as_Pow(self, arg, **kwargs): if arg.is_Mul: logs = [a for a in arg.args if isinstance(a, log) and len(a.args) == 1] if logs: return Pow(logs[0].args[0], arg.coeff(logs[0])) def match_real_imag(expr): """ Try to match expr with a + b*I for real a and b. ``match_real_imag`` returns a tuple containing the real and imaginary parts of expr or (None, None) if direct matching is not possible. Contrary to ``re()``, ``im()``, ``as_real_imag()``, this helper won't force things by returning expressions themselves containing ``re()`` or ``im()`` and it doesn't expand its argument either. """ r_, i_ = expr.as_independent(S.ImaginaryUnit, as_Add=True) if i_ == 0 and r_.is_real: return (r_, i_) i_ = i_.as_coefficient(S.ImaginaryUnit) if i_ and i_.is_real and r_.is_real: return (r_, i_) else: return (None, None) # simpler to check for than None class log(Function): r""" The natural logarithm function `\ln(x)` or `\log(x)`. Explanation =========== Logarithms are taken with the natural base, `e`. To get a logarithm of a different base ``b``, use ``log(x, b)``, which is essentially short-hand for ``log(x)/log(b)``. ``log`` represents the principal branch of the natural logarithm. As such it has a branch cut along the negative real axis and returns values having a complex argument in `(-\pi, \pi]`. Examples ======== >>> from sympy import log, sqrt, S, I >>> log(8, 2) 3 >>> log(S(8)/3, 2) -log(3)/log(2) + 3 >>> log(-1 + I*sqrt(3)) log(2) + 2*I*pi/3 See Also ======== exp """ _singularities = (S.Zero, S.ComplexInfinity) def fdiff(self, argindex=1): """ Returns the first derivative of the function. """ if argindex == 1: return 1/self.args[0] else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): r""" Returns `e^x`, the inverse function of `\log(x)`. """ return exp @classmethod def eval(cls, arg, base=None): from sympy import unpolarify from sympy.calculus import AccumBounds from sympy.sets.setexpr import SetExpr from sympy.functions.elementary.complexes import Abs arg = sympify(arg) if base is not None: base = sympify(base) if base == 1: if arg == 1: return S.NaN else: return S.ComplexInfinity try: # handle extraction of powers of the base now # or else expand_log in Mul would have to handle this n = multiplicity(base, arg) if n: return n + log(arg / base**n) / log(base) else: return log(arg)/log(base) except ValueError: pass if base is not S.Exp1: return cls(arg)/cls(base) else: return cls(arg) if arg.is_Number: if arg.is_zero: return S.ComplexInfinity elif arg is S.One: return S.Zero elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Infinity elif arg is S.NaN: return S.NaN elif arg.is_Rational and arg.p == 1: return -cls(arg.q) if arg.is_Pow and arg.base is S.Exp1 and arg.exp.is_extended_real: return arg.exp I = S.ImaginaryUnit if isinstance(arg, exp) and arg.args[0].is_extended_real: return arg.args[0] elif isinstance(arg, exp) and arg.args[0].is_number: r_, i_ = match_real_imag(arg.args[0]) if i_ and i_.is_comparable: i_ %= 2*S.Pi if i_ > S.Pi: i_ -= 2*S.Pi return r_ + expand_mul(i_ * I, deep=False) elif isinstance(arg, exp_polar): return unpolarify(arg.exp) elif isinstance(arg, AccumBounds): if arg.min.is_positive: return AccumBounds(log(arg.min), log(arg.max)) else: return elif isinstance(arg, SetExpr): return arg._eval_func(cls) if arg.is_number: if arg.is_negative: return S.Pi * I + cls(-arg) elif arg is S.ComplexInfinity: return S.ComplexInfinity elif arg is S.Exp1: return S.One if arg.is_zero: return S.ComplexInfinity # don't autoexpand Pow or Mul (see the issue 3351): if not arg.is_Add: coeff = arg.as_coefficient(I) if coeff is not None: if coeff is S.Infinity: return S.Infinity elif coeff is S.NegativeInfinity: return S.Infinity elif coeff.is_Rational: if coeff.is_nonnegative: return S.Pi * I * S.Half + cls(coeff) else: return -S.Pi * I * S.Half + cls(-coeff) if arg.is_number and arg.is_algebraic: # Match arg = coeff*(r_ + i_*I) with coeff>0, r_ and i_ real. coeff, arg_ = arg.as_independent(I, as_Add=False) if coeff.is_negative: coeff *= -1 arg_ *= -1 arg_ = expand_mul(arg_, deep=False) r_, i_ = arg_.as_independent(I, as_Add=True) i_ = i_.as_coefficient(I) if coeff.is_real and i_ and i_.is_real and r_.is_real: if r_.is_zero: if i_.is_positive: return S.Pi * I * S.Half + cls(coeff * i_) elif i_.is_negative: return -S.Pi * I * S.Half + cls(coeff * -i_) else: from sympy.simplify import ratsimp # Check for arguments involving rational multiples of pi t = (i_/r_).cancel() t1 = (-t).cancel() atan_table = { # first quadrant only sqrt(3): S.Pi/3, 1: S.Pi/4, sqrt(5 - 2*sqrt(5)): S.Pi/5, sqrt(2)*sqrt(5 - sqrt(5))/(1 + sqrt(5)): S.Pi/5, sqrt(5 + 2*sqrt(5)): S.Pi*Rational(2, 5), sqrt(2)*sqrt(sqrt(5) + 5)/(-1 + sqrt(5)): S.Pi*Rational(2, 5), sqrt(3)/3: S.Pi/6, sqrt(2) - 1: S.Pi/8, sqrt(2 - sqrt(2))/sqrt(sqrt(2) + 2): S.Pi/8, sqrt(2) + 1: S.Pi*Rational(3, 8), sqrt(sqrt(2) + 2)/sqrt(2 - sqrt(2)): S.Pi*Rational(3, 8), sqrt(1 - 2*sqrt(5)/5): S.Pi/10, (-sqrt(2) + sqrt(10))/(2*sqrt(sqrt(5) + 5)): S.Pi/10, sqrt(1 + 2*sqrt(5)/5): S.Pi*Rational(3, 10), (sqrt(2) + sqrt(10))/(2*sqrt(5 - sqrt(5))): S.Pi*Rational(3, 10), 2 - sqrt(3): S.Pi/12, (-1 + sqrt(3))/(1 + sqrt(3)): S.Pi/12, 2 + sqrt(3): S.Pi*Rational(5, 12), (1 + sqrt(3))/(-1 + sqrt(3)): S.Pi*Rational(5, 12) } if t in atan_table: modulus = ratsimp(coeff * Abs(arg_)) if r_.is_positive: return cls(modulus) + I * atan_table[t] else: return cls(modulus) + I * (atan_table[t] - S.Pi) elif t1 in atan_table: modulus = ratsimp(coeff * Abs(arg_)) if r_.is_positive: return cls(modulus) + I * (-atan_table[t1]) else: return cls(modulus) + I * (S.Pi - atan_table[t1]) def as_base_exp(self): """ Returns this function in the form (base, exponent). """ return self, S.One @staticmethod @cacheit def taylor_term(n, x, *previous_terms): # of log(1+x) r""" Returns the next term in the Taylor series expansion of `\log(1+x)`. """ from sympy import powsimp if n < 0: return S.Zero x = sympify(x) if n == 0: return x if previous_terms: p = previous_terms[-1] if p is not None: return powsimp((-n) * p * x / (n + 1), deep=True, combine='exp') return (1 - 2*(n % 2)) * x**(n + 1)/(n + 1) def _eval_expand_log(self, deep=True, **hints): from sympy import unpolarify, expand_log, factorint from sympy.concrete import Sum, Product force = hints.get('force', False) factor = hints.get('factor', False) if (len(self.args) == 2): return expand_log(self.func(*self.args), deep=deep, force=force) arg = self.args[0] if arg.is_Integer: # remove perfect powers p = perfect_power(arg) logarg = None coeff = 1 if p is not False: arg, coeff = p logarg = self.func(arg) # expand as product of its prime factors if factor=True if factor: p = factorint(arg) if arg not in p.keys(): logarg = sum(n*log(val) for val, n in p.items()) if logarg is not None: return coeff*logarg elif arg.is_Rational: return log(arg.p) - log(arg.q) elif arg.is_Mul: expr = [] nonpos = [] for x in arg.args: if force or x.is_positive or x.is_polar: a = self.func(x) if isinstance(a, log): expr.append(self.func(x)._eval_expand_log(**hints)) else: expr.append(a) elif x.is_negative: a = self.func(-x) expr.append(a) nonpos.append(S.NegativeOne) else: nonpos.append(x) return Add(*expr) + log(Mul(*nonpos)) elif arg.is_Pow or isinstance(arg, exp): if force or (arg.exp.is_extended_real and (arg.base.is_positive or ((arg.exp+1) .is_positive and (arg.exp-1).is_nonpositive))) or arg.base.is_polar: b = arg.base e = arg.exp a = self.func(b) if isinstance(a, log): return unpolarify(e) * a._eval_expand_log(**hints) else: return unpolarify(e) * a elif isinstance(arg, Product): if force or arg.function.is_positive: return Sum(log(arg.function), *arg.limits) return self.func(arg) def _eval_simplify(self, **kwargs): from sympy.simplify.simplify import expand_log, simplify, inversecombine if len(self.args) == 2: # it's unevaluated return simplify(self.func(*self.args), **kwargs) expr = self.func(simplify(self.args[0], **kwargs)) if kwargs['inverse']: expr = inversecombine(expr) expr = expand_log(expr, deep=True) return min([expr, self], key=kwargs['measure']) def as_real_imag(self, deep=True, **hints): """ Returns this function as a complex coordinate. Examples ======== >>> from sympy import I >>> from sympy.abc import x >>> from sympy.functions import log >>> log(x).as_real_imag() (log(Abs(x)), arg(x)) >>> log(I).as_real_imag() (0, pi/2) >>> log(1 + I).as_real_imag() (log(sqrt(2)), pi/4) >>> log(I*x).as_real_imag() (log(Abs(x)), arg(I*x)) """ from sympy import Abs, arg sarg = self.args[0] if deep: sarg = self.args[0].expand(deep, **hints) abs = Abs(sarg) if abs == sarg: return self, S.Zero arg = arg(sarg) if hints.get('log', False): # Expand the log hints['complex'] = False return (log(abs).expand(deep, **hints), arg) else: return log(abs), arg def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if (self.args[0] - 1).is_zero: return True if s.args[0].is_rational and fuzzy_not((self.args[0] - 1).is_zero): return False else: return s.is_rational def _eval_is_algebraic(self): s = self.func(*self.args) if s.func == self.func: if (self.args[0] - 1).is_zero: return True elif fuzzy_not((self.args[0] - 1).is_zero): if self.args[0].is_algebraic: return False else: return s.is_algebraic def _eval_is_extended_real(self): return self.args[0].is_extended_positive def _eval_is_complex(self): z = self.args[0] return fuzzy_and([z.is_complex, fuzzy_not(z.is_zero)]) def _eval_is_finite(self): arg = self.args[0] if arg.is_zero: return False return arg.is_finite def _eval_is_extended_positive(self): return (self.args[0] - 1).is_extended_positive def _eval_is_zero(self): return (self.args[0] - 1).is_zero def _eval_is_extended_nonnegative(self): return (self.args[0] - 1).is_extended_nonnegative def _eval_nseries(self, x, n, logx, cdir=0): # NOTE Please see the comment at the beginning of this file, labelled # IMPORTANT. from sympy import im, cancel, I, Order, logcombine from itertools import product if not logx: logx = log(x) if self.args[0] == x: return logx arg = self.args[0] k, l = Wild("k"), Wild("l") r = arg.match(k*x**l) if r is not None: k, l = r[k], r[l] if l != 0 and not l.has(x) and not k.has(x): r = log(k) + l*logx # XXX true regardless of assumptions? return r def coeff_exp(term, x): coeff, exp = S.One, S.Zero for factor in Mul.make_args(term): if factor.has(x): base, exp = factor.as_base_exp() if base != x: try: return term.leadterm(x) except ValueError: return term, S.Zero else: coeff *= factor return coeff, exp # TODO new and probably slow try: a, b = arg.leadterm(x) s = arg.nseries(x, n=n+b, logx=logx) except (ValueError, NotImplementedError): s = arg.nseries(x, n=n, logx=logx) while s.is_Order: n += 1 s = arg.nseries(x, n=n, logx=logx) a, b = s.removeO().leadterm(x) p = cancel(s/(a*x**b) - 1).expand().powsimp() if p.has(exp): p = logcombine(p) if isinstance(p, Order): n = p.getn() _, d = coeff_exp(p, x) if not d.is_positive: return log(a) + b*logx + Order(x**n, x) def mul(d1, d2): res = {} for e1, e2 in product(d1, d2): ex = e1 + e2 if ex < n: res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2] return res pterms = {} for term in Add.make_args(p): co1, e1 = coeff_exp(term, x) pterms[e1] = pterms.get(e1, S.Zero) + co1.removeO() k = S.One terms = {} pk = pterms while k*d < n: coeff = -(-1)**k/k for ex in pk: terms[ex] = terms.get(ex, S.Zero) + coeff*pk[ex] pk = mul(pk, pterms) k += S.One res = log(a) + b*logx for ex in terms: res += terms[ex]*x**(ex) if cdir != 0: cdir = self.args[0].dir(x, cdir) if a.is_real and a.is_negative and im(cdir) < 0: res -= 2*I*S.Pi return res + Order(x**n, x) def _eval_as_leading_term(self, x, cdir=0): from sympy import I, im arg = self.args[0].together() x0 = arg.subs(x, 0) if x0 == 1: return (arg - S.One).as_leading_term(x) if cdir != 0: cdir = self.args[0].dir(x, cdir) if x0.is_real and x0.is_negative and im(cdir) < 0: return self.func(x0) -2*I*S.Pi return self.func(arg.as_leading_term(x)) class LambertW(Function): r""" The Lambert W function `W(z)` is defined as the inverse function of `w \exp(w)` [1]_. Explanation =========== In other words, the value of `W(z)` is such that `z = W(z) \exp(W(z))` for any complex number `z`. The Lambert W function is a multivalued function with infinitely many branches `W_k(z)`, indexed by `k \in \mathbb{Z}`. Each branch gives a different solution `w` of the equation `z = w \exp(w)`. The Lambert W function has two partially real branches: the principal branch (`k = 0`) is real for real `z > -1/e`, and the `k = -1` branch is real for `-1/e < z < 0`. All branches except `k = 0` have a logarithmic singularity at `z = 0`. Examples ======== >>> from sympy import LambertW >>> LambertW(1.2) 0.635564016364870 >>> LambertW(1.2, -1).n() -1.34747534407696 - 4.41624341514535*I >>> LambertW(-1).is_real False References ========== .. [1] https://en.wikipedia.org/wiki/Lambert_W_function """ _singularities = (-Pow(S.Exp1, -1, evaluate=False), S.ComplexInfinity) @classmethod def eval(cls, x, k=None): if k == S.Zero: return cls(x) elif k is None: k = S.Zero if k.is_zero: if x.is_zero: return S.Zero if x is S.Exp1: return S.One if x == -1/S.Exp1: return S.NegativeOne if x == -log(2)/2: return -log(2) if x == 2*log(2): return log(2) if x == -S.Pi/2: return S.ImaginaryUnit*S.Pi/2 if x == exp(1 + S.Exp1): return S.Exp1 if x is S.Infinity: return S.Infinity if x.is_zero: return S.Zero if fuzzy_not(k.is_zero): if x.is_zero: return S.NegativeInfinity if k is S.NegativeOne: if x == -S.Pi/2: return -S.ImaginaryUnit*S.Pi/2 elif x == -1/S.Exp1: return S.NegativeOne elif x == -2*exp(-2): return -Integer(2) def fdiff(self, argindex=1): """ Return the first derivative of this function. """ x = self.args[0] if len(self.args) == 1: if argindex == 1: return LambertW(x)/(x*(1 + LambertW(x))) else: k = self.args[1] if argindex == 1: return LambertW(x, k)/(x*(1 + LambertW(x, k))) raise ArgumentIndexError(self, argindex) def _eval_is_extended_real(self): x = self.args[0] if len(self.args) == 1: k = S.Zero else: k = self.args[1] if k.is_zero: if (x + 1/S.Exp1).is_positive: return True elif (x + 1/S.Exp1).is_nonpositive: return False elif (k + 1).is_zero: if x.is_negative and (x + 1/S.Exp1).is_positive: return True elif x.is_nonpositive or (x + 1/S.Exp1).is_nonnegative: return False elif fuzzy_not(k.is_zero) and fuzzy_not((k + 1).is_zero): if x.is_extended_real: return False def _eval_is_finite(self): return self.args[0].is_finite def _eval_is_algebraic(self): s = self.func(*self.args) if s.func == self.func: if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic: return False else: return s.is_algebraic def _eval_nseries(self, x, n, logx, cdir=0): if len(self.args) == 1: from sympy import Order, ceiling, expand_multinomial arg = self.args[0].nseries(x, n=n, logx=logx) lt = arg.compute_leading_term(x, logx=logx) lte = 1 if lt.is_Pow: lte = lt.exp if ceiling(n/lte) >= 1: s = Add(*[(-S.One)**(k - 1)*Integer(k)**(k - 2)/ factorial(k - 1)*arg**k for k in range(1, ceiling(n/lte))]) s = expand_multinomial(s) else: s = S.Zero return s + Order(x**n, x) return super()._eval_nseries(x, n, logx) def _eval_is_zero(self): x = self.args[0] if len(self.args) == 1: k = S.Zero else: k = self.args[1] if x.is_zero and k.is_zero: return True
b1c70fbccc4fb674316a4d5dbc1d9a5eb1c4448c95fffdbf91173a5681079723
import string from sympy import ( Symbol, symbols, Dummy, S, Sum, Rational, oo, pi, I, floor, limit, expand_func, diff, EulerGamma, cancel, re, im, Product, carmichael, TribonacciConstant) from sympy.functions import ( bernoulli, harmonic, bell, fibonacci, tribonacci, lucas, euler, catalan, genocchi, partition, motzkin, binomial, gamma, sqrt, cbrt, hyper, log, digamma, trigamma, polygamma, factorial, sin, cos, cot, zeta) from sympy.functions.combinatorial.numbers import _nT from sympy.core.expr import unchanged from sympy.core.numbers import GoldenRatio, Integer from sympy.testing.pytest import XFAIL, raises, nocache_fail x = Symbol('x') def test_carmichael(): assert carmichael.find_carmichael_numbers_in_range(0, 561) == [] assert carmichael.find_carmichael_numbers_in_range(561, 562) == [561] assert carmichael.find_carmichael_numbers_in_range(561, 1105) == carmichael.find_carmichael_numbers_in_range(561, 562) assert carmichael.find_first_n_carmichaels(5) == [561, 1105, 1729, 2465, 2821] assert carmichael.is_prime(2821) == False assert carmichael.is_prime(2465) == False assert carmichael.is_prime(1729) == False assert carmichael.is_prime(1105) == False assert carmichael.is_prime(561) == False raises(ValueError, lambda: carmichael.is_carmichael(-2)) raises(ValueError, lambda: carmichael.find_carmichael_numbers_in_range(-2, 2)) raises(ValueError, lambda: carmichael.find_carmichael_numbers_in_range(22, 2)) def test_bernoulli(): assert bernoulli(0) == 1 assert bernoulli(1) == Rational(-1, 2) assert bernoulli(2) == Rational(1, 6) assert bernoulli(3) == 0 assert bernoulli(4) == Rational(-1, 30) assert bernoulli(5) == 0 assert bernoulli(6) == Rational(1, 42) assert bernoulli(7) == 0 assert bernoulli(8) == Rational(-1, 30) assert bernoulli(10) == Rational(5, 66) assert bernoulli(1000001) == 0 assert bernoulli(0, x) == 1 assert bernoulli(1, x) == x - S.Half assert bernoulli(2, x) == x**2 - x + Rational(1, 6) assert bernoulli(3, x) == x**3 - (3*x**2)/2 + x/2 # Should be fast; computed with mpmath b = bernoulli(1000) assert b.p % 10**10 == 7950421099 assert b.q == 342999030 b = bernoulli(10**6, evaluate=False).evalf() assert str(b) == '-2.23799235765713e+4767529' # Issue #8527 l = Symbol('l', integer=True) m = Symbol('m', integer=True, nonnegative=True) n = Symbol('n', integer=True, positive=True) assert isinstance(bernoulli(2 * l + 1), bernoulli) assert isinstance(bernoulli(2 * m + 1), bernoulli) assert bernoulli(2 * n + 1) == 0 raises(ValueError, lambda: bernoulli(-2)) def test_fibonacci(): assert [fibonacci(n) for n in range(-3, 5)] == [2, -1, 1, 0, 1, 1, 2, 3] assert fibonacci(100) == 354224848179261915075 assert [lucas(n) for n in range(-3, 5)] == [-4, 3, -1, 2, 1, 3, 4, 7] assert lucas(100) == 792070839848372253127 assert fibonacci(1, x) == 1 assert fibonacci(2, x) == x assert fibonacci(3, x) == x**2 + 1 assert fibonacci(4, x) == x**3 + 2*x # issue #8800 n = Dummy('n') assert fibonacci(n).limit(n, S.Infinity) is S.Infinity assert lucas(n).limit(n, S.Infinity) is S.Infinity assert fibonacci(n).rewrite(sqrt) == \ 2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5 assert fibonacci(n).rewrite(sqrt).subs(n, 10).expand() == fibonacci(10) assert fibonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \ fibonacci(10) assert lucas(n).rewrite(sqrt) == \ (fibonacci(n-1).rewrite(sqrt) + fibonacci(n+1).rewrite(sqrt)).simplify() assert lucas(n).rewrite(sqrt).subs(n, 10).expand() == lucas(10) raises(ValueError, lambda: fibonacci(-3, x)) def test_tribonacci(): assert [tribonacci(n) for n in range(8)] == [0, 1, 1, 2, 4, 7, 13, 24] assert tribonacci(100) == 98079530178586034536500564 assert tribonacci(0, x) == 0 assert tribonacci(1, x) == 1 assert tribonacci(2, x) == x**2 assert tribonacci(3, x) == x**4 + x assert tribonacci(4, x) == x**6 + 2*x**3 + 1 assert tribonacci(5, x) == x**8 + 3*x**5 + 3*x**2 n = Dummy('n') assert tribonacci(n).limit(n, S.Infinity) is S.Infinity w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2 a = (1 + cbrt(19 + 3*sqrt(33)) + cbrt(19 - 3*sqrt(33))) / 3 b = (1 + w*cbrt(19 + 3*sqrt(33)) + w**2*cbrt(19 - 3*sqrt(33))) / 3 c = (1 + w**2*cbrt(19 + 3*sqrt(33)) + w*cbrt(19 - 3*sqrt(33))) / 3 assert tribonacci(n).rewrite(sqrt) == \ (a**(n + 1)/((a - b)*(a - c)) + b**(n + 1)/((b - a)*(b - c)) + c**(n + 1)/((c - a)*(c - b))) assert tribonacci(n).rewrite(sqrt).subs(n, 4).simplify() == tribonacci(4) assert tribonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \ tribonacci(10) assert tribonacci(n).rewrite(TribonacciConstant) == floor( 3*TribonacciConstant**n*(102*sqrt(33) + 586)**Rational(1, 3)/ (-2*(102*sqrt(33) + 586)**Rational(1, 3) + 4 + (102*sqrt(33) + 586)**Rational(2, 3)) + S.Half) raises(ValueError, lambda: tribonacci(-1, x)) @nocache_fail def test_bell(): assert [bell(n) for n in range(8)] == [1, 1, 2, 5, 15, 52, 203, 877] assert bell(0, x) == 1 assert bell(1, x) == x assert bell(2, x) == x**2 + x assert bell(5, x) == x**5 + 10*x**4 + 25*x**3 + 15*x**2 + x assert bell(oo) is S.Infinity raises(ValueError, lambda: bell(oo, x)) raises(ValueError, lambda: bell(-1)) raises(ValueError, lambda: bell(S.Half)) X = symbols('x:6') # X = (x0, x1, .. x5) # at the same time: X[1] = x1, X[2] = x2 for standard readablity. # but we must supply zero-based indexed object X[1:] = (x1, .. x5) assert bell(6, 2, X[1:]) == 6*X[5]*X[1] + 15*X[4]*X[2] + 10*X[3]**2 assert bell( 6, 3, X[1:]) == 15*X[4]*X[1]**2 + 60*X[3]*X[2]*X[1] + 15*X[2]**3 X = (1, 10, 100, 1000, 10000) assert bell(6, 2, X) == (6 + 15 + 10)*10000 X = (1, 2, 3, 3, 5) assert bell(6, 2, X) == 6*5 + 15*3*2 + 10*3**2 X = (1, 2, 3, 5) assert bell(6, 3, X) == 15*5 + 60*3*2 + 15*2**3 # Dobinski's formula n = Symbol('n', integer=True, nonnegative=True) # For large numbers, this is too slow # For nonintegers, there are significant precision errors for i in [0, 2, 3, 7, 13, 42, 55]: # Running without the cache this is either very slow or goes into an # infinite loop. assert bell(i).evalf() == bell(n).rewrite(Sum).evalf(subs={n: i}) m = Symbol("m") assert bell(m).rewrite(Sum) == bell(m) assert bell(n, m).rewrite(Sum) == bell(n, m) # issue 9184 n = Dummy('n') assert bell(n).limit(n, S.Infinity) is S.Infinity def test_harmonic(): n = Symbol("n") m = Symbol("m") assert harmonic(n, 0) == n assert harmonic(n).evalf() == harmonic(n) assert harmonic(n, 1) == harmonic(n) assert harmonic(1, n).evalf() == harmonic(1, n) assert harmonic(0, 1) == 0 assert harmonic(1, 1) == 1 assert harmonic(2, 1) == Rational(3, 2) assert harmonic(3, 1) == Rational(11, 6) assert harmonic(4, 1) == Rational(25, 12) assert harmonic(0, 2) == 0 assert harmonic(1, 2) == 1 assert harmonic(2, 2) == Rational(5, 4) assert harmonic(3, 2) == Rational(49, 36) assert harmonic(4, 2) == Rational(205, 144) assert harmonic(0, 3) == 0 assert harmonic(1, 3) == 1 assert harmonic(2, 3) == Rational(9, 8) assert harmonic(3, 3) == Rational(251, 216) assert harmonic(4, 3) == Rational(2035, 1728) assert harmonic(oo, -1) is S.NaN assert harmonic(oo, 0) is oo assert harmonic(oo, S.Half) is oo assert harmonic(oo, 1) is oo assert harmonic(oo, 2) == (pi**2)/6 assert harmonic(oo, 3) == zeta(3) assert harmonic(0, m) == 0 def test_harmonic_rational(): ne = S(6) no = S(5) pe = S(8) po = S(9) qe = S(10) qo = S(13) Heee = harmonic(ne + pe/qe) Aeee = (-log(10) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8))) + pi*sqrt(2*sqrt(5)/5 + 1)/2 + Rational(13944145, 4720968)) Heeo = harmonic(ne + pe/qo) Aeeo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(4, 13)) + 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(32, 13)) + 2*log(sin(pi*Rational(5, 13)))*cos(pi*Rational(80, 13)) - 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(5, 13)) - 2*log(sin(pi*Rational(4, 13)))*cos(pi/13) + pi*cot(pi*Rational(5, 13))/2 - 2*log(sin(pi/13))*cos(pi*Rational(3, 13)) + Rational(2422020029, 702257080)) Heoe = harmonic(ne + po/qe) Aeoe = (-log(20) + 2*(Rational(1, 4) + sqrt(5)/4)*log(Rational(-1, 4) + sqrt(5)/4) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 + Rational(1, 4))*log(Rational(1, 4) + sqrt(5)/4) + Rational(11818877030, 4286604231) + pi*sqrt(2*sqrt(5) + 5)/2) Heoo = harmonic(ne + po/qo) Aeoo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(54, 13)) + 2*log(sin(pi*Rational(4, 13)))*cos(pi*Rational(6, 13)) + 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(108, 13)) - 2*log(sin(pi*Rational(5, 13)))*cos(pi/13) - 2*log(sin(pi/13))*cos(pi*Rational(5, 13)) + pi*cot(pi*Rational(4, 13))/2 - 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(3, 13)) + Rational(11669332571, 3628714320)) Hoee = harmonic(no + pe/qe) Aoee = (-log(10) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8))) + pi*sqrt(2*sqrt(5)/5 + 1)/2 + Rational(779405, 277704)) Hoeo = harmonic(no + pe/qo) Aoeo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(4, 13)) + 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(32, 13)) + 2*log(sin(pi*Rational(5, 13)))*cos(pi*Rational(80, 13)) - 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(5, 13)) - 2*log(sin(pi*Rational(4, 13)))*cos(pi/13) + pi*cot(pi*Rational(5, 13))/2 - 2*log(sin(pi/13))*cos(pi*Rational(3, 13)) + Rational(53857323, 16331560)) Hooe = harmonic(no + po/qe) Aooe = (-log(20) + 2*(Rational(1, 4) + sqrt(5)/4)*log(Rational(-1, 4) + sqrt(5)/4) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 + Rational(1, 4))*log(Rational(1, 4) + sqrt(5)/4) + Rational(486853480, 186374097) + pi*sqrt(2*sqrt(5) + 5)/2) Hooo = harmonic(no + po/qo) Aooo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(54, 13)) + 2*log(sin(pi*Rational(4, 13)))*cos(pi*Rational(6, 13)) + 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(108, 13)) - 2*log(sin(pi*Rational(5, 13)))*cos(pi/13) - 2*log(sin(pi/13))*cos(pi*Rational(5, 13)) + pi*cot(pi*Rational(4, 13))/2 - 2*log(sin(pi*Rational(2, 13)))*cos(3*pi/13) + Rational(383693479, 125128080)) H = [Heee, Heeo, Heoe, Heoo, Hoee, Hoeo, Hooe, Hooo] A = [Aeee, Aeeo, Aeoe, Aeoo, Aoee, Aoeo, Aooe, Aooo] for h, a in zip(H, A): e = expand_func(h).doit() assert cancel(e/a) == 1 assert abs(h.n() - a.n()) < 1e-12 def test_harmonic_evalf(): assert str(harmonic(1.5).evalf(n=10)) == '1.280372306' assert str(harmonic(1.5, 2).evalf(n=10)) == '1.154576311' # issue 7443 def test_harmonic_rewrite(): n = Symbol("n") m = Symbol("m") assert harmonic(n).rewrite(digamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n).rewrite(trigamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n).rewrite(polygamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n,3).rewrite(polygamma) == polygamma(2, n + 1)/2 - polygamma(2, 1)/2 assert harmonic(n,m).rewrite(polygamma) == (-1)**m*(polygamma(m - 1, 1) - polygamma(m - 1, n + 1))/factorial(m - 1) assert expand_func(harmonic(n+4)) == harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1) assert expand_func(harmonic(n-4)) == harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n assert harmonic(n, m).rewrite("tractable") == harmonic(n, m).rewrite(polygamma) _k = Dummy("k") assert harmonic(n).rewrite(Sum).dummy_eq(Sum(1/_k, (_k, 1, n))) assert harmonic(n, m).rewrite(Sum).dummy_eq(Sum(_k**(-m), (_k, 1, n))) @XFAIL def test_harmonic_limit_fail(): n = Symbol("n") m = Symbol("m") # For m > 1: assert limit(harmonic(n, m), n, oo) == zeta(m) def test_euler(): assert euler(0) == 1 assert euler(1) == 0 assert euler(2) == -1 assert euler(3) == 0 assert euler(4) == 5 assert euler(6) == -61 assert euler(8) == 1385 assert euler(20, evaluate=False) != 370371188237525 n = Symbol('n', integer=True) assert euler(n) != -1 assert euler(n).subs(n, 2) == -1 raises(ValueError, lambda: euler(-2)) raises(ValueError, lambda: euler(-3)) raises(ValueError, lambda: euler(2.3)) assert euler(20).evalf() == 370371188237525.0 assert euler(20, evaluate=False).evalf() == 370371188237525.0 assert euler(n).rewrite(Sum) == euler(n) n = Symbol('n', integer=True, nonnegative=True) assert euler(2*n + 1).rewrite(Sum) == 0 _j = Dummy('j') _k = Dummy('k') assert euler(2*n).rewrite(Sum).dummy_eq( I*Sum((-1)**_j*2**(-_k)*I**(-_k)*(-2*_j + _k)**(2*n + 1)* binomial(_k, _j)/_k, (_j, 0, _k), (_k, 1, 2*n + 1))) def test_euler_odd(): n = Symbol('n', odd=True, positive=True) assert euler(n) == 0 n = Symbol('n', odd=True) assert euler(n) != 0 def test_euler_polynomials(): assert euler(0, x) == 1 assert euler(1, x) == x - S.Half assert euler(2, x) == x**2 - x assert euler(3, x) == x**3 - (3*x**2)/2 + Rational(1, 4) m = Symbol('m') assert isinstance(euler(m, x), euler) from sympy import Float A = Float('-0.46237208575048694923364757452876131e8') # from Maple B = euler(19, S.Pi.evalf(32)) assert abs((A - B)/A) < 1e-31 # expect low relative error C = euler(19, S.Pi, evaluate=False).evalf(32) assert abs((A - C)/A) < 1e-31 def test_euler_polynomial_rewrite(): m = Symbol('m') A = euler(m, x).rewrite('Sum'); assert A.subs({m:3, x:5}).doit() == euler(3, 5) def test_catalan(): n = Symbol('n', integer=True) m = Symbol('m', integer=True, positive=True) k = Symbol('k', integer=True, nonnegative=True) p = Symbol('p', nonnegative=True) catalans = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786] for i, c in enumerate(catalans): assert catalan(i) == c assert catalan(n).rewrite(factorial).subs(n, i) == c assert catalan(n).rewrite(Product).subs(n, i).doit() == c assert unchanged(catalan, x) assert catalan(2*x).rewrite(binomial) == binomial(4*x, 2*x)/(2*x + 1) assert catalan(S.Half).rewrite(gamma) == 8/(3*pi) assert catalan(S.Half).rewrite(factorial).rewrite(gamma) ==\ 8 / (3 * pi) assert catalan(3*x).rewrite(gamma) == 4**( 3*x)*gamma(3*x + S.Half)/(sqrt(pi)*gamma(3*x + 2)) assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2,), 1) assert catalan(n).rewrite(factorial) == factorial(2*n) / (factorial(n + 1) * factorial(n)) assert isinstance(catalan(n).rewrite(Product), catalan) assert isinstance(catalan(m).rewrite(Product), Product) assert diff(catalan(x), x) == (polygamma( 0, x + S.Half) - polygamma(0, x + 2) + log(4))*catalan(x) assert catalan(x).evalf() == catalan(x) c = catalan(S.Half).evalf() assert str(c) == '0.848826363156775' c = catalan(I).evalf(3) assert str((re(c), im(c))) == '(0.398, -0.0209)' # Assumptions assert catalan(p).is_positive is True assert catalan(k).is_integer is True assert catalan(m+3).is_composite is True def test_genocchi(): genocchis = [1, -1, 0, 1, 0, -3, 0, 17] for n, g in enumerate(genocchis): assert genocchi(n + 1) == g m = Symbol('m', integer=True) n = Symbol('n', integer=True, positive=True) assert unchanged(genocchi, m) assert genocchi(2*n + 1) == 0 assert genocchi(n).rewrite(bernoulli) == (1 - 2 ** n) * bernoulli(n) * 2 assert genocchi(2 * n).is_odd assert genocchi(2 * n).is_even is False assert genocchi(2 * n + 1).is_even assert genocchi(n).is_integer assert genocchi(4 * n).is_positive # these are the only 2 prime Genocchi numbers assert genocchi(6, evaluate=False).is_prime == S(-3).is_prime assert genocchi(8, evaluate=False).is_prime assert genocchi(4 * n + 2).is_negative assert genocchi(4 * n + 1).is_negative is False assert genocchi(4 * n - 2).is_negative raises(ValueError, lambda: genocchi(Rational(5, 4))) raises(ValueError, lambda: genocchi(-2)) @nocache_fail def test_partition(): partition_nums = [1, 1, 2, 3, 5, 7, 11, 15, 22] for n, p in enumerate(partition_nums): assert partition(n) == p x = Symbol('x') y = Symbol('y', real=True) m = Symbol('m', integer=True) n = Symbol('n', integer=True, negative=True) p = Symbol('p', integer=True, nonnegative=True) assert partition(m).is_integer assert not partition(m).is_negative assert partition(m).is_nonnegative assert partition(n).is_zero assert partition(p).is_positive assert partition(x).subs(x, 7) == 15 assert partition(y).subs(y, 8) == 22 raises(ValueError, lambda: partition(Rational(5, 4))) def test__nT(): assert [_nT(i, j) for i in range(5) for j in range(i + 2)] == [ 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 0] check = [_nT(10, i) for i in range(11)] assert check == [0, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1] assert all(type(i) is int for i in check) assert _nT(10, 5) == 7 assert _nT(100, 98) == 2 assert _nT(100, 100) == 1 assert _nT(10, 3) == 8 def test_nC_nP_nT(): from sympy.utilities.iterables import ( multiset_permutations, multiset_combinations, multiset_partitions, partitions, subsets, permutations) from sympy.functions.combinatorial.numbers import ( nP, nC, nT, stirling, _stirling1, _stirling2, _multiset_histogram, _AOP_product) from sympy.combinatorics.permutations import Permutation from sympy.core.numbers import oo from random import choice c = string.ascii_lowercase for i in range(100): s = ''.join(choice(c) for i in range(7)) u = len(s) == len(set(s)) try: tot = 0 for i in range(8): check = nP(s, i) tot += check assert len(list(multiset_permutations(s, i))) == check if u: assert nP(len(s), i) == check assert nP(s) == tot except AssertionError: print(s, i, 'failed perm test') raise ValueError() for i in range(100): s = ''.join(choice(c) for i in range(7)) u = len(s) == len(set(s)) try: tot = 0 for i in range(8): check = nC(s, i) tot += check assert len(list(multiset_combinations(s, i))) == check if u: assert nC(len(s), i) == check assert nC(s) == tot if u: assert nC(len(s)) == tot except AssertionError: print(s, i, 'failed combo test') raise ValueError() for i in range(1, 10): tot = 0 for j in range(1, i + 2): check = nT(i, j) assert check.is_Integer tot += check assert sum(1 for p in partitions(i, j, size=True) if p[0] == j) == check assert nT(i) == tot for i in range(1, 10): tot = 0 for j in range(1, i + 2): check = nT(range(i), j) tot += check assert len(list(multiset_partitions(list(range(i)), j))) == check assert nT(range(i)) == tot for i in range(100): s = ''.join(choice(c) for i in range(7)) u = len(s) == len(set(s)) try: tot = 0 for i in range(1, 8): check = nT(s, i) tot += check assert len(list(multiset_partitions(s, i))) == check if u: assert nT(range(len(s)), i) == check if u: assert nT(range(len(s))) == tot assert nT(s) == tot except AssertionError: print(s, i, 'failed partition test') raise ValueError() # tests for Stirling numbers of the first kind that are not tested in the # above assert [stirling(9, i, kind=1) for i in range(11)] == [ 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0] perms = list(permutations(range(4))) assert [sum(1 for p in perms if Permutation(p).cycles == i) for i in range(5)] == [0, 6, 11, 6, 1] == [ stirling(4, i, kind=1) for i in range(5)] # http://oeis.org/A008275 assert [stirling(n, k, signed=1) for n in range(10) for k in range(1, n + 1)] == [ 1, -1, 1, 2, -3, 1, -6, 11, -6, 1, 24, -50, 35, -10, 1, -120, 274, -225, 85, -15, 1, 720, -1764, 1624, -735, 175, -21, 1, -5040, 13068, -13132, 6769, -1960, 322, -28, 1, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1] # https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind assert [stirling(n, k, kind=1) for n in range(10) for k in range(n+1)] == [ 1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35, 10, 1, 0, 120, 274, 225, 85, 15, 1, 0, 720, 1764, 1624, 735, 175, 21, 1, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1] # https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind assert [stirling(n, k, kind=2) for n in range(10) for k in range(n+1)] == [ 1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10, 1, 0, 1, 31, 90, 65, 15, 1, 0, 1, 63, 301, 350, 140, 21, 1, 0, 1, 127, 966, 1701, 1050, 266, 28, 1, 0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1] assert stirling(3, 4, kind=1) == stirling(3, 4, kind=1) == 0 raises(ValueError, lambda: stirling(-2, 2)) # Assertion that the return type is SymPy Integer. assert isinstance(_stirling1(6, 3), Integer) assert isinstance(_stirling2(6, 3), Integer) def delta(p): if len(p) == 1: return oo return min(abs(i[0] - i[1]) for i in subsets(p, 2)) parts = multiset_partitions(range(5), 3) d = 2 assert (sum(1 for p in parts if all(delta(i) >= d for i in p)) == stirling(5, 3, d=d) == 7) # other coverage tests assert nC('abb', 2) == nC('aab', 2) == 2 assert nP(3, 3, replacement=True) == nP('aabc', 3, replacement=True) == 27 assert nP(3, 4) == 0 assert nP('aabc', 5) == 0 assert nC(4, 2, replacement=True) == nC('abcdd', 2, replacement=True) == \ len(list(multiset_combinations('aabbccdd', 2))) == 10 assert nC('abcdd') == sum(nC('abcdd', i) for i in range(6)) == 24 assert nC(list('abcdd'), 4) == 4 assert nT('aaaa') == nT(4) == len(list(partitions(4))) == 5 assert nT('aaab') == len(list(multiset_partitions('aaab'))) == 7 assert nC('aabb'*3, 3) == 4 # aaa, bbb, abb, baa assert dict(_AOP_product((4,1,1,1))) == { 0: 1, 1: 4, 2: 7, 3: 8, 4: 8, 5: 7, 6: 4, 7: 1} # the following was the first t that showed a problem in a previous form of # the function, so it's not as random as it may appear t = (3, 9, 4, 6, 6, 5, 5, 2, 10, 4) assert sum(_AOP_product(t)[i] for i in range(55)) == 58212000 raises(ValueError, lambda: _multiset_histogram({1:'a'})) def test_PR_14617(): from sympy.functions.combinatorial.numbers import nT for n in (0, []): for k in (-1, 0, 1): if k == 0: assert nT(n, k) == 1 else: assert nT(n, k) == 0 def test_issue_8496(): n = Symbol("n") k = Symbol("k") raises(TypeError, lambda: catalan(n, k)) def test_issue_8601(): n = Symbol('n', integer=True, negative=True) assert catalan(n - 1) is S.Zero assert catalan(Rational(-1, 2)) is S.ComplexInfinity assert catalan(-S.One) == Rational(-1, 2) c1 = catalan(-5.6).evalf() assert str(c1) == '6.93334070531408e-5' c2 = catalan(-35.4).evalf() assert str(c2) == '-4.14189164517449e-24' def test_motzkin(): assert motzkin.is_motzkin(4) == True assert motzkin.is_motzkin(9) == True assert motzkin.is_motzkin(10) == False assert motzkin.find_motzkin_numbers_in_range(10,200) == [21, 51, 127] assert motzkin.find_motzkin_numbers_in_range(10,400) == [21, 51, 127, 323] assert motzkin.find_motzkin_numbers_in_range(10,1600) == [21, 51, 127, 323, 835] assert motzkin.find_first_n_motzkins(5) == [1, 1, 2, 4, 9] assert motzkin.find_first_n_motzkins(7) == [1, 1, 2, 4, 9, 21, 51] assert motzkin.find_first_n_motzkins(10) == [1, 1, 2, 4, 9, 21, 51, 127, 323, 835] raises(ValueError, lambda: motzkin.eval(77.58)) raises(ValueError, lambda: motzkin.eval(-8)) raises(ValueError, lambda: motzkin.find_motzkin_numbers_in_range(-2,7)) raises(ValueError, lambda: motzkin.find_motzkin_numbers_in_range(13,7)) raises(ValueError, lambda: motzkin.find_first_n_motzkins(112.8))
d4c7a5b242d0c5689ef7531720c84cba19edada04e168a260ec213003e48d3f6
from sympy import ( symbols, log, ln, Float, nan, oo, zoo, I, pi, E, exp, Symbol, LambertW, sqrt, Rational, expand_log, S, sign, adjoint, conjugate, transpose, O, refine, sin, cos, sinh, cosh, tanh, exp_polar, re, simplify, AccumBounds, MatrixSymbol, Pow, gcd, Sum, Product) from sympy.core.parameters import global_parameters from sympy.functions.elementary.exponential import match_real_imag from sympy.abc import x, y, z from sympy.core.expr import unchanged from sympy.core.function import ArgumentIndexError from sympy.testing.pytest import raises, XFAIL, _both_exp_pow @_both_exp_pow def test_exp_values(): if global_parameters.exp_is_pow: assert type(exp(x)) is Pow else: assert type(exp(x)) is exp k = Symbol('k', integer=True) assert exp(nan) is nan assert exp(oo) is oo assert exp(-oo) == 0 assert exp(0) == 1 assert exp(1) == E assert exp(-1 + x).as_base_exp() == (S.Exp1, x - 1) assert exp(1 + x).as_base_exp() == (S.Exp1, x + 1) assert exp(pi*I/2) == I assert exp(pi*I) == -1 assert exp(pi*I*Rational(3, 2)) == -I assert exp(2*pi*I) == 1 assert refine(exp(pi*I*2*k)) == 1 assert refine(exp(pi*I*2*(k + S.Half))) == -1 assert refine(exp(pi*I*2*(k + Rational(1, 4)))) == I assert refine(exp(pi*I*2*(k + Rational(3, 4)))) == -I assert exp(log(x)) == x assert exp(2*log(x)) == x**2 assert exp(pi*log(x)) == x**pi assert exp(17*log(x) + E*log(y)) == x**17 * y**E assert exp(x*log(x)) != x**x assert exp(sin(x)*log(x)) != x assert exp(3*log(x) + oo*x) == exp(oo*x) * x**3 assert exp(4*log(x)*log(y) + 3*log(x)) == x**3 * exp(4*log(x)*log(y)) assert exp(-oo, evaluate=False).is_finite is True assert exp(oo, evaluate=False).is_finite is False @_both_exp_pow def test_exp_period(): assert exp(I*pi*Rational(9, 4)) == exp(I*pi/4) assert exp(I*pi*Rational(46, 18)) == exp(I*pi*Rational(5, 9)) assert exp(I*pi*Rational(25, 7)) == exp(I*pi*Rational(-3, 7)) assert exp(I*pi*Rational(-19, 3)) == exp(-I*pi/3) assert exp(I*pi*Rational(37, 8)) - exp(I*pi*Rational(-11, 8)) == 0 assert exp(I*pi*Rational(-5, 3)) / exp(I*pi*Rational(11, 5)) * exp(I*pi*Rational(148, 15)) == 1 assert exp(2 - I*pi*Rational(17, 5)) == exp(2 + I*pi*Rational(3, 5)) assert exp(log(3) + I*pi*Rational(29, 9)) == 3 * exp(I*pi*Rational(-7, 9)) n = Symbol('n', integer=True) e = Symbol('e', even=True) assert exp(e*I*pi) == 1 assert exp((e + 1)*I*pi) == -1 assert exp((1 + 4*n)*I*pi/2) == I assert exp((-1 + 4*n)*I*pi/2) == -I @_both_exp_pow def test_exp_log(): x = Symbol("x", real=True) assert log(exp(x)) == x assert exp(log(x)) == x if not global_parameters.exp_is_pow: assert log(x).inverse() == exp assert exp(x).inverse() == log y = Symbol("y", polar=True) assert log(exp_polar(z)) == z assert exp(log(y)) == y @_both_exp_pow def test_exp_expand(): e = exp(log(Rational(2))*(1 + x) - log(Rational(2))*x) assert e.expand() == 2 assert exp(x + y) != exp(x)*exp(y) assert exp(x + y).expand() == exp(x)*exp(y) @_both_exp_pow def test_exp__as_base_exp(): assert exp(x).as_base_exp() == (E, x) assert exp(2*x).as_base_exp() == (E, 2*x) assert exp(x*y).as_base_exp() == (E, x*y) assert exp(-x).as_base_exp() == (E, -x) # Pow( *expr.as_base_exp() ) == expr invariant should hold assert E**x == exp(x) assert E**(2*x) == exp(2*x) assert E**(x*y) == exp(x*y) assert exp(x).base is S.Exp1 assert exp(x).exp == x def test_exp_infinity(): assert exp(I*y) != nan assert refine(exp(I*oo)) is nan assert refine(exp(-I*oo)) is nan assert exp(y*I*oo) != nan assert exp(zoo) is nan x = Symbol('x', extended_real=True, finite=False) assert exp(x).is_complex is None def test_exp_subs(): x = Symbol('x') e = (exp(3*log(x), evaluate=False)) # evaluates to x**3 assert e.subs(x**3, y**3) == e assert e.subs(x**2, 5) == e assert (x**3).subs(x**2, y) != y**Rational(3, 2) assert exp(exp(x) + exp(x**2)).subs(exp(exp(x)), y) == y * exp(exp(x**2)) assert exp(x).subs(E, y) == y**x x = symbols('x', real=True) assert exp(5*x).subs(exp(7*x), y) == y**Rational(5, 7) assert exp(2*x + 7).subs(exp(3*x), y) == y**Rational(2, 3) * exp(7) x = symbols('x', positive=True) assert exp(3*log(x)).subs(x**2, y) == y**Rational(3, 2) # differentiate between E and exp assert exp(exp(x + E)).subs(exp, 3) == 3**(3**(x + E)) assert exp(exp(x + E)).subs(E, 3) == 3**(3**(x + 3)) assert exp(3).subs(E, sin) == sin(3) def test_exp_adjoint(): assert adjoint(exp(x)) == exp(adjoint(x)) def test_exp_conjugate(): assert conjugate(exp(x)) == exp(conjugate(x)) def test_exp_transpose(): assert transpose(exp(x)) == exp(transpose(x)) @_both_exp_pow def test_exp_rewrite(): from sympy.concrete.summations import Sum assert exp(x).rewrite(sin) == sinh(x) + cosh(x) assert exp(x*I).rewrite(cos) == cos(x) + I*sin(x) assert exp(1).rewrite(cos) == sinh(1) + cosh(1) assert exp(1).rewrite(sin) == sinh(1) + cosh(1) assert exp(1).rewrite(sin) == sinh(1) + cosh(1) assert exp(x).rewrite(tanh) == (1 + tanh(x/2))/(1 - tanh(x/2)) assert exp(pi*I/4).rewrite(sqrt) == sqrt(2)/2 + sqrt(2)*I/2 assert exp(pi*I/3).rewrite(sqrt) == S.Half + sqrt(3)*I/2 if not global_parameters.exp_is_pow: assert exp(x*log(y)).rewrite(Pow) == y**x assert exp(log(x)*log(y)).rewrite(Pow) in [x**log(y), y**log(x)] assert exp(log(log(x))*y).rewrite(Pow) == log(x)**y n = Symbol('n', integer=True) assert Sum((exp(pi*I/2)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == Rational(4, 5) + I*Rational(2, 5) assert Sum((exp(pi*I/4)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == 1/(1 - sqrt(2)*(1 + I)/4) assert (Sum((exp(pi*I/3)/2)**n, (n, 0, oo)).rewrite(sqrt).doit().cancel() == 4/(3 - sqrt(3)*I)) @_both_exp_pow def test_exp_leading_term(): assert exp(x).as_leading_term(x) == 1 assert exp(2 + x).as_leading_term(x) == exp(2) assert exp((2*x + 3) / (x+1)).as_leading_term(x) == exp(3) # The following tests are commented, since now SymPy returns the # original function when the leading term in the series expansion does # not exist. # raises(NotImplementedError, lambda: exp(1/x).as_leading_term(x)) # raises(NotImplementedError, lambda: exp((x + 1) / x**2).as_leading_term(x)) # raises(NotImplementedError, lambda: exp(x + 1/x).as_leading_term(x)) @_both_exp_pow def test_exp_taylor_term(): x = symbols('x') assert exp(x).taylor_term(1, x) == x assert exp(x).taylor_term(3, x) == x**3/6 assert exp(x).taylor_term(4, x) == x**4/24 assert exp(x).taylor_term(-1, x) is S.Zero def test_exp_MatrixSymbol(): A = MatrixSymbol("A", 2, 2) assert exp(A).has(exp) def test_exp_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: exp(x).fdiff(2)) def test_log_values(): assert log(nan) is nan assert log(oo) is oo assert log(-oo) is oo assert log(zoo) is zoo assert log(-zoo) is zoo assert log(0) is zoo assert log(1) == 0 assert log(-1) == I*pi assert log(E) == 1 assert log(-E).expand() == 1 + I*pi assert unchanged(log, pi) assert log(-pi).expand() == log(pi) + I*pi assert unchanged(log, 17) assert log(-17) == log(17) + I*pi assert log(I) == I*pi/2 assert log(-I) == -I*pi/2 assert log(17*I) == I*pi/2 + log(17) assert log(-17*I).expand() == -I*pi/2 + log(17) assert log(oo*I) is oo assert log(-oo*I) is oo assert log(0, 2) is zoo assert log(0, 5) is zoo assert exp(-log(3))**(-1) == 3 assert log(S.Half) == -log(2) assert log(2*3).func is log assert log(2*3**2).func is log def test_match_real_imag(): x, y = symbols('x,y', real=True) i = Symbol('i', imaginary=True) assert match_real_imag(S.One) == (1, 0) assert match_real_imag(I) == (0, 1) assert match_real_imag(3 - 5*I) == (3, -5) assert match_real_imag(-sqrt(3) + S.Half*I) == (-sqrt(3), S.Half) assert match_real_imag(x + y*I) == (x, y) assert match_real_imag(x*I + y*I) == (0, x + y) assert match_real_imag((x + y)*I) == (0, x + y) assert match_real_imag(Rational(-2, 3)*i*I) == (None, None) assert match_real_imag(1 - 2*i) == (None, None) assert match_real_imag(sqrt(2)*(3 - 5*I)) == (None, None) def test_log_exact(): # check for pi/2, pi/3, pi/4, pi/6, pi/8, pi/12; pi/5, pi/10: for n in range(-23, 24): if gcd(n, 24) != 1: assert log(exp(n*I*pi/24).rewrite(sqrt)) == n*I*pi/24 for n in range(-9, 10): assert log(exp(n*I*pi/10).rewrite(sqrt)) == n*I*pi/10 assert log(S.Half - I*sqrt(3)/2) == -I*pi/3 assert log(Rational(-1, 2) + I*sqrt(3)/2) == I*pi*Rational(2, 3) assert log(-sqrt(2)/2 - I*sqrt(2)/2) == -I*pi*Rational(3, 4) assert log(-sqrt(3)/2 - I*S.Half) == -I*pi*Rational(5, 6) assert log(Rational(-1, 4) + sqrt(5)/4 - I*sqrt(sqrt(5)/8 + Rational(5, 8))) == -I*pi*Rational(2, 5) assert log(sqrt(Rational(5, 8) - sqrt(5)/8) + I*(Rational(1, 4) + sqrt(5)/4)) == I*pi*Rational(3, 10) assert log(-sqrt(sqrt(2)/4 + S.Half) + I*sqrt(S.Half - sqrt(2)/4)) == I*pi*Rational(7, 8) assert log(-sqrt(6)/4 - sqrt(2)/4 + I*(-sqrt(6)/4 + sqrt(2)/4)) == -I*pi*Rational(11, 12) assert log(-1 + I*sqrt(3)) == log(2) + I*pi*Rational(2, 3) assert log(5 + 5*I) == log(5*sqrt(2)) + I*pi/4 assert log(sqrt(-12)) == log(2*sqrt(3)) + I*pi/2 assert log(-sqrt(6) + sqrt(2) - I*sqrt(6) - I*sqrt(2)) == log(4) - I*pi*Rational(7, 12) assert log(-sqrt(6-3*sqrt(2)) - I*sqrt(6+3*sqrt(2))) == log(2*sqrt(3)) - I*pi*Rational(5, 8) assert log(1 + I*sqrt(2-sqrt(2))/sqrt(2+sqrt(2))) == log(2/sqrt(sqrt(2) + 2)) + I*pi/8 assert log(cos(pi*Rational(7, 12)) + I*sin(pi*Rational(7, 12))) == I*pi*Rational(7, 12) assert log(cos(pi*Rational(6, 5)) + I*sin(pi*Rational(6, 5))) == I*pi*Rational(-4, 5) assert log(5*(1 + I)/sqrt(2)) == log(5) + I*pi/4 assert log(sqrt(2)*(-sqrt(3) + 1 - sqrt(3)*I - I)) == log(4) - I*pi*Rational(7, 12) assert log(-sqrt(2)*(1 - I*sqrt(3))) == log(2*sqrt(2)) + I*pi*Rational(2, 3) assert log(sqrt(3)*I*(-sqrt(6 - 3*sqrt(2)) - I*sqrt(3*sqrt(2) + 6))) == log(6) - I*pi/8 zero = (1 + sqrt(2))**2 - 3 - 2*sqrt(2) assert log(zero - I*sqrt(3)) == log(sqrt(3)) - I*pi/2 assert unchanged(log, zero + I*zero) or log(zero + zero*I) is zoo # bail quickly if no obvious simplification is possible: assert unchanged(log, (sqrt(2)-1/sqrt(sqrt(3)+I))**1000) # beware of non-real coefficients assert unchanged(log, sqrt(2-sqrt(5))*(1 + I)) def test_log_base(): assert log(1, 2) == 0 assert log(2, 2) == 1 assert log(3, 2) == log(3)/log(2) assert log(6, 2) == 1 + log(3)/log(2) assert log(6, 3) == 1 + log(2)/log(3) assert log(2**3, 2) == 3 assert log(3**3, 3) == 3 assert log(5, 1) is zoo assert log(1, 1) is nan assert log(Rational(2, 3), 10) == log(Rational(2, 3))/log(10) assert log(Rational(2, 3), Rational(1, 3)) == -log(2)/log(3) + 1 assert log(Rational(2, 3), Rational(2, 5)) == \ log(Rational(2, 3))/log(Rational(2, 5)) # issue 17148 assert log(Rational(8, 3), 2) == -log(3)/log(2) + 3 def test_log_symbolic(): assert log(x, exp(1)) == log(x) assert log(exp(x)) != x assert log(x, exp(1)) == log(x) assert log(x*y) != log(x) + log(y) assert log(x/y).expand() != log(x) - log(y) assert log(x/y).expand(force=True) == log(x) - log(y) assert log(x**y).expand() != y*log(x) assert log(x**y).expand(force=True) == y*log(x) assert log(x, 2) == log(x)/log(2) assert log(E, 2) == 1/log(2) p, q = symbols('p,q', positive=True) r = Symbol('r', real=True) assert log(p**2) != 2*log(p) assert log(p**2).expand() == 2*log(p) assert log(x**2).expand() != 2*log(x) assert log(p**q) != q*log(p) assert log(exp(p)) == p assert log(p*q) != log(p) + log(q) assert log(p*q).expand() == log(p) + log(q) assert log(-sqrt(3)) == log(sqrt(3)) + I*pi assert log(-exp(p)) != p + I*pi assert log(-exp(x)).expand() != x + I*pi assert log(-exp(r)).expand() == r + I*pi assert log(x**y) != y*log(x) assert (log(x**-5)**-1).expand() != -1/log(x)/5 assert (log(p**-5)**-1).expand() == -1/log(p)/5 assert log(-x).func is log and log(-x).args[0] == -x assert log(-p).func is log and log(-p).args[0] == -p def test_log_exp(): assert log(exp(4*I*pi)) == 0 # exp evaluates assert log(exp(-5*I*pi)) == I*pi # exp evaluates assert log(exp(I*pi*Rational(19, 4))) == I*pi*Rational(3, 4) assert log(exp(I*pi*Rational(25, 7))) == I*pi*Rational(-3, 7) assert log(exp(-5*I)) == -5*I + 2*I*pi def test_exp_assumptions(): r = Symbol('r', real=True) i = Symbol('i', imaginary=True) for e in exp, exp_polar: assert e(x).is_real is None assert e(x).is_imaginary is None assert e(i).is_real is None assert e(i).is_imaginary is None assert e(r).is_real is True assert e(r).is_imaginary is False assert e(re(x)).is_extended_real is True assert e(re(x)).is_imaginary is False assert exp(0, evaluate=False).is_algebraic a = Symbol('a', algebraic=True) an = Symbol('an', algebraic=True, nonzero=True) r = Symbol('r', rational=True) rn = Symbol('rn', rational=True, nonzero=True) assert exp(a).is_algebraic is None assert exp(an).is_algebraic is False assert exp(pi*r).is_algebraic is None assert exp(pi*rn).is_algebraic is False assert exp(0, evaluate=False).is_algebraic is True assert exp(I*pi/3, evaluate=False).is_algebraic is True assert exp(I*pi*r, evaluate=False).is_algebraic is True def test_exp_AccumBounds(): assert exp(AccumBounds(1, 2)) == AccumBounds(E, E**2) def test_log_assumptions(): p = symbols('p', positive=True) n = symbols('n', negative=True) z = symbols('z', zero=True) x = symbols('x', infinite=True, extended_positive=True) assert log(z).is_positive is False assert log(x).is_extended_positive is True assert log(2) > 0 assert log(1, evaluate=False).is_zero assert log(1 + z).is_zero assert log(p).is_zero is None assert log(n).is_zero is False assert log(0.5).is_negative is True assert log(exp(p) + 1).is_positive assert log(1, evaluate=False).is_algebraic assert log(42, evaluate=False).is_algebraic is False assert log(1 + z).is_rational def test_log_hashing(): assert x != log(log(x)) assert hash(x) != hash(log(log(x))) assert log(x) != log(log(log(x))) e = 1/log(log(x) + log(log(x))) assert e.base.func is log e = 1/log(log(x) + log(log(log(x)))) assert e.base.func is log e = log(log(x)) assert e.func is log assert not x.func is log assert hash(log(log(x))) != hash(x) assert e != x def test_log_sign(): assert sign(log(2)) == 1 def test_log_expand_complex(): assert log(1 + I).expand(complex=True) == log(2)/2 + I*pi/4 assert log(1 - sqrt(2)).expand(complex=True) == log(sqrt(2) - 1) + I*pi def test_log_apply_evalf(): value = (log(3)/log(2) - 1).evalf() assert value.epsilon_eq(Float("0.58496250072115618145373")) def test_log_nseries(): assert log(x - 1)._eval_nseries(x, 4, None, I) == I*pi - x - x**2/2 - x**3/3 + O(x**4) assert log(x - 1)._eval_nseries(x, 4, None, -I) == -I*pi - x - x**2/2 - x**3/3 + O(x**4) assert log(I*x + I*x**3 - 1)._eval_nseries(x, 3, None, 1) == I*pi - I*x + x**2/2 + O(x**3) assert log(I*x + I*x**3 - 1)._eval_nseries(x, 3, None, -1) == -I*pi - I*x + x**2/2 + O(x**3) assert log(I*x**2 + I*x**3 - 1)._eval_nseries(x, 3, None, 1) == I*pi - I*x**2 + O(x**3) assert log(I*x**2 + I*x**3 - 1)._eval_nseries(x, 3, None, -1) == I*pi - I*x**2 + O(x**3) def test_log_expand(): w = Symbol("w", positive=True) e = log(w**(log(5)/log(3))) assert e.expand() == log(5)/log(3) * log(w) x, y, z = symbols('x,y,z', positive=True) assert log(x*(y + z)).expand(mul=False) == log(x) + log(y + z) assert log(log(x**2)*log(y*z)).expand() in [log(2*log(x)*log(y) + 2*log(x)*log(z)), log(log(x)*log(z) + log(y)*log(x)) + log(2), log((log(y) + log(z))*log(x)) + log(2)] assert log(x**log(x**2)).expand(deep=False) == log(x)*log(x**2) assert log(x**log(x**2)).expand() == 2*log(x)**2 x, y = symbols('x,y') assert log(x*y).expand(force=True) == log(x) + log(y) assert log(x**y).expand(force=True) == y*log(x) assert log(exp(x)).expand(force=True) == x # there's generally no need to expand out logs since this requires # factoring and if simplification is sought, it's cheaper to put # logs together than it is to take them apart. assert log(2*3**2).expand() != 2*log(3) + log(2) @XFAIL def test_log_expand_fail(): x, y, z = symbols('x,y,z', positive=True) assert (log(x*(y + z))*(x + y)).expand(mul=True, log=True) == y*log( x) + y*log(y + z) + z*log(x) + z*log(y + z) def test_log_simplify(): x = Symbol("x", positive=True) assert log(x**2).expand() == 2*log(x) assert expand_log(log(x**(2 + log(2)))) == (2 + log(2))*log(x) z = Symbol('z') assert log(sqrt(z)).expand() == log(z)/2 assert expand_log(log(z**(log(2) - 1))) == (log(2) - 1)*log(z) assert log(z**(-1)).expand() != -log(z) assert log(z**(x/(x+1))).expand() == x*log(z)/(x + 1) def test_log_AccumBounds(): assert log(AccumBounds(1, E)) == AccumBounds(0, 1) def test_lambertw(): k = Symbol('k') assert LambertW(x, 0) == LambertW(x) assert LambertW(x, 0, evaluate=False) != LambertW(x) assert LambertW(0) == 0 assert LambertW(E) == 1 assert LambertW(-1/E) == -1 assert LambertW(-log(2)/2) == -log(2) assert LambertW(oo) is oo assert LambertW(0, 1) is -oo assert LambertW(0, 42) is -oo assert LambertW(-pi/2, -1) == -I*pi/2 assert LambertW(-1/E, -1) == -1 assert LambertW(-2*exp(-2), -1) == -2 assert LambertW(2*log(2)) == log(2) assert LambertW(-pi/2) == I*pi/2 assert LambertW(exp(1 + E)) == E assert LambertW(x**2).diff(x) == 2*LambertW(x**2)/x/(1 + LambertW(x**2)) assert LambertW(x, k).diff(x) == LambertW(x, k)/x/(1 + LambertW(x, k)) assert LambertW(sqrt(2)).evalf(30).epsilon_eq( Float("0.701338383413663009202120278965", 30), 1e-29) assert re(LambertW(2, -1)).evalf().epsilon_eq(Float("-0.834310366631110")) assert LambertW(-1).is_real is False # issue 5215 assert LambertW(2, evaluate=False).is_real p = Symbol('p', positive=True) assert LambertW(p, evaluate=False).is_real assert LambertW(p - 1, evaluate=False).is_real is None assert LambertW(-p - 2/S.Exp1, evaluate=False).is_real is False assert LambertW(S.Half, -1, evaluate=False).is_real is False assert LambertW(Rational(-1, 10), -1, evaluate=False).is_real assert LambertW(-10, -1, evaluate=False).is_real is False assert LambertW(-2, 2, evaluate=False).is_real is False assert LambertW(0, evaluate=False).is_algebraic na = Symbol('na', nonzero=True, algebraic=True) assert LambertW(na).is_algebraic is False def test_issue_5673(): e = LambertW(-1) assert e.is_comparable is False assert e.is_positive is not True e2 = 1 - 1/(1 - exp(-1000)) assert e2.is_positive is not True e3 = -2 + exp(exp(LambertW(log(2)))*LambertW(log(2))) assert e3.is_nonzero is not True def test_log_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: log(x).fdiff(2)) def test_log_taylor_term(): x = symbols('x') assert log(x).taylor_term(0, x) == x assert log(x).taylor_term(1, x) == -x**2/2 assert log(x).taylor_term(4, x) == x**5/5 assert log(x).taylor_term(-1, x) is S.Zero def test_exp_expand_NC(): A, B, C = symbols('A,B,C', commutative=False) assert exp(A + B).expand() == exp(A + B) assert exp(A + B + C).expand() == exp(A + B + C) assert exp(x + y).expand() == exp(x)*exp(y) assert exp(x + y + z).expand() == exp(x)*exp(y)*exp(z) @_both_exp_pow def test_as_numer_denom(): n = symbols('n', negative=True) assert exp(x).as_numer_denom() == (exp(x), 1) assert exp(-x).as_numer_denom() == (1, exp(x)) assert exp(-2*x).as_numer_denom() == (1, exp(2*x)) assert exp(-2).as_numer_denom() == (1, exp(2)) assert exp(n).as_numer_denom() == (1, exp(-n)) assert exp(-n).as_numer_denom() == (exp(-n), 1) assert exp(-I*x).as_numer_denom() == (1, exp(I*x)) assert exp(-I*n).as_numer_denom() == (1, exp(I*n)) assert exp(-n).as_numer_denom() == (exp(-n), 1) def test_polar(): x, y = symbols('x y', polar=True) assert abs(exp_polar(I*4)) == 1 assert abs(exp_polar(0)) == 1 assert abs(exp_polar(2 + 3*I)) == exp(2) assert exp_polar(I*10).n() == exp_polar(I*10) assert log(exp_polar(z)) == z assert log(x*y).expand() == log(x) + log(y) assert log(x**z).expand() == z*log(x) assert exp_polar(3).exp == 3 # Compare exp(1.0*pi*I). assert (exp_polar(1.0*pi*I).n(n=5)).as_real_imag()[1] >= 0 assert exp_polar(0).is_rational is True # issue 8008 def test_exp_summation(): w = symbols("w") m, n, i, j = symbols("m n i j") expr = exp(Sum(w*i, (i, 0, n), (j, 0, m))) assert expr.expand() == Product(exp(w*i), (i, 0, n), (j, 0, m)) def test_log_product(): from sympy.abc import n, m from sympy.concrete import Product i, j = symbols('i,j', positive=True, integer=True) x, y = symbols('x,y', positive=True) z = symbols('z', real=True) w = symbols('w') expr = log(Product(x**i, (i, 1, n))) assert simplify(expr) == expr assert expr.expand() == Sum(i*log(x), (i, 1, n)) expr = log(Product(x**i*y**j, (i, 1, n), (j, 1, m))) assert simplify(expr) == expr assert expr.expand() == Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m)) expr = log(Product(-2, (n, 0, 4))) assert simplify(expr) == expr assert expr.expand() == expr assert expr.expand(force=True) == Sum(log(-2), (n, 0, 4)) expr = log(Product(exp(z*i), (i, 0, n))) assert expr.expand() == Sum(z*i, (i, 0, n)) expr = log(Product(exp(w*i), (i, 0, n))) assert expr.expand() == expr assert expr.expand(force=True) == Sum(w*i, (i, 0, n)) expr = log(Product(i**2*abs(j), (i, 1, n), (j, 1, m))) assert expr.expand() == Sum(2*log(i) + log(j), (i, 1, n), (j, 1, m)) @XFAIL def test_log_product_simplify_to_sum(): from sympy.abc import n, m i, j = symbols('i,j', positive=True, integer=True) x, y = symbols('x,y', positive=True) from sympy.concrete import Product, Sum assert simplify(log(Product(x**i, (i, 1, n)))) == Sum(i*log(x), (i, 1, n)) assert simplify(log(Product(x**i*y**j, (i, 1, n), (j, 1, m)))) == \ Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m)) def test_issue_8866(): assert simplify(log(x, 10, evaluate=False)) == simplify(log(x, 10)) assert expand_log(log(x, 10, evaluate=False)) == expand_log(log(x, 10)) y = Symbol('y', positive=True) l1 = log(exp(y), exp(10)) b1 = log(exp(y), exp(5)) l2 = log(exp(y), exp(10), evaluate=False) b2 = log(exp(y), exp(5), evaluate=False) assert simplify(log(l1, b1)) == simplify(log(l2, b2)) assert expand_log(log(l1, b1)) == expand_log(log(l2, b2)) def test_log_expand_factor(): assert (log(18)/log(3) - 2).expand(factor=True) == log(2)/log(3) assert (log(12)/log(2)).expand(factor=True) == log(3)/log(2) + 2 assert (log(15)/log(3)).expand(factor=True) == 1 + log(5)/log(3) assert (log(2)/(-log(12) + log(24))).expand(factor=True) == 1 assert expand_log(log(12), factor=True) == log(3) + 2*log(2) assert expand_log(log(21)/log(7), factor=False) == log(3)/log(7) + 1 assert expand_log(log(45)/log(5) + log(20), factor=False) == \ 1 + 2*log(3)/log(5) + log(20) assert expand_log(log(45)/log(5) + log(26), factor=True) == \ log(2) + log(13) + (log(5) + 2*log(3))/log(5) def test_issue_9116(): n = Symbol('n', positive=True, integer=True) assert ln(n).is_nonnegative is True assert log(n).is_nonnegative is True
0e948202e40946e68da421724757309e39e1f1538f62e4a8ca512b84828413d9
from sympy import ( Abs, And, Derivative, Dummy, Eq, Float, Function, Gt, I, Integral, LambertW, Lt, Matrix, Or, Poly, Q, Rational, S, Symbol, Ne, Wild, acos, asin, atan, atanh, binomial, cos, cosh, diff, erf, erfinv, erfc, erfcinv, exp, im, log, pi, re, sec, sin, sinh, solve, solve_linear, sqrt, sstr, symbols, sympify, tan, tanh, root, atan2, arg, Mul, SparseMatrix, ask, Tuple, nsolve, oo, E, cbrt, denom, Add, Piecewise, GoldenRatio, TribonacciConstant) from sympy.core.function import nfloat from sympy.solvers import solve_linear_system, solve_linear_system_LU, \ solve_undetermined_coeffs from sympy.solvers.bivariate import _filtered_gens, _solve_lambert, _lambert from sympy.solvers.solvers import _invert, unrad, checksol, posify, _ispow, \ det_quick, det_perm, det_minor, _simple_dens, denoms from sympy.physics.units import cm from sympy.polys.rootoftools import CRootOf from sympy.testing.pytest import slow, XFAIL, SKIP, raises from sympy.testing.randtest import verify_numerically as tn from sympy.abc import a, b, c, d, k, h, p, x, y, z, t, q, m def NS(e, n=15, **options): return sstr(sympify(e).evalf(n, **options), full_prec=True) def test_swap_back(): f, g = map(Function, 'fg') fx, gx = f(x), g(x) assert solve([fx + y - 2, fx - gx - 5], fx, y, gx) == \ {fx: gx + 5, y: -gx - 3} assert solve(fx + gx*x - 2, [fx, gx], dict=True)[0] == {fx: 2, gx: 0} assert solve(fx + gx**2*x - y, [fx, gx], dict=True) == [{fx: y - gx**2*x}] assert solve([f(1) - 2, x + 2], dict=True) == [{x: -2, f(1): 2}] def guess_solve_strategy(eq, symbol): try: solve(eq, symbol) return True except (TypeError, NotImplementedError): return False def test_guess_poly(): # polynomial equations assert guess_solve_strategy( S(4), x ) # == GS_POLY assert guess_solve_strategy( x, x ) # == GS_POLY assert guess_solve_strategy( x + a, x ) # == GS_POLY assert guess_solve_strategy( 2*x, x ) # == GS_POLY assert guess_solve_strategy( x + sqrt(2), x) # == GS_POLY assert guess_solve_strategy( x + 2**Rational(1, 4), x) # == GS_POLY assert guess_solve_strategy( x**2 + 1, x ) # == GS_POLY assert guess_solve_strategy( x**2 - 1, x ) # == GS_POLY assert guess_solve_strategy( x*y + y, x ) # == GS_POLY assert guess_solve_strategy( x*exp(y) + y, x) # == GS_POLY assert guess_solve_strategy( (x - y**3)/(y**2*sqrt(1 - y**2)), x) # == GS_POLY def test_guess_poly_cv(): # polynomial equations via a change of variable assert guess_solve_strategy( sqrt(x) + 1, x ) # == GS_POLY_CV_1 assert guess_solve_strategy( x**Rational(1, 3) + sqrt(x) + 1, x ) # == GS_POLY_CV_1 assert guess_solve_strategy( 4*x*(1 - sqrt(x)), x ) # == GS_POLY_CV_1 # polynomial equation multiplying both sides by x**n assert guess_solve_strategy( x + 1/x + y, x ) # == GS_POLY_CV_2 def test_guess_rational_cv(): # rational functions assert guess_solve_strategy( (x + 1)/(x**2 + 2), x) # == GS_RATIONAL assert guess_solve_strategy( (x - y**3)/(y**2*sqrt(1 - y**2)), y) # == GS_RATIONAL_CV_1 # rational functions via the change of variable y -> x**n assert guess_solve_strategy( (sqrt(x) + 1)/(x**Rational(1, 3) + sqrt(x) + 1), x ) \ #== GS_RATIONAL_CV_1 def test_guess_transcendental(): #transcendental functions assert guess_solve_strategy( exp(x) + 1, x ) # == GS_TRANSCENDENTAL assert guess_solve_strategy( 2*cos(x) - y, x ) # == GS_TRANSCENDENTAL assert guess_solve_strategy( exp(x) + exp(-x) - y, x ) # == GS_TRANSCENDENTAL assert guess_solve_strategy(3**x - 10, x) # == GS_TRANSCENDENTAL assert guess_solve_strategy(-3**x + 10, x) # == GS_TRANSCENDENTAL assert guess_solve_strategy(a*x**b - y, x) # == GS_TRANSCENDENTAL def test_solve_args(): # equation container, issue 5113 ans = {x: -3, y: 1} eqs = (x + 5*y - 2, -3*x + 6*y - 15) assert all(solve(container(eqs), x, y) == ans for container in (tuple, list, set, frozenset)) assert solve(Tuple(*eqs), x, y) == ans # implicit symbol to solve for assert set(solve(x**2 - 4)) == {S(2), -S(2)} assert solve([x + y - 3, x - y - 5]) == {x: 4, y: -1} assert solve(x - exp(x), x, implicit=True) == [exp(x)] # no symbol to solve for assert solve(42) == solve(42, x) == [] assert solve([1, 2]) == [] # duplicate symbols removed assert solve((x - 3, y + 2), x, y, x) == {x: 3, y: -2} # unordered symbols # only 1 assert solve(y - 3, {y}) == [3] # more than 1 assert solve(y - 3, {x, y}) == [{y: 3}] # multiple symbols: take the first linear solution+ # - return as tuple with values for all requested symbols assert solve(x + y - 3, [x, y]) == [(3 - y, y)] # - unless dict is True assert solve(x + y - 3, [x, y], dict=True) == [{x: 3 - y}] # - or no symbols are given assert solve(x + y - 3) == [{x: 3 - y}] # multiple symbols might represent an undetermined coefficients system assert solve(a + b*x - 2, [a, b]) == {a: 2, b: 0} args = (a + b)*x - b**2 + 2, a, b assert solve(*args) == \ [(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))] assert solve(*args, set=True) == \ ([a, b], {(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))}) assert solve(*args, dict=True) == \ [{b: sqrt(2), a: -sqrt(2)}, {b: -sqrt(2), a: sqrt(2)}] eq = a*x**2 + b*x + c - ((x - h)**2 + 4*p*k)/4/p flags = dict(dict=True) assert solve(eq, [h, p, k], exclude=[a, b, c], **flags) == \ [{k: c - b**2/(4*a), h: -b/(2*a), p: 1/(4*a)}] flags.update(dict(simplify=False)) assert solve(eq, [h, p, k], exclude=[a, b, c], **flags) == \ [{k: (4*a*c - b**2)/(4*a), h: -b/(2*a), p: 1/(4*a)}] # failing undetermined system assert solve(a*x + b**2/(x + 4) - 3*x - 4/x, a, b, dict=True) == \ [{a: (-b**2*x + 3*x**3 + 12*x**2 + 4*x + 16)/(x**2*(x + 4))}] # failed single equation assert solve(1/(1/x - y + exp(y))) == [] raises( NotImplementedError, lambda: solve(exp(x) + sin(x) + exp(y) + sin(y))) # failed system # -- when no symbols given, 1 fails assert solve([y, exp(x) + x]) == {x: -LambertW(1), y: 0} # both fail assert solve( (exp(x) - x, exp(y) - y)) == {x: -LambertW(-1), y: -LambertW(-1)} # -- when symbols given solve([y, exp(x) + x], x, y) == [(-LambertW(1), 0)] # symbol is a number assert solve(x**2 - pi, pi) == [x**2] # no equations assert solve([], [x]) == [] # overdetermined system # - nonlinear assert solve([(x + y)**2 - 4, x + y - 2]) == [{x: -y + 2}] # - linear assert solve((x + y - 2, 2*x + 2*y - 4)) == {x: -y + 2} # When one or more args are Boolean assert solve(Eq(x**2, 0.0)) == [0] # issue 19048 assert solve([True, Eq(x, 0)], [x], dict=True) == [{x: 0}] assert solve([Eq(x, x), Eq(x, 0), Eq(x, x+1)], [x], dict=True) == [] assert not solve([Eq(x, x+1), x < 2], x) assert solve([Eq(x, 0), x+1<2]) == Eq(x, 0) assert solve([Eq(x, x), Eq(x, x+1)], x) == [] assert solve(True, x) == [] assert solve([x - 1, False], [x], set=True) == ([], set()) def test_solve_polynomial1(): assert solve(3*x - 2, x) == [Rational(2, 3)] assert solve(Eq(3*x, 2), x) == [Rational(2, 3)] assert set(solve(x**2 - 1, x)) == {-S.One, S.One} assert set(solve(Eq(x**2, 1), x)) == {-S.One, S.One} assert solve(x - y**3, x) == [y**3] rx = root(x, 3) assert solve(x - y**3, y) == [ rx, -rx/2 - sqrt(3)*I*rx/2, -rx/2 + sqrt(3)*I*rx/2] a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2') assert solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y) == \ { x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21), y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21), } solution = {y: S.Zero, x: S.Zero} assert solve((x - y, x + y), x, y ) == solution assert solve((x - y, x + y), (x, y)) == solution assert solve((x - y, x + y), [x, y]) == solution assert set(solve(x**3 - 15*x - 4, x)) == { -2 + 3**S.Half, S(4), -2 - 3**S.Half } assert set(solve((x**2 - 1)**2 - a, x)) == \ {sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)), sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))} def test_solve_polynomial2(): assert solve(4, x) == [] def test_solve_polynomial_cv_1a(): """ Test for solving on equations that can be converted to a polynomial equation using the change of variable y -> x**Rational(p, q) """ assert solve( sqrt(x) - 1, x) == [1] assert solve( sqrt(x) - 2, x) == [4] assert solve( x**Rational(1, 4) - 2, x) == [16] assert solve( x**Rational(1, 3) - 3, x) == [27] assert solve(sqrt(x) + x**Rational(1, 3) + x**Rational(1, 4), x) == [0] def test_solve_polynomial_cv_1b(): assert set(solve(4*x*(1 - a*sqrt(x)), x)) == {S.Zero, 1/a**2} assert set(solve(x*(root(x, 3) - 3), x)) == {S.Zero, S(27)} def test_solve_polynomial_cv_2(): """ Test for solving on equations that can be converted to a polynomial equation multiplying both sides of the equation by x**m """ assert solve(x + 1/x - 1, x) in \ [[ S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2], [ S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2]] def test_quintics_1(): f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979 s = solve(f, check=False) for r in s: res = f.subs(x, r.n()).n() assert tn(res, 0) f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 s = solve(f) for r in s: assert r.func == CRootOf # if one uses solve to get the roots of a polynomial that has a CRootOf # solution, make sure that the use of nfloat during the solve process # doesn't fail. Note: if you want numerical solutions to a polynomial # it is *much* faster to use nroots to get them than to solve the # equation only to get RootOf solutions which are then numerically # evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather # than [i.n() for i in solve(eq)] to get the numerical roots of eq. assert nfloat(solve(x**5 + 3*x**3 + 7)[0], exponent=False) == \ CRootOf(x**5 + 3*x**3 + 7, 0).n() def test_quintics_2(): f = x**5 + 15*x + 12 s = solve(f, check=False) for r in s: res = f.subs(x, r.n()).n() assert tn(res, 0) f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 s = solve(f) for r in s: assert r.func == CRootOf assert solve(x**5 - 6*x**3 - 6*x**2 + x - 6) == [ CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 0), CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 1), CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 2), CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 3), CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 4)] def test_highorder_poly(): # just testing that the uniq generator is unpacked sol = solve(x**6 - 2*x + 2) assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6 def test_solve_rational(): """Test solve for rational functions""" assert solve( ( x - y**3 )/( (y**2)*sqrt(1 - y**2) ), x) == [y**3] def test_solve_nonlinear(): assert solve(x**2 - y**2, x, y, dict=True) == [{x: -y}, {x: y}] assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: -x*sqrt(exp(x))}, {y: x*sqrt(exp(x))}] def test_issue_8666(): x = symbols('x') assert solve(Eq(x**2 - 1/(x**2 - 4), 4 - 1/(x**2 - 4)), x) == [] assert solve(Eq(x + 1/x, 1/x), x) == [] def test_issue_7228(): assert solve(4**(2*(x**2) + 2*x) - 8, x) == [Rational(-3, 2), S.Half] def test_issue_7190(): assert solve(log(x-3) + log(x+3), x) == [sqrt(10)] def test_linear_system(): x, y, z, t, n = symbols('x, y, z, t, n') assert solve([x - 1, x - y, x - 2*y, y - 1], [x, y]) == [] assert solve([x - 1, x - y, x - 2*y, x - 1], [x, y]) == [] assert solve([x - 1, x - 1, x - y, x - 2*y], [x, y]) == [] assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == {x: -3, y: 1} M = Matrix([[0, 0, n*(n + 1), (n + 1)**2, 0], [n + 1, n + 1, -2*n - 1, -(n + 1), 0], [-1, 0, 1, 0, 0]]) assert solve_linear_system(M, x, y, z, t) == \ {x: t*(-n-1)/n, z: t*(-n-1)/n, y: 0} assert solve([x + y + z + t, -z - t], x, y, z, t) == {x: -y, z: -t} @XFAIL def test_linear_system_xfail(): # https://github.com/sympy/sympy/issues/6420 M = Matrix([[0, 15.0, 10.0, 700.0], [1, 1, 1, 100.0], [0, 10.0, 5.0, 200.0], [-5.0, 0, 0, 0 ]]) assert solve_linear_system(M, x, y, z) == {x: 0, y: -60.0, z: 160.0} def test_linear_system_function(): a = Function('a') assert solve([a(0, 0) + a(0, 1) + a(1, 0) + a(1, 1), -a(1, 0) - a(1, 1)], a(0, 0), a(0, 1), a(1, 0), a(1, 1)) == {a(1, 0): -a(1, 1), a(0, 0): -a(0, 1)} def test_linear_system_symbols_doesnt_hang_1(): def _mk_eqs(wy): # Equations for fitting a wy*2 - 1 degree polynomial between two points, # at end points derivatives are known up to order: wy - 1 order = 2*wy - 1 x, x0, x1 = symbols('x, x0, x1', real=True) y0s = symbols('y0_:{}'.format(wy), real=True) y1s = symbols('y1_:{}'.format(wy), real=True) c = symbols('c_:{}'.format(order+1), real=True) expr = sum([coeff*x**o for o, coeff in enumerate(c)]) eqs = [] for i in range(wy): eqs.append(expr.diff(x, i).subs({x: x0}) - y0s[i]) eqs.append(expr.diff(x, i).subs({x: x1}) - y1s[i]) return eqs, c # # The purpose of this test is just to see that these calls don't hang. The # expressions returned are complicated so are not included here. Testing # their correctness takes longer than solving the system. # for n in range(1, 7+1): eqs, c = _mk_eqs(n) solve(eqs, c) def test_linear_system_symbols_doesnt_hang_2(): M = Matrix([ [66, 24, 39, 50, 88, 40, 37, 96, 16, 65, 31, 11, 37, 72, 16, 19, 55, 37, 28, 76], [10, 93, 34, 98, 59, 44, 67, 74, 74, 94, 71, 61, 60, 23, 6, 2, 57, 8, 29, 78], [19, 91, 57, 13, 64, 65, 24, 53, 77, 34, 85, 58, 87, 39, 39, 7, 36, 67, 91, 3], [74, 70, 15, 53, 68, 43, 86, 83, 81, 72, 25, 46, 67, 17, 59, 25, 78, 39, 63, 6], [69, 40, 67, 21, 67, 40, 17, 13, 93, 44, 46, 89, 62, 31, 30, 38, 18, 20, 12, 81], [50, 22, 74, 76, 34, 45, 19, 76, 28, 28, 11, 99, 97, 82, 8, 46, 99, 57, 68, 35], [58, 18, 45, 88, 10, 64, 9, 34, 90, 82, 17, 41, 43, 81, 45, 83, 22, 88, 24, 39], [42, 21, 70, 68, 6, 33, 64, 81, 83, 15, 86, 75, 86, 17, 77, 34, 62, 72, 20, 24], [ 7, 8, 2, 72, 71, 52, 96, 5, 32, 51, 31, 36, 79, 88, 25, 77, 29, 26, 33, 13], [19, 31, 30, 85, 81, 39, 63, 28, 19, 12, 16, 49, 37, 66, 38, 13, 3, 71, 61, 51], [29, 82, 80, 49, 26, 85, 1, 37, 2, 74, 54, 82, 26, 47, 54, 9, 35, 0, 99, 40], [15, 49, 82, 91, 93, 57, 45, 25, 45, 97, 15, 98, 48, 52, 66, 24, 62, 54, 97, 37], [62, 23, 73, 53, 52, 86, 28, 38, 0, 74, 92, 38, 97, 70, 71, 29, 26, 90, 67, 45], [ 2, 32, 23, 24, 71, 37, 25, 71, 5, 41, 97, 65, 93, 13, 65, 45, 25, 88, 69, 50], [40, 56, 1, 29, 79, 98, 79, 62, 37, 28, 45, 47, 3, 1, 32, 74, 98, 35, 84, 32], [33, 15, 87, 79, 65, 9, 14, 63, 24, 19, 46, 28, 74, 20, 29, 96, 84, 91, 93, 1], [97, 18, 12, 52, 1, 2, 50, 14, 52, 76, 19, 82, 41, 73, 51, 79, 13, 3, 82, 96], [40, 28, 52, 10, 10, 71, 56, 78, 82, 5, 29, 48, 1, 26, 16, 18, 50, 76, 86, 52], [38, 89, 83, 43, 29, 52, 90, 77, 57, 0, 67, 20, 81, 88, 48, 96, 88, 58, 14, 3]]) syms = x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 = symbols('x:19') sol = { x0: -S(1967374186044955317099186851240896179)/3166636564687820453598895768302256588, x1: -S(84268280268757263347292368432053826)/791659141171955113399723942075564147, x2: -S(229962957341664730974463872411844965)/1583318282343910226799447884151128294, x3: S(990156781744251750886760432229180537)/6333273129375640907197791536604513176, x4: -S(2169830351210066092046760299593096265)/18999819388126922721593374609813539528, x5: S(4680868883477577389628494526618745355)/9499909694063461360796687304906769764, x6: -S(1590820774344371990683178396480879213)/3166636564687820453598895768302256588, x7: -S(54104723404825537735226491634383072)/339282489073695048599881689460956063, x8: S(3182076494196560075964847771774733847)/6333273129375640907197791536604513176, x9: -S(10870817431029210431989147852497539675)/18999819388126922721593374609813539528, x10: -S(13118019242576506476316318268573312603)/18999819388126922721593374609813539528, x11: -S(5173852969886775824855781403820641259)/4749954847031730680398343652453384882, x12: S(4261112042731942783763341580651820563)/4749954847031730680398343652453384882, x13: -S(821833082694661608993818117038209051)/6333273129375640907197791536604513176, x14: S(906881575107250690508618713632090559)/904753304196520129599684505229216168, x15: -S(732162528717458388995329317371283987)/6333273129375640907197791536604513176, x16: S(4524215476705983545537087360959896817)/9499909694063461360796687304906769764, x17: -S(3898571347562055611881270844646055217)/6333273129375640907197791536604513176, x18: S(7513502486176995632751685137907442269)/18999819388126922721593374609813539528 } eqs = list(M * Matrix(syms + (1,))) assert solve(eqs, syms) == sol y = Symbol('y') eqs = list(y * M * Matrix(syms + (1,))) assert solve(eqs, syms) == sol def test_linear_systemLU(): n = Symbol('n') M = Matrix([[1, 2, 0, 1], [1, 3, 2*n, 1], [4, -1, n**2, 1]]) assert solve_linear_system_LU(M, [x, y, z]) == {z: -3/(n**2 + 18*n), x: 1 - 12*n/(n**2 + 18*n), y: 6*n/(n**2 + 18*n)} # Note: multiple solutions exist for some of these equations, so the tests # should be expected to break if the implementation of the solver changes # in such a way that a different branch is chosen @slow def test_solve_transcendental(): from sympy.abc import a, b assert solve(exp(x) - 3, x) == [log(3)] assert set(solve((a*x + b)*(exp(x) - 3), x)) == {-b/a, log(3)} assert solve(cos(x) - y, x) == [-acos(y) + 2*pi, acos(y)] assert solve(2*cos(x) - y, x) == [-acos(y/2) + 2*pi, acos(y/2)] assert solve(Eq(cos(x), sin(x)), x) == [pi/4] assert set(solve(exp(x) + exp(-x) - y, x)) in [{ log(y/2 - sqrt(y**2 - 4)/2), log(y/2 + sqrt(y**2 - 4)/2), }, { log(y - sqrt(y**2 - 4)) - log(2), log(y + sqrt(y**2 - 4)) - log(2)}, { log(y/2 - sqrt((y - 2)*(y + 2))/2), log(y/2 + sqrt((y - 2)*(y + 2))/2)}] assert solve(exp(x) - 3, x) == [log(3)] assert solve(Eq(exp(x), 3), x) == [log(3)] assert solve(log(x) - 3, x) == [exp(3)] assert solve(sqrt(3*x) - 4, x) == [Rational(16, 3)] assert solve(3**(x + 2), x) == [] assert solve(3**(2 - x), x) == [] assert solve(x + 2**x, x) == [-LambertW(log(2))/log(2)] assert solve(2*x + 5 + log(3*x - 2), x) == \ [Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2] assert solve(3*x + log(4*x), x) == [LambertW(Rational(3, 4))/3] assert set(solve((2*x + 8)*(8 + exp(x)), x)) == {S(-4), log(8) + pi*I} eq = 2*exp(3*x + 4) - 3 ans = solve(eq, x) # this generated a failure in flatten assert len(ans) == 3 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans) assert solve(2*log(3*x + 4) - 3, x) == [(exp(Rational(3, 2)) - 4)/3] assert solve(exp(x) + 1, x) == [pi*I] eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9) result = solve(eq, x) ans = [(log(2401) + 5*LambertW((-1 + sqrt(5) + sqrt(2)*I*sqrt(sqrt(5) + \ 5))*log(7**(7*3**Rational(1, 5)/20))* -1))/(-3*log(7)), \ (log(2401) + 5*LambertW((1 + sqrt(5) - sqrt(2)*I*sqrt(5 - \ sqrt(5)))*log(7**(7*3**Rational(1, 5)/20))))/(-3*log(7)), \ (log(2401) + 5*LambertW((1 + sqrt(5) + sqrt(2)*I*sqrt(5 - \ sqrt(5)))*log(7**(7*3**Rational(1, 5)/20))))/(-3*log(7)), \ (log(2401) + 5*LambertW((-sqrt(5) + 1 + sqrt(2)*I*sqrt(sqrt(5) + \ 5))*log(7**(7*3**Rational(1, 5)/20))))/(-3*log(7)), \ (log(2401) + 5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(-3*log(7))] assert result == ans # it works if expanded, too assert solve(eq.expand(), x) == result assert solve(z*cos(x) - y, x) == [-acos(y/z) + 2*pi, acos(y/z)] assert solve(z*cos(2*x) - y, x) == [-acos(y/z)/2 + pi, acos(y/z)/2] assert solve(z*cos(sin(x)) - y, x) == [ pi - asin(acos(y/z)), asin(acos(y/z) - 2*pi) + pi, -asin(acos(y/z) - 2*pi), asin(acos(y/z))] assert solve(z*cos(x), x) == [pi/2, pi*Rational(3, 2)] # issue 4508 assert solve(y - b*x/(a + x), x) in [[-a*y/(y - b)], [a*y/(b - y)]] assert solve(y - b*exp(a/x), x) == [a/log(y/b)] # issue 4507 assert solve(y - b/(1 + a*x), x) in [[(b - y)/(a*y)], [-((y - b)/(a*y))]] # issue 4506 assert solve(y - a*x**b, x) == [(y/a)**(1/b)] # issue 4505 assert solve(z**x - y, x) == [log(y)/log(z)] # issue 4504 assert solve(2**x - 10, x) == [1 + log(5)/log(2)] # issue 6744 assert solve(x*y) == [{x: 0}, {y: 0}] assert solve([x*y]) == [{x: 0}, {y: 0}] assert solve(x**y - 1) == [{x: 1}, {y: 0}] assert solve([x**y - 1]) == [{x: 1}, {y: 0}] assert solve(x*y*(x**2 - y**2)) == [{x: 0}, {x: -y}, {x: y}, {y: 0}] assert solve([x*y*(x**2 - y**2)]) == [{x: 0}, {x: -y}, {x: y}, {y: 0}] # issue 4739 assert solve(exp(log(5)*x) - 2**x, x) == [0] # issue 14791 assert solve(exp(log(5)*x) - exp(log(2)*x), x) == [0] f = Function('f') assert solve(y*f(log(5)*x) - y*f(log(2)*x), x) == [0] assert solve(f(x) - f(0), x) == [0] assert solve(f(x) - f(2 - x), x) == [1] raises(NotImplementedError, lambda: solve(f(x, y) - f(1, 2), x)) raises(NotImplementedError, lambda: solve(f(x, y) - f(2 - x, 2), x)) raises(ValueError, lambda: solve(f(x, y) - f(1 - x), x)) raises(ValueError, lambda: solve(f(x, y) - f(1), x)) # misc # make sure that the right variables is picked up in tsolve # shouldn't generate a GeneratorsNeeded error in _tsolve when the NaN is generated # for eq_down. Actual answers, as determined numerically are approx. +/- 0.83 raises(NotImplementedError, lambda: solve(sinh(x)*sinh(sinh(x)) + cosh(x)*cosh(sinh(x)) - 3)) # watch out for recursive loop in tsolve raises(NotImplementedError, lambda: solve((x + 2)**y*x - 3, x)) # issue 7245 assert solve(sin(sqrt(x))) == [0, pi**2] # issue 7602 a, b = symbols('a, b', real=True, negative=False) assert str(solve(Eq(a, 0.5 - cos(pi*b)/2), b)) == \ '[2.0 - 0.318309886183791*acos(1.0 - 2.0*a), 0.318309886183791*acos(1.0 - 2.0*a)]' # issue 15325 assert solve(y**(1/x) - z, x) == [log(y)/log(z)] def test_solve_for_functions_derivatives(): t = Symbol('t') x = Function('x')(t) y = Function('y')(t) a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2') soln = solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y) assert soln == { x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21), y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21), } assert solve(x - 1, x) == [1] assert solve(3*x - 2, x) == [Rational(2, 3)] soln = solve([a11*x.diff(t) + a12*y.diff(t) - b1, a21*x.diff(t) + a22*y.diff(t) - b2], x.diff(t), y.diff(t)) assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21), x.diff(t): (a22*b1 - a12*b2)/(a11*a22 - a12*a21) } assert solve(x.diff(t) - 1, x.diff(t)) == [1] assert solve(3*x.diff(t) - 2, x.diff(t)) == [Rational(2, 3)] eqns = {3*x - 1, 2*y - 4} assert solve(eqns, {x, y}) == { x: Rational(1, 3), y: 2 } x = Symbol('x') f = Function('f') F = x**2 + f(x)**2 - 4*x - 1 assert solve(F.diff(x), diff(f(x), x)) == [(-x + 2)/f(x)] # Mixed cased with a Symbol and a Function x = Symbol('x') y = Function('y')(t) soln = solve([a11*x + a12*y.diff(t) - b1, a21*x + a22*y.diff(t) - b2], x, y.diff(t)) assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21), x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21) } # issue 13263 x = Symbol('x') f = Function('f') soln = solve([f(x).diff(x) + f(x).diff(x, 2) - 1, f(x).diff(x) - f(x).diff(x, 2)], f(x).diff(x), f(x).diff(x, 2)) assert soln == { f(x).diff(x, 2): 1/2, f(x).diff(x): 1/2 } soln = solve([f(x).diff(x, 2) + f(x).diff(x, 3) - 1, 1 - f(x).diff(x, 2) - f(x).diff(x, 3), 1 - f(x).diff(x,3)], f(x).diff(x, 2), f(x).diff(x, 3)) assert soln == { f(x).diff(x, 2): 0, f(x).diff(x, 3): 1 } def test_issue_3725(): f = Function('f') F = x**2 + f(x)**2 - 4*x - 1 e = F.diff(x) assert solve(e, f(x).diff(x)) in [[(2 - x)/f(x)], [-((x - 2)/f(x))]] def test_issue_3870(): a, b, c, d = symbols('a b c d') A = Matrix(2, 2, [a, b, c, d]) B = Matrix(2, 2, [0, 2, -3, 0]) C = Matrix(2, 2, [1, 2, 3, 4]) assert solve(A*B - C, [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1} assert solve([A*B - C], [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1} assert solve(Eq(A*B, C), [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1} assert solve([A*B - B*A], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c} assert solve([A*C - C*A], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c} assert solve([A*B - B*A, A*C - C*A], [a, b, c, d]) == {a: d, b: 0, c: 0} assert solve([Eq(A*B, B*A)], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c} assert solve([Eq(A*C, C*A)], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c} assert solve([Eq(A*B, B*A), Eq(A*C, C*A)], [a, b, c, d]) == {a: d, b: 0, c: 0} def test_solve_linear(): w = Wild('w') assert solve_linear(x, x) == (0, 1) assert solve_linear(x, exclude=[x]) == (0, 1) assert solve_linear(x, symbols=[w]) == (0, 1) assert solve_linear(x, y - 2*x) in [(x, y/3), (y, 3*x)] assert solve_linear(x, y - 2*x, exclude=[x]) == (y, 3*x) assert solve_linear(3*x - y, 0) in [(x, y/3), (y, 3*x)] assert solve_linear(3*x - y, 0, [x]) == (x, y/3) assert solve_linear(3*x - y, 0, [y]) == (y, 3*x) assert solve_linear(x**2/y, 1) == (y, x**2) assert solve_linear(w, x) in [(w, x), (x, w)] assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y) == \ (y, -2 - cos(x)**2 - sin(x)**2) assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y, symbols=[x]) == (0, 1) assert solve_linear(Eq(x, 3)) == (x, 3) assert solve_linear(1/(1/x - 2)) == (0, 0) assert solve_linear((x + 1)*exp(-x), symbols=[x]) == (x, -1) assert solve_linear((x + 1)*exp(x), symbols=[x]) == ((x + 1)*exp(x), 1) assert solve_linear(x*exp(-x**2), symbols=[x]) == (x, 0) assert solve_linear(0**x - 1) == (0**x - 1, 1) assert solve_linear(1 + 1/(x - 1)) == (x, 0) eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0 assert solve_linear(eq) == (0, 1) eq = cos(x)**2 + sin(x)**2 # = 1 assert solve_linear(eq) == (0, 1) raises(ValueError, lambda: solve_linear(Eq(x, 3), 3)) def test_solve_undetermined_coeffs(): assert solve_undetermined_coeffs(a*x**2 + b*x**2 + b*x + 2*c*x + c + 1, [a, b, c], x) == \ {a: -2, b: 2, c: -1} # Test that rational functions work assert solve_undetermined_coeffs(a/x + b/(x + 1) - (2*x + 1)/(x**2 + x), [a, b], x) == \ {a: 1, b: 1} # Test cancellation in rational functions assert solve_undetermined_coeffs(((c + 1)*a*x**2 + (c + 1)*b*x**2 + (c + 1)*b*x + (c + 1)*2*c*x + (c + 1)**2)/(c + 1), [a, b, c], x) == \ {a: -2, b: 2, c: -1} def test_solve_inequalities(): x = Symbol('x') sol = And(S.Zero < x, x < oo) assert solve(x + 1 > 1) == sol assert solve([x + 1 > 1]) == sol assert solve([x + 1 > 1], x) == sol assert solve([x + 1 > 1], [x]) == sol system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)] assert solve(system) == \ And(Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2)))), Eq(0, 0)) x = Symbol('x', real=True) system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)] assert solve(system) == \ Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2)))) # issues 6627, 3448 assert solve((x - 3)/(x - 2) < 0, x) == And(Lt(2, x), Lt(x, 3)) assert solve(x/(x + 1) > 1, x) == And(Lt(-oo, x), Lt(x, -1)) assert solve(sin(x) > S.Half) == And(pi/6 < x, x < pi*Rational(5, 6)) assert solve(Eq(False, x < 1)) == (S.One <= x) & (x < oo) assert solve(Eq(True, x < 1)) == (-oo < x) & (x < 1) assert solve(Eq(x < 1, False)) == (S.One <= x) & (x < oo) assert solve(Eq(x < 1, True)) == (-oo < x) & (x < 1) assert solve(Eq(False, x)) == False assert solve(Eq(0, x)) == [0] assert solve(Eq(True, x)) == True assert solve(Eq(1, x)) == [1] assert solve(Eq(False, ~x)) == True assert solve(Eq(True, ~x)) == False assert solve(Ne(True, x)) == False assert solve(Ne(1, x)) == (x > -oo) & (x < oo) & Ne(x, 1) def test_issue_4793(): assert solve(1/x) == [] assert solve(x*(1 - 5/x)) == [5] assert solve(x + sqrt(x) - 2) == [1] assert solve(-(1 + x)/(2 + x)**2 + 1/(2 + x)) == [] assert solve(-x**2 - 2*x + (x + 1)**2 - 1) == [] assert solve((x/(x + 1) + 3)**(-2)) == [] assert solve(x/sqrt(x**2 + 1), x) == [0] assert solve(exp(x) - y, x) == [log(y)] assert solve(exp(x)) == [] assert solve(x**2 + x + sin(y)**2 + cos(y)**2 - 1, x) in [[0, -1], [-1, 0]] eq = 4*3**(5*x + 2) - 7 ans = solve(eq, x) assert len(ans) == 5 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans) assert solve(log(x**2) - y**2/exp(x), x, y, set=True) == ( [x, y], {(x, sqrt(exp(x) * log(x ** 2))), (x, -sqrt(exp(x) * log(x ** 2)))}) assert solve(x**2*z**2 - z**2*y**2) == [{x: -y}, {x: y}, {z: 0}] assert solve((x - 1)/(1 + 1/(x - 1))) == [] assert solve(x**(y*z) - x, x) == [1] raises(NotImplementedError, lambda: solve(log(x) - exp(x), x)) raises(NotImplementedError, lambda: solve(2**x - exp(x) - 3)) def test_PR1964(): # issue 5171 assert solve(sqrt(x)) == solve(sqrt(x**3)) == [0] assert solve(sqrt(x - 1)) == [1] # issue 4462 a = Symbol('a') assert solve(-3*a/sqrt(x), x) == [] # issue 4486 assert solve(2*x/(x + 2) - 1, x) == [2] # issue 4496 assert set(solve((x**2/(7 - x)).diff(x))) == {S.Zero, S(14)} # issue 4695 f = Function('f') assert solve((3 - 5*x/f(x))*f(x), f(x)) == [x*Rational(5, 3)] # issue 4497 assert solve(1/root(5 + x, 5) - 9, x) == [Rational(-295244, 59049)] assert solve(sqrt(x) + sqrt(sqrt(x)) - 4) == [(Rational(-1, 2) + sqrt(17)/2)**4] assert set(solve(Poly(sqrt(exp(x)) + sqrt(exp(-x)) - 4))) in \ [ {log((-sqrt(3) + 2)**2), log((sqrt(3) + 2)**2)}, {2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2)}, {log(-4*sqrt(3) + 7), log(4*sqrt(3) + 7)}, ] assert set(solve(Poly(exp(x) + exp(-x) - 4))) == \ {log(-sqrt(3) + 2), log(sqrt(3) + 2)} assert set(solve(x**y + x**(2*y) - 1, x)) == \ {(Rational(-1, 2) + sqrt(5)/2)**(1/y), (Rational(-1, 2) - sqrt(5)/2)**(1/y)} assert solve(exp(x/y)*exp(-z/y) - 2, y) == [(x - z)/log(2)] assert solve( x**z*y**z - 2, z) in [[log(2)/(log(x) + log(y))], [log(2)/(log(x*y))]] # if you do inversion too soon then multiple roots (as for the following) # will be missed, e.g. if exp(3*x) = exp(3) -> 3*x = 3 E = S.Exp1 assert solve(exp(3*x) - exp(3), x) in [ [1, log(E*(Rational(-1, 2) - sqrt(3)*I/2)), log(E*(Rational(-1, 2) + sqrt(3)*I/2))], [1, log(-E/2 - sqrt(3)*E*I/2), log(-E/2 + sqrt(3)*E*I/2)], ] # coverage test p = Symbol('p', positive=True) assert solve((1/p + 1)**(p + 1)) == [] def test_issue_5197(): x = Symbol('x', real=True) assert solve(x**2 + 1, x) == [] n = Symbol('n', integer=True, positive=True) assert solve((n - 1)*(n + 2)*(2*n - 1), n) == [1] x = Symbol('x', positive=True) y = Symbol('y') assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == [] # not {x: -3, y: 1} b/c x is positive # The solution following should not contain (-sqrt(2), sqrt(2)) assert solve((x + y)*n - y**2 + 2, x, y) == [(sqrt(2), -sqrt(2))] y = Symbol('y', positive=True) # The solution following should not contain {y: -x*exp(x/2)} assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: x*exp(x/2)}] x, y, z = symbols('x y z', positive=True) assert solve(z**2*x**2 - z**2*y**2/exp(x), y, x, z, dict=True) == [{y: x*exp(x/2)}] def test_checking(): assert set( solve(x*(x - y/x), x, check=False)) == {sqrt(y), S.Zero, -sqrt(y)} assert set(solve(x*(x - y/x), x, check=True)) == {sqrt(y), -sqrt(y)} # {x: 0, y: 4} sets denominator to 0 in the following so system should return None assert solve((1/(1/x + 2), 1/(y - 3) - 1)) == [] # 0 sets denominator of 1/x to zero so None is returned assert solve(1/(1/x + 2)) == [] def test_issue_4671_4463_4467(): assert solve(sqrt(x**2 - 1) - 2) in ([sqrt(5), -sqrt(5)], [-sqrt(5), sqrt(5)]) assert solve((2**exp(y**2/x) + 2)/(x**2 + 15), y) == [ -sqrt(x*log(1 + I*pi/log(2))), sqrt(x*log(1 + I*pi/log(2)))] C1, C2 = symbols('C1 C2') f = Function('f') assert solve(C1 + C2/x**2 - exp(-f(x)), f(x)) == [log(x**2/(C1*x**2 + C2))] a = Symbol('a') E = S.Exp1 assert solve(1 - log(a + 4*x**2), x) in ( [-sqrt(-a + E)/2, sqrt(-a + E)/2], [sqrt(-a + E)/2, -sqrt(-a + E)/2] ) assert solve(log(a**(-3) - x**2)/a, x) in ( [-sqrt(-1 + a**(-3)), sqrt(-1 + a**(-3))], [sqrt(-1 + a**(-3)), -sqrt(-1 + a**(-3))],) assert solve(1 - log(a + 4*x**2), x) in ( [-sqrt(-a + E)/2, sqrt(-a + E)/2], [sqrt(-a + E)/2, -sqrt(-a + E)/2],) assert solve((a**2 + 1)*(sin(a*x) + cos(a*x)), x) == [-pi/(4*a)] assert solve(3 - (sinh(a*x) + cosh(a*x)), x) == [log(3)/a] assert set(solve(3 - (sinh(a*x) + cosh(a*x)**2), x)) == \ {log(-2 + sqrt(5))/a, log(-sqrt(2) + 1)/a, log(-sqrt(5) - 2)/a, log(1 + sqrt(2))/a} assert solve(atan(x) - 1) == [tan(1)] def test_issue_5132(): r, t = symbols('r,t') assert set(solve([r - x**2 - y**2, tan(t) - y/x], [x, y])) == \ {( -sqrt(r*cos(t)**2), -1*sqrt(r*cos(t)**2)*tan(t)), (sqrt(r*cos(t)**2), sqrt(r*cos(t)**2)*tan(t))} assert solve([exp(x) - sin(y), 1/y - 3], [x, y]) == \ [(log(sin(Rational(1, 3))), Rational(1, 3))] assert solve([exp(x) - sin(y), 1/exp(y) - 3], [x, y]) == \ [(log(-sin(log(3))), -log(3))] assert set(solve([exp(x) - sin(y), y**2 - 4], [x, y])) == \ {(log(-sin(2)), -S(2)), (log(sin(2)), S(2))} eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] assert solve(eqs, set=True) == \ ([x, y], { (log(-sqrt(-z**2 - sin(log(3)))), -log(3)), (log(-z**2 - sin(log(3)))/2, -log(3))}) assert solve(eqs, x, z, set=True) == ( [x, z], {(log(-z**2 + sin(y))/2, z), (log(-sqrt(-z**2 + sin(y))), z)}) assert set(solve(eqs, x, y)) == \ { (log(-sqrt(-z**2 - sin(log(3)))), -log(3)), (log(-z**2 - sin(log(3)))/2, -log(3))} assert set(solve(eqs, y, z)) == \ { (-log(3), -sqrt(-exp(2*x) - sin(log(3)))), (-log(3), sqrt(-exp(2*x) - sin(log(3))))} eqs = [exp(x)**2 - sin(y) + z, 1/exp(y) - 3] assert solve(eqs, set=True) == ([x, y], { (log(-sqrt(-z - sin(log(3)))), -log(3)), (log(-z - sin(log(3)))/2, -log(3))}) assert solve(eqs, x, z, set=True) == ( [x, z], {(log(-sqrt(-z + sin(y))), z), (log(-z + sin(y))/2, z)}) assert set(solve(eqs, x, y)) == { (log(-sqrt(-z - sin(log(3)))), -log(3)), (log(-z - sin(log(3)))/2, -log(3))} assert solve(eqs, z, y) == \ [(-exp(2*x) - sin(log(3)), -log(3))] assert solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), set=True) == ( [x, y], {(S.One, S(3)), (S(3), S.One)}) assert set(solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), x, y)) == \ {(S.One, S(3)), (S(3), S.One)} def test_issue_5335(): lam, a0, conc = symbols('lam a0 conc') a = 0.005 b = 0.743436700916726 eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x, a0*(1 - x/2)*x - 1*y - b*y, x + y - conc] sym = [x, y, a0] # there are 4 solutions obtained manually but only two are valid assert len(solve(eqs, sym, manual=True, minimal=True)) == 2 assert len(solve(eqs, sym)) == 2 # cf below with rational=False @SKIP("Hangs") def _test_issue_5335_float(): # gives ZeroDivisionError: polynomial division lam, a0, conc = symbols('lam a0 conc') a = 0.005 b = 0.743436700916726 eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x, a0*(1 - x/2)*x - 1*y - b*y, x + y - conc] sym = [x, y, a0] assert len(solve(eqs, sym, rational=False)) == 2 def test_issue_5767(): assert set(solve([x**2 + y + 4], [x])) == \ {(-sqrt(-y - 4),), (sqrt(-y - 4),)} def test_polysys(): assert set(solve([x**2 + 2/y - 2, x + y - 3], [x, y])) == \ {(S.One, S(2)), (1 + sqrt(5), 2 - sqrt(5)), (1 - sqrt(5), 2 + sqrt(5))} assert solve([x**2 + y - 2, x**2 + y]) == [] # the ordering should be whatever the user requested assert solve([x**2 + y - 3, x - y - 4], (x, y)) != solve([x**2 + y - 3, x - y - 4], (y, x)) @slow def test_unrad1(): raises(NotImplementedError, lambda: unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x)) + 3)) raises(NotImplementedError, lambda: unrad(sqrt(x) + (x + 1)**Rational(1, 3) + 2*sqrt(y))) s = symbols('s', cls=Dummy) # checkers to deal with possibility of answer coming # back with a sign change (cf issue 5203) def check(rv, ans): assert bool(rv[1]) == bool(ans[1]) if ans[1]: return s_check(rv, ans) e = rv[0].expand() a = ans[0].expand() return e in [a, -a] and rv[1] == ans[1] def s_check(rv, ans): # get the dummy rv = list(rv) d = rv[0].atoms(Dummy) reps = list(zip(d, [s]*len(d))) # replace s with this dummy rv = (rv[0].subs(reps).expand(), [rv[1][0].subs(reps), rv[1][1].subs(reps)]) ans = (ans[0].subs(reps).expand(), [ans[1][0].subs(reps), ans[1][1].subs(reps)]) return str(rv[0]) in [str(ans[0]), str(-ans[0])] and \ str(rv[1]) == str(ans[1]) assert check(unrad(sqrt(x)), (x, [])) assert check(unrad(sqrt(x) + 1), (x - 1, [])) assert check(unrad(sqrt(x) + root(x, 3) + 2), (s**3 + s**2 + 2, [s, s**6 - x])) assert check(unrad(sqrt(x)*root(x, 3) + 2), (x**5 - 64, [])) assert check(unrad(sqrt(x) + (x + 1)**Rational(1, 3)), (x**3 - (x + 1)**2, [])) assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(2*x)), (-2*sqrt(2)*x - 2*x + 1, [])) assert check(unrad(sqrt(x) + sqrt(x + 1) + 2), (16*x - 9, [])) assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - x)), (5*x**2 - 4*x, [])) assert check(unrad(a*sqrt(x) + b*sqrt(x) + c*sqrt(y) + d*sqrt(y)), ((a*sqrt(x) + b*sqrt(x))**2 - (c*sqrt(y) + d*sqrt(y))**2, [])) assert check(unrad(sqrt(x) + sqrt(1 - x)), (2*x - 1, [])) assert check(unrad(sqrt(x) + sqrt(1 - x) - 3), (x**2 - x + 16, [])) assert check(unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x)), (5*x**2 - 2*x + 1, [])) assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - 3) in [ (25*x**4 + 376*x**3 + 1256*x**2 - 2272*x + 784, []), (25*x**8 - 476*x**6 + 2534*x**4 - 1468*x**2 + 169, [])] assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - sqrt(1 - 2*x)) == \ (41*x**4 + 40*x**3 + 232*x**2 - 160*x + 16, []) # orig root at 0.487 assert check(unrad(sqrt(x) + sqrt(x + 1)), (S.One, [])) eq = sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x)) assert check(unrad(eq), (16*x**2 - 9*x, [])) assert set(solve(eq, check=False)) == {S.Zero, Rational(9, 16)} assert solve(eq) == [] # but this one really does have those solutions assert set(solve(sqrt(x) - sqrt(x + 1) + sqrt(1 - sqrt(x)))) == \ {S.Zero, Rational(9, 16)} assert check(unrad(sqrt(x) + root(x + 1, 3) + 2*sqrt(y), y), (S('2*sqrt(x)*(x + 1)**(1/3) + x - 4*y + (x + 1)**(2/3)'), [])) assert check(unrad(sqrt(x/(1 - x)) + (x + 1)**Rational(1, 3)), (x**5 - x**4 - x**3 + 2*x**2 + x - 1, [])) assert check(unrad(sqrt(x/(1 - x)) + 2*sqrt(y), y), (4*x*y + x - 4*y, [])) assert check(unrad(sqrt(x)*sqrt(1 - x) + 2, x), (x**2 - x + 4, [])) # http://tutorial.math.lamar.edu/ # Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a assert solve(Eq(x, sqrt(x + 6))) == [3] assert solve(Eq(x + sqrt(x - 4), 4)) == [4] assert solve(Eq(1, x + sqrt(2*x - 3))) == [] assert set(solve(Eq(sqrt(5*x + 6) - 2, x))) == {-S.One, S(2)} assert set(solve(Eq(sqrt(2*x - 1) - sqrt(x - 4), 2))) == {S(5), S(13)} assert solve(Eq(sqrt(x + 7) + 2, sqrt(3 - x))) == [-6] # http://www.purplemath.com/modules/solverad.htm assert solve((2*x - 5)**Rational(1, 3) - 3) == [16] assert set(solve(x + 1 - root(x**4 + 4*x**3 - x, 4))) == \ {Rational(-1, 2), Rational(-1, 3)} assert set(solve(sqrt(2*x**2 - 7) - (3 - x))) == {-S(8), S(2)} assert solve(sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)) == [0] assert solve(sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)) == [5] assert solve(sqrt(x)*sqrt(x - 7) - 12) == [16] assert solve(sqrt(x - 3) + sqrt(x) - 3) == [4] assert solve(sqrt(9*x**2 + 4) - (3*x + 2)) == [0] assert solve(sqrt(x) - 2 - 5) == [49] assert solve(sqrt(x - 3) - sqrt(x) - 3) == [] assert solve(sqrt(x - 1) - x + 7) == [10] assert solve(sqrt(x - 2) - 5) == [27] assert solve(sqrt(17*x - sqrt(x**2 - 5)) - 7) == [3] assert solve(sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))) == [] # don't posify the expression in unrad and do use _mexpand z = sqrt(2*x + 1)/sqrt(x) - sqrt(2 + 1/x) p = posify(z)[0] assert solve(p) == [] assert solve(z) == [] assert solve(z + 6*I) == [Rational(-1, 11)] assert solve(p + 6*I) == [] # issue 8622 assert unrad(root(x + 1, 5) - root(x, 3)) == ( x**5 - x**3 - 3*x**2 - 3*x - 1, []) # issue #8679 assert check(unrad(x + root(x, 3) + root(x, 3)**2 + sqrt(y), x), (s**3 + s**2 + s + sqrt(y), [s, s**3 - x])) # for coverage assert check(unrad(sqrt(x) + root(x, 3) + y), (s**3 + s**2 + y, [s, s**6 - x])) assert solve(sqrt(x) + root(x, 3) - 2) == [1] raises(NotImplementedError, lambda: solve(sqrt(x) + root(x, 3) + root(x + 1, 5) - 2)) # fails through a different code path raises(NotImplementedError, lambda: solve(-sqrt(2) + cosh(x)/x)) # unrad some assert solve(sqrt(x + root(x, 3))+root(x - y, 5), y) == [ x + (x**Rational(1, 3) + x)**Rational(5, 2)] assert check(unrad(sqrt(x) - root(x + 1, 3)*sqrt(x + 2) + 2), (s**10 + 8*s**8 + 24*s**6 - 12*s**5 - 22*s**4 - 160*s**3 - 212*s**2 - 192*s - 56, [s, s**2 - x])) e = root(x + 1, 3) + root(x, 3) assert unrad(e) == (2*x + 1, []) eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5) assert check(unrad(eq), (15625*x**4 + 173000*x**3 + 355600*x**2 - 817920*x + 331776, [])) assert check(unrad(root(x, 4) + root(x, 4)**3 - 1), (s**3 + s - 1, [s, s**4 - x])) assert check(unrad(root(x, 2) + root(x, 2)**3 - 1), (x**3 + 2*x**2 + x - 1, [])) assert unrad(x**0.5) is None assert check(unrad(t + root(x + y, 5) + root(x + y, 5)**3), (s**3 + s + t, [s, s**5 - x - y])) assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, y), (s**3 + s + x, [s, s**5 - x - y])) assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, x), (s**5 + s**3 + s - y, [s, s**5 - x - y])) assert check(unrad(root(x - 1, 3) + root(x + 1, 5) + root(2, 5)), (s**5 + 5*2**Rational(1, 5)*s**4 + s**3 + 10*2**Rational(2, 5)*s**3 + 10*2**Rational(3, 5)*s**2 + 5*2**Rational(4, 5)*s + 4, [s, s**3 - x + 1])) raises(NotImplementedError, lambda: unrad((root(x, 2) + root(x, 3) + root(x, 4)).subs(x, x**5 - x + 1))) # the simplify flag should be reset to False for unrad results; # if it's not then this next test will take a long time assert solve(root(x, 3) + root(x, 5) - 2) == [1] eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5) assert check(unrad(eq), ((5*x - 4)*(3125*x**3 + 37100*x**2 + 100800*x - 82944), [])) ans = S(''' [4/5, -1484/375 + 172564/(140625*(114*sqrt(12657)/78125 + 12459439/52734375)**(1/3)) + 4*(114*sqrt(12657)/78125 + 12459439/52734375)**(1/3)]''') assert solve(eq) == ans # duplicate radical handling assert check(unrad(sqrt(x + root(x + 1, 3)) - root(x + 1, 3) - 2), (s**3 - s**2 - 3*s - 5, [s, s**3 - x - 1])) # cov post-processing e = root(x**2 + 1, 3) - root(x**2 - 1, 5) - 2 assert check(unrad(e), (s**5 - 10*s**4 + 39*s**3 - 80*s**2 + 80*s - 30, [s, s**3 - x**2 - 1])) e = sqrt(x + root(x + 1, 2)) - root(x + 1, 3) - 2 assert check(unrad(e), (s**6 - 2*s**5 - 7*s**4 - 3*s**3 + 26*s**2 + 40*s + 25, [s, s**3 - x - 1])) assert check(unrad(e, _reverse=True), (s**6 - 14*s**5 + 73*s**4 - 187*s**3 + 276*s**2 - 228*s + 89, [s, s**2 - x - sqrt(x + 1)])) # this one needs r0, r1 reversal to work assert check(unrad(sqrt(x + sqrt(root(x, 3) - 1)) - root(x, 6) - 2), (s**12 - 2*s**8 - 8*s**7 - 8*s**6 + s**4 + 8*s**3 + 23*s**2 + 32*s + 17, [s, s**6 - x])) # is this needed? #assert unrad(root(cosh(x), 3)/x*root(x + 1, 5) - 1) == ( # x**15 - x**3*cosh(x)**5 - 3*x**2*cosh(x)**5 - 3*x*cosh(x)**5 - cosh(x)**5, []) raises(NotImplementedError, lambda: unrad(sqrt(cosh(x)/x) + root(x + 1,3)*sqrt(x) - 1)) assert unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1')) is None assert check(unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1'), x), (s**(2*y) + s + 1, [s, s**3 - x - y])) # This tests two things: that if full unrad is attempted and fails # the solution should still be found; also it tests that the use of # composite assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3 assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 - 1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3 # watch out for when the cov doesn't involve the symbol of interest eq = S('-x + (7*y/8 - (27*x/2 + 27*sqrt(x**2)/2)**(1/3)/3)**3 - 1') assert solve(eq, y) == [ 4*2**Rational(2, 3)*(27*x + 27*sqrt(x**2))**Rational(1, 3)/21 - (Rational(-1, 2) - sqrt(3)*I/2)*(x*Rational(-6912, 343) + sqrt((x*Rational(-13824, 343) - Rational(13824, 343))**2)/2 - Rational(6912, 343))**Rational(1, 3)/3, 4*2**Rational(2, 3)*(27*x + 27*sqrt(x**2))**Rational(1, 3)/21 - (Rational(-1, 2) + sqrt(3)*I/2)*(x*Rational(-6912, 343) + sqrt((x*Rational(-13824, 343) - Rational(13824, 343))**2)/2 - Rational(6912, 343))**Rational(1, 3)/3, 4*2**Rational(2, 3)*(27*x + 27*sqrt(x**2))**Rational(1, 3)/21 - (x*Rational(-6912, 343) + sqrt((x*Rational(-13824, 343) - Rational(13824, 343))**2)/2 - Rational(6912, 343))**Rational(1, 3)/3] eq = root(x + 1, 3) - (root(x, 3) + root(x, 5)) assert check(unrad(eq), (3*s**13 + 3*s**11 + s**9 - 1, [s, s**15 - x])) assert check(unrad(eq - 2), (3*s**13 + 3*s**11 + 6*s**10 + s**9 + 12*s**8 + 6*s**6 + 12*s**5 + 12*s**3 + 7, [s, s**15 - x])) assert check(unrad(root(x, 3) - root(x + 1, 4)/2 + root(x + 2, 3)), (4096*s**13 + 960*s**12 + 48*s**11 - s**10 - 1728*s**4, [s, s**4 - x - 1])) # orig expr has two real roots: -1, -.389 assert check(unrad(root(x, 3) + root(x + 1, 4) - root(x + 2, 3)/2), (343*s**13 + 2904*s**12 + 1344*s**11 + 512*s**10 - 1323*s**9 - 3024*s**8 - 1728*s**7 + 1701*s**5 + 216*s**4 - 729*s, [s, s**4 - x - 1])) # orig expr has one real root: -0.048 assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3)), (729*s**13 - 216*s**12 + 1728*s**11 - 512*s**10 + 1701*s**9 - 3024*s**8 + 1344*s**7 + 1323*s**5 - 2904*s**4 + 343*s, [s, s**4 - x - 1])) # orig expr has 2 real roots: -0.91, -0.15 assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3) - 2), (729*s**13 + 1242*s**12 + 18496*s**10 + 129701*s**9 + 388602*s**8 + 453312*s**7 - 612864*s**6 - 3337173*s**5 - 6332418*s**4 - 7134912*s**3 - 5064768*s**2 - 2111913*s - 398034, [s, s**4 - x - 1])) # orig expr has 1 real root: 19.53 ans = solve(sqrt(x) + sqrt(x + 1) - sqrt(1 - x) - sqrt(2 + x)) assert len(ans) == 1 and NS(ans[0])[:4] == '0.73' # the fence optimization problem # https://github.com/sympy/sympy/issues/4793#issuecomment-36994519 F = Symbol('F') eq = F - (2*x + 2*y + sqrt(x**2 + y**2)) ans = F*Rational(2, 7) - sqrt(2)*F/14 X = solve(eq, x, check=False) for xi in reversed(X): # reverse since currently, ans is the 2nd one Y = solve((x*y).subs(x, xi).diff(y), y, simplify=False, check=False) if any((a - ans).expand().is_zero for a in Y): break else: assert None # no answer was found assert solve(sqrt(x + 1) + root(x, 3) - 2) == S(''' [(-11/(9*(47/54 + sqrt(93)/6)**(1/3)) + 1/3 + (47/54 + sqrt(93)/6)**(1/3))**3]''') assert solve(sqrt(sqrt(x + 1)) + x**Rational(1, 3) - 2) == S(''' [(-sqrt(-2*(-1/16 + sqrt(6913)/16)**(1/3) + 6/(-1/16 + sqrt(6913)/16)**(1/3) + 17/2 + 121/(4*sqrt(-6/(-1/16 + sqrt(6913)/16)**(1/3) + 2*(-1/16 + sqrt(6913)/16)**(1/3) + 17/4)))/2 + sqrt(-6/(-1/16 + sqrt(6913)/16)**(1/3) + 2*(-1/16 + sqrt(6913)/16)**(1/3) + 17/4)/2 + 9/4)**3]''') assert solve(sqrt(x) + root(sqrt(x) + 1, 3) - 2) == S(''' [(-(81/2 + 3*sqrt(741)/2)**(1/3)/3 + (81/2 + 3*sqrt(741)/2)**(-1/3) + 2)**2]''') eq = S(''' -x + (1/2 - sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3 + x*(3*x**2 - 34) + 90)**2/4 - 39304/27) - 45)**(1/3) + 34/(3*(1/2 - sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3 + x*(3*x**2 - 34) + 90)**2/4 - 39304/27) - 45)**(1/3))''') assert check(unrad(eq), (-s*(-s**6 + sqrt(3)*s**6*I - 153*2**Rational(2, 3)*3**Rational(1, 3)*s**4 + 51*12**Rational(1, 3)*s**4 - 102*2**Rational(2, 3)*3**Rational(5, 6)*s**4*I - 1620*s**3 + 1620*sqrt(3)*s**3*I + 13872*18**Rational(1, 3)*s**2 - 471648 + 471648*sqrt(3)*I), [s, s**3 - 306*x - sqrt(3)*sqrt(31212*x**2 - 165240*x + 61484) + 810])) assert solve(eq) == [] # not other code errors eq = root(x, 3) - root(y, 3) + root(x, 5) assert check(unrad(eq), (s**15 + 3*s**13 + 3*s**11 + s**9 - y, [s, s**15 - x])) eq = root(x, 3) + root(y, 3) + root(x*y, 4) assert check(unrad(eq), (s*y*(-s**12 - 3*s**11*y - 3*s**10*y**2 - s**9*y**3 - 3*s**8*y**2 + 21*s**7*y**3 - 3*s**6*y**4 - 3*s**4*y**4 - 3*s**3*y**5 - y**6), [s, s**4 - x*y])) raises(NotImplementedError, lambda: unrad(root(x, 3) + root(y, 3) + root(x*y, 5))) # Test unrad with an Equality eq = Eq(-x**(S(1)/5) + x**(S(1)/3), -3**(S(1)/3) - (-1)**(S(3)/5)*3**(S(1)/5)) assert check(unrad(eq), (-s**5 + s**3 - 3**(S(1)/3) - (-1)**(S(3)/5)*3**(S(1)/5), [s, s**15 - x])) @slow def test_unrad_slow(): # this has roots with multiplicity > 1; there should be no # repeats in roots obtained, however eq = (sqrt(1 + sqrt(1 - 4*x**2)) - x*(1 + sqrt(1 + 2*sqrt(1 - 4*x**2)))) assert solve(eq) == [S.Half] @XFAIL def test_unrad_fail(): # this only works if we check real_root(eq.subs(x, Rational(1, 3))) # but checksol doesn't work like that assert solve(root(x**3 - 3*x**2, 3) + 1 - x) == [Rational(1, 3)] assert solve(root(x + 1, 3) + root(x**2 - 2, 5) + 1) == [ -1, -1 + CRootOf(x**5 + x**4 + 5*x**3 + 8*x**2 + 10*x + 5, 0)**3] def test_checksol(): x, y, r, t = symbols('x, y, r, t') eq = r - x**2 - y**2 dict_var_soln = {y: - sqrt(r) / sqrt(tan(t)**2 + 1), x: -sqrt(r)*tan(t)/sqrt(tan(t)**2 + 1)} assert checksol(eq, dict_var_soln) == True assert checksol(Eq(x, False), {x: False}) is True assert checksol(Ne(x, False), {x: False}) is False assert checksol(Eq(x < 1, True), {x: 0}) is True assert checksol(Eq(x < 1, True), {x: 1}) is False assert checksol(Eq(x < 1, False), {x: 1}) is True assert checksol(Eq(x < 1, False), {x: 0}) is False assert checksol(Eq(x + 1, x**2 + 1), {x: 1}) is True assert checksol([x - 1, x**2 - 1], x, 1) is True assert checksol([x - 1, x**2 - 2], x, 1) is False assert checksol(Poly(x**2 - 1), x, 1) is True raises(ValueError, lambda: checksol(x, 1)) raises(ValueError, lambda: checksol([], x, 1)) def test__invert(): assert _invert(x - 2) == (2, x) assert _invert(2) == (2, 0) assert _invert(exp(1/x) - 3, x) == (1/log(3), x) assert _invert(exp(1/x + a/x) - 3, x) == ((a + 1)/log(3), x) assert _invert(a, x) == (a, 0) def test_issue_4463(): assert solve(-a*x + 2*x*log(x), x) == [exp(a/2)] assert solve(x**x) == [] assert solve(x**x - 2) == [exp(LambertW(log(2)))] assert solve(((x - 3)*(x - 2))**((x - 3)*(x - 4))) == [2] @slow def test_issue_5114_solvers(): a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r') # there is no 'a' in the equation set but this is how the # problem was originally posed syms = a, b, c, f, h, k, n eqs = [b + r/d - c/d, c*(1/d + 1/e + 1/g) - f/g - r/d, f*(1/g + 1/i + 1/j) - c/g - h/i, h*(1/i + 1/l + 1/m) - f/i - k/m, k*(1/m + 1/o + 1/p) - h/m - n/p, n*(1/p + 1/q) - k/p] assert len(solve(eqs, syms, manual=True, check=False, simplify=False)) == 1 def test_issue_5849(): I1, I2, I3, I4, I5, I6 = symbols('I1:7') dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4') e = ( I1 - I2 - I3, I3 - I4 - I5, I4 + I5 - I6, -I1 + I2 + I6, -2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12, -I4 + dQ4, -I2 + dQ2, 2*I3 + 2*I5 + 3*I6 - Q2, I4 - 2*I5 + 2*Q4 + dI4 ) ans = [{ I1: I2 + I6, dI1: -4*I2 - 4*I3 - 4*I5 - 10*I6 + 24, I4: -I5 + I6, dQ4: -I5 + I6, Q4: 3*I5/2 - I6/2 - dI4/2, dQ2: I2, Q2: 2*I3 + 2*I5 + 3*I6}] v = I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4 assert solve(e, *v, manual=True, check=False, dict=True) == ans assert solve(e, *v, manual=True) == ans[0] # the matrix solver (tested below) doesn't like this because it produces # a zero row in the matrix. Is this related to issue 4551? assert [ei.subs( ans[0]) for ei in e] == [-I3 + I6, I3 - I6, 0, 0, 0, 0, 0, 0, 0] def test_issue_5849_matrix(): '''Same as test_issue_5849 but solved with the matrix solver. A solution only exists if I3 == I6 which is not generically true, but `solve` does not return conditions under which the solution is valid, only a solution that is canonical and consistent with the input. ''' # a simple example with the same issue # assert solve([x+y+z, x+y], [x, y]) == {x: y} # the longer example I1, I2, I3, I4, I5, I6 = symbols('I1:7') dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4') e = ( I1 - I2 - I3, I3 - I4 - I5, I4 + I5 - I6, -I1 + I2 + I6, -2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12, -I4 + dQ4, -I2 + dQ2, 2*I3 + 2*I5 + 3*I6 - Q2, I4 - 2*I5 + 2*Q4 + dI4 ) assert solve(e, I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4) == { I1: I2 + I6, dI1: -4*I2 - 4*I3 - 4*I5 - 10*I6 + 24, I4: -I5 + I6, dQ4: -I5 + I6, Q4: 3*I5/2 - I6/2 - dI4/2, dQ2: I2, Q2: 2*I3 + 2*I5 + 3*I6} def test_issue_5901(): f, g, h = map(Function, 'fgh') a = Symbol('a') D = Derivative(f(x), x) G = Derivative(g(a), a) assert solve(f(x) + f(x).diff(x), f(x)) == \ [-D] assert solve(f(x) - 3, f(x)) == \ [3] assert solve(f(x) - 3*f(x).diff(x), f(x)) == \ [3*D] assert solve([f(x) - 3*f(x).diff(x)], f(x)) == \ {f(x): 3*D} assert solve([f(x) - 3*f(x).diff(x), f(x)**2 - y + 4], f(x), y) == \ [{f(x): 3*D, y: 9*D**2 + 4}] assert solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a), h(a), g(a), set=True) == \ ([g(a)], { (-sqrt(h(a)**2*f(a)**2 + G)/f(a),), (sqrt(h(a)**2*f(a)**2+ G)/f(a),)}) args = [f(x).diff(x, 2)*(f(x) + g(x)) - g(x)**2 + 2, f(x), g(x)] assert set(solve(*args)) == \ {(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))} eqs = [f(x)**2 + g(x) - 2*f(x).diff(x), g(x)**2 - 4] assert solve(eqs, f(x), g(x), set=True) == \ ([f(x), g(x)], { (-sqrt(2*D - 2), S(2)), (sqrt(2*D - 2), S(2)), (-sqrt(2*D + 2), -S(2)), (sqrt(2*D + 2), -S(2))}) # the underlying problem was in solve_linear that was not masking off # anything but a Mul or Add; it now raises an error if it gets anything # but a symbol and solve handles the substitutions necessary so solve_linear # won't make this error raises( ValueError, lambda: solve_linear(f(x) + f(x).diff(x), symbols=[f(x)])) assert solve_linear(f(x) + f(x).diff(x), symbols=[x]) == \ (f(x) + Derivative(f(x), x), 1) assert solve_linear(f(x) + Integral(x, (x, y)), symbols=[x]) == \ (f(x) + Integral(x, (x, y)), 1) assert solve_linear(f(x) + Integral(x, (x, y)) + x, symbols=[x]) == \ (x + f(x) + Integral(x, (x, y)), 1) assert solve_linear(f(y) + Integral(x, (x, y)) + x, symbols=[x]) == \ (x, -f(y) - Integral(x, (x, y))) assert solve_linear(x - f(x)/a + (f(x) - 1)/a, symbols=[x]) == \ (x, 1/a) assert solve_linear(x + Derivative(2*x, x)) == \ (x, -2) assert solve_linear(x + Integral(x, y), symbols=[x]) == \ (x, 0) assert solve_linear(x + Integral(x, y) - 2, symbols=[x]) == \ (x, 2/(y + 1)) assert set(solve(x + exp(x)**2, exp(x))) == \ {-sqrt(-x), sqrt(-x)} assert solve(x + exp(x), x, implicit=True) == \ [-exp(x)] assert solve(cos(x) - sin(x), x, implicit=True) == [] assert solve(x - sin(x), x, implicit=True) == \ [sin(x)] assert solve(x**2 + x - 3, x, implicit=True) == \ [-x**2 + 3] assert solve(x**2 + x - 3, x**2, implicit=True) == \ [-x + 3] def test_issue_5912(): assert set(solve(x**2 - x - 0.1, rational=True)) == \ {S.Half + sqrt(35)/10, -sqrt(35)/10 + S.Half} ans = solve(x**2 - x - 0.1, rational=False) assert len(ans) == 2 and all(a.is_Number for a in ans) ans = solve(x**2 - x - 0.1) assert len(ans) == 2 and all(a.is_Number for a in ans) def test_float_handling(): def test(e1, e2): return len(e1.atoms(Float)) == len(e2.atoms(Float)) assert solve(x - 0.5, rational=True)[0].is_Rational assert solve(x - 0.5, rational=False)[0].is_Float assert solve(x - S.Half, rational=False)[0].is_Rational assert solve(x - 0.5, rational=None)[0].is_Float assert solve(x - S.Half, rational=None)[0].is_Rational assert test(nfloat(1 + 2*x), 1.0 + 2.0*x) for contain in [list, tuple, set]: ans = nfloat(contain([1 + 2*x])) assert type(ans) is contain and test(list(ans)[0], 1.0 + 2.0*x) k, v = list(nfloat({2*x: [1 + 2*x]}).items())[0] assert test(k, 2*x) and test(v[0], 1.0 + 2.0*x) assert test(nfloat(cos(2*x)), cos(2.0*x)) assert test(nfloat(3*x**2), 3.0*x**2) assert test(nfloat(3*x**2, exponent=True), 3.0*x**2.0) assert test(nfloat(exp(2*x)), exp(2.0*x)) assert test(nfloat(x/3), x/3.0) assert test(nfloat(x**4 + 2*x + cos(Rational(1, 3)) + 1), x**4 + 2.0*x + 1.94495694631474) # don't call nfloat if there is no solution tot = 100 + c + z + t assert solve(((.7 + c)/tot - .6, (.2 + z)/tot - .3, t/tot - .1)) == [] def test_check_assumptions(): x = symbols('x', positive=True) assert solve(x**2 - 1) == [1] def test_issue_6056(): assert solve(tanh(x + 3)*tanh(x - 3) - 1) == [] assert solve(tanh(x - 1)*tanh(x + 1) + 1) == \ [I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)] assert solve((tanh(x + 3)*tanh(x - 3) + 1)**2) == \ [I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)] def test_issue_5673(): eq = -x + exp(exp(LambertW(log(x)))*LambertW(log(x))) assert checksol(eq, x, 2) is True assert checksol(eq, x, 2, numerical=False) is None def test_exclude(): R, C, Ri, Vout, V1, Vminus, Vplus, s = \ symbols('R, C, Ri, Vout, V1, Vminus, Vplus, s') Rf = symbols('Rf', positive=True) # to eliminate Rf = 0 soln eqs = [C*V1*s + Vplus*(-2*C*s - 1/R), Vminus*(-1/Ri - 1/Rf) + Vout/Rf, C*Vplus*s + V1*(-C*s - 1/R) + Vout/R, -Vminus + Vplus] assert solve(eqs, exclude=s*C*R) == [ { Rf: Ri*(C*R*s + 1)**2/(C*R*s), Vminus: Vplus, V1: 2*Vplus + Vplus/(C*R*s), Vout: C*R*Vplus*s + 3*Vplus + Vplus/(C*R*s)}, { Vplus: 0, Vminus: 0, V1: 0, Vout: 0}, ] # TODO: Investigate why currently solution [0] is preferred over [1]. assert solve(eqs, exclude=[Vplus, s, C]) in [[{ Vminus: Vplus, V1: Vout/2 + Vplus/2 + sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2, R: (Vout - 3*Vplus - sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s), Rf: Ri*(Vout - Vplus)/Vplus, }, { Vminus: Vplus, V1: Vout/2 + Vplus/2 - sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2, R: (Vout - 3*Vplus + sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s), Rf: Ri*(Vout - Vplus)/Vplus, }], [{ Vminus: Vplus, Vout: (V1**2 - V1*Vplus - Vplus**2)/(V1 - 2*Vplus), Rf: Ri*(V1 - Vplus)**2/(Vplus*(V1 - 2*Vplus)), R: Vplus/(C*s*(V1 - 2*Vplus)), }]] def test_high_order_roots(): s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4) assert set(solve(s)) == set(Poly(s*4, domain='ZZ').all_roots()) def test_minsolve_linear_system(): def count(dic): return len([x for x in dic.values() if x == 0]) assert count(solve([x + y + z, y + z + a + t], particular=True, quick=True)) \ == 3 assert count(solve([x + y + z, y + z + a + t], particular=True, quick=False)) \ == 3 assert count(solve([x + y + z, y + z + a], particular=True, quick=True)) == 1 assert count(solve([x + y + z, y + z + a], particular=True, quick=False)) == 2 def test_real_roots(): # cf. issue 6650 x = Symbol('x', real=True) assert len(solve(x**5 + x**3 + 1)) == 1 def test_issue_6528(): eqs = [ 327600995*x**2 - 37869137*x + 1809975124*y**2 - 9998905626, 895613949*x**2 - 273830224*x*y + 530506983*y**2 - 10000000000] # two expressions encountered are > 1400 ops long so if this hangs # it is likely because simplification is being done assert len(solve(eqs, y, x, check=False)) == 4 def test_overdetermined(): x = symbols('x', real=True) eqs = [Abs(4*x - 7) - 5, Abs(3 - 8*x) - 1] assert solve(eqs, x) == [(S.Half,)] assert solve(eqs, x, manual=True) == [(S.Half,)] assert solve(eqs, x, manual=True, check=False) == [(S.Half,), (S(3),)] def test_issue_6605(): x = symbols('x') assert solve(4**(x/2) - 2**(x/3)) == [0, 3*I*pi/log(2)] # while the first one passed, this one failed x = symbols('x', real=True) assert solve(5**(x/2) - 2**(x/3)) == [0] b = sqrt(6)*sqrt(log(2))/sqrt(log(5)) assert solve(5**(x/2) - 2**(3/x)) == [-b, b] def test__ispow(): assert _ispow(x**2) assert not _ispow(x) assert not _ispow(True) def test_issue_6644(): eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt( 4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt( 4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2) sol = solve(eq, q, simplify=False, check=False) assert len(sol) == 5 def test_issue_6752(): assert solve([a**2 + a, a - b], [a, b]) == [(-1, -1), (0, 0)] assert solve([a**2 + a*c, a - b], [a, b]) == [(0, 0), (-c, -c)] def test_issue_6792(): assert solve(x*(x - 1)**2*(x + 1)*(x**6 - x + 1)) == [ -1, 0, 1, CRootOf(x**6 - x + 1, 0), CRootOf(x**6 - x + 1, 1), CRootOf(x**6 - x + 1, 2), CRootOf(x**6 - x + 1, 3), CRootOf(x**6 - x + 1, 4), CRootOf(x**6 - x + 1, 5)] def test_issues_6819_6820_6821_6248_8692(): # issue 6821 x, y = symbols('x y', real=True) assert solve(abs(x + 3) - 2*abs(x - 3)) == [1, 9] assert solve([abs(x) - 2, arg(x) - pi], x) == [(-2,)] assert set(solve(abs(x - 7) - 8)) == {-S.One, S(15)} # issue 8692 assert solve(Eq(Abs(x + 1) + Abs(x**2 - 7), 9), x) == [ Rational(-1, 2) + sqrt(61)/2, -sqrt(69)/2 + S.Half] # issue 7145 assert solve(2*abs(x) - abs(x - 1)) == [-1, Rational(1, 3)] x = symbols('x') assert solve([re(x) - 1, im(x) - 2], x) == [ {re(x): 1, x: 1 + 2*I, im(x): 2}] # check for 'dict' handling of solution eq = sqrt(re(x)**2 + im(x)**2) - 3 assert solve(eq) == solve(eq, x) i = symbols('i', imaginary=True) assert solve(abs(i) - 3) == [-3*I, 3*I] raises(NotImplementedError, lambda: solve(abs(x) - 3)) w = symbols('w', integer=True) assert solve(2*x**w - 4*y**w, w) == solve((x/y)**w - 2, w) x, y = symbols('x y', real=True) assert solve(x + y*I + 3) == {y: 0, x: -3} # issue 2642 assert solve(x*(1 + I)) == [0] x, y = symbols('x y', imaginary=True) assert solve(x + y*I + 3 + 2*I) == {x: -2*I, y: 3*I} x = symbols('x', real=True) assert solve(x + y + 3 + 2*I) == {x: -3, y: -2*I} # issue 6248 f = Function('f') assert solve(f(x + 1) - f(2*x - 1)) == [2] assert solve(log(x + 1) - log(2*x - 1)) == [2] x = symbols('x') assert solve(2**x + 4**x) == [I*pi/log(2)] def test_issue_14607(): # issue 14607 s, tau_c, tau_1, tau_2, phi, K = symbols( 's, tau_c, tau_1, tau_2, phi, K') target = (s**2*tau_1*tau_2 + s*tau_1 + s*tau_2 + 1)/(K*s*(-phi + tau_c)) K_C, tau_I, tau_D = symbols('K_C, tau_I, tau_D', positive=True, nonzero=True) PID = K_C*(1 + 1/(tau_I*s) + tau_D*s) eq = (target - PID).together() eq *= denom(eq).simplify() eq = Poly(eq, s) c = eq.coeffs() vars = [K_C, tau_I, tau_D] s = solve(c, vars, dict=True) assert len(s) == 1 knownsolution = {K_C: -(tau_1 + tau_2)/(K*(phi - tau_c)), tau_I: tau_1 + tau_2, tau_D: tau_1*tau_2/(tau_1 + tau_2)} for var in vars: assert s[0][var].simplify() == knownsolution[var].simplify() def test_lambert_multivariate(): from sympy.abc import x, y assert _filtered_gens(Poly(x + 1/x + exp(x) + y), x) == {x, exp(x)} assert _lambert(x, x) == [] assert solve((x**2 - 2*x + 1).subs(x, log(x) + 3*x)) == [LambertW(3*S.Exp1)/3] assert solve((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1)) == \ [LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3] assert solve((x**2 - 2*x - 2).subs(x, log(x) + 3*x)) == \ [LambertW(3*exp(1 - sqrt(3)))/3, LambertW(3*exp(1 + sqrt(3)))/3] eq = (x*exp(x) - 3).subs(x, x*exp(x)) assert solve(eq) == [LambertW(3*exp(-LambertW(3)))] # coverage test raises(NotImplementedError, lambda: solve(x - sin(x)*log(y - x), x)) ans = [3, -3*LambertW(-log(3)/3)/log(3)] # 3 and 2.478... assert solve(x**3 - 3**x, x) == ans assert set(solve(3*log(x) - x*log(3))) == set(ans) assert solve(LambertW(2*x) - y, x) == [y*exp(y)/2] @XFAIL def test_other_lambert(): assert solve(3*sin(x) - x*sin(3), x) == [3] assert set(solve(x**a - a**x), x) == { a, -a*LambertW(-log(a)/a)/log(a)} @slow def test_lambert_bivariate(): # tests passing current implementation assert solve((x**2 + x)*exp(x**2 + x) - 1) == [ Rational(-1, 2) + sqrt(1 + 4*LambertW(1))/2, Rational(-1, 2) - sqrt(1 + 4*LambertW(1))/2] assert solve((x**2 + x)*exp((x**2 + x)*2) - 1) == [ Rational(-1, 2) + sqrt(1 + 2*LambertW(2))/2, Rational(-1, 2) - sqrt(1 + 2*LambertW(2))/2] assert solve(a/x + exp(x/2), x) == [2*LambertW(-a/2)] assert solve((a/x + exp(x/2)).diff(x), x) == \ [4*LambertW(-sqrt(2)*sqrt(a)/4), 4*LambertW(sqrt(2)*sqrt(a)/4)] assert solve((1/x + exp(x/2)).diff(x), x) == \ [4*LambertW(-sqrt(2)/4), 4*LambertW(sqrt(2)/4), # nsimplifies as 2*2**(141/299)*3**(206/299)*5**(205/299)*7**(37/299)/21 4*LambertW(-sqrt(2)/4, -1)] assert solve(x*log(x) + 3*x + 1, x) == \ [exp(-3 + LambertW(-exp(3)))] assert solve(-x**2 + 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)] assert solve(x**2 - 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)] ans = solve(3*x + 5 + 2**(-5*x + 3), x) assert len(ans) == 1 and ans[0].expand() == \ Rational(-5, 3) + LambertW(-10240*root(2, 3)*log(2)/3)/(5*log(2)) assert solve(5*x - 1 + 3*exp(2 - 7*x), x) == \ [Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7] assert solve((log(x) + x).subs(x, x**2 + 1)) == [ -I*sqrt(-LambertW(1) + 1), sqrt(-1 + LambertW(1))] # check collection ax = a**(3*x + 5) ans = solve(3*log(ax) + b*log(ax) + ax, x) x0 = 1/log(a) x1 = sqrt(3)*I x2 = b + 3 x3 = x2*LambertW(1/x2)/a**5 x4 = x3**Rational(1, 3)/2 assert ans == [ x0*log(x4*(x1 - 1)), x0*log(-x4*(x1 + 1)), x0*log(x3)/3] x1 = LambertW(Rational(1, 3)) x2 = a**(-5) x3 = 3**Rational(1, 3) x4 = 3**Rational(5, 6)*I x5 = x1**Rational(1, 3)*x2**Rational(1, 3)/2 ans = solve(3*log(ax) + ax, x) assert ans == [ x0*log(3*x1*x2)/3, x0*log(x5*(-x3 + x4)), x0*log(-x5*(x3 + x4))] # coverage p = symbols('p', positive=True) eq = 4*2**(2*p + 3) - 2*p - 3 assert _solve_lambert(eq, p, _filtered_gens(Poly(eq), p)) == [ Rational(-3, 2) - LambertW(-4*log(2))/(2*log(2))] assert set(solve(3**cos(x) - cos(x)**3)) == { acos(3), acos(-3*LambertW(-log(3)/3)/log(3))} # should give only one solution after using `uniq` assert solve(2*log(x) - 2*log(z) + log(z + log(x) + log(z)), x) == [ exp(-z + LambertW(2*z**4*exp(2*z))/2)/z] # cases when p != S.One # issue 4271 ans = solve((a/x + exp(x/2)).diff(x, 2), x) x0 = (-a)**Rational(1, 3) x1 = sqrt(3)*I x2 = x0/6 assert ans == [ 6*LambertW(x0/3), 6*LambertW(x2*(x1 - 1)), 6*LambertW(-x2*(x1 + 1))] assert solve((1/x + exp(x/2)).diff(x, 2), x) == \ [6*LambertW(Rational(-1, 3)), 6*LambertW(Rational(1, 6) - sqrt(3)*I/6), \ 6*LambertW(Rational(1, 6) + sqrt(3)*I/6), 6*LambertW(Rational(-1, 3), -1)] assert solve(x**2 - y**2/exp(x), x, y, dict=True) == \ [{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}] # this is slow but not exceedingly slow assert solve((x**3)**(x/2) + pi/2, x) == [ exp(LambertW(-2*log(2)/3 + 2*log(pi)/3 + I*pi*Rational(2, 3)))] def test_rewrite_trig(): assert solve(sin(x) + tan(x)) == [0, -pi, pi, 2*pi] assert solve(sin(x) + sec(x)) == [ -2*atan(Rational(-1, 2) + sqrt(2)*sqrt(1 - sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half - sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half + sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half - sqrt(3)*I/2 + sqrt(2)*sqrt(1 - sqrt(3)*I)/2)] assert solve(sinh(x) + tanh(x)) == [0, I*pi] # issue 6157 assert solve(2*sin(x) - cos(x), x) == [atan(S.Half)] @XFAIL def test_rewrite_trigh(): # if this import passes then the test below should also pass from sympy import sech assert solve(sinh(x) + sech(x)) == [ 2*atanh(Rational(-1, 2) + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2), 2*atanh(Rational(-1, 2) + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2), 2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2), 2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half)] def test_uselogcombine(): eq = z - log(x) + log(y/(x*(-1 + y**2/x**2))) assert solve(eq, x, force=True) == [-sqrt(y*(y - exp(z))), sqrt(y*(y - exp(z)))] assert solve(log(x + 3) + log(1 + 3/x) - 3) in [ [-3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2, -sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2], [-3 + sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2, -3 - sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2], ] assert solve(log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)) == [] def test_atan2(): assert solve(atan2(x, 2) - pi/3, x) == [2*sqrt(3)] def test_errorinverses(): assert solve(erf(x) - y, x) == [erfinv(y)] assert solve(erfinv(x) - y, x) == [erf(y)] assert solve(erfc(x) - y, x) == [erfcinv(y)] assert solve(erfcinv(x) - y, x) == [erfc(y)] def test_issue_2725(): R = Symbol('R') eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1) sol = solve(eq, R, set=True)[1] assert sol == {(Rational(5, 3) + (Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3) + 40/(9*((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3))),), (Rational(5, 3) + 40/(9*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)) + (Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3),)} def test_issue_5114_6611(): # See that it doesn't hang; this solves in about 2 seconds. # Also check that the solution is relatively small. # Note: the system in issue 6611 solves in about 5 seconds and has # an op-count of 138336 (with simplify=False). b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('b:r') eqs = Matrix([ [b - c/d + r/d], [c*(1/g + 1/e + 1/d) - f/g - r/d], [-c/g + f*(1/j + 1/i + 1/g) - h/i], [-f/i + h*(1/m + 1/l + 1/i) - k/m], [-h/m + k*(1/p + 1/o + 1/m) - n/p], [-k/p + n*(1/q + 1/p)]]) v = Matrix([f, h, k, n, b, c]) ans = solve(list(eqs), list(v), simplify=False) # If time is taken to simplify then then 2617 below becomes # 1168 and the time is about 50 seconds instead of 2. assert sum([s.count_ops() for s in ans.values()]) <= 3270 def test_det_quick(): m = Matrix(3, 3, symbols('a:9')) assert m.det() == det_quick(m) # calls det_perm m[0, 0] = 1 assert m.det() == det_quick(m) # calls det_minor m = Matrix(3, 3, list(range(9))) assert m.det() == det_quick(m) # defaults to .det() # make sure they work with Sparse s = SparseMatrix(2, 2, (1, 2, 1, 4)) assert det_perm(s) == det_minor(s) == s.det() def test_real_imag_splitting(): a, b = symbols('a b', real=True) assert solve(sqrt(a**2 + b**2) - 3, a) == \ [-sqrt(-b**2 + 9), sqrt(-b**2 + 9)] a, b = symbols('a b', imaginary=True) assert solve(sqrt(a**2 + b**2) - 3, a) == [] def test_issue_7110(): y = -2*x**3 + 4*x**2 - 2*x + 5 assert any(ask(Q.real(i)) for i in solve(y)) def test_units(): assert solve(1/x - 1/(2*cm)) == [2*cm] def test_issue_7547(): A, B, V = symbols('A,B,V') eq1 = Eq(630.26*(V - 39.0)*V*(V + 39) - A + B, 0) eq2 = Eq(B, 1.36*10**8*(V - 39)) eq3 = Eq(A, 5.75*10**5*V*(V + 39.0)) sol = Matrix(nsolve(Tuple(eq1, eq2, eq3), [A, B, V], (0, 0, 0))) assert str(sol) == str(Matrix( [['4442890172.68209'], ['4289299466.1432'], ['70.5389666628177']])) def test_issue_7895(): r = symbols('r', real=True) assert solve(sqrt(r) - 2) == [4] def test_issue_2777(): # the equations represent two circles x, y = symbols('x y', real=True) e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3 a, b = Rational(191, 20), 3*sqrt(391)/20 ans = [(a, -b), (a, b)] assert solve((e1, e2), (x, y)) == ans assert solve((e1, e2/(x - a)), (x, y)) == [] # make the 2nd circle's radius be -3 e2 += 6 assert solve((e1, e2), (x, y)) == [] assert solve((e1, e2), (x, y), check=False) == ans def test_issue_7322(): number = 5.62527e-35 assert solve(x - number, x)[0] == number def test_nsolve(): raises(ValueError, lambda: nsolve(x, (-1, 1), method='bisect')) raises(TypeError, lambda: nsolve((x - y + 3,x + y,z - y),(x,y,z),(-50,50))) raises(TypeError, lambda: nsolve((x + y, x - y), (0, 1))) @slow def test_high_order_multivariate(): assert len(solve(a*x**3 - x + 1, x)) == 3 assert len(solve(a*x**4 - x + 1, x)) == 4 assert solve(a*x**5 - x + 1, x) == [] # incomplete solution allowed raises(NotImplementedError, lambda: solve(a*x**5 - x + 1, x, incomplete=False)) # result checking must always consider the denominator and CRootOf # must be checked, too d = x**5 - x + 1 assert solve(d*(1 + 1/d)) == [CRootOf(d + 1, i) for i in range(5)] d = x - 1 assert solve(d*(2 + 1/d)) == [S.Half] def test_base_0_exp_0(): assert solve(0**x - 1) == [0] assert solve(0**(x - 2) - 1) == [2] assert solve(S('x*(1/x**0 - x)', evaluate=False)) == \ [0, 1] def test__simple_dens(): assert _simple_dens(1/x**0, [x]) == set() assert _simple_dens(1/x**y, [x]) == {x**y} assert _simple_dens(1/root(x, 3), [x]) == {x} def test_issue_8755(): # This tests two things: that if full unrad is attempted and fails # the solution should still be found; also it tests the use of # keyword `composite`. assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3 assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 - 1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3 @slow def test_issue_8828(): x1 = 0 y1 = -620 r1 = 920 x2 = 126 y2 = 276 x3 = 51 y3 = 205 r3 = 104 v = x, y, z f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2 f2 = (x2 - x)**2 + (y2 - y)**2 - z**2 f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2 F = f1,f2,f3 g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1 g2 = f2 g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3 G = g1,g2,g3 A = solve(F, v) B = solve(G, v) C = solve(G, v, manual=True) p, q, r = [{tuple(i.evalf(2) for i in j) for j in R} for R in [A, B, C]] assert p == q == r @slow def test_issue_2840_8155(): assert solve(sin(3*x) + sin(6*x)) == [ 0, pi*Rational(-5, 3), pi*Rational(-4, 3), -pi, pi*Rational(-2, 3), pi*Rational(-4, 9), -pi/3, pi*Rational(-2, 9), pi*Rational(2, 9), pi/3, pi*Rational(4, 9), pi*Rational(2, 3), pi, pi*Rational(4, 3), pi*Rational(14, 9), pi*Rational(5, 3), pi*Rational(16, 9), 2*pi, -2*I*log(-(-1)**Rational(1, 9)), -2*I*log(-(-1)**Rational(2, 9)), -2*I*log(-sin(pi/18) - I*cos(pi/18)), -2*I*log(-sin(pi/18) + I*cos(pi/18)), -2*I*log(sin(pi/18) - I*cos(pi/18)), -2*I*log(sin(pi/18) + I*cos(pi/18))] assert solve(2*sin(x) - 2*sin(2*x)) == [ 0, pi*Rational(-5, 3), -pi, -pi/3, pi/3, pi, pi*Rational(5, 3)] def test_issue_9567(): assert solve(1 + 1/(x - 1)) == [0] def test_issue_11538(): assert solve(x + E) == [-E] assert solve(x**2 + E) == [-I*sqrt(E), I*sqrt(E)] assert solve(x**3 + 2*E) == [ -cbrt(2 * E), cbrt(2)*cbrt(E)/2 - cbrt(2)*sqrt(3)*I*cbrt(E)/2, cbrt(2)*cbrt(E)/2 + cbrt(2)*sqrt(3)*I*cbrt(E)/2] assert solve([x + 4, y + E], x, y) == {x: -4, y: -E} assert solve([x**2 + 4, y + E], x, y) == [ (-2*I, -E), (2*I, -E)] e1 = x - y**3 + 4 e2 = x + y + 4 + 4 * E assert len(solve([e1, e2], x, y)) == 3 @slow def test_issue_12114(): a, b, c, d, e, f, g = symbols('a,b,c,d,e,f,g') terms = [1 + a*b + d*e, 1 + a*c + d*f, 1 + b*c + e*f, g - a**2 - d**2, g - b**2 - e**2, g - c**2 - f**2] s = solve(terms, [a, b, c, d, e, f, g], dict=True) assert s == [{a: -sqrt(-f**2 - 1), b: -sqrt(-f**2 - 1), c: -sqrt(-f**2 - 1), d: f, e: f, g: -1}, {a: sqrt(-f**2 - 1), b: sqrt(-f**2 - 1), c: sqrt(-f**2 - 1), d: f, e: f, g: -1}, {a: -sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, b: sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, c: sqrt(-f**2 + 2), d: -f/2 + sqrt(-3*f**2 + 6)/2, e: -f/2 - sqrt(3)*sqrt(-f**2 + 2)/2, g: 2}, {a: -sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, b: sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, c: -sqrt(-f**2 + 2), d: -f/2 - sqrt(-3*f**2 + 6)/2, e: -f/2 + sqrt(3)*sqrt(-f**2 + 2)/2, g: 2}, {a: sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, b: -sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, c: sqrt(-f**2 + 2), d: -f/2 - sqrt(-3*f**2 + 6)/2, e: -f/2 + sqrt(3)*sqrt(-f**2 + 2)/2, g: 2}, {a: sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, b: -sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, c: -sqrt(-f**2 + 2), d: -f/2 + sqrt(-3*f**2 + 6)/2, e: -f/2 - sqrt(3)*sqrt(-f**2 + 2)/2, g: 2}] def test_inf(): assert solve(1 - oo*x) == [] assert solve(oo*x, x) == [] assert solve(oo*x - oo, x) == [] def test_issue_12448(): f = Function('f') fun = [f(i) for i in range(15)] sym = symbols('x:15') reps = dict(zip(fun, sym)) (x, y, z), c = sym[:3], sym[3:] ssym = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3] for i in range(3)], (x, y, z)) (x, y, z), c = fun[:3], fun[3:] sfun = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3] for i in range(3)], (x, y, z)) assert sfun[fun[0]].xreplace(reps).count_ops() == \ ssym[sym[0]].count_ops() def test_denoms(): assert denoms(x/2 + 1/y) == {2, y} assert denoms(x/2 + 1/y, y) == {y} assert denoms(x/2 + 1/y, [y]) == {y} assert denoms(1/x + 1/y + 1/z, [x, y]) == {x, y} assert denoms(1/x + 1/y + 1/z, x, y) == {x, y} assert denoms(1/x + 1/y + 1/z, {x, y}) == {x, y} def test_issue_12476(): x0, x1, x2, x3, x4, x5 = symbols('x0 x1 x2 x3 x4 x5') eqns = [x0**2 - x0, x0*x1 - x1, x0*x2 - x2, x0*x3 - x3, x0*x4 - x4, x0*x5 - x5, x0*x1 - x1, -x0/3 + x1**2 - 2*x2/3, x1*x2 - x1/3 - x2/3 - x3/3, x1*x3 - x2/3 - x3/3 - x4/3, x1*x4 - 2*x3/3 - x5/3, x1*x5 - x4, x0*x2 - x2, x1*x2 - x1/3 - x2/3 - x3/3, -x0/6 - x1/6 + x2**2 - x2/6 - x3/3 - x4/6, -x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6, x2*x4 - x2/3 - x3/3 - x4/3, x2*x5 - x3, x0*x3 - x3, x1*x3 - x2/3 - x3/3 - x4/3, -x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6, -x0/6 - x1/6 - x2/6 + x3**2 - x3/3 - x4/6, -x1/3 - x2/3 + x3*x4 - x3/3, -x2 + x3*x5, x0*x4 - x4, x1*x4 - 2*x3/3 - x5/3, x2*x4 - x2/3 - x3/3 - x4/3, -x1/3 - x2/3 + x3*x4 - x3/3, -x0/3 - 2*x2/3 + x4**2, -x1 + x4*x5, x0*x5 - x5, x1*x5 - x4, x2*x5 - x3, -x2 + x3*x5, -x1 + x4*x5, -x0 + x5**2, x0 - 1] sols = [{x0: 1, x3: Rational(1, 6), x2: Rational(1, 6), x4: Rational(-2, 3), x1: Rational(-2, 3), x5: 1}, {x0: 1, x3: S.Half, x2: Rational(-1, 2), x4: 0, x1: 0, x5: -1}, {x0: 1, x3: Rational(-1, 3), x2: Rational(-1, 3), x4: Rational(1, 3), x1: Rational(1, 3), x5: 1}, {x0: 1, x3: 1, x2: 1, x4: 1, x1: 1, x5: 1}, {x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: sqrt(5)/3, x1: -sqrt(5)/3, x5: -1}, {x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: -sqrt(5)/3, x1: sqrt(5)/3, x5: -1}] assert solve(eqns) == sols def test_issue_13849(): t = symbols('t') assert solve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == [] def test_issue_14860(): from sympy.physics.units import newton, kilo assert solve(8*kilo*newton + x + y, x) == [-8000*newton - y] def test_issue_14721(): k, h, a, b = symbols(':4') assert solve([ -1 + (-k + 1)**2/b**2 + (-h - 1)**2/a**2, -1 + (-k + 1)**2/b**2 + (-h + 1)**2/a**2, h, k + 2], h, k, a, b) == [ (0, -2, -b*sqrt(1/(b**2 - 9)), b), (0, -2, b*sqrt(1/(b**2 - 9)), b)] assert solve([ h, h/a + 1/b**2 - 2, -h/2 + 1/b**2 - 2], a, h, b) == [ (a, 0, -sqrt(2)/2), (a, 0, sqrt(2)/2)] assert solve((a + b**2 - 1, a + b**2 - 2)) == [] def test_issue_14779(): x = symbols('x', real=True) assert solve(sqrt(x**4 - 130*x**2 + 1089) + sqrt(x**4 - 130*x**2 + 3969) - 96*Abs(x)/x,x) == [sqrt(130)] def test_issue_15307(): assert solve((y - 2, Mul(x + 3,x - 2, evaluate=False))) == \ [{x: -3, y: 2}, {x: 2, y: 2}] assert solve((y - 2, Mul(3, x - 2, evaluate=False))) == \ {x: 2, y: 2} assert solve((y - 2, Add(x + 4, x - 2, evaluate=False))) == \ {x: -1, y: 2} eq1 = Eq(12513*x + 2*y - 219093, -5726*x - y) eq2 = Eq(-2*x + 8, 2*x - 40) assert solve([eq1, eq2]) == {x:12, y:75} def test_issue_15415(): assert solve(x - 3, x) == [3] assert solve([x - 3], x) == {x:3} assert solve(Eq(y + 3*x**2/2, y + 3*x), y) == [] assert solve([Eq(y + 3*x**2/2, y + 3*x)], y) == [] assert solve([Eq(y + 3*x**2/2, y + 3*x), Eq(x, 1)], y) == [] @slow def test_issue_15731(): # f(x)**g(x)=c assert solve(Eq((x**2 - 7*x + 11)**(x**2 - 13*x + 42), 1)) == [2, 3, 4, 5, 6, 7] assert solve((x)**(x + 4) - 4) == [-2] assert solve((-x)**(-x + 4) - 4) == [2] assert solve((x**2 - 6)**(x**2 - 2) - 4) == [-2, 2] assert solve((x**2 - 2*x - 1)**(x**2 - 3) - 1/(1 - 2*sqrt(2))) == [sqrt(2)] assert solve(x**(x + S.Half) - 4*sqrt(2)) == [S(2)] assert solve((x**2 + 1)**x - 25) == [2] assert solve(x**(2/x) - 2) == [2, 4] assert solve((x/2)**(2/x) - sqrt(2)) == [4, 8] assert solve(x**(x + S.Half) - Rational(9, 4)) == [Rational(3, 2)] # a**g(x)=c assert solve((-sqrt(sqrt(2)))**x - 2) == [4, log(2)/(log(2**Rational(1, 4)) + I*pi)] assert solve((sqrt(2))**x - sqrt(sqrt(2))) == [S.Half] assert solve((-sqrt(2))**x + 2*(sqrt(2))) == [3, (3*log(2)**2 + 4*pi**2 - 4*I*pi*log(2))/(log(2)**2 + 4*pi**2)] assert solve((sqrt(2))**x - 2*(sqrt(2))) == [3] assert solve(I**x + 1) == [2] assert solve((1 + I)**x - 2*I) == [2] assert solve((sqrt(2) + sqrt(3))**x - (2*sqrt(6) + 5)**Rational(1, 3)) == [Rational(2, 3)] # bases of both sides are equal b = Symbol('b') assert solve(b**x - b**2, x) == [2] assert solve(b**x - 1/b, x) == [-1] assert solve(b**x - b, x) == [1] b = Symbol('b', positive=True) assert solve(b**x - b**2, x) == [2] assert solve(b**x - 1/b, x) == [-1] def test_issue_10933(): assert solve(x**4 + y*(x + 0.1), x) # doesn't fail assert solve(I*x**4 + x**3 + x**2 + 1.) # doesn't fail def test_Abs_handling(): x = symbols('x', real=True) assert solve(abs(x/y), x) == [0] def test_issue_7982(): x = Symbol('x') # Test that no exception happens assert solve([2*x**2 + 5*x + 20 <= 0, x >= 1.5], x) is S.false # From #8040 assert solve([x**3 - 8.08*x**2 - 56.48*x/5 - 106 >= 0, x - 1 <= 0], [x]) is S.false def test_issue_14645(): x, y = symbols('x y') assert solve([x*y - x - y, x*y - x - y], [x, y]) == [(y/(y - 1), y)] def test_issue_12024(): x, y = symbols('x y') assert solve(Piecewise((0.0, x < 0.1), (x, x >= 0.1)) - y) == \ [{y: Piecewise((0.0, x < 0.1), (x, True))}] def test_issue_17452(): assert solve((7**x)**x + pi, x) == [-sqrt(log(pi) + I*pi)/sqrt(log(7)), sqrt(log(pi) + I*pi)/sqrt(log(7))] assert solve(x**(x/11) + pi/11, x) == [exp(LambertW(-11*log(11) + 11*log(pi) + 11*I*pi))] def test_issue_17799(): assert solve(-erf(x**(S(1)/3))**pi + I, x) == [] def test_issue_17650(): x = Symbol('x', real=True) assert solve(abs(abs(x**2 - 1) - x) - x) == [1, -1 + sqrt(2), 1 + sqrt(2)] def test_issue_17882(): eq = -8*x**2/(9*(x**2 - 1)**(S(4)/3)) + 4/(3*(x**2 - 1)**(S(1)/3)) assert unrad(eq) == (4*x**2 - 12, []) def test_issue_17949(): assert solve(exp(+x+x**2), x) == [] assert solve(exp(-x+x**2), x) == [] assert solve(exp(+x-x**2), x) == [] assert solve(exp(-x-x**2), x) == [] def test_issue_10993(): assert solve(Eq(binomial(x, 2), 3)) == [-2, 3] assert solve(Eq(pow(x, 2) + binomial(x, 3), x)) == [-4, 0, 1] assert solve(Eq(binomial(x, 2), 0)) == [0, 1] assert solve(a+binomial(x, 3), a) == [-binomial(x, 3)] assert solve(x-binomial(a, 3) + binomial(y, 2) + sin(a), x) == [-sin(a) + binomial(a, 3) - binomial(y, 2)] assert solve((x+1)-binomial(x+1, 3), x) == [-2, -1, 3] def test_issue_11553(): eq1 = x + y + 1 eq2 = x + GoldenRatio assert solve([eq1, eq2], x, y) == {x: -GoldenRatio, y: -1 + GoldenRatio} eq3 = x + 2 + TribonacciConstant assert solve([eq1, eq3], x, y) == {x: -2 - TribonacciConstant, y: 1 + TribonacciConstant} def test_issue_19113_19102(): t = S(1)/3 solve(cos(x)**5-sin(x)**5) assert solve(4*cos(x)**3 - 2*sin(x)**3) == [ atan(2**(t)), -atan(2**(t)*(1 - sqrt(3)*I)/2), -atan(2**(t)*(1 + sqrt(3)*I)/2)] h = S.Half assert solve(cos(x)**2 + sin(x)) == [ 2*atan(-h + sqrt(5)/2 + sqrt(2)*sqrt(1 - sqrt(5))/2), -2*atan(h + sqrt(5)/2 + sqrt(2)*sqrt(1 + sqrt(5))/2), -2*atan(-sqrt(5)/2 + h + sqrt(2)*sqrt(1 - sqrt(5))/2), -2*atan(-sqrt(2)*sqrt(1 + sqrt(5))/2 + h + sqrt(5)/2)] assert solve(3*cos(x) - sin(x)) == [atan(3)] def test_issue_19509(): a = S(3)/4 b = S(5)/8 c = sqrt(5)/8 d = sqrt(5)/4 assert solve(1/(x -1)**5 - 1) == [2, -d + a - sqrt(-b + c), -d + a + sqrt(-b + c), d + a - sqrt(-b - c), d + a + sqrt(-b - c)] def test_issue_20747(): THT, HT, DBH, dib, c0, c1, c2, c3, c4 = symbols('THT HT DBH dib c0 c1 c2 c3 c4') f = DBH*c3 + THT*c4 + c2 rhs = 1 - ((HT - 1)/(THT - 1))**c1*(1 - exp(c0/f)) eq = dib - DBH*(c0 - f*log(rhs)) term = ((1 - exp((DBH*c0 - dib)/(DBH*(DBH*c3 + THT*c4 + c2)))) / (1 - exp(c0/(DBH*c3 + THT*c4 + c2)))) sol = [THT*term**(1/c1) - term**(1/c1) + 1] assert solve(eq, HT) == sol
f9c966b5d9bf6937219c0d8cd3111ced251f796712b6d1b815643536b52203e6
from sympy import (Symbol, S, exp, log, sqrt, oo, E, zoo, pi, tan, sin, cos, cot, sec, csc, Abs, symbols, I, re, simplify, expint, Rational) from sympy.calculus.util import (function_range, continuous_domain, not_empty_in, periodicity, lcim, AccumBounds, is_convex, stationary_points, minimum, maximum) from sympy.core import Add, Mul, Pow from sympy.sets.sets import (Interval, FiniteSet, EmptySet, Complement, Union) from sympy.testing.pytest import raises from sympy.abc import x a = Symbol('a', real=True) def test_function_range(): x, y, a, b = symbols('x y a b') assert function_range(sin(x), x, Interval(-pi/2, pi/2) ) == Interval(-1, 1) assert function_range(sin(x), x, Interval(0, pi) ) == Interval(0, 1) assert function_range(tan(x), x, Interval(0, pi) ) == Interval(-oo, oo) assert function_range(tan(x), x, Interval(pi/2, pi) ) == Interval(-oo, 0) assert function_range((x + 3)/(x - 2), x, Interval(-5, 5) ) == Union(Interval(-oo, Rational(2, 7)), Interval(Rational(8, 3), oo)) assert function_range(1/(x**2), x, Interval(-1, 1) ) == Interval(1, oo) assert function_range(exp(x), x, Interval(-1, 1) ) == Interval(exp(-1), exp(1)) assert function_range(log(x) - x, x, S.Reals ) == Interval(-oo, -1) assert function_range(sqrt(3*x - 1), x, Interval(0, 2) ) == Interval(0, sqrt(5)) assert function_range(x*(x - 1) - (x**2 - x), x, S.Reals ) == FiniteSet(0) assert function_range(x*(x - 1) - (x**2 - x) + y, x, S.Reals ) == FiniteSet(y) assert function_range(sin(x), x, Union(Interval(-5, -3), FiniteSet(4)) ) == Union(Interval(-sin(3), 1), FiniteSet(sin(4))) assert function_range(cos(x), x, Interval(-oo, -4) ) == Interval(-1, 1) assert function_range(cos(x), x, S.EmptySet) == S.EmptySet raises(NotImplementedError, lambda : function_range( exp(x)*(sin(x) - cos(x))/2 - x, x, S.Reals)) raises(NotImplementedError, lambda : function_range( sin(x) + x, x, S.Reals)) # issue 13273 raises(NotImplementedError, lambda : function_range( log(x), x, S.Integers)) raises(NotImplementedError, lambda : function_range( sin(x)/2, x, S.Naturals)) def test_continuous_domain(): x = Symbol('x') assert continuous_domain(sin(x), x, Interval(0, 2*pi)) == Interval(0, 2*pi) assert continuous_domain(tan(x), x, Interval(0, 2*pi)) == \ Union(Interval(0, pi/2, False, True), Interval(pi/2, pi*Rational(3, 2), True, True), Interval(pi*Rational(3, 2), 2*pi, True, False)) assert continuous_domain((x - 1)/((x - 1)**2), x, S.Reals) == \ Union(Interval(-oo, 1, True, True), Interval(1, oo, True, True)) assert continuous_domain(log(x) + log(4*x - 1), x, S.Reals) == \ Interval(Rational(1, 4), oo, True, True) assert continuous_domain(1/sqrt(x - 3), x, S.Reals) == Interval(3, oo, True, True) assert continuous_domain(1/x - 2, x, S.Reals) == \ Union(Interval.open(-oo, 0), Interval.open(0, oo)) assert continuous_domain(1/(x**2 - 4) + 2, x, S.Reals) == \ Union(Interval.open(-oo, -2), Interval.open(-2, 2), Interval.open(2, oo)) domain = continuous_domain(log(tan(x)**2 + 1), x, S.Reals) assert not domain.contains(3*pi/2) assert domain.contains(5) def test_not_empty_in(): assert not_empty_in(FiniteSet(x, 2*x).intersect(Interval(1, 2, True, False)), x) == \ Interval(S.Half, 2, True, False) assert not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x) == \ Union(Interval(-sqrt(2), -1), Interval(1, 2)) assert not_empty_in(FiniteSet(x**2 + x, x).intersect(Interval(2, 4)), x) == \ Union(Interval(-sqrt(17)/2 - S.Half, -2), Interval(1, Rational(-1, 2) + sqrt(17)/2), Interval(2, 4)) assert not_empty_in(FiniteSet(x/(x - 1)).intersect(S.Reals), x) == \ Complement(S.Reals, FiniteSet(1)) assert not_empty_in(FiniteSet(a/(a - 1)).intersect(S.Reals), a) == \ Complement(S.Reals, FiniteSet(1)) assert not_empty_in(FiniteSet((x**2 - 3*x + 2)/(x - 1)).intersect(S.Reals), x) == \ Complement(S.Reals, FiniteSet(1)) assert not_empty_in(FiniteSet(3, 4, x/(x - 1)).intersect(Interval(2, 3)), x) == \ Interval(-oo, oo) assert not_empty_in(FiniteSet(4, x/(x - 1)).intersect(Interval(2, 3)), x) == \ Interval(S(3)/2, 2) assert not_empty_in(FiniteSet(x/(x**2 - 1)).intersect(S.Reals), x) == \ Complement(S.Reals, FiniteSet(-1, 1)) assert not_empty_in(FiniteSet(x, x**2).intersect(Union(Interval(1, 3, True, True), Interval(4, 5))), x) == \ Union(Interval(-sqrt(5), -2), Interval(-sqrt(3), -1, True, True), Interval(1, 3, True, True), Interval(4, 5)) assert not_empty_in(FiniteSet(1).intersect(Interval(3, 4)), x) == S.EmptySet assert not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x) == \ Union(Interval(-2, -1, True, False), Interval(2, oo)) raises(ValueError, lambda: not_empty_in(x)) raises(ValueError, lambda: not_empty_in(Interval(0, 1), x)) raises(NotImplementedError, lambda: not_empty_in(FiniteSet(x).intersect(S.Reals), x, a)) def test_periodicity(): x = Symbol('x') y = Symbol('y') z = Symbol('z', real=True) assert periodicity(sin(2*x), x) == pi assert periodicity((-2)*tan(4*x), x) == pi/4 assert periodicity(sin(x)**2, x) == 2*pi assert periodicity(3**tan(3*x), x) == pi/3 assert periodicity(tan(x)*cos(x), x) == 2*pi assert periodicity(sin(x)**(tan(x)), x) == 2*pi assert periodicity(tan(x)*sec(x), x) == 2*pi assert periodicity(sin(2*x)*cos(2*x) - y, x) == pi/2 assert periodicity(tan(x) + cot(x), x) == pi assert periodicity(sin(x) - cos(2*x), x) == 2*pi assert periodicity(sin(x) - 1, x) == 2*pi assert periodicity(sin(4*x) + sin(x)*cos(x), x) == pi assert periodicity(exp(sin(x)), x) == 2*pi assert periodicity(log(cot(2*x)) - sin(cos(2*x)), x) == pi assert periodicity(sin(2*x)*exp(tan(x) - csc(2*x)), x) == pi assert periodicity(cos(sec(x) - csc(2*x)), x) == 2*pi assert periodicity(tan(sin(2*x)), x) == pi assert periodicity(2*tan(x)**2, x) == pi assert periodicity(sin(x%4), x) == 4 assert periodicity(sin(x)%4, x) == 2*pi assert periodicity(tan((3*x-2)%4), x) == Rational(4, 3) assert periodicity((sqrt(2)*(x+1)+x) % 3, x) == 3 / (sqrt(2)+1) assert periodicity((x**2+1) % x, x) is None assert periodicity(sin(re(x)), x) == 2*pi assert periodicity(sin(x)**2 + cos(x)**2, x) is S.Zero assert periodicity(tan(x), y) is S.Zero assert periodicity(sin(x) + I*cos(x), x) == 2*pi assert periodicity(x - sin(2*y), y) == pi assert periodicity(exp(x), x) is None assert periodicity(exp(I*x), x) == 2*pi assert periodicity(exp(I*z), z) == 2*pi assert periodicity(exp(z), z) is None assert periodicity(exp(log(sin(z) + I*cos(2*z)), evaluate=False), z) == 2*pi assert periodicity(exp(log(sin(2*z) + I*cos(z)), evaluate=False), z) == 2*pi assert periodicity(exp(sin(z)), z) == 2*pi assert periodicity(exp(2*I*z), z) == pi assert periodicity(exp(z + I*sin(z)), z) is None assert periodicity(exp(cos(z/2) + sin(z)), z) == 4*pi assert periodicity(log(x), x) is None assert periodicity(exp(x)**sin(x), x) is None assert periodicity(sin(x)**y, y) is None assert periodicity(Abs(sin(Abs(sin(x)))), x) == pi assert all(periodicity(Abs(f(x)), x) == pi for f in ( cos, sin, sec, csc, tan, cot)) assert periodicity(Abs(sin(tan(x))), x) == pi assert periodicity(Abs(sin(sin(x) + tan(x))), x) == 2*pi assert periodicity(sin(x) > S.Half, x) == 2*pi assert periodicity(x > 2, x) is None assert periodicity(x**3 - x**2 + 1, x) is None assert periodicity(Abs(x), x) is None assert periodicity(Abs(x**2 - 1), x) is None assert periodicity((x**2 + 4)%2, x) is None assert periodicity((E**x)%3, x) is None assert periodicity(sin(expint(1, x))/expint(1, x), x) is None def test_periodicity_check(): x = Symbol('x') y = Symbol('y') assert periodicity(tan(x), x, check=True) == pi assert periodicity(sin(x) + cos(x), x, check=True) == 2*pi assert periodicity(sec(x), x) == 2*pi assert periodicity(sin(x*y), x) == 2*pi/abs(y) assert periodicity(Abs(sec(sec(x))), x) == pi def test_lcim(): from sympy import pi assert lcim([S.Half, S(2), S(3)]) == 6 assert lcim([pi/2, pi/4, pi]) == pi assert lcim([2*pi, pi/2]) == 2*pi assert lcim([S.One, 2*pi]) is None assert lcim([S(2) + 2*E, E/3 + Rational(1, 3), S.One + E]) == S(2) + 2*E def test_is_convex(): assert is_convex(1/x, x, domain=Interval(0, oo)) == True assert is_convex(1/x, x, domain=Interval(-oo, 0)) == False assert is_convex(x**2, x, domain=Interval(0, oo)) == True assert is_convex(log(x), x) == False raises(NotImplementedError, lambda: is_convex(log(x), x, a)) def test_stationary_points(): x, y = symbols('x y') assert stationary_points(sin(x), x, Interval(-pi/2, pi/2) ) == {-pi/2, pi/2} assert stationary_points(sin(x), x, Interval.Ropen(0, pi/4) ) == EmptySet() assert stationary_points(tan(x), x, ) == EmptySet() assert stationary_points(sin(x)*cos(x), x, Interval(0, pi) ) == {pi/4, pi*Rational(3, 4)} assert stationary_points(sec(x), x, Interval(0, pi) ) == {0, pi} assert stationary_points((x+3)*(x-2), x ) == FiniteSet(Rational(-1, 2)) assert stationary_points((x + 3)/(x - 2), x, Interval(-5, 5) ) == EmptySet() assert stationary_points((x**2+3)/(x-2), x ) == {2 - sqrt(7), 2 + sqrt(7)} assert stationary_points((x**2+3)/(x-2), x, Interval(0, 5) ) == {2 + sqrt(7)} assert stationary_points(x**4 + x**3 - 5*x**2, x, S.Reals ) == FiniteSet(-2, 0, Rational(5, 4)) assert stationary_points(exp(x), x ) == EmptySet() assert stationary_points(log(x) - x, x, S.Reals ) == {1} assert stationary_points(cos(x), x, Union(Interval(0, 5), Interval(-6, -3)) ) == {0, -pi, pi} assert stationary_points(y, x, S.Reals ) == S.Reals assert stationary_points(y, x, S.EmptySet) == S.EmptySet def test_maximum(): x, y = symbols('x y') assert maximum(sin(x), x) is S.One assert maximum(sin(x), x, Interval(0, 1)) == sin(1) assert maximum(tan(x), x) is oo assert maximum(tan(x), x, Interval(-pi/4, pi/4)) is S.One assert maximum(sin(x)*cos(x), x, S.Reals) == S.Half assert simplify(maximum(sin(x)*cos(x), x, Interval(pi*Rational(3, 8), pi*Rational(5, 8))) ) == sqrt(2)/4 assert maximum((x+3)*(x-2), x) is oo assert maximum((x+3)*(x-2), x, Interval(-5, 0)) == S(14) assert maximum((x+3)/(x-2), x, Interval(-5, 0)) == Rational(2, 7) assert simplify(maximum(-x**4-x**3+x**2+10, x) ) == 41*sqrt(41)/512 + Rational(5419, 512) assert maximum(exp(x), x, Interval(-oo, 2)) == exp(2) assert maximum(log(x) - x, x, S.Reals) is S.NegativeOne assert maximum(cos(x), x, Union(Interval(0, 5), Interval(-6, -3)) ) is S.One assert maximum(cos(x)-sin(x), x, S.Reals) == sqrt(2) assert maximum(y, x, S.Reals) == y assert maximum(abs(a**3 + a), a, Interval(0, 2)) == 10 assert maximum(abs(60*a**3 + 24*a), a, Interval(0, 2)) == 528 assert maximum(abs(12*a*(5*a**2 + 2)), a, Interval(0, 2)) == 528 raises(ValueError, lambda : maximum(sin(x), x, S.EmptySet)) raises(ValueError, lambda : maximum(log(cos(x)), x, S.EmptySet)) raises(ValueError, lambda : maximum(1/(x**2 + y**2 + 1), x, S.EmptySet)) raises(ValueError, lambda : maximum(sin(x), sin(x))) raises(ValueError, lambda : maximum(sin(x), x*y, S.EmptySet)) raises(ValueError, lambda : maximum(sin(x), S.One)) def test_minimum(): x, y = symbols('x y') assert minimum(sin(x), x) is S.NegativeOne assert minimum(sin(x), x, Interval(1, 4)) == sin(4) assert minimum(tan(x), x) is -oo assert minimum(tan(x), x, Interval(-pi/4, pi/4)) is S.NegativeOne assert minimum(sin(x)*cos(x), x, S.Reals) == Rational(-1, 2) assert simplify(minimum(sin(x)*cos(x), x, Interval(pi*Rational(3, 8), pi*Rational(5, 8))) ) == -sqrt(2)/4 assert minimum((x+3)*(x-2), x) == Rational(-25, 4) assert minimum((x+3)/(x-2), x, Interval(-5, 0)) == Rational(-3, 2) assert minimum(x**4-x**3+x**2+10, x) == S(10) assert minimum(exp(x), x, Interval(-2, oo)) == exp(-2) assert minimum(log(x) - x, x, S.Reals) is -oo assert minimum(cos(x), x, Union(Interval(0, 5), Interval(-6, -3)) ) is S.NegativeOne assert minimum(cos(x)-sin(x), x, S.Reals) == -sqrt(2) assert minimum(y, x, S.Reals) == y raises(ValueError, lambda : minimum(sin(x), x, S.EmptySet)) raises(ValueError, lambda : minimum(log(cos(x)), x, S.EmptySet)) raises(ValueError, lambda : minimum(1/(x**2 + y**2 + 1), x, S.EmptySet)) raises(ValueError, lambda : minimum(sin(x), sin(x))) raises(ValueError, lambda : minimum(sin(x), x*y, S.EmptySet)) raises(ValueError, lambda : minimum(sin(x), S.One)) def test_AccumBounds(): assert AccumBounds(1, 2).args == (1, 2) assert AccumBounds(1, 2).delta is S.One assert AccumBounds(1, 2).mid == Rational(3, 2) assert AccumBounds(1, 3).is_real == True assert AccumBounds(1, 1) is S.One assert AccumBounds(1, 2) + 1 == AccumBounds(2, 3) assert 1 + AccumBounds(1, 2) == AccumBounds(2, 3) assert AccumBounds(1, 2) + AccumBounds(2, 3) == AccumBounds(3, 5) assert -AccumBounds(1, 2) == AccumBounds(-2, -1) assert AccumBounds(1, 2) - 1 == AccumBounds(0, 1) assert 1 - AccumBounds(1, 2) == AccumBounds(-1, 0) assert AccumBounds(2, 3) - AccumBounds(1, 2) == AccumBounds(0, 2) assert x + AccumBounds(1, 2) == Add(AccumBounds(1, 2), x) assert a + AccumBounds(1, 2) == AccumBounds(1 + a, 2 + a) assert AccumBounds(1, 2) - x == Add(AccumBounds(1, 2), -x) assert AccumBounds(-oo, 1) + oo == AccumBounds(-oo, oo) assert AccumBounds(1, oo) + oo is oo assert AccumBounds(1, oo) - oo == AccumBounds(-oo, oo) assert (-oo - AccumBounds(-1, oo)) is -oo assert AccumBounds(-oo, 1) - oo is -oo assert AccumBounds(1, oo) - oo == AccumBounds(-oo, oo) assert AccumBounds(-oo, 1) - (-oo) == AccumBounds(-oo, oo) assert (oo - AccumBounds(1, oo)) == AccumBounds(-oo, oo) assert (-oo - AccumBounds(1, oo)) is -oo assert AccumBounds(1, 2)/2 == AccumBounds(S.Half, 1) assert 2/AccumBounds(2, 3) == AccumBounds(Rational(2, 3), 1) assert 1/AccumBounds(-1, 1) == AccumBounds(-oo, oo) assert abs(AccumBounds(1, 2)) == AccumBounds(1, 2) assert abs(AccumBounds(-2, -1)) == AccumBounds(1, 2) assert abs(AccumBounds(-2, 1)) == AccumBounds(0, 2) assert abs(AccumBounds(-1, 2)) == AccumBounds(0, 2) c = Symbol('c') raises(ValueError, lambda: AccumBounds(0, c)) raises(ValueError, lambda: AccumBounds(1, -1)) def test_AccumBounds_mul(): assert AccumBounds(1, 2)*2 == AccumBounds(2, 4) assert 2*AccumBounds(1, 2) == AccumBounds(2, 4) assert AccumBounds(1, 2)*AccumBounds(2, 3) == AccumBounds(2, 6) assert AccumBounds(1, 2)*0 == 0 assert AccumBounds(1, oo)*0 == AccumBounds(0, oo) assert AccumBounds(-oo, 1)*0 == AccumBounds(-oo, 0) assert AccumBounds(-oo, oo)*0 == AccumBounds(-oo, oo) assert AccumBounds(1, 2)*x == Mul(AccumBounds(1, 2), x, evaluate=False) assert AccumBounds(0, 2)*oo == AccumBounds(0, oo) assert AccumBounds(-2, 0)*oo == AccumBounds(-oo, 0) assert AccumBounds(0, 2)*(-oo) == AccumBounds(-oo, 0) assert AccumBounds(-2, 0)*(-oo) == AccumBounds(0, oo) assert AccumBounds(-1, 1)*oo == AccumBounds(-oo, oo) assert AccumBounds(-1, 1)*(-oo) == AccumBounds(-oo, oo) assert AccumBounds(-oo, oo)*oo == AccumBounds(-oo, oo) def test_AccumBounds_div(): assert AccumBounds(-1, 3)/AccumBounds(3, 4) == AccumBounds(Rational(-1, 3), 1) assert AccumBounds(-2, 4)/AccumBounds(-3, 4) == AccumBounds(-oo, oo) assert AccumBounds(-3, -2)/AccumBounds(-4, 0) == AccumBounds(S.Half, oo) # these two tests can have a better answer # after Union of AccumBounds is improved assert AccumBounds(-3, -2)/AccumBounds(-2, 1) == AccumBounds(-oo, oo) assert AccumBounds(2, 3)/AccumBounds(-2, 2) == AccumBounds(-oo, oo) assert AccumBounds(-3, -2)/AccumBounds(0, 4) == AccumBounds(-oo, Rational(-1, 2)) assert AccumBounds(2, 4)/AccumBounds(-3, 0) == AccumBounds(-oo, Rational(-2, 3)) assert AccumBounds(2, 4)/AccumBounds(0, 3) == AccumBounds(Rational(2, 3), oo) assert AccumBounds(0, 1)/AccumBounds(0, 1) == AccumBounds(0, oo) assert AccumBounds(-1, 0)/AccumBounds(0, 1) == AccumBounds(-oo, 0) assert AccumBounds(-1, 2)/AccumBounds(-2, 2) == AccumBounds(-oo, oo) assert 1/AccumBounds(-1, 2) == AccumBounds(-oo, oo) assert 1/AccumBounds(0, 2) == AccumBounds(S.Half, oo) assert (-1)/AccumBounds(0, 2) == AccumBounds(-oo, Rational(-1, 2)) assert 1/AccumBounds(-oo, 0) == AccumBounds(-oo, 0) assert 1/AccumBounds(-1, 0) == AccumBounds(-oo, -1) assert (-2)/AccumBounds(-oo, 0) == AccumBounds(0, oo) assert 1/AccumBounds(-oo, -1) == AccumBounds(-1, 0) assert AccumBounds(1, 2)/a == Mul(AccumBounds(1, 2), 1/a, evaluate=False) assert AccumBounds(1, 2)/0 == AccumBounds(1, 2)*zoo assert AccumBounds(1, oo)/oo == AccumBounds(0, oo) assert AccumBounds(1, oo)/(-oo) == AccumBounds(-oo, 0) assert AccumBounds(-oo, -1)/oo == AccumBounds(-oo, 0) assert AccumBounds(-oo, -1)/(-oo) == AccumBounds(0, oo) assert AccumBounds(-oo, oo)/oo == AccumBounds(-oo, oo) assert AccumBounds(-oo, oo)/(-oo) == AccumBounds(-oo, oo) assert AccumBounds(-1, oo)/oo == AccumBounds(0, oo) assert AccumBounds(-1, oo)/(-oo) == AccumBounds(-oo, 0) assert AccumBounds(-oo, 1)/oo == AccumBounds(-oo, 0) assert AccumBounds(-oo, 1)/(-oo) == AccumBounds(0, oo) def test_issue_18795(): r = Symbol('r', real=True) a = AccumBounds(-1,1) c = AccumBounds(7, oo) b = AccumBounds(-oo, oo) assert c - tan(r) == AccumBounds(7-tan(r), oo) assert b + tan(r) == AccumBounds(-oo, oo) assert (a + r)/a == AccumBounds(-oo, oo)*AccumBounds(r - 1, r + 1) assert (b + a)/a == AccumBounds(-oo, oo) def test_AccumBounds_func(): assert (x**2 + 2*x + 1).subs(x, AccumBounds(-1, 1)) == AccumBounds(-1, 4) assert exp(AccumBounds(0, 1)) == AccumBounds(1, E) assert exp(AccumBounds(-oo, oo)) == AccumBounds(0, oo) assert log(AccumBounds(3, 6)) == AccumBounds(log(3), log(6)) def test_AccumBounds_pow(): assert AccumBounds(0, 2)**2 == AccumBounds(0, 4) assert AccumBounds(-1, 1)**2 == AccumBounds(0, 1) assert AccumBounds(1, 2)**2 == AccumBounds(1, 4) assert AccumBounds(-1, 2)**3 == AccumBounds(-1, 8) assert AccumBounds(-1, 1)**0 == 1 assert AccumBounds(1, 2)**Rational(5, 2) == AccumBounds(1, 4*sqrt(2)) assert AccumBounds(-1, 2)**Rational(1, 3) == AccumBounds(-1, 2**Rational(1, 3)) assert AccumBounds(0, 2)**S.Half == AccumBounds(0, sqrt(2)) assert AccumBounds(-4, 2)**Rational(2, 3) == AccumBounds(0, 2*2**Rational(1, 3)) assert AccumBounds(-1, 5)**S.Half == AccumBounds(0, sqrt(5)) assert AccumBounds(-oo, 2)**S.Half == AccumBounds(0, sqrt(2)) assert AccumBounds(-2, 3)**Rational(-1, 4) == AccumBounds(0, oo) assert AccumBounds(1, 5)**(-2) == AccumBounds(Rational(1, 25), 1) assert AccumBounds(-1, 3)**(-2) == AccumBounds(0, oo) assert AccumBounds(0, 2)**(-2) == AccumBounds(Rational(1, 4), oo) assert AccumBounds(-1, 2)**(-3) == AccumBounds(-oo, oo) assert AccumBounds(-3, -2)**(-3) == AccumBounds(Rational(-1, 8), Rational(-1, 27)) assert AccumBounds(-3, -2)**(-2) == AccumBounds(Rational(1, 9), Rational(1, 4)) assert AccumBounds(0, oo)**S.Half == AccumBounds(0, oo) assert AccumBounds(-oo, -1)**Rational(1, 3) == AccumBounds(-oo, -1) assert AccumBounds(-2, 3)**(Rational(-1, 3)) == AccumBounds(-oo, oo) assert AccumBounds(-oo, 0)**(-2) == AccumBounds(0, oo) assert AccumBounds(-2, 0)**(-2) == AccumBounds(Rational(1, 4), oo) assert AccumBounds(Rational(1, 3), S.Half)**oo is S.Zero assert AccumBounds(0, S.Half)**oo is S.Zero assert AccumBounds(S.Half, 1)**oo == AccumBounds(0, oo) assert AccumBounds(0, 1)**oo == AccumBounds(0, oo) assert AccumBounds(2, 3)**oo is oo assert AccumBounds(1, 2)**oo == AccumBounds(0, oo) assert AccumBounds(S.Half, 3)**oo == AccumBounds(0, oo) assert AccumBounds(Rational(-1, 3), Rational(-1, 4))**oo is S.Zero assert AccumBounds(-1, Rational(-1, 2))**oo == AccumBounds(-oo, oo) assert AccumBounds(-3, -2)**oo == FiniteSet(-oo, oo) assert AccumBounds(-2, -1)**oo == AccumBounds(-oo, oo) assert AccumBounds(-2, Rational(-1, 2))**oo == AccumBounds(-oo, oo) assert AccumBounds(Rational(-1, 2), S.Half)**oo is S.Zero assert AccumBounds(Rational(-1, 2), 1)**oo == AccumBounds(0, oo) assert AccumBounds(Rational(-2, 3), 2)**oo == AccumBounds(0, oo) assert AccumBounds(-1, 1)**oo == AccumBounds(-oo, oo) assert AccumBounds(-1, S.Half)**oo == AccumBounds(-oo, oo) assert AccumBounds(-1, 2)**oo == AccumBounds(-oo, oo) assert AccumBounds(-2, S.Half)**oo == AccumBounds(-oo, oo) assert AccumBounds(1, 2)**x == Pow(AccumBounds(1, 2), x) assert AccumBounds(2, 3)**(-oo) is S.Zero assert AccumBounds(0, 2)**(-oo) == AccumBounds(0, oo) assert AccumBounds(-1, 2)**(-oo) == AccumBounds(-oo, oo) assert (tan(x)**sin(2*x)).subs(x, AccumBounds(0, pi/2)) == \ Pow(AccumBounds(-oo, oo), AccumBounds(0, 1)) def test_comparison_AccumBounds(): assert (AccumBounds(1, 3) < 4) == S.true assert (AccumBounds(1, 3) < -1) == S.false assert (AccumBounds(1, 3) < 2).rel_op == '<' assert (AccumBounds(1, 3) <= 2).rel_op == '<=' assert (AccumBounds(1, 3) > 4) == S.false assert (AccumBounds(1, 3) > -1) == S.true assert (AccumBounds(1, 3) > 2).rel_op == '>' assert (AccumBounds(1, 3) >= 2).rel_op == '>=' assert (AccumBounds(1, 3) < AccumBounds(4, 6)) == S.true assert (AccumBounds(1, 3) < AccumBounds(2, 4)).rel_op == '<' assert (AccumBounds(1, 3) < AccumBounds(-2, 0)) == S.false assert (AccumBounds(1, 3) <= AccumBounds(4, 6)) == S.true assert (AccumBounds(1, 3) <= AccumBounds(-2, 0)) == S.false assert (AccumBounds(1, 3) > AccumBounds(4, 6)) == S.false assert (AccumBounds(1, 3) > AccumBounds(-2, 0)) == S.true assert (AccumBounds(1, 3) >= AccumBounds(4, 6)) == S.false assert (AccumBounds(1, 3) >= AccumBounds(-2, 0)) == S.true # issue 13499 assert (cos(x) > 0).subs(x, oo) == (AccumBounds(-1, 1) > 0) c = Symbol('c') raises(TypeError, lambda: (AccumBounds(0, 1) < c)) raises(TypeError, lambda: (AccumBounds(0, 1) <= c)) raises(TypeError, lambda: (AccumBounds(0, 1) > c)) raises(TypeError, lambda: (AccumBounds(0, 1) >= c)) def test_contains_AccumBounds(): assert (1 in AccumBounds(1, 2)) == S.true raises(TypeError, lambda: a in AccumBounds(1, 2)) assert 0 in AccumBounds(-1, 0) raises(TypeError, lambda: (cos(1)**2 + sin(1)**2 - 1) in AccumBounds(-1, 0)) assert (-oo in AccumBounds(1, oo)) == S.true assert (oo in AccumBounds(-oo, 0)) == S.true # issue 13159 assert Mul(0, AccumBounds(-1, 1)) == Mul(AccumBounds(-1, 1), 0) == 0 import itertools for perm in itertools.permutations([0, AccumBounds(-1, 1), x]): assert Mul(*perm) == 0 def test_intersection_AccumBounds(): assert AccumBounds(0, 3).intersection(AccumBounds(1, 2)) == AccumBounds(1, 2) assert AccumBounds(0, 3).intersection(AccumBounds(1, 4)) == AccumBounds(1, 3) assert AccumBounds(0, 3).intersection(AccumBounds(-1, 2)) == AccumBounds(0, 2) assert AccumBounds(0, 3).intersection(AccumBounds(-1, 4)) == AccumBounds(0, 3) assert AccumBounds(0, 1).intersection(AccumBounds(2, 3)) == S.EmptySet raises(TypeError, lambda: AccumBounds(0, 3).intersection(1)) def test_union_AccumBounds(): assert AccumBounds(0, 3).union(AccumBounds(1, 2)) == AccumBounds(0, 3) assert AccumBounds(0, 3).union(AccumBounds(1, 4)) == AccumBounds(0, 4) assert AccumBounds(0, 3).union(AccumBounds(-1, 2)) == AccumBounds(-1, 3) assert AccumBounds(0, 3).union(AccumBounds(-1, 4)) == AccumBounds(-1, 4) raises(TypeError, lambda: AccumBounds(0, 3).union(1)) def test_issue_16469(): x = Symbol("x", real=True) f = abs(x) assert function_range(f, x, S.Reals) == Interval(0, oo, False, True) def test_issue_18747(): assert periodicity(exp(pi*I*(x/4+S.Half/2)), x) == 8
35f6c329ebbcd9851073d55d52929ba143bff332216fa7f61d27c55b3d1db761
import itertools from sympy.core import S from sympy.core.containers import Tuple from sympy.core.function import _coeff_isneg from sympy.core.mul import Mul from sympy.core.numbers import Number, Rational from sympy.core.power import Pow from sympy.core.symbol import Symbol from sympy.core.sympify import SympifyError from sympy.printing.conventions import requires_partial from sympy.printing.precedence import PRECEDENCE, precedence, precedence_traditional from sympy.printing.printer import Printer, print_function from sympy.printing.str import sstr from sympy.utilities import default_sort_key from sympy.utilities.iterables import has_variety from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.printing.pretty.pretty_symbology import hobj, vobj, xobj, \ xsym, pretty_symbol, pretty_atom, pretty_use_unicode, greek_unicode, U, \ pretty_try_use_unicode, annotated # rename for usage from outside pprint_use_unicode = pretty_use_unicode pprint_try_use_unicode = pretty_try_use_unicode class PrettyPrinter(Printer): """Printer, which converts an expression into 2D ASCII-art figure.""" printmethod = "_pretty" _default_settings = { "order": None, "full_prec": "auto", "use_unicode": None, "wrap_line": True, "num_columns": None, "use_unicode_sqrt_char": True, "root_notation": True, "mat_symbol_style": "plain", "imaginary_unit": "i", "perm_cyclic": True } def __init__(self, settings=None): Printer.__init__(self, settings) if not isinstance(self._settings['imaginary_unit'], str): raise TypeError("'imaginary_unit' must a string, not {}".format(self._settings['imaginary_unit'])) elif self._settings['imaginary_unit'] not in ["i", "j"]: raise ValueError("'imaginary_unit' must be either 'i' or 'j', not '{}'".format(self._settings['imaginary_unit'])) def emptyPrinter(self, expr): return prettyForm(str(expr)) @property def _use_unicode(self): if self._settings['use_unicode']: return True else: return pretty_use_unicode() def doprint(self, expr): return self._print(expr).render(**self._settings) # empty op so _print(stringPict) returns the same def _print_stringPict(self, e): return e def _print_basestring(self, e): return prettyForm(e) def _print_atan2(self, e): pform = prettyForm(*self._print_seq(e.args).parens()) pform = prettyForm(*pform.left('atan2')) return pform def _print_Symbol(self, e, bold_name=False): symb = pretty_symbol(e.name, bold_name) return prettyForm(symb) _print_RandomSymbol = _print_Symbol def _print_MatrixSymbol(self, e): return self._print_Symbol(e, self._settings['mat_symbol_style'] == "bold") def _print_Float(self, e): # we will use StrPrinter's Float printer, but we need to handle the # full_prec ourselves, according to the self._print_level full_prec = self._settings["full_prec"] if full_prec == "auto": full_prec = self._print_level == 1 return prettyForm(sstr(e, full_prec=full_prec)) def _print_Cross(self, e): vec1 = e._expr1 vec2 = e._expr2 pform = self._print(vec2) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN')))) pform = prettyForm(*pform.left(')')) pform = prettyForm(*pform.left(self._print(vec1))) pform = prettyForm(*pform.left('(')) return pform def _print_Curl(self, e): vec = e._expr pform = self._print(vec) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN')))) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Divergence(self, e): vec = e._expr pform = self._print(vec) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR')))) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Dot(self, e): vec1 = e._expr1 vec2 = e._expr2 pform = self._print(vec2) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR')))) pform = prettyForm(*pform.left(')')) pform = prettyForm(*pform.left(self._print(vec1))) pform = prettyForm(*pform.left('(')) return pform def _print_Gradient(self, e): func = e._expr pform = self._print(func) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Laplacian(self, e): func = e._expr pform = self._print(func) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('INCREMENT')))) return pform def _print_Atom(self, e): try: # print atoms like Exp1 or Pi return prettyForm(pretty_atom(e.__class__.__name__, printer=self)) except KeyError: return self.emptyPrinter(e) # Infinity inherits from Number, so we have to override _print_XXX order _print_Infinity = _print_Atom _print_NegativeInfinity = _print_Atom _print_EmptySet = _print_Atom _print_Naturals = _print_Atom _print_Naturals0 = _print_Atom _print_Integers = _print_Atom _print_Rationals = _print_Atom _print_Complexes = _print_Atom _print_EmptySequence = _print_Atom def _print_Reals(self, e): if self._use_unicode: return self._print_Atom(e) else: inf_list = ['-oo', 'oo'] return self._print_seq(inf_list, '(', ')') def _print_subfactorial(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('!')) return pform def _print_factorial(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right('!')) return pform def _print_factorial2(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right('!!')) return pform def _print_binomial(self, e): n, k = e.args n_pform = self._print(n) k_pform = self._print(k) bar = ' '*max(n_pform.width(), k_pform.width()) pform = prettyForm(*k_pform.above(bar)) pform = prettyForm(*pform.above(n_pform)) pform = prettyForm(*pform.parens('(', ')')) pform.baseline = (pform.baseline + 1)//2 return pform def _print_Relational(self, e): op = prettyForm(' ' + xsym(e.rel_op) + ' ') l = self._print(e.lhs) r = self._print(e.rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform def _print_Not(self, e): from sympy import Equivalent, Implies if self._use_unicode: arg = e.args[0] pform = self._print(arg) if isinstance(arg, Equivalent): return self._print_Equivalent(arg, altchar="\N{LEFT RIGHT DOUBLE ARROW WITH STROKE}") if isinstance(arg, Implies): return self._print_Implies(arg, altchar="\N{RIGHTWARDS ARROW WITH STROKE}") if arg.is_Boolean and not arg.is_Not: pform = prettyForm(*pform.parens()) return prettyForm(*pform.left("\N{NOT SIGN}")) else: return self._print_Function(e) def __print_Boolean(self, e, char, sort=True): args = e.args if sort: args = sorted(e.args, key=default_sort_key) arg = args[0] pform = self._print(arg) if arg.is_Boolean and not arg.is_Not: pform = prettyForm(*pform.parens()) for arg in args[1:]: pform_arg = self._print(arg) if arg.is_Boolean and not arg.is_Not: pform_arg = prettyForm(*pform_arg.parens()) pform = prettyForm(*pform.right(' %s ' % char)) pform = prettyForm(*pform.right(pform_arg)) return pform def _print_And(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{LOGICAL AND}") else: return self._print_Function(e, sort=True) def _print_Or(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{LOGICAL OR}") else: return self._print_Function(e, sort=True) def _print_Xor(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{XOR}") else: return self._print_Function(e, sort=True) def _print_Nand(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{NAND}") else: return self._print_Function(e, sort=True) def _print_Nor(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{NOR}") else: return self._print_Function(e, sort=True) def _print_Implies(self, e, altchar=None): if self._use_unicode: return self.__print_Boolean(e, altchar or "\N{RIGHTWARDS ARROW}", sort=False) else: return self._print_Function(e) def _print_Equivalent(self, e, altchar=None): if self._use_unicode: return self.__print_Boolean(e, altchar or "\N{LEFT RIGHT DOUBLE ARROW}") else: return self._print_Function(e, sort=True) def _print_conjugate(self, e): pform = self._print(e.args[0]) return prettyForm( *pform.above( hobj('_', pform.width())) ) def _print_Abs(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('|', '|')) return pform _print_Determinant = _print_Abs def _print_floor(self, e): if self._use_unicode: pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('lfloor', 'rfloor')) return pform else: return self._print_Function(e) def _print_ceiling(self, e): if self._use_unicode: pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('lceil', 'rceil')) return pform else: return self._print_Function(e) def _print_Derivative(self, deriv): if requires_partial(deriv.expr) and self._use_unicode: deriv_symbol = U('PARTIAL DIFFERENTIAL') else: deriv_symbol = r'd' x = None count_total_deriv = 0 for sym, num in reversed(deriv.variable_count): s = self._print(sym) ds = prettyForm(*s.left(deriv_symbol)) count_total_deriv += num if (not num.is_Integer) or (num > 1): ds = ds**prettyForm(str(num)) if x is None: x = ds else: x = prettyForm(*x.right(' ')) x = prettyForm(*x.right(ds)) f = prettyForm( binding=prettyForm.FUNC, *self._print(deriv.expr).parens()) pform = prettyForm(deriv_symbol) if (count_total_deriv > 1) != False: pform = pform**prettyForm(str(count_total_deriv)) pform = prettyForm(*pform.below(stringPict.LINE, x)) pform.baseline = pform.baseline + 1 pform = prettyForm(*stringPict.next(pform, f)) pform.binding = prettyForm.MUL return pform def _print_Cycle(self, dc): from sympy.combinatorics.permutations import Permutation, Cycle # for Empty Cycle if dc == Cycle(): cyc = stringPict('') return prettyForm(*cyc.parens()) dc_list = Permutation(dc.list()).cyclic_form # for Identity Cycle if dc_list == []: cyc = self._print(dc.size - 1) return prettyForm(*cyc.parens()) cyc = stringPict('') for i in dc_list: l = self._print(str(tuple(i)).replace(',', '')) cyc = prettyForm(*cyc.right(l)) return cyc def _print_Permutation(self, expr): from sympy.combinatorics.permutations import Permutation, Cycle perm_cyclic = Permutation.print_cyclic if perm_cyclic is not None: SymPyDeprecationWarning( feature="Permutation.print_cyclic = {}".format(perm_cyclic), useinstead="init_printing(perm_cyclic={})" .format(perm_cyclic), issue=15201, deprecated_since_version="1.6").warn() else: perm_cyclic = self._settings.get("perm_cyclic", True) if perm_cyclic: return self._print_Cycle(Cycle(expr)) lower = expr.array_form upper = list(range(len(lower))) result = stringPict('') first = True for u, l in zip(upper, lower): s1 = self._print(u) s2 = self._print(l) col = prettyForm(*s1.below(s2)) if first: first = False else: col = prettyForm(*col.left(" ")) result = prettyForm(*result.right(col)) return prettyForm(*result.parens()) def _print_Integral(self, integral): f = integral.function # Add parentheses if arg involves addition of terms and # create a pretty form for the argument prettyF = self._print(f) # XXX generalize parens if f.is_Add: prettyF = prettyForm(*prettyF.parens()) # dx dy dz ... arg = prettyF for x in integral.limits: prettyArg = self._print(x[0]) # XXX qparens (parens if needs-parens) if prettyArg.width() > 1: prettyArg = prettyForm(*prettyArg.parens()) arg = prettyForm(*arg.right(' d', prettyArg)) # \int \int \int ... firstterm = True s = None for lim in integral.limits: x = lim[0] # Create bar based on the height of the argument h = arg.height() H = h + 2 # XXX hack! ascii_mode = not self._use_unicode if ascii_mode: H += 2 vint = vobj('int', H) # Construct the pretty form with the integral sign and the argument pform = prettyForm(vint) pform.baseline = arg.baseline + ( H - h)//2 # covering the whole argument if len(lim) > 1: # Create pretty forms for endpoints, if definite integral. # Do not print empty endpoints. if len(lim) == 2: prettyA = prettyForm("") prettyB = self._print(lim[1]) if len(lim) == 3: prettyA = self._print(lim[1]) prettyB = self._print(lim[2]) if ascii_mode: # XXX hack # Add spacing so that endpoint can more easily be # identified with the correct integral sign spc = max(1, 3 - prettyB.width()) prettyB = prettyForm(*prettyB.left(' ' * spc)) spc = max(1, 4 - prettyA.width()) prettyA = prettyForm(*prettyA.right(' ' * spc)) pform = prettyForm(*pform.above(prettyB)) pform = prettyForm(*pform.below(prettyA)) if not ascii_mode: # XXX hack pform = prettyForm(*pform.right(' ')) if firstterm: s = pform # first term firstterm = False else: s = prettyForm(*s.left(pform)) pform = prettyForm(*arg.left(s)) pform.binding = prettyForm.MUL return pform def _print_Product(self, expr): func = expr.term pretty_func = self._print(func) horizontal_chr = xobj('_', 1) corner_chr = xobj('_', 1) vertical_chr = xobj('|', 1) if self._use_unicode: # use unicode corners horizontal_chr = xobj('-', 1) corner_chr = '\N{BOX DRAWINGS LIGHT DOWN AND HORIZONTAL}' func_height = pretty_func.height() first = True max_upper = 0 sign_height = 0 for lim in expr.limits: pretty_lower, pretty_upper = self.__print_SumProduct_Limits(lim) width = (func_height + 2) * 5 // 3 - 2 sign_lines = [horizontal_chr + corner_chr + (horizontal_chr * (width-2)) + corner_chr + horizontal_chr] for _ in range(func_height + 1): sign_lines.append(' ' + vertical_chr + (' ' * (width-2)) + vertical_chr + ' ') pretty_sign = stringPict('') pretty_sign = prettyForm(*pretty_sign.stack(*sign_lines)) max_upper = max(max_upper, pretty_upper.height()) if first: sign_height = pretty_sign.height() pretty_sign = prettyForm(*pretty_sign.above(pretty_upper)) pretty_sign = prettyForm(*pretty_sign.below(pretty_lower)) if first: pretty_func.baseline = 0 first = False height = pretty_sign.height() padding = stringPict('') padding = prettyForm(*padding.stack(*[' ']*(height - 1))) pretty_sign = prettyForm(*pretty_sign.right(padding)) pretty_func = prettyForm(*pretty_sign.right(pretty_func)) pretty_func.baseline = max_upper + sign_height//2 pretty_func.binding = prettyForm.MUL return pretty_func def __print_SumProduct_Limits(self, lim): def print_start(lhs, rhs): op = prettyForm(' ' + xsym("==") + ' ') l = self._print(lhs) r = self._print(rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform prettyUpper = self._print(lim[2]) prettyLower = print_start(lim[0], lim[1]) return prettyLower, prettyUpper def _print_Sum(self, expr): ascii_mode = not self._use_unicode def asum(hrequired, lower, upper, use_ascii): def adjust(s, wid=None, how='<^>'): if not wid or len(s) > wid: return s need = wid - len(s) if how == '<^>' or how == "<" or how not in list('<^>'): return s + ' '*need half = need//2 lead = ' '*half if how == ">": return " "*need + s return lead + s + ' '*(need - len(lead)) h = max(hrequired, 2) d = h//2 w = d + 1 more = hrequired % 2 lines = [] if use_ascii: lines.append("_"*(w) + ' ') lines.append(r"\%s`" % (' '*(w - 1))) for i in range(1, d): lines.append('%s\\%s' % (' '*i, ' '*(w - i))) if more: lines.append('%s)%s' % (' '*(d), ' '*(w - d))) for i in reversed(range(1, d)): lines.append('%s/%s' % (' '*i, ' '*(w - i))) lines.append("/" + "_"*(w - 1) + ',') return d, h + more, lines, more else: w = w + more d = d + more vsum = vobj('sum', 4) lines.append("_"*(w)) for i in range(0, d): lines.append('%s%s%s' % (' '*i, vsum[2], ' '*(w - i - 1))) for i in reversed(range(0, d)): lines.append('%s%s%s' % (' '*i, vsum[4], ' '*(w - i - 1))) lines.append(vsum[8]*(w)) return d, h + 2*more, lines, more f = expr.function prettyF = self._print(f) if f.is_Add: # add parens prettyF = prettyForm(*prettyF.parens()) H = prettyF.height() + 2 # \sum \sum \sum ... first = True max_upper = 0 sign_height = 0 for lim in expr.limits: prettyLower, prettyUpper = self.__print_SumProduct_Limits(lim) max_upper = max(max_upper, prettyUpper.height()) # Create sum sign based on the height of the argument d, h, slines, adjustment = asum( H, prettyLower.width(), prettyUpper.width(), ascii_mode) prettySign = stringPict('') prettySign = prettyForm(*prettySign.stack(*slines)) if first: sign_height = prettySign.height() prettySign = prettyForm(*prettySign.above(prettyUpper)) prettySign = prettyForm(*prettySign.below(prettyLower)) if first: # change F baseline so it centers on the sign prettyF.baseline -= d - (prettyF.height()//2 - prettyF.baseline) first = False # put padding to the right pad = stringPict('') pad = prettyForm(*pad.stack(*[' ']*h)) prettySign = prettyForm(*prettySign.right(pad)) # put the present prettyF to the right prettyF = prettyForm(*prettySign.right(prettyF)) # adjust baseline of ascii mode sigma with an odd height so that it is # exactly through the center ascii_adjustment = ascii_mode if not adjustment else 0 prettyF.baseline = max_upper + sign_height//2 + ascii_adjustment prettyF.binding = prettyForm.MUL return prettyF def _print_Limit(self, l): e, z, z0, dir = l.args E = self._print(e) if precedence(e) <= PRECEDENCE["Mul"]: E = prettyForm(*E.parens('(', ')')) Lim = prettyForm('lim') LimArg = self._print(z) if self._use_unicode: LimArg = prettyForm(*LimArg.right('\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{RIGHTWARDS ARROW}')) else: LimArg = prettyForm(*LimArg.right('->')) LimArg = prettyForm(*LimArg.right(self._print(z0))) if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity): dir = "" else: if self._use_unicode: dir = '\N{SUPERSCRIPT PLUS SIGN}' if str(dir) == "+" else '\N{SUPERSCRIPT MINUS}' LimArg = prettyForm(*LimArg.right(self._print(dir))) Lim = prettyForm(*Lim.below(LimArg)) Lim = prettyForm(*Lim.right(E), binding=prettyForm.MUL) return Lim def _print_matrix_contents(self, e): """ This method factors out what is essentially grid printing. """ M = e # matrix Ms = {} # i,j -> pretty(M[i,j]) for i in range(M.rows): for j in range(M.cols): Ms[i, j] = self._print(M[i, j]) # h- and v- spacers hsep = 2 vsep = 1 # max width for columns maxw = [-1] * M.cols for j in range(M.cols): maxw[j] = max([Ms[i, j].width() for i in range(M.rows)] or [0]) # drawing result D = None for i in range(M.rows): D_row = None for j in range(M.cols): s = Ms[i, j] # reshape s to maxw # XXX this should be generalized, and go to stringPict.reshape ? assert s.width() <= maxw[j] # hcenter it, +0.5 to the right 2 # ( it's better to align formula starts for say 0 and r ) # XXX this is not good in all cases -- maybe introduce vbaseline? wdelta = maxw[j] - s.width() wleft = wdelta // 2 wright = wdelta - wleft s = prettyForm(*s.right(' '*wright)) s = prettyForm(*s.left(' '*wleft)) # we don't need vcenter cells -- this is automatically done in # a pretty way because when their baselines are taking into # account in .right() if D_row is None: D_row = s # first box in a row continue D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer D_row = prettyForm(*D_row.right(s)) if D is None: D = D_row # first row in a picture continue # v-spacer for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) if D is None: D = prettyForm('') # Empty Matrix return D def _print_MatrixBase(self, e): D = self._print_matrix_contents(e) D.baseline = D.height()//2 D = prettyForm(*D.parens('[', ']')) return D def _print_TensorProduct(self, expr): # This should somehow share the code with _print_WedgeProduct: circled_times = "\u2297" return self._print_seq(expr.args, None, None, circled_times, parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"]) def _print_WedgeProduct(self, expr): # This should somehow share the code with _print_TensorProduct: wedge_symbol = "\u2227" return self._print_seq(expr.args, None, None, wedge_symbol, parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"]) def _print_Trace(self, e): D = self._print(e.arg) D = prettyForm(*D.parens('(',')')) D.baseline = D.height()//2 D = prettyForm(*D.left('\n'*(0) + 'tr')) return D def _print_MatrixElement(self, expr): from sympy.matrices import MatrixSymbol from sympy import Symbol if (isinstance(expr.parent, MatrixSymbol) and expr.i.is_number and expr.j.is_number): return self._print( Symbol(expr.parent.name + '_%d%d' % (expr.i, expr.j))) else: prettyFunc = self._print(expr.parent) prettyFunc = prettyForm(*prettyFunc.parens()) prettyIndices = self._print_seq((expr.i, expr.j), delimiter=', ' ).parens(left='[', right=']')[0] pform = prettyForm(binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyIndices)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyIndices return pform def _print_MatrixSlice(self, m): # XXX works only for applied functions from sympy.matrices import MatrixSymbol prettyFunc = self._print(m.parent) if not isinstance(m.parent, MatrixSymbol): prettyFunc = prettyForm(*prettyFunc.parens()) def ppslice(x, dim): x = list(x) if x[2] == 1: del x[2] if x[0] == 0: x[0] = '' if x[1] == dim: x[1] = '' return prettyForm(*self._print_seq(x, delimiter=':')) prettyArgs = self._print_seq((ppslice(m.rowslice, m.parent.rows), ppslice(m.colslice, m.parent.cols)), delimiter=', ').parens(left='[', right=']')[0] pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_Transpose(self, expr): pform = self._print(expr.arg) from sympy.matrices import MatrixSymbol if not isinstance(expr.arg, MatrixSymbol): pform = prettyForm(*pform.parens()) pform = pform**(prettyForm('T')) return pform def _print_Adjoint(self, expr): pform = self._print(expr.arg) if self._use_unicode: dag = prettyForm('\N{DAGGER}') else: dag = prettyForm('+') from sympy.matrices import MatrixSymbol if not isinstance(expr.arg, MatrixSymbol): pform = prettyForm(*pform.parens()) pform = pform**dag return pform def _print_BlockMatrix(self, B): if B.blocks.shape == (1, 1): return self._print(B.blocks[0, 0]) return self._print(B.blocks) def _print_MatAdd(self, expr): s = None for item in expr.args: pform = self._print(item) if s is None: s = pform # First element else: coeff = item.as_coeff_mmul()[0] if _coeff_isneg(S(coeff)): s = prettyForm(*stringPict.next(s, ' ')) pform = self._print(item) else: s = prettyForm(*stringPict.next(s, ' + ')) s = prettyForm(*stringPict.next(s, pform)) return s def _print_MatMul(self, expr): args = list(expr.args) from sympy import Add, MatAdd, HadamardProduct, KroneckerProduct for i, a in enumerate(args): if (isinstance(a, (Add, MatAdd, HadamardProduct, KroneckerProduct)) and len(expr.args) > 1): args[i] = prettyForm(*self._print(a).parens()) else: args[i] = self._print(a) return prettyForm.__mul__(*args) def _print_Identity(self, expr): if self._use_unicode: return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL I}') else: return prettyForm('I') def _print_ZeroMatrix(self, expr): if self._use_unicode: return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO}') else: return prettyForm('0') def _print_OneMatrix(self, expr): if self._use_unicode: return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ONE}') else: return prettyForm('1') def _print_DotProduct(self, expr): args = list(expr.args) for i, a in enumerate(args): args[i] = self._print(a) return prettyForm.__mul__(*args) def _print_MatPow(self, expr): pform = self._print(expr.base) from sympy.matrices import MatrixSymbol if not isinstance(expr.base, MatrixSymbol): pform = prettyForm(*pform.parens()) pform = pform**(self._print(expr.exp)) return pform def _print_HadamardProduct(self, expr): from sympy import MatAdd, MatMul, HadamardProduct if self._use_unicode: delim = pretty_atom('Ring') else: delim = '.*' return self._print_seq(expr.args, None, None, delim, parenthesize=lambda x: isinstance(x, (MatAdd, MatMul, HadamardProduct))) def _print_HadamardPower(self, expr): # from sympy import MatAdd, MatMul if self._use_unicode: circ = pretty_atom('Ring') else: circ = self._print('.') pretty_base = self._print(expr.base) pretty_exp = self._print(expr.exp) if precedence(expr.exp) < PRECEDENCE["Mul"]: pretty_exp = prettyForm(*pretty_exp.parens()) pretty_circ_exp = prettyForm( binding=prettyForm.LINE, *stringPict.next(circ, pretty_exp) ) return pretty_base**pretty_circ_exp def _print_KroneckerProduct(self, expr): from sympy import MatAdd, MatMul if self._use_unicode: delim = ' \N{N-ARY CIRCLED TIMES OPERATOR} ' else: delim = ' x ' return self._print_seq(expr.args, None, None, delim, parenthesize=lambda x: isinstance(x, (MatAdd, MatMul))) def _print_FunctionMatrix(self, X): D = self._print(X.lamda.expr) D = prettyForm(*D.parens('[', ']')) return D def _print_TransferFunction(self, expr): if not expr.num == 1: num, den = expr.num, expr.den res = Mul(num, Pow(den, -1, evaluate=False), evaluate=False) return self._print_Mul(res) else: return self._print(1)/self._print(expr.den) def _print_Series(self, expr): args = list(expr.args) for i, a in enumerate(expr.args): args[i] = prettyForm(*self._print(a).parens()) return prettyForm.__mul__(*args) def _print_Parallel(self, expr): s = None for item in expr.args: pform = self._print(item) if s is None: s = pform # First element else: s = prettyForm(*stringPict.next(s, ' + ')) s = prettyForm(*stringPict.next(s, pform)) return s def _print_Feedback(self, expr): from sympy.physics.control import TransferFunction, Parallel, Series num, tf = expr.num, TransferFunction(1, 1, expr.num.var) num_arg_list = list(num.args) if isinstance(num, Series) else [num] den_arg_list = list(expr.den.args) if isinstance(expr.den, Series) else [expr.den] if isinstance(num, Series) and isinstance(expr.den, Series): den = Parallel(tf, Series(*num_arg_list, *den_arg_list)) elif isinstance(num, Series) and isinstance(expr.den, TransferFunction): if expr.den == tf: den = Parallel(tf, Series(*num_arg_list)) else: den = Parallel(tf, Series(*num_arg_list, expr.den)) elif isinstance(num, TransferFunction) and isinstance(expr.den, Series): if num == tf: den = Parallel(tf, Series(*den_arg_list)) else: den = Parallel(tf, Series(num, *den_arg_list)) else: if num == tf: den = Parallel(tf, *den_arg_list) elif expr.den == tf: den = Parallel(tf, *num_arg_list) else: den = Parallel(tf, Series(*num_arg_list, *den_arg_list)) return self._print(num)/self._print(den) def _print_BasisDependent(self, expr): from sympy.vector import Vector if not self._use_unicode: raise NotImplementedError("ASCII pretty printing of BasisDependent is not implemented") if expr == expr.zero: return prettyForm(expr.zero._pretty_form) o1 = [] vectstrs = [] if isinstance(expr, Vector): items = expr.separate().items() else: items = [(0, expr)] for system, vect in items: inneritems = list(vect.components.items()) inneritems.sort(key = lambda x: x[0].__str__()) for k, v in inneritems: #if the coef of the basis vector is 1 #we skip the 1 if v == 1: o1.append("" + k._pretty_form) #Same for -1 elif v == -1: o1.append("(-1) " + k._pretty_form) #For a general expr else: #We always wrap the measure numbers in #parentheses arg_str = self._print( v).parens()[0] o1.append(arg_str + ' ' + k._pretty_form) vectstrs.append(k._pretty_form) #outstr = u("").join(o1) if o1[0].startswith(" + "): o1[0] = o1[0][3:] elif o1[0].startswith(" "): o1[0] = o1[0][1:] #Fixing the newlines lengths = [] strs = [''] flag = [] for i, partstr in enumerate(o1): flag.append(0) # XXX: What is this hack? if '\n' in partstr: tempstr = partstr tempstr = tempstr.replace(vectstrs[i], '') if '\N{right parenthesis extension}' in tempstr: # If scalar is a fraction for paren in range(len(tempstr)): flag[i] = 1 if tempstr[paren] == '\N{right parenthesis extension}': tempstr = tempstr[:paren] + '\N{right parenthesis extension}'\ + ' ' + vectstrs[i] + tempstr[paren + 1:] break elif '\N{RIGHT PARENTHESIS LOWER HOOK}' in tempstr: flag[i] = 1 tempstr = tempstr.replace('\N{RIGHT PARENTHESIS LOWER HOOK}', '\N{RIGHT PARENTHESIS LOWER HOOK}' + ' ' + vectstrs[i]) else: tempstr = tempstr.replace('\N{RIGHT PARENTHESIS UPPER HOOK}', '\N{RIGHT PARENTHESIS UPPER HOOK}' + ' ' + vectstrs[i]) o1[i] = tempstr o1 = [x.split('\n') for x in o1] n_newlines = max([len(x) for x in o1]) # Width of part in its pretty form if 1 in flag: # If there was a fractional scalar for i, parts in enumerate(o1): if len(parts) == 1: # If part has no newline parts.insert(0, ' ' * (len(parts[0]))) flag[i] = 1 for i, parts in enumerate(o1): lengths.append(len(parts[flag[i]])) for j in range(n_newlines): if j+1 <= len(parts): if j >= len(strs): strs.append(' ' * (sum(lengths[:-1]) + 3*(len(lengths)-1))) if j == flag[i]: strs[flag[i]] += parts[flag[i]] + ' + ' else: strs[j] += parts[j] + ' '*(lengths[-1] - len(parts[j])+ 3) else: if j >= len(strs): strs.append(' ' * (sum(lengths[:-1]) + 3*(len(lengths)-1))) strs[j] += ' '*(lengths[-1]+3) return prettyForm('\n'.join([s[:-3] for s in strs])) def _print_NDimArray(self, expr): from sympy import ImmutableMatrix if expr.rank() == 0: return self._print(expr[()]) level_str = [[]] + [[] for i in range(expr.rank())] shape_ranges = [list(range(i)) for i in expr.shape] # leave eventual matrix elements unflattened mat = lambda x: ImmutableMatrix(x, evaluate=False) for outer_i in itertools.product(*shape_ranges): level_str[-1].append(expr[outer_i]) even = True for back_outer_i in range(expr.rank()-1, -1, -1): if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]: break if even: level_str[back_outer_i].append(level_str[back_outer_i+1]) else: level_str[back_outer_i].append(mat( level_str[back_outer_i+1])) if len(level_str[back_outer_i + 1]) == 1: level_str[back_outer_i][-1] = mat( [[level_str[back_outer_i][-1]]]) even = not even level_str[back_outer_i+1] = [] out_expr = level_str[0][0] if expr.rank() % 2 == 1: out_expr = mat([out_expr]) return self._print(out_expr) def _printer_tensor_indices(self, name, indices, index_map={}): center = stringPict(name) top = stringPict(" "*center.width()) bot = stringPict(" "*center.width()) last_valence = None prev_map = None for i, index in enumerate(indices): indpic = self._print(index.args[0]) if ((index in index_map) or prev_map) and last_valence == index.is_up: if index.is_up: top = prettyForm(*stringPict.next(top, ",")) else: bot = prettyForm(*stringPict.next(bot, ",")) if index in index_map: indpic = prettyForm(*stringPict.next(indpic, "=")) indpic = prettyForm(*stringPict.next(indpic, self._print(index_map[index]))) prev_map = True else: prev_map = False if index.is_up: top = stringPict(*top.right(indpic)) center = stringPict(*center.right(" "*indpic.width())) bot = stringPict(*bot.right(" "*indpic.width())) else: bot = stringPict(*bot.right(indpic)) center = stringPict(*center.right(" "*indpic.width())) top = stringPict(*top.right(" "*indpic.width())) last_valence = index.is_up pict = prettyForm(*center.above(top)) pict = prettyForm(*pict.below(bot)) return pict def _print_Tensor(self, expr): name = expr.args[0].name indices = expr.get_indices() return self._printer_tensor_indices(name, indices) def _print_TensorElement(self, expr): name = expr.expr.args[0].name indices = expr.expr.get_indices() index_map = expr.index_map return self._printer_tensor_indices(name, indices, index_map) def _print_TensMul(self, expr): sign, args = expr._get_args_for_traditional_printer() args = [ prettyForm(*self._print(i).parens()) if precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i) for i in args ] pform = prettyForm.__mul__(*args) if sign: return prettyForm(*pform.left(sign)) else: return pform def _print_TensAdd(self, expr): args = [ prettyForm(*self._print(i).parens()) if precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i) for i in expr.args ] return prettyForm.__add__(*args) def _print_TensorIndex(self, expr): sym = expr.args[0] if not expr.is_up: sym = -sym return self._print(sym) def _print_PartialDerivative(self, deriv): if self._use_unicode: deriv_symbol = U('PARTIAL DIFFERENTIAL') else: deriv_symbol = r'd' x = None for variable in reversed(deriv.variables): s = self._print(variable) ds = prettyForm(*s.left(deriv_symbol)) if x is None: x = ds else: x = prettyForm(*x.right(' ')) x = prettyForm(*x.right(ds)) f = prettyForm( binding=prettyForm.FUNC, *self._print(deriv.expr).parens()) pform = prettyForm(deriv_symbol) if len(deriv.variables) > 1: pform = pform**self._print(len(deriv.variables)) pform = prettyForm(*pform.below(stringPict.LINE, x)) pform.baseline = pform.baseline + 1 pform = prettyForm(*stringPict.next(pform, f)) pform.binding = prettyForm.MUL return pform def _print_Piecewise(self, pexpr): P = {} for n, ec in enumerate(pexpr.args): P[n, 0] = self._print(ec.expr) if ec.cond == True: P[n, 1] = prettyForm('otherwise') else: P[n, 1] = prettyForm( *prettyForm('for ').right(self._print(ec.cond))) hsep = 2 vsep = 1 len_args = len(pexpr.args) # max widths maxw = [max([P[i, j].width() for i in range(len_args)]) for j in range(2)] # FIXME: Refactor this code and matrix into some tabular environment. # drawing result D = None for i in range(len_args): D_row = None for j in range(2): p = P[i, j] assert p.width() <= maxw[j] wdelta = maxw[j] - p.width() wleft = wdelta // 2 wright = wdelta - wleft p = prettyForm(*p.right(' '*wright)) p = prettyForm(*p.left(' '*wleft)) if D_row is None: D_row = p continue D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer D_row = prettyForm(*D_row.right(p)) if D is None: D = D_row # first row in a picture continue # v-spacer for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) D = prettyForm(*D.parens('{', '')) D.baseline = D.height()//2 D.binding = prettyForm.OPEN return D def _print_ITE(self, ite): from sympy.functions.elementary.piecewise import Piecewise return self._print(ite.rewrite(Piecewise)) def _hprint_vec(self, v): D = None for a in v: p = a if D is None: D = p else: D = prettyForm(*D.right(', ')) D = prettyForm(*D.right(p)) if D is None: D = stringPict(' ') return D def _hprint_vseparator(self, p1, p2, left=None, right=None, delimiter='', ifascii_nougly=False): if ifascii_nougly and not self._use_unicode: return self._print_seq((p1, '|', p2), left=left, right=right, delimiter=delimiter, ifascii_nougly=True) tmp = self._print_seq((p1, p2,), left=left, right=right, delimiter=delimiter) sep = stringPict(vobj('|', tmp.height()), baseline=tmp.baseline) return self._print_seq((p1, sep, p2), left=left, right=right, delimiter=delimiter) def _print_hyper(self, e): # FIXME refactor Matrix, Piecewise, and this into a tabular environment ap = [self._print(a) for a in e.ap] bq = [self._print(b) for b in e.bq] P = self._print(e.argument) P.baseline = P.height()//2 # Drawing result - first create the ap, bq vectors D = None for v in [ap, bq]: D_row = self._hprint_vec(v) if D is None: D = D_row # first row in a picture else: D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) # make sure that the argument `z' is centred vertically D.baseline = D.height()//2 # insert horizontal separator P = prettyForm(*P.left(' ')) D = prettyForm(*D.right(' ')) # insert separating `|` D = self._hprint_vseparator(D, P) # add parens D = prettyForm(*D.parens('(', ')')) # create the F symbol above = D.height()//2 - 1 below = D.height() - above - 1 sz, t, b, add, img = annotated('F') F = prettyForm('\n' * (above - t) + img + '\n' * (below - b), baseline=above + sz) add = (sz + 1)//2 F = prettyForm(*F.left(self._print(len(e.ap)))) F = prettyForm(*F.right(self._print(len(e.bq)))) F.baseline = above + add D = prettyForm(*F.right(' ', D)) return D def _print_meijerg(self, e): # FIXME refactor Matrix, Piecewise, and this into a tabular environment v = {} v[(0, 0)] = [self._print(a) for a in e.an] v[(0, 1)] = [self._print(a) for a in e.aother] v[(1, 0)] = [self._print(b) for b in e.bm] v[(1, 1)] = [self._print(b) for b in e.bother] P = self._print(e.argument) P.baseline = P.height()//2 vp = {} for idx in v: vp[idx] = self._hprint_vec(v[idx]) for i in range(2): maxw = max(vp[(0, i)].width(), vp[(1, i)].width()) for j in range(2): s = vp[(j, i)] left = (maxw - s.width()) // 2 right = maxw - left - s.width() s = prettyForm(*s.left(' ' * left)) s = prettyForm(*s.right(' ' * right)) vp[(j, i)] = s D1 = prettyForm(*vp[(0, 0)].right(' ', vp[(0, 1)])) D1 = prettyForm(*D1.below(' ')) D2 = prettyForm(*vp[(1, 0)].right(' ', vp[(1, 1)])) D = prettyForm(*D1.below(D2)) # make sure that the argument `z' is centred vertically D.baseline = D.height()//2 # insert horizontal separator P = prettyForm(*P.left(' ')) D = prettyForm(*D.right(' ')) # insert separating `|` D = self._hprint_vseparator(D, P) # add parens D = prettyForm(*D.parens('(', ')')) # create the G symbol above = D.height()//2 - 1 below = D.height() - above - 1 sz, t, b, add, img = annotated('G') F = prettyForm('\n' * (above - t) + img + '\n' * (below - b), baseline=above + sz) pp = self._print(len(e.ap)) pq = self._print(len(e.bq)) pm = self._print(len(e.bm)) pn = self._print(len(e.an)) def adjust(p1, p2): diff = p1.width() - p2.width() if diff == 0: return p1, p2 elif diff > 0: return p1, prettyForm(*p2.left(' '*diff)) else: return prettyForm(*p1.left(' '*-diff)), p2 pp, pm = adjust(pp, pm) pq, pn = adjust(pq, pn) pu = prettyForm(*pm.right(', ', pn)) pl = prettyForm(*pp.right(', ', pq)) ht = F.baseline - above - 2 if ht > 0: pu = prettyForm(*pu.below('\n'*ht)) p = prettyForm(*pu.below(pl)) F.baseline = above F = prettyForm(*F.right(p)) F.baseline = above + add D = prettyForm(*F.right(' ', D)) return D def _print_ExpBase(self, e): # TODO should exp_polar be printed differently? # what about exp_polar(0), exp_polar(1)? base = prettyForm(pretty_atom('Exp1', 'e')) return base ** self._print(e.args[0]) def _print_Exp1(self, e): return prettyForm(pretty_atom('Exp1', 'e')) def _print_Function(self, e, sort=False, func_name=None): # optional argument func_name for supplying custom names # XXX works only for applied functions return self._helper_print_function(e.func, e.args, sort=sort, func_name=func_name) def _print_mathieuc(self, e): return self._print_Function(e, func_name='C') def _print_mathieus(self, e): return self._print_Function(e, func_name='S') def _print_mathieucprime(self, e): return self._print_Function(e, func_name="C'") def _print_mathieusprime(self, e): return self._print_Function(e, func_name="S'") def _helper_print_function(self, func, args, sort=False, func_name=None, delimiter=', ', elementwise=False): if sort: args = sorted(args, key=default_sort_key) if not func_name and hasattr(func, "__name__"): func_name = func.__name__ if func_name: prettyFunc = self._print(Symbol(func_name)) else: prettyFunc = prettyForm(*self._print(func).parens()) if elementwise: if self._use_unicode: circ = pretty_atom('Modifier Letter Low Ring') else: circ = '.' circ = self._print(circ) prettyFunc = prettyForm( binding=prettyForm.LINE, *stringPict.next(prettyFunc, circ) ) prettyArgs = prettyForm(*self._print_seq(args, delimiter=delimiter).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_ElementwiseApplyFunction(self, e): func = e.function arg = e.expr args = [arg] return self._helper_print_function(func, args, delimiter="", elementwise=True) @property def _special_function_classes(self): from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.functions.special.gamma_functions import gamma, lowergamma from sympy.functions.special.zeta_functions import lerchphi from sympy.functions.special.beta_functions import beta from sympy.functions.special.delta_functions import DiracDelta from sympy.functions.special.error_functions import Chi return {KroneckerDelta: [greek_unicode['delta'], 'delta'], gamma: [greek_unicode['Gamma'], 'Gamma'], lerchphi: [greek_unicode['Phi'], 'lerchphi'], lowergamma: [greek_unicode['gamma'], 'gamma'], beta: [greek_unicode['Beta'], 'B'], DiracDelta: [greek_unicode['delta'], 'delta'], Chi: ['Chi', 'Chi']} def _print_FunctionClass(self, expr): for cls in self._special_function_classes: if issubclass(expr, cls) and expr.__name__ == cls.__name__: if self._use_unicode: return prettyForm(self._special_function_classes[cls][0]) else: return prettyForm(self._special_function_classes[cls][1]) func_name = expr.__name__ return prettyForm(pretty_symbol(func_name)) def _print_GeometryEntity(self, expr): # GeometryEntity is based on Tuple but should not print like a Tuple return self.emptyPrinter(expr) def _print_lerchphi(self, e): func_name = greek_unicode['Phi'] if self._use_unicode else 'lerchphi' return self._print_Function(e, func_name=func_name) def _print_dirichlet_eta(self, e): func_name = greek_unicode['eta'] if self._use_unicode else 'dirichlet_eta' return self._print_Function(e, func_name=func_name) def _print_Heaviside(self, e): func_name = greek_unicode['theta'] if self._use_unicode else 'Heaviside' return self._print_Function(e, func_name=func_name) def _print_fresnels(self, e): return self._print_Function(e, func_name="S") def _print_fresnelc(self, e): return self._print_Function(e, func_name="C") def _print_airyai(self, e): return self._print_Function(e, func_name="Ai") def _print_airybi(self, e): return self._print_Function(e, func_name="Bi") def _print_airyaiprime(self, e): return self._print_Function(e, func_name="Ai'") def _print_airybiprime(self, e): return self._print_Function(e, func_name="Bi'") def _print_LambertW(self, e): return self._print_Function(e, func_name="W") def _print_Lambda(self, e): expr = e.expr sig = e.signature if self._use_unicode: arrow = " \N{RIGHTWARDS ARROW FROM BAR} " else: arrow = " -> " if len(sig) == 1 and sig[0].is_symbol: sig = sig[0] var_form = self._print(sig) return prettyForm(*stringPict.next(var_form, arrow, self._print(expr)), binding=8) def _print_Order(self, expr): pform = self._print(expr.expr) if (expr.point and any(p != S.Zero for p in expr.point)) or \ len(expr.variables) > 1: pform = prettyForm(*pform.right("; ")) if len(expr.variables) > 1: pform = prettyForm(*pform.right(self._print(expr.variables))) elif len(expr.variables): pform = prettyForm(*pform.right(self._print(expr.variables[0]))) if self._use_unicode: pform = prettyForm(*pform.right(" \N{RIGHTWARDS ARROW} ")) else: pform = prettyForm(*pform.right(" -> ")) if len(expr.point) > 1: pform = prettyForm(*pform.right(self._print(expr.point))) else: pform = prettyForm(*pform.right(self._print(expr.point[0]))) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left("O")) return pform def _print_SingularityFunction(self, e): if self._use_unicode: shift = self._print(e.args[0]-e.args[1]) n = self._print(e.args[2]) base = prettyForm("<") base = prettyForm(*base.right(shift)) base = prettyForm(*base.right(">")) pform = base**n return pform else: n = self._print(e.args[2]) shift = self._print(e.args[0]-e.args[1]) base = self._print_seq(shift, "<", ">", ' ') return base**n def _print_beta(self, e): func_name = greek_unicode['Beta'] if self._use_unicode else 'B' return self._print_Function(e, func_name=func_name) def _print_gamma(self, e): func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma' return self._print_Function(e, func_name=func_name) def _print_uppergamma(self, e): func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma' return self._print_Function(e, func_name=func_name) def _print_lowergamma(self, e): func_name = greek_unicode['gamma'] if self._use_unicode else 'lowergamma' return self._print_Function(e, func_name=func_name) def _print_DiracDelta(self, e): if self._use_unicode: if len(e.args) == 2: a = prettyForm(greek_unicode['delta']) b = self._print(e.args[1]) b = prettyForm(*b.parens()) c = self._print(e.args[0]) c = prettyForm(*c.parens()) pform = a**b pform = prettyForm(*pform.right(' ')) pform = prettyForm(*pform.right(c)) return pform pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(greek_unicode['delta'])) return pform else: return self._print_Function(e) def _print_expint(self, e): from sympy import Function if e.args[0].is_Integer and self._use_unicode: return self._print_Function(Function('E_%s' % e.args[0])(e.args[1])) return self._print_Function(e) def _print_Chi(self, e): # This needs a special case since otherwise it comes out as greek # letter chi... prettyFunc = prettyForm("Chi") prettyArgs = prettyForm(*self._print_seq(e.args).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_elliptic_e(self, e): pforma0 = self._print(e.args[0]) if len(e.args) == 1: pform = pforma0 else: pforma1 = self._print(e.args[1]) pform = self._hprint_vseparator(pforma0, pforma1) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('E')) return pform def _print_elliptic_k(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('K')) return pform def _print_elliptic_f(self, e): pforma0 = self._print(e.args[0]) pforma1 = self._print(e.args[1]) pform = self._hprint_vseparator(pforma0, pforma1) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('F')) return pform def _print_elliptic_pi(self, e): name = greek_unicode['Pi'] if self._use_unicode else 'Pi' pforma0 = self._print(e.args[0]) pforma1 = self._print(e.args[1]) if len(e.args) == 2: pform = self._hprint_vseparator(pforma0, pforma1) else: pforma2 = self._print(e.args[2]) pforma = self._hprint_vseparator(pforma1, pforma2, ifascii_nougly=False) pforma = prettyForm(*pforma.left('; ')) pform = prettyForm(*pforma.left(pforma0)) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(name)) return pform def _print_GoldenRatio(self, expr): if self._use_unicode: return prettyForm(pretty_symbol('phi')) return self._print(Symbol("GoldenRatio")) def _print_EulerGamma(self, expr): if self._use_unicode: return prettyForm(pretty_symbol('gamma')) return self._print(Symbol("EulerGamma")) def _print_Mod(self, expr): pform = self._print(expr.args[0]) if pform.binding > prettyForm.MUL: pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right(' mod ')) pform = prettyForm(*pform.right(self._print(expr.args[1]))) pform.binding = prettyForm.OPEN return pform def _print_Add(self, expr, order=None): terms = self._as_ordered_terms(expr, order=order) pforms, indices = [], [] def pretty_negative(pform, index): """Prepend a minus sign to a pretty form. """ #TODO: Move this code to prettyForm if index == 0: if pform.height() > 1: pform_neg = '- ' else: pform_neg = '-' else: pform_neg = ' - ' if (pform.binding > prettyForm.NEG or pform.binding == prettyForm.ADD): p = stringPict(*pform.parens()) else: p = pform p = stringPict.next(pform_neg, p) # Lower the binding to NEG, even if it was higher. Otherwise, it # will print as a + ( - (b)), instead of a - (b). return prettyForm(binding=prettyForm.NEG, *p) for i, term in enumerate(terms): if term.is_Mul and _coeff_isneg(term): coeff, other = term.as_coeff_mul(rational=False) if coeff == -1: negterm = Mul(*other, evaluate=False) else: negterm = Mul(-coeff, *other, evaluate=False) pform = self._print(negterm) pforms.append(pretty_negative(pform, i)) elif term.is_Rational and term.q > 1: pforms.append(None) indices.append(i) elif term.is_Number and term < 0: pform = self._print(-term) pforms.append(pretty_negative(pform, i)) elif term.is_Relational: pforms.append(prettyForm(*self._print(term).parens())) else: pforms.append(self._print(term)) if indices: large = True for pform in pforms: if pform is not None and pform.height() > 1: break else: large = False for i in indices: term, negative = terms[i], False if term < 0: term, negative = -term, True if large: pform = prettyForm(str(term.p))/prettyForm(str(term.q)) else: pform = self._print(term) if negative: pform = pretty_negative(pform, i) pforms[i] = pform return prettyForm.__add__(*pforms) def _print_Mul(self, product): from sympy.physics.units import Quantity # Check for unevaluated Mul. In this case we need to make sure the # identities are visible, multiple Rational factors are not combined # etc so we display in a straight-forward form that fully preserves all # args and their order. args = product.args if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]): strargs = list(map(self._print, args)) # XXX: This is a hack to work around the fact that # prettyForm.__mul__ absorbs a leading -1 in the args. Probably it # would be better to fix this in prettyForm.__mul__ instead. negone = strargs[0] == '-1' if negone: strargs[0] = prettyForm('1', 0, 0) obj = prettyForm.__mul__(*strargs) if negone: obj = prettyForm('-' + obj.s, obj.baseline, obj.binding) return obj a = [] # items in the numerator b = [] # items that are in the denominator (if any) if self.order not in ('old', 'none'): args = product.as_ordered_factors() else: args = list(product.args) # If quantities are present append them at the back args = sorted(args, key=lambda x: isinstance(x, Quantity) or (isinstance(x, Pow) and isinstance(x.base, Quantity))) # Gather terms for numerator/denominator for item in args: if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: b.append(Pow(item.base, -item.exp)) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append( Rational(item.p) ) if item.q != 1: b.append( Rational(item.q) ) else: a.append(item) from sympy import Integral, Piecewise, Product, Sum # Convert to pretty forms. Add parens to Add instances if there # is more than one term in the numer/denom for i in range(0, len(a)): if (a[i].is_Add and len(a) > 1) or (i != len(a) - 1 and isinstance(a[i], (Integral, Piecewise, Product, Sum))): a[i] = prettyForm(*self._print(a[i]).parens()) elif a[i].is_Relational: a[i] = prettyForm(*self._print(a[i]).parens()) else: a[i] = self._print(a[i]) for i in range(0, len(b)): if (b[i].is_Add and len(b) > 1) or (i != len(b) - 1 and isinstance(b[i], (Integral, Piecewise, Product, Sum))): b[i] = prettyForm(*self._print(b[i]).parens()) else: b[i] = self._print(b[i]) # Construct a pretty form if len(b) == 0: return prettyForm.__mul__(*a) else: if len(a) == 0: a.append( self._print(S.One) ) return prettyForm.__mul__(*a)/prettyForm.__mul__(*b) # A helper function for _print_Pow to print x**(1/n) def _print_nth_root(self, base, root): bpretty = self._print(base) # In very simple cases, use a single-char root sign if (self._settings['use_unicode_sqrt_char'] and self._use_unicode and root == 2 and bpretty.height() == 1 and (bpretty.width() == 1 or (base.is_Integer and base.is_nonnegative))): return prettyForm(*bpretty.left('\N{SQUARE ROOT}')) # Construct root sign, start with the \/ shape _zZ = xobj('/', 1) rootsign = xobj('\\', 1) + _zZ # Constructing the number to put on root rpretty = self._print(root) # roots look bad if they are not a single line if rpretty.height() != 1: return self._print(base)**self._print(1/root) # If power is half, no number should appear on top of root sign exp = '' if root == 2 else str(rpretty).ljust(2) if len(exp) > 2: rootsign = ' '*(len(exp) - 2) + rootsign # Stack the exponent rootsign = stringPict(exp + '\n' + rootsign) rootsign.baseline = 0 # Diagonal: length is one less than height of base linelength = bpretty.height() - 1 diagonal = stringPict('\n'.join( ' '*(linelength - i - 1) + _zZ + ' '*i for i in range(linelength) )) # Put baseline just below lowest line: next to exp diagonal.baseline = linelength - 1 # Make the root symbol rootsign = prettyForm(*rootsign.right(diagonal)) # Det the baseline to match contents to fix the height # but if the height of bpretty is one, the rootsign must be one higher rootsign.baseline = max(1, bpretty.baseline) #build result s = prettyForm(hobj('_', 2 + bpretty.width())) s = prettyForm(*bpretty.above(s)) s = prettyForm(*s.left(rootsign)) return s def _print_Pow(self, power): from sympy.simplify.simplify import fraction b, e = power.as_base_exp() if power.is_commutative: if e is S.NegativeOne: return prettyForm("1")/self._print(b) n, d = fraction(e) if n is S.One and d.is_Atom and not e.is_Integer and (e.is_Rational or d.is_Symbol) \ and self._settings['root_notation']: return self._print_nth_root(b, d) if e.is_Rational and e < 0: return prettyForm("1")/self._print(Pow(b, -e, evaluate=False)) if b.is_Relational: return prettyForm(*self._print(b).parens()).__pow__(self._print(e)) return self._print(b)**self._print(e) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def __print_numer_denom(self, p, q): if q == 1: if p < 0: return prettyForm(str(p), binding=prettyForm.NEG) else: return prettyForm(str(p)) elif abs(p) >= 10 and abs(q) >= 10: # If more than one digit in numer and denom, print larger fraction if p < 0: return prettyForm(str(p), binding=prettyForm.NEG)/prettyForm(str(q)) # Old printing method: #pform = prettyForm(str(-p))/prettyForm(str(q)) #return prettyForm(binding=prettyForm.NEG, *pform.left('- ')) else: return prettyForm(str(p))/prettyForm(str(q)) else: return None def _print_Rational(self, expr): result = self.__print_numer_denom(expr.p, expr.q) if result is not None: return result else: return self.emptyPrinter(expr) def _print_Fraction(self, expr): result = self.__print_numer_denom(expr.numerator, expr.denominator) if result is not None: return result else: return self.emptyPrinter(expr) def _print_ProductSet(self, p): if len(p.sets) >= 1 and not has_variety(p.sets): return self._print(p.sets[0]) ** self._print(len(p.sets)) else: prod_char = "\N{MULTIPLICATION SIGN}" if self._use_unicode else 'x' return self._print_seq(p.sets, None, None, ' %s ' % prod_char, parenthesize=lambda set: set.is_Union or set.is_Intersection or set.is_ProductSet) def _print_FiniteSet(self, s): items = sorted(s.args, key=default_sort_key) return self._print_seq(items, '{', '}', ', ' ) def _print_Range(self, s): if self._use_unicode: dots = "\N{HORIZONTAL ELLIPSIS}" else: dots = '...' if s.start.is_infinite and s.stop.is_infinite: if s.step.is_positive: printset = dots, -1, 0, 1, dots else: printset = dots, 1, 0, -1, dots elif s.start.is_infinite: printset = dots, s[-1] - s.step, s[-1] elif s.stop.is_infinite: it = iter(s) printset = next(it), next(it), dots elif len(s) > 4: it = iter(s) printset = next(it), next(it), dots, s[-1] else: printset = tuple(s) return self._print_seq(printset, '{', '}', ', ' ) def _print_Interval(self, i): if i.start == i.end: return self._print_seq(i.args[:1], '{', '}') else: if i.left_open: left = '(' else: left = '[' if i.right_open: right = ')' else: right = ']' return self._print_seq(i.args[:2], left, right) def _print_AccumulationBounds(self, i): left = '<' right = '>' return self._print_seq(i.args[:2], left, right) def _print_Intersection(self, u): delimiter = ' %s ' % pretty_atom('Intersection', 'n') return self._print_seq(u.args, None, None, delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Union or set.is_Complement) def _print_Union(self, u): union_delimiter = ' %s ' % pretty_atom('Union', 'U') return self._print_seq(u.args, None, None, union_delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Intersection or set.is_Complement) def _print_SymmetricDifference(self, u): if not self._use_unicode: raise NotImplementedError("ASCII pretty printing of SymmetricDifference is not implemented") sym_delimeter = ' %s ' % pretty_atom('SymmetricDifference') return self._print_seq(u.args, None, None, sym_delimeter) def _print_Complement(self, u): delimiter = r' \ ' return self._print_seq(u.args, None, None, delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Intersection or set.is_Union) def _print_ImageSet(self, ts): if self._use_unicode: inn = "\N{SMALL ELEMENT OF}" else: inn = 'in' fun = ts.lamda sets = ts.base_sets signature = fun.signature expr = self._print(fun.expr) # TODO: the stuff to the left of the | and the stuff to the right of # the | should have independent baselines, that way something like # ImageSet(Lambda(x, 1/x**2), S.Naturals) prints the "x in N" part # centered on the right instead of aligned with the fraction bar on # the left. The same also applies to ConditionSet and ComplexRegion if len(signature) == 1: S = self._print_seq((signature[0], inn, sets[0]), delimiter=' ') return self._hprint_vseparator(expr, S, left='{', right='}', ifascii_nougly=True, delimiter=' ') else: pargs = tuple(j for var, setv in zip(signature, sets) for j in (var, ' ', inn, ' ', setv, ", ")) S = self._print_seq(pargs[:-1], delimiter='') return self._hprint_vseparator(expr, S, left='{', right='}', ifascii_nougly=True, delimiter=' ') def _print_ConditionSet(self, ts): if self._use_unicode: inn = "\N{SMALL ELEMENT OF}" # using _and because and is a keyword and it is bad practice to # overwrite them _and = "\N{LOGICAL AND}" else: inn = 'in' _and = 'and' variables = self._print_seq(Tuple(ts.sym)) as_expr = getattr(ts.condition, 'as_expr', None) if as_expr is not None: cond = self._print(ts.condition.as_expr()) else: cond = self._print(ts.condition) if self._use_unicode: cond = self._print(cond) cond = prettyForm(*cond.parens()) if ts.base_set is S.UniversalSet: return self._hprint_vseparator(variables, cond, left="{", right="}", ifascii_nougly=True, delimiter=' ') base = self._print(ts.base_set) C = self._print_seq((variables, inn, base, _and, cond), delimiter=' ') return self._hprint_vseparator(variables, C, left="{", right="}", ifascii_nougly=True, delimiter=' ') def _print_ComplexRegion(self, ts): if self._use_unicode: inn = "\N{SMALL ELEMENT OF}" else: inn = 'in' variables = self._print_seq(ts.variables) expr = self._print(ts.expr) prodsets = self._print(ts.sets) C = self._print_seq((variables, inn, prodsets), delimiter=' ') return self._hprint_vseparator(expr, C, left="{", right="}", ifascii_nougly=True, delimiter=' ') def _print_Contains(self, e): var, set = e.args if self._use_unicode: el = " \N{ELEMENT OF} " return prettyForm(*stringPict.next(self._print(var), el, self._print(set)), binding=8) else: return prettyForm(sstr(e)) def _print_FourierSeries(self, s): if self._use_unicode: dots = "\N{HORIZONTAL ELLIPSIS}" else: dots = '...' return self._print_Add(s.truncate()) + self._print(dots) def _print_FormalPowerSeries(self, s): return self._print_Add(s.infinite) def _print_SetExpr(self, se): pretty_set = prettyForm(*self._print(se.set).parens()) pretty_name = self._print(Symbol("SetExpr")) return prettyForm(*pretty_name.right(pretty_set)) def _print_SeqFormula(self, s): if self._use_unicode: dots = "\N{HORIZONTAL ELLIPSIS}" else: dots = '...' if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0: raise NotImplementedError("Pretty printing of sequences with symbolic bound not implemented") if s.start is S.NegativeInfinity: stop = s.stop printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2), s.coeff(stop - 1), s.coeff(stop)) elif s.stop is S.Infinity or s.length > 4: printset = s[:4] printset.append(dots) printset = tuple(printset) else: printset = tuple(s) return self._print_list(printset) _print_SeqPer = _print_SeqFormula _print_SeqAdd = _print_SeqFormula _print_SeqMul = _print_SeqFormula def _print_seq(self, seq, left=None, right=None, delimiter=', ', parenthesize=lambda x: False, ifascii_nougly=True): s = None try: for item in seq: pform = self._print(item) if parenthesize(item): pform = prettyForm(*pform.parens()) if s is None: # first element s = pform else: # XXX: Under the tests from #15686 this raises: # AttributeError: 'Fake' object has no attribute 'baseline' # This is caught below but that is not the right way to # fix it. s = prettyForm(*stringPict.next(s, delimiter)) s = prettyForm(*stringPict.next(s, pform)) if s is None: s = stringPict('') except AttributeError: s = None for item in seq: pform = self.doprint(item) if parenthesize(item): pform = prettyForm(*pform.parens()) if s is None: # first element s = pform else : s = prettyForm(*stringPict.next(s, delimiter)) s = prettyForm(*stringPict.next(s, pform)) if s is None: s = stringPict('') s = prettyForm(*s.parens(left, right, ifascii_nougly=ifascii_nougly)) return s def join(self, delimiter, args): pform = None for arg in args: if pform is None: pform = arg else: pform = prettyForm(*pform.right(delimiter)) pform = prettyForm(*pform.right(arg)) if pform is None: return prettyForm("") else: return pform def _print_list(self, l): return self._print_seq(l, '[', ']') def _print_tuple(self, t): if len(t) == 1: ptuple = prettyForm(*stringPict.next(self._print(t[0]), ',')) return prettyForm(*ptuple.parens('(', ')', ifascii_nougly=True)) else: return self._print_seq(t, '(', ')') def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for k in keys: K = self._print(k) V = self._print(d[k]) s = prettyForm(*stringPict.next(K, ': ', V)) items.append(s) return self._print_seq(items, '{', '}') def _print_Dict(self, d): return self._print_dict(d) def _print_set(self, s): if not s: return prettyForm('set()') items = sorted(s, key=default_sort_key) pretty = self._print_seq(items) pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True)) return pretty def _print_frozenset(self, s): if not s: return prettyForm('frozenset()') items = sorted(s, key=default_sort_key) pretty = self._print_seq(items) pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True)) pretty = prettyForm(*pretty.parens('(', ')', ifascii_nougly=True)) pretty = prettyForm(*stringPict.next(type(s).__name__, pretty)) return pretty def _print_UniversalSet(self, s): if self._use_unicode: return prettyForm("\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL U}") else: return prettyForm('UniversalSet') def _print_PolyRing(self, ring): return prettyForm(sstr(ring)) def _print_FracField(self, field): return prettyForm(sstr(field)) def _print_FreeGroupElement(self, elm): return prettyForm(str(elm)) def _print_PolyElement(self, poly): return prettyForm(sstr(poly)) def _print_FracElement(self, frac): return prettyForm(sstr(frac)) def _print_AlgebraicNumber(self, expr): if expr.is_aliased: return self._print(expr.as_poly().as_expr()) else: return self._print(expr.as_expr()) def _print_ComplexRootOf(self, expr): args = [self._print_Add(expr.expr, order='lex'), expr.index] pform = prettyForm(*self._print_seq(args).parens()) pform = prettyForm(*pform.left('CRootOf')) return pform def _print_RootSum(self, expr): args = [self._print_Add(expr.expr, order='lex')] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) pform = prettyForm(*self._print_seq(args).parens()) pform = prettyForm(*pform.left('RootSum')) return pform def _print_FiniteField(self, expr): if self._use_unicode: form = '\N{DOUBLE-STRUCK CAPITAL Z}_%d' else: form = 'GF(%d)' return prettyForm(pretty_symbol(form % expr.mod)) def _print_IntegerRing(self, expr): if self._use_unicode: return prettyForm('\N{DOUBLE-STRUCK CAPITAL Z}') else: return prettyForm('ZZ') def _print_RationalField(self, expr): if self._use_unicode: return prettyForm('\N{DOUBLE-STRUCK CAPITAL Q}') else: return prettyForm('QQ') def _print_RealField(self, domain): if self._use_unicode: prefix = '\N{DOUBLE-STRUCK CAPITAL R}' else: prefix = 'RR' if domain.has_default_precision: return prettyForm(prefix) else: return self._print(pretty_symbol(prefix + "_" + str(domain.precision))) def _print_ComplexField(self, domain): if self._use_unicode: prefix = '\N{DOUBLE-STRUCK CAPITAL C}' else: prefix = 'CC' if domain.has_default_precision: return prettyForm(prefix) else: return self._print(pretty_symbol(prefix + "_" + str(domain.precision))) def _print_PolynomialRing(self, expr): args = list(expr.symbols) if not expr.order.is_default: order = prettyForm(*prettyForm("order=").right(self._print(expr.order))) args.append(order) pform = self._print_seq(args, '[', ']') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_FractionField(self, expr): args = list(expr.symbols) if not expr.order.is_default: order = prettyForm(*prettyForm("order=").right(self._print(expr.order))) args.append(order) pform = self._print_seq(args, '(', ')') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_PolynomialRingBase(self, expr): g = expr.symbols if str(expr.order) != str(expr.default_order): g = g + ("order=" + str(expr.order),) pform = self._print_seq(g, '[', ']') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_GroebnerBasis(self, basis): exprs = [ self._print_Add(arg, order=basis.order) for arg in basis.exprs ] exprs = prettyForm(*self.join(", ", exprs).parens(left="[", right="]")) gens = [ self._print(gen) for gen in basis.gens ] domain = prettyForm( *prettyForm("domain=").right(self._print(basis.domain))) order = prettyForm( *prettyForm("order=").right(self._print(basis.order))) pform = self.join(", ", [exprs] + gens + [domain, order]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(basis.__class__.__name__)) return pform def _print_Subs(self, e): pform = self._print(e.expr) pform = prettyForm(*pform.parens()) h = pform.height() if pform.height() > 1 else 2 rvert = stringPict(vobj('|', h), baseline=pform.baseline) pform = prettyForm(*pform.right(rvert)) b = pform.baseline pform.baseline = pform.height() - 1 pform = prettyForm(*pform.right(self._print_seq([ self._print_seq((self._print(v[0]), xsym('=='), self._print(v[1])), delimiter='') for v in zip(e.variables, e.point) ]))) pform.baseline = b return pform def _print_number_function(self, e, name): # Print name_arg[0] for one argument or name_arg[0](arg[1]) # for more than one argument pform = prettyForm(name) arg = self._print(e.args[0]) pform_arg = prettyForm(" "*arg.width()) pform_arg = prettyForm(*pform_arg.below(arg)) pform = prettyForm(*pform.right(pform_arg)) if len(e.args) == 1: return pform m, x = e.args # TODO: copy-pasted from _print_Function: can we do better? prettyFunc = pform prettyArgs = prettyForm(*self._print_seq([x]).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_euler(self, e): return self._print_number_function(e, "E") def _print_catalan(self, e): return self._print_number_function(e, "C") def _print_bernoulli(self, e): return self._print_number_function(e, "B") _print_bell = _print_bernoulli def _print_lucas(self, e): return self._print_number_function(e, "L") def _print_fibonacci(self, e): return self._print_number_function(e, "F") def _print_tribonacci(self, e): return self._print_number_function(e, "T") def _print_stieltjes(self, e): if self._use_unicode: return self._print_number_function(e, '\N{GREEK SMALL LETTER GAMMA}') else: return self._print_number_function(e, "stieltjes") def _print_KroneckerDelta(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.right(prettyForm(','))) pform = prettyForm(*pform.right(self._print(e.args[1]))) if self._use_unicode: a = stringPict(pretty_symbol('delta')) else: a = stringPict('d') b = pform top = stringPict(*b.left(' '*a.width())) bot = stringPict(*a.right(' '*b.width())) return prettyForm(binding=prettyForm.POW, *bot.below(top)) def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): pform = self._print('Domain: ') pform = prettyForm(*pform.right(self._print(d.as_boolean()))) return pform elif hasattr(d, 'set'): pform = self._print('Domain: ') pform = prettyForm(*pform.right(self._print(d.symbols))) pform = prettyForm(*pform.right(self._print(' in '))) pform = prettyForm(*pform.right(self._print(d.set))) return pform elif hasattr(d, 'symbols'): pform = self._print('Domain on ') pform = prettyForm(*pform.right(self._print(d.symbols))) return pform else: return self._print(None) def _print_DMP(self, p): try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass return self._print(repr(p)) def _print_DMF(self, p): return self._print_DMP(p) def _print_Object(self, object): return self._print(pretty_symbol(object.name)) def _print_Morphism(self, morphism): arrow = xsym("-->") domain = self._print(morphism.domain) codomain = self._print(morphism.codomain) tail = domain.right(arrow, codomain)[0] return prettyForm(tail) def _print_NamedMorphism(self, morphism): pretty_name = self._print(pretty_symbol(morphism.name)) pretty_morphism = self._print_Morphism(morphism) return prettyForm(pretty_name.right(":", pretty_morphism)[0]) def _print_IdentityMorphism(self, morphism): from sympy.categories import NamedMorphism return self._print_NamedMorphism( NamedMorphism(morphism.domain, morphism.codomain, "id")) def _print_CompositeMorphism(self, morphism): circle = xsym(".") # All components of the morphism have names and it is thus # possible to build the name of the composite. component_names_list = [pretty_symbol(component.name) for component in morphism.components] component_names_list.reverse() component_names = circle.join(component_names_list) + ":" pretty_name = self._print(component_names) pretty_morphism = self._print_Morphism(morphism) return prettyForm(pretty_name.right(pretty_morphism)[0]) def _print_Category(self, category): return self._print(pretty_symbol(category.name)) def _print_Diagram(self, diagram): if not diagram.premises: # This is an empty diagram. return self._print(S.EmptySet) pretty_result = self._print(diagram.premises) if diagram.conclusions: results_arrow = " %s " % xsym("==>") pretty_conclusions = self._print(diagram.conclusions)[0] pretty_result = pretty_result.right( results_arrow, pretty_conclusions) return prettyForm(pretty_result[0]) def _print_DiagramGrid(self, grid): from sympy.matrices import Matrix from sympy import Symbol matrix = Matrix([[grid[i, j] if grid[i, j] else Symbol(" ") for j in range(grid.width)] for i in range(grid.height)]) return self._print_matrix_contents(matrix) def _print_FreeModuleElement(self, m): # Print as row vector for convenience, for now. return self._print_seq(m, '[', ']') def _print_SubModule(self, M): return self._print_seq(M.gens, '<', '>') def _print_FreeModule(self, M): return self._print(M.ring)**self._print(M.rank) def _print_ModuleImplementedIdeal(self, M): return self._print_seq([x for [x] in M._module.gens], '<', '>') def _print_QuotientRing(self, R): return self._print(R.ring) / self._print(R.base_ideal) def _print_QuotientRingElement(self, R): return self._print(R.data) + self._print(R.ring.base_ideal) def _print_QuotientModuleElement(self, m): return self._print(m.data) + self._print(m.module.killed_module) def _print_QuotientModule(self, M): return self._print(M.base) / self._print(M.killed_module) def _print_MatrixHomomorphism(self, h): matrix = self._print(h._sympy_matrix()) matrix.baseline = matrix.height() // 2 pform = prettyForm(*matrix.right(' : ', self._print(h.domain), ' %s> ' % hobj('-', 2), self._print(h.codomain))) return pform def _print_Manifold(self, manifold): return self._print(manifold.name) def _print_Patch(self, patch): return self._print(patch.name) def _print_CoordSystem(self, coords): return self._print(coords.name) def _print_BaseScalarField(self, field): string = field._coord_sys.symbols[field._index].name return self._print(pretty_symbol(string)) def _print_BaseVectorField(self, field): s = U('PARTIAL DIFFERENTIAL') + '_' + field._coord_sys.symbols[field._index].name return self._print(pretty_symbol(s)) def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): string = field._coord_sys.symbols[field._index].name return self._print('\N{DOUBLE-STRUCK ITALIC SMALL D} ' + pretty_symbol(string)) else: pform = self._print(field) pform = prettyForm(*pform.parens()) return prettyForm(*pform.left("\N{DOUBLE-STRUCK ITALIC SMALL D}")) def _print_Tr(self, p): #TODO: Handle indices pform = self._print(p.args[0]) pform = prettyForm(*pform.left('%s(' % (p.__class__.__name__))) pform = prettyForm(*pform.right(')')) return pform def _print_primenu(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) if self._use_unicode: pform = prettyForm(*pform.left(greek_unicode['nu'])) else: pform = prettyForm(*pform.left('nu')) return pform def _print_primeomega(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) if self._use_unicode: pform = prettyForm(*pform.left(greek_unicode['Omega'])) else: pform = prettyForm(*pform.left('Omega')) return pform def _print_Quantity(self, e): if e.name.name == 'degree': pform = self._print("\N{DEGREE SIGN}") return pform else: return self.emptyPrinter(e) def _print_AssignmentBase(self, e): op = prettyForm(' ' + xsym(e.op) + ' ') l = self._print(e.lhs) r = self._print(e.rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform def _print_Str(self, s): return self._print(s.name) @print_function(PrettyPrinter) def pretty(expr, **settings): """Returns a string containing the prettified form of expr. For information on keyword arguments see pretty_print function. """ pp = PrettyPrinter(settings) # XXX: this is an ugly hack, but at least it works use_unicode = pp._settings['use_unicode'] uflag = pretty_use_unicode(use_unicode) try: return pp.doprint(expr) finally: pretty_use_unicode(uflag) def pretty_print(expr, **kwargs): """Prints expr in pretty form. pprint is just a shortcut for this function. Parameters ========== expr : expression The expression to print. wrap_line : bool, optional (default=True) Line wrapping enabled/disabled. num_columns : int or None, optional (default=None) Number of columns before line breaking (default to None which reads the terminal width), useful when using SymPy without terminal. use_unicode : bool or None, optional (default=None) Use unicode characters, such as the Greek letter pi instead of the string pi. full_prec : bool or string, optional (default="auto") Use full precision. order : bool or string, optional (default=None) Set to 'none' for long expressions if slow; default is None. use_unicode_sqrt_char : bool, optional (default=True) Use compact single-character square root symbol (when unambiguous). root_notation : bool, optional (default=True) Set to 'False' for printing exponents of the form 1/n in fractional form. By default exponent is printed in root form. mat_symbol_style : string, optional (default="plain") Set to "bold" for printing MatrixSymbols using a bold mathematical symbol face. By default the standard face is used. imaginary_unit : string, optional (default="i") Letter to use for imaginary unit when use_unicode is True. Can be "i" (default) or "j". """ print(pretty(expr, **kwargs)) pprint = pretty_print def pager_print(expr, **settings): """Prints expr using the pager, in pretty form. This invokes a pager command using pydoc. Lines are not wrapped automatically. This routine is meant to be used with a pager that allows sideways scrolling, like ``less -S``. Parameters are the same as for ``pretty_print``. If you wish to wrap lines, pass ``num_columns=None`` to auto-detect the width of the terminal. """ from pydoc import pager from locale import getpreferredencoding if 'num_columns' not in settings: settings['num_columns'] = 500000 # disable line wrap pager(pretty(expr, **settings).encode(getpreferredencoding()))
79d5bdea7367825f6f5ac7978d2cea4a03ff615b526ef9c2c280e5b7c427c6e5
from sympy import (Add, Abs, Catalan, cos, Derivative, E, EulerGamma, exp, factorial, factorial2, Function, GoldenRatio, TribonacciConstant, I, Integer, Integral, Interval, Lambda, Limit, Matrix, nan, O, oo, pi, Pow, Rational, Float, Rel, S, sin, SparseMatrix, sqrt, summation, Sum, Symbol, symbols, Wild, WildFunction, zeta, zoo, Dummy, Dict, Tuple, FiniteSet, factor, subfactorial, true, false, Equivalent, Xor, Complement, SymmetricDifference, AccumBounds, UnevaluatedExpr, Eq, Ne, Quaternion, Subs, MatrixSymbol, MatrixSlice, Q) from sympy.core import Expr, Mul from sympy.core.parameters import _exp_is_pow from sympy.external import import_module from sympy.physics.control.lti import TransferFunction, Series, Parallel, Feedback from sympy.physics.units import second, joule from sympy.polys import (Poly, rootof, RootSum, groebner, ring, field, ZZ, QQ, ZZ_I, QQ_I, lex, grlex) from sympy.geometry import Point, Circle, Polygon, Ellipse, Triangle from sympy.tensor import NDimArray from sympy.testing.pytest import raises from sympy.printing import sstr, sstrrepr, StrPrinter from sympy.core.trace import Tr x, y, z, w, t = symbols('x,y,z,w,t') d = Dummy('d') def test_printmethod(): class R(Abs): def _sympystr(self, printer): return "foo(%s)" % printer._print(self.args[0]) assert sstr(R(x)) == "foo(x)" class R(Abs): def _sympystr(self, printer): return "foo" assert sstr(R(x)) == "foo" def test_Abs(): assert str(Abs(x)) == "Abs(x)" assert str(Abs(Rational(1, 6))) == "1/6" assert str(Abs(Rational(-1, 6))) == "1/6" def test_Add(): assert str(x + y) == "x + y" assert str(x + 1) == "x + 1" assert str(x + x**2) == "x**2 + x" assert str(Add(0, 1, evaluate=False)) == "0 + 1" assert str(Add(0, 0, 1, evaluate=False)) == "0 + 0 + 1" assert str(1.0*x) == "1.0*x" assert str(5 + x + y + x*y + x**2 + y**2) == "x**2 + x*y + x + y**2 + y + 5" assert str(1 + x + x**2/2 + x**3/3) == "x**3/3 + x**2/2 + x + 1" assert str(2*x - 7*x**2 + 2 + 3*y) == "-7*x**2 + 2*x + 3*y + 2" assert str(x - y) == "x - y" assert str(2 - x) == "2 - x" assert str(x - 2) == "x - 2" assert str(x - y - z - w) == "-w + x - y - z" assert str(x - z*y**2*z*w) == "-w*y**2*z**2 + x" assert str(x - 1*y*x*y) == "-x*y**2 + x" assert str(sin(x).series(x, 0, 15)) == "x - x**3/6 + x**5/120 - x**7/5040 + x**9/362880 - x**11/39916800 + x**13/6227020800 + O(x**15)" def test_Catalan(): assert str(Catalan) == "Catalan" def test_ComplexInfinity(): assert str(zoo) == "zoo" def test_Derivative(): assert str(Derivative(x, y)) == "Derivative(x, y)" assert str(Derivative(x**2, x, evaluate=False)) == "Derivative(x**2, x)" assert str(Derivative( x**2/y, x, y, evaluate=False)) == "Derivative(x**2/y, x, y)" def test_dict(): assert str({1: 1 + x}) == sstr({1: 1 + x}) == "{1: x + 1}" assert str({1: x**2, 2: y*x}) in ("{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}") assert sstr({1: x**2, 2: y*x}) == "{1: x**2, 2: x*y}" def test_Dict(): assert str(Dict({1: 1 + x})) == sstr({1: 1 + x}) == "{1: x + 1}" assert str(Dict({1: x**2, 2: y*x})) in ( "{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}") assert sstr(Dict({1: x**2, 2: y*x})) == "{1: x**2, 2: x*y}" def test_Dummy(): assert str(d) == "_d" assert str(d + x) == "_d + x" def test_EulerGamma(): assert str(EulerGamma) == "EulerGamma" def test_Exp(): assert str(E) == "E" with _exp_is_pow(True): assert str(exp(x)) == "E**x" def test_factorial(): n = Symbol('n', integer=True) assert str(factorial(-2)) == "zoo" assert str(factorial(0)) == "1" assert str(factorial(7)) == "5040" assert str(factorial(n)) == "factorial(n)" assert str(factorial(2*n)) == "factorial(2*n)" assert str(factorial(factorial(n))) == 'factorial(factorial(n))' assert str(factorial(factorial2(n))) == 'factorial(factorial2(n))' assert str(factorial2(factorial(n))) == 'factorial2(factorial(n))' assert str(factorial2(factorial2(n))) == 'factorial2(factorial2(n))' assert str(subfactorial(3)) == "2" assert str(subfactorial(n)) == "subfactorial(n)" assert str(subfactorial(2*n)) == "subfactorial(2*n)" def test_Function(): f = Function('f') fx = f(x) w = WildFunction('w') assert str(f) == "f" assert str(fx) == "f(x)" assert str(w) == "w_" def test_Geometry(): assert sstr(Point(0, 0)) == 'Point2D(0, 0)' assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)' assert sstr(Ellipse(Point(1, 2), 3, 4)) == 'Ellipse(Point2D(1, 2), 3, 4)' assert sstr(Triangle(Point(1, 1), Point(7, 8), Point(0, -1))) == \ 'Triangle(Point2D(1, 1), Point2D(7, 8), Point2D(0, -1))' assert sstr(Polygon(Point(5, 6), Point(-2, -3), Point(0, 0), Point(4, 7))) == \ 'Polygon(Point2D(5, 6), Point2D(-2, -3), Point2D(0, 0), Point2D(4, 7))' assert sstr(Triangle(Point(0, 0), Point(1, 0), Point(0, 1)), sympy_integers=True) == \ 'Triangle(Point2D(S(0), S(0)), Point2D(S(1), S(0)), Point2D(S(0), S(1)))' assert sstr(Ellipse(Point(1, 2), 3, 4), sympy_integers=True) == \ 'Ellipse(Point2D(S(1), S(2)), S(3), S(4))' def test_GoldenRatio(): assert str(GoldenRatio) == "GoldenRatio" def test_TribonacciConstant(): assert str(TribonacciConstant) == "TribonacciConstant" def test_ImaginaryUnit(): assert str(I) == "I" def test_Infinity(): assert str(oo) == "oo" assert str(oo*I) == "oo*I" def test_Integer(): assert str(Integer(-1)) == "-1" assert str(Integer(1)) == "1" assert str(Integer(-3)) == "-3" assert str(Integer(0)) == "0" assert str(Integer(25)) == "25" def test_Integral(): assert str(Integral(sin(x), y)) == "Integral(sin(x), y)" assert str(Integral(sin(x), (y, 0, 1))) == "Integral(sin(x), (y, 0, 1))" def test_Interval(): n = (S.NegativeInfinity, 1, 2, S.Infinity) for i in range(len(n)): for j in range(i + 1, len(n)): for l in (True, False): for r in (True, False): ival = Interval(n[i], n[j], l, r) assert S(str(ival)) == ival def test_AccumBounds(): a = Symbol('a', real=True) assert str(AccumBounds(0, a)) == "AccumBounds(0, a)" assert str(AccumBounds(0, 1)) == "AccumBounds(0, 1)" def test_Lambda(): assert str(Lambda(d, d**2)) == "Lambda(_d, _d**2)" # issue 2908 assert str(Lambda((), 1)) == "Lambda((), 1)" assert str(Lambda((), x)) == "Lambda((), x)" assert str(Lambda((x, y), x+y)) == "Lambda((x, y), x + y)" assert str(Lambda(((x, y),), x+y)) == "Lambda(((x, y),), x + y)" def test_Limit(): assert str(Limit(sin(x)/x, x, y)) == "Limit(sin(x)/x, x, y)" assert str(Limit(1/x, x, 0)) == "Limit(1/x, x, 0)" assert str( Limit(sin(x)/x, x, y, dir="-")) == "Limit(sin(x)/x, x, y, dir='-')" def test_list(): assert str([x]) == sstr([x]) == "[x]" assert str([x**2, x*y + 1]) == sstr([x**2, x*y + 1]) == "[x**2, x*y + 1]" assert str([x**2, [y + x]]) == sstr([x**2, [y + x]]) == "[x**2, [x + y]]" def test_Matrix_str(): M = Matrix([[x**+1, 1], [y, x + y]]) assert str(M) == "Matrix([[x, 1], [y, x + y]])" assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])" M = Matrix([[1]]) assert str(M) == sstr(M) == "Matrix([[1]])" M = Matrix([[1, 2]]) assert str(M) == sstr(M) == "Matrix([[1, 2]])" M = Matrix() assert str(M) == sstr(M) == "Matrix(0, 0, [])" M = Matrix(0, 1, lambda i, j: 0) assert str(M) == sstr(M) == "Matrix(0, 1, [])" def test_Mul(): assert str(x/y) == "x/y" assert str(y/x) == "y/x" assert str(x/y/z) == "x/(y*z)" assert str((x + 1)/(y + 2)) == "(x + 1)/(y + 2)" assert str(2*x/3) == '2*x/3' assert str(-2*x/3) == '-2*x/3' assert str(-1.0*x) == '-1.0*x' assert str(1.0*x) == '1.0*x' assert str(Mul(0, 1, evaluate=False)) == '0*1' assert str(Mul(1, 0, evaluate=False)) == '1*0' assert str(Mul(1, 1, evaluate=False)) == '1*1' assert str(Mul(1, 1, 1, evaluate=False)) == '1*1*1' assert str(Mul(1, 2, evaluate=False)) == '1*2' assert str(Mul(1, S.Half, evaluate=False)) == '1*(1/2)' assert str(Mul(1, 1, S.Half, evaluate=False)) == '1*1*(1/2)' assert str(Mul(1, 1, 2, 3, x, evaluate=False)) == '1*1*2*3*x' assert str(Mul(1, -1, evaluate=False)) == '1*(-1)' assert str(Mul(-1, 1, evaluate=False)) == '(-1)*1' assert str(Mul(4, 3, 2, 1, 0, y, x, evaluate=False)) == '4*3*2*1*0*y*x' assert str(Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)) == '4*3*2*(z + 1)*0*y*x' assert str(Mul(Rational(2, 3), Rational(5, 7), evaluate=False)) == '(2/3)*(5/7)' # For issue 14160 assert str(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False), evaluate=False)) == '-2*x/(y*y)' class CustomClass1(Expr): is_commutative = True class CustomClass2(Expr): is_commutative = True cc1 = CustomClass1() cc2 = CustomClass2() assert str(Rational(2)*cc1) == '2*CustomClass1()' assert str(cc1*Rational(2)) == '2*CustomClass1()' assert str(cc1*Float("1.5")) == '1.5*CustomClass1()' assert str(cc2*Rational(2)) == '2*CustomClass2()' assert str(cc2*Rational(2)*cc1) == '2*CustomClass1()*CustomClass2()' assert str(cc1*Rational(2)*cc2) == '2*CustomClass1()*CustomClass2()' def test_NaN(): assert str(nan) == "nan" def test_NegativeInfinity(): assert str(-oo) == "-oo" def test_Order(): assert str(O(x)) == "O(x)" assert str(O(x**2)) == "O(x**2)" assert str(O(x*y)) == "O(x*y, x, y)" assert str(O(x, x)) == "O(x)" assert str(O(x, (x, 0))) == "O(x)" assert str(O(x, (x, oo))) == "O(x, (x, oo))" assert str(O(x, x, y)) == "O(x, x, y)" assert str(O(x, x, y)) == "O(x, x, y)" assert str(O(x, (x, oo), (y, oo))) == "O(x, (x, oo), (y, oo))" def test_Permutation_Cycle(): from sympy.combinatorics import Permutation, Cycle # general principle: economically, canonically show all moved elements # and the size of the permutation. for p, s in [ (Cycle(), '()'), (Cycle(2), '(2)'), (Cycle(2, 1), '(1 2)'), (Cycle(1, 2)(5)(6, 7)(10), '(1 2)(6 7)(10)'), (Cycle(3, 4)(1, 2)(3, 4), '(1 2)(4)'), ]: assert sstr(p) == s for p, s in [ (Permutation([]), 'Permutation([])'), (Permutation([], size=1), 'Permutation([0])'), (Permutation([], size=2), 'Permutation([0, 1])'), (Permutation([], size=10), 'Permutation([], size=10)'), (Permutation([1, 0, 2]), 'Permutation([1, 0, 2])'), (Permutation([1, 0, 2, 3, 4, 5]), 'Permutation([1, 0], size=6)'), (Permutation([1, 0, 2, 3, 4, 5], size=10), 'Permutation([1, 0], size=10)'), ]: assert sstr(p, perm_cyclic=False) == s for p, s in [ (Permutation([]), '()'), (Permutation([], size=1), '(0)'), (Permutation([], size=2), '(1)'), (Permutation([], size=10), '(9)'), (Permutation([1, 0, 2]), '(2)(0 1)'), (Permutation([1, 0, 2, 3, 4, 5]), '(5)(0 1)'), (Permutation([1, 0, 2, 3, 4, 5], size=10), '(9)(0 1)'), (Permutation([0, 1, 3, 2, 4, 5], size=10), '(9)(2 3)'), ]: assert sstr(p) == s def test_Pi(): assert str(pi) == "pi" def test_Poly(): assert str(Poly(0, x)) == "Poly(0, x, domain='ZZ')" assert str(Poly(1, x)) == "Poly(1, x, domain='ZZ')" assert str(Poly(x, x)) == "Poly(x, x, domain='ZZ')" assert str(Poly(2*x + 1, x)) == "Poly(2*x + 1, x, domain='ZZ')" assert str(Poly(2*x - 1, x)) == "Poly(2*x - 1, x, domain='ZZ')" assert str(Poly(-1, x)) == "Poly(-1, x, domain='ZZ')" assert str(Poly(-x, x)) == "Poly(-x, x, domain='ZZ')" assert str(Poly(-2*x + 1, x)) == "Poly(-2*x + 1, x, domain='ZZ')" assert str(Poly(-2*x - 1, x)) == "Poly(-2*x - 1, x, domain='ZZ')" assert str(Poly(x - 1, x)) == "Poly(x - 1, x, domain='ZZ')" assert str(Poly(2*x + x**5, x)) == "Poly(x**5 + 2*x, x, domain='ZZ')" assert str(Poly(3**(2*x), 3**x)) == "Poly((3**x)**2, 3**x, domain='ZZ')" assert str(Poly((x**2)**x)) == "Poly(((x**2)**x), (x**2)**x, domain='ZZ')" assert str(Poly((x + y)**3, (x + y), expand=False) ) == "Poly((x + y)**3, x + y, domain='ZZ')" assert str(Poly((x - 1)**2, (x - 1), expand=False) ) == "Poly((x - 1)**2, x - 1, domain='ZZ')" assert str( Poly(x**2 + 1 + y, x)) == "Poly(x**2 + y + 1, x, domain='ZZ[y]')" assert str( Poly(x**2 - 1 + y, x)) == "Poly(x**2 + y - 1, x, domain='ZZ[y]')" assert str(Poly(x**2 + I*x, x)) == "Poly(x**2 + I*x, x, domain='ZZ_I')" assert str(Poly(x**2 - I*x, x)) == "Poly(x**2 - I*x, x, domain='ZZ_I')" assert str(Poly(-x*y*z + x*y - 1, x, y, z) ) == "Poly(-x*y*z + x*y - 1, x, y, z, domain='ZZ')" assert str(Poly(-w*x**21*y**7*z + (1 + w)*z**3 - 2*x*z + 1, x, y, z)) == \ "Poly(-w*x**21*y**7*z - 2*x*z + (w + 1)*z**3 + 1, x, y, z, domain='ZZ[w]')" assert str(Poly(x**2 + 1, x, modulus=2)) == "Poly(x**2 + 1, x, modulus=2)" assert str(Poly(2*x**2 + 3*x + 4, x, modulus=17)) == "Poly(2*x**2 + 3*x + 4, x, modulus=17)" def test_PolyRing(): assert str(ring("x", ZZ, lex)[0]) == "Polynomial ring in x over ZZ with lex order" assert str(ring("x,y", QQ, grlex)[0]) == "Polynomial ring in x, y over QQ with grlex order" assert str(ring("x,y,z", ZZ["t"], lex)[0]) == "Polynomial ring in x, y, z over ZZ[t] with lex order" def test_FracField(): assert str(field("x", ZZ, lex)[0]) == "Rational function field in x over ZZ with lex order" assert str(field("x,y", QQ, grlex)[0]) == "Rational function field in x, y over QQ with grlex order" assert str(field("x,y,z", ZZ["t"], lex)[0]) == "Rational function field in x, y, z over ZZ[t] with lex order" def test_PolyElement(): Ruv, u,v = ring("u,v", ZZ) Rxyz, x,y,z = ring("x,y,z", Ruv) Rx_zzi, xz = ring("x", ZZ_I) assert str(x - x) == "0" assert str(x - 1) == "x - 1" assert str(x + 1) == "x + 1" assert str(x**2) == "x**2" assert str(x**(-2)) == "x**(-2)" assert str(x**QQ(1, 2)) == "x**(1/2)" assert str((u**2 + 3*u*v + 1)*x**2*y + u + 1) == "(u**2 + 3*u*v + 1)*x**2*y + u + 1" assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x" assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1" assert str((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == "-(u**2 - 3*u*v + 1)*x**2*y - (u + 1)*x - 1" assert str(-(v**2 + v + 1)*x + 3*u*v + 1) == "-(v**2 + v + 1)*x + 3*u*v + 1" assert str(-(v**2 + v + 1)*x - 3*u*v + 1) == "-(v**2 + v + 1)*x - 3*u*v + 1" assert str((1+I)*xz + 2) == "(1 + 1*I)*x + (2 + 0*I)" def test_FracElement(): Fuv, u,v = field("u,v", ZZ) Fxyzt, x,y,z,t = field("x,y,z,t", Fuv) Rx_zzi, xz = field("x", QQ_I) i = QQ_I(0, 1) assert str(x - x) == "0" assert str(x - 1) == "x - 1" assert str(x + 1) == "x + 1" assert str(x/3) == "x/3" assert str(x/z) == "x/z" assert str(x*y/z) == "x*y/z" assert str(x/(z*t)) == "x/(z*t)" assert str(x*y/(z*t)) == "x*y/(z*t)" assert str((x - 1)/y) == "(x - 1)/y" assert str((x + 1)/y) == "(x + 1)/y" assert str((-x - 1)/y) == "(-x - 1)/y" assert str((x + 1)/(y*z)) == "(x + 1)/(y*z)" assert str(-y/(x + 1)) == "-y/(x + 1)" assert str(y*z/(x + 1)) == "y*z/(x + 1)" assert str(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - 1)" assert str(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - u*v*t - 1)" assert str((1+i)/xz) == "(1 + 1*I)/x" assert str(((1+i)*xz - i)/xz) == "((1 + 1*I)*x + (0 + -1*I))/x" def test_GaussianInteger(): assert str(ZZ_I(1, 0)) == "1" assert str(ZZ_I(-1, 0)) == "-1" assert str(ZZ_I(0, 1)) == "I" assert str(ZZ_I(0, -1)) == "-I" assert str(ZZ_I(0, 2)) == "2*I" assert str(ZZ_I(0, -2)) == "-2*I" assert str(ZZ_I(1, 1)) == "1 + I" assert str(ZZ_I(-1, -1)) == "-1 - I" assert str(ZZ_I(-1, -2)) == "-1 - 2*I" def test_GaussianRational(): assert str(QQ_I(1, 0)) == "1" assert str(QQ_I(QQ(2, 3), 0)) == "2/3" assert str(QQ_I(0, QQ(2, 3))) == "2*I/3" assert str(QQ_I(QQ(1, 2), QQ(-2, 3))) == "1/2 - 2*I/3" def test_Pow(): assert str(x**-1) == "1/x" assert str(x**-2) == "x**(-2)" assert str(x**2) == "x**2" assert str((x + y)**-1) == "1/(x + y)" assert str((x + y)**-2) == "(x + y)**(-2)" assert str((x + y)**2) == "(x + y)**2" assert str((x + y)**(1 + x)) == "(x + y)**(x + 1)" assert str(x**Rational(1, 3)) == "x**(1/3)" assert str(1/x**Rational(1, 3)) == "x**(-1/3)" assert str(sqrt(sqrt(x))) == "x**(1/4)" # not the same as x**-1 assert str(x**-1.0) == 'x**(-1.0)' # see issue #2860 assert str(Pow(S(2), -1.0, evaluate=False)) == '2**(-1.0)' def test_sqrt(): assert str(sqrt(x)) == "sqrt(x)" assert str(sqrt(x**2)) == "sqrt(x**2)" assert str(1/sqrt(x)) == "1/sqrt(x)" assert str(1/sqrt(x**2)) == "1/sqrt(x**2)" assert str(y/sqrt(x)) == "y/sqrt(x)" assert str(x**0.5) == "x**0.5" assert str(1/x**0.5) == "x**(-0.5)" def test_Rational(): n1 = Rational(1, 4) n2 = Rational(1, 3) n3 = Rational(2, 4) n4 = Rational(2, -4) n5 = Rational(0) n7 = Rational(3) n8 = Rational(-3) assert str(n1*n2) == "1/12" assert str(n1*n2) == "1/12" assert str(n3) == "1/2" assert str(n1*n3) == "1/8" assert str(n1 + n3) == "3/4" assert str(n1 + n2) == "7/12" assert str(n1 + n4) == "-1/4" assert str(n4*n4) == "1/4" assert str(n4 + n2) == "-1/6" assert str(n4 + n5) == "-1/2" assert str(n4*n5) == "0" assert str(n3 + n4) == "0" assert str(n1**n7) == "1/64" assert str(n2**n7) == "1/27" assert str(n2**n8) == "27" assert str(n7**n8) == "1/27" assert str(Rational("-25")) == "-25" assert str(Rational("1.25")) == "5/4" assert str(Rational("-2.6e-2")) == "-13/500" assert str(S("25/7")) == "25/7" assert str(S("-123/569")) == "-123/569" assert str(S("0.1[23]", rational=1)) == "61/495" assert str(S("5.1[666]", rational=1)) == "31/6" assert str(S("-5.1[666]", rational=1)) == "-31/6" assert str(S("0.[9]", rational=1)) == "1" assert str(S("-0.[9]", rational=1)) == "-1" assert str(sqrt(Rational(1, 4))) == "1/2" assert str(sqrt(Rational(1, 36))) == "1/6" assert str((123**25) ** Rational(1, 25)) == "123" assert str((123**25 + 1)**Rational(1, 25)) != "123" assert str((123**25 - 1)**Rational(1, 25)) != "123" assert str((123**25 - 1)**Rational(1, 25)) != "122" assert str(sqrt(Rational(81, 36))**3) == "27/8" assert str(1/sqrt(Rational(81, 36))**3) == "8/27" assert str(sqrt(-4)) == str(2*I) assert str(2**Rational(1, 10**10)) == "2**(1/10000000000)" assert sstr(Rational(2, 3), sympy_integers=True) == "S(2)/3" x = Symbol("x") assert sstr(x**Rational(2, 3), sympy_integers=True) == "x**(S(2)/3)" assert sstr(Eq(x, Rational(2, 3)), sympy_integers=True) == "Eq(x, S(2)/3)" assert sstr(Limit(x, x, Rational(7, 2)), sympy_integers=True) == \ "Limit(x, x, S(7)/2)" def test_Float(): # NOTE dps is the whole number of decimal digits assert str(Float('1.23', dps=1 + 2)) == '1.23' assert str(Float('1.23456789', dps=1 + 8)) == '1.23456789' assert str( Float('1.234567890123456789', dps=1 + 18)) == '1.234567890123456789' assert str(pi.evalf(1 + 2)) == '3.14' assert str(pi.evalf(1 + 14)) == '3.14159265358979' assert str(pi.evalf(1 + 64)) == ('3.141592653589793238462643383279' '5028841971693993751058209749445923') assert str(pi.round(-1)) == '0.0' assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88' assert sstr(Float("100"), full_prec=False, min=-2, max=2) == '1.0e+2' assert sstr(Float("100"), full_prec=False, min=-2, max=3) == '100.0' assert sstr(Float("0.1"), full_prec=False, min=-2, max=3) == '0.1' assert sstr(Float("0.099"), min=-2, max=3) == '9.90000000000000e-2' def test_Relational(): assert str(Rel(x, y, "<")) == "x < y" assert str(Rel(x + y, y, "==")) == "Eq(x + y, y)" assert str(Rel(x, y, "!=")) == "Ne(x, y)" assert str(Eq(x, 1) | Eq(x, 2)) == "Eq(x, 1) | Eq(x, 2)" assert str(Ne(x, 1) & Ne(x, 2)) == "Ne(x, 1) & Ne(x, 2)" def test_CRootOf(): assert str(rootof(x**5 + 2*x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)" def test_RootSum(): f = x**5 + 2*x - 1 assert str( RootSum(f, Lambda(z, z), auto=False)) == "RootSum(x**5 + 2*x - 1)" assert str(RootSum(f, Lambda( z, z**2), auto=False)) == "RootSum(x**5 + 2*x - 1, Lambda(z, z**2))" def test_GroebnerBasis(): assert str(groebner( [], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')" F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] assert str(groebner(F, order='grlex')) == \ "GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')" assert str(groebner(F, order='lex')) == \ "GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')" def test_set(): assert sstr(set()) == 'set()' assert sstr(frozenset()) == 'frozenset()' assert sstr({1}) == '{1}' assert sstr(frozenset([1])) == 'frozenset({1})' assert sstr({1, 2, 3}) == '{1, 2, 3}' assert sstr(frozenset([1, 2, 3])) == 'frozenset({1, 2, 3})' assert sstr( {1, x, x**2, x**3, x**4}) == '{1, x, x**2, x**3, x**4}' assert sstr( frozenset([1, x, x**2, x**3, x**4])) == 'frozenset({1, x, x**2, x**3, x**4})' def test_SparseMatrix(): M = SparseMatrix([[x**+1, 1], [y, x + y]]) assert str(M) == "Matrix([[x, 1], [y, x + y]])" assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])" def test_Sum(): assert str(summation(cos(3*z), (z, x, y))) == "Sum(cos(3*z), (z, x, y))" assert str(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \ "Sum(x*y**2, (x, -2, 2), (y, -5, 5))" def test_Symbol(): assert str(y) == "y" assert str(x) == "x" e = x assert str(e) == "x" def test_tuple(): assert str((x,)) == sstr((x,)) == "(x,)" assert str((x + y, 1 + x)) == sstr((x + y, 1 + x)) == "(x + y, x + 1)" assert str((x + y, ( 1 + x, x**2))) == sstr((x + y, (1 + x, x**2))) == "(x + y, (x + 1, x**2))" def test_Series_str(): tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y) assert str(Series(tf1, tf2)) == \ "Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y))" assert str(Series(tf1, tf2, tf3)) == \ "Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y), TransferFunction(t*x**2 - t**w*x + w, t - y, y))" assert str(Series(-tf2, tf1)) == \ "Series(TransferFunction(-x + y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y))" def test_TransferFunction_str(): tf1 = TransferFunction(x - 1, x + 1, x) assert str(tf1) == "TransferFunction(x - 1, x + 1, x)" tf2 = TransferFunction(x + 1, 2 - y, x) assert str(tf2) == "TransferFunction(x + 1, 2 - y, x)" tf3 = TransferFunction(y, y**2 + 2*y + 3, y) assert str(tf3) == "TransferFunction(y, y**2 + 2*y + 3, y)" def test_Parallel_str(): tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y) assert str(Parallel(tf1, tf2)) == \ "Parallel(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y))" assert str(Parallel(tf1, tf2, tf3)) == \ "Parallel(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y), TransferFunction(t*x**2 - t**w*x + w, t - y, y))" assert str(Parallel(-tf2, tf1)) == \ "Parallel(TransferFunction(-x + y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y))" def test_Feedback_str(): tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y) assert str(Feedback(tf1*tf2, tf3)) == \ "Feedback(Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), TransferFunction(t*x**2 - t**w*x + w, t - y, y))" assert str(Feedback(tf1, TransferFunction(1, 1, y))) == \ "Feedback(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(1, 1, y))" def test_Quaternion_str_printer(): q = Quaternion(x, y, z, t) assert str(q) == "x + y*i + z*j + t*k" q = Quaternion(x,y,z,x*t) assert str(q) == "x + y*i + z*j + t*x*k" q = Quaternion(x,y,z,x+t) assert str(q) == "x + y*i + z*j + (t + x)*k" def test_Quantity_str(): assert sstr(second, abbrev=True) == "s" assert sstr(joule, abbrev=True) == "J" assert str(second) == "second" assert str(joule) == "joule" def test_wild_str(): # Check expressions containing Wild not causing infinite recursion w = Wild('x') assert str(w + 1) == 'x_ + 1' assert str(exp(2**w) + 5) == 'exp(2**x_) + 5' assert str(3*w + 1) == '3*x_ + 1' assert str(1/w + 1) == '1 + 1/x_' assert str(w**2 + 1) == 'x_**2 + 1' assert str(1/(1 - w)) == '1/(1 - x_)' def test_wild_matchpy(): from sympy.utilities.matchpy_connector import WildDot, WildPlus, WildStar matchpy = import_module("matchpy") if matchpy is None: return wd = WildDot('w_') wp = WildPlus('w__') ws = WildStar('w___') assert str(wd) == 'w_' assert str(wp) == 'w__' assert str(ws) == 'w___' assert str(wp/ws + 2**wd) == '2**w_ + w__/w___' assert str(sin(wd)*cos(wp)*sqrt(ws)) == 'sqrt(w___)*sin(w_)*cos(w__)' def test_zeta(): assert str(zeta(3)) == "zeta(3)" def test_issue_3101(): e = x - y a = str(e) b = str(e) assert a == b def test_issue_3103(): e = -2*sqrt(x) - y/sqrt(x)/2 assert str(e) not in ["(-2)*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2-1/2*x**-1/2*w"] assert str(e) == "-2*sqrt(x) - y/(2*sqrt(x))" def test_issue_4021(): e = Integral(x, x) + 1 assert str(e) == 'Integral(x, x) + 1' def test_sstrrepr(): assert sstr('abc') == 'abc' assert sstrrepr('abc') == "'abc'" e = ['a', 'b', 'c', x] assert sstr(e) == "[a, b, c, x]" assert sstrrepr(e) == "['a', 'b', 'c', x]" def test_infinity(): assert sstr(oo*I) == "oo*I" def test_full_prec(): assert sstr(S("0.3"), full_prec=True) == "0.300000000000000" assert sstr(S("0.3"), full_prec="auto") == "0.300000000000000" assert sstr(S("0.3"), full_prec=False) == "0.3" assert sstr(S("0.3")*x, full_prec=True) in [ "0.300000000000000*x", "x*0.300000000000000" ] assert sstr(S("0.3")*x, full_prec="auto") in [ "0.3*x", "x*0.3" ] assert sstr(S("0.3")*x, full_prec=False) in [ "0.3*x", "x*0.3" ] def test_noncommutative(): A, B, C = symbols('A,B,C', commutative=False) assert sstr(A*B*C**-1) == "A*B*C**(-1)" assert sstr(C**-1*A*B) == "C**(-1)*A*B" assert sstr(A*C**-1*B) == "A*C**(-1)*B" assert sstr(sqrt(A)) == "sqrt(A)" assert sstr(1/sqrt(A)) == "A**(-1/2)" def test_empty_printer(): str_printer = StrPrinter() assert str_printer.emptyPrinter("foo") == "foo" assert str_printer.emptyPrinter(x*y) == "x*y" assert str_printer.emptyPrinter(32) == "32" def test_settings(): raises(TypeError, lambda: sstr(S(4), method="garbage")) def test_RandomDomain(): from sympy.stats import Normal, Die, Exponential, pspace, where X = Normal('x1', 0, 1) assert str(where(X > 0)) == "Domain: (0 < x1) & (x1 < oo)" D = Die('d1', 6) assert str(where(D > 4)) == "Domain: Eq(d1, 5) | Eq(d1, 6)" A = Exponential('a', 1) B = Exponential('b', 1) assert str(pspace(Tuple(A, B)).domain) == "Domain: (0 <= a) & (0 <= b) & (a < oo) & (b < oo)" def test_FiniteSet(): assert str(FiniteSet(*range(1, 51))) == ( 'FiniteSet(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,' ' 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,' ' 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)' ) assert str(FiniteSet(*range(1, 6))) == 'FiniteSet(1, 2, 3, 4, 5)' def test_UniversalSet(): assert str(S.UniversalSet) == 'UniversalSet' def test_PrettyPoly(): from sympy.polys.domains import QQ F = QQ.frac_field(x, y) R = QQ[x, y] assert sstr(F.convert(x/(x + y))) == sstr(x/(x + y)) assert sstr(R.convert(x + y)) == sstr(x + y) def test_categories(): from sympy.categories import (Object, NamedMorphism, IdentityMorphism, Category) A = Object("A") B = Object("B") f = NamedMorphism(A, B, "f") id_A = IdentityMorphism(A) K = Category("K") assert str(A) == 'Object("A")' assert str(f) == 'NamedMorphism(Object("A"), Object("B"), "f")' assert str(id_A) == 'IdentityMorphism(Object("A"))' assert str(K) == 'Category("K")' def test_Tr(): A, B = symbols('A B', commutative=False) t = Tr(A*B) assert str(t) == 'Tr(A*B)' def test_issue_6387(): assert str(factor(-3.0*z + 3)) == '-3.0*(1.0*z - 1.0)' def test_MatMul_MatAdd(): from sympy import MatrixSymbol X, Y = MatrixSymbol("X", 2, 2), MatrixSymbol("Y", 2, 2) assert str(2*(X + Y)) == "2*(X + Y)" assert str(I*X) == "I*X" assert str(-I*X) == "-I*X" assert str((1 + I)*X) == '(1 + I)*X' assert str(-(1 + I)*X) == '(-1 - I)*X' def test_MatrixSlice(): n = Symbol('n', integer=True) X = MatrixSymbol('X', n, n) Y = MatrixSymbol('Y', 10, 10) Z = MatrixSymbol('Z', 10, 10) assert str(MatrixSlice(X, (None, None, None), (None, None, None))) == 'X[:, :]' assert str(X[x:x + 1, y:y + 1]) == 'X[x:x + 1, y:y + 1]' assert str(X[x:x + 1:2, y:y + 1:2]) == 'X[x:x + 1:2, y:y + 1:2]' assert str(X[:x, y:]) == 'X[:x, y:]' assert str(X[:x, y:]) == 'X[:x, y:]' assert str(X[x:, :y]) == 'X[x:, :y]' assert str(X[x:y, z:w]) == 'X[x:y, z:w]' assert str(X[x:y:t, w:t:x]) == 'X[x:y:t, w:t:x]' assert str(X[x::y, t::w]) == 'X[x::y, t::w]' assert str(X[:x:y, :t:w]) == 'X[:x:y, :t:w]' assert str(X[::x, ::y]) == 'X[::x, ::y]' assert str(MatrixSlice(X, (0, None, None), (0, None, None))) == 'X[:, :]' assert str(MatrixSlice(X, (None, n, None), (None, n, None))) == 'X[:, :]' assert str(MatrixSlice(X, (0, n, None), (0, n, None))) == 'X[:, :]' assert str(MatrixSlice(X, (0, n, 2), (0, n, 2))) == 'X[::2, ::2]' assert str(X[1:2:3, 4:5:6]) == 'X[1:2:3, 4:5:6]' assert str(X[1:3:5, 4:6:8]) == 'X[1:3:5, 4:6:8]' assert str(X[1:10:2]) == 'X[1:10:2, :]' assert str(Y[:5, 1:9:2]) == 'Y[:5, 1:9:2]' assert str(Y[:5, 1:10:2]) == 'Y[:5, 1::2]' assert str(Y[5, :5:2]) == 'Y[5:6, :5:2]' assert str(X[0:1, 0:1]) == 'X[:1, :1]' assert str(X[0:1:2, 0:1:2]) == 'X[:1:2, :1:2]' assert str((Y + Z)[2:, 2:]) == '(Y + Z)[2:, 2:]' def test_true_false(): assert str(true) == repr(true) == sstr(true) == "True" assert str(false) == repr(false) == sstr(false) == "False" def test_Equivalent(): assert str(Equivalent(y, x)) == "Equivalent(x, y)" def test_Xor(): assert str(Xor(y, x, evaluate=False)) == "x ^ y" def test_Complement(): assert str(Complement(S.Reals, S.Naturals)) == 'Complement(Reals, Naturals)' def test_SymmetricDifference(): assert str(SymmetricDifference(Interval(2, 3), Interval(3, 4),evaluate=False)) == \ 'SymmetricDifference(Interval(2, 3), Interval(3, 4))' def test_UnevaluatedExpr(): a, b = symbols("a b") expr1 = 2*UnevaluatedExpr(a+b) assert str(expr1) == "2*(a + b)" def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert(str(A[0, 0]) == "A[0, 0]") assert(str(3 * A[0, 0]) == "3*A[0, 0]") F = C[0, 0].subs(C, A - B) assert str(F) == "(A - B)[0, 0]" def test_MatrixSymbol_printing(): A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) assert str(A - A*B - B) == "A - A*B - B" assert str(A*B - (A+B)) == "-(A + B) + A*B" assert str(A**(-1)) == "A**(-1)" assert str(A**3) == "A**3" def test_MatrixExpressions(): n = Symbol('n', integer=True) X = MatrixSymbol('X', n, n) assert str(X) == "X" # Apply function elementwise (`ElementwiseApplyFunc`): expr = (X.T*X).applyfunc(sin) assert str(expr) == 'Lambda(_d, sin(_d)).(X.T*X)' lamda = Lambda(x, 1/x) expr = (n*X).applyfunc(lamda) assert str(expr) == 'Lambda(x, 1/x).(n*X)' def test_Subs_printing(): assert str(Subs(x, (x,), (1,))) == 'Subs(x, x, 1)' assert str(Subs(x + y, (x, y), (1, 2))) == 'Subs(x + y, (x, y), (1, 2))' def test_issue_15716(): e = Integral(factorial(x), (x, -oo, oo)) assert e.as_terms() == ([(e, ((1.0, 0.0), (1,), ()))], [e]) def test_str_special_matrices(): from sympy.matrices import Identity, ZeroMatrix, OneMatrix assert str(Identity(4)) == 'I' assert str(ZeroMatrix(2, 2)) == '0' assert str(OneMatrix(2, 2)) == '1' def test_issue_14567(): assert factorial(Sum(-1, (x, 0, 0))) + y # doesn't raise an error def test_Str(): from sympy.core.symbol import Str assert str(Str('x')) == 'x' assert sstrrepr(Str('x')) == "Str('x')" def test_diffgeom(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField x,y = symbols('x y', real=True) m = Manifold('M', 2) assert str(m) == "M" p = Patch('P', m) assert str(p) == "P" rect = CoordSystem('rect', p, [x, y]) assert str(rect) == "rect" b = BaseScalarField(rect, 0) assert str(b) == "x" def test_NDimArray(): assert sstr(NDimArray(1.0), full_prec=True) == '1.00000000000000' assert sstr(NDimArray(1.0), full_prec=False) == '1.0' assert sstr(NDimArray([1.0, 2.0]), full_prec=True) == '[1.00000000000000, 2.00000000000000]' assert sstr(NDimArray([1.0, 2.0]), full_prec=False) == '[1.0, 2.0]' def test_Predicate(): assert sstr(Q.even) == 'Q.even' def test_AppliedPredicate(): assert sstr(Q.even(x)) == 'Q.even(x)'
ffa63c5717168f96a1c41b94cbd8731786402f938d70900338e1699569b2a9a9
from sympy.tensor.toperators import PartialDerivative from sympy import ( Abs, Chi, Ci, CosineTransform, Dict, Ei, Eq, FallingFactorial, FiniteSet, Float, FourierTransform, Function, Indexed, IndexedBase, Integral, Interval, InverseCosineTransform, InverseFourierTransform, Derivative, InverseLaplaceTransform, InverseMellinTransform, InverseSineTransform, Lambda, LaplaceTransform, Limit, Matrix, Max, MellinTransform, Min, Mul, Order, Piecewise, Poly, ring, field, ZZ, Pow, Product, Range, Rational, RisingFactorial, rootof, RootSum, S, Shi, Si, SineTransform, Subs, Sum, Symbol, ImageSet, Tuple, Ynm, Znm, arg, asin, acsc, asinh, Mod, assoc_laguerre, assoc_legendre, beta, binomial, catalan, ceiling, chebyshevt, chebyshevu, conjugate, cot, coth, diff, dirichlet_eta, euler, exp, expint, factorial, factorial2, floor, gamma, gegenbauer, hermite, hyper, im, jacobi, laguerre, legendre, lerchphi, log, frac, meijerg, oo, polar_lift, polylog, re, root, sin, sqrt, symbols, uppergamma, zeta, subfactorial, totient, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, cos, tan, Wild, true, false, Equivalent, Not, Contains, divisor_sigma, SeqPer, SeqFormula, MatrixSlice, SeqAdd, SeqMul, fourier_series, pi, ConditionSet, ComplexRegion, fps, AccumBounds, reduced_totient, primenu, primeomega, SingularityFunction, stieltjes, mathieuc, mathieus, mathieucprime, mathieusprime, UnevaluatedExpr, Quaternion, I, KroneckerProduct, LambertW) from sympy.ntheory.factor_ import udivisor_sigma from sympy.abc import mu, tau from sympy.printing.latex import (latex, translate, greek_letters_set, tex_greek_dictionary, multiline_latex, latex_escape, LatexPrinter) from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableSparseNDimArray, MutableDenseNDimArray, tensorproduct) from sympy.testing.pytest import XFAIL, raises, _both_exp_pow from sympy.functions import DiracDelta, Heaviside, KroneckerDelta, LeviCivita from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \ fibonacci, tribonacci from sympy.logic import Implies from sympy.logic.boolalg import And, Or, Xor from sympy.physics.control.lti import TransferFunction, Series, Parallel, Feedback from sympy.physics.quantum import Commutator, Operator from sympy.physics.units import meter, gibibyte, microgram, second from sympy.core.trace import Tr from sympy.combinatorics.permutations import \ Cycle, Permutation, AppliedPermutation from sympy.matrices.expressions.permutation import PermutationMatrix from sympy import MatrixSymbol, ln from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian from sympy.sets.setexpr import SetExpr from sympy.sets.sets import \ Union, Intersection, Complement, SymmetricDifference, ProductSet import sympy as sym class lowergamma(sym.lowergamma): pass # testing notation inheritance by a subclass with same name x, y, z, t, w, a, b, c, s, p = symbols('x y z t w a b c s p') k, m, n = symbols('k m n', integer=True) def test_printmethod(): class R(Abs): def _latex(self, printer): return "foo(%s)" % printer._print(self.args[0]) assert latex(R(x)) == "foo(x)" class R(Abs): def _latex(self, printer): return "foo" assert latex(R(x)) == "foo" def test_latex_basic(): assert latex(1 + x) == "x + 1" assert latex(x**2) == "x^{2}" assert latex(x**(1 + x)) == "x^{x + 1}" assert latex(x**3 + x + 1 + x**2) == "x^{3} + x^{2} + x + 1" assert latex(2*x*y) == "2 x y" assert latex(2*x*y, mul_symbol='dot') == r"2 \cdot x \cdot y" assert latex(3*x**2*y, mul_symbol='\\,') == r"3\,x^{2}\,y" assert latex(1.5*3**x, mul_symbol='\\,') == r"1.5 \cdot 3^{x}" assert latex(Mul(0, 1, evaluate=False)) == r'0 \cdot 1' assert latex(Mul(1, 0, evaluate=False)) == r'1 \cdot 0' assert latex(Mul(1, 1, evaluate=False)) == r'1 \cdot 1' assert latex(Mul(-1, 1, evaluate=False)) == r'\left(-1\right) 1' assert latex(Mul(1, 1, 1, evaluate=False)) == r'1 \cdot 1 \cdot 1' assert latex(Mul(1, 2, evaluate=False)) == r'1 \cdot 2' assert latex(Mul(1, S.Half, evaluate=False)) == r'1 \frac{1}{2}' assert latex(Mul(1, 1, S.Half, evaluate=False)) == \ r'1 \cdot 1 \frac{1}{2}' assert latex(Mul(1, 1, 2, 3, x, evaluate=False)) == \ r'1 \cdot 1 \cdot 2 \cdot 3 x' assert latex(Mul(1, -1, evaluate=False)) == r'1 \left(-1\right)' assert latex(Mul(4, 3, 2, 1, 0, y, x, evaluate=False)) == \ r'4 \cdot 3 \cdot 2 \cdot 1 \cdot 0 y x' assert latex(Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)) == \ r'4 \cdot 3 \cdot 2 \left(z + 1\right) 0 y x' assert latex(Mul(Rational(2, 3), Rational(5, 7), evaluate=False)) == \ r'\frac{2}{3} \frac{5}{7}' assert latex(1/x) == r"\frac{1}{x}" assert latex(1/x, fold_short_frac=True) == "1 / x" assert latex(-S(3)/2) == r"- \frac{3}{2}" assert latex(-S(3)/2, fold_short_frac=True) == r"- 3 / 2" assert latex(1/x**2) == r"\frac{1}{x^{2}}" assert latex(1/(x + y)/2) == r"\frac{1}{2 \left(x + y\right)}" assert latex(x/2) == r"\frac{x}{2}" assert latex(x/2, fold_short_frac=True) == "x / 2" assert latex((x + y)/(2*x)) == r"\frac{x + y}{2 x}" assert latex((x + y)/(2*x), fold_short_frac=True) == \ r"\left(x + y\right) / 2 x" assert latex((x + y)/(2*x), long_frac_ratio=0) == \ r"\frac{1}{2 x} \left(x + y\right)" assert latex((x + y)/x) == r"\frac{x + y}{x}" assert latex((x + y)/x, long_frac_ratio=3) == r"\frac{x + y}{x}" assert latex((2*sqrt(2)*x)/3) == r"\frac{2 \sqrt{2} x}{3}" assert latex((2*sqrt(2)*x)/3, long_frac_ratio=2) == \ r"\frac{2 x}{3} \sqrt{2}" assert latex(binomial(x, y)) == r"{\binom{x}{y}}" x_star = Symbol('x^*') f = Function('f') assert latex(x_star**2) == r"\left(x^{*}\right)^{2}" assert latex(x_star**2, parenthesize_super=False) == r"{x^{*}}^{2}" assert latex(Derivative(f(x_star), x_star,2)) == r"\frac{d^{2}}{d \left(x^{*}\right)^{2}} f{\left(x^{*} \right)}" assert latex(Derivative(f(x_star), x_star,2), parenthesize_super=False) == r"\frac{d^{2}}{d {x^{*}}^{2}} f{\left(x^{*} \right)}" assert latex(2*Integral(x, x)/3) == r"\frac{2 \int x\, dx}{3}" assert latex(2*Integral(x, x)/3, fold_short_frac=True) == \ r"\left(2 \int x\, dx\right) / 3" assert latex(sqrt(x)) == r"\sqrt{x}" assert latex(x**Rational(1, 3)) == r"\sqrt[3]{x}" assert latex(x**Rational(1, 3), root_notation=False) == r"x^{\frac{1}{3}}" assert latex(sqrt(x)**3) == r"x^{\frac{3}{2}}" assert latex(sqrt(x), itex=True) == r"\sqrt{x}" assert latex(x**Rational(1, 3), itex=True) == r"\root{3}{x}" assert latex(sqrt(x)**3, itex=True) == r"x^{\frac{3}{2}}" assert latex(x**Rational(3, 4)) == r"x^{\frac{3}{4}}" assert latex(x**Rational(3, 4), fold_frac_powers=True) == "x^{3/4}" assert latex((x + 1)**Rational(3, 4)) == \ r"\left(x + 1\right)^{\frac{3}{4}}" assert latex((x + 1)**Rational(3, 4), fold_frac_powers=True) == \ r"\left(x + 1\right)^{3/4}" assert latex(1.5e20*x) == r"1.5 \cdot 10^{20} x" assert latex(1.5e20*x, mul_symbol='dot') == r"1.5 \cdot 10^{20} \cdot x" assert latex(1.5e20*x, mul_symbol='times') == \ r"1.5 \times 10^{20} \times x" assert latex(1/sin(x)) == r"\frac{1}{\sin{\left(x \right)}}" assert latex(sin(x)**-1) == r"\frac{1}{\sin{\left(x \right)}}" assert latex(sin(x)**Rational(3, 2)) == \ r"\sin^{\frac{3}{2}}{\left(x \right)}" assert latex(sin(x)**Rational(3, 2), fold_frac_powers=True) == \ r"\sin^{3/2}{\left(x \right)}" assert latex(~x) == r"\neg x" assert latex(x & y) == r"x \wedge y" assert latex(x & y & z) == r"x \wedge y \wedge z" assert latex(x | y) == r"x \vee y" assert latex(x | y | z) == r"x \vee y \vee z" assert latex((x & y) | z) == r"z \vee \left(x \wedge y\right)" assert latex(Implies(x, y)) == r"x \Rightarrow y" assert latex(~(x >> ~y)) == r"x \not\Rightarrow \neg y" assert latex(Implies(Or(x,y), z)) == r"\left(x \vee y\right) \Rightarrow z" assert latex(Implies(z, Or(x,y))) == r"z \Rightarrow \left(x \vee y\right)" assert latex(~(x & y)) == r"\neg \left(x \wedge y\right)" assert latex(~x, symbol_names={x: "x_i"}) == r"\neg x_i" assert latex(x & y, symbol_names={x: "x_i", y: "y_i"}) == \ r"x_i \wedge y_i" assert latex(x & y & z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \ r"x_i \wedge y_i \wedge z_i" assert latex(x | y, symbol_names={x: "x_i", y: "y_i"}) == r"x_i \vee y_i" assert latex(x | y | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \ r"x_i \vee y_i \vee z_i" assert latex((x & y) | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \ r"z_i \vee \left(x_i \wedge y_i\right)" assert latex(Implies(x, y), symbol_names={x: "x_i", y: "y_i"}) == \ r"x_i \Rightarrow y_i" p = Symbol('p', positive=True) assert latex(exp(-p)*log(p)) == r"e^{- p} \log{\left(p \right)}" def test_latex_builtins(): assert latex(True) == r"\text{True}" assert latex(False) == r"\text{False}" assert latex(None) == r"\text{None}" assert latex(true) == r"\text{True}" assert latex(false) == r'\text{False}' def test_latex_SingularityFunction(): assert latex(SingularityFunction(x, 4, 5)) == \ r"{\left\langle x - 4 \right\rangle}^{5}" assert latex(SingularityFunction(x, -3, 4)) == \ r"{\left\langle x + 3 \right\rangle}^{4}" assert latex(SingularityFunction(x, 0, 4)) == \ r"{\left\langle x \right\rangle}^{4}" assert latex(SingularityFunction(x, a, n)) == \ r"{\left\langle - a + x \right\rangle}^{n}" assert latex(SingularityFunction(x, 4, -2)) == \ r"{\left\langle x - 4 \right\rangle}^{-2}" assert latex(SingularityFunction(x, 4, -1)) == \ r"{\left\langle x - 4 \right\rangle}^{-1}" def test_latex_cycle(): assert latex(Cycle(1, 2, 4)) == r"\left( 1\; 2\; 4\right)" assert latex(Cycle(1, 2)(4, 5, 6)) == \ r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)" assert latex(Cycle()) == r"\left( \right)" def test_latex_permutation(): assert latex(Permutation(1, 2, 4)) == r"\left( 1\; 2\; 4\right)" assert latex(Permutation(1, 2)(4, 5, 6)) == \ r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)" assert latex(Permutation()) == r"\left( \right)" assert latex(Permutation(2, 4)*Permutation(5)) == \ r"\left( 2\; 4\right)\left( 5\right)" assert latex(Permutation(5)) == r"\left( 5\right)" assert latex(Permutation(0, 1), perm_cyclic=False) == \ r"\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}" assert latex(Permutation(0, 1)(2, 3), perm_cyclic=False) == \ r"\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix}" assert latex(Permutation(), perm_cyclic=False) == \ r"\left( \right)" def test_latex_Float(): assert latex(Float(1.0e100)) == r"1.0 \cdot 10^{100}" assert latex(Float(1.0e-100)) == r"1.0 \cdot 10^{-100}" assert latex(Float(1.0e-100), mul_symbol="times") == \ r"1.0 \times 10^{-100}" assert latex(Float('10000.0'), full_prec=False, min=-2, max=2) == \ r"1.0 \cdot 10^{4}" assert latex(Float('10000.0'), full_prec=False, min=-2, max=4) == \ r"1.0 \cdot 10^{4}" assert latex(Float('10000.0'), full_prec=False, min=-2, max=5) == \ r"10000.0" assert latex(Float('0.099999'), full_prec=True, min=-2, max=5) == \ r"9.99990000000000 \cdot 10^{-2}" def test_latex_vector_expressions(): A = CoordSys3D('A') assert latex(Cross(A.i, A.j*A.x*3+A.k)) == \ r"\mathbf{\hat{i}_{A}} \times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)" assert latex(Cross(A.i, A.j)) == \ r"\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}" assert latex(x*Cross(A.i, A.j)) == \ r"x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)" assert latex(Cross(x*A.i, A.j)) == \ r'- \mathbf{\hat{j}_{A}} \times \left((x)\mathbf{\hat{i}_{A}}\right)' assert latex(Curl(3*A.x*A.j)) == \ r"\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)" assert latex(Curl(3*A.x*A.j+A.i)) == \ r"\nabla\times \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)" assert latex(Curl(3*x*A.x*A.j)) == \ r"\nabla\times \left((3 \mathbf{{x}_{A}} x)\mathbf{\hat{j}_{A}}\right)" assert latex(x*Curl(3*A.x*A.j)) == \ r"x \left(\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)" assert latex(Divergence(3*A.x*A.j+A.i)) == \ r"\nabla\cdot \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)" assert latex(Divergence(3*A.x*A.j)) == \ r"\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)" assert latex(x*Divergence(3*A.x*A.j)) == \ r"x \left(\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)" assert latex(Dot(A.i, A.j*A.x*3+A.k)) == \ r"\mathbf{\hat{i}_{A}} \cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)" assert latex(Dot(A.i, A.j)) == \ r"\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}" assert latex(Dot(x*A.i, A.j)) == \ r"\mathbf{\hat{j}_{A}} \cdot \left((x)\mathbf{\hat{i}_{A}}\right)" assert latex(x*Dot(A.i, A.j)) == \ r"x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)" assert latex(Gradient(A.x)) == r"\nabla \mathbf{{x}_{A}}" assert latex(Gradient(A.x + 3*A.y)) == \ r"\nabla \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)" assert latex(x*Gradient(A.x)) == r"x \left(\nabla \mathbf{{x}_{A}}\right)" assert latex(Gradient(x*A.x)) == r"\nabla \left(\mathbf{{x}_{A}} x\right)" assert latex(Laplacian(A.x)) == r"\triangle \mathbf{{x}_{A}}" assert latex(Laplacian(A.x + 3*A.y)) == \ r"\triangle \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)" assert latex(x*Laplacian(A.x)) == r"x \left(\triangle \mathbf{{x}_{A}}\right)" assert latex(Laplacian(x*A.x)) == r"\triangle \left(\mathbf{{x}_{A}} x\right)" def test_latex_symbols(): Gamma, lmbda, rho = symbols('Gamma, lambda, rho') tau, Tau, TAU, taU = symbols('tau, Tau, TAU, taU') assert latex(tau) == r"\tau" assert latex(Tau) == "T" assert latex(TAU) == r"\tau" assert latex(taU) == r"\tau" # Check that all capitalized greek letters are handled explicitly capitalized_letters = {l.capitalize() for l in greek_letters_set} assert len(capitalized_letters - set(tex_greek_dictionary.keys())) == 0 assert latex(Gamma + lmbda) == r"\Gamma + \lambda" assert latex(Gamma * lmbda) == r"\Gamma \lambda" assert latex(Symbol('q1')) == r"q_{1}" assert latex(Symbol('q21')) == r"q_{21}" assert latex(Symbol('epsilon0')) == r"\epsilon_{0}" assert latex(Symbol('omega1')) == r"\omega_{1}" assert latex(Symbol('91')) == r"91" assert latex(Symbol('alpha_new')) == r"\alpha_{new}" assert latex(Symbol('C^orig')) == r"C^{orig}" assert latex(Symbol('x^alpha')) == r"x^{\alpha}" assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}" assert latex(Symbol('e^Alpha')) == r"e^{A}" assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}" assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}" @XFAIL def test_latex_symbols_failing(): rho, mass, volume = symbols('rho, mass, volume') assert latex( volume * rho == mass) == r"\rho \mathrm{volume} = \mathrm{mass}" assert latex(volume / mass * rho == 1) == \ r"\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1" assert latex(mass**3 * volume**3) == \ r"{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}" @_both_exp_pow def test_latex_functions(): assert latex(exp(x)) == "e^{x}" assert latex(exp(1) + exp(2)) == "e + e^{2}" f = Function('f') assert latex(f(x)) == r'f{\left(x \right)}' assert latex(f) == r'f' g = Function('g') assert latex(g(x, y)) == r'g{\left(x,y \right)}' assert latex(g) == r'g' h = Function('h') assert latex(h(x, y, z)) == r'h{\left(x,y,z \right)}' assert latex(h) == r'h' Li = Function('Li') assert latex(Li) == r'\operatorname{Li}' assert latex(Li(x)) == r'\operatorname{Li}{\left(x \right)}' mybeta = Function('beta') # not to be confused with the beta function assert latex(mybeta(x, y, z)) == r"\beta{\left(x,y,z \right)}" assert latex(beta(x, y)) == r'\operatorname{B}\left(x, y\right)' assert latex(beta(x, y)**2) == r'\operatorname{B}^{2}\left(x, y\right)' assert latex(mybeta(x)) == r"\beta{\left(x \right)}" assert latex(mybeta) == r"\beta" g = Function('gamma') # not to be confused with the gamma function assert latex(g(x, y, z)) == r"\gamma{\left(x,y,z \right)}" assert latex(g(x)) == r"\gamma{\left(x \right)}" assert latex(g) == r"\gamma" a1 = Function('a_1') assert latex(a1) == r"\operatorname{a_{1}}" assert latex(a1(x)) == r"\operatorname{a_{1}}{\left(x \right)}" # issue 5868 omega1 = Function('omega1') assert latex(omega1) == r"\omega_{1}" assert latex(omega1(x)) == r"\omega_{1}{\left(x \right)}" assert latex(sin(x)) == r"\sin{\left(x \right)}" assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" assert latex(sin(2*x**2), fold_func_brackets=True) == \ r"\sin {2 x^{2}}" assert latex(sin(x**2), fold_func_brackets=True) == \ r"\sin {x^{2}}" assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left(x \right)}" assert latex(asin(x)**2, inv_trig_style="full") == \ r"\arcsin^{2}{\left(x \right)}" assert latex(asin(x)**2, inv_trig_style="power") == \ r"\sin^{-1}{\left(x \right)}^{2}" assert latex(asin(x**2), inv_trig_style="power", fold_func_brackets=True) == \ r"\sin^{-1} {x^{2}}" assert latex(acsc(x), inv_trig_style="full") == \ r"\operatorname{arccsc}{\left(x \right)}" assert latex(asinh(x), inv_trig_style="full") == \ r"\operatorname{arcsinh}{\left(x \right)}" assert latex(factorial(k)) == r"k!" assert latex(factorial(-k)) == r"\left(- k\right)!" assert latex(factorial(k)**2) == r"k!^{2}" assert latex(subfactorial(k)) == r"!k" assert latex(subfactorial(-k)) == r"!\left(- k\right)" assert latex(subfactorial(k)**2) == r"\left(!k\right)^{2}" assert latex(factorial2(k)) == r"k!!" assert latex(factorial2(-k)) == r"\left(- k\right)!!" assert latex(factorial2(k)**2) == r"k!!^{2}" assert latex(binomial(2, k)) == r"{\binom{2}{k}}" assert latex(binomial(2, k)**2) == r"{\binom{2}{k}}^{2}" assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{k}" assert latex(RisingFactorial(3, k)) == r"{3}^{\left(k\right)}" assert latex(floor(x)) == r"\left\lfloor{x}\right\rfloor" assert latex(ceiling(x)) == r"\left\lceil{x}\right\rceil" assert latex(frac(x)) == r"\operatorname{frac}{\left(x\right)}" assert latex(floor(x)**2) == r"\left\lfloor{x}\right\rfloor^{2}" assert latex(ceiling(x)**2) == r"\left\lceil{x}\right\rceil^{2}" assert latex(frac(x)**2) == r"\operatorname{frac}{\left(x\right)}^{2}" assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)" assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}" assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)" assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}" assert latex(Abs(x)) == r"\left|{x}\right|" assert latex(Abs(x)**2) == r"\left|{x}\right|^{2}" assert latex(re(x)) == r"\operatorname{re}{\left(x\right)}" assert latex(re(x + y)) == \ r"\operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y\right)}" assert latex(im(x)) == r"\operatorname{im}{\left(x\right)}" assert latex(conjugate(x)) == r"\overline{x}" assert latex(conjugate(x)**2) == r"\overline{x}^{2}" assert latex(conjugate(x**2)) == r"\overline{x}^{2}" assert latex(gamma(x)) == r"\Gamma\left(x\right)" w = Wild('w') assert latex(gamma(w)) == r"\Gamma\left(w\right)" assert latex(Order(x)) == r"O\left(x\right)" assert latex(Order(x, x)) == r"O\left(x\right)" assert latex(Order(x, (x, 0))) == r"O\left(x\right)" assert latex(Order(x, (x, oo))) == r"O\left(x; x\rightarrow \infty\right)" assert latex(Order(x - y, (x, y))) == \ r"O\left(x - y; x\rightarrow y\right)" assert latex(Order(x, x, y)) == \ r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)" assert latex(Order(x, x, y)) == \ r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)" assert latex(Order(x, (x, oo), (y, oo))) == \ r"O\left(x; \left( x, \ y\right)\rightarrow \left( \infty, \ \infty\right)\right)" assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)' assert latex(lowergamma(x, y)**2) == r'\gamma^{2}\left(x, y\right)' assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)' assert latex(uppergamma(x, y)**2) == r'\Gamma^{2}\left(x, y\right)' assert latex(cot(x)) == r'\cot{\left(x \right)}' assert latex(coth(x)) == r'\coth{\left(x \right)}' assert latex(re(x)) == r'\operatorname{re}{\left(x\right)}' assert latex(im(x)) == r'\operatorname{im}{\left(x\right)}' assert latex(root(x, y)) == r'x^{\frac{1}{y}}' assert latex(arg(x)) == r'\arg{\left(x \right)}' assert latex(zeta(x)) == r"\zeta\left(x\right)" assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)" assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)" assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)" assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)" assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)" assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)" assert latex( polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)" assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)" assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)" assert latex(stieltjes(x)) == r"\gamma_{x}" assert latex(stieltjes(x)**2) == r"\gamma_{x}^{2}" assert latex(stieltjes(x, y)) == r"\gamma_{x}\left(y\right)" assert latex(stieltjes(x, y)**2) == r"\gamma_{x}\left(y\right)^{2}" assert latex(elliptic_k(z)) == r"K\left(z\right)" assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)" assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)" assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)" assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)" assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)" assert latex(elliptic_e(z)) == r"E\left(z\right)" assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)" assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)" assert latex(elliptic_pi(x, y, z)**2) == \ r"\Pi^{2}\left(x; y\middle| z\right)" assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)" assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)" assert latex(Ei(x)) == r'\operatorname{Ei}{\left(x \right)}' assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left(x \right)}' assert latex(expint(x, y)) == r'\operatorname{E}_{x}\left(y\right)' assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)' assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left(x \right)}' assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left(x \right)}' assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left(x \right)}' assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}\left(x\right)' assert latex(Chi(x)) == r'\operatorname{Chi}\left(x\right)' assert latex(jacobi(n, a, b, x)) == \ r'P_{n}^{\left(a,b\right)}\left(x\right)' assert latex(jacobi(n, a, b, x)**2) == \ r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}' assert latex(gegenbauer(n, a, x)) == \ r'C_{n}^{\left(a\right)}\left(x\right)' assert latex(gegenbauer(n, a, x)**2) == \ r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)' assert latex(chebyshevt(n, x)**2) == \ r'\left(T_{n}\left(x\right)\right)^{2}' assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)' assert latex(chebyshevu(n, x)**2) == \ r'\left(U_{n}\left(x\right)\right)^{2}' assert latex(legendre(n, x)) == r'P_{n}\left(x\right)' assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}' assert latex(assoc_legendre(n, a, x)) == \ r'P_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_legendre(n, a, x)**2) == \ r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)' assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}' assert latex(assoc_laguerre(n, a, x)) == \ r'L_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_laguerre(n, a, x)**2) == \ r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(hermite(n, x)) == r'H_{n}\left(x\right)' assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}' theta = Symbol("theta", real=True) phi = Symbol("phi", real=True) assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)' assert latex(Ynm(n, m, theta, phi)**3) == \ r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}' assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)' assert latex(Znm(n, m, theta, phi)**3) == \ r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}' # Test latex printing of function names with "_" assert latex(polar_lift(0)) == \ r"\operatorname{polar\_lift}{\left(0 \right)}" assert latex(polar_lift(0)**3) == \ r"\operatorname{polar\_lift}^{3}{\left(0 \right)}" assert latex(totient(n)) == r'\phi\left(n\right)' assert latex(totient(n) ** 2) == r'\left(\phi\left(n\right)\right)^{2}' assert latex(reduced_totient(n)) == r'\lambda\left(n\right)' assert latex(reduced_totient(n) ** 2) == \ r'\left(\lambda\left(n\right)\right)^{2}' assert latex(divisor_sigma(x)) == r"\sigma\left(x\right)" assert latex(divisor_sigma(x)**2) == r"\sigma^{2}\left(x\right)" assert latex(divisor_sigma(x, y)) == r"\sigma_y\left(x\right)" assert latex(divisor_sigma(x, y)**2) == r"\sigma^{2}_y\left(x\right)" assert latex(udivisor_sigma(x)) == r"\sigma^*\left(x\right)" assert latex(udivisor_sigma(x)**2) == r"\sigma^*^{2}\left(x\right)" assert latex(udivisor_sigma(x, y)) == r"\sigma^*_y\left(x\right)" assert latex(udivisor_sigma(x, y)**2) == r"\sigma^*^{2}_y\left(x\right)" assert latex(primenu(n)) == r'\nu\left(n\right)' assert latex(primenu(n) ** 2) == r'\left(\nu\left(n\right)\right)^{2}' assert latex(primeomega(n)) == r'\Omega\left(n\right)' assert latex(primeomega(n) ** 2) == \ r'\left(\Omega\left(n\right)\right)^{2}' assert latex(LambertW(n)) == r'W\left(n\right)' assert latex(LambertW(n, -1)) == r'W_{-1}\left(n\right)' assert latex(LambertW(n, k)) == r'W_{k}\left(n\right)' assert latex(Mod(x, 7)) == r'x\bmod{7}' assert latex(Mod(x + 1, 7)) == r'\left(x + 1\right)\bmod{7}' assert latex(Mod(2 * x, 7)) == r'2 x\bmod{7}' assert latex(Mod(x, 7) + 1) == r'\left(x\bmod{7}\right) + 1' assert latex(2 * Mod(x, 7)) == r'2 \left(x\bmod{7}\right)' # some unknown function name should get rendered with \operatorname fjlkd = Function('fjlkd') assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left(x \right)}' # even when it is referred to without an argument assert latex(fjlkd) == r'\operatorname{fjlkd}' # test that notation passes to subclasses of the same name only def test_function_subclass_different_name(): class mygamma(gamma): pass assert latex(mygamma) == r"\operatorname{mygamma}" assert latex(mygamma(x)) == r"\operatorname{mygamma}{\left(x \right)}" def test_hyper_printing(): from sympy import pi from sympy.abc import x, z assert latex(meijerg(Tuple(pi, pi, x), Tuple(1), (0, 1), Tuple(1, 2, 3/pi), z)) == \ r'{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, '\ r'\frac{3}{\pi} \end{matrix} \middle| {z} \right)}' assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(), z)) == \ r'{G_{1, 1}^{1, 0}\left(\begin{matrix} & 1 \\0 & \end{matrix} \middle| {z} \right)}' assert latex(hyper((x, 2), (3,), z)) == \ r'{{}_{2}F_{1}\left(\begin{matrix} x, 2 ' \ r'\\ 3 \end{matrix}\middle| {z} \right)}' assert latex(hyper(Tuple(), Tuple(1), z)) == \ r'{{}_{0}F_{1}\left(\begin{matrix} ' \ r'\\ 1 \end{matrix}\middle| {z} \right)}' def test_latex_bessel(): from sympy.functions.special.bessel import (besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn, hn1, hn2) from sympy.abc import z assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)' assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)' assert latex(besseli(n, z)) == r'I_{n}\left(z\right)' assert latex(besselk(n, z)) == r'K_{n}\left(z\right)' assert latex(hankel1(n, z**2)**2) == \ r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}' assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)' assert latex(jn(n, z)) == r'j_{n}\left(z\right)' assert latex(yn(n, z)) == r'y_{n}\left(z\right)' assert latex(hn1(n, z)) == r'h^{(1)}_{n}\left(z\right)' assert latex(hn2(n, z)) == r'h^{(2)}_{n}\left(z\right)' def test_latex_fresnel(): from sympy.functions.special.error_functions import (fresnels, fresnelc) from sympy.abc import z assert latex(fresnels(z)) == r'S\left(z\right)' assert latex(fresnelc(z)) == r'C\left(z\right)' assert latex(fresnels(z)**2) == r'S^{2}\left(z\right)' assert latex(fresnelc(z)**2) == r'C^{2}\left(z\right)' def test_latex_brackets(): assert latex((-1)**x) == r"\left(-1\right)^{x}" def test_latex_indexed(): Psi_symbol = Symbol('Psi_0', complex=True, real=False) Psi_indexed = IndexedBase(Symbol('Psi', complex=True, real=False)) symbol_latex = latex(Psi_symbol * conjugate(Psi_symbol)) indexed_latex = latex(Psi_indexed[0] * conjugate(Psi_indexed[0])) # \\overline{{\\Psi}_{0}} {\\Psi}_{0} vs. \\Psi_{0} \\overline{\\Psi_{0}} assert symbol_latex == '\\Psi_{0} \\overline{\\Psi_{0}}' assert indexed_latex == '\\overline{{\\Psi}_{0}} {\\Psi}_{0}' # Symbol('gamma') gives r'\gamma' assert latex(Indexed('x1', Symbol('i'))) == '{x_{1}}_{i}' assert latex(IndexedBase('gamma')) == r'\gamma' assert latex(IndexedBase('a b')) == 'a b' assert latex(IndexedBase('a_b')) == 'a_{b}' def test_latex_derivatives(): # regular "d" for ordinary derivatives assert latex(diff(x**3, x, evaluate=False)) == \ r"\frac{d}{d x} x^{3}" assert latex(diff(sin(x) + x**2, x, evaluate=False)) == \ r"\frac{d}{d x} \left(x^{2} + \sin{\left(x \right)}\right)" assert latex(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False))\ == \ r"\frac{d^{2}}{d x^{2}} \left(x^{2} + \sin{\left(x \right)}\right)" assert latex(diff(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False), evaluate=False)) == \ r"\frac{d^{3}}{d x^{3}} \left(x^{2} + \sin{\left(x \right)}\right)" # \partial for partial derivatives assert latex(diff(sin(x * y), x, evaluate=False)) == \ r"\frac{\partial}{\partial x} \sin{\left(x y \right)}" assert latex(diff(sin(x * y) + x**2, x, evaluate=False)) == \ r"\frac{\partial}{\partial x} \left(x^{2} + \sin{\left(x y \right)}\right)" assert latex(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False)) == \ r"\frac{\partial^{2}}{\partial x^{2}} \left(x^{2} + \sin{\left(x y \right)}\right)" assert latex(diff(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False), x, evaluate=False)) == \ r"\frac{\partial^{3}}{\partial x^{3}} \left(x^{2} + \sin{\left(x y \right)}\right)" # mixed partial derivatives f = Function("f") assert latex(diff(diff(f(x, y), x, evaluate=False), y, evaluate=False)) == \ r"\frac{\partial^{2}}{\partial y\partial x} " + latex(f(x, y)) assert latex(diff(diff(diff(f(x, y), x, evaluate=False), x, evaluate=False), y, evaluate=False)) == \ r"\frac{\partial^{3}}{\partial y\partial x^{2}} " + latex(f(x, y)) # for negative nested Derivative assert latex(diff(-diff(y**2,x,evaluate=False),x,evaluate=False)) == r'\frac{d}{d x} \left(- \frac{d}{d x} y^{2}\right)' assert latex(diff(diff(-diff(diff(y,x,evaluate=False),x,evaluate=False),x,evaluate=False),x,evaluate=False)) == \ r'\frac{d^{2}}{d x^{2}} \left(- \frac{d^{2}}{d x^{2}} y\right)' # use ordinary d when one of the variables has been integrated out assert latex(diff(Integral(exp(-x*y), (x, 0, oo)), y, evaluate=False)) == \ r"\frac{d}{d y} \int\limits_{0}^{\infty} e^{- x y}\, dx" # Derivative wrapped in power: assert latex(diff(x, x, evaluate=False)**2) == \ r"\left(\frac{d}{d x} x\right)^{2}" assert latex(diff(f(x), x)**2) == \ r"\left(\frac{d}{d x} f{\left(x \right)}\right)^{2}" assert latex(diff(f(x), (x, n))) == \ r"\frac{d^{n}}{d x^{n}} f{\left(x \right)}" x1 = Symbol('x1') x2 = Symbol('x2') assert latex(diff(f(x1, x2), x1)) == r'\frac{\partial}{\partial x_{1}} f{\left(x_{1},x_{2} \right)}' n1 = Symbol('n1') assert latex(diff(f(x), (x, n1))) == r'\frac{d^{n_{1}}}{d x^{n_{1}}} f{\left(x \right)}' n2 = Symbol('n2') assert latex(diff(f(x), (x, Max(n1, n2)))) == \ r'\frac{d^{\max\left(n_{1}, n_{2}\right)}}{d x^{\max\left(n_{1}, n_{2}\right)}} f{\left(x \right)}' def test_latex_subs(): assert latex(Subs(x*y, ( x, y), (1, 2))) == r'\left. x y \right|_{\substack{ x=1\\ y=2 }}' def test_latex_integrals(): assert latex(Integral(log(x), x)) == r"\int \log{\left(x \right)}\, dx" assert latex(Integral(x**2, (x, 0, 1))) == \ r"\int\limits_{0}^{1} x^{2}\, dx" assert latex(Integral(x**2, (x, 10, 20))) == \ r"\int\limits_{10}^{20} x^{2}\, dx" assert latex(Integral(y*x**2, (x, 0, 1), y)) == \ r"\int\int\limits_{0}^{1} x^{2} y\, dx\, dy" assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') == \ r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}" assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \ == r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$" assert latex(Integral(x, (x, 0))) == r"\int\limits^{0} x\, dx" assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy" assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz" assert latex(Integral(x*y*z*t, x, y, z, t)) == \ r"\iiiint t x y z\, dx\, dy\, dz\, dt" assert latex(Integral(x, x, x, x, x, x, x)) == \ r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx" assert latex(Integral(x, x, y, (z, 0, 1))) == \ r"\int\limits_{0}^{1}\int\int x\, dx\, dy\, dz" # for negative nested Integral assert latex(Integral(-Integral(y**2,x),x)) == \ r'\int \left(- \int y^{2}\, dx\right)\, dx' assert latex(Integral(-Integral(-Integral(y,x),x),x)) == \ r'\int \left(- \int \left(- \int y\, dx\right)\, dx\right)\, dx' # fix issue #10806 assert latex(Integral(z, z)**2) == r"\left(\int z\, dz\right)^{2}" assert latex(Integral(x + z, z)) == r"\int \left(x + z\right)\, dz" assert latex(Integral(x+z/2, z)) == \ r"\int \left(x + \frac{z}{2}\right)\, dz" assert latex(Integral(x**y, z)) == r"\int x^{y}\, dz" def test_latex_sets(): for s in (frozenset, set): assert latex(s([x*y, x**2])) == r"\left\{x^{2}, x y\right\}" assert latex(s(range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}" assert latex(s(range(1, 13))) == \ r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}" s = FiniteSet assert latex(s(*[x*y, x**2])) == r"\left\{x^{2}, x y\right\}" assert latex(s(*range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}" assert latex(s(*range(1, 13))) == \ r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}" def test_latex_SetExpr(): iv = Interval(1, 3) se = SetExpr(iv) assert latex(se) == r"SetExpr\left(\left[1, 3\right]\right)" def test_latex_Range(): assert latex(Range(1, 51)) == r'\left\{1, 2, \ldots, 50\right\}' assert latex(Range(1, 4)) == r'\left\{1, 2, 3\right\}' assert latex(Range(0, 3, 1)) == r'\left\{0, 1, 2\right\}' assert latex(Range(0, 30, 1)) == r'\left\{0, 1, \ldots, 29\right\}' assert latex(Range(30, 1, -1)) == r'\left\{30, 29, \ldots, 2\right\}' assert latex(Range(0, oo, 2)) == r'\left\{0, 2, \ldots\right\}' assert latex(Range(oo, -2, -2)) == r'\left\{\ldots, 2, 0\right\}' assert latex(Range(-2, -oo, -1)) == r'\left\{-2, -3, \ldots\right\}' assert latex(Range(-oo, oo)) == r'\left\{\ldots, -1, 0, 1, \ldots\right\}' assert latex(Range(oo, -oo, -1)) == \ r'\left\{\ldots, 1, 0, -1, \ldots\right\}' a, b, c = symbols('a:c') assert latex(Range(a, b, c)) == r'Range\left(a, b, c\right)' assert latex(Range(a, 10, 1)) == r'Range\left(a, 10, 1\right)' assert latex(Range(0, b, 1)) == r'Range\left(0, b, 1\right)' assert latex(Range(0, 10, c)) == r'Range\left(0, 10, c\right)' def test_latex_sequences(): s1 = SeqFormula(a**2, (0, oo)) s2 = SeqPer((1, 2)) latex_str = r'\left[0, 1, 4, 9, \ldots\right]' assert latex(s1) == latex_str latex_str = r'\left[1, 2, 1, 2, \ldots\right]' assert latex(s2) == latex_str s3 = SeqFormula(a**2, (0, 2)) s4 = SeqPer((1, 2), (0, 2)) latex_str = r'\left[0, 1, 4\right]' assert latex(s3) == latex_str latex_str = r'\left[1, 2, 1\right]' assert latex(s4) == latex_str s5 = SeqFormula(a**2, (-oo, 0)) s6 = SeqPer((1, 2), (-oo, 0)) latex_str = r'\left[\ldots, 9, 4, 1, 0\right]' assert latex(s5) == latex_str latex_str = r'\left[\ldots, 2, 1, 2, 1\right]' assert latex(s6) == latex_str latex_str = r'\left[1, 3, 5, 11, \ldots\right]' assert latex(SeqAdd(s1, s2)) == latex_str latex_str = r'\left[1, 3, 5\right]' assert latex(SeqAdd(s3, s4)) == latex_str latex_str = r'\left[\ldots, 11, 5, 3, 1\right]' assert latex(SeqAdd(s5, s6)) == latex_str latex_str = r'\left[0, 2, 4, 18, \ldots\right]' assert latex(SeqMul(s1, s2)) == latex_str latex_str = r'\left[0, 2, 4\right]' assert latex(SeqMul(s3, s4)) == latex_str latex_str = r'\left[\ldots, 18, 4, 2, 0\right]' assert latex(SeqMul(s5, s6)) == latex_str # Sequences with symbolic limits, issue 12629 s7 = SeqFormula(a**2, (a, 0, x)) latex_str = r'\left\{a^{2}\right\}_{a=0}^{x}' assert latex(s7) == latex_str b = Symbol('b') s8 = SeqFormula(b*a**2, (a, 0, 2)) latex_str = r'\left[0, b, 4 b\right]' assert latex(s8) == latex_str def test_latex_FourierSeries(): latex_str = \ r'2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots' assert latex(fourier_series(x, (x, -pi, pi))) == latex_str def test_latex_FormalPowerSeries(): latex_str = r'\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}' assert latex(fps(log(1 + x))) == latex_str def test_latex_intervals(): a = Symbol('a', real=True) assert latex(Interval(0, 0)) == r"\left\{0\right\}" assert latex(Interval(0, a)) == r"\left[0, a\right]" assert latex(Interval(0, a, False, False)) == r"\left[0, a\right]" assert latex(Interval(0, a, True, False)) == r"\left(0, a\right]" assert latex(Interval(0, a, False, True)) == r"\left[0, a\right)" assert latex(Interval(0, a, True, True)) == r"\left(0, a\right)" def test_latex_AccumuBounds(): a = Symbol('a', real=True) assert latex(AccumBounds(0, 1)) == r"\left\langle 0, 1\right\rangle" assert latex(AccumBounds(0, a)) == r"\left\langle 0, a\right\rangle" assert latex(AccumBounds(a + 1, a + 2)) == \ r"\left\langle a + 1, a + 2\right\rangle" def test_latex_emptyset(): assert latex(S.EmptySet) == r"\emptyset" def test_latex_universalset(): assert latex(S.UniversalSet) == r"\mathbb{U}" def test_latex_commutator(): A = Operator('A') B = Operator('B') comm = Commutator(B, A) assert latex(comm.doit()) == r"- (A B - B A)" def test_latex_union(): assert latex(Union(Interval(0, 1), Interval(2, 3))) == \ r"\left[0, 1\right] \cup \left[2, 3\right]" assert latex(Union(Interval(1, 1), Interval(2, 2), Interval(3, 4))) == \ r"\left\{1, 2\right\} \cup \left[3, 4\right]" def test_latex_intersection(): assert latex(Intersection(Interval(0, 1), Interval(x, y))) == \ r"\left[0, 1\right] \cap \left[x, y\right]" def test_latex_symmetric_difference(): assert latex(SymmetricDifference(Interval(2, 5), Interval(4, 7), evaluate=False)) == \ r'\left[2, 5\right] \triangle \left[4, 7\right]' def test_latex_Complement(): assert latex(Complement(S.Reals, S.Naturals)) == \ r"\mathbb{R} \setminus \mathbb{N}" def test_latex_productset(): line = Interval(0, 1) bigline = Interval(0, 10) fset = FiniteSet(1, 2, 3) assert latex(line**2) == r"%s^{2}" % latex(line) assert latex(line**10) == r"%s^{10}" % latex(line) assert latex((line * bigline * fset).flatten()) == r"%s \times %s \times %s" % ( latex(line), latex(bigline), latex(fset)) def test_set_operators_parenthesis(): a, b, c, d = symbols('a:d') A = FiniteSet(a) B = FiniteSet(b) C = FiniteSet(c) D = FiniteSet(d) U1 = Union(A, B, evaluate=False) U2 = Union(C, D, evaluate=False) I1 = Intersection(A, B, evaluate=False) I2 = Intersection(C, D, evaluate=False) C1 = Complement(A, B, evaluate=False) C2 = Complement(C, D, evaluate=False) D1 = SymmetricDifference(A, B, evaluate=False) D2 = SymmetricDifference(C, D, evaluate=False) # XXX ProductSet does not support evaluate keyword P1 = ProductSet(A, B) P2 = ProductSet(C, D) assert latex(Intersection(A, U2, evaluate=False)) == \ '\\left\\{a\\right\\} \\cap ' \ '\\left(\\left\\{c\\right\\} \\cup \\left\\{d\\right\\}\\right)' assert latex(Intersection(U1, U2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \ '\\cap \\left(\\left\\{c\\right\\} \\cup \\left\\{d\\right\\}\\right)' assert latex(Intersection(C1, C2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\setminus ' \ '\\left\\{b\\right\\}\\right) \\cap \\left(\\left\\{c\\right\\} ' \ '\\setminus \\left\\{d\\right\\}\\right)' assert latex(Intersection(D1, D2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\triangle ' \ '\\left\\{b\\right\\}\\right) \\cap \\left(\\left\\{c\\right\\} ' \ '\\triangle \\left\\{d\\right\\}\\right)' assert latex(Intersection(P1, P2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \ '\\cap \\left(\\left\\{c\\right\\} \\times ' \ '\\left\\{d\\right\\}\\right)' assert latex(Union(A, I2, evaluate=False)) == \ '\\left\\{a\\right\\} \\cup ' \ '\\left(\\left\\{c\\right\\} \\cap \\left\\{d\\right\\}\\right)' assert latex(Union(I1, I2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cap ''\\left\\{b\\right\\}\\right) ' \ '\\cup \\left(\\left\\{c\\right\\} \\cap \\left\\{d\\right\\}\\right)' assert latex(Union(C1, C2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\setminus ' \ '\\left\\{b\\right\\}\\right) \\cup \\left(\\left\\{c\\right\\} ' \ '\\setminus \\left\\{d\\right\\}\\right)' assert latex(Union(D1, D2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\triangle ' \ '\\left\\{b\\right\\}\\right) \\cup \\left(\\left\\{c\\right\\} ' \ '\\triangle \\left\\{d\\right\\}\\right)' assert latex(Union(P1, P2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \ '\\cup \\left(\\left\\{c\\right\\} \\times ' \ '\\left\\{d\\right\\}\\right)' assert latex(Complement(A, C2, evaluate=False)) == \ '\\left\\{a\\right\\} \\setminus \\left(\\left\\{c\\right\\} ' \ '\\setminus \\left\\{d\\right\\}\\right)' assert latex(Complement(U1, U2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \ '\\setminus \\left(\\left\\{c\\right\\} \\cup ' \ '\\left\\{d\\right\\}\\right)' assert latex(Complement(I1, I2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \ '\\setminus \\left(\\left\\{c\\right\\} \\cap ' \ '\\left\\{d\\right\\}\\right)' assert latex(Complement(D1, D2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\triangle ' \ '\\left\\{b\\right\\}\\right) \\setminus ' \ '\\left(\\left\\{c\\right\\} \\triangle \\left\\{d\\right\\}\\right)' assert latex(Complement(P1, P2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) '\ '\\setminus \\left(\\left\\{c\\right\\} \\times '\ '\\left\\{d\\right\\}\\right)' assert latex(SymmetricDifference(A, D2, evaluate=False)) == \ '\\left\\{a\\right\\} \\triangle \\left(\\left\\{c\\right\\} ' \ '\\triangle \\left\\{d\\right\\}\\right)' assert latex(SymmetricDifference(U1, U2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \ '\\triangle \\left(\\left\\{c\\right\\} \\cup ' \ '\\left\\{d\\right\\}\\right)' assert latex(SymmetricDifference(I1, I2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \ '\\triangle \\left(\\left\\{c\\right\\} \\cap ' \ '\\left\\{d\\right\\}\\right)' assert latex(SymmetricDifference(C1, C2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\setminus ' \ '\\left\\{b\\right\\}\\right) \\triangle ' \ '\\left(\\left\\{c\\right\\} \\setminus \\left\\{d\\right\\}\\right)' assert latex(SymmetricDifference(P1, P2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \ '\\triangle \\left(\\left\\{c\\right\\} \\times ' \ '\\left\\{d\\right\\}\\right)' # XXX This can be incorrect since cartesian product is not associative assert latex(ProductSet(A, P2).flatten()) == \ '\\left\\{a\\right\\} \\times \\left\\{c\\right\\} \\times ' \ '\\left\\{d\\right\\}' assert latex(ProductSet(U1, U2)) == \ '\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \ '\\times \\left(\\left\\{c\\right\\} \\cup ' \ '\\left\\{d\\right\\}\\right)' assert latex(ProductSet(I1, I2)) == \ '\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \ '\\times \\left(\\left\\{c\\right\\} \\cap ' \ '\\left\\{d\\right\\}\\right)' assert latex(ProductSet(C1, C2)) == \ '\\left(\\left\\{a\\right\\} \\setminus ' \ '\\left\\{b\\right\\}\\right) \\times \\left(\\left\\{c\\right\\} ' \ '\\setminus \\left\\{d\\right\\}\\right)' assert latex(ProductSet(D1, D2)) == \ '\\left(\\left\\{a\\right\\} \\triangle ' \ '\\left\\{b\\right\\}\\right) \\times \\left(\\left\\{c\\right\\} ' \ '\\triangle \\left\\{d\\right\\}\\right)' def test_latex_Complexes(): assert latex(S.Complexes) == r"\mathbb{C}" def test_latex_Naturals(): assert latex(S.Naturals) == r"\mathbb{N}" def test_latex_Naturals0(): assert latex(S.Naturals0) == r"\mathbb{N}_0" def test_latex_Integers(): assert latex(S.Integers) == r"\mathbb{Z}" def test_latex_ImageSet(): x = Symbol('x') assert latex(ImageSet(Lambda(x, x**2), S.Naturals)) == \ r"\left\{x^{2}\; \middle|\; x \in \mathbb{N}\right\}" y = Symbol('y') imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4}) assert latex(imgset) == \ r"\left\{x + y\; \middle|\; x \in \left\{1, 2, 3\right\} , y \in \left\{3, 4\right\}\right\}" imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4})) assert latex(imgset) == \ r"\left\{x + y\; \middle|\; \left( x, \ y\right) \in \left\{1, 2, 3\right\} \times \left\{3, 4\right\}\right\}" def test_latex_ConditionSet(): x = Symbol('x') assert latex(ConditionSet(x, Eq(x**2, 1), S.Reals)) == \ r"\left\{x\; \middle|\; x \in \mathbb{R} \wedge x^{2} = 1 \right\}" assert latex(ConditionSet(x, Eq(x**2, 1), S.UniversalSet)) == \ r"\left\{x\; \middle|\; x^{2} = 1 \right\}" def test_latex_ComplexRegion(): assert latex(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == \ r"\left\{x + y i\; \middle|\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}" assert latex(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == \ r"\left\{r \left(i \sin{\left(\theta \right)} + \cos{\left(\theta "\ r"\right)}\right)\; \middle|\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\}" def test_latex_Contains(): x = Symbol('x') assert latex(Contains(x, S.Naturals)) == r"x \in \mathbb{N}" def test_latex_sum(): assert latex(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \ r"\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}" assert latex(Sum(x**2, (x, -2, 2))) == \ r"\sum_{x=-2}^{2} x^{2}" assert latex(Sum(x**2 + y, (x, -2, 2))) == \ r"\sum_{x=-2}^{2} \left(x^{2} + y\right)" assert latex(Sum(x**2 + y, (x, -2, 2))**2) == \ r"\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2}" def test_latex_product(): assert latex(Product(x*y**2, (x, -2, 2), (y, -5, 5))) == \ r"\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}" assert latex(Product(x**2, (x, -2, 2))) == \ r"\prod_{x=-2}^{2} x^{2}" assert latex(Product(x**2 + y, (x, -2, 2))) == \ r"\prod_{x=-2}^{2} \left(x^{2} + y\right)" assert latex(Product(x, (x, -2, 2))**2) == \ r"\left(\prod_{x=-2}^{2} x\right)^{2}" def test_latex_limits(): assert latex(Limit(x, x, oo)) == r"\lim_{x \to \infty} x" # issue 8175 f = Function('f') assert latex(Limit(f(x), x, 0)) == r"\lim_{x \to 0^+} f{\left(x \right)}" assert latex(Limit(f(x), x, 0, "-")) == \ r"\lim_{x \to 0^-} f{\left(x \right)}" # issue #10806 assert latex(Limit(f(x), x, 0)**2) == \ r"\left(\lim_{x \to 0^+} f{\left(x \right)}\right)^{2}" # bi-directional limit assert latex(Limit(f(x), x, 0, dir='+-')) == \ r"\lim_{x \to 0} f{\left(x \right)}" def test_latex_log(): assert latex(log(x)) == r"\log{\left(x \right)}" assert latex(ln(x)) == r"\log{\left(x \right)}" assert latex(log(x), ln_notation=True) == r"\ln{\left(x \right)}" assert latex(log(x)+log(y)) == \ r"\log{\left(x \right)} + \log{\left(y \right)}" assert latex(log(x)+log(y), ln_notation=True) == \ r"\ln{\left(x \right)} + \ln{\left(y \right)}" assert latex(pow(log(x), x)) == r"\log{\left(x \right)}^{x}" assert latex(pow(log(x), x), ln_notation=True) == \ r"\ln{\left(x \right)}^{x}" def test_issue_3568(): beta = Symbol(r'\beta') y = beta + x assert latex(y) in [r'\beta + x', r'x + \beta'] beta = Symbol(r'beta') y = beta + x assert latex(y) in [r'\beta + x', r'x + \beta'] def test_latex(): assert latex((2*tau)**Rational(7, 2)) == "8 \\sqrt{2} \\tau^{\\frac{7}{2}}" assert latex((2*mu)**Rational(7, 2), mode='equation*') == \ "\\begin{equation*}8 \\sqrt{2} \\mu^{\\frac{7}{2}}\\end{equation*}" assert latex((2*mu)**Rational(7, 2), mode='equation', itex=True) == \ "$$8 \\sqrt{2} \\mu^{\\frac{7}{2}}$$" assert latex([2/x, y]) == r"\left[ \frac{2}{x}, \ y\right]" def test_latex_dict(): d = {Rational(1): 1, x**2: 2, x: 3, x**3: 4} assert latex(d) == \ r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}' D = Dict(d) assert latex(D) == \ r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}' def test_latex_list(): ll = [Symbol('omega1'), Symbol('a'), Symbol('alpha')] assert latex(ll) == r'\left[ \omega_{1}, \ a, \ \alpha\right]' def test_latex_rational(): # tests issue 3973 assert latex(-Rational(1, 2)) == "- \\frac{1}{2}" assert latex(Rational(-1, 2)) == "- \\frac{1}{2}" assert latex(Rational(1, -2)) == "- \\frac{1}{2}" assert latex(-Rational(-1, 2)) == "\\frac{1}{2}" assert latex(-Rational(1, 2)*x) == "- \\frac{x}{2}" assert latex(-Rational(1, 2)*x + Rational(-2, 3)*y) == \ "- \\frac{x}{2} - \\frac{2 y}{3}" def test_latex_inverse(): # tests issue 4129 assert latex(1/x) == "\\frac{1}{x}" assert latex(1/(x + y)) == "\\frac{1}{x + y}" def test_latex_DiracDelta(): assert latex(DiracDelta(x)) == r"\delta\left(x\right)" assert latex(DiracDelta(x)**2) == r"\left(\delta\left(x\right)\right)^{2}" assert latex(DiracDelta(x, 0)) == r"\delta\left(x\right)" assert latex(DiracDelta(x, 5)) == \ r"\delta^{\left( 5 \right)}\left( x \right)" assert latex(DiracDelta(x, 5)**2) == \ r"\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2}" def test_latex_Heaviside(): assert latex(Heaviside(x)) == r"\theta\left(x\right)" assert latex(Heaviside(x)**2) == r"\left(\theta\left(x\right)\right)^{2}" def test_latex_KroneckerDelta(): assert latex(KroneckerDelta(x, y)) == r"\delta_{x y}" assert latex(KroneckerDelta(x, y + 1)) == r"\delta_{x, y + 1}" # issue 6578 assert latex(KroneckerDelta(x + 1, y)) == r"\delta_{y, x + 1}" assert latex(Pow(KroneckerDelta(x, y), 2, evaluate=False)) == \ r"\left(\delta_{x y}\right)^{2}" def test_latex_LeviCivita(): assert latex(LeviCivita(x, y, z)) == r"\varepsilon_{x y z}" assert latex(LeviCivita(x, y, z)**2) == \ r"\left(\varepsilon_{x y z}\right)^{2}" assert latex(LeviCivita(x, y, z + 1)) == r"\varepsilon_{x, y, z + 1}" assert latex(LeviCivita(x, y + 1, z)) == r"\varepsilon_{x, y + 1, z}" assert latex(LeviCivita(x + 1, y, z)) == r"\varepsilon_{x + 1, y, z}" def test_mode(): expr = x + y assert latex(expr) == 'x + y' assert latex(expr, mode='plain') == 'x + y' assert latex(expr, mode='inline') == '$x + y$' assert latex( expr, mode='equation*') == '\\begin{equation*}x + y\\end{equation*}' assert latex( expr, mode='equation') == '\\begin{equation}x + y\\end{equation}' raises(ValueError, lambda: latex(expr, mode='foo')) def test_latex_mathieu(): assert latex(mathieuc(x, y, z)) == r"C\left(x, y, z\right)" assert latex(mathieus(x, y, z)) == r"S\left(x, y, z\right)" assert latex(mathieuc(x, y, z)**2) == r"C\left(x, y, z\right)^{2}" assert latex(mathieus(x, y, z)**2) == r"S\left(x, y, z\right)^{2}" assert latex(mathieucprime(x, y, z)) == r"C^{\prime}\left(x, y, z\right)" assert latex(mathieusprime(x, y, z)) == r"S^{\prime}\left(x, y, z\right)" assert latex(mathieucprime(x, y, z)**2) == r"C^{\prime}\left(x, y, z\right)^{2}" assert latex(mathieusprime(x, y, z)**2) == r"S^{\prime}\left(x, y, z\right)^{2}" def test_latex_Piecewise(): p = Piecewise((x, x < 1), (x**2, True)) assert latex(p) == "\\begin{cases} x & \\text{for}\\: x < 1 \\\\x^{2} &" \ " \\text{otherwise} \\end{cases}" assert latex(p, itex=True) == \ "\\begin{cases} x & \\text{for}\\: x \\lt 1 \\\\x^{2} &" \ " \\text{otherwise} \\end{cases}" p = Piecewise((x, x < 0), (0, x >= 0)) assert latex(p) == '\\begin{cases} x & \\text{for}\\: x < 0 \\\\0 &' \ ' \\text{otherwise} \\end{cases}' A, B = symbols("A B", commutative=False) p = Piecewise((A**2, Eq(A, B)), (A*B, True)) s = r"\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}" assert latex(p) == s assert latex(A*p) == r"A \left(%s\right)" % s assert latex(p*A) == r"\left(%s\right) A" % s assert latex(Piecewise((x, x < 1), (x**2, x < 2))) == \ '\\begin{cases} x & ' \ '\\text{for}\\: x < 1 \\\\x^{2} & \\text{for}\\: x < 2 \\end{cases}' def test_latex_Matrix(): M = Matrix([[1 + x, y], [y, x - 1]]) assert latex(M) == \ r'\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]' assert latex(M, mode='inline') == \ r'$\left[\begin{smallmatrix}x + 1 & y\\' \ r'y & x - 1\end{smallmatrix}\right]$' assert latex(M, mat_str='array') == \ r'\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]' assert latex(M, mat_str='bmatrix') == \ r'\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]' assert latex(M, mat_delim=None, mat_str='bmatrix') == \ r'\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}' M2 = Matrix(1, 11, range(11)) assert latex(M2) == \ r'\left[\begin{array}{ccccccccccc}' \ r'0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]' def test_latex_matrix_with_functions(): t = symbols('t') theta1 = symbols('theta1', cls=Function) M = Matrix([[sin(theta1(t)), cos(theta1(t))], [cos(theta1(t).diff(t)), sin(theta1(t).diff(t))]]) expected = (r'\left[\begin{matrix}\sin{\left(' r'\theta_{1}{\left(t \right)} \right)} & ' r'\cos{\left(\theta_{1}{\left(t \right)} \right)' r'}\\\cos{\left(\frac{d}{d t} \theta_{1}{\left(t ' r'\right)} \right)} & \sin{\left(\frac{d}{d t} ' r'\theta_{1}{\left(t \right)} \right' r')}\end{matrix}\right]') assert latex(M) == expected def test_latex_NDimArray(): x, y, z, w = symbols("x y z w") for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray): # Basic: scalar array M = ArrayType(x) assert latex(M) == "x" M = ArrayType([[1 / x, y], [z, w]]) M1 = ArrayType([1 / x, y, z]) M2 = tensorproduct(M1, M) M3 = tensorproduct(M, M) assert latex(M) == \ '\\left[\\begin{matrix}\\frac{1}{x} & y\\\\z & w\\end{matrix}\\right]' assert latex(M1) == \ "\\left[\\begin{matrix}\\frac{1}{x} & y & z\\end{matrix}\\right]" assert latex(M2) == \ r"\left[\begin{matrix}" \ r"\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & " \ r"\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & " \ r"\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]" \ r"\end{matrix}\right]" assert latex(M3) == \ r"""\left[\begin{matrix}"""\ r"""\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & """\ r"""\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\"""\ r"""\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & """\ r"""\left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]"""\ r"""\end{matrix}\right]""" Mrow = ArrayType([[x, y, 1/z]]) Mcolumn = ArrayType([[x], [y], [1/z]]) Mcol2 = ArrayType([Mcolumn.tolist()]) assert latex(Mrow) == \ r"\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]" assert latex(Mcolumn) == \ r"\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]" assert latex(Mcol2) == \ r'\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right]' def test_latex_mul_symbol(): assert latex(4*4**x, mul_symbol='times') == "4 \\times 4^{x}" assert latex(4*4**x, mul_symbol='dot') == "4 \\cdot 4^{x}" assert latex(4*4**x, mul_symbol='ldot') == r"4 \,.\, 4^{x}" assert latex(4*x, mul_symbol='times') == "4 \\times x" assert latex(4*x, mul_symbol='dot') == "4 \\cdot x" assert latex(4*x, mul_symbol='ldot') == r"4 \,.\, x" def test_latex_issue_4381(): y = 4*4**log(2) assert latex(y) == r'4 \cdot 4^{\log{\left(2 \right)}}' assert latex(1/y) == r'\frac{1}{4 \cdot 4^{\log{\left(2 \right)}}}' def test_latex_issue_4576(): assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}" assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}" assert latex(Symbol("beta_13")) == r"\beta_{13}" assert latex(Symbol("x_a_b")) == r"x_{a b}" assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}" assert latex(Symbol("x_a_b1")) == r"x_{a b1}" assert latex(Symbol("x_a_1")) == r"x_{a 1}" assert latex(Symbol("x_1_a")) == r"x_{1 a}" assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}" assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}" assert latex(Symbol("x_11^a")) == r"x^{a}_{11}" assert latex(Symbol("x_11__a")) == r"x^{a}_{11}" assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}" assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}" assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}" assert latex(Symbol("alpha_11")) == r"\alpha_{11}" assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}" assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}" assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}" assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}" def test_latex_pow_fraction(): x = Symbol('x') # Testing exp assert 'e^{-x}' in latex(exp(-x)/2).replace(' ', '') # Remove Whitespace # Testing e^{-x} in case future changes alter behavior of muls or fracs # In particular current output is \frac{1}{2}e^{- x} but perhaps this will # change to \frac{e^{-x}}{2} # Testing general, non-exp, power assert '3^{-x}' in latex(3**-x/2).replace(' ', '') def test_noncommutative(): A, B, C = symbols('A,B,C', commutative=False) assert latex(A*B*C**-1) == "A B C^{-1}" assert latex(C**-1*A*B) == "C^{-1} A B" assert latex(A*C**-1*B) == "A C^{-1} B" def test_latex_order(): expr = x**3 + x**2*y + y**4 + 3*x*y**3 assert latex(expr, order='lex') == "x^{3} + x^{2} y + 3 x y^{3} + y^{4}" assert latex( expr, order='rev-lex') == "y^{4} + 3 x y^{3} + x^{2} y + x^{3}" assert latex(expr, order='none') == "x^{3} + y^{4} + y x^{2} + 3 x y^{3}" def test_latex_Lambda(): assert latex(Lambda(x, x + 1)) == \ r"\left( x \mapsto x + 1 \right)" assert latex(Lambda((x, y), x + 1)) == \ r"\left( \left( x, \ y\right) \mapsto x + 1 \right)" assert latex(Lambda(x, x)) == \ r"\left( x \mapsto x \right)" def test_latex_PolyElement(): Ruv, u, v = ring("u,v", ZZ) Rxyz, x, y, z = ring("x,y,z", Ruv) assert latex(x - x) == r"0" assert latex(x - 1) == r"x - 1" assert latex(x + 1) == r"x + 1" assert latex((u**2 + 3*u*v + 1)*x**2*y + u + 1) == \ r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1" assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == \ r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x" assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == \ r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1" assert latex((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == \ r"-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1" assert latex(-(v**2 + v + 1)*x + 3*u*v + 1) == \ r"-\left({v}^{2} + v + 1\right) x + 3 u v + 1" assert latex(-(v**2 + v + 1)*x - 3*u*v + 1) == \ r"-\left({v}^{2} + v + 1\right) x - 3 u v + 1" def test_latex_FracElement(): Fuv, u, v = field("u,v", ZZ) Fxyzt, x, y, z, t = field("x,y,z,t", Fuv) assert latex(x - x) == r"0" assert latex(x - 1) == r"x - 1" assert latex(x + 1) == r"x + 1" assert latex(x/3) == r"\frac{x}{3}" assert latex(x/z) == r"\frac{x}{z}" assert latex(x*y/z) == r"\frac{x y}{z}" assert latex(x/(z*t)) == r"\frac{x}{z t}" assert latex(x*y/(z*t)) == r"\frac{x y}{z t}" assert latex((x - 1)/y) == r"\frac{x - 1}{y}" assert latex((x + 1)/y) == r"\frac{x + 1}{y}" assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}" assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}" assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}" assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}" assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == \ r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}" assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == \ r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}" def test_latex_Poly(): assert latex(Poly(x**2 + 2 * x, x)) == \ r"\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}" assert latex(Poly(x/y, x)) == \ r"\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}" assert latex(Poly(2.0*x + y)) == \ r"\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)}" def test_latex_Poly_order(): assert latex(Poly([a, 1, b, 2, c, 3], x)) == \ '\\operatorname{Poly}{\\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c'\ ' x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}' assert latex(Poly([a, 1, b+c, 2, 3], x)) == \ '\\operatorname{Poly}{\\left( a x^{4} + x^{3} + \\left(b + c\\right) '\ 'x^{2} + 2 x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}' assert latex(Poly(a*x**3 + x**2*y - x*y - c*y**3 - b*x*y**2 + y - a*x + b, (x, y))) == \ '\\operatorname{Poly}{\\left( a x^{3} + x^{2}y - b xy^{2} - xy - '\ 'a x - c y^{3} + y + b, x, y, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}' def test_latex_ComplexRootOf(): assert latex(rootof(x**5 + x + 3, 0)) == \ r"\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)}" def test_latex_RootSum(): assert latex(RootSum(x**5 + x + 3, sin)) == \ r"\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left(x \right)} \right)\right)}" def test_settings(): raises(TypeError, lambda: latex(x*y, method="garbage")) def test_latex_numbers(): assert latex(catalan(n)) == r"C_{n}" assert latex(catalan(n)**2) == r"C_{n}^{2}" assert latex(bernoulli(n)) == r"B_{n}" assert latex(bernoulli(n, x)) == r"B_{n}\left(x\right)" assert latex(bernoulli(n)**2) == r"B_{n}^{2}" assert latex(bernoulli(n, x)**2) == r"B_{n}^{2}\left(x\right)" assert latex(bell(n)) == r"B_{n}" assert latex(bell(n, x)) == r"B_{n}\left(x\right)" assert latex(bell(n, m, (x, y))) == r"B_{n, m}\left(x, y\right)" assert latex(bell(n)**2) == r"B_{n}^{2}" assert latex(bell(n, x)**2) == r"B_{n}^{2}\left(x\right)" assert latex(bell(n, m, (x, y))**2) == r"B_{n, m}^{2}\left(x, y\right)" assert latex(fibonacci(n)) == r"F_{n}" assert latex(fibonacci(n, x)) == r"F_{n}\left(x\right)" assert latex(fibonacci(n)**2) == r"F_{n}^{2}" assert latex(fibonacci(n, x)**2) == r"F_{n}^{2}\left(x\right)" assert latex(lucas(n)) == r"L_{n}" assert latex(lucas(n)**2) == r"L_{n}^{2}" assert latex(tribonacci(n)) == r"T_{n}" assert latex(tribonacci(n, x)) == r"T_{n}\left(x\right)" assert latex(tribonacci(n)**2) == r"T_{n}^{2}" assert latex(tribonacci(n, x)**2) == r"T_{n}^{2}\left(x\right)" def test_latex_euler(): assert latex(euler(n)) == r"E_{n}" assert latex(euler(n, x)) == r"E_{n}\left(x\right)" assert latex(euler(n, x)**2) == r"E_{n}^{2}\left(x\right)" def test_lamda(): assert latex(Symbol('lamda')) == r"\lambda" assert latex(Symbol('Lamda')) == r"\Lambda" def test_custom_symbol_names(): x = Symbol('x') y = Symbol('y') assert latex(x) == "x" assert latex(x, symbol_names={x: "x_i"}) == "x_i" assert latex(x + y, symbol_names={x: "x_i"}) == "x_i + y" assert latex(x**2, symbol_names={x: "x_i"}) == "x_i^{2}" assert latex(x + y, symbol_names={x: "x_i", y: "y_j"}) == "x_i + y_j" def test_matAdd(): from sympy import MatrixSymbol from sympy.printing.latex import LatexPrinter C = MatrixSymbol('C', 5, 5) B = MatrixSymbol('B', 5, 5) l = LatexPrinter() assert l._print(C - 2*B) in ['- 2 B + C', 'C -2 B'] assert l._print(C + 2*B) in ['2 B + C', 'C + 2 B'] assert l._print(B - 2*C) in ['B - 2 C', '- 2 C + B'] assert l._print(B + 2*C) in ['B + 2 C', '2 C + B'] def test_matMul(): from sympy import MatrixSymbol from sympy.printing.latex import LatexPrinter A = MatrixSymbol('A', 5, 5) B = MatrixSymbol('B', 5, 5) x = Symbol('x') lp = LatexPrinter() assert lp._print_MatMul(2*A) == '2 A' assert lp._print_MatMul(2*x*A) == '2 x A' assert lp._print_MatMul(-2*A) == '- 2 A' assert lp._print_MatMul(1.5*A) == '1.5 A' assert lp._print_MatMul(sqrt(2)*A) == r'\sqrt{2} A' assert lp._print_MatMul(-sqrt(2)*A) == r'- \sqrt{2} A' assert lp._print_MatMul(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A' assert lp._print_MatMul(-2*A*(A + 2*B)) in [r'- 2 A \left(A + 2 B\right)', r'- 2 A \left(2 B + A\right)'] def test_latex_MatrixSlice(): n = Symbol('n', integer=True) x, y, z, w, t, = symbols('x y z w t') X = MatrixSymbol('X', n, n) Y = MatrixSymbol('Y', 10, 10) Z = MatrixSymbol('Z', 10, 10) assert latex(MatrixSlice(X, (None, None, None), (None, None, None))) == r'X\left[:, :\right]' assert latex(X[x:x + 1, y:y + 1]) == r'X\left[x:x + 1, y:y + 1\right]' assert latex(X[x:x + 1:2, y:y + 1:2]) == r'X\left[x:x + 1:2, y:y + 1:2\right]' assert latex(X[:x, y:]) == r'X\left[:x, y:\right]' assert latex(X[:x, y:]) == r'X\left[:x, y:\right]' assert latex(X[x:, :y]) == r'X\left[x:, :y\right]' assert latex(X[x:y, z:w]) == r'X\left[x:y, z:w\right]' assert latex(X[x:y:t, w:t:x]) == r'X\left[x:y:t, w:t:x\right]' assert latex(X[x::y, t::w]) == r'X\left[x::y, t::w\right]' assert latex(X[:x:y, :t:w]) == r'X\left[:x:y, :t:w\right]' assert latex(X[::x, ::y]) == r'X\left[::x, ::y\right]' assert latex(MatrixSlice(X, (0, None, None), (0, None, None))) == r'X\left[:, :\right]' assert latex(MatrixSlice(X, (None, n, None), (None, n, None))) == r'X\left[:, :\right]' assert latex(MatrixSlice(X, (0, n, None), (0, n, None))) == r'X\left[:, :\right]' assert latex(MatrixSlice(X, (0, n, 2), (0, n, 2))) == r'X\left[::2, ::2\right]' assert latex(X[1:2:3, 4:5:6]) == r'X\left[1:2:3, 4:5:6\right]' assert latex(X[1:3:5, 4:6:8]) == r'X\left[1:3:5, 4:6:8\right]' assert latex(X[1:10:2]) == r'X\left[1:10:2, :\right]' assert latex(Y[:5, 1:9:2]) == r'Y\left[:5, 1:9:2\right]' assert latex(Y[:5, 1:10:2]) == r'Y\left[:5, 1::2\right]' assert latex(Y[5, :5:2]) == r'Y\left[5:6, :5:2\right]' assert latex(X[0:1, 0:1]) == r'X\left[:1, :1\right]' assert latex(X[0:1:2, 0:1:2]) == r'X\left[:1:2, :1:2\right]' assert latex((Y + Z)[2:, 2:]) == r'\left(Y + Z\right)\left[2:, 2:\right]' def test_latex_RandomDomain(): from sympy.stats import Normal, Die, Exponential, pspace, where from sympy.stats.rv import RandomDomain X = Normal('x1', 0, 1) assert latex(where(X > 0)) == r"\text{Domain: }0 < x_{1} \wedge x_{1} < \infty" D = Die('d1', 6) assert latex(where(D > 4)) == r"\text{Domain: }d_{1} = 5 \vee d_{1} = 6" A = Exponential('a', 1) B = Exponential('b', 1) assert latex( pspace(Tuple(A, B)).domain) == \ r"\text{Domain: }0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \infty" assert latex(RandomDomain(FiniteSet(x), FiniteSet(1, 2))) == \ r'\text{Domain: }\left\{x\right\}\text{ in }\left\{1, 2\right\}' def test_PrettyPoly(): from sympy.polys.domains import QQ F = QQ.frac_field(x, y) R = QQ[x, y] assert latex(F.convert(x/(x + y))) == latex(x/(x + y)) assert latex(R.convert(x + y)) == latex(x + y) def test_integral_transforms(): x = Symbol("x") k = Symbol("k") f = Function("f") a = Symbol("a") b = Symbol("b") assert latex(MellinTransform(f(x), x, k)) == \ r"\mathcal{M}_{x}\left[f{\left(x \right)}\right]\left(k\right)" assert latex(InverseMellinTransform(f(k), k, x, a, b)) == \ r"\mathcal{M}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" assert latex(LaplaceTransform(f(x), x, k)) == \ r"\mathcal{L}_{x}\left[f{\left(x \right)}\right]\left(k\right)" assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == \ r"\mathcal{L}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" assert latex(FourierTransform(f(x), x, k)) == \ r"\mathcal{F}_{x}\left[f{\left(x \right)}\right]\left(k\right)" assert latex(InverseFourierTransform(f(k), k, x)) == \ r"\mathcal{F}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" assert latex(CosineTransform(f(x), x, k)) == \ r"\mathcal{COS}_{x}\left[f{\left(x \right)}\right]\left(k\right)" assert latex(InverseCosineTransform(f(k), k, x)) == \ r"\mathcal{COS}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" assert latex(SineTransform(f(x), x, k)) == \ r"\mathcal{SIN}_{x}\left[f{\left(x \right)}\right]\left(k\right)" assert latex(InverseSineTransform(f(k), k, x)) == \ r"\mathcal{SIN}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" def test_PolynomialRingBase(): from sympy.polys.domains import QQ assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]" assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \ r"S_<^{-1}\mathbb{Q}\left[x, y\right]" def test_categories(): from sympy.categories import (Object, IdentityMorphism, NamedMorphism, Category, Diagram, DiagramGrid) A1 = Object("A1") A2 = Object("A2") A3 = Object("A3") f1 = NamedMorphism(A1, A2, "f1") f2 = NamedMorphism(A2, A3, "f2") id_A1 = IdentityMorphism(A1) K1 = Category("K1") assert latex(A1) == "A_{1}" assert latex(f1) == "f_{1}:A_{1}\\rightarrow A_{2}" assert latex(id_A1) == "id:A_{1}\\rightarrow A_{1}" assert latex(f2*f1) == "f_{2}\\circ f_{1}:A_{1}\\rightarrow A_{3}" assert latex(K1) == r"\mathbf{K_{1}}" d = Diagram() assert latex(d) == r"\emptyset" d = Diagram({f1: "unique", f2: S.EmptySet}) assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \ r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \ r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \ r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \ r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, " \ r"\ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"}) assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \ r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \ r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \ r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \ r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}," \ r" \ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" \ r"\Longrightarrow \left\{ f_{2}\circ f_{1}:A_{1}" \ r"\rightarrow A_{3} : \left\{unique\right\}\right\}" # A linear diagram. A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") d = Diagram([f, g]) grid = DiagramGrid(d) assert latex(grid) == "\\begin{array}{cc}\n" \ "A & B \\\\\n" \ " & C \n" \ "\\end{array}\n" def test_Modules(): from sympy.polys.domains import QQ from sympy.polys.agca import homomorphism R = QQ.old_poly_ring(x, y) F = R.free_module(2) M = F.submodule([x, y], [1, x**2]) assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}" assert latex(M) == \ r"\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle" I = R.ideal(x**2, y) assert latex(I) == r"\left\langle {x^{2}},{y} \right\rangle" Q = F / M assert latex(Q) == \ r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left\langle {\left[ {x},"\ r"{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}" assert latex(Q.submodule([1, x**3/2], [2, y])) == \ r"\left\langle {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left"\ r"\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} "\ r"\right\rangle}},{{\left[ {2},{y} \right]} + {\left\langle {\left[ "\ r"{x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}} \right\rangle" h = homomorphism(QQ.old_poly_ring(x).free_module(2), QQ.old_poly_ring(x).free_module(2), [0, 0]) assert latex(h) == \ r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : "\ r"{{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}" def test_QuotientRing(): from sympy.polys.domains import QQ R = QQ.old_poly_ring(x)/[x**2 + 1] assert latex(R) == \ r"\frac{\mathbb{Q}\left[x\right]}{\left\langle {x^{2} + 1} \right\rangle}" assert latex(R.one) == r"{1} + {\left\langle {x^{2} + 1} \right\rangle}" def test_Tr(): #TODO: Handle indices A, B = symbols('A B', commutative=False) t = Tr(A*B) assert latex(t) == r'\operatorname{tr}\left(A B\right)' def test_Adjoint(): from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert latex(Adjoint(X)) == r'X^{\dagger}' assert latex(Adjoint(X + Y)) == r'\left(X + Y\right)^{\dagger}' assert latex(Adjoint(X) + Adjoint(Y)) == r'X^{\dagger} + Y^{\dagger}' assert latex(Adjoint(X*Y)) == r'\left(X Y\right)^{\dagger}' assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^{\dagger} X^{\dagger}' assert latex(Adjoint(X**2)) == r'\left(X^{2}\right)^{\dagger}' assert latex(Adjoint(X)**2) == r'\left(X^{\dagger}\right)^{2}' assert latex(Adjoint(Inverse(X))) == r'\left(X^{-1}\right)^{\dagger}' assert latex(Inverse(Adjoint(X))) == r'\left(X^{\dagger}\right)^{-1}' assert latex(Adjoint(Transpose(X))) == r'\left(X^{T}\right)^{\dagger}' assert latex(Transpose(Adjoint(X))) == r'\left(X^{\dagger}\right)^{T}' assert latex(Transpose(Adjoint(X) + Y)) == r'\left(X^{\dagger} + Y\right)^{T}' def test_Transpose(): from sympy.matrices import Transpose, MatPow, HadamardPower X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert latex(Transpose(X)) == r'X^{T}' assert latex(Transpose(X + Y)) == r'\left(X + Y\right)^{T}' assert latex(Transpose(HadamardPower(X, 2))) == \ r'\left(X^{\circ {2}}\right)^{T}' assert latex(HadamardPower(Transpose(X), 2)) == \ r'\left(X^{T}\right)^{\circ {2}}' assert latex(Transpose(MatPow(X, 2))) == \ r'\left(X^{2}\right)^{T}' assert latex(MatPow(Transpose(X), 2)) == \ r'\left(X^{T}\right)^{2}' def test_Hadamard(): from sympy.matrices import MatrixSymbol, HadamardProduct, HadamardPower from sympy.matrices.expressions import MatAdd, MatMul, MatPow X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert latex(HadamardProduct(X, Y*Y)) == r'X \circ Y^{2}' assert latex(HadamardProduct(X, Y)*Y) == r'\left(X \circ Y\right) Y' assert latex(HadamardPower(X, 2)) == r'X^{\circ {2}}' assert latex(HadamardPower(X, -1)) == r'X^{\circ \left({-1}\right)}' assert latex(HadamardPower(MatAdd(X, Y), 2)) == \ r'\left(X + Y\right)^{\circ {2}}' assert latex(HadamardPower(MatMul(X, Y), 2)) == \ r'\left(X Y\right)^{\circ {2}}' assert latex(HadamardPower(MatPow(X, -1), -1)) == \ r'\left(X^{-1}\right)^{\circ \left({-1}\right)}' assert latex(MatPow(HadamardPower(X, -1), -1)) == \ r'\left(X^{\circ \left({-1}\right)}\right)^{-1}' assert latex(HadamardPower(X, n+1)) == \ r'X^{\circ \left({n + 1}\right)}' def test_ElementwiseApplyFunction(): from sympy.matrices import MatrixSymbol X = MatrixSymbol('X', 2, 2) expr = (X.T*X).applyfunc(sin) assert latex(expr) == r"{\left( d \mapsto \sin{\left(d \right)} \right)}_{\circ}\left({X^{T} X}\right)" expr = X.applyfunc(Lambda(x, 1/x)) assert latex(expr) == r'{\left( x \mapsto \frac{1}{x} \right)}_{\circ}\left({X}\right)' def test_ZeroMatrix(): from sympy import ZeroMatrix assert latex(ZeroMatrix(1, 1), mat_symbol_style='plain') == r"\mathbb{0}" assert latex(ZeroMatrix(1, 1), mat_symbol_style='bold') == r"\mathbf{0}" def test_OneMatrix(): from sympy import OneMatrix assert latex(OneMatrix(3, 4), mat_symbol_style='plain') == r"\mathbb{1}" assert latex(OneMatrix(3, 4), mat_symbol_style='bold') == r"\mathbf{1}" def test_Identity(): from sympy import Identity assert latex(Identity(1), mat_symbol_style='plain') == r"\mathbb{I}" assert latex(Identity(1), mat_symbol_style='bold') == r"\mathbf{I}" def test_boolean_args_order(): syms = symbols('a:f') expr = And(*syms) assert latex(expr) == 'a \\wedge b \\wedge c \\wedge d \\wedge e \\wedge f' expr = Or(*syms) assert latex(expr) == 'a \\vee b \\vee c \\vee d \\vee e \\vee f' expr = Equivalent(*syms) assert latex(expr) == \ 'a \\Leftrightarrow b \\Leftrightarrow c \\Leftrightarrow d \\Leftrightarrow e \\Leftrightarrow f' expr = Xor(*syms) assert latex(expr) == \ 'a \\veebar b \\veebar c \\veebar d \\veebar e \\veebar f' def test_imaginary(): i = sqrt(-1) assert latex(i) == r'i' def test_builtins_without_args(): assert latex(sin) == r'\sin' assert latex(cos) == r'\cos' assert latex(tan) == r'\tan' assert latex(log) == r'\log' assert latex(Ei) == r'\operatorname{Ei}' assert latex(zeta) == r'\zeta' def test_latex_greek_functions(): # bug because capital greeks that have roman equivalents should not use # \Alpha, \Beta, \Eta, etc. s = Function('Alpha') assert latex(s) == r'A' assert latex(s(x)) == r'A{\left(x \right)}' s = Function('Beta') assert latex(s) == r'B' s = Function('Eta') assert latex(s) == r'H' assert latex(s(x)) == r'H{\left(x \right)}' # bug because sympy.core.numbers.Pi is special p = Function('Pi') # assert latex(p(x)) == r'\Pi{\left(x \right)}' assert latex(p) == r'\Pi' # bug because not all greeks are included c = Function('chi') assert latex(c(x)) == r'\chi{\left(x \right)}' assert latex(c) == r'\chi' def test_translate(): s = 'Alpha' assert translate(s) == 'A' s = 'Beta' assert translate(s) == 'B' s = 'Eta' assert translate(s) == 'H' s = 'omicron' assert translate(s) == 'o' s = 'Pi' assert translate(s) == r'\Pi' s = 'pi' assert translate(s) == r'\pi' s = 'LamdaHatDOT' assert translate(s) == r'\dot{\hat{\Lambda}}' def test_other_symbols(): from sympy.printing.latex import other_symbols for s in other_symbols: assert latex(symbols(s)) == "\\"+s def test_modifiers(): # Test each modifier individually in the simplest case # (with funny capitalizations) assert latex(symbols("xMathring")) == r"\mathring{x}" assert latex(symbols("xCheck")) == r"\check{x}" assert latex(symbols("xBreve")) == r"\breve{x}" assert latex(symbols("xAcute")) == r"\acute{x}" assert latex(symbols("xGrave")) == r"\grave{x}" assert latex(symbols("xTilde")) == r"\tilde{x}" assert latex(symbols("xPrime")) == r"{x}'" assert latex(symbols("xddDDot")) == r"\ddddot{x}" assert latex(symbols("xDdDot")) == r"\dddot{x}" assert latex(symbols("xDDot")) == r"\ddot{x}" assert latex(symbols("xBold")) == r"\boldsymbol{x}" assert latex(symbols("xnOrM")) == r"\left\|{x}\right\|" assert latex(symbols("xAVG")) == r"\left\langle{x}\right\rangle" assert latex(symbols("xHat")) == r"\hat{x}" assert latex(symbols("xDot")) == r"\dot{x}" assert latex(symbols("xBar")) == r"\bar{x}" assert latex(symbols("xVec")) == r"\vec{x}" assert latex(symbols("xAbs")) == r"\left|{x}\right|" assert latex(symbols("xMag")) == r"\left|{x}\right|" assert latex(symbols("xPrM")) == r"{x}'" assert latex(symbols("xBM")) == r"\boldsymbol{x}" # Test strings that are *only* the names of modifiers assert latex(symbols("Mathring")) == r"Mathring" assert latex(symbols("Check")) == r"Check" assert latex(symbols("Breve")) == r"Breve" assert latex(symbols("Acute")) == r"Acute" assert latex(symbols("Grave")) == r"Grave" assert latex(symbols("Tilde")) == r"Tilde" assert latex(symbols("Prime")) == r"Prime" assert latex(symbols("DDot")) == r"\dot{D}" assert latex(symbols("Bold")) == r"Bold" assert latex(symbols("NORm")) == r"NORm" assert latex(symbols("AVG")) == r"AVG" assert latex(symbols("Hat")) == r"Hat" assert latex(symbols("Dot")) == r"Dot" assert latex(symbols("Bar")) == r"Bar" assert latex(symbols("Vec")) == r"Vec" assert latex(symbols("Abs")) == r"Abs" assert latex(symbols("Mag")) == r"Mag" assert latex(symbols("PrM")) == r"PrM" assert latex(symbols("BM")) == r"BM" assert latex(symbols("hbar")) == r"\hbar" # Check a few combinations assert latex(symbols("xvecdot")) == r"\dot{\vec{x}}" assert latex(symbols("xDotVec")) == r"\vec{\dot{x}}" assert latex(symbols("xHATNorm")) == r"\left\|{\hat{x}}\right\|" # Check a couple big, ugly combinations assert latex(symbols('xMathringBm_yCheckPRM__zbreveAbs')) == \ r"\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'}" assert latex(symbols('alphadothat_nVECDOT__tTildePrime')) == \ r"\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}}" def test_greek_symbols(): assert latex(Symbol('alpha')) == r'\alpha' assert latex(Symbol('beta')) == r'\beta' assert latex(Symbol('gamma')) == r'\gamma' assert latex(Symbol('delta')) == r'\delta' assert latex(Symbol('epsilon')) == r'\epsilon' assert latex(Symbol('zeta')) == r'\zeta' assert latex(Symbol('eta')) == r'\eta' assert latex(Symbol('theta')) == r'\theta' assert latex(Symbol('iota')) == r'\iota' assert latex(Symbol('kappa')) == r'\kappa' assert latex(Symbol('lambda')) == r'\lambda' assert latex(Symbol('mu')) == r'\mu' assert latex(Symbol('nu')) == r'\nu' assert latex(Symbol('xi')) == r'\xi' assert latex(Symbol('omicron')) == r'o' assert latex(Symbol('pi')) == r'\pi' assert latex(Symbol('rho')) == r'\rho' assert latex(Symbol('sigma')) == r'\sigma' assert latex(Symbol('tau')) == r'\tau' assert latex(Symbol('upsilon')) == r'\upsilon' assert latex(Symbol('phi')) == r'\phi' assert latex(Symbol('chi')) == r'\chi' assert latex(Symbol('psi')) == r'\psi' assert latex(Symbol('omega')) == r'\omega' assert latex(Symbol('Alpha')) == r'A' assert latex(Symbol('Beta')) == r'B' assert latex(Symbol('Gamma')) == r'\Gamma' assert latex(Symbol('Delta')) == r'\Delta' assert latex(Symbol('Epsilon')) == r'E' assert latex(Symbol('Zeta')) == r'Z' assert latex(Symbol('Eta')) == r'H' assert latex(Symbol('Theta')) == r'\Theta' assert latex(Symbol('Iota')) == r'I' assert latex(Symbol('Kappa')) == r'K' assert latex(Symbol('Lambda')) == r'\Lambda' assert latex(Symbol('Mu')) == r'M' assert latex(Symbol('Nu')) == r'N' assert latex(Symbol('Xi')) == r'\Xi' assert latex(Symbol('Omicron')) == r'O' assert latex(Symbol('Pi')) == r'\Pi' assert latex(Symbol('Rho')) == r'P' assert latex(Symbol('Sigma')) == r'\Sigma' assert latex(Symbol('Tau')) == r'T' assert latex(Symbol('Upsilon')) == r'\Upsilon' assert latex(Symbol('Phi')) == r'\Phi' assert latex(Symbol('Chi')) == r'X' assert latex(Symbol('Psi')) == r'\Psi' assert latex(Symbol('Omega')) == r'\Omega' assert latex(Symbol('varepsilon')) == r'\varepsilon' assert latex(Symbol('varkappa')) == r'\varkappa' assert latex(Symbol('varphi')) == r'\varphi' assert latex(Symbol('varpi')) == r'\varpi' assert latex(Symbol('varrho')) == r'\varrho' assert latex(Symbol('varsigma')) == r'\varsigma' assert latex(Symbol('vartheta')) == r'\vartheta' def test_fancyset_symbols(): assert latex(S.Rationals) == '\\mathbb{Q}' assert latex(S.Naturals) == '\\mathbb{N}' assert latex(S.Naturals0) == '\\mathbb{N}_0' assert latex(S.Integers) == '\\mathbb{Z}' assert latex(S.Reals) == '\\mathbb{R}' assert latex(S.Complexes) == '\\mathbb{C}' @XFAIL def test_builtin_without_args_mismatched_names(): assert latex(CosineTransform) == r'\mathcal{COS}' def test_builtin_no_args(): assert latex(Chi) == r'\operatorname{Chi}' assert latex(beta) == r'\operatorname{B}' assert latex(gamma) == r'\Gamma' assert latex(KroneckerDelta) == r'\delta' assert latex(DiracDelta) == r'\delta' assert latex(lowergamma) == r'\gamma' def test_issue_6853(): p = Function('Pi') assert latex(p(x)) == r"\Pi{\left(x \right)}" def test_Mul(): e = Mul(-2, x + 1, evaluate=False) assert latex(e) == r'- 2 \left(x + 1\right)' e = Mul(2, x + 1, evaluate=False) assert latex(e) == r'2 \left(x + 1\right)' e = Mul(S.Half, x + 1, evaluate=False) assert latex(e) == r'\frac{x + 1}{2}' e = Mul(y, x + 1, evaluate=False) assert latex(e) == r'y \left(x + 1\right)' e = Mul(-y, x + 1, evaluate=False) assert latex(e) == r'- y \left(x + 1\right)' e = Mul(-2, x + 1) assert latex(e) == r'- 2 x - 2' e = Mul(2, x + 1) assert latex(e) == r'2 x + 2' def test_Pow(): e = Pow(2, 2, evaluate=False) assert latex(e) == r'2^{2}' assert latex(x**(Rational(-1, 3))) == r'\frac{1}{\sqrt[3]{x}}' x2 = Symbol(r'x^2') assert latex(x2**2) == r'\left(x^{2}\right)^{2}' def test_issue_7180(): assert latex(Equivalent(x, y)) == r"x \Leftrightarrow y" assert latex(Not(Equivalent(x, y))) == r"x \not\Leftrightarrow y" def test_issue_8409(): assert latex(S.Half**n) == r"\left(\frac{1}{2}\right)^{n}" def test_issue_8470(): from sympy.parsing.sympy_parser import parse_expr e = parse_expr("-B*A", evaluate=False) assert latex(e) == r"A \left(- B\right)" def test_issue_15439(): x = MatrixSymbol('x', 2, 2) y = MatrixSymbol('y', 2, 2) assert latex((x * y).subs(y, -y)) == r"x \left(- y\right)" assert latex((x * y).subs(y, -2*y)) == r"x \left(- 2 y\right)" assert latex((x * y).subs(x, -x)) == r"- x y" def test_issue_2934(): assert latex(Symbol(r'\frac{a_1}{b_1}')) == '\\frac{a_1}{b_1}' def test_issue_10489(): latexSymbolWithBrace = 'C_{x_{0}}' s = Symbol(latexSymbolWithBrace) assert latex(s) == latexSymbolWithBrace assert latex(cos(s)) == r'\cos{\left(C_{x_{0}} \right)}' def test_issue_12886(): m__1, l__1 = symbols('m__1, l__1') assert latex(m__1**2 + l__1**2) == \ r'\left(l^{1}\right)^{2} + \left(m^{1}\right)^{2}' def test_issue_13559(): from sympy.parsing.sympy_parser import parse_expr expr = parse_expr('5/1', evaluate=False) assert latex(expr) == r"\frac{5}{1}" def test_issue_13651(): expr = c + Mul(-1, a + b, evaluate=False) assert latex(expr) == r"c - \left(a + b\right)" def test_latex_UnevaluatedExpr(): x = symbols("x") he = UnevaluatedExpr(1/x) assert latex(he) == latex(1/x) == r"\frac{1}{x}" assert latex(he**2) == r"\left(\frac{1}{x}\right)^{2}" assert latex(he + 1) == r"1 + \frac{1}{x}" assert latex(x*he) == r"x \frac{1}{x}" def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert latex(A[0, 0]) == r"A_{0, 0}" assert latex(3 * A[0, 0]) == r"3 A_{0, 0}" F = C[0, 0].subs(C, A - B) assert latex(F) == r"\left(A - B\right)_{0, 0}" i, j, k = symbols("i j k") M = MatrixSymbol("M", k, k) N = MatrixSymbol("N", k, k) assert latex((M*N)[i, j]) == \ r'\sum_{i_{1}=0}^{k - 1} M_{i, i_{1}} N_{i_{1}, j}' def test_MatrixSymbol_printing(): # test cases for issue #14237 A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert latex(-A) == r"- A" assert latex(A - A*B - B) == r"A - A B - B" assert latex(-A*B - A*B*C - B) == r"- A B - A B C - B" def test_KroneckerProduct_printing(): A = MatrixSymbol('A', 3, 3) B = MatrixSymbol('B', 2, 2) assert latex(KroneckerProduct(A, B)) == r'A \otimes B' def test_Series_printing(): tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y) assert latex(Series(tf1, tf2)) == \ '\\left(\\frac{x y^{2} - z}{- t^{3} + y^{3}}\\right) \\left(\\frac{x - y}{x + y}\\right)' assert latex(Series(tf1, tf2, tf3)) == \ '\\left(\\frac{x y^{2} - z}{- t^{3} + y^{3}}\\right) \\left(\\frac{x - y}{x + y}\\right) \\left(\\frac{t x^{2} - t^{w} x + w}{t - y}\\right)' assert latex(Series(-tf2, tf1)) == \ '\\left(\\frac{- x + y}{x + y}\\right) \\left(\\frac{x y^{2} - z}{- t^{3} + y^{3}}\\right)' def test_TransferFunction_printing(): tf1 = TransferFunction(x - 1, x + 1, x) assert latex(tf1) == r"\frac{x - 1}{x + 1}" tf2 = TransferFunction(x + 1, 2 - y, x) assert latex(tf2) == r"\frac{x + 1}{2 - y}" tf3 = TransferFunction(y, y**2 + 2*y + 3, y) assert latex(tf3) == r"\frac{y}{y^{2} + 2 y + 3}" def test_Parallel_printing(): tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y) tf2 = TransferFunction(x - y, x + y, y) assert latex(Parallel(tf1, tf2)) == \ '\\left(\\frac{x y^{2} - z}{- t^{3} + y^{3}}\\right) \\left(\\frac{x - y}{x + y}\\right)' assert latex(Parallel(-tf2, tf1)) == \ '\\left(\\frac{- x + y}{x + y}\\right) \\left(\\frac{x y^{2} - z}{- t^{3} + y^{3}}\\right)' def test_Feedback_printing(): tf1 = TransferFunction(p, p + x, p) tf2 = TransferFunction(-s + p, p + s, p) assert latex(Feedback(tf1, tf2)) == \ '\\frac{\\frac{p}{p + x}}{\\left(1 \\cdot 1^{-1}\\right) \\left(\\left(\\frac{p}{p + x}\\right) \\left(\\frac{p - s}{p + s}\\right)\\right)}' assert latex(Feedback(tf1*tf2, TransferFunction(1, 1, p))) == \ '\\frac{\\left(\\frac{p}{p + x}\\right) \\left(\\frac{p - s}{p + s}\\right)}{\\left(1 \\cdot 1^{-1}\\right) \\left(\\left(\\frac{p}{p + x}\\right) \\left(\\frac{p - s}{p + s}\\right)\\right)}' def test_Quaternion_latex_printing(): q = Quaternion(x, y, z, t) assert latex(q) == "x + y i + z j + t k" q = Quaternion(x, y, z, x*t) assert latex(q) == "x + y i + z j + t x k" q = Quaternion(x, y, z, x + t) assert latex(q) == r"x + y i + z j + \left(t + x\right) k" def test_TensorProduct_printing(): from sympy.tensor.functions import TensorProduct A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) assert latex(TensorProduct(A, B)) == r"A \otimes B" def test_WedgeProduct_printing(): from sympy.diffgeom.rn import R2 from sympy.diffgeom import WedgeProduct wp = WedgeProduct(R2.dx, R2.dy) assert latex(wp) == r"\operatorname{d}x \wedge \operatorname{d}y" def test_issue_9216(): expr_1 = Pow(1, -1, evaluate=False) assert latex(expr_1) == r"1^{-1}" expr_2 = Pow(1, Pow(1, -1, evaluate=False), evaluate=False) assert latex(expr_2) == r"1^{1^{-1}}" expr_3 = Pow(3, -2, evaluate=False) assert latex(expr_3) == r"\frac{1}{9}" expr_4 = Pow(1, -2, evaluate=False) assert latex(expr_4) == r"1^{-2}" def test_latex_printer_tensor(): from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads L = TensorIndexType("L") i, j, k, l = tensor_indices("i j k l", L) i0 = tensor_indices("i_0", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) K = TensorHead("K", [L, L, L, L]) assert latex(i) == "{}^{i}" assert latex(-i) == "{}_{i}" expr = A(i) assert latex(expr) == "A{}^{i}" expr = A(i0) assert latex(expr) == "A{}^{i_{0}}" expr = A(-i) assert latex(expr) == "A{}_{i}" expr = -3*A(i) assert latex(expr) == r"-3A{}^{i}" expr = K(i, j, -k, -i0) assert latex(expr) == "K{}^{ij}{}_{ki_{0}}" expr = K(i, -j, -k, i0) assert latex(expr) == "K{}^{i}{}_{jk}{}^{i_{0}}" expr = K(i, -j, k, -i0) assert latex(expr) == "K{}^{i}{}_{j}{}^{k}{}_{i_{0}}" expr = H(i, -j) assert latex(expr) == "H{}^{i}{}_{j}" expr = H(i, j) assert latex(expr) == "H{}^{ij}" expr = H(-i, -j) assert latex(expr) == "H{}_{ij}" expr = (1+x)*A(i) assert latex(expr) == r"\left(x + 1\right)A{}^{i}" expr = H(i, -i) assert latex(expr) == "H{}^{L_{0}}{}_{L_{0}}" expr = H(i, -j)*A(j)*B(k) assert latex(expr) == "H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}" expr = A(i) + 3*B(i) assert latex(expr) == "3B{}^{i} + A{}^{i}" # Test ``TensorElement``: from sympy.tensor.tensor import TensorElement expr = TensorElement(K(i, j, k, l), {i: 3, k: 2}) assert latex(expr) == 'K{}^{i=3,j,k=2,l}' expr = TensorElement(K(i, j, k, l), {i: 3}) assert latex(expr) == 'K{}^{i=3,jkl}' expr = TensorElement(K(i, -j, k, l), {i: 3, k: 2}) assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2,l}' expr = TensorElement(K(i, -j, k, -l), {i: 3, k: 2}) assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2}{}_{l}' expr = TensorElement(K(i, j, -k, -l), {i: 3, -k: 2}) assert latex(expr) == 'K{}^{i=3,j}{}_{k=2,l}' expr = TensorElement(K(i, j, -k, -l), {i: 3}) assert latex(expr) == 'K{}^{i=3,j}{}_{kl}' expr = PartialDerivative(A(i), A(i)) assert latex(expr) == r"\frac{\partial}{\partial {A{}^{L_{0}}}}{A{}^{L_{0}}}" expr = PartialDerivative(A(-i), A(-j)) assert latex(expr) == r"\frac{\partial}{\partial {A{}_{j}}}{A{}_{i}}" expr = PartialDerivative(K(i, j, -k, -l), A(m), A(-n)) assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}^{m}} \partial {A{}_{n}}}{K{}^{ij}{}_{kl}}" expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n)) assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(A{}_{i} + B{}_{i}\right)}" expr = PartialDerivative(3*A(-i), A(-j), A(-n)) assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(3A{}_{i}\right)}" def test_multiline_latex(): a, b, c, d, e, f = symbols('a b c d e f') expr = -a + 2*b -3*c +4*d -5*e expected = r"\begin{eqnarray}" + "\n"\ r"f & = &- a \nonumber\\" + "\n"\ r"& & + 2 b \nonumber\\" + "\n"\ r"& & - 3 c \nonumber\\" + "\n"\ r"& & + 4 d \nonumber\\" + "\n"\ r"& & - 5 e " + "\n"\ r"\end{eqnarray}" assert multiline_latex(f, expr, environment="eqnarray") == expected expected2 = r'\begin{eqnarray}' + '\n'\ r'f & = &- a + 2 b \nonumber\\' + '\n'\ r'& & - 3 c + 4 d \nonumber\\' + '\n'\ r'& & - 5 e ' + '\n'\ r'\end{eqnarray}' assert multiline_latex(f, expr, 2, environment="eqnarray") == expected2 expected3 = r'\begin{eqnarray}' + '\n'\ r'f & = &- a + 2 b - 3 c \nonumber\\'+ '\n'\ r'& & + 4 d - 5 e ' + '\n'\ r'\end{eqnarray}' assert multiline_latex(f, expr, 3, environment="eqnarray") == expected3 expected3dots = r'\begin{eqnarray}' + '\n'\ r'f & = &- a + 2 b - 3 c \dots\nonumber\\'+ '\n'\ r'& & + 4 d - 5 e ' + '\n'\ r'\end{eqnarray}' assert multiline_latex(f, expr, 3, environment="eqnarray", use_dots=True) == expected3dots expected3align = r'\begin{align*}' + '\n'\ r'f = &- a + 2 b - 3 c \\'+ '\n'\ r'& + 4 d - 5 e ' + '\n'\ r'\end{align*}' assert multiline_latex(f, expr, 3) == expected3align assert multiline_latex(f, expr, 3, environment='align*') == expected3align expected2ieee = r'\begin{IEEEeqnarray}{rCl}' + '\n'\ r'f & = &- a + 2 b \nonumber\\' + '\n'\ r'& & - 3 c + 4 d \nonumber\\' + '\n'\ r'& & - 5 e ' + '\n'\ r'\end{IEEEeqnarray}' assert multiline_latex(f, expr, 2, environment="IEEEeqnarray") == expected2ieee raises(ValueError, lambda: multiline_latex(f, expr, environment="foo")) def test_issue_15353(): from sympy import ConditionSet, Tuple, S, sin, cos a, x = symbols('a x') # Obtained from nonlinsolve([(sin(a*x)),cos(a*x)],[x,a]) sol = ConditionSet( Tuple(x, a), Eq(sin(a*x), 0) & Eq(cos(a*x), 0), S.Complexes**2) assert latex(sol) == \ r'\left\{\left( x, \ a\right)\; \middle|\; \left( x, \ a\right) \in ' \ r'\mathbb{C}^{2} \wedge \sin{\left(a x \right)} = 0 \wedge ' \ r'\cos{\left(a x \right)} = 0 \right\}' def test_trace(): # Issue 15303 from sympy import trace A = MatrixSymbol("A", 2, 2) assert latex(trace(A)) == r"\operatorname{tr}\left(A \right)" assert latex(trace(A**2)) == r"\operatorname{tr}\left(A^{2} \right)" def test_print_basic(): # Issue 15303 from sympy import Basic, Expr # dummy class for testing printing where the function is not # implemented in latex.py class UnimplementedExpr(Expr): def __new__(cls, e): return Basic.__new__(cls, e) # dummy function for testing def unimplemented_expr(expr): return UnimplementedExpr(expr).doit() # override class name to use superscript / subscript def unimplemented_expr_sup_sub(expr): result = UnimplementedExpr(expr) result.__class__.__name__ = 'UnimplementedExpr_x^1' return result assert latex(unimplemented_expr(x)) == r'UnimplementedExpr\left(x\right)' assert latex(unimplemented_expr(x**2)) == \ r'UnimplementedExpr\left(x^{2}\right)' assert latex(unimplemented_expr_sup_sub(x)) == \ r'UnimplementedExpr^{1}_{x}\left(x\right)' def test_MatrixSymbol_bold(): # Issue #15871 from sympy import trace A = MatrixSymbol("A", 2, 2) assert latex(trace(A), mat_symbol_style='bold') == \ r"\operatorname{tr}\left(\mathbf{A} \right)" assert latex(trace(A), mat_symbol_style='plain') == \ r"\operatorname{tr}\left(A \right)" A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert latex(-A, mat_symbol_style='bold') == r"- \mathbf{A}" assert latex(A - A*B - B, mat_symbol_style='bold') == \ r"\mathbf{A} - \mathbf{A} \mathbf{B} - \mathbf{B}" assert latex(-A*B - A*B*C - B, mat_symbol_style='bold') == \ r"- \mathbf{A} \mathbf{B} - \mathbf{A} \mathbf{B} \mathbf{C} - \mathbf{B}" A_k = MatrixSymbol("A_k", 3, 3) assert latex(A_k, mat_symbol_style='bold') == r"\mathbf{A}_{k}" A = MatrixSymbol(r"\nabla_k", 3, 3) assert latex(A, mat_symbol_style='bold') == r"\mathbf{\nabla}_{k}" def test_AppliedPermutation(): p = Permutation(0, 1, 2) x = Symbol('x') assert latex(AppliedPermutation(p, x)) == \ r'\sigma_{\left( 0\; 1\; 2\right)}(x)' def test_PermutationMatrix(): p = Permutation(0, 1, 2) assert latex(PermutationMatrix(p)) == r'P_{\left( 0\; 1\; 2\right)}' p = Permutation(0, 3)(1, 2) assert latex(PermutationMatrix(p)) == \ r'P_{\left( 0\; 3\right)\left( 1\; 2\right)}' def test_imaginary_unit(): assert latex(1 + I) == '1 + i' assert latex(1 + I, imaginary_unit='i') == '1 + i' assert latex(1 + I, imaginary_unit='j') == '1 + j' assert latex(1 + I, imaginary_unit='foo') == '1 + foo' assert latex(I, imaginary_unit="ti") == '\\text{i}' assert latex(I, imaginary_unit="tj") == '\\text{j}' def test_text_re_im(): assert latex(im(x), gothic_re_im=True) == r'\Im{\left(x\right)}' assert latex(im(x), gothic_re_im=False) == r'\operatorname{im}{\left(x\right)}' assert latex(re(x), gothic_re_im=True) == r'\Re{\left(x\right)}' assert latex(re(x), gothic_re_im=False) == r'\operatorname{re}{\left(x\right)}' def test_latex_diffgeom(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential from sympy.diffgeom.rn import R2 x,y = symbols('x y', real=True) m = Manifold('M', 2) assert latex(m) == r'\text{M}' p = Patch('P', m) assert latex(p) == r'\text{P}_{\text{M}}' rect = CoordSystem('rect', p, [x, y]) assert latex(rect) == r'\text{rect}^{\text{P}}_{\text{M}}' b = BaseScalarField(rect, 0) assert latex(b) == r'\mathbf{x}' g = Function('g') s_field = g(R2.x, R2.y) assert latex(Differential(s_field)) == \ r'\operatorname{d}\left(g{\left(\mathbf{x},\mathbf{y} \right)}\right)' def test_unit_printing(): assert latex(5*meter) == r'5 \text{m}' assert latex(3*gibibyte) == r'3 \text{gibibyte}' assert latex(4*microgram/second) == r'\frac{4 \mu\text{g}}{\text{s}}' def test_issue_17092(): x_star = Symbol('x^*') assert latex(Derivative(x_star, x_star,2)) == r'\frac{d^{2}}{d \left(x^{*}\right)^{2}} x^{*}' def test_latex_decimal_separator(): x, y, z, t = symbols('x y z t') k, m, n = symbols('k m n', integer=True) f, g, h = symbols('f g h', cls=Function) # comma decimal_separator assert(latex([1, 2.3, 4.5], decimal_separator='comma') == r'\left[ 1; \ 2{,}3; \ 4{,}5\right]') assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='comma') == r'\left\{1; 2{,}3; 4{,}5\right\}') assert(latex((1, 2.3, 4.6), decimal_separator = 'comma') == r'\left( 1; \ 2{,}3; \ 4{,}6\right)') assert(latex((1,), decimal_separator='comma') == r'\left( 1;\right)') # period decimal_separator assert(latex([1, 2.3, 4.5], decimal_separator='period') == r'\left[ 1, \ 2.3, \ 4.5\right]' ) assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}') assert(latex((1, 2.3, 4.6), decimal_separator = 'period') == r'\left( 1, \ 2.3, \ 4.6\right)') assert(latex((1,), decimal_separator='period') == r'\left( 1,\right)') # default decimal_separator assert(latex([1, 2.3, 4.5]) == r'\left[ 1, \ 2.3, \ 4.5\right]') assert(latex(FiniteSet(1, 2.3, 4.5)) == r'\left\{1, 2.3, 4.5\right\}') assert(latex((1, 2.3, 4.6)) == r'\left( 1, \ 2.3, \ 4.6\right)') assert(latex((1,)) == r'\left( 1,\right)') assert(latex(Mul(3.4,5.3), decimal_separator = 'comma') ==r'18{,}02') assert(latex(3.4*5.3, decimal_separator = 'comma')==r'18{,}02') x = symbols('x') y = symbols('y') z = symbols('z') assert(latex(x*5.3 + 2**y**3.4 + 4.5 + z, decimal_separator = 'comma')== r'2^{y^{3{,}4}} + 5{,}3 x + z + 4{,}5') assert(latex(0.987, decimal_separator='comma') == r'0{,}987') assert(latex(S(0.987), decimal_separator='comma')== r'0{,}987') assert(latex(.3, decimal_separator='comma')== r'0{,}3') assert(latex(S(.3), decimal_separator='comma')== r'0{,}3') assert(latex(5.8*10**(-7), decimal_separator='comma') ==r'5{,}8 \cdot 10^{-7}') assert(latex(S(5.7)*10**(-7), decimal_separator='comma')==r'5{,}7 \cdot 10^{-7}') assert(latex(S(5.7*10**(-7)), decimal_separator='comma')==r'5{,}7 \cdot 10^{-7}') x = symbols('x') assert(latex(1.2*x+3.4, decimal_separator='comma')==r'1{,}2 x + 3{,}4') assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period')==r'\left\{1, 2.3, 4.5\right\}') # Error Handling tests raises(ValueError, lambda: latex([1,2.3,4.5], decimal_separator='non_existing_decimal_separator_in_list')) raises(ValueError, lambda: latex(FiniteSet(1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_set')) raises(ValueError, lambda: latex((1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_tuple')) def test_Str(): from sympy.core.symbol import Str assert str(Str('x')) == 'x' def test_latex_escape(): assert latex_escape(r"~^\&%$#_{}") == "".join([ r'\textasciitilde', r'\textasciicircum', r'\textbackslash', r'\&', r'\%', r'\$', r'\#', r'\_', r'\{', r'\}', ]) def test_emptyPrinter(): class MyObject: def __repr__(self): return "<MyObject with {...}>" # unknown objects are monospaced assert latex(MyObject()) == r"\mathtt{\text{<MyObject with \{...\}>}}" # even if they are nested within other objects assert latex((MyObject(),)) == r"\left( \mathtt{\text{<MyObject with \{...\}>}},\right)" def test_global_settings(): import inspect # settings should be visible in the signature of `latex` assert inspect.signature(latex).parameters['imaginary_unit'].default == 'i' assert latex(I) == 'i' try: # but changing the defaults... LatexPrinter.set_global_settings(imaginary_unit='j') # ... should change the signature assert inspect.signature(latex).parameters['imaginary_unit'].default == 'j' assert latex(I) == 'j' finally: # there's no public API to undo this, but we need to make sure we do # so as not to impact other tests del LatexPrinter._global_settings['imaginary_unit'] # check we really did undo it assert inspect.signature(latex).parameters['imaginary_unit'].default == 'i' assert latex(I) == 'i' def test_pickleable(): # this tests that the _PrintFunction instance is pickleable import pickle assert pickle.loads(pickle.dumps(latex)) is latex
82eb01d2da4e3f44d6217daa2fa65816ef20db7e7bb103814ab0de860be0d2c3
# -*- coding: utf-8 -*- from sympy import ( Add, And, Basic, Derivative, Dict, Eq, Equivalent, FF, FiniteSet, Function, Ge, Gt, I, Implies, Integral, SingularityFunction, Lambda, Le, Limit, Lt, Matrix, Mul, Nand, Ne, Nor, Not, O, Or, Pow, Product, QQ, RR, Rational, Ray, rootof, RootSum, S, Segment, Subs, Sum, Symbol, Tuple, Trace, Xor, ZZ, conjugate, groebner, oo, pi, symbols, ilex, grlex, Range, Contains, SeqPer, SeqFormula, SeqAdd, SeqMul, fourier_series, fps, ITE, Complement, Interval, Intersection, Union, EulerGamma, GoldenRatio, LambertW, airyai, airybi, airyaiprime, airybiprime, fresnelc, fresnels, Heaviside, dirichlet_eta, diag, MatrixSlice) from sympy.codegen.ast import (Assignment, AddAugmentedAssignment, SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment) from sympy.core.expr import UnevaluatedExpr from sympy.core.trace import Tr from sympy.functions import (Abs, Chi, Ci, Ei, KroneckerDelta, Piecewise, Shi, Si, atan2, beta, binomial, catalan, ceiling, cos, euler, exp, expint, factorial, factorial2, floor, gamma, hyper, log, meijerg, sin, sqrt, subfactorial, tan, uppergamma, lerchphi, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, DiracDelta, bell, bernoulli, fibonacci, tribonacci, lucas, stieltjes, mathieuc, mathieus, mathieusprime, mathieucprime) from sympy.matrices import Adjoint, Inverse, MatrixSymbol, Transpose, KroneckerProduct from sympy.matrices.expressions import hadamard_power from sympy.physics import mechanics from sympy.physics.control.lti import TransferFunction, Series, Parallel, Feedback from sympy.physics.units import joule, degree from sympy.printing.pretty import pprint, pretty as xpretty from sympy.printing.pretty.pretty_symbology import center_accent, is_combining from sympy import ConditionSet from sympy.sets import ImageSet, ProductSet from sympy.sets.setexpr import SetExpr from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray, tensorproduct) from sympy.tensor.functions import TensorProduct from sympy.tensor.tensor import (TensorIndexType, tensor_indices, TensorHead, TensorElement, tensor_heads) from sympy.testing.pytest import raises, _both_exp_pow from sympy.vector import CoordSys3D, Gradient, Curl, Divergence, Dot, Cross, Laplacian import sympy as sym class lowergamma(sym.lowergamma): pass # testing notation inheritance by a subclass with same name a, b, c, d, x, y, z, k, n, s, p = symbols('a,b,c,d,x,y,z,k,n,s,p') f = Function("f") th = Symbol('theta') ph = Symbol('phi') """ Expressions whose pretty-printing is tested here: (A '#' to the right of an expression indicates that its various acceptable orderings are accounted for by the tests.) BASIC EXPRESSIONS: oo (x**2) 1/x y*x**-2 x**Rational(-5,2) (-2)**x Pow(3, 1, evaluate=False) (x**2 + x + 1) # 1-x # 1-2*x # x/y -x/y (x+2)/y # (1+x)*y #3 -5*x/(x+10) # correct placement of negative sign 1 - Rational(3,2)*(x+1) -(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5) # issue 5524 ORDERING: x**2 + x + 1 1 - x 1 - 2*x 2*x**4 + y**2 - x**2 + y**3 RELATIONAL: Eq(x, y) Lt(x, y) Gt(x, y) Le(x, y) Ge(x, y) Ne(x/(y+1), y**2) # RATIONAL NUMBERS: y*x**-2 y**Rational(3,2) * x**Rational(-5,2) sin(x)**3/tan(x)**2 FUNCTIONS (ABS, CONJ, EXP, FUNCTION BRACES, FACTORIAL, FLOOR, CEILING): (2*x + exp(x)) # Abs(x) Abs(x/(x**2+1)) # Abs(1 / (y - Abs(x))) factorial(n) factorial(2*n) subfactorial(n) subfactorial(2*n) factorial(factorial(factorial(n))) factorial(n+1) # conjugate(x) conjugate(f(x+1)) # f(x) f(x, y) f(x/(y+1), y) # f(x**x**x**x**x**x) sin(x)**2 conjugate(a+b*I) conjugate(exp(a+b*I)) conjugate( f(1 + conjugate(f(x))) ) # f(x/(y+1), y) # denom of first arg floor(1 / (y - floor(x))) ceiling(1 / (y - ceiling(x))) SQRT: sqrt(2) 2**Rational(1,3) 2**Rational(1,1000) sqrt(x**2 + 1) (1 + sqrt(5))**Rational(1,3) 2**(1/x) sqrt(2+pi) (2+(1+x**2)/(2+x))**Rational(1,4)+(1+x**Rational(1,1000))/sqrt(3+x**2) DERIVATIVES: Derivative(log(x), x, evaluate=False) Derivative(log(x), x, evaluate=False) + x # Derivative(log(x) + x**2, x, y, evaluate=False) Derivative(2*x*y, y, x, evaluate=False) + x**2 # beta(alpha).diff(alpha) INTEGRALS: Integral(log(x), x) Integral(x**2, x) Integral((sin(x))**2 / (tan(x))**2) Integral(x**(2**x), x) Integral(x**2, (x,1,2)) Integral(x**2, (x,Rational(1,2),10)) Integral(x**2*y**2, x,y) Integral(x**2, (x, None, 1)) Integral(x**2, (x, 1, None)) Integral(sin(th)/cos(ph), (th,0,pi), (ph, 0, 2*pi)) MATRICES: Matrix([[x**2+1, 1], [y, x+y]]) # Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]]) PIECEWISE: Piecewise((x,x<1),(x**2,True)) ITE: ITE(x, y, z) SEQUENCES (TUPLES, LISTS, DICTIONARIES): () [] {} (1/x,) [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2] (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) {x: sin(x)} {1/x: 1/y, x: sin(x)**2} # [x**2] (x**2,) {x**2: 1} LIMITS: Limit(x, x, oo) Limit(x**2, x, 0) Limit(1/x, x, 0) Limit(sin(x)/x, x, 0) UNITS: joule => kg*m**2/s SUBS: Subs(f(x), x, ph**2) Subs(f(x).diff(x), x, 0) Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2))) ORDER: O(1) O(1/x) O(x**2 + y**2) """ def pretty(expr, order=None): """ASCII pretty-printing""" return xpretty(expr, order=order, use_unicode=False, wrap_line=False) def upretty(expr, order=None): """Unicode pretty-printing""" return xpretty(expr, order=order, use_unicode=True, wrap_line=False) def test_pretty_ascii_str(): assert pretty( 'xxx' ) == 'xxx' assert pretty( "xxx" ) == 'xxx' assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx' assert pretty( 'xxx"xxx' ) == 'xxx\"xxx' assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx' assert pretty( "xxx'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\"xxx" ) == 'xxx\"xxx' assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx' assert pretty( "xxx\nxxx" ) == 'xxx\nxxx' def test_pretty_unicode_str(): assert pretty( 'xxx' ) == 'xxx' assert pretty( 'xxx' ) == 'xxx' assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx' assert pretty( 'xxx"xxx' ) == 'xxx\"xxx' assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx' assert pretty( "xxx'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\"xxx" ) == 'xxx\"xxx' assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx' assert pretty( "xxx\nxxx" ) == 'xxx\nxxx' def test_upretty_greek(): assert upretty( oo ) == '∞' assert upretty( Symbol('alpha^+_1') ) == 'α⁺₁' assert upretty( Symbol('beta') ) == 'β' assert upretty(Symbol('lambda')) == 'λ' def test_upretty_multiindex(): assert upretty( Symbol('beta12') ) == 'β₁₂' assert upretty( Symbol('Y00') ) == 'Y₀₀' assert upretty( Symbol('Y_00') ) == 'Y₀₀' assert upretty( Symbol('F^+-') ) == 'F⁺⁻' def test_upretty_sub_super(): assert upretty( Symbol('beta_1_2') ) == 'β₁ ₂' assert upretty( Symbol('beta^1^2') ) == 'β¹ ²' assert upretty( Symbol('beta_1^2') ) == 'β²₁' assert upretty( Symbol('beta_10_20') ) == 'β₁₀ ₂₀' assert upretty( Symbol('beta_ax_gamma^i') ) == 'βⁱₐₓ ᵧ' assert upretty( Symbol("F^1^2_3_4") ) == 'F¹ ²₃ ₄' assert upretty( Symbol("F_1_2^3^4") ) == 'F³ ⁴₁ ₂' assert upretty( Symbol("F_1_2_3_4") ) == 'F₁ ₂ ₃ ₄' assert upretty( Symbol("F^1^2^3^4") ) == 'F¹ ² ³ ⁴' def test_upretty_subs_missing_in_24(): assert upretty( Symbol('F_beta') ) == 'Fᵦ' assert upretty( Symbol('F_gamma') ) == 'Fᵧ' assert upretty( Symbol('F_rho') ) == 'Fᵨ' assert upretty( Symbol('F_phi') ) == 'Fᵩ' assert upretty( Symbol('F_chi') ) == 'Fᵪ' assert upretty( Symbol('F_a') ) == 'Fₐ' assert upretty( Symbol('F_e') ) == 'Fₑ' assert upretty( Symbol('F_i') ) == 'Fᵢ' assert upretty( Symbol('F_o') ) == 'Fₒ' assert upretty( Symbol('F_u') ) == 'Fᵤ' assert upretty( Symbol('F_r') ) == 'Fᵣ' assert upretty( Symbol('F_v') ) == 'Fᵥ' assert upretty( Symbol('F_x') ) == 'Fₓ' def test_missing_in_2X_issue_9047(): assert upretty( Symbol('F_h') ) == 'Fₕ' assert upretty( Symbol('F_k') ) == 'Fₖ' assert upretty( Symbol('F_l') ) == 'Fₗ' assert upretty( Symbol('F_m') ) == 'Fₘ' assert upretty( Symbol('F_n') ) == 'Fₙ' assert upretty( Symbol('F_p') ) == 'Fₚ' assert upretty( Symbol('F_s') ) == 'Fₛ' assert upretty( Symbol('F_t') ) == 'Fₜ' def test_upretty_modifiers(): # Accents assert upretty( Symbol('Fmathring') ) == 'F̊' assert upretty( Symbol('Fddddot') ) == 'F⃜' assert upretty( Symbol('Fdddot') ) == 'F⃛' assert upretty( Symbol('Fddot') ) == 'F̈' assert upretty( Symbol('Fdot') ) == 'Ḟ' assert upretty( Symbol('Fcheck') ) == 'F̌' assert upretty( Symbol('Fbreve') ) == 'F̆' assert upretty( Symbol('Facute') ) == 'F́' assert upretty( Symbol('Fgrave') ) == 'F̀' assert upretty( Symbol('Ftilde') ) == 'F̃' assert upretty( Symbol('Fhat') ) == 'F̂' assert upretty( Symbol('Fbar') ) == 'F̅' assert upretty( Symbol('Fvec') ) == 'F⃗' assert upretty( Symbol('Fprime') ) == 'F′' assert upretty( Symbol('Fprm') ) == 'F′' # No faces are actually implemented, but test to make sure the modifiers are stripped assert upretty( Symbol('Fbold') ) == 'Fbold' assert upretty( Symbol('Fbm') ) == 'Fbm' assert upretty( Symbol('Fcal') ) == 'Fcal' assert upretty( Symbol('Fscr') ) == 'Fscr' assert upretty( Symbol('Ffrak') ) == 'Ffrak' # Brackets assert upretty( Symbol('Fnorm') ) == '‖F‖' assert upretty( Symbol('Favg') ) == '⟨F⟩' assert upretty( Symbol('Fabs') ) == '|F|' assert upretty( Symbol('Fmag') ) == '|F|' # Combinations assert upretty( Symbol('xvecdot') ) == 'x⃗̇' assert upretty( Symbol('xDotVec') ) == 'ẋ⃗' assert upretty( Symbol('xHATNorm') ) == '‖x̂‖' assert upretty( Symbol('xMathring_yCheckPRM__zbreveAbs') ) == 'x̊_y̌′__|z̆|' assert upretty( Symbol('alphadothat_nVECDOT__tTildePrime') ) == 'α̇̂_n⃗̇__t̃′' assert upretty( Symbol('x_dot') ) == 'x_dot' assert upretty( Symbol('x__dot') ) == 'x__dot' def test_pretty_Cycle(): from sympy.combinatorics.permutations import Cycle assert pretty(Cycle(1, 2)) == '(1 2)' assert pretty(Cycle(2)) == '(2)' assert pretty(Cycle(1, 3)(4, 5)) == '(1 3)(4 5)' assert pretty(Cycle()) == '()' def test_pretty_Permutation(): from sympy.combinatorics.permutations import Permutation p1 = Permutation(1, 2)(3, 4) assert xpretty(p1, perm_cyclic=True, use_unicode=True) == "(1 2)(3 4)" assert xpretty(p1, perm_cyclic=True, use_unicode=False) == "(1 2)(3 4)" assert xpretty(p1, perm_cyclic=False, use_unicode=True) == \ '⎛0 1 2 3 4⎞\n'\ '⎝0 2 1 4 3⎠' assert xpretty(p1, perm_cyclic=False, use_unicode=False) == \ "/0 1 2 3 4\\\n"\ "\\0 2 1 4 3/" def test_pretty_basic(): assert pretty( -Rational(1)/2 ) == '-1/2' assert pretty( -Rational(13)/22 ) == \ """\ -13 \n\ ----\n\ 22 \ """ expr = oo ascii_str = \ """\ oo\ """ ucode_str = \ """\ ∞\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2) ascii_str = \ """\ 2\n\ x \ """ ucode_str = \ """\ 2\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 1/x ascii_str = \ """\ 1\n\ -\n\ x\ """ ucode_str = \ """\ 1\n\ ─\n\ x\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # not the same as 1/x expr = x**-1.0 ascii_str = \ """\ -1.0\n\ x \ """ ucode_str = \ """\ -1.0\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # see issue #2860 expr = Pow(S(2), -1.0, evaluate=False) ascii_str = \ """\ -1.0\n\ 2 \ """ ucode_str = \ """\ -1.0\n\ 2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y*x**-2 ascii_str = \ """\ y \n\ --\n\ 2\n\ x \ """ ucode_str = \ """\ y \n\ ──\n\ 2\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str #see issue #14033 expr = x**Rational(1, 3) ascii_str = \ """\ 1/3\n\ x \ """ ucode_str = \ """\ 1/3\n\ x \ """ assert xpretty(expr, use_unicode=False, wrap_line=False,\ root_notation = False) == ascii_str assert xpretty(expr, use_unicode=True, wrap_line=False,\ root_notation = False) == ucode_str expr = x**Rational(-5, 2) ascii_str = \ """\ 1 \n\ ----\n\ 5/2\n\ x \ """ ucode_str = \ """\ 1 \n\ ────\n\ 5/2\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (-2)**x ascii_str = \ """\ x\n\ (-2) \ """ ucode_str = \ """\ x\n\ (-2) \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # See issue 4923 expr = Pow(3, 1, evaluate=False) ascii_str = \ """\ 1\n\ 3 \ """ ucode_str = \ """\ 1\n\ 3 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2 + x + 1) ascii_str_1 = \ """\ 2\n\ 1 + x + x \ """ ascii_str_2 = \ """\ 2 \n\ x + x + 1\ """ ascii_str_3 = \ """\ 2 \n\ x + 1 + x\ """ ucode_str_1 = \ """\ 2\n\ 1 + x + x \ """ ucode_str_2 = \ """\ 2 \n\ x + x + 1\ """ ucode_str_3 = \ """\ 2 \n\ x + 1 + x\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3] assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] expr = 1 - x ascii_str_1 = \ """\ 1 - x\ """ ascii_str_2 = \ """\ -x + 1\ """ ucode_str_1 = \ """\ 1 - x\ """ ucode_str_2 = \ """\ -x + 1\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = 1 - 2*x ascii_str_1 = \ """\ 1 - 2*x\ """ ascii_str_2 = \ """\ -2*x + 1\ """ ucode_str_1 = \ """\ 1 - 2⋅x\ """ ucode_str_2 = \ """\ -2⋅x + 1\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = x/y ascii_str = \ """\ x\n\ -\n\ y\ """ ucode_str = \ """\ x\n\ ─\n\ y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x/y ascii_str = \ """\ -x \n\ ---\n\ y \ """ ucode_str = \ """\ -x \n\ ───\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x + 2)/y ascii_str_1 = \ """\ 2 + x\n\ -----\n\ y \ """ ascii_str_2 = \ """\ x + 2\n\ -----\n\ y \ """ ucode_str_1 = \ """\ 2 + x\n\ ─────\n\ y \ """ ucode_str_2 = \ """\ x + 2\n\ ─────\n\ y \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = (1 + x)*y ascii_str_1 = \ """\ y*(1 + x)\ """ ascii_str_2 = \ """\ (1 + x)*y\ """ ascii_str_3 = \ """\ y*(x + 1)\ """ ucode_str_1 = \ """\ y⋅(1 + x)\ """ ucode_str_2 = \ """\ (1 + x)⋅y\ """ ucode_str_3 = \ """\ y⋅(x + 1)\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3] assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] # Test for correct placement of the negative sign expr = -5*x/(x + 10) ascii_str_1 = \ """\ -5*x \n\ ------\n\ 10 + x\ """ ascii_str_2 = \ """\ -5*x \n\ ------\n\ x + 10\ """ ucode_str_1 = \ """\ -5⋅x \n\ ──────\n\ 10 + x\ """ ucode_str_2 = \ """\ -5⋅x \n\ ──────\n\ x + 10\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = -S.Half - 3*x ascii_str = \ """\ -3*x - 1/2\ """ ucode_str = \ """\ -3⋅x - 1/2\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = S.Half - 3*x ascii_str = \ """\ 1/2 - 3*x\ """ ucode_str = \ """\ 1/2 - 3⋅x\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -S.Half - 3*x/2 ascii_str = \ """\ 3*x 1\n\ - --- - -\n\ 2 2\ """ ucode_str = \ """\ 3⋅x 1\n\ - ─── - ─\n\ 2 2\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = S.Half - 3*x/2 ascii_str = \ """\ 1 3*x\n\ - - ---\n\ 2 2 \ """ ucode_str = \ """\ 1 3⋅x\n\ ─ - ───\n\ 2 2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_negative_fractions(): expr = -x/y ascii_str =\ """\ -x \n\ ---\n\ y \ """ ucode_str =\ """\ -x \n\ ───\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x*z/y ascii_str =\ """\ -x*z \n\ -----\n\ y \ """ ucode_str =\ """\ -x⋅z \n\ ─────\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x**2/y ascii_str =\ """\ 2\n\ x \n\ --\n\ y \ """ ucode_str =\ """\ 2\n\ x \n\ ──\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x**2/y ascii_str =\ """\ 2 \n\ -x \n\ ----\n\ y \ """ ucode_str =\ """\ 2 \n\ -x \n\ ────\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x/(y*z) ascii_str =\ """\ -x \n\ ---\n\ y*z\ """ ucode_str =\ """\ -x \n\ ───\n\ y⋅z\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -a/y**2 ascii_str =\ """\ -a \n\ ---\n\ 2\n\ y \ """ ucode_str =\ """\ -a \n\ ───\n\ 2\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y**(-a/b) ascii_str =\ """\ -a \n\ ---\n\ b \n\ y \ """ ucode_str =\ """\ -a \n\ ───\n\ b \n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -1/y**2 ascii_str =\ """\ -1 \n\ ---\n\ 2\n\ y \ """ ucode_str =\ """\ -1 \n\ ───\n\ 2\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -10/b**2 ascii_str =\ """\ -10 \n\ ----\n\ 2 \n\ b \ """ ucode_str =\ """\ -10 \n\ ────\n\ 2 \n\ b \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Rational(-200, 37) ascii_str =\ """\ -200 \n\ -----\n\ 37 \ """ ucode_str =\ """\ -200 \n\ ─────\n\ 37 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Mul(0, 1, evaluate=False) assert pretty(expr) == "0*1" assert upretty(expr) == "0⋅1" expr = Mul(1, 0, evaluate=False) assert pretty(expr) == "1*0" assert upretty(expr) == "1⋅0" expr = Mul(1, 1, evaluate=False) assert pretty(expr) == "1*1" assert upretty(expr) == "1⋅1" expr = Mul(1, 1, 1, evaluate=False) assert pretty(expr) == "1*1*1" assert upretty(expr) == "1⋅1⋅1" expr = Mul(1, 2, evaluate=False) assert pretty(expr) == "1*2" assert upretty(expr) == "1⋅2" expr = Add(0, 1, evaluate=False) assert pretty(expr) == "0 + 1" assert upretty(expr) == "0 + 1" expr = Mul(1, 1, 2, evaluate=False) assert pretty(expr) == "1*1*2" assert upretty(expr) == "1⋅1⋅2" expr = Add(0, 0, 1, evaluate=False) assert pretty(expr) == "0 + 0 + 1" assert upretty(expr) == "0 + 0 + 1" expr = Mul(1, -1, evaluate=False) assert pretty(expr) == "1*(-1)" assert upretty(expr) == "1⋅(-1)" expr = Mul(1.0, x, evaluate=False) assert pretty(expr) == "1.0*x" assert upretty(expr) == "1.0⋅x" expr = Mul(1, 1, 2, 3, x, evaluate=False) assert pretty(expr) == "1*1*2*3*x" assert upretty(expr) == "1⋅1⋅2⋅3⋅x" expr = Mul(-1, 1, evaluate=False) assert pretty(expr) == "-1*1" assert upretty(expr) == "-1⋅1" expr = Mul(4, 3, 2, 1, 0, y, x, evaluate=False) assert pretty(expr) == "4*3*2*1*0*y*x" assert upretty(expr) == "4⋅3⋅2⋅1⋅0⋅y⋅x" expr = Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False) assert pretty(expr) == "4*3*2*(z + 1)*0*y*x" assert upretty(expr) == "4⋅3⋅2⋅(z + 1)⋅0⋅y⋅x" expr = Mul(Rational(2, 3), Rational(5, 7), evaluate=False) assert pretty(expr) == "2/3*5/7" assert upretty(expr) == "2/3⋅5/7" def test_issue_5524(): assert pretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \ """\ 2 / ___ \\\n\ - (5 - y) + (x - 5)*\\-x - 2*\\/ 2 + 5/\ """ assert upretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \ """\ 2 \n\ - (5 - y) + (x - 5)⋅(-x - 2⋅√2 + 5)\ """ def test_pretty_ordering(): assert pretty(x**2 + x + 1, order='lex') == \ """\ 2 \n\ x + x + 1\ """ assert pretty(x**2 + x + 1, order='rev-lex') == \ """\ 2\n\ 1 + x + x \ """ assert pretty(1 - x, order='lex') == '-x + 1' assert pretty(1 - x, order='rev-lex') == '1 - x' assert pretty(1 - 2*x, order='lex') == '-2*x + 1' assert pretty(1 - 2*x, order='rev-lex') == '1 - 2*x' f = 2*x**4 + y**2 - x**2 + y**3 assert pretty(f, order=None) == \ """\ 4 2 3 2\n\ 2*x - x + y + y \ """ assert pretty(f, order='lex') == \ """\ 4 2 3 2\n\ 2*x - x + y + y \ """ assert pretty(f, order='rev-lex') == \ """\ 2 3 2 4\n\ y + y - x + 2*x \ """ expr = x - x**3/6 + x**5/120 + O(x**6) ascii_str = \ """\ 3 5 \n\ x x / 6\\\n\ x - -- + --- + O\\x /\n\ 6 120 \ """ ucode_str = \ """\ 3 5 \n\ x x ⎛ 6⎞\n\ x - ── + ─── + O⎝x ⎠\n\ 6 120 \ """ assert pretty(expr, order=None) == ascii_str assert upretty(expr, order=None) == ucode_str assert pretty(expr, order='lex') == ascii_str assert upretty(expr, order='lex') == ucode_str assert pretty(expr, order='rev-lex') == ascii_str assert upretty(expr, order='rev-lex') == ucode_str def test_EulerGamma(): assert pretty(EulerGamma) == str(EulerGamma) == "EulerGamma" assert upretty(EulerGamma) == "γ" def test_GoldenRatio(): assert pretty(GoldenRatio) == str(GoldenRatio) == "GoldenRatio" assert upretty(GoldenRatio) == "φ" def test_pretty_relational(): expr = Eq(x, y) ascii_str = \ """\ x = y\ """ ucode_str = \ """\ x = y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lt(x, y) ascii_str = \ """\ x < y\ """ ucode_str = \ """\ x < y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Gt(x, y) ascii_str = \ """\ x > y\ """ ucode_str = \ """\ x > y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Le(x, y) ascii_str = \ """\ x <= y\ """ ucode_str = \ """\ x ≤ y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Ge(x, y) ascii_str = \ """\ x >= y\ """ ucode_str = \ """\ x ≥ y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Ne(x/(y + 1), y**2) ascii_str_1 = \ """\ x 2\n\ ----- != y \n\ 1 + y \ """ ascii_str_2 = \ """\ x 2\n\ ----- != y \n\ y + 1 \ """ ucode_str_1 = \ """\ x 2\n\ ───── ≠ y \n\ 1 + y \ """ ucode_str_2 = \ """\ x 2\n\ ───── ≠ y \n\ y + 1 \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] def test_Assignment(): expr = Assignment(x, y) ascii_str = \ """\ x := y\ """ ucode_str = \ """\ x := y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_AugmentedAssignment(): expr = AddAugmentedAssignment(x, y) ascii_str = \ """\ x += y\ """ ucode_str = \ """\ x += y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = SubAugmentedAssignment(x, y) ascii_str = \ """\ x -= y\ """ ucode_str = \ """\ x -= y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = MulAugmentedAssignment(x, y) ascii_str = \ """\ x *= y\ """ ucode_str = \ """\ x *= y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = DivAugmentedAssignment(x, y) ascii_str = \ """\ x /= y\ """ ucode_str = \ """\ x /= y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = ModAugmentedAssignment(x, y) ascii_str = \ """\ x %= y\ """ ucode_str = \ """\ x %= y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_rational(): expr = y*x**-2 ascii_str = \ """\ y \n\ --\n\ 2\n\ x \ """ ucode_str = \ """\ y \n\ ──\n\ 2\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y**Rational(3, 2) * x**Rational(-5, 2) ascii_str = \ """\ 3/2\n\ y \n\ ----\n\ 5/2\n\ x \ """ ucode_str = \ """\ 3/2\n\ y \n\ ────\n\ 5/2\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sin(x)**3/tan(x)**2 ascii_str = \ """\ 3 \n\ sin (x)\n\ -------\n\ 2 \n\ tan (x)\ """ ucode_str = \ """\ 3 \n\ sin (x)\n\ ───────\n\ 2 \n\ tan (x)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str @_both_exp_pow def test_pretty_functions(): """Tests for Abs, conjugate, exp, function braces, and factorial.""" expr = (2*x + exp(x)) ascii_str_1 = \ """\ x\n\ 2*x + e \ """ ascii_str_2 = \ """\ x \n\ e + 2*x\ """ ucode_str_1 = \ """\ x\n\ 2⋅x + ℯ \ """ ucode_str_2 = \ """\ x \n\ ℯ + 2⋅x\ """ ucode_str_3 = \ """\ x \n\ ℯ + 2⋅x\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] expr = Abs(x) ascii_str = \ """\ |x|\ """ ucode_str = \ """\ │x│\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Abs(x/(x**2 + 1)) ascii_str_1 = \ """\ | x |\n\ |------|\n\ | 2|\n\ |1 + x |\ """ ascii_str_2 = \ """\ | x |\n\ |------|\n\ | 2 |\n\ |x + 1|\ """ ucode_str_1 = \ """\ │ x │\n\ │──────│\n\ │ 2│\n\ │1 + x │\ """ ucode_str_2 = \ """\ │ x │\n\ │──────│\n\ │ 2 │\n\ │x + 1│\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Abs(1 / (y - Abs(x))) ascii_str = \ """\ 1 \n\ ---------\n\ |y - |x||\ """ ucode_str = \ """\ 1 \n\ ─────────\n\ │y - │x││\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str n = Symbol('n', integer=True) expr = factorial(n) ascii_str = \ """\ n!\ """ ucode_str = \ """\ n!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(2*n) ascii_str = \ """\ (2*n)!\ """ ucode_str = \ """\ (2⋅n)!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(factorial(factorial(n))) ascii_str = \ """\ ((n!)!)!\ """ ucode_str = \ """\ ((n!)!)!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(n + 1) ascii_str_1 = \ """\ (1 + n)!\ """ ascii_str_2 = \ """\ (n + 1)!\ """ ucode_str_1 = \ """\ (1 + n)!\ """ ucode_str_2 = \ """\ (n + 1)!\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = subfactorial(n) ascii_str = \ """\ !n\ """ ucode_str = \ """\ !n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = subfactorial(2*n) ascii_str = \ """\ !(2*n)\ """ ucode_str = \ """\ !(2⋅n)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str n = Symbol('n', integer=True) expr = factorial2(n) ascii_str = \ """\ n!!\ """ ucode_str = \ """\ n!!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(2*n) ascii_str = \ """\ (2*n)!!\ """ ucode_str = \ """\ (2⋅n)!!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(factorial2(factorial2(n))) ascii_str = \ """\ ((n!!)!!)!!\ """ ucode_str = \ """\ ((n!!)!!)!!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(n + 1) ascii_str_1 = \ """\ (1 + n)!!\ """ ascii_str_2 = \ """\ (n + 1)!!\ """ ucode_str_1 = \ """\ (1 + n)!!\ """ ucode_str_2 = \ """\ (n + 1)!!\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = 2*binomial(n, k) ascii_str = \ """\ /n\\\n\ 2*| |\n\ \\k/\ """ ucode_str = \ """\ ⎛n⎞\n\ 2⋅⎜ ⎟\n\ ⎝k⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*binomial(2*n, k) ascii_str = \ """\ /2*n\\\n\ 2*| |\n\ \\ k /\ """ ucode_str = \ """\ ⎛2⋅n⎞\n\ 2⋅⎜ ⎟\n\ ⎝ k ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*binomial(n**2, k) ascii_str = \ """\ / 2\\\n\ |n |\n\ 2*| |\n\ \\k /\ """ ucode_str = \ """\ ⎛ 2⎞\n\ ⎜n ⎟\n\ 2⋅⎜ ⎟\n\ ⎝k ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = catalan(n) ascii_str = \ """\ C \n\ n\ """ ucode_str = \ """\ C \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = catalan(n) ascii_str = \ """\ C \n\ n\ """ ucode_str = \ """\ C \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = bell(n) ascii_str = \ """\ B \n\ n\ """ ucode_str = \ """\ B \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = bernoulli(n) ascii_str = \ """\ B \n\ n\ """ ucode_str = \ """\ B \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = bernoulli(n, x) ascii_str = \ """\ B (x)\n\ n \ """ ucode_str = \ """\ B (x)\n\ n \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = fibonacci(n) ascii_str = \ """\ F \n\ n\ """ ucode_str = \ """\ F \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = lucas(n) ascii_str = \ """\ L \n\ n\ """ ucode_str = \ """\ L \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = tribonacci(n) ascii_str = \ """\ T \n\ n\ """ ucode_str = \ """\ T \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = stieltjes(n) ascii_str = \ """\ stieltjes \n\ n\ """ ucode_str = \ """\ γ \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = stieltjes(n, x) ascii_str = \ """\ stieltjes (x)\n\ n \ """ ucode_str = \ """\ γ (x)\n\ n \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieuc(x, y, z) ascii_str = 'C(x, y, z)' ucode_str = 'C(x, y, z)' assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieus(x, y, z) ascii_str = 'S(x, y, z)' ucode_str = 'S(x, y, z)' assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieucprime(x, y, z) ascii_str = "C'(x, y, z)" ucode_str = "C'(x, y, z)" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieusprime(x, y, z) ascii_str = "S'(x, y, z)" ucode_str = "S'(x, y, z)" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(x) ascii_str = \ """\ _\n\ x\ """ ucode_str = \ """\ _\n\ x\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str f = Function('f') expr = conjugate(f(x + 1)) ascii_str_1 = \ """\ ________\n\ f(1 + x)\ """ ascii_str_2 = \ """\ ________\n\ f(x + 1)\ """ ucode_str_1 = \ """\ ________\n\ f(1 + x)\ """ ucode_str_2 = \ """\ ________\n\ f(x + 1)\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x) ascii_str = \ """\ f(x)\ """ ucode_str = \ """\ f(x)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = f(x, y) ascii_str = \ """\ f(x, y)\ """ ucode_str = \ """\ f(x, y)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = f(x/(y + 1), y) ascii_str_1 = \ """\ / x \\\n\ f|-----, y|\n\ \\1 + y /\ """ ascii_str_2 = \ """\ / x \\\n\ f|-----, y|\n\ \\y + 1 /\ """ ucode_str_1 = \ """\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝1 + y ⎠\ """ ucode_str_2 = \ """\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝y + 1 ⎠\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x**x**x**x**x**x) ascii_str = \ """\ / / / / / x\\\\\\\\\\ | | | | \\x /|||| | | | \\x /||| | | \\x /|| | \\x /| f\\x /\ """ ucode_str = \ """\ ⎛ ⎛ ⎛ ⎛ ⎛ x⎞⎞⎞⎞⎞ ⎜ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟⎟ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟ ⎜ ⎜ ⎝x ⎠⎟⎟ ⎜ ⎝x ⎠⎟ f⎝x ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sin(x)**2 ascii_str = \ """\ 2 \n\ sin (x)\ """ ucode_str = \ """\ 2 \n\ sin (x)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(a + b*I) ascii_str = \ """\ _ _\n\ a - I*b\ """ ucode_str = \ """\ _ _\n\ a - ⅈ⋅b\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(exp(a + b*I)) ascii_str = \ """\ _ _\n\ a - I*b\n\ e \ """ ucode_str = \ """\ _ _\n\ a - ⅈ⋅b\n\ ℯ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate( f(1 + conjugate(f(x))) ) ascii_str_1 = \ """\ ___________\n\ / ____\\\n\ f\\1 + f(x)/\ """ ascii_str_2 = \ """\ ___________\n\ /____ \\\n\ f\\f(x) + 1/\ """ ucode_str_1 = \ """\ ___________\n\ ⎛ ____⎞\n\ f⎝1 + f(x)⎠\ """ ucode_str_2 = \ """\ ___________\n\ ⎛____ ⎞\n\ f⎝f(x) + 1⎠\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x/(y + 1), y) ascii_str_1 = \ """\ / x \\\n\ f|-----, y|\n\ \\1 + y /\ """ ascii_str_2 = \ """\ / x \\\n\ f|-----, y|\n\ \\y + 1 /\ """ ucode_str_1 = \ """\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝1 + y ⎠\ """ ucode_str_2 = \ """\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝y + 1 ⎠\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = floor(1 / (y - floor(x))) ascii_str = \ """\ / 1 \\\n\ floor|------------|\n\ \\y - floor(x)/\ """ ucode_str = \ """\ ⎢ 1 ⎥\n\ ⎢───────⎥\n\ ⎣y - ⌊x⌋⎦\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = ceiling(1 / (y - ceiling(x))) ascii_str = \ """\ / 1 \\\n\ ceiling|--------------|\n\ \\y - ceiling(x)/\ """ ucode_str = \ """\ ⎡ 1 ⎤\n\ ⎢───────⎥\n\ ⎢y - ⌈x⌉⎥\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n) ascii_str = \ """\ E \n\ n\ """ ucode_str = \ """\ E \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(1/(1 + 1/(1 + 1/n))) ascii_str = \ """\ E \n\ 1 \n\ ---------\n\ 1 \n\ 1 + -----\n\ 1\n\ 1 + -\n\ n\ """ ucode_str = \ """\ E \n\ 1 \n\ ─────────\n\ 1 \n\ 1 + ─────\n\ 1\n\ 1 + ─\n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n, x) ascii_str = \ """\ E (x)\n\ n \ """ ucode_str = \ """\ E (x)\n\ n \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n, x/2) ascii_str = \ """\ /x\\\n\ E |-|\n\ n\\2/\ """ ucode_str = \ """\ ⎛x⎞\n\ E ⎜─⎟\n\ n⎝2⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_sqrt(): expr = sqrt(2) ascii_str = \ """\ ___\n\ \\/ 2 \ """ ucode_str = \ "√2" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**Rational(1, 3) ascii_str = \ """\ 3 ___\n\ \\/ 2 \ """ ucode_str = \ """\ 3 ___\n\ ╲╱ 2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**Rational(1, 1000) ascii_str = \ """\ 1000___\n\ \\/ 2 \ """ ucode_str = \ """\ 1000___\n\ ╲╱ 2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sqrt(x**2 + 1) ascii_str = \ """\ ________\n\ / 2 \n\ \\/ x + 1 \ """ ucode_str = \ """\ ________\n\ ╱ 2 \n\ ╲╱ x + 1 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (1 + sqrt(5))**Rational(1, 3) ascii_str = \ """\ ___________\n\ 3 / ___ \n\ \\/ 1 + \\/ 5 \ """ ucode_str = \ """\ 3 ________\n\ ╲╱ 1 + √5 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**(1/x) ascii_str = \ """\ x ___\n\ \\/ 2 \ """ ucode_str = \ """\ x ___\n\ ╲╱ 2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sqrt(2 + pi) ascii_str = \ """\ ________\n\ \\/ 2 + pi \ """ ucode_str = \ """\ _______\n\ ╲╱ 2 + π \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (2 + ( 1 + x**2)/(2 + x))**Rational(1, 4) + (1 + x**Rational(1, 1000))/sqrt(3 + x**2) ascii_str = \ """\ ____________ \n\ / 2 1000___ \n\ / x + 1 \\/ x + 1\n\ 4 / 2 + ------ + -----------\n\ \\/ x + 2 ________\n\ / 2 \n\ \\/ x + 3 \ """ ucode_str = \ """\ ____________ \n\ ╱ 2 1000___ \n\ ╱ x + 1 ╲╱ x + 1\n\ 4 ╱ 2 + ────── + ───────────\n\ ╲╱ x + 2 ________\n\ ╱ 2 \n\ ╲╱ x + 3 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_sqrt_char_knob(): # See PR #9234. expr = sqrt(2) ucode_str1 = \ """\ ___\n\ ╲╱ 2 \ """ ucode_str2 = \ "√2" assert xpretty(expr, use_unicode=True, use_unicode_sqrt_char=False) == ucode_str1 assert xpretty(expr, use_unicode=True, use_unicode_sqrt_char=True) == ucode_str2 def test_pretty_sqrt_longsymbol_no_sqrt_char(): # Do not use unicode sqrt char for long symbols (see PR #9234). expr = sqrt(Symbol('C1')) ucode_str = \ """\ ____\n\ ╲╱ C₁ \ """ assert upretty(expr) == ucode_str def test_pretty_KroneckerDelta(): x, y = symbols("x, y") expr = KroneckerDelta(x, y) ascii_str = \ """\ d \n\ x,y\ """ ucode_str = \ """\ δ \n\ x,y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_product(): n, m, k, l = symbols('n m k l') f = symbols('f', cls=Function) expr = Product(f((n/3)**2), (n, k**2, l)) unicode_str = \ """\ l \n\ ─┬──────┬─ \n\ │ │ ⎛ 2⎞\n\ │ │ ⎜n ⎟\n\ │ │ f⎜──⎟\n\ │ │ ⎝9 ⎠\n\ │ │ \n\ 2 \n\ n = k """ ascii_str = \ """\ l \n\ __________ \n\ | | / 2\\\n\ | | |n |\n\ | | f|--|\n\ | | \\9 /\n\ | | \n\ 2 \n\ n = k """ expr = Product(f((n/3)**2), (n, k**2, l), (l, 1, m)) unicode_str = \ """\ m l \n\ ─┬──────┬─ ─┬──────┬─ \n\ │ │ │ │ ⎛ 2⎞\n\ │ │ │ │ ⎜n ⎟\n\ │ │ │ │ f⎜──⎟\n\ │ │ │ │ ⎝9 ⎠\n\ │ │ │ │ \n\ l = 1 2 \n\ n = k """ ascii_str = \ """\ m l \n\ __________ __________ \n\ | | | | / 2\\\n\ | | | | |n |\n\ | | | | f|--|\n\ | | | | \\9 /\n\ | | | | \n\ l = 1 2 \n\ n = k """ assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str def test_pretty_Lambda(): # S.IdentityFunction is a special case expr = Lambda(y, y) assert pretty(expr) == "x -> x" assert upretty(expr) == "x ↦ x" expr = Lambda(x, x+1) assert pretty(expr) == "x -> x + 1" assert upretty(expr) == "x ↦ x + 1" expr = Lambda(x, x**2) ascii_str = \ """\ 2\n\ x -> x \ """ ucode_str = \ """\ 2\n\ x ↦ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda(x, x**2)**2 ascii_str = \ """\ 2 / 2\\ \n\ \\x -> x / \ """ ucode_str = \ """\ 2 ⎛ 2⎞ \n\ ⎝x ↦ x ⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda((x, y), x) ascii_str = "(x, y) -> x" ucode_str = "(x, y) ↦ x" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda((x, y), x**2) ascii_str = \ """\ 2\n\ (x, y) -> x \ """ ucode_str = \ """\ 2\n\ (x, y) ↦ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda(((x, y),), x**2) ascii_str = \ """\ 2\n\ ((x, y),) -> x \ """ ucode_str = \ """\ 2\n\ ((x, y),) ↦ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_TransferFunction(): tf1 = TransferFunction(s - 1, s + 1, s) assert upretty(tf1) == "s - 1\n─────\ns + 1" tf2 = TransferFunction(2*s + 1, 3 - p, s) assert upretty(tf2) == "2⋅s + 1\n───────\n 3 - p " tf3 = TransferFunction(p, p + 1, p) assert upretty(tf3) == " p \n─────\np + 1" def test_pretty_Series(): tf1 = TransferFunction(x + y, x - 2*y, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(x**2 + y, y - x, y) expected1 = \ """\ ⎛ 2 ⎞\n\ ⎛ x + y ⎞ ⎜x + y⎟\n\ ⎜───────⎟⋅⎜──────⎟\n\ ⎝x - 2⋅y⎠ ⎝-x + y⎠\ """ expected2 = \ """\ ⎛-x + y⎞ ⎛ -x - y⎞\n\ ⎜──────⎟⋅⎜───────⎟\n\ ⎝x + y ⎠ ⎝x - 2⋅y⎠\ """ expected3 = \ """\ ⎛ 2 ⎞ \n\ ⎜x + y⎟ ⎛ x + y ⎞ ⎛ -x - y x - y⎞\n\ ⎜──────⎟⋅⎜───────⎟⋅⎜─────── + ─────⎟\n\ ⎝-x + y⎠ ⎝x - 2⋅y⎠ ⎝x - 2⋅y x + y⎠\ """ expected4 = \ """\ ⎛ 2 ⎞\n\ ⎛ x + y x - y⎞ ⎜x - y x + y⎟\n\ ⎜─────── + ─────⎟⋅⎜───── + ──────⎟\n\ ⎝x - 2⋅y x + y⎠ ⎝x + y -x + y⎠\ """ assert upretty(Series(tf1, tf3)) == expected1 assert upretty(Series(-tf2, -tf1)) == expected2 assert upretty(Series(tf3, tf1, Parallel(-tf1, tf2))) == expected3 assert upretty(Series(Parallel(tf1, tf2), Parallel(tf2, tf3))) == expected4 def test_pretty_Parallel(): tf1 = TransferFunction(x + y, x - 2*y, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(x**2 + y, y - x, y) expected1 = \ """\ x + y x - y\n\ ─────── + ─────\n\ x - 2⋅y x + y\ """ expected2 = \ """\ -x + y -x - y\n\ ────── + ───────\n\ x + y x - 2⋅y\ """ expected3 = \ """\ 2 \n\ x + y x + y ⎛ -x - y⎞ ⎛x - y⎞\n\ ────── + ─────── + ⎜───────⎟⋅⎜─────⎟\n\ -x + y x - 2⋅y ⎝x - 2⋅y⎠ ⎝x + y⎠\ """ expected4 = \ """\ ⎛ 2 ⎞\n\ ⎛ x + y ⎞ ⎛x - y⎞ ⎛x - y⎞ ⎜x + y⎟\n\ ⎜───────⎟⋅⎜─────⎟ + ⎜─────⎟⋅⎜──────⎟\n\ ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x + y⎠ ⎝-x + y⎠\ """ assert upretty(Parallel(tf1, tf2)) == expected1 assert upretty(Parallel(-tf2, -tf1)) == expected2 assert upretty(Parallel(tf3, tf1, Series(-tf1, tf2))) == expected3 assert upretty(Parallel(Series(tf1, tf2), Series(tf2, tf3))) == expected4 def test_pretty_Feedback(): tf = TransferFunction(1, 1, y) tf1 = TransferFunction(x + y, x - 2*y, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(y**2 - 2*y + 1, y + 5, y) tf4 = TransferFunction(x - 2*y**3, x + y, x) tf5 = TransferFunction(1 - x, x - y, y) tf6 = TransferFunction(2, 2, x) expected1 = \ """\ ⎛1⎞ \n\ ⎜─⎟ \n\ ⎝1⎠ \n\ ───────────\n\ 1 x + y \n\ ─ + ───────\n\ 1 x - 2⋅y\ """ expected2 = \ """\ ⎛1⎞ \n\ ⎜─⎟ \n\ ⎝1⎠ \n\ ────────────────────────────────────\n\ ⎛ 2 ⎞\n\ 1 ⎛x - y⎞ ⎛ x + y ⎞ ⎜y - 2⋅y + 1⎟\n\ ─ + ⎜─────⎟⋅⎜───────⎟⋅⎜────────────⎟\n\ 1 ⎝x + y⎠ ⎝x - 2⋅y⎠ ⎝ y + 5 ⎠\ """ expected3 = \ """\ ⎛ x + y ⎞ \n\ ⎜───────⎟ \n\ ⎝x - 2⋅y⎠ \n\ ────────────────────────────────────────────\n\ ⎛ 2 ⎞ \n\ 1 ⎛ x + y ⎞ ⎛x - y⎞ ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞\n\ ─ + ⎜───────⎟⋅⎜─────⎟⋅⎜────────────⎟⋅⎜─────⎟\n\ 1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝ y + 5 ⎠ ⎝x - y⎠\ """ expected4 = \ """\ ⎛ x + y ⎞ ⎛x - y⎞ \n\ ⎜───────⎟⋅⎜─────⎟ \n\ ⎝x - 2⋅y⎠ ⎝x + y⎠ \n\ ─────────────────────\n\ 1 ⎛ x + y ⎞ ⎛x - y⎞\n\ ─ + ⎜───────⎟⋅⎜─────⎟\n\ 1 ⎝x - 2⋅y⎠ ⎝x + y⎠\ """ expected5 = \ """\ ⎛ x + y ⎞ ⎛x - y⎞ \n\ ⎜───────⎟⋅⎜─────⎟ \n\ ⎝x - 2⋅y⎠ ⎝x + y⎠ \n\ ─────────────────────────────\n\ 1 ⎛ x + y ⎞ ⎛x - y⎞ ⎛1 - x⎞\n\ ─ + ⎜───────⎟⋅⎜─────⎟⋅⎜─────⎟\n\ 1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x - y⎠\ """ expected6 = \ """\ ⎛ 2 ⎞ \n\ ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞ \n\ ⎜────────────⎟⋅⎜─────⎟ \n\ ⎝ y + 5 ⎠ ⎝x - y⎠ \n\ ────────────────────────────────────────────\n\ ⎛ 2 ⎞ \n\ 1 ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞ ⎛x - y⎞ ⎛ x + y ⎞\n\ ─ + ⎜────────────⎟⋅⎜─────⎟⋅⎜─────⎟⋅⎜───────⎟\n\ 1 ⎝ y + 5 ⎠ ⎝x - y⎠ ⎝x + y⎠ ⎝x - 2⋅y⎠\ """ expected7 = \ """\ ⎛ 3⎞ \n\ ⎜x - 2⋅y ⎟ \n\ ⎜────────⎟ \n\ ⎝ x + y ⎠ \n\ ──────────────────\n\ ⎛ 3⎞ \n\ 1 ⎜x - 2⋅y ⎟ ⎛2⎞\n\ ─ + ⎜────────⎟⋅⎜─⎟\n\ 1 ⎝ x + y ⎠ ⎝2⎠\ """ expected8 = \ """\ ⎛1 - x⎞ \n\ ⎜─────⎟ \n\ ⎝x - y⎠ \n\ ─────────\n\ 1 1 - x\n\ ─ + ─────\n\ 1 x - y\ """ assert upretty(Feedback(tf, tf1)) == expected1 assert upretty(Feedback(tf, tf2*tf1*tf3)) == expected2 assert upretty(Feedback(tf1, tf2*tf3*tf5)) == expected3 assert upretty(Feedback(tf1*tf2, tf)) == expected4 assert upretty(Feedback(tf1*tf2, tf5)) == expected5 assert upretty(Feedback(tf3*tf5, tf2*tf1)) == expected6 assert upretty(Feedback(tf4, tf6)) == expected7 assert upretty(Feedback(tf5, tf)) == expected8 def test_pretty_order(): expr = O(1) ascii_str = \ """\ O(1)\ """ ucode_str = \ """\ O(1)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1/x) ascii_str = \ """\ /1\\\n\ O|-|\n\ \\x/\ """ ucode_str = \ """\ ⎛1⎞\n\ O⎜─⎟\n\ ⎝x⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(x**2 + y**2) ascii_str = \ """\ / 2 2 \\\n\ O\\x + y ; (x, y) -> (0, 0)/\ """ ucode_str = \ """\ ⎛ 2 2 ⎞\n\ O⎝x + y ; (x, y) → (0, 0)⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1, (x, oo)) ascii_str = \ """\ O(1; x -> oo)\ """ ucode_str = \ """\ O(1; x → ∞)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1/x, (x, oo)) ascii_str = \ """\ /1 \\\n\ O|-; x -> oo|\n\ \\x /\ """ ucode_str = \ """\ ⎛1 ⎞\n\ O⎜─; x → ∞⎟\n\ ⎝x ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(x**2 + y**2, (x, oo), (y, oo)) ascii_str = \ """\ / 2 2 \\\n\ O\\x + y ; (x, y) -> (oo, oo)/\ """ ucode_str = \ """\ ⎛ 2 2 ⎞\n\ O⎝x + y ; (x, y) → (∞, ∞)⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_derivatives(): # Simple expr = Derivative(log(x), x, evaluate=False) ascii_str = \ """\ d \n\ --(log(x))\n\ dx \ """ ucode_str = \ """\ d \n\ ──(log(x))\n\ dx \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(log(x), x, evaluate=False) + x ascii_str_1 = \ """\ d \n\ x + --(log(x))\n\ dx \ """ ascii_str_2 = \ """\ d \n\ --(log(x)) + x\n\ dx \ """ ucode_str_1 = \ """\ d \n\ x + ──(log(x))\n\ dx \ """ ucode_str_2 = \ """\ d \n\ ──(log(x)) + x\n\ dx \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] # basic partial derivatives expr = Derivative(log(x + y) + x, x) ascii_str_1 = \ """\ d \n\ --(log(x + y) + x)\n\ dx \ """ ascii_str_2 = \ """\ d \n\ --(x + log(x + y))\n\ dx \ """ ucode_str_1 = \ """\ ∂ \n\ ──(log(x + y) + x)\n\ ∂x \ """ ucode_str_2 = \ """\ ∂ \n\ ──(x + log(x + y))\n\ ∂x \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2], upretty(expr) # Multiple symbols expr = Derivative(log(x) + x**2, x, y) ascii_str_1 = \ """\ 2 \n\ d / 2\\\n\ -----\\log(x) + x /\n\ dy dx \ """ ascii_str_2 = \ """\ 2 \n\ d / 2 \\\n\ -----\\x + log(x)/\n\ dy dx \ """ ucode_str_1 = \ """\ 2 \n\ d ⎛ 2⎞\n\ ─────⎝log(x) + x ⎠\n\ dy dx \ """ ucode_str_2 = \ """\ 2 \n\ d ⎛ 2 ⎞\n\ ─────⎝x + log(x)⎠\n\ dy dx \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Derivative(2*x*y, y, x) + x**2 ascii_str_1 = \ """\ 2 \n\ d 2\n\ -----(2*x*y) + x \n\ dx dy \ """ ascii_str_2 = \ """\ 2 \n\ 2 d \n\ x + -----(2*x*y)\n\ dx dy \ """ ucode_str_1 = \ """\ 2 \n\ ∂ 2\n\ ─────(2⋅x⋅y) + x \n\ ∂x ∂y \ """ ucode_str_2 = \ """\ 2 \n\ 2 ∂ \n\ x + ─────(2⋅x⋅y)\n\ ∂x ∂y \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Derivative(2*x*y, x, x) ascii_str = \ """\ 2 \n\ d \n\ ---(2*x*y)\n\ 2 \n\ dx \ """ ucode_str = \ """\ 2 \n\ ∂ \n\ ───(2⋅x⋅y)\n\ 2 \n\ ∂x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(2*x*y, x, 17) ascii_str = \ """\ 17 \n\ d \n\ ----(2*x*y)\n\ 17 \n\ dx \ """ ucode_str = \ """\ 17 \n\ ∂ \n\ ────(2⋅x⋅y)\n\ 17 \n\ ∂x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(2*x*y, x, x, y) ascii_str = \ """\ 3 \n\ d \n\ ------(2*x*y)\n\ 2 \n\ dy dx \ """ ucode_str = \ """\ 3 \n\ ∂ \n\ ──────(2⋅x⋅y)\n\ 2 \n\ ∂y ∂x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # Greek letters alpha = Symbol('alpha') beta = Function('beta') expr = beta(alpha).diff(alpha) ascii_str = \ """\ d \n\ ------(beta(alpha))\n\ dalpha \ """ ucode_str = \ """\ d \n\ ──(β(α))\n\ dα \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(f(x), (x, n)) ascii_str = \ """\ n \n\ d \n\ ---(f(x))\n\ n \n\ dx \ """ ucode_str = \ """\ n \n\ d \n\ ───(f(x))\n\ n \n\ dx \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_integrals(): expr = Integral(log(x), x) ascii_str = \ """\ / \n\ | \n\ | log(x) dx\n\ | \n\ / \ """ ucode_str = \ """\ ⌠ \n\ ⎮ log(x) dx\n\ ⌡ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, x) ascii_str = \ """\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \ """ ucode_str = \ """\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral((sin(x))**2 / (tan(x))**2) ascii_str = \ """\ / \n\ | \n\ | 2 \n\ | sin (x) \n\ | ------- dx\n\ | 2 \n\ | tan (x) \n\ | \n\ / \ """ ucode_str = \ """\ ⌠ \n\ ⎮ 2 \n\ ⎮ sin (x) \n\ ⎮ ─────── dx\n\ ⎮ 2 \n\ ⎮ tan (x) \n\ ⌡ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**(2**x), x) ascii_str = \ """\ / \n\ | \n\ | / x\\ \n\ | \\2 / \n\ | x dx\n\ | \n\ / \ """ ucode_str = \ """\ ⌠ \n\ ⎮ ⎛ x⎞ \n\ ⎮ ⎝2 ⎠ \n\ ⎮ x dx\n\ ⌡ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, (x, 1, 2)) ascii_str = \ """\ 2 \n\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \n\ 1 \ """ ucode_str = \ """\ 2 \n\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \n\ 1 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, (x, Rational(1, 2), 10)) ascii_str = \ """\ 10 \n\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \n\ 1/2 \ """ ucode_str = \ """\ 10 \n\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \n\ 1/2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2*y**2, x, y) ascii_str = \ """\ / / \n\ | | \n\ | | 2 2 \n\ | | x *y dx dy\n\ | | \n\ / / \ """ ucode_str = \ """\ ⌠ ⌠ \n\ ⎮ ⎮ 2 2 \n\ ⎮ ⎮ x ⋅y dx dy\n\ ⌡ ⌡ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(sin(th)/cos(ph), (th, 0, pi), (ph, 0, 2*pi)) ascii_str = \ """\ 2*pi pi \n\ / / \n\ | | \n\ | | sin(theta) \n\ | | ---------- d(theta) d(phi)\n\ | | cos(phi) \n\ | | \n\ / / \n\ 0 0 \ """ ucode_str = \ """\ 2⋅π π \n\ ⌠ ⌠ \n\ ⎮ ⎮ sin(θ) \n\ ⎮ ⎮ ────── dθ dφ\n\ ⎮ ⎮ cos(φ) \n\ ⌡ ⌡ \n\ 0 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_matrix(): # Empty Matrix expr = Matrix() ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix(2, 0, lambda i, j: 0) ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix(0, 2, lambda i, j: 0) ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix([[x**2 + 1, 1], [y, x + y]]) ascii_str_1 = \ """\ [ 2 ] [1 + x 1 ] [ ] [ y x + y]\ """ ascii_str_2 = \ """\ [ 2 ] [x + 1 1 ] [ ] [ y x + y]\ """ ucode_str_1 = \ """\ ⎡ 2 ⎤ ⎢1 + x 1 ⎥ ⎢ ⎥ ⎣ y x + y⎦\ """ ucode_str_2 = \ """\ ⎡ 2 ⎤ ⎢x + 1 1 ⎥ ⎢ ⎥ ⎣ y x + y⎦\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]]) ascii_str = \ """\ [x ] [- y theta] [y ] [ ] [ I*k*phi ] [0 e 1 ]\ """ ucode_str = \ """\ ⎡x ⎤ ⎢─ y θ⎥ ⎢y ⎥ ⎢ ⎥ ⎢ ⅈ⋅k⋅φ ⎥ ⎣0 ℯ 1⎦\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str unicode_str = \ """\ ⎡v̇_msc_00 0 0 ⎤ ⎢ ⎥ ⎢ 0 v̇_msc_01 0 ⎥ ⎢ ⎥ ⎣ 0 0 v̇_msc_02⎦\ """ expr = diag(*MatrixSymbol('vdot_msc',1,3)) assert upretty(expr) == unicode_str def test_pretty_ndim_arrays(): x, y, z, w = symbols("x y z w") for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray): # Basic: scalar array M = ArrayType(x) assert pretty(M) == "x" assert upretty(M) == "x" M = ArrayType([[1/x, y], [z, w]]) M1 = ArrayType([1/x, y, z]) M2 = tensorproduct(M1, M) M3 = tensorproduct(M, M) ascii_str = \ """\ [1 ]\n\ [- y]\n\ [x ]\n\ [ ]\n\ [z w]\ """ ucode_str = \ """\ ⎡1 ⎤\n\ ⎢─ y⎥\n\ ⎢x ⎥\n\ ⎢ ⎥\n\ ⎣z w⎦\ """ assert pretty(M) == ascii_str assert upretty(M) == ucode_str ascii_str = \ """\ [1 ]\n\ [- y z]\n\ [x ]\ """ ucode_str = \ """\ ⎡1 ⎤\n\ ⎢─ y z⎥\n\ ⎣x ⎦\ """ assert pretty(M1) == ascii_str assert upretty(M1) == ucode_str ascii_str = \ """\ [[1 y] ]\n\ [[-- -] [z ]]\n\ [[ 2 x] [ y 2 ] [- y*z]]\n\ [[x ] [ - y ] [x ]]\n\ [[ ] [ x ] [ ]]\n\ [[z w] [ ] [ 2 ]]\n\ [[- -] [y*z w*y] [z w*z]]\n\ [[x x] ]\ """ ucode_str = \ """\ ⎡⎡1 y⎤ ⎤\n\ ⎢⎢── ─⎥ ⎡z ⎤⎥\n\ ⎢⎢ 2 x⎥ ⎡ y 2 ⎤ ⎢─ y⋅z⎥⎥\n\ ⎢⎢x ⎥ ⎢ ─ y ⎥ ⎢x ⎥⎥\n\ ⎢⎢ ⎥ ⎢ x ⎥ ⎢ ⎥⎥\n\ ⎢⎢z w⎥ ⎢ ⎥ ⎢ 2 ⎥⎥\n\ ⎢⎢─ ─⎥ ⎣y⋅z w⋅y⎦ ⎣z w⋅z⎦⎥\n\ ⎣⎣x x⎦ ⎦\ """ assert pretty(M2) == ascii_str assert upretty(M2) == ucode_str ascii_str = \ """\ [ [1 y] ]\n\ [ [-- -] ]\n\ [ [ 2 x] [ y 2 ]]\n\ [ [x ] [ - y ]]\n\ [ [ ] [ x ]]\n\ [ [z w] [ ]]\n\ [ [- -] [y*z w*y]]\n\ [ [x x] ]\n\ [ ]\n\ [[z ] [ w ]]\n\ [[- y*z] [ - w*y]]\n\ [[x ] [ x ]]\n\ [[ ] [ ]]\n\ [[ 2 ] [ 2 ]]\n\ [[z w*z] [w*z w ]]\ """ ucode_str = \ """\ ⎡ ⎡1 y⎤ ⎤\n\ ⎢ ⎢── ─⎥ ⎥\n\ ⎢ ⎢ 2 x⎥ ⎡ y 2 ⎤⎥\n\ ⎢ ⎢x ⎥ ⎢ ─ y ⎥⎥\n\ ⎢ ⎢ ⎥ ⎢ x ⎥⎥\n\ ⎢ ⎢z w⎥ ⎢ ⎥⎥\n\ ⎢ ⎢─ ─⎥ ⎣y⋅z w⋅y⎦⎥\n\ ⎢ ⎣x x⎦ ⎥\n\ ⎢ ⎥\n\ ⎢⎡z ⎤ ⎡ w ⎤⎥\n\ ⎢⎢─ y⋅z⎥ ⎢ ─ w⋅y⎥⎥\n\ ⎢⎢x ⎥ ⎢ x ⎥⎥\n\ ⎢⎢ ⎥ ⎢ ⎥⎥\n\ ⎢⎢ 2 ⎥ ⎢ 2 ⎥⎥\n\ ⎣⎣z w⋅z⎦ ⎣w⋅z w ⎦⎦\ """ assert pretty(M3) == ascii_str assert upretty(M3) == ucode_str Mrow = ArrayType([[x, y, 1 / z]]) Mcolumn = ArrayType([[x], [y], [1 / z]]) Mcol2 = ArrayType([Mcolumn.tolist()]) ascii_str = \ """\ [[ 1]]\n\ [[x y -]]\n\ [[ z]]\ """ ucode_str = \ """\ ⎡⎡ 1⎤⎤\n\ ⎢⎢x y ─⎥⎥\n\ ⎣⎣ z⎦⎦\ """ assert pretty(Mrow) == ascii_str assert upretty(Mrow) == ucode_str ascii_str = \ """\ [x]\n\ [ ]\n\ [y]\n\ [ ]\n\ [1]\n\ [-]\n\ [z]\ """ ucode_str = \ """\ ⎡x⎤\n\ ⎢ ⎥\n\ ⎢y⎥\n\ ⎢ ⎥\n\ ⎢1⎥\n\ ⎢─⎥\n\ ⎣z⎦\ """ assert pretty(Mcolumn) == ascii_str assert upretty(Mcolumn) == ucode_str ascii_str = \ """\ [[x]]\n\ [[ ]]\n\ [[y]]\n\ [[ ]]\n\ [[1]]\n\ [[-]]\n\ [[z]]\ """ ucode_str = \ """\ ⎡⎡x⎤⎤\n\ ⎢⎢ ⎥⎥\n\ ⎢⎢y⎥⎥\n\ ⎢⎢ ⎥⎥\n\ ⎢⎢1⎥⎥\n\ ⎢⎢─⎥⎥\n\ ⎣⎣z⎦⎦\ """ assert pretty(Mcol2) == ascii_str assert upretty(Mcol2) == ucode_str def test_tensor_TensorProduct(): A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) assert upretty(TensorProduct(A, B)) == "A\u2297B" assert upretty(TensorProduct(A, B, A)) == "A\u2297B\u2297A" def test_diffgeom_print_WedgeProduct(): from sympy.diffgeom.rn import R2 from sympy.diffgeom import WedgeProduct wp = WedgeProduct(R2.dx, R2.dy) assert upretty(wp) == "ⅆ x∧ⅆ y" def test_Adjoint(): X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert pretty(Adjoint(X)) == " +\nX " assert pretty(Adjoint(X + Y)) == " +\n(X + Y) " assert pretty(Adjoint(X) + Adjoint(Y)) == " + +\nX + Y " assert pretty(Adjoint(X*Y)) == " +\n(X*Y) " assert pretty(Adjoint(Y)*Adjoint(X)) == " + +\nY *X " assert pretty(Adjoint(X**2)) == " +\n/ 2\\ \n\\X / " assert pretty(Adjoint(X)**2) == " 2\n/ +\\ \n\\X / " assert pretty(Adjoint(Inverse(X))) == " +\n/ -1\\ \n\\X / " assert pretty(Inverse(Adjoint(X))) == " -1\n/ +\\ \n\\X / " assert pretty(Adjoint(Transpose(X))) == " +\n/ T\\ \n\\X / " assert pretty(Transpose(Adjoint(X))) == " T\n/ +\\ \n\\X / " assert upretty(Adjoint(X)) == " †\nX " assert upretty(Adjoint(X + Y)) == " †\n(X + Y) " assert upretty(Adjoint(X) + Adjoint(Y)) == " † †\nX + Y " assert upretty(Adjoint(X*Y)) == " †\n(X⋅Y) " assert upretty(Adjoint(Y)*Adjoint(X)) == " † †\nY ⋅X " assert upretty(Adjoint(X**2)) == \ " †\n⎛ 2⎞ \n⎝X ⎠ " assert upretty(Adjoint(X)**2) == \ " 2\n⎛ †⎞ \n⎝X ⎠ " assert upretty(Adjoint(Inverse(X))) == \ " †\n⎛ -1⎞ \n⎝X ⎠ " assert upretty(Inverse(Adjoint(X))) == \ " -1\n⎛ †⎞ \n⎝X ⎠ " assert upretty(Adjoint(Transpose(X))) == \ " †\n⎛ T⎞ \n⎝X ⎠ " assert upretty(Transpose(Adjoint(X))) == \ " T\n⎛ †⎞ \n⎝X ⎠ " def test_pretty_Trace_issue_9044(): X = Matrix([[1, 2], [3, 4]]) Y = Matrix([[2, 4], [6, 8]]) ascii_str_1 = \ """\ /[1 2]\\ tr|[ ]| \\[3 4]/\ """ ucode_str_1 = \ """\ ⎛⎡1 2⎤⎞ tr⎜⎢ ⎥⎟ ⎝⎣3 4⎦⎠\ """ ascii_str_2 = \ """\ /[1 2]\\ /[2 4]\\ tr|[ ]| + tr|[ ]| \\[3 4]/ \\[6 8]/\ """ ucode_str_2 = \ """\ ⎛⎡1 2⎤⎞ ⎛⎡2 4⎤⎞ tr⎜⎢ ⎥⎟ + tr⎜⎢ ⎥⎟ ⎝⎣3 4⎦⎠ ⎝⎣6 8⎦⎠\ """ assert pretty(Trace(X)) == ascii_str_1 assert upretty(Trace(X)) == ucode_str_1 assert pretty(Trace(X) + Trace(Y)) == ascii_str_2 assert upretty(Trace(X) + Trace(Y)) == ucode_str_2 def test_MatrixSlice(): n = Symbol('n', integer=True) x, y, z, w, t, = symbols('x y z w t') X = MatrixSymbol('X', n, n) Y = MatrixSymbol('Y', 10, 10) Z = MatrixSymbol('Z', 10, 10) expr = MatrixSlice(X, (None, None, None), (None, None, None)) assert pretty(expr) == upretty(expr) == 'X[:, :]' expr = X[x:x + 1, y:y + 1] assert pretty(expr) == upretty(expr) == 'X[x:x + 1, y:y + 1]' expr = X[x:x + 1:2, y:y + 1:2] assert pretty(expr) == upretty(expr) == 'X[x:x + 1:2, y:y + 1:2]' expr = X[:x, y:] assert pretty(expr) == upretty(expr) == 'X[:x, y:]' expr = X[:x, y:] assert pretty(expr) == upretty(expr) == 'X[:x, y:]' expr = X[x:, :y] assert pretty(expr) == upretty(expr) == 'X[x:, :y]' expr = X[x:y, z:w] assert pretty(expr) == upretty(expr) == 'X[x:y, z:w]' expr = X[x:y:t, w:t:x] assert pretty(expr) == upretty(expr) == 'X[x:y:t, w:t:x]' expr = X[x::y, t::w] assert pretty(expr) == upretty(expr) == 'X[x::y, t::w]' expr = X[:x:y, :t:w] assert pretty(expr) == upretty(expr) == 'X[:x:y, :t:w]' expr = X[::x, ::y] assert pretty(expr) == upretty(expr) == 'X[::x, ::y]' expr = MatrixSlice(X, (0, None, None), (0, None, None)) assert pretty(expr) == upretty(expr) == 'X[:, :]' expr = MatrixSlice(X, (None, n, None), (None, n, None)) assert pretty(expr) == upretty(expr) == 'X[:, :]' expr = MatrixSlice(X, (0, n, None), (0, n, None)) assert pretty(expr) == upretty(expr) == 'X[:, :]' expr = MatrixSlice(X, (0, n, 2), (0, n, 2)) assert pretty(expr) == upretty(expr) == 'X[::2, ::2]' expr = X[1:2:3, 4:5:6] assert pretty(expr) == upretty(expr) == 'X[1:2:3, 4:5:6]' expr = X[1:3:5, 4:6:8] assert pretty(expr) == upretty(expr) == 'X[1:3:5, 4:6:8]' expr = X[1:10:2] assert pretty(expr) == upretty(expr) == 'X[1:10:2, :]' expr = Y[:5, 1:9:2] assert pretty(expr) == upretty(expr) == 'Y[:5, 1:9:2]' expr = Y[:5, 1:10:2] assert pretty(expr) == upretty(expr) == 'Y[:5, 1::2]' expr = Y[5, :5:2] assert pretty(expr) == upretty(expr) == 'Y[5:6, :5:2]' expr = X[0:1, 0:1] assert pretty(expr) == upretty(expr) == 'X[:1, :1]' expr = X[0:1:2, 0:1:2] assert pretty(expr) == upretty(expr) == 'X[:1:2, :1:2]' expr = (Y + Z)[2:, 2:] assert pretty(expr) == upretty(expr) == '(Y + Z)[2:, 2:]' def test_MatrixExpressions(): n = Symbol('n', integer=True) X = MatrixSymbol('X', n, n) assert pretty(X) == upretty(X) == "X" # Apply function elementwise (`ElementwiseApplyFunc`): expr = (X.T*X).applyfunc(sin) ascii_str = """\ / T \\\n\ (d -> sin(d)).\\X *X/\ """ ucode_str = """\ ⎛ T ⎞\n\ (d ↦ sin(d))˳⎝X ⋅X⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str lamda = Lambda(x, 1/x) expr = (n*X).applyfunc(lamda) ascii_str = """\ / 1\\ \n\ |x -> -|.(n*X)\n\ \\ x/ \ """ ucode_str = """\ ⎛ 1⎞ \n\ ⎜x ↦ ─⎟˳(n⋅X)\n\ ⎝ x⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_dotproduct(): from sympy.matrices import Matrix, MatrixSymbol from sympy.matrices.expressions.dotproduct import DotProduct n = symbols("n", integer=True) A = MatrixSymbol('A', n, 1) B = MatrixSymbol('B', n, 1) C = Matrix(1, 3, [1, 2, 3]) D = Matrix(1, 3, [1, 3, 4]) assert pretty(DotProduct(A, B)) == "A*B" assert pretty(DotProduct(C, D)) == "[1 2 3]*[1 3 4]" assert upretty(DotProduct(A, B)) == "A⋅B" assert upretty(DotProduct(C, D)) == "[1 2 3]⋅[1 3 4]" def test_pretty_piecewise(): expr = Piecewise((x, x < 1), (x**2, True)) ascii_str = \ """\ /x for x < 1\n\ | \n\ < 2 \n\ |x otherwise\n\ \\ \ """ ucode_str = \ """\ ⎧x for x < 1\n\ ⎪ \n\ ⎨ 2 \n\ ⎪x otherwise\n\ ⎩ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -Piecewise((x, x < 1), (x**2, True)) ascii_str = \ """\ //x for x < 1\\\n\ || |\n\ -|< 2 |\n\ ||x otherwise|\n\ \\\\ /\ """ ucode_str = \ """\ ⎛⎧x for x < 1⎞\n\ ⎜⎪ ⎟\n\ -⎜⎨ 2 ⎟\n\ ⎜⎪x otherwise⎟\n\ ⎝⎩ ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x + Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) + 1 ascii_str = \ """\ //x \\ \n\ ||- for x < 2| \n\ ||y | \n\ //x for x > 0\\ || | \n\ x + |< | + |< 2 | + 1\n\ \\\\y otherwise/ ||y for x > 2| \n\ || | \n\ ||1 otherwise| \n\ \\\\ / \ """ ucode_str = \ """\ ⎛⎧x ⎞ \n\ ⎜⎪─ for x < 2⎟ \n\ ⎜⎪y ⎟ \n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\ x + ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\ ⎜⎪ ⎟ \n\ ⎜⎪1 otherwise⎟ \n\ ⎝⎩ ⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x - Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) + 1 ascii_str = \ """\ //x \\ \n\ ||- for x < 2| \n\ ||y | \n\ //x for x > 0\\ || | \n\ x - |< | + |< 2 | + 1\n\ \\\\y otherwise/ ||y for x > 2| \n\ || | \n\ ||1 otherwise| \n\ \\\\ / \ """ ucode_str = \ """\ ⎛⎧x ⎞ \n\ ⎜⎪─ for x < 2⎟ \n\ ⎜⎪y ⎟ \n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\ x - ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\ ⎜⎪ ⎟ \n\ ⎜⎪1 otherwise⎟ \n\ ⎝⎩ ⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x*Piecewise((x, x > 0), (y, True)) ascii_str = \ """\ //x for x > 0\\\n\ x*|< |\n\ \\\\y otherwise/\ """ ucode_str = \ """\ ⎛⎧x for x > 0⎞\n\ x⋅⎜⎨ ⎟\n\ ⎝⎩y otherwise⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) ascii_str = \ """\ //x \\\n\ ||- for x < 2|\n\ ||y |\n\ //x for x > 0\\ || |\n\ |< |*|< 2 |\n\ \\\\y otherwise/ ||y for x > 2|\n\ || |\n\ ||1 otherwise|\n\ \\\\ /\ """ ucode_str = \ """\ ⎛⎧x ⎞\n\ ⎜⎪─ for x < 2⎟\n\ ⎜⎪y ⎟\n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\ ⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\ ⎜⎪ ⎟\n\ ⎜⎪1 otherwise⎟\n\ ⎝⎩ ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) ascii_str = \ """\ //x \\\n\ ||- for x < 2|\n\ ||y |\n\ //x for x > 0\\ || |\n\ -|< |*|< 2 |\n\ \\\\y otherwise/ ||y for x > 2|\n\ || |\n\ ||1 otherwise|\n\ \\\\ /\ """ ucode_str = \ """\ ⎛⎧x ⎞\n\ ⎜⎪─ for x < 2⎟\n\ ⎜⎪y ⎟\n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\ -⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\ ⎜⎪ ⎟\n\ ⎜⎪1 otherwise⎟\n\ ⎝⎩ ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Piecewise((0, Abs(1/y) < 1), (1, Abs(y) < 1), (y*meijerg(((2, 1), ()), ((), (1, 0)), 1/y), True)) ascii_str = \ """\ / 1 \n\ | 0 for --- < 1\n\ | |y| \n\ | \n\ < 1 for |y| < 1\n\ | \n\ | __0, 2 /2, 1 | 1\\ \n\ |y*/__ | | -| otherwise \n\ \\ \\_|2, 2 \\ 1, 0 | y/ \ """ ucode_str = \ """\ ⎧ 1 \n\ ⎪ 0 for ─── < 1\n\ ⎪ │y│ \n\ ⎪ \n\ ⎨ 1 for │y│ < 1\n\ ⎪ \n\ ⎪ ╭─╮0, 2 ⎛2, 1 │ 1⎞ \n\ ⎪y⋅│╶┐ ⎜ │ ─⎟ otherwise \n\ ⎩ ╰─╯2, 2 ⎝ 1, 0 │ y⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # XXX: We have to use evaluate=False here because Piecewise._eval_power # denests the power. expr = Pow(Piecewise((x, x > 0), (y, True)), 2, evaluate=False) ascii_str = \ """\ 2\n\ //x for x > 0\\ \n\ |< | \n\ \\\\y otherwise/ \ """ ucode_str = \ """\ 2\n\ ⎛⎧x for x > 0⎞ \n\ ⎜⎨ ⎟ \n\ ⎝⎩y otherwise⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_ITE(): expr = ITE(x, y, z) assert pretty(expr) == ( '/y for x \n' '< \n' '\\z otherwise' ) assert upretty(expr) == """\ ⎧y for x \n\ ⎨ \n\ ⎩z otherwise\ """ def test_pretty_seq(): expr = () ascii_str = \ """\ ()\ """ ucode_str = \ """\ ()\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = [] ascii_str = \ """\ []\ """ ucode_str = \ """\ []\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {} expr_2 = {} ascii_str = \ """\ {}\ """ ucode_str = \ """\ {}\ """ assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str expr = (1/x,) ascii_str = \ """\ 1 \n\ (-,)\n\ x \ """ ucode_str = \ """\ ⎛1 ⎞\n\ ⎜─,⎟\n\ ⎝x ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2] ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ [x , -, x, y, -----------]\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ """\ ⎡ 2 ⎤\n\ ⎢ 2 1 sin (θ)⎥\n\ ⎢x , ─, x, y, ───────⎥\n\ ⎢ x 2 ⎥\n\ ⎣ cos (φ)⎦\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ (x , -, x, y, -----------)\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ """\ ⎛ 2 ⎞\n\ ⎜ 2 1 sin (θ)⎟\n\ ⎜x , ─, x, y, ───────⎟\n\ ⎜ x 2 ⎟\n\ ⎝ cos (φ)⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Tuple(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ (x , -, x, y, -----------)\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ """\ ⎛ 2 ⎞\n\ ⎜ 2 1 sin (θ)⎟\n\ ⎜x , ─, x, y, ───────⎟\n\ ⎜ x 2 ⎟\n\ ⎝ cos (φ)⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {x: sin(x)} expr_2 = Dict({x: sin(x)}) ascii_str = \ """\ {x: sin(x)}\ """ ucode_str = \ """\ {x: sin(x)}\ """ assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str expr = {1/x: 1/y, x: sin(x)**2} expr_2 = Dict({1/x: 1/y, x: sin(x)**2}) ascii_str = \ """\ 1 1 2 \n\ {-: -, x: sin (x)}\n\ x y \ """ ucode_str = \ """\ ⎧1 1 2 ⎫\n\ ⎨─: ─, x: sin (x)⎬\n\ ⎩x y ⎭\ """ assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str # There used to be a bug with pretty-printing sequences of even height. expr = [x**2] ascii_str = \ """\ 2 \n\ [x ]\ """ ucode_str = \ """\ ⎡ 2⎤\n\ ⎣x ⎦\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2,) ascii_str = \ """\ 2 \n\ (x ,)\ """ ucode_str = \ """\ ⎛ 2 ⎞\n\ ⎝x ,⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Tuple(x**2) ascii_str = \ """\ 2 \n\ (x ,)\ """ ucode_str = \ """\ ⎛ 2 ⎞\n\ ⎝x ,⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {x**2: 1} expr_2 = Dict({x**2: 1}) ascii_str = \ """\ 2 \n\ {x : 1}\ """ ucode_str = \ """\ ⎧ 2 ⎫\n\ ⎨x : 1⎬\n\ ⎩ ⎭\ """ assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str def test_any_object_in_sequence(): # Cf. issue 5306 b1 = Basic() b2 = Basic(Basic()) expr = [b2, b1] assert pretty(expr) == "[Basic(Basic()), Basic()]" assert upretty(expr) == "[Basic(Basic()), Basic()]" expr = {b2, b1} assert pretty(expr) == "{Basic(), Basic(Basic())}" assert upretty(expr) == "{Basic(), Basic(Basic())}" expr = {b2: b1, b1: b2} expr2 = Dict({b2: b1, b1: b2}) assert pretty(expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert pretty( expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert upretty( expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert upretty( expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" def test_print_builtin_set(): assert pretty(set()) == 'set()' assert upretty(set()) == 'set()' assert pretty(frozenset()) == 'frozenset()' assert upretty(frozenset()) == 'frozenset()' s1 = {1/x, x} s2 = frozenset(s1) assert pretty(s1) == \ """\ 1 \n\ {-, x} x \ """ assert upretty(s1) == \ """\ ⎧1 ⎫ ⎨─, x⎬ ⎩x ⎭\ """ assert pretty(s2) == \ """\ 1 \n\ frozenset({-, x}) x \ """ assert upretty(s2) == \ """\ ⎛⎧1 ⎫⎞ frozenset⎜⎨─, x⎬⎟ ⎝⎩x ⎭⎠\ """ def test_pretty_sets(): s = FiniteSet assert pretty(s(*[x*y, x**2])) == \ """\ 2 \n\ {x , x*y}\ """ assert pretty(s(*range(1, 6))) == "{1, 2, 3, 4, 5}" assert pretty(s(*range(1, 13))) == "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}" assert pretty({x*y, x**2}) == \ """\ 2 \n\ {x , x*y}\ """ assert pretty(set(range(1, 6))) == "{1, 2, 3, 4, 5}" assert pretty(set(range(1, 13))) == \ "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}" assert pretty(frozenset([x*y, x**2])) == \ """\ 2 \n\ frozenset({x , x*y})\ """ assert pretty(frozenset(range(1, 6))) == "frozenset({1, 2, 3, 4, 5})" assert pretty(frozenset(range(1, 13))) == \ "frozenset({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12})" assert pretty(Range(0, 3, 1)) == '{0, 1, 2}' ascii_str = '{0, 1, ..., 29}' ucode_str = '{0, 1, …, 29}' assert pretty(Range(0, 30, 1)) == ascii_str assert upretty(Range(0, 30, 1)) == ucode_str ascii_str = '{30, 29, ..., 2}' ucode_str = '{30, 29, …, 2}' assert pretty(Range(30, 1, -1)) == ascii_str assert upretty(Range(30, 1, -1)) == ucode_str ascii_str = '{0, 2, ...}' ucode_str = '{0, 2, …}' assert pretty(Range(0, oo, 2)) == ascii_str assert upretty(Range(0, oo, 2)) == ucode_str ascii_str = '{..., 2, 0}' ucode_str = '{…, 2, 0}' assert pretty(Range(oo, -2, -2)) == ascii_str assert upretty(Range(oo, -2, -2)) == ucode_str ascii_str = '{-2, -3, ...}' ucode_str = '{-2, -3, …}' assert pretty(Range(-2, -oo, -1)) == ascii_str assert upretty(Range(-2, -oo, -1)) == ucode_str def test_pretty_SetExpr(): iv = Interval(1, 3) se = SetExpr(iv) ascii_str = "SetExpr([1, 3])" ucode_str = "SetExpr([1, 3])" assert pretty(se) == ascii_str assert upretty(se) == ucode_str def test_pretty_ImageSet(): imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4}) ascii_str = '{x + y | x in {1, 2, 3}, y in {3, 4}}' ucode_str = '{x + y │ x ∊ {1, 2, 3}, y ∊ {3, 4}}' assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4})) ascii_str = '{x + y | (x, y) in {1, 2, 3} x {3, 4}}' ucode_str = '{x + y │ (x, y) ∊ {1, 2, 3} × {3, 4}}' assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str imgset = ImageSet(Lambda(x, x**2), S.Naturals) ascii_str = '''\ 2 \n\ {x | x in Naturals}''' ucode_str = '''\ ⎧ 2 │ ⎫\n\ ⎨x │ x ∊ ℕ⎬\n\ ⎩ │ ⎭''' assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str # TODO: The "x in N" parts below should be centered independently of the # 1/x**2 fraction imgset = ImageSet(Lambda(x, 1/x**2), S.Naturals) ascii_str = '''\ 1 \n\ {-- | x in Naturals} 2 \n\ x ''' ucode_str = '''\ ⎧1 │ ⎫\n\ ⎪── │ x ∊ ℕ⎪\n\ ⎨ 2 │ ⎬\n\ ⎪x │ ⎪\n\ ⎩ │ ⎭''' assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str imgset = ImageSet(Lambda((x, y), 1/(x + y)**2), S.Naturals, S.Naturals) ascii_str = '''\ 1 \n\ {-------- | x in Naturals, y in Naturals} 2 \n\ (x + y) ''' ucode_str = '''\ ⎧ 1 │ ⎫ ⎪──────── │ x ∊ ℕ, y ∊ ℕ⎪ ⎨ 2 │ ⎬ ⎪(x + y) │ ⎪ ⎩ │ ⎭''' assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str def test_pretty_ConditionSet(): from sympy import ConditionSet ascii_str = '{x | x in (-oo, oo) and sin(x) = 0}' ucode_str = '{x │ x ∊ ℝ ∧ (sin(x) = 0)}' assert pretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ascii_str assert upretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ucode_str assert pretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}' assert upretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}' assert pretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "EmptySet" assert upretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "∅" assert pretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}' assert upretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}' condset = ConditionSet(x, 1/x**2 > 0) ascii_str = '''\ 1 \n\ {x | -- > 0} 2 \n\ x ''' ucode_str = '''\ ⎧ │ ⎛1 ⎞⎫ ⎪x │ ⎜── > 0⎟⎪ ⎨ │ ⎜ 2 ⎟⎬ ⎪ │ ⎝x ⎠⎪ ⎩ │ ⎭''' assert pretty(condset) == ascii_str assert upretty(condset) == ucode_str condset = ConditionSet(x, 1/x**2 > 0, S.Reals) ascii_str = '''\ 1 \n\ {x | x in (-oo, oo) and -- > 0} 2 \n\ x ''' ucode_str = '''\ ⎧ │ ⎛1 ⎞⎫ ⎪x │ x ∊ ℝ ∧ ⎜── > 0⎟⎪ ⎨ │ ⎜ 2 ⎟⎬ ⎪ │ ⎝x ⎠⎪ ⎩ │ ⎭''' assert pretty(condset) == ascii_str assert upretty(condset) == ucode_str def test_pretty_ComplexRegion(): from sympy import ComplexRegion cregion = ComplexRegion(Interval(3, 5)*Interval(4, 6)) ascii_str = '{x + y*I | x, y in [3, 5] x [4, 6]}' ucode_str = '{x + y⋅ⅈ │ x, y ∊ [3, 5] × [4, 6]}' assert pretty(cregion) == ascii_str assert upretty(cregion) == ucode_str cregion = ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True) ascii_str = '{r*(I*sin(theta) + cos(theta)) | r, theta in [0, 1] x [0, 2*pi)}' ucode_str = '{r⋅(ⅈ⋅sin(θ) + cos(θ)) │ r, θ ∊ [0, 1] × [0, 2⋅π)}' assert pretty(cregion) == ascii_str assert upretty(cregion) == ucode_str cregion = ComplexRegion(Interval(3, 1/a**2)*Interval(4, 6)) ascii_str = '''\ 1 \n\ {x + y*I | x, y in [3, --] x [4, 6]} 2 \n\ a ''' ucode_str = '''\ ⎧ │ ⎡ 1 ⎤ ⎫ ⎪x + y⋅ⅈ │ x, y ∊ ⎢3, ──⎥ × [4, 6]⎪ ⎨ │ ⎢ 2⎥ ⎬ ⎪ │ ⎣ a ⎦ ⎪ ⎩ │ ⎭''' assert pretty(cregion) == ascii_str assert upretty(cregion) == ucode_str cregion = ComplexRegion(Interval(0, 1/a**2)*Interval(0, 2*pi), polar=True) ascii_str = '''\ 1 \n\ {r*(I*sin(theta) + cos(theta)) | r, theta in [0, --] x [0, 2*pi)} 2 \n\ a ''' ucode_str = '''\ ⎧ │ ⎡ 1 ⎤ ⎫ ⎪r⋅(ⅈ⋅sin(θ) + cos(θ)) │ r, θ ∊ ⎢0, ──⎥ × [0, 2⋅π)⎪ ⎨ │ ⎢ 2⎥ ⎬ ⎪ │ ⎣ a ⎦ ⎪ ⎩ │ ⎭''' assert pretty(cregion) == ascii_str assert upretty(cregion) == ucode_str def test_pretty_Union_issue_10414(): a, b = Interval(2, 3), Interval(4, 7) ucode_str = '[2, 3] ∪ [4, 7]' ascii_str = '[2, 3] U [4, 7]' assert upretty(Union(a, b)) == ucode_str assert pretty(Union(a, b)) == ascii_str def test_pretty_Intersection_issue_10414(): x, y, z, w = symbols('x, y, z, w') a, b = Interval(x, y), Interval(z, w) ucode_str = '[x, y] ∩ [z, w]' ascii_str = '[x, y] n [z, w]' assert upretty(Intersection(a, b)) == ucode_str assert pretty(Intersection(a, b)) == ascii_str def test_ProductSet_exponent(): ucode_str = ' 1\n[0, 1] ' assert upretty(Interval(0, 1)**1) == ucode_str ucode_str = ' 2\n[0, 1] ' assert upretty(Interval(0, 1)**2) == ucode_str def test_ProductSet_parenthesis(): ucode_str = '([4, 7] × {1, 2}) ∪ ([2, 3] × [4, 7])' a, b = Interval(2, 3), Interval(4, 7) assert upretty(Union(a*b, b*FiniteSet(1, 2))) == ucode_str def test_ProductSet_prod_char_issue_10413(): ascii_str = '[2, 3] x [4, 7]' ucode_str = '[2, 3] × [4, 7]' a, b = Interval(2, 3), Interval(4, 7) assert pretty(a*b) == ascii_str assert upretty(a*b) == ucode_str def test_pretty_sequences(): s1 = SeqFormula(a**2, (0, oo)) s2 = SeqPer((1, 2)) ascii_str = '[0, 1, 4, 9, ...]' ucode_str = '[0, 1, 4, 9, …]' assert pretty(s1) == ascii_str assert upretty(s1) == ucode_str ascii_str = '[1, 2, 1, 2, ...]' ucode_str = '[1, 2, 1, 2, …]' assert pretty(s2) == ascii_str assert upretty(s2) == ucode_str s3 = SeqFormula(a**2, (0, 2)) s4 = SeqPer((1, 2), (0, 2)) ascii_str = '[0, 1, 4]' ucode_str = '[0, 1, 4]' assert pretty(s3) == ascii_str assert upretty(s3) == ucode_str ascii_str = '[1, 2, 1]' ucode_str = '[1, 2, 1]' assert pretty(s4) == ascii_str assert upretty(s4) == ucode_str s5 = SeqFormula(a**2, (-oo, 0)) s6 = SeqPer((1, 2), (-oo, 0)) ascii_str = '[..., 9, 4, 1, 0]' ucode_str = '[…, 9, 4, 1, 0]' assert pretty(s5) == ascii_str assert upretty(s5) == ucode_str ascii_str = '[..., 2, 1, 2, 1]' ucode_str = '[…, 2, 1, 2, 1]' assert pretty(s6) == ascii_str assert upretty(s6) == ucode_str ascii_str = '[1, 3, 5, 11, ...]' ucode_str = '[1, 3, 5, 11, …]' assert pretty(SeqAdd(s1, s2)) == ascii_str assert upretty(SeqAdd(s1, s2)) == ucode_str ascii_str = '[1, 3, 5]' ucode_str = '[1, 3, 5]' assert pretty(SeqAdd(s3, s4)) == ascii_str assert upretty(SeqAdd(s3, s4)) == ucode_str ascii_str = '[..., 11, 5, 3, 1]' ucode_str = '[…, 11, 5, 3, 1]' assert pretty(SeqAdd(s5, s6)) == ascii_str assert upretty(SeqAdd(s5, s6)) == ucode_str ascii_str = '[0, 2, 4, 18, ...]' ucode_str = '[0, 2, 4, 18, …]' assert pretty(SeqMul(s1, s2)) == ascii_str assert upretty(SeqMul(s1, s2)) == ucode_str ascii_str = '[0, 2, 4]' ucode_str = '[0, 2, 4]' assert pretty(SeqMul(s3, s4)) == ascii_str assert upretty(SeqMul(s3, s4)) == ucode_str ascii_str = '[..., 18, 4, 2, 0]' ucode_str = '[…, 18, 4, 2, 0]' assert pretty(SeqMul(s5, s6)) == ascii_str assert upretty(SeqMul(s5, s6)) == ucode_str # Sequences with symbolic limits, issue 12629 s7 = SeqFormula(a**2, (a, 0, x)) raises(NotImplementedError, lambda: pretty(s7)) raises(NotImplementedError, lambda: upretty(s7)) b = Symbol('b') s8 = SeqFormula(b*a**2, (a, 0, 2)) ascii_str = '[0, b, 4*b]' ucode_str = '[0, b, 4⋅b]' assert pretty(s8) == ascii_str assert upretty(s8) == ucode_str def test_pretty_FourierSeries(): f = fourier_series(x, (x, -pi, pi)) ascii_str = \ """\ 2*sin(3*x) \n\ 2*sin(x) - sin(2*x) + ---------- + ...\n\ 3 \ """ ucode_str = \ """\ 2⋅sin(3⋅x) \n\ 2⋅sin(x) - sin(2⋅x) + ────────── + …\n\ 3 \ """ assert pretty(f) == ascii_str assert upretty(f) == ucode_str def test_pretty_FormalPowerSeries(): f = fps(log(1 + x)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ -k k \n\ \\ -(-1) *x \n\ / -----------\n\ / k \n\ /___, \n\ k = 1 \ """ ucode_str = \ """\ ∞ \n\ ____ \n\ ╲ \n\ ╲ -k k \n\ ╲ -(-1) ⋅x \n\ ╱ ───────────\n\ ╱ k \n\ ╱ \n\ ‾‾‾‾ \n\ k = 1 \ """ assert pretty(f) == ascii_str assert upretty(f) == ucode_str def test_pretty_limits(): expr = Limit(x, x, oo) ascii_str = \ """\ lim x\n\ x->oo \ """ ucode_str = \ """\ lim x\n\ x─→∞ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x**2, x, 0) ascii_str = \ """\ 2\n\ lim x \n\ x->0+ \ """ ucode_str = \ """\ 2\n\ lim x \n\ x─→0⁺ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(1/x, x, 0) ascii_str = \ """\ 1\n\ lim -\n\ x->0+x\ """ ucode_str = \ """\ 1\n\ lim ─\n\ x─→0⁺x\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x)/x, x, 0) ascii_str = \ """\ /sin(x)\\\n\ lim |------|\n\ x->0+\\ x /\ """ ucode_str = \ """\ ⎛sin(x)⎞\n\ lim ⎜──────⎟\n\ x─→0⁺⎝ x ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x)/x, x, 0, "-") ascii_str = \ """\ /sin(x)\\\n\ lim |------|\n\ x->0-\\ x /\ """ ucode_str = \ """\ ⎛sin(x)⎞\n\ lim ⎜──────⎟\n\ x─→0⁻⎝ x ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x + sin(x), x, 0) ascii_str = \ """\ lim (x + sin(x))\n\ x->0+ \ """ ucode_str = \ """\ lim (x + sin(x))\n\ x─→0⁺ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x, x, 0)**2 ascii_str = \ """\ 2\n\ / lim x\\ \n\ \\x->0+ / \ """ ucode_str = \ """\ 2\n\ ⎛ lim x⎞ \n\ ⎝x─→0⁺ ⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x*Limit(y/2,y,0), x, 0) ascii_str = \ """\ / /y\\\\\n\ lim |x* lim |-||\n\ x->0+\\ y->0+\\2//\ """ ucode_str = \ """\ ⎛ ⎛y⎞⎞\n\ lim ⎜x⋅ lim ⎜─⎟⎟\n\ x─→0⁺⎝ y─→0⁺⎝2⎠⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*Limit(x*Limit(y/2,y,0), x, 0) ascii_str = \ """\ / /y\\\\\n\ 2* lim |x* lim |-||\n\ x->0+\\ y->0+\\2//\ """ ucode_str = \ """\ ⎛ ⎛y⎞⎞\n\ 2⋅ lim ⎜x⋅ lim ⎜─⎟⎟\n\ x─→0⁺⎝ y─→0⁺⎝2⎠⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x), x, 0, dir='+-') ascii_str = \ """\ lim sin(x)\n\ x->0 \ """ ucode_str = \ """\ lim sin(x)\n\ x─→0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_ComplexRootOf(): expr = rootof(x**5 + 11*x - 2, 0) ascii_str = \ """\ / 5 \\\n\ CRootOf\\x + 11*x - 2, 0/\ """ ucode_str = \ """\ ⎛ 5 ⎞\n\ CRootOf⎝x + 11⋅x - 2, 0⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_RootSum(): expr = RootSum(x**5 + 11*x - 2, auto=False) ascii_str = \ """\ / 5 \\\n\ RootSum\\x + 11*x - 2/\ """ ucode_str = \ """\ ⎛ 5 ⎞\n\ RootSum⎝x + 11⋅x - 2⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = RootSum(x**5 + 11*x - 2, Lambda(z, exp(z))) ascii_str = \ """\ / 5 z\\\n\ RootSum\\x + 11*x - 2, z -> e /\ """ ucode_str = \ """\ ⎛ 5 z⎞\n\ RootSum⎝x + 11⋅x - 2, z ↦ ℯ ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_GroebnerBasis(): expr = groebner([], x, y) ascii_str = \ """\ GroebnerBasis([], x, y, domain=ZZ, order=lex)\ """ ucode_str = \ """\ GroebnerBasis([], x, y, domain=ℤ, order=lex)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] expr = groebner(F, x, y, order='grlex') ascii_str = \ """\ /[ 2 2 ] \\\n\ GroebnerBasis\\[x - x - 3*y + 1, y - 2*x + y - 1], x, y, domain=ZZ, order=grlex/\ """ ucode_str = \ """\ ⎛⎡ 2 2 ⎤ ⎞\n\ GroebnerBasis⎝⎣x - x - 3⋅y + 1, y - 2⋅x + y - 1⎦, x, y, domain=ℤ, order=grlex⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = expr.fglm('lex') ascii_str = \ """\ /[ 2 4 3 2 ] \\\n\ GroebnerBasis\\[2*x - y - y + 1, y + 2*y - 3*y - 16*y + 7], x, y, domain=ZZ, order=lex/\ """ ucode_str = \ """\ ⎛⎡ 2 4 3 2 ⎤ ⎞\n\ GroebnerBasis⎝⎣2⋅x - y - y + 1, y + 2⋅y - 3⋅y - 16⋅y + 7⎦, x, y, domain=ℤ, order=lex⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_UniversalSet(): assert pretty(S.UniversalSet) == "UniversalSet" assert upretty(S.UniversalSet) == '𝕌' def test_pretty_Boolean(): expr = Not(x, evaluate=False) assert pretty(expr) == "Not(x)" assert upretty(expr) == "¬x" expr = And(x, y) assert pretty(expr) == "And(x, y)" assert upretty(expr) == "x ∧ y" expr = Or(x, y) assert pretty(expr) == "Or(x, y)" assert upretty(expr) == "x ∨ y" syms = symbols('a:f') expr = And(*syms) assert pretty(expr) == "And(a, b, c, d, e, f)" assert upretty(expr) == "a ∧ b ∧ c ∧ d ∧ e ∧ f" expr = Or(*syms) assert pretty(expr) == "Or(a, b, c, d, e, f)" assert upretty(expr) == "a ∨ b ∨ c ∨ d ∨ e ∨ f" expr = Xor(x, y, evaluate=False) assert pretty(expr) == "Xor(x, y)" assert upretty(expr) == "x ⊻ y" expr = Nand(x, y, evaluate=False) assert pretty(expr) == "Nand(x, y)" assert upretty(expr) == "x ⊼ y" expr = Nor(x, y, evaluate=False) assert pretty(expr) == "Nor(x, y)" assert upretty(expr) == "x ⊽ y" expr = Implies(x, y, evaluate=False) assert pretty(expr) == "Implies(x, y)" assert upretty(expr) == "x → y" # don't sort args expr = Implies(y, x, evaluate=False) assert pretty(expr) == "Implies(y, x)" assert upretty(expr) == "y → x" expr = Equivalent(x, y, evaluate=False) assert pretty(expr) == "Equivalent(x, y)" assert upretty(expr) == "x ⇔ y" expr = Equivalent(y, x, evaluate=False) assert pretty(expr) == "Equivalent(x, y)" assert upretty(expr) == "x ⇔ y" def test_pretty_Domain(): expr = FF(23) assert pretty(expr) == "GF(23)" assert upretty(expr) == "ℤ₂₃" expr = ZZ assert pretty(expr) == "ZZ" assert upretty(expr) == "ℤ" expr = QQ assert pretty(expr) == "QQ" assert upretty(expr) == "ℚ" expr = RR assert pretty(expr) == "RR" assert upretty(expr) == "ℝ" expr = QQ[x] assert pretty(expr) == "QQ[x]" assert upretty(expr) == "ℚ[x]" expr = QQ[x, y] assert pretty(expr) == "QQ[x, y]" assert upretty(expr) == "ℚ[x, y]" expr = ZZ.frac_field(x) assert pretty(expr) == "ZZ(x)" assert upretty(expr) == "ℤ(x)" expr = ZZ.frac_field(x, y) assert pretty(expr) == "ZZ(x, y)" assert upretty(expr) == "ℤ(x, y)" expr = QQ.poly_ring(x, y, order=grlex) assert pretty(expr) == "QQ[x, y, order=grlex]" assert upretty(expr) == "ℚ[x, y, order=grlex]" expr = QQ.poly_ring(x, y, order=ilex) assert pretty(expr) == "QQ[x, y, order=ilex]" assert upretty(expr) == "ℚ[x, y, order=ilex]" def test_pretty_prec(): assert xpretty(S("0.3"), full_prec=True, wrap_line=False) == "0.300000000000000" assert xpretty(S("0.3"), full_prec="auto", wrap_line=False) == "0.300000000000000" assert xpretty(S("0.3"), full_prec=False, wrap_line=False) == "0.3" assert xpretty(S("0.3")*x, full_prec=True, use_unicode=False, wrap_line=False) in [ "0.300000000000000*x", "x*0.300000000000000" ] assert xpretty(S("0.3")*x, full_prec="auto", use_unicode=False, wrap_line=False) in [ "0.3*x", "x*0.3" ] assert xpretty(S("0.3")*x, full_prec=False, use_unicode=False, wrap_line=False) in [ "0.3*x", "x*0.3" ] def test_pprint(): import sys from io import StringIO fd = StringIO() sso = sys.stdout sys.stdout = fd try: pprint(pi, use_unicode=False, wrap_line=False) finally: sys.stdout = sso assert fd.getvalue() == 'pi\n' def test_pretty_class(): """Test that the printer dispatcher correctly handles classes.""" class C: pass # C has no .__class__ and this was causing problems class D: pass assert pretty( C ) == str( C ) assert pretty( D ) == str( D ) def test_pretty_no_wrap_line(): huge_expr = 0 for i in range(20): huge_expr += i*sin(i + x) assert xpretty(huge_expr ).find('\n') != -1 assert xpretty(huge_expr, wrap_line=False).find('\n') == -1 def test_settings(): raises(TypeError, lambda: pretty(S(4), method="garbage")) def test_pretty_sum(): from sympy.abc import x, a, b, k, m, n expr = Sum(k**k, (k, 0, n)) ascii_str = \ """\ n \n\ ___ \n\ \\ ` \n\ \\ k\n\ / k \n\ /__, \n\ k = 0 \ """ ucode_str = \ """\ n \n\ ___ \n\ ╲ \n\ ╲ k\n\ ╱ k \n\ ╱ \n\ ‾‾‾ \n\ k = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**k, (k, oo, n)) ascii_str = \ """\ n \n\ ___ \n\ \\ ` \n\ \\ k\n\ / k \n\ /__, \n\ k = oo \ """ ucode_str = \ """\ n \n\ ___ \n\ ╲ \n\ ╲ k\n\ ╱ k \n\ ╱ \n\ ‾‾‾ \n\ k = ∞ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (k, 0, n**n)) ascii_str = \ """\ n \n\ n \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ """\ n \n\ n \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**( Integral(x**n, (x, -oo, oo))), (k, 0, Integral(x**x, (x, -oo, oo)))) ascii_str = \ """\ oo \n\ / \n\ | \n\ | x \n\ | x dx \n\ | \n\ / \n\ -oo \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ """\ ∞ \n\ ⌠ \n\ ⎮ x \n\ ⎮ x dx \n\ ⌡ \n\ -∞ \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**(Integral(x**n, (x, -oo, oo))), ( k, x + n + x**2 + n**2 + (x/n) + (1/x), Integral(x**x, (x, -oo, oo)))) ascii_str = \ """\ oo \n\ / \n\ | \n\ | x \n\ | x dx \n\ | \n\ / \n\ -oo \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ 2 2 1 x \n\ k = n + n + x + x + - + - \n\ x n \ """ ucode_str = \ """\ ∞ \n\ ⌠ \n\ ⎮ x \n\ ⎮ x dx \n\ ⌡ \n\ -∞ \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ 2 2 1 x \n\ k = n + n + x + x + ─ + ─ \n\ x n \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**( Integral(x**n, (x, -oo, oo))), (k, 0, x + n + x**2 + n**2 + (x/n) + (1/x))) ascii_str = \ """\ 2 2 1 x \n\ n + n + x + x + - + - \n\ x n \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ """\ 2 2 1 x \n\ n + n + x + x + ─ + ─ \n\ x n \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x, (x, 0, oo)) ascii_str = \ """\ oo \n\ __ \n\ \\ ` \n\ ) x\n\ /_, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ___ \n\ ╲ \n\ ╲ \n\ ╱ x\n\ ╱ \n\ ‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x**2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ___ \n\ \\ ` \n\ \\ 2\n\ / x \n\ /__, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ___ \n\ ╲ \n\ ╲ 2\n\ ╱ x \n\ ╱ \n\ ‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x/2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ___ \n\ \\ ` \n\ \\ x\n\ ) -\n\ / 2\n\ /__, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ____ \n\ ╲ \n\ ╲ \n\ ╲ x\n\ ╱ ─\n\ ╱ 2\n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x**3/2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ 3\n\ \\ x \n\ / --\n\ / 2 \n\ /___, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ____ \n\ ╲ \n\ ╲ 3\n\ ╲ x \n\ ╱ ──\n\ ╱ 2 \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum((x**3*y**(x/2))**n, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ n\n\ \\ / x\\ \n\ ) | -| \n\ / | 3 2| \n\ / \\x *y / \n\ /___, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ _____ \n\ ╲ \n\ ╲ \n\ ╲ n\n\ ╲ ⎛ x⎞ \n\ ╱ ⎜ ─⎟ \n\ ╱ ⎜ 3 2⎟ \n\ ╱ ⎝x ⋅y ⎠ \n\ ╱ \n\ ‾‾‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/x**2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ 1 \n\ \\ --\n\ / 2\n\ / x \n\ /___, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ____ \n\ ╲ \n\ ╲ 1 \n\ ╲ ──\n\ ╱ 2\n\ ╱ x \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/y**(a/b), (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ -a \n\ \\ ---\n\ / b \n\ / y \n\ /___, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ____ \n\ ╲ \n\ ╲ -a \n\ ╲ ───\n\ ╱ b \n\ ╱ y \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/y**(a/b), (x, 0, oo), (y, 1, 2)) ascii_str = \ """\ 2 oo \n\ ____ ____ \n\ \\ ` \\ ` \n\ \\ \\ -a\n\ \\ \\ --\n\ / / b \n\ / / y \n\ /___, /___, \n\ y = 1 x = 0 \ """ ucode_str = \ """\ 2 ∞ \n\ ____ ____ \n\ ╲ ╲ \n\ ╲ ╲ -a\n\ ╲ ╲ ──\n\ ╱ ╱ b \n\ ╱ ╱ y \n\ ╱ ╱ \n\ ‾‾‾‾ ‾‾‾‾ \n\ y = 1 x = 0 \ """ expr = Sum(1/(1 + 1/( 1 + 1/k)) + 1, (k, 111, 1 + 1/n), (k, 1/(1 + m), oo)) + 1/(1 + 1/k) ascii_str = \ """\ 1 \n\ 1 + - \n\ oo n \n\ _____ _____ \n\ \\ ` \\ ` \n\ \\ \\ / 1 \\ \n\ \\ \\ |1 + ---------| \n\ \\ \\ | 1 | 1 \n\ ) ) | 1 + -----| + -----\n\ / / | 1| 1\n\ / / | 1 + -| 1 + -\n\ / / \\ k/ k\n\ /____, /____, \n\ 1 k = 111 \n\ k = ----- \n\ m + 1 \ """ ucode_str = \ """\ 1 \n\ 1 + ─ \n\ ∞ n \n\ ______ ______ \n\ ╲ ╲ \n\ ╲ ╲ \n\ ╲ ╲ ⎛ 1 ⎞ \n\ ╲ ╲ ⎜1 + ─────────⎟ \n\ ╲ ╲ ⎜ 1 ⎟ 1 \n\ ╱ ╱ ⎜ 1 + ─────⎟ + ─────\n\ ╱ ╱ ⎜ 1⎟ 1\n\ ╱ ╱ ⎜ 1 + ─⎟ 1 + ─\n\ ╱ ╱ ⎝ k⎠ k\n\ ╱ ╱ \n\ ‾‾‾‾‾‾ ‾‾‾‾‾‾ \n\ 1 k = 111 \n\ k = ───── \n\ m + 1 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_units(): expr = joule ascii_str1 = \ """\ 2\n\ kilogram*meter \n\ ---------------\n\ 2 \n\ second \ """ unicode_str1 = \ """\ 2\n\ kilogram⋅meter \n\ ───────────────\n\ 2 \n\ second \ """ ascii_str2 = \ """\ 2\n\ 3*x*y*kilogram*meter \n\ ---------------------\n\ 2 \n\ second \ """ unicode_str2 = \ """\ 2\n\ 3⋅x⋅y⋅kilogram⋅meter \n\ ─────────────────────\n\ 2 \n\ second \ """ from sympy.physics.units import kg, m, s assert upretty(expr) == "joule" assert pretty(expr) == "joule" assert upretty(expr.convert_to(kg*m**2/s**2)) == unicode_str1 assert pretty(expr.convert_to(kg*m**2/s**2)) == ascii_str1 assert upretty(3*kg*x*m**2*y/s**2) == unicode_str2 assert pretty(3*kg*x*m**2*y/s**2) == ascii_str2 def test_pretty_Subs(): f = Function('f') expr = Subs(f(x), x, ph**2) ascii_str = \ """\ (f(x))| 2\n\ |x=phi \ """ unicode_str = \ """\ (f(x))│ 2\n\ │x=φ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Subs(f(x).diff(x), x, 0) ascii_str = \ """\ /d \\| \n\ |--(f(x))|| \n\ \\dx /|x=0\ """ unicode_str = \ """\ ⎛d ⎞│ \n\ ⎜──(f(x))⎟│ \n\ ⎝dx ⎠│x=0\ """ assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2))) ascii_str = \ """\ /d \\| \n\ |--(f(x))|| \n\ |dx || \n\ |--------|| \n\ \\ y /|x=0, y=1/2\ """ unicode_str = \ """\ ⎛d ⎞│ \n\ ⎜──(f(x))⎟│ \n\ ⎜dx ⎟│ \n\ ⎜────────⎟│ \n\ ⎝ y ⎠│x=0, y=1/2\ """ assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str def test_gammas(): assert upretty(lowergamma(x, y)) == "γ(x, y)" assert upretty(uppergamma(x, y)) == "Γ(x, y)" assert xpretty(gamma(x), use_unicode=True) == 'Γ(x)' assert xpretty(gamma, use_unicode=True) == 'Γ' assert xpretty(symbols('gamma', cls=Function)(x), use_unicode=True) == 'γ(x)' assert xpretty(symbols('gamma', cls=Function), use_unicode=True) == 'γ' def test_beta(): assert xpretty(beta(x,y), use_unicode=True) == 'Β(x, y)' assert xpretty(beta(x,y), use_unicode=False) == 'B(x, y)' assert xpretty(beta, use_unicode=True) == 'Β' assert xpretty(beta, use_unicode=False) == 'B' mybeta = Function('beta') assert xpretty(mybeta(x), use_unicode=True) == 'β(x)' assert xpretty(mybeta(x, y, z), use_unicode=False) == 'beta(x, y, z)' assert xpretty(mybeta, use_unicode=True) == 'β' # test that notation passes to subclasses of the same name only def test_function_subclass_different_name(): class mygamma(gamma): pass assert xpretty(mygamma, use_unicode=True) == r"mygamma" assert xpretty(mygamma(x), use_unicode=True) == r"mygamma(x)" def test_SingularityFunction(): assert xpretty(SingularityFunction(x, 0, n), use_unicode=True) == ( """\ n\n\ <x> \ """) assert xpretty(SingularityFunction(x, 1, n), use_unicode=True) == ( """\ n\n\ <x - 1> \ """) assert xpretty(SingularityFunction(x, -1, n), use_unicode=True) == ( """\ n\n\ <x + 1> \ """) assert xpretty(SingularityFunction(x, a, n), use_unicode=True) == ( """\ n\n\ <-a + x> \ """) assert xpretty(SingularityFunction(x, y, n), use_unicode=True) == ( """\ n\n\ <x - y> \ """) assert xpretty(SingularityFunction(x, 0, n), use_unicode=False) == ( """\ n\n\ <x> \ """) assert xpretty(SingularityFunction(x, 1, n), use_unicode=False) == ( """\ n\n\ <x - 1> \ """) assert xpretty(SingularityFunction(x, -1, n), use_unicode=False) == ( """\ n\n\ <x + 1> \ """) assert xpretty(SingularityFunction(x, a, n), use_unicode=False) == ( """\ n\n\ <-a + x> \ """) assert xpretty(SingularityFunction(x, y, n), use_unicode=False) == ( """\ n\n\ <x - y> \ """) def test_deltas(): assert xpretty(DiracDelta(x), use_unicode=True) == 'δ(x)' assert xpretty(DiracDelta(x, 1), use_unicode=True) == \ """\ (1) \n\ δ (x)\ """ assert xpretty(x*DiracDelta(x, 1), use_unicode=True) == \ """\ (1) \n\ x⋅δ (x)\ """ def test_hyper(): expr = hyper((), (), z) ucode_str = \ """\ ┌─ ⎛ │ ⎞\n\ ├─ ⎜ │ z⎟\n\ 0╵ 0 ⎝ │ ⎠\ """ ascii_str = \ """\ _ \n\ |_ / | \\\n\ | | | z|\n\ 0 0 \\ | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((), (1,), x) ucode_str = \ """\ ┌─ ⎛ │ ⎞\n\ ├─ ⎜ │ x⎟\n\ 0╵ 1 ⎝1 │ ⎠\ """ ascii_str = \ """\ _ \n\ |_ / | \\\n\ | | | x|\n\ 0 1 \\1 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper([2], [1], x) ucode_str = \ """\ ┌─ ⎛2 │ ⎞\n\ ├─ ⎜ │ x⎟\n\ 1╵ 1 ⎝1 │ ⎠\ """ ascii_str = \ """\ _ \n\ |_ /2 | \\\n\ | | | x|\n\ 1 1 \\1 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((pi/3, -2*k), (3, 4, 5, -3), x) ucode_str = \ """\ ⎛ π │ ⎞\n\ ┌─ ⎜ ─, -2⋅k │ ⎟\n\ ├─ ⎜ 3 │ x⎟\n\ 2╵ 4 ⎜ │ ⎟\n\ ⎝3, 4, 5, -3 │ ⎠\ """ ascii_str = \ """\ \n\ _ / pi | \\\n\ |_ | --, -2*k | |\n\ | | 3 | x|\n\ 2 4 | | |\n\ \\3, 4, 5, -3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((pi, S('2/3'), -2*k), (3, 4, 5, -3), x**2) ucode_str = \ """\ ┌─ ⎛π, 2/3, -2⋅k │ 2⎞\n\ ├─ ⎜ │ x ⎟\n\ 3╵ 4 ⎝3, 4, 5, -3 │ ⎠\ """ ascii_str = \ """\ _ \n\ |_ /pi, 2/3, -2*k | 2\\\n\ | | | x |\n\ 3 4 \\ 3, 4, 5, -3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper([1, 2], [3, 4], 1/(1/(1/(1/x + 1) + 1) + 1)) ucode_str = \ """\ ⎛ │ 1 ⎞\n\ ⎜ │ ─────────────⎟\n\ ⎜ │ 1 ⎟\n\ ┌─ ⎜1, 2 │ 1 + ─────────⎟\n\ ├─ ⎜ │ 1 ⎟\n\ 2╵ 2 ⎜3, 4 │ 1 + ─────⎟\n\ ⎜ │ 1⎟\n\ ⎜ │ 1 + ─⎟\n\ ⎝ │ x⎠\ """ ascii_str = \ """\ \n\ / | 1 \\\n\ | | -------------|\n\ _ | | 1 |\n\ |_ |1, 2 | 1 + ---------|\n\ | | | 1 |\n\ 2 2 |3, 4 | 1 + -----|\n\ | | 1|\n\ | | 1 + -|\n\ \\ | x/\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_meijerg(): expr = meijerg([pi, pi, x], [1], [0, 1], [1, 2, 3], z) ucode_str = \ """\ ╭─╮2, 3 ⎛π, π, x 1 │ ⎞\n\ │╶┐ ⎜ │ z⎟\n\ ╰─╯4, 5 ⎝ 0, 1 1, 2, 3 │ ⎠\ """ ascii_str = \ """\ __2, 3 /pi, pi, x 1 | \\\n\ /__ | | z|\n\ \\_|4, 5 \\ 0, 1 1, 2, 3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = meijerg([1, pi/7], [2, pi, 5], [], [], z**2) ucode_str = \ """\ ⎛ π │ ⎞\n\ ╭─╮0, 2 ⎜1, ─ 2, π, 5 │ 2⎟\n\ │╶┐ ⎜ 7 │ z ⎟\n\ ╰─╯5, 0 ⎜ │ ⎟\n\ ⎝ │ ⎠\ """ ascii_str = \ """\ / pi | \\\n\ __0, 2 |1, -- 2, pi, 5 | 2|\n\ /__ | 7 | z |\n\ \\_|5, 0 | | |\n\ \\ | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ucode_str = \ """\ ╭─╮ 1, 10 ⎛1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 │ ⎞\n\ │╶┐ ⎜ │ z⎟\n\ ╰─╯11, 2 ⎝ 1 1 │ ⎠\ """ ascii_str = \ """\ __ 1, 10 /1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 | \\\n\ /__ | | z|\n\ \\_|11, 2 \\ 1 1 | /\ """ expr = meijerg([1]*10, [1], [1], [1], z) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = meijerg([1, 2, ], [4, 3], [3], [4, 5], 1/(1/(1/(1/x + 1) + 1) + 1)) ucode_str = \ """\ ⎛ │ 1 ⎞\n\ ⎜ │ ─────────────⎟\n\ ⎜ │ 1 ⎟\n\ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟\n\ │╶┐ ⎜ │ 1 ⎟\n\ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟\n\ ⎜ │ 1⎟\n\ ⎜ │ 1 + ─⎟\n\ ⎝ │ x⎠\ """ ascii_str = \ """\ / | 1 \\\n\ | | -------------|\n\ | | 1 |\n\ __1, 2 |1, 2 4, 3 | 1 + ---------|\n\ /__ | | 1 |\n\ \\_|4, 3 | 3 4, 5 | 1 + -----|\n\ | | 1|\n\ | | 1 + -|\n\ \\ | x/\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(expr, x) ucode_str = \ """\ ⌠ \n\ ⎮ ⎛ │ 1 ⎞ \n\ ⎮ ⎜ │ ─────────────⎟ \n\ ⎮ ⎜ │ 1 ⎟ \n\ ⎮ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟ \n\ ⎮ │╶┐ ⎜ │ 1 ⎟ dx\n\ ⎮ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟ \n\ ⎮ ⎜ │ 1⎟ \n\ ⎮ ⎜ │ 1 + ─⎟ \n\ ⎮ ⎝ │ x⎠ \n\ ⌡ \ """ ascii_str = \ """\ / \n\ | \n\ | / | 1 \\ \n\ | | | -------------| \n\ | | | 1 | \n\ | __1, 2 |1, 2 4, 3 | 1 + ---------| \n\ | /__ | | 1 | dx\n\ | \\_|4, 3 | 3 4, 5 | 1 + -----| \n\ | | | 1| \n\ | | | 1 + -| \n\ | \\ | x/ \n\ | \n\ / \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_noncommutative(): A, B, C = symbols('A,B,C', commutative=False) expr = A*B*C**-1 ascii_str = \ """\ -1\n\ A*B*C \ """ ucode_str = \ """\ -1\n\ A⋅B⋅C \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = C**-1*A*B ascii_str = \ """\ -1 \n\ C *A*B\ """ ucode_str = \ """\ -1 \n\ C ⋅A⋅B\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A*C**-1*B ascii_str = \ """\ -1 \n\ A*C *B\ """ ucode_str = \ """\ -1 \n\ A⋅C ⋅B\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A*C**-1*B/x ascii_str = \ """\ -1 \n\ A*C *B\n\ -------\n\ x \ """ ucode_str = \ """\ -1 \n\ A⋅C ⋅B\n\ ───────\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_special_functions(): x, y = symbols("x y") # atan2 expr = atan2(y/sqrt(200), sqrt(x)) ascii_str = \ """\ / ___ \\\n\ |\\/ 2 *y ___|\n\ atan2|-------, \\/ x |\n\ \\ 20 /\ """ ucode_str = \ """\ ⎛√2⋅y ⎞\n\ atan2⎜────, √x⎟\n\ ⎝ 20 ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_geometry(): e = Segment((0, 1), (0, 2)) assert pretty(e) == 'Segment2D(Point2D(0, 1), Point2D(0, 2))' e = Ray((1, 1), angle=4.02*pi) assert pretty(e) == 'Ray2D(Point2D(1, 1), Point2D(2, tan(pi/50) + 1))' def test_expint(): expr = Ei(x) string = 'Ei(x)' assert pretty(expr) == string assert upretty(expr) == string expr = expint(1, z) ucode_str = "E₁(z)" ascii_str = "expint(1, z)" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str assert pretty(Shi(x)) == 'Shi(x)' assert pretty(Si(x)) == 'Si(x)' assert pretty(Ci(x)) == 'Ci(x)' assert pretty(Chi(x)) == 'Chi(x)' assert upretty(Shi(x)) == 'Shi(x)' assert upretty(Si(x)) == 'Si(x)' assert upretty(Ci(x)) == 'Ci(x)' assert upretty(Chi(x)) == 'Chi(x)' def test_elliptic_functions(): ascii_str = \ """\ / 1 \\\n\ K|-----|\n\ \\z + 1/\ """ ucode_str = \ """\ ⎛ 1 ⎞\n\ K⎜─────⎟\n\ ⎝z + 1⎠\ """ expr = elliptic_k(1/(z + 1)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / | 1 \\\n\ F|1|-----|\n\ \\ |z + 1/\ """ ucode_str = \ """\ ⎛ │ 1 ⎞\n\ F⎜1│─────⎟\n\ ⎝ │z + 1⎠\ """ expr = elliptic_f(1, 1/(1 + z)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / 1 \\\n\ E|-----|\n\ \\z + 1/\ """ ucode_str = \ """\ ⎛ 1 ⎞\n\ E⎜─────⎟\n\ ⎝z + 1⎠\ """ expr = elliptic_e(1/(z + 1)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / | 1 \\\n\ E|1|-----|\n\ \\ |z + 1/\ """ ucode_str = \ """\ ⎛ │ 1 ⎞\n\ E⎜1│─────⎟\n\ ⎝ │z + 1⎠\ """ expr = elliptic_e(1, 1/(1 + z)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / |4\\\n\ Pi|3|-|\n\ \\ |x/\ """ ucode_str = \ """\ ⎛ │4⎞\n\ Π⎜3│─⎟\n\ ⎝ │x⎠\ """ expr = elliptic_pi(3, 4/x) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / 4| \\\n\ Pi|3; -|6|\n\ \\ x| /\ """ ucode_str = \ """\ ⎛ 4│ ⎞\n\ Π⎜3; ─│6⎟\n\ ⎝ x│ ⎠\ """ expr = elliptic_pi(3, 4/x, 6) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_RandomDomain(): from sympy.stats import Normal, Die, Exponential, pspace, where X = Normal('x1', 0, 1) assert upretty(where(X > 0)) == "Domain: 0 < x₁ ∧ x₁ < ∞" D = Die('d1', 6) assert upretty(where(D > 4)) == 'Domain: d₁ = 5 ∨ d₁ = 6' A = Exponential('a', 1) B = Exponential('b', 1) assert upretty(pspace(Tuple(A, B)).domain) == \ 'Domain: 0 ≤ a ∧ 0 ≤ b ∧ a < ∞ ∧ b < ∞' def test_PrettyPoly(): F = QQ.frac_field(x, y) R = QQ.poly_ring(x, y) expr = F.convert(x/(x + y)) assert pretty(expr) == "x/(x + y)" assert upretty(expr) == "x/(x + y)" expr = R.convert(x + y) assert pretty(expr) == "x + y" assert upretty(expr) == "x + y" def test_issue_6285(): assert pretty(Pow(2, -5, evaluate=False)) == '1 \n--\n 5\n2 ' assert pretty(Pow(x, (1/pi))) == \ ' 1 \n'\ ' --\n'\ ' pi\n'\ 'x ' def test_issue_6359(): assert pretty(Integral(x**2, x)**2) == \ """\ 2 / / \\ \n\ | | | \n\ | | 2 | \n\ | | x dx| \n\ | | | \n\ \\/ / \ """ assert upretty(Integral(x**2, x)**2) == \ """\ 2 ⎛⌠ ⎞ \n\ ⎜⎮ 2 ⎟ \n\ ⎜⎮ x dx⎟ \n\ ⎝⌡ ⎠ \ """ assert pretty(Sum(x**2, (x, 0, 1))**2) == \ """\ 2 / 1 \\ \n\ | ___ | \n\ | \\ ` | \n\ | \\ 2| \n\ | / x | \n\ | /__, | \n\ \\x = 0 / \ """ assert upretty(Sum(x**2, (x, 0, 1))**2) == \ """\ 2 ⎛ 1 ⎞ \n\ ⎜ ___ ⎟ \n\ ⎜ ╲ ⎟ \n\ ⎜ ╲ 2⎟ \n\ ⎜ ╱ x ⎟ \n\ ⎜ ╱ ⎟ \n\ ⎜ ‾‾‾ ⎟ \n\ ⎝x = 0 ⎠ \ """ assert pretty(Product(x**2, (x, 1, 2))**2) == \ """\ 2 / 2 \\ \n\ |______ | \n\ | | | 2| \n\ | | | x | \n\ | | | | \n\ \\x = 1 / \ """ assert upretty(Product(x**2, (x, 1, 2))**2) == \ """\ 2 ⎛ 2 ⎞ \n\ ⎜─┬──┬─ ⎟ \n\ ⎜ │ │ 2⎟ \n\ ⎜ │ │ x ⎟ \n\ ⎜ │ │ ⎟ \n\ ⎝x = 1 ⎠ \ """ f = Function('f') assert pretty(Derivative(f(x), x)**2) == \ """\ 2 /d \\ \n\ |--(f(x))| \n\ \\dx / \ """ assert upretty(Derivative(f(x), x)**2) == \ """\ 2 ⎛d ⎞ \n\ ⎜──(f(x))⎟ \n\ ⎝dx ⎠ \ """ def test_issue_6739(): ascii_str = \ """\ 1 \n\ -----\n\ ___\n\ \\/ x \ """ ucode_str = \ """\ 1 \n\ ──\n\ √x\ """ assert pretty(1/sqrt(x)) == ascii_str assert upretty(1/sqrt(x)) == ucode_str def test_complicated_symbol_unchanged(): for symb_name in ["dexpr2_d1tau", "dexpr2^d1tau"]: assert pretty(Symbol(symb_name)) == symb_name def test_categories(): from sympy.categories import (Object, IdentityMorphism, NamedMorphism, Category, Diagram, DiagramGrid) A1 = Object("A1") A2 = Object("A2") A3 = Object("A3") f1 = NamedMorphism(A1, A2, "f1") f2 = NamedMorphism(A2, A3, "f2") id_A1 = IdentityMorphism(A1) K1 = Category("K1") assert pretty(A1) == "A1" assert upretty(A1) == "A₁" assert pretty(f1) == "f1:A1-->A2" assert upretty(f1) == "f₁:A₁——▶A₂" assert pretty(id_A1) == "id:A1-->A1" assert upretty(id_A1) == "id:A₁——▶A₁" assert pretty(f2*f1) == "f2*f1:A1-->A3" assert upretty(f2*f1) == "f₂∘f₁:A₁——▶A₃" assert pretty(K1) == "K1" assert upretty(K1) == "K₁" # Test how diagrams are printed. d = Diagram() assert pretty(d) == "EmptySet" assert upretty(d) == "∅" d = Diagram({f1: "unique", f2: S.EmptySet}) assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \ "EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \ "EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" assert upretty(d) == "{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, " \ "id:A₂——▶A₂: ∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"}) assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \ "EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \ "EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" \ " ==> {f2*f1:A1-->A3: {unique}}" assert upretty(d) == "{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, id:A₂——▶A₂: " \ "∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" \ " ══▶ {f₂∘f₁:A₁——▶A₃: {unique}}" grid = DiagramGrid(d) assert pretty(grid) == "A1 A2\n \nA3 " assert upretty(grid) == "A₁ A₂\n \nA₃ " def test_PrettyModules(): R = QQ.old_poly_ring(x, y) F = R.free_module(2) M = F.submodule([x, y], [1, x**2]) ucode_str = \ """\ 2\n\ ℚ[x, y] \ """ ascii_str = \ """\ 2\n\ QQ[x, y] \ """ assert upretty(F) == ucode_str assert pretty(F) == ascii_str ucode_str = \ """\ ╱ ⎡ 2⎤╲\n\ ╲[x, y], ⎣1, x ⎦╱\ """ ascii_str = \ """\ 2 \n\ <[x, y], [1, x ]>\ """ assert upretty(M) == ucode_str assert pretty(M) == ascii_str I = R.ideal(x**2, y) ucode_str = \ """\ ╱ 2 ╲\n\ ╲x , y╱\ """ ascii_str = \ """\ 2 \n\ <x , y>\ """ assert upretty(I) == ucode_str assert pretty(I) == ascii_str Q = F / M ucode_str = \ """\ 2 \n\ ℚ[x, y] \n\ ─────────────────\n\ ╱ ⎡ 2⎤╲\n\ ╲[x, y], ⎣1, x ⎦╱\ """ ascii_str = \ """\ 2 \n\ QQ[x, y] \n\ -----------------\n\ 2 \n\ <[x, y], [1, x ]>\ """ assert upretty(Q) == ucode_str assert pretty(Q) == ascii_str ucode_str = \ """\ ╱⎡ 3⎤ ╲\n\ │⎢ x ⎥ ╱ ⎡ 2⎤╲ ╱ ⎡ 2⎤╲│\n\ │⎢1, ──⎥ + ╲[x, y], ⎣1, x ⎦╱, [2, y] + ╲[x, y], ⎣1, x ⎦╱│\n\ ╲⎣ 2 ⎦ ╱\ """ ascii_str = \ """\ 3 \n\ x 2 2 \n\ <[1, --] + <[x, y], [1, x ]>, [2, y] + <[x, y], [1, x ]>>\n\ 2 \ """ def test_QuotientRing(): R = QQ.old_poly_ring(x)/[x**2 + 1] ucode_str = \ """\ ℚ[x] \n\ ────────\n\ ╱ 2 ╲\n\ ╲x + 1╱\ """ ascii_str = \ """\ QQ[x] \n\ --------\n\ 2 \n\ <x + 1>\ """ assert upretty(R) == ucode_str assert pretty(R) == ascii_str ucode_str = \ """\ ╱ 2 ╲\n\ 1 + ╲x + 1╱\ """ ascii_str = \ """\ 2 \n\ 1 + <x + 1>\ """ assert upretty(R.one) == ucode_str assert pretty(R.one) == ascii_str def test_Homomorphism(): from sympy.polys.agca import homomorphism R = QQ.old_poly_ring(x) expr = homomorphism(R.free_module(1), R.free_module(1), [0]) ucode_str = \ """\ 1 1\n\ [0] : ℚ[x] ──> ℚ[x] \ """ ascii_str = \ """\ 1 1\n\ [0] : QQ[x] --> QQ[x] \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str expr = homomorphism(R.free_module(2), R.free_module(2), [0, 0]) ucode_str = \ """\ ⎡0 0⎤ 2 2\n\ ⎢ ⎥ : ℚ[x] ──> ℚ[x] \n\ ⎣0 0⎦ \ """ ascii_str = \ """\ [0 0] 2 2\n\ [ ] : QQ[x] --> QQ[x] \n\ [0 0] \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str expr = homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0]) ucode_str = \ """\ 1\n\ 1 ℚ[x] \n\ [0] : ℚ[x] ──> ─────\n\ <[x]>\ """ ascii_str = \ """\ 1\n\ 1 QQ[x] \n\ [0] : QQ[x] --> ------\n\ <[x]> \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str def test_Tr(): A, B = symbols('A B', commutative=False) t = Tr(A*B) assert pretty(t) == r'Tr(A*B)' assert upretty(t) == 'Tr(A⋅B)' def test_pretty_Add(): eq = Mul(-2, x - 2, evaluate=False) + 5 assert pretty(eq) == '5 - 2*(x - 2)' def test_issue_7179(): assert upretty(Not(Equivalent(x, y))) == 'x ⇎ y' assert upretty(Not(Implies(x, y))) == 'x ↛ y' def test_issue_7180(): assert upretty(Equivalent(x, y)) == 'x ⇔ y' def test_pretty_Complement(): assert pretty(S.Reals - S.Naturals) == '(-oo, oo) \\ Naturals' assert upretty(S.Reals - S.Naturals) == 'ℝ \\ ℕ' assert pretty(S.Reals - S.Naturals0) == '(-oo, oo) \\ Naturals0' assert upretty(S.Reals - S.Naturals0) == 'ℝ \\ ℕ₀' def test_pretty_SymmetricDifference(): from sympy import SymmetricDifference, Interval from sympy.testing.pytest import raises assert upretty(SymmetricDifference(Interval(2,3), Interval(3,5), \ evaluate = False)) == '[2, 3] ∆ [3, 5]' with raises(NotImplementedError): pretty(SymmetricDifference(Interval(2,3), Interval(3,5), evaluate = False)) def test_pretty_Contains(): assert pretty(Contains(x, S.Integers)) == 'Contains(x, Integers)' assert upretty(Contains(x, S.Integers)) == 'x ∈ ℤ' def test_issue_8292(): from sympy.core import sympify e = sympify('((x+x**4)/(x-1))-(2*(x-1)**4/(x-1)**4)', evaluate=False) ucode_str = \ """\ 4 4 \n\ 2⋅(x - 1) x + x\n\ - ────────── + ──────\n\ 4 x - 1 \n\ (x - 1) \ """ ascii_str = \ """\ 4 4 \n\ 2*(x - 1) x + x\n\ - ---------- + ------\n\ 4 x - 1 \n\ (x - 1) \ """ assert pretty(e) == ascii_str assert upretty(e) == ucode_str def test_issue_4335(): y = Function('y') expr = -y(x).diff(x) ucode_str = \ """\ d \n\ -──(y(x))\n\ dx \ """ ascii_str = \ """\ d \n\ - --(y(x))\n\ dx \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_8344(): from sympy.core import sympify e = sympify('2*x*y**2/1**2 + 1', evaluate=False) ucode_str = \ """\ 2 \n\ 2⋅x⋅y \n\ ────── + 1\n\ 2 \n\ 1 \ """ assert upretty(e) == ucode_str def test_issue_6324(): x = Pow(2, 3, evaluate=False) y = Pow(10, -2, evaluate=False) e = Mul(x, y, evaluate=False) ucode_str = \ """\ 3\n\ 2 \n\ ───\n\ 2\n\ 10 \ """ assert upretty(e) == ucode_str def test_issue_7927(): e = sin(x/2)**cos(x/2) ucode_str = \ """\ ⎛x⎞\n\ cos⎜─⎟\n\ ⎝2⎠\n\ ⎛ ⎛x⎞⎞ \n\ ⎜sin⎜─⎟⎟ \n\ ⎝ ⎝2⎠⎠ \ """ assert upretty(e) == ucode_str e = sin(x)**(S(11)/13) ucode_str = \ """\ 11\n\ ──\n\ 13\n\ (sin(x)) \ """ assert upretty(e) == ucode_str def test_issue_6134(): from sympy.abc import lamda, t phi = Function('phi') e = lamda*x*Integral(phi(t)*pi*sin(pi*t), (t, 0, 1)) + lamda*x**2*Integral(phi(t)*2*pi*sin(2*pi*t), (t, 0, 1)) ucode_str = \ """\ 1 1 \n\ 2 ⌠ ⌠ \n\ λ⋅x ⋅⎮ 2⋅π⋅φ(t)⋅sin(2⋅π⋅t) dt + λ⋅x⋅⎮ π⋅φ(t)⋅sin(π⋅t) dt\n\ ⌡ ⌡ \n\ 0 0 \ """ assert upretty(e) == ucode_str def test_issue_9877(): ucode_str1 = '(2, 3) ∪ ([1, 2] \\ {x})' a, b, c = Interval(2, 3, True, True), Interval(1, 2), FiniteSet(x) assert upretty(Union(a, Complement(b, c))) == ucode_str1 ucode_str2 = '{x} ∩ {y} ∩ ({z} \\ [1, 2])' d, e, f, g = FiniteSet(x), FiniteSet(y), FiniteSet(z), Interval(1, 2) assert upretty(Intersection(d, e, Complement(f, g))) == ucode_str2 def test_issue_13651(): expr1 = c + Mul(-1, a + b, evaluate=False) assert pretty(expr1) == 'c - (a + b)' expr2 = c + Mul(-1, a - b + d, evaluate=False) assert pretty(expr2) == 'c - (a - b + d)' def test_pretty_primenu(): from sympy.ntheory.factor_ import primenu ascii_str1 = "nu(n)" ucode_str1 = "ν(n)" n = symbols('n', integer=True) assert pretty(primenu(n)) == ascii_str1 assert upretty(primenu(n)) == ucode_str1 def test_pretty_primeomega(): from sympy.ntheory.factor_ import primeomega ascii_str1 = "Omega(n)" ucode_str1 = "Ω(n)" n = symbols('n', integer=True) assert pretty(primeomega(n)) == ascii_str1 assert upretty(primeomega(n)) == ucode_str1 def test_pretty_Mod(): from sympy.core import Mod ascii_str1 = "x mod 7" ucode_str1 = "x mod 7" ascii_str2 = "(x + 1) mod 7" ucode_str2 = "(x + 1) mod 7" ascii_str3 = "2*x mod 7" ucode_str3 = "2⋅x mod 7" ascii_str4 = "(x mod 7) + 1" ucode_str4 = "(x mod 7) + 1" ascii_str5 = "2*(x mod 7)" ucode_str5 = "2⋅(x mod 7)" x = symbols('x', integer=True) assert pretty(Mod(x, 7)) == ascii_str1 assert upretty(Mod(x, 7)) == ucode_str1 assert pretty(Mod(x + 1, 7)) == ascii_str2 assert upretty(Mod(x + 1, 7)) == ucode_str2 assert pretty(Mod(2 * x, 7)) == ascii_str3 assert upretty(Mod(2 * x, 7)) == ucode_str3 assert pretty(Mod(x, 7) + 1) == ascii_str4 assert upretty(Mod(x, 7) + 1) == ucode_str4 assert pretty(2 * Mod(x, 7)) == ascii_str5 assert upretty(2 * Mod(x, 7)) == ucode_str5 def test_issue_11801(): assert pretty(Symbol("")) == "" assert upretty(Symbol("")) == "" def test_pretty_UnevaluatedExpr(): x = symbols('x') he = UnevaluatedExpr(1/x) ucode_str = \ """\ 1\n\ ─\n\ x\ """ assert upretty(he) == ucode_str ucode_str = \ """\ 2\n\ ⎛1⎞ \n\ ⎜─⎟ \n\ ⎝x⎠ \ """ assert upretty(he**2) == ucode_str ucode_str = \ """\ 1\n\ 1 + ─\n\ x\ """ assert upretty(he + 1) == ucode_str ucode_str = \ ('''\ 1\n\ x⋅─\n\ x\ ''') assert upretty(x*he) == ucode_str def test_issue_10472(): M = (Matrix([[0, 0], [0, 0]]), Matrix([0, 0])) ucode_str = \ """\ ⎛⎡0 0⎤ ⎡0⎤⎞ ⎜⎢ ⎥, ⎢ ⎥⎟ ⎝⎣0 0⎦ ⎣0⎦⎠\ """ assert upretty(M) == ucode_str def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) ascii_str1 = "A_00" ucode_str1 = "A₀₀" assert pretty(A[0, 0]) == ascii_str1 assert upretty(A[0, 0]) == ucode_str1 ascii_str1 = "3*A_00" ucode_str1 = "3⋅A₀₀" assert pretty(3*A[0, 0]) == ascii_str1 assert upretty(3*A[0, 0]) == ucode_str1 ascii_str1 = "(-B + A)[0, 0]" ucode_str1 = "(-B + A)[0, 0]" F = C[0, 0].subs(C, A - B) assert pretty(F) == ascii_str1 assert upretty(F) == ucode_str1 def test_issue_12675(): from sympy.vector import CoordSys3D x, y, t, j = symbols('x y t j') e = CoordSys3D('e') ucode_str = \ """\ ⎛ t⎞ \n\ ⎜⎛x⎞ ⎟ j_e\n\ ⎜⎜─⎟ ⎟ \n\ ⎝⎝y⎠ ⎠ \ """ assert upretty((x/y)**t*e.j) == ucode_str ucode_str = \ """\ ⎛1⎞ \n\ ⎜─⎟ j_e\n\ ⎝y⎠ \ """ assert upretty((1/y)*e.j) == ucode_str def test_MatrixSymbol_printing(): # test cases for issue #14237 A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert pretty(-A*B*C) == "-A*B*C" assert pretty(A - B) == "-B + A" assert pretty(A*B*C - A*B - B*C) == "-A*B -B*C + A*B*C" # issue #14814 x = MatrixSymbol('x', n, n) y = MatrixSymbol('y*', n, n) assert pretty(x + y) == "x + y*" ascii_str = \ """\ 2 \n\ -2*y* -a*x\ """ assert pretty(-a*x + -2*y*y) == ascii_str def test_degree_printing(): expr1 = 90*degree assert pretty(expr1) == '90°' expr2 = x*degree assert pretty(expr2) == 'x°' expr3 = cos(x*degree + 90*degree) assert pretty(expr3) == 'cos(x° + 90°)' def test_vector_expr_pretty_printing(): A = CoordSys3D('A') assert upretty(Cross(A.i, A.x*A.i+3*A.y*A.j)) == "(i_A)×((x_A) i_A + (3⋅y_A) j_A)" assert upretty(x*Cross(A.i, A.j)) == 'x⋅(i_A)×(j_A)' assert upretty(Curl(A.x*A.i + 3*A.y*A.j)) == "∇×((x_A) i_A + (3⋅y_A) j_A)" assert upretty(Divergence(A.x*A.i + 3*A.y*A.j)) == "∇⋅((x_A) i_A + (3⋅y_A) j_A)" assert upretty(Dot(A.i, A.x*A.i+3*A.y*A.j)) == "(i_A)⋅((x_A) i_A + (3⋅y_A) j_A)" assert upretty(Gradient(A.x+3*A.y)) == "∇(x_A + 3⋅y_A)" assert upretty(Laplacian(A.x+3*A.y)) == "∆(x_A + 3⋅y_A)" # TODO: add support for ASCII pretty. def test_pretty_print_tensor_expr(): L = TensorIndexType("L") i, j, k = tensor_indices("i j k", L) i0 = tensor_indices("i_0", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) expr = -i ascii_str = \ """\ -i\ """ ucode_str = \ """\ -i\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i) ascii_str = \ """\ i\n\ A \n\ \ """ ucode_str = \ """\ i\n\ A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i0) ascii_str = \ """\ i_0\n\ A \n\ \ """ ucode_str = \ """\ i₀\n\ A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(-i) ascii_str = \ """\ \n\ A \n\ i\ """ ucode_str = \ """\ \n\ A \n\ i\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -3*A(-i) ascii_str = \ """\ \n\ -3*A \n\ i\ """ ucode_str = \ """\ \n\ -3⋅A \n\ i\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -j) ascii_str = \ """\ i \n\ H \n\ j\ """ ucode_str = \ """\ i \n\ H \n\ j\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -i) ascii_str = \ """\ L_0 \n\ H \n\ L_0\ """ ucode_str = \ """\ L₀ \n\ H \n\ L₀\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -j)*A(j)*B(k) ascii_str = \ """\ i L_0 k\n\ H *A *B \n\ L_0 \ """ ucode_str = \ """\ i L₀ k\n\ H ⋅A ⋅B \n\ L₀ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (1+x)*A(i) ascii_str = \ """\ i\n\ (x + 1)*A \n\ \ """ ucode_str = \ """\ i\n\ (x + 1)⋅A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i) + 3*B(i) ascii_str = \ """\ i i\n\ 3*B + A \n\ \ """ ucode_str = \ """\ i i\n\ 3⋅B + A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_print_tensor_partial_deriv(): from sympy.tensor.toperators import PartialDerivative from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads L = TensorIndexType("L") i, j, k = tensor_indices("i j k", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) expr = PartialDerivative(A(i), A(j)) ascii_str = \ """\ d / i\\\n\ ---|A |\n\ j\\ /\n\ dA \n\ \ """ ucode_str = \ """\ ∂ ⎛ i⎞\n\ ───⎜A ⎟\n\ j⎝ ⎠\n\ ∂A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i)*PartialDerivative(H(k, -i), A(j)) ascii_str = \ """\ L_0 d / k \\\n\ A *---|H |\n\ j\\ L_0/\n\ dA \n\ \ """ ucode_str = \ """\ L₀ ∂ ⎛ k ⎞\n\ A ⋅───⎜H ⎟\n\ j⎝ L₀⎠\n\ ∂A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i)*PartialDerivative(B(k)*C(-i) + 3*H(k, -i), A(j)) ascii_str = \ """\ L_0 d / k k \\\n\ A *---|3*H + B *C |\n\ j\\ L_0 L_0/\n\ dA \n\ \ """ ucode_str = \ """\ L₀ ∂ ⎛ k k ⎞\n\ A ⋅───⎜3⋅H + B ⋅C ⎟\n\ j⎝ L₀ L₀⎠\n\ ∂A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (A(i) + B(i))*PartialDerivative(C(j), D(j)) ascii_str = \ """\ / i i\\ d / L_0\\\n\ |A + B |*-----|C |\n\ \\ / L_0\\ /\n\ dD \n\ \ """ ucode_str = \ """\ ⎛ i i⎞ ∂ ⎛ L₀⎞\n\ ⎜A + B ⎟⋅────⎜C ⎟\n\ ⎝ ⎠ L₀⎝ ⎠\n\ ∂D \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (A(i) + B(i))*PartialDerivative(C(-i), D(j)) ascii_str = \ """\ / L_0 L_0\\ d / \\\n\ |A + B |*---|C |\n\ \\ / j\\ L_0/\n\ dD \n\ \ """ ucode_str = \ """\ ⎛ L₀ L₀⎞ ∂ ⎛ ⎞\n\ ⎜A + B ⎟⋅───⎜C ⎟\n\ ⎝ ⎠ j⎝ L₀⎠\n\ ∂D \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n)) ucode_str = """\ 2 \n\ ∂ ⎛ ⎞\n\ ───────⎜A + B ⎟\n\ ⎝ i i⎠\n\ ∂A ∂A \n\ n j \ """ assert upretty(expr) == ucode_str expr = PartialDerivative(3*A(-i), A(-j), A(-n)) ucode_str = """\ 2 \n\ ∂ ⎛ ⎞\n\ ───────⎜3⋅A ⎟\n\ ⎝ i⎠\n\ ∂A ∂A \n\ n j \ """ assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {i:1}) ascii_str = \ """\ i=1,j\n\ H \n\ \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {i: 1, j: 1}) ascii_str = \ """\ i=1,j=1\n\ H \n\ \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {j: 1}) ascii_str = \ """\ i,j=1\n\ H \n\ \ """ ucode_str = ascii_str expr = TensorElement(H(-i, j), {-i: 1}) ascii_str = \ """\ j\n\ H \n\ i=1 \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_15560(): a = MatrixSymbol('a', 1, 1) e = pretty(a*(KroneckerProduct(a, a))) result = 'a*(a x a)' assert e == result def test_print_lerchphi(): # Part of issue 6013 a = Symbol('a') pretty(lerchphi(a, 1, 2)) uresult = 'Φ(a, 1, 2)' aresult = 'lerchphi(a, 1, 2)' assert pretty(lerchphi(a, 1, 2)) == aresult assert upretty(lerchphi(a, 1, 2)) == uresult def test_issue_15583(): N = mechanics.ReferenceFrame('N') result = '(n_x, n_y, n_z)' e = pretty((N.x, N.y, N.z)) assert e == result def test_matrixSymbolBold(): # Issue 15871 def boldpretty(expr): return xpretty(expr, use_unicode=True, wrap_line=False, mat_symbol_style="bold") from sympy import trace A = MatrixSymbol("A", 2, 2) assert boldpretty(trace(A)) == 'tr(𝐀)' A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert boldpretty(-A) == '-𝐀' assert boldpretty(A - A*B - B) == '-𝐁 -𝐀⋅𝐁 + 𝐀' assert boldpretty(-A*B - A*B*C - B) == '-𝐁 -𝐀⋅𝐁 -𝐀⋅𝐁⋅𝐂' A = MatrixSymbol("Addot", 3, 3) assert boldpretty(A) == '𝐀̈' omega = MatrixSymbol("omega", 3, 3) assert boldpretty(omega) == 'ω' omega = MatrixSymbol("omeganorm", 3, 3) assert boldpretty(omega) == '‖ω‖' a = Symbol('alpha') b = Symbol('b') c = MatrixSymbol("c", 3, 1) d = MatrixSymbol("d", 3, 1) assert boldpretty(a*B*c+b*d) == 'b⋅𝐝 + α⋅𝐁⋅𝐜' d = MatrixSymbol("delta", 3, 1) B = MatrixSymbol("Beta", 3, 3) assert boldpretty(a*B*c+b*d) == 'b⋅δ + α⋅Β⋅𝐜' A = MatrixSymbol("A_2", 3, 3) assert boldpretty(A) == '𝐀₂' def test_center_accent(): assert center_accent('a', '\N{COMBINING TILDE}') == 'ã' assert center_accent('aa', '\N{COMBINING TILDE}') == 'aã' assert center_accent('aaa', '\N{COMBINING TILDE}') == 'aãa' assert center_accent('aaaa', '\N{COMBINING TILDE}') == 'aaãa' assert center_accent('aaaaa', '\N{COMBINING TILDE}') == 'aaãaa' assert center_accent('abcdefg', '\N{COMBINING FOUR DOTS ABOVE}') == 'abcd⃜efg' def test_imaginary_unit(): from sympy import pretty # As it is redefined above assert pretty(1 + I, use_unicode=False) == '1 + I' assert pretty(1 + I, use_unicode=True) == '1 + ⅈ' assert pretty(1 + I, use_unicode=False, imaginary_unit='j') == '1 + I' assert pretty(1 + I, use_unicode=True, imaginary_unit='j') == '1 + ⅉ' raises(TypeError, lambda: pretty(I, imaginary_unit=I)) raises(ValueError, lambda: pretty(I, imaginary_unit="kkk")) def test_str_special_matrices(): from sympy.matrices import Identity, ZeroMatrix, OneMatrix assert pretty(Identity(4)) == 'I' assert upretty(Identity(4)) == '𝕀' assert pretty(ZeroMatrix(2, 2)) == '0' assert upretty(ZeroMatrix(2, 2)) == '𝟘' assert pretty(OneMatrix(2, 2)) == '1' assert upretty(OneMatrix(2, 2)) == '𝟙' def test_pretty_misc_functions(): assert pretty(LambertW(x)) == 'W(x)' assert upretty(LambertW(x)) == 'W(x)' assert pretty(LambertW(x, y)) == 'W(x, y)' assert upretty(LambertW(x, y)) == 'W(x, y)' assert pretty(airyai(x)) == 'Ai(x)' assert upretty(airyai(x)) == 'Ai(x)' assert pretty(airybi(x)) == 'Bi(x)' assert upretty(airybi(x)) == 'Bi(x)' assert pretty(airyaiprime(x)) == "Ai'(x)" assert upretty(airyaiprime(x)) == "Ai'(x)" assert pretty(airybiprime(x)) == "Bi'(x)" assert upretty(airybiprime(x)) == "Bi'(x)" assert pretty(fresnelc(x)) == 'C(x)' assert upretty(fresnelc(x)) == 'C(x)' assert pretty(fresnels(x)) == 'S(x)' assert upretty(fresnels(x)) == 'S(x)' assert pretty(Heaviside(x)) == 'Heaviside(x)' assert upretty(Heaviside(x)) == 'θ(x)' assert pretty(Heaviside(x, y)) == 'Heaviside(x, y)' assert upretty(Heaviside(x, y)) == 'θ(x, y)' assert pretty(dirichlet_eta(x)) == 'dirichlet_eta(x)' assert upretty(dirichlet_eta(x)) == 'η(x)' def test_hadamard_power(): m, n, p = symbols('m, n, p', integer=True) A = MatrixSymbol('A', m, n) B = MatrixSymbol('B', m, n) # Testing printer: expr = hadamard_power(A, n) ascii_str = \ """\ .n\n\ A \ """ ucode_str = \ """\ ∘n\n\ A \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hadamard_power(A, 1+n) ascii_str = \ """\ .(n + 1)\n\ A \ """ ucode_str = \ """\ ∘(n + 1)\n\ A \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hadamard_power(A*B.T, 1+n) ascii_str = \ """\ .(n + 1)\n\ / T\\ \n\ \\A*B / \ """ ucode_str = \ """\ ∘(n + 1)\n\ ⎛ T⎞ \n\ ⎝A⋅B ⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_17258(): n = Symbol('n', integer=True) assert pretty(Sum(n, (n, -oo, 1))) == \ ' 1 \n'\ ' __ \n'\ ' \\ ` \n'\ ' ) n\n'\ ' /_, \n'\ 'n = -oo ' assert upretty(Sum(n, (n, -oo, 1))) == \ """\ 1 \n\ ___ \n\ ╲ \n\ ╲ \n\ ╱ n\n\ ╱ \n\ ‾‾‾ \n\ n = -∞ \ """ def test_is_combining(): line = "v̇_m" assert [is_combining(sym) for sym in line] == \ [False, True, False, False] def test_issue_17616(): assert pretty(pi**(1/exp(1))) == \ ' / -1\\\n'\ ' \\e /\n'\ 'pi ' assert upretty(pi**(1/exp(1))) == \ ' ⎛ -1⎞\n'\ ' ⎝ℯ ⎠\n'\ 'π ' assert pretty(pi**(1/pi)) == \ ' 1 \n'\ ' --\n'\ ' pi\n'\ 'pi ' assert upretty(pi**(1/pi)) == \ ' 1\n'\ ' ─\n'\ ' π\n'\ 'π ' assert pretty(pi**(1/EulerGamma)) == \ ' 1 \n'\ ' ----------\n'\ ' EulerGamma\n'\ 'pi ' assert upretty(pi**(1/EulerGamma)) == \ ' 1\n'\ ' ─\n'\ ' γ\n'\ 'π ' z = Symbol("x_17") assert upretty(7**(1/z)) == \ 'x₁₇___\n'\ ' ╲╱ 7 ' assert pretty(7**(1/z)) == \ 'x_17___\n'\ ' \\/ 7 ' def test_issue_17857(): assert pretty(Range(-oo, oo)) == '{..., -1, 0, 1, ...}' assert pretty(Range(oo, -oo, -1)) == '{..., 1, 0, -1, ...}' def test_issue_18272(): x = Symbol('x') n = Symbol('n') assert upretty(ConditionSet(x, Eq(-x + exp(x), 0), S.Complexes)) == \ '⎧ │ ⎛ x ⎞⎫\n'\ '⎨x │ x ∊ ℂ ∧ ⎝-x + ℯ = 0⎠⎬\n'\ '⎩ │ ⎭' assert upretty(ConditionSet(x, Contains(n/2, Interval(0, oo)), FiniteSet(-n/2, n/2))) == \ '⎧ │ ⎧-n n⎫ ⎛n ⎞⎫\n'\ '⎨x │ x ∊ ⎨───, ─⎬ ∧ ⎜─ ∈ [0, ∞)⎟⎬\n'\ '⎩ │ ⎩ 2 2⎭ ⎝2 ⎠⎭' assert upretty(ConditionSet(x, Eq(Piecewise((1, x >= 3), (x/2 - 1/2, x >= 2), (1/2, x >= 1), (x/2, True)) - 1/2, 0), Interval(0, 3))) == \ '⎧ │ ⎛⎛⎧ 1 for x ≥ 3⎞ ⎞⎫\n'\ '⎪ │ ⎜⎜⎪ ⎟ ⎟⎪\n'\ '⎪ │ ⎜⎜⎪x ⎟ ⎟⎪\n'\ '⎪ │ ⎜⎜⎪─ - 0.5 for x ≥ 2⎟ ⎟⎪\n'\ '⎪ │ ⎜⎜⎪2 ⎟ ⎟⎪\n'\ '⎨x │ x ∊ [0, 3] ∧ ⎜⎜⎨ ⎟ - 0.5 = 0⎟⎬\n'\ '⎪ │ ⎜⎜⎪ 0.5 for x ≥ 1⎟ ⎟⎪\n'\ '⎪ │ ⎜⎜⎪ ⎟ ⎟⎪\n'\ '⎪ │ ⎜⎜⎪ x ⎟ ⎟⎪\n'\ '⎪ │ ⎜⎜⎪ ─ otherwise⎟ ⎟⎪\n'\ '⎩ │ ⎝⎝⎩ 2 ⎠ ⎠⎭' def test_Str(): from sympy.core.symbol import Str assert pretty(Str('x')) == 'x' def test_diffgeom(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField x,y = symbols('x y', real=True) m = Manifold('M', 2) assert pretty(m) == 'M' p = Patch('P', m) assert pretty(p) == "P" rect = CoordSystem('rect', p, [x, y]) assert pretty(rect) == "rect" b = BaseScalarField(rect, 0) assert pretty(b) == "x"
e0a808d22d4d5dad20c2200e5f93a0b762307e69096dd326a063887787b5ecce
"""Test whether all elements of cls.args are instances of Basic. """ # NOTE: keep tests sorted by (module, class name) key. If a class can't # be instantiated, add it here anyway with @SKIP("abstract class) (see # e.g. Function). import os import re from sympy import (Basic, S, symbols, sqrt, sin, oo, Interval, exp, Lambda, pi, Eq, log, Function, Rational) from sympy.testing.pytest import XFAIL, SKIP a, b, c, x, y, z = symbols('a,b,c,x,y,z') whitelist = [ "sympy.assumptions.predicates", # tested by test_predicates() ] def test_all_classes_are_tested(): this = os.path.split(__file__)[0] path = os.path.join(this, os.pardir, os.pardir) sympy_path = os.path.abspath(path) prefix = os.path.split(sympy_path)[0] + os.sep re_cls = re.compile(r"^class ([A-Za-z][A-Za-z0-9_]*)\s*\(", re.MULTILINE) modules = {} for root, dirs, files in os.walk(sympy_path): module = root.replace(prefix, "").replace(os.sep, ".") if module in whitelist: continue for file in files: if file.startswith(("_", "test_", "bench_")): continue if not file.endswith(".py"): continue with open(os.path.join(root, file), encoding='utf-8') as f: text = f.read() submodule = module + '.' + file[:-3] names = re_cls.findall(text) if not names: continue try: mod = __import__(submodule, fromlist=names) except ImportError: continue def is_Basic(name): cls = getattr(mod, name) if hasattr(cls, '_sympy_deprecated_func'): cls = cls._sympy_deprecated_func if not isinstance(cls, type): # check instance of singleton class with same name cls = type(cls) return issubclass(cls, Basic) names = list(filter(is_Basic, names)) if names: modules[submodule] = names ns = globals() failed = [] for module, names in modules.items(): mod = module.replace('.', '__') for name in names: test = 'test_' + mod + '__' + name if test not in ns: failed.append(module + '.' + name) assert not failed, "Missing classes: %s. Please add tests for these to sympy/core/tests/test_args.py." % ", ".join(failed) def _test_args(obj): all_basic = all(isinstance(arg, Basic) for arg in obj.args) # Ideally obj.func(*obj.args) would always recreate the object, but for # now, we only require it for objects with non-empty .args recreatable = not obj.args or obj.func(*obj.args) == obj return all_basic and recreatable def test_sympy__assumptions__assume__AppliedPredicate(): from sympy.assumptions.assume import AppliedPredicate, Predicate from sympy import Q assert _test_args(AppliedPredicate(Predicate("test"), 2)) assert _test_args(Q.is_true(True)) @SKIP("abstract class") def test_sympy__assumptions__assume__Predicate(): pass def test_predicates(): from sympy.assumptions.ask import get_known_facts_keys predicates = get_known_facts_keys() for p in predicates: assert _test_args(p) def test_sympy__assumptions__assume__UndefinedPredicate(): from sympy.assumptions.assume import Predicate assert _test_args(Predicate("test")) def test_sympy__assumptions__sathandlers__UnevaluatedOnFree(): from sympy.assumptions.sathandlers import UnevaluatedOnFree from sympy import Q assert _test_args(UnevaluatedOnFree(Q.positive)) def test_sympy__assumptions__sathandlers__AllArgs(): from sympy.assumptions.sathandlers import AllArgs from sympy import Q assert _test_args(AllArgs(Q.positive)) def test_sympy__assumptions__sathandlers__AnyArgs(): from sympy.assumptions.sathandlers import AnyArgs from sympy import Q assert _test_args(AnyArgs(Q.positive)) def test_sympy__assumptions__sathandlers__ExactlyOneArg(): from sympy.assumptions.sathandlers import ExactlyOneArg from sympy import Q assert _test_args(ExactlyOneArg(Q.positive)) def test_sympy__assumptions__sathandlers__CheckOldAssump(): from sympy.assumptions.sathandlers import CheckOldAssump from sympy import Q assert _test_args(CheckOldAssump(Q.positive)) def test_sympy__assumptions__sathandlers__CheckIsPrime(): from sympy.assumptions.sathandlers import CheckIsPrime from sympy import Q # Input must be a number assert _test_args(CheckIsPrime(Q.positive)) @SKIP("abstract Class") def test_sympy__codegen__ast__AssignmentBase(): from sympy.codegen.ast import AssignmentBase assert _test_args(AssignmentBase(x, 1)) @SKIP("abstract Class") def test_sympy__codegen__ast__AugmentedAssignment(): from sympy.codegen.ast import AugmentedAssignment assert _test_args(AugmentedAssignment(x, 1)) def test_sympy__codegen__ast__AddAugmentedAssignment(): from sympy.codegen.ast import AddAugmentedAssignment assert _test_args(AddAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__SubAugmentedAssignment(): from sympy.codegen.ast import SubAugmentedAssignment assert _test_args(SubAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__MulAugmentedAssignment(): from sympy.codegen.ast import MulAugmentedAssignment assert _test_args(MulAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__DivAugmentedAssignment(): from sympy.codegen.ast import DivAugmentedAssignment assert _test_args(DivAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__ModAugmentedAssignment(): from sympy.codegen.ast import ModAugmentedAssignment assert _test_args(ModAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__CodeBlock(): from sympy.codegen.ast import CodeBlock, Assignment assert _test_args(CodeBlock(Assignment(x, 1), Assignment(y, 2))) def test_sympy__codegen__ast__For(): from sympy.codegen.ast import For, CodeBlock, AddAugmentedAssignment from sympy import Range assert _test_args(For(x, Range(10), CodeBlock(AddAugmentedAssignment(y, 1)))) def test_sympy__codegen__ast__Token(): from sympy.codegen.ast import Token assert _test_args(Token()) def test_sympy__codegen__ast__ContinueToken(): from sympy.codegen.ast import ContinueToken assert _test_args(ContinueToken()) def test_sympy__codegen__ast__BreakToken(): from sympy.codegen.ast import BreakToken assert _test_args(BreakToken()) def test_sympy__codegen__ast__NoneToken(): from sympy.codegen.ast import NoneToken assert _test_args(NoneToken()) def test_sympy__codegen__ast__String(): from sympy.codegen.ast import String assert _test_args(String('foobar')) def test_sympy__codegen__ast__QuotedString(): from sympy.codegen.ast import QuotedString assert _test_args(QuotedString('foobar')) def test_sympy__codegen__ast__Comment(): from sympy.codegen.ast import Comment assert _test_args(Comment('this is a comment')) def test_sympy__codegen__ast__Node(): from sympy.codegen.ast import Node assert _test_args(Node()) assert _test_args(Node(attrs={1, 2, 3})) def test_sympy__codegen__ast__Type(): from sympy.codegen.ast import Type assert _test_args(Type('float128')) def test_sympy__codegen__ast__IntBaseType(): from sympy.codegen.ast import IntBaseType assert _test_args(IntBaseType('bigint')) def test_sympy__codegen__ast___SizedIntType(): from sympy.codegen.ast import _SizedIntType assert _test_args(_SizedIntType('int128', 128)) def test_sympy__codegen__ast__SignedIntType(): from sympy.codegen.ast import SignedIntType assert _test_args(SignedIntType('int128_with_sign', 128)) def test_sympy__codegen__ast__UnsignedIntType(): from sympy.codegen.ast import UnsignedIntType assert _test_args(UnsignedIntType('unt128', 128)) def test_sympy__codegen__ast__FloatBaseType(): from sympy.codegen.ast import FloatBaseType assert _test_args(FloatBaseType('positive_real')) def test_sympy__codegen__ast__FloatType(): from sympy.codegen.ast import FloatType assert _test_args(FloatType('float242', 242, nmant=142, nexp=99)) def test_sympy__codegen__ast__ComplexBaseType(): from sympy.codegen.ast import ComplexBaseType assert _test_args(ComplexBaseType('positive_cmplx')) def test_sympy__codegen__ast__ComplexType(): from sympy.codegen.ast import ComplexType assert _test_args(ComplexType('complex42', 42, nmant=15, nexp=5)) def test_sympy__codegen__ast__Attribute(): from sympy.codegen.ast import Attribute assert _test_args(Attribute('noexcept')) def test_sympy__codegen__ast__Variable(): from sympy.codegen.ast import Variable, Type, value_const assert _test_args(Variable(x)) assert _test_args(Variable(y, Type('float32'), {value_const})) assert _test_args(Variable(z, type=Type('float64'))) def test_sympy__codegen__ast__Pointer(): from sympy.codegen.ast import Pointer, Type, pointer_const assert _test_args(Pointer(x)) assert _test_args(Pointer(y, type=Type('float32'))) assert _test_args(Pointer(z, Type('float64'), {pointer_const})) def test_sympy__codegen__ast__Declaration(): from sympy.codegen.ast import Declaration, Variable, Type vx = Variable(x, type=Type('float')) assert _test_args(Declaration(vx)) def test_sympy__codegen__ast__While(): from sympy.codegen.ast import While, AddAugmentedAssignment assert _test_args(While(abs(x) < 1, [AddAugmentedAssignment(x, -1)])) def test_sympy__codegen__ast__Scope(): from sympy.codegen.ast import Scope, AddAugmentedAssignment assert _test_args(Scope([AddAugmentedAssignment(x, -1)])) def test_sympy__codegen__ast__Stream(): from sympy.codegen.ast import Stream assert _test_args(Stream('stdin')) def test_sympy__codegen__ast__Print(): from sympy.codegen.ast import Print assert _test_args(Print([x, y])) assert _test_args(Print([x, y], "%d %d")) def test_sympy__codegen__ast__FunctionPrototype(): from sympy.codegen.ast import FunctionPrototype, real, Declaration, Variable inp_x = Declaration(Variable(x, type=real)) assert _test_args(FunctionPrototype(real, 'pwer', [inp_x])) def test_sympy__codegen__ast__FunctionDefinition(): from sympy.codegen.ast import FunctionDefinition, real, Declaration, Variable, Assignment inp_x = Declaration(Variable(x, type=real)) assert _test_args(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)])) def test_sympy__codegen__ast__Return(): from sympy.codegen.ast import Return assert _test_args(Return(x)) def test_sympy__codegen__ast__FunctionCall(): from sympy.codegen.ast import FunctionCall assert _test_args(FunctionCall('pwer', [x])) def test_sympy__codegen__ast__Element(): from sympy.codegen.ast import Element assert _test_args(Element('x', range(3))) def test_sympy__codegen__cnodes__CommaOperator(): from sympy.codegen.cnodes import CommaOperator assert _test_args(CommaOperator(1, 2)) def test_sympy__codegen__cnodes__goto(): from sympy.codegen.cnodes import goto assert _test_args(goto('early_exit')) def test_sympy__codegen__cnodes__Label(): from sympy.codegen.cnodes import Label assert _test_args(Label('early_exit')) def test_sympy__codegen__cnodes__PreDecrement(): from sympy.codegen.cnodes import PreDecrement assert _test_args(PreDecrement(x)) def test_sympy__codegen__cnodes__PostDecrement(): from sympy.codegen.cnodes import PostDecrement assert _test_args(PostDecrement(x)) def test_sympy__codegen__cnodes__PreIncrement(): from sympy.codegen.cnodes import PreIncrement assert _test_args(PreIncrement(x)) def test_sympy__codegen__cnodes__PostIncrement(): from sympy.codegen.cnodes import PostIncrement assert _test_args(PostIncrement(x)) def test_sympy__codegen__cnodes__struct(): from sympy.codegen.ast import real, Variable from sympy.codegen.cnodes import struct assert _test_args(struct(declarations=[ Variable(x, type=real), Variable(y, type=real) ])) def test_sympy__codegen__cnodes__union(): from sympy.codegen.ast import float32, int32, Variable from sympy.codegen.cnodes import union assert _test_args(union(declarations=[ Variable(x, type=float32), Variable(y, type=int32) ])) def test_sympy__codegen__cxxnodes__using(): from sympy.codegen.cxxnodes import using assert _test_args(using('std::vector')) assert _test_args(using('std::vector', 'vec')) def test_sympy__codegen__fnodes__Program(): from sympy.codegen.fnodes import Program assert _test_args(Program('foobar', [])) def test_sympy__codegen__fnodes__Module(): from sympy.codegen.fnodes import Module assert _test_args(Module('foobar', [], [])) def test_sympy__codegen__fnodes__Subroutine(): from sympy.codegen.fnodes import Subroutine x = symbols('x', real=True) assert _test_args(Subroutine('foo', [x], [])) def test_sympy__codegen__fnodes__GoTo(): from sympy.codegen.fnodes import GoTo assert _test_args(GoTo([10])) assert _test_args(GoTo([10, 20], x > 1)) def test_sympy__codegen__fnodes__FortranReturn(): from sympy.codegen.fnodes import FortranReturn assert _test_args(FortranReturn(10)) def test_sympy__codegen__fnodes__Extent(): from sympy.codegen.fnodes import Extent assert _test_args(Extent()) assert _test_args(Extent(None)) assert _test_args(Extent(':')) assert _test_args(Extent(-3, 4)) assert _test_args(Extent(x, y)) def test_sympy__codegen__fnodes__use_rename(): from sympy.codegen.fnodes import use_rename assert _test_args(use_rename('loc', 'glob')) def test_sympy__codegen__fnodes__use(): from sympy.codegen.fnodes import use assert _test_args(use('modfoo', only='bar')) def test_sympy__codegen__fnodes__SubroutineCall(): from sympy.codegen.fnodes import SubroutineCall assert _test_args(SubroutineCall('foo', ['bar', 'baz'])) def test_sympy__codegen__fnodes__Do(): from sympy.codegen.fnodes import Do assert _test_args(Do([], 'i', 1, 42)) def test_sympy__codegen__fnodes__ImpliedDoLoop(): from sympy.codegen.fnodes import ImpliedDoLoop assert _test_args(ImpliedDoLoop('i', 'i', 1, 42)) def test_sympy__codegen__fnodes__ArrayConstructor(): from sympy.codegen.fnodes import ArrayConstructor assert _test_args(ArrayConstructor([1, 2, 3])) from sympy.codegen.fnodes import ImpliedDoLoop idl = ImpliedDoLoop('i', 'i', 1, 42) assert _test_args(ArrayConstructor([1, idl, 3])) def test_sympy__codegen__fnodes__sum_(): from sympy.codegen.fnodes import sum_ assert _test_args(sum_('arr')) def test_sympy__codegen__fnodes__product_(): from sympy.codegen.fnodes import product_ assert _test_args(product_('arr')) def test_sympy__codegen__numpy_nodes__logaddexp(): from sympy.codegen.numpy_nodes import logaddexp assert _test_args(logaddexp(x, y)) def test_sympy__codegen__numpy_nodes__logaddexp2(): from sympy.codegen.numpy_nodes import logaddexp2 assert _test_args(logaddexp2(x, y)) def test_sympy__codegen__scipy_nodes__cosm1(): from sympy.codegen.scipy_nodes import cosm1 assert _test_args(cosm1(x)) @XFAIL def test_sympy__combinatorics__graycode__GrayCode(): from sympy.combinatorics.graycode import GrayCode # an integer is given and returned from GrayCode as the arg assert _test_args(GrayCode(3, start='100')) assert _test_args(GrayCode(3, rank=1)) def test_sympy__combinatorics__subsets__Subset(): from sympy.combinatorics.subsets import Subset assert _test_args(Subset([0, 1], [0, 1, 2, 3])) assert _test_args(Subset(['c', 'd'], ['a', 'b', 'c', 'd'])) def test_sympy__combinatorics__permutations__Permutation(): from sympy.combinatorics.permutations import Permutation assert _test_args(Permutation([0, 1, 2, 3])) def test_sympy__combinatorics__permutations__AppliedPermutation(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.permutations import AppliedPermutation p = Permutation([0, 1, 2, 3]) assert _test_args(AppliedPermutation(p, 1)) def test_sympy__combinatorics__perm_groups__PermutationGroup(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.perm_groups import PermutationGroup assert _test_args(PermutationGroup([Permutation([0, 1])])) def test_sympy__combinatorics__polyhedron__Polyhedron(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.polyhedron import Polyhedron from sympy.abc import w, x, y, z pgroup = [Permutation([[0, 1, 2], [3]]), Permutation([[0, 1, 3], [2]]), Permutation([[0, 2, 3], [1]]), Permutation([[1, 2, 3], [0]]), Permutation([[0, 1], [2, 3]]), Permutation([[0, 2], [1, 3]]), Permutation([[0, 3], [1, 2]]), Permutation([[0, 1, 2, 3]])] corners = [w, x, y, z] faces = [(w, x, y), (w, y, z), (w, z, x), (x, y, z)] assert _test_args(Polyhedron(corners, faces, pgroup)) @XFAIL def test_sympy__combinatorics__prufer__Prufer(): from sympy.combinatorics.prufer import Prufer assert _test_args(Prufer([[0, 1], [0, 2], [0, 3]], 4)) def test_sympy__combinatorics__partitions__Partition(): from sympy.combinatorics.partitions import Partition assert _test_args(Partition([1])) @XFAIL def test_sympy__combinatorics__partitions__IntegerPartition(): from sympy.combinatorics.partitions import IntegerPartition assert _test_args(IntegerPartition([1])) def test_sympy__concrete__products__Product(): from sympy.concrete.products import Product assert _test_args(Product(x, (x, 0, 10))) assert _test_args(Product(x, (x, 0, y), (y, 0, 10))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_limits__ExprWithLimits(): from sympy.concrete.expr_with_limits import ExprWithLimits assert _test_args(ExprWithLimits(x, (x, 0, 10))) assert _test_args(ExprWithLimits(x*y, (x, 0, 10.),(y,1.,3))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_limits__AddWithLimits(): from sympy.concrete.expr_with_limits import AddWithLimits assert _test_args(AddWithLimits(x, (x, 0, 10))) assert _test_args(AddWithLimits(x*y, (x, 0, 10),(y,1,3))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_intlimits__ExprWithIntLimits(): from sympy.concrete.expr_with_intlimits import ExprWithIntLimits assert _test_args(ExprWithIntLimits(x, (x, 0, 10))) assert _test_args(ExprWithIntLimits(x*y, (x, 0, 10),(y,1,3))) def test_sympy__concrete__summations__Sum(): from sympy.concrete.summations import Sum assert _test_args(Sum(x, (x, 0, 10))) assert _test_args(Sum(x, (x, 0, y), (y, 0, 10))) def test_sympy__core__add__Add(): from sympy.core.add import Add assert _test_args(Add(x, y, z, 2)) def test_sympy__core__basic__Atom(): from sympy.core.basic import Atom assert _test_args(Atom()) def test_sympy__core__basic__Basic(): from sympy.core.basic import Basic assert _test_args(Basic()) def test_sympy__core__containers__Dict(): from sympy.core.containers import Dict assert _test_args(Dict({x: y, y: z})) def test_sympy__core__containers__Tuple(): from sympy.core.containers import Tuple assert _test_args(Tuple(x, y, z, 2)) def test_sympy__core__expr__AtomicExpr(): from sympy.core.expr import AtomicExpr assert _test_args(AtomicExpr()) def test_sympy__core__expr__Expr(): from sympy.core.expr import Expr assert _test_args(Expr()) def test_sympy__core__expr__UnevaluatedExpr(): from sympy.core.expr import UnevaluatedExpr from sympy.abc import x assert _test_args(UnevaluatedExpr(x)) def test_sympy__core__function__Application(): from sympy.core.function import Application assert _test_args(Application(1, 2, 3)) def test_sympy__core__function__AppliedUndef(): from sympy.core.function import AppliedUndef assert _test_args(AppliedUndef(1, 2, 3)) def test_sympy__core__function__Derivative(): from sympy.core.function import Derivative assert _test_args(Derivative(2, x, y, 3)) @SKIP("abstract class") def test_sympy__core__function__Function(): pass def test_sympy__core__function__Lambda(): assert _test_args(Lambda((x, y), x + y + z)) def test_sympy__core__function__Subs(): from sympy.core.function import Subs assert _test_args(Subs(x + y, x, 2)) def test_sympy__core__function__WildFunction(): from sympy.core.function import WildFunction assert _test_args(WildFunction('f')) def test_sympy__core__mod__Mod(): from sympy.core.mod import Mod assert _test_args(Mod(x, 2)) def test_sympy__core__mul__Mul(): from sympy.core.mul import Mul assert _test_args(Mul(2, x, y, z)) def test_sympy__core__numbers__Catalan(): from sympy.core.numbers import Catalan assert _test_args(Catalan()) def test_sympy__core__numbers__ComplexInfinity(): from sympy.core.numbers import ComplexInfinity assert _test_args(ComplexInfinity()) def test_sympy__core__numbers__EulerGamma(): from sympy.core.numbers import EulerGamma assert _test_args(EulerGamma()) def test_sympy__core__numbers__Exp1(): from sympy.core.numbers import Exp1 assert _test_args(Exp1()) def test_sympy__core__numbers__Float(): from sympy.core.numbers import Float assert _test_args(Float(1.23)) def test_sympy__core__numbers__GoldenRatio(): from sympy.core.numbers import GoldenRatio assert _test_args(GoldenRatio()) def test_sympy__core__numbers__TribonacciConstant(): from sympy.core.numbers import TribonacciConstant assert _test_args(TribonacciConstant()) def test_sympy__core__numbers__Half(): from sympy.core.numbers import Half assert _test_args(Half()) def test_sympy__core__numbers__ImaginaryUnit(): from sympy.core.numbers import ImaginaryUnit assert _test_args(ImaginaryUnit()) def test_sympy__core__numbers__Infinity(): from sympy.core.numbers import Infinity assert _test_args(Infinity()) def test_sympy__core__numbers__Integer(): from sympy.core.numbers import Integer assert _test_args(Integer(7)) @SKIP("abstract class") def test_sympy__core__numbers__IntegerConstant(): pass def test_sympy__core__numbers__NaN(): from sympy.core.numbers import NaN assert _test_args(NaN()) def test_sympy__core__numbers__NegativeInfinity(): from sympy.core.numbers import NegativeInfinity assert _test_args(NegativeInfinity()) def test_sympy__core__numbers__NegativeOne(): from sympy.core.numbers import NegativeOne assert _test_args(NegativeOne()) def test_sympy__core__numbers__Number(): from sympy.core.numbers import Number assert _test_args(Number(1, 7)) def test_sympy__core__numbers__NumberSymbol(): from sympy.core.numbers import NumberSymbol assert _test_args(NumberSymbol()) def test_sympy__core__numbers__One(): from sympy.core.numbers import One assert _test_args(One()) def test_sympy__core__numbers__Pi(): from sympy.core.numbers import Pi assert _test_args(Pi()) def test_sympy__core__numbers__Rational(): from sympy.core.numbers import Rational assert _test_args(Rational(1, 7)) @SKIP("abstract class") def test_sympy__core__numbers__RationalConstant(): pass def test_sympy__core__numbers__Zero(): from sympy.core.numbers import Zero assert _test_args(Zero()) @SKIP("abstract class") def test_sympy__core__operations__AssocOp(): pass @SKIP("abstract class") def test_sympy__core__operations__LatticeOp(): pass def test_sympy__core__power__Pow(): from sympy.core.power import Pow assert _test_args(Pow(x, 2)) def test_sympy__algebras__quaternion__Quaternion(): from sympy.algebras.quaternion import Quaternion assert _test_args(Quaternion(x, 1, 2, 3)) def test_sympy__core__relational__Equality(): from sympy.core.relational import Equality assert _test_args(Equality(x, 2)) def test_sympy__core__relational__GreaterThan(): from sympy.core.relational import GreaterThan assert _test_args(GreaterThan(x, 2)) def test_sympy__core__relational__LessThan(): from sympy.core.relational import LessThan assert _test_args(LessThan(x, 2)) @SKIP("abstract class") def test_sympy__core__relational__Relational(): pass def test_sympy__core__relational__StrictGreaterThan(): from sympy.core.relational import StrictGreaterThan assert _test_args(StrictGreaterThan(x, 2)) def test_sympy__core__relational__StrictLessThan(): from sympy.core.relational import StrictLessThan assert _test_args(StrictLessThan(x, 2)) def test_sympy__core__relational__Unequality(): from sympy.core.relational import Unequality assert _test_args(Unequality(x, 2)) def test_sympy__sandbox__indexed_integrals__IndexedIntegral(): from sympy.tensor import IndexedBase, Idx from sympy.sandbox.indexed_integrals import IndexedIntegral A = IndexedBase('A') i, j = symbols('i j', integer=True) a1, a2 = symbols('a1:3', cls=Idx) assert _test_args(IndexedIntegral(A[a1], A[a2])) assert _test_args(IndexedIntegral(A[i], A[j])) def test_sympy__calculus__util__AccumulationBounds(): from sympy.calculus.util import AccumulationBounds assert _test_args(AccumulationBounds(0, 1)) def test_sympy__sets__ordinals__OmegaPower(): from sympy.sets.ordinals import OmegaPower assert _test_args(OmegaPower(1, 1)) def test_sympy__sets__ordinals__Ordinal(): from sympy.sets.ordinals import Ordinal, OmegaPower assert _test_args(Ordinal(OmegaPower(2, 1))) def test_sympy__sets__ordinals__OrdinalOmega(): from sympy.sets.ordinals import OrdinalOmega assert _test_args(OrdinalOmega()) def test_sympy__sets__ordinals__OrdinalZero(): from sympy.sets.ordinals import OrdinalZero assert _test_args(OrdinalZero()) def test_sympy__sets__powerset__PowerSet(): from sympy.sets.powerset import PowerSet from sympy.core.singleton import S assert _test_args(PowerSet(S.EmptySet)) def test_sympy__sets__sets__EmptySet(): from sympy.sets.sets import EmptySet assert _test_args(EmptySet()) def test_sympy__sets__sets__UniversalSet(): from sympy.sets.sets import UniversalSet assert _test_args(UniversalSet()) def test_sympy__sets__sets__FiniteSet(): from sympy.sets.sets import FiniteSet assert _test_args(FiniteSet(x, y, z)) def test_sympy__sets__sets__Interval(): from sympy.sets.sets import Interval assert _test_args(Interval(0, 1)) def test_sympy__sets__sets__ProductSet(): from sympy.sets.sets import ProductSet, Interval assert _test_args(ProductSet(Interval(0, 1), Interval(0, 1))) @SKIP("does it make sense to test this?") def test_sympy__sets__sets__Set(): from sympy.sets.sets import Set assert _test_args(Set()) def test_sympy__sets__sets__Intersection(): from sympy.sets.sets import Intersection, Interval from sympy.core.symbol import Symbol x = Symbol('x') y = Symbol('y') S = Intersection(Interval(0, x), Interval(y, 1)) assert isinstance(S, Intersection) assert _test_args(S) def test_sympy__sets__sets__Union(): from sympy.sets.sets import Union, Interval assert _test_args(Union(Interval(0, 1), Interval(2, 3))) def test_sympy__sets__sets__Complement(): from sympy.sets.sets import Complement assert _test_args(Complement(Interval(0, 2), Interval(0, 1))) def test_sympy__sets__sets__SymmetricDifference(): from sympy.sets.sets import FiniteSet, SymmetricDifference assert _test_args(SymmetricDifference(FiniteSet(1, 2, 3), \ FiniteSet(2, 3, 4))) def test_sympy__sets__sets__DisjointUnion(): from sympy.sets.sets import FiniteSet, DisjointUnion assert _test_args(DisjointUnion(FiniteSet(1, 2, 3), \ FiniteSet(2, 3, 4))) def test_sympy__core__trace__Tr(): from sympy.core.trace import Tr a, b = symbols('a b') assert _test_args(Tr(a + b)) def test_sympy__sets__setexpr__SetExpr(): from sympy.sets.setexpr import SetExpr assert _test_args(SetExpr(Interval(0, 1))) def test_sympy__sets__fancysets__Rationals(): from sympy.sets.fancysets import Rationals assert _test_args(Rationals()) def test_sympy__sets__fancysets__Naturals(): from sympy.sets.fancysets import Naturals assert _test_args(Naturals()) def test_sympy__sets__fancysets__Naturals0(): from sympy.sets.fancysets import Naturals0 assert _test_args(Naturals0()) def test_sympy__sets__fancysets__Integers(): from sympy.sets.fancysets import Integers assert _test_args(Integers()) def test_sympy__sets__fancysets__Reals(): from sympy.sets.fancysets import Reals assert _test_args(Reals()) def test_sympy__sets__fancysets__Complexes(): from sympy.sets.fancysets import Complexes assert _test_args(Complexes()) def test_sympy__sets__fancysets__ComplexRegion(): from sympy.sets.fancysets import ComplexRegion from sympy import S from sympy.sets import Interval a = Interval(0, 1) b = Interval(2, 3) theta = Interval(0, 2*S.Pi) assert _test_args(ComplexRegion(a*b)) assert _test_args(ComplexRegion(a*theta, polar=True)) def test_sympy__sets__fancysets__CartesianComplexRegion(): from sympy.sets.fancysets import CartesianComplexRegion from sympy.sets import Interval a = Interval(0, 1) b = Interval(2, 3) assert _test_args(CartesianComplexRegion(a*b)) def test_sympy__sets__fancysets__PolarComplexRegion(): from sympy.sets.fancysets import PolarComplexRegion from sympy import S from sympy.sets import Interval a = Interval(0, 1) theta = Interval(0, 2*S.Pi) assert _test_args(PolarComplexRegion(a*theta)) def test_sympy__sets__fancysets__ImageSet(): from sympy.sets.fancysets import ImageSet from sympy import S, Symbol x = Symbol('x') assert _test_args(ImageSet(Lambda(x, x**2), S.Naturals)) def test_sympy__sets__fancysets__Range(): from sympy.sets.fancysets import Range assert _test_args(Range(1, 5, 1)) def test_sympy__sets__conditionset__ConditionSet(): from sympy.sets.conditionset import ConditionSet from sympy import S, Symbol x = Symbol('x') assert _test_args(ConditionSet(x, Eq(x**2, 1), S.Reals)) def test_sympy__sets__contains__Contains(): from sympy.sets.fancysets import Range from sympy.sets.contains import Contains assert _test_args(Contains(x, Range(0, 10, 2))) # STATS from sympy.stats.crv_types import NormalDistribution nd = NormalDistribution(0, 1) from sympy.stats.frv_types import DieDistribution die = DieDistribution(6) def test_sympy__stats__crv__ContinuousDomain(): from sympy.stats.crv import ContinuousDomain assert _test_args(ContinuousDomain({x}, Interval(-oo, oo))) def test_sympy__stats__crv__SingleContinuousDomain(): from sympy.stats.crv import SingleContinuousDomain assert _test_args(SingleContinuousDomain(x, Interval(-oo, oo))) def test_sympy__stats__crv__ProductContinuousDomain(): from sympy.stats.crv import SingleContinuousDomain, ProductContinuousDomain D = SingleContinuousDomain(x, Interval(-oo, oo)) E = SingleContinuousDomain(y, Interval(0, oo)) assert _test_args(ProductContinuousDomain(D, E)) def test_sympy__stats__crv__ConditionalContinuousDomain(): from sympy.stats.crv import (SingleContinuousDomain, ConditionalContinuousDomain) D = SingleContinuousDomain(x, Interval(-oo, oo)) assert _test_args(ConditionalContinuousDomain(D, x > 0)) def test_sympy__stats__crv__ContinuousPSpace(): from sympy.stats.crv import ContinuousPSpace, SingleContinuousDomain D = SingleContinuousDomain(x, Interval(-oo, oo)) assert _test_args(ContinuousPSpace(D, nd)) def test_sympy__stats__crv__SingleContinuousPSpace(): from sympy.stats.crv import SingleContinuousPSpace assert _test_args(SingleContinuousPSpace(x, nd)) @SKIP("abstract class") def test_sympy__stats__rv__Distribution(): pass @SKIP("abstract class") def test_sympy__stats__crv__SingleContinuousDistribution(): pass def test_sympy__stats__drv__SingleDiscreteDomain(): from sympy.stats.drv import SingleDiscreteDomain assert _test_args(SingleDiscreteDomain(x, S.Naturals)) def test_sympy__stats__drv__ProductDiscreteDomain(): from sympy.stats.drv import SingleDiscreteDomain, ProductDiscreteDomain X = SingleDiscreteDomain(x, S.Naturals) Y = SingleDiscreteDomain(y, S.Integers) assert _test_args(ProductDiscreteDomain(X, Y)) def test_sympy__stats__drv__SingleDiscretePSpace(): from sympy.stats.drv import SingleDiscretePSpace from sympy.stats.drv_types import PoissonDistribution assert _test_args(SingleDiscretePSpace(x, PoissonDistribution(1))) def test_sympy__stats__drv__DiscretePSpace(): from sympy.stats.drv import DiscretePSpace, SingleDiscreteDomain density = Lambda(x, 2**(-x)) domain = SingleDiscreteDomain(x, S.Naturals) assert _test_args(DiscretePSpace(domain, density)) def test_sympy__stats__drv__ConditionalDiscreteDomain(): from sympy.stats.drv import ConditionalDiscreteDomain, SingleDiscreteDomain X = SingleDiscreteDomain(x, S.Naturals0) assert _test_args(ConditionalDiscreteDomain(X, x > 2)) def test_sympy__stats__joint_rv__JointPSpace(): from sympy.stats.joint_rv import JointPSpace, JointDistribution assert _test_args(JointPSpace('X', JointDistribution(1))) def test_sympy__stats__joint_rv__JointRandomSymbol(): from sympy.stats.joint_rv import JointRandomSymbol assert _test_args(JointRandomSymbol(x)) def test_sympy__stats__joint_rv_types__JointDistributionHandmade(): from sympy import Indexed from sympy.stats.joint_rv_types import JointDistributionHandmade x1, x2 = (Indexed('x', i) for i in (1, 2)) assert _test_args(JointDistributionHandmade(x1 + x2, S.Reals**2)) def test_sympy__stats__joint_rv__MarginalDistribution(): from sympy.stats.rv import RandomSymbol from sympy.stats.joint_rv import MarginalDistribution r = RandomSymbol(S('r')) assert _test_args(MarginalDistribution(r, (r,))) def test_sympy__stats__compound_rv__CompoundDistribution(): from sympy.stats.compound_rv import CompoundDistribution from sympy.stats.drv_types import PoissonDistribution, Poisson r = Poisson('r', 10) assert _test_args(CompoundDistribution(PoissonDistribution(r))) def test_sympy__stats__compound_rv__CompoundPSpace(): from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution from sympy.stats.drv_types import PoissonDistribution, Poisson r = Poisson('r', 5) C = CompoundDistribution(PoissonDistribution(r)) assert _test_args(CompoundPSpace('C', C)) @SKIP("abstract class") def test_sympy__stats__drv__SingleDiscreteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__drv__DiscreteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__drv__DiscreteDomain(): pass def test_sympy__stats__rv__RandomDomain(): from sympy.stats.rv import RandomDomain from sympy.sets.sets import FiniteSet assert _test_args(RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3))) def test_sympy__stats__rv__SingleDomain(): from sympy.stats.rv import SingleDomain from sympy.sets.sets import FiniteSet assert _test_args(SingleDomain(x, FiniteSet(1, 2, 3))) def test_sympy__stats__rv__ConditionalDomain(): from sympy.stats.rv import ConditionalDomain, RandomDomain from sympy.sets.sets import FiniteSet D = RandomDomain(FiniteSet(x), FiniteSet(1, 2)) assert _test_args(ConditionalDomain(D, x > 1)) def test_sympy__stats__rv__MatrixDomain(): from sympy.stats.rv import MatrixDomain from sympy.matrices import MatrixSet from sympy import S assert _test_args(MatrixDomain(x, MatrixSet(2, 2, S.Reals))) def test_sympy__stats__rv__PSpace(): from sympy.stats.rv import PSpace, RandomDomain from sympy import FiniteSet D = RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3, 4, 5, 6)) assert _test_args(PSpace(D, die)) @SKIP("abstract Class") def test_sympy__stats__rv__SinglePSpace(): pass def test_sympy__stats__rv__RandomSymbol(): from sympy.stats.rv import RandomSymbol from sympy.stats.crv import SingleContinuousPSpace A = SingleContinuousPSpace(x, nd) assert _test_args(RandomSymbol(x, A)) @SKIP("abstract Class") def test_sympy__stats__rv__ProductPSpace(): pass def test_sympy__stats__rv__IndependentProductPSpace(): from sympy.stats.rv import IndependentProductPSpace from sympy.stats.crv import SingleContinuousPSpace A = SingleContinuousPSpace(x, nd) B = SingleContinuousPSpace(y, nd) assert _test_args(IndependentProductPSpace(A, B)) def test_sympy__stats__rv__ProductDomain(): from sympy.stats.rv import ProductDomain, SingleDomain D = SingleDomain(x, Interval(-oo, oo)) E = SingleDomain(y, Interval(0, oo)) assert _test_args(ProductDomain(D, E)) def test_sympy__stats__symbolic_probability__Probability(): from sympy.stats.symbolic_probability import Probability from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Probability(X > 0)) def test_sympy__stats__symbolic_probability__Expectation(): from sympy.stats.symbolic_probability import Expectation from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Expectation(X > 0)) def test_sympy__stats__symbolic_probability__Covariance(): from sympy.stats.symbolic_probability import Covariance from sympy.stats import Normal X = Normal('X', 0, 1) Y = Normal('Y', 0, 3) assert _test_args(Covariance(X, Y)) def test_sympy__stats__symbolic_probability__Variance(): from sympy.stats.symbolic_probability import Variance from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Variance(X)) def test_sympy__stats__symbolic_probability__Moment(): from sympy.stats.symbolic_probability import Moment from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Moment(X, 3, 2, X > 3)) def test_sympy__stats__symbolic_probability__CentralMoment(): from sympy.stats.symbolic_probability import CentralMoment from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(CentralMoment(X, 2, X > 1)) def test_sympy__stats__frv_types__DiscreteUniformDistribution(): from sympy.stats.frv_types import DiscreteUniformDistribution from sympy.core.containers import Tuple assert _test_args(DiscreteUniformDistribution(Tuple(*list(range(6))))) def test_sympy__stats__frv_types__DieDistribution(): assert _test_args(die) def test_sympy__stats__frv_types__BernoulliDistribution(): from sympy.stats.frv_types import BernoulliDistribution assert _test_args(BernoulliDistribution(S.Half, 0, 1)) def test_sympy__stats__frv_types__BinomialDistribution(): from sympy.stats.frv_types import BinomialDistribution assert _test_args(BinomialDistribution(5, S.Half, 1, 0)) def test_sympy__stats__frv_types__BetaBinomialDistribution(): from sympy.stats.frv_types import BetaBinomialDistribution assert _test_args(BetaBinomialDistribution(5, 1, 1)) def test_sympy__stats__frv_types__HypergeometricDistribution(): from sympy.stats.frv_types import HypergeometricDistribution assert _test_args(HypergeometricDistribution(10, 5, 3)) def test_sympy__stats__frv_types__RademacherDistribution(): from sympy.stats.frv_types import RademacherDistribution assert _test_args(RademacherDistribution()) def test_sympy__stats__frv_types__IdealSolitonDistribution(): from sympy.stats.frv_types import IdealSolitonDistribution assert _test_args(IdealSolitonDistribution(10)) def test_sympy__stats__frv_types__RobustSolitonDistribution(): from sympy.stats.frv_types import RobustSolitonDistribution assert _test_args(RobustSolitonDistribution(1000, 0.5, 0.1)) def test_sympy__stats__frv__FiniteDomain(): from sympy.stats.frv import FiniteDomain assert _test_args(FiniteDomain({(x, 1), (x, 2)})) # x can be 1 or 2 def test_sympy__stats__frv__SingleFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain assert _test_args(SingleFiniteDomain(x, {1, 2})) # x can be 1 or 2 def test_sympy__stats__frv__ProductFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain, ProductFiniteDomain xd = SingleFiniteDomain(x, {1, 2}) yd = SingleFiniteDomain(y, {1, 2}) assert _test_args(ProductFiniteDomain(xd, yd)) def test_sympy__stats__frv__ConditionalFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain, ConditionalFiniteDomain xd = SingleFiniteDomain(x, {1, 2}) assert _test_args(ConditionalFiniteDomain(xd, x > 1)) def test_sympy__stats__frv__FinitePSpace(): from sympy.stats.frv import FinitePSpace, SingleFiniteDomain xd = SingleFiniteDomain(x, {1, 2, 3, 4, 5, 6}) assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half})) xd = SingleFiniteDomain(x, {1, 2}) assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half})) def test_sympy__stats__frv__SingleFinitePSpace(): from sympy.stats.frv import SingleFinitePSpace from sympy import Symbol assert _test_args(SingleFinitePSpace(Symbol('x'), die)) def test_sympy__stats__frv__ProductFinitePSpace(): from sympy.stats.frv import SingleFinitePSpace, ProductFinitePSpace from sympy import Symbol xp = SingleFinitePSpace(Symbol('x'), die) yp = SingleFinitePSpace(Symbol('y'), die) assert _test_args(ProductFinitePSpace(xp, yp)) @SKIP("abstract class") def test_sympy__stats__frv__SingleFiniteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__crv__ContinuousDistribution(): pass def test_sympy__stats__frv_types__FiniteDistributionHandmade(): from sympy.stats.frv_types import FiniteDistributionHandmade from sympy import Dict assert _test_args(FiniteDistributionHandmade(Dict({1: 1}))) def test_sympy__stats__crv_types__ContinuousDistributionHandmade(): from sympy.stats.crv_types import ContinuousDistributionHandmade from sympy import Interval, Lambda from sympy.abc import x assert _test_args(ContinuousDistributionHandmade(Lambda(x, 2*x), Interval(0, 1))) def test_sympy__stats__drv_types__DiscreteDistributionHandmade(): from sympy.stats.drv_types import DiscreteDistributionHandmade from sympy import Lambda, FiniteSet from sympy.abc import x assert _test_args(DiscreteDistributionHandmade(Lambda(x, Rational(1, 10)), FiniteSet(*range(10)))) def test_sympy__stats__rv__Density(): from sympy.stats.rv import Density from sympy.stats.crv_types import Normal assert _test_args(Density(Normal('x', 0, 1))) def test_sympy__stats__crv_types__ArcsinDistribution(): from sympy.stats.crv_types import ArcsinDistribution assert _test_args(ArcsinDistribution(0, 1)) def test_sympy__stats__crv_types__BeniniDistribution(): from sympy.stats.crv_types import BeniniDistribution assert _test_args(BeniniDistribution(1, 1, 1)) def test_sympy__stats__crv_types__BetaDistribution(): from sympy.stats.crv_types import BetaDistribution assert _test_args(BetaDistribution(1, 1)) def test_sympy__stats__crv_types__BetaNoncentralDistribution(): from sympy.stats.crv_types import BetaNoncentralDistribution assert _test_args(BetaNoncentralDistribution(1, 1, 1)) def test_sympy__stats__crv_types__BetaPrimeDistribution(): from sympy.stats.crv_types import BetaPrimeDistribution assert _test_args(BetaPrimeDistribution(1, 1)) def test_sympy__stats__crv_types__BoundedParetoDistribution(): from sympy.stats.crv_types import BoundedParetoDistribution assert _test_args(BoundedParetoDistribution(1, 1, 2)) def test_sympy__stats__crv_types__CauchyDistribution(): from sympy.stats.crv_types import CauchyDistribution assert _test_args(CauchyDistribution(0, 1)) def test_sympy__stats__crv_types__ChiDistribution(): from sympy.stats.crv_types import ChiDistribution assert _test_args(ChiDistribution(1)) def test_sympy__stats__crv_types__ChiNoncentralDistribution(): from sympy.stats.crv_types import ChiNoncentralDistribution assert _test_args(ChiNoncentralDistribution(1,1)) def test_sympy__stats__crv_types__ChiSquaredDistribution(): from sympy.stats.crv_types import ChiSquaredDistribution assert _test_args(ChiSquaredDistribution(1)) def test_sympy__stats__crv_types__DagumDistribution(): from sympy.stats.crv_types import DagumDistribution assert _test_args(DagumDistribution(1, 1, 1)) def test_sympy__stats__crv_types__ExGaussianDistribution(): from sympy.stats.crv_types import ExGaussianDistribution assert _test_args(ExGaussianDistribution(1, 1, 1)) def test_sympy__stats__crv_types__ExponentialDistribution(): from sympy.stats.crv_types import ExponentialDistribution assert _test_args(ExponentialDistribution(1)) def test_sympy__stats__crv_types__ExponentialPowerDistribution(): from sympy.stats.crv_types import ExponentialPowerDistribution assert _test_args(ExponentialPowerDistribution(0, 1, 1)) def test_sympy__stats__crv_types__FDistributionDistribution(): from sympy.stats.crv_types import FDistributionDistribution assert _test_args(FDistributionDistribution(1, 1)) def test_sympy__stats__crv_types__FisherZDistribution(): from sympy.stats.crv_types import FisherZDistribution assert _test_args(FisherZDistribution(1, 1)) def test_sympy__stats__crv_types__FrechetDistribution(): from sympy.stats.crv_types import FrechetDistribution assert _test_args(FrechetDistribution(1, 1, 1)) def test_sympy__stats__crv_types__GammaInverseDistribution(): from sympy.stats.crv_types import GammaInverseDistribution assert _test_args(GammaInverseDistribution(1, 1)) def test_sympy__stats__crv_types__GammaDistribution(): from sympy.stats.crv_types import GammaDistribution assert _test_args(GammaDistribution(1, 1)) def test_sympy__stats__crv_types__GumbelDistribution(): from sympy.stats.crv_types import GumbelDistribution assert _test_args(GumbelDistribution(1, 1, False)) def test_sympy__stats__crv_types__GompertzDistribution(): from sympy.stats.crv_types import GompertzDistribution assert _test_args(GompertzDistribution(1, 1)) def test_sympy__stats__crv_types__KumaraswamyDistribution(): from sympy.stats.crv_types import KumaraswamyDistribution assert _test_args(KumaraswamyDistribution(1, 1)) def test_sympy__stats__crv_types__LaplaceDistribution(): from sympy.stats.crv_types import LaplaceDistribution assert _test_args(LaplaceDistribution(0, 1)) def test_sympy__stats__crv_types__LevyDistribution(): from sympy.stats.crv_types import LevyDistribution assert _test_args(LevyDistribution(0, 1)) def test_sympy__stats__crv_types__LogCauchyDistribution(): from sympy.stats.crv_types import LogCauchyDistribution assert _test_args(LogCauchyDistribution(0, 1)) def test_sympy__stats__crv_types__LogisticDistribution(): from sympy.stats.crv_types import LogisticDistribution assert _test_args(LogisticDistribution(0, 1)) def test_sympy__stats__crv_types__LogLogisticDistribution(): from sympy.stats.crv_types import LogLogisticDistribution assert _test_args(LogLogisticDistribution(1, 1)) def test_sympy__stats__crv_types__LogitNormalDistribution(): from sympy.stats.crv_types import LogitNormalDistribution assert _test_args(LogitNormalDistribution(0, 1)) def test_sympy__stats__crv_types__LogNormalDistribution(): from sympy.stats.crv_types import LogNormalDistribution assert _test_args(LogNormalDistribution(0, 1)) def test_sympy__stats__crv_types__LomaxDistribution(): from sympy.stats.crv_types import LomaxDistribution assert _test_args(LomaxDistribution(1, 2)) def test_sympy__stats__crv_types__MaxwellDistribution(): from sympy.stats.crv_types import MaxwellDistribution assert _test_args(MaxwellDistribution(1)) def test_sympy__stats__crv_types__MoyalDistribution(): from sympy.stats.crv_types import MoyalDistribution assert _test_args(MoyalDistribution(1,2)) def test_sympy__stats__crv_types__NakagamiDistribution(): from sympy.stats.crv_types import NakagamiDistribution assert _test_args(NakagamiDistribution(1, 1)) def test_sympy__stats__crv_types__NormalDistribution(): from sympy.stats.crv_types import NormalDistribution assert _test_args(NormalDistribution(0, 1)) def test_sympy__stats__crv_types__GaussianInverseDistribution(): from sympy.stats.crv_types import GaussianInverseDistribution assert _test_args(GaussianInverseDistribution(1, 1)) def test_sympy__stats__crv_types__ParetoDistribution(): from sympy.stats.crv_types import ParetoDistribution assert _test_args(ParetoDistribution(1, 1)) def test_sympy__stats__crv_types__PowerFunctionDistribution(): from sympy.stats.crv_types import PowerFunctionDistribution assert _test_args(PowerFunctionDistribution(2,0,1)) def test_sympy__stats__crv_types__QuadraticUDistribution(): from sympy.stats.crv_types import QuadraticUDistribution assert _test_args(QuadraticUDistribution(1, 2)) def test_sympy__stats__crv_types__RaisedCosineDistribution(): from sympy.stats.crv_types import RaisedCosineDistribution assert _test_args(RaisedCosineDistribution(1, 1)) def test_sympy__stats__crv_types__RayleighDistribution(): from sympy.stats.crv_types import RayleighDistribution assert _test_args(RayleighDistribution(1)) def test_sympy__stats__crv_types__ReciprocalDistribution(): from sympy.stats.crv_types import ReciprocalDistribution assert _test_args(ReciprocalDistribution(5, 30)) def test_sympy__stats__crv_types__ShiftedGompertzDistribution(): from sympy.stats.crv_types import ShiftedGompertzDistribution assert _test_args(ShiftedGompertzDistribution(1, 1)) def test_sympy__stats__crv_types__StudentTDistribution(): from sympy.stats.crv_types import StudentTDistribution assert _test_args(StudentTDistribution(1)) def test_sympy__stats__crv_types__TrapezoidalDistribution(): from sympy.stats.crv_types import TrapezoidalDistribution assert _test_args(TrapezoidalDistribution(1, 2, 3, 4)) def test_sympy__stats__crv_types__TriangularDistribution(): from sympy.stats.crv_types import TriangularDistribution assert _test_args(TriangularDistribution(-1, 0, 1)) def test_sympy__stats__crv_types__UniformDistribution(): from sympy.stats.crv_types import UniformDistribution assert _test_args(UniformDistribution(0, 1)) def test_sympy__stats__crv_types__UniformSumDistribution(): from sympy.stats.crv_types import UniformSumDistribution assert _test_args(UniformSumDistribution(1)) def test_sympy__stats__crv_types__VonMisesDistribution(): from sympy.stats.crv_types import VonMisesDistribution assert _test_args(VonMisesDistribution(1, 1)) def test_sympy__stats__crv_types__WeibullDistribution(): from sympy.stats.crv_types import WeibullDistribution assert _test_args(WeibullDistribution(1, 1)) def test_sympy__stats__crv_types__WignerSemicircleDistribution(): from sympy.stats.crv_types import WignerSemicircleDistribution assert _test_args(WignerSemicircleDistribution(1)) def test_sympy__stats__drv_types__GeometricDistribution(): from sympy.stats.drv_types import GeometricDistribution assert _test_args(GeometricDistribution(.5)) def test_sympy__stats__drv_types__HermiteDistribution(): from sympy.stats.drv_types import HermiteDistribution assert _test_args(HermiteDistribution(1, 2)) def test_sympy__stats__drv_types__LogarithmicDistribution(): from sympy.stats.drv_types import LogarithmicDistribution assert _test_args(LogarithmicDistribution(.5)) def test_sympy__stats__drv_types__NegativeBinomialDistribution(): from sympy.stats.drv_types import NegativeBinomialDistribution assert _test_args(NegativeBinomialDistribution(.5, .5)) def test_sympy__stats__drv_types__FlorySchulzDistribution(): from sympy.stats.drv_types import FlorySchulzDistribution assert _test_args(FlorySchulzDistribution(.5)) def test_sympy__stats__drv_types__PoissonDistribution(): from sympy.stats.drv_types import PoissonDistribution assert _test_args(PoissonDistribution(1)) def test_sympy__stats__drv_types__SkellamDistribution(): from sympy.stats.drv_types import SkellamDistribution assert _test_args(SkellamDistribution(1, 1)) def test_sympy__stats__drv_types__YuleSimonDistribution(): from sympy.stats.drv_types import YuleSimonDistribution assert _test_args(YuleSimonDistribution(.5)) def test_sympy__stats__drv_types__ZetaDistribution(): from sympy.stats.drv_types import ZetaDistribution assert _test_args(ZetaDistribution(1.5)) def test_sympy__stats__joint_rv__JointDistribution(): from sympy.stats.joint_rv import JointDistribution assert _test_args(JointDistribution(1, 2, 3, 4)) def test_sympy__stats__joint_rv_types__MultivariateNormalDistribution(): from sympy.stats.joint_rv_types import MultivariateNormalDistribution assert _test_args( MultivariateNormalDistribution([0, 1], [[1, 0],[0, 1]])) def test_sympy__stats__joint_rv_types__MultivariateLaplaceDistribution(): from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution assert _test_args(MultivariateLaplaceDistribution([0, 1], [[1, 0],[0, 1]])) def test_sympy__stats__joint_rv_types__MultivariateTDistribution(): from sympy.stats.joint_rv_types import MultivariateTDistribution assert _test_args(MultivariateTDistribution([0, 1], [[1, 0],[0, 1]], 1)) def test_sympy__stats__joint_rv_types__NormalGammaDistribution(): from sympy.stats.joint_rv_types import NormalGammaDistribution assert _test_args(NormalGammaDistribution(1, 2, 3, 4)) def test_sympy__stats__joint_rv_types__GeneralizedMultivariateLogGammaDistribution(): from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaDistribution v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4]) assert _test_args(GeneralizedMultivariateLogGammaDistribution(S.Half, v, l, mu)) def test_sympy__stats__joint_rv_types__MultivariateBetaDistribution(): from sympy.stats.joint_rv_types import MultivariateBetaDistribution assert _test_args(MultivariateBetaDistribution([1, 2, 3])) def test_sympy__stats__joint_rv_types__MultivariateEwensDistribution(): from sympy.stats.joint_rv_types import MultivariateEwensDistribution assert _test_args(MultivariateEwensDistribution(5, 1)) def test_sympy__stats__joint_rv_types__MultinomialDistribution(): from sympy.stats.joint_rv_types import MultinomialDistribution assert _test_args(MultinomialDistribution(5, [0.5, 0.1, 0.3])) def test_sympy__stats__joint_rv_types__NegativeMultinomialDistribution(): from sympy.stats.joint_rv_types import NegativeMultinomialDistribution assert _test_args(NegativeMultinomialDistribution(5, [0.5, 0.1, 0.3])) def test_sympy__stats__rv__RandomIndexedSymbol(): from sympy.stats.rv import RandomIndexedSymbol, pspace from sympy.stats.stochastic_process_types import DiscreteMarkovChain X = DiscreteMarkovChain("X") assert _test_args(RandomIndexedSymbol(X[0].symbol, pspace(X[0]))) def test_sympy__stats__rv__RandomMatrixSymbol(): from sympy.stats.rv import RandomMatrixSymbol from sympy.stats.random_matrix import RandomMatrixPSpace pspace = RandomMatrixPSpace('P') assert _test_args(RandomMatrixSymbol('M', 3, 3, pspace)) def test_sympy__stats__stochastic_process__StochasticPSpace(): from sympy.stats.stochastic_process import StochasticPSpace from sympy.stats.stochastic_process_types import StochasticProcess from sympy.stats.frv_types import BernoulliDistribution assert _test_args(StochasticPSpace("Y", StochasticProcess("Y", [1, 2, 3]), BernoulliDistribution(S.Half, 1, 0))) def test_sympy__stats__stochastic_process_types__StochasticProcess(): from sympy.stats.stochastic_process_types import StochasticProcess assert _test_args(StochasticProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__MarkovProcess(): from sympy.stats.stochastic_process_types import MarkovProcess assert _test_args(MarkovProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__DiscreteTimeStochasticProcess(): from sympy.stats.stochastic_process_types import DiscreteTimeStochasticProcess assert _test_args(DiscreteTimeStochasticProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__ContinuousTimeStochasticProcess(): from sympy.stats.stochastic_process_types import ContinuousTimeStochasticProcess assert _test_args(ContinuousTimeStochasticProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__TransitionMatrixOf(): from sympy.stats.stochastic_process_types import TransitionMatrixOf, DiscreteMarkovChain from sympy import MatrixSymbol DMC = DiscreteMarkovChain("Y") assert _test_args(TransitionMatrixOf(DMC, MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__GeneratorMatrixOf(): from sympy.stats.stochastic_process_types import GeneratorMatrixOf, ContinuousMarkovChain from sympy import MatrixSymbol DMC = ContinuousMarkovChain("Y") assert _test_args(GeneratorMatrixOf(DMC, MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__StochasticStateSpaceOf(): from sympy.stats.stochastic_process_types import StochasticStateSpaceOf, DiscreteMarkovChain DMC = DiscreteMarkovChain("Y") assert _test_args(StochasticStateSpaceOf(DMC, [0, 1, 2])) def test_sympy__stats__stochastic_process_types__DiscreteMarkovChain(): from sympy.stats.stochastic_process_types import DiscreteMarkovChain from sympy import MatrixSymbol assert _test_args(DiscreteMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__ContinuousMarkovChain(): from sympy.stats.stochastic_process_types import ContinuousMarkovChain from sympy import MatrixSymbol assert _test_args(ContinuousMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__BernoulliProcess(): from sympy.stats.stochastic_process_types import BernoulliProcess assert _test_args(BernoulliProcess("B", 0.5, 1, 0)) def test_sympy__stats__stochastic_process_types__CountingProcess(): from sympy.stats.stochastic_process_types import CountingProcess assert _test_args(CountingProcess("C")) def test_sympy__stats__stochastic_process_types__PoissonProcess(): from sympy.stats.stochastic_process_types import PoissonProcess assert _test_args(PoissonProcess("X", 2)) def test_sympy__stats__stochastic_process_types__WienerProcess(): from sympy.stats.stochastic_process_types import WienerProcess assert _test_args(WienerProcess("X")) def test_sympy__stats__stochastic_process_types__GammaProcess(): from sympy.stats.stochastic_process_types import GammaProcess assert _test_args(GammaProcess("X", 1, 2)) def test_sympy__stats__random_matrix__RandomMatrixPSpace(): from sympy.stats.random_matrix import RandomMatrixPSpace from sympy.stats.random_matrix_models import RandomMatrixEnsembleModel model = RandomMatrixEnsembleModel('R', 3) assert _test_args(RandomMatrixPSpace('P', model=model)) def test_sympy__stats__random_matrix_models__RandomMatrixEnsembleModel(): from sympy.stats.random_matrix_models import RandomMatrixEnsembleModel assert _test_args(RandomMatrixEnsembleModel('R', 3)) def test_sympy__stats__random_matrix_models__GaussianEnsembleModel(): from sympy.stats.random_matrix_models import GaussianEnsembleModel assert _test_args(GaussianEnsembleModel('G', 3)) def test_sympy__stats__random_matrix_models__GaussianUnitaryEnsembleModel(): from sympy.stats.random_matrix_models import GaussianUnitaryEnsembleModel assert _test_args(GaussianUnitaryEnsembleModel('U', 3)) def test_sympy__stats__random_matrix_models__GaussianOrthogonalEnsembleModel(): from sympy.stats.random_matrix_models import GaussianOrthogonalEnsembleModel assert _test_args(GaussianOrthogonalEnsembleModel('U', 3)) def test_sympy__stats__random_matrix_models__GaussianSymplecticEnsembleModel(): from sympy.stats.random_matrix_models import GaussianSymplecticEnsembleModel assert _test_args(GaussianSymplecticEnsembleModel('U', 3)) def test_sympy__stats__random_matrix_models__CircularEnsembleModel(): from sympy.stats.random_matrix_models import CircularEnsembleModel assert _test_args(CircularEnsembleModel('C', 3)) def test_sympy__stats__random_matrix_models__CircularUnitaryEnsembleModel(): from sympy.stats.random_matrix_models import CircularUnitaryEnsembleModel assert _test_args(CircularUnitaryEnsembleModel('U', 3)) def test_sympy__stats__random_matrix_models__CircularOrthogonalEnsembleModel(): from sympy.stats.random_matrix_models import CircularOrthogonalEnsembleModel assert _test_args(CircularOrthogonalEnsembleModel('O', 3)) def test_sympy__stats__random_matrix_models__CircularSymplecticEnsembleModel(): from sympy.stats.random_matrix_models import CircularSymplecticEnsembleModel assert _test_args(CircularSymplecticEnsembleModel('S', 3)) def test_sympy__stats__symbolic_multivariate_probability__ExpectationMatrix(): from sympy.stats import ExpectationMatrix from sympy.stats.rv import RandomMatrixSymbol assert _test_args(ExpectationMatrix(RandomMatrixSymbol('R', 2, 1))) def test_sympy__stats__symbolic_multivariate_probability__VarianceMatrix(): from sympy.stats import VarianceMatrix from sympy.stats.rv import RandomMatrixSymbol assert _test_args(VarianceMatrix(RandomMatrixSymbol('R', 3, 1))) def test_sympy__stats__symbolic_multivariate_probability__CrossCovarianceMatrix(): from sympy.stats import CrossCovarianceMatrix from sympy.stats.rv import RandomMatrixSymbol assert _test_args(CrossCovarianceMatrix(RandomMatrixSymbol('R', 3, 1), RandomMatrixSymbol('X', 3, 1))) def test_sympy__stats__matrix_distributions__MatrixPSpace(): from sympy.stats.matrix_distributions import MatrixDistribution, MatrixPSpace from sympy import Matrix M = MatrixDistribution(1, Matrix([[1, 0], [0, 1]])) assert _test_args(MatrixPSpace('M', M, 2, 2)) def test_sympy__stats__matrix_distributions__MatrixDistribution(): from sympy.stats.matrix_distributions import MatrixDistribution from sympy import Matrix assert _test_args(MatrixDistribution(1, Matrix([[1, 0], [0, 1]]))) def test_sympy__stats__matrix_distributions__MatrixGammaDistribution(): from sympy.stats.matrix_distributions import MatrixGammaDistribution from sympy import Matrix assert _test_args(MatrixGammaDistribution(3, 4, Matrix([[1, 0], [0, 1]]))) def test_sympy__stats__matrix_distributions__WishartDistribution(): from sympy.stats.matrix_distributions import WishartDistribution from sympy import Matrix assert _test_args(WishartDistribution(3, Matrix([[1, 0], [0, 1]]))) def test_sympy__stats__matrix_distributions__MatrixNormalDistribution(): from sympy.stats.matrix_distributions import MatrixNormalDistribution from sympy import MatrixSymbol L = MatrixSymbol('L', 1, 2) S1 = MatrixSymbol('S1', 1, 1) S2 = MatrixSymbol('S2', 2, 2) assert _test_args(MatrixNormalDistribution(L, S1, S2)) def test_sympy__stats__matrix_distributions__MatrixStudentTDistribution(): from sympy.stats.matrix_distributions import MatrixStudentTDistribution from sympy import MatrixSymbol v = symbols('v', positive=True) Omega = MatrixSymbol('Omega', 3, 3) Sigma = MatrixSymbol('Sigma', 1, 1) Location = MatrixSymbol('Location', 1, 3) assert _test_args(MatrixStudentTDistribution(v, Location, Omega, Sigma)) def test_sympy__utilities__matchpy_connector__WildDot(): from sympy.utilities.matchpy_connector import WildDot assert _test_args(WildDot("w_")) def test_sympy__utilities__matchpy_connector__WildPlus(): from sympy.utilities.matchpy_connector import WildPlus assert _test_args(WildPlus("w__")) def test_sympy__utilities__matchpy_connector__WildStar(): from sympy.utilities.matchpy_connector import WildStar assert _test_args(WildStar("w___")) def test_sympy__core__symbol__Str(): from sympy.core.symbol import Str assert _test_args(Str('t')) def test_sympy__core__symbol__Dummy(): from sympy.core.symbol import Dummy assert _test_args(Dummy('t')) def test_sympy__core__symbol__Symbol(): from sympy.core.symbol import Symbol assert _test_args(Symbol('t')) def test_sympy__core__symbol__Wild(): from sympy.core.symbol import Wild assert _test_args(Wild('x', exclude=[x])) @SKIP("abstract class") def test_sympy__functions__combinatorial__factorials__CombinatorialFunction(): pass def test_sympy__functions__combinatorial__factorials__FallingFactorial(): from sympy.functions.combinatorial.factorials import FallingFactorial assert _test_args(FallingFactorial(2, x)) def test_sympy__functions__combinatorial__factorials__MultiFactorial(): from sympy.functions.combinatorial.factorials import MultiFactorial assert _test_args(MultiFactorial(x)) def test_sympy__functions__combinatorial__factorials__RisingFactorial(): from sympy.functions.combinatorial.factorials import RisingFactorial assert _test_args(RisingFactorial(2, x)) def test_sympy__functions__combinatorial__factorials__binomial(): from sympy.functions.combinatorial.factorials import binomial assert _test_args(binomial(2, x)) def test_sympy__functions__combinatorial__factorials__subfactorial(): from sympy.functions.combinatorial.factorials import subfactorial assert _test_args(subfactorial(1)) def test_sympy__functions__combinatorial__factorials__factorial(): from sympy.functions.combinatorial.factorials import factorial assert _test_args(factorial(x)) def test_sympy__functions__combinatorial__factorials__factorial2(): from sympy.functions.combinatorial.factorials import factorial2 assert _test_args(factorial2(x)) def test_sympy__functions__combinatorial__numbers__bell(): from sympy.functions.combinatorial.numbers import bell assert _test_args(bell(x, y)) def test_sympy__functions__combinatorial__numbers__bernoulli(): from sympy.functions.combinatorial.numbers import bernoulli assert _test_args(bernoulli(x)) def test_sympy__functions__combinatorial__numbers__catalan(): from sympy.functions.combinatorial.numbers import catalan assert _test_args(catalan(x)) def test_sympy__functions__combinatorial__numbers__genocchi(): from sympy.functions.combinatorial.numbers import genocchi assert _test_args(genocchi(x)) def test_sympy__functions__combinatorial__numbers__euler(): from sympy.functions.combinatorial.numbers import euler assert _test_args(euler(x)) def test_sympy__functions__combinatorial__numbers__carmichael(): from sympy.functions.combinatorial.numbers import carmichael assert _test_args(carmichael(x)) def test_sympy__functions__combinatorial__numbers__motzkin(): from sympy.functions.combinatorial.numbers import motzkin assert _test_args(motzkin(5)) def test_sympy__functions__combinatorial__numbers__fibonacci(): from sympy.functions.combinatorial.numbers import fibonacci assert _test_args(fibonacci(x)) def test_sympy__functions__combinatorial__numbers__tribonacci(): from sympy.functions.combinatorial.numbers import tribonacci assert _test_args(tribonacci(x)) def test_sympy__functions__combinatorial__numbers__harmonic(): from sympy.functions.combinatorial.numbers import harmonic assert _test_args(harmonic(x, 2)) def test_sympy__functions__combinatorial__numbers__lucas(): from sympy.functions.combinatorial.numbers import lucas assert _test_args(lucas(x)) def test_sympy__functions__combinatorial__numbers__partition(): from sympy.core.symbol import Symbol from sympy.functions.combinatorial.numbers import partition assert _test_args(partition(Symbol('a', integer=True))) def test_sympy__functions__elementary__complexes__Abs(): from sympy.functions.elementary.complexes import Abs assert _test_args(Abs(x)) def test_sympy__functions__elementary__complexes__adjoint(): from sympy.functions.elementary.complexes import adjoint assert _test_args(adjoint(x)) def test_sympy__functions__elementary__complexes__arg(): from sympy.functions.elementary.complexes import arg assert _test_args(arg(x)) def test_sympy__functions__elementary__complexes__conjugate(): from sympy.functions.elementary.complexes import conjugate assert _test_args(conjugate(x)) def test_sympy__functions__elementary__complexes__im(): from sympy.functions.elementary.complexes import im assert _test_args(im(x)) def test_sympy__functions__elementary__complexes__re(): from sympy.functions.elementary.complexes import re assert _test_args(re(x)) def test_sympy__functions__elementary__complexes__sign(): from sympy.functions.elementary.complexes import sign assert _test_args(sign(x)) def test_sympy__functions__elementary__complexes__polar_lift(): from sympy.functions.elementary.complexes import polar_lift assert _test_args(polar_lift(x)) def test_sympy__functions__elementary__complexes__periodic_argument(): from sympy.functions.elementary.complexes import periodic_argument assert _test_args(periodic_argument(x, y)) def test_sympy__functions__elementary__complexes__principal_branch(): from sympy.functions.elementary.complexes import principal_branch assert _test_args(principal_branch(x, y)) def test_sympy__functions__elementary__complexes__transpose(): from sympy.functions.elementary.complexes import transpose assert _test_args(transpose(x)) def test_sympy__functions__elementary__exponential__LambertW(): from sympy.functions.elementary.exponential import LambertW assert _test_args(LambertW(2)) @SKIP("abstract class") def test_sympy__functions__elementary__exponential__ExpBase(): pass def test_sympy__functions__elementary__exponential__exp(): from sympy.functions.elementary.exponential import exp assert _test_args(exp(2)) def test_sympy__functions__elementary__exponential__exp_polar(): from sympy.functions.elementary.exponential import exp_polar assert _test_args(exp_polar(2)) def test_sympy__functions__elementary__exponential__log(): from sympy.functions.elementary.exponential import log assert _test_args(log(2)) @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__HyperbolicFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__ReciprocalHyperbolicFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__InverseHyperbolicFunction(): pass def test_sympy__functions__elementary__hyperbolic__acosh(): from sympy.functions.elementary.hyperbolic import acosh assert _test_args(acosh(2)) def test_sympy__functions__elementary__hyperbolic__acoth(): from sympy.functions.elementary.hyperbolic import acoth assert _test_args(acoth(2)) def test_sympy__functions__elementary__hyperbolic__asinh(): from sympy.functions.elementary.hyperbolic import asinh assert _test_args(asinh(2)) def test_sympy__functions__elementary__hyperbolic__atanh(): from sympy.functions.elementary.hyperbolic import atanh assert _test_args(atanh(2)) def test_sympy__functions__elementary__hyperbolic__asech(): from sympy.functions.elementary.hyperbolic import asech assert _test_args(asech(2)) def test_sympy__functions__elementary__hyperbolic__acsch(): from sympy.functions.elementary.hyperbolic import acsch assert _test_args(acsch(2)) def test_sympy__functions__elementary__hyperbolic__cosh(): from sympy.functions.elementary.hyperbolic import cosh assert _test_args(cosh(2)) def test_sympy__functions__elementary__hyperbolic__coth(): from sympy.functions.elementary.hyperbolic import coth assert _test_args(coth(2)) def test_sympy__functions__elementary__hyperbolic__csch(): from sympy.functions.elementary.hyperbolic import csch assert _test_args(csch(2)) def test_sympy__functions__elementary__hyperbolic__sech(): from sympy.functions.elementary.hyperbolic import sech assert _test_args(sech(2)) def test_sympy__functions__elementary__hyperbolic__sinh(): from sympy.functions.elementary.hyperbolic import sinh assert _test_args(sinh(2)) def test_sympy__functions__elementary__hyperbolic__tanh(): from sympy.functions.elementary.hyperbolic import tanh assert _test_args(tanh(2)) @SKIP("does this work at all?") def test_sympy__functions__elementary__integers__RoundFunction(): from sympy.functions.elementary.integers import RoundFunction assert _test_args(RoundFunction()) def test_sympy__functions__elementary__integers__ceiling(): from sympy.functions.elementary.integers import ceiling assert _test_args(ceiling(x)) def test_sympy__functions__elementary__integers__floor(): from sympy.functions.elementary.integers import floor assert _test_args(floor(x)) def test_sympy__functions__elementary__integers__frac(): from sympy.functions.elementary.integers import frac assert _test_args(frac(x)) def test_sympy__functions__elementary__miscellaneous__IdentityFunction(): from sympy.functions.elementary.miscellaneous import IdentityFunction assert _test_args(IdentityFunction()) def test_sympy__functions__elementary__miscellaneous__Max(): from sympy.functions.elementary.miscellaneous import Max assert _test_args(Max(x, 2)) def test_sympy__functions__elementary__miscellaneous__Min(): from sympy.functions.elementary.miscellaneous import Min assert _test_args(Min(x, 2)) @SKIP("abstract class") def test_sympy__functions__elementary__miscellaneous__MinMaxBase(): pass def test_sympy__functions__elementary__piecewise__ExprCondPair(): from sympy.functions.elementary.piecewise import ExprCondPair assert _test_args(ExprCondPair(1, True)) def test_sympy__functions__elementary__piecewise__Piecewise(): from sympy.functions.elementary.piecewise import Piecewise assert _test_args(Piecewise((1, x >= 0), (0, True))) @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__TrigonometricFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__ReciprocalTrigonometricFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__InverseTrigonometricFunction(): pass def test_sympy__functions__elementary__trigonometric__acos(): from sympy.functions.elementary.trigonometric import acos assert _test_args(acos(2)) def test_sympy__functions__elementary__trigonometric__acot(): from sympy.functions.elementary.trigonometric import acot assert _test_args(acot(2)) def test_sympy__functions__elementary__trigonometric__asin(): from sympy.functions.elementary.trigonometric import asin assert _test_args(asin(2)) def test_sympy__functions__elementary__trigonometric__asec(): from sympy.functions.elementary.trigonometric import asec assert _test_args(asec(2)) def test_sympy__functions__elementary__trigonometric__acsc(): from sympy.functions.elementary.trigonometric import acsc assert _test_args(acsc(2)) def test_sympy__functions__elementary__trigonometric__atan(): from sympy.functions.elementary.trigonometric import atan assert _test_args(atan(2)) def test_sympy__functions__elementary__trigonometric__atan2(): from sympy.functions.elementary.trigonometric import atan2 assert _test_args(atan2(2, 3)) def test_sympy__functions__elementary__trigonometric__cos(): from sympy.functions.elementary.trigonometric import cos assert _test_args(cos(2)) def test_sympy__functions__elementary__trigonometric__csc(): from sympy.functions.elementary.trigonometric import csc assert _test_args(csc(2)) def test_sympy__functions__elementary__trigonometric__cot(): from sympy.functions.elementary.trigonometric import cot assert _test_args(cot(2)) def test_sympy__functions__elementary__trigonometric__sin(): assert _test_args(sin(2)) def test_sympy__functions__elementary__trigonometric__sinc(): from sympy.functions.elementary.trigonometric import sinc assert _test_args(sinc(2)) def test_sympy__functions__elementary__trigonometric__sec(): from sympy.functions.elementary.trigonometric import sec assert _test_args(sec(2)) def test_sympy__functions__elementary__trigonometric__tan(): from sympy.functions.elementary.trigonometric import tan assert _test_args(tan(2)) @SKIP("abstract class") def test_sympy__functions__special__bessel__BesselBase(): pass @SKIP("abstract class") def test_sympy__functions__special__bessel__SphericalBesselBase(): pass @SKIP("abstract class") def test_sympy__functions__special__bessel__SphericalHankelBase(): pass def test_sympy__functions__special__bessel__besseli(): from sympy.functions.special.bessel import besseli assert _test_args(besseli(x, 1)) def test_sympy__functions__special__bessel__besselj(): from sympy.functions.special.bessel import besselj assert _test_args(besselj(x, 1)) def test_sympy__functions__special__bessel__besselk(): from sympy.functions.special.bessel import besselk assert _test_args(besselk(x, 1)) def test_sympy__functions__special__bessel__bessely(): from sympy.functions.special.bessel import bessely assert _test_args(bessely(x, 1)) def test_sympy__functions__special__bessel__hankel1(): from sympy.functions.special.bessel import hankel1 assert _test_args(hankel1(x, 1)) def test_sympy__functions__special__bessel__hankel2(): from sympy.functions.special.bessel import hankel2 assert _test_args(hankel2(x, 1)) def test_sympy__functions__special__bessel__jn(): from sympy.functions.special.bessel import jn assert _test_args(jn(0, x)) def test_sympy__functions__special__bessel__yn(): from sympy.functions.special.bessel import yn assert _test_args(yn(0, x)) def test_sympy__functions__special__bessel__hn1(): from sympy.functions.special.bessel import hn1 assert _test_args(hn1(0, x)) def test_sympy__functions__special__bessel__hn2(): from sympy.functions.special.bessel import hn2 assert _test_args(hn2(0, x)) def test_sympy__functions__special__bessel__AiryBase(): pass def test_sympy__functions__special__bessel__airyai(): from sympy.functions.special.bessel import airyai assert _test_args(airyai(2)) def test_sympy__functions__special__bessel__airybi(): from sympy.functions.special.bessel import airybi assert _test_args(airybi(2)) def test_sympy__functions__special__bessel__airyaiprime(): from sympy.functions.special.bessel import airyaiprime assert _test_args(airyaiprime(2)) def test_sympy__functions__special__bessel__airybiprime(): from sympy.functions.special.bessel import airybiprime assert _test_args(airybiprime(2)) def test_sympy__functions__special__bessel__marcumq(): from sympy.functions.special.bessel import marcumq assert _test_args(marcumq(x, y, z)) def test_sympy__functions__special__elliptic_integrals__elliptic_k(): from sympy.functions.special.elliptic_integrals import elliptic_k as K assert _test_args(K(x)) def test_sympy__functions__special__elliptic_integrals__elliptic_f(): from sympy.functions.special.elliptic_integrals import elliptic_f as F assert _test_args(F(x, y)) def test_sympy__functions__special__elliptic_integrals__elliptic_e(): from sympy.functions.special.elliptic_integrals import elliptic_e as E assert _test_args(E(x)) assert _test_args(E(x, y)) def test_sympy__functions__special__elliptic_integrals__elliptic_pi(): from sympy.functions.special.elliptic_integrals import elliptic_pi as P assert _test_args(P(x, y)) assert _test_args(P(x, y, z)) def test_sympy__functions__special__delta_functions__DiracDelta(): from sympy.functions.special.delta_functions import DiracDelta assert _test_args(DiracDelta(x, 1)) def test_sympy__functions__special__singularity_functions__SingularityFunction(): from sympy.functions.special.singularity_functions import SingularityFunction assert _test_args(SingularityFunction(x, y, z)) def test_sympy__functions__special__delta_functions__Heaviside(): from sympy.functions.special.delta_functions import Heaviside assert _test_args(Heaviside(x)) def test_sympy__functions__special__error_functions__erf(): from sympy.functions.special.error_functions import erf assert _test_args(erf(2)) def test_sympy__functions__special__error_functions__erfc(): from sympy.functions.special.error_functions import erfc assert _test_args(erfc(2)) def test_sympy__functions__special__error_functions__erfi(): from sympy.functions.special.error_functions import erfi assert _test_args(erfi(2)) def test_sympy__functions__special__error_functions__erf2(): from sympy.functions.special.error_functions import erf2 assert _test_args(erf2(2, 3)) def test_sympy__functions__special__error_functions__erfinv(): from sympy.functions.special.error_functions import erfinv assert _test_args(erfinv(2)) def test_sympy__functions__special__error_functions__erfcinv(): from sympy.functions.special.error_functions import erfcinv assert _test_args(erfcinv(2)) def test_sympy__functions__special__error_functions__erf2inv(): from sympy.functions.special.error_functions import erf2inv assert _test_args(erf2inv(2, 3)) @SKIP("abstract class") def test_sympy__functions__special__error_functions__FresnelIntegral(): pass def test_sympy__functions__special__error_functions__fresnels(): from sympy.functions.special.error_functions import fresnels assert _test_args(fresnels(2)) def test_sympy__functions__special__error_functions__fresnelc(): from sympy.functions.special.error_functions import fresnelc assert _test_args(fresnelc(2)) def test_sympy__functions__special__error_functions__erfs(): from sympy.functions.special.error_functions import _erfs assert _test_args(_erfs(2)) def test_sympy__functions__special__error_functions__Ei(): from sympy.functions.special.error_functions import Ei assert _test_args(Ei(2)) def test_sympy__functions__special__error_functions__li(): from sympy.functions.special.error_functions import li assert _test_args(li(2)) def test_sympy__functions__special__error_functions__Li(): from sympy.functions.special.error_functions import Li assert _test_args(Li(2)) @SKIP("abstract class") def test_sympy__functions__special__error_functions__TrigonometricIntegral(): pass def test_sympy__functions__special__error_functions__Si(): from sympy.functions.special.error_functions import Si assert _test_args(Si(2)) def test_sympy__functions__special__error_functions__Ci(): from sympy.functions.special.error_functions import Ci assert _test_args(Ci(2)) def test_sympy__functions__special__error_functions__Shi(): from sympy.functions.special.error_functions import Shi assert _test_args(Shi(2)) def test_sympy__functions__special__error_functions__Chi(): from sympy.functions.special.error_functions import Chi assert _test_args(Chi(2)) def test_sympy__functions__special__error_functions__expint(): from sympy.functions.special.error_functions import expint assert _test_args(expint(y, x)) def test_sympy__functions__special__gamma_functions__gamma(): from sympy.functions.special.gamma_functions import gamma assert _test_args(gamma(x)) def test_sympy__functions__special__gamma_functions__loggamma(): from sympy.functions.special.gamma_functions import loggamma assert _test_args(loggamma(2)) def test_sympy__functions__special__gamma_functions__lowergamma(): from sympy.functions.special.gamma_functions import lowergamma assert _test_args(lowergamma(x, 2)) def test_sympy__functions__special__gamma_functions__polygamma(): from sympy.functions.special.gamma_functions import polygamma assert _test_args(polygamma(x, 2)) def test_sympy__functions__special__gamma_functions__digamma(): from sympy.functions.special.gamma_functions import digamma assert _test_args(digamma(x)) def test_sympy__functions__special__gamma_functions__trigamma(): from sympy.functions.special.gamma_functions import trigamma assert _test_args(trigamma(x)) def test_sympy__functions__special__gamma_functions__uppergamma(): from sympy.functions.special.gamma_functions import uppergamma assert _test_args(uppergamma(x, 2)) def test_sympy__functions__special__gamma_functions__multigamma(): from sympy.functions.special.gamma_functions import multigamma assert _test_args(multigamma(x, 1)) def test_sympy__functions__special__beta_functions__beta(): from sympy.functions.special.beta_functions import beta assert _test_args(beta(x, x)) def test_sympy__functions__special__mathieu_functions__MathieuBase(): pass def test_sympy__functions__special__mathieu_functions__mathieus(): from sympy.functions.special.mathieu_functions import mathieus assert _test_args(mathieus(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieuc(): from sympy.functions.special.mathieu_functions import mathieuc assert _test_args(mathieuc(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieusprime(): from sympy.functions.special.mathieu_functions import mathieusprime assert _test_args(mathieusprime(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieucprime(): from sympy.functions.special.mathieu_functions import mathieucprime assert _test_args(mathieucprime(1, 1, 1)) @SKIP("abstract class") def test_sympy__functions__special__hyper__TupleParametersBase(): pass @SKIP("abstract class") def test_sympy__functions__special__hyper__TupleArg(): pass def test_sympy__functions__special__hyper__hyper(): from sympy.functions.special.hyper import hyper assert _test_args(hyper([1, 2, 3], [4, 5], x)) def test_sympy__functions__special__hyper__meijerg(): from sympy.functions.special.hyper import meijerg assert _test_args(meijerg([1, 2, 3], [4, 5], [6], [], x)) @SKIP("abstract class") def test_sympy__functions__special__hyper__HyperRep(): pass def test_sympy__functions__special__hyper__HyperRep_power1(): from sympy.functions.special.hyper import HyperRep_power1 assert _test_args(HyperRep_power1(x, y)) def test_sympy__functions__special__hyper__HyperRep_power2(): from sympy.functions.special.hyper import HyperRep_power2 assert _test_args(HyperRep_power2(x, y)) def test_sympy__functions__special__hyper__HyperRep_log1(): from sympy.functions.special.hyper import HyperRep_log1 assert _test_args(HyperRep_log1(x)) def test_sympy__functions__special__hyper__HyperRep_atanh(): from sympy.functions.special.hyper import HyperRep_atanh assert _test_args(HyperRep_atanh(x)) def test_sympy__functions__special__hyper__HyperRep_asin1(): from sympy.functions.special.hyper import HyperRep_asin1 assert _test_args(HyperRep_asin1(x)) def test_sympy__functions__special__hyper__HyperRep_asin2(): from sympy.functions.special.hyper import HyperRep_asin2 assert _test_args(HyperRep_asin2(x)) def test_sympy__functions__special__hyper__HyperRep_sqrts1(): from sympy.functions.special.hyper import HyperRep_sqrts1 assert _test_args(HyperRep_sqrts1(x, y)) def test_sympy__functions__special__hyper__HyperRep_sqrts2(): from sympy.functions.special.hyper import HyperRep_sqrts2 assert _test_args(HyperRep_sqrts2(x, y)) def test_sympy__functions__special__hyper__HyperRep_log2(): from sympy.functions.special.hyper import HyperRep_log2 assert _test_args(HyperRep_log2(x)) def test_sympy__functions__special__hyper__HyperRep_cosasin(): from sympy.functions.special.hyper import HyperRep_cosasin assert _test_args(HyperRep_cosasin(x, y)) def test_sympy__functions__special__hyper__HyperRep_sinasin(): from sympy.functions.special.hyper import HyperRep_sinasin assert _test_args(HyperRep_sinasin(x, y)) def test_sympy__functions__special__hyper__appellf1(): from sympy.functions.special.hyper import appellf1 a, b1, b2, c, x, y = symbols('a b1 b2 c x y') assert _test_args(appellf1(a, b1, b2, c, x, y)) @SKIP("abstract class") def test_sympy__functions__special__polynomials__OrthogonalPolynomial(): pass def test_sympy__functions__special__polynomials__jacobi(): from sympy.functions.special.polynomials import jacobi assert _test_args(jacobi(x, 2, 2, 2)) def test_sympy__functions__special__polynomials__gegenbauer(): from sympy.functions.special.polynomials import gegenbauer assert _test_args(gegenbauer(x, 2, 2)) def test_sympy__functions__special__polynomials__chebyshevt(): from sympy.functions.special.polynomials import chebyshevt assert _test_args(chebyshevt(x, 2)) def test_sympy__functions__special__polynomials__chebyshevt_root(): from sympy.functions.special.polynomials import chebyshevt_root assert _test_args(chebyshevt_root(3, 2)) def test_sympy__functions__special__polynomials__chebyshevu(): from sympy.functions.special.polynomials import chebyshevu assert _test_args(chebyshevu(x, 2)) def test_sympy__functions__special__polynomials__chebyshevu_root(): from sympy.functions.special.polynomials import chebyshevu_root assert _test_args(chebyshevu_root(3, 2)) def test_sympy__functions__special__polynomials__hermite(): from sympy.functions.special.polynomials import hermite assert _test_args(hermite(x, 2)) def test_sympy__functions__special__polynomials__legendre(): from sympy.functions.special.polynomials import legendre assert _test_args(legendre(x, 2)) def test_sympy__functions__special__polynomials__assoc_legendre(): from sympy.functions.special.polynomials import assoc_legendre assert _test_args(assoc_legendre(x, 0, y)) def test_sympy__functions__special__polynomials__laguerre(): from sympy.functions.special.polynomials import laguerre assert _test_args(laguerre(x, 2)) def test_sympy__functions__special__polynomials__assoc_laguerre(): from sympy.functions.special.polynomials import assoc_laguerre assert _test_args(assoc_laguerre(x, 0, y)) def test_sympy__functions__special__spherical_harmonics__Ynm(): from sympy.functions.special.spherical_harmonics import Ynm assert _test_args(Ynm(1, 1, x, y)) def test_sympy__functions__special__spherical_harmonics__Znm(): from sympy.functions.special.spherical_harmonics import Znm assert _test_args(Znm(1, 1, x, y)) def test_sympy__functions__special__tensor_functions__LeviCivita(): from sympy.functions.special.tensor_functions import LeviCivita assert _test_args(LeviCivita(x, y, 2)) def test_sympy__functions__special__tensor_functions__KroneckerDelta(): from sympy.functions.special.tensor_functions import KroneckerDelta assert _test_args(KroneckerDelta(x, y)) def test_sympy__functions__special__zeta_functions__dirichlet_eta(): from sympy.functions.special.zeta_functions import dirichlet_eta assert _test_args(dirichlet_eta(x)) def test_sympy__functions__special__zeta_functions__zeta(): from sympy.functions.special.zeta_functions import zeta assert _test_args(zeta(101)) def test_sympy__functions__special__zeta_functions__lerchphi(): from sympy.functions.special.zeta_functions import lerchphi assert _test_args(lerchphi(x, y, z)) def test_sympy__functions__special__zeta_functions__polylog(): from sympy.functions.special.zeta_functions import polylog assert _test_args(polylog(x, y)) def test_sympy__functions__special__zeta_functions__stieltjes(): from sympy.functions.special.zeta_functions import stieltjes assert _test_args(stieltjes(x, y)) def test_sympy__integrals__integrals__Integral(): from sympy.integrals.integrals import Integral assert _test_args(Integral(2, (x, 0, 1))) def test_sympy__integrals__risch__NonElementaryIntegral(): from sympy.integrals.risch import NonElementaryIntegral assert _test_args(NonElementaryIntegral(exp(-x**2), x)) @SKIP("abstract class") def test_sympy__integrals__transforms__IntegralTransform(): pass def test_sympy__integrals__transforms__MellinTransform(): from sympy.integrals.transforms import MellinTransform assert _test_args(MellinTransform(2, x, y)) def test_sympy__integrals__transforms__InverseMellinTransform(): from sympy.integrals.transforms import InverseMellinTransform assert _test_args(InverseMellinTransform(2, x, y, 0, 1)) def test_sympy__integrals__transforms__LaplaceTransform(): from sympy.integrals.transforms import LaplaceTransform assert _test_args(LaplaceTransform(2, x, y)) def test_sympy__integrals__transforms__InverseLaplaceTransform(): from sympy.integrals.transforms import InverseLaplaceTransform assert _test_args(InverseLaplaceTransform(2, x, y, 0)) @SKIP("abstract class") def test_sympy__integrals__transforms__FourierTypeTransform(): pass def test_sympy__integrals__transforms__InverseFourierTransform(): from sympy.integrals.transforms import InverseFourierTransform assert _test_args(InverseFourierTransform(2, x, y)) def test_sympy__integrals__transforms__FourierTransform(): from sympy.integrals.transforms import FourierTransform assert _test_args(FourierTransform(2, x, y)) @SKIP("abstract class") def test_sympy__integrals__transforms__SineCosineTypeTransform(): pass def test_sympy__integrals__transforms__InverseSineTransform(): from sympy.integrals.transforms import InverseSineTransform assert _test_args(InverseSineTransform(2, x, y)) def test_sympy__integrals__transforms__SineTransform(): from sympy.integrals.transforms import SineTransform assert _test_args(SineTransform(2, x, y)) def test_sympy__integrals__transforms__InverseCosineTransform(): from sympy.integrals.transforms import InverseCosineTransform assert _test_args(InverseCosineTransform(2, x, y)) def test_sympy__integrals__transforms__CosineTransform(): from sympy.integrals.transforms import CosineTransform assert _test_args(CosineTransform(2, x, y)) @SKIP("abstract class") def test_sympy__integrals__transforms__HankelTypeTransform(): pass def test_sympy__integrals__transforms__InverseHankelTransform(): from sympy.integrals.transforms import InverseHankelTransform assert _test_args(InverseHankelTransform(2, x, y, 0)) def test_sympy__integrals__transforms__HankelTransform(): from sympy.integrals.transforms import HankelTransform assert _test_args(HankelTransform(2, x, y, 0)) @XFAIL def test_sympy__liealgebras__cartan_type__CartanType_generator(): from sympy.liealgebras.cartan_type import CartanType_generator assert _test_args(CartanType_generator("A2")) @XFAIL def test_sympy__liealgebras__cartan_type__Standard_Cartan(): from sympy.liealgebras.cartan_type import Standard_Cartan assert _test_args(Standard_Cartan("A", 2)) @XFAIL def test_sympy__liealgebras__weyl_group__WeylGroup(): from sympy.liealgebras.weyl_group import WeylGroup assert _test_args(WeylGroup("B4")) @XFAIL def test_sympy__liealgebras__root_system__RootSystem(): from sympy.liealgebras.root_system import RootSystem assert _test_args(RootSystem("A2")) @XFAIL def test_sympy__liealgebras__type_a__TypeA(): from sympy.liealgebras.type_a import TypeA assert _test_args(TypeA(2)) @XFAIL def test_sympy__liealgebras__type_b__TypeB(): from sympy.liealgebras.type_b import TypeB assert _test_args(TypeB(4)) @XFAIL def test_sympy__liealgebras__type_c__TypeC(): from sympy.liealgebras.type_c import TypeC assert _test_args(TypeC(4)) @XFAIL def test_sympy__liealgebras__type_d__TypeD(): from sympy.liealgebras.type_d import TypeD assert _test_args(TypeD(4)) @XFAIL def test_sympy__liealgebras__type_e__TypeE(): from sympy.liealgebras.type_e import TypeE assert _test_args(TypeE(6)) @XFAIL def test_sympy__liealgebras__type_f__TypeF(): from sympy.liealgebras.type_f import TypeF assert _test_args(TypeF(4)) @XFAIL def test_sympy__liealgebras__type_g__TypeG(): from sympy.liealgebras.type_g import TypeG assert _test_args(TypeG(2)) def test_sympy__logic__boolalg__And(): from sympy.logic.boolalg import And assert _test_args(And(x, y, 1)) @SKIP("abstract class") def test_sympy__logic__boolalg__Boolean(): pass def test_sympy__logic__boolalg__BooleanFunction(): from sympy.logic.boolalg import BooleanFunction assert _test_args(BooleanFunction(1, 2, 3)) @SKIP("abstract class") def test_sympy__logic__boolalg__BooleanAtom(): pass def test_sympy__logic__boolalg__BooleanTrue(): from sympy.logic.boolalg import true assert _test_args(true) def test_sympy__logic__boolalg__BooleanFalse(): from sympy.logic.boolalg import false assert _test_args(false) def test_sympy__logic__boolalg__Equivalent(): from sympy.logic.boolalg import Equivalent assert _test_args(Equivalent(x, 2)) def test_sympy__logic__boolalg__ITE(): from sympy.logic.boolalg import ITE assert _test_args(ITE(x, y, 1)) def test_sympy__logic__boolalg__Implies(): from sympy.logic.boolalg import Implies assert _test_args(Implies(x, y)) def test_sympy__logic__boolalg__Nand(): from sympy.logic.boolalg import Nand assert _test_args(Nand(x, y, 1)) def test_sympy__logic__boolalg__Nor(): from sympy.logic.boolalg import Nor assert _test_args(Nor(x, y)) def test_sympy__logic__boolalg__Not(): from sympy.logic.boolalg import Not assert _test_args(Not(x)) def test_sympy__logic__boolalg__Or(): from sympy.logic.boolalg import Or assert _test_args(Or(x, y)) def test_sympy__logic__boolalg__Xor(): from sympy.logic.boolalg import Xor assert _test_args(Xor(x, y, 2)) def test_sympy__logic__boolalg__Xnor(): from sympy.logic.boolalg import Xnor assert _test_args(Xnor(x, y, 2)) def test_sympy__matrices__matrices__DeferredVector(): from sympy.matrices.matrices import DeferredVector assert _test_args(DeferredVector("X")) @SKIP("abstract class") def test_sympy__matrices__expressions__matexpr__MatrixBase(): pass def test_sympy__matrices__immutable__ImmutableDenseMatrix(): from sympy.matrices.immutable import ImmutableDenseMatrix m = ImmutableDenseMatrix([[1, 2], [3, 4]]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableDenseMatrix(1, 1, [1]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableDenseMatrix(2, 2, lambda i, j: 1) assert m[0, 0] is S.One m = ImmutableDenseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j)) assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified assert _test_args(m) assert _test_args(Basic(*list(m))) def test_sympy__matrices__immutable__ImmutableSparseMatrix(): from sympy.matrices.immutable import ImmutableSparseMatrix m = ImmutableSparseMatrix([[1, 2], [3, 4]]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(1, 1, {(0, 0): 1}) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(1, 1, [1]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(2, 2, lambda i, j: 1) assert m[0, 0] is S.One m = ImmutableSparseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j)) assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified assert _test_args(m) assert _test_args(Basic(*list(m))) def test_sympy__matrices__expressions__slice__MatrixSlice(): from sympy.matrices.expressions.slice import MatrixSlice from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', 4, 4) assert _test_args(MatrixSlice(X, (0, 2), (0, 2))) def test_sympy__matrices__expressions__applyfunc__ElementwiseApplyFunction(): from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol("X", x, x) func = Lambda(x, x**2) assert _test_args(ElementwiseApplyFunction(func, X)) def test_sympy__matrices__expressions__blockmatrix__BlockDiagMatrix(): from sympy.matrices.expressions.blockmatrix import BlockDiagMatrix from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, x) Y = MatrixSymbol('Y', y, y) assert _test_args(BlockDiagMatrix(X, Y)) def test_sympy__matrices__expressions__blockmatrix__BlockMatrix(): from sympy.matrices.expressions.blockmatrix import BlockMatrix from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix X = MatrixSymbol('X', x, x) Y = MatrixSymbol('Y', y, y) Z = MatrixSymbol('Z', x, y) O = ZeroMatrix(y, x) assert _test_args(BlockMatrix([[X, Z], [O, Y]])) def test_sympy__matrices__expressions__inverse__Inverse(): from sympy.matrices.expressions.inverse import Inverse from sympy.matrices.expressions import MatrixSymbol assert _test_args(Inverse(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__matadd__MatAdd(): from sympy.matrices.expressions.matadd import MatAdd from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(MatAdd(X, Y)) @SKIP("abstract class") def test_sympy__matrices__expressions__matexpr__MatrixExpr(): pass def test_sympy__matrices__expressions__matexpr__MatrixElement(): from sympy.matrices.expressions.matexpr import MatrixSymbol, MatrixElement from sympy import S assert _test_args(MatrixElement(MatrixSymbol('A', 3, 5), S(2), S(3))) def test_sympy__matrices__expressions__matexpr__MatrixSymbol(): from sympy.matrices.expressions.matexpr import MatrixSymbol assert _test_args(MatrixSymbol('A', 3, 5)) def test_sympy__matrices__expressions__special__OneMatrix(): from sympy.matrices.expressions.special import OneMatrix assert _test_args(OneMatrix(3, 5)) def test_sympy__matrices__expressions__special__ZeroMatrix(): from sympy.matrices.expressions.special import ZeroMatrix assert _test_args(ZeroMatrix(3, 5)) def test_sympy__matrices__expressions__special__GenericZeroMatrix(): from sympy.matrices.expressions.special import GenericZeroMatrix assert _test_args(GenericZeroMatrix()) def test_sympy__matrices__expressions__special__Identity(): from sympy.matrices.expressions.special import Identity assert _test_args(Identity(3)) def test_sympy__matrices__expressions__special__GenericIdentity(): from sympy.matrices.expressions.special import GenericIdentity assert _test_args(GenericIdentity()) def test_sympy__matrices__expressions__sets__MatrixSet(): from sympy.matrices.expressions.sets import MatrixSet from sympy import S assert _test_args(MatrixSet(2, 2, S.Reals)) def test_sympy__matrices__expressions__matmul__MatMul(): from sympy.matrices.expressions.matmul import MatMul from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', y, x) assert _test_args(MatMul(X, Y)) def test_sympy__matrices__expressions__dotproduct__DotProduct(): from sympy.matrices.expressions.dotproduct import DotProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, 1) Y = MatrixSymbol('Y', x, 1) assert _test_args(DotProduct(X, Y)) def test_sympy__matrices__expressions__diagonal__DiagonalMatrix(): from sympy.matrices.expressions.diagonal import DiagonalMatrix from sympy.matrices.expressions import MatrixSymbol x = MatrixSymbol('x', 10, 1) assert _test_args(DiagonalMatrix(x)) def test_sympy__matrices__expressions__diagonal__DiagonalOf(): from sympy.matrices.expressions.diagonal import DiagonalOf from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('x', 10, 10) assert _test_args(DiagonalOf(X)) def test_sympy__matrices__expressions__diagonal__DiagMatrix(): from sympy.matrices.expressions.diagonal import DiagMatrix from sympy.matrices.expressions import MatrixSymbol x = MatrixSymbol('x', 10, 1) assert _test_args(DiagMatrix(x)) def test_sympy__matrices__expressions__hadamard__HadamardProduct(): from sympy.matrices.expressions.hadamard import HadamardProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(HadamardProduct(X, Y)) def test_sympy__matrices__expressions__hadamard__HadamardPower(): from sympy.matrices.expressions.hadamard import HadamardPower from sympy.matrices.expressions import MatrixSymbol from sympy import Symbol X = MatrixSymbol('X', x, y) n = Symbol("n") assert _test_args(HadamardPower(X, n)) def test_sympy__matrices__expressions__kronecker__KroneckerProduct(): from sympy.matrices.expressions.kronecker import KroneckerProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(KroneckerProduct(X, Y)) def test_sympy__matrices__expressions__matpow__MatPow(): from sympy.matrices.expressions.matpow import MatPow from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, x) assert _test_args(MatPow(X, 2)) def test_sympy__matrices__expressions__transpose__Transpose(): from sympy.matrices.expressions.transpose import Transpose from sympy.matrices.expressions import MatrixSymbol assert _test_args(Transpose(MatrixSymbol('A', 3, 5))) def test_sympy__matrices__expressions__adjoint__Adjoint(): from sympy.matrices.expressions.adjoint import Adjoint from sympy.matrices.expressions import MatrixSymbol assert _test_args(Adjoint(MatrixSymbol('A', 3, 5))) def test_sympy__matrices__expressions__trace__Trace(): from sympy.matrices.expressions.trace import Trace from sympy.matrices.expressions import MatrixSymbol assert _test_args(Trace(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__determinant__Determinant(): from sympy.matrices.expressions.determinant import Determinant from sympy.matrices.expressions import MatrixSymbol assert _test_args(Determinant(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__determinant__Permanent(): from sympy.matrices.expressions.determinant import Permanent from sympy.matrices.expressions import MatrixSymbol assert _test_args(Permanent(MatrixSymbol('A', 3, 4))) def test_sympy__matrices__expressions__funcmatrix__FunctionMatrix(): from sympy.matrices.expressions.funcmatrix import FunctionMatrix from sympy import symbols i, j = symbols('i,j') assert _test_args(FunctionMatrix(3, 3, Lambda((i, j), i - j) )) def test_sympy__matrices__expressions__fourier__DFT(): from sympy.matrices.expressions.fourier import DFT from sympy import S assert _test_args(DFT(S(2))) def test_sympy__matrices__expressions__fourier__IDFT(): from sympy.matrices.expressions.fourier import IDFT from sympy import S assert _test_args(IDFT(S(2))) from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', 10, 10) def test_sympy__matrices__expressions__factorizations__LofLU(): from sympy.matrices.expressions.factorizations import LofLU assert _test_args(LofLU(X)) def test_sympy__matrices__expressions__factorizations__UofLU(): from sympy.matrices.expressions.factorizations import UofLU assert _test_args(UofLU(X)) def test_sympy__matrices__expressions__factorizations__QofQR(): from sympy.matrices.expressions.factorizations import QofQR assert _test_args(QofQR(X)) def test_sympy__matrices__expressions__factorizations__RofQR(): from sympy.matrices.expressions.factorizations import RofQR assert _test_args(RofQR(X)) def test_sympy__matrices__expressions__factorizations__LofCholesky(): from sympy.matrices.expressions.factorizations import LofCholesky assert _test_args(LofCholesky(X)) def test_sympy__matrices__expressions__factorizations__UofCholesky(): from sympy.matrices.expressions.factorizations import UofCholesky assert _test_args(UofCholesky(X)) def test_sympy__matrices__expressions__factorizations__EigenVectors(): from sympy.matrices.expressions.factorizations import EigenVectors assert _test_args(EigenVectors(X)) def test_sympy__matrices__expressions__factorizations__EigenValues(): from sympy.matrices.expressions.factorizations import EigenValues assert _test_args(EigenValues(X)) def test_sympy__matrices__expressions__factorizations__UofSVD(): from sympy.matrices.expressions.factorizations import UofSVD assert _test_args(UofSVD(X)) def test_sympy__matrices__expressions__factorizations__VofSVD(): from sympy.matrices.expressions.factorizations import VofSVD assert _test_args(VofSVD(X)) def test_sympy__matrices__expressions__factorizations__SofSVD(): from sympy.matrices.expressions.factorizations import SofSVD assert _test_args(SofSVD(X)) @SKIP("abstract class") def test_sympy__matrices__expressions__factorizations__Factorization(): pass def test_sympy__matrices__expressions__permutation__PermutationMatrix(): from sympy.combinatorics import Permutation from sympy.matrices.expressions.permutation import PermutationMatrix assert _test_args(PermutationMatrix(Permutation([2, 0, 1]))) def test_sympy__matrices__expressions__permutation__MatrixPermute(): from sympy.combinatorics import Permutation from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.permutation import MatrixPermute A = MatrixSymbol('A', 3, 3) assert _test_args(MatrixPermute(A, Permutation([2, 0, 1]))) def test_sympy__matrices__expressions__companion__CompanionMatrix(): from sympy.core.symbol import Symbol from sympy.matrices.expressions.companion import CompanionMatrix from sympy.polys.polytools import Poly x = Symbol('x') p = Poly([1, 2, 3], x) assert _test_args(CompanionMatrix(p)) def test_sympy__physics__vector__frame__CoordinateSym(): from sympy.physics.vector import CoordinateSym from sympy.physics.vector import ReferenceFrame assert _test_args(CoordinateSym('R_x', ReferenceFrame('R'), 0)) def test_sympy__physics__paulialgebra__Pauli(): from sympy.physics.paulialgebra import Pauli assert _test_args(Pauli(1)) def test_sympy__physics__quantum__anticommutator__AntiCommutator(): from sympy.physics.quantum.anticommutator import AntiCommutator assert _test_args(AntiCommutator(x, y)) def test_sympy__physics__quantum__cartesian__PositionBra3D(): from sympy.physics.quantum.cartesian import PositionBra3D assert _test_args(PositionBra3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PositionKet3D(): from sympy.physics.quantum.cartesian import PositionKet3D assert _test_args(PositionKet3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PositionState3D(): from sympy.physics.quantum.cartesian import PositionState3D assert _test_args(PositionState3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PxBra(): from sympy.physics.quantum.cartesian import PxBra assert _test_args(PxBra(x, y, z)) def test_sympy__physics__quantum__cartesian__PxKet(): from sympy.physics.quantum.cartesian import PxKet assert _test_args(PxKet(x, y, z)) def test_sympy__physics__quantum__cartesian__PxOp(): from sympy.physics.quantum.cartesian import PxOp assert _test_args(PxOp(x, y, z)) def test_sympy__physics__quantum__cartesian__XBra(): from sympy.physics.quantum.cartesian import XBra assert _test_args(XBra(x)) def test_sympy__physics__quantum__cartesian__XKet(): from sympy.physics.quantum.cartesian import XKet assert _test_args(XKet(x)) def test_sympy__physics__quantum__cartesian__XOp(): from sympy.physics.quantum.cartesian import XOp assert _test_args(XOp(x)) def test_sympy__physics__quantum__cartesian__YOp(): from sympy.physics.quantum.cartesian import YOp assert _test_args(YOp(x)) def test_sympy__physics__quantum__cartesian__ZOp(): from sympy.physics.quantum.cartesian import ZOp assert _test_args(ZOp(x)) def test_sympy__physics__quantum__cg__CG(): from sympy.physics.quantum.cg import CG from sympy import S assert _test_args(CG(Rational(3, 2), Rational(3, 2), S.Half, Rational(-1, 2), 1, 1)) def test_sympy__physics__quantum__cg__Wigner3j(): from sympy.physics.quantum.cg import Wigner3j assert _test_args(Wigner3j(6, 0, 4, 0, 2, 0)) def test_sympy__physics__quantum__cg__Wigner6j(): from sympy.physics.quantum.cg import Wigner6j assert _test_args(Wigner6j(1, 2, 3, 2, 1, 2)) def test_sympy__physics__quantum__cg__Wigner9j(): from sympy.physics.quantum.cg import Wigner9j assert _test_args(Wigner9j(2, 1, 1, Rational(3, 2), S.Half, 1, S.Half, S.Half, 0)) def test_sympy__physics__quantum__circuitplot__Mz(): from sympy.physics.quantum.circuitplot import Mz assert _test_args(Mz(0)) def test_sympy__physics__quantum__circuitplot__Mx(): from sympy.physics.quantum.circuitplot import Mx assert _test_args(Mx(0)) def test_sympy__physics__quantum__commutator__Commutator(): from sympy.physics.quantum.commutator import Commutator A, B = symbols('A,B', commutative=False) assert _test_args(Commutator(A, B)) def test_sympy__physics__quantum__constants__HBar(): from sympy.physics.quantum.constants import HBar assert _test_args(HBar()) def test_sympy__physics__quantum__dagger__Dagger(): from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.state import Ket assert _test_args(Dagger(Dagger(Ket('psi')))) def test_sympy__physics__quantum__gate__CGate(): from sympy.physics.quantum.gate import CGate, Gate assert _test_args(CGate((0, 1), Gate(2))) def test_sympy__physics__quantum__gate__CGateS(): from sympy.physics.quantum.gate import CGateS, Gate assert _test_args(CGateS((0, 1), Gate(2))) def test_sympy__physics__quantum__gate__CNotGate(): from sympy.physics.quantum.gate import CNotGate assert _test_args(CNotGate(0, 1)) def test_sympy__physics__quantum__gate__Gate(): from sympy.physics.quantum.gate import Gate assert _test_args(Gate(0)) def test_sympy__physics__quantum__gate__HadamardGate(): from sympy.physics.quantum.gate import HadamardGate assert _test_args(HadamardGate(0)) def test_sympy__physics__quantum__gate__IdentityGate(): from sympy.physics.quantum.gate import IdentityGate assert _test_args(IdentityGate(0)) def test_sympy__physics__quantum__gate__OneQubitGate(): from sympy.physics.quantum.gate import OneQubitGate assert _test_args(OneQubitGate(0)) def test_sympy__physics__quantum__gate__PhaseGate(): from sympy.physics.quantum.gate import PhaseGate assert _test_args(PhaseGate(0)) def test_sympy__physics__quantum__gate__SwapGate(): from sympy.physics.quantum.gate import SwapGate assert _test_args(SwapGate(0, 1)) def test_sympy__physics__quantum__gate__TGate(): from sympy.physics.quantum.gate import TGate assert _test_args(TGate(0)) def test_sympy__physics__quantum__gate__TwoQubitGate(): from sympy.physics.quantum.gate import TwoQubitGate assert _test_args(TwoQubitGate(0)) def test_sympy__physics__quantum__gate__UGate(): from sympy.physics.quantum.gate import UGate from sympy.matrices.immutable import ImmutableDenseMatrix from sympy import Integer, Tuple assert _test_args( UGate(Tuple(Integer(1)), ImmutableDenseMatrix([[1, 0], [0, 2]]))) def test_sympy__physics__quantum__gate__XGate(): from sympy.physics.quantum.gate import XGate assert _test_args(XGate(0)) def test_sympy__physics__quantum__gate__YGate(): from sympy.physics.quantum.gate import YGate assert _test_args(YGate(0)) def test_sympy__physics__quantum__gate__ZGate(): from sympy.physics.quantum.gate import ZGate assert _test_args(ZGate(0)) @SKIP("TODO: sympy.physics") def test_sympy__physics__quantum__grover__OracleGate(): from sympy.physics.quantum.grover import OracleGate assert _test_args(OracleGate()) def test_sympy__physics__quantum__grover__WGate(): from sympy.physics.quantum.grover import WGate assert _test_args(WGate(1)) def test_sympy__physics__quantum__hilbert__ComplexSpace(): from sympy.physics.quantum.hilbert import ComplexSpace assert _test_args(ComplexSpace(x)) def test_sympy__physics__quantum__hilbert__DirectSumHilbertSpace(): from sympy.physics.quantum.hilbert import DirectSumHilbertSpace, ComplexSpace, FockSpace c = ComplexSpace(2) f = FockSpace() assert _test_args(DirectSumHilbertSpace(c, f)) def test_sympy__physics__quantum__hilbert__FockSpace(): from sympy.physics.quantum.hilbert import FockSpace assert _test_args(FockSpace()) def test_sympy__physics__quantum__hilbert__HilbertSpace(): from sympy.physics.quantum.hilbert import HilbertSpace assert _test_args(HilbertSpace()) def test_sympy__physics__quantum__hilbert__L2(): from sympy.physics.quantum.hilbert import L2 from sympy import oo, Interval assert _test_args(L2(Interval(0, oo))) def test_sympy__physics__quantum__hilbert__TensorPowerHilbertSpace(): from sympy.physics.quantum.hilbert import TensorPowerHilbertSpace, FockSpace f = FockSpace() assert _test_args(TensorPowerHilbertSpace(f, 2)) def test_sympy__physics__quantum__hilbert__TensorProductHilbertSpace(): from sympy.physics.quantum.hilbert import TensorProductHilbertSpace, FockSpace, ComplexSpace c = ComplexSpace(2) f = FockSpace() assert _test_args(TensorProductHilbertSpace(f, c)) def test_sympy__physics__quantum__innerproduct__InnerProduct(): from sympy.physics.quantum import Bra, Ket, InnerProduct b = Bra('b') k = Ket('k') assert _test_args(InnerProduct(b, k)) def test_sympy__physics__quantum__operator__DifferentialOperator(): from sympy.physics.quantum.operator import DifferentialOperator from sympy import Derivative, Function f = Function('f') assert _test_args(DifferentialOperator(1/x*Derivative(f(x), x), f(x))) def test_sympy__physics__quantum__operator__HermitianOperator(): from sympy.physics.quantum.operator import HermitianOperator assert _test_args(HermitianOperator('H')) def test_sympy__physics__quantum__operator__IdentityOperator(): from sympy.physics.quantum.operator import IdentityOperator assert _test_args(IdentityOperator(5)) def test_sympy__physics__quantum__operator__Operator(): from sympy.physics.quantum.operator import Operator assert _test_args(Operator('A')) def test_sympy__physics__quantum__operator__OuterProduct(): from sympy.physics.quantum.operator import OuterProduct from sympy.physics.quantum import Ket, Bra b = Bra('b') k = Ket('k') assert _test_args(OuterProduct(k, b)) def test_sympy__physics__quantum__operator__UnitaryOperator(): from sympy.physics.quantum.operator import UnitaryOperator assert _test_args(UnitaryOperator('U')) def test_sympy__physics__quantum__piab__PIABBra(): from sympy.physics.quantum.piab import PIABBra assert _test_args(PIABBra('B')) def test_sympy__physics__quantum__boson__BosonOp(): from sympy.physics.quantum.boson import BosonOp assert _test_args(BosonOp('a')) assert _test_args(BosonOp('a', False)) def test_sympy__physics__quantum__boson__BosonFockKet(): from sympy.physics.quantum.boson import BosonFockKet assert _test_args(BosonFockKet(1)) def test_sympy__physics__quantum__boson__BosonFockBra(): from sympy.physics.quantum.boson import BosonFockBra assert _test_args(BosonFockBra(1)) def test_sympy__physics__quantum__boson__BosonCoherentKet(): from sympy.physics.quantum.boson import BosonCoherentKet assert _test_args(BosonCoherentKet(1)) def test_sympy__physics__quantum__boson__BosonCoherentBra(): from sympy.physics.quantum.boson import BosonCoherentBra assert _test_args(BosonCoherentBra(1)) def test_sympy__physics__quantum__fermion__FermionOp(): from sympy.physics.quantum.fermion import FermionOp assert _test_args(FermionOp('c')) assert _test_args(FermionOp('c', False)) def test_sympy__physics__quantum__fermion__FermionFockKet(): from sympy.physics.quantum.fermion import FermionFockKet assert _test_args(FermionFockKet(1)) def test_sympy__physics__quantum__fermion__FermionFockBra(): from sympy.physics.quantum.fermion import FermionFockBra assert _test_args(FermionFockBra(1)) def test_sympy__physics__quantum__pauli__SigmaOpBase(): from sympy.physics.quantum.pauli import SigmaOpBase assert _test_args(SigmaOpBase()) def test_sympy__physics__quantum__pauli__SigmaX(): from sympy.physics.quantum.pauli import SigmaX assert _test_args(SigmaX()) def test_sympy__physics__quantum__pauli__SigmaY(): from sympy.physics.quantum.pauli import SigmaY assert _test_args(SigmaY()) def test_sympy__physics__quantum__pauli__SigmaZ(): from sympy.physics.quantum.pauli import SigmaZ assert _test_args(SigmaZ()) def test_sympy__physics__quantum__pauli__SigmaMinus(): from sympy.physics.quantum.pauli import SigmaMinus assert _test_args(SigmaMinus()) def test_sympy__physics__quantum__pauli__SigmaPlus(): from sympy.physics.quantum.pauli import SigmaPlus assert _test_args(SigmaPlus()) def test_sympy__physics__quantum__pauli__SigmaZKet(): from sympy.physics.quantum.pauli import SigmaZKet assert _test_args(SigmaZKet(0)) def test_sympy__physics__quantum__pauli__SigmaZBra(): from sympy.physics.quantum.pauli import SigmaZBra assert _test_args(SigmaZBra(0)) def test_sympy__physics__quantum__piab__PIABHamiltonian(): from sympy.physics.quantum.piab import PIABHamiltonian assert _test_args(PIABHamiltonian('P')) def test_sympy__physics__quantum__piab__PIABKet(): from sympy.physics.quantum.piab import PIABKet assert _test_args(PIABKet('K')) def test_sympy__physics__quantum__qexpr__QExpr(): from sympy.physics.quantum.qexpr import QExpr assert _test_args(QExpr(0)) def test_sympy__physics__quantum__qft__Fourier(): from sympy.physics.quantum.qft import Fourier assert _test_args(Fourier(0, 1)) def test_sympy__physics__quantum__qft__IQFT(): from sympy.physics.quantum.qft import IQFT assert _test_args(IQFT(0, 1)) def test_sympy__physics__quantum__qft__QFT(): from sympy.physics.quantum.qft import QFT assert _test_args(QFT(0, 1)) def test_sympy__physics__quantum__qft__RkGate(): from sympy.physics.quantum.qft import RkGate assert _test_args(RkGate(0, 1)) def test_sympy__physics__quantum__qubit__IntQubit(): from sympy.physics.quantum.qubit import IntQubit assert _test_args(IntQubit(0)) def test_sympy__physics__quantum__qubit__IntQubitBra(): from sympy.physics.quantum.qubit import IntQubitBra assert _test_args(IntQubitBra(0)) def test_sympy__physics__quantum__qubit__IntQubitState(): from sympy.physics.quantum.qubit import IntQubitState, QubitState assert _test_args(IntQubitState(QubitState(0, 1))) def test_sympy__physics__quantum__qubit__Qubit(): from sympy.physics.quantum.qubit import Qubit assert _test_args(Qubit(0, 0, 0)) def test_sympy__physics__quantum__qubit__QubitBra(): from sympy.physics.quantum.qubit import QubitBra assert _test_args(QubitBra('1', 0)) def test_sympy__physics__quantum__qubit__QubitState(): from sympy.physics.quantum.qubit import QubitState assert _test_args(QubitState(0, 1)) def test_sympy__physics__quantum__density__Density(): from sympy.physics.quantum.density import Density from sympy.physics.quantum.state import Ket assert _test_args(Density([Ket(0), 0.5], [Ket(1), 0.5])) @SKIP("TODO: sympy.physics.quantum.shor: Cmod Not Implemented") def test_sympy__physics__quantum__shor__CMod(): from sympy.physics.quantum.shor import CMod assert _test_args(CMod()) def test_sympy__physics__quantum__spin__CoupledSpinState(): from sympy.physics.quantum.spin import CoupledSpinState assert _test_args(CoupledSpinState(1, 0, (1, 1))) assert _test_args(CoupledSpinState(1, 0, (1, S.Half, S.Half))) assert _test_args(CoupledSpinState( 1, 0, (1, S.Half, S.Half), ((2, 3, S.Half), (1, 2, 1)) )) j, m, j1, j2, j3, j12, x = symbols('j m j1:4 j12 x') assert CoupledSpinState( j, m, (j1, j2, j3)).subs(j2, x) == CoupledSpinState(j, m, (j1, x, j3)) assert CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, j12), (1, 2, j)) ).subs(j12, x) == \ CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, x), (1, 2, j)) ) def test_sympy__physics__quantum__spin__J2Op(): from sympy.physics.quantum.spin import J2Op assert _test_args(J2Op('J')) def test_sympy__physics__quantum__spin__JminusOp(): from sympy.physics.quantum.spin import JminusOp assert _test_args(JminusOp('J')) def test_sympy__physics__quantum__spin__JplusOp(): from sympy.physics.quantum.spin import JplusOp assert _test_args(JplusOp('J')) def test_sympy__physics__quantum__spin__JxBra(): from sympy.physics.quantum.spin import JxBra assert _test_args(JxBra(1, 0)) def test_sympy__physics__quantum__spin__JxBraCoupled(): from sympy.physics.quantum.spin import JxBraCoupled assert _test_args(JxBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JxKet(): from sympy.physics.quantum.spin import JxKet assert _test_args(JxKet(1, 0)) def test_sympy__physics__quantum__spin__JxKetCoupled(): from sympy.physics.quantum.spin import JxKetCoupled assert _test_args(JxKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JxOp(): from sympy.physics.quantum.spin import JxOp assert _test_args(JxOp('J')) def test_sympy__physics__quantum__spin__JyBra(): from sympy.physics.quantum.spin import JyBra assert _test_args(JyBra(1, 0)) def test_sympy__physics__quantum__spin__JyBraCoupled(): from sympy.physics.quantum.spin import JyBraCoupled assert _test_args(JyBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JyKet(): from sympy.physics.quantum.spin import JyKet assert _test_args(JyKet(1, 0)) def test_sympy__physics__quantum__spin__JyKetCoupled(): from sympy.physics.quantum.spin import JyKetCoupled assert _test_args(JyKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JyOp(): from sympy.physics.quantum.spin import JyOp assert _test_args(JyOp('J')) def test_sympy__physics__quantum__spin__JzBra(): from sympy.physics.quantum.spin import JzBra assert _test_args(JzBra(1, 0)) def test_sympy__physics__quantum__spin__JzBraCoupled(): from sympy.physics.quantum.spin import JzBraCoupled assert _test_args(JzBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JzKet(): from sympy.physics.quantum.spin import JzKet assert _test_args(JzKet(1, 0)) def test_sympy__physics__quantum__spin__JzKetCoupled(): from sympy.physics.quantum.spin import JzKetCoupled assert _test_args(JzKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JzOp(): from sympy.physics.quantum.spin import JzOp assert _test_args(JzOp('J')) def test_sympy__physics__quantum__spin__Rotation(): from sympy.physics.quantum.spin import Rotation assert _test_args(Rotation(pi, 0, pi/2)) def test_sympy__physics__quantum__spin__SpinState(): from sympy.physics.quantum.spin import SpinState assert _test_args(SpinState(1, 0)) def test_sympy__physics__quantum__spin__WignerD(): from sympy.physics.quantum.spin import WignerD assert _test_args(WignerD(0, 1, 2, 3, 4, 5)) def test_sympy__physics__quantum__state__Bra(): from sympy.physics.quantum.state import Bra assert _test_args(Bra(0)) def test_sympy__physics__quantum__state__BraBase(): from sympy.physics.quantum.state import BraBase assert _test_args(BraBase(0)) def test_sympy__physics__quantum__state__Ket(): from sympy.physics.quantum.state import Ket assert _test_args(Ket(0)) def test_sympy__physics__quantum__state__KetBase(): from sympy.physics.quantum.state import KetBase assert _test_args(KetBase(0)) def test_sympy__physics__quantum__state__State(): from sympy.physics.quantum.state import State assert _test_args(State(0)) def test_sympy__physics__quantum__state__StateBase(): from sympy.physics.quantum.state import StateBase assert _test_args(StateBase(0)) def test_sympy__physics__quantum__state__OrthogonalBra(): from sympy.physics.quantum.state import OrthogonalBra assert _test_args(OrthogonalBra(0)) def test_sympy__physics__quantum__state__OrthogonalKet(): from sympy.physics.quantum.state import OrthogonalKet assert _test_args(OrthogonalKet(0)) def test_sympy__physics__quantum__state__OrthogonalState(): from sympy.physics.quantum.state import OrthogonalState assert _test_args(OrthogonalState(0)) def test_sympy__physics__quantum__state__TimeDepBra(): from sympy.physics.quantum.state import TimeDepBra assert _test_args(TimeDepBra('psi', 't')) def test_sympy__physics__quantum__state__TimeDepKet(): from sympy.physics.quantum.state import TimeDepKet assert _test_args(TimeDepKet('psi', 't')) def test_sympy__physics__quantum__state__TimeDepState(): from sympy.physics.quantum.state import TimeDepState assert _test_args(TimeDepState('psi', 't')) def test_sympy__physics__quantum__state__Wavefunction(): from sympy.physics.quantum.state import Wavefunction from sympy.functions import sin from sympy import Piecewise n = 1 L = 1 g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True)) assert _test_args(Wavefunction(g, x)) def test_sympy__physics__quantum__tensorproduct__TensorProduct(): from sympy.physics.quantum.tensorproduct import TensorProduct assert _test_args(TensorProduct(x, y)) def test_sympy__physics__quantum__identitysearch__GateIdentity(): from sympy.physics.quantum.gate import X from sympy.physics.quantum.identitysearch import GateIdentity assert _test_args(GateIdentity(X(0), X(0))) def test_sympy__physics__quantum__sho1d__SHOOp(): from sympy.physics.quantum.sho1d import SHOOp assert _test_args(SHOOp('a')) def test_sympy__physics__quantum__sho1d__RaisingOp(): from sympy.physics.quantum.sho1d import RaisingOp assert _test_args(RaisingOp('a')) def test_sympy__physics__quantum__sho1d__LoweringOp(): from sympy.physics.quantum.sho1d import LoweringOp assert _test_args(LoweringOp('a')) def test_sympy__physics__quantum__sho1d__NumberOp(): from sympy.physics.quantum.sho1d import NumberOp assert _test_args(NumberOp('N')) def test_sympy__physics__quantum__sho1d__Hamiltonian(): from sympy.physics.quantum.sho1d import Hamiltonian assert _test_args(Hamiltonian('H')) def test_sympy__physics__quantum__sho1d__SHOState(): from sympy.physics.quantum.sho1d import SHOState assert _test_args(SHOState(0)) def test_sympy__physics__quantum__sho1d__SHOKet(): from sympy.physics.quantum.sho1d import SHOKet assert _test_args(SHOKet(0)) def test_sympy__physics__quantum__sho1d__SHOBra(): from sympy.physics.quantum.sho1d import SHOBra assert _test_args(SHOBra(0)) def test_sympy__physics__secondquant__AnnihilateBoson(): from sympy.physics.secondquant import AnnihilateBoson assert _test_args(AnnihilateBoson(0)) def test_sympy__physics__secondquant__AnnihilateFermion(): from sympy.physics.secondquant import AnnihilateFermion assert _test_args(AnnihilateFermion(0)) @SKIP("abstract class") def test_sympy__physics__secondquant__Annihilator(): pass def test_sympy__physics__secondquant__AntiSymmetricTensor(): from sympy.physics.secondquant import AntiSymmetricTensor i, j = symbols('i j', below_fermi=True) a, b = symbols('a b', above_fermi=True) assert _test_args(AntiSymmetricTensor('v', (a, i), (b, j))) def test_sympy__physics__secondquant__BosonState(): from sympy.physics.secondquant import BosonState assert _test_args(BosonState((0, 1))) @SKIP("abstract class") def test_sympy__physics__secondquant__BosonicOperator(): pass def test_sympy__physics__secondquant__Commutator(): from sympy.physics.secondquant import Commutator assert _test_args(Commutator(x, y)) def test_sympy__physics__secondquant__CreateBoson(): from sympy.physics.secondquant import CreateBoson assert _test_args(CreateBoson(0)) def test_sympy__physics__secondquant__CreateFermion(): from sympy.physics.secondquant import CreateFermion assert _test_args(CreateFermion(0)) @SKIP("abstract class") def test_sympy__physics__secondquant__Creator(): pass def test_sympy__physics__secondquant__Dagger(): from sympy.physics.secondquant import Dagger from sympy import I assert _test_args(Dagger(2*I)) def test_sympy__physics__secondquant__FermionState(): from sympy.physics.secondquant import FermionState assert _test_args(FermionState((0, 1))) def test_sympy__physics__secondquant__FermionicOperator(): from sympy.physics.secondquant import FermionicOperator assert _test_args(FermionicOperator(0)) def test_sympy__physics__secondquant__FockState(): from sympy.physics.secondquant import FockState assert _test_args(FockState((0, 1))) def test_sympy__physics__secondquant__FockStateBosonBra(): from sympy.physics.secondquant import FockStateBosonBra assert _test_args(FockStateBosonBra((0, 1))) def test_sympy__physics__secondquant__FockStateBosonKet(): from sympy.physics.secondquant import FockStateBosonKet assert _test_args(FockStateBosonKet((0, 1))) def test_sympy__physics__secondquant__FockStateBra(): from sympy.physics.secondquant import FockStateBra assert _test_args(FockStateBra((0, 1))) def test_sympy__physics__secondquant__FockStateFermionBra(): from sympy.physics.secondquant import FockStateFermionBra assert _test_args(FockStateFermionBra((0, 1))) def test_sympy__physics__secondquant__FockStateFermionKet(): from sympy.physics.secondquant import FockStateFermionKet assert _test_args(FockStateFermionKet((0, 1))) def test_sympy__physics__secondquant__FockStateKet(): from sympy.physics.secondquant import FockStateKet assert _test_args(FockStateKet((0, 1))) def test_sympy__physics__secondquant__InnerProduct(): from sympy.physics.secondquant import InnerProduct from sympy.physics.secondquant import FockStateKet, FockStateBra assert _test_args(InnerProduct(FockStateBra((0, 1)), FockStateKet((0, 1)))) def test_sympy__physics__secondquant__NO(): from sympy.physics.secondquant import NO, F, Fd assert _test_args(NO(Fd(x)*F(y))) def test_sympy__physics__secondquant__PermutationOperator(): from sympy.physics.secondquant import PermutationOperator assert _test_args(PermutationOperator(0, 1)) def test_sympy__physics__secondquant__SqOperator(): from sympy.physics.secondquant import SqOperator assert _test_args(SqOperator(0)) def test_sympy__physics__secondquant__TensorSymbol(): from sympy.physics.secondquant import TensorSymbol assert _test_args(TensorSymbol(x)) def test_sympy__physics__control__lti__TransferFunction(): from sympy.physics.control.lti import TransferFunction assert _test_args(TransferFunction(2, 3, x)) def test_sympy__physics__control__lti__Series(): from sympy.physics.control import Series, TransferFunction tf1 = TransferFunction(x**2 - y**3, y - z, x) tf2 = TransferFunction(y - x, z + y, x) assert _test_args(Series(tf1, tf2)) def test_sympy__physics__control__lti__Parallel(): from sympy.physics.control import Parallel, TransferFunction tf1 = TransferFunction(x**2 - y**3, y - z, x) tf2 = TransferFunction(y - x, z + y, x) assert _test_args(Parallel(tf1, tf2)) def test_sympy__physics__control__lti__Feedback(): from sympy.physics.control import TransferFunction, Feedback tf1 = TransferFunction(x**2 - y**3, y - z, x) tf2 = TransferFunction(y - x, z + y, x) assert _test_args(Feedback(tf1, tf2)) def test_sympy__physics__units__dimensions__Dimension(): from sympy.physics.units.dimensions import Dimension assert _test_args(Dimension("length", "L")) def test_sympy__physics__units__dimensions__DimensionSystem(): from sympy.physics.units.dimensions import DimensionSystem from sympy.physics.units.definitions.dimension_definitions import length, time, velocity assert _test_args(DimensionSystem((length, time), (velocity,))) def test_sympy__physics__units__quantities__Quantity(): from sympy.physics.units.quantities import Quantity assert _test_args(Quantity("dam")) def test_sympy__physics__units__prefixes__Prefix(): from sympy.physics.units.prefixes import Prefix assert _test_args(Prefix('kilo', 'k', 3)) def test_sympy__core__numbers__AlgebraicNumber(): from sympy.core.numbers import AlgebraicNumber assert _test_args(AlgebraicNumber(sqrt(2), [1, 2, 3])) def test_sympy__polys__polytools__GroebnerBasis(): from sympy.polys.polytools import GroebnerBasis assert _test_args(GroebnerBasis([x, y, z], x, y, z)) def test_sympy__polys__polytools__Poly(): from sympy.polys.polytools import Poly assert _test_args(Poly(2, x, y)) def test_sympy__polys__polytools__PurePoly(): from sympy.polys.polytools import PurePoly assert _test_args(PurePoly(2, x, y)) @SKIP('abstract class') def test_sympy__polys__rootoftools__RootOf(): pass def test_sympy__polys__rootoftools__ComplexRootOf(): from sympy.polys.rootoftools import ComplexRootOf assert _test_args(ComplexRootOf(x**3 + x + 1, 0)) def test_sympy__polys__rootoftools__RootSum(): from sympy.polys.rootoftools import RootSum assert _test_args(RootSum(x**3 + x + 1, sin)) def test_sympy__series__limits__Limit(): from sympy.series.limits import Limit assert _test_args(Limit(x, x, 0, dir='-')) def test_sympy__series__order__Order(): from sympy.series.order import Order assert _test_args(Order(1, x, y)) @SKIP('Abstract Class') def test_sympy__series__sequences__SeqBase(): pass def test_sympy__series__sequences__EmptySequence(): # Need to imort the instance from series not the class from # series.sequence from sympy.series import EmptySequence assert _test_args(EmptySequence) @SKIP('Abstract Class') def test_sympy__series__sequences__SeqExpr(): pass def test_sympy__series__sequences__SeqPer(): from sympy.series.sequences import SeqPer assert _test_args(SeqPer((1, 2, 3), (0, 10))) def test_sympy__series__sequences__SeqFormula(): from sympy.series.sequences import SeqFormula assert _test_args(SeqFormula(x**2, (0, 10))) def test_sympy__series__sequences__RecursiveSeq(): from sympy.series.sequences import RecursiveSeq y = Function("y") n = symbols("n") assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y(n), n, (0, 1))) assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y(n), n)) def test_sympy__series__sequences__SeqExprOp(): from sympy.series.sequences import SeqExprOp, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqExprOp(s1, s2)) def test_sympy__series__sequences__SeqAdd(): from sympy.series.sequences import SeqAdd, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqAdd(s1, s2)) def test_sympy__series__sequences__SeqMul(): from sympy.series.sequences import SeqMul, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqMul(s1, s2)) @SKIP('Abstract Class') def test_sympy__series__series_class__SeriesBase(): pass def test_sympy__series__fourier__FourierSeries(): from sympy.series.fourier import fourier_series assert _test_args(fourier_series(x, (x, -pi, pi))) def test_sympy__series__fourier__FiniteFourierSeries(): from sympy.series.fourier import fourier_series assert _test_args(fourier_series(sin(pi*x), (x, -1, 1))) def test_sympy__series__formal__FormalPowerSeries(): from sympy.series.formal import fps assert _test_args(fps(log(1 + x), x)) def test_sympy__series__formal__Coeff(): from sympy.series.formal import fps assert _test_args(fps(x**2 + x + 1, x)) @SKIP('Abstract Class') def test_sympy__series__formal__FiniteFormalPowerSeries(): pass def test_sympy__series__formal__FormalPowerSeriesProduct(): from sympy.series.formal import fps f1, f2 = fps(sin(x)), fps(exp(x)) assert _test_args(f1.product(f2, x)) def test_sympy__series__formal__FormalPowerSeriesCompose(): from sympy.series.formal import fps f1, f2 = fps(exp(x)), fps(sin(x)) assert _test_args(f1.compose(f2, x)) def test_sympy__series__formal__FormalPowerSeriesInverse(): from sympy.series.formal import fps f1 = fps(exp(x)) assert _test_args(f1.inverse(x)) def test_sympy__simplify__hyperexpand__Hyper_Function(): from sympy.simplify.hyperexpand import Hyper_Function assert _test_args(Hyper_Function([2], [1])) def test_sympy__simplify__hyperexpand__G_Function(): from sympy.simplify.hyperexpand import G_Function assert _test_args(G_Function([2], [1], [], [])) @SKIP("abstract class") def test_sympy__tensor__array__ndim_array__ImmutableNDimArray(): pass def test_sympy__tensor__array__dense_ndim_array__ImmutableDenseNDimArray(): from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray densarr = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4)) assert _test_args(densarr) def test_sympy__tensor__array__sparse_ndim_array__ImmutableSparseNDimArray(): from sympy.tensor.array.sparse_ndim_array import ImmutableSparseNDimArray sparr = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4)) assert _test_args(sparr) def test_sympy__tensor__array__array_comprehension__ArrayComprehension(): from sympy.tensor.array.array_comprehension import ArrayComprehension arrcom = ArrayComprehension(x, (x, 1, 5)) assert _test_args(arrcom) def test_sympy__tensor__array__array_comprehension__ArrayComprehensionMap(): from sympy.tensor.array.array_comprehension import ArrayComprehensionMap arrcomma = ArrayComprehensionMap(lambda: 0, (x, 1, 5)) assert _test_args(arrcomma) def test_sympy__tensor__array__arrayop__Flatten(): from sympy.tensor.array.arrayop import Flatten from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray fla = Flatten(ImmutableDenseNDimArray(range(24)).reshape(2, 3, 4)) assert _test_args(fla) def test_sympy__tensor__array__array_derivatives__ArrayDerivative(): from sympy.tensor.array.array_derivatives import ArrayDerivative A = MatrixSymbol("A", 2, 2) arrder = ArrayDerivative(A, A, evaluate=False) assert _test_args(arrder) def test_sympy__tensor__array__expressions__array_expressions__ZeroArray(): from sympy.tensor.array.expressions.array_expressions import ZeroArray m, n, k = symbols("m n k") za = ZeroArray(m, n, k, 2) assert _test_args(za) def test_sympy__tensor__functions__TensorProduct(): from sympy.tensor.functions import TensorProduct A = MatrixSymbol('A', 3, 3) B = MatrixSymbol('B', 3, 3) tp = TensorProduct(A, B) assert _test_args(tp) def test_sympy__tensor__indexed__Idx(): from sympy.tensor.indexed import Idx assert _test_args(Idx('test')) assert _test_args(Idx(1, (0, 10))) def test_sympy__tensor__indexed__Indexed(): from sympy.tensor.indexed import Indexed, Idx assert _test_args(Indexed('A', Idx('i'), Idx('j'))) def test_sympy__tensor__indexed__IndexedBase(): from sympy.tensor.indexed import IndexedBase assert _test_args(IndexedBase('A', shape=(x, y))) assert _test_args(IndexedBase('A', 1)) assert _test_args(IndexedBase('A')[0, 1]) def test_sympy__tensor__tensor__TensorIndexType(): from sympy.tensor.tensor import TensorIndexType assert _test_args(TensorIndexType('Lorentz')) @SKIP("deprecated class") def test_sympy__tensor__tensor__TensorType(): pass def test_sympy__tensor__tensor__TensorSymmetry(): from sympy.tensor.tensor import TensorSymmetry, get_symmetric_group_sgs assert _test_args(TensorSymmetry(get_symmetric_group_sgs(2))) def test_sympy__tensor__tensor__TensorHead(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead Lorentz = TensorIndexType('Lorentz', dummy_name='L') sym = TensorSymmetry(get_symmetric_group_sgs(1)) assert _test_args(TensorHead('p', [Lorentz], sym, 0)) def test_sympy__tensor__tensor__TensorIndex(): from sympy.tensor.tensor import TensorIndexType, TensorIndex Lorentz = TensorIndexType('Lorentz', dummy_name='L') assert _test_args(TensorIndex('i', Lorentz)) @SKIP("abstract class") def test_sympy__tensor__tensor__TensExpr(): pass def test_sympy__tensor__tensor__TensAdd(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, TensAdd, tensor_heads Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) p, q = tensor_heads('p,q', [Lorentz], sym) t1 = p(a) t2 = q(a) assert _test_args(TensAdd(t1, t2)) def test_sympy__tensor__tensor__Tensor(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, TensorHead Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) p = TensorHead('p', [Lorentz], sym) assert _test_args(p(a)) def test_sympy__tensor__tensor__TensMul(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, tensor_heads Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) p, q = tensor_heads('p, q', [Lorentz], sym) assert _test_args(3*p(a)*q(b)) def test_sympy__tensor__tensor__TensorElement(): from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorElement L = TensorIndexType("L") A = TensorHead("A", [L, L]) telem = TensorElement(A(x, y), {x: 1}) assert _test_args(telem) def test_sympy__tensor__toperators__PartialDerivative(): from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead from sympy.tensor.toperators import PartialDerivative Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) A = TensorHead("A", [Lorentz]) assert _test_args(PartialDerivative(A(a), A(b))) def test_as_coeff_add(): assert (7, (3*x, 4*x**2)) == (7 + 3*x + 4*x**2).as_coeff_add() def test_sympy__geometry__curve__Curve(): from sympy.geometry.curve import Curve assert _test_args(Curve((x, 1), (x, 0, 1))) def test_sympy__geometry__point__Point(): from sympy.geometry.point import Point assert _test_args(Point(0, 1)) def test_sympy__geometry__point__Point2D(): from sympy.geometry.point import Point2D assert _test_args(Point2D(0, 1)) def test_sympy__geometry__point__Point3D(): from sympy.geometry.point import Point3D assert _test_args(Point3D(0, 1, 2)) def test_sympy__geometry__ellipse__Ellipse(): from sympy.geometry.ellipse import Ellipse assert _test_args(Ellipse((0, 1), 2, 3)) def test_sympy__geometry__ellipse__Circle(): from sympy.geometry.ellipse import Circle assert _test_args(Circle((0, 1), 2)) def test_sympy__geometry__parabola__Parabola(): from sympy.geometry.parabola import Parabola from sympy.geometry.line import Line assert _test_args(Parabola((0, 0), Line((2, 3), (4, 3)))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity(): pass def test_sympy__geometry__line__Line(): from sympy.geometry.line import Line assert _test_args(Line((0, 1), (2, 3))) def test_sympy__geometry__line__Ray(): from sympy.geometry.line import Ray assert _test_args(Ray((0, 1), (2, 3))) def test_sympy__geometry__line__Segment(): from sympy.geometry.line import Segment assert _test_args(Segment((0, 1), (2, 3))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity2D(): pass def test_sympy__geometry__line__Line2D(): from sympy.geometry.line import Line2D assert _test_args(Line2D((0, 1), (2, 3))) def test_sympy__geometry__line__Ray2D(): from sympy.geometry.line import Ray2D assert _test_args(Ray2D((0, 1), (2, 3))) def test_sympy__geometry__line__Segment2D(): from sympy.geometry.line import Segment2D assert _test_args(Segment2D((0, 1), (2, 3))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity3D(): pass def test_sympy__geometry__line__Line3D(): from sympy.geometry.line import Line3D assert _test_args(Line3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__line__Segment3D(): from sympy.geometry.line import Segment3D assert _test_args(Segment3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__line__Ray3D(): from sympy.geometry.line import Ray3D assert _test_args(Ray3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__plane__Plane(): from sympy.geometry.plane import Plane assert _test_args(Plane((1, 1, 1), (-3, 4, -2), (1, 2, 3))) def test_sympy__geometry__polygon__Polygon(): from sympy.geometry.polygon import Polygon assert _test_args(Polygon((0, 1), (2, 3), (4, 5), (6, 7))) def test_sympy__geometry__polygon__RegularPolygon(): from sympy.geometry.polygon import RegularPolygon assert _test_args(RegularPolygon((0, 1), 2, 3, 4)) def test_sympy__geometry__polygon__Triangle(): from sympy.geometry.polygon import Triangle assert _test_args(Triangle((0, 1), (2, 3), (4, 5))) def test_sympy__geometry__entity__GeometryEntity(): from sympy.geometry.entity import GeometryEntity from sympy.geometry.point import Point assert _test_args(GeometryEntity(Point(1, 0), 1, [1, 2])) @SKIP("abstract class") def test_sympy__geometry__entity__GeometrySet(): pass def test_sympy__diffgeom__diffgeom__Manifold(): from sympy.diffgeom import Manifold assert _test_args(Manifold('name', 3)) def test_sympy__diffgeom__diffgeom__Patch(): from sympy.diffgeom import Manifold, Patch assert _test_args(Patch('name', Manifold('name', 3))) def test_sympy__diffgeom__diffgeom__CoordSystem(): from sympy.diffgeom import Manifold, Patch, CoordSystem assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3)))) assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])) def test_sympy__diffgeom__diffgeom__CoordinateSymbol(): from sympy.diffgeom import Manifold, Patch, CoordSystem, CoordinateSymbol assert _test_args(CoordinateSymbol(CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]), 0)) def test_sympy__diffgeom__diffgeom__Point(): from sympy.diffgeom import Manifold, Patch, CoordSystem, Point assert _test_args(Point( CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]), [x, y])) def test_sympy__diffgeom__diffgeom__BaseScalarField(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) assert _test_args(BaseScalarField(cs, 0)) def test_sympy__diffgeom__diffgeom__BaseVectorField(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) assert _test_args(BaseVectorField(cs, 0)) def test_sympy__diffgeom__diffgeom__Differential(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) assert _test_args(Differential(BaseScalarField(cs, 0))) def test_sympy__diffgeom__diffgeom__Commutator(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, Commutator cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) cs1 = CoordSystem('name1', Patch('name', Manifold('name', 3)), [a, b, c]) v = BaseVectorField(cs, 0) v1 = BaseVectorField(cs1, 0) assert _test_args(Commutator(v, v1)) def test_sympy__diffgeom__diffgeom__TensorProduct(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, TensorProduct cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) d = Differential(BaseScalarField(cs, 0)) assert _test_args(TensorProduct(d, d)) def test_sympy__diffgeom__diffgeom__WedgeProduct(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, WedgeProduct cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) d = Differential(BaseScalarField(cs, 0)) d1 = Differential(BaseScalarField(cs, 1)) assert _test_args(WedgeProduct(d, d1)) def test_sympy__diffgeom__diffgeom__LieDerivative(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, BaseVectorField, LieDerivative cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) d = Differential(BaseScalarField(cs, 0)) v = BaseVectorField(cs, 0) assert _test_args(LieDerivative(v, d)) @XFAIL def test_sympy__diffgeom__diffgeom__BaseCovarDerivativeOp(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseCovarDerivativeOp cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) assert _test_args(BaseCovarDerivativeOp(cs, 0, [[[0, ]*3, ]*3, ]*3)) def test_sympy__diffgeom__diffgeom__CovarDerivativeOp(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, CovarDerivativeOp cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) v = BaseVectorField(cs, 0) _test_args(CovarDerivativeOp(v, [[[0, ]*3, ]*3, ]*3)) def test_sympy__categories__baseclasses__Class(): from sympy.categories.baseclasses import Class assert _test_args(Class()) def test_sympy__categories__baseclasses__Object(): from sympy.categories import Object assert _test_args(Object("A")) @XFAIL def test_sympy__categories__baseclasses__Morphism(): from sympy.categories import Object, Morphism assert _test_args(Morphism(Object("A"), Object("B"))) def test_sympy__categories__baseclasses__IdentityMorphism(): from sympy.categories import Object, IdentityMorphism assert _test_args(IdentityMorphism(Object("A"))) def test_sympy__categories__baseclasses__NamedMorphism(): from sympy.categories import Object, NamedMorphism assert _test_args(NamedMorphism(Object("A"), Object("B"), "f")) def test_sympy__categories__baseclasses__CompositeMorphism(): from sympy.categories import Object, NamedMorphism, CompositeMorphism A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") assert _test_args(CompositeMorphism(f, g)) def test_sympy__categories__baseclasses__Diagram(): from sympy.categories import Object, NamedMorphism, Diagram A = Object("A") B = Object("B") f = NamedMorphism(A, B, "f") d = Diagram([f]) assert _test_args(d) def test_sympy__categories__baseclasses__Category(): from sympy.categories import Object, NamedMorphism, Diagram, Category A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") d1 = Diagram([f, g]) d2 = Diagram([f]) K = Category("K", commutative_diagrams=[d1, d2]) assert _test_args(K) def test_sympy__ntheory__factor___totient(): from sympy.ntheory.factor_ import totient k = symbols('k', integer=True) t = totient(k) assert _test_args(t) def test_sympy__ntheory__factor___reduced_totient(): from sympy.ntheory.factor_ import reduced_totient k = symbols('k', integer=True) t = reduced_totient(k) assert _test_args(t) def test_sympy__ntheory__factor___divisor_sigma(): from sympy.ntheory.factor_ import divisor_sigma k = symbols('k', integer=True) n = symbols('n', integer=True) t = divisor_sigma(n, k) assert _test_args(t) def test_sympy__ntheory__factor___udivisor_sigma(): from sympy.ntheory.factor_ import udivisor_sigma k = symbols('k', integer=True) n = symbols('n', integer=True) t = udivisor_sigma(n, k) assert _test_args(t) def test_sympy__ntheory__factor___primenu(): from sympy.ntheory.factor_ import primenu n = symbols('n', integer=True) t = primenu(n) assert _test_args(t) def test_sympy__ntheory__factor___primeomega(): from sympy.ntheory.factor_ import primeomega n = symbols('n', integer=True) t = primeomega(n) assert _test_args(t) def test_sympy__ntheory__residue_ntheory__mobius(): from sympy.ntheory import mobius assert _test_args(mobius(2)) def test_sympy__ntheory__generate__primepi(): from sympy.ntheory import primepi n = symbols('n') t = primepi(n) assert _test_args(t) def test_sympy__physics__optics__waves__TWave(): from sympy.physics.optics import TWave A, f, phi = symbols('A, f, phi') assert _test_args(TWave(A, f, phi)) def test_sympy__physics__optics__gaussopt__BeamParameter(): from sympy.physics.optics import BeamParameter assert _test_args(BeamParameter(530e-9, 1, w=1e-3)) def test_sympy__physics__optics__medium__Medium(): from sympy.physics.optics import Medium assert _test_args(Medium('m')) def test_sympy__codegen__array_utils__CodegenArrayContraction(): from sympy.codegen.array_utils import CodegenArrayContraction from sympy import IndexedBase A = symbols("A", cls=IndexedBase) assert _test_args(CodegenArrayContraction(A, (0, 1))) def test_sympy__codegen__array_utils__CodegenArrayDiagonal(): from sympy.codegen.array_utils import CodegenArrayDiagonal from sympy import IndexedBase A = symbols("A", cls=IndexedBase) assert _test_args(CodegenArrayDiagonal(A, (0, 1))) def test_sympy__codegen__array_utils__CodegenArrayTensorProduct(): from sympy.codegen.array_utils import CodegenArrayTensorProduct from sympy import IndexedBase A, B = symbols("A B", cls=IndexedBase) assert _test_args(CodegenArrayTensorProduct(A, B)) def test_sympy__codegen__array_utils__CodegenArrayElementwiseAdd(): from sympy.codegen.array_utils import CodegenArrayElementwiseAdd from sympy import IndexedBase A, B = symbols("A B", cls=IndexedBase) assert _test_args(CodegenArrayElementwiseAdd(A, B)) def test_sympy__codegen__array_utils__CodegenArrayPermuteDims(): from sympy.codegen.array_utils import CodegenArrayPermuteDims A = MatrixSymbol("A", 4, 4) assert _test_args(CodegenArrayPermuteDims(A, (1, 0))) def test_sympy__codegen__ast__Assignment(): from sympy.codegen.ast import Assignment assert _test_args(Assignment(x, y)) def test_sympy__codegen__cfunctions__expm1(): from sympy.codegen.cfunctions import expm1 assert _test_args(expm1(x)) def test_sympy__codegen__cfunctions__log1p(): from sympy.codegen.cfunctions import log1p assert _test_args(log1p(x)) def test_sympy__codegen__cfunctions__exp2(): from sympy.codegen.cfunctions import exp2 assert _test_args(exp2(x)) def test_sympy__codegen__cfunctions__log2(): from sympy.codegen.cfunctions import log2 assert _test_args(log2(x)) def test_sympy__codegen__cfunctions__fma(): from sympy.codegen.cfunctions import fma assert _test_args(fma(x, y, z)) def test_sympy__codegen__cfunctions__log10(): from sympy.codegen.cfunctions import log10 assert _test_args(log10(x)) def test_sympy__codegen__cfunctions__Sqrt(): from sympy.codegen.cfunctions import Sqrt assert _test_args(Sqrt(x)) def test_sympy__codegen__cfunctions__Cbrt(): from sympy.codegen.cfunctions import Cbrt assert _test_args(Cbrt(x)) def test_sympy__codegen__cfunctions__hypot(): from sympy.codegen.cfunctions import hypot assert _test_args(hypot(x, y)) def test_sympy__codegen__fnodes__FFunction(): from sympy.codegen.fnodes import FFunction assert _test_args(FFunction('f')) def test_sympy__codegen__fnodes__F95Function(): from sympy.codegen.fnodes import F95Function assert _test_args(F95Function('f')) def test_sympy__codegen__fnodes__isign(): from sympy.codegen.fnodes import isign assert _test_args(isign(1, x)) def test_sympy__codegen__fnodes__dsign(): from sympy.codegen.fnodes import dsign assert _test_args(dsign(1, x)) def test_sympy__codegen__fnodes__cmplx(): from sympy.codegen.fnodes import cmplx assert _test_args(cmplx(x, y)) def test_sympy__codegen__fnodes__kind(): from sympy.codegen.fnodes import kind assert _test_args(kind(x)) def test_sympy__codegen__fnodes__merge(): from sympy.codegen.fnodes import merge assert _test_args(merge(1, 2, Eq(x, 0))) def test_sympy__codegen__fnodes___literal(): from sympy.codegen.fnodes import _literal assert _test_args(_literal(1)) def test_sympy__codegen__fnodes__literal_sp(): from sympy.codegen.fnodes import literal_sp assert _test_args(literal_sp(1)) def test_sympy__codegen__fnodes__literal_dp(): from sympy.codegen.fnodes import literal_dp assert _test_args(literal_dp(1)) def test_sympy__codegen__matrix_nodes__MatrixSolve(): from sympy.matrices import MatrixSymbol from sympy.codegen.matrix_nodes import MatrixSolve A = MatrixSymbol('A', 3, 3) v = MatrixSymbol('x', 3, 1) assert _test_args(MatrixSolve(A, v)) def test_sympy__vector__coordsysrect__CoordSys3D(): from sympy.vector.coordsysrect import CoordSys3D assert _test_args(CoordSys3D('C')) def test_sympy__vector__point__Point(): from sympy.vector.point import Point assert _test_args(Point('P')) def test_sympy__vector__basisdependent__BasisDependent(): #from sympy.vector.basisdependent import BasisDependent #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized pass def test_sympy__vector__basisdependent__BasisDependentMul(): #from sympy.vector.basisdependent import BasisDependentMul #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized pass def test_sympy__vector__basisdependent__BasisDependentAdd(): #from sympy.vector.basisdependent import BasisDependentAdd #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized pass def test_sympy__vector__basisdependent__BasisDependentZero(): #from sympy.vector.basisdependent import BasisDependentZero #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized pass def test_sympy__vector__vector__BaseVector(): from sympy.vector.vector import BaseVector from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseVector(0, C, ' ', ' ')) def test_sympy__vector__vector__VectorAdd(): from sympy.vector.vector import VectorAdd, VectorMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') from sympy.abc import a, b, c, x, y, z v1 = a*C.i + b*C.j + c*C.k v2 = x*C.i + y*C.j + z*C.k assert _test_args(VectorAdd(v1, v2)) assert _test_args(VectorMul(x, v1)) def test_sympy__vector__vector__VectorMul(): from sympy.vector.vector import VectorMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') from sympy.abc import a assert _test_args(VectorMul(a, C.i)) def test_sympy__vector__vector__VectorZero(): from sympy.vector.vector import VectorZero assert _test_args(VectorZero()) def test_sympy__vector__vector__Vector(): #from sympy.vector.vector import Vector #Vector is never to be initialized using args pass def test_sympy__vector__vector__Cross(): from sympy.vector.vector import Cross from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') _test_args(Cross(C.i, C.j)) def test_sympy__vector__vector__Dot(): from sympy.vector.vector import Dot from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') _test_args(Dot(C.i, C.j)) def test_sympy__vector__dyadic__Dyadic(): #from sympy.vector.dyadic import Dyadic #Dyadic is never to be initialized using args pass def test_sympy__vector__dyadic__BaseDyadic(): from sympy.vector.dyadic import BaseDyadic from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseDyadic(C.i, C.j)) def test_sympy__vector__dyadic__DyadicMul(): from sympy.vector.dyadic import BaseDyadic, DyadicMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(DyadicMul(3, BaseDyadic(C.i, C.j))) def test_sympy__vector__dyadic__DyadicAdd(): from sympy.vector.dyadic import BaseDyadic, DyadicAdd from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(2 * DyadicAdd(BaseDyadic(C.i, C.i), BaseDyadic(C.i, C.j))) def test_sympy__vector__dyadic__DyadicZero(): from sympy.vector.dyadic import DyadicZero assert _test_args(DyadicZero()) def test_sympy__vector__deloperator__Del(): from sympy.vector.deloperator import Del assert _test_args(Del()) def test_sympy__vector__implicitregion__ImplicitRegion(): from sympy.vector.implicitregion import ImplicitRegion from sympy.abc import x, y assert _test_args(ImplicitRegion((x, y), y**3 - 4*x)) def test_sympy__vector__integrals__ParametricIntegral(): from sympy.vector.integrals import ParametricIntegral from sympy.vector.parametricregion import ParametricRegion from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(ParametricIntegral(C.y*C.i - 10*C.j,\ ParametricRegion((x, y), (x, 1, 3), (y, -2, 2)))) def test_sympy__vector__operators__Curl(): from sympy.vector.operators import Curl from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Curl(C.i)) def test_sympy__vector__operators__Laplacian(): from sympy.vector.operators import Laplacian from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Laplacian(C.i)) def test_sympy__vector__operators__Divergence(): from sympy.vector.operators import Divergence from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Divergence(C.i)) def test_sympy__vector__operators__Gradient(): from sympy.vector.operators import Gradient from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Gradient(C.x)) def test_sympy__vector__orienters__Orienter(): #from sympy.vector.orienters import Orienter #Not to be initialized pass def test_sympy__vector__orienters__ThreeAngleOrienter(): #from sympy.vector.orienters import ThreeAngleOrienter #Not to be initialized pass def test_sympy__vector__orienters__AxisOrienter(): from sympy.vector.orienters import AxisOrienter from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(AxisOrienter(x, C.i)) def test_sympy__vector__orienters__BodyOrienter(): from sympy.vector.orienters import BodyOrienter assert _test_args(BodyOrienter(x, y, z, '123')) def test_sympy__vector__orienters__SpaceOrienter(): from sympy.vector.orienters import SpaceOrienter assert _test_args(SpaceOrienter(x, y, z, '123')) def test_sympy__vector__orienters__QuaternionOrienter(): from sympy.vector.orienters import QuaternionOrienter a, b, c, d = symbols('a b c d') assert _test_args(QuaternionOrienter(a, b, c, d)) def test_sympy__vector__parametricregion__ParametricRegion(): from sympy.abc import t from sympy.vector.parametricregion import ParametricRegion assert _test_args(ParametricRegion((t, t**3), (t, 0, 2))) def test_sympy__vector__scalar__BaseScalar(): from sympy.vector.scalar import BaseScalar from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseScalar(0, C, ' ', ' ')) def test_sympy__physics__wigner__Wigner3j(): from sympy.physics.wigner import Wigner3j assert _test_args(Wigner3j(0, 0, 0, 0, 0, 0)) def test_sympy__integrals__rubi__symbol__matchpyWC(): from sympy.integrals.rubi.symbol import matchpyWC assert _test_args(matchpyWC(1, True, 'a')) def test_sympy__integrals__rubi__utility_function__rubi_unevaluated_expr(): from sympy.integrals.rubi.utility_function import rubi_unevaluated_expr a = symbols('a') assert _test_args(rubi_unevaluated_expr(a)) def test_sympy__integrals__rubi__utility_function__rubi_exp(): from sympy.integrals.rubi.utility_function import rubi_exp assert _test_args(rubi_exp(5)) def test_sympy__integrals__rubi__utility_function__rubi_log(): from sympy.integrals.rubi.utility_function import rubi_log assert _test_args(rubi_log(5)) def test_sympy__integrals__rubi__utility_function__Int(): from sympy.integrals.rubi.utility_function import Int assert _test_args(Int(5, x)) def test_sympy__integrals__rubi__utility_function__Util_Coefficient(): from sympy.integrals.rubi.utility_function import Util_Coefficient a, x = symbols('a x') assert _test_args(Util_Coefficient(a, x)) def test_sympy__integrals__rubi__utility_function__Gamma(): from sympy.integrals.rubi.utility_function import Gamma assert _test_args(Gamma(5)) def test_sympy__integrals__rubi__utility_function__Util_Part(): from sympy.integrals.rubi.utility_function import Util_Part a, b = symbols('a b') assert _test_args(Util_Part(a + b, 0)) def test_sympy__integrals__rubi__utility_function__PolyGamma(): from sympy.integrals.rubi.utility_function import PolyGamma assert _test_args(PolyGamma(1, 1)) def test_sympy__integrals__rubi__utility_function__ProductLog(): from sympy.integrals.rubi.utility_function import ProductLog assert _test_args(ProductLog(1)) def test_sympy__combinatorics__schur_number__SchurNumber(): from sympy.combinatorics.schur_number import SchurNumber assert _test_args(SchurNumber(1)) def test_sympy__combinatorics__perm_groups__SymmetricPermutationGroup(): from sympy.combinatorics.perm_groups import SymmetricPermutationGroup assert _test_args(SymmetricPermutationGroup(5)) def test_sympy__combinatorics__perm_groups__Coset(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.perm_groups import PermutationGroup, Coset a = Permutation(1, 2) b = Permutation(0, 1) G = PermutationGroup([a, b]) assert _test_args(Coset(a, G))
9211f0617a39448b21963825c7828b90865595229f87c85e513efd6e6c812808
import numbers as nums import decimal from sympy import (Rational, Symbol, Float, I, sqrt, cbrt, oo, nan, pi, E, Integer, S, factorial, Catalan, EulerGamma, GoldenRatio, TribonacciConstant, cos, exp, Number, zoo, log, Mul, Pow, Tuple, latex, Gt, Lt, Ge, Le, AlgebraicNumber, simplify, sin, fibonacci, RealField, sympify, srepr, Dummy, Sum) from sympy.core.logic import fuzzy_not from sympy.core.numbers import (igcd, ilcm, igcdex, seterr, igcd2, igcd_lehmer, mpf_norm, comp, mod_inverse) from sympy.core.power import integer_nthroot, isqrt, integer_log from sympy.polys.domains.groundtypes import PythonRational from sympy.utilities.decorator import conserve_mpmath_dps from sympy.utilities.iterables import permutations from sympy.testing.pytest import XFAIL, raises, _both_exp_pow from mpmath import mpf from mpmath.rational import mpq import mpmath from sympy.core import numbers t = Symbol('t', real=False) _ninf = float(-oo) _inf = float(oo) def same_and_same_prec(a, b): # stricter matching for Floats return a == b and a._prec == b._prec def test_seterr(): seterr(divide=True) raises(ValueError, lambda: S.Zero/S.Zero) seterr(divide=False) assert S.Zero / S.Zero is S.NaN def test_mod(): x = S.Half y = Rational(3, 4) z = Rational(5, 18043) assert x % x == 0 assert x % y == S.Half assert x % z == Rational(3, 36086) assert y % x == Rational(1, 4) assert y % y == 0 assert y % z == Rational(9, 72172) assert z % x == Rational(5, 18043) assert z % y == Rational(5, 18043) assert z % z == 0 a = Float(2.6) assert (a % .2) == 0.0 assert (a % 2).round(15) == 0.6 assert (a % 0.5).round(15) == 0.1 p = Symbol('p', infinite=True) assert oo % oo is nan assert zoo % oo is nan assert 5 % oo is nan assert p % 5 is nan # In these two tests, if the precision of m does # not match the precision of the ans, then it is # likely that the change made now gives an answer # with degraded accuracy. r = Rational(500, 41) f = Float('.36', 3) m = r % f ans = Float(r % Rational(f), 3) assert m == ans and m._prec == ans._prec f = Float('8.36', 3) m = f % r ans = Float(Rational(f) % r, 3) assert m == ans and m._prec == ans._prec s = S.Zero assert s % float(1) == 0.0 # No rounding required since these numbers can be represented # exactly. assert Rational(3, 4) % Float(1.1) == 0.75 assert Float(1.5) % Rational(5, 4) == 0.25 assert Rational(5, 4).__rmod__(Float('1.5')) == 0.25 assert Float('1.5').__rmod__(Float('2.75')) == Float('1.25') assert 2.75 % Float('1.5') == Float('1.25') a = Integer(7) b = Integer(4) assert type(a % b) == Integer assert a % b == Integer(3) assert Integer(1) % Rational(2, 3) == Rational(1, 3) assert Rational(7, 5) % Integer(1) == Rational(2, 5) assert Integer(2) % 1.5 == 0.5 assert Integer(3).__rmod__(Integer(10)) == Integer(1) assert Integer(10) % 4 == Integer(2) assert 15 % Integer(4) == Integer(3) def test_divmod(): assert divmod(S(12), S(8)) == Tuple(1, 4) assert divmod(-S(12), S(8)) == Tuple(-2, 4) assert divmod(S.Zero, S.One) == Tuple(0, 0) raises(ZeroDivisionError, lambda: divmod(S.Zero, S.Zero)) raises(ZeroDivisionError, lambda: divmod(S.One, S.Zero)) assert divmod(S(12), 8) == Tuple(1, 4) assert divmod(12, S(8)) == Tuple(1, 4) assert divmod(S("2"), S("3/2")) == Tuple(S("1"), S("1/2")) assert divmod(S("3/2"), S("2")) == Tuple(S("0"), S("3/2")) assert divmod(S("2"), S("3.5")) == Tuple(S("0"), S("2")) assert divmod(S("3.5"), S("2")) == Tuple(S("1"), S("1.5")) assert divmod(S("2"), S("1/3")) == Tuple(S("6"), S("0")) assert divmod(S("1/3"), S("2")) == Tuple(S("0"), S("1/3")) assert divmod(S("2"), S("1/10")) == Tuple(S("20"), S("0")) assert divmod(S("2"), S(".1"))[0] == 19 assert divmod(S("0.1"), S("2")) == Tuple(S("0"), S("0.1")) assert divmod(S("2"), 2) == Tuple(S("1"), S("0")) assert divmod(2, S("2")) == Tuple(S("1"), S("0")) assert divmod(S("2"), 1.5) == Tuple(S("1"), S("0.5")) assert divmod(1.5, S("2")) == Tuple(S("0"), S("1.5")) assert divmod(0.3, S("2")) == Tuple(S("0"), S("0.3")) assert divmod(S("3/2"), S("3.5")) == Tuple(S("0"), S("3/2")) assert divmod(S("3.5"), S("3/2")) == Tuple(S("2"), S("0.5")) assert divmod(S("3/2"), S("1/3")) == Tuple(S("4"), S("1/6")) assert divmod(S("1/3"), S("3/2")) == Tuple(S("0"), S("1/3")) assert divmod(S("3/2"), S("0.1"))[0] == 14 assert divmod(S("0.1"), S("3/2")) == Tuple(S("0"), S("0.1")) assert divmod(S("3/2"), 2) == Tuple(S("0"), S("3/2")) assert divmod(2, S("3/2")) == Tuple(S("1"), S("1/2")) assert divmod(S("3/2"), 1.5) == Tuple(S("1"), S("0")) assert divmod(1.5, S("3/2")) == Tuple(S("1"), S("0")) assert divmod(S("3/2"), 0.3) == Tuple(S("5"), S("0")) assert divmod(0.3, S("3/2")) == Tuple(S("0"), S("0.3")) assert divmod(S("1/3"), S("3.5")) == Tuple(S("0"), S("1/3")) assert divmod(S("3.5"), S("0.1")) == Tuple(S("35"), S("0")) assert divmod(S("0.1"), S("3.5")) == Tuple(S("0"), S("0.1")) assert divmod(S("3.5"), 2) == Tuple(S("1"), S("1.5")) assert divmod(2, S("3.5")) == Tuple(S("0"), S("2")) assert divmod(S("3.5"), 1.5) == Tuple(S("2"), S("0.5")) assert divmod(1.5, S("3.5")) == Tuple(S("0"), S("1.5")) assert divmod(0.3, S("3.5")) == Tuple(S("0"), S("0.3")) assert divmod(S("0.1"), S("1/3")) == Tuple(S("0"), S("0.1")) assert divmod(S("1/3"), 2) == Tuple(S("0"), S("1/3")) assert divmod(2, S("1/3")) == Tuple(S("6"), S("0")) assert divmod(S("1/3"), 1.5) == Tuple(S("0"), S("1/3")) assert divmod(0.3, S("1/3")) == Tuple(S("0"), S("0.3")) assert divmod(S("0.1"), 2) == Tuple(S("0"), S("0.1")) assert divmod(2, S("0.1"))[0] == 19 assert divmod(S("0.1"), 1.5) == Tuple(S("0"), S("0.1")) assert divmod(1.5, S("0.1")) == Tuple(S("15"), S("0")) assert divmod(S("0.1"), 0.3) == Tuple(S("0"), S("0.1")) assert str(divmod(S("2"), 0.3)) == '(6, 0.2)' assert str(divmod(S("3.5"), S("1/3"))) == '(10, 0.166666666666667)' assert str(divmod(S("3.5"), 0.3)) == '(11, 0.2)' assert str(divmod(S("1/3"), S("0.1"))) == '(3, 0.0333333333333333)' assert str(divmod(1.5, S("1/3"))) == '(4, 0.166666666666667)' assert str(divmod(S("1/3"), 0.3)) == '(1, 0.0333333333333333)' assert str(divmod(0.3, S("0.1"))) == '(2, 0.1)' assert divmod(-3, S(2)) == (-2, 1) assert divmod(S(-3), S(2)) == (-2, 1) assert divmod(S(-3), 2) == (-2, 1) assert divmod(S(4), S(-3.1)) == Tuple(-2, -2.2) assert divmod(S(4), S(-2.1)) == divmod(4, -2.1) assert divmod(S(-8), S(-2.5) ) == Tuple(3 , -0.5) assert divmod(oo, 1) == (S.NaN, S.NaN) assert divmod(S.NaN, 1) == (S.NaN, S.NaN) assert divmod(1, S.NaN) == (S.NaN, S.NaN) ans = [(-1, oo), (-1, oo), (0, 0), (0, 1), (0, 2)] OO = float('inf') ANS = [tuple(map(float, i)) for i in ans] assert [divmod(i, oo) for i in range(-2, 3)] == ans ans = [(0, -2), (0, -1), (0, 0), (-1, -oo), (-1, -oo)] ANS = [tuple(map(float, i)) for i in ans] assert [divmod(i, -oo) for i in range(-2, 3)] == ans assert [divmod(i, -OO) for i in range(-2, 3)] == ANS assert divmod(S(3.5), S(-2)) == divmod(3.5, -2) assert divmod(-S(3.5), S(-2)) == divmod(-3.5, -2) assert divmod(S(0.0), S(9)) == divmod(0.0, 9) assert divmod(S(0), S(9.0)) == divmod(0, 9.0) def test_igcd(): assert igcd(0, 0) == 0 assert igcd(0, 1) == 1 assert igcd(1, 0) == 1 assert igcd(0, 7) == 7 assert igcd(7, 0) == 7 assert igcd(7, 1) == 1 assert igcd(1, 7) == 1 assert igcd(-1, 0) == 1 assert igcd(0, -1) == 1 assert igcd(-1, -1) == 1 assert igcd(-1, 7) == 1 assert igcd(7, -1) == 1 assert igcd(8, 2) == 2 assert igcd(4, 8) == 4 assert igcd(8, 16) == 8 assert igcd(7, -3) == 1 assert igcd(-7, 3) == 1 assert igcd(-7, -3) == 1 assert igcd(*[10, 20, 30]) == 10 raises(TypeError, lambda: igcd()) raises(TypeError, lambda: igcd(2)) raises(ValueError, lambda: igcd(0, None)) raises(ValueError, lambda: igcd(1, 2.2)) for args in permutations((45.1, 1, 30)): raises(ValueError, lambda: igcd(*args)) for args in permutations((1, 2, None)): raises(ValueError, lambda: igcd(*args)) def test_igcd_lehmer(): a, b = fibonacci(10001), fibonacci(10000) # len(str(a)) == 2090 # small divisors, long Euclidean sequence assert igcd_lehmer(a, b) == 1 c = fibonacci(100) assert igcd_lehmer(a*c, b*c) == c # big divisor assert igcd_lehmer(a, 10**1000) == 1 # swapping argmument assert igcd_lehmer(1, 2) == igcd_lehmer(2, 1) def test_igcd2(): # short loop assert igcd2(2**100 - 1, 2**99 - 1) == 1 # Lehmer's algorithm a, b = int(fibonacci(10001)), int(fibonacci(10000)) assert igcd2(a, b) == 1 def test_ilcm(): assert ilcm(0, 0) == 0 assert ilcm(1, 0) == 0 assert ilcm(0, 1) == 0 assert ilcm(1, 1) == 1 assert ilcm(2, 1) == 2 assert ilcm(8, 2) == 8 assert ilcm(8, 6) == 24 assert ilcm(8, 7) == 56 assert ilcm(*[10, 20, 30]) == 60 raises(ValueError, lambda: ilcm(8.1, 7)) raises(ValueError, lambda: ilcm(8, 7.1)) raises(TypeError, lambda: ilcm(8)) def test_igcdex(): assert igcdex(2, 3) == (-1, 1, 1) assert igcdex(10, 12) == (-1, 1, 2) assert igcdex(100, 2004) == (-20, 1, 4) assert igcdex(0, 0) == (0, 1, 0) assert igcdex(1, 0) == (1, 0, 1) def _strictly_equal(a, b): return (a.p, a.q, type(a.p), type(a.q)) == \ (b.p, b.q, type(b.p), type(b.q)) def _test_rational_new(cls): """ Tests that are common between Integer and Rational. """ assert cls(0) is S.Zero assert cls(1) is S.One assert cls(-1) is S.NegativeOne # These look odd, but are similar to int(): assert cls('1') is S.One assert cls('-1') is S.NegativeOne i = Integer(10) assert _strictly_equal(i, cls('10')) assert _strictly_equal(i, cls('10')) assert _strictly_equal(i, cls(int(10))) assert _strictly_equal(i, cls(i)) raises(TypeError, lambda: cls(Symbol('x'))) def test_Integer_new(): """ Test for Integer constructor """ _test_rational_new(Integer) assert _strictly_equal(Integer(0.9), S.Zero) assert _strictly_equal(Integer(10.5), Integer(10)) raises(ValueError, lambda: Integer("10.5")) assert Integer(Rational('1.' + '9'*20)) == 1 def test_Rational_new(): """" Test for Rational constructor """ _test_rational_new(Rational) n1 = S.Half assert n1 == Rational(Integer(1), 2) assert n1 == Rational(Integer(1), Integer(2)) assert n1 == Rational(1, Integer(2)) assert n1 == Rational(S.Half) assert 1 == Rational(n1, n1) assert Rational(3, 2) == Rational(S.Half, Rational(1, 3)) assert Rational(3, 1) == Rational(1, Rational(1, 3)) n3_4 = Rational(3, 4) assert Rational('3/4') == n3_4 assert -Rational('-3/4') == n3_4 assert Rational('.76').limit_denominator(4) == n3_4 assert Rational(19, 25).limit_denominator(4) == n3_4 assert Rational('19/25').limit_denominator(4) == n3_4 assert Rational(1.0, 3) == Rational(1, 3) assert Rational(1, 3.0) == Rational(1, 3) assert Rational(Float(0.5)) == S.Half assert Rational('1e2/1e-2') == Rational(10000) assert Rational('1 234') == Rational(1234) assert Rational('1/1 234') == Rational(1, 1234) assert Rational(-1, 0) is S.ComplexInfinity assert Rational(1, 0) is S.ComplexInfinity # Make sure Rational doesn't lose precision on Floats assert Rational(pi.evalf(100)).evalf(100) == pi.evalf(100) raises(TypeError, lambda: Rational('3**3')) raises(TypeError, lambda: Rational('1/2 + 2/3')) # handle fractions.Fraction instances try: import fractions assert Rational(fractions.Fraction(1, 2)) == S.Half except ImportError: pass assert Rational(mpq(2, 6)) == Rational(1, 3) assert Rational(PythonRational(2, 6)) == Rational(1, 3) def test_Number_new(): """" Test for Number constructor """ # Expected behavior on numbers and strings assert Number(1) is S.One assert Number(2).__class__ is Integer assert Number(-622).__class__ is Integer assert Number(5, 3).__class__ is Rational assert Number(5.3).__class__ is Float assert Number('1') is S.One assert Number('2').__class__ is Integer assert Number('-622').__class__ is Integer assert Number('5/3').__class__ is Rational assert Number('5.3').__class__ is Float raises(ValueError, lambda: Number('cos')) raises(TypeError, lambda: Number(cos)) a = Rational(3, 5) assert Number(a) is a # Check idempotence on Numbers u = ['inf', '-inf', 'nan', 'iNF', '+inf'] v = [oo, -oo, nan, oo, oo] for i, a in zip(u, v): assert Number(i) is a, (i, Number(i), a) def test_Number_cmp(): n1 = Number(1) n2 = Number(2) n3 = Number(-3) assert n1 < n2 assert n1 <= n2 assert n3 < n1 assert n2 > n3 assert n2 >= n3 raises(TypeError, lambda: n1 < S.NaN) raises(TypeError, lambda: n1 <= S.NaN) raises(TypeError, lambda: n1 > S.NaN) raises(TypeError, lambda: n1 >= S.NaN) def test_Rational_cmp(): n1 = Rational(1, 4) n2 = Rational(1, 3) n3 = Rational(2, 4) n4 = Rational(2, -4) n5 = Rational(0) n6 = Rational(1) n7 = Rational(3) n8 = Rational(-3) assert n8 < n5 assert n5 < n6 assert n6 < n7 assert n8 < n7 assert n7 > n8 assert (n1 + 1)**n2 < 2 assert ((n1 + n6)/n7) < 1 assert n4 < n3 assert n2 < n3 assert n1 < n2 assert n3 > n1 assert not n3 < n1 assert not (Rational(-1) > 0) assert Rational(-1) < 0 raises(TypeError, lambda: n1 < S.NaN) raises(TypeError, lambda: n1 <= S.NaN) raises(TypeError, lambda: n1 > S.NaN) raises(TypeError, lambda: n1 >= S.NaN) def test_Float(): def eq(a, b): t = Float("1.0E-15") return (-t < a - b < t) zeros = (0, S.Zero, 0., Float(0)) for i, j in permutations(zeros, 2): assert i == j for z in zeros: assert z in zeros assert S.Zero.is_zero a = Float(2) ** Float(3) assert eq(a.evalf(), Float(8)) assert eq((pi ** -1).evalf(), Float("0.31830988618379067")) a = Float(2) ** Float(4) assert eq(a.evalf(), Float(16)) assert (S(.3) == S(.5)) is False mpf = (0, 5404319552844595, -52, 53) x_str = Float((0, '13333333333333', -52, 53)) x2_str = Float((0, '26666666666666', -53, 54)) x_hex = Float((0, int(0x13333333333333), -52, 53)) x_dec = Float(mpf) assert x_str == x_hex == x_dec == Float(1.2) # x2_str was entered slightly malformed in that the mantissa # was even -- it should be odd and the even part should be # included with the exponent, but this is resolved by normalization # ONLY IF REQUIREMENTS of mpf_norm are met: the bitcount must # be exact: double the mantissa ==> increase bc by 1 assert Float(1.2)._mpf_ == mpf assert x2_str._mpf_ == mpf assert Float((0, int(0), -123, -1)) is S.NaN assert Float((0, int(0), -456, -2)) is S.Infinity assert Float((1, int(0), -789, -3)) is S.NegativeInfinity # if you don't give the full signature, it's not special assert Float((0, int(0), -123)) == Float(0) assert Float((0, int(0), -456)) == Float(0) assert Float((1, int(0), -789)) == Float(0) raises(ValueError, lambda: Float((0, 7, 1, 3), '')) assert Float('0.0').is_finite is True assert Float('0.0').is_negative is False assert Float('0.0').is_positive is False assert Float('0.0').is_infinite is False assert Float('0.0').is_zero is True # rationality properties # if the integer test fails then the use of intlike # should be removed from gamma_functions.py assert Float(1).is_integer is False assert Float(1).is_rational is None assert Float(1).is_irrational is None assert sqrt(2).n(15).is_rational is None assert sqrt(2).n(15).is_irrational is None # do not automatically evalf def teq(a): assert (a.evalf() == a) is False assert (a.evalf() != a) is True assert (a == a.evalf()) is False assert (a != a.evalf()) is True teq(pi) teq(2*pi) teq(cos(0.1, evaluate=False)) # long integer i = 12345678901234567890 assert same_and_same_prec(Float(12, ''), Float('12', '')) assert same_and_same_prec(Float(Integer(i), ''), Float(i, '')) assert same_and_same_prec(Float(i, ''), Float(str(i), 20)) assert same_and_same_prec(Float(str(i)), Float(i, '')) assert same_and_same_prec(Float(i), Float(i, '')) # inexact floats (repeating binary = denom not multiple of 2) # cannot have precision greater than 15 assert Float(.125, 22) == .125 assert Float(2.0, 22) == 2 assert float(Float('.12500000000000001', '')) == .125 raises(ValueError, lambda: Float(.12500000000000001, '')) # allow spaces Float('123 456.123 456') == Float('123456.123456') Integer('123 456') == Integer('123456') Rational('123 456.123 456') == Rational('123456.123456') assert Float(' .3e2') == Float('0.3e2') # allow underscore assert Float('1_23.4_56') == Float('123.456') assert Float('1_23.4_5_6', 12) == Float('123.456', 12) # ...but not in all cases (per Py 3.6) raises(ValueError, lambda: Float('_1')) raises(ValueError, lambda: Float('1_')) raises(ValueError, lambda: Float('1_.')) raises(ValueError, lambda: Float('1._')) raises(ValueError, lambda: Float('1__2')) raises(ValueError, lambda: Float('_inf')) # allow auto precision detection assert Float('.1', '') == Float(.1, 1) assert Float('.125', '') == Float(.125, 3) assert Float('.100', '') == Float(.1, 3) assert Float('2.0', '') == Float('2', 2) raises(ValueError, lambda: Float("12.3d-4", "")) raises(ValueError, lambda: Float(12.3, "")) raises(ValueError, lambda: Float('.')) raises(ValueError, lambda: Float('-.')) zero = Float('0.0') assert Float('-0') == zero assert Float('.0') == zero assert Float('-.0') == zero assert Float('-0.0') == zero assert Float(0.0) == zero assert Float(0) == zero assert Float(0, '') == Float('0', '') assert Float(1) == Float(1.0) assert Float(S.Zero) == zero assert Float(S.One) == Float(1.0) assert Float(decimal.Decimal('0.1'), 3) == Float('.1', 3) assert Float(decimal.Decimal('nan')) is S.NaN assert Float(decimal.Decimal('Infinity')) is S.Infinity assert Float(decimal.Decimal('-Infinity')) is S.NegativeInfinity assert '{:.3f}'.format(Float(4.236622)) == '4.237' assert '{:.35f}'.format(Float(pi.n(40), 40)) == \ '3.14159265358979323846264338327950288' # unicode assert Float('0.73908513321516064100000000') == \ Float('0.73908513321516064100000000') assert Float('0.73908513321516064100000000', 28) == \ Float('0.73908513321516064100000000', 28) # binary precision # Decimal value 0.1 cannot be expressed precisely as a base 2 fraction a = Float(S.One/10, dps=15) b = Float(S.One/10, dps=16) p = Float(S.One/10, precision=53) q = Float(S.One/10, precision=54) assert a._mpf_ == p._mpf_ assert not a._mpf_ == q._mpf_ assert not b._mpf_ == q._mpf_ # Precision specifying errors raises(ValueError, lambda: Float("1.23", dps=3, precision=10)) raises(ValueError, lambda: Float("1.23", dps="", precision=10)) raises(ValueError, lambda: Float("1.23", dps=3, precision="")) raises(ValueError, lambda: Float("1.23", dps="", precision="")) # from NumberSymbol assert same_and_same_prec(Float(pi, 32), pi.evalf(32)) assert same_and_same_prec(Float(Catalan), Catalan.evalf()) # oo and nan u = ['inf', '-inf', 'nan', 'iNF', '+inf'] v = [oo, -oo, nan, oo, oo] for i, a in zip(u, v): assert Float(i) is a def test_zero_not_false(): # https://github.com/sympy/sympy/issues/20796 assert (S(0.0) == S.false) is False assert (S.false == S(0.0)) is False assert (S(0) == S.false) is False assert (S.false == S(0)) is False @conserve_mpmath_dps def test_float_mpf(): import mpmath mpmath.mp.dps = 100 mp_pi = mpmath.pi() assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100) mpmath.mp.dps = 15 assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100) def test_Float_RealElement(): repi = RealField(dps=100)(pi.evalf(100)) # We still have to pass the precision because Float doesn't know what # RealElement is, but make sure it keeps full precision from the result. assert Float(repi, 100) == pi.evalf(100) def test_Float_default_to_highprec_from_str(): s = str(pi.evalf(128)) assert same_and_same_prec(Float(s), Float(s, '')) def test_Float_eval(): a = Float(3.2) assert (a**2).is_Float def test_Float_issue_2107(): a = Float(0.1, 10) b = Float("0.1", 10) assert a - a == 0 assert a + (-a) == 0 assert S.Zero + a - a == 0 assert S.Zero + a + (-a) == 0 assert b - b == 0 assert b + (-b) == 0 assert S.Zero + b - b == 0 assert S.Zero + b + (-b) == 0 def test_issue_14289(): from sympy.polys.numberfields import to_number_field a = 1 - sqrt(2) b = to_number_field(a) assert b.as_expr() == a assert b.minpoly(a).expand() == 0 def test_Float_from_tuple(): a = Float((0, '1L', 0, 1)) b = Float((0, '1', 0, 1)) assert a == b def test_Infinity(): assert oo != 1 assert 1*oo is oo assert 1 != oo assert oo != -oo assert oo != Symbol("x")**3 assert oo + 1 is oo assert 2 + oo is oo assert 3*oo + 2 is oo assert S.Half**oo == 0 assert S.Half**(-oo) is oo assert -oo*3 is -oo assert oo + oo is oo assert -oo + oo*(-5) is -oo assert 1/oo == 0 assert 1/(-oo) == 0 assert 8/oo == 0 assert oo % 2 is nan assert 2 % oo is nan assert oo/oo is nan assert oo/-oo is nan assert -oo/oo is nan assert -oo/-oo is nan assert oo - oo is nan assert oo - -oo is oo assert -oo - oo is -oo assert -oo - -oo is nan assert oo + -oo is nan assert -oo + oo is nan assert oo + oo is oo assert -oo + oo is nan assert oo + -oo is nan assert -oo + -oo is -oo assert oo*oo is oo assert -oo*oo is -oo assert oo*-oo is -oo assert -oo*-oo is oo assert oo/0 is oo assert -oo/0 is -oo assert 0/oo == 0 assert 0/-oo == 0 assert oo*0 is nan assert -oo*0 is nan assert 0*oo is nan assert 0*-oo is nan assert oo + 0 is oo assert -oo + 0 is -oo assert 0 + oo is oo assert 0 + -oo is -oo assert oo - 0 is oo assert -oo - 0 is -oo assert 0 - oo is -oo assert 0 - -oo is oo assert oo/2 is oo assert -oo/2 is -oo assert oo/-2 is -oo assert -oo/-2 is oo assert oo*2 is oo assert -oo*2 is -oo assert oo*-2 is -oo assert 2/oo == 0 assert 2/-oo == 0 assert -2/oo == 0 assert -2/-oo == 0 assert 2*oo is oo assert 2*-oo is -oo assert -2*oo is -oo assert -2*-oo is oo assert 2 + oo is oo assert 2 - oo is -oo assert -2 + oo is oo assert -2 - oo is -oo assert 2 + -oo is -oo assert 2 - -oo is oo assert -2 + -oo is -oo assert -2 - -oo is oo assert S(2) + oo is oo assert S(2) - oo is -oo assert oo/I == -oo*I assert -oo/I == oo*I assert oo*float(1) == _inf and (oo*float(1)) is oo assert -oo*float(1) == _ninf and (-oo*float(1)) is -oo assert oo/float(1) == _inf and (oo/float(1)) is oo assert -oo/float(1) == _ninf and (-oo/float(1)) is -oo assert oo*float(-1) == _ninf and (oo*float(-1)) is -oo assert -oo*float(-1) == _inf and (-oo*float(-1)) is oo assert oo/float(-1) == _ninf and (oo/float(-1)) is -oo assert -oo/float(-1) == _inf and (-oo/float(-1)) is oo assert oo + float(1) == _inf and (oo + float(1)) is oo assert -oo + float(1) == _ninf and (-oo + float(1)) is -oo assert oo - float(1) == _inf and (oo - float(1)) is oo assert -oo - float(1) == _ninf and (-oo - float(1)) is -oo assert float(1)*oo == _inf and (float(1)*oo) is oo assert float(1)*-oo == _ninf and (float(1)*-oo) is -oo assert float(1)/oo == 0 assert float(1)/-oo == 0 assert float(-1)*oo == _ninf and (float(-1)*oo) is -oo assert float(-1)*-oo == _inf and (float(-1)*-oo) is oo assert float(-1)/oo == 0 assert float(-1)/-oo == 0 assert float(1) + oo is oo assert float(1) + -oo is -oo assert float(1) - oo is -oo assert float(1) - -oo is oo assert oo == float(oo) assert (oo != float(oo)) is False assert type(float(oo)) is float assert -oo == float(-oo) assert (-oo != float(-oo)) is False assert type(float(-oo)) is float assert Float('nan') is nan assert nan*1.0 is nan assert -1.0*nan is nan assert nan*oo is nan assert nan*-oo is nan assert nan/oo is nan assert nan/-oo is nan assert nan + oo is nan assert nan + -oo is nan assert nan - oo is nan assert nan - -oo is nan assert -oo * S.Zero is nan assert oo*nan is nan assert -oo*nan is nan assert oo/nan is nan assert -oo/nan is nan assert oo + nan is nan assert -oo + nan is nan assert oo - nan is nan assert -oo - nan is nan assert S.Zero * oo is nan assert oo.is_Rational is False assert isinstance(oo, Rational) is False assert S.One/oo == 0 assert -S.One/oo == 0 assert S.One/-oo == 0 assert -S.One/-oo == 0 assert S.One*oo is oo assert -S.One*oo is -oo assert S.One*-oo is -oo assert -S.One*-oo is oo assert S.One/nan is nan assert S.One - -oo is oo assert S.One + nan is nan assert S.One - nan is nan assert nan - S.One is nan assert nan/S.One is nan assert -oo - S.One is -oo def test_Infinity_2(): x = Symbol('x') assert oo*x != oo assert oo*(pi - 1) is oo assert oo*(1 - pi) is -oo assert (-oo)*x != -oo assert (-oo)*(pi - 1) is -oo assert (-oo)*(1 - pi) is oo assert (-1)**S.NaN is S.NaN assert oo - _inf is S.NaN assert oo + _ninf is S.NaN assert oo*0 is S.NaN assert oo/_inf is S.NaN assert oo/_ninf is S.NaN assert oo**S.NaN is S.NaN assert -oo + _inf is S.NaN assert -oo - _ninf is S.NaN assert -oo*S.NaN is S.NaN assert -oo*0 is S.NaN assert -oo/_inf is S.NaN assert -oo/_ninf is S.NaN assert -oo/S.NaN is S.NaN assert abs(-oo) is oo assert all((-oo)**i is S.NaN for i in (oo, -oo, S.NaN)) assert (-oo)**3 is -oo assert (-oo)**2 is oo assert abs(S.ComplexInfinity) is oo def test_Mul_Infinity_Zero(): assert Float(0)*_inf is nan assert Float(0)*_ninf is nan assert Float(0)*_inf is nan assert Float(0)*_ninf is nan assert _inf*Float(0) is nan assert _ninf*Float(0) is nan assert _inf*Float(0) is nan assert _ninf*Float(0) is nan def test_Div_By_Zero(): assert 1/S.Zero is zoo assert 1/Float(0) is zoo assert 0/S.Zero is nan assert 0/Float(0) is nan assert S.Zero/0 is nan assert Float(0)/0 is nan assert -1/S.Zero is zoo assert -1/Float(0) is zoo @_both_exp_pow def test_Infinity_inequations(): assert oo > pi assert not (oo < pi) assert exp(-3) < oo assert _inf > pi assert not (_inf < pi) assert exp(-3) < _inf raises(TypeError, lambda: oo < I) raises(TypeError, lambda: oo <= I) raises(TypeError, lambda: oo > I) raises(TypeError, lambda: oo >= I) raises(TypeError, lambda: -oo < I) raises(TypeError, lambda: -oo <= I) raises(TypeError, lambda: -oo > I) raises(TypeError, lambda: -oo >= I) raises(TypeError, lambda: I < oo) raises(TypeError, lambda: I <= oo) raises(TypeError, lambda: I > oo) raises(TypeError, lambda: I >= oo) raises(TypeError, lambda: I < -oo) raises(TypeError, lambda: I <= -oo) raises(TypeError, lambda: I > -oo) raises(TypeError, lambda: I >= -oo) assert oo > -oo and oo >= -oo assert (oo < -oo) == False and (oo <= -oo) == False assert -oo < oo and -oo <= oo assert (-oo > oo) == False and (-oo >= oo) == False assert (oo < oo) == False # issue 7775 assert (oo > oo) == False assert (-oo > -oo) == False and (-oo < -oo) == False assert oo >= oo and oo <= oo and -oo >= -oo and -oo <= -oo assert (-oo < -_inf) == False assert (oo > _inf) == False assert -oo >= -_inf assert oo <= _inf x = Symbol('x') b = Symbol('b', finite=True, real=True) assert (x < oo) == Lt(x, oo) # issue 7775 assert b < oo and b > -oo and b <= oo and b >= -oo assert oo > b and oo >= b and (oo < b) == False and (oo <= b) == False assert (-oo > b) == False and (-oo >= b) == False and -oo < b and -oo <= b assert (oo < x) == Lt(oo, x) and (oo > x) == Gt(oo, x) assert (oo <= x) == Le(oo, x) and (oo >= x) == Ge(oo, x) assert (-oo < x) == Lt(-oo, x) and (-oo > x) == Gt(-oo, x) assert (-oo <= x) == Le(-oo, x) and (-oo >= x) == Ge(-oo, x) def test_NaN(): assert nan is nan assert nan != 1 assert 1*nan is nan assert 1 != nan assert -nan is nan assert oo != Symbol("x")**3 assert 2 + nan is nan assert 3*nan + 2 is nan assert -nan*3 is nan assert nan + nan is nan assert -nan + nan*(-5) is nan assert 8/nan is nan raises(TypeError, lambda: nan > 0) raises(TypeError, lambda: nan < 0) raises(TypeError, lambda: nan >= 0) raises(TypeError, lambda: nan <= 0) raises(TypeError, lambda: 0 < nan) raises(TypeError, lambda: 0 > nan) raises(TypeError, lambda: 0 <= nan) raises(TypeError, lambda: 0 >= nan) assert nan**0 == 1 # as per IEEE 754 assert 1**nan is nan # IEEE 754 is not the best choice for symbolic work # test Pow._eval_power's handling of NaN assert Pow(nan, 0, evaluate=False)**2 == 1 for n in (1, 1., S.One, S.NegativeOne, Float(1)): assert n + nan is nan assert n - nan is nan assert nan + n is nan assert nan - n is nan assert n/nan is nan assert nan/n is nan def test_special_numbers(): assert isinstance(S.NaN, Number) is True assert isinstance(S.Infinity, Number) is True assert isinstance(S.NegativeInfinity, Number) is True assert S.NaN.is_number is True assert S.Infinity.is_number is True assert S.NegativeInfinity.is_number is True assert S.ComplexInfinity.is_number is True assert isinstance(S.NaN, Rational) is False assert isinstance(S.Infinity, Rational) is False assert isinstance(S.NegativeInfinity, Rational) is False assert S.NaN.is_rational is not True assert S.Infinity.is_rational is not True assert S.NegativeInfinity.is_rational is not True def test_powers(): assert integer_nthroot(1, 2) == (1, True) assert integer_nthroot(1, 5) == (1, True) assert integer_nthroot(2, 1) == (2, True) assert integer_nthroot(2, 2) == (1, False) assert integer_nthroot(2, 5) == (1, False) assert integer_nthroot(4, 2) == (2, True) assert integer_nthroot(123**25, 25) == (123, True) assert integer_nthroot(123**25 + 1, 25) == (123, False) assert integer_nthroot(123**25 - 1, 25) == (122, False) assert integer_nthroot(1, 1) == (1, True) assert integer_nthroot(0, 1) == (0, True) assert integer_nthroot(0, 3) == (0, True) assert integer_nthroot(10000, 1) == (10000, True) assert integer_nthroot(4, 2) == (2, True) assert integer_nthroot(16, 2) == (4, True) assert integer_nthroot(26, 2) == (5, False) assert integer_nthroot(1234567**7, 7) == (1234567, True) assert integer_nthroot(1234567**7 + 1, 7) == (1234567, False) assert integer_nthroot(1234567**7 - 1, 7) == (1234566, False) b = 25**1000 assert integer_nthroot(b, 1000) == (25, True) assert integer_nthroot(b + 1, 1000) == (25, False) assert integer_nthroot(b - 1, 1000) == (24, False) c = 10**400 c2 = c**2 assert integer_nthroot(c2, 2) == (c, True) assert integer_nthroot(c2 + 1, 2) == (c, False) assert integer_nthroot(c2 - 1, 2) == (c - 1, False) assert integer_nthroot(2, 10**10) == (1, False) p, r = integer_nthroot(int(factorial(10000)), 100) assert p % (10**10) == 5322420655 assert not r # Test that this is fast assert integer_nthroot(2, 10**10) == (1, False) # output should be int if possible assert type(integer_nthroot(2**61, 2)[0]) is int def test_integer_nthroot_overflow(): assert integer_nthroot(10**(50*50), 50) == (10**50, True) assert integer_nthroot(10**100000, 10000) == (10**10, True) def test_integer_log(): raises(ValueError, lambda: integer_log(2, 1)) raises(ValueError, lambda: integer_log(0, 2)) raises(ValueError, lambda: integer_log(1.1, 2)) raises(ValueError, lambda: integer_log(1, 2.2)) assert integer_log(1, 2) == (0, True) assert integer_log(1, 3) == (0, True) assert integer_log(2, 3) == (0, False) assert integer_log(3, 3) == (1, True) assert integer_log(3*2, 3) == (1, False) assert integer_log(3**2, 3) == (2, True) assert integer_log(3*4, 3) == (2, False) assert integer_log(3**3, 3) == (3, True) assert integer_log(27, 5) == (2, False) assert integer_log(2, 3) == (0, False) assert integer_log(-4, -2) == (2, False) assert integer_log(27, -3) == (3, False) assert integer_log(-49, 7) == (0, False) assert integer_log(-49, -7) == (2, False) def test_isqrt(): from math import sqrt as _sqrt limit = 4503599761588223 assert int(_sqrt(limit)) == integer_nthroot(limit, 2)[0] assert int(_sqrt(limit + 1)) != integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + 1) == integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + S.Half) == integer_nthroot(limit, 2)[0] assert isqrt(limit + 1 + S.Half) == integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + 2 + S.Half) == integer_nthroot(limit + 2, 2)[0] # Regression tests for https://github.com/sympy/sympy/issues/17034 assert isqrt(4503599761588224) == 67108864 assert isqrt(9999999999999999) == 99999999 # Other corner cases, especially involving non-integers. raises(ValueError, lambda: isqrt(-1)) raises(ValueError, lambda: isqrt(-10**1000)) raises(ValueError, lambda: isqrt(Rational(-1, 2))) tiny = Rational(1, 10**1000) raises(ValueError, lambda: isqrt(-tiny)) assert isqrt(1-tiny) == 0 assert isqrt(4503599761588224-tiny) == 67108864 assert isqrt(10**100 - tiny) == 10**50 - 1 # Check that using an inaccurate math.sqrt doesn't affect the results. from sympy.core import power old_sqrt = power._sqrt power._sqrt = lambda x: 2.999999999 try: assert isqrt(9) == 3 assert isqrt(10000) == 100 finally: power._sqrt = old_sqrt def test_powers_Integer(): """Test Integer._eval_power""" # check infinity assert S.One ** S.Infinity is S.NaN assert S.NegativeOne** S.Infinity is S.NaN assert S(2) ** S.Infinity is S.Infinity assert S(-2)** S.Infinity == S.Infinity + S.Infinity * S.ImaginaryUnit assert S(0) ** S.Infinity is S.Zero # check Nan assert S.One ** S.NaN is S.NaN assert S.NegativeOne ** S.NaN is S.NaN # check for exact roots assert S.NegativeOne ** Rational(6, 5) == - (-1)**(S.One/5) assert sqrt(S(4)) == 2 assert sqrt(S(-4)) == I * 2 assert S(16) ** Rational(1, 4) == 2 assert S(-16) ** Rational(1, 4) == 2 * (-1)**Rational(1, 4) assert S(9) ** Rational(3, 2) == 27 assert S(-9) ** Rational(3, 2) == -27*I assert S(27) ** Rational(2, 3) == 9 assert S(-27) ** Rational(2, 3) == 9 * (S.NegativeOne ** Rational(2, 3)) assert (-2) ** Rational(-2, 1) == Rational(1, 4) # not exact roots assert sqrt(-3) == I*sqrt(3) assert (3) ** (Rational(3, 2)) == 3 * sqrt(3) assert (-3) ** (Rational(3, 2)) == - 3 * sqrt(-3) assert (-3) ** (Rational(5, 2)) == 9 * I * sqrt(3) assert (-3) ** (Rational(7, 2)) == - I * 27 * sqrt(3) assert (2) ** (Rational(3, 2)) == 2 * sqrt(2) assert (2) ** (Rational(-3, 2)) == sqrt(2) / 4 assert (81) ** (Rational(2, 3)) == 9 * (S(3) ** (Rational(2, 3))) assert (-81) ** (Rational(2, 3)) == 9 * (S(-3) ** (Rational(2, 3))) assert (-3) ** Rational(-7, 3) == \ -(-1)**Rational(2, 3)*3**Rational(2, 3)/27 assert (-3) ** Rational(-2, 3) == \ -(-1)**Rational(1, 3)*3**Rational(1, 3)/3 # join roots assert sqrt(6) + sqrt(24) == 3*sqrt(6) assert sqrt(2) * sqrt(3) == sqrt(6) # separate symbols & constansts x = Symbol("x") assert sqrt(49 * x) == 7 * sqrt(x) assert sqrt((3 - sqrt(pi)) ** 2) == 3 - sqrt(pi) # check that it is fast for big numbers assert (2**64 + 1) ** Rational(4, 3) assert (2**64 + 1) ** Rational(17, 25) # negative rational power and negative base assert (-3) ** Rational(-7, 3) == \ -(-1)**Rational(2, 3)*3**Rational(2, 3)/27 assert (-3) ** Rational(-2, 3) == \ -(-1)**Rational(1, 3)*3**Rational(1, 3)/3 assert (-2) ** Rational(-10, 3) == \ (-1)**Rational(2, 3)*2**Rational(2, 3)/16 assert abs(Pow(-2, Rational(-10, 3)).n() - Pow(-2, Rational(-10, 3), evaluate=False).n()) < 1e-16 # negative base and rational power with some simplification assert (-8) ** Rational(2, 5) == \ 2*(-1)**Rational(2, 5)*2**Rational(1, 5) assert (-4) ** Rational(9, 5) == \ -8*(-1)**Rational(4, 5)*2**Rational(3, 5) assert S(1234).factors() == {617: 1, 2: 1} assert Rational(2*3, 3*5*7).factors() == {2: 1, 5: -1, 7: -1} # test that eval_power factors numbers bigger than # the current limit in factor_trial_division (2**15) from sympy import nextprime n = nextprime(2**15) assert sqrt(n**2) == n assert sqrt(n**3) == n*sqrt(n) assert sqrt(4*n) == 2*sqrt(n) # check that factors of base with powers sharing gcd with power are removed assert (2**4*3)**Rational(1, 6) == 2**Rational(2, 3)*3**Rational(1, 6) assert (2**4*3)**Rational(5, 6) == 8*2**Rational(1, 3)*3**Rational(5, 6) # check that bases sharing a gcd are exptracted assert 2**Rational(1, 3)*3**Rational(1, 4)*6**Rational(1, 5) == \ 2**Rational(8, 15)*3**Rational(9, 20) assert sqrt(8)*24**Rational(1, 3)*6**Rational(1, 5) == \ 4*2**Rational(7, 10)*3**Rational(8, 15) assert sqrt(8)*(-24)**Rational(1, 3)*(-6)**Rational(1, 5) == \ 4*(-3)**Rational(8, 15)*2**Rational(7, 10) assert 2**Rational(1, 3)*2**Rational(8, 9) == 2*2**Rational(2, 9) assert 2**Rational(2, 3)*6**Rational(1, 3) == 2*3**Rational(1, 3) assert 2**Rational(2, 3)*6**Rational(8, 9) == \ 2*2**Rational(5, 9)*3**Rational(8, 9) assert (-2)**Rational(2, S(3))*(-4)**Rational(1, S(3)) == -2*2**Rational(1, 3) assert 3*Pow(3, 2, evaluate=False) == 3**3 assert 3*Pow(3, Rational(-1, 3), evaluate=False) == 3**Rational(2, 3) assert (-2)**Rational(1, 3)*(-3)**Rational(1, 4)*(-5)**Rational(5, 6) == \ -(-1)**Rational(5, 12)*2**Rational(1, 3)*3**Rational(1, 4) * \ 5**Rational(5, 6) assert Integer(-2)**Symbol('', even=True) == \ Integer(2)**Symbol('', even=True) assert (-1)**Float(.5) == 1.0*I def test_powers_Rational(): """Test Rational._eval_power""" # check infinity assert S.Half ** S.Infinity == 0 assert Rational(3, 2) ** S.Infinity is S.Infinity assert Rational(-1, 2) ** S.Infinity == 0 assert Rational(-3, 2) ** S.Infinity == \ S.Infinity + S.Infinity * S.ImaginaryUnit # check Nan assert Rational(3, 4) ** S.NaN is S.NaN assert Rational(-2, 3) ** S.NaN is S.NaN # exact roots on numerator assert sqrt(Rational(4, 3)) == 2 * sqrt(3) / 3 assert Rational(4, 3) ** Rational(3, 2) == 8 * sqrt(3) / 9 assert sqrt(Rational(-4, 3)) == I * 2 * sqrt(3) / 3 assert Rational(-4, 3) ** Rational(3, 2) == - I * 8 * sqrt(3) / 9 assert Rational(27, 2) ** Rational(1, 3) == 3 * (2 ** Rational(2, 3)) / 2 assert Rational(5**3, 8**3) ** Rational(4, 3) == Rational(5**4, 8**4) # exact root on denominator assert sqrt(Rational(1, 4)) == S.Half assert sqrt(Rational(1, -4)) == I * S.Half assert sqrt(Rational(3, 4)) == sqrt(3) / 2 assert sqrt(Rational(3, -4)) == I * sqrt(3) / 2 assert Rational(5, 27) ** Rational(1, 3) == (5 ** Rational(1, 3)) / 3 # not exact roots assert sqrt(S.Half) == sqrt(2) / 2 assert sqrt(Rational(-4, 7)) == I * sqrt(Rational(4, 7)) assert Rational(-3, 2)**Rational(-7, 3) == \ -4*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/27 assert Rational(-3, 2)**Rational(-2, 3) == \ -(-1)**Rational(1, 3)*2**Rational(2, 3)*3**Rational(1, 3)/3 assert Rational(-3, 2)**Rational(-10, 3) == \ 8*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/81 assert abs(Pow(Rational(-2, 3), Rational(-7, 4)).n() - Pow(Rational(-2, 3), Rational(-7, 4), evaluate=False).n()) < 1e-16 # negative integer power and negative rational base assert Rational(-2, 3) ** Rational(-2, 1) == Rational(9, 4) a = Rational(1, 10) assert a**Float(a, 2) == Float(a, 2)**Float(a, 2) assert Rational(-2, 3)**Symbol('', even=True) == \ Rational(2, 3)**Symbol('', even=True) def test_powers_Float(): assert str((S('-1/10')**S('3/10')).n()) == str(Float(-.1)**(.3)) def test_abs1(): assert Rational(1, 6) != Rational(-1, 6) assert abs(Rational(1, 6)) == abs(Rational(-1, 6)) def test_accept_int(): assert Float(4) == 4 def test_dont_accept_str(): assert Float("0.2") != "0.2" assert not (Float("0.2") == "0.2") def test_int(): a = Rational(5) assert int(a) == 5 a = Rational(9, 10) assert int(a) == int(-a) == 0 assert 1/(-1)**Rational(2, 3) == -(-1)**Rational(1, 3) assert int(pi) == 3 assert int(E) == 2 assert int(GoldenRatio) == 1 assert int(TribonacciConstant) == 2 # issue 10368 a = Rational(32442016954, 78058255275) assert type(int(a)) is type(int(-a)) is int def test_real_bug(): x = Symbol("x") assert str(2.0*x*x) in ["(2.0*x)*x", "2.0*x**2", "2.00000000000000*x**2"] assert str(2.1*x*x) != "(2.0*x)*x" def test_bug_sqrt(): assert ((sqrt(Rational(2)) + 1)*(sqrt(Rational(2)) - 1)).expand() == 1 def test_pi_Pi(): "Test that pi (instance) is imported, but Pi (class) is not" from sympy import pi # noqa with raises(ImportError): from sympy import Pi # noqa def test_no_len(): # there should be no len for numbers raises(TypeError, lambda: len(Rational(2))) raises(TypeError, lambda: len(Rational(2, 3))) raises(TypeError, lambda: len(Integer(2))) def test_issue_3321(): assert sqrt(Rational(1, 5)) == Rational(1, 5)**S.Half assert 5 * sqrt(Rational(1, 5)) == sqrt(5) def test_issue_3692(): assert ((-1)**Rational(1, 6)).expand(complex=True) == I/2 + sqrt(3)/2 assert ((-5)**Rational(1, 6)).expand(complex=True) == \ 5**Rational(1, 6)*I/2 + 5**Rational(1, 6)*sqrt(3)/2 assert ((-64)**Rational(1, 6)).expand(complex=True) == I + sqrt(3) def test_issue_3423(): x = Symbol("x") assert sqrt(x - 1).as_base_exp() == (x - 1, S.Half) assert sqrt(x - 1) != I*sqrt(1 - x) def test_issue_3449(): x = Symbol("x") assert sqrt(x - 1).subs(x, 5) == 2 def test_issue_13890(): x = Symbol("x") e = (-x/4 - S.One/12)**x - 1 f = simplify(e) a = Rational(9, 5) assert abs(e.subs(x,a).evalf() - f.subs(x,a).evalf()) < 1e-15 def test_Integer_factors(): def F(i): return Integer(i).factors() assert F(1) == {} assert F(2) == {2: 1} assert F(3) == {3: 1} assert F(4) == {2: 2} assert F(5) == {5: 1} assert F(6) == {2: 1, 3: 1} assert F(7) == {7: 1} assert F(8) == {2: 3} assert F(9) == {3: 2} assert F(10) == {2: 1, 5: 1} assert F(11) == {11: 1} assert F(12) == {2: 2, 3: 1} assert F(13) == {13: 1} assert F(14) == {2: 1, 7: 1} assert F(15) == {3: 1, 5: 1} assert F(16) == {2: 4} assert F(17) == {17: 1} assert F(18) == {2: 1, 3: 2} assert F(19) == {19: 1} assert F(20) == {2: 2, 5: 1} assert F(21) == {3: 1, 7: 1} assert F(22) == {2: 1, 11: 1} assert F(23) == {23: 1} assert F(24) == {2: 3, 3: 1} assert F(25) == {5: 2} assert F(26) == {2: 1, 13: 1} assert F(27) == {3: 3} assert F(28) == {2: 2, 7: 1} assert F(29) == {29: 1} assert F(30) == {2: 1, 3: 1, 5: 1} assert F(31) == {31: 1} assert F(32) == {2: 5} assert F(33) == {3: 1, 11: 1} assert F(34) == {2: 1, 17: 1} assert F(35) == {5: 1, 7: 1} assert F(36) == {2: 2, 3: 2} assert F(37) == {37: 1} assert F(38) == {2: 1, 19: 1} assert F(39) == {3: 1, 13: 1} assert F(40) == {2: 3, 5: 1} assert F(41) == {41: 1} assert F(42) == {2: 1, 3: 1, 7: 1} assert F(43) == {43: 1} assert F(44) == {2: 2, 11: 1} assert F(45) == {3: 2, 5: 1} assert F(46) == {2: 1, 23: 1} assert F(47) == {47: 1} assert F(48) == {2: 4, 3: 1} assert F(49) == {7: 2} assert F(50) == {2: 1, 5: 2} assert F(51) == {3: 1, 17: 1} def test_Rational_factors(): def F(p, q, visual=None): return Rational(p, q).factors(visual=visual) assert F(2, 3) == {2: 1, 3: -1} assert F(2, 9) == {2: 1, 3: -2} assert F(2, 15) == {2: 1, 3: -1, 5: -1} assert F(6, 10) == {3: 1, 5: -1} def test_issue_4107(): assert pi*(E + 10) + pi*(-E - 10) != 0 assert pi*(E + 10**10) + pi*(-E - 10**10) != 0 assert pi*(E + 10**20) + pi*(-E - 10**20) != 0 assert pi*(E + 10**80) + pi*(-E - 10**80) != 0 assert (pi*(E + 10) + pi*(-E - 10)).expand() == 0 assert (pi*(E + 10**10) + pi*(-E - 10**10)).expand() == 0 assert (pi*(E + 10**20) + pi*(-E - 10**20)).expand() == 0 assert (pi*(E + 10**80) + pi*(-E - 10**80)).expand() == 0 def test_IntegerInteger(): a = Integer(4) b = Integer(a) assert a == b def test_Rational_gcd_lcm_cofactors(): assert Integer(4).gcd(2) == Integer(2) assert Integer(4).lcm(2) == Integer(4) assert Integer(4).gcd(Integer(2)) == Integer(2) assert Integer(4).lcm(Integer(2)) == Integer(4) a, b = 720**99911, 480**12342 assert Integer(a).lcm(b) == a*b/Integer(a).gcd(b) assert Integer(4).gcd(3) == Integer(1) assert Integer(4).lcm(3) == Integer(12) assert Integer(4).gcd(Integer(3)) == Integer(1) assert Integer(4).lcm(Integer(3)) == Integer(12) assert Rational(4, 3).gcd(2) == Rational(2, 3) assert Rational(4, 3).lcm(2) == Integer(4) assert Rational(4, 3).gcd(Integer(2)) == Rational(2, 3) assert Rational(4, 3).lcm(Integer(2)) == Integer(4) assert Integer(4).gcd(Rational(2, 9)) == Rational(2, 9) assert Integer(4).lcm(Rational(2, 9)) == Integer(4) assert Rational(4, 3).gcd(Rational(2, 9)) == Rational(2, 9) assert Rational(4, 3).lcm(Rational(2, 9)) == Rational(4, 3) assert Rational(4, 5).gcd(Rational(2, 9)) == Rational(2, 45) assert Rational(4, 5).lcm(Rational(2, 9)) == Integer(4) assert Rational(5, 9).lcm(Rational(3, 7)) == Rational(Integer(5).lcm(3),Integer(9).gcd(7)) assert Integer(4).cofactors(2) == (Integer(2), Integer(2), Integer(1)) assert Integer(4).cofactors(Integer(2)) == \ (Integer(2), Integer(2), Integer(1)) assert Integer(4).gcd(Float(2.0)) == S.One assert Integer(4).lcm(Float(2.0)) == Float(8.0) assert Integer(4).cofactors(Float(2.0)) == (S.One, Integer(4), Float(2.0)) assert S.Half.gcd(Float(2.0)) == S.One assert S.Half.lcm(Float(2.0)) == Float(1.0) assert S.Half.cofactors(Float(2.0)) == \ (S.One, S.Half, Float(2.0)) def test_Float_gcd_lcm_cofactors(): assert Float(2.0).gcd(Integer(4)) == S.One assert Float(2.0).lcm(Integer(4)) == Float(8.0) assert Float(2.0).cofactors(Integer(4)) == (S.One, Float(2.0), Integer(4)) assert Float(2.0).gcd(S.Half) == S.One assert Float(2.0).lcm(S.Half) == Float(1.0) assert Float(2.0).cofactors(S.Half) == \ (S.One, Float(2.0), S.Half) def test_issue_4611(): assert abs(pi._evalf(50) - 3.14159265358979) < 1e-10 assert abs(E._evalf(50) - 2.71828182845905) < 1e-10 assert abs(Catalan._evalf(50) - 0.915965594177219) < 1e-10 assert abs(EulerGamma._evalf(50) - 0.577215664901533) < 1e-10 assert abs(GoldenRatio._evalf(50) - 1.61803398874989) < 1e-10 assert abs(TribonacciConstant._evalf(50) - 1.83928675521416) < 1e-10 x = Symbol("x") assert (pi + x).evalf() == pi.evalf() + x assert (E + x).evalf() == E.evalf() + x assert (Catalan + x).evalf() == Catalan.evalf() + x assert (EulerGamma + x).evalf() == EulerGamma.evalf() + x assert (GoldenRatio + x).evalf() == GoldenRatio.evalf() + x assert (TribonacciConstant + x).evalf() == TribonacciConstant.evalf() + x @conserve_mpmath_dps def test_conversion_to_mpmath(): assert mpmath.mpmathify(Integer(1)) == mpmath.mpf(1) assert mpmath.mpmathify(S.Half) == mpmath.mpf(0.5) assert mpmath.mpmathify(Float('1.23', 15)) == mpmath.mpf('1.23') assert mpmath.mpmathify(I) == mpmath.mpc(1j) assert mpmath.mpmathify(1 + 2*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1.0 + 2*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1 + 2.0*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1.0 + 2.0*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(S.Half + S.Half*I) == mpmath.mpc(0.5 + 0.5j) assert mpmath.mpmathify(2*I) == mpmath.mpc(2j) assert mpmath.mpmathify(2.0*I) == mpmath.mpc(2j) assert mpmath.mpmathify(S.Half*I) == mpmath.mpc(0.5j) mpmath.mp.dps = 100 assert mpmath.mpmathify(pi.evalf(100) + pi.evalf(100)*I) == mpmath.pi + mpmath.pi*mpmath.j assert mpmath.mpmathify(pi.evalf(100)*I) == mpmath.pi*mpmath.j def test_relational(): # real x = S(.1) assert (x != cos) is True assert (x == cos) is False # rational x = Rational(1, 3) assert (x != cos) is True assert (x == cos) is False # integer defers to rational so these tests are omitted # number symbol x = pi assert (x != cos) is True assert (x == cos) is False def test_Integer_as_index(): assert 'hello'[Integer(2):] == 'llo' def test_Rational_int(): assert int( Rational(7, 5)) == 1 assert int( S.Half) == 0 assert int(Rational(-1, 2)) == 0 assert int(-Rational(7, 5)) == -1 def test_zoo(): b = Symbol('b', finite=True) nz = Symbol('nz', nonzero=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) im = Symbol('i', imaginary=True) c = Symbol('c', complex=True) pb = Symbol('pb', positive=True, finite=True) nb = Symbol('nb', negative=True, finite=True) imb = Symbol('ib', imaginary=True, finite=True) for i in [I, S.Infinity, S.NegativeInfinity, S.Zero, S.One, S.Pi, S.Half, S(3), log(3), b, nz, p, n, im, pb, nb, imb, c]: if i.is_finite and (i.is_real or i.is_imaginary): assert i + zoo is zoo assert i - zoo is zoo assert zoo + i is zoo assert zoo - i is zoo elif i.is_finite is not False: assert (i + zoo).is_Add assert (i - zoo).is_Add assert (zoo + i).is_Add assert (zoo - i).is_Add else: assert (i + zoo) is S.NaN assert (i - zoo) is S.NaN assert (zoo + i) is S.NaN assert (zoo - i) is S.NaN if fuzzy_not(i.is_zero) and (i.is_extended_real or i.is_imaginary): assert i*zoo is zoo assert zoo*i is zoo elif i.is_zero: assert i*zoo is S.NaN assert zoo*i is S.NaN else: assert (i*zoo).is_Mul assert (zoo*i).is_Mul if fuzzy_not((1/i).is_zero) and (i.is_real or i.is_imaginary): assert zoo/i is zoo elif (1/i).is_zero: assert zoo/i is S.NaN elif i.is_zero: assert zoo/i is zoo else: assert (zoo/i).is_Mul assert (I*oo).is_Mul # allow directed infinity assert zoo + zoo is S.NaN assert zoo * zoo is zoo assert zoo - zoo is S.NaN assert zoo/zoo is S.NaN assert zoo**zoo is S.NaN assert zoo**0 is S.One assert zoo**2 is zoo assert 1/zoo is S.Zero assert Mul.flatten([S.NegativeOne, oo, S(0)]) == ([S.NaN], [], None) def test_issue_4122(): x = Symbol('x', nonpositive=True) assert oo + x is oo x = Symbol('x', extended_nonpositive=True) assert (oo + x).is_Add x = Symbol('x', finite=True) assert (oo + x).is_Add # x could be imaginary x = Symbol('x', nonnegative=True) assert oo + x is oo x = Symbol('x', extended_nonnegative=True) assert oo + x is oo x = Symbol('x', finite=True, real=True) assert oo + x is oo # similarly for negative infinity x = Symbol('x', nonnegative=True) assert -oo + x is -oo x = Symbol('x', extended_nonnegative=True) assert (-oo + x).is_Add x = Symbol('x', finite=True) assert (-oo + x).is_Add x = Symbol('x', nonpositive=True) assert -oo + x is -oo x = Symbol('x', extended_nonpositive=True) assert -oo + x is -oo x = Symbol('x', finite=True, real=True) assert -oo + x is -oo def test_GoldenRatio_expand(): assert GoldenRatio.expand(func=True) == S.Half + sqrt(5)/2 def test_TribonacciConstant_expand(): assert TribonacciConstant.expand(func=True) == \ (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def test_as_content_primitive(): assert S.Zero.as_content_primitive() == (1, 0) assert S.Half.as_content_primitive() == (S.Half, 1) assert (Rational(-1, 2)).as_content_primitive() == (S.Half, -1) assert S(3).as_content_primitive() == (3, 1) assert S(3.1).as_content_primitive() == (1, 3.1) def test_hashing_sympy_integers(): # Test for issue 5072 assert {Integer(3)} == {int(3)} assert hash(Integer(4)) == hash(int(4)) def test_rounding_issue_4172(): assert int((E**100).round()) == \ 26881171418161354484126255515800135873611119 assert int((pi**100).round()) == \ 51878483143196131920862615246303013562686760680406 assert int((Rational(1)/EulerGamma**100).round()) == \ 734833795660954410469466 @XFAIL def test_mpmath_issues(): from mpmath.libmp.libmpf import _normalize import mpmath.libmp as mlib rnd = mlib.round_nearest mpf = (0, int(0), -123, -1, 53, rnd) # nan assert _normalize(mpf, 53) != (0, int(0), 0, 0) mpf = (0, int(0), -456, -2, 53, rnd) # +inf assert _normalize(mpf, 53) != (0, int(0), 0, 0) mpf = (1, int(0), -789, -3, 53, rnd) # -inf assert _normalize(mpf, 53) != (0, int(0), 0, 0) from mpmath.libmp.libmpf import fnan assert mlib.mpf_eq(fnan, fnan) def test_Catalan_EulerGamma_prec(): n = GoldenRatio f = Float(n.n(), 5) assert f._mpf_ == (0, int(212079), -17, 18) assert f._prec == 20 assert n._as_mpf_val(20) == f._mpf_ n = EulerGamma f = Float(n.n(), 5) assert f._mpf_ == (0, int(302627), -19, 19) assert f._prec == 20 assert n._as_mpf_val(20) == f._mpf_ def test_Catalan_rewrite(): k = Dummy('k', integer=True, nonnegative=True) assert Catalan.rewrite(Sum).dummy_eq( Sum((-1)**k/(2*k + 1)**2, (k, 0, oo))) assert Catalan.rewrite() == Catalan def test_bool_eq(): assert 0 == False assert S(0) == False assert S(0) != S.false assert 1 == True assert S.One == True assert S.One != S.true def test_Float_eq(): # all .5 values are the same assert Float(.5, 10) == Float(.5, 11) == Float(.5, 1) # but floats that aren't exact in base-2 still # don't compare the same because they have different # underlying mpf values assert Float(.12, 3) != Float(.12, 4) assert Float(.12, 3) != .12 assert 0.12 != Float(.12, 3) assert Float('.12', 22) != .12 # issue 11707 # but Float/Rational -- except for 0 -- # are exact so Rational(x) = Float(y) only if # Rational(x) == Rational(Float(y)) assert Float('1.1') != Rational(11, 10) assert Rational(11, 10) != Float('1.1') # coverage assert not Float(3) == 2 assert not Float(2**2) == S.Half assert Float(2**2) == 4 assert not Float(2**-2) == 1 assert Float(2**-1) == S.Half assert not Float(2*3) == 3 assert not Float(2*3) == S.Half assert Float(2*3) == 6 assert not Float(2*3) == 8 assert Float(.75) == Rational(3, 4) assert Float(5/18) == 5/18 # 4473 assert Float(2.) != 3 assert Float((0,1,-3)) == S.One/8 assert Float((0,1,-3)) != S.One/9 # 16196 assert 2 == Float(2) # as per Python # but in a computation... assert t**2 != t**2.0 def test_int_NumberSymbols(): assert [int(i) for i in [pi, EulerGamma, E, GoldenRatio, Catalan]] == \ [3, 0, 2, 1, 0] def test_issue_6640(): from mpmath.libmp.libmpf import finf, fninf # fnan is not included because Float no longer returns fnan, # but otherwise, the same sort of test could apply assert Float(finf).is_zero is False assert Float(fninf).is_zero is False assert bool(Float(0)) is False def test_issue_6349(): assert Float('23.e3', '')._prec == 10 assert Float('23e3', '')._prec == 20 assert Float('23000', '')._prec == 20 assert Float('-23000', '')._prec == 20 def test_mpf_norm(): assert mpf_norm((1, 0, 1, 0), 10) == mpf('0')._mpf_ assert Float._new((1, 0, 1, 0), 10)._mpf_ == mpf('0')._mpf_ def test_latex(): assert latex(pi) == r"\pi" assert latex(E) == r"e" assert latex(GoldenRatio) == r"\phi" assert latex(TribonacciConstant) == r"\text{TribonacciConstant}" assert latex(EulerGamma) == r"\gamma" assert latex(oo) == r"\infty" assert latex(-oo) == r"-\infty" assert latex(zoo) == r"\tilde{\infty}" assert latex(nan) == r"\text{NaN}" assert latex(I) == r"i" def test_issue_7742(): assert -oo % 1 is nan def test_simplify_AlgebraicNumber(): A = AlgebraicNumber e = 3**(S.One/6)*(3 + (135 + 78*sqrt(3))**Rational(2, 3))/(45 + 26*sqrt(3))**(S.One/3) assert simplify(A(e)) == A(12) # wester test_C20 e = (41 + 29*sqrt(2))**(S.One/5) assert simplify(A(e)) == A(1 + sqrt(2)) # wester test_C21 e = (3 + 4*I)**Rational(3, 2) assert simplify(A(e)) == A(2 + 11*I) # issue 4401 def test_Float_idempotence(): x = Float('1.23', '') y = Float(x) z = Float(x, 15) assert same_and_same_prec(y, x) assert not same_and_same_prec(z, x) x = Float(10**20) y = Float(x) z = Float(x, 15) assert same_and_same_prec(y, x) assert not same_and_same_prec(z, x) def test_comp1(): # sqrt(2) = 1.414213 5623730950... a = sqrt(2).n(7) assert comp(a, 1.4142129) is False assert comp(a, 1.4142130) # ... assert comp(a, 1.4142141) assert comp(a, 1.4142142) is False assert comp(sqrt(2).n(2), '1.4') assert comp(sqrt(2).n(2), Float(1.4, 2), '') assert comp(sqrt(2).n(2), 1.4, '') assert comp(sqrt(2).n(2), Float(1.4, 3), '') is False assert comp(sqrt(2) + sqrt(3)*I, 1.4 + 1.7*I, .1) assert not comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*0.89, .1) assert comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*0.90, .1) assert comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*1.07, .1) assert not comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*1.08, .1) assert [(i, j) for i in range(130, 150) for j in range(170, 180) if comp((sqrt(2)+ I*sqrt(3)).n(3), i/100. + I*j/100.)] == [ (141, 173), (142, 173)] raises(ValueError, lambda: comp(t, '1')) raises(ValueError, lambda: comp(t, 1)) assert comp(0, 0.0) assert comp(.5, S.Half) assert comp(2 + sqrt(2), 2.0 + sqrt(2)) assert not comp(0, 1) assert not comp(2, sqrt(2)) assert not comp(2 + I, 2.0 + sqrt(2)) assert not comp(2.0 + sqrt(2), 2 + I) assert not comp(2.0 + sqrt(2), sqrt(3)) assert comp(1/pi.n(4), 0.3183, 1e-5) assert not comp(1/pi.n(4), 0.3183, 8e-6) def test_issue_9491(): assert oo**zoo is nan def test_issue_10063(): assert 2**Float(3) == Float(8) def test_issue_10020(): assert oo**I is S.NaN assert oo**(1 + I) is S.ComplexInfinity assert oo**(-1 + I) is S.Zero assert (-oo)**I is S.NaN assert (-oo)**(-1 + I) is S.Zero assert oo**t == Pow(oo, t, evaluate=False) assert (-oo)**t == Pow(-oo, t, evaluate=False) def test_invert_numbers(): assert S(2).invert(5) == 3 assert S(2).invert(Rational(5, 2)) == S.Half assert S(2).invert(5.) == 0.5 assert S(2).invert(S(5)) == 3 assert S(2.).invert(5) == 0.5 assert S(sqrt(2)).invert(5) == 1/sqrt(2) assert S(sqrt(2)).invert(sqrt(3)) == 1/sqrt(2) def test_mod_inverse(): assert mod_inverse(3, 11) == 4 assert mod_inverse(5, 11) == 9 assert mod_inverse(21124921, 521512) == 7713 assert mod_inverse(124215421, 5125) == 2981 assert mod_inverse(214, 12515) == 1579 assert mod_inverse(5823991, 3299) == 1442 assert mod_inverse(123, 44) == 39 assert mod_inverse(2, 5) == 3 assert mod_inverse(-2, 5) == 2 assert mod_inverse(2, -5) == -2 assert mod_inverse(-2, -5) == -3 assert mod_inverse(-3, -7) == -5 x = Symbol('x') assert S(2).invert(x) == S.Half raises(TypeError, lambda: mod_inverse(2, x)) raises(ValueError, lambda: mod_inverse(2, S.Half)) raises(ValueError, lambda: mod_inverse(2, cos(1)**2 + sin(1)**2)) def test_golden_ratio_rewrite_as_sqrt(): assert GoldenRatio.rewrite(sqrt) == S.Half + sqrt(5)*S.Half def test_tribonacci_constant_rewrite_as_sqrt(): assert TribonacciConstant.rewrite(sqrt) == \ (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def test_comparisons_with_unknown_type(): class Foo: """ Class that is unaware of Basic, and relies on both classes returning the NotImplemented singleton for equivalence to evaluate to False. """ ni, nf, nr = Integer(3), Float(1.0), Rational(1, 3) foo = Foo() for n in ni, nf, nr, oo, -oo, zoo, nan: assert n != foo assert foo != n assert not n == foo assert not foo == n raises(TypeError, lambda: n < foo) raises(TypeError, lambda: foo > n) raises(TypeError, lambda: n > foo) raises(TypeError, lambda: foo < n) raises(TypeError, lambda: n <= foo) raises(TypeError, lambda: foo >= n) raises(TypeError, lambda: n >= foo) raises(TypeError, lambda: foo <= n) class Bar: """ Class that considers itself equal to any instance of Number except infinities and nans, and relies on sympy types returning the NotImplemented singleton for symmetric equality relations. """ def __eq__(self, other): if other in (oo, -oo, zoo, nan): return False if isinstance(other, Number): return True return NotImplemented def __ne__(self, other): return not self == other bar = Bar() for n in ni, nf, nr: assert n == bar assert bar == n assert not n != bar assert not bar != n for n in oo, -oo, zoo, nan: assert n != bar assert bar != n assert not n == bar assert not bar == n for n in ni, nf, nr, oo, -oo, zoo, nan: raises(TypeError, lambda: n < bar) raises(TypeError, lambda: bar > n) raises(TypeError, lambda: n > bar) raises(TypeError, lambda: bar < n) raises(TypeError, lambda: n <= bar) raises(TypeError, lambda: bar >= n) raises(TypeError, lambda: n >= bar) raises(TypeError, lambda: bar <= n) def test_NumberSymbol_comparison(): from sympy.core.tests.test_relational import rel_check rpi = Rational('905502432259640373/288230376151711744') fpi = Float(float(pi)) assert rel_check(rpi, fpi) def test_Integer_precision(): # Make sure Integer inputs for keyword args work assert Float('1.0', dps=Integer(15))._prec == 53 assert Float('1.0', precision=Integer(15))._prec == 15 assert type(Float('1.0', precision=Integer(15))._prec) == int assert sympify(srepr(Float('1.0', precision=15))) == Float('1.0', precision=15) def test_numpy_to_float(): from sympy.testing.pytest import skip from sympy.external import import_module np = import_module('numpy') if not np: skip('numpy not installed. Abort numpy tests.') def check_prec_and_relerr(npval, ratval): prec = np.finfo(npval).nmant + 1 x = Float(npval) assert x._prec == prec y = Float(ratval, precision=prec) assert abs((x - y)/y) < 2**(-(prec + 1)) check_prec_and_relerr(np.float16(2.0/3), Rational(2, 3)) check_prec_and_relerr(np.float32(2.0/3), Rational(2, 3)) check_prec_and_relerr(np.float64(2.0/3), Rational(2, 3)) # extended precision, on some arch/compilers: x = np.longdouble(2)/3 check_prec_and_relerr(x, Rational(2, 3)) y = Float(x, precision=10) assert same_and_same_prec(y, Float(Rational(2, 3), precision=10)) raises(TypeError, lambda: Float(np.complex64(1+2j))) raises(TypeError, lambda: Float(np.complex128(1+2j))) def test_Integer_ceiling_floor(): a = Integer(4) assert a.floor() == a assert a.ceiling() == a def test_ComplexInfinity(): assert zoo.floor() is zoo assert zoo.ceiling() is zoo assert zoo**zoo is S.NaN def test_Infinity_floor_ceiling_power(): assert oo.floor() is oo assert oo.ceiling() is oo assert oo**S.NaN is S.NaN assert oo**zoo is S.NaN def test_One_power(): assert S.One**12 is S.One assert S.NegativeOne**S.NaN is S.NaN def test_NegativeInfinity(): assert (-oo).floor() is -oo assert (-oo).ceiling() is -oo assert (-oo)**11 is -oo assert (-oo)**12 is oo def test_issue_6133(): raises(TypeError, lambda: (-oo < None)) raises(TypeError, lambda: (S(-2) < None)) raises(TypeError, lambda: (oo < None)) raises(TypeError, lambda: (oo > None)) raises(TypeError, lambda: (S(2) < None)) def test_abc(): x = numbers.Float(5) assert(isinstance(x, nums.Number)) assert(isinstance(x, numbers.Number)) assert(isinstance(x, nums.Real)) y = numbers.Rational(1, 3) assert(isinstance(y, nums.Number)) assert(y.numerator() == 1) assert(y.denominator() == 3) assert(isinstance(y, nums.Rational)) z = numbers.Integer(3) assert(isinstance(z, nums.Number)) def test_floordiv(): assert S(2)//S.Half == 4
607f845e6c88cce0cea87f56c3187aba11aaca22961a1c3980978e186efb2c28
from sympy import (Abs, Add, atan, ceiling, cos, E, Eq, exp, factor, factorial, fibonacci, floor, Function, GoldenRatio, I, Integral, integrate, log, Mul, N, oo, pi, Pow, product, Product, tan, Rational, S, Sum, simplify, sin, sqrt, sstr, sympify, Symbol, Max, nfloat, cosh, acosh, acos) from sympy.core.numbers import comp from sympy.core.evalf import (complex_accuracy, PrecisionExhausted, scaled_zero, get_integer_part, as_mpmath, evalf) from mpmath import inf, ninf from mpmath.libmp.libmpf import from_float from sympy.core.expr import unchanged from sympy.testing.pytest import raises, XFAIL from sympy.abc import n, x, y def NS(e, n=15, **options): return sstr(sympify(e).evalf(n, **options), full_prec=True) def test_evalf_helpers(): assert complex_accuracy((from_float(2.0), None, 35, None)) == 35 assert complex_accuracy((from_float(2.0), from_float(10.0), 35, 100)) == 37 assert complex_accuracy( (from_float(2.0), from_float(1000.0), 35, 100)) == 43 assert complex_accuracy((from_float(2.0), from_float(10.0), 100, 35)) == 35 assert complex_accuracy( (from_float(2.0), from_float(1000.0), 100, 35)) == 35 def test_evalf_basic(): assert NS('pi', 15) == '3.14159265358979' assert NS('2/3', 10) == '0.6666666667' assert NS('355/113-pi', 6) == '2.66764e-7' assert NS('16*atan(1/5)-4*atan(1/239)', 15) == '3.14159265358979' def test_cancellation(): assert NS(Add(pi, Rational(1, 10**1000), -pi, evaluate=False), 15, maxn=1200) == '1.00000000000000e-1000' def test_evalf_powers(): assert NS('pi**(10**20)', 10) == '1.339148777e+49714987269413385435' assert NS(pi**(10**100), 10) == ('4.946362032e+4971498726941338543512682882' '9089887365167832438044244613405349992494711208' '95526746555473864642912223') assert NS('2**(1/10**50)', 15) == '1.00000000000000' assert NS('2**(1/10**50)-1', 15) == '6.93147180559945e-51' # Evaluation of Rump's ill-conditioned polynomial def test_evalf_rump(): a = 1335*y**6/4 + x**2*(11*x**2*y**2 - y**6 - 121*y**4 - 2) + 11*y**8/2 + x/(2*y) assert NS(a, 15, subs={x: 77617, y: 33096}) == '-0.827396059946821' def test_evalf_complex(): assert NS('2*sqrt(pi)*I', 10) == '3.544907702*I' assert NS('3+3*I', 15) == '3.00000000000000 + 3.00000000000000*I' assert NS('E+pi*I', 15) == '2.71828182845905 + 3.14159265358979*I' assert NS('pi * (3+4*I)', 15) == '9.42477796076938 + 12.5663706143592*I' assert NS('I*(2+I)', 15) == '-1.00000000000000 + 2.00000000000000*I' @XFAIL def test_evalf_complex_bug(): assert NS('(pi+E*I)*(E+pi*I)', 15) in ('0.e-15 + 17.25866050002*I', '0.e-17 + 17.25866050002*I', '-0.e-17 + 17.25866050002*I') def test_evalf_complex_powers(): assert NS('(E+pi*I)**100000000000000000') == \ '-3.58896782867793e+61850354284995199 + 4.58581754997159e+61850354284995199*I' # XXX: rewrite if a+a*I simplification introduced in sympy #assert NS('(pi + pi*I)**2') in ('0.e-15 + 19.7392088021787*I', '0.e-16 + 19.7392088021787*I') assert NS('(pi + pi*I)**2', chop=True) == '19.7392088021787*I' assert NS( '(pi + 1/10**8 + pi*I)**2') == '6.2831853e-8 + 19.7392088650106*I' assert NS('(pi + 1/10**12 + pi*I)**2') == '6.283e-12 + 19.7392088021850*I' assert NS('(pi + pi*I)**4', chop=True) == '-389.636364136010' assert NS( '(pi + 1/10**8 + pi*I)**4') == '-389.636366616512 + 2.4805021e-6*I' assert NS('(pi + 1/10**12 + pi*I)**4') == '-389.636364136258 + 2.481e-10*I' assert NS( '(10000*pi + 10000*pi*I)**4', chop=True) == '-3.89636364136010e+18' @XFAIL def test_evalf_complex_powers_bug(): assert NS('(pi + pi*I)**4') == '-389.63636413601 + 0.e-14*I' def test_evalf_exponentiation(): assert NS(sqrt(-pi)) == '1.77245385090552*I' assert NS(Pow(pi*I, Rational( 1, 2), evaluate=False)) == '1.25331413731550 + 1.25331413731550*I' assert NS(pi**I) == '0.413292116101594 + 0.910598499212615*I' assert NS(pi**(E + I/3)) == '20.8438653991931 + 8.36343473930031*I' assert NS((pi + I/3)**(E + I/3)) == '17.2442906093590 + 13.6839376767037*I' assert NS(exp(pi)) == '23.1406926327793' assert NS(exp(pi + E*I)) == '-21.0981542849657 + 9.50576358282422*I' assert NS(pi**pi) == '36.4621596072079' assert NS((-pi)**pi) == '-32.9138577418939 - 15.6897116534332*I' assert NS((-pi)**(-pi)) == '-0.0247567717232697 + 0.0118013091280262*I' # An example from Smith, "Multiple Precision Complex Arithmetic and Functions" def test_evalf_complex_cancellation(): A = Rational('63287/100000') B = Rational('52498/100000') C = Rational('69301/100000') D = Rational('83542/100000') F = Rational('2231321613/2500000000') # XXX: the number of returned mantissa digits in the real part could # change with the implementation. What matters is that the returned digits are # correct; those that are showing now are correct. # >>> ((A+B*I)*(C+D*I)).expand() # 64471/10000000000 + 2231321613*I/2500000000 # >>> 2231321613*4 # 8925286452L assert NS((A + B*I)*(C + D*I), 6) == '6.44710e-6 + 0.892529*I' assert NS((A + B*I)*(C + D*I), 10) == '6.447100000e-6 + 0.8925286452*I' assert NS((A + B*I)*( C + D*I) - F*I, 5) in ('6.4471e-6 + 0.e-14*I', '6.4471e-6 - 0.e-14*I') def test_evalf_logs(): assert NS("log(3+pi*I)", 15) == '1.46877619736226 + 0.808448792630022*I' assert NS("log(pi*I)", 15) == '1.14472988584940 + 1.57079632679490*I' assert NS('log(-1 + 0.00001)', 2) == '-1.0e-5 + 3.1*I' assert NS('log(100, 10, evaluate=False)', 15) == '2.00000000000000' assert NS('-2*I*log(-(-1)**(S(1)/9))', 15) == '-5.58505360638185' def test_evalf_trig(): assert NS('sin(1)', 15) == '0.841470984807897' assert NS('cos(1)', 15) == '0.540302305868140' assert NS('sin(10**-6)', 15) == '9.99999999999833e-7' assert NS('cos(10**-6)', 15) == '0.999999999999500' assert NS('sin(E*10**100)', 15) == '0.409160531722613' # Some input near roots assert NS(sin(exp(pi*sqrt(163))*pi), 15) == '-2.35596641936785e-12' assert NS(sin(pi*10**100 + Rational(7, 10**5), evaluate=False), 15, maxn=120) == \ '6.99999999428333e-5' assert NS(sin(Rational(7, 10**5), evaluate=False), 15) == \ '6.99999999428333e-5' # Check detection of various false identities def test_evalf_near_integers(): # Binet's formula f = lambda n: ((1 + sqrt(5))**n)/(2**n * sqrt(5)) assert NS(f(5000) - fibonacci(5000), 10, maxn=1500) == '5.156009964e-1046' # Some near-integer identities from # http://mathworld.wolfram.com/AlmostInteger.html assert NS('sin(2017*2**(1/5))', 15) == '-1.00000000000000' assert NS('sin(2017*2**(1/5))', 20) == '-0.99999999999999997857' assert NS('1+sin(2017*2**(1/5))', 15) == '2.14322287389390e-17' assert NS('45 - 613*E/37 + 35/991', 15) == '6.03764498766326e-11' def test_evalf_ramanujan(): assert NS(exp(pi*sqrt(163)) - 640320**3 - 744, 10) == '-7.499274028e-13' # A related identity A = 262537412640768744*exp(-pi*sqrt(163)) B = 196884*exp(-2*pi*sqrt(163)) C = 103378831900730205293632*exp(-3*pi*sqrt(163)) assert NS(1 - A - B + C, 10) == '1.613679005e-59' # Input that for various reasons have failed at some point def test_evalf_bugs(): assert NS(sin(1) + exp(-10**10), 10) == NS(sin(1), 10) assert NS(exp(10**10) + sin(1), 10) == NS(exp(10**10), 10) assert NS('expand_log(log(1+1/10**50))', 20) == '1.0000000000000000000e-50' assert NS('log(10**100,10)', 10) == '100.0000000' assert NS('log(2)', 10) == '0.6931471806' assert NS( '(sin(x)-x)/x**3', 15, subs={x: '1/10**50'}) == '-0.166666666666667' assert NS(sin(1) + Rational( 1, 10**100)*I, 15) == '0.841470984807897 + 1.00000000000000e-100*I' assert x.evalf() == x assert NS((1 + I)**2*I, 6) == '-2.00000' d = {n: ( -1)**Rational(6, 7), y: (-1)**Rational(4, 7), x: (-1)**Rational(2, 7)} assert NS((x*(1 + y*(1 + n))).subs(d).evalf(), 6) == '0.346011 + 0.433884*I' assert NS(((-I - sqrt(2)*I)**2).evalf()) == '-5.82842712474619' assert NS((1 + I)**2*I, 15) == '-2.00000000000000' # issue 4758 (1/2): assert NS(pi.evalf(69) - pi) == '-4.43863937855894e-71' # issue 4758 (2/2): With the bug present, this still only fails if the # terms are in the order given here. This is not generally the case, # because the order depends on the hashes of the terms. assert NS(20 - 5008329267844*n**25 - 477638700*n**37 - 19*n, subs={n: .01}) == '19.8100000000000' assert NS(((x - 1)*(1 - x)**1000).n() ) == '(1.00000000000000 - x)**1000*(x - 1.00000000000000)' assert NS((-x).n()) == '-x' assert NS((-2*x).n()) == '-2.00000000000000*x' assert NS((-2*x*y).n()) == '-2.00000000000000*x*y' assert cos(x).n(subs={x: 1+I}) == cos(x).subs(x, 1+I).n() # issue 6660. Also NaN != mpmath.nan # In this order: # 0*nan, 0/nan, 0*inf, 0/inf # 0+nan, 0-nan, 0+inf, 0-inf # >>> n = Some Number # n*nan, n/nan, n*inf, n/inf # n+nan, n-nan, n+inf, n-inf assert (0*E**(oo)).n() is S.NaN assert (0/E**(oo)).n() is S.Zero assert (0+E**(oo)).n() is S.Infinity assert (0-E**(oo)).n() is S.NegativeInfinity assert (5*E**(oo)).n() is S.Infinity assert (5/E**(oo)).n() is S.Zero assert (5+E**(oo)).n() is S.Infinity assert (5-E**(oo)).n() is S.NegativeInfinity #issue 7416 assert as_mpmath(0.0, 10, {'chop': True}) == 0 #issue 5412 assert ((oo*I).n() == S.Infinity*I) assert ((oo+oo*I).n() == S.Infinity + S.Infinity*I) #issue 11518 assert NS(2*x**2.5, 5) == '2.0000*x**2.5000' #issue 13076 assert NS(Mul(Max(0, y), x, evaluate=False).evalf()) == 'x*Max(0, y)' def test_evalf_integer_parts(): a = floor(log(8)/log(2) - exp(-1000), evaluate=False) b = floor(log(8)/log(2), evaluate=False) assert a.evalf() == 3 assert b.evalf() == 3 # equals, as a fallback, can still fail but it might succeed as here assert ceiling(10*(sin(1)**2 + cos(1)**2)) == 10 assert int(floor(factorial(50)/E, evaluate=False).evalf(70)) == \ int(11188719610782480504630258070757734324011354208865721592720336800) assert int(ceiling(factorial(50)/E, evaluate=False).evalf(70)) == \ int(11188719610782480504630258070757734324011354208865721592720336801) assert int(floor(GoldenRatio**999 / sqrt(5) + S.Half) .evalf(1000)) == fibonacci(999) assert int(floor(GoldenRatio**1000 / sqrt(5) + S.Half) .evalf(1000)) == fibonacci(1000) assert ceiling(x).evalf(subs={x: 3}) == 3 assert ceiling(x).evalf(subs={x: 3*I}) == 3.0*I assert ceiling(x).evalf(subs={x: 2 + 3*I}) == 2.0 + 3.0*I assert ceiling(x).evalf(subs={x: 3.}) == 3 assert ceiling(x).evalf(subs={x: 3.*I}) == 3.0*I assert ceiling(x).evalf(subs={x: 2. + 3*I}) == 2.0 + 3.0*I assert float((floor(1.5, evaluate=False)+1/9).evalf()) == 1 + 1/9 assert float((floor(0.5, evaluate=False)+20).evalf()) == 20 # issue 19991 n = 1169809367327212570704813632106852886389036911 r = 744723773141314414542111064094745678855643068 assert floor(n / (pi / 2)) == r assert floor(80782 * sqrt(2)) == 114242 # issue 20076 assert 260515 - floor(260515/pi + 1/2) * pi == atan(tan(260515)) def test_evalf_trig_zero_detection(): a = sin(160*pi, evaluate=False) t = a.evalf(maxn=100) assert abs(t) < 1e-100 assert t._prec < 2 assert a.evalf(chop=True) == 0 raises(PrecisionExhausted, lambda: a.evalf(strict=True)) def test_evalf_sum(): assert Sum(n,(n,1,2)).evalf() == 3. assert Sum(n,(n,1,2)).doit().evalf() == 3. # the next test should return instantly assert Sum(1/n,(n,1,2)).evalf() == 1.5 # issue 8219 assert Sum(E/factorial(n), (n, 0, oo)).evalf() == (E*E).evalf() # issue 8254 assert Sum(2**n*n/factorial(n), (n, 0, oo)).evalf() == (2*E*E).evalf() # issue 8411 s = Sum(1/x**2, (x, 100, oo)) assert s.n() == s.doit().n() def test_evalf_divergent_series(): raises(ValueError, lambda: Sum(1/n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum(n/(n**2 + 1), (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum((-1)**n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum((-1)**n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum(n**2, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum(2**n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum((-2)**n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum((2*n + 3)/(3*n**2 + 4), (n, 0, oo)).evalf()) raises(ValueError, lambda: Sum((0.5*n**3)/(n**4 + 1), (n, 0, oo)).evalf()) def test_evalf_product(): assert Product(n, (n, 1, 10)).evalf() == 3628800. assert comp(Product(1 - S.Half**2/n**2, (n, 1, oo)).n(5), 0.63662) assert Product(n, (n, -1, 3)).evalf() == 0 def test_evalf_py_methods(): assert abs(float(pi + 1) - 4.1415926535897932) < 1e-10 assert abs(complex(pi + 1) - 4.1415926535897932) < 1e-10 assert abs( complex(pi + E*I) - (3.1415926535897931 + 2.7182818284590451j)) < 1e-10 raises(TypeError, lambda: float(pi + x)) def test_evalf_power_subs_bugs(): assert (x**2).evalf(subs={x: 0}) == 0 assert sqrt(x).evalf(subs={x: 0}) == 0 assert (x**Rational(2, 3)).evalf(subs={x: 0}) == 0 assert (x**x).evalf(subs={x: 0}) == 1 assert (3**x).evalf(subs={x: 0}) == 1 assert exp(x).evalf(subs={x: 0}) == 1 assert ((2 + I)**x).evalf(subs={x: 0}) == 1 assert (0**x).evalf(subs={x: 0}) == 1 def test_evalf_arguments(): raises(TypeError, lambda: pi.evalf(method="garbage")) def test_implemented_function_evalf(): from sympy.utilities.lambdify import implemented_function f = Function('f') f = implemented_function(f, lambda x: x + 1) assert str(f(x)) == "f(x)" assert str(f(2)) == "f(2)" assert f(2).evalf() == 3 assert f(x).evalf() == f(x) f = implemented_function(Function('sin'), lambda x: x + 1) assert f(2).evalf() != sin(2) del f._imp_ # XXX: due to caching _imp_ would influence all other tests def test_evaluate_false(): for no in [0, False]: assert Add(3, 2, evaluate=no).is_Add assert Mul(3, 2, evaluate=no).is_Mul assert Pow(3, 2, evaluate=no).is_Pow assert Pow(y, 2, evaluate=True) - Pow(y, 2, evaluate=True) == 0 def test_evalf_relational(): assert Eq(x/5, y/10).evalf() == Eq(0.2*x, 0.1*y) # if this first assertion fails it should be replaced with # one that doesn't assert unchanged(Eq, (3 - I)**2/2 + I, 0) assert Eq((3 - I)**2/2 + I, 0).n() is S.false assert nfloat(Eq((3 - I)**2 + I, 0)) == S.false def test_issue_5486(): assert not cos(sqrt(0.5 + I)).n().is_Function def test_issue_5486_bug(): from sympy import I, Expr assert abs(Expr._from_mpmath(I._to_mpmath(15), 15) - I) < 1.0e-15 def test_bugs(): from sympy import polar_lift, re assert abs(re((1 + I)**2)) < 1e-15 # anything that evalf's to 0 will do in place of polar_lift assert abs(polar_lift(0)).n() == 0 def test_subs(): assert NS('besseli(-x, y) - besseli(x, y)', subs={x: 3.5, y: 20.0}) == \ '-4.92535585957223e-10' assert NS('Piecewise((x, x>0)) + Piecewise((1-x, x>0))', subs={x: 0.1}) == \ '1.00000000000000' raises(TypeError, lambda: x.evalf(subs=(x, 1))) def test_issue_4956_5204(): # issue 4956 v = S('''(-27*12**(1/3)*sqrt(31)*I + 27*2**(2/3)*3**(1/3)*sqrt(31)*I)/(-2511*2**(2/3)*3**(1/3) + (29*18**(1/3) + 9*2**(1/3)*3**(2/3)*sqrt(31)*I + 87*2**(1/3)*3**(1/6)*I)**2)''') assert NS(v, 1) == '0.e-118 - 0.e-118*I' # issue 5204 v = S('''-(357587765856 + 18873261792*249**(1/2) + 56619785376*I*83**(1/2) + 108755765856*I*3**(1/2) + 41281887168*6**(1/3)*(1422 + 54*249**(1/2))**(1/3) - 1239810624*6**(1/3)*249**(1/2)*(1422 + 54*249**(1/2))**(1/3) - 3110400000*I*6**(1/3)*83**(1/2)*(1422 + 54*249**(1/2))**(1/3) + 13478400000*I*3**(1/2)*6**(1/3)*(1422 + 54*249**(1/2))**(1/3) + 1274950152*6**(2/3)*(1422 + 54*249**(1/2))**(2/3) + 32347944*6**(2/3)*249**(1/2)*(1422 + 54*249**(1/2))**(2/3) - 1758790152*I*3**(1/2)*6**(2/3)*(1422 + 54*249**(1/2))**(2/3) - 304403832*I*6**(2/3)*83**(1/2)*(1422 + 4*249**(1/2))**(2/3))/(175732658352 + (1106028 + 25596*249**(1/2) + 76788*I*83**(1/2))**2)''') assert NS(v, 5) == '0.077284 + 1.1104*I' assert NS(v, 1) == '0.08 + 1.*I' def test_old_docstring(): a = (E + pi*I)*(E - pi*I) assert NS(a) == '17.2586605000200' assert a.n() == 17.25866050002001 def test_issue_4806(): assert integrate(atan(x)**2, (x, -1, 1)).evalf().round(1) == 0.5 assert atan(0, evaluate=False).n() == 0 def test_evalf_mul(): # sympy should not try to expand this; it should be handled term-wise # in evalf through mpmath assert NS(product(1 + sqrt(n)*I, (n, 1, 500)), 1) == '5.e+567 + 2.e+568*I' def test_scaled_zero(): a, b = (([0], 1, 100, 1), -1) assert scaled_zero(100) == (a, b) assert scaled_zero(a) == (0, 1, 100, 1) a, b = (([1], 1, 100, 1), -1) assert scaled_zero(100, -1) == (a, b) assert scaled_zero(a) == (1, 1, 100, 1) raises(ValueError, lambda: scaled_zero(scaled_zero(100))) raises(ValueError, lambda: scaled_zero(100, 2)) raises(ValueError, lambda: scaled_zero(100, 0)) raises(ValueError, lambda: scaled_zero((1, 5, 1, 3))) def test_chop_value(): for i in range(-27, 28): assert (Pow(10, i)*2).n(chop=10**i) and not (Pow(10, i)).n(chop=10**i) def test_infinities(): assert oo.evalf(chop=True) == inf assert (-oo).evalf(chop=True) == ninf def test_to_mpmath(): assert sqrt(3)._to_mpmath(20)._mpf_ == (0, int(908093), -19, 20) assert S(3.2)._to_mpmath(20)._mpf_ == (0, int(838861), -18, 20) def test_issue_6632_evalf(): add = (-100000*sqrt(2500000001) + 5000000001) assert add.n() == 9.999999998e-11 assert (add*add).n() == 9.999999996e-21 def test_issue_4945(): from sympy.abc import H from sympy import zoo assert (H/0).evalf(subs={H:1}) == zoo*H def test_evalf_integral(): # test that workprec has to increase in order to get a result other than 0 eps = Rational(1, 1000000) assert Integral(sin(x), (x, -pi, pi + eps)).n(2)._prec == 10 def test_issue_8821_highprec_from_str(): s = str(pi.evalf(128)) p = N(s) assert Abs(sin(p)) < 1e-15 p = N(s, 64) assert Abs(sin(p)) < 1e-64 def test_issue_8853(): p = Symbol('x', even=True, positive=True) assert floor(-p - S.Half).is_even == False assert floor(-p + S.Half).is_even == True assert ceiling(p - S.Half).is_even == True assert ceiling(p + S.Half).is_even == False assert get_integer_part(S.Half, -1, {}, True) == (0, 0) assert get_integer_part(S.Half, 1, {}, True) == (1, 0) assert get_integer_part(Rational(-1, 2), -1, {}, True) == (-1, 0) assert get_integer_part(Rational(-1, 2), 1, {}, True) == (0, 0) def test_issue_17681(): class identity_func(Function): def _eval_evalf(self, *args, **kwargs): return self.args[0].evalf(*args, **kwargs) assert floor(identity_func(S(0))) == 0 assert get_integer_part(S(0), 1, {}, True) == (0, 0) def test_issue_9326(): from sympy import Dummy d1 = Dummy('d') d2 = Dummy('d') e = d1 + d2 assert e.evalf(subs = {d1: 1, d2: 2}) == 3 def test_issue_10323(): assert ceiling(sqrt(2**30 + 1)) == 2**15 + 1 def test_AssocOp_Function(): # the first arg of Min is not comparable in the imaginary part raises(ValueError, lambda: S(''' Min(-sqrt(3)*cos(pi/18)/6 + re(1/((-1/2 - sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3 + sin(pi/18)/2 + 2 + I*(-cos(pi/18)/2 - sqrt(3)*sin(pi/18)/6 + im(1/((-1/2 - sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3), re(1/((-1/2 + sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3 - sqrt(3)*cos(pi/18)/6 - sin(pi/18)/2 + 2 + I*(im(1/((-1/2 + sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3 - sqrt(3)*sin(pi/18)/6 + cos(pi/18)/2))''')) # if that is changed so a non-comparable number remains as # an arg, then the Min/Max instantiation needs to be changed # to watch out for non-comparable args when making simplifications # and the following test should be added instead (with e being # the sympified expression above): # raises(ValueError, lambda: e._eval_evalf(2)) def test_issue_10395(): eq = x*Max(0, y) assert nfloat(eq) == eq eq = x*Max(y, -1.1) assert nfloat(eq) == eq assert Max(y, 4).n() == Max(4.0, y) def test_issue_13098(): assert floor(log(S('9.'+'9'*20), 10)) == 0 assert ceiling(log(S('9.'+'9'*20), 10)) == 1 assert floor(log(20 - S('9.'+'9'*20), 10)) == 1 assert ceiling(log(20 - S('9.'+'9'*20), 10)) == 2 def test_issue_14601(): e = 5*x*y/2 - y*(35*(x**3)/2 - 15*x/2) subst = {x:0.0, y:0.0} e2 = e.evalf(subs=subst) assert float(e2) == 0.0 assert float((x + x*(x**2 + x)).evalf(subs={x: 0.0})) == 0.0 def test_issue_11151(): z = S.Zero e = Sum(z, (x, 1, 2)) assert e != z # it shouldn't evaluate # when it does evaluate, this is what it should give assert evalf(e, 15, {}) == \ evalf(z, 15, {}) == (None, None, 15, None) # so this shouldn't fail assert (e/2).n() == 0 # this was where the issue appeared expr0 = Sum(x**2 + x, (x, 1, 2)) expr1 = Sum(0, (x, 1, 2)) expr2 = expr1/expr0 assert simplify(factor(expr2) - expr2) == 0 def test_issue_13425(): assert N('2**.5', 30) == N('sqrt(2)', 30) assert N('x - x', 30) == 0 assert abs((N('pi*.1', 22)*10 - pi).n()) < 1e-22 def test_issue_17421(): assert N(acos(-I + acosh(cosh(cosh(1) + I)))) == 1.0*I def test_issue_20291(): from sympy import FiniteSet, Complement, Intersection, Reals, EmptySet a = Symbol('a') b = Symbol('b') A = FiniteSet(a, b) assert A.evalf(subs={a: 1, b: 2}) == FiniteSet(1.0, 2.0) B = FiniteSet(a-b, 1) assert B.evalf(subs={a: 1, b: 2}) == FiniteSet(-1.0, 1.0) sol = Complement(Intersection(FiniteSet(-b/2 - sqrt(b**2-4*pi)/2), Reals), FiniteSet(0)) assert sol.evalf(subs={b: 1}) == EmptySet
5c386eb13ec41daeff7ac00c29ba178c16bd42b5c38410d164b4207cd185629b
from sympy import (abc, Add, cos, collect, Derivative, diff, exp, Float, Function, I, Integer, log, Mul, oo, Poly, Rational, S, sin, sqrt, Symbol, symbols, Wild, pi, meijerg, Sum ) from sympy.testing.pytest import XFAIL def test_symbol(): x = Symbol('x') a, b, c, p, q = map(Wild, 'abcpq') e = x assert e.match(x) == {} assert e.matches(x) == {} assert e.match(a) == {a: x} e = Rational(5) assert e.match(c) == {c: 5} assert e.match(e) == {} assert e.match(e + 1) is None def test_add(): x, y, a, b, c = map(Symbol, 'xyabc') p, q, r = map(Wild, 'pqr') e = a + b assert e.match(p + b) == {p: a} assert e.match(p + a) == {p: b} e = 1 + b assert e.match(p + b) == {p: 1} e = a + b + c assert e.match(a + p + c) == {p: b} assert e.match(b + p + c) == {p: a} e = a + b + c + x assert e.match(a + p + x + c) == {p: b} assert e.match(b + p + c + x) == {p: a} assert e.match(b) is None assert e.match(b + p) == {p: a + c + x} assert e.match(a + p + c) == {p: b + x} assert e.match(b + p + c) == {p: a + x} e = 4*x + 5 assert e.match(4*x + p) == {p: 5} assert e.match(3*x + p) == {p: x + 5} assert e.match(p*x + 5) == {p: 4} def test_power(): x, y, a, b, c = map(Symbol, 'xyabc') p, q, r = map(Wild, 'pqr') e = (x + y)**a assert e.match(p**q) == {p: x + y, q: a} assert e.match(p**p) is None e = (x + y)**(x + y) assert e.match(p**p) == {p: x + y} assert e.match(p**q) == {p: x + y, q: x + y} e = (2*x)**2 assert e.match(p*q**r) == {p: 4, q: x, r: 2} e = Integer(1) assert e.match(x**p) == {p: 0} def test_match_exclude(): x = Symbol('x') y = Symbol('y') p = Wild("p") q = Wild("q") r = Wild("r") e = Rational(6) assert e.match(2*p) == {p: 3} e = 3/(4*x + 5) assert e.match(3/(p*x + q)) == {p: 4, q: 5} e = 3/(4*x + 5) assert e.match(p/(q*x + r)) == {p: 3, q: 4, r: 5} e = 2/(x + 1) assert e.match(p/(q*x + r)) == {p: 2, q: 1, r: 1} e = 1/(x + 1) assert e.match(p/(q*x + r)) == {p: 1, q: 1, r: 1} e = 4*x + 5 assert e.match(p*x + q) == {p: 4, q: 5} e = 4*x + 5*y + 6 assert e.match(p*x + q*y + r) == {p: 4, q: 5, r: 6} a = Wild('a', exclude=[x]) e = 3*x assert e.match(p*x) == {p: 3} assert e.match(a*x) == {a: 3} e = 3*x**2 assert e.match(p*x) == {p: 3*x} assert e.match(a*x) is None e = 3*x + 3 + 6/x assert e.match(p*x**2 + p*x + 2*p) == {p: 3/x} assert e.match(a*x**2 + a*x + 2*a) is None def test_mul(): x, y, a, b, c = map(Symbol, 'xyabc') p, q = map(Wild, 'pq') e = 4*x assert e.match(p*x) == {p: 4} assert e.match(p*y) is None assert e.match(e + p*y) == {p: 0} e = a*x*b*c assert e.match(p*x) == {p: a*b*c} assert e.match(c*p*x) == {p: a*b} e = (a + b)*(a + c) assert e.match((p + b)*(p + c)) == {p: a} e = x assert e.match(p*x) == {p: 1} e = exp(x) assert e.match(x**p*exp(x*q)) == {p: 0, q: 1} e = I*Poly(x, x) assert e.match(I*p) == {p: x} def test_mul_noncommutative(): x, y = symbols('x y') A, B, C = symbols('A B C', commutative=False) u, v = symbols('u v', cls=Wild) w, z = symbols('w z', cls=Wild, commutative=False) assert (u*v).matches(x) in ({v: x, u: 1}, {u: x, v: 1}) assert (u*v).matches(x*y) in ({v: y, u: x}, {u: y, v: x}) assert (u*v).matches(A) is None assert (u*v).matches(A*B) is None assert (u*v).matches(x*A) is None assert (u*v).matches(x*y*A) is None assert (u*v).matches(x*A*B) is None assert (u*v).matches(x*y*A*B) is None assert (v*w).matches(x) is None assert (v*w).matches(x*y) is None assert (v*w).matches(A) == {w: A, v: 1} assert (v*w).matches(A*B) == {w: A*B, v: 1} assert (v*w).matches(x*A) == {w: A, v: x} assert (v*w).matches(x*y*A) == {w: A, v: x*y} assert (v*w).matches(x*A*B) == {w: A*B, v: x} assert (v*w).matches(x*y*A*B) == {w: A*B, v: x*y} assert (v*w).matches(-x) is None assert (v*w).matches(-x*y) is None assert (v*w).matches(-A) == {w: A, v: -1} assert (v*w).matches(-A*B) == {w: A*B, v: -1} assert (v*w).matches(-x*A) == {w: A, v: -x} assert (v*w).matches(-x*y*A) == {w: A, v: -x*y} assert (v*w).matches(-x*A*B) == {w: A*B, v: -x} assert (v*w).matches(-x*y*A*B) == {w: A*B, v: -x*y} assert (w*z).matches(x) is None assert (w*z).matches(x*y) is None assert (w*z).matches(A) is None assert (w*z).matches(A*B) == {w: A, z: B} assert (w*z).matches(B*A) == {w: B, z: A} assert (w*z).matches(A*B*C) in [{w: A, z: B*C}, {w: A*B, z: C}] assert (w*z).matches(x*A) is None assert (w*z).matches(x*y*A) is None assert (w*z).matches(x*A*B) is None assert (w*z).matches(x*y*A*B) is None assert (w*A).matches(A) is None assert (A*w*B).matches(A*B) is None assert (u*w*z).matches(x) is None assert (u*w*z).matches(x*y) is None assert (u*w*z).matches(A) is None assert (u*w*z).matches(A*B) == {u: 1, w: A, z: B} assert (u*w*z).matches(B*A) == {u: 1, w: B, z: A} assert (u*w*z).matches(x*A) is None assert (u*w*z).matches(x*y*A) is None assert (u*w*z).matches(x*A*B) == {u: x, w: A, z: B} assert (u*w*z).matches(x*B*A) == {u: x, w: B, z: A} assert (u*w*z).matches(x*y*A*B) == {u: x*y, w: A, z: B} assert (u*w*z).matches(x*y*B*A) == {u: x*y, w: B, z: A} assert (u*A).matches(x*A) == {u: x} assert (u*A).matches(x*A*B) is None assert (u*B).matches(x*A) is None assert (u*A*B).matches(x*A*B) == {u: x} assert (u*A*B).matches(x*B*A) is None assert (u*A*B).matches(x*A) is None assert (u*w*A).matches(x*A*B) is None assert (u*w*B).matches(x*A*B) == {u: x, w: A} assert (u*v*A*B).matches(x*A*B) in [{u: x, v: 1}, {v: x, u: 1}] assert (u*v*A*B).matches(x*B*A) is None assert (u*v*A*B).matches(u*v*A*C) is None def test_mul_noncommutative_mismatch(): A, B, C = symbols('A B C', commutative=False) w = symbols('w', cls=Wild, commutative=False) assert (w*B*w).matches(A*B*A) == {w: A} assert (w*B*w).matches(A*C*B*A*C) == {w: A*C} assert (w*B*w).matches(A*C*B*A*B) is None assert (w*B*w).matches(A*B*C) is None assert (w*w*C).matches(A*B*C) is None def test_mul_noncommutative_pow(): A, B, C = symbols('A B C', commutative=False) w = symbols('w', cls=Wild, commutative=False) assert (A*B*w).matches(A*B**2) == {w: B} assert (A*(B**2)*w*(B**3)).matches(A*B**8) == {w: B**3} assert (A*B*w*C).matches(A*(B**4)*C) == {w: B**3} assert (A*B*(w**(-1))).matches(A*B*(C**(-1))) == {w: C} assert (A*(B*w)**(-1)*C).matches(A*(B*C)**(-1)*C) == {w: C} assert ((w**2)*B*C).matches((A**2)*B*C) == {w: A} assert ((w**2)*B*(w**3)).matches((A**2)*B*(A**3)) == {w: A} assert ((w**2)*B*(w**4)).matches((A**2)*B*(A**2)) is None def test_complex(): a, b, c = map(Symbol, 'abc') x, y = map(Wild, 'xy') assert (1 + I).match(x + I) == {x: 1} assert (a + I).match(x + I) == {x: a} assert (2*I).match(x*I) == {x: 2} assert (a*I).match(x*I) == {x: a} assert (a*I).match(x*y) == {x: I, y: a} assert (2*I).match(x*y) == {x: 2, y: I} assert (a + b*I).match(x + y*I) == {x: a, y: b} def test_functions(): from sympy.core.function import WildFunction x = Symbol('x') g = WildFunction('g') p = Wild('p') q = Wild('q') f = cos(5*x) notf = x assert f.match(p*cos(q*x)) == {p: 1, q: 5} assert f.match(p*g) == {p: 1, g: cos(5*x)} assert notf.match(g) is None @XFAIL def test_functions_X1(): from sympy.core.function import WildFunction x = Symbol('x') g = WildFunction('g') p = Wild('p') q = Wild('q') f = cos(5*x) assert f.match(p*g(q*x)) == {p: 1, g: cos, q: 5} def test_interface(): x, y = map(Symbol, 'xy') p, q = map(Wild, 'pq') assert (x + 1).match(p + 1) == {p: x} assert (x*3).match(p*3) == {p: x} assert (x**3).match(p**3) == {p: x} assert (x*cos(y)).match(p*cos(q)) == {p: x, q: y} assert (x*y).match(p*q) in [{p:x, q:y}, {p:y, q:x}] assert (x + y).match(p + q) in [{p:x, q:y}, {p:y, q:x}] assert (x*y + 1).match(p*q) in [{p:1, q:1 + x*y}, {p:1 + x*y, q:1}] def test_derivative1(): x, y = map(Symbol, 'xy') p, q = map(Wild, 'pq') f = Function('f', nargs=1) fd = Derivative(f(x), x) assert fd.match(p) == {p: fd} assert (fd + 1).match(p + 1) == {p: fd} assert (fd).match(fd) == {} assert (3*fd).match(p*fd) is not None assert (3*fd - 1).match(p*fd + q) == {p: 3, q: -1} def test_derivative_bug1(): f = Function("f") x = Symbol("x") a = Wild("a", exclude=[f, x]) b = Wild("b", exclude=[f]) pattern = a * Derivative(f(x), x, x) + b expr = Derivative(f(x), x) + x**2 d1 = {b: x**2} d2 = pattern.xreplace(d1).matches(expr, d1) assert d2 is None def test_derivative2(): f = Function("f") x = Symbol("x") a = Wild("a", exclude=[f, x]) b = Wild("b", exclude=[f]) e = Derivative(f(x), x) assert e.match(Derivative(f(x), x)) == {} assert e.match(Derivative(f(x), x, x)) is None e = Derivative(f(x), x, x) assert e.match(Derivative(f(x), x)) is None assert e.match(Derivative(f(x), x, x)) == {} e = Derivative(f(x), x) + x**2 assert e.match(a*Derivative(f(x), x) + b) == {a: 1, b: x**2} assert e.match(a*Derivative(f(x), x, x) + b) is None e = Derivative(f(x), x, x) + x**2 assert e.match(a*Derivative(f(x), x) + b) is None assert e.match(a*Derivative(f(x), x, x) + b) == {a: 1, b: x**2} def test_match_deriv_bug1(): n = Function('n') l = Function('l') x = Symbol('x') p = Wild('p') e = diff(l(x), x)/x - diff(diff(n(x), x), x)/2 - \ diff(n(x), x)**2/4 + diff(n(x), x)*diff(l(x), x)/4 e = e.subs(n(x), -l(x)).doit() t = x*exp(-l(x)) t2 = t.diff(x, x)/t assert e.match( (p*t2).expand() ) == {p: Rational(-1, 2)} def test_match_bug2(): x, y = map(Symbol, 'xy') p, q, r = map(Wild, 'pqr') res = (x + y).match(p + q + r) assert (p + q + r).subs(res) == x + y def test_match_bug3(): x, a, b = map(Symbol, 'xab') p = Wild('p') assert (b*x*exp(a*x)).match(x*exp(p*x)) is None def test_match_bug4(): x = Symbol('x') p = Wild('p') e = x assert e.match(-p*x) == {p: -1} def test_match_bug5(): x = Symbol('x') p = Wild('p') e = -x assert e.match(-p*x) == {p: 1} def test_match_bug6(): x = Symbol('x') p = Wild('p') e = x assert e.match(3*p*x) == {p: Rational(1)/3} def test_match_polynomial(): x = Symbol('x') a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) c = Wild('c', exclude=[x]) d = Wild('d', exclude=[x]) eq = 4*x**3 + 3*x**2 + 2*x + 1 pattern = a*x**3 + b*x**2 + c*x + d assert eq.match(pattern) == {a: 4, b: 3, c: 2, d: 1} assert (eq - 3*x**2).match(pattern) == {a: 4, b: 0, c: 2, d: 1} assert (x + sqrt(2) + 3).match(a + b*x + c*x**2) == \ {b: 1, a: sqrt(2) + 3, c: 0} def test_exclude(): x, y, a = map(Symbol, 'xya') p = Wild('p', exclude=[1, x]) q = Wild('q') r = Wild('r', exclude=[sin, y]) assert sin(x).match(r) is None assert cos(y).match(r) is None e = 3*x**2 + y*x + a assert e.match(p*x**2 + q*x + r) == {p: 3, q: y, r: a} e = x + 1 assert e.match(x + p) is None assert e.match(p + 1) is None assert e.match(x + 1 + p) == {p: 0} e = cos(x) + 5*sin(y) assert e.match(r) is None assert e.match(cos(y) + r) is None assert e.match(r + p*sin(q)) == {r: cos(x), p: 5, q: y} def test_floats(): a, b = map(Wild, 'ab') e = cos(0.12345, evaluate=False)**2 r = e.match(a*cos(b)**2) assert r == {a: 1, b: Float(0.12345)} def test_Derivative_bug1(): f = Function("f") x = abc.x a = Wild("a", exclude=[f(x)]) b = Wild("b", exclude=[f(x)]) eq = f(x).diff(x) assert eq.match(a*Derivative(f(x), x) + b) == {a: 1, b: 0} def test_match_wild_wild(): p = Wild('p') q = Wild('q') r = Wild('r') assert p.match(q + r) in [ {q: p, r: 0}, {q: 0, r: p} ] assert p.match(q*r) in [ {q: p, r: 1}, {q: 1, r: p} ] p = Wild('p') q = Wild('q', exclude=[p]) r = Wild('r') assert p.match(q + r) == {q: 0, r: p} assert p.match(q*r) == {q: 1, r: p} p = Wild('p') q = Wild('q', exclude=[p]) r = Wild('r', exclude=[p]) assert p.match(q + r) is None assert p.match(q*r) is None def test__combine_inverse(): x, y = symbols("x y") assert Mul._combine_inverse(x*I*y, x*I) == y assert Mul._combine_inverse(x*x**(1 + y), x**(1 + y)) == x assert Mul._combine_inverse(x*I*y, y*I) == x assert Mul._combine_inverse(oo*I*y, y*I) is oo assert Mul._combine_inverse(oo*I*y, oo*I) == y assert Mul._combine_inverse(oo*I*y, oo*I) == y assert Mul._combine_inverse(oo*y, -oo) == -y assert Mul._combine_inverse(-oo*y, oo) == -y assert Mul._combine_inverse((1-exp(x/y)),(exp(x/y)-1)) == -1 assert Add._combine_inverse(oo, oo) is S.Zero assert Add._combine_inverse(oo*I, oo*I) is S.Zero assert Add._combine_inverse(x*oo, x*oo) is S.Zero assert Add._combine_inverse(-x*oo, -x*oo) is S.Zero assert Add._combine_inverse((x - oo)*(x + oo), -oo) def test_issue_3773(): x = symbols('x') z, phi, r = symbols('z phi r') c, A, B, N = symbols('c A B N', cls=Wild) l = Wild('l', exclude=(0,)) eq = z * sin(2*phi) * r**7 matcher = c * sin(phi*N)**l * r**A * log(r)**B assert eq.match(matcher) == {c: z, l: 1, N: 2, A: 7, B: 0} assert (-eq).match(matcher) == {c: -z, l: 1, N: 2, A: 7, B: 0} assert (x*eq).match(matcher) == {c: x*z, l: 1, N: 2, A: 7, B: 0} assert (-7*x*eq).match(matcher) == {c: -7*x*z, l: 1, N: 2, A: 7, B: 0} matcher = c*sin(phi*N)**l * r**A assert eq.match(matcher) == {c: z, l: 1, N: 2, A: 7} assert (-eq).match(matcher) == {c: -z, l: 1, N: 2, A: 7} assert (x*eq).match(matcher) == {c: x*z, l: 1, N: 2, A: 7} assert (-7*x*eq).match(matcher) == {c: -7*x*z, l: 1, N: 2, A: 7} def test_issue_3883(): from sympy.abc import gamma, mu, x f = (-gamma * (x - mu)**2 - log(gamma) + log(2*pi))/2 a, b, c = symbols('a b c', cls=Wild, exclude=(gamma,)) assert f.match(a * log(gamma) + b * gamma + c) == \ {a: Rational(-1, 2), b: -(mu - x)**2/2, c: log(2*pi)/2} assert f.expand().collect(gamma).match(a * log(gamma) + b * gamma + c) == \ {a: Rational(-1, 2), b: (-(x - mu)**2/2).expand(), c: (log(2*pi)/2).expand()} g1 = Wild('g1', exclude=[gamma]) g2 = Wild('g2', exclude=[gamma]) g3 = Wild('g3', exclude=[gamma]) assert f.expand().match(g1 * log(gamma) + g2 * gamma + g3) == \ {g3: log(2)/2 + log(pi)/2, g1: Rational(-1, 2), g2: -mu**2/2 + mu*x - x**2/2} def test_issue_4418(): x = Symbol('x') a, b, c = symbols('a b c', cls=Wild, exclude=(x,)) f, g = symbols('f g', cls=Function) eq = diff(g(x)*f(x).diff(x), x) assert eq.match( g(x).diff(x)*f(x).diff(x) + g(x)*f(x).diff(x, x) + c) == {c: 0} assert eq.match(a*g(x).diff( x)*f(x).diff(x) + b*g(x)*f(x).diff(x, x) + c) == {a: 1, b: 1, c: 0} def test_issue_4700(): f = Function('f') x = Symbol('x') a, b = symbols('a b', cls=Wild, exclude=(f(x),)) p = a*f(x) + b eq1 = sin(x) eq2 = f(x) + sin(x) eq3 = f(x) + x + sin(x) eq4 = x + sin(x) assert eq1.match(p) == {a: 0, b: sin(x)} assert eq2.match(p) == {a: 1, b: sin(x)} assert eq3.match(p) == {a: 1, b: x + sin(x)} assert eq4.match(p) == {a: 0, b: x + sin(x)} def test_issue_5168(): a, b, c = symbols('a b c', cls=Wild) x = Symbol('x') f = Function('f') assert x.match(a) == {a: x} assert x.match(a*f(x)**c) == {a: x, c: 0} assert x.match(a*b) == {a: 1, b: x} assert x.match(a*b*f(x)**c) == {a: 1, b: x, c: 0} assert (-x).match(a) == {a: -x} assert (-x).match(a*f(x)**c) == {a: -x, c: 0} assert (-x).match(a*b) == {a: -1, b: x} assert (-x).match(a*b*f(x)**c) == {a: -1, b: x, c: 0} assert (2*x).match(a) == {a: 2*x} assert (2*x).match(a*f(x)**c) == {a: 2*x, c: 0} assert (2*x).match(a*b) == {a: 2, b: x} assert (2*x).match(a*b*f(x)**c) == {a: 2, b: x, c: 0} assert (-2*x).match(a) == {a: -2*x} assert (-2*x).match(a*f(x)**c) == {a: -2*x, c: 0} assert (-2*x).match(a*b) == {a: -2, b: x} assert (-2*x).match(a*b*f(x)**c) == {a: -2, b: x, c: 0} def test_issue_4559(): x = Symbol('x') e = Symbol('e') w = Wild('w', exclude=[x]) y = Wild('y') # this is as it should be assert (3/x).match(w/y) == {w: 3, y: x} assert (3*x).match(w*y) == {w: 3, y: x} assert (x/3).match(y/w) == {w: 3, y: x} assert (3*x).match(y/w) == {w: S.One/3, y: x} assert (3*x).match(y/w) == {w: Rational(1, 3), y: x} # these could be allowed to fail assert (x/3).match(w/y) == {w: S.One/3, y: 1/x} assert (3*x).match(w/y) == {w: 3, y: 1/x} assert (3/x).match(w*y) == {w: 3, y: 1/x} # Note that solve will give # multiple roots but match only gives one: # # >>> solve(x**r-y**2,y) # [-x**(r/2), x**(r/2)] r = Symbol('r', rational=True) assert (x**r).match(y**2) == {y: x**(r/2)} assert (x**e).match(y**2) == {y: sqrt(x**e)} # since (x**i = y) -> x = y**(1/i) where i is an integer # the following should also be valid as long as y is not # zero when i is negative. a = Wild('a') e = S.Zero assert e.match(a) == {a: e} assert e.match(1/a) is None assert e.match(a**.3) is None e = S(3) assert e.match(1/a) == {a: 1/e} assert e.match(1/a**2) == {a: 1/sqrt(e)} e = pi assert e.match(1/a) == {a: 1/e} assert e.match(1/a**2) == {a: 1/sqrt(e)} assert (-e).match(sqrt(a)) is None assert (-e).match(a**2) == {a: I*sqrt(pi)} # The pattern matcher doesn't know how to handle (x - a)**2 == (a - x)**2. To # avoid ambiguity in actual applications, don't put a coefficient (including a # minus sign) in front of a wild. @XFAIL def test_issue_4883(): a = Wild('a') x = Symbol('x') e = [i**2 for i in (x - 2, 2 - x)] p = [i**2 for i in (x - a, a- x)] for eq in e: for pat in p: assert eq.match(pat) == {a: 2} def test_issue_4319(): x, y = symbols('x y') p = -x*(S.One/8 - y) ans = {S.Zero, y - S.One/8} def ok(pat): assert set(p.match(pat).values()) == ans ok(Wild("coeff", exclude=[x])*x + Wild("rest")) ok(Wild("w", exclude=[x])*x + Wild("rest")) ok(Wild("coeff", exclude=[x])*x + Wild("rest")) ok(Wild("w", exclude=[x])*x + Wild("rest")) ok(Wild("e", exclude=[x])*x + Wild("rest")) ok(Wild("ress", exclude=[x])*x + Wild("rest")) ok(Wild("resu", exclude=[x])*x + Wild("rest")) def test_issue_3778(): p, c, q = symbols('p c q', cls=Wild) x = Symbol('x') assert (sin(x)**2).match(sin(p)*sin(q)*c) == {q: x, c: 1, p: x} assert (2*sin(x)).match(sin(p) + sin(q) + c) == {q: x, c: 0, p: x} def test_issue_6103(): x = Symbol('x') a = Wild('a') assert (-I*x*oo).match(I*a*oo) == {a: -x} def test_issue_3539(): a = Wild('a') x = Symbol('x') assert (x - 2).match(a - x) is None assert (6/x).match(a*x) is None assert (6/x**2).match(a/x) == {a: 6/x} def test_gh_issue_2711(): x = Symbol('x') f = meijerg(((), ()), ((0,), ()), x) a = Wild('a') b = Wild('b') assert f.find(a) == {(S.Zero,), ((), ()), ((S.Zero,), ()), x, S.Zero, (), meijerg(((), ()), ((S.Zero,), ()), x)} assert f.find(a + b) == \ {meijerg(((), ()), ((S.Zero,), ()), x), x, S.Zero} assert f.find(a**2) == {meijerg(((), ()), ((S.Zero,), ()), x), x} def test_match_issue_17397(): f = Function("f") x = Symbol("x") a3 = Wild('a3', exclude=[f(x), f(x).diff(x), f(x).diff(x, 2)]) b3 = Wild('b3', exclude=[f(x), f(x).diff(x), f(x).diff(x, 2)]) c3 = Wild('c3', exclude=[f(x), f(x).diff(x), f(x).diff(x, 2)]) deq = a3*(f(x).diff(x, 2)) + b3*f(x).diff(x) + c3*f(x) eq = (x-2)**2*(f(x).diff(x, 2)) + (x-2)*(f(x).diff(x)) + ((x-2)**2 - 4)*f(x) r = collect(eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq) assert r == {a3: (x - 2)**2, c3: (x - 2)**2 - 4, b3: x - 2} eq =x*f(x) + x*Derivative(f(x), (x, 2)) - 4*f(x) + Derivative(f(x), x) \ - 4*Derivative(f(x), (x, 2)) - 2*Derivative(f(x), x)/x + 4*Derivative(f(x), (x, 2))/x r = collect(eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq) assert r == {a3: x - 4 + 4/x, b3: 1 - 2/x, c3: x - 4} def test_match_terms(): X, Y = map(Wild, "XY") x, y, z = symbols('x y z') assert (5*y - x).match(5*X - Y) == {X: y, Y: x} # 15907 assert (x + (y - 1)*z).match(x + X*z) == {X: y - 1} # 20747 assert (x - log(x/y)*(1-exp(x/y))).match(x - log(X/y)*(1-exp(x/y))) == {X: x} def test_match_bound(): V, W = map(Wild, "VW") x, y = symbols('x y') assert Sum(x, (x, 1, 2)).match(Sum(y, (y, 1, W))) == {W: 2} assert Sum(x, (x, 1, 2)).match(Sum(V, (V, 1, W))) == {W: 2, V:x} assert Sum(x, (x, 1, 2)).match(Sum(V, (V, 1, 2))) == {V:x}
7a403b1dfe6fe57555ed9fa10c255459191d85303bb753faed47a9849feb10b2
from sympy.testing.pytest import raises, XFAIL from sympy.external import import_module from sympy import ( Symbol, Mul, Add, Abs, sin, asin, cos, Pow, csc, sec, Limit, oo, Derivative, Integral, factorial, sqrt, root, conjugate, StrictLessThan, LessThan, StrictGreaterThan, GreaterThan, Sum, Product, E, log, tan, Function, binomial, exp, floor, ceiling, Unequality ) from sympy.core.relational import Eq, Ne, Lt, Le, Gt, Ge from sympy.physics.quantum.state import Bra, Ket from sympy.abc import x, y, z, a, b, c, t, k, n antlr4 = import_module("antlr4") # disable tests if antlr4-python*-runtime is not present if not antlr4: disabled = True theta = Symbol('theta') f = Function('f') # shorthand definitions def _Add(a, b): return Add(a, b, evaluate=False) def _Mul(a, b): return Mul(a, b, evaluate=False) def _Pow(a, b): return Pow(a, b, evaluate=False) def _Sqrt(a): return sqrt(a, evaluate=False) def _Conjugate(a): return conjugate(a, evaluate=False) def _Abs(a): return Abs(a, evaluate=False) def _factorial(a): return factorial(a, evaluate=False) def _exp(a): return exp(a, evaluate=False) def _log(a, b): return log(a, b, evaluate=False) def _binomial(n, k): return binomial(n, k, evaluate=False) def test_import(): from sympy.parsing.latex._build_latex_antlr import ( build_parser, check_antlr_version, dir_latex_antlr ) # XXX: It would be better to come up with a test for these... del build_parser, check_antlr_version, dir_latex_antlr # These LaTeX strings should parse to the corresponding SymPy expression GOOD_PAIRS = [ ("0", 0), ("1", 1), ("-3.14", _Mul(-1, 3.14)), ("(-7.13)(1.5)", _Mul(_Mul(-1, 7.13), 1.5)), ("x", x), ("2x", 2*x), ("x^2", x**2), ("x^{3 + 1}", x**_Add(3, 1)), ("-c", -c), ("a \\cdot b", a * b), ("a / b", a / b), ("a \\div b", a / b), ("a + b", a + b), ("a + b - a", _Add(a+b, -a)), ("a^2 + b^2 = c^2", Eq(a**2 + b**2, c**2)), ("(x + y) z", _Mul(_Add(x, y), z)), ("\\left(x + y\\right) z", _Mul(_Add(x, y), z)), ("\\left( x + y\\right ) z", _Mul(_Add(x, y), z)), ("\\left( x + y\\right ) z", _Mul(_Add(x, y), z)), ("\\left[x + y\\right] z", _Mul(_Add(x, y), z)), ("\\left\\{x + y\\right\\} z", _Mul(_Add(x, y), z)), ("1+1", _Add(1, 1)), ("0+1", _Add(0, 1)), ("1*2", _Mul(1, 2)), ("0*1", _Mul(0, 1)), ("x = y", Eq(x, y)), ("x \\neq y", Ne(x, y)), ("x < y", Lt(x, y)), ("x > y", Gt(x, y)), ("x \\leq y", Le(x, y)), ("x \\geq y", Ge(x, y)), ("x \\le y", Le(x, y)), ("x \\ge y", Ge(x, y)), ("\\lfloor x \\rfloor", floor(x)), ("\\lceil x \\rceil", ceiling(x)), ("\\langle x |", Bra('x')), ("| x \\rangle", Ket('x')), ("\\sin \\theta", sin(theta)), ("\\sin(\\theta)", sin(theta)), ("\\sin^{-1} a", asin(a)), ("\\sin a \\cos b", _Mul(sin(a), cos(b))), ("\\sin \\cos \\theta", sin(cos(theta))), ("\\sin(\\cos \\theta)", sin(cos(theta))), ("\\frac{a}{b}", a / b), ("\\frac{a + b}{c}", _Mul(a + b, _Pow(c, -1))), ("\\frac{7}{3}", _Mul(7, _Pow(3, -1))), ("(\\csc x)(\\sec y)", csc(x)*sec(y)), ("\\lim_{x \\to 3} a", Limit(a, x, 3)), ("\\lim_{x \\rightarrow 3} a", Limit(a, x, 3)), ("\\lim_{x \\Rightarrow 3} a", Limit(a, x, 3)), ("\\lim_{x \\longrightarrow 3} a", Limit(a, x, 3)), ("\\lim_{x \\Longrightarrow 3} a", Limit(a, x, 3)), ("\\lim_{x \\to 3^{+}} a", Limit(a, x, 3, dir='+')), ("\\lim_{x \\to 3^{-}} a", Limit(a, x, 3, dir='-')), ("\\infty", oo), ("\\lim_{x \\to \\infty} \\frac{1}{x}", Limit(_Pow(x, -1), x, oo)), ("\\frac{d}{dx} x", Derivative(x, x)), ("\\frac{d}{dt} x", Derivative(x, t)), ("f(x)", f(x)), ("f(x, y)", f(x, y)), ("f(x, y, z)", f(x, y, z)), ("\\frac{d f(x)}{dx}", Derivative(f(x), x)), ("\\frac{d\\theta(x)}{dx}", Derivative(Function('theta')(x), x)), ("x \\neq y", Unequality(x, y)), ("|x|", _Abs(x)), ("||x||", _Abs(Abs(x))), ("|x||y|", _Abs(x)*_Abs(y)), ("||x||y||", _Abs(_Abs(x)*_Abs(y))), ("\\pi^{|xy|}", Symbol('pi')**_Abs(x*y)), ("\\int x dx", Integral(x, x)), ("\\int x d\\theta", Integral(x, theta)), ("\\int (x^2 - y)dx", Integral(x**2 - y, x)), ("\\int x + a dx", Integral(_Add(x, a), x)), ("\\int da", Integral(1, a)), ("\\int_0^7 dx", Integral(1, (x, 0, 7))), ("\\int_a^b x dx", Integral(x, (x, a, b))), ("\\int^b_a x dx", Integral(x, (x, a, b))), ("\\int_{a}^b x dx", Integral(x, (x, a, b))), ("\\int^{b}_a x dx", Integral(x, (x, a, b))), ("\\int_{a}^{b} x dx", Integral(x, (x, a, b))), ("\\int^{b}_{a} x dx", Integral(x, (x, a, b))), ("\\int_{f(a)}^{f(b)} f(z) dz", Integral(f(z), (z, f(a), f(b)))), ("\\int (x+a)", Integral(_Add(x, a), x)), ("\\int a + b + c dx", Integral(_Add(_Add(a, b), c), x)), ("\\int \\frac{dz}{z}", Integral(Pow(z, -1), z)), ("\\int \\frac{3 dz}{z}", Integral(3*Pow(z, -1), z)), ("\\int \\frac{1}{x} dx", Integral(Pow(x, -1), x)), ("\\int \\frac{1}{a} + \\frac{1}{b} dx", Integral(_Add(_Pow(a, -1), Pow(b, -1)), x)), ("\\int \\frac{3 \\cdot d\\theta}{\\theta}", Integral(3*_Pow(theta, -1), theta)), ("\\int \\frac{1}{x} + 1 dx", Integral(_Add(_Pow(x, -1), 1), x)), ("x_0", Symbol('x_{0}')), ("x_{1}", Symbol('x_{1}')), ("x_a", Symbol('x_{a}')), ("x_{b}", Symbol('x_{b}')), ("h_\\theta", Symbol('h_{theta}')), ("h_{\\theta}", Symbol('h_{theta}')), ("h_{\\theta}(x_0, x_1)", Function('h_{theta}')(Symbol('x_{0}'), Symbol('x_{1}'))), ("x!", _factorial(x)), ("100!", _factorial(100)), ("\\theta!", _factorial(theta)), ("(x + 1)!", _factorial(_Add(x, 1))), ("(x!)!", _factorial(_factorial(x))), ("x!!!", _factorial(_factorial(_factorial(x)))), ("5!7!", _Mul(_factorial(5), _factorial(7))), ("\\sqrt{x}", sqrt(x)), ("\\sqrt{x + b}", sqrt(_Add(x, b))), ("\\sqrt[3]{\\sin x}", root(sin(x), 3)), ("\\sqrt[y]{\\sin x}", root(sin(x), y)), ("\\sqrt[\\theta]{\\sin x}", root(sin(x), theta)), ("\\sqrt{\\frac{12}{6}}", _Sqrt(_Mul(12, _Pow(6, -1)))), (r"\overline{z}", _Conjugate(z)), (r"\overline{\overline{z}}", _Conjugate(_Conjugate(z))), (r"\overline{x + y}", _Conjugate(_Add(x, y))), (r"\overline{x} + \overline{y}", _Conjugate(x) + _Conjugate(y)), ("x < y", StrictLessThan(x, y)), ("x \\leq y", LessThan(x, y)), ("x > y", StrictGreaterThan(x, y)), ("x \\geq y", GreaterThan(x, y)), ("\\mathit{x}", Symbol('x')), ("\\mathit{test}", Symbol('test')), ("\\mathit{TEST}", Symbol('TEST')), ("\\mathit{HELLO world}", Symbol('HELLO world')), ("\\sum_{k = 1}^{3} c", Sum(c, (k, 1, 3))), ("\\sum_{k = 1}^3 c", Sum(c, (k, 1, 3))), ("\\sum^{3}_{k = 1} c", Sum(c, (k, 1, 3))), ("\\sum^3_{k = 1} c", Sum(c, (k, 1, 3))), ("\\sum_{k = 1}^{10} k^2", Sum(k**2, (k, 1, 10))), ("\\sum_{n = 0}^{\\infty} \\frac{1}{n!}", Sum(_Pow(_factorial(n), -1), (n, 0, oo))), ("\\prod_{a = b}^{c} x", Product(x, (a, b, c))), ("\\prod_{a = b}^c x", Product(x, (a, b, c))), ("\\prod^{c}_{a = b} x", Product(x, (a, b, c))), ("\\prod^c_{a = b} x", Product(x, (a, b, c))), ("\\exp x", _exp(x)), ("\\exp(x)", _exp(x)), ("\\ln x", _log(x, E)), ("\\ln xy", _log(x*y, E)), ("\\log x", _log(x, 10)), ("\\log xy", _log(x*y, 10)), ("\\log_{2} x", _log(x, 2)), ("\\log_{a} x", _log(x, a)), ("\\log_{11} x", _log(x, 11)), ("\\log_{a^2} x", _log(x, _Pow(a, 2))), ("[x]", x), ("[a + b]", _Add(a, b)), ("\\frac{d}{dx} [ \\tan x ]", Derivative(tan(x), x)), ("\\binom{n}{k}", _binomial(n, k)), ("\\tbinom{n}{k}", _binomial(n, k)), ("\\dbinom{n}{k}", _binomial(n, k)), ("\\binom{n}{0}", _binomial(n, 0)), ("a \\, b", _Mul(a, b)), ("a \\thinspace b", _Mul(a, b)), ("a \\: b", _Mul(a, b)), ("a \\medspace b", _Mul(a, b)), ("a \\; b", _Mul(a, b)), ("a \\thickspace b", _Mul(a, b)), ("a \\quad b", _Mul(a, b)), ("a \\qquad b", _Mul(a, b)), ("a \\! b", _Mul(a, b)), ("a \\negthinspace b", _Mul(a, b)), ("a \\negmedspace b", _Mul(a, b)), ("a \\negthickspace b", _Mul(a, b)), ("\\int x \\, dx", Integral(x, x)), ] def test_parseable(): from sympy.parsing.latex import parse_latex for latex_str, sympy_expr in GOOD_PAIRS: assert parse_latex(latex_str) == sympy_expr # At time of migration from latex2sympy, should work but doesn't FAILING_PAIRS = [ ("\\log_2 x", _log(x, 2)), ("\\log_a x", _log(x, a)), ] def test_failing_parseable(): from sympy.parsing.latex import parse_latex for latex_str, sympy_expr in FAILING_PAIRS: with raises(Exception): assert parse_latex(latex_str) == sympy_expr # These bad LaTeX strings should raise a LaTeXParsingError when parsed BAD_STRINGS = [ "(", ")", "\\frac{d}{dx}", "(\\frac{d}{dx})", "\\sqrt{}", "\\sqrt", "\\overline{}", "\\overline", "{", "}", "\\mathit{x + y}", "\\mathit{21}", "\\frac{2}{}", "\\frac{}{2}", "\\int", "!", "!0", "_", "^", "|", "||x|", "()", "((((((((((((((((()))))))))))))))))", "-", "\\frac{d}{dx} + \\frac{d}{dt}", "f(x,,y)", "f(x,y,", "\\sin^x", "\\cos^2", "@", "#", "$", "%", "&", "*", "\\", "~", "\\frac{(2 + x}{1 - x)}", ] def test_not_parseable(): from sympy.parsing.latex import parse_latex, LaTeXParsingError for latex_str in BAD_STRINGS: with raises(LaTeXParsingError): parse_latex(latex_str) # At time of migration from latex2sympy, should fail but doesn't FAILING_BAD_STRINGS = [ "\\cos 1 \\cos", "f(,", "f()", "a \\div \\div b", "a \\cdot \\cdot b", "a // b", "a +", "1.1.1", "1 +", "a / b /", ] @XFAIL def test_failing_not_parseable(): from sympy.parsing.latex import parse_latex, LaTeXParsingError for latex_str in FAILING_BAD_STRINGS: with raises(LaTeXParsingError): parse_latex(latex_str)
cd3cccef0178b64479878c2be61c66fa2f6409b6e707e5a21289f685fcfea515
# Ported from latex2sympy by @augustt198 # https://github.com/augustt198/latex2sympy # See license in LICENSE.txt import sympy from sympy.external import import_module from sympy.printing.str import StrPrinter from sympy.physics.quantum.state import Bra, Ket from .errors import LaTeXParsingError LaTeXParser = LaTeXLexer = MathErrorListener = None try: LaTeXParser = import_module('sympy.parsing.latex._antlr.latexparser', import_kwargs={'fromlist': ['LaTeXParser']}).LaTeXParser LaTeXLexer = import_module('sympy.parsing.latex._antlr.latexlexer', import_kwargs={'fromlist': ['LaTeXLexer']}).LaTeXLexer except Exception: pass ErrorListener = import_module('antlr4.error.ErrorListener', warn_not_installed=True, import_kwargs={'fromlist': ['ErrorListener']} ) if ErrorListener: class MathErrorListener(ErrorListener.ErrorListener): # type: ignore def __init__(self, src): super(ErrorListener.ErrorListener, self).__init__() self.src = src def syntaxError(self, recog, symbol, line, col, msg, e): fmt = "%s\n%s\n%s" marker = "~" * col + "^" if msg.startswith("missing"): err = fmt % (msg, self.src, marker) elif msg.startswith("no viable"): err = fmt % ("I expected something else here", self.src, marker) elif msg.startswith("mismatched"): names = LaTeXParser.literalNames expected = [ names[i] for i in e.getExpectedTokens() if i < len(names) ] if len(expected) < 10: expected = " ".join(expected) err = (fmt % ("I expected one of these: " + expected, self.src, marker)) else: err = (fmt % ("I expected something else here", self.src, marker)) else: err = fmt % ("I don't understand this", self.src, marker) raise LaTeXParsingError(err) def parse_latex(sympy): antlr4 = import_module('antlr4', warn_not_installed=True) if None in [antlr4, MathErrorListener]: raise ImportError("LaTeX parsing requires the antlr4 python package," " provided by pip (antlr4-python2-runtime or" " antlr4-python3-runtime) or" " conda (antlr-python-runtime)") matherror = MathErrorListener(sympy) stream = antlr4.InputStream(sympy) lex = LaTeXLexer(stream) lex.removeErrorListeners() lex.addErrorListener(matherror) tokens = antlr4.CommonTokenStream(lex) parser = LaTeXParser(tokens) # remove default console error listener parser.removeErrorListeners() parser.addErrorListener(matherror) relation = parser.math().relation() expr = convert_relation(relation) return expr def convert_relation(rel): if rel.expr(): return convert_expr(rel.expr()) lh = convert_relation(rel.relation(0)) rh = convert_relation(rel.relation(1)) if rel.LT(): return sympy.StrictLessThan(lh, rh) elif rel.LTE(): return sympy.LessThan(lh, rh) elif rel.GT(): return sympy.StrictGreaterThan(lh, rh) elif rel.GTE(): return sympy.GreaterThan(lh, rh) elif rel.EQUAL(): return sympy.Eq(lh, rh) elif rel.NEQ(): return sympy.Ne(lh, rh) def convert_expr(expr): return convert_add(expr.additive()) def convert_add(add): if add.ADD(): lh = convert_add(add.additive(0)) rh = convert_add(add.additive(1)) return sympy.Add(lh, rh, evaluate=False) elif add.SUB(): lh = convert_add(add.additive(0)) rh = convert_add(add.additive(1)) return sympy.Add(lh, -1 * rh, evaluate=False) else: return convert_mp(add.mp()) def convert_mp(mp): if hasattr(mp, 'mp'): mp_left = mp.mp(0) mp_right = mp.mp(1) else: mp_left = mp.mp_nofunc(0) mp_right = mp.mp_nofunc(1) if mp.MUL() or mp.CMD_TIMES() or mp.CMD_CDOT(): lh = convert_mp(mp_left) rh = convert_mp(mp_right) return sympy.Mul(lh, rh, evaluate=False) elif mp.DIV() or mp.CMD_DIV() or mp.COLON(): lh = convert_mp(mp_left) rh = convert_mp(mp_right) return sympy.Mul(lh, sympy.Pow(rh, -1, evaluate=False), evaluate=False) else: if hasattr(mp, 'unary'): return convert_unary(mp.unary()) else: return convert_unary(mp.unary_nofunc()) def convert_unary(unary): if hasattr(unary, 'unary'): nested_unary = unary.unary() else: nested_unary = unary.unary_nofunc() if hasattr(unary, 'postfix_nofunc'): first = unary.postfix() tail = unary.postfix_nofunc() postfix = [first] + tail else: postfix = unary.postfix() if unary.ADD(): return convert_unary(nested_unary) elif unary.SUB(): numabs = convert_unary(nested_unary) if numabs == 1: # Use Integer(-1) instead of Mul(-1, 1) return -numabs else: return sympy.Mul(-1, convert_unary(nested_unary), evaluate=False) elif postfix: return convert_postfix_list(postfix) def convert_postfix_list(arr, i=0): if i >= len(arr): raise LaTeXParsingError("Index out of bounds") res = convert_postfix(arr[i]) if isinstance(res, sympy.Expr): if i == len(arr) - 1: return res # nothing to multiply by else: if i > 0: left = convert_postfix(arr[i - 1]) right = convert_postfix(arr[i + 1]) if isinstance(left, sympy.Expr) and isinstance( right, sympy.Expr): left_syms = convert_postfix(arr[i - 1]).atoms(sympy.Symbol) right_syms = convert_postfix(arr[i + 1]).atoms( sympy.Symbol) # if the left and right sides contain no variables and the # symbol in between is 'x', treat as multiplication. if len(left_syms) == 0 and len(right_syms) == 0 and str( res) == "x": return convert_postfix_list(arr, i + 1) # multiply by next return sympy.Mul( res, convert_postfix_list(arr, i + 1), evaluate=False) else: # must be derivative wrt = res[0] if i == len(arr) - 1: raise LaTeXParsingError("Expected expression for derivative") else: expr = convert_postfix_list(arr, i + 1) return sympy.Derivative(expr, wrt) def do_subs(expr, at): if at.expr(): at_expr = convert_expr(at.expr()) syms = at_expr.atoms(sympy.Symbol) if len(syms) == 0: return expr elif len(syms) > 0: sym = next(iter(syms)) return expr.subs(sym, at_expr) elif at.equality(): lh = convert_expr(at.equality().expr(0)) rh = convert_expr(at.equality().expr(1)) return expr.subs(lh, rh) def convert_postfix(postfix): if hasattr(postfix, 'exp'): exp_nested = postfix.exp() else: exp_nested = postfix.exp_nofunc() exp = convert_exp(exp_nested) for op in postfix.postfix_op(): if op.BANG(): if isinstance(exp, list): raise LaTeXParsingError("Cannot apply postfix to derivative") exp = sympy.factorial(exp, evaluate=False) elif op.eval_at(): ev = op.eval_at() at_b = None at_a = None if ev.eval_at_sup(): at_b = do_subs(exp, ev.eval_at_sup()) if ev.eval_at_sub(): at_a = do_subs(exp, ev.eval_at_sub()) if at_b is not None and at_a is not None: exp = sympy.Add(at_b, -1 * at_a, evaluate=False) elif at_b is not None: exp = at_b elif at_a is not None: exp = at_a return exp def convert_exp(exp): if hasattr(exp, 'exp'): exp_nested = exp.exp() else: exp_nested = exp.exp_nofunc() if exp_nested: base = convert_exp(exp_nested) if isinstance(base, list): raise LaTeXParsingError("Cannot raise derivative to power") if exp.atom(): exponent = convert_atom(exp.atom()) elif exp.expr(): exponent = convert_expr(exp.expr()) return sympy.Pow(base, exponent, evaluate=False) else: if hasattr(exp, 'comp'): return convert_comp(exp.comp()) else: return convert_comp(exp.comp_nofunc()) def convert_comp(comp): if comp.group(): return convert_expr(comp.group().expr()) elif comp.abs_group(): return sympy.Abs(convert_expr(comp.abs_group().expr()), evaluate=False) elif comp.atom(): return convert_atom(comp.atom()) elif comp.frac(): return convert_frac(comp.frac()) elif comp.binom(): return convert_binom(comp.binom()) elif comp.floor(): return convert_floor(comp.floor()) elif comp.ceil(): return convert_ceil(comp.ceil()) elif comp.func(): return convert_func(comp.func()) def convert_atom(atom): if atom.LETTER(): subscriptName = '' if atom.subexpr(): subscript = None if atom.subexpr().expr(): # subscript is expr subscript = convert_expr(atom.subexpr().expr()) else: # subscript is atom subscript = convert_atom(atom.subexpr().atom()) subscriptName = '_{' + StrPrinter().doprint(subscript) + '}' return sympy.Symbol(atom.LETTER().getText() + subscriptName) elif atom.SYMBOL(): s = atom.SYMBOL().getText()[1:] if s == "infty": return sympy.oo else: if atom.subexpr(): subscript = None if atom.subexpr().expr(): # subscript is expr subscript = convert_expr(atom.subexpr().expr()) else: # subscript is atom subscript = convert_atom(atom.subexpr().atom()) subscriptName = StrPrinter().doprint(subscript) s += '_{' + subscriptName + '}' return sympy.Symbol(s) elif atom.NUMBER(): s = atom.NUMBER().getText().replace(",", "") return sympy.Number(s) elif atom.DIFFERENTIAL(): var = get_differential_var(atom.DIFFERENTIAL()) return sympy.Symbol('d' + var.name) elif atom.mathit(): text = rule2text(atom.mathit().mathit_text()) return sympy.Symbol(text) elif atom.bra(): val = convert_expr(atom.bra().expr()) return Bra(val) elif atom.ket(): val = convert_expr(atom.ket().expr()) return Ket(val) def rule2text(ctx): stream = ctx.start.getInputStream() # starting index of starting token startIdx = ctx.start.start # stopping index of stopping token stopIdx = ctx.stop.stop return stream.getText(startIdx, stopIdx) def convert_frac(frac): diff_op = False partial_op = False lower_itv = frac.lower.getSourceInterval() lower_itv_len = lower_itv[1] - lower_itv[0] + 1 if (frac.lower.start == frac.lower.stop and frac.lower.start.type == LaTeXLexer.DIFFERENTIAL): wrt = get_differential_var_str(frac.lower.start.text) diff_op = True elif (lower_itv_len == 2 and frac.lower.start.type == LaTeXLexer.SYMBOL and frac.lower.start.text == '\\partial' and (frac.lower.stop.type == LaTeXLexer.LETTER or frac.lower.stop.type == LaTeXLexer.SYMBOL)): partial_op = True wrt = frac.lower.stop.text if frac.lower.stop.type == LaTeXLexer.SYMBOL: wrt = wrt[1:] if diff_op or partial_op: wrt = sympy.Symbol(wrt) if (diff_op and frac.upper.start == frac.upper.stop and frac.upper.start.type == LaTeXLexer.LETTER and frac.upper.start.text == 'd'): return [wrt] elif (partial_op and frac.upper.start == frac.upper.stop and frac.upper.start.type == LaTeXLexer.SYMBOL and frac.upper.start.text == '\\partial'): return [wrt] upper_text = rule2text(frac.upper) expr_top = None if diff_op and upper_text.startswith('d'): expr_top = parse_latex(upper_text[1:]) elif partial_op and frac.upper.start.text == '\\partial': expr_top = parse_latex(upper_text[len('\\partial'):]) if expr_top: return sympy.Derivative(expr_top, wrt) expr_top = convert_expr(frac.upper) expr_bot = convert_expr(frac.lower) inverse_denom = sympy.Pow(expr_bot, -1, evaluate=False) if expr_top == 1: return inverse_denom else: return sympy.Mul(expr_top, inverse_denom, evaluate=False) def convert_binom(binom): expr_n = convert_expr(binom.n) expr_k = convert_expr(binom.k) return sympy.binomial(expr_n, expr_k, evaluate=False) def convert_floor(floor): val = convert_expr(floor.val) return sympy.floor(val, evaluate=False) def convert_ceil(ceil): val = convert_expr(ceil.val) return sympy.ceiling(val, evaluate=False) def convert_func(func): if func.func_normal(): if func.L_PAREN(): # function called with parenthesis arg = convert_func_arg(func.func_arg()) else: arg = convert_func_arg(func.func_arg_noparens()) name = func.func_normal().start.text[1:] # change arc<trig> -> a<trig> if name in [ "arcsin", "arccos", "arctan", "arccsc", "arcsec", "arccot" ]: name = "a" + name[3:] expr = getattr(sympy.functions, name)(arg, evaluate=False) if name in ["arsinh", "arcosh", "artanh"]: name = "a" + name[2:] expr = getattr(sympy.functions, name)(arg, evaluate=False) if name == "exp": expr = sympy.exp(arg, evaluate=False) if (name == "log" or name == "ln"): if func.subexpr(): base = convert_expr(func.subexpr().expr()) elif name == "log": base = 10 elif name == "ln": base = sympy.E expr = sympy.log(arg, base, evaluate=False) func_pow = None should_pow = True if func.supexpr(): if func.supexpr().expr(): func_pow = convert_expr(func.supexpr().expr()) else: func_pow = convert_atom(func.supexpr().atom()) if name in [ "sin", "cos", "tan", "csc", "sec", "cot", "sinh", "cosh", "tanh" ]: if func_pow == -1: name = "a" + name should_pow = False expr = getattr(sympy.functions, name)(arg, evaluate=False) if func_pow and should_pow: expr = sympy.Pow(expr, func_pow, evaluate=False) return expr elif func.LETTER() or func.SYMBOL(): if func.LETTER(): fname = func.LETTER().getText() elif func.SYMBOL(): fname = func.SYMBOL().getText()[1:] fname = str(fname) # can't be unicode if func.subexpr(): subscript = None if func.subexpr().expr(): # subscript is expr subscript = convert_expr(func.subexpr().expr()) else: # subscript is atom subscript = convert_atom(func.subexpr().atom()) subscriptName = StrPrinter().doprint(subscript) fname += '_{' + subscriptName + '}' input_args = func.args() output_args = [] while input_args.args(): # handle multiple arguments to function output_args.append(convert_expr(input_args.expr())) input_args = input_args.args() output_args.append(convert_expr(input_args.expr())) return sympy.Function(fname)(*output_args) elif func.FUNC_INT(): return handle_integral(func) elif func.FUNC_SQRT(): expr = convert_expr(func.base) if func.root: r = convert_expr(func.root) return sympy.root(expr, r, evaluate=False) else: return sympy.sqrt(expr, evaluate=False) elif func.FUNC_OVERLINE(): expr = convert_expr(func.base) return sympy.conjugate(expr, evaluate=False) elif func.FUNC_SUM(): return handle_sum_or_prod(func, "summation") elif func.FUNC_PROD(): return handle_sum_or_prod(func, "product") elif func.FUNC_LIM(): return handle_limit(func) def convert_func_arg(arg): if hasattr(arg, 'expr'): return convert_expr(arg.expr()) else: return convert_mp(arg.mp_nofunc()) def handle_integral(func): if func.additive(): integrand = convert_add(func.additive()) elif func.frac(): integrand = convert_frac(func.frac()) else: integrand = 1 int_var = None if func.DIFFERENTIAL(): int_var = get_differential_var(func.DIFFERENTIAL()) else: for sym in integrand.atoms(sympy.Symbol): s = str(sym) if len(s) > 1 and s[0] == 'd': if s[1] == '\\': int_var = sympy.Symbol(s[2:]) else: int_var = sympy.Symbol(s[1:]) int_sym = sym if int_var: integrand = integrand.subs(int_sym, 1) else: # Assume dx by default int_var = sympy.Symbol('x') if func.subexpr(): if func.subexpr().atom(): lower = convert_atom(func.subexpr().atom()) else: lower = convert_expr(func.subexpr().expr()) if func.supexpr().atom(): upper = convert_atom(func.supexpr().atom()) else: upper = convert_expr(func.supexpr().expr()) return sympy.Integral(integrand, (int_var, lower, upper)) else: return sympy.Integral(integrand, int_var) def handle_sum_or_prod(func, name): val = convert_mp(func.mp()) iter_var = convert_expr(func.subeq().equality().expr(0)) start = convert_expr(func.subeq().equality().expr(1)) if func.supexpr().expr(): # ^{expr} end = convert_expr(func.supexpr().expr()) else: # ^atom end = convert_atom(func.supexpr().atom()) if name == "summation": return sympy.Sum(val, (iter_var, start, end)) elif name == "product": return sympy.Product(val, (iter_var, start, end)) def handle_limit(func): sub = func.limit_sub() if sub.LETTER(): var = sympy.Symbol(sub.LETTER().getText()) elif sub.SYMBOL(): var = sympy.Symbol(sub.SYMBOL().getText()[1:]) else: var = sympy.Symbol('x') if sub.SUB(): direction = "-" else: direction = "+" approaching = convert_expr(sub.expr()) content = convert_mp(func.mp()) return sympy.Limit(content, var, approaching, direction) def get_differential_var(d): text = get_differential_var_str(d.getText()) return sympy.Symbol(text) def get_differential_var_str(text): for i in range(1, len(text)): c = text[i] if not (c == " " or c == "\r" or c == "\n" or c == "\t"): idx = i break text = text[idx:] if text[0] == "\\": text = text[1:] return text
caf18e9598ec0c0955def1544dea3bf0298c966bdd6d0c4bd36d7bc8739c59a3
# encoding: utf-8 # *** GENERATED BY `setup.py antlr`, DO NOT EDIT BY HAND *** # # Generated from ../LaTeX.g4, derived from latex2sympy # latex2sympy is licensed under the MIT license # https://github.com/augustt198/latex2sympy/blob/master/LICENSE.txt # # Generated with antlr4 # antlr4 is licensed under the BSD-3-Clause License # https://github.com/antlr/antlr4/blob/master/LICENSE.txt from __future__ import print_function from antlr4 import * from io import StringIO import sys def serializedATN(): with StringIO() as buf: buf.write(u"\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\2") buf.write(u"Z\u0390\b\1\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4") buf.write(u"\7\t\7\4\b\t\b\4\t\t\t\4\n\t\n\4\13\t\13\4\f\t\f\4\r") buf.write(u"\t\r\4\16\t\16\4\17\t\17\4\20\t\20\4\21\t\21\4\22\t\22") buf.write(u"\4\23\t\23\4\24\t\24\4\25\t\25\4\26\t\26\4\27\t\27\4") buf.write(u"\30\t\30\4\31\t\31\4\32\t\32\4\33\t\33\4\34\t\34\4\35") buf.write(u"\t\35\4\36\t\36\4\37\t\37\4 \t \4!\t!\4\"\t\"\4#\t#\4") buf.write(u"$\t$\4%\t%\4&\t&\4\'\t\'\4(\t(\4)\t)\4*\t*\4+\t+\4,\t") buf.write(u",\4-\t-\4.\t.\4/\t/\4\60\t\60\4\61\t\61\4\62\t\62\4\63") buf.write(u"\t\63\4\64\t\64\4\65\t\65\4\66\t\66\4\67\t\67\48\t8\4") buf.write(u"9\t9\4:\t:\4;\t;\4<\t<\4=\t=\4>\t>\4?\t?\4@\t@\4A\tA") buf.write(u"\4B\tB\4C\tC\4D\tD\4E\tE\4F\tF\4G\tG\4H\tH\4I\tI\4J\t") buf.write(u"J\4K\tK\4L\tL\4M\tM\4N\tN\4O\tO\4P\tP\4Q\tQ\4R\tR\4S") buf.write(u"\tS\4T\tT\4U\tU\4V\tV\4W\tW\4X\tX\4Y\tY\4Z\tZ\4[\t[\3") buf.write(u"\2\3\2\3\3\6\3\u00bb\n\3\r\3\16\3\u00bc\3\3\3\3\3\4\3") buf.write(u"\4\3\4\3\4\3\4\3\4\3\4\3\4\3\4\3\4\3\4\3\4\5\4\u00cd") buf.write(u"\n\4\3\4\3\4\3\5\3\5\3\5\3\5\3\5\3\5\3\5\3\5\3\5\3\5") buf.write(u"\3\5\5\5\u00dc\n\5\3\5\3\5\3\6\3\6\3\6\3\6\3\6\3\6\3") buf.write(u"\6\3\6\3\6\3\6\3\6\3\6\3\6\5\6\u00ed\n\6\3\6\3\6\3\7") buf.write(u"\3\7\3\7\3\7\3\7\3\7\3\7\3\7\3\b\3\b\3\b\3\b\3\b\3\b") buf.write(u"\3\b\3\b\3\b\3\t\3\t\3\t\3\t\3\t\3\t\3\t\3\t\3\t\3\t") buf.write(u"\3\t\3\t\3\t\3\t\3\t\5\t\u0111\n\t\3\t\3\t\3\n\3\n\3") buf.write(u"\n\3\n\3\n\3\n\3\n\3\n\3\n\3\n\3\n\3\n\3\n\3\n\3\n\3") buf.write(u"\13\3\13\3\13\3\13\3\13\3\13\3\13\3\13\3\13\3\13\3\13") buf.write(u"\3\13\3\13\3\13\3\13\3\13\3\13\3\f\3\f\3\f\3\f\3\f\3") buf.write(u"\f\3\f\3\f\3\r\3\r\3\r\3\r\3\r\3\r\3\r\3\r\3\r\3\16\3") buf.write(u"\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16") buf.write(u"\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3") buf.write(u"\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16") buf.write(u"\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3") buf.write(u"\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\5\16\u0179\n\16") buf.write(u"\3\16\3\16\3\17\3\17\3\20\3\20\3\21\3\21\3\22\3\22\3") buf.write(u"\23\3\23\3\24\3\24\3\25\3\25\3\26\3\26\3\27\3\27\3\27") buf.write(u"\3\30\3\30\3\30\3\31\3\31\3\32\3\32\3\33\3\33\3\34\3") buf.write(u"\34\3\34\3\34\3\34\3\34\3\34\3\34\3\35\3\35\3\35\3\35") buf.write(u"\3\35\3\35\3\35\3\36\3\36\3\36\3\36\3\36\3\36\3\36\3") buf.write(u"\36\3\37\3\37\3\37\3\37\3\37\3\37\3\37\3\37\3 \3 \3 ") buf.write(u"\3 \3 \3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3") buf.write(u"!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!") buf.write(u"\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3") buf.write(u"!\3!\3!\3!\3!\5!\u01f4\n!\3\"\3\"\3\"\3\"\3\"\3#\3#\3") buf.write(u"#\3#\3#\3$\3$\3$\3$\3$\3$\3%\3%\3%\3%\3%\3&\3&\3&\3&") buf.write(u"\3&\3\'\3\'\3\'\3\'\3(\3(\3(\3(\3(\3)\3)\3)\3)\3)\3*") buf.write(u"\3*\3*\3*\3*\3+\3+\3+\3+\3+\3,\3,\3,\3,\3,\3-\3-\3-\3") buf.write(u"-\3-\3.\3.\3.\3.\3.\3.\3.\3.\3/\3/\3/\3/\3/\3/\3/\3/") buf.write(u"\3\60\3\60\3\60\3\60\3\60\3\60\3\60\3\60\3\61\3\61\3") buf.write(u"\61\3\61\3\61\3\61\3\61\3\61\3\62\3\62\3\62\3\62\3\62") buf.write(u"\3\62\3\62\3\62\3\63\3\63\3\63\3\63\3\63\3\63\3\63\3") buf.write(u"\63\3\64\3\64\3\64\3\64\3\64\3\64\3\65\3\65\3\65\3\65") buf.write(u"\3\65\3\65\3\66\3\66\3\66\3\66\3\66\3\66\3\67\3\67\3") buf.write(u"\67\3\67\3\67\3\67\3\67\3\67\38\38\38\38\38\38\38\38") buf.write(u"\39\39\39\39\39\39\39\39\3:\3:\3:\3:\3:\3:\3:\3:\3;\3") buf.write(u";\3;\3;\3;\3;\3;\3;\3<\3<\3<\3<\3<\3<\3<\3=\3=\3=\3=") buf.write(u"\3=\3=\3=\3>\3>\3>\3>\3>\3>\3?\3?\3?\3?\3?\3?\3?\3?\3") buf.write(u"?\3?\3@\3@\3@\3@\3@\3@\3@\3A\3A\3A\3A\3A\3A\3B\3B\3B") buf.write(u"\3B\3B\3C\3C\3C\3C\3C\3C\3D\3D\3D\3D\3D\3D\3D\3E\3E\3") buf.write(u"E\3E\3E\3E\3E\3E\3F\3F\3F\3F\3F\3F\3F\3F\3G\3G\3G\3G") buf.write(u"\3G\3G\3G\3G\3H\3H\3I\3I\3J\3J\3K\3K\3L\3L\7L\u02fb\n") buf.write(u"L\fL\16L\u02fe\13L\3L\3L\3L\6L\u0303\nL\rL\16L\u0304") buf.write(u"\5L\u0307\nL\3M\3M\3N\3N\3O\6O\u030e\nO\rO\16O\u030f") buf.write(u"\3O\3O\3O\3O\3O\7O\u0317\nO\fO\16O\u031a\13O\3O\7O\u031d") buf.write(u"\nO\fO\16O\u0320\13O\3O\3O\3O\3O\3O\7O\u0327\nO\fO\16") buf.write(u"O\u032a\13O\3O\3O\6O\u032e\nO\rO\16O\u032f\5O\u0332\n") buf.write(u"O\3P\3P\7P\u0336\nP\fP\16P\u0339\13P\5P\u033b\nP\3P\3") buf.write(u"P\3P\7P\u0340\nP\fP\16P\u0343\13P\3P\5P\u0346\nP\5P\u0348") buf.write(u"\nP\3Q\3Q\3Q\3Q\3Q\3R\3R\3S\3S\3S\3S\3S\3S\3S\3S\3S\5") buf.write(u"S\u035a\nS\3T\3T\3T\3T\3T\3T\3U\3U\3U\3U\3U\3U\3U\3U") buf.write(u"\3U\3U\3V\3V\3W\3W\3W\3W\3W\3W\3W\3W\3W\5W\u0377\nW\3") buf.write(u"X\3X\3X\3X\3X\3X\3Y\3Y\3Y\3Y\3Y\3Y\3Y\3Y\3Y\3Y\3Z\3Z") buf.write(u"\3[\3[\6[\u038d\n[\r[\16[\u038e\5\u02fc\u0337\u0341\2") buf.write(u"\\\3\3\5\4\7\5\t\6\13\7\r\b\17\t\21\n\23\13\25\f\27\r") buf.write(u"\31\16\33\17\35\20\37\21!\22#\23%\24\'\25)\26+\27-\30") buf.write(u"/\31\61\32\63\33\65\34\67\359\36;\37= ?!A\"C#E$G%I&K") buf.write(u"\'M(O)Q*S+U,W-Y.[/]\60_\61a\62c\63e\64g\65i\66k\67m8") buf.write(u"o9q:s;u<w=y>{?}@\177A\u0081B\u0083C\u0085D\u0087E\u0089") buf.write(u"F\u008bG\u008dH\u008fI\u0091J\u0093K\u0095\2\u0097L\u0099") buf.write(u"M\u009b\2\u009dN\u009fO\u00a1P\u00a3Q\u00a5R\u00a7S\u00a9") buf.write(u"T\u00abU\u00adV\u00afW\u00b1X\u00b3Y\u00b5Z\3\2\5\5\2") buf.write(u"\13\f\17\17\"\"\4\2C\\c|\3\2\62;\2\u03b7\2\3\3\2\2\2") buf.write(u"\2\5\3\2\2\2\2\7\3\2\2\2\2\t\3\2\2\2\2\13\3\2\2\2\2\r") buf.write(u"\3\2\2\2\2\17\3\2\2\2\2\21\3\2\2\2\2\23\3\2\2\2\2\25") buf.write(u"\3\2\2\2\2\27\3\2\2\2\2\31\3\2\2\2\2\33\3\2\2\2\2\35") buf.write(u"\3\2\2\2\2\37\3\2\2\2\2!\3\2\2\2\2#\3\2\2\2\2%\3\2\2") buf.write(u"\2\2\'\3\2\2\2\2)\3\2\2\2\2+\3\2\2\2\2-\3\2\2\2\2/\3") buf.write(u"\2\2\2\2\61\3\2\2\2\2\63\3\2\2\2\2\65\3\2\2\2\2\67\3") buf.write(u"\2\2\2\29\3\2\2\2\2;\3\2\2\2\2=\3\2\2\2\2?\3\2\2\2\2") buf.write(u"A\3\2\2\2\2C\3\2\2\2\2E\3\2\2\2\2G\3\2\2\2\2I\3\2\2\2") buf.write(u"\2K\3\2\2\2\2M\3\2\2\2\2O\3\2\2\2\2Q\3\2\2\2\2S\3\2\2") buf.write(u"\2\2U\3\2\2\2\2W\3\2\2\2\2Y\3\2\2\2\2[\3\2\2\2\2]\3\2") buf.write(u"\2\2\2_\3\2\2\2\2a\3\2\2\2\2c\3\2\2\2\2e\3\2\2\2\2g\3") buf.write(u"\2\2\2\2i\3\2\2\2\2k\3\2\2\2\2m\3\2\2\2\2o\3\2\2\2\2") buf.write(u"q\3\2\2\2\2s\3\2\2\2\2u\3\2\2\2\2w\3\2\2\2\2y\3\2\2\2") buf.write(u"\2{\3\2\2\2\2}\3\2\2\2\2\177\3\2\2\2\2\u0081\3\2\2\2") buf.write(u"\2\u0083\3\2\2\2\2\u0085\3\2\2\2\2\u0087\3\2\2\2\2\u0089") buf.write(u"\3\2\2\2\2\u008b\3\2\2\2\2\u008d\3\2\2\2\2\u008f\3\2") buf.write(u"\2\2\2\u0091\3\2\2\2\2\u0093\3\2\2\2\2\u0097\3\2\2\2") buf.write(u"\2\u0099\3\2\2\2\2\u009d\3\2\2\2\2\u009f\3\2\2\2\2\u00a1") buf.write(u"\3\2\2\2\2\u00a3\3\2\2\2\2\u00a5\3\2\2\2\2\u00a7\3\2") buf.write(u"\2\2\2\u00a9\3\2\2\2\2\u00ab\3\2\2\2\2\u00ad\3\2\2\2") buf.write(u"\2\u00af\3\2\2\2\2\u00b1\3\2\2\2\2\u00b3\3\2\2\2\2\u00b5") buf.write(u"\3\2\2\2\3\u00b7\3\2\2\2\5\u00ba\3\2\2\2\7\u00cc\3\2") buf.write(u"\2\2\t\u00db\3\2\2\2\13\u00ec\3\2\2\2\r\u00f0\3\2\2\2") buf.write(u"\17\u00f8\3\2\2\2\21\u0110\3\2\2\2\23\u0114\3\2\2\2\25") buf.write(u"\u0123\3\2\2\2\27\u0134\3\2\2\2\31\u013c\3\2\2\2\33\u0178") buf.write(u"\3\2\2\2\35\u017c\3\2\2\2\37\u017e\3\2\2\2!\u0180\3\2") buf.write(u"\2\2#\u0182\3\2\2\2%\u0184\3\2\2\2\'\u0186\3\2\2\2)\u0188") buf.write(u"\3\2\2\2+\u018a\3\2\2\2-\u018c\3\2\2\2/\u018f\3\2\2\2") buf.write(u"\61\u0192\3\2\2\2\63\u0194\3\2\2\2\65\u0196\3\2\2\2\67") buf.write(u"\u0198\3\2\2\29\u01a0\3\2\2\2;\u01a7\3\2\2\2=\u01af\3") buf.write(u"\2\2\2?\u01b7\3\2\2\2A\u01f3\3\2\2\2C\u01f5\3\2\2\2E") buf.write(u"\u01fa\3\2\2\2G\u01ff\3\2\2\2I\u0205\3\2\2\2K\u020a\3") buf.write(u"\2\2\2M\u020f\3\2\2\2O\u0213\3\2\2\2Q\u0218\3\2\2\2S") buf.write(u"\u021d\3\2\2\2U\u0222\3\2\2\2W\u0227\3\2\2\2Y\u022c\3") buf.write(u"\2\2\2[\u0231\3\2\2\2]\u0239\3\2\2\2_\u0241\3\2\2\2a") buf.write(u"\u0249\3\2\2\2c\u0251\3\2\2\2e\u0259\3\2\2\2g\u0261\3") buf.write(u"\2\2\2i\u0267\3\2\2\2k\u026d\3\2\2\2m\u0273\3\2\2\2o") buf.write(u"\u027b\3\2\2\2q\u0283\3\2\2\2s\u028b\3\2\2\2u\u0293\3") buf.write(u"\2\2\2w\u029b\3\2\2\2y\u02a2\3\2\2\2{\u02a9\3\2\2\2}") buf.write(u"\u02af\3\2\2\2\177\u02b9\3\2\2\2\u0081\u02c0\3\2\2\2") buf.write(u"\u0083\u02c6\3\2\2\2\u0085\u02cb\3\2\2\2\u0087\u02d1") buf.write(u"\3\2\2\2\u0089\u02d8\3\2\2\2\u008b\u02e0\3\2\2\2\u008d") buf.write(u"\u02e8\3\2\2\2\u008f\u02f0\3\2\2\2\u0091\u02f2\3\2\2") buf.write(u"\2\u0093\u02f4\3\2\2\2\u0095\u02f6\3\2\2\2\u0097\u02f8") buf.write(u"\3\2\2\2\u0099\u0308\3\2\2\2\u009b\u030a\3\2\2\2\u009d") buf.write(u"\u0331\3\2\2\2\u009f\u0347\3\2\2\2\u00a1\u0349\3\2\2") buf.write(u"\2\u00a3\u034e\3\2\2\2\u00a5\u0359\3\2\2\2\u00a7\u035b") buf.write(u"\3\2\2\2\u00a9\u0361\3\2\2\2\u00ab\u036b\3\2\2\2\u00ad") buf.write(u"\u0376\3\2\2\2\u00af\u0378\3\2\2\2\u00b1\u037e\3\2\2") buf.write(u"\2\u00b3\u0388\3\2\2\2\u00b5\u038a\3\2\2\2\u00b7\u00b8") buf.write(u"\7.\2\2\u00b8\4\3\2\2\2\u00b9\u00bb\t\2\2\2\u00ba\u00b9") buf.write(u"\3\2\2\2\u00bb\u00bc\3\2\2\2\u00bc\u00ba\3\2\2\2\u00bc") buf.write(u"\u00bd\3\2\2\2\u00bd\u00be\3\2\2\2\u00be\u00bf\b\3\2") buf.write(u"\2\u00bf\6\3\2\2\2\u00c0\u00c1\7^\2\2\u00c1\u00cd\7.") buf.write(u"\2\2\u00c2\u00c3\7^\2\2\u00c3\u00c4\7v\2\2\u00c4\u00c5") buf.write(u"\7j\2\2\u00c5\u00c6\7k\2\2\u00c6\u00c7\7p\2\2\u00c7\u00c8") buf.write(u"\7u\2\2\u00c8\u00c9\7r\2\2\u00c9\u00ca\7c\2\2\u00ca\u00cb") buf.write(u"\7e\2\2\u00cb\u00cd\7g\2\2\u00cc\u00c0\3\2\2\2\u00cc") buf.write(u"\u00c2\3\2\2\2\u00cd\u00ce\3\2\2\2\u00ce\u00cf\b\4\2") buf.write(u"\2\u00cf\b\3\2\2\2\u00d0\u00d1\7^\2\2\u00d1\u00dc\7<") buf.write(u"\2\2\u00d2\u00d3\7^\2\2\u00d3\u00d4\7o\2\2\u00d4\u00d5") buf.write(u"\7g\2\2\u00d5\u00d6\7f\2\2\u00d6\u00d7\7u\2\2\u00d7\u00d8") buf.write(u"\7r\2\2\u00d8\u00d9\7c\2\2\u00d9\u00da\7e\2\2\u00da\u00dc") buf.write(u"\7g\2\2\u00db\u00d0\3\2\2\2\u00db\u00d2\3\2\2\2\u00dc") buf.write(u"\u00dd\3\2\2\2\u00dd\u00de\b\5\2\2\u00de\n\3\2\2\2\u00df") buf.write(u"\u00e0\7^\2\2\u00e0\u00ed\7=\2\2\u00e1\u00e2\7^\2\2\u00e2") buf.write(u"\u00e3\7v\2\2\u00e3\u00e4\7j\2\2\u00e4\u00e5\7k\2\2\u00e5") buf.write(u"\u00e6\7e\2\2\u00e6\u00e7\7m\2\2\u00e7\u00e8\7u\2\2\u00e8") buf.write(u"\u00e9\7r\2\2\u00e9\u00ea\7c\2\2\u00ea\u00eb\7e\2\2\u00eb") buf.write(u"\u00ed\7g\2\2\u00ec\u00df\3\2\2\2\u00ec\u00e1\3\2\2\2") buf.write(u"\u00ed\u00ee\3\2\2\2\u00ee\u00ef\b\6\2\2\u00ef\f\3\2") buf.write(u"\2\2\u00f0\u00f1\7^\2\2\u00f1\u00f2\7s\2\2\u00f2\u00f3") buf.write(u"\7w\2\2\u00f3\u00f4\7c\2\2\u00f4\u00f5\7f\2\2\u00f5\u00f6") buf.write(u"\3\2\2\2\u00f6\u00f7\b\7\2\2\u00f7\16\3\2\2\2\u00f8\u00f9") buf.write(u"\7^\2\2\u00f9\u00fa\7s\2\2\u00fa\u00fb\7s\2\2\u00fb\u00fc") buf.write(u"\7w\2\2\u00fc\u00fd\7c\2\2\u00fd\u00fe\7f\2\2\u00fe\u00ff") buf.write(u"\3\2\2\2\u00ff\u0100\b\b\2\2\u0100\20\3\2\2\2\u0101\u0102") buf.write(u"\7^\2\2\u0102\u0111\7#\2\2\u0103\u0104\7^\2\2\u0104\u0105") buf.write(u"\7p\2\2\u0105\u0106\7g\2\2\u0106\u0107\7i\2\2\u0107\u0108") buf.write(u"\7v\2\2\u0108\u0109\7j\2\2\u0109\u010a\7k\2\2\u010a\u010b") buf.write(u"\7p\2\2\u010b\u010c\7u\2\2\u010c\u010d\7r\2\2\u010d\u010e") buf.write(u"\7c\2\2\u010e\u010f\7e\2\2\u010f\u0111\7g\2\2\u0110\u0101") buf.write(u"\3\2\2\2\u0110\u0103\3\2\2\2\u0111\u0112\3\2\2\2\u0112") buf.write(u"\u0113\b\t\2\2\u0113\22\3\2\2\2\u0114\u0115\7^\2\2\u0115") buf.write(u"\u0116\7p\2\2\u0116\u0117\7g\2\2\u0117\u0118\7i\2\2\u0118") buf.write(u"\u0119\7o\2\2\u0119\u011a\7g\2\2\u011a\u011b\7f\2\2\u011b") buf.write(u"\u011c\7u\2\2\u011c\u011d\7r\2\2\u011d\u011e\7c\2\2\u011e") buf.write(u"\u011f\7e\2\2\u011f\u0120\7g\2\2\u0120\u0121\3\2\2\2") buf.write(u"\u0121\u0122\b\n\2\2\u0122\24\3\2\2\2\u0123\u0124\7^") buf.write(u"\2\2\u0124\u0125\7p\2\2\u0125\u0126\7g\2\2\u0126\u0127") buf.write(u"\7i\2\2\u0127\u0128\7v\2\2\u0128\u0129\7j\2\2\u0129\u012a") buf.write(u"\7k\2\2\u012a\u012b\7e\2\2\u012b\u012c\7m\2\2\u012c\u012d") buf.write(u"\7u\2\2\u012d\u012e\7r\2\2\u012e\u012f\7c\2\2\u012f\u0130") buf.write(u"\7e\2\2\u0130\u0131\7g\2\2\u0131\u0132\3\2\2\2\u0132") buf.write(u"\u0133\b\13\2\2\u0133\26\3\2\2\2\u0134\u0135\7^\2\2\u0135") buf.write(u"\u0136\7n\2\2\u0136\u0137\7g\2\2\u0137\u0138\7h\2\2\u0138") buf.write(u"\u0139\7v\2\2\u0139\u013a\3\2\2\2\u013a\u013b\b\f\2\2") buf.write(u"\u013b\30\3\2\2\2\u013c\u013d\7^\2\2\u013d\u013e\7t\2") buf.write(u"\2\u013e\u013f\7k\2\2\u013f\u0140\7i\2\2\u0140\u0141") buf.write(u"\7j\2\2\u0141\u0142\7v\2\2\u0142\u0143\3\2\2\2\u0143") buf.write(u"\u0144\b\r\2\2\u0144\32\3\2\2\2\u0145\u0146\7^\2\2\u0146") buf.write(u"\u0147\7x\2\2\u0147\u0148\7t\2\2\u0148\u0149\7w\2\2\u0149") buf.write(u"\u014a\7n\2\2\u014a\u0179\7g\2\2\u014b\u014c\7^\2\2\u014c") buf.write(u"\u014d\7x\2\2\u014d\u014e\7e\2\2\u014e\u014f\7g\2\2\u014f") buf.write(u"\u0150\7p\2\2\u0150\u0151\7v\2\2\u0151\u0152\7g\2\2\u0152") buf.write(u"\u0179\7t\2\2\u0153\u0154\7^\2\2\u0154\u0155\7x\2\2\u0155") buf.write(u"\u0156\7d\2\2\u0156\u0157\7q\2\2\u0157\u0179\7z\2\2\u0158") buf.write(u"\u0159\7^\2\2\u0159\u015a\7x\2\2\u015a\u015b\7u\2\2\u015b") buf.write(u"\u015c\7m\2\2\u015c\u015d\7k\2\2\u015d\u0179\7r\2\2\u015e") buf.write(u"\u015f\7^\2\2\u015f\u0160\7x\2\2\u0160\u0161\7u\2\2\u0161") buf.write(u"\u0162\7r\2\2\u0162\u0163\7c\2\2\u0163\u0164\7e\2\2\u0164") buf.write(u"\u0179\7g\2\2\u0165\u0166\7^\2\2\u0166\u0167\7j\2\2\u0167") buf.write(u"\u0168\7h\2\2\u0168\u0169\7k\2\2\u0169\u0179\7n\2\2\u016a") buf.write(u"\u016b\7^\2\2\u016b\u0179\7,\2\2\u016c\u016d\7^\2\2\u016d") buf.write(u"\u0179\7/\2\2\u016e\u016f\7^\2\2\u016f\u0179\7\60\2\2") buf.write(u"\u0170\u0171\7^\2\2\u0171\u0179\7\61\2\2\u0172\u0173") buf.write(u"\7^\2\2\u0173\u0179\7$\2\2\u0174\u0175\7^\2\2\u0175\u0179") buf.write(u"\7*\2\2\u0176\u0177\7^\2\2\u0177\u0179\7?\2\2\u0178\u0145") buf.write(u"\3\2\2\2\u0178\u014b\3\2\2\2\u0178\u0153\3\2\2\2\u0178") buf.write(u"\u0158\3\2\2\2\u0178\u015e\3\2\2\2\u0178\u0165\3\2\2") buf.write(u"\2\u0178\u016a\3\2\2\2\u0178\u016c\3\2\2\2\u0178\u016e") buf.write(u"\3\2\2\2\u0178\u0170\3\2\2\2\u0178\u0172\3\2\2\2\u0178") buf.write(u"\u0174\3\2\2\2\u0178\u0176\3\2\2\2\u0179\u017a\3\2\2") buf.write(u"\2\u017a\u017b\b\16\2\2\u017b\34\3\2\2\2\u017c\u017d") buf.write(u"\7-\2\2\u017d\36\3\2\2\2\u017e\u017f\7/\2\2\u017f \3") buf.write(u"\2\2\2\u0180\u0181\7,\2\2\u0181\"\3\2\2\2\u0182\u0183") buf.write(u"\7\61\2\2\u0183$\3\2\2\2\u0184\u0185\7*\2\2\u0185&\3") buf.write(u"\2\2\2\u0186\u0187\7+\2\2\u0187(\3\2\2\2\u0188\u0189") buf.write(u"\7}\2\2\u0189*\3\2\2\2\u018a\u018b\7\177\2\2\u018b,\3") buf.write(u"\2\2\2\u018c\u018d\7^\2\2\u018d\u018e\7}\2\2\u018e.\3") buf.write(u"\2\2\2\u018f\u0190\7^\2\2\u0190\u0191\7\177\2\2\u0191") buf.write(u"\60\3\2\2\2\u0192\u0193\7]\2\2\u0193\62\3\2\2\2\u0194") buf.write(u"\u0195\7_\2\2\u0195\64\3\2\2\2\u0196\u0197\7~\2\2\u0197") buf.write(u"\66\3\2\2\2\u0198\u0199\7^\2\2\u0199\u019a\7t\2\2\u019a") buf.write(u"\u019b\7k\2\2\u019b\u019c\7i\2\2\u019c\u019d\7j\2\2\u019d") buf.write(u"\u019e\7v\2\2\u019e\u019f\7~\2\2\u019f8\3\2\2\2\u01a0") buf.write(u"\u01a1\7^\2\2\u01a1\u01a2\7n\2\2\u01a2\u01a3\7g\2\2\u01a3") buf.write(u"\u01a4\7h\2\2\u01a4\u01a5\7v\2\2\u01a5\u01a6\7~\2\2\u01a6") buf.write(u":\3\2\2\2\u01a7\u01a8\7^\2\2\u01a8\u01a9\7n\2\2\u01a9") buf.write(u"\u01aa\7c\2\2\u01aa\u01ab\7p\2\2\u01ab\u01ac\7i\2\2\u01ac") buf.write(u"\u01ad\7n\2\2\u01ad\u01ae\7g\2\2\u01ae<\3\2\2\2\u01af") buf.write(u"\u01b0\7^\2\2\u01b0\u01b1\7t\2\2\u01b1\u01b2\7c\2\2\u01b2") buf.write(u"\u01b3\7p\2\2\u01b3\u01b4\7i\2\2\u01b4\u01b5\7n\2\2\u01b5") buf.write(u"\u01b6\7g\2\2\u01b6>\3\2\2\2\u01b7\u01b8\7^\2\2\u01b8") buf.write(u"\u01b9\7n\2\2\u01b9\u01ba\7k\2\2\u01ba\u01bb\7o\2\2\u01bb") buf.write(u"@\3\2\2\2\u01bc\u01bd\7^\2\2\u01bd\u01be\7v\2\2\u01be") buf.write(u"\u01f4\7q\2\2\u01bf\u01c0\7^\2\2\u01c0\u01c1\7t\2\2\u01c1") buf.write(u"\u01c2\7k\2\2\u01c2\u01c3\7i\2\2\u01c3\u01c4\7j\2\2\u01c4") buf.write(u"\u01c5\7v\2\2\u01c5\u01c6\7c\2\2\u01c6\u01c7\7t\2\2\u01c7") buf.write(u"\u01c8\7t\2\2\u01c8\u01c9\7q\2\2\u01c9\u01f4\7y\2\2\u01ca") buf.write(u"\u01cb\7^\2\2\u01cb\u01cc\7T\2\2\u01cc\u01cd\7k\2\2\u01cd") buf.write(u"\u01ce\7i\2\2\u01ce\u01cf\7j\2\2\u01cf\u01d0\7v\2\2\u01d0") buf.write(u"\u01d1\7c\2\2\u01d1\u01d2\7t\2\2\u01d2\u01d3\7t\2\2\u01d3") buf.write(u"\u01d4\7q\2\2\u01d4\u01f4\7y\2\2\u01d5\u01d6\7^\2\2\u01d6") buf.write(u"\u01d7\7n\2\2\u01d7\u01d8\7q\2\2\u01d8\u01d9\7p\2\2\u01d9") buf.write(u"\u01da\7i\2\2\u01da\u01db\7t\2\2\u01db\u01dc\7k\2\2\u01dc") buf.write(u"\u01dd\7i\2\2\u01dd\u01de\7j\2\2\u01de\u01df\7v\2\2\u01df") buf.write(u"\u01e0\7c\2\2\u01e0\u01e1\7t\2\2\u01e1\u01e2\7t\2\2\u01e2") buf.write(u"\u01e3\7q\2\2\u01e3\u01f4\7y\2\2\u01e4\u01e5\7^\2\2\u01e5") buf.write(u"\u01e6\7N\2\2\u01e6\u01e7\7q\2\2\u01e7\u01e8\7p\2\2\u01e8") buf.write(u"\u01e9\7i\2\2\u01e9\u01ea\7t\2\2\u01ea\u01eb\7k\2\2\u01eb") buf.write(u"\u01ec\7i\2\2\u01ec\u01ed\7j\2\2\u01ed\u01ee\7v\2\2\u01ee") buf.write(u"\u01ef\7c\2\2\u01ef\u01f0\7t\2\2\u01f0\u01f1\7t\2\2\u01f1") buf.write(u"\u01f2\7q\2\2\u01f2\u01f4\7y\2\2\u01f3\u01bc\3\2\2\2") buf.write(u"\u01f3\u01bf\3\2\2\2\u01f3\u01ca\3\2\2\2\u01f3\u01d5") buf.write(u"\3\2\2\2\u01f3\u01e4\3\2\2\2\u01f4B\3\2\2\2\u01f5\u01f6") buf.write(u"\7^\2\2\u01f6\u01f7\7k\2\2\u01f7\u01f8\7p\2\2\u01f8\u01f9") buf.write(u"\7v\2\2\u01f9D\3\2\2\2\u01fa\u01fb\7^\2\2\u01fb\u01fc") buf.write(u"\7u\2\2\u01fc\u01fd\7w\2\2\u01fd\u01fe\7o\2\2\u01feF") buf.write(u"\3\2\2\2\u01ff\u0200\7^\2\2\u0200\u0201\7r\2\2\u0201") buf.write(u"\u0202\7t\2\2\u0202\u0203\7q\2\2\u0203\u0204\7f\2\2\u0204") buf.write(u"H\3\2\2\2\u0205\u0206\7^\2\2\u0206\u0207\7g\2\2\u0207") buf.write(u"\u0208\7z\2\2\u0208\u0209\7r\2\2\u0209J\3\2\2\2\u020a") buf.write(u"\u020b\7^\2\2\u020b\u020c\7n\2\2\u020c\u020d\7q\2\2\u020d") buf.write(u"\u020e\7i\2\2\u020eL\3\2\2\2\u020f\u0210\7^\2\2\u0210") buf.write(u"\u0211\7n\2\2\u0211\u0212\7p\2\2\u0212N\3\2\2\2\u0213") buf.write(u"\u0214\7^\2\2\u0214\u0215\7u\2\2\u0215\u0216\7k\2\2\u0216") buf.write(u"\u0217\7p\2\2\u0217P\3\2\2\2\u0218\u0219\7^\2\2\u0219") buf.write(u"\u021a\7e\2\2\u021a\u021b\7q\2\2\u021b\u021c\7u\2\2\u021c") buf.write(u"R\3\2\2\2\u021d\u021e\7^\2\2\u021e\u021f\7v\2\2\u021f") buf.write(u"\u0220\7c\2\2\u0220\u0221\7p\2\2\u0221T\3\2\2\2\u0222") buf.write(u"\u0223\7^\2\2\u0223\u0224\7e\2\2\u0224\u0225\7u\2\2\u0225") buf.write(u"\u0226\7e\2\2\u0226V\3\2\2\2\u0227\u0228\7^\2\2\u0228") buf.write(u"\u0229\7u\2\2\u0229\u022a\7g\2\2\u022a\u022b\7e\2\2\u022b") buf.write(u"X\3\2\2\2\u022c\u022d\7^\2\2\u022d\u022e\7e\2\2\u022e") buf.write(u"\u022f\7q\2\2\u022f\u0230\7v\2\2\u0230Z\3\2\2\2\u0231") buf.write(u"\u0232\7^\2\2\u0232\u0233\7c\2\2\u0233\u0234\7t\2\2\u0234") buf.write(u"\u0235\7e\2\2\u0235\u0236\7u\2\2\u0236\u0237\7k\2\2\u0237") buf.write(u"\u0238\7p\2\2\u0238\\\3\2\2\2\u0239\u023a\7^\2\2\u023a") buf.write(u"\u023b\7c\2\2\u023b\u023c\7t\2\2\u023c\u023d\7e\2\2\u023d") buf.write(u"\u023e\7e\2\2\u023e\u023f\7q\2\2\u023f\u0240\7u\2\2\u0240") buf.write(u"^\3\2\2\2\u0241\u0242\7^\2\2\u0242\u0243\7c\2\2\u0243") buf.write(u"\u0244\7t\2\2\u0244\u0245\7e\2\2\u0245\u0246\7v\2\2\u0246") buf.write(u"\u0247\7c\2\2\u0247\u0248\7p\2\2\u0248`\3\2\2\2\u0249") buf.write(u"\u024a\7^\2\2\u024a\u024b\7c\2\2\u024b\u024c\7t\2\2\u024c") buf.write(u"\u024d\7e\2\2\u024d\u024e\7e\2\2\u024e\u024f\7u\2\2\u024f") buf.write(u"\u0250\7e\2\2\u0250b\3\2\2\2\u0251\u0252\7^\2\2\u0252") buf.write(u"\u0253\7c\2\2\u0253\u0254\7t\2\2\u0254\u0255\7e\2\2\u0255") buf.write(u"\u0256\7u\2\2\u0256\u0257\7g\2\2\u0257\u0258\7e\2\2\u0258") buf.write(u"d\3\2\2\2\u0259\u025a\7^\2\2\u025a\u025b\7c\2\2\u025b") buf.write(u"\u025c\7t\2\2\u025c\u025d\7e\2\2\u025d\u025e\7e\2\2\u025e") buf.write(u"\u025f\7q\2\2\u025f\u0260\7v\2\2\u0260f\3\2\2\2\u0261") buf.write(u"\u0262\7^\2\2\u0262\u0263\7u\2\2\u0263\u0264\7k\2\2\u0264") buf.write(u"\u0265\7p\2\2\u0265\u0266\7j\2\2\u0266h\3\2\2\2\u0267") buf.write(u"\u0268\7^\2\2\u0268\u0269\7e\2\2\u0269\u026a\7q\2\2\u026a") buf.write(u"\u026b\7u\2\2\u026b\u026c\7j\2\2\u026cj\3\2\2\2\u026d") buf.write(u"\u026e\7^\2\2\u026e\u026f\7v\2\2\u026f\u0270\7c\2\2\u0270") buf.write(u"\u0271\7p\2\2\u0271\u0272\7j\2\2\u0272l\3\2\2\2\u0273") buf.write(u"\u0274\7^\2\2\u0274\u0275\7c\2\2\u0275\u0276\7t\2\2\u0276") buf.write(u"\u0277\7u\2\2\u0277\u0278\7k\2\2\u0278\u0279\7p\2\2\u0279") buf.write(u"\u027a\7j\2\2\u027an\3\2\2\2\u027b\u027c\7^\2\2\u027c") buf.write(u"\u027d\7c\2\2\u027d\u027e\7t\2\2\u027e\u027f\7e\2\2\u027f") buf.write(u"\u0280\7q\2\2\u0280\u0281\7u\2\2\u0281\u0282\7j\2\2\u0282") buf.write(u"p\3\2\2\2\u0283\u0284\7^\2\2\u0284\u0285\7c\2\2\u0285") buf.write(u"\u0286\7t\2\2\u0286\u0287\7v\2\2\u0287\u0288\7c\2\2\u0288") buf.write(u"\u0289\7p\2\2\u0289\u028a\7j\2\2\u028ar\3\2\2\2\u028b") buf.write(u"\u028c\7^\2\2\u028c\u028d\7n\2\2\u028d\u028e\7h\2\2\u028e") buf.write(u"\u028f\7n\2\2\u028f\u0290\7q\2\2\u0290\u0291\7q\2\2\u0291") buf.write(u"\u0292\7t\2\2\u0292t\3\2\2\2\u0293\u0294\7^\2\2\u0294") buf.write(u"\u0295\7t\2\2\u0295\u0296\7h\2\2\u0296\u0297\7n\2\2\u0297") buf.write(u"\u0298\7q\2\2\u0298\u0299\7q\2\2\u0299\u029a\7t\2\2\u029a") buf.write(u"v\3\2\2\2\u029b\u029c\7^\2\2\u029c\u029d\7n\2\2\u029d") buf.write(u"\u029e\7e\2\2\u029e\u029f\7g\2\2\u029f\u02a0\7k\2\2\u02a0") buf.write(u"\u02a1\7n\2\2\u02a1x\3\2\2\2\u02a2\u02a3\7^\2\2\u02a3") buf.write(u"\u02a4\7t\2\2\u02a4\u02a5\7e\2\2\u02a5\u02a6\7g\2\2\u02a6") buf.write(u"\u02a7\7k\2\2\u02a7\u02a8\7n\2\2\u02a8z\3\2\2\2\u02a9") buf.write(u"\u02aa\7^\2\2\u02aa\u02ab\7u\2\2\u02ab\u02ac\7s\2\2\u02ac") buf.write(u"\u02ad\7t\2\2\u02ad\u02ae\7v\2\2\u02ae|\3\2\2\2\u02af") buf.write(u"\u02b0\7^\2\2\u02b0\u02b1\7q\2\2\u02b1\u02b2\7x\2\2\u02b2") buf.write(u"\u02b3\7g\2\2\u02b3\u02b4\7t\2\2\u02b4\u02b5\7n\2\2\u02b5") buf.write(u"\u02b6\7k\2\2\u02b6\u02b7\7p\2\2\u02b7\u02b8\7g\2\2\u02b8") buf.write(u"~\3\2\2\2\u02b9\u02ba\7^\2\2\u02ba\u02bb\7v\2\2\u02bb") buf.write(u"\u02bc\7k\2\2\u02bc\u02bd\7o\2\2\u02bd\u02be\7g\2\2\u02be") buf.write(u"\u02bf\7u\2\2\u02bf\u0080\3\2\2\2\u02c0\u02c1\7^\2\2") buf.write(u"\u02c1\u02c2\7e\2\2\u02c2\u02c3\7f\2\2\u02c3\u02c4\7") buf.write(u"q\2\2\u02c4\u02c5\7v\2\2\u02c5\u0082\3\2\2\2\u02c6\u02c7") buf.write(u"\7^\2\2\u02c7\u02c8\7f\2\2\u02c8\u02c9\7k\2\2\u02c9\u02ca") buf.write(u"\7x\2\2\u02ca\u0084\3\2\2\2\u02cb\u02cc\7^\2\2\u02cc") buf.write(u"\u02cd\7h\2\2\u02cd\u02ce\7t\2\2\u02ce\u02cf\7c\2\2\u02cf") buf.write(u"\u02d0\7e\2\2\u02d0\u0086\3\2\2\2\u02d1\u02d2\7^\2\2") buf.write(u"\u02d2\u02d3\7d\2\2\u02d3\u02d4\7k\2\2\u02d4\u02d5\7") buf.write(u"p\2\2\u02d5\u02d6\7q\2\2\u02d6\u02d7\7o\2\2\u02d7\u0088") buf.write(u"\3\2\2\2\u02d8\u02d9\7^\2\2\u02d9\u02da\7f\2\2\u02da") buf.write(u"\u02db\7d\2\2\u02db\u02dc\7k\2\2\u02dc\u02dd\7p\2\2\u02dd") buf.write(u"\u02de\7q\2\2\u02de\u02df\7o\2\2\u02df\u008a\3\2\2\2") buf.write(u"\u02e0\u02e1\7^\2\2\u02e1\u02e2\7v\2\2\u02e2\u02e3\7") buf.write(u"d\2\2\u02e3\u02e4\7k\2\2\u02e4\u02e5\7p\2\2\u02e5\u02e6") buf.write(u"\7q\2\2\u02e6\u02e7\7o\2\2\u02e7\u008c\3\2\2\2\u02e8") buf.write(u"\u02e9\7^\2\2\u02e9\u02ea\7o\2\2\u02ea\u02eb\7c\2\2\u02eb") buf.write(u"\u02ec\7v\2\2\u02ec\u02ed\7j\2\2\u02ed\u02ee\7k\2\2\u02ee") buf.write(u"\u02ef\7v\2\2\u02ef\u008e\3\2\2\2\u02f0\u02f1\7a\2\2") buf.write(u"\u02f1\u0090\3\2\2\2\u02f2\u02f3\7`\2\2\u02f3\u0092\3") buf.write(u"\2\2\2\u02f4\u02f5\7<\2\2\u02f5\u0094\3\2\2\2\u02f6\u02f7") buf.write(u"\t\2\2\2\u02f7\u0096\3\2\2\2\u02f8\u02fc\7f\2\2\u02f9") buf.write(u"\u02fb\5\u0095K\2\u02fa\u02f9\3\2\2\2\u02fb\u02fe\3\2") buf.write(u"\2\2\u02fc\u02fd\3\2\2\2\u02fc\u02fa\3\2\2\2\u02fd\u0306") buf.write(u"\3\2\2\2\u02fe\u02fc\3\2\2\2\u02ff\u0307\t\3\2\2\u0300") buf.write(u"\u0302\7^\2\2\u0301\u0303\t\3\2\2\u0302\u0301\3\2\2\2") buf.write(u"\u0303\u0304\3\2\2\2\u0304\u0302\3\2\2\2\u0304\u0305") buf.write(u"\3\2\2\2\u0305\u0307\3\2\2\2\u0306\u02ff\3\2\2\2\u0306") buf.write(u"\u0300\3\2\2\2\u0307\u0098\3\2\2\2\u0308\u0309\t\3\2") buf.write(u"\2\u0309\u009a\3\2\2\2\u030a\u030b\t\4\2\2\u030b\u009c") buf.write(u"\3\2\2\2\u030c\u030e\5\u009bN\2\u030d\u030c\3\2\2\2\u030e") buf.write(u"\u030f\3\2\2\2\u030f\u030d\3\2\2\2\u030f\u0310\3\2\2") buf.write(u"\2\u0310\u0318\3\2\2\2\u0311\u0312\7.\2\2\u0312\u0313") buf.write(u"\5\u009bN\2\u0313\u0314\5\u009bN\2\u0314\u0315\5\u009b") buf.write(u"N\2\u0315\u0317\3\2\2\2\u0316\u0311\3\2\2\2\u0317\u031a") buf.write(u"\3\2\2\2\u0318\u0316\3\2\2\2\u0318\u0319\3\2\2\2\u0319") buf.write(u"\u0332\3\2\2\2\u031a\u0318\3\2\2\2\u031b\u031d\5\u009b") buf.write(u"N\2\u031c\u031b\3\2\2\2\u031d\u0320\3\2\2\2\u031e\u031c") buf.write(u"\3\2\2\2\u031e\u031f\3\2\2\2\u031f\u0328\3\2\2\2\u0320") buf.write(u"\u031e\3\2\2\2\u0321\u0322\7.\2\2\u0322\u0323\5\u009b") buf.write(u"N\2\u0323\u0324\5\u009bN\2\u0324\u0325\5\u009bN\2\u0325") buf.write(u"\u0327\3\2\2\2\u0326\u0321\3\2\2\2\u0327\u032a\3\2\2") buf.write(u"\2\u0328\u0326\3\2\2\2\u0328\u0329\3\2\2\2\u0329\u032b") buf.write(u"\3\2\2\2\u032a\u0328\3\2\2\2\u032b\u032d\7\60\2\2\u032c") buf.write(u"\u032e\5\u009bN\2\u032d\u032c\3\2\2\2\u032e\u032f\3\2") buf.write(u"\2\2\u032f\u032d\3\2\2\2\u032f\u0330\3\2\2\2\u0330\u0332") buf.write(u"\3\2\2\2\u0331\u030d\3\2\2\2\u0331\u031e\3\2\2\2\u0332") buf.write(u"\u009e\3\2\2\2\u0333\u0337\7(\2\2\u0334\u0336\5\u0095") buf.write(u"K\2\u0335\u0334\3\2\2\2\u0336\u0339\3\2\2\2\u0337\u0338") buf.write(u"\3\2\2\2\u0337\u0335\3\2\2\2\u0338\u033b\3\2\2\2\u0339") buf.write(u"\u0337\3\2\2\2\u033a\u0333\3\2\2\2\u033a\u033b\3\2\2") buf.write(u"\2\u033b\u033c\3\2\2\2\u033c\u0348\7?\2\2\u033d\u0345") buf.write(u"\7?\2\2\u033e\u0340\5\u0095K\2\u033f\u033e\3\2\2\2\u0340") buf.write(u"\u0343\3\2\2\2\u0341\u0342\3\2\2\2\u0341\u033f\3\2\2") buf.write(u"\2\u0342\u0344\3\2\2\2\u0343\u0341\3\2\2\2\u0344\u0346") buf.write(u"\7(\2\2\u0345\u0341\3\2\2\2\u0345\u0346\3\2\2\2\u0346") buf.write(u"\u0348\3\2\2\2\u0347\u033a\3\2\2\2\u0347\u033d\3\2\2") buf.write(u"\2\u0348\u00a0\3\2\2\2\u0349\u034a\7^\2\2\u034a\u034b") buf.write(u"\7p\2\2\u034b\u034c\7g\2\2\u034c\u034d\7s\2\2\u034d\u00a2") buf.write(u"\3\2\2\2\u034e\u034f\7>\2\2\u034f\u00a4\3\2\2\2\u0350") buf.write(u"\u0351\7^\2\2\u0351\u0352\7n\2\2\u0352\u0353\7g\2\2\u0353") buf.write(u"\u035a\7s\2\2\u0354\u0355\7^\2\2\u0355\u0356\7n\2\2\u0356") buf.write(u"\u035a\7g\2\2\u0357\u035a\5\u00a7T\2\u0358\u035a\5\u00a9") buf.write(u"U\2\u0359\u0350\3\2\2\2\u0359\u0354\3\2\2\2\u0359\u0357") buf.write(u"\3\2\2\2\u0359\u0358\3\2\2\2\u035a\u00a6\3\2\2\2\u035b") buf.write(u"\u035c\7^\2\2\u035c\u035d\7n\2\2\u035d\u035e\7g\2\2\u035e") buf.write(u"\u035f\7s\2\2\u035f\u0360\7s\2\2\u0360\u00a8\3\2\2\2") buf.write(u"\u0361\u0362\7^\2\2\u0362\u0363\7n\2\2\u0363\u0364\7") buf.write(u"g\2\2\u0364\u0365\7s\2\2\u0365\u0366\7u\2\2\u0366\u0367") buf.write(u"\7n\2\2\u0367\u0368\7c\2\2\u0368\u0369\7p\2\2\u0369\u036a") buf.write(u"\7v\2\2\u036a\u00aa\3\2\2\2\u036b\u036c\7@\2\2\u036c") buf.write(u"\u00ac\3\2\2\2\u036d\u036e\7^\2\2\u036e\u036f\7i\2\2") buf.write(u"\u036f\u0370\7g\2\2\u0370\u0377\7s\2\2\u0371\u0372\7") buf.write(u"^\2\2\u0372\u0373\7i\2\2\u0373\u0377\7g\2\2\u0374\u0377") buf.write(u"\5\u00afX\2\u0375\u0377\5\u00b1Y\2\u0376\u036d\3\2\2") buf.write(u"\2\u0376\u0371\3\2\2\2\u0376\u0374\3\2\2\2\u0376\u0375") buf.write(u"\3\2\2\2\u0377\u00ae\3\2\2\2\u0378\u0379\7^\2\2\u0379") buf.write(u"\u037a\7i\2\2\u037a\u037b\7g\2\2\u037b\u037c\7s\2\2\u037c") buf.write(u"\u037d\7s\2\2\u037d\u00b0\3\2\2\2\u037e\u037f\7^\2\2") buf.write(u"\u037f\u0380\7i\2\2\u0380\u0381\7g\2\2\u0381\u0382\7") buf.write(u"s\2\2\u0382\u0383\7u\2\2\u0383\u0384\7n\2\2\u0384\u0385") buf.write(u"\7c\2\2\u0385\u0386\7p\2\2\u0386\u0387\7v\2\2\u0387\u00b2") buf.write(u"\3\2\2\2\u0388\u0389\7#\2\2\u0389\u00b4\3\2\2\2\u038a") buf.write(u"\u038c\7^\2\2\u038b\u038d\t\3\2\2\u038c\u038b\3\2\2\2") buf.write(u"\u038d\u038e\3\2\2\2\u038e\u038c\3\2\2\2\u038e\u038f") buf.write(u"\3\2\2\2\u038f\u00b6\3\2\2\2\33\2\u00bc\u00cc\u00db\u00ec") buf.write(u"\u0110\u0178\u01f3\u02fc\u0304\u0306\u030f\u0318\u031e") buf.write(u"\u0328\u032f\u0331\u0337\u033a\u0341\u0345\u0347\u0359") buf.write(u"\u0376\u038e\3\b\2\2") return buf.getvalue() class LaTeXLexer(Lexer): atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] T__0 = 1 WS = 2 THINSPACE = 3 MEDSPACE = 4 THICKSPACE = 5 QUAD = 6 QQUAD = 7 NEGTHINSPACE = 8 NEGMEDSPACE = 9 NEGTHICKSPACE = 10 CMD_LEFT = 11 CMD_RIGHT = 12 IGNORE = 13 ADD = 14 SUB = 15 MUL = 16 DIV = 17 L_PAREN = 18 R_PAREN = 19 L_BRACE = 20 R_BRACE = 21 L_BRACE_LITERAL = 22 R_BRACE_LITERAL = 23 L_BRACKET = 24 R_BRACKET = 25 BAR = 26 R_BAR = 27 L_BAR = 28 L_ANGLE = 29 R_ANGLE = 30 FUNC_LIM = 31 LIM_APPROACH_SYM = 32 FUNC_INT = 33 FUNC_SUM = 34 FUNC_PROD = 35 FUNC_EXP = 36 FUNC_LOG = 37 FUNC_LN = 38 FUNC_SIN = 39 FUNC_COS = 40 FUNC_TAN = 41 FUNC_CSC = 42 FUNC_SEC = 43 FUNC_COT = 44 FUNC_ARCSIN = 45 FUNC_ARCCOS = 46 FUNC_ARCTAN = 47 FUNC_ARCCSC = 48 FUNC_ARCSEC = 49 FUNC_ARCCOT = 50 FUNC_SINH = 51 FUNC_COSH = 52 FUNC_TANH = 53 FUNC_ARSINH = 54 FUNC_ARCOSH = 55 FUNC_ARTANH = 56 L_FLOOR = 57 R_FLOOR = 58 L_CEIL = 59 R_CEIL = 60 FUNC_SQRT = 61 FUNC_OVERLINE = 62 CMD_TIMES = 63 CMD_CDOT = 64 CMD_DIV = 65 CMD_FRAC = 66 CMD_BINOM = 67 CMD_DBINOM = 68 CMD_TBINOM = 69 CMD_MATHIT = 70 UNDERSCORE = 71 CARET = 72 COLON = 73 DIFFERENTIAL = 74 LETTER = 75 NUMBER = 76 EQUAL = 77 NEQ = 78 LT = 79 LTE = 80 LTE_Q = 81 LTE_S = 82 GT = 83 GTE = 84 GTE_Q = 85 GTE_S = 86 BANG = 87 SYMBOL = 88 channelNames = [ u"DEFAULT_TOKEN_CHANNEL", u"HIDDEN" ] modeNames = [ u"DEFAULT_MODE" ] literalNames = [ u"<INVALID>", u"','", u"'\\quad'", u"'\\qquad'", u"'\\negmedspace'", u"'\\negthickspace'", u"'\\left'", u"'\\right'", u"'+'", u"'-'", u"'*'", u"'/'", u"'('", u"')'", u"'{'", u"'}'", u"'\\{'", u"'\\}'", u"'['", u"']'", u"'|'", u"'\\right|'", u"'\\left|'", u"'\\langle'", u"'\\rangle'", u"'\\lim'", u"'\\int'", u"'\\sum'", u"'\\prod'", u"'\\exp'", u"'\\log'", u"'\\ln'", u"'\\sin'", u"'\\cos'", u"'\\tan'", u"'\\csc'", u"'\\sec'", u"'\\cot'", u"'\\arcsin'", u"'\\arccos'", u"'\\arctan'", u"'\\arccsc'", u"'\\arcsec'", u"'\\arccot'", u"'\\sinh'", u"'\\cosh'", u"'\\tanh'", u"'\\arsinh'", u"'\\arcosh'", u"'\\artanh'", u"'\\lfloor'", u"'\\rfloor'", u"'\\lceil'", u"'\\rceil'", u"'\\sqrt'", u"'\\overline'", u"'\\times'", u"'\\cdot'", u"'\\div'", u"'\\frac'", u"'\\binom'", u"'\\dbinom'", u"'\\tbinom'", u"'\\mathit'", u"'_'", u"'^'", u"':'", u"'\\neq'", u"'<'", u"'\\leqq'", u"'\\leqslant'", u"'>'", u"'\\geqq'", u"'\\geqslant'", u"'!'" ] symbolicNames = [ u"<INVALID>", u"WS", u"THINSPACE", u"MEDSPACE", u"THICKSPACE", u"QUAD", u"QQUAD", u"NEGTHINSPACE", u"NEGMEDSPACE", u"NEGTHICKSPACE", u"CMD_LEFT", u"CMD_RIGHT", u"IGNORE", u"ADD", u"SUB", u"MUL", u"DIV", u"L_PAREN", u"R_PAREN", u"L_BRACE", u"R_BRACE", u"L_BRACE_LITERAL", u"R_BRACE_LITERAL", u"L_BRACKET", u"R_BRACKET", u"BAR", u"R_BAR", u"L_BAR", u"L_ANGLE", u"R_ANGLE", u"FUNC_LIM", u"LIM_APPROACH_SYM", u"FUNC_INT", u"FUNC_SUM", u"FUNC_PROD", u"FUNC_EXP", u"FUNC_LOG", u"FUNC_LN", u"FUNC_SIN", u"FUNC_COS", u"FUNC_TAN", u"FUNC_CSC", u"FUNC_SEC", u"FUNC_COT", u"FUNC_ARCSIN", u"FUNC_ARCCOS", u"FUNC_ARCTAN", u"FUNC_ARCCSC", u"FUNC_ARCSEC", u"FUNC_ARCCOT", u"FUNC_SINH", u"FUNC_COSH", u"FUNC_TANH", u"FUNC_ARSINH", u"FUNC_ARCOSH", u"FUNC_ARTANH", u"L_FLOOR", u"R_FLOOR", u"L_CEIL", u"R_CEIL", u"FUNC_SQRT", u"FUNC_OVERLINE", u"CMD_TIMES", u"CMD_CDOT", u"CMD_DIV", u"CMD_FRAC", u"CMD_BINOM", u"CMD_DBINOM", u"CMD_TBINOM", u"CMD_MATHIT", u"UNDERSCORE", u"CARET", u"COLON", u"DIFFERENTIAL", u"LETTER", u"NUMBER", u"EQUAL", u"NEQ", u"LT", u"LTE", u"LTE_Q", u"LTE_S", u"GT", u"GTE", u"GTE_Q", u"GTE_S", u"BANG", u"SYMBOL" ] ruleNames = [ u"T__0", u"WS", u"THINSPACE", u"MEDSPACE", u"THICKSPACE", u"QUAD", u"QQUAD", u"NEGTHINSPACE", u"NEGMEDSPACE", u"NEGTHICKSPACE", u"CMD_LEFT", u"CMD_RIGHT", u"IGNORE", u"ADD", u"SUB", u"MUL", u"DIV", u"L_PAREN", u"R_PAREN", u"L_BRACE", u"R_BRACE", u"L_BRACE_LITERAL", u"R_BRACE_LITERAL", u"L_BRACKET", u"R_BRACKET", u"BAR", u"R_BAR", u"L_BAR", u"L_ANGLE", u"R_ANGLE", u"FUNC_LIM", u"LIM_APPROACH_SYM", u"FUNC_INT", u"FUNC_SUM", u"FUNC_PROD", u"FUNC_EXP", u"FUNC_LOG", u"FUNC_LN", u"FUNC_SIN", u"FUNC_COS", u"FUNC_TAN", u"FUNC_CSC", u"FUNC_SEC", u"FUNC_COT", u"FUNC_ARCSIN", u"FUNC_ARCCOS", u"FUNC_ARCTAN", u"FUNC_ARCCSC", u"FUNC_ARCSEC", u"FUNC_ARCCOT", u"FUNC_SINH", u"FUNC_COSH", u"FUNC_TANH", u"FUNC_ARSINH", u"FUNC_ARCOSH", u"FUNC_ARTANH", u"L_FLOOR", u"R_FLOOR", u"L_CEIL", u"R_CEIL", u"FUNC_SQRT", u"FUNC_OVERLINE", u"CMD_TIMES", u"CMD_CDOT", u"CMD_DIV", u"CMD_FRAC", u"CMD_BINOM", u"CMD_DBINOM", u"CMD_TBINOM", u"CMD_MATHIT", u"UNDERSCORE", u"CARET", u"COLON", u"WS_CHAR", u"DIFFERENTIAL", u"LETTER", u"DIGIT", u"NUMBER", u"EQUAL", u"NEQ", u"LT", u"LTE", u"LTE_Q", u"LTE_S", u"GT", u"GTE", u"GTE_Q", u"GTE_S", u"BANG", u"SYMBOL" ] grammarFileName = u"LaTeX.g4" def __init__(self, input=None, output=sys.stdout): super(LaTeXLexer, self).__init__(input, output=output) self.checkVersion("4.7.2") self._interp = LexerATNSimulator(self, self.atn, self.decisionsToDFA, PredictionContextCache()) self._actions = None self._predicates = None
5096da4c9f14859b9dab9e2bf733120be47dbd518867e55d7ca31492b914d11e
# encoding: utf-8 # *** GENERATED BY `setup.py antlr`, DO NOT EDIT BY HAND *** # # Generated from ../LaTeX.g4, derived from latex2sympy # latex2sympy is licensed under the MIT license # https://github.com/augustt198/latex2sympy/blob/master/LICENSE.txt # # Generated with antlr4 # antlr4 is licensed under the BSD-3-Clause License # https://github.com/antlr/antlr4/blob/master/LICENSE.txt from __future__ import print_function from antlr4 import * from io import StringIO import sys def serializedATN(): with StringIO() as buf: buf.write(u"\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\3") buf.write(u"Z\u01d5\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7\t") buf.write(u"\7\4\b\t\b\4\t\t\t\4\n\t\n\4\13\t\13\4\f\t\f\4\r\t\r") buf.write(u"\4\16\t\16\4\17\t\17\4\20\t\20\4\21\t\21\4\22\t\22\4") buf.write(u"\23\t\23\4\24\t\24\4\25\t\25\4\26\t\26\4\27\t\27\4\30") buf.write(u"\t\30\4\31\t\31\4\32\t\32\4\33\t\33\4\34\t\34\4\35\t") buf.write(u"\35\4\36\t\36\4\37\t\37\4 \t \4!\t!\4\"\t\"\4#\t#\4$") buf.write(u"\t$\4%\t%\4&\t&\4\'\t\'\4(\t(\4)\t)\3\2\3\2\3\3\3\3\3") buf.write(u"\3\3\3\3\3\3\3\7\3[\n\3\f\3\16\3^\13\3\3\4\3\4\3\4\3") buf.write(u"\4\3\5\3\5\3\6\3\6\3\6\3\6\3\6\3\6\7\6l\n\6\f\6\16\6") buf.write(u"o\13\6\3\7\3\7\3\7\3\7\3\7\3\7\7\7w\n\7\f\7\16\7z\13") buf.write(u"\7\3\b\3\b\3\b\3\b\3\b\3\b\7\b\u0082\n\b\f\b\16\b\u0085") buf.write(u"\13\b\3\t\3\t\3\t\6\t\u008a\n\t\r\t\16\t\u008b\5\t\u008e") buf.write(u"\n\t\3\n\3\n\3\n\3\n\7\n\u0094\n\n\f\n\16\n\u0097\13") buf.write(u"\n\5\n\u0099\n\n\3\13\3\13\7\13\u009d\n\13\f\13\16\13") buf.write(u"\u00a0\13\13\3\f\3\f\7\f\u00a4\n\f\f\f\16\f\u00a7\13") buf.write(u"\f\3\r\3\r\5\r\u00ab\n\r\3\16\3\16\3\16\3\16\3\16\3\16") buf.write(u"\5\16\u00b3\n\16\3\17\3\17\3\17\3\17\5\17\u00b9\n\17") buf.write(u"\3\17\3\17\3\20\3\20\3\20\3\20\5\20\u00c1\n\20\3\20\3") buf.write(u"\20\3\21\3\21\3\21\3\21\3\21\3\21\3\21\3\21\3\21\3\21") buf.write(u"\5\21\u00cf\n\21\3\21\5\21\u00d2\n\21\7\21\u00d4\n\21") buf.write(u"\f\21\16\21\u00d7\13\21\3\22\3\22\3\22\3\22\3\22\3\22") buf.write(u"\3\22\3\22\3\22\3\22\5\22\u00e3\n\22\3\22\5\22\u00e6") buf.write(u"\n\22\7\22\u00e8\n\22\f\22\16\22\u00eb\13\22\3\23\3\23") buf.write(u"\3\23\3\23\3\23\3\23\3\23\3\23\5\23\u00f5\n\23\3\24\3") buf.write(u"\24\3\24\3\24\3\24\3\24\3\24\5\24\u00fe\n\24\3\25\3\25") buf.write(u"\3\25\3\25\3\25\3\25\3\25\3\25\3\25\3\25\3\25\3\25\3") buf.write(u"\25\3\25\3\25\3\25\5\25\u0110\n\25\3\26\3\26\3\26\3\26") buf.write(u"\3\27\3\27\5\27\u0118\n\27\3\27\3\27\3\27\3\27\3\27\5") buf.write(u"\27\u011f\n\27\3\30\3\30\3\30\3\30\3\31\3\31\3\31\3\31") buf.write(u"\3\32\3\32\3\32\3\32\3\32\3\33\7\33\u012f\n\33\f\33\16") buf.write(u"\33\u0132\13\33\3\34\3\34\3\34\3\34\3\34\3\34\3\34\3") buf.write(u"\34\3\35\3\35\3\35\3\35\3\35\3\35\3\35\3\35\3\36\3\36") buf.write(u"\3\36\3\36\3\37\3\37\3\37\3\37\3 \3 \3!\3!\5!\u0150\n") buf.write(u"!\3!\5!\u0153\n!\3!\5!\u0156\n!\3!\5!\u0159\n!\5!\u015b") buf.write(u"\n!\3!\3!\3!\3!\3!\5!\u0162\n!\3!\3!\5!\u0166\n!\3!\3") buf.write(u"!\3!\3!\3!\3!\3!\3!\3!\3!\3!\5!\u0173\n!\3!\5!\u0176") buf.write(u"\n!\3!\3!\3!\5!\u017b\n!\3!\3!\3!\3!\3!\5!\u0182\n!\3") buf.write(u"!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\5!\u0194") buf.write(u"\n!\3!\3!\3!\3!\3!\3!\5!\u019c\n!\3\"\3\"\3\"\3\"\3\"") buf.write(u"\5\"\u01a3\n\"\3#\3#\3#\3#\3#\3#\3#\3#\3#\5#\u01ae\n") buf.write(u"#\3#\3#\3$\3$\3$\3$\3$\5$\u01b7\n$\3%\3%\3&\3&\3&\3&") buf.write(u"\3&\3&\5&\u01c1\n&\3\'\3\'\3\'\3\'\3\'\3\'\5\'\u01c9") buf.write(u"\n\'\3(\3(\3(\3(\3(\3)\3)\3)\3)\3)\3)\2\b\4\n\f\16 \"") buf.write(u"*\2\4\6\b\n\f\16\20\22\24\26\30\32\34\36 \"$&(*,.\60") buf.write(u"\62\64\668:<>@BDFHJLNP\2\13\4\2ORUV\3\2\20\21\5\2\22") buf.write(u"\23ACKK\4\2MMZZ\3\2\34\35\4\2\34\34\36\36\3\2EG\3\2&") buf.write(u":\3\2$%\2\u01f1\2R\3\2\2\2\4T\3\2\2\2\6_\3\2\2\2\bc\3") buf.write(u"\2\2\2\ne\3\2\2\2\fp\3\2\2\2\16{\3\2\2\2\20\u008d\3\2") buf.write(u"\2\2\22\u0098\3\2\2\2\24\u009a\3\2\2\2\26\u00a1\3\2\2") buf.write(u"\2\30\u00aa\3\2\2\2\32\u00ac\3\2\2\2\34\u00b4\3\2\2\2") buf.write(u"\36\u00bc\3\2\2\2 \u00c4\3\2\2\2\"\u00d8\3\2\2\2$\u00f4") buf.write(u"\3\2\2\2&\u00fd\3\2\2\2(\u010f\3\2\2\2*\u0111\3\2\2\2") buf.write(u",\u011e\3\2\2\2.\u0120\3\2\2\2\60\u0124\3\2\2\2\62\u0128") buf.write(u"\3\2\2\2\64\u0130\3\2\2\2\66\u0133\3\2\2\28\u013b\3\2") buf.write(u"\2\2:\u0143\3\2\2\2<\u0147\3\2\2\2>\u014b\3\2\2\2@\u019b") buf.write(u"\3\2\2\2B\u01a2\3\2\2\2D\u01a4\3\2\2\2F\u01b6\3\2\2\2") buf.write(u"H\u01b8\3\2\2\2J\u01ba\3\2\2\2L\u01c2\3\2\2\2N\u01ca") buf.write(u"\3\2\2\2P\u01cf\3\2\2\2RS\5\4\3\2S\3\3\2\2\2TU\b\3\1") buf.write(u"\2UV\5\b\5\2V\\\3\2\2\2WX\f\4\2\2XY\t\2\2\2Y[\5\4\3\5") buf.write(u"ZW\3\2\2\2[^\3\2\2\2\\Z\3\2\2\2\\]\3\2\2\2]\5\3\2\2\2") buf.write(u"^\\\3\2\2\2_`\5\b\5\2`a\7O\2\2ab\5\b\5\2b\7\3\2\2\2c") buf.write(u"d\5\n\6\2d\t\3\2\2\2ef\b\6\1\2fg\5\f\7\2gm\3\2\2\2hi") buf.write(u"\f\4\2\2ij\t\3\2\2jl\5\n\6\5kh\3\2\2\2lo\3\2\2\2mk\3") buf.write(u"\2\2\2mn\3\2\2\2n\13\3\2\2\2om\3\2\2\2pq\b\7\1\2qr\5") buf.write(u"\20\t\2rx\3\2\2\2st\f\4\2\2tu\t\4\2\2uw\5\f\7\5vs\3\2") buf.write(u"\2\2wz\3\2\2\2xv\3\2\2\2xy\3\2\2\2y\r\3\2\2\2zx\3\2\2") buf.write(u"\2{|\b\b\1\2|}\5\22\n\2}\u0083\3\2\2\2~\177\f\4\2\2\177") buf.write(u"\u0080\t\4\2\2\u0080\u0082\5\16\b\5\u0081~\3\2\2\2\u0082") buf.write(u"\u0085\3\2\2\2\u0083\u0081\3\2\2\2\u0083\u0084\3\2\2") buf.write(u"\2\u0084\17\3\2\2\2\u0085\u0083\3\2\2\2\u0086\u0087\t") buf.write(u"\3\2\2\u0087\u008e\5\20\t\2\u0088\u008a\5\24\13\2\u0089") buf.write(u"\u0088\3\2\2\2\u008a\u008b\3\2\2\2\u008b\u0089\3\2\2") buf.write(u"\2\u008b\u008c\3\2\2\2\u008c\u008e\3\2\2\2\u008d\u0086") buf.write(u"\3\2\2\2\u008d\u0089\3\2\2\2\u008e\21\3\2\2\2\u008f\u0090") buf.write(u"\t\3\2\2\u0090\u0099\5\22\n\2\u0091\u0095\5\24\13\2\u0092") buf.write(u"\u0094\5\26\f\2\u0093\u0092\3\2\2\2\u0094\u0097\3\2\2") buf.write(u"\2\u0095\u0093\3\2\2\2\u0095\u0096\3\2\2\2\u0096\u0099") buf.write(u"\3\2\2\2\u0097\u0095\3\2\2\2\u0098\u008f\3\2\2\2\u0098") buf.write(u"\u0091\3\2\2\2\u0099\23\3\2\2\2\u009a\u009e\5 \21\2\u009b") buf.write(u"\u009d\5\30\r\2\u009c\u009b\3\2\2\2\u009d\u00a0\3\2\2") buf.write(u"\2\u009e\u009c\3\2\2\2\u009e\u009f\3\2\2\2\u009f\25\3") buf.write(u"\2\2\2\u00a0\u009e\3\2\2\2\u00a1\u00a5\5\"\22\2\u00a2") buf.write(u"\u00a4\5\30\r\2\u00a3\u00a2\3\2\2\2\u00a4\u00a7\3\2\2") buf.write(u"\2\u00a5\u00a3\3\2\2\2\u00a5\u00a6\3\2\2\2\u00a6\27\3") buf.write(u"\2\2\2\u00a7\u00a5\3\2\2\2\u00a8\u00ab\7Y\2\2\u00a9\u00ab") buf.write(u"\5\32\16\2\u00aa\u00a8\3\2\2\2\u00aa\u00a9\3\2\2\2\u00ab") buf.write(u"\31\3\2\2\2\u00ac\u00b2\7\34\2\2\u00ad\u00b3\5\36\20") buf.write(u"\2\u00ae\u00b3\5\34\17\2\u00af\u00b0\5\36\20\2\u00b0") buf.write(u"\u00b1\5\34\17\2\u00b1\u00b3\3\2\2\2\u00b2\u00ad\3\2") buf.write(u"\2\2\u00b2\u00ae\3\2\2\2\u00b2\u00af\3\2\2\2\u00b3\33") buf.write(u"\3\2\2\2\u00b4\u00b5\7I\2\2\u00b5\u00b8\7\26\2\2\u00b6") buf.write(u"\u00b9\5\b\5\2\u00b7\u00b9\5\6\4\2\u00b8\u00b6\3\2\2") buf.write(u"\2\u00b8\u00b7\3\2\2\2\u00b9\u00ba\3\2\2\2\u00ba\u00bb") buf.write(u"\7\27\2\2\u00bb\35\3\2\2\2\u00bc\u00bd\7J\2\2\u00bd\u00c0") buf.write(u"\7\26\2\2\u00be\u00c1\5\b\5\2\u00bf\u00c1\5\6\4\2\u00c0") buf.write(u"\u00be\3\2\2\2\u00c0\u00bf\3\2\2\2\u00c1\u00c2\3\2\2") buf.write(u"\2\u00c2\u00c3\7\27\2\2\u00c3\37\3\2\2\2\u00c4\u00c5") buf.write(u"\b\21\1\2\u00c5\u00c6\5$\23\2\u00c6\u00d5\3\2\2\2\u00c7") buf.write(u"\u00c8\f\4\2\2\u00c8\u00ce\7J\2\2\u00c9\u00cf\5,\27\2") buf.write(u"\u00ca\u00cb\7\26\2\2\u00cb\u00cc\5\b\5\2\u00cc\u00cd") buf.write(u"\7\27\2\2\u00cd\u00cf\3\2\2\2\u00ce\u00c9\3\2\2\2\u00ce") buf.write(u"\u00ca\3\2\2\2\u00cf\u00d1\3\2\2\2\u00d0\u00d2\5J&\2") buf.write(u"\u00d1\u00d0\3\2\2\2\u00d1\u00d2\3\2\2\2\u00d2\u00d4") buf.write(u"\3\2\2\2\u00d3\u00c7\3\2\2\2\u00d4\u00d7\3\2\2\2\u00d5") buf.write(u"\u00d3\3\2\2\2\u00d5\u00d6\3\2\2\2\u00d6!\3\2\2\2\u00d7") buf.write(u"\u00d5\3\2\2\2\u00d8\u00d9\b\22\1\2\u00d9\u00da\5&\24") buf.write(u"\2\u00da\u00e9\3\2\2\2\u00db\u00dc\f\4\2\2\u00dc\u00e2") buf.write(u"\7J\2\2\u00dd\u00e3\5,\27\2\u00de\u00df\7\26\2\2\u00df") buf.write(u"\u00e0\5\b\5\2\u00e0\u00e1\7\27\2\2\u00e1\u00e3\3\2\2") buf.write(u"\2\u00e2\u00dd\3\2\2\2\u00e2\u00de\3\2\2\2\u00e3\u00e5") buf.write(u"\3\2\2\2\u00e4\u00e6\5J&\2\u00e5\u00e4\3\2\2\2\u00e5") buf.write(u"\u00e6\3\2\2\2\u00e6\u00e8\3\2\2\2\u00e7\u00db\3\2\2") buf.write(u"\2\u00e8\u00eb\3\2\2\2\u00e9\u00e7\3\2\2\2\u00e9\u00ea") buf.write(u"\3\2\2\2\u00ea#\3\2\2\2\u00eb\u00e9\3\2\2\2\u00ec\u00f5") buf.write(u"\5(\25\2\u00ed\u00f5\5*\26\2\u00ee\u00f5\5@!\2\u00ef") buf.write(u"\u00f5\5,\27\2\u00f0\u00f5\5\66\34\2\u00f1\u00f5\58\35") buf.write(u"\2\u00f2\u00f5\5:\36\2\u00f3\u00f5\5<\37\2\u00f4\u00ec") buf.write(u"\3\2\2\2\u00f4\u00ed\3\2\2\2\u00f4\u00ee\3\2\2\2\u00f4") buf.write(u"\u00ef\3\2\2\2\u00f4\u00f0\3\2\2\2\u00f4\u00f1\3\2\2") buf.write(u"\2\u00f4\u00f2\3\2\2\2\u00f4\u00f3\3\2\2\2\u00f5%\3\2") buf.write(u"\2\2\u00f6\u00fe\5(\25\2\u00f7\u00fe\5*\26\2\u00f8\u00fe") buf.write(u"\5,\27\2\u00f9\u00fe\5\66\34\2\u00fa\u00fe\58\35\2\u00fb") buf.write(u"\u00fe\5:\36\2\u00fc\u00fe\5<\37\2\u00fd\u00f6\3\2\2") buf.write(u"\2\u00fd\u00f7\3\2\2\2\u00fd\u00f8\3\2\2\2\u00fd\u00f9") buf.write(u"\3\2\2\2\u00fd\u00fa\3\2\2\2\u00fd\u00fb\3\2\2\2\u00fd") buf.write(u"\u00fc\3\2\2\2\u00fe\'\3\2\2\2\u00ff\u0100\7\24\2\2\u0100") buf.write(u"\u0101\5\b\5\2\u0101\u0102\7\25\2\2\u0102\u0110\3\2\2") buf.write(u"\2\u0103\u0104\7\32\2\2\u0104\u0105\5\b\5\2\u0105\u0106") buf.write(u"\7\33\2\2\u0106\u0110\3\2\2\2\u0107\u0108\7\26\2\2\u0108") buf.write(u"\u0109\5\b\5\2\u0109\u010a\7\27\2\2\u010a\u0110\3\2\2") buf.write(u"\2\u010b\u010c\7\30\2\2\u010c\u010d\5\b\5\2\u010d\u010e") buf.write(u"\7\31\2\2\u010e\u0110\3\2\2\2\u010f\u00ff\3\2\2\2\u010f") buf.write(u"\u0103\3\2\2\2\u010f\u0107\3\2\2\2\u010f\u010b\3\2\2") buf.write(u"\2\u0110)\3\2\2\2\u0111\u0112\7\34\2\2\u0112\u0113\5") buf.write(u"\b\5\2\u0113\u0114\7\34\2\2\u0114+\3\2\2\2\u0115\u0117") buf.write(u"\t\5\2\2\u0116\u0118\5J&\2\u0117\u0116\3\2\2\2\u0117") buf.write(u"\u0118\3\2\2\2\u0118\u011f\3\2\2\2\u0119\u011f\7N\2\2") buf.write(u"\u011a\u011f\7L\2\2\u011b\u011f\5\62\32\2\u011c\u011f") buf.write(u"\5.\30\2\u011d\u011f\5\60\31\2\u011e\u0115\3\2\2\2\u011e") buf.write(u"\u0119\3\2\2\2\u011e\u011a\3\2\2\2\u011e\u011b\3\2\2") buf.write(u"\2\u011e\u011c\3\2\2\2\u011e\u011d\3\2\2\2\u011f-\3\2") buf.write(u"\2\2\u0120\u0121\7\37\2\2\u0121\u0122\5\b\5\2\u0122\u0123") buf.write(u"\t\6\2\2\u0123/\3\2\2\2\u0124\u0125\t\7\2\2\u0125\u0126") buf.write(u"\5\b\5\2\u0126\u0127\7 \2\2\u0127\61\3\2\2\2\u0128\u0129") buf.write(u"\7H\2\2\u0129\u012a\7\26\2\2\u012a\u012b\5\64\33\2\u012b") buf.write(u"\u012c\7\27\2\2\u012c\63\3\2\2\2\u012d\u012f\7M\2\2\u012e") buf.write(u"\u012d\3\2\2\2\u012f\u0132\3\2\2\2\u0130\u012e\3\2\2") buf.write(u"\2\u0130\u0131\3\2\2\2\u0131\65\3\2\2\2\u0132\u0130\3") buf.write(u"\2\2\2\u0133\u0134\7D\2\2\u0134\u0135\7\26\2\2\u0135") buf.write(u"\u0136\5\b\5\2\u0136\u0137\7\27\2\2\u0137\u0138\7\26") buf.write(u"\2\2\u0138\u0139\5\b\5\2\u0139\u013a\7\27\2\2\u013a\67") buf.write(u"\3\2\2\2\u013b\u013c\t\b\2\2\u013c\u013d\7\26\2\2\u013d") buf.write(u"\u013e\5\b\5\2\u013e\u013f\7\27\2\2\u013f\u0140\7\26") buf.write(u"\2\2\u0140\u0141\5\b\5\2\u0141\u0142\7\27\2\2\u01429") buf.write(u"\3\2\2\2\u0143\u0144\7;\2\2\u0144\u0145\5\b\5\2\u0145") buf.write(u"\u0146\7<\2\2\u0146;\3\2\2\2\u0147\u0148\7=\2\2\u0148") buf.write(u"\u0149\5\b\5\2\u0149\u014a\7>\2\2\u014a=\3\2\2\2\u014b") buf.write(u"\u014c\t\t\2\2\u014c?\3\2\2\2\u014d\u015a\5> \2\u014e") buf.write(u"\u0150\5J&\2\u014f\u014e\3\2\2\2\u014f\u0150\3\2\2\2") buf.write(u"\u0150\u0152\3\2\2\2\u0151\u0153\5L\'\2\u0152\u0151\3") buf.write(u"\2\2\2\u0152\u0153\3\2\2\2\u0153\u015b\3\2\2\2\u0154") buf.write(u"\u0156\5L\'\2\u0155\u0154\3\2\2\2\u0155\u0156\3\2\2\2") buf.write(u"\u0156\u0158\3\2\2\2\u0157\u0159\5J&\2\u0158\u0157\3") buf.write(u"\2\2\2\u0158\u0159\3\2\2\2\u0159\u015b\3\2\2\2\u015a") buf.write(u"\u014f\3\2\2\2\u015a\u0155\3\2\2\2\u015b\u0161\3\2\2") buf.write(u"\2\u015c\u015d\7\24\2\2\u015d\u015e\5F$\2\u015e\u015f") buf.write(u"\7\25\2\2\u015f\u0162\3\2\2\2\u0160\u0162\5H%\2\u0161") buf.write(u"\u015c\3\2\2\2\u0161\u0160\3\2\2\2\u0162\u019c\3\2\2") buf.write(u"\2\u0163\u0165\t\5\2\2\u0164\u0166\5J&\2\u0165\u0164") buf.write(u"\3\2\2\2\u0165\u0166\3\2\2\2\u0166\u0167\3\2\2\2\u0167") buf.write(u"\u0168\7\24\2\2\u0168\u0169\5B\"\2\u0169\u016a\7\25\2") buf.write(u"\2\u016a\u019c\3\2\2\2\u016b\u0172\7#\2\2\u016c\u016d") buf.write(u"\5J&\2\u016d\u016e\5L\'\2\u016e\u0173\3\2\2\2\u016f\u0170") buf.write(u"\5L\'\2\u0170\u0171\5J&\2\u0171\u0173\3\2\2\2\u0172\u016c") buf.write(u"\3\2\2\2\u0172\u016f\3\2\2\2\u0172\u0173\3\2\2\2\u0173") buf.write(u"\u017a\3\2\2\2\u0174\u0176\5\n\6\2\u0175\u0174\3\2\2") buf.write(u"\2\u0175\u0176\3\2\2\2\u0176\u0177\3\2\2\2\u0177\u017b") buf.write(u"\7L\2\2\u0178\u017b\5\66\34\2\u0179\u017b\5\n\6\2\u017a") buf.write(u"\u0175\3\2\2\2\u017a\u0178\3\2\2\2\u017a\u0179\3\2\2") buf.write(u"\2\u017b\u019c\3\2\2\2\u017c\u0181\7?\2\2\u017d\u017e") buf.write(u"\7\32\2\2\u017e\u017f\5\b\5\2\u017f\u0180\7\33\2\2\u0180") buf.write(u"\u0182\3\2\2\2\u0181\u017d\3\2\2\2\u0181\u0182\3\2\2") buf.write(u"\2\u0182\u0183\3\2\2\2\u0183\u0184\7\26\2\2\u0184\u0185") buf.write(u"\5\b\5\2\u0185\u0186\7\27\2\2\u0186\u019c\3\2\2\2\u0187") buf.write(u"\u0188\7@\2\2\u0188\u0189\7\26\2\2\u0189\u018a\5\b\5") buf.write(u"\2\u018a\u018b\7\27\2\2\u018b\u019c\3\2\2\2\u018c\u0193") buf.write(u"\t\n\2\2\u018d\u018e\5N(\2\u018e\u018f\5L\'\2\u018f\u0194") buf.write(u"\3\2\2\2\u0190\u0191\5L\'\2\u0191\u0192\5N(\2\u0192\u0194") buf.write(u"\3\2\2\2\u0193\u018d\3\2\2\2\u0193\u0190\3\2\2\2\u0194") buf.write(u"\u0195\3\2\2\2\u0195\u0196\5\f\7\2\u0196\u019c\3\2\2") buf.write(u"\2\u0197\u0198\7!\2\2\u0198\u0199\5D#\2\u0199\u019a\5") buf.write(u"\f\7\2\u019a\u019c\3\2\2\2\u019b\u014d\3\2\2\2\u019b") buf.write(u"\u0163\3\2\2\2\u019b\u016b\3\2\2\2\u019b\u017c\3\2\2") buf.write(u"\2\u019b\u0187\3\2\2\2\u019b\u018c\3\2\2\2\u019b\u0197") buf.write(u"\3\2\2\2\u019cA\3\2\2\2\u019d\u019e\5\b\5\2\u019e\u019f") buf.write(u"\7\3\2\2\u019f\u01a0\5B\"\2\u01a0\u01a3\3\2\2\2\u01a1") buf.write(u"\u01a3\5\b\5\2\u01a2\u019d\3\2\2\2\u01a2\u01a1\3\2\2") buf.write(u"\2\u01a3C\3\2\2\2\u01a4\u01a5\7I\2\2\u01a5\u01a6\7\26") buf.write(u"\2\2\u01a6\u01a7\t\5\2\2\u01a7\u01a8\7\"\2\2\u01a8\u01ad") buf.write(u"\5\b\5\2\u01a9\u01aa\7J\2\2\u01aa\u01ab\7\26\2\2\u01ab") buf.write(u"\u01ac\t\3\2\2\u01ac\u01ae\7\27\2\2\u01ad\u01a9\3\2\2") buf.write(u"\2\u01ad\u01ae\3\2\2\2\u01ae\u01af\3\2\2\2\u01af\u01b0") buf.write(u"\7\27\2\2\u01b0E\3\2\2\2\u01b1\u01b7\5\b\5\2\u01b2\u01b3") buf.write(u"\5\b\5\2\u01b3\u01b4\7\3\2\2\u01b4\u01b5\5F$\2\u01b5") buf.write(u"\u01b7\3\2\2\2\u01b6\u01b1\3\2\2\2\u01b6\u01b2\3\2\2") buf.write(u"\2\u01b7G\3\2\2\2\u01b8\u01b9\5\16\b\2\u01b9I\3\2\2\2") buf.write(u"\u01ba\u01c0\7I\2\2\u01bb\u01c1\5,\27\2\u01bc\u01bd\7") buf.write(u"\26\2\2\u01bd\u01be\5\b\5\2\u01be\u01bf\7\27\2\2\u01bf") buf.write(u"\u01c1\3\2\2\2\u01c0\u01bb\3\2\2\2\u01c0\u01bc\3\2\2") buf.write(u"\2\u01c1K\3\2\2\2\u01c2\u01c8\7J\2\2\u01c3\u01c9\5,\27") buf.write(u"\2\u01c4\u01c5\7\26\2\2\u01c5\u01c6\5\b\5\2\u01c6\u01c7") buf.write(u"\7\27\2\2\u01c7\u01c9\3\2\2\2\u01c8\u01c3\3\2\2\2\u01c8") buf.write(u"\u01c4\3\2\2\2\u01c9M\3\2\2\2\u01ca\u01cb\7I\2\2\u01cb") buf.write(u"\u01cc\7\26\2\2\u01cc\u01cd\5\6\4\2\u01cd\u01ce\7\27") buf.write(u"\2\2\u01ceO\3\2\2\2\u01cf\u01d0\7I\2\2\u01d0\u01d1\7") buf.write(u"\26\2\2\u01d1\u01d2\5\6\4\2\u01d2\u01d3\7\27\2\2\u01d3") buf.write(u"Q\3\2\2\2.\\mx\u0083\u008b\u008d\u0095\u0098\u009e\u00a5") buf.write(u"\u00aa\u00b2\u00b8\u00c0\u00ce\u00d1\u00d5\u00e2\u00e5") buf.write(u"\u00e9\u00f4\u00fd\u010f\u0117\u011e\u0130\u014f\u0152") buf.write(u"\u0155\u0158\u015a\u0161\u0165\u0172\u0175\u017a\u0181") buf.write(u"\u0193\u019b\u01a2\u01ad\u01b6\u01c0\u01c8") return buf.getvalue() class LaTeXParser ( Parser ): grammarFileName = "LaTeX.g4" atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] sharedContextCache = PredictionContextCache() literalNames = [ u"<INVALID>", u"','", u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>", u"'\\quad'", u"'\\qquad'", u"<INVALID>", u"'\\negmedspace'", u"'\\negthickspace'", u"'\\left'", u"'\\right'", u"<INVALID>", u"'+'", u"'-'", u"'*'", u"'/'", u"'('", u"')'", u"'{'", u"'}'", u"'\\{'", u"'\\}'", u"'['", u"']'", u"'|'", u"'\\right|'", u"'\\left|'", u"'\\langle'", u"'\\rangle'", u"'\\lim'", u"<INVALID>", u"'\\int'", u"'\\sum'", u"'\\prod'", u"'\\exp'", u"'\\log'", u"'\\ln'", u"'\\sin'", u"'\\cos'", u"'\\tan'", u"'\\csc'", u"'\\sec'", u"'\\cot'", u"'\\arcsin'", u"'\\arccos'", u"'\\arctan'", u"'\\arccsc'", u"'\\arcsec'", u"'\\arccot'", u"'\\sinh'", u"'\\cosh'", u"'\\tanh'", u"'\\arsinh'", u"'\\arcosh'", u"'\\artanh'", u"'\\lfloor'", u"'\\rfloor'", u"'\\lceil'", u"'\\rceil'", u"'\\sqrt'", u"'\\overline'", u"'\\times'", u"'\\cdot'", u"'\\div'", u"'\\frac'", u"'\\binom'", u"'\\dbinom'", u"'\\tbinom'", u"'\\mathit'", u"'_'", u"'^'", u"':'", u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>", u"'\\neq'", u"'<'", u"<INVALID>", u"'\\leqq'", u"'\\leqslant'", u"'>'", u"<INVALID>", u"'\\geqq'", u"'\\geqslant'", u"'!'" ] symbolicNames = [ u"<INVALID>", u"<INVALID>", u"WS", u"THINSPACE", u"MEDSPACE", u"THICKSPACE", u"QUAD", u"QQUAD", u"NEGTHINSPACE", u"NEGMEDSPACE", u"NEGTHICKSPACE", u"CMD_LEFT", u"CMD_RIGHT", u"IGNORE", u"ADD", u"SUB", u"MUL", u"DIV", u"L_PAREN", u"R_PAREN", u"L_BRACE", u"R_BRACE", u"L_BRACE_LITERAL", u"R_BRACE_LITERAL", u"L_BRACKET", u"R_BRACKET", u"BAR", u"R_BAR", u"L_BAR", u"L_ANGLE", u"R_ANGLE", u"FUNC_LIM", u"LIM_APPROACH_SYM", u"FUNC_INT", u"FUNC_SUM", u"FUNC_PROD", u"FUNC_EXP", u"FUNC_LOG", u"FUNC_LN", u"FUNC_SIN", u"FUNC_COS", u"FUNC_TAN", u"FUNC_CSC", u"FUNC_SEC", u"FUNC_COT", u"FUNC_ARCSIN", u"FUNC_ARCCOS", u"FUNC_ARCTAN", u"FUNC_ARCCSC", u"FUNC_ARCSEC", u"FUNC_ARCCOT", u"FUNC_SINH", u"FUNC_COSH", u"FUNC_TANH", u"FUNC_ARSINH", u"FUNC_ARCOSH", u"FUNC_ARTANH", u"L_FLOOR", u"R_FLOOR", u"L_CEIL", u"R_CEIL", u"FUNC_SQRT", u"FUNC_OVERLINE", u"CMD_TIMES", u"CMD_CDOT", u"CMD_DIV", u"CMD_FRAC", u"CMD_BINOM", u"CMD_DBINOM", u"CMD_TBINOM", u"CMD_MATHIT", u"UNDERSCORE", u"CARET", u"COLON", u"DIFFERENTIAL", u"LETTER", u"NUMBER", u"EQUAL", u"NEQ", u"LT", u"LTE", u"LTE_Q", u"LTE_S", u"GT", u"GTE", u"GTE_Q", u"GTE_S", u"BANG", u"SYMBOL" ] RULE_math = 0 RULE_relation = 1 RULE_equality = 2 RULE_expr = 3 RULE_additive = 4 RULE_mp = 5 RULE_mp_nofunc = 6 RULE_unary = 7 RULE_unary_nofunc = 8 RULE_postfix = 9 RULE_postfix_nofunc = 10 RULE_postfix_op = 11 RULE_eval_at = 12 RULE_eval_at_sub = 13 RULE_eval_at_sup = 14 RULE_exp = 15 RULE_exp_nofunc = 16 RULE_comp = 17 RULE_comp_nofunc = 18 RULE_group = 19 RULE_abs_group = 20 RULE_atom = 21 RULE_bra = 22 RULE_ket = 23 RULE_mathit = 24 RULE_mathit_text = 25 RULE_frac = 26 RULE_binom = 27 RULE_floor = 28 RULE_ceil = 29 RULE_func_normal = 30 RULE_func = 31 RULE_args = 32 RULE_limit_sub = 33 RULE_func_arg = 34 RULE_func_arg_noparens = 35 RULE_subexpr = 36 RULE_supexpr = 37 RULE_subeq = 38 RULE_supeq = 39 ruleNames = [ u"math", u"relation", u"equality", u"expr", u"additive", u"mp", u"mp_nofunc", u"unary", u"unary_nofunc", u"postfix", u"postfix_nofunc", u"postfix_op", u"eval_at", u"eval_at_sub", u"eval_at_sup", u"exp", u"exp_nofunc", u"comp", u"comp_nofunc", u"group", u"abs_group", u"atom", u"bra", u"ket", u"mathit", u"mathit_text", u"frac", u"binom", u"floor", u"ceil", u"func_normal", u"func", u"args", u"limit_sub", u"func_arg", u"func_arg_noparens", u"subexpr", u"supexpr", u"subeq", u"supeq" ] EOF = Token.EOF T__0=1 WS=2 THINSPACE=3 MEDSPACE=4 THICKSPACE=5 QUAD=6 QQUAD=7 NEGTHINSPACE=8 NEGMEDSPACE=9 NEGTHICKSPACE=10 CMD_LEFT=11 CMD_RIGHT=12 IGNORE=13 ADD=14 SUB=15 MUL=16 DIV=17 L_PAREN=18 R_PAREN=19 L_BRACE=20 R_BRACE=21 L_BRACE_LITERAL=22 R_BRACE_LITERAL=23 L_BRACKET=24 R_BRACKET=25 BAR=26 R_BAR=27 L_BAR=28 L_ANGLE=29 R_ANGLE=30 FUNC_LIM=31 LIM_APPROACH_SYM=32 FUNC_INT=33 FUNC_SUM=34 FUNC_PROD=35 FUNC_EXP=36 FUNC_LOG=37 FUNC_LN=38 FUNC_SIN=39 FUNC_COS=40 FUNC_TAN=41 FUNC_CSC=42 FUNC_SEC=43 FUNC_COT=44 FUNC_ARCSIN=45 FUNC_ARCCOS=46 FUNC_ARCTAN=47 FUNC_ARCCSC=48 FUNC_ARCSEC=49 FUNC_ARCCOT=50 FUNC_SINH=51 FUNC_COSH=52 FUNC_TANH=53 FUNC_ARSINH=54 FUNC_ARCOSH=55 FUNC_ARTANH=56 L_FLOOR=57 R_FLOOR=58 L_CEIL=59 R_CEIL=60 FUNC_SQRT=61 FUNC_OVERLINE=62 CMD_TIMES=63 CMD_CDOT=64 CMD_DIV=65 CMD_FRAC=66 CMD_BINOM=67 CMD_DBINOM=68 CMD_TBINOM=69 CMD_MATHIT=70 UNDERSCORE=71 CARET=72 COLON=73 DIFFERENTIAL=74 LETTER=75 NUMBER=76 EQUAL=77 NEQ=78 LT=79 LTE=80 LTE_Q=81 LTE_S=82 GT=83 GTE=84 GTE_Q=85 GTE_S=86 BANG=87 SYMBOL=88 def __init__(self, input, output=sys.stdout): super(LaTeXParser, self).__init__(input, output=output) self.checkVersion("4.7.2") self._interp = ParserATNSimulator(self, self.atn, self.decisionsToDFA, self.sharedContextCache) self._predicates = None class MathContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.MathContext, self).__init__(parent, invokingState) self.parser = parser def relation(self): return self.getTypedRuleContext(LaTeXParser.RelationContext,0) def getRuleIndex(self): return LaTeXParser.RULE_math def math(self): localctx = LaTeXParser.MathContext(self, self._ctx, self.state) self.enterRule(localctx, 0, self.RULE_math) try: self.enterOuterAlt(localctx, 1) self.state = 80 self.relation(0) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class RelationContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.RelationContext, self).__init__(parent, invokingState) self.parser = parser def expr(self): return self.getTypedRuleContext(LaTeXParser.ExprContext,0) def relation(self, i=None): if i is None: return self.getTypedRuleContexts(LaTeXParser.RelationContext) else: return self.getTypedRuleContext(LaTeXParser.RelationContext,i) def EQUAL(self): return self.getToken(LaTeXParser.EQUAL, 0) def LT(self): return self.getToken(LaTeXParser.LT, 0) def LTE(self): return self.getToken(LaTeXParser.LTE, 0) def GT(self): return self.getToken(LaTeXParser.GT, 0) def GTE(self): return self.getToken(LaTeXParser.GTE, 0) def NEQ(self): return self.getToken(LaTeXParser.NEQ, 0) def getRuleIndex(self): return LaTeXParser.RULE_relation def relation(self, _p=0): _parentctx = self._ctx _parentState = self.state localctx = LaTeXParser.RelationContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 2 self.enterRecursionRule(localctx, 2, self.RULE_relation, _p) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 83 self.expr() self._ctx.stop = self._input.LT(-1) self.state = 90 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,0,self._ctx) while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx localctx = LaTeXParser.RelationContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_relation) self.state = 85 if not self.precpred(self._ctx, 2): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, "self.precpred(self._ctx, 2)") self.state = 86 _la = self._input.LA(1) if not(((((_la - 77)) & ~0x3f) == 0 and ((1 << (_la - 77)) & ((1 << (LaTeXParser.EQUAL - 77)) | (1 << (LaTeXParser.NEQ - 77)) | (1 << (LaTeXParser.LT - 77)) | (1 << (LaTeXParser.LTE - 77)) | (1 << (LaTeXParser.GT - 77)) | (1 << (LaTeXParser.GTE - 77)))) != 0)): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 87 self.relation(3) self.state = 92 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,0,self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx class EqualityContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.EqualityContext, self).__init__(parent, invokingState) self.parser = parser def expr(self, i=None): if i is None: return self.getTypedRuleContexts(LaTeXParser.ExprContext) else: return self.getTypedRuleContext(LaTeXParser.ExprContext,i) def EQUAL(self): return self.getToken(LaTeXParser.EQUAL, 0) def getRuleIndex(self): return LaTeXParser.RULE_equality def equality(self): localctx = LaTeXParser.EqualityContext(self, self._ctx, self.state) self.enterRule(localctx, 4, self.RULE_equality) try: self.enterOuterAlt(localctx, 1) self.state = 93 self.expr() self.state = 94 self.match(LaTeXParser.EQUAL) self.state = 95 self.expr() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class ExprContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.ExprContext, self).__init__(parent, invokingState) self.parser = parser def additive(self): return self.getTypedRuleContext(LaTeXParser.AdditiveContext,0) def getRuleIndex(self): return LaTeXParser.RULE_expr def expr(self): localctx = LaTeXParser.ExprContext(self, self._ctx, self.state) self.enterRule(localctx, 6, self.RULE_expr) try: self.enterOuterAlt(localctx, 1) self.state = 97 self.additive(0) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class AdditiveContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.AdditiveContext, self).__init__(parent, invokingState) self.parser = parser def mp(self): return self.getTypedRuleContext(LaTeXParser.MpContext,0) def additive(self, i=None): if i is None: return self.getTypedRuleContexts(LaTeXParser.AdditiveContext) else: return self.getTypedRuleContext(LaTeXParser.AdditiveContext,i) def ADD(self): return self.getToken(LaTeXParser.ADD, 0) def SUB(self): return self.getToken(LaTeXParser.SUB, 0) def getRuleIndex(self): return LaTeXParser.RULE_additive def additive(self, _p=0): _parentctx = self._ctx _parentState = self.state localctx = LaTeXParser.AdditiveContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 8 self.enterRecursionRule(localctx, 8, self.RULE_additive, _p) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 100 self.mp(0) self._ctx.stop = self._input.LT(-1) self.state = 107 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,1,self._ctx) while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx localctx = LaTeXParser.AdditiveContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_additive) self.state = 102 if not self.precpred(self._ctx, 2): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, "self.precpred(self._ctx, 2)") self.state = 103 _la = self._input.LA(1) if not(_la==LaTeXParser.ADD or _la==LaTeXParser.SUB): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 104 self.additive(3) self.state = 109 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,1,self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx class MpContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.MpContext, self).__init__(parent, invokingState) self.parser = parser def unary(self): return self.getTypedRuleContext(LaTeXParser.UnaryContext,0) def mp(self, i=None): if i is None: return self.getTypedRuleContexts(LaTeXParser.MpContext) else: return self.getTypedRuleContext(LaTeXParser.MpContext,i) def MUL(self): return self.getToken(LaTeXParser.MUL, 0) def CMD_TIMES(self): return self.getToken(LaTeXParser.CMD_TIMES, 0) def CMD_CDOT(self): return self.getToken(LaTeXParser.CMD_CDOT, 0) def DIV(self): return self.getToken(LaTeXParser.DIV, 0) def CMD_DIV(self): return self.getToken(LaTeXParser.CMD_DIV, 0) def COLON(self): return self.getToken(LaTeXParser.COLON, 0) def getRuleIndex(self): return LaTeXParser.RULE_mp def mp(self, _p=0): _parentctx = self._ctx _parentState = self.state localctx = LaTeXParser.MpContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 10 self.enterRecursionRule(localctx, 10, self.RULE_mp, _p) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 111 self.unary() self._ctx.stop = self._input.LT(-1) self.state = 118 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,2,self._ctx) while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx localctx = LaTeXParser.MpContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_mp) self.state = 113 if not self.precpred(self._ctx, 2): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, "self.precpred(self._ctx, 2)") self.state = 114 _la = self._input.LA(1) if not(((((_la - 16)) & ~0x3f) == 0 and ((1 << (_la - 16)) & ((1 << (LaTeXParser.MUL - 16)) | (1 << (LaTeXParser.DIV - 16)) | (1 << (LaTeXParser.CMD_TIMES - 16)) | (1 << (LaTeXParser.CMD_CDOT - 16)) | (1 << (LaTeXParser.CMD_DIV - 16)) | (1 << (LaTeXParser.COLON - 16)))) != 0)): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 115 self.mp(3) self.state = 120 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,2,self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx class Mp_nofuncContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.Mp_nofuncContext, self).__init__(parent, invokingState) self.parser = parser def unary_nofunc(self): return self.getTypedRuleContext(LaTeXParser.Unary_nofuncContext,0) def mp_nofunc(self, i=None): if i is None: return self.getTypedRuleContexts(LaTeXParser.Mp_nofuncContext) else: return self.getTypedRuleContext(LaTeXParser.Mp_nofuncContext,i) def MUL(self): return self.getToken(LaTeXParser.MUL, 0) def CMD_TIMES(self): return self.getToken(LaTeXParser.CMD_TIMES, 0) def CMD_CDOT(self): return self.getToken(LaTeXParser.CMD_CDOT, 0) def DIV(self): return self.getToken(LaTeXParser.DIV, 0) def CMD_DIV(self): return self.getToken(LaTeXParser.CMD_DIV, 0) def COLON(self): return self.getToken(LaTeXParser.COLON, 0) def getRuleIndex(self): return LaTeXParser.RULE_mp_nofunc def mp_nofunc(self, _p=0): _parentctx = self._ctx _parentState = self.state localctx = LaTeXParser.Mp_nofuncContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 12 self.enterRecursionRule(localctx, 12, self.RULE_mp_nofunc, _p) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 122 self.unary_nofunc() self._ctx.stop = self._input.LT(-1) self.state = 129 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,3,self._ctx) while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx localctx = LaTeXParser.Mp_nofuncContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_mp_nofunc) self.state = 124 if not self.precpred(self._ctx, 2): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, "self.precpred(self._ctx, 2)") self.state = 125 _la = self._input.LA(1) if not(((((_la - 16)) & ~0x3f) == 0 and ((1 << (_la - 16)) & ((1 << (LaTeXParser.MUL - 16)) | (1 << (LaTeXParser.DIV - 16)) | (1 << (LaTeXParser.CMD_TIMES - 16)) | (1 << (LaTeXParser.CMD_CDOT - 16)) | (1 << (LaTeXParser.CMD_DIV - 16)) | (1 << (LaTeXParser.COLON - 16)))) != 0)): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 126 self.mp_nofunc(3) self.state = 131 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,3,self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx class UnaryContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.UnaryContext, self).__init__(parent, invokingState) self.parser = parser def unary(self): return self.getTypedRuleContext(LaTeXParser.UnaryContext,0) def ADD(self): return self.getToken(LaTeXParser.ADD, 0) def SUB(self): return self.getToken(LaTeXParser.SUB, 0) def postfix(self, i=None): if i is None: return self.getTypedRuleContexts(LaTeXParser.PostfixContext) else: return self.getTypedRuleContext(LaTeXParser.PostfixContext,i) def getRuleIndex(self): return LaTeXParser.RULE_unary def unary(self): localctx = LaTeXParser.UnaryContext(self, self._ctx, self.state) self.enterRule(localctx, 14, self.RULE_unary) self._la = 0 # Token type try: self.state = 139 self._errHandler.sync(self) token = self._input.LA(1) if token in [LaTeXParser.ADD, LaTeXParser.SUB]: self.enterOuterAlt(localctx, 1) self.state = 132 _la = self._input.LA(1) if not(_la==LaTeXParser.ADD or _la==LaTeXParser.SUB): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 133 self.unary() pass elif token in [LaTeXParser.L_PAREN, LaTeXParser.L_BRACE, LaTeXParser.L_BRACE_LITERAL, LaTeXParser.L_BRACKET, LaTeXParser.BAR, LaTeXParser.L_BAR, LaTeXParser.L_ANGLE, LaTeXParser.FUNC_LIM, LaTeXParser.FUNC_INT, LaTeXParser.FUNC_SUM, LaTeXParser.FUNC_PROD, LaTeXParser.FUNC_EXP, LaTeXParser.FUNC_LOG, LaTeXParser.FUNC_LN, LaTeXParser.FUNC_SIN, LaTeXParser.FUNC_COS, LaTeXParser.FUNC_TAN, LaTeXParser.FUNC_CSC, LaTeXParser.FUNC_SEC, LaTeXParser.FUNC_COT, LaTeXParser.FUNC_ARCSIN, LaTeXParser.FUNC_ARCCOS, LaTeXParser.FUNC_ARCTAN, LaTeXParser.FUNC_ARCCSC, LaTeXParser.FUNC_ARCSEC, LaTeXParser.FUNC_ARCCOT, LaTeXParser.FUNC_SINH, LaTeXParser.FUNC_COSH, LaTeXParser.FUNC_TANH, LaTeXParser.FUNC_ARSINH, LaTeXParser.FUNC_ARCOSH, LaTeXParser.FUNC_ARTANH, LaTeXParser.L_FLOOR, LaTeXParser.L_CEIL, LaTeXParser.FUNC_SQRT, LaTeXParser.FUNC_OVERLINE, LaTeXParser.CMD_FRAC, LaTeXParser.CMD_BINOM, LaTeXParser.CMD_DBINOM, LaTeXParser.CMD_TBINOM, LaTeXParser.CMD_MATHIT, LaTeXParser.DIFFERENTIAL, LaTeXParser.LETTER, LaTeXParser.NUMBER, LaTeXParser.SYMBOL]: self.enterOuterAlt(localctx, 2) self.state = 135 self._errHandler.sync(self) _alt = 1 while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt == 1: self.state = 134 self.postfix() else: raise NoViableAltException(self) self.state = 137 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,4,self._ctx) pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Unary_nofuncContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.Unary_nofuncContext, self).__init__(parent, invokingState) self.parser = parser def unary_nofunc(self): return self.getTypedRuleContext(LaTeXParser.Unary_nofuncContext,0) def ADD(self): return self.getToken(LaTeXParser.ADD, 0) def SUB(self): return self.getToken(LaTeXParser.SUB, 0) def postfix(self): return self.getTypedRuleContext(LaTeXParser.PostfixContext,0) def postfix_nofunc(self, i=None): if i is None: return self.getTypedRuleContexts(LaTeXParser.Postfix_nofuncContext) else: return self.getTypedRuleContext(LaTeXParser.Postfix_nofuncContext,i) def getRuleIndex(self): return LaTeXParser.RULE_unary_nofunc def unary_nofunc(self): localctx = LaTeXParser.Unary_nofuncContext(self, self._ctx, self.state) self.enterRule(localctx, 16, self.RULE_unary_nofunc) self._la = 0 # Token type try: self.state = 150 self._errHandler.sync(self) token = self._input.LA(1) if token in [LaTeXParser.ADD, LaTeXParser.SUB]: self.enterOuterAlt(localctx, 1) self.state = 141 _la = self._input.LA(1) if not(_la==LaTeXParser.ADD or _la==LaTeXParser.SUB): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 142 self.unary_nofunc() pass elif token in [LaTeXParser.L_PAREN, LaTeXParser.L_BRACE, LaTeXParser.L_BRACE_LITERAL, LaTeXParser.L_BRACKET, LaTeXParser.BAR, LaTeXParser.L_BAR, LaTeXParser.L_ANGLE, LaTeXParser.FUNC_LIM, LaTeXParser.FUNC_INT, LaTeXParser.FUNC_SUM, LaTeXParser.FUNC_PROD, LaTeXParser.FUNC_EXP, LaTeXParser.FUNC_LOG, LaTeXParser.FUNC_LN, LaTeXParser.FUNC_SIN, LaTeXParser.FUNC_COS, LaTeXParser.FUNC_TAN, LaTeXParser.FUNC_CSC, LaTeXParser.FUNC_SEC, LaTeXParser.FUNC_COT, LaTeXParser.FUNC_ARCSIN, LaTeXParser.FUNC_ARCCOS, LaTeXParser.FUNC_ARCTAN, LaTeXParser.FUNC_ARCCSC, LaTeXParser.FUNC_ARCSEC, LaTeXParser.FUNC_ARCCOT, LaTeXParser.FUNC_SINH, LaTeXParser.FUNC_COSH, LaTeXParser.FUNC_TANH, LaTeXParser.FUNC_ARSINH, LaTeXParser.FUNC_ARCOSH, LaTeXParser.FUNC_ARTANH, LaTeXParser.L_FLOOR, LaTeXParser.L_CEIL, LaTeXParser.FUNC_SQRT, LaTeXParser.FUNC_OVERLINE, LaTeXParser.CMD_FRAC, LaTeXParser.CMD_BINOM, LaTeXParser.CMD_DBINOM, LaTeXParser.CMD_TBINOM, LaTeXParser.CMD_MATHIT, LaTeXParser.DIFFERENTIAL, LaTeXParser.LETTER, LaTeXParser.NUMBER, LaTeXParser.SYMBOL]: self.enterOuterAlt(localctx, 2) self.state = 143 self.postfix() self.state = 147 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,6,self._ctx) while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1: self.state = 144 self.postfix_nofunc() self.state = 149 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,6,self._ctx) pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class PostfixContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.PostfixContext, self).__init__(parent, invokingState) self.parser = parser def exp(self): return self.getTypedRuleContext(LaTeXParser.ExpContext,0) def postfix_op(self, i=None): if i is None: return self.getTypedRuleContexts(LaTeXParser.Postfix_opContext) else: return self.getTypedRuleContext(LaTeXParser.Postfix_opContext,i) def getRuleIndex(self): return LaTeXParser.RULE_postfix def postfix(self): localctx = LaTeXParser.PostfixContext(self, self._ctx, self.state) self.enterRule(localctx, 18, self.RULE_postfix) try: self.enterOuterAlt(localctx, 1) self.state = 152 self.exp(0) self.state = 156 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,8,self._ctx) while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1: self.state = 153 self.postfix_op() self.state = 158 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,8,self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Postfix_nofuncContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.Postfix_nofuncContext, self).__init__(parent, invokingState) self.parser = parser def exp_nofunc(self): return self.getTypedRuleContext(LaTeXParser.Exp_nofuncContext,0) def postfix_op(self, i=None): if i is None: return self.getTypedRuleContexts(LaTeXParser.Postfix_opContext) else: return self.getTypedRuleContext(LaTeXParser.Postfix_opContext,i) def getRuleIndex(self): return LaTeXParser.RULE_postfix_nofunc def postfix_nofunc(self): localctx = LaTeXParser.Postfix_nofuncContext(self, self._ctx, self.state) self.enterRule(localctx, 20, self.RULE_postfix_nofunc) try: self.enterOuterAlt(localctx, 1) self.state = 159 self.exp_nofunc(0) self.state = 163 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,9,self._ctx) while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1: self.state = 160 self.postfix_op() self.state = 165 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,9,self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Postfix_opContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.Postfix_opContext, self).__init__(parent, invokingState) self.parser = parser def BANG(self): return self.getToken(LaTeXParser.BANG, 0) def eval_at(self): return self.getTypedRuleContext(LaTeXParser.Eval_atContext,0) def getRuleIndex(self): return LaTeXParser.RULE_postfix_op def postfix_op(self): localctx = LaTeXParser.Postfix_opContext(self, self._ctx, self.state) self.enterRule(localctx, 22, self.RULE_postfix_op) try: self.state = 168 self._errHandler.sync(self) token = self._input.LA(1) if token in [LaTeXParser.BANG]: self.enterOuterAlt(localctx, 1) self.state = 166 self.match(LaTeXParser.BANG) pass elif token in [LaTeXParser.BAR]: self.enterOuterAlt(localctx, 2) self.state = 167 self.eval_at() pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Eval_atContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.Eval_atContext, self).__init__(parent, invokingState) self.parser = parser def BAR(self): return self.getToken(LaTeXParser.BAR, 0) def eval_at_sup(self): return self.getTypedRuleContext(LaTeXParser.Eval_at_supContext,0) def eval_at_sub(self): return self.getTypedRuleContext(LaTeXParser.Eval_at_subContext,0) def getRuleIndex(self): return LaTeXParser.RULE_eval_at def eval_at(self): localctx = LaTeXParser.Eval_atContext(self, self._ctx, self.state) self.enterRule(localctx, 24, self.RULE_eval_at) try: self.enterOuterAlt(localctx, 1) self.state = 170 self.match(LaTeXParser.BAR) self.state = 176 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,11,self._ctx) if la_ == 1: self.state = 171 self.eval_at_sup() pass elif la_ == 2: self.state = 172 self.eval_at_sub() pass elif la_ == 3: self.state = 173 self.eval_at_sup() self.state = 174 self.eval_at_sub() pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Eval_at_subContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.Eval_at_subContext, self).__init__(parent, invokingState) self.parser = parser def UNDERSCORE(self): return self.getToken(LaTeXParser.UNDERSCORE, 0) def L_BRACE(self): return self.getToken(LaTeXParser.L_BRACE, 0) def R_BRACE(self): return self.getToken(LaTeXParser.R_BRACE, 0) def expr(self): return self.getTypedRuleContext(LaTeXParser.ExprContext,0) def equality(self): return self.getTypedRuleContext(LaTeXParser.EqualityContext,0) def getRuleIndex(self): return LaTeXParser.RULE_eval_at_sub def eval_at_sub(self): localctx = LaTeXParser.Eval_at_subContext(self, self._ctx, self.state) self.enterRule(localctx, 26, self.RULE_eval_at_sub) try: self.enterOuterAlt(localctx, 1) self.state = 178 self.match(LaTeXParser.UNDERSCORE) self.state = 179 self.match(LaTeXParser.L_BRACE) self.state = 182 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,12,self._ctx) if la_ == 1: self.state = 180 self.expr() pass elif la_ == 2: self.state = 181 self.equality() pass self.state = 184 self.match(LaTeXParser.R_BRACE) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Eval_at_supContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.Eval_at_supContext, self).__init__(parent, invokingState) self.parser = parser def CARET(self): return self.getToken(LaTeXParser.CARET, 0) def L_BRACE(self): return self.getToken(LaTeXParser.L_BRACE, 0) def R_BRACE(self): return self.getToken(LaTeXParser.R_BRACE, 0) def expr(self): return self.getTypedRuleContext(LaTeXParser.ExprContext,0) def equality(self): return self.getTypedRuleContext(LaTeXParser.EqualityContext,0) def getRuleIndex(self): return LaTeXParser.RULE_eval_at_sup def eval_at_sup(self): localctx = LaTeXParser.Eval_at_supContext(self, self._ctx, self.state) self.enterRule(localctx, 28, self.RULE_eval_at_sup) try: self.enterOuterAlt(localctx, 1) self.state = 186 self.match(LaTeXParser.CARET) self.state = 187 self.match(LaTeXParser.L_BRACE) self.state = 190 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,13,self._ctx) if la_ == 1: self.state = 188 self.expr() pass elif la_ == 2: self.state = 189 self.equality() pass self.state = 192 self.match(LaTeXParser.R_BRACE) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class ExpContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.ExpContext, self).__init__(parent, invokingState) self.parser = parser def comp(self): return self.getTypedRuleContext(LaTeXParser.CompContext,0) def exp(self): return self.getTypedRuleContext(LaTeXParser.ExpContext,0) def CARET(self): return self.getToken(LaTeXParser.CARET, 0) def atom(self): return self.getTypedRuleContext(LaTeXParser.AtomContext,0) def L_BRACE(self): return self.getToken(LaTeXParser.L_BRACE, 0) def expr(self): return self.getTypedRuleContext(LaTeXParser.ExprContext,0) def R_BRACE(self): return self.getToken(LaTeXParser.R_BRACE, 0) def subexpr(self): return self.getTypedRuleContext(LaTeXParser.SubexprContext,0) def getRuleIndex(self): return LaTeXParser.RULE_exp def exp(self, _p=0): _parentctx = self._ctx _parentState = self.state localctx = LaTeXParser.ExpContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 30 self.enterRecursionRule(localctx, 30, self.RULE_exp, _p) try: self.enterOuterAlt(localctx, 1) self.state = 195 self.comp() self._ctx.stop = self._input.LT(-1) self.state = 211 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,16,self._ctx) while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx localctx = LaTeXParser.ExpContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_exp) self.state = 197 if not self.precpred(self._ctx, 2): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, "self.precpred(self._ctx, 2)") self.state = 198 self.match(LaTeXParser.CARET) self.state = 204 self._errHandler.sync(self) token = self._input.LA(1) if token in [LaTeXParser.BAR, LaTeXParser.L_BAR, LaTeXParser.L_ANGLE, LaTeXParser.CMD_MATHIT, LaTeXParser.DIFFERENTIAL, LaTeXParser.LETTER, LaTeXParser.NUMBER, LaTeXParser.SYMBOL]: self.state = 199 self.atom() pass elif token in [LaTeXParser.L_BRACE]: self.state = 200 self.match(LaTeXParser.L_BRACE) self.state = 201 self.expr() self.state = 202 self.match(LaTeXParser.R_BRACE) pass else: raise NoViableAltException(self) self.state = 207 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,15,self._ctx) if la_ == 1: self.state = 206 self.subexpr() self.state = 213 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,16,self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx class Exp_nofuncContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.Exp_nofuncContext, self).__init__(parent, invokingState) self.parser = parser def comp_nofunc(self): return self.getTypedRuleContext(LaTeXParser.Comp_nofuncContext,0) def exp_nofunc(self): return self.getTypedRuleContext(LaTeXParser.Exp_nofuncContext,0) def CARET(self): return self.getToken(LaTeXParser.CARET, 0) def atom(self): return self.getTypedRuleContext(LaTeXParser.AtomContext,0) def L_BRACE(self): return self.getToken(LaTeXParser.L_BRACE, 0) def expr(self): return self.getTypedRuleContext(LaTeXParser.ExprContext,0) def R_BRACE(self): return self.getToken(LaTeXParser.R_BRACE, 0) def subexpr(self): return self.getTypedRuleContext(LaTeXParser.SubexprContext,0) def getRuleIndex(self): return LaTeXParser.RULE_exp_nofunc def exp_nofunc(self, _p=0): _parentctx = self._ctx _parentState = self.state localctx = LaTeXParser.Exp_nofuncContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 32 self.enterRecursionRule(localctx, 32, self.RULE_exp_nofunc, _p) try: self.enterOuterAlt(localctx, 1) self.state = 215 self.comp_nofunc() self._ctx.stop = self._input.LT(-1) self.state = 231 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,19,self._ctx) while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx localctx = LaTeXParser.Exp_nofuncContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_exp_nofunc) self.state = 217 if not self.precpred(self._ctx, 2): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, "self.precpred(self._ctx, 2)") self.state = 218 self.match(LaTeXParser.CARET) self.state = 224 self._errHandler.sync(self) token = self._input.LA(1) if token in [LaTeXParser.BAR, LaTeXParser.L_BAR, LaTeXParser.L_ANGLE, LaTeXParser.CMD_MATHIT, LaTeXParser.DIFFERENTIAL, LaTeXParser.LETTER, LaTeXParser.NUMBER, LaTeXParser.SYMBOL]: self.state = 219 self.atom() pass elif token in [LaTeXParser.L_BRACE]: self.state = 220 self.match(LaTeXParser.L_BRACE) self.state = 221 self.expr() self.state = 222 self.match(LaTeXParser.R_BRACE) pass else: raise NoViableAltException(self) self.state = 227 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,18,self._ctx) if la_ == 1: self.state = 226 self.subexpr() self.state = 233 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,19,self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx class CompContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.CompContext, self).__init__(parent, invokingState) self.parser = parser def group(self): return self.getTypedRuleContext(LaTeXParser.GroupContext,0) def abs_group(self): return self.getTypedRuleContext(LaTeXParser.Abs_groupContext,0) def func(self): return self.getTypedRuleContext(LaTeXParser.FuncContext,0) def atom(self): return self.getTypedRuleContext(LaTeXParser.AtomContext,0) def frac(self): return self.getTypedRuleContext(LaTeXParser.FracContext,0) def binom(self): return self.getTypedRuleContext(LaTeXParser.BinomContext,0) def floor(self): return self.getTypedRuleContext(LaTeXParser.FloorContext,0) def ceil(self): return self.getTypedRuleContext(LaTeXParser.CeilContext,0) def getRuleIndex(self): return LaTeXParser.RULE_comp def comp(self): localctx = LaTeXParser.CompContext(self, self._ctx, self.state) self.enterRule(localctx, 34, self.RULE_comp) try: self.state = 242 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,20,self._ctx) if la_ == 1: self.enterOuterAlt(localctx, 1) self.state = 234 self.group() pass elif la_ == 2: self.enterOuterAlt(localctx, 2) self.state = 235 self.abs_group() pass elif la_ == 3: self.enterOuterAlt(localctx, 3) self.state = 236 self.func() pass elif la_ == 4: self.enterOuterAlt(localctx, 4) self.state = 237 self.atom() pass elif la_ == 5: self.enterOuterAlt(localctx, 5) self.state = 238 self.frac() pass elif la_ == 6: self.enterOuterAlt(localctx, 6) self.state = 239 self.binom() pass elif la_ == 7: self.enterOuterAlt(localctx, 7) self.state = 240 self.floor() pass elif la_ == 8: self.enterOuterAlt(localctx, 8) self.state = 241 self.ceil() pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Comp_nofuncContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.Comp_nofuncContext, self).__init__(parent, invokingState) self.parser = parser def group(self): return self.getTypedRuleContext(LaTeXParser.GroupContext,0) def abs_group(self): return self.getTypedRuleContext(LaTeXParser.Abs_groupContext,0) def atom(self): return self.getTypedRuleContext(LaTeXParser.AtomContext,0) def frac(self): return self.getTypedRuleContext(LaTeXParser.FracContext,0) def binom(self): return self.getTypedRuleContext(LaTeXParser.BinomContext,0) def floor(self): return self.getTypedRuleContext(LaTeXParser.FloorContext,0) def ceil(self): return self.getTypedRuleContext(LaTeXParser.CeilContext,0) def getRuleIndex(self): return LaTeXParser.RULE_comp_nofunc def comp_nofunc(self): localctx = LaTeXParser.Comp_nofuncContext(self, self._ctx, self.state) self.enterRule(localctx, 36, self.RULE_comp_nofunc) try: self.state = 251 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,21,self._ctx) if la_ == 1: self.enterOuterAlt(localctx, 1) self.state = 244 self.group() pass elif la_ == 2: self.enterOuterAlt(localctx, 2) self.state = 245 self.abs_group() pass elif la_ == 3: self.enterOuterAlt(localctx, 3) self.state = 246 self.atom() pass elif la_ == 4: self.enterOuterAlt(localctx, 4) self.state = 247 self.frac() pass elif la_ == 5: self.enterOuterAlt(localctx, 5) self.state = 248 self.binom() pass elif la_ == 6: self.enterOuterAlt(localctx, 6) self.state = 249 self.floor() pass elif la_ == 7: self.enterOuterAlt(localctx, 7) self.state = 250 self.ceil() pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class GroupContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.GroupContext, self).__init__(parent, invokingState) self.parser = parser def L_PAREN(self): return self.getToken(LaTeXParser.L_PAREN, 0) def expr(self): return self.getTypedRuleContext(LaTeXParser.ExprContext,0) def R_PAREN(self): return self.getToken(LaTeXParser.R_PAREN, 0) def L_BRACKET(self): return self.getToken(LaTeXParser.L_BRACKET, 0) def R_BRACKET(self): return self.getToken(LaTeXParser.R_BRACKET, 0) def L_BRACE(self): return self.getToken(LaTeXParser.L_BRACE, 0) def R_BRACE(self): return self.getToken(LaTeXParser.R_BRACE, 0) def L_BRACE_LITERAL(self): return self.getToken(LaTeXParser.L_BRACE_LITERAL, 0) def R_BRACE_LITERAL(self): return self.getToken(LaTeXParser.R_BRACE_LITERAL, 0) def getRuleIndex(self): return LaTeXParser.RULE_group def group(self): localctx = LaTeXParser.GroupContext(self, self._ctx, self.state) self.enterRule(localctx, 38, self.RULE_group) try: self.state = 269 self._errHandler.sync(self) token = self._input.LA(1) if token in [LaTeXParser.L_PAREN]: self.enterOuterAlt(localctx, 1) self.state = 253 self.match(LaTeXParser.L_PAREN) self.state = 254 self.expr() self.state = 255 self.match(LaTeXParser.R_PAREN) pass elif token in [LaTeXParser.L_BRACKET]: self.enterOuterAlt(localctx, 2) self.state = 257 self.match(LaTeXParser.L_BRACKET) self.state = 258 self.expr() self.state = 259 self.match(LaTeXParser.R_BRACKET) pass elif token in [LaTeXParser.L_BRACE]: self.enterOuterAlt(localctx, 3) self.state = 261 self.match(LaTeXParser.L_BRACE) self.state = 262 self.expr() self.state = 263 self.match(LaTeXParser.R_BRACE) pass elif token in [LaTeXParser.L_BRACE_LITERAL]: self.enterOuterAlt(localctx, 4) self.state = 265 self.match(LaTeXParser.L_BRACE_LITERAL) self.state = 266 self.expr() self.state = 267 self.match(LaTeXParser.R_BRACE_LITERAL) pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Abs_groupContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.Abs_groupContext, self).__init__(parent, invokingState) self.parser = parser def BAR(self, i=None): if i is None: return self.getTokens(LaTeXParser.BAR) else: return self.getToken(LaTeXParser.BAR, i) def expr(self): return self.getTypedRuleContext(LaTeXParser.ExprContext,0) def getRuleIndex(self): return LaTeXParser.RULE_abs_group def abs_group(self): localctx = LaTeXParser.Abs_groupContext(self, self._ctx, self.state) self.enterRule(localctx, 40, self.RULE_abs_group) try: self.enterOuterAlt(localctx, 1) self.state = 271 self.match(LaTeXParser.BAR) self.state = 272 self.expr() self.state = 273 self.match(LaTeXParser.BAR) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class AtomContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.AtomContext, self).__init__(parent, invokingState) self.parser = parser def LETTER(self): return self.getToken(LaTeXParser.LETTER, 0) def SYMBOL(self): return self.getToken(LaTeXParser.SYMBOL, 0) def subexpr(self): return self.getTypedRuleContext(LaTeXParser.SubexprContext,0) def NUMBER(self): return self.getToken(LaTeXParser.NUMBER, 0) def DIFFERENTIAL(self): return self.getToken(LaTeXParser.DIFFERENTIAL, 0) def mathit(self): return self.getTypedRuleContext(LaTeXParser.MathitContext,0) def bra(self): return self.getTypedRuleContext(LaTeXParser.BraContext,0) def ket(self): return self.getTypedRuleContext(LaTeXParser.KetContext,0) def getRuleIndex(self): return LaTeXParser.RULE_atom def atom(self): localctx = LaTeXParser.AtomContext(self, self._ctx, self.state) self.enterRule(localctx, 42, self.RULE_atom) self._la = 0 # Token type try: self.state = 284 self._errHandler.sync(self) token = self._input.LA(1) if token in [LaTeXParser.LETTER, LaTeXParser.SYMBOL]: self.enterOuterAlt(localctx, 1) self.state = 275 _la = self._input.LA(1) if not(_la==LaTeXParser.LETTER or _la==LaTeXParser.SYMBOL): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 277 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,23,self._ctx) if la_ == 1: self.state = 276 self.subexpr() pass elif token in [LaTeXParser.NUMBER]: self.enterOuterAlt(localctx, 2) self.state = 279 self.match(LaTeXParser.NUMBER) pass elif token in [LaTeXParser.DIFFERENTIAL]: self.enterOuterAlt(localctx, 3) self.state = 280 self.match(LaTeXParser.DIFFERENTIAL) pass elif token in [LaTeXParser.CMD_MATHIT]: self.enterOuterAlt(localctx, 4) self.state = 281 self.mathit() pass elif token in [LaTeXParser.L_ANGLE]: self.enterOuterAlt(localctx, 5) self.state = 282 self.bra() pass elif token in [LaTeXParser.BAR, LaTeXParser.L_BAR]: self.enterOuterAlt(localctx, 6) self.state = 283 self.ket() pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class BraContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.BraContext, self).__init__(parent, invokingState) self.parser = parser def L_ANGLE(self): return self.getToken(LaTeXParser.L_ANGLE, 0) def expr(self): return self.getTypedRuleContext(LaTeXParser.ExprContext,0) def R_BAR(self): return self.getToken(LaTeXParser.R_BAR, 0) def BAR(self): return self.getToken(LaTeXParser.BAR, 0) def getRuleIndex(self): return LaTeXParser.RULE_bra def bra(self): localctx = LaTeXParser.BraContext(self, self._ctx, self.state) self.enterRule(localctx, 44, self.RULE_bra) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 286 self.match(LaTeXParser.L_ANGLE) self.state = 287 self.expr() self.state = 288 _la = self._input.LA(1) if not(_la==LaTeXParser.BAR or _la==LaTeXParser.R_BAR): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class KetContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.KetContext, self).__init__(parent, invokingState) self.parser = parser def expr(self): return self.getTypedRuleContext(LaTeXParser.ExprContext,0) def R_ANGLE(self): return self.getToken(LaTeXParser.R_ANGLE, 0) def L_BAR(self): return self.getToken(LaTeXParser.L_BAR, 0) def BAR(self): return self.getToken(LaTeXParser.BAR, 0) def getRuleIndex(self): return LaTeXParser.RULE_ket def ket(self): localctx = LaTeXParser.KetContext(self, self._ctx, self.state) self.enterRule(localctx, 46, self.RULE_ket) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 290 _la = self._input.LA(1) if not(_la==LaTeXParser.BAR or _la==LaTeXParser.L_BAR): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 291 self.expr() self.state = 292 self.match(LaTeXParser.R_ANGLE) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class MathitContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.MathitContext, self).__init__(parent, invokingState) self.parser = parser def CMD_MATHIT(self): return self.getToken(LaTeXParser.CMD_MATHIT, 0) def L_BRACE(self): return self.getToken(LaTeXParser.L_BRACE, 0) def mathit_text(self): return self.getTypedRuleContext(LaTeXParser.Mathit_textContext,0) def R_BRACE(self): return self.getToken(LaTeXParser.R_BRACE, 0) def getRuleIndex(self): return LaTeXParser.RULE_mathit def mathit(self): localctx = LaTeXParser.MathitContext(self, self._ctx, self.state) self.enterRule(localctx, 48, self.RULE_mathit) try: self.enterOuterAlt(localctx, 1) self.state = 294 self.match(LaTeXParser.CMD_MATHIT) self.state = 295 self.match(LaTeXParser.L_BRACE) self.state = 296 self.mathit_text() self.state = 297 self.match(LaTeXParser.R_BRACE) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Mathit_textContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.Mathit_textContext, self).__init__(parent, invokingState) self.parser = parser def LETTER(self, i=None): if i is None: return self.getTokens(LaTeXParser.LETTER) else: return self.getToken(LaTeXParser.LETTER, i) def getRuleIndex(self): return LaTeXParser.RULE_mathit_text def mathit_text(self): localctx = LaTeXParser.Mathit_textContext(self, self._ctx, self.state) self.enterRule(localctx, 50, self.RULE_mathit_text) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 302 self._errHandler.sync(self) _la = self._input.LA(1) while _la==LaTeXParser.LETTER: self.state = 299 self.match(LaTeXParser.LETTER) self.state = 304 self._errHandler.sync(self) _la = self._input.LA(1) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class FracContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.FracContext, self).__init__(parent, invokingState) self.parser = parser self.upper = None # ExprContext self.lower = None # ExprContext def CMD_FRAC(self): return self.getToken(LaTeXParser.CMD_FRAC, 0) def L_BRACE(self, i=None): if i is None: return self.getTokens(LaTeXParser.L_BRACE) else: return self.getToken(LaTeXParser.L_BRACE, i) def R_BRACE(self, i=None): if i is None: return self.getTokens(LaTeXParser.R_BRACE) else: return self.getToken(LaTeXParser.R_BRACE, i) def expr(self, i=None): if i is None: return self.getTypedRuleContexts(LaTeXParser.ExprContext) else: return self.getTypedRuleContext(LaTeXParser.ExprContext,i) def getRuleIndex(self): return LaTeXParser.RULE_frac def frac(self): localctx = LaTeXParser.FracContext(self, self._ctx, self.state) self.enterRule(localctx, 52, self.RULE_frac) try: self.enterOuterAlt(localctx, 1) self.state = 305 self.match(LaTeXParser.CMD_FRAC) self.state = 306 self.match(LaTeXParser.L_BRACE) self.state = 307 localctx.upper = self.expr() self.state = 308 self.match(LaTeXParser.R_BRACE) self.state = 309 self.match(LaTeXParser.L_BRACE) self.state = 310 localctx.lower = self.expr() self.state = 311 self.match(LaTeXParser.R_BRACE) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class BinomContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.BinomContext, self).__init__(parent, invokingState) self.parser = parser self.n = None # ExprContext self.k = None # ExprContext def L_BRACE(self, i=None): if i is None: return self.getTokens(LaTeXParser.L_BRACE) else: return self.getToken(LaTeXParser.L_BRACE, i) def R_BRACE(self, i=None): if i is None: return self.getTokens(LaTeXParser.R_BRACE) else: return self.getToken(LaTeXParser.R_BRACE, i) def CMD_BINOM(self): return self.getToken(LaTeXParser.CMD_BINOM, 0) def CMD_DBINOM(self): return self.getToken(LaTeXParser.CMD_DBINOM, 0) def CMD_TBINOM(self): return self.getToken(LaTeXParser.CMD_TBINOM, 0) def expr(self, i=None): if i is None: return self.getTypedRuleContexts(LaTeXParser.ExprContext) else: return self.getTypedRuleContext(LaTeXParser.ExprContext,i) def getRuleIndex(self): return LaTeXParser.RULE_binom def binom(self): localctx = LaTeXParser.BinomContext(self, self._ctx, self.state) self.enterRule(localctx, 54, self.RULE_binom) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 313 _la = self._input.LA(1) if not(((((_la - 67)) & ~0x3f) == 0 and ((1 << (_la - 67)) & ((1 << (LaTeXParser.CMD_BINOM - 67)) | (1 << (LaTeXParser.CMD_DBINOM - 67)) | (1 << (LaTeXParser.CMD_TBINOM - 67)))) != 0)): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 314 self.match(LaTeXParser.L_BRACE) self.state = 315 localctx.n = self.expr() self.state = 316 self.match(LaTeXParser.R_BRACE) self.state = 317 self.match(LaTeXParser.L_BRACE) self.state = 318 localctx.k = self.expr() self.state = 319 self.match(LaTeXParser.R_BRACE) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class FloorContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.FloorContext, self).__init__(parent, invokingState) self.parser = parser self.val = None # ExprContext def L_FLOOR(self): return self.getToken(LaTeXParser.L_FLOOR, 0) def R_FLOOR(self): return self.getToken(LaTeXParser.R_FLOOR, 0) def expr(self): return self.getTypedRuleContext(LaTeXParser.ExprContext,0) def getRuleIndex(self): return LaTeXParser.RULE_floor def floor(self): localctx = LaTeXParser.FloorContext(self, self._ctx, self.state) self.enterRule(localctx, 56, self.RULE_floor) try: self.enterOuterAlt(localctx, 1) self.state = 321 self.match(LaTeXParser.L_FLOOR) self.state = 322 localctx.val = self.expr() self.state = 323 self.match(LaTeXParser.R_FLOOR) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CeilContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.CeilContext, self).__init__(parent, invokingState) self.parser = parser self.val = None # ExprContext def L_CEIL(self): return self.getToken(LaTeXParser.L_CEIL, 0) def R_CEIL(self): return self.getToken(LaTeXParser.R_CEIL, 0) def expr(self): return self.getTypedRuleContext(LaTeXParser.ExprContext,0) def getRuleIndex(self): return LaTeXParser.RULE_ceil def ceil(self): localctx = LaTeXParser.CeilContext(self, self._ctx, self.state) self.enterRule(localctx, 58, self.RULE_ceil) try: self.enterOuterAlt(localctx, 1) self.state = 325 self.match(LaTeXParser.L_CEIL) self.state = 326 localctx.val = self.expr() self.state = 327 self.match(LaTeXParser.R_CEIL) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Func_normalContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.Func_normalContext, self).__init__(parent, invokingState) self.parser = parser def FUNC_EXP(self): return self.getToken(LaTeXParser.FUNC_EXP, 0) def FUNC_LOG(self): return self.getToken(LaTeXParser.FUNC_LOG, 0) def FUNC_LN(self): return self.getToken(LaTeXParser.FUNC_LN, 0) def FUNC_SIN(self): return self.getToken(LaTeXParser.FUNC_SIN, 0) def FUNC_COS(self): return self.getToken(LaTeXParser.FUNC_COS, 0) def FUNC_TAN(self): return self.getToken(LaTeXParser.FUNC_TAN, 0) def FUNC_CSC(self): return self.getToken(LaTeXParser.FUNC_CSC, 0) def FUNC_SEC(self): return self.getToken(LaTeXParser.FUNC_SEC, 0) def FUNC_COT(self): return self.getToken(LaTeXParser.FUNC_COT, 0) def FUNC_ARCSIN(self): return self.getToken(LaTeXParser.FUNC_ARCSIN, 0) def FUNC_ARCCOS(self): return self.getToken(LaTeXParser.FUNC_ARCCOS, 0) def FUNC_ARCTAN(self): return self.getToken(LaTeXParser.FUNC_ARCTAN, 0) def FUNC_ARCCSC(self): return self.getToken(LaTeXParser.FUNC_ARCCSC, 0) def FUNC_ARCSEC(self): return self.getToken(LaTeXParser.FUNC_ARCSEC, 0) def FUNC_ARCCOT(self): return self.getToken(LaTeXParser.FUNC_ARCCOT, 0) def FUNC_SINH(self): return self.getToken(LaTeXParser.FUNC_SINH, 0) def FUNC_COSH(self): return self.getToken(LaTeXParser.FUNC_COSH, 0) def FUNC_TANH(self): return self.getToken(LaTeXParser.FUNC_TANH, 0) def FUNC_ARSINH(self): return self.getToken(LaTeXParser.FUNC_ARSINH, 0) def FUNC_ARCOSH(self): return self.getToken(LaTeXParser.FUNC_ARCOSH, 0) def FUNC_ARTANH(self): return self.getToken(LaTeXParser.FUNC_ARTANH, 0) def getRuleIndex(self): return LaTeXParser.RULE_func_normal def func_normal(self): localctx = LaTeXParser.Func_normalContext(self, self._ctx, self.state) self.enterRule(localctx, 60, self.RULE_func_normal) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 329 _la = self._input.LA(1) if not((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << LaTeXParser.FUNC_EXP) | (1 << LaTeXParser.FUNC_LOG) | (1 << LaTeXParser.FUNC_LN) | (1 << LaTeXParser.FUNC_SIN) | (1 << LaTeXParser.FUNC_COS) | (1 << LaTeXParser.FUNC_TAN) | (1 << LaTeXParser.FUNC_CSC) | (1 << LaTeXParser.FUNC_SEC) | (1 << LaTeXParser.FUNC_COT) | (1 << LaTeXParser.FUNC_ARCSIN) | (1 << LaTeXParser.FUNC_ARCCOS) | (1 << LaTeXParser.FUNC_ARCTAN) | (1 << LaTeXParser.FUNC_ARCCSC) | (1 << LaTeXParser.FUNC_ARCSEC) | (1 << LaTeXParser.FUNC_ARCCOT) | (1 << LaTeXParser.FUNC_SINH) | (1 << LaTeXParser.FUNC_COSH) | (1 << LaTeXParser.FUNC_TANH) | (1 << LaTeXParser.FUNC_ARSINH) | (1 << LaTeXParser.FUNC_ARCOSH) | (1 << LaTeXParser.FUNC_ARTANH))) != 0)): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class FuncContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.FuncContext, self).__init__(parent, invokingState) self.parser = parser self.root = None # ExprContext self.base = None # ExprContext def func_normal(self): return self.getTypedRuleContext(LaTeXParser.Func_normalContext,0) def L_PAREN(self): return self.getToken(LaTeXParser.L_PAREN, 0) def func_arg(self): return self.getTypedRuleContext(LaTeXParser.Func_argContext,0) def R_PAREN(self): return self.getToken(LaTeXParser.R_PAREN, 0) def func_arg_noparens(self): return self.getTypedRuleContext(LaTeXParser.Func_arg_noparensContext,0) def subexpr(self): return self.getTypedRuleContext(LaTeXParser.SubexprContext,0) def supexpr(self): return self.getTypedRuleContext(LaTeXParser.SupexprContext,0) def args(self): return self.getTypedRuleContext(LaTeXParser.ArgsContext,0) def LETTER(self): return self.getToken(LaTeXParser.LETTER, 0) def SYMBOL(self): return self.getToken(LaTeXParser.SYMBOL, 0) def FUNC_INT(self): return self.getToken(LaTeXParser.FUNC_INT, 0) def DIFFERENTIAL(self): return self.getToken(LaTeXParser.DIFFERENTIAL, 0) def frac(self): return self.getTypedRuleContext(LaTeXParser.FracContext,0) def additive(self): return self.getTypedRuleContext(LaTeXParser.AdditiveContext,0) def FUNC_SQRT(self): return self.getToken(LaTeXParser.FUNC_SQRT, 0) def L_BRACE(self): return self.getToken(LaTeXParser.L_BRACE, 0) def R_BRACE(self): return self.getToken(LaTeXParser.R_BRACE, 0) def expr(self, i=None): if i is None: return self.getTypedRuleContexts(LaTeXParser.ExprContext) else: return self.getTypedRuleContext(LaTeXParser.ExprContext,i) def L_BRACKET(self): return self.getToken(LaTeXParser.L_BRACKET, 0) def R_BRACKET(self): return self.getToken(LaTeXParser.R_BRACKET, 0) def FUNC_OVERLINE(self): return self.getToken(LaTeXParser.FUNC_OVERLINE, 0) def mp(self): return self.getTypedRuleContext(LaTeXParser.MpContext,0) def FUNC_SUM(self): return self.getToken(LaTeXParser.FUNC_SUM, 0) def FUNC_PROD(self): return self.getToken(LaTeXParser.FUNC_PROD, 0) def subeq(self): return self.getTypedRuleContext(LaTeXParser.SubeqContext,0) def FUNC_LIM(self): return self.getToken(LaTeXParser.FUNC_LIM, 0) def limit_sub(self): return self.getTypedRuleContext(LaTeXParser.Limit_subContext,0) def getRuleIndex(self): return LaTeXParser.RULE_func def func(self): localctx = LaTeXParser.FuncContext(self, self._ctx, self.state) self.enterRule(localctx, 62, self.RULE_func) self._la = 0 # Token type try: self.state = 409 self._errHandler.sync(self) token = self._input.LA(1) if token in [LaTeXParser.FUNC_EXP, LaTeXParser.FUNC_LOG, LaTeXParser.FUNC_LN, LaTeXParser.FUNC_SIN, LaTeXParser.FUNC_COS, LaTeXParser.FUNC_TAN, LaTeXParser.FUNC_CSC, LaTeXParser.FUNC_SEC, LaTeXParser.FUNC_COT, LaTeXParser.FUNC_ARCSIN, LaTeXParser.FUNC_ARCCOS, LaTeXParser.FUNC_ARCTAN, LaTeXParser.FUNC_ARCCSC, LaTeXParser.FUNC_ARCSEC, LaTeXParser.FUNC_ARCCOT, LaTeXParser.FUNC_SINH, LaTeXParser.FUNC_COSH, LaTeXParser.FUNC_TANH, LaTeXParser.FUNC_ARSINH, LaTeXParser.FUNC_ARCOSH, LaTeXParser.FUNC_ARTANH]: self.enterOuterAlt(localctx, 1) self.state = 331 self.func_normal() self.state = 344 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,30,self._ctx) if la_ == 1: self.state = 333 self._errHandler.sync(self) _la = self._input.LA(1) if _la==LaTeXParser.UNDERSCORE: self.state = 332 self.subexpr() self.state = 336 self._errHandler.sync(self) _la = self._input.LA(1) if _la==LaTeXParser.CARET: self.state = 335 self.supexpr() pass elif la_ == 2: self.state = 339 self._errHandler.sync(self) _la = self._input.LA(1) if _la==LaTeXParser.CARET: self.state = 338 self.supexpr() self.state = 342 self._errHandler.sync(self) _la = self._input.LA(1) if _la==LaTeXParser.UNDERSCORE: self.state = 341 self.subexpr() pass self.state = 351 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,31,self._ctx) if la_ == 1: self.state = 346 self.match(LaTeXParser.L_PAREN) self.state = 347 self.func_arg() self.state = 348 self.match(LaTeXParser.R_PAREN) pass elif la_ == 2: self.state = 350 self.func_arg_noparens() pass pass elif token in [LaTeXParser.LETTER, LaTeXParser.SYMBOL]: self.enterOuterAlt(localctx, 2) self.state = 353 _la = self._input.LA(1) if not(_la==LaTeXParser.LETTER or _la==LaTeXParser.SYMBOL): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 355 self._errHandler.sync(self) _la = self._input.LA(1) if _la==LaTeXParser.UNDERSCORE: self.state = 354 self.subexpr() self.state = 357 self.match(LaTeXParser.L_PAREN) self.state = 358 self.args() self.state = 359 self.match(LaTeXParser.R_PAREN) pass elif token in [LaTeXParser.FUNC_INT]: self.enterOuterAlt(localctx, 3) self.state = 361 self.match(LaTeXParser.FUNC_INT) self.state = 368 self._errHandler.sync(self) token = self._input.LA(1) if token in [LaTeXParser.UNDERSCORE]: self.state = 362 self.subexpr() self.state = 363 self.supexpr() pass elif token in [LaTeXParser.CARET]: self.state = 365 self.supexpr() self.state = 366 self.subexpr() pass elif token in [LaTeXParser.ADD, LaTeXParser.SUB, LaTeXParser.L_PAREN, LaTeXParser.L_BRACE, LaTeXParser.L_BRACE_LITERAL, LaTeXParser.L_BRACKET, LaTeXParser.BAR, LaTeXParser.L_BAR, LaTeXParser.L_ANGLE, LaTeXParser.FUNC_LIM, LaTeXParser.FUNC_INT, LaTeXParser.FUNC_SUM, LaTeXParser.FUNC_PROD, LaTeXParser.FUNC_EXP, LaTeXParser.FUNC_LOG, LaTeXParser.FUNC_LN, LaTeXParser.FUNC_SIN, LaTeXParser.FUNC_COS, LaTeXParser.FUNC_TAN, LaTeXParser.FUNC_CSC, LaTeXParser.FUNC_SEC, LaTeXParser.FUNC_COT, LaTeXParser.FUNC_ARCSIN, LaTeXParser.FUNC_ARCCOS, LaTeXParser.FUNC_ARCTAN, LaTeXParser.FUNC_ARCCSC, LaTeXParser.FUNC_ARCSEC, LaTeXParser.FUNC_ARCCOT, LaTeXParser.FUNC_SINH, LaTeXParser.FUNC_COSH, LaTeXParser.FUNC_TANH, LaTeXParser.FUNC_ARSINH, LaTeXParser.FUNC_ARCOSH, LaTeXParser.FUNC_ARTANH, LaTeXParser.L_FLOOR, LaTeXParser.L_CEIL, LaTeXParser.FUNC_SQRT, LaTeXParser.FUNC_OVERLINE, LaTeXParser.CMD_FRAC, LaTeXParser.CMD_BINOM, LaTeXParser.CMD_DBINOM, LaTeXParser.CMD_TBINOM, LaTeXParser.CMD_MATHIT, LaTeXParser.DIFFERENTIAL, LaTeXParser.LETTER, LaTeXParser.NUMBER, LaTeXParser.SYMBOL]: pass else: pass self.state = 376 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,35,self._ctx) if la_ == 1: self.state = 371 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,34,self._ctx) if la_ == 1: self.state = 370 self.additive(0) self.state = 373 self.match(LaTeXParser.DIFFERENTIAL) pass elif la_ == 2: self.state = 374 self.frac() pass elif la_ == 3: self.state = 375 self.additive(0) pass pass elif token in [LaTeXParser.FUNC_SQRT]: self.enterOuterAlt(localctx, 4) self.state = 378 self.match(LaTeXParser.FUNC_SQRT) self.state = 383 self._errHandler.sync(self) _la = self._input.LA(1) if _la==LaTeXParser.L_BRACKET: self.state = 379 self.match(LaTeXParser.L_BRACKET) self.state = 380 localctx.root = self.expr() self.state = 381 self.match(LaTeXParser.R_BRACKET) self.state = 385 self.match(LaTeXParser.L_BRACE) self.state = 386 localctx.base = self.expr() self.state = 387 self.match(LaTeXParser.R_BRACE) pass elif token in [LaTeXParser.FUNC_OVERLINE]: self.enterOuterAlt(localctx, 5) self.state = 389 self.match(LaTeXParser.FUNC_OVERLINE) self.state = 390 self.match(LaTeXParser.L_BRACE) self.state = 391 localctx.base = self.expr() self.state = 392 self.match(LaTeXParser.R_BRACE) pass elif token in [LaTeXParser.FUNC_SUM, LaTeXParser.FUNC_PROD]: self.enterOuterAlt(localctx, 6) self.state = 394 _la = self._input.LA(1) if not(_la==LaTeXParser.FUNC_SUM or _la==LaTeXParser.FUNC_PROD): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 401 self._errHandler.sync(self) token = self._input.LA(1) if token in [LaTeXParser.UNDERSCORE]: self.state = 395 self.subeq() self.state = 396 self.supexpr() pass elif token in [LaTeXParser.CARET]: self.state = 398 self.supexpr() self.state = 399 self.subeq() pass else: raise NoViableAltException(self) self.state = 403 self.mp(0) pass elif token in [LaTeXParser.FUNC_LIM]: self.enterOuterAlt(localctx, 7) self.state = 405 self.match(LaTeXParser.FUNC_LIM) self.state = 406 self.limit_sub() self.state = 407 self.mp(0) pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class ArgsContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.ArgsContext, self).__init__(parent, invokingState) self.parser = parser def expr(self): return self.getTypedRuleContext(LaTeXParser.ExprContext,0) def args(self): return self.getTypedRuleContext(LaTeXParser.ArgsContext,0) def getRuleIndex(self): return LaTeXParser.RULE_args def args(self): localctx = LaTeXParser.ArgsContext(self, self._ctx, self.state) self.enterRule(localctx, 64, self.RULE_args) try: self.state = 416 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,39,self._ctx) if la_ == 1: self.enterOuterAlt(localctx, 1) self.state = 411 self.expr() self.state = 412 self.match(LaTeXParser.T__0) self.state = 413 self.args() pass elif la_ == 2: self.enterOuterAlt(localctx, 2) self.state = 415 self.expr() pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Limit_subContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.Limit_subContext, self).__init__(parent, invokingState) self.parser = parser def UNDERSCORE(self): return self.getToken(LaTeXParser.UNDERSCORE, 0) def L_BRACE(self, i=None): if i is None: return self.getTokens(LaTeXParser.L_BRACE) else: return self.getToken(LaTeXParser.L_BRACE, i) def LIM_APPROACH_SYM(self): return self.getToken(LaTeXParser.LIM_APPROACH_SYM, 0) def expr(self): return self.getTypedRuleContext(LaTeXParser.ExprContext,0) def R_BRACE(self, i=None): if i is None: return self.getTokens(LaTeXParser.R_BRACE) else: return self.getToken(LaTeXParser.R_BRACE, i) def LETTER(self): return self.getToken(LaTeXParser.LETTER, 0) def SYMBOL(self): return self.getToken(LaTeXParser.SYMBOL, 0) def CARET(self): return self.getToken(LaTeXParser.CARET, 0) def ADD(self): return self.getToken(LaTeXParser.ADD, 0) def SUB(self): return self.getToken(LaTeXParser.SUB, 0) def getRuleIndex(self): return LaTeXParser.RULE_limit_sub def limit_sub(self): localctx = LaTeXParser.Limit_subContext(self, self._ctx, self.state) self.enterRule(localctx, 66, self.RULE_limit_sub) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 418 self.match(LaTeXParser.UNDERSCORE) self.state = 419 self.match(LaTeXParser.L_BRACE) self.state = 420 _la = self._input.LA(1) if not(_la==LaTeXParser.LETTER or _la==LaTeXParser.SYMBOL): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 421 self.match(LaTeXParser.LIM_APPROACH_SYM) self.state = 422 self.expr() self.state = 427 self._errHandler.sync(self) _la = self._input.LA(1) if _la==LaTeXParser.CARET: self.state = 423 self.match(LaTeXParser.CARET) self.state = 424 self.match(LaTeXParser.L_BRACE) self.state = 425 _la = self._input.LA(1) if not(_la==LaTeXParser.ADD or _la==LaTeXParser.SUB): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 426 self.match(LaTeXParser.R_BRACE) self.state = 429 self.match(LaTeXParser.R_BRACE) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Func_argContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.Func_argContext, self).__init__(parent, invokingState) self.parser = parser def expr(self): return self.getTypedRuleContext(LaTeXParser.ExprContext,0) def func_arg(self): return self.getTypedRuleContext(LaTeXParser.Func_argContext,0) def getRuleIndex(self): return LaTeXParser.RULE_func_arg def func_arg(self): localctx = LaTeXParser.Func_argContext(self, self._ctx, self.state) self.enterRule(localctx, 68, self.RULE_func_arg) try: self.state = 436 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,41,self._ctx) if la_ == 1: self.enterOuterAlt(localctx, 1) self.state = 431 self.expr() pass elif la_ == 2: self.enterOuterAlt(localctx, 2) self.state = 432 self.expr() self.state = 433 self.match(LaTeXParser.T__0) self.state = 434 self.func_arg() pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Func_arg_noparensContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.Func_arg_noparensContext, self).__init__(parent, invokingState) self.parser = parser def mp_nofunc(self): return self.getTypedRuleContext(LaTeXParser.Mp_nofuncContext,0) def getRuleIndex(self): return LaTeXParser.RULE_func_arg_noparens def func_arg_noparens(self): localctx = LaTeXParser.Func_arg_noparensContext(self, self._ctx, self.state) self.enterRule(localctx, 70, self.RULE_func_arg_noparens) try: self.enterOuterAlt(localctx, 1) self.state = 438 self.mp_nofunc(0) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class SubexprContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.SubexprContext, self).__init__(parent, invokingState) self.parser = parser def UNDERSCORE(self): return self.getToken(LaTeXParser.UNDERSCORE, 0) def atom(self): return self.getTypedRuleContext(LaTeXParser.AtomContext,0) def L_BRACE(self): return self.getToken(LaTeXParser.L_BRACE, 0) def expr(self): return self.getTypedRuleContext(LaTeXParser.ExprContext,0) def R_BRACE(self): return self.getToken(LaTeXParser.R_BRACE, 0) def getRuleIndex(self): return LaTeXParser.RULE_subexpr def subexpr(self): localctx = LaTeXParser.SubexprContext(self, self._ctx, self.state) self.enterRule(localctx, 72, self.RULE_subexpr) try: self.enterOuterAlt(localctx, 1) self.state = 440 self.match(LaTeXParser.UNDERSCORE) self.state = 446 self._errHandler.sync(self) token = self._input.LA(1) if token in [LaTeXParser.BAR, LaTeXParser.L_BAR, LaTeXParser.L_ANGLE, LaTeXParser.CMD_MATHIT, LaTeXParser.DIFFERENTIAL, LaTeXParser.LETTER, LaTeXParser.NUMBER, LaTeXParser.SYMBOL]: self.state = 441 self.atom() pass elif token in [LaTeXParser.L_BRACE]: self.state = 442 self.match(LaTeXParser.L_BRACE) self.state = 443 self.expr() self.state = 444 self.match(LaTeXParser.R_BRACE) pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class SupexprContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.SupexprContext, self).__init__(parent, invokingState) self.parser = parser def CARET(self): return self.getToken(LaTeXParser.CARET, 0) def atom(self): return self.getTypedRuleContext(LaTeXParser.AtomContext,0) def L_BRACE(self): return self.getToken(LaTeXParser.L_BRACE, 0) def expr(self): return self.getTypedRuleContext(LaTeXParser.ExprContext,0) def R_BRACE(self): return self.getToken(LaTeXParser.R_BRACE, 0) def getRuleIndex(self): return LaTeXParser.RULE_supexpr def supexpr(self): localctx = LaTeXParser.SupexprContext(self, self._ctx, self.state) self.enterRule(localctx, 74, self.RULE_supexpr) try: self.enterOuterAlt(localctx, 1) self.state = 448 self.match(LaTeXParser.CARET) self.state = 454 self._errHandler.sync(self) token = self._input.LA(1) if token in [LaTeXParser.BAR, LaTeXParser.L_BAR, LaTeXParser.L_ANGLE, LaTeXParser.CMD_MATHIT, LaTeXParser.DIFFERENTIAL, LaTeXParser.LETTER, LaTeXParser.NUMBER, LaTeXParser.SYMBOL]: self.state = 449 self.atom() pass elif token in [LaTeXParser.L_BRACE]: self.state = 450 self.match(LaTeXParser.L_BRACE) self.state = 451 self.expr() self.state = 452 self.match(LaTeXParser.R_BRACE) pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class SubeqContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.SubeqContext, self).__init__(parent, invokingState) self.parser = parser def UNDERSCORE(self): return self.getToken(LaTeXParser.UNDERSCORE, 0) def L_BRACE(self): return self.getToken(LaTeXParser.L_BRACE, 0) def equality(self): return self.getTypedRuleContext(LaTeXParser.EqualityContext,0) def R_BRACE(self): return self.getToken(LaTeXParser.R_BRACE, 0) def getRuleIndex(self): return LaTeXParser.RULE_subeq def subeq(self): localctx = LaTeXParser.SubeqContext(self, self._ctx, self.state) self.enterRule(localctx, 76, self.RULE_subeq) try: self.enterOuterAlt(localctx, 1) self.state = 456 self.match(LaTeXParser.UNDERSCORE) self.state = 457 self.match(LaTeXParser.L_BRACE) self.state = 458 self.equality() self.state = 459 self.match(LaTeXParser.R_BRACE) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class SupeqContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(LaTeXParser.SupeqContext, self).__init__(parent, invokingState) self.parser = parser def UNDERSCORE(self): return self.getToken(LaTeXParser.UNDERSCORE, 0) def L_BRACE(self): return self.getToken(LaTeXParser.L_BRACE, 0) def equality(self): return self.getTypedRuleContext(LaTeXParser.EqualityContext,0) def R_BRACE(self): return self.getToken(LaTeXParser.R_BRACE, 0) def getRuleIndex(self): return LaTeXParser.RULE_supeq def supeq(self): localctx = LaTeXParser.SupeqContext(self, self._ctx, self.state) self.enterRule(localctx, 78, self.RULE_supeq) try: self.enterOuterAlt(localctx, 1) self.state = 461 self.match(LaTeXParser.UNDERSCORE) self.state = 462 self.match(LaTeXParser.L_BRACE) self.state = 463 self.equality() self.state = 464 self.match(LaTeXParser.R_BRACE) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx def sempred(self, localctx, ruleIndex, predIndex): if self._predicates == None: self._predicates = dict() self._predicates[1] = self.relation_sempred self._predicates[4] = self.additive_sempred self._predicates[5] = self.mp_sempred self._predicates[6] = self.mp_nofunc_sempred self._predicates[15] = self.exp_sempred self._predicates[16] = self.exp_nofunc_sempred pred = self._predicates.get(ruleIndex, None) if pred is None: raise Exception("No predicate with index:" + str(ruleIndex)) else: return pred(localctx, predIndex) def relation_sempred(self, localctx, predIndex): if predIndex == 0: return self.precpred(self._ctx, 2) def additive_sempred(self, localctx, predIndex): if predIndex == 1: return self.precpred(self._ctx, 2) def mp_sempred(self, localctx, predIndex): if predIndex == 2: return self.precpred(self._ctx, 2) def mp_nofunc_sempred(self, localctx, predIndex): if predIndex == 3: return self.precpred(self._ctx, 2) def exp_sempred(self, localctx, predIndex): if predIndex == 4: return self.precpred(self._ctx, 2) def exp_nofunc_sempred(self, localctx, predIndex): if predIndex == 5: return self.precpred(self._ctx, 2)
a987fec2ff25a870d9c6c4bcf0f62cfde1272ce7bea834387ba2ce08933198ab
"""Quantum mechanical angular momemtum.""" from sympy import (Add, binomial, cos, exp, Expr, factorial, I, Integer, Mul, pi, Rational, S, sin, simplify, sqrt, Sum, symbols, sympify, Tuple, Dummy) from sympy.matrices import zeros from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.printing.pretty.pretty_symbology import pretty_symbol from sympy.physics.quantum.qexpr import QExpr from sympy.physics.quantum.operator import (HermitianOperator, Operator, UnitaryOperator) from sympy.physics.quantum.state import Bra, Ket, State from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.physics.quantum.constants import hbar from sympy.physics.quantum.hilbert import ComplexSpace, DirectSumHilbertSpace from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.cg import CG from sympy.physics.quantum.qapply import qapply __all__ = [ 'm_values', 'Jplus', 'Jminus', 'Jx', 'Jy', 'Jz', 'J2', 'Rotation', 'WignerD', 'JxKet', 'JxBra', 'JyKet', 'JyBra', 'JzKet', 'JzBra', 'JzOp', 'J2Op', 'JxKetCoupled', 'JxBraCoupled', 'JyKetCoupled', 'JyBraCoupled', 'JzKetCoupled', 'JzBraCoupled', 'couple', 'uncouple' ] def m_values(j): j = sympify(j) size = 2*j + 1 if not size.is_Integer or not size > 0: raise ValueError( 'Only integer or half-integer values allowed for j, got: : %r' % j ) return size, [j - i for i in range(int(2*j + 1))] #----------------------------------------------------------------------------- # Spin Operators #----------------------------------------------------------------------------- class SpinOpBase: """Base class for spin operators.""" @classmethod def _eval_hilbert_space(cls, label): # We consider all j values so our space is infinite. return ComplexSpace(S.Infinity) @property def name(self): return self.args[0] def _print_contents(self, printer, *args): return '%s%s' % (self.name, self._coord) def _print_contents_pretty(self, printer, *args): a = stringPict(str(self.name)) b = stringPict(self._coord) return self._print_subscript_pretty(a, b) def _print_contents_latex(self, printer, *args): return r'%s_%s' % ((self.name, self._coord)) def _represent_base(self, basis, **options): j = options.get('j', S.Half) size, mvals = m_values(j) result = zeros(size, size) for p in range(size): for q in range(size): me = self.matrix_element(j, mvals[p], j, mvals[q]) result[p, q] = me return result def _apply_op(self, ket, orig_basis, **options): state = ket.rewrite(self.basis) # If the state has only one term if isinstance(state, State): ret = (hbar*state.m)*state # state is a linear combination of states elif isinstance(state, Sum): ret = self._apply_operator_Sum(state, **options) else: ret = qapply(self*state) if ret == self*state: raise NotImplementedError return ret.rewrite(orig_basis) def _apply_operator_JxKet(self, ket, **options): return self._apply_op(ket, 'Jx', **options) def _apply_operator_JxKetCoupled(self, ket, **options): return self._apply_op(ket, 'Jx', **options) def _apply_operator_JyKet(self, ket, **options): return self._apply_op(ket, 'Jy', **options) def _apply_operator_JyKetCoupled(self, ket, **options): return self._apply_op(ket, 'Jy', **options) def _apply_operator_JzKet(self, ket, **options): return self._apply_op(ket, 'Jz', **options) def _apply_operator_JzKetCoupled(self, ket, **options): return self._apply_op(ket, 'Jz', **options) def _apply_operator_TensorProduct(self, tp, **options): # Uncoupling operator is only easily found for coordinate basis spin operators # TODO: add methods for uncoupling operators if not (isinstance(self, JxOp) or isinstance(self, JyOp) or isinstance(self, JzOp)): raise NotImplementedError result = [] for n in range(len(tp.args)): arg = [] arg.extend(tp.args[:n]) arg.append(self._apply_operator(tp.args[n])) arg.extend(tp.args[n + 1:]) result.append(tp.__class__(*arg)) return Add(*result).expand() # TODO: move this to qapply_Mul def _apply_operator_Sum(self, s, **options): new_func = qapply(self*s.function) if new_func == self*s.function: raise NotImplementedError return Sum(new_func, *s.limits) def _eval_trace(self, **options): #TODO: use options to use different j values #For now eval at default basis # is it efficient to represent each time # to do a trace? return self._represent_default_basis().trace() class JplusOp(SpinOpBase, Operator): """The J+ operator.""" _coord = '+' basis = 'Jz' def _eval_commutator_JminusOp(self, other): return 2*hbar*JzOp(self.name) def _apply_operator_JzKet(self, ket, **options): j = ket.j m = ket.m if m.is_Number and j.is_Number: if m >= j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m + S.One))*JzKet(j, m + S.One) def _apply_operator_JzKetCoupled(self, ket, **options): j = ket.j m = ket.m jn = ket.jn coupling = ket.coupling if m.is_Number and j.is_Number: if m >= j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m + S.One))*JzKetCoupled(j, m + S.One, jn, coupling) def matrix_element(self, j, m, jp, mp): result = hbar*sqrt(j*(j + S.One) - mp*(mp + S.One)) result *= KroneckerDelta(m, mp + 1) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _eval_rewrite_as_xyz(self, *args, **kwargs): return JxOp(args[0]) + I*JyOp(args[0]) class JminusOp(SpinOpBase, Operator): """The J- operator.""" _coord = '-' basis = 'Jz' def _apply_operator_JzKet(self, ket, **options): j = ket.j m = ket.m if m.is_Number and j.is_Number: if m <= -j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m - S.One))*JzKet(j, m - S.One) def _apply_operator_JzKetCoupled(self, ket, **options): j = ket.j m = ket.m jn = ket.jn coupling = ket.coupling if m.is_Number and j.is_Number: if m <= -j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m - S.One))*JzKetCoupled(j, m - S.One, jn, coupling) def matrix_element(self, j, m, jp, mp): result = hbar*sqrt(j*(j + S.One) - mp*(mp - S.One)) result *= KroneckerDelta(m, mp - 1) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _eval_rewrite_as_xyz(self, *args, **kwargs): return JxOp(args[0]) - I*JyOp(args[0]) class JxOp(SpinOpBase, HermitianOperator): """The Jx operator.""" _coord = 'x' basis = 'Jx' def _eval_commutator_JyOp(self, other): return I*hbar*JzOp(self.name) def _eval_commutator_JzOp(self, other): return -I*hbar*JyOp(self.name) def _apply_operator_JzKet(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options) return (jp + jm)/Integer(2) def _apply_operator_JzKetCoupled(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) return (jp + jm)/Integer(2) def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): jp = JplusOp(self.name)._represent_JzOp(basis, **options) jm = JminusOp(self.name)._represent_JzOp(basis, **options) return (jp + jm)/Integer(2) def _eval_rewrite_as_plusminus(self, *args, **kwargs): return (JplusOp(args[0]) + JminusOp(args[0]))/2 class JyOp(SpinOpBase, HermitianOperator): """The Jy operator.""" _coord = 'y' basis = 'Jy' def _eval_commutator_JzOp(self, other): return I*hbar*JxOp(self.name) def _eval_commutator_JxOp(self, other): return -I*hbar*J2Op(self.name) def _apply_operator_JzKet(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options) return (jp - jm)/(Integer(2)*I) def _apply_operator_JzKetCoupled(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) return (jp - jm)/(Integer(2)*I) def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): jp = JplusOp(self.name)._represent_JzOp(basis, **options) jm = JminusOp(self.name)._represent_JzOp(basis, **options) return (jp - jm)/(Integer(2)*I) def _eval_rewrite_as_plusminus(self, *args, **kwargs): return (JplusOp(args[0]) - JminusOp(args[0]))/(2*I) class JzOp(SpinOpBase, HermitianOperator): """The Jz operator.""" _coord = 'z' basis = 'Jz' def _eval_commutator_JxOp(self, other): return I*hbar*JyOp(self.name) def _eval_commutator_JyOp(self, other): return -I*hbar*JxOp(self.name) def _eval_commutator_JplusOp(self, other): return hbar*JplusOp(self.name) def _eval_commutator_JminusOp(self, other): return -hbar*JminusOp(self.name) def matrix_element(self, j, m, jp, mp): result = hbar*mp result *= KroneckerDelta(m, mp) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) class J2Op(SpinOpBase, HermitianOperator): """The J^2 operator.""" _coord = '2' def _eval_commutator_JxOp(self, other): return S.Zero def _eval_commutator_JyOp(self, other): return S.Zero def _eval_commutator_JzOp(self, other): return S.Zero def _eval_commutator_JplusOp(self, other): return S.Zero def _eval_commutator_JminusOp(self, other): return S.Zero def _apply_operator_JxKet(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JxKetCoupled(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JyKet(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JyKetCoupled(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JzKet(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JzKetCoupled(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def matrix_element(self, j, m, jp, mp): result = (hbar**2)*j*(j + 1) result *= KroneckerDelta(m, mp) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _print_contents_pretty(self, printer, *args): a = prettyForm(str(self.name)) b = prettyForm('2') return a**b def _print_contents_latex(self, printer, *args): return r'%s^2' % str(self.name) def _eval_rewrite_as_xyz(self, *args, **kwargs): return JxOp(args[0])**2 + JyOp(args[0])**2 + JzOp(args[0])**2 def _eval_rewrite_as_plusminus(self, *args, **kwargs): a = args[0] return JzOp(a)**2 + \ S.Half*(JplusOp(a)*JminusOp(a) + JminusOp(a)*JplusOp(a)) class Rotation(UnitaryOperator): """Wigner D operator in terms of Euler angles. Defines the rotation operator in terms of the Euler angles defined by the z-y-z convention for a passive transformation. That is the coordinate axes are rotated first about the z-axis, giving the new x'-y'-z' axes. Then this new coordinate system is rotated about the new y'-axis, giving new x''-y''-z'' axes. Then this new coordinate system is rotated about the z''-axis. Conventions follow those laid out in [1]_. Parameters ========== alpha : Number, Symbol First Euler Angle beta : Number, Symbol Second Euler angle gamma : Number, Symbol Third Euler angle Examples ======== A simple example rotation operator: >>> from sympy import pi >>> from sympy.physics.quantum.spin import Rotation >>> Rotation(pi, 0, pi/2) R(pi,0,pi/2) With symbolic Euler angles and calculating the inverse rotation operator: >>> from sympy import symbols >>> a, b, c = symbols('a b c') >>> Rotation(a, b, c) R(a,b,c) >>> Rotation(a, b, c).inverse() R(-c,-b,-a) See Also ======== WignerD: Symbolic Wigner-D function D: Wigner-D function d: Wigner small-d function References ========== .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. """ @classmethod def _eval_args(cls, args): args = QExpr._eval_args(args) if len(args) != 3: raise ValueError('3 Euler angles required, got: %r' % args) return args @classmethod def _eval_hilbert_space(cls, label): # We consider all j values so our space is infinite. return ComplexSpace(S.Infinity) @property def alpha(self): return self.label[0] @property def beta(self): return self.label[1] @property def gamma(self): return self.label[2] def _print_operator_name(self, printer, *args): return 'R' def _print_operator_name_pretty(self, printer, *args): if printer._use_unicode: return prettyForm('\N{SCRIPT CAPITAL R}' + ' ') else: return prettyForm("R ") def _print_operator_name_latex(self, printer, *args): return r'\mathcal{R}' def _eval_inverse(self): return Rotation(-self.gamma, -self.beta, -self.alpha) @classmethod def D(cls, j, m, mp, alpha, beta, gamma): """Wigner D-function. Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters. Parameters =========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis alpha : Number, Symbol First Euler angle of rotation beta : Number, Symbol Second Euler angle of rotation gamma : Number, Symbol Third Euler angle of rotation Examples ======== Return the Wigner-D matrix element for a defined rotation, both numerical and symbolic: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi, symbols >>> alpha, beta, gamma = symbols('alpha beta gamma') >>> Rotation.D(1, 1, 0,pi, pi/2,-pi) WignerD(1, 1, 0, pi, pi/2, -pi) See Also ======== WignerD: Symbolic Wigner-D function """ return WignerD(j, m, mp, alpha, beta, gamma) @classmethod def d(cls, j, m, mp, beta): """Wigner small-d function. Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters with the alpha and gamma angles given as 0. Parameters =========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis beta : Number, Symbol Second Euler angle of rotation Examples ======== Return the Wigner-D matrix element for a defined rotation, both numerical and symbolic: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi, symbols >>> beta = symbols('beta') >>> Rotation.d(1, 1, 0, pi/2) WignerD(1, 1, 0, 0, pi/2, 0) See Also ======== WignerD: Symbolic Wigner-D function """ return WignerD(j, m, mp, 0, beta, 0) def matrix_element(self, j, m, jp, mp): result = self.__class__.D( jp, m, mp, self.alpha, self.beta, self.gamma ) result *= KroneckerDelta(j, jp) return result def _represent_base(self, basis, **options): j = sympify(options.get('j', S.Half)) # TODO: move evaluation up to represent function/implement elsewhere evaluate = sympify(options.get('doit')) size, mvals = m_values(j) result = zeros(size, size) for p in range(size): for q in range(size): me = self.matrix_element(j, mvals[p], j, mvals[q]) if evaluate: result[p, q] = me.doit() else: result[p, q] = me return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _apply_operator_uncoupled(self, state, ket, *, dummy=True, **options): a = self.alpha b = self.beta g = self.gamma j = ket.j m = ket.m if j.is_number: s = [] size = m_values(j) sz = size[1] for mp in sz: r = Rotation.D(j, m, mp, a, b, g) z = r.doit() s.append(z*state(j, mp)) return Add(*s) else: if dummy: mp = Dummy('mp') else: mp = symbols('mp') return Sum(Rotation.D(j, m, mp, a, b, g)*state(j, mp), (mp, -j, j)) def _apply_operator_JxKet(self, ket, **options): return self._apply_operator_uncoupled(JxKet, ket, **options) def _apply_operator_JyKet(self, ket, **options): return self._apply_operator_uncoupled(JyKet, ket, **options) def _apply_operator_JzKet(self, ket, **options): return self._apply_operator_uncoupled(JzKet, ket, **options) def _apply_operator_coupled(self, state, ket, *, dummy=True, **options): a = self.alpha b = self.beta g = self.gamma j = ket.j m = ket.m jn = ket.jn coupling = ket.coupling if j.is_number: s = [] size = m_values(j) sz = size[1] for mp in sz: r = Rotation.D(j, m, mp, a, b, g) z = r.doit() s.append(z*state(j, mp, jn, coupling)) return Add(*s) else: if dummy: mp = Dummy('mp') else: mp = symbols('mp') return Sum(Rotation.D(j, m, mp, a, b, g)*state( j, mp, jn, coupling), (mp, -j, j)) def _apply_operator_JxKetCoupled(self, ket, **options): return self._apply_operator_coupled(JxKetCoupled, ket, **options) def _apply_operator_JyKetCoupled(self, ket, **options): return self._apply_operator_coupled(JyKetCoupled, ket, **options) def _apply_operator_JzKetCoupled(self, ket, **options): return self._apply_operator_coupled(JzKetCoupled, ket, **options) class WignerD(Expr): r"""Wigner-D function The Wigner D-function gives the matrix elements of the rotation operator in the jm-representation. For the Euler angles `\alpha`, `\beta`, `\gamma`, the D-function is defined such that: .. math :: <j,m| \mathcal{R}(\alpha, \beta, \gamma ) |j',m'> = \delta_{jj'} D(j, m, m', \alpha, \beta, \gamma) Where the rotation operator is as defined by the Rotation class [1]_. The Wigner D-function defined in this way gives: .. math :: D(j, m, m', \alpha, \beta, \gamma) = e^{-i m \alpha} d(j, m, m', \beta) e^{-i m' \gamma} Where d is the Wigner small-d function, which is given by Rotation.d. The Wigner small-d function gives the component of the Wigner D-function that is determined by the second Euler angle. That is the Wigner D-function is: .. math :: D(j, m, m', \alpha, \beta, \gamma) = e^{-i m \alpha} d(j, m, m', \beta) e^{-i m' \gamma} Where d is the small-d function. The Wigner D-function is given by Rotation.D. Note that to evaluate the D-function, the j, m and mp parameters must be integer or half integer numbers. Parameters ========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis alpha : Number, Symbol First Euler angle of rotation beta : Number, Symbol Second Euler angle of rotation gamma : Number, Symbol Third Euler angle of rotation Examples ======== Evaluate the Wigner-D matrix elements of a simple rotation: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi >>> rot = Rotation.D(1, 1, 0, pi, pi/2, 0) >>> rot WignerD(1, 1, 0, pi, pi/2, 0) >>> rot.doit() sqrt(2)/2 Evaluate the Wigner-d matrix elements of a simple rotation >>> rot = Rotation.d(1, 1, 0, pi/2) >>> rot WignerD(1, 1, 0, 0, pi/2, 0) >>> rot.doit() -sqrt(2)/2 See Also ======== Rotation: Rotation operator References ========== .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. """ is_commutative = True def __new__(cls, *args, **hints): if not len(args) == 6: raise ValueError('6 parameters expected, got %s' % args) args = sympify(args) evaluate = hints.get('evaluate', False) if evaluate: return Expr.__new__(cls, *args)._eval_wignerd() return Expr.__new__(cls, *args) @property def j(self): return self.args[0] @property def m(self): return self.args[1] @property def mp(self): return self.args[2] @property def alpha(self): return self.args[3] @property def beta(self): return self.args[4] @property def gamma(self): return self.args[5] def _latex(self, printer, *args): if self.alpha == 0 and self.gamma == 0: return r'd^{%s}_{%s,%s}\left(%s\right)' % \ ( printer._print(self.j), printer._print( self.m), printer._print(self.mp), printer._print(self.beta) ) return r'D^{%s}_{%s,%s}\left(%s,%s,%s\right)' % \ ( printer._print( self.j), printer._print(self.m), printer._print(self.mp), printer._print(self.alpha), printer._print(self.beta), printer._print(self.gamma) ) def _pretty(self, printer, *args): top = printer._print(self.j) bot = printer._print(self.m) bot = prettyForm(*bot.right(',')) bot = prettyForm(*bot.right(printer._print(self.mp))) pad = max(top.width(), bot.width()) top = prettyForm(*top.left(' ')) bot = prettyForm(*bot.left(' ')) if pad > top.width(): top = prettyForm(*top.right(' '*(pad - top.width()))) if pad > bot.width(): bot = prettyForm(*bot.right(' '*(pad - bot.width()))) if self.alpha == 0 and self.gamma == 0: args = printer._print(self.beta) s = stringPict('d' + ' '*pad) else: args = printer._print(self.alpha) args = prettyForm(*args.right(',')) args = prettyForm(*args.right(printer._print(self.beta))) args = prettyForm(*args.right(',')) args = prettyForm(*args.right(printer._print(self.gamma))) s = stringPict('D' + ' '*pad) args = prettyForm(*args.parens()) s = prettyForm(*s.above(top)) s = prettyForm(*s.below(bot)) s = prettyForm(*s.right(args)) return s def doit(self, **hints): hints['evaluate'] = True return WignerD(*self.args, **hints) def _eval_wignerd(self): j = sympify(self.j) m = sympify(self.m) mp = sympify(self.mp) alpha = sympify(self.alpha) beta = sympify(self.beta) gamma = sympify(self.gamma) if alpha == 0 and beta == 0 and gamma == 0: return KroneckerDelta(m, mp) if not j.is_number: raise ValueError( 'j parameter must be numerical to evaluate, got %s' % j) r = 0 if beta == pi/2: # Varshalovich Equation (5), Section 4.16, page 113, setting # alpha=gamma=0. for k in range(2*j + 1): if k > j + mp or k > j - m or k < mp - m: continue r += (S.NegativeOne)**k*binomial(j + mp, k)*binomial(j - mp, k + m - mp) r *= (S.NegativeOne)**(m - mp) / 2**j*sqrt(factorial(j + m) * factorial(j - m) / (factorial(j + mp)*factorial(j - mp))) else: # Varshalovich Equation(5), Section 4.7.2, page 87, where we set # beta1=beta2=pi/2, and we get alpha=gamma=pi/2 and beta=phi+pi, # then we use the Eq. (1), Section 4.4. page 79, to simplify: # d(j, m, mp, beta+pi) = (-1)**(j-mp)*d(j, m, -mp, beta) # This happens to be almost the same as in Eq.(10), Section 4.16, # except that we need to substitute -mp for mp. size, mvals = m_values(j) for mpp in mvals: r += Rotation.d(j, m, mpp, pi/2).doit()*(cos(-mpp*beta) + I*sin(-mpp*beta))*\ Rotation.d(j, mpp, -mp, pi/2).doit() # Empirical normalization factor so results match Varshalovich # Tables 4.3-4.12 # Note that this exact normalization does not follow from the # above equations r = r*I**(2*j - m - mp)*(-1)**(2*m) # Finally, simplify the whole expression r = simplify(r) r *= exp(-I*m*alpha)*exp(-I*mp*gamma) return r Jx = JxOp('J') Jy = JyOp('J') Jz = JzOp('J') J2 = J2Op('J') Jplus = JplusOp('J') Jminus = JminusOp('J') #----------------------------------------------------------------------------- # Spin States #----------------------------------------------------------------------------- class SpinState(State): """Base class for angular momentum states.""" _label_separator = ',' def __new__(cls, j, m): j = sympify(j) m = sympify(m) if j.is_number: if 2*j != int(2*j): raise ValueError( 'j must be integer or half-integer, got: %s' % j) if j < 0: raise ValueError('j must be >= 0, got: %s' % j) if m.is_number: if 2*m != int(2*m): raise ValueError( 'm must be integer or half-integer, got: %s' % m) if j.is_number and m.is_number: if abs(m) > j: raise ValueError('Allowed values for m are -j <= m <= j, got j, m: %s, %s' % (j, m)) if int(j - m) != j - m: raise ValueError('Both j and m must be integer or half-integer, got j, m: %s, %s' % (j, m)) return State.__new__(cls, j, m) @property def j(self): return self.label[0] @property def m(self): return self.label[1] @classmethod def _eval_hilbert_space(cls, label): return ComplexSpace(2*label[0] + 1) def _represent_base(self, **options): j = self.j m = self.m alpha = sympify(options.get('alpha', 0)) beta = sympify(options.get('beta', 0)) gamma = sympify(options.get('gamma', 0)) size, mvals = m_values(j) result = zeros(size, 1) # breaks finding angles on L930 for p, mval in enumerate(mvals): if m.is_number: result[p, 0] = Rotation.D( self.j, mval, self.m, alpha, beta, gamma).doit() else: result[p, 0] = Rotation.D(self.j, mval, self.m, alpha, beta, gamma) return result def _eval_rewrite_as_Jx(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jx, JxBra, **options) return self._rewrite_basis(Jx, JxKet, **options) def _eval_rewrite_as_Jy(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jy, JyBra, **options) return self._rewrite_basis(Jy, JyKet, **options) def _eval_rewrite_as_Jz(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jz, JzBra, **options) return self._rewrite_basis(Jz, JzKet, **options) def _rewrite_basis(self, basis, evect, **options): from sympy.physics.quantum.represent import represent j = self.j args = self.args[2:] if j.is_number: if isinstance(self, CoupledSpinState): if j == int(j): start = j**2 else: start = (2*j - 1)*(2*j + 1)/4 else: start = 0 vect = represent(self, basis=basis, **options) result = Add( *[vect[start + i]*evect(j, j - i, *args) for i in range(2*j + 1)]) if isinstance(self, CoupledSpinState) and options.get('coupled') is False: return uncouple(result) return result else: i = 0 mi = symbols('mi') # make sure not to introduce a symbol already in the state while self.subs(mi, 0) != self: i += 1 mi = symbols('mi%d' % i) break # TODO: better way to get angles of rotation if isinstance(self, CoupledSpinState): test_args = (0, mi, (0, 0)) else: test_args = (0, mi) if isinstance(self, Ket): angles = represent( self.__class__(*test_args), basis=basis)[0].args[3:6] else: angles = represent(self.__class__( *test_args), basis=basis)[0].args[0].args[3:6] if angles == (0, 0, 0): return self else: state = evect(j, mi, *args) lt = Rotation.D(j, mi, self.m, *angles) return Sum(lt*state, (mi, -j, j)) def _eval_innerproduct_JxBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if bra.dual_class() is not self.__class__: result *= self._represent_JxOp(None)[bra.j - bra.m] else: result *= KroneckerDelta( self.j, bra.j)*KroneckerDelta(self.m, bra.m) return result def _eval_innerproduct_JyBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if bra.dual_class() is not self.__class__: result *= self._represent_JyOp(None)[bra.j - bra.m] else: result *= KroneckerDelta( self.j, bra.j)*KroneckerDelta(self.m, bra.m) return result def _eval_innerproduct_JzBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if bra.dual_class() is not self.__class__: result *= self._represent_JzOp(None)[bra.j - bra.m] else: result *= KroneckerDelta( self.j, bra.j)*KroneckerDelta(self.m, bra.m) return result def _eval_trace(self, bra, **hints): # One way to implement this method is to assume the basis set k is # passed. # Then we can apply the discrete form of Trace formula here # Tr(|i><j| ) = \Sum_k <k|i><j|k> #then we do qapply() on each each inner product and sum over them. # OR # Inner product of |i><j| = Trace(Outer Product). # we could just use this unless there are cases when this is not true return (bra*self).doit() class JxKet(SpinState, Ket): """Eigenket of Jx. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JxBra @classmethod def coupled_class(self): return JxKetCoupled def _represent_default_basis(self, **options): return self._represent_JxOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(**options) def _represent_JyOp(self, basis, **options): return self._represent_base(alpha=pi*Rational(3, 2), **options) def _represent_JzOp(self, basis, **options): return self._represent_base(beta=pi/2, **options) class JxBra(SpinState, Bra): """Eigenbra of Jx. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JxKet @classmethod def coupled_class(self): return JxBraCoupled class JyKet(SpinState, Ket): """Eigenket of Jy. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JyBra @classmethod def coupled_class(self): return JyKetCoupled def _represent_default_basis(self, **options): return self._represent_JyOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(gamma=pi/2, **options) def _represent_JyOp(self, basis, **options): return self._represent_base(**options) def _represent_JzOp(self, basis, **options): return self._represent_base(alpha=pi*Rational(3, 2), beta=-pi/2, gamma=pi/2, **options) class JyBra(SpinState, Bra): """Eigenbra of Jy. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JyKet @classmethod def coupled_class(self): return JyBraCoupled class JzKet(SpinState, Ket): """Eigenket of Jz. Spin state which is an eigenstate of the Jz operator. Uncoupled states, that is states representing the interaction of multiple separate spin states, are defined as a tensor product of states. Parameters ========== j : Number, Symbol Total spin angular momentum m : Number, Symbol Eigenvalue of the Jz spin operator Examples ======== *Normal States:* Defining simple spin states, both numerical and symbolic: >>> from sympy.physics.quantum.spin import JzKet, JxKet >>> from sympy import symbols >>> JzKet(1, 0) |1,0> >>> j, m = symbols('j m') >>> JzKet(j, m) |j,m> Rewriting the JzKet in terms of eigenkets of the Jx operator: Note: that the resulting eigenstates are JxKet's >>> JzKet(1,1).rewrite("Jx") |1,-1>/2 - sqrt(2)*|1,0>/2 + |1,1>/2 Get the vector representation of a state in terms of the basis elements of the Jx operator: >>> from sympy.physics.quantum.represent import represent >>> from sympy.physics.quantum.spin import Jx, Jz >>> represent(JzKet(1,-1), basis=Jx) Matrix([ [ 1/2], [sqrt(2)/2], [ 1/2]]) Apply innerproducts between states: >>> from sympy.physics.quantum.innerproduct import InnerProduct >>> from sympy.physics.quantum.spin import JxBra >>> i = InnerProduct(JxBra(1,1), JzKet(1,1)) >>> i <1,1|1,1> >>> i.doit() 1/2 *Uncoupled States:* Define an uncoupled state as a TensorProduct between two Jz eigenkets: >>> from sympy.physics.quantum.tensorproduct import TensorProduct >>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2') >>> TensorProduct(JzKet(1,0), JzKet(1,1)) |1,0>x|1,1> >>> TensorProduct(JzKet(j1,m1), JzKet(j2,m2)) |j1,m1>x|j2,m2> A TensorProduct can be rewritten, in which case the eigenstates that make up the tensor product is rewritten to the new basis: >>> TensorProduct(JzKet(1,1),JxKet(1,1)).rewrite('Jz') |1,1>x|1,-1>/2 + sqrt(2)*|1,1>x|1,0>/2 + |1,1>x|1,1>/2 The represent method for TensorProduct's gives the vector representation of the state. Note that the state in the product basis is the equivalent of the tensor product of the vector representation of the component eigenstates: >>> represent(TensorProduct(JzKet(1,0),JzKet(1,1))) Matrix([ [0], [0], [0], [1], [0], [0], [0], [0], [0]]) >>> represent(TensorProduct(JzKet(1,1),JxKet(1,1)), basis=Jz) Matrix([ [ 1/2], [sqrt(2)/2], [ 1/2], [ 0], [ 0], [ 0], [ 0], [ 0], [ 0]]) See Also ======== JzKetCoupled: Coupled eigenstates sympy.physics.quantum.tensorproduct.TensorProduct: Used to specify uncoupled states uncouple: Uncouples states given coupling parameters couple: Couples uncoupled states """ @classmethod def dual_class(self): return JzBra @classmethod def coupled_class(self): return JzKetCoupled def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(beta=pi*Rational(3, 2), **options) def _represent_JyOp(self, basis, **options): return self._represent_base(alpha=pi*Rational(3, 2), beta=pi/2, gamma=pi/2, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(**options) class JzBra(SpinState, Bra): """Eigenbra of Jz. See the JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JzKet @classmethod def coupled_class(self): return JzBraCoupled # Method used primarily to create coupled_n and coupled_jn by __new__ in # CoupledSpinState # This same method is also used by the uncouple method, and is separated from # the CoupledSpinState class to maintain consistency in defining coupling def _build_coupled(jcoupling, length): n_list = [ [n + 1] for n in range(length) ] coupled_jn = [] coupled_n = [] for n1, n2, j_new in jcoupling: coupled_jn.append(j_new) coupled_n.append( (n_list[n1 - 1], n_list[n2 - 1]) ) n_sort = sorted(n_list[n1 - 1] + n_list[n2 - 1]) n_list[n_sort[0] - 1] = n_sort return coupled_n, coupled_jn class CoupledSpinState(SpinState): """Base class for coupled angular momentum states.""" def __new__(cls, j, m, jn, *jcoupling): # Check j and m values using SpinState SpinState(j, m) # Build and check coupling scheme from arguments if len(jcoupling) == 0: # Use default coupling scheme jcoupling = [] for n in range(2, len(jn)): jcoupling.append( (1, n, Add(*[jn[i] for i in range(n)])) ) jcoupling.append( (1, len(jn), j) ) elif len(jcoupling) == 1: # Use specified coupling scheme jcoupling = jcoupling[0] else: raise TypeError("CoupledSpinState only takes 3 or 4 arguments, got: %s" % (len(jcoupling) + 3) ) # Check arguments have correct form if not (isinstance(jn, list) or isinstance(jn, tuple) or isinstance(jn, Tuple)): raise TypeError('jn must be Tuple, list or tuple, got %s' % jn.__class__.__name__) if not (isinstance(jcoupling, list) or isinstance(jcoupling, tuple) or isinstance(jcoupling, Tuple)): raise TypeError('jcoupling must be Tuple, list or tuple, got %s' % jcoupling.__class__.__name__) if not all(isinstance(term, list) or isinstance(term, tuple) or isinstance(term, Tuple) for term in jcoupling): raise TypeError( 'All elements of jcoupling must be list, tuple or Tuple') if not len(jn) - 1 == len(jcoupling): raise ValueError('jcoupling must have length of %d, got %d' % (len(jn) - 1, len(jcoupling))) if not all(len(x) == 3 for x in jcoupling): raise ValueError('All elements of jcoupling must have length 3') # Build sympified args j = sympify(j) m = sympify(m) jn = Tuple( *[sympify(ji) for ji in jn] ) jcoupling = Tuple( *[Tuple(sympify( n1), sympify(n2), sympify(ji)) for (n1, n2, ji) in jcoupling] ) # Check values in coupling scheme give physical state if any(2*ji != int(2*ji) for ji in jn if ji.is_number): raise ValueError('All elements of jn must be integer or half-integer, got: %s' % jn) if any(n1 != int(n1) or n2 != int(n2) for (n1, n2, _) in jcoupling): raise ValueError('Indices in jcoupling must be integers') if any(n1 < 1 or n2 < 1 or n1 > len(jn) or n2 > len(jn) for (n1, n2, _) in jcoupling): raise ValueError('Indices must be between 1 and the number of coupled spin spaces') if any(2*ji != int(2*ji) for (_, _, ji) in jcoupling if ji.is_number): raise ValueError('All coupled j values in coupling scheme must be integer or half-integer') coupled_n, coupled_jn = _build_coupled(jcoupling, len(jn)) jvals = list(jn) for n, (n1, n2) in enumerate(coupled_n): j1 = jvals[min(n1) - 1] j2 = jvals[min(n2) - 1] j3 = coupled_jn[n] if sympify(j1).is_number and sympify(j2).is_number and sympify(j3).is_number: if j1 + j2 < j3: raise ValueError('All couplings must have j1+j2 >= j3, ' 'in coupling number %d got j1,j2,j3: %d,%d,%d' % (n + 1, j1, j2, j3)) if abs(j1 - j2) > j3: raise ValueError("All couplings must have |j1+j2| <= j3, " "in coupling number %d got j1,j2,j3: %d,%d,%d" % (n + 1, j1, j2, j3)) if int(j1 + j2) == j1 + j2: pass jvals[min(n1 + n2) - 1] = j3 if len(jcoupling) > 0 and jcoupling[-1][2] != j: raise ValueError('Last j value coupled together must be the final j of the state') # Return state return State.__new__(cls, j, m, jn, jcoupling) def _print_label(self, printer, *args): label = [printer._print(self.j), printer._print(self.m)] for i, ji in enumerate(self.jn, start=1): label.append('j%d=%s' % ( i, printer._print(ji) )) for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]): label.append('j(%s)=%s' % ( ','.join(str(i) for i in sorted(n1 + n2)), printer._print(jn) )) return ','.join(label) def _print_label_pretty(self, printer, *args): label = [self.j, self.m] for i, ji in enumerate(self.jn, start=1): symb = 'j%d' % i symb = pretty_symbol(symb) symb = prettyForm(symb + '=') item = prettyForm(*symb.right(printer._print(ji))) label.append(item) for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]): n = ','.join(pretty_symbol("j%d" % i)[-1] for i in sorted(n1 + n2)) symb = prettyForm('j' + n + '=') item = prettyForm(*symb.right(printer._print(jn))) label.append(item) return self._print_sequence_pretty( label, self._label_separator, printer, *args ) def _print_label_latex(self, printer, *args): label = [ printer._print(self.j, *args), printer._print(self.m, *args) ] for i, ji in enumerate(self.jn, start=1): label.append('j_{%d}=%s' % (i, printer._print(ji, *args)) ) for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]): n = ','.join(str(i) for i in sorted(n1 + n2)) label.append('j_{%s}=%s' % (n, printer._print(jn, *args)) ) return self._label_separator.join(label) @property def jn(self): return self.label[2] @property def coupling(self): return self.label[3] @property def coupled_jn(self): return _build_coupled(self.label[3], len(self.label[2]))[1] @property def coupled_n(self): return _build_coupled(self.label[3], len(self.label[2]))[0] @classmethod def _eval_hilbert_space(cls, label): j = Add(*label[2]) if j.is_number: return DirectSumHilbertSpace(*[ ComplexSpace(x) for x in range(int(2*j + 1), 0, -2) ]) else: # TODO: Need hilbert space fix, see issue 5732 # Desired behavior: #ji = symbols('ji') #ret = Sum(ComplexSpace(2*ji + 1), (ji, 0, j)) # Temporary fix: return ComplexSpace(2*j + 1) def _represent_coupled_base(self, **options): evect = self.uncoupled_class() if not self.j.is_number: raise ValueError( 'State must not have symbolic j value to represent') if not self.hilbert_space.dimension.is_number: raise ValueError( 'State must not have symbolic j values to represent') result = zeros(self.hilbert_space.dimension, 1) if self.j == int(self.j): start = self.j**2 else: start = (2*self.j - 1)*(1 + 2*self.j)/4 result[start:start + 2*self.j + 1, 0] = evect( self.j, self.m)._represent_base(**options) return result def _eval_rewrite_as_Jx(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jx, JxBraCoupled, **options) return self._rewrite_basis(Jx, JxKetCoupled, **options) def _eval_rewrite_as_Jy(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jy, JyBraCoupled, **options) return self._rewrite_basis(Jy, JyKetCoupled, **options) def _eval_rewrite_as_Jz(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jz, JzBraCoupled, **options) return self._rewrite_basis(Jz, JzKetCoupled, **options) class JxKetCoupled(CoupledSpinState, Ket): """Coupled eigenket of Jx. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JxBraCoupled @classmethod def uncoupled_class(self): return JxKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(**options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(alpha=pi*Rational(3, 2), **options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(beta=pi/2, **options) class JxBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jx. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JxKetCoupled @classmethod def uncoupled_class(self): return JxBra class JyKetCoupled(CoupledSpinState, Ket): """Coupled eigenket of Jy. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JyBraCoupled @classmethod def uncoupled_class(self): return JyKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(gamma=pi/2, **options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(**options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(alpha=pi*Rational(3, 2), beta=-pi/2, gamma=pi/2, **options) class JyBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jy. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JyKetCoupled @classmethod def uncoupled_class(self): return JyBra class JzKetCoupled(CoupledSpinState, Ket): r"""Coupled eigenket of Jz Spin state that is an eigenket of Jz which represents the coupling of separate spin spaces. The arguments for creating instances of JzKetCoupled are ``j``, ``m``, ``jn`` and an optional ``jcoupling`` argument. The ``j`` and ``m`` options are the total angular momentum quantum numbers, as used for normal states (e.g. JzKet). The other required parameter in ``jn``, which is a tuple defining the `j_n` angular momentum quantum numbers of the product spaces. So for example, if a state represented the coupling of the product basis state `\left|j_1,m_1\right\rangle\times\left|j_2,m_2\right\rangle`, the ``jn`` for this state would be ``(j1,j2)``. The final option is ``jcoupling``, which is used to define how the spaces specified by ``jn`` are coupled, which includes both the order these spaces are coupled together and the quantum numbers that arise from these couplings. The ``jcoupling`` parameter itself is a list of lists, such that each of the sublists defines a single coupling between the spin spaces. If there are N coupled angular momentum spaces, that is ``jn`` has N elements, then there must be N-1 sublists. Each of these sublists making up the ``jcoupling`` parameter have length 3. The first two elements are the indices of the product spaces that are considered to be coupled together. For example, if we want to couple `j_1` and `j_4`, the indices would be 1 and 4. If a state has already been coupled, it is referenced by the smallest index that is coupled, so if `j_2` and `j_4` has already been coupled to some `j_{24}`, then this value can be coupled by referencing it with index 2. The final element of the sublist is the quantum number of the coupled state. So putting everything together, into a valid sublist for ``jcoupling``, if `j_1` and `j_2` are coupled to an angular momentum space with quantum number `j_{12}` with the value ``j12``, the sublist would be ``(1,2,j12)``, N-1 of these sublists are used in the list for ``jcoupling``. Note the ``jcoupling`` parameter is optional, if it is not specified, the default coupling is taken. This default value is to coupled the spaces in order and take the quantum number of the coupling to be the maximum value. For example, if the spin spaces are `j_1`, `j_2`, `j_3`, `j_4`, then the default coupling couples `j_1` and `j_2` to `j_{12}=j_1+j_2`, then, `j_{12}` and `j_3` are coupled to `j_{123}=j_{12}+j_3`, and finally `j_{123}` and `j_4` to `j=j_{123}+j_4`. The jcoupling value that would correspond to this is: ``((1,2,j1+j2),(1,3,j1+j2+j3))`` Parameters ========== args : tuple The arguments that must be passed are ``j``, ``m``, ``jn``, and ``jcoupling``. The ``j`` value is the total angular momentum. The ``m`` value is the eigenvalue of the Jz spin operator. The ``jn`` list are the j values of argular momentum spaces coupled together. The ``jcoupling`` parameter is an optional parameter defining how the spaces are coupled together. See the above description for how these coupling parameters are defined. Examples ======== Defining simple spin states, both numerical and symbolic: >>> from sympy.physics.quantum.spin import JzKetCoupled >>> from sympy import symbols >>> JzKetCoupled(1, 0, (1, 1)) |1,0,j1=1,j2=1> >>> j, m, j1, j2 = symbols('j m j1 j2') >>> JzKetCoupled(j, m, (j1, j2)) |j,m,j1=j1,j2=j2> Defining coupled spin states for more than 2 coupled spaces with various coupling parameters: >>> JzKetCoupled(2, 1, (1, 1, 1)) |2,1,j1=1,j2=1,j3=1,j(1,2)=2> >>> JzKetCoupled(2, 1, (1, 1, 1), ((1,2,2),(1,3,2)) ) |2,1,j1=1,j2=1,j3=1,j(1,2)=2> >>> JzKetCoupled(2, 1, (1, 1, 1), ((2,3,1),(1,2,2)) ) |2,1,j1=1,j2=1,j3=1,j(2,3)=1> Rewriting the JzKetCoupled in terms of eigenkets of the Jx operator: Note: that the resulting eigenstates are JxKetCoupled >>> JzKetCoupled(1,1,(1,1)).rewrite("Jx") |1,-1,j1=1,j2=1>/2 - sqrt(2)*|1,0,j1=1,j2=1>/2 + |1,1,j1=1,j2=1>/2 The rewrite method can be used to convert a coupled state to an uncoupled state. This is done by passing coupled=False to the rewrite function: >>> JzKetCoupled(1, 0, (1, 1)).rewrite('Jz', coupled=False) -sqrt(2)*|1,-1>x|1,1>/2 + sqrt(2)*|1,1>x|1,-1>/2 Get the vector representation of a state in terms of the basis elements of the Jx operator: >>> from sympy.physics.quantum.represent import represent >>> from sympy.physics.quantum.spin import Jx >>> from sympy import S >>> represent(JzKetCoupled(1,-1,(S(1)/2,S(1)/2)), basis=Jx) Matrix([ [ 0], [ 1/2], [sqrt(2)/2], [ 1/2]]) See Also ======== JzKet: Normal spin eigenstates uncouple: Uncoupling of coupling spin states couple: Coupling of uncoupled spin states """ @classmethod def dual_class(self): return JzBraCoupled @classmethod def uncoupled_class(self): return JzKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(beta=pi*Rational(3, 2), **options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(alpha=pi*Rational(3, 2), beta=pi/2, gamma=pi/2, **options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(**options) class JzBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jz. See the JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JzKetCoupled @classmethod def uncoupled_class(self): return JzBra #----------------------------------------------------------------------------- # Coupling/uncoupling #----------------------------------------------------------------------------- def couple(expr, jcoupling_list=None): """ Couple a tensor product of spin states This function can be used to couple an uncoupled tensor product of spin states. All of the eigenstates to be coupled must be of the same class. It will return a linear combination of eigenstates that are subclasses of CoupledSpinState determined by Clebsch-Gordan angular momentum coupling coefficients. Parameters ========== expr : Expr An expression involving TensorProducts of spin states to be coupled. Each state must be a subclass of SpinState and they all must be the same class. jcoupling_list : list or tuple Elements of this list are sub-lists of length 2 specifying the order of the coupling of the spin spaces. The length of this must be N-1, where N is the number of states in the tensor product to be coupled. The elements of this sublist are the same as the first two elements of each sublist in the ``jcoupling`` parameter defined for JzKetCoupled. If this parameter is not specified, the default value is taken, which couples the first and second product basis spaces, then couples this new coupled space to the third product space, etc Examples ======== Couple a tensor product of numerical states for two spaces: >>> from sympy.physics.quantum.spin import JzKet, couple >>> from sympy.physics.quantum.tensorproduct import TensorProduct >>> couple(TensorProduct(JzKet(1,0), JzKet(1,1))) -sqrt(2)*|1,1,j1=1,j2=1>/2 + sqrt(2)*|2,1,j1=1,j2=1>/2 Numerical coupling of three spaces using the default coupling method, i.e. first and second spaces couple, then this couples to the third space: >>> couple(TensorProduct(JzKet(1,1), JzKet(1,1), JzKet(1,0))) sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,2)=2>/3 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,2)=2>/3 Perform this same coupling, but we define the coupling to first couple the first and third spaces: >>> couple(TensorProduct(JzKet(1,1), JzKet(1,1), JzKet(1,0)), ((1,3),(1,2)) ) sqrt(2)*|2,2,j1=1,j2=1,j3=1,j(1,3)=1>/2 - sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,3)=2>/6 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,3)=2>/3 Couple a tensor product of symbolic states: >>> from sympy import symbols >>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2') >>> couple(TensorProduct(JzKet(j1,m1), JzKet(j2,m2))) Sum(CG(j1, m1, j2, m2, j, m1 + m2)*|j,m1 + m2,j1=j1,j2=j2>, (j, m1 + m2, j1 + j2)) """ a = expr.atoms(TensorProduct) for tp in a: # Allow other tensor products to be in expression if not all([ isinstance(state, SpinState) for state in tp.args]): continue # If tensor product has all spin states, raise error for invalid tensor product state if not all([state.__class__ is tp.args[0].__class__ for state in tp.args]): raise TypeError('All states must be the same basis') expr = expr.subs(tp, _couple(tp, jcoupling_list)) return expr def _couple(tp, jcoupling_list): states = tp.args coupled_evect = states[0].coupled_class() # Define default coupling if none is specified if jcoupling_list is None: jcoupling_list = [] for n in range(1, len(states)): jcoupling_list.append( (1, n + 1) ) # Check jcoupling_list valid if not len(jcoupling_list) == len(states) - 1: raise TypeError('jcoupling_list must be length %d, got %d' % (len(states) - 1, len(jcoupling_list))) if not all( len(coupling) == 2 for coupling in jcoupling_list): raise ValueError('Each coupling must define 2 spaces') if any([n1 == n2 for n1, n2 in jcoupling_list]): raise ValueError('Spin spaces cannot couple to themselves') if all([sympify(n1).is_number and sympify(n2).is_number for n1, n2 in jcoupling_list]): j_test = [0]*len(states) for n1, n2 in jcoupling_list: if j_test[n1 - 1] == -1 or j_test[n2 - 1] == -1: raise ValueError('Spaces coupling j_n\'s are referenced by smallest n value') j_test[max(n1, n2) - 1] = -1 # j values of states to be coupled together jn = [state.j for state in states] mn = [state.m for state in states] # Create coupling_list, which defines all the couplings between all # the spaces from jcoupling_list coupling_list = [] n_list = [ [i + 1] for i in range(len(states)) ] for j_coupling in jcoupling_list: # Least n for all j_n which is coupled as first and second spaces n1, n2 = j_coupling # List of all n's coupled in first and second spaces j1_n = list(n_list[n1 - 1]) j2_n = list(n_list[n2 - 1]) coupling_list.append( (j1_n, j2_n) ) # Set new j_n to be coupling of all j_n in both first and second spaces n_list[ min(n1, n2) - 1 ] = sorted(j1_n + j2_n) if all(state.j.is_number and state.m.is_number for state in states): # Numerical coupling # Iterate over difference between maximum possible j value of each coupling and the actual value diff_max = [ Add( *[ jn[n - 1] - mn[n - 1] for n in coupling[0] + coupling[1] ] ) for coupling in coupling_list ] result = [] for diff in range(diff_max[-1] + 1): # Determine available configurations n = len(coupling_list) tot = binomial(diff + n - 1, diff) for config_num in range(tot): diff_list = _confignum_to_difflist(config_num, diff, n) # Skip the configuration if non-physical # This is a lazy check for physical states given the loose restrictions of diff_max if any( [ d > m for d, m in zip(diff_list, diff_max) ] ): continue # Determine term cg_terms = [] coupled_j = list(jn) jcoupling = [] for (j1_n, j2_n), coupling_diff in zip(coupling_list, diff_list): j1 = coupled_j[ min(j1_n) - 1 ] j2 = coupled_j[ min(j2_n) - 1 ] j3 = j1 + j2 - coupling_diff coupled_j[ min(j1_n + j2_n) - 1 ] = j3 m1 = Add( *[ mn[x - 1] for x in j1_n] ) m2 = Add( *[ mn[x - 1] for x in j2_n] ) m3 = m1 + m2 cg_terms.append( (j1, m1, j2, m2, j3, m3) ) jcoupling.append( (min(j1_n), min(j2_n), j3) ) # Better checks that state is physical if any([ abs(term[5]) > term[4] for term in cg_terms ]): continue if any([ term[0] + term[2] < term[4] for term in cg_terms ]): continue if any([ abs(term[0] - term[2]) > term[4] for term in cg_terms ]): continue coeff = Mul( *[ CG(*term).doit() for term in cg_terms] ) state = coupled_evect(j3, m3, jn, jcoupling) result.append(coeff*state) return Add(*result) else: # Symbolic coupling cg_terms = [] jcoupling = [] sum_terms = [] coupled_j = list(jn) for j1_n, j2_n in coupling_list: j1 = coupled_j[ min(j1_n) - 1 ] j2 = coupled_j[ min(j2_n) - 1 ] if len(j1_n + j2_n) == len(states): j3 = symbols('j') else: j3_name = 'j' + ''.join(["%s" % n for n in j1_n + j2_n]) j3 = symbols(j3_name) coupled_j[ min(j1_n + j2_n) - 1 ] = j3 m1 = Add( *[ mn[x - 1] for x in j1_n] ) m2 = Add( *[ mn[x - 1] for x in j2_n] ) m3 = m1 + m2 cg_terms.append( (j1, m1, j2, m2, j3, m3) ) jcoupling.append( (min(j1_n), min(j2_n), j3) ) sum_terms.append((j3, m3, j1 + j2)) coeff = Mul( *[ CG(*term) for term in cg_terms] ) state = coupled_evect(j3, m3, jn, jcoupling) return Sum(coeff*state, *sum_terms) def uncouple(expr, jn=None, jcoupling_list=None): """ Uncouple a coupled spin state Gives the uncoupled representation of a coupled spin state. Arguments must be either a spin state that is a subclass of CoupledSpinState or a spin state that is a subclass of SpinState and an array giving the j values of the spaces that are to be coupled Parameters ========== expr : Expr The expression containing states that are to be coupled. If the states are a subclass of SpinState, the ``jn`` and ``jcoupling`` parameters must be defined. If the states are a subclass of CoupledSpinState, ``jn`` and ``jcoupling`` will be taken from the state. jn : list or tuple The list of the j-values that are coupled. If state is a CoupledSpinState, this parameter is ignored. This must be defined if state is not a subclass of CoupledSpinState. The syntax of this parameter is the same as the ``jn`` parameter of JzKetCoupled. jcoupling_list : list or tuple The list defining how the j-values are coupled together. If state is a CoupledSpinState, this parameter is ignored. This must be defined if state is not a subclass of CoupledSpinState. The syntax of this parameter is the same as the ``jcoupling`` parameter of JzKetCoupled. Examples ======== Uncouple a numerical state using a CoupledSpinState state: >>> from sympy.physics.quantum.spin import JzKetCoupled, uncouple >>> from sympy import S >>> uncouple(JzKetCoupled(1, 0, (S(1)/2, S(1)/2))) sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2 Perform the same calculation using a SpinState state: >>> from sympy.physics.quantum.spin import JzKet >>> uncouple(JzKet(1, 0), (S(1)/2, S(1)/2)) sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2 Uncouple a numerical state of three coupled spaces using a CoupledSpinState state: >>> uncouple(JzKetCoupled(1, 1, (1, 1, 1), ((1,3,1),(1,2,1)) )) |1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,1>/2 + |1,1>x|1,0>x|1,0>/2 - |1,1>x|1,1>x|1,-1>/2 Perform the same calculation using a SpinState state: >>> uncouple(JzKet(1, 1), (1, 1, 1), ((1,3,1),(1,2,1)) ) |1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,1>/2 + |1,1>x|1,0>x|1,0>/2 - |1,1>x|1,1>x|1,-1>/2 Uncouple a symbolic state using a CoupledSpinState state: >>> from sympy import symbols >>> j,m,j1,j2 = symbols('j m j1 j2') >>> uncouple(JzKetCoupled(j, m, (j1, j2))) Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2)) Perform the same calculation using a SpinState state >>> uncouple(JzKet(j, m), (j1, j2)) Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2)) """ a = expr.atoms(SpinState) for state in a: expr = expr.subs(state, _uncouple(state, jn, jcoupling_list)) return expr def _uncouple(state, jn, jcoupling_list): if isinstance(state, CoupledSpinState): jn = state.jn coupled_n = state.coupled_n coupled_jn = state.coupled_jn evect = state.uncoupled_class() elif isinstance(state, SpinState): if jn is None: raise ValueError("Must specify j-values for coupled state") if not (isinstance(jn, list) or isinstance(jn, tuple)): raise TypeError("jn must be list or tuple") if jcoupling_list is None: # Use default jcoupling_list = [] for i in range(1, len(jn)): jcoupling_list.append( (1, 1 + i, Add(*[jn[j] for j in range(i + 1)])) ) if not (isinstance(jcoupling_list, list) or isinstance(jcoupling_list, tuple)): raise TypeError("jcoupling must be a list or tuple") if not len(jcoupling_list) == len(jn) - 1: raise ValueError("Must specify 2 fewer coupling terms than the number of j values") coupled_n, coupled_jn = _build_coupled(jcoupling_list, len(jn)) evect = state.__class__ else: raise TypeError("state must be a spin state") j = state.j m = state.m coupling_list = [] j_list = list(jn) # Create coupling, which defines all the couplings between all the spaces for j3, (n1, n2) in zip(coupled_jn, coupled_n): # j's which are coupled as first and second spaces j1 = j_list[n1[0] - 1] j2 = j_list[n2[0] - 1] # Build coupling list coupling_list.append( (n1, n2, j1, j2, j3) ) # Set new value in j_list j_list[min(n1 + n2) - 1] = j3 if j.is_number and m.is_number: diff_max = [ 2*x for x in jn ] diff = Add(*jn) - m n = len(jn) tot = binomial(diff + n - 1, diff) result = [] for config_num in range(tot): diff_list = _confignum_to_difflist(config_num, diff, n) if any( [ d > p for d, p in zip(diff_list, diff_max) ] ): continue cg_terms = [] for coupling in coupling_list: j1_n, j2_n, j1, j2, j3 = coupling m1 = Add( *[ jn[x - 1] - diff_list[x - 1] for x in j1_n ] ) m2 = Add( *[ jn[x - 1] - diff_list[x - 1] for x in j2_n ] ) m3 = m1 + m2 cg_terms.append( (j1, m1, j2, m2, j3, m3) ) coeff = Mul( *[ CG(*term).doit() for term in cg_terms ] ) state = TensorProduct( *[ evect(j, j - d) for j, d in zip(jn, diff_list) ] ) result.append(coeff*state) return Add(*result) else: # Symbolic coupling m_str = "m1:%d" % (len(jn) + 1) mvals = symbols(m_str) cg_terms = [(j1, Add(*[mvals[n - 1] for n in j1_n]), j2, Add(*[mvals[n - 1] for n in j2_n]), j3, Add(*[mvals[n - 1] for n in j1_n + j2_n])) for j1_n, j2_n, j1, j2, j3 in coupling_list[:-1] ] cg_terms.append(*[(j1, Add(*[mvals[n - 1] for n in j1_n]), j2, Add(*[mvals[n - 1] for n in j2_n]), j, m) for j1_n, j2_n, j1, j2, j3 in [coupling_list[-1]] ]) cg_coeff = Mul(*[CG(*cg_term) for cg_term in cg_terms]) sum_terms = [ (m, -j, j) for j, m in zip(jn, mvals) ] state = TensorProduct( *[ evect(j, m) for j, m in zip(jn, mvals) ] ) return Sum(cg_coeff*state, *sum_terms) def _confignum_to_difflist(config_num, diff, list_len): # Determines configuration of diffs into list_len number of slots diff_list = [] for n in range(list_len): prev_diff = diff # Number of spots after current one rem_spots = list_len - n - 1 # Number of configurations of distributing diff among the remaining spots rem_configs = binomial(diff + rem_spots - 1, diff) while config_num >= rem_configs: config_num -= rem_configs diff -= 1 rem_configs = binomial(diff + rem_spots - 1, diff) diff_list.append(prev_diff - diff) return diff_list
4535887b8cd1bbc654e7206cfe5e16b5ab8f5a4495881eab7aef979e2b1b2c82
from sympy import cos, exp, expand, I, Matrix, pi, S, sin, sqrt, Sum, symbols, Rational from sympy.abc import alpha, beta, gamma, j, m from sympy.physics.quantum import hbar, represent, Commutator, InnerProduct from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.cg import CG from sympy.physics.quantum.spin import ( Jx, Jy, Jz, Jplus, Jminus, J2, JxBra, JyBra, JzBra, JxKet, JyKet, JzKet, JxKetCoupled, JyKetCoupled, JzKetCoupled, couple, uncouple, Rotation, WignerD ) from sympy.testing.pytest import raises, slow j1, j2, j3, j4, m1, m2, m3, m4 = symbols('j1:5 m1:5') j12, j13, j24, j34, j123, j134, mi, mi1, mp = symbols( 'j12 j13 j24 j34 j123 j134 mi mi1 mp') def test_represent_spin_operators(): assert represent(Jx) == hbar*Matrix([[0, 1], [1, 0]])/2 assert represent( Jx, j=1) == hbar*sqrt(2)*Matrix([[0, 1, 0], [1, 0, 1], [0, 1, 0]])/2 assert represent(Jy) == hbar*I*Matrix([[0, -1], [1, 0]])/2 assert represent(Jy, j=1) == hbar*I*sqrt(2)*Matrix([[0, -1, 0], [1, 0, -1], [0, 1, 0]])/2 assert represent(Jz) == hbar*Matrix([[1, 0], [0, -1]])/2 assert represent( Jz, j=1) == hbar*Matrix([[1, 0, 0], [0, 0, 0], [0, 0, -1]]) def test_represent_spin_states(): # Jx basis assert represent(JxKet(S.Half, S.Half), basis=Jx) == Matrix([1, 0]) assert represent(JxKet(S.Half, Rational(-1, 2)), basis=Jx) == Matrix([0, 1]) assert represent(JxKet(1, 1), basis=Jx) == Matrix([1, 0, 0]) assert represent(JxKet(1, 0), basis=Jx) == Matrix([0, 1, 0]) assert represent(JxKet(1, -1), basis=Jx) == Matrix([0, 0, 1]) assert represent( JyKet(S.Half, S.Half), basis=Jx) == Matrix([exp(-I*pi/4), 0]) assert represent( JyKet(S.Half, Rational(-1, 2)), basis=Jx) == Matrix([0, exp(I*pi/4)]) assert represent(JyKet(1, 1), basis=Jx) == Matrix([-I, 0, 0]) assert represent(JyKet(1, 0), basis=Jx) == Matrix([0, 1, 0]) assert represent(JyKet(1, -1), basis=Jx) == Matrix([0, 0, I]) assert represent( JzKet(S.Half, S.Half), basis=Jx) == sqrt(2)*Matrix([-1, 1])/2 assert represent( JzKet(S.Half, Rational(-1, 2)), basis=Jx) == sqrt(2)*Matrix([-1, -1])/2 assert represent(JzKet(1, 1), basis=Jx) == Matrix([1, -sqrt(2), 1])/2 assert represent(JzKet(1, 0), basis=Jx) == sqrt(2)*Matrix([1, 0, -1])/2 assert represent(JzKet(1, -1), basis=Jx) == Matrix([1, sqrt(2), 1])/2 # Jy basis assert represent( JxKet(S.Half, S.Half), basis=Jy) == Matrix([exp(I*pi*Rational(-3, 4)), 0]) assert represent( JxKet(S.Half, Rational(-1, 2)), basis=Jy) == Matrix([0, exp(I*pi*Rational(3, 4))]) assert represent(JxKet(1, 1), basis=Jy) == Matrix([I, 0, 0]) assert represent(JxKet(1, 0), basis=Jy) == Matrix([0, 1, 0]) assert represent(JxKet(1, -1), basis=Jy) == Matrix([0, 0, -I]) assert represent(JyKet(S.Half, S.Half), basis=Jy) == Matrix([1, 0]) assert represent(JyKet(S.Half, Rational(-1, 2)), basis=Jy) == Matrix([0, 1]) assert represent(JyKet(1, 1), basis=Jy) == Matrix([1, 0, 0]) assert represent(JyKet(1, 0), basis=Jy) == Matrix([0, 1, 0]) assert represent(JyKet(1, -1), basis=Jy) == Matrix([0, 0, 1]) assert represent( JzKet(S.Half, S.Half), basis=Jy) == sqrt(2)*Matrix([-1, I])/2 assert represent( JzKet(S.Half, Rational(-1, 2)), basis=Jy) == sqrt(2)*Matrix([I, -1])/2 assert represent(JzKet(1, 1), basis=Jy) == Matrix([1, -I*sqrt(2), -1])/2 assert represent( JzKet(1, 0), basis=Jy) == Matrix([-sqrt(2)*I, 0, -sqrt(2)*I])/2 assert represent(JzKet(1, -1), basis=Jy) == Matrix([-1, -sqrt(2)*I, 1])/2 # Jz basis assert represent( JxKet(S.Half, S.Half), basis=Jz) == sqrt(2)*Matrix([1, 1])/2 assert represent( JxKet(S.Half, Rational(-1, 2)), basis=Jz) == sqrt(2)*Matrix([-1, 1])/2 assert represent(JxKet(1, 1), basis=Jz) == Matrix([1, sqrt(2), 1])/2 assert represent(JxKet(1, 0), basis=Jz) == sqrt(2)*Matrix([-1, 0, 1])/2 assert represent(JxKet(1, -1), basis=Jz) == Matrix([1, -sqrt(2), 1])/2 assert represent( JyKet(S.Half, S.Half), basis=Jz) == sqrt(2)*Matrix([-1, -I])/2 assert represent( JyKet(S.Half, Rational(-1, 2)), basis=Jz) == sqrt(2)*Matrix([-I, -1])/2 assert represent(JyKet(1, 1), basis=Jz) == Matrix([1, sqrt(2)*I, -1])/2 assert represent(JyKet(1, 0), basis=Jz) == sqrt(2)*Matrix([I, 0, I])/2 assert represent(JyKet(1, -1), basis=Jz) == Matrix([-1, sqrt(2)*I, 1])/2 assert represent(JzKet(S.Half, S.Half), basis=Jz) == Matrix([1, 0]) assert represent(JzKet(S.Half, Rational(-1, 2)), basis=Jz) == Matrix([0, 1]) assert represent(JzKet(1, 1), basis=Jz) == Matrix([1, 0, 0]) assert represent(JzKet(1, 0), basis=Jz) == Matrix([0, 1, 0]) assert represent(JzKet(1, -1), basis=Jz) == Matrix([0, 0, 1]) def test_represent_uncoupled_states(): # Jx basis assert represent(TensorProduct(JxKet(S.Half, S.Half), JxKet(S.Half, S.Half)), basis=Jx) == \ Matrix([1, 0, 0, 0]) assert represent(TensorProduct(JxKet(S.Half, S.Half), JxKet(S.Half, Rational(-1, 2))), basis=Jx) == \ Matrix([0, 1, 0, 0]) assert represent(TensorProduct(JxKet(S.Half, Rational(-1, 2)), JxKet(S.Half, S.Half)), basis=Jx) == \ Matrix([0, 0, 1, 0]) assert represent(TensorProduct(JxKet(S.Half, Rational(-1, 2)), JxKet(S.Half, Rational(-1, 2))), basis=Jx) == \ Matrix([0, 0, 0, 1]) assert represent(TensorProduct(JyKet(S.Half, S.Half), JyKet(S.Half, S.Half)), basis=Jx) == \ Matrix([-I, 0, 0, 0]) assert represent(TensorProduct(JyKet(S.Half, S.Half), JyKet(S.Half, Rational(-1, 2))), basis=Jx) == \ Matrix([0, 1, 0, 0]) assert represent(TensorProduct(JyKet(S.Half, Rational(-1, 2)), JyKet(S.Half, S.Half)), basis=Jx) == \ Matrix([0, 0, 1, 0]) assert represent(TensorProduct(JyKet(S.Half, Rational(-1, 2)), JyKet(S.Half, Rational(-1, 2))), basis=Jx) == \ Matrix([0, 0, 0, I]) assert represent(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), basis=Jx) == \ Matrix([S.Half, Rational(-1, 2), Rational(-1, 2), S.Half]) assert represent(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), basis=Jx) == \ Matrix([S.Half, S.Half, Rational(-1, 2), Rational(-1, 2)]) assert represent(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), basis=Jx) == \ Matrix([S.Half, Rational(-1, 2), S.Half, Rational(-1, 2)]) assert represent(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), basis=Jx) == \ Matrix([S.Half, S.Half, S.Half, S.Half]) # Jy basis assert represent(TensorProduct(JxKet(S.Half, S.Half), JxKet(S.Half, S.Half)), basis=Jy) == \ Matrix([I, 0, 0, 0]) assert represent(TensorProduct(JxKet(S.Half, S.Half), JxKet(S.Half, Rational(-1, 2))), basis=Jy) == \ Matrix([0, 1, 0, 0]) assert represent(TensorProduct(JxKet(S.Half, Rational(-1, 2)), JxKet(S.Half, S.Half)), basis=Jy) == \ Matrix([0, 0, 1, 0]) assert represent(TensorProduct(JxKet(S.Half, Rational(-1, 2)), JxKet(S.Half, Rational(-1, 2))), basis=Jy) == \ Matrix([0, 0, 0, -I]) assert represent(TensorProduct(JyKet(S.Half, S.Half), JyKet(S.Half, S.Half)), basis=Jy) == \ Matrix([1, 0, 0, 0]) assert represent(TensorProduct(JyKet(S.Half, S.Half), JyKet(S.Half, Rational(-1, 2))), basis=Jy) == \ Matrix([0, 1, 0, 0]) assert represent(TensorProduct(JyKet(S.Half, Rational(-1, 2)), JyKet(S.Half, S.Half)), basis=Jy) == \ Matrix([0, 0, 1, 0]) assert represent(TensorProduct(JyKet(S.Half, Rational(-1, 2)), JyKet(S.Half, Rational(-1, 2))), basis=Jy) == \ Matrix([0, 0, 0, 1]) assert represent(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), basis=Jy) == \ Matrix([S.Half, -I/2, -I/2, Rational(-1, 2)]) assert represent(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), basis=Jy) == \ Matrix([-I/2, S.Half, Rational(-1, 2), -I/2]) assert represent(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), basis=Jy) == \ Matrix([-I/2, Rational(-1, 2), S.Half, -I/2]) assert represent(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), basis=Jy) == \ Matrix([Rational(-1, 2), -I/2, -I/2, S.Half]) # Jz basis assert represent(TensorProduct(JxKet(S.Half, S.Half), JxKet(S.Half, S.Half)), basis=Jz) == \ Matrix([S.Half, S.Half, S.Half, S.Half]) assert represent(TensorProduct(JxKet(S.Half, S.Half), JxKet(S.Half, Rational(-1, 2))), basis=Jz) == \ Matrix([Rational(-1, 2), S.Half, Rational(-1, 2), S.Half]) assert represent(TensorProduct(JxKet(S.Half, Rational(-1, 2)), JxKet(S.Half, S.Half)), basis=Jz) == \ Matrix([Rational(-1, 2), Rational(-1, 2), S.Half, S.Half]) assert represent(TensorProduct(JxKet(S.Half, Rational(-1, 2)), JxKet(S.Half, Rational(-1, 2))), basis=Jz) == \ Matrix([S.Half, Rational(-1, 2), Rational(-1, 2), S.Half]) assert represent(TensorProduct(JyKet(S.Half, S.Half), JyKet(S.Half, S.Half)), basis=Jz) == \ Matrix([S.Half, I/2, I/2, Rational(-1, 2)]) assert represent(TensorProduct(JyKet(S.Half, S.Half), JyKet(S.Half, Rational(-1, 2))), basis=Jz) == \ Matrix([I/2, S.Half, Rational(-1, 2), I/2]) assert represent(TensorProduct(JyKet(S.Half, Rational(-1, 2)), JyKet(S.Half, S.Half)), basis=Jz) == \ Matrix([I/2, Rational(-1, 2), S.Half, I/2]) assert represent(TensorProduct(JyKet(S.Half, Rational(-1, 2)), JyKet(S.Half, Rational(-1, 2))), basis=Jz) == \ Matrix([Rational(-1, 2), I/2, I/2, S.Half]) assert represent(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), basis=Jz) == \ Matrix([1, 0, 0, 0]) assert represent(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), basis=Jz) == \ Matrix([0, 1, 0, 0]) assert represent(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), basis=Jz) == \ Matrix([0, 0, 1, 0]) assert represent(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), basis=Jz) == \ Matrix([0, 0, 0, 1]) def test_represent_coupled_states(): # Jx basis assert represent(JxKetCoupled(0, 0, (S.Half, S.Half)), basis=Jx) == \ Matrix([1, 0, 0, 0]) assert represent(JxKetCoupled(1, 1, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, 1, 0, 0]) assert represent(JxKetCoupled(1, 0, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, 0, 1, 0]) assert represent(JxKetCoupled(1, -1, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, 0, 0, 1]) assert represent(JyKetCoupled(0, 0, (S.Half, S.Half)), basis=Jx) == \ Matrix([1, 0, 0, 0]) assert represent(JyKetCoupled(1, 1, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, -I, 0, 0]) assert represent(JyKetCoupled(1, 0, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, 0, 1, 0]) assert represent(JyKetCoupled(1, -1, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, 0, 0, I]) assert represent(JzKetCoupled(0, 0, (S.Half, S.Half)), basis=Jx) == \ Matrix([1, 0, 0, 0]) assert represent(JzKetCoupled(1, 1, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, S.Half, -sqrt(2)/2, S.Half]) assert represent(JzKetCoupled(1, 0, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, sqrt(2)/2, 0, -sqrt(2)/2]) assert represent(JzKetCoupled(1, -1, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, S.Half, sqrt(2)/2, S.Half]) # Jy basis assert represent(JxKetCoupled(0, 0, (S.Half, S.Half)), basis=Jy) == \ Matrix([1, 0, 0, 0]) assert represent(JxKetCoupled(1, 1, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, I, 0, 0]) assert represent(JxKetCoupled(1, 0, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, 0, 1, 0]) assert represent(JxKetCoupled(1, -1, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, 0, 0, -I]) assert represent(JyKetCoupled(0, 0, (S.Half, S.Half)), basis=Jy) == \ Matrix([1, 0, 0, 0]) assert represent(JyKetCoupled(1, 1, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, 1, 0, 0]) assert represent(JyKetCoupled(1, 0, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, 0, 1, 0]) assert represent(JyKetCoupled(1, -1, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, 0, 0, 1]) assert represent(JzKetCoupled(0, 0, (S.Half, S.Half)), basis=Jy) == \ Matrix([1, 0, 0, 0]) assert represent(JzKetCoupled(1, 1, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, S.Half, -I*sqrt(2)/2, Rational(-1, 2)]) assert represent(JzKetCoupled(1, 0, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, -I*sqrt(2)/2, 0, -I*sqrt(2)/2]) assert represent(JzKetCoupled(1, -1, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, Rational(-1, 2), -I*sqrt(2)/2, S.Half]) # Jz basis assert represent(JxKetCoupled(0, 0, (S.Half, S.Half)), basis=Jz) == \ Matrix([1, 0, 0, 0]) assert represent(JxKetCoupled(1, 1, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, S.Half, sqrt(2)/2, S.Half]) assert represent(JxKetCoupled(1, 0, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, -sqrt(2)/2, 0, sqrt(2)/2]) assert represent(JxKetCoupled(1, -1, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, S.Half, -sqrt(2)/2, S.Half]) assert represent(JyKetCoupled(0, 0, (S.Half, S.Half)), basis=Jz) == \ Matrix([1, 0, 0, 0]) assert represent(JyKetCoupled(1, 1, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, S.Half, I*sqrt(2)/2, Rational(-1, 2)]) assert represent(JyKetCoupled(1, 0, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, I*sqrt(2)/2, 0, I*sqrt(2)/2]) assert represent(JyKetCoupled(1, -1, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, Rational(-1, 2), I*sqrt(2)/2, S.Half]) assert represent(JzKetCoupled(0, 0, (S.Half, S.Half)), basis=Jz) == \ Matrix([1, 0, 0, 0]) assert represent(JzKetCoupled(1, 1, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, 1, 0, 0]) assert represent(JzKetCoupled(1, 0, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, 0, 1, 0]) assert represent(JzKetCoupled(1, -1, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, 0, 0, 1]) def test_represent_rotation(): assert represent(Rotation(0, pi/2, 0)) == \ Matrix( [[WignerD( S( 1)/2, S( 1)/2, S( 1)/2, 0, pi/2, 0), WignerD( S.Half, S.Half, Rational(-1, 2), 0, pi/2, 0)], [WignerD(S.Half, Rational(-1, 2), S.Half, 0, pi/2, 0), WignerD(S.Half, Rational(-1, 2), Rational(-1, 2), 0, pi/2, 0)]]) assert represent(Rotation(0, pi/2, 0), doit=True) == \ Matrix([[sqrt(2)/2, -sqrt(2)/2], [sqrt(2)/2, sqrt(2)/2]]) def test_rewrite_same(): # Rewrite to same basis assert JxBra(1, 1).rewrite('Jx') == JxBra(1, 1) assert JxBra(j, m).rewrite('Jx') == JxBra(j, m) assert JxKet(1, 1).rewrite('Jx') == JxKet(1, 1) assert JxKet(j, m).rewrite('Jx') == JxKet(j, m) def test_rewrite_Bra(): # Numerical assert JxBra(1, 1).rewrite('Jy') == -I*JyBra(1, 1) assert JxBra(1, 0).rewrite('Jy') == JyBra(1, 0) assert JxBra(1, -1).rewrite('Jy') == I*JyBra(1, -1) assert JxBra(1, 1).rewrite( 'Jz') == JzBra(1, 1)/2 + JzBra(1, 0)/sqrt(2) + JzBra(1, -1)/2 assert JxBra( 1, 0).rewrite('Jz') == -sqrt(2)*JzBra(1, 1)/2 + sqrt(2)*JzBra(1, -1)/2 assert JxBra(1, -1).rewrite( 'Jz') == JzBra(1, 1)/2 - JzBra(1, 0)/sqrt(2) + JzBra(1, -1)/2 assert JyBra(1, 1).rewrite('Jx') == I*JxBra(1, 1) assert JyBra(1, 0).rewrite('Jx') == JxBra(1, 0) assert JyBra(1, -1).rewrite('Jx') == -I*JxBra(1, -1) assert JyBra(1, 1).rewrite( 'Jz') == JzBra(1, 1)/2 - sqrt(2)*I*JzBra(1, 0)/2 - JzBra(1, -1)/2 assert JyBra(1, 0).rewrite( 'Jz') == -sqrt(2)*I*JzBra(1, 1)/2 - sqrt(2)*I*JzBra(1, -1)/2 assert JyBra(1, -1).rewrite( 'Jz') == -JzBra(1, 1)/2 - sqrt(2)*I*JzBra(1, 0)/2 + JzBra(1, -1)/2 assert JzBra(1, 1).rewrite( 'Jx') == JxBra(1, 1)/2 - sqrt(2)*JxBra(1, 0)/2 + JxBra(1, -1)/2 assert JzBra( 1, 0).rewrite('Jx') == sqrt(2)*JxBra(1, 1)/2 - sqrt(2)*JxBra(1, -1)/2 assert JzBra(1, -1).rewrite( 'Jx') == JxBra(1, 1)/2 + sqrt(2)*JxBra(1, 0)/2 + JxBra(1, -1)/2 assert JzBra(1, 1).rewrite( 'Jy') == JyBra(1, 1)/2 + sqrt(2)*I*JyBra(1, 0)/2 - JyBra(1, -1)/2 assert JzBra(1, 0).rewrite( 'Jy') == sqrt(2)*I*JyBra(1, 1)/2 + sqrt(2)*I*JyBra(1, -1)/2 assert JzBra(1, -1).rewrite( 'Jy') == -JyBra(1, 1)/2 + sqrt(2)*I*JyBra(1, 0)/2 + JyBra(1, -1)/2 # Symbolic assert JxBra(j, m).rewrite('Jy') == Sum( WignerD(j, mi, m, pi*Rational(3, 2), 0, 0) * JyBra(j, mi), (mi, -j, j)) assert JxBra(j, m).rewrite('Jz') == Sum( WignerD(j, mi, m, 0, pi/2, 0) * JzBra(j, mi), (mi, -j, j)) assert JyBra(j, m).rewrite('Jx') == Sum( WignerD(j, mi, m, 0, 0, pi/2) * JxBra(j, mi), (mi, -j, j)) assert JyBra(j, m).rewrite('Jz') == Sum( WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2) * JzBra(j, mi), (mi, -j, j)) assert JzBra(j, m).rewrite('Jx') == Sum( WignerD(j, mi, m, 0, pi*Rational(3, 2), 0) * JxBra(j, mi), (mi, -j, j)) assert JzBra(j, m).rewrite('Jy') == Sum( WignerD(j, mi, m, pi*Rational(3, 2), pi/2, pi/2) * JyBra(j, mi), (mi, -j, j)) def test_rewrite_Ket(): # Numerical assert JxKet(1, 1).rewrite('Jy') == I*JyKet(1, 1) assert JxKet(1, 0).rewrite('Jy') == JyKet(1, 0) assert JxKet(1, -1).rewrite('Jy') == -I*JyKet(1, -1) assert JxKet(1, 1).rewrite( 'Jz') == JzKet(1, 1)/2 + JzKet(1, 0)/sqrt(2) + JzKet(1, -1)/2 assert JxKet( 1, 0).rewrite('Jz') == -sqrt(2)*JzKet(1, 1)/2 + sqrt(2)*JzKet(1, -1)/2 assert JxKet(1, -1).rewrite( 'Jz') == JzKet(1, 1)/2 - JzKet(1, 0)/sqrt(2) + JzKet(1, -1)/2 assert JyKet(1, 1).rewrite('Jx') == -I*JxKet(1, 1) assert JyKet(1, 0).rewrite('Jx') == JxKet(1, 0) assert JyKet(1, -1).rewrite('Jx') == I*JxKet(1, -1) assert JyKet(1, 1).rewrite( 'Jz') == JzKet(1, 1)/2 + sqrt(2)*I*JzKet(1, 0)/2 - JzKet(1, -1)/2 assert JyKet(1, 0).rewrite( 'Jz') == sqrt(2)*I*JzKet(1, 1)/2 + sqrt(2)*I*JzKet(1, -1)/2 assert JyKet(1, -1).rewrite( 'Jz') == -JzKet(1, 1)/2 + sqrt(2)*I*JzKet(1, 0)/2 + JzKet(1, -1)/2 assert JzKet(1, 1).rewrite( 'Jx') == JxKet(1, 1)/2 - sqrt(2)*JxKet(1, 0)/2 + JxKet(1, -1)/2 assert JzKet( 1, 0).rewrite('Jx') == sqrt(2)*JxKet(1, 1)/2 - sqrt(2)*JxKet(1, -1)/2 assert JzKet(1, -1).rewrite( 'Jx') == JxKet(1, 1)/2 + sqrt(2)*JxKet(1, 0)/2 + JxKet(1, -1)/2 assert JzKet(1, 1).rewrite( 'Jy') == JyKet(1, 1)/2 - sqrt(2)*I*JyKet(1, 0)/2 - JyKet(1, -1)/2 assert JzKet(1, 0).rewrite( 'Jy') == -sqrt(2)*I*JyKet(1, 1)/2 - sqrt(2)*I*JyKet(1, -1)/2 assert JzKet(1, -1).rewrite( 'Jy') == -JyKet(1, 1)/2 - sqrt(2)*I*JyKet(1, 0)/2 + JyKet(1, -1)/2 # Symbolic assert JxKet(j, m).rewrite('Jy') == Sum( WignerD(j, mi, m, pi*Rational(3, 2), 0, 0) * JyKet(j, mi), (mi, -j, j)) assert JxKet(j, m).rewrite('Jz') == Sum( WignerD(j, mi, m, 0, pi/2, 0) * JzKet(j, mi), (mi, -j, j)) assert JyKet(j, m).rewrite('Jx') == Sum( WignerD(j, mi, m, 0, 0, pi/2) * JxKet(j, mi), (mi, -j, j)) assert JyKet(j, m).rewrite('Jz') == Sum( WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2) * JzKet(j, mi), (mi, -j, j)) assert JzKet(j, m).rewrite('Jx') == Sum( WignerD(j, mi, m, 0, pi*Rational(3, 2), 0) * JxKet(j, mi), (mi, -j, j)) assert JzKet(j, m).rewrite('Jy') == Sum( WignerD(j, mi, m, pi*Rational(3, 2), pi/2, pi/2) * JyKet(j, mi), (mi, -j, j)) def test_rewrite_uncoupled_state(): # Numerical assert TensorProduct(JyKet(1, 1), JxKet( 1, 1)).rewrite('Jx') == -I*TensorProduct(JxKet(1, 1), JxKet(1, 1)) assert TensorProduct(JyKet(1, 0), JxKet( 1, 1)).rewrite('Jx') == TensorProduct(JxKet(1, 0), JxKet(1, 1)) assert TensorProduct(JyKet(1, -1), JxKet( 1, 1)).rewrite('Jx') == I*TensorProduct(JxKet(1, -1), JxKet(1, 1)) assert TensorProduct(JzKet(1, 1), JxKet(1, 1)).rewrite('Jx') == \ TensorProduct(JxKet(1, -1), JxKet(1, 1))/2 - sqrt(2)*TensorProduct(JxKet( 1, 0), JxKet(1, 1))/2 + TensorProduct(JxKet(1, 1), JxKet(1, 1))/2 assert TensorProduct(JzKet(1, 0), JxKet(1, 1)).rewrite('Jx') == \ -sqrt(2)*TensorProduct(JxKet(1, -1), JxKet(1, 1))/2 + sqrt( 2)*TensorProduct(JxKet(1, 1), JxKet(1, 1))/2 assert TensorProduct(JzKet(1, -1), JxKet(1, 1)).rewrite('Jx') == \ TensorProduct(JxKet(1, -1), JxKet(1, 1))/2 + sqrt(2)*TensorProduct(JxKet(1, 0), JxKet(1, 1))/2 + TensorProduct(JxKet(1, 1), JxKet(1, 1))/2 assert TensorProduct(JxKet(1, 1), JyKet( 1, 1)).rewrite('Jy') == I*TensorProduct(JyKet(1, 1), JyKet(1, 1)) assert TensorProduct(JxKet(1, 0), JyKet( 1, 1)).rewrite('Jy') == TensorProduct(JyKet(1, 0), JyKet(1, 1)) assert TensorProduct(JxKet(1, -1), JyKet( 1, 1)).rewrite('Jy') == -I*TensorProduct(JyKet(1, -1), JyKet(1, 1)) assert TensorProduct(JzKet(1, 1), JyKet(1, 1)).rewrite('Jy') == \ -TensorProduct(JyKet(1, -1), JyKet(1, 1))/2 - sqrt(2)*I*TensorProduct(JyKet(1, 0), JyKet(1, 1))/2 + TensorProduct(JyKet(1, 1), JyKet(1, 1))/2 assert TensorProduct(JzKet(1, 0), JyKet(1, 1)).rewrite('Jy') == \ -sqrt(2)*I*TensorProduct(JyKet(1, -1), JyKet( 1, 1))/2 - sqrt(2)*I*TensorProduct(JyKet(1, 1), JyKet(1, 1))/2 assert TensorProduct(JzKet(1, -1), JyKet(1, 1)).rewrite('Jy') == \ TensorProduct(JyKet(1, -1), JyKet(1, 1))/2 - sqrt(2)*I*TensorProduct(JyKet(1, 0), JyKet(1, 1))/2 - TensorProduct(JyKet(1, 1), JyKet(1, 1))/2 assert TensorProduct(JxKet(1, 1), JzKet(1, 1)).rewrite('Jz') == \ TensorProduct(JzKet(1, -1), JzKet(1, 1))/2 + sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 + TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 assert TensorProduct(JxKet(1, 0), JzKet(1, 1)).rewrite('Jz') == \ sqrt(2)*TensorProduct(JzKet(1, -1), JzKet( 1, 1))/2 - sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 assert TensorProduct(JxKet(1, -1), JzKet(1, 1)).rewrite('Jz') == \ TensorProduct(JzKet(1, -1), JzKet(1, 1))/2 - sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 + TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 assert TensorProduct(JyKet(1, 1), JzKet(1, 1)).rewrite('Jz') == \ -TensorProduct(JzKet(1, -1), JzKet(1, 1))/2 + sqrt(2)*I*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 + TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 assert TensorProduct(JyKet(1, 0), JzKet(1, 1)).rewrite('Jz') == \ sqrt(2)*I*TensorProduct(JzKet(1, -1), JzKet( 1, 1))/2 + sqrt(2)*I*TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 assert TensorProduct(JyKet(1, -1), JzKet(1, 1)).rewrite('Jz') == \ TensorProduct(JzKet(1, -1), JzKet(1, 1))/2 + sqrt(2)*I*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 - TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 # Symbolic assert TensorProduct(JyKet(j1, m1), JxKet(j2, m2)).rewrite('Jy') == \ TensorProduct(JyKet(j1, m1), Sum( WignerD(j2, mi, m2, pi*Rational(3, 2), 0, 0) * JyKet(j2, mi), (mi, -j2, j2))) assert TensorProduct(JzKet(j1, m1), JxKet(j2, m2)).rewrite('Jz') == \ TensorProduct(JzKet(j1, m1), Sum( WignerD(j2, mi, m2, 0, pi/2, 0) * JzKet(j2, mi), (mi, -j2, j2))) assert TensorProduct(JxKet(j1, m1), JyKet(j2, m2)).rewrite('Jx') == \ TensorProduct(JxKet(j1, m1), Sum( WignerD(j2, mi, m2, 0, 0, pi/2) * JxKet(j2, mi), (mi, -j2, j2))) assert TensorProduct(JzKet(j1, m1), JyKet(j2, m2)).rewrite('Jz') == \ TensorProduct(JzKet(j1, m1), Sum(WignerD( j2, mi, m2, pi*Rational(3, 2), -pi/2, pi/2) * JzKet(j2, mi), (mi, -j2, j2))) assert TensorProduct(JxKet(j1, m1), JzKet(j2, m2)).rewrite('Jx') == \ TensorProduct(JxKet(j1, m1), Sum( WignerD(j2, mi, m2, 0, pi*Rational(3, 2), 0) * JxKet(j2, mi), (mi, -j2, j2))) assert TensorProduct(JyKet(j1, m1), JzKet(j2, m2)).rewrite('Jy') == \ TensorProduct(JyKet(j1, m1), Sum(WignerD( j2, mi, m2, pi*Rational(3, 2), pi/2, pi/2) * JyKet(j2, mi), (mi, -j2, j2))) def test_rewrite_coupled_state(): # Numerical assert JyKetCoupled(0, 0, (S.Half, S.Half)).rewrite('Jx') == \ JxKetCoupled(0, 0, (S.Half, S.Half)) assert JyKetCoupled(1, 1, (S.Half, S.Half)).rewrite('Jx') == \ -I*JxKetCoupled(1, 1, (S.Half, S.Half)) assert JyKetCoupled(1, 0, (S.Half, S.Half)).rewrite('Jx') == \ JxKetCoupled(1, 0, (S.Half, S.Half)) assert JyKetCoupled(1, -1, (S.Half, S.Half)).rewrite('Jx') == \ I*JxKetCoupled(1, -1, (S.Half, S.Half)) assert JzKetCoupled(0, 0, (S.Half, S.Half)).rewrite('Jx') == \ JxKetCoupled(0, 0, (S.Half, S.Half)) assert JzKetCoupled(1, 1, (S.Half, S.Half)).rewrite('Jx') == \ JxKetCoupled(1, 1, (S.Half, S.Half))/2 - sqrt(2)*JxKetCoupled(1, 0, ( S.Half, S.Half))/2 + JxKetCoupled(1, -1, (S.Half, S.Half))/2 assert JzKetCoupled(1, 0, (S.Half, S.Half)).rewrite('Jx') == \ sqrt(2)*JxKetCoupled(1, 1, (S( 1)/2, S.Half))/2 - sqrt(2)*JxKetCoupled(1, -1, (S.Half, S.Half))/2 assert JzKetCoupled(1, -1, (S.Half, S.Half)).rewrite('Jx') == \ JxKetCoupled(1, 1, (S.Half, S.Half))/2 + sqrt(2)*JxKetCoupled(1, 0, ( S.Half, S.Half))/2 + JxKetCoupled(1, -1, (S.Half, S.Half))/2 assert JxKetCoupled(0, 0, (S.Half, S.Half)).rewrite('Jy') == \ JyKetCoupled(0, 0, (S.Half, S.Half)) assert JxKetCoupled(1, 1, (S.Half, S.Half)).rewrite('Jy') == \ I*JyKetCoupled(1, 1, (S.Half, S.Half)) assert JxKetCoupled(1, 0, (S.Half, S.Half)).rewrite('Jy') == \ JyKetCoupled(1, 0, (S.Half, S.Half)) assert JxKetCoupled(1, -1, (S.Half, S.Half)).rewrite('Jy') == \ -I*JyKetCoupled(1, -1, (S.Half, S.Half)) assert JzKetCoupled(0, 0, (S.Half, S.Half)).rewrite('Jy') == \ JyKetCoupled(0, 0, (S.Half, S.Half)) assert JzKetCoupled(1, 1, (S.Half, S.Half)).rewrite('Jy') == \ JyKetCoupled(1, 1, (S.Half, S.Half))/2 - I*sqrt(2)*JyKetCoupled(1, 0, ( S.Half, S.Half))/2 - JyKetCoupled(1, -1, (S.Half, S.Half))/2 assert JzKetCoupled(1, 0, (S.Half, S.Half)).rewrite('Jy') == \ -I*sqrt(2)*JyKetCoupled(1, 1, (S.Half, S.Half))/2 - I*sqrt( 2)*JyKetCoupled(1, -1, (S.Half, S.Half))/2 assert JzKetCoupled(1, -1, (S.Half, S.Half)).rewrite('Jy') == \ -JyKetCoupled(1, 1, (S.Half, S.Half))/2 - I*sqrt(2)*JyKetCoupled(1, 0, (S.Half, S.Half))/2 + JyKetCoupled(1, -1, (S.Half, S.Half))/2 assert JxKetCoupled(0, 0, (S.Half, S.Half)).rewrite('Jz') == \ JzKetCoupled(0, 0, (S.Half, S.Half)) assert JxKetCoupled(1, 1, (S.Half, S.Half)).rewrite('Jz') == \ JzKetCoupled(1, 1, (S.Half, S.Half))/2 + sqrt(2)*JzKetCoupled(1, 0, ( S.Half, S.Half))/2 + JzKetCoupled(1, -1, (S.Half, S.Half))/2 assert JxKetCoupled(1, 0, (S.Half, S.Half)).rewrite('Jz') == \ -sqrt(2)*JzKetCoupled(1, 1, (S( 1)/2, S.Half))/2 + sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half))/2 assert JxKetCoupled(1, -1, (S.Half, S.Half)).rewrite('Jz') == \ JzKetCoupled(1, 1, (S.Half, S.Half))/2 - sqrt(2)*JzKetCoupled(1, 0, ( S.Half, S.Half))/2 + JzKetCoupled(1, -1, (S.Half, S.Half))/2 assert JyKetCoupled(0, 0, (S.Half, S.Half)).rewrite('Jz') == \ JzKetCoupled(0, 0, (S.Half, S.Half)) assert JyKetCoupled(1, 1, (S.Half, S.Half)).rewrite('Jz') == \ JzKetCoupled(1, 1, (S.Half, S.Half))/2 + I*sqrt(2)*JzKetCoupled(1, 0, ( S.Half, S.Half))/2 - JzKetCoupled(1, -1, (S.Half, S.Half))/2 assert JyKetCoupled(1, 0, (S.Half, S.Half)).rewrite('Jz') == \ I*sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half))/2 + I*sqrt( 2)*JzKetCoupled(1, -1, (S.Half, S.Half))/2 assert JyKetCoupled(1, -1, (S.Half, S.Half)).rewrite('Jz') == \ -JzKetCoupled(1, 1, (S.Half, S.Half))/2 + I*sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half))/2 + JzKetCoupled(1, -1, (S.Half, S.Half))/2 # Symbolic assert JyKetCoupled(j, m, (j1, j2)).rewrite('Jx') == \ Sum(WignerD(j, mi, m, 0, 0, pi/2) * JxKetCoupled(j, mi, ( j1, j2)), (mi, -j, j)) assert JzKetCoupled(j, m, (j1, j2)).rewrite('Jx') == \ Sum(WignerD(j, mi, m, 0, pi*Rational(3, 2), 0) * JxKetCoupled(j, mi, ( j1, j2)), (mi, -j, j)) assert JxKetCoupled(j, m, (j1, j2)).rewrite('Jy') == \ Sum(WignerD(j, mi, m, pi*Rational(3, 2), 0, 0) * JyKetCoupled(j, mi, ( j1, j2)), (mi, -j, j)) assert JzKetCoupled(j, m, (j1, j2)).rewrite('Jy') == \ Sum(WignerD(j, mi, m, pi*Rational(3, 2), pi/2, pi/2) * JyKetCoupled(j, mi, (j1, j2)), (mi, -j, j)) assert JxKetCoupled(j, m, (j1, j2)).rewrite('Jz') == \ Sum(WignerD(j, mi, m, 0, pi/2, 0) * JzKetCoupled(j, mi, ( j1, j2)), (mi, -j, j)) assert JyKetCoupled(j, m, (j1, j2)).rewrite('Jz') == \ Sum(WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2) * JzKetCoupled( j, mi, (j1, j2)), (mi, -j, j)) def test_innerproducts_of_rewritten_states(): # Numerical assert qapply(JxBra(1, 1)*JxKet(1, 1).rewrite('Jy')).doit() == 1 assert qapply(JxBra(1, 0)*JxKet(1, 0).rewrite('Jy')).doit() == 1 assert qapply(JxBra(1, -1)*JxKet(1, -1).rewrite('Jy')).doit() == 1 assert qapply(JxBra(1, 1)*JxKet(1, 1).rewrite('Jz')).doit() == 1 assert qapply(JxBra(1, 0)*JxKet(1, 0).rewrite('Jz')).doit() == 1 assert qapply(JxBra(1, -1)*JxKet(1, -1).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, 1)*JyKet(1, 1).rewrite('Jx')).doit() == 1 assert qapply(JyBra(1, 0)*JyKet(1, 0).rewrite('Jx')).doit() == 1 assert qapply(JyBra(1, -1)*JyKet(1, -1).rewrite('Jx')).doit() == 1 assert qapply(JyBra(1, 1)*JyKet(1, 1).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, 0)*JyKet(1, 0).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, -1)*JyKet(1, -1).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, 1)*JyKet(1, 1).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, 0)*JyKet(1, 0).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, -1)*JyKet(1, -1).rewrite('Jz')).doit() == 1 assert qapply(JzBra(1, 1)*JzKet(1, 1).rewrite('Jy')).doit() == 1 assert qapply(JzBra(1, 0)*JzKet(1, 0).rewrite('Jy')).doit() == 1 assert qapply(JzBra(1, -1)*JzKet(1, -1).rewrite('Jy')).doit() == 1 assert qapply(JxBra(1, 1)*JxKet(1, 0).rewrite('Jy')).doit() == 0 assert qapply(JxBra(1, 1)*JxKet(1, -1).rewrite('Jy')) == 0 assert qapply(JxBra(1, 1)*JxKet(1, 0).rewrite('Jz')).doit() == 0 assert qapply(JxBra(1, 1)*JxKet(1, -1).rewrite('Jz')) == 0 assert qapply(JyBra(1, 1)*JyKet(1, 0).rewrite('Jx')).doit() == 0 assert qapply(JyBra(1, 1)*JyKet(1, -1).rewrite('Jx')) == 0 assert qapply(JyBra(1, 1)*JyKet(1, 0).rewrite('Jz')).doit() == 0 assert qapply(JyBra(1, 1)*JyKet(1, -1).rewrite('Jz')) == 0 assert qapply(JzBra(1, 1)*JzKet(1, 0).rewrite('Jx')).doit() == 0 assert qapply(JzBra(1, 1)*JzKet(1, -1).rewrite('Jx')) == 0 assert qapply(JzBra(1, 1)*JzKet(1, 0).rewrite('Jy')).doit() == 0 assert qapply(JzBra(1, 1)*JzKet(1, -1).rewrite('Jy')) == 0 assert qapply(JxBra(1, 0)*JxKet(1, 1).rewrite('Jy')) == 0 assert qapply(JxBra(1, 0)*JxKet(1, -1).rewrite('Jy')) == 0 assert qapply(JxBra(1, 0)*JxKet(1, 1).rewrite('Jz')) == 0 assert qapply(JxBra(1, 0)*JxKet(1, -1).rewrite('Jz')) == 0 assert qapply(JyBra(1, 0)*JyKet(1, 1).rewrite('Jx')) == 0 assert qapply(JyBra(1, 0)*JyKet(1, -1).rewrite('Jx')) == 0 assert qapply(JyBra(1, 0)*JyKet(1, 1).rewrite('Jz')) == 0 assert qapply(JyBra(1, 0)*JyKet(1, -1).rewrite('Jz')) == 0 assert qapply(JzBra(1, 0)*JzKet(1, 1).rewrite('Jx')) == 0 assert qapply(JzBra(1, 0)*JzKet(1, -1).rewrite('Jx')) == 0 assert qapply(JzBra(1, 0)*JzKet(1, 1).rewrite('Jy')) == 0 assert qapply(JzBra(1, 0)*JzKet(1, -1).rewrite('Jy')) == 0 assert qapply(JxBra(1, -1)*JxKet(1, 1).rewrite('Jy')) == 0 assert qapply(JxBra(1, -1)*JxKet(1, 0).rewrite('Jy')).doit() == 0 assert qapply(JxBra(1, -1)*JxKet(1, 1).rewrite('Jz')) == 0 assert qapply(JxBra(1, -1)*JxKet(1, 0).rewrite('Jz')).doit() == 0 assert qapply(JyBra(1, -1)*JyKet(1, 1).rewrite('Jx')) == 0 assert qapply(JyBra(1, -1)*JyKet(1, 0).rewrite('Jx')).doit() == 0 assert qapply(JyBra(1, -1)*JyKet(1, 1).rewrite('Jz')) == 0 assert qapply(JyBra(1, -1)*JyKet(1, 0).rewrite('Jz')).doit() == 0 assert qapply(JzBra(1, -1)*JzKet(1, 1).rewrite('Jx')) == 0 assert qapply(JzBra(1, -1)*JzKet(1, 0).rewrite('Jx')).doit() == 0 assert qapply(JzBra(1, -1)*JzKet(1, 1).rewrite('Jy')) == 0 assert qapply(JzBra(1, -1)*JzKet(1, 0).rewrite('Jy')).doit() == 0 def test_uncouple_2_coupled_states(): # j1=1/2, j2=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) ))) # j1=1/2, j2=1 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1)) == \ expand(uncouple( couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0)) == \ expand(uncouple( couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1)) == \ expand(uncouple( couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1)) == \ expand(uncouple( couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0)) == \ expand(uncouple( couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)) == \ expand(uncouple( couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)) ))) # j1=1, j2=1 assert TensorProduct(JzKet(1, 1), JzKet(1, 1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 1), JzKet(1, 1)) ))) assert TensorProduct(JzKet(1, 1), JzKet(1, 0)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 1), JzKet(1, 0)) ))) assert TensorProduct(JzKet(1, 1), JzKet(1, -1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 1), JzKet(1, -1)) ))) assert TensorProduct(JzKet(1, 0), JzKet(1, 1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 0), JzKet(1, 1)) ))) assert TensorProduct(JzKet(1, 0), JzKet(1, 0)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 0), JzKet(1, 0)) ))) assert TensorProduct(JzKet(1, 0), JzKet(1, -1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 0), JzKet(1, -1)) ))) assert TensorProduct(JzKet(1, -1), JzKet(1, 1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, -1), JzKet(1, 1)) ))) assert TensorProduct(JzKet(1, -1), JzKet(1, 0)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, -1), JzKet(1, 0)) ))) assert TensorProduct(JzKet(1, -1), JzKet(1, -1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, -1), JzKet(1, -1)) ))) def test_uncouple_3_coupled_states(): # Default coupling # j1=1/2, j2=1/2, j3=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet( S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.NegativeOne/ 2), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) ))) # j1=1/2, j2=1, j3=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) ))) # Coupling j1+j3=j13, j13+j2=j # j1=1/2, j2=1/2, j3=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) # j1=1/2, j2=1, j3=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( 1)/2), JzKet(1, 1), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( 1)/2), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( 1)/2), JzKet(1, 0), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( 1)/2), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( 1)/2), JzKet(1, -1), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( 1)/2), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( -1)/2), JzKet(1, 1), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( -1)/2), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( -1)/2), JzKet(1, 0), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( -1)/2), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( -1)/2), JzKet(1, -1), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.NegativeOne/ 2), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) @slow def test_uncouple_4_coupled_states(): # j1=1/2, j2=1/2, j3=1/2, j4=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S( 1)/2, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S( 1)/2, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S( 1)/2, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S( 1)/2, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) ))) # j1=1/2, j2=1/2, j3=1, j4=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) ))) # Couple j1+j3=j13, j2+j4=j24, j13+j24=j # j1=1/2, j2=1/2, j3=1/2, j4=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) # j1=1/2, j2=1/2, j3=1, j4=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) def test_uncouple_2_coupled_states_numerical(): # j1=1/2, j2=1/2 assert uncouple(JzKetCoupled(0, 0, (S.Half, S.Half))) == \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))/2 - \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))/2 assert uncouple(JzKetCoupled(1, 1, (S.Half, S.Half))) == \ TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) assert uncouple(JzKetCoupled(1, 0, (S.Half, S.Half))) == \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))/2 + \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))/2 assert uncouple(JzKetCoupled(1, -1, (S.Half, S.Half))) == \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) # j1=1, j2=1/2 assert uncouple(JzKetCoupled(S.Half, S.Half, (1, S.Half))) == \ -sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(S.Half, S.Half))/3 + \ sqrt(6)*TensorProduct(JzKet(1, 1), JzKet(S.Half, Rational(-1, 2)))/3 assert uncouple(JzKetCoupled(S.Half, Rational(-1, 2), (1, S.Half))) == \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(S.Half, Rational(-1, 2)))/3 - \ sqrt(6)*TensorProduct(JzKet(1, -1), JzKet(S.Half, S.Half))/3 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(3, 2), (1, S.Half))) == \ TensorProduct(JzKet(1, 1), JzKet(S.Half, S.Half)) assert uncouple(JzKetCoupled(Rational(3, 2), S.Half, (1, S.Half))) == \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(S.Half, Rational(-1, 2)))/3 + \ sqrt(6)*TensorProduct(JzKet(1, 0), JzKet(S.Half, S.Half))/3 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(-1, 2), (1, S.Half))) == \ sqrt(6)*TensorProduct(JzKet(1, 0), JzKet(S.Half, Rational(-1, 2)))/3 + \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(S.Half, S.Half))/3 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(-3, 2), (1, S.Half))) == \ TensorProduct(JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) # j1=1, j2=1 assert uncouple(JzKetCoupled(0, 0, (1, 1))) == \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, -1))/3 - \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 1))/3 assert uncouple(JzKetCoupled(1, 1, (1, 1))) == \ sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 - \ sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 assert uncouple(JzKetCoupled(1, 0, (1, 1))) == \ sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, -1))/2 - \ sqrt(2)*TensorProduct(JzKet(1, -1), JzKet(1, 1))/2 assert uncouple(JzKetCoupled(1, -1, (1, 1))) == \ sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, -1))/2 - \ sqrt(2)*TensorProduct(JzKet(1, -1), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(2, 2, (1, 1))) == \ TensorProduct(JzKet(1, 1), JzKet(1, 1)) assert uncouple(JzKetCoupled(2, 1, (1, 1))) == \ sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 + \ sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 assert uncouple(JzKetCoupled(2, 0, (1, 1))) == \ sqrt(6)*TensorProduct(JzKet(1, 1), JzKet(1, -1))/6 + \ sqrt(6)*TensorProduct(JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct(JzKet(1, -1), JzKet(1, 1))/6 assert uncouple(JzKetCoupled(2, -1, (1, 1))) == \ sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, -1))/2 + \ sqrt(2)*TensorProduct(JzKet(1, -1), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(2, -2, (1, 1))) == \ TensorProduct(JzKet(1, -1), JzKet(1, -1)) def test_uncouple_3_coupled_states_numerical(): # Default coupling # j1=1/2, j2=1/2, j3=1/2 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half))) == \ TensorProduct(JzKet( S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) assert uncouple(JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half))) == \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half))/3 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))/3 + \ sqrt(3)*TensorProduct(JzKet( S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))/3 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half))) == \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))/3 + \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))/3 + \ sqrt(3)*TensorProduct(JzKet( S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))/3 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half))) == \ TensorProduct(JzKet( S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) # j1=1/2, j2=1/2, j3=1 assert uncouple(JzKetCoupled(2, 2, (S.Half, S.Half, 1))) == \ TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1)) assert uncouple(JzKetCoupled(2, 1, (S.Half, S.Half, 1))) == \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1))/2 + \ TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))/2 + \ sqrt(2)*TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(2, 0, (S.Half, S.Half, 1))) == \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(2, -1, (S.Half, S.Half, 1))) == \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))/2 + \ TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))/2 + \ TensorProduct( JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, -2, (S.Half, S.Half, 1))) == \ TensorProduct( JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)) assert uncouple(JzKetCoupled(1, 1, (S.Half, S.Half, 1))) == \ -TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1))/2 - \ TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))/2 + \ sqrt(2)*TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(1, 0, (S.Half, S.Half, 1))) == \ -sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))/2 + \ sqrt(2)*TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, -1, (S.Half, S.Half, 1))) == \ -sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))/2 + \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1))/2 + \ TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))/2 # j1=1/2, j2=1, j3=1 assert uncouple(JzKetCoupled(Rational(5, 2), Rational(5, 2), (S.Half, 1, 1))) == \ TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1)) assert uncouple(JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, 1, 1))) == \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/5 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/5 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/5 assert uncouple(JzKetCoupled(Rational(5, 2), S.Half, (S.Half, 1, 1))) == \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/5 + \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/5 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(10)*TensorProduct( JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1))) == \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/5 + \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/5 assert uncouple(JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, 1, 1))) == \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/5 + \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/5 + \ sqrt(5)*TensorProduct( JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/5 assert uncouple(JzKetCoupled(Rational(5, 2), Rational(-5, 2), (S.Half, 1, 1))) == \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1)) assert uncouple(JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1))) == \ -sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/15 - \ 2*sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/5 assert uncouple(JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1))) == \ -4*sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/15 - \ 2*sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/15 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/5 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1))) == \ -sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/5 - \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/15 + \ 2*sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/15 - \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/15 + \ 4*sqrt(5)*TensorProduct( JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1))) == \ -sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/5 + \ 2*sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(30)*TensorProduct( JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1))) == \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/3 - \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/3 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/6 - \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1))) == \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/2 - \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/6 - \ TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/3 + \ TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/3 # j1=1, j2=1, j3=1 assert uncouple(JzKetCoupled(3, 3, (1, 1, 1))) == \ TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 1)) assert uncouple(JzKetCoupled(3, 2, (1, 1, 1))) == \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(3, 1, (1, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, 0, (1, 1, 1))) == \ sqrt(10)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0))/10 + \ sqrt(10)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(10)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(10)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0))/10 + \ sqrt(10)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(3, -1, (1, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, -1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 0))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, -2, (1, 1, 1))) == \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, -1))/3 + \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(3, -3, (1, 1, 1))) == \ TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, -1)) assert uncouple(JzKetCoupled(2, 2, (1, 1, 1))) == \ -sqrt(6)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 1))/6 - \ sqrt(6)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(2, 1, (1, 1, 1))) == \ -sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))/6 - \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 0))/6 - \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(2, 0, (1, 1, 1))) == \ -TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))/2 + \ TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, -1, (1, 1, 1))) == \ -sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))/3 - \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, -1))/6 - \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))/3 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(2, -2, (1, 1, 1))) == \ -sqrt(6)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, -1))/6 + \ sqrt(6)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(1, 1, (1, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))/30 + \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))/15 - \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 1))/30 - \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))/5 assert uncouple(JzKetCoupled(1, 0, (1, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1))/10 - \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))/10 - \ 2*sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))/10 - \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(1, -1, (1, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))/5 - \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, -1))/30 - \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))/30 # Defined j13 # j1=1/2, j2=1/2, j3=1, j13=1/2 assert uncouple(JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )) == \ -sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))/3 - \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))/3 # j1=1/2, j2=1, j3=1, j13=1/2 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))))) == \ -sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))))) == \ -2*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/3 - \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/3 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))))) == \ -sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/3 - \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/3 + \ TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/3 + \ 2*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))))) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct( JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/3 # j1=1, j2=1, j3=1, j13=1 assert uncouple(JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)))) == \ -sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 1))/2 + \ sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)))) == \ -TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)))) == \ -sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1))/3 - \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0))/6 - \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)))) == \ -TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))/2 - \ TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))/2 + \ TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)))) == \ -sqrt(2)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 0))/2 + \ sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)))) == \ TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))/2 - \ TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 1)))) == \ TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)))) == \ -TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))/2 + \ TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))/2 def test_uncouple_4_coupled_states_numerical(): # j1=1/2, j2=1/2, j3=1, j4=1, default coupling assert uncouple(JzKetCoupled(3, 3, (S.Half, S.Half, 1, 1))) == \ TensorProduct(JzKet( S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1)) assert uncouple(JzKetCoupled(3, 2, (S.Half, S.Half, 1, 1))) == \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(3, 1, (S.Half, S.Half, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, 0, (S.Half, S.Half, 1, 1))) == \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/10 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(3, -1, (S.Half, S.Half, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, -2, (S.Half, S.Half, 1, 1))) == \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/3 + \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(3, -3, (S.Half, S.Half, 1, 1))) == \ TensorProduct(JzKet(S.Half, -S( 1)/2), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1)) assert uncouple(JzKetCoupled(2, 2, (S.Half, S.Half, 1, 1))) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1))/6 - \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/6 - \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(2, 1, (S.Half, S.Half, 1, 1))) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/6 - \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/12 - \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/12 - \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(2, 0, (S.Half, S.Half, 1, 1))) == \ -TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/2 - \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/4 - \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/4 + \ TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, -1, (S.Half, S.Half, 1, 1))) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/3 - \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/6 - \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/12 + \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/6 - \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/12 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(2, -2, (S.Half, S.Half, 1, 1))) == \ -sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(1, 1, (S.Half, S.Half, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/30 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/30 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/20 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/30 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/20 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/30 - \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/5 assert uncouple(JzKetCoupled(1, 0, (S.Half, S.Half, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/10 - \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/20 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/20 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/20 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/20 - \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(1, -1, (S.Half, S.Half, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/5 - \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/30 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/20 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/30 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/20 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/30 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/30 # j1=1/2, j2=1/2, j3=1, j4=1, j12=1, j34=1 assert uncouple(JzKetCoupled(2, 2, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 2)))) == \ -sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/2 + \ sqrt(2)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(2, 1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 2)))) == \ -sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/4 - \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/4 - \ TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/2 + \ TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, 0, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 2)))) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/6 - \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/6 - \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/6 - \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(2, -1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 2)))) == \ -TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/2 + \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/2 - \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/4 - \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/4 assert uncouple(JzKetCoupled(2, -2, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 2)))) == \ -sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/2 + \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, 1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 1)))) == \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/4 - \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/4 - \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/4 - \ TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/2 + \ TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, 0, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 1)))) == \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/2 - \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/2 - \ TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/2 + \ TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, -1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 1)))) == \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/2 - \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/2 - \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/4 - \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/4 # j1=1/2, j2=1/2, j3=1, j4=1, j12=1, j34=2 assert uncouple(JzKetCoupled(3, 3, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ TensorProduct(JzKet( S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1)) assert uncouple(JzKetCoupled(3, 2, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(3, 1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, 0, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/10 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(3, -1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, -2, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/3 + \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(3, -3, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ TensorProduct(JzKet(S.Half, -S( 1)/2), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1)) assert uncouple(JzKetCoupled(2, 2, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 2)))) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1))/3 - \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/3 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/6 assert uncouple(JzKetCoupled(2, 1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 2)))) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/3 - \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/12 - \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/12 - \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/12 - \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/12 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(2, 0, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 2)))) == \ -TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/2 - \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/2 + \ TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/2 + \ TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, -1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 2)))) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/6 - \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/3 - \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/12 + \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/12 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/12 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/12 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(2, -2, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 2)))) == \ -sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/6 - \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/3 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(1, 1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 1)))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/5 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/20 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/20 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/20 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/20 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/30 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/30 assert uncouple(JzKetCoupled(1, 0, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 1)))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/10 + \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/10 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/30 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/15 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/30 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/30 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/15 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/30 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(1, -1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 1)))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/30 + \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/30 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/20 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/20 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/20 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/20 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/5 def test_uncouple_symbolic(): assert uncouple(JzKetCoupled(j, m, (j1, j2) )) == \ Sum(CG(j1, m1, j2, m2, j, m) * TensorProduct(JzKet(j1, m1), JzKet(j2, m2)), (m1, -j1, j1), (m2, -j2, j2)) assert uncouple(JzKetCoupled(j, m, (j1, j2, j3) )) == \ Sum(CG(j1, m1, j2, m2, j1 + j2, m1 + m2) * CG(j1 + j2, m1 + m2, j3, m3, j, m) * TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3)), (m1, -j1, j1), (m2, -j2, j2), (m3, -j3, j3)) assert uncouple(JzKetCoupled(j, m, (j1, j2, j3), ((1, 3, j13), (1, 2, j)) )) == \ Sum(CG(j1, m1, j3, m3, j13, m1 + m3) * CG(j13, m1 + m3, j2, m2, j, m) * TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3)), (m1, -j1, j1), (m2, -j2, j2), (m3, -j3, j3)) assert uncouple(JzKetCoupled(j, m, (j1, j2, j3, j4) )) == \ Sum(CG(j1, m1, j2, m2, j1 + j2, m1 + m2) * CG(j1 + j2, m1 + m2, j3, m3, j1 + j2 + j3, m1 + m2 + m3) * CG(j1 + j2 + j3, m1 + m2 + m3, j4, m4, j, m) * TensorProduct( JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3), JzKet(j4, m4)), (m1, -j1, j1), (m2, -j2, j2), (m3, -j3, j3), (m4, -j4, j4)) assert uncouple(JzKetCoupled(j, m, (j1, j2, j3, j4), ((1, 3, j13), (2, 4, j24), (1, 2, j)) )) == \ Sum(CG(j1, m1, j3, m3, j13, m1 + m3) * CG(j2, m2, j4, m4, j24, m2 + m4) * CG(j13, m1 + m3, j24, m2 + m4, j, m) * TensorProduct( JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3), JzKet(j4, m4)), (m1, -j1, j1), (m2, -j2, j2), (m3, -j3, j3), (m4, -j4, j4)) def test_couple_2_states(): # j1=1/2, j2=1/2 assert JzKetCoupled(0, 0, (S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(0, 0, (S.Half, S.Half)) ))) assert JzKetCoupled(1, 1, (S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S.Half, S.Half)) ))) assert JzKetCoupled(1, 0, (S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S.Half, S.Half)) ))) assert JzKetCoupled(1, -1, (S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S.Half, S.Half)) ))) # j1=1, j2=1/2 assert JzKetCoupled(S.Half, S.Half, (1, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(S.Half, S.Half, (1, S.Half)) ))) assert JzKetCoupled(S.Half, Rational(-1, 2), (1, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(S.Half, Rational(-1, 2), (1, S.Half)) ))) assert JzKetCoupled(Rational(3, 2), Rational(3, 2), (1, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(3, 2), (1, S.Half)) ))) assert JzKetCoupled(Rational(3, 2), S.Half, (1, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), S.Half, (1, S.Half)) ))) assert JzKetCoupled(Rational(3, 2), Rational(-1, 2), (1, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-1, 2), (1, S.Half)) ))) assert JzKetCoupled(Rational(3, 2), Rational(-3, 2), (1, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-3, 2), (1, S.Half)) ))) # j1=1, j2=1 assert JzKetCoupled(0, 0, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(0, 0, (1, 1)) ))) assert JzKetCoupled(1, 1, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (1, 1)) ))) assert JzKetCoupled(1, 0, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (1, 1)) ))) assert JzKetCoupled(1, -1, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (1, 1)) ))) assert JzKetCoupled(2, 2, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 2, (1, 1)) ))) assert JzKetCoupled(2, 1, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 1, (1, 1)) ))) assert JzKetCoupled(2, 0, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 0, (1, 1)) ))) assert JzKetCoupled(2, -1, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, -1, (1, 1)) ))) assert JzKetCoupled(2, -2, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, -2, (1, 1)) ))) # j1=1/2, j2=3/2 assert JzKetCoupled(1, 1, (S.Half, Rational(3, 2))) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S.Half, Rational(3, 2))) ))) assert JzKetCoupled(1, 0, (S.Half, Rational(3, 2))) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S.Half, Rational(3, 2))) ))) assert JzKetCoupled(1, -1, (S.Half, Rational(3, 2))) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S.Half, Rational(3, 2))) ))) assert JzKetCoupled(2, 2, (S.Half, Rational(3, 2))) == \ expand(couple(uncouple( JzKetCoupled(2, 2, (S.Half, Rational(3, 2))) ))) assert JzKetCoupled(2, 1, (S.Half, Rational(3, 2))) == \ expand(couple(uncouple( JzKetCoupled(2, 1, (S.Half, Rational(3, 2))) ))) assert JzKetCoupled(2, 0, (S.Half, Rational(3, 2))) == \ expand(couple(uncouple( JzKetCoupled(2, 0, (S.Half, Rational(3, 2))) ))) assert JzKetCoupled(2, -1, (S.Half, Rational(3, 2))) == \ expand(couple(uncouple( JzKetCoupled(2, -1, (S.Half, Rational(3, 2))) ))) assert JzKetCoupled(2, -2, (S.Half, Rational(3, 2))) == \ expand(couple(uncouple( JzKetCoupled(2, -2, (S.Half, Rational(3, 2))) ))) def test_couple_3_states(): # Default coupling # j1=1/2, j2=1/2, j3=1/2 assert JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half)) ))) # j1=1/2, j2=1/2, j3=1 assert JzKetCoupled(0, 0, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(0, 0, (S.Half, S.Half, 1)) ))) assert JzKetCoupled(1, 1, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S.Half, S.Half, 1)) ))) assert JzKetCoupled(1, 0, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S.Half, S.Half, 1)) ))) assert JzKetCoupled(1, -1, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S.Half, S.Half, 1)) ))) assert JzKetCoupled(2, 2, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 2, (S.Half, S.Half, 1)) ))) assert JzKetCoupled(2, 1, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 1, (S.Half, S.Half, 1)) ))) assert JzKetCoupled(2, 0, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 0, (S.Half, S.Half, 1)) ))) assert JzKetCoupled(2, -1, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, -1, (S.Half, S.Half, 1)) ))) assert JzKetCoupled(2, -2, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, -2, (S.Half, S.Half, 1)) ))) # Couple j1+j3=j13, j13+j2=j # j1=1/2, j2=1/2, j3=1/2, j13=0 assert JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 3, 0), (1, 2, S.Half))) == \ expand(couple(uncouple( JzKetCoupled(S.Half, S.Half, (S.Half, S( 1)/2, S.Half), ((1, 3, 0), (1, 2, S.Half))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 3, 0), (1, 2, S.Half))) == \ expand(couple(uncouple( JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S( 1)/2, S.Half), ((1, 3, 0), (1, 2, S.Half))) ), ((1, 3), (1, 2)) )) # j1=1, j2=1/2, j3=1, j13=1 assert JzKetCoupled(S.Half, S.Half, (1, S.Half, 1), ((1, 3, 1), (1, 2, S.Half))) == \ expand(couple(uncouple( JzKetCoupled(S.Half, S.Half, ( 1, S.Half, 1), ((1, 3, 1), (1, 2, S.Half))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(S.Half, Rational(-1, 2), (1, S.Half, 1), ((1, 3, 1), (1, 2, S.Half))) == \ expand(couple(uncouple( JzKetCoupled(S.Half, Rational(-1, 2), ( 1, S.Half, 1), ((1, 3, 1), (1, 2, S.Half))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(Rational(3, 2), Rational(3, 2), (1, S.Half, 1), ((1, 3, 1), (1, 2, Rational(3, 2)))) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(3, 2), ( 1, S.Half, 1), ((1, 3, 1), (1, 2, Rational(3, 2)))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(Rational(3, 2), S.Half, (1, S.Half, 1), ((1, 3, 1), (1, 2, Rational(3, 2)))) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), S.Half, ( 1, S.Half, 1), ((1, 3, 1), (1, 2, Rational(3, 2)))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(Rational(3, 2), Rational(-1, 2), (1, S.Half, 1), ((1, 3, 1), (1, 2, Rational(3, 2)))) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-1, 2), ( 1, S.Half, 1), ((1, 3, 1), (1, 2, Rational(3, 2)))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(Rational(3, 2), Rational(-3, 2), (1, S.Half, 1), ((1, 3, 1), (1, 2, Rational(3, 2)))) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-3, 2), ( 1, S.Half, 1), ((1, 3, 1), (1, 2, Rational(3, 2)))) ), ((1, 3), (1, 2)) )) def test_couple_4_states(): # Default coupling # j1=1/2, j2=1/2, j3=1/2, j4=1/2 assert JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half)) == \ expand(couple( uncouple( JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half)) == \ expand(couple( uncouple( JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(2, 2, (S.Half, S.Half, S.Half, S.Half)) == \ expand(couple( uncouple( JzKetCoupled(2, 2, (S.Half, S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(2, 1, (S.Half, S.Half, S.Half, S.Half)) == \ expand(couple( uncouple( JzKetCoupled(2, 1, (S.Half, S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.Half)) == \ expand(couple( uncouple( JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(2, -1, (S.Half, S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(2, -1, (S.Half, S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(2, -2, (S.Half, S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(2, -2, (S.Half, S.Half, S.Half, S.Half)) ))) # j1=1/2, j2=1/2, j3=1/2, j4=1 assert JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(5, 2), Rational(5, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(5, 2), Rational(5, 2), (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(5, 2), Rational(-5, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(5, 2), Rational(-5, 2), (S.Half, S.Half, S.Half, 1)) ))) # Coupling j1+j3=j13, j2+j4=j24, j13+j24=j # j1=1/2, j2=1/2, j3=1/2, j4=1/2, j13=1, j24=0 assert JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) ), ((1, 3), (2, 4), (1, 2)) )) # j1=1/2, j2=1/2, j3=1/2, j4=1, j13=1, j24=1/2 assert JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, S.Half)) ) == \ expand(couple(uncouple( JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, S.Half)) )), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, S.Half)) ) == \ expand(couple(uncouple( JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, S.Half)) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, Rational(3, 2))) ) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, Rational(3, 2))) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, Rational(3, 2))) ) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, Rational(3, 2))) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, Rational(3, 2))) ) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, Rational(3, 2))) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, Rational(3, 2))) ) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, Rational(3, 2))) ) ), ((1, 3), (2, 4), (1, 2)) )) # j1=1/2, j2=1, j3=1/2, j4=1, j13=0, j24=1 assert JzKetCoupled(1, 1, (S.Half, 1, S.Half, 1), ((1, 3, 0), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S.Half, 1, S.Half, 1), ( (1, 3, 0), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, 0, (S.Half, 1, S.Half, 1), ((1, 3, 0), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S.Half, 1, S.Half, 1), ( (1, 3, 0), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, -1, (S.Half, 1, S.Half, 1), ((1, 3, 0), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S.Half, 1, S.Half, 1), ( (1, 3, 0), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) # j1=1/2, j2=1, j3=1/2, j4=1, j13=1, j24=1 assert JzKetCoupled(0, 0, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 0)) ) == \ expand(couple(uncouple( JzKetCoupled(0, 0, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 0))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, 1, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, 0, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, -1, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(2, 2, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 2)) ) == \ expand(couple(uncouple( JzKetCoupled(2, 2, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 2))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(2, 1, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 2)) ) == \ expand(couple(uncouple( JzKetCoupled(2, 1, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 2))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(2, 0, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 2)) ) == \ expand(couple(uncouple( JzKetCoupled(2, 0, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 2))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(2, -1, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 2)) ) == \ expand(couple(uncouple( JzKetCoupled(2, -1, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 2))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(2, -2, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 2)) ) == \ expand(couple(uncouple( JzKetCoupled(2, -2, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 2))) ), ((1, 3), (2, 4), (1, 2)) )) def test_couple_2_states_numerical(): # j1=1/2, j2=1/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half))) == \ JzKetCoupled(1, 1, (S.Half, S.Half)) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(2)*JzKetCoupled(0, 0, (S( 1)/2, S.Half))/2 + sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half))/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))) == \ -sqrt(2)*JzKetCoupled(0, 0, (S( 1)/2, S.Half))/2 + sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half))/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ JzKetCoupled(1, -1, (S.Half, S.Half)) # j1=1, j2=1/2 assert couple(TensorProduct(JzKet(1, 1), JzKet(S.Half, S.Half))) == \ JzKetCoupled(Rational(3, 2), Rational(3, 2), (1, S.Half)) assert couple(TensorProduct(JzKet(1, 1), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (1, S.Half))/3 + sqrt( 3)*JzKetCoupled(Rational(3, 2), S.Half, (1, S.Half))/3 assert couple(TensorProduct(JzKet(1, 0), JzKet(S.Half, S.Half))) == \ -sqrt(3)*JzKetCoupled(S.Half, S.Half, (1, S.Half))/3 + \ sqrt(6)*JzKetCoupled(Rational(3, 2), S.Half, (1, S.Half))/3 assert couple(TensorProduct(JzKet(1, 0), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(3)*JzKetCoupled(S.Half, Rational(-1, 2), (1, S.Half))/3 + \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (1, S.Half))/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(S.Half, S.Half))) == \ -sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (1, S( 1)/2))/3 + sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (1, S.Half))/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(S.Half, Rational(-1, 2)))) == \ JzKetCoupled(Rational(3, 2), Rational(-3, 2), (1, S.Half)) # j1=1, j2=1 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1))) == \ JzKetCoupled(2, 2, (1, 1)) assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0))) == \ sqrt(2)*JzKetCoupled( 1, 1, (1, 1))/2 + sqrt(2)*JzKetCoupled(2, 1, (1, 1))/2 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ sqrt(3)*JzKetCoupled(0, 0, (1, 1))/3 + sqrt(2)*JzKetCoupled( 1, 0, (1, 1))/2 + sqrt(6)*JzKetCoupled(2, 0, (1, 1))/6 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1))) == \ -sqrt(2)*JzKetCoupled( 1, 1, (1, 1))/2 + sqrt(2)*JzKetCoupled(2, 1, (1, 1))/2 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0))) == \ -sqrt(3)*JzKetCoupled( 0, 0, (1, 1))/3 + sqrt(6)*JzKetCoupled(2, 0, (1, 1))/3 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled( 1, -1, (1, 1))/2 + sqrt(2)*JzKetCoupled(2, -1, (1, 1))/2 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(0, 0, (1, 1))/3 - sqrt(2)*JzKetCoupled( 1, 0, (1, 1))/2 + sqrt(6)*JzKetCoupled(2, 0, (1, 1))/6 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0))) == \ -sqrt(2)*JzKetCoupled( 1, -1, (1, 1))/2 + sqrt(2)*JzKetCoupled(2, -1, (1, 1))/2 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1))) == \ JzKetCoupled(2, -2, (1, 1)) # j1=3/2, j2=1/2 assert couple(TensorProduct(JzKet(Rational(3, 2), Rational(3, 2)), JzKet(S.Half, S.Half))) == \ JzKetCoupled(2, 2, (Rational(3, 2), S.Half)) assert couple(TensorProduct(JzKet(Rational(3, 2), Rational(3, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(3)*JzKetCoupled( 1, 1, (Rational(3, 2), S.Half))/2 + JzKetCoupled(2, 1, (Rational(3, 2), S.Half))/2 assert couple(TensorProduct(JzKet(Rational(3, 2), S.Half), JzKet(S.Half, S.Half))) == \ -JzKetCoupled(1, 1, (S( 3)/2, S.Half))/2 + sqrt(3)*JzKetCoupled(2, 1, (Rational(3, 2), S.Half))/2 assert couple(TensorProduct(JzKet(Rational(3, 2), S.Half), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(2)*JzKetCoupled(1, 0, (S( 3)/2, S.Half))/2 + sqrt(2)*JzKetCoupled(2, 0, (Rational(3, 2), S.Half))/2 assert couple(TensorProduct(JzKet(Rational(3, 2), Rational(-1, 2)), JzKet(S.Half, S.Half))) == \ -sqrt(2)*JzKetCoupled(1, 0, (S( 3)/2, S.Half))/2 + sqrt(2)*JzKetCoupled(2, 0, (Rational(3, 2), S.Half))/2 assert couple(TensorProduct(JzKet(Rational(3, 2), Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ JzKetCoupled(1, -1, (S( 3)/2, S.Half))/2 + sqrt(3)*JzKetCoupled(2, -1, (Rational(3, 2), S.Half))/2 assert couple(TensorProduct(JzKet(Rational(3, 2), Rational(-3, 2)), JzKet(S.Half, S.Half))) == \ -sqrt(3)*JzKetCoupled(1, -1, (Rational(3, 2), S.Half))/2 + \ JzKetCoupled(2, -1, (Rational(3, 2), S.Half))/2 assert couple(TensorProduct(JzKet(Rational(3, 2), Rational(-3, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ JzKetCoupled(2, -2, (Rational(3, 2), S.Half)) def test_couple_3_states_numerical(): # Default coupling # j1=1/2,j2=1/2,j3=1/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half))) == \ JzKetCoupled(Rational(3, 2), S( 3)/2, (S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2))) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half)) )/3 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.One/ 2), ((1, 2, 1), (1, 3, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half)) )/2 - \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.One/ 2), ((1, 2, 1), (1, 3, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half)) )/2 + \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.One /2), ((1, 2, 1), (1, 3, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half))) == \ -sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half)) )/2 - \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.One/ 2), ((1, 2, 1), (1, 3, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))) == \ -sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half)) )/2 + \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.One /2), ((1, 2, 1), (1, 3, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))) == \ -sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half)) )/3 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.One /2), ((1, 2, 1), (1, 3, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ JzKetCoupled(Rational(3, 2), -S( 3)/2, (S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2))) ) # j1=S.Half, j2=S.Half, j3=1 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1))) == \ JzKetCoupled(2, 2, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0))) == \ sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(2)*JzKetCoupled( 2, 1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1))) == \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 0)) )/3 + \ sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled( 2, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 2, 0), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(0, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 0)) )/6 + \ sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 2, 0), (1, 3, 1)) )/2 + \ sqrt(3)*JzKetCoupled( 2, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/3 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 2, 0), (1, 3, 1)) )/2 + \ JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1))) == \ -sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 2, 0), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(0, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 0)) )/6 - \ sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 2, 0), (1, 3, 1)) )/2 + \ sqrt(3)*JzKetCoupled( 2, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1))) == \ -sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 2, 0), (1, 3, 1)) )/2 + \ JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 0)) )/3 - \ sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled( 2, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))) == \ -sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(2)*JzKetCoupled( 2, -1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))) == \ JzKetCoupled(2, -2, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) ) # j1=S.Half, j2=1, j3=1 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1))) == \ JzKetCoupled( Rational(5, 2), Rational(5, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))) == \ sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(S( 5)/2, Rational(3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/2 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 - \ 2*sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(S( 5)/2, Rational(3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))) == \ JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(S( 5)/2, S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, S.Half)) )/3 + \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/3 + \ JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 + \ 4*sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))) == \ -2*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 - \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))) == \ -sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, S.Half)) )/3 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/3 + \ 2*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))) == \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))) == \ -sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, Rational(3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))) == \ -sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, S.Half)) )/3 - \ JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/3 - \ 2*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))) == \ -2*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 + \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, S.Half)) )/3 + \ JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/3 - \ JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 - \ 4*sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))) == \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))) == \ -sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 + \ 2*sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/2 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))) == \ -sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1))) == \ JzKetCoupled(S( 5)/2, Rational(-5, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) ) # j1=1, j2=1, j3=1 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 1))) == \ JzKetCoupled(3, 3, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) ) assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0))) == \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))) == \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/5 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))) == \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 + \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1))) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 + \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/6 + \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 - \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/30 + \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 + \ sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 - \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/15 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/3 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))) == \ sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 + \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/30 + \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 1))) == \ -sqrt(2)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 0))) == \ -JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 - \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 - \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/6 + \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))) == \ -sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/15 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 0))) == \ -sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 - \ 2*sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/15 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/5 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))) == \ -sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/15 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 - \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/6 - \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 0))) == \ -JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 + \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 + \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/30 - \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0))) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 + \ sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 - \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/15 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/3 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, -1))) == \ sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 - \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/30 - \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1))) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 + \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/6 - \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))) == \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 - \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, -1))) == \ -sqrt(2)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))) == \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/5 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, -1))) == \ JzKetCoupled(3, -3, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) ) # j1=S.Half, j2=S.Half, j3=Rational(3, 2) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(3, 2)))) == \ JzKetCoupled(Rational(5, 2), S( 5)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), S.Half))) == \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/5 + \ sqrt(15)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S.Half, S(3) /2), ((1, 2, 1), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(-1, 2)))) == \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, S.Half)) )/6 + \ 2*sqrt(30)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/15 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(-3, 2)))) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, S.Half)) )/2 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), -S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(3, 2)))) == \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 0), (1, 3, Rational(3, 2))) )/2 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S.Half, S(3)/ 2), ((1, 2, 1), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), S.Half))) == \ -sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, S.Half)) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 0), (1, 3, Rational(3, 2))) )/2 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/30 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(-1, 2)))) == \ -sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, S.Half)) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 0), (1, 3, Rational(3, 2))) )/2 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/30 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), -S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(-3, 2)))) == \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 0), (1, 3, Rational(3, 2))) )/2 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S.Half, S(3) /2), ((1, 2, 1), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(3, 2)))) == \ -sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 0), (1, 3, Rational(3, 2))) )/2 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S.Half, S(3)/ 2), ((1, 2, 1), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), S.Half))) == \ -sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 0), (1, 3, Rational(3, 2))) )/2 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/30 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(-1, 2)))) == \ -sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 0), (1, 3, Rational(3, 2))) )/2 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/30 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), -S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(-3, 2)))) == \ -sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 0), (1, 3, Rational(3, 2))) )/2 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S.Half, S(3) /2), ((1, 2, 1), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(3, 2)))) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, S.Half)) )/2 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), S.Half))) == \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, S.Half)) )/6 - \ 2*sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/15 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), -S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(-1, 2)))) == \ -sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/5 + \ sqrt(15)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S.Half, S( 3)/2), ((1, 2, 1), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(-3, 2)))) == \ JzKetCoupled(Rational(5, 2), -S( 5)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) ) # Couple j1 to j3 # j1=1/2, j2=1/2, j3=1/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(Rational(3, 2), S( 3)/2, (S.Half, S.Half, S.Half), ((1, 3, 1), (1, 2, Rational(3, 2))) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 3, 0), (1, 2, S.Half)) )/2 - \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 3, 1), (1, 2, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.One/ 2), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 3, 1), (1, 2, S.Half)) )/3 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.One/ 2), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 3, 0), (1, 2, S.Half)) )/2 + \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 3, 1), (1, 2, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.One /2), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 3, 0), (1, 2, S.Half)) )/2 - \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 3, 1), (1, 2, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.One/ 2), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 3, 1), (1, 2, S.Half)) )/3 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.One /2), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 3, 0), (1, 2, S.Half)) )/2 + \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 3, 1), (1, 2, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.One /2), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ) == \ JzKetCoupled(Rational(3, 2), -S( 3)/2, (S.Half, S.Half, S.Half), ((1, 3, 1), (1, 2, Rational(3, 2))) ) # j1=1/2, j2=1/2, j3=1 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(2, 2, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )/3 - \ sqrt(6)*JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/6 + \ sqrt(2)*JzKetCoupled( 2, 1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 0)) )/3 + \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )/3 - \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/6 + \ sqrt(6)*JzKetCoupled( 2, 0, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/2 + \ JzKetCoupled(2, 1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(0, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 0)) )/6 + \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )/6 + \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/3 + \ sqrt(3)*JzKetCoupled( 2, 0, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/3 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )/3 + \ sqrt(3)*JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/6 + \ JzKetCoupled( 2, -1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )/3 - \ sqrt(3)*JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/6 + \ JzKetCoupled(2, 1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(0, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 0)) )/6 - \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )/6 - \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/3 + \ sqrt(3)*JzKetCoupled( 2, 0, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/2 + \ JzKetCoupled( 2, -1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 0)) )/3 - \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )/3 + \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/6 + \ sqrt(6)*JzKetCoupled( 2, 0, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )/3 + \ sqrt(6)*JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/6 + \ sqrt(2)*JzKetCoupled( 2, -1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(2, -2, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) ) # j 1=1/2, j 2=1, j 3=1 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled( Rational(5, 2), Rational(5, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 - \ 2*sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(S( 5)/2, Rational(3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -2*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 - \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(S( 5)/2, Rational(3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(S( 5)/2, S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, S.Half)) )/3 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/3 + \ 2*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/2 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, S.Half)) )/3 + \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/3 + \ JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 + \ 4*sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, Rational(3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, S.Half)) )/3 + \ JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/3 - \ JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 - \ 4*sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/2 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, S.Half)) )/3 - \ JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/3 - \ 2*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -2*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 + \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 + \ 2*sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(S( 5)/2, Rational(-5, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) ) # j1=1, 1, 1 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(3, 3, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) ) assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 - \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/30 + \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 + \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 + \ sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 - \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/15 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/3 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/5 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 + \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/6 + \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 + \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/30 + \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/15 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 - \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/6 - \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 - \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 - \ 2*sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/15 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/5 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 + \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 - \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/6 + \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/15 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 + \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/30 - \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 + \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/6 - \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/5 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 + \ sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 - \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/15 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/3 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 - \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 - \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/30 - \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(3, -3, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) ) # j1=1/2, j2=1/2, j3=3/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(3, 2))), ((1, 3), (1, 2)) ) == \ JzKetCoupled(Rational(5, 2), S( 5)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), S.Half)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/2 - \ sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/10 + \ sqrt(15)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S.Half, S(3) /2), ((1, 3, 2), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(-1, 2))), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/5 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(-3, 2))), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, S.Half)) )/2 + \ JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/2 - \ sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/10 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), -S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(3, 2))), ((1, 3), (1, 2)) ) == \ 2*sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/5 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S.Half, S(3)/ 2), ((1, 3, 2), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), S.Half)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/6 + \ 3*sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/10 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(-1, 2))), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/5 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), -S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(-3, 2))), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/2 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S.Half, S(3) /2), ((1, 3, 2), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(3, 2))), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/2 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S.Half, S(3)/ 2), ((1, 3, 2), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), S.Half)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, S.Half)) )/6 - \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/5 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(-1, 2))), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, S.Half)) )/6 - \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/6 - \ 3*sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/10 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), -S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(-3, 2))), ((1, 3), (1, 2)) ) == \ -2*sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/5 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S.Half, S(3) /2), ((1, 3, 2), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(3, 2))), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, S.Half)) )/2 - \ JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/2 + \ sqrt(15)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/10 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), S.Half)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, S.Half)) )/6 - \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/5 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), -S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(-1, 2))), ((1, 3), (1, 2)) ) == \ -JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/2 + \ sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/10 + \ sqrt(15)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S.Half, S( 3)/2), ((1, 3, 2), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(-3, 2))), ((1, 3), (1, 2)) ) == \ JzKetCoupled(Rational(5, 2), -S( 5)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) ) def test_couple_4_states_numerical(): # Default coupling # j1=1/2, j2=1/2, j3=1/2, j4=1/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half))) == \ JzKetCoupled(2, 2, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(3)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/2 + \ JzKetCoupled(2, 1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))) == \ sqrt(6)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/3 - \ sqrt(3)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ JzKetCoupled(2, 1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 0)) )/3 + \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/3 + \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half))) == \ sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 1)) )/2 - \ sqrt(6)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/6 - \ sqrt(3)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ JzKetCoupled(2, 1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))) == \ JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 0)))/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 0)))/6 + \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 1)))/2 - \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)))/6 + \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)))/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)))/6 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))) == \ -JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 0)) )/6 + \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 1)) )/2 + \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/6 - \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 1)) )/2 + \ sqrt(6)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/6 + \ sqrt(3)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ JzKetCoupled(2, -1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half))) == \ -sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 1)) )/2 - \ sqrt(6)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/6 - \ sqrt(3)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ JzKetCoupled(2, 1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))) == \ -JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 0)) )/6 - \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 1)) )/2 - \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))) == \ JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 0)) )/6 - \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 1)) )/2 + \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/6 - \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ -sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 1)) )/2 + \ sqrt(6)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/6 + \ sqrt(3)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ JzKetCoupled(2, -1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half))) == \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 0)) )/3 - \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/3 - \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))) == \ -sqrt(6)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/3 + \ sqrt(3)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ JzKetCoupled(2, -1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))) == \ -sqrt(3)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/2 + \ JzKetCoupled(2, -1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ JzKetCoupled(2, -2, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) ) # j1=S.Half, S.Half, S.Half, 1 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1))) == \ JzKetCoupled(Rational(5, 2), Rational(5, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0))) == \ sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/2 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))) == \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/3 - \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/3 + \ 2*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))) == \ 2*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 + \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/2 - \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0))) == \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/6 - \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/3 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 - \ JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1))) == \ sqrt(3)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, S.Half)) )/3 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/6 + \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 + \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))) == \ -sqrt(3)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, S.Half)) )/3 - \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/6 + \ sqrt(6)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 - \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/6 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/3 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 + \ JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/2 + \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1))) == \ -sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/2 - \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/6 - \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/3 - \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 - \ JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1))) == \ -sqrt(3)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, S.Half)) )/3 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/6 - \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 + \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, S.Half)) )/3 - \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/6 - \ sqrt(6)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 - \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))) == \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/6 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/3 - \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 + \ JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))) == \ -sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/2 + \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1))) == \ 2*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 - \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0))) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/3 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/3 - \ 2*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1))) == \ -sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/2 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))) == \ -sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))) == \ JzKetCoupled(Rational(5, 2), Rational(-5, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) ) # Couple j1 to j2, j3 to j4 # j1=1/2, j2=1/2, j3=1/2, j4=1/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(2, 2, (S( 1)/2, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/3 + \ sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.One/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 0), (1, 3, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/6 + \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.One/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 2), (3, 4), (1, 3)) ) == \ -JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 0), (1, 3, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/6 + \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.One/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 2), (3, 4), (1, 3)) ) == \ -JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 0), (1, 3, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/6 - \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.One/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 0), (1, 3, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/6 - \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.One/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/3 - \ sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.One/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 - \ JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 - \ JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(2, -2, (S( 1)/2, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) ) # j1=S.Half, S.Half, S.Half, 1 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(Rational(5, 2), Rational(5, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 + \ 2*sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ 2*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 + \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/3 + \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/3 - \ JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 + \ 4*sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/2 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/2 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, S.Half), (1, 3, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/6 - \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/3 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/3 + \ JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(3)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, S.Half), (1, 3, S.Half)) )/3 + \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/6 + \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/30 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(3)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, S.Half), (1, 3, S.Half)) )/3 + \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/6 + \ sqrt(6)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/30 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, S.Half), (1, 3, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/6 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/3 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/3 - \ JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/2 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/2 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, S.Half), (1, 3, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/6 - \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/3 - \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/3 + \ JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(3)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, S.Half), (1, 3, S.Half)) )/3 + \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/6 - \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/30 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(3)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, S.Half), (1, 3, S.Half)) )/3 + \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/6 - \ sqrt(6)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/30 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, S.Half), (1, 3, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/6 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/3 - \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/3 - \ JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/2 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/2 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/3 + \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/3 + \ JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 - \ 4*sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ 2*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 - \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 - \ 2*sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(Rational(5, 2), Rational(-5, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) ) def test_couple_symbolic(): assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ Sum(CG(j1, m1, j2, m2, j, m1 + m2) * JzKetCoupled(j, m1 + m2, ( j1, j2)), (j, m1 + m2, j1 + j2)) assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3))) == \ Sum(CG(j1, m1, j2, m2, j12, m1 + m2) * CG(j12, m1 + m2, j3, m3, j, m1 + m2 + m3) * JzKetCoupled(j, m1 + m2 + m3, (j1, j2, j3), ((1, 2, j12), (1, 3, j)) ), (j12, m1 + m2, j1 + j2), (j, m1 + m2 + m3, j12 + j3)) assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3)), ((1, 3), (1, 2)) ) == \ Sum(CG(j1, m1, j3, m3, j13, m1 + m3) * CG(j13, m1 + m3, j2, m2, j, m1 + m2 + m3) * JzKetCoupled(j, m1 + m2 + m3, (j1, j2, j3), ((1, 3, j13), (1, 2, j)) ), (j13, m1 + m3, j1 + j3), (j, m1 + m2 + m3, j13 + j2)) assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3), JzKet(j4, m4))) == \ Sum(CG(j1, m1, j2, m2, j12, m1 + m2) * CG(j12, m1 + m2, j3, m3, j123, m1 + m2 + m3) * CG(j123, m1 + m2 + m3, j4, m4, j, m1 + m2 + m3 + m4) * JzKetCoupled(j, m1 + m2 + m3 + m4, ( j1, j2, j3, j4), ((1, 2, j12), (1, 3, j123), (1, 4, j)) ), (j12, m1 + m2, j1 + j2), (j123, m1 + m2 + m3, j12 + j3), (j, m1 + m2 + m3 + m4, j123 + j4)) assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3), JzKet(j4, m4)), ((1, 2), (3, 4), (1, 3)) ) == \ Sum(CG(j1, m1, j2, m2, j12, m1 + m2) * CG(j3, m3, j4, m4, j34, m3 + m4) * CG(j12, m1 + m2, j34, m3 + m4, j, m1 + m2 + m3 + m4) * JzKetCoupled(j, m1 + m2 + m3 + m4, ( j1, j2, j3, j4), ((1, 2, j12), (3, 4, j34), (1, 3, j)) ), (j12, m1 + m2, j1 + j2), (j34, m3 + m4, j3 + j4), (j, m1 + m2 + m3 + m4, j12 + j34)) assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3), JzKet(j4, m4)), ((1, 3), (1, 4), (1, 2)) ) == \ Sum(CG(j1, m1, j3, m3, j13, m1 + m3) * CG(j13, m1 + m3, j4, m4, j134, m1 + m3 + m4) * CG(j134, m1 + m3 + m4, j2, m2, j, m1 + m2 + m3 + m4) * JzKetCoupled(j, m1 + m2 + m3 + m4, ( j1, j2, j3, j4), ((1, 3, j13), (1, 4, j134), (1, 2, j)) ), (j13, m1 + m3, j1 + j3), (j134, m1 + m3 + m4, j13 + j4), (j, m1 + m2 + m3 + m4, j134 + j2)) def test_innerproduct(): assert InnerProduct(JzBra(1, 1), JzKet(1, 1)).doit() == 1 assert InnerProduct( JzBra(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))).doit() == 0 assert InnerProduct(JzBra(j, m), JzKet(j, m)).doit() == 1 assert InnerProduct(JzBra(1, 0), JyKet(1, 1)).doit() == I/sqrt(2) assert InnerProduct( JxBra(S.Half, S.Half), JzKet(S.Half, S.Half)).doit() == -sqrt(2)/2 assert InnerProduct(JyBra(1, 1), JzKet(1, 1)).doit() == S.Half assert InnerProduct(JxBra(1, -1), JyKet(1, 1)).doit() == 0 def test_rotation_small_d(): # Symbolic tests # j = 1/2 assert Rotation.d(S.Half, S.Half, S.Half, beta).doit() == cos(beta/2) assert Rotation.d(S.Half, S.Half, Rational(-1, 2), beta).doit() == -sin(beta/2) assert Rotation.d(S.Half, Rational(-1, 2), S.Half, beta).doit() == sin(beta/2) assert Rotation.d(S.Half, Rational(-1, 2), Rational(-1, 2), beta).doit() == cos(beta/2) # j = 1 assert Rotation.d(1, 1, 1, beta).doit() == (1 + cos(beta))/2 assert Rotation.d(1, 1, 0, beta).doit() == -sin(beta)/sqrt(2) assert Rotation.d(1, 1, -1, beta).doit() == (1 - cos(beta))/2 assert Rotation.d(1, 0, 1, beta).doit() == sin(beta)/sqrt(2) assert Rotation.d(1, 0, 0, beta).doit() == cos(beta) assert Rotation.d(1, 0, -1, beta).doit() == -sin(beta)/sqrt(2) assert Rotation.d(1, -1, 1, beta).doit() == (1 - cos(beta))/2 assert Rotation.d(1, -1, 0, beta).doit() == sin(beta)/sqrt(2) assert Rotation.d(1, -1, -1, beta).doit() == (1 + cos(beta))/2 # j = 3/2 assert Rotation.d(S( 3)/2, Rational(3, 2), Rational(3, 2), beta).doit() == (3*cos(beta/2) + cos(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), S( 3)/2, S.Half, beta).doit() == -sqrt(3)*(sin(beta/2) + sin(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), S( 3)/2, Rational(-1, 2), beta).doit() == sqrt(3)*(cos(beta/2) - cos(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), S( 3)/2, Rational(-3, 2), beta).doit() == (-3*sin(beta/2) + sin(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), S( 1)/2, Rational(3, 2), beta).doit() == sqrt(3)*(sin(beta/2) + sin(beta*Rational(3, 2)))/4 assert Rotation.d(S( 3)/2, S.Half, S.Half, beta).doit() == (cos(beta/2) + 3*cos(beta*Rational(3, 2)))/4 assert Rotation.d(S( 3)/2, S.Half, Rational(-1, 2), beta).doit() == (sin(beta/2) - 3*sin(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), S( 1)/2, Rational(-3, 2), beta).doit() == sqrt(3)*(cos(beta/2) - cos(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), -S( 1)/2, Rational(3, 2), beta).doit() == sqrt(3)*(cos(beta/2) - cos(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), -S( 1)/2, S.Half, beta).doit() == (-sin(beta/2) + 3*sin(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), -S( 1)/2, Rational(-1, 2), beta).doit() == (cos(beta/2) + 3*cos(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), -S( 1)/2, Rational(-3, 2), beta).doit() == -sqrt(3)*(sin(beta/2) + sin(beta*Rational(3, 2)))/4 assert Rotation.d(S( 3)/2, Rational(-3, 2), Rational(3, 2), beta).doit() == (3*sin(beta/2) - sin(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), -S( 3)/2, S.Half, beta).doit() == sqrt(3)*(cos(beta/2) - cos(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), -S( 3)/2, Rational(-1, 2), beta).doit() == sqrt(3)*(sin(beta/2) + sin(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), -S( 3)/2, Rational(-3, 2), beta).doit() == (3*cos(beta/2) + cos(beta*Rational(3, 2)))/4 # j = 2 assert Rotation.d(2, 2, 2, beta).doit() == (3 + 4*cos(beta) + cos(2*beta))/8 assert Rotation.d(2, 2, 1, beta).doit() == -((cos(beta) + 1)*sin(beta))/2 assert Rotation.d(2, 2, 0, beta).doit() == sqrt(6)*sin(beta)**2/4 assert Rotation.d(2, 2, -1, beta).doit() == (cos(beta) - 1)*sin(beta)/2 assert Rotation.d(2, 2, -2, beta).doit() == (3 - 4*cos(beta) + cos(2*beta))/8 assert Rotation.d(2, 1, 2, beta).doit() == (cos(beta) + 1)*sin(beta)/2 assert Rotation.d(2, 1, 1, beta).doit() == (cos(beta) + cos(2*beta))/2 assert Rotation.d(2, 1, 0, beta).doit() == -sqrt(6)*sin(2*beta)/4 assert Rotation.d(2, 1, -1, beta).doit() == (cos(beta) - cos(2*beta))/2 assert Rotation.d(2, 1, -2, beta).doit() == (cos(beta) - 1)*sin(beta)/2 assert Rotation.d(2, 0, 2, beta).doit() == sqrt(6)*sin(beta)**2/4 assert Rotation.d(2, 0, 1, beta).doit() == sqrt(6)*sin(2*beta)/4 assert Rotation.d(2, 0, 0, beta).doit() == (1 + 3*cos(2*beta))/4 assert Rotation.d(2, 0, -1, beta).doit() == -sqrt(6)*sin(2*beta)/4 assert Rotation.d(2, 0, -2, beta).doit() == sqrt(6)*sin(beta)**2/4 assert Rotation.d(2, -1, 2, beta).doit() == (2*sin(beta) - sin(2*beta))/4 assert Rotation.d(2, -1, 1, beta).doit() == (cos(beta) - cos(2*beta))/2 assert Rotation.d(2, -1, 0, beta).doit() == sqrt(6)*sin(2*beta)/4 assert Rotation.d(2, -1, -1, beta).doit() == (cos(beta) + cos(2*beta))/2 assert Rotation.d(2, -1, -2, beta).doit() == -((cos(beta) + 1)*sin(beta))/2 assert Rotation.d(2, -2, 2, beta).doit() == (3 - 4*cos(beta) + cos(2*beta))/8 assert Rotation.d(2, -2, 1, beta).doit() == (2*sin(beta) - sin(2*beta))/4 assert Rotation.d(2, -2, 0, beta).doit() == sqrt(6)*sin(beta)**2/4 assert Rotation.d(2, -2, -1, beta).doit() == (cos(beta) + 1)*sin(beta)/2 assert Rotation.d(2, -2, -2, beta).doit() == (3 + 4*cos(beta) + cos(2*beta))/8 # Numerical tests # j = 1/2 assert Rotation.d(S.Half, S.Half, S.Half, pi/2).doit() == sqrt(2)/2 assert Rotation.d(S.Half, S.Half, Rational(-1, 2), pi/2).doit() == -sqrt(2)/2 assert Rotation.d(S.Half, Rational(-1, 2), S.Half, pi/2).doit() == sqrt(2)/2 assert Rotation.d(S.Half, Rational(-1, 2), Rational(-1, 2), pi/2).doit() == sqrt(2)/2 # j = 1 assert Rotation.d(1, 1, 1, pi/2).doit() == S.Half assert Rotation.d(1, 1, 0, pi/2).doit() == -sqrt(2)/2 assert Rotation.d(1, 1, -1, pi/2).doit() == S.Half assert Rotation.d(1, 0, 1, pi/2).doit() == sqrt(2)/2 assert Rotation.d(1, 0, 0, pi/2).doit() == 0 assert Rotation.d(1, 0, -1, pi/2).doit() == -sqrt(2)/2 assert Rotation.d(1, -1, 1, pi/2).doit() == S.Half assert Rotation.d(1, -1, 0, pi/2).doit() == sqrt(2)/2 assert Rotation.d(1, -1, -1, pi/2).doit() == S.Half # j = 3/2 assert Rotation.d(Rational(3, 2), Rational(3, 2), Rational(3, 2), pi/2).doit() == sqrt(2)/4 assert Rotation.d(Rational(3, 2), Rational(3, 2), S.Half, pi/2).doit() == -sqrt(6)/4 assert Rotation.d(Rational(3, 2), Rational(3, 2), Rational(-1, 2), pi/2).doit() == sqrt(6)/4 assert Rotation.d(Rational(3, 2), Rational(3, 2), Rational(-3, 2), pi/2).doit() == -sqrt(2)/4 assert Rotation.d(Rational(3, 2), S.Half, Rational(3, 2), pi/2).doit() == sqrt(6)/4 assert Rotation.d(Rational(3, 2), S.Half, S.Half, pi/2).doit() == -sqrt(2)/4 assert Rotation.d(Rational(3, 2), S.Half, Rational(-1, 2), pi/2).doit() == -sqrt(2)/4 assert Rotation.d(Rational(3, 2), S.Half, Rational(-3, 2), pi/2).doit() == sqrt(6)/4 assert Rotation.d(Rational(3, 2), Rational(-1, 2), Rational(3, 2), pi/2).doit() == sqrt(6)/4 assert Rotation.d(Rational(3, 2), Rational(-1, 2), S.Half, pi/2).doit() == sqrt(2)/4 assert Rotation.d(Rational(3, 2), Rational(-1, 2), Rational(-1, 2), pi/2).doit() == -sqrt(2)/4 assert Rotation.d(Rational(3, 2), Rational(-1, 2), Rational(-3, 2), pi/2).doit() == -sqrt(6)/4 assert Rotation.d(Rational(3, 2), Rational(-3, 2), Rational(3, 2), pi/2).doit() == sqrt(2)/4 assert Rotation.d(Rational(3, 2), Rational(-3, 2), S.Half, pi/2).doit() == sqrt(6)/4 assert Rotation.d(Rational(3, 2), Rational(-3, 2), Rational(-1, 2), pi/2).doit() == sqrt(6)/4 assert Rotation.d(Rational(3, 2), Rational(-3, 2), Rational(-3, 2), pi/2).doit() == sqrt(2)/4 # j = 2 assert Rotation.d(2, 2, 2, pi/2).doit() == Rational(1, 4) assert Rotation.d(2, 2, 1, pi/2).doit() == Rational(-1, 2) assert Rotation.d(2, 2, 0, pi/2).doit() == sqrt(6)/4 assert Rotation.d(2, 2, -1, pi/2).doit() == Rational(-1, 2) assert Rotation.d(2, 2, -2, pi/2).doit() == Rational(1, 4) assert Rotation.d(2, 1, 2, pi/2).doit() == S.Half assert Rotation.d(2, 1, 1, pi/2).doit() == Rational(-1, 2) assert Rotation.d(2, 1, 0, pi/2).doit() == 0 assert Rotation.d(2, 1, -1, pi/2).doit() == S.Half assert Rotation.d(2, 1, -2, pi/2).doit() == Rational(-1, 2) assert Rotation.d(2, 0, 2, pi/2).doit() == sqrt(6)/4 assert Rotation.d(2, 0, 1, pi/2).doit() == 0 assert Rotation.d(2, 0, 0, pi/2).doit() == Rational(-1, 2) assert Rotation.d(2, 0, -1, pi/2).doit() == 0 assert Rotation.d(2, 0, -2, pi/2).doit() == sqrt(6)/4 assert Rotation.d(2, -1, 2, pi/2).doit() == S.Half assert Rotation.d(2, -1, 1, pi/2).doit() == S.Half assert Rotation.d(2, -1, 0, pi/2).doit() == 0 assert Rotation.d(2, -1, -1, pi/2).doit() == Rational(-1, 2) assert Rotation.d(2, -1, -2, pi/2).doit() == Rational(-1, 2) assert Rotation.d(2, -2, 2, pi/2).doit() == Rational(1, 4) assert Rotation.d(2, -2, 1, pi/2).doit() == S.Half assert Rotation.d(2, -2, 0, pi/2).doit() == sqrt(6)/4 assert Rotation.d(2, -2, -1, pi/2).doit() == S.Half assert Rotation.d(2, -2, -2, pi/2).doit() == Rational(1, 4) def test_rotation_d(): # Symbolic tests # j = 1/2 assert Rotation.D(S.Half, S.Half, S.Half, alpha, beta, gamma).doit() == \ cos(beta/2)*exp(-I*alpha/2)*exp(-I*gamma/2) assert Rotation.D(S.Half, S.Half, Rational(-1, 2), alpha, beta, gamma).doit() == \ -sin(beta/2)*exp(-I*alpha/2)*exp(I*gamma/2) assert Rotation.D(S.Half, Rational(-1, 2), S.Half, alpha, beta, gamma).doit() == \ sin(beta/2)*exp(I*alpha/2)*exp(-I*gamma/2) assert Rotation.D(S.Half, Rational(-1, 2), Rational(-1, 2), alpha, beta, gamma).doit() == \ cos(beta/2)*exp(I*alpha/2)*exp(I*gamma/2) # j = 1 assert Rotation.D(1, 1, 1, alpha, beta, gamma).doit() == \ (1 + cos(beta))/2*exp(-I*alpha)*exp(-I*gamma) assert Rotation.D(1, 1, 0, alpha, beta, gamma).doit() == -sin( beta)/sqrt(2)*exp(-I*alpha) assert Rotation.D(1, 1, -1, alpha, beta, gamma).doit() == \ (1 - cos(beta))/2*exp(-I*alpha)*exp(I*gamma) assert Rotation.D(1, 0, 1, alpha, beta, gamma).doit() == \ sin(beta)/sqrt(2)*exp(-I*gamma) assert Rotation.D(1, 0, 0, alpha, beta, gamma).doit() == cos(beta) assert Rotation.D(1, 0, -1, alpha, beta, gamma).doit() == \ -sin(beta)/sqrt(2)*exp(I*gamma) assert Rotation.D(1, -1, 1, alpha, beta, gamma).doit() == \ (1 - cos(beta))/2*exp(I*alpha)*exp(-I*gamma) assert Rotation.D(1, -1, 0, alpha, beta, gamma).doit() == \ sin(beta)/sqrt(2)*exp(I*alpha) assert Rotation.D(1, -1, -1, alpha, beta, gamma).doit() == \ (1 + cos(beta))/2*exp(I*alpha)*exp(I*gamma) # j = 3/2 assert Rotation.D(Rational(3, 2), Rational(3, 2), Rational(3, 2), alpha, beta, gamma).doit() == \ (3*cos(beta/2) + cos(beta*Rational(3, 2)))/4*exp(I*alpha*Rational(-3, 2))*exp(I*gamma*Rational(-3, 2)) assert Rotation.D(Rational(3, 2), Rational(3, 2), S.Half, alpha, beta, gamma).doit() == \ -sqrt(3)*(sin(beta/2) + sin(beta*Rational(3, 2)))/4*exp(I*alpha*Rational(-3, 2))*exp(-I*gamma/2) assert Rotation.D(Rational(3, 2), Rational(3, 2), Rational(-1, 2), alpha, beta, gamma).doit() == \ sqrt(3)*(cos(beta/2) - cos(beta*Rational(3, 2)))/4*exp(I*alpha*Rational(-3, 2))*exp(I*gamma/2) assert Rotation.D(Rational(3, 2), Rational(3, 2), Rational(-3, 2), alpha, beta, gamma).doit() == \ (-3*sin(beta/2) + sin(beta*Rational(3, 2)))/4*exp(I*alpha*Rational(-3, 2))*exp(I*gamma*Rational(3, 2)) assert Rotation.D(Rational(3, 2), S.Half, Rational(3, 2), alpha, beta, gamma).doit() == \ sqrt(3)*(sin(beta/2) + sin(beta*Rational(3, 2)))/4*exp(-I*alpha/2)*exp(I*gamma*Rational(-3, 2)) assert Rotation.D(Rational(3, 2), S.Half, S.Half, alpha, beta, gamma).doit() == \ (cos(beta/2) + 3*cos(beta*Rational(3, 2)))/4*exp(-I*alpha/2)*exp(-I*gamma/2) assert Rotation.D(Rational(3, 2), S.Half, Rational(-1, 2), alpha, beta, gamma).doit() == \ (sin(beta/2) - 3*sin(beta*Rational(3, 2)))/4*exp(-I*alpha/2)*exp(I*gamma/2) assert Rotation.D(Rational(3, 2), S.Half, Rational(-3, 2), alpha, beta, gamma).doit() == \ sqrt(3)*(cos(beta/2) - cos(beta*Rational(3, 2)))/4*exp(-I*alpha/2)*exp(I*gamma*Rational(3, 2)) assert Rotation.D(Rational(3, 2), Rational(-1, 2), Rational(3, 2), alpha, beta, gamma).doit() == \ sqrt(3)*(cos(beta/2) - cos(beta*Rational(3, 2)))/4*exp(I*alpha/2)*exp(I*gamma*Rational(-3, 2)) assert Rotation.D(Rational(3, 2), Rational(-1, 2), S.Half, alpha, beta, gamma).doit() == \ (-sin(beta/2) + 3*sin(beta*Rational(3, 2)))/4*exp(I*alpha/2)*exp(-I*gamma/2) assert Rotation.D(Rational(3, 2), Rational(-1, 2), Rational(-1, 2), alpha, beta, gamma).doit() == \ (cos(beta/2) + 3*cos(beta*Rational(3, 2)))/4*exp(I*alpha/2)*exp(I*gamma/2) assert Rotation.D(Rational(3, 2), Rational(-1, 2), Rational(-3, 2), alpha, beta, gamma).doit() == \ -sqrt(3)*(sin(beta/2) + sin(beta*Rational(3, 2)))/4*exp(I*alpha/2)*exp(I*gamma*Rational(3, 2)) assert Rotation.D(Rational(3, 2), Rational(-3, 2), Rational(3, 2), alpha, beta, gamma).doit() == \ (3*sin(beta/2) - sin(beta*Rational(3, 2)))/4*exp(I*alpha*Rational(3, 2))*exp(I*gamma*Rational(-3, 2)) assert Rotation.D(Rational(3, 2), Rational(-3, 2), S.Half, alpha, beta, gamma).doit() == \ sqrt(3)*(cos(beta/2) - cos(beta*Rational(3, 2)))/4*exp(I*alpha*Rational(3, 2))*exp(-I*gamma/2) assert Rotation.D(Rational(3, 2), Rational(-3, 2), Rational(-1, 2), alpha, beta, gamma).doit() == \ sqrt(3)*(sin(beta/2) + sin(beta*Rational(3, 2)))/4*exp(I*alpha*Rational(3, 2))*exp(I*gamma/2) assert Rotation.D(Rational(3, 2), Rational(-3, 2), Rational(-3, 2), alpha, beta, gamma).doit() == \ (3*cos(beta/2) + cos(beta*Rational(3, 2)))/4*exp(I*alpha*Rational(3, 2))*exp(I*gamma*Rational(3, 2)) # j = 2 assert Rotation.D(2, 2, 2, alpha, beta, gamma).doit() == \ (3 + 4*cos(beta) + cos(2*beta))/8*exp(-2*I*alpha)*exp(-2*I*gamma) assert Rotation.D(2, 2, 1, alpha, beta, gamma).doit() == \ -((cos(beta) + 1)*exp(-2*I*alpha)*exp(-I*gamma)*sin(beta))/2 assert Rotation.D(2, 2, 0, alpha, beta, gamma).doit() == \ sqrt(6)*sin(beta)**2/4*exp(-2*I*alpha) assert Rotation.D(2, 2, -1, alpha, beta, gamma).doit() == \ (cos(beta) - 1)*sin(beta)/2*exp(-2*I*alpha)*exp(I*gamma) assert Rotation.D(2, 2, -2, alpha, beta, gamma).doit() == \ (3 - 4*cos(beta) + cos(2*beta))/8*exp(-2*I*alpha)*exp(2*I*gamma) assert Rotation.D(2, 1, 2, alpha, beta, gamma).doit() == \ (cos(beta) + 1)*sin(beta)/2*exp(-I*alpha)*exp(-2*I*gamma) assert Rotation.D(2, 1, 1, alpha, beta, gamma).doit() == \ (cos(beta) + cos(2*beta))/2*exp(-I*alpha)*exp(-I*gamma) assert Rotation.D(2, 1, 0, alpha, beta, gamma).doit() == -sqrt(6)* \ sin(2*beta)/4*exp(-I*alpha) assert Rotation.D(2, 1, -1, alpha, beta, gamma).doit() == \ (cos(beta) - cos(2*beta))/2*exp(-I*alpha)*exp(I*gamma) assert Rotation.D(2, 1, -2, alpha, beta, gamma).doit() == \ (cos(beta) - 1)*sin(beta)/2*exp(-I*alpha)*exp(2*I*gamma) assert Rotation.D(2, 0, 2, alpha, beta, gamma).doit() == \ sqrt(6)*sin(beta)**2/4*exp(-2*I*gamma) assert Rotation.D(2, 0, 1, alpha, beta, gamma).doit() == sqrt(6)* \ sin(2*beta)/4*exp(-I*gamma) assert Rotation.D( 2, 0, 0, alpha, beta, gamma).doit() == (1 + 3*cos(2*beta))/4 assert Rotation.D(2, 0, -1, alpha, beta, gamma).doit() == -sqrt(6)* \ sin(2*beta)/4*exp(I*gamma) assert Rotation.D(2, 0, -2, alpha, beta, gamma).doit() == \ sqrt(6)*sin(beta)**2/4*exp(2*I*gamma) assert Rotation.D(2, -1, 2, alpha, beta, gamma).doit() == \ (2*sin(beta) - sin(2*beta))/4*exp(I*alpha)*exp(-2*I*gamma) assert Rotation.D(2, -1, 1, alpha, beta, gamma).doit() == \ (cos(beta) - cos(2*beta))/2*exp(I*alpha)*exp(-I*gamma) assert Rotation.D(2, -1, 0, alpha, beta, gamma).doit() == sqrt(6)* \ sin(2*beta)/4*exp(I*alpha) assert Rotation.D(2, -1, -1, alpha, beta, gamma).doit() == \ (cos(beta) + cos(2*beta))/2*exp(I*alpha)*exp(I*gamma) assert Rotation.D(2, -1, -2, alpha, beta, gamma).doit() == \ -((cos(beta) + 1)*sin(beta))/2*exp(I*alpha)*exp(2*I*gamma) assert Rotation.D(2, -2, 2, alpha, beta, gamma).doit() == \ (3 - 4*cos(beta) + cos(2*beta))/8*exp(2*I*alpha)*exp(-2*I*gamma) assert Rotation.D(2, -2, 1, alpha, beta, gamma).doit() == \ (2*sin(beta) - sin(2*beta))/4*exp(2*I*alpha)*exp(-I*gamma) assert Rotation.D(2, -2, 0, alpha, beta, gamma).doit() == \ sqrt(6)*sin(beta)**2/4*exp(2*I*alpha) assert Rotation.D(2, -2, -1, alpha, beta, gamma).doit() == \ (cos(beta) + 1)*sin(beta)/2*exp(2*I*alpha)*exp(I*gamma) assert Rotation.D(2, -2, -2, alpha, beta, gamma).doit() == \ (3 + 4*cos(beta) + cos(2*beta))/8*exp(2*I*alpha)*exp(2*I*gamma) # Numerical tests # j = 1/2 assert Rotation.D( S.Half, S.Half, S.Half, pi/2, pi/2, pi/2).doit() == -I*sqrt(2)/2 assert Rotation.D( S.Half, S.Half, Rational(-1, 2), pi/2, pi/2, pi/2).doit() == -sqrt(2)/2 assert Rotation.D( S.Half, Rational(-1, 2), S.Half, pi/2, pi/2, pi/2).doit() == sqrt(2)/2 assert Rotation.D( S.Half, Rational(-1, 2), Rational(-1, 2), pi/2, pi/2, pi/2).doit() == I*sqrt(2)/2 # j = 1 assert Rotation.D(1, 1, 1, pi/2, pi/2, pi/2).doit() == Rational(-1, 2) assert Rotation.D(1, 1, 0, pi/2, pi/2, pi/2).doit() == I*sqrt(2)/2 assert Rotation.D(1, 1, -1, pi/2, pi/2, pi/2).doit() == S.Half assert Rotation.D(1, 0, 1, pi/2, pi/2, pi/2).doit() == -I*sqrt(2)/2 assert Rotation.D(1, 0, 0, pi/2, pi/2, pi/2).doit() == 0 assert Rotation.D(1, 0, -1, pi/2, pi/2, pi/2).doit() == -I*sqrt(2)/2 assert Rotation.D(1, -1, 1, pi/2, pi/2, pi/2).doit() == S.Half assert Rotation.D(1, -1, 0, pi/2, pi/2, pi/2).doit() == I*sqrt(2)/2 assert Rotation.D(1, -1, -1, pi/2, pi/2, pi/2).doit() == Rational(-1, 2) # j = 3/2 assert Rotation.D( Rational(3, 2), Rational(3, 2), Rational(3, 2), pi/2, pi/2, pi/2).doit() == I*sqrt(2)/4 assert Rotation.D( Rational(3, 2), Rational(3, 2), S.Half, pi/2, pi/2, pi/2).doit() == sqrt(6)/4 assert Rotation.D( Rational(3, 2), Rational(3, 2), Rational(-1, 2), pi/2, pi/2, pi/2).doit() == -I*sqrt(6)/4 assert Rotation.D( Rational(3, 2), Rational(3, 2), Rational(-3, 2), pi/2, pi/2, pi/2).doit() == -sqrt(2)/4 assert Rotation.D( Rational(3, 2), S.Half, Rational(3, 2), pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D( Rational(3, 2), S.Half, S.Half, pi/2, pi/2, pi/2).doit() == I*sqrt(2)/4 assert Rotation.D( Rational(3, 2), S.Half, Rational(-1, 2), pi/2, pi/2, pi/2).doit() == -sqrt(2)/4 assert Rotation.D( Rational(3, 2), S.Half, Rational(-3, 2), pi/2, pi/2, pi/2).doit() == I*sqrt(6)/4 assert Rotation.D( Rational(3, 2), Rational(-1, 2), Rational(3, 2), pi/2, pi/2, pi/2).doit() == -I*sqrt(6)/4 assert Rotation.D( Rational(3, 2), Rational(-1, 2), S.Half, pi/2, pi/2, pi/2).doit() == sqrt(2)/4 assert Rotation.D( Rational(3, 2), Rational(-1, 2), Rational(-1, 2), pi/2, pi/2, pi/2).doit() == -I*sqrt(2)/4 assert Rotation.D( Rational(3, 2), Rational(-1, 2), Rational(-3, 2), pi/2, pi/2, pi/2).doit() == sqrt(6)/4 assert Rotation.D( Rational(3, 2), Rational(-3, 2), Rational(3, 2), pi/2, pi/2, pi/2).doit() == sqrt(2)/4 assert Rotation.D( Rational(3, 2), Rational(-3, 2), S.Half, pi/2, pi/2, pi/2).doit() == I*sqrt(6)/4 assert Rotation.D( Rational(3, 2), Rational(-3, 2), Rational(-1, 2), pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D( Rational(3, 2), Rational(-3, 2), Rational(-3, 2), pi/2, pi/2, pi/2).doit() == -I*sqrt(2)/4 # j = 2 assert Rotation.D(2, 2, 2, pi/2, pi/2, pi/2).doit() == Rational(1, 4) assert Rotation.D(2, 2, 1, pi/2, pi/2, pi/2).doit() == -I/2 assert Rotation.D(2, 2, 0, pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D(2, 2, -1, pi/2, pi/2, pi/2).doit() == I/2 assert Rotation.D(2, 2, -2, pi/2, pi/2, pi/2).doit() == Rational(1, 4) assert Rotation.D(2, 1, 2, pi/2, pi/2, pi/2).doit() == I/2 assert Rotation.D(2, 1, 1, pi/2, pi/2, pi/2).doit() == S.Half assert Rotation.D(2, 1, 0, pi/2, pi/2, pi/2).doit() == 0 assert Rotation.D(2, 1, -1, pi/2, pi/2, pi/2).doit() == S.Half assert Rotation.D(2, 1, -2, pi/2, pi/2, pi/2).doit() == -I/2 assert Rotation.D(2, 0, 2, pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D(2, 0, 1, pi/2, pi/2, pi/2).doit() == 0 assert Rotation.D(2, 0, 0, pi/2, pi/2, pi/2).doit() == Rational(-1, 2) assert Rotation.D(2, 0, -1, pi/2, pi/2, pi/2).doit() == 0 assert Rotation.D(2, 0, -2, pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D(2, -1, 2, pi/2, pi/2, pi/2).doit() == -I/2 assert Rotation.D(2, -1, 1, pi/2, pi/2, pi/2).doit() == S.Half assert Rotation.D(2, -1, 0, pi/2, pi/2, pi/2).doit() == 0 assert Rotation.D(2, -1, -1, pi/2, pi/2, pi/2).doit() == S.Half assert Rotation.D(2, -1, -2, pi/2, pi/2, pi/2).doit() == I/2 assert Rotation.D(2, -2, 2, pi/2, pi/2, pi/2).doit() == Rational(1, 4) assert Rotation.D(2, -2, 1, pi/2, pi/2, pi/2).doit() == I/2 assert Rotation.D(2, -2, 0, pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D(2, -2, -1, pi/2, pi/2, pi/2).doit() == -I/2 assert Rotation.D(2, -2, -2, pi/2, pi/2, pi/2).doit() == Rational(1, 4) def test_wignerd(): assert Rotation.D( j, m, mp, alpha, beta, gamma) == WignerD(j, m, mp, alpha, beta, gamma) assert Rotation.d(j, m, mp, beta) == WignerD(j, m, mp, 0, beta, 0) def test_wignerD(): i,j=symbols('i j') assert Rotation.D(1, 1, 1, 0, 0, 0) == WignerD(1, 1, 1, 0, 0, 0) assert Rotation.D(1, 1, 2, 0, 0, 0) == WignerD(1, 1, 2, 0, 0, 0) assert Rotation.D(1, i**2 - j**2, i**2 - j**2, 0, 0, 0) == WignerD(1, i**2 - j**2, i**2 - j**2, 0, 0, 0) assert Rotation.D(1, i, i, 0, 0, 0) == WignerD(1, i, i, 0, 0, 0) assert Rotation.D(1, i, i+1, 0, 0, 0) == WignerD(1, i, i+1, 0, 0, 0) assert Rotation.D(1, 0, 0, 0, 0, 0) == WignerD(1, 0, 0, 0, 0, 0) def test_jplus(): assert Commutator(Jplus, Jminus).doit() == 2*hbar*Jz assert Jplus.matrix_element(1, 1, 1, 1) == 0 assert Jplus.rewrite('xyz') == Jx + I*Jy # Normal operators, normal states # Numerical assert qapply(Jplus*JxKet(1, 1)) == \ -hbar*sqrt(2)*JxKet(1, 0)/2 + hbar*JxKet(1, 1) assert qapply(Jplus*JyKet(1, 1)) == \ hbar*sqrt(2)*JyKet(1, 0)/2 + I*hbar*JyKet(1, 1) assert qapply(Jplus*JzKet(1, 1)) == 0 # Symbolic assert qapply(Jplus*JxKet(j, m)) == \ Sum(hbar * sqrt(-mi**2 - mi + j**2 + j) * WignerD(j, mi, m, 0, pi/2, 0) * Sum(WignerD(j, mi1, mi + 1, 0, pi*Rational(3, 2), 0) * JxKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jplus*JyKet(j, m)) == \ Sum(hbar * sqrt(j**2 + j - mi**2 - mi) * WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2) * Sum(WignerD(j, mi1, mi + 1, pi*Rational(3, 2), pi/2, pi/2) * JyKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jplus*JzKet(j, m)) == \ hbar*sqrt(j**2 + j - m**2 - m)*JzKet(j, m + 1) # Normal operators, coupled states # Numerical assert qapply(Jplus*JxKetCoupled(1, 1, (1, 1))) == -hbar*sqrt(2) * \ JxKetCoupled(1, 0, (1, 1))/2 + hbar*JxKetCoupled(1, 1, (1, 1)) assert qapply(Jplus*JyKetCoupled(1, 1, (1, 1))) == hbar*sqrt(2) * \ JyKetCoupled(1, 0, (1, 1))/2 + I*hbar*JyKetCoupled(1, 1, (1, 1)) assert qapply(Jplus*JzKet(1, 1)) == 0 # Symbolic assert qapply(Jplus*JxKetCoupled(j, m, (j1, j2))) == \ Sum(hbar * sqrt(-mi**2 - mi + j**2 + j) * WignerD(j, mi, m, 0, pi/2, 0) * Sum( WignerD( j, mi1, mi + 1, 0, pi*Rational(3, 2), 0) * JxKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jplus*JyKetCoupled(j, m, (j1, j2))) == \ Sum(hbar * sqrt(j**2 + j - mi**2 - mi) * WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2) * Sum( WignerD(j, mi1, mi + 1, pi*Rational(3, 2), pi/2, pi/2) * JyKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jplus*JzKetCoupled(j, m, (j1, j2))) == \ hbar*sqrt(j**2 + j - m**2 - m)*JzKetCoupled(j, m + 1, (j1, j2)) # Uncoupled operators, uncoupled states # Numerical assert qapply(TensorProduct(Jplus, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -hbar*sqrt(2)*TensorProduct(JxKet(1, 0), JxKet(1, -1))/2 + \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(1, Jplus)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) + \ hbar*sqrt(2)*TensorProduct(JxKet(1, 1), JxKet(1, 0))/2 assert qapply(TensorProduct(Jplus, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JyKet(1, 0), JyKet(1, -1))/2 + \ hbar*I*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(1, Jplus)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ -hbar*I*TensorProduct(JyKet(1, 1), JyKet(1, -1)) + \ hbar*sqrt(2)*TensorProduct(JyKet(1, 1), JyKet(1, 0))/2 assert qapply( TensorProduct(Jplus, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == 0 assert qapply(TensorProduct(1, Jplus)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 0)) # Symbolic assert qapply(TensorProduct(Jplus, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(Sum(hbar * sqrt(-mi**2 - mi + j1**2 + j1) * WignerD(j1, mi, m1, 0, pi/2, 0) * Sum(WignerD(j1, mi1, mi + 1, 0, pi*Rational(3, 2), 0) * JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(TensorProduct(1, Jplus)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar * sqrt(-mi**2 - mi + j2**2 + j2) * WignerD(j2, mi, m2, 0, pi/2, 0) * Sum(WignerD(j2, mi1, mi + 1, 0, pi*Rational(3, 2), 0) * JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jplus, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(Sum(hbar * sqrt(j1**2 + j1 - mi**2 - mi) * WignerD(j1, mi, m1, pi*Rational(3, 2), -pi/2, pi/2) * Sum(WignerD(j1, mi1, mi + 1, pi*Rational(3, 2), pi/2, pi/2) * JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) assert qapply(TensorProduct(1, Jplus)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(JyKet(j1, m1), Sum(hbar * sqrt(j2**2 + j2 - mi**2 - mi) * WignerD(j2, mi, m2, pi*Rational(3, 2), -pi/2, pi/2) * Sum(WignerD(j2, mi1, mi + 1, pi*Rational(3, 2), pi/2, pi/2) * JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jplus, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt( j1**2 + j1 - m1**2 - m1)*TensorProduct(JzKet(j1, m1 + 1), JzKet(j2, m2)) assert qapply(TensorProduct(1, Jplus)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt( j2**2 + j2 - m2**2 - m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 + 1)) def test_jminus(): assert qapply(Jminus*JzKet(1, -1)) == 0 assert Jminus.matrix_element(1, 0, 1, 1) == sqrt(2)*hbar assert Jminus.rewrite('xyz') == Jx - I*Jy # Normal operators, normal states # Numerical assert qapply(Jminus*JxKet(1, 1)) == \ hbar*sqrt(2)*JxKet(1, 0)/2 + hbar*JxKet(1, 1) assert qapply(Jminus*JyKet(1, 1)) == \ hbar*sqrt(2)*JyKet(1, 0)/2 - hbar*I*JyKet(1, 1) assert qapply(Jminus*JzKet(1, 1)) == sqrt(2)*hbar*JzKet(1, 0) # Symbolic assert qapply(Jminus*JxKet(j, m)) == \ Sum(hbar*sqrt(j**2 + j - mi**2 + mi)*WignerD(j, mi, m, 0, pi/2, 0) * Sum(WignerD(j, mi1, mi - 1, 0, pi*Rational(3, 2), 0)*JxKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jminus*JyKet(j, m)) == \ Sum(hbar*sqrt(j**2 + j - mi**2 + mi)*WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2) * Sum(WignerD(j, mi1, mi - 1, pi*Rational(3, 2), pi/2, pi/2)*JyKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jminus*JzKet(j, m)) == \ hbar*sqrt(j**2 + j - m**2 + m)*JzKet(j, m - 1) # Normal operators, coupled states # Numerical assert qapply(Jminus*JxKetCoupled(1, 1, (1, 1))) == \ hbar*sqrt(2)*JxKetCoupled(1, 0, (1, 1))/2 + \ hbar*JxKetCoupled(1, 1, (1, 1)) assert qapply(Jminus*JyKetCoupled(1, 1, (1, 1))) == \ hbar*sqrt(2)*JyKetCoupled(1, 0, (1, 1))/2 - \ hbar*I*JyKetCoupled(1, 1, (1, 1)) assert qapply(Jminus*JzKetCoupled(1, 1, (1, 1))) == \ sqrt(2)*hbar*JzKetCoupled(1, 0, (1, 1)) # Symbolic assert qapply(Jminus*JxKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*sqrt(j**2 + j - mi**2 + mi)*WignerD(j, mi, m, 0, pi/2, 0) * Sum(WignerD(j, mi1, mi - 1, 0, pi*Rational(3, 2), 0)*JxKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jminus*JyKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*sqrt(j**2 + j - mi**2 + mi)*WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2) * Sum( WignerD(j, mi1, mi - 1, pi*Rational(3, 2), pi/2, pi/2)* JyKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jminus*JzKetCoupled(j, m, (j1, j2))) == \ hbar*sqrt(j**2 + j - m**2 + m)*JzKetCoupled(j, m - 1, (j1, j2)) # Uncoupled operators, uncoupled states # Numerical assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JxKet(1, 0), JxKet(1, -1))/2 + \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(1, Jminus)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) - \ hbar*sqrt(2)*TensorProduct(JxKet(1, 1), JxKet(1, 0))/2 assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JyKet(1, 0), JyKet(1, -1))/2 - \ hbar*I*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(1, Jminus)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ hbar*I*TensorProduct(JyKet(1, 1), JyKet(1, -1)) + \ hbar*sqrt(2)*TensorProduct(JyKet(1, 1), JyKet(1, 0))/2 assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ sqrt(2)*hbar*TensorProduct(JzKet(1, 0), JzKet(1, -1)) assert qapply(TensorProduct( 1, Jminus)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == 0 # Symbolic assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(Sum(hbar*sqrt(j1**2 + j1 - mi**2 + mi)*WignerD(j1, mi, m1, 0, pi/2, 0) * Sum(WignerD(j1, mi1, mi - 1, 0, pi*Rational(3, 2), 0)*JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(TensorProduct(1, Jminus)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar*sqrt(j2**2 + j2 - mi**2 + mi)*WignerD(j2, mi, m2, 0, pi/2, 0) * Sum(WignerD(j2, mi1, mi - 1, 0, pi*Rational(3, 2), 0)*JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(Sum(hbar*sqrt(j1**2 + j1 - mi**2 + mi)*WignerD(j1, mi, m1, pi*Rational(3, 2), -pi/2, pi/2) * Sum(WignerD(j1, mi1, mi - 1, pi*Rational(3, 2), pi/2, pi/2)*JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) assert qapply(TensorProduct(1, Jminus)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(JyKet(j1, m1), Sum(hbar*sqrt(j2**2 + j2 - mi**2 + mi)*WignerD(j2, mi, m2, pi*Rational(3, 2), -pi/2, pi/2) * Sum(WignerD(j2, mi1, mi - 1, pi*Rational(3, 2), pi/2, pi/2)*JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt( j1**2 + j1 - m1**2 + m1)*TensorProduct(JzKet(j1, m1 - 1), JzKet(j2, m2)) assert qapply(TensorProduct(1, Jminus)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt( j2**2 + j2 - m2**2 + m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 - 1)) def test_j2(): assert Commutator(J2, Jz).doit() == 0 assert J2.matrix_element(1, 1, 1, 1) == 2*hbar**2 # Normal operators, normal states # Numerical assert qapply(J2*JxKet(1, 1)) == 2*hbar**2*JxKet(1, 1) assert qapply(J2*JyKet(1, 1)) == 2*hbar**2*JyKet(1, 1) assert qapply(J2*JzKet(1, 1)) == 2*hbar**2*JzKet(1, 1) # Symbolic assert qapply(J2*JxKet(j, m)) == \ hbar**2*j**2*JxKet(j, m) + hbar**2*j*JxKet(j, m) assert qapply(J2*JyKet(j, m)) == \ hbar**2*j**2*JyKet(j, m) + hbar**2*j*JyKet(j, m) assert qapply(J2*JzKet(j, m)) == \ hbar**2*j**2*JzKet(j, m) + hbar**2*j*JzKet(j, m) # Normal operators, coupled states # Numerical assert qapply(J2*JxKetCoupled(1, 1, (1, 1))) == \ 2*hbar**2*JxKetCoupled(1, 1, (1, 1)) assert qapply(J2*JyKetCoupled(1, 1, (1, 1))) == \ 2*hbar**2*JyKetCoupled(1, 1, (1, 1)) assert qapply(J2*JzKetCoupled(1, 1, (1, 1))) == \ 2*hbar**2*JzKetCoupled(1, 1, (1, 1)) # Symbolic assert qapply(J2*JxKetCoupled(j, m, (j1, j2))) == \ hbar**2*j**2*JxKetCoupled(j, m, (j1, j2)) + \ hbar**2*j*JxKetCoupled(j, m, (j1, j2)) assert qapply(J2*JyKetCoupled(j, m, (j1, j2))) == \ hbar**2*j**2*JyKetCoupled(j, m, (j1, j2)) + \ hbar**2*j*JyKetCoupled(j, m, (j1, j2)) assert qapply(J2*JzKetCoupled(j, m, (j1, j2))) == \ hbar**2*j**2*JzKetCoupled(j, m, (j1, j2)) + \ hbar**2*j*JzKetCoupled(j, m, (j1, j2)) # Uncoupled operators, uncoupled states # Numerical assert qapply(TensorProduct(J2, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ 2*hbar**2*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(1, J2)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ 2*hbar**2*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(J2, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ 2*hbar**2*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(1, J2)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ 2*hbar**2*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(J2, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ 2*hbar**2*TensorProduct(JzKet(1, 1), JzKet(1, -1)) assert qapply(TensorProduct(1, J2)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ 2*hbar**2*TensorProduct(JzKet(1, 1), JzKet(1, -1)) # Symbolic assert qapply(TensorProduct(J2, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ hbar**2*j1**2*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) + \ hbar**2*j1*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) assert qapply(TensorProduct(1, J2)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ hbar**2*j2**2*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) + \ hbar**2*j2*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) assert qapply(TensorProduct(J2, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ hbar**2*j1**2*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) + \ hbar**2*j1*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) assert qapply(TensorProduct(1, J2)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ hbar**2*j2**2*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) + \ hbar**2*j2*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) assert qapply(TensorProduct(J2, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar**2*j1**2*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) + \ hbar**2*j1*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) assert qapply(TensorProduct(1, J2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar**2*j2**2*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) + \ hbar**2*j2*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) def test_jx(): assert Commutator(Jx, Jz).doit() == -I*hbar*Jy assert Jx.rewrite('plusminus') == (Jminus + Jplus)/2 assert represent(Jx, basis=Jz, j=1) == ( represent(Jplus, basis=Jz, j=1) + represent(Jminus, basis=Jz, j=1))/2 # Normal operators, normal states # Numerical assert qapply(Jx*JxKet(1, 1)) == hbar*JxKet(1, 1) assert qapply(Jx*JyKet(1, 1)) == hbar*JyKet(1, 1) assert qapply(Jx*JzKet(1, 1)) == sqrt(2)*hbar*JzKet(1, 0)/2 # Symbolic assert qapply(Jx*JxKet(j, m)) == hbar*m*JxKet(j, m) assert qapply(Jx*JyKet(j, m)) == \ Sum(hbar*mi*WignerD(j, mi, m, 0, 0, pi/2)*Sum(WignerD(j, mi1, mi, pi*Rational(3, 2), 0, 0)*JyKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jx*JzKet(j, m)) == \ hbar*sqrt(j**2 + j - m**2 - m)*JzKet(j, m + 1)/2 + hbar*sqrt(j**2 + j - m**2 + m)*JzKet(j, m - 1)/2 # Normal operators, coupled states # Numerical assert qapply(Jx*JxKetCoupled(1, 1, (1, 1))) == \ hbar*JxKetCoupled(1, 1, (1, 1)) assert qapply(Jx*JyKetCoupled(1, 1, (1, 1))) == \ hbar*JyKetCoupled(1, 1, (1, 1)) assert qapply(Jx*JzKetCoupled(1, 1, (1, 1))) == \ sqrt(2)*hbar*JzKetCoupled(1, 0, (1, 1))/2 # Symbolic assert qapply(Jx*JxKetCoupled(j, m, (j1, j2))) == \ hbar*m*JxKetCoupled(j, m, (j1, j2)) assert qapply(Jx*JyKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*mi*WignerD(j, mi, m, 0, 0, pi/2)*Sum(WignerD(j, mi1, mi, pi*Rational(3, 2), 0, 0)*JyKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jx*JzKetCoupled(j, m, (j1, j2))) == \ hbar*sqrt(j**2 + j - m**2 - m)*JzKetCoupled(j, m + 1, (j1, j2))/2 + \ hbar*sqrt(j**2 + j - m**2 + m)*JzKetCoupled(j, m - 1, (j1, j2))/2 # Normal operators, uncoupled states # Numerical assert qapply(Jx*TensorProduct(JxKet(1, 1), JxKet(1, 1))) == \ 2*hbar*TensorProduct(JxKet(1, 1), JxKet(1, 1)) assert qapply(Jx*TensorProduct(JyKet(1, 1), JyKet(1, 1))) == \ hbar*TensorProduct(JyKet(1, 1), JyKet(1, 1)) + \ hbar*TensorProduct(JyKet(1, 1), JyKet(1, 1)) assert qapply(Jx*TensorProduct(JzKet(1, 1), JzKet(1, 1))) == \ sqrt(2)*hbar*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 + \ sqrt(2)*hbar*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 assert qapply(Jx*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == 0 # Symbolic assert qapply(Jx*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ hbar*m1*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) + \ hbar*m2*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) assert qapply(Jx*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, 0, 0, pi/2)*Sum(WignerD(j1, mi1, mi, pi*Rational(3, 2), 0, 0)*JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) + \ TensorProduct(JyKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, 0, 0, pi/2)*Sum(WignerD(j2, mi1, mi, pi*Rational(3, 2), 0, 0)*JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(Jx*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt(j1**2 + j1 - m1**2 - m1)*TensorProduct(JzKet(j1, m1 + 1), JzKet(j2, m2))/2 + \ hbar*sqrt(j1**2 + j1 - m1**2 + m1)*TensorProduct(JzKet(j1, m1 - 1), JzKet(j2, m2))/2 + \ hbar*sqrt(j2**2 + j2 - m2**2 - m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 + 1))/2 + \ hbar*sqrt( j2**2 + j2 - m2**2 + m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 - 1))/2 # Uncoupled operators, uncoupled states # Numerical assert qapply(TensorProduct(Jx, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(1, Jx)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(Jx, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ hbar*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(1, Jx)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ -hbar*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(Jx, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, -1))/2 assert qapply(TensorProduct(1, Jx)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 # Symbolic assert qapply(TensorProduct(Jx, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ hbar*m1*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) assert qapply(TensorProduct(1, Jx)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ hbar*m2*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) assert qapply(TensorProduct(Jx, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, 0, 0, pi/2) * Sum(WignerD(j1, mi1, mi, pi*Rational(3, 2), 0, 0)*JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) assert qapply(TensorProduct(1, Jx)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(JyKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, 0, 0, pi/2) * Sum(WignerD(j2, mi1, mi, pi*Rational(3, 2), 0, 0)*JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jx, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt(j1**2 + j1 - m1**2 - m1)*TensorProduct(JzKet(j1, m1 + 1), JzKet(j2, m2))/2 + \ hbar*sqrt( j1**2 + j1 - m1**2 + m1)*TensorProduct(JzKet(j1, m1 - 1), JzKet(j2, m2))/2 assert qapply(TensorProduct(1, Jx)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt(j2**2 + j2 - m2**2 - m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 + 1))/2 + \ hbar*sqrt( j2**2 + j2 - m2**2 + m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 - 1))/2 def test_jy(): assert Commutator(Jy, Jz).doit() == I*hbar*Jx assert Jy.rewrite('plusminus') == (Jplus - Jminus)/(2*I) assert represent(Jy, basis=Jz) == ( represent(Jplus, basis=Jz) - represent(Jminus, basis=Jz))/(2*I) # Normal operators, normal states # Numerical assert qapply(Jy*JxKet(1, 1)) == hbar*JxKet(1, 1) assert qapply(Jy*JyKet(1, 1)) == hbar*JyKet(1, 1) assert qapply(Jy*JzKet(1, 1)) == sqrt(2)*hbar*I*JzKet(1, 0)/2 # Symbolic assert qapply(Jy*JxKet(j, m)) == \ Sum(hbar*mi*WignerD(j, mi, m, pi*Rational(3, 2), 0, 0)*Sum(WignerD( j, mi1, mi, 0, 0, pi/2)*JxKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jy*JyKet(j, m)) == hbar*m*JyKet(j, m) assert qapply(Jy*JzKet(j, m)) == \ -hbar*I*sqrt(j**2 + j - m**2 - m)*JzKet( j, m + 1)/2 + hbar*I*sqrt(j**2 + j - m**2 + m)*JzKet(j, m - 1)/2 # Normal operators, coupled states # Numerical assert qapply(Jy*JxKetCoupled(1, 1, (1, 1))) == \ hbar*JxKetCoupled(1, 1, (1, 1)) assert qapply(Jy*JyKetCoupled(1, 1, (1, 1))) == \ hbar*JyKetCoupled(1, 1, (1, 1)) assert qapply(Jy*JzKetCoupled(1, 1, (1, 1))) == \ sqrt(2)*hbar*I*JzKetCoupled(1, 0, (1, 1))/2 # Symbolic assert qapply(Jy*JxKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*mi*WignerD(j, mi, m, pi*Rational(3, 2), 0, 0)*Sum(WignerD(j, mi1, mi, 0, 0, pi/2)*JxKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jy*JyKetCoupled(j, m, (j1, j2))) == \ hbar*m*JyKetCoupled(j, m, (j1, j2)) assert qapply(Jy*JzKetCoupled(j, m, (j1, j2))) == \ -hbar*I*sqrt(j**2 + j - m**2 - m)*JzKetCoupled(j, m + 1, (j1, j2))/2 + \ hbar*I*sqrt(j**2 + j - m**2 + m)*JzKetCoupled(j, m - 1, (j1, j2))/2 # Normal operators, uncoupled states # Numerical assert qapply(Jy*TensorProduct(JxKet(1, 1), JxKet(1, 1))) == \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, 1)) + \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, 1)) assert qapply(Jy*TensorProduct(JyKet(1, 1), JyKet(1, 1))) == \ 2*hbar*TensorProduct(JyKet(1, 1), JyKet(1, 1)) assert qapply(Jy*TensorProduct(JzKet(1, 1), JzKet(1, 1))) == \ sqrt(2)*hbar*I*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 + \ sqrt(2)*hbar*I*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 assert qapply(Jy*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == 0 # Symbolic assert qapply(Jy*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, pi*Rational(3, 2), 0, 0)*Sum(WignerD(j2, mi1, mi, 0, 0, pi/2)*JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) + \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, pi*Rational(3, 2), 0, 0)*Sum(WignerD(j1, mi1, mi, 0, 0, pi/2)*JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(Jy*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ hbar*m1*TensorProduct(JyKet(j1, m1), JyKet( j2, m2)) + hbar*m2*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) assert qapply(Jy*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ -hbar*I*sqrt(j1**2 + j1 - m1**2 - m1)*TensorProduct(JzKet(j1, m1 + 1), JzKet(j2, m2))/2 + \ hbar*I*sqrt(j1**2 + j1 - m1**2 + m1)*TensorProduct(JzKet(j1, m1 - 1), JzKet(j2, m2))/2 + \ -hbar*I*sqrt(j2**2 + j2 - m2**2 - m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 + 1))/2 + \ hbar*I*sqrt( j2**2 + j2 - m2**2 + m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 - 1))/2 # Uncoupled operators, uncoupled states # Numerical assert qapply(TensorProduct(Jy, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(1, Jy)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(Jy, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ hbar*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(1, Jy)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ -hbar*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(Jy, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ hbar*sqrt(2)*I*TensorProduct(JzKet(1, 0), JzKet(1, -1))/2 assert qapply(TensorProduct(1, Jy)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ -hbar*sqrt(2)*I*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 # Symbolic assert qapply(TensorProduct(Jy, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, pi*Rational(3, 2), 0, 0) * Sum(WignerD(j1, mi1, mi, 0, 0, pi/2)*JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(TensorProduct(1, Jy)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, pi*Rational(3, 2), 0, 0) * Sum(WignerD(j2, mi1, mi, 0, 0, pi/2)*JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jy, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ hbar*m1*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) assert qapply(TensorProduct(1, Jy)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ hbar*m2*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) assert qapply(TensorProduct(Jy, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ -hbar*I*sqrt(j1**2 + j1 - m1**2 - m1)*TensorProduct(JzKet(j1, m1 + 1), JzKet(j2, m2))/2 + \ hbar*I*sqrt( j1**2 + j1 - m1**2 + m1)*TensorProduct(JzKet(j1, m1 - 1), JzKet(j2, m2))/2 assert qapply(TensorProduct(1, Jy)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ -hbar*I*sqrt(j2**2 + j2 - m2**2 - m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 + 1))/2 + \ hbar*I*sqrt( j2**2 + j2 - m2**2 + m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 - 1))/2 def test_jz(): assert Commutator(Jz, Jminus).doit() == -hbar*Jminus # Normal operators, normal states # Numerical assert qapply(Jz*JxKet(1, 1)) == -sqrt(2)*hbar*JxKet(1, 0)/2 assert qapply(Jz*JyKet(1, 1)) == -sqrt(2)*hbar*I*JyKet(1, 0)/2 assert qapply(Jz*JzKet(2, 1)) == hbar*JzKet(2, 1) # Symbolic assert qapply(Jz*JxKet(j, m)) == \ Sum(hbar*mi*WignerD(j, mi, m, 0, pi/2, 0)*Sum(WignerD(j, mi1, mi, 0, pi*Rational(3, 2), 0)*JxKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jz*JyKet(j, m)) == \ Sum(hbar*mi*WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2)*Sum(WignerD(j, mi1, mi, pi*Rational(3, 2), pi/2, pi/2)*JyKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jz*JzKet(j, m)) == hbar*m*JzKet(j, m) # Normal operators, coupled states # Numerical assert qapply(Jz*JxKetCoupled(1, 1, (1, 1))) == \ -sqrt(2)*hbar*JxKetCoupled(1, 0, (1, 1))/2 assert qapply(Jz*JyKetCoupled(1, 1, (1, 1))) == \ -sqrt(2)*hbar*I*JyKetCoupled(1, 0, (1, 1))/2 assert qapply(Jz*JzKetCoupled(1, 1, (1, 1))) == \ hbar*JzKetCoupled(1, 1, (1, 1)) # Symbolic assert qapply(Jz*JxKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*mi*WignerD(j, mi, m, 0, pi/2, 0)*Sum(WignerD(j, mi1, mi, 0, pi*Rational(3, 2), 0)*JxKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jz*JyKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*mi*WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2)*Sum(WignerD(j, mi1, mi, pi*Rational(3, 2), pi/2, pi/2)*JyKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jz*JzKetCoupled(j, m, (j1, j2))) == \ hbar*m*JzKetCoupled(j, m, (j1, j2)) # Normal operators, uncoupled states # Numerical assert qapply(Jz*TensorProduct(JxKet(1, 1), JxKet(1, 1))) == \ -sqrt(2)*hbar*TensorProduct(JxKet(1, 1), JxKet(1, 0))/2 - \ sqrt(2)*hbar*TensorProduct(JxKet(1, 0), JxKet(1, 1))/2 assert qapply(Jz*TensorProduct(JyKet(1, 1), JyKet(1, 1))) == \ -sqrt(2)*hbar*I*TensorProduct(JyKet(1, 1), JyKet(1, 0))/2 - \ sqrt(2)*hbar*I*TensorProduct(JyKet(1, 0), JyKet(1, 1))/2 assert qapply(Jz*TensorProduct(JzKet(1, 1), JzKet(1, 1))) == \ 2*hbar*TensorProduct(JzKet(1, 1), JzKet(1, 1)) assert qapply(Jz*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == 0 # Symbolic assert qapply(Jz*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, 0, pi/2, 0)*Sum(WignerD(j2, mi1, mi, 0, pi*Rational(3, 2), 0)*JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) + \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, 0, pi/2, 0)*Sum(WignerD(j1, mi1, mi, 0, pi*Rational(3, 2), 0)*JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(Jz*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(JyKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, pi*Rational(3, 2), -pi/2, pi/2)*Sum(WignerD(j2, mi1, mi, pi*Rational(3, 2), pi/2, pi/2)*JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) + \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, pi*Rational(3, 2), -pi/2, pi/2)*Sum(WignerD(j1, mi1, mi, pi*Rational(3, 2), pi/2, pi/2)*JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) assert qapply(Jz*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*m1*TensorProduct(JzKet(j1, m1), JzKet( j2, m2)) + hbar*m2*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) # Uncoupled Operators # Numerical assert qapply(TensorProduct(Jz, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -sqrt(2)*hbar*TensorProduct(JxKet(1, 0), JxKet(1, -1))/2 assert qapply(TensorProduct(1, Jz)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -sqrt(2)*hbar*TensorProduct(JxKet(1, 1), JxKet(1, 0))/2 assert qapply(TensorProduct(Jz, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ -sqrt(2)*I*hbar*TensorProduct(JyKet(1, 0), JyKet(1, -1))/2 assert qapply(TensorProduct(1, Jz)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ sqrt(2)*I*hbar*TensorProduct(JyKet(1, 1), JyKet(1, 0))/2 assert qapply(TensorProduct(Jz, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ hbar*TensorProduct(JzKet(1, 1), JzKet(1, -1)) assert qapply(TensorProduct(1, Jz)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ -hbar*TensorProduct(JzKet(1, 1), JzKet(1, -1)) # Symbolic assert qapply(TensorProduct(Jz, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, 0, pi/2, 0)*Sum(WignerD(j1, mi1, mi, 0, pi*Rational(3, 2), 0)*JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(TensorProduct(1, Jz)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, 0, pi/2, 0)*Sum(WignerD(j2, mi1, mi, 0, pi*Rational(3, 2), 0)*JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jz, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, pi*Rational(3, 2), -pi/2, pi/2)*Sum(WignerD(j1, mi1, mi, pi*Rational(3, 2), pi/2, pi/2)*JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) assert qapply(TensorProduct(1, Jz)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(JyKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, pi*Rational(3, 2), -pi/2, pi/2)*Sum(WignerD(j2, mi1, mi, pi*Rational(3, 2), pi/2, pi/2)*JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jz, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*m1*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) assert qapply(TensorProduct(1, Jz)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*m2*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) def test_rotation(): a, b, g = symbols('a b g') j, m = symbols('j m') #Uncoupled answ = [JxKet(1,-1)/2 - sqrt(2)*JxKet(1,0)/2 + JxKet(1,1)/2 , JyKet(1,-1)/2 - sqrt(2)*JyKet(1,0)/2 + JyKet(1,1)/2 , JzKet(1,-1)/2 - sqrt(2)*JzKet(1,0)/2 + JzKet(1,1)/2] fun = [state(1, 1) for state in (JxKet, JyKet, JzKet)] for state in fun: got = qapply(Rotation(0, pi/2, 0)*state) assert got in answ answ.remove(got) assert not answ arg = Rotation(a, b, g)*fun[0] assert qapply(arg) == (-exp(-I*a)*exp(I*g)*cos(b)*JxKet(1,-1)/2 + exp(-I*a)*exp(I*g)*JxKet(1,-1)/2 - sqrt(2)*exp(-I*a)*sin(b)*JxKet(1,0)/2 + exp(-I*a)*exp(-I*g)*cos(b)*JxKet(1,1)/2 + exp(-I*a)*exp(-I*g)*JxKet(1,1)/2) #dummy effective assert str(qapply(Rotation(a, b, g)*JzKet(j, m), dummy=False)) == str( qapply(Rotation(a, b, g)*JzKet(j, m), dummy=True)).replace('_','') #Coupled ans = [JxKetCoupled(1,-1,(1,1))/2 - sqrt(2)*JxKetCoupled(1,0,(1,1))/2 + JxKetCoupled(1,1,(1,1))/2 , JyKetCoupled(1,-1,(1,1))/2 - sqrt(2)*JyKetCoupled(1,0,(1,1))/2 + JyKetCoupled(1,1,(1,1))/2 , JzKetCoupled(1,-1,(1,1))/2 - sqrt(2)*JzKetCoupled(1,0,(1,1))/2 + JzKetCoupled(1,1,(1,1))/2] fun = [state(1, 1, (1,1)) for state in (JxKetCoupled, JyKetCoupled, JzKetCoupled)] for state in fun: got = qapply(Rotation(0, pi/2, 0)*state) assert got in ans ans.remove(got) assert not ans arg = Rotation(a, b, g)*fun[0] assert qapply(arg) == ( -exp(-I*a)*exp(I*g)*cos(b)*JxKetCoupled(1,-1,(1,1))/2 + exp(-I*a)*exp(I*g)*JxKetCoupled(1,-1,(1,1))/2 - sqrt(2)*exp(-I*a)*sin(b)*JxKetCoupled(1,0,(1,1))/2 + exp(-I*a)*exp(-I*g)*cos(b)*JxKetCoupled(1,1,(1,1))/2 + exp(-I*a)*exp(-I*g)*JxKetCoupled(1,1,(1,1))/2) #dummy effective assert str(qapply(Rotation(a,b,g)*JzKetCoupled(j,m,(j1,j2)), dummy=False)) == str( qapply(Rotation(a,b,g)*JzKetCoupled(j,m,(j1,j2)), dummy=True)).replace('_','') def test_jzket(): j, m = symbols('j m') # j not integer or half integer raises(ValueError, lambda: JzKet(Rational(2, 3), Rational(-1, 3))) raises(ValueError, lambda: JzKet(Rational(2, 3), m)) # j < 0 raises(ValueError, lambda: JzKet(-1, 1)) raises(ValueError, lambda: JzKet(-1, m)) # m not integer or half integer raises(ValueError, lambda: JzKet(j, Rational(-1, 3))) # abs(m) > j raises(ValueError, lambda: JzKet(1, 2)) raises(ValueError, lambda: JzKet(1, -2)) # j-m not integer raises(ValueError, lambda: JzKet(1, S.Half)) def test_jzketcoupled(): j, m = symbols('j m') # j not integer or half integer raises(ValueError, lambda: JzKetCoupled(Rational(2, 3), Rational(-1, 3), (1,))) raises(ValueError, lambda: JzKetCoupled(Rational(2, 3), m, (1,))) # j < 0 raises(ValueError, lambda: JzKetCoupled(-1, 1, (1,))) raises(ValueError, lambda: JzKetCoupled(-1, m, (1,))) # m not integer or half integer raises(ValueError, lambda: JzKetCoupled(j, Rational(-1, 3), (1,))) # abs(m) > j raises(ValueError, lambda: JzKetCoupled(1, 2, (1,))) raises(ValueError, lambda: JzKetCoupled(1, -2, (1,))) # j-m not integer raises(ValueError, lambda: JzKetCoupled(1, S.Half, (1,))) # checks types on coupling scheme raises(TypeError, lambda: JzKetCoupled(1, 1, 1)) raises(TypeError, lambda: JzKetCoupled(1, 1, (1,), 1)) raises(TypeError, lambda: JzKetCoupled(1, 1, (1, 1), (1,))) raises(TypeError, lambda: JzKetCoupled(1, 1, (1, 1, 1), (1, 2, 1), (1, 3, 1))) # checks length of coupling terms raises(ValueError, lambda: JzKetCoupled(1, 1, (1,), ((1, 2, 1),))) raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((1, 2),))) # all jn are integer or half-integer raises(ValueError, lambda: JzKetCoupled(1, 1, (Rational(1, 3), Rational(2, 3)))) # indices in coupling scheme must be integers raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((S.Half, 1, 2),) )) raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((1, S.Half, 2),) )) # indices out of range raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((0, 2, 1),) )) raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((3, 2, 1),) )) raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((1, 0, 1),) )) raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((1, 3, 1),) )) # all j values in coupling scheme must by integer or half-integer raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, S( 4)/3), (1, 3, 1)) )) # each coupling must satisfy |j1-j2| <= j3 <= j1+j2 raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 5))) raises(ValueError, lambda: JzKetCoupled(5, 1, (1, 1))) # final j of coupling must be j of the state raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((1, 2, 2),) ))
6b02e04a426466910473daccb1bf132ca5d039cea9bcda20c7ebd0927f6d4fe3
from sympy import symbols, pi, sin, cos, Float, ImmutableMatrix as Matrix from sympy.physics.vector import ReferenceFrame, Vector, dynamicsymbols, dot from sympy.abc import x, y, z from sympy.testing.pytest import raises Vector.simp = True A = ReferenceFrame('A') def test_Vector(): assert A.x != A.y assert A.y != A.z assert A.z != A.x assert A.x + 0 == A.x v1 = x*A.x + y*A.y + z*A.z v2 = x**2*A.x + y**2*A.y + z**2*A.z v3 = v1 + v2 v4 = v1 - v2 assert isinstance(v1, Vector) assert dot(v1, A.x) == x assert dot(v1, A.y) == y assert dot(v1, A.z) == z assert isinstance(v2, Vector) assert dot(v2, A.x) == x**2 assert dot(v2, A.y) == y**2 assert dot(v2, A.z) == z**2 assert isinstance(v3, Vector) # We probably shouldn't be using simplify in dot... assert dot(v3, A.x) == x**2 + x assert dot(v3, A.y) == y**2 + y assert dot(v3, A.z) == z**2 + z assert isinstance(v4, Vector) # We probably shouldn't be using simplify in dot... assert dot(v4, A.x) == x - x**2 assert dot(v4, A.y) == y - y**2 assert dot(v4, A.z) == z - z**2 assert v1.to_matrix(A) == Matrix([[x], [y], [z]]) q = symbols('q') B = A.orientnew('B', 'Axis', (q, A.x)) assert v1.to_matrix(B) == Matrix([[x], [ y * cos(q) + z * sin(q)], [-y * sin(q) + z * cos(q)]]) #Test the separate method B = ReferenceFrame('B') v5 = x*A.x + y*A.y + z*B.z assert Vector(0).separate() == {} assert v1.separate() == {A: v1} assert v5.separate() == {A: x*A.x + y*A.y, B: z*B.z} #Test the free_symbols property v6 = x*A.x + y*A.y + z*A.z assert v6.free_symbols(A) == {x,y,z} raises(TypeError, lambda: v3.applyfunc(v1)) def test_Vector_diffs(): q1, q2, q3, q4 = dynamicsymbols('q1 q2 q3 q4') q1d, q2d, q3d, q4d = dynamicsymbols('q1 q2 q3 q4', 1) q1dd, q2dd, q3dd, q4dd = dynamicsymbols('q1 q2 q3 q4', 2) N = ReferenceFrame('N') A = N.orientnew('A', 'Axis', [q3, N.z]) B = A.orientnew('B', 'Axis', [q2, A.x]) v1 = q2 * A.x + q3 * N.y v2 = q3 * B.x + v1 v3 = v1.dt(B) v4 = v2.dt(B) v5 = q1*A.x + q2*A.y + q3*A.z assert v1.dt(N) == q2d * A.x + q2 * q3d * A.y + q3d * N.y assert v1.dt(A) == q2d * A.x + q3 * q3d * N.x + q3d * N.y assert v1.dt(B) == (q2d * A.x + q3 * q3d * N.x + q3d *\ N.y - q3 * cos(q3) * q2d * N.z) assert v2.dt(N) == (q2d * A.x + (q2 + q3) * q3d * A.y + q3d * B.x + q3d * N.y) assert v2.dt(A) == q2d * A.x + q3d * B.x + q3 * q3d * N.x + q3d * N.y assert v2.dt(B) == (q2d * A.x + q3d * B.x + q3 * q3d * N.x + q3d * N.y - q3 * cos(q3) * q2d * N.z) assert v3.dt(N) == (q2dd * A.x + q2d * q3d * A.y + (q3d**2 + q3 * q3dd) * N.x + q3dd * N.y + (q3 * sin(q3) * q2d * q3d - cos(q3) * q2d * q3d - q3 * cos(q3) * q2dd) * N.z) assert v3.dt(A) == (q2dd * A.x + (2 * q3d**2 + q3 * q3dd) * N.x + (q3dd - q3 * q3d**2) * N.y + (q3 * sin(q3) * q2d * q3d - cos(q3) * q2d * q3d - q3 * cos(q3) * q2dd) * N.z) assert v3.dt(B) == (q2dd * A.x - q3 * cos(q3) * q2d**2 * A.y + (2 * q3d**2 + q3 * q3dd) * N.x + (q3dd - q3 * q3d**2) * N.y + (2 * q3 * sin(q3) * q2d * q3d - 2 * cos(q3) * q2d * q3d - q3 * cos(q3) * q2dd) * N.z) assert v4.dt(N) == (q2dd * A.x + q3d * (q2d + q3d) * A.y + q3dd * B.x + (q3d**2 + q3 * q3dd) * N.x + q3dd * N.y + (q3 * sin(q3) * q2d * q3d - cos(q3) * q2d * q3d - q3 * cos(q3) * q2dd) * N.z) assert v4.dt(A) == (q2dd * A.x + q3dd * B.x + (2 * q3d**2 + q3 * q3dd) * N.x + (q3dd - q3 * q3d**2) * N.y + (q3 * sin(q3) * q2d * q3d - cos(q3) * q2d * q3d - q3 * cos(q3) * q2dd) * N.z) assert v4.dt(B) == (q2dd * A.x - q3 * cos(q3) * q2d**2 * A.y + q3dd * B.x + (2 * q3d**2 + q3 * q3dd) * N.x + (q3dd - q3 * q3d**2) * N.y + (2 * q3 * sin(q3) * q2d * q3d - 2 * cos(q3) * q2d * q3d - q3 * cos(q3) * q2dd) * N.z) assert v5.dt(B) == q1d*A.x + (q3*q2d + q2d)*A.y + (-q2*q2d + q3d)*A.z assert v5.dt(A) == q1d*A.x + q2d*A.y + q3d*A.z assert v5.dt(N) == (-q2*q3d + q1d)*A.x + (q1*q3d + q2d)*A.y + q3d*A.z assert v3.diff(q1d, N) == 0 assert v3.diff(q2d, N) == A.x - q3 * cos(q3) * N.z assert v3.diff(q3d, N) == q3 * N.x + N.y assert v3.diff(q1d, A) == 0 assert v3.diff(q2d, A) == A.x - q3 * cos(q3) * N.z assert v3.diff(q3d, A) == q3 * N.x + N.y assert v3.diff(q1d, B) == 0 assert v3.diff(q2d, B) == A.x - q3 * cos(q3) * N.z assert v3.diff(q3d, B) == q3 * N.x + N.y assert v4.diff(q1d, N) == 0 assert v4.diff(q2d, N) == A.x - q3 * cos(q3) * N.z assert v4.diff(q3d, N) == B.x + q3 * N.x + N.y assert v4.diff(q1d, A) == 0 assert v4.diff(q2d, A) == A.x - q3 * cos(q3) * N.z assert v4.diff(q3d, A) == B.x + q3 * N.x + N.y assert v4.diff(q1d, B) == 0 assert v4.diff(q2d, B) == A.x - q3 * cos(q3) * N.z assert v4.diff(q3d, B) == B.x + q3 * N.x + N.y def test_vector_var_in_dcm(): N = ReferenceFrame('N') A = ReferenceFrame('A') B = ReferenceFrame('B') u1, u2, u3, u4 = dynamicsymbols('u1 u2 u3 u4') v = u1 * u2 * A.x + u3 * N.y + u4**2 * N.z assert v.diff(u1, N, var_in_dcm=False) == u2 * A.x assert v.diff(u1, A, var_in_dcm=False) == u2 * A.x assert v.diff(u3, N, var_in_dcm=False) == N.y assert v.diff(u3, A, var_in_dcm=False) == N.y assert v.diff(u3, B, var_in_dcm=False) == N.y assert v.diff(u4, N, var_in_dcm=False) == 2 * u4 * N.z raises(ValueError, lambda: v.diff(u1, N)) def test_vector_simplify(): x, y, z, k, n, m, w, f, s, A = symbols('x, y, z, k, n, m, w, f, s, A') N = ReferenceFrame('N') test1 = (1 / x + 1 / y) * N.x assert (test1 & N.x) != (x + y) / (x * y) test1 = test1.simplify() assert (test1 & N.x) == (x + y) / (x * y) test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * N.x test2 = test2.simplify() assert (test2 & N.x) == (A**2 * s**4 / (4 * pi * k * m**3)) test3 = ((4 + 4 * x - 2 * (2 + 2 * x)) / (2 + 2 * x)) * N.x test3 = test3.simplify() assert (test3 & N.x) == 0 test4 = ((-4 * x * y**2 - 2 * y**3 - 2 * x**2 * y) / (x + y)**2) * N.x test4 = test4.simplify() assert (test4 & N.x) == -2 * y def test_vector_evalf(): a, b = symbols('a b') v = pi * A.x assert v.evalf(2) == Float('3.1416', 2) * A.x v = pi * A.x + 5 * a * A.y - b * A.z assert v.evalf(3) == Float('3.1416', 3) * A.x + Float('5', 3) * a * A.y - b * A.z assert v.evalf(5, subs={a: 1.234, b:5.8973}) == Float('3.1415926536', 5) * A.x + Float('6.17', 5) * A.y - Float('5.8973', 5) * A.z def test_vector_xreplace(): x, y, z = symbols('x y z') v = x**2 * A.x + x*y * A.y + x*y*z * A.z assert v.xreplace({x : cos(x)}) == cos(x)**2 * A.x + y*cos(x) * A.y + y*z*cos(x) * A.z assert v.xreplace({x*y : pi}) == x**2 * A.x + pi * A.y + x*y*z * A.z assert v.xreplace({x*y*z : 1}) == x**2*A.x + x*y*A.y + A.z assert v.xreplace({x:1, z:0}) == A.x + y * A.y raises(TypeError, lambda: v.xreplace()) raises(TypeError, lambda: v.xreplace([x, y]))
70c9e18440525efbec04c265ecd5262f2d5d58a8a86cac9222744704415997c0
from sympy import sin, cos, symbols, pi, Float, ImmutableMatrix as Matrix from sympy.physics.vector import ReferenceFrame, Vector, dynamicsymbols, outer from sympy.physics.vector.dyadic import _check_dyadic from sympy.testing.pytest import raises Vector.simp = True A = ReferenceFrame('A') def test_dyadic(): d1 = A.x | A.x d2 = A.y | A.y d3 = A.x | A.y assert d1 * 0 == 0 assert d1 != 0 assert d1 * 2 == 2 * A.x | A.x assert d1 / 2. == 0.5 * d1 assert d1 & (0 * d1) == 0 assert d1 & d2 == 0 assert d1 & A.x == A.x assert d1 ^ A.x == 0 assert d1 ^ A.y == A.x | A.z assert d1 ^ A.z == - A.x | A.y assert d2 ^ A.x == - A.y | A.z assert A.x ^ d1 == 0 assert A.y ^ d1 == - A.z | A.x assert A.z ^ d1 == A.y | A.x assert A.x & d1 == A.x assert A.y & d1 == 0 assert A.y & d2 == A.y assert d1 & d3 == A.x | A.y assert d3 & d1 == 0 assert d1.dt(A) == 0 q = dynamicsymbols('q') qd = dynamicsymbols('q', 1) B = A.orientnew('B', 'Axis', [q, A.z]) assert d1.express(B) == d1.express(B, B) assert d1.express(B) == ((cos(q)**2) * (B.x | B.x) + (-sin(q) * cos(q)) * (B.x | B.y) + (-sin(q) * cos(q)) * (B.y | B.x) + (sin(q)**2) * (B.y | B.y)) assert d1.express(B, A) == (cos(q)) * (B.x | A.x) + (-sin(q)) * (B.y | A.x) assert d1.express(A, B) == (cos(q)) * (A.x | B.x) + (-sin(q)) * (A.x | B.y) assert d1.dt(B) == (-qd) * (A.y | A.x) + (-qd) * (A.x | A.y) assert d1.to_matrix(A) == Matrix([[1, 0, 0], [0, 0, 0], [0, 0, 0]]) assert d1.to_matrix(A, B) == Matrix([[cos(q), -sin(q), 0], [0, 0, 0], [0, 0, 0]]) assert d3.to_matrix(A) == Matrix([[0, 1, 0], [0, 0, 0], [0, 0, 0]]) a, b, c, d, e, f = symbols('a, b, c, d, e, f') v1 = a * A.x + b * A.y + c * A.z v2 = d * A.x + e * A.y + f * A.z d4 = v1.outer(v2) assert d4.to_matrix(A) == Matrix([[a * d, a * e, a * f], [b * d, b * e, b * f], [c * d, c * e, c * f]]) d5 = v1.outer(v1) C = A.orientnew('C', 'Axis', [q, A.x]) for expected, actual in zip(C.dcm(A) * d5.to_matrix(A) * C.dcm(A).T, d5.to_matrix(C)): assert (expected - actual).simplify() == 0 raises(TypeError, lambda: d1.applyfunc(0)) def test_dyadic_simplify(): x, y, z, k, n, m, w, f, s, A = symbols('x, y, z, k, n, m, w, f, s, A') N = ReferenceFrame('N') dy = N.x | N.x test1 = (1 / x + 1 / y) * dy assert (N.x & test1 & N.x) != (x + y) / (x * y) test1 = test1.simplify() assert (N.x & test1 & N.x) == (x + y) / (x * y) test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * dy test2 = test2.simplify() assert (N.x & test2 & N.x) == (A**2 * s**4 / (4 * pi * k * m**3)) test3 = ((4 + 4 * x - 2 * (2 + 2 * x)) / (2 + 2 * x)) * dy test3 = test3.simplify() assert (N.x & test3 & N.x) == 0 test4 = ((-4 * x * y**2 - 2 * y**3 - 2 * x**2 * y) / (x + y)**2) * dy test4 = test4.simplify() assert (N.x & test4 & N.x) == -2 * y def test_dyadic_subs(): N = ReferenceFrame('N') s = symbols('s') a = s*(N.x | N.x) assert a.subs({s: 2}) == 2*(N.x | N.x) def test_check_dyadic(): raises(TypeError, lambda: _check_dyadic(0)) def test_dyadic_evalf(): N = ReferenceFrame('N') a = pi * (N.x | N.x) assert a.evalf(3) == Float('3.1416', 3) * (N.x | N.x) s = symbols('s') a = 5 * s * pi* (N.x | N.x) assert a.evalf(2) == Float('5', 2) * Float('3.1416', 2) * s * (N.x | N.x) assert a.evalf(9, subs={s: 5.124}) == Float('80.48760378', 9) * (N.x | N.x) def test_dyadic_xreplace(): x, y, z = symbols('x y z') N = ReferenceFrame('N') D = outer(N.x, N.x) v = x*y * D assert v.xreplace({x : cos(x)}) == cos(x)*y * D assert v.xreplace({x*y : pi}) == pi * D v = (x*y)**z * D assert v.xreplace({(x*y)**z : 1}) == D assert v.xreplace({x:1, z:0}) == D raises(TypeError, lambda: v.xreplace()) raises(TypeError, lambda: v.xreplace([x, y]))
7de12f9ed17683179987d4e2f888de76795f4200f59e87b3755ac84192c2f2a0
from sympy import Basic from sympy import S from sympy.core.expr import Expr from sympy.core.numbers import Integer from sympy.core.sympify import sympify from sympy.core.kind import Kind, NumberKind, UndefinedKind from sympy.core.compatibility import SYMPY_INTS from sympy.printing.defaults import Printable import itertools from collections.abc import Iterable class ArrayKind(Kind): """ Kind for N-dimensional array in SymPy. This kind represents the multidimensional array that algebraic operations are defined. Basic class for this kind is ``NDimArray``, but any expression representing the array can have this. Parameters ========== element_kind : Kind Kind of the element. Default is :obj:NumberKind `<sympy.core.kind.NumberKind>`, which means that the array contains only numbers. Examples ======== Any instance of array class has ``ArrayKind``. >>> from sympy import NDimArray >>> NDimArray([1,2,3]).kind ArrayKind(NumberKind) Although expressions representing an array may be not instance of array class, it will have ``ArrayKind`` as well. >>> from sympy import Integral >>> from sympy.tensor.array import NDimArray >>> from sympy.abc import x >>> intA = Integral(NDimArray([1,2,3]), x) >>> isinstance(intA, NDimArray) False >>> intA.kind ArrayKind(NumberKind) Use ``isinstance()`` to check for ``ArrayKind` without specifying the element kind. Use ``is`` with specifying the element kind. >>> from sympy.tensor.array import ArrayKind >>> from sympy.core.kind import NumberKind >>> boolA = NDimArray([True, False]) >>> isinstance(boolA.kind, ArrayKind) True >>> boolA.kind is ArrayKind(NumberKind) False See Also ======== shape : Function to return the shape of objects with ``MatrixKind``. """ def __new__(cls, element_kind=NumberKind): obj = super().__new__(cls, element_kind) obj.element_kind = element_kind return obj def __repr__(self): return "ArrayKind(%s)" % self.element_kind class NDimArray(Printable): """ Examples ======== Create an N-dim array of zeros: >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(2, 3, 4) >>> a [[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]] Create an N-dim array from a list; >>> a = MutableDenseNDimArray([[2, 3], [4, 5]]) >>> a [[2, 3], [4, 5]] >>> b = MutableDenseNDimArray([[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]]) >>> b [[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]] Create an N-dim array from a flat list with dimension shape: >>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3)) >>> a [[1, 2, 3], [4, 5, 6]] Create an N-dim array from a matrix: >>> from sympy import Matrix >>> a = Matrix([[1,2],[3,4]]) >>> a Matrix([ [1, 2], [3, 4]]) >>> b = MutableDenseNDimArray(a) >>> b [[1, 2], [3, 4]] Arithmetic operations on N-dim arrays >>> a = MutableDenseNDimArray([1, 1, 1, 1], (2, 2)) >>> b = MutableDenseNDimArray([4, 4, 4, 4], (2, 2)) >>> c = a + b >>> c [[5, 5], [5, 5]] >>> a - b [[-3, -3], [-3, -3]] """ _diff_wrt = True is_scalar = False def __new__(cls, iterable, shape=None, **kwargs): from sympy.tensor.array import ImmutableDenseNDimArray return ImmutableDenseNDimArray(iterable, shape, **kwargs) @property def kind(self): elem_kinds = set(e.kind for e in self._array) if len(elem_kinds) == 1: elemkind, = elem_kinds else: elemkind = UndefinedKind return ArrayKind(elemkind) def _parse_index(self, index): if isinstance(index, (SYMPY_INTS, Integer)): raise ValueError("Only a tuple index is accepted") if self._loop_size == 0: raise ValueError("Index not valide with an empty array") if len(index) != self._rank: raise ValueError('Wrong number of array axes') real_index = 0 # check if input index can exist in current indexing for i in range(self._rank): if (index[i] >= self.shape[i]) or (index[i] < -self.shape[i]): raise ValueError('Index ' + str(index) + ' out of border') if index[i] < 0: real_index += 1 real_index = real_index*self.shape[i] + index[i] return real_index def _get_tuple_index(self, integer_index): index = [] for i, sh in enumerate(reversed(self.shape)): index.append(integer_index % sh) integer_index //= sh index.reverse() return tuple(index) def _check_symbolic_index(self, index): # Check if any index is symbolic: tuple_index = (index if isinstance(index, tuple) else (index,)) if any([(isinstance(i, Expr) and (not i.is_number)) for i in tuple_index]): for i, nth_dim in zip(tuple_index, self.shape): if ((i < 0) == True) or ((i >= nth_dim) == True): raise ValueError("index out of range") from sympy.tensor import Indexed return Indexed(self, *tuple_index) return None def _setter_iterable_check(self, value): from sympy.matrices.matrices import MatrixBase if isinstance(value, (Iterable, MatrixBase, NDimArray)): raise NotImplementedError @classmethod def _scan_iterable_shape(cls, iterable): def f(pointer): if not isinstance(pointer, Iterable): return [pointer], () result = [] elems, shapes = zip(*[f(i) for i in pointer]) if len(set(shapes)) != 1: raise ValueError("could not determine shape unambiguously") for i in elems: result.extend(i) return result, (len(shapes),)+shapes[0] return f(iterable) @classmethod def _handle_ndarray_creation_inputs(cls, iterable=None, shape=None, **kwargs): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray from sympy import Dict, Tuple if shape is None: if iterable is None: shape = () iterable = () # Construction of a sparse array from a sparse array elif isinstance(iterable, SparseNDimArray): return iterable._shape, iterable._sparse_array # Construct N-dim array from an iterable (numpy arrays included): elif isinstance(iterable, Iterable): iterable, shape = cls._scan_iterable_shape(iterable) # Construct N-dim array from a Matrix: elif isinstance(iterable, MatrixBase): shape = iterable.shape # Construct N-dim array from another N-dim array: elif isinstance(iterable, NDimArray): shape = iterable.shape else: shape = () iterable = (iterable,) if isinstance(iterable, (Dict, dict)) and shape is not None: new_dict = iterable.copy() for k, v in new_dict.items(): if isinstance(k, (tuple, Tuple)): new_key = 0 for i, idx in enumerate(k): new_key = new_key * shape[i] + idx iterable[new_key] = iterable[k] del iterable[k] if isinstance(shape, (SYMPY_INTS, Integer)): shape = (shape,) if any([not isinstance(dim, (SYMPY_INTS, Integer)) for dim in shape]): raise TypeError("Shape should contain integers only.") return tuple(shape), iterable def __len__(self): """Overload common function len(). Returns number of elements in array. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(3, 3) >>> a [[0, 0, 0], [0, 0, 0], [0, 0, 0]] >>> len(a) 9 """ return self._loop_size @property def shape(self): """ Returns array shape (dimension). Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(3, 3) >>> a.shape (3, 3) """ return self._shape def rank(self): """ Returns rank of array. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(3,4,5,6,3) >>> a.rank() 5 """ return self._rank def diff(self, *args, **kwargs): """ Calculate the derivative of each element in the array. Examples ======== >>> from sympy import ImmutableDenseNDimArray >>> from sympy.abc import x, y >>> M = ImmutableDenseNDimArray([[x, y], [1, x*y]]) >>> M.diff(x) [[1, 0], [0, y]] """ from sympy.tensor.array.array_derivatives import ArrayDerivative kwargs.setdefault('evaluate', True) return ArrayDerivative(self.as_immutable(), *args, **kwargs) def _eval_derivative(self, base): # Types are (base: scalar, self: array) return self.applyfunc(lambda x: base.diff(x)) def _eval_derivative_n_times(self, s, n): return Basic._eval_derivative_n_times(self, s, n) def applyfunc(self, f): """Apply a function to each element of the N-dim array. Examples ======== >>> from sympy import ImmutableDenseNDimArray >>> m = ImmutableDenseNDimArray([i*2+j for i in range(2) for j in range(2)], (2, 2)) >>> m [[0, 1], [2, 3]] >>> m.applyfunc(lambda i: 2*i) [[0, 2], [4, 6]] """ from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(self, SparseNDimArray) and f(S.Zero) == 0: return type(self)({k: f(v) for k, v in self._sparse_array.items() if f(v) != 0}, self.shape) return type(self)(map(f, Flatten(self)), self.shape) def _sympystr(self, printer): def f(sh, shape_left, i, j): if len(shape_left) == 1: return "["+", ".join([printer._print(self[self._get_tuple_index(e)]) for e in range(i, j)])+"]" sh //= shape_left[0] return "[" + ", ".join([f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh) for e in range(shape_left[0])]) + "]" # + "\n"*len(shape_left) if self.rank() == 0: return printer._print(self[()]) return f(self._loop_size, self.shape, 0, self._loop_size) def tolist(self): """ Converting MutableDenseNDimArray to one-dim list Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray([1, 2, 3, 4], (2, 2)) >>> a [[1, 2], [3, 4]] >>> b = a.tolist() >>> b [[1, 2], [3, 4]] """ def f(sh, shape_left, i, j): if len(shape_left) == 1: return [self[self._get_tuple_index(e)] for e in range(i, j)] result = [] sh //= shape_left[0] for e in range(shape_left[0]): result.append(f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh)) return result return f(self._loop_size, self.shape, 0, self._loop_size) def __add__(self, other): from sympy.tensor.array.arrayop import Flatten if not isinstance(other, NDimArray): return NotImplemented if self.shape != other.shape: raise ValueError("array shape mismatch") result_list = [i+j for i,j in zip(Flatten(self), Flatten(other))] return type(self)(result_list, self.shape) def __sub__(self, other): from sympy.tensor.array.arrayop import Flatten if not isinstance(other, NDimArray): return NotImplemented if self.shape != other.shape: raise ValueError("array shape mismatch") result_list = [i-j for i,j in zip(Flatten(self), Flatten(other))] return type(self)(result_list, self.shape) def __mul__(self, other): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(other, (Iterable, NDimArray, MatrixBase)): raise ValueError("scalar expected, use tensorproduct(...) for tensorial product") other = sympify(other) if isinstance(self, SparseNDimArray): if other.is_zero: return type(self)({}, self.shape) return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape) result_list = [i*other for i in Flatten(self)] return type(self)(result_list, self.shape) def __rmul__(self, other): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(other, (Iterable, NDimArray, MatrixBase)): raise ValueError("scalar expected, use tensorproduct(...) for tensorial product") other = sympify(other) if isinstance(self, SparseNDimArray): if other.is_zero: return type(self)({}, self.shape) return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape) result_list = [other*i for i in Flatten(self)] return type(self)(result_list, self.shape) def __truediv__(self, other): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(other, (Iterable, NDimArray, MatrixBase)): raise ValueError("scalar expected") other = sympify(other) if isinstance(self, SparseNDimArray) and other != S.Zero: return type(self)({k: v/other for (k, v) in self._sparse_array.items()}, self.shape) result_list = [i/other for i in Flatten(self)] return type(self)(result_list, self.shape) def __rtruediv__(self, other): raise NotImplementedError('unsupported operation on NDimArray') def __neg__(self): from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(self, SparseNDimArray): return type(self)({k: -v for (k, v) in self._sparse_array.items()}, self.shape) result_list = [-i for i in Flatten(self)] return type(self)(result_list, self.shape) def __iter__(self): def iterator(): if self._shape: for i in range(self._shape[0]): yield self[i] else: yield self[()] return iterator() def __eq__(self, other): """ NDimArray instances can be compared to each other. Instances equal if they have same shape and data. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(2, 3) >>> b = MutableDenseNDimArray.zeros(2, 3) >>> a == b True >>> c = a.reshape(3, 2) >>> c == b False >>> a[0,0] = 1 >>> b[0,0] = 2 >>> a == b False """ from sympy.tensor.array import SparseNDimArray if not isinstance(other, NDimArray): return False if not self.shape == other.shape: return False if isinstance(self, SparseNDimArray) and isinstance(other, SparseNDimArray): return dict(self._sparse_array) == dict(other._sparse_array) return list(self) == list(other) def __ne__(self, other): return not self == other def _eval_transpose(self): if self.rank() != 2: raise ValueError("array rank not 2") from .arrayop import permutedims return permutedims(self, (1, 0)) def transpose(self): return self._eval_transpose() def _eval_conjugate(self): from sympy.tensor.array.arrayop import Flatten return self.func([i.conjugate() for i in Flatten(self)], self.shape) def conjugate(self): return self._eval_conjugate() def _eval_adjoint(self): return self.transpose().conjugate() def adjoint(self): return self._eval_adjoint() def _slice_expand(self, s, dim): if not isinstance(s, slice): return (s,) start, stop, step = s.indices(dim) return [start + i*step for i in range((stop-start)//step)] def _get_slice_data_for_array_access(self, index): sl_factors = [self._slice_expand(i, dim) for (i, dim) in zip(index, self.shape)] eindices = itertools.product(*sl_factors) return sl_factors, eindices def _get_slice_data_for_array_assignment(self, index, value): if not isinstance(value, NDimArray): value = type(self)(value) sl_factors, eindices = self._get_slice_data_for_array_access(index) slice_offsets = [min(i) if isinstance(i, list) else None for i in sl_factors] # TODO: add checks for dimensions for `value`? return value, eindices, slice_offsets @classmethod def _check_special_bounds(cls, flat_list, shape): if shape == () and len(flat_list) != 1: raise ValueError("arrays without shape need one scalar value") if shape == (0,) and len(flat_list) > 0: raise ValueError("if array shape is (0,) there cannot be elements") def _check_index_for_getitem(self, index): if isinstance(index, (SYMPY_INTS, Integer, slice)): index = (index, ) if len(index) < self.rank(): index = tuple([i for i in index] + \ [slice(None) for i in range(len(index), self.rank())]) if len(index) > self.rank(): raise ValueError('Dimension of index greater than rank of array') return index class ImmutableNDimArray(NDimArray, Basic): _op_priority = 11.0 def __hash__(self): return Basic.__hash__(self) def as_immutable(self): return self def as_mutable(self): raise NotImplementedError("abstract method")
69dd942ca6d971834d6ea79038f58cfb0b68c807e440d8ea9d4b1659bfaafe0c
from sympy import Expr, ImmutableDenseNDimArray, S from sympy.core.sympify import _sympify class ZeroArray(Expr): """ Symbolic array of zeros. Equivalent to ``ZeroMatrix`` for matrices. """ def __new__(cls, *shape): if len(shape) == 0: return S.Zero shape = map(_sympify, shape) obj = Expr.__new__(cls, *shape) return obj @property def shape(self): return self._args def as_explicit(self): if any(not i.is_Integer for i in self.shape): raise ValueError("Cannot return explicit form for symbolic shape.") return ImmutableDenseNDimArray.zeros(*self.shape)
35ea65b0972ebc49a7ff4158351aacaf3c7100e69ac1303e612f5ef5d6d2abd4
import operator from functools import reduce, singledispatch from sympy import Expr, Transpose, Identity, MatrixSymbol, S from sympy.codegen.array_utils import CodegenArrayElementwiseAdd, CodegenArrayPermuteDims, CodegenArrayContraction, \ get_shape, CodegenArrayTensorProduct from sympy.combinatorics.permutations import _af_invert from sympy.tensor.array.expressions.array_expressions import ZeroArray @singledispatch def array_derive(expr, x): raise NotImplementedError(f"not implemented for type {type(expr)}") @array_derive.register(Expr) def _(expr: Expr, x: Expr): return ZeroArray(*x.shape) @array_derive.register(CodegenArrayTensorProduct) def _(expr: CodegenArrayTensorProduct, x: Expr): args = expr.args addend_list = [] for i, arg in enumerate(expr.args): darg = array_derive(arg, x) if darg == 0: continue args_prev = args[:i] args_succ = args[i+1:] shape_prev = reduce(operator.add, map(get_shape, args_prev), ()) shape_succ = reduce(operator.add, map(get_shape, args_succ), ()) addend = CodegenArrayTensorProduct(*args_prev, darg, *args_succ) tot1 = len(get_shape(x)) tot2 = tot1 + len(shape_prev) tot3 = tot2 + len(get_shape(arg)) tot4 = tot3 + len(shape_succ) perm = [i for i in range(tot1, tot2)] + \ [i for i in range(tot1)] + [i for i in range(tot2, tot3)] + \ [i for i in range(tot3, tot4)] addend = CodegenArrayPermuteDims(addend, _af_invert(perm)) addend_list.append(addend) if len(addend_list) == 1: return addend_list[0] elif len(addend_list) == 0: return S.Zero else: return CodegenArrayElementwiseAdd(*addend_list) @array_derive.register(MatrixSymbol) def _(expr: MatrixSymbol, x: Expr): m, n = expr.shape if expr == x: return CodegenArrayPermuteDims( CodegenArrayTensorProduct(Identity(m), Identity(n)), [0, 2, 1, 3] ) return ZeroArray(*(x.shape + expr.shape)) @array_derive.register(Identity) def _(expr: Identity, x: Expr): return ZeroArray(*(x.shape + expr.shape)) @array_derive.register(Transpose) def _(expr: Transpose, x: Expr): # D(A.T, A) ==> (m,n,i,j) ==> D(A_ji, A_mn) = d_mj d_ni # D(B.T, A) ==> (m,n,i,j) ==> D(B_ji, A_mn) fd = array_derive(expr.arg, x) return CodegenArrayPermuteDims(fd, [0, 1, 3, 2]) @array_derive.register(CodegenArrayContraction) def _(expr: CodegenArrayContraction, x: Expr): fd = array_derive(expr.expr, x) rank_x = len(get_shape(x)) contraction_indices = expr.contraction_indices new_contraction_indices = [tuple(j + rank_x for j in i) for i in contraction_indices] return CodegenArrayContraction(fd, *new_contraction_indices) @array_derive.register(CodegenArrayElementwiseAdd) def _(expr: CodegenArrayElementwiseAdd, x: Expr): return CodegenArrayElementwiseAdd(*[array_derive(arg, x) for arg in expr.args]) @array_derive.register(CodegenArrayPermuteDims) def _(expr: CodegenArrayPermuteDims, x: Expr): de = array_derive(expr.expr, x) perm = [0, 1] + [i + 2 for i in expr.permutation.array_form] return CodegenArrayPermuteDims(de, perm) def matrix_derive(expr, x): from sympy.codegen.array_utils import parse_matrix_expression, recognize_matrix_expression ce = parse_matrix_expression(expr) dce = array_derive(ce, x) return recognize_matrix_expression(dce).doit()